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Abstract

The dissertation includes three chapters on econometrics. The first chapter is about treat-
ment effects and its application in randomized control trial. The second chapter is about
specification test. The third chapter is about panel data model with fixed effects.

In the first chapter, we study the estimation and inference of the quantile treatment effect
under covariate-adaptive randomization. We propose two estimation methods: (1) the simple
quantile regression and (2) the inverse propensity score weighted quantile regression. For
the two estimators, we derive their asymptotic distributions uniformly over a compact set of
quantile indexes, and show that, when the treatment assignment rule does not achieve strong
balance, the inverse propensity score weighted estimator has a smaller asymptotic variance
than the simple quantile regression estimator. For the inference of method (1), we show
that the Wald test using a weighted bootstrap standard error under-rejects. But for method
(2), its asymptotic size equals the nominal level. We also show that, for both methods, the
asymptotic size of the Wald test using a covariate-adaptive bootstrap standard error equals
the nominal level. We illustrate the finite sample performance of the new estimation and
inference methods using both simulated and real datasets.

In the second chapter, we propose a novel consistent model specification test based on the
martingale difference divergence (MDD) of the error term given the covariates. The MDD
equals zero if and only if error term is conditionally mean independent of the covariates. Our
MDD test does not require any nonparametric estimation under the null or alternative and it
is applicable even if we have many covariates in the regression model. We have established the
asymptotic distributions of our test statistic under the null and under a sequence of Pitman
local alternatives converging to the null at the usual parametric rate. We have conducted
simulations to evaluate the finite sample performance of our test and compare it with its
competitors. We find that our MDD test has superb performance in terms of both size and
power and it generally dominates its competitors. In particular, it’s the only test that has well
controlled size in the presence of many covariates and reasonable power against high frequent
alternatives as well. We apply our test to test for the correct specification of functional forms
in gravity equations for four datasets. For all the datasets, we reject the log and level model
coherently at 10% significance level. However, its competitors show mixed testing results for

different datasets. The findings reveal the advantages of our test.



In the third chapter, we consider the Nickell bias problem in dynamic fixed effects multi-
level panel data models with various kinds of multi-way error components. For some specifi-
cations of error components, there exist many different forms of within estimators which are
shown to be of possibly different asymptotic properties. The forms of the estimators in our
framework are given explicitly. We apply the split-sample jackknife approach to eliminate
the bias. In practice, our results can be easily extended to multilevel panel data models with

higher dimensions.
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Chapter 1

Quantile Treatment Effects and
Bootstrap Inference under

Covariate-Adaptive Randomization

1.1 Introduction

The randomized control trial (RCT), as pointed out by Angrist and Pischke (2008), is one
of the five most common methods (along with instrumental variable regressions, matching
estimations, differences-in-differences, and regression discontinuity designs) for causal infer-
ence. Researchers can use the RCT to estimate not only average treatment effects (ATEs)
but also quantile treatment effects (QTEs), which capture the heterogeneity of the sign and
magnitude of treatment effects, varying depending on their place in the overall distribution
of outcomes. For example, Muralidharan and Sundararaman (2011) estimate the QTE of
teacher performance pay program on student learning via the difference of empirical quantiles
of test scores between treatment and control groups. Duflo et al. (2013) and Banerjee et al.
(2015) estimate the QTEs of audits on endline pollution and a group-lending microcredit pro-
gram on informal borrowing, respectively, via linear quantile regressions (QRs). Crépon et al.
(2015) estimate the QTE of microcredit on various household outcomes via a minimum dis-
tance method. Byrne et al. (2018) estimate the QTE of being informed on energy use via the
inverse propensity score weighted (IPW) QR. Except Crépon et al. (2015), the other four pa-

! This is a co-authered work with Yichong Zhang.



pers all use the bootstrap to construct confidence intervals for their QTE estimates. However,
RCTs have also been routinely implemented with covariate-adaptive randomization. Individ-
uals are first stratified based on some baseline covariates, and then, within each stratum, the
treatment status is assigned (independent of covariates) to achieve some balance between the
sizes of treatment and control groups; as examples, see Imbens and Rubin (2015, Chapter
9) for a textbook treatment of the topic, and Duflo et al. (2007) and Bruhn and McKen-
zie (2009) for two excellent surveys on implementing RCTs in development economics. To
achieve such balance, treatment status for different individuals usually exhibits a (negative)
cross-sectional dependence. The standard inference procedures that rely on cross-sectional
independence are usually conservative and lacking power. How do we consistently estimate
QTEs under covariate-adaptive randomization? What are the asymptotic distributions for
the QTE estimators, and how do we conduct proper bootstrap inference? These questions
are as yet unaddressed.

We propose two ways to estimate QTEs: (1) the simple quantile regression (SQR) and (2)
the IPW QR. We establish the weak limits for both estimators uniformly over a compact set
of quantile indexes and show that the IPW estimator has a smaller asymptotic variance than
the SQR estimator when the treatment assignment rule does not achieve strong balance.? If
strong balance is achieved, then the two estimators are asymptotically first-order equivalent.
For inference, we show that the Wald test combined with weighted bootstrap based critical
values can lead to under-rejection for method (1), but its asymptotic size equals the nominal
level for method (2). We also study the covariate-adaptive bootstrap which respects the
cross-sectional dependence when generating the bootstrap sample. The estimator based on
the covariate-adaptive bootstrap sample can mimic that of the original sample in terms of
the standard error. Thus, using proper covariate-adaptive bootstrap based critical values, the
asymptotic size of the Wald test equals the nominal level for both estimators.

As originally proposed by Doksum (1974), the QTE, for a fixed quantile index, corresponds
to the horizontal difference between the marginal distributions of the potential outcomes for
treatment and control groups. Firpo (2007) studies the identification and estimation of QTE
under unconfoundedness. Our estimators (1) and (2) directly follow those in Doksum (1974)
and Firpo (2007), respectively.

Shao et al. (2010) first point out that, under covariate-adaptive randomization, the usual
two-sample t-test for the ATE is conservative. They then propose a covariate-adaptive boot-
strap which can produce the correct standard error. Shao and Yu (2013) extend the results to

generalized linear models. However, both groups of researchers parametrize the (transformed)

2We will define “strong balance” in Section 1.2.



conditional mean equation by a specific linear model and focus on a specific randomization
scheme (covariate-adaptive biased coin method). Ma et al. (2018) derive the theoretical prop-
erties of ATE estimators based on general covariate-adaptive randomization under the linear
model framework. Bugni et al. (2018) substantially generalize the framework to a fully non-
parametric setting with a general class of randomization schemes. However, they mainly focus
on the ATE and show that the standard two-sample t-test and the t-test based on the linear
regression with strata fixed effects are conservative. They then obtain analytical estimators
for the correct standard errors and study the validity of permutation tests. Hahn et al. (2011)
study the IPW estimator for the ATE under adaptive randomization. However, they assume
the treatment status is assigned completely independently across individuals. More recently,
Bugni et al. (2019) study the estimation of ATE with multiple treatments and propose a fully
saturated estimator. Tabord-Meehan (2018) study the estimation of ATE under an adaptive
randomization procedure.

Our paper complements the above papers in four aspects. First, we consider the estimation
and inference of the QTE, which is a function of quantile index 7. We rely on the empirical
processes theories developed by van der Vaart and Wellner (1996) and Chernozhukov et al.
(2014) to obtain uniformly weak convergence of our estimators over a compact set of 7.
Based on the uniform convergence, we can construct not only point-wise but also uniform
confidence bands. Second, we study the asymptotic properties of the IPW estimator under
covariate-adaptive randomization. When the treatment assignment rule does not achieve
strong balance, the IPW estimator is more efficient than the SQR estimator. Third, we
investigate the weighted bootstrap approximation to the asymptotic distributions of the SQR
and IPW estimators. We show that the weighted bootstrap ignores the (negative) cross-
sectional dependence due to the covariate-adaptive randomization and over-estimates the
asymptotic variance for the SQR estimator. However, the asymptotic variance for the IPW
estimator does not rely on the randomization scheme implemented. Thus, the asymptotic size
of the Wald test using the IPW estimator paired with the weighted bootstrap based critical
values equals the nominal level. Fourth, we investigate the covariate-adaptive bootstrap
approximation to the asymptotic distributions of the SQR and IPW estimators. We establish
that, using either estimator paired with its corresponding covariate-adaptive bootstrap based
critical values, the asymptotic size of the Wald test equals the nominal level. Shao et al.
(2010) first propose the covariate-adaptive bootstrap and establish its validity for the ATE in
a linear regression model under the null hypothesis that the treatment effect is not only zero

but also homogeneous.?> We modify the covariate-adaptive bootstrap and establish its validity

3We say the average treatment effect is homogeneous if the conditional average treatment effect given



for the QTE in the nonparametric setting proposed by Bugni et al. (2018). In addition, our
results do not rely on the homogeneity of the treatment effect. Compared with the analytical
inference, the two bootstrap inferences for QTEs we study in this paper avoid estimating the
infinite-dimensional nuisance parameters such as the densities of the potential outcomes, and
thus, the choices of tuning parameters. In addition, unlike the permutation tests studied in
Bugni et al. (2018), the validity of bootstrap inferences does not require either strong balance
condition or studentization. In particular, such studentization is cumbersome in the QTE
context.

As the asymptotic variance for the IPW estimator does not depend on the treatment
assignment rule implemented in RCTSs, this estimator (and equivalently, the fully saturated
estimator for the ATE) is suitable for settings where the knowledge of the exact treatment
assignment rule is not available. Such scenario occurs when researchers are using an exper-
iment that was run in the past and the randomization procedure may not have been fully
described. It also occurs in subsample analysis, where sub-groups are defined using variables
that may have not been used to form the strata and the treatment assignment rule for each
sub-group becomes unknown. We illustrate this fact in the subsample analysis of the empirical
application in Section 1.8.

The rest of the paper is organized as follows. In Section 1.2, we describe the model setup
and notation. In Sections 1.3.1 and 1.3.2, we discuss the asymptotic properties of estimators
(1) and (2), respectively. In Sections 1.4 and 1.5, we investigate the weighted and covariate-
adaptive bootstrap approximations to the asymptotic distributions of estimators (1) and (2),
respectively. In Section 1.6, we examine the finite-sample performance of the estimation and
inference methods. In Section 1.7, we provide recommendations for practitioners. In Section
1.8, we apply the new methods to estimate and infer the average and quantile treatment
effects of iron efficiency on educational attainment. In Section 1.9, we conclude. We provide
proofs for all results in an appendix. We study the strata fixed effects quantile regression

estimator and provide additional simulation results in the second online supplement.

1.2 Setup and Notation

First, denote the potential outcomes for treated and control groups as Y'(1) and Y'(0), respec-
tively. The treatment status is denoted as A, where A = 1 means treated and A = 0 means
untreated. The researcher can only observe {Y;, Z;, A;}_; where Y; = Y;(1)A; +Y;(0)(1 — 4;),

and Z; is a collection of baseline covariates. Strata are constructed from Z using a function

covariates is the same as the unconditional one.



S : Supp(Z) — S, where S is a finite set. For 1 <i <n, let S; = S(Z;) and p(s) = P(S; = s).
Throughout the paper, we maintain the assumption that p(s) is fixed w.r.t. n and is positive
for every s € §.* We make the following assumption for the data generating process (DGP)

and the treatment assignment rule.

Assumption 1. (i) {Yi(1),Y:(0), S;}1, is d.i.d.

(it) {Y;(1), Y;(0)}ioy AL {AF [{Sids, -
o {{581)_

D, (s) = Z(AZ —mU{S;=s} and Xp = diag{p(s)y(s):se S}

i=1

{S,;}?Zl} ~ N(0,%Xp) a.s., where

(iv) Z’ZS) =0,(1) for s € S, where n(s) =Y ., 1{S; = s}.

Several remarks are in order. First, Assumptions 1(i)-1(iii) are exactly the same as Bugni
et al. (2018, Assumption 2.2). We refer interested readers to Bugni et al. (2018) for more
discussion of these assumptions. Second, note that in Assumption 1(iii) the parameter 7 is the
target proportion of treatment for each stratum and D, (s) measures the imbalance. Bugni
et al. (2019) study the more general case that m can take distinct values for different strata.
Third, we follow the terminology in Bugni et al. (2018), which follows that of Efron (1971) and
Hu and Hu (2012), saying a treatment assignment rule achieves strong balance if y(s) = 0.
Fourth, we do not require that the treatment status is assigned independently. Instead, we
only require Assumption 1(iii) or Assumption 1(iv), which condition is satisfied by several
treatment assignment rules such as simple random sampling (SRS), biased-coin design (BCD),
adaptive biased-coin design (WEI), and stratified block randomization (SBR). Bugni et al.
(2018, Section 3) provide an excellent summary of these four examples. For completeness,
we briefly repeat their descriptions below. Note that both BCD and SBR assignment rules

achieve strong balance. Last, as p(s) > 0, Assumption 1(iii) implies Assumption 1(iv).

Example 1 (SRS). Let {A;}, be drawn independently across i and of {S;}"_, as Bernoulli

random variables with success rate w, i.e., fork=1,--- n,

P (Av = I{SHLr (A1) = P(Ac = 1) = .

4We can also allow for the DGP to depend on n so that p,(s) = P,(S; = s) and p(s) = limp,(s). All the
results in this paper still hold as long as n(s) — oo a.s. Interested readers can refer to the previous version of
this paper on arXiv for more detail.



Then, Assumption 1(iii) holds with ~(s) = w(1 — 7).

Example 2 (WEI). The design is first proposed by Wei (1978). Let ng_1(Sk) = Z;:ll 1{S; =
Sk}, Di-i(s) = 30! (A; — %) 1{S; = s}, and

P (4 = 1{SiH, {AF) = aa(D—(S))

nkfl(sk)

where ¢(+) : [—1,1] — [0,1] is a pre-specified non-increasing function satisfying ¢(—zx) =1 —
¢(x). Here, % is understood to be zero. Then, Bugni et al. (2018) show that Assumption
1(iii) holds with ™ = 5 and v(s) = $(1 —4¢/(0)) .
Example 3 (BCD). The treatment status is determined sequentially for 1 <k <n as

P (Ak: = 1{Si}, {Az‘}i':ll) =4 A if Dy—1(Sk) <0

1= X if Dya(Sk) > 0,

where Dy_1(s) is defined as above and 3 < A < 1. Then, Bugni et al. (2018) show that
Assumption 1(iii) holds with m = § and (s) = 0.

Example 4 (SBR). For each stratum, |mn(s)]| units are assigned to treatment and the rest is

assigned to control. Bugni et al. (2018) then show that Assumption 1(iii) holds with y(s) = 0.

Our parameter of interest is the 7-th QTE defined as

q(1) = (1) — qo(7),

where 7 € (0, 1) is a quantile index and ¢;(7) is the 7-th quantile of random variable Y'(j) for
j =0, 1. For inference, although we mainly focus on the Wald test for the null hypothesis that
q(7) equals some particular value, our method can also be used to test hypotheses involving
multiple or even a continuum of quantile indexes. The following regularity conditions are

common in the literature of quantile estimations.

Assumption 2. For j = 0,1, denote f;(-) and f;(-|s) as the PDFs of Y;(j) and Y;(j)|S; = s,
respectively.

(1) fi(q;(7)) and f;(q;(T)|s) are bounded and bounded away from zero uniformly over T € Y
and s € S, where Y is a compact subset of (0,1).

(i1) f;(-) and f;(-|s) are Lipschitz over {q;(7) : 7 € T}.

10



1.3 Estimation

1.3.1 Simple Quantile Regression

In this section, we propose to estimate ¢(7) by a QR of Y; on A;. Denote 3(7) = (Bo(7), f1(7))’,
Bo(T) = qo(7), and By(7) = q(7). We estimate 5(r) by B(r), where

n

Blr) = argmin 3 p, (¥i— App),

b=(b0 ,b1 )/€§R2 i=1

A; = (1,A;), and p,;(u) = u(t — 1{u < 0}) is the standard check function. We refer to
31(7), the second element of 3 (1), as our SQR estimator for the 7-th QTE. As A; is a dummy
variable, Bl (7) is numerically the same as the difference between the 7-th empirical quantiles

of Y in the treatment and control groups.

Theorem 1.3.1. If Assumptions 1(i)-1(iii) and 2 hold, then, uniformly over 7 € Y,

Jn (5‘1(7) . q(T)) s By (), asn — o0,

where By (+) is a Gaussian process with covariance kernel Xg.(-,-). The expression for

Ysqr (-, +) can be found in the Appendiz.

The asymptotic variance for \/n (Bl (1) — P (7')) is (2 (m,7) + CA(m,7) + C3(7), where

7(1—7) —Em3(S,7)  7(1—7)—Emi(S,7)
Tfi(qi(7)) (1 —7)f5(qo(T))

Gy (m,7) =

) B m1 (S, 7) mo(S, 7) ’
Calm7) = Er(S) <7Tf1(Q1(7')) i (1- W)fo(qo<7>>> |

2 o ml(S>T) . mO(SaT))2
0 =2 (Gt~ o))
and m;(s,7) = E(1 — 1{Y'(j) < ¢;j(7)}|S = s). Note that, if the treatment assignment rule

achieves strong balance or the stratification is irrelevant® then (3 (m, 7) = 0.

°It means P(Y (j) < ¢;(1)|S=s)=71for s € S,j =0, 1.

11



1.3.2 Inverse Propensity Score weighted Quantile Regression

Denote 7(s) = ni(s)/n(s), ni(s) = > i, A1{S; = s}, and n(s) = Y I, 1{S; = s}. Note
7(S;) is an estimator for the propensity score, i.e., 7. In addition, Assumption 1(ii) implies
that the unconfoundedness condition holds. Thus, following the lead of Firpo (2007), we can
estimate ¢;(7) by the IPW QR. Let

6 (7) = ‘—E:—TY;— d Go(r) = '—E—A (Y —q).
¢1(7) argqmlnn 2 fr(SZ-)'O ( q) and Go(7) argqmmn 27 - 7T(Si>p ( q)

~

We then estimate ¢(7) by ¢(7) = ¢1(7) — Go(7).

Theorem 1.3.2. If Assumptions 1(1), 1(ii), 1(iv) and 2 hold, then, uniformly over T € T,

\/ﬁ((j(T) - Q(T)) ~ Bipw(T)a as n — o0,

where Biyy(+) is a scalar Gaussian process with covariance kernel ¥;,,(-,-). The expression

for Bipw(+,-) can be found in the Appendiz.

Two remarks are in order. First, the asymptotic variance for ¢(7) is

G (m,7) + GB(r).

When strong balance is not achieved and the stratification is relevant, we have (4 (m,7) > 0.

Thus, ¢(7) is more efficient than f;(7) in the sense that
ipw (T, T) < B (7, 7).

When strong balance is achieved (y(s) = 0), we have (3(w,7) = 0. Thus, the two estimators
are asymptotically first-order equivalent. Based on the same argument, one can potentially
prove that, when strong balance is not achieved and the stratification is relevant, the IPW
estimator for ATE has strictly smaller asymptotic variance than the simple two-sample differ-
ence and strata fixed effects estimators studied by Bugni et al. (2018), and is asymptotically
equivalent to the fully saturated linear regression estimator proposed by Bugni et al. (2019).
Second, since the amount of “balance” of the treatment assignment rule does not play a role in
the limiting distribution of the IPW estimator, Assumption 1(iii) is replaced by Assumption
L(iv).
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1.4 Weighted Bootstrap

In this section, we approximate the asymptotic distributions of the SQR and IPW estimators
via the weighted bootstrap. Let {{;}"; be a sequence of bootstrap weights which will be
specified later. Further denote n¥’(s) = >0 | &A;1{S; = s}, n¥(s) = D1, &1{S; = s}, and
7(s) = n¥(s)/n"(s). The weighted bootstrap counterparts for the two estimators we study

in this paper can then be written respectively as

~

B (r) = arg min Xn: &ipr (Y; —~ Aﬂ?)

i=1
and
q“(7) = ¢’ (7) — 45’ (1),
where
. L GA . = G- A
G (1) = arg min —p, (Y;—¢q) and ¢y (7) = argmin — . (Y, —q).
7' (7) ; ZZIW“’(SO ( ) o (1) ; ;1_Ww(5i) ( )

The second element 5¥(7) of 3*(7) and ¢*(7) are the SQR and IPW bootstrap estimators
for the 7-th QTE, respectively. Next, we specify the bootstrap weights.

Assumption 3. Suppose {&;}, is a sequence of nonnegative i.i.d. random variables with

unit expectation and variance and a sub-exponential upper tail.

The nonnegativity is required to maintain the convexity of the quantile regression objective
function. The other conditions in Assumption 3 are common for the weighted bootstrap
approximation. In practice, we generate {&;}; by the standard exponential distribution.

The corresponding weighted bootstrap is also known as the Bayesian bootstrap.

Theorem 1.4.1. If Assumptions 1(i)-1(iii), 2, and 3 hold, then uniformly over 7 € T and

conditionally on data,
Vn (BEU(T) — 31(7)) ~s Baygr(T), as n — o0,

where Bsqr(r) is a Gaussian process. In addition, Bsqr(T) shares the same covariance kernel
with Bsg (T) defined in Theorems 1.5.1 with v(s) there replaced by w(1 — ).
If Assumptions 1(i), 1(ii), 1(iv), 2, 3 hold, then uniformly over T € Y and conditionally
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on data,
VN (§¥ (1) — ¢(1)) ~ Bipw(T), asn — oo,

where By, (T) is the same Gaussian process defined in Theorem 1.3.2.

Four remarks are in order. First, the weighted bootstrap sample does not preserve the neg-
ative cross-sectional dependence in the original sample. Asymptotic variances of the weighted
bootstrap estimators equal those of their original sample counterparts as if SRS is applied.

In fact, the asymptotic variance for 3% (7) is

Gy (m,m) + G, 7) + G5 (7),

where

m (S, 7) . mo(s,ﬂm)){

Ca(m,7) =Ex(l —m) (Wfl(Ch(T)) (1 —m)fo(go

This asymptotic variance is intuitive as the weight &; is independent with each other, which
implies that, conditionally on data, the bootstrap sample observations are independent. As
v(s) < (1 —7), we have

Calm,m) < Gi(m, 7).

If the inequality is strict, then the weighted bootstrap overestimates the asymptotic variance
of the SQR estimator, and thus, the Wald test constructed using the SQR estimator and its
weighted bootstrap standard error is conservative.

Second, the asymptotic distribution of the weighted bootstrap IPW estimator coincides
with that of the original estimator. The asymptotic size of the Wald test constructed us-
ing the IPW estimator and its weighted bootstrap standard error then equals the nominal
level. Theorem 1.3.2 shows that the asymptotic variance for ¢(7) is invariant in the treat-
ment assignment rule applied. Thus, even though the weighted bootstrap sample ignores the
cross-sectional dependence and behaves as if the treatment status is generated randomly, the

asymptotic variance for ¢*(7) is still

G(m,7) + (7).

Third, the validity of weighted bootstrap for the IPW estimator only requires Assumption
1(iv) instead of 1(iii), for the same reason mentioned after Theorem 1.3.2.

Fourth, it is possible to consider the conventional nonparametric bootstrap which generates
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the bootstrap sample from the empirical distribution of the data. If the observations are i.i.d.,
van der Vaart and Wellner (1996, Section 3.6) show that the conventional bootstrap is first-
order equivalent to a weighted bootstrap with Poisson(1) weights. However, in the current
setting, {A;}i>1 is dependent. It is technically challenging to rigorously show that the above

equivalence still holds. We leave it as an interesting topic for future research.

1.5 Covariate-Adaptive Bootstrap

In this section, we consider the covariate-adaptive bootstrap procedure as follows:
(i) Draw {S;}*, from the empirical distribution of {S;}? , with replacement.
(ii) Generate {Af}" , based on {S;}7_; and the treatment assignment rule.

(iii) For Af = a and S} = s, draw Y;* from the empirical distribution of ¥; given A; = a and

S; = s with replacement.

First, Step (i) is the conventional nonparametric bootstrap. The bootstrap sample {S;}
is obtained by drawing from the empirical distribution of {S;}! , with replacement n times.
Second, Step (ii) follows the treatment assignment rule, and thus preserves the cross-sectional
dependence structure in the bootstrap sample, even after conditioning on data. The weighted
bootstrap sample, by contrast, is cross-sectionally independent given data. Third, Step (iii)
applies the conventional bootstrap procedure to the outcome Y; in the cell (S;, A;) = (s,a) €
S x{0,1}. Given that the original data contain n,(s) observations in this cell, in this step, the
bootstrap sample {Y;*},. Ar=a,Sr=s 1S obtained by drawing from the empirical distribution of
these n,(s) outcomes with replacement n}(s) times, where n’(s) = >  1{Af = a, S} = s}.
Unlike the conventional bootstrap, here both n,(s) and n’(s) are random and are not nec-
essarily the same. Last, to implement the covariate-adaptive bootstrap, researchers need to
know the treatment assignment rule for the original sample. Unlike in observational stud-
ies, such information is usually available for RCTs. If one only knows that the treatment
assignment rule achieves strong balance, then Theorem 1.5.1 below still holds, provided that
the bootstrap sample is generated from any treatment assignment rule that achieves strong
balance. Even worse, if no information on the treatment assignment rule is available, then
one cannot implement the covariate-adaptive bootstrap inference. In this case, the weighted
bootstrap for the IPW estimator can still provide a non-conservative Wald test, as shown in
Theorem 1.4.1.
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Using the bootstrap sample {Y;*, A¥, SF} ;. we can estimate QTE by the two methods

considered in the paper. Let nj(s) = >0 | AF1{S; = s}, n*(s) = >, 1{S} = s}, 7*(s) =

Zl 3, and A* = (1, A?)'. Then, the two bootstrap estimators can be written respectively as

3*(1) = arg min - Y;*—Afb)
B'(r) = arg ;p(

and

where

n . . n 1— A*
gy = arg mmz S* e P-(Y —q) and ¢ = argmin p- (Y7 = q).

q ; 1 —7*(Sy)
The second element 3;(7) of §*(7) and ¢*(7) are the SQR and IPW bootstrap estimators for
the 7-th QTE, respectively. Parallel to Assumption 1, we make the following assumption for

the bootstrap sample.

Assumption 4. Let D} (s) = o (Af — m)1{S} = s}.

o {5

D} (s Dy (s)|
(i1) $up,cs AL = Op(1), sup,cs 28 = O,(1).

Assumption 4(i) is a high-level assumption. Obviously, it holds for SRS. For WEI, this
condition holds by the same argument in Bugni et al. (2018, Lemma B.12) with the fact that

T;((s‘;) 5 1. For BCD, as shown in Bugni et al. (2018, Lemma B.11),

?:1} ~» N(0,Xp) a.s., where ¥p = diag{p(s)y(s) : s € S}.

Dy (s)I15] Fiza = Op(1).

Therefore, D¥(s)/+/n*(s) —— 0 and Assumption 4(i) holds with v(s) = 0. For SBR, it is clear
that | D} (s)| < 1. Thus, Assumption 4(i) holds with (s) = 0 as well. In addition, as p(s) > 0,
based on the standard bootstrap results, we have n*(s)/n — p(s) and n(s)/n == p(s).
Therefore, Assumption 4(i) is sufficient for Assumption 4(ii). Last, note that Assumption

4(ii) implies Assumption 1(iv).
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Theorem 1.5.1. Suppose Assumptions 1(i), 1(ii), 2, and 4(ii) hold. Then, uniformly over

7 €Y and conditionally on data,

V(@ (1) = G(7)) ~ Bipw(T), asn — oo.

If, in addition, Assumptions 1(iii) and 4 (i) hold, then

Jn (B;(T) - qm) s By (1), as n — oo

Here, By (1) and Bip, () are two Gaussian processes defined in Theorem 1.3.1 and 1.3.2,

respectively.

Several remarks are in order. First, unlike the usual bootstrap estimator, the covariate-
adaptive bootstrap SQR estimator is not centered around its corresponding counterpart from
the original sample, but rather ¢(7). The reason is that the treatment status A; is not
generated by bootstrap. In the linear expansion for the bootstrap estimator BT(T), the part
of the influence function that accounts for the variation generated by A} need not be centered.
We also know from the proof of Theorem 1.3.2 that ¢(7) do not have an influence function
that represents the variation generated by A;. Thus, ¢(7) can be used to center Bf (7).

Second, the choice of ¢(7) as the center is somehow ad-hoc. In fact, any estimator G(7)

that is first-order equivalent to ¢(7) in the sense that

sup |q(r) — 4(7)| = 0p(1//n)
can serve as the center for the bootstrap estimators ¢*(7) and 37 (7).

Third, when the treatment assignment rule achieves strong balance, 3 (7) and §(r) are
first-order equivalent. In this case, (1 (7) can serve as the center for 8;(7) and various boot-
strap inference methods are valid. On the other hand, when the treatment assignment rule
does not achieve strong balance, 3 (1) and ¢(7) are not first-order equivalent. In this case,
the asymptotic size of the percentile bootstrap for the SQR estimator using the quantiles of
Bf(T) does not equal the nominal level. In the next section, we propose a way to compute
the bootstrap standard error which does not depend on the choice of the center. Based on
the bootstrap standard error, researchers can construct t-statistics and use standard normal
critical values for inference.

Fourth, for ATE, we can use the same bootstrap sample to compute the standard errors
for the simple and strata fixed effects estimators proposed in Bugni et al. (2018) as well as
the IPW estimator. We expect that all the results in this paper hold for the ATE as well.
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1.6 Simulation

We can summarize four bootstrap scenarios from the analysis in Sections 1.4 and 1.5: (i) the
SQR estimator with the weighted bootstrap, (ii) the IPW estimator with either the weighted
or covariate-adaptive bootstrap, (iii) the SQR estimator with the covariate-adaptive bootstrap
when the assignment rule achieves strong balance, and (iv) the SQR estimator with the
covariate-adaptive bootstrap when the assignment rule does not achieve strong balance. The
results of Sections 1.4 and 1.5 imply that the bootstrap in scenario (i) produces conservative
Wald-tests when the treatment assignment rule is not SRS. For scenarios (ii) and (iii), various
bootstrap based inference methods are valid. However, for scenario (iv), researchers should
be careful about the centering issue. In particular, the percentile bootstrap inference using
the quantiles of Bi“ is invalid. In the following, we propose one single bootstrap inference
method that works for scenarios (ii)—(iv). In addition, the proposed method does not require
the knowledge of the centering.

We take the IPW estimator as an example. We can repeat the bootstrap estimation® B
times and obtain B bootstrap IPW estimates, denoted as {g;(7)}£_,. Further denote Q(«) as
the a-th empirical quantile of {g;(7)}£_,. We can test the null hypothesis that ¢(7) = ¢°(7)
via 1 {’M

*
On

> zl_a/2}, where §(7), 21_a/2, and &7, are the IPW estimator, the (1 —oa/2)-

th quantile of the standard normal distribution, and

. Q(0.975) — Q(0.025)

20.975 — 20.025

o

respectively. In scenarios (ii)—(iv), the asymptotic size of such test equals the nominal level
a. In scenarios (ii) and (iii), we recommend the t-statistic and confidence interval using this
particular bootstrap standard error (i.e., ;) over other bootstrap inference methods (e.g.,
bootstrap confidence interval, percentile bootstrap confidence interval, etc.) because based

on unreported simulations, they have better finite sample performance.

1.6.1 Data Generating Processes

We consider two DGPs with parameters v = 4, 0 = 2, and p which will be specified later.

(i) Let Z be standardized Beta(2,2) distributed, S; = Z?:l 1{Z; <g;},and (g1, ,94) =

SFor the IPW estimator, we can use either the weighted or covariate-adaptive bootstrap. For the SQR
estimator, we can only use the covariate-adaptive bootstrap.
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(—0.25v/20,0,0.254/20, 0.54/20). The outcome equation is
Y = Aip +vZi + ms,

where 1, = 0A;e;1 + (1 — A;)e;2 and (€;1,€;2) are jointly standard normal.

(ii) Let Z be uniformly distributed on [—2,2], S; = Z?Zl 1{Z; < g}, and (g1, ,94) =

(—1,0,1,2). The outcome equation is
Y= Aip+ Avig + (1 — Ajvio +mi,

Where I/i,(] = ’}/Zfl{‘ZZ’ Z 1} —+ %(2 — Zg)l{’Zl‘ < 1}, Vi,l = _Vi,Oa 771 = 0'(1 +ZZ2)A25171 +
(1+ Z2)(1 — A;)e;2, and (g1,¢;2) are mutually independent 7(3)/3 distributed.

When 7 = %, for each DGP, we consider four randomization schemes:

(i) SRS: Treatment assignment is generated as in Example 1.
(ii) WEI: Treatment assignment is generated as in Example 2 with ¢(z) = (1 — z)/2.
(iii) BCD: Treatment assignment is generated as in Example 3 with A = 0.75.

(iv) SBR: Treatment assignment is generated as in Example 4.

When 7 # 0.5, BCD is not defined while WEI is not defined in the original paper (Wei,
1978). Recently, Hu (2016) generalizes the adaptive biased-coin design (i.e., WEI) to multiple
treatment values and unequal target treatment ratios. Here, for m # 0.5, we only consider
SRS and SBR as in Bugni et al. (2018). We conduct the simulations with sample sizes n = 200
and 400. The numbers of simulation replications and bootstrap samples are 1000. Under the
null, © = 0 and we compute the true parameters of interest using simulations with 10% sample
size and 10* replications. Under the alternative, we perturb the true values by x4 = 1 and
u = 0.75 for n = 200 and 400, respectively. We report the results for the median QTE.
Section 1.11.6 contains additional simulation results for ATE and QTEs with 7 = 0.25 and
0.75. All the observations made in this section still apply.

1.6.2 QTE, 7=05

We consider the Wald test with six t-statistics and 95% nominal rate. We construct the
t-statistics using one of our two point estimates and some estimate of the standard error. We
will reject the null hypothesis when the absolute value of the t-statistic is greater than 1.96.

The details about the point estimates and standard errors are as follows:
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(i) “s/naive”: the point estimator is computed by the SQR and its standard error 6,4y (7)

is computed as

=D =AY wd(siT) | r(= ) =AY (S

o 7 fE(@(7)) (1 =) f§(Go(7))

S - (ww b Tol8,7 )
mfi(@(r) (1 —=7)foldo(T))

1S (ST o)
+ Z(ﬁ(tﬁ(ﬂ) fo(@o(ﬂ)) ’ (1.6.1)

where ¢;(7) is the 7-th empirical quantile of Y;|A; = j,

. ~ i AlSi = s - HYi < qi(n)})
mii(s, 1) = 2 (3) )

2 (1= A)I{S; = s}(r — H{Yi < Go(7)})
n(s) —na(s) '

For 7 =0,1, fj() is computed by the kernel density estimation using the observations Y;

mi’()(S, T) =

provided that A; = j, bandwidth h; = 1.0663-71;1/ °_ Gaussian kernel function, standard
deviation &; of the observations Y; provided that A; = j, and n; = > " | 1{A; = j}.

(ii) “s/adj”: exactly the same as the “s/naive” method with one difference: replacing (1 —
7) in (1.6.1) by 7(S;).

(iii) “s/W”: the point estimator is computed by the SQR and its standard error ay (7)
is computed by the weighted bootstrap procedure. The bootstrap weights {£;}, are
generated from the standard exponential distribution. Denote {B}‘jb}fil as the collection
of B weighted bootstrap SQR estimates. Then,

~ ~

. 0(0.975) — O(0.025)
ow(T) = ,

20.975 — 20.025
where Q(«) is the a-th empirical quantile of {B}’jb(T)}szl.

(iv) “ipw/W”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the IPW QR.

(v) “s/CA”: the point estimator is computed by the SQR and its standard error 6¢4(7)

is computed by the covariate-adaptive bootstrap procedure. Denote {Bf’b}fil as the
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collection of B estimates obtained by the SQR applied to the samples generated by the

covariate-adaptive bootstrap procedure. Then,

~ ~

Q(0.975) — Q(0.025)

20.975 — 20.025

&C’A(T) =

where Q(a) is the a-th empirical quantile of {Bib(r)}f:l.

(vi) “ipw/CA”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the IPW QR.

Tables I and II present the rejection probabilities (multiplied by 100) for the six t-tests
under both the null hypothesis and the alternative hypothesis, with sample sizes n = 200
and 400, respectively. In these two tables, columns M and A represent DGPs and treatment
assignment rules, respectively. From the rejection probabilities under the null, we can make
five observations. First, the naive t-test (“s/naive”) is conservative for WEI, BCD, and SBR,
which is consistent with the findings for ATE estimators by Shao et al. (2010) and Bugni et al.
(2018). Second, although the asymptotic size of the adjusted t-test (“s/adj”) is expected to
equal the nominal level, it does not perform well for DGP2. The main reason is that, in order
to analytically compute the standard error, we must compute nuisance parameters such as
the unconditional densities of Y'(0) and Y (1), which requires tuning parameters. We further
compute the standard errors following (1.6.1) with 7(1 — 7) and the tuning parameter h;
replaced by v(S;) and 1.060]“6_]‘77/;1/5, respectively, for some constant C; € [0.5,1.5]. Figure
1.1 plots the rejection probabilities of the “s/adj” t-tests against C'y for the BCD assignment
rule with n = 200, 7 = 0.5, and m = 0.5. We see that (i) the rejection probability is sensitive
to the choice of bandwidth, (ii) there is no universal optimal bandwidth across two DGPs,
and (iii) the covariate-adaptive bootstrap t-tests (“s/CA”) represented by the dotted dash
lines are quite stable across different DGPs and close to the nominal rate of rejection. Third,
the weighted bootstrap t-test for the SQR estimator (“s/W”) is conservative, especially for
the BCD and SBR assignment rules which achieve strong balance. Fourth, the rejection
probabilities of the weighted bootstrap t-test for the IPW estimator (“ipw/W”) are close to
the nominal rate even for sample size n = 200, which is consistent with Theorem 1.4.1. Last,
the rejection rates for the two covariate-adaptive bootstrap t-tests (“s/CA” and “ipw/CA”)

are close to the nominal rate, which is consistent with Theorem 1.5.1.
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Table I. n = 200, 7 = 0.5,7 = 0.5

H, H,
M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 | SRS 4.5 4.5 4.7 4.4 4.4 3.9 18.3 183 193 441 20.0 42.9
WEI 1.2 4.0 1.4 4.3 3.7 3.5 11.6 295 138 447 29.8 43.6
BCD 0.2 5.7 0.3 4.1 4.4 3.9 7.2 472 9.5 45.3 43.4 44.8
SBR 0.1 5.7 0.1 4.6 4.5 44 8.5 485 9.9 46.0 45.7 44.8
2 | SRS 0.4 0.4 4.7 5.2 5.2 5.3 79.7 79.7 904 916 90.2 91.3
WEI 0.6 0.6 4.5 5.8 5.2 5.7 80.2 80.7 90.7  90.9 91.3 90.6
BCD 1.0 1.0 4.5 5.1 5.0 5.3 79.6 80.4 90.2 911 90.8 90.6
SBR 0.8 1.1 4.8 5.3 4.6 4.7 77.1 Tr4 89.7 901 89.9 89.9
Table I1. n = 400,7 = 0.5, 7 — 0.5
H, H,
M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 | SRS 4.2 4.2 5.4 4.0 4.6 4.1 21.8 21.8 23.2 50.2 23.5 50.2
WEI 1.0 4.9 0.8 4.7 4.6 4.2 14.7 356 160 50.3 35.0 50.7
BCD 0.3 4.5 0.2 4.3 3.5 4.0 8.9 52.6 11.7  50.2 49.3 49.6
SBR 0.2 4.6 0.0 3.7 3.6 3.7 8.9 55.0 109 518 52.4 51.9
2 | SRS 1.2 1.2 4.3 4.8 4.6 5.0 89.7 89.7 956 956 95.7 95.7
WEI 1.4 1.6 5.7 6.0 5.9 5.7 89.2 89.2 954 9438 95.1 94.8
BCD 1.3 1.3 9.9 6.1 5.1 5.2 88.7 889 952 954 95.7 95.6
SBR 0.6 0.6 4.0 3.9 3.8 3.8 90.0 90.2 954 954 95.8 95.7
0.1 DGP 1 0.1 DGP 2
0.09 | 0.09 [
0.08 0.08
0.07 0.07 |
0.06 | T—_ 0.06 |-
0.05 x\\\f 0.05
0.04 0.04
0.03 | 0.03
0.02 0.02 ,\\\\
0.01 | 0.01 \\\\\\ ]
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Note: Rejection probabilities for BCD assignment rule with n = 200, 7 = 0.5,
and 7 = 0.5. The X-axis is C'y. The solid lines are the rejection probabilities for
“s/adj”. The densities of Y; is computed using the tuning parameters

h; = 1.060f&jnj_1/5, for j = 0,1. The dotted dash lines are the rejection
probability for “s/CA”.

Figure 1.1. Rejection Probabilities Across Different Bandwidth Values

Turning to the rejection rates under the alternative in Tables I and II, we can make two
additional observations. First, for BCD and SBR, the rejection probabilities (power) for
“Ipw/W?”, “s/CA”, and “ipw/CA” are close. This is because both BCD and SBR achieve
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strong balance. In this case, the two estimators we propose are asymptotically first-order
equivalent. Second, for DGP1 with SRS and WEI assignment rules, “ipw/CA” is more
powerful than “s/CA”. This confirms our theoretical finding that the IPW estimator is
strictly more efficient than the SQR estimator when the treatment assignment rule does not
achieve strong balance. For DGP2 the three t-tests, i.e., “ipw/W”, “s/CA”, and “ipw/CA”,

have similar power.

1.6.3 QTE, 7 =0.7

Tables III and IV show the similar results with @ = 0.7. The same comments for Tables I

and II still apply.

Table IIL. n = 200,7 = 0.5, 7 = 0.7

Hy H,
M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 | SRS 4.8 4.8 5.2 4.7 3.4 44 17.0 17.0 172 42.5 16.7 40.6
SBR 0.1 0.7 0.2 4.0 4.4 3.7 4.3 212 6.0 45.5 45.7 43.4
2 | SRS 1.6 1.6 5.2 5.4 5.1 5.3 77.1 771 89.1  90.3 89.5 89.4
SBR| 04 05 39 4.8 4.5 4.8 76.0 769 89.2 911  90.1 90.0

Table IV. n =400,7 = 0.5, 7 = 0.7

Ho H1
M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA
1 | SRS 4.4 4.4 5.1 3.9 4.8 3.7 18.4 184 187 479 194 46.6
SBR 0.1 0.2 0 3.9 3.5 4 4.2 22 5.9 49.8 50.5 48.2
2 | SRS 0.7 0.7 39 4.2 4.2 4.7 86.7  86.7 939 933 941 93.6
SBR 0.6 0.6 3.5 3.6 3.7 3.7 88.3 88.8 948 952 95.5 95.2

1.6.4 Difference between Two QTEs

Last, we consider to infer ¢(0.25) — ¢(0.75) when 7 = 0.5:
Hy: q(0.25) — q(0.75) = the true value v.s. Hj: ¢(0.25) — ¢(0.75) = the true value + p,

where ¢ = 1 and 0.75 for sample sizes 200 and 400, respectively. The two estimators for QTEs
at 7 = 0.25 and 0.75 are correlated. We can compute the naive and adjusted standard errors
for the SQR estimator by taking this covariance structure into account.” On the other hand,

in addition to avoiding the tuning parameters, another advantage of the bootstrap inference is

"The formulas for the covariances can be found in the proofs of Theorems 1.3.1 and 1.3.2.
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it does not require the knowledge of this complicated covariance structure. Researchers may
construct the t-statistic using the difference of two QTE estimators with the corresponding
weighted and covariate-adaptive bootstrap standard errors, which are calculated using the
exact same procedure as in Sections 1.4 and 1.5. Taking the SQR estimator as an example,
we estimate ¢(0.25) —¢(0.75) via 31(0.25) — 51(0.75) and the corresponding covariate-adaptive

bootstrap standard error is

~ A

Q(0.975) — Q(0.025)

20.975 — 20.025

A

OcA =

where Q(«) is the a-th empirical quantile of {Bib(O.%) - B}‘7b(0.75)}f:1.

