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Online Spatio - Temporal Demand Supply Matching
Meghna Lowalekar

Abstract
The rapid growth of cities in developing world coupled with the increase in rural

to urban migration have led to cities being identified as the key actor for any na-

tion’s economy. Shared mobility has become an integral part of life of people in

cities as it improves efficiency and enhances transportation accessibility. As a re-

sult, the mismatch between the demand and supply of shared mobility resources has

a direct impact on people’s life. Thus, the goal of my dissertation is to develop solu-

tion strategies for these real-time (online) spatio-temporal demand supply matching

problems for shared mobility resources which can enhance the service quality by

considering expected future demand.

These problems involve a set of customer requests which need to be matched

with the available resources (taxis, bikes at stations etc.). The key characteristic

that affect the complexity of these problems is the nature of the customer requests

involved which in turn affects the matching decisions. We categorize these matching

problems into two categories based on the nature of customer requests. In the first

category, each customer request is associated with an origin and destination. These

customer requests need to be matched with servers/vehicles which pick them from

their origin and drop at their destination. The applications include ridesharing, food

delivery systems etc. When the servers are of unit-capacity, the matching graph is a

bipartite graph with servers on one side and customer requests on the other side. The

complexity of the problems increases when multi-capacity servers are used as the

underlying matching graph is no longer bipartite but a tripartite graph with servers,

requests and request groups (combinations of requests that can travel together).

The second category involves problems where customer requests for resources

stored at different warehouses/stations either by walking into the warehouse or from

a remote location. In this category, each customer request is either requesting a

pick-up or drop-off of resources but not both. For example, in bikesharing sys-



tems, customers either request to pick-up a bike from a station or request to drop-

off (return) an earlier picked bike at stations. The multi-capacity servers in these

problems provide an assistance in matching these customer requests with required

resources by performing a redistribution of these resources across different stations.

The matching graph is complex as in addition to matching customer requests with

the resources at stations, it also involves matching servers with the decisions of

redistributing resources across stations.

The other characteristics which make these matching problems hard, is the scale

of the problem (thousands of resources and customer requests), uncertainty in the

environment (uncertain customer demand) and the need of making real-time se-

quential and connected decisions. To tackle these different challenges, I develop on-

line data driven optimization approaches which consider expected future demand.

To evaluate the performance of these algorithms, I perform experiments on real

world datasets and where possible, I also provide a theoretical bound on the algo-

rithm’s performance which is measured using a metric called competitive ratio.

Specifically, for solving the first category of problems, I propose an online data-

driven multi-period two-stage stochastic optimization approach and a neural ap-

proximate dynamic programming approach which can compute the future effect

of current assignments based on the historical data samples. The experimental re-

sults on three real world datasets show significant improvement in performance over

existing approaches. For a special case, I propose an online adaptive algorithm

which can achieve a competitive ratio of γ, where γ is a solution to the equation

(1− γ)κ+1 = γ and κ is the maximum capacity of the servers.

For solving the second category of problems, I propose an online data driven

multi-period two-stage stochastic optimization approach and a greedy online antic-

ipatory heuristic which use historical demand samples to compute the future effect

of current assignments. Experimental results on two real world datasets show that

our future demand driven matching approaches provide 20% gain over existing ap-

proaches.
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4.1 Schematic outlining our overall approach. We start with a hypo-

thetical G, D∞∇ and V in (A). The grid represents a road network.

The blue people and circles correspond to user requests and the

nearest street intersection that they’re mapped to respectively. The

blue dotted lines represent the shortest path between the pick-up and

drop-off points of a request. The red and green triangles correspond

to existing pick-up/drop-off points for the red and green servers re-

spectively. The dotted lines describe their current trajectory. In

(B) we map the requests and their combinations to servers that can

serve them under the constraints defined by τ and λ to create feasi-

ble actions using the approach presented in (Alonso-Mora, Sama-

ranayake, Wallar, Frazzoli, & Rus, 2017). In (C), we score each of

these feasible actions using our Neural Network Value Function. In

(D), we create a mapping of requests to servers that maximizes the

sum of scores generated in (C) using the Integer Linear Program

(ILP) in Table 4.1. In (E), we use this final mapping to update the

score function (Section 4.1.4). In (F), we simulate the motion of

servers until the next epoch either based on their current trajectories

or a re-balancing strategy. This process then repeats for the next
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Chapter 1

Introduction

1.1 Motivation and Background

Today, 55% of the world’s population lives in cities or urban areas and this percent-

age is expected to increase to 68% by 2050 (UnitedNations, 2018). Therefore, for

any nation’s growth cities are an important factor. Around the world, many cities

are being transformed by using shared mobility resources which improve efficiency,

enhance transportation accessibility, provide cost savings and monetize unused re-

sources. The term shared mobility refers to the shared used of a vehicle, bicycle,

or any other transportation mode. Figure 1.1 highlights different mobility and de-

livery applications which fall under the shared mobility umbrella term (Shaheen,

Cohen, Zohdy, et al., 2016). The fast paced innovations in internet technologies

have enabled shared mobility to become an integral part of life of people in cities.

