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Abstract

The dissertation includes three chapters on econometrics. The first chapter is about treat-

ment effects and its application in randomized control trial. The second chapter is about

specification test. The third chapter is about panel data model with fixed effects.

In the first chapter, we study the estimation and inference of the quantile treatment effect

under covariate-adaptive randomization. We propose two estimation methods: (1) the simple

quantile regression and (2) the inverse propensity score weighted quantile regression. For

the two estimators, we derive their asymptotic distributions uniformly over a compact set of

quantile indexes, and show that, when the treatment assignment rule does not achieve strong

balance, the inverse propensity score weighted estimator has a smaller asymptotic variance

than the simple quantile regression estimator. For the inference of method (1), we show

that the Wald test using a weighted bootstrap standard error under-rejects. But for method

(2), its asymptotic size equals the nominal level. We also show that, for both methods, the

asymptotic size of the Wald test using a covariate-adaptive bootstrap standard error equals

the nominal level. We illustrate the finite sample performance of the new estimation and

inference methods using both simulated and real datasets.

In the second chapter, we propose a novel consistent model specification test based on the

martingale difference divergence (MDD) of the error term given the covariates. The MDD

equals zero if and only if error term is conditionally mean independent of the covariates. Our

MDD test does not require any nonparametric estimation under the null or alternative and it

is applicable even if we have many covariates in the regression model. We have established the

asymptotic distributions of our test statistic under the null and under a sequence of Pitman

local alternatives converging to the null at the usual parametric rate. We have conducted

simulations to evaluate the finite sample performance of our test and compare it with its

competitors. We find that our MDD test has superb performance in terms of both size and

power and it generally dominates its competitors. In particular, it’s the only test that has well

controlled size in the presence of many covariates and reasonable power against high frequent

alternatives as well. We apply our test to test for the correct specification of functional forms

in gravity equations for four datasets. For all the datasets, we reject the log and level model

coherently at 10% significance level. However, its competitors show mixed testing results for

different datasets. The findings reveal the advantages of our test.



In the third chapter, we consider the Nickell bias problem in dynamic fixed effects multi-

level panel data models with various kinds of multi-way error components. For some specifi-

cations of error components, there exist many different forms of within estimators which are

shown to be of possibly different asymptotic properties. The forms of the estimators in our

framework are given explicitly. We apply the split-sample jackknife approach to eliminate

the bias. In practice, our results can be easily extended to multilevel panel data models with

higher dimensions.
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Chapter 1

Quantile Treatment Effects and

Bootstrap Inference under

Covariate-Adaptive Randomization

1

1.1 Introduction

The randomized control trial (RCT), as pointed out by Angrist and Pischke (2008), is one

of the five most common methods (along with instrumental variable regressions, matching

estimations, differences-in-differences, and regression discontinuity designs) for causal infer-

ence. Researchers can use the RCT to estimate not only average treatment effects (ATEs)

but also quantile treatment effects (QTEs), which capture the heterogeneity of the sign and

magnitude of treatment effects, varying depending on their place in the overall distribution

of outcomes. For example, Muralidharan and Sundararaman (2011) estimate the QTE of

teacher performance pay program on student learning via the difference of empirical quantiles

of test scores between treatment and control groups. Duflo et al. (2013) and Banerjee et al.

(2015) estimate the QTEs of audits on endline pollution and a group-lending microcredit pro-

gram on informal borrowing, respectively, via linear quantile regressions (QRs). Crépon et al.

(2015) estimate the QTE of microcredit on various household outcomes via a minimum dis-

tance method. Byrne et al. (2018) estimate the QTE of being informed on energy use via the

inverse propensity score weighted (IPW) QR. Except Crépon et al. (2015), the other four pa-

1This is a co-authered work with Yichong Zhang.
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pers all use the bootstrap to construct confidence intervals for their QTE estimates. However,

RCTs have also been routinely implemented with covariate-adaptive randomization. Individ-

uals are first stratified based on some baseline covariates, and then, within each stratum, the

treatment status is assigned (independent of covariates) to achieve some balance between the

sizes of treatment and control groups; as examples, see Imbens and Rubin (2015, Chapter

9) for a textbook treatment of the topic, and Duflo et al. (2007) and Bruhn and McKen-

zie (2009) for two excellent surveys on implementing RCTs in development economics. To

achieve such balance, treatment status for different individuals usually exhibits a (negative)

cross-sectional dependence. The standard inference procedures that rely on cross-sectional

independence are usually conservative and lacking power. How do we consistently estimate

QTEs under covariate-adaptive randomization? What are the asymptotic distributions for

the QTE estimators, and how do we conduct proper bootstrap inference? These questions

are as yet unaddressed.

We propose two ways to estimate QTEs: (1) the simple quantile regression (SQR) and (2)

the IPW QR. We establish the weak limits for both estimators uniformly over a compact set

of quantile indexes and show that the IPW estimator has a smaller asymptotic variance than

the SQR estimator when the treatment assignment rule does not achieve strong balance.2 If

strong balance is achieved, then the two estimators are asymptotically first-order equivalent.

For inference, we show that the Wald test combined with weighted bootstrap based critical

values can lead to under-rejection for method (1), but its asymptotic size equals the nominal

level for method (2). We also study the covariate-adaptive bootstrap which respects the

cross-sectional dependence when generating the bootstrap sample. The estimator based on

the covariate-adaptive bootstrap sample can mimic that of the original sample in terms of

the standard error. Thus, using proper covariate-adaptive bootstrap based critical values, the

asymptotic size of the Wald test equals the nominal level for both estimators.

As originally proposed by Doksum (1974), the QTE, for a fixed quantile index, corresponds

to the horizontal difference between the marginal distributions of the potential outcomes for

treatment and control groups. Firpo (2007) studies the identification and estimation of QTE

under unconfoundedness. Our estimators (1) and (2) directly follow those in Doksum (1974)

and Firpo (2007), respectively.

Shao et al. (2010) first point out that, under covariate-adaptive randomization, the usual

two-sample t-test for the ATE is conservative. They then propose a covariate-adaptive boot-

strap which can produce the correct standard error. Shao and Yu (2013) extend the results to

generalized linear models. However, both groups of researchers parametrize the (transformed)

2We will define “strong balance” in Section 1.2.
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conditional mean equation by a specific linear model and focus on a specific randomization

scheme (covariate-adaptive biased coin method). Ma et al. (2018) derive the theoretical prop-

erties of ATE estimators based on general covariate-adaptive randomization under the linear

model framework. Bugni et al. (2018) substantially generalize the framework to a fully non-

parametric setting with a general class of randomization schemes. However, they mainly focus

on the ATE and show that the standard two-sample t-test and the t-test based on the linear

regression with strata fixed effects are conservative. They then obtain analytical estimators

for the correct standard errors and study the validity of permutation tests. Hahn et al. (2011)

study the IPW estimator for the ATE under adaptive randomization. However, they assume

the treatment status is assigned completely independently across individuals. More recently,

Bugni et al. (2019) study the estimation of ATE with multiple treatments and propose a fully

saturated estimator. Tabord-Meehan (2018) study the estimation of ATE under an adaptive

randomization procedure.

Our paper complements the above papers in four aspects. First, we consider the estimation

and inference of the QTE, which is a function of quantile index τ . We rely on the empirical

processes theories developed by van der Vaart and Wellner (1996) and Chernozhukov et al.

(2014) to obtain uniformly weak convergence of our estimators over a compact set of τ .

Based on the uniform convergence, we can construct not only point-wise but also uniform

confidence bands. Second, we study the asymptotic properties of the IPW estimator under

covariate-adaptive randomization. When the treatment assignment rule does not achieve

strong balance, the IPW estimator is more efficient than the SQR estimator. Third, we

investigate the weighted bootstrap approximation to the asymptotic distributions of the SQR

and IPW estimators. We show that the weighted bootstrap ignores the (negative) cross-

sectional dependence due to the covariate-adaptive randomization and over-estimates the

asymptotic variance for the SQR estimator. However, the asymptotic variance for the IPW

estimator does not rely on the randomization scheme implemented. Thus, the asymptotic size

of the Wald test using the IPW estimator paired with the weighted bootstrap based critical

values equals the nominal level. Fourth, we investigate the covariate-adaptive bootstrap

approximation to the asymptotic distributions of the SQR and IPW estimators. We establish

that, using either estimator paired with its corresponding covariate-adaptive bootstrap based

critical values, the asymptotic size of the Wald test equals the nominal level. Shao et al.

(2010) first propose the covariate-adaptive bootstrap and establish its validity for the ATE in

a linear regression model under the null hypothesis that the treatment effect is not only zero

but also homogeneous.3 We modify the covariate-adaptive bootstrap and establish its validity

3We say the average treatment effect is homogeneous if the conditional average treatment effect given
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for the QTE in the nonparametric setting proposed by Bugni et al. (2018). In addition, our

results do not rely on the homogeneity of the treatment effect. Compared with the analytical

inference, the two bootstrap inferences for QTEs we study in this paper avoid estimating the

infinite-dimensional nuisance parameters such as the densities of the potential outcomes, and

thus, the choices of tuning parameters. In addition, unlike the permutation tests studied in

Bugni et al. (2018), the validity of bootstrap inferences does not require either strong balance

condition or studentization. In particular, such studentization is cumbersome in the QTE

context.

As the asymptotic variance for the IPW estimator does not depend on the treatment

assignment rule implemented in RCTs, this estimator (and equivalently, the fully saturated

estimator for the ATE) is suitable for settings where the knowledge of the exact treatment

assignment rule is not available. Such scenario occurs when researchers are using an exper-

iment that was run in the past and the randomization procedure may not have been fully

described. It also occurs in subsample analysis, where sub-groups are defined using variables

that may have not been used to form the strata and the treatment assignment rule for each

sub-group becomes unknown. We illustrate this fact in the subsample analysis of the empirical

application in Section 1.8.

The rest of the paper is organized as follows. In Section 1.2, we describe the model setup

and notation. In Sections 1.3.1 and 1.3.2, we discuss the asymptotic properties of estimators

(1) and (2), respectively. In Sections 1.4 and 1.5, we investigate the weighted and covariate-

adaptive bootstrap approximations to the asymptotic distributions of estimators (1) and (2),

respectively. In Section 1.6, we examine the finite-sample performance of the estimation and

inference methods. In Section 1.7, we provide recommendations for practitioners. In Section

1.8, we apply the new methods to estimate and infer the average and quantile treatment

effects of iron efficiency on educational attainment. In Section 1.9, we conclude. We provide

proofs for all results in an appendix. We study the strata fixed effects quantile regression

estimator and provide additional simulation results in the second online supplement.

1.2 Setup and Notation

First, denote the potential outcomes for treated and control groups as Y (1) and Y (0), respec-

tively. The treatment status is denoted as A, where A = 1 means treated and A = 0 means

untreated. The researcher can only observe {Yi, Zi, Ai}ni=1 where Yi = Yi(1)Ai+Yi(0)(1−Ai),
and Zi is a collection of baseline covariates. Strata are constructed from Z using a function

covariates is the same as the unconditional one.

8



S : Supp(Z) 7→ S, where S is a finite set. For 1 ≤ i ≤ n, let Si = S(Zi) and p(s) = P(Si = s).

Throughout the paper, we maintain the assumption that p(s) is fixed w.r.t. n and is positive

for every s ∈ S.4 We make the following assumption for the data generating process (DGP)

and the treatment assignment rule.

Assumption 1. (i) {Yi(1), Yi(0), Si}ni=1 is i.i.d.

(ii) {Yi(1), Yi(0)}ni=1 ⊥⊥ {Ai}ni=1|{Si}ni=1.

(iii)

{{
Dn(s)√

n

}
s∈S

∣∣∣∣{Si}ni=1

}
 N(0,ΣD) a.s., where

Dn(s) =
n∑
i=1

(Ai − π)1{Si = s} and ΣD = diag{p(s)γ(s) : s ∈ S}

with 0 ≤ γ(s) ≤ π(1− π).

(iv) Dn(s)
n(s)

= op(1) for s ∈ S, where n(s) =
∑n

i=1 1{Si = s}.

Several remarks are in order. First, Assumptions 1(i)–1(iii) are exactly the same as Bugni

et al. (2018, Assumption 2.2). We refer interested readers to Bugni et al. (2018) for more

discussion of these assumptions. Second, note that in Assumption 1(iii) the parameter π is the

target proportion of treatment for each stratum and Dn(s) measures the imbalance. Bugni

et al. (2019) study the more general case that π can take distinct values for different strata.

Third, we follow the terminology in Bugni et al. (2018), which follows that of Efron (1971) and

Hu and Hu (2012), saying a treatment assignment rule achieves strong balance if γ(s) = 0.

Fourth, we do not require that the treatment status is assigned independently. Instead, we

only require Assumption 1(iii) or Assumption 1(iv), which condition is satisfied by several

treatment assignment rules such as simple random sampling (SRS), biased-coin design (BCD),

adaptive biased-coin design (WEI), and stratified block randomization (SBR). Bugni et al.

(2018, Section 3) provide an excellent summary of these four examples. For completeness,

we briefly repeat their descriptions below. Note that both BCD and SBR assignment rules

achieve strong balance. Last, as p(s) > 0, Assumption 1(iii) implies Assumption 1(iv).

Example 1 (SRS). Let {Ai}ni=1 be drawn independently across i and of {Si}ni=1 as Bernoulli

random variables with success rate π, i.e., for k = 1, · · · , n,

P
(
Ak = 1

∣∣{Si}ni=1, {Aj}k−1
j=1

)
= P(Ak = 1) = π.

4We can also allow for the DGP to depend on n so that pn(s) = Pn(Si = s) and p(s) = lim pn(s). All the
results in this paper still hold as long as n(s)→∞ a.s. Interested readers can refer to the previous version of
this paper on arXiv for more detail.
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Then, Assumption 1(iii) holds with γ(s) = π(1− π).

Example 2 (WEI). The design is first proposed by Wei (1978). Let nk−1(Sk) =
∑k−1

i=1 1{Si =

Sk}, Dk−1(s) =
∑k−1

i=1

(
Ai − 1

2

)
1{Si = s}, and

P
(
Ak = 1

∣∣{Si}ki=1, {Ai}k−1
i=1

)
= φ

(
Dk−1(Sk)

nk−1(Sk)

)
,

where φ(·) : [−1, 1] 7→ [0, 1] is a pre-specified non-increasing function satisfying φ(−x) = 1−
φ(x). Here, D0(S1)

0
is understood to be zero. Then, Bugni et al. (2018) show that Assumption

1(iii) holds with π = 1
2

and γ(s) = 1
4
(1− 4φ′(0))−1.

Example 3 (BCD). The treatment status is determined sequentially for 1 ≤ k ≤ n as

P
(
Ak = 1|{Si}ki=1, {Ai}k−1

i=1

)
=


1
2

if Dk−1(Sk) = 0

λ if Dk−1(Sk) < 0

1− λ if Dk−1(Sk) > 0,

where Dk−1(s) is defined as above and 1
2
< λ ≤ 1. Then, Bugni et al. (2018) show that

Assumption 1(iii) holds with π = 1
2

and γ(s) = 0.

Example 4 (SBR). For each stratum, bπn(s)c units are assigned to treatment and the rest is

assigned to control. Bugni et al. (2018) then show that Assumption 1(iii) holds with γ(s) = 0.

Our parameter of interest is the τ -th QTE defined as

q(τ) = q1(τ)− q0(τ),

where τ ∈ (0, 1) is a quantile index and qj(τ) is the τ -th quantile of random variable Y (j) for

j = 0, 1. For inference, although we mainly focus on the Wald test for the null hypothesis that

q(τ) equals some particular value, our method can also be used to test hypotheses involving

multiple or even a continuum of quantile indexes. The following regularity conditions are

common in the literature of quantile estimations.

Assumption 2. For j = 0, 1, denote fj(·) and fj(·|s) as the PDFs of Yi(j) and Yi(j)|Si = s,

respectively.

(i) fj(qj(τ)) and fj(qj(τ)|s) are bounded and bounded away from zero uniformly over τ ∈ Υ

and s ∈ S, where Υ is a compact subset of (0, 1).

(ii) fj(·) and fj(·|s) are Lipschitz over {qj(τ) : τ ∈ Υ}.
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1.3 Estimation

1.3.1 Simple Quantile Regression

In this section, we propose to estimate q(τ) by a QR of Yi on Ai. Denote β(τ) = (β0(τ), β1(τ))′,

β0(τ) = q0(τ), and β1(τ) = q(τ). We estimate β(τ) by β̂(τ), where

β̂(τ) = arg min
b=(b0,b1)′∈<2

n∑
i=1

ρτ

(
Yi − Ȧ′ib

)
,

Ȧi = (1, Ai)
′, and ρτ (u) = u(τ − 1{u ≤ 0}) is the standard check function. We refer to

β̂1(τ), the second element of β̂(τ), as our SQR estimator for the τ -th QTE. As Ai is a dummy

variable, β̂1(τ) is numerically the same as the difference between the τ -th empirical quantiles

of Y in the treatment and control groups.

Theorem 1.3.1. If Assumptions 1(i)–1(iii) and 2 hold, then, uniformly over τ ∈ Υ,

√
n
(
β̂1(τ)− q(τ)

)
 Bsqr(τ), as n→∞,

where Bsqr(·) is a Gaussian process with covariance kernel Σsqr(·, ·). The expression for

Σsqr(·, ·) can be found in the Appendix.

The asymptotic variance for
√
n
(
β̂1(τ)− β1(τ)

)
is ζ2

Y (π, τ) + ζ2
A(π, τ) + ζ2

S(τ), where

ζ2
Y (π, τ) =

τ(1− τ)− Em2
1(S, τ)

πf 2
1 (q1(τ))

+
τ(1− τ)− Em2

0(S, τ)

(1− π)f 2
0 (q0(τ))

,

ζ2
A(π, τ) = Eγ(S)

(
m1(S, τ)

πf1(q1(τ))
+

m0(S, τ)

(1− π)f0(q0(τ))

)2

,

ζ2
S(τ) = E

(
m1(S, τ)

f1(q1(τ))
− m0(S, τ)

f0(q0(τ))

)2

,

and mj(s, τ) = E(τ − 1{Y (j) ≤ qj(τ)}|S = s). Note that, if the treatment assignment rule

achieves strong balance or the stratification is irrelevant5 then ζ2
A(π, τ) = 0.

5It means P(Y (j) ≤ qj(τ)|S = s) = τ for s ∈ S, j = 0, 1.
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1.3.2 Inverse Propensity Score weighted Quantile Regression

Denote π̂(s) = n1(s)/n(s), n1(s) =
∑n

i=1 Ai1{Si = s}, and n(s) =
∑n

i=1 1{Si = s}. Note

π̂(Si) is an estimator for the propensity score, i.e., π. In addition, Assumption 1(ii) implies

that the unconfoundedness condition holds. Thus, following the lead of Firpo (2007), we can

estimate qj(τ) by the IPW QR. Let

q̂1(τ) = arg min
q

1

n

n∑
i=1

Ai
π̂(Si)

ρτ (Yi − q) and q̂0(τ) = arg min
q

1

n

n∑
i=1

1− Ai
1− π̂(Si)

ρτ (Yi − q).

We then estimate q(τ) by q̂(τ) = q̂1(τ)− q̂0(τ).

Theorem 1.3.2. If Assumptions 1(i), 1(ii), 1(iv) and 2 hold, then, uniformly over τ ∈ Υ,

√
n (q̂(τ)− q(τ)) Bipw(τ), as n→∞,

where Bipw(·) is a scalar Gaussian process with covariance kernel Σipw(·, ·). The expression

for Σipw(·, ·) can be found in the Appendix.

Two remarks are in order. First, the asymptotic variance for q̂(τ) is

ζ2
Y (π, τ) + ζ2

S(τ).

When strong balance is not achieved and the stratification is relevant, we have ζ2
A(π, τ) > 0.

Thus, q̂(τ) is more efficient than β̂1(τ) in the sense that

Σipw(τ, τ) < Σsqr(τ, τ).

When strong balance is achieved (γ(s) = 0), we have ζ2
A(π, τ) = 0. Thus, the two estimators

are asymptotically first-order equivalent. Based on the same argument, one can potentially

prove that, when strong balance is not achieved and the stratification is relevant, the IPW

estimator for ATE has strictly smaller asymptotic variance than the simple two-sample differ-

ence and strata fixed effects estimators studied by Bugni et al. (2018), and is asymptotically

equivalent to the fully saturated linear regression estimator proposed by Bugni et al. (2019).

Second, since the amount of “balance” of the treatment assignment rule does not play a role in

the limiting distribution of the IPW estimator, Assumption 1(iii) is replaced by Assumption

1(iv).
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1.4 Weighted Bootstrap

In this section, we approximate the asymptotic distributions of the SQR and IPW estimators

via the weighted bootstrap. Let {ξi}ni=1 be a sequence of bootstrap weights which will be

specified later. Further denote nw1 (s) =
∑n

i=1 ξiAi1{Si = s}, nw(s) =
∑n

i=1 ξi1{Si = s}, and

π̂w(s) = nw1 (s)/nw(s). The weighted bootstrap counterparts for the two estimators we study

in this paper can then be written respectively as

β̂w(τ) = arg min
b

n∑
i=1

ξiρτ

(
Yi − Ȧ′ib

)
and

q̂w(τ) = q̂w1 (τ)− q̂w0 (τ),

where

q̂w1 (τ) = arg min
q

n∑
i=1

ξiAi
π̂w(Si)

ρτ (Yi − q) and q̂w0 (τ) = arg min
q

n∑
i=1

ξi(1− Ai)
1− π̂w(Si)

ρτ (Yi − q) .

The second element β̂w1 (τ) of β̂w(τ) and q̂w(τ) are the SQR and IPW bootstrap estimators

for the τ -th QTE, respectively. Next, we specify the bootstrap weights.

Assumption 3. Suppose {ξi}ni=1 is a sequence of nonnegative i.i.d. random variables with

unit expectation and variance and a sub-exponential upper tail.

The nonnegativity is required to maintain the convexity of the quantile regression objective

function. The other conditions in Assumption 3 are common for the weighted bootstrap

approximation. In practice, we generate {ξi}ni=1 by the standard exponential distribution.

The corresponding weighted bootstrap is also known as the Bayesian bootstrap.

Theorem 1.4.1. If Assumptions 1(i)–1(iii), 2, and 3 hold, then uniformly over τ ∈ Υ and

conditionally on data,

√
n
(
β̂w1 (τ)− β̂1(τ)

)
 B̃sqr(τ), as n→∞,

where B̃sqr(τ) is a Gaussian process. In addition, B̃sqr(τ) shares the same covariance kernel

with Bsqr(τ) defined in Theorems 1.3.1 with γ(s) there replaced by π(1− π).

If Assumptions 1(i), 1(ii), 1(iv), 2, 3 hold, then uniformly over τ ∈ Υ and conditionally
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on data,

√
n (q̂w(τ)− q̂(τ)) Bipw(τ), as n→∞,

where Bipw(τ) is the same Gaussian process defined in Theorem 1.3.2.

Four remarks are in order. First, the weighted bootstrap sample does not preserve the neg-

ative cross-sectional dependence in the original sample. Asymptotic variances of the weighted

bootstrap estimators equal those of their original sample counterparts as if SRS is applied.

In fact, the asymptotic variance for β̂w1 (τ) is

ζ2
Y (π, τ) + ζ̃2

A(π, τ) + ζ2
S(τ),

where

ζ̃2
A(π, τ) = Eπ(1− π)

(
m1(S, τ)

πf1(q1(τ))
+

m0(S, τ)

(1− π)f0(q0(τ))

)2

.

This asymptotic variance is intuitive as the weight ξi is independent with each other, which

implies that, conditionally on data, the bootstrap sample observations are independent. As

γ(s) ≤ π(1− π), we have

ζ2
A(π, τ) ≤ ζ̃2

A(π, τ).

If the inequality is strict, then the weighted bootstrap overestimates the asymptotic variance

of the SQR estimator, and thus, the Wald test constructed using the SQR estimator and its

weighted bootstrap standard error is conservative.

Second, the asymptotic distribution of the weighted bootstrap IPW estimator coincides

with that of the original estimator. The asymptotic size of the Wald test constructed us-

ing the IPW estimator and its weighted bootstrap standard error then equals the nominal

level. Theorem 1.3.2 shows that the asymptotic variance for q̂(τ) is invariant in the treat-

ment assignment rule applied. Thus, even though the weighted bootstrap sample ignores the

cross-sectional dependence and behaves as if the treatment status is generated randomly, the

asymptotic variance for q̂w(τ) is still

ζ2
Y (π, τ) + ζ2

S(τ).

Third, the validity of weighted bootstrap for the IPW estimator only requires Assumption

1(iv) instead of 1(iii), for the same reason mentioned after Theorem 1.3.2.

Fourth, it is possible to consider the conventional nonparametric bootstrap which generates

14



the bootstrap sample from the empirical distribution of the data. If the observations are i.i.d.,

van der Vaart and Wellner (1996, Section 3.6) show that the conventional bootstrap is first-

order equivalent to a weighted bootstrap with Poisson(1) weights. However, in the current

setting, {Ai}i≥1 is dependent. It is technically challenging to rigorously show that the above

equivalence still holds. We leave it as an interesting topic for future research.

1.5 Covariate-Adaptive Bootstrap

In this section, we consider the covariate-adaptive bootstrap procedure as follows:

(i) Draw {S∗i }ni=1 from the empirical distribution of {Si}ni=1 with replacement.

(ii) Generate {A∗i }ni=1 based on {S∗i }ni=1 and the treatment assignment rule.

(iii) For A∗i = a and S∗i = s, draw Y ∗i from the empirical distribution of Yi given Ai = a and

Si = s with replacement.

First, Step (i) is the conventional nonparametric bootstrap. The bootstrap sample {S∗i }ni=1

is obtained by drawing from the empirical distribution of {Si}ni=1 with replacement n times.

Second, Step (ii) follows the treatment assignment rule, and thus preserves the cross-sectional

dependence structure in the bootstrap sample, even after conditioning on data. The weighted

bootstrap sample, by contrast, is cross-sectionally independent given data. Third, Step (iii)

applies the conventional bootstrap procedure to the outcome Yi in the cell (Si, Ai) = (s, a) ∈
S×{0, 1}. Given that the original data contain na(s) observations in this cell, in this step, the

bootstrap sample {Y ∗i }i:A∗i=a,S∗i =s is obtained by drawing from the empirical distribution of

these na(s) outcomes with replacement n∗a(s) times, where n∗a(s) =
∑n

i=1 1{A∗i = a, S∗i = s}.
Unlike the conventional bootstrap, here both na(s) and n∗a(s) are random and are not nec-

essarily the same. Last, to implement the covariate-adaptive bootstrap, researchers need to

know the treatment assignment rule for the original sample. Unlike in observational stud-

ies, such information is usually available for RCTs. If one only knows that the treatment

assignment rule achieves strong balance, then Theorem 1.5.1 below still holds, provided that

the bootstrap sample is generated from any treatment assignment rule that achieves strong

balance. Even worse, if no information on the treatment assignment rule is available, then

one cannot implement the covariate-adaptive bootstrap inference. In this case, the weighted

bootstrap for the IPW estimator can still provide a non-conservative Wald test, as shown in

Theorem 1.4.1.
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Using the bootstrap sample {Y ∗i , A∗i , S∗i }ni=1, we can estimate QTE by the two methods

considered in the paper. Let n∗1(s) =
∑n

i=1A
∗
i 1{S∗i = s}, n∗(s) =

∑n
i=1 1{S∗i = s}, π̂∗(s) =

n∗1(s)

n∗(s)
, and Ȧ∗i = (1, A∗i )

′. Then, the two bootstrap estimators can be written respectively as

β̂∗(τ) = arg min
b

n∑
i=1

ρτ

(
Y ∗i − Ȧ∗i b

)
and

q̂∗(τ) = q̂∗1(τ)− q̂∗0(τ),

where

q̂∗1 = arg min
q

n∑
i=1

A∗i
π̂∗(S∗i )

ρτ (Y
∗
i − q) and q̂∗0 = arg min

q

n∑
i=1

1− A∗i
1− π̂∗(S∗i )

ρτ (Y
∗
i − q).

The second element β̂∗1(τ) of β̂∗(τ) and q̂∗(τ) are the SQR and IPW bootstrap estimators for

the τ -th QTE, respectively. Parallel to Assumption 1, we make the following assumption for

the bootstrap sample.

Assumption 4. Let D∗n(s) =
∑n

i=1(A∗i − π)1{S∗i = s}.

(i)

{{
D∗n(s)√

n

}
s∈S

∣∣∣∣{S∗i }ni=1

}
 N(0,ΣD) a.s., where ΣD = diag{p(s)γ(s) : s ∈ S}.

(ii) sups∈S
|D∗n(s)|√
n∗(s)

= Op(1), sups∈S
|Dn(s)|√
n(s)

= Op(1).

Assumption 4(i) is a high-level assumption. Obviously, it holds for SRS. For WEI, this

condition holds by the same argument in Bugni et al. (2018, Lemma B.12) with the fact that
n∗(s)
n(s)

p−→ 1. For BCD, as shown in Bugni et al. (2018, Lemma B.11),

D∗n(s)|{S∗i }ni=1 = Op(1).

Therefore, D∗n(s)/
√
n∗(s)

p−→ 0 and Assumption 4(i) holds with γ(s) = 0. For SBR, it is clear

that |D∗n(s)| ≤ 1. Thus, Assumption 4(i) holds with γ(s) = 0 as well. In addition, as p(s) > 0,

based on the standard bootstrap results, we have n∗(s)/n
p−→ p(s) and n(s)/n

p−→ p(s).

Therefore, Assumption 4(i) is sufficient for Assumption 4(ii). Last, note that Assumption

4(ii) implies Assumption 1(iv).
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Theorem 1.5.1. Suppose Assumptions 1(i), 1(ii), 2, and 4(ii) hold. Then, uniformly over

τ ∈ Υ and conditionally on data,

√
n(q̂∗(τ)− q̂(τ)) Bipw(τ), as n→∞.

If, in addition, Assumptions 1(iii) and 4(i) hold, then

√
n
(
β̂∗1(τ)− q̂(τ)

)
 Bsqr(τ), as n→∞.

Here, Bsqr(τ) and Bipw(τ) are two Gaussian processes defined in Theorem 1.3.1 and 1.3.2,

respectively.

Several remarks are in order. First, unlike the usual bootstrap estimator, the covariate-

adaptive bootstrap SQR estimator is not centered around its corresponding counterpart from

the original sample, but rather q̂(τ). The reason is that the treatment status A∗i is not

generated by bootstrap. In the linear expansion for the bootstrap estimator β̂∗1(τ), the part

of the influence function that accounts for the variation generated by A∗i need not be centered.

We also know from the proof of Theorem 1.3.2 that q̂(τ) do not have an influence function

that represents the variation generated by Ai. Thus, q̂(τ) can be used to center β̂∗1(τ).

Second, the choice of q̂(τ) as the center is somehow ad-hoc. In fact, any estimator q̃(τ)

that is first-order equivalent to q̂(τ) in the sense that

sup
τ∈Υ
|q̃(τ)− q̂(τ)| = op(1/

√
n)

can serve as the center for the bootstrap estimators q̂∗(τ) and β̂∗1(τ).

Third, when the treatment assignment rule achieves strong balance, β̂1(τ) and q̂(τ) are

first-order equivalent. In this case, β̂1(τ) can serve as the center for β̂∗1(τ) and various boot-

strap inference methods are valid. On the other hand, when the treatment assignment rule

does not achieve strong balance, β̂1(τ) and q̂(τ) are not first-order equivalent. In this case,

the asymptotic size of the percentile bootstrap for the SQR estimator using the quantiles of

β̂∗1(τ) does not equal the nominal level. In the next section, we propose a way to compute

the bootstrap standard error which does not depend on the choice of the center. Based on

the bootstrap standard error, researchers can construct t-statistics and use standard normal

critical values for inference.

Fourth, for ATE, we can use the same bootstrap sample to compute the standard errors

for the simple and strata fixed effects estimators proposed in Bugni et al. (2018) as well as

the IPW estimator. We expect that all the results in this paper hold for the ATE as well.

17



1.6 Simulation

We can summarize four bootstrap scenarios from the analysis in Sections 1.4 and 1.5: (i) the

SQR estimator with the weighted bootstrap, (ii) the IPW estimator with either the weighted

or covariate-adaptive bootstrap, (iii) the SQR estimator with the covariate-adaptive bootstrap

when the assignment rule achieves strong balance, and (iv) the SQR estimator with the

covariate-adaptive bootstrap when the assignment rule does not achieve strong balance. The

results of Sections 1.4 and 1.5 imply that the bootstrap in scenario (i) produces conservative

Wald-tests when the treatment assignment rule is not SRS. For scenarios (ii) and (iii), various

bootstrap based inference methods are valid. However, for scenario (iv), researchers should

be careful about the centering issue. In particular, the percentile bootstrap inference using

the quantiles of β̂∗1 is invalid. In the following, we propose one single bootstrap inference

method that works for scenarios (ii)–(iv). In addition, the proposed method does not require

the knowledge of the centering.

We take the IPW estimator as an example. We can repeat the bootstrap estimation6 B

times and obtain B bootstrap IPW estimates, denoted as {q̂∗b (τ)}Bb=1. Further denote Q̂(α) as

the α-th empirical quantile of {q̂∗b (τ)}Bb=1. We can test the null hypothesis that q(τ) = q0(τ)

via 1
{∣∣∣ q̂(τ)−q0(τ)

σ̂∗n

∣∣∣ > z1−α/2

}
, where q̂(τ), z1−α/2, and σ̂∗n are the IPW estimator, the (1−α/2)-

th quantile of the standard normal distribution, and

σ̂∗n =
Q̂(0.975)− Q̂(0.025)

z0.975 − z0.025

,

respectively. In scenarios (ii)–(iv), the asymptotic size of such test equals the nominal level

α. In scenarios (ii) and (iii), we recommend the t-statistic and confidence interval using this

particular bootstrap standard error (i.e., σ̂∗n) over other bootstrap inference methods (e.g.,

bootstrap confidence interval, percentile bootstrap confidence interval, etc.) because based

on unreported simulations, they have better finite sample performance.

1.6.1 Data Generating Processes

We consider two DGPs with parameters γ = 4, σ = 2, and µ which will be specified later.

(i) Let Z be standardized Beta(2, 2) distributed, Si =
∑4

j=1 1{Zi ≤ gj}, and (g1, · · · , g4) =

6For the IPW estimator, we can use either the weighted or covariate-adaptive bootstrap. For the SQR
estimator, we can only use the covariate-adaptive bootstrap.
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(−0.25
√

20, 0, 0.25
√

20, 0.5
√

20). The outcome equation is

Yi = Aiµ+ γZi + ηi,

where ηi = σAiεi,1 + (1− Ai)εi,2 and (εi,1, εi,2) are jointly standard normal.

(ii) Let Z be uniformly distributed on [−2, 2], Si =
∑4

j=1 1{Zi ≤ gj}, and (g1, · · · , g4) =

(−1, 0, 1, 2). The outcome equation is

Yi = Aiµ+ Aiνi,1 + (1− Ai)νi,0 + ηi,

where νi,0 = γZ2
i 1{|Zi| ≥ 1}+ γ

4
(2−Z2

i )1{|Zi| < 1}, νi,1 = −νi,0, ηi = σ(1 +Z2
i )Aiεi,1 +

(1 + Z2
i )(1− Ai)εi,2, and (εi,1, εi,2) are mutually independent T (3)/3 distributed.

When π = 1
2
, for each DGP, we consider four randomization schemes:

(i) SRS: Treatment assignment is generated as in Example 1.

(ii) WEI: Treatment assignment is generated as in Example 2 with φ(x) = (1− x)/2.

(iii) BCD: Treatment assignment is generated as in Example 3 with λ = 0.75.

(iv) SBR: Treatment assignment is generated as in Example 4.

When π 6= 0.5, BCD is not defined while WEI is not defined in the original paper (Wei,

1978). Recently, Hu (2016) generalizes the adaptive biased-coin design (i.e., WEI) to multiple

treatment values and unequal target treatment ratios. Here, for π 6= 0.5, we only consider

SRS and SBR as in Bugni et al. (2018). We conduct the simulations with sample sizes n = 200

and 400. The numbers of simulation replications and bootstrap samples are 1000. Under the

null, µ = 0 and we compute the true parameters of interest using simulations with 106 sample

size and 104 replications. Under the alternative, we perturb the true values by µ = 1 and

µ = 0.75 for n = 200 and 400, respectively. We report the results for the median QTE.

Section 1.11.6 contains additional simulation results for ATE and QTEs with τ = 0.25 and

0.75. All the observations made in this section still apply.

1.6.2 QTE, π = 0.5

We consider the Wald test with six t-statistics and 95% nominal rate. We construct the

t-statistics using one of our two point estimates and some estimate of the standard error. We

will reject the null hypothesis when the absolute value of the t-statistic is greater than 1.96.

The details about the point estimates and standard errors are as follows:
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(i) “s/naive”: the point estimator is computed by the SQR and its standard error σ̂naive(τ)

is computed as

σ̂2
naive(τ) =

τ(1− τ)− 1
n

∑n
i=1 m̂

2
1(Si, τ)

πf̂ 2
1 (q̂1(τ))

+
τ(1− τ)− 1

n

∑n
i=1 m̂

2
0(Si, τ)

(1− π)f̂ 2
0 (q̂0(τ))

+
1

n

n∑
i=1

π(1− π)

(
m̂1(Si, τ)

πf̂1(q̂1(τ))
+

m̂0(Si, τ)

(1− π)f̂0(q̂0(τ))

)2

+
1

n

n∑
i=1

(
m̂1(Si, τ)

f̂1(q̂1(τ))
− m̂0(Si, τ)

f̂0(q̂0(τ))

)2

, (1.6.1)

where q̂j(τ) is the τ -th empirical quantile of Yi|Ai = j,

m̂i,1(s, τ) =

∑n
i=1Ai1{Si = s}(τ − 1{Yi ≤ q̂1(τ)})

n1(s)
,

m̂i,0(s, τ) =

∑n
i=1(1− Ai)1{Si = s}(τ − 1{Yi ≤ q̂0(τ)})

n(s)− n1(s)
.

For j = 0, 1, f̂j(·) is computed by the kernel density estimation using the observations Yi

provided that Ai = j, bandwidth hj = 1.06σ̂jn
−1/5
j , Gaussian kernel function, standard

deviation σ̂j of the observations Yi provided that Ai = j, and nj =
∑n

i=1 1{Ai = j}.

(ii) “s/adj”: exactly the same as the “s/naive” method with one difference: replacing π(1−
π) in (1.6.1) by γ(Si).

(iii) “s/W”: the point estimator is computed by the SQR and its standard error σ̂W (τ)

is computed by the weighted bootstrap procedure. The bootstrap weights {ξi}ni=1 are

generated from the standard exponential distribution. Denote {β̂w1,b}Bb=1 as the collection

of B weighted bootstrap SQR estimates. Then,

σ̂W (τ) =
Q̂(0.975)− Q̂(0.025)

z0.975 − z0.025

,

where Q̂(α) is the α-th empirical quantile of {β̂w1,b(τ)}Bb=1.

(iv) “ipw/W”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the IPW QR.

(v) “s/CA”: the point estimator is computed by the SQR and its standard error σ̂CA(τ)

is computed by the covariate-adaptive bootstrap procedure. Denote {β̂∗1,b}Bb=1 as the
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collection of B estimates obtained by the SQR applied to the samples generated by the

covariate-adaptive bootstrap procedure. Then,

σ̂CA(τ) =
Q̂(0.975)− Q̂(0.025)

z0.975 − z0.025

,

where Q̂(α) is the α-th empirical quantile of {β̂∗1,b(τ)}Bb=1.

(vi) “ipw/CA”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the IPW QR.

Tables I and II present the rejection probabilities (multiplied by 100) for the six t-tests

under both the null hypothesis and the alternative hypothesis, with sample sizes n = 200

and 400, respectively. In these two tables, columns M and A represent DGPs and treatment

assignment rules, respectively. From the rejection probabilities under the null, we can make

five observations. First, the naive t-test (“s/naive”) is conservative for WEI, BCD, and SBR,

which is consistent with the findings for ATE estimators by Shao et al. (2010) and Bugni et al.

(2018). Second, although the asymptotic size of the adjusted t-test (“s/adj”) is expected to

equal the nominal level, it does not perform well for DGP2. The main reason is that, in order

to analytically compute the standard error, we must compute nuisance parameters such as

the unconditional densities of Y (0) and Y (1), which requires tuning parameters. We further

compute the standard errors following (1.6.1) with π(1 − π) and the tuning parameter hj

replaced by γ(Si) and 1.06Cf σ̂jn
−1/5
j , respectively, for some constant Cf ∈ [0.5, 1.5]. Figure

1.1 plots the rejection probabilities of the “s/adj” t-tests against Cf for the BCD assignment

rule with n = 200, τ = 0.5, and π = 0.5. We see that (i) the rejection probability is sensitive

to the choice of bandwidth, (ii) there is no universal optimal bandwidth across two DGPs,

and (iii) the covariate-adaptive bootstrap t-tests (“s/CA”) represented by the dotted dash

lines are quite stable across different DGPs and close to the nominal rate of rejection. Third,

the weighted bootstrap t-test for the SQR estimator (“s/W”) is conservative, especially for

the BCD and SBR assignment rules which achieve strong balance. Fourth, the rejection

probabilities of the weighted bootstrap t-test for the IPW estimator (“ipw/W”) are close to

the nominal rate even for sample size n = 200, which is consistent with Theorem 1.4.1. Last,

the rejection rates for the two covariate-adaptive bootstrap t-tests (“s/CA” and “ipw/CA”)

are close to the nominal rate, which is consistent with Theorem 1.5.1.
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Table I. n = 200, τ = 0.5, π = 0.5

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 SRS 4.5 4.5 4.7 4.4 4.4 3.9 18.3 18.3 19.3 44.1 20.0 42.9

WEI 1.2 4.0 1.4 4.3 3.7 3.5 11.6 29.5 13.8 44.7 29.8 43.6
BCD 0.2 5.7 0.3 4.1 4.4 3.9 7.2 47.2 9.5 45.3 43.4 44.8
SBR 0.1 5.7 0.1 4.6 4.5 4.4 8.5 48.5 9.9 46.0 45.7 44.8

2 SRS 0.4 0.4 4.7 5.2 5.2 5.3 79.7 79.7 90.4 91.6 90.2 91.3
WEI 0.6 0.6 4.5 5.8 5.2 5.7 80.2 80.7 90.7 90.9 91.3 90.6
BCD 1.0 1.0 4.5 5.1 5.0 5.3 79.6 80.4 90.2 91.1 90.8 90.6
SBR 0.8 1.1 4.8 5.3 4.6 4.7 77.1 77.4 89.7 90.1 89.9 89.9

Table II. n = 400, τ = 0.5, π = 0.5

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 SRS 4.2 4.2 5.4 4.0 4.6 4.1 21.8 21.8 23.2 50.2 23.5 50.2

WEI 1.0 4.9 0.8 4.7 4.6 4.2 14.7 35.6 16.0 50.3 35.0 50.7
BCD 0.3 4.5 0.2 4.3 3.5 4.0 8.9 52.6 11.7 50.2 49.3 49.6
SBR 0.2 4.6 0.0 3.7 3.6 3.7 8.9 55.0 10.9 51.8 52.4 51.9

2 SRS 1.2 1.2 4.3 4.8 4.6 5.0 89.7 89.7 95.6 95.6 95.7 95.7
WEI 1.4 1.6 5.7 6.0 5.5 5.7 89.2 89.2 95.4 94.8 95.1 94.8
BCD 1.3 1.3 5.5 6.1 5.1 5.2 88.7 88.9 95.2 95.4 95.7 95.6
SBR 0.6 0.6 4.0 3.9 3.8 3.8 90.0 90.2 95.4 95.4 95.8 95.7

Note: Rejection probabilities for BCD assignment rule with n = 200, π = 0.5,
and τ = 0.5. The X-axis is Cf . The solid lines are the rejection probabilities for
“s/adj”. The densities of Yj is computed using the tuning parameters

hj = 1.06Cf σ̂jn
−1/5
j , for j = 0, 1. The dotted dash lines are the rejection

probability for “s/CA”.

Figure 1.1. Rejection Probabilities Across Different Bandwidth Values

Turning to the rejection rates under the alternative in Tables I and II, we can make two

additional observations. First, for BCD and SBR, the rejection probabilities (power) for

“ipw/W”, “s/CA”, and “ipw/CA” are close. This is because both BCD and SBR achieve
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strong balance. In this case, the two estimators we propose are asymptotically first-order

equivalent. Second, for DGP1 with SRS and WEI assignment rules, “ipw/CA” is more

powerful than “s/CA”. This confirms our theoretical finding that the IPW estimator is

strictly more efficient than the SQR estimator when the treatment assignment rule does not

achieve strong balance. For DGP2 the three t-tests, i.e., “ipw/W”, “s/CA”, and “ipw/CA”,

have similar power.

1.6.3 QTE, π = 0.7

Tables III and IV show the similar results with π = 0.7. The same comments for Tables I

and II still apply.

Table III. n = 200, τ = 0.5, π = 0.7

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 SRS 4.8 4.8 5.2 4.7 3.4 4.4 17.0 17.0 17.2 42.5 16.7 40.6

SBR 0.1 0.7 0.2 4.0 4.4 3.7 4.3 21.2 6.0 45.5 45.7 43.4
2 SRS 1.6 1.6 5.2 5.4 5.1 5.3 77.1 77.1 89.1 90.3 89.5 89.4

SBR 0.4 0.5 3.9 4.8 4.5 4.8 76.0 76.9 89.2 91.1 90.1 90.0

Table IV. n = 400, τ = 0.5, π = 0.7

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 SRS 4.4 4.4 5.1 3.9 4.8 3.7 18.4 18.4 18.7 47.9 19.4 46.6

SBR 0.1 0.2 0 3.9 3.5 4 4.2 22 5.9 49.8 50.5 48.2
2 SRS 0.7 0.7 3.9 4.2 4.2 4.7 86.7 86.7 93.9 93.3 94.1 93.6

SBR 0.6 0.6 3.5 3.6 3.7 3.7 88.3 88.8 94.8 95.2 95.5 95.2

1.6.4 Difference between Two QTEs

Last, we consider to infer q(0.25)− q(0.75) when π = 0.5:

H0 : q(0.25)− q(0.75) = the true value v.s. H1 : q(0.25)− q(0.75) = the true value + µ,

where µ = 1 and 0.75 for sample sizes 200 and 400, respectively. The two estimators for QTEs

at τ = 0.25 and 0.75 are correlated. We can compute the naive and adjusted standard errors

for the SQR estimator by taking this covariance structure into account.7 On the other hand,

in addition to avoiding the tuning parameters, another advantage of the bootstrap inference is

7The formulas for the covariances can be found in the proofs of Theorems 1.3.1 and 1.3.2.
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it does not require the knowledge of this complicated covariance structure. Researchers may

construct the t-statistic using the difference of two QTE estimators with the corresponding

weighted and covariate-adaptive bootstrap standard errors, which are calculated using the

exact same procedure as in Sections 1.4 and 1.5. Taking the SQR estimator as an example,

we estimate q(0.25)−q(0.75) via β̂1(0.25)− β̂1(0.75) and the corresponding covariate-adaptive

bootstrap standard error is

σ̂CA =
Q̂(0.975)− Q̂(0.025)

z0.975 − z0.025

,

where Q̂(α) is the α-th empirical quantile of {β̂∗1,b(0.25)− β̂∗1,b(0.75)}Bb=1.

Based on the rejection rates reported in Tables V and VI, the general observations for

the previous simulation results still apply. Although under the null, the rejection rates for

“ipw/W”, “S/CA”, “ipw/CA” in DGP2 are below the nominal 5%, they gradually increase

as the sample size increases from 200 to 400.

Table V. n = 200, q(0.25)− q(0.75)

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 SRS 4.0 4.0 3.6 3.8 3.5 3.5 15.6 15.6 14.9 19.4 16.0 19.4

WEI 2.3 4.9 2.0 4.0 5.1 3.9 11.3 17.9 11.0 19.0 16.0 18.6
BCD 1.0 4.1 1.1 4.4 3.7 4.2 9.9 20.7 10.1 22.0 20.6 21.4
SBR 1.1 4.3 0.9 4.1 4.1 4.2 9.4 21.8 8.7 17.3 20.0 17.2

2 SRS 5.0 5.0 3.1 3.1 3.1 3.1 53.7 53.7 47.1 48.4 47.8 48.2
WEI 3.6 3.6 2.1 2.8 2.9 2.9 57.0 57.7 47.6 49.8 50.3 50.0
BCD 4.2 4.8 2.4 2.5 3.6 2.7 58.0 59.4 49.1 52.0 52.8 50.8
SBR 5.1 5.3 2.4 3.4 4.1 3.4 55.5 57.0 46.5 46.5 50.5 45.6

Table VI. n = 400, q(0.25)− q(0.75)

H0 H1

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 SRS 3.8 3.8 3.9 5.1 3.7 5.0 17.2 17.2 15.9 21.5 16.8 21.2

WEI 2.0 4.2 2.4 3.3 4.4 3.5 11.8 20.2 11.5 21.4 20.2 20.7
BCD 1.4 4.4 1.4 4.3 4.4 4.1 10.5 21.8 10.2 20.7 21.5 20.6
SBR 0.8 3.8 0.8 3.9 3.7 3.8 12.1 25.0 12.6 21.8 23.7 22.3

2 SRS 5.3 5.3 3.9 4.7 4.3 4.8 63.2 63.2 55.7 57.7 56.8 57.6
WEI 5.4 5.8 3.4 3.7 4.1 3.5 63.6 64.4 55.6 58.0 58.0 58.5
BCD 4.0 4.3 2.6 2.8 3.1 3.1 62.1 63.3 54.7 55.7 57.4 56.0
SBR 5.1 5.7 4.0 4.5 4.4 4.5 61.1 62.0 52.4 51.3 56.0 53.0
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1.7 Guidance for Practitioners

We recommend employing the t-statistic (or equivalently, the confidence interval) constructed

using the IPW estimator and its weighted bootstrap standard error for inference in covariate-

adaptive randomization, for the following four reasons. First, its asymptotic size equals

the nominal level. Second, the IPW estimator has a smaller asymptotic variance than the

SQR estimator when the treatment assignment rule does not achieve strong balance and

the stratification is relevant.8 Third, compared with the covariate-adaptive bootstrap, the

validity of the weighted bootstrap requires a weaker condition that sups∈S |Dn(s)/n(s)| =

op(1). Fourth, this method does not require the knowledge of the exact treatment assignment

rule, thus is suitable in settings where such information is lacking, e.g., using someone else’s

RCT or subsample analysis. When the treatment assignment rule achieves strong balance,

SQR estimator can also be used. But in this case, only the covariate-adaptive bootstrap

standard error is valid. Last, the Wald test using SQR estimator and the weighted bootstrap

standard error is not recommended, as it is conservative when the treatment assignment rule

introduces negative dependence (i.e., γ(s) < π(1− π)) such as WEI, BCD, and SBR.

