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Abstract

In this dissertation, I have made several contributions to the literature on the

multivariate stochastic volatility model.

First, I have considered a new multivariate stochastic volatility (MSV) model

based on a recently proposed novel parameterization of the correlation matrix.

This modeling design is a generalization of Fisher’s z-transformation to the high-

dimensional case. It is fully flexible as the validity of the resulting correlation matrix

is guaranteed automatically. It allows me to completely separate the driving factors

of volatilities and correlations. To conduct an econometric analysis of the pro-

posed model, I develop a new Bayesian method that relies on the Markov Chain

Monte Carlo (MCMC) tool. For the latent variables, the traditional single-move or

multi-move sampler is replaced by a novel technique called Particle Gibbs Ancestor

Sampling (PGAS), which is built upon the Sequential Monte Carlo (SMC) method.

Simulation results indicate that our algorithm performs well when a small number of

particles are used. Empirical studies based on the exchange rate returns and equity

returns are considered and reveal some interesting empirical results.

Second, I further develop a multivariate stochastic volatility model with intra-

day realized measures. A simple and consistent estimation technique is developed.

The problem of under-identification is discussed. A two-stage approach is introduced

to address the problem. A simulation study shows that the proposed method works

well in finite samples. The new model is then implemented using two financial

datasets. A comparison with some existing models is made.

Third, I also incorporate the leverage effect and the heavy-tailed error distribu-

tion into the MSV model. A Particle Gibbs Sampling Algorithm is developed for

the extended MSV model. Simulation results indicate that our algorithm performs

well when a small number of particles are used. Empirical studies of the stock in-

dices are considered. I have found strong evidence of the leverage effect and, more,

importantly, heavy-tails in the errors.
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1 Introduction

Characterizing the dynamic behavior of volatility of individual asset returns is of

great importance to both portfolio allocation and risk management. Starting from

the seminal paper by Engle (1982), a wide range of univariate volatility models

have been considered in the literature, most of which can be categorized as either

GARCH-based models or stochastic volatility (SV) models. Another notable devel-

opment during the past few decades is the focus on multivariate financial data anal-

ysis. It is increasingly recognized that analyzing the asset return individually is not

adequate, and the dependence structure among different assets must be taken into

account. To this end, a plethora of multivariate extensions to univariate GARCH

and SV models have emerged and been developed and applied in practice. See

Bauwens et al. (2006) for an extensive review of multivariate GARCH (MGARCH)

models and Asai and McAleer (2006) for a review of multivariate SV (MSV) models.

The first MSV model is proposed in Harvey et al. (1994) and is an analogy of the

constant conditional correlation (CCC) model in the MGARCH literature. In this

basic setup, the volatility of each individual asset is assumed to follow a univariate

SV process, while the correlation matrix among all assets is constant over time. This

is obviously a rather restrictive and perhaps unrealistic assumption, as it implies that

the correlation structure is unchanged over time. Great efforts have been dedicated

to the relaxation of the constant correlation assumption ever since. For instance, Yu

and Meyer (2006) proposed a model that mirrors the dynamic conditional correlation

(DCC) model of Engle (2002) in MGARCH. Another parametrization that is also

based on DCC can be found in Asai and McAleer (2009).

All the models mentioned above are built upon a variance-correlation decom-

position of the covariance matrix. It is also possible to characterize the dynamic

conditional correlation by modeling the covariance matrix per se. Similar to the

case in the MGARCH literature, the major challenge here is to make sure that the

model can produce a positive definite covariance matrix. One possibility is to model

the matrix logarithm of the original covariance matrix, which must exist and is free
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of algebraic constraint by design. This idea, as an extension of exponential GARCH

in Kawakatsu (2006), is explored in Ishihara et al. (2016). A significant drawback of

this approach is that the volatilities and correlations are interwoven with each other,

and thus the estimated model is very hard to interpret. Another existing approach,

considered in Lopes et al. (2010), takes advantage of the well-known Cholesky de-

composition of a symmetric positive definite matrix. The useful property of this

method is that there is a clear and meaningful connection between elements of the

original covariance matrix and those of the component matrices. A shortcoming of

this modeling strategy is that the driving forces underlying volatilities and correla-

tions are not completely separated. Last but not least, the Wishart autoregressive

multivariate process provides a flexible modeling tool for MSV as well; see Philipov

and Glickman (2006) and Gouriéroux et al. (2009) for details.

In this dissertation, we propose to apply a recently developed new parameteri-

zation of the correlation matrix to develop a new MSV model. Such a parameteri-

zation, originally proposed in Archakov and Hansen (2018a), has been successfully

employed to introduce a new MGARCH model; see Archakov et al. (2020). Archakov

et al. (2020) show that this approach can be deemed as a generalization of the well-

known Fisher’s z-transformation to the higher dimensional case. In this chapter,

we seek to use the new parameterization of the correlation matrix to introduce a

new MSV model. Under this new modeling design, the underlying latent states

that determine the correlation among assets are allowed to have an unrestricted

domain, and no algebraic constraint of any kind is necessary. This is because this

new parameterization by construction automatically guarantees that the estimated

correlation matrix is indeed valid. Meanwhile, the underlying shocks to volatilities

and correlations are fully separated in our model. This is an appealing feature, as

in practice, these two quantities may be determined by completely distinct factors.

Last but not least, our model is invariant to the reordering of assets, and thus no ex-

ante ordering is necessary. All these features indicate that our model is very flexible

in terms of capturing dynamic patterns of volatilities and correlations, imposing a

minimum level of ex-ante restrictions.
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As is the case for other MSV models, estimation of our model faces challenges

such as a large number of parameters and high dimensional latent variables. To ac-

commodate the first challenge, we follow the existing work and apply the Bayesian

Markov Chain Monte Carlo (MCMC) method. A Bayesian method is considered

because the maximum-likelihood-based approach is unstable or even fails to work

in this setting. Departing from much of the literature, where a carefully designed

single-move sampler or multi-move Gibbs sampler is used to tackle the latent vari-

ables issue, we opt to work with the recently proposed particle-filter-based MCMC

(PMCMC) algorithm. Ever since the seminal paper by Andrieu et al. (2010), the

research on the theoretical foundation of PMCMC and its applications in many dif-

ferent fields have mushroomed. Though theoretically applicable under a very general

setup, the practical performance of this approach for a particular model depends on

many factors and requires careful examination. To strike a balance between the

satisfactory estimation accuracy and the acceptable computational cost, we choose

a method called Particle Gibbs Ancestor Sampling (PGAS). It is a modified version

of the Particle Gibbs Sampling (PG) considered in the Andrieu et al. (2010), which

dramatically improves the mixing property under a small number of particles. Ex-

tensive simulation results are presented to justify the choice and also provide some

guidance for empirical applications.

The MSV model is estimated solely based on the daily return data. While this

approach of modeling is prevalent in the existing literature, it does not fully utilize

the available information. Another well-known potential source of information for

return fluctuation is realized volatility (RV) calculated using intraday high-frequency

data; see Andersen et al. (2010b) for a recent survey. Inspired by the realized-

GARCH models proposed in Hansen et al. (2014) and Noureldin et al. (2012), MSV

models based on both return series and realized volatility data, referred to as RSV,

have appeared in the literature. RV, though shown to be a consistent estimator

of the latent variance of log-return under perfect market condition, is subject to

market microstructure noises and may exhibit large bias. On the contrary, the daily

return is not seriously contaminated by noises and can be used to eliminate the bias.

3



Besides, adding RV into the SV model as an extra measurement can also improve

the inference efficiency of parameters in the basic SV model. Combining RV with

SV/GARCH, therefore, seems to be a promising direction.

In light of these advances in the literature, we also incorporate realized measures

into our MSV model. This is done by applying the new transformation to the realized

covariance matrix, and the resulting variables provide additional measurements to

the latent variables in the original model. As argued in Yamauchi and Omori (2019),

this extra information source can help stabilize the parameter estimation. One thing

to notice, however, is that this will introduce more parameters into the model and

these additional parameters are not separately identified with parameters in the

original model. For example, the intercept coefficient in the autoregression equation

for latent log-variance will not be identified if we impose that realized measures are

biased proxies for unobserved factors. A similar concern applies to other parameters.

To circumvent this problem, we propose to do a two-stage estimation. Namely, we

first estimate a model without realized measures and then obtain the rest parameters

by imposing identification conditions.

When examining the residuals generated by fitting our model to real data, we

find that there are a few significant outliers. This indicates that our model, though

quite flexible, still leaves some important stylized features unaccounted for. Indeed,

in the basic model we consider, no leverage effect and heavy-tailed innovation are

allowed. Given the strong evidence in the literature supporting the existence of

these features, we extend our model by making less restrictive assumptions on some

building blocks. Specifically, we allow the innovations to return and volatility to be

correlated. We also assume that the innovations to return are t-distributed instead

of Gaussian. As shown by the Q-Q plot of model residuals, this extended model

greatly reduces the number of outliers, which suggests an improved fitting of real

data.

The rest of the dissertation is organized as follows. In Chapter 2, we provide a se-

lective literature review on the MSV models, as well as realized measures constructed

from high-frequency data. In Chapter 3, we introduce the new parametrization of

4



the correlation matrix. We also present the basic MSV model and discuss how to

estimate the model and make the statistical inference of parameters in the model in

Chapter 3. In Chapter 4, we discuss how to incorporate the information in realized

measures. In particular, we discuss both the joint estimation method and the two-

stage estimation method and explain why we choose the two-stage method. Chapter

5 presents generalized MSV models with the leverage effect and the conditional dis-

tribution with heavy tails. Chapter 6 concludes.
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2 A Literature Review

We first review the literature on the MSV models. Asai et al. (2006) summarize

this area of research up to that time, and discussed both the estimation techniques

and the model comparison methods. A similar account can be found in Chib et al.

(2009). For early studies in the literature, we refer the reader to these review papers.

Here, we mainly consider models proposed over the last ten years, paying particular

attention to how they ensure the positivity of the covariance matrices and to the

choice of inference methods.1

2.1 Model Setup

The basic structure of the MSV model is

rt|Ct ∼ N(0, Ct),

where rt is a vector of asset returns. We aim at characterizing the dynamics of its

variance-covariance matrix Ct. Clearly, Ct must be symmetric and positive definite

for all t. Different models rely on different ways to ensure this property. Broadly

speaking, we can categorize the MSV models into two groups. In the first group, a

model is directly built for Ct. In the second group, a covariance decomposition is first

carried out and then each component in the decomposition is modeled separately.

Within the first group of models, three methods have been considered. The first

method is based on the matrix exponential. Ishihara et al. (2016) assume that

Ct = exp(Ht/2),

and propose to model vech(Ht) as a vector autoregressive process. Due to the defi-

nition of the matrix exponential, Ct is guaranteed to be a valid variance-covariance

matrix. The major drawback of this model is that the relationship between the latent

1Note that we do not consider models based on the factor structure in this review, as our new
model is based on the strategy of direct modeling of the covariance matrix.

6



variables in the model and the original volatilities/correlations is highly nonlinear

and thus very hard to interpret.

The second method utilizes the well-known Cholesky decomposition. For in-

stance, Lopes et al. (2010) propose to decompose Ct as

Ct = AtHtA
′
t,

where Ht is a diagonal matrix and At is a lower triangular matrix, and then model

all the nonzero elements in At and Ht as the autoregressive process. Similarly,

Shirota et al. (2017) also use this decomposition to set up their MSV model. Al-

though under this parameterization, we can easily link the latent variables to the

volatilities/correlations, other problems arise with the Cholesky decomposition. For

instance, the resulting matrix depends on the ordering of assets. This dependence is

highly undesirable. Meanwhile, the underlying dynamics of the volatilities and that

of the correlations are not fully separated.

The third method takes advantage of the Wishart distribution, whose support

includes only positive definite matrices. This is considered in Gouriéroux et al.

(2009), where a Wishart autoregressive process is used. Specifically, Gouriéroux

et al. (2009) assume that

Ct =
m∑
i=1

xitx
′
it,

xit = Axi,t−1 + εit and εit ∼ N(0,Σ),

where (v, d, A) are unknown parameters. Alternatively, one can also model Ct uses

the inverse Wishart as in Philipov and Glickman (2006). In this case, we have

C−1
t |v, C−1

t−1 ∼ Wishart

(
v,

1

v
(A1/2)(C−1

t−1)d(A1/2)′
)
,

where (m,A,Σ) are unknown parameters. A similar model specification is presented

in Jin and Maheu (2013).

The models in the second group treat the volatility of each asset and the corre-
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lation matrix separately, based on the following decomposition

Ct = V
1/2
t RtV

1/2
t ,

where Vt is a diagonal matrix collecting all the variances, and Rt is the correlation

matrix. For our purpose, the major difference of designs among this group lies in

how Rt is parameterized. Note that the critical issue in this setup is again how to

ensure the positivity of the correlation matrix. The first and the simplest model in

this fashion is the constant correlation MSV in Harvey et al. (1994), where

Rt = R, for all t.

A similar assumption is made in Chan et al. (2006) and Asai and McAleer (2006).

It can be easily seen that in these models, the dynamic movement of the correlations

is not allowed. Although the inference under this assumption is simple, it is clearly

too restrictive for modeling most financial data.

To allow for time-varying correlations, Asai and McAleer (2009) consider two

models motivated by the Dynamic Conditional Correlation (DCC) model of Engle

(2002) in the MGARCH literature. The idea is to write the correlation matrix in

the following form

Rt = Q̃−1
t QtQ̃

−1
t ,

where Q̃t = (diag(vecd(Qt))
1/2. By construction, the diagonal elements of Rt must

be 1 and the symmetry and the positive definiteness can be achieved if Qt is sym-

metric positive definite. Two Wishart-driven models for Qt that they propose are

Qt+1 = (1− φ)Q̄+ φQt + Ξt, where Ξt ∼ Wishart(k,Λ),

and

Q−1
t+1|k,Q−1

t ∼ Wishart

(
k,

1

k
Q
−φ/2
t ΛQ

−φ/2
t

)
,

where the unknown parameters are k, φ,Λ. Between these two parameterizations,
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the authors argued that the second one is preferred.

Inspired by the Dynamic Equicorrelation (DECO) model of Engle and Kelly

(2012) in the MGARCH literature, Kurose and Omori (2016) proposed to model Rt

as

Rt = (1− ρt)I + ρtJ,

where I is an identity matrix, and J is a square matrix with all elements equal to 1.

To ensure that ρt is within (−1, 1), following Yu and Meyer (2006), they model the

Fisher transformation of ρt as an autoregressive process. Note that in this model,

Rt is positive definite only if ρt is large than some lower bound, depending on the

number of assets. When more assets are considered, this lower bound approaches 0.

Kurose and Omori (2020) further extend this model to the multiple-block case and

include other features.

More recently, Yamauchi and Omori (2019) propose to model the pairwise cor-

relations by the Fisher transformation. Their parameterization is

Rt = {ρij,t}, where ρij,t =
exp(gij,t)− 1

exp(gij,t) + 1
,

and gij,t is assumed to follow a random walk. Since this element-wise operation does

not guarantee the validity of Rt as a correlation matrix, they further derive algebraic

bounds for ρij,t that ensure the positive definiteness of Rt. Note that the bounds

for one particular ρij,t are conditional on all other elements in Rt. Therefore, it is

well suited for the single-move Gibbs sampling technique, but hard to be extended

to another estimation method.

2.2 Estimation Method

Unlike observation-driven models like univariate and multivariate GARCH, which

can be estimated straightforwardly by the maximum likelihood method, stochastic

volatility models are particularly challenging in terms of estimation and inference.

This is due to the high-dimensional latent variables involved in the models, as well as

a large number of parameters. To deal with these complications, historically, dozens
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of methods were proposed and implemented to make inferences for SV models. For

a detailed survey on this topic, see Broto and Ruiz (2004).

The earliest and perhaps the most straightforward method for estimating SV

models is the method of moments, which is considered in Taylor (1986a). Other

moment-based procedures include the generalized method of moments as in Melino

and Turnbull (1990) and Andersen and Sørensen (1996), and the simulated method

of moments proposed in Duffie and Singleton (1993). Though very easy to imple-

ment, these methods have less satisfactory finite sample properties. Moreover, they

do not provide estimates of underlying latent processes. Later, a quasi-maximum-

likelihood estimator (QMLE) is proposed in Harvey et al. (1994), which relies on a

log-linearization of the original model. This transformation results in a linear state

space form with log chi-squared errors, and the Kalman filter is subsequently used

to compute the likelihood. However, QMLE does not rely on the exact likelihood

of data, and the approximation of log chi-squared errors by Gaussian density could

be somewhat inappropriate. A better approximation to the exact likelihood can be

achieved either by using a mixture of normals or through numerical simulation. The

former is proposed in Kim et al. (1998). Monte Carlo Likelihood approach proposed

in Sandmann and Koopman (1998) provides an example of the latter.

A majority of recent papers on stochastic volatility work under the Bayesian

framework and base their inference on the Markov Chain Monte Carlo technique.

This is particularly the case for multivariate models, as they usually involve a large

number of parameters, and optimizing over a high-dimensional parameter space is

well known to be complicated. For a Bayesian method, this problem becomes com-

puting high-dimensional integral, which can be efficiently done by MCMC sampling.

The critical step of this procedure is to draw a sample of latent processes given a

particular set of static parameters. The first method proposed in the literature

is the single-move sampler in Jacquier et al. (1994), where each latent variable is

drawn one at a time, given all the other ones. This approach is well known to

be inefficient, as it will generate seriously autocorrelated samples from the Markov

chain, suggesting a vast amount of random draws is required to achieve a satisfac-
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tory accuracy of estimation. This is particularly true for empirically relevant cases

of strongly persistent volatility. Yu and Meyer (2006) discusses how to implement

the simple-move sampler under a popular Bayesian software known as WinBUGS. In

light of the inefficiency in mixing, Kim et al. (1998) provides an alternative MCMC

method, which is highly efficient. Their method also starts with a log-linearization

of the model, after which they introduce extra auxiliary variables to reach a linear

state-space form. The simulation smoother of De Jong and Shephard (1995) is then

applied to draw the whole latent process simultaneously. Although this method

is very popular in the univariate SV literature, it is not easy to extend to MSV

models with complicated correlation structures. Another significant improvement

of the single-move sampler is proposed in Pitt and Shephard (1999). These authors

suggest blocking to improve the speed of convergence for simulators of non-Gaussian

state-space models. Within each block, a second-order Gaussian approximation is

used to obtain a good proposal density. Since sampling the whole sequence of latent

variables in one block leads to a high rejection rate, they also discuss how to choose

a balanced block size. This method is later modified by, e.g., Watanabe and Omori

(2004),Omori and Watanabe (2008), and attracts a lot of applications.

2.3 Realized Variance and Realized Covariance Matrix

Let us first discuss the realized variance (RV) of a univariate asset return. To

illustrate the basic idea behind RV, consider the price dynamics driven by the Brow-

nian motion as follows,

ds(t) = αdt+ σ(t)dW (t),

where α and σ(t) = σ > 0 represent constant mean and volatility, respectively.

