
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

4-2021

Machine learning based approaches towards robust Android Machine learning based approaches towards robust Android

malware detection malware detection

Jiayun XU
Singapore Management University

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Information Security Commons, and the Software Engineering Commons

Citation Citation
XU, Jiayun. Machine learning based approaches towards robust Android malware detection. (2021).
1-121.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/320

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F320&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Machine Learning Based
Approaches Towards Robust
Android Malware Detection

Xu Jiayun

Singapore Management University

2021

Machine Learning Based Approaches Towards
Robust Android Malware Detection

Xu Jiayun

Submitted to School of Computing and Information Systems in partial
fulfillment of the requirements for the Degree of Doctor of Philosophy in

Computer Science

Dissertation Committee:
Robert DENG Huijie (Supervisor / Chair)
Professor of Information Systems
Singapore Management University

Yingjiu LI (Co-Supervisor)
Ripple Professor
Department of Computer and Information Science
University of Oregon

Xuhua DING

Associate Professor of Information Systems
Singapore Management University

Debin GAO

Associate Professor of Information Systems
Singapore Management University

Jianying ZHOU (External Reviewer)
Professor of Information Systems Technology and Design
Singapore University of Technology and Design

Singapore Management University
2021

Copyright (2021) XU Jiayun

I hereby declare that this dissertation is my original work and it

has been written by me in its entirety. I have duly acknowledged

all the sources of information which have been used in this

dissertation.

This PhD dissertation has also not been submitted for any degree

in any university previously.

Xu Jiayun

05 February 2021

Machine Learning Based Approaches Towards
Robust Android Malware Detection

Xu Jiayun

Abstract

The Android platform is becoming increasingly popular and numerous applica-

tions (apps) have been developed by organizations to meet the ever increasing

market demand over years. Naturally, security and privacy concerns on Android

apps have grabbed considerable attention from both academic and industrial

communities. Many approaches have been proposed to detect Android malware

in different ways so far, and most of them produce satisfactory performance

under the given Android environment settings and labelled samples. However,

existing approaches suffer the following robustness problems:

• In many Android malware detection approaches, specific API calls are

used to build the feature sets, and their feature sets are fixed once the

model has been trained. However, such feature sets lack of robustness

against the change of available APIs. Since there are always new APIs

released with old ones deprecated [1] during the evolvement of Android

specifications. If developers switch from old APIs to new ones in app

development, older Android malware detection models which are trained

before the release of new APIs may not be effective then, because these

new APIs are not included in the previously fixed feature sets.

• Besides, existing approaches are also lack of robustness towards the

label noises. Recent research discovered that sample labels provided by

malware detection websites may not be always reliable [43], and we also

figure out that 10% of sample labels provided by VirusTotal change during

a period of 2 years in our experiments. This indicated label noises cannot

be ignored in the training of Android malware detection models, while

existing approaches which directly use the provided labels will suffer

from the label noise problem.

• Furthermore, even if the sample labels are correct, there may still exist

inconsistencies between the sample labels and the generated feature vec-

tors in dynamic-based Android malware detection approaches. Since no

triggering modules can perfectly trigger all potential malicious behaviors,

and anti-analysis techniques are common in the apps. In this case, the

triggered behavior traces collected from samples labelled as “malware”

may not contain “malicious” behaviors, thus feature vectors built from

such traces may become noises in the model training.

Towards the above problems, three different works are presented in this

dissertation to provide robustness to Android malware detection in different

ways:

The first work in this dissertation proposes a slow-aging Android malware

detection solution named SDAC. Towards solving the model aging problem, S-

DAC evolves its feature set effectively by evaluating new APIs’ contributions to

malware detection using existing APIs’ contributions. In detail, SDAC evaluates

the contributions of APIs using their contexts in the API call sequences. These

sequences are extracted from Android apps demonstrating how the APIs are

used in real world cases. Based on these sequences, an embedding algorithm

named API2Vec is deployed to map APIs into a vector space in which the

differences among API vectors are regarded as the semantic distances. Then

SDAC clusters all these APIs based on the semantic distances among them to

create a feature set in the training phase, and extends the feature set to include

all new APIs in the detecting phase. By the feature extension, SDAC can adapt

to the changes in Android specifications and thus produces a robust approach

against changes in Android OS specifications.

The second work in this dissertation is named Differential Training, which

is a general framework designed to reduce the noise level of training data

for any machine learning-based Android malware detection approach. We

discover that labels of samples provided by Anti-Virus organizations change

over time. The changes imply certain labels are erroneous, and thus distort the

performance when such labels are used in training Android malware detection

models. Differential Training, which functions as a general framework, can

detect label noises with different Android malware detection approaches. For

the input sample apps, Differential Training firstly generates the noise detection

feature vectors from all the intermediate states of two identical deep learning

classification models. Then it applies outlier detection algorithms on these noise

detection feature vectors, and the outliers detected are regarded as coming from

noises. With the label noises being detected and reduced, Differential Training

can thus help improve the detection accuracy of Android malware detection

approaches.

The third work in the dissertation is a noise-tolerant dynamic-based Android

malware detection approach named Dynamic Attention. In dynamic-based

Android malware detection approaches, the triggered behavior traces collected

from samples with “malware” labels may not contain “malicious” behaviors due

to the imperfect trigger procedure or anti-analysis methods, so they are in fact

mislabelled when used in training Android malware detection models. Dynamic

Attention is thus designed to solve this mislabelling problem: it identifies

the label noises based on the variances of the attention weights associated

within the behavior traces derived from malicious apps, and assigns correctly-

labelled behavior traces with high weights and wrongly-labelled ones with low

weights during the model training. By doing so, Dynamic Attention makes

the classification model learn less from wrongly-labelled feature vectors and

gains resistances against the noises. This approach also enjoys high practicality,

since it relies on neither domain knowledge nor manual inspection in the model

training.

This dissertation contributes to the robustness of Android malware detection

approaches in various ways. In particular, SDAC is robust towards changes in

Android specifications, Differential Training provides robustness against label

noises for Android malware detection in static analysis, and Dynamic Attention

achieves the same goal for Android malware detection in dynamic analysis.

Table of Contents

1 Introduction 1

1.1 SDAC: A Slow-Aging Solution for Android Malware Detection

Using Semantic Distance Based API Clustering 1

1.2 Differential Training: A Generic Framework to Reduce Label

Noises for Android Malware Detection 2

1.3 Dynamic Attention: A Noise-Tolerant Dynamic Analysis Ap-

proach to Android Malware Detection based on Attention Vari-

ances . 3

1.4 Contributions and Organization 4

2 Literature Review 6

3 SDAC: A Slow-Aging Solution for Android Malware Detection

Using Semantic Distance Based API Clustering 9

3.1 Introduction . 9

3.2 Basic SDAC . 14

3.2.1 API Path Extraction 15

3.2.2 API Vector Embedding 16

3.2.3 API Cluster Generation and Extension 18

3.2.4 Classification Model Training and Testing 21

3.2.5 Model Voting . 21

3.3 Two Modes of SDAC and Online Versions 22

i

3.3.1 SDAC-FEO . 22

3.3.2 SDAC-FMU . 23

3.3.3 Online Versions . 25

3.4 Evaluation of SDAC . 27

3.4.1 Evaluation of SDAC-FEO 29

3.4.2 Evaluation of SDAC-FMU 36

3.4.3 Evaluation of SDAC-FEO-OL & SDAC-FMU-OL . . . 39

3.4.4 Runtime Performance 40

3.4.5 Evaluation of SDAC with Different Tmal 43

3.4.6 Evaluation of SDAC with Unbalanced Datasets 43

3.5 Discussions . 45

3.5.1 SDAC against Obfuscation 45

3.5.2 API Semantic Extraction 46

3.5.3 Limitations . 47

4 Differential Training: A Generic Framework to Reduce Label

Noises for Android Malware Detection 48

4.1 Introduction . 48

4.2 Preliminaries . 53

4.2.1 Machine Learning Based Android Malware Detection . 53

4.2.2 Training Noise Detection Models 53

4.2.3 Underlying Assumption 54

4.3 Differential Training Heuristic 54

4.4 Differential Training Framework 60

4.4.1 Phase I: Pre-processing 60

4.4.2 Phase II: Noisy Label Detection 61

4.4.3 Phase III: Malware Detection with Revised Labels . . . 64

4.5 Differential Training with SDAC 65

4.5.1 Performance of Differential Training with SDAC 65

ii

4.5.2 Runtime Performance of Differential Training with SDAC 67

4.6 Differential Training with Drebin 67

4.6.1 Introduction of Drebin 67

4.6.2 Drebin Dataset . 68

4.6.3 Performance of Differential Training with Drebin 68

4.6.4 Runtime Performance of Differential Training with Drebin 69

4.7 Differential Training with DeepRefiner 69

4.7.1 Introduction of DeepRefiner 69

4.7.2 DeepRefiner Dataset 70

4.7.3 Performance of Differential Training with DeepRefiner . 70

4.7.4 Runtime Performance of Differential Training with Deep-

Refiner . 71

4.8 The Impact of Noise Ratio to Noise Reduction 71

4.9 Comparison among Differential Training, Co-teaching, and

Decoupling on Noise Reduction 74

4.10 Discussion . 76

4.10.1 Limitation . 76

4.10.2 Generalization on Differential Training 77

5 Dynamic Attention: A Noise-Tolerant Dynamic Analysis Approach

to Android Malware Detection based on Attention Variances 78

5.1 Introduction . 78

5.2 Preliminaries . 82

5.2.1 Machine Learning Based Android Malware Detection

with Dynamic Analysis 82

5.2.2 Training of Neural Network Models 83

5.2.3 Attention Mechanism 84

5.2.4 Underlying Assumption 84

5.3 Dynamic Attention Heuristic 85

iii

5.4 The framework of our Approach 86

5.4.1 Step I: Pre-processing 86

5.4.2 Step II: Noise tolerant model training 87

5.4.3 Step III: Classification 89

5.5 The Evaluation . 90

5.5.1 Dataset . 90

5.5.2 Proof Experiments for our Heuristic 92

5.5.3 Performance Evaluation 92

6 Integration of the Three Works 94

7 Conclusion 96

iv

List of Figures

3.1 Structure of Basic SDAC with One Classification Model 13

3.2 A Call Graph Snippet of “Mega Cats” 15

3.3 An Invoke Call Path of “Mega Cats” 16

3.4 API Vector Embedding . 17

3.5 API Cluster Extension . 20

3.6 Structure of SDAC-FEO with One Training Set (2011 apps) and

Three Testing Sets (2012 apps, 2013 apps, and 2014 apps) . . . 23

3.7 Structure of SDAC-FMU with One Training Set (2011 apps)

and Three Testing Sets (2012 apps, 2013 apps, and 2014 apps) . 25

3.8 F-score of SDAC in Cross Validation on 2011 Training Set with

Different k . 29

3.9 F-score of SDAC in Cross Validation on 2011 Training Set with

Different m and τ . 30

3.10 Distinguishability of API Cluster Extension 33

3.11 Comparison between SDAC-FEO and MaMaDroid (CV: 5-fold

cross validation) . 34

3.12 Evaluation of MaMaDroid with Different Classification Algo-

rithms (CV:5-fold cross validation) 35

3.13 Comparison between SDAC-FMU, SDAC-FEO, and MaMaDroid

(CV: 5-fold cross validation) 37

3.14 Difference in API Usage among TP, FP, FN, and TN with 2011

Training Set . 39

v

3.15 Evaluation of Online Versions with 2011 Training Set (CV: 5-

fold cross validation) . 40

3.16 Comparison between SDAC-FMU, SDAC-FEO, and MaMaDroid

with Tmal = 4 and Tmal = 9 (CV: 5-fold cross validation) 44

3.17 Comparison between SDAC-FMU, SDAC-FEO and MaMaDroid

with Datasets of Unbalanced Ratio (CV: 5-fold cross validation) 44

4.1 Distributions of Correctly-Labeled Samples and Wrongly-Labeled

Samples . 56

4.2 Distributions of Correctly-Labeled Samples and Wrongly-Labeled

Samples with Different Sizes of DS 58

4.3 Structure of Differential Training 60

4.4 Structure of a Single Iteration in Noisy Label Detection 61

4.5 Noise Reduction on SDAC Dataset 66

4.6 Noise Reduction on Drebin Dataset 68

4.7 Noise Reduction on DeepRefiner Dataset 71

5.1 Training Dynamic Attention Model with a Batch of Dataset . . . 88

5.2 Distribution of Attention Weight Variances in Testing/Training

Datasets . 93

6.1 Integration of Works . 95

vi

List of Tables

3.1 Overview of Dataset(Tmal = 15) 28

3.2 F-score of SDAC-FEO in Cross Validation 31

3.3 Runtime Performance of SDAC 41

3.4 Robustness of SDAC (in recall rate) against Category-II Obfus-

cation with 2011 Training Set 46

4.1 Wasserstein Distance between Distributions of Correctly-Labeled

and Wrongly-Labeled Samples 57

4.2 Wasserstein Distance between Distributions of Correctly-Labeled

and Wrongly-Labeled Samples with Different DS 58

4.3 List of Outlier Detection Algorithms used in Differential Training 63

4.4 The Evaluation of Differential Training with SDAC 66

4.5 The Evaluation of Differential Training with Drebin 69

4.6 The Evaluation of Differential Training with DeepRefiner 70

4.7 Noise Reduction on SDAC Dataset at Different Noise Ratios . . 72

4.8 Noise Reduction on Drebin Dataset at Different Noise Ratios . . 72

4.9 Noise Reduction on DeepRefiner Dataset at Different Noise Ratios 72

4.10 Comparison between Differential Training (DT), Co-Teaching

(CT) and Decoupling (DC) . 76

5.1 Overview of Training and Testing Sets 91

5.2 Detection Accuracy of our Approach compared with a Vanilla

Model of the Same Structure 93

vii

Acknowledgments

I would like to firstly thank my supervisors Prof. Robert Deng and Prof. Yingjiu

Li, for their support during my PhD study. Since the start of the programme,

Prof. Deng and Prof. Li gave me valuable advice and guidance which helped

me conquer the difficulties in both my research and my life. I offer my sincere

appreciation and gratitude for their constant encouragement, extraordinary

patience, advice of great value, edits on my writing, and funding throughout

all the stages over all these years. To my other dissertation committee members:

Prof. Xuhua Ding, Prof. Debin Gao, and Prof. Jianying Zhou, I am also very

grateful for their valuable help in validating my research, thanks a lot for your

support.

Then I would like to acknowledge my classmates in the SIS research lab:

Daoyuan Wu, Ke Xu, and Ximing Liu, for their assistance on my research. They

graciously make invaluable assistance, considerable comments, and suggestive

discussion to the outline of my research and this final dissertation.

Finally, I would like to express my gratitude to my parents for their

understanding and love over these years. Thank you for doing everything

possible to put me on the path of my abroad studying and consistently

encouraging me to be brave and optimistic towards the challenges. Thank you.

viii

Chapter 1

Introduction

Android malware detection has long been an interest of researches for both

academic and industrial communities and many approaches are proposed to

reduce the threat caused by malware. Existing approaches usually assume that

no changes on the sample labels or Android OS specifications will take place

during their life periods. However, in real world cases, these changes can not

be ignored: For example, changes on Android OS specifications will lead to

model aging due to the introducing of new APIs, while the labels of samples

may also change after the detection models are trained. These unconsidered

changes deprave the performance of detection models.

1.1 SDAC: A Slow-Aging Solution for Android

Malware Detection Using Semantic Distance

Based API Clustering

The first work in this dissertation introduces a novel slow-aging solution named

SDAC, which is proposed to address the model aging problem in Android

malware detection. The model aging is due to the lack of adapting changes

in Android specifications. Different from periodic retraining of detection

1

models in existing solutions, SDAC evolves effectively by comparing new APIs’

contributions to malicious behaviors with those of existing APIs.

In SDAC, the contributions of APIs are evaluated by their contexts in the

API call sequences extracted from Android apps. A neural network is applied

to the sequences to assign APIs to vectors, among which the differences of API

vectors are regarded as the semantic distances among the APIs. SDAC then

clusters all APIs based on their semantic distances to create a feature set in

the training phase, and extends the feature set to include all new APIs in the

detecting phase. Without being trained by any labelled new apps, SDAC can

adapt to the changes in Android specifications by simply identifying new APIs

appearing in the detection phase. In extensive experiments with datasets dated

from 2011 to 2016, SDAC achieves significantly higher accuracy and lower

aging speed compared with MaMaDroid, a state-of-the-art Android malware

detection solution which maintains resilience to API changes.

1.2 Differential Training: A Generic Framework

to Reduce Label Noises for Android Malware

Detection

The second work in this dissertation aims at solving the label noise problem

in machine-learning based Android malware detection approaches. That is, the

training data may contain wrong labels and it is challenging to make the training

data noise-free at a large scale. To address this problem, we propose a generic

framework named Differential Training, to reduce the noise level of training

data for any machine learning-based Android malware detection.

Our framework makes use of all intermediate states of two identical deep

learning classification models during their training with a given noisy training

dataset and generates a noise-detection feature vector for each input sample.

2

The framework then applies a set of outlier detection algorithms on all noise-

detection feature vectors to reduce the noise level of the given training data

before feeding it to any machine learning-based Android malware detection

approach. In our experiments with three different Android malware detection

approaches, our framework can detect significant portions of wrong labels in

different training datasets at different noise ratios, and improve the performance

of Android malware detection approaches.

1.3 Dynamic Attention: A Noise-Tolerant Dynam-

ic Analysis Approach to Android Malware

Detection based on Attention Variances

Dynamic Attention, as the third work in the dissertation, solves a common

problem in dynamic-based Android malware detection solutions. In dynamic-

based Android malware detection approaches, behavior traces triggered from

malicious Android apps often are assigned with the same label “malicious”

as these apps. However, such labels can be erroneous, because (1) the

malicious behaviors of the malicious apps may not be triggered due to imperfect

trigger procedures or anti-analysis methods deployed in malware, and (2) it is

impossible even for domain experts to manually verify the “malicious” labels

since the triggered behavior traces are usually lengthy and the techniques for

composing malware are highly complicated and constantly evolving.

Dynamic Attention is thus proposed to address this problem. In detail,

Dynamic Attention identifies wrong “malicious” labels by examining the

variances of the attention weights associated with the behavior traces that are

derived from malicious apps. After identifying the behavior traces with wrong

“malicious” labels, Dynamic Attention assigns correctly-labelled behavior

traces with high weights and wrongly-labelled ones with low weights during the

3

model training. Consequently, the classification model trained is significantly

more tolerant to noisy “malicious” labels than the vanilla classification model

that is trained without weight assigning.

1.4 Contributions and Organization

To summarize, the following contributions have been made in this dissertation:

• We designed a novel slowing aging solution named SDAC for Android

malware detection. SDAC performs slow-aging by mapping new APIs’

contribution to malicious behaviors to evaluated old ones, thus allows

previously-trained models to effectively evaluate those new APIs brought

by Android specification changes. The best versions of SDAC achieve

both high accuracy with average F-score 97.49%, and slow aging speed

with average F-score decline 0.11% per year over five years in our

experiments. The other versions have lower requirements on computing

resources, but still perform better than the state of the art.

• We develop a new generic framework, Differential Training, to reduce

label noises for large-scale Android malware detection. Differential

Training employs a novel approach to detecting noisy labels in multiple

iterations according to the intermediate states of two deep learning

classification models of identical architecture, one of which is trained

on the whole training set of apps, and the other is trained on a

randomly down-sampled set of apps. A new heuristic is proposed to

distinguish between wrongly-labeled apps and correctly-labeled apps

based on an outlier detection on their loss values, which are taken from

the intermediate states of the two classification models.

• We develop Dynamic Attention, a noise-tolerant dynamic analysis

approach to Android malware detection with the help of attention

4

mechanism. Dynamic Attention performs noise-tolerant detection by

making the model learn less from potentially noisy samples during the

model training. In the sample weighting, Dynamic detection firstly

calculate the self-attention weight variance for the values in the feature

vector for each app in the training set, then it assigns high (low,

respectively) weights to the feature vectors that are extracted from

malicious apps if their attention variances are high (low, respectively).

In this case, the model will learn less from the noisily-labelled dynamic

behavior traces and gain resistances against the noises. To the best of our

knowledge, Dynamic Attention is the first noise-tolerant dynamic analysis

approach to Android malware detection.

The remainder of this dissertation is organized as follows: Chapter 2 is a

literature review which examines closely related research on Android malware

detection and label noises detection. Chapter 3 proposes the slow-aging

Android malware detection model “SDAC”. Chapter 4 describes Differential

Training, the general framework which can work with various kinds of Android

malware detection approaches to reduce noises. And Chapter 5 introduces

Dynamic Attention, the noise-tolerant dynamic analysis approach on Android

malware detection which makes use of attention mechanism. Finally, Chapter 6

summarizes the contributions of this dissertation.

5

Chapter 2

Literature Review

In this chapter, we firstly demonstrate the related works about the evolvement

of Android framework, including the investigation of Android framework

evolvement and how it will affect the applications and developers in practice.

