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Statistical and Deep Learning Models for Software Engineering Corpora

Hoang Van Duc Thong

Abstract

This dissertation focuses on proposing statistical and deep learning models for

software engineering corpora to detect bugs in software system. The disserta-

tion aims to solve three main software engineering problems, i.e., bug local-

ization (locating the potential buggy source files in a software project given a

bug report or failing test cases), just-in-time defect prediction (identifying the

potential defective commits as they are introduced into a version control sys-

tem), and bug fixing patch identification (identifying commits repairing bugs

for their propagation to parallelly maintained versions) to save developers’ time

and e↵ort in improving software system quality. Moreover, I also propose a

neural network model learning a vector representation of code changes based

on their commit messages. The vector representation of code changes contains

its semantic intent and can be used to improve the performance of just-in-time

defect prediction and bug fixing patch identification. This vector can also be

applicable for potentially many other software engineering problems related

to code changes, such as tangled change prediction, the recommendation of a

code reviewer for a patch, etc.

My dissertation develops one statistical model and three deep learning mod-

els for various software engineering tasks. The first one introduces a statistical

model which is a novel multi-modal approach for bug localization problem.

The multi-modal approach is built by utilizing information from both bug re-

ports and program spectra (or program elements) to e↵ectively localize bugs

in programs. Di↵erent from other multi-modal approaches for bug localization

that treat bug reports (or program elements) as independent, my approach
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considers similarities between bug reports (or program elements). Hence, sim-

ilar bugs should have model parameters that are close together. My novel

multi-modal approach employs network Lasso regularization to incentivize the

model parameters of similar bug reports (or program elements) to be close

together.

The second one presents a novel deep learning framework to find likely

defective code early; the problem is commonly referred to as Just-In-Time

(JIT) defect prediction. While most existing JIT defect prediction approaches

involve a manual feature engineering step, where researchers propose a number

of features extracted from commits (e.g., the number of deleted and added lines,

number of files, information of authors and code reviewers, etc.), I introduce

an end-to-end deep learning framework, namely DeepJIT, which automatically

extracts features from commit messages and code changes in the commits, and

then uses them to identify defects.

The third one introduces a hierarchical deep learning-based approach, namely

PatchNet, to find bug fixing patches in the Linux kernel. Bug fixing patch iden-

tification and JIT defect prediction are pretty similar as they take as input the

same type of data (i.e., commits to version control systems). While Deep-

JIT simply merges the removed and added code in the code changes together,

PatchNet separates the removed and added code and takes into account the

hierarchical structure of the removed and added code.

Finally, the last one presents a neural network model, namely CC2Vec, that

learns a representation of code changes based on the semantic information in

commit messages. Unlike DeepJIT or PatchNet which only solve a specific

software engineering task (i.e., just-in-time defect prediction or bug fixing patch

identification), the vector representation represents the semantic meaning of

the code changes and can be used to solve a number of software engineering

problems related to commits (i.e., just-in-time defect prediction, identification

of bug fixing patches, and tangled change prediction, etc.).
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Chapter 1

Introduction

1.1 Motivation

Software engineering corpora, collected from large software systems (i.e., Ma-

cOS [190], Ubuntu [74], Firefox [60], etc.), di↵er from natural language corpora.

Specifically, software engineering corpora not only include natural languages

used by humans but also contain programming languages used by machines.

Software engineering corpora have been heavily studied in the last decade

and used to solve many software engineering problems, e.g., tag recommenda-

tion [223, 212], duplicate bug report detection [205], profiling Android appli-

cations [161], etc.

In this dissertation, I focus on analyzing software engineering corpora to

detect bugs in software systems to save developers’ time and e↵ort in improv-

ing software quality. Specifically, I aim to propose solutions that address three

software engineering tasks: bug localization, just-in-time defect prediction,

and bug fixing patch identification. Moreover, I introduce a neural network

model learning a vector representation of code changes based on their commit

messages. The vector representation can be used in addressing various soft-

ware engineering problems related to code changes, such as just-in-time defect

prediction, bug fixing patch identification and more (e.g., tangled change pre-
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CHAPTER 1. INTRODUCTION

diction, the recommendation of a code reviewer for a patch, etc.).

For the first problem (i.e., bug localization), two main research approaches

(i.e., information retrieval-based and spectrum-based bug localization) have

been proposed to tackle it. While information retrieval (IR)-based techniques [182,

191] process textual information in bug reports, spectrum-based techniques [91,

11] process program spectra (i.e., a record of which methods are executed for

each test case). The two approaches return a ranked list of methods that most

likely contains bugs. However, those techniques fail to leverage the information

of bug report similarity and method similarity graphs. Typically, some bug

reports (or methods) may be more similar to certain bug reports (or methods)

than to others. Hence, similar bugs should have model parameters that are

close together.

For the second and third problems (i.e., just-in-time defect prediction and

identification of bug fixing patches), a common theme of existing work [156,

99, 103, 112] is manually building a set of features to represent a code change

and using them for the training process. Those features are constructed based

on properties of code changes, such as the number of removed or added lines,

the number of files modified, the number of directories modified, etc. The set

of features is used as an input to a machine learning classifier [172] to predict

the defectiveness of code changes. However, the metric-based features may not

fully capture the semantic and syntactic structure of the actual code changes.

Previous studies have shown the advantages of deeply analyzing syntactic

structures of source code in order to uncover semantic information for many

software engineering tasks, such as code completion, bug detection, or defect

prediction [215, 207, 163, 75]. Unfortunately, there has not been prior work

that extracts semantic information from code changes (prior work only consid-

ers extracting information from a piece of code). As there are many software

engineering problems related to code changes (i.e., just-in-time defect predic-

tion, identification of bug fixing patches, tangled change prediction, etc.), there
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CHAPTER 1. INTRODUCTION

is also a need to design an approach to extract semantic representation of code

changes to improve the performance of automated solutions designed for these

problems.

1.2 Contributions

The contributions of work done for this dissertation are as follows:

• Bug localization: I propose a new approach, namely Network clustered

Multi-modal Bug Localization (NetML), which uses multi-modal infor-

mation from both bug reports and program spectra to localize bugs [80].

NetML facilitates e↵ective bug localization by carrying out a joint opti-

mization of bug localization error and clustering of both bug reports and

program elements (i.e., methods). The clustering is achieved through the

incorporation of network Lasso regularization [69], which incentivizes the

model parameters of similar bug reports and similar program elements to

be close together. To estimate the model parameters of both bug reports

and methods, NetML employs an adaptive learning procedure based on

the Newton method [101] that updates the parameters on a per-feature

basis. Extensive experiments on 355 real bugs from seven software sys-

tems have been conducted to benchmark NetML against various state-

of-the-art localization methods. The results show that NetML surpasses

the best-performing baseline by 31.82%, 22.35%, 19.72%, and 19.24%, in

terms of the number of bugs successfully localized when a developer in-

spects the top 1, 5, and 10 methods and Mean Average Precision (MAP),

respectively. The paper was published at IEEE Transactions on Software

Engineering (IEEE TSE) in 2018.

• Just-in-time defect prediction: I propose an end-to-end deep learn-

ing framework, named DeepJIT, that automatically extracts features

from commit messages and code changes and use them to identify de-
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CHAPTER 1. INTRODUCTION

fects [78]. I run the experiments on two popular software projects, namely

QT and OPENSTACK. Among 25,150 commits in the QT dataset, there

are 2,002 defect commits (8%). In the OPENSTACK dataset, there are

1,616 defect commits (13%) in 12,374 commits. The results show that

the best variant of DeepJIT (i.e., DeepJIT-Combined), compared with

the best performing state-of-the-art approach, achieves improvements of

10.36-11.02% for the project QT and 9.51-13.69% for the project OPEN-

STACK in terms of the Area Under the Curve (AUC) on three evaluation

settings (i.e., cross-validation, short-period, and long-period). The paper

was published at the Mining Software Repositories Conference (MSR) in

2019.

• Bug fixing patch identification: I propose a hierarchical deep learning-

based approach, named PatchNet, capable of automatically extracting

features from commit messages and commit code and using them to

identify stable patches [79]. Unlike DeepJIT, PatchNet contains a deep

hierarchical structure that mirrors the hierarchical and sequential struc-

ture of commit code, making it distinctive from the existing deep learn-

ing models on source code. Experiments on 82,403 recent Linux kernel

patches, including 42,408 stable patches and 39,995 non-stable patches,

confirm the superiority of PatchNet against various state-of-the-art base-

lines, including the one recently adopted by Linux kernel maintainers.

Specifically, PatchNet achieves a 14.9% higher recall at a high precision

level and a 41.2% higher precision at a high recall level compared to the

best-performing baseline. The paper was published at IEEE Transac-

tions on Software Engineering (IEEE TSE) in 2019.

• Code changes representation: I propose a novel deep learning model,

namely CC2Vec, that learns distributed representations of code changes

guided by the semantic meaning contained in commit messages. I eval-

uate the e↵ectiveness of CC2Vec in three software engineering tasks:
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1) commit message generation 2) bug fixing patch identification and 3)

just-in-time defect prediction. In the first task of commit message gener-

ation, CC2Vec can be used to improve over the best baseline by 24.73%

in terms of BLEU score (an accuracy measure that is widely used to

evaluate machine translation systems). For the task of identifying bug

fixing patches, CC2Vec helps to improve the best performing baseline

by 5.22%, 9.18%, 4.36%, and 6.51% in terms of accuracy, precision, F1

score, and Area Under the Curve (AUC). For just-in-time defect predic-

tion, CC2Vec helps to improve the AUC metric by 7.03% and 7.72% on

the QT and OPENSTACK datasets as compared to the best baseline.

The paper was published at the International Conference on Software

Engineering (ICSE) in 2020.

1.3 Dissertation Structure

The rest of this dissertation is organized as follows. I first review related work

in Chapter 2. Chapter 3 presents my work on bug localization that utilizes

multi-modal information from both bug reports and program spectra; this

work also takes advantage of the information from bug report similarity and

method similarity graphs. Chapter 4 describes my work on just-in-time defect

prediction using a deep learning framework. Chapter 5 presents a hierarchical

deep learning-based framework for detecting stable patches in the Linux kernel.

Chapter 6 introduces a deep learning model used to construct distributed rep-

resentations of code changes based on commit messages. Finally, I summarize

the contributions of this thesis and point to future directions (Chapter 7).
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Chapter 2

Related Work

In this section, we highlight several research studies that are closely related

to our works for the di↵erent software engineering tasks: i.e., bug localiza-

tion, just-in-time defect prediction, bug fixing patch identification, and code

representation.

2.1 Bug Localization

2.1.1 Multi-Modal Feature Location

Multi-modal feature location takes as input a feature description and a program

spectra, and finds program elements that implement the corresponding feature.

Several multi-modal feature location techniques have been proposed in the

literature [175, 53, 137].

Poshyvanyk et al. proposed PROMESIR that computes weighted sums

of scores returned by an IR-based feature location solution (LSI [149]) and a

spectrum-based solution (Tarantula [91]), and rank program elements based

on their corresponding weighted sums [175]. Then, Liu et al. proposed an

approach named SITIR that filters program elements returned by an IR-based

feature location solution (LSI [149]) if they are not executed in a failing execu-

tion trace [137]. Later, Dit et al. used HITS, a popular algorithm that ranks
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the importance of nodes in a graph, to filter program elements returned by

SITIR [53]. They describe several variants and the best performing ones are

IRLSIDynbinWMHITS(h, bin)bottom and IRLSIDynbinWMHITS(h, freq)bottom.

I refer to these two as DITA and DITB in Chapter 3, respectively. They

have showed that these variants outperform SITIR, although they have never

been compared with PROMESIR.

2.1.2 IR-Based Bug Localization

Various IR-based bug localization approaches that employ information re-

trieval techniques to calculate the similarity between a bug report and a pro-

gram element (e.g., a method or a source code file) have been proposed [121,

145, 182, 186, 191, 210, 211, 230, 238].

Lukins et al. used a topic modeling algorithm named Latent Dirichlet

Allocation (LDA) for bug localization [145]. Then, Rao and Kak evaluated

the use of many standard IR methods for bug localization including VSM and

Smoothed Unigram Model (SUM) [182]. In the IR community, VSM has a long

history, as it was proposed four decades ago by Salton et al. [187]. It has been

followed by many other IR methods including SUM and LDA, which address

the limitations of VSM.

More recently, a number of approaches that consider information aside from

text in bug reports to better locate bugs have been proposed. Sisman and Kak

proposed a version history-aware bug localization method that considers past

buggy files to predict the likelihood of a file to be buggy and uses this like-

lihood along with VSM to localize bugs [191]. Around the same time, Zhou

et al. [238] proposed an approach named BugLocator that includes a special-

ized VSM (named rVSM) and considers the similarities among bug reports to

localize bugs. Next, Saha et al. [186] developed an approach that considers

the structure of source code files and bug reports and employs structured re-

trieval for bug localization; this approach outperforms BugLocator. Wang and
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Lo proposed an approach that integrates the approaches by Sisman and Kak,

Zhou et al. and Saha et al. for more e↵ective bug localization [210]. Most

recently, Ye et al. devised an approach named LR that combines multiple rank-

ing features using learning-to-rank to localize bugs. The considered features

include surface lexical similarity, API-enriched lexical similarity, collaborative

filtering, class name similarity, bug fix recency, and bug fix frequency [230].

2.1.3 Spectrum-Based Bug Localization

Various spectrum-based bug localization approaches have been proposed [11,

20, 21, 44, 91, 133, 136, 140, 144, 141, 234, 235]. These approaches analyze

a program spectra which is a record of program elements that are executed

in failed and successful executions, and generate a ranked list of program ele-

ments. Many of these approaches propose various formulas that can be used

to compute the suspiciousness of a program element given the number of times

it appears in failing and successful executions.

Jones and Harrold proposed Tarantula that uses a suspiciousness score

formula to rank program elements [91]. Later, Abreu et al. proposed an-

other suspiciousness formula called Ochiai [11], which outperforms Tarantula.

Then, Lucia et al. investigated 40 di↵erent association measures and found

that some of them including Klosgen and Information Gain are promising for

spectrum-based bug localization [140, 144]. Recently, Xie et al. conducted

a theoretical analysis and found that several families of suspiciousness score

formulas outperform other families [225]. Next, Yoo proposed to use genetic

programming to generate new suspiciousness score formulas that can perform

better than many human designed formulas [232]. Subsequently, Xie et al.

theoretically compared the performance of the formulas produced by genetic

programming and identified the best performing ones [226]. Most recently,

Xuan and Monperrus combined 25 di↵erent suspiciousness score formulas into

a composite formula using their proposed algorithm named MULTRIC, which
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performs its task by making use of an o↵-the-shelf learning-to-rank algorithm

named RankBoost [227]. MULTRIC has been shown to outperform the best

performing formulas studied by Xie et al. [225] and the best performing formula

constructed by genetic programming [232, 226].

Wong et al. [222] provided a comprehensive literature review of a large

number of spectrum-fault localization techniques, and pointed out avenues for

future work. Perez et al. [173] proposed DUU, a new metric for evaluating the

diagnosability of a test-suite when applying spectrum-based fault localization

approaches. Sohn et al. [194] presented FLUCCs, a fault localization tech-

nique that learns to rank program elements based on existing spectrum-fault

localization techniques and source code metrics such as age, code churn, and

complexity. Li et al. [130] proposed TraPT, another learning-to-rank approach

that transforms programs and test outputs/messages in order to localize faults

e↵ectively. Pearson et al. [171] highlighted that results found by evaluating

spectrum-based and mutation-based fault localization techniques on artificial

faults are significantly di↵erent than when they are evaluated on real faults.

They thus recommended that fault localization techniques should be evalu-

ated using real faults. Moreover, they introduced several new variants of a

mutation-based fault localization technique that also use coverage information

(in addition to mutation information).

2.1.4 Other Related Studies

There are many studies that compose multiple methods together to achieve

better performance. For example, Kocaguneli et al. [109] combined several

single software e↵ort estimation models to create more powerful multi-modal

ensembles. Also, Rahman et al. [177] used static bug-finding to improve the

performance of statistical defect prediction (and vice versa). Le et al. [119] pro-

posed SpecForge that combines di↵erent automaton based specification miners

using model fission and model fusion in order to create a more e↵ective spec-
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ification miner. Kellogg et al. [102] presents N-Prog that combines static bug

detection and test case generation to avoid unnecessary human e↵ort. In par-

ticular, N-Prog produces no false alarms, by construction, since its output

alarm is either a new test case or a bug in a program.

Di↵erent from the previous studies assuming that bug reports (or program

elements) are independent, my approach (NetML) takes advantage of the re-

lationship between similar bug reports (or program elements). Specifically,

NetML employs a network Lasso regularization to incentivize the model pa-

rameters of similar bug reports (or program elements) to be close together, the

model parameters of both bug reports (or program elements) are then used to

e↵ectively localize bugs in software.

2.2 Just-in-time Defect Prediction

Some previous studies focus on change-level defect prediction (i.e. JIT defect

prediction). For example, Mockus and Weiss [156] predict whether commits

are buggy in an industrial project. They use metric-based features, such as

the number of subsystems touched, the number of files modified, the number

of lines of code added, and the number of modification requests. Motivated

by their previous work, Kamei et al. [99] built upon the set of code change

features, reporting that the addition of a variety of features that were extracted

from the Version Control System (VCS) and the Issue Tracking System (ITS)

helped to improve the prediction accuracy. They conduct an empirical study

of the e↵ectiveness of JIT defect prediction on a set of six open source and five

commercial projects and also evaluate their findings by considering the e↵ort

required to review the changes.

Aversano et al. [22] and Kim et al. [103] used source code change logs to

predict whether commits are buggy. For example, Kim et al. [103] used the

identifiers in added and deleted source code and the words in change logs. The

10



CHAPTER 2. RELATED WORK

experimental results on the dataset collected from 12 open source software

projects show that the proposed approach achieved 78 percent accuracy and a

60 percent recall.

Kononenko et al. [112] find that the addition of code change features that

were extracted from code review databases contributed a significant amount

of explanatory power to JIT models. McIntosh and Kamei also used 5 families

of code and review features in the context of JIT defect prediction. Through

a case study of 37,524 changes from QT and OpenStack systems, the paper

shows that the importance of impactful families of code change features are

consistently under or overestimated in the studied systems.

Deep learning has recently attracted increasing interest in software defect

prediction. Deep Belief Network (DBN) [76] has been commonly used in pre-

vious work. For example, a recent work [228] used the Deep Belief Network

to build JIT defect prediction models. Their approach still however relies on

the same set of metric-based features that are manually engineered as in ear-

lier work. Other studies (e.g., [215, 214]) also used Deep Belief Network to

automatically learn features for defect prediction. Unlike our approach, their

models are not end-to-end trainable, i.e., features are learned separately (not

using the defect ground-truths) and are then input to a separate traditional

classifier. This approach has also been used in previous work (e.g. [50, 129])

where two other well-known deep learning architectures (Long Short Term

Memory in [50] and Convolutional Neural Network in [129]) were leveraged

to automatic feature learning for defect prediction. There is a risk in those

approaches that the learned features may not correlate with defect outcomes.

To address this issue, I propose an end-to-end deep learning framework,

named DeepJIT, that automatically extracts features from commit messages

and code changes. These features are then put into a fully connected layer

to train a model to predict whether a given commit is buggy. Extensive ex-

periments show DeepJIT outperforms the best performing state-of-the-art ap-
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proach.

2.3 Bug Fixing Patches

Previous studies identify bug fixing commits based on keywords, such as “bug”

and “fix” in commit messages [49, 104, 155, 192]. Bird et al. [29] showed

that the previous studies lack understanding of the bug fixing patches them-

selves, which has caused potential bias in detecting bug fixing patches. Tian

et al. [204] proposed a method (namely LPU+SVM) to automatically identify

bug fixing patches by combining LPU (Learning from Positive and Unlabeled

Examples) [127] and SVM (Support Vector Machine) [196]. Unlike those pre-

vious approaches, which are strongly based on keywords, LPU+SVM relies on

thousands of word features extracted from commit messages and 52 features

manually extracted from code changes.

Unlike the existing approaches which manually extract features from com-

mits, I propose a hierarchical deep learning-based approach (PatchNet), which

automatically extracts features from commit messages and code changes in the

commits to find bug fixing patches in the Linux kernel. Di↵erent from DeepJIT

which simply merges the removed and added code in the code changes together,

PatchNet separates the removed and added code and takes into account the

hierarchical structure of the removed and added code.

2.4 Code Representation

There are many studies on the representation of source code, including recent

studies proposing distributed representations for identifiers [57], APIs [165,

166], and software libraries [201]. A comprehensive survey of learning the

representation of source code has been done by Allamanis et al. [13].

Some studies transform the source code into a di↵erent form, such as

control-flow graphs [52] and symbolic traces [73], or collect runtime execution
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traces [209], before learning distributed representations. DeFreez et al. [52]

found function synonyms by learning embeddings through random walks of

the interprocedural control-flow graph of a program. These embeddings are

then used in a single downstream task of mining error-handling specifications.

Henkel et al. [73] described a toolchain to produce abstracted intraprocedural

symbolic traces for learning word embeddings. They experimented on a down-

stream task to find and repair bugs related to incorrect error codes. Wang

et al. [209] used execution traces to learn embeddings. They integrate their

embeddings into a program repair system in order to produce fixes to correct

student errors in programming assignments. These studies di↵er from our work

as we leverage natural language data as well as source code.

There have been other studies using deep learning of both source code

and natural language data, for example, joint learning of embeddings for both

text and source code to improve code search [67]. Other studies proposed ap-

proaches to learn distributed representations of source code on prediction tasks

with natural language output. Iyer et al. [85] proposed a model using LSTM

networks with attention for code summarization, and Yin et al. [231] trained a

model to align source code to natural language text from StackOverflow posts.

However, unlike our work, these studies do not use structural information of

the source code.

Several studies [82, 15, 14, 114] account for structural information but dif-

fer from our work. Hu et al. [82] proposed an approach to use Sequence-

to-Sequence Neural Machine Translation to generate method-level code com-

ments. By prefixing the AST node type in each token and traversing the AST

of methods such that the original AST can be unambiguously reconstructed,

they convert the AST of each method into a sequence that preserves struc-

tural information. Alon et al. proposed code2vec [15], which represents code

as paths in an AST, learning the vector representation of each AST path. They

trained their model on the task of predicting a label, such as the method name,
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of the code snippet. In a later work, they proposed code2seq [14]. Instead of

predicting a single label, they generate a sequence of natural language words.

Similar to our work, structural information of the input source code is encoded

in the model’s architecture, however, in these studies, the input code snippet

is required to be parseable to build an AST.

As our work focuses on the representation of software patches, we deliber-

ately designed CC2Vec to not require parseable code in its input. This is done

for two reasons. Firstly, a small but still significant proportion of patches may

have compilation errors. A study by Beller et al. on Travis CI build failures

revealed that about 4% of Java project build failures are due to compilation

errors [27]. CC2Vec is designed to be usable even for these patches. Secondly,

parsing will require the entire file with the changed code. Retrieving this in-

formation and parsing the entire file will be time consuming. Furthermore, all

the studies above proposed general representations of source code. The repre-

sentations they learn, with the exception of DeFreez et al. [52], are of source

code contained in a single function. In contrast, we learn representations of

code changes, which can contain modifications to multiple di↵erent functions,

across multiple files.
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Chapter 3

Network-Clustered Multi-Modal

Bug Localization

Developers often spend much e↵ort and resources to debug a program. To

help the developers debug, numerous information retrieval (IR)-based and

spectrum-based bug localization techniques have been devised. IR-based tech-

niques process textual information in bug reports, while spectrum-based tech-

niques process program spectra (i.e., a record of which program elements are

executed for each test case). While both techniques ultimately generate a

ranked list of program elements that likely contain a bug, they only consider

one source of information—either bug reports or program spectra—which is

not optimal. In light of this deficiency, this chapter presents a new approach

dubbed Network-clustered Multi-modal Bug Localization (NetML), which uti-

lizes multi-modal information from both bug reports and program spectra to

localize bugs. NetML facilitates an e↵ective bug localization by carrying out a

joint optimization of bug localization error and clustering of both bug reports

and program elements (i.e., methods). The clustering is achieved through

the incorporation of network Lasso regularization [69], which incentivizes the

model parameters of similar bug reports and similar program elements to be

close together. To estimate the model parameters of both bug reports and
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methods, NetML employs an adaptive learning procedure based on the New-

ton method [101] that updates the parameters on a per-feature basis. Ex-

tensive experiments on 355 real bugs from seven software systems have been

conducted to benchmark NetML against various state-of-the-art localization

methods. The results show that NetML surpasses the best-performing base-

line by 31.82%, 22.35%, 19.72%, and 19.24%, in terms of the number of bugs

successfully localized when a developer inspects the top 1, 5, and 10 methods

and Mean Average Precision (MAP), respectively.

3.1 Introduction

Debugging software programs, which often come in high volume [18], has

proved to be a di�cult task that takes any resources and much time [200]. Var-

ious techniques have been devised to help developers locate buggy program el-

ements from their symptoms. These symptoms could be in the form of descrip-

tion of a bug experienced by a user, or a failing test case. These techniques—

often collectively referred to as bug (or fault) localization—analyze the symp-

toms of a bug and produce a list of program elements ranked based on their

likelihood to contain the bug. In general, a program element can be defined

at three levels of granularity, i.e., source file level, method/function level, and

line of code level.

3.1.1 The Need for Multi-modal Bug Localization

Existing bug localization techniques broadly fall into two major categories: in-

formation retrieval (IR)-based techniques [182, 191, 238, 186], and spectrum-

based bug localization techniques [91, 11, 185, 235, 234, 44, 132, 133, 136].

The IR-based bug localization techniques typically analyze textual descrip-

tions contained in bug reports and identifier names and comments in source

code files. They then return a ranked list of program elements (typically pro-
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gram files) that are the most similar to the bug textual description. The

spectrum-based bug localization techniques typically analyze program spectra

that correspond to program elements that are executed by failing and success-

ful execution traces. Likewise, they return a ranked list of program elements

(typically program blocks or statements) that are executed more often in the

failing traces than in the correct traces.

The above-mentioned approaches, however, only consider one kind of symp-

tom or one source of information, i.e., only bug reports or only execution traces.

This is a limiting factor since hints of the location of a bug may be spread

in both the bug report and the execution traces; and some hints may only

appear in one but not the other. In this work, we put forward a bug local-

ization approach that addresses the deficiency of existing methods by jointly

utilizing both bug reports and execution traces. We refer to this approach

as multi-modal bug localization, as we consider multiple modes of inputs (i.e.,

bug reports and program spectra). Such an approach fits well with developers’

debugging activities as illustrated by the following scenarios:

1. Developer D is working on a bug report that was submitted to Bugzilla.

One of the first tasks that he needs to do is to replicate the bug based on

the description in the report. If the bug can be successfully replicated,

he will proceed to the debugging step; otherwise, he will mark the bug

report as “WORKSFORME” and will not continue further [109]. After

D replicates the bug, he has one or a few failing execution traces. He

also has a set of regression tests that he can run to get successful execu-

tion traces. Thus, after the replication process, D has both the textual

description of the bug and program spectra that characterize the bug.

With this, D can proceed to use multi-modal bug localization.

2. Developer D runs a regression test suite and some test cases fail. Based

on his experience, D has some idea why the test cases fail. D can create a

textual document describing the bug. At the end of this step, D has both
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program spectra and a textual bug description, and can proceed to use

multi-modal bug localization which will leverage not only the program

spectra but also D’s domain knowledge to locate the bug.

It is worth noting that our work focuses on localizing a bug to the method

that contains it. Historically, most IR-based bug localization techniques aim at

finding buggy files [182, 191, 238, 186], while most spectrum-based techniques

find buggy lines [91, 11, 185]. Localization at the method level can be a good

tradeo↵. That is, a method is not as big as a file, but it often contains su�cient

context needed to help developers understand a bug. On the other hand, by

just looking at a line of code, developers often cannot determine whether it

is the location of the bug or understand the bug well enough to fix it [170].

Admittedly, if the methods are long, a finer granularity (e.g., basic blocks) may

be preferred. Nevertheless, a recent study by Kochhar et al. [110] highlights

that out of the 386 practitioners they surveyed, the majority indicates method-

level as the preferred granularity.

In this chapter, we present a new approach called the Network-clustered

Multi-modal Bug Localization (NetML), which works based on three main

intuitions:

1. Firstly, it is recognized that a large variety of bugs exist, and di↵erent

bugs need di↵erent treatments [203, 224]. A bug report written by a

developer provides a unique description of a bug. Thus, di↵erent bugs

require separate model parameters to capture their individual character-

istics. Similarly, di↵erent program elements (or methods in this work)

are of di↵erent nature, and should be characterized by separate model

parameters.

2. A recent study by Parnin and Orso [170] also showed that some words are

more useful in localizing bugs, and suggested that “future research could

also investigate ways to automatically suggest or highlight terms that
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might be related to a failure”. Our NetML provides such a capability

by incorporating a method suspiciousness feature, which allows us to

automatically highlight suspicious terms and use them to localize bugs.

3. We also observe that bugs and program elements are not completely

independent, and some bug reports (or methods) may be more similar to

certain other bug reports (or methods) than to others. As such, similar

bugs (or methods) should have model parameters that are close together.

This enforcement of clustering of model parameters would enable similar

bug reports (or methods) to share information and reinforce one another.

The first two intuitions have been captured in our recent work—dubbed

Adaptive Multi-Modal Bug Localization (AML) [120]—which we extend in

this chapter. In particular, AML already incorporates the ideas of adaptively

computing separate model parameters for each bug report, and of computing

the method suspiciousness feature.1 However, AML exhibits two main short-

comings. Firstly, AML only has the concept of model parameters for bug

reports, but not for program elements (or methods). As such, it is not able to

capture variation in the inherent characteristics of di↵erent program elements

(methods), which may limit its e↵ectiveness in localizing a bug. Secondly,

the model parameters of each bug report are learned independently of those

of other bug reports. As a result, AML is unable to take advantage of the

clustering/similarity traits of di↵erent bug reports in the localization process.

The proposed NetML method addresses these shortcomings by performing

joint optimization of the localization loss function and clustering of both bug

reports and methods. Specifically, it generalizes AML in two important ways:

1. NetML provides a richer model that has two sets of (model) parameters—

one for bug reports and the other for methods. The addition of the

1
To understand the concept of feature and model parameters, we can draw an analogy to

a linear model y =
P

i wixi. A feature refers to the (independent) input variable xi, while

a model parameter refers to the weight coe�cient wi for each feature xi. In this case, the

model parameters wi need to be learned/estimated from data.
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3

Bug 30798
Summary: JUnit shows output implementation grabs Sys-
tem.out and System.err later than it should.

Description:

What steps will reproduce the problem? JUnitTestRunner
creates the junit.framework.Test instance before grabbing
System.out and System.err. As a result, anything printed
to System.out or System.err in the constructor . . .

Bug 43969
Summary: JUnit4 tests marked @Ignore do not appear in
XML output

Description:

What steps will reproduce the problem? Run a JUnit 4
test marked with the @Ignore annotation. The test will not
appear at all in the XML output.

Fig. 1: Example of two bug reports which have the same faulty method in project Apache-Ant [1]. The colored text indicates
some common word tokens that these two bugs share.

seven medium to large software systems: Ant, AspectJ,
Lang, Lucene, Math, Rhino, and Time. All real bug reports
and real test cases were collected from these systems. The
test cases were run to generate program spectra. We com-
pare NetML with our previous AML method. Additionally,
we evaluate our approach against a wide range of state-
of-the-art approaches, including two multi-modal feature
localization techniques (i.e., PROMESIR [54], DITA and
DITB [24]), four spectrum-based bug localization techniques
([12], [71], [76], [16]), and an IR-based bug localization
technique (i.e., LRA and LRB [77]). We use two well-known
evaluation metrics to estimate the performance of our ap-
proach: number of bugs localized by inspecting the top
N program elements (Top N) and mean average precision
(MAP). Note that Top N and MAP have been widely used
in past bug localization studies, e.g., [57], [62], [81], [60].

Our experiment results demonstrate that, among the
355 bugs, NetML can successfully localize 116, 219, and
255 bugs when developers only inspect the Top 1, Top
5, and Top 10 methods in the lists that NetML produces,
respectively. These constitute 31.82%, 22.35%, 19.72%, and
19.24% improvements over AML (which is the second best
method in our benchmark), in terms of Top 1, Top 5 , Top
10, and MAP results respectively.

We summarize the key contributions of this paper below:

1) We present a novel multi-modal bug localization
method that adaptively learns two sets of model pa-
rameters that characterize each bug report and method,
respectively. We are also the first to incorporate the
network Lasso regularization on both bug report and
method similarity networks, which facilitates an effec-
tive joint optimization of bug localization quality and
clustering of both bug reports and methods.

2) We develop an adaptive learning procedure based on
Newton update to jointly update the model parameters
of bug reports and methods on a per-feature basis. The
procedure is based on the formulation of strict convex
loss function, which provides a theoretical guarantee
that any minimum found will be globally optimal.

3) We have extensively evaluated NetML on a dataset of
355 real bugs from seven software systems using real
bug reports and test cases. Our statistical significance
tests reveal that NetML improves upon state-of-the-art
bug localization approaches by a substantial margin.

1.4 Paper Organization
The remainder of this paper is organized as follows. In Sec-
tion 2, we present background information on IR-based and
spectrum-based bug localization approaches. Section 3 elab-
orates the proposed NetML in greater details. In Section 4,
we present our dataset, evaluation metrics, and experiment
results. Section 5 then provides a qualitative study of the
NetML results, followed by discussions on potential threats
to the validity of our study in Section 6. Section 7 provides
an overview of key related works. We finally conclude this
paper and discuss future works in Section 8.

2 BACKGROUND
In this section, we present some background material on
IR-based and spectrum-based bug localization.

2.1 IR-Based Bug Localization
IR-based bug localization techniques consider an input bug
report (i.e., the text in the summary and description of the
bug report as a query, and program elements in a code base
as documents, and employ IR techniques to sort the pro-
gram elements based on their relevance with the query. The
intuition behind these techniques is that program elements
sharing many common words with the input bug report
are likely to be relevant to the bug. By using text retrieval
models, IR-based bug localization computes the similari-
ties between various program elements and the input bug
report. Then, program elements are sorted in descending
order of their textual similarities to the bug report, and sent
to developers for manual inspection.

All IR-based bug localization techniques need to extract
textual contents from source code files and preprocess tex-
tual contents (either from bug reports or source code files).
First, comments and identifier names are extracted from
source code files. These can be extracted by employing a
simple parser. In this work, we use JDT [7] to recover the
comments and identifier names from source code. Next, af-
ter the textual contents from source code and bug reports are
obtained, we need to preprocess them. The purpose of text
preprocessing is to standardize words in source code and
bug reports. There are three main steps: text normalization,
stopword removal, and stemming:

1) Text normalization breaks an identifier into its con-
stituent words (tokens), following camel casing conven-
tion. Following the work by Saha et al. [60], we also
keep the original identifier names.

Figure 3.1: Example of two bug reports which have the same faulty method in
project Apache-Ant [1]. The colored text indicates some common word tokens
that these two bugs share.

method parameters (in contrast to AML that has only bug report param-

eters) provides NetML with a higher degree of freedom to characterize

the di↵erent variety of bug reports and methods more accurately.

2. NetML incorporates network Lasso regularization [69] into its parame-

ter learning procedure, which forces similar bug reports (and methods)

to have similar (or even identical) model parameters. This clustering

enforcement would allow similar bug reports (or methods) to reach a

consensus on the model parameters, leading to a simpler “policy” for

bug localization. This enables the models of bug reports (or methods)

to complement and borrow strength from one another. In turn, this

would improve robustness and the generalization of the performance to

new/unseen bug reports.

