
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

1-2021

Novel techniques in recovering, embedding, and enforcing Novel techniques in recovering, embedding, and enforcing

policies for control-flow integrity policies for control-flow integrity

Yan LIN
Singapore Management University

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Databases and Information Systems Commons, and the Information Security Commons

Citation Citation
LIN, Yan. Novel techniques in recovering, embedding, and enforcing policies for control-flow integrity.
(2021). 1-143.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/318

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F318&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

NOVEL TECHNIQUES IN RECOVERING, EMBEDDING,
AND ENFORCING POLICIES FOR CONTROL-FLOW

INTEGRITY

YAN LIN

SINGAPORE MANAGEMENT UNIVERSITY

2021

Novel Techniques in Recovering, Embedding, and
Enforcing Policies for Control-Flow Integrity

by
Yan Lin

Submitted to School of Computing and Information Systems in partial fulfillment
of the requirements for the Degree of Doctor of Philosophy in Computer Science

Dissertation Committee:

Debin GAO (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Robert DENG Huijie
AXA Chair Professor of Information Systems
Singapore Management University

David LO

Associate Professor of Information Systems
Singapore Management University

Zhenkai LIANG

Associate Professor of Computer Science
National University of Singapore

Singapore Management University
2021

Copyright (2021) Yan Lin

I hereby declare that this PhD dissertation is my original work

and it has been written by me in its entirety.

I have duly acknowledged all the sources of information

which have been used in this dissertation.

This PhD dissertation has also not been submitted for any degree

in any university previously.

Yan Lin

22nd January, 2021

Novel Techniques in Recovering, Embedding, and
Enforcing Policies for Control-Flow Integrity

Yan Lin

Abstract

Control-Flow Integrity (CFI) is an attractive security property with which most in-

jected and code-reuse attacks can be defeated, including advanced attacking tech-

niques like Return-Oriented Programming (ROP). CFI extracts a control-flow graph

(CFG) for a given program and instruments the program to respect the CFG. Specif-

ically, checks are inserted before indirect branch instructions. Before these instruc-

tions are executed during runtime, the checks consult the CFG to ensure that the

indirect branch is allowed to reach the intended target. Hence, any sort of control-

flow hijacking would be prevented.

There are three fundamental components in CFI enforcement. The first compo-

nent is accurately recovering the policy (CFG). Usually, the more precise the policy

(CFG) is, the more security CFI improves, but precise CFG generation was con-

sidered hard without the support of source code. The second one is embedding the

CFI policy securely. Current CFI enforcement usually inserts checks before indi-

rect branches to consult a read-only table which stores the valid CFG information.

However, this kind of read-only table can be overwritten by some kinds of attacks

(e.g., Rowhammer attack and data-oriented programming). The third component

is to efficiently enforce the CFI policy. In current approaches, no matter whether

there are attacks, the CFI checks are always executed whenever there is an indirect

control-flow transfer. Therefore, it is critical to minimize the performance impact

of the CFI checks.

In this dissertation, we propose novel solutions to handle these three fundamen-

tal components. We systematically study how compiler optimization would impact

CFG recovery by investigating two methods that recover CFI policy based on func-

tion signature matching at the binary level and propose our novel improved mech-

anism to more accurately recover function signature. We also propose an enhanced

deep learning approach to recover function signature by including domain-specific

knowledge to the dataset. To embed CFI policy securely, we design a novel platform

which encodes the policy into the machine instructions directly without relying on

consulting any read-only data structure by making use of the idea of instruction-set

randomization. In it, each basic block is encrypted with a key derived from the

CFG. To efficiently enforce CFI policy, we make use of a mature dynamic code op-

timization platform called DynamoRIO to enforce the policy so that it only requires

to do the CFI check when needed.

Table of Contents

1 Introduction 1

1.1 Overview of Control-Flow Integrity 1

1.2 Thesis Statement . 3

1.3 Practicality of Recovering Fine-grained CFI Policies 4

1.4 Control-Flow Carrying Code . 5

1.5 Control-Flow Integrity Enforcement Based on Dynamic Code Op-

timization . 6

1.6 Organization . 6

2 Literature Review 7

2.1 Control-Flow Hijacking . 7

2.2 Deployed Defenses . 10

2.3 Control-Flow Integrity . 10

2.3.1 Coarse-grained CFI . 11

2.3.2 Fine-grained CFI . 13

2.4 Instruction-Set Randomization . 14

2.5 Function Signature Recovery . 15

2.6 Non-control Data Attacks . 16

3 Function Signature Recovery 18

3.1 When Function Signature Recovery Meets Compiler Optimization . 18

3.1.1 Background and Unified Notation 19

i

3.1.2 Eight Ways in which Compiler Optimization Impacts Func-

tion Signature Recovery 23

3.1.3 Experimental Results of the Eight Complications on Real-

World Programs . 34

3.1.4 Our Compiler-Optimization-Friendly Policies 44

3.1.5 Discussions and Security Implications 50

3.2 Enhanced Deep Learning Approach to Recover Function Signature . 56

3.2.1 Workflow of EKLAVYA 57

3.2.2 Intricacies and Solutions 58

3.2.3 Evaluation . 64

3.3 Summary . 69

4 Control-Flow Carrying Code 70

4.1 Introduction . 70

4.2 Overview of C3 . 72

4.2.1 Threat Model and Assumptions 72

4.2.2 Embedding CFG to Instructions 73

4.3 Detailed Design of C3 . 75

4.3.1 Secret Sharing and Challenges 75

4.3.2 Instruction Transformation 76

4.3.3 Basic Block Redistribution 79

4.3.4 Encryption and Decryption 81

4.3.5 Transitioning from Unprotected to Protected Code 83

4.4 Implementation . 83

4.4.1 Binary Rewriter . 84

4.4.2 Execution Environment . 85

4.5 Evaluation . 86

4.5.1 Security . 86

4.5.2 Performance overhead . 91

ii

4.6 Discussion . 96

4.6.1 Return-into-Pin . 96

4.6.2 Return-into-libc . 96

4.6.3 Length of the Keys . 97

4.6.4 Fine-grained CFI Enforcement 97

4.6.5 Other limitations . 97

4.7 Summary . 98

5 Control-Flow Integrity Enforcement with Dynamic Code Optimization 99

5.1 Introduction . 99

5.2 Design, Implementation, and Security Comparison 100

5.2.1 DynamoRIO . 101

5.2.2 Returns . 102

5.2.3 Indirect jumps and indirect calls 102

5.2.4 Implementation . 103

5.2.5 Security comparison . 104

5.3 Detailed Performance Profiling . 105

5.3.1 Target applications . 105

5.3.2 First attempt in performance profiling 106

5.3.3 Picking BinCFI for detailed comparison 108

5.3.4 Overall comparison and the design space 109

5.3.5 Profiling along the three axes 111

5.4 Security evaluation and Discussion 116

5.4.1 Real world exploits . 116

5.4.2 Average indirect target reduction 117

5.4.3 Fine-grained CFI Enforcement 118

5.5 Summary . 118

6 Conclusions and Future Work 119

6.1 Conclusions . 119

iii

6.2 Future Work . 120

iv

List of Figures

1.1 Example of Control-Flow Integrity 2

2.1 A proof of concept example of Return-Oriented Programming attacks 9

3.1 Likelihood of complications at callees 39

3.2 Likelihood of complications at callers 40

3.3 Amount of flexibility of code-reuse attacks in each mistake in func-

tion signature recovery of indirect callers 56

3.4 Workflow of EKLAVYA . 58

4.1 Example of secret reconstruction. 73

4.2 System overview of C3. 74

4.3 Extracting x and y for address 0x42eb3 76

4.4 Multiple callers to multiple callees 76

4.5 An example of instruction transformation by C3 78

4.6 “Look ahead” DFS search . 81

4.7 Overall overhead of C3. The result is normalized to the baseline

execution time on unmodified Pin. 92

4.8 Detailed overhead of C3. 94

4.9 File size with different secret sizes. 95

5.1 Overview of DynamoRIO . 101

5.2 Shadow stack operations . 102

5.3 Overall performance overhead . 109

v

5.4 Impact of trace on overhead . 112

5.5 Impact of traces on the number of branch mispredictions 114

5.6 Impact of branch prediction on overhead 115

5.7 Performance overhead with unified R′ 116

vi

List of Tables

3.1 Summary of complications introduced by compiler optimization . . 33

3.2 Sizes of the binary executables in our test suite 36

3.3 Github applications in our test suite 36

3.4 Number of arguments of functions in our test suite 37

3.5 Argument types of functions in our test suite 38

3.6 Number of functions and indirect calls 41

3.7 Likelihood that indirect calls in C programs use immediate values

as arguments . 43

3.8 Analysis of the non-variadic function in Binutils 46

3.9 Number of callees allowed by different policies 54

3.10 Potential ML-G and REC-G gadgets 55

3.11 Number of arguments of functions in dataset 66

3.12 Types of arguments of functions in dataset 67

3.13 Number of intricacy cases . 67

3.14 Accuracy in identifying the number of arguments 68

3.15 Accuracy in identifying the type of argument 68

4.1 Comparison with existing CFI techniques. 87

4.2 Average indirect target reduction. 89

4.3 Number of various branches executed 94

5.1 Security comparison with other CFI and ROP defenses 104

5.2 Percentage of time spent on various components 106

vii

5.3 Statistics of different types of control transfers 107

5.4 Time spent in application code . 108

5.5 Execution of indirect control transfers 113

5.6 AIR metrics for SPEC CPU 2006 117

viii

Acknowledgments

I would like to thank my supervisor Associate Professor Debin GAO for his guid-

ance in my research and help me develop strong research skills. I am also very grate-

ful to the other dissertation committee members Prof Robert DENG, Prof David LO

and Prof Zhenkai LIANG for taking time reviewing my thesis and providing valu-

able suggestions. Their comments help me clarify my thesis, refine my approach

and make me become a more rigorous researcher.

Also, I acknowledge the friendship and support from my group members in the

security group of SMU. I would like to thank the following university staffs: Pei

Huan Seow, Yar Ling Yeo and Chew Hong Ong, for their unfailing support and

assistance.

Finally, I would like to thank my parents and sisters, who are always supporting

me and encouraging me with all their best wishes.

ix

List of Publications

Conference Papers
Yan Lin and Debin Gao. When Function Signature Recovery Meets Compiler Opti-

mization. In Proceedings of the 42nd IEEE Symposium on Security and Privacy,
USA, 2021.

Yan Lin,Xiaoyang Cheng, and Debin Gao. Control-Flow Carrying Code. In Proceed-
ings of the 14th ACM ASIA Conference on Computer and Communications Security,
New Zealand, 2019.

Xiaoyang Cheng, Yan Lin, and Debin Gao. DynOpVm: VM-based Software Obfus-
cation with Dynamic Opcode Mapping. In Proceedings of the 17th International
Conference on Applied Cryptography and Network Security, Colombia, 2019.

Xiaoxiao Tang, Yan Lin, Daoyuan Wu, and Debin Gao. Towards Dynamically Moni-
toring Android Applications on Non-rooted Devices in the wild. In Proceedings of
the 11th ACM Conference on Security and Privacy in Wireless and Mobile Networks,
Sweden, 2018.

Yan Lin, Xiaoxiao Tang, and Debin Gao. SafeStack+: Enhanced Dual Stack to Com-
bat Data-Flow Hijacking. In Proceedings of the 22nd Australasian Conference on
Information Security and Privacy, Australia, 2017.

Jianming Fu, Rui Jian and Yan Lin. FRProtector: Defeating Control Flow Hijacking
Through Function-level Randomization and Transfer Protection. In Proceedings of
the 13th EAI International Conference on Security and Privacy in Communication
Networks, Canada, 2017

Xiaoxiao Tang, Yu Liang, Xinjie Ma, Yan Lin, and Debin Gao. On the Effectiveness
of Code-reuse-based Android Application Obfuscation. In Proceedings of the 19th
Annual International Conference on Information Security and Cryptology, Korean,
2016.

Yan Lin, Xiaoxiao Tang, Debin Gao, and Jianming Fu. Control Flow Integrity Enforce-
ment with Dynamic Code Optimization. In Proceedings of the 19th Information
Security Conference, USA, 2016.

x

Chapter 1

Introduction

In this chapter, we first introduce concepts and implementations of Control-Flow

Integrity [3], which is a fundamental approach to mitigating control-flow hijacking

attacks, and then present practical issues of previous CFI systems and summarize

how we address those problems.

1.1 Overview of Control-Flow Integrity

Application is often written in memory-unsafe languages; this makes it prone to

memory errors that are the primary attack vector to subvert systems. Many protec-

tion mechanisms including DEP (Data Execution Prevention [4]), ASLR (Address

Space Layout Randomization [83]), and GS/SSP (Stack Smashing Protector [25])

have gained wide adoption, and they are making it more difficult for attackers to

exploit vulnerabilities. These mechanisms can mitigate various standard attacks,

but these reactive defenses can often be bypassed by advanced exploitation tech-

niques [64, 68].

Natural protection against control-flow hijacking attacks is to enforce CFI

(Control-Flow Integrity [3]). The goal of CFI is to restrict the set of possible

control-flow transfers to those that are strictly required for correct program exe-

cution. This prevents control-flow hijacking attacks such as Return-Oriented Pro-

1

Figure 1.1: Example of Control-Flow Integrity

gramming (ROP) [10, 17, 73] from working because they would cause the program

to execute control-flow transfers, which are illegal under CFI. Figure 1.1 shows

a high-level representation of CFI: first, a Control-Flow Graph (CFG), which ap-

proximates the set of legitimate control-flow transfers is construct prior to program

execution [97, 94, 57, 58]. Next, a CFI check is inserted for indirect branches (e.g.,

indirect calls, indirect jumps, and returns). These checks ensure that all executed

branches correspond to edges in the CFG at runtime. For instance, the valid targets

of node 3 can only be either 5 or 6. If the adversary aims to redirect execution to

node 4, CFI will immediately terminate the program execution.

Despite CFI’s efficacy, it has not seen wide adoption. We believe that not well

supporting some critical features contributes to CFI’s poor deployment.

First of all, having an accurate CFI policy (CFG) is known to be hard as it

is generally difficult to identify the target locations for all control-flow transfers.

Most binary-level CFI techniques [97, 3, 94] have to conservatively consider all

functions as potential targets of an indirect caller, resulting in loosened CFI policies

which make them vulnerable to various attacks [27, 36, 71]. Most fine-grained

approaches require the availability of the source code [57, 58, 84], so that they can

construct a more precise CFG by making use of type information available in the

source code. This kind of information is not available in binary since compilers do

not preserve much language-level information in the process of compilation. Two

fine-grained approaches TypeArmor [85] and τCFI [55] are proposed to recover

2

a fine-grained CFG by matching the function signature (the number of arguments

and argument width) at indirect caller and callee sites at the binary level. However,

they rely on strictly following the calling convention used by compilers, and various

compiler optimizations may violate the calling conventions. For example, modern

compilers typically do not (re)set the argument registers explicitly at the caller site

if the intended value is already in the corresponding register. It would result in

incorrect identification of the number of arguments and/or argument widths.

In addition, existing CFI approaches [3, 97, 85] use memory page protection

mechanism, Data Execution Prevention (DEP) as an underlying basis. Therefore,

they can use read-only tables to store valid targets of indirect branches [97] and

insert read-only tags inside the code segment [3]. At runtime, these tables and tags

will be checked to see whether the execution follows the policy. However, there

are scenarios in which such page-level protection is unavailable, e.g., bare-metal

systems which do not have a Memory Management Unit (MMU) and applications

with dynamically generated code. Moreover, data race attacks [96], Rowhammer

attacks [11], and Data-oriented programming (DOP) [40] have demonstrated that it

is possible to gain arbitrary memory read and write access.

Furthermore, CFI-protected programs require extra execution time and space

compared to their native counterparts [97, 3, 94]. For example, whenever there is

an indirect control-flow transfer, the CFI checks are executed no matter whether

there are attacks, thus the protected programs are in general slower than the native

versions. For instance, classic CFI reports about 20% performance overhead which

hinders its wide adoption.

1.2 Thesis Statement

Given these challenges, an interesting question is: does a CFI solution that supports

fine-grained CFGs, independence of memory page protection mechanism, and effi-

ciency exist?

3

Thesis Statement: Control-Flow Integrity can be fine-grained, independent of

memory page protection mechanism, and efficient.

In this dissertation, we propose approaches to well support these three features.

We first systematically study the practicality of recovering fine-grained CFI poli-

cies for binaries compiled with different optimization levels. Next, we propose C3,

a novel CFI approach which encodes CFI policies into the machine instructions di-

rectly without relying on the assumption that read-only data and code cannot be

overwritten. Last but not least, we propose DynCFI to enforce CFI based on the dy-

namic code optimization platform DynamoRIO [12] to improve the performance.

The details of these works are presented as follows.

1.3 Practicality of Recovering Fine-grained CFI Poli-

cies

Since having an accurate CFI policy (CFG) is the prerequisite to CFI enforcement,

in this dissertation, we do a systematic study on the practicality of recovering fine-

grained CFI policies at the binary level. Specifically, we study how compiler op-

timization would impact the accuracy of CFG construction (function signature re-

covery) on x86-64 platform. Specifically, we first theoretically analyze the possible

ways in which compiler optimizations could impact the accuracy of two most re-

cent approaches in function signature recovery for CFI, namely TypeArmor [85] and

τCFI [55], and then experiment with a large number of testing binaries to evaluate

the extent to which such complications arise on real-world applications. All testing

binaries are obtained by using two commonly used compilers: gcc-8 and clang-7,

with different optimization levels ranging from O0 to O3 for x86-64.

The result shows that compiler optimizations have both positive and negative

impacts on function signature recovery. For example, optimizations make the identi-

fication of variadic functions more accurate. However, compile optimizations could

4

make identification of the number of arguments and the type inferencing at callees

less accurate, because of the elimination of unused arguments and promotion/de-

motion of argument types. In order to mitigate these inaccuracies, we propose our

improved policies to recover the function signatures more accurately. We also pro-

pose an enhanced deep learning approach to recover function signature by including

domain-specific knowledge to the dataset.

1.4 Control-Flow Carrying Code

A novel CFI approach called C3 which encodes CFI policies into the machine in-

structions directly without relying on the assumption that read-only data and code

cannot be overwritten is implemented. In it, each basic block in the program is en-

crypted with a key derived from the CFG. More specifically, the key is derived from

the addresses of valid callers of the basic block to ensure correct control-flow trans-

fers. At runtime, only the valid callers (their addresses) could enable the correct

reconstruction of the key to decrypt the basic block. The challenge is a basic block

may have multiple valid callers, while the successor block has to be encrypted with

a single key. In order to enable the reconstruction of the single correct key by all

the valid control-flow transfers, secret sharing scheme [75] is used to make the key

shared among valid callers.

We apply C3 to a number of server and non-server applications on the Linux

platform. Our experimental results demonstrate that C3 effectively defends against

control-flow hijacking attacks and at the same time, introduces realistic runtime

performance overhead for server applications comparable to existing Instruction-

Set Randomization (ISR) implementations on the same instrumentation platform.

5

1.5 Control-Flow Integrity Enforcement Based on

Dynamic Code Optimization

A framework that can efficiently enforce CFI based on dynamic code optimization

platform is implemented. A lot of well established and mature dynamic code op-

timizers are proven to introduce minimal overhead, and we believe that they could

result in a system that significantly outperforms existing CFI implementation. We

enforce a set of security policies on top of DynamoRIO [12] for CFI properties.

The results show that it can achieve better performance compared with previous

CFI approaches. Moreover, we further investigate the exact contribution to this per-

formance improvement. Specifically, we propose a three-dimensional design space

and perform comprehensive experiments to evaluate the contribution of each axis

in the design space of performance overhead. The results show that traces in the

dynamic optimizer had contributed the most performance improvement. This is be-

cause the trace mechanism can avoid some indirect branch lookups by inlining a

popular target of an indirect branch into a trace.

1.6 Organization

The reminder of this dissertation is organized as follows: Chapter 2 is a litera-

ture review which examines closely related research. Chapter 3 presents details on

the systematic evaluation on the extent to which compiler optimization could im-

pact the accuracy of existing approaches in function signature recovery, and then an

enhanced deep learning approach to recover function signature is proposed. Chap-

ter 4 describes the system C3 that embeds the CFI policy into machine instructions.

Chapter 5 introduces the framework DynCFI that enforce CFI with a dynamic code

optimization platform. Chapter 6 summarizes the contribution of this thesis.

6

Chapter 2

Literature Review

2.1 Control-Flow Hijacking

C and C++ are perhaps the most important programming languages due to its high

performance. However, these programs all suffer from memory corruption issues

such as out-of-bound accesses or object use-after-free bugs.

Listing 2.1 shows a real memory corruption bug found in MiniUPnP 1.0.

An attacker has full control over action at line 6. The code at line 10 copies

methodlen size of data from the address pointed by p to the address pointed by

method. Hence, if the attacker passes a long quoted method (more than 2048

bytes), it will cause buffer overflow, which results in code-injection and code-reuse

attacks.

7

1 Ex ec u t e So apA c t ion (s t r u c t u p n p h t t p ∗h , c o n s t c h a r ∗ a c t i o n , , i n t n)

2 {

3 c h a r ∗p ;

4 c h a r method [2 0 4 8] ;

5 . . .

6 p = s t r c h r (a c t i o n , ’ # ’) ;

7 method len = s t r c h r (p , ’ ” ’) − p − 1 ;

8 . . .

9 memset (method , 0 , 2048) ;

10 memcpy (method , p , method len) ;

11 . . .

12 }

Listing 2.1: A stack buffer overflow bug (CVE-2013-0230) in MiniUPnP 1.0

Code-injection Attack. In code injection attacks, the attacker injects new code

into the address space of the victim program and executes her code. In the example

of Listing 2.1, if the stack is executable, the attacker could inject the shellcode

to the method array and the return address of the current function can also be

overwritten with a pointer pointing to the entry of the injected code. Then, when

the current function returns, instead of returning to the caller, the function returns to

the injected code and executes it. This kind of control-flow hijacking attack has been

mitigated by some effective mechanisms, such as Data Execution Prevention [4] and

Instruction-set randomization [42, 7, 65].

Code-reuse Attack. In code-reuse attacks, rather than directly injecting shell-

code to the victim, the attacker chains the existing code bytes (gadgets) together

to perform the malicious operation, such as bypassing DEP, so that she can exe-

cute the injected shellcode. In the example in Listing 2.1, the attacker could simply

overwrite the return address to the address of a libc function system and write

arguments to the function on the stack. When the function returns, system will be

executed with attacker-fed arguments, which enable the attacker to execute arbitrary

commands.

8

Figure 2.1: A proof of concept example of Return-Oriented Programming attacks

Usually, simply overwriting a return address is not sufficient to mount an at-

tack. Attackers use a more advanced code reuse technique called Return-Oriented

Programming (ROP) [73] to perform any malicious operation. To mount such an

attack, the attackers first scan the code bytes and find gadgets, which are instruction

sequences ending with a return (or an indirect call/jump), and perform basic opera-

tions such as an addition or memory load. Then, by carefully overflowing the stack

(heap), the attackers can chain these gadgets into an arbitrary program.

We use a simple proof-of-concept example in Figure 2.1 to demonstrate princi-

ples of ROP attacks in x86-64 Linux. Suppose function foo has a stack overflow

vulnerability as shown in Listing 2.1, so the attacker can overwrite the stack buffer.

As shown, there is a sequence of instructions which perform some basic arithmetic

operations at address addr. However, if we decode the instruction from the mid-

dle, three ROP gadgets will be found. Gadget1 increments register %eax by one

and returns; Gadget2 sets %eax to zero; and Gadget3 performs a system call. If

the attacker overwrite the return address of function foo to the address of Gadget2,

and write 32 copies of Gadget1 addresses, followed by the address of Gadget3, the

attackers can essentially set %eax to 0, increment it by 32, and execute a system

call after foo returns. Since Linux uses %eax to pass the system call number to the

kernel, and 32 is the system call number for pause, the current process will sleep.

A lot of mitigation techniques are deployed to defend against this kind of attack,

including stack canaries and Address Space Layout Randomization (ASLR).

9

2.2 Deployed Defenses

Stack Canaries. Stack canaries [25] mitigate control-flow hijacking attacks by

monitoring the integrity of return addresses. It inserts a canary before every return

address and checks the value of the canary before a function returns. If the canary

changes, stack overflow might have happened and the program is terminated. How-

ever, stack canary can be bypassed. As shown in BROP [9], since the cookie is a

randomly chosen value, it may be quickly guessed. Meanwhile, it cannot protect

heap buffer overflows.

Data Execution Prevention (DEP). DEP [4] prevents code-injection attacks by

enforcing the stack/heap memory is non-executable, so the attacker cannot directly

write shellcode to these memory pages. We can find DEP has no protection against

code reuse attacks. Moreover, DEP is not compatible with programs that generate

and modify code on-the-fly, such as Just-In-Time (JIT) compilers.

Address Space Layout Randomization (ASLR). The basic idea of ASLR [83] is

to make it harder for attackers to precisely locate the reusable code. Specifically,

program modules such as the executable file and dependent libraries are compiled

to be position-independent and loaded into randomized addresses. However, ASLR

can be bypassed by information disclosure and brute force attacks [74]. Some fine-

grained code layout randomization approaches [38, 61, 88] are proposed, in which

permutation on functions, instruction layout, basic blocks, and code transformation

are implemented. However, they are vulnerable to JIT-ROP [79].

2.3 Control-Flow Integrity

Stronger than all the deployed defenses, Control-Flow Integrity (CFI) forces

control-flow transfers in the program to follow the policy presented by the CFG.

Control-flow transfers can be either direct or indirect. Direct edges include se-

quential instruction execution and direct branching. For example, the transfer from

10

a direct call instruction to its target function address is a direct control-flow transfer.

Since targets of direct control transfers cannot be arbitrarily controlled by attack-

ers, they are less of concern. Indirect transfers through indirect branch instructions

including indirect calls, indirect jumps, and returns are more dangerous, because

their targets may be arbitrarily controlled by attackers. To ensure CFI for indirect

branches, they are checked before execution so that their targets are always legal.

In general, it can be classified into two categories: coarse-grained CFI and fine-

grained ones.

2.3.1 Coarse-grained CFI

Having accurate and practical enforcement of CFI is known to be hard. First, it

is generally difficult to accurately identify the target locations for all control trans-

fers. Existing solutions typically apply a coarse-grained policy (e.g., to allow indi-

rect calls to any functions) for Commercial Off-The-Shelf (COTS) software whose

source code is unavailable. This kind of CFI marks the valid targets of indirect

control transfers with unique identifiers (IDs) and then inserts ID-checks into the

program before each indirect branch transfer. An indirect branch is allowed to jump

to any destination with the same ID.

CFIMon [90] uses three IDs for all indirect branch transfers. The target of a

return instruction can be any call-preceded basic blocks and the target of an indirect

call can be any function. The valid targets for indirect jumps are obtained by mak-

ing use of online training. It leverages Branch Trace Store (BTS) mechanism [37]

supported by hardware to collect in-flight control transfers, and once the BTS buffer

is nearly full, a monitor process will start to compare them with the valid targets to

decide whether there exists an attack.

BinCFI [97] uses two IDs for all indirect branch transfers: one for ret and indi-

rect jump instructions, another for indirect call instructions. All indirect branches

are instrumented to jump to the corresponding address translation routine that de-

11

termines the targets of the transfers, if one target cannot be found, it means there

is a control-flow hijacking attack. However, whenever there is a control-flow trans-

fer, the CFI checks are always executed. Our proposed approach DynCFI does not

require to perform CFI check for each control-flow transfer due to the trace mech-

anism used in the dynamic code optimization platform DynamoRIO [12]. Specif-

ically, the trace mechanism can avoid some indirect branch lookups by inlining a

popular target of an indirect branch into a trace.

CCFIR [94] implements a 3-IDs approach, which extended the 2-IDs approach

by further separating returns to sensitive and non-sensitive functions. All control-

flow targets for indirect branches are collected and randomly allocated on a so-

called springboard section, and indirect branches are only allowed to use control-

flow targets contained in the springboard section. CCFIR can manage the indirect

branch transfers better, and the targets of indirect branches are more restricted than

other approaches. However, in the springboard section, there are other indirect

branches, and memory disclosure can reveal the content of the entire springboard

section, which can be leveraged by attackers.