The mismatch between the demand and supply of these shared mobility resources

has a direct impact on people’s life as apart from causing inconvenience to people

it can also contribute towards increasing pollution and congestion on the road by

leading to extensive usage of private vehicles. Congestion can cost billions of dol-

lars (Schrank, Eisele, & Lomax, 2012), by measures such as lost time, wasted fuel,

and increased cost of doing business. Pollution is also a global concern with World

Health Organization attributing seven million premature deaths to air pollution. To
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overcome these issues and to make shared mobility resources more accessible, it is

essential to develop intelligent decision support systems to better manage the de-

mand and supply of these resources.

(a)

Figure 1.1: Shared Mobility

In all these applications associated with the shared transportation (Agatz, Er-

era, Savelsbergh, & Wang, 2011; Ghosh, Varakantham, Adulyasak, & Jaillet, 2017;

Hosni, Naoum-Sawaya, & Artail, 2014) customers requests need to be matched with

servers (e.g., taxis, shuttles, delivery personnel) or resources at stations/warehouses

(e.g. bikes located at different docking stations) in an online fashion to optimize the

revenue or quality of service. The wide usage of applications such as Uber, Lyft,

etc. is a testament to the importance of doing matching well and in quick time.

All these applications have following characteristics

• Involve transportation of resources or people between locations;

• Demand is uncertain and time dependent;

• There is data available about past customer demand;

• Problems are at a societal scale with thousands of customers and servers;

• There is a need to make online (real-time) and sequential (connected) decisions;
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• There is a need or an opportunity to optimize number of requests served, revenue

or quality of service (e.g., time to pick-up customers or time to drop-off);

Due to the need of making real-time and sequential decision, in this dissertation,

I provide approaches which are online (i.e., can continuously react to the incoming

demand) and are future demand driven (i.e., current decisions are taken based on

the expected future demand).

(a)

Figure 1.2: Key Characteristics of problems and proposed solution approaches

In the proposed algorithms, to handle the large scale nature of problems, I ex-

ploit the homogeneous nature of resources by using abstraction based techniques.

The scalability is further improved by using decomposition based approaches which

break a large problem into multiple smaller problems which can be solved in par-

allel. In addition, to make better sequential and connected decisions, I use data

driven multi-period two-stage optimization approaches by taking multiple samples

of customer requests from the historical data. Figure 1.2 briefly summarizes the

how the proposed solution approaches address the key characteristics of the prob-

lems in consideration. To evaluate the performance of these algorithms, I perform

experiments on the real world datasets. For a special case of last mile transportation
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where after serving customers, servers return back to their original location, I also

propose an online algorithm which makes decision based on the guidance provided

by an offline optimal linear program. As the arrival distribution is known (from

historical data), I analyze the algorithm under a known arrival distribution model

and provide a bound on the performance of algorithm in comparison to an offline

optimal solution (which has complete information).

The Online Spatio-Temporal Demand Supply Matching problems can be cate-

gorized into two types 1 based on the nature of customer requests involved.

1. OLYMPIAD: OnLine Spatio-Temporal Demand SupplY Matching - Requests

with PIckup And Drop-off Locations

2. OLYMPIOD: OnLine Spatio-Temporal Demand SupplY Matching - Requests

with PIckup Or Drop-off Locations

1.2 OLYMPIAD - Requests with Pick-up And

Drop-off Locations

In this case, each customer request has a pick-up location and it also includes an as-

sociated drop-off location. The example applications include food delivery services,

taxi matching services etc. In general, these problems also have a time window

associated with pick-up and drop-offs. Servers/vehicles are assigned to customer

requests and they pick the customer requests from the pick-up location and drop

them at their drop-off location. When the servers have a unit-capacity, we refer to

the problem as U-OLYMPIAD. In this case, servers are matched to one request at a

time. On the other hand, when servers are multi-capacity, we refer to the problem as

M-OLYMPIAD. The problem becomes more complex when multi-capacity servers

are used as servers must be matched to groups of requests and not just to individual

requests.