It is noteworthy that, deviating from the conventional network Lasso [69]

which deals with only a single network (graph), we impose regularization over

two networks, i.e., bug report similarity and method similarity graphs. This

allows us to achieve simultaneous clustering of both bug reports and meth-

ods, and exploits their similarity traits so as to achieve a more e↵ective bug

localization.

To illustrate how the network Lasso regularization in NetML can benefit

bug localization, Fig. 3.1 shows two bug reports from Apache-Ant [1] project,

namely Bug 30798 and Bug 43969. These two bug reports describe issues with

the “showoutput” option for Apache Ant’s JUnit task and the corresponding
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bugs both reside in the run method of the JUnitTestRunner.java file. Bug

30798 mentions the names of a few source code files and one of them is the name

of the buggy file (i.e., JUnitTestRunner), while no such hint is included in Bug

43969. AML manages to successfully localize the buggy method for Bug 30798,

by ranking it high in the returned ranked list. However, due to the limited

information in Bug 43969, it is not able to do the same for it. Upon a closer

investigation, we can see that Bug 30798 and Bug 43969 are similar, since they

share a number of common word tokens (i.e., “JUnit”, “text”, “output”, etc.).

The network Lasso regularization is able to take advantage of this similarity by

enforcing similar bug reports to have similar model parameters. In such way,

NetML leverages the similarity of Bug 30798 and Bug 43969 to guide/reinforce

the prediction for Bug 43969, which leads to successful localization for both

bugs.

3.1.2 Contributions

To evaluate the e�cacy of the NetML approach, we conducted experiments

using a dataset of 355 real bugs from seven medium to large software sys-

tems: Ant, AspectJ, Lang, Lucene, Math, Rhino, and Time. All real bug

reports and real test cases were collected from these systems. The test cases

were run to generate program spectra. We compare NetML with our previous

AML method. Additionally, we evaluate our approach against a wide range

of state-of-the-art approaches, including two multi-modal feature localization

techniques (i.e., PROMESIR [175], DITA and DITB [53]), four spectrum-based

bug localization techniques ([12, 221, 227, 23]), and an IR-based bug localiza-

tion technique (i.e., LRA and LRB [230]). We use two well-known evaluation

metrics to estimate the performance of our approach: number of bugs localized

by inspecting the top N program elements (Top N) and mean average preci-

sion (MAP). Top N and MAP have been widely used in past bug localization

studies, e.g., [182, 191, 238, 186].
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Our results demonstrate that, among the 355 bugs, NetML can successfully

localize 116, 219, and 255 bugs when developers only inspect the Top 1, Top 5,

and Top 10 methods in the lists that NetML produces, respectively. These con-

stitute 31.82%, 22.35%, 19.72%, and 19.24% improvements over AML (which

is the second best method in our benchmark), in terms of Top 1, Top 5 , Top

10, and MAP results respectively.

We summarize the key contributions of this chapter below:

1. We present a novel multi-modal bug localization method that adaptively

learns two sets of model parameters that characterize each bug report and

method, respectively. We are also the first to incorporate the network

Lasso regularization on both bug report and method similarity networks,

which facilitates an e↵ective joint optimization of bug localization quality

and clustering of both bug reports and methods.

2. We develop an adaptive learning procedure based on the Newton method [101]

to jointly update the model parameters of bug reports and methods on a

per-feature basis. The procedure is based on the formulation of a strict

convex loss function, which provides a theoretical guarantee that any

minimum found will be globally optimal.

3. We have extensively evaluated NetML on a dataset of 355 real bugs

from seven software systems using real bug reports and test cases. Our

statistical significance tests reveal that NetML improves upon state-of-

the-art bug localization approaches by a substantial margin.

3.2 Background

In this section, we present some background material on IR-based and spectrum-

based bug localization.
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3.2.1 IR-Based Bug Localization

IR-based bug localization techniques consider an input bug report (i.e., the

text in the summary and description of the bug report as a query, and program

elements in a code base as documents, and employ IR techniques to sort the

program elements based on their relevance to the bug report. The intuition

behind these techniques is that program elements sharing many common words

with the input bug report are likely to be relevant to the bug. By using text

retrieval models, IR-based bug localization computes the similarities between

various program elements and the input bug report. Then, program elements

are sorted in descending order of their textual similarities to the bug report,

and sent to developers for manual inspection.

All IR-based bug localization techniques need to extract textual content

from source code files and preprocess textual content (either from bug reports

or source code files). First, comments and identifier names are extracted from

source code files. These can be extracted by employing a simple parser. In

this work, we use JDT [7] to recover the comments and identifier names from

source code. Next, after the textual contents from source code and bug reports

are obtained, we need to preprocess them. The purpose of text preprocessing

is to standardize words in source code and bug reports. There are three main

steps: text normalization, stopword removal, and stemming:

1. Text normalization breaks an identifier into its constituent words (to-

kens), following camel casing convention. Following the work by Saha et

al. [186], we also keep the original identifier names.

2. Stopword removal removes punctuation marks, special symbols, number

literals, and common stopwords [9]. It also removes programming key-

words such as if , for , while, etc., which usually appear too frequently to

be useful to di↵erentiate between documents.

3. Stemming simplifies English words into their root forms. For example,
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”processed“, ”processing“, and ”processes“ are all simplified to ”pro-

cess“. This increases the chance that the query and document share some

common words. We use the popular Porter Stemming algorithm [92].

Numerous IR techniques have been employed for bug localization. We

highlight a popular IR technique namely Vector Space Model (VSM). In VSM,

queries and documents are represented as vectors of weights, where each weight

corresponds to a term. The value of each weight is usually the term fre-

quency—inverse document frequency (TF-IDF) [181] of the corresponding word.

Term frequency refers to the number of times a word appears in a document.

Inverse document frequency refers to the number of documents in a corpus

(i.e., a collection of documents) that contain the word. The higher the term

frequency and inverse document frequency of a word, the more important the

word would be. In this work, given a document d and a corpus C, we compute

the TF-IDF weight of a word w as follows:

weight(w, d) = TF-IDF(w, d, C)

= log(f(w, d) + 1)⇥ log
|C|

|di 2 C : w 2 di|

where f(w, d) is the number of times w appears in d.

After computing a vector of weights for the query and each document in the

corpus, we calculate the cosine similarity of the query and document vectors.

The cosine similarity between query q and document d is given by:

sim(q, d) =

P
w2(q

T
d)

weight(w, q)⇥ weight(w, d)

rP
w2q

weight(w, q)2 ⇥
rP

w2d

weight(w, d)2
(3.1)

where w 2 (q
T

d) means word w appears both in the query q and document

d. Also, weight(w, q) refers to the weight of word w in the query q’s vector.

Similarly, weight(w, d) refers to the weight of word w in the document d’s

vector.
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Table 3.1: Raw Statistics for Program Element e.

e is executed e is not executed

unsuccessful test nf (e) nf (ē)
successful test ns(e) ns(ē)

Table 3.2: Raw Statistic Description.

Notation Description

nf (e, p)
Number of unsuccessful test cases executing program element
e in program spectra p

nf (ē, p)
Number of unsuccessful test cases that do not execute program
element e in program spectra p

ns(e, p)
Number of successful test cases that execute program element
e in program spectra p

ns(ē, p)
Number of successful test cases that do not execute program
element e in program spectra p

nf (p) Total number of unsuccessful test cases
ns(p) Total number of successful test cases

3.2.2 Spectrum-Based Bug Localization

Spectrum-based bug localization (SBBL)—also known as spectrum-based fault

localization (SBFL)—takes as input a faulty program and two sets of test

cases. One is a set of failed test cases, and the other one is a set of passed

test cases. SBBL then instruments the target program, and records program

spectra that are collected when the set of failed and passed test cases are

run on the instrumented program. Each of the collected program spectrum

contains information about the program elements that are executed by a test

case. Various tools can be used to collect program spectra as a set of test cases

are run. In this work, we use Cobertura [6].

Based on these spectra, SBBL typically computes some raw statistics for

every program element. Tables 3.1 and 3.2 summarize some raw statistics

that can be computed for a program element e, given program spectra p.

These statistics are the counts of unsuccessful (i.e., failed), and successful (i.e.,

passed) test cases that execute or do not execute e. If a successful test case

executes program element e, then we increase ns(e, p) by one unit. Similarly, if
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an unsuccessful test case executes program element e, then we increase nf (e, p)

by one unit. SBBL uses these statistics to calculate the suspiciousness scores of

each program element. The higher the suspiciousness score, the more likely the

corresponding program element is the faulty element. After the suspiciousness

scores of all program elements are computed, program elements are then sorted

in descending order of their suspiciousness scores, and sent to developers for

manual inspection.

Di↵erent SBBL techniques have used di↵erent formulas to calculate the

suspiciousness scores. Among these techniques, Tarantula is a popular one [91].

Using the notation in Table 3.2, the following is the formula that Tarantula

uses to compute the suspiciousness score of program element e, given program

spectra p:

Tarantula(e, p) =

nf (e,p)
nf (p)

nf (e,p)
nf (p)

+ ns(e,p)
ns(p)

(3.2)

The main idea of Tarantula is that program elements that are executed by

failed test cases are more likely to be faulty than those that are not exe-

cuted. Thus, Tarantula assigns a non-zero score to program element e that

has nf (e, p) > 0.

3.3 Proposed Framework

An overview of our NetML framework is given in Fig. 3.2 (enclosed in the

dashed box). NetML takes as input a new bug report, the program spectra

corresponding to it, and a method corpus. It also takes as input historical bug

reports that have been localized before. For each historical bug report, we

have its corresponding program spectra and ground truth labels. If a method

contains a root cause of the bug, it is labeled as faulty, otherwise it is labeled as

non-faulty. Given these inputs, NetML eventually produces a list of methods,

ranked based on their likelihood to contain the root cause of the new bug

26



CHAPTER 3. NETWORK-CLUSTERED MULTI-MODAL BUG LOCALIZATION

Historical 
bug 

reports

Fe
at

ur
e 

ex
tr

ac
tio

n NetMLText

NetMLSpectra

NetMLSuspWord

Gr
ap

h 
co

ns
tr

uc
tio

n

Bug report 
graph 𝑮𝑩

NetML
Integrator Ranked list 

of methods

Method 
corpus

Method 
graph 𝑮ࡹ

Input bug 
report

Historical 
program 
spectra

Input program 
spectra

Figure 3.2: The proposed NetML framework.

report.

NetML has three main components, namely: feature extraction, graph con-

struction, and integrator. The feature extraction component serves to extract

multi-modal input features that quantify di↵erent perspectives on the degree

of relevancy between a bug report and a method [120]. Meanwhile, the graph

construction component computes the similarity graphs among the bug reports

(GB) and methods (GM).

Finally, the integrator component is the heart of NetML and constitutes

the primary contribution of this work. It integrates both the input features and

the similarity graph information in order to produce a ranked list of methods

based on their relevancy score. In particular, the integrator performs adaptive

learning that aims at jointly minimizing the bug localization errors and foster-

ing clustering of the model parameters of similar bug reports and/or methods.

In Sections 3.3.1 and 3.3.2, we first elaborate the feature extraction and

graph construction components respectively. We then describe the NetML

integrator component in greater detail in Sections 3.3.3–3.3.5, including the

formulation of our new integrator model as well as the corresponding objective
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function and adaptive learning procedure.

3.3.1 Feature Extraction

The first component of the NetML framework is the feature extraction mod-

ule, which generates features X = {xb,m.j} to be fed as inputs to the NetML

integrator (see Fig. 3.2). In line with our earlier AML work [120], for each bug

report–method pair (b,m), we compute a feature vector ~xb,m that consists of

three elements:

~xb,m =
h
NetMLText

b,m
,NetMLSpectra

b,m
,NetMLSuspWord

b,m

i
(3.3)

The three features are elaborated in turn below.

NetMLText
b,m

makes use of the TF-IDF method [181] to estimate the similarity

between methods and bug reports. In particular, given a method m and a

bug report b, NetMLText
b,m

computes the cosine similarity between the TF-IDF

representation of the bug report text and that of the method code, which is

akin to the IR-based bug localization method (cf. Section 3.2.1). That is,

NetMLText
b,m

is given by:

NetMLText
b,m

= sim(b,m) (3.4)

where sim(b,m) is the cosine similarity as defined in (3.1).

NetMLSpectra
b,m

processes only the program spectra information using the

spectrum-based bug localization technique described in Section 3.2.2. Given

program spectra p corresponding to bug report b and a methodm, NetMLSpectra
b,m

gives a score that quantifies how suspiciousm is given p. By default, NetMLSpectra
b,m

uses the Tarantula formula as described in Section 3.2.2 (cf. equation (3.2)):

NetMLSpectra
b,m

= Tarantula(m, p) (3.5)
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Finally, NetMLSuspWord
b,m

processes both bug reports and program spectra,

and computes the suspiciousness scores of words to rank di↵erent methods. It

breaks a method into its constituent words, computes the suspiciousness scores

of these words, and then aggregates these scores in order to arrive at the sus-

piciousness score of the method. NetMLSuspWord
b,m

aims to integrate both macro

view of method suspiciousness (which considers direct execution of a method in

the failing and correct execution traces) and micro view of method suspicious-

ness (which considers the executions of its constituent words in the execution

traces) [120]. Given a bug report b, a program spectra p, and a method m in

a corpus C, NetMLSuspWord
b,m

measures how suspicious m is considering b and p,

as follows:

NetMLSuspWord
b,m

= NetMLSpectra
b,m

⇥
0

BB@

P
w2b\m

SSTFIDF(w, p, b, C)⇥ SSTFIDF(w, p,m,C)

rP
w2b

SSTFIDF(w, p, b, C)2 ⇥
rP

w2m

SSTFIDF(w, p,m,C)2

1

CCA

(3.6)

where SSTFIDF(w, p, b, C) is the weight of a word w in document (i.e., bug

report or method) d with corpus C given program spectra p:

SSTFIDF(w, p, d, C) = SSword(w, p)⇥ ln(f(w, d) + 1)

⇥ ln
|C|

|di 2 C : w 2 di|
(3.7)

where SSword(w, p) is the suspiciousness score of a word w:

SSword(w, p) =

|EF (w,p)|
|p.FAIL|

|EF (w,p)|
|p.FAIL|

+ |ES(w,p)|
|p.SUCCESS|

(3.8)

In the above equation, EF (w, p) is the set of execution traces in p.FAIL that

contain a method in which the word w appears, while ES(w, p) is the set of
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execution traces in p.SUCCESS that contain a method in which the word w

appears.

3.3.2 Graph Construction

The second component of the NetML framework is the graph construction

module, which serves to compute the similarity graphs among bug reports and

methods, to be used in the K-nearest neighbor retrieval as well as the network

Lasso regularization. In this work, we define the bug report similarity graph

GB as comprising edge weights that reflect the textual similarity between two

bug reports. For a pair of bug reports b and b0, we define the edge weight eb.b0

as follows:

eb,b0 = sim(b, b0) (3.9)

where sim(b, b0) is the cosine similarity between the TF-IDF weights of the

textual descriptions of b and b0, as per (3.1).

Similarly, the method similarity graph GM comprises a set of edge weights

em,m0 that reflect the textual similarity between two methods m and m0. This

is given by:

em,m0 = sim(m,m0) (3.10)

where sim(b, b0) is the cosine similarity between the TF-IDF representations

of the source code of m and m0.

3.3.3 Integrator Model

The new integrator model proposed in this work characterizes the relevancy of a

method m to a given bug report b as an interaction between two types of model

parameters, namely: bug report parameters ~ub = [ub,1, . . . , ub,j, . . . , ub,J ] and
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method parameters ~vm = [vm,1, . . . , vm,j, . . . , vm,J ], where J is the total number

of features. Note that J = 3 in this case, i.e., NetMLText
b,m

,NetMLSpectra
b,m

,NetMLSuspWord
b,m

.

More specifically, the integrator model computes the relevancy score f̂b,m as

follows:

f̂b,m = f̂(~xb,m, ~ub,~vm) =
JX

j=1

(ub,j + vm,j)xb,m,j (3.11)

where ~xb,m = [xb,m,1, . . . , xb,m,j, . . . , xb,m,J ] is the feature vector corresponding

to a bug report–method pair (b,m).

It is worth mentioning that the above model constitutes a generalization of

the AML integrator model that we previously developed [120]. In AML, the

final relevancy score is computed based solely on the bug report parameters,

and this set of parameters is shared by all methods for a given bug report. On

the other hand, the NetML integrator model accounts for not only the bug

report parameters but also the method parameters. The addition of the latter

parameters provides a greater degree of freedom and flexibility in quantifying

the contribution of di↵erent methods to the localization of a given bug report.

3.3.4 Objective Function

Based on the above model formulation, we devise an objective function that

guides the learning process of our integrator model. Specifically, we consider

a joint optimization of bug localization quality and clustering of similar bug

reports and methods, expressed by the loss function L:

L = LEntropy + LRidge + LNetLasso (3.12)

The loss function L, used to learn the model’s parameters, consists three parts:

LEntropy is used to measure the di↵erence between the predicted and the true la-

bel, LRidge is regularization function to avoid the overfitting during the training

process, and LNetLasso is employed to force similar bugs and methods to have

31



CHAPTER 3. NETWORK-CLUSTERED MULTI-MODAL BUG LOCALIZATION

similar parameters in latent space. These three components are presented as

follows:

LEntropy =�
X

b2B

X

m2M

wb,m

h
yb,m ln(�(f̂b,m))

+ (1� yb,m) ln(1� �(f̂b,m))
i

(3.13)

LRidge =
↵

2

JX

j=1

"
X

b2B

u2
b,j

+
X

m2M

v2
m,j

#
(3.14)

LNetLasso =
�

2

JX

j=1

2

4
X

(b,b0)2GB

eb,b0(ub,j � ub0,j)
2

+
X

(m,m0)2GM

em,m0(um,j � um0,j)
2

3

5 (3.15)

where B and M are the sets of bug reports and methods respectively, yb,m is

a binary label that indicates whether method m is relevant to bug report b

(yb,m = 1) or not (yb,m = 0), and �(f̂b,m) =
1

1+exp(�f̂b,m)
is the logistic function

[45]. Also, wb,m denotes the instance weight of a bug report–method pair (b,m),

while eb,b0 and em,m0 are the edge weights reflecting the degree of similarity

between two bug reports b and b0, and two methods m and m0, respectively.

Finally, ↵ > 0 and � > 0 are the user-defined parameters that control the

strength of the ridge and network Lasso regularization, respectively.

Note that LEntropy refers to the so-called cross-entropy loss [158], which

provides an error measure of the bug localization process. Here LEntropy can

be interpreted as the discrepancy between the probability distribution of the

predictive model f̂b,m and that of the true label yb,m [158]. We also introduce

the instance weight2 wb,m in (3.13) to cater for the extremely skewed distri-

bution of the relevant vs. irrelevant methods for a given bug report, which

is a major challenge in the bug localization process. That is, the number of

relevant (faulty) methods is much smaller than that of irrelevant (non-faulty)

ones. To address this, we configure wb,m in such a way that it imposes a greater

2
An instance refers to a specific bug report–method pair (b,m)
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penalty for relevant instances being incorrectly predicted/classified than that

for irrelevant ones. Specifically, we set wb,m as:

wb,m =

8
>><

>>:

1
Nfaulty

, if yb,m = 1

1
N�Nnon-faulty

, if yb,m = 0

(3.16)

where N is the total number of instances observed in the historical data, and

Nfaulty is the number of faulty instances.

Meanwhile, the ridge regularization LRidge serves to penalize large values

of the model parameters [158], which in turn helps mitigate the risk of data

overfitting. From a probabilistic perspective, this corresponds to the Gaus-

sian prior distribution for the model parameters ub,j and vm,j, with zero mean

and inverse variance of ↵ [120]. Finally, LNetLasso refers to the network Lasso

regularization [69], which enforces clustering of the model parameters of bug

reports and methods. The intuition is straightforward—the more similar two

bug reports or two methods are (as quantified by eb,b0 and em,m0), the closer

their model parameters ~ub and ~vm should be. This combination of LEntropy,

LRidge and LNetLasso facilitates a robust model that can simultaneously optimize

the bug localization quality and cluster the model parameters of similar bug

reports and methods.

Next, in order to minimize the joint loss L, we employ a Newton method [101]

that is derived from a second-order Taylor series expansion of the loss function

L:

L(✓) = L(✓0) + OL(✓0)(✓ � ✓0) +
O

2L(✓0)
2

(✓ � ✓0)
2 (3.17)

The minima of L can be obtained by taking the partial derivative of L(✓) and
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equating it to zero:

0 = OL(✓0) + O
2L(✓0)(✓ � ✓0)

✓ = ✓0 �
OL(✓0)
O

2L(✓0)
(3.18)

If we take ✓0 as the old estimate of ub,j or vm,j, this leads to the following

update formulae:

ub,j  ub,j �
OL(ub,j)

O
2L(ub,j)

(3.19)

vm,j  vm,j �
OL(vm,j)

O
2L(vm,j)

(3.20)

In turn, we need to compute the first and second derivatives of each model

parameter ub,j and vm,j. For the bug report parameter ub,j, the first and second

derivatives are respectively given by:

OL(ub,j) =
X

m2M

h
wb,m(�(f̂b,m)� yb,m)xb,m,j

i

+ ↵ub,j + �
X

b0

[eb,b0 (ub,j � ub0,j)] (3.21)

O
2L(ub,j) =

X

m2M

h
wb,m�(f̂b,m)(1� �(f̂b,m))x

2
b,m,j

i

+ ↵ + �
X

b0

eb,b0 (3.22)

Similarly, we can compute the first and second derivatives w.r.t each method
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parameter vm,j as:

OL(vm,j) =
X

b2B

h
wb,m(�(f̂b,m)� yb,m)xb,m,j

i

+ ↵vm,j + �
X

m0

[em,m0 (vm,j � vm0,j)] (3.23)

O
2L(vm,j) =

X

b2B

h
wb,m�(f̂b,m)(1� �(f̂b,m))x

2
b,m,j

i

+ ↵ + �
X

m0

em,m0 (3.24)

Finally, the update formula for ub,j can be obtained by substituting equa-

tion (3.21) and (3.22) into equation (3.19). Likewise, we can substitute (3.23)

and (3.24) into (3.20) to arrive at the update formula for vm,j. To learn the

model parameters, we use a Newton method that updates the parameters on

a per-feature j basis. This will be elaborated in Section 3.3.5.

3.3.5 Adaptive Learning

Algorithm 1 summarizes the adaptive learning procedure of the NetML integra-

tor for computing the relevancy scores of a new bug report (i.e., a new query)

to di↵erent methods (i.e., documents). Given a new bug report b⇤, the set of

K relevant bug reports BK in the historical data, the set of all methods M,

and the similarity graphs GB and GM , the learning procedure appends b⇤ into

BK and then updates the model parameters on a per-feature basis. That is, for

each feature j, it performs Newton updates on the bug report parameters ub,j

(steps 14–16) and method parameters vm,j (steps 23–25), in accordance with

equations (3.19) and (3.20) respectively. The key idea here is to alternatingly

update the parameter for one feature while keeping the parameters of the re-

maining features fixed. The procedure is repeated until a maximum iteration

Tmax is reached. Afterwards, the final prediction score f̂b⇤,m of the new bug

report b⇤ for each method m is computed via equation (3.11).

Note that the selection of relevant bug report set BK is based on the K-
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Algorithm 1 Adaptive learning of the NetML integrator
Require:

Set of K relevant historical bug reports BK (i.e., |BK | = K)
Set of all methods M, where |M| = M
New bug report query b⇤ along with its features Xb⇤ = {xb⇤,m,j} 2 R1⇥M⇥J

Features: X = {xb,m,j} 2 RK⇥M⇥J . Labels: Y = {yb,m} 2 RK⇥M

Bug report similarity graph GB, EB = {eb,b0}
Method similarity graph GM , EM = {em,m0}

Ensure:
Relevancy scores f̂b⇤,m 2 R1⇥M of the new bug report b⇤ to all methods m
Bug report parameters U = {ub,j} 2 R(K+1)⇥J

Method parameters V = {vm,j} 2 RM⇥J

1: Compute the union set of bug reports B  BK [ {b⇤}
2: Initialize: ub,j  0 and vm,j  0, 8b 2 B,m 2M, j 2 {1, . . . , J}
3: Precompute: qb  

P
b0 eb,b0 and qm  

P
m0 em,m0 , 8b 2 B,m 2M

4: Compute the bug probabilities �(f̂b,m) for all (b,m) pairs
5: Lcurr  �

P
b

P
m
wb,m

⇥
yb,m ln

�
�(f̂b,m)

�
+
�
1� yb,m

�
ln
�
1� �(f̂b,m)

�⇤

6: repeat
7: Lprev  Lcurr

8: for each j 2 {1, . . . , J} do
9: for each b 2 B do
10: pb  

P
b0 eb,b0ub0,j

11: end for
12: for each b 2 B do
13: unumer  

P
m

⇥
wb,m(�(f̂b,m)� yb,m)xb,m,j

⇤
+�
⇥
ub,jqb� pb

⇤
+↵ub,j

14: udenom  
P

m

⇥
wb,m�(f̂b,m)(1� �(f̂b,m))x2

b,m,j

⇤
+ �qb + ↵

15: ub,j  ub,j � ⌘
⇣

unumer
udenom

⌘

16: end for
17: for each m 2M do
18: pm  

P
m0 em,m0vm0,j

19: end for
20: for each m 2M do
21: vnumer  

P
b

⇥
wb,m(�(f̂b,m)�yb,m)xb,m,j

⇤
+�
⇥
vm,jqm�pm

⇤
+↵vm,j

22: vdenom  
P

b

⇥
wb,m�(f̂b,m)(1� �(f̂b,m))x2

b,m,j

⇤
+ �qm + ↵

23: vm,j  vm,j � ⌘
⇣

vnumer
vdenom

⌘

24: end for
25: end for
26: Compute the updated bug probabilities �(f̂b,m) via equation (3.11)
27: Lcurr  �

P
b

P
m
wb,m

⇥
yb,m ln

�
�(f̂b,m)

�
+
�
1� yb,m

�
ln
�
1� �(f̂b,m)

�⇤

28: ⌘  
(

⌘

2 , if Lcurr > Lprev

min(1, 2⌘), otherwise
29: until Tmax iterations
30: Compute the relevancy scores f̂b⇤,m using equation (3.11)
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nearest neighbor retrieval from the bug report similarity graph GB, as follows:

BK = Top
K
({eb⇤,b | 8b 6= b⇤}) (3.25)

where Top
K

is a function that returns bug reports with the highest similarity

eb⇤,b to the query bug report b⇤. The calculation of the similarity graphs is

based on the VSM model and is described in Section 3.3.2.

It is also worth mentioning that the magnitude of the Newton update is

downscaled by an adaptive learning rate ⌘ (where 0 < ⌘  1). We introduce

this scaling factor as a way to address the problem of overshooting in the New-

ton method [26], whereby the update OL(ub,j)
O2L(ub,j)

or OL(vm,j)
O2L(vm,j)

is overestimated—

possibly by many orders of magnitude. This may lead to oscillations and

sometimes divergence in the loss function. To alleviate this issue, we compare

the loss function L before and after a Newton iteration (step 30), and then

adjust ⌘ accordingly depending on whether L increases or not. If it increases,

then we reduce ⌘ by half in order to dampen the update magnitude; otherwise,

the value of ⌘ gets doubled, up to a maximum limit of 1.

For computational e�ciency, we precompute the constant terms qb =
P

b0 eb,b0

and qm =
P

m0 em,m0 before the Newton iterations begins. Additionally, dur-

ing each Newton iteration, we have separate loops to compute the terms
P

b0 eb,b0ub0,j (step 11) and
P

m0 em,m0vm0,j (step 20) for each feature j, prior

to updating ub,j and vm,j. The purpose is to make sure that, during the pa-

rameter updates (steps 14 and 23), the computation of
P

b0 eb,b0ub0,j in equation

(3.19) and
P

m0 em,m0vm0,j in equation (3.20) is based on the old parameter val-

ues from the previous iteration, and not a↵ected by the ordering of b or m in

the update loops.

We additionally highlight that the loss function L is strictly convex. This

provides a nice theoretical guarantee that there is only one unique minimum

in the loss function surface, and this minimum is globally optimal [184]. The

convexity trait can be proven by looking at the curvatures (i.e., second deriva-
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tives) with respect to the bug report and method parameters, as per equations

(3.22) and (3.24) respectively. Clearly, since 0  �(f̂b,m)  1, wb,m, x2
b,m,j

, eb,b0

and em,m0 are non-negative, while ↵ and � are positive, the curvatures will be

positive. The positive curvatures correspond to the so-called positive definite

Hessian matrix—a well-known property of a strictly convex function [184].

3.4 Experiments

In this section, we first describe the datasets and evaluation settings used in our

experiments. We then present a list of research questions we want to address,

and accordingly elaborate our experiment results.

3.4.1 Dataset

To evaluate our approach, we use a dataset of 355 bugs from seven popular soft-

ware projects. The seven projects are Ant [1], AspectJ [5], Lang [2], Lucene [4],

Math [3], Rhino [10], and Time [8]. All seven projects are medium-large scale

and implemented in Java. Ant, AspectJ, and Lucene each contain more than

300 KLOC. Math, Rhino, and Time each contain almost 100 KLOC, while

Lang only contains more than 50 KLOC. The Ant, Lang, Lucene, and Math

projects use Jira as the issue tracking system, from which we retrieve their

bug reports. Bissyande et al. found that in Jira bugs are generally well linked

to the commits that fix them [33]. AspectJ and Rhino use Bugzilla whereas

Time uses Github as the issue tracking system, from which we collect their

bug reports. Table 3.3 presents an overview of the seven projects considered

in our study.

Following the procedure of Dallmeir and Zimmermann [49], we collected

116 bugs from Ant, Lucene, and Rhino. For each bug, we collected the pre-

fix version, post-fix version, a set of successful test cases, and at least one

failing test case. A failing test case is often included as an attachment to a
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Table 3.3: Summary of the datasets used in this work. We use the short
names of projects for brevity; “Ant” stands for “Apache-Ant”, “Lang” stands
for “Apache-Commons-Lang”, “Math” stands for “Apache-Commons-Math”,
and “Time” stands for “Joda-Time”.

Project #Bugs Time Period
Average

# Methods

Ant 53 12/2001 – 09/2013 9,624.66
AspectJ 41 03/2005 – 02/2007 14,218.39
Lang 65 10/2002 – 04/2016 2,151.1
Lucene 37 06/2006 – 01/2011 10,220.14
Math 106 12/2004 – 03/2016 4,792.3
Rhino 26 12/2007 – 12/2011 4,839.58
Time 27 05/2004 – 03/2017 4,083.5

bug report or committed along with the fix in the post-fix version. When a

developer receives a bug report, he/she first may want to replicate the error

described in the report [157]. In this process, he is creating a failing test case.

Unfortunately, not all test cases are documented and saved in the version

control system. The 41 AspectJ bugs are from the iBugs dataset which was

collected by Dallmeier and Zimmermann [49]. Each bug in the iBugs dataset

comes with the code before the fix (pre-fix version), the code after the fix

(post-fix version), and a set of test cases. The iBugs dataset contains more

than 41 AspectJ bugs, but not all of them come with failing test cases. Test

cases provided in the iBugs dataset are obtained from the various versions of

the regression test suite that comes with AspectJ. We collected the remaining

198 bugs from Lang, Math, and Time from the Defects4J benchmark [94], a

database of real, isolated, reproducible software faults from real-world open-

source Java projects. The three projects include a large number of test cases,

and there exists at least one failing test case per bug. Defects4J also contains

two other projects, namely JFreechart and Closure-Compiler. We omit these

projects since we are unable to fully collect all their bug reports.
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3.4.2 Evaluation Metrics and Settings

To assess the e↵ectiveness of a bug localization method, we employ two key

metrics, namely: Top N and mean average precision (MAP). They are respec-

tively described below:

• Top N: Given a bug report, if one of its corresponding faulty methods

is in the top-N results, we consider that the bug is successfully localized.

The Top N score of a bug localization method is the number of bugs it

can successfully localize [238, 186]

• Mean Average Precision (MAP): MAP is an IR metric to evaluate

ranking approaches [148], and is computed by taking the mean of the

average precision scores across all bug reports. The average precision of

a single bug report is computed as:

AP =

P
M

k=1 P (k)⇥ pos(k)
P

M

k=1 pos(k)

where k is a rank in the returned ranked methods, M is the number of

ranked methods, and pos(k) indicates whether the kth method is faulty

or not. Here P (k) is the precision at a given top k methods, which is

computed as follows:

P (k) =
#faulty methods in the top k

k
.

Note that the MAP scores of existing bug localization methods are typ-

ically low [182, 191, 238, 186].

Our evaluation procedure is based on 10-fold cross validation (CV). That

is, for each project, we divide the bug reports into ten (mutually exclusive)

sets. Then, for each fold, we take 1 set as new bug report queries (i.e., the

testing set) and treat the remaining 9 sets as historical bug reports (i.e., the
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training set). We repeat this 10 times, and then collate the results to get the

aggregated Top N and MAP scores.

In all our experiments, the hyper-parameters of the NetML method were

configured as follows. Firstly, the regularization parameters ↵ and � were

chosen by performing 10 fold cross validation on the training set. Next, the

maximum number of iterations Tmax was fixed to 30. We use K = 10 as default

value for the number of nearest neighbors. Note that the NetML parameters

K and Tmax follow the settings used in AML [120], so as to ensure fair com-

parisons. All experiments were conducted on an Intel(R) Xeon 2.9GHz server

running a Linux operating system.

In order to assess whether NetML substantially outperforms other bug

localization methods, we apply Wilcoxon signed-rank test [219]; it is a non-

parametric statistical significance test for comparing two related or matched

samples, whereby the population cannot be assumed to be normally distributed.

The Wilcoxon test was applied to two types of metric (i.e., Top N and MAP).

For every evaluation metric, we collated the 10-fold results of a bug localiza-

tion technique across the four software projects (i.e., AspectJ, Ant, Lucene,

and Rhino) and then performed the Wilcoxon test to compare the collated

results of di↵erent techniques. For this test, our null hypothesis is that NetML

performs worse than or equal to the other method, and so we used a one-

sided/tail p-value to validate this hypothesis. Moreover, we also apply the

Benjamini-Hochberg (BH) [28] procedure to control the e↵ect of multiple com-

parisons. If the p-value is su�ciently small (say, below a significance level of

0.05), we can confidently reject the null hypothesis and conclude that NetML

is significantly better than the other method.

3.4.3 Research Questions

Our empirical study seeks to answer several research questions (RQ), as de-

scribed in the following subsections.
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3.4.3.1 RQ1: How E↵ective is NetML Compared to Other State-

of-the-Art Techniques?

We compare our NetML approach with its predecessor, i.e., AML [120], and

several other state-of-the-art techniques. Previously, Le et al. proposed Sa-

vant [23], a state-of-the-art bug localization approach that employs a learning-

to-rank [89] strategy, using likely invariant di↵s and suspiciousness scores as

features. Ochiai [12] and Dstar [221] are well-known statistical formulas to

detect suspicious locations for bug localization without requiring any prior in-

formation on program structure or semantics. PROMESIR [175], SITIR [137],

and several variants developed by Dit et al. [53] were state-of-the-art multi-

modal feature location techniques. Among the variants proposed by Dit et

al. [53], the best performing ones were IRLSIDynbinWMHITS(h, bin)bottom and

IRLSIDynbinWMHITS(h, freq)bottom. We refer to these variants as DITA and

DITB respectively. Dit et al. had shown that these two variants outperform

SITIR, and so we exclude SITIR from our study. We also compare NetML

with a state-of-the-art IR-based bug localization method named LR [230],

and a state-of-the-art spectrum-based bug localization method named MUL-

TRIC [227]. Note that, unlike PROMESIR, DITA, DITB, and MULTRIC

which locate buggy methods, LR locates buggy files. Thus, we convert the

list of files that LR produces into a list of methods by using two heuristics:

(1) to return methods in a file in the same order that they appear in the file;

and (2) to return methods based on their similarity to the input bug report

as computed using a VSM model. We refer to the two variants of LR as LRA

and LRB respectively.