BinCC [87] enforces a 4-IDs approach by dividing the binary code into several

mutually exclusive code continents and further classifying each indirect transfer

within a code continent as either an Intra-Continent transfer or an Inter-Continent

transfer. Different continent transfers will have different valid targets. For example,

the valid targets of Intra-Continent transfer are always inside their own code conti-

nent. For other Inter-Continent transfers, the policy is indirect call nodes can only

reach all root nodes in all continents, indirect return nodes can only reach indirect

call nodes, and indirect jump nodes can only reach all root and call nodes.

Since this kind of CFI approaches recover a coarse-grained CFG, they may be

bypassed by some advanced code-reuse attacks [16, 36, 72]. A lot of fine-grained

CFI approaches are proposed.

12

2.3.2 Fine-grained CFI

Most of these CFI approaches rely on the availability of source code. MCFI [57]

propagates source-level information such as type information to the binary level as

metadata, and gathers such metadata at program load time to build a precise CFG,

which is consulted (or read) by the program to detect CFI violations. Specifically,

when a code module is loaded during execution, the loading module’s metadata is

combined with the loaded module’s metadata to compute a CFG for both modules,

and then the old CFG will be replaced with the new CFG. πCFI [58] starts a program

with an empty CFG and let the program itself lazily compute the CFG on the fly.

The main idea behind this empty CFG approach is to affix edges on runtime prior

to being used for branch instructions.

Forwarding CFI [84] protects binaries by inserting checks before all forward-

edge control-flow transfers to check whether the function signatures (return type and

the number of arguments) are correct. Cryptographically enforced CFI [51] enforces

another form of fine-grained CFI by adding a message authentication code (MAC)

that is computed with type information to control-flow elements, which prevents the

usage of unintended control-flow transfers in the CFG.

Since the requirement of source code makes these approaches difficult to be de-

ployed. CFI based on function signature matching at the binary level is proposed.

There is two work focus on it called TypeArmor [85] and τCFI [55]. TypeArmor

is the first work that uses the function signature on the number of arguments at the

binary level to enforce CFI. It extracts the number of arguments both at the caller

and callee sites by performing backward and forward analysis, and the target of the

indirect call can only be functions that have matching signatures. τCFI is the fol-

lower of TypeArmor that tries to construct a more fine-grained CFG by combining

the width of the argument registers as the additional function signature.

Both of them rely on the x86-64 calling convention that the first six arguments

for integer are passed through registers (assuming System V ABI). However, the

13

compiler may generate code that violates the calling convention. For example,

modern compilers may not set the argument register explicitly at the caller site if it

finds the argument value is already in the corresponding register. We systematically

study how compiler would impact function signature recovery for TypeArmor [85]

and τCFI [55] and find compiler optimizations have a great impact on function sig-

nature recovery. Such errors could lead to invalid function calls being allowed or,

even worse, valid calls being inadvertently blocked. The proposed approach that

makes use of deep learning can recover function signature more accurately com-

pared to TypeArmor [85] and τCFI [55]. Moreover, it does not rely on the calling

convention.

Both coarse-grained and fine-grained approaches usually have high performance

overhead as for every indirect control-flow transfer they need to do CFI check.

Moreover, they need to add CFI checks into the code section or consult read-only

data structures. If these CFI checks and read-only data structures are compromised,

these mitigation approaches can be bypassed easily. Our proposed system C3 em-

beds the CFI policy into every machine instruction without relying on the assump-

tion of keeping such metadata read-only. Furthermore, all of them do not insert CFI

checks for unintended control-flow transfers, making them being bypassed by the

exploit proposed by Conti et al. [22]. Such exploits would not work on C3 as all

instructions (intended or unintended) are encrypted.

2.4 Instruction-Set Randomization

Instruction-Set Randomization (ISR) was initially proposed to fight against code-

injection attacks [42, 7, 65, 34]. It encrypts instructions and provides a unique

instruction set to every program. Injected code would first be decrypted to a random

byte sequence and result in illegal instructions executed. Recently, researchers look

into using ISR to defend against code-reuse attacks (CRA). Scylla [82] encrypts

every instruction in a basic block with respect to its predecessor to defend against

14

CRA that jumps to the middle of a basic block. However, it does not stop attacks that

make use of the entire basic block to construct gadgets. Polyglot [78] combines ISR

with fine-grained code randomization to defend against JIT-ROP [79]. It encrypts

every basic block of instructions by XORing them with the starting address of the

block. Since the encryption key is only derived from the address of the basic block

and not tied to control transfers, CFI can be compromised with control transfers

from invalid callers. C3, on the other hand, is designed for enforcing CFI with

encryption key tied to all valid control transfers. Invalid callers will result in the

wrong decryption key generated and random code bytes obtained. SOFIA [31] uses

ISR to enforce CFI for cyber-physical systems with instructions at a fixed length of

32-bit via an integrity check of instruction blocks where the Message Authentication

Code (MAC) is encrypted. SOFIA requires access to source code of the program to

be protected in order to rearrange the CFG so that every basic block has up to two

callers. On the other hand, we propose a novel idea C3 which uses secret sharing to

support multiple (potentially more than two) callers.

2.5 Function Signature Recovery

Besides TypeArmor [85], liveness analysis and heuristic methods based on call-

ing conventions and idioms were used to recover function signatures. EIWazeer et

al. [33] apply liveness analysis to recover arguments, variables, and their types for

x86 executables. It assumes all registers are arguments to every function and then

traverse the call graph of the executable in post-order depth-first search traversal

to check whether there is a “real” use of this register in the function. Only “real”

used registers are considered as arguments. The argument that stored on the stack

is recognized by making use of Value Set Analysis [6]. Points-to analysis is used to

recover the type of an argument (variable) according to some type recovering rules.

TIE [45] infers variable types in binaries through formulating the usage of dif-

ferent data types. It first lifts the binary code to a binary analysis language called

15

BIL by using BAP [13], and then type information is inferred by solving type con-

straints. It depends on that some known prototype functions will be called (e.g.,

library functions), so that the constraint can be solved by making use of some rules.

Caballero et al. [14] make use of dynamic liveness analysis to recover function ar-

guments for execution traces. Since it is a dynamic analysis, it cannot guarantee

the full coverage of unused arguments during an execution trace. Recently, Zeng

et al. [93] propose to perform type inference based on debugging information gen-

erated by the compiler so that a high-precision CFG can be constructed to help

CFI enforcement. Another direction is to make use of machine learning approaches

to recover function signatures. For example, EKLAVYA [20] uses a three layers

Recurrent Neural Network to learn the number and types of arguments from disas-

sembled binary code. More details about EKLAVYA can be found in Section 3.2.1.

2.6 Non-control Data Attacks

Compared to control-flow hijacking attacks, Non-control attacks manipulate non-

control data to alter a program’s benign behavior without violating its control-flow

integrity. This kind of non-control data attacks can cause significant damages, such

as leakage of secret keys (HeartBleed) [1] and enabling untrusted code import [92].

Hu et al. [39] make use of data-flow stitching to systematically finds ways to join

data flows in the program to generate data-oriented exploits. Specifically, it takes as

input a vulnerable program with a memory error, an input that exploits that memory

error, and a benign input that triggers the same execution path (two-dimensional

data-flow graph (2D-DFG)), and uses backward and forward slicing to pinpoint

data flow paths between inputs and pre-identified sensitive data.

In a follow up work, Hu et al. [40] propose data-oriented programming (DOP)

which demonstrates that non-control data attacks resulting from a single memory

error can be Turing-complete, and a large number of data-oriented gadgets can be

found. These gadgets require to deliver operation result with memory and must

16

execute in at least one legitimate control flow, and need not execute immediately

one after another. By stitching these gadgets together using a dispatcher (e.g., loop),

the attacker can perform arbitrary operations. It has shown that DOP can be used to

change the permissions of read-only pages to bypass current CFI implementations

by triggering dlopen’s internal gadgets to corrupt the read-only pages.

17

Chapter 3

Function Signature Recovery

In this chapter, we first introduce our work on studying how compiler optimiza-

tions impact the accuracy of function signature recovery on x86-64 platform, and

then present the enhanced approach to recover function signature by making use of

recurrent neural network.

3.1 When Function Signature Recovery Meets Com-

piler Optimization

In this section, we first theoretically analyze the possible ways in which compiler

optimizations could impact the accuracy of two most recent approaches in func-

tion signature recovery for CFI, namely TypeArmor [85] and τCFI [55], and then

experiment with a large number of applications including Binutils1, LLVM test-

suite2, as well as C/C++ applications from Github to evaluate the extent to which

such complications arise on real-world applications. We recover the ground truth of

function signatures of 552 C and 792 C++ applications compiled with gcc-8 and

clang-7 with optimization levels -O0 to -O3 and compare them with results of

TypeArmor [85], τCFI [55], and Ghidra [35] in recovering the number of arguments

1https://www.gnu.org/software/binutils/
2https://llvm.org/docs/TestSuiteGuide.html

18

and argument types.

Results show that compiler optimizations have both positive and negative im-

pacts on function signature recovery. First, optimizations make the identification

of variadic functions more accurate as arguments are more likely to be moved to

callee-saved registers than being moved onto the stack. At the same time, the elim-

ination of redundant instructions due to optimization also simplifies the argument

analysis at callers. However, compiler optimization could make identification of the

number of arguments and the type inferencing at callees less accurate, because of

the elimination of unused arguments and promotion/demotion of argument types.

In order to mitigate these inaccuracies, we propose our improved policies to

recover the function signatures more accurately from optimized binaries. We evalu-

ate our proposed policies with the same set of real-world applications and compare

our accuracy with that of existing ones. Results show that, e.g., the likelihood of

misidentifying variadic functions in C is reduced from 3.3% to 1.2%. Moreover,

our policy can mitigate all issues caused by argument type demotion at callers and

argument type promotion at callees.

3.1.1 Background and Unified Notation

On Linux x86-64, all arguments of a function are passed from the caller to the callee

who is assumed to process every argument. Integer arguments are passed in registers

%rdi, %rsi, %rdx, %rcx, %r8, %r9 in sequence, while %XMM0 - %XMM7 are

used to pass floating-point arguments [52]. Additional arguments are pushed onto

the stack in reverse order. The return value is stored in %rax with potentially the

higher 64 bits stored in %rdx. Floating-point return values are similarly stored in

%XMM0 and %XMM1. Both TypeArmor and τCFI adhere to these calling conventions

and do not consider deviations from them.

Variadic functions (such as printf in the C library) are used to maximize flex-

ibility in argument passing. These functions accept a variable number of arguments

19

which do not necessarily have fixed types.

TypeArmor [85] and τCFI [55] reconstruct both callee and caller signatures

by performing static binary analysis and then use this information to enforce

Control-Flow Integrity between callees and callers with similar signatures. TypeAr-

mor uses the number of arguments as the signature, while width (number of bits

p ∈ {64, 32, 16, 8}) of the argument-storing registers is used by τCFI. Just like in

existing approaches, we focus on function signature recovery for integer arguments

and use i ∈ [1, 6] to index the six argument registers. Here we introduce our unified

notation to describe the CFI policies TypeArmor and τCFI employ as well as our

improved policy (see Section 3.1.4).

Analysis of callees

Analysis of a callee function typically starts from the function entry and continues

in a forward manner until the end of the function. Here, the analysis focuses on

the first instruction involving a argument-passing register, which could have one of

the following four possible states: sEE ∈ {ẇ(), ˙rw(), ˙rw2s(), c} (we use the dot

above a state to denote that it’s the analysis result of the first instruction involving

the corresponding register).

Definition 1. State ẇi(p) if the first instruction involving register i is writing into

the lower p bits of register i.

Definition 2. State ˙rwi(p) if the first instruction involving register i is reading the

lower p bits of it and writing to anther register or a non-stack address.

Definition 3. State ˙rw2si(p) if the first instruction involving register i is reading

the lower p bits of it and writing to a stack address.

Definition 4. State ci if register i is not involved in any instructions.

Definition 5. Argument register state vector observed at callee POB
EE =<

sEE
1 , sEE

2 , sEE
3 , sEE

4 , sEE
5 , sEE

6 > where sEE
i ∈ {ẇi(), ˙rwi(), ˙rw2si(), ci} for i ∈

[1, 6].

20

Definition 6. b2bi is true if sEE
i = ˙rw2si() and sEE

i+1 = ˙rw2si+1() and the corre-

sponding instructions involving registers i and i +1 are back to back.

Analysis of callers

Analysis of a caller function starts at the indirect call instruction and continues in

a backward manner until it hits another function call instruction. This backward

analysis follows the CFG and focuses on all instructions involving the argument-

passing register instead of only the first instruction as in the analysis of callees.

Definition 7. State wi(p) if there is an instruction writing to the lower p bits of

register i.

Definition 8. State ŵi if there is no instruction writing to register i.

Definition 9. Argument register state vector observed at caller POB
ER =<

sER
1 , sER

2 , sER
3 , sER

4 , sER
5 , sER

6 > where sER
i ∈ {wi(), ŵi} for i ∈ [1, 6].

TypeArmor’s Policy on the Number of Arguments

At a callee, TypeArmor [85] performs a forward recursive analysis from the entry

block to find out states of the six argument registers. If the state of the sixth argu-

ment register (%r9) is ˙rw2s6(), TypeArmor concludes that this function is variadic

and the number of arguments is the maximal i that makes b2bi false. If the state

of %r9 is not ˙rw2s6(), the function is considered non-variadic and the number of

arguments is the maximal i with state ˙rw2si() or ˙rwi().

Definition 10. The observed number of arguments at callee |POB
EE | is:


argmax

i
(¬b2bi) if sEE

6 = ˙rw2s6()

max(argmax
i

(˙rw2si()), argmax
i

(˙rwi())) otherwise

TypeArmor iterates over each indirect caller and performs a backward static

analysis to detect the number of arguments prepared. If the states of all argument

21

registers are w(), TypeArmor stops the analysis and considers that the caller pre-

pares the maximum number of arguments. If some argument registers are neither

w() nor ŵ, TypeArmor performs a recursive backward analysis on incoming con-

trol flows. In cases where incoming control flows are via indirect calls and therefore

backward analysis fails in identifying the caller function, TypeArmor assumes that

the maximum number of arguments is prepared. It also assumes that the argument

registers are always reset between two function calls, and therefore analysis is ter-

minated when a return edge is encountered. In summary, the number of arguments

at the caller is the minimal i with state ŵi minus one.

Definition 11. The observed number of arguments at caller |POB
ER | is:


argmin

i
(sER

i = ŵi)− 1 if ∃ŵi ∈ POB
ER

6 otherwise

Since there could be overestimation at callers and underestimation at callees,

TypeArmor allows caller A to call callee B if and only if |POB
ER−A| ≥ |POB

EE−B|.

τCFI’s Policy on the Width of Arguments

τCFI [55] is the follower of TypeArmor that constructs a more fine-grained CFG

by additionally considering the widths of argument registers as function signa-

tures. It analyzes the number of bits of argument registers that are read or writ-

ten to at callees and callers, respectively. We use |sEE| and |sER| to repre-

sent the with of arguments at callees and callers, respectively. For example, if

POB
EE =< ẇ1(), ẇ2(), ẇ3(), ẇ4(), ˙rw5(64), ˙rw6(64) >, then |sEE

1 | = |sEE
2 | =

|sEE
3 | = |sEE

4 | = 0 and |sEE
5 | = |sEE

6 | = 64.

Since the analysis could cause overestimation at callers and underestimation at

callees, the CFI policy of τCFI is: caller A can transfer control flow to callee B if

and only if: ∀i ∈ [1, |POB
ER |], |sER

i | >= |sEE
i |.

We also denote the ground truth for the states of argument registers at callees

22

and callers as PGT
EE and PGT

ER , respectively. |sEE,GT | and |sER,GT | are used to denote

the ground truth on the width of arguments.

3.1.2 Eight Ways in which Compiler Optimization Impacts

Function Signature Recovery

In this section, we present our analysis in binary optimization strategies and how

they impact the accuracy of function signature recovery. Specifically, we study the

source code of compilers (gcc-8 and clang-7), paying special attention to the

mechanism in which arguments are passed from callers to callees under different

optimization flags (-O0, -O1, -O2, -O3). We also consult the Intel instruction

manual [41] on how each instruction could affect function signatures. Finally, we

compile the following eight scenarios in which compiler optimization could impact

function signature recovery by the two most recent work, namely TypeArmor and

τCFI.

Misidentifying variadic functions

As outlined in Section 3.1.1, TypeArmor uses ˙rw2s6() as the sole indicator of a

variadic function. Interestingly, such a policy tends to introduce more errors in un-

optimized binaries in which all arguments are moved onto the stack and any normal

function with more than five arguments will be misidentified as variadic. We denote

this complication as Nor2Var. On the other hand, optimized binaries tend to move

arguments to callee-saved registers, which reduces the chances of such errors. That

said, normal functions in optimized binaries may still use the stack for argument

passing if the compiler determines that the argument will be reused after the call.

Listing 3.1a shows a function compiled with clang -O2. Since sEE
6 =

˙rw2s6(), b2b5 is true and b2b4 is false. TypeArmor determines that

coff_write_symbol is a variadic function with 4 arguments. However,

|PGT
EE−0x471a60| = 7 as shown at Line 1.

23

1 s t a t i c b f d b o o l e a n c o f f w r i t e s y m b o l (∗ , ∗ , ∗ , ∗ , ∗ , ∗ , ∗)
2 0000000000471 a60 <c o f f w r i t e s y m b o l >:
3
4 471 a6e : mov %r9 , 0 x40(% r s p)
5 471 a73 : mov %r8 , 0 x10(% r s p)
6 471 a78 : mov %rcx ,% r15
7 471 a7b : mov %rdx ,% r14
8 471 a7e : mov %r s i ,% rbp
9 471 a81 : mov %r d i ,% r12

10
11 471 c 4 f : mov 0x40(% r s p) ,% rbx

a: Normal function misidentified as variadic
1 vo id b f d s e t e r r o r (b f d e r r o r t y p e e r r o r t a g , . . .) {
2 b f d e r r o r = e r r o r t a g ;
3 i f (e r r o r t a g == b f d e r r o r o n i n p u t) {
4 v a l i s t ap ;
5 v a s t a r t (ap , e r r o r t a g) ;
6 i n p u t b f d = v a a r g (ap , b fd ∗) ;
7 i n p u t e r r o r = (b f d e r r o r t y p e) v a a r g (ap , i n t) ;
8
9 }

10 }
11 00000000000328 c0 <b f d s e t e r r o r >:
12
13 328 c4 : mov %edi , 0 x300186(% r i p)
14
15 328 da : cmp $0x14 ,% e d i
16 328 dd : mov %r s i , 0 x28(% r s p)
17 328 e2 : mov %rdx , 0 x30(% r s p)
18 328 e7 : j e 32900

b: Variadic function misidentified as normal
1 c h a r ∗ c o n c a t c o p y (c h a r ∗ d s t , c o n s t c h a r ∗ f i r s t , . . .)
2 00000000000 dea00 <c o n c a t c o p y >:
3
4 dea25 : t e s t %r s i ,% r s i
5 dea28 : mov %rdx , 0 x30(% r s p)
6 dea2d : mov %rcx , 0 x38(% r s p)
7 dea32 : mov %r8 , 0 x40(% r s p)
8 dea37 : mov %rax , 0 x8(% r s p)
9 dea3c : l e a 0x20(% r s p) ,% r a x

10 dea41 : mov %r9 , 0 x48(% r s p)

c: Number of default arguments overestimated

Listing 3.1: Examples of variadic function misidentification

24

Another complication arises when a variadic function does not use some of the

variadic arguments. An optimized binary will not explicitly read these arguments,

which will cause the variadic function to be misidentified as normal (denoted as

Var2Nor). Note that this does not affect binaries compiled by clang since clang

always explicitly reads all variadic arguments.

Listing 3.1b shows a variadic function bfd_set_error compiled by

gcc -O2. As shown at Line 6 – 7, only the first two variadic arguments are

used by this function, and therefore gcc only moves %rsi and %rdx onto

the stack (Line 16 – 17). Current approaches would find that POB
EE−0x328c0 =<

˙rw1(32), ˙rw2s2(64), ˙rw2s3(64), c4, c5, c6 > and determine that |POB
EE−0x328c0| = 3

since %r9 is not moved onto the stack. However, |PGT
EE−0x328c0| = 1 as shown at

Line 1.

Moreover, instructions that move the variadic arguments onto the stack in an

optimized binary may not be back to back, which results in b2b being unreliable in

determining the number of arguments — an overestimation (denoted as VarOver).

Listing 3.1c shows the variadic function concat_copy compiled by gcc -O2.

TypeArmor and τCFI find b2b5 to be false and determine that it is a variadic function

with 5 default arguments, but the ground truth is it has only 2 default arguments as

shown at Line 1.

Missing argument-reading instructions

When optimization is enabled, there may not be explicit reading of an argu-

ment if the function does not use it, leading the corresponding state of the ar-

gument to be c. We denote this complication as Unread. As shown in List-

ing 3.2, since the first and third arguments of jpeg_free_large (compiled by

clang -O2) are not used, TypeArmor and τCFI determine that POB
EE−0x41b6b0 =<

ẇ1(64), ˙rw2(64), c3, c4, c5, c6 >. Note that compilers always set the argument reg-

isters at callers even if they are not used by the callee; see Line 11 – 12.

25

1 GLOBAL(vo id) j p e g f r e e l a r g e (j common p t r c i n f o , vo id FAR
∗ o b j e c t , s i z e t s i z e o f o b j e c t) {

2 f r e e (o b j e c t) ;
3 }
4 000000000041 b6b0 < j p e g f r e e l a r g e >:
5 41 b6b0 : mov %r s i ,% r d i
6 41 b6b3 : jmpq 400950 <f r e e @ p l t>
7

8 c a l l e r s i t e :
9 41 b5a0 : mov 0x70(%r14 ,% r15 , 8) ,% r s i

10
11 41 b5d3 : mov %r12 ,% r d i
12 41 b5d6 : mov %rbp ,% rdx
13 41 b5d9 : c a l l q 41 b6b0 < j p e g f r e e l a r g e >

Listing 3.2: Not reading argument registers

1 l ong t e s t (l ong a , l ong b)
2 00000000004006 a0 < t e s t >:
3
4 4006 ae : c a l l q 400490 < l l d i v @ p l t>
5 4006 b3 : mov %rbx ,% r d i
6 4006 b6 : mov %rdx ,% r s i
7 4006 b9 : c a l l q ∗0 x200db1(% r i p) # 601470 <f p t r 3>
8 4006 bf : mov %rax ,% rbx
9 4006 c2 : c a l l q ∗0 x2009a0(% r i p) # 601068 <f p t r 4>

Listing 3.3: Misidentifying %rdx as an argument

Misidentifying %rdx as an argument

Some registers have special usage in addition to passing arguments. For example,

the third argument register %rdx can also be used to store return values when the

size of the return value is larger than 64 bits. When there is a read operation on it,

current approaches do not distinguish reading an argument from reading the higher

64 bits of a return value. It could then result in an overestimation on the number of

arguments. This complication is denoted as rdx.

As shown in Listing 3.3, TypeArmor and τCFI determine that POB
EE−0x4006a0 =<

˙rw1(64), ẇ2(32), ˙rw3(64), c4, c5, c6 >, and that it is a normal function with 3 argu-

ments. However, |PGT
EE−0x4006a0| = 2 and the reading of %rdx is for the higher 64

bits of the return value of function lldiv.

26

1 t y p e d e f u n s i g n e d i n t JDIMENSION ;
2 vo id p r o c e s s d a t a c r a n k p o s t (j d e c o m p r e s s p t r c i n f o ,

JSAMPARRAY o u t p u t b u f , JDIMENSION ∗ o u t r o w c t r ,
JDIMENSION out rows avail) {

3 (∗ c i n f o−>pos t−>p o s t p r o c e s s d a t a) (c i n f o , NULL, NULL, 0 ,
o u t p u t b u f , o u t r o w c t r , out rows avail) ;

4 }
5 00000000000165 c0 <p r o c e s s d a t a c r a n k p o s t >:
6 165 c0 : sub $0x10 ,% r s p
7 165 c4 : mov 0 x228(% r d i) ,% r a x
8 165 cb : mov %r s i ,% r8
9 165 ce : mov %rdx ,% r9

10 165 d1 : push %r c x
11 165 d2 : xor %edx ,% edx
12 165 d4 : xor %ecx ,% ecx
13 165 d6 : xor %e s i ,% e s i
14 165 d8 : c a l l q ∗0 x8(% r a x)

Listing 3.4: Promoted argument pushed onto the stack

Argument (width) promotion

Some instructions may only work on 64-bit registers or memory, and optimization

may prefer using 64-bit registers since using 32-bit registers would result in longer

instructions. For example, the compiler uses push to pass arguments to callees (via

the stack) when the flag “-mpush-arg” is enabled (e.g., when it is the 7th argument).

However, push only allows 64-bit registers as operands, which leads to argument

(width) promotion (denoted as Push). Line 1 – 4 of Listing 3.4 shows that the

fourth argument out_row_avail, whose type is unsigned int, is passed as the

7th argument at Line 3, and is pushed onto the stack at Line 10 (resulting in ˙rw4(64)

instead of ˙rw4(32)).

Another complication is due to the default width of operands of certain instruc-

tions, e.g., lea [41]. Compilers prefer reading a 64-bit register even if the width

of the argument is 32 bits, since reading a 32-bit register requires a prefix 67H (de-

noted as lea). Listing 3.5 shows an example of it, the state of the second argument

is ˙rw2(64); however, the ground truth is a 32-bit argument (unsigned int).

27

1 b f d c h e c k o v e r f l o w (enum c o m p l a i n o v e r f l o w how ,
2 unsigned int bitsize , u n s i g n e d i n t r i g h t s h i f t , u n s i g n e d i n t

a d d r s i z e , bfd vma r e l o c a t i o n)
3

4 000000000048 ca60 <b f d c h e c k o v e r f l o w >:
5 48 ca60 : mov %ecx ,% eax
6 48 ca62 : mov %edx ,% r9d
7 48 ca65 : l e a −0x1(% r s i) ,% ecx
8 48 ca68 : mov $ 0 x f f f f f f f f f f f f f f f e ,% rdx

Listing 3.5: Promoted operand of instruction lea

Missing argument-writing instructions

Similar to missing argument reading instructions at callees as discussed above, com-

piler optimization may decide not to set or reset the value of a register explicitly at

callers.

• Higher 64 bits of the return value used as the third argument (denoted as Ret).

%rdx is used to store the higher 64 bits of the return value. If the compiler

finds that a function uses this value as the third argument, it will not explicitly

reset %rdx again.

• Uninitialized variable as an argument (denoted as Uninit). clang gener-

ates undef values for uninitialized variables and do not explicitly set these

arguments [46, 54]. On the other hand, gcc initializes them to zero3.

• Indirect calls in wrapper functions (denoted as Wrapper). Indirect callers may

not reset argument registers when their values are already in the correspond-

ing registers especially for inlined functions.

• Argument values not modified between two calls (denoted as Unmodified).

gcc-7 and above eliminates writing across functions when the argument reg-

ister is set to the same value for two consecutive callers.

All the above except Wrapper leads to ŵ and results in underestimation on

the number of arguments. Listing 3.6a presents the higher 64-bit return value
3https://github.com/gcc-mirror/gcc/blob/master/gcc/init-regs.c

28

and an uninitialized variable are used as arguments. The state vectors for the

two indirect calls are POB
ER−0x4006b9 =< w1(64), w2(64), ŵ3, ŵ4, ŵ5, ŵ6 > and

POB
ER−0x4006c2 =< ŵ1, ŵ2, ŵ3, ŵ4, ŵ5, ŵ6 >, respectively, which lead to a finding

of |POB
ER−0x4006b9| = 2 and |POB

ER−0x4006c2| = 0. However, by observing the source

code at Line 6 – 7, we realize that |PGT
ER−0x4006b9| = 3 and |PGT

ER−0x4006c2| = 2. List-

ing 3.6b shows indirect calls in a wrapper function. Since there is no direct caller

for function bfd_elf64_swap_dyn_in, TypeArmor and τCFI determine that

POB
ER−0x416845 =< w1(64), w2(64), w3(64), w4(64), w5(64), w6(64) >, which results

in an overestimation on the number of arguments while |PGT
ER−0x416845| = 1. List-

ing 3.6c shows that PGT
ER−0x1aae2c =< w1(64), w2(64), w3(64), ŵ4, ŵ5, ŵ6 >. How-

ever, POB
ER−0x1aae2c =< w1(64), ŵ2, w3(64), ŵ4, ŵ5, ŵ6 > and |POB

ER−0x1aae2c| = 1

since the value of %rsi is not changed by the function at 0x1a95f0, and the

compiler does not reset it explicitly.