Note that most of them focused on how to improve the application usability

rather than Android malware detection among these works, while no rigorous

study has been conducted on the topic of Android malware detection. Then we

demonstrate existing research on the label noise problem in Machine learning,

showing a brief view on the mechanisms proposed to alleviate the negative

effects caused by wrongly-labelled samples in the model training. After that,

a survey on the current Android malware detection approaches is presented,

in which these approaches are categorized by different standards such as

analysis type, signature-based or learning-based, and features of different kinds.

From the brief survey, it is shown that existing approaches are lack of both

the robustness towards Android specification evolvement and the robustness

towards the label noises, which are the goals in the dissertation.

Android Framework Evolvement. Android apps rely on Android APIs to

perform their functions, and many APIs are added or deprecated in Android

specifications over time. The impact of API evolution to the usability of apps has

been studied recently. For example, McDonnell, Ray, and Kim investigated how

6

Android app developers follow and adopt Android API changes over time [54].

Linares-Vásquez et al. studied the relationship between API changes and fault

proneness, and evaluated its threat to the success of Android apps [49]. Brito

et al. studied the adoption of API deprecation messages and its impact on

software evolution [23]. Recently, Wu et al. focused on inconsistency between

the versions of declared Android API frameworks and the actual ones used in

Android apps [85]. While most of the previous research in this area focused on

the usability of apps, no rigorous study has been conducted on the impact of

Android framework evolvement on malware detection.

The Label Noise Problem in Machine Learning.

The label noise problem has been recently addressed in the machine learning

literature, where the focus is on how to train classification models that are

tolerant to label noises. Various approaches have been developed to alleviate

the negative effects of wrongly-labeled samples in model training to improve

the quality of the finally-trained models.

One approach adjusts the loss calculation in the process of model training

according to label noise estimation [60, 98]. Another approach relies on the

models of special structure that can reduce the impact caused by label noise in

model training [74, 63]. And other approaches aim at training noise-tolerant

models for various purposes [37, 56, 82]. All of these approaches perform noise

detection according to the final states of input samples in either the training

phase or the testing phase.

According to Schein, et al., the intermediate states of an input sample are

useful in measuring the uncertainty between the predicted label and the actual

label of the sample in the process of model training [70]. Inspired by this, Chang

et al. accelerated the process of model training [25]. However, the intermediate

states of input samples during model training have not been utilized to process

noisy samples except in Co-Teaching [39], where the individual loss value of

each input sample in each mini-batch is examined during model training.

7

Android Malware Detection. Android malware detection can be categorized

into static analysis and dynamic analysis (e.g., [91, 33, 26, 46, 71, 14]). Static

analysis detects Android malware according to the information extracted from

app APK files. It can be further categorized into signature-based solutions (e.g.,

[28, 34, 36]) and learning-based solutions. We briefly summarize some learning

based solutions that are more closely related to SDAC than other solutions.

A wide variety of features have been examined in developing learning based

solutions. For example, Arp et al. devised Drebin to extract eight classes

of features (e.g., network addresses, component names, permissions, and API

calls) from manifest files and disassembled codes. Avdiienko et al. examined

the difference in sensitive data flows between malware and benignware [21].

Yang et al. designed DroidMiner to extract malicious behavior patterns from

APIs and framework resources [92]. In another work, Ke, Li, and Deng

devised ICCDetector to extract inter-component communication features from

app components [89].

In addition, DroidAPIMiner proposed by Aafer, Du, and Yin extracts a set

of API-level features including critical API call frequencies, framework classes,

and API parameters [13]. DroidSIFT proposed by Zhang et al. extracts weighted

contextual API dependency graphs from apps based on sensitive APIs [97].

MAST proposed by Chakradeo et al. examined strong relationships between

declared indicators of application functionality (e.g., permissions, intent filters,

and the presence of native code) [24]. Many other types of features are also used

in learning-based solutions (e.g., [40, 96, 41, 93, 50, 27]).

A common feature of the feature sets in most learning-based solutions is that

they are “static”, not keeping up with the evolvement of Android frameworks.

Consequently, the accuracy of such solutions may decline significantly over time

(i.e., model aging), which has been observed in both industry (e.g., [80]) and

academia (e.g., [99, 69]) recently.

8

Chapter 3

SDAC: A Slow-Aging Solution for

Android Malware Detection Using

Semantic Distance Based API

Clustering

3.1 Introduction

Most Android malware detection models age quickly. According to Zhu and

Dumitras [99], an Android malware detection model generated in 2012 failed

to detect any malware in the Gappusin family while a 2014 model could detect

most of them. In another research of Wang from Baidu [80], the recall rate of an

Android malware detection model developed at Baidu decreased by 7.6% in the

first six months. Recent research has identified a main reason of model aging

to be API changes over time in Android specifications [99, 69]. Apparently,

malware samples making use of newly added APIs in performing malicious

behaviors may evade from the detection of aged models.

The common solution to address the aging of Android malware detection

models is either to update signature databases for signature-based malware

9

detection, or to renew malware detection models using new Android apps with

true labels (i.e., malware and benignware) for learning-based models. However,

this process is usually time-consuming and costly, which may involve many

domain experts’ efforts on the sample labelling and data sharing across multiple

organizations. Furthermore, the true labels of newly collected apps may not be

connivently or promptly available and even be mistaken in real life.

For instance, we downloaded the reports for a set of 42808 apps from

VirusTotal1 in July 2017 and July 2018 respectively. In these apps, about 11%

(4717/42808) of them which were labelled as “benign” by all the antivirus

engines in July 2017 turned out to be labelled as “dangerous” by at least one

antivirus engine in July 2018, indicating that the labels may be erroneous for a

long time. It is thus imperative to develop a slow-aging solution that remains

accurate in malware detection for longer time and can be renewed without

relying on the true labels of new apps.

While Android API changes have been identified as a major problem leading

to model aging in Android malware detection [99, 69], the adaptation to

API changes has not been rigorously addressed in the design of slow-aging

solutions. A recent solution named PikaDroid [15] addressed the aging problem

by utilizing the contextual information of sensitive APIs in malware detection.

However, it does not adapt to the changes of Android specifications since the

feature set in PikaDroid remains unchanged in its design.

Another approach, MaMaDroid [53] proposed a detection method which is

resilient to the changes in Android specifications. In particular, MaMaDroid

first abstracts application programming interfaces (APIs) to their corresponding

packages (or package families) in the API execution paths derived from each

Android app. It then summarizes all abstracted paths to a Markov model, and

converts the Markov model to a feature vector for each app in model training

and testing.

1VirusTotal is a website which aggregates multiple antivirus scan engines.

10

By abstracting APIs to packages, MaMaDroid is resilient to the adding

of new APIs to existing packages and performs significantly better than other

solutions such as DroidAPIMiner for Android malware detection. However,

MaMaDroid does not address the contribution of any new packages to malware

detection since the transitions caused by any new packages in Markov models

convert to no features in MaMaDroid.

On average, about 340 new APIs in 4 new packages were added to each

API-level compared to its previous one according to the Android developer

documentation [1]. These new packages and new APIs are important factors

leading to model aging in Android malware detection. Without model updating,

the performance of existing malware detection models, including MaMaDroid,

may downgrade significantly over time as more and more new packages and

APIs are added in Android specifications and used in Android app development.

In this chapter, we develop a learning-based and slow-aging solution for

Android malware detection. Our slow-aging solution is named SDAC, which

stands for semantic distance based API clustering. SDAC identifies an API’s

contribution to malicious behaviors based on the APIś contexts, which refers to

the APIs within a fixed-size window from the API in the API call sequences

performed by apps. In particular, given a training set of apps with true labels,

SDAC extracts API call sequences from the apps. Based on the extracted API

sequences, SDAC applies a two-layer neural network to embed APIs into API

vectors and arrange these vectors into a vector space. In the vector space, the

APIs sharing common API contexts are located close to each other. A feature

set is formed according to API vector clusters, where each feature is defined as

the set of all APIs whose corresponding API vectors are in a same cluster.

For each app in the training set, a binary feature vector is generated by a

one-to-one mapping from the feature set. An element in an app’s feature vector

is assigned to zero if none of the APIs in the mapped feature is used by this

app, and it is one otherwise. Any classification models can be built based on

11

the feature vectors that are derived from training apps and their corresponding

labels.

To make SDAC slow-aging, it is important to identify the new APIs’

contributions to malware detection without knowing the true labels of the new

apps that use these APIs. The key technique of performing such identification

in SDAC is feature extension. In this step, each new API that appears in the

testing set of apps is added to the closest feature in the feature set according

to the distance measured in the API vector space. A new API’s contribution to

malware detection is modelled to be equivalent to the contribution of the other

APIs in the same feature. A trained classification model does not need to be re-

trained in the test phase since the contributions of all “old” APIs have already

been evaluated in the training phase.

When performing malware detection over time on a series of testing sets in

which apps are developed in successive time periods, SDAC can be executed

in two major modes, SDAC-FEO and SDAC-FMU. SDAC-FEO is short for

“SDAC-Feature Extension Only”, in which feature extension is performed

each time with a new testing set, while the trained classification model keeps

unchanged all the time. In SDAC-FMU, which is short for “SDAC-Feature and

Model Updating”, both the classification model and the feature set are updated

with new testing set. Note that although the classifiers are changed in some

cases, both SDAC-FEO and SDAC-FMU do not need any labelled new samples

in the successive time periods while can still keep a high accuracy over time,

thus the whole solution SDAC is regarded as being slow-aging.

Both SDAC-FEO and SDAC-FMU require the current testing set to be

wholly available in feature extension to collect the new APIs’ contexts. To

relax this constraint, we design SDAC-FEO-OL and SDAC-FMU-OL for online

detection of individual apps without waiting for the whole testing set being

available. In particular, they use existing classification models with no feature

extension for online detection of individual apps, while after the whole testing

12

set is available, they resort to their off-line versions to update themselves.

We evaluated the performances of SDAC in different modes and versions

using 70,142 Android app samples dated from 2011 to 2016. For simplicity, we

refer to the scenario as our “default setting” in which the 2011 samples are used

for both training and 5-fold cross validation, while the 2012-2016 samples are

used for testing. The evaluation results in the default setting show that the F-

score of SDAC-FEO declines by 4.81% per year on average from 2011 to 2016,

while MaMaDroid declines by 7.67% per year. The average F-score of SDAC-

FEO on these testing sets is 87.23%, which is higher than that of MaMaDroid

in the same case(59.03%), by 28.2%. Compared to SDAC-FEO, SDAC-FMU

further reduces the aging speed from 4.81% to 0.10% per year on average,

and increases the average F-score from 87.23% to 97.09%. While the online

versions are more efficient in classifying each app online, their accuracies are

slightly lower, and their aging speeds are slightly higher than the corresponding

non-online versions.

Figure 3.1: Structure of Basic SDAC with One Classification Model

13

3.2 Basic SDAC

An Android app can be considered as a set of operation paths, where each

operation path is a sequence of operations that can be executed on Android

platforms under certain conditions. In the design of SDAC, we focus on API

call operations by which an Android app accesses Android system services

and resources. An Android app may use any API that is provided in Android

specifications at the time when it is developed. While Android specifications

evolve over time from API-level 1 to API-level 27, a number of new APIs are

added continually. Of course, an Android app cannot use any new APIs that do

not exist at the time when it is developed.

Assumptions. SDAC is trained with a set of Android apps that are associated

with true labels, including malware and benignware, where the apps in the

training set are developed in a same time period. After training, SDAC is used

to classify all apps in testing sets in other time periods. It is assumed that no

true labels are available for the apps in testing sets when SDAC is in use.

A basic SDAC is first developed to classify apps in one testing set, which is

developed in a time period after the training set. It is then extended in different

modes and versions to classify apps in multiple testing sets, which are developed

in successive later time periods.

Structure. The structure of basic SDAC is illustrated in Fig. 3.1. It consists

of two phases, a training phase in which SDAC is trained with a training set,

and a detection phase in which SDAC is used to detect malware in a testing

set. In both phases, the basic SDAC proceeds through four steps, where the first

two steps, including API path extraction and API vector embedding, are shared

in both phases. The last two steps are API cluster generation and classification

model training in the training phase, and API cluster extension and classification

model testing in the detection phase.

14

3.2.1 API Path Extraction

The first step of SDAC is to extract a set of API call paths from each app

it processes. A suitable static analysis tool such as FlowDroid [20] can be

exploited to transform each app from bytecode to proper representation (e.g.,

Jimple code), and extract a directed call graph among its program methods.

From a call graph, SDAC extracts a call graph snippet for each method, and

excludes any call graph snippet that is a sub-graph of another call graph snippet.

The call graph snippet for a target method consists of all methods and all

directed links between them in the call graph. In a call graph snippet, all the

methods are located at most d links away from the target one in the call graph,

where the links pointing to any methods that use no APIs are not counted in the

snippet. SDAC then derives all API call paths from each call graph snippet.

Figure 3.2: A Call Graph Snippet of “Mega Cats”

An Android game “Mega Cats” in Jimple code is used as an example to

further clarify the API path extraction step. Fig. 3.2 shows a call graph snippet

of Mega Cats with d = 2, where each block refers to a program class, and each

directed link represents a call relationship between a caller method and a callee

method.

Fig. 3.3 shows how SDAC builds an API call path from the call

graph snippet. In particular, SDAC starts from the first line of Jimple

code in method com.eikosol.megacats.RunnerActivity:void<init>() and records

every invocation calls. If an invocation call points to another method,

15

SDAC jumps to the callee method and continues recording these invocation

calls in that method until either it jumps again, or it reaches the last

line of that method and then returns to the jumping point. In both

cases, SDAC continues this recursive process until it ends up in method

com.eikosol.megacats.RunnerActivity:void<init>(). The invocation calls that

are recorded in this example are numbered in a sequential order from (1) to (12)

in Fig. 3.3. SDAC generates an API call path from the recorded invocation call

sequence by removing non-API calls.

Figure 3.3: An Invoke Call Path of “Mega Cats”

If d is large enough, SDAC would output all possible API call paths for

each app, which is an intractable number to program size [95]. To make SDAC

practical, the parameter d is chosen to be relatively small, which is equal to the

window size S as mentioned in the next subsection.

3.2.2 API Vector Embedding

The goal of this step is to embed each API into an n-dimensional real-valued

vector in [0, 1]K according to the API’s context in a set of apps. An API’s

context in a set of apps is defined to be the set of all its neighboring APIs within

a fix-sized window containing the API in all API call paths that are extracted

from the set of apps. Different APIs with similar contexts are mapped close to

each other in the vector space.

The process of API vector embedding is illustrated in Fig. 3.4. Based on

16

Figure 3.4: API Vector Embedding

the API call paths extracted in step “API path extraction”, SDAC builds an API

vocabulary which consists of all unique APIs in these paths. For each target

API in the API vocabulary and for each extracted API path, SDAC derives all

neighboring APIs which are at most S APIs away from the target API in the

API path, where S is called window size. Then, SDAC pairs each target API

with each of its neighboring APIs, and uses all such pairs to train a Skip-Gram

model, which is a neural network with an input layer, a hidden layer, and an

output layer [57]. In the model, a real-valued input-hidden matrix WV ∗K is used

to transform an input vector to a hidden input vector, and a real-valued hidden-

output matrix W ′
K∗V is used to further transform a hidden input vector to an

output vector, where V is the API vocabulary size, and K is the API vector size.

In the training process, a target API and all its paired APIs are regarded as the

input and the target outputs of the Skip-Gram model, respectively. For a target

API, the input of Skip-Gram model is a one-hot encoded vector of size V , where

the index corresponding to the target API points to one and all other indexes

point to zero. Similarly, a target output for a paired API is a one-hot encoded

vector of size V where the index corresponding to the paired API points to one

and all other indexes point to zero. For each target API, the Skip-Gram model

17

computes an output vector from the input vector by transforming it with the

input-hidden matrix, the hidden-output matrix, and the softmax function (i.e.,

normalized exponential function), successively. Then, the Skip-Gram model

updates the elements in these two matrices using backpropagation, which is a

common optimization step for supervised learning of neural networks, so as to

minimize the total error between the computed output and the target outputs.

After the Skip-Gram model is trained with all API pairs, SDAC outputs an

API vector for each API. In Fig. 3.4, the APIT ’s vector is the T -th row in the

input-hidden matrix, where T is the index of APIT in the API vocabulary. An

API’s vector embeds the API’s context, which represents all its neighboring

APIs that are encoded in the target outputs. If two different APIs are embedded

to similar API vectors, thus they have similar contexts because the computed

outputs are optimized in model training to approximate their target outputs.

3.2.3 API Cluster Generation and Extension

The third step of basic SDAC is API cluster generation in its training phase, and

API cluster extension in its detection phase. The purpose of this step is to group

the APIs in the API vocabulary into a number of clusters based on the semantic

distance between APIs, where the semantic distance is defined as the Euclidean

distance in the API vector space. The output of this step, which is a set of API

clusters, will be used as the feature set for generating a feature vector for each

app in the next step.

API Cluster Generation. In the training phase, SDAC applies the same-size

k-means cluster algorithm from [35] to the API vectors that are calculated from

the training set. The algorithm partitions API vectors into k clusters in which

each API vector belongs to the cluster with nearest mean, where the difference

in size among all clusters is at most one. Using the clusters, an initial feature

set is defined by a one-to-one mapping from the clusters, where each feature

18

consists of all APIs whose API vectors appear in a same cluster. The APIs in a

same feature share similar contexts (due to the closeness of their API vectors),

and thus make similar contributions to malware detection in our model.

The same-size k-mean algorithm is chosen in SDAC because it can

effectively avoid skew clustering results and thus maximize the differences

between the feature vectors of benign apps and malicious ones. As described

in [35], the same-size k-means cluster algorithm works as follows: Starting

from k random initial means in the API vector space, the cluster algorithm

generates initial k clusters from n API vectors by executing the following two

steps recursively: (i) order API vectors by the distances between each one’s

nearest cluster and farthest cluster, and (ii) assign sorted API vectors to their

nearest cluster until this cluster is full (number of vectors in this cluster equals

to bn/kc), such full cluster will not be taken into consideration in forming the

forthcoming clusters. After this initialization, the cluster algorithm runs through

an iteration process to adjust the clustering results so as to reduce the variance

of clusters until they converge to local optima.

API Cluster Extension. In the detection phase, SDAC outputs a set of API

vectors derived from a testing set in the previous step. Now it extends the initial

feature set to include all new APIs that appear in the API vocabulary of the

testing set, but not in that of the training set. This step is also named feature

extension because each cluster is regarded as one feature in the feature set.

In general, SDAC extends feature X to include a newAPIY ifAPIY has the

least average semantic distance from the APIs of feature X among all features,

where semantic distance is measured by API vectors derived from the testing

set. In a feature, if an API does not exist in any apps of the testing set, SDAC

excludes it from the calculation of average semantic distance unless no API in

the feature exists in the testing set, in which case corresponding API vectors

derived from the training set are used for semantic distance calculation. An

extended feature set is defined from the initial feature set after all new APIs are

19

included in feature extensions.

A toy example is shown in Fig. 3.5 to illustrate the feature extension. In

Fig. 3.5, two clusters are formed in the vector space generated from a training

set, including the one for Feature P containing APIA, APIB and APIC , and

the one for Feature Q containing APID, APIE and APIF .

Now consider a new API APIY in the vector space generated from a testing

set, an average semantic distance is calculated between APIY and each cluster

of Feature P and Feature Q. Since Feature Q has the least average distance from

APIY , it is expanded to include APIY for feature extension. After that, Feature

Q will contain four APIs: APID, APIE , APIF and APIY , while Feature P

keeps unchanged. Note that APIB does not appear in testing set and thus has

no representative API vector in the vector space, so it is simply excluded in the

calculation.

Figure 3.5: API Cluster Extension

The purpose of generating an extended feature set is to simulate new APIs’

contributions to malware detection using existing APIs’, where the former

cannot be directly measured by a classification model due to the lack of true

labels in testing sets.

20

3.2.4 Classification Model Training and Testing

Feature Vector Generation. Given a feature set, which is either initial feature

set in the training phase, or extended feature set in the detection phase, SDAC

generates a binary feature vector for each app by a one-to-one mapping from

the feature set. An element in an app’s feature vector is zero if none of the APIs

in its mapped feature is used by the app, and it is one otherwise.

Classification Model Training. In the training phase, SDAC generates a feature

vector for each app in the training set, and associates the feature vector with

the app’s true label. Then, SDAC trains a classification model with all feature

vectors and associated labels.

Classification Model Testing. In the detection phase, SDAC generates a feature

vector for each app in the testing set. Then, SDAC uses the trained classification

model to output a predicted label for each app according to its feature vector as

model input.

3.2.5 Model Voting

In SDAC, a feature in the feature set may consist of multiple APIs. It is possible

that some of these APIs are used by a benign app, and some of them are used

by a malicious app. A single feature can hardly be used to distinguish between

benign and malicious apps. It is thus much better to leverage on all features in

the feature set for malware detection. To further improves its accuracy, SDAC

exploits the distinguishing power of multiple feature sets instead of a single

feature set. In particular, SDAC performs its cluster algorithm for m ≥ 1

times in its third step and thus generates m initial feature sets and m extended

feature sets. A classification model is trained on each initial feature set in the

training phase and then tested on the corresponding extended feature set in the

detection phase. With total m classification models, SDAC outputs a predicted

label “malware” for an app if at least τ ≤ m out of m classification models

21

agree on such label, and it outputs “benignware” otherwise.