1.8 Empirical Application

We illustrate our methods by estimating and inferring the average and quantile treatment

effects of iron efficiency on educational attainment. The dataset we use is the same as the

one analyzed by Chong et al. (2016) and Bugni et al. (2018).

1.8.1 Data Description

The dataset consists of 215 students from one Peruvian secondary school during the 2009

school year. About two thirds of students were assigned to the treatment group (A = 1 or

A = 2). The other one third of students were assigned to the control group (A = 0). One half

of the students in the treatment group were shown a video in which a physician encouraged

iron supplements (A = 1) and the other half were shown the same encouragement from a

popular soccer player (A = 2). Those assignments were stratified by the number of years of

secondary school completed (S = {1, · · · , 5}). The field experiment used a stratified block

randomization scheme with fractions (1/3, 1/3, 1/3) for each group, which achieves strong

balance (γ(s) = 0).

8In this case, for ATE, the IPW estimator also has a strictly smaller asymptotic variance than the strata
fixed effects estimator studied in Bugni et al. (2018).
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In the following, we focus on the observations with A = 0 and A = 1, and estimate the

treatment effect of the exposure to a video of encouraging iron supplements by a physician

only. This practice was also implemented in Bugni et al. (2018). In this case, the target

proportions of treatment is π = 1/2. As in Chong et al. (2016), it is also possible to combine

the two treatment groups, i.e., A = 1 and A = 2 and compute the treatment effects of

exposure to a video of encouraging iron supplements by either a physician or a popular soccer

player. Last, one can use the method developed in Bugni et al. (2019) to estimate the ATEs

under multiple treatment status. However, in this setting, the estimation of QTE and the

validity of bootstrap inference have not been investigated yet and are interesting topics for

future research.

For each observation, we have three outcome variables: number of pills taken, grade point

average, and cognitive ability measured by the average score across different Nintendo Wii

games. For more details about the outcome variables, we refer interested readers to Chong

et al. (2016). In the following, we focus on the grade point average only as the other two

outcomes are discrete.

1.8.2 Computation

We consider three pairs of point estimates and their corresponding non-conservative standard

errors: (i) the SQR estimator with the covariate-adaptive bootstrap standard error, (ii) the

IPW estimator with the covariate-adaptive bootstrap standard error, and (iii) the IPW esti-

mator with the weighted bootstrap standard error. We denote them as “s/CA”, “ipw/CA”,

and “ipw/W”, respectively. For comparison, we also compute the SQR estimator with its

weighted bootstrap standard error, which is denoted as “s/W” . The SQR estimator for the

τ -th QTE refers to β̂1(τ) as the second element of β̂(τ) = (β̂0(τ), β̂1(τ)), where

β̂(τ) = arg min
b=(b0,b1)′∈<2

n∑
i=1

ρτ

(
Yi − Ȧ′ib

)
,

Ȧi = (1, Ai)
′, and ρτ (u) = u(τ − 1{u ≤ 0}) is the standard check function. It is also just the

difference between the τ -th empirical quantiles of treatment and control groups. The IPW

estimator refers to q̂(τ) = q̂1(τ)− q̂0(τ), where

q̂1(τ) = arg min
q

1

n

n∑
i=1

Ai
π̂(Si)

ρτ (Yi − q), q̂0(τ) = arg min
q

1

n

n∑
i=1

1− Ai
1− π̂(Si)

ρτ (Yi − q),
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π̂(·) denotes the propensity score estimator, π̂(s) = n1(s)/n(s), n1(s) =
∑n

i=1Ai1{Si = s},
and n(s) =

∑n
i=1 1{Si = s}. The covariate-adaptive bootstrap standard error (“CA”) refers

to the standard error computed in Section 1.5. In particular, we can draw the covariate-

adaptive bootstrap sample (Y ∗i , A
∗
i , S

∗
i )
n
i=1 following the procedure in Section 1.5. We then

recompute the SQR and IPW estimates using the bootstrap sample. We repeat the bootstrap

estimation B times, and obtain {β̂∗b,1(τ), q̂∗b (τ)}Bb=1. The standard errors for SQR and IPW

estimates are computed as

σ̂sqr(τ) =
Q̂sqr(0.975)− Q̂sqr(0.025)

z0.975 − z0.025

and σ̂ipw(τ) =
Q̂ipw(0.975)− Q̂ipw(0.025)

z0.975 − z0.025

,

respectively, where Q̂sqr(α) and Q̂ipw(α) are the α-th empirical quantiles of {β̂∗b,1(τ)}Bb=1 and

{q̂∗b (τ)}Bb=1, respectively, and zα is the α-th percentile of the standard normal distribution,

i.e., z0.975 ≈ 1.96 and z0.025 ≈ −1.96. The weighted bootstrap standard error for the IPW

estimate can be computed in the same manner with only one difference, the covariate-adaptive

bootstrap estimator {q̂∗b (τ)}Bb=1 is replaced by the weighted bootstrap estimator {q̂wb (τ)}Bb=1,

where for the b-th replication, q̂wb (τ) = q̂wb,1(τ)− q̂wb,0(τ),

q̂wb,1(τ) = arg min
q

1

n

n∑
i=1

ξbiAi
π̂w(Si)

ρτ (Yi − q), q̂wb,1(τ) = arg min
q

1

n

n∑
i=1

ξbi (1− Ai)
1− π̂w(Si)

ρτ (Yi − q),

{ξbi }ni=1 is a sequence of i.i.d. standard exponentially distributed random variables, π̂w(s) =

nw1 (s)/nw(s), nw1 (s) =
∑n

i=1 ξiAi1{Si = s}, and nw(s) =
∑n

i=1 ξi1{Si = s}. Similarly, we com-

pute the weighted bootstrap SQR estimates {βwb,1(τ)}Bb=1 as the second element of {βwb (τ)}Bb=1,

where

βwb (τ) = arg min
b=(b0,b1)′∈<2

1

n

n∑
i=1

ξbi ρτ (Yi − Ȧ′ib).

For the ATEs, we also compute the SQR estimator with the adjusted standard error based

on the analytical formula derived by Bugni et al. (2018), i.e., “s/adj”. For QTE estimates,

we consider quantile indexes {0.1, 0.15, · · · , 0.90}. The number of replications for the two

bootstrap methods is B = 1000.

1.8.3 Main Results

Table VII shows the estimates with the corresponding standard errors in parentheses. From

the table, we can make several remarks. First, for both ATE and QTE, the SQR and IPW
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estimates are very close to each other and so do their standard errors computed via the

analytical formula, weighted bootstrap, and covariate-adaptive bootstrap. This is consistent

with our theory that, under strong balance, the two estimators are first-order equivalent.

Second, although in theory, the weighted bootstrap standard errors for the SQR estimators

should be larger than those computed via the covariate-adaptive bootstrap, in this application,

they are very close. This is consistent with the finding in Bugni et al. (2018) that their adjusted

p-value for the ATE estimate is close to the naive one. It implies the stratification may be

irrelevant for the full-sample analysis. Third, we do not compute the adjusted standard error

for the QTEs as it requires tuning parameters. Fourth, the QTEs provide us a new insight

that the impact of supplementation on grade promotion is only significantly positive at 25%

among the three quantiles. This may imply that the policy of reducing iron deficits is more

effective for lower-ranked students.

Table VII. Grades Points Average

s/adj s/W s/CA ipw/W ipw/CA
ATE 0.35 0.35 0.35 0.37 0.37

(0.16) (0.16) (0.17) (0.16) (0.17)
QTE,25% 0.43 0.43 0.43 0.43

(0.15) (0.15) (0.15) (0.15)
QTE,50% 0.29 0.29 0.29 0.29

(0.22) (0.23) (0.22) (0.24)
QTE,75% 0.35 0.35 0.36 0.36

(0.25) (0.24) (0.25) (0.25)
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Figure 1.2. 95% Point-wise Confidence Interval for Quantile Treatment Effects

In order to provide more details on the QTE estimates, we plot the 95% point-wise con-

fidence band in Figure 1.2 with quantile index ranging from 0.1 to 0.9. The solid line and

the shadow area represent the point estimate and its 95% point-wise confidence interval,

respectively. The confidence interval is constructed by

[β̂ − 1.96σ̂(β̂), β̂ + 1.96σ̂(β̂)],

where β̂ and σ̂(β̂) are the point estimates and the corresponding standard errors described

above. As we expected, all the four findings look the same and the estimates are only signif-

icantly positive at low quantiles (15%–30%).

1.8.4 Subsample Results

Following Chong et al. (2016), we further split the sample into two based on whether the

student is anemic, i.e., Anemi = 0 or 1. We anticipate that there is no treatment effect for

the nonanemic students and positive effects for anemic ones. In this subsample analysis, the

covariate-adaptive bootstrap is infeasible, as in each sub-group, the strong-balance condition

may be lost and the treatment assignment rule is not necessarily SBR and is generally un-
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known.9 However, the weighted bootstrap is still feasible as it does not require the knowledge

of the treatment assignment rule. According to Theorem 1.4.1, the IPW estimator paired

with the weighted bootstrap standard error is valid if

sup
s∈S

∣∣∣∣∣D(1)
n (s)

n(1)(s)

∣∣∣∣∣ ≡ sup
s∈S

∣∣∣∣∑n
i=1(Ai − π)1{Si = s}1{Anemi = 1}∑n

i=1 1{Si = s}1{Anemi = 1}

∣∣∣∣ = op(1) (1.8.1)

and

sup
s∈S

∣∣∣∣∣D(0)
n (s)

n(0)(s)

∣∣∣∣∣ ≡ sup
s∈S

∣∣∣∣∑n
i=1(Ai − π)1{Si = s}1{Anemi = 0}∑n

i=1 1{Si = s}1{Anemi = 0}

∣∣∣∣ = op(1). (1.8.2)

We maintain this mild condition in this section. In our sample,

sup
s∈S

∣∣∣∣∣D(1)
n (s)

n(1)(s)

∣∣∣∣∣ = 0 and sup
s∈S

∣∣∣∣∣D(0)
n (s)

n(0)(s)

∣∣∣∣∣ = 0.071,

which indicate that (1.8.1) and (1.8.2) are plausible.

From Table VIII and Figure 1.3, we see that the QTE estimates are significantly posi-

tive for the anemic students when the quantile index is between around 20%–75%, but are

insignificant for nonanemic students. The lack of significance at very low and high quantiles

for the anemic subsample may be due to a poor asymptotic normal approximation at ex-

treme quantiles. To extend the inference of extremal QTEs in Zhang (2018) to the context

of covariate-adaptive randomization is an interesting topic for future research. We also note

that for both subsamples, the weighted bootstrap standard errors for the SQR estimators are

larger than those for the IPW estimators, which is consistent with Theorem 1.4.1. It implies,

for both sub-groups, the stratification is relevant.

9As the anonymous referee pointed out, it is possible to implement the covariate-adaptive bootstrap on
the full sample and pick out the observations in the subsample to construct a bootstrap subsample. The
analysis can then be repeated on this covariate-adaptive bootstrap subsample. Establishing the validity of
this procedure is left as a topic for future research.
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Table VIII. Grades Points Average for Subsamples

Anemic Nonanemic
s/W ipw/W s/W ipw/W

ATE 0.67 0.69 0.13 0.19
(0.23) (0.20) (0.23) (0.20)

QTE, 25% 0.74 0.76 0.14 0.22
(0.24) (0.22) (0.28) (0.26)

QTE, 50% 1.05 1.05 -0.14 -0.14
(0.29) (0.27) (0.29) (0.27)

QTE, 75% 0.71 0.76 0.14 0.14
(0.36) (0.32) (0.39) (0.37)

Figure 1.3. 95% Point-wise Confidence Interval for Anemic and Nonanemic Students

1.9 Conclusion

This paper studies the estimation and bootstrap inference for QTEs under covariate-adaptive

randomization. We show that the weighted bootstrap standard error is only valid for the IPW

estimator while the covariate-adaptive bootstrap standard error is valid for both SQR and

IPW estimators. In the empirical application, we find that the QTE of iron supplementation

on grade promotion is trivial for nonanemic students, while the impact is significantly positive
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for middle-ranked anemic students.

1.10 Appendix A

1.10.1 Proof of Theorem 1.3.1

Let u = (u0, u1)′ ∈ <2 and

Ln(u, τ) =
n∑
i=1

[
ρτ (Yi − Ȧ′iβ(τ)− Ȧ′iu/

√
n)− ρτ (Yi − Ȧ′iβ(τ))

]
.

Then, by the change of variable, we have that

√
n(β̂(τ)− β(τ)) = arg min

u
Ln(u, τ).

Notice that Ln(u, τ) is convex in u for each τ and bounded in τ for each u. In the following,

we aim to show that there exists

gn(u, τ) = −u′Wn(τ) +
1

2
u′Q(τ)u

such that (1) for each u,

sup
τ∈Υ
|Ln(u, τ)− gn(u, τ)| p−→ 0;

(2) the maximum eigenvalue of Q(τ) is bounded from above and the minimum eigenvalue

of Q(τ) is bounded away from 0, uniformly over τ ∈ Υ; (3) Wn(τ)  B̃(τ) uniformly over

τ ∈ Υ, in which B̃(·) is some Gaussian process. Then by Kato (2009, Theorem 2), we have

√
n(β̂(τ)− β(τ)) = [Q(τ)]−1Wn(τ) + rn(τ),

where supτ∈Υ ||rn(τ)|| = op(1). In addition, by (3), we have, uniformly over τ ∈ Υ,

√
n(β̂(τ)− β(τ)) [Q(τ)]−1B̃(τ) ≡ B(τ).

The second element of B(τ) is Bsqr(τ) stated in Theorem 1.3.1. In the following, we prove

requirements (1)–(3) in three steps.
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Step 1. By Knight’s identity (Knight (1998)), we have

Ln(u, τ)

=− u′
n∑
i=1

1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′iβ(τ)}

)
+

n∑
i=1

∫ Ȧiu√
n

0

(
1{Yi − Ȧ′iβ(τ) ≤ v} − 1{Yi − Ȧ′iβ(τ) ≤ 0}

)
dv

≡− u′Wn(τ) +Qn(u, τ),

where

Wn(τ) =
n∑
i=1

1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′iβ(τ)}

)
and

Qn(u, τ) =
n∑
i=1

∫ Ȧ′iu√
n

0

(
1{Yi − Ȧ′iβ(τ) ≤ v} − 1{Yi − Ȧ′iβ(τ) ≤ 0}

)
dv

=
n∑
i=1

Ai

∫ u0+u1√
n

0

(1{Yi(1)− q1(τ) ≤ v} − 1{Yi(1)− q1(τ) ≤ 0}) dv

+
n∑
i=1

(1− Ai)
∫ u0√

n

0

(1{Yi(0)− q0(τ) ≤ v} − 1{Yi(0)− q0(τ) ≤ 0}) dv

≡Qn,1(u, τ) +Qn,0(u, τ).

We first consider Qn,1(u, τ). Following Bugni et al. (2018), we define {(Y s
i (1), Y s

i (0)) : 1 ≤
i ≤ n} as a sequence of i.i.d. random variables with marginal distributions equal to the dis-

tribution of (Yi(1), Yi(0))|Si = s. The distribution of Qn,1(u, τ) is the same as the counterpart

with units ordered by strata and then ordered by Ai = 1 first and Ai = 0 second within each

stratum, i.e.,

Qn,1(u, τ)
d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

∫ u0+u1√
n

0

(
1{Y s

i (1)− q1(τ) ≤ v} − 1{Y s
i (1)− q1(τ) ≤ 0}

)
dv

=
∑
s∈S

[
Γsn(N(s) + n1(s), τ)− Γsn(N(s), τ)

]
, (1.10.1)
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where N(s) =
∑n

i=1 1{Si < s}, n1(s) =
∑n

i=1 1{Si = s}Ai, and

Γsn(k, τ) =
k∑
i=1

∫ u0+u1√
n

0

(
1{Y s

i (1)− q1(τ) ≤ v} − 1{Y s
i (1)− q1(τ) ≤ 0}

)
dv.

In addition, note that

P( sup
t∈(0,1),τ∈Υ

|Γsn(bntc, τ)− EΓsn(bntc, τ)| > ε)

=P( max
1≤k≤n

sup
τ∈Υ
|Γsn(k, τ)− EΓsn(k, τ)| > ε)

≤3 max
1≤k≤n

P(sup
τ∈Υ
|Γsn(k, τ)− EΓsn(k, τ)| > ε/3)

≤9P(sup
τ∈Υ
|Γsn(n, τ)− EΓsn(n, τ)| > ε/30)

≤270E supτ∈Υ |Γsn(n, τ)− EΓsn(n, τ)|
ε

= o(1). (1.10.2)

The first inequality holds due to Lemma 1.10.1 with Sk = Γsn(k, τ) − EΓsn(k, τ) and ||Sk|| =

supτ∈Υ |Γsn(k, τ) − EΓsn(k, τ)|. The second inequality holds due to Montgomery-Smith (1993,

Theorem 1). To derive the last equality of (1.10.2), we consider the class of functions

F =

{∫ u0+u1√
n

0

(
1{Y s

i (1)− q1(τ) ≤ v} − 1{Y s
i (1)− q1(τ) ≤ 0}

)
dv : τ ∈ Υ

}

with envelope |u0+u1|√
n

and

sup
f∈F

Ef 2 ≤ sup
τ∈Υ

E
[
u0 + u1√

n
1

{
|Y s
i (1)− q1(τ)| ≤ u0 + u1√

n

}]2

. n−3/2.

Note that F is a VC-class with a fixed VC index. Therefore, by Chernozhukov et al. (2014,

Corollary 5.1),

E sup
τ∈Υ
|Γsn(n, τ)− EΓsn(n, τ)| = n||Pn − P||F . n

[√
log(n)

n5/2
+

log(n)

n3/2

]
= o(1).

Then, (1.10.2) implies that

sup
τ∈Υ

∣∣∣∣∣Qn,1(u, τ)−
∑
s∈S

E
[
Γsn(bn(N(s)/n+ n1(s)/n)c, τ)− Γsn(bn(N(s)/n)c, τ)

]∣∣∣∣∣ = op(1),
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where following the convention in the empirical process literature,

E
[
Γsn(bn(N(s)/n+ n1(s)/n)c, τ)− Γsn(bn(N(s)/n)c, τ)

]
is interpreted as

E
[
Γsn(bnt2c, τ)− Γsn(bnt1c, τ)

]
t2=

N(s)
n

,t2=
N(s)+n1(s)

n

.

In addition, N(s)/n
p−→ F (s) = F (Si < s) and n1(s)/n

p−→ πp(s). Thus, uniformly over

τ ∈ Υ,

E
[
Γsn(bn(N(s)/n+ n1(s)/n)c, τ)− Γsn(bn(N(s)/n)c, τ)

]
=n1(s)

∫ u0+u1√
n

0

(F1(q1(τ) + v|s)− F1(q1(τ)|s))dv

p−→πp(s)f1(q1(τ)|s)(u0 + u1)2

2
,

where F1(·|s) and f1(·|s) are the conditional CDF and PDF of Y1 given S = s, respectively.

Then, uniformly over τ ∈ Υ,

Qn,1(u, τ)
p−→
∑
s∈S

πp(s)f1(q1(τ)|s)(u0 + u1)2

2
=
πf1(q1(τ))(u0 + u1)2

2
.

Similarly, we can show that, uniformly over τ ∈ Υ,

Qn,0(u, τ)
p−→ (1− π)f0(q0(τ))u2

0

2
,

and thus

Qn(u, τ)
p−→ 1

2
u′Q(τ)u,

where

Q(τ) =

(
πf1(q1(τ)) + (1− π)f0(q0(τ)) πf1(q1(τ))

πf1(q1(τ)) πf1(q1(τ))

)
. (1.10.3)
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Then,

sup
τ∈Υ
|Ln(u, τ)− gn(u, τ)| = sup

τ∈Υ
|Qn(u, τ)− 1

2
u′Q(τ)u| = op(1).

This concludes the first step.

Step 2. Note that det(Q(τ)) = π(1−π)f1(q1(τ))f0(q0(τ)), which is bounded and bounded

away from zero. In addition, it can be shown that the two eigenvalues of Q are nonnegative.

This leads to the desired result.

Step 3. Let e1 = (1, 1)′ and e0 = (1, 0)′. Then, we have

Wn(τ) =e1

∑
s∈S

n∑
i=1

1√
n
Ai1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

+ e0

∑
s∈S

n∑
i=1

1√
n

(1− Ai)1{Si = s}(τ − 1{Yi(0) ≤ q0(τ)}).

Let mj(s, τ) = E(τ−1{Yi(j) ≤ qj(τ)}|Si = s) and ηi,j(s, τ) = (τ−1{Yi(j) ≤ qj(τ)})−mj(s, τ),

j = 0, 1. Then,

Wn(τ) =

[
e1

∑
s∈S

n∑
i=1

1√
n
Ai1{Si = s}ηi,1(s, τ) + e0

∑
s∈S

n∑
i=1

1√
n

(1− Ai)1{Si = s}ηi,0(s, τ)

]

+

[
e1

∑
s∈S

n∑
i=1

1√
n

(Ai − π)1{Si = s}m1(s, τ)− e0

∑
s∈S

n∑
i=1

1√
n

(Ai − π)1{Si = s}m0(s, τ)

]

+

[
e1

∑
s∈S

n∑
i=1

1√
n
π1{Si = s}m1(s, τ) + e0

∑
s∈S

n∑
i=1

1√
n

(1− π)1{Si = s}m0(s, τ)

]
≡Wn,1(τ) +Wn,2(τ) +Wn,3(τ). (1.10.4)

By Lemma 1.10.2, uniformly over τ ∈ Υ,

(Wn,1(τ),Wn,2(τ),Wn,3(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent two-dimensional Gaussian processes with

covariance kernels Σ1(τ1, τ2), Σ2(τ1, τ2), and Σ3(τ1, τ2), respectively. Therefore, uniformly over

τ ∈ Υ,

Wn(τ) B̃(τ),
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where B̃(τ) is a two-dimensional Gaussian process with covariance kernel

Σ̃(τ1, τ2) =
3∑
j=1

Σj(τ1, τ2).

Consequently,

√
n(β̂(τ)− β(τ)) [Q(τ)]−1B̃(τ) ≡ B(τ),

where B(τ) is a two-dimensional Gaussian process with covariance kernel

Σ(τ1, τ2) =[Q(τ1)]−1Σ̃(τ1, τ2)[Q(τ2)]−1

=
1

πf1(q1(τ1))f1(q1(τ2))
[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]

(
0 0

0 1

)

+
1

(1− π)f0(q0(τ1))f0(q0(τ2))
[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]

(
1 −1

−1 1

)

+
∑
s∈S

p(s)γ(s)

[
m1(s, τ1)m1(s, τ2)

π2f1(q1(τ1))f1(q1(τ2))

(
0 0

0 1

)
− m1(s, τ1)m0(s, τ2)

π(1− π)f1(q1(τ1))f0(q0(τ2))

(
0 0

1 −1

)

− m0(s, τ1)m1(s, τ2)

π(1− π)f0(q0(τ1))f1(q1(τ2))

(
0 1

0 −1

)
+

m0(s, τ1)m0(s, τ2)

(1− π)2f0(q0(τ1))f0(q0(τ2))

(
1 −1

−1 1

)]

+
Em1(S, τ1)m1(S, τ2)

f1(q1(τ1))f1(q1(τ2))

(
0 0

0 1

)
+

Em1(S, τ1)m0(S, τ2)

f1(q1(τ1))f0(q0(τ2))

(
0 0

1 −1

)

+
Em0(S, τ1)m1(S, τ2)

f0(q0(τ1))f1(q1(τ2))

(
0 1

0 −1

)
+

Em0(S, τ1)m0(S, τ2)

f0(q0(τ1))f0(q0(τ2))

(
1 −1

−1 1

)
.

Focusing on the (2, 2)-element of Σ(τ1, τ2), we can conclude that

√
n(β̂1(τ)− q(τ)) Bsqr(τ),

where the Gaussian process Bsqr(τ) has a covariance kernel

Σsqr(τ1, τ2)

=
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

+ Eγ(S)

[
m1(S, τ1)m1(S, τ2)

π2f1(q1(τ1))f1(q1(τ2))
+

m1(S, τ1)m0(S, τ2)

π(1− π)f1(q1(τ1))f0(q0(τ2))
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+
m0(S, τ1)m1(S, τ2)

π(1− π)f0(q0(τ1))f1(q1(τ2))
+

m0(S, τ1)m0(S, τ2)

(1− π)2f0(q0(τ1))f0(q0(τ2))

]
+ E

[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
.

1.10.2 Proof of Theorem 1.3.2

By Knight’s identity, we have

√
n(q̂1(τ)− q1(τ)) = arg min

u
Ln(u, τ),

where

Ln(u, τ) ≡
n∑
i=1

Ai
π̂(Si)

[
ρτ (Yi − q1(τ)− u√

n
)− ρτ (Yi − q1(τ))

]
=− L1,n(τ)u+ L2,n(u, τ),

L1,n(τ) =
1√
n

n∑
i=1

Ai
π̂(Si)

(τ − 1{Yi ≤ q1(τ)})

and

L2,n(u, τ) =
n∑
i=1

Ai
π̂(Si)

∫ u√
n

0

(1{Yi ≤ q1(τ) + v} − 1{Yi ≤ q1(τ)})dv.

We aim to show that there exists

gipw,n(u, τ) = −Wipw,n(τ)u+
1

2
Qipw(τ)u2 (1.10.5)

such that (1) for each u,

sup
τ∈Υ
|Ln(u, τ)− gipw,n(u, τ)| p−→ 0;

(2) Qipw(τ) is bounded and bounded away from zero uniformly over τ ∈ Υ. In addition,

as a corollary of claim (3) below, supτ∈Υ |Wipw,1,n(τ)| = Op(1). Therefore, by Kato (2009,

Theorme 2), we have

√
n(q̂1(τ)− q1(τ)) = Q−1

ipw,1(τ)Wipw,1,n(τ) +Ripw,1,n(τ),
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where supτ∈Υ |Ripw,1,n(τ)| = op(1). Similarly, we can show that

√
n(q̂0(τ)− q0(τ)) = Q−1

ipw,0(τ)Wipw,0,n(τ) +Ripw,0,n(τ),

where supτ∈Υ |Ripw,0,n(τ)| = op(1). Then,

√
n(q̂(τ)− q(τ)) = Q−1

ipw,1(τ)Wipw,1,n(τ)−Q−1
ipw,0(τ)Wipw,0,n(τ) +Ripw,1,n(τ)−Ripw,0,n(τ).

Last, we aim to show that, (3) uniformly over τ ∈ Υ,

Q−1
ipw,1(τ)Wipw,1,n(τ)−Q−1

ipw,0(τ)Wipw,0,n(τ) Bipw(τ),

where Bipw(τ) is a scalar Gaussian process with covariance kernel Σipw(τ1, τ2). We prove

claims (1)–(3) in three steps.

Step 1. For L1,n(τ), we have

L1,n(τ) =
1√
n

n∑
i=1

∑
s∈S

Ai
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

Ai1{Si = s}(π̂(s)− π)√
nπ̂(s)π

(τ − 1{Yi(1) ≤ q1(τ)})

=
1√
n

n∑
i=1

∑
s∈S

Ai
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

Ai1{Si = s}Dn(s)

n(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dn(s)m1(s, τ)

n(s)
√
nπ̂(s)π

Dn(s)−
∑
s∈S

Dn(s)m1(s, τ)√
nπ̂(s)

=
∑
s∈S

1√
n

n∑
i=1

Ai1{Si = s}
π

ηi,1(s, τ) +
∑
s∈S

Dn(s)√
nπ

m1(s, τ) +
n∑
i=1

m1(Si, τ)√
n

−
n∑
i=1

∑
s∈S

Ai1{Si = s}Dn(s)

n(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dn(s)m1(s, τ)

n(s)
√
nπ̂(s)π

Dn(s)−
∑
s∈S

Dn(s)m1(s, τ)√
nπ̂(s)

=Wipw,1,n(τ) +Ripw(τ),

where

Wipw,1,n(τ) =
∑
s∈S

1√
n

n∑
i=1

Ai1{Si = s}
π

ηi,1(s, τ) +
n∑
i=1

m1(Si, τ)√
n

(1.10.6)
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and

Ripw(τ)

=−
n∑
i=1

∑
s∈S

Ai1{Si = s}Dn(s)

n(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dn(s)m1(s, τ)

n(s)
√
nπ̂(s)π

Dn(s) +
∑
s∈S

Dn(s)m1(s, τ)√
n

(
1

π
− 1

π̂(s)

)

=−
n∑
i=1

∑
s∈S

Ai1{Si = s}Dn(s)

n(s)
√
nπ̂(s)π

ηi,1(s, τ),

where we use the fact that π̂(s)−π = Dn(s)
n(s)

. By the same argument in Claim (1) of the proof

of Lemma 1.10.2, we have, for every s ∈ S,

sup
τ∈Υ

∣∣∣∣∣ 1√
n

n∑
i=1

Ai1{Si = s}ηi,1(s, τ)

∣∣∣∣∣ d
= sup

τ∈Υ

∣∣∣∣∣∣ 1√
n

N(s)+n(s)∑
i=N(s)+1

η̃i,1(s, τ)

∣∣∣∣∣∣ = Op(1), (1.10.7)

where η̃i,j(s, τ) = τ − 1{Y s
i (j) ≤ qj(τ)} −mj(s, τ), for j = 0, 1, where {Y s

i (0), Y s
i (1)}i≥1 are

the same as defined in Step 1 in the proof of Theorem 1.3.1.

Because of (1.10.7) and the fact that Dn(s)
n(s)

= op(1), we have

sup
τ∈Υ
|Ripw(τ)| = op(1).

For L2,n(u, τ), we have

L2,n(u, τ) =
∑
s∈S

1

π̂(s)

N(s)+n1(s)∑
i=N(s)+1

∫ u√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ) + v})dv

=
∑
s∈S

1

π̂(s)
[Γsn(N(s) + n1(s), τ)− Γsn(N(s), τ)] ,

where

Γsn(k, τ) =
k∑
i=1

∫ u√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ) + v})dv.

By the same argument in (1.10.2), we can show that

sup
t∈(0,1),τ∈Υ

|Γsn(bntc, τ)− EΓsn(bntc, τ)| = op(1).
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In addition,

EΓsn(N(s) + n1(s), τ)− EΓsn(N(s), τ)
p−→ πp(s)f1(q1(τ)|s)u2

2
.

Therefore,

sup
τ∈Υ

∣∣∣∣L2,n(u, τ)− f1(q1(τ))u2

2

∣∣∣∣ = op(1),

where we use the fact that π̂(s)− π = Dn(s)
n(s)

= op(1) and

∑
s∈S

p(s)f1(q1(τ)|s) = f1(q1(τ)).

This establishes (1.10.5) with Qipw,1(τ) = f1(q1(τ)) and Wipw,n(τ) defined in (1.10.6).

Step 2. Statement (2) holds by Assumption 2.

Step 3. By a similar argument in Step 1, we have

Wipw,0,n(τ) =
∑
s∈S

1√
n

n∑
i=1

(1− Ai)1{Si = s}
1− π

ηi,0(s, τ) +
n∑
i=1

m0(Si, τ)√
n

and Qipw,0(τ) = f0(q0(τ)). Therefore,

√
n(q̂ − q) =

1√
n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]

+

[
1√
n

n∑
i=1

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]
+Ripw,n(τ)

=Wn,1(τ) +Wn,2(τ) +Ripw,n(τ) (1.10.8)

where supτ∈Υ |Ripw,n(τ)| = op(1). Last, Lemma 1.10.3 establishes that

(Wn,1(τ),Wn,2(τ)) (Bipw,1(τ),Bipw,2(τ)),

where (Bipw,1(τ),Bipw,2(τ)) are two mutually independent scalar Gaussian processes with co-

variance kernels

Σipw,1(τ1, τ2) =
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))
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and

Σipw,2(τ1, τ2) = E
(
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

)(
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

)
,

respectively. In particular, the asymptotic variance for q̂ is

ζ2
Y (π, τ) + ζ2

S(τ),

where ζ2
Y (π, τ) and ζ2

S(τ) are the same as those in the proof of Theorem 1.3.1.

1.10.3 Proof of Theorem 1.4.1

First, we consider the weighted bootstrap for the SQR estimator. Note that

√
n(β̂w(τ)− β(τ)) = arg min

u
Lwn (u, τ),

where

Lwn (u, τ) =
n∑
i=1

ξi

[
ρτ (Yi − Ȧ′iβ(τ)− Ȧ′iu/

√
n)− ρτ (Yi − Ȧ′iβ(τ))

]
.

Similar to the proof of Theorem 1.3.1, we can show that

sup
τ∈Υ
|Lwn (u, τ)− gwn (u, τ)| → 0,

where

gwn (u, τ) = −u′Ww
n (τ) +

1

2
u′Q(τ)u,

Ww
n (τ) =

n∑
i=1

ξi√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′β(τ)}

)
,

and Q(τ) is defined in (1.10.3). Therefore, by Kato (2009, Theorem 2), we have

√
n(β̂w(τ)− β(τ)) = [Q(τ)]−1Ww

n (τ) + rwn (τ),
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where supτ∈Υ ||rwn (τ)|| = op(1). By Theorem 1.3.1,

√
n(β̂w(τ)− β̂(τ)) = [Q(τ)]−1

n∑
i=1

ξi − 1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′β(τ)}

)
+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ. In addition, Lemma 1.10.4 shows that,

conditionally on data, the second element of [Q(τ)]−1
∑n

i=1
ξi−1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′β(τ)}

)
con-

verges to B̃sqr(τ) uniformly over τ ∈ Υ. This leads to the desired result for the weighted

bootstrap simple quantile regression estimator.

Next, we turn to the IPW estimator. Denote q̂wj (τ), j = 0, 1 the weighted bootstrap

counterpart of q̂j(τ). We have

√
n(q̂w1 (τ)− q1(τ)) = arg min

u
Lwn (u, τ),

where

Lwn (u, τ) =
n∑
i=1

ξiAi
π̂w(Si)

[
ρτ (Yi − q1(τ)− u√

n
)− ρτ (Yi − q1(τ))

]
≡− Lw1,n(τ)u+ Lw2,n(u, τ),

where

Lw1,n(τ) =
1√
n

n∑
i=1

ξiAi
π̂w(Si)

(τ − 1{Yi ≤ q1(τ)})

and

Lw2,n(τ) =
n∑
i=1

ξiAi
π̂w(Si)

∫ u√
n

0

(1{Yi ≤ q1(τ) + v} − 1{Yi ≤ q1(τ)})dv.

Recall

Dw
n (s) =

n∑
i=1

ξi(Ai − π)1{Si = s}, nw(s) =
n∑
i=1

ξi1{Si = s},

and

π̂w(s) =

∑n
i=1 ξiAi1{Si = s}

nw(s)
= π +

Dw
n (s)

nw(s)
.
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Then, for Lw1,n(τ), we have

Lw1,n(τ) =
1√
n

n∑
i=1

∑
s∈S

ξiAi
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

ξiAi1{Si = s}(π̂w(s)− π)√
nπ̂w(s)π

(τ − 1{Yi(1) ≤ q1(τ)})

=
1√
n

n∑
i=1

∑
s∈S

ξiAi
π

1{Si = s}(τ − 1{Yi(1) ≤ q1(τ)})

−
n∑
i=1

∑
s∈S

ξiAi1{Si = s}Dw
n (s)

nw(s)
√
nπ̂(s)π

ηi,1(s, τ)−
∑
s∈S

Dw
n (s)m1(s, τ)

nw(s)
√
nπ̂w(s)π

Dw
n (s)−

∑
s∈S

Dw
n (s)m1(s, τ)√
nπ̂w(s)

=
∑
s∈S

1√
n

n∑
i=1

ξiAi1{Si = s}
π

ηi,1(s, τ) +
∑
s∈S

Dw
n (s)√
nπ

m1(s, τ) +
n∑
i=1

ξim1(Si, τ)√
n

−
∑
s∈S

Dw
n (s)

n∑
i=1

ξiAi1{Si = s}
nw(s)

√
nπ̂w(s)π

ηi,1(s, τ)−
∑
s∈S

Dw
n (s)m1(s, τ)

nw(s)
√
nπ̂w(s)π

Dw
n (s)−

∑
s∈S

Dw
n (s)m1(s, τ)√
nπ̂w(s)

=Ww
ipw,1,n(τ) +Rw

ipw(τ),

where

Ww
ipw,1,n(τ) =

∑
s∈S

1√
n

n∑
i=1

ξiAi1{Si = s}
π

ηi,1(s, τ) +
n∑
i=1

ξim1(Si, τ)√
n

(1.10.9)

and

Rw
ipw(τ)

=−
∑
s∈S

Dw
n (s)

n∑
i=1

ξiAi1{Si = s}
nw(s)

√
nπ̂w(s)π

ηi,1(s, τ)−
∑
s∈S

Dw
n (s)m1(s, τ)

nw(s)
√
nπ̂w(s)π

Dw
n (s) +

∑
s∈S

Dw
n (s)m1(s, τ)√

n
(
1

π
− 1

π̂w(s)
)

=−
∑
s∈S

Dw
n (s)

n∑
i=1

ξiAi1{Si = s}
nw(s)

√
nπ̂w(s)π

ηi,1(s, τ).

In the following, we aim to show Dw
n (s)/nw(s) = op(1) and

sup
τ∈Υ,s∈S

|
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)| = Op(
√
n).

For the first claim, we note that nw(s)/n(s)
p−→ 1 and Dn(s)/n(s)

p−→ 0. Therefore, we only
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need to show

Dw
n (s)−Dn(s)

n(s)
=

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}
n(s)

p−→ 0.

As n(s)→∞ a.s., given data,

1

n(s)

n∑
i=1

(Ai − π)21{Si = s} =
1

n

n∑
i=1

(
Ai − π − 2π(Ai − π) + π − π2

)
1{Si = s}

=
Dn(s)− 2πDn(s)

n(s)
+ π(1− π)

p−→ π(1− π).

Then, by the Lindeberg CLT, conditionally on data,

1√
n(s)

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s} N(0, π(1− π)) = Op(1),

and thus

Dw
n (s)−Dn(s)

n(s)
= Op(n

−1/2(s)) = op(1).

This leads to the first claim. For the second claim, we note that

n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ) =

N(s)+n1(s)∑
i=N(s)+1

ξiη̃i,1(s, τ).

We can show the RHS of the above display is Op(
√
n) for all s ∈ S following the same

argument used in Claim (1) of the proof of Lemma 1.10.2. Given these two claims and by

noticing that

π̂w(s)− π =
Dw
n (s)

nw(s)
= op(1),

we have

sup
τ∈Υ
|Rw

ipw(τ)| = op(1).

Similar to the argument used to derive the limit of L2,n(τ) in the proof of Theorem 1.3.2,
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we can show that

sup
τ∈Υ
|Lw2,n(u, τ)− f1(q1(τ))u2

2
| = op(1).

Therefore,

√
n(q̂w1 (τ)− q1(τ)) =

Ww
ipw,1,n(τ)

f1(q1(τ))
+Rw

1 (τ),

where supτ∈Υ |Rw
1 (τ)| = op(1). Similarly,

√
n(q̂w0 (τ)− q0(τ)) =

Ww
ipw,0,n(τ)

f0(q0(τ))
+Rw

0 (τ),

where

Ww
ipw,0,n(τ) =

∑
s∈S

1√
n

n∑
i=1

ξi(1− Ai)1{Si = s}
1− π

ηi,0(s, τ) +
n∑
i=1

ξim0(Si, τ)√
n

and supτ∈Υ |Rw
0 (τ)| = op(1). Therefore,

√
n(q̂w(τ)− q̂(τ))

=
∑
s∈S

1√
n

n∑
i=1

(ξi − 1)

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

+

[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
1{Si = s}

}
+ op(1),

where the op(1) term holds uniformly over τ ∈ Υ. In order to show the conditional weak

convergence, we only need to show the conditionally stochastic equicontinuity and finite-

dimensional convergence. The former can be shown in the same manner as Lemma 1.10.4.

For the latter, we note that

1

n

∑
s∈S

n∑
i=1

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))
+

[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
1{Si = s}

}2

=
∑
s∈S

1

n

n∑
i=1

{
(1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

}2

+
∑
s∈S

1

n

n∑
i=1

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))

}2

+
∑
s∈S

1

n

n∑
i=1

{[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
1{Si = s}

}2
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+
∑
s∈S

2

n

n∑
i=1

{
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))

}[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]

−
∑
s∈S

2

n

n∑
i=1

{
(1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

}[
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

]
p−→ζ2

Y (π, τ) + ζ2
S(τ).

Note that the RHS of the above display is the same as the asymptotic variance of the original

estimator q̂(τ). By the CLT conditional on data, we can establish the one-dimensional weak

convergence. Then, by the Cramér-Wold Theorem, we can extend such result to any finite

dimension. This concludes the proof.

1.10.4 Proof of Theorem 1.5.1

It suffices to prove the theorem with q̂(τ) replaced by

q̃(τ) =q(τ) +

[∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

η̃i,1(s, τ)

nπf1(q1(τ))
−
∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

η̃i,0(s, τ)

n(1− π)f0(q0(τ))

]

+

[ n∑
i=1

1

n

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]
,

as we have shown in Theorem 1.3.2 that

sup
τ∈Υ
|q̃(τ)− q̂(τ)| = op(1/

√
n).

We first consider the SQR estimator. Note that

√
n(β̂∗(τ)− β(τ)) = arg min

u
L∗n(u, τ),

where L∗n(u, τ) =
∑n

i=1

[
ρτ (Y

∗
i − Ȧ∗

′
i β(τ)− Ȧ∗′i u/

√
n)− ρτ (Y ∗i − Ȧ∗

′
i β(τ))

]
. Then, β̂∗1(τ), the

bootstrap counterpart of the SQR estimator, is just the second element of β̂∗(τ). Similar to

the proof of Theorem 1.3.1,

L∗n(u, τ) = −u′W ∗
n(τ) +Q∗n(u, τ),
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where

W ∗
n(τ) =

n∑
i=1

1√
n
Ȧ∗i (τ − 1{Y ∗i ≤ Ȧ∗

′

i β(τ)})

and

Q∗n(u, τ) =
n∑
i=1

∫ Ȧ∗′i u√
n

0

(
1{Y ∗i − Ȧ∗′i β(τ) ≤ v} − 1{Y ∗i − Ȧ∗′i β(τ) ≤ 0}

)
dv

=
n∑
i=1

A∗i

∫ u0+u1√
n

0

(1{Y ∗i (1)− q1(τ) ≤ v} − 1{Y ∗i (1)− q1(τ) ≤ 0}) dv

+
n∑
i=1

(1− A∗i )
∫ u0√

n

0

(1{Y ∗i (0)− q0(τ) ≤ v} − 1{Y ∗i (0)− q0(τ) ≤ 0}) dv

≡Q∗n,1(u, τ) +Q∗n,0(u, τ). (1.10.10)

Define η∗i,j(s, τ) = (τ − 1{Y ∗i (j) ≤ qj(τ)}) − mj(s, τ) and η̃i,j(s, τ) = τ − 1{Y s
i (j) ≤

qj(τ)} −mj(s, τ), j = 0, 1, where Y s
i (j) is defined in the proof of Theorem 1.3.1. Then, we

have

W ∗
n(τ) =e1

∑
s∈S

n∑
i=1

1√
n
A∗i 1{S∗i = s}(τ − 1{Y ∗i (1) ≤ q1(τ)})

+ e0

∑
s∈S

n∑
i=1

1√
n

(1− A∗i )1{S∗i = s}(τ − 1{Y ∗i (0) ≤ q0(τ)})

=

[
e1

∑
s∈S

n∑
i=1

1√
n
A∗i 1{S∗i = s}η∗i,1(s, τ) + e0

∑
s∈S

n∑
i=1

1√
n

(1− A∗i )1{S∗i = s}η∗i,0(s, τ)

]

+

[
e1

∑
s∈S

n∑
i=1

1√
n

(A∗i − π)1{S∗i = s}m1(s, τ)− e0

∑
s∈S

n∑
i=1

1√
n

(A∗i − π)1{S∗i = s}m0(s, τ)

]

+

[
e1

∑
s∈S

n∑
i=1

1√
n
π1{S∗i = s}m1(s, τ) + e0

∑
s∈S

n∑
i=1

1√
n

(1− π)1{S∗i = s}m0(s, τ)

]
≡W ∗

n,1(τ) +W ∗
n,2(τ) +W ∗

n,3(τ).

By Lemma 1.10.5, there exists a sequence of independent Poisson(1) random variables
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{ξsi }i≥1,s∈S such that {ξsi }i≥1,s∈S ⊥⊥ {A∗i , S∗i , Yi, Ai, Si}i≥1,

n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ) =

N(s)+n1(s)∑
i=N(s)+1

ξsi η̃i,1(s, τ) +R∗1(s, τ),

and

n∑
i=1

(1− A∗i )1{S∗i = s}η∗i,1(s, τ) =

N(s)+n(s)∑
i=N(s)+n1(s)+1

ξsi η̃i,0(s, τ) +R∗0(s, τ),

where supτ∈Υ(|R∗1(s, τ)|+ |R∗0(s, τ)|) = op(
√
n(s)) = op(

√
n) for all s ∈ S. Therefore,

(W ∗
n,1(τ),W ∗

n,2(τ),W ∗
n,3(τ))

d
= (W̃ ∗

n,1(τ) +R(τ),W ∗
n,2(τ),W ∗

n,3(τ))

where supτ∈Υ ||R(τ)|| = op(1) and

W̃ ∗
n,1(τ) = e1

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξsi√
n
η̃i,1(s, τ) + e0

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

ξsi√
n
η̃i,0(s, τ)

In addition, following the same argument in the proof of Lemma 1.10.2, we can further

show that

W̃ ∗
n,1(τ) = W ∗∗

n,1(τ) +R∗n(τ),

where supτ∈Υ ||R∗n(τ)|| = op(1) and

W ∗∗
n,1(τ) = e1

∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

ξsi√
n
η̃i,1(s, τ) + e0

∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

ξsi√
n
η̃i,0(s, τ).

By construction, W ∗∗
n,1(τ) ⊥⊥ (W ∗

n,2(τ),W ∗
n,3(τ)). Also note that {S∗i }ni=1 are the nonparametric

bootstrap draws based on the empirical CDF of {Si}ni=1. Then, by van der Vaart and Wellner

(1996, Section 3.6), there exists a sequence of independent Poisson(1) random variables {ξ̃i}i≥1

that is independent of data, {A∗i } and {ξsi }i≥1,s∈S such that

sup
τ∈Υ
||W ∗

n,3(τ)−W ∗∗
n,3(τ)|| = op(1),
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where

W ∗∗
n,3(τ) = e1

∑
s∈S

n∑
i=1

ξ̃i√
n
π1{Si = s}m1(s, τ) + e0

∑
s∈S

n∑
i=1

ξ̃i√
n

(1− π)1{Si = s}m0(s, τ)

By Lemma 1.10.6,

Q∗n(u, τ)
p−→ 1

2
u′Q(τ)u,

where Q(τ) is defined in (1.10.3). Then, by the same argument in the proof of Theorem 1.3.1,

we have

√
n(β̂∗(τ)− β(τ)) = Q−1(τ)(W ∗∗

n,1(τ) +W ∗
n,2(τ) +W ∗∗

n,3(τ)) +R∗(τ),

where supτ∈Υ ||R∗(τ)|| = op(1). Focusing on the second element of β̂∗(τ), we have

√
n(β̂∗1(τ)− q(τ)) =

[∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

ξsi η̃i,1(s, τ)√
nπf1(q1(τ))

−
∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

ξsi η̃i,0(s, τ)√
n(1− π)f0(q0(τ))

]

+

[∑
s∈S

D∗n(s)√
n

(
m1(s, τ)

πf1(q1(τ))
+

m0(s, τ)

πf0(q0(τ))

)]

+

[ n∑
i=1

ξ̃i√
n

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]
+R∗1(τ),

where supτ∈Υ |R∗1(τ)| = op(1). In addition, by definition, we have

√
n(q̃(τ)− q(τ)) =

[∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

η̃i,1(s, τ)√
nπf1(q1(τ))

−
∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

η̃i,0(s, τ)√
n(1− π)f0(q0(τ))

]

+

[ n∑
i=1

1√
n

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]
.