Based on the rejection rates reported in Tables V and VI, the general observations for
the previous simulation results still apply. Although under the null, the rejection rates for
“ipw/ W7, “S/CA”, “ipw/CA” in DGP2 are below the nominal 5%, they gradually increase

as the sample size increases from 200 to 400.

Table V. n = 200, ¢(0.25) — ¢(0.75)

HO Hl

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 | SRS 4.0 4.0 3.6 3.8 3.5 3.5 15.6 15.6 14.9 194 16.0 194
WEI 2.3 4.9 2.0 4.0 5.1 3.9 11.3 179 11.0 19.0 16.0 18.6
BCD 1.0 4.1 1.1 4.4 3.7 4.2 9.9 20.7 10.1 22.0 20.6 21.4
SBR 1.1 4.3 0.9 4.1 4.1 4.2 9.4 21.8 87 17.3 20.0 17.2

2 | SRS 5.0 5.0 3.1 3.1 3.1 3.1 53.7 53.7 471 48.4 47.8 48.2
WEI 3.6 3.6 2.1 2.8 2.9 2.9 57.0 57.7 476  49.8 50.3 50.0
BCD 4.2 4.8 24 2.5 3.6 2.7 58.0 59.4  49.1 52.0 52.8 50.8
SBR 5.1 5.3 24 3.4 4.1 3.4 55.5 57.0 46.5  46.5 50.5 45.6

Table VI. n = 400, ¢(0.25) — ¢(0.75)

Hy H,

M A s/naive s/adj s/W ipw/W s/CA ipw/CA s/naive s/adj s/W ipw/W s/CA ipw/CA

1 | SRS 3.8 3.8 3.9 5.1 3.7 5.0 17.2 172 159 21.5 16.8 21.2
WEI 2.0 4.2 24 3.3 4.4 3.5 11.8 202 115 214 20.2 20.7
BCD 1.4 4.4 1.4 4.3 4.4 4.1 10.5 21.8  10.2 20.7 21.5 20.6
SBR 0.8 3.8 0.8 3.9 3.7 3.8 12.1 25.0 12.6 21.8 23.7 22.3

2 | SRS 5.3 5.3 3.9 4.7 4.3 4.8 63.2 63.2 557  57.7 56.8 57.6
WEI 5.4 5.8 3.4 3.7 4.1 3.5 63.6 644 556  58.0 58.0 58.5
BCD 4.0 4.3 2.6 2.8 3.1 3.1 62.1 63.3 54.7 357 57.4 56.0
SBR 5.1 5.7 4.0 4.5 4.4 4.5 61.1 62.0 524 513 56.0 53.0
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1.7 Guidance for Practitioners

We recommend employing the t-statistic (or equivalently, the confidence interval) constructed
using the IPW estimator and its weighted bootstrap standard error for inference in covariate-
adaptive randomization, for the following four reasons. First, its asymptotic size equals
the nominal level. Second, the IPW estimator has a smaller asymptotic variance than the
SQR estimator when the treatment assignment rule does not achieve strong balance and
the stratification is relevant.® Third, compared with the covariate-adaptive bootstrap, the
validity of the weighted bootstrap requires a weaker condition that sup,.g|D,(s)/n(s)| =
0p(1). Fourth, this method does not require the knowledge of the exact treatment assignment
rule, thus is suitable in settings where such information is lacking, e.g., using someone else’s
RCT or subsample analysis. When the treatment assignment rule achieves strong balance,
SQR estimator can also be used. But in this case, only the covariate-adaptive bootstrap
standard error is valid. Last, the Wald test using SQR estimator and the weighted bootstrap
standard error is not recommended, as it is conservative when the treatment assignment rule
introduces negative dependence (i.e., y(s) < (1 — 7)) such as WEI, BCD, and SBR.

1.8 Empirical Application

We illustrate our methods by estimating and inferring the average and quantile treatment
effects of iron efficiency on educational attainment. The dataset we use is the same as the
one analyzed by Chong et al. (2016) and Bugni et al. (2018).

1.8.1 Data Description

The dataset consists of 215 students from one Peruvian secondary school during the 2009
school year. About two thirds of students were assigned to the treatment group (A = 1 or
A = 2). The other one third of students were assigned to the control group (A = 0). One half
of the students in the treatment group were shown a video in which a physician encouraged
iron supplements (A = 1) and the other half were shown the same encouragement from a
popular soccer player (A = 2). Those assignments were stratified by the number of years of
secondary school completed (S = {1,---,5}). The field experiment used a stratified block
randomization scheme with fractions (1/3,1/3,1/3) for each group, which achieves strong

balance (y(s) = 0).

8In this case, for ATE, the IPW estimator also has a strictly smaller asymptotic variance than the strata
fixed effects estimator studied in Bugni et al. (2018).
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In the following, we focus on the observations with A = 0 and A = 1, and estimate the
treatment effect of the exposure to a video of encouraging iron supplements by a physician
only. This practice was also implemented in Bugni et al. (2018). In this case, the target
proportions of treatment is 7 = 1/2. As in Chong et al. (2016), it is also possible to combine
the two treatment groups, i.e., A = 1 and A = 2 and compute the treatment effects of
exposure to a video of encouraging iron supplements by either a physician or a popular soccer
player. Last, one can use the method developed in Bugni et al. (2019) to estimate the ATEs
under multiple treatment status. However, in this setting, the estimation of QTE and the
validity of bootstrap inference have not been investigated yet and are interesting topics for
future research.

For each observation, we have three outcome variables: number of pills taken, grade point
average, and cognitive ability measured by the average score across different Nintendo Wii
games. For more details about the outcome variables, we refer interested readers to Chong
et al. (2016). In the following, we focus on the grade point average only as the other two

outcomes are discrete.

1.8.2 Computation

We consider three pairs of point estimates and their corresponding non-conservative standard
errors: (i) the SQR estimator with the covariate-adaptive bootstrap standard error, (ii) the
IPW estimator with the covariate-adaptive bootstrap standard error, and (iii) the IPW esti-
mator with the weighted bootstrap standard error. We denote them as “s/CA”, “ipw/CA”,
and “ipw/W” | respectively. For comparison, we also compute the SQR estimator with its
weighted bootstrap standard error, which is denoted as “s/W” . The SQR estimator for the
7-th QTE refers to (;(7) as the second element of 5(7) = (Bo(7), £1(7)), where

n

~

B = g 3 (vi- A8),
b=(bo,b1)'€R? ;

A; = (1, 4;), and p-(u) = u(r — 1{u < 0}) is the standard check function. It is also just the
difference between the 7-th empirical quantiles of treatment and control groups. The IPW

estimator refers to ¢(7) = ¢1(7) — Go(7), where

A~ . 1 = Az N . 1 - 1—AZ
n(7) = argmin - 7 —espe(Yi— ), dolr) = argmin - Y7 e (Vi a),

g ni= (S g nig -5
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7(-) denotes the propensity score estimator, 7(s) = ni(s)/n(s), ni(s) = > A;1{S; = s},
and n(s) = >_." ; 1{S; = s}. The covariate-adaptive bootstrap standard error (“CA”) refers
to the standard error computed in Section 1.5. In particular, we can draw the covariate-
adaptive bootstrap sample (Y;*, A, Sf)*, following the procedure in Section 1.5. We then
recompute the SQR and IPW estimates using the bootstrap sample. We repeat the bootstrap
estimation B times, and obtain {ngl(r), Gi(7)}2.,. The standard errors for SQR and IPW

estimates are computed as

A . — 0 02 ). (0. — 0,,,(0.02
Q2qr(0.975) — Q4qr(0.025) nd &WAﬂZZQWAOM6) QWA005X

20.975 — 20.025 20.975 — 20.025

Tsqr(T) =

respectively, where Quq-(cr) and Qpy () are the a-th empirical quantiles of {B:}l(T)}szl and
{G: (1)}, respectively, and z, is the a-th percentile of the standard normal distribution,
ie., 2po75 ~ 1.96 and 2p 025 =~ —1.96. The weighted bootstrap standard error for the IPW
estimate can be computed in the same manner with only one difference, the covariate-adaptive
bootstrap estimator {g;(7)}£., is replaced by the weighted bootstrap estimator {¢¥(7)}2,,
where for the b-th replication, ¢;’(7) = ¢, (7) — ¢;0(7),

b
le?jl() argmmﬁ;ﬁi&)m(ﬁ Q)q 1(7) —argmm—z

}/;' - )
) 1_Ww pr(Yi — q)

{£2}1 | is a sequence of i.i.d. standard exponentially distributed random variables, 7% (s) =

ny(s)/n"(s), n{'(s) = > iy &GAL{S; = s}, and n®(s) = > | &1{S; = s}. Similarly, we com-
pute the weighted bootstrap SQR estimates {3}, (7)}{_, as the second element of {3y (7) };;,

where

By(r) = argmin prTY Aip).

b=(bo, bl)’Géﬁz n

For the ATEs, we also compute the SQR estimator with the adjusted standard error based
on the analytical formula derived by Bugni et al. (2018), i.e., “s/adj”. For QTE estimates,
we consider quantile indexes {0.1,0.15,---,0.90}. The number of replications for the two
bootstrap methods is B = 1000.

1.8.3 Main Results

Table VII shows the estimates with the corresponding standard errors in parentheses. From
the table, we can make several remarks. First, for both ATE and QTE, the SQR and IPW
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estimates are very close to each other and so do their standard errors computed via the
analytical formula, weighted bootstrap, and covariate-adaptive bootstrap. This is consistent
with our theory that, under strong balance, the two estimators are first-order equivalent.
Second, although in theory, the weighted bootstrap standard errors for the SQR estimators
should be larger than those computed via the covariate-adaptive bootstrap, in this application,
they are very close. This is consistent with the finding in Bugni et al. (2018) that their adjusted
p-value for the ATE estimate is close to the naive one. It implies the stratification may be
irrelevant for the full-sample analysis. Third, we do not compute the adjusted standard error
for the QTEs as it requires tuning parameters. Fourth, the QTEs provide us a new insight
that the impact of supplementation on grade promotion is only significantly positive at 25%
among the three quantiles. This may imply that the policy of reducing iron deficits is more

effective for lower-ranked students.

Table VII. Grades Points Average

s/ad] s/W s/CA ipw/W ipw/CA
ATE 0.35 0.35 0.35 0.37 0.37
(0.16) (0.16) (0.17) (0.16) (0.17)
QTE,25% 0.43 0.43 0.43 0.43
(0.15) (0.15) (0.15) (0.15)
QTE,50% 0.29 0.29 0.29 0.29
(0.22) (0.23) (0.22) (0.24)
QTE,75% 0.35 0.35 0.36 0.36
(0.25) (0.24) (0.25) (0.25)
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siW s/CA

ipw/W ipw/CA

Figure 1.2. 95% Point-wise Confidence Interval for Quantile Treatment Effects

In order to provide more details on the QTE estimates, we plot the 95% point-wise con-
fidence band in Figure 1.2 with quantile index ranging from 0.1 to 0.9. The solid line and
the shadow area represent the point estimate and its 95% point-wise confidence interval,

respectively. The confidence interval is constructed by

(6 —1.966(8), 5 +1.966(3)],

where B and 6(3) are the point estimates and the corresponding standard errors described
above. As we expected, all the four findings look the same and the estimates are only signif-

icantly positive at low quantiles (15%-30%).

1.8.4 Subsample Results

Following Chong et al. (2016), we further split the sample into two based on whether the
student is anemic, i.e., Anem; = 0 or 1. We anticipate that there is no treatment effect for
the nonanemic students and positive effects for anemic ones. In this subsample analysis, the
covariate-adaptive bootstrap is infeasible, as in each sub-group, the strong-balance condition

may be lost and the treatment assignment rule is not necessarily SBR and is generally un-
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known.? However, the weighted bootstrap is still feasible as it does not require the knowledge
of the treatment assignment rule. According to Theorem 1.4.1, the IPW estimator paired

with the weighted bootstrap standard error is valid if

DY (s) S (A — m)1{S; = s {Anem; = 1}
= = = 1 1.8.1
SR a0(s) | TR T S 1S, = s} {Anem; = 1) o(1) (1.8.1)
and
DY (s) S (A — m)1{S; = st {Anem; = 0}
— | = = = 1). 1.8.2
SUP 00 (s) | R | TS (8, = s} {Anem; = 0 o(1) (1.8.2)

We maintain this mild condition in this section. In our sample,

DV (s) DY(s)
ig‘lg n(l)(s) =0 and ilelg n(o)(s) 200717

which indicate that (1.8.1) and (1.8.2) are plausible.

From Table VIII and Figure 1.3, we see that the QTE estimates are significantly posi-
tive for the anemic students when the quantile index is between around 20%-75%, but are
insignificant for nonanemic students. The lack of significance at very low and high quantiles
for the anemic subsample may be due to a poor asymptotic normal approximation at ex-
treme quantiles. To extend the inference of extremal QTEs in Zhang (2018) to the context
of covariate-adaptive randomization is an interesting topic for future research. We also note
that for both subsamples, the weighted bootstrap standard errors for the SQR estimators are
larger than those for the IPW estimators, which is consistent with Theorem 1.4.1. It implies,

for both sub-groups, the stratification is relevant.

9As the anonymous referee pointed out, it is possible to implement the covariate-adaptive bootstrap on
the full sample and pick out the observations in the subsample to construct a bootstrap subsample. The
analysis can then be repeated on this covariate-adaptive bootstrap subsample. Establishing the validity of
this procedure is left as a topic for future research.
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Table VIII. Grades Points Average for Subsamples

Anemic Nonanemic

s/W ipw/W s/W ipw/W

ATE 0.67 0.69 0.13 0.19
(0.23) (0.20) (0.23) (0.20)

QTE, 25% 0.74 0.76 0.14 0.22
(0.24) (0.22) (0.28) (0.26)

QTE, 50% 1.05 1.05 -0.14 -0.14
(0.29) (0.27) (0.29) (0.27)

QTE, 75% 0.71 0.76 0.14 0.14
(0.36) (0.32) (0.39) (0.37)

s/W, Anemic s/W, Nonanemic

0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 0.1 02 0.3 0.4 0.5 0.6 0.7 0.8 0.9

ipw/W, Anemic ipw/W, Nonanemic

-0.5 -05 1

-0.1 0.2 03 04 0.5 0.6 07 0.8 0.9 -0.1 02 03 04 0.5 0.6 0.7 0.8 0.9

Figure 1.3. 95% Point-wise Confidence Interval for Anemic and Nonanemic Students

1.9 Conclusion

This paper studies the estimation and bootstrap inference for QTEs under covariate-adaptive
randomization. We show that the weighted bootstrap standard error is only valid for the IPW
estimator while the covariate-adaptive bootstrap standard error is valid for both SQR and
IPW estimators. In the empirical application, we find that the QTE of iron supplementation

on grade promotion is trivial for nonanemic students, while the impact is significantly positive
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for middle-ranked anemic students.

1.10 Appendix A

1.10.1 Proof of Theorem 1.3.1
Let u = (ug,u1) € R? and

Lo(,7) = 3 [pr(¥i = AB(7) — Alu/ /i) = p, (Y = Aip(r))]

i=1

Then, by the change of variable, we have that

Vi(B(r) = B(r)) = argmin Ly (u, 7).

u

Notice that L, (u,7) is convex in u for each 7 and bounded in 7 for each u. In the following,

we aim to show that there exists
! 1 !
gn(u, 7) = ='W, (1) + 5“ Q(T)u
such that (1) for each w,

sup | Ly (u, 7) = gn(u, 7)] = 0;
TEY

(2) the maximum eigenvalue of Q(7) is bounded from above and the minimum eigenvalue
of Q(7) is bounded away from 0, uniformly over 7 € T; (3) W, () ~» B(r) uniformly over
7 €Y, in which B(-) is some Gaussian process. Then by Kato (2009, Theorem 2), we have

Va(B(r) = B(7)) = [Q(T)] ' Wa(r) + ra(7),

where sup, v ||7(7)|| = 0,(1). In addition, by (3), we have, uniformly over 7 € T,

Vi(B(r) = B(r)) ~ [Q(7)]'B(r) = B(7).

The second element of B(7) is Bs,(7) stated in Theorem 1.3.1. In the following, we prove

requirements (1)—(3) in three steps.
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Step 1. By Knight’s identity (Knight (1998)), we have

L, (u,T)

Agu

:—u/i%fli (T—I{Yi SA;ﬂ(T)}> —|—i/\f

[ (1= i) <) = 143, - Aty < )

= — u'W,o (1) + Qulu, 1),

where

n

Walr)=>_ %Ai (T —1{y; < Aiﬂ(ﬂ})

i=1
and

i/
Aiu

On(,7) :i/o (10— AB(r) < v} — 1Y, — Ap(r) < 0}) o

—ZA |7 0 = aln) <0} = 150 — ) < oo

+ 2(1 A /0” (1{Y:(0) — qo(7) < v} — 1{¥i(0) — qo(7) < 0}) dv
=Qn1(u, 7) + Quolu, 7).

We first consider @, 1(u, 7). Following Bugni et al. (2018), we define {(Y;*(1),Y;*(0)) : 1 <
i < n} as a sequence of i.i.d. random variables with marginal distributions equal to the dis-
tribution of (Y;(1), Y;(0))|S; = s. The distribution of @, 1(u, 7) is the same as the counterpart
with units ordered by strata and then ordered by A; = 1 first and A; = 0 second within each

stratum, i.e.,

Qn1(u, 7) Z Z /0 B (1{168(1) —q(7) < v} = 1Y) —a(r) < 0})dv
Z[ s) +m(s), )—FZ(N(S),T)], (1.10.1)
€S
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where N(s) => " 1{S; < s}, ni(s) = > 1, 1{S; = s}A;, and

k “0+u1

ren =30 [ (1070 —ae) 0 - 170 i) <0}

In addition, note that

P( sup [[5(|nt], 7) — EIG([nt], )| > ¢)

te(0,1),7€Y

=P( max sup |} (k,7) — EL: (k,7)| > ¢)

1<k‘<’ﬂ 7Y

<3 max P(sup I} (k,7) — EI' (k, 7)| > ¢/3)

1<k<n €Y

<9P(sup | (n,7) — EL3 (n,7)| > €/30)
TeY

<270E sup, ey |15 (n, 7) — EL'S (n, 7)|

; = o(1). (1.10.2)

The first inequality holds due to Lemma 1.10.1 with Sy = I'3 (k,7) — EI': (k, 7) and ||Sk|| =
sup,evy |18 (k,7) — EI'S (k, 7)|. The second inequality holds due to Montgomery-Smith (1993,

Theorem 1). To derive the last equality of (1.10.2), we consider the class of functions

ugtuq

- {/0 : (1{}/;8(1) —aq(7) <vp = H{YP(1) —qi(7) < 0})dv T E T}

|luo+u1]

with envelope SV and

2
Ug + Uy s Uy + U —3/2
supE2§supE[ 1{Yz ) —q(n) < }} <n .
rer f i \/ﬁ | () 1( )l \/ﬁ

Note that F is a VC-class with a fixed VC index. Therefore, by Chernozhukov et al. (2014,
Corollary 5.1),

i > nb/2 n3/2

1 ]
Esup T (n,7) — ET¢ (n,7)| = n|[Py — P||+ < n [ 0g(n) + Og(”>] = o(1).
Then, (1.10.2) implies that

sup

TeY scS

Qn1(u,7) ZE{FS [n(N(s)/n +n(s)/n)], 7) - FZ(LH(N(S)/H)J,T)H = 0p(1);
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where following the convention in the empirical process literature,

E {FZ(LH(N(S)/H +na(s)/n)],7) = T5([n(N(s)/n) ], 7)

is interpreted as

E [Ffl( |nta|, 7) =T (Int1], 7)

o= NT(LS) o= N(s)«:;nl(s)

In addition, N(s)/n - F(s) = F(S; < s) and ny(s)/n —= 7p(s). Thus, uniformly over
TeT,

It {TZ(LH(N(S)/H +n(s)/n)],7) = To([n(N(s)/n)], 7)

Inl(S)/O " (Ba(n) + vls) — Fi(u(r)]s)dv

p, 7(s) fil@r(T)]s) (uo + wa)?
2 Y

where Fi(-|s) and fi(-|s) are the conditional CDF and PDF of Y; given S = s, respectively.

Then, uniformly over 7 € T,

Qni(u,7) P, Z 7TP(S)fl(€11(7';|S)(u0 + ul)2 B 7Tf1<q1(7'))2<u0 + ul)z'

seS

Similarly, we can show that, uniformly over 7 € T,

p. (1— W)fo(Qo(T))U%

Qn,ﬂ (U, 7—) — )

and thus
Qn(u, 7) — =u'Q(7)u,

where

() = (wﬁ(qlmml — m)fo(a()) m(qlm)) | (1103)

7 fi(qu (7)) 7f1(q1(7))
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Then,

sup | (11, 7) — gn(u,7)| = sup | Qu(u,7) — Su'Qr)el = o, (1)
T€Y T€Y

This concludes the first step.
Step 2. Note that det(Q(7)) = 7(1—7) f1(¢:1(7)) fo(qo(7)), which is bounded and bounded

away from zero. In addition, it can be shown that the two eigenvalues of () are nonnegative.
This leads to the desired result.

Step 3. Let e; = (1,1) and ¢y = (1,0)". Then, we have

—aZZ T AMS = s} - 1Y) < @)

se8S i=1

oYy L f ANILS; = s} (7 — 1{Y(0) < ol()}).

seS i=1

Let m;(s, 7) = E(1—1{Y;(j) < ¢;(7)}S: = s) and i ; (s, 7) = (r—U{Yi(j) < ¢;(7)})—m;(s,7),
7 =0,1. Then,

lelzz\/_fl 1{S; = s}nii(s, T —I—GOZZ\/_ AN{S; = sinio(s, 7')]

seS =1 seS =1
{elzz m)1{S; = s}mq(s,7) eozz m)1{S; = s}mo(s, 7)}
seS i=1 seS i=1
|:61 ZZ 7T1{S = stmy(s, T) + eozz (1 —m)1{S; = s}mo(s, 7')}
seS =1 seS =1 \/_
=W (1) + Waa(T) + Wi s(T). (1.10.4)

By Lemma 1.10.2, uniformly over 7 € T,

(Waa(7), Wa2(7), Wa3(7)) ~> (Bu(7), Ba(7), Bs()),
where (By(7), Ba(7), B3(7)) are three independent two-dimensional Gaussian processes with
covariance kernels 1 (71, 72), 2a(71, T2), and 33(71, 72), respectively. Therefore, uniformly over

TeT,

WH(T) ~ B(T)v
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where B(7) is a two-dimensional Gaussian process with covariance kernel

i(Tl, 7'2) = Z Zj(Tl, 7'2).
Consequently,

V(B(r) = B(7)) ~ [Q(r)] ' B(r) = B(7),
where B(7) is a two-dimensional Gaussian process with covariance kernel

S(r1,72) =[Q(m)] ' S(m, ) [Q(72)]
1

= [min(7y, 72) — 779 — Emy (S, 71)mq (S, )] (0 0)

~mfila(n) fulai(m)) 0 1
1 . 1 -1
+ (1 — W)fo(%(ﬁ))fo(%(ﬁ)) [mm(Th 7-2) —T1T2 — EmO(Sv Tl)mO(S, Tz)] (_1 1 >

s 72 fi(qi(m)) fi(qi(m2)) \O 1 (1 — ) fi(qi(m1)) fo(qo(72))
B mo(s, 71 )mi(s, ) 0 1 N mo(s, T1)mo(s, 2) 1 -1 }
(1 =) folqo(1)) filqa(72)) \O —1 (1 =m)2fo(qo(1)) folqo(m2)) \ -1 1
4 ]Eml(S, Tl)ml(S, 7'2) (0 0) 4 Eml(S, Tl)mo(S,TQ) <O 0 )

+Zp(s)7(s){ ma(s, 71)ma(s, 72) <0 0)_ ma (s, 71)mo(s, 72) <0 0)

filar(m)) filai(2)) \O 1 Ji(q1(m1)) folqo(m2)) \1 —1
Emo(S,7)mi(S, ) (0 1 N Emo(S, 7)me(S,m2) [ 1 -1
folqo(m)) fi(qr(2)) \O —1 fo(ao(m)) folao(m2)) \ =1 1 )~

Focusing on the (2, 2)-element of 3(7, 73), we can conclude that

\/E(BI(T) - Q(T)) ~ Bqu(T)v
where the Gaussian process B, (7) has a covariance kernel

Equ(TlaTQ)
_min(ﬁ, TQ) — T1T2 — Eml(S, Tl)ml(S, 7'2) min(ﬁ, 7'2) — T1T2 — Emg(S, 7'1)7710(5, Tg)

7Tf1(Q1(T1))f1(Q1(72)) (1 - 7T)fo(CIO(Tl))fo(QO(Tz))
ml(S, Tl)ml(S, 7—2> ml(S, Tl)mo(s, 7'2)

™ fi(q () filar(m))  7(1 =) fi(qr(71)) fo(qo(T2))

+ E~(5)
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N mo (S, 71 )m1 (S, 12) N mo (S, 71 )mo (S, 72) 1
(1 =) folgo(m1)) filar(m2)) (1 —m)2folqo(m1)) fo(qo(72))

LR mi(S,m)  mo(S, 7'1)1 [ml(S, T2)  mo(S, ’7'2):|.
Alan)  folao(m))] LAila(n)  fola(m))

1.10.2 Proof of Theorem 1.3.2

By Knight'’s identity, we have

Vn(@i(7) = u(7)) = argmin Ly (u, 7),

u

where
Lo(wr) =3 s o= an(r) = ) = el = )
= — Ll,n(7'>u + L2,n(ua T)a
Lia(r) = o W(AS) (r — 1{Y; < a(7)})
and

Lan(n,7) =Z s [T a4 - 1 < b

We aim to show that there exists
1 2
Gipwn (U T) = =Wipwn(T)u + §Q1pw(7)u (1.10.5)
such that (1) for each wu,

sup |Ln<u7 T) - gipw,n(ua T)| i> 0;
T€Y

(2) Qipw(T) is bounded and bounded away from zero uniformly over 7 € T. In addition,
as a corollary of claim (3) below, sup ey [Wipw1..(7)] = O,(1). Therefore, by Kato (2009,

Theorme 2), we have
V(@i(7) = q1(7)) = Qipust (M) Wipuo,10(7) + Ripuo1,(7),
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where sup, ey |Ripw1n(7)| = 0,(1). Similarly, we can show that
V(Go(T) = 40(7)) = Qa0 (T Wipw 0,0 (T) + Ripuoo,n(7),
where sup, ey |Ripw,o0n(T)| = 0,(1). Then,
V(d(m) = (7)) = Qiguo 1 (N Wipo1.0(T) = Qa0 () Wigno0n(7) + Ripro1.0(T) = Ripuoo.n(7)-
Last, we aim to show that, (3) uniformly over 7 € T,
Qg1 (M Wipw10(7) = Qi o (T)Wipwo0.0(7) ~> Bipuo(7),
where B;,,(7) is a scalar Gaussian process with covariance kernel 3;,,(m,72). We prove

claims (1)—(3) in three steps.
Step 1. For L, ,(7), we have

Lin(r \/_ZZ—l{S — s} (7 - {Yi(1) < (1))

- ZZ Ail{S; = }(@;Q ™ (s —1{%(1) < (1))

\/_ZZ—I{S = s} — H{Yi(1) < au(7)})

zlES

A; 1{5 = S}D (s) . D, (s)mq(s,T) o) D, (s)mq(s,T)
D) DT Z <>f7r<> aovarGm D T 2 )

i=1 s€8S sES

S
_y L Z—Al{s = (s.7) +Z )43 lST)
seS \/_ seS i

Al{S —s}D (s) ey D, (s)my(s,T) 5 D, (s)my (s, T)
Ry DEC Z a7 2 ()

ipw,l,n(T) + Rip’w (7_)7

where

n

Wipwin(T) = Z \}_ Z Mm 1(s,7) + Z % (1.10.6)
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and

Ripw<7'>
A;l S s D D, (s)my m (s,7) (1 1
i=1 seS seS seS
Al S =stD,
ZZ { } )71‘( )771',1(57T>7
i=1 se8
where we use the fact that 7(s) — 7 = ((j) By the same argument in Claim (1) of the proof
of Lemma 1.10.2, we have, for every s € S,
1 n 4 1 N(s)+n(s)
sup |— A 1{S; = stnia(s, 7)| =sup |— nia(s,7)| = Op(1), 1.10.7
sup |- ; {8i = s}mua(s,7)| = sup | —= 'Z%H i1(5,7)| = Op(1) (1.10.7)

where 7, (s, 7) = 7 — H{Y?(j) < ¢;j(1)} —m;(s,7), for j = 0,1, where {Y;*(0),Y;*(1)};>1 are
the same as defined in Step 1 in the proof of Theorem 1.3.1.

Because of (1.10.7) and the fact that %ZS) = 0,(1), we have

sup [ Ripw (7)| = 0p(1).

TeY
For Ly, (u,T), we have

s)+ni(s
1

Lm(w):ZT b /”1{1/8 ) < () + 0} — Y1) < () + o}

77(
seS i=N(s)+1

‘I'nl( ) ) - FZ(N<3)>T>]’

where
Pk =3 [T 0070 < @) +0} = 1) < )+ ohde

By the same argument in (1.10.2), we can show that

sup |I7([nt], 7) — B ([nt], 7)| = 0p(1).

te(0,1),7eT
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In addition,

EL(N(s) + m(s), 7) — ETS(N(s),7) 2 724 Vl(‘;l( )Is)
Therefore,
sup | Lo, (u, 7) — M = 0,(1),
TEYT
D (s)

where we use the fact that 7(s) — 7 = R 0p(1) and

Zp f1 Ch fl(fh( ))

seS

This establishes (1.10.5) with Qjpw.1(7) = fi(q1(7)) and Wiy »(7) defined in (1.10.6).
Step 2. Statement (2) holds by Assumption 2.

Step 3. By a similar argument in Step 1, we have

DS =s =~ mo(S;, T
Wipw,On T Z \/_ Z 1 _{ﬂ— }7]1,0(577—) —+ Z %

seS =1

and Qipwo(T) = fo(qo(7)). Therefore,

B A{S; = s}m 1(s,7) (1= A4){S; = s}inio(s, 7)
V(G —q) \/—ZZ { ]

e Tfi(a (7)) (1 =) folgo(T))
my SZ, T m()(Si, 7') ' -
Vi & Z (f1 G fo(QO(T))) + Hipn(7)
=W (T) + Whapa(T) + Ripw,n(T) (1.10.8)

where sup, ey |Ripwn(7)| = 0p(1). Last, Lemma 1.10.3 establishes that

(Wa i (), Wa2(7)) ~ (Bipw,1 (7); Bipw,a (7)),

where (Bjpw1(7), Bipw2(T)) are two mutually independent scalar Gaussian processes with co-

variance kernels

min (7, 72) — 179 — Emy (S, 7)mq(S,2)  min(ry, 7o) — 1172 — Emo (S, 11)mo (S, 72)

Eipua (1 72) = mfilar(m) i@ (7)) (1 =mola0(m)) fo(o(r2))
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and

m (S, 1) mO(S,71)>(m1(S,T2) mO(S,Tg))’

Hopwa(r,72) = E <f1(Q1(T1)) AN )

respectively. In particular, the asymptotic variance for ¢ is
G 7) + G3(7),
where ((m,7) and (%(7) are the same as those in the proof of Theorem 1.3.1.

1.10.3 Proof of Theorem 1.4.1

First, we consider the weighted bootstrap for the SQR estimator. Note that

~

Vn(B"(r) — B(r)) = arg min Ly (u, 7),

u

where
L) = D26 [ (Vi = AiB(r) = A/ V) = p, (Vi = AiB()]

Similar to the proof of Theorem 1.3.1, we can show that

sup |L;U('Ll,, T) - g;f(uu T)| — 07
T€YT

where

g0 (u,7) =~ W(7) + Su' Q)

y S ,
W) = X e (r - 1y; < A8(n)})
and Q(7) is defined in (1.10.3). Therefore, by Kato (2009, Theorem 2), we have

V(B () = B(r)) = [Q(T)] "Wy (7) + 17 (7),
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where sup, v ||77(7)|| = 0,(1). By Theorem 1.3.1,

V(" (1) = Br) = QI 0 St (7 = 1 < AB()}) + 0,0

where the 0,(1) term holds uniformly over 7 € Y. In addition, Lemma 1.10.4 shows that,
conditionally on data, the second element of [Q(7)]~' S7, &=L 4, <7’ — Y < A’B(T)}) con-

=1 /n
verges to BSQT(T) uniformly over 7 € Y. This leads to the desired result for the weighted

bootstrap simple quantile regression estimator.
Next, we turn to the IPW estimator. Denote ¢¥(7), j = 0,1 the weighted bootstrap

counterpart of ¢;(7). We have

V(@' (7) = (7)) = argmin L (u, 7),

u

where
L,7) = 3 S onlYi = () = ) = pr(¥i = ()
= L’ﬁn(T)u + Lg”n(u, T),
where
1) = 2= Y s 1 < a(n))
and
13,1 = 3 et [T <)+ 0} - 1Y < oD
Recall . .
Di(s) = Y &(A —mUS = 5}, n¥(s) = DO E1{S = s},
and
cu(g) = 2im GAUS = s} Di(s)
T AT )
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Then, for LY, (1), we have

(1) =33 SR04 = ) 1) S )

i=1 seS

-3y MBI 1y < )

\/_225 LS, = s} — 1{Y;(1) < i (7)})

i=1 se8§

ZZ&A 1{S _S}D (>7721(S,7')—Z Dg(s)mi(s?T) DZ}(S)—ZDZ}(S)TTH(S’T)

== Var(s)m poye w( )i (s)m = V/niv(s)
M (5.7 &mi (S:,7)
G Z e *Z Vo

B o &AL{S; = s} . DY (s)ml(s,T) wig) _ D¥(s)mq (s, T)
2 Dile Z O e S PN el D ey

seS SES
7VVzi;ojwln( )+R;ug)nv< )

where

w . &A{S; = s} (5.7) &mq(S;, 7)

Wit1a(T) = é\/—Z— Z Y (1.10.9)
and
R%w( )

N S EAUS =) s DEmi(s) s Demsr) 1
- ;D Z NSO ;nw(s)\/ﬁfrw(s)ﬂD”( )+§; N AT
L o &A 1{S; = s} s
= SGZSD Z BN IO nia(s, 7).

In the following, we aim to show DY (s)/n"(s) = 0,(1) and

sup \Z&A 1{S; = s}ni1(s,7)| = O,(v/n).

TEY,sES i1

For the first claim, we note that n*(s)/n(s) == 1 and D, (s)/n(s) — 0. Therefore, we only

44



need to show

n

Dils) = Dufs) _ g~ (6= DA = mLSi =5} o
n(s) |

n(s) P

As n(s) — oo a.s., given data,

n n

- Z(A2 —7)%1{S; = s} :% Z (Az- —m—=2m(A;—m)+ 7 — 7r2) 1{S; = s}

n(s) = i=1
D, (s) — 2w D,(s)

- (o) +7(l—m) — 7(1—m).

Then, by the Lindeberg CLT, conditionally on data,

m){S; = s} ~» N(0,7(1 — 7)) = O,(1),

and thus

D} (s) = Da(s)
n(s)

This leads to the first claim. For the second claim, we note that

= 0,(n"%(s)) = 0,(1).

n s)+ni(s
ZfiAil{Si = s}tnia(s,7) = Z fﬂ]z 1(s,7)
=1 1=N(s)+1

We can show the RHS of the above display is O,(y/n) for all s € S following the same
argument used in Claim (1) of the proof of Lemma 1.10.2. Given these two claims and by

noticing that

we have
Sllp |Rzpw( )‘ = Op(l)'

Similar to the argument used to derive the limit of Lo, (7) in the proof of Theorem 1.3.2,
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we can show that

Therefore,

V() - ar) = T g,

Silar(7))
where sup, .y |RY(7)| = 0,(1). Similarly,
0 o (1)) — Wipw.0n(7) w(
\/ﬁ(% (T) qo( )) fo(QO(T)) +RO< )7

where

V[/?;o)wOn Z Z fz — 1 _1;{TS — 8}77 S T Z £Zmi/§“7-)

868

and sup,cy | Ry (7)| = 0,(1). Therefore,

V(@' () = q(7))
_ A {S; = 3}771',1(3,7') (1—-A4,)1{S; = 5}771',0(3, T)
DI

mfi(qi (7)) (1 =) fo(qo(7))

Rt~ ) 159 )

seS

where the o,(1) term holds uniformly over 7 € Y. In order to show the conditional weak
convergence, we only need to show the conditionally stochastic equicontinuity and finite-
dimensional convergence. The former can be shown in the same manner as Lemma 1.10.4.
For the latter, we note that

L AL{S; = 5}7711(3 7) _ (1= A){S; = smio(s, 7) ma (s, 7) _ mo(s, 7)
;;{ T fi(qi(7)) (1 =) fo(qo(7)) {fl(m(T)) Jolqo(7))
A)I{S; = 8}7710 (s, A 1{S; = 5}7711(3 T) 2
L { s et
- mi(s,7)  mo(s,T) . 2
+SEZS Z{ |:f1 (qu(7 fo(%(ﬂ)l M= }}
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e [ ]

sES =1 (
-2 Z{ e e~ et

=, T) + G3(T).

Note that the RHS of the above display is the same as the asymptotic variance of the original
estimator ¢(7). By the CLT conditional on data, we can establish the one-dimensional weak
convergence. Then, by the Cramér-Wold Theorem, we can extend such result to any finite

dimension. This concludes the proof.

1.10.4 Proof of Theorem 1.5.1

It suffices to prove the theorem with ¢(7) replaced by

[ [n(F(s)+mp(s))] Ln(E( 5))]

C7ia(s, ) Mio(s,7)
Z Z n7rf1 ql(T Z Z (1 - ﬂ—)fO(qO(T))

| TseS imlnn 5€S i=|n(F(s)+mp(s))] +1
; [,Z% )|

i=1

as we have shown in Theorem 1.3.2 that

sup [¢() = 4(7)| = 0p(1/v/n).

T€Y

We first consider the SQR estimator. Note that

V(B (r) = (7)) = arg min L;,(u, 7),

u

where L (u,7) = S0y [pe(¥r = A7 B(r) = Af'u/ Vi) = pr (Vi = A7 ()] Then, B (7). the
bootstrap counterpart of the SQR estimator, is just the second element of B*(T) Similar to
the proof of Theorem 1.3.1,

L:L(”? T) - —’LL/W,:(T> + QZ(U7 7—)7
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where

Wi(r) = 3 = Ailr =1 < 478())

and
Qiwr) =3 [ (17 = ArBtr) <0} — 17 = AR < 0F) do
=Soar [T a0 - a) <o) - 1) — () <0

#3047 [ 070 —alr) < b= 1Y 0) = r) < 0y
EQ;’I(U,T) + Q;O(U,T). (1.10.10)

Define 77 ;(s,7) = (7 — {Y¥;"(j) < q;(7)}) —m;(s,7) and 7;;(s,7) = 7 — H{Y?(j) <
¢; (1)} —my(s,7), 5 = 0,1, where Y;*(j) is defined in the proof of Theorem 1.3.1. Then, we

have

Wi = 3% %A:l{s: = s} — HYF(1) < @ (0)])

seS i=1

o0 3030 S=(1= ADUS] = sHr — LY (0) < ()

s€S i=1
n 1 n 1
=ler —=ATHST = st (s, m) + e —= (1= ADUS] = stnjo(s, 7)
R s e 0 XS iole )|
+ |es — (A —m)1{S] = s}m(s,7) — e — (A — m)1{S] = s}myg(s, T
33 ST = shm(s.7) — 03 5 S, = o)
+ |es —71{S} = s}mi(s,T) + ey — (1 = m)1{S} = s}mg(s,T)
DRI DN |

=Woa (1) + Wo(7) + Wis(7).

By Lemma 1.10.5, there exists a sequence of independent Poisson(1) random variables
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{&}is1,ses such that {7 }is15es 1L {AF, S, Y, Ay, Sitisa,

N(s)+ni(s)

ZA;kl{Sz* = 8}7];1(877) = Z 52-5771-71(8,7')—‘[-}2){(8,7'),
i=1 i=N(s)+1
and
n N(s)+n(s)
YA =ANYS; =shui(s, )= Y &iolsT) + Ry(s,7),
i=1 i=N(s)+n1(s)+1

where sup oy ([R5 (s, 7)| + |R§(s, 7)|) = 0,(1/n(5)) = 0,(y/n) for all s € S. Therefore,

(Wi 1 (7), Wi o (7), Wi 5 (7)) £ (W1 (7) + R(7), Wi o(7), Wi a(7)

where sup, v ||R(7)|| = 0,(1) and
. N(s)+ni(s) fs N(s)+n(s) gs
Wim=ead. > \/—%f]i,l(s,T) teod > ﬁﬁw(s,ﬂ
s€S i=N(s)+1 S€ES i=N(s)+ni(s)+1

In addition, following the same argument in the proof of Lemma 1.10.2, we can further
show that

Wi () = Wii(r) + Ry(7),

where sup, v || R (7)|| = 0,(1) and

s))| s

£ [n(F(s)+p(s))
Wi ey LIS YD

[n(F(s)+mp(s))] :

_Zﬁi,0(87 7—) .
S€ES  i=|nF(s)|+1 S€S i=|n(F(s)+mp(s))|+1 \/ﬁ
By construction, W (1) 1L (W, o(7), W,y 5(7)). Also note that {S} };_, are the nonparametric
bootstrap draws based on the empirical CDF of {S;} ;. Then, by van der Vaart and Wellner
(1996, Section 3.6), there exists a sequence of independent Poisson(1) random variables {&; }i>1

that is independent of data, {Af} and {£’};>1 ses such that

sup [[W (1) = Was(1)]| = 0p(1),

T€Y

49



where

Wis(r) = e ZZ = stmy(s,7) + eozz

seS i=1 seS i=1

(s,7)
By Lemma 1.10.6,

Qau.) L5 Q)

where QQ(7) is defined in (1.10.3). Then, by the same argument in the proof of Theorem 1.3.1,

we have

V(B (1) = B(r) = Q7 ()W (7) + Woia(r) + Wis(r) + R¥(7),
where sup, v ||R*(7)|| = 0,(1). Focusing on the second element of 3*(7), we have

[n(F(s)+p(s))]

7h 1(87 T) gfﬁi,o(sv T)
2. 2 Var fila () -2 2 V(1 =) fo(go(7))

q1 T)) s€S i=[n(F(s)+np(s))]+1

V(i (r

l [n(F(s)+mp(s))]

s€S  i=|nF(s)]+1

i
> Dj;/(ﬁ) (FFaw ray)

seS
33 Ghiaty ~ o)) + 50

where sup, v |R;(7)| = 0,(1). In addition, by definition, we have

Vn(g(

{ [n(F(s)+7p(s))] [n(F(s)+p(s))]

A Mio(s, 7)
2 2 Vi fi(qi(7)) 2 2 V(1 =) folgo(T))

s€ES  i=|nF(s)]+1 SES i=|n(F(s)+mp(s))|+1

|:Z (ml 5277—) m0(8i77—)):|
\/_ filai(m))  folao(7)) ) |
By taking difference of the two displays above, we have

il [Z i( (& D7) g L”(F%”“”J (& — Diuols,7)
i ( T VTh(a) L Sy VI~ ™) folao(7))

F R (J}Téi}?» )]

seS
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Note that, conditionally on data, the first and third brackets on the RHS of the above display

converge to Gaussian processes with covariance kernels

min(ﬁ, T2) — T1T2 — Eml(S, Tl)ml(S, TQ) Il’liIl(Tl, ’7'2) — T1To2 — EmO(S, ’7'1)7710(5, 7'2)

7Tf1(Q1(T1))f1(Q1(7'2)) (1 - W)fo(@o(ﬁ))fo(%(ﬁ))

and

ml(S, 7'1) _ mO(S, 7'1) ml(S,TQ) _ mO(S, 7'2)
E[fl(Ql(Tl)) fo(C.lo(Tl))} {fl(%(ﬁ)) fo(CIo(TQ))}

uniformly over 7 € T, respectively. In addition, by Assumption 4(i), conditionally data (and
thus {S;}7_,), the second bracket on the RHS of (1.10.11) converges to a Gaussian process

with a covariance kernel

ml(S, Tl)ml(S, TQ) 4 ml(S,Tl)mO(S,T2> :|

E(S) [w2f1<q1<n>>f1<ql<a>> L= A (@) folarm)

uniformly over 7 € Y. Furthermore, we notice that these three Gaussian processes are

independent. Therefore, we have, conditionally on data and uniformly over 7 € T,

~

V(Bi(T) = 4(7)) ~ Bugr (7)),

where By, (7) is defined in Theorem 1.3.1. This leads to the desired result for the simple
quantile regression estimator.