For all the above-mentioned techniques, we used the same parameters and

settings as described in the respective papers, with the following exceptions

that we justify. For DITA and DITB, the threshold used to filter methods

using HITS was decided “such that at least one gold set method remained in

the results for 66% of the [bugs]” [53]. In this chapter, since we used 10-fold
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CV, rather than using 66% of all bugs, we used all bugs in the training data

(i.e., 90% of all bugs) to tune the threshold. For PROMESIR, we also used 10-

fold CV and applied a brute force approach to tune PROMESIR’s component

weights using a step of 0.05.

3.4.3.2 RQ2: Do Feature Components of NetML Contribute to-

ward Its Overall Performance?

To answer this question, we conducted an ablation test by dropping one feature

component (i.e., NetMLText, NetMLSuspWord, or NetMLSpectra) one-at-a-time

and evaluating the performance. In the process, we created three variants of

NetML: All�Text, All�SuspWord , and All�Spectra. That is, we excluded Text,

SuspWord, and Spectra from all feature components, respectively (see also

Fig. 3.2). We used the default value of K = 10, and applied the NetML

adaptive learning procedure (i.e., Algorithm 1) to tune the model parameters

of these variants. As our baseline, we performed the same ablation test to

the feature components of the AML method (i.e., AMLText, AMLSuspWord, or

AMLSpectra).

3.4.3.3 RQ3: How E↵ective is the NetML Integrator?

Instead of using the NetML integrator component (see Section 3.3.3), one may

consider using a standard machine learning algorithm, such as the learning-to-

rank method, to combine the scores produced by the three feature components.

Indeed, state-of-the-art IR-based and spectrum-based bug localization tech-

niques such as LR and MULTRIC are based on the learning-to-rank method.

As such, we conduct an experiment to compare our NetML integrator model

with an o↵-the-shelf learning-to-rank model called SVMrank [89], which was

also used by LR [230]. To do so, we simply replace the NetML integrator

model in Fig. 3.2 with SVMrank, and then compare the resulting performance.

For completeness, we also compare our NetML integrator with the integrator
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model used by the AML algorithm.

3.4.3.4 RQ4: What is the E↵ect of Varying the Number of Neigh-

bors K on the Performance of NetML?

The most important parameter in our NetML approach is the number of near-

est neighbors K (while the regularization parameters ↵ and � were chosen via

cross-validation—see Section 3.4.2). By default, we set the number of neigh-

bors to K = 10, but the e↵ect of varying this value is unclear. To answer

this research question, we vary the value of K and investigate its e↵ects on the

performance of NetML. In particular, we wish to investigate if the performance

remains relatively stable with varying values of K. For each K value, we also

compare the performance of NetML against its predecessor (i.e., AML) using

the same value.

3.4.3.5 RQ5: How E↵ective is NetML in Cross-Project Bug Local-

ization?

To evaluate the robustness of our approach, we also conducted an empirical

study on cross-project bug localization. That is, we first use a source project as

training data to build a bug localization model, and then employ the model to

predict a method that likely contains a bug in a (di↵erent) target project [215].

In this study, we compare NetML with its predecessor (i.e., AML) [120], Sa-

vant [23], Ochiai [12] and Dstar [221]. We use the same evaluation metrics as

per Section 3.4.2 to assess the e↵ectiveness of the di↵erent techniques. To con-

figure the hyper-parameters of NetML, we adopt the same parameter tuning

procedure as described in Section 3.4.2. Meanwhile, the hyper-parameters of

the remaining localization techniques follow the parameter settings stated in

their respective papers. We also apply Wilcoxon signed-rank test with the BH

procedure to determine whether NetML performs substantially better than the

other techniques.
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Table 3.4: Top N (N 2 {1, 5, 10}) results of NetML vs. AML, Savant, Ochiai,
Dstar, and PROMESIR. The percentage in parentheses indicates the propor-
tion of bug reports whose faulty methods are correctly localized.

Top N NetML AML SAVANT OCHIAI DSTAR PROMESIR

1 116 (32.68%) 88 (24.79%) 67 (21.34%) 48 (13.52%) 43 (12.11%) 61 (17.18%)
5 219 (61.69%) 179 (50.42%) 122 (38.85%) 94 (26.48%) 88 (24.79%) 139 (39.15%)
10 255 (71.83%) 213 (60.00%) 152 (48.41%) 124 (34.93%) 106 (29.86%) 174 (49.01%)

3.4.4 Results

This section presents the results of our experiments and discussion in relation

to the research questions raised in Section 3.4.3.

3.4.4.1 RQ1: Comparisons of NetML with Other Techniques

Tables 3.4 and 3.5 show the Top N results of NetML as well as the other

baseline methods including AML. Out of the 355 bugs, NetML is able to suc-

cessfully localize 116, 219, and 255 bugs when the developers inspect the Top

1, Top 5, and Top 10 methods respectively. This implies that NetML can

successfully localize 31.82%, 22.35%, and 19.72% more bugs than the best

baseline (i.e., AML) by examining the Top 1, Top 5, and Top 10 methods re-

spectively. Note that we encountered java.lang.UnsupportedClassVersionError

when running Savant for AspectJ bugs. These AspectJ bugs are from iBugs

dataset [49]. We have investigated and found that according to iBugs’ doc-

umentation,3 the AspectJ’s faulty versions work with Java Virtual Machine

(JVM) version 1.4. However, Savant employs Daikon [58] which requires Java

7 or later4. Therefore, we exclude AspectJ’s bugs from the experiments for

Savant.

Table 3.6 shows the MAP score of NetML along with those of the state-of-

the-art multi-modal localization methods. Averaging across the seven projects,

NetML achieves an overall MAP score of 0.347, which outperforms all the

other baselines. In particular, NetML improves the average MAP of AML,

3
https://www.st.cs.uni-saarland.de/ibugs/

4
http://plse.cs.washington.edu/daikon/download/doc/daikon.html
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Table 3.5: Top N (N 2 {1, 5, 10}) results of NetML vs. DITA, DITB, LRA,
LRB, and MULTRIC. The percentage in parentheses indicates the proportion
of bug reports whose faulty methods are correctly localized.

Top N NetML DITA DITB LRA LRB MULTRIC

1 116 (32.68%) 41 (11.55%) 37 (10.42%) 12 (3.38%) 66 (18.59%) 68 (19.15%)
5 219 (61.69%) 88 (24.79%) 78 (21.97%) 67 (18.87%) 137 (38.59%) 133 (37.46%)
10 255 (71.83%) 117 (32.96%) 109 (30.7%) 116 (32.68%) 181 (50.99%) 162 (45.63%)

Table 3.6: Mean Average Precision (MAP) results of di↵erent bug localization
methods.

Project NetML AML Savant Ochiai Dstar PROMESIR DITA DITB LRA LRB MULTRIC

Ant 0.270 0.234 0.188 0.179 0.127 0.206 0.12 0.120 0.070 0.218 0.077
Aspectj 0.219 0.187 – 0.117 0.007 0.121 0.092 0.071 0.006 0.004 0.016
Lang 0.638 0.542 0.535 0.147 0.146 0.394 0.198 0.184 0.167 0.424 0.564
Lucene 0.290 0.284 0.178 0.133 0.136 0.204 0.169 0.166 0.063 0.184 0.188
Math 0.358 0.255 0.261 0.14 0.139 0.271 0.179 0.176 0.165 0.303 0.391
Rhino 0.302 0.243 0.243 0.137 0.127 0.203 0.092 0.09 0.034 0.103 0.172
Time 0.354 0.294 0.166 0.115 0.115 0.148 0.062 0.062 0.051 0.142 0.282
Overall 0.347 0.291 0.262 0.138 0.114 0.221 0.130 0.124 0.079 0.197 0.241

Savant, Ochiai, Dstar, PROMESIR, DITA, DITB, LRA, LRB, and MULTRIC

by 19.24%, 32.44%, 151.45%, 204.39%, 57.01%, 166.92%, 62.15%, 339.24%,

76.14% and 43.98% respectively. Considering the individual projects, NetML

remains the best performing approach in terms of MAP. That is, NetML

achieves MAP scores of 0.270, 0.219, 0.638, 0.290, 0.358, 0.302, and 0.354 for

the Ant, AspectJ, Lang, Lucene, Math, Rhino, and Time projects respectively.

With respect to the best performing baseline (i.e., AML), these respectively

constitute of 15.38%, 17.11%, 17.71%, 2.11%, 40.39%, 24.28%, and 20.41%

improvements.

We finally performed the Wilcoxon test to compare the Top N and MAP

results of di↵erent techniques. As we are unable run Savant on AspectJ, we

omit this project and run the Wilcoxon test on the results collated over the

remaining six software projects for each metric (i.e., Top 1, Top 5, Top 10,

and MAP). Table 3.7 presents the p-values for the four metrics, evaluated at

the significance levels of 0.05 and 0.01. The results show that NetML signifi-

cantly outperforms AML on all the four metrics. Compared to the remaining

techniques, NetML also performs significantly better in terms of Top 1, Top 5,

Top 10 methods and MAP. Altogether, these results demonstrate the e�cacy
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Table 3.7: The p-values of the Wilcoxon test applying the BH procedure on
various pairs of bug localization methods.

Method Comparision Top 1 Top 5 Top 10 MAP

NetML vs. AML 3⇥ 10�7 (**) 4⇥ 10�5 (**) 0.008 (**) 5⇥ 10�8 (**)
NetML vs. Savant 6⇥ 10�8 (**) 1⇥ 10�5 (**) 9⇥ 10�4 (**) 1⇥ 10�8 (**)
NetML vs. Ochiai 2⇥ 10�7 (**) 4⇥ 10�10 (**) 6⇥ 10�10 (**) 6⇥ 10�12 (**)
NetML vs. Dstar 1⇥ 10�7 (**) 8⇥ 10�8 (**) 1⇥ 10�15 (**) 1⇥ 10�11 (**)
NetML vs. PROMESIR 8⇥ 10�9 (**) 1⇥ 10�8 (**) 5⇥ 10�6 (**) 4⇥ 10�10 (**)
NetML vs. DITA 4⇥ 10�14 (**) 2⇥ 10�16 (**) 3⇥ 10�16 (**) 8⇥ 10�21 (**)
NetML vs. DITB 4⇥ 10�15 (**) 8⇥ 10�17 (**) 1⇥ 10�20 (**) 3⇥ 10�27 (**)
NetML vs. LRA 1⇥ 10�18 (**) 5⇥ 10�22 (**) 4⇥ 10�20 (**)0 8⇥ 10�22 (**)
NetML vs. LRB 4⇥ 10�16 (**) 2⇥ 10�21 (**) 2⇥ 10�20 (**) 1⇥ 10�24 (**)
NetML vs. MULTRIC 3⇥ 10�16 (**) 1⇥ 10�21 (**) 1⇥ 10�20 (**) 1⇥ 10�28 (**)
(**): smaller than 0.01

Table 3.8: Contributions of feature components in NetML and AML. The
percentage in parentheses indicates the propotion of bug reports whose faulty
methods are correctly localized.

Approach
Top 1 Top 5 Top 10 MAP

NetML AML NetML AML NetML AML NetML AML

All�Text 68 (19.15%) 61 (17.18%) 144 (40.56%) 130 (36.62%) 179 (50.42%) 165 (46.48%) 0.228 0.212
All�Spectra 56 (15.77%) 49 (13.80%) 128 (36.06%) 112 (31.65%) 172 (48.45%) 157 (44.23%) 0.215 0.210
All�SuspWord 74 (20.85%) 65 (18.31%) 156 (43.94%) 136 (38.31%) 196 (55.21%) 182 (51.27%) 0.211 0.229
All 116 (36.62%) 88 (24.79%) 219 (61.69%) 179 (50.42%) 255 (71.83%) 213 (60.00%) 0.347 0.291

of the proposed NetML approach.

3.4.4.2 RQ2: Contribution of Feature Components

Table 3.8 summarizes the results of our ablation test on both NetML and

AML, each comparing the full model and three reduced variants (i.e., All�Text,

All�Spectra and All�SuspWord). It is evident that, for both NetML and AML, the

full model always performs better than the reduced variants. This suggests that

each feature component plays an important role, and omitting one of them may

greatly a↵ect the modelling performance. Among the three variants, it can be

seen that All�SuspWord yields the smallest Top 1, Top 5, Top 10, and MAP

scores for both NetML and AML. This suggests that the SuspWord feature

component is more important than the other two (i.e., Text and Spectra).

Furthermore, comparing the results of NetML and AML, we can also ob-

serve that the former always gives a better, or at least equal, result than the

latter. This suggests that the model parameterization using two sets of model
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Table 3.9: Comparisons among di↵erent integrator models. The percentage in
parentheses indicates the proportion of bug reports whose faulty methods are
correctly localized.

Metrics Project NetML AML SVMrank

Top 1

Ant 13 (24.53%) 9 (16.98%) 7 (13.21%)
AspectJ 11 (26.83%) 7 (17.07%) 4 (9.76%)
Lang 30 (46.15%) 28 (43.08%) 27 (41.54%)
Lucene 12 (32.43%) 11 (29.73%) 10 (27.03%)
Math 32 (30.19%) 25 (23.58%) 26(24.53%)
Rhino 10 (38.46%) 4 (15.38%) 4 (15.38%)
Time 8 (32.77%) 4 (24.79%) 5 (23.38%)
Overall 116 (32.68%) 88 (24.79%) 83 (23.38%)

Top 5

Ant 24 (45.28%) 22 (41.51%) 24 (45.28%)
AspectJ 15 (36.59%) 13 (31.71%) 11 (26.83%)
Lang 55 (84.62%) 48 (73.85%) 45 (69.23%)
Lucene 25 (67.57%) 22 (59.46%) 23 (62.16%)
Math 69 (65.09%) 47 (44.34%) 46 (43.40%)
Rhino 18 (69.23%) 14 (53.85%) 13 (50.00%)
Time 13 (48.15%) 13 (48.15%) 13 (48.15%)
Overall 219 (61.69%) 179 (50.42%) 175 (49.30%)

Top 10

Ant 35 (66.04%) 31 (58.49%) 31 (58.49%)
AspectJ 16 (39.02%) 13 (31.71%) 14 (34.15%)
Lang 62 (95.38%) 53 (81.54%) 54 (83.08%)
Lucene 30 (81.08%) 29 (78.38%) 26 (70.27%)
Math 75 (70.75%) 53 (50.00%) 55 (51.89%)
Rhino 19 (73.08%) 19 (73.08%) 16 (61.54%)
Time 18 (66.67%) 15 (55.56%) 16 (59.26%)
Overall 255 (71.83%) 213 (60.00%) 212 (59.72%)

MAP

Ant 0.270 0.234 0.234
AspectJ 0.219 0.187 0.131
Lang 0.638 0.542 0.540
Lucene 0.290 0.284 0.267
Math 0.358 0.255 0.269
Rhino 0.302 0.243 0.227
Time 0.354 0.294 0.287
Overall 0.347 0.291 0.279

parameters (instead of one in AML), along with the objective function for-

mulation that jointly optimizes bug localization error and fosters clustering of

similar bug reports and methods, contribute to the better overall performance

of NetML.

3.4.4.3 RQ3: Comparisons among Integrator Models

Table 3.9 compares the performance of the NetML integrator model with that

of the AML integrator and SVMrank. We can observe that for all projects

(i.e., AspectJ, Ant, Lucene, and Rhino) and metrics, the NetML integrator
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Table 3.10: The p-values of the Wilcoxon test applying the BH procedure on
various pairs of integrator model.

Metrics NetML vs. SVMrank NetML vs. AML

Top 1 3⇥ 10�7 (**) 2⇥ 10�5 (**)
Top 5 2⇥ 10�3 (**) 1⇥ 10�3 (**)
Top 10 4⇥ 10�4 (**) 2⇥ 10�3 (**)
MAP 9⇥ 10�10 (**) 2⇥ 10�8 (**)
(**): smaller than 0.01

outperforms both the AML integrator and SVMrank. With respect to SVMrank,

NetML achieves 39.76%, 25.15%, 20.28%, and 24.37% improvements, in terms

of Top 1, Top 5, Top 10 and MAP scores across the four software projects,

respectively. This can again be attributed to our NetML approach taking

advantage of two sets of model parameters and performing a joint optimization

of bug localization error and clustering of similar bug reports and methods.

We also conducted the Wilcoxon test to examine whether the improvements

over the AML integrator and SVMrank are statistically significant. The result-

ing p-values are summarized in Table 3.10. As before, the NetML integrator

significantly outperforms the AML integrator in terms of Top 1, Top 5, Top

10, and MAP scores. Moreover, the NetML integrator is significantly better

than SVMrank in all evaluation metrics (i.e., Top 1, Top 5, Top 10, and MAP).

All in all, these justify the e↵ectiveness of our NetML integrator component.

3.4.4.4 RQ4: E↵ect of Varying Number of Neighbors

To address this research question, we varied the number of nearest neighbors

from K = 5 to all bug reports in the training set (i.e., K = 1) for both

NetML and AML. The results are shown in Table 3.11. We can see that, as we

increase K, the performance of both multi-modal techniques improves until a

certain point (i.e., K = 15), and decreases beyond that. This suggests that

including more neighbors can improve performance to some extent. However,

an overly large number of neighbors may lead to an increased level of noise

(i.e., the number of irrelevant neighbors), resulting in a degraded performance.

Nevertheless, the di↵erences in the Top N and MAP scores are fairly marginal,
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Table 3.11: E↵ect of varying the number of nearest neighbors on NetML and
AML. The percentage in parentheses indicates the proportion of bug reports
whose faulty methods are correctly localized.

#Neighbors
Top 1 Top 5 Top 10 MAP

NetML AML NetML AML NetML AML NetML AML

K = 5 112 (31.55%) 84 (23.66%) 224 (63.10%) 181 (50.99%) 254 (71.55%) 212 (59.72%) 0.342 0.289
K = 10 116 (32.68%) 88 (24.79%) 219 (61.69%) 179 (50.42%) 255 (71.83%) 213 (60.00%) 0.347 0.291
K = 15 117 (32.96%) 86 (24.23%) 223 (62.82%) 175 (49.30%) 255 (71.83%) 212 (59.72%) 0.347 0.291
K = 20 115 (32.39%) 86 (24.23%) 210 (61.97%) 173 (48.73%) 251 (70.70%) 210 (59.15%) 0.345 0.290
K = 25 110 (30.99%) 81 (22.81%) 210 (61.97%) 173 (48.73%) 251 (70.70%) 209 (58.87%) 0.331 0.285
K =1 110 (30.99%) 79 (22.26%) 208 (58.59%) 169 (47.61%) 251 (70.70%) 205 (57.75%) 0.329 0.283

Table 3.12: Overall Top N (N 2 {1, 5, 10} and Mean Average Precision (MAP)
results in cross-project setting. The percentage in parentheses indicates the
proportion of bug reports whose faulty methods are correctly localized.

Methods Top 1 Top 5 Top 10 MAP

NetML 74 (20.85%) 157 (44.23%) 197 (55.49%) 0.218
AML 58 (16.34%) 131 (36.90%) 170 (47.89%) 0.174
Savant 45 (14.33%) 106 (33.76%) 135 (42.99%) 0.133
Ochiai 48 (12.11%) 94 (26.48%) 124 (34.93%) 0.138
Dstar 43 (13.52%) 88 (24.79%) 106 (29.86%) 0.114

which justifies the robustness of our NetML approach. Looking at Table 3.11,

it is also clear that NetML consistently outperforms AML for all K values (i.e.,

from K = 5 to K =1).

3.4.4.5 RQ5: How E↵ective is NetML in Cross-Project Bug Local-

ization?

Table 3.12 shows the overall performance of NetML and the baseline methods

(i.e., AML, Savant, Ochiai, and Dstar) for the cross-project setting, in terms

of the Top N and MAP scores respectively. Ochiai and Dstar are unsupervised

learning methods, which do not depend on training labels. In this case, they

give the same result for both cross-project and within-project settings. Hence,

we reuse the results in Table 3.4. For the remaining techniques (i.e., NetML,

AML, and Savant), we use the source project that has the best MAP score for

the target project. The results show that NetML outperforms the best baseline

(i.e., AML) by 27.59%, 19.85%, and 15.88% in terms of the Top 1, Top 5, and

Top 10 methods, respectively. In terms of MAP, NetML outperforms AML,

Savant, Ochiai, and Dstar by 25.29%, 63.91%, 91.23%, and 57.97% respectively.
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Table 3.13: The p-values of the Wilcoxon test applying the BH procedure on
various pairs of integrator model in cross-project setting.

Method Comparison Top 1 Top 5 Top 10 MAP

NetML vs. AML 0.012 (*) 0.048 (*) 0.040 (*) 0.029 (*)
NetML vs. Savant 0.003 (**) 0.001 (**) 0.007 (**) 0.003 (**)
NetML vs. Ochiai 1 ⇥10�5 (**) 0.003 (**) 8 ⇥10�7 (**) 1 ⇥10�18 (**)
NetML vs. Dstar 4⇥ 10�4 (**) 7 ⇥10�5 (**) 6 ⇥10�7 (**) 7 ⇥10�17 (**)
(*): smaller than 0.05, (**): smaller than 0.01

We also perform Wilcoxon test to compare the overall results of the dif-

ferent techniques in the cross-project setting. Table 3.13 shows the p-values

for di↵erent evaluation metrics (i.e., Top 1, Top 5, Top 10, and MAP) and

pairs of techniques. The results indicate that NetML significantly outperforms

all the baseline techniques (i.e., AML, Savant, Ochiai, and Dstar) for all the

four metrics, thus demonstrating the superior performance of NetML in the

cross-project setting.

3.5 Results Analysis and Discussion

In this section, we present a detailed analysis of the results obtained in Sec-

tion 3.4.4. Firstly, we present some examples to understand the scenarios in

which NetML performs well or poorly. We then present an analysis of how

NetML can improve the MAP.

3.5.1 Successful Cases

We first present two examples of successful bug localization, with the goal of

showing how NetML can take advantage of two types of similarity: 1) similarity

among bug reports, and 2) similarity among methods.

Bug report similarity. Our first example involves Bug 307985 and Bug

439696 from project Ant – see Fig. 3.1. It has been briefly described in Sec-

tion 1. NetML can outperform AML in identifying the buggy method of Bug

5
https://bz.apache.org/bugzilla/show_bug.cgi?id=30798

6
https://bz.apache.org/bugzilla/show_bug.cgi?id=43969
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43969 by taking advantage of similarity among bug reports. To confirm that

indeed these two bug reports are similar, we can apply the Vector Space Model

(VSM) [148]. We represent each bug report as a TF-IDF vector [181], and

then compute the cosine similarity between the TF-IDF vector of Bug 30798

and that of the remaining bug reports. We find that Bug 43969 is ranked at

position #3. Likewise, we compute the cosine similarity between Bug 43969

and the other bug reports. Here, Bug 30798 is ranked at position #5. This

shows that Bug 30798 and Bug 43969 are indeed very similar. AML assumes

that the bug reports are independent and, owing to the lack of information

on the textual description of Bug 43969, it fails to localize the faulty method.

In contrast, we found that NetML learns similar model parameters (i.e., ~ub)

for the two bug reports, and exploits this to compensate for the insu�cient

information when localizing Bug 43969.

Additionally, we find that none of the other baselines perform as well as

NetML. Savant can localize the faulty method of Bug 30798 in its top-10 list,

but it fails to do so for Bug 43969. For the other baselines (i.e., Ochiai, Dstar,

PROMESIR, DITA, DITB, LRA, LRB, and MULTRIC), none of them is able

to localize the faulty method for both bug reports. Among them, the two

best performers (i.e., Ochiai and Dstar) give a high suspiciousness score to the

faulty method, but there are more than 100 methods sharing this score.

Method similarity. Fig. 3.3 presents the description of Bug 313897 in

project Ant. The bug resides in the throwNotSupported and getElementType

methods of IntrospectionHelper.java. NetML is able to localize both meth-

ods at positions #1 and #9 respectively, all within the top 10 list. Meanwhile,

AML is able to put the throwNotSupported method in the top 10 list, but it

ranks the getElementType method at position #17. Ochiai, Dstar, PROME-

SIR and MULTRIC localize the throwNotSupported method in the top 10

list, but they fail to put the getElementType into the top 10 list. The other

7
https://bz.apache.org/bugzilla/show_bug.cgi?id=31389
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14

Program IntrospectionHelper.java
public void throwNotSupported(final Project project,
final Object parent, final String elementName) {

final String msg = project.getElementName)(parent)
+ NOT SUPPORTED CHILD PREFIX
+ elementName
+ NOT SUPPORTED CHILD POSTFIX;

throw new UnsupportedElementException(msg, element-
Name);
}

Program IntrospectionHelper.java
public Classh?i getElementType(final String elementName)
throws BuildException {

final Classh?i nt = nestedTypes.get(elementName);
if (nt == null) {

throw new UnsupportedElementException(“Class” +
bean.getName() + “doesn’t support the nested \” +
elementName + “\” element.”, elementName); }

return nt;
}

Bug 31389
Summary: incorrect error text with invalid “javac” task after a “presetdef”
Description:

What steps will reproduce the problem? See below for the build.xml that was used and the faulty error message.
1. I made a preset definition containing a javac task
2. I made a normal target (not using the preset definition) containing a javac task with an illegal tag name
3. When running ant, the error message says that the error is in the preset definition instead of the javac task.
(The line number in the message is good.)
. . .

Fig. 3: Example of successful bug localization of two methods in project Ant that need to be resolve the same bug report.
The two methods have high cosine similarity score. The colored text indicates some common word tokens occurring in the
two methods.

Method similarity. Fig. 3 presents the description
of Bug 313897 in project Ant. The bug resides in the
throwNotSupported and getElementType methods of
IntrospectionHelper.java. NetML is able to local-
ize both methods at positions #1 and #9 respectively,
all within the top 10 list. Meanwhile, AML is able to
put the throwNotSupported method in the top 10 list,
but it ranks the getElementType method at position
#17. Ochiai, Dstar, PROMESIR and MULTRIC localize the
throwNotSupported method in the top 10 list, but they
fail to put the getElementType into the top 10 list. The
other baselines give low relevancy scores to the two meth-
ods, and exclude them from the top 10 list.

As with the previous example, we try to analyze this fur-
ther by computing the cosine similarity of the TF-IDF repre-
sentation of the methods’ source code. Specifically, we com-
pute the cosine similarity between throwNotSupported

and remaining methods. The result shows that the
getElementType method is ranked at position #4. Look-
ing at the content of these two methods, it can again
be seen that they share many common word tokens
(e.g., “elementName”, etc.). Accordingly, NetML would en-
force the corresponding method parameters to be similar.
As such, NetML manages to successfully to localize the
getElementType method at position #9. In contrast, AML
assumes that the methods are independent, and thus fails
to leverage the strength of similar methods to localize the
getElementType method.

To see how typical the successful cases are in our dataset,
we randomly select 75 out of 183 successful cases, in which
NetML manages to localize a faulty method within the
top 10 list whereas the other baseline methods (i.e., AML,
Savant, Ochiai, Dstar, PROMESIR, DITA, DITB, LRA, LRB ,
and MULTRIC) fail to do so. Among these cases, in total, we

7. https://bz.apache.org/bugzilla/show bug.cgi?id=31389

find that 63 successful cases, which constitute the majority
(84%) of our samples, are similar to the first (17 cases) and
second (46 cases) examples we presented earlier.

5.2 Unsuccessful Cases
Next, we present two examples whereby NetML fails to
localize a bug. These examples serve to provide an under-
standing of cases in which NetML may not perform well.

Bug report similarity. We first consider Bug 3388 and
Bug 3589 from project Math shown in Fig. 4. The faulty
method for these two bug reports is the integrate

method in EmbeddedRungeKuttaIntegrator.java. In-
terestingly, Ochiai and Dstar manage to localize this faulty
method for these two bug reports within the top 10 list. On
the other hand, NetML, AML, and Savant fail to localize the
faulty integrate method for Bug 358. Specifically, NetML,
AML, and Savant rank the faulty method at positions #14,
#19, and #23 respectively. MULTRIC assigns a high suspi-
ciousness score to the integrate method for both Bug
338 and Bug 358. However, there are around 30 methods
sharing this score. Also note that the remaining baselines
(i.e., PROMESIR, DITA, DITB, LRA, and LRB) fail to localize
the faulty method for both bug reports.

Similar to Section 5.1, we calculate the cosine similarity
between Bug 338 and the remaining bug reports. We found
that Bug 358 is ranked at position #53, suggesting that the
two bug reports are dissimilar. As such, there is less incen-
tive for NetML to leverage the strength of common words
shared by the two bug reports, which potentially explains
why it fails to localize the faulty method for Bug 358. This
also suggests that, when the data contain bug reports that
are largely dissimilar (i.e., share very few common word
tokens), our NetML approach may not work as well as some

8. https://issues.apache.org/jira/browse/MATH-338
9. https://issues.apache.org/jira/browse/MATH-358

Figure 3.3: Example of successful bug localization of two methods in project
Ant that need to be resolve the same bug report. The two methods have high
cosine similarity score. The colored text indicates some common word tokens
occurring in the two methods.

baselines give low relevancy scores to the two methods, and exclude them from

the top 10 list.

As with the previous example, we try to analyze this further by computing

the cosine similarity of the TF-IDF representation of the methods’ source code.

Specifically, we compute the cosine similarity between throwNotSupported

and remaining methods. The result shows that the getElementType method

is ranked at position #4. Looking at the content of these two methods, it

can again be seen that they share many common word tokens (e.g., “element-

Name”, etc.). Accordingly, NetML would cause the corresponding method

parameters to be similar. As such, NetML manages to successfully to localize

the getElementType method at position #9. In contrast, AML assumes that

the methods are independent, and thus fails to leverage the strength of similar

methods to localize the getElementType method.

To see how typical the successful cases are in our dataset, we randomly

select 75 out of 183 successful cases, in which NetML manages to localize

a faulty method within the top 10 list whereas the other baseline methods

(i.e., AML, Savant, Ochiai, Dstar, PROMESIR, DITA, DITB, LRA, LRB, and

MULTRIC) fail to do so. Among these cases, in total, we find that 63 successful
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Bug 338
Summary: Wrong parameter for first step size guess for
Embedded Runge Kutta methods

Description:

What steps will reproduce the problem? In a space
application using DOP853 i detected what seems to be a
bad parameter in the call to the method initializeStep of
class AdaptiveStepsizeIntegrator. . . .

Bug 358
Summary: ODE integrator goes past specified end of
integration range

Description:

What steps will reproduce the problem? End of integra-
tion range in ODE solving is handled as an event. In some
cases, numerical accuracy in events detection leads to error
in events location. . . .

Fig. 4: Example of unsuccessful bug localization of two bug reports which have the same faulty method in project Math.
The two bug reports have low cosine similarity score

Program ChangeLogParser.java
private Date parseDate(final String date) {

try {
return c inputDate.parse(date);

} catch (ParseException e) {
//final String message = REZ.getString(
//“changelog.bat-date.error”, date);
//getContext().error( message );
return null;
}

}

Program ChangeLogParser.java
private void processGetPreviousRevision(final String line)
{

if (!line.startsWith(“revision”)){
throw new IllegalStateException(“Unexpected line
from CVS:” + line);

}
m previousRevision = line.substring(9);
saveEntry();
m revision = m previousRevision;
m status = GET DATE;

}
Bug 30962
Summary: cvschangelog crashes with NullPointerException
Description:

What steps will reproduce the problem? I try to make cvschangelog running and face a strange problem that nobody
else seems to have: cvschangelog crashes with a NullPointerException. My task looks like:
htarget name=“cvs.changelog”i
hcvschangelog dir=“somedir” destfile=“changelog.xml”i
. . .

Fig. 5: Example of unsuccessful bug localization of two methods in project Ant that need to be modified to resolve the
same bug report. The two methods have low cosine similarity score.

spectrum-based fault localization techniques such as Ochiai
and Dstar.

Method similarity. Fig. 5 shows the de-
scriptions of Bug 3096210 in project Ant. The
bug is associated with two faulty methods, i.e.,
parseDate and processGetPreviousRevision in
ChangeLogParser.java. We find that Ochiai and Dstar
successfully localize these two methods in the top 10 list.
NetML and AML are able to localize the parseDate

method within the top 10 list. However, they fail to localize
the faulty processGetPreviousRevision method
for Bug 30962. In particular, NetML and AML place the
processGetPreviousRevision method at positions #17
and #15 respectively. The remaining techniques (i.e., Savant,
PROMESIR, DITA, DITB, LRA, LRB) fail to localize these
two methods in the top 10 list.

To better understand this, we again compute the
cosine similarity between the parseDate method and
the remaining methods in project Ant. In this case, the
processGetPreviousRevision method is ranked at po-
sition #478. This suggests that these two methods have

10. https://bz.apache.org/bugzilla/show bug.cgi?id=30962

low proximity, which gives less incentive for NetML to
utilize their common words in the localization of the
processGetPreviousRevision method. It also suggests
that, when the data contain methods that are mostly dis-
similar, spectrum-based fault localization techniques (e.g.,
Ochiai and Dstar) may perform better than NetML.

To again evaluate how typical the unsuccessful cases
are in seven projects, we randomly select 75 (out of 80)
unsuccessful cases whereby NetML fails to localize a faulty
method within the top 10 list, but one of the baseline method
(i.e., AML, Savant, Ochiai, Dstar, PROMESIR, DITA, DITB,
LRA, LRB , and MULTRIC) succeed. Among them, in total,
we discover that 70 unsuccessful cases, which constitute
93% of our samples, are similar to the first (21 cases) and
second (49 cases) unsuccessful examples presented earlier.

5.3 Improved vs. Deteriorated Bug Reports

To understand how the MAP results improve due to
NetML, following Chaparro et al. [20], we perform a
finer-grained analysis in terms of the number of bug re-
ports improved/deteriorated and the expected magnitude
of improvement/deterioration. We compare our approach

Figure 3.4: Example of unsuccessful bug localization of two bug reports which
have the same faulty method in the project Math. The two bug reports have
low cosine similarity score.

cases, which constitute the majority (84%) of our samples, are similar to the

first (17 cases) and second (46 cases) examples we presented earlier.

3.5.2 Unsuccessful Cases

Next, we present two examples whereby NetML fails to localize a bug. These

examples provide an understanding of cases in which NetML may not perform

well.

Bug report similarity. We first consider Bug 3388 and Bug 3589 from

project Math shown in Fig. 3.4. The faulty method for these two bug reports

is the integrate method in EmbeddedRungeKuttaIntegrator.java. Interest-

ingly, Ochiai and Dstar manage to localize this faulty method for these two bug

reports within the top 10 list. On the other hand, NetML, AML, and Savant

fail to localize the faulty integrate method for Bug 358. Specifically, NetML,

AML, and Savant rank the faulty method at positions #14, #19, and #23

respectively. MULTRIC assigns a high suspiciousness score to the integrate

method for both Bug 338 and Bug 358. However, there are around 30 methods

sharing this score. Also note that the remaining baselines (i.e., PROMESIR,

DITA, DITB, LRA, and LRB) fail to localize the faulty method for both bug

reports.

Similar to Section 3.5.1, we calculate the cosine similarity between Bug 338

and the remaining bug reports. We found that Bug 358 is ranked at position

8
https://issues.apache.org/jira/browse/MATH-338

9
https://issues.apache.org/jira/browse/MATH-358
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Bug 338
Summary: Wrong parameter for first step size guess for
Embedded Runge Kutta methods

Description:

What steps will reproduce the problem? In a space
application using DOP853 i detected what seems to be a
bad parameter in the call to the method initializeStep of
class AdaptiveStepsizeIntegrator. . . .

Bug 358
Summary: ODE integrator goes past specified end of
integration range

Description:

What steps will reproduce the problem? End of integra-
tion range in ODE solving is handled as an event. In some
cases, numerical accuracy in events detection leads to error
in events location. . . .