In our experiments, we discover that F-scores of SDAC increase by around

3% to 10% using multiple voting. The details on tuning τ and m are explained

in section 3.4.

3.3 Two Modes of SDAC and Online Versions

While the basic SDAC focuses on processing one testing set only, it can be

extended in two different modes, SDAC-FEO and SDAC-FMU, to process

multiple testing sets T1, T2, . . . , TN in which apps are developed in different

time periods with some new APIs. The difference between SDAC-FEO

and SDAC-FMU is that in the detection phase, SDAC-FEO performs feature

extension only, while SDAC-FMU performs feature and model updates as well.

3.3.1 SDAC-FEO

In the training phase, SDAC-FEO takes a training set as input and outputs m

initial feature sets and m classification models in the same way as the basic

SDAC does. In the detection phase when it is applied to testing set T1, each

initial feature set is extended to an “extended feature set for T1”. Then, each app

in T1 is transformed to m feature vectors according to m “extended feature sets

for T1”. Finally, the m classification models are used in model voting to predict

a label for each app according to its feature vectors.

When SDAC-FEO is applied to testing set TN (N ≥ 2), each “extended

feature set for TN−1” is regarded as “initial feature set for TN”, and then it will

be extended to an “extended feature set for TN” in the same way as the “feature

extension” step in the basic SDAC. After that, each app in TN is transformed to

m feature vectors according to m “extended feature sets for TN”. The same m

classification models are used as before to predict a label for each app according

to its feature vectors.

22

Figure 3.6: Structure of SDAC-FEO with One Training Set (2011 apps) and
Three Testing Sets (2012 apps, 2013 apps, and 2014 apps)

Fig. 3.6 shows the structure of SDAC-FEO with one training set (2011 apps),

and three testing sets (2012 apps, 2013 apps, and 2014 apps). In this figure, the

set of 2011 apps is used to generate initial feature sets and train classification

models. The same classification models are used to classify 2014 apps after they

are applied to 2012 apps and 2013 apps. The extended feature sets for 2014 apps

are generated by extending the initial feature sets for 2011 apps three times in a

sequence.

3.3.2 SDAC-FMU

SDAC-FMU is the same as SDAC-FEO in its training phase, and in the detection

phase when it is applied to testing set T1. It performs additional steps on feature

and model updates when it is applied to other testing sets T2, . . . , TN .

Now assume that SDAC-FMU has been applied to testing sets T1, . . . , TN−1,

producing a prediction label (i.e., pseudo-label) for each app in these sets. When

SDAC-FMU is applied to testing set TN , it first generates m “initial feature sets

for TN” (in the same way as the basic SDAC generates initial feature sets) from

23

the union of the training set and T1, . . . , TN−1. We call this process feature

update. Note that this is different from SDAC-FEO where the initial feature sets

never change.

Then, SDAC-FMU trains m classification models for TN from scratch using

(i) the apps in the training set with their true labels, and (ii) the apps in

T1, . . . , TN−1 with their pseudo-labels, in which each app is converted to m

feature vectors according to m “initial feature sets for TN”. We call this process

model update. Note that no true labels are available for the apps in testing

sets in our assumption; thus, SDAC-FMU uses pseudo-labels for the apps in

T1, . . . , TN−1 for model update.

After model update, SDAC-FMU extends each “initial feature set for TN” to

an “extended feature set for TN” (in the same way as the basic SDAC extends

an initial feature set). Then, each app in TN is converted to m feature vectors

according tom “extended feature sets for TN”. Finally, the classification models

for TN which have been trained in model update are used to predict a label for

each app in TN according to its feature vectors.

Fig. 3.7 shows the structure of SDAC-FMU with one training set (2011

apps), and three testing sets (2012 apps, 2013 apps, and 2014 apps). When

SDAC-FMU is applied to 2014 apps after it is trained with 2011 apps and

applied to 2012 apps and 2013 apps, it first generates initial feature sets for

2014 apps from the union of 2011 apps, 2012 apps, and 2013 apps. Then,

SDAC-FMU generates feature vectors for each app in the union, and trains

classification models for 2014 apps using (i) 2011 apps with their true labels,

and (ii) 2012 and 2013 apps with their pseudo-labels, where each app is

converted to its feature vectors for model training. Finally, SDAC-FMU extends

the initial feature sets with 2014 apps, converts each 2014 app to feature vectors

according to the extended feature sets, and uses the classification models for

2014 apps to classify each 2014 app by its feature vectors.

24

Figure 3.7: Structure of SDAC-FMU with One Training Set (2011 apps) and
Three Testing Sets (2012 apps, 2013 apps, and 2014 apps)

3.3.3 Online Versions

Both SDAC-FEO and SDAC-FMU require that the current testing set TN

be available for performing feature extension before they can be applied to

classify each individual app in this testing set. To overcome this restriction, we

develop their online versions, SDAC-FEO-OL and SDAC-FMU-OL, in which

the feature extension step is skipped, for classifying individual apps in time

without waiting for the whole testing set to be available.

SDAC-FEO-OL. SDAC-FEO-OL is the same as SDAC-FEO in the training

phase, which generatesm initial feature sets andm classification models. When

SDAC-FEO-OL is used to classify each app in T1, it converts the app to m

feature vectors according to m initial feature sets. Then, it uses m classification

models that have been trained to output a predicted label for each app according

its feature vectors. After all apps in T1 have been classified, SDAC-FEO-OL

generates m extended feature sets for T1 the same way as SDAC-FEO does

from the whole set T1.

When SDAC-FEO-OL is used to classify each app in TN (N ≥ 2), it

25

converts the app to m feature vectors according to m extended feature sets for

TN−1. Then, it uses the same classification models that have been trained to

output a predicted label for each app in TN via its feature vectors.

After all apps in TN have been processed, SDAC-FEO-OL resorts to SDAC-

FEO to process TN again, generating m extended feature sets for TN . This is to

prepare SDAC-FEO-OL for detecting apps in the next time period.

SDAC-FMU-OL. SDAC-FMU-OL is the same as SDAC-FMU in the training

phase, which generates m initial feature sets for T1 and m classification models

for T1. SDAC-FMU-OL is the same as SDAC-FEO-OL when it is applied

to classify each app in T1 according to m initial feature sets for T1 using m

classification models for T1.

With all apps in T1 being processed, SDAC-FMU-OL resorts to SDAC-FMU

to process T1 again, generating m initial feature sets for T2, and m classification

models for T2.

When SDAC-FMU-OL is applied on testing set TN (N ≥ 2), it converts

each app to m feature vectors according to m initial feature sets for TN . Then,

it uses the m classification models for TN to predict label for each app in TN

according its feature vectors. After all apps in TN are processed, SDAC-FMU-

OL performs feature and model updates the same way as SDAC-FMU does with

the whole set TN .

Notes. When an individual app is detected online, the app is first converted to

m feature vectors according to the set of APIs it used, and then classified by m

classification models. The first three steps of SDAC (API path extraction, API

vector embedding, and API cluster generation and extension) are not performed

in this process, which makes the online versions much faster than the offline

ones.

SDAC-FEO-OL and SDAC-FMU-OL are different from direct applications

of online machine learning in malware detection [59] since our online versions

do not require true labels to be used for model updates, while online machine

26

learning does require [86].

3.4 Evaluation of SDAC

Dataset. SDAC is evaluated using a dataset of around 36k benignware samples

and 35k malware samples randomly chosen from an open Android application

collection project [16]. Table 3.1 shows an overview of our dataset, which

consists of benignware samples and malware samples developed in six years

from 2011 to 2016. The time of each app is defined as the time its APK file was

packaged, which can be found in the .dex file inside its APK [61].

The labels of the samples in our dataset were decided according to the

reports from VirusTotal [10] which we obtained in July 2018. Based on the

reports, we labelled apps with zero positive result as “benign”, and apps whose

reports containing more than a threshold Tmal positive results as “malicious”.

In the literature of malware detection, different values of Tmal are used for

labelling “malicious” apps. According to Roy et al., malware samples that

received one positive report only from VirusTotal were considered to be of “low

quality,” and those received more than ten positives out of 54 scanners were

considered “high quality” [69]. Arp et al. labelled an app as malicious if it

received at least 20% positive results from a set of selected scanners [19]. Alex

et al. performed a large-scale study on aggregating the results of scanners from

Virustotal and deemed a malicious label to be trustful if it came from 4 or more

positive scanning results out of 34 different scanners [43].

In our experiments, we evaluate SDAC on 3 different datasets labelled with

Tmal = 4, 9 and 15, respectively, out of total 63 scanners in Virustotal2. We set

Tmal = 15 in the default case and show our results for Tmal = 4 and Tmal = 9

in section 4.5.
2Lists of .apk file hashes in these datasets can be found at http://dx.doi.org/10.21227/rasc-

k457.

27

Table 3.1: Overview of Dataset(Tmal = 15)

Year 2011 2012 2013 2014 2015 2016
Benign 6072 5887 5920 5934 5929 5903

Malware 4961 5953 5877 5902 5925 5879
total APIs 14842 16213 17519 17714 17933 19933
new APIs n/a 3369 3407 2701 2902 4009
% new APIs n/a 20.78 19.45 15.645 16.18 20.11

Table 3.1 shows the number of unique new APIs and the number of all

APIs in different years from the dataset labelled with Tmal = 15. An API is

considered to be new in a year if it is not used by any app that was developed

before that year in our dataset.

Tools and Parameters. We choose the following tools and parameters for the

evaluation of SDAC. In the API path extraction step, we choose FlowDroid to

extract a directed call graph among program classes from each app [20]. The

parameter d used for API path extraction is chosen to be the same as the window

size for API vector embedding. In the API vector embedding step, we rely on the

gensim toolkit [67] to implement the Skip-Gram model and derive API vectors

from a set of apps, where we choose window size S = 5 and API vector size

K = 200 (i.e., the dimension of API vector space).

In the API cluster generation and extension step, we choose the same-size

k-means cluster algorithm from open-source data mining framework ELKI [35],

and set the number of clusters k = 1000. In the classification model training and

testing step, we choose linear SVM models as our classification models, and set

the number of classification models m = 9, and the threshold τ = 3 in model

voting.

We tune these parameters, as well as other parameters (e.g., iteration times

and learning rate for API vector embedding), to produce the best results when

SDAC is trained and tested in cross validation using the same training set (2011

apps) under the constraint of our computing resources (a desktop computer

28

with 3.3 GHz CPU and 12GB memory). These parameters are used across all

experiments for the evaluation of SDAC on various testing sets.

Selection of Parameters: k, m and τ . The parameters k (as in k-means

clustering algorithm), m (i.e. the number of classification models used by

SDAC) and τ (i.e. the threshold used in model voting) are tuned for the best

performance of SDAC in the cross-validation on the training set, which is the

2011 dataset in our experiments.

Fig. 3.8 shows the performance of SDAC in cross-validation with different

k values. The F-score of SDAC increases rapidly from k = 50 to k = 500,

and remains stable after k = 1000. Since a higher k costs more time on model

training and testing, we choose k = 1000 in our experiments.

Figure 3.8: F-score of SDAC in Cross Validation on 2011 Training Set with
Different k) and Three Testing Sets (2012 apps, 2013 apps, and 2014 apps)

Fig. 3.9 shows how the numbers m of classification models and threshold

τ are decided. In the cross-validation experiments, SDAC reaches its highest

F-score (above 97%) when m>7 and τ/m is around 30% to 40%. Since the

overhead of SDAC is proportional to m, we choose m = 9 and τ = 3, which

reaches the highest F-score with the smallest m.

3.4.1 Evaluation of SDAC-FEO

Three sets of experiments are conducted to evaluate SDAC-FEO. The first set is

conducted to evaluate the accuracy of SDAC-FEO when it is trained and tested

29

Figure 3.9: F-score of SDAC in Cross Validation on 2011 Training Set with
Different m and τ

in cross validation using a set of samples developed in the same time period. The

second set of experiments is conducted to evaluate the aging speed of SDAC-

FEO when it is trained on a set of samples developed in one time period, and

tested on other sets of samples developed in later time periods. The third set of

experiments is conducted to compare the accuracy and aging speed of SDAC-

FEO with MaMaDroid [53].

The accuracy of a malware detection model can be measured in F-score on

a set of malware and on a set of benignware. F-score is the harmonic mean of

precision and recall, where precision = |TP |/(|TP | + |FP |) and recall =

|TP |/(|TP | + |FN |). We use TP (i.e., true positives) to denote the set of

malware that is correctly detected as malware, FP (i.e., false positives) the set

of benignware that is incorrectly detected as malware, FN (i.e., false negatives)

the set of malware that is incorrectly detected as benignware, and TN (i.e., true

negatives) the set of benignware that is correctly detected as benign.

The accuracy of SDAC-FEO is first evaluated in 5-fold cross validation using

samples developed in the same time period. Table 3.2 shows the accuracy of

SDAC-FEO in terms of precision, recall, and F-score on different set of apps,

which is denoted by the time period in which the apps were developed. The

average F-score of SDAC-FEO is 98.25%, which serves as a good starting point

30

Table 3.2: F-score of SDAC-FEO in Cross Validation

App set Precision Recall F-Score
2011 0.9885 0.9672 0.9778

2011˜12 0.9918 0.9842 0.9880
2011˜13 0.9906 0.9848 0.9877
2011˜14 0.9915 0.9829 0.9872
2011˜15 0.9905 0.9812 0.9858

for evaluating SDAC-FEO over time.

SDAC-FEO Performance Over Time. The aging property of SDAC-FEO is

evaluated in a series of experiments in which SDAC-FEO is trained on a set

of samples developed in one time period and tested on other sets of samples

developed in later time periods. Fig. 3.11 shows the F-score of SDAC-FEO in

detection over time. When SDAC-FEO is evaluated on a testing set that is newer

than the training set by one year, its average F-score is 97.49%, which declines

by 1.03% from its average F-score in cross validation (98.52%). It declines

further to 95.02%, 88.48%, 78.22%, 73.72% when SDAC-FEO is evaluated on

testing sets that are newer than the training sets by two, three, four, and five

years, respectively. The average aging speed of SDAC-FEO is 4.96% in F-score

per year in these experiments.

Analysis on API Cluster Extension. API cluster extension is a critical step in

SDAC. In this step initial feature sets are extended with new APIs to create the

extended feature set. This enables SDAC to evaluate new APIs’ contributions

to malware detection with the existing classification models, which have been

trained by a set of labelled apps in which none of the new APIs are used.

To further understand how API cluster extension contributes to slow aging

of SDAC-FEO, in this section, we calculate the changes on feature vectors

of testing set apps with and without feature extension, and then extract each

feature’s weight in the linear SVM model which helps to figure out how such

change will affect the detection results.

31

In detail, in the SVM model used by SDAC-FEO, the inner product between

an app’s feature vector and the linear SVM model’s weight vector is the output

score of the app’s feature vector in the SVM model [19], which represents the

confidence of the SVM model in classifying the app as either malware if the

output score is positive, or benignware if the output score is negative. The

confidence of an SVM model is proportional to the absolute value of an output

score.

For each app in a testing set, we transform it to two feature vectors according

to an initial feature set and an extended feature set for each SVM model,

respectively. The output score difference of an app is defined as the output

score of its feature vector derived from the extended feature set subtracted by

the output score of its feature vector derived from the initial feature set. The

output score difference of an app in an SVM model represents the change in

confidence on the app caused by API cluster extension. A positive (negative,

respectively) output score difference means more confidence in classifying an

app as malware (benignware, respectively).

Then, we examine the average output score difference for all malware

samples in a testing set and for all classification models used by SDAC-FEO. We

also examine the average output score difference for all benignware samples in

the same testing set. The distinguishability of API cluster extension in each

experiment (with a training set and a testing set) is defined as the average

output score difference for all malware samples subtracted by the average output

score difference for all benignware samples. If the distinguishability of API

cluster extension is positive, then the API cluster extension makes a positive

contribution to malware detection, and thus contributes to slow aging of SDAC-

FEO.

Fig. 3.10 shows the distinguishability brought by API cluster extension

in our experiments. The contributions of API cluster extension to malware

detection are positive in all of our experiments, which demonstrates that the

32

feature extension will indeed contribute to the accuracy of SDAC.

Figure 3.10: Distinguishability of API Cluster Extension

Aging Slower Than MaMaDroid. The aging speed of SDAC-FEO is compared

with MaMaDroid using the same dataset. MaMaDroid is the only solution

which we know to be resilient to the changes in Android specifications, and has

a significant better performance than other solutions such as DroidAPIMiner

[53]. In particular, MaMaDroid first derives API paths from each app using

FlowDroid, and abstracts APIs to their corresponding packages (or package

families) in the API paths. It then summarizes all abstracted paths to a

Markov model, and converts the Markov model to a feature vector for each

app, where each feature in the feature vector represents a transition between

two existing packages in the Markov model. After that, it trains a machine

learning classification model from a training set of apps according to their

feature vectors and associated true labels. By abstracting APIs to packages,

MaMaDroid is resilient to the adding of new APIs to existing packages in

Android specifications; however, it is not designed to be resilient to the adding

of new API packages.

We re-implemented MaMaDroid using its sourcecode [52]. Both SDAC-

33

Figure 3.11: Comparison between SDAC-FEO and MaMaDroid (CV: 5-fold
cross validation)

FEO and MaMaDroid rely on FlowDroid to decompile app Apk files; they were

evaluated using the same training sets, testing sets, standard SVM classification

models, and F-score measurement.

We note that in the original MaMaDroid paper [53], the random forests

algorithm produces the best malware detection results among four classification

algorithms, including random forests, 1-NN, 3-NN, and SVM. However, in our

34

experiments, MaMaDroid performs the best with SVM.

Figure 3.12: Evaluation of MaMaDroid with Different Classification
Algorithms (CV:5-fold cross validation)

In detail, we re-implement MaMaDroid with all four classification

algorithms, including random forests, 1-NN, 3-NN, and SVM as mentioned

in its original paper [53], and test the performance of MaMaDroid with each

algorithm in the default setting of our experiments. Fig. 3.12 shows that the

performance of MaMaDroid with SVM outperforms 1-NN, 3-NN and random

forests consistently from 2011 to 2016. Therefore, we choose SVM as the

classification model for MaMaDroid in our experiments.

Fig. 3.11 shows that the performance of SDAC-FEO is significantly and

consistently better than MaMaDroid in all experiments. In particular, the

average F-scores of SDAC-FEO when it is evaluated on testing sets that are

newer than training sets by one to five years are 97.49%, 95.02%, 88.48%,

78.22%, and 73.72%, respectively. In comparison, the average F-scores of

MaMaDroid in the corresponding cases are 81.00%, 75.86%, 68.05%, 55.80%,

and 43.07%, respectively. The average F-score of SDAC-FEO is higher than

MaMaDroid by 20.65% when they are evaluated on the same training set and

testing set across all experiments. In terms of aging speed, SDAC-FEO declines

35

by 4.96% in F-score per year on average over five years, while MaMadroid

declines by 8.15% in the same case.

We notice that the performance of MaMaDroid in our experiments is not

as good as what was reported in [53]. One possible reason is that overlaps

exist between the training sets and the testing sets used in [53], where two

benign sets were collected from PlayDrone [79] and Google Play store, and

five malware sets were collected from Drebin [19] and VirusShare [11]. For

one set of experiments in [53], the same “oldbenign” benign set was used to

mix with various malware sets dated from 2012 to 2016 to form training sets

and testing sets. For another set of experiments, the same “newbenign” benign

set was used to form all training sets and testing sets. Such overlaps made it

difficult to evaluate how MaMaDroid aged over time.

3.4.2 Evaluation of SDAC-FMU

Aging Slower Than SDAC-FEO and MaMaDroid. Compared to SDAC-

FEO, SDAC-FMU takes additional steps of feature update and model update

for better performance. Fig. 3.13 shows that its performance is significantly

and consistently better than SDAC-FEO. The average F-score of SDAC-

FMU (97.39%) is higher than SDAC-FEO (92.89%) by 4.50% when they are

evaluated on the same training set and testing set across all experiments. In

terms of aging speed, SDAC-FMU declines by 0.25% in F-score per year on

average over five years, while SDAC-FEO declines by 4.96% in the same case.

Since SDAC-FMU updates its classification models with pseudo-labels, we

also update MaMaDroid classification models with pseudo-labels for a fair

comparison. Fig. 3.13 also shows that the performance of MaMaDroid updated

with pseudo-labels is almost the same as before. One possible reason is that

MaMaDroid neglects the APIs of new packages in generating these pseudo-

labels, and the updating will then reinforce the mistakes caused by neglecting

36

these new APIs in MaMaDroid’s model.

Figure 3.13: Comparison between SDAC-FMU, SDAC-FEO, and MaMaDroid
(CV: 5-fold cross validation)

False Positives. We examine the misclassified results of SDAC-FMU when it

is trained on 2011 set and evaluated on five testing sets, dated from 2012 to

2016. To understand why false positives are misclassified, we compute a weight

for an API by averaging the weights of the features that contain this API in all

SVM models when SDAC-FMU is applied to each testing set. The weight of an

API can be used to measure its contribution to the confidence of SDAC-FMU in

37

classifying an app. We sort all APIs according to their weights for each testing

set. We choose the top p and the bottom p APIs in each sorted list, which are the

APIs with most contributions to the confidence of SDAC-FMU in classifying an

app as malware and as benignware, respectively.