Registers storing temporary values

Since all argument registers are general-purpose registers, they could also be

used as scratch registers to store temporary values, which could result in

an overestimation on the number of arguments (denoted as Temp). List-

ing 3.7a shows an example (compiled with clang -O0) with POB
ER−0x416015 =<

w1(64), w2(64), w3(64), w4(64), ŵ5, ŵ6 > and |POB
ER−0x416015| = 4. However, ac-

cording to the ground truth at Line 7, we can observe that |PGT
ER−0x416015| = 3 and

the write operation on %rcx is to store a temporary value. Note that compiler

optimization can remove many redundant instructions that are used to store tempo-

rary values; and so it has a positive impact on this case; see the optimized binary

in Listing 3.7b where POB
ER−0x438891 =< w1(64), w2(64), w3(64), ŵ4, ŵ5, ŵ6 > and

|POB
ER−0x438891| = |PGT

ER−0x438891| = 3.

29

1 l ong t e s t 2 (l ong a , l ong b) {
2 / / mesg and e r r a r e n o t i n i t i a l i z e d
3 c h a r ∗mesg ,∗ e r r ;
4 l l d i v t r e s ;
5 r e s = l l d i v (31558149LL,3600LL) ;
6 l ong r1 = (∗ f p t r 3) (a , r e s . q u o t , r e s . r e m) ;
7 (∗ f p t r 4) (mesg , e r r) ;
8 p r i n t f (”%s \n ” , b u f f e r) ;
9 r e t u r n r1 ;

10 }
11 00000000004006 a0 < t e s t 2 >:
12
13 4006 ae : c a l l q 400490 < l l d i v @ p l t>
14 4006 b3 : mov %rbx ,% r d i
15 4006 b6 : mov %rax ,% r s i
16 4006 b9 : c a l l q ∗0 x200db1(% r i p) # 601470 <f p t r 3>
17 4006 bf : mov %rax ,% rbx
18 4006 c2 : c a l l q ∗0 x2009a0(% r i p) # 601068 <f p t r 4>

a: Higher 64-bit return value and uninitialized variable used as arguments

1 0000000000416830 <b f d e l f 6 4 s w a p d y n i n >:
2 416830: push %r15
3
4 416835: mov %rdx ,% r14
5 416838: mov %r s i ,% r15
6 41683 b : mov %r d i ,% rbx
7 41683 e : mov 0x8(% r d i) ,% r a x
8 416842: mov %r s i ,% r d i
9 416845: c a l l q ∗0 x68(% r a x)

b: An indirect call in a wrapper function

1 1 aae0a : mov 0 xb38(%r13 ,% r14 , 1) ,% r d i
2 1 aae12 : mov %rbp ,% r s i
3 1 aae15 : c a l l q 1 a95f0
4 1 aae1a : mov (% r s p) ,% r a x
5 1 aae1e : l e a (%rax ,% r14 , 1) ,% rdx
6 1 aae22 : mov (% rbx) ,% r a x
7 1 aae25 : mov 0xb8(% r a x) ,% r d i
8 # c a l l funcs−>c r e a t e (c f f s i z e −>f ace−>memory , &p r i v , &

i n t e r n a l −>s u b f o n t s [i − 1])
9 1 aae2c : c a l l q ∗(% r12)

c: Arguments not modified between two calls

Listing 3.6: Missing argument-writing instructions

30

1
2 460 f f c : mov −0x18(% rbp) ,% r d i
3 461000: mov −0xe8(% rbp) ,% r s i
4 461007: mov −0xf0 (% rbp) ,% r c x
5 46100 e : add $0x10 ,% r c x
6 461012: mov %rcx ,% rdx
7 #(∗ bed−>e l f b a c k e n d r e l o c t y p e c l a s s) (i n f o , o , s−>r e l a) ;
8 461015: c a l l q ∗%r a x

a: Assembly compiled with clang -O0.

1
2 438881: mov 0x30(% r s p) ,% r d i
3 438886: mov %rbx ,% r s i
4 438889: mov %rbp ,% rdx
5 43888 c : mov 0x10(% r s p) ,% r a x
6 #(∗ bed−>e l f b a c k e n d r e l o c t y p e c l a s s) (i n f o , o , s−>r e l a) ;
7 438891: c a l l q ∗0 x208(% r a x)

b: Assembly compiled with clang -O2.

Listing 3.7: Registers to store temporary values

Argument (width) demotion

To the opposite of argument promotion at callees, compilers may use a smaller-sized

register (32-bit), since a 64-bit register may need a REX prefix [41] which increases

the code size and affects the I-cache footprint. This applies to cases where

• Arguments are constants whose sizes are up to 32 bits (denoted as Imm);

• Arguments are pointers pointing to .rodata, .bss, and .text sections (denoted

as Pointer); and

• Arguments are NULL pointers (denoted as Null).

Listing 3.8a shows an example for these cases compiled by

clang -O2. The ground truth at Line 4 shows PGT
ER−0x546593 =<

w1(64), w2(64), w3(64), ŵ4, ŵ5, ŵ6 >, while TypeArmor and τCFI determine

that POB
ER−0x546593 =< w1(64), w2(32), w3(32), ŵ4, ŵ5, ŵ6 > since the second

argument (0x8a01b0) is a pointer pointing to the .rodata section, and the third

argument (0x2000) is a 32-bit constant. The example with a NULL pointer being

31

1 546586:mov $0x8a01b0 ,% e s i
2 54658 b : mov $0x2000 ,% edx
3 546590:mov %r14 ,% r d i
4 #(∗ g i t h a s h u p d a t e f n) (∗ , ∗ , s i z e t l e n) ;
5 546593: c a l l q ∗0 x28(% r a x)

a: A constant and a pointer as arguments

]

1 57 f50e : t e s t %rbp ,% rbp
2 57 f511 : j e 57 f531
3 57 f513 : mov 0 x333a46(% r i p) ,% r d i
4 57 f51a : xor %e s i ,% e s i
5 #(∗ a d v e r t i s e) (∗ r , ∗) ;
6 57 f51c : c a l l q ∗0 x8(% rbp)

b: A NULL pointer as an argument

Listing 3.8: Argument width demotion

an argument is shown in Listing 3.8b. According to the ground truth at Line 5, the

second argument should be a pointer; but a NULL pointer is passed at the caller,

and the compiler uses xor to prepare for it.

Argument (width) promotion at both callees and callers (Prom)

There are other argument (width) promotions at both callees and callers that would

not result in inaccuracies in matching function callees with callers since the argu-

ment promotion happens in a matching manner. This refers to promotions of types

smaller than the native type of the target platform’s Arithmetic Logic Unit (ALU)

to make arithmetic and logical operations possible or more efficient. C and C++

perform such promotions for objects of boolean, character, wide character, enumer-

ation, and short integer types. As shown in Listing 3.9, the type of the third argu-

ment is unsigned char (8-bits) as shown at Line 1, but the analysis engine would

determine its state being ˙rw3(32) due to the promotion performed by the compiler.

Table 3.1 presents a summary on the complications at both callees and callers

with the last column indicating the consequences.

32

Table 3.1: Summary of complications introduced by compiler optimization

Site Category Complication Impact

Callee

Misidentifying variadic
functions

Normal to variadic (Nor2Var) |POB
EE | < |PGT

EE |

Variadic to Normal (Var2Nor) |POB
EE | > |PGT

EE |

Back-to-back condition unreliable
(VarOver)

|POB
EE | > |PGT

EE |

Missing argument read-
ing instructions

Arguments are not used by a func-
tion (Unread)

|POB
EE | < |PGT

EE |
|sEE

i | < |s
EE,GT
i |

Misidentifying %rdx as
an argument

Reading the higher 64 bits of a
return value (rdx)

|POB
EE | > |PGT

EE |

Argument (width) pro-
motion

Arguments are pushed onto the
stack (Push)

|sEE
i | > |s

EE,GT
i |

Default width of the operand of
certain instructions is 64-bit (lea)

|sEE
i | > |s

EE,GT
i |

Caller

Missing argument writ-
ing instructions

Higher 64 bits of a return value as
the third argument (Ret)

|POB
ER | < |PGT

ER |

Uninitialized variables as arguments
(Uninit)

|POB
ER | < |PGT

ER |

Indirect calls in wrapper functions
(Wrapper)

|POB
ER | > |PGT

ER |

Argument values not modified be-
tween two calls (Unmodified)

|POB
ER | < |PGT

ER |

Registers storing tem-
porary values

Argument registers are used to store
temporary values (Temp)

|POB
ER | > |PGT

ER |

Argument (width) de-
motion

Argumets are constant whose sizes
are up to 32-bit (Imm)

|sER
i | < |s

ER,GT
i |

Argument are pointers pointing to
data and text sections (Pointer)

|sER
i | < |s

ER,GT
i |

Arguments are NULL pointers
(Null)

|sER
i | < |s

ER,GT
i |

Both Small integral type
promotion

Small integral types are promoted to
native types (Prom)

|sEE
i | > |s

EE,GT
i |

|sER
i | > |s

ER,GT
i |

33

1 s t a t i c b f d b o o l e a n a d d l i n e i n f o (s t r u c t
l i n e i n f o t a b l e ∗ t a b l e , bfd vma a d d r e s s , u n s i g n e d c h a r
op index , c h a r ∗ f i l e n a m e , u n s i g n e d i n t l i n e ,
u n s i g n e d i n t column , u n s i g n e d i n t d i s c r i m i n a t o r , i n t
e n d s e q u e n c e)

2

3 000000000044 c2d0 <a d d l i n e i n f o >:
4 44 c2d0 : push %rbp
5
6 44 c2e7 : mov %edx ,% r12d
7 44 c2ea : mov %r s i ,% r13
8 44 c2ed : mov %r d i ,% r a x
9 44 c2 f0 : mov (% r d i) ,% r d i

10 44 c2 f3 : mov %rax , 0 x8(% r s p)
11 44 c2 f8 : mov 0x30(% r a x) ,% r a x
12 44 c 2 f c : mov %rax , 0 x10(% r s p)
13 44 c301 : mov $0x28 ,% e s i
14 44 c306 : c a l l q 408 a80 <b f d a l l o c >
15

Listing 3.9: Promotion of small integral types

3.1.3 Experimental Results of the Eight Complications on Real-

World Programs

Section 3.1.2 details our theoretical analysis by analyzing compiler optimization

strategies. In this section, we test how the eight complications identified in Sec-

tion 3.1.2 present themselves in real-world programs. Specifically, we use a test

suite of programs comprising of 552 C and 792 C++ applications compiled with

gcc-8 and clang-7 with optimization levels from -O0 to -O3 for x86-64, and

compare analysis results of TypeArmor and τCFI with ground truths extracted.

Since the source code of τCFI is not released, we implement it ourselves according

to the description of the paper [55].

In addition to TypeArmor and τCFI which recover function signatures for the

specific purpose of Control-Flow Integrity, we also include a well-known binary

analysis framework, Ghidra [35] v9.1.1, into our experiments since it also performs

function signature recovery for reverse engineering purposes. Besides its general-

purpose nature which leads to less emphasis on precision of the function signature

recovery, our preliminary analysis on its source code reveals the following distinc-

34

tions when Ghidra is compared to TypeArmor and τCFI in their mechanisms of

function signature recovery:

• Only functions with symbol information are correctly identified as variadic,

while those without symbol information are simply assumed to be non-

variadic;

• Only instructions immediately prior to (without control-flow transfers) a call

instruction are considered potentially preparing for function arguments;

• Forward and backward analysis are constrained within the scope of a single

function; and

• Width for each argument at callers is always 64 bits.

With this preliminary understanding, we expect Ghidra to perform less accu-

rately compared to TypeArmor and τCFI in recovering function signatures.

Our test suite is composed of Binutils-2.26, LLVM test-suite, and C/C++ appli-

cations from Github. This composition ensures that (1) it contains a wide variety of

realistic C and C++ binaries with sizes ranging from 0.07MB to slightly more than

100MB (see Table 3.2 for details of sizes of the binary executables); (2) it contains

binaries used in the evaluation of previous work, making it possible to compare our

results with the literature; (3) it includes real-world applications downloaded from

Github which contain complex corner cases which “testbed” applications may not

have (see Table 3.3 for details of the Github applications we choose — mainly those

with many “stars”).

Ground Truth and Statistics on the Ground Truth

Our objective of the experiments is to compare results from TypeArmor, τCFI, and

Ghidra with ground truths to see how the complications identified in Section 3.1.2

present themselves in real-world applications. Here we first briefly explain how we

obtain the ground truth in an automatic manner.

35

Table 3.2: Sizes of the binary executables in our test suite

Language Opt
Size (MB)

clang gcc
min median max min median max

C

O0 0.07 0.69 44.75 0.08 0.68 44.72
O1 0.07 0.71 45.61 0.12 0.98 50.52
O2 0.08 0.84 50.09 0.11 1.02 51.79
O3 0.08 0.84 48.95 0.13 1.55 54.30

C++

O0 0.11 7.51 65.77 0.12 14.60 73.22
O1 0.11 7.22 68.82 0.17 10.32 99.95 9
O2 0.13 6.31 65.70 0.18 16.96 105.50
O3 0.13 6.15 66.79 0.19 17.12 109.83

Table 3.3: Github applications in our test suite

App Language description
git C Distributed version control system

darknet C An open source neural network framework
netdata C A real-time performance monitoring
redis C An in-memory database
sqlite C SQL database engine
vim C UNIX text editor

gnupg C Complete implementation of the OpenPGP standard
openssl C TLS/SSL and crypto library
mupdf C & C++ A lightweight PDF, XPS, and E-book viewer
vorbis C A general purpose audio and music encoding format
aria2c C++ A lightweight multi-protocol download utility

cppcheck C++ Static analysis of C/C++ code
hpx C++ C++ Standard Library for Parallelism and Concurrency
xpdf C++ A PDF viewer and toolkit

We base our ground truth on information collected by an LLVM [44] pass and

on DWARF v4 debugging information [21] which is the default setting for gcc and

clang. We use LLVM to collect source-level information, including the number

and types of arguments for each function and indirect callers when the arguments

are integers (using LLVM API isIntegerTy(N)) and pointers (using LLVM

APIs isPointerTy() and isFunctionTy()4). We also record the source

line numbers of functions and indirect callers. We then compile the test applications

with DWARF information and link the source-level line numbers with binary-level

addresses using the DWARF line number table.

We implement the above with more than 500 lines of C++ code and more than

2,000 lines of python code. The result is a ground truth file for each binary in the
4We also check whether a struct argument has the attribute ByVal since clang will copy it onto

the stack while considering it as a pointer.

36

Table 3.4: Number of arguments of functions in our test suite

Language Opt

Number of Arguments (%)

variadic0 1 2 3 4 5 6

C

O0 6.92 29.35 29.73 17.46 7.47 4.33 1.77

8.45O1 6.01 28.64 29.87 17.32 7.73 4.71 1.95
O2 6.78 28.05 27.85 18.11 8.22 4.92 1.88
O3 5.99 26.52 29.04 18.20 8.55 5.17 2.11

C++

O0 4.31 47.84 26.78 12.97 3.64 2.47 0.64

2.43O1 4.44 46.06 27.76 13.34 3.80 2.54 0.67
O2 3.09 45.27 20.77 12.58 7.09 5.48 1.87
O3 3.13 45.84 20.88 12.45 6.95 5.09 1.86

test suite. With the ground truth collected, we perform statistical tests on our test

suite to ensure that applications included could potentially present all variety of

function signatures. Specifically, we count the number of arguments (ground truth)

of all functions and make sure that there are sufficient numbers of functions with the

number of arguments from 0 to 6; see Table 3.4 for details. We observe that there

are more functions with between 1 and 3 arguments, and that C programs are more

likely to have variadic functions. We also check the (ground truth) argument types

for each function (see Table 3.5, which shows the percentage of functions having a

specific type as its arguments). It appears that pointers are heavily used as function

arguments, especially for C++ applications. This may imply that C++ applications

are less likely to present complications on argument width demotion or promotion.

Metric Used and Overall Results

Since applications may have different numbers of functions and functions may have

different numbers of indirect callers, we do not directly calculate the geometric

mean as in TypeArmor [85] and τCFI [55]. Instead, we calculate the geometric

mean of the likelihood that the callees and indirect callers present a complication

in their function signature recognition. Specifically, we calculate the likelihood that

the complications discussed in Section 3.1.2 cause under- and overestimation on

the recovered function signatures. For example, application addr2line compiled

with clang -O0 has 2,019 normal functions among which 101 are misidentified

37

Table 3.5: Argument types of functions in our test suite

Ty
pe

O
pt Arg for C (%) Arg for C++ (%)

1st 2nd 3rd 4th 5th 6th 1st 2nd 3rd 4th 5th 6th
8-

bi
ts

O0 0.19 0.37 0.12 0.26 0.34 0.35 0.02 0.32 1.52 0.27 0.83 0.94
O1 0.14 0.31 0.23 0.29 0.54 0.56 0.08 0.56 1.60 0.38 0.43 0.55
O2 0.11 0.24 0.30 0.23 0.75 0.78 0.02 0.31 1.48 0.26 0.79 0.92
O3 0.10 0.25 0.26 0.29 0.60 0.61 0.02 0.32 1.52 0.27 0.83 0.94

16
-b

its

O0 0.09 0.19 0.13 0.14 0.17 0.29 - 0.04 0.22 0.24 0.44 0.50
O1 0.11 0.24 0.17 0.12 0.13 0.27 0.04 0.08 0.11 0.22 0.39 0.31
O2 0.10 0.21 0.10 0.16 0.14 0.33 - 0.04 0.22 0.23 0.42 0.49
O3 0.11 0.24 0.15 0.13 0.14 0.29 - 0.04 0.22 0.24 0.44 0.50

32
-b

its

O0 9.38 19.58 25.33 29.65 33.50 28.79 0.82 9.66 19.57 26.02 29.27 17.36
O1 8.55 19.75 25.29 30.31 37.60 32.97 0.55 4.60 15.19 15.57 21.03 16.80
O2 8.31 18.41 24.21 28.38 32.71 25.61 0.81 9.44 19.10 24.89 27.83 16.98
O3 7.48 19.23 24.91 30.48 38.84 33.33 0.82 9.66 19.57 26.02 29.27 17.36

64
-b

its

O0 2.31 7.25 11.36 10.37 10.85 10.00 0.14 5.13 10.82 17.14 13.03 10.47
O1 1.97 6.17 10.93 9.18 9.01 7.74 0.83 7.54 14.87 11.21 7.37 6.29
O2 2.24 6.99 12.19 11.08 10.77 9.83 0.14 4.96 10.92 17.21 13.04 10.31
O3 1.94 5.95 10.65 9.31 8.69 7.57 0.14 5.13 10.82 17.14 13.03 10.47

pt
r

O0 88.02 72.63 62.61 59.43 54.99 60.44 98.03 84.45 67.56 54.70 56.15 70.21
O1 89.22 73.40 62.94 59.84 52.48 58.22 98.28 86.99 67.61 70.73 70.20 75.77
O2 89.24 73.96 62.77 59.79 55.45 63.39 98.06 84.87 67.99 55.85 57.66 70.80
O3 90.36 74.14 63.58 59.48 51.48 57.95 98.03 84.45 67.56 54.70 56.15 70.21

as variadic and the identified number of arguments is underestimated. We first cal-

culate the likelihood that a function is misidentified in this application (101/2019),

and then use this number to compute the geometric mean for all applications in our

test suite; see Figure 3.15 and Figure 3.26.

We discuss the detailed findings in the following sections. Note that complica-

tion case Unmodified only appears in one application (mupdf7 compiled with gcc)

and that Uninit and Ret do not appear at all in our test suite. We stress that this does

not indicate insufficiency in our experiment, but rather the complications identified

in our theoretical analysis (Section 3.1.2) do not necessarily present themselves in

real-world programs.

Unread: This is by far the biggest contributor to misidentification of function sig-

5Likelihood is calculated against the number of normal functions for Nor2Var, against the num-
ber of variadic functions for Var2Nor and VarOver, against the total number of functions for rdx,
Unread, Push, lea and Prom. See Table 3.6 for the number of various types of functions in our test
suite.

6Likelihood is calculated against the total number of indirect calls. See Table 3.6 for the number
of indirect calls in our test suite.

7https://mupdf.com/

38

(a) C applications compiled by Clang

(b) C++ applications compiled by Clang

(c) C applications compiled by GCC

(d) C++ applications compiled by GCC

Figure 3.1: Likelihood of complications at callees
39

(a) C applications compiled by Clang

(b) C++ applications compiled by Clang

(c) C applications compiled by GCC

(d) C++ applications compiled by GCC

Figure 3.2: Likelihood of complications at callers
40

Table 3.6: Number of functions and indirect calls

Opt #func #normal func #variadic #icalls

clang

C

O0 543 486 21 64
O1 540 495 19 60
O2 394 346 19 85
O3 380 352 19 93

C++

O0 3,379 3,229 15 121
O1 3,290 3,085 13 74
O2 702 652 13 439
O3 710 640 13 452

gcc

C

O0 546 483 24 70
O1 446 420 19 69
O2 418 386 21 67
O3 406 370 22 83

C++

O0 4,505 4,113 22 152
O1 686 608 13 336
O2 698 613 13 312
O3 656 606 13 299

natures at callees, where the fact that many functions do not read (some of) their

arguments leads to underestimation of the number of arguments. It also potentially

leads to underestimation of the width of an argument register whose evident reading

instruction is missing while existence is implied (due to subsequent argument reg-

isters whose reading instructions being present). This complication presents more

heavily in C++ programs due to the simplicity of many (callee) functions whose im-

plementation does not require accessing the *this argument. Another finding is that

C++ applications compiled by gcc tend to have dead code eliminated, which makes

them seemingly less vulnerable to this complication. Note that unoptimized bina-

ries do not have this issue at all because compilers always insert argument reading

instructions even if the callee function does not need them.

Nor2Var: This also presents heavily in our test suite, leading to underestimation

on the number of arguments, especially in C programs, except that compiler opti-

mization actually helps mitigating it. As explained in Section 3.1.2, unoptimized

binaries always move all arguments onto the stack, making it more likely to present

more than 5 integer arguments at the callee which always leads to misidentification

of variadic functions. Optimization helps “skipping” some of the arguments and

reducing the likelihood of misidentification. Ghidra is immune to this complication

41

since it simply considers all functions non-variadic.

lea, Push, and Prom: These three complications result in overestimation on the

argument width, and together present a large thread to function signature identifica-

tion of optimized binaries. Checking into the details, we find that C programs make

heavier use of lea to perform simple computations and more often push arguments

onto the stack (especially with gcc). Looking into the case of Prom, we find that

clang -O0 does not promote the argument width (it uses register al or ax to

store the argument) while gcc does (it uses eax) even when optimization is turned

off.

rdx: This presents more on C++ programs and leads to overestimation on the num-

ber of arguments. Upon checking the details, we realize that the exception han-

dling in C++ will call function rethrow_exception, which invokes function

_Unwind_RaiseException that returns the unwind reason code in %rdx and

the exception object in %rax.

Var2Nor: As expected, Ghidra is vulnerable to this, although not that much due to

compiler optimization but the simple treatment it employs (all functions are non-

variadic). This complication presents to TypeArmor and τCFI, and is usually due

to empty implementation of functions with more than five compulsory arguments.

We find that C programs compiled by gcc suffer overestimation on the number of

arguments on top of function type misidentification.

VarOver: This only presents itself on binaries compiled with gcc -O2 and -O3,

where the instructions that move the variadic arguments onto the stack are not back

to back. On the other hand, all variadic functions are identified as non-variadic in

Ghidra, so the number of arguments is overestimated.

Temp and Wrapper: These are clear examples in which compiler optimization

helps TypeArmor and τCFI determining the number of function arguments. In

the case of Temp, optimization eliminates redundant instructions as function ar-

guments. Wrapper causes fewer complications in optimized binaries due to heavier

applications of function inlining. Note that C++ applications are more vulnerable to

42

Table 3.7: Likelihood that indirect calls in C programs use immediate values as
arguments

Compiler Opt Non-inline Inline Loop-unroll Func-copy

clang

O0 24 0 0 3
O1 23 0 0 6
O2 13 52 0 3
O3 13 49 45 4

gcc

O0 81 (25) 0 0 3
O1 75 (23) 59 0 5
O2 26 28 0 3
O3 22 33 3 3

Numbers in brackets correspond to functions that pass the value 0 to
an argument register.
“Func copy” refers to multiple copies of the same function called
from different modules.
Results shown are likelihood results multiplied by 1,000, rounded to
the nearest integer.

Wrapper due to the large number of virtual functions being called indirectly. Ghidra

generally performs worse here (considering the combined errors in both over- and

underestimation) mainly due to its limited scope of backward analysis for indirect

calls in wrapper functions. That said, Ghidra has superior mechanisms in dead code

elimination and only the basic block which contains an indirect call is analyzed,

which results in some argument registers that are used for temporary storage being

correctly identified; see the complication of Temp (overestimation).

Imm and Null: C applications compiled with clang and gcc are both likely to

pass immediate values to argument registers, which results in underestimation of

the argument width by TypeArmor and τCFI. Interestingly, the likelihood increases

upon increase of optimization levels. Digging into the details, we realize that this is

actually just an artifact because higher optimization level results in heavier applica-

tion of function inlining (-O1 and -O2 for clang, -O1, -O2, and -O3 for gcc)

and loop unrolling (-O3 for both compilers), which leads to a larger number of

callers of the same function; see Table 3.7 which shows the likelihood that indirect

calls use immediate values as arguments for different reasons. Another interesting

observation is that gcc -O0 and -O1 are more likely to move zero (Null) to an

argument register than using xor.

43

Ghidra, on the other hand, is not vulnerable to this underestimation but rather

suffers on overestimation because it always uses the entire 64-bit memory range as

the argument width.

Pointer: This only affects applications compiled with clang especially on C++

programs as they are more likely to pass pointers to indirect callees. C programs

compiled with clang -O0 do not have this problem because it uses a 64-bit regis-

ter to store the pointer by adding a prefix to denote the use of a 64-bit displacement

or immediate source operand. C++ programs, on the other hand, set a 32-bit register

to the pointer address and then move it to the argument register for some indirect

calls. We also find that C++ applications compiled with clang -O1 have a higher

likelihood on this complication. This is because for some indirect calls that accept

pointers as arguments, clang prepares them by moving 64-bit immediate values

onto the stack first, and then after another indirect call instruction, the argument

register is set by reading the 64-bit value from this stack address. As the number of

indirect calls in binaries compiled with -O2 and -O3 is much larger, the likelihood

for them becomes smaller.

Ghidra, again, is not vulnerable to this because it always uses the entire 64-bit

memory range as the argument width.

Applications compiled by gcc do not use pointers that point to .text, .rodata,

or .bss as arguments because gcc-7 and above compile applications into position-

independent code.

Prom: This seems to be less sensitive to compiler optimization (compiler will al-

ways promote to the native type — 32 bits) and only affects a small number of

indirect calls.

3.1.4 Our Compiler-Optimization-Friendly Policies

In an effort to properly handle the complications arisen due to compiler optimiza-

tions to more accurately recover function signatures, we propose a set of improved

44

policies. In this section, we first discuss the details of these policies and then present

our evaluation results of applying them to analyze our test suite of 1,344 real-world

applications. Note that most of the policies proposed here are generally accurate for

both optimized and unoptimized binaries, while others are more specifically target-

ing optimized binaries. Existing work [69, 70] and our experience (e.g., if values

of all six argument registers are moved onto the stack, then it must be an unopti-

mized binary) show that detecting the compiler and the optimization level used in

well-behaved binaries can be done accurately, and we take it as a prerequisite of

enforcing our policies specifically targeting optimized binaries.