Fig. 4: Example of unsuccessful bug localization of two bug reports which have the same faulty method in project Math.
The two bug reports have low cosine similarity score

Program ChangeLogParser.java
private Date parseDate(final String date) {

try {
return c inputDate.parse(date);

} catch (ParseException e) {
//final String message = REZ.getString(
//“changelog.bat-date.error”, date);
//getContext().error( message );
return null;
}

}

Program ChangeLogParser.java
private void processGetPreviousRevision(final String line)
{

if (!line.startsWith(“revision”)){
throw new IllegalStateException(“Unexpected line
from CVS:” + line);

}
m previousRevision = line.substring(9);
saveEntry();
m revision = m previousRevision;
m status = GET DATE;

}
Bug 30962
Summary: cvschangelog crashes with NullPointerException
Description:

What steps will reproduce the problem? I try to make cvschangelog running and face a strange problem that nobody
else seems to have: cvschangelog crashes with a NullPointerException. My task looks like:
htarget name=“cvs.changelog”i
hcvschangelog dir=“somedir” destfile=“changelog.xml”i
. . .

Fig. 5: Example of unsuccessful bug localization of two methods in project Ant that need to be modified to resolve the
same bug report. The two methods have low cosine similarity score.

spectrum-based fault localization techniques such as Ochiai
and Dstar.

Method similarity. Fig. 5 shows the de-
scriptions of Bug 3096210 in project Ant. The
bug is associated with two faulty methods, i.e.,
parseDate and processGetPreviousRevision in
ChangeLogParser.java. We find that Ochiai and Dstar
successfully localize these two methods in the top 10 list.
NetML and AML are able to localize the parseDate

method within the top 10 list. However, they fail to localize
the faulty processGetPreviousRevision method
for Bug 30962. In particular, NetML and AML place the
processGetPreviousRevision method at positions #17
and #15 respectively. The remaining techniques (i.e., Savant,
PROMESIR, DITA, DITB, LRA, LRB) fail to localize these
two methods in the top 10 list.

To better understand this, we again compute the
cosine similarity between the parseDate method and
the remaining methods in project Ant. In this case, the
processGetPreviousRevision method is ranked at po-
sition #478. This suggests that these two methods have

10. https://bz.apache.org/bugzilla/show bug.cgi?id=30962

low proximity, which gives less incentive for NetML to
utilize their common words in the localization of the
processGetPreviousRevision method. It also suggests
that, when the data contain methods that are mostly dis-
similar, spectrum-based fault localization techniques (e.g.,
Ochiai and Dstar) may perform better than NetML.

To again evaluate how typical the unsuccessful cases
are in seven projects, we randomly select 75 (out of 80)
unsuccessful cases whereby NetML fails to localize a faulty
method within the top 10 list, but one of the baseline method
(i.e., AML, Savant, Ochiai, Dstar, PROMESIR, DITA, DITB,
LRA, LRB , and MULTRIC) succeed. Among them, in total,
we discover that 70 unsuccessful cases, which constitute
93% of our samples, are similar to the first (21 cases) and
second (49 cases) unsuccessful examples presented earlier.

5.3 Improved vs. Deteriorated Bug Reports

To understand how the MAP results improve due to
NetML, following Chaparro et al. [20], we perform a
finer-grained analysis in terms of the number of bug re-
ports improved/deteriorated and the expected magnitude
of improvement/deterioration. We compare our approach

Figure 3.5: Example of unsuccessful bug localization of two methods in project
Ant that need to be resolved. The two methods have low cosine similarity score.

#53, suggesting that the two bug reports are dissimilar. As such, there is

less incentive for NetML to leverage the strength of common words shared

by the two bug reports, which potentially explains why it fails to localize the

faulty method for Bug 358. This also suggests that, when the data contain

bug reports that are largely dissimilar (i.e., share very few common word to-

kens), our NetML approach may not work as well as some spectrum-based

fault localization techniques such as Ochiai and Dstar.

Method similarity. Fig. 3.5 shows the description of Bug 3096210 in the

project Ant. The bug is associated with two faulty methods, i.e., parseDate

and processGetPreviousRevision in ChangeLogParser.java. We find that

Ochiai and Dstar successfully localize these two methods in the top 10 list.

NetML and AML are able to localize the parseDate method within the top 10

list. However, they fail to localize the faulty processGetPreviousRevision

method for Bug 30962. In particular, NetML and AML place this faulty

method at positions #17 and #15 respectively. The remaining techniques

(i.e., Savant, PROMESIR, DITA, DITB, LRA, LRB) fail to localize these two

methods in the top 10 list.

To better understand this, we again compute the cosine similarity between

10
https://bz.apache.org/bugzilla/show_bug.cgi?id=30962
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the parseDate method and the remaining methods in project Ant. In this

case, the processGetPreviousRevision method is ranked at position #478.

This suggests that these two methods have low proximity, which gives less

incentive for NetML to utilize their common words in the localization of the

processGetPreviousRevision method. It also suggests that, when the data

contain methods that are mostly dissimilar, spectrum-based fault localization

techniques (e.g., Ochiai and Dstar) may perform better than NetML.

To again evaluate how typical the unsuccessful cases are in seven projects,

we randomly select 75 (out of 80) unsuccessful cases whereby NetML fails to

localize a faulty method within the top 10 list, but one of the baseline method

(i.e., AML, Savant, Ochiai, Dstar, PROMESIR, DITA, DITB, LRA, LRB, and

MULTRIC) succeeds. Among them, in total, we discover that 70 unsuccessful

cases, which constitute 93% of our samples, are similar to the first (21 cases)

and second (49 cases) unsuccessful examples presented earlier.

3.5.3 Improved vs. Deteriorated Bug Reports

To understand how the MAP results improve due to NetML, following Cha-

parro et al. [40], we perform a finer-grained analysis in terms of the number

of bug reports. We compare our approach against the best baseline method

(i.e., AML). A bug report is improved if the rank of the top faulty method

produced by NetML is better than the rank of the top faulty method pro-

duced by AML. On the other hand, a bug report is deteriorated if the rank

of the top faulty method produced by NetML is worse than that produced by

AML. Otherwise, a bug report is unchanged. Ideally, we wish to have a higher

number of improved bug reports than that of deteriorated bug reports. To

measure the relative magnitude of improvement or deterioration for each bug

report, we adopt the approach described by Chaparro et al. [40]. In particular,

for improved and deteriorated bug reports, we compute the expected average

precision (AP) di↵erence E[�AP ] and expected rank di↵erence E[�Rank] as
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Table 3.14: Comparison of number of samples, expected average precision
di↵erence, and expected rank di↵erence between NetML and AML.

Project
Improved Deteriorated Unchanged

No. of samples E[�AP ] E[�Rank] No. of samples E[�AP ] E[�Rank] No. of samples

Ant 35 (66.04%) 12.57% 186.86 3 (5.66%) -8.47% -54.27 15 (28.3%)
Aspectj 32 (78.05%) 23.02% 59.31 3 (7.32%) -39.67% -39.67 6 (14.63%)
Lang 37 (56.92%) 29.94% 26.93 5 (7.69%) -36.11% -35.52 23 (35.38%)
Lucene 14 (37.84%) 11.94% 372.64 10 (27.03%) -14.97% -297.2 13 (35.14%)
Math 70 (66.04%) 37.37% 16.45 10 (9.43%) -6.33% -13.07 26 (24.53%)
Rhino 22 (84.62%) 36.39% 54.54 2 (7.69%) -15.51% -15.32 2 (7.69%)
Time 16 (59.26%) 24.15% 60.5 6 (22.22%) -7.54% -10.12 5 (18.52%)
Overall 229 (63.66%) 27.75% 212.91 39 (10.98%) -14.36% -69.09 90 (25.35%)

follows:

E[�AP ] =
1

|B|

BX

b=1

(APNetML

b
� APAML

b
) (3.26)

E[�Rank] =
1

|B|

BX

b=1

(RankAML

b
�RankNetML

b
) (3.27)

where |B| is the number of bug reports, APNetML

b
and APAML

b
are the average

precision produced by NetML and AML for bug report b, and RankNetML

b
and

RankAML

b
are the rank produced by NetML and AML, respectively. Intuitively,

if NetML is better than AML, we expect the E[�AP ] and E[�Rank] for

improved bug reports to be larger than those of deteriorated bug reports.

Table 3.14 shows the number of improved, deteriorated, and unchanged bug

reports in our seven projects. Additionally, Table 3.14 presents the E[�AP ]

and E[�Rank] for improved and deteriorated cases of di↵erent projects. The

results show that the number of improved bug reports is indeed higher than the

number of deteriorated bug reports for all di↵erent projects. It is also evident

that the overall E[�AP ] and E[�Rank] of improved bug reports are higher

than those of deteriorated bug reports. This implies that MAP improvement

comes from improvements across the board and not due to a few outlier bug

reports or projects.
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3.6 Threats to Validity

This section presents a number of threats that may potentially impact the

validity of our study.

3.6.1 Number of Failed Test Cases and Its Impact

In our experiments with 355 bugs, most of the bugs were found to come with

few failed test cases (average = 2.155). We have investigated whether the

number of failed test cases impacts the e↵ectiveness of our approach. To this

end, we computed the di↵erence between the average number of failed test

cases for bugs that are successfully localized at Top-N positions (N = 1,5,10)

and bugs that are not successfully localized. We found that the di↵erences are

small (-0.362 to 0.055 test cases). These indicate that the number of test cases

does not impact the e↵ectiveness of our approach significantly and typically 1

to 3 failed test cases are su�cient for our approach to be e↵ective.

3.6.2 Threats to Internal Validity

Threats to internal validity relate to implementation and dataset errors. We

have checked our implementations and datasets. However, there could still

be errors that we do not notice. Threats to external validity relate to the

generalizability of our findings. In this work, we have analyzed 355 real bugs

from seven medium-large software systems. In the future, we plan to reduce

the threats to external validity by investigating more real bugs from additional

software systems, written in various programming languages.

3.7 Chapter Summary

In this chapter, we put forward a novel multi-modal bug localization approach

named Network-clustered Multi-modal Bug Localization (NetML). Deviating

from the contemporary multi-modal localization approaches, NetML is able to
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achieve an e↵ective bug localization through the interplay of two sets of model

parameters characterizing both bug reports and methods. It also features

an adaptive learning procedure that stems from a strictly convex objective

function formulation, thereby provides a sound theoretical guarantee on the

uniqueness of the optimal solution.

We have extensively evaluated NetML on 355 real bugs from seven di↵erent

software projects (i.e., Ant, AspectJ, Lang, Lucene, Math, Rhino, and Time).

Among the 355 bugs, NetML is able to successfully localize 116, 219, and 255

bugs when developers inspect the Top 1, Top 5, and Top 10 methods, respec-

tively. Compared to the best performing baseline (i.e., AML), NetML can

successfully localize 31.82%, 22.35%, and 19.72% more bugs when developers

inspect the Top 1, Top 5, and Top 10 methods, respectively. Furthermore, in

terms of MAP, NetML outperforms the other baselines by 19.24%. Based on

the Wilcoxon signed-rank test using BH procedure, we show that the results

of NetML are significantly better across the seven projects, in terms of Top 1,

Top 5, Top 10, and MAP scores.
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Chapter 4

Deep Learning Framework for

Just-in-time Defect Prediction

Software quality assurance e↵orts often focus on identifying defective code.

To find likely defective code early, change-level defect prediction – aka. Just-

In-Time (JIT) defect prediction – has been proposed. JIT defect prediction

models identify likely defective changes and they are trained using machine

learning techniques with the assumption that historical changes are similar to

future ones. Most existing JIT defect prediction approaches make use of man-

ually engineered features. Unlike those approaches, in this chapter, we propose

an end-to-end deep learning framework, named DeepJIT, that automatically

extracts features from commit messages and code changes and uses them to

identify defects. Experiments on two popular software projects (i.e., QT and

OPENSTACK) in three evaluation settings (i.e., cross-validation, short-period,

and long-period) show that the best variant of DeepJIT (DeepJIT-Combined),

compared with the best performing state-of-the-art approach, achieves im-

provements of 10.36-11.02% for the project QT and 9.51-13.69% for the project

OPENSTACK in terms of the Area Under the Curve (AUC).
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4.1 Introduction

As software systems are becoming the backbone of our economy and soci-

ety, defects existing in those systems may substantially a↵ect businesses and

people’s lives in many ways. For example, Knight Capital,1 a company that

executes automated trading for retail brokers, lost $440 million in only one

morning in 2012 due to an overnight faulty update to its trading software. A

flawed code change, introduced into OpenSSL’s source code repository, caused

the infamous Heartbleed2 bug which a↵ected billions of Internet users in 2014.

As software grows significantly in both size and complexity, finding defects and

fixing them has become increasingly di�cult and costly.

One common best practice for cost saving is identifying defects and fixing

them as early as possible, ideally before new code changes (i.e. commits)

are introduced into codebases. Emerging research [98, 56] has thus developed

Just-In-Time (JIT) defect prediction models and techniques that help software

engineers and testers to quickly narrow down the most likely defective commits

to a software codebase. JIT defect prediction tools provide early feedback to

software developers to allow them to prioritize and optimize their e↵ort for

inspection and (regression) testing, especially when facing with deadlines and

limited resources. They have therefore been integrated into the development

practice at large software organizations such as Avaya [156], Blackberry [189],

and Cisco [199].

Machine learning techniques have been widely used in existing work for

building JIT defect prediction models. A common theme of existing work [156,

99, 103, 112] is carefully crafting a set of features to represent a code change,

and using them as defectiveness predictors. Those features are mostly derived

from properties of code changes, such as change size (e.g. lines deleted or

added), change scope (e.g. number of files or directories modified), history of

1
https://dealbook.nytimes.com/2012/08/02/knight-capital-says-trading-mishap-cost-it-

440-million/
2
http://heartbleed.com
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changes (e.g. number of prior changes to the updated files), track record of the

author and code reviewers, and activeness of the code review of the change.

This set of features can then be used as an input to a traditional classifier (e.g.

Random Forests or Logistic Regression) to predict the defectiveness of code

changes.

The aforementioned metric-based features however do not represent the se-

mantic and syntactic structure of the actual code changes. In many cases,

two di↵erent code changes that have exactly the same metrics (e.g. the

same number of lines deleted and added) may generate di↵erent behaviour

when executed, and thus have a di↵erent likelihood of defectiveness. Previ-

ous studies have showed the usefulness of harvesting the semantic information

and syntactic structure hidden in source code to perform various software

engineering tasks such as code completion, bug detection and defect predic-

tion [215, 207, 163, 75, 131]. This information may enrich representations for

defective code changes, and thus improve JIT defect prediction.

A recent work [228] used a deep learning model (i.e. Deep Belief Network)

to improve the performance of JIT defect prediction models. However, their

approach does not leverage the true notions of deep learning as they still employ

the same set of features that are manually engineered as in previous work

implying that their model is not end-to-end trainable.

To more fully explore the power of deep learning for JIT defect prediction,

in this chapter, we present a new model (named DeepJIT) which is built upon

the well-known deep learning technique, namely Convolutional Neural Network

(CNN) [123]. CNN has produced many breakthroughs in Natural Language

Processing (NLP) [105, 54, 95, 236, 90]. Our DeepJIT model processes both

a commit message (in natural language), if available and the associated code

changes (in programming languages) and automatically extracts features that

represent the “meaning” of the commit. Unlike commit messages, code changes

are more complex as they include a number of deleted and added lines across
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multiple files. Our model automatically learns the semantic features of each

deleted or added line in each changed file. Those features are then aggregated

to generate a new representation of the changed file, which is used to construct

the features of the code changes in a given commit. This approach removes the

need for software practitioners to manually design and extract features, as was

done in previous work [151]. The features extracted from commit messages and

code changes are then collectively used to train a model to predict whether a

given commit is buggy or not.

The main contributions of our work include:

• An end-to-end deep learning framework (DeepJIT) to automatically ex-

tract features from both commit messages and code changes in a given

commit.

• An evaluation of DeepJIT on two software projects (i.e., QT and OPEN-

STACK). This dataset was originally collected by McIntosh and Kamei

to evaluate their proposed technique for JIT defect prediction [151] that

we use as one of the baselines. The experiments show the superiority of

DeepJIT compared to state-of-the-art baselines.

4.2 Background

In this section, we first present an example of a buggy change and briefly de-

scribe a typical buggy change identification process that is followed by QT and

OPENSTACK. We then introduce background knowledge about Convolutional

Neural Network (CNN).

4.2.1 Buggy Changes and Their Identification

Figure 4.1 shows an example of a buggy commit in OPENSTACK. The buggy

commit contains many pieces of information, i.e., a commit id (line 1), an

author name (line 2), a commit date (line 3), a commit message (line 4-10)
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1. commit d60f6efd7f70efba1ccd007d55b1fa740fb98c76
2. Author: Dan Prince <email address hidden>
3. Date: Mon Jan 14 12:26:36 2013 -0500
4. Name the securitygrouprules.direction enum. 
5. Updates to the SecurityGroupRule model and migration so that we
6. explicitly name the securitygrouprules.direction enum. This fixes 
7. 'Postgresql ENUM type requires a name.' errors.
8.
9. Fixes LP Bug #1099267.
10. Change-Id: Ia46fe8d4b0793caaabbfc71b7fa5f0cbb8c6d24b
11. diff --git a/quantum/db/migration/alembic_migrations/versions/3cb5d900c5de

_security_groups.py
12. index ff39de84a..cf565af0f 100644
13. --- a/quantum/db/migration/alembic_migrations/versions/3cb5d900c5de_

security_groups.py
14. +++ b/quantum/db/migration/alembic_migrations/versions/3cb5d900c5de_

security_groups.py
15. @@ -62,7 +62,10 @@ def upgrade(active_plugin=None, options=None):
16. - sa.Column('direction', sa.Enum('ingress', 'egress'), nullable=True),
17. +        sa.Column('direction',
18. +                  sa.Enum('ingress', 'egress',
19. +                          name='securitygrouprules_direction'),
20. +                  nullable=True),
21. diff --git a/quantum/db/securitygroups_db.py b/quantum/db/securitygroups_db.py
22. index 9903a6493..5bd890bbe 100644
23. --- a/quantum/db/securitygroups_db.py
24. +++ b/quantum/db/securitygroups_db.py
25. @@ -62,7 +62,8 @@ class SecurityGroupRule(model_base.BASEV2, models_v2.HasId,
26. - direction = sa.Column(sa.Enum('ingress', 'egress'))
27. +    direction = sa.Column(sa.Enum('ingress', 'egress',
28. +                                  name='securitygrouprules_direction'))

Figure 4.1: An example of a buggy commit change in OPENSTACK.

and a set of code changes (i.e., 11-28). A set of code changes includes changes

to multiple files and each file includes a number of deleted and added lines

representing the change. In Figure 4.1, line 16 (starting with -) and lines 17-20

(starting with +) indicate the deleted and added lines of a changed file (namely

3cb5d900c5de security groups.py), respectively. The commit message also

plays an important role as a good commit message can help maintainers to

speed up the reviewing process and write a good release note.

To review a commit, QT and OPENSTACK use Gerrit,3 which is a code

review tool for git-based software projects. The process of reviewing code

changes is as follows:

• Upload change revision: An author of a code change submits a new

change to Gerrit and invites reviewers to comment on it.

• Execute sanity tests: Sanity tests verify that the code changes are com-

pliant with the coding style conventions before sending the changes to

3
https://code.google.com/p/gerrit/
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Figure 4.2: A simple convolutional neural network architecture.

the reviewers.

• Solicit peer feedback: The reviewers are asked to examine the code

changes after it passes the sanity tests.

• Initiate an integration request: Teams are allowed to verify the code

changes before integrating it into git repositories.

• Execute integration tests: The integration testing system is run to ensure

that the code changes that are put in the git repository is clean.

• Final integration: After passing the integration testing, Gerrit automat-

ically commits the code changes into the git repository.

4.2.2 Convolutional Neural Network

One of the most promising neural networks is the Convolutional Neural Net-

work (CNN) [123]. CNNs have been widely used for many problems (i.e., image

pattern recognition, natural language processing, information retrieval, etc.)

and demonstrated to achieve promising results [100, 118, 115]. CNNs receive

an input and perform a product operation followed by a nonlinear function.

The last layer is the output layer containing objective functions [237] associated

with the labels of the input.

Figure 4.2 illustrates a simple CNN for a classification task. The CNN

includes an input layer, a convolutional layer, followed by the application of
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the rectified linear unit (RELU) which is a nonlinear activation function, a

pooling layer, a fully-connected layer, and an output layer. We briefly explain

these layers in the following paragraphs.

The input layer typically takes as an input a 2-dimensional matrix and

passes it through a series of convolutional layers. The convolutional layers play

a vital role in CNN and these layers takes advantage of the use of learnable

filters. These filters are small in spatial dimensionality, but they are applied

along the entirety of the depth of the input data. For example, given an

input data I 2 RH⇥W⇥D and a filter K 2 Rh⇥w⇥D, we produce an activation

map A 2 R(H�h)⇥(W�w)⇥1. The RELU, which outperforms other activation

functions [123], is then applied to each value of the activation map as follows:

f(x) = max(0, x) (4.1)

The pooling layer aims to reduce the dimensionality of the activation map

and the number of parameters in order to control overfitting [206]. The pooling

layer operates on the activation map and scales its dimensionality. There are

three di↵erent types of pooling layers:

• Max pooling takes the largest element from each region of the activation

map.

• Average pooling constructs the average value from each region of the

activation map.

• Sum pooling sums all the elements from each region of the activation

map.

In practice, max pooling has often been found to achieve a better performance

compared to the other two pooling techniques [233]. The output of the pooling

layer is flattened and directly passed to a fully connected layer. The output of

the fully connected layer is passed to the output layer to calculate an objective
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Figure 4.3: The general framework of the Just-In-Time defect prediction
model.

function (or a loss function). The objective function is normally optimized

using stochastic gradient descent (SGD) [34].

4.3 Proposed Approach

In this section, we first formulate the Just-In-Time (JIT) defect prediction

problem and provide an overview of our framework. We then describe the

details of each part inside the framework. Finally, we present an algorithm for

learning e↵ective settings of our model’s parameters.

4.3.1 Framework Overview

The goal of a JIT defect prediction model is to automatically classify a commit

change as buggy or clean. This helps software teams prioritize the e↵ort and

optimize testing and inspection. We consider the JIT defect prediction problem

as a learning task to construct prediction function f : X 7�! Y , where yi 2

Y = {0, 1} indicates whether a commit change xi 2 X is clean (yi = 0) or

contains a buggy code (yi = 1). The prediction function f can be learned by
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minimizing the following objective function:

min
f

X

i

L(f(xi), yi) + �⌦(f) (4.2)

where L(.) is the empirical loss function measuring the di↵erence between the

predicted and the output label, ⌦(f) is a regularization function to prevent over

fitting, and � the trade-o↵ between L(.) and ⌦(f). Figure 4.3 gives an overview

of the framework of the JIT defect prediction model (namely DeepJIT). The

model consists of four parts: the input layer, the feature extraction layer, the

feature combination layer, and the output layer. We explain the details of each

part in the following subsections.

4.3.2 Parsing a Commit to Input Layer

To feed the raw textual data to the convolutional layers for feature learning,

we first encode a commit message and code changes into arrays and feed them

in the input layer. For the commit message, we use NLTK [142], which is a

suite of libraries for natural language processing (NLP), to extract a sequence

of words from it. We employ PorterStemmer [220] to produce the root forms

of words. We also remove stop words and rare words (e.g. those occurring

fewer than three times in the commit messages).

We then again use NLTK for parsing the code changes of a given commit.

In particular, each change file in the code changes is parsed into a set of deleted

and added lines, and each line is parsed into a sequence of words. We ignore

comments and blank lines in the change file (see Figure 4.5). Following a

previous work [218], we replace a number (i.e., an integer, real number, or

hexadecimal number) with a special <num> token. We also replace rare code

tokens (e.g. those occurring fewer than three times in the commit codes) and

tokens existing in test data but absent in the training data with a special

<unk> token. We add a <deleted> token or a <added> token at the beginning
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Figure 4.4: A convolutional network architecture for commit message.

of a deleted or added line respectively so that DeepJIT recognizes whether this

code line is a deleted line or an added line.

We represent each word in the commit message and code changes as a

dimensional vector. After the preprocessing step, Xm

i
and X c

i
, which are the

encoded data of the commit message and code changes respectively, are passed

to the convolutional layers to generate the commit message and code change

features. In the convolutional layers, the commit messages and code changes

are processed independently to extract the features based on each type of

textual information. These features are then combined into a unified feature

representation, and followed by a linear hidden layer connected to the output

layer used to produce the output label Y indicating whether the commit change

xi is clean or contains a buggy code.

The core of the DeepJIT lies in the convolutional network layers for code

changes (see Section 4.3.4) and the feature combination layers (see Section 4.3.5).

In the following subsections, we firstly discuss the convolutional layers for the

commit message and then present the core parts of DeepJIT in Section 4.3.4

and Section 4.3.5.

69



CHAPTER 4. DEEP LEARNING FRAMEWORK FOR JUST-IN-TIME DEFECT PREDICTION

4.3.3 Convolutional Network Architecture for Commit

Message

CNN was first used to automatically learn the salient features in the im-

ages from raw pixel values [115]. Recently, CNN has also generated mul-

tiple breakthroughs in various Natural Language Processing (NLP) applica-

tions [105, 54, 95, 236, 90]. The architecture of CNN allows it to extract the

structural information features from the raw text data of a word embedding.

Figure 4.4 presents an architecture of CNN for commit messages. The ar-

chitecture includes a convolutional layer with multiple filters and a nonlinear

activation function (i.e., RELU). We briefly explain it in the following para-

graphs.

Given a commit messagem, which is essentially a sequence of words [w1, . . . , w|m|],

we aim to obtain its matrix representation m ! M 2 R|m|⇥dm , where the

matrix M comprises a set of words wi ! Wi, i = 1, . . . , |m| in the given com-

mit message. Each word wi now is represented by an embedding vector, i.e.,

Wi 2 Rdm , where dm is a dm-dimensional matrix of a word appearing in the

commit message.

Following previous works [105, 236], the dm-dimensional embedding vector

is extracted from an embedding matrix that is randomly initialized and jointly

learned during the training process. Hence, the matrix representation M of

the commit message m with a sequence of |m| words can be represented as

follows:

M = [W1, . . . ,W|m|] (4.3)

For the purpose of parallelization, all commit messages are padded or truncated

to the same number of words |m|.

To extract the commit message’s salient features, a filter f 2 Rk⇥dm , fol-

lowed by a non-linear activation function ↵(.), is applied to a window of k
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words to produce a new feature as follows:

ci = ↵(f ⇤Mi:i+k�1 + bi) (4.4)

where ⇤ is the sum of the element-wise product, and bi 2 R is the bias value.

We choose the rectified linear unit (RELU) as our activation function since it

has been found to achieve a better performance compared to other activation

functions [160, 48, 72]. The filter f is applied to every k-words of the commit

message, these results of this process are then concatenated to product output

vector c such that:

c = [c1, . . . , c|m|�k+1] (4.5)

By applying the filter f on every k-words of the commit message, the CNN

is able to exploit the semantic information of its input. In practice, the CNN

model may include multiple filters with di↵erent k. These hyperparameters

need to be set by the user before starting the training process. To characterize

the commit message, we apply a max pooling operation [123] over the output

vector c to obtain the highest value as follows:

max
1i|m|�k+1

ci (4.6)

The results of the max pooling operation from each filter are then used to

form an embedding vector (i.e., zm) of the commit message (see Figure 4.3).

4.3.4 Convolutional Network Architecture for Code Changes

In this section, we focus on building convolutional networks for code changes

to solve the Just-In-Time defect prediction problem. A code change, although

it can be viewed as a sequence of words, di↵ers from natural language mainly

because of its structure. Natural language carries sequences of words, and

the semantics of a natural language sequence of words can be inferred from
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Figure 4.5: The overall structure of convolutional neural network for each
change file in code change. The first convolutional and pooling layers use to
learn the semantic features of each added or removed code line based on the
words within the added or removed line, and the subsequent convolutional and
pooling layers aim to learn the interactions between added or removed code
lines with respect to the code change structure. The output of the convolu-
tional neural network is the embedding vector zFi

representing the features of
the each changed.

a bag of words [162]. On the other hand, a code change includes changes in

di↵erent files and di↵erent kinds of changes (removals or additions) for each

file. Hence, to extract salient features from the code changes, the convolutional

networks should obey the code changes structure. Based on the aforementioned

considerations, we propose a deep learning framework for extracting features

from code changes based on convolutional neural networks.

Given a code change C including a change in di↵erent source code files

[F1, . . . ,Fn], where n is a number of files in the code change, we aim to extract

features for each di↵erent file Fi. The features of each file are then concatenated

to each other to represent the features for the given code change. In the rest of

this section, we explain how the convolutional networks can extract the features

for each file in the code change and how these features are concatenated.

Suppose Fi represents a change in each di↵ file. Fi contains a number of

lines (removals or additions) in a code change file. We also have a sequence of

words in each line in Fi. As described in Section 4.3.3, we first aim to obtain

the matrix representation Fi ! Fi 2 RN⇥L⇥dc , where N is the number of

lines in a code change file, L presents a sequence of words in each line, and
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dc is a number of dimension of a word appearing in the Fi. For the purposed

of parallelization, all the source code changes are padded or truncated to the

same N and L.

For each line Ni 2 RL⇥dc , we follow the convolutional network architecture

for a commit message described in Section 4.3.3 to extract an embedding vec-

tor, zNi . The embedding vector zNi represents the features or the semantic of

a code line based on the words within the code line. These features zNi are

then stacked to produce the new representation of the code change file Fi as

follows:

Fi = [zN1 , . . . , zN|N| ] (4.7)

We again apply the convolutional layer and pooling layer on the new repre-

sentation of the code change (i.e., Fi) to extract its embedding vector, namely

zFi
. The vector zFi

represents the features or the semantics conveyed by the

interactions between deleted or added lines. Figure 4.5 presents the overall

convolutional network architecture for each change file Fi in code changes.

The first convolutional and pooling layers aim to learn a new representation

of the file, and the subsequent convolutional and pooling layers aim to extract

the salient features from the new representation of the change file.

For each change file Fi 2 C, we build its embedding vector zFi
. These

embedding vectors are then concatenated to build a new embedding vector

representing the salient features of the code change C as follows:

zC = zF1
� · · ·� zFn

(4.8)

where � is the concatenation operator.

4.3.5 Feature Combination

Figure 4.6 shows the details of the architecture of the feature combination.

The inputs of this architecture are the two embedding vectors zm and zC
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Figure 4.6: The structure of our fully-connected network for feature combina-
tion. The embedding vector of the commit message zm and the code change
zC are concatenated to generate a single vector (i.e., z).

which represent the salient features extracted from the commit message and

the code change, respectively.

These vectors are then concatenated to generate a unified feature represen-

tation, i.e., a new vector (z), representing the commit change:

z = zm � zC (4.9)

The new vector then feed into a fully-connected (FC) layer, which outputs

a vector h as follows:

h = ↵(wh · z+ bh) (4.10)

where · is a dot product, wh is a weight matrix of the vector h and the FC layer,

bh is the bias value, and ↵(·) is the RELU activation function. The vector h is

passed to an output layer to compute a probability score for a given commit:

Finally, the vector h is passed to an output layer, which computes a prob-

ability score for a given patch:

p(yi = 1|xi) =
1

1 + exp(�h ·wo)
(4.11)

where wo is the weight matrix between the FC layer and the output layer.
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4.3.6 Parameter Learning

In the training process, DeepJIT aims to learn the following parameters: the

word embedding matrices of the commit message and the commit code in a

given commit, the convolutional layer matrices, the weights and bias of the

fully connected layer, and the output layer.

Just-In-Time defect prediction datasets often su↵er from the imbalance

problem: only a few commits contain a buggy code while a large number

of commits are clean. This imbalance increases the di�culty in learning a

prediction function [42]. Specifically, the imbalance problem may a↵ect the

performance of a defect prediction model as the overall accuracy is biased to

the majority class (e.g., commits containing buggy code), leading to misclas-

sification of the minority class. Inspired by Zhou and Liu [239] and Kukar

et al. [116], we propose an unequal misclassification loss function that specif-

ically aims to reduce the negative influence of the imbalanced data. Unlike

traditional methods, this “cost-senstive” learning technique does not treat all

misclassifications equally. As our datasets is imbalance, we impose a higher

cost on misclassifications of the minority class (i.e., buggy commits) than we

do with misclassifications of the majority class (i.e., clean commits). Details

of this technique is as follows.

Let wn and wp denote the cost of incorrectly associating a commit change

and the cost of missing a buggy commit change, respectively. The parameters

of DeepJIT can be learned by minimizing the following objective function:

O = � log

 
Y

i=1

p(yi|xi)

!
+

�

2
k✓k22

= �
X

i=1

[wn(1� yi) log(1� p(yi|xi))

+wpyi log(p(yi|xi))] +
�

2
k✓k22

(4.12)

where p(yi|xi) is the probability score from the output layer and ✓ contains all
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parameters our model. The term �

2k✓k
2
2 is used to mitigate data overfitting in

training deep neural networks [38]. We also apply the dropout technique [195]

to improve the robustness of our model.

We use Adam [107], which is a variant of stochastic gradient descent (SGD) [34],

to minimize the objective function in the equation 4.12. We choose Adam due

to its computational e�ciency and low memory requirements compared to

other optimization techniques [107, 17, 19]. To e�ciently compute the gra-

dients in linear time (with respect to the neural network size), we use back-

propagation [68], which is a simple implementation of the chain rule of partial

derivatives.

4.4 Experiments

In this section, we first describe the dataset used in our experiments. We

then introduce all baselines and the evaluation metric. Finally, we present our

research questions and results.

4.4.1 Dataset

We used two well-known software projects (i.e., QT and OPENSTACK) to

evaluate the performance of Just-In-Time (JIT) models. QT,4 developed by

the Qt Company, is a cross-platform application framework and allows con-

tributions from individual developers and organizations. OPENSTACK 5 is

an open-source software platform for cloud computing and is deployed as an

infrastructure-as-a-service which allows customers to access its resources.

Table 4.1: Summary of the dataset used in this work

Dataset
Timespan Commits

Start End Total Defective

QT 06/2011 03/2014 25,150 2,002 (8%)
OPENSTACK 11/2011 02/2014 12,374 1,616 (13%)

4
https://www.qt.io/

5
https://www.openstack.org/
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Table 4.1 briefly summarizes the dataset. This dataset was originally col-

lected and cleaned by McIntosh and Kamei [151] for Just-In-Time defect pre-

diction. After their cleaning process, the QT dataset contains 25,150 com-

mits, while the OPENSTACK dataset contains 12,374 commits. McIntosh and

Kamei stratified the dataset into six month periods for time-sensitive training-

and-testing settings.

4.4.2 Baselines

We compared DeepJIT with two state-of-the-art baselines for Just-In-Time

(JIT) defect prediction:

• JIT: This method for identifying buggy code changes was proposed by

McIntosh and Kamei [151]. The method used a nonlinear variant of

multiple regression modeling [61] to build a classification model for auto-

matically identifying defects in commits. McIntosh and Kamei manually

designed a set of code features, using six families of code change proper-

ties, which were primarily derived from prior studies [99, 103, 112, 156].

These properties were: the magnitude of changes, the dispersion of the

changes, the defect proneness of prior changes, the experience of the

author, the code reviewers, and the degree of participation in the code

review. Table 4.2 summarizes the code features extracted from code

change properties.

• DBNJIT: This approach adopted Deep Belief Network (DBN) [76] to

generate a more expressive set of features from an initial feature set [228].

The generated feature set, which is a nonlinear combination of the initial

features, was put into a machine learning classifier [31] to predict buggy

commits. For a fair comparison, we used McIntosh and Kamei [151]’s

features as the initial feature set for DBNJIT.