For a set of apps, we define API ratio for an API as the percentage of the

apps in the set that use this API. We further define top-p ratio (bottom-p ratio,

respectively) as the average of API ratios for the top p APIs (bottom p APIs,

respectively). The top-p ratio subtracted by the bottom-p ratio for a set of apps

means the confidence of SDAC-FMU in classifying the set as malware.

Fig. 3.14 shows typical values of top-p ratio subtracted by bottom-p ratio

for true positives (TP), false positives (FP), false negatives (FN), and true

negatives (TN), where p = 1%. Compared to TN, SDAC has more confidence

in classifying FP as malware, and the most confidence in classifying TP as

malware.

In the list of top-weighted APIs, we discovered some APIs such as

getConfiguration() and getDeviceId() that were considered as “dangerous” in

previous research [19, 53]. Benign apps using such APIs are more likely to be

detected as malware by SDAC. For example, 40% (126/315) of false positives

and more than a half of true positives (3310/5890) use API getConfiguration(),

while only 23% (1289/5555) of true negatives makes use of it. For another

example, 66% (208/315) of false positives and 96% (5633/5890) of true

positives include API getDeviceId() in class TelephonyManager, while only

22% (1245/5555) of true negatives use it.

False Negatives. We also examine the false negatives of SDAC-FMU when

it is trained on 2011 set and evaluated on five testing sets, dated from 2012

to 2016. Among 1076 false negative samples generated from all testing sets,

about 69% (638/931) of them are classified as “positive: adware” by at least

one VirusTotal scanner. According to TrendMicro [75], the adware apps may

come from repackaging benign apps with 3rd party advertisement libraries; it is

38

Figure 3.14: Difference in API Usage among TP, FP, FN, and TN with 2011
Training Set

difficult for SDAC-FMU to distinguish them from true benign apps.

Besides, about 8.5% (79/931) false negative samples are classified as

“positive: riskware”, and about 17.4% (162/931) as “positive: not-a-virus” by

at least one VirusTotal scanner. According to the explanation from Kaspersky

Lab [44], riskware refers to legtimate programs which are easy to be exploited

by malicious attackers, and not-a-virus is associated with adware and riskware.

Fig. 3.14 also shows that compared to TP, SDAC has more confidence in

classifying FN as benignware, and the most confidence in classifying TN as

benignware.

3.4.3 Evaluation of SDAC-FEO-OL & SDAC-FMU-OL

The performances of SDAC-FEO-OL and SDAC-FMU-OL are evaluated in the

default case, which is formed with the smallest training set (2011 apps) and the

longest time span across testing sets (2012-2016) in our experiments. Fig. 3.15

shows that SDAC-FMU-OL performs very closely to SDAC-FMU, while the

performance gap between SDAC-FEO-OL and SDAC-FEO is more obvious.

Compared to SDAC-FMU, the F-score of SDAC-FMU-OL declines by 0.41%

39

on average, by -0.29% in minimum (for 2014 testing set), and by 0.85% in

maximum (for 2012 testing set). Compared to SDAC-FEO, the F-score of

SDAC-FEO-OL declines by 3.45% on average, by -0.30% in minimum (for

2013 testing set), and by 7.97% in maximum (for 2014 testing set). Nonetheless,

both SDAC-FMU-OL and SDAC-FEO-OL perform significantly better than

MaMaDroid.

Figure 3.15: Evaluation of Online Versions with 2011 Training Set (CV: 5-fold
cross validation)

3.4.4 Runtime Performance

The runtime performance of SDAC is evaluated on a desktop computer using

one Intel(R) i5-4590 3.3 GHz CPU and 12 GB physical memory running

on the Ubuntu 14.04 (LTS) operating system. Table 3.3 shows the runtime

performance of SDAC in all four steps: (i) API Path Extraction, (ii) API Vector

Embedding, (iii) API Cluster Generation and Extension, and (iv) Classification

Model Training and Testing.

Runtime of SDAC-FEO-OL and SDAC-FMU-OL in Detection Phase.

SDAC-FEO-OL can be used to detect individual apps online without waiting for

40

Table 3.3: Runtime Performance of SDAC

Step Runtime

API Path
Extraction

Call Graph Generation Avg. 37.29 sec. per app
(min. 3.12s & max. 1184.33s)

API Path Extraction Avg. 16.82 sec. per app
(min. 8.30e-4s & max. 1350.06s)

API Vector
Embedding Transform APIs into Vectors

333.20 sec. (11033 apps)
˜ 3154.48 sec. (58360 apps)

API Cluster Generation
and Extension

API Cluster Generation
(in training phase)

85.91 sec. (11033 apps)
˜ 300.33 sec. (58360 apps)

API Cluster Extraction
(in testing phase)

48.93 sec. (11033 apps)
˜ 25.77 sec. (58360 apps)

Classification Model
Training and Testing

Classification Model Training
(in training phase)

9.77 seconds (11033 apps)
˜ 1683.75 seconds (58360 apps)

Classification Model Testing
(in testing phase)

Avg. 8.90e-4 sec. per app
(min. 4.57e-4s & max. 1.59e-3s)

a whole testing set to be available. The time cost for detecting an app online is

0.20 seconds on average. Once a whole testing set is available, SDAC-FEO-OL

extends its feature sets using the whole testing set in the same way as SDAC-

FEO does. This additional time cost is similar to SDAC-FEO in its detection

phase.

The time cost of SDAC-FMU-OL is the same as SDAC-FEO-OL for

detecting an app online. Once a whole testing set is available, SDAC-FMU-

OL performs feature and model updates in the same way as SDAC-FMU, so the

additional time cost is also same as in SDAC-FMU.

Runtime of MaMaDroid. MaMaDroid takes three major steps in both training

phase and detection phase: (i) FlowDroid is exploited to derive a set of API

paths from an app, (ii) a Markov model is formed from a set of API paths,

and then used to compose a feature vector, and (iii) a classification model is

trained from (in training phase) or applied to (in detection phase) a set of apps.

In our implementation, the training phase of MaMaDroid takes 37.29 seconds

on average in step one, 0.41 seconds on average in step two, and 16.3 seconds

(785.29 seconds, respectively) for processing a set of 11,033 apps (58,360 apps,

respectively) in step three. In its detection phase, MaMaDroid takes 0.0036

41

seconds on average for classifying a single app in step three, while the first two

steps take the same time as in the training phase.

Runtime Performance Comparison. In the training phase, SDAC spends more

time (54.17 seconds per app on average) than MaMaDroid (37.70 seconds per

app on average) for transforming decompiled codes into feature vectors. In

the next step of classification model training, which refers to model training

in SDAC-FEO or model updating in SDAC-FMU, the time cost ranges from

9.77 seconds (on the smallest training set containing 11033 apps) to about

0.47 hours (on the largest training set containing 58033 apps) for training each

classification model. Since 9 classification models are used in SDAC, the total

time cost of SDAC for this step ranges from 87.93 seconds to about 4.2 hours.

In comparison, MaMaDroid spends 16.3 seconds to about 13.1 minutes on

different training sets in the model training step. In the detection phase, the

average time for detecting each app is 8.90e-4 seconds for SDAC, and 3.6e-3

seconds for MaMaDroid.

Although SDAC takes longer training time than MaMaDroid, it achieves

much higher accuracy and slower aging speed as shown in sections 4.1 to

4.3. The runtime performance of SDAC is acceptable in all out experiments

even though they are conducted on a common desktop computers (i.e., i5-

4590@3.3GHz CPU and 12GB memory).

Notes. For both SDAC-FMU and SDAC-FMU-OL, the time cost for feature and

model updates increases with the size of its input data, which is the union of its

training set and all past testing sets. The size of the input data keeps increasing

as more testing sets are processed and accumulated over time. To address this

problem, we suggest to apply a validation window to the input data which covers

all past testing sets starting from the last testing set in which all apps’ true labels

are available3. The size of this validation window is limited, and so is the time
3Relaxing our assumption, we believe that true labels of testing apps will be finally available

after a limited period of time.

42

cost for feature and model updates.

The time granularity in forming testing sets is mainly decided by the number

of apps that were collected within each time granularity, and each testing set

should be large enough to extract accurate API context information from it. We

suggest to choose each testing set to be larger than 5500 apps based on our

experience with SDAC.

3.4.5 Evaluation of SDAC with Different Tmal

The performance of SDAC-FEO and SDAC-FMU are also evaluated on datasets

that are labelled with different positive threshold Tmal = 4 and Tmal = 9 in

VirusTotal reports. We also run MaMaDroid on these datasets for performance

comparison.

Fig. 3.16 shows the F-measurements of SDAC when Tmal = 4 and Tmal = 9,

respectively. In both cases, the 2011 app set is used as the training set and

the 2012˜2016 data sets are used as the testing sets. In the case of Tmal = 4,

SDAC-FEO declines by 4.89% in F-score and SDAC-FMU declines by 0.40%

per year, while MaMaDroid declines by 6.12% per year on average. The

advantages of SDAC-FEO and SDAC-FMU over MaMaDroid are 14.85% and

22.55%, respectively, in F-score on average. When Tmal = 9, the average

aging speed in F-score is 3.94% for SDAC-FEO, 0.44% for SDAC-FMU, and

5.95% for MaMaDroid. The advantages of SDAC-FEO and SDAC-FMU over

MaMaDroid are 19.22% and 25.22%, respectively, in F-score on average.

3.4.6 Evaluation of SDAC with Unbalanced Datasets

On our balanced datasets, SDAC outperforms MaMaDroid significantly.

However, according to a recent research project, a balanced dataset may lead

to biased results in malware detection since malware is usually the minority

class (as compared to benignware) in the wild. It was reported that the ratio

43

Figure 3.16: Comparison between SDAC-FMU, SDAC-FEO, and MaMaDroid
with Tmal = 4 and Tmal = 9 (CV: 5-fold cross validation)

of malware is around 10% in a real-world setting [64]. To estimate SDAC’s

performances in this case, we downsample malware to make its ratio to be 10%

out of all apps, and form new datasets in our evaluation. The performances

of SDAC on such datasets are shown in figure 3.17, which demonstrate wider

differences between SDAC and MaMaDroid, and a similar trend as shown in

our previous evaluations.

Figure 3.17: Comparison between SDAC-FMU, SDAC-FEO and MaMaDroid
with Datasets of Unbalanced Ratio (CV: 5-fold cross validation)

44

3.5 Discussions

3.5.1 SDAC against Obfuscation

Code obfuscation tools, such as DroidChameleon [66] or [2] are often used to

obfuscate malicious apps to avoid detection. Since SDAC presents its detection

based on Android APIs, the obfuscation methods can be mainly classified into

three categories by their impacts on the APIs used in apps: category-I: the set of

APIs used by an app is not changed in obfuscation (e.g. encrypt native exploit or

payload, rename identifier, identifiers or package), category-II: the set of APIs

used by an app is enlarged to include new APIs in obfuscation (e.g. repackage,

or insert junk code) and category-III: the set of APIs used by an app is reduced

during obfuscation (e.g. method call hiding or reflection[17, 51]).

SDAC is naturally robust to category-I obfuscation methods since it detects

an app solely based on the set of APIs used by it. Category-II obfuscation

methods, such as “insert junk code” and “repackage malware into benignware”,

may enlarge the set of APIs used by an app, and thus avoid detection by SDAC.

To test the robustness of SDAC against category-II methods, we generate a

collection of 10,000 API sets for each testing set. Each API set in that collection

is the union of the API set used by a benign sample and that by a true-positive

malware sample randomly chosen from the testing set. One united API set is

considered to be derived from a virtual malicious app created by “injecting” the

code of a malware sample into the code of a benign sample. Then SDAC is

applied to such virtual malicious apps to check its recall rates in various modes

on different testing sets. Table 3.4 shows that the recall rates of SDAC in all

modes are higher than 65% in the first two years, indicating that they can still

detect a majority of obfuscated malware in such cases.

The category-III obfuscation methods are mostly achieved by making

certain malicious codes loaded at runtime [2], which is invisible from static

45

Table 3.4: Robustness of SDAC (in recall rate) against Category-II Obfuscation
with 2011 Training Set

Testing set 2012 2013 2014 2015 2016
SDAC-FMU 81.41% 69.87% 59.85% 49.88% 36.54%
SDAC-FEO 81.41% 67.22% 64.23% 36.49% 37.79%

SDAC-FMU-OL 77.63% 81.57% 60.98% 48.82% 47.49%
SDAC-FEO-OL 77.63% 65.49% 62.23% 58.03% 45.17%

analysis. In general, no static analysis is robust against category-III obfuscation

methods. Nonetheless, SDAC can be potentially applied in dynamic analysis

since the API call sequences captured in dynamic analysis can be directly used

as the input to the API embedding step in SDAC. It remains interesting to test

the robustness of SDAC in dynamic analysis against category-III obfuscation

methods in the future.

Obfuscation by App Packing. Packing technique is also an effective method

to apply obfuscation on apps and hide their codes. Various kinds of packing

techniques are widely adopted by malware developers as reported in [32].

These mechanisms protect packed malware against reverse analysis and thus

thwart path extracting and feature vector generating in SDAC. However, it is

still potential to combine SDAC with either dynamic analysis tools or Android

unpackers [32, 47, 94] against the packed malware.

3.5.2 API Semantic Extraction

Besides sequential APIs from which SDAC extracts API semantics, data

dependency is another way to analyze APIs’ relationship and extract their

semantics. This method has been used in previous research such as

DarkHazard [62].

SDAC currently focuses on malware detection based on sequential API

analysis, which is complementary to data dependency analysis. Some APIs

may have direct data dependency with each other but do not have any sequential

46

relationship. On the other hand, data dependency analysis may miss some

API relationship in malware detection. For example, in an Android malware

detection solution proposed by Wang et, al. in [81], it is found that data

dependency information is lost in self-defined methods and thus may result

in malicious behaviors being undetected. While in SDAC, these self-defined

methods are collected together with their caller methods and callee methods,

and then used in generating API sequences. It would be interesting to extend

SDAC to cover data dependency relationships in semantic extraction in a future

work.

3.5.3 Limitations

In our experiments, FlowDroid is used in the first step of SDAC for extracting

API paths from Android apps. It is observed that FlowDroid fails to process

2.89% (1053/36490) benign samples and 1.74% (610/35106) malware samples

among all the apps we collected originally, these samples are excluded in our

experiments. Some failures are due to exceeding memory limit in the extracting

(i.e., 4 GB in our experiments for API path extraction under the Soot tool).

To address this problem, one may use more powerful computers with larger

memory, or rely on other static analysis tools such as Amandroid [83] and

Androguard [30] for API path extraction.

Another limitation in our experiments is that FlowDroid does not cover

HTML5 codes, native codes, or the codes which are loaded at runtime. It is

a future direction to extend SDAC to cover such codes by performing dynamic

analysis.

47

Chapter 4

Differential Training: A Generic

Framework to Reduce Label Noises

for Android Malware Detection

4.1 Introduction

Machine learning-based Android malware detection has been a major research

focus in recent years. Both model training and evaluation rely on a set of sample

apps and their associated labels (i.e., benignware and malware). The sample

apps and their labels can be either collected from malware detection websites

such as VirusTotal [10] or manually examined and labeled by malware detection

experts [91, 92, 19].

However, the current approach to labelling sample apps is not perfect due

to a couple of reasons. First, the labels provided by malware detection websites

are not always reliable [43]. To verify this, we randomly chose 50,000 APPs on

VirusTotal, and downloaded their scanning reports twice in 2016.7 and 2018.7,

respectively. Among them, over 10% of the samples (5310/50000) are given

different labels in the two reports. On the other hand, manually labelling is often

costly and time-consuming, and it is difficult to scale up to massive datasets.

48

The label noises in app datasets may distort Android malware detection in

two main aspects.

• According to F. A. Breve. et al. [22], the noises in sample labels worsen

the performance of malware detection models trained with them, making

them less effective in real-world cases.

• The noisy labels used for model testing and verification misjudge the

real performances of existing malware detection solutions. In the case

study sections of various research papers on malware detection (e.g.,

[89, 62, 91]), many false positive/negative cases are reported in fact due

to mislabeled samples.

The noisy label problem is intrinsic in malware detection and challenging to

deal with. The situation is worse due to ever-growing sizes of datasets that are

used in machine-learning based malware detection. It remains challenging to

work with noisy datasets, so as to improve both training of malware detection

models and their evaluations. However, this problem has not been rigorously

addressed, especially in the malware detection community.

Standard benchmark datasets have been built and widely used in certain

other machine-learning fields such as image processing and natural language

processing, where the quality of data labels can be verified by average human

users through user studies or crowdsourcing. However, it is highly challenging

for domain experts in malware detection (not to mention average human users)

to ensure the correctness of all data labels in a massive dataset because the

techniques for composing malware are highly complicated and constantly

evolving. This is one of the reasons that no universal benchmark dataset has

been built for Android malware detection, making it difficult for the comparison

across many malware detection approaches as they were evaluated on different

datasets of unknown qualities.

Towards addressing the problem of malware detection with noisy datasets,

49

we propose Differential Training, a novel noisy label detection framework for

machine learning based Android malware detection. We make a meaningful

assumption that the whole set of apps is noisy (i.e., no individual apps’ labels

are known 100% correct), but a majority of sample apps are correctly labeled.

Differential Training can improve the performance of any machine learning

based Android malware detection approaches by reducing label noises in their

datasets.

In particular, Differential Training makes use of the intermediate states of

deep learning classification models during training for noisy label detection.

According to Schein, etc. in [70], the intermediate states of a classification

model, represented by variances of sample losses, can be used as an effective

measurement on the samples’ uncertainty so as to help identify those that are not

predicted properly within the current model. In other research (e.g., [72, 42]),

such samples are paid extra attention in training so as to accelerate the learning

of models.

A fundamental assumption in the previous research mentioned above is that

all samples’ labels are correct. Therefore, the mismatching between desired

labels and predicted labels in training is attributed to immature model training.

In the case of noisy labels being present, the wrong labels also contribute to the

mismatching between desired labels and predicted labels during model training.

Differential Training relies on a new heuristic, which we call differential

training heuristic, to reduce label noises in a given set of sample apps. The

heuristic differentiates between correctly labeled samples and wrongly labeled

samples according to their loss values in training two deep learning classification

models of the same model architecture, where one model is trained with the

entire dataset, and the other is trained with a randomly down-sampled subset

of the given dataset. A sample’s label is considered to be “wrong” and thus

revised/flipped if its loss values appear to be outliers in comparison to other

samples’ loss values.

50

This heuristic is based on an observation that correctly labeled samples

tend to behave consistently in training the two classification models, while the

wrongly labeled samples tend to behave differently, and thus can be detected

and revised. Differential Training applies this heuristic iteratively until a

convergency condition is satisfied. After this, any machine learning based

malware detection approach can be trained with the set of all sample apps and

their revised labels. Rigorous experiments on various datasets and malware

detection approaches show that differential training is clearly effective in noisy

reduction and performance improvement for machine learning based malware

detection.

The main contributions of this chapter are summarized below:

• We develop a new generic framework, Differential Training, to reduce

label noises for large-scale Android malware detection. Differential

Training employs a novel approach to detecting noisy labels in multiple

iterations according to the intermediate states of two deep learning

classification models of identical architecture, one of which is trained

on the whole training set of apps, and the other is trained on a

randomly down-sampled set of apps. A new heuristic is proposed to

distinguish between wrongly-labeled apps and correctly-labeled apps

based on an outlier detection on their loss values, which are taken from

the intermediate states of the two classification models.

• Differential Training enjoys high practicality because it is generic,

automated, and independent to correctly-labeled datasets. Differential

Training is generic as it can work with any machine learning based

malware detection approach for reducing label noises of its dataset

and improving its training and performance evaluation. Differential

Training is fully automated in the label noise reduction process which

requires neither domain knowledge nor manual inspection. In addition,

51

Differential Training can operate on noisily-labeled datasets only. It does

not rely on any extra datasets whose labels are all correct like other noise-

tolerance classification approaches such as MentorNet [42] and distilled-

based learning model [48].

• The effectiveness of Differential Training is evaluated with three

different Android malware detection approaches, including SDAC [88],

Drebin [19], and DeepRefiner [90], as well as three different datasets,

whose sizes are 69k, 129k, and 110k, respectively. Applying to these

datasets, Differential Training can reduce the size of wrongly-labeled

samples to 12.6%, 17.4%, and 35.3% of its original size, respectively.

Consequently, Differential Training improves the performance of each

malware detection approach considerably after noisy reduction is

conducted to their training datasets where the noise level is about 10%.

In terms of F-score measured with ground-truth data, SDAC is improved

from 89.04% to 97.19% (upper bound 97.71%), Drebin from 73.20% to

84.40% (upper bound 93.34%), and DeepRefiner from 91.37% to 93.41%

(upper bound 93.59%). The improved performance is relatively close to

their upper bound 97.71% for SDAC, 93.34% for Drebin, and 93.59%

for DeepRefiner which are trained with all correctly-labeled datasets. A

similar trend is also observed at various noise levels.

• Differential Training also outperforms the state-of-the-art noise-tolerant

classification solution, Co-Teaching, which is designed for robust training

of deep neural networks with noisy labels [39]. Differential Training

detects significantly more wrongly-labeled samples than Co-Teaching. In

particular, the improvements are 10.96% (from 76.49% to 87.45%) on

SDAC dataset, 4.37% (from 78.14% to 82.51%) on Drebin dataset, and

42.99% (from 21.72% to 64.71%) on DeepRefiner dataset.