Identifying Variadic Functions (Targeting Nor2Var and VarOver)

The main problem in existing approaches is the identification of variadic arguments

using “back-to-back value assigning instructions” (i.e., b2b) [85], which is not a suf-

ficient condition as we analyzed (see Section 3.1.2) and showed in experiments (see

Section 3.1.3). We discover another more direct and sufficient condition for variadic

argument identification when optimization is enabled, in which the stack addresses

storing variadic arguments are consecutive, prepared using 64-bit registers, and read

using pointers. More specifically,

Definition 12. Let @i denote the stack address to which argument register i is moved

given ˙rw2si(). Callee function f is a variadic function iff ∀i ∈ {5, 4, 3, 2, 1},

• |@i+1 −@i| = 8; and

• sEE
i+1 = ˙rw2si+1(64) and sEE

i = ˙rw2si(64); and

• @i+1 and @i are read via pointers.

with |POB
EE−f | being the maximal i violating the above. Otherwise, f is a normal

45

Table 3.8: Analysis of the non-variadic function in Binutils

Line Number Operation TypeArmor Our improved policy
4 Move %r9 to stack

0x40(%rsp)
%r9 is a variadic ar-
gument

May be a variadic ar-
gument

5 Move %r8 to stack
0x10(%rsp)

%r8 is a variadic ar-
gument

Non-consecutive
stack addresses; not a
variadic argument

11 0x40(%rsp) is read
not overwritten

Not a variadic argu-
ment

Conclusion Variadic function
with 4 arguments

Normal function with
6 arguments

function and |POB
EE−f | is:

6 if ˙rw2s6() and @6 is not read via a pointer

max(argmax
i

(˙rw2si()), argmax
i

(˙rwi())) if sEE
6 6= ˙rw2s6()

We use the example in Listing 3.1a to show how our pol-

icy works. During analysis, we find that POB
EE−0x471a60 =<

˙rw1(64), ˙rw2(64), ˙rw3(64), ˙rw4(64), ˙rw2s5(64), ˙rw2s6(64) > and @6 is not

read via a pinter; therefore, we conclude that |POB
EE−0x471a60| = 6. Note that

although |PGT
EE−0x471a60| = 7, |POB

EE−0x471a60| = 6 is an accurate and best approxi-

mation based on the limited information present in the binary. The details about the

analysis result by TypeArmor and our new policy can be found in Table 3.8.

The policy described above does not work well when optimization is disabled, in

which all arguments are copied onto the stack at consecutive addresses. The policy

to deal with unoptimized binaries is described in Definition 13.

Definition 13. Callee function f is a variadic function iff ∀i ∈ {5, 4, 3, 2, 1},

• |@i+1 −@i| = 8; and

• sEE
i+1 = ˙rw2si+1(64) and sEE

i = ˙rw2si(64).

with |POB
EE−f | being the maximal i violating the above. Otherwise, f is a normal

function with 6 arguments.

46

Argument (Width) Promotion and Demotion (Targeting Push, lea, Imm,

Pointer, and Null)

Our improved policy solves the argument promotion and demotion complications

by analyzing the context of the instructions. More specifically,

• Push: Let p = 32 in ˙rwi(p) if the corresponding argument reading instruction

is push.

• lea: Let p in ˙rwi(p) be the minimum of the width of the source and destination

registers (instead of that of the source only as in TypeArmor and τCFI).

• Imm: Let p = 64 in ˙rwi(p) if register i holds a constant.

• Pointer: Let p = 64 in ˙rwi(p) if register i holds a pointer value pointing to

.rodata, .bss, or .text section.

• Null: Let p = 64 in ˙rwi(p) if register i is involved in an xor instruction.

Note that this improved policy guarantees that all legal callers be matched with

legal callees since there is no underestimation at callers or overestimation at callees,

but could lead to some imprecise (but conservative) results. For example, demoting

the argument width to 32 bit for a register read using push may result in underes-

timation; see the case of Push in Figure 3.1. We believe that this is a good tradeoff

where an absolutely precise solution does not exist, especially since the intended

control flow is never broken with our improved CFI policy.

Register Overloading (Targeting rdx)

Since the overloading of rdx is for storing function return values, we simply con-

sider any first reading of %rdx after a call to a library function (let’s denote the

callee f) as w3(). It may first sound counter-intuitive, but this must be reading the

return value of f since the compiler has to make a conservative assumption that f

has reset %rdx. This improved policy solves the complication rdx at callees with

100% accuracy.

47

Registers Storing Temporary Values (Targeting Temp)

Recall that the analysis of callers considers all instructions involving an argument-

passing register instead of focusing on only the first instruction (Section 3.1.1).

Although that is technically correct, it also introduces complications since reg-

isters storing temporary values could be miscounted as passing arguments to a

callee (Temp). Our improved policy takes into consideration the reading of reg-

isters (rather than focusing only on writing in the original policy) as well as the

sequence of the instructions. More specifically, we let sER
i = ŵi if register i is

moved to another argument register after the write operation when the value of reg-

ister i is not zero (a special case where the compiler will directly move register i

to another argument register since the compiler does not prefer passing zeros to a

register directly).

For example, as shown in Listing 3.7a, %rcx is moved to %rdx at Line 6 after

the write operation at Line 4. With this, we conclude that %rcx is not used to pass

arguments and |POB
ER−0x461015| = 3.

In order to be conservative, we only apply this policy to basic blocks where

indirect calls are located. Note that this policy can also help correctly recover the

number of arguments for indirect calls in wrapper functions.

Additional Binary Analysis to Extract our Policies

We have presented what our improved CFI policies are so far in this section. Here

we briefly discuss how it is done with the additional binary analysis we perform.

Our improved policy for Nor2Var requires that we trace the data flow of a stack

memory to check whether it is read without being overwritten. This is done by

following the CFG of a function and check whether the stack memory is used as the

source operand without being used as a destination operand.

Our improved policy for Imm requires that we identify whether one register

holds a constant. Specifically, during the backward analysis, if we encounter a 32-

48

bit argument register being written to, we will record its source recursively and

check whether it is an immediate value. Our experiences show that this recursive

tracing typically reports a success within the same basic block and does not result

in excessive overhead.

Evaluation of our Improved Policies

We apply our new policies on the same test suite consisting of 1,344 C and C++

applications and use the same metric as described in Section 3.1.3 to evaluate it; see

the bars named “Improved” in Figure 3.1 and Figure 3.2. The comparison shows

that our new policies result in significant improvement over most of the complica-

tion cases. In particular, we completely mitigate the complication cases of VarOver,

rdx, lea, and Pointer, and significantly reduce the chances of running into Nor2Var.

For cases of Imm, Null, and Push, our policy guarantees that valid calls are

never inadvertently blocked, but it could also potentially make the recovered func-

tion signatures more conservative. For example, we promote the argument width

at indirect callers for cases Imm and Null, which may result in overestimation on

argument widths as shown in Figure 3.2 with likelihood less than 10.1% and 1.7%,

respectively. Similarly, our policy to deal with Push may cause argument width

underestimation at the callees, and the likelihood is about 0.2%. This raises an

interesting question whether it is possible for CFI policies recovered from binary

executables to be more accurate and approach the accuracy of source-based solu-

tions; we discuss this in Section 3.1.5.

For Nor2Var, the likelihood of misidentifying normal functions to variadic for

unoptimized binaries is reduced from 3.3% to 1.2%, with that for optimized binaries

dropped to 0.1%.

Since we only apply the policy for Temp to basic blocks where indirect calls are

located, there can be overestimations if the argument registers storing temporary

values are in other predecessors. The same policy also helps identify the number of

arguments for indirect calls in wrapper functions as shown in the case of Wrapper

49

in Figure 3.2 — the likelihood of overestimation on the number of arguments is

reduced from 11.5% to 5.4% for C applications compiled by gcc -O0.

Potential revisions to deal with other complications

To handle Var2Nor, we could revise our policy on identifying variadic functions to

find the argument register with the highest index i that is moved onto the stack.

However, this will result in (potentially unnecessary) checking of registers at a

smaller index, and lead to substantially higher overhead in the processing. Since

we only observe one variadic function (bfd_set_error in Binutils) being

misidentified as a normal function and causing overestimation on the number of

arguments in our large test suite, we do not suggest enforcing this policy.

Similarly for Unmodified, we could perform backward analysis from the indi-

rect caller until another indirect call is encountered. We do not enforce this policy

because there is only one application in our test suite that has this problem (with

only two indirect calls), and this policy could result in a large number of overesti-

mation on the number of arguments at indirect callers.

3.1.5 Discussions and Security Implications

In this section, we first discuss an interesting question whether policies recovered

from binary executables could approach the accuracy of source-based solutions, and

then further evaluate the security implications of having inaccurate CFI policies.

Comparison with Source-Level Solutions

Section 3.1.4 shows that even our improved policy inevitably results in some over-

and underestimation, which raises an interesting question whether it is possible to

further improve the policies so that their accuracy approaches that of source-level

solutions. Here we present three scenarios where a compiler makes the task of accu-

rately recovering function signatures undecidable, and therefore show that binary-

50

1 5 a0d32 : xor %e s i ,% e s i
2 5 a0d34 : xor %edx ,% edx
3 5 a0d36 : mov %rbp ,% r d i
4 # s t r u c t r e f ∗ (∗ g e t r e f s l i s t) (s t r u c t t r a n s p o r t ∗ t r a n s p o r t ,

i n t f o r p u s h , c o n s t s t r u c t a r g v a r r a y ∗ r e f p r e f i x e s) ;
5 5 a0d39 : c a l l q ∗0 x10(% r a x)

Listing 3.10: Immediate zero and NULL as arguments

level techniques can never achieve the accuracy of source-based solutions.

Immediate value zero vs. NULL pointer

A simple example demonstrating the limitation of binary analysis in this context is

the differentiation between an immediate value zero and the NULL pointer. Line 4

of Listing 3.10 shows a callee function with the second and third arguments being

integer and pointer type, respectively, while Line 1 – 2 show the caller prepara-

tion with identical instructions for these two arguments. It clearly demonstrates

that binary analysis is unable to distinguish the two cases and would have to make

approximations in recovering the caller signature.

Arguments unused

Another scenario arises in the case of unused arguments at the callee (corresponding

to complication case Unread), where binary analysis cannot differentiate

• Listing 3.11a: a callee function with an argument passed in but the argument

is not used; and

• Listing 3.11b: a callee function without arguments.

Binary analysis would not be able to differentiate the two cases as observations on

their argument-passing registers are identical.

Registers overloading

Registers are used for passing arguments as well as any other general purposes

(corresponding to complication case Temp), and binary analysis usually cannot dis-

51

1 b f d p l u g i n c o r e f i l e f a i l i n g s i g n a l (b fd ∗ ab fd)
2 482000: push %r a x
3 482001: mov $0x4dc9e1 ,% e d i
4 482006: mov $0x1ac ,% e s i
5 48200 b : c a l l q 405230 <b f d a s s e r t >

a: Argument passed in but not used
1 vo id b f d s e c t i o n a l r e a d y l i n k e d t a b l e f r e e ()
2 48 aa60 : mov $0x7172f8 ,% e d i
3 48 aa65 : jmpq 406860 <b f d h a s h t a b l e f r e e >

b: No argument

Listing 3.11: Function argument unused

1 51 e199 : mov %eax ,% e s i
2 51 e19b : t e s t %r15 ,% r15
3 51 e19e : j e 51 e1ad
4 51 e1a0 : l e a 0 xe0(% r s p) ,% r d i
5 #(f p t r T) (f u n c o n e (&cc , c)) ;
6

7 51 e1a8 : c a l l q ∗%r15

a: %esi used to pass argument

1 43 ae62 : mov %ebp ,% e s i
2 43 ae64 : t e s t %rax ,% r a x
3 43 ae67 : j e 43 a e 6 f
4 43 ae69 : mov %ebp ,% e d i
5 # g e t e l f b a c k e n d d a t a (ab fd)−>

o b j a t t r s o r d e r (i) ;
6 43 ae6b : c a l l q ∗%r a x

b: %esi used to store temporary

Listing 3.12: Example of argument register usage

tinguish the two cases. Listing 3.12 shows two indirect callers with

• Listing 3.12a: a caller that uses %esi to pass the second argument to callee.

• Listing 3.12b: a caller that uses %esi to store a temporary value.

Again, binary analysis would not be able to tell apart these two cases and an ap-

proximation has to be made in extracting function signatures.

We stress that this is not an exhaustive list of cases where binary analysis may

fail, but the three scenarios identified are specific to funciton signature recovery

where compiler optimization makes binary analysis undecidable.

Security Implication with Imprecise Function Signature Recovered

The undecidability in binary analysis results in inevitable errors in function signa-

ture recovery from (optimized) binary executables. An immediate question, there-

52

fore, is on the extent to which such errors impact security applications. In this

subsection, we evaluate this security implication from two perspectives.

Imprecision on the set of callees allowed Our first evaluation focuses on the

number of callees allowed in a CFI enforcement, and here we consider six solutions:

• AT [97]: A binary-level solution that allows indirect callers to target any

“Address-Taken” functions;

• TypeArmor [85]: A binary-level solution with function signatures capturing

the number of arguments;

• τCFI [55]: A binary-level solution with function signatures capturing the

number of arguments and width of arguments;

• Our improved policy: A binary-level solution with function signatures cap-

turing the number of arguments and width of arguments, targeting optimized

binaries; and

• IFCC [84]: A (relatively old) source-level solution with function signatures

capturing the number of arguments; in LLVM-3.4.

• LLVM-CFI8: A (latest) source-level solution with more precise function sig-

natures (the number of arguments and their primitive types, function return

type) captured; in LLVM-10.0.

Table 3.9 shows the median of the number of callees allowed for each indi-

rect caller for the 1,344 applications in our test suite under different policies. We

can see that compared to AT, TypeArmor, τCFI, and our improved policies reduce

the number of legal control-transfer targets by about 20%, 49%, and 54%, respec-

tively, while none of the binary-level solutions could achieve precision of source-

level techniques. In particular, LLVM-CFI achieves much better accuracy because

8https://clang.llvm.org/docs/ControlFlowIntegrity.html

53

https://clang.llvm.org/docs/ControlFlowIntegrity.html

Table 3.9: Number of callees allowed by different policies

Opt AT TypeArmor τCFI Improved IFCC LLVM-CFI

clang

C

O0 543 412 290 246 114 7
O1 540 446 242 213 124 8
O2 394 318 147 147 93 7
O3 380 300 130 120 99 8

C++

O0 3,379 2,734 2,343 2,186 1052 37
O1 3,290 2,631 1,879 1,805 998 35
O2 702 552 304 270 251 44
O3 710 543 296 284 247 44

gcc

C

O0 546 499 336 257
O1 446 373 272 239
O2 418 318 147 147
O3 406 332 231 200

C++

O0 4,505 3,920 3,278 3,219
O1 686 498 314 301
O2 698 477 294 281
O3 656 527 315 299

Geomean 767 612 395 353 232 19

it uses finer-grained types of arguments — char* and const char*, struct A* and

struct B* are considered different types — which cannot be differentiated at binary

level.

Effectiveness in allowing/disallowing COOP gadgets With Table 3.9 showing

the number of mistakes each solution makes, we next evaluate the extent to which

these mistakes result in initial COOP gadgets an attacker could use to construct

code-reuse attacks. This time, we only focus on τCFI and our improved policy

as they run relatively close in the previous evaluation. We use the same heuristics

proposed in the corresponding papers to find potential Main-Loop Gadgets (ML-

G) [71] and RECursive Gadgets (REC-G) [26] for all C++ applications in our test

suite. Table 3.10 shows the total number of such gadgets as well as the number

of such gadgets whose function signatures are correctly identified by τCFI and our

improved policy. Bigger numbers indicate better effectiveness of CFI in disallowing

the corresponding code-reuse attacks.

As we can see, τCFI correctly identifies 68% and 64% ML- and REC- gadgets,

respectively, while our improved policy achieves 78% and 74% effectiveness, re-

spectively. We believe that this evaluation provides a good indicator on the security

54

Table 3.10: Potential ML-G and REC-G gadgets

Opt ML-G REC-G
icall τCFI Improved icall τCFI Improved

clang

O0 93 53 64 73 41 45
O1 58 50 50 56 44 44
O2 70 46 52 60 41 44
O3 70 42 53 49 35 39

gcc

O0 96 50 68 71 32 46
O1 98 71 80 74 50 56
O2 113 100 103 33 21 30
O3 106 79 84 22 15 17

Geomean 83 56 65 58 37 43

impact of our improved CFI policies.

Severity of each mistake For each mistake in recovering function signature of

the caller, we check how far the mistake is from the ground truth, which also has

a direct implication on the amount of flexibility an attacker has when using the

corresponding caller to construct an code-reuse attack. Figure 3.3 shows the result

of this evaluation, again, on our test suite of 1,344 applications, with x-axis labels

being:

• +t: the average number of indirect callers whose number of arguments is

overestimated by t; and

• width: the average number of indirect callers whose function signature (num-

ber and width of arguments) is correctly recovered.

Besides showing the consistently better results from our improved policy com-

pared to those from τCFI, we also notice that our improved policy performs most

significantly better on “+5”, which means our improved policies manage to correct

a larger number of more severe mistakes made by τCFI.

55

(a) Applications compiled by Clang

(b) Applications compiled by GCC

Figure 3.3: Amount of flexibility of code-reuse attacks in each mistake in function
signature recovery of indirect callers

3.2 Enhanced Deep Learning Approach to Recover

Function Signature

In Section 3.1, we introduced that compiler optimizations have a significant impact

on function signature recovery, and the analysis engines need to be continuously

updated so that they can be used to analyze binaries compiled by these new ver-

sions of compilers. EKLAVYA [20] attempted to recover the function signature by

using a Recurrent Neural Network (RNN) to process the raw binary code without

relying on the calling convention. It introduced a new way to learn function sig-

nature and can obtain better accuracy when compared to these calling-convention

based approaches. However, some intricacies make the accuracy of EKLAVYA rel-

atively small (e.g., the reported accuracy in identifying the number of arguments for

56

optimized binaries at the callee site is less than 80% on x86-64). We find the main

limitation of EKLAVYA is that it didn’t incorporate domain knowledge to improve

the quality of the dataset. For example, if function a has three arguments, but only

the first two are used, EKLAVYA still labels it has three arguments. This kind of

labeling could mislead the training process to study function signature incorrectly.

In this section, we first study the possible intricacies that EKLAVYA didn’t solve

and then propose solutions to mitigate them. The result shows that our approach can

effectively improve the accuracy in identifying the number of arguments from the

callee.

3.2.1 Workflow of EKLAVYA

The workflow of EKLAVYA is shown in Figure 3.4. We can find the first essen-

tial step is to uncover each instruction’s semantic information through learning by

using word embedding. Specifically, it takes as input a stream of instructions and

outputs a vector representation of each instruction in a 256-dimensional space by

using word2vec [53]. The generated sequence of vectors (each representing an

instruction), together with labels denoting the number of arguments and types (the

ground truth) are used as the input to a three layers recurrent neural network with

gate recurrent units (GRUs). Specifically, for argument type recovery, EKLAVYA

learns one RNN for the first argument, one RNN for the second argument, and so

on.

There are four tasks in EKLAVYA:

• Task1: Counting arguments for each function using instructions from callers;

• Task2: Counting arguments for each function using instructions from callees;

• Task3: Recovering the type of arguments based on instructions from callers;

• Task4: Recovering the type of arguments based on instructions from callees;

57

Figure 3.4: Workflow of EKLAVYA

The classes of argument types are defined as τ ::= int|char|float|void ∗

|enum|union|struct. That is to say, it treats different kinds of integers (e.g., 32-bit

integers and 64-bit integers) to be class int.

In task two and four, instructions in the callee itself will be used. All the in-

struction preceding a direct call instruction is used in task one and three. For

large functions, it limits the number of instructions to 500.

We can find EKLAVYA directly uses the instruction in the function body as

the input to the neural network without considering whether they actually access

the argument registers (memory) and whether they are distinguishable. We will

introduce possible intricacies that we identified and aren’t solved by EKLAVYA in

detail in the following sections.

3.2.2 Intricacies and Solutions

• I1: Missing argument-reading instructions. It includes the access of an argu-

ment is in other functions, and some function arguments are not used.

– Arguments are accessed in other functions (denoted as Prop). There are

cases that the access of an argument would be in other functions when opti-

mization is enabled. EKLAVYA only uses instructions in the function body to

58

1 LUA API i n t l u a t o b o o l e a n (l u a S t a t e ∗L , i n t i d x) {
2 c o n s t TValue ∗o = i n d e x 2 a d r (L , i d x) ;
3 r e t u r n ! l i s f a l s e (o) ;
4 }
5 0000000000402650 < l u a t o b o o l e a n >:
6 402650: push %r a x
7 : d6 f6
8 : 48 d6 4 f 10
9 402651: c a l l q 4021 f0 <i n d e x 2 a d r>

10 402656: mov %rax ,% r c x
11 402659: mov 0x8(% r a x) ,% eax
12 40265 c : t e s t %eax ,% eax
13 40265 e : j e 402674 < l u a t o b o o l e a n +0x24>
14 402660: cmp $0x1 ,% eax
15 402663: j n e 40266 f < l u a t o b o o l e a n +0 x1f>
16 402665: xor %eax ,% eax
17 402667: cmpl $0x0 ,(% r c x)
18 40266 a : s e t n e %a l
19 40266 d : pop %r c x
20 40266 e : r e t q
21

a: Example of arguments are accessed in other function body

1 I n s t r u c t i o n s a c c e s s t h e a rgumen t s
2 4021 f0 : 85 f6 t e s t %e s i ,% e s i
3 402206: 48 3b 4 f 10 cmp %rcx ,(% r d i +0x10)

b: Argument reading instructions

Listing 3.13: Arguments are accessed in other function body

infer the function signature, which may not get the correct result. As shown

in Listing 3.13a (without instructions in the gray background), all arguments

of function lua_toboolean are accessed by function index2adr. In this

case, EKLAVYA still says it has two arguments but without any evidence to

show that it access any argument in the instructions that inputted to the RNN.

It would confuse the training process in identifying the number of arguments.

One possible solution is to include all instructions that follow the inter-

procedural control-flow graph, but it will also include many irrelevant instruc-

tions that may affect the training result. Instead, we make use of TypeArmor

to find all instructions that read the argument register by following the control-

flow graph and then insert our special instructions before the call instruction.

59

For the example in Listing 3.13a, we find two instructions in function

index2adr access the argument register, which are shown in Listing 3.13b.

Since we only find argument register reading instructions, they cannot be di-

rectly used to prove that this function has two arguments. Therefore, we do not

directly insert them into function lua_toboolean, but using our special in-

structions to tell the training process that they are inserted by us. Specifically,

we replace these instructions’ opcodes with unused opcodes defined in Intel

Manual [41]. Different kinds of opcodes will be replaced by different values.

∗ One-byte opcode. 0xd6 is used to replace it.

∗ Two-byte opcode and the operand is integer. 0x0f 0x25 is used to re-

place it.

∗ Two-byte opcode and the operand is floating-point. 0x0f 0x27 is used

to replace it.

∗ Three-byte opcode and the operand is integer. 0x0f 0x38 0x51 is

used.

∗ Three-byte opcode and the operand is floating-point. 0x0f 0x38 0x53

is used.

The inserted special instructions are shown in Listing 3.13a with gray back-

ground. Now we will use the new function with inserted instructions to per-

form training. Similarly, we also do this kind of analysis for the testing set and

insert our special instructions.

– Arguments are not used (denoted as Unread). There are some cases that

we have to want an unused argument, usually due to the function has to con-

form to a fixed prototype. For example, when it is virtual or it is going to

be called from a template. However, the label provided by EKLAVYA in the

training set always contains these unused arguments, which may confuse the

training process. As shown in Listing 3.2, the first and third arguments of

jpeg_free_large are not used, but the label used in the training set is it

60

1 00000000000342 a8 <a r e m u l a p p e n d >:
2 : 48 o f 25 c7 op %r d i
3 : 48 0 f 25 c6 op %r s i
4 : 48 0 f 25 c2 op %rdx
5 : 0 f 25 c1 op %ecx
6 : 41 0 f 25 c0 op %r8d
7 342 a8 : 48 8b 05 19 8 e 2 f 00 mov 0 x2f8e19 (% r i p) ,% r a x
8 342 a f : 48 85 c0 t e s t %rax ,% r a x
9 342 b2 : 74 0b j e 342 bf

10 342 b4 : 48 83 ec 08 sub $0x8 ,% r s p
11 342 b8 : f f d0 c a l l 352 b0

Listing 3.14: Inserted instructions at caller sites

has three arguments. In this case, we will correct the label so that now the

training model tells us how many arguments are used by a function rather than

how many arguments it has. Therefore, in the training set, we label function

jpeg_free_large uses two arguments.

For the unused arguments that do not have the attribute

__attribute__((unused)), we make use of an LLVM pass to

correct the label at the callee and caller site. Otherwise, we perform static

binary analysis based on TypeArmor to check how many argument registers

are actually used and correct the corresponding labels, the call sites that call

those functions do not need to be corrected as they always set the argument.

I2: Missing argument-setting instructions (denoted as Wrapper). As de-

scribed in TypeArmor [85], if a caller is in a wrapper function, the compiler may

not need to reset all argument registers but simply ‘pass them through’ directly

from its caller when optimization is enabled.

As shown in Listing 3.14, EKLAVYA only uses these five instructions (instruc-

tions in white background) to infer the number of arguments for the caller at

address 0x342b8. We can find none of them access the argument register, but

the input to the RNN is it has five arguments. It may cause EKLAVYA to infer

the number of arguments for callers incorrectly.

For this case, we may perform the backward analysis and find all possible argu-

61

ment setting instructions and then insert them into the wrapper functions. How-

ever, since all argument registers can also be used to store temporary values, this

kind of backward analysis may include many “noisy” instructions. Therefore,

instead of performing backward analysis, we insert our special instructions to

represent which argument register is accessed by the callee of a call instruction.

For the example in Listing 3.14, we find the function at address 0x352b0 has

five arguments, so we insert our special instructions for them at the entry of the

wrapper function, and the inserted instruction is shown in gray background in

Listing 3.14. We use the same instruction encoding mechanism used in Intel

manual to encode our special instructions, the difference is we always use two-

byte opcode 0x0f 0x25 for integer arguments and 0x0f 0x27 for floating-

point arguments.

We perform static binary analysis based on TypeArmor without inter-procedural

backward analysis to find all callers whose arguments are not set in the function

body. Specifically, we identify how many argument registers are set for each

caller and then compare it with the ground truth. We say a caller in the wrapper

function does not set the argument if the static analysis result is smaller than the

ground truth, then we will insert the special instruction for this caller.

I3: Irrelevant instructions (denoted as Irrelevance). EKLAVYA makes use of

the entire instructions of a function as the input to the training process. However,

there are many instructions that are unlikely to be related to the identification of

the number (types) of arguments. This kind of “noise” may affect the perfor-

mance of machine learning as shown in [76]. We want to make the deep learning

approach perform better by eliminating “noise” in the training and testing set,

allowing it to focus on the part of the binary that matters.

Therefore, we try to eliminate those irrelevant instructions. Specifically, we say

one instruction is relevant if it accesses any argument register or stack address.

Meanwhile, any branch instruction is considered to be relevant too. For exam-

62

1 46 f019 : mov 0x8(% r12) ,% r a x
2 46 f01e : mov 0 x348(% r a x) ,% r a x
3 46 f025 : mov $0x1 ,% e s i
4 46 f02a : mov %r12 ,% r d i
5 46 f02d : c a l l q 407 f30

a: 32-bits immediate value

1 401 c13 : mov 0x30(% r15) ,% r c x
2 401 c17 : mov $0x1 ,% e s i
3 401 c1c : mov $0x1000 ,% edx
4 401 c21 : mov %rax ,% r d i
5 401 c24 : c a l l q 4020 c0

b: 64-bits immediate value

Listing 3.15: Different integer types use the same instruction

ple, the irrelevant instructions for function lua_toboolean are shown in List-

ing 3.13a with dark-gray background.

I4: Undistinguishable cases

– Argument registers are used for other purposes (denoted as Temp). As

described in Section 3.1.2, all argument registers could also be used as

scratch registers to store temporary values. It may make the identification

of the function signature at the caller site more difficult since the training

process may not distinguish whether one register is used to pass argument

or store temporary value.