Suppose one have n equally-spaced discrete observations in interval [0, K]. Since

the drift term α is of smaller order on a short interval, one can estimate σ2 by

σ̂2 =
1

K

nK∑
j=1

[
s

(
j

n

)
− s

(
j − 1

n

)]2

.
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It is easy to show that σ̂2 is consistent and obtain its in-fill asymptotic distribution

as
√
nK(σ̂2 − σ2)→d N(0, 2σ4). Similar results exist when the volatility process is

stochastic rather than time-invariant. Specifically, realized variance defined as

RV (t−K, t) =
nK∑
j=1

[
s

(
t−K +

j

n

)
− s

(
t−K +

j − 1

n

)]2

,

on interval [t − K, t] will be a consistent estimator for the integrated variance

IV (t − K, t) =
∫ t
t−K σ(τ)2dτ and asymptotic normality still applies as n goes to

infinity. Now consider a p-dimensional asset price vector which follows diffusion

process defined by

dS(t) = α(t)dt+ Σ(t)dW (t),

where W (t) is now a p-dimensional independent standard Brownian motion. To

estimate integrated convariance ICOV (t−K, t) =
∫ t
t−K Σ(τ)Σ(τ)′dτ of these assets

on the interval [t−K, t], one can analogously construct realized covariance as follows

RCOV (t−K, t) =
nK∑
j=1

[
S

(
t−K +

j

n

)
− S

(
t−K +

j − 1

n

)]
[
S

(
t−K +

j

n

)
− S

(
t−K +

j − 1

n

)]′
.

For detailed discussions, see Andersen et al. (2001a), Barndorff-Nielsen and Shep-

hard (2002), and Hurn et al. (2020).

Though theoretically, we can obtain an estimator for integrated variance/covariance

which is arbitrarily close to the true value by increasing sampling frequency, there

are a few practical challenges that complicate the application of this asymptotic

argument. These include measurement errors induced by discretization, as well as

various types of market microstructure noise like price discreteness, bid-ask spread,

and asynchronous trading. In general, such contamination causes bias in the RV

and RCOV. Hence, it is critical to choose a sampling frequency that strikes a bal-

ance between estimation accuracy and the adverse effects of microstructure noise. A

popular and simple method in practice is to sample sparsely, such as every 1 minute,
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5 minutes, or 30 minutes. A partial list of more sophisticated solutions in the litera-

ture includes multi-scale realized variance by Zhang et al. (2005) and Zhang (2006);

realized kernel of Barndorff-Nielsen et al. (2009); pre-averaged realized variance by

Podolskij and Vetter (2009) and Jacod et al. (2009); realized range-based variance

of Christensen and Podolskij (2007).

2.4 Multivariate Stochastic Volatility and Realized Mea-

sures

During the last two decades of the 20th century, modeling asset volatility was

achieved by using daily return data only. Leading examples are the GARCH-type

models (Engle (1982); Bollerslev (1986)) and the SV-type models (Taylor (1986a)).

These models have been widely studied in academia and applied by practition-

ers. More recently, an increasing number of papers turn to work with intra-daily

high-frequency data and use the methodology introduced in the last subsection to

investigate the characteristics of volatility. As both data sources potentially provide

useful information for second moments of asset returns, it is natural to combine

them when making statistical inferences and predictions.

Within the GARCH framework, the effort was initially made by Engle (2000),

where realized measures are included as exogenous variables. This model, however, is

incomplete in the sense that realized measures are not explicitly modeled. Complete

models have been proposed soon after. Three leading models are MEM by Engle

and Gallo (2006), HEAVY model by Shephard and Sheppard (2010), and Realized

GARCH by Hansen et al. (2012). Multivariate extensions are also available now,

see e.g. Noureldin et al. (2012), Hansen et al. (2014). Since these models are all

observation-driven and no latent variables are involved, they can be easily estimated

by the standard maximum likelihood method. Prediction of future volatility is

straightforward as well.

In the SV literature, fewer studies exist on joint modeling of daily and intra-daily

returns. Existing studies include Takahashi et al. (2009) and Koopman and Scharth
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(2012), which both consider the univariate model. The former was extended in sev-

eral directions by Venter and de Jongh (2014), while Zheng and Song (2014) extend

the latter paper by considering the Box-Cox transformation. Recent contributions

to multivariate modeling include Shirota et al. (2017), Kurose and Omori (2020),

and Yamauchi and Omori (2019). Models proposed in these papers incorporate a lot

of stylized features such as the leverage effect, endogeneity, and block structure. To

ensure the positive definiteness of the covariance matrix, these studies use techniques

such as the Cholesky decomposition, the matrix exponential, and the pairwise Fisher

transformation. See also Jin and Maheu (2013) and Jin and Maheu (2016), where

the Wishart autoregression is used to model the stochastic covariance matrix. Due

to the high-dimensional latent variables involved, estimation and inference for such

models are usually computationally intensive and rely heavily on simulation-based

approaches, especially MCMC.

2.5 Leverage Effect and Heavy-tailedness

It is well known that the basic SV model cannot capture all important stylized

facts of asset returns. Another important stylized fact in much financial time series

is the asymmetric effect of return on volatility. In the literature, this effect is often

called the leverage effect. According to Black (1976), when there is a negative shock

in return, the firm’s financial leverage increases, and hence the future expected

volatility also increases. However, when there is a positive shock in return, the

firm’s financial leverage decreases, and hence the future expected volatility also

decreases. Therefore, the negative shock in return generates a different impact on

the expected volatility from the positive shock of the same magnitude. The empirical

evidence of the leverage effect is provided by Chirstie (1982). In the univariate SV

literature, Harvey and Shephard (1996) propose a model with the leverage effect

and estimate the model by quasi-maximum likelihood while Meyer and Yu (2000)

estimate the same model using the MCMC method. Jacquier et al. (2004) estimate

the SV model with the leverage effect using MCMC. Yu (2005) notes that there is

a difference between the specifications in Harvey and Shephard (1996) and Jacquier
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et al. (2004). He compares the two specifications and shows that specification in

Jacquier et al. (2004) is inferior to that in Harvey and Shephard (1996). Omori et al.

(2007) shows the basic approach in Kim et al. (1998) can be extended to the model

with leverage effect. In the context of the MSV model, the leverage effect can be

extended to the cross-leverage effect (i.e., a nonzero correlation between the return

of the ith asset at time t and the log-volatility of the jth asset at time t+ 1). Chan

et al. (2006) and Asai and McAleer (2006) proposed alternative MSV models with

the leverage effect. Ishihara and Omori (2012) proposes an efficient Bayesian method

to estimate the MSV model with the cross-leverage effect. More recent contributions

in the literature include Ishihara et al. (2016), and Yamauchi and Omori (2019).

Although heavy tails in the unconditional return distribution are possible in the

SV model with the conditional Gaussian error distribution, empirical evidence often

suggests that the tails are not heavy enough compared with data. One way to gener-

ate heavy tails that match with those of the data is to use the Student-t distribution.

In the context of univariate SV models, the heavy-tailed error distribution has been

used in Kim et al. (1998), Meyer and Yu (2000), Liesenfeld and Jung (2000), Berg

et al. (2004), Jacquier et al. (2004), Chib et al. (2002), and Omori et al. (2007). In

the context of MSV model, the heavy-tailed error distribution has been used in Yu

and Meyer (2006), Ishihara and Omori (2012).
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3 A Multivariate Stochastic Volatility Model with

the Generalized Fisher Transformation

3.1 The Generalized Fisher z-Transformation and MSV-GFT

Model

In this section, we first review the new parametrization of the correlation ma-

trix proposed in Archakov and Hansen (2018a). This novel parametrization can

be considered as a high-dimensional generalization of the widely-used Fisher z-

transformation in bivariate correlation modeling. Based on this new tool, a flexible

MSV model is proposed.

3.1.1 Parametrization of Correlation Matrix

When the correlation coefficient between two random variables, say ρ, is to be

modeled, an essential constraint is that its value must be within the interval (−1, 1).

To avoid complexity brought by this constraint in modeling, one can instead model

Fisher’s z-transformation of ρ, defined as F (ρ) = 1
2

log 1+ρ
1−ρ . We know that F (·) is

a one-to-one mapping and for any F (ρ) ∈ R, there exists a unique corresponding

ρ ∈ (−1, 1). Therefore, one can impose any structure on F (ρ) and transform it

back to obtain ρ without worrying about the validity of the resulting correlation

coefficient. This idea was first introduced to the multivariate stochastic volatility

literature in Yu and Meyer (2006). Unfortunately, it is acknowledged by the authors

that this approach “is not easy to be generalized into higher dimension situations”.

In particular, a pair-wise transformation applied to each entry in a high-dimensional

correlation matrix, though seems to be natural, is not a valid choice as it fails to

guarantee the positive definiteness of the resulting correlation matrix.

Fisher’s z-transformation has many nice properties. It is desirable to obtain a

valid high-dimensional version of this transformation. The proposal made in Ar-

chakov and Hansen (2018a) is to apply the matrix logarithm to the original cor-
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relation matrix and then model all the lower off-diagonal elements in that new

matrix. To fix the idea, suppose we have a p-dimensional correlation matrix C

and let G = logC =
∑∞

k=1
(−1)k(C−I)k

k
. Note that the convergence of the infinite

summation and thus the existence of G is ensured by the fact that C, as a cor-

relation matrix, is symmetric and positive definite. Further, denote q = vecl(G)

as the p(p−1)
2

-dimensional vector containing all lower off-diagonal entries of G. In

summary, the new parametrization of the original correlation matrix is now defined

by the mapping q = vecl(logC). One of key theoretical contributions of Archakov

and Hansen (2018a) is that this mapping is shown to be one-to-one. That is to

say, given any p(p−1)
2

-dimensional vector q, there exists a unique valid p-dimensional

correlation matrix C. Although the inverse mapping from q to C does not admit

a closed-form analytical solution, C can easily be reconstructed from q using an

iterative algorithm.2

It is straightforward to show that when p = 2, the above-defined transformation

reduces to Fisher’s z-transformation. As a generalization, the new parametrization

inherits a few advantages of the z-transformation and enjoy some additional de-

sirable properties. First and foremost, it is very flexible in the sense that when

modeling q, we do not need to impose any algebraic constraint. This suggests that

we can consider any reasonable dynamics for q without worrying about the positive-

definiteness of the resulting correlation matrix, which is attractive in the stochastic

volatility model. Second, compared with original elements in correlation matrix C,

the sampling distribution of elements in transformed vector q usually appears to

be closer to a Gaussian distribution. Hence, it is reasonable to model q through

a Gaussian autoregressive process. Third, this transformation is invariant to the

reordering of variables, in contrast to those approaches based on the Cholesky de-

composition. Fourth, although elements of q depend on C in a nonlinear way, some

interesting properties carry over to G = log(C), notably the equicorrelation and

block-equicorrelation structure, see Archakov et al. (2020).

2The algorithm has been implemented in Matlab, Python, Ox, and the corresponding computer
code can be found in the online appendix of Archakov and Hansen (2018b). We thank the authors
for making it available to the public.
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For the sake of notational simplicity, in the rest of the paper, we refer to the

mapping vecl(log(·)) as F (·) and the corresponding inverse mapping as F−1(·).

3.1.2 A Multivariate Stochastic Volatility Model with Generalized Fisher

Transformation

We specify our new MSV model in this section. Let rt = (r1t, ..., rpt)
′ denote

the p × 1 vector of asset returns and ht = (h1t, ..., hpt)
′ the corresponding vector of

latent log-volatilities at time t. We denote the vector of latent variables at time t that

underlie the correlations by qt = (q1t, ..., qdt)
′, where d = p×(p−1)

2
by construction.

This vector qt is connected to correlation matrix Rt through the transformation

detailed in Section 3.1.1. Then, the basic model, which we refer to as MSV-GFT, is

given by

rt = V
1/2
t εt, where εt ∼ N(0, Rt), t = 1, ..., T, (3.1)

Vt = exp(Ht), and ht = diag(Ht), t = 1, ..., T, (3.2)

qt = F (Rt), t = 1, ..., T, (3.3)

ht+1 = µh + Φh(ht − µh) + ηht, where ηht ∼ N(0,Σh), t = 1, ..., T − 1, (3.4)

qt+1 = µq + Φq(qt − µq) + ηqt, where ηqt ∼ N(0,Σq), t = 1, ..., T − 1, (3.5)

h0 ∼ N(µh, (Ip − Φ2
h)
−1Σh), and q0 ∼ N(µq, (Id − Φ2

q)
−1Σq), (3.6)

where εt = (ε1t, ..., εpt)
′, ηht = (ηh1t, ..., ηhpt)

′, ηqt = (ηq1t, ..., ηqdt)
′, µh = (µh1, ..., µhp)

′

and µq = (µq1, ..., µqd)
′. We assume that both Φh and Φq are diagonal with the diago-

nal elements being φh = (φh1, ..., φhp) and φq = (φq1, ..., φqd), respectively. Σh and Σq

are also supposed to be diagonal with the diagonal elements being σ2
h = (σ2

h1, ..., σ
2
hp)

and σ2
q = (σ2

q1, ..., σ
2
qd). Here ht is a p-dimensional latent process that determines the

volatilities via the exponential transformation and qt is a d-dimensional latent pro-

cess that determines the correlation coefficients via the F transformation. All the

latent variables (elements in ht and qt) are assumed to be generated by independent

AR(1) models.
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Note that in the MSV-GFT model, persistence in the elements of qt is allowed

to vary. This is in sharp contrast to models based on Engle’s DCC framework or

the Wishart autoregression, where the persistence of all the correlation sequences is

assumed to be the same. While the ‘equi-persistence makes the model specification

more parsimonious, the empirical validity of this assumption has to be verified. To

empirically examine the relevance of our generalization, we also consider a restricted

model in this chapter. The restricted model is obtained from the general model by

assuming that the sequences in the elements of qt share the same persistence and

variance, that is, φq1 = ... = φqd and σ2
q1 = ... = σ2

qd. As can be easily seen, this

structure is similar to the equicorrelation model proposed by Engle and Kelly (2012),

with a minor difference that we allow the variation in the mean of each correlation

sequence.

3.2 Particle Filter and Markov chain Monte Carlo

Due to the difficulty of evaluating likelihood, the literature on MSV models car-

ries out statistical inference under a Bayesian framework. Jacquier et al. (1994)

introduced the single-move Gibbs sampler, in which all the latent variables are

sampled using the full conditional distributions one by one. Meyer and Yu (2000)

explained how to implement the single-move Gibbs sampler in a popular Bayesian

software WinBUGS. Kim et al. (1998) showed that this approach could be quite

inefficient and produce highly autocorrelated MCMC draws. To improve efficiency,

the multi-move sampler proposed in Shephard and Pitt (1997) is employed by many

papers. See also the discussion in Watanabe and Omori (2004) and Omori and

Watanabe (2008). In this chapter, we take advantage of a recently proposed tech-

nique known as PMCMC, which builds an efficient, high-dimensional MCMC kernel.

Specifically, we use an improved Particle Gibbs sampler that enjoys the good mixing

property even with a small number of particles. Details of our estimation procedure

are discussed in this section.
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3.2.1 Review of Particle Filter

Before explaining PMCMC, we first briefly introduce the concept of particle

filter. Consider a general non-linear state-space model given by

yt|xt = x ∼ fθ(·|x), (3.7)

xt+1|xt = x ∼ gθ(·|x), and x1 ∼ µθ(·), (3.8)

where yt is the observable variable, xt is the latent variable, and θ contains all the

parameters of interest. In this subsection, we assume for the moment that θ is

given and our target is to infer the latent variables (x1, ...xt) using the observations

(y1, ..., yt). Specifically, we wish to obtain an estimator of the conditional distribution

pθ(x1, ..., xt|y1, ..., yt). A closed-form analytical solution for this problem is usually

not available, except in very special cases such as in the Gaussian linear models,

where the Kalman filter is applicable. Approximation must be relied upon in general.

Particle filter, also known as sequential Monte Carlo (SMC) in the literature, is

exactly the tool to apply in such a case. The only requirements for the validity

of particle filter are that (i) the measurement density fθ(·|x) can be numerically

evaluated; (ii) one can simulate from the transition density gθ(·|x).

The methodology of particle filter combines importance sampling and Monte

Carlo simulations to approximate the target distribution. The key idea is to rep-

resent the distribution by a set of random samples with the corresponding weights

and calculate the quantity of interest based on these samples and weights. To fix

the idea, let {x(i)
1:t, w

(i)
t }Ni=1 be a random measure, where {x(i)

0:t, i = 1, ..., N} is a set

of support points and {w(i)
t , i = 1, ..., N} are the associated weights. Here, we use

x1:t = {xj, j = 1, ..., t} to denote the set of all states up to time t. Each point is called

a particle, and N is the number of particles used. The approximate distribution can

then be written as

p̂θ(dx1:t|y1:t) =
N∑
i=1

w
(i)
t δx(i)1:t

(dx1:t), (3.9)

where y1:t is similarly defined and δ(·) is the Dirac function. p̂θ is a discrete weighted
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approximation to the target distribution pθ. Apparently, the accuracy of the approx-

imation can be improved as an increasing number of particles are included. Doing

so, however, also dramatically raises the computational burden.

To obtain the weights, we resort to importance sampling. That is to say, we

sample N times from a candidate distribution, say qθ(x1:t|y1:t), and assign the weight

w
(i)
t ∝ pθ(x

(i)
1:t|y1:t)/qθ(x

(i)
1:t|y1:t)

to each sample drawn. In practice, it is hard, if not impossible, to pick up a proper

importance density for the joint distribution of x1:t conditional on the data when the

sample size is large. Hence, this approach usually proceeds in a sequential fashion.

Specifically, the importance density is chosen to admit the factorization such that

qθ(x1:t|y1:t) = qθ(xt|xt−1, yt)qθ(x1:t−1|y1:t−1).

For any existing weighted sample {x(i)
1:t−1, w

(i)
1:t−1} that follows from pθ(x1:t−1|y1:t−1),

we augment it with the new state x
(i)
t randomly drawn from qθ(xt|xt−1, yt). The joint

sample, (x
(i)
t−1, x

(i)
t ) is then a realization from the targeted joint importance density.

The corresponding weight for ith sample can easily be updated through

w̃
(i)
t ∝ w

(i)
t−1

fθ(yt|x(i)
t )gθ(x

(i)
t |x

(i)
t−1)

qθ(x
(i)
t |x

(i)
t−1, yt)

,

and normalized to be w
(i)
t = 1

N

∑N
i=1 w̃

(i)
t . An unavoidable problem of this procedure,

known as degeneracy, is that after a few iterations, only one particle has a non-

negligible weight, which means a large computational cost is spent on particles with

almost no contribution. To alleviate this problem, a resampling step is necessary.