52

4.2 Preliminaries

4.2.1 Machine Learning Based Android Malware Detection

We aim to reduce label noises for machine learning based Android malware

detection that relies on a binary classification model to predict the label, which

is either benign or malicious, for each given Android app. A machine learning

based Android malware detection model is trained by a set of labeled Android

apps (i.e., training set) in two main steps, where the first step transforms each

Android app into a numerical feature vector, and the second step trains the

model classifier using the apps’ numeric feature vectors and their corresponding

labels. After training, the model’s performance can be evaluated using a set of

labeled apps (i.e., testing set), based on the differences between their predicted

labels and given labels.

4.2.2 Training Noise Detection Models

In the process of noisy label detection, Differential Training keeps training two

identical deep learning classification models, which we call noise detection

models. Each of these noise detection model is trained to classify any given

sample app to be either malware or benignware. The training of each noise

detection model consists of multiple epochs. In each epoch, each sample and its

associated label are taken from a training dataset and fed into the model through

two successive phases: forward propagation and backward propagation.

In the forward propagation phase, the feature vector of a given sample is

taken as input to the noise detection model. A loss function is used to calculate

a loss value for the sample according to the input vector and the parameters the

noise detection model. Then, a predicted label is generated for the sample and

compared to the given label of the sample.

In the back propagation phase, the gradient of the loss function with respect

53

to each parameter in the noise detection model is calculated. Each parameter is

then updated according to the gradient and the loss value in an optimal manner

so as to minimize the average loss value in the next epoch Since the model

parameters are adjusted in the whole training process, the average loss value

for the samples in the whole training dataset is optimized to decrease from the

first epoch to the last. The number of epochs is determined by a convergency

condition under which the average loss value in the last epoch is considered to

be good enough.

4.2.3 Underlying Assumption

The underlying assumption made by Differential Training is that the majority of

sample apps in the dataset are correctly labeled; however, it is unknown whether

the label of any specific sample is correct or not. Note that it is meaningful to

assume that more than 50% of the sample apps are correctly labeled since if it

is not the case (i.e., the quality of dataset is even lower than random labelling),

a flipping of each and every label would make this assumption valid.

Differential Training does not rely on any set of individual apps whose labels

are 100% correct, which is different from other noise-tolerance classification

approaches such as MentorNet [42] and distilled-based learning model [48].

It requires no manually checking on any sample apps in Differential Training,

which is fully automatic in reducing label noises for Android malware detection.

4.3 Differential Training Heuristic

Differential Training trains two deep learning classification models of identical

architecture iteratively for noisy label detection. We call these two models

noise detection models, which can be any deep learning classification models

to classify apps to be either benign or malicious according to the apps’ feature

vectors. The whole process of Differential Training consists of multiple

54

iterations, in each iteration two different models are trained where the first model

is trained with the whole set of available training apps (and their labels), while

the other is trained with a randomly down-sampled subset of the whole set. For

convenience, we refer to the whole set of apps as WS, and the down-sampled

subset as DS. We also refer to the first noise detection model as WS model, and

the other as DS model.

In each iteration, Differential Training relies on a new heuristic, named

differential training heuristic to reduce label noises in DS. The heuristic states

that the training behaviors of correctly labeled samples across the two models

are statistically different from those of the wrongly labeled samples across the

two models, where the training behavior of a sample across the two models is

described by the concatenation of the loss values produced for the sample in all

epochs of the two models. Given the assumption that a majority of sample

apps are correctly labeled, the wrongly labeled apps in DS can be detected

statistically using an outlier detection on the training behaviors of all apps in

DS.

Experimental Observation: The heuristic is enlightened by our

observation in the following experiments. When we observe a single model,

either WS model or DS model, the differences in training behaviors between

correctly-labeled samples and wrongly-labeled samples are not too significant;

however, when we combine training behaviors across the two models, the

differences between the two types of samples become more apparent.

In the experiments of showing our observation, Differential Training is

applied to a set of sample apps that are randomly collected from a public

Android app sharing project [16]. To guarantee the correctness of the samples’

labels, we further check their scanning results from VirusTotal, and remove all

(which is equivalent to around 10%) of the samples whose scanning results ever

changed since August 2016. We use 50,000 samples to build the WS set, and

choose 10% of them randomly as “noises” whose labels are manually flipped.

55

Figure 4.1: Distributions of Correctly-Labeled Samples and Wrongly-Labeled
Samples

The architecture of the WS model and the DS model is chosen to be Multi-

Layer Perceptron consisting of an input layer, two hidden layers, and a softmax

layer, where the first hidden layer consists of 500 nodes, and the second layer

consists of 1000 nodes. The training of the WS model and the DS model

implements the learning rate decay and the early stopping API, and sets all hyper

parameters to their default as provided in TensorFlow [8].

First, we choose 3,000 samples randomly from WS to form DS. Then we use

WS to train the WS model, and use DS to train the DS model. For each sample

in DS, we use αw and ωw to record its loss value in the first epoch and the last

epoch, respectively, during the training of the WS model; and further use αd

and ωd to denote its loss value in the first epoch and the last epoch, respectively,

during the training of the DS model.

Figure 4.1 illustrates the distributions and their fitting curves of correctly-

labeled samples and wrongly-labeled samples w.r.t. three variables, including

(αw/ωw)/(αd/ωd) in Figure 4.1 (a), (αw/ωw) in Figure 4.1 (b), and (αd/ωd) in

Figure 4.1 (c). The bars in the figure indicate the number of samples at certain

value of the corresponding variable, while the curves illustrate the kernel density

estimation of the corresponding variable, which is a non-parametric estimation

of the variable’s probability density function.

Figure 4.1 shows that the differences between the correctly-labeled

56

Table 4.1: Wasserstein Distance between Distributions of Correctly-Labeled
and Wrongly-Labeled Samples

Model(s) Used Wasserstein Distance
WS model 0.00295
DS model 0.01047

Both WS model and DS model 0.04387

samples and the wrongly-labeled samples are more apparent in terms of their

distributions measured from the loss values in training both the WS model and

the DS model as shown in Figure 4.1 (a), than in training the WS model alone

as shown in Figure 4.1 (b), and in training the DS model alone as shown in

Figure 4.1 (c).

The distribution differences shown in Figure 4.1 between the correctly-

labeled samples and the wrongly-labeled samples can be measured in

Wasserstein distance [9], which quantifies the minimum “cost” of turning

one distribution to another. A larger Wasserstein distance represents more

significant difference between two distributions. Table 4.1 measures the

Wasserstein distances between the distributions that are given in Figure 4.1. It

suggests to distinguish between correctly-labeled samples and wrongly-labeled

samples according to the loss values collected in training both the WS model

and the DS model.

The size of DS is an important factor in differentiating the distributions

between correctly-labeled samples and wrongly-labeled samples. Figure 4.2

and Table 4.2 show that using smaller DS yields greater difference; it is thus

desirable to choose DS as small as possible in Differential Training.

On the other hand, DS should be large enough to converge the training of

the DS model [29]. Therefore, we have two criteria for choosing the size of DS:

(1) DS should be as small as possible to distinguish between correctly-labeled

samples and wrongly-labeled samples, and (2) DS should be large enough for

converging the training of the DS model. In our experiments, we use a grid

57

Figure 4.2: Distributions of Correctly-Labeled Samples and Wrongly-Labeled
Samples with Different Sizes of DS

Table 4.2: Wasserstein Distance between Distributions of Correctly-Labeled
and Wrongly-Labeled Samples with Different DS

Size of DS Wasserstein Distance
3000 0.04387
6000 0.03401
9000 0.03334

12000 0.01965
15000 0.02703

58

search to choose the size of DS based on these two criteria.

Explanation on the differences of loss values: The differential training

heuristic is also enlightened by the following theorem proved by S. Arora et al.

in a recent research [18] on the differences of loss values between correctly-

labeled samples and randomly-labeled samples during model training:

In a two-layer MLP model using ReLU activation and trained by gradient

descent, when there are infinite nodes in hidden layers and the model is fully

trained, the following equation holds:

‖y − u (k) ‖2 =

√√√√ n∑
i=1

(1− ηλi)2k(vᵀ
i y)

2 ± ε

where y = (y1, y2 . . . yn) denotes all the labels of the n samples, u (k)

denotes all the n predictions in the kth epoch, and thus ‖y − u (k) ‖2 refers to the

L2-norm distance between the predicted labels and the true labels. Moreover, η

refers to the learning rate. vi refers to the orthonormal eigenvector of sample i

and λi refers to its corresponding eigenvalue decomposed from the gram matrix

H of the model, while the gram matrix H is decided by the two-layer ReLU

model in the kth epoch as defined in [87, 76, 31]. ε is a very small value that

can be ignored.

The equation shows that under the ideal condition, (‖y − u (k) ‖2)
2 for a

single sample i in epochs 1 to k is a geometric sequence which starts at (vᵀ
i y)

2

and decreases at ratio (1− ηλi)2.

Furthermore, in section 4 of paper [18], it is proven that samples with true

labels have better alignment with larger eigenvalues than samples with random

labels (or wrong labels). In each epoch of model training, the square of L2 norm

distance (‖y − u (k) ‖2)
2 thus demonstrates larger decreasing ratios (1− ηλi)2

for correctly-labeled samples than for wrongly-labeled samples.

Since the square of L2-norm distance (‖y − u (k) ‖2)
2 is exactly the same

as theL2 loss function between the actual labels y and the predicted labels u (k),

59

Figure 4.3: Structure of Differential Training

this theorem implies that during the training of DS/WS model, the decreasing

rates of the loss values of correctly-labeled samples are larger than (and thus

different from) those of wrongly-labeled samples in each epoch.

4.4 Differential Training Framework

Differential Training processes a noisy dataset in three phases: “pre-

processing,” “noisy label detection,” and “malware detection with revised

labels.” The structure of Differential Training is shown in Figure 4.3.

4.4.1 Phase I: Pre-processing

In the first phase, a machine learning based malware detection approach is

selected, and the raw app files from the dataset of the approach are transformed

into numeric feature vectors through a “Feature Vector Generation” module

which should be specified by the malware detection approach. The output of the

60

Figure 4.4: Structure of a Single Iteration in Noisy Label Detection

phase I is the whole training set WS which consists of the transformed feature

vectors and their associated labels.

4.4.2 Phase II: Noisy Label Detection

The second phase “Noisy Label Detection” of Differential Training consists of

multiple iterations, in each of which the noises in the training set are reduced

until a stopping criterion is met. Each iteration is illustrated in Figure 4.4, which

consists of four steps, including “Dataset Downsampling”, “Training of WS and

DS Models”, “Loss Vector Generation” and “Outlier Detection”.

Dataset Downsampling

In the first step “dataset downsampling”, Differential Training randomly

downsamples the whole training set WS to a smaller dataset, named

“downsampled set,” or DS for short. The size of DS is selected according to

the two criteria described in the differential training heuristic.

Training of WS and DS Models

After DS is generated, two noise detection models, “WS model” and “DS

model,” are trained on WS and DS datasets, respectively. The two noise

61

detection models can be any deep learning classification models having the

same network architecture for classifying apps to be either malicious or benign

according to their feature vectors. Depending on the selection of app features,

various deep learning classification models (e.g., Multi-Layer Perceptron,

Recurrent Neural Network, and Convolutional Neural Network) may be selected

to be noise detection models. Differential Training uses the noise detection

models to extract the loss values for each input app during training; any deep

learning classification model can be used as a noise detection model as long as it

outputs a loss value for each input app in each epoch during its training process.

In our experiments conducted in this chapter, we choose the noise detection

models to be Multi-Layer Perceptron (MLP) that consists of two hidden layers,

where the first hidden layer consists of 500 nodes and the second hidden layer

1000 nodes, and followed by a softmax layer as output. We use the TensorFlow

toolkit [8] to train the two models, where all the parameters are set to their

default values in the toolkit.

Loss Vector Generation

In the third step, the loss values of each app in DS are collected from the two

noise detection models during their trainings. The loss values collected from

each model are arranged into a sequence in the order of training epochs. Then

the two sequences are concatenated to form a “loss vector” for each app in DS.

Outlier Detection

In this step, a set of unsupervised outlier detection algorithms are applied to the

loss vectors of all the apps in DS. For each app whose loss vector is detected

as an outlier, its label is considered to be “wrong”, and thus flipped with a

probability. Several points on the outlier detection are clarified below:

• Most outlier detection algorithms require a “containment rate” parameter

62

Table 4.3: List of Outlier Detection Algorithms used in Differential Training

Angle-based Outlier Detector (ABOD)
Auto Encoder

Clustering Based Local Outlier Factor (CBLOF)
Histogram-based Outlier Detection (HBOS)

IsolationForest Outlier Detector (I-forest)
k-Nearest Neighbors Detector (kNN)

Local Outlier Factor (LOF)
Outlier Detection with Minimum Covariance Determinant (MCD)
Single-Objective Generative Adversarial Active Learning (So-gaal)

One-class SVM detector
Stochastic Outlier Selection (SOS)

Principal Component Analysis Outlier Detector (PCA)
EllipticEnvelope

as their input. This parameter works as a threshold in identifying outliers.

In Differential training, this parameter is set to the current ratio of

wrongly-labeled samples in WS. This noise ratio is estimated using the

method proposed by Goldberger [38]. In particular, the noise ratio is

estimated to be (1 − aWS), where aWS is the accuracy of the WS model

in 5-fold cross-validation on WS.

• To avoid any bias of a single outlier detection algorithm, we use 13

different outlier detection algorithms and apply a majority voting to

get the final result of outliers. Table 4.3 shows the outlier detection

algorithms used in Differential Training, where the first 12 algorithms are

taken from a public toolkit named “PyOD” [6], while the last algorithm

“EllipticEnvelope” is taken from the toolkit “sklearn” [7].

• Another parameter named dropout ratio is introduced in this step. After

each outlier is detected according to the majority voting, the label of the

corresponding sample is revised/flipped with a probability equal to the

dropout ratio. The dropout ratio is used to reduce the impact caused by

any accidental error from either outlier detection or noise rate estimation.

The use of this dropout ratio is inspired by the random dropout mechanism

in neural networks training [73], and the ratio is set to 0.5 in our

experiments.

63

Stopping Criterion

To stop the iterations in training the WS model and the DS model, we use a stop

criterion that is similar to the early stopping adopted in neural network training.

The iterations stop once the fluctuation of the estimated noise ratios in the last

several iterations turns to be smaller than a certain threshold. In experiments,

we enforce the stopping criterion through the API earlystop callback() from

the TensorFlow toolkit, where all parameters are set to their default values.

4.4.3 Phase III: Malware Detection with Revised Labels

Once the iterations stop, the apps and their associated labels in the whole

set WS are ready for Android malware detection. The original Android

malware detection approach can be trained using these apps’ feature vectors

(which were extracted in phase I) and their labels (which were revised in

phase II). In the experiments below, we use ground-truth data to evaluate the

performance of Differential Training with three different Android malware

detection approaches, including SDAC [88], Drebin [19], and DeepRefiner [90].

We measure the performances of Differential Training using the following

metrics: (i) The number and the percentage of wrong labels in the training

set being reduced by Differential Training. (ii) The F-scores of the malware

detection approach when it is applied to the noisy training set, the noise-

reduced training set processed by Differential Training, and the “ground-truth”

training set. The differences between these F-scores1 show that how much

improvement in the performance of the malware detection approach is made

due to Differential Training, and how close is the improved performance to the

upper bound.

In evaluating Differential Training with a malware detection approach, we

1A F-score is the harmonic mean between precision and recall, where precision measures the
percentage of true malware among the detected malware, while recall measures the percentage
of true malware being detected.

64

partition its “ground-truth” dataset into two parts: 80% of them are used as the

training set, and the other 20% are used as testing/validation set. Given a noise

ratio 0 ≤ rnoise ≤ 0.5, we randomly select each app in the training set with

probability rnoise ∗ 100%, and flip the labels of the selected apps to generate a

noisily-labeled dataset. The default value of the noise ratio is set to 10%, which

is similar to the ratio which we observed from VirusTotal during a period of

three years. After Differential Training revises the labels in the training set, we

refer it as the processed dataset. While we train a malware detection approach

using either ground-truth dataset, noisy dataset, or processed dataset, we always

evaluate its performance using a “ground-truth” testing dataset.

Without confusion, we also call the framework Differential Training by

excluding phase III if the objective is to detect or reduce noisy labels in a dataset

without testing the malware detection approach.

4.5 Differential Training with SDAC

In this chapter, Differential Training is firstly evaluated with the SDAC solution

proposed in chapter 3. While the dataset used in this evaluation is also the same

as that in section 3.4.

4.5.1 Performance of Differential Training with SDAC

Table 4.4 summarizes SDAC dataset and SDAC performances, which are

measured on the correctly-labeled dataset, the nosily-labeled dataset, and

the noise-reduced training set processed by Differential Training. Overall,

Differential Training revise 5,246 labels correctly, revise 343 labels wrongly.

The percentage of noise labels thus reduces from 9.91% to 1.26% in the nosily-

labeled dataset due to the process of Differential Training.

More details are given in Figure 4.5 which shows the number of labels

that are revised correctly by Differential Training (i.e., true positives), and the

65

Table 4.4: The Evaluation of Differential Training with SDAC

Android Malware Detection Approach SDAC

Samples in the Whole Dataset 69,933
Benignware # Malware 35,437 34,496

Samples in Noisy Training Set 56,650
of Noises added 5,614 (9.91%)

detected TP # detected FP 5,246 343
of Remained Noises in Processed Dataset 711 (1.26%)

F-score with Correctly-laballed Dataset 97.71%
F-score with Noisily-laballed Dataset 89.04%

F-score with Processed Dataset 97.19%

Figure 4.5: Noise Reduction on SDAC Dataset

number of labels that are revised wrongly (i.e., false positives) in each iteration.

It also shows the accuracy of the revised labels (i.e., the percentage of the revised

labels that are correct) in each iteration. When Differential Training converges,

the accuracy of the revised labels reaches close to 99%.

The F-score of SDAC improves from 89.04% to 97.19% after noise

reduction on the training set, and this improved F-score is very close to its upper

bound 97.71% (see Table 4.4). These results show that Differential Training can

greatly reduce the number of wrong labels in the training set, and improve the

performance of Android Malware detection approach due to the use of noise-

reduced training set in training.

66

4.5.2 Runtime Performance of Differential Training with

SDAC

The total time cost of Differential Training with SDAC in this experiment is

about 55.34 hours. In detail, Differential Training performs 58 iterations; each

iteration takes about 57.3 mins on average, which includes 50.6 mins spent on

training the WS model, and less than 4 mins spent on training the DS model.

The rest of time in each iteration is used for performing outlier detection and

noise ratio estimation.

4.6 Differential Training with Drebin

4.6.1 Introduction of Drebin

Drebin [19] is a lightweight Android malware detection solution published

in 2014 based on static analysis. Drebin extracts the following features

from each app: hardware components, required missions, App components,

filtered intents from Android manifest files, critical API calls, actually used

permissions, human-defined suspicious API calls, and network address strings

from disassembled codes. Drebin converts each app into a feature vector

of 545,433 dimensions. It relies on a linear support vector machine (SVM)

classifier for malware detection, and uses its linear weights for identifying the

features that make significant contributions to malware detection.

Compared to SDAC that was published recently in 2020, Drebin is more

classic which has been cited frequently in malware detection research since

2014. In addition to evaluate the effectiveness of Differential Training on SDAC,

we also test it on the classic Drebin with relatively old dataset.

67

Figure 4.6: Noise Reduction on Drebin Dataset

4.6.2 Drebin Dataset

Drebin was evaluated on a dataset collected by 2014, which was composed of

5,560 “malware samples” and 123,453 “benign apps.” The Drebin dataset has

been frequently used in malware research since its publication. We checked

the dataset in June 2019 using VirusTotal to guarantee the ground-truth of

the dataset. In detail, we found no contradictory labels in the dataset except

that some apps were too old to receive any report. Compared to the SDAC

dataset where malware takes up 49.3% of all apps, the Drebin dataset is highly

imbalanced as malware samples account for 4.3% of all apps. This is another

reason that we choose Drebin so that we can test Differential Training on a

highly imbalanced dataset.

4.6.3 Performance of Differential Training with Drebin

Figure 4.6 shows the performance of Differential Training in each iteration,

where the red bars and green bars are measures of true positives and false

positives, respectively. In total, 9,121 noisy labels are detected and revised

correctly by Differential Training, and 605 labels are detected and revised

mistakenly. The accuracy of Differential Training for label revisions converges

close to 98%.

68

Table 4.5: The Evaluation of Differential Training with Drebin

Android Malware Detection Approach Drebin

Samples in the Whole Dataset 129013
Benignware # Malware 123,453 5,560

Samples in Noisy Training Set 103,210
of Noises added 10,009 (9.70%)

detected TP # detected FP 9,121 605
of Remained Noises in Processed Dataset 1805 (1.75%)

F-score with Correctly-laballed Dataset 93.34%
F-score with Noisily-laballed Dataset 73.20%

F-score with Processed Dataset 84.40%

Table 4.5 shows that Drebin’s performance improves from 73.20% to

84.40% in F-score if it is trained on the processed dataset, for which

Differential Training reduces the percentage of noise labels from 9.70% to

1.75%. Compared to the original F-score, the improved F-score is closer to

its upper bound 93.34% which is achieved by Drebin trained with the correctly-

labeled training set.