– Undistinguishable argument type (denoted as Undis-type). EKLAVYA

considers all kinds of integers (e.g., bool, short, int, and long) as type int;

we also want to learn the exact type (width) for each argument so that this

kind of information can be used to help CFI enforcement.

However, there are cases that different kinds of integer types will use the

same kind of instructions, especially for type int, long, and pointer.

As shown in Listing 3.15, the types of the second arguments for these two

callers are int and long respectively. However, we can find the same

instruction mov $0x1,%esi is used to pass the second argument. It

may confuse the training model to incorrectly infer a 64-bit argument to be

32-bit.

Since we cannot distinguish the actual argument type and the number of argu-

ments, we propose to output the top five prediction results rather than only the

63

top one. For the example in Listing 3.15b, the top five outputs for the type of the

second argument are [int32, int64, pointer, float, int8] with probability [8.76e-

01,1.24e-01,3.18e-05, 2.23e-05, 2.44e-07]. We can find it has a high probability

that its type is int64 rather than int32. In the current implementation, in the top

five outputs, if we find the probability of one output is not less than 10% and the

predicted result is equal to the ground truth, we say the predicted result is correct.

With these solutions, our goal is to learn a model which is used to decide two

properties for a target function a.

• Number of arguments. At the callee site a, it is the number of arguments

used by it. At the caller site, it is the number of arguments passed to it.

• Types of arguments. For each argument of function a, it is defined as: τ ::=

int8|int16|int32|int64|pointer|struct|float

Different from the struct used in EKLAVYA, we only use struct to represent

the argument whose aligned size is larger than 16 bytes and must be passed

onto the stack. We also don’t have type enum and union used in EKLAVYA

since the type of an enumeration (union) argument shall be the type of the

container type. In other words, the actual type of an enum (union) argument

is always in τ .

3.2.3 Evaluation

In this section, we evaluate the accuracy in identifying the number and types of

arguments. Our experiments are performed on a server containing 2, 32-core AMD

ryzen threadripper 3GHz CPUs with 128GB of RAM and 4 GeForce RTX 2080 Ti

GPUs with 12GB of memory. We use the GPU to perform the training. The neural

network and data processing routines are written in Python, using the Tensorflow

platform [2].

64

We base our ground truth on information collected by an LLVM [44] pass and

on DWARF v4 debugging information [21] which is the default setting for gcc and

clang. We use LLVM to collect source-level information, including the number

and types of arguments for each function and callers. We also record the source

line numbers of functions and callers. We then compile the test applications with

DWARF information and link the source-level line numbers with binary-level ad-

dresses using the DWARF line number table. Different from EKLAVYA which ob-

tains the ground truth by parsing the DWARF debug information, the ground truth

we obtained is more fine-grained. For example, if one function has an argument

whose type is a structure and the size of it is less than 16-bytes, it will be passed by

two consecutive integer argument registers. In this case, the collected ground truth

by LLVM is this function has two arguments rather than one.

Dataset

We use the same dataset used in EKLAVYA to generate the binary, including binu-

tils, coreutils, findutils, sg3utils, utillinux, inetutils, diffutils, and usbutils but com-

piled with the latest compiler version. We only focus on function signature recovery

in x86-64 Linux, and the binary is generated by using two commonly used compil-

ers: gcc-10 and clang-10, with different optimization levels ranging from O0 to

O3. Specifically, it contains 2,584 different binaries, 51,907 distinct functions, and

104,046 direct callers.

The statistics on the number of arguments and the type of argument are shown in

Table 3.11 and Table 3.12 respectively. We can find most functions have less than

three arguments. Therefore, we only infer the types for the first three arguments.

For the first three arguments, most of them are pointers, 32-bit integers, and 64-bit

integers.

We also reported the number of Prop, Unread, Wrapper, and Temp in Ta-

ble 3.13. We can find unoptimized binaries are more likely to use argument registers

to store temporary values. In the dataset, the number of intricacy cases in binaries

65

Table 3.11: Number of arguments of functions in dataset

Opt Number of Arguments (%)
0 1 2 3 4 5 6 7 8 9

O0 7.36 32.50 31.41 18.11 7.21 3.29 0.08 0.01 0.02 0.01
O1 9.58 30.26 30.46 17.27 6.72 3.27 1.37 0.58 0.37 0.12
O2 8.93 27.43 31.49 18.02 7.43 3.72 1.61 0.72 0.48 0.19
O3 7.76 21.50 32.97 20.12 9.38 4.53 2.20 0.86 0.45 0.24

compiled by “-O1” is more than binaries compiled by “-O2” and “-O3”.

We use 5-fold cross-validation to perform training. Specifically, we randomly

split the identified intricacy cases in Table 3.13 into five folds (one used for testing,

and the remaining is used for training). For other functions (callers), we randomly

split each utility package into five folds. Note that the training set contains all

binaries of one instruction set, compiled with multiple optimization levels from both

compilers. The test results are reported on different categories of optimizations for

different compilers.

Accuracy

Our goal is to evaluate the accuracy of prediction for the four tasks by using the ap-

proach we proposed in Section 3.2.2 to solve the intricacies we identified. The final

results are shown in Table 3.14 and Table 3.15. Baseline means we use EKLAVYA

to perform training and testing on the same dataset but without fixing the intricacy

we identified.

We can find our approach effectively improve the accuracy in identifying the

number of arguments at the callee site (Task 2) when optimization is enabled, es-

pecially for functions compiled by ”-O1”. This is because functions compiled with

optimization ”-O1” has more cases we identified as shown in Table 3.13, our ap-

proach can improve more on it. According to the analysis result of the third model

in the 5-fold cross-validation models, we find for case Unread, our approach can

correctly identify the number of arguments for more than 90% functions that are

misidentified in EKLAVYA. For functions in case Prop whose number of arguments

are misidentified in EKLAVYA, our approach can correctly identify the number of

66

Table 3.12: Types of arguments of functions in dataset

Opt Type Argument Index (%)
1 2 3 4 5 6 7 8 9

O0

int8 0.95 1.39 2.12 2.27 4.00 48.28 30.77 20.00 66.67
int16 0.15 0.13 0.30 0.18 0.69 6.90 7.69 - -
int32 16.41 19.06 21.16 26.36 29.52 3.45 40.77 10.00 -
int64 4.00 11.78 15.16 17.02 19.03 3.45 0 - 33.33

pointer 78.32 67.46 60.96 53.91 45.38 17.24 30.77 70.00 -
float 0.12 0.07 0.26 0.27 1.38 6.9 - - -
struct 0.04 0.11 0.03 0 0 13.79 - - -

O1

int8 0.86 1.32 2.12 2.05 2.43 2.30 3.03 1.60 5.17
int16 0.05 0.11 0.22 0.26 0.56 0.21 0.43 - -
int32 15.49 18.86 22.18 28.09 33.33 39.25 47.19 44.00 60.34
int64 3.24 11.56 14.54 18.57 16.15 11.90 6.06 6.40 5.17

pointer 80.20 68.00 60.68 50.85 47.06 45.51 43.29 48.00 29.31
float 0.13 0.06 0.24 0.17 0.47 0.21 - - -
struct 0.02 0.09 0.02 - - 0.63 - - -

O2

8-bit 0.76 1.02 1.79 1.44 2.10 1.94 2.60 0 5.13
16-bit 0.06 0.08 016 0.22 0.30 - - - -
32-bit 17.50 17.53 22.09 29.46 32.93 43.37 38.05 51.76 58.97
64-bit 2.52 11.35 14.22 18.27 14.22 9.39 3.90 3.53 -

ptr 79.10 69.91 61.45 50.61 49.85 44.66 45.45 44.71 35.90
float 0.07 0.05 0.29 - 0.60 - - - -
struct 0 0.06 - - - 065 - - -

O3

8-bit 0.96 1.01 2.34 1.53 4.40 4.24 5.56 0 6.25
16-bit 0.04 - 0.36 0.38 0.80 - - - -
32-bit 17.92 17.59 22.81 31.17 32.40 36.44 38.89 27.59 31.25
64-bit 2.34 11.16 13.53 17.40 12.00 5.93 1.85 3.45 6.25

ptr 78.70 70.18 60.78 49.33 49.60 53.39 53.70 68.97 56.25
float 0.04 0.05 0.18 0.19 0.80 - - - -
struct - - - - - - - - -

arguments for more than 50% of them.

The accuracy in identifying the number of arguments from the caller (Task 1)

doesn’t improve too much. We use the median model in the 5-fold cross-validation

models to perform the analysis and find EKLAVYA can accurately identify the num-

ber of arguments for all callers which use argument registers to store temporary,

but for other callers, it may misidentify that one register is used to store temporary

value. This kind of inaccuracy can be mitigated by using the top five outputs. Mean-

Table 3.13: Number of intricacy cases

Opt #Prop #Unread #Wrapper #Temp
O0 - - - 6,803
O1 1,182 1,189 819 3,218
O2 349 568 82 1,630
O3 78 151 6 266

Total 1609 1908 907 11917

67

Table 3.14: Accuracy in identifying the number of arguments

Task Opt Our approach Baseline
clang gcc total clang gcc total

Task 1

O0 96.87 97.79

95.19

95.91 97.68

93.50O1 94.51 92.51 91.28 90.40
O2 96.07 90.80 93.32 88.57
O3 97.96 93.53 95.24 92.65

Task 2

O0 99.22 98.74

95.80

98.95 98.46

92.20O1 92.67 93.62 84.80 87.50
O2 94.78 93.56 90.98 88.67
O3 95.96 95.45 94.60 91.73

Table 3.15: Accuracy in identifying the type of argument

Task CPL Opt Our Approach Baseline Our Approach (top1)
1st 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

Ta
sk

3 cl
an

g

O0 97.34 94.44 93.78 96.94 92.97 92.51 96.65 92.54 92.16
O1 97.26 93.83 93.29 96.78 92.30 92.67 96.71 92.09 92.00
O2 98.88 96.88 96.63 98.02 95.62 96.59 98.28 95.26 95.63
O3 98.44 97.93 98.30 97.97 97.16 96.56 98.05 96.37 98.14

gc
c

O0 97.40 93.09 90.73 97.33 91.54 91.05 96.72 90.56 88.16
O1 97.03 92.20 91.17 96.39 90.61 90.83 96.12 89.26 89.23
O2 96.27 91.74 91.57 95.76 91.10 91.42 95.25 88.95 89.39
O3 97.58 93.79 93.68 98.03 94.01 94.77 96.95 92.28 92.40

Ta
sk

4 cl
an

g

O0 97.32 91.70 88.70 96.18 88.76 84.42 96.62 89.71 85.32
O1 95.58 89.62 86.64 93.86 86.80 84.07 94.41 86.82 83.72
O2 97.89 94.38 91.66 97.37 93.14 90.63 97.21 92.63 89.79
O3 98.60 96.82 91.19 97.49 94.75 89.67 98.32 95.10 88.42

gc
c

O0 97.06 91.47 87.14 95.85 88.18 83.42 96.12 89.13 84.06
O1 96.92 92.16 88.50 95.75 89.21 86.54 95.94 89.93 85.54
O2 97.76 92.98 90.39 96.71 91.23 88.50 96.77 90.96 86.67
O3 97.73 95.23 93.26 97.58 94.69 91.73 97.17 93.34 91.54

while, our approach by inserting special instructions for callers in wrapper functions

makes the number of arguments for those callers all correctly identified (19 of them

are misidentified in EKLAVYA). Since the number of cases for callers in wrapper

functions is small, we believe if there are more cases, we can improve the accuracy

more.

For the argument type recovery from the callee site (Task 4), we can find our

approach improves the accuracy in identifying the type for the second and third

arguments. This kind of improvement comes from the benefit of using the top five

outputs. We also find the most inaccuracy comes from the misidentification between

a pointer and a 64-bit integer. For the first argument, most of them are 32-bits

integers and pointers as shown in Table 3.12, so the accuracy in identifying its type

68

is much better.

The accuracy in identifying the type of an argument at the caller site by making

use of our approach is comparable to the result of EKLAVYA. If we only use the

top one output as the predicted label (the result is shown in the last three columns

of Table 3.15), we can find the accuracy in identifying the argument type in a more

fine-grained manner is much lower, especially for binaries compiled by gcc. This

is because there are a large number of misidentifications between different kinds of

integers and between 64-bit integers and pointers. For binaries compiled by clang,

the main misidentification comes from the indistinguishability between integers and

pointers.

3.3 Summary

In this chapter, we study how compiler optimization impacts function signature re-

covery implemented by TypeArmor and τCFI. Our study shows that compiler opti-

mization has important impact on function signature recovery and potentially results

in unmatched function signatures at callees and callers. In order to better deal with

these optimizations, a set of improved policies is proposed, with results showing

that most intricacies identified earlier being mitigated. Meanwhile, we propose an

enhanced deep learning approach with domain knowledge included to recover func-

tion signature accurately.

The first part of this chapter is based on our previously published work [48] with

no major changes.

69

Chapter 4

Control-Flow Carrying Code

4.1 Introduction

In the previous chapter, we introduce the approach to generate a more accurate CFG

by making use of function signature matching, in this chapter, we will show how to

implement the CFI policy securely.

An assumption made in most existing CFI approaches, including coarse-

grained [97, 94] and fine-grained [57, 58, 84] ones, is that read-only data and

code sections cannot be overwritten by attackers. For example, CFI proposed by

Abadi et al. [3] relies on read-only tags inside the code segment, and numerous

approaches use a table structure (made read-only) to store valid targets of indirect

branches [97, 57, 58]. However, there are scenarios in which such page-level pro-

tection is unavailable, e.g., bare-metal systems which do not have a Memory Man-

agement Unit (MMU) and applications with dynamically generated code. More-

over, data race attacks [96], Rowhammer attacks [11] and Data-Oriented Program-

ming (DOP) [40] have demonstrated that it is possible to gain arbitrary memory

read and write access.

In this chapter, we explore the possibility of enforcing CFI in the absence of

such an assumption. Specifically, we look into encoding CFI policies into the ma-

chine instructions directly without relying on policies specified in additional data

70

structures (i.e., the read-only table structures in existing CFI approaches) or insert-

ing CFI checks into the code segment. The general idea is to embed a statically

constructed CFG to the instructions, execution of which is conditioned on correct

control flows. In this way, each intended instruction will carry a proof that can val-

idate the control-flow transfer. Unintended instructions cannot be executed as the

proof in these instructions are not correct. Intuitively, instructions with CFG em-

bedded can be seen as a proof-carrying code [56], where this proof is self-contained

in the code rather than being encoded into a separate table. The challenge is how to

embed the CFG into the instructions and how to correctly execute them at runtime.

Inspired by the framework of Instruction-Set Randomization (ISR) [42] where

instructions of a program are encrypted with a secret key, we present Control-Flow

Carrying Code ,C3, which encrypts each basic block in the program with a key

derived from the CFG. More specifically, the key is derived from (the addresses of)

valid callers of the basic block to ensure correct control-flow transfers. At runtime,

only the valid callers (their addresses) could enable the correct reconstruction of the

key to decrypt the basic block. In this way, C3 manages to embed and enforce CFI

in the program instructions.

However, two challenges remain in making C3 practical. First, a basic block

may have multiple valid callers. These valid callers have different addresses, while

the successor block has to be encrypted with a single key. How does C3 enable the

reconstruction of the single correct key by all the valid control-flow transfers? To

address this challenge, C3 utilizes the secret sharing scheme [75] to make the key

shared among valid callers.

Although secret sharing helps solve this important challenge at a high level, we

encounter more challenges in its application in our setting. For example, secret

sharing requires that all (a variable number of) callers of the basic block be on the

same secret sharing curve. The implication is that once we have the curve fixed,

addresses of these callers can no longer take arbitrary locations but have to be on

the secret sharing curve determined. This imposes extra challenges in laying basic

71

blocks in the text segment of the program. To address this, we design an algorithm

to redistribute basic blocks to positions satisfying the secret sharing curve.

We have implemented C3 that consists of two components, one that performs

binary rewriting to redistribute and encrypt basic blocks, and the other as a plug-in

to an existing instrumentation platform to assist runtime execution of the rewrit-

ten executable. We apply C3 to a number of server and non-server applications

on the Linux platform. Our experimental results demonstrate that C3 effectively

defends against control-flow hijacking attacks and at the same time, introduces re-

alistic runtime performance overhead for server applications comparable to existing

Instruction-Set Randomization (ISR) implementations on the same instrumentation

platform. Similar to the arguments in ISR systems, we believe that such overhead

could be significantly reduced with a hardware-assisted platform.

4.2 Overview of C3

4.2.1 Threat Model and Assumptions

The proposed defense, C3, is aimed to protect a vulnerable application against

control-flow hijacking attacks such as ROP attacks. The application to be protected

may have some vulnerabilities that can be leveraged by an attacker to inject an ex-

ploit payload (code or data). We focus on user-space attacks leaving kernel exploits

out of our scope. Specifically, we assume that:

• The target program does not contain self-modifying or dynamically-generated

code.

• Attackers could use attacks to bypass W⊕X, such as Data-Oriented Program-

ming [40], data race [96] and Rowhammer attacks [11], and could exploit in-

formation disclosure vulnerabilities to investigate the victim’s process mem-

ory.

72

Figure 4.1: Example of secret reconstruction.

• Since the current implementation of C3 is on top of the popular instrumenta-

tion platform Pin, we assume that attackers do not target Pin in their attacks

and the partial memory segment managed by Pin (e.g., the code cache) is se-

cure. This assumption can be removed if C3 is supported by native hardware.

4.2.2 Embedding CFG to Instructions

Rather than consulting additional information stored in read-only memory, we pro-

pose to embed CFG to instructions. An instruction with CFG embedded can check

the integrity of the control flow automatically during the execution without querying

other data structures. In particular, C3 embeds the CFG information by encrypting

each basic block (an idea inspired by ISR [42]) with a key generated from control-

flow dependent information. At runtime, the basic blocks are decrypted using a key

reconstructed from the actual control-flow transfers taken. Only when the correct

control flow paths are taken will the instructions be decrypted correctly.

In Figure 4.1, each node represents an encrypted basic block while edges indi-

cate control flows. The solid edges represent valid control flows with Si indicating

the encryption key for basic block i. S3 and S4 are generated according to the valid

control-flow path < 1, 3 >, < 2, 3 > and < 3, 4 >. When there is an invalid

control-flow transfer from node 2 to 4 denoted by the dotted edge, a wrong key S ′4

is constructed which would result in illegal instruction faults.

Although the idea sounds straightforward, there are multiple design questions

73

Figure 4.2: System overview of C3.

and challenges. First, what information do we use to generate the key? Such in-

formation needs to be both statically and dynamically available, and it shall allow

enforcement of CFI. How do we deal with basic blocks involved in multiple control

flows, which may lead to different keys constructed dynamically? A simple solution

is to insert (constant) shares at the caller and callee with which the secret can be re-

constructed at runtime. However, such an approach does not provide Control-flow

integrity because an attacker can reuse the share at other caller sites.

Our solution is to use the addresses of the branch transfer instruction and its

target as the shares since they capture the control transfer information precisely. To

deal with basic blocks involved in multiple control flows, we use basic block redis-

tribution and secret sharing [75] to encode the key. Figure 4.2 shows an overview

of C3, consisting of two components.

• Embedding CFG. C3 transforms branch transfer instructions (indirect

branches, conditional jumps, and direct calls) to have a secret share embed-

ded, and then redistributes basic blocks to specific addresses so that all valid

callers are on the same secret sharing curve. Finally, basic blocks are en-

crypted with the secret.

• Enforcing CFI. Whenever the program attempts a control transfer, C3 obtains

the caller and callee addresses and reconstructs the key to decrypt the callee

basic block before control transfer takes place.

74

4.3 Detailed Design of C3

C3 takes as input a binary executable (without source code) and outputs a modified

executable with CFG embedded and CFI enforced.

4.3.1 Secret Sharing and Challenges

As discussed in Section 4.2, our approach of embedding CFG into instructions is

to encrypt a basic block and to enable decryption with any correct control transfer.

For a basic block with multiple callers, we can imagine that every valid caller shall

contribute to the encryption key; however, in a concrete execution, only one valid

caller is involved and the decryption key is reconstructed. This is where the idea

of secret sharing comes to our design — only part of the ingredients of the secret

key is needed for correct reconstruction. C3 uses Shamir’s approach [75] due to its

simplicity.

The next question is the degree of the secret sharing equation. A general guide-

line is to keep it small to minimize overhead. We can use a degree of two with the

source and target addresses of the control transfer — the minimum information to

fully describe a control transfer. However, this runs into the risk of a code pointer

disclosure exploit that discloses both addresses and allows an attack to decrypt the

basic block. To counter such an attack, we add one random value (called the master

key) which is unknown to the attacker to construct the secret key. Specifically, we

use a degree of three, with the secret sharing equation

y = a0 + a1x+ a2x
2 (mod M) (4.1)

where a0 is the secret key for encryption and decryption, and x, y are k-bit coordi-

nates extracted from the source and target addresses and the master key. C3 obtains

x and y from the lower-order odd- and even-index bits of an address (see Figure 4.3

for an example). Reconstruction of the secret follows Equation 4.2 with x = 0.

75

Figure 4.3: Extracting x and y for address 0x42eb3

Figure 4.4: Multiple callers to multiple callees

y =
3∑

i=1

yi
∏

1≤j≤3,j 6=i

(x− xj)(xi − xj)−1 (mod M) (4.2)

To support a basic block with multiple callers, we can simply relocate the caller

instructions so that they all lie on the parabola. However, a more challenging issue

is to support a set of basic blocks with the same (set of) callers. Figure 4.4 shows

an example with BB3 and BB4 having the same set of callers BB1 and BB2.

Following the secret sharing design we outline above, the two parabolas for BB3

and BB4 will have three intersection points — the master key, BB1, and BB2;

however, different parabolas could have up to two intersections only. Therefore, C3

not only needs to relocate the basic blocks to move them onto specific parabolas, but

also needs to perform some special transformations to control transfer instructions;

see the next subsection.

4.3.2 Instruction Transformation

In fact, the challenge shown in Figure 4.4 is not the only one that C3 needs to handle.

76

• C1: Multiple callers to multiple callees. In such cases, secret sharing curves

for the callees have three or more intersections (including the master key),

which is not possible for parabolas. We add an intermediate block between

the callers and callees so that multiple callees now have a single caller.

• C2: Basic blocks that are not freely movable. Examples of such blocks

include targets of ret instructions which must follow the call instruction,

and the default branch of conditional instructions which must follow the con-

ditional branch instruction. They cannot be moved freely to other locations

due to the implicit control flow. Our strategy is to transform the implicit con-

trol flows into explicit ones.

• C3: Basic blocks with multiple entries. Multiple entries will lead to differ-

ent keys derived for the same basic block. Our strategy is to break it up into

multiple basic blocks, each of which has a single entry.

In the rest of this subsection, we use an example (Figure 4.5) to explain how

C3 solves these complexities. Note that the transformation is via binary rewriting

without source code of the program.

Transforming indirect call and indirect jump instructions

C3 transforms an indirect call instruction into two push instructions (one to save

the return address and the other to save the target address onto the stack) followed

by a jmp instruction (jumping to a common stub); seeBB5 andBB5′ in Figure 4.5.

The stub block has a single ret instruction.

Although this simple transformation solves C1, it potentially enforces a relaxed

CFI policy since multiple control transfer targets now go through the same common

stub block. We stress that the same policy is used by existing coarse-grained CFI

methods [94, 97]. Moreover, C3 increases the difficulty of a stealthy attack since

the valid targets are now encrypted. We could use a more complicated secret shar-

ing curve to enforce a finer-grained policy, but C3 chooses this solution due to its

77

40e02e mov %eax, %eax

40e030 mov 0x41c828(,%rax,8),%rax

40e038 jmp *%rax

40e5e2 mov -0x38(%rbp),%eax

��

40e5f4 jmp *%rax

40e5f6 mov -0x48(%rbp),%rax

��

40e601 jmp 40e612

40e603 mov 0x2129ae(%rip),%rax

��

40e612 mov -0x48(%rbp),%rax

��

40e61e jne 40e65a

40e65a pop %rbp

40e65b ret

40e620 mov -0x88(%rbp),%rax

40e62c call *%rax

40e02e mov %eax, %eax

40e030 mov 0x41c828(,%rax,8),%rax

40e038 mov %rdx,%fs:0x60

40e041 mov %rax, %rdx

40e044 mov %rdx, %fs:0x68

40e04d jmp switch_stub

40e800 mov -0x38(%rbp),%eax

��

40e812 push %rax

40e813 jmp stub

40e815 mov -0x48(%rbp),%rax

��

40e820 jmp 41d0f2

40e822 mov 0x2129ae(%rip),%rax

��

40e831 mov -0x48(%rbp),%rax

��

40e83d jne con_stub_40e83d

40e843 jmp 0x40e845

40e845 mov -0x88(%rbp),%rax

40e851 push $0x40e89c

40e856 push %rax

40e85b jmp stub

40e89c pop %rbp

40e89d jmp ret_stub

switch_stub:

41ea27 mov %fs:0x60,%rdx

41ea30 jmp *%fs:0x68

con_stub_40e83d:

41d0eb jmp 0x40e89c

copied basic block BB7':

41d0f2 mov -0x48(%rbp),%rax

��

41e8fe jne con_stub_40e8fd

41e904 jmp 0x40e845

ret_stub:

41d0f1 ret

con_stub_41e8fd:

41e906 jmp 0x40e89c

Before instruction transformation

After instruction transformation

stub:

41d0f0 ret

Figure 4.5: An example of instruction transformation by C3

simplicity and enforcing a CFI policy not less secure than existing work. Note that

a byproduct of pushing the return address on the stack (the first push in BB5′) is

a solution to C2, as the return site can now be freely moved (explained later in the

next subsection).

Indirect jumps are handled in the same way, except that we only need one push

instruction since there is not a return address, e.g., BB2 in Figure 4.5. Additional

challenge arises here when the indirect jump was generated due to switch/case

statements during compilation, where local variables are sometimes accessed via

%rbp directly without changing %rsp. In such cases, we cannot simply push the

target address of the indirect jump onto the stack because doing so would overwrite

the local variables. Instead, we make use of thread local storage to store the tar-

get; see the indirect jump in BB1 of Figure 4.5. In order to transform an indirect

jump jmp *0x8(%rax) (the target is the address in memory) while having the

same switch stub with jmp *(%rax), we simply move the target of them to the

temporary register %rdx as shown in BB1′.

78

Transforming conditional jump instructions

Conditional jumps usually have a fall-through branch to the instruction that immedi-

ately follows, forming an implicit control transfer (C2). We turn this into an explicit

one by inserting a direct jump instruction as in BB4′ of Figure 4.5. Note that sim-

ilar to indirect jumps, conditional jumps may be followed by multiple callees (C1);

that is why we also add a stub block as shown in BB4′ of Figure 4.5.

Transforming return instructions

Handling return instructions (C1) is simple as we only need to add a common stub

which then returns to the call site; see BB6′ in Fig 4.5. We can enforce a finer-

grained CFI policy by classifying functions into indirectly-called and directly-called

ones, of which the latter does not need the additional stub block to be inserted

since any two of them cannot return to the same call site. We leave this security

improvement as our future work.

Transforming basic blocks with multiple entries

The multiple entries of a basic block correspond to different sets of ingredients for

the secret reconstruction, and therefore will result in different keys (C3). C3 handles

this by copying each entry (and subsequent instructions in the block) to a new ad-

dress and updating the corresponding control-flow instructions to the new addresses.

For example, BB4 in Figure 4.5 has two entries, 0x40e603 and 0x40e612, re-

spectively. C3 copies the second entry to a new address (BB7′) and directs the

control flow from BB3′ to it.

4.3.3 Basic Block Redistribution

Redistributing basic blocks so that all callers of a control transfer are on the same

secret sharing curve is an interesting and non-trivial problem. One can consider it as

a directed graph traversal in which whenever a node is traversed, we pick a parabola

79

and ensure that all its callers are on it by moving some or all the callers. However, if

the traversal is not carefully designed, we could get into a failure where a node that

has been previously moved on a parabola now needs to be moved again to satisfy

another parabola — a mission impossible. Therefore, the key is to design a directed

graph traversal algorithm that minimizes or eliminates such a risk.