By taking difference of the two displays above, we have

√
n(β̂∗1(τ)− q̃(τ)) =

[∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

(ξsi − 1)η̃i,1(s, τ)√
nπf1(q1(τ))

−
∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

(ξsi − 1)η̃i,0(s, τ)√
n(1− π)f0(q0(τ))

]

+

[∑
s∈S

D∗n(s)√
n

(
m1(s, τ)

πf1(q1(τ))
+

m0(s, τ)

πf0(q0(τ))

)]
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+

[ n∑
i=1

ξ̃i − 1√
n

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]
+R∗1(τ). (1.10.11)

Note that, conditionally on data, the first and third brackets on the RHS of the above display

converge to Gaussian processes with covariance kernels

min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

and

E
[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
,

uniformly over τ ∈ Υ, respectively. In addition, by Assumption 4(i), conditionally data (and

thus {Si}ni=1), the second bracket on the RHS of (1.10.11) converges to a Gaussian process

with a covariance kernel

Eγ(S)

[
m1(S, τ1)m1(S, τ2)

π2f1(q1(τ1))f1(q1(τ2))
+

m1(S, τ1)m0(S, τ2)

π(1− π)f1(q1(τ1))f0(q0(τ2))

]
,

uniformly over τ ∈ Υ. Furthermore, we notice that these three Gaussian processes are

independent. Therefore, we have, conditionally on data and uniformly over τ ∈ Υ,

√
n(β̂∗1(τ)− q̃(τ)) Bsqr(τ),

where Bsqr(τ) is defined in Theorem 1.3.1. This leads to the desired result for the simple

quantile regression estimator.

Next, we briefly describe the derivation for the IPW estimator. Following the proof of

Theorem 1.3.2, we have

√
n(q̂∗1(τ)− q1(τ)) = arg min

u
L∗n(u, τ),

where

L∗n(u, τ) ≡
n∑
i=1

A∗i
π̂∗(S∗i )

[
ρτ (Y

∗
i − q1(τ)− u√

n
)− ρτ (Y ∗i − q1(τ))

]
=− L∗1,n(τ)u+ L∗2,n(u, τ),
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and π̂∗(s) =
n∗1(s)

n∗(s)
. Then, we have

L∗1,n(τ) = W ∗
ipw,1,n(τ) +R∗ipw,1(τ),

where

W ∗
ipw,1,n(τ) =

∑
s∈S

1√
n

n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ)

π
+

n∑
i=1

m1(S∗i , τ)√
n

,

and

R∗ipw,1(τ) = −
n∑
i=1

∑
s∈S

A∗i 1{S∗i = s}D∗n(s)

n∗(s)
√
nπ̂∗(s)π

η∗i,1(s, τ).

By Lemma 1.10.5, supτ∈Υ |R∗ipw,1(τ)| = op(1). In addition, same as above, we can show that

sup
τ∈Υ
|W ∗

ipw,1,n(τ)−W ∗∗
ipw,1,n(τ)| = op(1),

where

W ∗∗
ipw,1,n(τ) =

∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

ξsi η̃i,1(s, τ)√
nπ

+
n∑
i=1

ξ̃im1(Si, τ)√
n

.

Similar to Lemma 1.10.6, we can show that, uniformly over τ ∈ Υ,

L∗2,n(τ)
p−→ f1(q1(τ))u2

2
.

Therefore,

√
n(q̂∗1(τ)− q1(τ)) =

W ∗∗
ipw,1,n(τ)

f1(q1(τ))
+R∗∗ipw,1(τ),

where supτ∈Υ |R∗∗ipw,1(τ)| = op(1). Similarly, we can show

√
n(q̂∗0(τ)− q0(τ)) =

W ∗∗
ipw,0,n(τ)

f0(q0(τ))
+R∗∗ipw,0(τ),
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where supτ∈Υ |R∗∗ipw,0(τ)| = op(1) and

W ∗∗
ipw,0,n(τ) =

∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)πp(s))c+1

ξsi η̃i,0(s, τ)√
nπ

+
n∑
i=1

ξ̃im0(Si, τ)√
n

.

Therefore,

√
n(q̂∗(τ)− q̃(τ)) =

[∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

(ξsi − 1)η̃i,1(s, τ)√
nπf1(q1(τ))

−
∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

(ξsi − 1)η̃i,0(s, τ)√
n(1− π)f0(q0(τ))

]

+

[ n∑
i=1

ξ̃i − 1√
n

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]
+R∗ipw(τ),

where supτ∈Υ |R∗ipw(τ)| = op(1). Last, we can show that, conditionally on data and uniformly

over τ ∈ Υ, the RHS of the above display weakly converges to the Gaussian process Bipw(τ),

where Bipw(τ) is defined in Theorem 1.3.2.

1.10.5 Technical Lemmas

Lemma 1.10.1. Let Sk be the k-th partial sum of Banach space valued independent identically

distributed random variables, then

P( max
1≤k≤n

||Sk|| ≥ ε) ≤ 3 max
1≤k≤n

P(||Sk|| ≥ ε/3).

When Sk takes values on <, Lemma 1.10.1 is Peña et al. (2008, Exercise 2.3).

Proof. First suppose maxk P(||Sn − Sk|| ≥ 2ε/3) ≤ 2/3. In addition, define

Ak = {||Sk|| ≥ ε, ||Sj|| < ε, 1 ≤ j < k}.

Then,

P(max
k
||Sk|| ≥ ε) ≤P(||Sn|| ≥ ε/3) +

n∑
k=1

P(||Sn|| ≤ ε/3, Ak)

≤P(||Sn|| ≥ ε/3) +
n∑
k=1

P(||Sn − Sk|| ≥ 2ε/3)P(Ak)

≤P(||Sn|| ≥ ε/3) +
2

3
P(max

k
||Sk|| ≥ ε).
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This implies,

P(max
k
||Sk|| ≥ ε) ≤ 3P(||Sn|| ≥ ε/3).

On the other hand, if maxk P(||Sn − Sk|| ≥ 2ε/3) > 2/3, then there exists k0 such that

P(||Sn − Sk0|| ≥ 2ε/3) > 2/3. Thus,

P(||Sn|| ≥ ε/3) + P(||Sk0|| ≥ ε/3) ≥ 2/3.

This implies,

3 max
1≤k≤n

P(||Sk|| ≥ ε/3) ≥ 3 max(P(||Sn|| ≥ ε/3),P(||Sk0 || ≥ ε/3)) ≥ 1 ≥ P( max
1≤k≤n

||Sk|| ≥ ε).

This concludes the proof.

Lemma 1.10.2. Let Wn,j(τ), j = 1, 2, 3 be defined as in (1.10.4). If Assumptions in Theorem

1.3.1 hold, then uniformly over τ ∈ Υ,

(Wn,1(τ),Wn,2(τ),Wn,3(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent two-dimensional Gaussian processes with

covariance kernels Σ1(τ1, τ2), Σ2(τ1, τ2), and Σ3(τ1, τ2), respectively. The expressions for the

three kernels are derived in the proof below.

Proof. We follow the general argument in the proof of Bugni et al. (2018, Lemma B.2). We

divide the proof into two steps. In the first step, we show that

(Wn,1(τ),Wn,2(τ),Wn,3(τ))
d
= (W ?

n,1(τ),Wn,2(τ),Wn,3(τ)) + op(1),

where the op(1) term holds uniformly over τ ∈ Υ, W ?
n,1(τ) ⊥⊥ (Wn,2(τ),Wn,3(τ)), and, uni-

formly over τ ∈ Υ,

W ?
n,1(τ) B1(τ).

In the second step, we show that

(Wn,2(τ),Wn,3(τ)) (B2(τ),B3(τ))

uniformly over τ ∈ Υ and B2(τ) ⊥⊥ B3(τ).
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Step 1. Let η̃i,j(s, τ) = τ−1{Y s
i (j) ≤ qj(τ)}−mj(s, τ), for j = 0, 1, where {Y s

i (0), Y s
i (1)}i≥1

are the same as defined in Step 1 in the proof of Theorem 1.3.1. In addition, denote

W̃n,1(τ) = e1

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

1√
n
η̃i,1(s, τ) + e0

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

1√
n
η̃i,0(s, τ).

Then, we have

{Wn,1(τ)|{Ai, Si}ni=1}
d
= {W̃n,1(τ)|{Ai, Si}ni=1}.

Because both Wn,2(τ) and Wn,3(τ) are only functions of {Ai, Si}ni=1, we have

(Wn,1(τ),Wn,2(τ),Wn,3(τ))
d
= (W̃n,1(τ),Wn,2(τ),Wn,3(τ)).

Let

W ?
n,1(τ) = e1

∑
s∈S

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

1√
n
η̃i,1(s, τ) + e0

∑
s∈S

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

1√
n
η̃i,0(s, τ).

Note that W ?
n,1(τ) is a function of (Y s

i (1), Y s
i (0))i≥1 only, which is independent of {Ai, Si}ni=1

by construction. Therefore, W ?
n,1(τ) ⊥⊥ (Wn,2(τ),Wn,3(τ)).

Furthermore, note that

N(s)

n

p−→ F (s),
n1(s)

n

p−→ πp(s), and
n(s)

n

p−→ p(s).

Denote Γn,j(s, t, τ) =
∑bntc

i=1
1√
n
η̃i,j(s, τ). In order to show supτ∈Υ |W̃n,1(τ)−W ?

n,1(τ)| = op(1)

and W ?
n,1(τ)  B1(τ), it suffices to show that, (1) for j = 0, 1 and s ∈ S, the stochastic

processes

{Γn,j(s, t, τ) : t ∈ (0, 1), τ ∈ Υ}

in stochastically equicontinuous; and (2) W ?
n,1(τ) converges to B1(τ) in finite dimension.

Claim (1). We want to bound

sup |Γn,j(s, t2, τ2)− Γn,j(s, t1, τ1)|,

where supremum is taken over 0 < t1 < t2 < t1 + ε < 1 and τ1 < τ2 < τ1 + ε such that
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τ1, τ1 + ε ∈ Υ. Note that,

sup |Γn,j(s, t2, τ2)− Γn,j(s, t1, τ1)|

≤ sup
0<t1<t2<t1+ε<1,τ∈Υ

|Γn,j(s, t2, τ)− Γn,j(s, t1, τ)|+ sup
t∈(0,1),τ1,τ2∈Υ,τ1<τ2<τ1+ε

|Γn,j(s, t, τ2)− Γn,j(s, t, τ1)|.

(1.10.12)

Let m = bnt2c − bnt1c ≤ bnεc+ 1. Then, for an arbitrary δ > 0, by taking ε = δ4, we have

P( sup
0<t1<t2<t1+ε<1,τ∈Υ

|Γn,j(s, t2, τ)− Γn,j(s, t1, τ)| ≥ δ)

=P( sup
0<t1<t2<t1+ε<1,τ∈Υ

|
i=bnt2c∑
i=bnt1c+1

η̃i,j(s, τ)| ≥
√
nδ)

=P( sup
0<t≤ε,τ∈Υ

|
bntc∑
i=1

η̃i,j(s, τ)| ≥
√
nδ)

≤P( max
1≤k≤bnεc

sup
τ∈Υ
|Sk(τ)| ≥

√
nδ)

≤270E supτ∈Υ |
∑bnεc

i=1 η̃i,j(s, τ)|√
nδ

.

√
nε√
nδ
. δ,

where in the first inequality, Sk(τ) =
∑k

i=1 η̃i,j(s, τ) and the second inequality holds due to

the same argument in (1.10.2). For the third inequality, denote

F = {η̃i,j(s, τ) : τ ∈ Υ}

with an envelope function F = 2. In addition, because F is a VC-class with a fixed VC-index,

we have

J(1,F) <∞,

where

J(δ,F) = sup
Q

∫ δ

0

√
1 + logN(ε||F ||Q,2,F , L2(Q))dε,

N(ε||F ||Q,2,F , L2(Q)) is the covering number, and the supremum is taken over all discrete
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probability measures Q. Therefore, by van der Vaart and Wellner (1996, Theorem 2.14.1)

270E supτ∈Υ |
∑bnεc

i=1 η̃i,j(s, τ)|√
nδ

.

√
bnεc

[
E
√
bnεc||Pbnεc − P||F

]
√
nδ

.

√
bnεcJ(1,F)√

nδ
.

For the second term on the RHS of (1.10.12), by taking ε = δ4, we have

P( sup
t∈(0,1),τ1,τ2∈Υ,τ1<τ2<τ1+ε

|Γn,j(s, t, τ2)− Γn,j(s, t, τ1)| ≥ δ)

=P( max
1≤k≤n

sup
τ1,τ2∈Υ,τ1<τ2<τ1+ε

|Sk(τ1, τ2)| ≥
√
nδ)

≤
270E supτ1,τ2∈Υ,τ1<τ2<τ1+ε |

∑n
i=1(η̃i,j(s, τ2)− η̃i,j(s, τ1))|

√
nδ

. δ

√
log(

C

δ2
),

where in the first equality, Sk(τ1, τ2) =
∑k

i=1(η̃i,j(s, τ2) − η̃i,j(s, τ1)) and the first inequality

follows the same argument as in (1.10.2). For the last inequality, denote

F = {η̃i,j(s, τ2)− η̃i,j(s, τ1) : τ1, τ2 ∈ Υ, τ1 < τ2 < τ1 + ε}

with a constant envelope function F = C and

σ2 = sup
f∈F

Ef 2 ∈ [c1ε, c2ε],

for some constant 0 < c1 < c2 < ∞. Last, F is nested by some VC class with a fixed VC

index. Therefore, by Chernozhukov et al. (2014, Corollary 5.1),

270E supτ1,τ2∈Υ,τ1<τ2<τ1+ε |
∑n

i=1(η̃i,j(s, τ2)− η̃i,j(s, τ1))|
√
nδ

.

√
nE||Pn − P||F

δ
.

√
σ2 log(C

σ
)

δ2
+
C log(C

σ
)

√
nδ

. δ

√
log(

C

δ2
),

where the last inequality holds by letting n be sufficiently large. Note that δ
√

log( C
δ2 )→ 0 as

δ → 0. This concludes the proof of Claim (1).

Claim (2). For a single τ , by the triangular CLT,

W ?
n,1(τ) N(0,Σ1(τ)),

where Σ1(τ) = π[τ(1−τ)−Em2
1(S, τ)]e1e

′
1+(1−π)[τ(1−τ)−Em2

0(S, τ)]e0e
′
0. The convergence
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in finite dimension can be proved by using the Cramér-Wold device. In particular, we can

show that the covariance kernel is

Σ1(τ1, τ2) =π[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]e1e
′
1

+ (1− π)[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]e0e
′
0.

This concludes the proof of Claim (2), and thus leads to the desired results in Step 1.

Step 2. We first consider the marginal distributions for Wn,2(τ) and Wn,3(τ). For Wn,2(τ),

by Assumption 1 and the fact that mj(s, τ) is continuous in τ ∈ Υ j = 0, 1, we have,

conditionally on {Si}ni=1,

Wn,2(τ) =
∑
s∈S

Dn(s)√
n

[e1m1(s, τ)− e0m0(s, τ)] B2(τ), (1.10.13)

where B2(τ) is a two-dimensional Gaussian process with covariance kernel

Σ2(τ1, τ2)

=
∑
s∈S

p(s)γ(s)

[
e1e
′
1m1(s, τ1)m1(s, τ2)− e1e

′
0m1(s, τ1)m0(s, τ2)

− e0e
′
1m0(s, τ1)m1(s, τ2) + e0e

′
0m0(s, τ1)m0(s, τ2)

]
.

For Wn,3(τ), by the fact that mj(s, τ) is continuous in τ ∈ Υ j = 0, 1, we have that,

uniformly over τ ∈ Υ,

Wn,3(τ) =
1√
n

n∑
i=1

[e1πm1(Si, τ) + e0(1− π)m0(Si, τ)] B3(τ), (1.10.14)

where B3(τ) a two-dimensional Gaussian process with covariance kernel

Σ3(τ1, τ2) =e1e
′
1π

2Em1(S, τ1)m1(S, τ2) + e1e
′
0π(1− π)Em1(S, τ1)m0(S, τ2)

+ e0e
′
1π(1− π)Em0(S, τ1)m1(S, τ2) + e0e

′
0(1− π)2Em0(S, τ1)m0(S, τ2).

In addition, we note that, for any fixed τ ,

P(Wn,2(τ) ≤ w1,Wn,3(τ) ≤ w2) =EP(Wn,2(τ) ≤ w1|{Si}ni=1)1{Wn,3(τ) ≤ w2}

=EP(N(0,Σ2(τ, τ)) ≤ w1)1{Wn,3(τ) ≤ w2}+ o(1)
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=P(N(0,Σ3(τ, τ)) ≤ w2)P(N(0,Σ2(τ, τ)) ≤ w1) + o(1).

This implies B2(τ) ⊥⊥ B3(τ). By the Cramér-Wold device, we can show that

(Wn,2(τ),Wn,3(τ)) (B2(τ),B3(τ))

jointly in finite dimension, where by an abuse of notation, B2(τ) and B3(τ) have the same

marginal distributions of those in (1.10.13) and (1.10.14), respectively, and B2(τ) ⊥⊥ B3(τ).

Last, because bothWn,2(τ) andWn,3(τ) are tight marginally, so be the joint process (Wn,2(τ),Wn,3(τ)).

This concludes the proof of Step 2, and thus the whole lemma.

Lemma 1.10.3. Let Wn,j(τ), j = 1, 2 be defined as in (1.10.8). If Assumptions in Theorem

1.3.2 hold, then uniformly over τ ∈ Υ,

(Wn,1(τ),Wn,2(τ)) (Bipw,1(τ),Bipw,2(τ)),

where (Bipw,1(τ),Bipw,2(τ)) are two independent two-dimensional Gaussian processes with co-

variance kernels Σipw,1(τ1, τ2) and Σipw,2(τ1, τ2), respectively. The expressions for Σipw,1(τ1, τ2)

and Σipw,2(τ1, τ2) are derived in the proof below.

Proof. The proofs of weak convergence and the independence between (Bipw,1(τ),Bipw,2(τ))

are similar to that in Lemma 1.10.2, and thus, are omitted. Next, we focus on deriving the

covariance kernels.

First, similar to the argument in the proof of Lemma 1.10.2,

Wn,1(τ)
d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

1√
nf1(q1(τ))

η̃i,1(s, τ)−
∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

1√
nf0(q0(τ))

η̃i,0(s, τ).

Because (η̃i,1(s, τ), η̃i,0(s, τ)) are independent across i, n1(s)/n
p−→ πp(s), and (n(s)−n1(s))/n

p−→
(1− π)p(s), we have

Σipw,1(τ1, τ2) =
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))
.

Obviously,

Σipw,2(τ1, τ2) = E
(
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

)(
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

)
,
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Lemma 1.10.4. If Assumptions 1 and 2 hold, then conditionally on data, the second element

of [Q(τ)]−1
∑n

i=1
ξi−1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′β(τ)}

)
weakly converges to B̃sqr(τ), where B̃sqr(τ) is

a Gaussian process with covariance kernel Σ̃sqr(·, ·) defined in Theorem 1.4.1.

Proof. We denote the second element of [Q(τ)]−1
∑n

i=1
ξi−1√
n
Ȧi

(
τ − 1{Yi ≤ Ȧ′β(τ)}

)
as

1√
n

n∑
i=1

(ξi − 1)Ji(s, τ),

where

Ji(s, τ) = Ji,1(s, τ) + Ji,2(s, τ) + Ji,3(s, τ),

Ji,1(s, τ) =
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))
,

Ji,2(s, τ) = F1(s, τ)(Ai − π)1{Si = s},

F1(s, τ) =
m1(s, τ)

πf1(q1(τ))
+

m0(s, τ)

(1− π)f0(q0(τ))
,

and

Ji,3(s, τ) =

(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}.

In order to show the weak convergence, we only need to show (1) conditionally stochastic

equicontinuity and (2) conditional convergence in finite dimension. We divide the proof into

two steps accordingly.

Step 1. In order to show the conditionally stochastic equicontinuity, it suffices to show

that, for any ε > 0, as n→∞ followed by δ → 0,

Pξ

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε

)
p−→ 0,

where Pξ(·) means that the probability operator is with respect to ξ1, · · · , ξn and conditional
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on data. Note

EPξ

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ1)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε

)

=P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε

)

≤P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,1(s, τ2)− Ji,1(s, τ1))

∣∣∣∣∣ ≥ ε/3

)

+ P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,2(s, τ2)− Ji,2(s, τ1))

∣∣∣∣∣ ≥ ε/3

)

+ P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,3(s, τ2)− Ji,3(s, τ1))

∣∣∣∣∣ ≥ ε/3

)
.

Further note that

n∑
i=1

(ξi − 1)Ji,1(s, τ)
d
=

N(s)+n1(s)∑
i=N(s)+1

(ξi − 1)η̃i,1(s, τ)

πf1(q1(τ))
−

N(s)+n(s)∑
i=n(s)+n1(s)+1

(ξi − 1)η̃i,0(s, τ)

(1− π)f0(q0(τ))

By the same argument in Claim (1) in the proof of Lemma 1.10.2, we have

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,1(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε/3

)

≤
3E supτ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣ 1√
n

∑n
i=1(ξi − 1)(Ji,1(s, τ2)− Ji,1(s, τ1))

∣∣∣
ε

≤
3
√
c2δ log( C

c1δ
) +

3C log( C
c1δ

)
√
n

ε
,

where C, c1 < c2 are some positive constants that are independent of (n, ε, δ). By letting

n→∞ followed by δ → 0, the RHS vanishes.

For Ji,2, we note that F1(s, τ) is Lipschitz in τ . Therefore,

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,2(s, τ2)− Ji,2(s, τ1))

∣∣∣∣∣ ≥ ε/3

)

≤
∑
s∈S

P

(
Cδ

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}

∣∣∣∣∣ ≥ ε/3

)
→ 0
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as n→∞ followed by δ → 0, where we use the fact that

sup
s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}

∣∣∣∣∣ = Op(1).

To see this claim, we note that, conditionally on data,

1

n

n∑
i=1

(Ai − π)21{Si = s} =
1

n

n∑
i=1

(
Ai − π − 2π(Ai − π) + π − π2

)
1{Si = s}

=
Dn(s)− 2πDn(s)

n
+ π(1− π)

n(s)

n

p−→ π(1− π)p(s).

Then, by the Lindeberg CLT, conditionally on data,

1√
n

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s} N(0, π(1− π)p(s)) = Op(1).

Last, by the standard maximal inequality (e.g., van der Vaart and Wellner (1996, Theorem

2.14.1)) and the fact that (
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
is Lipschitz in τ , we have, as n→∞ followed by δ → 0,

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,3(s, τ2)− Ji,3(s, τ1))

∣∣∣∣∣ ≥ ε/3

)
→ 0.

This concludes the proof of the conditionally stochastic equicontinuity.

Step 2. We focus on the one-dimension case and aim to show that, conditionally on data,

for fixed τ ∈ Υ,

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) N (0, Σ̃sqr(τ, τ)).

The finite-dimensional convergence can be established similarly by the Cramér-Wold device.

In view of Lindeberg-Feller central limit theorem, we only need to show that (1)

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2
p−→ ζ2

Y (π, τ) + ξ̃2
A(π, τ) + ξ2

S(π, τ)
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and (2)

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2Eξ(ξ − 1)21{|
∑
s∈S

(ξi − 1)Ji(s, τ)| ≥ ε
√
n} → 0.

(2) is obvious as |Ji(s, τ)| is bounded and maxi |ξi − 1| . log(n) as ξi is sub-exponential.

Next, we focus on (1). We have

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2

=
1

n

n∑
i=1

∑
s∈S

{[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]

+ F1(s, τ)(Ai − π)1{Si = s}+

[(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}

]}2

≡σ2
1 + σ2

2 + σ2
3 + 2σ12 + 2σ13 + 2σ23,

where

σ2
1 =

1

n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]2

,

σ2
2 =

1

n

∑
s∈S

F 2
1 (s, τ)

n∑
i=1

(Ai − π)21{Si = s},

σ2
3 =

1

n

n∑
i=1

[(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]2

,

σ12 =
1

n

n∑
i=1

∑
s∈S

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]
F1(s, τ)(Ai − π)1{Si = s},

σ13 =
1

n

n∑
i=1

∑
s∈S

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

][(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
,
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and

σ23 = σ12 =
1

n

n∑
i=1

∑
s∈S

F1(s, τ)(Ai − π)1{Si = s}
[(

m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
.

For σ2
1, we have

σ2
1 =

1

n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}η2

i,1(s, τ)

π2f 2
1 (q1(τ))

−
(1− Ai)1{Si = s}η2

i,0(s, τ)

(1− π)2f 2
0 (q0(τ))

]
d
=

1

n

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

η̃2
i,1(s, τ)

π2f 2
1 (q1(τ))

+
1

n

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃2
i,0(s, τ)

(1− π)2f 2
0 (q0(τ))

p−→τ(1− τ)− Ems
1(S, τ)

πf 2
1 (q1(τ))

+
τ(1− τ)− Ems

0(S, τ)

(1− π)f 2
0 (q0(τ))

= ζ2
Y (π, τ),

where the second equality holds due to the rearrangement argument in Lemma 1.10.2 and

the convergence in probability holds due to uniform convergence of the partial sum process.

For σ2
2, by Assumption 1,

σ2
2 =

1

n

∑
s∈S

F 2
1 (s, τ)(Dn(s)− 2πDn(s) + π(1− π)1{Si = s}) p−→ π(1− π)EF 2

1 (Si, τ) = ξ̃2
A(π, τ).

For σ2
3, by the law of large number,

σ2
3

p−→ E
[(

m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]2

= ξ2
S(π, τ).

For σ12, we have

σ12 =
1

n

∑
s∈S

(1− π)F1(s, τ)
n∑
i=1

Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− 1

n

∑
s∈S

πF1(s, τ)
n∑
i=1

(1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

d
=

1

n

∑
s∈S

(1− π)F1(s, τ)

N(s)+n1(s)∑
i=N(s)+1

η̃i,1(s, τ)

πf1(q1(τ))
− 1

n

∑
s∈S

πF1(s, τ)

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃i,0(s, τ)

(1− π)f0(q0(τ))

p−→ 0,

where the last convergence holds because by Lemma 1.10.2,

1

n

N(s)+n1(s)∑
i=N(s)+1

η̃i,1(s, τ)
p−→ 0, and

1

n

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃i,0(s, τ)
p−→ 0.
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By the same argument, we can show that

σ13
p−→ 0.

Last, for σ23, by Assumption 1,

σ23 =
∑
s∈S

F1(s, τ)

[(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
Dn(s)

n

p−→ 0.

Therefore, conditionally on data,

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2
p−→ ζ2

Y (π, τ) + ξ̃2
A(π, τ) + ξ2

S(π, τ).

Lemma 1.10.5. If Assumptions 1(i) and 1(ii) hold, sups∈S
|D∗n(s)|√
n∗(s)

= Op(1), sups∈S
|Dn(s)|√
n(s)

=

Op(1), and n(s) → ∞ for all s ∈ S, a.s., then there exists a sequence of Poisson(1) random

variables {ξsi }i≥1,s∈S independent of {A∗i , S∗i , Yi, Ai, Si}i≥1 such that

n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ) =

N(s)+n1(s)∑
i=N(s)+1

ξsi η̃i,1(s, τ) +R∗1(s, τ),

where supτ∈Υ,s∈S |R∗1(s, τ)/
√
n(s)| = op(1). In addition,

sup
s∈S,τ∈Υ

|
n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ)|/
√
n(s) = Op(1). (1.10.15)

Proof. Recall {Y s
i (0), Y s

i (1)}ni=1 as defined in the proof of Theorem 1.3.1 and

η̃i,j(s, τ) = τ − 1{Y s
i (j) ≤ qj(τ)} −mj(s, τ),

j = 0, 1. In addition, let Ψn = {ηi,1(s, τ)}ni=1,

Nn = {n(s)/n, n1(s)/n, n∗(s)/n, n∗1(s)/n}s∈S

and given Nn, {Mni}ni=1 be a sequence of random variables such that the n1(s)× 1 vector

M1
n(s) = (Mn,N(s)+1, · · · ,Mn,N(s)+n1(s))
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and the (n(s)− n1(s))× 1 vector

M0
n(s) = (Mn,N(s)+n1(s)+1, · · · ,Mn,N(s)+n(s))

satisfy:

1. M1
n(s) =

∑n∗1(s)
i=1 mi and M0

n(s) =
∑n∗(s)−n∗1(s)

i=1 m′i, where {mi}
n∗1(s)
i=1 and {m′i}

n∗(s)−n∗1(s)
i=1 are

n∗1(s) i.i.d. multinomial(1, n−1
1 (s), · · · , n−1

1 (s)) random vectors and n∗(s) − n∗1(s) i.i.d.

multinomial (1, (n(s)− n1(s))−1, · · · , (n(s)− n1(s))−1) random vectors, respectively;

2. M0
n(s) ⊥⊥M1

n(s)|Nn; and

3. {M0
n(s),M1

n(s)}s∈S are independent across s given Nn and are independent of Ψn.

Recall that, by Bugni et al. (2018), the original observations can be rearranged according

to s ∈ S and then within strata, treatment group first and then the control group. Then, given

Nn, Step 3 in Section 1.5 implies that the bootstrap observations {Y ∗i }ni=1 can be generated

by drawing with replacement from the empirical distribution of the outcomes in each (s, a)

cell for (s, a) ∈ S × {0, 1}, n∗a(s) times, a = 0, 1, where n∗0(s) = n∗(s)− n∗1(s). Therefore,

n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ) =

N(s)+n1(s)∑
i=N(s)+1

Mniη̃i,1(s, τ). (1.10.16)

Following the standard approach in dealing with the nonparametric bootstrap, we want

to approximate

Mni, i = N(s) + 1, · · · , N(s) + n1(s)

by a sequence of i.i.d. Poisson(1) random variables. We construct this sequence as follows.

Let M̃1
n(s) =

∑Ñ(n1(s))
i=1 mi, where Ñ(k) is a Poisson number with mean k and is independent

of Nn. The n1(s) elements of vector M̃1
n(s) is denoted as {M̃ni}N(s)+n1(s)

i=N(s)+1 , which is a sequence

of i.i.d. Poisson(1) random variables, given Nn. Therefore,

{M̃ni, i = N(s) + 1, · · · , N(s) + n1(s)|Nn} ≡ {ξsi , i = N(s) + 1, · · · , N(s) + n1(s)|Nn}

where {ξsi }ni=1, s ∈ S are i.i.d. sequences of Poisson(1) random variables such that {ξsi }ni=1 are

independent across s ∈ S and against Nn.

Following the argument in van der Vaart and Wellner (1996, Section 3.6), given n1(s),

n∗1(s), and Ñ(n1(s)) = k, |ξsi−Mni| is binomially (|k−n∗1(s)|, n1(s)−1)-distributed. In addition,
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there exists a sequence `n = O(
√
n(s)) such that

P(|Ñ(n1(s))− n∗1(s)| ≥ `n) ≤P(|Ñ(n1(s))− n1(s)| ≥ `n/3) + P(|n∗1(s)− n1(s)| ≥ 2`n/3)

≤EP(|N(n1(s))− n1(s)| ≥ `n/3|n1(s)) + P(|n∗1(s)− n1(s)| ≥ 2`n/3)

≤ε/3 + P(|n∗1(s)− n1(s)| ≥ 2`n/3)

≤ε/3 + P(|D∗n(s)|+ |Dn(s)|+ π|n∗(s)− n(s)| ≥ 2`n/3)

≤2ε/3 + P(π|n∗(s)− n(s)| ≥ `n/3)

≤ε,

where the first inequality holds due to the union bound inequality, the second inequality

holds by the law of iterated expectation, the third inequality holds because (1) conditionally

on data, Ñ(n1(s))−n1(s) = Op(
√
n1(s)) and (2) n1(s)/n(s) = π+Dn(s)

n(s)
→ π > 0 as n(s)→∞

, the fourth inequality holds by the fact that

n∗1(s)− n1(s) = D∗n(s)−Dn(s) + π(n∗(s)− n(s)),

the fifth inequality holds because by Assumptions 1 and 4, |D∗n(s)| + |Dn(s)| = Op(
√
n(s)),

and the sixth inequality holds because {S∗i }ni=1 is generated from {Si}ni=1 by the standard

bootstrap procedure, and thus, by van der Vaart and Wellner (1996, Theorem 3.6.1),

n∗(s)− n(s) =
n∑
i=1

(Mw
ni − 1)(1{Si = s} − p(s)) = Op(

√
n(s)),

where (Mw
n1, · · · ,Mw

nn) is independent of {Si}ni=1 and multinomially distributed with param-

eters n and (probabilities) 1/n, · · · , 1/n. Therefore, by direct calculation, as n→∞,

P( max
N(s)+1≤i≤N(s)+n1(s)

|ξsi −Mni| > 2)

≤P( max
N(s)+1≤i≤N(s)+n1(s)

|ξsi −Mni| > 2, n1(s) ≥ n(s)ε) + P(n1(s) ≤ n(s)ε)

≤ε+ E
N(s)+n1(s)∑
i=N(s)+1

P(|ξsi −Mni| > 2, |N(n1(s))− n∗1(s)| ≤ `n, n1(s) ≥ n(s)ε|n1(s), n∗1(s), n(s)) + ε

≤2ε+ En1(s)P(bin(`n, n
−1
1 (s)) > 2|n1(s), n∗1(s), n(s))1{n1(s) ≥ n(s)ε} → 2ε,

where we use the fact that

n1(s)P(bin(`n, n
−1
1 (s)) > 2|n1(s), n∗1(s), n(s))1{n1(s) ≥ n(s)ε}
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.n1(s)

(
`n
n(s)

)3(
n(s)

n1(s)

)3

1{n1(s) ≥ n(s)ε} . 1√
n(s)ε3

→ 0.

Because ε is arbitrary, we have

P
(

max
N(s)+1≤i≤N(s)+n1(s)

|ξsi −Mni| > 2

)
→ 0. (1.10.17)

Note that |ξsi − Mni| =
∑∞

j=1 1{|ξsi − Mni| ≥ j}. Let Ijn(s) be the set of indexes i ∈
{N(s) + 1, · · · , N(s) + n1(s)} such that |ξsi −Mni| ≥ j. Then, ξsi −Mni = sign(Ñ(n1(s)) −
n∗1(s))

∑∞
j=1 1{i ∈ Ijn(s)}. Thus,

1√
n(s)

N(s)+n1(s)∑
i=N(s)+1

(ξsi −Mni)η̃i,1(s, τ) = sign(Ñ(n1(s))− n∗1(s))
∞∑
j=1

#Ijn(s)√
n(s)

1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ)

 .
(1.10.18)

In the following, we aim to show that the RHS of (1.10.18) converges to zero in probability

uniformly over s ∈ S, τ ∈ Υ. First, note that, by (1.10.17), maxN(s)+1≤i≤N(s)+n1(s) |ξsi −Mni| ≤
2 occurs with probability approaching one. In the event set that maxN(s)+1≤i≤N(s)+n1(s) |ξsi −
Mni| ≤ 2, only the first two terms of the first summation on the RHS of (1.10.18) can be

nonzero. In addition, for any j, we have j(#Ijn(s)) ≤ |Ñ(n1(s)) − n1(s)| = Op(
√
n(s)), and

thus, #Ijn(s)√
n(s)

= Op(1) for j = 1, 2. Therefore, it suffices to show that, for j = 1, 2,

sup
s∈S,τ∈Υ

∣∣∣∣∣∣ 1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ)

∣∣∣∣∣∣ = op(1).

Note that

1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ) =

N(s)+n1(s)∑
i=N(s)+1

ωniη̃i,1(s, τ), (1.10.19)

where ωni =
1{|ξsi−Mni|≥j}

#Ijn(s)
, i = N(s)+1, · · · , N(s)+n1(s) and by construction, {ωni}N(s)+n1(s)

i=N(s)+1 is

independent of {ηi,1(s, τ)}ni=1. In addition, because {ωni}N(s)+n1(s)
i=N(s)+1 is exchangeable conditional

on Nn, so be it unconditionally. Third,
∑N(s)+n1(s)

i=N(s)+1 ωni = 1 and maxi=N(s)+1,··· ,N(s)+n1(s) |ωni| ≤
1/#Ijn(s)

p−→ 0. Then, by the same argument in the proof of van der Vaart and Wellner (1996,
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Lemma 3.6.16), for some r ∈ (0, 1) and any n0 = N(s) + 1, · · · , N(s) + n1(s), we have

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

ωniη̃i,1(s, τ)

∣∣∣∣∣∣
r

|Ψn,Nn


≤(n0 − 1)E

[
max

N(s)+n0≤i≤N(s)+n1(s)
ωrni|Nn

] 1

n1(s)

N(s)+n1(s)∑
i=N(s)+1

sup
τ∈Υ,s∈S

|η̃ri,1(s, τ)|


+ (n1(s)E(ωni|Nn))r max

n0≤k≤n1(s)
E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn

 ,
(1.10.20)

where (Rk1+1(k1, k2), · · · , Rk1+k2(k1, k2)) is uniformly distributed on the set of all permutations

of k1 + 1, · · · , k1 + k2 and independent of Nn and Ψn. First note that sups∈S,τ∈Υ |ηi,1(s, τ)| is

bounded and

max
N(s)+1≤i≤N(s)+n1(s)

ωrni ≤ 1/(#Ijn(s))r
p−→ 0.

Therefore, the first term on the RHS of (1.10.20) converges to zero in probability for every

fixed n0. For the second term, because ωni|Nn is exchangeable,

n1(s)E(ωni|Nn) =

N(s)+n1(s)∑
i=N(s)+1

E(ωni|Nn) = 1.

In addition, let Sn(k1, k2) be the σ-field generated by all functions of {η̃i,1(s, τ)}i≥1 that

are symmetric in their k1 + 1 to k1 + k2 arguments. Then,

max
n0≤k≤n1(s)

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn


= max

n0≤k≤n1(s)
E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃j,1(s, τ)

∣∣∣∣∣∣
r

|Nn,Sn(N(s), n1(s))


≤2E

max
n0≤k

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑
j=N(s)+1

η̃j,1(s, τ)

∣∣∣∣∣∣
r |Nn,Sn(N(s), n1(s))


=2E

{
max
n0≤k

[
sup

τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣
r]
|Nn,Sn(0, n1(s))

}
,
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where the inequality holds by the Jansen’s inequality and the triangle inequality and the last

equality holds because {η̃j,1(s, τ)}j≥1 is an i.i.d. sequence. Apply expectation on both sides,

we obtain that

E max
n0≤k≤n1(s)

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn


≤2E max

n0≤k≤n

[
sup

τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣
r]
. (1.10.21)

By the usual maximal inequality, as k →∞,

sup
τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣ a.s.−→ 0,

which implies that as n0 →∞

max
n0≤k≤n

[
sup

τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣
r]
≤ max

n0≤k

[
sup

τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣
r]

a.s.−→ 0.

In addition, supτ∈Υ,s∈S

∣∣∣ 1
k

∑k
j=1 η̃j,1(s, τ)

∣∣∣ is bounded. Then, by the bounded convergence

theorem, we have, as n0 →∞,

E max
n0≤k≤n

[
sup

τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣
r]
→ 0.

which implies that,

E max
n0≤k≤n1(s)

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣1k
N(s)+k∑

j=N(s)+n0

η̃Rj(N(s),n1(s)),1(s, τ)

∣∣∣∣∣∣
r

|Nn,Ψn

 p−→ 0.

Therefore, the second term on the RHS of (1.10.20) converges to zero in probability as n0 →
∞. Then, as n→∞ followed by n0 →∞,

E

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

ωniη̃i,1(s, τ)

∣∣∣∣∣∣
r

|Ψn,Nn

 p−→ 0.
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Hence, by the Markov inequality and (1.10.19), we have

sup
s∈S,τ∈Υ

∣∣∣∣∣∣ 1

#Ijn(s)

∑
i∈Ijn(s)

η̃i,1(s, τ)

∣∣∣∣∣∣ p−→ 0.

Consequently, following (1.10.18)

sup
s∈S,τ∈Υ

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

(ξsi −Mni)η̃i,1(s, τ)

∣∣∣∣∣∣ = op(
√
n(s)). (1.10.22)

This concludes the first part of this Lemma. For the second part, we note

N(s)+n1(s)∑
i=N(s)+1

M̃niη̃i,1(s, τ)
d
=

N(s)+n1(s)∑
i=N(s)+1

ξsi η̃i,1(s, τ)
d
=

n1(s)∑
i=1

ξsi η̃i,1(s, τ),

where the second equality holds because {ξsi , η̃i,1(s, τ)}i≥1 ⊥⊥ {N(s), n1(s), n(s)}. Then, con-

ditionally on {N(s), n1(s), n(s)} and uniformly over s ∈ S, the usual maximal inequality

(van der Vaart and Wellner (1996, Theorem 2.14.1)) implies

sup
τ∈Υ
|
N(s)+n1(s)∑
i=N(s)+1

M̃niη̃i,1(s, τ)| d= sup
τ∈Υ
|
n1(s)∑
i=1

ξsi η̃i,1(s, τ)| = Op(
√
n(s)). (1.10.23)

Combining (1.10.16), (1.10.22), and (1.10.23), we establish (1.10.15). This concludes the

proof.

Lemma 1.10.6. If Assumptions 1(i) and 1(ii) hold, sups∈S
|D∗n(s)|√
n∗(s)

= Op(1), sups∈S
|Dn(s)|√
n(s)

=

Op(1), and n(s)→∞ for all s ∈ S, a.s., then, uniformly over τ ∈ Υ,

Q∗n(u, τ)
p−→ 1

2
u′Qu.

Proof. Recall Q∗n,1(u, τ) and Q∗n,0(u, τ) defined in (1.10.10). We focus on Q∗n,1(u, τ). Recall

the definition of Mni in the proof of Lemma 1.10.5. We have

Q∗n,1(u, τ) =
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni

∫ u0+u1√
n

0

(1{Y s
i (1)− q1(τ) ≤ v} − 1{Y s

i (1)− q1(τ) ≤ 0})dv
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=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni[φi(u, τ, s)− Eφi(u, τ, s)] +
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

MniEφi(u, τ, s),

(1.10.24)

where φi(u, τ, s) =
∫ u0+u1√

n

0 (1{Y s
i (1)− q1(τ) ≤ v} − 1{Y s

i (1)− q1(τ) ≤ 0})dv.

Similar to (1.10.22), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, s)− Eφi(u, τ, s)]

=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξsi [φi(u, τ, s)− Eφi(u, τ, s)] +
∑
s∈S

rn(u, τ, s), (1.10.25)

where {ξsi }ni=1 is a sequence of i.i.d. Poisson(1) random variables and is independent of

everything else, and

rn(u, τ, s) = sign(Ñ(n1(s))− n∗1(s))
∞∑
j=1

#Ijn(s)√
n(s)

1

#Ijn(s)

∑
i∈Ijn(s)

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)] .

We aim to show

sup
τ∈Υ,s∈S

|rn(u, τ, s)| = op(1), (1.10.26)

Recall that the proof of Lemma 1.10.5 relies on (1.10.21) and the fact that

E sup
n(s)≥k≥n0

sup
τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣→ 0.

Using the same argument and replacing η̃j,1(s, τ) by
√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)], in order

to show (1.10.26), we only need to verify that, as n→∞ followed by n0 →∞,

E sup
n(s)≥k≥n0

sup
τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
i=1

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣∣∣→ 0.

Note supτ∈Υ,s∈S

∣∣∣ 1
k

∑k
i=1

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣ is bounded by |u0|+ |u1|. It suffices

72



to show that, for any ε > 0, as n(s)→∞ followed by n0 →∞,

P

(
sup

n(s)≥k≥n0

sup
τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
i=1

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣∣∣ ≥ ε

)
→ 0. (1.10.27)

Define the class of functions Fn as

Fn = {
√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)] : τ ∈ Υ, s ∈ S}.

Then, Fn is nested by a VC-class with fixed VC-index. In addition, for fixed u, Fn has

a bounded (and independent of n) envelope function F = |u0| + |u1|. Last, define Il =

{2l, 2l + 1, · · · , 2l+1 − 1}. Then,

P

(
sup

n(s)≥k≥n0

sup
τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
i=1

√
n(s) [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣ ≥ ε

∣∣∣∣n(s)

)

≤
blog2(n(s))c+1∑
l=blog2(n0)c

P

(
sup
k∈Il

sup
τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
i=1

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣∣∣ ≥ ε

∣∣∣∣n(s)

)

≤
blog2(n(s))c+1∑
l=blog2(n0)c

P

(
sup
k≤2l+1

sup
τ∈Υ,s∈S

∣∣∣∣∣
k∑
i=1

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣∣∣ ≥ ε2l
∣∣∣∣n(s)

)

≤
blog2(n(s))c+1∑
l=blog2(n0)c

9P

 sup
τ∈Υ,s∈S

∣∣∣∣∣∣
2l+1∑
i=1

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣∣∣∣ ≥ ε2l/30

∣∣∣∣n(s)



≤
blog2(n(s))c+1∑
l=blog2(n0)c

270E
(

supτ∈Υ,s∈S

∣∣∣∑2l+1

i=1

√
n(s) [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣ ∣∣∣∣n(s)

)
ε2l

≤
blog2(n(s))c+1∑
l=blog2(n0)c

C1

ε2l/2

≤ 2C1

ε
√
n0

→ 0,

where the first inequality holds by the union bound, the second inequality holds because on

Il, 2l+1 ≥ k ≥ 2l, the third inequality follows the same argument in the proof of Theorem

1.3.1, the fourth inequality is due to the Markov inequality, the fifth inequality follows the

standard maximal inequality such as van der Vaart and Wellner (1996, Theorem 2.14.1) and

the constant C1 is independent of (l, ε, n), and the last inequality holds by letting n → ∞.

Because ε is arbitrary, we have established (1.10.27), and thus, (1.10.26), which further implies
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that

sup
τ∈Υ,s∈S

|rn(u, τ, s)| = op(1).

In addition, for the leading term of (1.10.25), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξsi [φi(u, τ, s)− Eφi(u, τ, s)]

=
∑
s∈S

[Γs∗n (N(s) + n1(s), τ)− Γs∗n (N(s), τ)] ,

where

Γs∗n (k, τ, e) =
k∑
i=1

ξsi

∫ u0+u1√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

− kE

[∫ u0+u1√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

]
.

By the same argument in (1.10.1), we can show that

sup
0<t≤1,τ∈Υ

|Γs∗n (k, τ, e)| = op(1),

where we need to use the fact that the Poisson(1) random variable has an exponential tail

and thus

E sup
i∈{1,··· ,n},s∈S

ξsi = O(log(n)).

Therefore,

sup
τ∈Υ

∣∣∣∣∣∣
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, s)− Eφi(u, τ, s)]

∣∣∣∣∣∣ = op(1). (1.10.28)

For the second term on the RHS of (1.10.24), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

MniEφi(u, τ, s) =
∑
s∈S

n∗1(s)Eφi(u, τ, s)
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=
∑
s∈S

πp(s)
f1(q1(τ)|s)

2
(u0 + u1)2 + o(1)

=
πf1(q1(τ))(u0 + u1)2

2
+ o(1), (1.10.29)

where the o(1) term holds uniformly over τ ∈ Υ, the first equality holds because
∑N(s)+n1(s)

i=N(s)+1 Mni =

n∗1(s) and the second equality holds by the same calculation in (1.10.1) and the facts that

n∗(s)/n
p−→ p(s) and

n∗1(s)

n
=
D∗n(s) + πn∗(s)

n

p−→ πp(s).

Combining (1.10.24)–(1.10.26), (1.10.28), and (1.10.29), we have

Q∗n,1(u, τ)
p−→ πf1(q1(τ))(u0 + u1)2

2
,

uniformly over τ ∈ Υ. By the same argument, we can show that, uniformly over τ ∈ Υ,

Q∗n,0(u, τ)
p−→ (1− π)f0(q0(τ))u2

0

2
.

This concludes the proof.

1.11 Appendix B

1.11.1 Quantile Regression with Strata Fixed Effects

The strata fixed effects estimator for the ATE is obtained by a linear regression of outcome Yi

on the treatment status Ai, controlling for strata dummies {1{Si = s}s∈S}. Bugni et al. (2018)

point out that, due to the Frisch-Waugh-Lovell theorem, this estimator is equal to the linear

coefficient in the regression of Yi on Ãi, in which Ãi is the residual of the projection of Ai on

the strata dummies. Unlike the expectation, the quantile operator is nonlinear. Therefore, we

cannot consistently estimate QTEs by a linear QR of Yi on Ai and strata dummies. Instead,

based on the equivalence relationship, we propose to run the QR of Yi on Ãi. Formally, let

Ãi = Ai − π̂(Si) and ˙̃Ai = (1, Ãi)
′, where π̂(s) = n1(s)/n(s), n1(s) =

∑n
i=1 Ai1{Si = s},

and n(s) =
∑n

i=1 1{Si = s}. Then, the strata fixed effects (SFE) estimator for the QTE is
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β̂sfe,1(τ), where

β̂sfe(τ) ≡
(
β̂sfe,0(τ), β̂sfe,1(τ)

)′
= arg min

b=(b0,b1)′∈<2

n∑
i=1

ρτ

(
Yi − ˙̃A′ib

)
.

Theorem 1.11.1. If Assumptions 1(i)–1(iii) and 2 hold and p(s) > 0 for s ∈ S, then,

uniformly over τ ∈ Υ,

√
n
(
β̂sfe,1(τ)− q(τ)

)
 Bsfe(τ), as n→∞,

where Bsfe(·) is a Gaussian process with covariance kernel Σsfe(·, ·). The expression for

Σsfe(·, ·) can be found in the proof of this theorem.

In particular, the asymptotic variance for β̂sfe,1(τ) is

ζ2
Y (π, τ) + ζ ′2A (π, τ) + ζ2

S(τ),

where ζ2
Y (π, τ) and ζ2

S(τ) are the same as those defined below Theorem 1.3.1,

ζ ′2A (π, τ) =Eγ(S)

[
(m1(S, τ)−m0(S, τ))

(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
+ q(τ)

(
f1(q1(τ)|S)

f1(q1(τ))
− f0(q0(τ)|S)

f0(q0(τ))

)]2

.