4.6.4 Runtime Performance of Differential Training with

Drebin

The total time cost of Differential Training with Drebin in this experiment is

about 62.52 hours, which converges in 68 iterations. Each iteration takes 55.2

minutes on average while the training of the WS model takes 52.0 mins and the

training of the DS model takes 2.8 mins.

4.7 Differential Training with DeepRefiner

4.7.1 Introduction of DeepRefiner

DeepRefiner [90] is a Android malware detection approach that connects two

deep learning models in sequential. The first model is a Multi-Layer Perceptron

model which can detect “most significant” malware samples efficiently based

69

Table 4.6: The Evaluation of Differential Training with DeepRefiner

Android Malware Detection Approach DeepRefiner

Samples in the Whole Dataset 110,440
Benignware # Malware 47,525 62,915

Samples in Noisy Training Set 88352
of Noises added 8,835 (10.00%)

detected TP # detected FP 7,497 2,230
of Remained Noises in Processed Dataset 3,118 (3.53%)

F-score with Correctly-laballed Dataset 93.59%
F-score with Noisily-laballed Dataset 91.37%

F-score with Processed Dataset 93.41%

on XML files in app APK packages. The second model is a long short-term

memory model which detects “more advanced” malware samples from those

apps for which the first model cannot provide reliable classification results. The

second model relies on checking the semantic structures of Android bytecodes

in malware detection.

According to [90], the first model of DeepRefiner can be used alone and it

achieves 87.3% accuracy in malware detection on a dataset of 110,440 apps. We

choose this model to evaluate how Differential Training performs if the malware

detection approach is not extremely accurate but very efficient.

4.7.2 DeepRefiner Dataset

The original DeepRefiner dataset consists of a set of benign applications that

were collected from Google Play as well as a set of malicious apps that were

collected from VirusShare and MassVet in 2015 to 2016. We then downloaded

their scanning reports from VirusTotal in June 2019 and removed all the samples

with different labels. The remaining dataset contains of 62,915 malicious

applications and 47,525 benign applications that were collected in 2016.

4.7.3 Performance of Differential Training with DeepRefiner

Figure 4.7 shows that after being processed by Differential Training, the

percentage of samples with correct labels in the DeepRefeiner dataset increases

70

Figure 4.7: Noise Reduction on DeepRefiner Dataset

from 90% to 96%, while Table 4.6 further shows that 7,497 wrong labels are

revised correctly, while 2,230 correct labels are revised mistakenly.

In total, Differential Training reduces 64.7% of the wrong labels and

increases the F-score of DeepRefiner from 91.37% to 93.41%, which is only

0.18% lower than the F-score of DeepRefiner trained with the correctly-labeled

dataset.

4.7.4 Runtime Performance of Differential Training with

DeepRefiner

In the Differential Training with DeepRefiner, the total time cost is about 102.12

hours, which includes 77 iterations. The time cost for each iteration is about

79.6 minutes on average, including 70.0 minutes for training the WS model and

7.9 minutes for training the DS model.

4.8 The Impact of Noise Ratio to Noise Reduction

Differential Training is effective in reducing label noises on three different

datasets at noise ratio 10% as shown in the previous sections. In this section, we

further investigate the impact of noise ratio to noise reduction. For this purpose,

71

Table 4.7: Noise Reduction on SDAC Dataset at Different Noise Ratios

Noise Ratio 5% 10% 15% 20% 30% 45%

of Training Set 56,550 56,550 56,550 56,550 56,550 56,550
of Wrongly-labeled Samples 2,833 5,614 8,497 11,330 16,995 25,493

of TP Noise Detection Results 2,540 5,246 7,977 10,465 15,762 21,858
of FP Noise Detection Results 281 343 472 377 655 4,500

% of Noise Reduced 79.73% 87.34% 88.33% 89.04% 88.89% 68.09%
of Wrongly-labeled Samples Left 574 711 992 1,242 1,888 8,135%

Table 4.8: Noise Reduction on Drebin Dataset at Different Noise Ratios

Noise Ratio 5% 10% 15% 20% 30% 45%

of Training Set 103,210 103,210 103,210 103,210 103,210 103,210
of Wrongly-labeled Samples 5,160 10,321 15,482 20,400 30,936 46,445

of TP Noise Detection Results 4,658 9,121 12,700 17,870 26,120 44,804
of FP Noise Detection Results 788 605 878 2,232 1,875 20,247

% of Noise Reduced 75.00% 82.51% 76.36% 76.66% 78.37% 52.87%
of Wrongly-labeled Samples Left 1,290 1,805 3,660 4,762 6,691 21,888

we produce datasets at 5%, 10%, 15%, 20%, 30%, and 45% noise ratios, and

apply Differential Training on such datasets with different Android malware

detection approaches.

Note that 45% noise ratio is close to the upper bound of noise ratio (i.e.,

50%)2, indicating a data quality that is close to random labelling.

Table 4.7 shows the noise reduction results of Differential Training on SDAC

dataset at various noise ratios. In these experiments, the percentage of wrong

labels being reduced by Differential Training ranges from 79.73% to 89.04%

as the noise ratio changes from 5% to 30%, indicating that the effectiveness

of Differential Training is stable in these experiments. When the noise ratio

2If the noise ratio is greater than 50%, a flipping of each and every label would turn the noise
ratio below 50%.

Table 4.9: Noise Reduction on DeepRefiner Dataset at Different Noise Ratios

Noise Ratio 5% 10% 15% 20% 30% 45%

of Training Set 88,352 88,352 88,352 88,352 88,352 88,352
of Wrongly-labeled Samples 4,415 8,835 13,253 17,670 26,502 39,758

of TP Noise Detection Results 3,985 7,947 12,406 14,737 21,707 23,604
of FP Noise Detection Results 1,247 2,230 3,677 5,150 8,799 14,795

% of Noise Reduced 62.02% 64.71% 65.86% 54.26% 48.71% 22.15%
of Wrongly-labeled Samples Left 1,677 3,118 4,524 8,083 13,594 30,949

72

in dataset is set to 45%, which is close to the upper bound (i.e., noise ratio

for random labelling), Differential Training reduces 68.09% of wrong labels.

Though this percentage is lower than the other cases in the experiments, it is

still substantial in this extreme case.

Table 4.8 shows a similar trend for Differential Training’s effectiveness

on noise reduction working on Drebin dataset at various noise ratios. The

percentage of noisy labels being reduced fluctuates from 75.00% to 82.51% if

the noise ratio varies between 5% and 30%, and it decreases to 52.87% at noise

ratio 45%.

Table 4.9 shows a wider fluctuation margin of noise label detection rate

on DeepRefiner dataset, which varies from 48.71% to 65.86% for the noise

ratio range of 5% to 30%. This wider fluctuation margin is probably due

to the relatively simple feature set selected by DeepRefiner as compared to

more comprehensive feature sets used by SDAC and Drebin. Nonetheless,

Differential Training can still detect nearly half of wrong labels even if the noise

ratio is as high as 30% in the training set. While in the extremely noisy case for

45% of noise ratio, Differential Training reduces 22% of wrong labels. While

this result is lower than the other cases as the noise ratio is close to random

labelling, the effectiveness of Differential Training is still non-negligible in

reducing the noise in the training dataset.

Tables 4.7, 4.8, and 4.9 also show a trend between the detection performance

of Differential Training and the noise ratio in the dataset. When the noise ratio

ranges from 5% to 30%, the detection accuracy does not change much; while the

ratio increases to 45%, a significant decrease in detection accuracy is observed.

Differential Training detects label noises as outliers. When there are almost

the same number of outliers as non-outliers, it is difficult for Differential

Training to distinguish between outliers and non-outliers, leading to a

significant drop in its detection accuracy.

73

4.9 Comparison among Differential Training, Co-

teaching, and Decoupling on Noise Reduction

In this section, we compare Differential Training with two state-of-the-art

unsupervised algorithms, including Co-Teaching and Decoupling. Both of

which are designed for robust training of deep neural networks with noisy labels.

Co-Teaching trains two neural networks simultaneously on a noisy dataset,

where the two models are of identical architecture but initialized independently

at the beginning. Given each mini-batch of the dataset, each network views its

small-loss data samples as potentially-clean samples, and provides them to its

peer network for updating the parameters in the peer network. In Co-Teaching,

the two networks have different learning abilities; they can thus filter each

other’s different types of error that are introduced by noisy labels in the learning

process. After training, the two fully-trained models cooperate to output a

predicted label for each sample in the testing phase, where the predicted label is

determined by an output weight that is the sum of the output weights of the input

sample from the two models. Co-Teaching can be used to detect noisy labels. If

the predicated label of an input sample is different from the original label of the

input sample, the original label is considered as a noisy label, and thus flipped.

The source code of this algorithm is publicly available and provided in [4].

Decoupling also trains two neural networks simultaneously on a noisy

dataset, with these two networks being of the same structure but initialized

independently. During the model training, each mini-batch of the dataset is fed

to both models simultaneously to generate the prediction results. If a sample

in the mini-batch is predicted with different labels from the two models, it

is regarded as meaningful for the model learning and only the ”meaningful”

samples in the mini-batch are later used in the backward propagation step to

update the parameters in both models. At the end of training, Decoupling

randomly chooses one of the two trained models as the produced classifier.

74

Decoupling can be used to detect noisy labels. If an input sample’s label

that is predicted by the produced classifier is different from its original label,

the original label is considered as noisy, and thus flipped for correction.

Decoupling’s source code is publicly available and provided in [5].

We apply both Differential Training, Co-Teaching, and Decoupling to the

noisy versions of all three datasets, including SDAC dataset, Drebin dataset,

and DeepRefiner dataset, where the noise ratio is set to 10% as in the default

setting. We compare their performances in terms of the percentage of wrongly

labels being detected/reduced in the noisy datasets. For fair comparison, the

neural networks used in Co-Teaching or Decoupling are chosen to be the same

as the ones used in Differential Training, being two-layer MLP networks with

500 nodes in the first layer and 1000 nodes in the second layer.

Table X compares Differential Training with Co-Teaching and Decoupling

in terms of noise detection result and runtime performance. The runtime

performance is evaluated on a single desktop personal computer without GPU.

The PC is equipped with one Intel(R) i5-4590 3.3 GHz CPU and 12 GB physical

memory running on the Ubuntu 14.04 (LTS) operating system.

The table shows that while Differential Training takes longer time than Co-

teaching and Decoupling, it outperforms these two approaches considerably in

all three cases in terms of noise detection accuracy. Specifically, Differential

Training produces the most True-Positive (TP) results and the least False-

Positive (FP) results in all the cases except for the FP result in the case

of DeepRefiner. The malware detection results (F-score) with the datasets

processed by Differential Training are also better than those processed by the

other two noise detection approaches.

Different strategies are exploited for identifying or processing noise

samples. Differential Training identifies a sample as “noise” based on all of

its loss values in the whole training process, while Co-Teaching treats a sample

to be potentially-clean based on its individual loss value in each mini-batch, and

75

Table 4.10: Comparison between Differential Training (DT), Co-Teaching (CT)
and Decoupling (DC)

SDAC Drebin DeepRefiner
Dataset Dataset Dataset

% of Wrongly Labels 87.45% 82.51% 64.71%Reduced by DT
% of Wrongly Labels 76.49% 78.14% 21.72%Reduced by CT
% of Wrongly Labels 68.43% 65.37% 29.80%Reduced by DC

of TP/FP Noises 5,246/343 9,121/605 7,497/2,230Detected by DT
of TP/FP Noises 5,131/841 8,997/933 3,311/1,392Detected by CT
of TP/FP Noises 4,305/463 8,107/1,360 4,392/1,606Detected by DC

Detection results (F-score) 89.04% 73.20% 91.37%on Noisy dataset
Detection results (F-score) 97.19% 84.40% 93.41%on dataset processed by DT
Detection results (F-score) 96.01% 77.36% 93.33%on dataset processed by CT
Detection results (F-score) 92.38% 79.80% 92.19%on dataset processed by DC

Runtime Performance 55.34 62.52 102.12of DT (hour)
Runtime Performance 4.08 20.09 23.93of CT (hour)
Runtime Performance 2.24 21.71 14.15of DC (hour)

Decoupling identifies a noise sample based on its prediction result that is related

to its loss value in the last epoch only. Our comparison shows that the strategy

exploited by Differential Training is more reliable in detecting noisy labels than

other strategies exploited by Co-Teaching and Decoupling.

4.10 Discussion

4.10.1 Limitation

Time cost of Differential Training: As shown in section IX, Differential

Training has a higher time cost than Co-teaching and Decoupling. This is

mainly because Differential Training reduces the label noises in a gradual way

in multiple iterations, while in each iteration two separate classification models

(i.e., WS model and DS model) are trained. In comparison, both Co-teaching

76

and Decoupling rely on two classification models being trained in a single

iteration.

Accuracy of noise ratio estimation: The accuracy of the noise ratio

estimation used in outlier detection may affect the performance of Differential

Training. If the estimated noise ratio is significantly different from the

actual ratio, Differential Training may produce more false positives and false

negatives in identifying noise labels. While the noise ratio estimation algorithm

we adopted enables Differential Training to outperform Co-Teaching and

Decoupling in rigorous experiments, it is still possible to further improve the

performance of Differential Training by adopting a more accurate noise ratio

estimation algorithm in its outlier detection. We leave this as a future work.

4.10.2 Generalization on Differential Training

Differential Training is designed to identify and correct wrongly-labeled data

samples for Android malware detection. In this chapter, we consider Android

malware detection as a binary classification problem, where each app is labeled

either benign or malicious. While we expect that the idea of Differential

Training can be generalized to other fields for identifying data samples whose

labels are misclassified, it cannot be directly applied to correcting wrong labels

for multiclass classification. This is because Differential Training simply

flips the labels for identified noise samples to correct them. For multiclass

classification, additional effort is to be made on how to correct wrong labels.

77

Chapter 5

Dynamic Attention: A

Noise-Tolerant Dynamic Analysis

Approach to Android Malware

Detection based on Attention

Variances

5.1 Introduction

Machine learning-based Android malware detection has been a major research

focus in recent years. In this area, dynamic analysis approach is always a hot

topic and attracts attention in both academic and industry. Many reseachers

have published their dynamic analysis approaches to Android malware detection

(e.g., [68, 55, 45]), while companies like Google and Huawei also deploy

dynamic analysis systems for Android malware detection on their app markets

or mobile devices [12]. Compared with static analysis approaches, dynamic

analysis approaches are more robust against anti-detection methods such as

repackaging, obfuscation, and dynamic loading [58].

78

We focus on supervised learning where accurate and reliable ground-truth

data samples (and their labels) are crucial. However, the labels of the feature

vectors of malicious apps in dynamic analysis may be mistaken due to the

imperfect trigger procedures in the feature collection step. In particular, the

feature triggering modules and scripts such as [81, 84] are designed to emulate

the real users’ inputs or events, and record the behaviors of apps as their feature

vectors for malware detection in dynamic analysis. However, no triggering

modules and scripts can perfectly trigger all potential malicious behaviors. For

example, the logic bomb [78, 65] is a technique causing apps to suspend specific

behaviors if they are in dynamic analysis environments.

Therefore, the triggered behavior traces collected from samples labelled

as “malware” may not contain “malicious” behaviors. Thus the feature

vectors extracted from the malware samples/apps may be mislabelled in the

model training process. Using such wrong labels in training downgrades the

performance of these trained malware detection models.

The noisy label problem is intrinsic in the dynamic analysis approaches

to Android malware detection and the situation is worse due to ever-growing

sizes of datasets that are used in machine-learning based malware detection

approaches. It is nearly impossible even for domain experts to manually analyze

the correctness of labels in the training dataset because the behavior traces

produced in dynamic analysis are usually of great lengths of more than 100,000

and the techniques for composing malware are also highly complicated and

constantly evolving.

Towards addressing the noise problem caused by imperfect trigger

procedures, we propose Dynamic Attention, a novel noise-tolerant dynamic

analysis approach to Android malware detection. Dynamic Attention leverages

the attention mechanism to detect noisy labels associated with the feature

vectors of malicious apps in its training phase. The attention mechanism [77]

works as an inductive module in machine learning that discovers the relations

79

between input values, and allows a prediction model to look over all the values

in the input vector and figure out the most important parts in the input vector

that lead to the prediction output.

We make a meaningful asymmetric assumption that the labels “benign” of

the behavior traces (or feature vectors) that are triggered from benign apps

are correct since these apps perform no malicious behaviors, while the labels

“malicious” of the behavior traces (or feature vectors) triggered from malicious

apps are noisy. It is unknown which “malicious” labels are correct or wrong for

the behavior traces of malicious apps.

Moreover, we further introduce a new heuristic, named dynamic attention

heuristic, for noise label detection. The dynamic attention heuristic relies on

the variances of the attention weights of the feature vectors that are derived

from malicious apps to detect noisy labels during the training of deep learning

based malware detection models. If a feature vector labelled as “malicious” has

high variance among its self-attention weights, the dynamic attention heuristic

regards its label as more trustworthy (i.e., it is likely that malicious behaviors

are triggered out); otherwise, its label is less trustworthy (i.e., it is likely that no

malicious behavior is trigged out).

In deriving this heuristic, we observe that malicious behaviors, if triggered

out, usually represent a small portion of the entire behavior traces. This is

because malware developers tend to shorten the malicious code so that it is

easier to hide malicious operations among benign ones. On the other hand, the

triggering modules and scripts in dynamic analysis are designed to cover app

codes as much as possible such that the extracted feature vectors are lengthy.

We deploy the attention mechanism on each input feature vector to calculate

the variance of self-attention weights. If a feature vector’s label is “malicious”

and malicious behaviors have been indeed triggered out, the small portion

representing malicious behaviors is given high self-attention weights by the

attention mechanism, while the rest majority portion is given relatively low

80

weights. Consequently, the variance among the attention weights in the input

vector is relatively high.

In comparison, if a feature vector is labelled as “malicious” but does not

contain any malicious behavior due to imperfect triggering. The attention

mechanism cannot locate which part of the feature vector represents malicious

behaviors, and thus assign similar weights to all the values in the input vector.

The variance among the attention weights in the input vector is relatively low.

After the calculation of the attention variances for all input feature vectors

in the training phase, the training weights of those feature vectors having higher

attention variances are increased, while those with lower attention variances are

decreased for the training of the malware detection model. The trained model

is more tolerant to noise labels because it learns more from the feature vectors

which labels are more trustworthy and learns less from the feature vectors which

labels are less trustworthy.

The main contributions of this chapter are summarized below:

• We develop Dynamic Attention, a noise-tolerant dynamic analysis

approach to Android malware detection. Dynamic Attention deploys an

additional step during the model training to reduce the impact caused by

label noises. This step leverages the attention mechanism to calculate the

self-attention weights of feature vectors and the variances of the attention

weights. In the training of an LSTM model for Android malware detection

in dynamic analysis, Dynamic Attention assigns high (low, respectively)

weights to the feature vectors that are extracted from malicious apps if

their attention variances are high (low, respectively). To the best of our

knowledge, Dynamic Attention is the first noise-tolerant dynamic analysis

approach to Android malware detection.

• Dynamic Attention enjoys high practicality due to full automation and

its independence to correctly-labeled datasets. Dynamic Attention is

81

fully automated since it relies on neither domain knowledge nor manual

inspection in its training. Besides, Dynamic Attention works on any

noisily-labelled dataset in dynamic analysis; unlike MentorNet [42] and

distilled-based learning model [48], Dynamic Attention does not need to

rely on any extra dataset whose labels are all correct. It thus spares the

costly work for examining malicious behaviors from the behavior traces

that are extracted from malicious apps.

• The effectiveness of Dynamic Attention is evaluated with a dataset

containing 21,987 benignware and 33,588 malware samples. The dataset

and the behavior traces extracted from the apps in the dataset were

provided by an industry company in collaborating with a research institute

beyond the control of our research. Compared to a vanilla neural network

model, Dynamic Attention improves the F-score of detection accuracy

from 63.05% to 82.13%.

5.2 Preliminaries

5.2.1 Machine Learning Based Android Malware Detection

with Dynamic Analysis

We aim to build a noise-tolerant Android malware detection approach which

relies on a binary classification model to predict the label of any candidate

sample, which can be either benign or malicious.

In general, a dynamic-based Android malware detection model is trained by

a set of labelled apps(Training set) in four steps: First, the label of each app in

the set is collected in advance (In this chapter, we name the app’s label as “static

label”). Then each app will be installed on emulators or devices, and a module

is employed to generate a series of inputs to the emulators or devices to simulate

the human activities to the app. Meanwhile, another module is deployed at the

82

same time to record the behaviors in the forms of data flow, API calls, system

calls, etc. In the third step, the collected behaviors are transformed into feature

vectors according to the feature set designed in the detection approach. Finally,

the “static label” for the app is assigned to the feature vector’s label, then feature

vectors of all the app samples together with corresponding vector labels are fed

to the classification model to train classifiers. For simplicity, we denote the

labels assigned to the dynamic-based feature vectors as “dynamic label”.