For all the above-mentioned techniques, we employ the same parameters
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Table 4.2: A summary of McIntosh and Kamei’s code features [151].

Property Description Rationale

S
iz
e Lines

deleted
The number of deleted lines. The more deleted or added code, the more

likely that defects may appear [159, 97].
Lines
added

The number of added lines.

D
i↵
u
si
on Subsystems The number of modified subsys-

tems.
Scattered changes may have more defects com-
pared to focused one [51, 70].

Directories The number of modified direc-
tories.

Files The number of modified files.
Entropy The spread of modified lines

across file.

H
is
to
ry

Unique
changes

The number of prior changes to
the modified files.

More changes may lead to have defects
since developers need to track many previous
changes [99].

Developers The number of developers who
have changed the modified files
in the past.

Files touched by many developers may include
defects [150].

Age The time interval between the
last and current changes.

More recently changed code likely contains de-
fects compared to older code [65].

A
u
th
or
/R

ev
.
E
xp

er
ie
n
ce

Prior
changes

The number of prior changes
that an actor has participated
in.

Changes produced by novices are likely to be
more defective than changes produced by ex-
perienced developers [156].

Recent
changes

The number of prior changes
that an actor has participated
in weighted by the age of the
changes (older changes are given
less weight than recent ones).

Subsystem
changes

The number of prior changes to
the modified subsystem(s) that
an actor has participated in.

Awareness The proportion of the prior
changes to the modified subsys-
tem(s) that an actor has partic-
ipated in.

Changes made by developers who are aware of
the prior changes in the impacted subsystems
are likely to be less risky.

R
ev
ie
w

Iterations The number of times that a
change was revised prior to in-
tegration.

The quality of a change likely improves with
each iteration. Hence, changes that undergo
iterations prior to integration may be less
risky [174, 202].

Reviewers The mumber of reviewers who
have voted on whether a change
should be integrated or aban-
doned.

Changes observed by many reviewers are likely
to be less risky [183].

Comments The number of non-automated,
non-owner comments posted
during the review of a change.

Changes with short discussions may be more
risky [152, 153].

Review
window

The length of time between the
creation of a review request and
its final approval for integration.

Changes with shorter review windows may be
more risky [174, 202].

and settings as described in the respective papers.
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Figure 4.7: The AUC results of DeepJIT across two di↵erent hyperparameters
in QT project.

4.4.3 Evaluation Metric

To evaluate the accuracy of Just-In-Time (JIT) models, we calculate threshold-

independent measures of model performance. Since our dataset is imbalanced,

we avoid using threshold-dependent measures (i.e., precision, recall, or F1)

since these measures strongly depend on arbitrary thresholds [164, 66]. Fol-

lowing the previous work by McIntosh and Kamei [151], we use the Area Under

the receiver operator characteristics Curve (AUC) to measure the discrimina-

tory power of DeepJIT, i.e., its ability to di↵erentiate between defective or

clean commits. AUC computes the area under the curve plotting the true

positive rate against the false positive rate, while applying multiple thresholds

to determine if a commit is buggy or not. The values of AUC range between

0 (worst discrimination) and 1 (perfect discrimination).

4.4.4 Training and hyperparameters

One of the key challenges in training DeepJIT is how to select the dimensions

of the word vectors for the commit message (dm) and code changes (dc), and

the size of the convolution layers (i.e., see Section 4.3.3 and Section 4.3.4). We
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Figure 4.8: The AUC results of DeepJIT across two di↵erent hyperparameters
in OPENSTACK project.

evaluated the performance of DeepJIT, using 5 -fold cross validation, across dif-

ferent word dimensions and number of filters. Figure 4.7 and Figure 4.8 present

the AUC results of DeepJIT for these hyperparameters. The figures show that

DeepJIT achieves the best AUC results when the dimension of word vectors

and the number of filters are set to 64. We set the other hyperparameters as

follows: The batch size was set to 32. The size of DeepJIT’s fully-connected

layer described in Section 4.3.5 was set to 512. These hyperparameter settings

are commonly used in prior deep learning work [188, 84, 83, 77].

We trained DeepJIT using the Adam method [107] with shu✏ed mini-

batches. We also trained DeepJIT for 100 epochs. We applied an early stopping

strategy [176, 38] to avoid overfitting during the training process. We stopped

the training if the value of the objective function (see Equation 5.12) has not

been updated in the last 5 epochs.

4.4.5 Research Questions and Results

We evaluated the accuracy of a trained JIT model in predicting buggy changes

using test data. In particular, we considered three evaluation settings:
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Period 1 Period 2 Period 3 Period 4 Period 5

Long-period training data Short-period 
training data

Figure 4.9: An example of choosing the training data for short-period and
long-period models. The last period is used as testing data.

• Cross-validation: To evaluate the machine learning algorithm, most

people use k-fold cross-validation [111] in which a dataset is randomly

divided to k folds, and each fold is considered as testing data for eval-

uating JIT model while k � 1 folds are considered as training data. In

this case, the JIT model is trained on a mixture of past and future data.

In our experiments, we set k = 5.

• Short-period: The JIT model is trained using commits that occurred

at one time period. We assume that older commit changes have charac-

teristics that are di↵erent from those of the latest commits.

• Long-period: Inspired by Rahman et al. [178], suggesting that larger

amounts of training data tend to achieve better performance in defect

prediction problems, we train the JIT model using all commits that oc-

curred before a particular period. We discover whether additional data

may improve the performance of the JIT model.

Figure 4.9 describes how the training data is selected to train models fol-

lowing the short-period and long-period settings. We used the last period (i.e.,

period 5) as the testing data. While the short-period model was trained using

the commits that occurred during period 4, the long-period model was trained

using the commits that occurred from period 1 to 4. After training the short-

period and long-period models, we measured their performance using the AUC

evaluation metric described in Section 4.4.3.

RQ1: How e↵ective is DeepJIT compared to the state-of-the-art

baseline?
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Table 4.3: The AUC results of DeepJIT vs. with other baselines in three types
of JIT models: cross-validation, short-period, and long-period.

Settings Models QT OPENSTACK

Cross-validation

JIT 0.701 0.691
DBNJIT 0.705 0.694
DeepJIT 0.768 0.751

Short-Period

JIT 0.703 0.711
DBNJIT 0.714 0.716
DeepJIT 0.764 0.781

Long-period

JIT 0.702 0.706
DBNJIT 0.708 0.712
DeepJIT 0.765 0.771

Table 4.3 shows the AUC results of DeepJIT as well as baselines consid-

ering the three evaluation settings: cross-validation, short-period, and long-

period. The di↵erence between the results obtained using cross-validation,

short-period, and long-period settings is relatively small (i.e., below 2.2%)

which suggests that there is no di↵erence between training on past or future

data. In the QT project, DeepJIT achieved AUC scores of 0.768, 0.764, and

0.765 in three di↵erent evaluation settings: cross-validation, short-period, and

long-period, respectively. We compare DeepJIT to the best performing base-

line (i.e., DBNJIT), DeepJIT achieved improvements of 8.96%, 7.00%, and

8.05% in terms of AUC. In the OPENSTACK project, DeepJIT also achieved

improvements of 8.21%, 9.08%, and 8.29% in terms of AUC compared to DBN-

JIT (the best performing baseline). We also employed the Scott-Knott test [63]

on the cross-validation evaluation setting to statistically compare the di↵er-

ences between the three considered JIT models. The results show that DeepJIT

consistently appears in the top Scott-Knott ESD rank in terms of AUC (i.e,

DeepJIT > DBNJIT > JIT).

RQ2: Does the proposed model benefit from both the commit mes-

sage and the code changes?

To answer this question, we employed an ablation test [113, 138], by ignor-

ing the commit message and the code change in a commit and then evaluate

the AUC . Specifically, we created two di↵erent variants of DeepJIT, namely
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Table 4.4: Contribution of feature components in DeepJIT.

Settings Models QT OPENSTACK

Cross-validation

DeepJIT-Msg 0.641 0.689
DeepJIT-Code 0.738 0.729
DeepJIT 0.768 0.751

Short-Period

DeepJIT-Msg 0.609 0.583
DeepJIT-Code 0.734 0.769
DeepJIT 0.764 0.781

Long-period

DeepJIT-Msg 0.638 0.659
DeepJIT-Code 0.727 0.738
DeepJIT 0.765 0.771

DeepJIT-Msg and DeepJIT-Code. DeepJIT-Msg only considers commit mes-

sage information while DeepJIT-Code only uses commit code information. We

again used the three evaluation settings (i.e., cross-validation, short-period,

and long-period) and the AUC scores to evaluate the performance of our mod-

els. Table 4.4 shows that the performance of DeepJIT degrades if we ignore

either of the considered types of information (i.e. commit messages or code

changes). The AUC scores dropped by 19.81%, 28.45%, and 19.01% in the

project QT and by 9.00%, 33.96%, and 16.00% in the project OPENSTACK

for the three evaluation settings if we the ignore commit messages. The AUC

scores dropped by 4.07%, 4.09%, and 5.23% in the project QT and by 3.02%,

1.56%, and 4.47% in the project OPENSTACK for the three evaluation settings

if we ignore the code change information. It suggests that each information

type contributes to DeepJIT’s performance. Moreover, it also indicates that

code changes are more important to detect buggy commits than commit mes-

sages.

RQ3: Does DeepJIT benefit from the manually extracted code changes

features?

To address this question, we incorporated the code features, derived by

McIntosh and Kamei et al. [151], into our proposed model. Specifically, the

code features, namely zr, are concatenated with the two embedding vectors

zm and zC , representing the features of the commit message and code change
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Table 4.5: Combination of DeepJIT with the manually crafted code features
extracted by McIntosh and Kamei et al. [151].

Settings Models QT OPENSTACK

Cross-validation
DeepJIT 0.768 0.751
DeepJIT-Combined 0.779 0.76

Short-Period
DeepJIT 0.764 0.781
DeepJIT-Combined 0.788 0.814

Long-period
DeepJIT 0.765 0.771
DeepJIT-Combined 0.786 0.799

Table 4.6: Training time of DeepJIT

Dataset Cross-validation Short-period Long-period

QT 5 hours 43 mins 17.2 mins 1 hours 18 mins
OPENSTACK 12 hours 15 mins 10.1 mins 2 hours 37 mins

(see Section 4.3.5), to build a new single vector z as follows:

z = zm � zC � zr (4.13)

where � is the concatenation operator. Table 4.5 shows the AUC results of a

DeepJIT variant (referred to as DeepJIT-Combined) that also leverages McIn-

tosh and Kamei [151]’s manually crafted features. We find that the AUC scores

increased by 1.43%, 3.14%, and 2.75% in the project QT and by 1.20%, 4.23%,

and 3.63% in the project OPENSTACK for the three evaluation settings (i.e.

cross-validation, short-period, long-period). DeepJIT-Combined improved the

best baseline model (i.e. DBNJIT) by 10.50%, 10.36%, and 11.02% in the

project QT and by 9.51%, 13.69%, 12.22% in the project OPENSTACK for

the there evaluation settings. This suggests that the manually extracted code

features are complementary and can be used to slightly improve the perfor-

mance of our proposed approach.

RQ4: What are the time costs of DeepJIT?

We trained and tested DeepJIT on an NVIDIA DGX1 server with Tesla

P100 [62]. Table 4.6 shows the time cost of training DeepJIT for the three eval-

uation settings (i.e., cross-validation, short-period, and long-period) on the QT
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and OPENSTACK. The cross-validation setting requires the longest training

time since we performed 5-fold cross-validation to evaluate the performance of

DeepJIT. The long-period setting requires more training time than the short-

period setting since it considers all the commits occurring before a particular

period. Once DeepJIT has been trained, it only takes a few milliseconds to

generate the prediction score for a given commit.

4.5 Threats to Validity

We mitigated concerns related to construct validity by evaluating our approach

on a publicly available dataset that has been used in previous work. This

dataset contains commits extracted from real projects (QT and OPENSTACK)

and buggy/no-bug labels on those commits. Threats to conclusion validity

were also minimized by using Area Under the Curve (AUC), a standard per-

formance measure recommended for assessing the predictive performance of

defect prediction models [198].

We have compared our approach against two baselines which have been

proposed and implemented in existing work. Since the source code of their

original implementations were not made publicly available, we needed to re-

implement our own versions of those techniques. Although our implementation

closely follows the description of their work, it might not have all of the details

of the original implementation, specifically those not explicitly presented in

their papers. Our study considers two large open source projects which are

significantly di↵erent in size, complexity and revision history. However, due

to small sample sizes, our findings may not generalize to all software projects.

Further studies are needed to confirm our results for other types of software

projects.
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4.6 Chapter Summary

In this chapter, we propose an end-to-end deep learning model (namely Deep-

JIT) for Just-In-Time defect prediction problem. For a given commit, DeepJIT

automatically extracts features from the commit message and the set of code

changes. These features are then combined to evaluate how likely the commit

is buggy. DeepJIT also allows users to add their manually crafted features to

make it more robust. We evaluate DeepJIT on two popular software projects

(i.e. QT and OPENSTACK) on three evaluation settings (i.e. cross-validation,

short-period, and long-period). The evaluation results show that compared to

the best performing state-of-the-art baseline (DBNJIT), the best variant of

DeepJIT (DeepJIT-Combined) achieves improvements of 10.50%, 10.36%, and

11.02% in the project QT and 9.51%, 13.69%, 12.22% in the project OPEN-

STACK in terms of the Area Under the Curve (AUC).
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Chapter 5

Hierarchical Deep

Learning-Based Stable Patch

Identification

Linux kernel stable versions serve the needs of users who value stability of

the kernel over new features. The quality of such stable versions depends

on the initiative of kernel developers and maintainers to propagate bug fix-

ing patches to the stable versions. Thus, it is desirable to consider to what

extent this process can be automated. A previous approach relies on words

from commit messages and a small set of manually constructed code features.

This approach, however, shows only moderate accuracy. In this chapter, we

investigate whether deep learning can provide a more accurate solution. We

propose PatchNet, a hierarchical deep learning-based approach capable of au-

tomatically extracting features from commit messages and commit code and

using them to identify stable patches. Unlike DeepJIT which simply merges

the removed and added code in the code changes, PatchNet contains a deep

hierarchical structure that mirrors the hierarchical and sequential structure

of the removed and added code, making it distinctive from the existing deep

learning models on source code. Experiments on 82,403 recent Linux patches
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confirm the superiority of PatchNet against various state-of-the-art baselines,

including the one recently-adopted by Linux kernel maintainers.

5.1 Introduction

The Linux kernel follows a two-tiered release model in which a mainline ver-

sion, accepting bug fixes and feature enhancements, is paralleled by a series of

stable versions that accept only bug fixes [125]. The mainline serves the needs

of users who want to take advantage of the latest features, while the stable

versions serve the needs of users who value stability, or cannot upgrade their

kernel due to hardware and software dependencies. To ensure that there is

as much review as possible of the bug fixing patches and to ensure the high-

est quality of the mainline itself, the Linux kernel requires that all patches

applied to the stable versions pass through the mainline first. A mainline sub-

system developer or maintainer may identify a patch as a bug fixing patch

appropriate for stable kernels and add to the commit message a Cc: stable

tag (stable@vger.kernel.org). Stable-kernel maintainers then extract such an-

notated commits from the mainline commit history and apply the resulting

patches to the stable versions that are a↵ected by the bug.

A patch consists of a commit message followed by the code changes, ex-

pressed as a unified di↵ [146]. The di↵ consists of a series of changes (removed

and added lines of code), separated by lines beginning with @@ indicating the

number of the line in the a↵ected source file at which the subsequent change

should be applied. Each block of code starting with an @@ line is referred to

as a hunk. Fig. 5.1 shows three patches to the Linux kernel. The first patch

changes various return values of the function csum tree block. The commit

message is on lines 1-10 and the code changes are on lines 11-25. The code

changes consist of multiple hunks, only the first of which is shown in detail

(lines 15-23). In the shown hunk, the function called just previously to the
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Abstract—Linux kernel stable versions serve the needs of users who
value stability of the kernel over new features. The quality of such stable
versions depends on the initiative of kernel developers and maintainers
to propagate bug fixing patches to the stable versions. Thus, it is desir-
able to consider to what extent this process can be automated. A pre-
vious approach relies on words from commit messages and a small set
of manually constructed code features. This approach, however, shows
only moderate accuracy. In this paper, we investigate whether deep
learning can provide a more accurate solution. We propose PatchNet,
a hierarchical deep learning-based approach capable of automatically
extracting features from commit messages and commit code and using
them to identify stable patches. PatchNet contains a deep hierarchical
structure that mirrors the hierarchical and sequential structure of commit
code, making it distinctive from the existing deep learning models on
source code. Experiments on 82,403 recent Linux patches confirm
the superiority of PatchNet against various state-of-the-art baselines,
including the one recently-adopted by Linux kernel maintainers.

1 INTRODUCTION

The Linux kernel follows a two-tiered release model in
which a mainline version, accepting bug fixes and feature
enhancements, is paralleled by a series of stable versions
that accept only bug fixes [37]. The mainline serves the
needs of users who want to take advantage of the latest
features, while the stable versions serve the needs of users
who value stability, or cannot upgrade their kernel due to
hardware and software dependencies. To ensure that there
is as much review as possible of the bug fixing patches and
to ensure the highest quality of the mainline itself, the Linux
kernel requires that all patches applied to the stable versions
pass through the mainline first. A mainline subsystem de-
veloper or maintainer may identify a patch as a bug fixing
patch appropriate for stable kernels and add to the commit
message a Cc: stable tag (stable@vger.kernel.org). Stable-
kernel maintainers then extract such annotated commits
from the mainline commit history and apply the resulting
patches to the stable versions that are affected by the bug.

Fig. 1 shows a bug fixing patch that has been applied
to the stable version derived from Linux v4.5. This patch
adjusts a returned error code that may influence the value

1 commit 342da5cefddbf818e1cb59537e021cdad9744e93

2 Author: Alex Lyakas <...>

3 Date: Thu Mar 10 13:09:46 2016 +0200

4
5 btrfs: csum_tree_block: return proper errno value

6
7 commit 8bd98f0e6bf792e8fa7c3fed709321ad42ba8d2e upstream.

8
9 Signed-off-by: Alex Lyakas <...>

10 Reviewed-by: Filipe Manana <...>

11 Signed-off-by: David Sterba <...>

12 Signed-off-by: Greg Kroah-Hartman <...>

13
14 diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c

15 index d8d68af..87946c6 100644

16 --- a/fs/btrfs/disk-io.c

17 +++ b/fs/btrfs/disk-io.c

18 @@ -303,7 +303,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,

19 err = map_private_extent_buffer(buf, offset, 32,

20 &kaddr, &map_start, &map_len);

21 if (err)

22 - return 1;

23 + return err;

24 cur_len = min(len, map_len - (offset - map_start));

25 crc = btrfs_csum_data(kaddr + offset - map_start,

26 crc, cur_len);

27 @@ -313,7 +313,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,

28 ...

Fig. 1. A sample bug fixing patch in Linux kernel v4.5.

reported at the user level. As illustrated in Fig. 1, a patch
contains both a textual commit message (lines 5-12) and a
set of diff code elements (lines 14-28), i.e., changes that are
applied to the affected file. A developer (author) submits
such a patch to the Linux kernel maintainers. The maintain-
ers decide whether the patch should be integrated into the
mainline kernel. A developer can include a Cc: stable tag
to a patch directly, to be checked by the maintainers, or a
maintainer can add a Cc: stable tag when committing the
patch.

The quality of the stable kernels critically relies on the
effort that the developers and subsystem maintainers put
into labeling patches as relevant to stable kernels, i.e., identi-
fying stable patches. This manual effort represents a potential
weak point in the development process, as the developers
and maintainers may forget to label some relevant patches,
and apply different criteria for selecting them. While the
stable-kernel maintainers can themselves additionally pick
up relevant patches from the mainline commits, there are
hundreds of mainline commits per day, and many will

(a) A fix of a bug that can impact the user level.

1 commit 8bd98f0e6bf792e8fa7c3fed709321ad42ba8d2e
2 Author: Alex Lyakas <alex.bolshoy@gmail.com>
3 Date: Thu Mar 10 13:09:46 2016 +0200
4
5 btrfs: csum_tree_block: return proper errno value
6
7 Signed-off-by: Alex Lyakas <alex@zadarastorage.com>
8 Reviewed-by: Filipe Manana <fdmanana@suse.com>
9 Signed-off-by: David Sterba <dsterba@suse.com>

10
11 diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
12 index d8d68af..87946c6 100644
13 --- a/fs/btrfs/disk-io.c
14 +++ b/fs/btrfs/disk-io.c
15 @@ -303,7 +303,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,
16 err = map_private_extent_buffer(buf, offset, 32,
17 &kaddr, &map_start, &map_len);
18 if (err)
19 - return 1;
20 + return err;
21 cur_len = min(len, map_len - (offset - map_start));
22 crc = btrfs_csum_data(kaddr + offset - map_start,
23 crc, cur_len);
24 @@ -313,7 +313,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,
25 ...

(a) A fix of a bug that can impact the user level.
1 commit 7b0692f1c60a9551f8ad5fe706b79a23720a196c
2 Author: Andy Shevchenko <...>
3 Date: Wed Aug 14 11:07:11 2013 +0300
4
5 HID: hid-sensor-hub: change kmalloc + memcpy by kmemdup
6
7 The patch substitutes kmemdup for kmalloc followed by memcpy.
8
9 Signed-off-by: Andy Shevchenko <...>

10 Acked-by: Srinivas Pandruvada <...>
11 Signed-off-by: Jiri Kosina <...>
12
13 diff --git a/drivers/hid/hid-sensor-hub.c b/drivers/hid/hid-sensor-hub.c
14 index 1877a2552483..e46e0134b0f9 100644
15 --- a/drivers/hid/hid-sensor-hub.c
16 +++ b/drivers/hid/hid-sensor-hub.c
17 @@ -430,11 +430,10 @@ static int sensor_hub_raw_event(struct hid_device *hdev,
18 ...
19 - pdata->pending.raw_data = kmalloc(sz, GFP_ATOMIC);
20 - if (pdata->pending.raw_data) {
21 - memcpy(pdata->pending.raw_data, ptr, sz);
22 + pdata->pending.raw_data = kmemdup(ptr, sz, GFP_ATOMIC);
23 + if (pdata->pending.raw_data)
24 pdata->pending.raw_size = sz;
25 - } else
26 + else
27 pdata->pending.raw_size = 0;
28 ...

(b) A refactoring.
1 commit: 501bcbd1b233edc160d0c770c03747a1c4aa14e5
2 Author: Thierry Reding <...>
3 Date: Wed Apr 14 09:52:31 2014 +0200
4
5 drm/tegra: dc - Do not touch power control register
6
7 Setting the bits in this register is dependent on the output type driven
8 by the display controller. All output drivers already set these properly
9 so there is no need to do it here again.

10
11 Signed-off-by: Thierry Reding <...>
12
13 diff --git a/drivers/gpu/drm/tegra/dc.c b/drivers/gpu/drm/tegra/dc.c
14 index 8b21e20..33e03a6 100644
15 --- a/drivers/gpu/drm/tegra/dc.c
16 +++ b/drivers/gpu/drm/tegra/dc.c
17 @@ -743,10 +743,6 @@ static void tegra_crtc_prepare(struct drm_crtc *crtc)
18 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
19 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
20 - value = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
21 - PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
22 - tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
23 /* initialize timer */
24 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
25 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);

(c) A fix of a minor performance bug.

Fig. 1: Example patches to the Linux kernel.

the commit message and the code changes, to understand
the impact of the changes on the kernel code.

As patches for stable kernels contain fixes for bugs that
can impact the user level, the quality of the stable kernels
critically relies on the effort that the developers and sub-
system maintainers put into identifying and labeling such
patches, which we refer to as stable patches. This manual
effort represents a potential weak point in the Linux kernel
development process, as the developers and maintainers

may forget to label some relevant patches, and apply dif-
ferent criteria for selecting them. While the stable-kernel
maintainers can themselves additionally pick up relevant
patches from the mainline commits, there are hundreds of
mainline commits per day, and many will likely slip past.
This task can thus benefit from automated assistance.

One way to provide such automated assistance is to
build a tool that learns from historical data how to differ-
entiate stable from non-stable patches. However, building
such a tool poses some challenges. First, a patch contains
both a commit message (in natural language) and some code
changes. While the commit message is a sequence of words,
and is thus amenable to existing approaches on classifying
text, the code changes have a more complex structure.
Indeed, a single patch may include changes to multiple
files; the changes in each file consist of a number of hunks,
and each hunk contains zero or more removed and added
code lines. As the structure of the commit message and
code changes differs, there is a need to extract their features
separately. Second, the historical information is noisy since
stable kernels do not receive only bug fixing patches, but
also patches adding new device identifiers and patches on
which a subsequent bug fixing patches depends. Moreover,
patches that should have been propagated to stable kernels
may have been overlooked. Finally, as illustrated by Fig. 1c,
there are some patches that perform bug fixes but should
not be propagated to stable kernels for various reasons (e.g.,
lack of impact on the user level or complexity of the patch).

A first step in the direction of automatically identifying
patches that should be applied to stable Linux kernels was
proposed by Tian et al. [63] who combine LPU (Learn-
ing from Positive and Unlabeled Examples) [42] and SVM
(Support Vector Machine) [59] to learn from historical infor-
mation how to identify bug-fixing patches. Their approach
relies on thousands of word features extracted from commit
messages and 52 features extracted from code changes. The
word features are obtained automatically by representing
each commit message as a bag of words, i.e., a multiset of
the words found in the commit, whereas the code features
are defined manually. The bag-of-words representation of
the commit message implies that the temporal dependencies
(ordering) of words in a commit message are ignored. The
manual creation of code features might overlook features
that are important to identify stable patches.

To address the limitations of the work of Tian et al. and
to focus on stable patches, we propose a novel hierarchi-
cal representation learning architecture for patches, named
PatchNet. Like the LPU+SVM work, PatchNet focuses on
the commit message and code changes, as this information is
easily available and stable-kernel maintainers have reported
to us that they use one or both of these elements in assess-
ing potential stable patches. Deviating from the previous
LPU+SVM work, however, which requires human effort
to construct code features, PatchNet aims to automatically
learn two embedding vectors for representing the commit
message and the set of code changes in a given patch,
respectively. While the first embedding vector encodes the
semantic information of the commit message to differentiate
between similar commit messages and dissimilar ones, the
latter embedding vector captures the sequential nature of
the code changes in the given patch. The two embedding

2

(b) A refactoring.

1 commit 8bd98f0e6bf792e8fa7c3fed709321ad42ba8d2e
2 Author: Alex Lyakas <alex.bolshoy@gmail.com>
3 Date: Thu Mar 10 13:09:46 2016 +0200
4
5 btrfs: csum_tree_block: return proper errno value
6
7 Signed-off-by: Alex Lyakas <alex@zadarastorage.com>
8 Reviewed-by: Filipe Manana <fdmanana@suse.com>
9 Signed-off-by: David Sterba <dsterba@suse.com>

10
11 diff --git a/fs/btrfs/disk-io.c b/fs/btrfs/disk-io.c
12 index d8d68af..87946c6 100644
13 --- a/fs/btrfs/disk-io.c
14 +++ b/fs/btrfs/disk-io.c
15 @@ -303,7 +303,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,
16 err = map_private_extent_buffer(buf, offset, 32,
17 &kaddr, &map_start, &map_len);
18 if (err)
19 - return 1;
20 + return err;
21 cur_len = min(len, map_len - (offset - map_start));
22 crc = btrfs_csum_data(kaddr + offset - map_start,
23 crc, cur_len);
24 @@ -313,7 +313,7 @@ static int csum_tree_block(struct btrfs_fs_info *fs_info,
25 ...

(a) A fix of a bug that can impact the user level.
1 commit 7b0692f1c60a9551f8ad5fe706b79a23720a196c
2 Author: Andy Shevchenko <...>
3 Date: Wed Aug 14 11:07:11 2013 +0300
4
5 HID: hid-sensor-hub: change kmalloc + memcpy by kmemdup
6
7 The patch substitutes kmemdup for kmalloc followed by memcpy.
8
9 Signed-off-by: Andy Shevchenko <...>

10 Acked-by: Srinivas Pandruvada <...>
11 Signed-off-by: Jiri Kosina <...>
12
13 diff --git a/drivers/hid/hid-sensor-hub.c b/drivers/hid/hid-sensor-hub.c
14 index 1877a2552483..e46e0134b0f9 100644
15 --- a/drivers/hid/hid-sensor-hub.c
16 +++ b/drivers/hid/hid-sensor-hub.c
17 @@ -430,11 +430,10 @@ static int sensor_hub_raw_event(struct hid_device *hdev,
18 ...
19 - pdata->pending.raw_data = kmalloc(sz, GFP_ATOMIC);
20 - if (pdata->pending.raw_data) {
21 - memcpy(pdata->pending.raw_data, ptr, sz);
22 + pdata->pending.raw_data = kmemdup(ptr, sz, GFP_ATOMIC);
23 + if (pdata->pending.raw_data)
24 pdata->pending.raw_size = sz;
25 - } else
26 + else
27 pdata->pending.raw_size = 0;
28 ...

(b) A refactoring.
1 commit: 501bcbd1b233edc160d0c770c03747a1c4aa14e5
2 Author: Thierry Reding <...>
3 Date: Wed Apr 14 09:52:31 2014 +0200
4
5 drm/tegra: dc - Do not touch power control register
6
7 Setting the bits in this register is dependent on the output type driven
8 by the display controller. All output drivers already set these properly
9 so there is no need to do it here again.

10
11 Signed-off-by: Thierry Reding <...>
12
13 diff --git a/drivers/gpu/drm/tegra/dc.c b/drivers/gpu/drm/tegra/dc.c
14 index 8b21e20..33e03a6 100644
15 --- a/drivers/gpu/drm/tegra/dc.c
16 +++ b/drivers/gpu/drm/tegra/dc.c
17 @@ -743,10 +743,6 @@ static void tegra_crtc_prepare(struct drm_crtc *crtc)
18 WIN_A_OF_INT | WIN_B_OF_INT | WIN_C_OF_INT;
19 tegra_dc_writel(dc, value, DC_CMD_INT_POLARITY);
20 - value = PW0_ENABLE | PW1_ENABLE | PW2_ENABLE | PW3_ENABLE |
21 - PW4_ENABLE | PM0_ENABLE | PM1_ENABLE;
22 - tegra_dc_writel(dc, value, DC_CMD_DISPLAY_POWER_CONTROL);
23 /* initialize timer */
24 value = CURSOR_THRESHOLD(0) | WINDOW_A_THRESHOLD(0x20) |
25 WINDOW_B_THRESHOLD(0x20) | WINDOW_C_THRESHOLD(0x20);

(c) A fix of a minor performance bug.

Fig. 1: Example patches to the Linux kernel.

the commit message and the code changes, to understand
the impact of the changes on the kernel code.

As patches for stable kernels contain fixes for bugs that
can impact the user level, the quality of the stable kernels
critically relies on the effort that the developers and sub-
system maintainers put into identifying and labeling such
patches, which we refer to as stable patches. This manual
effort represents a potential weak point in the Linux kernel
development process, as the developers and maintainers

may forget to label some relevant patches, and apply dif-
ferent criteria for selecting them. While the stable-kernel
maintainers can themselves additionally pick up relevant
patches from the mainline commits, there are hundreds of
mainline commits per day, and many will likely slip past.
This task can thus benefit from automated assistance.

One way to provide such automated assistance is to
build a tool that learns from historical data how to differ-
entiate stable from non-stable patches. However, building
such a tool poses some challenges. First, a patch contains
both a commit message (in natural language) and some code
changes. While the commit message is a sequence of words,
and is thus amenable to existing approaches on classifying
text, the code changes have a more complex structure.
Indeed, a single patch may include changes to multiple
files; the changes in each file consist of a number of hunks,
and each hunk contains zero or more removed and added
code lines. As the structure of the commit message and
code changes differs, there is a need to extract their features
separately. Second, the historical information is noisy since
stable kernels do not receive only bug fixing patches, but
also patches adding new device identifiers and patches on
which a subsequent bug fixing patches depends. Moreover,
patches that should have been propagated to stable kernels
may have been overlooked. Finally, as illustrated by Fig. 1c,
there are some patches that perform bug fixes but should
not be propagated to stable kernels for various reasons (e.g.,
lack of impact on the user level or complexity of the patch).

A first step in the direction of automatically identifying
patches that should be applied to stable Linux kernels was
proposed by Tian et al. [63] who combine LPU (Learn-
ing from Positive and Unlabeled Examples) [42] and SVM
(Support Vector Machine) [59] to learn from historical infor-
mation how to identify bug-fixing patches. Their approach
relies on thousands of word features extracted from commit
messages and 52 features extracted from code changes. The
word features are obtained automatically by representing
each commit message as a bag of words, i.e., a multiset of
the words found in the commit, whereas the code features
are defined manually. The bag-of-words representation of
the commit message implies that the temporal dependencies
(ordering) of words in a commit message are ignored. The
manual creation of code features might overlook features
that are important to identify stable patches.

To address the limitations of the work of Tian et al. and
to focus on stable patches, we propose a novel hierarchi-
cal representation learning architecture for patches, named
PatchNet. Like the LPU+SVM work, PatchNet focuses on
the commit message and code changes, as this information is
easily available and stable-kernel maintainers have reported
to us that they use one or both of these elements in assess-
ing potential stable patches. Deviating from the previous
LPU+SVM work, however, which requires human effort
to construct code features, PatchNet aims to automatically
learn two embedding vectors for representing the commit
message and the set of code changes in a given patch,
respectively. While the first embedding vector encodes the
semantic information of the commit message to differentiate
between similar commit messages and dissimilar ones, the
latter embedding vector captures the sequential nature of
the code changes in the given patch. The two embedding

2

(c) A fix of a minor performance bug.

Figure 5.1: Example patches to the Linux kernel.
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return site, map private extent buffer (line 16), can return either 1 or a

negative value in case of an error. So that the user can correctly understand

the reason for any failure, it is important to propagate such return values up

the call chain. The patch thus changes the return value of csum tree block in

this case from 1 to the value returned by the map private extent buffer call.

The remaining hunks contain similar changes. The Linux kernel documenta-

tion [59] stipulates that a patch should be applied to stable kernels if it fixes a

real bug that can a↵ect the user level and satisfies a number of criteria, such

as containing fewer than 100 lines of code and being obviously correct. This

patch fits those criteria. The patch was first included in the Linux mainline

version v4.6, and was additionally applied to the stable version derived from

the mainline release v4.5, first appearing in v4.5.5 (the fifth release based on

Linux v4.5) as commit 342da5cefddb.

The remaining patches in Fig. 5.1 should not be propagated to stable ker-

nels. The patch in Fig. 5.1b performs a refactoring, replacing some lines of

code by a function call that has the same behavior. As the behavior is un-

changed, there is no impact on the user level. The patch in Fig. 5.1c addresses

a minor performance bug, in that it removes some code that performs a redun-

dant operation. The performance improvement should not be noticeable at the

user level, and thus this patch is not worth propagating to stable kernels. Note

that none of the patches shown in Fig. 5.1 contains keywords such as “bug” or

“fix”, or links to a bug tracking system. Instead, the stable kernel maintainer

has to study the commit message and the code changes, to understand the

impact of the changes on the kernel code.

As patches for stable kernels contain fixes for bugs that can impact the user

level, the quality of the stable kernels critically relies on the e↵ort that the

developers and subsystem maintainers put into identifying and labeling such

patches, which we refer to as stable patches. This manual e↵ort represents a

potential weak point in the Linux kernel development process, as the developers
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and maintainers may forget to label some relevant patches, and apply di↵erent

criteria for selecting them. While the stable-kernel maintainers can themselves

additionally pick up relevant patches from the mainline commits, there are

hundreds of mainline commits per day, and many will likely slip past. This

task can thus benefit from automated assistance.