Three remarks are in order. First, if the treatment assignment rule achieves strong balance,

then ζ ′2A (π, τ) = 0 and the asymptotic variances for β̂1(τ) and β̂sfe,1(τ) are the same. Second,

if the treatment assignment rule does not achieve strong balance, then it is difficult to compare

the asymptotic variances of β̂1(τ) and β̂sfe,1(τ). Based on our simulation results in Section

1.11.6, the SFE estimator usually has a smaller standard error. Third, in order to analytically

compute the asymptotic variance β̂sfe,1(τ), one needs to nonparametrically estimate not only

the unconditional densities fj(·) but also the conditional densities fj(·|s) for j = 0, 1 and

s ∈ S. However, such difficulty can be avoided by the covariate-adaptive bootstrap inference

considered in Section 1.5.

We can compute the weighted bootstrap counterpart of strata fixed effects estimator:

β̂wsfe(τ) = arg min
b

n∑
i=1

ξiρτ

(
Yi − ˙̃Aw

′

i b
)
,

where ˙̃Awi = (1, Ãwi )′, Ãwi = Ai − π̂w(Si), and π̂w(·) is defined in Section 1.4. The second
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element of β̂wsfe(τ) is our bootstrap estimator of the QTE.

Theorem 1.11.2. If Assumptions 1–3 hold and p(s) > 0 for all s ∈ S, then uniformly over

τ ∈ Υ and conditionally on data,

√
n
(
β̂wsfe,1(τ)− β̂sfe,1(τ)

)
 B̃sfe(τ), as n→∞,

where B̃sfe(τ) is a Gaussian process with covariance kernel being equal to that of Bsfe(τ)

defined in Theorem 1.11.1 with γ(s) being replaced by π(1− π).

Similar to the SQR estimator, the weighted bootstrap fails to capture the cross-sectional

dependence due to the covariate-adaptive randomization, and thus, overestimates the asymp-

totic variance of the SFE estimator.

We can also implement the covariate-adaptive bootstrap. Let

β̂∗sfe(τ) = arg min
b

n∑
i=1

ρτ

(
Y ∗i −

˙̃A∗
′

i b
)
,

where ˙̃A∗i = (1, Ã∗i )
′, Ã∗i = A∗i − π̂∗(S∗i ), π̂∗(s) =

n∗1(s)

n∗(s)
, and (Y ∗i , A

∗
i , S

∗
i )
n
i=1 is the covariate-

adaptive bootstrap sample generated via the procedure mentioned in Section 1.5. The the

second element β̂∗sfe,1(τ) of β̂∗sfe(τ) is the covariate-adaptive SFE estimator.

Theorem 1.11.3. If Assumptions 1, 2, and 4 hold and p(s) > 0 for all s ∈ S, then, uniformly

over τ ∈ Υ and conditionally on data,

√
n
(
β̂∗sfe,1(τ)− q̂(τ)

)
 Bsfe(τ), as n→∞.

Unlike the weighted bootstrap, the covariate-adaptive bootstrap can mimic the cross-

sectional dependence, and thus, produces an asymptotically valid standard error for the SFE

estimator.

1.11.2 Proof of Theorem 1.11.1

Define β̃1(τ) = q(τ), β̃0(τ) = πq1(τ)+(1−π)q0(τ), β̃(τ) = (β̃0(τ), β̃1(τ))′, and Ăi = (1, Ai−π)′.

For arbitrary b0 and b1, let u0 =
√
n(b0− β̃0(τ)), u1 =

√
n(b1− β̃1(τ)), u = (u0, u1)′ ∈ <2, and

Lsfe,n(u, τ) =
n∑
i=1

[
ρτ (Yi − Ă′iβ̃(τ)− ( ˙̃A′ib− Ă′iβ̃(τ)))− ρτ (Yi − Ă′iβ̃(τ))

]
.
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Then, by the change of variable, we have that

√
n(β̂sfe(τ)− β̃(τ)) = arg min

u
Lsfe,n(u, τ).

Notice that Lsfe,n(u, τ) is convex in u for each τ and bounded in τ for each u. In the following,

we aim to show that there exists

gsfe,n(u, τ) = −u′Wsfe,n(τ) +
1

2
u′Qsfe(τ)u

such that (1) for each u,

sup
τ∈Υ
|Lsfe,n(u, τ)− gsfe,n(u, τ)− hsfe,n(τ)| p−→ 0,

where hsfe,n(τ) does not depend on u; (2) the maximum eigenvalue of Qsfe(τ) is bounded

from above and the minimum eigenvalue of Qsfe(τ) is bounded away from 0 uniformly over

τ ∈ Υ; (3) Wsfe,n(τ)  B̃(τ) uniformly over τ ∈ Υ for some B̃(τ).10 Then by Kato (2009,

Theorem 2), we have

√
n(β̂sfe(τ)− β̃(τ)) = [Qsfe(τ)]−1Wsfe,n(τ) + rsfe,n(τ),

where supτ∈Υ ||rsfe,n(τ)|| = op(1). In addition, by (3), we have, uniformly over τ ∈ Υ,

√
n(β̂sfe(τ)− β̃(τ)) [Qsfe(τ)]−1B̃(τ) ≡ B(τ).

The second element of B(τ) is Bsfe(τ) stated in Theorem 1.11.1. Next, we prove requirements

(1)–(3) in three steps.

Step 1. By Knight’s identity (Knight, 1998), we have

Lsfe,n(u, τ)

=−
n∑
i=1

( ˙̃A′i(β̃(τ) +
u√
n

)− Ă′iβ̃(τ))
(
τ − 1{Yi ≤ ˙̃A′iβ̃(τ)}

)
+

n∑
i=1

∫ ˙̃A′i(β̃(τ)+ u√
n

)−Ă′iβ̃(τ)

0

(
1{Yi − ˙̃A′iβ̃(τ) ≤ v} − 1{Yi − ˙̃A′iβ̃(τ) ≤ 0}

)
dv

≡− L1,n(u, τ) + L2,n(u, τ).

10We abuse the notation and denote the weak limit of Wsfe,n(τ) as B̃(τ). This limit is different from the
weak limit of Wn(τ) in the proof of Theorem 1.3.1.
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Step 1.1. We first consider L1,n(u, τ). Note that β̃1(τ) = q(τ) and

L1,n(u, τ)

=
n∑
i=1

∑
s∈S

Ai1{Si = s}
(
u0√
n

+ (1− π̂(s))
u1√
n

+ (π − π̂(s))q(τ)

)
(τ − 1{Yi(1) ≤ q1(τ)})

+
n∑
i=1

∑
s∈S

(1− Ai)1{Si = s}
(
u0√
n
− π̂(s)

u1√
n

+ (π − π̂(s))q(τ)

)
(τ − 1{Yi(0) ≤ q0(τ)})

≡L1,1,n(u, τ) + L1,0,n(u, τ). (1.11.1)

Let ι1 = (1, 1 − π)′ and ι0 = (1,−π)′. Note that π̂(s) − π = Dn(s)
n(s)

. Then, for L1,1,n(u, τ), we

have

L1,1,n(u, τ)

=
n∑
i=1

∑
s∈S

Ai1{Si = s}
[
u′ι1√
n

+ (π − π̂(s))

(
q(τ) +

u1√
n

)]
(τ − 1{Yi(1) ≤ q1(τ)})

=
u′ι1√
n

n∑
i=1

∑
s∈S

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})

−
∑
s∈S

Dn(s)√
n

u1

n(s)

n∑
i=1

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})

+
∑
s∈S

(π − π̂(s))q(τ)
n∑
i=1

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})

=
∑
s∈S

u′ι1√
n

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ) + π1{Si = s}m1(s, τ)

]

−
∑
s∈S

Dn(s)√
n

u1

n(s)

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ) + π1{Si = s}m1(s, τ)

]
+ h1,1(τ)

=
∑
s∈S

u′ι1√
n

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ) + π1{Si = s}m1(s, τ)

]
−
∑
s∈S

u1Dn(s)πm1(s, τ)√
n

+ h1,1(τ) +Rsfe,1,1(u, τ), (1.11.2)

where

h1,1(τ) =
∑
s∈S

(π − π̂(s))q(τ)
n∑
i=1

Ai1{Si = s} (τ − 1{Yi(1) ≤ q1(τ)})
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and

Rsfe,1,1(u, τ) = −
∑
s∈S

u1Dn(s)√
nn(s)

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ)

]
.

By the same argument in Lemma 1.10.2 and Assumption 1(iii), we have for every s ∈ S,

sup
τ∈Υ

∣∣∣∣∣ 1√
n

n∑
i=1

Ai1{Si = s}ηi,1(s, τ)

∣∣∣∣∣ = Op(1) (1.11.3)

and

sup
τ∈Υ

∣∣∣∣∣ 1√
n

n∑
i=1

[
(Ai − π)1{Si = s}m1(s, τ)

]∣∣∣∣∣ = sup
τ∈Υ

∣∣∣∣Dn(s)m1(s, τ)√
n

∣∣∣∣ = Op(1).

In addition, note that n(s)/n
p−→ p(s). Therefore,

sup
τ∈Υ
|Rsfe,1,1(u, τ)| = Op(

1√
n

) = op(1).

Similarly, we have

L1,0,n(u, τ)

=
∑
s∈S

u′ι0√
n

n∑
i=1

[
(1− Ai)1{Si = s}ηi,0(s, τ)− (Ai − π)1{Si = s}m0(s, τ) + (1− π)1{Si = s}m0(s, τ)

]
−
∑
s∈S

u1Dn(s)(1− π)m0(s, τ)√
n

+ h1,0(τ) +Rsfe,1,0(u, τ), (1.11.4)

where

h1,0(τ) =
∑
s∈S

(π − π̂(s))q(τ)
n∑
i=1

(1− Ai)1{Si = s} (τ − 1{Yi(0) ≤ q0(τ)}) ,

Rsfe,1,0(u, τ) = −
∑
s∈S

u1Dn(s)√
nn(s)

n∑
i=1

[
(1− Ai)1{Si = s}ηi,0(τ)− (Ai − π)1{Si = s}m0(s, τ)

]
,
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and

sup
τ∈Υ
|Rsfe,1,0(τ)| = Op(

1√
n

) = op(1).

Combining (1.11.1), (1.11.2), (1.11.4) and letting ι2 = (1, 1− 2π)′, we have

L1,n(u, τ) =
1√
n

∑
s∈S

n∑
i=1

[
u′ι1Ai1{Si = s}ηi,1(s, τ) + u′ι0(1− Ai)1{Si = s}ηi,0(s, τ)

]
+
∑
s∈S

u′ι2
Dn(s)√

n
(m1(s, τ)−m0(s, τ))

+
1√
n

n∑
i=1

(u′ι1πm1(Si, τ) + u′ι0(1− π)m0(Si, τ))

+Rsfe,1,1(u, τ) +Rsfe,1,0(u, τ) + h1,1(τ) + h1,0(τ). (1.11.5)

Step 1.2. Next, we consider L2,n(u, τ). Denote En(s) =
√
n(π̂(s)− π). Then,

{En(s)}s∈S =

{
Dn(s)√

n

n

n(s)

}
s∈S
 N (0,Σ′D) = Op(1),

where Σ′D = diag(γ(s)/p(s) : s ∈ S). In addition,

L2,n(u, τ)

=
∑
s∈S

n∑
i=1

Ai1{Si = s}
∫ u′ι1√

n
−En(s)√

n

(
q(τ)+

u1√
n

)
0

(1{Yi(1) ≤ q1(τ) + v} − 1{Yi(1) ≤ q1(τ)}) dv

+
∑
s∈S

n∑
i=1

(1− Ai)1{Si = s}
∫ u′ι0√

n
−En(s)√

n

(
q(τ)+

u1√
n

)
0

(1{Yi(0) ≤ q0(τ) + v} − 1{Yi(0) ≤ q0(τ)}) dv

≡L2,1,n(u, τ) + L2,0,n(u, τ). (1.11.6)

By the same argument in (1.10.1), we have

L2,1,n(u, τ)
d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

∫ u′ι1√
n
−En(s)√

n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

≡
∑
s∈S

[Γsn(N(s) + n1(s), τ, En(s))− Γsn(N(s), τ, En(s))] , (1.11.7)
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where

Γsn(k, τ, e) =
k∑
i=1

∫ u′ι1−e(q(τ)+
u1√
n

)
√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv.

We want to show, for some any sufficiently large constant M ,

sup
0<t≤1,τ∈Υ,|e|≤M

|Γsn(bntc, τ, e)− EΓsn(bntc, τ, e)| = op(1). (1.11.8)

By the same argument in (1.10.2), it suffices to show that

sup
τ∈Υ,|e|≤M

n||Pn − P||F = op(1),

where

F =


∫ u′ι1−e(q(τ)+

u1√
n

)
√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv : τ ∈ Υ, |e| ≤M


with an envelope F =

|u0|+|u1|+M supτ∈Υ |q(τ)|+ |u1|√
n√

n
. Note that

sup
f∈F

Ef 2 ≤ sup
τ∈Υ

E

[
|u0|+ |u1|+M |q(τ)|+ |u1|√

n√
n

1

{
|Y s
i (1)− q1(τ)| ≤

|u0|+ |u1|+M |q(τ)|+ |u1|√
n√

n

}]2

.n−3/2,

and F is a VC-class with a fixed VC index. Then, by Chernozhukov et al. (2014, Corollary

5.1),

E sup
τ∈Υ,|e|≤M

|Γsn(n, τ, e)− EΓsn(n, τ, e)| = n||Pn − P||F . n

[√
log(n)

n5/2
+

log(n)

n3/2

]
= o(1).

(1.11.9)

In addition, we have

EΓsn(bntc, τ, e) =bntc
∫ u′ι1−e(q(τ)+

u1√
n

)
√
n

0

[F1(q1(τ) + v|s)− F1(q1(τ)|s)]dv
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=t
f1(q1(τ)|s)

2
(u′ι1 − eq(τ))2 + o(1), (1.11.10)

where Fj(·|s) and fj(·|s), j = 0, 1 are the conditional CDF and PDF for Y (j) given S = s,

respectively, and the o(1) term holds uniformly over {τ ∈ Υ, |e| ≤ M}. Combining (1.11.8)

and (1.11.10) with the fact that n1(s)
n

p−→ πp(s), we have

L2,1,n(u, τ) =
∑
s∈S

πp(s)
f1(q1(τ)|s)

2
(u′ι1 − En(s)q(τ))2 +R′sfe,2,1(u, τ)

=
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πDn(s)u′ι1√
n

q(τ) + h2,1(τ) +Rsfe,2,1(u, τ),

(1.11.11)

where

sup
τ∈Υ
|R′sfe,2,1(u, τ)| = op(1), sup

τ∈Υ
|Rsfe,2,1(u, τ)| = op(1),

and

h2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)E2
n(s)β̃2

1(τ).

Similarly, we have

L2,0,n(u, τ) =
(1− π)f0(q0(τ))

2
(u′ι0)2 −

∑
s∈S

(1− π)f0(q0(τ)|s)Dn(s)u′ι0√
n

q(τ)

+ h2,0(τ) +Rsfe,2,0(u, τ), (1.11.12)

where

sup
τ∈Υ
|Rsfe,2,0(u, τ)| = op(1) and h2,0(τ) =

∑
s∈S

(1− π)f0(q0(τ)|s)
2

p(s)E2
n(s)β̃2

1(τ).

Combining (1.11.6), (1.11.11), and (1.11.12), we have

L2,n(u, τ) =
1

2
u′Qsfe(τ)u−

∑
s∈S

q(τ) [f1(q1(τ)|s)πu′ι1 + f0(q0(τ)|s)(1− π)u′ι0]
Dn(s)√

n

+Rsfe,2,1(u, τ) +Rsfe,2,0(u, τ) + h2,1(τ) + h2,0(τ). (1.11.13)
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where

Qsfe =πf1(q1(τ))ι1ι
′
1 + (1− π)f0(q0(τ))ι0ι

′
0

=

(
πf1(q1(τ)) + (1− π)f0(q0(τ)) π(1− π)(f1(q1(τ))− f0(q0(τ)))

π(1− π)(f1(q1(τ))− f0(q0(τ))) π(1− π)((1− π)f1(q1(τ)) + πf0(q0(τ)))

)
.

Step 1.3. Last, by combining (1.11.5) and (1.11.13), we have

Lsfe,n(u, τ) = −u′Wsfe,n(τ) +
1

2
u′Qsfe(τ)u+Rsfe(u, τ) + hsfe,n(τ),

where

Wsfe,n(τ)

=
1√
n

∑
s∈S

n∑
i=1

[
ι1Ai1{Si = s}ηi,1(s, τ) + ι0(1− Ai)1{Si = s}ηi,0(s, τ)

]
+
∑
s∈S

{
ι2 (m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)πι1 + f0(q0(τ)|s)(1− π)ι0

]}
Dn(s)√

n

+
1√
n

n∑
i=1

(ι1πm1(Si, τ) + ι0(1− π)m0(Si, τ))

≡Wsfe,n,1(τ) +Wsfe,n,2(τ) +Wsfe,n,3(τ), (1.11.14)

Rsfe(u, τ) = Rsfe,1,1(u, τ) +Rsfe,1,0(u, τ) +Rsfe,2,1(u, τ) +Rsfe,2,0(u, τ)

such that supτ∈Υ |Rsfe(u, τ)| = op(1), and

hsfe,n(τ) = h1,1(τ) + h1,0(τ) + h2,1(τ) + h2,0(τ).

This concludes the proof of Step 1.

Step 2. Note that det(Qsfe(τ)) = π(1 − π)f0(q0(τ))f1(q1(τ)), which is bounded and

bounded away from zero. In addition, it can be shown that the two eigenvalues of Qsfe(τ)

are nonnegative. This leads to the desired result.

Step 3. Lemma 1.11.1 establishes the weak convergence that

(Wsfe,1,n(τ),Wsfe,2,n(τ),Wsfe,3,n(τ)) (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)),
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where (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)) are three independent two-dimensional Gaussian pro-

cesses with covariance kernels Σ1(τ1, τ2), Σ2(τ1, τ2), and Σ3(τ1, τ2), respectively. Therefore,

uniformly over τ ∈ Υ,

Wsfe,n(τ) B̃(τ),

where B̃(τ) is a two-dimensional Gaussian process with covariance kernel

Σ̃(τ1, τ2) =
3∑
j=1

Σj(τ1, τ2).

Consequently,

√
n(β̂sfe(τ)− β̃(τ)) B(τ) ≡ Q−1

sfe(τ)B̃(τ),

where Σ(τ1, τ2), the covariance kernel of B(τ), has the expression that

Σ(τ1, τ2)

=Q−1
sfe(τ1)Σ̃(τ1, τ2)Q−1

sfe(τ2)

=

{
1

πf1(q1(τ1))f1(q1(τ2))
[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]

(
π2 π

π 1

)

+
1

(1− π)f0(q0(τ1))f0(q0(τ2))
[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]

(
(1− π)2 π − 1

π − 1 1

)}

+

{
Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
π

f0(q0(τ1))
+ 1−π

f1(q1(τ1))
1−π

πf1(q1(τ1))
− π

(1−π)f0(q0(τ1))

)
+ q(τ1)

f1(q1(τ1)|S)

f1(q1(τ1))

(
π

1

)

+ q(τ1)
f0(q0(τ1)|S)

f0(q0(τ1))

(
1− π
−1

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
π

f0(q0(τ2))
+ 1−π

f1(q1(τ2))
1−π

πf1(q1(τ2))
− π

(1−π)f0(q0(τ2))

)

+ q(τ2)
f1(q1(τ2)|S)

f1(q1(τ2))

(
π

1

)
+ q(τ2)

f0(q0(τ2)|S)

f0(q0(τ2))

(
1− π
−1

)]}

+

{
E
[
m1(S, τ1)

f1(q1(τ1))

(
π

1

)
+
m0(S, τ1)

f0(q0(τ1))

(
1− π
−1

)][
m1(S, τ2)

f1(q1(τ2))

(
π

1

)
+
m0(S, τ2)

f0(q0(τ2))

(
1− π
−1

)]′}
.

By checking the (2, 2)-element of Σ(τ1, τ2), we have

Σsfe(τ1, τ2)
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=
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

+ Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
1− π

πf1(q1(τ1))
− π

(1− π)f0(q0(τ1))

)
+ q(τ1)

(
f1(q(τ1)|S)

f1(q1(τ1))
− f0(q(τ1)|S)

f0(q0(τ1))

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
1− π

πf1(q1(τ2))
− π

(1− π)f0(q0(τ2))

)
+ q(τ2)

(
f1(q(τ2)|S)

f1(q2(τ2))
− f0(q(τ2)|S)

f0(q0(τ2))

)]
+ E

[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
.

1.11.3 Proof of Theorem 1.11.2

Note that

√
n(β̂wsfe(τ)− β̃(τ)) = arg min

u
Lwsfe,n(u, τ),

where

Lwsfe,n(u, τ) =
n∑
i=1

ξi

[
ρτ (Yi − ˙̃Aw′i (β̃(τ) +

u√
n

))− ρτ (Yi − Ă′iβ̃(τ))

]
,

˙̃Awi = (1, Ãwi )′, Ãwi = Ai − π̂w(Si), and

π̂w(s) =

∑n
i=1 ξiAi1{Si = s}∑n
i=1 ξi1{Si = s}

.

Similar to the proof of Theorem 1.11.1, we divide the proof into two steps. In the first

step, we show that there exists

gwsfe,n(u, τ) = −u′Ww
sfe,n(τ) +

1

2
u′Qsfe(τ)u

and hwsfe,n(τ) independent of u such that for each u

sup
τ∈Υ
|Lwsfe,n(u, τ)− gwsfe,n(u, τ)− hwsfe,n(τ)| p−→ 0.

In addition, we will show that supτ∈Υ ||Ww
sfe,n(τ)|| = Op(1). Then, by Kato (2009, Theorem

2), we have

√
n(β̂wsfe(τ)− β̃(τ)) = [Qsfe(τ)]−1Ww

sfe,n(τ) +Rw
sfe,n(τ),
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where

sup
τ∈Υ
||Rw

sfe,n(τ)|| = op(1).

In the second step, we show that, conditionally on data,

√
n(β̂wsfe,1(τ)− β̂sfe,1(τ)) B̃sfe(τ).

Step 1. Following Step 1 in the proof of Theorem 1.11.1, we have

Lwsfe,n(u, τ) ≡ −Lw1,n(u, τ) + Lw2,n(u, τ),

where

Lw1,n(u, τ)

=
n∑
i=1

∑
s∈S

ξiAi1{Si = s}
(
u0√
n

+ (1− π̂w(s))
u1√
n

+ (π − π̂w(s))q(τ)

)
(τ − 1{Yi ≤ q1(τ)})

+
n∑
i=1

∑
s∈S

ξi(1− Ai)1{Si = s}
(
u0√
n
− π̂w(s)

u1√
n

+ (π − π̂w(s))q(τ)

)
(τ − 1{Yi ≤ q0(τ)})

≡Lw1,1,n(u, τ) + Lw1,0,n(u, τ),

Lw2,n(u, τ)

=
∑
s∈S

n∑
i=1

ξiAi1{Si = s}
∫ u′ι1√

n
−E

w
n (s)√
n

(
q(τ)+

u1√
n

)
0

(1{Yi ≤ q1(τ) + v} − 1{Yi ≤ q1(τ)}) dv

+
∑
s∈S

n∑
i=1

ξi(1− Ai)1{Si = s}
∫ u′ι0√

n
−E

w
n (s)√
n

(
q(τ)+

u1√
n

)
0

(1{Yi ≤ q0(τ) + v} − 1{Yi ≤ q0(τ)}) dv

≡Lw2,1,n(u, τ) + Lw2,0,n(u, τ),

and Ew
n (s) =

√
n(π̂w(s)− π).

Step 1.1. Recall that ι1 = (1, 1− π)′ and ι0 = (1,−π)′. In addition, denote π̂w(s)− π =
Dwn (s)
nw(s)

, where

Dw
n (s) =

n∑
i=1

ξi(Ai − π)1{Si = s} and nw(s) =
n∑
i=1

ξi1{Si = s}.
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Then, we have

Lw1,1,n(u, τ)

=
∑
s∈S

u′ι1√
n

n∑
i=1

ξi [Ai1{Si = s}ηi,1(s, τ) + π1{Si = s}m1(s, τ)] +
∑
s∈S

u′ι2D
w
n (s)m1(s, τ)√

n

+ hw1,1(τ) +Rw
sfe,1,1(u, τ), (1.11.15)

where ηi,1(s, τ) = (τ − 1{Yi(1) ≤ q1(τ)})−m1(s, τ),

hw1,1(τ) =
∑
s∈S

(π − π̂w(s))q(τ)

(
n∑
i=1

ξiAi1{Si = s}(τ − 1{Yi ≤ q1(τ)})

)
,

and

Rw
sfe,1,1(u, τ) = −

∑
s∈S

u1D
w
n (s)√

nnw(s)

{
n∑
i=1

ξi [Ai1{Si = s}ηi,1(s, τ) + (Ai − π)1{Si = s}m1(s, τ)]

}
.

(1.11.16)

By Lemma 1.11.2, we have

sup
τ∈Υ
|Rw

sfe,1,1(u, τ)| = op(1).

Similarly, we have

Lw1,0,n(u, τ)

=
∑
s∈S

n∑
i=1

ξi

{
u′ι0√
n

[(1− Ai)1{Si = s}ηi,0(s, τ) + π1{Si = s}m1(s, τ)]− u′ι2√
n

(Ai − π)1{Si = s}m0(s, τ)

}
+ hw1,0(τ) +Rw

sfe,1,0(u, τ), (1.11.17)

where

sup
τ∈Υ
|Rw

sfe,1,0(u, τ)| = op(1).

Combining (1.11.15) and (1.11.17), we have

Lw1,n(u, τ)
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=
1√
n

∑
s∈S

n∑
i=1

ξi

[
u′ι1Ai1{Si = s}ηi,1(u, τ) + u′ι0(1− Ai)1{Si = s}ηi,0(u, τ)

+ u′ι2(Ai − π)1{Si = s}(m1(s, τ)−m0(s, τ)) + 1{Si = s}(u′ι1πm1(s, τ) + u′ι0(1− π)m0(s, τ))

]
+Rw

sfe,1,1(u, τ) +Rw
sfe,1,0(u, τ) + hw1,1(τ) + hw1,0(τ).

Furthermore, by Lemma 1.11.3, we have

Lw2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
w
n (s)u′ι1√
n

q(τ) + hw2,1(τ) +Rw
sfe,2,1(u, τ)

(1.11.18)

and

Lw2,0,n(u, τ) =
(1− π)f0(q0(τ))

2
(u′ι0)2 −

∑
s∈S

f0(q0(τ)|s)(1− π)Dw
n (s)u′ι0√
n

q(τ) + hw2,0(τ) +Rw
sfe,2,0(u, τ),

(1.11.19)

where

hw2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(Ew
n (s))2q2(τ),

hw2,0(τ) =
∑
s∈S

(1− π)f0(q0(τ)|s)
2

p(s)(Ew
n (s))2q2(τ),

sup
τ∈Υ
|Rw

sfe,2,1(u, τ)| = op(1),

and

sup
τ∈Υ
|Rw

sfe,2,0(u, τ)| = op(1).

Therefore,

Lw2,n(u, τ) =
1

2
u′Qsfe(τ)u−

∑
s∈S

q(τ) [f1(q1(τ)|s)πu′ι1 + f0(q0(τ)|s)(1− π)u′ι0]
Dw
n (s)√
n

+Rw
sfe,2,1(u, τ) +Rw

sfe,2,0(u, τ) + hw2,1(τ) + hw2,0(τ).
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Combining (1.11.15), (1.11.17), (1.11.18), and (1.11.19), we have

Lwsfe,n(u, τ) = −u′W̃w
sfe,n(τ) +

1

2
u′Qsfeu+ R̃w

sfe,n(u, τ) + hwsfe,n(τ),

where

Ww
sfe,n(τ)

=
1√
n

∑
s∈S

n∑
i=1

ξi

[
ι1Ai1{Si = s}ηi,1(s, τ) + ι0(1− Ai)1{Si = s}ηi,0(s, τ)

]

+
1√
n

∑
s∈S

n∑
i=1

ξi

{
ι2(m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)πι1 + f0(q0(τ)|s)(1− π)ι0

]}

× (Ai − π)1{Si = s}+
1√
n

n∑
i=1

ξi(ι1πm1(Si, τ) + ι0(1− π)m0(Si, τ)),

hwsfe,n(τ) = hw1,1(τ) + hw1,0(τ) + hw2,1(τ) + hw2,0(τ),

and

sup
τ∈Υ
|R̃w

sfe,n(u, τ)| = op(1).

In addition, by Lemma 1.11.4, supτ∈Υ |Ww
sfe,n(τ)| = Op(1). Then, by Kato (2009, Theorem

2), we have

√
n(β̂wsfe(τ)− β̃(τ)) = [Qsfe(τ)]−1Ww

sfe,n(τ) +Rw
sfe,n(τ),

where

sup
τ∈Υ
||Rw

sfe,n(τ)|| = op(1).

This concludes Step 1.

Step 2. We now focus on the second element of β̂wsfe(τ). From Step 1, we know that

√
n(β̂wsfe,1(τ)− q(τ)) =

1√
n

∑
s∈S

n∑
i=1

ξiJi(s, τ) +Rw
sfe,n,1(τ),
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where

Ji(s, τ) =

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]
+

{(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
(m1(s, τ)−m0(s, τ))

+ q(τ)

[
f1(q1(τ)|s)
f1(q1(τ))

− f0(q0(τ)|s)
f0(q0(τ))

]}
(Ai − π)1{Si = s}

+

(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}

and

sup
τ∈Υ
|Rw

sfe,n,1(τ)| = op(1).

By (1.11.14), we have

√
n(β̂sfe,1(τ)− q(τ)) =

1√
n

∑
s∈S

n∑
i=1

Ji(s, τ) +Rsfe,n,1(τ),

where

sup
τ∈Υ
|Rsfe,n,1(τ)| = op(1).

Taking the difference of the above two equations, we have

√
n(β̂wsfe,1(τ)− β̂sfe,1(τ)) =

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) +Rw(τ),

where

sup
τ∈Υ
|Rw(τ)| = op(1).

Lemma 1.11.5 shows that, conditionally on data,

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) B̃sfe(τ),

where B̃sfe(τ) is a Gaussian process with covariance kernel
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Σ̃sfe(τ1, τ2)

=
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))

+ Eπ(1− π)

[
(m1(S, τ1)−m0(S, τ1))

(
1− π

πf1(q1(τ1))
− π

(1− π)f0(q0(τ1))

)
+ q(τ1)

(
f1(q(τ1)|S)

f1(q1(τ1))
− f0(q(τ1)|S)

f0(q0(τ1))

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
1− π

πf1(q1(τ2))
− π

(1− π)f0(q0(τ2))

)
+ q(τ2)

(
f1(q(τ2)|S)

f1(q2(τ2))
− f0(q(τ2)|S)

f0(q0(τ2))

)]
+ E

[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
. (1.11.20)

This concludes the proof for the SFE estimator.

1.11.4 Proof of Theorem 1.11.3

Recall the definition of β̃(τ) = (β̃0(τ), β̃1(τ))′ in the proof of Theorem 1.11.1. Let u0 =
√
n(b0 − β̃0(τ)), u1 =

√
n(b1 − β̃1(τ)) and u = (u0, u1)′ ∈ <2. Then,

√
n(β̂∗sfe(τ)− β̃(τ)) = arg min

u
L∗sfe,n(u, τ),

where

L∗sfe,n(u, τ) =
n∑
i=1

[
ρτ (Y

∗
i −

˙̃A∗′i (β̃(τ) +
u√
n

))− ρτ (Y ∗i − Ă∗′i β̃(τ))

]

and Ă∗i = (1, A∗i − π)′. Following the proof of Theorem 1.11.1, we divide the current proof

into two steps. In the first step, we show that there exist

g∗sfe,n(u, τ) = −u′W ∗
sfe,n(τ) +

1

2
u′Qsfe(τ)u

and h∗sfe,n(τ) independent of u such that for each u

sup
τ∈Υ
|L∗sfe,n(u, τ)− g∗sfe,n(u, τ)− h∗sfe,n(τ)| p−→ 0.
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In addition, we show that supτ∈Υ ||W ∗
sfe,n(τ)|| = Op(1). Then, by Kato (2009, Theorem 2),

we have

√
n(β̂∗sfe(τ)− β̃(τ)) = [Qsfe(τ)]−1W ∗

sfe,n(τ) +R∗sfe,n(τ),

where

sup
τ∈Υ
||R∗sfe,n(τ)|| = op(1).

In the second step, we show that, conditionally on data,

√
n(β̂∗sfe,1(τ)− q̂(τ)) Bsfe(τ).

Step 1. Following Step 1 in the proof of Theorem 1.11.1, we have

L∗sfe,n(u, τ) ≡ −L∗1,n(u, τ) + L∗2,n(u, τ),

where

L∗1,n(u, τ)

=
n∑
i=1

∑
s∈S

A∗i 1{S∗i = s}
(
u0√
n

+ (1− π̂∗(s)) u1√
n

+ (π − π̂∗(s))q(τ)

)
(τ − 1{Y ∗i ≤ q1(τ)})

+
n∑
i=1

∑
s∈S

(1− A∗i )1{S∗i = s}
(
u0√
n
− π̂∗(s) u1√

n
+ (π − π̂∗(s))q(τ)

)
(τ − 1{Y ∗i ≤ q0(τ)})

≡L∗1,1,n(u, τ) + L∗1,0,n(u, τ),

L∗2,n(u, τ)

=
∑
s∈S

n∑
i=1

A∗i 1{S∗i = s}
∫ u′ι1√

n
−E
∗
n(s)√
n

(
q(τ)+

u1√
n

)
0

(1{Y ∗i ≤ q1(τ) + v} − 1{Y ∗i ≤ q1(τ)}) dv

+
∑
s∈S

n∑
i=1

(1− A∗i )1{S∗i = s}
∫ u′ι0√

n
−E
∗
n(s)√
n

(
q(τ)+

u1√
n

)
0

(1{Y ∗i ≤ q0(τ) + v} − 1{Y ∗i ≤ q0(τ)}) dv

≡L∗2,1,n(u, τ) + L∗2,0,n(u, τ),

and E∗n(s) =
√
n(π̂∗(s)− π).
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Step 1.1. Recall that ι1 = (1, 1 − π)′ and ι0 = (1,−π)′. In addition, π̂∗(s) − π = D∗n(s)
n∗(s)

.

Then,

L∗1,1,n(u, τ)

=
∑
s∈S

u′ι1√
n

n∑
i=1

[
A∗i 1{S∗i = s}η∗i,1(s, τ) + (A∗i − π)1{S∗i = s}m1(s, τ) + π1{S∗i = s}m1(s, τ)

]
−
∑
s∈S

u1D
∗
n(s)πm1(s, τ)√

n
+ h∗1,1(τ) +R∗sfe,1,1(u, τ), (1.11.21)

where η∗i,1(s, τ) = (τ − 1{Y ∗i (1) ≤ q1(τ)})−m1(s, τ),

h∗1,1(τ) =
∑
s∈S

(π − π̂∗(s))q(τ)

(
n∑
i=1

A∗i 1{S∗i = s}(τ − 1{Y ∗i ≤ q1(τ)})

)
,

and

R∗sfe,1,1(u, τ) = −
∑
s∈S

u1D
∗
n(s)√

nn∗(s)

{
n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ) + (A∗i − π)1{S∗i = s}m1(s, τ)

}
.

(1.11.22)

Note that

sup
s∈S,τ∈Υ

|
n∑
i=1

(A∗i − π)1{S∗i = s}m1(s, τ)| = sup
s∈S,τ∈Υ

|D∗n(s)m1(s, τ)| = Op(
√
n).

In addition, Lemma 1.10.5 shows

sup
s∈S,τ∈Υ

|
n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ)| = Op(
√
n(s)).

Therefore, we have

sup
τ∈Υ
|R∗sfe,1,1(u, τ)|

≤
∑
s∈S

sup
s∈S

∣∣∣∣ u1D
∗
n(s)√

nn∗(s)

∣∣∣∣ [ sup
s∈S,τ∈Υ

|
n∑
i=1

A∗i 1{S∗i = s}η∗i,1(s, τ)|+ sup
s∈S,τ∈Υ

|
n∑
i=1

(A∗i − π)1{S∗i = s}m1(s, τ)|
]

=Op(1/
√
n).
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Similarly, we have

L∗1,0,n(u, τ)

=
∑
s∈S

u′ι0√
n

n∑
i=1

[
(1− A∗i )1{S∗i = s}η∗i,1(s, τ)− (A∗i − π)1{S∗i = s}m0(s, τ) + (1− π)1{S∗i = s}m0(s, τ)

]
−
∑
s∈S

u1D
∗
n(s)(1− π)m0(s, τ)√

n
+ h∗1,0(τ) +R∗sfe,1,0(u, τ), (1.11.23)

where

h∗1,0(τ) =
∑
s∈S

(π − π̂∗(s))q(τ)

(
n∑
i=1

(1− A∗i )1{S∗i = s}(τ − 1{Y ∗i ≤ q0(τ)})

)
,

and

R∗sfe,1,0(u, τ) = −
∑
s∈S

u1D
∗
n(s)√

nn∗(s)

{
n∑
i=1

(1− A∗i )1{S∗i = s}η∗i,0(s, τ)− (A∗i − π)1{S∗i = s}m0(s, τ)

}
(1.11.24)

such that

sup
τ∈Υ
|R∗sfe,1,0(u, τ)| = Op(1/

√
n).

Therefore,

L∗1,n(u, τ) =
1√
n

∑
s∈S

n∑
i=1

[
u′ι1A

∗
i 1{S∗i = s}η∗i,1(s, τ) + u′ι0(1− A∗i )1{S∗i = s}η∗i,0(s, τ)

]
+
∑
s∈S

u′ι2
D∗n(s)√

n
(m1(s, τ)−m0(s, τ))

+
1√
n

n∑
i=1

(u′ι1πm1(S∗i , τ) + u′ι0(1− π)m0(S∗i , τ))

+R∗sfe,1,1(u, τ) +R∗sfe,1,0(u, τ) + h1,1(τ) + h1,0(τ).
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Furthermore, by Lemma 1.11.6, we have

L∗2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
∗
n(s)u′ι1√
n

q(τ) + h∗2,1(τ) +R∗sfe,2,1(u, τ)

(1.11.25)

and

L∗2,0,n(u, τ) =
(1− π)f0(q0(τ))

2
(u′ι0)2 −

∑
s∈S

f0(q0(τ)|s)(1− π)D∗n(s)u′ι0√
n

q(τ) + h∗2,0(τ) +R∗sfe,2,0(u, τ),

(1.11.26)

where

h∗2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(E∗n(s))2q2(τ),

h∗2,0(τ) =
∑
s∈S

(1− π)f0(q0(τ)|s)
2

p(s)(E∗n(s))2q2(τ),

sup
τ∈Υ
|R∗sfe,2,1(u, τ)| = op(1),

and

sup
τ∈Υ
|R∗sfe,2,0(u, τ)| = op(1).

Therefore,

L∗2,n(u, τ) =
1

2
u′Qsfe(τ)u−

∑
s∈S

q(τ) [f1(q1(τ)|s)πu′ι1 + f0(q0(τ)|s)(1− π)u′ι0]
D∗n(s)√

n

+R∗sfe,2,1(u, τ) +R∗sfe,2,0(u, τ) + h∗2,1(τ) + h∗2,0(τ).

Combining (1.11.21), (1.11.23), (1.11.25), and (1.11.26), we have

L∗sfe,n(u, τ) = −u′W ∗
sfe,n(τ) +

1

2
u′Qsfeu+ R̃∗sfe,n(u, τ) + h∗sfe,n(τ),
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where

W ∗
sfe,n(τ)

=
1√
n

∑
s∈S

n∑
i=1

[
ι1A

∗
i 1{S∗i = s}η∗i,1(s, τ) + ι0(1− A∗i )1{S∗i = s}η∗i,0(s, τ)

]
+
∑
s∈S

{
ι2(m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)πι1 + f0(q0(τ)|s)(1− π)ι0

]}
D∗n(s)√

n

+
1√
n

n∑
i=1

(ι1πm1(S∗i , τ) + ι0(1− π)m0(S∗i , τ)),

h∗sfe,n(τ) = h∗1,1(τ) + h∗1,0(τ) + h∗2,1(τ) + h∗2,0(τ),

and

sup
τ∈Υ
|R̃∗sfe,n(u, τ)| = op(1).

By Lemma 1.11.7, supτ∈Υ |W ∗
sfe,n(τ)| = Op(1). Then, by Kato (2009, Theorem 2), we have

√
n(β̂∗sfe(τ)− β̃(τ)) = [Qsfe(τ)]−1W ∗

sfe,n(τ) +R∗sfe,n(τ),

where

sup
τ∈Υ
||R∗sfe,n(τ)|| = op(1).

This concludes Step 1.

Step 2. We now focus on the second element of β̂∗sfe(τ). From Step 1, we know that

√
n(β̂∗sfe,1(τ)− q(τ))

=
1√
n

∑
s∈S

n∑
i=1

[
A∗i 1{S∗i = s}η∗i,1(s, τ)

πf1(q1(τ))
−

(1− A∗i )1{S∗i = s}η∗i,0(s, τ)

(1− π)f0(q0(τ))

]
+
∑
s∈S

{(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
(m1(s, τ)−m0(s, τ)) + q(τ)

[
f1(q1(τ)|s)
f1(q1(τ))

− f0(q0(τ)|s)
f0(q0(τ))

]}
D∗n(s)√

n

+
1√
n

n∑
i=1

(
m1(S∗i , τ)

f1(q1(τ))
− m0(S∗i , τ)

f0(q0(τ))

)
+R∗sfe,n,1(τ)

≡W ∗
sfe,n,1(τ) +W ∗

sfe,n,2(τ) +W ∗
sfe,n,3(τ) +R∗sfe,n,1(τ),
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where

sup
τ∈Υ
|R∗sfe,n,1(τ)| = op(1).

By (1.10.8), we have

√
n(q̂(τ)− q(τ))

=
1√
n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]

+
1√
n

n∑
i=1

(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)
+Ripw,n(τ)

≡Wn,1(τ) +Wn,2(τ) +Ripw,n(τ),

where

sup
τ∈Υ
|Ripw,n(τ)| = op(1).

Taking the difference of the above two equations, we have

√
n(β̂∗sfe,1(τ)− q̂(τ)) = (W ∗

sfe,n,1(τ)−Wn,1(τ)) +W ∗
sfe,n,2(τ) + (W ∗

sfe,n,3(τ)−Wn,2(τ)) +R∗(τ),

(1.11.27)

where

sup
τ∈Υ
|R∗(τ)| = op(1).

Lemma 1.11.7 shows that, conditionally on data,

(W ∗
sfe,n,1(τ)−Wn,1(τ)),W ∗

sfe,n,2(τ), (W ∗
sfe,n,3(τ)−Wn,2(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent Gaussian processes and
∑3

j=1 Bj(τ)
d
=

Bsfe(τ). This concludes the proof.
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1.11.5 Technical Lemmas

Lemma 1.11.1. Let Wsfe,n,j(τ), j = 1, 2, 3 be defined as in (1.11.14). If Assumptions in

Theorem 1.11.1 hold, then uniformly over τ ∈ Υ,

(Wsfe,n,1(τ),Wsfe,n,2(τ),Wsfe,n,3(τ)) (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)),

where (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ)) are three independent two-dimensional Gaussian process

with covariance kernels Σsfe,1(τ1, τ2), Σsfe,2(τ1, τ2), and Σsfe,3(τ1, τ2), respectively. The ex-

pressions for the three kernels are derived in the proof below.

Proof. The proofs of weak convergence and the independence among (Bsfe,1(τ),Bsfe,2(τ),Bsfe,3(τ))

are similar to that in Lemma 1.10.2, and thus, are omitted. In the following, we focus on

deriving the covariance kernels.

First, similar to the argument in the proof of Lemma 1.10.2,

Wsfe,n,1(τ)
d
= ι1

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

1√
n
η̃i,1(s, τ) + ι0

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

1√
n
η̃i,0(s, τ).

Therefore,

Σ1(τ1, τ2) =π[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]ι1ι
′
1

+ (1− π)[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]ι0ι
′
0.

For Wsfe,n,2(τ), we have

Σ2(τ1, τ2) =Eγ(S)

[
ι2(m1(S, τ1)−m0(S, τ1)) + q(τ1)

(
f1(q1(τ1)|S)πι1 + f0(q0(τ1)|S)(1− π)ι0

)]
×
[
ι2(m1(S, τ2)−m0(S, τ2)) + q(τ2)

(
f1(q1(τ2)|S)πι1 + f0(q0(τ2)|S)(1− π)ι0

)]′
.

Next, we have

Σ3(τ1, τ2) = E(ι1πm1(S, τ1) + ι0(1− π)m0(S, τ1))(ι1πm1(S, τ2) + ι0(1− π)m0(S, τ2))′.

In addition,

[Qsfe(τ)]−1 =

(
1−π

f0(q0(τ))
+ π

f1(q1(τ))
1

f1(q1(τ))
− 1

f0(q0(τ))
1

f1(q1(τ))
− 1

f0(q0(τ))
1

(1−π)f0(q0(τ))
+ 1

πf1(q1(τ))

)
.
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Therefore,

Σ(τ1, τ2)

=

{
1

πf1(q1(τ1))f1(q1(τ2))
[min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)]

(
π2 π

π 1

)

+
1

(1− π)f0(q0(τ1))f0(q0(τ2))
[min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)]

(
(1− π)2 π − 1

π − 1 1

)}

+

{
Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
π

f0(q0(τ1))
+ 1−π

f1(q1(τ1))
1−π

πf1(q1(τ1))
− π

(1−π)f0(q0(τ1))

)
+ q(τ1)

f1(q1(τ1)|S)

f1(q1(τ1))

(
π

1

)

+ q(τ1)
f0(q0(τ1)|S)

f0(q0(τ1))

(
1− π
−1

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
π

f0(q0(τ2))
+ 1−π

f1(q1(τ2))
1−π

πf1(q1(τ2))
− π

(1−π)f0(q0(τ2))

)

+ q(τ2)
f1(q1(τ2)|S)

f1(q1(τ2))

(
π

1

)
+ q(τ2)

f0(q0(τ2)|S)

f0(q0(τ2))

(
1− π
−1

)]}

+

{
E
[
m1(S, τ1)

f1(q1(τ1))

(
π

1

)
+
m0(S, τ1)

f0(q0(τ1))

(
1− π
−1

)][
m1(S, τ2)

f1(q1(τ2))

(
π

1

)
+
m0(S, τ2)

f0(q0(τ2))

(
1− π
−1

)]′}
.

Lemma 1.11.2. Recall the definition of Rw
sfe,1,1(u, τ) in (1.11.16). If Assumptions 1 and 2

hold, then

sup
τ∈Υ
|Rw

sfe,1,1(u, τ)| = op(1).

Proof. We divide the proof into two steps. In the first step, we show that sups∈S |Dw
n (s)| =

Op(
√
n). In the second step, we show that

sup
τ∈Υ,s∈S

|
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)| = Op(
√
n). (1.11.28)

Then,

sup
τ∈Υ
|Rw

sfe,1,1(u, τ)|

≤
∑
s∈S

|u1|
nw(s)

sup
s∈S

∣∣∣∣Dw
n (s)√
n

∣∣∣∣ [ sup
τ∈Υ,s∈S

∣∣∣∣ n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣+ sup
s∈S
|Dw

n (s)|
]

=Op(1/
√
n),
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as nw(s)/n
p−→ p(s) > 0.

Step 1. Because

sup
s∈S
|Dn(s)| = Op(

√
n),

we only need to bound the difference Dw
n (s)−Dn(s). Note that

n(s)−1/2Dw
n (s)− n(s)−1/2Dn(s) = n−1/2

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}. (1.11.29)

We aim to prove that, if n(s) → ∞ and Dn(s)/n(s) = op(1), then conditionally on data,

for s ∈ S,

n(s)−1/2

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s} N(0, π(1− π)) (1.11.30)

and they are independent across s ∈ S. The independence is straightforward because

1

n(s)

n∑
i=1

(ξi − 1)2(Ai − π)21{Si = s}1{Si = s′} = 0 for s 6= s′.

For the limiting distribution, let Dn = {Yi, Ai, Si}ni=1 denote data. According to the

Lindeberg-Feller central limit theorem, (1.11.30) holds because (1)

n(s)−1

n∑
i=1

E[(ξi − 1)2(Ai − π)21{Si = s}|Dn] =n(s)−1

n∑
i=1

(Ai − 2Aiπ + π2)1{Si = s}

=n(s)−1

n∑
i=1

(Ai − π − 2(Ai − π)π + π − π2)1{Si = s}

=
1− 2π

n(s)
Dn(s) + π(1− π)

p−→π(1− π),

and (2) for every ε > 0,

n(s)−1

n∑
i=1

(Ai − π)21{Si = s}E
[
(ξi − 1)21{|ξi − 1|(Ai − π)21{Si = s} > ε

√
n(s)}|Dn

]
≤4E(ξi − 1)21{2|ξi − 1| ≥ ε

√
n(s)} → 0,
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where we use the fact that |Ai − π|1{Si = s} ≤ 2 and n(s) → ∞. This concludes the proof

of Step 1.

Step 2. By the same rearrangement argument and the fact that {ξi}ni=1 ⊥⊥ Dn, we have

sup
τ∈Υ,s∈S

∣∣∣∣ 1n
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣ d
= sup

τ∈Υ,s∈S

∣∣∣∣ 1n
N(s)+n1(s)∑
i=N(s)+1

ξiη̃i,1(s, τ)

∣∣∣∣.
Let Γn,1(s, t, τ) =

∑bntc
i=1

ξiη̃i,1(s,τ)√
n

and F = {ξiη̃i,1(s, τ) : τ ∈ Υ, s ∈ S} with envelope Fi = Cξi

and ||Fi||P,2 <∞. By Lemma 1.10.1 and van der Vaart and Wellner (1996, Theorem 2.14.1),

for any ε > 0, we can choose M sufficiently large such that

P( sup
0<t≤1,τ∈Υ,s∈S

|Γn,1(s, t, τ)| ≥M) ≤
270E supτ∈Υ,s∈S |Γn,1(s, 1, τ)|

M

=
270E

√
n||Pn − P||F
M

.
J(1,F)||Fi||P,2

M
< ε.