Next, we briefly describe the derivation for the IPW estimator. Following the proof of
Theorem 1.3.2, we have

V(i (7) = qu(7)) =argmin L] (u, 7),

u

where

L) =3 2 ol = () = ) = 007 — )
+

Ly p(u, 7)),
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and 7*(s) = Zlgs Then, we have

&)

LT,n( ) ‘/V;;;wln( )+R2pw 1( )

where
1 = ATH{S] = sinfy(s,7 my(SF, T
zpwln % { } 1( ) + Z li/ﬁ )7
seS i=1 i=1
and

Ripa(r) = =3 3 AR Z By

i=1 seS§ )ﬂ-

By Lemma 1.10.5, sup,cy | R}, 1(7)| = 0,(1). In addition, same as above, we can show that

Sllp| zpwln( ) I/Vz;;uln( )‘ = OP(1)7

T€Y
where
[n(F(s)+7p(s)

Wiaa™=>_ Y gsnz/l—frT Z

s€ES i=|nF(s)|+1 =1

Similar to Lemma 1.10.6, we can show that, uniformly over 7 € T,

fila (T))U%

Therefore,

VAi(r) - () = DT g

Flar(ry) T R

where sup, cy |Ry, ()| = 0,(1). Similarly, we can show

o Waal)
\/ﬁ(qO(T) q0( ))_ fO(QO( )) +Rzpw0< )
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where sup, oy | R}, o(7)| = 0,(1) and

[n(F(s)+p(s))]

W on(7) Z Z Ssmo 5,7T) Z fzmo 87,77—

s€S i=|n(F(s)mp(s))]+1

Therefore,

S S R M D
V(@' (r) = q(r :[ ’ i i0lS,
s€S  i=|nF(s)]+1 \/_’Kfl ql $E€S i=|n(F(s)+mp(s))]+1 \/ﬁ(l - ﬂ—)fO(QD(T))

[ (e i;zi;fz;éi)} Fil),

where sup, ¢y | R, (7)| = 0,(1). Last, we can show that, conditionally on data and uniformly

over 7 € T, the RHS of the above display weakly converges to the Gaussian process By, (7),
where B, (7) is defined in Theorem 1.3.2.

1.10.5 Technical Lemmas

Lemma 1.10.1. Let Sy, be the k-th partial sum of Banach space valued independent identically
distributed random variables, then
1<k<n

P( max ||Sk]| >¢) <3 fnax P(||Sk|| > €/3).

When Sy, takes values on R, Lemma 1.10.1 is Pena et al. (2008, Exercise 2.3).
Proof. First suppose maxy, P(||.S, — Sk|| > 2¢/3) < 2/3. In addition, define
A ={lIS%[ = & |[Sj]] <&, 1 < j <k}

Then,

P(max|[ S| > &) <P(||Sal| > ¢/3) + ) P(IISull < /3, Ar)

k=1

<P([Sull = £/3) + S B(IS, — Sil| = 2¢/3)B(A)

k=1

2
<P(lISall 2 €/3) + SP(max|[Si]] = €).
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This implies,
P(max|[S|| = &) < 3P([|Sa[] = £/3).

On the other hand, if max; P(||S, — Sk|| > 2¢/3) > 2/3, then there exists ko such that
P(||S,, — Sk || > 2¢/3) > 2/3. Thus,

P(||Sn]l = €/3) + P(|[Skl| = €/3) = 2/3.
This implies,

3 max P(|[Sk|| > e/3) > 3max(P(||S.|| = £/3), P([|S, || = £/3)) > 1 > P(max [[S|| > €).

1<k<n 1<k<n
This concludes the proof. O

Lemma 1.10.2. Let W, (1), j = 1,2,3 be defined as in (1.10.4). If Assumptions in Theorem
1.3.1 hold, then uniformly over 7 € T,

(Wha(7), Wao(7), Wi 3(7)) ~> (Bu(7), Ba(7), Bs(T)),

where (By(7), Ba(T), Bs(7)) are three independent two-dimensional Gaussian processes with
covariance kernels ¥1(m1, ), 3a(71,72), and X3(m,72), respectively. The expressions for the

three kernels are derived in the proof below.

Proof. We follow the general argument in the proof of Bugni et al. (2018, Lemma B.2). We
divide the proof into two steps. In the first step, we show that

(Wot (1), Wiz (1), Waa (7)) £ (Wiiy (1), Wea(7), Wia(7)) + 0,(1),

where the o0,(1) term holds uniformly over 7 € T, Wy (1) 1L (W, 2(7), Wy 3(7)), and, uni-

formly over 7 € T,
Wy i(7) ~ Ba(7).
In the second step, we show that
(Waa(7), Wi a(T)) ~ (Ba(7), Bs(7))
uniformly over 7 € T and Bay(7) 1L Bs(7).
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Step 1. Let i ;(s, 7) = 7=1{Y;*(j) < q;(7)}—my;(s, 7), for j = 0,1, where {Y;*(0), ¥;*(1) }ix1
are the same as defined in Step 1 in the proof of Theorem 1.3.1. In addition, denote

N(s)+ni(s) N(s)+n(s)

1 .
—elz Z %ni71(5,7)+eoz Z

s€S i=N(s)+1 s€S i=N(s)+ni(s)+1

L; ( )
—="nio\S,T).
'

Then, we have

{Woa (M)A S} = AW (1) As, SiHy -

Because both W, o(7) and W, 3(7) are only functions of {A;, S;} ,, we have

(Wit (7), W (1), Waa (1)) £ (Wit (7), Wha(7), Wia(7)).

Let

[n(F(s)+mp(s))] [n(F(s)+p(s))] 1

=€ Z Z ﬁ (s,7)+ e Z Z ﬁﬁi,o(s, 7).

S€ES  i=|nF(s)]+1 S€S i=|n(F(s)+mp(s))|+1

o

]

by construction. Therefore, W, (7) 1L (W, 2(7), Wy 3(7)).
Furthermore, note that

Note that W), (7) is a function of (Y;*(1),Y;*(0));>1 only, which is independent of {A;, S},

N7§S>L>F(S), Tl17§3)i>71p(3)7 and TL)p(S).

Denote T, j(s,t,7) = ZZWH fﬁ”(s 7). In order to show sup, ey [W,1(7) — Wr(7)] = 0,(1)
and Wy, (1) ~ Bi(7), it suffices to show that, (1) for j = 0,1 and s € S, the stochastic
processes

{Th;(s,t,7):te€(0,1),7€ T}

in stochastically equicontinuous; and (2) Wy, (7) converges to Bi(7) in finite dimension.
Claim (1). We want to bound

sup |Fw~(8, ta, 7’2) - Fn,j(sv l1, 71)|>

where supremum is taken over 0 < t; < ty < t; +e < 1 and 11 < 7o < 7 + € such that
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71,71 + € € T. Note that,

sup Iy, (s, t2, 72) — Iy j(s, t1, 7))

S sup |Pn’j(87t2, 7') — Fn’j(S,tl,T)l + sup |Fn7j(8,t, 7'2) — FnJ(S,t, 7'1)|.

0<ti<to<t;+e<l,Te€Y te(0,1),71,2 €Y, 11 <T2<T1+€

(1.10.12)

Let m = |nty] — |nt1| < [ne] + 1. Then, for an arbitrary § > 0, by taking e = §*, we have

]P)( sup ‘Fn7j<s7t277-> - Fn:j(sath)‘ > 6)
0<ti<to<t;+e<l,Te€Y

i= Lntgj

=P( sup | Z i, (s,7)| > v/nd)

0<t;<to<ti+e<l,reY i Lnt1J+1

[nt]
=P( sup | i (s, 7)| > v/nd)
=1

0<t<e, €Y i

<P( max sup|Sp(7)| > /nd)

1<k<[ne] rex

< 270K SUP ey | ZZLZ?J f/i,j (Sa T)|
= V/nd

<VIE 5

~ynd

where in the first inequality, Si(7) = Zle 7;.;(s,7) and the second inequality holds due to
the same argument in (1.10.2). For the third inequality, denote

F={ni;(s,7): 7€ T}

with an envelope function F' = 2. In addition, because F is a VC-class with a fixed VC-index,

we have
J(1,F) < o0,

where

19
16.7) = sup [ \/1+ 108 NCl|Plg2. 7. La(@)d=
0

N(e||F|lgz2, F, L2(Q)) is the covering number, and the supremum is taken over all discrete
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probability measures (). Therefore, by van der Vaart and Wellner (1996, Theorem 2.14.1)

2T0E sup, ey | S5 (5, 7)| _ v/ Ine] [E\/LMJHPWJ —Pllf] _ VInelJ(1, F)
/né ~ /né SV, T B

For the second term on the RHS of (1.10.12), by taking ¢ = ¢*, we have

]P)( sup |Fn,j(57t77—2) - Pn,j(87t77—1)| > 6)
t€(0,1),71,m2 €Y, 11 <T2<T1+€
=P( max sup ISk (71, 72)| > v/nd)
1<k<n 71,72 €Y, 71 <To<T1+€
S 270E SupT1,7'2€T,T1<T2<T1+E | Z?:l(ﬁ’b,] (Sa 7—2) - ﬁi,j(sa 7-1))| 5 5 10g(€)7
V/nd 52

where in the first equality, Si(71,72) = Zle(ﬁijj(s,TQ) — 7;;(s,71)) and the first inequality

follows the same argument as in (1.10.2). For the last inequality, denote
F={nij(s,72) = 0ij(s,m) 1, €L, 7 <o <7 +¢}
with a constant envelope function F' = C and

o? =supEf? € [ci¢, e,
feF

for some constant 0 < ¢; < ¢y < oo. Last, F is nested by some VC class with a fixed VC
index. Therefore, by Chernozhukov et al. (2014, Corollary 5.1),

27OE SupT1 €Y, 11 <Te<TI+E ’ ZZL l(ﬁlj(s 7—2) - ﬁi,j(sﬁ 7—1))‘

\/_IE||IP> —}P’||].- 0210g C’log
5 <6 log 52

where the last inequality holds by letting n be sufficiently large. Note that §,/log(

£) = 0as

d — 0. This concludes the proof of Claim (1).
Claim (2). For a single 7, by the triangular CLT,

Wrt,l(T) ~2 N(07 21(7—))7

where ¥ (1) = w[r(1—7)—Em?2(S, 7)]ere} + (1 —7) [7(1—7) —EmZ(S, 7)]eoef. The convergence
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in finite dimension can be proved by using the Cramér-Wold device. In particular, we can

show that the covariance kernel is

Y1 (71, 72) =r[min(my, 72) — 7172 — Emy (S, 71)mq (S, 72)]er€]

+ (1 — ﬂ)[min(ﬁ, 7'2) — T1Ty — Em()(S, Tl)mo(s, 7'2)]6066.

This concludes the proof of Claim (2), and thus leads to the desired results in Step 1.
Step 2. We first consider the marginal distributions for W,, »(7) and W, 3(7). For W, o(7),
by Assumption 1 and the fact that m;(s,7) is continuous in 7 € T j = 0,1, we have,

conditionally on {S;}%,,

Waa(r) =) D\”/? [eymy (s, 7) — egmo(s, 7)] ~ Ba(T), (1.10.13)

where By(7) is a two-dimensional Gaussian process with covariance kernel

E2(7'177'2)

= Zp(s)v(s) {elellml(s, T1)my (s, 72) — eregma (s, 1)mo(s, T2)
SES

- 606/17’710(8, Tl)ml($> TQ) + 60667’17,0(8, Tl)m0(57 TZ) :

For W, 5(7), by the fact that m;(s,7) is continuous in 7 € T j = 0,1, we have that,

uniformly over 7 € T,
1 n
Waslr) = == S fermm(S.7) + eo(l = mma(Si.7)] = By(r). (1.10.14)
i=1

where Bs(7) a two-dimensional Gaussian process with covariance kernel

N3(11, 72) =€ w2 Emy (S, 71)my (S, 7o) + erefm(1 — 1)Emy (S, 71)mo(S, 72)

+ 606/171'(1 — W)Emo(s, Tl)m1<s, 7'2) + 6066(1 — W)QEmo(S, Tl)mo(s, Tg).
In addition, we note that, for any fixed 7,

P(Wha(7) < wi, Wi 3(7) < we) =EP(Wy,2(7) < wi{Si}) IH{Wa3(T) < wa}
—EP(N(0, Sa(r, 7)) < wn)1{ Wi s(r) < ws} + o(1)
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=P(N(0,%3(7, 7)) < we)P(N(0,3(7, 7)) < wq)+o(1).
This implies Ba(7) 1L B3(7). By the Cramér-Wold device, we can show that

(Waa(7), Waa(T)) ~ (Ba(7), Bs(7))

jointly in finite dimension, where by an abuse of notation, By(7) and Bs(7) have the same
marginal distributions of those in (1.10.13) and (1.10.14), respectively, and By(7) 1L Bs(7).
Last, because both W, 5(7) and W), 5(7) are tight marginally, so be the joint process (W, 2(7), Wy, 5(7)).
This concludes the proof of Step 2, and thus the whole lemma. O

Lemma 1.10.3. Let W, (1), j = 1,2 be defined as in (1.10.8). If Assumptions in Theorem
1.3.2 hold, then uniformly over 7 € T,

Wit (1), W2 (7)) ~ (Bipwi(T), Bipw,2(T)),

where (Bipw1(T), Bipw2(T)) are two independent two-dimensional Gaussian processes with co-
variance kernels iy 1 (71, T2) and Eipy 2(T1, T2), respectively. The expressions for iy, 1(T1, T2)

and Xy 2(T1,72) are derived in the proof below.

Proof. The proofs of weak convergence and the independence between (Bipw 1(7), Bipw2(T))
are similar to that in Lemma 1.10.2, and thus, are omitted. Next, we focus on deriving the
covariance kernels.

First, similar to the argument in the proof of Lemma 1.10.2,

N(s)+ni(s) N(s)+n(s)

2 Y rameen % Z \/_fo(()) ios,7):

s€S i=N(s)+1 sES i=N(s)+ni(s

Because (7;.1(s, 7), i0(s, 7)) are independent across i, ni(s)/n — mp(s), and (n(s)—ni(s))/n -
(1 —m)p(s), we have

min(7y, 72) — 172 — Emy (S, 71)m1 (S, 2)  min(my, 1) — 17 — Emg (S, 71)mo(S, 72)

T fi(qi(m1)) f1(qi(72)) (1 =) fo(qo(71)) fo(qo(72))

Eipw,l (7'1, 7'2) =

Obviously,

Siwa(ris ) — E <m1(5, 1) mo(S, 7'1)) (ml(S, ) mo(S, Tg)) 7

fila(m)  folao(m))) \filar(m2))  folao(72))
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Lemma 1.10.4. If Assumptions 1 and 2 hold, then conditionally on data, the second element
of QM) giflA <T -y, < A’ﬁ(T)}) weakly converges to Bag, (1), where Byg.(T) is

a Gaussian process with covariance kernel f]sqr(-, -) defined in Theorem 1./.1.

=1

Proof. We denote the second element of [Q(7)]~1 > gi/_ﬁl A (7‘ -y < A’ﬁ(T)}) as

\/_Z 1TJi(s, 1),

where

Ji(s,7) = Tia(s,7) + Tia(s,7) + Tis(s, 1),

Tir(s.r) = Ail{S; = s}mia(s,7) (1 — A)1{Si = s}nio(s,7)
e 7f1(q1(7)) (1 =) fo(qo(T))
Jia(s,7) = Fi(s,7)(A; — m)1{S; = s},
o) — m(s,7) mo(s, T)

BT = TR T U= m h@)

and

o () me(sT) .
Juals,) (f1<q1<r>> fO(CIO(T))>1{SZ )

In order to show the weak convergence, we only need to show (1) conditionally stochastic
equicontinuity and (2) conditional convergence in finite dimension. We divide the proof into
two steps accordingly.

Step 1. In order to show the conditionally stochastic equicontinuity, it suffices to show
that, for any € > 0, as n — oo followed by § — 0,

\/_Z WTi(s,m2) — Ti(s, 1))

p
Pe sup >e | —0,
71,72€Y, 71 <12 <71 +6,5€S

where P¢(-) means that the probability operator is with respect to &y, - - - , &, and conditional
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on data. Note

n

1
]E]P) Su R 2—1 \ZS,T _\72'8,7' >
£ (7—17T2€T7T1<7—£)<’T1+6 sES \/ﬁ . (5 )( ( 1) ( 1))

:IP’( sup Z ) Ti(s,72) = Tils,m1))| =

71,72 €Y, 71 <12 <T1+d,5€S

<P ( sup L (& — D) (Tin(s,m2) — Tin(s,m))| >

T1,72€Y, 11 <T9<T1+0,5€S \/ﬁ i1

71,72€Y, 71 <12 <T1+4,5€S

+IP’< sup (5,72) = Ji2(s,7m1))| > 5/3>

71,72 €Y, 11 <T2<T1+4,5ES

e
—l—IP’( sup i (s,72) — Jis(s, )| > 5/3) :

Further note that

n N(s)+n1(s) - N(s)+n(s) ~
o (o i (51 — 1)7’]7;,1 (S, 7—) B (fz - 1)7’]1'70(8, 7—)
YE-DIalsm) Y S 2 0 m ka0

=1 1=N(s)+1 i=n(s)+ni(s)+1

By the same argument in Claim (1) in the proof of Lemma 1.10.2, we have

\/—Z (s,72) — Ji(s,m))| > 5/3>
(&= D)(Tia(s, ) — Z,l(s,Tl))‘

3

P sup
71,2 €Y, 11 <12 <T1+6,5€S

3E SUP7 meY,r <re<rm1+6,5€S _n

<

3Clog(cg)
0 log(55) + —
<

— Y

3

where C', ¢; < ¢y are some positive constants that are independent of (n,e,d). By letting

> 5/3)

n — oo followed by § — 0, the RHS vanishes.
For J; 2, we note that Fj(s,7) is Lipschitz in 7. Therefore,

% S (6 = D(Fias. ) — Fals. )

26/3) — 0

P sup
71,72€Y, 11 <12 <T1+4,5€S

<SP (ca % g(gi —1)(A; — m)1{S; = s}

seS
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as n — oo followed by § — 0, where we use the fact that

sup \/_Z & — 1A —m)1{S; = s}| = O,(1).

seS

To see this claim, we note that, conditionally on data,

n

—Z TS = 5 =23 (A m - 2e(A ) ) 15 = 5)
:Dn(S) —n27TDn(S> + 7]_(1 _ 77)# AN 7r(1 — w)p(s).

Then, by the Lindeberg CLT, conditionally on data,
1 n
NG D (& = DA = m)U{S; = s} ~ N(0,7(1 — m)p(s)) = O,(1).
i=1

Last, by the standard maximal inequality (e.g., van der Vaart and Wellner (1996, Theorem
2.14.1)) and the fact that

(Gt~ Hiats)

is Lipschitz in 7, we have, as n — oo followed by ¢ — 0,

25/3) —0

Step 2. We focus on the one-dimension case and aim to show that, conditionally on data,
for fixed 7 € T,

\/_Z (s,72) — Jis(s,71))

P sup
71,2 €Y, 11 <T2<T1+0,5€ES

This concludes the proof of the conditionally stochastic equicontinuity.

\/_ZZ 1)Ji(s,7) ~ N(0, ESQT(T 7)).

seS i=1

The finite-dimensional convergence can be established similarly by the Cramér-Wold device.

In view of Lindeberg-Feller central limit theorem, we only need to show that (1)

SIS Sl Ly Gl ) + () + ()

i=1 seS
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and (2)

—ZZJSTQEE — DD (& - 1)Ti(s,7)| = ev/n} = 0.

i=1 seS seS

(2) is obvious as |J;(s,7)| is bounded and max; [§; — 1| < log(n) as & is sub-exponential.

Next, we focus on (1). We have

LSS Fis P

1=1 seS§
1 Ai{S; = stmia(s,7) (L= A)U{S; = s}nio(s,7)
- 226;{{ Tfi(a (7)) (1 =) foqo(7)) }

R s+ (i)Y ]}

=07 + 05 + 03 + 2012 + 2013 + 2093,

where

1 A 1{S; = 8}77 a(s,7) (1= AYLLS; = shmio(s,7)]°
= ZZ{ Tl (7)) (1 =) folgo(T)) ] ’

seS i=1

:_ZF2ST Z —7T)21{Si28},

B l A L{S; = s}nia(s,7) B (1 —A)1{S; = s}tnio(s,7) o VA .
= ;ZJ (@ () S A - mis =)

nA— = 7 f1(q(7)) (1 =) folqo(7))

o EZZ{A A8 = shmia(s, ) (1— A)I{S; = s}m,o(s,ﬂ} K;ﬁ(l(s( T))) ;@g(s(,f))))}’
(7 0{qo(T
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and

o33 = 01z = —ZZF 57 (A = m S = }K;ffq(f ,3) B ;Zféjig)))}'

For 0%, we have

A (S = sin? (s, 1) (1= A)1{S; = s}nio(s,7)
ZZ{ n n }

ses im1 ”2f2 (¢:(7)) (1 - 7T)Qfo2(qO(T))
N(s)+ni(s 9
al i, 21(s,7) Mi0(5,7)
- SEZS = NZ QfQ(Ch 86231 N 5)+an(5 +1 ( - 7T>2fg(QO(T))
» T(1—=7)—=Em§(S,71) (1—7) —Em§(S,7) o
T A @) TS Y PNes) B A

where the second equality holds due to the rearrangement argument in Lemma 1.10.2 and

the convergence in probability holds due to uniform convergence of the partial sum process.
For o2, by Assumption 1,

o2 = % 7 F2(s,7)(Du(s) — 27Du(s) + (1 — m1S; = s}) 5 w(1 — mEF(S;, 7) = &, 7).

seS

For o2, by the law of large number,

i (Fi5 )] e

For 015, we have

n

_1 e s T — Ail{S; = s}mia(s, 7) 1 P (s (1 — A){S; = s}nio(s, )
012 —n Z(l )Fl( ) )Z Z Fl( , )Z (

seS i=1 mfi(ai(7)) s i1 1 — ) folgqo(7))
al (1 —7m)Fi(s,7) N(SHZM(S)M _ lzﬂ,p (s,7) N(S)iL(S) ﬁi,O(S,T) 2.0
= Y mhlam) e A O nflem)

where the last convergence holds because by Lemma 1.10.2,

1 N(s)+ni(s) N(s)+n(s)
~ p ~ p
n E 772,1<57 T) ? 07 and n E 771,0(57 T) > 0.
i=N(s)+1 i=N(s)+n1(s)+1
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By the same argument, we can show that
013 i) 0.

Last, for 093, by Assumption 1,

7= 2 Sl [(qu(fgf))) e ’:>)>) ] S

Therefore, conditionally on data,

%Z[Z Ti(s, 1P = G, 7) + &4 (m, ) + E5(m, 7).

i=1 seS§
]

. . .. D* (s Dn S
Lemma 1.10.5. If Assumptions 1(i) and 1(ii) hold, sup,eg L/Z—(_(i') = 0,(1), sup,eg |\/—)|

O,(1), and n(s) — oo for all s € S, a.s., then there exists a sequence of Poisson(1) random
variables {& }i>1.ses independent of {Af, S}, Y;, A;, Si}is1 such that

n N(s)+ni(s)
YOS =shui(sT) = Y &Mals,T) + Rils,7),
i=1 i=N(s)+1

where sup, ey oes |75 (5,7)/v/1(5)] = 0p(1). In addition,

sup |ZA*1{S* = sn;1 (s, 7)|/V/n(s) = Op( (1.10.15)

seS,TeY i—1

Proof. Recall {Y;?(0),Y;*(1)}, as defined in the proof of Theorem 1.3.1 and
ﬁi,j(87 T) =T 1{}/;3(]) < QJ<T>} - mj(87 T)v
j =0,1. In addition, let ¥,, = {n; 1(s,7)}74,

Ny = {n(s)/n,n(s)/n,n"(s)/n,ni(s)/n}ses

and given N,,, {M,;} | be a sequence of random variables such that the n,(s) x 1 vector
Mi(S) = (Mn7N(8)+17 R Mn,N(s)+n1(s))
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and the (n(s) —ny(s)) x 1 vector

Mn0(5> = (Mn,N(s)—i-nl (s)+1y " " 7Mn,N(s)+n(s)>
satisfy:

1. MYs) = 1% iy and MO(s) = 707 it where {m; }714 and {m/} ") are
n*(s) i.i.d. multinomial(1,ny*(s), - ,n;'(s)) random vectors and n*(s) — ni(s) i.i.d.

multinomial (1, (n(s) —ny(s))™L, -+, (n(s) — ni(s))™!) random vectors, respectively;

2. M?(s) 1L M}(s)|N,; and
3. {M?(s), M!(s)}ses are independent across s given N,, and are independent of U,,.

Recall that, by Bugni et al. (2018), the original observations can be rearranged according
to s € § and then within strata, treatment group first and then the control group. Then, given
N,,, Step 3 in Section 1.5 implies that the bootstrap observations {Y;*}? ; can be generated
by drawing with replacement from the empirical distribution of the outcomes in each (s, a)
cell for (s,a) € S x {0,1}, ni(s) times, a = 0,1, where nj(s) = n*(s) — nj(s). Therefore,

N(s)+ni(s

D AT = shnpy(s,7) = Z ]\/[mﬁm(s, 7). (1.10.16)
i=1

5)+1

Following the standard approach in dealing with the nonparametric bootstrap, we want
to approximate
Myii=N(s)+1,--- ,N(s) +ny(s)

by a sequence of i.i.d. Poisson(1) random variables. We construct this sequence as follows.
Let M!(s) = Zgln 1) ;. where N (k) is a Poisson number with mean k and is independent
of N,,. The n,(s) elements of vector M (s) is denoted as {Mm}fv(fv(t ”ils), which is a sequence
of i.i.d. Poisson(1) random variables, given N,,. Therefore,

{Mm,i = N(S) + 17"' 7N(5) +n1(3)|Nn} = {ffvl = N(S) + 17"' ’N(S> +nl(s)an}

where {7} |, s € S are i.i.d. sequences of Poisson(1) random variables such that {7}, are
independent across s € § and against N,,.

Following the argument in van der Vaart and Wellner (1996, Section 3.6), given n4(s),
ni(s), and N(ni(s)) = k, |5 — M,y;| is binomially (|k—n3(s)|, ni(s)!)-distributed. In addition,
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there exists a sequence ¢, = O(y/n(s)) such that

P(IN(n1(s) = ni(s)] = €n) SP(IN(n1(s5)) = ma(s)] = €a/3) + B(Ini(s) = ma(s)| = 26,/3)
<SEP(IN(n1(s)) — n1(s)] = €n/3[na(s)) + P(Ini(s) — na(s)] = 26n/3)
<e/3 +P(|nj(s) — ni(s)| > 2¢,/3)
<e/3+P(|D;(s)| + |Dn(s)| + w|n*(s) — n(s)| > 2¢,/3)
<2¢/3 + P(m|n*(s) — n(s)| > £,/3)
<e

Y

where the first inequality holds due to the union bound inequality, the second inequality
holds by the law of iterated expectation, the third inequality holds because (1) conditionally
on data, N(ni(s))—ny(s) = O,(\/n1(s)) and (2) ny(s)/n(s) = 7+ ((‘;) — 71> 0asn(s) = oo
, the fourth inequality holds by the fact that

ni(s) —m(s) = Dy(s) = Du(s) +m(n"(s) — n(s)),

the fifth inequality holds because by Assumptions 1 and 4, | D% (s)| + |Dn(s)] = Oy(\/n(s)),
and the sixth inequality holds because {S;}! , is generated from {S;}! , by the standard
bootstrap procedure, and thus, by van der Vaart and Wellner (1996, Theorem 3.6.1),

n

w*(s) = n(s) = 3 (M~ D)(A{S; = 5} - pls)) = Op(v/n(5)),

i=1

where (MY, -+, M) is independent of {S;}? , and multinomially distributed with param-

eters n and (probabilities) 1/n,--- ,1/n. Therefore, by direct calculation, as n — oo,
IP( max & — M| > 2)
N(s)+1<i<N(s)+ni(s)
<P al S — M| > 2, > e)+P < €
_<Mﬂygﬁm%@mz > 2.m(s) > n(s)e) + Blmi(s) < n(s)e)
+n1 s

<e+ ]E Z P(&) — M| > 2,|N(n1(s)) — ni(s)] < ln,ni(s) > n(s)elni(s),ni(s),n(s)) + ¢

i=N(s)+1

<2e + Eny(s)P(bin(£,,n; 1 (s)) > 2|ni(s), ni(s),n(s))1{ni(s) > n(s)e} — 2,
where we use the fact that

n1(s)P(bin(ln, ny" (5)) > 2[na(s), ni(s), n(s))1{na(s) > n(s)e}
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<ni(s) (n‘;)) (;j(—())) L (s) > n(s)e} < ﬁ L0

Because ¢ is arbitrary, we have

P ( max €5 — M| > 2) 0. (1.10.17)
N(s)+1<i<N(s)+ni(s)
Note that [£f — M| = Y702, 1{|€§) — M| > j}. Let I)(s) be the set of indexes i €
{N(s)+1,-- ,N(s) + ny(s)} such that |& — M,;| > j. Then, & — M,; = sign(N(ni(s)) —
ni(s)) > ;2 i€ I7(s)}. Thus,

N(s)+n(s) o0

#1 (s
. — My, 11ST—Slnans —’[’Ll 7,137‘
L2 6 M) =S (o) (o) 3 T r Z;)n

(1.10.18)

In the following, we aim to show that the RHS of (1.10.18) converges to zero in probability
uniformly over s € S, 7 € T. First, note that, by (1.10.17), maxXy(s)11<i<n(s)+na(s) | — Mni| <
2 occurs with probability approaching one. In the event set that maxy(s)4+1<i<n(s)4ni(s |£ —
M,;| < 2, only the first two terms of the first summation on the RHS of (1.10.18) can be
nonzero. In addition, for any j, we have j(#1(s)) < |N(ni(s)) — ni(s)| = O,(1/n(s)), and
thus, #la(s) _ O,(1) for j = 1,2. Therefore, it suffices to show that, for j = 1,2,

v/ n(s)

1

sup : Nia(s, )| = op(1).

seS,TeY #L%(S) ie%s) P
Note that

1 N(s)+n1(s)

#IJ( ) Z 'f]i,l(su 7-) = Z Wniﬁi,l(sa T)7 (11019>
n\S ieli(s) i=N(s)+1
_ Y& -Myui>j} . . N(s)+ni(s)

where w,,; = e b= N(s)+1,---, N(s)+ni(s) and by construction, {wn;};_y (g1 i

independent of {n; 1 (s, 7)}?,. In addition, because {wy;}; (i,);r ) ') is exchangeable conditional

on N,,, so be it unconditionally. Third, Z SHm(s) Wi = 1 and Max;— N (s)11, N(s)+n1(s) |Wni| <
1/#11(s) == 0. Then, by the same argument in the proof of van der Vaart and Wellner (1996,
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Lemma 3.6.16), for some r € (0,1) and any no = N(s) +1,--- , N(s) + ni(s), we have

T

N(s)+n(s)
E( sup | Y wuidlials,7)| [¥n, N,
T7€Y,s€S =N ()41
| NerEme |
<(ng— 1DE max w,,;|IN, sup |77 (s, T
<(no —1) lN(S)+no<i<N(S)+n1(S) i } ni(s) ._NZ: Ter,spes (5,7l
i=N(s)+1 ]
N(s)+k "
T 1 -~
+ (n(8)E(wnilN,))” max E | sup |+ > irw@me)(s7)] Na, ¥y
no<k<ni(s) T€Y,5€S .
j=N(s)+no
(1.10.20)
where (Ry, +1(k1, k2), - -+, Rk, 4k, (K1, k2)) is uniformly distributed on the set of all permutations
of k1 +1,--- , k1 + ky and independent of N,, and ¥,,. First note that sup,cs ey [7:1(s,7)] is
bounded and
max wh <1/ (#(s))" 0.
N(s)+1<i<N(s)4ni(s) " [(#1(5))

Therefore, the first term on the RHS of (1.10.20) converges to zero in probability for every

fixed ng. For the second term, because w,;|N,, is exchangeable,

s)+ni(s

1 (8)E(wni|N,) = Z Ewm|N

i=N(s)+1

In addition, let S,(ki, k2) be the o-field generated by all functions of {7; 1(s,7)};>1 that

are symmetric in their k1 + 1 to k; + ko arguments. Then,

B T

1 N(s)+k
max E Ssu - R, s),ni(s S, T Nnﬂ‘l}”
no<k<ni(s) TGT,SPES k j:]\%+no nRJ(N( o ))71< ) ‘
i | NE)E "
= max E | sup |- Z 773',1(8;7') Ny, S, (N (s),n41(s))
no<k<ni(s) TEY,s€S J=N(®)+n0
| VO "
<2E < max | sup |- 5,18, 7)| | INp, Sp(N(s),n1(s))
no<k | reT,seS k]:N(s)—l—l
1< '
=2E { max | su - ; N,.,S,(0,n1(s
{mSk [Terfes k; ) | (0l ))}
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where the inequality holds by the Jansen’s inequality and the triangle inequality and the last
equality holds because {7;1(s,7)};>1 is an i.i.d. sequence. Apply expectation on both sides,

we obtain that

r

1 N(s)+k
E max [ su T R, s),n1(s S, T Nn7 \Ijn
no<k<nj(s) Terfes k J’=N(Zs):+n0 TIR; (N (s),na( Na(s 7)) |

<2E max sup
no<k<n | rer ses

] . (1.10.21)

k
1 _
Z > ijals,7)
=1

By the usual maximal inequality, as k — oo,

which implies that as ng — oo

k
1§ 7.1(8,7)
- 77]'71 S, T
no<k<n | e scS kal no<k |reY,ses

]%0.

] < max [ sup

k

1 _

7 Zm,l(sﬁ)
Jj=1

max [ sup

is bounded. Then, by the bounded convergence

.- 1 k ~
In addition, sup,cr .cs |+ X4y 7 (5 7)

theorem, we have, as ng — oo,

k T
1
£ max Su T 5,1 (8, T — 0.
o [ S|
which implies that,
N(s)+k r

1 _
E max E| sup |- Z MR, (N () (), (5, T)| [N, W | = 0.

no<k<ni(s) T€T,s€8 J=N(o)4no

Therefore, the second term on the RHS of (1.10.20) converges to zero in probability as ny —

o0o. Then, as n — oo followed by ng — oo,

r

N(s)+n1(s)
E sup Z Wnili1 (8, 7)) W, Ny, Ls0.
TEY,s€S =N (s)+1
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Hence, by the Markov inequality and (1.10.19), we have

1
sup

~ p
- i1\ S, T — 0
seS,TeY #[7%(8) Z 7771( )

i€l (s)
Consequently, following (1.10.18)
N(s)+n1(s)
sup Z (& — M) (s, 7)| = op(v/n(8))- (1.10.22)
seS,TeY =N (s)+1

This concludes the first part of this Lemma. For the second part, we note

N(s)+ni(s) N . N(s)+ni(s) ni(s)
Z Maitiin (s, 7) = Z &Mia(s,7) Zg i (8, 7)
i=N(s)+1 i=N(s)+1

where the second equality holds because {&7,7;1(s,7)}i>1 1L {N(s),n1(s),n(s)}. Then, con-
ditionally on {N(s),ni(s),n(s)} and uniformly over s € S, the usual maximal inequality
(van der Vaart and Wellner (1996, Theorem 2.14.1)) implies

s)+ni(s ni(s)
sggl Z Mmml 5,7)| —s1£| Zg fii1(s,7) = 0,(\/n(s)). (1.10.23)
T i=N(s T =

Combining (1.10.16), (1.10.22), and (1.10.23), we establish (1.10.15). This concludes the
proof. O]

D* (s Dy (s
Lemma 1.10.6. If Assumptions 1(i) and 1(ii) hold, sup,cg L/% = Op(1), sup,es |\/% —

O,(1), and n(s) — oo for all s € S, a.s., then, uniformly over T € T,

1

Qr(u,7) = Eu’Qu.

Proof. Recall Q;, ;(u,7) and @ (u,7) defined in (1.10.10). We focus on @}, ;(u, 7). Recall
the definition of M,,; in the proof of Lemma 1.10.5. We have

N(s)+ni(s) “0+“1

=3 > M [T ) - ) < op = 120 - ) £ 0

s€S i=N(s)+1 0
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N(s)+ni(s) s)+ni(s

_Z Z M,ilpi(u, 1,5) — Egy(u, 7, s)] —1—2 Z MmE@(Uﬁ,S),

s€S i=N(s)+1 S€ES i=N(s
(1.10.24)
UO+U1
where ¢;(u, 7,5) = [o " (H{Y?(1) — q1(7) < v} = H{Y?(1) — qu(7) < 0})dv
Similar to (1.10.22), we have
s)+n1(s)
Z Z m' [¢z(ua T, S) - E¢l<u7 T, S)]
s€S i=N(s
N(s)+n1 s)
—Z Z & pi(u, 7, 8) — Epy(u, 1, 5)] —i—Zrn(u,T, s), (1.10.25)
S€ES i=N(s)+1 s€ES

where {£7}, is a sequence of i.i.d. Poisson(1) random variables and is independent of

everything else, and

o, 7,s) = sign(N(ni(s)) — n’(s Z #In(j)) Jn(s) #1 1 Z Vn(s) [¢i(u, T, 8) — B (u, 1, 5)].
J=1 n ieli(s)

We aim to show

sup |rp(u, 7, s)| = 0,(1), (1.10.26)

T7€Y,5€S
Recall that the proof of Lemma 1.10.5 relies on (1.10.21) and the fact that

E sup sup
n(s)>k>ng T€Y,s€S

11:
EZﬁ S, T)

Using the same argument and replacing 7;1(s, 7) by \/n(s) [¢:(u, 7, s) — E¢i(u, 7, s)], in order
to show (1.10.26), we only need to verify that, as n — oo followed by ny — o0,

E sup sup — 0.

n(s)>k>ng T€Y,s€S

k
%Z ) [@i(u, 7, 5) — E¢;(u, T, 9)]
-1

Note sup, ey ses ‘% S /n(s) [6i(u, 7, 8) — Ei(u, 7, 5)]| is bounded by |ug| + |us|. Tt suffices
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to show that, for any € > 0, as n(s) — oo followed by ng — oo,

P ( sup sup
(

n(s)>k>ng T€Y,s€S

k
Z ) [0i(u, 7, 8) — Epy(u, T, 5)]

> 5) — 0. (1.10.27)

Define the class of functions F,, as

= {v/n(s)[pi(u,1,s5) — Ed;i(u,,8)] : 7€ YT,s € S}.

Then, F, is nested by a VC-class with fixed VC-index. In addition, for fixed u, F, has
a bounded (and independent of n) envelope function F' = |ug| + |u1|. Last, define Z; =
{22t +1,-.. 21 —1}. Then,

n(S))

> €

n(s)>k>ng T€Y,s€S

k
P ( ( sup sup %z:: ) [i(u, T, 8,¢) — Epi(u, T, s, €)]

[logy(n(s))]+1
1

< Z P (Sup sSup E Z V n(s) [(bl(u? T, 5) o Eqﬁl(ua T, S)] =€ n(8)>
=llogy(no))  \FERTETSES Ty
[logy(n(s))]+1

< Z P( sup sup Z Vn(s) [0i(u, 7,5) — Egi(u, 1,5)]| > 2 |n(s)
I={logy(no) k<241 7€ seS
[logy(n(s))]+1 i+l

< Z 9P | sup Z Vn(s) [¢i(u, 7,5) — Egi(u, 7,5)]| > £2'/30|n(s)
I1=[log,(no) TETSES oy

I+1
llog, (n(s))]+1 270E (SupTeT s ’22 /n(s) [pi(u, T, s) — Egi(u, T, s)]’ n(s))
< > T
I=|logy(n0)]
[logy(n(s))]+1
<

&
2l/2
I=logs(no)]

< 204

on — 0,
where the first inequality holds by the union bound, the second inequality holds because on
T;, 271 > k& > 2!, the third inequality follows the same argument in the proof of Theorem
1.3.1, the fourth inequality is due to the Markov inequality, the fifth inequality follows the
standard maximal inequality such as van der Vaart and Wellner (1996, Theorem 2.14.1) and
the constant Cj is independent of (I,&,n), and the last inequality holds by letting n — oc.
Because ¢ is arbitrary, we have established (1.10.27), and thus, (1.10.26), which further implies
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that

sup |1 (u, 7, 8)| = 0p(1).
T7€Y,s€S

In addition, for the leading term of (1.10.25), we have

; Ni & [9i(u,7,8) — Ey(u, 7, 5)]
_g;s* )+ na(s), ) — T3 (N(s), 7)),
where
D (h,7,¢) =gs / YR < () 40} — 1Y) < )} do
S “ YA € 0(7) + 0} = {17(1) < ()} do

By the same argument in (1.10.1), we can show that

sup |77 (k, 7, )] = 0p(1),

0<t<1,7eY

where we need to use the fact that the Poisson(1) random variable has an exponential tail
and thus

E sup ¢ = O(log(n)).

i€{1,- ,n},s€S
Therefore,
N(s)+ni(s)

sup Z Z M, [¢i(u, 7, 8) — Egy(u, 7, 5)]| = 0,(1). (1.10.28)

TeT s€S i=N(s)+1

For the second term on the RHS of (1.10.24), we have

+n1(s)
Z Zl M, E¢;(u,T,s) an VE®;(u, T, s)
s€S i=N(s)+1 SES
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= Z wp(s)—f1<QI§T)|S> (uo +u1)® + o(1)

Jfl(gl(T))2<“0 ) o), (1.10.29)

N(s)+ni(s) —
i=N(s)+1 My =

ni(s) and the second equality holds by the same calculation in (1.10.1) and the facts that

where the o(1) term holds uniformly over 7 € T, the first equality holds because )

n*(s)/n -+ p(s) and

mi(s) _ Dils) +mn(s) o

(s).