C3 uses a customized Depth First Search (DFS) algorithm. Intuitively, DFS fits

our requirement in that it explores a branch to its ultimate leaves before backtracking

or stepping into a new branch, which avoids unnecessary moving of caller nodes of

branches already unexplored. We customize it with a “look ahead” capability which

switches to another nearby branch when continuing exploring the current branch

will get into a “mission impossible” case.

As shown in Figure 4.6 where shaded nodes denote those that had previously

been moved (and therefore cannot be moved again) and hollow ones otherwise,

continuing to traverse node A would run into a failure mode since node B will

have two caller nodes fixed, making it impossible to find a parabola for node B (it

already has three points determined including the master key). In this scenario, our

“look ahead” function will traverse the sub-branch of node B before going back to

traverse node A. This “look ahead” function is also used to decide the starting point.

By default, C3 picks a node with the largest number of callers as the starting point,

and then uses the “look ahead” function to check whether this starting point and one

of its callers target the same basic block. If they do, C3 uses this basic block as the

starting point. The detailed algorithm is shown in Algorithm 1.

Specifically, for a callee to be processed, we first check whether there is a prior

basic block using the “look ahead” mechanism described above. Then, for each

callee to be processed, we check whether there exists any of its callers that has a

fixed address. If there is, we use this caller (with a fixed address) to determine the

parabola; otherwise we randomly choose a caller to determine the parabola. The

special and additional processing here is that for each (caller or callee) address, we

need to check whether it will have the same x value with its callee, caller or the

80

Figure 4.6: “Look ahead” DFS search

master key, since the same x value could result in a failure in calculating the inverse

to compute the secret as in Equation 4.2. We generate a new random address if

when detecting this problem.

Once a parabola is determined, we move all the callers onto it by randomly

choosing an unused coordinate on the curve, which determines the new addresses

of the callers. After that, we use the DFS approach to process other basic blocks.

Since the redistribution of basic blocks might turn a short jump instruction into

a long jump, C3 turns every direct jump into a long jump (with a four-byte displace-

ment) before the redistribution process starts.

4.3.4 Encryption and Decryption

Before we present details of C3 in encrypting a basic block, we note that completely

separating code from data into different sections is a prerequisite for our encryption

to work. This is because the encryption of any data may disrupt program execution

when it is not decrypted at runtime. Fortunately, many linkers are configured to en-

sure such separation, and compiler optimizations like jump tables are also typically

moved to a non-code section. C3 does not include PLT calls in its protection as do-

ing so will result in .plt section containing non-continuous addresses due to basic

block redistribution (see the previous subsection), which in turn makes it impossible

for the dynamic loader to update addresses in the Global Offset Table (GOT).

C3 uses XOR as the encryption function due to its simplicity. The reconstructed

81

Algorithm 1 Basic Block Redistribution
1: procedure REDISTRIBUTION(callee, master key, k, p)
2: if callee not in key block then
3: priority callee = Look Ahead(callee)
4: if priority callee then
5: Redistribution(priority callee,master key, k, p)
6: callers = callee caller[callee]
7: moved callers = find moved callers(callers)
8: if len(moved callers) == 0 then
9: caller = random choose caller(callers)

10: if len(moved callers) == 1 then
11: caller = moved callers[0]
12: compute key(callee, caller,master key, k, p)

. % move all callers of this basic block to be on the curve %
13: for i in callers do
14: if i not in redistributed block then
15: move caller(callee, i,master key, k, p)

. % DFS: process callees of this basic block %
16: for i in caller callee[callee] do
17: Redistribution(i,master key, k, p)

. % backtracking %
18: for i in callers do
19: for j in caller callee[i] do
20: Redistribution(j,master key, k, p)

secret s from secret sharing is used as the seed to a pseudo-random function gener-

ator to generate a 16-bit key for encryption. The length of the secret s is a config-

urable parameter which has an upper bound of 16 because going beyond that may

result in distance between two instructions greater than 231. To fight against memory

disclosure attacks that attempt to compromise the master key, C3 stores the master

secret key outside of the binary into a database file, an approach used in some ISR

approaches [65]. We note that C3 could also perform load-time encryption on the

basic blocks using a session key (replacing the master key) to further improve secu-

rity [7, 60]. Also note that when the binary rewriting process is performed remotely,

we could make use of remote attestation [23] to securely distribute the master key.

We leave both ideas as our further work.

82

4.3.5 Transitioning from Unprotected to Protected Code

C3 supports partial protection of a program that contains protected (CFG embed-

ded) and unprotected (e.g., system or third-party libraries without CFG embedded)

code. However, the transitioning from unprotected to protected code needs special

attention since CFI checks will fail as the caller is not on the secret sharing curve of

the callee. Such transitioning typically occurs in two scenarios.

• Returning to protected code. This happens when protected code calls an

external library function and subsequently returns from it.

• Calling to a function in protected code. This happens when the external

library function (e.g., qsort, bsearch) calls a comparison function in the pro-

tected code.

We handle these cases by adding a dummy block before each return target and

function entry in the protected code, since we cannot accurately identify calls to a

library function and functions called by the library. This dummy block has only one

instruction that jumps to the actual target, and is encrypted with a key generated

from its address. C3 transfers control to the dummy block when detecting a control

transfer from unprotected to protected code, the range of which is recorded into a

(secure) database.

In this way, C3 ensures that these dummy blocks cannot be invoked by control-

flow transfers in the protected code and provides the same level of protection com-

pared with existing CFI techniques.

4.4 Implementation

We implemented C3 on an Ubuntu 64-bit system supporting inputs of ELF binary

executables without source code.

83

4.4.1 Binary Rewriter

We developed our custom binary rewriter in 6,500 lines of Python code with the

help of the disassembly engine Capstone [67]. The binary rewriter takes as input

the ELF executable to be protected and the configuration of k. Embedding CFGs to

an executable consists of three stages.

Before we embed control-flow information, we first obtain the static CFG. We

do this by modifying a recent work typearmor [85] (which builds on Dyninst [8]).

Secondly, we use Capstone to disassemble the binary. C3 uses the algorithm

described in Algorithm 1 to select basic blocks and then compute the secret for

each of them. Note that the redistribution algorithm will likely distribute basic

blocks apart from each other, and many NOP instructions need to be inserted into

the .text section.

In the last stage, we update the corresponding section information including

program entry point, program header, section header, items in relocation table,

.dynamic, and .dynsym sections. In addition, some instructions need to be

updated to maintain the original control flow:

• Direct jumps: We transform all indirect branch transfers to jump to the stub

first; see Section 4.3.2. Therefore, there are only direct jumps in the .text

section now. The target address of a direct jump is specified as a relative offset

from the address of the jump instruction, which needs to be recomputed after

basic block redistribution.

• PC-relative addressing mode: We also need to patch in-

structions with PC-relative addressing mode, which are often

used to generate position-independent code. The new x86-

64 architecture natively supports PC-relative addressing, e.g.,

lea ox200000 (%rip), %rbp adds 0x200000 to the program

counter and saves it to %rbp. To ensure correctness, C3 updates these

84

instructions by recomputing the new offset using the new program counter

and the address of the redistributed target.

• Function pointers: They are usually absolute addresses of indirect call tar-

gets that are loaded into registers. To fix these instructions, the absolute ad-

dress of the callee should be patched at the instruction that loads its address

into the corresponding register. This is done by identifying all possible func-

tion pointers with the help of the symbol table and patching them to the re-

distributed addresses. The same goes to global function pointers where C3

updates the address in data section.

• Data pointers: They need to be patched, too, because the starting offset of

the data section has changed. C3 patches them by adding the new offset to the

original value.

• Jump tables/virtual tables: C3 updates the base address of the jump table

by adding the new offset to it. Patching virtual tables follows the same mech-

anism.

4.4.2 Execution Environment

We make use of Pin [50] to implement the execution environment with 1,100 lines of

code in C++. It first reads from the secure database the master key and the protection

range and then installs a callback that intercepts the loading of all images to obtain

ranges of the unprotected memory. In addition to Pin, we can also make use of

the dynamic code optimization platform called DynamoRIO [12] to implement the

execution environment.

We then use the instrumentation callback at instruction granularity to detect a

branch and compute the key for the next basic block. The decryption of basic blocks

is performed by installing a callback that replaces Pin’s default mechanism of fetch-

ing code from the target process. If the instruction fetched is within the range of

85

protected code, we reconstruct the key from secret sharing parabola for decryption.

For code transitioning described in Section 4.3.5, we make use of

PIN_SetContextReg to set the value of %rip register to the address of the

dummy block which has just one instruction that jumps to the actual target, and

then use the PIN_ExecuteAt API to direct execution to it. For the transition

from protected code to unprotected code, C3 stops the decryption and let the code

execute as normal. Similar to other CFI approaches, the attacker can use gadgets in

unprotected code to construct code-reuse attack, which C3 cannot defend against.

To avoid performing frequent key reconstruction for direct branch transfer in-

structions, we cache the key for subsequent use. Therefore, each direct branch

transfer instruction corresponds to only one key reconstruction.

4.5 Evaluation

We first analyze the security of C3 and then measure its performance overhead with

real-world applications.

4.5.1 Security

C3 mitigates code-injection attacks in the same way Instruction-Set Randomization

defeats them — when control flow is redirected to injected code, C3 will decrypt it

into random bytes. The attacker could not prepare the correct encrypted code since

she does not know the master key.

C3 also mitigates most Code-Reuse Attacks (CRA) due to three reasons. First,

C3 generates a wrong key when an invalid control transfer happens, which results in

a random byte stream to be executed. Second, redistributing and encrypting basic

blocks makes it harder for attackers to analyze and locate gadgets, which defeats

most static CRA. Finally, the encrypted basic blocks result in little information

revealed even when an attacker manages to dump the execution memory, which

defeats most dynamic CRA.

86

Table 4.1: Comparison with existing CFI techniques.

Exploits

B
in

C
FI

[9
7]

C
C

FI
R

[9
4]

IF
C

C
[8

4]

kB
ou

nc
er

[6
2]

R
O

Pe
ck

er
[1

9]

C
3

Göktas et al [36] X X
Davi et al. [27] X X X
Conti et al. [22] X X X

Hu et al. [40] X X X X X

Comparison with existing CFI techniques

A number of recent proof-of-concept exploits have shown how existing coarse-

grained CFI techniques can be bypassed [36, 27, 22]. Although C3 also enforces

a coarse-grained policy, its unique handling of basic blocks (encryption) provides a

new defense to make these exploits unsuccessful. Table 4.1 compares various CFI

techniques with C3 on the CFI policy enforced and defense capability against the

exploits.

As shown in Table 4.1, existing instrumentation-based CFI methods [97, 94, 84]

do not insert checks for unintended control-flow transfers, making them vulnerable

to the exploit proposed by Conti et al. [22]. Such an exploit would not work on C3

as all instructions (intended or unintended) are encrypted. The exploit proposed by

Hu et al. [40] succeeds on all existing CFI methods as they rely on the assumption

that W⊕X is effective. Moreover, the content in the CFI table inserted by BinCFI

provides sufficient information about useful gadgets if there is memory disclosure.

However, since C3 does not have this problem because it does not insert any meta-

data. The first three CFI approaches in Table 4.1 also suffer from TOCTOU attack

— time of checking values of esp/rsp and time of executing ret, when the re-

turn address is stored in memory which could be modified by another thread. Under

the protection of C3, even if the address is modified by another thread, control flow

will transfer to cipher-text which will result in program crashing.

Exploits that use call-preceded gadgets [36, 27] cannot succeed on C3 since

basic blocks are redistributed to random addresses. We performed experiments to

87

verify the effectiveness of C3 on defending against CRA that uses call-preceded

gadgets using the test application ndh_rop from ROPgadget1, a publicly available

test set for ROP attacks. Our experiments verified that the payload that successfully

exploits ndh_rop failed to run on C3. Upon further investigation, we realized that

it generated an illegal instruction fault when the return instruction directs control

flow to the first call-preceded gadget. This is because this address is an invalid

instruction which does not carry a valid proof to reconstruct the correct decryption

key.

Compared with fine-grained approaches, e.g., Lockdown [63], which uses bi-

nary instrumentation to enforce CFI for different modules, C3 can achieve better

security as the attacker cannot make use of memory disclosure to traverse the mem-

ory of the victim program due to encryption of instructions. Basic block redistribu-

tion performed in C3 can also be seen as effectively making the coarse-grained CFI

policy finer-grained since the attacker cannot find the addresses of gadgets.

One may argue that the attacker could dump the protected code and do offline

analysis to decrypt it. However, even if the attacker dumps the protected code and

obtains the master key and the address of a basic block, she still has to try all pos-

sible encryption keys to see whether the basic block can be decrypted into valid

instructions. We performed such experiments and realized that there are usually

multiple such keys which have to be further tested on the resulting caller blocks for

validity checks, and such checks have to carry on for callers of the callers, which

makes it difficult for offline analysis to decrypt the protected code.

CFI effectiveness with AIR

Zhang and Sekar [97] propose using Average Indirect target Reduction (AIR) for

measuring the strength of CFI, which has become a common method of evalua-

tion [63, 87, 49]. It computes the average number of machine code instructions that

are eliminated as possible targets of indirect control transfers.

1https://github.com/JonathanSalwan/ROPgadget

88

https://github.com/JonathanSalwan/ROPgadget

Table 4.2: Average indirect target reduction.

Programs # of valid targets AIR
ends with indirect branch ends with direct branch

vsftpd (k = 9) 25 0 99.84%
Pure-FTPd (k = 10) 172 0 98.95%
ProFTPD (k = 11) 506 0 99.23%
httpd (k = 11) 171 0 99.74%
Nginx (k = 11) 125 0 99.81%

lighttpd (k = 10) 35 0 99.79%
Memcached (k = 10) 62 0 99.62%

average 99.57%

The formula used by Zhang and Sekar is shown in Equation 4.3, where n is the

number of indirect branch instructions in the program, and S is the total number of

instructions to which an indirect branch can transfer control flow, whose value is the

same as the size of code in a binary. |Tj| is the possible number of targets to which

indirect branch j can transfer control flow after CFI enforcement.

1

n

n∑
j=1

(1− |Tj|
S

) (AIR) (4.3)

In the case of C3, |Tj| is the possible number of targets that can be interpreted as

valid basic blocks for indirect branch j. Since we substantially increase the size of

the .text section, instead of enumerating all possible addresses (which requires

testing millions of addresses), we randomly choose 16, 384 addresses for effective

testing when k ≤ 10 and 65, 536 addresses for other k values. We consider all

basic blocks ending with indirect transfer instructions as valid, and those ending

with direct transfer instructions valid if their targets are in the .text section.

The results are shown in Table 4.2 with server applications. Interestingly, there

are few addresses that can be interpreted as valid basic blocks, and all of them end

with indirect transfer instructions. This is because C3 extends the displacement in

direct branches to four bytes, which makes the probability that a random sequence

be interpreted as a valid direct branch small. On average, C3 achieves an AIR value

of 99.57%, comparable to existing CFI approaches [97, 63].

89

JIT-ROP

JIT-ROP [79] is an attack against fine-grained randomization. It assembles ROP

gadgets “on-demand” without knowing the memory layout by exploiting the dis-

closure of a single code pointer. Specifically, the adversary traverses the memory

space that the leaked pointer points to, searches for gadgets and cross-page transfer

instructions to find new code pages and other useful gadgets. However, under C3,

a read performed from a code page yields cipher-text, which the adversary cannot

disassemble without knowing the decryption key. As such, an adversary cannot use

JIT-ROP to disclose new code pages to find gadgets.

To verify our intuition, we tried to use the ROP gadget finding tool peda2 to

identify gadgets in the protected binary nginx-1.4.0 after the loading phase,

simulating the full disclosure of the code segment. Many gadgets ending with ret

are found, which are chained together to form an attack payload. However, the gad-

gets found were based on encrypted basic blocks, which become invalid instructions

and lead the execution into an illegal instruction fault.

Blind ROP

Blind ROP [9] uses the response from the victim process (crash vs. no crash) as

a side channel to incrementally guess the position of a gadget. It assumes that

the adversary can disassemble the code pages to find the required gadgets. Since

the code pages are encrypted with C3, Blind ROP will not succeed. We applied

the exploit script provided by Bittau et al.3 to nginx-1.4.0 protected by C3,

and found that it made all worker threads “stuck” as they were all running into an

infinite loop of locating gadgets. Blind ROP uses a conservative implementation to

incrementally populate the stack to find a stack-based stop gadget to avoid hanging.

However, with C3, every attempt in transferring control to this stack-based stop

gadget results in a failure due to incorrect decryption of the callee block.

2https://github.com/longld/peda
3http://www.scs.stanford.edu/brop/

90

https://github.com/longld/peda
http://www.scs.stanford.edu/brop/

Control-Flow Bending

Control-Flow Bending (CFB) [15] bypasses conventional CFI that statically gen-

erates CFGs. CFB abuses certain functions whose executions may change their

own return addresses to point to any call-preceded site which allows the attacker to

“bend” the control flow. C3 mitigates CFB attacks by preventing the attacker from

locating call-preceded basic blocks — thanks to redistributing and encrypting of

basic blocks.

Although C3 successfully defends against these existing advanced control-flow

hijacking attacks, we acknowledge that it is not necessarily effective against an

attack specifically crafted for C3. We further discuss this possibility in Section 4.6.

4.5.2 Performance overhead

We evaluated C3 with three FTP servers (vsftpd, ProFTPD, and Pure-FTPd),

three web servers (Nginx, lighttpd, and Apache), a distributed memory

caching system (Memcached), and some common applications (image processing

tools sam2p, GraphicsMagic, and ImageMagics and bzip2). All programs

are executed with their default settings on a desktop computer with an Intel i7-4510u

CPU with 8GB of memory running x64 version of Ubuntu.

To benchmark web servers, we configured Apache Benchmark4 to issue 2,000

requests with 100 concurrent connections. For FTP servers, we configured pyftp-

bench benchmark5 to open 20 connections and request 100 files per connection

with over 100MB of files requested. To benchmark Memcached, we used mem-

slap6. We ran each experiment 10 times, ensuring that the CPUs were fully loaded

throughout the tests, and report the median.

Since C3 is implemented on top of the dynamic instrumentation platform Pin, we

measure the performance of C3 in terms of the additional execution overhead com-

4httpd.apache.org/docs/2.4/programs/ab.html
5http://code.google.com/p/pyftpdlib
6http://docs.libmemcached.org/bin/memslap.html

91

httpd.apache.org/docs/2.4/programs/ab.html
http://code.google.com/p/pyftpdlib
http://docs.libmemcached.org/bin/memslap.html

vsf
tpd

(k=
9)

Pure
-FTPD (k

=1
0)

Pro
FT

Pd
 (k

=1
1)

htt
pd

 (k
=1

1)

Ngin
x (

k=
11

)

lig
htt

pd
 (k

=1
1)

Mem
cac

he
d (

k=
10

)

sam
2p

 (k
=1

0)

bz
ip2

 (k
=1

0)

co
nv

ert
 (k

=1
3)

gm
 (k

=1
3)

av
g f

or
ser

ve
r

av
g f

or
co

mmon
 ap

ps

tot
al

av
g

0.0

0.5

1.0

1.5

2.0

2.5

3.0

N
or

m
al

iz
ed

 E
xe

cu
tio

n
Ti

m
e

Native execution
C3

C3 with encryption disabled
ISR

Figure 4.7: Overall overhead of C3. The result is normalized to the baseline execu-
tion time on unmodified Pin.

pared to these programs executing on an unmodified Pin v.3.5. To enable a better

understanding of the results, we also report the execution overhead of another sys-

tem that is built on top of Pin, namely Instruction-Set Randomization implemented

by Portokalidis et al. [65].

Execution Time

We report, in Figure 4.7, the execution time of each program under four settings:

native execution, ISR [65], C3 with encryption disabled, and C3 with encryption

turned on. Results are normalized to a baseline for its execution on unmodified Pin.

k was chosen to be the minimum that successfully distributes the basic block for

secret sharing, whose values are shown in brackets.

Being consistent with results reported in the original paper [65], ISR does not

incur observable slow down compared with execution on unmodified Pin since there

is no additional instrumentation. C3 presents very similar results when encryption

is disabled for the same reason. With encryption turned on, C3 experiences less than

10% overhead for server applications while non-server applications generally suffer

92

from significantly higher overhead. Note that when compared with their respec-

tive native executions, several server applications on C3 have very small runtime

performance, although the average runtime overhead is about 70%.

To gain a better understanding of contributions to such overhead and why non-

server applications perform worse, we conduct the next finer-grained analysis of

C3 to see which components of C3 are the main contributors to the overhead. We

first identify the following three main tasks of C3 that potentially contribute to the

performance overhead:

• Key Reconstruction (KR). This is performed for every branch in the pro-

gram, be it a direct branch (whose key reconstruction is denoted as dKR) or

an indirect branch (whose key reconstruction is denoted as iKR).

• Decryption. Since C3 uses XOR operation as in ISR [65], decryption incurs

minimal overhead as confirmed in Figure 4.7 in which ISR only results in a

small overhead.

• Execution Redirection (ER). This happens when execution transitions from

unprotected code to protected code. Since it requires saving and restoring the

entire register state [59], it could result in significant overhead.

Figure 4.8 shows the overhead of C3 with certain components disabled to more

accurately attribute the overhead to the corresponding components. This time, the

overhead is presented in seconds without normalization (to visualize the small dif-

ferences). We have two important observations.

First, iKR (whose contribution can be seen by comparing the bars for C3 and

those for C3 with iKR disabled) contributes more overhead than dKR (whose con-

tribution can be seen by comparing the bars for C3 with iKR disabled and those for

C3 with KR disabled). This is mainly due to optimizations C3 implements for direct

branches, where key reconstruction is done only once and results are cached for

subsequent decryption. Such optimization does not apply to indirect branches since

93

Figure 4.8: Detailed overhead of C3.

Table 4.3: Number of various branches executed

Programs iKR # dKR # ER #
vsftpd 3.99× 106 2.43× 107 1.38× 106

Pure-FTPd 1.09× 106 6.29× 106 2.49× 105

ProFTPD 5.07× 106 5.67× 107 1.68× 106

httpd 1.16× 105 4.82× 105 9.97× 104

Nginx 3.43× 103 2.51× 105 4.70× 103

lighttpd 1.75× 105 2.28× 106 6.31× 104

Memcached 2.37× 107 1.54× 108 7.64× 106

sam2p 2.22× 107 1.33× 108 1.22× 105

bzip2 1.36× 108 7.64× 109 5.83× 104

convert 2.55× 107 6.81× 107 4.36× 105

gm 1.14× 106 4.25× 107 1.21× 105

the control transfer target changes in each indirect branch. Therefore, applications

with more indirect branches suffer higher overhead on C3.

Table 4.3 records the number of indirect branches, direct branches, and transi-

tions from unprotected to protected code. Note that bzip2 has a larger number of

indirect branches executed, which explains its higher overhead on C3.

Our second observation from Figure 4.8 is on execution redirection ER. We

found that ER contributes significantly to the performance overhead for vsftpd,

proftpd, memcached and the non-server applications except bzip2, which can

be explained by the numbers in the last column of Table 4.3.

94

vsf
tpd

 (0
.21

MB)

Pu
re-

FT
Pd

 (0
.24

MB)

Pro
FT

PD
 (0

.75
MB)

htt
pd

 (1
.5M

B)

Ngin
x (

2.3
0M

B)

lig
htt

pd
 (0

.60
MB)

Mem
cac

he
d (

0.3
6M

B)

sam
2p

 (0
.92

MB)

bz
ip2

 (0
.19

MB)

co
nv

ert
 (5

.40
MB)

gm
 (3

.80
MB)

0

50

100

150

200

250

300

350

Fi
le

 si
ze

 (M
B

)

0.4 1.2 4.4 5.1 5.9 1.5 4.4 4.8 1.1

64.8 64.1

File size with smallest k File size with k=14 Smallest k

0

2

4

6

8

10

12

Sm
al

le
st

 k
 (b

it)

Figure 4.9: File size with different secret sizes.

Space Overhead

The redistribution of basic blocks in C3 makes use of a potentially large address

space with gaps among various basic blocks; see Section 4.3.3. The resulting size

of the binary executable mainly depends on the length of the secret, i.e., k. For

example when k = 12, the address of an instruction can be as big as 224.

Figure 4.9 shows the resulting file sizes after C3 processing with two settings —

one using a smallest possible setting of k (which varies among different programs)

and the other with k = 14. We argue that although the size of the binary increases

significantly with bigger values of k, storage is cheap and it is usually not an issue

with hard-disk space. That said, a larger k also results in slightly bigger runtime

overhead as more instructions are executed to extract the values of x and y from an

address, and key reconstruction could also require slightly more instructions exe-

cuted.

95

4.6 Discussion

4.6.1 Return-into-Pin

C3 provides CFI protection on the application but not the dynamic instrumentation

platform, i.e., Pin. An attacker, in theory, could perform an attack by returning

into instructions in Pin so that control is diverted directly into the gadgets found in

Pin. We call such an attack “return-into-Pin”. Such a control transfer would cir-

cumvent C3, enabling the attacker to successfully execute control-flow hijacking at-

tacks. Our design of C3 is compatible with other isolation hardening solutions, such

as Software-based Fault Isolation (SFI) [86], though, which can instrument memory

writes to check whether the application attempts to write to a page “owned” by Pin.

Another (probably better) defense is to implement the execution environment in a

more isolated layer such as the OS layer, the hypervisor layer, the hardware layer,

or even inside SGX [23].

That said, once instructions are in Pin’s code cache, Pin will not instrument

them but jump there directly, which improves the performance of C3. Meanwhile,

such optimization does not hurt security since Pin uses a local hash table for each

individual indirect branch transfer, which will contain only the correctly decrypted

targets. Any new targets will result in a hash table miss and basic block decryption.

4.6.2 Return-into-libc

In general, CFI does not defend against all return-into-libc attacks. Specifically,

C3 does not encrypt instruction sequences in the .plt section, and so any return

instructions can transfer control to entries in the .plt section. In order to pro-

tect these library function calls, one could statically compile the libraries into the

application.

96

4.6.3 Length of the Keys

Brute-force attacks have been introduced to reconstructing the encryption keys in

ISR [81], which is also applicable to C3. However, since we use a different key

for encrypting each basic block, such brute-forcing will be ineffective because a

successful attack typically requires the reconstruction of keys for multiple basic

blocks. To this end, we believe that using XOR as the encryption algorithm for

improved performance is justifiable, although C3 can definitely use a more secure

encryption scheme. We currently use a 32-bit master key since it is unique for the

entire program. C3 could improve its security with a longer master key of, say, 80

bits.

4.6.4 Fine-grained CFI Enforcement

C3 can be extended to enforce fine-grained CFI. For example, C3 can enforce the

fine-grained CFI policy for forward-edge indirect branch transfer instructions with

our improved policy described in Section 3.1.4 by classifying functions and indi-

rect call instructions into different clusters according to the number of arguments

they can accept, and then encrypting basic blocks with the more accurate set of

control transfers derived. We note that enforcing a finer-grained CFI policy could

likely reduce the execution time and space overhead of C3 due to fewer valid control

transfers on average and consequently less secret sharing and block redistribution

needed.

4.6.5 Other limitations

First, C3 relies on static analysis and rewriting of binaries. The current implemen-

tation does not support dynamically generated code or self-modifying code.

Second, C3 prevents attackers from directly reading the code and finding useful

gadgets. However, code pointers in data areas such as stack and heap are still vul-

nerable to indirect memory disclosure. For example, if the protected binary has a

97

format string vulnerability, the attacker can print out the valid memory locations for

return instructions, which may allow an attacker to use, e.g., call-preceded gadgets.

This is a rather general limitation shared by other techniques performing binary

rewriting [97, 94, 87].

Third, C3 renders caching and pipelining less effective. It is a limitation for

most ISR approaches, excluding those performing decryption when there are I-

cache misses and store plain text in the I-cache.

Lastly, C3 requires symbol names in the executable to enable patching function

and data pointers after basic block redistribution. It also requires that data and

code be completely separated to enforce instruction encryption. For binaries that

do not contain symbol information, we can use external tools, e.g., Unstrip7 and

others [66, 77], to restore the symbol information. Similarly, there are approaches

to identify data embedded within code [95, 97].