After the model training, a set of labelled apps (i.e., testing set) are used

to evaluate the performance of the generated model based on the differences

between the predicted and actual labels of these apps.

5.2.2 Training of Neural Network Models

The training of the neural network classification models for our approach is

composed of multiple epochs. In each epoch, each sample and its associated

label(dynamic) are paired from the training dataset and a batch of such pairs

are then fed into the model together through two successive phases: forward

propagation and backward propagation.

In the forward propagation phase, the feature vector of a given sample is

taken as input to the noise detection model. A loss function is used to calculate

a loss value for the sample according to the input vector and the parameters of

the noise detection model. Then, a predicted label is generated for the sample

and compared to the given label of the sample.

In the backward propagation phase, the gradient of the loss function with

respect to each parameter in the noise detection model is calculated. Each

parameter is then updated according to the gradient and the loss values optimally

to minimize the average loss value in the next epoch.

With the model parameters being constantly updated during the whole

training process, the average loss value for the samples in the whole training

83

dataset is optimized to decrease from the first epoch to the last. The number of

epochs is determined by a convergency condition under which the average loss

value in the last epoch is considered to be good enough.

5.2.3 Attention Mechanism

Attention works in form of a component in a neural network’s architecture,

which can be used to quantify the interdependence among the values of the input

vector and the output vector. Given an input vector, the attention component can

map the most important and relevant values in the input vector for each value in

the output and assign higher weights to the important values to enhancing the

prediction accuracy.

In Android malware detection research, the predicted results from the

classification models are often in form of one-hot vectors with the length of two,

representing that the input’s dynamic label being either “benign”(The output

vector here is [0, 1]) or “malicious”(The output vector here is [1, 0]). The

attention weights for each value in the input vector will thus demonstrate how

much the selected values contribute to the label of apps.

5.2.4 Underlying Assumption

The underlying assumption made in our approach is that, in the dynamic-based

analysis, the dynamic label of feature vectors triggered from app samples with

“benign” static labels are always correct since these apps can not perform

malicious behaviors.

While for the samples with “malware” static labels, the collected behaviors

from malware apps may not contain any malicious behavior due to the imperfect

trigger procedure or the integrated technique designed to bypass the dynamic

analysis. In this case, since the dynamic labels of the apps’ feature vectors are

assigned the same as their static labels, those feature vectors are mislabelled and

84

training models with such feature vectors and labels kind will surely distort the

training of classification model.

Note that we also assume that the triggering module is at least reliable to

some extent, which means some of the feature vectors have both their static

labels and dynamic labels being correct. However, the ratio of the noisy dynamic

labels remains unknown in the approach.

5.3 Dynamic Attention Heuristic

Our approach relies on a new heuristic, named dynamic attention heuristic,

which stats that the variance of self-attention weights for all values in a feature

vector can be used to verify the correctness of this vector’s dynamic label,

when the vector is generated in dynamic-based Android malware detection

approaches.

The heuristic is enlightened by two observations: First, as described above,

the attention mechanism can find out the most related values in a feature vector

to specific values in the output vector, which has been verified useful in many

natural language process (NLP) or Pattern Recognition (PR) approaches for a

long time. In this case, we assume it will work well on identifying the most

important values from the feature vectors which make the classification model

output the corresponding labels.

Secondly, the fragments in the feature vectors representing malicious

behaviors are only small parts in the triggered behavior records. Intuitively,

malware developers will always try to hide the malicious codes under normal

ones, and large sections of malicious codes will be found easily. So they will

shorten the malicious codes as much as possible. Furthermore, the behavior

records will usually be of great length, due to that the triggering module is

designed to cover most of the codes in the app.

In this case, if the static label of an app sample is “malware” and its

85

malicious behaviors are correctly triggered and recorded. Thus in a well-trained

neural network model with attention mechanism, the values in the feature vector

corresponding to the malicious behaviors will be assigned with high attention

weights since they contribute most to its label, while the rest will be given low

weights.

On the opposite, if the static label of an app sample is “malware” and its

malicious behaviors are not triggered during the dynamic analysis, the dynamic

label of the feature vector is actually mislabelled. In this case, the malicious

label is not be contributed by any specific fragments of the feature vector.

Thus all these values in the feature vector will be given similar weights by

the attention mechanism, and the variances of attention weights in such feature

vectors will be smaller compared to the one mentioned above.

5.4 The framework of our Approach

Given a noisy dataset, our approach trains an Android malware detection models

within three steps: “Pre-processing,” “Noise tolerant model training,” and

“Malware detection .”

5.4.1 Step I: Pre-processing

We propose the dynamic based analysis by recording the sequences of

triggered APIs. In detail, the feature set is produced by Chinese Academy of

Sciences and includes 378 APIs, while two open source Android analysis tools

“AndroidViewClient” and “Androwarn” are utilized in the API triggering. Each

app is installed on a Huawei Mate 20 mobile phone, and scripts built by these

two analysis tools are also executed on the device to monitor whether the APIs

from the feature set are triggered. When the scripts stop, the collected APIs

which are in the list are recorded in a sequence, which is directly used as the

feature vector of the target app. Finally, the dynamic label of the generated

86

feature vector is assigned the same as the static label of the app.

5.4.2 Step II: Noise tolerant model training

Structure of Dynamic Attention Model

The architecture of Dynamic Attention model consists of 4 different layers as

follows:

Embedding Layer. After the feature vectors produced in the Pre-processing

step, these vectors, which represent the collected sequences of APIs, are then

fed into the embedding layer to transform each API into dense vectors of

the fixed-length that will be used in the following training. In practice, we

use the functions provided by the Keras [3] deep learning framework for the

transformation, and the length of dense vectors are set to 200.

Bi-LSTM layer. The second detection layer in the Dynamic Attention model

is a Bi-directional Long Short Term Memory(Bi-LSTM) layer which processes

the input feature vectors in both forward and backward directions. During the

process, each LSTM hidden layer produces a “Hidden Vector Sequence” with

the length of 32. The previous LSTM hidden layer’s output will be taken by

the following LSTM layer as the input. In this case, the LSTM layers can build

up historical information among all the values in the input vectors. Within the

following updating iterations, the model is able to learn the APIs’ semantic at

the level of applications. The output of the model, which is in the form of its

final hidden vector sequence, is then ready to be fed into the attention following

attention layer.

Attention Layer. An attention layer is added to our Dynamic Attention model

after the Bi-LSTM layer. This layer is used to figure out the contribution of

each value in the vector to the final outputs. With this layer, the contribution of

each value in the input vector to its corresponding label can be calculated in the

forms of attention scores which are positive values. These scores are used in our

87

Figure 5.1: Training Dynamic Attention Model with a Batch of Dataset

approach to quantify the contribution to the “malware” label from each API in

the form of real values.

Output Layer. A fully-connected layer is added at the end of our classification

model which transforms the output of the attention layer to the results of the

whole model. The output represents the dynamic label predicted corresponding

to the input API feature vector.

Training of Our Detection Model

To build our noise-tolerant model, the training of our classification model is

slightly different from the process of training a vanilla model as described in

section 5.2.2. In figure 5.1, it is shown in the training of each batch in the

forward propagation phase, all the calculation of our approach is the same as

that in a vanilla network training. While before the backward propagation phase

phase, we insert an additional phase which is named “variance filtering”.

While in this additional phase, we first filter out all the input vectors with

“malicious” dynamic labels, then we randomly split them into two sub-batch of

the same size. The first sub-batch is named “sorting sub-batch”, while samples

88

in this set will be assigned with different sample weights in the next backward

propagation phase. The other batch is named “normal sub-batch”.

On calculating the sample weights of vectors in the sorting sub-batch, for

each input vector, the variance of attention weights from all values inside the

feature vector to the first value in the corresponding output label(In which 1

refers to “malware” and 0 refers to “benignware”) is calculated, the variance is

denoted as its “feature variance”. After that, all the inputs are sorted by their

corresponding feature variances in ascending order, and each input will then be

assigned with a weight which equals to its rank percentage in the sorted order.

For instance, if an input’s feature variance is larger than 30% of those in the sub-

batch, then it will be assigned with the sample weight of 0.3 in the backward

propagation. While for all the other samples including the ones in sorting-batch

with “benign” dynamic labels and the ones in the normal sub-batch, all of their

sample weights are set to 1.

According to our heuristic, the input feature vectors that have low feature

variances will be regarded as their dynamic labels being mistaken and malicious

behaviors are not correctly triggered during the preprocessing. Since we

assign lower sample weights for them, they have smaller impacts on the model

parameter updating during the backward propagation, and the classification

model will thus learn less from these samples whose labels are considered to

be mistaken.

5.4.3 Step III: Classification

Given the testing set, our approach generates a feature vector for each app in it

as shown in Step I: Pre-processing. The trained classification model is then used

to output a predicted label for each input feature vector fed to the model.

89

5.5 The Evaluation

5.5.1 Dataset

Our approach is evaluated on samples that are randomly collected from the

App markets and public malware sharing projects. The labels of those apps are

further examined by Virustotal to guarantee their correctness. Finally, a dataset

consists of 24,092 benignware and 35,693 malware are used in the evaluation.

Feature Vector Generation. As described in section 5.4.1, we extracted the

feature vectors from the apps by running them on a Huawei Mate 20 Android

mobile phone with the tools “AndroidViewClient” and “Androwarn”. After the

extraction, we set the dynamic labels for these collected API sequence vectors

the same as their static labels.

Generation of Training and Testing Sets. In the introduction section, it is

demonstrated that although the correctness of the sample apps’ static labels

can be guaranteed by downloading the reports from VirusTotal, the dynamic

labels for the extracted feature vectors are still questionable as described in the

introduction.

To generate a ground truth testing set that can be used to correctly evaluate

our Dynamic Attention model, we process the collected dataset with the

following steps.

• Intuitively, if an API is included in the feature vector extracted from an

app, it is obvious that the API exists in the code of the app. Thus, each

app can be transformed into an API set containing all the APIs that appear

in its feature vector.

• Two published static analysis-based Android malware detection ap-

proaches, SDAC [88] and Drebin [19], are utilized to help build the

ground truth testing set. Since both of their feature sets can be generated

by the API existence, thus we can then convert the generated API sets

90

Table 5.1: Overview of Training and Testing Sets

of Samples w/ # of Samples w/
“Malicious” Labels “Benign” Labels

Training Set 33,588 21,987
Testing Set 2,105 2,105

from the last step to feature vectors that can be used by these two static

Android malware detection approaches.

• With these compatible feature vectors converted, we applied the trained

detection models of SDAC and Drebin on these feature vectors and collect

the predicted labels. Given the predicted results generated by these two

approaches, we generated the testing set according to the following two

criteria: For each sample in the dataset, if (1) its static label is “malware”

and (2) its predicted labels from both static approaches are “malware”, it

is then labelled as “malware” and chosen to build the testing set used in

the evaluation of Dynamic Attention.

Note that the classification results in this step may have a low recall rate

on the malware, but its accuracy must be very high. Since the selected

ones have only parts of their codes tested by the two approaches, while

only these parts of codes have shown enough evidence to be classified as

“malware”.

• After malware are selected to form the testing set in the last step, the same

number of samples having “benign” static labels are randomly chosen

from the original dataset and used to form the testing set. In this case, all

the dynamic labels for the samples are guaranteed to be correct. And all

the unselected ones are then used to build the training set in our approach.

The overview of our training and testing sets is shown in table 5.1.

91

5.5.2 Proof Experiments for our Heuristic

To further demonstrate the heuristic proposed in section 5.3, some experiments

are performed in this section to evaluate the key idea of our heuristic: “Samples

with mistaken dynamic labels will have a lower feature variance than those with

correct dynamic labels”.

With the training set generated in the last section, we first train a vanilla

classification model with all the samples and labels in the training set. The

vanilla model has the same architecture as that in our approach, however, during

its training, no weights assigning is performed, which means the sample weights

of all the samples are set to 1 in training this model.

Based on this model, the distribution of normalized feature variances in the

two following datasets are shown in figure 5.2. In detail, figure 5.2(a) shows the

distribution of that in the testing set whose labels are guaranteed to be correct,

while figure 5.2(b) shows the distribution of variances for all the feature vectors

in the training set whose labels are noisy.

As described in the heuristics, mistakenly-labelled samples will have low

feature variances, while correctly-labelled ones have higher variances. Since

label noises exist in the training set, feature variances from it will include more

low values than those from the testing set, and a similar trend can also be

observed from these figures.

5.5.3 Performance Evaluation

To evaluate how much our approach contributes in building the noise tolerant

model, we compare the detection accuracy of our approach with that of the

vanilla model. The vanilla model does not have its sample weights adjusted

in its whole training process, while in our approach, the sample weights are

adjusted with the help of the attention mechanism to reduce the impact caused

by mistaken dynamic labels. All the other structures and parameters are set to

92

Figure 5.2: Distribution of Attention Weight Variances in Testing/Training
Datasets

Table 5.2: Detection Accuracy of our Approach compared with a Vanilla Model
of the Same Structure

Model Detection Performance
TP FN TN FP F-score

Our Approach 1874 231 1521 584 82.13%
Vanilla Model 1428 677 1108 997 63.05%

the same in two models for a fair comparison.

Table 5.2 shows the detection accuracy in form of F-score in these two

models. From which it is obvious that our approach is more resistant against

the label noises than a vanilla model without using sample weight adjustment.

In detail, our approach has more TP and TN results than those in the vanilla

model, which demonstrate a higher accuracy in the noise detection.

93

Chapter 6

Integration of the Three Works

In this chapter, we discussed how the works in this dissertation can be integrated

to make Android malware detection more robust. In detail, the three proposed

works improve the robustness of Android malware detection in two main

aspects: (i) SDAC, as a static-based solution, provides robustness towards

the evolvement of Android specifications. (ii) Differential Training provides

robustness against label noises as a general framework, while it requires specific

Android malware detection solutions for noise reduction. Dynamic Attention

provides robustness against noises in the form of a dynamic-based Android

malware detection solution, while the noises are caused by the imperfect trigger

modules.

Note that within the three works, both SDAC and Dynamic Attention

are individual Malware detection solutions, while Differential Training is a

framework that needs other solutions to work together. Thus, we can integrate

these works as shown in figure 6.1. In the integrated solution, apps will be

detected by both the static-based solution SDAC and the dynamic-based solution

Dynamic Attention parallelly: The SDAC solution works with the Differential

Training framework to provide the robustness towards the evolvement of

Android specifications and the label noises simultaneously, which is in the form

of static-based analysis. While Dynamic Attention provides the robustness

94

towards the label noise in the form of dynamic analysis. Then the final

prediction results are generated based on predictions from each solution, by

calculating the sum of prediction weights for each label. In this case, the

integrated solution is able to make the Android malware detection solution more

robust in both aspects as listed above.

Figure 6.1: Integration of Works

Note that all our three works are implemented on PC platforms, so the

integrated solution can also provide the robust Android malware detection

service in PC-based scenarios such as app markets. Besides, all the

hyperparameters in these three works are either fixed (e.g., the type and structure

of classification models in Differential Training and Dynamic Attention) or

automatically calculated (e.g., the threshold τ as described in chapter 3.4). Thus,

no manual efforts are needed and the integrated solution is fully automated once

being deployed.

95

Chapter 7

Conclusion

This dissertation makes contributions to the robustness of Android malware

detection, and it provides three different approaches to achieve its goal.

Our first work is a novel slowing aging solution named SDAC to make

Android malware detection robust against changes in Android specifications.

The key drivers to achieve slow aging in SDAC include (i) clustering APIs based

on the semantic distances among APIs, (ii) evaluating a new API’s contribution

to malware detection using existing APIs’ based on API clusters, and (iii)

updating API clusters and classification models based on both training data with

true labels and testing data with pseudo-labels. The best versions of SDAC

achieve both high accuracy with average F-score 97.49%, and slow aging speed

with average F-score decline 0.11% per year over five years in our experiments.

The other versions have lower requirements on computing resources, but still

perform better than the state of the art.

In the second work, we proposed Differential Training as a generic

framework to detect and reduce label noises from training data to make any

machine learning based Android malware detection robust against label noises

in static analysis. Differential Training is novel due to (i) the use of intermediate

states of input samples in the whole training process for noise detection, (ii) the

use of downsampled set to maximize the differences between wrongly-labeled

96

samples and correctly-labeled samples, and (iii) the use of unsupervised outlier

detection algorithms for not relying on even a small set of correctly-labeled

training samples. Our experimental results show that Differential Training

reduces 87.4%, 82.6% and 64.7% wrong labels in the training sets of SDAC,

Drebin and DeepRefiner, respectively in the default setting where the noise ratio

is set to 10%. With label noises being reduced, the F-scores of these malware

detection approaches increase from 89.04%, 73.20% and 91.37% to 97.19%,

84.40% and 93.41%, respectively. The improved F-scores are close to their

upper bounds (97.71%, 93.34% and 93.59%). Our experiments also show that

the performance of Differential Training is consistent for processing datasets

at various noise ratios, and it is superior to the state-of-the-art unsupervised

algorithm Co-Teaching for robust training of deep neural networks with noisy

labels.

In the third work, we proposed a dynamic-based Android malware detection

approach named Dynamic Attention, which is robust against label noises in

dynamic analysis of Android malware caused by imperfect trigger procedure.

By introducing (i) attention weights of sample feature vectors in the malicious

behavior identification and (ii) weighting training samples based on the

variances among the attention weights each sample feature vector, we succeed

in reducing the negative impact to the classification model caused by dynamic

label noise. Our experiment results show that, with the sample weighting based

on the feature variance, our approach can increase the detection performance

from 63.05% (tested by a vanilla model) to 82.13% in form of F-score.

97

List of Publications

Conference Papers
J. Xu, Y. Li and R. H. Deng. Differential Training: A Generic Framework to Reduce

Label Noises for Android Malware Detection. In The Network and Distributed
System Security Symposium (NDSS 2021), Accepted in Dec. 2020.

K. Xu, Y. Li, R. H. Deng, K. Chen, J. Xu. Droidevolver: Self-evolving android
malware detection system. In IEEE European Symposium on Security and
Privacy (EuroS&P 2019), pp.47-62

D. Wu, X. Liu, J. Xu, D. Lo and D. Gao. Measuring the declared SDK versions and
their consistency with API calls in Android apps In International Conference on
Wireless Algorithms, Systems, and Applications (WASA 2017), pp. 678-690.

Journal Papers
J. Xu, Y. Li, R. H. Deng and K. Xu. SDAC: A Slow-Aging Solution for Android

Malware Detection Using Semantic Distance Based API Clustering. IEEE
Transactions on Dependable and Secure Computing (TDSC), Accepted in June.
2020.

98

Bibliography

[1] “android developer documentation”. https://developer.android.com/reference
/classes.

[2] “dexProtector”. https://dexprotector.com/.

[3] Keras. https://www.tensorflow.org/api docs/python/
tf/keras/.

[4] Neurips’18: Co-teaching: Robust training of deep neural networks with extremely
noisy labels. https://github.com/bhanML/Co-teaching.

[5] NIPS 2017: Decoupling ”when to update” from ”how to update”. http-
s://github.com /emalach/UpdateByDisagreement.

[6] PyOD. https://pyod.readthedocs.io/en/latest/.

[7] “Scikit-learn”. https://scikit-learn.org/stable/modules/generated/sklearn.covar-
iance.EllipticEnvelope.html.

[8] “TensorFlow”. https://www.tensorflow.org/api docs/python/tf/keras/ callback-
s/EarlyStopping.

[9] “Wasserstein”. https://en.wikipedia.org/wiki/Wasserstein metric.

[10] “VirusTotal”. https://www.virustotal.com/, 2004.

[11] “VirusShare project”. https://virusshare.com/, 2011.

[12] Combating potentially harmful applications with machine
learning at google: Datasets and models. , https://android-
developers.googleblog.com/2018/11/combating-potentially-harmful.html, 2018.

[13] Y. Aafer, W. Du, and H. Yin. “DroidAPIMiner: Mining API-level features
for robust malware detection in Android”. In EAI International Conference on
Security and Privacy in Communication Networks (SecureComm). Springer, 2013.

[14] V. M. Afonso, P. L. de Geus, A. Bianchi, Y. Fratantonio, C. Kruegel, G. Vigna,
A. Doupé, and M. Polino. “Going Native: Using a large-scale analysis of Android
apps to create a practical native-code sandboxing policy.”. In The Network and
Distributed System Security Symposium (NDSS), 2016.

[15] J. Allen, M. Landen, S. Chaba, Y. Ji, S. P. H. Chung, and W. Lee. “Improving
accuracy of Android malware detection with lightweight contextual awareness”.
In Proceedings of the 34th Annual Computer Security Applications Conference
(ACSAC). ACM, 2018.

99

[16] K. Allix, T. F. Bissyandé, J. Klein, and Y. Le Traon. “Androzoo: Collecting
millions of android apps for the research community”. In IEEE Working
Conference on Mining Software Repositories (MSR). IEEE, 2016.

[17] A. Apvrille and R. Nigam. “Obfuscation in Android Malware, and How to Fight
Back”. Virus Bulletin, pages 1–10, 2014.

[18] S. Arora, S. S. Du, W. Hu, Z. Li, and R. Wang. Fine-grained analysis of
optimization and generalization for overparameterized two-layer neural networks.
In International Conference on Machine Learning (ICML), 2019.