Combining (1.10.24)—(1.10.26), (1.10.28), and (1.10.29), we have

Qi) 25 Al )

uniformly over 7 € T. By the same argument, we can show that, uniformly over 7 € T,

(1- W)fo(Qo(T))ug.
2

QZ,O (U, 7—) L

This concludes the proof. O

1.11 Appendix B

1.11.1 Quantile Regression with Strata Fixed Effects

The strata fixed effects estimator for the ATE is obtained by a linear regression of outcome Y;
on the treatment status A;, controlling for strata dummies {1{S; = s}scs}. Bugni et al. (2018)
point out that, due to the Frisch-Waugh-Lovell theorem, this estimator is equal to the linear
coefficient in the regression of Y; on A;, in which A; is the residual of the projection of A; on
the strata dummies. Unlike the expectation, the quantile operator is nonlinear. Therefore, we
cannot consistently estimate QTEs by a linear QR of Y; on A; and strata dummies. Instead,
based on the equivalence relationship, we propose to run the QR of Y; on A;. Formally, let
A; = A, — #(S;) and fll = (1, 4;), where 7(s) = ni(s)/n(s), ni(s) = S0, A,1{S; = s},
and n(s) = D", 1{S; = s}. Then, the strata fixed effects (SFE) estimator for the QTE is
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Bsfe,l(T)a where

Buse7) = (Buor), Baean()) = argmin 3. (¥ ).

b=(bo,b1)'€R? 5

Theorem 1.11.1. If Assumptions 1(i)-1(iii) and 2 hold and p(s) > 0 for s € S, then,

uniformly over 7 € T,

Vit (Bugea(r) = a(r)) ~ Buye(r), asn— oo,

where Bgge(-) is a Gaussian process with covariance kernel Xgs.(-,-). The expression for

Ysfe(+,+) can be found in the proof of this theorem.

In particular, the asymptotic variance for 3, fe1(T) is

G (m,7) + R (m, 7) + C3(7),

where ((m,7) and (%(7) are the same as those defined below Theorem 1.3.1,

2 — m T)—m T S N i
2( 7} =F(S) [( 1(S,7) —mo(S,7)) (ﬂ'fl(q1(7—>) (1—7r)fo(qO(T)))

fla(D)IS) J”o(CJO(T)IS)”2
fla(r))  folao(7)) /1

Three remarks are in order. First, if the treatment assignment rule achieves strong balance,

+q(7) (

then ¢(m,7) = 0 and the asymptotic variances for 41 (7) and fyse1(7) are the same. Second,
if the treatment assignment rule does not achieve strong balance, then it is difficult to compare
the asymptotic variances of f1(7) and fyf.1(7). Based on our simulation results in Section
1.11.6, the SFE estimator usually has a smaller standard error. Third, in order to analytically
compute the asymptotic variance Bs fea(T), one needs to nonparametrically estimate not only
the unconditional densities f;(-) but also the conditional densities f;(:|s) for j = 0,1 and
s € 8. However, such difficulty can be avoided by the covariate-adaptive bootstrap inference
considered in Section 1.5.

We can compute the weighted bootstrap counterpart of strata fixed effects estimator:

~

+re(T) = argmin iPr Y;—/Ll;“,b>,
f() gb ZZ:;§P<

where fl;“” = (1,Av), A = A; — 7%(S;), and #“(-) is defined in Section 1.4. The second

(]
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element of Bg}e(T) is our bootstrap estimator of the QTE.

Theorem 1.11.2. If Assumptions 1-3 hold and p(s) > 0 for all s € S, then uniformly over

7 € T and conditionally on data,
Vit (8517 = Bugen(r)) = Buge(r). asn — oo,

where Bys(T) is a Gaussian process with covariance kernel being equal to that of Byse(T)

defined in Theorem 1.11.1 with y(s) being replaced by w(1 — ).

Similar to the SQR estimator, the weighted bootstrap fails to capture the cross-sectional
dependence due to the covariate-adaptive randomization, and thus, overestimates the asymp-
totic variance of the SFE estimator.

We can also implement the covariate-adaptive bootstrap. Let

3*,.(T) = arg min - Yf—/i;%),
ﬁf() gb ;P(

where A¥ = (1, A¥), A = Ar — 7*(S}), 7*(s) = 218, and (Y;*, Ar, SF)™, is the covariate-
adaptive bootstrap sample generated via the procedure mentioned in Section 1.5. The the

second element B:fe’l(T) of B;‘fe(T) is the covariate-adaptive SFE estimator.

Theorem 1.11.3. If Assumptions 1, 2, and 4 hold and p(s) > 0 for all s € S, then, uniformly

over T € T and conditionally on data,

Jn (B;f@l(T) . 4(7)) s Byje(T), asn — oo.

Unlike the weighted bootstrap, the covariate-adaptive bootstrap can mimic the cross-
sectional dependence, and thus, produces an asymptotically valid standard error for the SFE

estimator.

1.11.2 Proof of Theorem 1.11.1

Define 31 (1) = (1), Bo(T) = wqu (1) +(1=7)qo(7), B(7) = (Bo(7), B1 (7)), and A; = (1, A;—)'.
For arbitrary by and by, let ug = v/n(bo — Bo(7)), ur = /n(by — B1(7)), u = (up, up) € K2, and

Logen(7) = [p:Y: = AiB(r) = (b — (7)) — p(¥; = AB(7)]

=1
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Then, by the change of variable, we have that

\/ﬁ(Bsfe(T) — B(T)) = argmin Lgye ,(u, 7).

u

Notice that L. n(u, 7) is convex in u for each 7 and bounded in 7 for each u. In the following,

we aim to show that there exists

1
gsfe,n<u7 T) = _u/ste,n(T) + §ulefe<7—)u
such that (1) for each wu,

sug |Lsfen(t, T) = Gsfen (U, T) — hgfen(T)] 250,
TE

where hgfe,(7) does not depend on u; (2) the maximum eigenvalue of Qg (7) is bounded
from above and the minimum eigenvalue of Q,s.(7) is bounded away from 0 uniformly over
7 € T; (3) Wegen(r) ~» B(7) uniformly over 7 € T for some B(7)."> Then by Kato (2009,

Theorem 2), we have

\/E(BSfe(T) - B(T)) = [ste(7—>]_1W8fe,n(7—> + Tspen(T),

where sup, vy ||7sfen(7)|| = 0p(1). In addition, by (3), we have, uniformly over 7 € T,

Vi (Byge(r) = B(7)) ~ [Qupe(r)] ' B(r) = B(7).

The second element of B(7) is Bsf.(7) stated in Theorem 1.11.1. Next, we prove requirements
(1)—(3) in three steps.
Step 1. By Knight’s identity (Knight, 1998), we have

=) = AB(r)) (7= 1Y: < AF(n)})

AY(B(r)+2)-A1B(r) - -
>/ (107~ AB(r) < v} — 1Y~ Af(r) <)) o

=1

=— Ly,(u,7) 4+ Lop(u, 7).

10We abuse the notation and denote the weak limit of Wi, ,(7) as B(7). This limit is different from the
weak limit of W,,(7) in the proof of Theorem 1.3.1.
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Step 1.1. We first consider Ly, (u, 7). Note that £;(7) = ¢() and

Ly (u,7)
=;§Ai1{& =) (4 (1= FE) I+ (= 7)) ) (7~ () £ ()
#3300 A8 = 5} (S -0 ) ) - 1) S a0
=Ly 10(u,7)+ Lyon(u, 7). (1.11.1)

Let t; = (1,1 —m)" and o = (1,—m)". Note that 7(s) — 7 = [;"(S). Then, for Ly, (u, ), we

have

LLL”(U,T)
=SS A(s =5} [T+ tr w00 (a0 + T )| o100 < )
“”ZZA 1{Si = s} (7 = L) < au(0)})

_ Z D\r}ﬁ % ZAl-l{Si =st(r—{Y;(1) < q:(7)})

sES

+ ) (m—t(s))a(7) ZAil{Si = s} (= K{Yi(1) < qu(7)})

seS

Z ( Z [A S = s}tnii(s,7) + (A — m)1{S; = s}ma(s, 7) + 71{S; = s}m(s, 7'):|

sES

Z [A {S; = stnia(s,7) + (A — m)1{S; = s}ma(s,7) + 71{S; = s}m(s, 7'):| + hy,

seS

Z (T Z {A S = s}tnii(s, 1) + (A — m)1{S; = s}ma(s, 7) + 71{S; = s}m(s, 7‘):|

565

D
-y o (S)rm(s,7) | h1a(7) + Roge(u,7), (1.11.2)

seS

where

hia(r) =) (m—#(s))a(r) ZAil{Sz’ = s} (r = 1{Yi(1) <aqu(7)})

seS
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and

Rugena(u,7) Z“ID 5[5 = shalo) + (4 = 1S, = sha(s,7)|

S.
=1

By the same argument in Lemma 1.10.2 and Assumption 1(iii), we have for every s € S,

sup
TEY

= 0,(1) (1.11.3)

1 n
7 121 AL{S; = 5}ni1(s,7)

and

sup
TeY

TEY

\/_Z{ m){S; = spma(s, T)H = sup

In addition, note that n(s)/n —= p(s). Therefore,

1
sup [ Rsge,1(u, 7)| = Op(ﬁ) = 0p(1).

TEY

Similarly, we have
Ll ,0 n(u ’7')

Z T Z{ A)UHS; = simio(s, 7) — (A — m)1{Si = s}tmo(s, 7) + (1 — m)1{S; = s}mo(s, 7)

= w1 Dy ( 1\;_71')7720(8 ,7) - hio(7) + Rugerolu,7), (111.4)

seS

where

n

hio(r) =) (m—it(s)a(r) Y (1= A)L{S; = s} (7 — 1{Y;(0) < qo(7)}) ,

seS =1

n

D, (
Rojenolu,7) = =3 = jz[ — AJUS = shnio(r) = (A; = m)L{S: = s}mo(s,7) |.
seS i=1
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and

= —) = 1).
?—IGJIT)’RSJC&I’O(T)’ Op(\/ﬁ) Op( )

Combining (1.11.1), (1.11.2), (1.11.4) and letting ¢» = (1,1 — 27)’, we have

Ly n(u,7) ZZ {u L A{S; = stnia(s, 1) + u'io(1 — A)1{S;: = s}nio(s, 7)

SESZ 1

2 i

SES

_n Z (u'vyemy (S, 7) + u'vo(1 — m)mo(S;, 7))
i—1

(s,7) —mo(s, 7))

+ Rsfe,l,l (U, T) + Rsfe71,0(u, 7') + hl,l(T) + hl,O(T)‘ (1115)

Step 1.2. Next, we consider Ly, (u, 7). Denote E,(s) = y/n(7(s) — ). Then,

Dn(s) n | | y
R | ™ MO =00

where 37, = diag(y(s)/p(s) : s € S). In addition,

[Ea(s)}oes = {

Lo (u,T)
_SEZS;A Afsi=s) | ) (1{Y:(1) < u(7) + v} = {Yi(1) < ar(7)}) dv
FYS00 - AS = 5) / A 30) < ol + o) 1050 <
ELQJSi‘S(‘UZ;, 71‘) + Loyon(u, ). (1.11.6)

By the same argument in (1.10.1), we have

s)+ni(s u'y En(s) + ML )

L21n u 7‘ Z Z /\F NG (1) + (I{Y;S(l) < q1<7_) +U} . 1{}/;5(1) < @h(T)})dU
s€S i=N(s
=" [D5(N(5) + na(s), 7, Bu(s) — T(N(s), 7, Bu(s))], (111.7)

seS
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where

u’bl—e<q<7>+%>

k
Vn
ke =3 [ ({7 (1) < aulr) + 0} — 1) < @i (n)}) o
i=1 70
We want to show, for some any sufficiently large constant M,

sup 2 (|nt],1,e) —EL; (|nt], 7, e)| = o,(1). (1.11.8)

0<t<1,7€Y |e|<M

By the same argument in (1.10.2), it suffices to show that

sup  nl[By — Pll = op(1),
TET,|e|<M

where

w1y —e(q(r)+ 2L
1—e(a( )+\/ﬁ)

F- A T ) < alr) o} - 1Y) < gD} dv T e Tlel < M

K51

[uo|+|u1|+M sup, ey |a(T) |+
< v Note that

v

with an envelope F =

o] + [ua| + Mq()] + 24

NG

[uo| + Jur| + Mq(r)| + 14

vn

supEf? <supE
feFr TEY

1 {IYf(l) —q(r)] <

<,

and F is a VC-class with a fixed VC index. Then, by Chernozhukov et al. (2014, Corollary
5.1),

E sup |0 (n,7,e) —EL(n,7,e)] =n||P, —P|lz Sn

5/2 3/2
TET, |e|<M n®/ n3/

10g<n>_+1og<n>] _ of1).

In addition, we have

u'u—e(a(n)+ k)
EL ([nt], 7, e) =[nt] /0 T R + ols) - Fulqu(r)]s))do
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= —fl(qéTHS) (u't; — eq(7))* + o(1), (1.11.10)
where Fj(-|s) and f;(-|s), 7 = 0,1 are the conditional CDF and PDF for Y (j) given S = s,
respectively, and the o(1) term holds uniformly over {7 € T, |e|] < M}. Combining (1.11.8)
and (1.11.10) with the fact that ”17(8) L5 mp(s), we have

Loy n(u,T) Z 7p(s )‘S) I (' — By (s)q(T))? + R jooq(u,T)
SES
Cmfila(T), D, (s)u'ny
*T(U n)® — SEZS fl(fh(T)\S)TQ(T) + ho1(7) + Rspep(u, 7),
(1.11.11)
where
ilelp |Rsfe 2, 1 (u, ) = 0,(1), igg |Rsfea1(u, )| = 0p(1),
and
aa(r) = 3 O 2y 32,
seS
Similarly, we have
(L =m)folg(r)), / 2 D (s)u'to
Loon(u,7) = (W) — D (1 =7)folqo(T)]s) —F—=—q(7)
5 ; q NGB
+ hoo(T) + Rsfen0(u, 7), (1.11.12)

where

up [Rogeao(u, ) = 0,(1) and  hog(r) = 30 L TIMBIND o oy )

TEY seS

Combining (1.11.6), (1.11.11), and (1.11.12), we have

/ ;1 Dals
Lan(it,7) =olQupe(r)u— 3 a(r) [rlas (7)) maln + flan()]s)(1 = ') 2ol
seS \/ﬁ
+ Rsf67271(u, ’7') + Rsfe,2,0<u7 T) + h2’1(7') + hg’o(T). (11113)
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where

Qspe =m fr(q(T))uat) 4+ (1 = 7) fo(qo(7))eoto

_ ( Thia) + 1 =mham) w1 =m) (@) - fola(r) ) |
m(L=m)(ila(n) = folao(r)) m(1=m)((1=m)fi(@(n) +mfolao(r))

Step 1.3. Last, by combining (1.11.5) and (1.11.13), we have

1
Lsfe,n<u7 T) = _uIste,n(T) + §ulefe<T)u + Rsfe(“a T) + hsfe,n(7—>7

where
Wisen(T)
\/_;;{MA 1{S; = s}mia(s, 7) + to(1 — A)1{S; = s}m:.0(s, 7)}
+ Z{ (1(5,7) = mofs7) + () | Flan (o) + flau( )1 = | 22
\/_ Z (1ma (S, 7) + to(1 — m)mo(Sy, 7))
srent (T) + Wigen2(T) + Wegems(7), (1.11.14)

Rsfe(ua T) - Rsfe,l,l(ua T) + Rsfe,l,O(ua T) + Rsfe,2,1(u7 T) + Rsfe,2,0<u7 T)
such that sup, .y |Rsfe(u, 7)| = 0,(1), and
hsfe,n(T) = ]’L171 (T) + ]’LLQ (T) + ]’LQJ (T) + ]’L270 (T)

This concludes the proof of Step 1.

Step 2. Note that det(Qsre(7)) = (1 — 7)fo(qo(7)) f1(q1 (7)), which is bounded and
bounded away from zero. In addition, it can be shown that the two eigenvalues of Qyfe(7)
are nonnegative. This leads to the desired result.

Step 3. Lemma 1.11.1 establishes the weak convergence that

(ste,l,n(7->7 ste,2,n(7—)7 ste,3,n(7—)) ~ (Bsfe,l<7->7 Bsfe,2<7->> Bsfe,3(7—>)>
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where (Bspe1(7), Bsfe2(T), Bsge,3(T)) are three independent two-dimensional Gaussian pro-
cesses with covariance kernels ¥ (71, 72), Yo(71,72), and X3(7, 7o), respectively. Therefore,

uniformly over 7 € T,

stezn (T) ~ B<T)7

where B(7) is a two-dimensional Gaussian process with covariance kernel

3
71,7'2 E E] 71,7'2
J=1

Consequently,

Vi(Bage(r) = B(r)) ~ B(r) = Q7. (7)B(7),

where (71, 72), the covariance kernel of B(7), has the expression that

X (71, 72)
:Qs_fle(Tl)i(TlaTQ)Qs_fle(TQ)

1 : T o7
| S Gy ) = = B ) (W 1)

1

1 — 1112 — Em T1)m T (1—m) m—1
+ (1 —m)folqo(m1)) folgo(T2)) [min(r, 7o) = 7175 — Emo (S, 7a)mo(S, 2)]( T—1 1 )}

+%M“ﬂmmaﬁy4%@m»( o * T )+«mﬁ@ﬁﬂ@<j
1))

7r101(1117(;1)) - (l—w)f;r(qo( filqi(m)) 1

+q(n )M (1 _W)} X {(ml(S ) — mo(S, 7)) ( {0(‘1(7)7(72)) + fl(}h_?(}z)) >

Jo(qo(T1)) s

mfilgi(r2) (-7 folgo(r2))
aea S (7) e et (1))
m1 (S, 1) mo(S,m) [1—m 1(S, 72) mo(S,m) (1—m\]’
*{Eh@m»<>+ﬁ@m»<4>Hﬁ@m»<)*ﬁ@m»<4>}}

By checking the (2, 2)-element of (71, 73), we have

Z:sfe(Tl; 7-2)
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_min(Tl,T2> — T1T2 — Eml(S, T1>m1<S, 7'2) H’lin(Tl,Tg) — T1Ty — Emo(S, Tl)mo(S, 7'2)

7 f1(q1 (1)) [1(q1(72)) (1 =) folgo(m1)) foqo(T2))
N T L (RGE)IS)  flan)
*EM{(W(S’“ o(S:m)) (wﬁ(qlm)) (1—7T)f0(QO(Tl)))+Q( 1)<f1(ql(ﬁ)) Tolao(

(S -7 m . filg(m2)|S)  folg(m2)|S)

" [(”“(S’ ™) = mo(5,m2)) (wﬁ(ql(m) a —w)f()(qo(m))) +aln) ( A@m) ~ hlam) )]
|:m1(S, ’7'1) _ mg(s,’/'l):| ml(S, 7'2) _ mo(S,’Tg):|
filar(m))  folao(m)) ] Lfilai(m2))  folao(m2)) ]

1.11.3 Proof of Theorem 1.11.2

Note that
\/ﬁ( A:}e(T) - B(T)) = arg min L;Dfe,n(uv T)7
where
L) = Zg = A3+ 22 =l = 25|

A¥ = (1, AvY, A» = A; — 7#°(S,), and

_ 2 GALLS = s}
Do &Gl{Si=s}

Similar to the proof of Theorem 1.11.1, we divide the proof into two steps. In the first

7 (s)

step, we show that there exists

1
gg}e,n(“’? T) = _U/W;Ufe,n(T) + §ulef6<T)u

and AY

¢te.n(7) independent of u such that for each u

Sug |L;Ufe,n(u7 T) - gg)fe,n(uu T) - h‘g}fe,n(T” L) 0.
TE

In addition, we will show that sup,cy |[|[W35,,.(7)]| = Op(1). Then, by Kato (2009, Theorem

2), we have

VI(B(7) = B(T)) = [Quse ()] Wihen(T) + Rien(7),
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where
Sup HRsfe n( )H = Op(l)'
In the second step, we show that, conditionally on data

VIUBier (T) = Bogen(r)) ~ Bage(7).

Step 1. Following Step 1 in the proof of Theorem 1.11.1, we have

LY. (u,7) = =LY, (u,7) + LY, (u,T),
where
LY, (u,7)
— zn; ;&Ail{b’i = s} (% +(1- frw(s))% + (7 — ﬁw(s))q(f)) (r = 1{Y; < (1))

Y- A, —s}( - ﬁ%%m—ws))q(f)) (r = 1{Y; < o(™)})
i=1 s€S

ELT,Ln(“? T) + Liu,(),n<u’ 7—)7

Ly, (u,7)
uty E“’(s) qT L
S S eAals, = [T g <)+ - 1 < oD do
s€S i=1

u! Lo Ew(s

+ZZ@1— 1{5_5}/f v

(H{Y; < qo(7) + v} = 1{Y; < qo(7)}) dv
s€S 1=1
EL%,n(“a T)+ Ly On<u ),

“1

qT*

and EY(s) = /n(7"(s) — m).
Step 1.1. Recall that ¢; = (1,1 — ) and ¢y = (1, —m)

= (1, —7)’. In addition, denote 7% (s) — 7
gff ((j)), where

Z@ ;i —m)1{S;=s} and n"(s) = anfil{si = s}.
i=1
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Then, we have

Lllﬂl n(u7T)
u'ty u't2 D} (s)ma (s, 7)
_; \/_Zgl [A;1{S; = s}mia(s, ) + m1{S; = s}m(s, T)]+§ Jn
+ 0y (7) + Rpeqq(u, 7), (1.11.15)

where 1;1(s,7) = (7 — {Y;(1) < qu(7)}) — ma(s, 7),

W) =) (m—7"(s))a(r) (Z §A{S = s} — {Y; < 611(7)})) ,

seS

SANCUEEDY i}i {Z@ [AL(S; = s}a(s,7) + <Ai—w>1{si:s}m1<s,r>]}.
(1.11.16)

By Lemma 1.11.2, we have

sSup ’Rsfel 1(u T)| - Op(l)

TeYl

Similarly, we have

L11UO n(u T)

_ ; ;&{U Lo — A)I{S; = sinio(s,7) + TL{S; = s}ma (s, 7)] — L\/%Z(AZ — m)1{S; = stmy(s, 7—)}
+ hyo(7) + R 0(u, 7), (1.11.17)

where

Slelp ’Rsfel[)(u 7—)‘ = Op(l)'

Combining (1.11.15) and (1.11.17), we have

L’l‘in(u, T)
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\/_ ZZ& {u L AS; = stnia(u, ) + u'io(1 — A)1{S;: = s}nio(u, 7)

s€S i=1
+ u'tg(A; — m)1{S; = s}(ma(s,7) — mo(s, 7)) + 1{S; = s}(u'tymmy(s,7) + u'1o(1 — m)mo(s, 7))

+ Ri“fe,l,l(% T) + Ré”fe,l,o(u, T)+ h7iu,1(7) + hfo(ﬂ-

Furthermore, by Lemma 1.11.3, we have

w fi(q WDﬁ s)u't w w
L271,n(U, T) = 1(2 U 01 Z filaa (T %Q(ﬂ + h2,1(7') + Rsfe,2,1<u7 7)
sES

(1.11.18)

and

Lyo,(u,7) = (1= 7) fo(do (u'19)? Zfo qo(T 1 -

DY (s)u'to
q(7)
seS \/ﬁ

+ hqév,o(T) + stuf&z’o(u’ ),

2
(1.11.19)
where
() = B, ) ()02,
ia(r) = 3 =) 5716 ),
Sup |Ripena(u, 7)| = 0p(1),
and
Sup [ Ryyen0(u, T)[ = 0p(1).
Therefore,
L (0.7) =0/ Qugelru — 3 a(r) [ (Dl + foan(r)}s) (1 — whulsg] A

SES \/ﬁ
+ Refeon (U, 7) + Ripooo(u, 7) + hy (1) + hyly(7).
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Combining (1.11.15), (1.11.17), (1.11.18), and (1.11.19), we have

L;Ufen(u’T) = —Ul ~su]}‘e,n( ) + 1ust€u+ Rsfen(u T) + h‘sfen( )
where
511]}”671(7—)
\/_ ZZ& |fy4 {Si = s}tnii(s,7) + wo(1 — A) 1{S; = s}nio(s, 7)}
seS =1

ZZ@{LQ mfs.7) = ol 7) + 4() | Flan(ls) s+ foaoPls)(1 = mo |

sESz 1

X (AZ — 7T)1{SZ‘ = S} + — \/— Zfz Llﬁml(Sfm T) + LO(l - 7T>m0(sz7 T))

hg)fe W(T) = h?,l(T) + h?,o(T) + hqéu,l(T) + hqéu,o(T)a

and

sup |Rsfe n(u77—>| = Op(l)'
TEY

In addition, by Lemma 1.11.4, sup, ¢y [W, ,.(7)| = O,(1). Then, by Kato (2009, Theorem

2), we have

VI(B(7) = B(T)) = [Quse ()] Wihen(T) + Rie (),

where

sup || R, (7)|| = 0p(1).

T€Y

This concludes Step 1.
Step 2. We now focus on the second element of @8“}6(7') From Step 1, we know that

\/E(A:}e,l(T)_q (1) \/—ZZ§zs7z 5T +Rsfen1( 7),

seS =1
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where

(o ) = Azl{SZ = 8}77@1(8,7’) . (]_ — Al)]_{Sz = S}Th‘)o(S,T)
S ) [ mfi(q (7)) (1 =) folgo(7)) ]

i { (Wfi(;lz;)) (1—m) }T() 0(7) ) (ma(s,7) = mo(s, 7))

()| LS - B L 4, w145 =)

my(s,T) B mo(s, T)
* <f1(q1(7)) Folaolr >>) HSi =5

and
Sup [R2 ()] = 04(1).

By (1.11.14), we have
\/E(Bsfe,l(T) q T \/—ZZZ S, T +Rsfen1( )
seS i=1

where

sup |R5f6,n,1(7_)| = Op(l)'
7Y

Taking the difference of the above two equations, we have
V(B (T) = Bagea (T IZZ 1)Ji(s,7) + R*(7),
seS i=1

where

sup |[R*(7)[ = op(1).

TeYT

Lemma 1.11.5 shows that, conditionally on data,

\/_ZZ D) Ji(s,7) ~ Bige(T),

seS i=1

where B,f.(7) is a Gaussian process with covariance kernel
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i]sfe(Tl; 7-2)

~ min(7y, ) — 7o — Emy (S, 7)ma (S, 72) | min(71, 72) — 117 — Emg(S, 71)mo (S, 72)

Tfi(q(m)) fi(qi(72)) (1 =) folqo(m1)) folqo(2))
1—m ™
- r(t =) (m5:) =570 (s~ )

filg(m)|S) — folg(m)]S)
+aln) ( Aam)  folam) )}

x [<m1(5, 73) — mo(S, 72)) (

1—m

filg(m2)|S)  fola(m2)]5)

B [ml(S, n) mo(S, m] [ml(s, ) mo(S, 72)] (111.20)

Ala(m)  folao@) ] [Ala(m)  fola(m)]

This concludes the proof for the SFE estimator.

1.11.4 Proof of Theorem 1.11.3

Recall the definition of 5(7) = (Bo(7), f1(7)) in the proof of Theorem 1.11.1. Let uy =
\/ﬁ(bo — 50<T>>, Uy = \/ﬁ(bl — Bl(’f)) and u = (UO, U1>, S §R2. Then,

Vi(Bige(r) = () = argmin Ly, (u, 7).

where
Lijen(um) =3 {pf = BB + 2 = ool = A7A)

and }i;“ = (1, A — ). Following the proof of Theorem 1.11.1, we divide the current proof

into two steps. In the first step, we show that there exist

. . 1
gsfe,n(u7 T) —u ste n( ) + §ulQ5f€<T)u

and h};, ,(7) independent of u such that for each u

Sup ‘Lsfe n( ) - g:fe,n(u77—) h‘:fe n( )l i) 0.
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In addition, we show that sup,cy [|[W}, ,(7)[| = Op(1). Then, by Kato (2009, Theorem 2),

we have

~

V(B (r) = B(T)) = [Qsse(T)] T W (1) + Rige n(7),
where
SU [ B jen(T)I] = 0p(1)-
In the second step, we show that, conditionally on data,
V(B (1) = Q(7)) ~ Bage(7).
Step 1. Following Step 1 in the proof of Theorem 1.11.1, we have

L:fe,n(u’T) = _L* (U’ T) + L2n(u 7—)

where
Ly, (u,7)
DR IEEE (Lo 4= 76T+ (= al)) (7 = 1Y < )
DOIERICER (L= 7@+ = ea)) (7~ 1077 < ()}
=L7 1, (u,7)+ Lo, (u,7),
L;n(u T)
'y E*E:) (r)+-L
—ZZA*l{S* _ s}/f o) (1Y < qu(7) + v} = 1{Y; < qu(7)}) do
seS i=1
wig E*S) Q(T +-=L
+ ZZ 1—AN{S; = S}/f f> (L{Y;" < qo(r) +v} — LY < qo(7)}) dv
seS =1

EL;,l,n<u7 T) + L;,O,n(ua 7—)7

and E*(s) = /n(7*(s) — 7).
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Step 1.1. Recall that ¢; = (1,1 — 7)" and ¢ = (1, —7)’. In addition, 7*(s) — 7 = Das).
Then,

LT 1 n(u 7-)

Z (T Z [A71{S; = stnii(s,7) + (A7 — m)I{S] = s}ma(s,7) + 71{S] = stma(s, )]

seS

ulD;; s)ymmq (s, T
-y (s)mma(s, 7)

NG + (7)) + Ripeqq(u, 1), (1.11.21)

SES

where 7 (s, 7) = (1 — H{Y;*(1) < qu(7)}) — ma(s, 1),

hia(7) =) (r —#*(s))a(r) (Z ATHS] = sh(r = {Y]" < Q1<T)})> :

seS =1
and

Bijesalur) = = 3 0ns) {Z AUS! = shufa(s,7) + (A7 = m)1LS] = s}m1<s,r>} .

sES

(1.11.22)

Note that

sup | > (A7 = m)L{S] = shmu(s,m)[ = sup_|Dy(s)mi(s,7)| = Op(Vn).

seS,TeY i—1 seS,TeY

In addition, Lemma 1.10.5 shows

sup \ZA*l{S*—S}ml(S 7)| = Op(v/1(s)).

seS,TeY i—1
Therefore, we have
Slelp ’Rsfe 1 1(“ 7—)‘
<3 sup | Dals) [ sup |ZA*1{S* — sy (s, )|+ sup |§n:(m—7r)1{s*=s}ml(s )
s €S Vnn(s)| |sesrer P ol sESTET T ‘ ‘ ’

~0,(1/v/n).
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Similarly, we have
LT ,0 n(u T)

Z 'L Z [(1—AHL{S; = sinii(s,7) — (A7 — m)I{S] = s}pmo(s, 7) + (1 —m)1{S] = stmo(s, 7)]

ulD 1—7Tm037'
-y ) (s, 7)

+ 13 o(T) + Rire 1 o(u, 7), (1.11.23)
where
io(r) =) (m —7(s))q(7) (Z(l = ADUST = sHr = Y] < QO(T)})> 7
seS i=1
and

Rijunolir) =~ 3 02t {Zu — ADUS; = shnio(s.7) — (A7 — LS} = s}mo<s,r>}
(1.11.24)

such that

sup |Rsf310(u )| = p(l/\/ﬁ)'

TeT

Therefore,

Ly, (u,7) -7 ZZ W ATH{SE = sinfy(s,7) + (1 — AD)L{S] = shuo(s, 7)]

seS i=1

+) 'ty ml(s,f) — my(s, 7))

seES

Zuqﬂml i T +UL0(1—7T)m0(S;>T))

+ Rsfe,1,1<u7 T) + Rsfe,l,()(uﬂ T) + hl,l(T) + h’LO(T)'
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Furthermore, by Lemma 1.11.6, we have

!/

T wD*(s)u't
L§,1,n(U77) fl(+ ULl Zfl (T L(1(7') +h§,1(7') +R:fe,2,1(u77—)

sES \/ﬁ
(1.11.25)
and
Lon(u,r) = SO i = 5 fotantrl) S22 ) ) 4 i)
seS
(1.11.26)
where
() = 3 OB )2 o),
sES
palr) = 30 I, 0 s )2,
seS
Sup | R o (u, )| = 0p(1),
and
Sup | R feno(u, )] = op(1).
Therefore,
L (1.7) =20/ Qu()u - S ) U mes + a0~ D@?

+ R:fe,Z,l(uv T) + R:fe,2,0<u7 )+ h;,l(T) + hz,o(T)-

Combining (1.11.21), (1.11.23), (1.11.25), and (1.11.26), we have

* * 1 % *
Lsfe,n(u’ T) = —'LL/ sfe,n(T) + éuleer + Rsfe,n(“? 7_) + hsfe,n(T)7
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where

Ws*fen( )
= S0 [T = 7)1 ADLST = (o)

D:(s)
+ ta(my(s,7) —mo(s, 7)) + q(7) | fr(qi(7)]s)mer + folgo(T)]s)(1 — 7)eo n
Z{ (5:7) = mols,7) + () | Ao (Pl s+ foan(ls)(1 = w250

Z (Lammy (S, 7) + to(1 — m)mo(S;, 7)),
h:fe W(T) = hil(T) + hi,o(ﬂ + h;,1(7'> + h;,o(T)a
and

sup |Rsfe n(u T>| = Op(l)'
TEY

By Lemma 1.11.7, sup, oy W}, ,.(7)| = Op(1). Then, by Kato (2009, Theorem 2), we have

Vi(Blge(r) = B(m) = [Quse (M) Wi (1) + Rigen(7),

where

sup RS e n (T = 0p(1).

This concludes Step 1.
Step 2. We now focus on the second element of B;fe(T). From Step 1, we know that

VI (Bipea(r) = a(r))
ATI{S) = shnia(s,7) (1= AP)I{S] = s)1i(s, 7)
R 5]

e mfi(q: (7)) - (1 =) folgo(7))
l—m T (s T - filqi(7)]s) _ folgo(7)][s)
+;{(m )~ T ) (o)~ ol ot TS - R L

1~ (S 7)) mo(S)T) “
- \/ﬁ Z (fl(Q1( ) fo(QO(T))) e 7)

EWs*fe n, 1( ) + Ws*fe n, 2(T) + Ws*fe,n,?)(T) + R:fe,n,l(T)v
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where

Sulesfenl( )‘ = Op(l)'
TeY

By (1.10.8), we have

\/_(Ci() q(7))
A LS, = stmia(s, T 1 —A)1{S; = s}nio(s, T
Z { { nia(s,7) )1 Ii0(s, 7)

7 fila(T)) (1 =) folgo(7))

( 1 SuT _ (Si7T)
fila( Jo(qo(T))

)+ Waa(r )+Rzpwn( ),

IIMS =

T ) + Ripun(T)
1 (T

where

sup |Ripw,n<7')| = Op(l)‘
€Y

Taking the difference of the above two equations, we have

V(Blper () = 4(T) = (Witepua (1) = Wt (7)) + W na(7) + (Wipe s (T) = Waa(7)) + R (7),
(1.11.27)

where

sup [R*(7)| = 0p(1).

T€Y

Lemma 1.11.7 shows that, conditionally on data,

(Wesena (1) = Wi (1)), Wepeno(T)s (Wsen3(T) = Waa(7)) ~> (Bi(7), Ba(7), Bs(7)),

where (By(7),B2(7),B3(7)) are three independent Gaussian processes and Z?Zl B;(7) 2
Bsfe(T). This concludes the proof.
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1.11.5 Technical Lemmas

Lemma 1.11.1. Let Wyge, j(7), 7 = 1,2,3 be defined as in (1.11.14). If Assumptions in
Theorem 1.11.1 hold, then uniformly over T € Y,

(ste,n,l (7_)7 ste,n,Q (7'), ste,n,S(T)) e (Bsfe,l (7)7 Bsfe,Z(T)7 Bsfe,3(7-))7

where (Bsfe1(T), Bsfe2(T), Bsges(T)) are three independent two-dimensional Gaussian process
with covariance kernels Xgfe1(T1,72), Lspea(T1,T2), and Xgge3(T1,T2), respectively. The ex-

pressions for the three kernels are derived in the proof below.

Proof. The proofs of weak convergence and the independence among (Bgfe1(7), Bsfe2(T), Bsfe3(T))
are similar to that in Lemma 1.10.2, and thus, are omitted. In the following, we focus on
deriving the covariance kernels.

First, similar to the argument in the proof of Lemma 1.10.2,

N(s)+n(s) 1

Wesena(T) L, Z Z %ﬁi,l(sa T) + 1o Z Z %fh‘,o(& ).

S€ES i=N(s)+1 SES i=N(s)+n1(s)+1

Therefore,

Y1 (71, 72) =n[min(r, 1) — 172 — Emy (S, 71)ma (S, 72)]e1t)

+ (1 = m)[min(7y, 72) — 7172 — Emg (S, 71)mo (S, 72)] oty

For Wifen2(T), we have

S 7) <E(S) alima(S.71) = oS, 7)) + ) (s mIS) s + folan(rIS)1 = o )|
¢ ratma(5,72) = ma(5,7)) + ) (e ()70 + ulan(r)I )1 - m)}l.
Next, we have
Y3(11, 72) = E(eimmy (S, 71) + to(1 — 7)mo (S, 71)) (eamma (S, 72) + (1 — 7)mo(S, 72))'.

In addition,

-7
(

s 1 1
(Qsre(T)] 7! = (f @) T R@E T @) ) .

fila(m))  folao(7)) (1—m)fo(qo(T)) + mf1(q1(7))
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Therefore,

(1, 72)
1 ) ™ 7
:{ﬂ'fl(Q1(7'1>)f1(QI(T2)) [mm(ﬁ’ 72) IR ]Eml(S, Tl)ml(s’ TQ)] (7? 1>
1 : 1-m)? 7—1
AR folan(my) ) T T Bl ol ) ( 11 ) j

+{Eﬂ5)kmﬂ57ﬁ mdSrﬁ)< f@§m>+ﬁé§b> )_%ﬂﬁyﬂ@dﬁNS)<w>
)

mfila(m))  (—7)folgo(m1 Jilqi(m)) 1
S ]_ s + 1—7
+a(n) fO i | ( ) (m1(S,m2) —mo(S, 1)) ( folgo(72)) fl(q17(:2)) >

fo qo(11)) L—m

7fi(qi(m2))  (1—n)fo(qo(m2))
f1Q1T2‘S n fOQOTﬂS l—m ]}
T ar) fi(q1(2)) <1> Tl fo qo(T2)) ( >
+{ m1 S7'1 ™ mQST1 1—m :||:m1(s ) +m0(5,7'2) 1—m :|/}
f1 a(m)) \1 fo q0(71)) J1(qi(72)) folgo(m2)) \ —1 '

[]

Lemma 1.11.2. Recall the definition of Ry, ,(u,7) in (1.11.16). If Assumptions 1 and 2
hold, then

SUP [ R, (u: 7)| = 0p(1).

TeY

Proof. We divide the proof into two steps. In the first step, we show that sup,.s |Dy(s)| =
O,(y/n). In the second step, we show that

sup |Z§ZA S, = s}nia(s,7)| = 0,(v/n). (1.11.28)

TEY,s€S =1

Then,

Sup ‘Rsfe 1 l(u T>|

<3 iy | 22 LSELSZ@A 148 = sha(s,7)| + sup DG |
:Op(l/\/ﬁ>7
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as n"(s)/n - p(s) > 0.
Step 1. Because

sup | Dy (s)| = Op(v/n),

seS

we only need to bound the difference D¥(s) — D,(s). Note that
n(s)" DY (s) = n(s)"/*Dy(s) = n~ 2y (& — 1)(A; — m)1{S; = s}. (1.11.29)
i=1

We aim to prove that, if n(s) — oo and D,(s)/n(s) = 0,(1), then conditionally on data,
for s € S,

n(s)V2 Y (& = 1)(Ai = m)1{S; = s} ~ N(0,7(1 — 7)) (1.11.30)

i=1
and they are independent across s € S. The independence is straightforward because

n

1
n(s) Z(fx —1)*(A; —71)*1{S; =s}1{S; =5} =0 for s#5.
n(s
i=1
For the limiting distribution, let D, = {Y;, A;, S;}!~, denote data. According to the
Lindeberg-Feller central limit theorem, (1.11.30) holds because (1)

n

n(s)™t Z]E[(fi — 1A, — m)21{S; = s}|D,] =n(s)™ Z(AZ- — 24,7 + ) 1{S; = s}

=n(s)* 2:(14Z — 7 —2(4; — )7+ 71— 7)1S; = s}
1-—27
:—n(s) D,(s)+7(1—m)

i>7T(1 —7),

and (2) for every € > 0,

n

n(s) " D (Ai = mPLLS = SYE (& = DPL{IG — 1/(A; — 7)1{S; = s} > ev/n(5) D

=1

<AE(& — 1D)*1{2[& — 1] > ev/n(s)} = 0,
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where we use the fact that |A; — 7|1{S; = s} < 2 and n(s) — oco. This concludes the proof

of Step 1.
Step 2. By the same rearrangement argument and the fact that {&;}, L D,,, we have

s)+ni(s
d 1Y
sup Z@A 1{S; = s}nii(s,7)| = sup |— Z fmu S,T)
TEY,s€S| M TET,seS| M i=N(s)+1

Let I')y 1 (s, t,7) = ZZWIJ gm’% and F = {{mi1(s,7): 7 € T, s € S} with envelope F; = C¢;
and ||F;||p2 < oo. By Lemma 1.10.1 and van der Vaart and Wellner (1996, Theorem 2.14.1),

for any € > 0, we can choose M sufficiently large such that

27T0E sup, ey 45 |Tni(s,1,7)|

IP)( sup |Fn,1(3at77—)| Z M) S

0<t<1,7€Y,s€S M
:270E\/ﬁ]|ﬂ”n - Pl < J(1, F)||Fi||p2 o
M ~ M
Therefore,
sup ITha(s,t,7)] = 0,(1)
0<t<1,7€Y,s€S
and
1 N(s)+ni(s) ) ( N(s) >
su A S = stnia(s, T L su — I, (s,—,r —TI'u1 s, T

TEY, EES Zf { }77 1( ) TEY, LPGS n ! n ! n

=0,(1/y/n). (1.11.31)
This concludes the proof of Step 2. n

Lemma 1.11.3. If Assumptions 1 and 2 hold, then 1.11.18 and 1.11.19 hold.

Proof. We focus on (1.11.18). Note that

L12Ul n(u T)
u'ig E“’(s q7+u—11
—ZZ@A 1{S; = s}/f 5 ) (H{Y;(1) < qi(7) + 0} — 1{Y;(1) < qu(7)}) do
s€S i=1
=y Z&-Ail{si = s}oi(u, 7,5, EX(s)) — Edi(u, 7,5, EX(5)]S; = 5)]
s€S 1=1
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+ Z Z&Ail{Si = s}Eo¢;(u, 1,5, EX(s)]S; = s),

ses$ i=1

(1.11.32)

where by Lemma 1.11.2, E¥(s) = /n(7®(s) — ) = —2=226) — 0 (1),

(u, 7,5, ¢ /”” Hum><q1<r>+v}—1{n<1>Sqlm})dv,

and E¢;(u, 7, s, EP(s)|S; = s) is interpreted as E(¢;(u, T, s, e)|S; = s) with e being evaluated
at £V (s).