4.7 Summary

We present C3, a new CFI technique that embeds the CFG into instructions to per-

form CFI checks without relying on additional data structure like the read-only ta-

ble used in existing CFI approaches. It encrypts each basic block with a key that

can be reconstructed by any of its valid callers with the help of a secret sharing

scheme. During execution, C3 reconstructs the key when a branch transfer instruc-

tion is encountered. Our evaluation shows that C3 can effectively defend against

most control-flow hijacking attacks with moderate overhead.

The content of this chapter is based on our previously published work [47] with

no major changes.

7http://paradyn.org/html/tools/unstrip.html

98

http://paradyn.org/html/tools/unstrip.html

Chapter 5

Control-Flow Integrity Enforcement

with Dynamic Code Optimization

5.1 Introduction

Prior to the introduction of CFI in 2005, there have already been a lot of research

on dynamic code optimization to improve performance of dynamic program inter-

preters. For example, Wiggins/Redstone [32], Dynamo [5], Mojo [18], and Dy-

namoRIO [12]. Although most of these were not proposed by the security commu-

nity, there is at least one noticeable work called program shepherding [43] which

makes use of a general purpose dynamic optimizer RIO [12] to enforce security

policies. DynamoRIO and program shepherding provide nice interfaces for enforc-

ing security policies on control transfers, which makes us believe that they can be

good candidate architectures for CFI enforcement. Since these well established and

mature dynamic code optimizers are proven to introduce minimal overhead, we be-

lieve that they could result in a system that significantly outperforms existing CFI

implementations.

In this chapter, we present DynCFI that enforces a set of security policies on top

of DynamoRIO for CFI properties. We detail how this set of policies are designed

and implemented, and show that DynCFI achieves similar security properties when

99

compared to a number of existing CFI implementations while experiencing a much

lower performance overhead of 14.8% as opposed to 28.6% of BinCFI . We stress

that DynCFI is not necessarily an CFI enforcement implementation that has the

lowest performance overhead. Instead, our contribution lies on the utilization of the

dynamic code optimization system which is a matured system proposed and well

studied before CFI was even introduced, and to the best of our knowledge, DynCFI

is the first implementation of CFI enforcement on top of a dynamic code optimizer.

In the second half of this chapter, we further investigate the exact contribution to

this performance improvement. We propose a three-dimensional design space and

perform comprehensive experiments to evaluate the contribution of each axis in the

design space in terms of performance overhead. Among many interesting findings,

we show that traces in the dynamic optimizer, which consist of cached basic blocks

stitched together, had contributed the most performance improvement. Results show

that traces have decreased the performance overhead from 22.7% to 14.8%. We also

evaluate how branch prediction and indirect branch lookup have changed the perfor-

mance. To the best of our knowledge, this is the first comprehensive evaluation on

the performance overhead contributed by various components of the system, and we

believe that this detailed understanding would aid future research and development

of efficient CFI enforcement systems.

5.2 Design, Implementation, and Security Compari-

son

Our objective is to design a practical and efficient CFI enforcement without the

extra requirement of recompilation or dependency on debug information. In this

section, we first present the design of DynCFI that can be effectively enforced on

DynamoRIO and the implementation of it, and then compare the security property

it achieves with some existing CFI (and related defense) approaches. Before intro-

100

Figure 5.1: Overview of DynamoRIO

ducing the details of DynCFI , we first overview the workflow of DynamoRIO.

5.2.1 DynamoRIO

Figure 5.1 shows an overview of DynamoRIO [12], with darker shading indicating

the application code to be monitored.

DynamoRIO first copies basic blocks into the basic block cache. If a target basic

block is present in the code cache and is targeted via a direct branch, DynamoRIO

links the two blocks together with a direct jump. If the basic block is targeted via

an indirect branch, DynamoRIO goes to the indirect branch lookup routine to trans-

late its target address to the code cache address. Basic blocks that are frequently

executed in a sequence are stitched together into the trace cache. When connecting

beyond a basic block that ends in an indirect branch, a check is inserted to ensure

that the actual target of the branch will stay on the trace. If the check fails, it will

go to the indirect branch lookup routine to find the translated address.

To make itself a secure platform on which programs are executed, DynamoRIO

splits the user-space address into two modes: the untrusted application mode and the

trusted and protected RIO mode. This design protects DynamoRIO against memory

corruption attacks. Meanwhile, the beauty of DynamoRIO (and the corresponding

good performance) come mainly from the indirect branch lookup which is very

efficient in determining control transfer targets with a hashtable. This hashtable

101

Figure 5.2: Shadow stack operations

maps the original target addresses with addresses in the basic block cache and trace

cache so that most control transfers require minimal processing.

5.2.2 Returns

The most frequently executed indirect control transfer instructions are returns.

DynCFI maintains a shadow call stack for each thread to remember caller infor-

mation and the corresponding return address. The whole process is shown in Fig-

ure 5.2. For a call instruction, we store the return address on our shadow stack. For

a return instruction, we check whether the address on the shadow stack equals to the

address stored at the stack memory specified by %esp. Such a shadow stack enables

DynCFI to apply a strict policy that only returning to the caller is allowed, although

a relaxed version could also be applied to reduce overhead.

5.2.3 Indirect jumps and indirect calls

We further classify indirect jumps into normal indirect jumps and PLT jumps, such

as jmp offset (base_register), which are used to call functions in other

modules, target of which can only be exported symbols from other modules. To

obtain target information for every indirect branch, we use the static analysis engine

provided by another well-known CFI enforcement BinCFI [97], which combines

linear and recursive disassembling techniques and uses static analysis results to en-

sure correct disassembling. Targets of indirect calls are function entry points and

102

targets of indirect jumps are function entry points and targets of returns. Meanwhile,

targets of PLT jumps are exported symbol address. These valid jump and call tar-

gets are organized into three different hashtables to improve performance—one for

indirect jumps, one for indirect calls, and one for PLT jumps.

Most importantly, the shadow stack and hashtables we used can just be readable

and writable in the DynamoRIO mode, in the user mode, they are readable only, so

attackers cannot modify their contents.

5.2.4 Implementation

As discussed in Section 5.2.1, the indirect branch lookup routine in DynamoRIO

maintains a hashtable that maps original control transfer target addresses with ad-

dresses of code caches. The hashtable has to be built when the control transfer

occurs the first time though. This process, together with the dispatcher which is

invoked when matches are not found in the hashtable (see Figure 5.1), become the

natural place of our CFI enforcement, since CFI mainly concerns control transfer

targets.

We obtained the source code of DynamoRIO version 5.0.0 from the developer’s

website 1 and added about 700 lines of code (in C) to implement DynCFI . Most of

the additional code is added to the dispatcher where checks of control-flow transfers

are performed. Some code is also added to basic block cache building to implement

our shadow call stack and to initialize DynamoRIO to load the valid jump/call target

addresses into our own hashtables.

DynCFI does not implement the full sets of CFI properties originally proposed

by Abadi et al. [3]. In particular, we only perform checks on indirect control trans-

fers at the first time when the target of an indirect branch occurs. However, it does

not really impact security, and it is exactly the reason why DynamoRIO is widely

accepted as an efficient dynamic optimizer — original code is cached in short se-

1http://www.dynamorio.org/

103

http://www.dynamorio.org/

Table 5.1: Security comparison with other CFI and ROP defenses

Policy
Approach Return Indirect jump Indirect call PLT jump

BinCFI [97] Call-preceded
Function

entry,return
address

Function
entry

Exported
symbol address

CCFIR [94] Corresponding springboard section Nil

CFIMon [90] Call-preceded Any address in
the training set

Any function
entry Nil

ROPdefender [28] Caller Nil Nil Nil
kBouncer [62] Call-preceded Nil Nil Nil

LockDown [63] Caller

Function entry,
instruction in

the current
function

Function
entry Nil

DynCFI
First execution:
Caller, Others:
Call-preceded

Function
entry,return

address

Function
entry

Exported
symbol address

quences and security policies, if any, need only be checked the first time the code

cache is executed [12]. Subsequent executions of the same code cache will be al-

lowed (without checking) as long as the control transfer targets remain unchanged.

Any violations to our policy will miss the (very efficient) indirect branch hashtable

lookup and go back to the dynamic interpreter which will consider the control trans-

fer a first timer and perform all the checks (inefficient).

5.2.5 Security comparison

DynCFI provides comparable security properties with most existing CFI imple-

mentation and ROP defense solutions. Table 5.1 shows DynCFI (last row) when

compared to some of these other approaches.

A caveat here is that in order to improve performance, we make use of the

shadow call stack information only when a new target is added to the hashtable (i.e.,

not checking the shadow call stack if the target address is found in the hashtable).

This will make the policy effectively call-proceeded only. Since call-proceeded

policy is widely considered as adequate by many other approaches, we apply this

performance improvement in our subsequent evaluation. This relaxed policy also

enables a fair comparison between DynCFI and other CFI enforcement schemes

104

since many others also use a call-proceeded policy.

DynCFI achieves similar security when compared with these existing ap-

proaches. In particular, DynCFI is mostly comparable to BinCFI in that both main-

tain a list of valid target addresses to be checked at runtime, with one noticeable

difference in the enforcement mechanism: BinCFI enforces the policies with static

instrumentation to translate indirect target address while DynCFI uses DynamoRIO

as the interpreter platform. This makes BinCFI the perfect candidate for perfor-

mance overhead comparison with DynCFI , which is the topic of our next Section.

5.3 Detailed Performance Profiling

In this section, we conduct a comprehensive set of experiments on the performance

overhead of DynCFI . Besides the overall performance overhead, we run some de-

tailed performance profiling to find out the contribution to such overhead by various

components of the dynamic optimizer. We wish that such a detailed profiling could

shed light on the part that contributes most to the performance overhead, and give

guidance to future research in further improvement.

To better understand our evaluation strategy, we present our first attempt in the

profiling, show the results, and explain the limitation of this attempt. We then

choose an existing CFI implementation for the detailed comparison with DynCFI .

We analyze the design space of CFI enforcement implementation and organize it

along three axes on which the two systems under comparison could be clearly iden-

tified. Lastly, we perform a sequence of experiments by modifying individual com-

ponents of DynCFI so that the contribution of each to performance overhead can be

evaluated.

5.3.1 Target applications

To evaluate the performance overhead, we need to subject DynCFI (and another

CFI implementation for comparison purposes) to some applications. To enable fair

105

Table 5.2: Percentage of time spent on various components

Application Application IBL IBL BB Trace Dispatch Others
code inlined not inlined building building

bzip2 97.99 0.60 0.00 0.20 1.20 0.00 0.00
gcc 86.78 7.46 0.26 0.91 3.42 1.10 0.07
mcf 97.48 0.42 1.26 0.14 0.07 0.14 0.49

gobmk 80.00 1.08 0.00 2.70 11.35 4.86 0.00
sjeng 94.10 5.67 0.11 0.02 0.09 0.02 0.00

libquantum 99.51 0.49 0.00 0.00 0.00 0.00 0.00
omnetpp 84.88 14.50 0.38 0.06 0.15 0.03 0.01
astar 94.36 4.79 0.78 0.00 0.01 0.04 0.01
namd 99.89 0.69 0.00 0.00 0.02 0.00 0.00

soplex 74.21 25.42 0.03 0.10 0.10 0.10 0.02
povray 89.71 6.88 0.82 0.76 1.01 0.76 0.06
lbm 99.99 0.00 0.00 0.00 0.01 0.00 0.00

Average 91.57 5.62 0.30 0.41 1.45 0.59 0.06

comparison with existing work, we used twelve pure C/C++ programs we can find

in SPEC CPU2006, which are also used in the evaluation of the original work of

BinCFI [97], as our benchmarking suite.

Experiments were executed on a desktop computer with an i7 4510u CPU and

8GB of memory running x86 version of Ubuntu 12.04. Each individual experiment

was conducted 10 times, average of which is reported in this paper.

5.3.2 First attempt in performance profiling

As an initial attempt to understand the performance overhead contributed by various

components of DynCFI , we use program counter sampling to record the amount

of time spent in various components of DynCFI . We use the ITIMER_VIRTUAL

timer which counts down only when the process is executing and delivers a signal

when it expires. The handler used for this signal records the program counter of the

process at the time the signal is delivered. We sample the program counter every

ten milliseconds.

Table 5.2 shows the percentage of time each application spends in various steps

in DynCFI . It suggests that more than 90% of the time is spent on the application’s

code on average. Other non-negligible processes include Indirect Branch Lookup

(IBL) inlined with the application’s code and that not inlined, basic block and trace

106

Table 5.3: Statistics of different types of control transfers

Application %Indirect call %Indirect jump %Return %Direct branch Total (108)
bzip2 0.002 0.002 0.774 99.222 28
gcc 0.434 1.958 7.767 89.841 407
mcf 0.001 0.029 5.402 94.568 50

gobmk 0.001 0.027 4.811 95.161 7
sjeng 1.072 2.289 4.718 91.921 1229

libquantum 0.000 0.000 0.242 99.758 7068
omnetpp 1.609 1.763 33.998 62.630 875
astar 1.698 0.049 19.738 78.515 306
namd 0.000 0.008 3.292 96.700 1159

soplex 0.002 0.018 23.239 76.741 731
povray 2.776 0.154 26.279 70.791 81
lbm 0.000 0.017 0.035 99.948 152

cache building, as well as the dispatcher.

In an attempt to explain why some applications, e.g., gcc, omnetpp, soplex,

and povray, incur larger overhead, we count the number of different control trans-

fers in each application (runtime) and present statistics in Table 5.3. The correlation

between the two tables suggests that larger number of control transfers could lead

to the higher overhead.

Although it sounds like we have obtained detailed understanding of the perfor-

mance overhead, there is one important factor that we have overlooked so far—the

overhead contribution of the dynamic optimizer on executing the application’s code

(second column of Table 5.2). In other words, Table 5.2 does not tell us if the

dynamic optimizer had sped up or slowed down the execution of the application’s

code, and what had contributed to that speedup or slowdown. Our further compar-

ison verifies this suspicion, see Table 5.4, as there is noticeable difference in the

amount of time spent.

Therefore, we want to further investigate the contribution of various components

of the dynamic optimizer in speeding up or slowing down the application’s code. We

present our second attempt in the rest of this section.

With the objective of finding out contributions to the performance overhead by

individual components of the dynamic optimizer, our strategy is to

1. Find an existing CFI implementation X for comparison.

107

Table 5.4: Time spent in application code

Application in DynCFI Natively Overhead
(sec) (sec) (%)

bzip2 4.88 4.86 0.41
gcc 60.73 56.25 7.96
mcf 13.91 14.19 -1.97
gobmk 1.48 1.35 9.62
sjeng 158.93 150.01 5.95

libquantum 813.12 821.63 -1.04
omnetpp 138.54 122.23 13.34
astar 76.16 75.44 0.95
namd 735.51 733.73 0.24

soplex 64.81 61.15 5.98
povray 14.21 14.12 0.64
lbm 375.45 388.14 -3.27

2. Continuously disable or modify individual components of C3 so that the mod-

ified system eventually becomes similar to the implementation of X .

3. In every step of disabling or modifying the components, perform experiments

to find the corresponding (difference in) performance overhead.

5.3.3 Picking BinCFI for detailed comparison

With this strategy, it is important that we choose an X that

• Is an independent, state-of-the-art implementation of CFI enforcement;

• Shares the same high-level idea with DynCFI while validating control trans-

fers with a different approach (e.g., by binary instrumentation) from that of

the dynamic optimizer/interpreter as in DynCFI .

so that our evaluation could attribute the difference in performance overhead to the

dynamic optimizer.

BinCFI and DynCFI are similar in that both maintain a set of valid control

transfer targets and use a centralized validation routine for CFI enforcement. In

both cases, the validation routine maintains a hashtable for the valid control transfer

targets.

108

bz
ip
2

gc
c

m
cf

go
bm
k
sje
ng

lib
qu
an
tu
m

om
ne
tp
p
as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

av
er
ag
e

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynamoRIO

DynCFI

BinCFI

Figure 5.3: Overall performance overhead

The difference between BinCFI and DynCFI is that BinCFI obtains the valid

target addresses of indirect branches statically and records their corresponding in-

strumented target addresses into the hashtable, and then replaces the indirect in-

structions with a direct jump to the CFI validation routine. BinCFI satisfies our

requirements for the performance comparison, and is therefore chosen for our sub-

sequent detailed evaluation.

5.3.4 Overall comparison and the design space

The overall performance overhead of executing the benchmarking applications

under (original, unmodified) DynamoRIO , DynCFI , and (original, unmodified)

BinCFI is shown in Figure 5.3. Results are shown in terms of percentage overhead

beyond natively executing the applications on an unmodified Linux Ubuntu system.

We obtained the source code implementation of BinCFI [97] from its authors.

An interesting observation is that the original DynamoRIO and DynCFI do not

differ much in terms of overhead (a relatively small 1.3% difference). This shows

that the interfaces provided by DynamoRIO are convenient and effective for CFI

109

enforcement, which confirms our intuition since DynamoRIO intercepts all con-

trol transfers and no additional intercepting is needed in our modification to Dy-

namoRIO .

DynCFI experiences a significantly smaller overhead of 14.8% compared to

BinCFI at 28.6%. This suggests that the dynamic optimizer provides a more ef-

ficient platform for CFI enforcement compared to existing approaches like binary

instrumentation as in BinCFI . That said, the two systems differ in other aspects and

therefore this overall evaluation result is insufficient in attributing the majority of

the performance gain to mechanisms of the dynamic optimizer.

As discussed in Section 5.3.3, our strategy to this difficulty is to continuously

disable or modify individual components of C3 so that eventually it becomes similar

to BinCFI , in terms of their operating mechanism as well as the performance over-

head. By doing so, we would likely observe degradation of performance (increase in

overhead) of the modified system which is definitely due to the corresponding fea-

ture disabled or modified. The question is – which individual component or feature

to disable or modified?

To answer this question, we analyze the internal validation mechanisms of the

two approaches and identify three main factors that could significantly contribute to

the different performance overhead.

1. Trace Trace is the most important mechanism in DynamoRIO to speed up in-

direct transfers. Traces are formed by stitching together basic blocks that are

frequently executed in a sequence. Benefits include avoiding indirect branch

lookups by inlining a popular target of an indirect branch into a trace (with

a check to ensure that the target stays on the trace and otherwise fall back to

the full security check), eliminating inter-block branches, and helping branch

prediction. Trace is unique in DynamoRIO and is not in BinCFI .

2. Branch prediction Modern processors maintain buffers for branch predic-

tion, e.g., Branch Target Buffer (BTB) and Return Stack Buffer (RSB). The

110

effectiveness of these predictors could get seriously affected due to the modi-

fications to the control transfers. For example, turning a return instruction into

a indirect jump would make RSB useless in the branch prediction, potentially

leading to an increase in the performance overhead.

3. Indirect branch lookup routine Besides implementation details that are not

necessarily due to the architectural design (to be discussed more in Sec-

tion 5.3.5), a dynamic optimizer could use a single lookup routine for the

entire application including the dynamically loaded libraries, while systems

that apply static analysis and binary instrumentation would likely have to use

a dedicated lookup routine for each module because some dynamically loaded

libraries might not have been statically analyzed or instrumented. This could

contribute to noticeable differences in performance overhead.

We want to explore details into these three axes to see how each of them affects

the performance overhead. Other factors that might contribute to the overhead in C3

which we do not further investigate include

• Building basic block caches;

• Building trace caches;

• Inserting new entries into hashtables;

• Context switches between DynamoRIO and code caches.

5.3.5 Profiling along the three axes

With identification of the three axes, we make our second attempt in detailed un-

derstanding of the performance overhead of the two systems. Since executing on

DynCFI and executing on the original unmodified DynamoRIO experience about

the same overhead (see Figure 5.3), our subsequent experiments will only focus on

111

bz
ip
2

gc
c

m
cf

go
bm
k

sje
ng

lib
qu
an
tu
m

om
ne
tp
p

as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

av
er
ag
e

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynCFI

DynCFI with InT disabled

DynCFI with InH disabled

DynCFI with trace disabled

BinCFI

Figure 5.4: Impact of trace on overhead

comparing DynCFI and BinCFI . Also recall that our strategy is to disable or mod-

ify one component of DynCFI at a time and observe the corresponding change in

performance overhead.

Traces

Traces are unique in dynamic optimizers like DynamoRIO and DynCFI . There are

potentially two ways in which traces impact the performance overhead. First, the

stitching of basic blocks together eliminates some inter-block branches. Second,

each trace has inlined code to check if the control transfer target is still on the trace

(we call this InT). If the target is still on the trace, execution will just carry on with-

out further checking; otherwise, a second inlined code (we call this InH) is executed

to perform hashtable lookup without collisions. If collision happens, execution will

go to the full indirect branch lookup routine (denoted as R). We examine contribu-

tion of InT and InH by disabling them individually. We also examine the effect of

traces overall and present the results in Figure 5.4.

Figure 5.4 shows that the contribution due to InT is big, averaging to 5.5%.

Exceptions go to bzip2 and soplex which do not gain much with InT mainly

112

Table 5.5: Execution of indirect control transfers

Original transfer Return Indirect call/jump

C3 Basic block cache Jump to R, indirect jump to target
Trace cache InT or InH or jump to R, indirect jump to target

BinCFI Return jump to R, indirect jump to target

because the fall-back of InH is very effective on them (which can be verified from

the next-to-zero time spent in IBL not inlined in Table 5.2).

Although performance overhead increases when disabling InT (see Figure 5.4),

DynCFI is still better than BinCFI . When disabling traces altogether, the overhead

of DynCFI increases from 14.8% to 22.7% on average, with some going over the

overhead in BinCFI . This shows that traces are contributing significantly in the low

overhead of DynCFI . For applications with a large percentage of indirect branches

(see Table 5.3), DynCFI with traces disabled still outperforms BinCFI . This sug-

gests that there are other contributing factors in DynCFI which we have not evalu-

ated.

Branch Prediction

The way in which DynCFI and BinCFI intercept and deliver control flow transfers

has an implicit effect on branch prediction. Branch prediction is typically achieved

by remembering a history of control transfer targets by the same instruction. Both

DynCFI and BinCFI could weaken branch prediction due to R using the same in-

struction (an indirect jump) to execute control transfers originally executed by dif-

ferent instructions in the application [12, 97]. Table 5.5 summaries how indirect

control transfers in an application are executed in DynCFI and BinCFI .

In summary, DynCFI leads BinCFI in retaining branch prediction for indirect

calls and jumps when trace caches are used due to InT and InH; however, BinCFI

would perform better than DynCFI for returns. That said, note that there are typi-

cally far more return instructions than indirect calls and jumps executed for all the

applications in our benchmarking suite, see Table 5.3.

To better understand the effect of various components of DynCFI and BinCFI

113

bzip
2

gcc m
cf

gobm
k

sje
ng

lib
quantu

m

om
netp

p
ast

ar

nam
d

so
ple

x

povra
y

lb
m

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

B
ra

n
ch

 M
is

P
re

d
ic

ti
o

n
 N

u
m

b
e

r/
1

e
+

9

1e9

DynCFI

DynCFI with InT disabled

DynCFI with InH disabled

DynCFI with trace disabled

BinCFI

BinCFI with return being
replaced by indirect jump

Figure 5.5: Impact of traces on the number of branch mispredictions

on branch prediction, we count the number of mispredictions when executing the

benchmarking applications on a number of different settings – DynCFI , DynCFI

with InT disabled, DynCFI with InH disabled, DynCFI with traces disabled,

BinCFI , BinCFI with returns being replaced by jumps to R, and present the results

in Figure 5.5.

We observe that disabling InH has a larger impact on branch prediction than dis-

abling InT in general. This shows that the inlined hashtable lookup has its fair share

of its contribution on lower overhead. It also indirectly shows that the hashtable

implementation in DynCFI is good in that collisions do not happen often (since R

not inlined is not executed often as shown in Table 5.2). Another interesting finding

is that replacing returns with indirect jumps on BinCFI adds large number of mis-

predictions for some programs. In terms of overhead, this translates to about 2%

more in the overhead as shown in Figure 5.6.

Indirect branch lookup routine R

The indirect branch lookup routine in DynCFI and BinCFI very much shares the

same strategy. Both use an efficient implementation of a hashtable to record valid

control transfer targets. One noticeable difference, though, is that BinCFI requires

an extra step to check if the target resides within the same software module before

114

bz
ip
2

gc
c

m
cf

go
bm
k

sje
ng

lib
qu
an
tu
m

om
ne
tp
p

as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

av
er
ag
e

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynCFI

DynCFI with
trace disabled

BinCFI

BinCFI with return
being repalced
by indirect jump

Figure 5.6: Impact of branch prediction on overhead

directing control to the corresponding R. Each software module has to implement

its own copy of R because some dynamically loaded libraries might not have been

statically analyzed or instrumented and BinCFI cannot use a centralized R for all

modules.

On the other hand, DynCFI executes the application on top of a dynamic in-

terpreter without static analysis or binary instrumentation, and therefore has three

centralized R (one for returns, one for indirect jumps, and one for indirect calls) for

all software modules. This architectural difference contributes to some additional

performance overhead to BinCFI .

Besides the difference due to the architectural design, there are also lower level

differences in implementing R between DynCFI (inheriting the same R from Dy-

namoRIO) and BinCFI . In particular, they differ in the indirect jump instructions

used (DynCFI uses a register to specify the target while BinCFI uses a memory),

the number of registers used throughout the algorithm (and as a result the number of

registers to be saved and restored), and efficiency of the hashtable lookup algorithm.

To evaluate the contribution of R in the overall performance overhead, we re-

115

bz
ip
2

gc
c

m
cf

go
bm
k
sje
ng

lib
qu
an
tu
m

om
ne
tp
p
as
ta
r

na
m
d

so
pl
ex

po
vr
ay lb

m

0

20

40

60

80

100

120

B
e
y
o
n
d
 N

a
ti

v
e
(%

)

DynCFI with R'

BinCFI with R'

Figure 5.7: Performance overhead with unified R′

place R in both DynCFI (with traces disabled) and BinCFI (with returned replaced

with indirect jumps) with R′, our (supposedly more efficient) implementation of the

algorithm, and show the resulting performance overhead in Figure 5.7.

Comparing these results with those shown in Figure 5.6, we find that such low-

level details in the implementation of R translates to significant differences in the

overhead. In particular, the difference between C3 and BinCFI shrinks with R′

replacing R, indicating that the original R used in DynCFI is more efficient than

that in BinCFI .

5.4 Security evaluation and Discussion

5.4.1 Real world exploits

We use a publicly available intrusion prevention evaluator RIPE [89] to verify that

DynCFI offers comparable security properties with existing CFI proposals (as anal-

ysis presented in Section 5.2.5). In particular, we check if DynCFI can detect ex-

ploits that employ the advanced Return-Oriented Programming (ROP) techniques.

116

Table 5.6: AIR metrics for SPEC CPU 2006

Name DynCFI(%) BinCFI(%)
bzip2 99.95 99.37
gcc 97.60 98.34
mcf 98.58 99.25
gobmk 98.18 99.20
sjeng 99.60 99.10

libquantum 98.10 98.89
omnetpp 99.61 97.68
astar 96.70 98.95
namd 99.99 99.59

soplex 99.49 98.86
povray 99.19 98.67
lbm 98.56 99.46

Average 98.80 98.86

RIPE contains 140 return-to-libc exploits out of which 60 exploit return instruc-

tions and 80 exploit indirect call instructions. For the 60 exploits on return instruc-

tions, our experiments confirm that DynCFI manages to detect all of them because

they violate the call-preceded policy we enforced on return instructions.

DynCFI and BinCFI share the weakness in detecting exploits that change the

value of a function pointer to a valid entry point of a function. Such attacks cannot

be detected by most other CFI implementations either [90].

RIPE also contains 10 ROP attacks using return instructions, which are all suc-

cessfully detected by DynCFI as the targets of these gadgets are not call-preceded.

5.4.2 Average indirect target reduction

Zhang and Sekar [97] propose a metric for measuring the strength of CFI called

Average Indirect target Reduction (AIR). As DynCFI uses different policy on return

branches, we apply the same metric to test DynCFI when applied to the SPEC

benchmarking suite. Table 5.6 compares the AIR metrics for DynCFI and BinCFI .

We can find that average AIR for DynCFI is 98.80% which is comparable to 98.86%

for the case of BinCFI .

117

5.4.3 Fine-grained CFI Enforcement

DynCFI can be extended to enforce fine-grained CFI. For example, DynCFI can en-

force the fine-grained CFI policy for forward-edge indirect branch transfer instruc-

tions with our improved policy described in Section 3.1.4 by classifying functions

into different clusters according to the number of arguments they can accept, and

then store them into different lookup tables.