An important by-product of this filtering strategy is an approximation to pθ(y1:t|y1:t−1),

which has a simple formula

p̂θ(y1:t|y1:t−1) =
1

N

N∑
i=1

w
(i)
t .
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The joint likelihood can then be easily obtained as

p̂θ(y1:T ) =
T∏
t=2

p̂θ(y1:t|y1:t−1) · p̂θ(y1).

Unlike the Kalman filter, where the exact likelihood is available through recursive

evaluations of closed-form functions, the likelihood computed using particle filter

only estimates the true likelihood. Thus, it is subject to the approximation error

arising from random sampling.

Despite its general applicability, when implementing the particle filter for a par-

ticular model, many subtle issues must be considered. These include how to choose

a proper importance density qθ(xt|xt−1, yt), how many particles to use, and whether

a resampling step should be added. For a thorough discussion, see Arulampalam

et al. (2002) and Johansen and Doucet (2008).

3.2.2 Particle Gibbs Sampler and Ancestor Sampling

In practice, model parameters are unknown. In the Bayesian framework with

MCMC sampling, model parameters must be drawn together with the latent vari-

ables. To sample from the joint density p(θ, x1:T |y1:T ), typically we proceed by

running a Gibbs sampler, which means drawing alternately from the two condi-

tional densities, namely p(θ|x1:T , y1:T ) and p(x1:T |y1:T , θ). Usually, the former is easy

to sample, either by imposing conjugate priors or through the Metropolis-Hasting

algorithm. The latter, on the other hand, can be handled by the particle filter ap-

proach introduced above. This is the basic idea of the particle Gibbs (PG) sampler

proposed in Andrieu et al. (2010).

One subtlety of this algorithm, as indicated in Andrieu et al. (2010), is that

to ensure the targeted joint distribution is indeed the invariant distribution of a

Markov chain, we have to modify the sequential Monte Carlo step. Specifically, one

particle trajectory must be specified a prior, and it serves as a reference trajectory.

Therefore, after a complete pass of the particle filter is run, a trajectory x
(i)
1:T is

randomly picked with probability proportional to the corresponding weight w
(i)
T .
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For the next MCMC iteration, when running particle filter, we only draw N − 1

particles, and the N th particle is fixed at the chosen one from the last iteration. The

intuition of such modification is that this path can guide the simulated particles

to move within a relevant region of the state space. For a formal justification, see

Theorem 5 of Andrieu et al. (2010).

A particle-filter-based MCMC procedure has a few desirable properties, which

make it preferred compared with traditional methods. First and foremost, a sig-

nificant improvement is in terms of efficiency. Traditional single-move sampler is

well known to be quite inefficient, as it usually leads to highly autocorrelated sam-

ples across MCMC iterations. Such strong dependency implies that one has to

draw a vast number of samples to achieve satisfactory accuracy. As suggested by

the simulation studies below, the PG method we use significantly reduces the sam-

ple autocorrelation and thereby is much more efficient computationally. Another

alternative that could also alleviate the inefficiency in the single-move sampler is

various multi-move approaches. Those methods, however, in most cases, require the

derivation of the second-order approximation, which could be tedious and difficult

for multivariate non-linear models, including the one considered in this chapter.

Designing a PG sampler, on the contrary, requires a minimal modification across

different models, as long as they could be cast into a state-space form.

Second, one can gain a lot from adopting sequential Monte Carlo when perform-

ing model comparison. As will be discussed in Section 3.2.4, two popular approaches

have been used in practice to compare competing Bayesian models. The first one

is based on the Bayes factor and the second one is based on the Deviance Informa-

tion Criterion (DIC). If either single-move or multi-move sampler is used, both the

Bayes factor and DIC are more difficult to compute from the algorithms based on

the single-move sampler and the multi-move sampler than from the proposed PG

sampler. The reason is that in the single-move sampler and the multi-move sampler,

the latent variables are treated as parameters due to the use of the data augmenta-

tion technique of Tanner and Wong (1987). As a result, the likelihood function at

period t is defined as p(yt|xt, θ). Whereas, in the proposed PG sampler, the likeli-
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hood function at period t is defined as p(yt|θ). The computation of both the Bayes

factor and DIC requires p(yt|θ), not p(yt|xt, θ). While the single-move sampler and

the multi-move sampler can generate MCMC draws of p(yt|xt, θ) as a byproduct, xt

has to be integrated out from p(yt|xt, θ) to obtain MCMC draws of p(yt|θ). This

step is computationally expensive although the particle filtering technique can be

used here. On the other hand, the PG sampler obtains an estimated p(yt|θ) as a

by-product, facilitating the calculation of the Bayes factor and DIC.

Though theoretically correct, PG has been shown to perform quite poorly when

the underlying SMC sampler suffers from path degeneracy. As observed in Lindsten

et al. (2014) and Chopin and Singh (2015), the mixing of the Markov kernel induced

by PG is rather slow under those circumstances. What makes things worse is that

for the high-dimensional problem, such as the one we consider in this study, path

degeneracy is inevitable. To overcome this severe drawback, Lindsten et al. (2014)

proposes a new method, which includes an additional step called ancestor sampling.

While this is a small modification, the new particle Gibbs with ancestor sampling

(PGAS) enjoys fast mixing of the Markov kernel even when only a seemingly small

number of particles are used in the underlying SMC. Informally, in the original PG,

when degeneracy occurs, the particle system collapses toward the chosen reference

trajectory. Whereas, in the PGAS, it degenerates toward something entirely differ-

ent. As a consequence, the update rates of latent variables are much higher with the

additional ancestor sampling step. Therefore, the mixing is much faster. Lindsten

et al. (2014) also show that for a state-space model, PGAS is probabilistically equiv-

alent to the particle Gibbs sampler with a backward smoothing step under certain

conditions.

For our purpose, a fast mixing under a small number of particles is highly de-

sirable, as our likelihood function contains a component that has no closed-form

solution and thus must be computed numerically. Although the cost for one-time

computation is relatively low, it soon becomes infeasible when a vast number of

particles are included in the system. Indeed, for MCMC with S iterations, if the

sample size is T and N particles are used, F−1(·) must be evaluated S × T × N
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times. As S and T are usually quite large in the empirical application, we can gain

a lot in terms of computational efficiency by choosing the PGAS approach. Due

to the same consideration, the particle Metropolis-Hasting approach is not chosen

either as it requires an accurate calculation of f(yt|θ) and a large number of parti-

cles. In summary, we think that PGAS could be a suitable estimation tool given our

model setup. Its performance will be further examined through extensive simulation

studies reported later.

3.2.3 Bayesian Analysis of MSV-GFT

After introducing the critical component of our estimation strategy, we can now

present our particle-filter-based MCMC sampling algorithm for a Bayesian analysis

of the MSV-GFT model. As any other Bayesian methods, we first need to specify the

prior distributions of all the parameters θ ≡ (µh, µq, φh, φq, σ
2
h, σ

2
q ). In this regard,

our specification follows those adopted in the literature, especially in Kim et al.

(1998). For the prior distribution of µh and µq, we assume independent multivariate

normal distributions. The persistence parameters φh and φq are assumed to have

Beta priors. The prior distribution of σh and σq are chosen to be inverse gamma.

In summary, we choose the following prior distributions:

• µhi ∼ N(mµ0, s
2
µ0) and µqj ∼ N(mµ0, s

2
µ0);

• φhi+1
2
∼ Beta(a, b) and

φqj+1

2
∼ Beta(a, b);

• σ2
hi ∼ IG(nm0

2
, dm0

2
) and σ2

hi ∼ IG(nm0

2
, dm0

2
),

for i = 1, ..., p and j = 1, ..., d and mµ0, s
2
µ0, a, b, nm0, dm0 are hyperparameters.

Let r = (r1′, ..., r′T ), h = (h′1, ..., h
′
T ) and q = (q′1, ..., q

′
T ). To carry out the

inference, we implement a Gibbs sampler with four blocks. In the following, we use

θ/α to denote the parameters θ excluding α. Then, the algorithm proceeds as:

1. Initialize h, q and θ.

2. Draw h, q|r, θ.
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3. Draw µh, µq|r, h, q, θ/(µh,µq).

4. Draw φh, φq|r, h, q, θ/(φh,φq).

5. Draw σ2
h, σ

2
q |r, h, q, θ/(σ2

h,σ
2
q ).

Iteration over steps 2-5 consists of a complete sweep of MCMC sampler. The joint

posterior distribution of our model can be written as

p(θ, h, q|r) ∝ p(r|θ, h, q)p(θ, h, q)

= f(r|h, q)gθ(h)gθ(q)π(θ)

= f(r1|h1, q1)gθ(h1)gθ(q1)
T∏
t=2

[f(rt|ht, qt)gθ(ht|ht−1)gθ(qt|qt−1)]π(θ)

=
T∏
t=1

[(
p∑
i=1

hit

)
|Rt|−1/2 exp

[
−1

2
r′t(V

1/2
t RtV

1/2
t )−1rt

]]

×
T∏
t=2

p∏
i=1

[
(σ2

hi)
−1/2 exp

(
− 1

2σ2
hi

(hit+1 − µhi − φhi(hit − µhi))2

)]

×
T∏
t=2

d∏
j=1

[
(σ2

qj)
−1/2 exp

(
− 1

2σ2
qj

(qjt+1 − µqj − φqj(qjt − µqj))2

)]

×
p∏
i=1

(
σ2
hi

1− φ2
hi

)−1/2

exp

(
− (hi1 − µh1)2

2σ2
hi/(1− φ2

hi)

)

×
d∏
j=1

(
σ2
qj

1− φ2
qj

)−1/2

exp

(
− (qj1 − µq1)2

2σ2
qj/(1− φ2

qj)

)
× π(θ).

(3.10)

We apply the PGAS introduced in the last subsection to sample the latent variables

h and q given all the observations r and one particular set of parameter values. The

detailed description of the algorithm is presented in Appendix A.1. On the other

hand, from the joint posterior density, it is straightforward to sample each parameter

in θ given one particular realization of latent processes h and q. Specifically, we can

do the following:

1. We can directly sample from the full conditional posterior of µhi and µqi from
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a normal distribution. For i = 1, ..., p and j = 1, ..., d,

µhi|r, h, q, θ/µhi ∼ N(m̃hµ, s̃
2
hµ) and µqj|r, h, q, θ/µqj ∼ N(m̃qµ, s̃

2
qµ) (3.11)

where

m̃hµ = s̃2
hµ

{
1− φ2

hi

σ2
hi

hi1 +
1− φhi
σ2
hi

T−1∑
t=1

(hit+1 − φhihit)

}
,

m̃qµ = s̃2
qµ

{
1− φ2

qj

σ2
qj

qj1 +
1− φqj
σ2
qj

T−1∑
t=1

(qjt+1 − φqjqjt)

}
,

and

s̃2
hµ = σ2

hi

[
(T − 1)(1− φhi)2 + (1− φhi)2

]−1
,

s̃2
qµ = σ2

qj

[
(T − 1)(1− φqj)2 + (1− φqj)2

]−1
.

2. To draw random samples from the full conditional posterior density of φhi and

φqi, one can resort to the Metropolis-Hasting sampler. Since

log p(φhi|y, h, q, θ/φhi) ∝ log p(hi|φhi, θ/φhi) + log π(φhi)

= log π(φhi)−
(hi1 − µhi)2(1− φ2

hi)

2σ2
hi

+
1

2
log(1 + φ2

hi)

−
∑T−1

t=1 [(hit+1 − µhi)− φhi(hit − µhi)]2

2σ2
hi

,

(3.12)

we draw φ∗hi from the proposal normal density N(φ̂hi, Vφhi), where

φ̂hi =

[
T−1∑
t=1

(hit+1 − µhi)(hit − µhi)

]/[T−1∑
t=1

(hit − µhi)2

]
,

is the ordinary least square estimator of φhi given hi and

Vφhi = σ2
hi

[
T−1∑
t=1

(hit − µhi)2

]−1

.

Then, the draw is accepted with probability min
[
1, exp

{
g(φ∗hi)/g(φ

(i−1)
hi )

}]
,
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where φ
(i−1)
hi is the sample from last MCMC iteration and

g(φhi) = log π(φhi)−
(hi1 − µhi)2(1− φ2

hi)

2σ2
hi

+
1

2
log(1 + φ2

hi).

φqi can be treated in the same fashion.

3. Similar to the case for µ, due to the conjugacy, draws of σ2
hi can come from an

inverse gamma distribution. For i = 1, ..., p and j = 1, ..., d,

σ2
hi|y, h, q, θ/σ2

hi
∼ IG

(
ñm
2
,
d̃hm

2

)
and σ2

qj|y, h, q, θ/σ2
qj
∼ IG

(
ñm
2
,
d̃qm
2

)
(3.13)

where ñm = nm0 + T and

d̃hm = dm0 + (hi1 − µhi)2(1− φ2
hi) +

T−1∑
t=1

[(hit+1 − µhi)− φhi(hit − µhi)]2 ,

d̃qm = dm0 + (qj1 − µqj)2(1− φ2
qj) +

T−1∑
t=1

[(qjt+1 − µqj)− φqj(qjt − µqj)]2 .

3.2.4 Model Comparison

To investigate the performance of the proposed model against alternative model

specifications, we compare competing models based on DIC of Spiegelhalter et al.

(2002) and the Bayes factor of Kass and Raftery (1995).

DIC is a Bayesian version of AIC. As shown in Li et al. (2017), the justification

of DIC can be made in a similar way to that of AIC. As AIC, DIC consists of two

terms, that is,

DIC = Eθ|r[D(θ)] + PD (3.14)

where D(θ) = −2 log p(r|θ) and PD = Eθ|r[D(θ)]−D(Eθ|r[θ]). The first term mea-

sures the goodness of fit of the model while the second term measures the complexity

of the model. Due to the use of the second term which penalizes the increasing size
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of a model, DIC can deal with the problem of over-fitting. The smaller the DIC

value, the better the model.

To compute DIC based on MCMC output, the log-likelihood component in D(θ)

can be approximated by log(p̂(r|θ)). Note that p̂(r|θ) is generated from PGAS.

By the law of large numbers for ergodic processes, 1
B

∑B
i=1D(θi)

p→ Eθ|r[D(θ)] as

B → ∞ where B is the number of MCMC iterations and θi is ith MCMC draw

from the posterior distribution, p(θ|r). The second term PD depends on D(Eθ|r[θ]),

which can be approximated by D(θ̄), where θ̄ is the posterior mean. Given that

p̂(r|θ) is generated from PGAS, D(θ̄) is easy to compute. As PGAS estimates the

log-likelihood log p(r|θ̄), the numeric standard error affects the precision of DIC.

Following Ishihara and Omori (2012), we repeat PGAS with 10000 particle numbers

for ten times. At each time, we obtain the log-likelihood value at θ̄. We then use

the average of these log-likelihood values to estimate log p(r|θ̄).

It is attempting to calculate DIC from D(θ) = −2 log p(r|h, q, θ) and PD =

Eθ,h,q|r[D(θ)]−D(Eθ,h,q|r[θ]) for models with latent variables because log p(r|h, q, θ)

is numerically more tractable than log p(r|θ) for most models with latent variables.

In log p(r|h, q, θ) all the latent variables, including h and q, are treated as parameters.

This treatment makes the calculation of DIC based on the single-move and the multi-

move algorithms easy to implement. This method of calculating DIC is proposed

in Spiegelhalter et al. (2002) and implemented in WinBUGS when there are latent

variables in a model. Unfortunately, as pointed out in ?, this method lacks of

theoretical justification because when the latent variables are incidental parameters

which cannot be consistently estimated. As p̂(r|θ) is generated by PGAS but not

by the single-move and the multi-move algorithms, PGAS makes the calculation of

DIC, the version based on log p(r|θ), straightforward.

The Bayes factor is an alternative way to compare the competing models. Like

DIC, the Bayes factor can also deal with over-fitting. Assume that there are two

competing models, M0 and M1, which may be nested or not nested. The idea of

the Bayes factor comes from the posterior odds defined by p(M0|r)/p(M1|r). By the
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Bayes theorem, we have

p(M0|r)
p(M1|r)

=
p(r|M0)

p(r|M1)
× p(M0)

p(M1)
:= BF01 ×

p(M0)

p(M1)
,

where p(M0), p(M1 represent the prior model probabilities, BF01 = p(r|M0)
p(r|M1)

, the Bayes

factor, is the ratio of the two marginal likelihoods, p(r|M0) and p(r|M1). If we

assume the equal prior model probabilities as is typically done, then the posterior

odds is the same as the Bayes factor.

From the discussion above, to calculate the Bayes factor, one needs to calculate

the two marginal likelihood values of two competing models. To calculate the log

Bayes factor, one needs to calculate the difference between the two log marginal

likelihood values. In general marginal likelihood conducts integrations over the

entire parameter space, that is, for any model Mi,

p(r|Mi) =

∫
p(r, θ|Mi)dθ =

∫
p(r|θ,Mi)p(θ|Mi)dθ.

When the parameter space is of high dimension and the integral is not analytically

available, the computational cost in evaluating marginal likelihood can be very high.

In the literature, several MCMC-based approaches are available to compute the

marginal likelihood numerically from MCMC output, including Chib (1995), Chib

and Jeliazkov (2001), Friel and Pettitt (2008), and Li et al. (2020).

To avoid numeric integrations, for any model Mi, Chib (1995) suggests evaluating

the log marginal likelihood as,

log p(r|Mi) = log p(r|θ̄Mi) + log p(θ̄|Mi)− log p(θ̄|r,Mi), (3.15)

where log(p(r|θ̄,Mi)) is the log likelihood of model i, log p(θ̄,Mi) is the log prior

density for parameters in model i, log p(θ̄|r,Mi) is the log posterior density of model

i, and θ̄ is the posterior mean of parameters in model i.

In the right-hand side of Equation (3.15), the first component log p(r|θ̄,Mi) is

approximated by our proposed method. The second component is directly computed
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by the prior distribution in Section 3.2.3. The posterior density is only known up

to a normality constant. Follows as Kim et al. (1998), we approximate it by using

the multivariate kernel density estimate. If a single-move or multi-move method is

used, one would obtain log p(r|θ̄, h, q,Mi) by a by-product. Therefore, additional

marginalization is required to integrated out h and q from log p(r|θ̄, h, q,Mi).

Unlike the maximum likelihood which tends to take a larger value for a model

with more parameters and can lead to over-fitting, the marginal likelihood can han-

dle the problem of over-fitting. However, unlike DIC, the penalty attached to over-

fitting is implicit in the marginal likelihood. In a recent study, Fong and Holmes

(2020) shows that the marginal likelihood is formally equivalent to a cross-validation

method which is designed to address the problem of over-fitting.

After DIC and the log marginal likelihood are obtained for competing models

(either nested or non-nested), their values can be directly compared across models.