One way to provide such automated assistance is to build a tool that learns

from historical data how to di↵erentiate stable from non-stable patches. How-

ever, building such a tool poses some challenges. First, a patch contains both

a commit message (in natural language) and some code changes. While the

commit message is a sequence of words, and is thus amenable to existing ap-

proaches on classifying text, the code changes have a more complex structure.

Indeed, a single patch may include changes to multiple files, the changes in

each file consist of a number of hunks, and each hunk contains zero or more

removed and added code lines. As the structure of the commit message and

code changes di↵ers, there is a need to extract their features separately. Sec-

ond, the historical information is noisy since stable kernels do not receive only

bug fixing patches, but also patches adding new device identifiers and patches

on which a subsequent bug fixing patches depends. Moreover, patches that

should have been propagated to stable kernels may have been overlooked. Fi-

nally, as illustrated by Fig. 5.1c, there are some patches that perform bug fixes

but should not be propagated to stable kernels for various reasons (e.g., lack

of impact on the user level or complexity of the patch).

A first step in the direction of automatically identifying patches that should

be applied to stable Linux kernels was proposed by Tian et al. [204] who

combine LPU (Learning from Positive and Unlabeled Examples) [127] and

SVM (Support Vector Machine) [196] to learn from historical information how

to identify bug-fixing patches. Their approach relies on thousands of word

features extracted from commit messages and 52 features extracted from code

changes. The word features are obtained automatically by representing each
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commit message as a bag of words, i.e., a multiset of the words found in the

commit, whereas the code features are defined manually. The bag-of-words

representation of the commit message implies that the temporal dependencies

(ordering) of words in a commit message are ignored. The manual creation

of code features might overlook features that are important to identify stable

patches.

To address the limitations of the work of Tian et al. and to focus on stable

patches, we propose a novel hierarchical representation learning architecture

for patches, named PatchNet. Like the LPU+SVM work, PatchNet focuses on

the commit message and code changes, as this information is easily available

and stable-kernel maintainers have reported to us that they use one or both

of these elements in assessing potential stable patches. Deviating from the

previous LPU+SVM work, however, which requires human e↵ort to construct

code features, PatchNet aims to automatically learn two embedding vectors for

representing the commit message and the set of code changes in a given patch,

respectively. While the first embedding vector encodes the semantic informa-

tion of the commit message to di↵erentiate between similar commit messages

and dissimilar ones, the latter embedding vector captures the sequential nature

of the code changes in the given patch. The two embedding vectors are then

used to compute a prediction score for a given patch, based on the similarity of

the patch’s vector representation to the information learned from other stable

or non-stable patches. The key challenge is to accurately represent the struc-

ture of code changes, which are not contiguous text like the commit message,

but rather amount to scattered fragments of removed and added code across

multiple files, within multiple hunks. Thus, di↵erent from existing deep learn-

ing techniques working on source code [217, 83, 215, 117], PatchNet constructs

separate embedding vectors representing the removed code and the added code

in each hunk of each a↵ected file in the given patch. The information about

a file’s hunks are then concatenated to build an embedding vector for the af-
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fected file. In turn, the embedding vectors of all the a↵ected files are used to

build the representation of the entire set of code changes in the given patch.

PatchNet has already attracted some industry attention. Inspired by the

work of Tian et al. and by our work on PatchNet, the Linux kernel stable

maintainer Sasha Levin has adopted a machine-learning based approach for

identifying patches for stable kernels, which we use as a baseline for our eval-

uation (Section 5.4.3). Recently Wen et al. [216] of ZTE Corporation have

also adapted PatchNet to the needs of their company. These works show the

potential usefulness of PatchNet in an industrial setting.

The main contributions of this chapter include:

• We study the manual process of identifying patches for Linux stable

versions. We explore the potential benefit of automatically identifying

stable patches and summarize the challenges in using machine learning

for this purpose.

• We propose a novel framework, PatchNet, to automatically learn a rep-

resentation of a patch by considering both its commit message and corre-

sponding code changes. PatchNet contains a novel deep learning model

to construct an embedding vector for the code changes made by a patch,

based on their sequential content and hierarchical structure. The two

embedding vectors, representing the commit message and the set of code

changes, are combined to predict whether a patch should be propagated

to stable kernels.

• We evaluate PatchNet on a new dataset that contains 82,403 recent Linux

patches. The results show the superiority of PatchNet compared to state-

of-the-art baselines. PatchNet also achieves good performance on the

complete set of Linux kernel patches.
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5.2 Background

In this section, we present background information about the maintenance

of Linux kernel stable versions, the potential benefits of introducing automa-

tion into the stable kernel maintenance process, and the challenges posed for

automation via machine learning.

5.2.1 Context

The Linux kernel, developed by Linus Torvalds in 1991, is a free and open-

source, monolithic, and Unix-like operating system kernel [143]. It has been

deployed on both traditional computer systems, i.e., personal computers and

servers, and on many embedded devices such as routers, wireless access points,

smart TVs, etc. Many devices, i.e., tablet computers, smartphones, smart-

watches, etc. that have the Android operating system also use the Linux ker-

nel.

The Linux kernel includes a two tiered release model comprising a mainline

version and a set of stable versions. The mainline version, often released every

two to three months, is the version where all new features are introduced. After

a mainline version is released, it is considered to be “stable”. Any bug fixing

patches for a stable version are backported from the mainline version.

Linux kernel development is carried out according to a hierarchical model,

with Linus Torvalds—who has ultimate authority about which patches are

accepted into the kernel—at the root and patch authors at the leaves. A patch

author is anyone who wishes to make a contribution to the kernel, fix a bug, add

a new functionality, or improve the coding style. Authors submit their patches

by email to maintainers, who commit the changes to their git trees and submit

pull requests up the hierarchy. In this work, we are mostly concerned with the

maintainers, who are responsible for assessing the correctness and usefulness of

the patches that they receive. Part of this responsibility involves determining
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Figure 5.2: Percentage of mainline commits propagated to stable kernels for
the 12 directories with more than 500 mainline commits being propagated to
stable kernels between Linux v3.0 (July 2011) and Linux v4.12 (July 2017).
The number above each bar indicates the number of propagated commits.

whether a patch is stable, and ensuring that it is annotated accordingly.

The Linux kernel provides a number of guidelines to help maintainers de-

termine whether a patch should be annotated for propagation to stable ker-

nels [59]. They are summarized as follows:

• It cannot be bigger than 100 lines.

• It must fix a problem that causes a build error, an oops, a hang, data

corruption, a real security issue, or some “oh, that’s not good” issue.

These criteria may be simple, but are open to interpretation. For example, even

the criterion about patch size, which seems unambiguous, is only satisfied by

93% of the patches found in the stable versions based on Linux v3.0 to v4.13,

as of September 2017.
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Figure 5.3: Percentage of mainline commits propagated to stable kernels that
contain a Cc: stable tag for the 12 directories with more than 500 mainline
commits being propagated to stable kernels between Linux v3.0 (July 2011)
and Linux v4.12 (July 2017). The number above each bar indicates the number
of propagated commits.

5.2.2 Potential Benefits of Automatically Identifying Sta-

ble Patches

To understand the potential benefit of automatically identifying stable patches,

we examine the percentage of all mainline commits that are propagated to sta-

ble kernels across di↵erent kernel subsystems and the percentage of these that

are annotated with the Cc: stable tag. We focus on the 12 directories for

which more than 500 mainline commits were propagated to stable kernels be-

tween Linux v3.0 (July 2011) and Linux v4.12 (July 2017). Fig. 5.2 shows the

percentage of all mainline commits that are propagated to stable kernels for

these 12 directories. We observe that there is a large variation in these values.

Comparing directories with similar purposes, 4% of arch/arm (ARM hard-

ware support) commits are propagated, while 10% of arch/x86 (x86 hardware

support) commits are propagated, and 6-8% of the scsi, gpu and net driver

commits are propagated, while 17% of usb driver commits are propagated.1 If

we make the assumption that the rate of bug introduction is roughly constant

1
The usb driver maintainer is also a stable kernel maintainer.
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across similar kinds of code, the wide variation in the propagation rates for

similar kinds of code suggests that relevant commits may be being missed.

Fig. 5.3 shows the percentage of mainline commits propagated to stable

kernels that contain the Cc: stable tag, for the same set of kernel directories.

The rate is very low for drivers/net and net, which are documented to have

their own procedure [59]. The others mostly range from 60% to 85%. Commits

in stable kernels that do not contain the tag are commits that the stable

kernel maintainers have identified on their own or that they have received via

other non-standard channels. This represents work that can be saved by an

automatic labeling approach.

5.2.3 Challenges for Machine Learning

Stable patch identification poses some unique challenges for machine learning.

These include the kind of information available in a Linux kernel patch and

the di↵erent reasons why patches are or are not selected for stable kernels.

First, patches contain a combination of text, represented by the commit

message, and code, represented by the enumeration of the changed lines. Code

is structured di↵erently than text, and thus we need to construct a represen-

tation that enables machine learning algorithms to detect relevant properties.

Second, the available labeled data from which to learn is somewhat noisy.

The only available source of labels is whether a given patch is already in a sta-

ble kernel. However, stable kernels in practice do not receive only bug-fixing

patches, but also patches that add new device identifiers (structure field values

that indicate some properties of a supported device) and patches on which a

subsequent bug-fixing patch depends, as long as these patches are small and

obviously correct. On the other hand, our results in the previous section sug-

gest that not all patches that should be propagated to stable kernels actually

get propagated. These sources of noise may introduce apparent inconsistencies

into the machine learning process.
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Finally, although some patches perform bug fixes, not propagating them to

stable kernels is the correct choice. One reason is that some parts of the code

change so rapidly that the patch does not apply cleanly to any stable version.

Another reason is that the bug was introduced since the most recent mainline

release, and thus does not appear in any stable version.

As the decision of whether to apply a patch to a stable kernel depends

in part on factors external to the patch itself, we cannot hope to achieve a

perfect solution based on applying machine learning to patches alone. Still,

we believe that machine learning can e↵ectively complement existing practice

by orienting stable-kernel maintainers towards likely stable commits that they

may have overlooked, even though the above issues introduce the risk of some

false negatives and false positives.

5.3 Proposed Approach

In this section, we first formulate the problem and provide an overview of

PatchNet. We then describe the details of each module inside PatchNet. Fi-

nally, we present an algorithm for learning e↵ective values of PatchNet’s pa-

rameters.

5.3.1 Framework Overview

The goal of PatchNet is to automatically label a patch as stable or non stable

in order to reduce the manual e↵ort for the stable-kernel maintainers. We

consider the identification of stable patches as a learning task to construct a

prediction function f : X 7�! Y , where Y = {0, 1}. Then, xi 2 X is identified

as a stable patch when f(xi) = 1.

As illustrated in Fig. 5.4, PatchNet consists of three main modules: (1)

a commit message module, (2) a commit code module, and (3) a classification

module. The first two are built upon a convolutional neural network (CNN)
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Figure 5.4: The proposed PatchNet framework. em and ec are embedding
vectors collected from the commit message module and commit code module,
respectively.

architecture [124, 115], and aim to learn a representation of the textual com-

mit message (cf. Fig. 5.1a, lines 5-12) and the set of di↵ code elements (cf.

Fig. 5.1a, lines 14-28) of a patch, respectively. The commit message mod-

ule and the commit code module transform the commit message and the code

changes into embedding vectors em and ec, respectively. The two vectors are

then passed to the classification module, which computes a prediction score

indicating the likelihood of a patch being a stable patch.

5.3.2 Commit Message Module

The commit message module is the same as the one proposed by Kim [105]

and Kalchbrenner et al. [95] for sentence classification, and was introduced in

Section 4.3.3. The module involves an input message, represented as a two-

dimensional matrix, a set of filters for identifying features in the message, and

a means of combining the results of the filters into an embedding vector that

represents the most salient features of the message, to be used as a basis for

classification.

Message representation. We encode a commit message as a two-dimensional

matrix by viewing the message as a sequence of vectors where each vector rep-
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resents one word appearing in the message. The embedding vectors of the

individual words are maintained using a lookup table, the word embedding

matrix, that is shared across all messages.

Given a message m as a sequence of words [w1, . . . , w|m|] and a word embed-

ding matrix Wm 2 R|Vm|⇥dm , where Vm is the vocabulary containing all words

in commit messages and dm is the dimension of the representation of a word,

the matrix representation M 2 R|m|⇥dm of the message is:

M = [W[w1], . . . ,W[w|m|]] (5.1)

For parallelization, all messages are padded or truncated to the same length.

Convolutional layer. The role of the convolutional layer is to apply

filters to the message, in order to identify the message’s salient features. A

filter f 2 Rk⇥dm is a small matrix that is applied to a window of k words

to produce a new feature. A feature ti is generated from a window of words

Mi:i+k�1 starting at word i  |m|� k + 1 by:

ti = ↵(f ⇤Mi:i+k�1 + bi) (5.2)

where ⇤ is the sum of the element-wise products, bi 2 R is a bias value, and

↵(·) is a non-linear activation function. For ↵(·), we choose the rectified linear

unit (ReLU) activation function [160], as it has been shown to have better

performance than its alternatives [16, 48].

The filter f is applied to all windows of size k in the message resulting in a

feature vector t 2 R|m|�k+1:

t = [t1, t2, · · · , t|m|�k+1] (5.3)

Max pooling. To characterize the commit message, we are interested in

the degree to which it contains various features, but not where in the message
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those features occur. Accordingly, for each filter, we apply max pooling [46]

over the feature vector t to obtain the highest value:

max
1i|m|�k+1

ti (5.4)

The results of applying max pooling to the feature vector resulting from

applying each filter are then concatenated to form an embedding vector (em)

representing the meaning of the message.

5.3.3 Commit Code Module

Like the commit message, the commit code can be viewed as a sequence of

words. This view, however, overlooks the structure of code changes, as needed

to distinguish between changes to di↵erent files, changes in di↵erent hunks,

and changes of di↵erent kinds (removals or additions). To incorporate this

structural information, PatchNet contains a commit code module that takes as

input the code changes in a given patch and outputs an embedding vector that

represents the most salient features of the code changes. The commit code

module contains a commit file module that automatically builds an embedding

vector representing the code changes made to a given file in the patch. The

embedding vectors of code changes at the file level are then concatenated into

a single vector representing all the code changes made by the patch.

5.3.3.1 Commit File Module

The commit file module builds an embedding vector for each file in the patch

that represents the changes to the file.

As shown in Fig. 5.5, the commit file module takes as input two matrices

(denoted by “–” and “+” in Fig. 5.5) representing the removed code and added

code for the a↵ected file in a patch, respectively. These two matrices are

passed to the removed code module and the added code module, respectively,

to construct corresponding embedding vectors. The two embedding vectors
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Figure 5.5: Architecture of the Commit File Module for mapping a file in a
given patch to an embedding vector. The input of the module is the removed
code and added code of the a↵ected file, denoted by “–” and “+”, respectively.

… ……

filters

a 3D convolution layer with multiple 
filters + a ReLU activation function 

a 3D max 
pooling layer 

an embedding 
vector

flatten + 
concatenate

…

3D-CNN
commit line module for 

each removed line in a file

e௥
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Figure 5.6: Architecture of the removed code module used to build an embed-
ding vector for the code removed from an a↵ected file.

are then concatenated to represent the code changes in each a↵ected file. We

present the removed code module and the added code module below.

Removed code module. Fig. 5.6 shows the structure of the removed code

module. The input of this module is a three-dimensional matrix, indicating the

removed code in a file of a given patch, denoted by Br 2 RH⇥N⇥L, where H,

N , and L are the number of hunks, the number of removed code lines for each

hunk, and the number of words in each removed code line in the a↵ected file,

respectively. This module takes advantage of a commit line module and a 3D

convolutional layer (3D-CNN) to construct an embedding vector (denoted by

er in Fig. 5.5) representing the removed code in the a↵ected file. We describe

102



CHAPTER 5. HIERARCHICAL DEEP LEARNING-BASED STABLE PATCH IDENTIFICATION

the commit line module and the 3D-CNN in the following sections.

a) Commit line module. Each line of removed code in Br is processed by

the commit line module to obtain a list of embedding vectors representing the

removed code lines. This module has the same structure as the commit message

module, but maintains a code-specific vocabulary and word embedding matrix,

as a word may have di↵erent meanings in a textual message and in source code.

The obtained commit line vectors are used to construct a new three-dimensional

matrix, B̂r 2 RH⇥N⇥E. B̂r represents a sequence of H hunks; each hunk

has a sequence of removed lines, where each line is now represented as a E-

dimensional embedding vector (eij 2 RE) extracted by the commit line module.

B̂r is then passed to the 3D convolutional neural network (3D-CNN), described

below, to construct an embedding vector for the code removed from a file by

a given patch.

b) 3D-CNN. The 3D convolutional layer is used to extract features from the

code removed from the a↵ected file, as represented by B̂r. This layer applies

each filter F 2 Rk⇥N⇥E to a window of k hunks Hi:i+k�1 to build a new feature

as follows:

fi = ↵(F ⇤Hi:i+k�1 + bi) (5.5)

⇤ is the sum of element-wise products, Hi:i+k�1 2 R|i:i+k�1|⇥N⇥E is constructed

from the i-th hunk through the (i+ k� 1)-th hunk in the removed code of the

a↵ected file, bi 2 R is the bias value, and ↵(·) is the ReLU activation function.

As for the commit message module (see Section 5.3.3), we choose k 2 {1, 2}.

Fig. 5.7 shows an example of a 3D convolutional layer that has one filter.

Applying the filter F to all windows of hunks in B̂r produces a feature

vector:

F = [f1, . . . , fH�k+1] (5.6)

As in Section 5.3.2, we apply a max pooling operation to F to obtain the

most important feature. The features selected by max pooling with multi-
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Figure 5.7: A 3D convolutional layer on 3⇥ 3⇥ 3 data. The 1⇥ 3⇥ 3 red cube
on the right is the filter. The dotted lines indicate the sum of element-wise
products over all three dimensions. The result is a scalar vector.

ple filters are concatenated to construct an embedding vector er representing

information extracted from the removed code changes in the a↵ected file.

Added code module . This module has the same architecture as the

removed code module. The changes in the added and removed code are fur-

thermore padded or truncated to have the same number of hunks (H), number

of lines for each hunk (N ), and the number of words of each line (L), for par-

allelization. Moreover, both modules also share the same vocabulary and use

the same word embedding matrix.

The added code module constructs an embedding vector (denoted by ea in

Fig. 5.5) representing the added code in a file of a given patch. An embed-

ding vector representing all of the changes made to a given file by a commit

is constructed by concatenating the two embedding vectors representing the

removed code and added code as follows:

ef = er � ea (5.7)

5.3.3.2 Embedding Vector for Commit Code

The embedding vector for all the changes performed by a given patch is con-

structed as follows:

ec = ef1 � · · ·� efv (5.8)
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Figure 5.8: Architecture of the classification module, comprising a fully con-
nected layer (FC), and an output layer.

where � is the concatenation operator used to concatenate the embedding

vector of each changed file, fi denotes the i-th file a↵ected by the given commit,

v is the number of a↵ected files, and efi denotes the vector constructed by

applying the commit file module to the a↵ected file fi.

5.3.4 Classification Module

Fig. 5.8 shows the architecture of the classification module. It takes as input the

commit message embedding vector em and the commit code embedding vector

ec discussed in Sections 5.3.2 and 5.3.3, respectively. The patch is represented

by their concatenation as follows:

e = em � ec (5.9)

We then feed the concatenated vector e into a fully-connected (FC) layer,

which outputs a vector h as follows:

h = ↵(wh · e+ bh) (5.10)

where · is a dot product, wh is a weight matrix associated with the concate-

nated vector, bh is the bias value, and ↵(·) is a non-linear activation function.
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Again, we use ReLU to implement ↵(·). Note that both wh and bh are learned

during our model’s training process.

Finally, the vector h is passed to an output layer, which computes a prob-

ability score for a given patch:

zi = p(yi = 1|xi) =
1

1 + exp(�h ·wo)
(5.11)

where wo is a weight matrix that is also learned during the training process.

5.3.5 Parameter Learning

During the training process, PatchNet learns the following parameters: the

word embedding matrices for commit messages and commit code, the filter

matrices and bias of the convolutional layers, and the weights and bias of the

fully connected layer and the output layer. The training aims to minimize the

following regularized loss function [71]:

O = � log

 
NY

i=1

p(yi|xi)

!
+

�

2
k✓k22

= �
NX

i=1

[yi log(zi) + (1� yi) log(1� zi)] +
�

2
k✓k22

(5.12)

where zi is the probability score from the output layer and ✓ contains all the

(learnable) parameters as mentioned before.

The term �

2k✓k
2
2 is used to mitigate data overfitting by penalizing large

model parameters, thus reducing the model complexity. To further improve

the robustness of our model, we also apply the dropout technique [195] on all

the convolutional and fully-connected layers in PatchNet.

To minimize the regularized loss function (5.12), we employ a variant of

stochastic gradient descent (SGD) [34] called adaptive moment estimation

(Adam) [107]. We choose Adam over SGD due to its computational e�ciency

and low memory requirements [107, 17, 19].
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5.4 Experiments

We first describe our dataset and how we preprocess it. We then introduce the

baselines and evaluation metrics. Finally, we present our research questions

and results.

5.4.1 Dataset

We take our data from the patches that have been committed to mainline Linux

kernel2 v3.0, released in July 2011, through v4.12, released in July 2017. We

additionally collect information from the stable kernels3 that had been released

as of October 2017 building on Linux kernels v3.0 through v4.13. We consider

a mainline commit to be stable if it is duplicated in at least one stable version.

To increase the set of commits that can be used for training, we furthermore

include in the training set of stable patches other Linux kernel commits that

are expected by convention to be bug-fixing patches. Indeed, a Linux kernel

release is created by first collecting a set of commits for the coming release

into a preliminary release called a “release candidate”, named rc1, that may

include new features and bug fixes. This is followed by a succession of further

release candidates, named rc2 onwards, that should include only bug fixes. We

thus also include the commits added for release candidates rc2 onwards in our

set of stable patches.

We refer to patches that are propagated to stable kernels or are found in

later release candidates as stable patches and patches that are not propagated

to stable kernels or found in later release candidates as non-stable patches. To

avoid biasing the learning process towards either stable or non stable patches,

we construct our training datasets such that the number of patches in each

category is roughly balanced. While this situation does not reflect the number

of stable and non-stable patches that confront a stable kernel maintainer each

2
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git

3
git://git.kernel.org/pub/scm/linux/kernel/git/stable/linux.git
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day, it allows e↵ective training and interpretation of the experimental results.

5.4.1.1 Identifying Stable Patches

The main challenge in constructing the datasets is to determine which mainline

patches have been propagated to stable kernels. Indeed, there is no required

link information connecting the two. Many stable patches explicitly mention

the corresponding mainline commit in the commit message, which we refer to

as a back link. For others, we rely on the author name and the subject line.

Subject lines typically contain information about both the change made and

the name of the file or directory in which the change is made, and should be

unique. We first collect from the patches in the stable kernels a list of back

links and a list of pairs of author name and subject line. A commit from the

mainline whose commit id is mentioned in a back link or whose author name

and subject line are the same as one found in a patch to a stable kernel is

considered to be a stable patch.

5.4.1.2 Collecting the Dataset

We collect our dataset from the mainline Linux kernel. In order to focus

on patches that are challenging for stable maintainers to classify, we drop in

advance all patches that do not meet the stable-kernel size guidelines,4 i.e.,

those that exceed 100 code lines, including both changed lines and context as

reported by diff. We subsequently keep all identified stable patches for our

dataset and select an equal number of non-stable patches. Whenever possible,

we select non-stable patches that have a similar number of changed lines as the

stable patches, again to create a dataset that reflects the cases that cannot be

excluded by size alone and thus are challenging for stable kernel maintainers.

These patches are then subject to a preprocessing step that is detailed in the

next section. We do not use the dataset studied by Tian et al. [204], because

4
https://www.kernel.org/doc/html/v4.15/process/stable-kernel-rules.html
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it is seven years old and unclean, including labeling as bug-fixing patches the

results of tools that may report coding style issues or faults whose impact is

not visible in practice.

Our dataset comes from Linux kernel mainline versions 3.0 (July 2011)

through 4.12 (July 2017). There were 424,380 commits during that period.

We consider only those commits that are not merge commits, that modify a

file as opposed to only adding or removing files, and that a↵ect at least one

.c or .h file. This leaves 346,570 commits (82%). Of these 346,570 commits,

79,319 (23%) are not considered because they contain more than 100 changed

lines, leaving 267,251 commits. Of these, to have a balanced training dataset,

we pick the 42,408 stable patches for which the preprocessing step is successful

(see below,) and 39,995 non-stable patches, i.e., 82,403 patches in all. In RQ4

described below, we consider the full set of Linux kernel patches in versions

v3.0-v4.12 that are accepted by our preprocessing step.

5.4.2 Patch Preprocessing

Our approach applies some preprocessing steps to the patches before they are

given to PatchNet.

5.4.2.1 Preprocessing of Commit Messages

Our approach applies various standard natural language techniques to the

commit messages, such as stop word elimination and stemming [208, 36], to

reduce message length and eliminate irrelevant information. Subsequently, we

pad or truncate all commit messages to the same size, specifically 512 words,

covering the complete commit message for all patches, for parallelism. Because

we are interested in cases that are challenging for the stable kernel maintainer,

we drop tags such as Cc: stable and Fixes, whose goal is to indicate that a

given patch is a stable or a bug fixing patch. We also drop tags indicating who

has approved the patch, as the set of developers and their work profiles can
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change in the future.

5.4.2.2 Preprocessing of Code Changes

Di↵ code elements, as illustrated in Fig. 5.1a, may have many shapes and

sizes, from a single word to multiple lines spread out over multiple hunks.

To describe changes in terms of meaningful syntactic units and to provide

context for very small changes, we collect di↵erences at the granularity of

atomic statements. These may be, e.g., simple assignment statements, return

statements, if headers, etc. For example, in the patch illustrated in Fig. 5.1a,

the only change is to replace 1 on line 22 by err on line 23. Nevertheless,

we represent the change as a change in the complete return statement, i.e.,

return 1; that is transformed into return err;. We also distinguish changes

in error checking code (code to detect whether an error has occurred, e.g., line

21 in Fig. 5.1a) and in error handling code (code to clean up after an error has

occurred, e.g., lines 22 and 23 in Fig. 5.1a) from changes in other code, which

we refer to as normal code. Error handling code is considered to be any code

that is in a conditional with only one branch, where the conditional ends in

a return with an argument other than 0 (0 is typically the success indicator)

or a goto, as well as any code following a label that ends in a return with

an argument other than 0 or a goto. Error checking code is considered to be

the header of a conditional that matches the former pattern. These criteria

are not completely reliable, as such code can sometimes represent the success

case rather than a failure case, but they are typically followed and are actively

promoted by Linux kernel developers. Error checking code and error handling

code are very common in the Linux kernel, which must be robust, and they

are disjoint in structure and purpose from the implementation of the main

functionality.

For a given commit, the first step is to extract the names of the a↵ected files

and to extract the state of those files before and after the commit. Analogous
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to the stemming and stop word elimination performed at the commit message

level, for each before and after file instance, we remove comments and the

contents of strings, as changes in comments and within strings are not likely

to be needed in stable kernels. For a given pair of before and after files, we then

compute the di↵erence using the command “git di↵ -U0 old new”, giving the

changed lines with no lines of surrounding context. For each “–” or “+” line

in the di↵ output, we then collect a record indicating the sign (“–” or “+”),

the category (error-handling code, etc.), the hunk number, the line number in

the old or new version, respectively, and the starting and ending columns of

the non-space changes on the line. We furthermore keep the names of called

functions, when these are not defined in the same file and are used at least

5 times, but drop other identifiers, i.e. field names and variable names, as

these may be too diverse to allow e↵ective learning and may unnecessarily

slow down the training time. Indeed, adding just the frequently used function

names increases the code vocabulary size from 43 to 3,616 unique tokens, which

increases the training time.

To extract changes at the level of atomic statements, rather than the in-

dividual lines obtained by di↵, we parse each file as it exists before and after

the change and keep the atomic statements that intersect with a changed line

observed by di↵. For this, we use the parser of the C program transforma-

tion system Coccinelle [168], which uses heuristics to parse around compiler

directives and macros [167]. This makes it possible to reason about patches

in terms of the way they appear to the user, without macro expansion, but

comes with some cost, as some patches must be discarded because the parsing

heuristics are not su�cient to parse all of the code a↵ected by the changed

lines.

By following the above-mentioned steps, we collect the files a↵ected by a

given patch. For each removed or added code line of an a↵ected file, denoted

by “–” and “+”, we collect the corresponding hunk number and line num-

111



CHAPTER 5. HIERARCHICAL DEEP LEARNING-BASED STABLE PATCH IDENTIFICATION

ber. Each word in a line is a pair of the associated token and the annotation

indicating whether the word occurs on a line of as error-checking code, error-

handling code, or normal code. This information is used to build the two

three-dimensional matrices representing the removed code and the added code

for the a↵ected file (see Fig. 5.5).

5.4.3 Baselines

We compare PatchNet with several baselines:

• Keyword : As a simple but frequently used heuristic [204], we select all

commits in which the commit message includes “bug”, “fix”, or “bug-fix”

after conversion of all words to lowercase and stemming. While not all

bug fixes are relevant for stable kernels, as some bugs may have very low

impact or the fix may be too large or complex to be considered clearly

correct, the problem of identifying bug fixes is close enough to that of

recognizing stable patches to make comparison with our model valuable.

• LPU+SVM : This method was proposed by Tian et al. [204] and combines

Learning from Positive and Unlabeled Examples (LPU) [88, 127, 135] and

Support Vector Machine (SVM) [39, 47], to build a classification model

for automatically identifying bug fixing patches. The set of code features

considered was manually selected. In Tian et al.’s work, stable kernels

were considered as a source of bug-fixing patches in the training and

testing data.

• LS-CNN : Huo et al. [83] combined LSTM [81] and CNN [124] to localize

potential buggy source files based on bug report information. They used

CNN to learn a representation of the bug report and a combination of

LSTM and CNN to learn the structure of the code. To assess the ability

of LS-CNN to classify patches as stable, for a given patch, we give the

commit message and the code changes (i.e., the result of concatenating
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the lines changed in the various files and hunks) as input to LS-CNN in

place of the bug report and the potential buggy source file, respectively.

To make a fair comparison, the CNN used to learn the representation of

the commit message in LS-CNN has the same architecture (i.e., number

of convolutional layer, filter size, activation function, etc.) as the CNN

used to learn the representation of the commit message in PatchNet.

• Feed-forward fully connected neural network (F-NN): Inspired by Patch-

Net and the work of Tian et al. on LPU+SVM, a Linux stable kernel

maintainer, Sasha Levin, has developed an approach to identifying sta-

ble patches [128] based on a feed-forward fully connected neural net-

work [32, 64] and a set of manually selected features, including frequent

commit message words, author names, and some code metrics. Levin

actively uses this approach in his work on the Linux kernel.

For LPU-SVM and LS-CNN, we used the same parameters and settings as

described in the respective papers. For F-NN, we asked Levin to train the tool

on our training data and test it with our testing data. We use 50% as the cut

o↵ for considering a patch as stable for PatchNet and all baselines.

5.4.4 Experimental Settings

PatchNet has several hyperparameters (i.e., the sizes of the filters, the number

of convolutional filters, the size of the fully-connected layer, etc.) that we

instantiate them in the following paragraph.

For the sizes of the filters described in Section 5.3, we choose k 2 {1, 2},

making the associated windows analogous to a 1-gram or 2-gram as used in

natural language processing [93, 37]. Using 2-grams allows our approach to

take into account the temporal ordering of words, going beyond the bag of

words used by Tian et al. [204]. The number of convolutional filters is set

to 64. The size of the fully-connected layer described in Section 5.3.4 is set

113



CHAPTER 5. HIERARCHICAL DEEP LEARNING-BASED STABLE PATCH IDENTIFICATION

to 100. The dimensions of the word vectors in commit message dm and code

changes dc are set to 50. PatchNet is trained using Adam [107] with shu✏ed

mini-batches. The batch size is set to 32. We train PatchNet for 50 epochs

and apply the early stopping strategy [176, 38], i.e., we stop the training if

there has been no update to the loss value (see Equation 5.12) for the last 5

epochs. All these hyperparameter values are widely used in the deep learning

community [188, 84, 83, 77]. For parallelization, the number of changed files,

the number of hunks for each file, the number of lines for each hunk, the

number of words of each removed or added code are set to 5, 8, 10, and 120,

respectively.

In our experiments, we run PatchNet on Ubuntu 18.04.3 LTS, 64 bit, with

a Tesla P100-SXM2-16GB5 GPU.5 Training takes around 20 hours and testing

less than 30 minutes to process 16,481 patches (one of the five folds presented

in Section 5.4.6). Note that training only needs to be done periodically (e.g.,

weekly/monthly) and the trained model can be used to label many patches.

In our experiments, on average, the trained PatchNet can assign a label to a

single patch in 0.11 seconds.

5.4.5 Evaluation Metrics

To evaluate the e↵ectiveness of a stable patch identification model, we employ

the following metrics:

• Accuracy : Proportion of stable and non-stable patches that are correctly

classified.

• Precision: Proportion of patches that are correctly classified as stable.

• Recall : Proportion of stable patches that are correctly classified.

• F1 score: Harmonic mean between precision and recall

5
https://www.nvidia.com/en-us/data-center/tesla-p100/

114



CHAPTER 5. HIERARCHICAL DEEP LEARNING-BASED STABLE PATCH IDENTIFICATION

• AUC : Area under the Receiver Operating Characteristic curve, measur-

ing if the stable patches tend to have higher predicted probabilities (to

be stable) than non stable ones.

5.4.6 Research Questions and Results

Our study seeks to answer several research questions (RQs):

RQ1: Do the properties of stable and non stable patches change

over time?

A common strategy for evaluating machine learning algorithms is n-fold

cross-validation [111], in which a dataset is randomly distributed among n

equal-sized buckets, each of which is considered as test data for a model trained

on the remaining n � 1 buckets. When data elements become available over

time, as is the case of Linux kernel patches, this strategy results in testing a

model on data that predates some of the data on which the model was trained.

Respecting the order of patch submission, however, would limit the amount

of testing that can be done, given the fairly small number of stable patches

available.

To address this issue, we first assess whether training on future data helps

or harms the accuracy of PatchNet. We first sort the patches collected in

Section 5.4.1 from earliest to latest based on the date when the patch author

submitted the patch to maintainers. Then, we divide the dataset into five

mutually exclusive sets by date. Note that the resulting five sets are not

perfectly balanced, but they come close, with stable patches making up 45%

to 55% of each set. Then, we repeat the following process five times: take one

set as a testing set and use the remaining four sets for training. Testing on the

first set shows the impact of training only on future data. Testing on the fifth

set shows the impact of training only on past data. The other testing sets use

models trained on a mixture of past and future data.

Table 5.1 shows the results of PatchNet on the di↵erent test sets. The
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Table 5.1: The results of PatchNet on the five chronological test sets

Accuracy Precision Recall F1 AUC

Set=1 0.852 0.841 0.886 0.863 0.850
Set=2 0.860 0.833 0.909 0.869 0.859
Set=3 0.866 0.833 0.910 0.870 0.867
Set=4 0.864 0.828 0.912 0.868 0.864
Set=5 0.869 0.860 0.917 0.887 0.862

Std. 0.007 0.013 0.012 0.009 0.007

standard deviations are quite small (i.e., at most 0.013), hence there is no

di↵erence between training on past or future data. Our dataset starts with

Linux v3.0, which was released in 2011, twenty years after the start of work

on the Linux kernel. The lack of impact due to training on past or future

data suggests that in such a mature code base the properties that make a

patch relevant for stable kernels are fairly constant over time. This property is

indeed beneficial, because it means that our approach can be used to identify

stable commits that have been missed in older versions. In the subsequent

research questions, we thus retain the same five test and training sets.