For the first term on the RHS of (1.11.32), by the rearrangement argument in Lemma
1.10.2, we have

> Z&Ail{si — s} ou(u, 7,5, B2 () — Bei(u, 5, B2 (5)[Si = 5]
seS i=1
N(s)+ni(s

—Z Z éz u T8, E ( )) —Eéﬁf(UaTaS?EZH(S))]a

s€S i=N(s)+1

where

Ja (a+ %)

&3 (u, 7, 8, €) /\F (H{YF(1) < qu(7) + v} — H{YF(1) < qu(7)}) dv.

Similar to (1.11.9), we can show that, as n — oo,

N(s)+ni(s)
sup | Y &[5 (u, 7,5, BY(s) — Bl (u, 7,5, BY(s))]| = 0p(1). (1.11.33)
T€Y,s€S i=N(s)+1

For the second term in (1.11.32), we have

Z Z@Ail{si = s}Eop;(u, 1,5, EY(s)|S; = s)

seS i=1
:Z 2ic1 &Wi{si = s} nEo; (u, 7,s, B (s —1—2 Dr(s )nE(bs(u 7,8, EY(s))
sES SES

SES seS
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7rf1(2 (u'11)? ;fl (T %\/j_?blq(ﬂ%—h%(ﬂ%—op(l), (1.11.34)

where the 0,(1) term holds uniformly over (7,s) € T x &. The second equality holds by
the same calculation in (1 11.10) and the fact that 7 &1{S; = s}/n > p(s). The last

inequality holds because 2 (8) =0p(1), E}(s) = g Df%s) = 0,(1)

25 1/p(s), and

Y nw(s)

() = 3 PO ) )2,

sES

Combining (1.11.32)—(1.11.34), we have

!/

Lo, () — wf1(2 (/1) Z; Ala(r %\/L?LHQ(T)—I—@}J(T)+R7;”fe,271(u,7),
where
() = 3 O )22
and

sup ’RsfeQ 1(U 7—)‘ = Op(l)'

TeY

This concludes the proof.

[

Lemma 1.11.4. If Assumptions 1 and 2 hold, then sup,cx [|[Wi. . (7)|| = Op(1).

Proof. 1t suffices to show that
1 n
su — 1A11 Si:S i1\ S, T =0,(1 1.11.35
S \/ﬁ;é“ { tia(s, 7)| = Op(1) ( )
LS (1 AL, = sho(s.)| = 0,(1) (1.11.36)
su —— i — A i — SyNiolS, T)| = s P I %
TeT,sPes vn p 10 P
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= 0,(1), (1.11.37)

and

sup
TeY

1 n
7 > &(mma(Si, ) + to(1 — m)mo(S;, 7)) ‘ =0,(1). (1.11.38)

i=1
Note that (1.11.35) holds by the argument in step 2 in the proof of Lemma 1.11.2, (1.11.36)
holds similarly, (1.11.37) holds by (1.11.29) and (1.11.30), and (1.11.38) holds by the usual

maximal inequality, e.g., van der Vaart and Wellner (1996, Theorem 2.14.1). This concludes
the proof. n

Lemma 1.11.5. If Assumptions 1 and 2 hold, then conditionally on data,

% Z Z(& — 1) Ji(5,7) ~ Byse(T),

seS i=1
where Bye(T) is a Gaussian process with covariance kernel Yz (-, ) defined in (1.11.20).

Proof. In order to show the weak convergence, we only need to show (1) conditional stochastic
equicontinuity and (2) conditional convergence in finite dimension. We divide the proof into
two steps accordingly.

Step 1. In order to show the conditional stochastic equicontinuity, it suffices to show

that, for any € > 0, as n — oo followed by 0 — 0,

% Z(& = D(Jils, m2) = Ji(s,m))| = 6) 0,

Pe sup
71,72E€Y, 11 <T2<T1+0,5€S

where P¢(-) means that the probability operator is with respect to &, -+ , &, and conditional

% Z(& —1)(Ji(s, 1) — Fi(s,m))| = e)

> 6)
> 6/3)

on data. Note

EP, ( sup

71,72€Y, 71 <12 <T1+9,5€S

s %Z@ (i, 7) — i)

=P
71,72€Y, 71 <T9<T1+0,5€S

71,72€Y, 71 <12 <T1+9,8€S

<P ( sup % Z(& — )(Jia(s, 72) — Jia(s, 1))
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+P ( sup % Z(fi — )(Jia(s,72) — Tin(s,71))| > 5/3>

71,72€Y, 71 <12 <T1+4,5€S

+P ( sup % Z(& —1)(Ji3(s,72) — Jis(s,711))| = 5/3> ;

71,72 €Y, 11 <T2<T1+4,5ES

where

Toa(s,7) = AL{S = stnia(s,7) (1= A)U{S; = stmio(s, 7)
o [l (7)) (1 =) folgo(7))

Jio(s,7) = Fi(s,7)(A; — m)1{S; = s},

(d-m = e TR fla))
)= (it ~ a7l )| FEER-SEE)

) = mi(s,T) B mo(s,T) .
Tterr) = (Gt ~ Fwy) 15 =

Further note that

n N(s)+n1(s) - N(s)+n(s) N
1T d (& — Dijia(s, 1) (& — Dijio(s, 7)
;(5 )i (s, 7) i:]%ﬂ 7 f1(qi (7)) i:N(SHZm(S)H (1 =) folqo(T))

By the same argument in Claim (1) in the proof of Lemma 1.10.2, we have

> 5/3)

x/Lﬁ Yo (& = 1)(Tin(s, 1) — Tia(s, 7'1))‘

€

% Z(fi — 1)(Jia(s,72) — Ji(s,71))

P sup
71,72€Y, 11 <T2<T140,8€S

3E Sup;, €Y, 71 <T2<T1+0,5€S

<
3C log(-&
34 /czélog(c%) + %
<
€

where C, ¢; < ¢y are some positive constants that are independent of (n,e,d). By letting
n — oo followed by § — 0, the RHS vanishes.

Y
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For J; 2, we note that Fi(s,7) is Lipschitz in 7. Therefore,

> 5/3)

\/_Z (s,72) — Ji2(s,11))

26/3) —0

as n — oo followed by § — 0, in which we use the fact that, by (1.11.30),

P sup
71,72€Y, 11 <12 <T1+4,5€S

<SP <05 % g(@ S (A — WS = )

seS

sup
seS

Op(1).

2= D6 = V(= S, = 5} -

Last, by the standard maximal inequality (e.g., van der Vaart and Wellner (1996, Theorem
2.14.1)) and the fact that

(Gt~ rat)

is Lipschitz in 7, we have, as n — oo followed by § — 0,

Zs/S) —0

Step 2. We focus on the one-dimension case and aim to show that, conditionally on data,
for fixed 7 € T,

\/_Z (s,72) — Jis(s,11))

P sup
71,2 €Y, 11 <12 <T1+6,5€S

This concludes the proof of the conditional stochastic equicontinuity.

ZZ 1)Ji(5,7) ~> N (0, £ype(7,7))-

SESZ 1

The finite-dimensional convergence can be established similarly by the Cramér-Wold device.

In view of Lindeberg-Feller central limit theorem, we only need to show that (1)

LS IS 6, 25 i) + €3 7) + €377

i=1 seS

107



and (2)

—ZZJSTQEE — DD (& - 1)Ti(s,7)| = ev/n} = 0.

i=1 seS seS

(2) is obvious as |J;(s,7)| is bounded and max; [§; — 1| < log(n) as & is sub-exponential.

Next, we focus on (1). We have

LSS Fis P

1=1 seS§
1 Ai{S; = stmia(s,7) (L= A)U{S; = s}nio(s,7)
- 226;{{ Tfi(a (7)) (1 =) foqo(7)) }

R s+ (i)Y ]}

=07 + 05 + 03 + 2012 + 2013 + 2093,

where

1 A 1{S; = 8}77 a(s,7) (1= AYLLS; = shmio(s,7)]°
= ZZ{ Tl (7)) (1 =) folgo(T)) ] ’

seS i=1

:_ZF2ST Z —7T)21{Si28},

B l A L{S; = s}nia(s,7) B (1 —A)1{S; = s}tnio(s,7) o VA .
= ;ZJ (@ () S A - mis =)

nA— = 7 f1(q(7)) (1 =) folqo(7))

o EZZ{A A8 = shmia(s, ) (1— A)I{S; = s}m,o(s,ﬂ} K;ﬁ(l(s( T))) ;@g(s(,f))))}’
(7 0{qo(T
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and

o33 = 01z = —ZZF 57 (A = m S = }K;ffq(f ,3) B ;Zféjig)))}'

For 0%, we have

A (S = sin? (s, 1) (1= A)1{S; = s}nio(s,7)
ZZ{ n n }

ses im1 ”2f2 (¢:(7)) (1 - 7T)Qfo2(qO(T))
N(s)+ni(s 9
al i, 21(s,7) Mi0(5,7)
- SEZS = NZ QfQ(Ch 86231 N 5)+an(5 +1 ( - 7T>2fg(QO(T))
» T(1—=7)—=Em§(S,71) (1—7) —Em§(S,7) o
T A @) TS Y PNes) B A

where the second equality holds due to the rearrangement argument in Lemma 1.10.2 and

the convergence in probability holds due to uniform convergence of the partial sum process.
For o2, by Assumption 1,

73 = = 3 F2(5,m)(Dals) — 2mD(5) + w(1 — m)1{S: = 5}) 2 m(1 ~ MEFL(S;, 7) = &, 7).

seS

For o2, by the law of large number,

i (Fi5 )] e

For 015, we have

n

_1 e s T — Ail{S; = s}mia(s, 7) 1 P (s (1 — A){S; = s}nio(s, )
012 —n Z(l )Fl( ) )Z Z Fl( , )Z (

seS i=1 mfi(ai(7)) s i1 1 — ) folgqo(7))
al (1 —7m)Fi(s,7) N(SHZM(S)M _ lzﬂ,p (s,7) N(S)iL(S) ﬁi,O(S,T) 2.0
= Y mhlam) e A O nflem)

where the last convergence holds because by Lemma 1.10.2,

1 N(s)+ni(s) 1 N(s)+n(s)
~ p ~ p
" Z Mia(s,7) — 0 and - Z Nio(s,7) — 0.
i=N(s)+1 i=N(s)+n1(s)+1

109



By the same argument, we can show that
013 i) 0.

Last, for 093, by Assumption 1,

7= 2 Sl [(qu(fgf))) e ’:>)>) ] S

Therefore, we have

%Z[Z Ji(s, 7P = G, 7) + €3 (m, 7) + &5 (m, 7).

=1 seS

]

Lemma 1.11.6. Recall R} o (u,7) and R 50(u,7) defined in (1.11.25) and (1.11.26),
respectively. If Assumptions in Theorem 1.5.1 hold, then (1.11.25) and (1.11.26) hold and

SUP e (4, 7) = 0p(1) and sUp | Bje00(u, 7)] = 0p(1).

Proof. We focus on (1.11.25). Following the definition of M,,; in the proof of Lemma 1.10.5
and the argument in the Step 1.2 of the proof of Theorem 1.11.1, we have

L; 1 n(u T)
N(s)+ni(s) s) E;; q(T )

DI A (A{V2(1) < () + 0} — VP < ()} do

s€S i=N(s)+1

i

N(s)+ni(s) s)+ni(s
—Z Z M, [¢i(u, 7,8, E%(s)) — Egi(u, 7, EX(s))] + Z Z MmEgﬁz u, 7,8, E£%(s)),
S€S i=N(s)+1 s€S i=N(s

(1.11.39)

3
=
B

= (a2
Gi(u, 7, 5,€) = / A ) ({Y2(1) < () + v} — V(1) < @u(1)}) dv,

and E¢;(u, 1, s, EX(s)) is interpreted as E¢;(u, 7, s,e) with e being evaluated at E(s).
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For the first term on the RHS of (1.11.39), similar to (1.10.22), we have

s)+ni(s

Z Z My [9i(u, 7, 5, E,(s)) = Bi(u, 7, 5, By ()]

sES i= N(s )+1

s)+ni(s)
_Z Z & bi(u, 7,8, E,(s) — Ey(u, 7, 8, (s +Zrn (u, 7,8, E(s)), (1.11.40)
s€S i=N(s)+1 SES

where {£}7, is a sequence of ii.d. Poisson(l) random variables and is independent of

everything else, and

ro(u, 7,8, €) = sign(N(ni(s)) — ni(s Z #\/_ #]J Z Vn[oi(u, 7, s,e) — Egi(u,7,5,¢)].

Zeﬂ( )

We aim to show

sup |1 (u, 7,5, €)] = 0p(1), (1.11.41)
le|<M,7€Y,s€S

Recall that the proof of Lemma 1.10.5 relies on (1.10.21) and the fact that

E sup sup
n>k>ng T€Y,s€S

k

1 _

EZTbl(S )| =0
j=1

Using the same argument and replacing 7;1(s, 7) by /n [¢i(u, 7, s, ) — E¢;(u, 7, s, €)], in order
to show (1.11.41), we only need to verify that, as n — oo followed by ny — o0,

E sup sup —0

n>k>ng |e|<M,7€Y,s€S

k
% Z \/ﬁ [¢Z(u, T,S, 6) - E¢z(u7 T, S, 6)]
j=1

Because Sup|.j<asrer ses ’% Zle Vnloi(u, 7, s,e) — Eg;(u, 7,s,€)]| is bounded as shown be-

low, it suffices to show that, for any € > 0, as n — oo followed by ny — oo,

k

Z n(pi(u,7,s,e) —Ep;(u,1,s,e)]

P ( sup sup

n>k>ng le|<M,7€Y,s€S

> 5> —0.  (1.11.42)

Define the class of functions F,, as
={Vn|pi(u,7,s,¢) —Ep;(u,7,s,¢e)] : l[e] < M, 7 €Y, s €S}

111



Then, F, is nested by a VC-class with fixed VC-index. In addition, for fixed u, F, has a

bounded (and independent of n) envelope function
= o/ul 31 (maxlo(r)| + ).

Last, define Z; = {2/,2! +1,--- ,2*1 — 1}, Then,

k

Z n[oi(u, 7, s,e) —Ep;(u,1,s,¢€)]

)

:
Z nlgi(u,1,s,e) —Ep;(u,7,s,e)]

Pl sup sup
n>k>ng |e|<M,7€Y,s€S
1

[logy(n) ] +1
< P
< Z <Sup sup k’

I={log, (n0)] kel le|<M,7eY,s€S

[logy(n)+1
< P < sup sup

k
Z n(oi(u, 7, s,e) —Epi(u, T,s,e)]

(]

> 6)
> 521>
I={log,(n0)] k<2l+1 |e|<M,7€Y,s€S
[logy(n)]+1 2+l

< > 9P sup | Vnlgi(u, s €) —Egi(u, 7, s, €)]| > 2'/30

le|<M,7eY,seS

1=log;(n0)] J=1

log2(m)]+1 270 SUDP|e|<M,r€T,s€8 ‘Z2l+1 Vnlgi(u, 7, s,e) — Ed;(u, 77376)]‘
<
- g2!

1=[logz(no)]

[logy (n)]+1

Ch

= Z £21/2

1=|logz(no)]

201 S0,

==V

where the first inequality holds by the union bound, the second inequality holds because on
T;, 271 > k > 2!, the third inequality follows the same argument in the proof of Theorem
1.3.1, the fourth inequality is due to the Markov inequality, the fifth inequality follows the
standard maximal inequality such as van der Vaart and Wellner (1996, Theorem 2.14.1) and
the constant C; is independent of (I,&,n), and the last inequality holds by letting n — oc.
Because ¢ is arbitrary, we have established (1.11.42), and thus, (1.11.41), which further implies
that

sup |rn(u, 7,8, Ey(s))| = 0p(1>7
T7€Y,s€S
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For the leading term of (1.11.40), we have

N(s)+ni(s)

Z Z & ¢z u, 7,8 E*( )) _E¢i(ua7—’ 3>E;(3))]

s€S i=N(s)+1

= [T (N(s),7, Bj(s)) — T3 (N(s) + ma(s), 7, Ep(s)]

seS

where
u q—e(q(7)+%)
TR, i
r**(k, 1, e) ZES/ ({Y?(1) < qu(7) + v} = {YP(1) < qu(7)}) do

’U/L —e T uil
1—e(a(r)+ 24)

—kE/O TP < @) + o) — 1P < (7)) do

By the same argument in (1.11.8), we can show that

sup |Ffz*<k77—7 6)‘ - OP<1)7

0<t<1,7€Y |e|<M

where we need to use the fact that the Poisson(1) random variable has an exponential tail
and thus

E  sup & = O(log(n)).

i€{1, ,n},s€S

Therefore,
s)+ni(s
sup Z Z My [6i(u, 7, 5, EX(5)) — B¢y (u, 7, EX(5))]| = 0p(1). (1.11.43)

S€ES i=N(s)+1

For the second term on the RHS of (1.11.39), we have

N(s)+ni(s)
Z Z M,;E¢i(u,T,s,e€) :Zn{(s)Eqbi(u,T, s, €)
s€S i=N(s)+1 SES
_ Zﬂp >|‘9) IR Wy — eq(7))2 +0(1),  (1.11.44)
s€eS

where the o(1) term holds uniformly over (r,e) € T x [—M, M], the first equality holds
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because Zz N(J; ”il ) M, = ni(s) and the second equality holds by the same calculation in
(1.11.10) and the facts that n*(s)/n — p(s) and

nils) _ Dj(s) +mn(s)

L mp(s).

Combining (1.11.25), (1.11.39), (1.11.43), (1.11.44), and the facts that £ (s) = 2 2al2)

and 25 1/p(s), we have

ns)

Eiaalonr) = PG = 3 A TR 410 4 R 107
where
s =3 B )P0 )
and
SUD B 0,1 (1 T)| = 0p(1):
This concludes the proof. 0

Lemma 1.11.7. Recall the definition of S*feyml(T)—Wn,l(T), W*fe7n72(7'), W*fe,n73(7)—wn,2(T))

S S

n (1.11.27). If Assumptions in Theorem 1.5.1 hold, then conditionally on data,

(Wesena(T) = Waa(7), Wipe (), Wipe 3 (1) = Waa(7)) ~ (Bu(7), Ba(T), Bs(7)),

where (By(7), Ba2(T), Bs(T)) are three independent Gaussian processes with covariance kernels

min(7y, o) — 172 — Emy (S, 7)mq (S, 72)  min(m, 7o) — 1ime — Emo(S, 71)mo(S, 72)

T fi(qi(m)) fi(qi(72)) (1 =) fo(qo(71)) fo(qo(72)) ’

Yi(mi, ) =

22(7'177'2)
1—m s f1(q(11)]9) - Jolg(m)[S)

=2 (ma5.70) =m0 (s = =) 1 e~ )

l—m T . fi(q(72)]S) _ folg(72)[5)
Thi(a(r) (1 —W)fO(CJo(Tz))) +alm) ( filga(2))  folqo(T2)) )]

x {(ml(s, 73) — mo(S, 72)) <
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and

mq (S, 71) mo(S,Tl):||:m1(S,T2) mo (S, 72)

) =B )~ )] LAlam) ~ )

respectively.

Proof. Let A, = {(Af, S, A;,S;) :i=1,--- ,n}. Following the definition of M,; and argu-

77 [

ments in the proof of Lemma 1.10.5, we have

{ s*fe,n,l (T) - Wn,l(T)|An}

N(s)+n(s)

LY B SRrITA (%)— 2 <Mm‘”<<1—ﬁ§%(3(f?<2<f>>> ‘A"

| i=N(s)+1 1=N(s)+n1(s)+1

[N (s)+n1(s) N(s)+n(s)

e DR I g I Cukr R o 1 o ke N (S

An )
i=N(s)+1 mfila(7)) i=N(s)+n1(s)+1 (1 =) fo(go(7))

where sup ¢y |R1(7)| = 0,(1) and {£}7,, s € S are sequences of i.i.d. Poisson(1) random
variables that are independent of A,, and across s € S. In addition, by the same argument

in the proof of Lemma 1.10.2, we have

-N(s)+n1(s) N(s)+n(s)

L s _ ﬁi,l(SaT) . s _ ﬁi,0(877)
Dby B DG i o ey SlD DRC Rl ey ywEsy

SES | l:N(S)+1 Z:N(S)+TL1(S)+1
1 _Ln(F(s)irp(s))J ﬁ'l(s T) |_7Z(F(<9)2+p(s))j ﬁ-o(s T)
=27 (6 — 1) —Fr s - (& - D= + Ra(r)
s€S vn | i=[nF(s)]+1 7 f1(qi(7)) i= [n(F (o) rrp(s)) ] 1 (1 —7)fo(qo(7))

where sup, ¢y [Ra(7)| = 0,(1). Because both Wg,, , o(7) and W, 3(17) — Wy 2(7) are in the
o-field generated by A, we have

(Ws*fe,n,l(T) - Wn,1<7_)7 s*fe,n,Q(T)’ s*fe,n,S(T) - Wn,2 (T))
(W3 (1) + Ra(7) + Ralr), Wipe o (7). Wit s(7) = Waa (7).

In addition, note that {&}, and {7;1(s,7),7:.1(s, )}, are independent of A, therefore,
Wi(r) 1L (Ws*fmg(T), Ws*fevnvg(T) — Wh2(7)). Applying van der Vaart and Wellner (1996,
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Theorem 2.9.6) to each segment

[nE(s)] + 1, [n(F(s) +7p(s))| or [n(F(s) +7p(s)] +1,--- [n(F(s) + p(s))]

for s € S and noticing that {7;1(s,7)}, and {f;o(s,7)}7; are two i.i.d. sequences for

each s € 8, independent of each other, and independent across s, we have, conditionally on
{ﬁ’i,l(sa T): ﬁ’i,O(Sa T)}?:l? s € Sa

Wi (7) ~ Bu(7)

with the covariance kernel (1, 72).

For W, ,,2(7), we note that it depends on data only through {S;}7 ;. By Assumption 4,

sfenZ( )HS } WB2(7—)

with the covariance kernel (7, 7).
Last, for W, 5(7) — Wy(7), note that {S7} is sampled by the standard bootstrap
procedure. Therefore, directly applying van der Vaart and Wellner (1996, Theorem 3.6.2),

we have

mq S’MT) mO(Si;T)

s*fe,n,?)(T) — Waa(7) \/_Zg B |:f1 (q1(7)) folqo(7))

| + Rutr

where sup, .y |R3(7)| = 0,(1), {£/}~, is a sequence of i.i.d. Poisson(1) random variables that
is independent of data and {£}",, s € S. By van der Vaart and Wellner (1996, Theorem
3.6.2), conditionally on data {S;}7,,

mi SZ,T) mo(si,T) — -
fz D et~ el | = B0

where B;(7) has the covariance kernel ¥3(7, 73). Furthermore, By(7) and Bs(7) are indepen-
dent as y(7, 72) is not a function of {S;}? ;. This concludes the proof.
[l

116



1.11.6 Additional Simulation Results

1.11.7 DGPs

We consider the following four DGPs with parameters v = 4, ¢ = 2, and p which will be

specified later. DGPs 1 and 3 correspond to DGPs 1 and 2 in Section 1.6 in the main paper.

1.

Let Z be the standardized Beta(2, 2) distributed, S; = Zj:f{zi <gj}t,and (g1, ,04) =
(—0.25v/20,0,0.25v/20, 0.54/20). The outcome equation is

Y = Aip +vZi + ms,

where 1, = 0A;e;1 + (1 — A;)ei2 and (€;1,€;2) are jointly standard normal.

Let S be the same as in DGP1. The outcome equation is
Yi=Aip+vZiA; — (1 — Ai)(log(Z; + 3)1{Z; < 0.5}) + ;.

where 1; = 0A;g;1 + (1 — A;)ei2 and (;1,€;2) are jointly standard normal.

Let Z be uniformly distributed on [—2,2], S; = ijzl{Zi < g¢;}, and (g1, ,04) =

(—1,0,1,2). The outcome equation is
Yi=Aju+ Aimiq + (1 — Ai)myo + i,

A)eio, and (g;1,€;2) are mutually independent 7'(3)/3 distributed.

Let Z; be normally distributed with mean 0 and variance 4, S; = Z?Zl{Zi < g;},
(g1, ,94) = (2071(0.25),2071(0.5),2971(0.75), 00), and ®(-) is the standard normal

CDF. The outcome equation is
Yi=Au+ Aimiq + (1 — Ai)myo + i,
where m; o = —vZ2/4, m;1 = 7722 /4,
m =0o(1+0.5exp(—27/2))Aiein + (1 + 0.5exp(—27/2))(1 — Aj)ei,

and (g;1,¢;2) are jointly standard normal.

When 7 = %, for each DGP, we consider four randomization schemes:
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1. SRS: Treatment assignment is generated as in Example 1.

2. WEL Treatment assignment is generated as in Example 2 with ¢(z) = (1 — x)/2.
3. BCD: Treatment assignment is generated as in Example 3 with A = 0.75.

4. SBR: Treatment assignment is generated as in Example 4.

When 7 # 0.5, we focus on SRS and SBR. We conduct the simulations with sample sizes
n = 200 and 400. The numbers of simulation replications and bootstrap samples are 1000.
Under the null, 4 = 0 and the true parameters of interest are computed by simulations with
108 sample size and 10* replications. Under the alternative, we perturb the true values by
pw = 1and p = 0.75 for n = 200 and 400, respectively. We consider the following eight

t-statistics.

1. “s/naive”: the point estimator is computed by the simple QR and its standard error

Onaive 18 computed as

1 " 1 mq (S, 7) mo(S;, 7)
o )(wﬁ@m)+<1—7r>fo<cio<7>>>

1 (u(Sim)  1mo(Si,7) : 1.11.45
+"Z<f1(d1(7)) fo(ﬁo(T))>7 ( |

=1

where ¢;(7) is the 7-the empirical quantile of Y;|A; = j,

- i Al{Si = s - {Yi < a(1)})
miq(s, 1) = 1 (5) ,
Do (1= A)I{S; = s}(r — H{Yi < Go(7)})

n(s) —m(s)

Mmio(s,7) =

9

and for 7 =0, 1, f]() is computed by the kernel density estimation using the observations
Y; provided that A; = j, bandwidth h; = 1.066;n; "/

J
where &; is the standard deviation of the observations Y; provided that A; = j, and

n; = Z?:l{Al = ]}7 .7 = Oa 1.

, and the Gaussian kernel function,

2. “s/adj”: exactly the same as the “s/naive” method with one difference: replacing 7 (1 —

7T) n U?Laive by ’Y(SZ)
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3. “s/W”: the point estimator is computed by the simple QR and its standard error op
is computed by the weighted bootstrap procedure. The bootstrap weights {£;}I, are
generated from the standard exponential distribution. Denote {Bi‘jb}{le as the collection
of B estimates obtained by the simple QR applied to the samples generated by the
weighted bootstrap procedure. Then,

Q (0.1)

-1 -1(0.1)’

op =

(0.9~ @Q
iy

d (0:9)

where ®(-) is the standard normal CDF and Q(7) is the 7-th empirical quantile of
{Beutis

4. “sfe/W”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the QR with strata fixed effects.

5. “ipw/W?”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the inverse propensity score weighted QR.

6. “s/CA”: the point estimator is computed by the simple QR and its standard error oc 4
is computed by the covariate-adaptive bootstrap procedure. Denote {Bib}f:l as the
collection of B estimates obtained by the simple QR applied to the samples generated

by the covariate-adaptive bootstrap procedure. Then,

Q(0.9) — Q(0.1)
®-1(0.9) — ®-1(0.1)’

OcA =

where Q(7) is the 7-th empirical quantile of {Bib}f:l.

7. “sfe/CA”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the QR with strata fixed effects.

8. “ipw/CA”: the same as above with one difference: the estimation method for both the

original and bootstrap samples is the inverse propensity score weighted QR.
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1.11.8 QTE, Hy, 7 =0.5
Table IX. Hy, n = 200, 7 = 0.25
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.042 0.042 0.051 0.039 0.047 0.046 0.044 0.046
WEI | 0.011 0.038 0.018 0.043 0.046 0.037 0.047 0.047
BCD | 0.004 0.041 0.010 0.043 0.043 0.045 0.048 0.048
SBR | 0.003 0.047 0.003 0.047 0.054 0.049 0.046 0.046
2 | SRS 0.045 0.045 0.060 0.062 0.066 0.056  0.069 0.069
WEI | 0.023 0.037 0.049 0.056 0.066 0.068 0.064 0.068
BCD | 0.021  0.037 0.032 0.049 0.057 0.063 0.059 0.057
SBR | 0.025 0.042 0.037 0.050 0.054 0.057 0.054 0.053
3 | SRS 0.042 0.042 0.045 0.045 0.054 0.055 0.044 0.058
WEI | 0.042 0.043 0.037 0.044 0.045 0.045 0.043 0.045
BCD | 0.052 0.056 0.044 0.050 0.057 0.057 0.057 0.055
SBR | 0.046 0.053 0.041 0.043 0.048 0.052 0.048 0.047
4 | SRS 0.0564 0.054 0.048 0.046 0.049 0.046 0.043 0.048
WEI | 0.050 0.051 0.045 0.035 0.047 0.051 0.043 0.055
BCD | 0.056 0.059 0.040 0.030 0.049 0.047 0.044 0.048
SBR | 0.061 0.065 0.044 0.032 0.053 0.057 0.051 0.053
Table X. Hy, n =200, 7 = 0.5
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.045 0.045 0.047 0.043 0.044 0.044 0.039 0.039
WEI | 0.012 0.040 0.014 0.044 0.043 0.037 0.041 0.035
BCD | 0.002 0.057 0.003 0.040 0.041 0.044 0.039 0.039
SBR | 0.001 0.057 0.001 0.045 0.046 0.045 0.045 0.044
2 | SRS 0.045 0.045 0.057 0.066 0.061 0.048 0.064 0.066
WEI | 0.033 0.065 0.037 0.066 0.065 0.065 0.056 0.061
BCD | 0.022 0.062 0.027 0.048 0.056  0.057  0.057 0.054
SBR | 0.017 0.050 0.017 0.040 0.046 0.048 0.048 0.046
3 | SRS 0.004 0.004 0.047 0.045 0.052 0.052 0.047 0.053
WEI | 0.006 0.006 0.045 0.050 0.058 0.052 0.053 0.057
BCD | 0.010 0.010 0.045 0.050 0.051 0.050 0.050 0.053
SBR | 0.008 0.011 0.048 0.048 0.053 0.046 0.051 0.047
4 | SRS 0.013 0.013 0.050 0.036 0.051 0.055 0.035 0.043
WEI | 0.011 0.011 0.043 0.033 0.061 0.049 0.043 0.052
BCD | 0.013 0.013 0.049 0.041 0.053 0.055 0.047 0.052
SBR | 0.013 0.013 0.040 0.033 0.047 0.046 0.044 0.045
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Table XI. Hy, n =200, 7 = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.052 0.052 0.053 0.044 0.044 0.048 0.041 0.042
WEI | 0.012 0.042 0.014 0.043 0.046 0.037 0.039 0.045
BCD | 0.002 0.047 0.002 0.051 0.054 0.055 0.053 0.053
SBR | 0.001 0.026 0.003 0.030 0.035 0.030 0.033 0.035
2 | SRS 0.052 0.052 0.066 0.057 0.058 0.063 0.048 0.058
WEI | 0.021 0.045 0.027 0.047 0.052 0.057 0.051 0.054
BCD | 0.013 0.046 0.025 0.051 0.060 0.067 0.061 0.060
SBR | 0.008 0.036 0.012 0.037 0.046 0.046 0.046 0.050
3 [ SRS | 0.058 0.058 0.048 0.054 0.047 0.058 0.054 0.051
WEI | 0.053 0.055 0.041 0.044 0.047 0.047 0.048 0.046
BCD | 0.042 0.043 0.026 0.026 0.033 0.033 0.032 0.034
SBR | 0.048 0.052 0.040 0.036 0.046 0.051 0.043 0.048
4 | SRS 0.044 0.044 0.057 0.059 0.062 0.063 0.051 0.065
WEI | 0.034 0.034 0.044 0.029 0.063 0.048 0.044 0.054
BCD | 0.029 0.032 0.040 0.019 0.045 0.047 0.043 0.047
SBR | 0.034 0.037 0.042 0.025 0.051 0.055 0.049 0.051
Table XII. Hy, n =400, 7 = 0.25
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.047 0.047 0.053 0.041  0.039 0.049 0.040 0.040
WEI | 0.009 0.043 0.017 0.041 0.042 0.045 0.044 0.043
BCD | 0.002 0.042 0.003 0.037 0.040 0.035 0.036 0.037
SBR | 0.002 0.043 0.004 0.034 0.034 0.036 0.032 0.030
2 | SRS 0.046 0.046 0.056 0.059 0.059 0.055 0.057 0.059
WEI | 0.035 0.046 0.046 0.056 0.062 0.065 0.061 0.060
BCD | 0.030 0.044 0.037 0.055 0.065 0.060 0.060 0.057
SBR | 0.026 0.049 0.042 0.058 0.067 0.063 0.062 0.066
3 | SRS 0.044 0.044 0.039 0.041 0.042 0.042 0.041 0.043
WEI | 0.042 0.045 0.048 0.041 0.048 0.051 0.046 0.049
BCD | 0.039 0.040 0.041 0.040 0.044 0.046 0.047 0.048
SBR | 0.048 0.051 0.046 0.048 0.052 0.056 0.056 0.055
4 | SRS 0.056 0.056 0.039 0.042 0.041 0.041 0.043 0.042
WEI | 0.052 0.055 0.038 0.034 0.045 0.042 0.044 0.044
BCD | 0.054 0.058 0.040 0.026 0.045 0.044 0.045 0.043
SBR | 0.061 0.068 0.049 0.027 0.047 0.054 0.055 0.051
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Table XIII. Hy, n =400, 7 = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.042 0.042 0.054 0.046 0.040 0.046 0.050 0.041
WEI | 0.010 0.049 0.008 0.047 0.047 0.046 0.043 0.042
BCD | 0.003 0.045 0.002 0.043 0.043 0.035 0.039 0.040
SBR | 0.002 0.046 0.000 0.035 0.037 0.036 0.036 0.037
2 | SRS 0.050 0.050 0.055 0.049 0.047 0.051 0.052 0.050
WEI | 0.018 0.048 0.025 0.041 0.046 0.045 0.048 0.045
BCD | 0.011 0.042 0.011 0.041 0.046 0.045 0.046 0.043
SBR | 0.017 0.051 0.014 0.042 0.050 0.053 0.047 0.050
3 | SRS | 0.012 0.012 0.043 0.046 0.048 0.046 0.050 0.050
WEI | 0.014 0.016 0.057 0.055 0.060 0.055 0.058 0.057
BCD | 0.013 0.013 0.055 0.059 0.061 0.051 0.053 0.052
SBR | 0.006 0.006 0.040 0.040 0.039 0.038 0.039 0.038
4 | SRS 0.019 0.019 0.056 0.052 0.064 0.056 0.051 0.061
WEI | 0.018 0.018 0.060 0.046 0.065 0.064 0.062 0.066
BCD | 0.015 0.015 0.057 0.046 0.066 0.063 0.059 0.067
SBR | 0.021 0.021 0.057 0.043 0.060 0.062 0.062 0.062
Table XIV. Hy, n = 400, 7 = 0.75
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.051  0.051 0.056 0.055 0.056 0.052  0.055 0.054
WEI | 0.007 0.041 0.014 0.055 0.063 0.051 0.050 0.051
BCD | 0.006 0.038 0.004 0.046 0.048 0.041 0.042 0.046
SBR | 0.004 0.033 0.002 0.044 0.043 0.042 0.043 0.042
2 | SRS 0.048 0.048 0.073 0.055 0.061 0.060 0.057 0.059
WEI | 0.020 0.039 0.024 0.046 0.063 0.048 0.051 0.053
BCD | 0.012 0.048 0.020 0.050 0.051 0.057 0.055 0.051
SBR | 0.011 0.047 0.014 0.046 0.052 0.050 0.052 0.052
3 [ SRS | 0.054 0.054 0.050 0.045 0.052 0.049 0.044 0.052
WEI | 0.053 0.055 0.049 0.047 0.0563 0.050 0.049 0.054
BCD | 0.059 0.063 0.038 0.041 0.045 0.044 0.043 0.043
SBR | 0.049 0.051 0.042 0.044 0.043 0.049 0.049 0.049
4 | SRS 0.0564 0.0564 0.057 0.053 0.063 0.055 0.056 0.063
WEI | 0.047 0.051 0.055 0.043 0.064 0.055 0.061 0.059
BCD | 0.049 0.051 0.054 0.033 0.063 0.062 0.056 0.063
SBR | 0.046 0.048 0.047 0.026 0.051 0.057 0.056 0.053
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1.11.9 QTE, H;, 7=0.5
Table XV. Hy, n =200, 7 = 0.25
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.191 0.191 0.203 0.354 0.356  0.205  0.340 0.342
WEI | 0.126 0.257 0.147 0.359 0.358 0.279  0.345 0.350
BCD | 0.105 0.372 0.122 0.379 0375 0.361  0.369 0.365
SBR | 0.099 0.400 0.114 0.378 0.382 0.411 0.375 0.368
2 | SRS 0.284 0.284 0.315 0.352 0.376 0.319 0.345 0.378
WEI | 0.270 0.319 0.314 0356 0.364 0.359 0.363 0.369
BCD | 0.282 0.333 0.304 0.361 0.375 0.390 0.385 0.383
SBR | 0.290 0.346 0.296 0.335 0.361 0.387  0.358 0.356
3 | SRS 0.712 0.712 0.694 0.688  0.698 0.704 0.677 0.686
WEI | 0.701 0.707 0.678 0.685 0.680 0.699  0.687 0.674
BCD | 0.712 0.720 0.673 0.686 0.695 0.699  0.698 0.698
SBR | 0.672 0.684 0.659 0.639 0.647 0.673  0.647 0.638
4 | SRS 0.166 0.166 0.124 0.112 0.132 0.135 0.131 0.128
WEI | 0.166 0.170 0.126 0.098 0.125 0.144 0.139 0.133
BCD | 0.165 0.176 0.126 0.094 0.155 0.157  0.145 0.157
SBR | 0.167 0.175 0.122 0.088 0.139 0.145 0.133 0.140
Table XVI. Hy, n = 200, 7 = 0.5
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.183 0.183 0.193 0.443 0.441 0.200 0.431 0.429
WEI | 0.116 0.295 0.138 0.442 0447 0.298 0.437 0.436
BCD | 0.072 0.472 0.095 0.450 0.453 0.434  0.446 0.448
SBR | 0.085 0.485 0.099 0.463 0.460 0.457 0.453 0.448
2 | SRS 0.267 0.267 0.256 0.359 0.366 0.265 0.358 0.371
WEI | 0.248 0.346 0.247 0.358 0.394 0.346  0.378 0.389
BCD | 0.229 0.402 0.233 0.358 0.396 0.388  0.395 0.392
SBR | 0.232 0.404 0.234 0.365 0.392 0.399 0.401 0.391
3 | SRS 0.797 0.797 0904 0.897 0.916 0.902 0.897 0.913
WEI | 0.802 0.807 0.907 0903 0909 0.913 0.902 0.906
BCD | 0.796 0.804 0.902 0.910 0911 0.908 0.911 0.906
SBR | 0.771 0.774 0.897 0.896 0.901 0.899 0.894 0.899
4 | SRS 0.176  0.176 0.312 0.269 0.317 0.316  0.297 0.316
WEI | 0.171 0.175 0.289 0.2556  0.307 0.309  0.297 0.298
BCD | 0.169 0.174 0.299 0.262 0.313 0.329 0.311 0.316
SBR | 0.163 0.165 0.283 0.255 0.304 0.302 0.298 0.298
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Table XVII. Hy, n =200, 7 = 0.75

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.198 0.198 0.215 0.362 0.358 0.216  0.353 0.355
WEI | 0.143 0.293 0.1563 0.361 0.368 0.315 0.362 0.364
BCD | 0.108 0.377 0.131 0.356 0.360 0.355  0.353 0.353
SBR | 0.079 0.38 0.105 0.397 0.396 0.381  0.403 0.386
2 | SRS 0.268 0.268 0.315 0.386  0.439 0.322 0.391 0.434
WEI | 0.238 0.339 0.285 0.396 0.430 0.390 0.417 0.428
BCD | 0.209 0.407 0.263 0.398  0.428 0.425 0.428 0.418
SBR | 0.206 0.427 0.267 0.439 0455 0.450 0.465 0.456
3 | SRS | 0.698 0.698 0.607 0.594 0.619 0.634 0.609 0.622
WEI | 0.668 0.673 0.607 0.606 0.616 0.631 0.623 0.624
BCD | 0.690 0.698 0.607 0.612 0.616 0.635 0.618 0.621
SBR | 0.669 0.675 0.596 0.614 0.633 0.617 0.631 0.630
4 | SRS 0.163 0.163 0.158 0.122  0.167 0.173  0.140 0.169
WEI | 0.144 0.152 0.152 0.1056 0.175 0.169  0.152 0.178
BCD | 0.133 0.138 0.151 0.085 0.170 0.177 0.173 0.172
SBR | 0.146 0.154 0.143 0.090 0.175 0.171 0.177 0.180
Table XVIII. Hy, n =400, 7 = 0.25
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.206 0.206 0.229 0.403 0.417 0.231 0.401 0.405
WEI | 0.163 0.332 0.173 0408 0413 0.337  0.408 0.413
BCD | 0.121 0.430 0.143 0.420 0.422 0.421 0.419 0.413
SBR | 0.128 0.451 0.144 0.428 0.429 0.458  0.426 0.423
2 | SRS 0.312 0.312 0.345 0.422  0.415 0.351 0.416 0.416
WEI | 0312 0.352 0.332 0405 0424 0.378 0.408 0.426
BCD | 0.299 0.378 0.333 0.392 0.405 0.403 0.415 0.413
SBR | 0.330 0.389 0.345 0.401 0407 0.426 0.410 0.406
3 [SRS | 0.763 0.763 0.734 0.730 0.740 0.738 0.732 0.738
WEI | 0.763 0.764 0.739 0.739 0.748 0.744 0.746 0.746
BCD | 0.781 0.783 0.760 0.760 0.768 0.772  0.774 0.767
SBR | 0.766 0.773 0.745 0.739 0.744 0.763  0.751 0.744
4 | SRS 0.177 0.177 0.129 0.108 0.136 0.127 0.121 0.133
WEI | 0.170 0.176 0.129 0.096 0.139 0.139 0.131 0.143
BCD | 0.178 0.185 0.132 0.089 0.141 0.141  0.139 0.138
SBR | 0.180 0.186 0.129 0.102 0.134 0.147 0.135 0.133
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Table XIX. Hy, n =400, 7 = 0.5