Therefore,

sup
0<t≤1,τ∈Υ,s∈S

|Γn,1(s, t, τ)| = Op(1)

and

sup
τ∈Υ,s∈S

∣∣∣∣ 1n
n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣ d
= sup

τ∈Υ,s∈S

1√
n

∣∣∣∣Γn,1(s, N(s) + n1(s)

n
, τ

)
− Γn,1

(
s,
N(s)

n
, τ

)∣∣∣∣
=Op(1/

√
n). (1.11.31)

This concludes the proof of Step 2.

Lemma 1.11.3. If Assumptions 1 and 2 hold, then 1.11.18 and 1.11.19 hold.

Proof. We focus on (1.11.18). Note that

Lw2,1,n(u, τ)

=
∑
s∈S

n∑
i=1

ξiAi1{Si = s}
∫ u′ι1√

n
−E

w
n (s)√
n

(
q(τ)+

u1√
n

)
0

(1{Yi(1) ≤ q1(τ) + v} − 1{Yi(1) ≤ q1(τ)}) dv

=
∑
s∈S

n∑
i=1

ξiAi1{Si = s}[φi(u, τ, s, Ew
n (s))− Eφi(u, τ, s, Ew

n (s)|Si = s)]
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+
∑
s∈S

n∑
i=1

ξiAi1{Si = s}Eφi(u, τ, s, Ew
n (s)|Si = s),

(1.11.32)

where by Lemma 1.11.2, Ew
n (s) =

√
n(π̂w(s)− π) = n

nw(s)
Dwn (s)√

n
= Op(1),

φi(u, τ, s, e) =

∫ u′ι1√
n
− e√

n

(
q(τ)+

u1√
n

)
0

(1{Yi(1) ≤ q1(τ) + v} − 1{Yi(1) ≤ q1(τ)}) dv,

and Eφi(u, τ, s, Ew
n (s)|Si = s) is interpreted as E(φi(u, τ, s, e)|Si = s) with e being evaluated

at Ew
n (s).

For the first term on the RHS of (1.11.32), by the rearrangement argument in Lemma

1.10.2, we have

∑
s∈S

n∑
i=1

ξiAi1{Si = s}[φi(u, τ, s, Ew
n (s))− Eφi(u, τ, s, Ew

n (s)|Si = s)]

d
=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξi[φ
s
i (u, τ, s, E

w
n (s))− Eφsi (u, τ, s, Ew

n (s))],

where

φsi (u, τ, s, e) =

∫ u′ι1√
n
− e√

n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv.

Similar to (1.11.9), we can show that, as n→∞,

sup
τ∈Υ,s∈S

∣∣∣∣∣∣
N(s)+n1(s)∑
i=N(s)+1

ξi [φ
s
i (u, τ, s, E

w
n (s))− Eφsi (u, τ, s, Ew

n (s))]

∣∣∣∣∣∣ = op(1). (1.11.33)

For the second term in (1.11.32), we have

∑
s∈S

n∑
i=1

ξiAi1{Si = s}Eφi(u, τ, s, Ew
n (s)|Si = s)

=
∑
s∈S

∑n
i=1 ξiπ1{Si = s}

n
nEφsi (u, τ, s, Ew

n (s)) +
∑
s∈S

Dw
n (s)

n
nEφsi (u, τ, s, Ew

n (s))

=
∑
s∈S

πp(s)

[
f1(q1(τ)|s)

2
(u′ι1 − Ew

n (s)q(τ))2 + op(1)

]
+
∑
s∈S

Dw
n (s)

n

[
f1(q1(τ)|s)

2
(u′ι1 − Ew

n (s)q(τ))2 + op(1)

]
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=
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
w
n (s)u′ι1√
n

q(τ) + hw2,1(τ) + op(1), (1.11.34)

where the op(1) term holds uniformly over (τ, s) ∈ Υ × S. The second equality holds by

the same calculation in (1.11.10) and the fact that
∑n

i=1 ξi1{Si = s}/n p−→ p(s). The last

inequality holds because Dwn (s)
n

= op(1), Ew
n (s) = n

nw(s)
Dwn (s)√

n
= Op(1), n

nw(s)

p−→ 1/p(s), and

hw2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(Ew
n (s))2q2(τ).

Combining (1.11.32)–(1.11.34), we have

Lw2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
w
n (s)u′ι1√
n

q(τ) + hw2,1(τ) +Rw
sfe,2,1(u, τ),

where

hw2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(Ew
n (s))2q2(τ)

and

sup
τ∈Υ
|Rw

sfe,2,1(u, τ)| = op(1).

This concludes the proof.

Lemma 1.11.4. If Assumptions 1 and 2 hold, then supτ∈Υ ||Ww
sfe,n(τ)|| = Op(1).

Proof. It suffices to show that

sup
τ∈Υ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

ξiAi1{Si = s}ηi,1(s, τ)

∣∣∣∣∣ = Op(1) (1.11.35)

sup
τ∈Υ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

ξi(1− Ai)1{Si = s}ηi,0(s, τ)

∣∣∣∣∣ = Op(1), (1.11.36)
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sup
s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

ξi(Ai − π)1{Si = s}

∣∣∣∣∣ = Op(1), (1.11.37)

and

sup
τ∈Υ

∥∥∥∥∥ 1√
n

n∑
i=1

ξi(ι1πm1(Si, τ) + ι0(1− π)m0(Si, τ))

∥∥∥∥∥ = Op(1). (1.11.38)

Note that (1.11.35) holds by the argument in step 2 in the proof of Lemma 1.11.2, (1.11.36)

holds similarly, (1.11.37) holds by (1.11.29) and (1.11.30), and (1.11.38) holds by the usual

maximal inequality, e.g., van der Vaart and Wellner (1996, Theorem 2.14.1). This concludes

the proof.

Lemma 1.11.5. If Assumptions 1 and 2 hold, then conditionally on data,

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) B̃sfe(τ),

where B̃sfe(τ) is a Gaussian process with covariance kernel Σ̃sfe(·, ·) defined in (1.11.20).

Proof. In order to show the weak convergence, we only need to show (1) conditional stochastic

equicontinuity and (2) conditional convergence in finite dimension. We divide the proof into

two steps accordingly.

Step 1. In order to show the conditional stochastic equicontinuity, it suffices to show

that, for any ε > 0, as n→∞ followed by δ → 0,

Pξ

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε

)
p−→ 0,

where Pξ(·) means that the probability operator is with respect to ξ1, · · · , ξn and conditional

on data. Note

EPξ

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ1)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε

)

=P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε

)

≤P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,1(s, τ2)− Ji,1(s, τ1))

∣∣∣∣∣ ≥ ε/3

)
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+ P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,2(s, τ2)− Ji,2(s, τ1))

∣∣∣∣∣ ≥ ε/3

)

+ P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,3(s, τ2)− Ji,3(s, τ1))

∣∣∣∣∣ ≥ ε/3

)
,

where

Ji,1(s, τ) =
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))
,

Ji,2(s, τ) = F1(s, τ)(Ai − π)1{Si = s},

F1(s, τ) =

(
1− π

πf1(q1(τ))
− π

(1− π)f0(q0(τ))

)
(m1(s, τ)−m0(s, τ))+q(τ)

[
f1(q1(τ)|s)
f1(q1(τ))

−f0(q0(τ)|s)
f0(q0(τ))

]
,

Ji,3(s, τ) =

(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}.

Further note that

n∑
i=1

(ξi − 1)Ji,1(s, τ)
d
=

N(s)+n1(s)∑
i=N(s)+1

(ξi − 1)η̃i,1(s, τ)

πf1(q1(τ))
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(ξi − 1)η̃i,0(s, τ)

(1− π)f0(q0(τ))

By the same argument in Claim (1) in the proof of Lemma 1.10.2, we have

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,1(s, τ2)− Ji(s, τ1))

∣∣∣∣∣ ≥ ε/3

)

≤
3E supτ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣ 1√
n

∑n
i=1(ξi − 1)(Ji,1(s, τ2)− Ji,1(s, τ1))

∣∣∣
ε

≤
3
√
c2δ log( C

c1δ
) +

3C log( C
c1δ

)
√
n

ε
,

where C, c1 < c2 are some positive constants that are independent of (n, ε, δ). By letting

n→∞ followed by δ → 0, the RHS vanishes.
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For Ji,2, we note that F1(s, τ) is Lipschitz in τ . Therefore,

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,2(s, τ2)− Ji,2(s, τ1))

∣∣∣∣∣ ≥ ε/3

)

≤
∑
s∈S

P

(
Cδ

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}

∣∣∣∣∣ ≥ ε/3

)
→ 0

as n→∞ followed by δ → 0, in which we use the fact that, by (1.11.30),

sup
s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ai − π)1{Si = s}

∣∣∣∣∣ = Op(1).

Last, by the standard maximal inequality (e.g., van der Vaart and Wellner (1996, Theorem

2.14.1)) and the fact that (
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
is Lipschitz in τ , we have, as n→∞ followed by δ → 0,

P

(
sup

τ1,τ2∈Υ,τ1<τ2<τ1+δ,s∈S

∣∣∣∣∣ 1√
n

n∑
i=1

(ξi − 1)(Ji,3(s, τ2)− Ji,3(s, τ1))

∣∣∣∣∣ ≥ ε/3

)
→ 0

This concludes the proof of the conditional stochastic equicontinuity.

Step 2. We focus on the one-dimension case and aim to show that, conditionally on data,

for fixed τ ∈ Υ,

1√
n

∑
s∈S

n∑
i=1

(ξi − 1)Ji(s, τ) N (0, Σ̃sfe(τ, τ)).

The finite-dimensional convergence can be established similarly by the Cramér-Wold device.

In view of Lindeberg-Feller central limit theorem, we only need to show that (1)

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2
p−→ ζ2

Y (π, τ) + ξ̃′2A(π, τ) + ξ2
S(π, τ)
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and (2)

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2Eξ(ξ − 1)21{|
∑
s∈S

(ξi − 1)Ji(s, τ)| ≥ ε
√
n} → 0.

(2) is obvious as |Ji(s, τ)| is bounded and maxi |ξi − 1| . log(n) as ξi is sub-exponential.

Next, we focus on (1). We have

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2

=
1

n

n∑
i=1

∑
s∈S

{[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]

+ F1(s, τ)(Ai − π)1{Si = s}+

[(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)
1{Si = s}

]}2

≡σ2
1 + σ2

2 + σ2
3 + 2σ12 + 2σ13 + 2σ23,

where

σ2
1 =

1

n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]2

,

σ2
2 =

1

n

∑
s∈S

F 2
1 (s, τ)

n∑
i=1

(Ai − π)21{Si = s},

σ2
3 =

1

n

n∑
i=1

[(
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]2

,

σ12 =
1

n

n∑
i=1

∑
s∈S

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

]
F1(s, τ)(Ai − π)1{Si = s},

σ13 =
1

n

n∑
i=1

∑
s∈S

[
Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− (1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

][(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
,
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and

σ23 = σ12 =
1

n

n∑
i=1

∑
s∈S

F1(s, τ)(Ai − π)1{Si = s}
[(

m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
.

For σ2
1, we have

σ2
1 =

1

n

∑
s∈S

n∑
i=1

[
Ai1{Si = s}η2

i,1(s, τ)

π2f 2
1 (q1(τ))

−
(1− Ai)1{Si = s}η2

i,0(s, τ)

(1− π)2f 2
0 (q0(τ))

]
d
=

1

n

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

η̃2
i,1(s, τ)

π2f 2
1 (q1(τ))

+
1

n

∑
s∈S

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃2
i,0(s, τ)

(1− π)2f 2
0 (q0(τ))

p−→τ(1− τ)− Ems
1(S, τ)

πf 2
1 (q1(τ))

+
τ(1− τ)− Ems

0(S, τ)

(1− π)f 2
0 (q0(τ))

= ζ2
Y (π, τ),

where the second equality holds due to the rearrangement argument in Lemma 1.10.2 and

the convergence in probability holds due to uniform convergence of the partial sum process.

For σ2
2, by Assumption 1,

σ2
2 =

1

n

∑
s∈S

F 2
1 (s, τ)(Dn(s)− 2πDn(s) + π(1− π)1{Si = s}) p−→ π(1− π)EF 2

1 (Si, τ) = ξ̃′2A(π, τ).

For σ2
3, by the law of large number,

σ2
3

p−→ E
[(

m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

)]2

= ξ2
S(π, τ).

For σ12, we have

σ12 =
1

n

∑
s∈S

(1− π)F1(s, τ)
n∑
i=1

Ai1{Si = s}ηi,1(s, τ)

πf1(q1(τ))
− 1

n

∑
s∈S

πF1(s, τ)
n∑
i=1

(1− Ai)1{Si = s}ηi,0(s, τ)

(1− π)f0(q0(τ))

d
=

1

n

∑
s∈S

(1− π)F1(s, τ)

N(s)+n1(s)∑
i=N(s)+1

η̃i,1(s, τ)

πf1(q1(τ))
− 1

n

∑
s∈S

πF1(s, τ)

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃i,0(s, τ)

(1− π)f0(q0(τ))

p−→ 0,

where the last convergence holds because by Lemma 1.10.2,

1

n

N(s)+n1(s)∑
i=N(s)+1

η̃i,1(s, τ)
p−→ 0 and

1

n

N(s)+n(s)∑
i=N(s)+n1(s)+1

η̃i,0(s, τ)
p−→ 0.
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By the same argument, we can show that

σ13
p−→ 0.

Last, for σ23, by Assumption 1,

σ23 =
∑
s∈S

F1(s, τ)

[(
m1(s, τ)

f1(q1(τ))
− m0(s, τ)

f0(q0(τ))

)]
Dn(s)

n

p−→ 0.

Therefore, we have

1

n

n∑
i=1

[
∑
s∈S

Ji(s, τ)]2
p−→ ζ2

Y (π, τ) + ξ̃′2A(π, τ) + ξ2
S(π, τ).

Lemma 1.11.6. Recall R∗sfe,2,1(u, τ) and R∗sfe,2,0(u, τ) defined in (1.11.25) and (1.11.26),

respectively. If Assumptions in Theorem 1.5.1 hold, then (1.11.25) and (1.11.26) hold and

sup
τ∈Υ
|R∗sfe,2,1(u, τ)| = op(1) and sup

τ∈Υ
|R∗sfe,2,0(u, τ)| = op(1).

Proof. We focus on (1.11.25). Following the definition of Mni in the proof of Lemma 1.10.5

and the argument in the Step 1.2 of the proof of Theorem 1.11.1, we have

L∗2,1,n(u, τ)

=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni

∫ u′ι1√
n
−E
∗
n(s)√
n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, E∗n(s))] +

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

MniEφi(u, τ, s, E∗n(s)),

(1.11.39)

where E∗n(s) =
√
n(π̂∗(s)− π) = n

n∗(s)
D∗n(s)√

n
= Op(1),

φi(u, τ, s, e) =

∫ u′ι1√
n
− e√

n

(
q(τ)+

u1√
n

)
0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv,

and Eφi(u, τ, s, E∗n(s)) is interpreted as Eφi(u, τ, s, e) with e being evaluated at E∗n(s).
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For the first term on the RHS of (1.11.39), similar to (1.10.22), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, s, E∗n(s))]

=
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξsi [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, s, E∗n(s))] +

∑
s∈S

rn(u, τ, s, E∗n(s)), (1.11.40)

where {ξsi }ni=1 is a sequence of i.i.d. Poisson(1) random variables and is independent of

everything else, and

rn(u, τ, s, e) = sign(N(n1(s))− n1(s))
∞∑
j=1

#Ijn(s)√
n

1

#Ijn(s)

∑
i∈Ijn(s)

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)] .

We aim to show

sup
|e|≤M,τ∈Υ,s∈S

|rn(u, τ, s, e)| = op(1), (1.11.41)

Recall that the proof of Lemma 1.10.5 relies on (1.10.21) and the fact that

E sup
n≥k≥n0

sup
τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

η̃j,1(s, τ)

∣∣∣∣∣→ 0.

Using the same argument and replacing η̃j,1(s, τ) by
√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)], in order

to show (1.11.41), we only need to verify that, as n→∞ followed by n0 →∞,

E sup
n≥k≥n0

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣→ 0

Because sup|e|≤M,τ∈Υ,s∈S

∣∣∣ 1
k

∑k
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣ is bounded as shown be-

low, it suffices to show that, for any ε > 0, as n→∞ followed by n0 →∞,

P

(
sup

n≥k≥n0

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣ ≥ ε

)
→ 0. (1.11.42)

Define the class of functions Fn as

Fn = {
√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)] : |e| ≤M, τ ∈ Υ, s ∈ S}.
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Then, Fn is nested by a VC-class with fixed VC-index. In addition, for fixed u, Fn has a

bounded (and independent of n) envelope function

F = |u′ι1|+M

(
max
τ∈Υ
|q(τ)|+ |u1|

)
.

Last, define Il = {2l, 2l + 1, · · · , 2l+1 − 1}. Then,

P

(
sup

n≥k≥n0

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣ ≥ ε

)

≤
blog2(n)c+1∑
l=blog2(n0)c

P

(
sup
k∈Il

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣1k
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣ ≥ ε

)

≤
blog2(n)c+1∑
l=blog2(n0)c

P

(
sup
k≤2l+1

sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣
k∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣ ≥ ε2l

)

≤
blog2(n)c+1∑
l=blog2(n0)c

9P

 sup
|e|≤M,τ∈Υ,s∈S

∣∣∣∣∣∣
2l+1∑
j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣∣∣∣ ≥ ε2l/30


≤
blog2(n)c+1∑
l=blog2(n0)c

270E sup|e|≤M,τ∈Υ,s∈S

∣∣∣∑2l+1

j=1

√
n [φi(u, τ, s, e)− Eφi(u, τ, s, e)]

∣∣∣
ε2l

≤
blog2(n)c+1∑
l=blog2(n0)c

C1

ε2l/2

≤ 2C1

ε
√
n0

→ 0,

where the first inequality holds by the union bound, the second inequality holds because on

Il, 2l+1 ≥ k ≥ 2l, the third inequality follows the same argument in the proof of Theorem

1.3.1, the fourth inequality is due to the Markov inequality, the fifth inequality follows the

standard maximal inequality such as van der Vaart and Wellner (1996, Theorem 2.14.1) and

the constant C1 is independent of (l, ε, n), and the last inequality holds by letting n → ∞.

Because ε is arbitrary, we have established (1.11.42), and thus, (1.11.41), which further implies

that

sup
τ∈Υ,s∈S

|rn(u, τ, s, E∗n(s))| = op(1),
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For the leading term of (1.11.40), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

ξsi [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, s, E∗n(s))]

=
∑
s∈S

[Γs∗n (N(s), τ, E∗n(s))− Γs∗n (N(s) + n1(s), τ, E∗n(s))] ,

where

Γs∗n (k, τ, e) =
k∑
i=1

ξsi

∫ u′ι1−e(q(τ)+
u1√
n

)
√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

− kE

∫ u′ι1−e(q(τ)+
u1√
n

)
√
n

0

(1{Y s
i (1) ≤ q1(τ) + v} − 1{Y s

i (1) ≤ q1(τ)}) dv

 .
By the same argument in (1.11.8), we can show that

sup
0<t≤1,τ∈Υ,|e|≤M

|Γs∗n (k, τ, e)| = op(1),

where we need to use the fact that the Poisson(1) random variable has an exponential tail

and thus

E sup
i∈{1,··· ,n},s∈S

ξsi = O(log(n)).

Therefore,

sup
τ∈Υ

∣∣∣∣∣∣
∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

Mni [φi(u, τ, s, E
∗
n(s))− Eφi(u, τ, E∗n(s))]

∣∣∣∣∣∣ = op(1). (1.11.43)

For the second term on the RHS of (1.11.39), we have

∑
s∈S

N(s)+n1(s)∑
i=N(s)+1

MniEφi(u, τ, s, e) =
∑
s∈S

n∗1(s)Eφi(u, τ, s, e)

=
∑
s∈S

πp(s)
f1(q1(τ)|s)

2
(u′ι1 − eq(τ))2 + o(1), (1.11.44)

where the o(1) term holds uniformly over (τ, e) ∈ Υ × [−M,M ], the first equality holds
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because
∑N(s)+n1(s)

i=N(s)+1 Mni = n∗1(s) and the second equality holds by the same calculation in

(1.11.10) and the facts that n∗(s)/n
p−→ p(s) and

n∗1(s)

n
=
D∗n(s) + πn∗(s)

n

p−→ πp(s).

Combining (1.11.25), (1.11.39), (1.11.43), (1.11.44), and the facts that E∗n(s) = n
n∗(s)

D∗n(s)√
n

and n
n∗(s)

p−→ 1/p(s), we have

L∗2,1,n(u, τ) =
πf1(q1(τ))

2
(u′ι1)2 −

∑
s∈S

f1(q1(τ)|s)πD
∗
n(s)u′ι1√
n

q(τ) + h∗2,1(τ) +R∗sfe,2,1(u, τ),

where

h∗2,1(τ) =
∑
s∈S

πf1(q1(τ)|s)
2

p(s)(E∗n(s))2q2(τ)

and

sup
τ∈Υ
|R∗sfe,2,1(u, τ)| = op(1).

This concludes the proof.

Lemma 1.11.7. Recall the definition of (W ∗
sfe,n,1(τ)−Wn,1(τ),W ∗

sfe,n,2(τ),W ∗
sfe,n,3(τ)−Wn,2(τ))

in (1.11.27). If Assumptions in Theorem 1.5.1 hold, then conditionally on data,

(W ∗
sfe,n,1(τ)−Wn,1(τ),W ∗

sfe,n,2(τ),W ∗
sfe,n,3(τ)−Wn,2(τ)) (B1(τ),B2(τ),B3(τ)),

where (B1(τ),B2(τ),B3(τ)) are three independent Gaussian processes with covariance kernels

Σ1(τ1, τ2) =
min(τ1, τ2)− τ1τ2 − Em1(S, τ1)m1(S, τ2)

πf1(q1(τ1))f1(q1(τ2))
+

min(τ1, τ2)− τ1τ2 − Em0(S, τ1)m0(S, τ2)

(1− π)f0(q0(τ1))f0(q0(τ2))
,

Σ2(τ1, τ2)

=Eγ(S)

[
(m1(S, τ1)−m0(S, τ1))

(
1− π

πf1(q1(τ1))
− π

(1− π)f0(q0(τ1))

)
+ q(τ1)

(
f1(q(τ1)|S)

f1(q1(τ1))
− f0(q(τ1)|S)

f0(q0(τ1))

)]
×
[
(m1(S, τ2)−m0(S, τ2))

(
1− π

πf1(q1(τ2))
− π

(1− π)f0(q0(τ2))

)
+ q(τ2)

(
f1(q(τ2)|S)

f1(q2(τ2))
− f0(q(τ2)|S)

f0(q0(τ2))

)]
,
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and

Σ3(τ1, τ2) = E
[
m1(S, τ1)

f1(q1(τ1))
− m0(S, τ1)

f0(q0(τ1))

][
m1(S, τ2)

f1(q1(τ2))
− m0(S, τ2)

f0(q0(τ2))

]
,

respectively.

Proof. Let An = {(A∗i , S∗i , Ai, Si) : i = 1, · · · , n}. Following the definition of Mni and argu-

ments in the proof of Lemma 1.10.5, we have

{W ∗
sfe,n,1(τ)−Wn,1(τ)|An}

d
=

∑
s∈S

1√
n

N(s)+n1(s)∑
i=N(s)+1

(Mni − 1)

(
η̃i,1(s, τ)

πf1(q1(τ))

)
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(Mni − 1)

(
η̃i,0(s, τ)

(1− π)f0(q0(τ))

) ∣∣∣∣An


=

∑
s∈S

1√
n

N(s)+n1(s)∑
i=N(s)+1

(ξsi − 1)
η̃i,1(s, τ)

πf1(q1(τ))
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(ξsi − 1)
η̃i,0(s, τ)

(1− π)f0(q0(τ))

+R1(τ)

∣∣∣∣An
 ,

where supτ∈Υ |R1(τ)| = op(1) and {ξsi }ni=1, s ∈ S are sequences of i.i.d. Poisson(1) random

variables that are independent of An and across s ∈ S. In addition, by the same argument

in the proof of Lemma 1.10.2, we have

∑
s∈S

1√
n

N(s)+n1(s)∑
i=N(s)+1

(ξsi − 1)
η̃i,1(s, τ)

πf1(q1(τ))
−

N(s)+n(s)∑
i=N(s)+n1(s)+1

(ξsi − 1)
η̃i,0(s, τ)

(1− π)f0(q0(τ))


=
∑
s∈S

1√
n

bn(F (s)+πp(s))c∑
i=bnF (s)c+1

(ξsi − 1)
η̃i,1(s, τ)

πf1(q1(τ))
−

bn(F (s)+p(s))c∑
i=bn(F (s)+πp(s))c+1

(ξsi − 1)
η̃i,0(s, τ)

(1− π)f0(q0(τ))

+R2(τ)

≡W ∗
1 (τ) +R2(τ),

where supτ∈Υ |R2(τ)| = op(1). Because both W ∗
sfe,n,2(τ) and W ∗

sfe,n,3(τ)−Wn,2(τ) are in the

σ-field generated by An, we have

(W ∗
sfe,n,1(τ)−Wn,1(τ),W ∗

sfe,n,2(τ),W ∗
sfe,n,3(τ)−Wn,2(τ))

d
=(W ∗

1 (τ) +R1(τ) +R2(τ),W ∗
sfe,n,2(τ),W ∗

sfe,n,3(τ)−Wn,2(τ)).

In addition, note that {ξsi }ni=1 and {η̃i,1(s, τ), η̃i,1(s, τ)}ni=1 are independent of An, therefore,

W ∗
1 (τ) ⊥⊥ (W ∗

sfe,n,2(τ),W ∗
sfe,n,3(τ) − Wn,2(τ)). Applying van der Vaart and Wellner (1996,
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Theorem 2.9.6) to each segment

bnF (s)c+ 1, · · · , bn(F (s) + πp(s))c or bn(F (s) + πp(s))c+ 1, · · · , bn(F (s) + p(s))c

for s ∈ S and noticing that {η̃i,1(s, τ)}ni=1 and {η̃i,0(s, τ)}ni=1 are two i.i.d. sequences for

each s ∈ S, independent of each other, and independent across s, we have, conditionally on

{η̃i,1(s, τ), η̃i,0(s, τ)}ni=1, s ∈ S,

W ∗
1 (τ) B1(τ)

with the covariance kernel Σ1(τ1, τ2).

For W ∗
sfe,n,2(τ), we note that it depends on data only through {S∗i }ni=1. By Assumption 4,

W ∗
sfe,n,2(τ)|{S∗i }ni=1  B2(τ)

with the covariance kernel Σ2(τ1, τ2).

Last, for W ∗
sfe,n,3(τ) − Wn,2(τ), note that {S∗i } is sampled by the standard bootstrap

procedure. Therefore, directly applying van der Vaart and Wellner (1996, Theorem 3.6.2),

we have

W ∗
sfe,n,3(τ)−Wn,2(τ) =

1√
n

n∑
i=1

(ξ′i − 1)

[
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

]
+R3(τ)

where supτ∈Υ |R3(τ)| = op(1), {ξ′i}ni=1 is a sequence of i.i.d. Poisson(1) random variables that

is independent of data and {ξsi }ni=1, s ∈ S. By van der Vaart and Wellner (1996, Theorem

3.6.2), conditionally on data {Si}ni=1,

1√
n

n∑
i=1

(ξ′i − 1)

[
m1(Si, τ)

f1(q1(τ))
− m0(Si, τ)

f0(q0(τ))

]
 B3(τ),

where B3(τ) has the covariance kernel Σ3(τ1, τ2). Furthermore, B2(τ) and B3(τ) are indepen-

dent as Σ2(τ1, τ2) is not a function of {S∗i }ni=1. This concludes the proof.
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1.11.6 Additional Simulation Results

1.11.7 DGPs

We consider the following four DGPs with parameters γ = 4, σ = 2, and µ which will be

specified later. DGPs 1 and 3 correspond to DGPs 1 and 2 in Section 1.6 in the main paper.

1. Let Z be the standardized Beta(2, 2) distributed, Si =
∑4

j=1{Zi ≤ gj}, and (g1, · · · , g4) =

(−0.25
√

20, 0, 0.25
√

20, 0.5
√

20). The outcome equation is

Yi = Aiµ+ γZi + ηi,

where ηi = σAiεi,1 + (1− Ai)εi,2 and (εi,1, εi,2) are jointly standard normal.

2. Let S be the same as in DGP1. The outcome equation is

Yi = Aiµ+ γZiAi − γ(1− Ai)(log(Zi + 3)1{Zi ≤ 0.5}) + ηi.

where ηi = σAiεi,1 + (1− Ai)εi,2 and (εi,1, εi,2) are jointly standard normal.

3. Let Z be uniformly distributed on [−2, 2], Si =
∑4

j=1{Zi ≤ gj}, and (g1, · · · , g4) =

(−1, 0, 1, 2). The outcome equation is

Yi = Aiµ+ Aimi,1 + (1− Ai)mi,0 + ηi,

where mi,0 = γZ2
i 1{|Zi| ≥ 1}+ γ

4
(2−Z2

i )1{|Zi| < 1}, ηi = σ(1+Z2
i )Aiεi,1 +(1+Z2

i )(1−
Ai)εi,2, and (εi,1, εi,2) are mutually independent T (3)/3 distributed.

4. Let Zi be normally distributed with mean 0 and variance 4, Si =
∑4

j=1{Zi ≤ gj},
(g1, · · · , g4) = (2Φ−1(0.25), 2Φ−1(0.5), 2Φ−1(0.75),∞), and Φ(·) is the standard normal

CDF. The outcome equation is

Yi = Aiµ+ Aimi,1 + (1− Ai)mi,0 + ηi,

where mi,0 = −γZ2
i /4, mi,1 = γZ2

i /4,

ηi = σ(1 + 0.5 exp(−Z2
i /2))Aiεi,1 + (1 + 0.5 exp(−Z2

i /2))(1− Ai)εi,2,

and (εi,1, εi,2) are jointly standard normal.

When π = 1
2
, for each DGP, we consider four randomization schemes:
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1. SRS: Treatment assignment is generated as in Example 1.

2. WEI: Treatment assignment is generated as in Example 2 with φ(x) = (1− x)/2.

3. BCD: Treatment assignment is generated as in Example 3 with λ = 0.75.

4. SBR: Treatment assignment is generated as in Example 4.

When π 6= 0.5, we focus on SRS and SBR. We conduct the simulations with sample sizes

n = 200 and 400. The numbers of simulation replications and bootstrap samples are 1000.

Under the null, µ = 0 and the true parameters of interest are computed by simulations with

106 sample size and 104 replications. Under the alternative, we perturb the true values by

µ = 1 and µ = 0.75 for n = 200 and 400, respectively. We consider the following eight

t-statistics.

1. “s/naive”: the point estimator is computed by the simple QR and its standard error

σnaive is computed as

σ2
naive =

τ(1− τ)− 1
n

∑n
i=1 m̂

2
1(Si, τ)

πf̂ 2
1 (q̂1(τ))

+
τ(1− τ)− 1

n

∑n
i=1 m̂

2
0(Si, τ)

(1− π)f̂ 2
0 (q̂0(τ))

+
1

n

n∑
i=1

π(1− π)

(
m̂1(Si, τ)

πf̂1(q̂1(τ))
+

m̂0(Si, τ)

(1− π)f̂0(q̂0(τ))

)2

+
1

n

n∑
i=1

(
m̂1(Si, τ)

f̂1(q̂1(τ))
− m̂0(Si, τ)

f̂0(q̂0(τ))

)2

, (1.11.45)

where q̂j(τ) is the τ -the empirical quantile of Yi|Ai = j,

m̂i,1(s, τ) =

∑n
i=1Ai1{Si = s}(τ − 1{Yi ≤ q̂1(τ)})

n1(s)
,

m̂i,0(s, τ) =

∑n
i=1(1− Ai)1{Si = s}(τ − 1{Yi ≤ q̂0(τ)})

n(s)− n1(s)
,

and for j = 0, 1, f̂j(·) is computed by the kernel density estimation using the observations

Yi provided that Ai = j, bandwidth hj = 1.06σ̂jn
−1/5
j , and the Gaussian kernel function,

where σ̂j is the standard deviation of the observations Yi provided that Ai = j, and

nj =
∑n

i=1{Ai = j}, j = 0, 1.

2. “s/adj”: exactly the same as the “s/naive” method with one difference: replacing π(1−
π) in σ2

naive by γ(Si).
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3. “s/W”: the point estimator is computed by the simple QR and its standard error σB

is computed by the weighted bootstrap procedure. The bootstrap weights {ξi}ni=1 are

generated from the standard exponential distribution. Denote {β̂w1,b}Bb=1 as the collection

of B estimates obtained by the simple QR applied to the samples generated by the

weighted bootstrap procedure. Then,

σB =
Q̂(0.9)− Q̂(0.1)

Φ−1(0.9)− Φ−1(0.1)
,

where Φ(·) is the standard normal CDF and Q̂(τ) is the τ -th empirical quantile of

{β̂w1,b}Bb=1.

4. “sfe/W”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the QR with strata fixed effects.

5. “ipw/W”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the inverse propensity score weighted QR.

6. “s/CA”: the point estimator is computed by the simple QR and its standard error σCA

is computed by the covariate-adaptive bootstrap procedure. Denote {β̂∗1,b}Bb=1 as the

collection of B estimates obtained by the simple QR applied to the samples generated

by the covariate-adaptive bootstrap procedure. Then,

σCA =
Q̂(0.9)− Q̂(0.1)

Φ−1(0.9)− Φ−1(0.1)
,

where Q̂(τ) is the τ -th empirical quantile of {β̂∗1,b}Bb=1.

7. “sfe/CA”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the QR with strata fixed effects.

8. “ipw/CA”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the inverse propensity score weighted QR.
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1.11.8 QTE, H0, π = 0.5

Table IX. H0, n = 200, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.042 0.042 0.051 0.039 0.047 0.046 0.044 0.046

WEI 0.011 0.038 0.018 0.043 0.046 0.037 0.047 0.047
BCD 0.004 0.041 0.010 0.043 0.043 0.045 0.048 0.048
SBR 0.003 0.047 0.003 0.047 0.054 0.049 0.046 0.046

2 SRS 0.045 0.045 0.060 0.062 0.066 0.056 0.069 0.069
WEI 0.023 0.037 0.049 0.056 0.066 0.068 0.064 0.068
BCD 0.021 0.037 0.032 0.049 0.057 0.063 0.059 0.057
SBR 0.025 0.042 0.037 0.050 0.054 0.057 0.054 0.053

3 SRS 0.042 0.042 0.045 0.045 0.054 0.055 0.044 0.058
WEI 0.042 0.043 0.037 0.044 0.045 0.045 0.043 0.045
BCD 0.052 0.056 0.044 0.050 0.057 0.057 0.057 0.055
SBR 0.046 0.053 0.041 0.043 0.048 0.052 0.048 0.047

4 SRS 0.054 0.054 0.048 0.046 0.049 0.046 0.043 0.048
WEI 0.050 0.051 0.045 0.035 0.047 0.051 0.043 0.055
BCD 0.056 0.059 0.040 0.030 0.049 0.047 0.044 0.048
SBR 0.061 0.065 0.044 0.032 0.053 0.057 0.051 0.053

Table X. H0, n = 200, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.045 0.045 0.047 0.043 0.044 0.044 0.039 0.039

WEI 0.012 0.040 0.014 0.044 0.043 0.037 0.041 0.035
BCD 0.002 0.057 0.003 0.040 0.041 0.044 0.039 0.039
SBR 0.001 0.057 0.001 0.045 0.046 0.045 0.045 0.044

2 SRS 0.045 0.045 0.057 0.066 0.061 0.048 0.064 0.066
WEI 0.033 0.065 0.037 0.056 0.065 0.065 0.056 0.061
BCD 0.022 0.062 0.027 0.048 0.056 0.057 0.057 0.054
SBR 0.017 0.050 0.017 0.040 0.046 0.048 0.048 0.046

3 SRS 0.004 0.004 0.047 0.045 0.052 0.052 0.047 0.053
WEI 0.006 0.006 0.045 0.050 0.058 0.052 0.053 0.057
BCD 0.010 0.010 0.045 0.050 0.051 0.050 0.050 0.053
SBR 0.008 0.011 0.048 0.048 0.053 0.046 0.051 0.047

4 SRS 0.013 0.013 0.050 0.036 0.051 0.055 0.035 0.043
WEI 0.011 0.011 0.043 0.033 0.051 0.049 0.043 0.052
BCD 0.013 0.013 0.049 0.041 0.053 0.055 0.047 0.052
SBR 0.013 0.013 0.040 0.033 0.047 0.046 0.044 0.045
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Table XI. H0, n = 200, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.052 0.052 0.053 0.044 0.044 0.048 0.041 0.042

WEI 0.012 0.042 0.014 0.043 0.046 0.037 0.039 0.045
BCD 0.002 0.047 0.002 0.051 0.054 0.055 0.053 0.053
SBR 0.001 0.026 0.003 0.030 0.035 0.030 0.033 0.035

2 SRS 0.052 0.052 0.066 0.057 0.058 0.053 0.048 0.058
WEI 0.021 0.045 0.027 0.047 0.052 0.057 0.051 0.054
BCD 0.013 0.046 0.025 0.051 0.060 0.067 0.061 0.060
SBR 0.008 0.036 0.012 0.037 0.046 0.046 0.046 0.050

3 SRS 0.058 0.058 0.048 0.054 0.047 0.058 0.054 0.051
WEI 0.053 0.055 0.041 0.044 0.047 0.047 0.048 0.046
BCD 0.042 0.043 0.026 0.026 0.033 0.033 0.032 0.034
SBR 0.048 0.052 0.040 0.036 0.046 0.051 0.043 0.048

4 SRS 0.044 0.044 0.057 0.059 0.062 0.053 0.051 0.065
WEI 0.034 0.034 0.044 0.029 0.053 0.048 0.044 0.054
BCD 0.029 0.032 0.040 0.019 0.045 0.047 0.043 0.047
SBR 0.034 0.037 0.042 0.025 0.051 0.055 0.049 0.051

Table XII. H0, n = 400, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.047 0.047 0.053 0.041 0.039 0.049 0.040 0.040

WEI 0.009 0.043 0.017 0.041 0.042 0.045 0.044 0.043
BCD 0.002 0.042 0.003 0.037 0.040 0.035 0.036 0.037
SBR 0.002 0.043 0.004 0.034 0.034 0.036 0.032 0.030

2 SRS 0.046 0.046 0.056 0.059 0.059 0.055 0.057 0.059
WEI 0.035 0.046 0.046 0.056 0.062 0.065 0.061 0.060
BCD 0.030 0.044 0.037 0.055 0.065 0.060 0.060 0.057
SBR 0.026 0.049 0.042 0.058 0.067 0.063 0.062 0.066

3 SRS 0.044 0.044 0.039 0.041 0.042 0.042 0.041 0.043
WEI 0.042 0.045 0.048 0.041 0.048 0.051 0.046 0.049
BCD 0.039 0.040 0.041 0.040 0.044 0.046 0.047 0.048
SBR 0.048 0.051 0.046 0.048 0.052 0.056 0.056 0.055

4 SRS 0.056 0.056 0.039 0.042 0.041 0.041 0.043 0.042
WEI 0.052 0.055 0.038 0.034 0.045 0.042 0.044 0.044
BCD 0.054 0.058 0.040 0.026 0.045 0.044 0.045 0.043
SBR 0.061 0.068 0.049 0.027 0.047 0.054 0.055 0.051
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Table XIII. H0, n = 400, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.042 0.042 0.054 0.046 0.040 0.046 0.050 0.041

WEI 0.010 0.049 0.008 0.047 0.047 0.046 0.043 0.042
BCD 0.003 0.045 0.002 0.043 0.043 0.035 0.039 0.040
SBR 0.002 0.046 0.000 0.035 0.037 0.036 0.036 0.037

2 SRS 0.050 0.050 0.055 0.049 0.047 0.051 0.052 0.050
WEI 0.018 0.048 0.025 0.041 0.046 0.045 0.048 0.045
BCD 0.011 0.042 0.011 0.041 0.046 0.045 0.046 0.043
SBR 0.017 0.051 0.014 0.042 0.050 0.053 0.047 0.050

3 SRS 0.012 0.012 0.043 0.046 0.048 0.046 0.050 0.050
WEI 0.014 0.016 0.057 0.055 0.060 0.055 0.058 0.057
BCD 0.013 0.013 0.055 0.059 0.061 0.051 0.053 0.052
SBR 0.006 0.006 0.040 0.040 0.039 0.038 0.039 0.038

4 SRS 0.019 0.019 0.056 0.052 0.064 0.056 0.051 0.061
WEI 0.018 0.018 0.060 0.046 0.065 0.064 0.062 0.066
BCD 0.015 0.015 0.057 0.046 0.066 0.063 0.059 0.067
SBR 0.021 0.021 0.057 0.043 0.060 0.062 0.062 0.062

Table XIV. H0, n = 400, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.051 0.051 0.056 0.055 0.056 0.052 0.055 0.054

WEI 0.007 0.041 0.014 0.055 0.053 0.051 0.050 0.051
BCD 0.006 0.038 0.004 0.046 0.048 0.041 0.042 0.046
SBR 0.004 0.033 0.002 0.044 0.043 0.042 0.043 0.042

2 SRS 0.048 0.048 0.073 0.055 0.061 0.060 0.057 0.059
WEI 0.020 0.039 0.024 0.046 0.053 0.048 0.051 0.053
BCD 0.012 0.048 0.020 0.050 0.051 0.057 0.055 0.051
SBR 0.011 0.047 0.014 0.046 0.052 0.050 0.052 0.052

3 SRS 0.054 0.054 0.050 0.045 0.052 0.049 0.044 0.052
WEI 0.053 0.055 0.049 0.047 0.053 0.050 0.049 0.054
BCD 0.059 0.063 0.038 0.041 0.045 0.044 0.043 0.043
SBR 0.049 0.051 0.042 0.044 0.043 0.049 0.049 0.049

4 SRS 0.054 0.054 0.057 0.053 0.063 0.055 0.056 0.063
WEI 0.047 0.051 0.055 0.043 0.064 0.055 0.061 0.059
BCD 0.049 0.051 0.054 0.033 0.063 0.062 0.056 0.063
SBR 0.046 0.048 0.047 0.026 0.051 0.057 0.056 0.053
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1.11.9 QTE, H1, π = 0.5

Table XV. H1, n = 200, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.191 0.191 0.203 0.354 0.356 0.205 0.340 0.342

WEI 0.126 0.257 0.147 0.359 0.358 0.279 0.345 0.350
BCD 0.105 0.372 0.122 0.379 0.375 0.361 0.369 0.365
SBR 0.099 0.400 0.114 0.378 0.382 0.411 0.375 0.368

2 SRS 0.284 0.284 0.315 0.352 0.376 0.319 0.345 0.378
WEI 0.270 0.319 0.314 0.356 0.364 0.359 0.363 0.369
BCD 0.282 0.333 0.304 0.361 0.375 0.390 0.385 0.383
SBR 0.290 0.346 0.296 0.335 0.361 0.387 0.358 0.356

3 SRS 0.712 0.712 0.694 0.688 0.698 0.704 0.677 0.686
WEI 0.701 0.707 0.678 0.685 0.680 0.699 0.687 0.674
BCD 0.712 0.720 0.673 0.686 0.695 0.699 0.698 0.698
SBR 0.672 0.684 0.659 0.639 0.647 0.673 0.647 0.638

4 SRS 0.166 0.166 0.124 0.112 0.132 0.135 0.131 0.128
WEI 0.166 0.170 0.126 0.098 0.125 0.144 0.139 0.133
BCD 0.165 0.176 0.126 0.094 0.155 0.157 0.145 0.157
SBR 0.167 0.175 0.122 0.088 0.139 0.145 0.133 0.140

Table XVI. H1, n = 200, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.183 0.183 0.193 0.443 0.441 0.200 0.431 0.429

WEI 0.116 0.295 0.138 0.442 0.447 0.298 0.437 0.436
BCD 0.072 0.472 0.095 0.450 0.453 0.434 0.446 0.448
SBR 0.085 0.485 0.099 0.463 0.460 0.457 0.453 0.448

2 SRS 0.267 0.267 0.256 0.359 0.366 0.265 0.358 0.371
WEI 0.248 0.346 0.247 0.358 0.394 0.346 0.378 0.389
BCD 0.229 0.402 0.233 0.358 0.396 0.388 0.395 0.392
SBR 0.232 0.404 0.234 0.365 0.392 0.399 0.401 0.391

3 SRS 0.797 0.797 0.904 0.897 0.916 0.902 0.897 0.913
WEI 0.802 0.807 0.907 0.903 0.909 0.913 0.902 0.906
BCD 0.796 0.804 0.902 0.910 0.911 0.908 0.911 0.906
SBR 0.771 0.774 0.897 0.896 0.901 0.899 0.894 0.899

4 SRS 0.176 0.176 0.312 0.269 0.317 0.316 0.297 0.316
WEI 0.171 0.175 0.289 0.255 0.307 0.309 0.297 0.298
BCD 0.169 0.174 0.299 0.262 0.313 0.329 0.311 0.316
SBR 0.163 0.165 0.283 0.255 0.304 0.302 0.298 0.298
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Table XVII. H1, n = 200, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.198 0.198 0.215 0.362 0.358 0.216 0.353 0.355

WEI 0.143 0.293 0.153 0.361 0.368 0.315 0.362 0.364
BCD 0.108 0.377 0.131 0.356 0.360 0.355 0.353 0.353
SBR 0.079 0.386 0.105 0.397 0.396 0.381 0.403 0.386

2 SRS 0.268 0.268 0.315 0.386 0.439 0.322 0.391 0.434
WEI 0.238 0.339 0.285 0.396 0.430 0.390 0.417 0.428
BCD 0.209 0.407 0.263 0.398 0.428 0.425 0.428 0.418
SBR 0.206 0.427 0.267 0.439 0.455 0.450 0.465 0.456

3 SRS 0.698 0.698 0.607 0.594 0.619 0.634 0.609 0.622
WEI 0.668 0.673 0.607 0.606 0.616 0.631 0.623 0.624
BCD 0.690 0.698 0.607 0.612 0.616 0.635 0.618 0.621
SBR 0.669 0.675 0.596 0.614 0.633 0.617 0.631 0.630

4 SRS 0.163 0.163 0.158 0.122 0.167 0.173 0.140 0.169
WEI 0.144 0.152 0.152 0.105 0.175 0.169 0.152 0.178
BCD 0.133 0.138 0.151 0.085 0.170 0.177 0.173 0.172
SBR 0.146 0.154 0.143 0.090 0.175 0.171 0.177 0.180

Table XVIII. H1, n = 400, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.206 0.206 0.229 0.403 0.417 0.231 0.401 0.405

WEI 0.163 0.332 0.173 0.408 0.413 0.337 0.408 0.413
BCD 0.121 0.430 0.143 0.420 0.422 0.421 0.419 0.413
SBR 0.128 0.451 0.144 0.428 0.429 0.458 0.426 0.423

2 SRS 0.312 0.312 0.345 0.422 0.415 0.351 0.416 0.416
WEI 0.312 0.352 0.332 0.405 0.424 0.378 0.408 0.426
BCD 0.299 0.378 0.333 0.392 0.405 0.403 0.415 0.413
SBR 0.330 0.389 0.345 0.401 0.407 0.426 0.410 0.406

3 SRS 0.763 0.763 0.734 0.730 0.740 0.738 0.732 0.738
WEI 0.763 0.764 0.739 0.739 0.748 0.744 0.746 0.746
BCD 0.781 0.783 0.760 0.760 0.768 0.772 0.774 0.767
SBR 0.766 0.773 0.745 0.739 0.744 0.763 0.751 0.744

4 SRS 0.177 0.177 0.129 0.108 0.136 0.127 0.121 0.133
WEI 0.170 0.176 0.129 0.096 0.139 0.139 0.131 0.143
BCD 0.178 0.185 0.132 0.089 0.141 0.141 0.139 0.138
SBR 0.180 0.186 0.129 0.102 0.134 0.147 0.135 0.133
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Table XIX. H1, n = 400, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.218 0.218 0.232 0.504 0.502 0.235 0.497 0.502

WEI 0.147 0.356 0.160 0.503 0.503 0.350 0.498 0.507
BCD 0.089 0.526 0.117 0.498 0.502 0.493 0.495 0.496
SBR 0.089 0.550 0.109 0.520 0.518 0.524 0.526 0.519

2 SRS 0.301 0.301 0.309 0.402 0.426 0.306 0.413 0.423
WEI 0.287 0.387 0.281 0.402 0.418 0.372 0.411 0.420
BCD 0.268 0.451 0.262 0.400 0.443 0.434 0.434 0.441
SBR 0.260 0.433 0.252 0.403 0.421 0.418 0.431 0.420

3 SRS 0.897 0.897 0.956 0.957 0.956 0.957 0.956 0.957
WEI 0.892 0.892 0.954 0.944 0.948 0.951 0.942 0.948
BCD 0.887 0.889 0.952 0.949 0.954 0.957 0.954 0.956
SBR 0.900 0.902 0.954 0.954 0.954 0.958 0.962 0.957

4 SRS 0.234 0.234 0.345 0.317 0.351 0.353 0.339 0.343
WEI 0.222 0.224 0.336 0.326 0.352 0.352 0.335 0.358
BCD 0.226 0.230 0.346 0.321 0.349 0.368 0.359 0.365
SBR 0.238 0.242 0.369 0.350 0.380 0.379 0.374 0.377