RQ2: How e↵ective is PatchNet compared to other state-of-the-

art stable patch identification models?

To answer this RQ, we use the five test sets of the dataset described in

RQ1. Of these, we take one test set as the testing data and regard the re-

maining patches as the training data. We repeat this five times, and then

average the results to get the aggregated accuracy, precision, recall, F1, and

AUC scores. Table 5.2 shows the results for PatchNet and the other baselines.

PatchNet achieves accuracy, precision, recall, F1 score, and AUC of 0.862,

0.839, 0.907, 0.871, and 0.860, respectively. Compared to the best perform-

ing baseline, F-NN, these constitute improvements of 6.55%, 0.12%, 16.13%,

7.80%, and 6.30%, respectively. PatchNet thus achieves about the same preci-

sion as F-NN, but a significant improvement in terms of recall. This is achieved

without the feature engineering required for the F-NN approach, but rather

by automatically learning the weight of the filters via our hierarchical deep
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Table 5.2: PatchNet vs. Keyword, LPU+SVM, LS-CNN, and F-NN.

Accuracy Precision Recall F1 AUC

Keyword 0.626 0.683 0.515 0.587 0.630
LPU+SVM 0.731 0.751 0.716 0.733 0.731
LS-CNN 0.765 0.766 0.785 0.775 0.765
F-NN 0.809 0.838 0.781 0.808 0.809
PatchNet 0.862 0.839 0.907 0.871 0.860

learning-based architecture.

We also employ Scott-Knott ESD [63] to statistically compare the perfor-

mance of PatchNet and the four considered approaches (i.e., PatchNet, F-NN,

LS-CNN, and LPU-SVM). The results show that PatchNet consistently ap-

pears in the top Scott-Knott ESD rank in terms of accuracy, precision, recall,

F1 score, and AUC. Specifically, the ranks of the four considered approaches

are consistent (i.e., PatchNet > F-NN > LS-CNN > LPU-SVM) except for

recall (i.e., PatchNet > LS-CNN > F-NN > LPU-SVM).

Fig. 5.9 compares the precision-recall curves for PatchNet and the base-

lines. For most values on the curve, PatchNet obtains the highest recall for a

given precision and the highest precision for a given recall. For example, for

a low false positive rate of 5 percent (precision of 0.95), PatchNet achieves a

recall of 0.786 which is 14.9% higher than that of the best performing baseline.

Likewise, for a low false negative rate of 5 percent (recall of 0.95), PatchNet

achieves a precision of 0.603 which is 41.2% higher than that of the best per-

forming baseline. In addition, considering the sweet spots where both precision

and recall are high (larger than 0.8), PatchNet can achieve an F1 score of up

to 0.886 which is 10.6% higher than that of the best performing baseline.

Fig. 5.10 shows Venn diagrams indicating the number of patches that Patch-

Net and each of the baselines correctly recognize as stable. The top diagram

compares the Keyword approach to the two approaches, PatchNet and LS-

CNN, that automatically learn the relevant features. While there are over

20K patches that all three approaches classify as stable, there are another 11K

that are found by both learning-based approaches, showing the advantage of
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Figure 5.9: Precision-recall curve: PatchNet vs. LPU+SVM, LS-CNN, and
F-NN.
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Figure 5.10: Venn diagrams showing the number of stable patches identified
by PatchNet and the various baselines

learning-based approach. As compared to Keyword and LS-CNN, there are al-

most 7,000 patches that are only recognized by PatchNet, while this is the case

for fewer than 2,000 patches for LS-CNN, showing the value of an approach

that takes the properties of code changes into account. The bottom diagram

then compares PatchNet to the two approaches, LPU+SVM and F-NN, in

which the code features are hand crafted.

While all three approaches correctly recognize over 27K patches as stable,

there are again 3x more patches that only PatchNet correctly detects as stable

than there are that only each of the other two approaches recognizes as stable.

Examples of PatchNet true positives not found by the other baselines include

5567e989198b6 and 2e31b4cb895a. Examples of PatchNet false negatives found

by at least one other baseline include 03f219041fdb and 56199016e867.

6
git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git
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All of the above measures of precision and recall assume that the set of

patches found in the tested Linux kernel versions is the correct one. Our

motivation, however, is that bug fixing patches that should be propagated to

the Linux kernel stable versions are being overlooked by the existing manual

labeling process. Showing that PatchNet improves on the existing manual

process requires collecting a dataset of patches that have not been propagated

to stable kernels, but should have been. Collecting such a dataset, however,

requires substantial Linux kernel expertise, which is not feasible to harness at

a large scale. We have nevertheless been able to carry out two experiments

in this direction. First, we randomly selected 200 patches predicted as stable

patches by PatchNet, but that were not marked as stable in our dataset. We

sent the 200 patches to Sasha Levin (a Linux stable-kernel maintainer and the

developer of F-NN) to label. Among the 200 patches, Levin labeled 61 patches

(i.e., 30.5%) as stable, highlighting that our approach can find many additional

stable patches that were not identified by the existing manual process. Note

that these patches predated Levin’s used of F-NN on the Linux kernel. Second,

we looked at commits that have no Cc stable tag that Sasha Levin selected

with the aid of F-NN for the Linux 4.14 stable tree. These commits postdate all

of the commits in our dataset. There are over 1,800 of them, showing the false

negatives in the existing manual process and the need for automated support.

PatchNet detects 91% of them as stable. The relationship between the results

of F-NN and PatchNet is similar to that shown in Fig. 5.10 for patches in our

original dataset and confirms that PatchNet can find stable patches that were

not identified by the existing manual process.

RQ3: Does PatchNet benefit from considering both the commit

message and the code changes, and do function names help identify

stable patches?

To answer this RQ, we conduct an ablation test [113, 138] by ignoring the

commit message, the code changes, or the function names in the code changes
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Table 5.3: Contribution of commit messages, code changes and function names
to PatchNet’s performance

Accuracy Precision Recall F1 AUC

PatchNet-C 0.722 0.727 0.748 0.736 0.741
PatchNet-M 0.737 0.732 0.778 0.759 0.753
PatchNet-NN 0.776 0.745 0.779 0.765 0.768
PatchNet 0.862 0.839 0.907 0.871 0.860

in a given patch one-at-a-time and evaluating the performance. We create three

variants of PatchNet: PatchNet-C, PatchNet-M, and PatchNet-NN. PatchNet-

C uses only code change information while PatchNet-M uses only commit mes-

sage information. PatchNet-NN uses both code change and commit message

information, but ignores the function names in the code changes. We again

use the five copies of the dataset described in RQ1 and compute the various

evaluation metrics.

Table 5.3 shows that the performance of PatchNet degrades if we ignore

any one of the considered types of information. Accuracy, precision, recall,

F1 score, and AUC drop by 19.39%, 15.41%, 21.26%, 18.34%, and 16.06%

respectively if we ignore commit messages. They drop by 16.96%, 14.62%,

16.58%, 14.76%, and 14.21% respectively if we ignore code changes. And they

drop by 11.08%, 12.62%, 16.43%, 13.86%, and 11.98% respectively if we ignore

function names. Thus, each kind of information contributes to PatchNet’s

performance. Additionally, the drops are greatest if we ignore commit mes-

sages, indicating that they are slightly more important than the other two to

PatchNet’s performance.

RQ4: What are the results of PatchNet on the complete set of

Linux kernel patches?

For RQ1, we use a dataset collected such that the number of stable and

non-stable patches is roughly balanced. Among the 267,251 patches that meet

the selection criteria, we picked 42,408 stable patches and 39,995 non-stable

patches to build our dataset. To investigate the results of PatchNet on the

complete set of patches from Linux v3.0-v4.12 having at most 100 lines (and
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accepted by our preprocessor), we randomly divide the remaining 184,481 non-

stable patches into five sets and merge each of them with each of the five test

sets described in RQ1. After this process, we have a new collection of five

test sets. In each test set, there are around 8.4K stable patches and 44.8K

non-stable patches. For each new test set, we use the corresponding model

trained for RQ1. We repeat this five times, and then average the results to

get the aggregated AUC score. PatchNet achieves an average AUC of 0.808.

Since the new five test sets are highly imbalanced (only 15.79% patches are

stable patches), we omit the other metrics (i.e., accuracy, precision, recall, and

F1) [164, 198, 151]. We also trained PatchNet on a whole training dataset

(i.e., 42,408 stable patches and 39,995 non-stable patches) and evaluated it on

184,481 non-stable patches. We find that PatchNet can correctly label them

as non-stable 81.32% of the time.

We also check the e↵ectiveness of PatchNet on patches that have more

than 100 lines of code (i.e., long patches). As mentioned earlier, we omit those

patches from our training dataset as they do not meet the selection criteria

of the Linux kernel. We collect 52,415 long patches from July 2011 to July

2017. Among them, there are 3,376 long stable patches and 49,039 long non-

stable patches. 21.33% of these patches contain the “Cc: stable” tag. The

others may have been manually selected for stable versions despite not having

a tag or may come from the release candidates. We again train PatchNet on

the whole training dataset and evaluate the e↵ectiveness of PatchNet on the

52,415 long patches. PatchNet achieves an AUC score of 0.805. Again we only

use AUC as this dataset is highly imbalanced [164, 198, 151].

Finally, we also check whether there is a di↵erence of performance in classi-

fying patches containing a “Cc: stable” tag and patches that do not containing

a “Cc: stable” tag. Among the 42,408 stable patches, there are 15,410 sta-

ble patches with a stable tag and 26,998 stable patches with no stable tag.

The latter may again have been manually selected for stable versions despite
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not having a tag or may come from the release candidates. For each test set

described in RQ1, we split the stable patches into two groups: tagged sta-

ble patches and non-tagged stable patches. We run PatchNet on the stable

patches of each test set to predict the stable patches and sum the results of

predicting the stable patches. Among 15,410 tagged stable patches, PatchNet

predicts 14,578 patches as stable patches (i.e., 94.60%). Among the 26,998

non-tagged stable patches, PatchNet predicts 23,466 patches as stable patches

(i.e., 86.92%). We find that PatchNet is more successful at recognizing tagged

patches, even when it does not have access to information about the “Cc:

stable” tag.

5.5 Qualitative Analysis and Discussion

In this section, we analyze some of the results obtained in Section 5.4.6, con-

sidering in detail a patch where PatchNet performs well and another where it

performs poorly.

5.5.1 Successful Case

We first present a patch that PatchNet can predict as a stable patch to show

the advantages of our model.

Fig. 5.11 shows a patch propagated to stable kernels. The commit message

is on line 5 and the code changes are on lines 16-59. The code changes include

one changed file, five hunks, 12 removed lines, and 25 added lines. PatchNet is

able to predict the patch in Fig. 5.11 as stable patch. We see that the commit

message of this patch is quite short and does not contain keywords such as

“bug” or “fix”. To recognize the patch as a stable patch, the stable kernel

maintainer has to study the code changes to understand the impact of the

changes in the kernel code. In the code changes, the four variables (i.e, left,

right, top, and bottom) are defined and used across the multiple hunks in the
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1 commit 203dc2201326fa64411158c84ab0745546300310
2 Author: Jakob Bornecrantz <jakob@vmware.com>
3 Date: Mon Sep 17 00:00:00 2001 +0000
4
5 vmwgfx: Do better culling of presents
6
7 Signed-off-by: Jakob Bornecrantz <jakob@vmware.com>
8 Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
9 Signed-off-by: Dave Airlie <airlied@redhat.com>

10
11 diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
12 b/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
13 index ac24cfd..d31ae33 100644
14 --- a/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
15 +++ b/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
16 @@ -1098,6 +1098,7 @@ int vmw_kms_present(struct vmw_private *dev_priv,
17 ...
18 + int left, right, top, bottom;
19 ...
20 + left = clips->x;
21 + right = clips->x + clips->w;
22 + top = clips->y;
23 + bottom = clips->y + clips->h;
24 +
25 + for (i = 1; i < num_clips; i++) {
26 + left = min_t(int, left, (int)clips[i].x);
27 + right = max_t(int, right, (int)clips[i].x + clips[i].w);
28 + top = min_t(int, top, (int)clips[i].y);
29 + bottom = max_t(int, bottom, (int)clips[i].y + clips[i].h);
30 + }
31 + return err;
32 ...
33 - cmd->body.srcRect.left = 0;
34 - cmd->body.srcRect.right = surface->sizes[0].width;
35 - cmd->body.srcRect.top = 0;
36 - cmd->body.srcRect.bottom = surface->sizes[0].height;
37 + cmd->body.srcRect.left = left;
38 + cmd->body.srcRect.right = right;
39 + cmd->body.srcRect.top = top;
40 + cmd->body.srcRect.bottom = bottom;
41 ...
42 - blits[i].left = clips[i].x;
43 - blits[i].right = clips[i].x + clips[i].w;
44 - blits[i].top = clips[i].y;
45 - blits[i].bottom = clips[i].y + clips[i].h;
46 + blits[i].left = clips[i].x - left;
47 + blits[i].right = clips[i].x + clips[i].w - left;
48 + blits[i].top = clips[i].y - top;
49 + blits[i].bottom = clips[i].y + clips[i].h - top;
50 ...
51 - int clip_x1 = destX - unit->crtc.x;
52 - int clip_y1 = destY - unit->crtc.y;
53 - int clip_x2 = clip_x1 + surface->sizes[0].width;
54 - int clip_y2 = clip_y1 + surface->sizes[0].height;
55 + int clip_x1 = left + destX - unit->crtc.x;
56 + int clip_y1 = top + destY - unit->crtc.y;
57 + int clip_x2 = right + destX - unit->crtc.x;
58 + int clip_y2 = bottom + destY - unit->crtc.y;
59 ...

Fig. 12: Example of a successfully identified stable patch.

5.1 Successful Case

We first present a patch that PatchNet can predict as a stable
patch, intending to show an advantage of our model.

Fig. 12 shows a patch propagated to stable kernels. The
commit message is on line 5 and the code changes are on
lines 16-59. The code changes include one changed file, five
hunks, 12 removed lines, and 25 added lines. PatchNet is
able to predict the patch in Fig. 12 as stable patch. We see
that the commit message of this patch is quite short and does
not contain keywords such as “bug” or “fix”. To recognize
the patch as a stable patch, the stable kernel maintainer has
to study the code changes to understand the impact of the
changes in the kernel code. In the code changes, the four
variables (i.e, left, right, top, and bottom) are defined
and used across the multiple hunks in the changed file
(i.e., vmwgfx_kms.c). We also see the difference between
removed lines and added lines when the author committed
his code. By representing the removed code and the added
code as two three-dimensional matrices (each dimension
represents the number of hunks, the number of removed or
added code lines, and the number of words in each removed
or added code line), PatchNet uses the removed code module

and the added code module to construct the embedding vector
of the removed code and added code, respectively (see Sec-
tion 3.3). The two embedding vectors are then concatenated

1 commit c607f450f6e49f5794f27617bedc638b51044d2e
2 Author: Al Viro <viro@zeniv.linux.org.uk>
3 Date: Sat May 11 12:38:38 2013 -0400
4
5 au1100fb: VM_IO is set by io_remap_pfn_range()
6
7 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
8
9 diff --git a/drivers/video/au1100fb.c b/drivers/video/au1100fb.c

10 index 700cac067b46..ebeb9715f061 100644
11 --- a/drivers/video/au1100fb.c
12 +++ b/drivers/video/au1100fb.c
13 @@ -385,8 +385,6 @@ int au1100fb_fb_mmap(struct fb_info *fbi, struct vm_area_struct *vma)
14 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
15 pgprot_val(vma->vm_page_prot) |= (6 << 9); //CCA=6
16
17 - vma->vm_flags |= VM_IO;
18 -
19 if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
20 vma->vm_end - vma->vm_start,
21 vma->vm_page_prot)) {

Fig. 13: Example of an unsuccessfully identified stable patch.

to represent the code change information. By doing this
process, the distinction between removed lines and added
lines is preserved. PatchNet automatically learns from this
rich representation by updating its parameters during the
training process (see Section 4.4) to build a model that can
predict whether a patch is stable.

On the other hand, we find that none of the other base-
lines are able to classify the patch in Fig. 12 as a stable patch.
Keyword is a heuristic approach that only looks at whether
the content of a commit message includes “bug” or “fix”.
LS-CNN concatenates the removed lines and added lines
in the multiple hunks without preserving the code changes
information. LPU+SVM and F-NN define a set of features
for the code changes (i.e., the number of removed code lines,
the number of added code lines, the number of hunks in a
commit, etc.). The manual creation of code changes features
may overlook features that are important to identify stable
patches, making LPU+SVM and F-NN unable to classify the
patch in Fig. 12 as a stable patch.

5.2 Unsuccessful Case

Next, we present a patch that PatchNet fails to classify
correctly as a stable patch. This example serves to provide an
understanding of cases in which PatchNet may not perform
well.

Fig. 13 shows a stable patch that was not recognized
by PatchNet. Its commit message does not contain any key-
words (i.e., “bug” or “fix”) that suggest whether the patch is
a stable patch. The code changes only include one removed
line and the removed line contains only three words: vma,
vm_flags, and VM_IO. As there is very little information in
both the commit message and the code changes, PatchNet
is unable to predict the patch in Fig. 13 as a stable patch.
We find that the other baselines (i.e, keywords, LS-CNN, and
LPU+SVM), except F-NN, also fail to classify the patch as a
stable patch. F-NN considers not only the commit message
and the code changes of the given patch, but also informa-
tion such as author name, reviewer information, file names,
etc. This suggests that when the information of the commit
message and the code changes is limited, an approach that
takes advantage of other information in a given patch may
perform better than PatchNet.

13

Figure 5.11: Example of a successfully identified stable patch.

changed file (i.e., vmwgfx kms.c). We also see the di↵erence between removed

lines and added lines when the author committed his code. By representing

the removed code and the added code as two three-dimensional matrices (each

dimension represents the number of hunks, the number of removed or added

code lines, and the number of words in each removed or added code line),

PatchNet uses the removed code module and the added code module to construct

the embedding vector of the removed code and added code, respectively (see

Section 5.3.3). The two embedding vectors are then concatenated to represent

the code change information. By doing this process, the distinction between
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1 commit 203dc2201326fa64411158c84ab0745546300310
2 Author: Jakob Bornecrantz <jakob@vmware.com>
3 Date: Mon Sep 17 00:00:00 2001 +0000
4
5 vmwgfx: Do better culling of presents
6
7 Signed-off-by: Jakob Bornecrantz <jakob@vmware.com>
8 Reviewed-by: Thomas Hellstrom <thellstrom@vmware.com>
9 Signed-off-by: Dave Airlie <airlied@redhat.com>

10
11 diff --git a/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
12 b/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
13 index ac24cfd..d31ae33 100644
14 --- a/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
15 +++ b/drivers/gpu/drm/vmwgfx/vmwgfx_kms.c
16 @@ -1098,6 +1098,7 @@ int vmw_kms_present(struct vmw_private *dev_priv,
17 ...
18 + int left, right, top, bottom;
19 ...
20 + left = clips->x;
21 + right = clips->x + clips->w;
22 + top = clips->y;
23 + bottom = clips->y + clips->h;
24 +
25 + for (i = 1; i < num_clips; i++) {
26 + left = min_t(int, left, (int)clips[i].x);
27 + right = max_t(int, right, (int)clips[i].x + clips[i].w);
28 + top = min_t(int, top, (int)clips[i].y);
29 + bottom = max_t(int, bottom, (int)clips[i].y + clips[i].h);
30 + }
31 + return err;
32 ...
33 - cmd->body.srcRect.left = 0;
34 - cmd->body.srcRect.right = surface->sizes[0].width;
35 - cmd->body.srcRect.top = 0;
36 - cmd->body.srcRect.bottom = surface->sizes[0].height;
37 + cmd->body.srcRect.left = left;
38 + cmd->body.srcRect.right = right;
39 + cmd->body.srcRect.top = top;
40 + cmd->body.srcRect.bottom = bottom;
41 ...
42 - blits[i].left = clips[i].x;
43 - blits[i].right = clips[i].x + clips[i].w;
44 - blits[i].top = clips[i].y;
45 - blits[i].bottom = clips[i].y + clips[i].h;
46 + blits[i].left = clips[i].x - left;
47 + blits[i].right = clips[i].x + clips[i].w - left;
48 + blits[i].top = clips[i].y - top;
49 + blits[i].bottom = clips[i].y + clips[i].h - top;
50 ...
51 - int clip_x1 = destX - unit->crtc.x;
52 - int clip_y1 = destY - unit->crtc.y;
53 - int clip_x2 = clip_x1 + surface->sizes[0].width;
54 - int clip_y2 = clip_y1 + surface->sizes[0].height;
55 + int clip_x1 = left + destX - unit->crtc.x;
56 + int clip_y1 = top + destY - unit->crtc.y;
57 + int clip_x2 = right + destX - unit->crtc.x;
58 + int clip_y2 = bottom + destY - unit->crtc.y;
59 ...

Fig. 12: Example of a successfully identified stable patch.

5.1 Successful Case

We first present a patch that PatchNet can predict as a stable
patch, intending to show an advantage of our model.

Fig. 12 shows a patch propagated to stable kernels. The
commit message is on line 5 and the code changes are on
lines 16-59. The code changes include one changed file, five
hunks, 12 removed lines, and 25 added lines. PatchNet is
able to predict the patch in Fig. 12 as stable patch. We see
that the commit message of this patch is quite short and does
not contain keywords such as “bug” or “fix”. To recognize
the patch as a stable patch, the stable kernel maintainer has
to study the code changes to understand the impact of the
changes in the kernel code. In the code changes, the four
variables (i.e, left, right, top, and bottom) are defined
and used across the multiple hunks in the changed file
(i.e., vmwgfx_kms.c). We also see the difference between
removed lines and added lines when the author committed
his code. By representing the removed code and the added
code as two three-dimensional matrices (each dimension
represents the number of hunks, the number of removed or
added code lines, and the number of words in each removed
or added code line), PatchNet uses the removed code module

and the added code module to construct the embedding vector
of the removed code and added code, respectively (see Sec-
tion 3.3). The two embedding vectors are then concatenated

1 commit c607f450f6e49f5794f27617bedc638b51044d2e
2 Author: Al Viro <viro@zeniv.linux.org.uk>
3 Date: Sat May 11 12:38:38 2013 -0400
4
5 au1100fb: VM_IO is set by io_remap_pfn_range()
6
7 Signed-off-by: Al Viro <viro@zeniv.linux.org.uk>
8
9 diff --git a/drivers/video/au1100fb.c b/drivers/video/au1100fb.c

10 index 700cac067b46..ebeb9715f061 100644
11 --- a/drivers/video/au1100fb.c
12 +++ b/drivers/video/au1100fb.c
13 @@ -385,8 +385,6 @@ int au1100fb_fb_mmap(struct fb_info *fbi, struct vm_area_struct *vma)
14 vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
15 pgprot_val(vma->vm_page_prot) |= (6 << 9); //CCA=6
16
17 - vma->vm_flags |= VM_IO;
18 -
19 if (io_remap_pfn_range(vma, vma->vm_start, off >> PAGE_SHIFT,
20 vma->vm_end - vma->vm_start,
21 vma->vm_page_prot)) {

Fig. 13: Example of an unsuccessfully identified stable patch.

to represent the code change information. By doing this
process, the distinction between removed lines and added
lines is preserved. PatchNet automatically learns from this
rich representation by updating its parameters during the
training process (see Section 4.4) to build a model that can
predict whether a patch is stable.

On the other hand, we find that none of the other base-
lines are able to classify the patch in Fig. 12 as a stable patch.
Keyword is a heuristic approach that only looks at whether
the content of a commit message includes “bug” or “fix”.
LS-CNN concatenates the removed lines and added lines
in the multiple hunks without preserving the code changes
information. LPU+SVM and F-NN define a set of features
for the code changes (i.e., the number of removed code lines,
the number of added code lines, the number of hunks in a
commit, etc.). The manual creation of code changes features
may overlook features that are important to identify stable
patches, making LPU+SVM and F-NN unable to classify the
patch in Fig. 12 as a stable patch.

5.2 Unsuccessful Case

Next, we present a patch that PatchNet fails to classify
correctly as a stable patch. This example serves to provide an
understanding of cases in which PatchNet may not perform
well.

Fig. 13 shows a stable patch that was not recognized
by PatchNet. Its commit message does not contain any key-
words (i.e., “bug” or “fix”) that suggest whether the patch is
a stable patch. The code changes only include one removed
line and the removed line contains only three words: vma,
vm_flags, and VM_IO. As there is very little information in
both the commit message and the code changes, PatchNet
is unable to predict the patch in Fig. 13 as a stable patch.
We find that the other baselines (i.e, keywords, LS-CNN, and
LPU+SVM), except F-NN, also fail to classify the patch as a
stable patch. F-NN considers not only the commit message
and the code changes of the given patch, but also informa-
tion such as author name, reviewer information, file names,
etc. This suggests that when the information of the commit
message and the code changes is limited, an approach that
takes advantage of other information in a given patch may
perform better than PatchNet.

13

Figure 5.12: Example of an unsuccessfully identified stable patch.

removed lines and added lines is preserved. PatchNet automatically learns

from this rich representation by updating its parameters during the training

process (see Section 5.4.4) to build a model that can predict whether a patch

is stable.

On the other hand, we find that none of the other baselines are able to

classify the patch in Fig. 5.11 as a stable patch. Keyword is a heuristic ap-

proach that only looks at whether the content of a commit message includes

“bug” or “fix”. LS-CNN concatenates the removed lines and added lines in the

multiple hunks without preserving the code changes information. LPU+SVM

and F-NN define a set of features for the code changes (i.e., the number of

removed code lines, the number of added code lines, the number of hunks in

a commit, etc.). The manual creation of code changes features may overlook

features that are important to identify stable patches, making LPU+SVM and

F-NN unable to classify the patch in Fig. 5.11 as a stable patch.

5.5.2 Unsuccessful Case

Next, we present a patch that PatchNet fails to classify correctly as a stable

patch. This example serves to provide an understanding of cases in which

PatchNet may not perform well.

Fig. 5.12 shows a stable patch that was not recognized by PatchNet. Its
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commit message does not contain any keywords (i.e., “bug” or “fix”) that

suggest whether the patch is a stable patch. The code changes only include one

removed line and the removed line contains only three words: vma, vm flags,

and VM IO. As there is very little information in both the commit message and

the code changes, PatchNet is unable to predict the patch in Fig. 5.12 as a

stable patch. We find that the other baselines (i.e, keywords, LS-CNN, and

LPU+SVM ), except F-NN, also fail to classify the patch as a stable patch. F-

NN considers not only the commit message and the code changes of the given

patch, but also information such as author name, reviewer information, file

names, etc. This suggests that when the information of the commit message

and the code changes is limited, an approach that takes advantage of other

information in a given patch may perform better than PatchNet.

5.6 Threats to Validity

Internal validity. Threats to internal validity relate to errors in our experi-

ments and experimenter bias. We have double checked our code and data, but

errors may remain. In the baseline approach by Tian et al. [204], commits were

labeled by an author with expertise in Linux kernel code, which may introduce

author bias. In this work, none of the authors label the commits.

External validity. Threats to external validity relate to the generalizability

of our approach. We have evaluated our approach on more than 80,000 patches.

We believe this is a good number of patches. Still, the results may di↵er if we

consider other sets of Linux kernel patches. Similar to the evaluation of Tian

et al. [204], we only investigated Linux kernel patches, although PatchNet can

be applied to patches of other systems, if labels are available. In the future,

we would like to consider more projects. Still, we note that the Linux kernel

represents one of the largest open source projects, with over 16 million lines

of C code, and that di↵erent kernel subsystems have di↵erent developers and
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very di↵erent purposes, resulting in a wide variety of code.

Construct validity. Threats to construct validity relate to the suitability of

our evaluation metrics. We use standard metrics commonly used to evaluate

classifier performance. Thus, we believe there is little threat to construct

validity.

5.7 Chapter Summary

In this chapter, we propose PatchNet, a hierarchical deep learning-based model

for identifying stable patches in the Linux kernel. For each patch, our model

constructs embedding vectors from the commit message and the set of code

changes. The embedding vectors are concatenated and then used to compute a

prediction score for the patch. Di↵erent from existing deep learning techniques

working on the source code [217, 215, 83, 117], our hierarchical deep learning-

based architecture takes into account the structure of code changes (i.e., files,

hunks, lines) and the sequential nature of source code (by considering each line

of code as a sequence of words) to predict stable patches in the Linux kernel.

We have extensively evaluated PatchNet on a new dataset containing 82,403

recent Linux kernel patches. On this dataset, PatchNet outperforms four base-

lines including two also based on deep-learning. In particular, for a wide range

of values in the precision-recall curve, PatchNet obtains the highest recall for a

given precision, as well as the highest precision for a given recall. For example,

PatchNet achieves a 14.9% higher recall (0.786) at a high precision level (0.95)

and a 41.2% higher precision (0.603) at a high recall level (0.95) compared to

the best-performing baseline.
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Chapter 6

Distributed Representations of

Code Changes

Existing work on software patches often use features specific to a single task.

These works often rely on manually identified features, and human e↵ort is

required to identify these features for each task. In this work, we propose

CC2Vec, a neural network model that learns a representation of code changes

guided by their accompanying commit messages, which represent the semantic

intent of the code changes. CC2Vec models the hierarchical structure of a code

change with the help of the attention mechanism and uses multiple comparison

functions to identify the di↵erences between the removed and added code.

To evaluate if CC2Vec can produce a distributed representation of code

changes that is general and useful for multiple tasks on software patches, we use

the vectors produced by CC2Vec for three tasks: commit message generation,

bug fixing patch identification, and just-in-time defect prediction. In all tasks,

the models using CC2Vec outperform the state-of-the-art techniques.

6.1 Introduction

Patches, used to edit source code, are often created by developers to describe

new features, fix bugs, or maintain existing functionality (e.g., API updates,
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refactoring, etc.). Patches contain two main pieces of information, a commit

message and a code change. The commit message, used to describe the se-

mantics of the code changes, is written in natural language by the developers.

The code change indicates the lines of code to remove or add across one or

multiple files. Research has shown that the study of historical patches can

be employed to solve software engineering problems, such as just-in-time de-

fect prediction [96, 78], identification of bug fixing patches [204, 79], tangled

change prediction [108], recommendation of a code reviewer for a patch [180],

and many more.

Exploring patches to solve software engineering problems requires choosing

a representation of the patch data. Most prior work involves manually craft-

ing a set of features to represent a patch and using these features for further

processing [204, 96, 156, 99, 103, 228]. These features have mostly been ex-

tracted from properties of patches, such as the modifications to source code

(e.g., number of removed and added lines, the number of files modified), the

history of changes (e.g., the number of prior or recent changes to the updated

files), the record of patch authors and reviewers (e.g., the number of developers

or reviewers who contributed to the patch), etc. These features can be used as

an input to a machine learning classifier (e.g., Support Vector Machine, Logis-

tic Regression, Random Forest, etc.) to address various software engineering

tasks [96, 204, 108, 180]. Extracting a suitable vector representation to repre-

sent the “meaning” of a patch is certainly crucial. Intuitively, the quality of a

patch representation plays a major role in determining the eventual learning

outcome.

In this chapter, to boost the e↵ectiveness of existing solutions that employ

the properties of patches, we wish to learn vector representations of the code

changes in patches that can be used for a number of tasks. We propose a new

deep learning architecture named CC2Vec that can e↵ectively embed a code

change into a vector space where similar changes are close to each other. As
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commit messages, written by developers, are used to describe the semantics

of the code change, we use them to supervise the learning of code changes’

representations from patches. Specifically, CC2Vec optimizes the vector repre-

sentation of a code change in a patch to predict appropriate words, extracted

from the first line of the commit message. We consider only the first line, as

it is the focus of many prior works [139, 179], and is considered to carry the

most semantic meaning with the least noise.1

CC2Vec analyzes the code change, i.e., scattered fragments of removed and

added code across multiple files. Code removed or added from a file follows

a hierarchical structure (words form line, lines form hunks). Recent work has

suggested that the attention mechanism can help in modelling structural de-

pendencies [106, 15], thus, we hypothesize that the attention mechanism may

be e↵ective for modelling the structure of a code change. We propose a special-

ized hierarchical attention network (HAN) to construct a vector representation

of the removed code (and another for the added code) of each a↵ected file in a

given patch. Our HAN first builds vector representations of lines; these vectors

are then used to construct vector representations of hunks; and we then aggre-

gate these vectors to construct the embedding vector of the removed or added

code. Next, we employ multiple comparison functions to capture the di↵er-

ence between two embedding vectors representing removed and added code.

This produces features representing the relationship between the removed and

added code. Each comparison function produces a vector and these vectors

are then concatenated to form an embedding vector for the a↵ected file. Fi-

nally, the embedding vectors of all the a↵ected files are concatenated to build

a vector representation of the code change in a patch. After training is com-

pleted, CC2Vec can be used to extract representations of code changes even

from patches with empty or meaningless commit messages (which are common

in practice [87, 139, 134]). CC2Vec is also programming-language agnostic; one

1
https://chris.beams.io/posts/git-commit/
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can use it to learn vector representations of code changes for any language.

The code change representation enables us to employ the power of (poten-

tially a large number of) unlabeled patch data to improve the e↵ectiveness of

supervised learning tasks (also known as semi-supervised learning [41]). We

can use the code change representation to boost the e↵ectiveness of many su-

pervised learning tasks (e.g., identification of bug fixing patches, just-in-time

defect prediction, etc.), especially on those tasks for which only a limited set

of labeled data may be available.

CC2Vec converts code changes into their distributed representations by

learning from a large collection of patches. The distributed representation

captures pertinent features of the code changes by considering the character-

istics of the whole collection of patches. Such distributed representations can

be used as additional features for other tasks. Past studies have demonstrated

the value of distributed representations to improve text classification [154],

action recognition [147], image classification [43], etc. Unfortunately, prior to

our work, there is no existing solution that can produce a distributed repre-

sentation of a code change.

To evaluate the e↵ectiveness of CC2Vec, we employ the representation

learned by CC2Vec in three software engineering tasks: 1) commit message

generation [139] 2) bug fixing patch identification [79] and 3) just-in-time de-

fect prediction [78]. In the first task of commit message generation, we generate

the first line of a commit message given a code change. CC2Vec can be used

to improve over the best baseline by 24.73% in terms of BLEU score (an ac-

curacy measure that is widely used to evaluate machine translation systems).

For the task of identifying bug fixing patches, CC2Vec helps to improve the

best performing baseline by 5.22%, 9.18%, 4.36%, and 6.51% in terms of accu-

racy, precision, F1, and Area Under the Curve (AUC). For just-in-time defect

prediction, CC2Vec helps to improve the AUC metric by 7.03% and 7.72% on

the QT and OPENSTACK datasets [151] as compared to the best baseline.
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The main contributions of this chapter are as follows:

• We propose a deep learning architecture, namely CC2Vec, that learns dis-

tributed representations of code changes guided by the semantic meaning

contained in commit messages. To the best of our knowledge, our work

is the first work in this direction.

• We empirically investigate the value of integrating the code change vec-

tors generated by CC2Vec and feature vectors used by state-of-the-art

approaches on three tasks (i.e., commit message generation, bug fixing

patch identification, and just-in-time defect prediction) and demonstrate

improvements.

6.2 Approach

In this section, we first present an overview of our framework. We then describe

the details of each part of the framework. Finally, we present an algorithm for

learning e↵ective settings of our model’s parameters.

6.2.1 Framework Overview

Figure 6.1 illustrates the overall framework of CC2Vec. CC2Vec takes the

code change of a patch as input and generates its distributed representation.

CC2Vec uses the first line of the commit message of the patch to super-

vise learning the code change representation. Specifically, the framework of

CC2Vec includes five parts:

• Preprocessing : This part takes information from the code change of the

given patch as an input and outputs a list of files. Each file includes a

set of removed code lines and added code lines.