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.218 0.218 0.232 0.504 0.502 0.235 0.497 0.502
WEI | 0.147 0.356 0.160 0.503 0.503 0.350  0.498 0.507
BCD | 0.089 0.526 0.117 0.498 0.502 0.493 0.495 0.496
SBR | 0.089 0.550 0.109 0.520 0.518 0.524  0.526 0.519
2 | SRS 0.301  0.301 0.309 0.402 0.426 0.306 0.413 0.423
WEI | 0.287 0.387 0.281 0.402 0418 0.372 0411 0.420
BCD | 0.268 0.451 0.262 0.400 0.443 0.434 0.434 0.441
SBR | 0.260 0.433 0.252 0.403 0.421 0.418 0.431 0.420
3 | SRS | 0.897 0.897 0.956 0.957 0.956 0.957  0.956 0.957
WEI | 0.892 0.892 0954 0944 0948 0.951 0.942 0.948
BCD | 0.887 0.889 0.952 0.949 0954 0.957 0.954 0.956
SBR | 0.900 0.902 0.954 0.954 0.954 0.958 0.962 0.957
4 | SRS 0.234 0.234 0.345 0.317 0.351 0.353 0.339 0.343
WEI | 0.222 0.224 0336 0326 0352 0.352 0.335 0.358
BCD | 0.226 0.230 0.346 0.321  0.349 0.368  0.359 0.365
SBR | 0.238 0.242 0.369 0.350 0.380 0.379 0.374 0.377
Table XX. Hy, n =400, 7 = 0.75
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS 0.218 0.218 0.237 0.430 0.435 0.242 0.438 0.435
WEI | 0.163 0.321 0.176 0.441 0437 0.344 0.433 0.432
BCD | 0.136 0.422 0.152 0.421 0420 0.417 0.417 0.416
SBR | 0.103 0.446 0.124 0.459 0.459 0.448 0.463 0.461
2 | SRS 0.300 0.300 0.337 0.445  0.479 0.335 0.449 0.479
WEI | 0.258 0.369 0.313 0446 0465 0.414 0.453 0.463
BCD | 0.247 0.462 0.295 0.451 0.476 0.483 0.481 0.477
SBR | 0.227 0444 0.276 0.472 0490 0.471 0.496 0.492
3 [SRS | 0.763 0.763 0.710 0.702 0.707 0.712 0.701 0.715
WEI | 0.773 0.776 0.696 0.701 0.700 0.720 0.709 0.706
BCD | 0.753 0.755 0.705 0.716  0.720 0.720 0.717 0.726
SBR | 0.746 0.750 0.684 0.699  0.705 0.692 0.709 0.708
4 | SRS 0.209 0.209 0.199 0.140 0.221 0.208 0.149 0.221
WEI | 0.201 0.208 0.191 0.110 0.203 0.206 0.178 0.204
BCD | 0.195 0.200 0.199 0.121 0.213 0.224 0.213 0.220
SBR | 0.198 0.203 0.198 0.114 0.229 0.214 0.230 0.225
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1.11.10 QTE, Hy, 7 = 0.7

Table XXI. Hy, n =200, 7 = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.042 0.042 0.046 0.042 0.036 0.036 0.039 0.039
SBR | 0.002 0.014 0.005 0.0563 0.052 0.049 0.050 0.047
2 | SRS | 0.037 0.037 0.051 0.059 0.057 0.061 0.057 0.064
SBR | 0.032 0.036 0.042 0.046 0.048 0.055 0.055 0.055
3 | SRS | 0.046 0.046 0.046 0.047 0.039 0.045 0.049 0.043
SBR | 0.040 0.044 0.032 0.031 0.034 0.041 0.037 0.040
4 | SRS | 0.098 0.098 0.067 0.075 0.069 0.062 0.057 0.066
SBR | 0.067 0.066 0.043 0.016 0.062 0.061 0.066 0.064
Table XXII. Hy, n =200, 7 = 0.5
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.048 0.048 0.052 0.045 0.047 0.034 0.040 0.044
SBR | 0.001 0.007 0.002 0.039 0.040 0.044 0.038 0.037
2 | SRS | 0.057 0.057 0.065 0.061 0.058 0.050 0.051 0.053
SBR | 0.022 0.034 0.021 0.0563 0.053 0.050 0.059 0.053
3 [ SRS | 0.016 0.016 0.052 0.046 0.054 0.051 0.048 0.053
SBR | 0.004 0.005 0.039 0.038 0.048 0.045 0.046 0.048
4 | SRS | 0.009 0.009 0.046 0.037 0.049 0.046 0.045 0.051
SBR | 0.004 0.005 0.036 0.016 0.052 0.049 0.043 0.046
Table XXIII. Hy, n =200, 7 = 0.75
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.052 0.052 0.057 0.045 0.049 0.044 0.040 0.043
SBR | 0.002 0.008 0.004 0.033 0.034 0.036 0.036 0.036
2 | SRS | 0.042 0.042 0.061 0.055 0.067 0.047 0.055 0.068
SBR | 0.006 0.014 0.009 0.029 0.037 0.042 0.039 0.040
3 | SRS | 0.056 0.056 0.043 0.038 0.054 0.048 0.046 0.054
SBR | 0.055 0.057 0.048 0.042 0.050 0.053 0.052 0.052
4 | SRS | 0.019 0.019 0.038 0.032 0.046 0.045 0.042 0.042
SBR | 0.022 0.022 0.044 0.028 0.045 0.044 0.038 0.042
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Table XXIV

. Hy, n =400, 7 =0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.044 0.044 0.054 0.039 0.041 0.038 0.040 0.042
SBR | 0.003 0.015 0.003 0.0561 0.052 0.043 0.046 0.046
2 | SRS | 0.034 0.034 0.057 0.058 0.0564 0.062 0.058 0.053
SBR | 0.031 0.034 0.040 0.044 0.049 0.051 0.051 0.051
3 [ SRS | 0.037 0.037 0.029 0.034 0.036 0.033 0.033 0.039
SBR | 0.045 0.049 0.037 0.037 0.042 0.044 0.040 0.041
4 | SRS | 0.073 0.073 0.044 0.0564 0.046 0.045 0.048 0.041
SBR | 0.065 0.076 0.036 0.014 0.060 0.058 0.062 0.060
Table XXV. Hy, n =400, 7 = 0.5
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.044 0.044 0.051 0.037 0.039 0.048 0.036 0.037
SBR | 0.001 0.002 0.000 0.035 0.039 0.035 0.040 0.040
2 | SRS | 0.062 0.062 0.062 0.049 0.049 0.059 0.041 0.048
SBR | 0.015 0.029 0.015 0.034 0.040 0.040 0.042 0.037
3 [ SRS | 0.007 0.007 0.039 0.036 0.042 0.042 0.042 0.047
SBR | 0.006 0.006 0.035 0.037 0.036 0.037 0.041 0.037
4 | SRS | 0.013 0.013 0.046 0.029 0.061 0.053 0.035 0.054
SBR | 0.009 0.010 0.033 0.025 0.056 0.054 0.052 0.050
Table XXVI. Hy, n =400, 7 = 0.75
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.049 0.049 0.053 0.046 0.050 0.043 0.048 0.050
SBR | 0.001 0.006 0.002 0.038 0.041 0.037 0.036 0.036
2 | SRS | 0.050 0.050 0.065 0.050 0.049 0.056 0.052 0.052
SBR | 0.010 0.019 0.015 0.041 0.048 0.042 0.041 0.041
3 | SRS | 0.044 0.044 0.031 0.042 0.039 0.032 0.038 0.039
SBR | 0.057 0.059 0.040 0.036 0.044 0.043 0.043 0.043
4 | SRS | 0.034 0.034 0.061 0.046 0.049 0.0561 0.046 0.051
SBR | 0.028 0.028 0.044 0.040 0.045 0.045 0.045 0.046
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1.11.11 QTE, Hy, 7 =0.7

Table XXVII. Hy, n =200, 7 = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.152 0.152 0.176 0.359 0.313 0.187  0.343 0.339
SBR | 0.065 0.186 0.100 0.346  0.336 0.357  0.341 0.338
2 |SRS | 0314 0314 0.334 0.361 0.325 0.347  0.367 0.365
SBR | 0.309 0.334 0.336 0.355 0.368 0.383 0.375 0.376
3 | SRS | 0.704 0.704 0.671 0.665 0.626 0.685 0.663 0.691
SBR | 0.697 0.716 0.663 0.671 0.669 0.702 0.686 0.688
4 | SRS | 0.136 0.136 0.097 0.094 0.129 0.106  0.093 0.122
SBR | 0.116 0.127 0.081 0.050 0.103 0.107 0.105 0.106
Table XXVIIL Hy, n =200, 7 = 0.5
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.170 0.170 0.172 0.411 0425 0.167 0.407 0.406
SBR | 0.043 0.212 0.060 0.445 0.455 0.457 0.435 0.434
2 | SRS | 0.287 0.287 0.280 0.371 0.364 0.275 0.374 0.360
SBR | 0.258 0.327 0.236 0.367 0.387 0.372  0.383 0.381
3 [ SRS | 0771 0771 0.891 0.882 0.903 0.895 0.883 0.894
SBR | 0.760 0.769 0.892 0.896 0.911 0.901 0.904 0.900
4 | SRS | 0.145 0.145 0.265 0.218 0.305 0.264 0.241 0.301
SBR | 0.128 0.136 0.235 0.177  0.288 0.290 0.284 0.287
Table XXIX. Hy, n =200, 7 = 0.75
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.181 0.181 0.183 0.342 0.340 0.188  0.340 0.338
SBR | 0.072 0.175 0.076 0.353  0.364 0.342  0.357 0.357
2 | SRS | 0279 0.279 0.321 0.404 0.427 0.341  0.400 0.427
SBR | 0.243 0.341 0.293 0.430 0451 0.430 0.454 0.435
3 | SRS | 0.662 0.662 0.586 0.559 0.599 0.605 0.569 0.592
SBR | 0.631 0.639 0.572 0.564 0.597 0.594  0.601 0.598
4 | SRS | 0.150 0.150 0.201 0.164 0.199 0.208 0.189 0.211
SBR | 0.143 0.145 0.193 0.166 0.206 0.206  0.208 0.205
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Table XXX. Hy, n =400, 7 = 0.25

M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.181 0.181 0.192 0.351 0.354 0.202 0.346 0.351
SBR | 0.083 0.233 0.113 0.392 0.392 0.407 0.394 0.392
2 | SRS | 0362 0.362 0.406 0403 0.415 0408 0.415 0.424
SBR | 0.350 0.381 0.388 0.412 0.426 0.426 0.422 0.419
3 [ SRS | 0781 0.781 0.743 0.751  0.758 0.746  0.750 0.759
SBR | 0.791 0.797 0.752 0.765 0.777 0.781  0.778 0.779
4 | SRS | 0.160 0.160 0.082 0.072  0.112  0.097  0.095 0.116
SBR | 0.133 0.154 0.091 0.044 0.119 0.119 0.121 0.120
Table XXXI. Hy, n = 400, 7 = 0.5
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.184 0.184 0.187 0.468 0.479 0.194  0.460 0.466
SBR | 0.042 0.220 0.059 0.486 0.498 0.505 0.480 0.482
2 | SRS | 0.322 0.322 0.298 0.405 0.404 0.303 0.412 0.400
SBR | 0.262 0.342 0.237 0.376  0.399 0.385 0.389 0.389
3 | SRS | 0.867 0.867 0.939 0.930 0.933 0941 0.932 0.936
SBR | 0.883 0.888 0.948 0.952 0.952 0.955 0.952 0.952
4 | SRS | 0.209 0.209 0.327 0.275 0.354 0.341 0.308 0.351
SBR | 0.194 0.217 0.310 0.256 0.365 0.364 0.359 0.356
Table XXXII. Hy, n =400, 7 = 0.75
M A s/naive s/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.217 0.217 0.224 0.411 0409 0.219 0.411 0.408
SBR | 0.103 0.246 0.107 0.419 0.418 0.400 0.421 0.420
2 |SRS | 0335 0.335 0.378 0485 0.505 0.384  0.468 0.501
SBR | 0.278 0.384 0.329 0.479 0.500 0.487  0.504 0.493
3 | SRS | 0.708 0.708 0.661 0.628 0.665 0.665 0.629 0.672
SBR | 0.705 0.706 0.652 0.631 0.665 0.673 0.672 0.673
4 | SRS | 0205 0.205 0.226 0.221 0.245 0.234 0.234 0.240
SBR | 0.205 0.205 0.249 0.209 0.248 0.258 0.256 0.258
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1.11.12 ATE, 7 =0.5
Table XXXIII. Hy, n = 200, 7 = 0.5
M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.059 0.057 0.051 0.061 0.055 0.057 0.053 0.048 0.049
WEI | 0.006 0.048 0.062 0.004 0.068 0.068 0.051 0.065 0.065
BCD | 0.001 0.089 0.056 0.000 0.058 0.058 0.071 0.056 0.056
SBR | 0.000 0.067 0.061 0.000 0.064 0.064 0.059 0.061 0.061
2 | SRS | 0.062 0.061 0.061 0.061 0.069 0.062 0.060 0.057 0.059
WEI | 0.027 0.060 0.050 0.029 0.046 0.064 0.057 0.052 0.053
BCD | 0.014 0.058 0.053 0.016 0.053 0.052 0.052 0.052 0.049
SBR | 0.006 0.045 0.044 0.006 0.045 0.045 0.045 0.045 0.045
3 | SRS | 0.057 0.056 0.068 0.055 0.061 0.061 0.056 0.064 0.065
WEI | 0.049 0.050 0.057 0.052 0.057 0.056 0.048 0.053 0.053
BCD | 0.057 0.058 0.057 0.057 0.063 0.063 0.057 0.056 0.057
SBR | 0.055 0.058 0.056 0.057 0.060 0.061 0.055 0.055 0.055
4 | SRS | 0.066 0.067 0.077 0.068 0.069 0.063 0.063 0.070 0.063
WEI | 0.065 0.067 0.070 0.066 0.067 0.068 0.069 0.067 0.070
BCD | 0.068 0.068 0.067 0.065 0.061 0.068 0.065 0.065 0.065
SBR | 0.055 0.055 0.055 0.057 0.057 0.058 0.057 0.057 0.057
Table XXXIV. Hy, n =200, 7 = 0.5
M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0387 0.385 0.948 0.391 0.946 0.946 0.386 0.944 0.942
WEI | 0330 0.680 0.944 0.334 0941 0940 0.691 0.942 0.941
BCD | 0.275 0917 0.940 0.272 0.943 0943 0.884 0.942 0.942
SBR | 0.280 0942 0951 0.285 0.950 0.950 0.937 0.945 0.945
2 | SRS | 0533 0532 0.750 0.538 0.746  0.758 0.541  0.746 0.753
WEI | 0.532  0.668 0.748 0.533 0.742 0.750 0.675 0.743 0.749
BCD | 0.541 0.748 0.752 0.544 0.751  0.755  0.733  0.751 0.752
SBR | 0.544 0.774 0.779 0.551 0.772 0.781 0.769  0.775 0.775
3 | SRS | 0770 0.769 0.767 0.773 0.768 0.775 0.769 0.754 0.760
WEI | 0.760 0.766 0.763 0.759 0.759  0.768 0.765 0.763 0.761
BCD | 0.767 0.772 0.769 0.762 0.771  0.769 0.772  0.765 0.765
SBR | 0.757 0.762 0.761 0.758 0.770  0.767 0.761 0.764 0.764
4 | SRS | 0.181 0.182 0.181 0.182 0.171  0.184 0.181 0.180 0.186
WEI | 0.180 0.183 0.182 0.184 0.180 0.184 0.184 0.178 0.179
BCD | 0.170 0.175 0.174 0.177 0.177 0.181 0.182  0.183 0.182
SBR | 0.177 0.178 0.179 0.184 0.180 0.186 0.179  0.178 0.178
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Table XXXV. Hy, n =400, m = 0.5

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.063 0.061 0.042 0.063 0.043 0.045 0.055 0.042 0.042
WEI | 0.006 0.050 0.050 0.006 0.052 0.052 0.052 0.050 0.050
BCD | 0.000 0.067 0.052 0.000 0.059 0.059 0.051 0.059 0.059
SBR | 0.000 0.059 0.058 0.000 0.057 0.057 0.063 0.060 0.060
2 | SRS | 0.061 0.057 0.055 0.058 0.055 0.0564 0.061 0.054 0.051
WEI | 0.018 0.051 0.064 0.019 0.063 0.064 0.052 0.064 0.064
BCD | 0.009 0.045 0.046 0.006 0.046 0.047 0.043 0.049 0.049
SBR | 0.014 0.062 0.060 0.016 0.065 0.065 0.063 0.063 0.063
3 | SRS | 0.050 0.049 0.050 0.050 0.049 0.051 0.052 0.048 0.048
WEI | 0.046 0.047 0.049 0.047 0.046 0.047 0.048 0.047 0.046
BCD | 0.049 0.049 0.049 0.049 0.050 0.050 0.050 0.050 0.050
SBR | 0.055 0.056 0.056 0.059 0.058 0.059 0.055 0.056 0.056
4 | SRS | 0.067 0.067 0.065 0.056 0.056 0.059 0.054 0.051 0.056
WEI | 0.061 0.0561 0.063 0.052 0.054 0.064 0.051 0.051 0.052
BCD | 0.056 0.056 0.056 0.054 0.056 0.056 0.054 0.053 0.053
SBR | 0.056 0.058 0.058 0.055 0.056 0.057 0.057 0.057 0.057
Table XXXVI. Hy, n =400, 7 = 0.5
M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0422 0.422 0964 0.416 0.968 0966 0.415 0.964 0.962
WEI | 0387 0.732 0969 0.393 0.969 0969 0.732 0.967 0.968
BCD | 0.341 0.962 0.971 0.350 0.969 0.968 0.955 0.968 0.968
SBR | 0.357 0.967 0.967 0.368 0.966 0.966 0.967 0.965 0.965
2 | SRS | 0572 0.568 0.806 0.579 0.795 0.805 0.568  0.796 0.805
WEI | 0577 0.723 0.813 0575 0.814 0810 0.728 0.811 0.808
BCD | 0.606 0.809 0.813 0.618 0.817 0.821 0.802 0.810 0.810
SBR | 0.601 0.828 0.829 0.603 0.832 0.836 0.830 0.834 0.834
3 | SRS | 0.804 0.801 0.803 0.798 0.798 0.799 0.804 0.803 0.803
WEI | 0.804 0.804 0.806 0.802 0.800 0.803 0.803 0.803 0.803
BCD | 0.816 0.818 0.820 0.822 0.825 0.825 0.819 0.819 0.819
SBR | 0.821 0823 0823 0816 0.820 0.819 0.822 0.822 0.822
4 | SRS | 0.228 0.230 0.229 0.225 0.227 0.228 0.234 0.226 0.226
WEI | 0.229 0.230 0.230 0.225 0.223 0.228 0.233 0.235 0.234
BCD | 0.221 0.224 0.225 0.227 0.225 0.231 0.231 0.231 0.233
SBR | 0.224 0.226 0.225 0.224 0.225 0.230 0.235 0.235 0.235
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1.11.13 ATE, 7= 0.7

Table XXXVII. Hy, n =200, 7 = 0.7

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.050 0.045 0.056 0.051 0.056 0.062 0.046 0.054 0.055
SBR | 0.000 0.004 0.051 0.000 0.061 0.064 0.064 0.060 0.059
2 | SRS | 0.048 0.055 0.074 0.055 0.049 0.056 0.045 0.049 0.057
SBR | 0.013 0.030 0.041 0.013 0.024 0.051 0.056  0.049 0.051
3 | SRS | 0.059 0.060 0.066 0.060 0.060 0.064 0.058 0.055 0.064
SBR | 0.061 0.053 0.052 0.053 0.045 0.057 0.056 0.056 0.055
4 | SRS | 0.067 0.057 0.056 0.058 0.056  0.068 0.054 0.057 0.058
SBR | 0.047 0.050 0.044 0.051 0.037 0.054 0.054 0.055 0.055
Table XXXVIIIL. Hy, n =200, 7 = 0.7
M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.329 0.328 0.934 0.336 0.943 0946 0.326 0.941 0.941
SBR | 0.220 0.631 0938 0.233 0.946 0.949 0.932 0.943 0.943
2 | SRS | 0.581 0.578 0.687 0.582 0.619 0.756 0.571 0.601 0.758
SBR | 0.598 0.699 0.747 0.599 0.686 0.768 0.752  0.766 0.764
3 | SRS | 0773 0779 0.758 0.769 0.741 0.784 0.773  0.729 0.782
SBR | 0.771 0.773 0.772 0.777 0.763  0.782 0.782  0.780 0.781
4 | SRS | 0.149 0.154 0.121 0.153 0.140 0.168 0.154 0.141 0.165
SBR | 0.144 0.151 0.129 0.153 0.118 0.175 0.172  0.170 0.169
Table XXXIX. Hy, n =400, 7 = 0.7
M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 0.062 0.059 0.065 0.061 0.056 0.056 0.062 0.060 0.061
SBR | 0.000 0.000 0.034 0.000 0.039 0.040 0.045 0.045 0.044
2 | SRS | 0.0562 0.050 0.087 0.0564 0.055 0.052 0.050 0.057 0.051
SBR | 0.013 0.029 0.040 0.012 0.027 0.044 0.042 0.044 0.042
3 | SRS | 0.042 0.041 0.049 0.045 0.043 0.052 0.040 0.040 0.046
SBR | 0.028 0.028 0.031 0.029 0.025 0.032 0.035 0.036 0.034
4 | SRS | 0.053 0.055 0.043 0.058 0.0563 0.058 0.055 0.050 0.056
SBR | 0.050 0.051 0.043 0.051 0.035 0.054 0.055 0.055 0.053
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Table XL. Hy, n =400, 7 = 0.7

M A s/naive s/adj sfe/adj s/W sfe/W ipw/W s/CA sfe/CA ipw/CA
1 | SRS | 038 0.380 0.972 0.381 0.971 0976 0.382 0.970 0.973
SBR | 0.250 0.736 0970 0.254 0.972 0972 0.967 0.973 0.974
2 | SRS | 0.616 0.628 0.753 0.622 0.693 0.796 0.617  0.690 0.795
SBR | 0.659 0.759 0.806 0.665 0.740 0.827 0.817 0.827 0.827
3 | SRS | 0818 0.817 0.805 0.812 0.793 0.821 0.816 0.793 0.829
SBR | 0.833 0838 0836 0831 0.824 0.840 0.838 0.839 0.837
4 | SRS | 0.177 0.172 0.145 0.180 0.162 0.195 0.181 0.171 0.186
SBR | 0.181 0.190 0.164 0.184 0.142 0.202 0.202 0.202 0.200
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Chapter 2

A Martingale-Difference-Divergence-
Based Test for Specification with
Application to Gravity Models

2.1 Introduction

Since Hausman’s (1978) seminal work, a large literature has been developed on testing for
the correct specification of functional forms. Kernel smoothing method constitutes one of
the most popular approaches towards the construction of consistent model specification tests;
see, e.g., Hirdle and Mammen (1993), Fan and Li (1996), Zheng (1996), Li and Wang (1998),
Horowitz and Spokoiny (2001), and Hsiao, Li, and Racine (2007) for cross-sectional data,
Robinson (1989) and Fan and Li (1999) for time series data, Su and Lu (2013) and Su, Jin,
and Zhang (2015) for panel data, and Su and Qu (2017) for spatial data. Sieve methods have
also been adopted widely in nonparametric specification testing; see Eubank and Hart (1992),
Wooldridge (1992), Hong and White (1995), de Jong (1996), Li, Hsiao, and Zinn (2003),
among others. Instead of estimating the conditional mean via the kernel or sieve methods,
one can also construct a consistent test based on the estimation of unconditional moment
conditions which results in a class of nonsmoothing tests; see Bierens (1982, 1990), Bierens
and Ploberger (1997), Stute (1997), Stinchcombe and White (1998), Delgado and Manteiga
(2001), among others. Fan and Li (2000) discuss the relationship between smoothing and non-

IThis is a co-authered work with Liangjun Su.
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smoothing tests, and show that smoothing tests are more powerful than nonsmoothing tests
for high frequency alternatives and less powerful for other local alternatives, while Horowitz
and Spokoiny (2001) propose an adaptive rate-optimal test for regression models and suggest
using several different smoothing parameters to compute a kernel-based test in order to ensure
that the test has good power against both the low and high frequency alternatives.

In this paper we propose a new test for the correct specification of a parametric conditional
mean model based on a variant of the martingale difference divergence (MDD hereafter)
measure of conditional mean dependence between two random variables. In a sequence of
papers, Székely, Rizzo, and Bakirov (2007), Székely and Rozzo (2009) and Székely and Rizzo
(2014) propose to use distance covariance and distance correlation to measure the dependence
between two random vectors which exhibit various nice properties. Such measures have been
explored for feature screening in high dimensional regressions; see, e.g., Li, Zhong, and Zhu
(2012). When one of the two random variables is scalar, Shao and Zhang (2014, SZ hereafter)
propose to use MDD to measure the conditional mean dependence of the scalar random
variable given a random vector (see the definition of MDD in (2.2.4) in the next section).
Like the relationship between covariance and correlation, the MDD can also be rescaled to
ensure that it lies between 0 and 1, yielding the martingale difference correlation (MDC)
measure of a scalar variable given a random vector. MDD measures the departure of the
conditional mean independence between a scalar response variable and a vector of covariates,
which is a natural extension of the distance correlation measure proposed by Székely, Rizzo,
and Bakirov (2007). MDD and MDC have many nice properties. First, both of them are
nonnegative and equal zero if and only if the scalar response variable is conditionally mean
independent of the covariates. This suggests that we can propose a test for the conditional
mean independence hypothesis which is widely used in econometrics and statistics. Second,
both measures have a closed-form formula that is only involved with certain expectation and
norm calculations so that they can be easily estimated from the data based on the sample
analogue principle. Third, the measures are dimension-free in the sense that the dimension
of the conditioning variable is allowed to be huge. Indeed, SZ use MDC as a method to
conduct high-dimensional variable selection to screen out variables that do not contribute to
the conditional mean of the response variable given the covariates.

One drawback of SZ’s original MDD and MDC measure is that when they are used for
variable screening, both the response variable and covariates need to be observed. Therefore,
we propose a variant of MDD that is used to measure the conditional mean independence
of a scalar random error term given the covariates. With this variant, we propose a new

consistent test for the null hypothesis that a parametric conditional mean model is correctly
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specified. Under the null hypothesis, the error term from the correctly specified model is
conditionally mean independent of the regressors in the model. Since the error term is not
observed, we propose to estimate it from the null model and construct a test statistic based
on the sample analogue of this new MDD measure. We study the asymptotic distributions
of the test statistic under the null and under a sequence of Pitman local alternatives. Our
test shares many nice properties that a typical nonsmoothing test might have. First, its
limiting distribution under the null is a mixture of central chi-square distributions that is
not asymptotically pivotal. So we propose a wild bootstrap method to obtain the bootstrap
p-value or critical value. Second, our test has nontrivial asymptotic power against local
alternatives converging to the null at the usual parametric rate. More importantly, our test
is free of the choice of any smoothing parameter (e.g., the bandwidth in kernel-based tests
or the number of sieve approximating terms in sieve-based tests) and it does not suffer from
the curse of dimensionality associated with kernel- or sieve-based tests. In principle, our test
works for any finite dimensional regression problem where the number of covariates, ¢, can be
huge. But for the derivation of our asymptotic distribution theory, we still need restrict ¢ to
be fixed. We conduct some Monte Carlo simulations and compare our test with some popular
tests in the literature. Our simulation results indicate that our MDD-based test generally
outperforms its competitors, especially for the case of high-frequency alternatives and for the
case of many covariates. To the best of our knowledge, this paper is the first to consider
consistent model specification test in the presence of many covariates.

As an illustration, we apply our test to test for the correct specification of functional forms
in gravity equations that are frequently used to model the bilateral trade flow between two
countries/regions. Most of the empirical studies use the log-linearized model that implies
constant elasticity of trade. In an influential paper Santos Silva and Tenreyro (2006) raise
several problems associated with the log gravity equation. In particular, they study how the
bias arises in the OLS estimation of the log model and find strong evidence that estimation
methods based on the log-linearization of the gravity equation suffer from severe misspeci-
fication. They argue that the gravity equations should be estimated in their multiplicative
form and propose the Poisson pseudo-maximum-likelihood (PPML) estimator based on the
level model. We apply out test to test the functional form in both the original level equation
and the log-linearized model by using four datasets. For all the datasets, we reject the log
and level model coherently at 10% significance level. However, its competitors show mixed

testing results for different datasets. The findings reveal the advantages of our test.

The rest of the paper is organized as follows. We introduce the hypotheses and the test
statistic in Section 2. We study the asymptotic distributions of the test statistic under the null
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hypothesis and under a sequence of Pitman local alternatives in Section 3. We compare the
MDD test with several popular tests through Monte Carlo simulations in Section 4. Section 5
provides an empirical example to illustrate the choice of functional forms in gravity equation
models. Section 6 concludes. The proofs of all results are relegated to the Appendix.
Throughout the paper, we adopt the following notation. For any matrix or vector A,
|A|| denotes its Euclidean norm. The operator = denotes convergence in probability and <

denotes convergence in distribution.

2.2 The Hypotheses and Statistic

In this section we state the hypotheses and introduce the test statistic.

2.2.1 The Hypotheses

We consider the following parametric regression model
YVi=g(XyB) +e, i=1,...,n, (2.2.1)

where Y] is a scalar dependent variable, X; is a ¢ x 1 vector of covariates, [ is a d X 1 vector
of unknown parameters, and ¢; is the unobserved error term. We assume that the functional
form of g(-;-) is known up to the finite dimensional parameter 5. We are interested in testing

the correct specification of g(-;-). That is, we test the null hypothesis

Hy: P{E(Y:|X;) =9(X;;8)} =1 for some g € B (2.2.2)
versus the alternative hypothesis

H, : P{E(Y:|X;) =9(X;;8)} <1 forall g€ B, (2.2.3)
where B is the parameter space.

2.2.2 Test Statistic

To motivate our test statistic, we follow SZ and consider the MDD of ¢ given X whose square
is defined by

MDD (e|X)* = [ |E[eexp(is’X)] — E (¢) E [exp(is' X)]|> W (s)ds, (2.2.4)

Ra
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. 2(1+a)/ . .
where i = /-1, W(s) = WM, Cq = ﬁ, and I (+) is the complete gamma function:
['(z) = [;7t* " exp(—t)dt. Let (¢7, XT) be an independent copy of (e, X). By Theorem 1 in
SZ, we have

MDD (¢|X)? = —E{[s —E (¢)] [ — E (¢1)] || X — XT||}, (2.2.5)

and MDD (g X)* = 0 if and only if E (¢|X) = E (¢) .
In our setup, € denotes the error term in a regression such that E(¢) = 0 is always

maintained. This motivates us to consider the following variant of MDD (¢|X)?
MDD" (¢|X)? = —E [ee! || X — XT||] + 2E [¢|| X — XT|[] E[¢'] . (2.2.6)

The following proposition establishes the properties of MDD* (¢| X )2 that serve as the basis

of our test statistic.

Proposition 2.2.1. Let (5T, XT) be an independent copy of (e, X) , where € is a scalar random
variable and X is a ¢ x 1 random vector. Suppose that 0 < E[¢?] < oo and 0 < E[|| X||*] < oc.
Then

(i) MDD* (¢|X)* > 0;

(ii) MDD* (¢|X)* = 0 if and only if E(¢|X) = 0 almost surely (a.s.).

An important implication of Proposition 2.2.1 is that we can test (2.2.2) by testing whether
MDD* (5Z~|Xi)2 =0, where ¢; = Y; — g(Xj; 5o). In practice, ¢; is not observed. We propose to
estimate the model (2.2.1) by the nonlinear least squares (NLS) to obtain the NLS estimator
B of B. Let &; = Y; — g(X;; B). We propose to estimate nMDD* (¢|X)? by the following object

Tn = —%Z Zéiéj'%i,j + %Z Zéi’l{’l}j% ; ék (227)

1<ij<n 1<i#j<n

where x;; = || X; — Xj||. In the special case where ¢g(X;;/) is linear in X; and 3, i.e.,
9(X;;8) = (1, X)) B, we have "' | & =0 and

T, = —%Z > éigini =10 (2.2.8)

1<i#j<n

Other than this case, Y. &; is generally nonzero and second term in (2.2.7) is necessary.
Remark 1. Interestingly, MDD(£|X)” in (2.2.4) is closely related to Bierens’ (1982) and
Bierens and Ploberger’s (1997) integrated conditional moment (ICM) test that takes the form

B= [ [E[eexp(is'®(X))]]* Wgz(s)ds, (2.2.9)

Ra
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where Wg(+) is a nonnegative weight function and ®(-) : R? — R? is a smooth function. But
this test requires the delicate choices of both Wz and ® and may not be tractable in practice;
see Bierens (1990) and Bierens and Ploberger (1997). When E (¢) = 0, we can also write B
as

B* = IE [e exp(is'®(X))] — E (¢) E [exp(is'®(X))]|* Wz(s)ds. (2.2.10)

R4

Apparently, B* =MDD(¢|X)? by choosing ®(X) = X and Wp(s) = W (s). In this case, we
can regard MDD(e| X)? as a special example of B. As a result, our test statistic is tied closely
to Bierens’ ICM test.

2.3 Asymptotic Properties

In this section we study the asymptotic properties of T}, under the null hypothesis and under

a sequence of Pitman local alternatives.

2.3.1 Basic Assumptions

To facilitate the study of the local power property of our test, we consider the triangu-

lar array {(}/vamagm) ) 1= 17 7n} Let Qn (ﬂ) = %2?21 [Y;n - g(Xlnvﬁ>]2 and Q (ﬁ) =

limy o0 E [Yin = 9(Xin; 8)) - Let gi(8) = 99(Xin; 8)/05, and S (8) = limy o0 E [g5(8)9i5(8)']
We make the following assumptions.

Assumption A.1. (Y., X;,), ¢ = 1,2,...,n, are independently and identically distributed

(IID).

Assumption A.2. The NLS estimator B has the following representation
. 1 —
_ B =512 5Es —1/2
B = PBo n;ggs +op (n7'/?)

where g;3 = ¢ig(5o) and S = S () is positive definite. There exists a constant C' € (0, 00)
such that £ (gisg}ge7) < C.

Assumption A.3. (i) There exists a constant C' € (0,00) such that E(e}) < C and
E|Xi|* < C.

(ii) There exists a positive definite matrix H such that

sup
BGNEn (BO)

PO H —or
=1



where N, (Bo) ={B € B: || — (|| <e}and g, =0(1).

(i) 2301 0is = So, 2z >y 2oi E(gigriy;) = Sty and 25 Y00 Y0 gisglskig =
S, where Sy = lim, 0o 230  E(gig), S1 = limy o 75 2 iy Z;L:lE(giﬁ/fi,j), and Sy =
im0 22 2oy 2oiey E (9isski) -

We assume that the observations are IID in Assumption A.1 to facilitate the asymptotic
analysis. We conjecture that our result below can be extended to allow for weakly dependent
time series observations but restrict ourselves to IID observations for simplicity. Assumption
A.2 requires B follow a Bahadur representation with certain well behaved influence function.
One can verify A.2 under some primitive conditions given in the literature; see, e.g., Jennrich
(1969), Wu (1981), and Amemiya (1985). Assumption A.3 imposes some additional conditions
to study the asymptotic distribution of our test statistics. Assumption A.3(i) imposes some
moment conditions for X; and &;; Assumption A.3(ii) imposes uniform convergence of the
gradient function in the neighborhood of fy; Assumption A.3(iii) imposes some convergence

conditions associated with g;g.

Asymptotic Distribution under the Null

The following theorem reports the asymptotic distribution of 7j,.

Theorem 2.3.1. Suppose that Assumptions A.1-A.3 hold. Then under Hy we have

v

o
d
Tn—>z/\y22 as n — oo

v=1

where z,’s are IID N (0,1), A, ’s are the eigenvalues of the integral equation

| SO0 XL (€) = M),
{e:f,(X3)}52, is an orthonormal sequence of eigenfunctions, and h(Xy, X3) is defined in Equa-
tion (2.7.3) in the Appendiz.

The proof of Theorem 2.3.1 is tedious and the expression for h(X7, X5) appears compli-
cated. Since h depends on the underlying data generating process (DGP), T,, is not asymptot-
ically pivotal under the null and thus we cannot tabulate its critical values. In the following we
will propose a bootstrap method to obtain the bootstrap p-value to make statistical inference.

Apparently, T,, shares the same type of asymptotic null distribution as the ICM test.
This is not surprising given Remark 1. As mentioned, our test does not need to specify

transformation function or weight function that an ICM test needs.
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Local Power Analysis

To study the asymptotic local power of T;,, we consider the following sequence of Pitman local

alternatives:
Hy(n™Y?) 1 B(eim|Xim) = nY25(X,,) for all 4. (2.3.1)

It is known that in general ICM tests have nontrivial power, while the nonparametric tests
break down due to the slower rate of convergence than y/n of their estimators. Theorem 2.3.2
describes the asymptotic distribution of MDD test under local alternatives and shows that
MDD test has nontrivial \/n local power.

Theorem 2.3.2. Suppose Assumption A.1-A.3 hold. Then under H,(n='/?), we have

oo
d
T, — Z)x,,(zy +a,)?, asn — oo
v=1

where a,, = lim,,_,o B[0(X:n) [, (Xin)] and f, (+) is defined in Theorem 2.5.1.

Since {2,}5%, are IID N (0, 1), (2, + a,)? is stochastically larger than 22 for a, # 0. This

implies that our test has nontrivial asymptotic local power against local alternatives that

—-1/2

converge to the null at rate n='/2. See Fan (1998) for a similar remark.

2.4 Monte Carlo Simulation

In this section we conduct a sequence of Monte Carlo simulations to evaluate the finite sample

performance of our test and compare it with some existing test statistics.

2.4.1 Data Generating Processes

We consider the following data generating processes:

DGPl(m) . Y; = ﬁo + ZBJXﬂ + O'Z(m)é"l',

j—l
DGP2(m) : Y; = B0+Z@Xﬂ+n WZX? +o™e;,
DGP3(m) :Y; = fo + ﬁlei + B9 Xo; + 2sm(mX1i) sin(mXy;) + 0465

DGP1(m) specifies m covariates and is used to evaluate the size performance of various

tests. DGP2(m) specifies m covariates and is used to evaluate the local power of various
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tests. DGP3(m) specifies two covariates with m-dependent frequency under the alternative.
We allow for conditional heteroskedasticity in all models and generate the covariates and
heteroskedasticity as follows. In DGP1 and DGP2, when m =2, X; ~ U(0,1), X5 ~ N(0,1),
and 0 = {0.1+ X; + X2}¥/2; when m =5, X; ~ U(0,§) for j =1,2,3, X; ~ N(0, (j — 3)?)
for j = 4,5, and 0®® = {0.1 + Z?Zl X; + Z?:4X12}1/2; when m = 10, X; ~ U(0,7) for
j=1,....5,X; ~N(0,(j—5) for j =6,...,10,and o1 = {0.1+ 37 | X;+ >0 X2}/
when m = 20, X; ~ U(0,j) for j = 1...,10, X; ~ N(0,(j — 10)?) for j = 11,...,20,
and 0@ = {0.1 4+ 3% X; + 30, X2}V2 In DGP3, X; ~ N(0,1) for j = 1,2 and
o ={0.1+X2+X2}'/2. We specify m = 1/2, m = 1, and m = 2 in DGP3(m), corresponding
to low-, moderate-, and high-frequency alternatives, respectively. In all cases, we generate ¢;
independently from the standard normal distribution.

We will test Ho @ E(Y;[X;) = fo + > 52, 8; X for some (Bo, ..., B,n) in DGP1(m) and
DGP2(m) and Hy : E(Y;|X;) = By + 232:1 B, X ;i for some (B, 1, f2) in DGP3(m) .

2.4.2 Test Statistics

We will implement our test statistic 7,, and denote it as MDD in the following tables. For
the purpose of comparison, we consider three popular tests for the correct specification of
functional form in the literature.

The first one is Zheng’s (1996) and Li and Wang’s (1998) residual-based test:

1 1 Xi—X;
Z&LW test : TZ4W — — — K|~ L) &,
s n n(n — 1)221_[(1 lhl h € €]’

1<i£j<n 1=

where £; is the residual from the parametric regression under the null, ¢ denotes the dimension
of X;, K(+) is a product of univariate Epanechnikov kernel, h = (hy, ..., h,)" is a bandwidth
vector, and a/b = (a1 /b, ...,a,/b,)" when a = (ai, ...,a,)" and b = (b1, ...,b,)" are both ¢ x 1
vectors.

The second one is Hérdle and Mammen’s (1993, HM) test that is based on the comparison
of the nonparametric estimate and the smoothed parametric estimate of the conditional mean
regression function under the null:

HM test : THM =n (H?:1h1>1/2 Z [f]h(xz) — Knng(zs, B) i ,

i=1
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where, K}, denotes the smoothing operator

E?lK( Z)nga
SLECS)

]Cn,hg(xv B) =

3 denotes the least squares estimate of the regression coefficient under the null, g,(z) is the
Nadaraya-Watson kernel estimator of F (Y;|X; = x) by using the kernel function K (-) and
bandwidth h.

The last one is the ICM test Bierens and Ploberger’s (1997) ICM test:

ICM test : Tf ZZQQHeXp{ (Xki) + P(Xij)] /2}

2131

where £; is the residual from the parametric regression under the null and ¢ is a one-to-one
mapping function from the support of X to itself: ®(X};) = tan~!((X; — X;)/s;), where X
and s; denotes the sample mean and sample standard deviation of {Xj;} , with Xj; being
the {th component of X;. Fan and Li (2000) also consider the above specification for the ICM
test.

In all cases, we choose the bandwidth according to Silverman’s rule of thumb: h; =
1.06s;n~ /%4 for | = 1, ..., q. After suitable normalization, both T2%W and THM are asymp-
totically standard normally distributed under the null and they can detect local alternatives
converging to the null at the nonparametric rate. In contrast, the ICM test has asymptotic
null distribution similar to our MDD test and it can detect local alternatives converging to
the null at the usual parametric rate.

To implement all tests, we consider the wild bootstrap to obtain the bootstrap p-values
despite the fact the two kernel-based tests are asymptotically N (0,1) under the null. The
wild bootstrap procedure is the same as that in Wu (1986) and Hérdle and Mammen (1993)
and the justification of its asymptotic validity is standard. See, e.g., Su, Jin, and Zhang
(2015) and Su, Hoderlein, and White (2015).

We will consider various sample sizes. When we have two covariates, we let n change from
50 to 400; when we have 5 or more covariates, we let n change from 200 to 800. The number

of bootstrap resamples is 400 and the number of replications is 1000 in each scenario.

2.4.3 Simulation Results

We report the simulation results in Table 1-3 for DGP1(m)-DGP3(m), respectively, where

the nominal significance levels are given by 0.01, 0.05, and 0.1. Table 1 reports the empirical
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levels of the four tests for DGP1(m) with different numbers of covariates. The findings are
interesting. First, when the number of covariates is small (m = 2), all four tests perform quite
well in terms of empirical level for the number of observations as small size as 50, and the
empirical levels generally improve as n increases. Second, as m increases, the levels for both
HM and ICM tests diminish rapidly to zero and the degeneracy of the levels does not improve
when the sample size increases from 200 to 800. This indicates that either the HM test or the
ICM test has severe size distortions due to the curse of dimensionality in nonparametrics. In
particular, the HM test requires nonparametric estimation under the alternative. Third, both
MDD and Z&LW tests perform very well unless m is too big (20) and n is small (200). As
for the Z&LW test, even though it is a kernel-based nonparametric tests, it doesn’t require
the estimation of the regression model under the alternative. Perhaps, this explains why it is
not sensitive to the number of covariates. Overall, our MDD dominates the other three tests
in terms of empirical level.