Let K be the difference between the log marginal likelihoods or the DIC values of

two competing model.3 When K > 0, it means that M0 is more strongly supported

by the data than M1. Jeffreys (1998) gives a scale for interpretation of K. If K < 0,

there is negative evidence for M0. If K ∈ (0, 1.15), there is barely worth mentioning

about the difference between the two models. If K ∈ (1.15, 2.30), there is substantial

evidence to support M1. If K ∈ (2.30, 3.45), there is strong evidence to support M1.

If K ∈ (3.45, 4.60), there is very strong evidence to support M1. If K > 4.60, there

is decisive evidence to support M1.

3.2.5 Simulation Studies

To investigate the performance of our estimation procedure, we conduct some

simulation exercises in this section. Our simulation design is frequentist as we fix

the parameters at their true value and generate data from the same data generating

process for 100 times. However, we use the posterior mean as a point estimator for

all the parameters in the model. Since we know the true value of those parameters,

3For log marginal likelihoods, the difference is the value of M1 minus the value of M0. For
DIC, the difference is the value of M0 minus the value of M1.
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Table 1: Posterior statistics of µ with simulated data

µh1 µh2 µh3 µq1 µq2 µq3
N True Value 0.3 0.3 0.3 0.7 0.7 0.7

T=500 50 Mean 0.311 0.317 0.305 0.632 0.639 0.631
Std 0.094 0.083 0.080 0.063 0.054 0.059
IF 11.5 9.8 9.5 17.3 16.0 14.3

100 Mean 0.305 0.313 0.301 0.646 0.654 0.645
Std 0.093 0.083 0.082 0.064 0.055 0.061
IF 8.5 7.6 7.8 16.4 15.1 12.5

200 Mean 0.304 0.311 0.299 0.657 0.665 0.656
Std 0.092 0.083 0.082 0.064 0.055 0.061
IF 6.4 5.8 5.5 12.2 11.6 12.0

T=1000 50 Mean 0.316 0.315 0.322 0.646 0.651 0.648
Std 0.055 0.051 0.048 0.037 0.038 0.034
IF 11.5 10.8 10.3 19.6 19.1 19.5

100 Mean 0.310 0.310 0.317 0.661 0.666 0.664
Std 0.053 0.052 0.049 0.036 0.038 0.034
IF 9.0 7.6 6.7 17.2 16.9 14.7

200 Mean 0.307 0.308 0.315 0.671 0.676 0.674
Std 0.053 0.051 0.049 0.037 0.038 0.035
IF 6.4 6.7 5.3 14.4 13.5 15.4

T=2000 50 Mean 0.316 0.316 0.316 0.651 0.657 0.655
Std 0.036 0.033 0.034 0.028 0.025 0.024
IF 10.1 9.3 8.6 21.2 25.1 20.8

100 Mean 0.312 0.311 0.312 0.666 0.672 0.671
Std 0.036 0.033 0.035 0.028 0.025 0.024
IF 6.8 6.4 5.9 16.9 19.6 20.2

200 Mean 0.308 0.308 0.309 0.675 0.682 0.681
Std 0.037 0.032 0.035 0.028 0.026 0.024
IF 6.3 4.7 5.4 15.7 15.4 15.5

1. T is the number of observations for each asset and N is the number of
particles used in PGAS.
2. Mean is the average posterior mean across replications.
3. Std is the standard error of the posterior mean across replications.
4. IF is the average inefficiency factor across replications calculated as
suggested in Kim et al. (1998).

32



Table 2: Posterior statistics of φ with simulated data

φh1 φh2 φh3 φq1 φq2 φq3
N True Value 0.9 0.9 0.9 0.8 0.8 0.8

T=500 50 Mean 0.894 0.885 0.887 0.784 0.791 0.790
Std 0.033 0.043 0.046 0.051 0.058 0.06
IF 56.4 54.6 55.6 56.9 59.5 58.7

100 Mean 0.898 0.891 0.892 0.794 0.801 0.800
Std 0.034 0.041 0.045 0.055 0.060 0.063
IF 69.1 61.4 68.6 61.3 65.9 64.4

200 Mean 0.902 0.893 0.893 0.798 0.807 0.803
Std 0.033 0.043 0.047 0.059 0.061 0.062
IF 61.3 69.3 71.1 60.7 65.2 72.6

T=1000 50 Mean 0.899 0.889 0.895 0.785 0.787 0.781
Std 0.032 0.036 0.029 0.063 0.051 0.055
IF 91.5 92.6 90.9 94.5 93.3 91.8

100 Mean 0.900 0.891 0.898 0.793 0.795 0.791
Std 0.032 0.032 0.028 0.060 0.051 0.057
IF 103.86 87.1 95.1 101.0 92.5 91.7

200 Mean 0.900 0.894 0.899 0.799 0.800 0.798
Std 0.033 0.032 0.029 0.059 0.056 0.056
IF 102.9 102.0 92.7 103.2 107.3 110.2

T=2000 50 Mean 0.900 0.897 0.899 0.793 0.785 0.787
Std 0.022 0.022 0.023 0.047 0.040 0.044
IF 112.4 105.8 107.0 128.2 125.0 120.9

100 Mean 0.901 0.898 0.900 0.798 0.792 0.792
Std 0.023 0.024 0.022 0.051 0.042 0.042
IF 114.0 106.1 100.9 135.7 144.4 136.3

200 Mean 0.900 0.898 0.900 0.801 0.795 0.796
Std 0.023 0.023 0.024 0.049 0.041 0.044
IF 103.6 99.2 102.0 134.9 131.5 141.8

1. T is the number of observations for each asset and N is the number of particles used
in PGAS.
2. Mean is the average posterior mean across replications.
3. Std is the standard error of the posterior mean across replications.
4. IF is the average inefficiency factor across replications calculated as suggested in Kim

et al. (1998).
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Table 3: Posterior statistics of σ2 with simulated data

σ2
h1 σ2

h2 σ2
h3 σ2

q1 σ2
q2 σ2

q3

N True Value 0.05 0.05 0.05 0.05 0.05 0.05
T=500 50 Mean 0.026 0.030 0.028 0.027 0.029 0.029

Std 0.013 0.013 0.013 0.012 0.012 0.012
IF 173.6 150.7 148.0 124.2 124.1 122.8

100 Mean 0.032 0.036 0.034 0.032 0.034 0.035
Std 0.017 0.016 0.016 0.015 0.015 0.018
IF 170.7 134.4 143.3 124.3 133.0 125.5

200 Mean 0.036 0.041 0.038 0.037 0.039 0.040
Std 0.019 0.020 0.019 0.018 0.017 0.020
IF 138.0 136.8 134.8 121.8 126.2 138.2

T=1000 50 Mean 0.030 0.030 0.029 0.026 0.028 0.026
Std 0.015 0.011 0.010 0.009 0.010 0.010
IF 198.0 195.1 198.5 185.6 184.5 188.3

100 Mean 0.036 0.037 0.035 0.032 0.034 0.032
Std 0.016 0.012 0.012 0.011 0.012 0.013
IF 182.3 157.5 170.8 180.43 169.5 163.0

200 Mean 0.041 0.040 0.039 0.037 0.038 0.037
Std 0.018 0.014 0.012 0.013 0.014 0.015
IF 170.1 164.7 153.1 169.5 175.9 188.5

T=2000 50 Mean 0.030 0.031 0.031 0.025 0.026 0.024
Std 0.010 0.009 0.009 0.008 0.007 0.006
IF 198.9 196.7 193.0 240.4 239.4 235.0

100 Mean 0.036 0.038 0.037 0.032 0.033 0.031
Std 0.011 0.011 0.010 0.010 0.010 0.008
IF 183.2 173.3 167.5 216.5 232.4 230.0

200 Mean 0.041 0.042 0.041 0.037 0.039 0.037
Std 0.012 0.011 0.011 0.012 0.012 0.010
IF 161.8 157.3 157.8 205.7 200.4 219.6

1. T is the number of observations for each asset and N is the number of particles used
in PGAS.
2. Mean is the average posterior mean across replications.
3. Std is the standard error of the posterior mean across replications.
4. IF is the average inefficiency factor across replications calculated as suggested in Kim

et al. (1998).
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we are thus able to calculate bias (defined as the difference between the true value

and the average value of posterior means) and the standard deviation.4

To evaluate the sampling efficiency, following Kim et al. (1998), we calculate the

average inefficiency factor (IF), which is defined as the variance of the sample mean

from MCMC sampling divided by that from a hypothetical sampler which draws

independent samples. The variance of the MCMC sample mean is the square of the

numerical standard error estimated by

NSE = 1 +
2BM

BM − 1

BM∑
i=1

K

(
i

BM

)
ρ̂(i),

where ρ̂(i) is estimated autocorrelation at lag i, BM is the bandwidth and K(·) is

the Parzen kernel. We choose the bandwidth BM to be 1000. A smaller IF indicates

a better mixing of the Markov chain and thereby a higher sampling efficiency.

The number of assets considered for simulation is three. There are 18 parameters

whose true values are given by:

1. µh1 = µh2 = µh3 = 0.3 and µq1 = µq2 = µq3 = 0.7,

2. φh1 = φh2 = φh3 = 0.9 and φq1 = φq2 = φq3 = 0.8,

3. σ2
h1 = σ2

h2 = σ2
h3 = 0.05 and σ2

q1 = σ2
q2 = σ2

q3 = 0.05.

All the simulation results reported in this section is based on 5000 MCMC iterations,

among which the first 1000 samples are discarded as burn-in period.5 We consider

three different sample sizes, namely T = 500, T = 1000 and T = 2000, as well as

three numbers of particles, namely N = 50, N = 100 and N = 200. It is worthwhile

to mention that, the simulated data used across different particle numbers for given

sample size are the same, while it changes when the sample size increases.

The estimation results for the mean parameters µs are reported in Table 1. It can

be seen that even for a small sample size such as 500 and a relatively small number

4Note that here, the standard deviation refers to the variation across replications, rather than
the numerical standard error of MCMC sampler introduced below.

5Plot of autocorrelation function suggests that the MCMC sampling has converged after at
most 1000 iterations.
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of particles such as 50, the posterior means for both h and q are reasonable close

to their respective true values while there is an upward bias for µh and a downward

bias for µq. Given a particular number of particles used, as sample size increases,

bias in the estimator for µq increases, but this is not the case for µh. Nevertheless, as

expected, the standard deviations for both parameters decrease as T increases. On

the other hand, an increasing number of particles can reduce bias substantially. For

example, when the sample size is 2000, bias in the posterior mean of h reduces from

0.016 to 0.008 if 200 particles are used instead of 50. A similar improvement applies

to µq. However, an increasing number of particles has no effect on the standard

deviation.

Table 2 presents the simulation results related to the persistence parameters φs.

These parameters can be estimated accurately, even with 500 observations and 50

particles. The estimates have very small biased and low standard deviations. When

200 particles are used, bias almost completely vanishes.

Table 3 presents the simulation results related to parameters σ2s. A substantial

downward bias is observed for the variance estimator of both hs and qs when 50 par-

ticles are used. This bias is insensitive to the number of observations. Fortunately,

it can be improved by using more particles. Indeed, when N=200, bias becomes

much smaller, although it seems that a larger number of particles are necessary to

fully cancel this bias.

As for the IF, in general, it does not vary much as we change either the sample

size or the number of particles. Consistent with earlier studies, the IF is the lowest

for µs and the highest for σ2s. Compared with the traditional single-move or multi-

move Gibbs sampler (for example, see Kim et al. (1998)), our new PGAS sampler

enjoys a much better mixing property. In summary, the simulation results confirm

that our chosen approach works well for the model considered in our study. In

light of the excellent performance, 200 particles are used for all of our empirical

applications.

At last, we report the filtered h and q, together with the 95% credible interval and

their true values, in Figure 1 and 2, respectively. These figures show that sampling
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of the latent variables based on the proposed particle filter is reliable.

3.3 Empirical Analysis

In this section, we consider two empirical applications of our models. The first

one is based on weekly exchange rate returns of three European currencies, while

the second one is based on the daily returns of three Asian equity indexes.

In each application, we estimate the following four models:

1. MSV-GFT model: The general model that we propose in Section 3.

2. MSV-GFT model with equi-persistence: the same as the general MSV-GFT

model except for the additional assumption of ‘equi-persistence’ on the corre-

lation coefficients. It specify that each sequence in h and q follows as same

AR(1) process with different mean.

rt = V
1/2
t εt, εt ∼ N(0, Rt)

Vt = exp(Ht), ht = diag(Ht), qt = F (Rt)

ht+1 = µh + φh(ht − µh) + ηht, , ηht ∼ N(0, σ2
h)

qt+1 = µq + φq(qt − µq) + ηqt, , ηqt ∼ N(0, σ2
q )

(3.16)

where φh, φq, σ
2
h and σ2

q are all scalar instead of vector.

3. MSV-CC: Model with constant correlation matrix over time, similar to the

one considered in Harvey et al. (1994).

rt = V
1/2
t εt, εt ∼ N(0, Rt)

Vt = exp(Ht), ht = diag(Ht), qt = F (Rt)

ht+1 = µh + φh(ht − µh) + ηht, , ηht ∼ N(0, σ2
h)

qt+1 = µq

(3.17)

4. MSV-DCC: Model proposed in Asai and McAleer (2009), where a DCC struc-

ture with a Wishart transition dynamics is used to characterize the movement
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Figure 1: True and filtered hs

Note: Compare the true hs (blue solid) with their posterior means (black solid) and
95% credible intervals (red dash).
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Figure 2: True and filtered qs

Note: Compare the true qs (blue solid) with the posterior means of q (black solid)
and 95% credible intervals (red dash).
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of the correlation matrix.

rt = V
1/2
t εt, εt ∼ N(0, Rt),

Vt = exp(Ht), ht = diag(Ht),

ht+1 = µh + φh(ht − µh) + ηht, ηh ∼ N(0, σ2
h),

Rt = Q̃−1
t QtQ̃

−1
t ,

Q−1
t+1|k,Q−1

t ∼ Wishart

(
k,

1

k
Q
−φ/2
t ΛQ

−φ/2
t

)
,

(3.18)

Λ =

a11 a12 a13

a12 a22 a23

a13 a23 a33

 ,

where unknown parameters are (µh, φh, σ
2
h, k, φ,Λ).

In all models, the parametrization of the volatility movement is the same. Hence,

we focus on alternative specifications about the dynamics of the correlations. To

estimate and compare these models in a unified framework, we treat all four models

as nonlinear state-space models and use the proposed PGAS algorithm to estimate

them. The details of the estimation procedure and the computation of the log

marginal likelihood are presented in the appendix.

3.3.1 Weekly Foreign Exchange Rates

In the first empirical application, the data contains 1406 weekly mean-corrected

log-returns of Euro, Pound sterling, and Swiss franc exchange rates, all against

the US dollar, from January 13, 1993 to December 25, 2019. The three series are

expected to be correlated, as the underlying economies are closely connected. The

three time series are plotted in Figure 3. For the MSV-GFT model, the filtered h

sequences of all three exchange rate and the filtered q sequences for all three pairs

are plotted in Figure 4 and Figure 5, respectively.

Table 4 reports the posterior statistics of parameters related to volatility for

all four competing models, including the posterior mean, the posterior standard

deviation, and the 95% credible interval. As expected, all h sequences have a very

40



high level of persistence, with the autoregressive root close to 1.

Table 5 reports the posterior statistics of parameters related to correlation for

all four competing models. In the second model, since the persistence levels and the

standard deviations are restricted to be the same among all q sequences, we have only

one φq and one σ2
q to estimate. In the third model, no φq and one σ2

q is in presence

as all correlations are assumed to be constant over time. An important finding from

Table 5 is that, when the three q sequences are allowed to have separate dynamics,

q1 has a very low level of persistence and hence, is highly stationary. Moreover,

the posterior mean of φq is (0.212, 0.911, 0.812) in this model. This finding is in

sharp contrast to that in the MSV-GFT model with equi-persistence where only

one parameter is assumed to govern all the latent variables. In the latter case, the

posterior mean of φq is 0.957. To see whether this additional flexibility leads to any

statistical improvement, we compare the log marginal likelihoods and DIC values

of all four models. The results are reported in the last row of Table 5. The fully

flexible model has a much higher value for the log marginal likelihood and much

lower value for DIC than all the competing models. For example, the difference

between the log marginal likelihood value in the fully flexible model and each of

the competing models is 190.9, 123.3 and 64.6, indicating the decisive evidence to

support the fully flexible model. We can then conclude that adopting the generalized

Fisher transformation is indeed beneficial for modeling the multivariate exchange

rate returns.
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Figure 3: Time series of exchange rate returns
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Table 4: Posterior statistics of parameters in the h sequences for competing
models based on the exchange rate data

MSV-GFT MSV-GFT MSV-CC MSV-DCC
(Equi-persist)

µh1 Mean -1.701 -1.68 -1.872 -1.764
SD 0.120 0.108 0.182 0.098
95%CI [-1.963,-1.470] [-1.904,-1.468] [-2.231,-1.507] [-1.964,-1.575]
IF 6.5224 12.154 14.924 17.084

µh2 Mean -1.804 -1.774 -1.864 -1.893
SD 0.101 0.099 0.142 0.097
95%CI [-2.005,-1.599] [-1.973,-1.582] [-2.132,-1.565] [-2.034,-1.655]
IF 5.5755 12.67 15.559 15.577

µh3 Mean -1.504 -1.481 -1.688 -1.578
SD 0.106 0.093 0.131 0.083
95%CI [-1.733,-1.317] [-1.672,-1.311] [-1.939,-1.406] [-1.752,-1.422]
IF 6.4733 13.139 17.795 17.456

φh1 Mean 0.980 0.977 0.98 0.972
SD 0.016 0.016 0.01 0.015
95%CI [0.958,0.994] [0.952,0.993] [0.962,0.992] [0.939,0.990]
IF 55.044 44.04 47.832 49.084

φh2 Mean 0.962 0.960 0.966 0.970
SD 0.019 0.031 0.015 0.036
95%CI [0.921,0.987] [0.849,0.989] [0.929,0.987] [0.843,0.990]
IF 132.17 90.76 111.05 71.137

φh3 Mean 0.970 0.957 0.960 0.962
SD 0.027 0.037 0.014 0.036
95%CI [0.927,0.991] [0.888,0.988] [0.928,0.982] [0.847,0.987]
IF 83.019 131.2 101.49 92.167

σ2
h1 Mean 0.005 0.004 0.01 0.005

SD 0.005 0.004 0.006 0.005
95%CI [0.002,0.008] [0.002,0.008] [0.005,0.020] [0.002,0.012]
IF 233.94 204.19 140.9 212.09

σ2
h2 Mean 0.013 0.013 0.017 0.006

SD 0.008 0.016 0.009 0.016
95%CI [0.004,0.028] [0.004,0.080] [0.008,0.037] [0.002,0.066]
IF 228.46 246.53 207.7 195.5

σ2
h3 Mean 0.006 0.008 0.022 0.005

SD 0.007 0.008 0.009 0.012
95%CI [0.002,0.021] [0.003,0.017] [0.008,0.037] [0.002,0.032]
IF 198.83 251.07 197.85 380.74

1. Mean is the posterior mean based on 20000 MCMC samples after a 2000 burn-in period.
2. SD is the numerical standard errors of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. IF is the inefficiency factor.
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Figure 4: Filtered h sequences in MSV-GFT for the exchange rate returns