• Input layer : This part encodes each changed file as a three-dimensional

matrix to be given as input to the hierarchical attention network (HAN)
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Figure 6.1: The overall framework of CC2Vec. Feature extraction layers are
used to construct the embedding vectors for each a↵ected file from a given
patch (i.e., ef1 , ef2 , etc). The embedding vectors are then concatenated to
build a vector representation for the code change in the patch (code change
vector). The code change vector is connected to the fully connected layer and
is learned by minimizing an objective function of the word prediction layer.

for extracting features.

• Feature extraction layers : This part extracts the embedding vector (a.k.a.

features) of each changed file. The resulting embedding vectors are then

concatenated to form the vector representation of the code change in a

given patch.

• Feature fusion layers and word prediction layer : This part maps the vec-

tor representation of the code change to a word vector extracted from the

first line of commit message; the word vector indicates the probabilities

that various words describe the patch.

CC2Vec employs the first line of the commit message of a patch to guide the
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learning of a suitable vector that represents the code change. Words, extracted

from the first line of commit message, can be viewed as semantic labels provided

by developers. Specifically, we define a learning task to construct a prediction

function f : P ! Y , where yi 2 Y indicates the set of words extracted from the

first line of the commit message of the patch pi 2 P . The prediction function f

is learned by minimizing the di↵erences between the predicted and actual words

chosen to describe the patch. After the prediction function f is learned, for

each patch, we can obtain its code change vector from the intermediate output

between the feature extraction and feature fusion layers (see Figure 6.1). We

explain the details of each part in the following subsections.

6.2.2 Preprocessing

The code change of the given patch includes changes made to one or more files.

Each changed file contains a set of lines of removed code and added code. We

process the code change of each patch by the following steps:

• Split the code change based on the a↵ected files. We first separate

the information about the code change to each changed file into a separate

code document (i.e., File1, File2, etc., see Figure 6.1).

• Tokenize the removed code and added code lines. For the changes

a↵ecting each changed file, we employ the NLTK library [30] for natural

language processing (NLP) to parse its removed code lines or added code

lines into a sequence of words. We ignore blank lines in the changed file.

• Construct a code vocabulary. Based on the code changes of the

patches in the training data, we build a vocabulary VC. This vocabulary

contains the set of code tokens that appear in the code changes of the

collection of patches.

At the end of this step, all the changed files of the given patch are extracted

from the code changes and they are fed to the input layer of our framework
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for further processing.

6.2.3 Input Layer

A code change may include changes to multiple files; the changes to each

file may contain changes to di↵erent hunks; and each hunk contains a list

of removed and/or added code lines. To preserve this structural informa-

tion, in each changed file, we represent the removed (added) code as a three-

dimensional matrix, i.e., B 2 RH⇥L⇥W , where H is the number of hunks, L is

the number of removed (added) code lines for each hunk, and W is the number

of words in each removed (added) code line in the a↵ected file. We use Br and

Ba to denote the three-dimensional matrix of the removed and added code

respectively.

Note that each patch may contain a di↵erent number of a↵ected files (F),

each file may contain a di↵erent number of hunks (H), each hunk may contain

a di↵erent number of lines (L), and each line may contain a di↵erent number

of words (W ). For parallelization [78, 105], each input instance is padded or

truncated to the same F , H, L, and W .

6.2.4 Feature Extraction Layers

The feature extraction layers are used to automatically build an embedding

vector representing the code change made to a given file in the patch. The

embedding vectors of code changes to multiple files are then concatenated into

a single vector representing the code change made by the patch.

As shown in Figure 6.2, for each a↵ected file, the feature extraction layers

take as input two matrices (denoted by “-” and “+” in Figure 6.2) representing

the removed code and added code, respectively. These two matrices are passed

to the hierarchical attention network to construct corresponding embedding

vectors: er representing the removed code and ea representing the added code

(see Figure 6.2). These two embedding vectors are fed to the comparison layers
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Figure 6.2: Architecture of the feature extraction layers for mapping the code
change of the a↵ected file in a given patch to an embedding vector. The input
of the module is the removed code and added code of the a↵ected file, denoted
by “-” and “+”, respectively.

to produce the vectors representing the di↵erence between the removed code

and the added code. These vectors are then concatenated to represent the code

changes in each a↵ected file. We present the hierarchical attention network and

the comparison layers in the following sections.

6.2.4.1 Hierarchical Attention Network

The architecture of our hierarchical attention network (HAN) is shown in Fig-

ure 6.3. A HAN takes the removed (added) code of an a↵ected file of a given

patch as an input and outputs the embedding vector representing the removed

(added) code. Our HAN consists of several parts: a word sequence encoder, a

word-level attention layer, a line encoder, a line-level attention layer, a hunk

sequence encoder, and a hunk attention layer.

Suppose that the removed (added) code of the a↵ected file contains a se-

quence of hunks H = [t1, t2, . . . , tH], each hunk ti includes a sequence of lines

[si1, si2, . . . , siL], and each line sij contains a sequence of words [wij1, wij2, . . . , wijW ].

wijk with k 2 [1,W ] represents the word in the j�th line in the i�th hunk.

Now, we describe how the embedding vector of the removed (added) code is

built using the hierarchical structure.

Word encoder. Given a line sij with a sequence of words wijk and a word

embedding matrix W 2 R|V
C
|⇥d, where VC is the vocabulary containing all
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Figure 6.3: The overall framework of our hierarchical attention network
(HAN). The HAN takes as input the removed (added) code of the a↵ected
file of a given patch and outputs the embedding vector (denoted by e) of the
removed (added) code.

words extracted from the code changes and d is the dimension of the repre-

sentation of word, we first build the matrix representation of each word in the

sequence as follows:

wijk = W[wijk] (6.1)

where wijk 2 Rd indicates the vector representation of word wijk in the word

embedding matrix W. We employ a bidirectional GRU to summarize infor-

mation from the context of a word in both directions [24]. To capture this

contextual information, the bidirectional GRU includes a forward GRU that
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reads the line sij from wij1 to wijW and a backward GRU that reads the line

sij from wijW to wij1.

��!
hijk =

���!
GRU(wijk), k 2 [1,W ]

 ��
hijk =

 ���
GRU(wijk), k 2 [W, 1]

(6.2)

We obtain an annotation of a given word wijk by concatenating the forward

hidden state
��!
hijk and the backward hidden state

 ��
hijk of this word, i.e., hijk =

[
��!
hijk �

 ��
hijk] (� is the concatenation operator). hijk summarizes the word wijk

considering its neighboring words.

Word attention. Based on the intuition that not all words contribute equally

to extract the “meaning” of the line, we use the attention mechanism to high-

light words important for predicting the content of the commit message. The

attention mechanism was previously used in source code summarization and

was shown to be e↵ective for encoding source code sequences [87, 122]. We also

use the attention mechanism to form an embedding vector of the line. We first

feed an annotation of a given word wijk (i.e., hijk) through a fully connnected

layer (i.e., Ww) to get a hidden representation (i.e., uijk) of hijk as follows:

uijk = ReLU(Wwhijk + bw) (6.3)

where ReLU is the rectified linear unit activation function [160], as it generally

provides better performance in various deep learning tasks [48, 16]. Similar to

Yang et al. [229], we define a word context vector (uw) that can be seen as a

high level representation of the answer to the fixed query “what is the most

informative word” over the words. The word context vector uw is randomly

initialized and learned during the training process. We then measure the im-

portance of the word as the similarity of uijk with the word context vector uw
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and get a normalized importance weight ↵ijk through a softmax function [35]:

↵ijk =
exp(uT

ijk
uw)P

k
exp(uT

ijk
uw)

(6.4)

For each line sij, its vector is computed as a weighted sum of the embedding

vectors of the words based on their importance as follows:

sij =
X

k

↵ijkhijk (6.5)

Line encoder. Given a line vector (i.e., sij), we also use a bidirectional GRU

to encode the line as follows:

�!
hij =

���!
GRU(sij), j 2 [1,L]

 �
hij =

 ���
GRU(sij), j 2 [L, 1]

(6.6)

Similar to the word encoder, we obtain an annotation of the line sij by concate-

nating the forward hidden state
�!
hij and backward hidden state

 �
hij of this line.

The annotation of the line sij is denoted as hij = [
�!
hij�

 �
hij], which summarizes

the line sij considering its neighboring lines.

Line attention. We use an attention mechanism to learn the important lines

to be used to form a hunk vector as follows:

uij = ReLU(Wshij + bs) (6.7)

↵ij =
exp(uT

ij
us)P

j
exp(uT

ij
us)

(6.8)

ti =
X

j

↵ijhij (6.9)

Ws is the fully connected layer to which we need to feed an annotation of the

given line (i.e., sij). We define us as the line context vector that can be seen

as a high level representation of the answer to the fixed query “what is the

informative line” over the lines. us is randomly initialized and learned during
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the training process. ti is the hunk vector of the i-th hunk in the removed

(added) code.

Hunk encoder. Given a hunk vector ti, we again use a bidirectional GRU to

encode the hunk as follows:

�!
hi =

���!
GRU(ti), t 2 [1,H]

 �
hi =

 ���
GRU(ti), t 2 [H, 1]

(6.10)

An annotation of the hunk ti is then obtained by concatenating the forward

hidden state
�!
hi and the backward hidden state

 �
hi , i.e., hi = [

�!
hi ,
 �
hi ]. hi

summarizes the hunk ti considering the other hunks around it.

Hunk attention. We again use an attention mechanism to learn important

hunks used to form an embedding vector of the removed (added) code as

follows:

ui = ReLU(Whhi + bh) (6.11)

↵i =
exp(uT

i
ut)P

i
exp(uT

i
ut)

(6.12)

e =
X

i

↵ihi (6.13)

Wh is the fully connected layer used to feed an annotation of a given hunk (i.e.,

hi). ut is the hunk context vector that can be seen as a high level representation

of the answer to the fixed query “what is the informative hunk” over the hunks.

Similar to uw and us, ut is randomly initialized and learned during the training

process. e, collected at the end of this part, is the embedding vector of the

removed (added) code. For convenience, we denote er and ea as the embedding

vectors of the removed code and added code, respectively.

6.2.4.2 Comparison Layers

The goal of the comparison layers is to build the vectors that capture the dif-

ferences between the removed code and added code of the a↵ected file in a

given patch. We use multiple comparison functions [213] to represent di↵erent
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Figure 6.4: A list of comparison functions in the comparison layers.

angles of comparison. These comparison functions were previously used in a

question answering task. The comparison layers take as input the embedding

vectors of the removed code and added code (denoted by er and ea, respec-

tively) and output the vectors representing the di↵erence between the removed

code and the added code. These vectors are then concatenated to represent

an embedding vector of the a↵ected file in the given patch. Figure 6.4 shows

the five comparison functions used in the comparison layers to capture the

di↵erence between the removed code and added code. We briefly explain these

comparison functions in the following paragraphs.

(a) Neural Tensor Network. Inspired by previous works in visual question
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answering [25], we employ a neural tensor network [193] as follows:

eNT = ReLU(eT
r
T[1,...,n]ea + bNT) (6.14)

Ti 2 Rn⇥n is a tensor and bNT is the bias value. These parameters are learned

during the training process. Note that both the removed code and added code

have the same dimension (i.e., er 2 Rn, ea).

(b) Neural Network. We consider a simple feed forward neural network [197].

The output is computed as follows:

eNN = ReLU(W[ea � er] + bNN) (6.15)

� is the concatenation operator, the matrix W 2 Rn⇥2n, and the bias value

bNN are parameters to be learned.

(c) Similarity. We employ two di↵erent similarity measures, euclidean dis-

tance and cosine similarity, to capture the similarity between the removed code

and added code as follows:

esim = EUC(er, ea)� COS(er, ea)

EUC(er, ea) = ||er � ea||2

COS(er, ea) =
erea

||er||||ea||

(6.16)

EUC(·) and COS(·) are the euclidean distance and cosine similarity, respec-

tively. Note that esim is a two-dimensional vector.

(d) Element-wise subtraction. We simply perform a subtraction between

the embedding vector of the removed code and the embedding vector of the

added code.

esub = er � ea (6.17)

(e) Element-wise multiplication. We perform element-wise multiplication
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Figure 6.5: The details of the red dashed box in Figure 6.1. It takes as input a
list of embedding vectors of the a↵ected files of a given patch (i.e., ef1 , ef2 , . . . ,
efF ). ep is the vector representation of the code change and is fed to a hidden
layer to produce the word vector (i.e., the probability distribution over words).
VM is a set of words extracted from the first line of the commit messages.

for the embedding vectors of the removed code and added code.

emul = er � ea (6.18)

where � is the element-wise multiplication operator.

The vectors resulting from applying these five di↵erent comparison func-

tions are then concatenated to represent the embedding vector of the a↵ected

file (denoted by efi) in the given patch as follows:

efi = eNT � eNN � esim � esub � emul (6.19)

where fi is the i-th file of the code change in the given patch.

6.2.5 Feature Fusion and Word Prediction Layers

Figure 6.5 shows the details of the part of the architecture shown inside the red

(dashed) box in Figure 6.1. The inputs of this part are the list of embedding

vectors (i.e., ef1 , ef2 , . . . , efF ) representing the features extracted from the list

of a↵ected files of a given patch. These embedding vectors are concatenated

to construct a new embedding vector (ep) representing the code change in a
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given patch as follows:

ep = ef1 � ef2 � · · ·� efF (6.20)

We pass the embedding vector (ep) into a hidden layer (a fully connected layer)

to produce a vector h:

h = ↵(whep + bh) (6.21)

where wh is the weight matrix used to connect the embedding vector ep with

the hidden layer and bh is the bias value. Finally, the vector h is passed to a

word prediction layer to produce the following:

o = �hwo (6.22)

where wo is the weight matrix between the hidden layer and the word pre-

diction layer, and o 2 R|V
M

|⇥1 (VM is a set of words extracted from the first

line of commit messages). We then apply the sigmoid function [35] to get the

probability distribution over words as follows:

p(oi|pi) =
1

1 + exp(oi)
(6.23)

where oi 2 o is the probability score of the ith word and pi is the patch that

we want to assign words to.

6.2.6 Parameter Learning

Our model involves the following parameters: the word embedding matrix

of code changes, the hidden states in the di↵erent encoders (i.e., the word

encoder, line encoder, and hunk encoder), the context vectors of words, lines,

and hunks, the weight matrices and the bias values of the neural tensor network

and the neural net in the comparison layers, and the weight matrices and the

bias values of the hidden layer and the word prediction layer. After these
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parameters are learned, the vector representation of the code change of each

patch can be determined. These parameters are learned by minimizing the

following objective function:

O =
X

yi2y

(yi ⇥� log(p(oi|pi)) + (1� yi)

⇥� log(1� p(oi|pi))) +
�

2
k✓k22

(6.24)

where p(oi|pi) is the predicted word probability defined in Equation 6.23,

yi = {0, 1} indicates whether the i-th word is part of the commit message

of the patch pi, and ✓ are all parameters of our model. The regularization

term, �

2k✓k
2
2, is used to prevent overfitting in the training process [38]. We em-

ploy the dropout technique [195] to improve the robustness of CC2Vec. Since

Adam [107] has been shown to be computationally e�cient and require low

memory consumption, we use it to minimize the objective function (i.e., Equa-

tion 6.24). We also use backpropagation [68], a simple implementation of the

chain rule of partial derivatives, to e�ciently update the parameters during

the training process.

6.3 Experiments

The goal of this work is to build a representation of code changes that can

be applied to multiple tasks. To evaluate the e↵ectiveness of this represen-

tation, we employ our framework, namely CC2Vec, on three di↵erent tasks,

i.e., commit message generation [139], bug fixing patch identification [79] and

just-in-time defect prediction [78].

In the first task of commit message generation, we use the vector repre-

sentation of code changes, extracted by CC2Vec, to find a patch that is most

similar to another. For the other two tasks, CC2Vec is used to extract addi-

tional features that are input to the models of bug fixing patch identification

and just-in-time defect prediction. We compare the resulting performance
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with and without using our code change vector. We next elaborate on the

three tasks, the baselines, and results.

6.3.1 Task 1: Commit Message Generation

6.3.1.1 Problem Formulation

While we learn representations of code changes with the aid of commit mes-

sages, we also study the task of generating commit messages from code changes.

Developers do not always write high-quality commit messages. Dyer et al. [55]

reported that around 14% of commit messages in 23,000 Java projects on

SourceForge2 were empty. commit messages are important for program com-

prehension and understanding the evolution of software, therefore this moti-

vates the need for the automatic generation of commit messages. In this task,

given the code change of a given patch, we aim to produce a brief commit

message summarizing it.

6.3.1.2 Prior Approaches

One of the prior approaches is NNGen [139], which takes as input a new code

change with an unknown commit message and a training dataset (patches),

and outputs a commit message for the new code change. NNGen first extracts

code changes from the training set. Each code change in the training set

and the new code change are represented as vectors in the form of a “bag-of-

words” [148]. NNGen then calculates the cosine similarity between the vector

of the new code change and the vector of each code change in the training

set, and selects the top-k nearest neighbouring code changes in the training

dataset. From these k nearest neighbours, the BLEU-4 score [169] is computed

between each of the code changes in the top-k and the new code change with

an unknown commit message. A commit message of the code change in the

top-k with the highest BLEU-4 score is reused as the commit message of the

2
https://sourceforge.net/

145



CHAPTER 6. DISTRIBUTED REPRESENTATIONS OF CODE CHANGES

new code change.

The BLEU-4 score is a measure used to evaluate the quality of machine

translation systems, measuring the closeness of a translation to a human trans-

lation. It is computed as follows:

BLEU = BP · exp
⇣P

N

n=1
1
N
log (pn)

⌘

BP =

8
><

>:

1 if c > r

e(1�r/c) if c  r

N is the maximum number of N-grams. Following the previous work [139],

we select N = 4. pn is the ratio of length n subsequences that are present in

both the output and reference translation. BP is a brevity penalty to penalize

short output sentences. Finally, c is the length of the output translation and

r is the length of the reference translation.

A deep learning approach was previously proposed for this task by Jiang

et al. [87], however, it underperformed the simpler baseline NNGen. In this

study, we refer to their work as NMT. Their approach modelled this task as a

neural machine translation task, translating the code change to a target commit

message. Like our work, they proposed an attention-based model, however, our

work di↵ers from theirs as ours incorporates the structure of code changes. Liu

et al. [139] investigated the performance of Jiang et al.’s attention model; they

found that once they remove trivial and automatically-generated messages, the

performance of the model decreased significantly, suggesting that this model

does not generalize.

6.3.1.3 Our Approach

To use CC2Vec for this task, we propose LogGen. Similar to the nearest neigh-

bours approach used by Liu et al. [139], LogGen reuses and outputs a commit

message from the training set. However, instead of treating each code change

as a bag of words, LogGen uses code change vectors produced by CC2Vec.

CC2Vec is first trained over the training dataset. Given a new code change
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from the test dataset with an unknown commit message, we find the code

changes with a known commit message that have the closest CC2Vec vector.

Like Liu et al. [139], after identifying the closest code changes, we reuse the

commit message as the output.

6.3.1.4 Experimental Setting

The purpose of evaluating CC2Vec on this task is to determine if the code

change representations received from CC2Vec outperform the naive represen-

tation used by Liu et al. [139]. Jiang et al. [87] originally collected and filtered

the commits to construct the original dataset. Another version of the dataset

was used by Liu et al. [139], who modified the original dataset.

Jiang et al. extracted a total of 2 million patches from the 1K most starred

Java projects. They collected the first line of each commit message. To nor-

malize the dataset, patch ids and issue ids were removed from the code changes

and commit messages. Patches were filtered to remove merges, rollbacks, and

patches that were too long. The commit messages that do not conform to

verb-direct-object pattern, e.g. “delete a method”, are also removed. After

filtering, the dataset contains 32K patches.

Still, even with all this cleaning, Liu et al. [139] investigated the dataset and

found that there were many patches with bot messages and trivial messages.

Bot messages refer to messages produced automatically by other development

tools, such as continuous integration bots. Trivial messages refer to messages

containing only information that can be obtained by looking at the names of

the changed files (e.g. “modify dockerfile”). Such messages are of low quality

and Liu et al. used regular expressions to locate and remove these patches.

We used the original dataset of Jiang et al. [87] and the cleaned dataset of

Liu et al. [139] for evaluation. While the original dataset consists of a training

dataset of 30K patches and a testing dataset of 3K patches, the cleaned dataset

consists of a training dataset of 22K patches and a testing dataset of 2.5K
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Table 6.1: Performance of each approach on the original and cleaned dataset
reported in BLEU-4

LogGen NNGen NMT
Original 43.20 38.55 31.92
Clean 20.48 16.42 14.19

patches. To compare the di↵erent approaches, we use BLEU-4 to evaluate

each approach since this was used in both previous works.

6.3.1.5 Results

We report the performance of LogGen, NNGen and NMT in Table 6.1. LogGen

outperforms both NNGen and NMT. The Clean dataset refers to the dataset

which Liu et al. filtered out patches with bot and trivial commit messages.

On this dataset, LogGen outperforms NNGen and NMT by a BLEU-4 score of

4.06 and 6.29 respectively. LogGen improves over the performance of NNGen

by 24.75%, a greater improvement than NNGen’s improvement over NMT of

15.70% . On the original dataset collected by Jiang et al., LogGen outperforms

NNGen and NMT by a BLEU-4 score of 4.65 and 11.28. These results indicate

that LogGen can improve over the performance of NNGen and NMT by 12.06%

and 2.07% in terms of the BLEU-4 score respectively.

Thus, we conclude that the commit messages retrieved by LogGen are

closer in quality to a human translation than those retrieved by NNGen and

the commit messages generated by NMT. This suggests that CC2Vec produces

vector representations of patches that correlate to the meaning of the patch

more strongly than a bag-of-words.

6.3.2 Task 2: Bug Fixing Patch Identification

6.3.2.1 Problem Formulation

Software requires continuous evolution to keep up with new requirements, but

this also introduces new bugs. Backporting bugfixes to older versions of a
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project may be required when a legacy code base is supported. For example,

Linux kernel developers regularly backport bugfixes from the latest version

to older versions that are still under support. However, the maintainers of

older versions may overlook relevant patches in the latest version. Thus, an

automated method to identify bug fixing patches may be helpful. We treat

the problem as a binary classification problem, in which each patch is labelled

as a bug-fixing patch or not. Given the code change and commit message, we

produce one of the two labels as the output.

6.3.2.2 Prior Approaches

The prior approach of this problem is PatchNet (Chapter 5), which represents

the removed (added) code as a three dimensional matrix. The dimensions of

the matrix are the number of hunks, the number of lines in each hunk, and

the number of words in each line. PatchNet employs a 3D-CNN [86] that

automatically extracts features from this matrix. Unfortunately, the 3D-CNN

lacks a mechanism to identify important words, lines, and hunks. To address

this limitation, we propose a specialized hierarchical attention neural network

to quantify the importance of words, lines, and hunks in our model (CC2Vec).

Another approach was proposed by Tian et al. [204] that combines Learn-

ing from Positive and Unlabelled examples (LPU) [126] and Support Vector

Machine (SVM) [88] to build a patch classification model. Unlike CC2Vec,

this approach requires the use of manually selected features. These features

include word features, which is a “bag-of-words” extracted from commit mes-

sages, and 52 features, manually extracted from the code change (e.g., the

number of loops added in a patch and if certain words appear in the commit

message).
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6.3.2.3 Our Approach

CC2Vec is first used to learn a distributed representation of code changes on

the whole dataset. All patches from the training and test dataset are used

since the commit messages of the test dataset are not the target of the task.

Next, we integrate these vector representations of the code changes with the

two existing approaches. To use CC2Vec in PatchNet, we concatenate the

vector representation of the code change extracted by CC2Vec with the two

embedding vectors extracted from the commit message and code change by

PatchNet to form a new embedding vector. The new embedding vector is fed

into PatchNet’s classification module to predict whether a given patch is a bug

fixing patch. For the approach proposed by Tian et al. [204] which uses an

SVM as the classifier, we pass the vectors produced by CC2Vec from the code

change into the SVM as features.

6.3.2.4 Experimental Setting

The goal of this task is to investigate if CC2Vec helps existing approaches

to e↵ectively classify bug-fixing patches. We use the dataset of Linux kernel

bug-fixing patches used in the PatchNet paper. This dataset consists of 42K

bug-fixing patches and 40K non-bug-fixing patches collected from the Linux

kernel versions v3.0 to v4.12, released in July 2011 and July 2017 respectively.

Patches in this dataset are limited to 100 lines of changed code, in line with the

Linux kernel stable patch guidelines. The non-bug-fixing patches are selected

such that they have a similar size, in terms of the number of files and the

number of modified lines, as the bug-fixing patches. Following the PatchNet

paper, we use 5-fold cross-validation for the evaluation.

To compare the performance of the approaches, we employ the following

metrics:

• Accuracy : The ratio of correct predictions to the total number of predic-

tions.
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Table 6.2: Evaluation of the approaches on the bug-fixing patch identification
task

Acc. Prec. Recall F1 AUC
LPU-SVM 73.1 75.1 71.6 73.3 73.1
LPU-SVM + CC2Vec 77.1 77.2 79.8 78.5 76.2
PatchNet 86.2 83.9 90.1 87.1 86.0
PatchNet + CC2Vec 90.7 91.6 90.1 90.9 91.6

• Precision: The ratio of correct predictions of bug-fixing patches to the

total number of bug-fixing patch predictions

• Recall : The ratio of correct predictions of bug-fixing patches to the total

number of bug-fixing patches.

• F1 : Harmonic mean between precision and recall.

• AUC : Area under the curve plotting the true positive rate against the

false positive rate. AUC values range from 0 to 1, with a value of 1

indicating perfect discrimination.

These metrics were also used in previous studies on this task.

6.3.2.5 Results

We report the performance of the di↵erent approaches in Table 6.2. We observe

that the best performing approach is PatchNet augmented with CC2Vec. For

both Tian et al.’s model (LPU-SVM) and PatchNet, the versions augmented

with CC2Vec outperform the original versions. Specifically, CC2Vec helps to

improve the best performing baseline (i.e, PatchNet) by 5.22%, 9.18%, 4.37%,

and 6.51% in terms of accuracy, precision, F1, and AUC. CC2Vec also helps to

improve the performance of LPU-SVM by 5.47%, 2.80%, 11.45%, 7.09%, and

4.24% in accuracy, precision, recall, F1, and AUC. This suggests that CC2Vec

can learn patch representations that are general and useful beyond the task it

was trained on.
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6.3.3 Task 3: Just-in-Time Defect Prediction

6.3.3.1 Problem Formulation

The task of just-in-time (JIT) defect prediction refers to the identification

of defective patches. JIT defect prediction tools provide early feedback to

software developers to optimize their e↵ort for inspection, and have been used

at large software companies [156, 189, 199]. We model the task as a binary

classification task, in which each patch is labelled as a patch containing a defect

or not. Given a patch containing a code change and a commit message with

unknown label, we label the patch with one of the two labels.

6.3.3.2 Prior Approach

The prior approach is DeepJIT which is presented in Chapter 4. DeepJIT takes

as input the commit message and code change of a given patch and outputs a

probability score to predict whether the patch is buggy. DeepJIT employs a

Convolutional Neural Network (CNN) [105] to automatically extract features

from the code change and commit message of the given patch. However, Deep-

JIT ignores information about the structure of the removed code or added

code, instead relying on CNN to automatically extract such information.

6.3.3.3 Our Approach

Similar to the previous task (i.e., bug fixing patch identification), CC2Vec

is first used to learn distributed representations of the code changes in the

whole dataset. All patches from the training and test dataset are used since

the commit messages of the test dataset are not part of the predictions of the

task. We then integrate CC2Vec with DeepJIT. To use CC2Vec with DeepJIT,

for each patch, we concatenate the vector representation of the code change

extracted by CC2Vec with two embedding vectors extracted from the commit

message and code change of the given patch extracted by DeepJIT to form

a new embedding vector. The new embedding vector is fed into DeepJIT’s
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Table 6.3: The AUC results of the various approaches

QT OPENSTACK
DeepJIT 76.8 75.1
DeepJIT + CC2Vec 82.2 80.9

feature combination layers, to predict whether the given patch is defective.

6.3.3.4 Experimental Setting

The purpose of this task is to evaluate if CC2Vec can be used to augment

existing approaches in e↵ectively classifying defective patches. Our evaluation

is performed on two datasets, the QT and OPENSTACK datasets, which

contain patches collected from the QT and OPENSTACK software projects

respectively by McIntosh and Kamei [151]. The QT dataset contains 25K

patches over 2 years and 9 months while the OPENSTACK dataset contains

12K patches over 2 years and 3 months. 8% and 13% of the patches are

defective in the QT dataset and the OPENSTACK datasets respectively. Like

Hoang et al. [78], we use 5-fold cross validation for the evaluation.

To compute the e↵ectiveness of the approaches, we use the Area Under the

receiver operator characteristics Curve (AUC), similar to the previous studies.

6.3.3.5 Results

The evaluation results for this task are reported in Table 6.3. The use of

CC2Vec with DeepJIT improves the AUCS score of DeepJIT, from 76.8 and

75.1 to 82.2 and 80.9 on the QT and OPENSTACK datasets respectively.

Specifically, CC2Vec helps to improve the AUC metric by 7.03% and 7.72%

for the QT and OPENSTACK datasets, respectively, as compared to DeepJIT.

This indicates that CC2Vec is e↵ective in learning a useful representation of

patches that an existing state-of-the-art technique can utilize.
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Table 6.4: Results of an ablation study

Log generation (BLEU-4) Bug fix identification (F1) Just-in-time defect prediction (AUC)
Clean Drops by (%) BFP Drops by (%) QT Drops by (%) OPENSTACK Drops by (%)

All�all 18.30 10.64 87.1 4.18 77.4 5.84 76.7 5.19
All�NT 19.36 5.47 88.7 2.42 79.8 2.92 79.2 2.10
All�NN 19.80 3.32 88.8 2.31 80.1 2.55 79.5 1.73
All�sim 20.41 0.34 90.2 0.77 81.9 0.36 80.5 0.49
All�sub 20.13 1.71 89.6 1.43 80.7 1.82 80.1 0.99
All�mul 20.25 1.12 89.7 1.32 81.1 1.34 80.5 0.49
All 20.48 0 90.9 0 82.2 0 80.9 0

6.4 Discussion

6.4.1 Ablation Study

Our approach involves five comparison functions for calculating the di↵erence

between the removed code and added code. To estimate the usefulness of

comparison functions (see Section 6.2.4.2), we conduct an ablation study on

the three tasks: commit message generation, bug fixing patch identification,

and just-in-time defect prediction. Specifically, we first remove the comparison

functions entirely and then remove these functions one-by-one. For each task,

we compare the CC2Vec model and its six reduced variants: All�all (omit all

comparison functions), All�NT (omit the neural network tensor comparison

function), All�NN (omit the neural network comparison function), All�sim

(omit the similarity comparison function), All�sub (omit the subtraction com-

parison function), and All�mul (omit the multiplication comparison function).

Table 6.4 summarizes the results of our ablation test on three di↵erent

tasks. We see that CC2Vec model always performs better than the reduced

variants for all three tasks. This suggests that each comparison function plays

an important role and omitting these comparison functions may greatly a↵ect

the overall performance. All�all (CC2Vec model without using any compar-

ison functions) performs the worst. Among the five remaining variants (i.e.,

All�NT, All�NN, All�sim, All�sub, and All�mul), All-NT performs the

worst. This suggests that the neural network tensor comparison function is

more important the other comparison functions (i.e., neural network, similar-

ity, subtraction, and multiplication).
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6.4.2 Threats to Validity

Threats to internal validity refer to errors in our experiments and experimenter

bias. For each task, we reuse existing implementations of the baseline ap-

proaches whenever available. We have double checked our code and data, but

errors may remain.

Threats to external validity concern the generalizability of our work. In

our experiments, we have studied only three tasks to evaluate the generality

of CC2Vec. This may be a threat to external validity since CC2Vec may

not generalize beyond the tasks that we have considered. However, each task

involves di↵erent software projects and di↵erent programming languages. As

such, we believe that there is minimal threat to external validity. To minimize

threats to construct validity, we have used the same evaluation metrics that

were used in previous studies.

6.5 Conclusion

We propose CC2Vec, which produces distributed representations of code changes

through a hierarchical attention network. In CC2Vec, we model the structural

information of a code change and use the attention mechanism to identify im-

portant aspects of the code change with respect to the cc2vec message accom-

panying it. This allows CC2Vec to learn high-quality vector representations

that can be used in existing state-of-the-art models on tasks involving code

changes.

We empirically evaluated CC2Vec on three tasks and demonstrated that

approaches using or augmented with CC2Vec embeddings outperform existing

state-of-the-art approaches that do not use the embeddings. Finally, we per-

formed an ablation study to evaluate the usefulness of comparison functions.

The results show that the comparison functions play an important role and

omitting them in part or in full a↵ects the overall performance.
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Conclusion and Future Work

7.1 Main Contributions

As software engineering corpora grow significantly in both size and complex-

ity, finding bugs becomes challenging, time-consuming, and very costly. My

thesis focuses on analyzing software engineering corpora to save developers’

time and e↵ort in improving code quality. Specifically, I propose solutions for

three software engineering tasks: bug localization, just-in-time defect predic-

tion, and bug fixing patch identification. Moreover, I propose a deep learning

framework that can be used to construct a distributed vector representation

of code changes. The distributed vector representation can be used for many

software engineering tasks related to code changes.

The contributions of my dissertation are as follows:

1. I introduce a multi-modal approach, namely NetML, to utilize the in-

formation from both bug reports and program spectra to localize bugs.

NetML employs a network Lasso to incentivize the model parameters of

similar bug reports (or program elements) to be close together.

2. I propose an end-to-end deep learning framework (DeepJIT) that au-

tomatically extracts features from commit messages and code changes

in a given commit. These features are then put to a fully-connected
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layer to build a model that identifies defective commits. The experi-

ments on two well-known dataset (QT and OPENSTACK) show that

our approach outperforms the best performing state-of-the-art approach

in term of AUC.

3. I propose a hierarchical deep learning-based approach, named PatchNet,

capable of automatically extracting features from commit messages and

code changes and using them to identify stable patches. Unlike Deep-

JIT which ignores the structure of code changes, PatchNet contains a

deep hierarchical structure that mirrors the hierarchical and sequential

structure of code changes by separating the removed and added code of

the code changes. Extensive experiments on the Linux kernel dataset

confirm the superiority of PatchNet.

4. I introduce a novel deep learning model, namely CC2Vec, that learns dis-

tributed representations of code changes guided by the semantic meaning

contained in commit messages. The experiments on the three software

engineering tasks (i.e., commit message generation, bug fixing patch iden-

tification, and just-in-time defect prediction) show the e↵ectiveness of

CC2Vec.

I have proposed some statistical and deep learning models in various soft-

ware engineering tasks. However, there are still some limitations of the current

approaches as their e↵ectiveness is not optimal yet. The models also have not

considered all the pieces of information that are available and can be used to

boost e↵ectiveness further. For example, CC2Vec has only considered added

and deleted code and does not consider surrounding code that may also be

useful to infer the semantics of the change. We plan to address these and

other limitations in future work.
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7.2 Future Work

In this dissertation, I propose some statistical and deep learning models (i.e.,

NetML, DeepJIT, PatchNet, and CC2Vec) for some software engineering prob-

lems. Despite these approaches have been proved to match or even surpass

human performance, they still exhibit unexpected behaviors under some cir-

cumstances. For example, in a reported incident,1 an autonomous driving car

slammed into a white truck as the car’s radar fails to recognize the white truck

on the bright sky. For this reason, there is an urgent need to estimate an error

or unexpected behaviors of statistical and deep learning models. As future

work, I want to investigate statistical and deep learning models’ reliability.

Specifically, I wish to know whether the predicted outputs of these models (in-

cluding those that I have designed and more) given a set of inputs are reliable

to make a correct decision.

1
https://www.wired.com/2017/01/probing-teslas-deadly-crash-feds-say-yay-self-

driving/
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