Table 2 reports the empirical power for DGP2(m) when m takes different values. We
summarize some findings from Table 2. First, the ICM test has reasonable power when
m = 2. But as m increase, the ICM test does not have any power to detect local deviations
from the null. It is even inferior to the two kernel-based tests (Z&LW and HM) which have

~1/2 Second,

power to detect local alternatives converging to the null at slower rate than n
HM test has certain power when m increases from 2 to 5 but it loses power when m increases
further. This is consistent with its empirical level behavior. Third, as expected both MDD
and Z&LW tests have power even in the presence of a large number of covariates. In general,
our MDD test dominates the Z&LW test in terms of local empirical power. This is also
consistent with the theory because our test can detect n=/2-local alternatives while Z&LW

1/2 In sum,

test can detect local alternatives converging to the null at a slower rate than n~
for the usual n~/2-local alternatives, our MDD test outperforms all of its competitors under
investigation.

Table 3 reports the empirical power for DGP3(m) when the alternatives are at different
frequencies. First, when the frequency is low (m = 1/2) or moderate (m = 1), all four tests
have reasonable power. Second, when the frequency is low and the sample is small, the ICM
test performs fairly well and it outperforms the Z&LW and HM tests. Third, the ICM test
does not have power in the high-frequency case as expected. Fourth, our MDD test is almost
always the best of all.

In summary, our MDD test generally has well-controlled size and it is not sensitive to the
inclusion of many covariates in the regression model. It also has higher empirical power than

its competitors against both local alternatives and global alternatives.

144



2.4.4 Testing Nonlinear Functional Form

In the previous part, we have shown the robust performance of our MDD test for the linear
null hypothesis. Before implementing our test to the application of testing gravity equation,
we offer some evidences for its performance in the nonlinear cases. We are attempt to obtain
the simulated size and power by imitating the structure of the real data. It’s worth noticing
that the simulation results will only give us a glimpse of comparison between different tests

rather than solid evidences. However, we can still get some useful insights.

Data Generating Process

The parent sample is from Rose (2005) which is described in Table 5 and summarized in
Table 6. We try to generate covariates sample of similar structure from simple random
number generators, and then generate the dependent variable by the specified model and
the estimated parameters. Table 5 shows that the number of observation in Data I (Rose
(2005)) is 13974. While we will only consider the cases where the simulated sample size
ranges from 100 to 800. There are two reasons why we shrink the sample. The first reason
is that the computation is heavy when we consider large samples; the second reason is that
the dependence between covariates in the real data will reduce the information that the
sample contained. Table 6 shows that in the model we have one dependent variable trade
and fifteen independent variables. The meaning of these variables is discussed in the next
section. The value of dependent variable is strictly positive. Among the fifteen covariates, we
have six continuous variables and nine discrete variables. In the following simulation process,
the nine discrete variables are simplified to independent Bernoulli random variables with the
same mean since the incidence for landl and island equaling two are trivial (1.4% and 4.3%
respectively). For the six continuous covariates, lyi and lyj are independently generated from
the same distribution, and the same are [yhi and lyhj.

Figure 1 shows the histograms and the estimated kernel densities of four continuous vari-
ables: lyi, lyhi, ldist and landap. It can be seen that lyh: and landap are nearly normally
distributed, Idist is likely to be lognormally distributed, and lyi is bimodal-normally dis-
tributed. Our data generating process is based on these observations. The histograms in
Figure 2 show the density of parent sample which are the same as those in Figure 1. Note
that the left-upper figure are rescaled. After using maximum likelihood method to fit the
data, we obtain the parameters used for data generating process. lyi (lyj) is generated by
bimodal normal density 0.85N (8.26,0.97%) + 0.15N (9.92,0.05%), lyhi (lyhj) is generated by
normal density N (—0.45,2.34%), Idist is generated by lognormal density log N (2.10,0.10%),
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and landap is generated by normal density N (0.59,3.65%). The density functions are shown
as the curves in Figure 2.

The specified model we consider is a multiplicative error model
Trade; = exp (z;3)&;, i=1,...,n

where ¢; is the random error independently generated from |N (0,0?%)|, a truncated normal
distribution with mean 1, where o = \/? and e is the Euler’s number. In the following
simulation, the value of n varies case by case. In Figure 3, we set n = 400. Figure 3 shows the
density of statistics for the simulated data and the corresponding value of statistics for the
parent sample. Five statistics are considered: the mean, the standard deviation, the median,
the minimum, and the maximum. Instead of using the specified model, we generate the data

using a slightly different model
Trade; = [exp (2}0) +n Y26 exp ()]s, i=1,...,n

where Z; is a subset of z; which contains the six continuous covariates and ¢ is a six-dimensional
column vector of ones. 4, a scalar, is used for standardizing the local alternatives. In our
simulation, § = %. The curves represent the estimated kernel density function
of corresponding statistich for log (Trade;). The vertical straight lines are the value of cor-
responding statistics for the parent sample. We can see that the simulated log dependent
variable is well approximated. The interesting part is that all the five critical statistics are
generated with reasonable ranges in contrast to the real data. In this way, we conclude that

the parent sample is well approximated by our data generating process.

Specification Testing

The null hypothesis and the local alternative hypotheses we consider are

Hy : E(Trade;|X;,) = exp (z0)
Hy(nY?) : E(Trade;| Xin) = exp (x8) + ecn~ 25 exp (#1)
The data generating processes for the null hypotheses and the local alternative hypotheses

are specified as

DGP4 : Trade; = exp (z,0)
DGP5(c) : Trade; = [exp (z}3) + cn 2§ exp (¥}1)] &
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where ¢; ~ |N (0,me/2)|. Z; is a subset of x; which contains the six continuous covariates
and ¢ is a six-dimensional column vector of ones. The number of observations n = 100, 200,

400, and 800. 9, a scalar, is used for standardizing the local alternatives. In our simulation,
_ std(exp(ac;,é’))

‘ std(exp(i&%a)) .

are in 0.05 significance level.

and ¢ = 1 or 2. The simulation results are shown in Table 4. All the results

From the first two columns we have that only our MDD test has the reasonable sizes for
small samples, n = 100 and 200. When the sample is large, n = 400 and 800, we can see that
only MDD test and Z&LW test have nontrivial power. HM test and ICM test basically fail
in this case. These results coincide with the previous results of linear cases in Table 2 when

we have many covariates.

2.5 Testing the Functional Form in Gravity Equations

In this section we apply our test to various datasets that are used to study the gravity

equations in economics.

2.5.1 Model

Since its introduction by Tinbergen (1962), the gravity model has been widely used in inter-
national economics to explain the flows of international and subnational trade. Theoretical
considerations on the proper use and deviations from the gravity model have been a topic of
considerable interest in the literature; see Feenstra, Markusen, and Rose (2001), Anderson
and van Woncoop (2003), Henderson and Millimet (2008), among others. Kepaptsoglou, Kar-
laftis, and Tsamboulas (2010) review the empirical literature on gravity models from 1999 to
2009.

Of our particular interest is the functional form specification in gravity models. Following
Anderson and van Woncoop (2003) and Santos Silva and Tenreyro (2006), we use T;; to
denote the bilateral trade flow between country/region i and country/region j. In its simplest
form, T;;, is proportional to the two countries’” GDPs, denoted by Y; and Y;, and inversely
proportional to their distance, D;;. More generally, we have

T, = ao¥" Y} iy

ij

where «g, a1, ag, and a3 are unknown parameters. In practice, researchers often control other

country characteristics and consider two empirical stochastic versions of T;;, which are called
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the level model and the log model (see Henderson and Millimet (2008)):
Level Model: E(T;]Y3, Y}, Dij, Xij) = aoY™' Y D exp(X};7), (2.5.1)

Log Model: E(log T3]Y3, Y}, Dij, Xij) = Bo + Bilog Y; 4 Balog Y + f3log Dy + X4;5.2)

where By, 51, B2, and [ are unknown scalars, X;; is a vector of other covariates, and 7 is a
unknown vector.

The linearity in the log model (2.5.2) simplifies the estimation procedure. Santos Silva
and Tenreyro (2006, ST hereafter) highlight various issues associated with the gravity esti-
mations estimated in log form. For example, the OLS estimation of the log model would be
problematic when there are many zeros of T;;. By omitting observations with zero values
of trade, the estimates are subject to the notorious sample selection bias. In addition, the
log-linear specification also generates systematic bias as a consequence of Jensen’s inequality.
These problems can be overcome by estimating the level equation in (2.5.1) using nonlinear
estimator. ST propose the Poisson pseudo-maximum-likelihood (PPML) estimator based on
the level model that becomes the new fashion in trade to estimate the gravity equation (c.f.,
Bosquet and Boulhol (2009)). It is shown that heteroskedasticity in the multiplicative error
in the level model makes the log-model-based estimator biased. Since the model specification
assumption is imperative in their analysis, they compare the PPML estimator with several
other methods and apply the Ramsey’s (1969) RESET method to test for the functional
form. Nevertheless, it is well known that the RESET test is an inconsistent test, can only be
used to test for neglected nonlinearity in linear models, and should be replaced by consistent
specification tests to ensure reliable inferences.

Below we will apply our MDD test and its competitors to test the correct specification of
the gravity equations in both level and log forms. Since the gravity equations can be estimated
with both panel and cross-sectional models and data, one should conduct the analysis for both
types of model and data. But because we have only developed our specification test theory for
cross-sectional data (and the other nonparametric tests are mainly studied for cross-sectional
or time series data but not for panel data), we will follow Henderson and Millimet (2008) and
focus on the cross-sectional model and data below and leave the case of panel data for future

research.
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2.5.2 Data

We consider four datasets, which are summarized in Tables 5-9.2Table 5 gives brief descrip-
tions of these datasets.® Tables 6-9 report the summary statistics for these four datasets,
respectively.

The first dataset is used in Rose (2004) and it covers bilateral trade flow for 180 countries
from 1980-2000. Martinez-Zarzoso (2013) uses the data of year 1990 to evaluate different
estimation methods for the gravity models and to test the model specification with Park-type
tests, which are, again, not consistent. In order to compare with the results in Martinez-
Zarzoso (2013), we also use only the data for year 1990.

The second dataset is taken from ST. It covers bilateral trade flow for 136 countries in
year 1990. The major difference between this dataset and the first one is that the value of
bilateral trade is allowed to be zero here but not in the first dataset. Because of the zero-value
of trade flow, one cannot directly log-transform the dependent variable. The general practical
solution is to add a small number, like 1 in our case, to make it always positive. It is worth
noticing that both the first and second datasets contain about a dozen of covariates.

The third dataset is from Glick and Rose (2002). It covers bilateral trade flow for 132
countries from 1948-1997. Henderson and Millimet (2008) use the data of year 1995 to
compare the performance of the log and level models. Thus we only consider the data of year
1995 as well. It contains less number of observations and less number of covariates than the
first two datasets.

The last dataset is from Millimet and Osang (2007) and it covers 96 U.S. states from
1993-1997. Henderson and Millimet (2008) also utilize this dataset. We only use the data of
year 1997 that contains about two thousand observations and five covariates.

For consistency, we unify the variable names across the four datasets; trade denotes the
level value of total exports from one country /state to the other; lyex (lyim) and lypex (lypim)
denote income and income per capita in the exporter (importer) after taking log; ldist denotes
the log of geographic distances between two districts. border is a dummy variable that takes
value one if a common border is shared and zero otherwise; comlang is a dummy that is one
if a common language is shared and zero otherwise; colony is a dummy that is one if they are

colonized each other and zero otherwise; landl is the number of landlocked districts in the

2For more datasets, we refer the readers to Kepaptsoglou, Karlaftis, and Tsamboulas (2010).

3The first and the third datasets are both downloaded from Andrews Rose’s website:
http://faculty.haas.berkeley.edu/arose/. the second dataset is downloaded from the “Log of gavity”
webpage: http://personal.lse.ac.uk/tenreyro/LGW.html. The fourth dataset is downloaded from the data
archive of Journal of Applied Econometrics: hitp://qed.econ.queensu.ca/jae/. The authors are grateful to
Reuven Glick, Daniel Henderson, Daniel Millimet, Andrews Rose, Santos Silva, and Silvana Tenreyro for
making the data available.
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pair; landl_ex (land_im) is a dummy that is one if the exporter (importer) is landlocked and
zero otherwise; island is zero if they are neither islands, one if one of them is island, and two
if both of them are islands; landap is the total area of both districts after taking log; com frt
is a dummy that is one when the trading partners belong the the same trade agreement and
zero otherwise; custrict is a dummy that is one when the trading partners share a common
currency and zero otherwise; comcol is a dummy that is one if they were ever colonies after
1945 with the same colonizer and zero otherwise; lremo_ex (lremo_im) is the log value of
exporter’s (importer’s) remoteness as described in ST; open is a dummy that is one if one of

them is in a preferential-trade agreement; and home is a dummy for intrastate trade.

2.5.3 Test Results

We implement the four model specification tests as considered in the simulation section. Table
10 show the test results for the level model and the log model.

For the log model, we summarize the findings as follows. First, both our MDD test
and Z&LW test reject the log model at all conventional significance levels (0.01, 0.05, and
0.10). This is consistent with our simulation findings as both tests have well behaved size and
reasonable power in various scenarios. Second, despite the low power of the HM test in the
case of many covariates and the inconsistency of the RESET test, both tests also reject the
log model for all four datasets. Third, the ICM test yields different conclusions for different
datasets at the 5% significance level. For example, it fails to reject the log model for datasets
[ and IV and rejects the log model for datasets II and III. We conjecture that the failure of
rejection may be due to the serious under-size distortion and low power property of this test.
In sum, across the top panel of Table 10, we can conclude that the log model can be safely
rejected.

For the level model, the findings are mixed. First, our MDD test reject the level model
for all four datasets at 10% significance level, which shows its coherent performance among
different datasets. In particular, it reject the level model for the Data I, II, and III at 1%
significance level. Second, all the other three tests deliver different conclusions for different
datasets. For example, the two kernel-based nonparametric tests, Z&LW test and HM test,
reject the level model at the 1% level for datasets I and II and fail to reject the level model at
the 5% level for datasets I1I and IV, but these two tests yield different conclusions for dataset
IV at the 10% significance level. In addition, the ICM test fail to reject the level model at
the 5% level for all four datasets but can reject the level model at the 10% level for Data III.

The findings based upon our MDD test is inconsistent with ST’s findings that support the
level model and the results in Henderson and Millimet (2008) and Martinez-Zarzoso (2013)
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that support both models, which may be due to the lack of power of their tests.

2.6 Conclusion

In this paper we have proposed a novel consistent model specification test based on the MDD
of the error term given the covariates. The MDD equals zero if and only if error term is
conditionally mean independent of the covariates. It does not require any nonparametric
estimation under the null or alternative and is applicable even if we have many covariates in
the regression model. We have established the asymptotic distributions of our test statistic
under the null and under a sequence of Pitman local alternatives converging to the null at the
usual parametric rate. Simulations demonstrate that our MDD test has a superb performance
and generally dominates its competitors in a variety of scenarios. We apply our test to study
the correct specification of functional form in gravity equations for both the level and log
models. For all the datasets, we reject the log and level model coherently at 10% significance
level. However, its competitors show mixed testing results for different datasets.

Several extensions are possible. First, it is easy to extend our method to test the correct
specification of a semiparametric models, e.g., partially linear, additive, or single index mod-
els. In this case, one needs to estimate the semiparametric model under the null and apply
undersmoothing to ensure that the bias in the semiparametric estimation is asymptotically
vanishing. Second, one can extend our test to test for the correct specification of a conditional
mean model in panel data models where complication arises due to the presence of unobserved
individual heterogeneity. Third, we conjecture that it is also possible to extend the distance
covariance or MDD to measure the dependence between two random vectors/variables con-
ditional on a third one that is dimension-free. Recently there is a growing interest in testing
conditional independence; see, e.g., Su and White (2007, 2008, 2014), Song (2009), Linton
and Gozalo (2014), and Huang, Sun, and White (2016). But all of these tests are subject
to the curse of dimensionality issue and are generally not applicable when the dimension of
conditioning variable is large (e.g., larger than 6). So it is worthwhile to consider a dimension-
free measure of conditional dependence based on which a sample analogue can be constructed
and used to test for the null of conditional independence. We leave these topics for future

research.
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2.7 Appendix

2.7.1 Proof of the results

Proof of Proposition 2.2.1. (i) Note that

MDD* (¢|X)* = -E[ee! | X — XT||] +2E [¢|| X — XT||] E [¢]
= —E{-E@E] [ - E ()] X - X} + BEPE[[X - x|
= MDD (e|X)* + [E(e)*E [||x — XT|]. (2.7.1)

The moment conditions in the proposition imply that MDD* (¢|X)? is finite by the Cauchy-
Schwarz and triangle inequalities. The first term in (2.7.1) is nonnegative by Theorem 1 in
Shao and Zhang (2014) and the second term is nonnegative. It follows that MDD* (| X)* > 0.

(i) First, MDD(£|X)* = 0 if and only if E (¢|X) = E (¢) a.s. by Theorem 1 in Shao and
Zhang (2014). If E(¢|X) = 0 a.s., then E (¢) = 0 by the law of iterated expectations and
both terms in (2.7.1) are zero, implying that MDD* (¢|X)* = 0. If MDD* (¢|X)* = 0, we have
MDD(g|X)? = [E (¢)]* = 0, implying that E (¢|X) =E(¢) =0. R

To prove Theorem 2.3.1, we suppress the dependence of (Y;,, Xiy,, €in) on n and write it sim-
ply as (Yi, Xi, ;). Let & = {(X[, ;). Recall that ;; = || X; — X;||, 9i5(8) = 09(Xin; 8)/08,
gis = 9i8(Bo), S (B) = limp 00 E[gis(8)gis(8)], S = S(ﬁo) So = limpo0 3 2211 B (gis)

S = limy oo o5 2 ory > o1 E(gipkij), and Sy = limy, o0 25 Doy > E (gzﬁg]ﬂ/{i,j) . Let
2 ..
s = E(k12) and gig(8) = 2 gég(g/ﬁ ). Let E; denotes expectation with respect to variables

indexed by 4 only and E; ; denotes expectation with respect to variables indexed by 4 and j
only. For example, E; (k; ;) = E (k;;|X;) when i # j and E; 5 (k1 k2,) = E (k1,K2,|X;) when
i £ 1,2

Proof of Theorem 2.3.1. Since &; = Y; — Y; = 9(Xi; B) — g(Xi;B) +¢; = ¢; — r; where
ri = 9(Xy; B) — g(X;; 8), we decompose T,, as follows

T, = ——ZZ i —1i)( i) Kij + ZZ i) Kij— Z(sk—rk)

1<z;éj<n 1<z7$j<n
= ——E Essjﬁ”—l— E Ee,mw E Er + — g ESZ’I’]/{” —E Es,/{” g Tk
1<Z7é]<n l<z7éj<n 1<z;é]<n 1<17$j<n
DN Zé‘k——ZZ%*’vw DIPRLH 2m
1<i#j<n 1<i#j<n 1<z7£]<n

Tnl + Tn2 + TnS + Tn4 + Tn5 + Tn6 + Tn?a say.
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Lemmas 2.7.1-2.7.7 below establish the asymptotic properties of T},,,,, m =1,...,7.

Lemma 2.7.1. T,,; = —n(g)il >3 hl(fi,fj) + Op(l) =0, (1), where hl(fi,fj) = Ei€jKi ;-

1<i<j<n
PTOOf. Tnl = —TLT_I X nUnl, where Unl = (g)_l ZZ ¢(1)(§z,§]) and 1/)(1)<§u£j) = &€k -

1<i<j<n
Apparently, (V) is symmetric in its two arguments, F, [w(l)(&, 52)\52} =0, and

E [pM (&, &)%) = E [e16} | X1 — X)) <4E [331X0 7] = 4E [3 | X |*] B [€3] < oo

by Assumptions A.1 and A.3. So U,; is a second order degenerate U-statistic satisfying the
conditions of Theorem 1 in Section 3.2.2 of Lee (1990, pp. 79-80). It follows that

nUnt > AP (Z2 - 1),
v=1

where Z,’s are [ID N (0,1) and A5 are the eigenvalue of the integral equation [oW (&, &) f (&) dF (&
= Af (&) with f and F being the probability density function (PDF) and cumulative dis-
tribution function (CDF) of ;, respectively. Consequently, T,,; = —n(g)fl Yo ha(&in &) +

1<i<j<n

0p(1) = 0, (1), where (&, &) = eig51 -

Lemma 2.7.2. T,5 — 2Eeik; o = n( ) > 2 ha(&i, &) +0,(1) = Oy (1), where hy(&;, ;) =
1<i<j<n
i€j[Er(rin) + Er(rj)].

Proof. First, we make the following decomposition:

Tho = _Z ZE'LH@] ng

1<z;éj<n
9 2
= ﬁ E E €Ki j + E E E Ei€jRij + E E E E Ei€kRi j
1<ij<n 1<i#j<n 1<i#j#k<n

Tho1 + Thoo + Thos, say.

By the law of large numbers (LLN) for the second order U-statistic, T2 = 2E (e2r12) +
n(n—1)(n—2)

0p(1). By Lemma 2.7.1, T,90 = —3 m = 0, (%) Next, notice that T3 = =3 X
nUpn where Upy = () ZZZ@ZJ(Q)(&,@,&) and ¥ (&, &5,6) = $(eienkiy + cigjkin +
1<i<j<k<n

€j€kRjk + €j€ikK Kk + EREikyk + EkEjRik). Noting that ¢(2) is symmetric in its three arguments,

E[p® (&1, 6,83)] = 0, B[P (&1, &, &)16] = 0, and E [P (&1, &, &) |61, &) = 3e162[(Es (r1,3)+
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By (2)] = S (61, 60)- Let 1 (61,60, 6) = 0P (&1, &, &)= 157 (61, &) 40 (&1, &)+ (€, &)
By the Hoeffding’s decomposition (e.g., Lee (1990, p.26)), we have

Unz = 3HY) + HY)

where HQ(Z) = (g)il ZZ héQ)(Sz,fj) and Héi) = (g)il ZZZ h’.i(f)(SZ?g]?fk) By moment

1<i<j<n 1<i<j<k<n
calculations, E[Héi)] = 0 and Var[H?Ei)] = O (n?), implying that Héi) = 0, (n%¥?). In
addition, Héi) is a standard second order degenerate U-statistic such that nHéi) =0,(1). It

follows that .
Tn23 = n(g) Z ZhQ(gm gj) + Op(n_1/2) - Op (1) )

1<i<j<n

where hy (&, &) = €i5[E1(ki1)+E1(k51)]. Combining these results, we have Ty,s—2E (1K1 2) =

n(3) " Y hal& &) +0,(1) = 0, (1) -
1<i<j<n
Lemma 2.7.3. T,5—2E (51%&1 29155 925) = n( ) <2<Z< hs(&iy &) +0,(1), where hg(&;, &) =
X (0,55 B (gustis) + 0LpSEn(grsisn)]. o
Proof. By the second order Taylor expansion,
ri = g(Xy; B) —9(Xi; 80) = gg,@(B — o) + %(B — 50)191'56(5)(5’ — Bo), (2.7.2)

where B lies between B and [y elementwise. It follows that

Tn3 = %2251'7"]‘/@7]‘

1<i#j<n
. ) .
= <ﬁ - 50) EZ Zgjﬁé‘mz‘,j + (5 - 50) Z Z%ﬂﬁ 5 Bo)eikis,
1<i#j<n 1<z;é]<n
= Tz + Tz

By Assumption A.1-A.3, we can readily show that % Y200 gjggikiy = O, (nl/z) and B— B, =

1<i#j<n

O, (n"/?) . Then we have Tp3; = Tp31 + 0, (1), where

n31 5 Z gkgk;ﬁs Z Zgjﬁgl"{:’b YR

1<i#j<n
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Next, we make the following decomposition:

T = —Z 25291/55 9ipkij + %Z ZEigjg;/BsilgjﬁHi,j + %Z Z Z€i€k925571£}jﬁ/€i,j

1<i#j<n 1<ij<n 1<itjAk<n
= Tusi1 + Thzi2 + Thsi s

Using the WLLN for U-statistics, we can readily show that T},3;; = 2E [5%/@1 293[35_1925] +
0p(1) and Tp32 = 0,(1). Next, notice that T),31 3 = W xnUy,s3 where U,3 = (3)_1 SIS ST pB(g, &

1<i<j<k<n
and V®)(&, &5, &) = 3(ciend;pS  grpkijTeicighpS  giskinteiendisS  grpki; +€i€i04ksS  Giskn
+er€idj3S ™ giphin +€k<€7j1gz’~55_1gj5f<ck7i) . Using Hoeffding-decomposition method, we can read-

ily show that Ups = (5) > > hs(&, §)+0,(n™/2), where hy(&, &) = ie;19;85 " Ey(g )+

1<i<j<n

gi,BS—lEi(gz{gffi,j)] for i # j. Then Tp313 = n(’;)_l 22 ha(&, &) +op(1) and

1<i<j<n

Tos1 — 2K [3k1,20155 " g25] —n( ) DD ha(6, &) + op(1).

1<i<j<n

For any € > 0, we can apply Assumption A.3(i), the Markov inequality and the dominated

> na)

n
E gikij| 1
i=1

E EiKij| = NE
z 1,j#i

convergence theorem to show that

max —E Eikij| = < nmax P
1<j<n |n ’ 1<j<n

1
< — max E
84 1<j<n

n
E Eikij

i=1,j#i

}

It follows that maxi<j<y |2 3" | €ikij| = 0,(1). Then by Assumption A.3(ii) and the fact
that 3 — By = O, (n='/?), we have

Thze = (B—ﬂo> Zzgyﬁﬁ B 50)&/%]

1<17éj<n

= (B—%) Zggﬁﬁ B 5o) Z&Hw

52| {3 0] f < oy

= o(l).

IN

max
1<j<N
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— 0,(1)0,(1)0, (1) = 0, (1).

where the second equality follows because r;; = 0 when i = j. Consequently, T,,3—2E (e3r1297 55 g25) -

n(g)il 222 ha(&i, &) + op(1). o

1<i<j<n

Lemma 2.7.4. T,4+2E (€351 26155 "g35) = n(3) " S5 ha(€, &) +0,(1), where ha(&:, &) =

1<i<j<n
X[gjﬁsi E12(g15ki2) + ng’ E12(g15%52)]-
Proof. By (2.7.2) we have
T = 23S
n—z- "n

1<i#j<n k=1

- __Z Z&'L{” ngﬁ 6 Bo) — ZZ&Z}{” (ﬁ ﬁo) ngﬁﬁ B Bo)
1<i#j<n 1<z;é]<n

Thar + Thao.

Noting that & Y>> k;; = O, (n7'/?), we can readily show that Thu1 = Thu1 + 0, (1),

1<7,7£]<n
where
Tn41 = Z Zgzﬁz j Z gk;,BS Z gip€l
1<z;é]<n
_ 2 _ _
S S Y et i — 23S Y el s+ Oy
1<iF#j#k#I<n 1<i#j#k<n

Tn41,1 + Tn41,2 + Op(n_l/Q).

Write Tqp ;= "2 ), where Upg = ()7 30 30 3 0@ (6,5, &, &), W (6, &. 6, &)

1<i<j<k<I<n
= —1—12 > ou Eiéfj/‘fz‘,zg;BS’lgjﬁ, and )_,, denotes the summation over all the 4! kinds of permuta-

tion of {4, j, k,[}. By Hoeffding decomposition, we can readily show that U,s = (}) Y haén &)+

1<i<j<n

0,(n=3/2), where hy(&;, &) = —cig5[9)3S T By 2(giki2) + VST E12(g18k,2)]. In addition,
Tha = —2E (e7k1,29155 " g3s) + 0p(1). It follows that

—1
o n
Thay + 2E (63k129155 ' g33) = n(Q) DY (8, &) + 0p(1).

1<i<j<n
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For T,,42, we have

S {n |2- &HQ} (] + 0, (1)} = 0, (1) 0, (1) 0, (1) = O, (n*72).

n42
1<i#5<n
Consequently, we have Ty + 2E (35129155 ' g35) = n(} ) D> ha(&, &) +op(1). O
1<i<j<n
Lemma 2.7.5. T,5+2E (61:‘12 39155~ g35) = n( ) Y00 hs(&i, &) +o,(1), where hs (&, ;) =
1<i<j<n
—cigj(9is +958)' ST E (g1551.2)-
Proof. Note that
T = =230 3 ramisy ng
1<i#5<n
1 Sn 1 <
= ——Z ZQZ@ 5 Bo)kij— Zé?k — P = ﬁo)lﬁz Z%ﬁﬁ(ﬁ)(ﬁ - BO)K%‘JE Zﬁk
M it<n 1<i#j<n k=1
= Tus + T

Noting that + 37/, e = O, (n7/?), we can readily show that Ty51 = Tps1 + 0, (1),

Tn51 = Z Zgzﬁs Z 9kpEKK,; Z €l

1<z;éj<n
_ 2 _ _
= —;Z DD mnaniggipS ke — > D Y £kkiidisS grs + Opln 1)
1<izj#kAlI<n 1<ij#k<n

= Tn51,1 + Tn51,2 + Op(n_l/Q)a

Write Tn51’1 = n(nfl)(rTLLZ2)(n73) XTLUn5 and Un5 - (Z) _12 Z Z Z¢(5) (517 §j7 5/@7 gl)a 1/}(5) (gm §j7 é-ka gl) =

1<i<j<k<i<n
—15 24. gi€ikraVgiS™ Vg, and Y, denotes the summation over all the 4! kinds of permu-

tation of {i,7j,k,(}. By Hoeffding decomposition, U,; = (2) SN hs(€, &) + Op(n=32),

1<i<j<n

where hs5(&i, &) = —€igj(gis+9j8)'S T E (g1gr12). Then Tps1 = n(;‘)*1 D> hs(&iy &) +o,(1).

1<i<j<n

In addition, T},51 2 = —2E (5%/@2’3%55*1935) + 0,(1). Therefore,

Tos51 + 2K (81@39155 93p —n<) ZZ% &, §j) + op(1).

1<i<j<n
Following the analysis of T},42, we can readily show that T},50 = O, (nfl/ 2) . Consequently, the
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lemma follows. O

Lemma 2.7.6. T,6+E (c29/55 555 gis) = n(2) " X ho(&, &) 0p(1), where ho(&:, &) =

1<i<j<n

—EiEj xggﬂs’ngS’lgﬂ;.

Proof. Using (2.7.2), the fact that 5 — Gy = O, (n=1/2) and Assumptions A.2 and A.3(iii), we

can readily show that

1<i#j<n

= 5 /80 Z Zgzﬁgjﬂ'%z] B 60) + O ( _1/2)

1<z;é]<n

- — (3 - 50)/52(5 — Bo) + 0, (1)

_ - Z £igl5S 1887 Z 95565 + 0, (1)

7j=1

= ——Z Zs sjgzﬁS 16,571 gig — — 2529255 1525_1g,~5 +0, (1)

1<z;é]<n

The1 + Theo + 0, (1),

where Sy = lim,,_,o n—12 Y>3 E (gwg;ﬂmi,j) . Obviously, T, = "(n L) ( ) > (—aisjggﬁS_lSzS_lg;

1<i#j<n 1<i<g<n
+Op<1) = nUnﬁ"_Op(l) where Unﬁ = (g)_l Z Z hﬁ(&, 5]) and hﬁ(é-i’ é]) = —é?i&?jgl{ﬁs_lSQS_lgjg.
1<i<j<n
Then T61 = n(g)_l > hel&ir &) +op(1).
1<i<j<n

In addition, T),¢0 = —E (gfggﬁS*SgS_lgw)—kop( ). It follows that T;,6+E (52gzﬁS 19,57 gi5)
o —1
=n(y) 22 k(& &) + 0p(1). [
1<i<j<n
Lemma 2.7.7. T,,,—2E (5 9igS~ 181508~ glﬁ) = n( ) Y37 he(&iy &) +op(1), where hy(&;,&5) =
1<i<j<n
€i€j (925571515657193»5 + 995571518637191‘5) .
Proof. Using (2.7.2) and the fact that 3 — 8, = O, (n='/?) | we can readily show that

Tn7 = _Z Zrz/{z v Z Tk

1<z;éj<n

= Q(B - Bo)/ 5 Z Zg’tﬂ/{l] ngﬁ B BO + O ( 1/2)

1<z¢j<n
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= 2(8 — Bo)' S 2925(3 — Bo) +0p (1)
k=1
2 > / —1 1 - / —1 -
= EZSi‘ng 51 Hngﬁ S Zgjﬁffj —l—Op(l)
=1 j
- —Zglgl 15,505 Zgjﬁaj +0,(1)
7j=1

_ - Z GlseiST 818587 Z ;865 + 0p (1)
p —

= A S eSS g Zégws 15,545 gi5 + 0y (1)

1<i#j<n

Tor + Thre + 0, (1) .

where S; = lim,, o0 # Y>> E(gigkij) and Sy = lim,,_,o % >or 1 E(gip) . Apparently, T,7 =

1<i#j<n
% X nUy7 4+ 0,(1) = nUpr + 0,(1) and Ty72 = 2E (EQgZBS 151565_191-5) + 0,(1), where
Unr = (3)112;2 h(&i, &), and hq(&,&5) = €ij (918~ 91905 gj + 955151555 gip). Tt
<i<j<n

follows that T,; — 2E(e7g}35 715155 xS gis) = n(; ) Y3 he(&n &) + 0p(1). O

1<i<j<n

Combining the results in Lemmas 2.7.1-2.7.7, we have

T, = B, + n@)_lz 3 i hn (6:,65),

1<i<j<n m=1

where each h,, is the kernel function of a second-order degenerate U-statistic. Thus n(}) - ST
1<i<j<n

is a second-order degenerate U-statistic with kernel Z:nzl him(&,&;). Then by Dunford and
Schwartz (1963. p. 1087) and Theorems 2.1 and 2.3 in Gregory (1977), we have

T, — B1—>Z)\ (22 —1) and T, iﬂzﬁ,

v=1
where By = 37 E[hm(&,&)], 2,’s are IID N (0,1), and \,’s are the eigenvalues of the

integral function for the following eigenvalue problem:

/ Zh (&1,6)f 52)dF(f2) f(fl)-
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Here, Zjn:l him(&1, &) = €169h(X1, X3) where

hX1,Xy) = —rip+ [Es(k13) + Es(kas)] + 955 'Es(gsshinz) + 9155 Ea(gsprios)]
—955571E3,4(93B"11,4) - 915571E3,4(935/f2,4) — (915 + 925)/5715215 (g3pr3.4)
S5, o + s 505 s + gy 525 g (2.7.3)
We have
o 7
(&) = [ Y e @)fere)
© m=1

e}

— / e160h( X1, Xo) f(&)dF (&)
_ . / £h(X1, X) F(&)dF (&)

Then we can write f(é’l) = ¢, f(X1) by properly choosing f(-). Similarly, f(gz) = ey f(X2).

The integration equation can be rewritten as

/ " (X0, X) FOG)AF(E) = M (X))

[e.9]

This completes the proof of Theorem 2.3.1. B

Proof of Theorem 2.3.2. Let a,, = n~ /2. Note that

& = e+ 9(Xi; B) — 9(Xi; B)

- it a8~ o) + 5B — BoY guas(B) (G — o),

where E(g;]X;) = a6(X;) under Hj (a,). Note that the NLS estimator J is also y/n-consistent
under H;(n~'/2), we can readily follow the proof of Theorem 2.3.1 and show that

~ 1
Tn—B:—E E Eih( X5, X 1
1= eigjh( i)+ op(1)

1<i#j<n

under H; (n~*/2). The conclusion then follows from Theorem 2.3 in Gregory (1977). B
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Table IV. Empirical Size and Power of Nonlinear Cases in 5% significance level

DGP n | MDD Z&ILW HM  ICM
DGP4 | 100 | 0.072 0.084  0.098 0.082
200 | 0.640 0.268  0.116 0.080
400 | 0.626 0.224  0.064 0.030
800 | 0.618 0.214  0.066 0.026
DGP5(1) | 100 | 0.130  0.144  0.190 0.168
200 | 0.650 0.306  0.234 0.194
400 | 0.604 0.180  0.058 0.024
800 | 0.610 0.188  0.048 0.022
Table V. Datasets Description
No. | Reference Obs Object Year
I | Rose (2005) 13974 | 180 Countries | 1990
IT | Santos Silva and Tenreyro (2006) | 18360 | 136 Countries | 1990
IIT | Glick and Rose (2002) 4315 | 132 Countries | 1995
IV | Millimet and Osang (2007) 2091 | 96 U.S. States | 1997
Table VI. Summary Satistics for Data I
Variable | Obs Mean Std. Dev.  Median Min Max
trade 13974 2.06E4+08 1.93E4+09 2.40E+06 0.0000134 &8.68E+10
lyi 13974 8.512 1.075 8.585 6.202 10.183
lyj 13974 8.512 1.075 8.585 6.202 10.183
lyhi 13974 -0.454 2.341 -0.792 -6.454 5.424
lyhj 13974 -0.454 2.341 -0.792 -6.454 5.424
ldist 13974 8.232 0.797 8.434 3.684 9.422
border 13974 0.024 0.154 0 0 1
comlang | 13974 0.226 0.419 0 0 1
colony 13974 0.017 0.130 0 0 1
landl 13974 0.245 0.462 0 0 2
island 13974 0.398 0.571 0 0 2
landap 13974 0.593 3.653 1.213 -15.907 9.170
regional | 13974 0.018 0.134 0 0 1
custrict | 13974 0.010 0.098 0 0 1
comcol 13974 0.116 0.320 0 0 1

164



Table VII. Summary Statistics for Data II

Variable Obs Mean Std. Dev. Median  Min Max
trade 18360 1.72E+05 1.83E406 17 0 1.01E+08
lypex 18360 15.744 1.893 15.891 10.646 20.854
lypim 18360 15.744 1.893 15.891 10.646 20.854
lyex 18360 7.505 1.640 7.311 4.608 10.735
lyim 18360 7.505 1.640 7.311 4.608 10.735
ldist 18360 8.786 0.742 8.954  4.877 9.899
border 18360 0.020 0.139 0 0 1
comlang | 18360 0.210 0.407 0 0 1
colony 18360 0.170 0.376 0 0 1
landl_ex | 18360 0.154 0.361 0 0 1
landl_.im | 18360 0.154 0.361 0 0 1
Iremo_ex | 18360 8.947 0.264 8.947 8.491 9.604
Iremo_im | 18360 8.947 0.264 8.947  8.491 9.604
comirt 18360 0.025 0.156 0 0 1
open 18360 0.564 0.496 1 0 1
Table VIII. Summary Statistics for Data III
Variable | Obs Mean Std. Dev.  Median Min Max
trade 7640 1.84E+06 1.75E+07 1.93E+04 6.33E-04 8.79E-+08
Iremo_ex | 7640  24.771 2.144 25.090 18.231 29.238
Iremo_im | 7640  23.378 2.034 23.276 18.231 28.530
ldist 7640 8.167 0.799 8.354 3.783 9.422
custrict 7640 0.011 0.102 0 0 1
comlang | 7640 0.199 0.400 0 0 1
comfrt 7640 0.021 0.143 0 0 1
border 7640 0.025 0.157 0 0 1
landl 7640 0.314 0.513 0 0 2
island 7640 0.355 0.546 0 0 2
Table IX. Summary Statistics for Data IV
Variable | Obs Mean Std. Dev.  Median Min Max
trade 2091 3.19E+03 1.57E+04 6.57E+02 0.984 4.81E+05
ldist 2091 6.807 0.798 6.943 2.944 8.076
Iremo_ex | 2091 -0.070 0.189 -0.071 -0.469 0.417
Iremo_im | 2091 -0.068 0.191 -0.070 -0.469 0.417
border 2091 0.125 0.331 0 0 1
home 2091 0.023 0.150 0 0 1
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Table X. Test Results: P-values

Model | Test Data I Data II Data III Data IV
Log MDD 0.0000  0.0000  0.0000 0.0000
Z&LW | 0.0000 0.0000  0.0000 0.0000
HM 0.0000  0.0000  0.0000 0.0000
ICM 0.0725 0.0100  0.0175 0.0500
RESET | 0.0000 0.0000  0.0000 0.0000
Level | MDD 0.0000  0.0000  0.3700 0.0725
Z&LW | 0.0000 0.0013  0.6650 0.1850
HM 0.0000  0.0100  0.6000 0.0775
ICM 0.1125 0.7875  0.0625 0.1300
2.7.2 Tables and Figures
Figure 2.1. Parent Sample of Covariates
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Probability Density

Probability Density

Figure 2.2. Simulated Data of Covariates
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Chapter 3

Estimation of Dynamic Multilevel
Panel Data Models with Fixed Effects

3.1 Introduction

With the rapid revolution of big data, traditional two-dimensional panel data models some-
times cannot fully describe the characteristics of sample structures. Consider the case of
observation station of air pollution (see Antweiler (2001)). The data of air pollution has
three-dimensions: time, country and city, in which the latter two are obtained from the loca-
tion of observation stations. Many panel data samples could be grouped in this way. Apart
from the nested models as the example of air pollution, nonnested multilevel data appear
everywhere as well. Bilateral trade can be modelled by a panel data model with three di-
mensions, which are time, importer indicator and exporter indicator (see Matyas (1997)).
An excellent work considering the estimation of multilevel fixed effects panel data models is
Balazsi et al (2018) (BMW hereafter). They proposed estimators for six panel data models
with different kinds of fixed effects and compared them to each other. They also provided the
Nickell Biases for those typical dynamic models. Nickell biases are defined as the asymptotic
biases in the dynamic panel data models (see Nickell (1981)). The inconsistency is produced
by the so-called incidental-parameter problem. In order to obtain consistent estimators, BMW
constructed the Arellano-Bonds GMM estimator (see Arellano and Bond (1991)) for a mul-
tilevel AR(1) panel data model. In a different way, Dhaene and Jochmans (2015) proposed

a split-sample jackknife estimation method to handle the Nickell biases problem in dynmic

IThis is a co-authered work with Liangjun Su.
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panel data models. One of the contributions of this paper is that we extend the jackknife
estimation method to the multilevel framework.

Table 1 of BMW summarized corresponding transformations to eliminate error compo-
nents for different structures. Intuitively, some models have more than one kinds of available
transformations and some transformations will ”over-clear” the fixed effects which leads to
efficiency loss. This paper firstly (to our knowledge) proposes the expression of Nickell biases
for within estimators of several popular three-dimensional dynamic panel data models and it
proposes split-sample jackknife estimators, which eliminate the biases.