[19] D. Arp, M. Spreitzenbarth, M. Hubner, H. Gascon, K. Rieck, and C. Siemens.
“DREBIN: Effective and explainable detection of Android malware in your
pocket.”. In The Network and Distributed System Security Symposium (NDSS),
2014.

[20] S. Arzt, S. Rasthofer, C. Fritz, E. Bodden, A. Bartel, J. Klein, Y. Le Traon,
D. Octeau, and P. McDaniel. “Flowdroid: Precise context, flow, field, object-
sensitive and lifecycle-aware taint analysis for Android apps”. ACM SIGPLAN
Conference on Programming Language Design and Implementation (PLDI),
2014.

[21] V. Avdiienko, K. Kuznetsov, A. Gorla, A. Zeller, S. Arzt, S. Rasthofer, and
E. Bodden. “Mining apps for abnormal usage of sensitive data”. In International
Conference on Software engineering (ICSE). IEEE, 2015.

[22] F. A. Breve, L. Zhao, and M. G. Quiles. Semi-supervised learning from imperfect
data through particle cooperation and competition. In The 2010 International Joint
Conference on Neural Networks (IJCNN). IEEE, 2010.

[23] G. Brito, A. Hora, M. T. Valente, and R. Robbes. “Do developers deprecate APIs
with replacement messages? A large-scale analysis on Java systems”. In IEEE
International Conference on Software Analysis, Evolution and Reengineering
(SANER), volume 1, pages 360–369. IEEE, 2016.

[24] S. Chakradeo, B. Reaves, P. Traynor, and W. Enck. “Mast: Triage for market-
scale mobile malware analysis”. In ACM Conference on Security and Privacy in
Wireless and Mobile Networks (WiSec). ACM, 2013.

[25] H.-S. Chang, E. Learned-Miller, and A. McCallum. “active bias: Training more
accurate neural networks by emphasizing high variance samples”. In Advances in
Neural Information Processing Systems (AIPS), 2017.

[26] L. Chen, M. Zhang, C.-y. Yang, and R. Sahita. “Semi-supervised classification for
dynamic Android malware detection”. In ACM SIGSAC Conference on Computer
and Communications Security (CCS). ACM, 2017.

[27] S. Chen, M. Xue, Z. Tang, L. Xu, and H. Zhu. “Stormdroid: A streaminglized
machine learning-based system for detecting Android malware”. In ACM Asia
Conference on Computer and Communications Security (ASIACCS). ACM, 2016.

[28] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song. “Networkprofiler:
Towards automatic fingerprinting of Android apps”. In IEEE International
Conference on Computer Communications (INFOCOM). IEEE, 2013.

100

[29] F. Dernoncourt, J. Y. Lee, O. Uzuner, and P. Szolovits. “De-identification of
patient notes with recurrent neural networks”. Journal of the American Medical
Informatics Association (JAMIA), 2017.

[30] A. Desnos. “Androguard: Reverse engineering, malware and goodware analysis of
Android applications... and more (ninja!)”. http://code.google.com/p/androguard,
2015.

[31] S. S. Du, X. Zhai, B. Poczos, and A. Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning
Representations (ICLR), 2018.

[32] Y. Duan, M. Zhang, A. V. Bhaskar, H. Yin, X. Pan, T. Li, X. Wang, and X. Wang.
“Things you may not know about Android (Un) Packers: A systematic study based
on whole-system emulation”. In The Network and Distributed System Security
Symposium (NDSS), 2018.

[33] W. Enck, P. Gilbert, S. Han, V. Tendulkar, B.-G. Chun, L. P. Cox, J. Jung,
P. McDaniel, and A. N. Sheth. “TaintDroid: an information-flow tracking system
for realtime privacy monitoring on smartphones”. ACM Transactions on Computer
Systems (TOCS), 2014.

[34] W. Enck, M. Ongtang, and P. McDaniel. “On lightweight mobile phone
application certification”. In ACM SIGSAC Conference on Computer and
Communications Security (CCS). ACM, 2009.

[35] A. Z. Erich Schubert. “ELKI data mining”. https://elki-project.github.io/, 2016.

[36] Y. Feng, S. Anand, I. Dillig, and A. Aiken. “Apposcopy: Semantics-
based detection of Android malware through static analysis”. In International
Conference on Software engineering (ICSE). ACM, 2014.

[37] B. Frénay and M. Verleysen. Classification in the presence of label noise: a survey.
IEEE Transactions on Neural Networks and Learning Systems, 2013.

[38] J. Goldberger and E. Ben-Reuven. Training deep neural-networks using a noise
adaptation layer. In 5th International Conference on Learning Representations,
(ICLR), 2017.

[39] B. Han, Q. Yao, X. Yu, G. Niu, M. Xu, W. Hu, I. Tsang, and M. Sugiyama. “Co-
teaching: Robust training of deep neural networks with extremely noisy labels”.
In Advances in Neural Information Processing Systems (NIPS), 2018.

[40] S. Hou, Y. Ye, Y. Song, and M. Abdulhayoglu. “Hindroid: An intelligent
Android malware detection system based on structured heterogeneous information
network”. In ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (SIGKDD). ACM, 2017.

[41] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan. “PIndroid:
A novel Android malware detection system using ensemble learning methods”.
Computers & Security, 68:36–46, 2017.

[42] L. Jiang, Z. Zhou, T. Leung, L.-J. Li, and L. Fei-Fei. “MentorNet: Learning
data-driven curriculum for very deep neural networks on corrupted labels”. In
International Conference on Machine Learning (ICML), 2018.

101

[43] A. Kantchelian, M. C. Tschantz, S. Afroz, B. Miller, V. Shankar, R. Bachwani,
A. D. Joseph, and J. D. Tygar. “Better malware ground truth: Techniques
for weighting anti-virus vendor labels”. In 8th ACM Workshop on Artificial
Intelligence and Security (AISec). ACM, 2015.

[44] “KasperskyLab”. “What is Riskware?”. https://www.kaspersky.com/resource-
center/threats/riskware, 2017.

[45] T. Kim, B. Kang, M. Rho, S. Sezer, and E. G. Im. “A multimodal deep
learning method for Android malware detection using various features”. IEEE
Transactions on Information Forensics and Security (TIFS), 2018.

[46] P. Lantz. “Droidbox - Android application sandbox”. https://github.com/
pjlantz/droidbox, 2014.

[47] L. Li, D. Li, T. F. Bissyandé, J. Klein, Y. Le Traon, D. Lo, and L. Cavallaro.
“Understanding Android app piggybacking: A systematic study of malicious code
grafting”. IEEE Transactions on Information Forensics and Security (TIFS), 2017.

[48] Y. Li, J. Yang, Y. Song, L. Cao, J. Luo, and L.-J. Li. “Learning from noisy
labels with distillation”. In Proceedings of the IEEE International Conference
on Computer Vision (ICCV), 2017.

[49] M. Linares-Vásquez, G. Bavota, C. Bernal-Cárdenas, M. Di Penta, R. Oliveto,
and D. Poshyvanyk. “API change and fault proneness: A threat to the success
of Android apps”. In ACM SIGSOFT Symposium on the Foundations of Software
Engineering (FSE). ACM, 2013.

[50] M. Lindorfer, M. Neugschwandtner, and C. Platzer. “Marvin: Efficient and
comprehensive mobile app classification through static and dynamic analysis”.
In IEEE Computer Software and Applications Conference (COMPSAC). IEEE,
2015.

[51] M. Lindorfer, M. Neugschwandtner, L. Weichselbaum, Y. Fratantonio, V. Van
Der Veen, and C. Platzer. “Andrubis–1,000,000 Apps Later: A View on Current
Android Malware Behaviors”. In Building Analysis Datasets and Gathering
Experience Returns for Security (BADGERS). IEEE, 2014.

[52] Mariconti. “MaMaDroid project”. https://bitbucket.org/gianluca students
/mamadroid code, 2017.

[53] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and
G. Stringhini. “MaMaDroid: Detecting Android malware by building Markov
Chains of behavioral models”. In The Network and Distributed System Security
Symposium (NDSS), 2017.

[54] T. McDonnell, B. Ray, and M. Kim. “An empirical study of API stability
and adoption in the android ecosystem”. In IEEE International Conference on
Software Maintenance (ICSM). IEEE, 2013.

[55] N. McLaughlin, J. Martinez del Rincon, B. Kang, S. Yerima, P. Miller, S. Sezer,
Y. Safaei, E. Trickel, Z. Zhao, A. Doupé, et al. Deep android malware detection. In
Proceedings of the Seventh ACM on Conference on Data and Application Security
and Privacy, 2017.

102

[56] A. Menon, B. Van Rooyen, C. S. Ong, and B. Williamson. “Learning from
corrupted binary labels via class-probability estimation”. In International
Conference on Machine Learning (ICML), 2015.

[57] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean. “Distributed
representations of words and phrases and their compositionality”. In Advances
in Neural Information Processing Systems (NIPS), 2013.

[58] A. Moser, C. Kruegel, and E. Kirda. Limits of static analysis for malware
detection. In Twenty-Third Annual Computer Security Applications Conference
(ACSAC 2007), pages 421–430. IEEE, 2007.

[59] A. Narayanan, L. Yang, L. Chen, and L. Jinliang. “Adaptive and scalable android
malware detection through online learning”. In International Joint Conference on
Neural Networks (IJCNN). IEEE, 2016.

[60] N. Natarajan, I. S. Dhillon, P. K. Ravikumar, and A. Tewari. Learning with noisy
labels. In Advances in neural information processing systems (NIPS), 2013.

[61] P. Palumbo, L. Sayfullina, D. Komashinskiy, E. Eirola, and J. Karhunen. “A
pragmatic Android malware detection procedure”. Computers & Security,
70:689–701, 2017.

[62] X. Pan, X. Wang, Y. Duan, X. Wang, and H. Yin. “Dark Hazard: Learning-based,
large-scale discovery of hidden sensitive operations in Android apps.”. In The
Network and Distributed System Security Symposium (NDSS), 2017.

[63] G. Patrini, A. Rozza, A. Krishna Menon, R. Nock, and L. Qu. Making deep neural
networks robust to label noise: A loss correction approach. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2017.

[64] F. Pendlebury, F. Pierazzi, R. Jordaney, J. Kinder, and L. Cavallaro.
“TESSERACT: Eliminating experimental bias in malware classification across
space and time”. arXiv, 2018.

[65] T. Petsas, G. Voyatzis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis.
Rage against the virtual machine: hindering dynamic analysis of android malware.
In Proceedings of the Seventh European Workshop on System Security, pages 1–6,
2014.

[66] V. Rastogi, Y. Chen, and X. Jiang. “Droidchameleon: evaluating Android anti-
malware against transformation attacks”. In ACM Asia Conference on Computer
and Communications Security (ASIACCS), 2013.

[67] R. Řehůřek and P. Sojka. “Software framework for topic modelling with large
corpora”. In Proceedings of the LREC 2010 Workshop on New Challenges for
NLP Frameworks. ELRA, 2010.

[68] M. Rhode, P. Burnap, and K. Jones. Early-stage malware prediction using
recurrent neural networks. computers & security, 2018.

[69] S. Roy, J. DeLoach, Y. Li, N. Herndon, D. Caragea, X. Ou, V. P. Ranganath,
H. Li, and N. Guevara. “Experimental study with real-world data for Android
app security analysis using machine learning”. In Annual Computer Security
Applications Conference (ACSAC). ACM, 2015.

103

[70] A. I. Schein and L. H. Ungar. Active learning for logistic regression: an evaluation.
Machine Learning, 2007.

[71] J. Seo, D. Kim, D. Cho, I. Shin, and T. Kim. “FLEXDROID: Enforcing in-app
privilege separation in Android.”. In The Network and Distributed System Security
Symposium (NDSS), 2016.

[72] B. Settles. “Active learning literature survey”. Technical report, 2009.

[73] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov.
“Dropout: a simple way to prevent neural networks from overfitting”. The Journal
of Machine Learning Research (JMLR), 2014.

[74] S. Sukhbaatar, J. Bruna, M. Paluri, L. Bourdev, and R. Fergus. Training
convolutional networks with noisy labels. arXiv preprint arXiv:1406.2080, 2014.

[75] “Trendmicro”. “A Case of Misplaced Trust: How a Third-Party App
Store Abuses Apple’s Developer Enterprise Program to Serve Adware”.
https://blog.trendmicro.com/trendlabs-security-intelligence/how-a-third-party-
app-store-abuses-apples-developer-enterprise-program-to-serve-adware/, 2016.

[76] R. Tsuchida, F. Roosta, and M. Gallagher. Invariance of weight distributions in
rectified MLPs. In International Conference on Machine Learning (PMLR), 2018.

[77] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
Ł. Kaiser, and I. Polosukhin. Attention is all you need. In Advances in neural
information processing systems, 2017.

[78] T. Vidas and N. Christin. Evading android runtime analysis via sandbox
detection. In Proceedings of the 9th ACM symposium on Information, computer
and communications security, 2014.

[79] N. Viennot, E. Garcia, and J. Nieh. “A measurement study of Google play”. In
ACM SIGMETRICS Performance Evaluation Review, volume 42, pages 221–233.
ACM, 2014.

[80] T. L. Wang. “AI-Based Antivirus: Detecting Android malware variants with a
deep learning system”. In Blackhat Europe, 2016.

[81] X. Wang, S. Zhu, D. Zhou, and Y. Yang. “Droid-AntiRM: Taming control
flow anti-analysis to support automated dynamic analysis of Android malware”.
In Proceedings of the 33th Annual Computer Security Applications Conference
(ACSAC), 2017.

[82] Y. Wang, W. Liu, X. Ma, J. Bailey, H. Zha, L. Song, and S.-T. Xia. “Iterative
learning with open-set noisy labels”. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), 2018.

[83] F. Wei, O. X. Roy, Sankardas, and Robby. “Amandroid: A precise and general
inter-component data flow analysis framework for security vetting of Android
apps”. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). ACM, 2014.

[84] M. Y. Wong and D. Lie. Intellidroid: A targeted input generator for the dynamic
analysis of android malware. In NDSS, volume 16, pages 21–24, 2016.

104

[85] D. Wu, X. Liu, J. Xu, D. Lo, and D. Gao. “Measuring the declared SDK versions
and their consistency with API calls in android apps”. In International Conference
on Wireless Algorithms, Systems, and Applications (WASA). Springer, 2017.

[86] Y. Wu, S. C. Hoi, C. Liu, J. Lu, D. Sahoo, and N. Yu. “Sol: A Library for Scalable
Online Learning Algorithms”. Neurocomputing, 260:9–12, 2017.

[87] B. Xie, Y. Liang, and L. Song. Diverse neural network learns true target functions.
In Artificial Intelligence and Statistics (PMLR), 2017.

[88] J. Xu, Y. Li, R. Deng, and K. Xu. SDAC: A Slow-aging solution for
Android malware detection using semantic distance based API clustering. IEEE
Transactions on Dependable and Secure Computing (TDSC), 2020.

[89] K. Xu, Y. Li, and R. H. Deng. “ICCDetector: ICC-based malware detection
on Android”. IEEE Transactions on Information Forensics and Security (TIFS),
11(6):1252–1264, 2016.

[90] K. Xu, Y. Li, R. H. Deng, and K. Chen. Deeprefiner: Multi-layer Android
malware detection system applying deep neural networks. In 2018 IEEE European
Symposium on Security and Privacy (EuroS&P). IEEE, 2018.

[91] L.-K. Yan and H. Yin. “DroidScope: Seamlessly reconstructing the OS and Dalvik
semantic views for dynamic Android malware analysis.”. In USENIX security
symposium, 2012.

[92] C. Yang, Z. Xu, G. Gu, V. Yegneswaran, and P. Porras. “DroidMiner: Automated
mining and characterization of fine-grained malicious behaviors in Android
applications”. In European Symposium on Research in Computer Security
(ESORICS). Springer, 2014.

[93] W. Yang, X. Xiao, B. Andow, S. Li, T. Xie, and W. Enck. “Appcontext:
Differentiating malicious and benign mobile app behaviors using context”. In
International Conference on Software engineering (ICSE). IEEE, 2015.

[94] W. Yang, Y. Zhang, J. Li, J. Shu, B. Li, W. Hu, and D. Gu. “Appspear: Bytecode
decrypting and dex reassembling for packed Android malware”. In International
Symposium on Recent Advances in Intrusion Detection (RAID), 2015.

[95] Z. Yang, M. Yang, Y. Zhang, G. Gu, P. Ning, and X. S. Wang. “Appintent:
Analyzing sensitive data transmission in android for privacy leakage detection”.
In ACM SIGSAC Conference on Computer and Communications Security (CCS).
ACM, 2013.

[96] Z. Yuan, Y. Lu, Z. Wang, and Y. Xue. “Droid-sec: deep learning in Android
malware detection”. In ACM Special Interest Group on Data Communication
(SIGCOMM). ACM, 2014.

[97] M. Zhang, Y. Duan, H. Yin, and Z. Zhao. “Semantics-aware Android malware
classification using weighted contextual API dependency graphs”. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). ACM,
2014.

[98] Z. Zhang and M. Sabuncu. Generalized cross entropy loss for training deep neural
networks with noisy labels. In Advances in neural information processing systems
(NIPS), pages 8778–8788, 2018.

105

[99] Z. Zhu and T. Dumitras. “Featuresmith: Automatically engineering features for
malware detection by mining the security literature”. In ACM SIGSAC Conference
on Computer and Communications Security (CCS). ACM, 2016.

106

	Machine learning based approaches towards robust Android malware detection
	Citation

	1 Introduction
	1.1 SDAC: A Slow-Aging Solution for Android Malware Detection Using Semantic Distance Based API Clustering
	1.2 Differential Training: A Generic Framework to Reduce Label Noises for Android Malware Detection
	1.3 Dynamic Attention: A Noise-Tolerant Dynamic Analysis Approach to Android Malware Detection based on Attention Variances
	1.4 Contributions and Organization

	2 Literature Review
	3 SDAC: A Slow-Aging Solution for Android Malware Detection Using Semantic Distance Based API Clustering
	3.1 Introduction
	3.2 Basic SDAC
	3.2.1 API Path Extraction
	3.2.2 API Vector Embedding
	3.2.3 API Cluster Generation and Extension
	3.2.4 Classification Model Training and Testing
	3.2.5 Model Voting

	3.3 Two Modes of SDAC and Online Versions
	3.3.1 SDAC-FEO
	3.3.2 SDAC-FMU
	3.3.3 Online Versions

	3.4 Evaluation of SDAC
	3.4.1 Evaluation of SDAC-FEO
	3.4.2 Evaluation of SDAC-FMU
	3.4.3 Evaluation of SDAC-FEO-OL & SDAC-FMU-OL
	3.4.4 Runtime Performance
	3.4.5 Evaluation of SDAC with Different Tmal
	3.4.6 Evaluation of SDAC with Unbalanced Datasets

	3.5 Discussions
	3.5.1 SDAC against Obfuscation
	3.5.2 API Semantic Extraction
	3.5.3 Limitations

	4 Differential Training: A Generic Framework to Reduce Label Noises for Android Malware Detection
	4.1 Introduction
	4.2 Preliminaries
	4.2.1 Machine Learning Based Android Malware Detection
	4.2.2 Training Noise Detection Models
	4.2.3 Underlying Assumption

	4.3 Differential Training Heuristic
	4.4 Differential Training Framework
	4.4.1 Phase I: Pre-processing
	4.4.2 Phase II: Noisy Label Detection
	4.4.3 Phase III: Malware Detection with Revised Labels

	4.5 Differential Training with SDAC
	4.5.1 Performance of Differential Training with SDAC
	4.5.2 Runtime Performance of Differential Training with SDAC

	4.6 Differential Training with Drebin
	4.6.1 Introduction of Drebin
	4.6.2 Drebin Dataset
	4.6.3 Performance of Differential Training with Drebin
	4.6.4 Runtime Performance of Differential Training with Drebin

	4.7 Differential Training with DeepRefiner
	4.7.1 Introduction of DeepRefiner
	4.7.2 DeepRefiner Dataset
	4.7.3 Performance of Differential Training with DeepRefiner
	4.7.4 Runtime Performance of Differential Training with DeepRefiner

	4.8 The Impact of Noise Ratio to Noise Reduction
	4.9 Comparison among Differential Training, Co-teaching, and Decoupling on Noise Reduction
	4.10 Discussion
	4.10.1 Limitation
	4.10.2 Generalization on Differential Training

	5 Dynamic Attention: A Noise-Tolerant Dynamic Analysis Approach to Android Malware Detection based on Attention Variances
	5.1 Introduction
	5.2 Preliminaries
	5.2.1 Machine Learning Based Android Malware Detection with Dynamic Analysis
	5.2.2 Training of Neural Network Models
	5.2.3 Attention Mechanism
	5.2.4 Underlying Assumption

	5.3 Dynamic Attention Heuristic
	5.4 The framework of our Approach
	5.4.1 Step I: Pre-processing
	5.4.2 Step II: Noise tolerant model training
	5.4.3 Step III: Classification

	5.5 The Evaluation
	5.5.1 Dataset
	5.5.2 Proof Experiments for our Heuristic
	5.5.3 Performance Evaluation

	6 Integration of the Three Works
	7 Conclusion