1This is similar to the classification of Static pick-up and delivery problems provided by Parragh
et.al. (Parragh, Doerner, & Hartl, 2008)
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In this dissertation, I consider the domain of taxi matching services for this

class of problems. Given the challenging nature of the problems (stochasticity, dy-

namism, societal scale, online, multi-step, multi-capacity), most existing work on

relevant problems (described in Chapter 2) has focused on myopic algorithms (Karp,

Vazirani, & Vazirani, 1990a) like greedy and randomized ranking. While these ap-

proaches have good competitive ratios in case of online bipartite matching (sin-

gle step, unit-capacity), they have obvious inefficiencies in handling multi-step and

multi-capacity problems due to their myopic nature. To address these issues, there

has been research on multi-period two-stage stochastic models and Approximate

Dynamic Programming approaches that consider expected demand for the future

time steps for unit-capacity servers. However, these approaches have been lim-

ited to small scale problems and are applicable in restricted settings (Powell, 1996;

Topaloglu & Powell, 2006; Simao et al., 2009; Powell, 2007; Ritzinger, Puchinger,

& Hartl, 2016; Katriel, Kenyon-Mathieu, & Upfal, 2008; Zhang, Smilowitz, & Er-

era, 2011). A recent work by (Alonso-Mora, Samaranayake, et al., 2017) proposes

a trip based formulation to solve the M-OLYMPIAD problem but the approach uses

heuristic for online computation which can degrade the quality of matching espe-

cially for higher capacity vehicles. Moreover, the approach is myopic in nature, i.e.,

it does not consider future effect of current assignments.

To overcome these drawbacks of existing work, I propose using abstraction and

decomposition based approaches which can support thousands of servers and cus-

tomers. The quality of matching is further improved by using multiple demand

samples from historical data. For U-OLYMPIAD problems, I propose a data driven

multi-period two-stage optimization formulation to match servers to customer re-

quests while considering multiple future customer demand samples. I exploit the

homogeneous nature of servers where instead of considering each server individ-

ually, the formulation considers the number of servers present in abstracted loca-

tions (i.e., zones). To make the formulation scalable, Benders decomposition is

used. For M-OLYMPIAD problems, I propose neural approximate dynamic pro-
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gramming approach and a zone path 2 based multi-period two-stage optimization

approach. These approaches use multiple samples of future demand from the his-

torical data. Due to the complexity involved in M-OLYMPIAD problems, the ap-

proximate dynamic programming and two-stage optimization formulations are not

exact and approximations are used to make them scalable (more details in chapter 4,

5). To further improve the scalability of two-stage optimization formulation, similar

to U-OLYMPIAD problems, I use Benders decomposition to decompose the large

optimization problem into multiple smaller problems.

Along with providing solution approaches which perform well empirically, I

also focus on designing and analyzing online algorithms which can provide the-

oretical guarantees on the worst case performance in some special cases. The

metric used is competitive ratio which is defined as the worst-case ratio between

the objective of the solution found by the online algorithm and the solution found

by an offline optimal algorithm which has complete information. In case of U-

OLYMPIAD problems, Dickerson et.al. (Dickerson, Sankararaman, Srinivasan, &

Xu, 2017) were able to provide a 1
2

bound for the special case when the servers

come back to their original location after serving the requests. Unfortunately, this is

only applicable for unit-capacity servers and cannot be directly adapted to consider

multi-capacity servers due to the change in the structure of underlying matching

graph. Another limitation is that the existing theoretical work for U-OLYMPIAD

problems has primarily focused on requests arriving sequentially and not in batches

which is a desirable property when considering M-OLYMPIAD problems (for in-

stance, last mile services at train stations need to consider that the large number of

passengers will arrive and request for last mile transportation to their home at the

same time.).

The multi-capacity servers make the problem challenging because servers must

be matched to groups of requests and not just to individual requests. As mentioned

2A zone path is a path that connects zones (a zone is an abstraction for multiple individual loca-
tions) and therefore it can group multiple requests that have ”nearby” or ”on the way” pick-ups and
drop-offs. The servers and requests are matched to these zone-paths (instead of request groups) to
efficiently perform matching in the resulting tripartite graph.
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before, unlike U-OLYMPIAD problems, where the underlying graph is bipartite,

the M-OLYMPIAD problems have a tripartite graph (Beineke, 1980) with reusable

servers (vehicles), request groups (i.e., combinations of passenger requests) and on-

line requests. The desired matching between the servers and request groups (combi-

nation of requests) is constrained by the edges between requests and request groups

(i.e., a request can be part of at most one request group in final assignment) in this

tripartite graph. To the best of our knowledge, there has been no research on pro-

viding performance guaranteed algorithms for such tripartite graphs. To overcome

these limitations of the existing work, we design an analyze an adaptive algorithm

which provides a bound on the competitive ratio for U-OLYMPIAD problems in

batch arrival model and also provide a performance guaranteed approach for solv-

ing M-OLYMPIAD problems.