5.5 Summary

In this chapter, we present DynCFI , a new implementation of CFI properties on

top of a well-studied dynamic code optimization platform. We show that DynCFI

achieves comparable CFI security properties with many existing CFI proposals

while enjoying much lower performance overhead of 14.8% on average compared

to that of a state-of-the-art CFI implementation BinCFI at 28.6%. Our detailed pro-

filing of DynCFI shows that traces, a mechanism in the dynamic code optimization

platform, contribute the most to such performance improvement.

The content of this chapter is based on our previously published work [49] with

no major changes.

118

Chapter 6

Conclusions and Future Work

6.1 Conclusions

This dissertation makes contributions in recovering, embedding, and enforcing

control-flow integrity policies.

In the first work presented in Chapter 3, we systematically study how compiler

optimization would impact function signature recovery with 1,344 real-world appli-

cations with various optimization levels, and propose a novel improved mechanism

to more accurately recover function signatures. The results show that compiler op-

timizations have both positive and negative impacts on function signature recovery.

The second part of Chapter 3 studies the possible complication cases that aren’t han-

dled by the current deep learning approach and propose our approach by including

domain-specific knowledge to the dataset.

In the second work presented in Chapter 4, we propose C3, a novel approach to

embed CFI policies into instructions rather than consulting read-only tables or in-

serting tags into the code section compared to other approaches. It embeds the CFI

policies and its enforcement into instructions of the program by encrypting each

basic block with a key derived from the control-flow graph. This embedded CFI

policies can come from the improved mechanism described in Chapter 3. More

specifically, we can classify functions and indirect call instructions into different

119

clusters according to the number of arguments they can accept, and then encrypt-

ing basic blocks with the more accurate set of control transfers derived. This kind

of “proof-carrying” code ensures only valid control-flow transfers can decrypt the

corresponding instruction sequence and any unintended control-flow transfer would

cause program crash. The security evaluation shows that C3 is able to defend against

most control-flow hijacking attacks while suffering from moderate runtime over-

head.

The third work presented in Chapter 5 presents DynCFI , an efficient way to

enforce CFI based on the dynamic code optimization platform DynamoRIO. The

result shows that DynCFI enjoys much lower performance overhead of 14.8% on

average compared to that of a state-of-the-art CFI implementation BinCFI at 28.6%.

We further perform comprehensive evaluations and shed light on the exact amount

of savings contributed by the various components of the dynamic optimizer includ-

ing basic block cache, trace cache, branch prediction, and indirect branch loopup.

We can make use of the CFI policies described in Chapter 3 to make our approach

more fine-grained by classifying functions into different clusters according to the

number of arguments they can accept, and then store them into different lookup

tables. Moreover, the execution environment used in C3 can also be replaced by

DynamoRIO to improve performance.

6.2 Future Work

Given this dissertation, it will be interesting and valuable to further work on the

following research directions:

1. Control-Flow Carrying Code for Dynamically Generated Code. As discussed

in Section 4.6.5, C3 does not support dynamically generated code. Due to the

nature of these code, they have to be both writeable and executable. Although

some defenses [80] are proposed to protect these dynamically generated code,

120

the attacker can still construct attacks. Since C3 doesn’t require the support

of DEP, it is natural to apply it to the dynamically generated code.

2. Correctness of Decompilation When Compiler Optimization enabled. De-

compilation that converts an executable into source code has been widely used

in many areas, including malware analysis [91] and off-the-shelf software se-

curity hardening [24, 29, 30]. As discussed in the dissertation, compilers do

not preserve much source-level information in the process of compilation,

especially when optimization is enabled. However, the research community

does not have an up-to-date understanding of the correctness of the decom-

pilation output, which may impede reaching the full potential of modern de-

compilation tools in conducting research. In the future, we plan to study how

compiler optimization would impact the correctness of decompilation.

121

Bibliography

[1] The heartbleed bug. http://heartbleed.com/.

[2] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin, S. Ghemawat,
G. Irving, M. Isard, et al. Tensorflow: A system for large-scale machine learning. In
Proceedings of the 12th USENIX symposium on operating systems design and imple-
mentation, pages 265–283, 2016.

[3] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-flow integrity. In Proceed-
ings of the 12th ACM conference on Computer and communications security, pages
340–353. ACM, 2005.

[4] S. Andersen and V. Abella. Data execution prevention. Changes to functionality in
microsoft windows xp service pack, 2, 2004.

[5] V. Bala, E. Duesterwald, and S. Banerjia. Dynamo: A Transparent Dynamic Opti-
mization System. In ACM SIGPLAN Notices, volume 35, pages 1–12. ACM, 2000.

[6] G. Balakrishnan and T. Reps. Analyzing memory accesses in x86 executables. In
Proceedings of the 13rd International conference on compiler construction, pages 5–
23. Springer, 2004.

[7] E. G. Barrantes, D. H. Ackley, T. S. Palmer, D. Stefanovic, and D. D. Zovi. Random-
ized instruction set emulation to disrupt binary code injection attacks. In Proceedings
of the 10th ACM conference on Computer and communications security, pages 281–
289. ACM, 2003.

[8] A. R. Bernat and B. P. Miller. Anywhere, any-time binary instrumentation. In Pro-
ceedings of the 10th ACM SIGPLAN-SIGSOFT workshop on Program analysis for
software tools, pages 9–16. ACM, 2011.

[9] A. Bittau, A. Belay, A. Mashtizadeh, D. Mazières, and D. Boneh. Hacking blind. In
Proceedings of the 35th IEEE Symposium on Security and Privacy, pages 227–242.
IEEE, 2014.

[10] T. Bletsch, X. Jiang, V. W. Freeh, and Z. Liang. Jump-oriented programming: a new
class of code-reuse attack. In Proceedings of the 6th ACM Symposium on Information,
Computer and Communications Security, pages 30–40. ACM, 2011.

[11] E. Bosman, K. Razavi, H. Bos, and C. Giuffrida. Dedup est machina: Memory dedu-
plication as an advanced exploitation vector. In Proceedings of the 37th IEEE sympo-
sium on security and privacy, pages 987–1004. IEEE, 2016.

[12] D. Bruening. Efficient,Transparent,and Comprehensive Runtime Code Manipulation.
PhD thesis, Massachusetts Institute of Technology, 2004.

122

http://heartbleed.com/

[13] D. Brumley, I. Jager, T. Avgerinos, and E. J. Schwartz. Bap: A binary analysis plat-
form. In Proceedings of the 23rd International Conference on Computer Aided Verifi-
cation, pages 463–469. Springer, 2011.

[14] J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Binary code extraction and
interface identification for security applications. Technical report, California Univ
Berkeley Dept of Electrical Engineering and Computer Science, 2009.

[15] N. Carlini, A. Barresi, M. Payer, D. Wagner, and T. R. Gross. Control-flow bending:
On the effectiveness of control-flow integrity. In Proceedings of the 24th USENIX
Security Symposium, pages 161–176, 2015.

[16] N. Carlini and D. Wagner. Rop is still dangerous: Breaking modern defenses. In
Proceedings of the 23rd USENIX Security Symposium, pages 385–399, 2014.

[17] S. Checkoway, L. Davi, A. Dmitrienko, A.-R. Sadeghi, H. Shacham, and M. Winandy.
Return-oriented programming without returns. In Proceedings of the 17th ACM con-
ference on Computer and communications security, pages 559–572. ACM, 2010.

[18] W.-K. Chen, S. Lerner, R. Chaiken, and D. M. Gillies. Mojo: A Dynamic Optimization
System. In Proceedings of the 3rd ACM Workshop on Feedback-Directed and Dynamic
Optimization, pages 81–90, 2000.

[19] Y. Cheng, Z. Zhou, Y. Miao, X. Ding, and H. Deng. others. 2014. ropecker: A generic
and practical approach for defending against rop attack. In Proceedings of the 21th
Annual Network and Distributed System Security Symposium.

[20] Z. L. Chua, S. Shen, P. Saxena, and Z. Liang. Neural nets can learn function type
signatures from binaries. In Proceedings of the 26th USENIX Security Symposium,
pages 99–116, 2017.

[21] D. D. I. F. Committee et al. Dwarf debugging information format, version 4. Free
Standards Group, 2010.

[22] M. Conti, S. Crane, L. Davi, M. Franz, P. Larsen, M. Negro, C. Liebchen, M. Qunaibit,
and A.-R. Sadeghi. Losing control: On the effectiveness of control-flow integrity
under stack attacks. In Proceedings of the 22nd ACM Conference on Computer and
Communications Security, pages 952–963. ACM, 2015.

[23] I. Corporation. Intel software guard extensions (intel sgx). https://software.
intel.com/en-us/sgx/, 2019.

[24] N. Corteggiani, G. Camurati, and A. Francillon. Inception: System-wide security
testing of real-world embedded systems software. In Proceedings of the 27th USENIX
Security Symposium, pages 309–326, 2018.

[25] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie, A. Grier, P. Wagle,
Q. Zhang, and H. Hinton. Stackguard: Automatic adaptive detection and prevention
of buffer-overflow attacks. In Proceedings of the 7th USENIX Security Symposium,
volume 98, pages 63–78. San Antonio, TX, 1998.

[26] S. J. Crane, S. Volckaert, F. Schuster, C. Liebchen, P. Larsen, L. Davi, A.-R. Sadeghi,
T. Holz, B. De Sutter, and M. Franz. It’s a trap: Table randomization and protection
against function-reuse attacks. In Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, pages 243–255, 2015.

123

https://software.intel.com/en-us/sgx/
https://software.intel.com/en-us/sgx/

[27] L. Davi, A.-R. Sadeghi, D. Lehmann, and F. Monrose. Stitching the gadgets: On the
ineffectiveness of coarse-grained control-flow integrity protection. In Proceedings of
the 23rd USENIX Security Symposium, 2014.

[28] L. Davi, A.-R. Sadeghi, and M. Winandy. ROPdefender: A Detection Tool to Defend
Against Return-Oriented Programming Attacks. In Proceedings of the 6th ACM Sym-
posium on Information, Computer and Communications Security, pages 40–51. ACM,
2011.

[29] Y. David, N. Partush, and E. Yahav. Firmup: Precise static detection of common
vulnerabilities in firmware. In Proceedings of the 23rd ACM International Conference
on Architectural Support for Programming Languages and Operating Systems, pages
392–404, 2018.

[30] Y. David and E. Yahav. Tracelet-based code search in executables. In Proceedings of
the 35th annual ACM SIGPLAN conference on Programming Language Design and
Implementation, pages 349–360, 2014.

[31] R. de Clercq, J. Götzfried, D. Übler, P. Maene, and I. Verbauwhede. Sofia: Software
and control flow integrity architecture. Computers & Security, 68:16–35, 2017.

[32] D. Deaver, R. Gorton, and N. Rubin. Wiggins/Redstone: An On-line Program Spe-
cializer. In Proceedings of the IEEE Hot Chips XI Conference, 1999.

[33] K. ElWazeer, K. Anand, A. Kotha, M. Smithson, and R. Barua. Scalable variable and
data type detection in a binary rewriter. ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 51–60, 2013.

[34] J. Fu, X. Zhang, and Y. Lin. An instruction-set randomization using length-preserving
permutation. In Proceedings of the 14th IEEE International Conference on Trust, Se-
curity and Privacy in Computing and Communications, pages 376–383. IEEE, 2015.

[35] Ghidra. The ghidra decompiler. https://ghidra-sre.org/, 2019.

[36] E. Göktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Overcom-
ing control-flow integrity. In Proceedings of the 35th IEEE Symposium on Security
and Privacy, pages 575–589. IEEE, 2014.

[37] P. Guide. Intel R© 64 and ia-32 architectures software developer’s manual. 2016.

[38] J. Hiser, A. Nguyen-Tuong, M. Co, M. Hall, and J. W. Davidson. Ilr: Where’d my
gadgets go? In Proceedings of the 33th IEEE Symposium on Security and Privacy,
pages 571–585. IEEE, 2012.

[39] H. Hu, Z. L. Chua, S. Adrian, P. Saxena, and Z. Liang. Automatic generation of data-
oriented exploits. In Proceedings of the 24th USENIX Security Symposium, pages
177–192, 2015.

[40] H. Hu, S. Shinde, S. Adrian, Z. L. Chua, P. Saxena, and Z. Liang. Data-oriented
programming: On the expressiveness of non-control data attacks. In Proceedings of
the 37th IEEE Symposium on Security and Privacy, pages 969–986. IEEE, 2016.

[41] I. INTEL. Intel R© 64 and ia-32 architectures software developer’s manual. 2018.

124

https: //ghidra-sre.org/

[42] G. S. Kc, A. D. Keromytis, and V. Prevelakis. Countering code-injection attacks with
instruction-set randomization. In Proceedings of the 10th ACM conference on Com-
puter and communications security, pages 272–280. ACM, 2003.

[43] V. Kiriansky, D. Bruening, and S. P. Amarasinghe. Secure Execution via Program
Shepherding. In Proceedings of the 11st USENIX Security Symposium, volume 92,
2002.

[44] C. Lattner and V. Adve. LLVM: A compilation framework for lifelong program anal-
ysis & transformation. In Proceedings of the 2nd international symposium on Code
generation and optimization. IEEE Computer Society, 2004.

[45] J. Lee, T. Avgerinos, and D. Brumley. Tie: Principled reverse engineering of types in
binary programs. In Proceedings of the 18th Network and Distributed System Security
Symposium, 2011.

[46] J. Lee, Y. Kim, Y. Song, C.-K. Hur, S. Das, D. Majnemer, J. Regehr, and N. P.
Lopes. Taming undefined behavior in llvm. In Proceedings of the 38th ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 633–647.
ACM, 2017.

[47] Y. Lin, X. Cheng, and D. Gao. Control-flow carrying code. In Proceedings of the 14th
ACM Asia Conference on Computer and Communications Security, pages 3–14, 2019.

[48] Y. Lin and D. Gao. When function signature recovery meets compiler optimization.
In Proceedings of the 42nd IEEE Symposium on Security and Privacy, 2021.

[49] Y. Lin, X. Tang, D. Gao, and J. Fu. Control flow integrity enforcement with dynamic
code optimization. In Proceedings of the 19th International Conference on Informa-
tion Security, pages 366–385. Springer, 2016.

[50] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S. Wallace, V. J. Reddi,
and K. Hazelwood. Pin: building customized program analysis tools with dynamic in-
strumentation. In Proceedings of the 26th ACM conference on Programming language
design and implementation, pages 190–200. ACM, 2005.

[51] A. J. Mashtizadeh, A. Bittau, D. Boneh, and D. Mazières. Ccfi: Cryptographically
enforced control flow integrity. In Proceedings of the 22nd ACM Conference on Com-
puter and Communications Security, pages 941–951. ACM, 2015.

[52] M. Matz, J. Hubicka, A. Jaeger, and M. Mitchell. System v application binary inter-
face. AMD64 Architecture Processor Supplement, Draft v0, 99, 2014.

[53] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. CoRR abs/1301.3781, 2013.

[54] A. Milburn, H. Bos, and C. Giuffrida. Safelnit: Comprehensive and practical miti-
gation of uninitialized read vulnerabilities. In Proceedings of the 24th Network and
Distributed System Security Symposium, pages 1–15, 2017.

[55] P. Muntean, M. Fischer, G. Tan, Z. Lin, J. Grossklags, and C. Eckert. τ cfi: Type-
assisted control flow integrity for x86-64 binaries. In Proceedings of the 21st Interna-
tional Symposium on Research in Attacks, Intrusions, and Defenses, pages 423–444.
Springer, 2018.

125

[56] G. C. Necula. Proof-carrying code. design and implementation. In Proof and system-
reliability, pages 261–288. Springer, 2002.

[57] B. Niu and G. Tan. Modular control-flow integrity. In Proceedings of the 21st ACM
Conference on Computer and Communications Security, pages 577–587. ACM, 2014.

[58] B. Niu and G. Tan. Per-input control-flow integrity. In Proceedings of the 22nd ACM
Conference on Computer and Communications Security, pages 914–926. ACM, 2015.

[59] H. Pan, K. Asanović, R. Cohn, and C.-K. Luk. Controlling program execution through
binary instrumentation. ACM SIGARCH Computer Architecture News, 33(5):45–50,
2005.

[60] A. Papadogiannakis, L. Loutsis, V. Papaefstathiou, and S. Ioannidis. Asist: archi-
tectural support for instruction set randomization. In Proceedings of the 20th ACM
conference on Computer and communications security, pages 981–992. ACM, 2013.

[61] V. Pappas, M. Polychronakis, and A. D. Keromytis. Smashing the gadgets: Hindering
return-oriented programming using in-place code randomization. In Proceedings of
the 33th IEEE Symposium on Security and Privacy, pages 601–615. IEEE, 2012.

[62] V. Pappas, M. Polychronakis, and A. D. Keromytis. Transparent {ROP} exploit mit-
igation using indirect branch tracing. In Proceedings of the 22nd USENIX Security
Symposium, pages 447–462, 2013.

[63] M. Payer, A. Barresi, and T. R. Gross. Fine-grained control-flow integrity through
binary hardening. In Proceedings of the 12th International Conference on Detection
of Intrusions and Malware, and Vulnerability Assessment, pages 144–164. Springer,
2015.

[64] J. Pincus and B. Baker. Beyond stack smashing: Recent advances in exploiting buffer
overruns. Proceedings of the 25th IEEE Symposium on Security and Privacy, 2(4):20–
27, 2004.

[65] G. Portokalidis and A. D. Keromytis. Fast and practical instruction-set randomiza-
tion for commodity systems. In Proceedings of the 26th Annual Computer Security
Applications Conference, pages 41–48. ACM, 2010.

[66] R. Qiao and R. Sekar. Function interface analysis: A principled approach for function
recognition in cots binaries. In Proceedings of the 47th Annual IEEE/IFIP Interna-
tional Conference on Dependable Systems and Networks, pages 201–212, 2017.

[67] N. A. Quynh. Capstone: Next-gen disassembly framework. Black Hat USA, 2014.

[68] G. F. Roglia, L. Martignoni, R. Paleari, and D. Bruschi. Surgically returning to ran-
domized lib (c). In Proceedings of the 25th Annual Computer Security Applications
Conference, pages 60–69. IEEE, 2009.

[69] N. Rosenblum, B. P. Miller, and X. Zhu. Recovering the toolchain provenance of
binary code. In Proceedings of the 20th International Symposium on Software Testing
and Analysis, pages 100–110. ACM, 2011.

[70] N. E. Rosenblum, B. P. Miller, and X. Zhu. Extracting compiler provenance from
program binaries. In Proceedings of the 9th ACM SIGPLAN-SIGSOFT workshop on
Program analysis for software tools and engineering, pages 21–28. ACM, 2010.

126

[71] F. Schuster, T. Tendyck, C. Liebchen, L. Davi, A.-R. Sadeghi, and T. Holz. Counter-
feit object-oriented programming: On the difficulty of preventing code reuse attacks
in c++ applications. In Proceedings of the 36th IEEE Symposium on Security and
Privacy, pages 745–762. IEEE, 2015.

[72] F. Schuster, T. Tendyck, J. Pewny, A. Maaß, M. Steegmanns, M. Contag, and T. Holz.
Evaluating the effectiveness of current anti-rop defenses. In Proceedings of the 17th
International Workshop on Recent Advances in Intrusion Detection, pages 88–108.
Springer, 2014.

[73] H. Shacham. The geometry of innocent flesh on the bone: Return-into-libc without
function calls (on the x86). In Proceedings of the 14th ACM conference on Computer
and communications security, pages 552–561. ACM, 2007.

[74] H. Shacham, M. Page, B. Pfaff, E.-J. Goh, N. Modadugu, and D. Boneh. On the effec-
tiveness of address-space randomization. In Proceedings of the 11th ACM conference
on Computer and communications security, pages 298–307. ACM, 2004.

[75] A. Shamir. How to share a secret. Communications of the ACM, 22(11):612–613,
1979.

[76] A. Sharma, Y. Tian, and D. Lo. Nirmal: Automatic identification of software relevant
tweets leveraging language model. In Proceedings of the 22nd International Con-
ference on Software Analysis, Evolution, and Reengineering, pages 449–458. IEEE,
2015.

[77] E. C. R. Shin, D. Song, and R. Moazzezi. Recognizing functions in binaries with
neural networks. In Proceedings of the 24th USENIX Security Symposium, pages
611–626, 2015.

[78] K. Sinha, V. P. Kemerlis, and S. Sethumadhavan. Reviving instruction set random-
ization. In Proceedings of the 10th International Symposium on Hardware Oriented
Security and Trust, pages 21–28. IEEE, 2017.

[79] K. Z. Snow, F. Monrose, L. Davi, A. Dmitrienko, C. Liebchen, and A.-R. Sadeghi.
Just-in-time code reuse: On the effectiveness of fine-grained address space layout
randomization. In Proceedings of the 34th IEEE Symposium on Security and Privacy,
pages 574–588. IEEE, 2013.

[80] C. Song, C. Zhang, T. Wang, W. Lee, and D. Melski. Exploiting and protecting dy-
namic code generation. In Proceedings of the 22nd Network and Distributed System
Security Symposium, 2015.

[81] A. N. Sovarel, D. Evans, and N. Paul. Where’s the feeb? the effectiveness of in-
struction set randomization. In Proceedings of the 15th USENIX Security Symposium,
2005.

[82] D. Sullivan, O. Arias, D. Gens, L. Davi, A.-R. Sadeghi, and Y. Jin. Execution integrity
with in-place encryption. arXiv preprint arXiv:1703.02698, 2017.

[83] P. Team. Pax address space layout randomization. http://pax. grsecurity. net/docs/aslr.
txt, 2003.

[84] C. Tice, T. Roeder, P. Collingbourne, S. Checkoway, Ú. Erlingsson, L. Lozano, and
G. Pike. Enforcing forward-edge control-flow integrity in {GCC} & {LLVM}. In
Proceedings of the 23rd USENIX Security Symposium, pages 941–955, 2014.

127

[85] V. Van Der Veen, E. Göktas, M. Contag, A. Pawoloski, X. Chen, S. Rawat, H. Bos,
T. Holz, E. Athanasopoulos, and C. Giuffrida. A tough call: Mitigating advanced
code-reuse attacks at the binary level. In Proceedings of the 37th IEEE Symposium on
Security and Privacy, pages 934–953. IEEE, 2016.

[86] R. Wahbe, S. Lucco, T. E. Anderson, and S. L. Graham. Efficient software-based fault
isolation. 27(5):203–216, 1994.

[87] M. Wang, H. Yin, A. V. Bhaskar, P. Su, and D. Feng. Binary code continent: Finer-
grained control flow integrity for stripped binaries. In Proceedings of the 31st Annual
Computer Security Applications Conference, pages 331–340. ACM, 2015.

[88] R. Wartell, V. Mohan, K. W. Hamlen, and Z. Lin. Binary stirring: Self-randomizing
instruction addresses of legacy x86 binary code. In Proceedings of the 19th ACM
conference on Computer and communications security, pages 157–168. ACM, 2012.

[89] J. Wilander, N. Nikiforakis, Y. Younan, M. Kamkar, and W. Joosen. RIPE: Runtime
Intrusion Prevention Evaluator. In Proceedings of the 27th Annual Computer Security
Applications Conference, pages 41–50. ACM, 2011.

[90] Y. Xia, Y. Liu, H. Chen, and B. Zang. CFIMon: Detecting Violation of Control Flow
Integrity using Performance Counters. In Proceedings of the 42nd Annual IEEE/IFIP
International Conference on Dependable Systems and Networks, pages 1–12. IEEE,
2012.

[91] K. Yakdan, S. Dechand, E. Gerhards-Padilla, and M. Smith. Helping johnny to ana-
lyze malware: A usability-optimized decompiler and malware analysis user study. In
Proceedings of the 37th IEEE Symposium on Security and Privacy, pages 158–177.
IEEE, 2016.

[92] Y. Yang. Rops are for the 99 https://cansecwest.com/slides/2014/
ROPsareforthe99CanSecWest2014.pdf, 2014.

[93] D. Zeng and G. Tan. From debugging-information based binary-level type inference
to cfg generation. In Proceedings of the 8th ACM Conference on Data and Application
Security and Privacy, pages 366–376. ACM, 2018.

[94] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and W. Zou.
Practical control flow integrity and randomization for binary executables. In Proceed-
ings of the 34th IEEE Symposium on Security and Privacy, pages 559–573. IEEE,
2013.

[95] M. Zhang, M. Polychronakis, and R. Sekar. Protecting cots binaries from disclosure-
guided code reuse attacks. In Proceedings of the 33rd Annual Computer Security
Applications Conference, pages 128–140, 2017.

[96] M. Zhang and R. Sekar. Control flow and code integrity for cots binaries: An effective
defense against real-world rop attacks. In Proceedings of the 31st Annual Computer
Security Applications Conference, pages 91–100.

[97] M. Zhang and R. Sekar. Control flow integrity for cots binaries. In Proceedings of the
22nd USENIX Security Symposium, pages 337–352, 2013.

128

https://cansecwest. com/slides/2014/ROPs are for the 99 CanSecWest 2014.pdf
https://cansecwest. com/slides/2014/ROPs are for the 99 CanSecWest 2014.pdf

	Novel techniques in recovering, embedding, and enforcing policies for control-flow integrity
	Citation

	1 Introduction
	1.1 Overview of Control-Flow Integrity
	1.2 Thesis Statement
	1.3 Practicality of Recovering Fine-grained CFI Policies
	1.4 Control-Flow Carrying Code
	1.5 Control-Flow Integrity Enforcement Based on Dynamic Code Optimization
	1.6 Organization

	2 Literature Review
	2.1 Control-Flow Hijacking
	2.2 Deployed Defenses
	2.3 Control-Flow Integrity
	2.3.1 Coarse-grained CFI
	2.3.2 Fine-grained CFI

	2.4 Instruction-Set Randomization
	2.5 Function Signature Recovery
	2.6 Non-control Data Attacks

	3 Function Signature Recovery
	3.1 When Function Signature Recovery Meets Compiler Optimization
	3.1.1 Background and Unified Notation
	3.1.2 Eight Ways in which Compiler Optimization Impacts Function Signature Recovery
	3.1.3 Experimental Results of the Eight Complications on Real-World Programs
	3.1.4 Our Compiler-Optimization-Friendly Policies
	3.1.5 Discussions and Security Implications

	3.2 Enhanced Deep Learning Approach to Recover Function Signature
	3.2.1 Workflow of EKLAVYA
	3.2.2 Intricacies and Solutions
	3.2.3 Evaluation

	3.3 Summary

	4 Control-Flow Carrying Code
	4.1 Introduction
	4.2 Overview of C3
	4.2.1 Threat Model and Assumptions
	4.2.2 Embedding CFG to Instructions

	4.3 Detailed Design of C3
	4.3.1 Secret Sharing and Challenges
	4.3.2 Instruction Transformation
	4.3.3 Basic Block Redistribution
	4.3.4 Encryption and Decryption
	4.3.5 Transitioning from Unprotected to Protected Code

	4.4 Implementation
	4.4.1 Binary Rewriter
	4.4.2 Execution Environment

	4.5 Evaluation
	4.5.1 Security
	4.5.2 Performance overhead

	4.6 Discussion
	4.6.1 Return-into-Pin
	4.6.2 Return-into-libc
	4.6.3 Length of the Keys
	4.6.4 Fine-grained CFI Enforcement
	4.6.5 Other limitations

	4.7 Summary

	5 Control-Flow Integrity Enforcement with Dynamic Code Optimization
	5.1 Introduction
	5.2 Design, Implementation, and Security Comparison
	5.2.1 DynamoRIO
	5.2.2 Returns
	5.2.3 Indirect jumps and indirect calls
	5.2.4 Implementation
	5.2.5 Security comparison

	5.3 Detailed Performance Profiling
	5.3.1 Target applications
	5.3.2 First attempt in performance profiling
	5.3.3 Picking BinCFI for detailed comparison
	5.3.4 Overall comparison and the design space
	5.3.5 Profiling along the three axes

	5.4 Security evaluation and Discussion
	5.4.1 Real world exploits
	5.4.2 Average indirect target reduction
	5.4.3 Fine-grained CFI Enforcement

	5.5 Summary

	6 Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