3.3.2 Daily Stock Market Indices

Data in our second empirical application contains 2237 daily mean-corrected

log-returns of three stock market indices, namely the Hong Kong Hang Seng Index,

the Nikkei 225 Index of Tokyo Stock Exchange, and the SSE Composite Index of

Shanghai Stock Exchange. The sample period is from January 5, 2005 to December

30, 2014 that covers the global financial crisis period. This exercise is interesting,

as it can provide some insights on the co-movement of these three arguably most

important stock market indices in Asia. The three series are plotted in Figure 6. For
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Table 5: Posterior statistics of parameters in the q sequences for competing models
based on the exchange rate data

MSV-GFT MSV-GFT MSV-CC MSV-DCC
(Equi-persist)

µq1 Mean 0.705 0.615 0.697 k 9.690
SD 0.029 0.126 0.127 0.145
95%CI [0.647,0.762] [0.327,0.812] [0.438,0.946] [9.430,10.064]
IF 26.781 13.741 49.809 91.265

µq2 Mean 1.511 1.392 1.103 d 0.005
SD 0.085 0.135 0.123 0.014
95%CI [1.337,1.674] [1.078,1.600] [0.871,1.354] [-0.015,0.026]
IF 7.9712 23.481 60.228 671.79

µq3 Mean 0.444 0.379 0.359 a11 5.639
SD 0.047 0.126 0.121 0.487
95%CI [0.351,0.533] [0.114,0.576] [0.128,0.589] [4.900,6.506]
IF 10.287 13.69 50.536 68.964

φq1 Mean 0.212 0.957 a21 -1.232
SD 0.107 0.019 0.137
95%CI [0.014,0.417] [0.916,0.988] [-1.484,-1.001]
IF 76.346 86.206 62.115

φq2 Mean 0.911 a22 -4.312
SD 0.022 0.425
95%CI [0.862,0.948] [-5.053,-3.644]
IF 51.812 66.618

φq3 Mean 0.812 a31 1.751
SD 0.055 0.085
95%CI [0.685,0.898] [1.612,1.912]
IF 97.187 66.67

σ2
q1 Mean 0.116 0.018 a32 0.098

SD 0.018 0.007 0.097
95%CI [0.083,0.155] [0.010,0.032] [-0.086,0.298]
IF 59.407 138.66 48.733

σ2
q2 Mean 0.061 a33 4.779

SD 0.014 0.397
95%CI [0.039,0.091] [4.135,5.459]
IF 77.28 63.357

σ2
q3 Mean 0.055

SD 0.016
95%CI [0.031,0.095]
IF 134.73

log marg like -1285.8 -1476.7 -1409.1 -1350.4

DIC 2275.2 3427.8 2711.4 3110.4

1. Mean is the posterior mean based on 20000 MCMC draws after a 2000 burn-in period.
2. SD is the numerical standard error of the posterior mean.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. IF is the inefficiency factor.
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Figure 5: Filtered q sequences in MSV-GFT for the exchange rate returns
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the MSV-GFT model, the filtered h sequences of all three returns and the filtered q

sequences for all three pairs are plotted in Figure 7 and Figure 8, respectively.

The general conclusion from this application is similar to that in the exchange

rate data. For example, as shown in Table 6, all the h sequences are strongly per-

sistent with the autoregressive root being very close to one. As shown presented

in Table 7, in the flexible model, the posterior means of φq are (0.519, 0.654, 0.664)

while the equi-persistence model suggests a higher persistence level (0.859). Due to

this, the improvement in the log marginal likelihood value and DIC values are not as

large as that in the empirical application based on the exchange rate data. However,

the fully flexible model still has a much higher value for the log marginal likelihood

and much lower value for DIC than all the competing models. For example, the

difference between the log marginal likelihood value in the fully flexible model and

each of the competing models is 16, 26 and 19, indicating the decisive evidence to

support the fully flexible model. We can then conclude that adopting the general-

ized Fisher transformation is indeed beneficial for modeling the multivariate equity

returns.
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Figure 6: Time series of stock index returns
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Table 6: Posterior statistics of parameters in the h sequences for competing
models based on the stock index data

MSV-GFT MSV-GFT MSV-CC MSV-DCC
(Equi-persist)

µh1 Mean 0.370 0.343 0.397 0.375
SD 0.246 0.257 0.247 0.232
95%CI [-0.144,0.851] [-0.180,0.845] [-0.096,0.889] [-0.085,0.849]
IF 4.8598 10.674 10.467 10.238

µh2 Mean 0.525 0.502 0.539 0.525
SD 0.175 0.175 0.171 0.161
95%CI [0.186,0.872] [0.147,0.836] [0.195,0.887] [0.203,0.839]
IF 4.8977 10.783 10.59 10.063

µh3 Mean 0.758 0.738 0.767 0.757
SD 0.203 0.216 0.215 0.195
95%CI [0.357,1.156] [0.287,1.155] [0.335,1.194] [0.347,1.144]
IF 4.8082 9.435 9.6687 9.9254

φh1 Mean 0.991 0.990 0.987 0.989
SD 0.004 0.005 0.005 0.005
95%CI [0.982,0.995] [0.981,0.95] [0.977,0.994] [0.979,0.995]
IF 37.696 58.003 49.239 88.546

φh2 Mean 0.981 0.980 0.978 0.979
SD 0.007 0.006 0.007 0.008
95%CI [0.968,0.991] [0.965,0.990] [0.962,0.989] [0.961,0.991]
IF 61.049 64.753 56.269 79.122

φh3 Mean 0.983 0.984 0.983 0.983
SD 0.007 0.006 0.006 0.007
95%CI [0.968,0.993] [0.970,0.994] [0.968,0.993] [0.967,0.994]
IF 66.925 89.743 109.45 133.1

σ2
h1 Mean 0.011 0.014 0.016 0.012

SD 0.006 0.006 0.008 0.007
95%CI [0.006,0.021] [0.008,0.023] [0.009,0.027] [0.006,0.026]
IF 127.23 129.22 135.69 253.17

σ2
h2 Mean 0.020 0.023 0.024 0.020

SD 0.006 0.006 0.007 0.008
95%CI [0.013,0.030] [0.013,0.035] [0.016,0.040] [0.010,0.036]
IF 135.53 164.95 125.29 159.86

σ2
h3 Mean 0.022 0.020 0.022 0.019

SD 0.009 0.007 0.008 0.009
95%CI [0.011,0.035] [0.011,0.034] [0.011,0.039] [0.008,0.034]
IF 150.91 185.25 216.22 244.47

1. Mean is the posterior mean based on 20000 MCMC draws after a 2000 burn-in period.
2. SD is the numerical standard error of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. IF is the inefficiency factor.
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Table 7: Posterior statistics of parameters in the q sequences for competing models
based on the stock index data

MSV-GFT MSV-GFT MSV-CC MSV-DCC
(Equi-persist)

µq1 Mean 0.715 0.631 0.674 k 39.634
SD 0.028 0.065 0.071 0.174
95%CI [0.663,0.771] [0.476,0.736] [0.540,0.827] [39.261,39.968]
IF 23.577 157.3 38.843 200.85

µq2 Mean 0.542 0.5 0.535 d 0.000
SD 0.027 0.052 0.067 0.015
95%CI [0.489,0.595] [0.368,0.578] [0.408,0.658] [-0.017,0.015]
IF 18.057 98.375 34.34 607.12

µq3 Mean 0.123 0.109 0.123 a11 1.915
SD 0.024 0.047 0.065 0.115
95%CI [0.077,0.171] [-0.003,0.179] [-0.009,0.248] [1.745,2.063]
IF 30.631 42.512 37.416 148.66

φq1 Mean 0.519 0.859 a21 -0.962
SD 0.115 0.141 0.098
95%CI [0.277,0.733] [0.524,0.994] [-1.077,-0.829]
IF 182.65 447.4 159.58

φq2 Mean 0.654 a22 -0.685
SD 0.104 0.075
95%CI [0.429,0.836] [-0.793,-0.583]
IF 204.24 121.1

φq3 Mean 0.664 a31 1.561
SD 0.090 0.070
95%CI [0.479,0.820] [1.451,1.654]
IF 185.73 160.63

σ2
q1 Mean 0.069 0.007 a32 0.058

SD 0.020 0.010 0.039
95%CI [0.037,0.114] [0.001,0.038] [-0.012,0.133]
IF 208.97 461.33 145.64

σ2
q2 Mean 0.029 a33 1.323

SD 0.010 0.044
95%CI [0.015,0.050] [1.256,1.399]
IF 276.64 134.45

σ2
q3 Mean 0.017

SD 0.008
95%CI [0.008,0.038]
IF 318.23

log marg like -11038 -11054 -11064 -11067

DIC 22017 22076 22145 22533

1. Mean is the posterior mean based on 20000 MCMC draws after a 2000 burn-in period.
2. SD is the numerical standard error of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. IF is the inefficiency factor.
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Figure 7: Filtered h sequences in MSV-GFT for the stock index
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Figure 8: Filtered q sequences in MSV-GFT for the stock index
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4 MSV Model with Realized Measures

4.1 Model with Realized Measures

Given a large number of parameters in the MSV models given in Chapter 3, only

using daily returns may not be enough to produce stable inference. Thanks to the

increasing availability of intraday high-frequency data, we can now construct infor-

mative realized approximations to unobservable volatilities and covariances. When

realized measures for the latent process ht and qt are available, we can incorporate

them into a MSV model and greatly improve parameter estimation efficiency as well

as the fit of the model; see Hansen et al. (2012) and Hurn et al. (2020).

Specifically, we assume that the researchers have access to the p× p realized co-

variance matrices RCOVt computed from intraday high-frequency returns. From the

matrix, we first extract the p× 1 vector of the diagonal elements ṽt = diag(RCOVt)

as the approximation to the latent variances. Then a realized measure of the unob-

servable correlation matrix is obtained through

Qt = v
−1/2
t ·RCOVt · v−1/2

t ,

where vt is a diagonal matrix with the elements of ṽt on the main diagonal. Since the

latent processes in the MSV model considered in Chapter 3 are the transformation

of the original variances and correlations, we also apply the same transformation to

the corresponding realized measures. Specifically, we define

hrt = (hr1t, ..., h
r
pt)
′ = (log ṽ1t, ..., log ṽpt)

′,

qrt = (qr1t, ..., q
r
dt)
′ = F (Qt),

(4.1)

where superscripts denote realized measures.

The relationship between the latent variables and their realized counterparts is
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modeled as

hrt = ψh + ht + ξht, where ξht ∼ N(0,Σr
h), t = 1, ..., T − 1, (4.2)

qrt = ψq + qt + ξqt, where ξqt ∼ N(0,Σr
q), t = 1, ..., T − 1, (4.3)

where ψh = (ψh1, ..., ψhp)
′ and ψq = (ψq1, ..., ψqd)

′ capture potential approximation

biases in the realized measures, ξh = (ξh1, ..., ξhp)
′ and ξq = (ξq1, ..., ξqd)

′ are in-

novations which are normally distributed. These innovations are assumed to be

independent of each other so that Σr
h and Σr

q are both diagonal matrices, with the

diagonal entries being η2
h = (η2

h1, ...η
2
hp) and η2

q = (η2
q1, ..., η

2
qd).

It can be seen that extra measurement equations have been added to the MSV

models. These measurement equations are based on the transformation of the real-

ized measure and the same transformation applied to the latent covariance matrix.

In the literature of realized volatility, it has been shown that the realized volatility

converges to the integrated volatility as well as the log realized volatility converges

to the log integrated volatility. However, Barndorff-Nielsen and Shephard (2002) has

argued that the approximation to the log integrated volatility by the log realized

volatility is better than that to the integrated volatility by the realized volatility.

The property has been used in Hansen and Huang (2016) to introduce a realized

EGARCH model and in Phillips and Yu (2009) to construct a two-stage method to

estimate continuous time models. The empirical justification of the measurement

equation will be shown in Section 4.4.

4.2 Bayesian Analysis of RMSV-GFT

If we combine equations (3.1)-(3.6) with equations (4.2)-(4.3), we have the so-

called realized MSV-GFT (RMSV-GFT) model. The parameters of the model are

θ ≡ (µh, µq, φh, φq, σ
2
h, σ

2
q , ψh, ψq,Σ

r
h,Σ

r
q).
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4.2.1 Joint Estimation of RMSV-GFT

Let r = (r1′, ..., r′T )′, h = (h′1, ..., h
′
T )′, q = (q′1, ..., q

′
T )′, hr = (hr

′
1 , ..., h

r′
T )′ and

qr = (qr
′

1 , ..., q
r′
T )′. To carry out the inference, we implement a Gibbs sampler with

four blocks. In the following, we use θ/α to denote θ excluding α. Then, the algorithm

proceeds as

1. Initialize h, q and θ.

2. Draw h, q|r, hr, qr, θ.

3. Draw µh, µq|r, h, q, θ/(µh,µq).

4. Draw φh, φq|r, h, q, θ/(φh,φq).

5. Draw σ2
h, σ

2
q |r, h, q, θ/(σ2

h,σ
2
q ).

6. Draw Σr
h,Σ

r
q|h, q, hr, qr, θ/(Σrh,Σrq).

7. Draw ψh, ψq|h, q, hr, qr, θ/(ψh,ψq).

Iterating over steps 2-7 consists of a complete sweep of MCMC sampler.

We apply the PGAS introduced in the last chapter to sample from the latent

variables h and q given r, (hr, qr), and a particular set of parameter values. Steps 3

to 5 sample from the conditional posterior distributions in (3.11), (3.12) and (3.13).

We assume (ψh,Σ
r
h) and (ψq,Σ

r
q) follow the following normal-inverse-gamma priors

• ψhi ∼ N(mψ0, s
2
ψ0) and ψqj ∼ N(mψ0, s

2
ψ0);

• η2
hi ∼ IG(nm0

2
, ηm0

2
) and η2

qj ∼ IG(nm0

2
, ηm0

2
),

Steps 6 and 7 draw from the conditional posterior distributions of ψhi and η2
hi:

ψhi|h, hr, θ/ψhi ∼ N(m̃hiψ, s̃
2
hiψ) and η2

hi|h, hr, θ/η2hi ∼ IG

(
ñm
2
,
η̃hi
2

)
, (4.4)

where

m̃hiψ = s̃2
hiψ

(
mψ0

T
+

T∑
t=1

(hrit − hit)

)
, s̃2

hiψ =

(
1

s2
ψ0

+
T

η2
hi

)−1

,
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and

ñm = nm0 + T , η̃hi =
ηm0

2
+

∑T
t=1(hrit − hit)2

2
.

We draw (ψqj, η
2
qj) following the similar procedure.

4.2.2 Two-stage Estimation of RMSV-GFT

As equations (4.2) and (4.3) two additional independent measurement equations,

the conditional likelihood can be written as

p(r, hr, qr|h, q, θ) = p(r|h, q, θ/(ψh,ψq ,Σrh,Σrq)) + p(hr, qr|h, q, ψh, ψq,Σr
h,Σ

r
q). (4.5)

We draw θ, h, q from the full posterior distribution

p(θ, h, q|r, hr, qr) ∝
[
p(r|h, q, θ/(ψh,ψq ,Σrh,Σrq)) + p(hr, qr|h, q, ψh, ψq,Σr

h,Σ
r
q)
]
p(h, q, θ).

(4.6)

Note that if we only use the measurement equations 4.2 and 4.3 and the state

equations for ht and qt, the system is in a linear Gaussian state space form and the

Kalman filter can provide the straightforward likelihood-based inference. Unfortu-

nately, in the same spirit as in Koopman and Scharth (2012), the setting precludes

us to identify all parameters in the RMSV-GFT model. In particular, (µh, µq) and

(ψh, ψq) are not separately identified. To explain the lack of identification, let xt

denote either hit or qjt and xrt denote the realized measures of xt. Combining the

realized measurement equations and the dynamics of the latent variables, we can

easily show that xrt admits following ARMA(1,1) representation

xrt = (µ+ ψ) + φ(xrt−1 − µ− ψ) + ηt − φηt−1 + ξt. (4.7)

From this representation, it is clear that µ and ψ cannot be separately identified.

To deal with the problem of lack of identification, the return equation is also used,

as in Koopman and Scharth (2012) and Takahashi et al. (2009).

However, with a small or moderate number of MCMC iterations, the joint esti-
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mation of all parameters in the model cannot produce satisfactory results as there

are too many parameters in the joint estimation. A large number of MCMC itera-

tions is required to produce good estimates. In fact, the number of MCMC iterations

depends on the ratio of the likelihood of the intra-day return and that of the realized

measure, which is given by

p(r|h, q, θ/(ψh,ψq ,Σrh,Σrq))
p(hr, qr|h, q, ψh, ψq,Σr

h,Σ
r
q)
.

The smaller the likelihood ratio, the larger number of MCMC iteration required.

Note that the dimension of the numerator and the denominator is p and p(p+1)
2

,

respectively. As p increases, the difference between the two dimensions increases,

and hence, it is expected that the likelihood ratio decreases. As a result, a worse

mixing of MCMC samplers is expected. So the joint estimation is not feasible in

empirical applications.

To overcome this problem of slow convergence, we propose to use a two-stage

estimation procedure. In the literature of SV models with realized measures, this

issue has been treated in various ways. Takahashi et al. (2009), for instance, ig-

nore this problem and estimate all the parameters jointly. Yamauchi and Omori

(2019) also fails to take into account the restrictions related to log-variances, while

circumventing the constraints on correlations by imposing driftless random walks.

Koopman and Scharth (2012) propose a two-step estimation method, which uses

realized measurements only in the first step and relies on the Kalman filter. They

impose a zero bias in the first step as an identification condition and then estimate

it in the second step.

Keeping this constraint in mind, in this paper, we propose to use a two-stage

procedure, which estimates the bias parameters in the first stage and then keep them

fixed in the second stage. The detail is as follows.

• In the first stage, we estimate MSV-GFT without realized measures and obtain

the posterior mean of µ, denote as µ̂. The procedure for this step is same as
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in Section 3.2.3. Then estimate ψh and ψq by

ψ̂hi = h̄ri − µ̂hi ,i = 1, ..., p,

ψ̂qj = q̄rj − µ̂qj ,j = 1, ..., qd,
(4.8)

where h̄r and q̄r is the sample mean of hr and qr, respectively.

• In the second stage, we re-estimate the model using the joint likelihood by

plug-in ψ̂. That is, we sample from

p(θ/(ψh,ψq), h, q|r, h
r, qr, ψ̂h, ψ̂q) (4.9)

by using steps 1-6 in Section 4.2.1. After sampling from (4.9), we estimate

θ, h, q by their posterior means.