1.3 OLYMPIOD - Requests with Pick-up or

Drop-off Locations

This category involves problems where resources are present at different ware-

houses/stations and customer requests for these resources either by walking into

these warehouses/stations or from a remote location. In this category, each customer

request is either requesting a pick-up or drop-off of resources but not both. The

multi-capacity servers/vehicles in these problems provide an assistance in matching

these customer requests with required resources by performing a redistribution of

resources across different warehouses/stations. The underlying matching graph is

complex in this case as in addition to matching customer requests with the resources

at stations/warehouses, it also involves matching servers with the decisions of redis-

tributing resources across stations/warehouses. The redistribution decisions consist

of two types of decisions: (1) Repositioning decision which specifies the number of

resources to be picked up or dropped off at stations (2) Routing decisions: which

specify the stations where servers should move next.
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The resources which are requested/redistributed can be of a single type or can

have multiple types. In this dissertation, I consider the case where resources are

of single type. This has application in many practical scenarios like food rescue

programs which involve collecting extra food from restaurants and redistributing

through agencies to people in need, redistributing money between different bank

branches, redistributing bikes between different stations in bikesharing systems etc.

In this dissertation, we evaluate our approaches for bikesharing systems. Most of

the existing work in bikesharing systems has focussed on static repositioning ap-

proaches (Schuijbroek, Hampshire, & van Hoeve, 2017; Chemla, Meunier, & Calvo,

2013; Raviv, Tzur, & Forma, 2013). These approaches perform repositioning only

at the beginning of the day, but they do not consider the mismatch between demand

and supply during the day. Ghosh, Varakantham, Adulyasak, and Jaillet (Ghosh et

al., 2015, 2017) consider the problem of dynamic repositioning of bikes by provid-

ing an offline policy generation approach based on mean demand computed from the

historical data. While the offline policy provides significant improvement over static

repositioning approaches, it is unable to consider the changing demand scenarios in

real-time. To overcome these limitations, I propose using an online repositioning

approach which uses future demand samples to improve current decision.

1.4 Contributions

This section describes my contributions towards solving Online Spatio-Temporal

Demand Supply Matching problems. The contributions are summarized in Figure

1.3.

My key contributions in solving OLYMPIAD problems are as follows:

1. I first introduce a data driven two-stage stochastic optimization approach to

solve the U-OLYMPIAD problems. The approach considers samples of fu-

ture customer demand (typically obtained from historical data) for finding the

assignment of servers to customers. I also provide a multi-period two-stage
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(a)

Figure 1.3: Online Spatio-Temporal Demand Supply Matching - Contributions

extension.

2. Given the large scale of problems of interest with thousands of servers and

customers, I provide a decomposition of the above formulation to improve

parallelism in handling future demand.

3. I provide the theoretical results on the hardness of U-OLYMPIAD problems

and provide the theoretical results on competitive ratios for myopic and two-

stage algorithms for U-OLYMPIAD problems.

4. I propose Neural Approximate Dynamic Programming approach 3 to solve

M-OLYMPIAD problems.

5. I propose a zone path based stochastic optimization formulation to solve M-

OLYMPIAD problems. Similar to U-OLYMPIAD case, I provide a decom-

position of the formulation to improve parallelism in handling future demand.

3This is a joint work, which was primarily done by Sanket Shah. My contribution lies in mod-
elling it in approximate dynamic programming framework instead of reinforcement learning frame-
work.
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6. I propose an adaptive online algorithm which can achieve a competitive ratio

of 1
2

for a special case of U-OLYMPIAD problems where servers return back

to their original location after serving a request.

7. I propose an adaptive online algorithm which can achieve a competitive ratio

of γ where γ is a solution to the equation γ = (1 + γ)κ+1 and κ is the max-

imum capacity of the servers. Similar to U-OLYMPIAD, these bounds are

applicable for a special case of M-OLYMPIAD problems.

My key contributions towards solving OLYMPIOD problems are as follows:

1. I propose a data driven multi-period two-stage stochastic formulation, to con-

sider expected future demand over a set of scenarios to find an efficient repo-

sitioning strategy for OLYMPIOD problems.

2. Given the large scale nature of the problem, I provide a Lagrangian decompo-

sition approach that decouples the global problem into routing and reposition-

ing slaves and employs a novel dynamic programming approach to efficiently

solve routing slave.

3. I propose a greedy online anticipatory heuristic to solve large scale problems

effectively and efficiently.