To clarify the ambiguity of notations, for a three-dimension variable y;j;, the average
along index i is denoted as g = N;* vazll Yije. In the same way, 7i; = Ny Z;le Yijts
G = Ty G = (NMNo) T 00 02 wiges G = (M) 02 002 gt D =
(N, T) ™1 Zj\zl ST i, and G = (N N,T)~E oM E;le S yiji- Sometimes we need to
take average over t along 1 to 71" for y;;;_., we denote y’z(; ® = -l Zthl Yiji—r, analogouly,
75 = (M) S gigaw, and 5 = (NUNT) P S0  S70% ST e T the
identity matrix, we don’t specify the subscript when there doesn’t exist ambiguity. J is the
0 0

I
U =1Iyn @ Pyand I' = Iy, N, ® I'g. Note that our definition of I'y is different from the

definition in Balazsi et al (2018).

matrix with all the elements are 1 and Jy = Jy/N. ¥, = Ty =W, (I—pPy)~ ",

3.2 The General Within Estimators

This section discusses and extends the results of BMW. As in BMW, they considered six
dynamic panel data models with different error component structures. They are three-
dimensional panel data models indexed by 7, 7 and ¢, whose number of observations are
N1, Ny and T'. Note that for simplicity, we exclude unbalanced panel data models where the
sample size for i; and iy could be different. Also we assume that x;;; does not contain the
terms that fixed over ¢, j, ¢, or any combination of these three dimensions. The estimation
problem of S when x;;; contains fixed terms can be solved through the similar Hausman-Taylor

fashion as in the two-dimensional panel data models. (see Hausman and Taylor (1981)).

Model 1 yije =pyiji—1 + B Xije + @i + 75 + M\ + €iji;
Model 2 yije =pyiji—1 + B/Xijt +Yij + At + Eiji;
Model 3 yij =pyiju—1 + B'Xije + Vij + €ij;

Model 4 Yt =pyiji—1 + B'Xije + e + €415
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Model 5 yij =pyiji—1 + B/Xijt + i + Oé;t + Eijt;
Model 6 Yijt =PYiji—1 + B/Xijt + Vij + i + a;t + Eijt-

The models can be summarized as
The General Model y = py_; + X3 + D, 7, +e,

where y’s are specified as

/
(yllla"' y Y1175 "y YINa1y " S YINST s YNy1ls - YN LT, © 7yN1N217’”7yN1N2T) )

whose dimension is N1 No,T x 1, X is of dimension Ny N>T x d, [ is of dimension d X 1, ¢ is
the disturbance vector of dimension N1 N>T x 1, D, and 7,’s are column vectors of composite
fixed effects parameters.

Since the dummy matrix D, could be of not full culumn rank in some cases. There
are many ways to construct the dummy matrices with full column rank. In this paper, the
expressions of dummy matrices for model 1 to model 6 are respectively (see Table 1.1 of
Martyas (2017)) as follows.

(INI ® LNzT) ) (LN1 ® IN2 ® LT)* ) (LNINQ ® IT)*) ;
(I, ® 1), by, @ 17)7) 5

Inn, ®ur);

(
(
(
(In, ® tn, @ I7);
(
(

IN1 ® Z’NQ ® IT) Y (LNI ® IN2T)*> ’

D,
D,
D;
Dy
D;
Dg I, @ or), (Iny @ ey, @ I7)", (e, @ Inyr)™)

(
(

where (-)" denotes that the last column of the matrix inside the bracket is deleted. With
N1 N5T rows, they have full column ranks with ranks Ny + No+ T — 2, NyNo+T — 1, N1 N>,
N1T, N\T + NyT — 1 and NyNy + NiT + NoT — 2 respectively. For different models with
particular D,, the construction of 7, also varies by cases. These explicit expressions of 7,

help readers understand the construction of D, as they look complicated at the first sight.

/
1 :(ala"' y QN V10 7’7N2*17)‘17"' 7)‘T71)(N1+N2+T72)><1;
— A A / .
T2 _(,}/11"" y VIN2s " 3 VN1l """ 5 N1 Nay ALy " T—l)(N1N2+T_1)><17
—_— , .
T3 = (Y11, ViNay S YN T ,VNlNz)levQXp
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/
T4 :(04117"' , T,y AN, 704N2T)N2T><1;

/
- Qir, 00T, ANl Tt AN T )
7r5 B a* ... a* DY a* ... a* ’
) S 11 ) 1T ) = N11» ) N (T-1) (N1 T+N>T)x1
/
Vit s VINg, Tt VN1l Tt 5 YNIN,
T = y Q11 Qs NG Tt AN (T—1)
* * * *
» Q1 s N1 P Ny (T-1) (N1 Na+N1T+N2T—2)x1

The typical within projector is defined as an idempotent and symmetric matrix
Mp,=I1-D,(D,D,) ' D..

There exist other within projectors which will be discussed in the following sections. Note
that some projectors could be nonidempotent, though the projectors we consider in this paper
are idempotent. In particular, the linear combination of projectors could be a projector, but

it would not always be idempotent. The general model is tranformed to
MD,Z/y :pMD,Vyfl—i_MD,VXﬂ + MD,VE'

For two-dimensional panel data models, we can also write down the projectors in this way.
For example, consider a PAR-X(1) model with individual fixed effect

Yit = PYig—1 + Xy b+ o + €4
In matrix form,

y=py_1+XB + D 7 +¢

131:IN1 ® tp and T = (g, - - ,Ole)/

The within projector is defined as l\v/IDJ: I-D, (f)’llv)l)_l ]v)’1 The transformed depen-
dent variable is ¥;; 1 = yit — Ui., which eliminates the individual fixed effect component «;. The
fact is that there exist other possible transformations like ¢;t 2 = vit — ¥i. — §.+ + 4., which also
eliminates the individual fixed effects. The corresponding within projector for this transfor-
mation is Mp o= T — Dy (D’Qf)g)_l D), where Dy = ((In, ® t7)", 1y, @ Ip) and (Iy, ® vp)" is
the matrix of first V; — 1 colum vectors. Apparantly it is not a good estimator because it
“over-clear” the data in that it makes redundant projections.

To get the estimate of p, we take transformation through another idempotent and sym-
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metric matrix Ey =1 — MpX (X'M DX)_l X'Mp. The subscript v is omitted for simplicity.

The within estimator of p is given by

p = <YI—1MDEXMDY—1)71y/_1MDEXMDY
1
= (yLMpy 1=y MpX (X'MpX) " X'Mpy )

X (y’_lMDy — ¥y MpX (X'MpX) ™ X’MDy> , (3.2.1)
and the coefficient § of covariates X is estimated by

« N -1
5 = (X’MDX—XMDy_1 (¥ s Mpy_1) 'y’ 1MDX) (3.2.2)

X (X’MDy ~ XMpy_1 (¥ Mpy_1) Y’_lMDy> :

For better understanding the notations, we also write them down in scalar forms.

Ny Ny T ()2_1N1N2T -
~ (=1 . (=1) ..
p= Z Z Z Mijt <yz'j,t—1> Z Z Z Mty -1 Yij
i=1 j=1 t=1 i=1 j=1 t=1
Nt Ny T -1
./ . ./ .
where mijt =1 - Xijt E E E Xijtx’ijt Xijt’
i=1 j=1 t=1

and

Ny Ny T LT nm N7
A . Y . .
B = E E E lijtxijtxijt E E E lijtxijtyz’jt
i=1 j=1 t=1 i=1 j=1 t=1
2
(=1
Yije—1

,
S S (550

where lijt =1 -

where X;j;, 9j;;: and yl(; tl_)l are demeaned observations in which the way of demeaning depends
on the within projectors Mp. This estimator could be consistent or inconsistent. The in-
consistency comes from the so-called Nickell bias problem. An consistent estimator using
Arellano-Bond GMM fashion was proposed by Balazsi et al (2018). In this paper, we suggest
another method to handle the Nickell bias, a split-sample jackknife bias correction method
(see Dhaene and Jochmans (2015)). Before the asymptotic properties are given, we start with
some assumptions. The assumptions follow Moon and Weidner (2017).

Assumption Al: {(X;;t,;5t),t =1,...,T} are independent across ¢ and j.
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Assumption A2: g;;’s are independent over ¢, for all ¢ and j.

Assumption A3: Eleij|o ({(dijo, Xijs, €ij,s-1) s < t})] = 0 and E (g};,) < oo for all 4, j,
and t.

Assumption A4: m vazll Zjvjl Z;W:l |Cov (€ijeZk ijs, Eijuliijn)] = Op (1) for all
E,l=1,...,d.

Assumption A5: E (||lz;;]") < oo for all i, 5, and ¢.

Assumption A6: E (ﬂfjt) < oo for all 7, j, t and E (yz‘-‘jo) < oo for all 4, 7.

If we impose the same fixed effects structure in x;;; as that in the main equation, it’s trivial
to fulfill the requirements of A1, A3 and A4, loosely speaking. For example, in Model 1 we
can assume that x;;; = 7; + 0; + 11t + €;51, where e;j; is independent of €;;;. This specification
is similar to the case in Section 5 of Bai (2013). However, if we impose x;;; = Ti; + €t
and the independence between e;;; and ¢;;;, the inference could be problematic if there exists
correlation between 7;; and the fixed effects in the main equation of Model 1. This problem will
be revisisted in Section 5. Assumption A1, A2 and A3 are imposed to construct a martingale
difference sequence in the proof of consistency of within estimators. Assumption A4, A5 and
A6 are used for the proof of asymptotic normality. It’s worth noticing that we also put some
assmptions on the initial value y;j0. Theorem 1 establishes the asymptotic properties of p,

the general within estimators.

Theorem 3.2.1. Under Assumption A1-A6, the generic estimator p has the following the
asymptotic distribution when Ny, No, and T all go to infinity:

5 Ly (SI'M
\/N1N2T< | - [Z] Y [NlNzT Tg D)D —,N(0,27'Q87Y),  (3.2.3)
where

(A, © A; A

(I) — + B8 A 7
(0 0 A, A,
Q. Q

Q _ /11 12 ;
AUPERLES

1 1 2
A = tr (EM tr (SI'M
NiN,T [1—/)2T( D)+1—p2r( D>]’

1 1 )
Ap = A+ —— (A "Aun)|
g NlNQT |:]_—p2ﬁ ﬁ—i_l_pg( 1A6+6 A):|
1
A N1N2T [ D ]7
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1
NN, T
1 { E(AMpEMpA') + E (TMpee'MpTe) }

A, E[X'MpX],

"TNINGT | 42E (AMpee/MpLe) — [tr (ST/Mp))?

1
N N,T

1
Q. —
27N, N,T

A=(1+pB)(I1-pB)" (yo®e)+TX3+TIDr,

912 [E (AMDEMDX) + E (SFMD€€/MDX)] 5

E (X'MpEMpX),

and X s a Ny NoT x N1 NoT' diagonal matrixz with diagonal item afjt. Note that the correlation
between X and 7 enters ® and € through A, which indicates the incidental parameter effect.
For the simple AR(1) cases, where the general model is given by y = py_1 + D7+ ¢, we have

the corresponding result

V/NiNoT (p — p — Bnicken) —a N (0,7T),

where

Byickent =

1 — p? I tr (XT'Mp)
1m
20 L\ 2ptr (M) + tr (E0'Mp) )

1-p2\° .. [E[(ET'Mpe)’] — [tr (ST'Mp)]*
T:(T) phm( | )

2ptr (EMp) + tr (ST'Mp))?

The Nickell bias formula Byicken 1S the same as equation (33) of Balazsi et al (2018) and
the bias expression in Lu et al.(2020, Appendiz C).

From Theorem 1, we have that the general fixed effect estimators could be inconsistent.
The analysis of asymptotic biases lies in the calculation of ¢tr (XTVMp) and ®~!. Different
from the traces shown in Table 2 of Balazsi et al (2018), the calculation in our cases are more
complicated by introducing heteroskedasticity and the covariates X. The following corollary

states the over-clearing facts especially for multilevel panel data models.

Corollary 3.2.1. For a feasible projector Mp s, we can always find another feasible projector
]\;[Dﬁ = Mp sMp where Mp, is a demean matriz. As defined in Theorem 2.1, denote €1, QS,
&, and B, as the corresponding matrices of the sandwich form in Equation (3.2.3). Therefore,
under assumptions of Theorem 2.1, we have )y = Qs and ®, > ®,. Therefore, the asymptotic
variance of the fixed effect estimator of J\;[Dﬁ 1s larger than that of MD”S, i.e., the projector

]\;[D75 overclears the data.
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From Corollary 2.1 we have that if we exclude the linear combination of different projec-
tors, some projectors are less efficient in general since they overclear the data. In the following
section, we consider the bases for the projectors case by case. Those projectors are competi-
tively efficient and we can construct more competitively efficient fixed effect estimators based

on their linear combinations.

3.3 Nickell Bias Representation

3.3.1 Model 1

Model 1 was firstly proposed by Matyas (1997), in which he did not consider the inclusion of
X. In order to make the notaions understandable, we consider both the scalar form and the
matrix form for the within estimator of model 1. For other five models, we only write them
in the matrix form.

(=1)

There are many different ways to construct ¢;;,”; and g;;; in order to eliminate the fixed

effects. To see that, we can find five typical estimators in which yz(; tl_)l, Ui;¢ and corresponding

Mp; are defined as
. _ _ _ (=1 _ _ _
a. Yijtla = Yijt — Yojt — Yit + Yot y§j7t—)1,1a = Yiji-1 — Yji—1 — Yig—1 + Y. r—1 and
Mpi,=1- le In,r—1In, ®jN2®IT+jN1N2 zd

. i _ (-1 _ (=1) ., (1
b. Gije1s = Yije — Vit — Yij. + Vi y§j7t3171b = Yije—1 — Yit—1 — yz( ) + Z/Z( ) and

MD,lb =1- IN1®jN2®IT—IN1N2®jT+IN1 ®jN2T

.. _ _ _ (=1 _ (-1 (-1
- Yijt,ie = Yijt — Yt — Yige + Yjo, yi(j,t—)Llc = Yijt—1 — Yjit—1 — y§j. ) + y.(j. ) and

o

Mpi.=1- le Inor—1IN Ny ®jT+jN1 ®IN2®jT

oL

.. _ _ _ _ (=1 (-1)  (-1) — _(~1
- Yijed = Yije — Yie — Yojo — Yot + 20, y§j7t_)1,1d = Yiji—1 — yf ) — y.(j. ) Yit—1+ 2y.(.. ) and
Mp 1s=I — Iy, ®3N2T—jzv1®IN2®3T—3N1N2®IT+23N1N2T

. _ _ _ _ _ _ _ (=1 _ _
- Yijtie = Yigt — Yjt — Yit — Yije T Vi T Yjo T Yor — Yoory yi(j,t—)l,le = Yijt—1 — Yjt—1 — Yiot—1 —

@

175



g g g g — 5 and
Mp 1.=I — In, @Ln,7—In, @ N, @Iy, N, @I 7
+ Iy, @I Ny +T 3y LN, @I 7 +T Ny 3, L —T vy Ny 7

Althogh some of them are inconsistent, we can construct five consistent estimators using
the split-sample jackknife technique. Without further analysis, we cannot be fully sure that
all the possible competitvely efficient estimators have been considered and we cannot fully
sure that all the five jackkinfe estimators are good. The Nickell biases can be different. If
we fix T and let Ny, Ny go to infinity, the estimator from (1) is consistent while other four
estimators are neither consistent. Also, we find that the combination of some construction
can be a new estimator, e.g., §ijt.1e = (Yijea + ijeas + Vi1 — Yijena) /2. In the same way, we
can contruct lots of (infinite, in fact) estimators like §;j117 = 2 X ¥ije.1a — Yije.1o0 = Yije — 2.5t —
Yit +Yij. + Y.t — Yi... We deem this phenomeon as the main difference between two-dimensional
panel data models and multilevel panel data models. Even if we merely turn our attention
from two-dimensional case to three-dimensional case, the model becomes quite complicated.
It could be an important question that how to construct and choose a proper fixed effect
estimator in high-dimensional panel data models in the future work.

We now discuss the relationship between the fixed effect estimators in the similar patterns.

Proposition 3.3.1. Under the assumptions of Theorem 2.1, all the within estimators can be

generalized based on the first four projectors

(a) Mp1,=I — le QIn,r—1In, ®jN2®IT+jN1N2 ®1Ir;
(b) Mp 1,=I — Iy, ®jN2 ®IT—IN1N2®3T+IN1 ®jN2T;'
(¢) Mp1.=I— le QInyr—IN N, ®jT+le @1, ®Jr;
(d) Mp1a=I— 1y, ®jN2T_jN1 ®IN2®jT_jN1N2 ®IT+2jN1N2T;'

and they are linear independent to each other. In other words, any other within transformation

Uijtw can be written as the linear combination of Yiji1a, Yiji,1v, Yijtie and Yijid,

4
Yije 1y = g Crm¥ijt,ims S-T., E Cm = 1.

mée{a,b,c,d} m=1

The proof is straightforward, but the result varies case by case. Before giving the asymp-

2 T
C 1. . -1 Ny No T—1 034 ~ 1 Ny No T-1p
totic distributions, we define 6 = > oict Zj:l t=1 and 7, = D i ijl

NNT 1-p N1N2 t=1

176

—t_2
T5jt

1—p



Proposition 3.3.2. Under the assumptions of Theorem 2.1, the Nickell bias terms of the

four within estimators in Proposition 3.1 can be represented by

1 /
Biasy, = ®, r (XI'Mp) ,O] = <

Bl,lm + B2,1m
N1N2T

T T2

form € {a,b,c,d} , Byim = —®1,L [0/ (1—p),0], and Boy,, = @116,/ (1 —p),0]. The
scalar hy, depends on Ny and Ny such that hi, = 0, hyy = 1 — N{l, hio =1 — Nfl, nd
hig = Nl_1 —{—N{l - (NlNg) . In particular, under the assumption that L — )1 and 2 5 0y
with Ny, Ny, T — 00, we have the asymptotic distributions for stacked estiamtors Gla, 011,,

51(: and ém as follows

VNINT (810-0) =N (0, @7/2,,®7,)

. NN,

V/NiN,T 911, 9 1T2311,, —4N (0, ®3,'Q,® 7))
NN,

VNN, T 1T231 1e —alN (0, @7/ Q,.@7))

N1N2T( —0) =N (0,87 1,®1)

3.3.2 Model 2

We can find two typical estimators in which the corresponding Mp 5 are defined as
a. Mpog=1— Iy &I n,@Ir—In, N, @I 7r+In, @I Ny = Mp 1p;
b. Mpay=1-— le®IN2T_IN1N2®jT+jN1®IN2®jT = Mp i;

Proposition 3.3.3. Under the assumptions of Theorem 2.1, all the within estimators can be

generalized based on the two projectors above

Mp 2,=1 — In, @Iy, @Lr—In, v, @I 7 +1n, @I Ny 7
Mp =1 — Iy, @Inyr—In, N, @I 7 +I 3, Ry, @I 7

and they are linear independent to each other. In other words, any other within transformation

(v, §ije) can be written as the linear combination of ¥iji1a and Yije. v,

Yije 1y = E CmYijtim, S-t., c1 +ca =1
me{a,b}
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The proof of Proposition 3.2 follows the proof of Proposition 3.1. The Distributions are

given in Proposition 3.4.

Proposition 3.3.4. Under the assumptions of Theorem 2.1, the Nickell bias terms of the two

within estimators in Proposition 3.3 can be represented by

1
Bias,,, = ®,,} NN
14V2

/
B1,2m B2,2m
tr (XI"Mpam) , 0] = ( T + T2 ) hom.,
for m € {a,b,c,d} , Biom = —®5) [5/(1—p),0], and Boa, = ®,,) [,/ (1 —p),0]. The
scalar hoy, depends on Ny and No such that hoy = 1 — N{l and hop = 1 — Nfl. In particular,
under the assumption that % — 01 and % — 0o with Ny, No, T — 00, we have the asymptotic

distributions for stacked estimators 92a and 925 as follows

\ NlNQT <92a—8) —H N}NQ B2,2a _>dN (07 (ﬁ;alQ?a(I);al)

A NN
v/ N1 NyT (‘921;—9) — 1T 2B2,2b —aN (Oa‘I’Q_bIQ%(I)Q_bl)

3.3.3 Model 3, Model 4, Model 5, and Model 6

For model 3, 4, 5, and 6, we can find only one good projector for each case.

(1) Model 3: Mps=1— Iy, n,®Jr
(2) Model 4: Mp4=1— Iy, @Iy,
(3)
(4)

Model 5: Mps=1— le ®IN2T—IN1®jN2®IT+jN1N2 zd 7
Model 6: MD,GZ I-— le ®IN2T_IN1®jNQ®IT_IN1N2®jT
+jN1N2 ®IT+jN1 @1, ®jT+IN1 ®jN2T_jN1N2T

There asymptotic properties are given in the following proposition.

Proposition 3.3.5. Under the assumptions of Theorem 2.1, the Nickell bias terms of the

our within estimators above can be represented by (1) Biasg = —Bis 4 BLQ’B; 2) Bias, = 0;
T T
(3) Bias; = 0; (4) Biasg = <—B}’6 + P;?Q’G) h¢ where hg = 1 — Ny ' — N;' + (NlNg)_l,

B, =—-®,'[6/(1-p),0], and By, = ®,,' [5,/ (1 —p),0]'. In particular, (i) under the
assumption that % — 01 and % — 09 with Ny, Ny, T — o0, we have the asymptotic
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distributions for stacked estimators 53, 94, §5 and §6 as follows

NiN;
T
NINoT (04-0) =N (0, @;'2,@7")

VNN, T 9},- 0) —aN (0,250 ;")

_|N N
vV NiN,T 96 2B16—>dN 0,8;'Qd;")

3.3.4 Comparison with Two-dimensional Panel Data Models

NlNQT 93 ) B13 —>dN 0, @ 193(19 )

]

Take Model 3 as an example, the Nickell bias is given by

As shown in Nickell (1981), for a two-dimensional panel data model, y;; = pyir—1 + B'%i +
~; + €4, the bias is given by
1.1 Ownieken 1 . _1  OpnNickell

plim(p — p) = _Tq)NickellTp + ﬁq)NickellTp7

where CI’ka;eu = plim~y' My, G = Yy — ?/z, M =1—-XX'X)'X', X, = 2ijy — xij.,
T—t 2

2
_ Ot _ T— 1 pt o
ONickell = —NT > :izl > :tzl ) and 0, = E o1 Dt T " We can see that they have

similar structure.

3.4 Split-panel Jackknife Estimation

Based on the results of Proposition 3.2, 3.4 and 3.5, we can construct the split-panel jack-
knife estimator. As said in Dhaene and Jochmans (2015), over-spliting the sample will in-
crease the magnitude of higher-order bias terms. Therefore, we only consider ”half-panel”
jackknife estimators in this paper. We define S; = {S11, S12}, where Sy; :={1,2,...,[T/2]}
and Sip = {[T/2] 4+ 1,...,T} splitting over dimension ¢; Sy = {Ss1, S22}, where Sy :=
{1,2,...,[7/2]]} and S2 := {|T/2] +1,...,T} splitting over dimension ¢. The split-panel
jackknife estimator is defined as 6’~1/2 =20 — % (551 + 552) where 95 Zsmkes ‘S”T““W
Note that when T is even, [T'/2] = [T/2], thus S; = Sy and 61/2 — 20 — Ag,. Similar to

Theorem 3.1 of Dhaene and Jochmans (2015), we have the following Theorem 2.
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Theorem 3.4.1. Under Assumption 1-4, the general estimator p has the following the asymp-
totic distribution when % — 01 and % — 09 with Ny, No, T — 00,

VNINT (812 = 0) —a N (0,07'0207") (3.4.1)

Note that the correlation between X and 7 enters ® and €2 through A, which indicates the
incidental parameter effect. For the simple AR(1) cases, where the general model is given by

y = py_1+Dm + ¢, we have the corresponding result

V NI N T (,51/2 - ,0) —4 N (0,7)

where

' (1_—p2>2plim B [(¢T"Mpe)’] - [tr (ST'Mp))
2p [2ptr (XMp) + tr (EI‘,MD)]Q

The asymptotic biases is eliminated by the split-panel jackknife estimators.

3.5 Model Uncertainty

In the simplest fixed effect panel data models with other covariates, we need to impose the
assumption of IID on incidental parameters in order to get efficient within estimators. If we
consider a more complicated model, a two-way error component panel data model, the IID
assumption of «; and \; is not enough. The reason is that the correlation between individual
invariant term \; and covariates x;; will leave an unspecified dependence structure on x;; and
xj. For this perspective, we need to impose structure on z;;. As in Bai (2013), they assumed
that x;; = 7 + by + puis—1 + € (see p. 298 in Bai (2013)) where e;; is independent with
the idiosyncratic error term in the equation of y;;. This problem also exists in more general
cases. For the panel data models with interactive fixed effects, we also need to impose some
structures on z;;. As in Moon and Weidner (2017), for the cross section dimension they
assume that {X;;} is independent across i conditional on C, the sigma-algebra generated by
the factors and the factor loadings (see Assumption 5(iii) in Moon and Weidner (2015)); for
the time dimension they assumed that ﬁ Zf\il zz:s,u,v:1 |Cov (atf(hm €m)~(z,w|c) | =0, (1),
where X kit = Xgit—E [Xki|C] is the projection residual of X, ;; after being projected through
C (see Assumption 5(v) in Moon and Weidner (2017)).

Even though we exclude the cross-sectional dependence in this paper, in the multilevel
panel data models, we have seen that there exist many possible fixed effects structures in

the expression equation for y;, which is similar to the cases in Moon and Weidner (2017).
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Questions are raised that does the misspecification of x;;; affects the inference on the within
estimators and if does how shall we handle that. We deem this kind of misspecification as

the model uncertainty lying in the nature of multilevel panel data models.

3.5.1 Focused Model Selection

In this section, we will mainly consider the selection problem in Model 1 and Model 2. Taking
Model 2 as an example, the performance of (§2a and é% depends on the specification of x;;;
even when we assume Model 2 is true. If x;;; has different structure as 7;; + S\t + Eijt, wWe
will see that different projectors will eliminate different variations in x;;;. There are two
implication for this statement. The first is that if x;;; contains some observable variables that
does not change over j but change over ¢ and ¢, i.e., oy, those variables will vanish after
transformed by the first projector but will remian after tranformed by the second projector.
The second implication is that if x;;; has the factor structure like & + 7;; + S\t + Eijt, Yij and
A will vanish for both projectors, and é;; will be retained only for the second projector. In
this sense, the first projector loses more variation in x;j; in contrast to the first projector. On
the contrary, there exist some circumstances that the second projector loses more variation.
For the first implication, we suggest that researchers should choose estimators based on the
characteristics of variables. However, sometimes we have both z; ;; and x5 j; in the regression
equation and sometimes we are not able to observe the factor structure of covariates, then we
face the problem of model selection.

Claeskens and Hjort (2003) proposed focused information criterion for cross section models
with finite-dimensional nuisance parameters. Lee and Phillips (2015) (LP15 hereafter) stated
that the reason why traditional model selection method performs bad in panel data models is
that the dimension of nuisance parameters grows with the sample size. LP15 also considered

the lag order selction problem in dynamic panel data models.

3.6 Conclusion

We consider the Nickell bias problem in dynamic fixed effects multilevel panel data models
with various kinds of multi-way error components. For some specifications of error compo-
nents, there exist many different forms of within estimators which are shown to be of possibly
different asymptotic properties. The forms of the estimators in our framework are given ex-
plicitly. We apply the split-sample jackknife approach to eliminate the bias. In practice, our

results can be easily extended to multilevel panel data models with higher dimensions.
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3.7 Appendix

3.7.1 Proof of Theorem 3.2.1

Proof. For clearance, we use bold symbols to represent vectors and matrices. The general

dynamic multilevel model we consider is

Y =pPy-

1—|—X5+D7T+€

Assume that Mp is a appropriate fixed effects projector, which might not be idempotent.

We have the following transformed equation

Mpy = pMpy_1 + MpX3 + Mpe

Writing it in the partitioned matrix form, we have

Mpy = |Mpy 1 MpX|

P +MD5

The generic within estimators for [p] are defined as

p _ y Mp (M y
ki _ X'M, DY -1
_y/flMDY—l YL1MDX_

X/MDy,1 X/MDX

y_ Mpy_1 y_ MpX

_X/MDy_l X/MDX_

-1 ,
M
MDX> y_1Vipy
X/MDy

1 r
YLlMDy
X/MDy

() G o] [

—1
[y’_lMpy_l y’_lMDX] [y’_lMpel

X/MDy_l XIMDX

+

-1
+ ANlNQTBNlNQT

X/MDE

-1
y_ . Mpy_1 y_ MpX y" Mpe
X,MDy—l X,MDX

X,MD€
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where
yl—l M%y,l y/_lM%X

A _
N1N2T X’M%y_l X/M2DX

y  Mie
and B =
] et [X’MQDe

Firstly we consider the asymptotic limit of By, y,7 when Ny, Ny, and 7" all goes to infinity.
Given the (N;NoT x 1) sample realization vector of dependent variables y, we have that
y_1 = ¥y + yg ® e;. From the dynamic structure that y = py_; + X3 4+ D7 + ¢, we have
y = pPy+pyo®e;+ X[ + Dr +e. Hence (I — p®)y = pyo®e; + X[ + Dr + . Therefore,

we have the representation for y.
y =(I—p®) " (pyo @ er) + (I— p®) ' X3+ (1 - p¥) 'Drr+ (I— p) e
and since y_; = Py + yo ® e, we have
Y1 =04 p®)(1-p®) " (yo®e)+ X3 +TDr+Te:=A+Te
where T':= W (I — p®) ' and A := (I+ p®) (I - p¥) " (yo ® €;) + XS + I'Dr.

E (y"Mpe)
0

yLlMD&‘
X/MD€

Denote Z = [ ] , we have F (Z) = and

E (y_1Mpe) =E (T'Mpe) = E (tr (€'T'Mpe)) = E (tr (¢'T'Mp))
—tr (E ('T'Mp)) = tr (ST'Mp) .

tr (EF/MD)

Therefore E (Z) = . Let ¢ be a (1 + d)-vector such that ||c|| = 1. We follow

the the Cramer-Wold device and CLT for martingale difference sequences (see Corollary 5.26
in White (1984)) to proceed the proof. The purpose is to verify

1

W (C/Z — C/E (Z)) —d N (O, C/QC)
14V2

More precisely,

1 1

- JZ-E(Z) =
\/7N1N2Tc[ (2)] NN, T
1
14V2
1
- YyM
N N,T O PE

(Coyl,lMpa + G’X’MDg—cosT’MDa)
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where b =¢oA + X& = ¢y (I+ p®) (I — p®) " (yo ® e1)+coI'X B+ I'Dr + X& = G (yo, X, 7).
To prove that, we apply CLT for elements of c¢Z. In scalar form,

1 N1 Np T '" t . ) -
\/NlNQ—T'b' \/72T Z Zl ; Eijt (@/ijo + ; p* " (pyijo + x;jsﬁ) co + 372th>
N1 Na -

k ij0 1 ijo + ijs + i
\/727’;]21; Eijt (yjo Zp Pyjo x]B)co ;Ejtc>_

where ;;; denotes the x;;; transformed by the projector Mp. Denote

s=1

t—1
ijt = Eijt (?jijo + Z P (P?/Ejo + i;jtfsﬁ) Co + j;jt6>
From Assumption 1, 2 and 3, we have

E (&jilo ({(Gijos Rijs, €ij,5-1) 8 < t})) =

and
E (51‘2jt|0 ({ (Fijo, Xijs» €ij,s-1) » s < t})) < 0.

It is shown that &, is a martingale difference sequence. Therefore, applying CLT for mar-

tingale difference sequences, mb’MDe —aN (0,¢'Qc) where @ = & NTVar (Z) =
Q, Q

NTNGT /11 21 Then we have
Qi Qo

Qi =F (y_,Mpec'Mpy 1) — [tr (ET'Mp))?

E(AMpEMpA') + E (€T"Mpee'MpLe) + 2E (AMpee'MpLe) — [tr (SI'Mp)]?
Qi =F (y Mpee MDX) E(AMpYXMpX) + E (eI'Mpee'MpX)
Qo =F (X'MpEMpX)

Then we consider the asymptotic limit of Ay, n,7 Wwhen Ny, N, and T all goes to infinity.

By the weak law of large numbers,

Ely  Miy..] Ely M}X]

AN, Ny —
Pl EXMYy | E[XMiX]

For E [y’_ 1MDy_1], we can use the dynamic equation and the stationarity condition to
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get the result.

E [yl,lMDy,l} =FE[y'Mpy]|=F [(py’,l—i—ﬂ/X’—i—g’) Mp (py _1+X5 + e)}
=p°E [y \Mpy_1] + 2pE [y \MpXp] + E [¢'Mpe]
+ E[fX'MpX'S] + 2pE [y" 1 Mpe]

Then we have the expression for £ [y’_ M Dy_l},

E [y \Mpy_1] = : _1p2 {tr (EMp) + E['’X'MpX (]}
2p

_p2

+ 3 {tr (XT'Mp) + E [y’ \MpXg]}
with E [y’ \Mpe] = tr (EI'Mp) and E [¢'Mpe] = tr (EMp). To illustrate the limit of
AN, N,T, 1t can be shown that
} =&

where A, = =5tr (EMp) + {225tr (ST'Mp), Ap = =50 Al + 125 (AL 5+ 5'Aqn),

1—,02 1_p2

A,y = E[X'MpA] and A,, = E [X'MpX].

y L 1
im ——— =
PN Ny T T N N T

Ao o] [As AL
0 0 A:BA Amm

By Delta method, we have the asymptotic distribution of [g] ,

5 0 tr(ST"Mp)
\/N1N2T< A - [B - ngzT D —4 N (0,27'Q®7 1)
which completes the proof. O

3.7.2 Proof of Corollary 3.2.1
Proof. Firstly we prove that Q, < Q,. Denote Z = [y’_l,X’]//\/NlNzT and Z = [A, X" //NI N, T,
we have Q,=Var (ZMD,S&“) and QszVar <21\~/Ip755> =Var (ZMD7SMD7,§MD7S€>. Since
Q,— O, =Var (ZMD755> —Var (ZMD,SMD,tMD,Sg)
~ ~ ~ ~ /
—E [(Z—EZ) MD,Sg] [(Z—EZ) MDﬁE}

_ B [(Z—EZ) MD78MD¢MD785} [(Z—EZ) Mp.Mp.Mp e

/
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—E 'ZMD,SEg’MDﬁZ/} _E [ZMD,SMWMD,sgg’MD,SMD,tMD,SZ’]
=L -ZMD,S (Mp ee'Mp s — Mp Mp ee'Mp Mp,) MD,SZ/]

—E |ZMp,, (Mp,,e'Mp,, — Mp, Mp,e='Mp Mp,,) Mp, Z|

—E [ZMp,, (c¢' — Mp,2e'Mp,,) MD7SZ/]
—EZMp (X — Mp,EMp,) Mp EZ'

Since X is a diagonal matrix with positive diagonal item afjt and Mp ;XMp, is a diagonal
matrix with positive diagonal item 7}, = o7}, + 0 (1), which is the demean version of o7,
have that 3 — Mp,XMp,; = o(1) and then EZMp , (X — Mp,XMp ) Mp EZ — 0 as Ny,
Ny and T tend to infinity. Thus Q, = fls.

Secondly we prove that &, > <i>s.

we

&, &, =F (ZMD,SZ’) —E (ZMD,SMD,tMD,SZ’)
_E (ZMD,S (I-Mp,) MD,SZ')
_E (ZMD,S (I - Mp,) (I— Mp,) MDZ> >0

The last equality is obtained from the fact that I — Mp, is a symmetric and idempotent

matrix. This completes the proof. O

3.7.3 Proof of Proposition 3.3.1

Proof. There are seven kinds of taking averaging in the three-dimensional panel data models:
(1) over 4, (2) over j, (3) over t, (4) over i and 7, (5) over ¢ and ¢, (6) over j and ¢, and (7)
over 7, 7, and t. The matrix form and the corresponding transformed incidental parameters

are
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No. | Scalar Form | Matrix Form | After Trans. Qn
0 Yijt Iy, @Iy, @I | ;i +79; 4+ A | [1,0,1,0,1,0]
1 Uit In, I3, @Iy | a; +5+ X | [1,0,0,1,1,0]
2 Ui Iy, @I, @I | i+ +A | [1,0,1,0,0,1]
3 7.t I @In,®Ir | @+ + X\ |[0,1,1,0,1,0]
4 Ti.. Iy, @Jn,®J7 | a;+5+ A | [1,0,0,1,0,1]
5 i I @Iy, @7 | @a+v;+A |[0,1,1,0,0,1]
6 ot Jn@In,@Ir | a+5+ X |[0,1,0,1,1,0]
7 7. Iy @Iy,@J7 | a+5+X1 |[0,1,0,1,0,1]

Define the elements of transformed incidental parameters n = [ai, QL Yy Yy At 5\] , the trans-

formed incidental parameters can be represented by Q,,n in each averaging case. In the most

*

— — N — — — — — — k — % ‘. .
general case, n = [ai,a,yj,% Aty Ay Vigs Vs Vies Vors Qity Qty Qi Oy Oy . oz,_}. For simplic-

]-7
ity of notations, we adopt the special specification 1 = [ai, QY55 Yy At 5\} in this proof. The

e -
o,

original incidental parameters are c; +y; + A¢. The purpose of projection is to eliminate them
with the linear combinations of these seven kinds of transformations. Since the previous table
include all the possible averaging schemes, we can imagine that the potential feasible projec-
tion could be equal to the linear combinations of Q,,n. In other words, we need to solve the

following multivariate linear equations:

7
Qo+ Y _ nQumn =0 for any n

m=1
7
or Y mQm=—Q
m=1
Write it in matrix forms,
o
C2
C3
!/ / /
Q@ Q Q Q Q Q|a|=-QorQc=-q
Cs
Ce
| €7
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Plug in the numbers for this case, we have

_ - 1 ~ -
Ca
C3
Cq4| =
Cs

Ce

O = =k O O =
_ O O = O =
O = O = = O
= O = O O =
_ O O = = O
S = = O = O
_ O = O = O
|
—_

L 4 6x7 Cr L J46x1

It can be easily shown that Q is not of full column rank. Therefore, the solutions for c is
not unique, to solve this indefinite multivariate linear equations problem, we can implement

fundamental transformations for the matrix [Q, —Qy.

trans ([Q, —Qq]) =

O O = O O =

O O O O O =
S O O O =
O O O = = O
O O Rk = = O
O O = = O O

The solution for this system of equations is given by

—1+CL1+CL3
—1+a2+a3
—ap — az —asg
C = 1—@1-@2-2@3
aq
az
as

Four bases for ¢ are when [aq, as, as] = [0,0,0], [1,0,0], [0,1,0], and [0,0,1]. They are

¢, =[-1,-1,0,1,0,0,0]
¢y =[0,-1,-1,0,1,0,0]
c3 =[-1,0,-1,0,0,1,0]
c, =[0,0,-1,-1,0,0,1)

188



The corresponding transformations are

Mp i,=1—1Ip, ®jN2 QIr—In, ®IN2®jT+IN1 ®jN2 @I
Mp 1p=I — Iy, @Iy, ®jT_jN1 ®IN2®IT+'-TN1 ®1n, RJp
Mpi.=I— IN1®jN2 ®IT_jN1®IN2®IT+jN1 ®jN2 b 2
Mp 14=1 — In, @I nyr—J §, DTN, @I 7 =T v, N, @Lp+2T N, Ny

which completes the proof.

3.7.4 Proof of Proposition 3.3.2

Proof. Because of dropping the homoskedasticity assumption in Balaszi (2015), we cannot

take X outside of the trace function. We have

oty oo pl oty pT Pl
0 .- pliof, p' 0%,
0 0
U%I,T—l
0
3TV = 0 0
0 U]2V1N21 e pT730-12V1N21
0 0 e pT R e
0 0 ) ) )
0 . 0
0 . 0

T_2 2 T
P TONI Nyl

T-3 2
P TON Ny2

2
ONy Ny, T—1

0

Now we have the same representaion for 2TV, the different expression form for ¢tr (XTVMp)
of different within estimators lies in Mp. Before giving the proof, we denote [-], ; the partition
matrix with the partitioned row [NoT x (i — 1)+ T x (j —1)+1: NoT x (i — 1)+ T x j]
and the same partitioned column [NoT X (1 — 1)+ T x (j — 1)+ 1: NoT' x (1 — 1) + T x j].
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Therefore, the T' x T-dimensional partition matrix [XI],; is

[ 2 T-3 2 T2 2
0 01 "0 P 051 P "0
T—4_2 T-3 2
0 0 - p 7o P00
no__ . .
[xr ]ij =
0 0'.2,
ij,T—1
0 0

Firstly consider Mp 1, =1 — Iy, ®IN2®jT—le®IN2®IT+3N1®IN2®3T, right multiplying

Iy, ®Iy,®J7 means taking average along the each row for partitioned matrix [XT),;, ie.,
=T, I ] _
S i G i
Glo O Gy i
[Erl]ij Jr = : : '
Ohr-1 Ogro1 vt Ouro1 0o
0 0 e 0 0

where 62, = 02, (1+--- 4 p"7') /T. Right multiplying Jy, ®Iy,®Ir has no effect on the

ijt ijt
diagonal items since taking averaging over ¢ is equivalent to taking average over N; zero items
for diagonal items. Right multiplying Jy, ®Iy,®J7 means taking average along the each row

for the stack matrix of partitioned matrix [XI"],; and N; — 1 zero matrix with dimension

J
T x T, i.e., [[EF/]” s OTX(Nl—l)Ti| JN1T><T/ (NlT) = [ZI‘/]” jT/Nl. Thus after transfomed by

Mp 15, the partition matrix [EI"]U becomes

0 —Oh0 + 05 /N1 e pTTRaly — Gl + G0/ N
[EI‘/MD,lb]Z’]’ - : :

O O cte 0-7:2]‘,T—1 - 5-7;2‘7'71’7_1 + 6-Z2‘],T—1/N1

0 0 .. 0

Therefore,
1 1 1
tr (XT'M = |- o+ o 1——
SMow) = |57+ ) ()

which completes the proof of Biasy,. After trivial calculation, we can also obtain the asymp-
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totic distribution of #;,. The proofs of other biases and the proofs of the asymptotic distri-

butions of other estimators closely follow this approach. n

3.7.5 Proof of Theorem 3.4.1

Proof. This proof closely follows the proof of Dhaene and Jochmans (2015). In their frame-
work, they let N and T go to infinity in the same rate, which is equivalent to letting Ny x Ny
and T' go to infinity in the same rate. We can allow Nj, N,, and T go to infinity at the same
rate because we consider a situation in which our condition is stronger than Assumption 3.3
of DJ15. Note that

Gn=y (B +0s), G5, =205,

where s, = > 5. €5 |S”T1’“‘0A5mk. In particular, s, = (Tf] ésn + wésm and fs, =

%5521 + %ésm- Averaging over the equivalence of S does not affect the asymptotic

properties and 6. Thus it suffices to consider the asymptotic behavior of Os. Following the

proof of Theorem 3.1 in DJ15, we have the result
\ NlNQT (51/2 —p]\}lm 51/2> —d N(O, 271)
—00

For all the fixed effect estimators in our asymptotic pattern, we have that 6—0 = % +

% +0p (%) Where~]§1 and Bg are O, (1) and they could be zero. For any és we also have

mk’
—9:%%—%—#%( ; ) Then

2
ka

~

_ 2B B B 1
Os,, —0= "t + o+ 2 )+0p(—)

T " TTu T(T T T2
By the construction of 6, /2

2]‘_5)2 Bg BQ

Orjp— 0 = 2 — -
12 T2 TTpi T(T — T

—0(T?)
and Propositions in Section 3, we have

VNINT(p lim 012 — 0) = /Ny N, TO(T™2) — 0
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provided Ny, Ny, T — oo with N;/T — §; and Ny/T — d5. Therefore, the bias is asymptoti-
cally negligible. Now we can directly get the asymptotic distribution

VNINT (812 = 0) —a N (0,07'0207")

This completes the proof. n
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