Note that the inclusion of realized measures into the likelihood function influences

the weights computed during the particle filter. Meanwhile, in the second stage, we

fix the ψ to be the one computed in the first stage and only re-sample µ. In the end,

ψ is updated by subtracting the new µ from average realized measures. By doing

this two-stage estimation, we circumvent the slow convergence problem and are able

to obtain a much less biased estimator of ψ and µ, as shown in the simulation studies

reported below.

We use the joint estimation and the two-stage estimation methods to fit the

RMSV-GFT model based on simulated data. The autocorrelation functions (ACFs)

for µh and µq are displayed in Figure 9. It can be seen that the MCMC draws for

µh and µq mix much better in the two-stage method than in the joint method.

4.3 Simulation Studies

We now investigate the performance of the proposed method for estimating the

RMSV-GFT model that incorporates the realized measures. The true values of
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Figure 9: Comparison of ACFs of MCMC Draws for µh and µq

Note: The 2 ACFs of MCMC draws for µh and µq are displayed when the joint and
two-stage methods are used to estimate the RMSV-GFT model. The top figure is
for µh1 and the bottom figure is for µq1 .
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parameters are the same as in the previous subsection, with the following additional

ones,

ψh1 = ψh2 = ψh3 = −0.5, ψq1 = ψq2 = ψq3 = −0.3,

η2
h1 = η2

h2 = η2
h3 = 0.2, η2

q1 = η2
q2 = η2

q3 = 0.2.

The sample size considered in the simulation study is 500. Again, all the simulation

results reported are based on 5000 MCMC iterations, with the first 1000 samples

discarded as the burn-in period.

The results are reported in Table 8 where both the joint method and the two-

stage method are used. It can be seen that when the joint estimation method is

used, the posterior means of both µ and φ are biased. Specifically, the posterior

means of µh and µq are biased downward. The posterior means of ψh and ψq are

upward biased with a similar magnitude. Similarly, the posterior means of σ2s are

0.01 and 0.015 lower than the true values for the log-variance and the transformed

correlations, respectively. The posterior means of η2s are upward biased.

On the other hand, our two-stage estimation method works very well, with a

very small bias for all the parameters. Unbiased parameter estimation is critical to

the filtering of the latent processes, which influences the out-of-sample prediction

performance. To this end, we can examine the in-sample performance of the filtered

{ht} and {qt} as the true latent processes are available for comparison in the sim-

ulation studies. Indeed, the average mean squared error of all six unobservables is

0.339 when the model is estimated jointly and is 0.327 when the two-stage method

is used. In summary, our inference procedure produces accurate estimators for the

parameters and the latent volatility/correlation.

As we re-sample (µh, µq) in Equation (4.9), the posterior means of the parameters

are different from those in the MSV-GFT model. To further validate the stability of

the two-stage method, we consider a three-stage method using the same simulated

data. In the three-stage method, After the second stage estimation, we re-estimate

(ψh, ψq) and sample from Equation (4.9) with the new estimators of (ψh, ψq).

Table 9 reports the simulation results for µ in all three stages. Firstly, we observe
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Table 9: Posterior statistics of µ under three alternative methods

µh1 µh2 µh3 µq1 µq2 µq3
True Value 0.3 0.3 0.3 0.7 0.7 0.7

First Stage Mean 0.304 0.311 0.299 0.657 0.665 0.656
Std 0.092 0.083 0.082 0.064 0.055 0.061
IF 6.4 5.8 5.5 12.2 11.6 12.0

Second Stage Mean 0.299 0.307 0.295 0.65 0.657 0.648
Std 0.088 0.084 0.081 0.063 0.049 0.057
IF 1.272 1.307 1.021 2.106 1.878 1.936

Third Stage Mean 0.298 0.307 0.295 0.65 0.657 0.648
Std 0.093 0.087 0.085 0.065 0.054 0.062
IF 1.235 1.276 1.037 2.102 2.027 1.959

1. Mean is the average posterior mean across replications.
2. Std is the standard error of the posterior mean across replications.
3. IF is the average inefficiency factor across replications calculated as sug-
gested in Kim et al. (1998).

that the difference between the true parameter values and their posterior means is

smaller in the second stage than in the first stage, although the posterior standard

deviations are similar. Secondly, incorporating realized measures in the second stage

greatly reduces the inefficiency factor, suggesting that the RMSV-GFT model results

in better mixed chains than the MSV-GFT model. Thirdly, when comparing with

the two-stage method and the three-stage method, we find the results from the

two methods are nearly identical, suggesting that the two-stage method is stable

and reliable. Since the two-stage method performs better than the joint method in

simulation and is computationally more efficient than the three-stage method, we

only report the posterior results based on the two-stage method in the empirical

applications.
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Figure 10: Finite Sample Distributions of 3 Stages

Note: The finite sample distribution is based on simulation data. The top figure is
distribution for µ̂h1 and bottom figure is distribution for µ̂q1 .
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4.4 Empirical Application

4.4.1 Data

In this empirical application, we use daily stock returns and corresponding re-

alized measures. We consider the daily log-returns of the following three stocks

(p = 3): Bank of America (BAC), JP Morgan (JPM) and American Express (AXP).

The full sample period is from February 1, 2001 to December 31, 2009. The total

sample size is T = 2232. The daily log returns are the demeaned close-to-close

returns. The realized covariance is constructed by using 5-minute returns with sub-

sampling and the Parzen weight function. The detailed construction of these realized

measures is discussed in Noureldin et al. (2012). The daily return data and the cor-

responding realized covariance are downloaded from the data library of the Oxford

Man Institute website.6 The three time series are plotted in Figure 11. We transfer

the realized variance and realized correlation by using equation (4.1).

Our model assumes that the counterparts of these realized measures follow in-

dependent Gaussian autoregressions specified in (4.2) and (4.3). The distribution of

the log realized volatility had been carefully and extensively discussed in the liter-

ature; see Andersen et al. (2001a) and Andersen et al. (2001b). One way to check

the validity of the model specification is to examine the distribution properties of

the realized measures. In this paper, we report the Q-Q plot of qr in Figure 12 and

the scatter plot of each two qrs in Figure 13. These plots show the assumption of

the independent normal distributed error terms seems to be supportive by the data.

4.4.2 Model Estimation

Let θ̂, ĥ, q̂ denote the posterior mean of the parameters and latent variables. Let

V̂t and R̂t denote the corresponding estimates of the variance and the correlation,

which are defined as

V̂t = Ip ∗
(

1p ⊗ exp(ĥt)
)
,

R̂t = F (q̂t)
−1.

(4.10)

6https://realized.oxford-man.ox.ac.uk/data
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Figure 11: Time series plot of stock returns
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Figure 12: Q-Q plots of parameterized realized correlation

Note: The Q-Q plots for parameterized realized correlitons qr, are constructed using
daily realized correlation of BAC,JPM and AXP for the period since 2 Jan 2001,
until 31 Dec 2009.
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Figure 13: Scatter plot of parameterized realized correlation

Note: The scatter plots for parameterized realized correlitons qr, are constructed
using daily realized correlation between BAC and JPM, BAC and AXP,JPM and
BAC for the period since 2 Jan 2001, until 31 Dec 2009.
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Table 10: Empirical Posterior parameter estimation without
realized measures

µh1 µh2 µh3 µq1 µq2 µq3
mean 0.885 1.21 1.163 0.863 0.633 0.721
std 0.414 0.339 0.354 0.027 0.028 0.028
IF 8.476 9.397 8.998 26.738 34.805 26.225

φh1 φh2 φh3 φq1 φq2 φq3
mean 0.993 0.993 0.992 0.586 0.567 0.585
std 0.002 0.002 0.002 0.132 0.089 0.099
IF 26.584 55.228 31.551 257.92 158.21 195.12

σ2
h1 σ2

h2 σ2
h3 σ2

q1 σ2
q2 σ2

q3
mean 0.018 0.012 0.016 0.048 0.066 0.07
std 0.006 0.006 0.006 0.016 0.017 0.02
IF 80.872 109.16 83.834 257.76 250.05 213.49

1. Mean is the average posterior mean based on 18000 MCMC samples
after a 2000 burn-in period.
2. IF is the average inefficiency factor across replications calculated as

suggested in Kim et al. (1998).

Table 11: Empirical Posterior parameter estimation with re-
alized measures

µh1 µh2 µh3 µq1 µq2 µq3
mean 0.868 1.18 1.139 0.861 0.632 0.723
std 0.293 0.18 0.174 0.007 0.009 0.014
IF 8.714 8.915 8.59 10.549 9.537 9.762

φh1 φh2 φh3 φq1 φq2 φq3
mean 0.988 0.979 0.981 0.773 0.842 0.924
std 0.004 0.007 0.007 0.047 0.038 0.031
IF 14.177 18.475 21.2 83.014 58.096 41.363

σ2
h1 σ2

h2 σ2
h3 σ2

q1 σ2
q2 σ2

q3
mean 0.028 0.028 0.022 0.004 0.003 0.002
std 0.004 0.005 0.004 0.001 0.001 0.001
IF 55.265 69.463 84.922 89.295 54.492 39.511

ψh1 ψh2 ψh3 ψq1 ψq2 ψq3
mean -0.165 -1.103 -0.704 -0.501 -0.284 -0.364

η2
h1 η2

h2 η2
h3 η2

q1 η2
q2 η2

q3
mean 0.4 0.207 0.211 0.022 0.024 0.028

1. Mean is the average posterior mean based on 18000 MCMC samples
after a 2000 burn-in period.
2. IF is the average inefficiency factor across replications calculated as

suggested in Kim et al. (1998).
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We estimate MSV-GFT and RMSV-GFT based on the full sample data. The

empirical results are reported in Tables 10 and 11 for MSV-GFT and RMSV-GFT,

respectively. The posterior quantities of (µh, µq) are similar in the two tables. For

example, the posterior means of φh are close to 1. This finding is well-known in

the literature. However, the posterior means of q are very different. In MSV-GFT,

the posterior means of φq are (0.586, 0.567, 0.585) which are close to the persistence

levels of qr, which are (0.33, 0.358, 0.405). By adding the realized measures, the

posterior means of φq in RMSV-GFT is higher than those in MSV-GFT. Moreover,

the posterior means of ψh and ψq are negative which are consistent with that has

been reported in the literature; see Koopman and Scharth (2012) and Yamauchi and

Omori (2019). Furthermore, the posterior means of η2
h and η2

q are larger than those of

σ2
h and σ2

q . Furthermore, the chains mix better in RMSV-GFT than in MSV-GFT as

the inefficiency factors are smaller in RMSV-GFT than those in MSV-GFT. Figure

16 shows the Q-Q plot of the residuals in the RMSV-GFT model, V̂
− 1

2
t R̂

− 1
2

t rt. It

suggests that the tail distribution is not close to the normal distributed assumption.

We will address this inadequacy in Section 5.

To validate the estimation results, we compare the in-sample fit of the realized

measures with the realized measures. Using the measurement equations in (4.2) and

(4.3), we conduct the in-sample fit of the realized variance v̂t and correlation Q̂t as

following

v̂t = Ip ∗
(

1p ⊗ exp(ĥt + ψ̂h)
)
,

Q̂t = F (q̂t + ψ̂q)
−1,

(4.11)

where Ip is a p-dimensional identity matrix, 1p is a p-dimensional column vector of

ones.

We compare v̂t and Q̂t with vt and Qt. Note that vt is a diagonal matrix and

Qt is a symmetric matrix with diagonal elements equal to 1. Hence, we only focus

the comparison on the diagonal elements in vt and the off-diagonal elements in Qt.

Figure 14 and Figure 15 show the in-sample comparisons. For the realized variance,

the two models provide a reasonably similar fit except during the financial crisis

period. Nevertheless, MSV-GFT provides a less accurate fit than RMSV-GFT.
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However, for the realized correlation, RSMV-GFT provides a more reasonable fit

than MSV-GFT.

4.4.3 Out-of-Sample Forecasting Performance

In the univariate context, comparing the out-of-sample performance of the al-

ternative model is relatively easy. For example, one can use the mean squared error

(MSE) to quantify the distance between the predictive volatility and a proxy of the

true volatility. This task becomes more difficult in the multivariate context.

In this section we compare the out-of-sample performance of alternative MSV

models by using both the statistical and economic methods. For the statistical

evaluation, since the true volatility is unobserved, we use the realized measure as the

proxy of the true volatility. Under the RMSV-GFT model, we forecast the realized

measure using equation (4.2) and (4.3) with the plug-in forecast of volatility. We

then compare the forecast of realized measure with the realized measure using the

MSE and the quasi-likelihood loss function(Qlike). MSE and Qlike are two common

loss function to measure the distance between forecasts and the ex-post values.

MSE :L(v̂, v) = (v̂ − v)2,

Qlike :L(v̂, v) =
v̂

v
− log(

v̂

v
)− 1,

(4.12)

where v̂ is the forecast and v is the ex-post value.

For the economic evaluation, we apply the forecast of volatility (covariance)

in a mean-variance framework and focus on the out-of-sample performance of the

portfolio. Engle and Colacito (2006) argues that the correct covariance produces

a smaller expected portfolio variance. Therefore, we construct the portfolio based

on the forecast of covariance and evaluate the performance of alternative models by

comparing the variance of the portfolio.
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4.4.3.1 Forecasting Procedure

In this section, we consider the performance of MSV-GFT and RMSV-GFT in

terms their ability in one-step-ahead out-of-sample forecasts of h and q. The period

over which I try to obtain forecasts is between February 7, 2008 and December 31,

2009. There 480 trading days in the forecasting period. To estimate the MSV-GFT

and RMSV-GFT models, we use the most recent 1,000 observations at each point

in time. As the new observation becomes available, we roll the window forward but

keep the window size fixed at 1,000 when estimating the two models. The general

procedure is illustrated as follows.

1. Given data {rt−1000:t−1, h
r
t−1000:t−1, q

r
t−1000:t−1}, we drawN samples from p(θ, h, q |

rt−1000:t−1, h
r
t−1000:t−1, q

r
t−1000:t−1) by using the procedure proposed in Section

4.2.2 in RMSV-GFT or in 3.2.3 for MSV-GFT. We draw 5,000 MCMC itera-

tions from the posterior distributions and estimate the parameters using the

posterior means of (θ, h, q | rt−1000:t−1, h
r
t−1000:t−1, q

r
t−1000:t−1) denoted by θ̃,h̃t−1

and q̃t−1.

2. Forecast ht and qt by using

ĥt|t−1 = µ̃h + φ̃h(h̃t−1 − µ̃h),

q̂t|t−1 = µ̃q + φ̃h(q̃t−1 − µ̃q).
(4.13)

The out-of-sample forecast of the variance and correlation are obtained as

V̂t|t−1 = Ip ∗
(

1p ⊗ exp(ĥt|t−1)
)
,

R̂t|t−1 = F−1(q̂t|t−1).
(4.14)

Therefore, the out-of-sample forecast of the covariance is obtained as

Σ̂t|t−1 = V̂
1
2

t|t−1R̂t|t−1V̂
1
2

t|t−1. (4.15)

3. Iterate steps 1 and 2 for t from February 7, 2008 to December 31, 2009. We
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end up with 480 one-step-ahead out-of-sample forecasts of h and q.

4.4.3.2 Forecasting Realized Measure

In terms of volatility forecasting, extensive studies in the literature focus on

forecasting realized volatility. See, for example, Corsi et al. (2012), Koopman and

Scharth (2012) forecast realized volatility by using the HAR model and the SV

model, respectively. In this Chapter, we forecast both realized volatility and real-

ized correlation with MSV-GFT and RMSV-GFT. The forecasting procedure is as

follows.

v̂t|t−1 = Ip ∗
(

1p ⊗ exp(ψ̃h + ĥt|t−1)
)
,

Q̂t|t−1 = F−1(ψ̃q + q̂t|t−1),
(4.16)

where v̂t|t−1 is the forecast of the realized variance and Q̂t|t−1 is the forecast of the

realized correlation. To evaluate the out-of-sample performance, we consider both

the univariate setting and the multivariate setting. For comparison in the univariate

setting, Patton (2011) establish the robustness of MSE and Qlike. Unfortunately,

Qlike is not possible for realized correlation as it takes a value between -1 and 1.

When the forecast correlation takes a negative value, Qlike is not well-defined. So

we report MSE, Qlike for the forecasts of realized variance and only report MSE for

the forecasts of realized correlation. To check the robustness of MSE and Qlike, we

can report the Mean Absolute Error (MAE). MSE, Qlike and MAE are computed

as follows.

MSEv =
1

480

2242∑
t=1763

(vt − v̂t|t−1)2, MSEQ =
1

480

2242∑
t=1763

(Qt − Q̂t|t−1)2,

Qlikev =
1

480

2242∑
t=1763

(
v̂t|t−1

vt
− log(

v̂t|t−1

vt
)− 1

)
,

MAEv =
1

480

2242∑
t=1763

|vt − v̂t|t−1|, MAEQ =
1

480

2242∑
t=1763

|Qt − Q̂t|t−1|.

(4.17)

To evaluate out-of-sample performance of alternative models for forecasting the

realized covariance, we calculate the multivariate Qlike of Patton and Sheppard
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Table 12: Out-of-Sample Predicted RM

MSE Qlike MAE
MSV-GFT RMSV-GFT MSV-GFT RMSV-GFT MSV-GFT RMSV-GFT

exp(hr1) 398.153 269.284 0.609 0.307 11.2695 6.592
exp(hr2) 36.5326 21.0515 0.480 0.178 3.4162 1.5199
exp(hr3) 37.2511 25.0701 0.251 0.150 3.391 2.0018
Q(1, 2) 0.0386 0.0308 0.1441 0.1263
Q(1, 3) 0.0472 0.0379 0.1498 0.1282
Q(2, 3) 0.0755 0.0526 0.1829 0.1479

MSV-GFT RMSV-GFT
Qlike 1.5143 0.7235

1.exp(hr
i ) is the ith diagonal element in the realized variance.

2.Q(i,j) denotes the (i,j) components in the realized correlation matrix, while the diagonal elements are all 1.

(2009) which is follows as

Qlike =
1

480

2242∑
t=1763

(
tr(R̂COV

−1

t|t−1RCOVt)− log |R̂COV
−1

t|t−1RCOVt| − p
)
, (4.18)

where R̂COV
−1

t|t−1 = v̂
1
2

t|t−1Q̂t|t−1v̂
1
2

t|t−1 is the realized covariance forecast.

In the univariate setting, Table 12 reports MSE, Qlike and MAE for MSV-

GFT and RMSV-GFT, respectively. According to MSE and Qlike, by incorporating

the information from the realized measure, RMSV-GFT provides more accurate

forecasts than MSV-GFT. According to MAE, RMSV-GFT continues to provide

more accurate forecasts than MSV-GFT. In the univariate setting, Table 12 reports

the multivariate Qlike in the last row. According to multivariate Qlike, RMSV-GFT

provides more accurate forecasts of realized covariance than that of MSV-GFT.