Table XX. H1, n = 400, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.218 0.218 0.237 0.430 0.435 0.242 0.438 0.435

WEI 0.163 0.321 0.176 0.441 0.437 0.344 0.433 0.432
BCD 0.136 0.422 0.152 0.421 0.420 0.417 0.417 0.416
SBR 0.103 0.446 0.124 0.459 0.459 0.448 0.463 0.461

2 SRS 0.300 0.300 0.337 0.445 0.479 0.335 0.449 0.479
WEI 0.258 0.369 0.313 0.446 0.465 0.414 0.453 0.463
BCD 0.247 0.462 0.295 0.451 0.476 0.483 0.481 0.477
SBR 0.227 0.444 0.276 0.472 0.490 0.471 0.496 0.492

3 SRS 0.763 0.763 0.710 0.702 0.707 0.712 0.701 0.715
WEI 0.773 0.776 0.696 0.701 0.700 0.720 0.709 0.706
BCD 0.753 0.755 0.705 0.716 0.720 0.720 0.717 0.726
SBR 0.746 0.750 0.684 0.699 0.705 0.692 0.709 0.708

4 SRS 0.209 0.209 0.199 0.140 0.221 0.208 0.149 0.221
WEI 0.201 0.208 0.191 0.110 0.203 0.206 0.178 0.204
BCD 0.195 0.200 0.199 0.121 0.213 0.224 0.213 0.220
SBR 0.198 0.203 0.198 0.114 0.229 0.214 0.230 0.225
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1.11.10 QTE, H0, π = 0.7

Table XXI. H0, n = 200, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.042 0.042 0.046 0.042 0.036 0.036 0.039 0.039

SBR 0.002 0.014 0.005 0.053 0.052 0.049 0.050 0.047
2 SRS 0.037 0.037 0.051 0.059 0.057 0.061 0.057 0.064

SBR 0.032 0.036 0.042 0.046 0.048 0.055 0.055 0.055
3 SRS 0.046 0.046 0.046 0.047 0.039 0.045 0.049 0.043

SBR 0.040 0.044 0.032 0.031 0.034 0.041 0.037 0.040
4 SRS 0.098 0.098 0.067 0.075 0.069 0.062 0.057 0.066

SBR 0.057 0.066 0.043 0.016 0.062 0.061 0.066 0.064

Table XXII. H0, n = 200, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.048 0.048 0.052 0.045 0.047 0.034 0.040 0.044

SBR 0.001 0.007 0.002 0.039 0.040 0.044 0.038 0.037
2 SRS 0.057 0.057 0.065 0.051 0.058 0.050 0.051 0.053

SBR 0.022 0.034 0.021 0.053 0.053 0.050 0.059 0.053
3 SRS 0.016 0.016 0.052 0.046 0.054 0.051 0.048 0.053

SBR 0.004 0.005 0.039 0.038 0.048 0.045 0.046 0.048
4 SRS 0.009 0.009 0.046 0.037 0.049 0.046 0.045 0.051

SBR 0.004 0.005 0.036 0.016 0.052 0.049 0.043 0.046

Table XXIII. H0, n = 200, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.052 0.052 0.057 0.045 0.049 0.044 0.040 0.043

SBR 0.002 0.008 0.004 0.033 0.034 0.036 0.036 0.036
2 SRS 0.042 0.042 0.061 0.055 0.067 0.047 0.055 0.068

SBR 0.006 0.014 0.009 0.029 0.037 0.042 0.039 0.040
3 SRS 0.056 0.056 0.043 0.038 0.054 0.048 0.046 0.054

SBR 0.055 0.057 0.048 0.042 0.050 0.053 0.052 0.052
4 SRS 0.019 0.019 0.038 0.032 0.046 0.045 0.042 0.042

SBR 0.022 0.022 0.044 0.028 0.045 0.044 0.038 0.042
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Table XXIV. H0, n = 400, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.044 0.044 0.054 0.039 0.041 0.038 0.040 0.042

SBR 0.003 0.015 0.003 0.051 0.052 0.043 0.046 0.046
2 SRS 0.034 0.034 0.057 0.058 0.054 0.062 0.058 0.053

SBR 0.031 0.034 0.040 0.044 0.049 0.051 0.051 0.051
3 SRS 0.037 0.037 0.029 0.034 0.036 0.033 0.033 0.039

SBR 0.045 0.049 0.037 0.037 0.042 0.044 0.040 0.041
4 SRS 0.073 0.073 0.044 0.054 0.046 0.045 0.048 0.041

SBR 0.065 0.076 0.036 0.014 0.060 0.058 0.062 0.060

Table XXV. H0, n = 400, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.044 0.044 0.051 0.037 0.039 0.048 0.036 0.037

SBR 0.001 0.002 0.000 0.035 0.039 0.035 0.040 0.040
2 SRS 0.062 0.062 0.062 0.049 0.049 0.059 0.041 0.048

SBR 0.015 0.029 0.015 0.034 0.040 0.040 0.042 0.037
3 SRS 0.007 0.007 0.039 0.036 0.042 0.042 0.042 0.047

SBR 0.006 0.006 0.035 0.037 0.036 0.037 0.041 0.037
4 SRS 0.013 0.013 0.046 0.029 0.061 0.053 0.035 0.054

SBR 0.009 0.010 0.033 0.025 0.056 0.054 0.052 0.050

Table XXVI. H0, n = 400, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.049 0.049 0.053 0.046 0.050 0.043 0.048 0.050

SBR 0.001 0.006 0.002 0.038 0.041 0.037 0.036 0.036
2 SRS 0.050 0.050 0.065 0.050 0.049 0.056 0.052 0.052

SBR 0.010 0.019 0.015 0.041 0.048 0.042 0.041 0.041
3 SRS 0.044 0.044 0.031 0.042 0.039 0.032 0.038 0.039

SBR 0.057 0.059 0.040 0.036 0.044 0.043 0.043 0.043
4 SRS 0.034 0.034 0.051 0.046 0.049 0.051 0.046 0.051

SBR 0.028 0.028 0.044 0.040 0.045 0.045 0.045 0.046
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1.11.11 QTE, H1, π = 0.7

Table XXVII. H1, n = 200, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.152 0.152 0.176 0.359 0.313 0.187 0.343 0.339

SBR 0.065 0.186 0.100 0.346 0.336 0.357 0.341 0.338
2 SRS 0.314 0.314 0.334 0.361 0.325 0.347 0.367 0.365

SBR 0.309 0.334 0.336 0.355 0.368 0.383 0.375 0.376
3 SRS 0.704 0.704 0.671 0.665 0.626 0.685 0.663 0.691

SBR 0.697 0.716 0.663 0.671 0.669 0.702 0.686 0.688
4 SRS 0.136 0.136 0.097 0.094 0.129 0.106 0.093 0.122

SBR 0.116 0.127 0.081 0.050 0.103 0.107 0.105 0.106

Table XXVIII. H1, n = 200, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.170 0.170 0.172 0.411 0.425 0.167 0.407 0.406

SBR 0.043 0.212 0.060 0.445 0.455 0.457 0.435 0.434
2 SRS 0.287 0.287 0.280 0.371 0.364 0.275 0.374 0.360

SBR 0.258 0.327 0.236 0.367 0.387 0.372 0.383 0.381
3 SRS 0.771 0.771 0.891 0.882 0.903 0.895 0.883 0.894

SBR 0.760 0.769 0.892 0.896 0.911 0.901 0.904 0.900
4 SRS 0.145 0.145 0.265 0.218 0.305 0.264 0.241 0.301

SBR 0.128 0.136 0.235 0.177 0.288 0.290 0.284 0.287

Table XXIX. H1, n = 200, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.181 0.181 0.183 0.342 0.340 0.188 0.340 0.338

SBR 0.072 0.175 0.076 0.353 0.364 0.342 0.357 0.357
2 SRS 0.279 0.279 0.321 0.404 0.427 0.341 0.400 0.427

SBR 0.243 0.341 0.293 0.430 0.451 0.430 0.454 0.435
3 SRS 0.662 0.662 0.586 0.559 0.599 0.605 0.569 0.592

SBR 0.631 0.639 0.572 0.564 0.597 0.594 0.601 0.598
4 SRS 0.150 0.150 0.201 0.164 0.199 0.208 0.189 0.211

SBR 0.143 0.145 0.193 0.166 0.206 0.206 0.208 0.205
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Table XXX. H1, n = 400, τ = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.181 0.181 0.192 0.351 0.354 0.202 0.346 0.351

SBR 0.083 0.233 0.113 0.392 0.392 0.407 0.394 0.392
2 SRS 0.362 0.362 0.406 0.403 0.415 0.408 0.415 0.424

SBR 0.350 0.381 0.388 0.412 0.426 0.426 0.422 0.419
3 SRS 0.781 0.781 0.743 0.751 0.758 0.746 0.750 0.759

SBR 0.791 0.797 0.752 0.765 0.777 0.781 0.778 0.779
4 SRS 0.160 0.160 0.082 0.072 0.112 0.097 0.095 0.116

SBR 0.133 0.154 0.091 0.044 0.119 0.119 0.121 0.120

Table XXXI. H1, n = 400, τ = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.184 0.184 0.187 0.468 0.479 0.194 0.460 0.466

SBR 0.042 0.220 0.059 0.486 0.498 0.505 0.480 0.482
2 SRS 0.322 0.322 0.298 0.405 0.404 0.303 0.412 0.400

SBR 0.262 0.342 0.237 0.376 0.399 0.385 0.389 0.389
3 SRS 0.867 0.867 0.939 0.930 0.933 0.941 0.932 0.936

SBR 0.883 0.888 0.948 0.952 0.952 0.955 0.952 0.952
4 SRS 0.209 0.209 0.327 0.275 0.354 0.341 0.308 0.351

SBR 0.194 0.217 0.310 0.256 0.365 0.364 0.359 0.356

Table XXXII. H1, n = 400, τ = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.217 0.217 0.224 0.411 0.409 0.219 0.411 0.408

SBR 0.103 0.246 0.107 0.419 0.418 0.400 0.421 0.420
2 SRS 0.335 0.335 0.378 0.485 0.505 0.384 0.468 0.501

SBR 0.278 0.384 0.329 0.479 0.500 0.487 0.504 0.493
3 SRS 0.708 0.708 0.661 0.628 0.665 0.665 0.629 0.672

SBR 0.705 0.706 0.652 0.631 0.665 0.673 0.672 0.673
4 SRS 0.205 0.205 0.226 0.221 0.245 0.234 0.234 0.240

SBR 0.205 0.205 0.249 0.209 0.248 0.258 0.256 0.258
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1.11.12 ATE, π = 0.5

Table XXXIII. H0, n = 200, π = 0.5

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.059 0.057 0.051 0.061 0.055 0.057 0.053 0.048 0.049

WEI 0.006 0.048 0.062 0.004 0.068 0.068 0.051 0.065 0.065
BCD 0.001 0.089 0.056 0.000 0.058 0.058 0.071 0.056 0.056
SBR 0.000 0.067 0.061 0.000 0.064 0.064 0.059 0.061 0.061

2 SRS 0.062 0.061 0.061 0.061 0.059 0.062 0.060 0.057 0.059
WEI 0.027 0.060 0.050 0.029 0.046 0.054 0.057 0.052 0.053
BCD 0.014 0.058 0.053 0.016 0.053 0.052 0.052 0.052 0.049
SBR 0.006 0.045 0.044 0.006 0.045 0.045 0.045 0.045 0.045

3 SRS 0.057 0.056 0.068 0.055 0.061 0.061 0.056 0.064 0.065
WEI 0.049 0.050 0.057 0.052 0.057 0.056 0.048 0.053 0.053
BCD 0.057 0.058 0.057 0.057 0.063 0.063 0.057 0.056 0.057
SBR 0.055 0.058 0.056 0.057 0.060 0.061 0.055 0.055 0.055

4 SRS 0.066 0.067 0.077 0.068 0.069 0.063 0.063 0.070 0.063
WEI 0.065 0.067 0.070 0.066 0.067 0.068 0.069 0.067 0.070
BCD 0.068 0.068 0.067 0.065 0.061 0.068 0.065 0.065 0.065
SBR 0.055 0.055 0.055 0.057 0.057 0.058 0.057 0.057 0.057

Table XXXIV. H1, n = 200, π = 0.5

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.387 0.385 0.948 0.391 0.946 0.946 0.386 0.944 0.942

WEI 0.330 0.680 0.944 0.334 0.941 0.940 0.691 0.942 0.941
BCD 0.275 0.917 0.940 0.272 0.943 0.943 0.884 0.942 0.942
SBR 0.280 0.942 0.951 0.285 0.950 0.950 0.937 0.945 0.945

2 SRS 0.533 0.532 0.750 0.538 0.746 0.758 0.541 0.746 0.753
WEI 0.532 0.668 0.748 0.533 0.742 0.750 0.675 0.743 0.749
BCD 0.541 0.748 0.752 0.544 0.751 0.755 0.733 0.751 0.752
SBR 0.544 0.774 0.779 0.551 0.772 0.781 0.769 0.775 0.775

3 SRS 0.770 0.769 0.767 0.773 0.768 0.775 0.769 0.754 0.760
WEI 0.760 0.766 0.763 0.759 0.759 0.768 0.765 0.763 0.761
BCD 0.767 0.772 0.769 0.762 0.771 0.769 0.772 0.765 0.765
SBR 0.757 0.762 0.761 0.758 0.770 0.767 0.761 0.764 0.764

4 SRS 0.181 0.182 0.181 0.182 0.171 0.184 0.181 0.180 0.186
WEI 0.180 0.183 0.182 0.184 0.180 0.184 0.184 0.178 0.179
BCD 0.170 0.175 0.174 0.177 0.177 0.181 0.182 0.183 0.182
SBR 0.177 0.178 0.179 0.184 0.180 0.186 0.179 0.178 0.178
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Table XXXV. H0, n = 400, π = 0.5

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.063 0.061 0.042 0.063 0.043 0.045 0.055 0.042 0.042

WEI 0.005 0.050 0.050 0.006 0.052 0.052 0.052 0.050 0.050
BCD 0.000 0.067 0.052 0.000 0.059 0.059 0.051 0.059 0.059
SBR 0.000 0.059 0.058 0.000 0.057 0.057 0.063 0.060 0.060

2 SRS 0.061 0.057 0.055 0.058 0.055 0.054 0.061 0.054 0.051
WEI 0.018 0.051 0.064 0.019 0.063 0.064 0.052 0.064 0.064
BCD 0.009 0.045 0.046 0.006 0.046 0.047 0.043 0.049 0.049
SBR 0.014 0.062 0.060 0.016 0.065 0.065 0.063 0.063 0.063

3 SRS 0.050 0.049 0.050 0.050 0.049 0.051 0.052 0.048 0.048
WEI 0.046 0.047 0.049 0.047 0.046 0.047 0.048 0.047 0.046
BCD 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.050
SBR 0.055 0.056 0.056 0.059 0.058 0.059 0.055 0.056 0.056

4 SRS 0.057 0.057 0.055 0.056 0.056 0.059 0.054 0.051 0.056
WEI 0.051 0.051 0.053 0.052 0.054 0.054 0.051 0.051 0.052
BCD 0.056 0.056 0.056 0.054 0.056 0.056 0.054 0.053 0.053
SBR 0.056 0.058 0.058 0.055 0.056 0.057 0.057 0.057 0.057

Table XXXVI. H1, n = 400, π = 0.5

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.422 0.422 0.964 0.416 0.968 0.966 0.415 0.964 0.962

WEI 0.387 0.732 0.969 0.393 0.969 0.969 0.732 0.967 0.968
BCD 0.341 0.962 0.971 0.350 0.969 0.968 0.955 0.968 0.968
SBR 0.357 0.967 0.967 0.368 0.966 0.966 0.967 0.965 0.965

2 SRS 0.572 0.568 0.806 0.579 0.795 0.805 0.568 0.796 0.805
WEI 0.577 0.723 0.813 0.575 0.814 0.810 0.728 0.811 0.808
BCD 0.606 0.809 0.813 0.618 0.817 0.821 0.802 0.810 0.810
SBR 0.601 0.828 0.829 0.603 0.832 0.836 0.830 0.834 0.834

3 SRS 0.804 0.801 0.803 0.798 0.798 0.799 0.804 0.803 0.803
WEI 0.804 0.804 0.806 0.802 0.800 0.803 0.803 0.803 0.803
BCD 0.816 0.818 0.820 0.822 0.825 0.825 0.819 0.819 0.819
SBR 0.821 0.823 0.823 0.816 0.820 0.819 0.822 0.822 0.822

4 SRS 0.228 0.230 0.229 0.225 0.227 0.228 0.234 0.226 0.226
WEI 0.229 0.230 0.230 0.225 0.223 0.228 0.233 0.235 0.234
BCD 0.221 0.224 0.225 0.227 0.225 0.231 0.231 0.231 0.233
SBR 0.224 0.226 0.225 0.224 0.225 0.230 0.235 0.235 0.235
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1.11.13 ATE, π = 0.7

Table XXXVII. H0, n = 200, π = 0.7

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.050 0.045 0.056 0.051 0.056 0.062 0.046 0.054 0.055

SBR 0.000 0.004 0.051 0.000 0.061 0.064 0.064 0.060 0.059
2 SRS 0.048 0.055 0.074 0.055 0.049 0.056 0.045 0.049 0.057

SBR 0.013 0.030 0.041 0.013 0.024 0.051 0.056 0.049 0.051
3 SRS 0.059 0.060 0.066 0.060 0.060 0.064 0.058 0.055 0.064

SBR 0.051 0.053 0.052 0.053 0.045 0.057 0.056 0.056 0.055
4 SRS 0.057 0.057 0.056 0.058 0.056 0.068 0.054 0.057 0.058

SBR 0.047 0.050 0.044 0.051 0.037 0.054 0.054 0.055 0.055

Table XXXVIII. H1, n = 200, π = 0.7

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.329 0.328 0.934 0.336 0.943 0.946 0.326 0.941 0.941

SBR 0.220 0.631 0.938 0.233 0.946 0.949 0.932 0.943 0.943
2 SRS 0.581 0.578 0.687 0.582 0.619 0.756 0.571 0.601 0.758

SBR 0.598 0.699 0.747 0.599 0.686 0.768 0.752 0.766 0.764
3 SRS 0.773 0.779 0.758 0.769 0.741 0.784 0.773 0.729 0.782

SBR 0.771 0.773 0.772 0.777 0.763 0.782 0.782 0.780 0.781
4 SRS 0.149 0.154 0.121 0.153 0.140 0.168 0.154 0.141 0.165

SBR 0.144 0.151 0.129 0.153 0.118 0.175 0.172 0.170 0.169

Table XXXIX. H0, n = 400, π = 0.7

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.062 0.059 0.065 0.061 0.056 0.056 0.062 0.060 0.061

SBR 0.000 0.000 0.034 0.000 0.039 0.040 0.045 0.045 0.044
2 SRS 0.052 0.050 0.087 0.054 0.055 0.052 0.050 0.057 0.051

SBR 0.013 0.029 0.040 0.012 0.027 0.044 0.042 0.044 0.042
3 SRS 0.042 0.041 0.049 0.045 0.043 0.052 0.040 0.040 0.046

SBR 0.028 0.028 0.031 0.029 0.025 0.032 0.035 0.036 0.034
4 SRS 0.053 0.055 0.043 0.058 0.053 0.058 0.055 0.050 0.056

SBR 0.050 0.051 0.043 0.051 0.035 0.054 0.055 0.055 0.053
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Table XL. H1, n = 400, π = 0.7

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 SRS 0.384 0.380 0.972 0.381 0.971 0.976 0.382 0.970 0.973

SBR 0.250 0.736 0.970 0.254 0.972 0.972 0.967 0.973 0.974
2 SRS 0.616 0.628 0.753 0.622 0.693 0.796 0.617 0.690 0.795

SBR 0.659 0.759 0.806 0.665 0.740 0.827 0.817 0.827 0.827
3 SRS 0.818 0.817 0.805 0.812 0.793 0.821 0.816 0.793 0.829

SBR 0.833 0.838 0.836 0.831 0.824 0.840 0.838 0.839 0.837
4 SRS 0.177 0.172 0.145 0.180 0.162 0.195 0.181 0.171 0.186

SBR 0.181 0.190 0.164 0.184 0.142 0.202 0.202 0.202 0.200
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Chapter 2

A Martingale-Difference-Divergence-

Based Test for Specification with

Application to Gravity Models

1

2.1 Introduction

Since Hausman’s (1978) seminal work, a large literature has been developed on testing for

the correct specification of functional forms. Kernel smoothing method constitutes one of

the most popular approaches towards the construction of consistent model specification tests;

see, e.g., Härdle and Mammen (1993), Fan and Li (1996), Zheng (1996), Li and Wang (1998),

Horowitz and Spokoiny (2001), and Hsiao, Li, and Racine (2007) for cross-sectional data,

Robinson (1989) and Fan and Li (1999) for time series data, Su and Lu (2013) and Su, Jin,

and Zhang (2015) for panel data, and Su and Qu (2017) for spatial data. Sieve methods have

also been adopted widely in nonparametric specification testing; see Eubank and Hart (1992),

Wooldridge (1992), Hong and White (1995), de Jong (1996), Li, Hsiao, and Zinn (2003),

among others. Instead of estimating the conditional mean via the kernel or sieve methods,

one can also construct a consistent test based on the estimation of unconditional moment

conditions which results in a class of nonsmoothing tests; see Bierens (1982, 1990), Bierens

and Ploberger (1997), Stute (1997), Stinchcombe and White (1998), Delgado and Manteiga

(2001), among others. Fan and Li (2000) discuss the relationship between smoothing and non-

1This is a co-authered work with Liangjun Su.
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smoothing tests, and show that smoothing tests are more powerful than nonsmoothing tests

for high frequency alternatives and less powerful for other local alternatives, while Horowitz

and Spokoiny (2001) propose an adaptive rate-optimal test for regression models and suggest

using several different smoothing parameters to compute a kernel-based test in order to ensure

that the test has good power against both the low and high frequency alternatives.

In this paper we propose a new test for the correct specification of a parametric conditional

mean model based on a variant of the martingale difference divergence (MDD hereafter)

measure of conditional mean dependence between two random variables. In a sequence of

papers, Székely, Rizzo, and Bakirov (2007), Székely and Rozzo (2009) and Székely and Rizzo

(2014) propose to use distance covariance and distance correlation to measure the dependence

between two random vectors which exhibit various nice properties. Such measures have been

explored for feature screening in high dimensional regressions; see, e.g., Li, Zhong, and Zhu

(2012). When one of the two random variables is scalar, Shao and Zhang (2014, SZ hereafter)

propose to use MDD to measure the conditional mean dependence of the scalar random

variable given a random vector (see the definition of MDD in (2.2.4) in the next section).

Like the relationship between covariance and correlation, the MDD can also be rescaled to

ensure that it lies between 0 and 1, yielding the martingale difference correlation (MDC)

measure of a scalar variable given a random vector. MDD measures the departure of the

conditional mean independence between a scalar response variable and a vector of covariates,

which is a natural extension of the distance correlation measure proposed by Székely, Rizzo,

and Bakirov (2007). MDD and MDC have many nice properties. First, both of them are

nonnegative and equal zero if and only if the scalar response variable is conditionally mean

independent of the covariates. This suggests that we can propose a test for the conditional

mean independence hypothesis which is widely used in econometrics and statistics. Second,

both measures have a closed-form formula that is only involved with certain expectation and

norm calculations so that they can be easily estimated from the data based on the sample

analogue principle. Third, the measures are dimension-free in the sense that the dimension

of the conditioning variable is allowed to be huge. Indeed, SZ use MDC as a method to

conduct high-dimensional variable selection to screen out variables that do not contribute to

the conditional mean of the response variable given the covariates.

One drawback of SZ’s original MDD and MDC measure is that when they are used for

variable screening, both the response variable and covariates need to be observed. Therefore,

we propose a variant of MDD that is used to measure the conditional mean independence

of a scalar random error term given the covariates. With this variant, we propose a new

consistent test for the null hypothesis that a parametric conditional mean model is correctly
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specified. Under the null hypothesis, the error term from the correctly specified model is

conditionally mean independent of the regressors in the model. Since the error term is not

observed, we propose to estimate it from the null model and construct a test statistic based

on the sample analogue of this new MDD measure. We study the asymptotic distributions

of the test statistic under the null and under a sequence of Pitman local alternatives. Our

test shares many nice properties that a typical nonsmoothing test might have. First, its

limiting distribution under the null is a mixture of central chi-square distributions that is

not asymptotically pivotal. So we propose a wild bootstrap method to obtain the bootstrap

p-value or critical value. Second, our test has nontrivial asymptotic power against local

alternatives converging to the null at the usual parametric rate. More importantly, our test

is free of the choice of any smoothing parameter (e.g., the bandwidth in kernel-based tests

or the number of sieve approximating terms in sieve-based tests) and it does not suffer from

the curse of dimensionality associated with kernel- or sieve-based tests. In principle, our test

works for any finite dimensional regression problem where the number of covariates, q, can be

huge. But for the derivation of our asymptotic distribution theory, we still need restrict q to

be fixed. We conduct some Monte Carlo simulations and compare our test with some popular

tests in the literature. Our simulation results indicate that our MDD-based test generally

outperforms its competitors, especially for the case of high-frequency alternatives and for the

case of many covariates. To the best of our knowledge, this paper is the first to consider

consistent model specification test in the presence of many covariates.

As an illustration, we apply our test to test for the correct specification of functional forms

in gravity equations that are frequently used to model the bilateral trade flow between two

countries/regions. Most of the empirical studies use the log-linearized model that implies

constant elasticity of trade. In an influential paper Santos Silva and Tenreyro (2006) raise

several problems associated with the log gravity equation. In particular, they study how the

bias arises in the OLS estimation of the log model and find strong evidence that estimation

methods based on the log-linearization of the gravity equation suffer from severe misspeci-

fication. They argue that the gravity equations should be estimated in their multiplicative

form and propose the Poisson pseudo-maximum-likelihood (PPML) estimator based on the

level model. We apply out test to test the functional form in both the original level equation

and the log-linearized model by using four datasets. For all the datasets, we reject the log

and level model coherently at 10% significance level. However, its competitors show mixed

testing results for different datasets. The findings reveal the advantages of our test.

The rest of the paper is organized as follows. We introduce the hypotheses and the test

statistic in Section 2. We study the asymptotic distributions of the test statistic under the null
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hypothesis and under a sequence of Pitman local alternatives in Section 3. We compare the

MDD test with several popular tests through Monte Carlo simulations in Section 4. Section 5

provides an empirical example to illustrate the choice of functional forms in gravity equation

models. Section 6 concludes. The proofs of all results are relegated to the Appendix.

Throughout the paper, we adopt the following notation. For any matrix or vector A,

‖A‖ denotes its Euclidean norm. The operator
p→ denotes convergence in probability and

d→
denotes convergence in distribution.

2.2 The Hypotheses and Statistic

In this section we state the hypotheses and introduce the test statistic.

2.2.1 The Hypotheses

We consider the following parametric regression model

Yi = g(Xi; β) + εi, i = 1, . . . , n, (2.2.1)

where Yi is a scalar dependent variable, Xi is a q × 1 vector of covariates, β is a d× 1 vector

of unknown parameters, and εi is the unobserved error term. We assume that the functional

form of g(·; ·) is known up to the finite dimensional parameter β. We are interested in testing

the correct specification of g(·; ·). That is, we test the null hypothesis

H0 : P {E(Yi|Xi) = g(Xi; β)} = 1 for some β ∈ B (2.2.2)

versus the alternative hypothesis

H1 : P {E(Yi|Xi) = g(Xi; β)} < 1 for all β ∈ B, (2.2.3)

where B is the parameter space.

2.2.2 Test Statistic

To motivate our test statistic, we follow SZ and consider the MDD of ε given X whose square

is defined by

MDD (ε|X)2 =

∫
Rq
|E [ε exp(is′X)]− E (ε)E [exp(is′X)]|2W (s)ds, (2.2.4)
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where i =
√
−1, W (s) = 1

cq ||s||(1+q) , cq = π(1+q)/2

Γ((1+q)/2)
, and Γ (·) is the complete gamma function:

Γ (z) =
∫∞

0
tz−1 exp (−t) dt. Let

(
ε†, X†

)
be an independent copy of (ε,X) . By Theorem 1 in

SZ, we have

MDD (ε|X)2 = −E
{

[ε− E (ε)]
[
ε† − E

(
ε†
)] ∥∥X −X†∥∥} , (2.2.5)

and MDD(ε|X)2 = 0 if and only if E (ε|X) = E (ε) .

In our setup, ε denotes the error term in a regression such that E (ε) = 0 is always

maintained. This motivates us to consider the following variant of MDD(ε|X)2

MDD∗ (ε|X)2 = −E
[
εε†
∥∥X −X†∥∥]+ 2E

[
ε
∥∥X −X†∥∥]E [ε†] . (2.2.6)

The following proposition establishes the properties of MDD∗ (ε|X)2 that serve as the basis

of our test statistic.

Proposition 2.2.1. Let
(
ε†, X†

)
be an independent copy of (ε,X) , where ε is a scalar random

variable and X is a q×1 random vector. Suppose that 0 < E [ε2] <∞ and 0 < E[‖X‖2] <∞.
Then

(i) MDD∗ (ε|X)2 ≥ 0;

(ii) MDD∗ (ε|X)2 = 0 if and only if E(ε|X) = 0 almost surely (a.s.).

An important implication of Proposition 2.2.1 is that we can test (2.2.2) by testing whether

MDD∗ (εi|Xi)
2 = 0, where εi = Yi − g(Xi; β0). In practice, εi is not observed. We propose to

estimate the model (2.2.1) by the nonlinear least squares (NLS) to obtain the NLS estimator

β̂ of β. Let ε̂i = Yi− g(Xi; β̂). We propose to estimate nMDD∗ (ε|X)2 by the following object

Tn = − 1

n

∑∑
1≤i 6=j≤n

ε̂iε̂jκi,j +
2

n

∑∑
1≤i 6=j≤n

ε̂iκi,j
1

n

n∑
k=1

ε̂k (2.2.7)

where κi,j ≡ ‖Xi − Xj‖. In the special case where g(Xi; β) is linear in Xi and β, i.e.,

g(Xi; β) = (1, X ′i) β, we have
∑n

i=1 ε̂i = 0 and

Tn = − 1

n

∑∑
1≤i 6=j≤n

ε̂iε̂jκi,j ≡ T `n. (2.2.8)

Other than this case,
∑n

i=1 ε̂i is generally nonzero and second term in (2.2.7) is necessary.

Remark 1. Interestingly, MDD(ε|X)2 in (2.2.4) is closely related to Bierens’ (1982) and

Bierens and Ploberger’s (1997) integrated conditional moment (ICM) test that takes the form

B =

∫
Rq
|E [ε exp(is′Φ(X))]|2WB(s)ds, (2.2.9)
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where WB(·) is a nonnegative weight function and Φ(·) : Rq → Rq is a smooth function. But

this test requires the delicate choices of both WB and Φ and may not be tractable in practice;

see Bierens (1990) and Bierens and Ploberger (1997). When E (ε) = 0, we can also write B

as

B∗ =

∫
Rq
|E [ε exp(is′Φ(X))]− E (ε)E [exp(is′Φ(X))]|2WB(s)ds. (2.2.10)

Apparently, B∗ =MDD(ε|X)2 by choosing Φ(X) = X and WB(s) = W (s) . In this case, we

can regard MDD(ε|X)2 as a special example of B. As a result, our test statistic is tied closely

to Bierens’ ICM test.

2.3 Asymptotic Properties

In this section we study the asymptotic properties of Tn under the null hypothesis and under

a sequence of Pitman local alternatives.

2.3.1 Basic Assumptions

To facilitate the study of the local power property of our test, we consider the triangu-

lar array {(Yin, Xin, εin) , i = 1, ..., n}. Let Qn (β) = 1
n

∑n
i=1 [Yin − g(Xin; β)]2 and Q (β) =

limn→∞ E [Yin − g(Xin; β)]2 . Let giβ(β) ≡ ∂g(Xin; β)/∂β, and S (β) ≡ limn→∞ E [giβ(β)giβ(β)′] .

We make the following assumptions.

Assumption A.1. (Yin, Xin) , i = 1, 2, ..., n, are independently and identically distributed

(IID).

Assumption A.2. The NLS estimator β̂ has the following representation

β̂ − β0 = S−1 1

n

n∑
i=1

giβεi + oP
(
n−1/2

)
where giβ = giβ(β0) and S = S (β0) is positive definite. There exists a constant C ∈ (0,∞)

such that E
(
giβg

′
iβε

2
i

)
< C.

Assumption A.3. (i) There exists a constant C ∈ (0,∞) such that E (ε4
i ) ≤ C and

E ‖Xi‖4 ≤ C.

(ii) There exists a positive definite matrix H such that

sup
β∈Nεn (β0)

∥∥∥∥∥ 1

n

n∑
i=1

∂2g(Xi; β)

∂β∂β′
−H

∥∥∥∥∥ = oP (1)
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where Nε (β0) = {β ∈ B : ‖β − β0‖ ≤ ε} and εn = o (1) .

(iii) 1
n

∑n
i=1 giβ

p→ S0,
1
n2

∑n
i=1

∑n
j=1 E (giβκi,j)

p→ S1, and 1
n2

∑n
i=1

∑n
j=1 giβg

′
jβκi,j

p→
S2, where S0 = limn→∞

1
n

∑n
i=1 E (giβ) , S1 = limn→∞

1
n2

∑n
i=1

∑n
j=1 E (giβκi,j) , and S2 =

limn→∞
1
n2

∑n
i=1

∑n
j=1 E

(
giβg

′
jβκi,j

)
.

We assume that the observations are IID in Assumption A.1 to facilitate the asymptotic

analysis. We conjecture that our result below can be extended to allow for weakly dependent

time series observations but restrict ourselves to IID observations for simplicity. Assumption

A.2 requires β̂ follow a Bahadur representation with certain well behaved influence function.

One can verify A.2 under some primitive conditions given in the literature; see, e.g., Jennrich

(1969), Wu (1981), and Amemiya (1985). Assumption A.3 imposes some additional conditions

to study the asymptotic distribution of our test statistics. Assumption A.3(i) imposes some

moment conditions for Xi and εi; Assumption A.3(ii) imposes uniform convergence of the

gradient function in the neighborhood of β0; Assumption A.3(iii) imposes some convergence

conditions associated with giβ.

Asymptotic Distribution under the Null

The following theorem reports the asymptotic distribution of Tn.

Theorem 2.3.1. Suppose that Assumptions A.1-A.3 hold. Then under H0 we have

Tn
d→
∞∑
ν=1

λνz
2
ν , as n→∞

where zν’s are IID N (0, 1) , λν’s are the eigenvalues of the integral equation∫ ∞
−∞

ε2
2h(X1, X2)fv(X2)dF (ξ2) = λvfv(X1),

{εifν(Xi)}∞ν=1 is an orthonormal sequence of eigenfunctions, and h(X1, X2) is defined in Equa-

tion (2.7.3) in the Appendix.

The proof of Theorem 2.3.1 is tedious and the expression for h(X1, X2) appears compli-

cated. Since h depends on the underlying data generating process (DGP), Tn is not asymptot-

ically pivotal under the null and thus we cannot tabulate its critical values. In the following we

will propose a bootstrap method to obtain the bootstrap p-value to make statistical inference.

Apparently, Tn shares the same type of asymptotic null distribution as the ICM test.

This is not surprising given Remark 1. As mentioned, our test does not need to specify

transformation function or weight function that an ICM test needs.
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Local Power Analysis

To study the asymptotic local power of Tn, we consider the following sequence of Pitman local

alternatives:

H1(n−1/2) : E(εin|Xin) = n−1/2δ(Xin) for all i. (2.3.1)

It is known that in general ICM tests have nontrivial power, while the nonparametric tests

break down due to the slower rate of convergence than
√
n of their estimators. Theorem 2.3.2

describes the asymptotic distribution of MDD test under local alternatives and shows that

MDD test has nontrivial
√
n local power.

Theorem 2.3.2. Suppose Assumption A.1-A.3 hold. Then under H1(n−1/2), we have

Tn
d→
∞∑
ν=1

λν(zν + aν)
2, as n→∞

where aν = limn→∞ E [δ(Xin)fν(Xin)] and fv (·) is defined in Theorem 2.3.1.

Since {zν}∞ν=1 are IID N (0, 1), (zν + aν)
2 is stochastically larger than z2

ν for aν 6= 0. This

implies that our test has nontrivial asymptotic local power against local alternatives that

converge to the null at rate n−1/2. See Fan (1998) for a similar remark.

2.4 Monte Carlo Simulation

In this section we conduct a sequence of Monte Carlo simulations to evaluate the finite sample

performance of our test and compare it with some existing test statistics.

2.4.1 Data Generating Processes

We consider the following data generating processes:

DGP1(m) : Yi = β0 +
m∑
j=1

βjXji + σ
(m)
i εi,

DGP2(m) : Yi = β0 +
m∑
j=1

βjXji + n−1/2

m∑
j=1

X2
ji + σ

(m)
i εi,

DGP3(m) : Yi = β0 + β1X1i + β2X2i + 2 sin(mX1i) sin(mX2i) + σiεi.

DGP1(m) specifies m covariates and is used to evaluate the size performance of various

tests. DGP2(m) specifies m covariates and is used to evaluate the local power of various

141



tests. DGP3(m) specifies two covariates with m-dependent frequency under the alternative.

We allow for conditional heteroskedasticity in all models and generate the covariates and

heteroskedasticity as follows. In DGP1 and DGP2, when m = 2, X1 ∼ U(0, 1), X2 ∼ N(0, 1),

and σ(2) = {0.1 +X1 +X2
2}1/2; when m = 5, Xj ∼ U(0, j) for j = 1, 2, 3, Xj ∼ N(0, (j − 3)2)

for j = 4, 5, and σ(5) = {0.1 +
∑3

j=1Xj +
∑5

j=4X
2
j }1/2; when m = 10, Xj ∼ U(0, j) for

j = 1, . . . , 5, Xj ∼ N(0, (j−5)2) for j = 6, . . . , 10, and σ(10) = {0.1+
∑5

j=1 Xj +
∑10

j=6X
2
j }1/2;

when m = 20, Xj ∼ U(0, j) for j = 1 . . . , 10, Xj ∼ N(0, (j − 10)2) for j = 11, . . . , 20,

and σ(20) = {0.1 +
∑10

j=1Xj +
∑20

j=11X
2
j }1/2. In DGP3, Xj ∼ N(0, 1) for j = 1, 2 and

σ = {0.1+X2
1 +X2

2}1/2. We specify m = 1/2, m = 1, and m = 2 in DGP3(m), corresponding

to low-, moderate-, and high-frequency alternatives, respectively. In all cases, we generate εi

independently from the standard normal distribution.

We will test H0 : E(Yi|Xi) = β0 +
∑m

j=1 βjXji for some (β0, ..., βm) in DGP1(m) and

DGP2(m) and H0 : E(Yi|Xi) = β0 +
∑2

j=1 βjXji for some (β0, β1, β2) in DGP3(m) .

2.4.2 Test Statistics

We will implement our test statistic Tn and denote it as MDD in the following tables. For

the purpose of comparison, we consider three popular tests for the correct specification of

functional form in the literature.

The first one is Zheng’s (1996) and Li and Wang’s (1998) residual-based test:

Z&LW test : TZ&LW
n =

1

n(n− 1)

∑∑
1≤i 6=j≤n

1

Πq
l=1hl

K

(
Xi −Xj

h

)
ε̂iε̂j,

where ε̂i is the residual from the parametric regression under the null, q denotes the dimension

of Xi, K(·) is a product of univariate Epanechnikov kernel, h = (h1, ..., hq)
′ is a bandwidth

vector, and a/b = (a1/b1, ..., aq/bq)
′ when a = (a1, ..., aq)

′ and b = (b1, ..., bq)
′ are both q × 1

vectors.

The second one is Härdle and Mammen’s (1993, HM) test that is based on the comparison

of the nonparametric estimate and the smoothed parametric estimate of the conditional mean

regression function under the null:

HM test : THMn = n (Πq
l=1hl)

1/2
n∑
i=1

[
ĝh(xi)−Kh,ng(xi, β̂)

]2

,
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where, Kh,n denotes the smoothing operator

Kn,hg(x, β̂) =

∑n
i=1K

(
x−Xi
h

)
g(Xi, β̂)∑n

i=1K
(
x−Xi
h

) ,

β̂ denotes the least squares estimate of the regression coefficient under the null, ĝh(x) is the

Nadaraya-Watson kernel estimator of E (Yi|Xi = x) by using the kernel function K (·) and

bandwidth h.

The last one is the ICM test Bierens and Ploberger’s (1997) ICM test:

ICM test : TBn =
1

n

n∑
i=1

n∑
j=1

ε̂j ε̂i

q∏
k=1

exp
{

[Φ(Xki) + Φ(Xkj)]
2 /2
}

where ε̂i is the residual from the parametric regression under the null and Φ is a one-to-one

mapping function from the support of X to itself: Φ(Xli) = tan−1((Xli − X̄l)/sl), where X̄l

and sl denotes the sample mean and sample standard deviation of {Xli}ni=1 with Xli being

the lth component of Xi. Fan and Li (2000) also consider the above specification for the ICM

test.

In all cases, we choose the bandwidth according to Silverman’s rule of thumb: hl =

1.06sln
−1/(4+q) for l = 1, ..., q. After suitable normalization, both TZ&LW

n and THMn are asymp-

totically standard normally distributed under the null and they can detect local alternatives

converging to the null at the nonparametric rate. In contrast, the ICM test has asymptotic

null distribution similar to our MDD test and it can detect local alternatives converging to

the null at the usual parametric rate.

To implement all tests, we consider the wild bootstrap to obtain the bootstrap p-values

despite the fact the two kernel-based tests are asymptotically N (0, 1) under the null. The

wild bootstrap procedure is the same as that in Wu (1986) and Härdle and Mammen (1993)

and the justification of its asymptotic validity is standard. See, e.g., Su, Jin, and Zhang

(2015) and Su, Hoderlein, and White (2015).

We will consider various sample sizes. When we have two covariates, we let n change from

50 to 400; when we have 5 or more covariates, we let n change from 200 to 800. The number

of bootstrap resamples is 400 and the number of replications is 1000 in each scenario.

2.4.3 Simulation Results

We report the simulation results in Table 1-3 for DGP1(m)-DGP3(m) , respectively, where

the nominal significance levels are given by 0.01, 0.05, and 0.1. Table 1 reports the empirical
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levels of the four tests for DGP1(m) with different numbers of covariates. The findings are

interesting. First, when the number of covariates is small (m = 2) , all four tests perform quite

well in terms of empirical level for the number of observations as small size as 50, and the

empirical levels generally improve as n increases. Second, as m increases, the levels for both

HM and ICM tests diminish rapidly to zero and the degeneracy of the levels does not improve

when the sample size increases from 200 to 800. This indicates that either the HM test or the

ICM test has severe size distortions due to the curse of dimensionality in nonparametrics. In

particular, the HM test requires nonparametric estimation under the alternative. Third, both

MDD and Z&LW tests perform very well unless m is too big (20) and n is small (200) . As

for the Z&LW test, even though it is a kernel-based nonparametric tests, it doesn’t require

the estimation of the regression model under the alternative. Perhaps, this explains why it is

not sensitive to the number of covariates. Overall, our MDD dominates the other three tests

in terms of empirical level.

Table 2 reports the empirical power for DGP2(m) when m takes different values. We

summarize some findings from Table 2. First, the ICM test has reasonable power when

m = 2. But as m increase, the ICM test does not have any power to detect local deviations

from the null. It is even inferior to the two kernel-based tests (Z&LW and HM) which have

power to detect local alternatives converging to the null at slower rate than n−1/2. Second,

HM test has certain power when m increases from 2 to 5 but it loses power when m increases

further. This is consistent with its empirical level behavior. Third, as expected both MDD

and Z&LW tests have power even in the presence of a large number of covariates. In general,

our MDD test dominates the Z&LW test in terms of local empirical power. This is also

consistent with the theory because our test can detect n−1/2-local alternatives while Z&LW

test can detect local alternatives converging to the null at a slower rate than n−1/2. In sum,

for the usual n−1/2-local alternatives, our MDD test outperforms all of its competitors under

investigation.

Table 3 reports the empirical power for DGP3(m) when the alternatives are at different

frequencies. First, when the frequency is low (m = 1/2) or moderate (m = 1) , all four tests

have reasonable power. Second, when the frequency is low and the sample is small, the ICM

test performs fairly well and it outperforms the Z&LW and HM tests. Third, the ICM test

does not have power in the high-frequency case as expected. Fourth, our MDD test is almost

always the best of all.

In summary, our MDD test generally has well-controlled size and it is not sensitive to the

inclusion of many covariates in the regression model. It also has higher empirical power than

its competitors against both local alternatives and global alternatives.
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2.4.4 Testing Nonlinear Functional Form

In the previous part, we have shown the robust performance of our MDD test for the linear

null hypothesis. Before implementing our test to the application of testing gravity equation,

we offer some evidences for its performance in the nonlinear cases. We are attempt to obtain

the simulated size and power by imitating the structure of the real data. It’s worth noticing

that the simulation results will only give us a glimpse of comparison between different tests

rather than solid evidences. However, we can still get some useful insights.

Data Generating Process

The parent sample is from Rose (2005) which is described in Table 5 and summarized in

Table 6. We try to generate covariates sample of similar structure from simple random

number generators, and then generate the dependent variable by the specified model and

the estimated parameters. Table 5 shows that the number of observation in Data I (Rose

(2005)) is 13974. While we will only consider the cases where the simulated sample size

ranges from 100 to 800. There are two reasons why we shrink the sample. The first reason

is that the computation is heavy when we consider large samples; the second reason is that

the dependence between covariates in the real data will reduce the information that the

sample contained. Table 6 shows that in the model we have one dependent variable trade

and fifteen independent variables. The meaning of these variables is discussed in the next

section. The value of dependent variable is strictly positive. Among the fifteen covariates, we

have six continuous variables and nine discrete variables. In the following simulation process,

the nine discrete variables are simplified to independent Bernoulli random variables with the

same mean since the incidence for landl and island equaling two are trivial (1.4% and 4.3%

respectively). For the six continuous covariates, lyi and lyj are independently generated from

the same distribution, and the same are lyhi and lyhj.

Figure 1 shows the histograms and the estimated kernel densities of four continuous vari-

ables: lyi, lyhi, ldist and landap. It can be seen that lyhi and landap are nearly normally

distributed, ldist is likely to be lognormally distributed, and lyi is bimodal-normally dis-

tributed. Our data generating process is based on these observations. The histograms in

Figure 2 show the density of parent sample which are the same as those in Figure 1. Note

that the left-upper figure are rescaled. After using maximum likelihood method to fit the

data, we obtain the parameters used for data generating process. lyi (lyj) is generated by

bimodal normal density 0.85N (8.26, 0.972) + 0.15N (9.92, 0.052), lyhi (lyhj) is generated by

normal density N (−0.45, 2.342), ldist is generated by lognormal density logN (2.10, 0.102),
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and landap is generated by normal density N (0.59, 3.652). The density functions are shown

as the curves in Figure 2.

The specified model we consider is a multiplicative error model

Trade i = exp (x′iβ) εi, i = 1, . . . , n

where εi is the random error independently generated from |N (0, σ2) |, a truncated normal

distribution with mean 1, where σ =
√

πe
2

and e is the Euler’s number. In the following

simulation, the value of n varies case by case. In Figure 3, we set n = 400. Figure 3 shows the

density of statistics for the simulated data and the corresponding value of statistics for the

parent sample. Five statistics are considered: the mean, the standard deviation, the median,

the minimum, and the maximum. Instead of using the specified model, we generate the data

using a slightly different model

Trade i = [exp (x′iβ) + n−1/2δ exp (x̃′iι)]εi, i = 1, . . . , n

where x̃i is a subset of xi which contains the six continuous covariates and ι is a six-dimensional

column vector of ones. δ, a scalar, is used for standardizing the local alternatives. In our

simulation, δ =
std(exp(x′iβ))
std(exp(x̃′iι))

. The curves represent the estimated kernel density function

of corresponding statistics for log (Trade i). The vertical straight lines are the value of cor-

responding statistics for the parent sample. We can see that the simulated log dependent

variable is well approximated. The interesting part is that all the five critical statistics are

generated with reasonable ranges in contrast to the real data. In this way, we conclude that

the parent sample is well approximated by our data generating process.

Specification Testing

The null hypothesis and the local alternative hypotheses we consider are

H0 : E(Trade i|Xin) = exp (x′iβ)

H1(n−1/2) : E(Trade i|Xin) = exp (x′iβ) + cn−1/2δ exp (x̃′iι)

The data generating processes for the null hypotheses and the local alternative hypotheses

are specified as

DGP4 : Tradei = exp (x′iβ) εi

DGP5(c) : Tradei =
[
exp (x′iβ) + cn−1/2δ exp (x̃′iι)

]
εi
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where εi ∼ |N (0, πe/2) |. x̃i is a subset of xi which contains the six continuous covariates

and ι is a six-dimensional column vector of ones. The number of observations n = 100, 200,

400, and 800. δ, a scalar, is used for standardizing the local alternatives. In our simulation,

δ =
std(exp(x′iβ))
std(exp(x̃′iι))

and c = 1 or 2. The simulation results are shown in Table 4. All the results

are in 0.05 significance level.

From the first two columns we have that only our MDD test has the reasonable sizes for

small samples, n = 100 and 200. When the sample is large, n = 400 and 800, we can see that

only MDD test and Z&LW test have nontrivial power. HM test and ICM test basically fail

in this case. These results coincide with the previous results of linear cases in Table 2 when

we have many covariates.