Figure 17 plots the out-of-sample forecasts for the realized measures. For the

realized variance, it shows MSV-GFT is less precise from Jan 2009 to Dec 2010. And

MSV-GFT provides more downward outliers for the forecasts of realized correlation

than RMSV-GFT.

4.4.3.3 Global Minimum Variance Portfolio Analysis

In this section, we compare alternative models in terms of their economic value.

In particular, we use the forecasted covariance to construct a Global Minimum
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Variance (GMV) portfolio in each candidate model. According to Markowitz (1952),

the GMV portfolio is optimal in the sense that it has the smallest variance among all

portfolios on the efficient frontier. In our application, at period t− 1, we construct

the GMV portfolio with optimal weights wt = (w1t, ..., wpt), which minimize the

variance of the portfolio return over the next period. The optimal weights are a

unique solution to

min
wt∈Rp

w′tΣ̂t|t−1wt, s.t. w′t1p = 1, (4.19)

where Σ̂t|t−1 is the forecast of the covariance in (4.15), and 1p is a p-by-1 vector of

ones.

In general, negative weights are allowed so that short-sells are possible. The well-

known solution of wt is

w?t =
Σ̂−1
t|t−11p

1′pΣ̂
−1
t|t−11p

, (4.20)

and the optimal portfolio return at time t is

Rp
t = w?′t rt. (4.21)

We construct the GMV portfolio using MSV-GFT and RMSV-GFT, respectively.

As a benchmark, an equal-weighted portfolio is also constructed and its return is

Rp
ew =

1

p
1′prt.

Figure 18 shows the out-of-sample optimal weights of the MSV-GFT, RMSV-

GFT and equal-weighted portfolios. According to Chopra and Ziemba (1993), the

estimation error in the expected return may not lead to an optimal portfolio. To

facilitate comparison, we assume all stocks have equal expected returns and focus

on the variance of the portfolios. The variance of the portfolios is measured by on

average squared return, which is 1
480

∑2242
t=1743(Rp

t )
2. Since the average squared return

is sensitive to outlier, we also compute average absolute return, 1
480

∑2242
t=1743 |R

p
t | as

a robustness check.

Table 13 reports the out-of-sample variance under MSV-GFT, RMSV-GFT and
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Table 13: Out-of-Sample Portfolio

period Equal Weight MSV-GFT RMSV-GFT

Squared
Return

2008-2010 26.0852 19.1104 19.0969
2008-2009 25.8988 20.1271 20.3104
2009-2010 25.914 17.832 17.7604

Absolute
Return

2008-2010 3.4972 3.2023 3.1815
2008-2009 3.7123 3.4155 3.3773
2009-2010 3.2822 2.9892 2.9858

1.Bold figures indicates the optimal values
2.We report the result for 100×Rp

t return for precision.

3.Squared return is 1
480

∑2242
t=1743(Rp

t )2 and Absolute Return is defined as
1

480

∑2242
t=1743 |R

p
t |.

equal-weight. The equal-weighted portfolio has a larger variance than the MSV-

GFT and RMSV-GFT portfolios. In the full out-of-sample period, the RMSV-GFT

model produces the smallest variance of the portfolio. We also report the out-of-

sample variance for each year in the out-of-sample period. Table 13 shows that

in 2008, MSV-GFT constructs the smallest variance portfolio while the average

absolute return is larger than RMSV-GFT. In 2009, the portfolio based on RMSV-

GFT dominates the other two portfolios.

In summary, we can conclude that incorporating realized measures in the MSV

model leads to a better portfolio.
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Figure 14: MSV-GFT: In-sample comparison with realized measure

Note: The top three panels report in-sample fit of realized variance for BAC, JPM
and AXP respectively; The bottom three panels report in-sample fit of the realized
correlation for BAC and JPM, BAC and AXP, JPM and AXP respectively. The
time period is from January 2, 2001 to December 31, 2009.
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Figure 15: RMSV-GFT: In-sample comparison with realized measure

Note: The top three panels report in-sample fit of the realized variance for BAC,
JPM and AXP respectively; The bottom three panels report in-sample fit of the
realized correlation for BAC and JPM, BAC and AXP, JPM and AXP respectively.
The time period is from January 2, 2001 to December 31, 2009.
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Figure 16: Q-Q plot of the residuals in RMSV-GFT
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Figure 17: Out-of-sample prediction of realized measures

Note: The top three panels report out-of-sample fit of realized variance for BAC,
JPM and AXP respectively; The bottom three panels report out-of-sample fit of
realized correlation for BAC and JPM, BAC and AXP, JPM and AXP respectively.
The time period RMSV-GFT
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Figure 18: Time series plot of the portfolio weights for the GMV portfolio
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5 MSV-GFT Model with Leverage Effect and Heavy-

Tailed Error

We are motivated by Figure 16, which gives the Q-Q plot of residuals from the

estimated MSV model without the leverage effect or heavy-tailed error distribution.

Clearly, the Q-Q plot suggests that the estimated MSV model is inadequate in two

aspects. First, there are large movements in the market that cannot be explained

by the estimated model. Second, the Q-Q plot is not symmetric. In this chapter, we

consider extending the basic model (MSV-GFT) by incorporating the leverage-effect

and heavy-tailed error distribution.

5.1 Model Setup

Following Harvey et al. (1994), we assume that εt = λ
1
2
t zt, where zt follows as

the p-dimensional standard normal distribution, λt = diag{λ1t, ...λpt}, and

λit|νi
iid∼ νi/χ

2(νi), , where i = 1, ..., p. (5.1)

Under this parameterization, εit
iid∼ tνi . The tail thickness in the distribution of εit

is controlled by νi.

To allow for an asymmetric effect on return on expected volatility, we assume

(
zt

ηht

)
∼ N

(0

0

)
,

 Ip Σ
1
2
hΩ

Ω′
(

Σ
1/2
h

)′
Σh

 , (5.2)

where Ω is a p × p matrix. Let ρij denote the (i, j)th element of Ω, that is, ρij =

corr(zit, ηhjt). When p = 1, if Ω = ρ = corr(z1t, ηh1t) < 0, our model is the same as

that in the univariate literature (Yu (2005)). If Ω = 0, our model is the same as the

original model. When the self-leverage and cross-leverage effects exist for all assets,

we expect all the elements Ω be negative.

Combining Equations (3.1)-(3.6), (5.1) and (5.2), we have the new MSV model
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with leverage effects and t distributed error term (MSVLt-GFT). In particular, the

MSVLt-GFT model is given by

rt = V
1/2
t εt, εt = λ

1
2
t zt, zt ∼ N(0, Rt), t = 1, ..., T,

λit|ν ∼ vi/χ
2(vi), i = 1, ..., p, t = 1, ..., T,

Vt = exp(Ht), and ht = diag(Ht), t = 1, ..., T,

qt = F (Rt), t = 1, ..., T,

ht+1 = µh + φh(ht − µh) + ηht, ηht ∼ N(0,Σh), t = 1, ..., T − 1,

qt+1 = µq + φq(qt − µq) + ηqt, ηqt ∼ N(0,Σq), t = 1, ..., T − 1,

h0 ∼ N(µh, (Ip − φ2
h)
−1Σh), and q0 ∼ N(µq, (Id − φ2

q)
−1Σq),

(5.3)

and (
zt

ηht

)
∼ N

(0

0

)
,

 Ip Σ
1
2
hΩ

Ω′
(

Σ
1/2
h

)′
Σh

 ,

The parameters of the model are θ ≡ (µh, µq, φh, φq,Σh,Σq,Ω, ν).

5.2 Bayesian Analysis of MSVLt-GFT

5.2.1 Estimation Procedure

Let r = (r′1, . . . , r
′
T ) , λ = (λ′1, . . . , λ

′
T ) , h = (h′1, . . . h

′
T ) and q = (q′1, . . . q

′
T ) .

To conduct the inference, we implement a Gibbs sampler with four blocks. In the

following, we use θ/α to denote the parameters θ excluding α. Then, the algorithm

proceeds as follows.

1. Initialize h, q and θ.

2. Draw h, q|r,m, λ, θ.

3. Draw µh, µq|h, q, θ/(µh,µq).

4. Draw φh, φq|h, q, θ/(φh,φq).

5. Draw Σq,Σh|h, q, θ/(Σh,Σq).
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6. Draw λ, ν|r, h, q.

7. Draw Ω|r, h, q, θ/Ω.

Iterating over Steps 2-7 consists of a complete sweep of MCMC sampler. In Step 2,

we replace return r with λ−
1
2 r and apply the PGAS introduced in the Section 3.2.2

to sample from the latent variables h and q given λ−
1
2 r and one particular set of

parameter values. Steps 3-5 sample from the conditional posterior distribution in

(3.11), (3.12) and (3.13). We will describe Steps 6 and 7 in the following section.

5.2.2 Sampling Leverage Effects

The joint distribution of (rt, ht+1) given ht is

(
rt

ht+1

ht

)
∼ N

( 0

µh + φh(ht − µh)

)
,

 λtV
1
2
t RtV

1
2
t λ

1
2
t V

1
2
t R

1
2
t Σ

1
2
hΩ

Ω′
(

Σ
1/2
h

)′ (
R

1/2
t

)′
V

1/2
t λ

1/2
t Σh

 .

(5.4)

The conditional distribution of ht+1|ht, rt, θ is

ht+1|ht, rt, qt, θ ∼ N(µh + φh(ht − µh)) + ΩΣ
1
2
h zt,Ψ) (5.5)

where zt = R
− 1

2
t V

− 1
2

t λ
1
2
t rt and Ψ = Σh−ΩΣhΩ

′ is a positive definite matrix. Following

the literature, we assume that the prior of (Ω,Ψ) is from the Normal-Inverse-Wishart

family:

vec(Ω)|Ψ ∼ N(vec(b),Ψ⊗H0),

Ψ ∼ IW (ν̃, Ψ̃).
(5.6)

We sample Ω from

vec(Ω)|r, h, q, θ/Ω ∼ N(vec(B),Ψ⊗H1), (5.7)

83



where

B = H1

(
T−1∑
t=1

Σ
1
2
h ztη

′

t +H−1
0 b

)
,

H1 =

(
T−1∑
t=1

ztΣhz
′
t +H−1

0

)−1

,

(5.8)

with ηt = ht+1 − µh − φh (ht − µh) and zt = R
− 1

2
t V

− 1
2

t λ
1
2
t rt.

5.2.3 Sampling λ and ν

To implement MCMC for λ and ν, we assume the conjugate prior for λit|νi ∼

IG(νi/2, 2/νi) for t = 1, ..., T , i = 1, ..., p and νi ∼ U(3, 40) for i = 1, ..., p. Moreover,

we denote the prior of ν as π(ν).

Under the assumption of the heavy-tailed distribution, conditional on Vt and Rt,

rt follows a multivariate t-distribution with mean 0 and variance V
1
2
t RtV

1
2
t with ν

degrees of freedom. We construct V
− 1

2
t R

− 1
2

t rt so that multiple degrees of freedom

are supported in the multivariate t distribution. The joint distribution of (λ, ν) is:

p(λt, ν|rt, ht, qt) ∝ p(rt|λt, ht, qt, ν)p(λt|ν)p(ν)

∝ p(ν)

{ (
ν
2

) ν
2

Γ
(
ν
2

)}T T∏
t=1

λ
− p+ν

2
−1

t

× exp

[
−1

2

T∑
t=1

{
ν

λt
+ rt(V

1
2
t RtV

1
2
t )−1rt

}]
.

(5.9)

Sampling λ. Given the conjugate prior, the conditional posterior of λt =

(λ1t, ..., λpt) is

p(λt|rt, ht, qt, ν) ∝ λ
ν+p
2
−1

t exp

{
− 1

2λt
r′t(V

1
2
t RtV

1
2
t )−1rt

}
, (5.10)

which follows as IG

(
v+p

2
,
r′t(V

1
2
t RtV

1
2
t )−1rt

2

)
.
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Sampling ν. The conditional posterior distribution of ν = (ν1, .., νp) is

p(ν|r, h, q, λ) ∝ p(λ|ν)p(ν) ∝ p(ν)

{ (
ν
2

) ν
2

Γ
(
ν
2

)}T ( n∏
t=1

λt

)− ν
2

exp

{
−1

2

T∑
t=1

ν

λt

}
.

(5.11)

To draw random samples from the full conditional posterior density of ν, one

can resort to the random walk Metropolis-Hasting sampler. We sample ν? from

N(ν(i−1), Ip), then accept it with probability min
[
1, p(ν?|r,h,q,λ)

p(νi−1|r,h,q,λ)

]
, where νi−1 is the

sample from the most recent MCMC iteration.

5.3 Simulation Studies

To investigate the performance of our estimation procedure, we conduct a sim-

ulation study in this section. Our simulation design is frequentist as we fix the

parameters at their true value and generate data from the same data generating

process for 100 times. However, we use the posterior mean as a point estimator for

all the parameters in the model. Since we know the true value of those parameters,

we are able to calculate bias (defined as the difference between the true value and

the average value of the posterior means across 100 replications) and the standard

deviation (across 100 replications).

The number of assets considered for simulation is three. There are 24 parameters

whose true values are given by:

1. µh1 = µh2 = µh3 = 0.3 and µq1 = µq2 = µq3 = 0.7,

2. φh1 = φh2 = φh3 = 0.9 and φq1 = φq2 = φq3 = 0.8,

3. σ2
h1 = σ2

h2 = σ2
h3 = 0.05 and σ2

q1 = σ2
q2 = σ2

q3 = 0.05,

4. Ω11 = Ω22 = Ω33 = −0.5,

5. ν1 = ν2 = ν3 = 20.

All the simulation results reported in this section are based on 5000 MCMC iter-

ations, among which the first 1000 samples are discarded as a burn-in period. We

consider sample size T = 1000 and number of particles N = 200.
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Table 14: Simulation results for MSV-GFT with leverage effects and
heavy-tailed errors

µh1 µh2 µh3 µq1 µq2 µq3
true value 0.3 0.3 0.3 0.7 0.7 0.7
mean 0.177 0.179 0.170 0.655 0.656 0.653
std 0.121 0.129 0.114 0.034 0.036 0.036
IF 70.415 54.570 62.127 10.487 11.227 9.212

φh1 φh2 φh3 φq1 φq2 φq3
true value 0.9 0.9 0.9 0.8 0.8 0.8
mean 0.898 0.891 0.893 0.787 0.783 0.792
std 0.036 0.034 0.044 0.036 0.060 0.049
IF 71.729 75.685 70.782 95.130 98.740 95.485

σ2
h1 σ2

h2 σ2
h3 σ2

q1 σ2
q2 σ2

q3

true value 0.05 0.05 0.05 0.05 0.05 0.05
mean 0.046 0.048 0.047 0.037 0.037 0.035
std 0.013 0.009 0.013 0.010 0.010 0.011
IF 140.810 140.800 140.690 154.610 160.540 162.440

Ω11 Ω22 Ω33 ν1 ν2 ν3

true value -0.5 -0.5 -0.5 20 20 20
mean -0.350 -0.34 -0.344 12.868 12.528 11.964
std 0.041 0.036 0.038 7.351 7.213 7.196
IF 22.943 18.823 21.961 235.140 206.800 226.490

1. Mean is the average posterior mean across replications.
2. Std is the standard error of the posterior mean across replications.
3. IF is the average inefficiency factor across replications calculated as suggested in

Kim et al. (1998).

Table 14 reports simulation results including the posterior mean, posterior stan-

dard deviation, as well as the inefficiency factor for all parameters. For the leverage

effects, Ω, we find upward bias in the proposed estimators. For ν, there is a down-

ward bias in the proposed estimators. However, the bias decreases when the sample

size increases. For parameters related to correlation, (µq, φq, σ
2
q ), the performance of

the proposed method is good. For parameters related to volatility, the performance

of the proposed method is good for φh and σ2
h while there is a noticeable downward

bias for µh. This bias is caused by the downward bias in estimating ν. A smaller

ν causes a larger λ. Hence, λ
− 1

2
t rt is smaller, leading to a downward bias in µh.

On the other hand, compared with the basic MSV-GFT model, we find that the

IF of estimators of µh is larger than that reported in Section 3.2.5. This finding

suggests that adding the heavy-tailed error distribution to our MSV model affects

the convergent speed of MCMC sampler of µh.
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5.4 Empirical Application

5.4.1 Data

In this section, we consider the empirical application based on the daily returns

of three Asian equity indices. The data contains 2237 daily mean-corrected log-

returns of three stock market indices, namely the Hong Kong Hang Seng Index,

the Nikkei 225 Index of Tokyo Stock Exchange, and the SSE Composite Index of

Shanghai Stock Exchange. The sample period is from January 5, 2005 to December

30, 2014 that covers the global financial crisis period. This exercise is interesting,

as it can provide some insights on the co-movement of these three arguably most

important stock market indices in Asia. The three series are plotted in Figure 19.

5.4.2 Estimation

We estimate and compare four models with dynamic correlation defined as fol-

lows.

1. MSV-GFT. The model was proposed in Section 3. It is given by

rt = V
1/2
t εt, εt ∼ N(0, Rt)

Vt = exp(Ht), ht = diag(Ht), qt = F (Rt)

ht+1 = µh + φh(ht − µh) + ηht

qt+1 = µq + φq(qt − µq) + ηqt

(5.12)

2. MSVL-GFT: The MSV-GFT model with leverage effects only. It is given by

rt = V
1/2
t εt, εt ∼ N(0, Rt)

Vt = exp(Ht), ht = diag(Ht), qt = F (Rt)

ht+1 = µh + φh(ht − µh) + ηht

qt+1 = µq + φq(qt − µq) + ηqt

(5.13)
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Figure 19: Time series of stock index returns
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3. MSVt-GFT: The MSV-GFT model with heavy-tailed errors only. It is given

by

rt = λ
1
2
t V

1/2
t εt, εt ∼ N(0, Rt),

Vt = exp(Ht), ht = diag(Ht), qt = F (Rt), λt|ν ∼ v/χ2(v),

ht+1 = µh + φh(ht − µh) + ηht,

qt+1 = µq + φq(qt − µq) + ηqt.

(5.14)

4. MSVLt-GFT: The model is given in Equation (5.2) and (5.3).

For each model, we draw 20000 MCMC samples and discard first 5000 as a burn-

in period. For the MSVLt-GFT model, we plot the posterior mean of log-volatility

and correlation in Figure 20 and Figure 21, respectively. Figure 22 shows the Q-Q

plot of the residuals εt in the estimated MSVLt-GFT model. The Q-Q plot suggests

that the residuals follow the normal distribution very well. We reports the posterior

means, standard deviations, the 95% credible intervals, inefficiency factors in Table

15, 16 and 17.

Table 15 reports the posterior statistics related to volatility. The estimators of

φh and σ2
h are all reasonable. Moreover, the estimators of µ in the heavy-tailed

model are smaller than that in MSV-GFT and MSVL-GFT. This is also reasonable

as more large movements in the stock markets can be explained by the t distribution

in the MSVLt-GFT model than that by the MSV-GFT and MSVL-GFT models.