2.5 Testing the Functional Form in Gravity Equations

In this section we apply our test to various datasets that are used to study the gravity

equations in economics.

2.5.1 Model

Since its introduction by Tinbergen (1962), the gravity model has been widely used in inter-

national economics to explain the flows of international and subnational trade. Theoretical

considerations on the proper use and deviations from the gravity model have been a topic of

considerable interest in the literature; see Feenstra, Markusen, and Rose (2001), Anderson

and van Woncoop (2003), Henderson and Millimet (2008), among others. Kepaptsoglou, Kar-

laftis, and Tsamboulas (2010) review the empirical literature on gravity models from 1999 to

2009.

Of our particular interest is the functional form specification in gravity models. Following

Anderson and van Woncoop (2003) and Santos Silva and Tenreyro (2006), we use Tij to

denote the bilateral trade flow between country/region i and country/region j. In its simplest

form, Tij, is proportional to the two countries’ GDPs, denoted by Yi and Yj, and inversely

proportional to their distance, Dij. More generally, we have

Tij = α0Y
α1
i Y α2

j Dα3
ij ,

where α0, α1, α2, and α3 are unknown parameters. In practice, researchers often control other

country characteristics and consider two empirical stochastic versions of Tij, which are called
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the level model and the log model (see Henderson and Millimet (2008)):

Level Model: E(Tij|Yi, Yj, Dij, Xij) = α0Y
α1
i Y α2

j Dα3
ij exp(X ′ijγ), (2.5.1)

Log Model: E(log Tij|Yi, Yj, Dij, Xij) = β0 + β1 log Yi + β2 log Yj + β3 logDij +X ′ijγ,(2.5.2)

where β0, β1, β2, and β3 are unknown scalars, Xij is a vector of other covariates, and γ is a

unknown vector.

The linearity in the log model (2.5.2) simplifies the estimation procedure. Santos Silva

and Tenreyro (2006, ST hereafter) highlight various issues associated with the gravity esti-

mations estimated in log form. For example, the OLS estimation of the log model would be

problematic when there are many zeros of Tij. By omitting observations with zero values

of trade, the estimates are subject to the notorious sample selection bias. In addition, the

log-linear specification also generates systematic bias as a consequence of Jensen’s inequality.

These problems can be overcome by estimating the level equation in (2.5.1) using nonlinear

estimator. ST propose the Poisson pseudo-maximum-likelihood (PPML) estimator based on

the level model that becomes the new fashion in trade to estimate the gravity equation (c.f.,

Bosquet and Boulhol (2009)). It is shown that heteroskedasticity in the multiplicative error

in the level model makes the log-model-based estimator biased. Since the model specification

assumption is imperative in their analysis, they compare the PPML estimator with several

other methods and apply the Ramsey’s (1969) RESET method to test for the functional

form. Nevertheless, it is well known that the RESET test is an inconsistent test, can only be

used to test for neglected nonlinearity in linear models, and should be replaced by consistent

specification tests to ensure reliable inferences.

Below we will apply our MDD test and its competitors to test the correct specification of

the gravity equations in both level and log forms. Since the gravity equations can be estimated

with both panel and cross-sectional models and data, one should conduct the analysis for both

types of model and data. But because we have only developed our specification test theory for

cross-sectional data (and the other nonparametric tests are mainly studied for cross-sectional

or time series data but not for panel data), we will follow Henderson and Millimet (2008) and

focus on the cross-sectional model and data below and leave the case of panel data for future

research.
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2.5.2 Data

We consider four datasets, which are summarized in Tables 5-9.2Table 5 gives brief descrip-

tions of these datasets.3 Tables 6-9 report the summary statistics for these four datasets,

respectively.

The first dataset is used in Rose (2004) and it covers bilateral trade flow for 180 countries

from 1980-2000. Martinez-Zarzoso (2013) uses the data of year 1990 to evaluate different

estimation methods for the gravity models and to test the model specification with Park-type

tests, which are, again, not consistent. In order to compare with the results in Martinez-

Zarzoso (2013), we also use only the data for year 1990.

The second dataset is taken from ST. It covers bilateral trade flow for 136 countries in

year 1990. The major difference between this dataset and the first one is that the value of

bilateral trade is allowed to be zero here but not in the first dataset. Because of the zero-value

of trade flow, one cannot directly log-transform the dependent variable. The general practical

solution is to add a small number, like 1 in our case, to make it always positive. It is worth

noticing that both the first and second datasets contain about a dozen of covariates.

The third dataset is from Glick and Rose (2002). It covers bilateral trade flow for 132

countries from 1948-1997. Henderson and Millimet (2008) use the data of year 1995 to

compare the performance of the log and level models. Thus we only consider the data of year

1995 as well. It contains less number of observations and less number of covariates than the

first two datasets.

The last dataset is from Millimet and Osang (2007) and it covers 96 U.S. states from

1993-1997. Henderson and Millimet (2008) also utilize this dataset. We only use the data of

year 1997 that contains about two thousand observations and five covariates.

For consistency, we unify the variable names across the four datasets; trade denotes the

level value of total exports from one country/state to the other; lyex (lyim) and lypex (lypim)

denote income and income per capita in the exporter (importer) after taking log; ldist denotes

the log of geographic distances between two districts. border is a dummy variable that takes

value one if a common border is shared and zero otherwise; comlang is a dummy that is one

if a common language is shared and zero otherwise; colony is a dummy that is one if they are

colonized each other and zero otherwise; landl is the number of landlocked districts in the

2For more datasets, we refer the readers to Kepaptsoglou, Karlaftis, and Tsamboulas (2010).
3The first and the third datasets are both downloaded from Andrews Rose’s website:

http://faculty.haas.berkeley.edu/arose/. the second dataset is downloaded from the “Log of gavity”
webpage: http://personal.lse.ac.uk/tenreyro/LGW.html. The fourth dataset is downloaded from the data
archive of Journal of Applied Econometrics: http://qed.econ.queensu.ca/jae/. The authors are grateful to
Reuven Glick, Daniel Henderson, Daniel Millimet, Andrews Rose, Santos Silva, and Silvana Tenreyro for
making the data available.
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pair; landl ex (land im) is a dummy that is one if the exporter (importer) is landlocked and

zero otherwise; island is zero if they are neither islands, one if one of them is island, and two

if both of them are islands; landap is the total area of both districts after taking log; comfrt

is a dummy that is one when the trading partners belong the the same trade agreement and

zero otherwise; custrict is a dummy that is one when the trading partners share a common

currency and zero otherwise; comcol is a dummy that is one if they were ever colonies after

1945 with the same colonizer and zero otherwise; lremo ex (lremo im) is the log value of

exporter’s (importer’s) remoteness as described in ST; open is a dummy that is one if one of

them is in a preferential-trade agreement; and home is a dummy for intrastate trade.

2.5.3 Test Results

We implement the four model specification tests as considered in the simulation section. Table

10 show the test results for the level model and the log model.

For the log model, we summarize the findings as follows. First, both our MDD test

and Z&LW test reject the log model at all conventional significance levels (0.01, 0.05, and

0.10). This is consistent with our simulation findings as both tests have well behaved size and

reasonable power in various scenarios. Second, despite the low power of the HM test in the

case of many covariates and the inconsistency of the RESET test, both tests also reject the

log model for all four datasets. Third, the ICM test yields different conclusions for different

datasets at the 5% significance level. For example, it fails to reject the log model for datasets

I and IV and rejects the log model for datasets II and III. We conjecture that the failure of

rejection may be due to the serious under-size distortion and low power property of this test.

In sum, across the top panel of Table 10, we can conclude that the log model can be safely

rejected.

For the level model, the findings are mixed. First, our MDD test reject the level model

for all four datasets at 10% significance level, which shows its coherent performance among

different datasets. In particular, it reject the level model for the Data I, II, and III at 1%

significance level. Second, all the other three tests deliver different conclusions for different

datasets. For example, the two kernel-based nonparametric tests, Z&LW test and HM test,

reject the level model at the 1% level for datasets I and II and fail to reject the level model at

the 5% level for datasets III and IV, but these two tests yield different conclusions for dataset

IV at the 10% significance level. In addition, the ICM test fail to reject the level model at

the 5% level for all four datasets but can reject the level model at the 10% level for Data III.

The findings based upon our MDD test is inconsistent with ST’s findings that support the

level model and the results in Henderson and Millimet (2008) and Martinez-Zarzoso (2013)
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that support both models, which may be due to the lack of power of their tests.

2.6 Conclusion

In this paper we have proposed a novel consistent model specification test based on the MDD

of the error term given the covariates. The MDD equals zero if and only if error term is

conditionally mean independent of the covariates. It does not require any nonparametric

estimation under the null or alternative and is applicable even if we have many covariates in

the regression model. We have established the asymptotic distributions of our test statistic

under the null and under a sequence of Pitman local alternatives converging to the null at the

usual parametric rate. Simulations demonstrate that our MDD test has a superb performance

and generally dominates its competitors in a variety of scenarios. We apply our test to study

the correct specification of functional form in gravity equations for both the level and log

models. For all the datasets, we reject the log and level model coherently at 10% significance

level. However, its competitors show mixed testing results for different datasets.

Several extensions are possible. First, it is easy to extend our method to test the correct

specification of a semiparametric models, e.g., partially linear, additive, or single index mod-

els. In this case, one needs to estimate the semiparametric model under the null and apply

undersmoothing to ensure that the bias in the semiparametric estimation is asymptotically

vanishing. Second, one can extend our test to test for the correct specification of a conditional

mean model in panel data models where complication arises due to the presence of unobserved

individual heterogeneity. Third, we conjecture that it is also possible to extend the distance

covariance or MDD to measure the dependence between two random vectors/variables con-

ditional on a third one that is dimension-free. Recently there is a growing interest in testing

conditional independence; see, e.g., Su and White (2007, 2008, 2014), Song (2009), Linton

and Gozalo (2014), and Huang, Sun, and White (2016). But all of these tests are subject

to the curse of dimensionality issue and are generally not applicable when the dimension of

conditioning variable is large (e.g., larger than 6). So it is worthwhile to consider a dimension-

free measure of conditional dependence based on which a sample analogue can be constructed

and used to test for the null of conditional independence. We leave these topics for future

research.
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2.7 Appendix

2.7.1 Proof of the results

Proof of Proposition 2.2.1. (i) Note that

MDD∗ (ε|X)2 = −E
[
εε†
∥∥X −X†∥∥]+ 2E

[
ε
∥∥X −X†∥∥]E [ε†]

= −E
{

[ε− E (ε)]
[
ε† − E

(
ε†
)] ∥∥X −X†∥∥}+ [E (ε)]2 E

[∥∥X −X†∥∥]
= MDD (ε|X)2 + [E (ε)]2 E

[∥∥X −X†∥∥] . (2.7.1)

The moment conditions in the proposition imply that MDD∗ (ε|X)2 is finite by the Cauchy-

Schwarz and triangle inequalities. The first term in (2.7.1) is nonnegative by Theorem 1 in

Shao and Zhang (2014) and the second term is nonnegative. It follows that MDD∗ (ε|X)2 ≥ 0.

(ii) First, MDD(ε|X)2 = 0 if and only if E (ε|X) = E (ε) a.s. by Theorem 1 in Shao and

Zhang (2014). If E (ε|X) = 0 a.s., then E (ε) = 0 by the law of iterated expectations and

both terms in (2.7.1) are zero, implying that MDD∗ (ε|X)2 = 0. If MDD∗ (ε|X)2 = 0, we have

MDD(ε|X)2 = [E (ε)]2 = 0, implying that E (ε|X) = E (ε) = 0. �

To prove Theorem 2.3.1, we suppress the dependence of (Yin, Xin, εin) on n and write it sim-

ply as (Yi, Xi, εi) . Let ξi ≡ {(X ′i, εi)′. Recall that κi,j = ‖Xi −Xj‖ , giβ(β) = ∂g(Xin; β)/∂β,

giβ = giβ(β0), S (β) = limn→∞ E [giβ(β)giβ(β)′] , S = S (β0) , S0 = limn→∞
1
n

∑n
i=1 E (giβ) ,

S1 = limn→∞
1
n2

∑n
i=1

∑n
j=1 E (giβκi,j) , and S2 = limn→∞

1
n2

∑n
i=1

∑n
j=1 E

(
giβg

′
jβκi,j

)
. Let

µκ ≡ E (κ1,2) and giββ(β) = ∂2g(Xi;β)
∂β∂β′

. Let Ei denotes expectation with respect to variables

indexed by i only and Ei,j denotes expectation with respect to variables indexed by i and j

only. For example, Ei (κi,j) = E (κi,j|Xj) when i 6= j and E1,2 (κ1,iκ2,i) = E (κ1,iκ2,i|Xi) when

i 6= 1, 2.

Proof of Theorem 2.3.1. Since ε̂i = Yi − Ŷi = g(Xi; β) − g(Xi; β̂) + εi = εi − ri where

ri ≡ g(Xi; β̂)− g(Xi; β), we decompose Tn as follows

Tn = − 1

n

∑∑
1≤i 6=j≤n

(εi − ri)(εj − rj)κi,j +
2

n

∑∑
1≤i 6=j≤n

(εi − rj)κi,j
1

n

∑
k

(εk − rk)

= − 1

n

∑∑
1≤i 6=j≤n

εiεjκi,j +
2

n

∑∑
1≤i 6=j≤n

εiκi,j
1

n

∑
k

εk +
2

n

∑∑
1≤i 6=j≤n

εirjκi,j −
2

n

∑∑
1≤i 6=j≤n

εiκi,j
1

n

∑
k

rk

− 2

n

∑∑
1≤i 6=j≤n

riκi,j
1

n

∑
k

εk −
1

n

∑∑
1≤i 6=j≤n

rirjκi,j +
2

n

∑∑
1≤i 6=j≤n

riκi,j
1

n

∑
k

rk

≡ Tn1 + Tn2 + Tn3 + Tn4 + Tn5 + Tn6 + Tn7, say.
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Lemmas 2.7.1-2.7.7 below establish the asymptotic properties of Tnm, m = 1, . . . , 7.

Lemma 2.7.1. Tn1 = −n
(
n
2

)−1 ∑∑
1≤i<j≤n

h1(ξi, ξj) + op(1) = Op (1), where h1(ξi, ξj) = εiεjκi,j.

Proof. Tn1 = −n−1
n
× nUn1, where Un1 =

(
n
2

)−1 ∑∑
1≤i<j≤n

ψ(1)(ξi, ξj) and ψ(1)(ξi, ξj) = εiεjκi,j.

Apparently, ψ(1) is symmetric in its two arguments, E1

[
ψ(1)(ξ1, ξ2)|ξ2

]
= 0, and

E
[
ψ(1)(ξ1, ξ2)2

]
= E

[
ε2

1ε
2
2 ‖X1 −X2‖2] ≤ 4E

[
ε2

1ε
2
2 ‖X1‖2] = 4E

[
ε2

1 ‖X1‖2]E [ε2
2

]
<∞

by Assumptions A.1 and A.3. So Un1 is a second order degenerate U-statistic satisfying the

conditions of Theorem 1 in Section 3.2.2 of Lee (1990, pp. 79-80). It follows that

nUn1
d→
∞∑
ν=1

λ(1)
ν (Z2

ν − 1),

where Zν ’s are IIDN (0, 1) and λ
(1)
ν ’s are the eigenvalue of the integral equation

∫
ψ(1)(ξ1, ξ2)f (ξ2) dF (ξ2)

= λf (ξ1) with f and F being the probability density function (PDF) and cumulative dis-

tribution function (CDF) of ξi, respectively. Consequently, Tn1 = −n
(
n
2

)−1 ∑∑
1≤i<j≤n

h1(ξi, ξj) +

op(1) = Op (1) , where h1(ξi, ξj) = εiεjκi,j.

Lemma 2.7.2. Tn2 − 2Eε2
1κ1,2 = n

(
n
2

)−1 ∑∑
1≤i<j≤n

h2(ξi, ξj) + op(1) = Op (1), where h2(ξi, ξj) =

εiεj[E1(κi,1) + E1(κj,1)].

Proof. First, we make the following decomposition:

Tn2 =
2

n

∑∑
1≤i 6=j≤n

εiκi,j
1

n

n∑
k=1

εk

=
2

n2

∑∑
1≤i 6=j≤n

ε2
iκi,j +

2

n2

∑∑
1≤i 6=j≤n

εiεjκij +
2

n2

∑∑∑
1≤i 6=j 6=k≤n

εiεkκi,j

≡ Tn21 + Tn22 + Tn23, say.

By the law of large numbers (LLN) for the second order U-statistic, Tn21 = 2E (ε2
1κ1,2) +

op(1). By Lemma 2.7.1, Tn22 = − 2
n
Tn1 = Op

(
1
n

)
. Next, notice that Tn23 = n(n−1)(n−2)

n3 ×
nUn2 where Un2 =

(
n
3

)−1 ∑∑∑
1≤i<j<k≤n

ψ(2)(ξi, ξj, ξk) and ψ(2)(ξi, ξj, ξk) = 1
3
(εiεkκi,j + εiεjκi,k +

εjεkκj,k + εjεiκj,k + εkεiκj,k + εkεjκi,k). Noting that ψ(2) is symmetric in its three arguments,

E[ψ(2)(ξ1, ξ2, ξ3)] = 0, E[ψ(2)(ξ1, ξ2, ξ3)|ξ1] = 0, and E
[
ψ(2)(ξ1, ξ2, ξ3)|ξ1, ξ2

]
= 1

3
ε1ε2[(E3 (κ1,3)+
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E3 (κ2,3)] ≡ h
(2)
2 (ξ1, ξ2). Let h

(2)
3 (ξ1, ξ2, ξ3) = ψ(2)(ξ1, ξ2, ξ3)−[h

(2)
2 (ξ1, ξ2)+h

(2)
2 (ξ1, ξ3)+h

(2)
2 (ξ2, ξ3)].

By the Hoeffding’s decomposition (e.g., Lee (1990, p.26)), we have

Un2 = 3H
(2)
2n +H

(2)
3n ,

where H
(2)
2n =

(
n
2

)−1 ∑∑
1≤i<j≤n

h
(2)
2 (ξi, ξj) and H

(2)
3n =

(
n
3

)−1 ∑∑∑
1≤i<j<k≤n

h
(2)
3 (ξi, ξj, ξk). By moment

calculations, E[H
(2)
3n ] = 0 and Var[H

(2)
3n ] = O (n−3) , implying that H

(2)
3n = Op

(
n−3/2

)
. In

addition, H
(2)
2n is a standard second order degenerate U-statistic such that nH

(2)
2n = Op (1) . It

follows that

Tn23 = n

(
n

2

)−1∑∑
1≤i<j≤n

h2(ξi, ξj) +Op(n
−1/2) = Op (1) ,

where h2(ξi, ξj) = εiεj[E1(κi,1)+E1(κj,1)]. Combining these results, we have Tn2−2E (ε2
1κ1,2) =

n
(
n
2

)−1 ∑∑
1≤i<j≤n

h2(ξi, ξj) + op(1) = Op (1) .

Lemma 2.7.3. Tn3−2E
(
ε2

1κ1,2g
′
1βS

−1g2β

)
= n

(
n
2

)−1 ∑∑
1≤i<j≤n

h3(ξi, ξj)+op(1), where h3(ξi, ξj) =

εiεj ×[g′jβS
−1E1(g1βκi,1) + g′iβS

−1E1(g1βκj,1)].

Proof. By the second order Taylor expansion,

ri = g(Xi; β̂)− g(Xi; β0) = g′iβ(β̂ − β0) +
1

2
(β̂ − β0)′giββ(β̆)(β̂ − β0), (2.7.2)

where β̆ lies between β̂ and β0 elementwise. It follows that

Tn3 =
2

n

∑∑
1≤i 6=j≤n

εirjκi,j

=
(
β̂ − β0

)′ 2

n

∑∑
1≤i 6=j≤n

gjβεiκi,j +
(
β̂ − β0

)′ 1

n

∑∑
1≤i 6=j≤n

gjββ(β̆)(β̂ − β0)εiκi,j

≡ Tn31 + Tn32.

By Assumption A.1-A.3, we can readily show that 1
n

∑∑
1≤i 6=j≤n

gjβεiκi,j = Op

(
n1/2

)
and β̂−β0 =

Op

(
n−1/2

)
. Then we have Tn31 = T̄n31 + op (1) , where

T̄n31 =
2

n2

n∑
k=1

εkg
′
kβS

−1
∑∑
1≤i 6=j≤n

gjβεiκi,j.
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Next, we make the following decomposition:

T̄n31 =
2

n2

∑∑
1≤i 6=j≤n

ε2
i g
′
iβS
−1gjβκi,j +

2

n2

∑∑
1≤i 6=j≤n

εiεjg
′
jβS

−1gjβκi,j +
2

n2

∑∑∑
1≤i 6=j 6=k≤n

εiεkg
′
kβS

−1gjβκi,j

≡ Tn31,1 + Tn31,2 + Tn31,3.

Using the WLLN for U-statistics, we can readily show that Tn31,1 = 2E
[
ε2

1κ1,2g
′
1βS

−1g2β

]
+

op(1) and Tn32 = op(1). Next, notice that Tn31,3 = n(n−1)(n−2)
n3 ×nUn3 where Un3 =

(
n
3

)−1 ∑∑∑
1≤i<j<k≤n

ψ(3)(ξi, ξj, ξk)

and ψ(3)(ξi, ξj, ξk) = 1
3
(εiεkg

′
jβS

−1gkβκi,j+εiεjg
′
kβS

−1gjβκi,k+εjεkg
′
iβS
−1gkβκi,j +εjεig

′
kβS

−1giβκk,j

+εkεig
′
jβS

−1giβκk,j+εkεjg
′
iβS
−1gjβκk,i) . Using Hoeffding-decomposition method, we can read-

ily show that Un3 =
(
n
2

)−1 ∑∑
1≤i<j≤n

h3(ξi, ξj)+Op(n
−3/2), where h3(ξi, ξj) = εiεj[gjβS

−1Ej(g′jβκi,j)+

giβS
−1Ei(g′iβκi,j)] for i 6= j. Then Tn31,3 = n

(
n
2

)−1 ∑∑
1≤i<j≤n

h3(ξi, ξj) + op(1) and

Tn31 − 2E
[
ε2

1κ1,2g
′
1βS

−1g2β

]
= n

(
n

2

)−1∑∑
1≤i<j≤n

h3(ξi, ξj) + op(1).

For any ε > 0, we can apply Assumption A.3(i), the Markov inequality and the dominated

convergence theorem to show that

P

(
max
1≤j≤n

∣∣∣∣∣ 1n
n∑
i=1

εiκi,j

∣∣∣∣∣ ≥ ε

)
≤ n max

1≤j≤n
P

(∣∣∣∣∣
n∑

i=1,j 6=i

εiκi,j

∣∣∣∣∣ ≥ nε

)

≤ 1

ε4
max
1≤j≤n

E

∣∣∣∣∣ 1√
n

n∑
i=1,j 6=i

εiκi,j

∣∣∣∣∣
2

1

{∣∣∣∣∣
n∑
i=1

εiκi,j

∣∣∣∣∣ ≥ nε

}
= o (1) .

It follows that max1≤j≤N
∣∣ 1
n

∑n
i=1 εiκi,j

∣∣ = op (1) . Then by Assumption A.3(ii) and the fact

that β̂ − β0 = Op

(
n−1/2

)
, we have

Tn32 =
(
β̂ − β0

)′ 1

n

∑∑
1≤i 6=j≤n

gjββ(β̆)(β̂ − β0)εiκi,j

=
(
β̂ − β0

)′ 1

n

n∑
j=1

gjββ(β̆)(β̂ − β0)
n∑
i=1

εiκi,j

≤ max
1≤j≤N

∣∣∣∣∣ 1n
n∑
i=1

εiκi,j

∣∣∣∣∣
{
n
∥∥∥β̂ − β0

∥∥∥2
}
{‖H‖+ oP (1)}
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= op (1)Op (1)Op (1) = op (1) .

where the second equality follows because κi,j = 0 when i = j. Consequently, Tn3−2E
(
ε2

1κ1,2g
′
1βS

−1g2β

)
=

n
(
n
2

)−1 ∑∑
1≤i<j≤n

h3(ξi, ξj) + op(1).

Lemma 2.7.4. Tn4+2E
(
ε2

1κ1,2g
′
1βS

−1g3β

)
= n

(
n
2

)−1 ∑∑
1≤i<j≤n

h4(ξi, ξj)+op(1), where h4(ξi, ξj) =

−εiεj ×[g′jβS
−1E1,2(g1βκi,2) + g′iβS

−1E1,2(g1βκj,2)].

Proof. By (2.7.2) we have

Tn4 = − 2

n

∑∑
1≤i 6=j≤n

εiκi,j
1

n

n∑
k=1

rk

= − 2

n2

∑∑
1≤i 6=j≤n

εiκi,j

n∑
k=1

g′kβ(β̂ − β0)− 1

n2

∑∑
1≤i 6=j≤n

εiκi,j

(
β̂ − β0

)′ n∑
k=1

gkββ(β̆)(β̂ − β0)

≡ Tn41 + Tn42.

Noting that 1
n2

∑∑
1≤i 6=j≤n

εiκi,j = Op

(
n−1/2

)
, we can readily show that Tn41 = T̄n41 + op (1) ,

where

T̄n41 = − 2

n3

∑∑
1≤i 6=j≤n

εiκi,j

n∑
k=1

g′kβS
−1

n∑
l=1

glβεl

= − 2

n3

∑∑∑∑
1≤i 6=j 6=k 6=l≤n

εiεlκi,jg
′
kβS

−1glβ −
2

n3

∑∑∑
1≤i 6=j 6=k≤n

ε2
iκi,jg

′
kβS

−1giβ +Op(n
−1/2).

≡ Tn41,1 + Tn41,2 +Op(n
−1/2).

Write Tn41,1 = n(n−1)(n−2)(n−3)
n4 ×nUn4, where Un4 =

(
n
4

)−1∑∑∑∑
1≤i<j<k<l≤n

ψ(4)(ξi, ξj, ξk, ξl), ψ
(4)(ξi, ξj, ξk, ξl)

= − 1
12

∑
4! εiεjκi,lg

′
kβS

−1gjβ, and
∑

4! denotes the summation over all the 4! kinds of permuta-

tion of {i, j, k, l}. By Hoeffding decomposition, we can readily show that Un4 =
(
n
2

)−1 ∑∑
1≤i<j≤n

h4(ξi, ξj)+

Op(n
−3/2), where h4(ξi, ξj) = −εiεj[g′jβS−1E1,2(g1βκi,2) + ∇g′iS−1E1,2(g1βκj,2)]. In addition,

Tn41,2 = −2E
(
ε2

1κ1,2g
′
1βS

−1g3β

)
+ op(1). It follows that

Tn4,1 + 2E
(
ε2

1κ1,2g
′
1βS

−1g3β

)
= n

(
n

2

)−1∑∑
1≤i<j≤n

h4(ξi, ξj) + op(1).
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For Tn42, we have

Tn42 ≤

∣∣∣∣∣ 1

n2

∑∑
1≤i 6=j≤n

εiκij

∣∣∣∣∣
{
n
∥∥∥β̂ − β0

∥∥∥2
}
{‖H‖+ op (1)} = Op

(
n−1/2

)
Op (1)Op (1) = Op

(
n−1/2

)
.

Consequently, we have Tn4 + 2E
(
ε2

1κ1,2g
′
1βS

−1g3β

)
= n

(
n
2

)−1 ∑∑
1≤i<j≤n

h4(ξi, ξj) + op(1).

Lemma 2.7.5. Tn5+2E
(
ε2

1κ2,3g
′
1βS

−1g3β

)
= n

(
n
2

)−1 ∑∑
1≤i<j≤n

h5(ξi, ξj)+op(1), where h5(ξi, ξj) =

−εiεj(giβ +gjβ)′S−1E (g1βκ1,2).

Proof. Note that

Tn5 = − 2

n

∑∑
1≤i 6=j≤n

riκi,j
1

n

n∑
k=1

εk

= − 2

n

∑∑
1≤i 6=j≤n

g′iβ(β̂ − β0)κi,j
1

n

n∑
k=1

εk − (β̂ − β0)′
1

n

∑∑
1≤i 6=j≤n

giββ(β̆)(β̂ − β0)κi,j
1

n

n∑
k=1

εk

≡ Tn51 + Tn52.

Noting that 1
n

∑n
k=1 εk = Op

(
n−1/2

)
, we can readily show that Tn51 = T̄n51 + op (1) ,

T̄n51 = − 2

n3

∑∑
1≤i 6=j≤n

g′iβS
−1

n∑
k=1

gkβεkκi,j

n∑
l=1

εl

= − 2

n3

∑∑∑∑
1≤i 6=j 6=k 6=l≤n

εkεlκi,jg
′
iβS
−1gkβ −

2

n3

∑∑∑
1≤i 6=j 6=k≤n

ε2
kκi,jg

′
iβS
−1gkβ +Op(n

−1/2)

= Tn51,1 + Tn51,2 +Op(n
−1/2),

Write Tn51,1 = n(n−1)(n−2)(n−3)
n4 ×nUn5 and Un5 =

(
n
4

)−1∑∑∑∑
1≤i<j<k<l≤n

ψ(5)(ξi, ξj, ξk, ξl), ψ
(5)(ξi, ξj, ξk, ξl) =

− 1
12

∑
4! εiεjκk,l∇g′iS−1∇gk, and

∑
4! denotes the summation over all the 4! kinds of permu-

tation of {i, j, k, l}. By Hoeffding decomposition, Un5 =
(
n
2

)−1 ∑∑
1≤i<j≤n

h5(ξi, ξj) + Op(n
−3/2),

where h5(ξi, ξj) = −εiεj(giβ+gjβ)′S−1E (g1βκ1,2). Then Tn51 = n
(
n
2

)−1 ∑∑
1≤i<j≤n

h5(ξi, ξj)+op(1).

In addition, Tn51,2 = −2E
(
ε2

1κ2,3g
′
1βS

−1g3β

)
+ op(1). Therefore,

Tn51 + 2E
(
ε2

1κ2,3g
′
1βS

−1g3β

)
= n

(
n

2

)−1∑∑
1≤i<j≤n

h5(ξi, ξj) + op(1).

Following the analysis of Tn42, we can readily show that Tn52 = Op

(
n−1/2

)
. Consequently, the
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lemma follows.

Lemma 2.7.6. Tn6+E
(
ε2
i g
′
iβS
−1S2S

−1giβ
)

= n
(
n
2

)−1 ∑∑
1≤i<j≤n

h6(ξi, ξj)+op(1), where h6(ξi, ξj) =

−εiεj ×g′iβS−1S2S
−1gjβ.

Proof. Using (2.7.2), the fact that β̂−β0 = Op

(
n−1/2

)
and Assumptions A.2 and A.3(iii), we

can readily show that

Tn6 = − 1

n

∑∑
1≤i 6=j≤n

rirjκi,j

= −(β̂ − β0)′
1

n

∑∑
1≤i 6=j≤n

giβg
′
jβκi,j(β̂ − β0) +Op

(
n−1/2

)
= −n(β̂ − β0)′S2(β̂ − β0) + op (1)

= − 1

n

n∑
i=1

εig
′
iβS
−1S2S

−1

n∑
j=1

gjβεj + op (1)

= − 1

n

∑∑
1≤i 6=j≤n

εiεjg
′
iβS
−1S2S

−1gjβ −
1

n

n∑
i=1

ε2
i g
′
iβS
−1S2S

−1giβ + op (1)

≡ Tn61 + Tn62 + op (1) ,

where S2 = limn→∞
1
n2

∑∑
1≤i 6=j≤n

E
(
giβg

′
jβκi,j

)
.Obviously, Tn61 = n(n−1)

n2 n
(
n
2

)−1 ∑∑
1≤i<j≤n

(
−εiεjg′iβS−1S2S

−1gjβ
)

+op(1) = nUn6+op(1) where Un6 =
(
n
2

)−1 ∑∑
1≤i<j≤n

h6(ξi, ξj) and h6(ξi, ξj) = −εiεjg′iβS−1S2S
−1gjβ.

Then Tn61 = n
(
n
2

)−1 ∑∑
1≤i<j≤n

h6(ξi, ξj) + op(1).

In addition, Tn62 = −E
(
ε2
i g
′
iβS
−1S2S

−1giβ
)
+op(1). It follows that Tn6+E

(
ε2
i g
′
iβS
−1S2S

−1giβ
)

= n
(
n
2

)−1 ∑∑
1≤i<j≤n

h6(ξi, ξj) + op(1).

Lemma 2.7.7. Tn7−2E
(
ε2
i g
′
iβS
−1S1S

′
0S
−1giβ

)
= n

(
n
2

)−1 ∑∑
1≤i<j≤n

h7(ξi, ξj)+op(1), where h7(ξi, ξj) =

εiεj
(
g′iβS

−1S1S
′
0S
−1gjβ + g′jβS

−1S1S
′
0S
−1giβ

)
.

Proof. Using (2.7.2) and the fact that β̂ − β0 = Op

(
n−1/2

)
, we can readily show that

Tn7 =
2

n

∑∑
1≤i 6=j≤n

riκi,j
1

n

n∑
k=1

rk

= 2(β̂ − β0)′

 1

n2

∑∑
1≤i 6=j≤n

giβκi,j


n∑
k=1

g′kβ(β̂ − β0) +Op

(
n−1/2

)
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= 2(β̂ − β0)′S1

n∑
k=1

g′kβ(β̂ − β0) + op (1)

=
2

n

n∑
i=1

εig
′
iβS
−1S1

(
1

n

n∑
k=1

g′kβ

)
S−1

n∑
j=1

gjβεj + op (1)

=
2

n

n∑
i=1

εig
′
iS
−1S1S

′
0S
−1

n∑
j=1

gjβεj + op (1)

=
2

n

n∑
i=1

g′iβεiS
−1S1S

′
0S
−1

n∑
j=1

gjβεj + op (1)

=
2

n

∑∑
1≤i 6=j≤n

g′iβεiS
−1S1S

′
0S
−1gjβεj +

2

n

n∑
i=1

ε2
i g
′
iβS
−1S1S

′
0S
−1giβ + op (1)

≡ Tn71 + Tn72 + op (1) .

where S1 = limn→∞
1
n2

∑∑
1≤i 6=j≤n

E (giβκi,j) and S0 = limn→∞
1
n

∑n
i=1 E (giβ) . Apparently, Tn71 =

n(n−1)
n2 × nUn7 + op(1) = nUn7 + op(1) and Tn72 = 2E

(
ε2
i g
′
iβS
−1S1S

′
0S
−1giβ

)
+ op(1), where

Un7 =
(
n
2

)−1 ∑∑
1≤i<j≤n

h7(ξi, ξj), and h7(ξi, ξj) = εiεj(g
′
iβS
−1S1S

′
0S
−1gjβ + g′jβS

−1S1S
′
0S
−1giβ). It

follows that Tn7 − 2E(ε2
i g
′
iβS
−1S1S

′
0 ×S−1giβ) = n

(
n
2

)−1 ∑∑
1≤i<j≤n

h7(ξi, ξj) + op(1).

Combining the results in Lemmas 2.7.1-2.7.7, we have

Tn = B1 + n

(
n

2

)−1∑∑
1≤i<j≤n

7∑
m=1

hm(ξi, ξj),

where each hm is the kernel function of a second-order degenerate U-statistic. Thus n
(
n
2

)−1 ∑∑
1≤i<j≤n

∑7
m=1 hm(ξi, ξj)

is a second-order degenerate U-statistic with kernel
∑7

m=1 hm(ξi, ξj). Then by Dunford and

Schwartz (1963. p. 1087) and Theorems 2.1 and 2.3 in Gregory (1977), we have

Tn −B1
d→
∞∑
ν=1

λ̃ν(z
2
ν − 1) and Tn

d→
∞∑
ν=1

λ̃νz
2
ν ,

where B1 =
∑7

m=1 E [hm(ξi, ξi)], zν ’s are IID N (0, 1) , and λ̃ν ’s are the eigenvalues of the

integral function for the following eigenvalue problem:

∫ ∞
−∞

7∑
m=1

hm(ξ1, ξ2)f̃(ξ2)dF (ξ2) = λ f̃(ξ1).
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Here,
∑7

m=1 hm(ξ1, ξ2) = ε1ε2h(X1, X2) where

h(X1, X2) = −κ1,2 + [E3(κ1,3) + E3(κ2,3)] + g′2βS
−1E3(g3βκ1,3) + g′1βS

−1E3(g3βκ2,3)]

−g′2βS−1E3,4(g3βκ1,4)− g′1βS−1E3,4(g3βκ2,4)− (g1β + g2β)′S−1S2E (g3βκ3,4)

−g′1βS−1S2S
−1g2β + g′1βS

−1S2S
′
0S
−1g2β + g′2βS

−1S2S
′
0S
−1g1β. (2.7.3)

We have

λf̃(ξ1) =

∫ ∞
−∞

7∑
m=1

hm(ξ1, ξ2)f̃(ξ2)dF (ξ2)

=

∫ ∞
−∞

ε1ε2h(X1, X2)f̃(ξ2)dF (ξ2)

= ε1

∫ ∞
−∞

ε2h(X1, X2)f̃(ξ2)dF (ξ2)

Then we can write f̃(ξ1) = ε1f(X1) by properly choosing f(·). Similarly, f̃(ξ2) = ε2f(X2).

The integration equation can be rewritten as∫ ∞
−∞

ε2
2h(X1, X2)f(X2)dF (ξ2) = λf(X1)

This completes the proof of Theorem 2.3.1. �

Proof of Theorem 2.3.2. Let αn = n−1/2. Note that

ε̂i = εi + g(Xi; β)− g(Xi; β̂)

= εi + g′iβ(β̂ − β0) +
1

2
(β̂ − β0)′giββ(β̆)(β̂ − β0),

where E(εi|Xi) = αnδ(Xi) under H1(an). Note that the NLS estimator β̂ is also
√
n-consistent

under H1(n−1/2), we can readily follow the proof of Theorem 2.3.1 and show that

T̃n −B1 =
1

n

∑∑
1≤i 6=j≤n

εiεjh(Xi, Xj) + op(1)

under H1(n−1/2). The conclusion then follows from Theorem 2.3 in Gregory (1977). �
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Table IV. Empirical Size and Power of Nonlinear Cases in 5% significance level

DGP n MDD Z&LW HM ICM
DGP4 100 0.072 0.084 0.098 0.082

200 0.640 0.268 0.116 0.080
400 0.626 0.224 0.064 0.030
800 0.618 0.214 0.066 0.026

DGP5(1) 100 0.130 0.144 0.190 0.168
200 0.650 0.306 0.234 0.194
400 0.604 0.180 0.058 0.024
800 0.610 0.188 0.048 0.022

Table V. Datasets Description

No. Reference Obs Object Year
I Rose (2005) 13974 180 Countries 1990
II Santos Silva and Tenreyro (2006) 18360 136 Countries 1990
III Glick and Rose (2002) 4315 132 Countries 1995
IV Millimet and Osang (2007) 2091 96 U.S. States 1997

Table VI. Summary Satistics for Data I

Variable Obs Mean Std. Dev. Median Min Max
trade 13974 2.06E+08 1.93E+09 2.40E+06 0.0000134 8.68E+10
lyi 13974 8.512 1.075 8.585 6.202 10.183
lyj 13974 8.512 1.075 8.585 6.202 10.183
lyhi 13974 -0.454 2.341 -0.792 -6.454 5.424
lyhj 13974 -0.454 2.341 -0.792 -6.454 5.424
ldist 13974 8.232 0.797 8.434 3.684 9.422
border 13974 0.024 0.154 0 0 1
comlang 13974 0.226 0.419 0 0 1
colony 13974 0.017 0.130 0 0 1
landl 13974 0.245 0.462 0 0 2
island 13974 0.398 0.571 0 0 2
landap 13974 0.593 3.653 1.213 -15.907 9.170
regional 13974 0.018 0.134 0 0 1
custrict 13974 0.010 0.098 0 0 1
comcol 13974 0.116 0.320 0 0 1
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Table VII. Summary Statistics for Data II

Variable Obs Mean Std. Dev. Median Min Max
trade 18360 1.72E+05 1.83E+06 17 0 1.01E+08
lypex 18360 15.744 1.893 15.891 10.646 20.854
lypim 18360 15.744 1.893 15.891 10.646 20.854
lyex 18360 7.505 1.640 7.311 4.608 10.735
lyim 18360 7.505 1.640 7.311 4.608 10.735
ldist 18360 8.786 0.742 8.954 4.877 9.899
border 18360 0.020 0.139 0 0 1
comlang 18360 0.210 0.407 0 0 1
colony 18360 0.170 0.376 0 0 1
landl ex 18360 0.154 0.361 0 0 1
landl im 18360 0.154 0.361 0 0 1
lremo ex 18360 8.947 0.264 8.947 8.491 9.604
lremo im 18360 8.947 0.264 8.947 8.491 9.604
comfrt 18360 0.025 0.156 0 0 1
open 18360 0.564 0.496 1 0 1

Table VIII. Summary Statistics for Data III

Variable Obs Mean Std. Dev. Median Min Max
trade 7640 1.84E+06 1.75E+07 1.93E+04 6.33E-04 8.79E+08
lremo ex 7640 24.771 2.144 25.090 18.231 29.238
lremo im 7640 23.378 2.034 23.276 18.231 28.530
ldist 7640 8.167 0.799 8.354 3.783 9.422
custrict 7640 0.011 0.102 0 0 1
comlang 7640 0.199 0.400 0 0 1
comfrt 7640 0.021 0.143 0 0 1
border 7640 0.025 0.157 0 0 1
landl 7640 0.314 0.513 0 0 2
island 7640 0.355 0.546 0 0 2

Table IX. Summary Statistics for Data IV

Variable Obs Mean Std. Dev. Median Min Max
trade 2091 3.19E+03 1.57E+04 6.57E+02 0.984 4.81E+05
ldist 2091 6.807 0.798 6.943 2.944 8.076
lremo ex 2091 -0.070 0.189 -0.071 -0.469 0.417
lremo im 2091 -0.068 0.191 -0.070 -0.469 0.417
border 2091 0.125 0.331 0 0 1
home 2091 0.023 0.150 0 0 1
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Table X. Test Results: P-values

Model Test Data I Data II Data III Data IV
Log MDD 0.0000 0.0000 0.0000 0.0000

Z&LW 0.0000 0.0000 0.0000 0.0000
HM 0.0000 0.0000 0.0000 0.0000
ICM 0.0725 0.0100 0.0175 0.0500
RESET 0.0000 0.0000 0.0000 0.0000

Level MDD 0.0000 0.0000 0.3700 0.0725
Z&LW 0.0000 0.0013 0.6650 0.1850
HM 0.0000 0.0100 0.6000 0.0775
ICM 0.1125 0.7875 0.0625 0.1300

2.7.2 Tables and Figures

Figure 2.1. Parent Sample of Covariates
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Figure 2.2. Simulated Data of Covariates
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Figure 2.3. Comparison: Parent Sample and Simulated Data
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Chapter 3

Estimation of Dynamic Multilevel

Panel Data Models with Fixed Effects

1

3.1 Introduction

With the rapid revolution of big data, traditional two-dimensional panel data models some-

times cannot fully describe the characteristics of sample structures. Consider the case of

observation station of air pollution (see Antweiler (2001)). The data of air pollution has

three-dimensions: time, country and city, in which the latter two are obtained from the loca-

tion of observation stations. Many panel data samples could be grouped in this way. Apart

from the nested models as the example of air pollution, nonnested multilevel data appear

everywhere as well. Bilateral trade can be modelled by a panel data model with three di-

mensions, which are time, importer indicator and exporter indicator (see Matyas (1997)).

An excellent work considering the estimation of multilevel fixed effects panel data models is

Balazsi et al (2018) (BMW hereafter). They proposed estimators for six panel data models

with different kinds of fixed effects and compared them to each other. They also provided the

Nickell Biases for those typical dynamic models. Nickell biases are defined as the asymptotic

biases in the dynamic panel data models (see Nickell (1981)). The inconsistency is produced

by the so-called incidental-parameter problem. In order to obtain consistent estimators, BMW

constructed the Arellano-Bonds GMM estimator (see Arellano and Bond (1991)) for a mul-

tilevel AR(1) panel data model. In a different way, Dhaene and Jochmans (2015) proposed

a split-sample jackknife estimation method to handle the Nickell biases problem in dynmic

1This is a co-authered work with Liangjun Su.
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panel data models. One of the contributions of this paper is that we extend the jackknife

estimation method to the multilevel framework.

Table 1 of BMW summarized corresponding transformations to eliminate error compo-

nents for different structures. Intuitively, some models have more than one kinds of available

transformations and some transformations will ”over-clear” the fixed effects which leads to

efficiency loss. This paper firstly (to our knowledge) proposes the expression of Nickell biases

for within estimators of several popular three-dimensional dynamic panel data models and it

proposes split-sample jackknife estimators, which eliminate the biases.

To clarify the ambiguity of notations, for a three-dimension variable yijt, the average

along index i is denoted as ȳ·jt = N−1
1

∑N1

i=1 yijt. In the same way, ȳi·t = N−1
2

∑N2

j=1 yijt,

ȳij· = T−1
∑T

t=1 yijt, ȳ··t = (N1N2)−1
∑N1

i=1

∑N2

j=1 yijt, ȳ·j· = (N1T )−1
∑N1

i=1

∑N2

t=1 yijt, ȳi·· =

(N2T )−1
∑N2

j=1

∑T
t=1 yijt, and ȳ··· = (N1N2T )−1

∑N1

i=1

∑N2

j=1

∑T
t=1 yijt. Sometimes we need to

take average over t along 1 to T for yij,t−κ, we denote ȳ
(−κ)
ij· = T−1

∑T
t=1 yij,t−κ, analogouly,

ȳ
(−κ)
·j· = (N1T )−1

∑N1

i=1

∑T
t=1 yij,t−κ, and ȳ

(−κ)
··· = (N1N2T )−1

∑N1

i=1

∑N2

j=1

∑T
t=1 yij,t−κ. I is the

identity matrix, we don’t specify the subscript when there doesn’t exist ambiguity. J is the

matrix with all the elements are 1 and J̄N = JN/N . Ψ0 =

[
0 0

IT−1 0

]
, Γ0 = Ψ0 (I− ρΨ0)−1,

Ψ = IN1N2 ⊗ Ψ0 and Γ = IN1N2 ⊗ Γ0. Note that our definition of Γ0 is different from the

definition in Balazsi et al (2018).

3.2 The General Within Estimators

This section discusses and extends the results of BMW. As in BMW, they considered six

dynamic panel data models with different error component structures. They are three-

dimensional panel data models indexed by i, j and t, whose number of observations are

N1, N2 and T . Note that for simplicity, we exclude unbalanced panel data models where the

sample size for i1 and i2 could be different. Also we assume that xijt does not contain the

terms that fixed over i, j, t, or any combination of these three dimensions. The estimation

problem of β when xijt contains fixed terms can be solved through the similar Hausman-Taylor

fashion as in the two-dimensional panel data models. (see Hausman and Taylor (1981)).

Model 1 yijt =ρyij,t−1 + β′xijt + αi + γj + λt + εijt;

Model 2 yijt =ρyij,t−1 + β′xijt + γij + λt + εijt;

Model 3 yijt =ρyij,t−1 + β′xijt + γij + εijt;

Model 4 yijt =ρyij,t−1 + β′xijt + αjt + εijt;
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Model 5 yijt =ρyij,t−1 + β′xijt + αit + α∗jt + εijt;

Model 6 yijt =ρyij,t−1 + β′xijt + γij + αit + α∗jt + εijt.

The models can be summarized as

The General Model y = ρy−1 + Xβ + Dνπν+ε,

where y’s are specified as

(y111, · · · , y11T , · · · , y1N21, · · · , y1N2T , · · · , yN111, · · · yN11T , · · · , yN1N21, . . . , yN1N2T )′ ,

whose dimension is N1N2T × 1, X is of dimension N1N2T × d, β is of dimension d × 1, ε is

the disturbance vector of dimension N1N2T ×1, Dν and πν ’s are column vectors of composite

fixed effects parameters.

Since the dummy matrix Dν could be of not full culumn rank in some cases. There

are many ways to construct the dummy matrices with full column rank. In this paper, the

expressions of dummy matrices for model 1 to model 6 are respectively (see Table 1.1 of

Martyas (2017)) as follows.

D1 = ((IN1 ⊗ ιN2T ) , (ιN1 ⊗ IN2 ⊗ ιT )∗ , (ιN1N2 ⊗ IT )∗) ;

D2 = ((IN1N2 ⊗ ιT ) , (ιN1N2 ⊗ IT )∗) ;

D3 = (IN1N2 ⊗ ιT ) ;

D4 = (IN1 ⊗ ιN2 ⊗ IT ) ;

D5 = ((IN1 ⊗ ιN2 ⊗ IT ) , (ιN1 ⊗ IN2T )∗) ;

D6 = ((IN1N2 ⊗ ιT ) , (IN1 ⊗ ιN2 ⊗ IT )∗ , (ιN1 ⊗ IN2T )∗) ;

where (·)∗ denotes that the last column of the matrix inside the bracket is deleted. With

N1N2T rows, they have full column ranks with ranks N1 +N2 + T − 2, N1N2 + T − 1, N1N2,

N1T , N1T + N2T − 1 and N1N2 + N1T + N2T − 2 respectively. For different models with

particular Dν , the construction of πν also varies by cases. These explicit expressions of πν

help readers understand the construction of Dν as they look complicated at the first sight.

π1 = (α1, · · · , αN1 , γ1, · · · , γN2−1, λ1, · · · , λT−1)′(N1+N2+T−2)×1 ;

π2 = (γ11, · · · , γ1N2 , · · · , γN11, · · · , γN1N2 , λ1, · · · , λT−1)′(N1N2+T−1)×1 ;

π3 = (γ11, · · · , γ1N2 , · · · , γN11, · · · , γN1N2)′N1N2×1 ;
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π4 = (α11, · · · , α1T , · · · , αN21, · · · , αN2T )′N2T×1 ;

π5 =

(
α11, · · · , α1T , · · · , αN21, · · · , αN2T

, α∗11, · · · , α∗1T , · · · , α∗N11, · · · , α∗N1(T−1)

)′
(N1T+N2T )×1

;

π6 =

 γ11, · · · , γ1N2 , · · · , γN11, · · · , γN1N2

, α11, · · · , α1T , · · · , αN21, · · · , αN2(T−1)

, α∗11, · · · , α∗1T , · · · , α∗N11, · · · , α∗N1(T−1)


′

(N1N2+N1T+N2T−2)×1

.

The typical within projector is defined as an idempotent and symmetric matrix

MD,ν= I−Dν (D′νDν)
−1

D′ν .

There exist other within projectors which will be discussed in the following sections. Note

that some projectors could be nonidempotent, though the projectors we consider in this paper

are idempotent. In particular, the linear combination of projectors could be a projector, but

it would not always be idempotent. The general model is tranformed to

MD,νy =ρMD,νy−1+MD,νXβ + MD,νε.

For two-dimensional panel data models, we can also write down the projectors in this way.

For example, consider a PAR-X(1) model with individual fixed effect

yit = ρyi,t−1 + x′itβ + αi + εit

In matrix form,

y=ρy−1+Xβ + Ď1π̌1+ε

Ď1=IN1 ⊗ ιT and π̌1 = (α1, · · · , αN1)′

The within projector is defined as M̌D,1= I− Ď1

(
Ď′1Ď1

)−1
Ď′1. The transformed depen-

dent variable is y̌it,1 = yit− ȳi·, which eliminates the individual fixed effect component αi. The

fact is that there exist other possible transformations like y̌it,2 = yit− ȳi·− ȳ·t + ȳ··, which also

eliminates the individual fixed effects. The corresponding within projector for this transfor-

mation is M̌D,2= I− Ď2

(
Ď′2Ď2

)−1
Ď′2, where Ď2 = ((IN1 ⊗ ιT )∗ , ιN1 ⊗ IT ) and (IN1 ⊗ ιT )∗ is

the matrix of first N1 − 1 colum vectors. Apparantly it is not a good estimator because it

“over-clear” the data in that it makes redundant projections.

To get the estimate of ρ, we take transformation through another idempotent and sym-
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metric matrix ΞX = I−MDX (X′MDX)−1 X′MD. The subscript ν is omitted for simplicity.

The within estimator of ρ is given by

ρ̂ =
(
y′−1MDΞXMDy−1

)−1
y′−1MDΞXMDy

=
(
y′−1MDy−1−y′−1MDX (X′MDX)

−1
X′MDy−1

)−1

×
(
y′−1MDy − y′−1MDX (X′MDX)

−1
X′MDy

)
, (3.2.1)

and the coefficient β of covariates X is estimated by

β̂ =
(
X′MDX−XMDy−1

(
y′−1MDy−1

)−1
y′−1MDX

)−1

(3.2.2)

×
(
X′MDy −XMDy−1

(
y′−1MDy−1

)−1
y′−1MDy

)
.

For better understanding the notations, we also write them down in scalar forms.

ρ̂ =

(
N1∑
i=1

N2∑
j=1

T∑
t=1

mijt

(
ÿ

(−1)
ij,t−1

)2
)−1 N1∑

i=1

N2∑
j=1

T∑
t=1

mijtÿ
(−1)
ij,t−1ÿijt

where mijt =1− ẍ′ijt

(
N1∑
i=1

N2∑
j=1

T∑
t=1

ẍijtẍ
′
ijt

)−1

ẍijt,

and

β̂ =

(
N1∑
i=1

N2∑
j=1

T∑
t=1

lijtẍijtẍ
′
ijt

)−1 N1∑
i=1

N2∑
j=1

T∑
t=1

lijtẍijtÿijt

where lijt =1−

(
ÿ

(−1)
ij,t−1

)2

∑N1

i=1

∑N2

j=1

∑T
t=1

(
ÿ

(−1)
ij,t−1

)2 .

where ẍijt, ÿijt and ÿ
(−1)
ij,t−1 are demeaned observations in which the way of demeaning depends

on the within projectors MD. This estimator could be consistent or inconsistent. The in-

consistency comes from the so-called Nickell bias problem. An consistent estimator using

Arellano-Bond GMM fashion was proposed by Balazsi et al (2018). In this paper, we suggest

another method to handle the Nickell bias, a split-sample jackknife bias correction method

(see Dhaene and Jochmans (2015)). Before the asymptotic properties are given, we start with

some assumptions. The assumptions follow Moon and Weidner (2017).

Assumption A1: {(ẍijt, εijt) , t = 1, . . . , T} are independent across i and j.
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Assumption A2: εijt’s are independent over t, for all i and j.

Assumption A3: E[εijt|σ ({(ÿij0, ẍijs, εij,s−1) , s ≤ t})] = 0 and E
(
ε4
ijt

)
<∞ for all i, j,

and t.

Assumption A4: 1
N1N2T 2

∑N1

i=1

∑N2

j=1

∑T
t,s,u,v=1 |Cov (εijtẍk,ijs, εijuẍl,ijv)| = Op (1) for all

k, l = 1, . . . , d.

Assumption A5: E
(
‖xijt‖4) <∞ for all i, j, and t.

Assumption A6: E
(
π4
ijt

)
<∞ for all i, j, t and E

(
y4
ij0

)
<∞ for all i, j.

If we impose the same fixed effects structure in xijt as that in the main equation, it’s trivial

to fulfill the requirements of A1, A3 and A4, loosely speaking. For example, in Model 1 we

can assume that xijt = τi + %j + µt + eijt, where eijt is independent of εijt. This specification

is similar to the case in Section 5 of Bai (2013). However, if we impose xijt = τij + eijt

and the independence between eijt and εijt, the inference could be problematic if there exists

correlation between τij and the fixed effects in the main equation of Model 1. This problem will

be revisisted in Section 5. Assumption A1, A2 and A3 are imposed to construct a martingale

difference sequence in the proof of consistency of within estimators. Assumption A4, A5 and

A6 are used for the proof of asymptotic normality. It’s worth noticing that we also put some

assmptions on the initial value yij0. Theorem 1 establishes the asymptotic properties of ρ̂,

the general within estimators.

Theorem 3.2.1. Under Assumption A1-A6, the generic estimator ρ̂ has the following the

asymptotic distribution when N1, N2, and T all go to infinity:

√
N1N2T

([
ρ̂

β̂

]
−

[
ρ

β

]
−Φ−1

[
1

N1N2T
tr (ΣΓ′MD)

0

])
→d N

(
0,Φ−1ΩΦ−1

)
, (3.2.3)

where

Φ =

[
Aε 0

0 0

]
+

[
Aβ A′xΛ

AxΛ Axx

]
,

Ω =

[
Ω11 Ω12

Ω′12 Ω22

]
,

Aε =
1

N1N2T

[
1

1− ρ2
tr (ΣMD) +

2ρ

1− ρ2
tr (ΣΓ′MD)

]
,

Aβ =
1

N1N2T

[
1

1− ρ2
β′Axxβ +

ρ

1− ρ2
(A′xΛβ + β′AxΛ)

]
,

AxΛ =
1

N1N2T
E [X′MDΛ] ,
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Axx =
1

N1N2T
E [X′MDX] ,

Ω11 =
1

N1N2T

{
E (ΛMDΣMDΛ′) + E (ε′ΓMDεε

′MDΓε)

+2E (ΛMDεε
′MDΓε)− [tr (ΣΓ′MD)]

2

}
,

Ω12 =
1

N1N2T
[E (ΛMDΣMDX) + E (εΓMDεε

′MDX)] ,

Ω22 =
1

N1N2T
E (X′MDΣMDX) ,

Λ = (I + ρB) (I− ρB)−1 (y0 ⊗ e1) + ΓXβ + ΓDπ,

and Σ is a N1N2T×N1N2T diagonal matrix with diagonal item σ2
ijt. Note that the correlation

between X and π enters Φ and Ω through Λ, which indicates the incidental parameter effect.

For the simple AR(1) cases, where the general model is given by y = ρy−1 + Dπ+ ε, we have

the corresponding result √
N1N2T (ρ̂− ρ−BNickell)→d N (0,Υ) ,

where

BNickell =
1− ρ2

2ρ
p lim

(
tr (ΣΓ′MD)

2ρtr (ΣMD) + tr (ΣΓ′MD)

)
,

Υ =

(
1− ρ2

2ρ

)2

p lim

(
E
[
(ε′Γ′MDε)

2]− [tr (ΣΓ′MD)]
2

[2ρtr (ΣMD) + tr (ΣΓ′MD)]
2

)
.

The Nickell bias formula BNickell is the same as equation (33) of Balazsi et al (2018) and

the bias expression in Lu et al.(2020, Appendix C).

From Theorem 1, we have that the general fixed effect estimators could be inconsistent.

The analysis of asymptotic biases lies in the calculation of tr (ΣΓ′MD) and Φ−1. Different

from the traces shown in Table 2 of Balazsi et al (2018), the calculation in our cases are more

complicated by introducing heteroskedasticity and the covariates X. The following corollary

states the over-clearing facts especially for multilevel panel data models.

Corollary 3.2.1. For a feasible projector MD,s, we can always find another feasible projector

M̃D,s = MD,sMD,t where MD,t is a demean matrix. As defined in Theorem 2.1, denote Ωs, Ω̃s,

Φs and Φ̃s as the corresponding matrices of the sandwich form in Equation (3.2.3). Therefore,

under assumptions of Theorem 2.1, we have Ωs = Ω̃s and Φs ≥ Φ̃s. Therefore, the asymptotic

variance of the fixed effect estimator of M̃D,s is larger than that of M̃D,s, i.e., the projector

M̃D,s overclears the data.

174



From Corollary 2.1 we have that if we exclude the linear combination of different projec-

tors, some projectors are less efficient in general since they overclear the data. In the following

section, we consider the bases for the projectors case by case. Those projectors are competi-

tively efficient and we can construct more competitively efficient fixed effect estimators based

on their linear combinations.

3.3 Nickell Bias Representation

3.3.1 Model 1

Model 1 was firstly proposed by Matyas (1997), in which he did not consider the inclusion of

X. In order to make the notaions understandable, we consider both the scalar form and the

matrix form for the within estimator of model 1. For other five models, we only write them

in the matrix form.

There are many different ways to construct ÿ
(−1)
ij,t−1 and ÿijt in order to eliminate the fixed

effects. To see that, we can find five typical estimators in which ÿ
(−1)
ij,t−1, ÿijt and corresponding

MD,1 are defined as

a. ÿijt,1a ≡ yijt − ȳ·jt − ȳi·t + ȳ··t, ÿ
(−1)
ij,t−1,1a ≡ yij,t−1 − ȳ·j,t−1 − ȳi·,t−1 + ȳ··,t−1 and

MD,1a = I− J̄N1⊗IN2T−IN1⊗J̄N2⊗IT+J̄N1N2⊗IT

b. ÿijt,1b ≡ yijt − ȳi·t − ȳij· + ȳi··, ÿ
(−1)
ij,t−1,1b ≡ yij,t−1 − ȳi·,t−1 − ȳ(−1)

ij· + ȳ
(−1)
i·· and

MD,1b = I− IN1⊗J̄N2⊗IT−IN1N2⊗J̄T+IN1⊗J̄N2T

c. ÿijt,1c ≡ yijt − ȳ·jt − ȳij· + ȳ·j·, ÿ
(−1)
ij,t−1,1c ≡ yij,t−1 − ȳ·j,t−1 − ȳ(−1)

ij· + ȳ
(−1)
·j· and

MD,1c= I− J̄N1⊗IN2T−IN1N2⊗J̄T+J̄N1⊗IN2⊗J̄T

d. ÿijt,1d ≡ yijt− ȳi··− ȳ·j·− ȳ··t + 2ȳ···, ÿ
(−1)
ij,t−1,1d ≡ yij,t−1− ȳ(−1)

i·· − ȳ
(−1)
·j· − ȳi·,t−1 + 2ȳ

(−1)
··· and

MD,1d=I− IN1⊗J̄N2T−J̄N1⊗IN2⊗J̄T−J̄N1N2⊗IT+2J̄N1N2T

e. ÿijt,1e ≡ yijt − ȳ·jt − ȳi·t − ȳij· + ȳi·· + ȳ·j· + ȳ··t − ȳ···, ÿ(−1)
ij,t−1,1e ≡ yij,t−1 − ȳ·j,t−1 − ȳi·,t−1 −
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ȳ
(−1)
ij· + ȳ

(−1)
i·· + ȳ

(−1)
·j· + ȳ··,t−1 − ȳ(−1)

··· and

MD,1e=I− J̄N1⊗IN2T−IN1⊗J̄N2⊗IT−IN1N2⊗J̄T

+IN1⊗J̄N2T+J̄N1⊗IN2⊗J̄T+J̄N1N2⊗IT−J̄N1N2T

Althogh some of them are inconsistent, we can construct five consistent estimators using

the split-sample jackknife technique. Without further analysis, we cannot be fully sure that

all the possible competitvely efficient estimators have been considered and we cannot fully

sure that all the five jackkinfe estimators are good. The Nickell biases can be different. If

we fix T and let N1, N2 go to infinity, the estimator from (1) is consistent while other four

estimators are neither consistent. Also, we find that the combination of some construction

can be a new estimator, e.g., ÿijt,1e = (ÿijt,1a + ÿijt,1b + ÿijt,1c − ÿijt,1d) /2. In the same way, we

can contruct lots of (infinite, in fact) estimators like ÿijt,1f = 2× ÿijt,1a− ÿijt,1b = yijt− 2ȳ·jt−
ȳi·t+ ȳij·+ ȳ··t− ȳi··. We deem this phenomeon as the main difference between two-dimensional

panel data models and multilevel panel data models. Even if we merely turn our attention

from two-dimensional case to three-dimensional case, the model becomes quite complicated.

It could be an important question that how to construct and choose a proper fixed effect

estimator in high-dimensional panel data models in the future work.

We now discuss the relationship between the fixed effect estimators in the similar patterns.

Proposition 3.3.1. Under the assumptions of Theorem 2.1, all the within estimators can be

generalized based on the first four projectors

(a) MD,1a=I− J̄N1⊗IN2T−IN1⊗J̄N2⊗IT+J̄N1N2⊗IT ;

(b) MD,1b=I− IN1⊗J̄N2⊗IT−IN1N2⊗J̄T+IN1⊗J̄N2T ;

(c) MD,1c=I− J̄N1⊗IN2T−IN1N2⊗J̄T+J̄N1⊗IN2⊗J̄T ;

(d) MD,1d=I− IN1⊗J̄N2T−J̄N1⊗IN2⊗J̄T−J̄N1N2⊗IT+2J̄N1N2T ;

and they are linear independent to each other. In other words, any other within transformation

ÿijt,1ν can be written as the linear combination of ÿijt,1a, ÿijt,1b, ÿijt,1c and ÿijt,1d,

ÿijt,1ν =
∑

m∈{a,b,c,d}

cmÿijt,1m, s.t.,
4∑

m=1

cm = 1.

The proof is straightforward, but the result varies case by case. Before giving the asymp-

totic distributions, we define σ̄ = 1
N1N2T

∑N1

i=1

∑N2

j=1

∑T−1
t=1

σ2
ijt

1−ρ and σ̄ρ = 1
N1N2

∑N1

i=1

∑N2

j=1

∑T−1
t=1

ρT−tσ2
ijt

1−ρ .
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Proposition 3.3.2. Under the assumptions of Theorem 2.1, the Nickell bias terms of the

four within estimators in Proposition 3.1 can be represented by

Bias1m := Φ−1
1m

[
1

N1N2T
tr (ΣΓ′MD) ,0

]′
=

(
B1,1m

T
+

B2,1m

T 2

)
h1m,

for m ∈ {a, b, c, d} , B1,1m = −Φ−1
1m [σ̄/ (1− ρ) ,0]′, and B2,1m = Φ−1

1m [σ̄ρ/ (1− ρ) ,0]′. The

scalar h1m depends on N1 and N2 such that h1a = 0, h1b = 1 − N−1
2 , h1c = 1 − N−1

1 , and

h1d = N−1
1 +N−1

2 −(N1N2)−1. In particular, under the assumption that N1

T
→ δ1 and N2

T
→ δ2

with N1, N2, T → ∞, we have the asymptotic distributions for stacked estiamtors θ̂1a, θ̂1b,

θ̂1c and θ̂1d as follows √
N1N2T

(
θ̂1a−θ

)
→dN

(
0,Φ−1

1a Ω1aΦ
−1
1a

)
√
N1N2T

(
θ̂1b−θ

)
−
√
N1N2

T
B1,1b →dN

(
0,Φ−1

1b Ω1bΦ
−1
1b

)
√
N1N2T

(
θ̂1c−θ

)
−
√
N1N2

T
B1,1c →dN

(
0,Φ−1

1c Ω1cΦ
−1
1c

)
√
N1N2T

(
θ̂1d−θ

)
→dN

(
0,Φ−1

1d Ω1dΦ
−1
1d

)
3.3.2 Model 2

We can find two typical estimators in which the corresponding MD,2 are defined as

a. MD,2a= I− IN1⊗J̄N2⊗IT−IN1N2⊗J̄T+IN1⊗J̄N2T = MD,1b;

b. MD,2b= I− J̄N1⊗IN2T−IN1N2⊗J̄T+J̄N1⊗IN2⊗J̄T = MD,1c;

Proposition 3.3.3. Under the assumptions of Theorem 2.1, all the within estimators can be

generalized based on the two projectors above

MD,2a=I− IN1⊗J̄N2⊗IT−IN1N2⊗J̄T+IN1⊗J̄N2T

MD,2b=I− J̄N1⊗IN2T−IN1N2⊗J̄T+J̄N1⊗IN2⊗J̄T

and they are linear independent to each other. In other words, any other within transformation

(ν, ÿijt) can be written as the linear combination of ÿijt,1a and ÿijt,1b,

ÿijt,1ν =
∑

m∈{a,b}

cmÿijt,1m, s.t., c1 + c2 = 1
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The proof of Proposition 3.2 follows the proof of Proposition 3.1. The Distributions are

given in Proposition 3.4.

Proposition 3.3.4. Under the assumptions of Theorem 2.1, the Nickell bias terms of the two

within estimators in Proposition 3.3 can be represented by

Bias2m := Φ−1
2m

[
1

N1N2T
tr (ΣΓ′MD,2m) ,0

]′
=

(
B1,2m

T
+

B2,2m

T 2

)
h2m,

for m ∈ {a, b, c, d} , B1,2m = −Φ−1
2m [σ̄/ (1− ρ) ,0]′, and B2,2m = Φ−1

2m [σ̄ρ/ (1− ρ) ,0]′. The

scalar h2m depends on N1 and N2 such that h2a = 1−N−1
2 and h2b = 1−N−1

1 . In particular,

under the assumption that N1

T
→ δ1 and N2

T
→ δ2 with N1, N2, T →∞, we have the asymptotic

distributions for stacked estimators θ̂2a and θ̂2b as follows

√
N1N2T

(
θ̂2a−θ

)
−
√
N1N2

T
B2,2a →dN

(
0,Φ−1

2a Ω2aΦ
−1
2a

)
√
N1N2T

(
θ̂2b−θ

)
−
√
N1N2

T
B2,2b →dN

(
0,Φ−1

2b Ω2bΦ
−1
2b

)
3.3.3 Model 3, Model 4, Model 5, and Model 6

For model 3, 4, 5, and 6, we can find only one good projector for each case.

(1) Model 3: MD,3= I− IN1N2⊗J̄T

(2) Model 4: MD,4= I− J̄N1⊗IN2T

(3) Model 5: MD,5= I− J̄N1⊗IN2T−IN1⊗J̄N2⊗IT+J̄N1N2⊗IT

(4) Model 6: MD,6= I− J̄N1⊗IN2T−IN1⊗J̄N2⊗IT−IN1N2⊗J̄T

+J̄N1N2⊗IT+J̄N1⊗IN2⊗J̄T+IN1⊗J̄N2T−J̄N1N2T

There asymptotic properties are given in the following proposition.

Proposition 3.3.5. Under the assumptions of Theorem 2.1, the Nickell bias terms of the

four within estimators above can be represented by (1) Bias3 = −B1,3

T
+ B2,3

T 2 ; (2) Bias4 = 0;

(3) Bias5 = 0; (4) Bias6 =
(
−B1,6

T
+ B2,6

T 2

)
h6 where h6 = 1 − N−1

2 − N−1
1 + (N1N2)−1,

B1,m = −Φ−1
m [σ̄/ (1− ρ) ,0]′, and B2,m = Φ−1

m [σ̄ρ/ (1− ρ) ,0]′. In particular, (i) under the

assumption that N1

T
→ δ1 and N2

T
→ δ2 with N1, N2, T → ∞, we have the asymptotic
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distributions for stacked estimators θ̂3, θ̂4, θ̂5 and θ̂6 as follows

√
N1N2T

(
θ̂3−θ

)
−
√
N1N2

T
B1,3 →dN

(
0,Φ−1

3 Ω3Φ
−1
3

)
√
N1N2T

(
θ̂4−θ

)
→dN

(
0,Φ−1

4 Ω4Φ
−1
4

)
√
N1N2T

(
θ̂5−θ

)
→dN

(
0,Φ−1

5 Ω5Φ
−1
5

)
√
N1N2T

(
θ̂6−θ

)
−
√
N1N2

T
B1,6 →dN

(
0,Φ−1

6 Ω6Φ
−1
6

)
3.3.4 Comparison with Two-dimensional Panel Data Models

Take Model 3 as an example, the Nickell bias is given by

plim(ρ̂− ρ) = − 1

T
Φ−1

3

σ̄

1− ρ
+

1

T 2
Φ−1

3

σ̄ρ
1− ρ

.

As shown in Nickell (1981), for a two-dimensional panel data model, yit = ρyit−1 + β′xit +

γi + εit, the bias is given by

plim(ρ̂− ρ) = − 1

T
Φ−1
Nickell

σ̄Nickell
1− ρ

+
1

T 2
Φ−1
Nickell

σ̄ρ,Nickell
1− ρ

,

where ΦNickell = plim 1
N
ỹ′Mỹ, ỹt = yit − yi·, M = I − X̃(X̃ ′X̃)−1X̃ ′, X̃t = xijt − xij·,

σ̄Nickell = 1
NT

∑N
i=1

∑T−1
t=1

σ2
it

1−ρ and σ̄ρ = 1
N

∑N
i=1

∑T−1
t=1

ρT−tσ2
it

1−ρ . We can see that they have

similar structure.

3.4 Split-panel Jackknife Estimation

Based on the results of Proposition 3.2, 3.4 and 3.5, we can construct the split-panel jack-

knife estimator. As said in Dhaene and Jochmans (2015), over-spliting the sample will in-

crease the magnitude of higher-order bias terms. Therefore, we only consider ”half-panel”

jackknife estimators in this paper. We define S1 = {S11, S12}, where S11 := {1, 2, . . . , dT/2e}
and S12 := {dT/2e+ 1, . . . , T} splitting over dimension t; S2 = {S21, S22}, where S21 :=

{1, 2, . . . , bT/2ce} and S12 := {bT/2c+ 1, . . . , T} splitting over dimension t. The split-panel

jackknife estimator is defined as θ̃1/2 = 2θ̂ − 1
2

(
θ̄S1 + θ̄S2

)
, where θ̄Sm :=

∑
Smk∈Sm

|Smk|
T
θ̂Smk .

Note that when T is even, dT/2e = dT/2e, thus S1 = S2 and θ̃1/2 = 2θ̂ − θ̄S1 . Similar to

Theorem 3.1 of Dhaene and Jochmans (2015), we have the following Theorem 2.

179



Theorem 3.4.1. Under Assumption 1-4, the general estimator ρ̂ has the following the asymp-

totic distribution when N1

T
→ δ1 and N2

T
→ δ2 with N1, N2, T →∞,√

N1N2T
(
θ̃1/2 − θ

)
→d N

(
0,Φ−1ΩΦ−1

)
(3.4.1)

Note that the correlation between X and π enters Φ and Ω through Λ, which indicates the

incidental parameter effect. For the simple AR(1) cases, where the general model is given by

y = ρy−1+Dπ + ε, we have the corresponding result√
N1N2T

(
ρ̃1/2 − ρ

)
→d N (0,Υ)

where

Υ =

(
1− ρ2

2ρ

)2

p lim

(
E
[
(ε′Γ′MDε)

2]− [tr (ΣΓ′MD)]
2

[2ρtr (ΣMD) + tr (ΣΓ′MD)]
2

)
The asymptotic biases is eliminated by the split-panel jackknife estimators.

3.5 Model Uncertainty

In the simplest fixed effect panel data models with other covariates, we need to impose the

assumption of IID on incidental parameters in order to get efficient within estimators. If we

consider a more complicated model, a two-way error component panel data model, the IID

assumption of αi and λt is not enough. The reason is that the correlation between individual

invariant term λt and covariates xit will leave an unspecified dependence structure on xit and

xjt. For this perspective, we need to impose structure on xit. As in Bai (2013), they assumed

that xit = τi + bt + ρxxi,t−1 + eit (see p. 298 in Bai (2013)) where eit is independent with

the idiosyncratic error term in the equation of yit. This problem also exists in more general

cases. For the panel data models with interactive fixed effects, we also need to impose some

structures on xit. As in Moon and Weidner (2017), for the cross section dimension they

assume that {Xit} is independent across i conditional on C, the sigma-algebra generated by

the factors and the factor loadings (see Assumption 5(iii) in Moon and Weidner (2015)); for

the time dimension they assumed that 1
NT

∑N
i=1

∑T
t,s,u,v=1 |Cov

(
εitX̃k,is, εiuX̃l,iv|C

)
| = Op (1),

where X̃k,it = Xk,it−E [Xk,it|C] is the projection residual of Xk,it after being projected through

C (see Assumption 5(v) in Moon and Weidner (2017)).

Even though we exclude the cross-sectional dependence in this paper, in the multilevel

panel data models, we have seen that there exist many possible fixed effects structures in

the expression equation for yit, which is similar to the cases in Moon and Weidner (2017).
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Questions are raised that does the misspecification of xijt affects the inference on the within

estimators and if does how shall we handle that. We deem this kind of misspecification as

the model uncertainty lying in the nature of multilevel panel data models.

3.5.1 Focused Model Selection

In this section, we will mainly consider the selection problem in Model 1 and Model 2. Taking

Model 2 as an example, the performance of θ̂2a and θ̂2b depends on the specification of xijt

even when we assume Model 2 is true. If xijt has different structure as γ̃ij + λ̃t + ε̃ijt, we

will see that different projectors will eliminate different variations in xijt. There are two

implication for this statement. The first is that if xijt contains some observable variables that

does not change over j but change over i and t, i.e., xk,it, those variables will vanish after

transformed by the first projector but will remian after tranformed by the second projector.

The second implication is that if xijt has the factor structure like α̃it + γ̃ij + λ̃t + ε̃ijt, γ̃ij and

λ̃t will vanish for both projectors, and α̃it will be retained only for the second projector. In

this sense, the first projector loses more variation in xijt in contrast to the first projector. On

the contrary, there exist some circumstances that the second projector loses more variation.

For the first implication, we suggest that researchers should choose estimators based on the

characteristics of variables. However, sometimes we have both x1,it and x2,jt in the regression

equation and sometimes we are not able to observe the factor structure of covariates, then we

face the problem of model selection.

Claeskens and Hjort (2003) proposed focused information criterion for cross section models

with finite-dimensional nuisance parameters. Lee and Phillips (2015) (LP15 hereafter) stated

that the reason why traditional model selection method performs bad in panel data models is

that the dimension of nuisance parameters grows with the sample size. LP15 also considered

the lag order selction problem in dynamic panel data models.

3.6 Conclusion

We consider the Nickell bias problem in dynamic fixed effects multilevel panel data models

with various kinds of multi-way error components. For some specifications of error compo-

nents, there exist many different forms of within estimators which are shown to be of possibly

different asymptotic properties. The forms of the estimators in our framework are given ex-

plicitly. We apply the split-sample jackknife approach to eliminate the bias. In practice, our

results can be easily extended to multilevel panel data models with higher dimensions.
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3.7 Appendix

3.7.1 Proof of Theorem 3.2.1

Proof. For clearance, we use bold symbols to represent vectors and matrices. The general

dynamic multilevel model we consider is

y = ρy−1 + Xβ + Dπ + ε

Assume that MD is a appropriate fixed effects projector, which might not be idempotent.

We have the following transformed equation

MDy = ρMDy−1 + MDXβ + MDε

Writing it in the partitioned matrix form, we have

MDy =
[
MDy−1 MDX

] [ρ
β

]
+ MDε

The generic within estimators for

[
ρ

β

]
are defined as

[
ρ̂

β̂

]
=

[(
y′−1MD

X′MD

) (
MDy−1 MDX

)]−1 [
y′−1MDy

X′MDy

]

=

[
y′−1MDy−1 y′−1MDX

X′MDy−1 X′MDX

]−1 [
y′−1MDy

X′MDy

]

=

[
y′−1MDy−1 y′−1MDX

X′MDy−1 X′MDX

]−1 [(
y′−1MD

X′MD

) (
MDy−1 MDX

)][ρ
β

]

+

[
y′−1MDy−1 y′−1MDX

X′MDy−1 X′MDX

]−1 [
y′−1MDε

X′MDε

]

=

[
ρ

β

]
+

[
y′−1MDy−1 y′−1MDX

X′MDy−1 X′MDX

]−1 [
y′−1MDε

X′MDε

]

=

[
ρ

β

]
+ A−1

N1N2T
BN1N2T
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where

AN1N2T =

[
y′−1M

2
Dy−1 y′−1M

2
DX

X′M2
Dy−1 X′M2

DX

]
and BN1N2T =

[
y′−1M

2
Dε

X′M2
Dε

]
Firstly we consider the asymptotic limit of BN1N2T when N1, N2, and T all goes to infinity.

Given the (N1N2T × 1) sample realization vector of dependent variables y, we have that

y−1 = Ψy + y0 ⊗ e1. From the dynamic structure that y = ρy−1 + Xβ + Dπ + ε, we have

y = ρΨy+ρy0⊗ e1+Xβ + Dπ + ε. Hence (I− ρΨ) y = ρy0⊗ e1 + Xβ + Dπ + ε. Therefore,

we have the representation for y.

y = (I− ρΨ)−1 (ρy0 ⊗ e1) + (I− ρΨ)−1 Xβ + (I− ρΨ)−1Dπ + (I− ρΨ)−1ε

and since y−1 = Ψy + y0 ⊗ e1, we have

y−1 = (I + ρΨ) (I− ρΨ)−1 (y0 ⊗ e1) + ΓXβ + ΓDπ + Γε := Λ + Γε

where Γ := Ψ (I− ρΨ)−1 and Λ := (I + ρΨ) (I− ρΨ)−1 (y0 ⊗ e1) + ΓXβ + ΓDπ.

Denote Z =

[
y′−1MDε

X′MDε

]
, we have E (Z) =

[
E
(
y′−1MDε

)
0

]
and

E
(
y′−1MDε

)
=E (ε′Γ′MDε) = E (tr (ε′Γ′MDε)) = E (tr (εε′Γ′MD))

=tr (E (εε′Γ′MD)) = tr (ΣΓ′MD) .

Therefore E (Z) =

[
tr (ΣΓ′MD)

0

]
. Let c be a (1 + d)-vector such that ‖c‖ = 1. We follow

the the Cramer-Wold device and CLT for martingale difference sequences (see Corollary 5.26

in White (1984)) to proceed the proof. The purpose is to verify

1√
N1N2T

(c′Z− c′E (Z))→d N (0, c′Ωc)

More precisely,

1√
N1N2T

c′ [Z−E (Z)] =
1√

N1N2T

(
c0y

′
−1MDε+ c̃′X′MDε−c0ε

′Γ′MDε
)

=
1√

N1N2T
[c0Λ

′MDε+ c̃′X′MDε]

=
1√

N1N2T
b′MDε
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where b =c0Λ + Xc̃ = c0 (I + ρΨ) (I− ρΨ)−1 (y0 ⊗ e1)+c0ΓXβ+c0ΓDπ + Xc̃ = G (y0,X, π).

To prove that, we apply CLT for elements of cZ. In scalar form,

1√
N1N2T

b′MDε=
1√

N1N2T

N1∑
i=1

N2∑
j=1

T∑
t=1

[
ε̈ijt

(
yij0 +

t∑
s=1

ρs−1
(
ρyij0 + x′ijsβ

)
c0 + x′ijtc̃

)]

=
1√

N1N2T

N1∑
i=1

N2∑
j=1

T∑
t=1

[
εijt

(
ÿij0 +

t∑
s=1

ρs−1
(
ρÿij0 + ẍ′ijsβ

)
c0 + ẍ′ijtc̃

)]

where ẍijt denotes the xijt transformed by the projector MD. Denote

ξijt = εijt

(
ÿij0 +

t−1∑
s=1

ρt−s
(
ρÿij0 + ẍ′ijt−sβ

)
c0 + ẍ′ijtc̃

)

From Assumption 1, 2 and 3, we have

E (ξijt|σ ({(ÿij0, ẍijs, εij,s−1) , s ≤ t})) = 0

and

E
(
ξ2
ijt|σ ({(ÿij0, ẍijs, εij,s−1) , s ≤ t})

)
<∞.

It is shown that ξm is a martingale difference sequence. Therefore, applying CLT for mar-

tingale difference sequences, 1√
N1N2T

b′MDε→dN (0, c′Ωc) where Ω = 1
N11N2T

V ar (Z) :=

1
N11N2T

[
Ω11 Ω12

Ω′12 Ω22

]
. Then we have

Ω11 =E
(
y′−1MDεε

′MDy−1

)
− [tr (ΣΓ′MD)]

2

=E (ΛMDΣMDΛ′) + E (ε′Γ′MDεε
′MDΓε) + 2E (ΛMDεε

′MDΓε)− [tr (ΣΓ′MD)]
2

Ω12 =E
(
y′−1MDεε

′MDX
)

= E (ΛMDΣMDX) + E (εΓ′MDεε
′MDX)

Ω22 =E (X′MDΣMDX)

Then we consider the asymptotic limit of AN1N2T when N1, N2, and T all goes to infinity.

By the weak law of large numbers,

AN1N2T →p

[
E
[
y′−1M

2
Dy−1

]
E
[
y′−1M

2
DX
]

E [X′M2
Dy−1] E [X′M2

DX]

]

For E
[
y′−1MDy−1

]
, we can use the dynamic equation and the stationarity condition to
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get the result.

E
[
y′−1MDy−1

]
=E [y′MDy] = E

[(
ρy′−1+β′X′+ε′

)
MD (ρy−1+Xβ + ε)

]
=ρ2E

[
y′−1MDy−1

]
+ 2ρE

[
y′−1MDXβ

]
+ E [ε′MDε]

+ E [β′X′MDX′β] + 2ρE
[
y′−1MDε

]
Then we have the expression for E

[
y′−1MDy−1

]
,

E
[
y′−1MDy−1

]
=

1

1− ρ2
{tr (ΣMD) + E [β′X′MDXβ]}

+
2ρ

1− ρ2

{
tr (ΣΓ′MD) + E

[
y′−1MDXβ

]}
with E

[
y′−1MDε

]
= tr (ΣΓ′MD) and E [ε′MDε] = tr (ΣMD). To illustrate the limit of

AN1N2T , it can be shown that

p lim
1

N1N2T
AN1N2T =

1

N1N2T

{[
Aε 0

0 0

]
+

[
Aβ A′xΛ

AxΛ Axx

]}
:= Φ

where Aε = 1
1−ρ2 tr (ΣMD) + 2ρ

1−ρ2 tr (ΣΓ′MD), Aβ = 1
1−ρ2β

′Axxβ+ ρ
1−ρ2 (A′xΛβ + β′AxΛ),

AxΛ = E [X′MDΛ] and Axx = E [X′MDX].

By Delta method, we have the asymptotic distribution of

[
ρ̂

β̂

]
,

√
N1N2T

([
ρ̂

β̂

]
−

[
ρ

β

]
−Φ−1

[
tr(ΣΓ′MD)
N1N2T

0

])
→d N

(
0,Φ−1ΩΦ−1

)
which completes the proof.

3.7.2 Proof of Corollary 3.2.1

Proof. Firstly we prove that Ωs ≤ Ω̃s. Denote Z̃ =
[
y′−1,X

′]′ /√N1N2T and Z̆ = [Λ,X′]′ /
√
N1N2T ,

we have Ωs=V ar
(
Z̃MD,sε

)
and Ω̃s=V ar

(
Z̃M̃D,sε

)
= V ar

(
Z̃MD,sMD,tMD,sε

)
. Since

Ωs − Ω̃s =V ar
(
Z̃MD,sε

)
− V ar

(
Z̃MD,sMD,tMD,sε

)
=E

[(
Z̃−EZ̃

)
MD,sε

] [(
Z̃−EZ̃

)
MD,sε

]′
− E

[(
Z̃−EZ̃

)
MD,sMD,tMD,sε

] [(
Z̃−EZ̃

)
MD,sMD,tMD,sε

]′
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=E
[
Z̆MD,sεε

′MD,sZ̆
′
]
− E

[
Z̆MD,sMD,tMD,sεε

′MD,sMD,tMD,sZ̆
′
]

=E
[
Z̆MD,s (MD,sεε

′MD,s −MD,tMD,sεε
′MD,sMD,t) MD,sZ̆

′
]

=E
[
Z̆MD,s (MD,sεε

′MD,s −MD,sMD,tεε
′MD,tMD,s) MD,sZ̆

′
]

=E
[
Z̆MD,s (εε′ −MD,tεε

′MD,t) MD,sZ̆
′
]

=EZ̆MD,s (Σ−MD,tΣMD,t) MD,sEZ̆′

Since Σ is a diagonal matrix with positive diagonal item σ2
ijt and MD,tΣMD,t is a diagonal

matrix with positive diagonal item σ̈2
ijt = σ2

ijt + o (1), which is the demean version of σ2
ijt, we

have that Σ−MD,tΣMD,t = o(1) and then EZ̆MD,s (Σ−MD,tΣMD,t) MD,sEZ̆′ → 0 as N1,

N2 and T tend to infinity. Thus Ωs = Ω̃s.

Secondly we prove that Φs ≥ Φ̃s.

Φs − Φ̃s =E
(
Z̃MD,sZ̃

′
)
− E

(
Z̃MD,sMD,tMD,sZ̃

′
)

=E
(
Z̃MD,s (I−MD,t) MD,sZ̃

′
)

=E
(
Z̃MD,s (I−MD,t) (I−MD,t) MD,sZ̃

′
)
≥ 0

The last equality is obtained from the fact that I−MD,t is a symmetric and idempotent

matrix. This completes the proof.

3.7.3 Proof of Proposition 3.3.1

Proof. There are seven kinds of taking averaging in the three-dimensional panel data models:

(1) over i, (2) over j, (3) over t, (4) over i and j, (5) over i and t, (6) over j and t, and (7)

over i, j, and t. The matrix form and the corresponding transformed incidental parameters

are
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No. Scalar Form Matrix Form After Trans. Qm

0 yijt IN1⊗IN2⊗IT αi + γj + λt [1, 0, 1, 0, 1, 0]

1 ȳi·t IN1⊗J̄N2⊗IT αi + γ̄ + λt [1, 0, 0, 1, 1, 0]

2 ȳij· IN1⊗IN2⊗J̄T αi + γj + λ̄ [1, 0, 1, 0, 0, 1]

3 ȳ·jt J̄N1⊗IN2⊗IT ᾱ + γj + λt [0, 1, 1, 0, 1, 0]

4 ȳi·· IN1⊗J̄N2⊗J̄T αi + γ̄ + λ̄ [1, 0, 0, 1, 0, 1]

5 ȳ·j· J̄N1⊗IN2⊗J̄T ᾱ + γj + λ̄ [0, 1, 1, 0, 0, 1]

6 ȳ··t J̄N1⊗J̄N2⊗IT ᾱ + γ̄ + λt [0, 1, 0, 1, 1, 0]

7 ȳ··· J̄N1⊗J̄N2⊗J̄T ᾱ + γ̄ + λ̄ [0, 1, 0, 1, 0, 1]

Define the elements of transformed incidental parameters η =
[
αi, ᾱ, γj, γ̄, λt, λ̄

]
, the trans-

formed incidental parameters can be represented by Qmη in each averaging case. In the most

general case, η =
[
αi, ᾱ, γj, γ̄, λt, λ̄, γij, γ̄·j, γ̄i·, γ̄··, αit, ᾱ·t, ᾱi·, ᾱ··, α

∗
jt, ᾱ

∗
·t, ᾱ

∗
j·, ᾱ

∗
··
]
. For simplic-

ity of notations, we adopt the special specification η =
[
αi, ᾱ, γj, γ̄, λt, λ̄

]
in this proof. The

original incidental parameters are αi+γj +λt. The purpose of projection is to eliminate them

with the linear combinations of these seven kinds of transformations. Since the previous table

include all the possible averaging schemes, we can imagine that the potential feasible projec-

tion could be equal to the linear combinations of Qmη. In other words, we need to solve the

following multivariate linear equations:

Q0η +
7∑

m=1

cmQmη =0 for any η

or
7∑

m=1

cmQm =−Q0

Write it in matrix forms,

[
Q′1 Q′2 Q′3 Q′4 Q′5 Q′6 Q′7

]


c1

c2

c3

c4

c5

c6

c7


= −Q′0 or Q′c = −Q′0
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Plug in the numbers for this case, we have



1 1 0 1 0 0 0

0 0 1 0 1 1 1

0 1 1 0 1 0 0

1 0 0 1 0 1 1

1 0 1 0 0 1 0

0 1 0 1 1 0 1


6×7



c1

c2

c3

c4

c5

c6

c7


=



−1

0

−1

0

−1

0


6×1

It can be easily shown that Q is not of full column rank. Therefore, the solutions for c is

not unique, to solve this indefinite multivariate linear equations problem, we can implement

fundamental transformations for the matrix [Q,−Q′0].

trans ([Q,−Q′0]) =



1 1 0 1 0 0 0 −1

0 1 1 0 1 0 0 −1

0 0 1 0 1 1 1 0

0 0 0 1 1 1 2 1

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


The solution for this system of equations is given by

c =



−1 + a1 + a3

−1 + a2 + a3

−a1 − a2 − a3

1− a1 − a2 − 2a3

a1

a2

a3


Four bases for c are when [a1, a2, a3] = [0, 0, 0], [1, 0, 0], [0, 1, 0], and [0, 0, 1]. They are

c1 = [−1,−1, 0, 1, 0, 0, 0]′

c2 = [0,−1,−1, 0, 1, 0, 0]′

c3 = [−1, 0,−1, 0, 0, 1, 0]′

c4 = [0, 0,−1,−1, 0, 0, 1]′
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The corresponding transformations are

MD,1a=I− IN1⊗J̄N2⊗IT−IN1⊗IN2⊗J̄T+IN1⊗J̄N2⊗J̄T

MD,1b=I− IN1⊗IN2⊗J̄T−J̄N1⊗IN2⊗IT+J̄N1⊗IN2⊗J̄T

MD,1c=I− IN1⊗J̄N2⊗IT−J̄N1⊗IN2⊗IT+J̄N1⊗J̄N2⊗IT

MD,1d=I− IN1⊗J̄N2T−J̄N1⊗IN2⊗J̄T−J̄N1N2⊗IT+2J̄N1N2T

which completes the proof.

3.7.4 Proof of Proposition 3.3.2

Proof. Because of dropping the homoskedasticity assumption in Balaszi (2015), we cannot

take Σ outside of the trace function. We have

ΣΓ′ =





0 σ2
111 · · · ρT−3σ2

111 ρT−2σ2
111

0 0 · · · ρT−4σ2
112 ρT−3σ2

112
...

...
. . .

...
...

0 0 · · · 0 σ2
11,T−1

0 0 · · · 0 0


0 0

0
... 0

0 0



0 σ2
N1N21 · · · ρT−3σ2

N1N21 ρT−2σ2
N1N21

0 0 · · · ρT−4σ2
N1N22 ρT−3σ2

N1N22
...

...
. . .

...
...

0 0 · · · 0 σ2
N1N2,T−1

0 0 · · · 0 0




Now we have the same representaion for ΣΓ′, the different expression form for tr (ΣΓ′MD)

of different within estimators lies in MD. Before giving the proof, we denote [·]ij the partition

matrix with the partitioned row [N2T × (i− 1) + T × (j − 1) + 1 : N2T × (i− 1) + T × j]
and the same partitioned column [N2T × (i− 1) + T × (j − 1) + 1 : N2T × (i− 1) + T × j].
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Therefore, the T × T -dimensional partition matrix [ΣΓ′]ij is

[ΣΓ′]ij =



0 σ2
ij1 · · · ρT−3σ2

ij1 ρT−2σ2
ij1

0 0 · · · ρT−4σ2
ij2 ρT−3σ2

ij2
...

...
. . .

...
...

0 0 · · · 0 σ2
ij,T−1

0 0 · · · 0 0


.

Firstly consider MD,1b = I− IN1⊗IN2⊗J̄T−J̄N1⊗IN2⊗IT+J̄N1⊗IN2⊗J̄T , right multiplying

IN1⊗IN2⊗J̄T means taking average along the each row for partitioned matrix [ΣΓ′]ij, i.e.,

[ΣΓ′]ij J̄T .

[ΣΓ′]ij J̄T =



σ̄2
ij1 σ̄2

ij1 · · · σ̄2
ij1 σ̄2

ij1

σ̄2
ij2 σ̄2

ij2 · · · σ̄2
ij2 σ̄2

ij2
...

...
. . .

...
...

σ̄2
ij,T−1 σ̄2

ij,T−1 · · · σ̄2
ij,T−1 σ̄2

ij,T−1

0 0 · · · 0 0


where σ̄2

ijt = σ2
ijt

(
1 + · · ·+ ρT−t−1

)
/T . Right multiplying J̄N1⊗IN2⊗IT has no effect on the

diagonal items since taking averaging over i is equivalent to taking average over N1 zero items

for diagonal items. Right multiplying J̄N1⊗IN2⊗J̄T means taking average along the each row

for the stack matrix of partitioned matrix [ΣΓ′]ij and N1 − 1 zero matrix with dimension

T × T , i.e.,
[
[ΣΓ′]ij ,0T×(N1−1)T

]
JN1T×T/ (N1T ) = [ΣΓ′]ij J̄T/N1. Thus after transfomed by

MD,1b, the partition matrix [ΣΓ′]ij becomes

[ΣΓ′MD,1b]ij =



−σ̄2
ij1 + σ̄2

ij1/N1 σ2
ij1 − σ̄2

ij1 + σ̄2
ij1/N1 · · · ρT−2σ2

ij1 − σ̄2
ij1 + σ̄2

ij1/N1

0 −σ̄2
ij2 + σ̄2

ij2/N1 · · · ρT−3σ2
ij2 − σ̄2

ij2 + σ̄2
ij2/N1

...
...

. . .
...

0 0 · · · σ2
ij,T−1 − σ̄2

ij,T−1 + σ̄2
ij,T−1/N1

0 0 · · · 0


Therefore,

tr (ΣΓ′MD,1b) =

[
− 1

T (1− ρ)
σ̄ +

1

T 2 (1− ρ)
σ̄ρ

](
1− 1

N1

)
which completes the proof of Bias1b. After trivial calculation, we can also obtain the asymp-
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totic distribution of θ̂1b. The proofs of other biases and the proofs of the asymptotic distri-

butions of other estimators closely follow this approach.

3.7.5 Proof of Theorem 3.4.1

Proof. This proof closely follows the proof of Dhaene and Jochmans (2015). In their frame-

work, they let N and T go to infinity in the same rate, which is equivalent to letting N1×N2

and T go to infinity in the same rate. We can allow N1, N2, and T go to infinity at the same

rate because we consider a situation in which our condition is stronger than Assumption 3.3

of DJ15. Note that

θ̃1/2 =
1

2

(
θ̃S1 + θ̃S2

)
, θ̃Sm ≡ 2θ̂ − θ̄Sm

where θ̄Sm =
∑

Smk∈Sm
|Smk|
T
θ̂Smk . In particular, θ̄S1 = dT/2e

T
θ̂S11 + T−dT/2e

T
θ̂S12 and θ̄S2 =

bT/2c
T
θ̂S21 + T−bT/2c

T
θ̂S22 . Averaging over the equivalence of S does not affect the asymptotic

properties and θ̃. Thus it suffices to consider the asymptotic behavior of θ̃S . Following the

proof of Theorem 3.1 in DJ15, we have the result√
N1N2T

(
θ̃1/2 − p lim

N→∞
θ̃1/2

)
→d N(0,Σ−1)

For all the fixed effect estimators in our asymptotic pattern, we have that θ̂ − θ = B̃1

T
+

B̃2

T 2 + op
(

1
T 2

)
where B̃1 and B̃2 are Op (1) and they could be zero. For any θ̂Smk , we also have

θ̂Smk − θ = B̃1

Tmk
+ B̃2

T 2
mk

+ op

(
1

T 2
mk

)
. Then

θ̄Sm − θ =
2B̃1

T
+

B̃2

TTmk
+

B̃2

T (T − Tmk)
+ op

(
1

T 2

)
By the construction of θ̃1/2

θ̃1/2 − θ =
2B̃2

T 2
− B̃2

TTmk
− B̃2

T (T − Tmk)
= O

(
T−2

)
and Propositions in Section 3, we have√

N1N2T (p lim
N→∞

θ̃1/2 − θ) =
√
N1N2TO(T−2)→ 0
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provided N1, N2, T →∞ with N1/T → δ1 and N2/T → δ2. Therefore, the bias is asymptoti-

cally negligible. Now we can directly get the asymptotic distribution√
N1N2T

(
θ̃1/2 − θ

)
→d N

(
0,Φ−1ΩΦ−1

)
This completes the proof.
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