As expected, the MSVLt-GFT model leads to a lower and smoother h series than

that in the basic model. Figure 23 compares the posterior mean of the h sequence

from MSV-GFT and MSVt-GFT and confirms the expectation.

Table 16 reports the posterior statistics related to the correlation. The posterior

means, posterior standard deviations are similar to each other. That is consistent

with the expectation; that is, the leverage effects and heavy-tailed error term should

not affect correlation.
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Figure 20: Compare filtered h of MSV-GFT and MSVt-GFT

90



Figure 21: Compare filtered h of MSV-GFT and MSVt-GFT
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Figure 22: Q-Q plot of the residuals in MSVLt-GFT
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Figure 23: Compare filtered h of MSV-GFT and MSVt-GFT
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Table 17 reports the posterior statistics related to the leverage effects and pa-

rameters in the error distribution. Several findings emerge. Firstly, all leverage

effects are negative, which is consistent with the expectation. However, the leverage

effect of SSE is not very strong. Secondly, in the literature, Ishihara and Omori

(2012) have proposed an MSV model with the error term following a multivariate

t-distribution with the same degrees of freedom. However, we find evidence that

the error terms of the three stock indices have quite different degrees of freedom

parameter. In particular, the error terms for HSI and SSE have much smaller νs

than N225.

We can compare the four alternative specifications using the deviance informa-

tion criterion (DIC) and log marginal likelihood. The details about the DIC and

log marginal likelihood can be found in Section 3.2.4. The last two rows of Table

17 reports the DIC and log-marginal likelihood. The smaller the DIC, the better

the model. The difference between the two log marginal likelihood values gives the

log Bayes factor. The larger the log marginal likelihood, the better the model. The

best model to describe the stock indices is the MSVLt-GFT model, followed by

MSVt-GFT, then by MSVL-GFT, and finally by MSV-GFT. Comparing only the

MSVt-GFT and MSVL-GFT models, we find that MSVt-GFT performs much bet-

ter than MSVL-GFT. Hence, as far as this dataset is concerned, it is more important

to model heavy-tailed errors than to model the leverage effects.
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Table 15: Posterior statistics of parameters in the h sequences for competing
models based on the stock index

MSV-GFT MSVL-GFT MSVt-GFT MSVLt-GFT
µh1 Mean 0.373 0.382 0.101 0.108

SD 0.256 0.277 0.297 0.293
95% CI [-0.146,0.886] [-0.184,0.933] [-0.497,0.684] [-0.482,0.690]
IF 0.917 0.893 7.494 6.854

µh2 Mean 0.523 0.524 0.473 0.454
SD 0.171 0.177 0.193 0.175
95% CI [0.182,0.863] [0.169,0.879] [0.085,0.848] [0.104,0.792]
IF 1.170 1.192 2.223 2.775

µh3 Mean 0.753 0.755 0.356 0.357
SD 0.205 0.221 0.259 0.258
95% CI [0.345,1.161] [0.306,1.188] [-0.164,0.865] [-0.163,0.854]
IF 0.618 1.435 8.808 5.965

φh1 Mean 0.991 0.989 0.992 0.991
SD 0.003 0.003 0.002 0.003
95% CI [0.984,0.995] [0.982,0.995] [0.986,0.995] [0.985,0.995]
IF 26.915 42.531 32.147 43.485

φh2 Mean 0.980 0.976 0.981 0.975
SD 0.006 0.007 0.006 0.008
95% CI [0.967,0.991] [0.962,0.988] [0.968,0.991] [0.958,0.988]
IF 44.186 71.412 46.472 60.339

φh3 Mean 0.983 0.984 0.992 0.992
SD 0.005 0.006 0.003 0.003
95% CI [0.971,0.993] [0.970,0.993] [0.984,0.995] [0.985,0.995]
IF 52.526 113.065 118.505 81.791

σ2
h1 Mean 0.012 0.016 0.011 0.013

SD 0.003 0.004 0.003 0.003
95% CI [0.007,0.018] [0.010,0.024] [0.007,0.019] [0.008,0.021]
IF 98.436 145.461 132.573 159.462

σ2
h2 Mean 0.021 0.032 0.025 0.035

SD 0.005 0.007 0.006 0.009
95% CI [0.013,0.033] [0.020,0.048] [0.015,0.039] [0.021,0.056]
IF 101.608 151.118 106.359 112.252

σ2
h3 Mean 0.021 0.022 0.009 0.009

SD 0.005 0.007 0.003 0.003
95% CI [0.012,0.033] [0.011,0.039] [0.005,0.018] [0.005,0.017]
IF 130.360 195.886 302.221 205.034

1. Mean is the posterior mean based on 20000 MCMC draws after a 5000 burn-in period.
2. SD is the numerical standard error of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. IF is the inefficiency factor.

95



Table 16: Posterior statistics of parameters in the q sequences for competing
models based on the stock index

MSV-GFT MSVL-GFT MSVt-GFT MSVLt-GFT
µq1 Mean 0.715 0.727 0.717 0.711

SD 0.028 0.029 0.028 0.028
95% CI [0.659,0.769] [0.670,0.784] [0.661,0.771] [0.656,0.765]
IF 13.960 30.399 20.105 16.935

µq2 Mean 0.542 0.557 0.544 0.546
SD 0.026 0.027 0.027 0.028
95% CI [0.490,0.594] [0.503,0.611] [0.490,0.598] [0.491,0.601]
IF 11.287 13.140 14.872 18.844

µq3 Mean 0.125 0.130 0.142 0.144
SD 0.024 0.025 0.027 0.027
95% CI [0.077,0.173] [0.080,0.178] [0.089,0.193] [0.090,0.197]
IF 21.576 25.492 9.119 10.134

φq1 Mean 0.556 0.575 0.519 0.545
SD 0.107 0.107 0.112 0.114
95% CI [0.328,0.751] [0.349,0.757] [0.284,0.717] [0.296,0.740]
IF 146.187 231.513 223.231 162.251

φq2 Mean 0.660 0.725 0.643 0.614
SD 0.132 0.110 0.148 0.155
95% CI [0.365,0.860] [0.465,0.886] [0.336,0.887] [0.290,0.883]
IF 198.705 266.335 320.489 325.425

φq3 Mean 0.617 0.694 0.681 0.672
SD 0.127 0.108 0.099 0.089
95% CI [0.335,0.827] [0.424,0.854] [0.468,0.841] [0.483,0.822]
IF 169.348 193.125 175.052 151.433

σ2
q1 Mean 0.064 0.083 0.083 0.075

SD 0.020 0.026 0.022 0.020
95% CI [0.032,0.108] [0.044,0.147] [0.043,0.129] [0.041,0.116]
IF 162.667 274.750 223.332 184.875

σ2
q2 Mean 0.028 0.030 0.039 0.041

SD 0.011 0.012 0.016 0.017
95% CI [0.011,0.053] [0.013,0.056] [0.012,0.074] [0.012,0.080]
IF 285.125 330.669 379.679 328.221

σ2
q3 Mean 0.020 0.023 0.038 0.039

SD 0.008 0.011 0.015 0.013
95% CI [0.007,0.040] [0.010,0.053] [0.015,0.072] [0.019,0.065]
IF 293.989 335.082 248.723 221.188

1. Mean is the posterior mean based on 20000 MCMC draws after a 5000 burn-in period.
2. SD is the numerical standard error of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. IF is the inefficiency factor.
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Table 17: Posterior statistics of parameters in the leverage and heavy-tail se-
quences for competing models based on the stock index

MSV-GFT MSVL-GFT MSVt-GFT MSVLt-GFT
Ω11 Mean -0.239 -0.196

SD 0.052 0.057
95% CI [-0.338,-0.136] [-0.306,-0.083]
IF 30.238 31.924

Ω22 Mean -0.261 -0.272
SD 0.050 0.048
95% CI [-0.358,-0.163] [-0.365,-0.177]
IF 41.986 39.015

Ω33 Mean -0.054 -0.007
SD 0.051 0.058
95% CI [-0.151,0.052] [-0.118,0.109]
IF 34.847 34.734

ν1 Mean 6.099 6.466
SD 1.510 1.804
95% CI [4.027,10.030] [3.951,11.185]
IF 87.960 107.398

ν2 Mean 30.187 28.245
SD 6.889 6.961
95% CI [14.648,39.392] [13.980,39.143]
IF 195.756 209.572

ν3 Mean 5.304 5.330
SD 0.901 0.892
95% CI [3.926,7.480] [3.911,7.444]
IF 93.892 61.991

log marg like -11038 -10897 -10144 -10142
DIC 22017 21880 20238 20161

1. Mean is the posterior mean based on 20000 MCMC draws after a 5000 burn-in period.
2. SD is the numerical standard error of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. IF is the inefficiency factor.
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6 Conclusions

In this dissertation, we propose a novel approach to model volatilities and cor-

relations in the multivariate context.

In Chapter 3, we propose the basic multivariate stochastic volatility model with

dynamic correlation (MSV-GFT). Our approach is to use a generalized version of

Fisher’s z-transformation to characterize the dynamics in volatilities and correlations

in a highly flexible manner. The most important feature in our models is that they

automatically generate a positive definite correlation matrix, and the driving forces

underlying volatilities and correlations are fully separated. Different from much of

the existing literature, when making inference for our model, we apply the state-

of-the-art particle-filter-based MCMC technique. We have considered a simulation

based on different sample size(T = 500, 1000, 2000) and different number of particles

(N = 50, 100, 200). The simulation result shows the finite sample performance is

stable. In the empirical application of exchange rate and stock indices, we found

that the flexible correlation setting can capture more information than some existing

models. For model comparison, DIC and log marginal likelihood confirmed the basic

model is better than the competing models.

In Chapter 4, we accommodate a few essential stylized facts commonly observed

in real data and consider the Multivariate stochastic volatility model with dynamic

correlation and realized measures (RMSV-GFT). We consider the bias from the

micro-structure noises and construct two measurement equations of realized mea-

sures to capture the bias. However, the new setting causes the problem of under-

identification. We estimate the model by particle-filter-based MCMC technique and

propose a two-stage estimation to address the identification problem. The simulation

results suggest that the two-stage estimation method works well in finite samples.

We apply the proposed model and estimation method to the daily return of three

equities with their realized measure. The empirical result shows RMSV-GFT out-

performs the MSV-GFT in terms of both realized-measure forecast and portfolio

optimization.
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In Chapter 5, we extend the basic model (MSV-GFT) by incorporating the

leverage effects and heavy-tailed error distribution. We develop the particle-filter-

based MCMC technique to conduct Bayesian analysis of the extended models. The

simulation study shows the estimation technique works well in the finite sample. In

the empirical application, we estimate four models using stock indices data. We use

DIC and log marginal-likelihood to compare the model specifications. The model

with both the leverage effect and heavy-tailed error distribution outperforms the

other three specifications, suggesting that both the leverage effect and heavy-tailed

error distribution are important for the data.
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A Appendix to Chapter 3

A.1 Details of PGAS algorithm

Recall that a state space model is in the form

yt|xt = x ∼ fθ(·|x), (A.1)

xt+1|xt = x ∼ gθ(·|x), and x1 ∼ µθ(·), (A.2)

The output of a PGAS algorithm is a random draw from the joint smoothing dis-

tribution pθ(x1:T |y1:T ), conditional on one particular set of parameter values. In

the following, we will omit parameters in all densities with an understanding that

they depend on a same θ. The input of this algorithm, except for θ, is a reference

trajectory of x1:T , which is a sample from last MCMC iteration. Let’s denote that

reference trajectory by x′1:T . Then, the algorithm proceeds as following:

• 1. Draw x
(i)
1 from q1(x1|y1), for i = 1, 2, ..., N − 1.

• 2. Set x
(N)
1 = x′1.

• 3. Set w
(i)
1 = f(y1|x(i)

1 )/q1(x
(i)
1 |y1), for i = 1, 2, ..., N .

• 4. For t = 2 to T , do the following:

– (a). Generate {x̃(i)
1:t−1}N−1

i=1 by sampling with replacement N − 1 times

from {x(i)
1:t−1}Ni=1 with probabilities proportional to the importance weights

{w(i)
t−1}Ni=1.

– (b). Draw J from {1, 2, ..., N} with probabilities proportional to w
(i)
t−1g(x′t|x

(i)
t−1)

and then set x̃
(N)
1:t−1 = x

(J)
1:t−1.

– (c). Simulate x
(i)
t from qt(xt|x̃(i)

t−1, yt), for i = 1, 2, ..., N − 1.

– (d). Set x
(N)
t = x′t.

– (e). Set x
(i)
i:t = (x̃

(i)
1:t−1, x

(i)
t )
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– (f). Set weight to be w
(i)
t = f(yt|x(i)

t )g(x
(i)
t |x̃

(i)
t−1)/qt(x

(i)
t |x̃

(i)
t−1, yt), for i =

1, 2, ..., N .

• 5. Draw k from {1, 2, ..., N} with probabilities proportional to w
(i)
T and return

x∗1:T = x
(k)
1:T .

Note that this procedure is very similar to the original conditional sequential Monte

Carlo-based particle Gibbs sampler. The major modification is in the Step 4(b),

where a new index is drawn and thus the N th trajectory may not be the reference

one from last iteration. In conditional PG, on the contrary, we fix the last particle

to follow the input trejectory x′1:T .

It is worth mentioning that the probability of drawing J depends on g(x′t|x
(i)
t−1)

and x′t is drawn in the last iteration conditional on all observations y1:T . Therefore,

this step makes the algorithm more like a smoothing instead of filtering.
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A.2 Additional Figures

This section includes some additional figures that are related to the empirical

application with weekly exchange rate data we consider in the main text. Corre-

sponding figures for stock return data are similar and thus omitted for saving the

space. Specifically, we present the following figures:

• Figure 24: Kernel-smoothed posterior distributions of volatility-related pa-

rameters.

• Figure 25: Kernel-smoothed posterior distributions of correlation-related pa-

rameters.

• Figure 26: Mixing of volatility-related parameters represented by the decay of

autocorrelation.

• Figure 27: Mixing of correlation-related parameters represented by the decay

of autocorrelation.

• Figure 28: MCMC iterations of volatility-related parameters.

• Figure 29: MCMC iterations of correlation-related parameters.
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Figure 24: Posterior distributions of volatility-related parameters for weekly ex-
change rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 25: Posterior distributions of correlation-related parameters for weekly ex-
change rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 26: Mixing of volatility-related parameters for weekly exchange rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. Blue curves show the decay of sample autocorrelations of MCMC
sampler.
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Figure 27: Mixing of correlation-related parameters for weekly exchange rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. Blue curves show the decay of sample autocorrelations of MCMC
sampler.
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Figure 28: MCMC iterations of volatility-related parameters for weekly exchange
rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s.
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Figure 29: MCMC iterations of correlation-related parameters for weekly exchange
rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s.
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B Appendix to Chapter 4

B.1 Additional Figures

This section includes some additional figures of that are related to the empirical

application with stock return data we consider in the main text.

• Figure 30: Finite Sample Distribution of µ̂h and µ̂q across 3 Stages

• Figure 31: Kernel-smoothed posterior distributions of volatility-related pa-

rameters.

• Figure 32: Kernel-smoothed posterior distributions of correlation-related pa-

rameters.

• Figure 33: Mixing of volatility-related parameters represented by the decay of

autocorrelation.

• Figure 34: Mixing of correlation-related parameters represented by the decay

of autocorrelation.

• Figure 35: MCMC iterations of volatility-related parameters.

• Figure 36: MCMC iterations of correlation-related parameters.
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Figure 30: Finite Sample Distribution of µ̂h and µ̂q across 3 Stages

Note: The finite sample distribution based on simulation data.
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Figure 31: Posterior distributions of volatility-related parameters for daily stock
return data

The first row includes µ’s, the second row includes φ’s,the third row includes σ2’s
and forth row includes η2. All densities are kernel-smoothed.
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Figure 32: Posterior distributions of correlation-related parameters for daily stock
return data

Note: The first row includes µ’s, the second row includes φ’s,the third row includes
σ2’s and forth row includes η2. All densities are kernel-smoothed.
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Figure 33: Mixing of volatility-related parameters for daily stock return data

Note: The first row includes µ’s, the second row includes φ’s,the third row includes
σ2’s and forth row includes η2. Blue curves show the decay of sample autocorrela-
tions of MCMC sampler.
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Figure 34: Mixing of correlation-related parameters for daily stock return data

Note: The first row includes µ’s, the second row includes φ’s,the third row includes
σ2’s and forth row includes η2. Blue curves show the decay of sample autocorrela-
tions of MCMC sampler.
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Figure 35: MCMC iterations of volatility-related parameters for daily stock return
data

Note: The first row includes µ’s, the second row includes φ’s,the third row includes
σ2’s and forth row includes η2.
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Figure 36: MCMC iterations of correlation-related parameters for daily stock return
data

Note: TThe first row includes µ’s, the second row includes φ’s,the third row includes
σ2’s and forth row includes η2.
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C Appendix to Chapter 5

C.1 Additional Figures

This appendix includes some additional figures that supports model estimation in

empirical application. The figures below shows the convergence property of MSVLt-

GFT model. Corresponding figures for MSV-GFT, MSVL-GFT and MSVt-GFT are

similar and thus omitted for saving the space. Specifically, we present the following

figures:

• Figure 37: Kernel-smoothed posterior distributions of volatility-related pa-

rameters.

• Figure 38: Kernel-smoothed posterior distributions of correlation-related pa-

rameters.

• Figure 39: Kernel-smoothed posterior distributions of leverage and heavy tail-

related parameters.

• Figure 40: Mixing of volatility-related parameters represented by the decay of

autocorrelation.

• Figure 41: Mixing of correlation-related parameters represented by the decay

of autocorrelation.

• Figure 42: Mixing of leverage and heavy tail-related parameters represented

by the decay of autocorrelation.

• Figure 43: MCMC iterations of volatility-related parameters.

• Figure 44: MCMC iterations of correlation-related parameters.

• Figure 45: MCMC iterations of leverage and heavy tail-related parameters.
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Figure 37: Posterior distributions of volatility-related parameters for stock index
data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 38: Posterior distributions of correlation-related parameters for stock index
data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 39: Posterior distributions of leverage and heavy tail-related parameters for
stock index data

Note: The first row includes Ω’s and the second row includes ν’s.
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Figure 40: Mixing of volatility-related parameters for stock index data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 41: Mixing of correlation-related parameters for stock index data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 42: Mixing of leverage and heavy tail-related parameters for stock index data

Note: The first row includes Ω’s and the second row includes ν’s.
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Figure 43: MCMC iterations of volatility-related parameters for stock index data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 44: MCMC iterations of correlation-related parameters for stock index data

Note: The first row includes µ’s, the second row includes φ’s and the third row
includes σ2’s. All densities are kernel-smoothed.
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Figure 45: MCMC iterations of leverage and heavy tail-related parameters for stock
index data

Note: The first row includes Ω’s and the second row includes ν’s.
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