1.5 Results

1. For U-OLYMPIAD problems, I have evaluated our approaches on the datasets

of three major taxi companies. The comparison is performed against my-

opic algorithms (typically employed by standard taxi matching applications)

such as greedy and one-stage bipartite optimal assignment. In addition, we

also compare against the Approximate Dynamic Programming (ADP) ap-

proach that has been successfully applied in many resource allocation prob-

lem and Hybrid Multi-Period Two-Stage Stochastic optimization (HSS) ap-

proach used for the truckload assignment problem. We show that our data
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driven multi-period two-stage formulation can be solved in times that are

competitive to these approaches, while providing 9% gain over other multi-

period approaches.

2. A recommendation engine built based on the optimization formulation pro-

posed for U-OLYMPIAD problems is used to provide personalized guidance

to taxi drivers in Singapore. The field trial of the driver guidance system

(DGS) was conducted with 500 recruited taxi drivers from September 2017-

end of 2019. Comparing the vacant roaming times before finding passengers,

we discover that by following the DGS recommendations, drivers manage to

reduce their vacant roaming times by 27% across all time periods.

3. For M-OLYMPIAD problems, we compare our approaches against the Alonso

et al.’s (Alonso-Mora, Samaranayake, et al., 2017) on two real world datasets

and a synthetic dataset and show that our approaches provide upto 14.7% im-

provement. In special case of first and last mile transportation on synthetic

dataset, our approach provides up to 20% improvement.

4. For OLYMPIOD problems, we conduct experiments on real world bikeshar-

ing datasets and obtain 20% reduction in lost demand over existing approaches.

1.6 Overview of the Dissertation

The rest of the dissertation is organized as follows: Chapter 2 describes the model,

related work and existing solution approaches for OLYMPIAD (Online Spatio-

Temporal Demand Supply Matching - Requests with Pick-up and Drop-off loca-

tions) problems. Chapter 3 presents our approaches for solving the U-OLYMPIAD

problems. Chapter 4 explains the Neural Approximate Dynamic Programming ap-

proach to solve M-OLYMPIAD problems. Chapter 5 describes the Zone Path Con-

struction based approaches to solve M-OLYMPIAD problems. Chapter 6 describe

the experimental results for M-OLYMPIAD problems. Chapter 7 describes the
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background and related research for competitive ratio analysis for M-OLYMPIAD

problems. Chapter 8 describes the adaptive algorithm and competitive ratio anal-

ysis for the special case of M-OLYMPIAD problems. Chapter 9 describes the

background, models and related work for decision making in OLYMPIOD (Online

Spatio-Temporal Demand Supply Matching - Requests with Pick-up or Drop-off

location) problems. Chapter 10 describes our approaches to provide online repo-

sitioning and routing decisions for OLYMPIOD problems. I finally conclude with

the future research plans in Chapter 11. Appendix includes the detailed proofs of

propositions present in the dissertation.
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Chapter 2

Background for Decision Making in

OLYMPIAD Problems

In this chapter, we provide a model to describe OLYMPIAD problems and pro-

vide the details of the existing approaches used to solve the U-OLYMPIAD and

M-OLYMPIAD problems. In our experimental results in chapter 3 and 6, we com-

pare our solutions with these approaches.

2.1 Model for OLYMPIAD problems

We assume that the time is divided into discrete blocks of duration ∆. Given a

set of customer requests available at current decision epoch and the initial loca-

tion of servers, the goal in OLYMPIAD problems is to find a matching between

servers and customer requests such that the objective function (e.g., revenue, num-

ber of requests) of the matching is optimized. The key constraint is that the accep-

tance/rejection decision for requests should be taken at the decision epoch at which

they become available. If a request is not assigned a server at which it becomes

available, it is considered rejected. Considering potential future samples can help

in making better matching decisions (Powell, 1996; Zhang et al., 2011; Godfrey &

Powell, 2002). Therefore, we use multiple potential samples of demand requests at

future decision epochs. One way of obtaining the potential scenarios is to consider
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the scenarios observed in the past data. We consider the future demand samples for

ρ duration or over next Q decision epochs. ρ is termed as lookahead duration and

Q = d ρ
∆
e − 1. For ease of notation, in the formulation, we use decision epoch 1 to

denote the current decision epoch. Therefore, decision epoch t corresponds to the

current decision epoch + (t - 1).

Formally an OLYMPIAD problem is defined using following tuple:

〈
G,V ,D, ξD, C, T ,Sp, µ, κ, τ, λ

〉
• G = (L, E) is a graph with the vertices (L) as the set of all valid locations 1. E

defines the adjacency of the locations in set L.

• V denotes the set of servers/vehicles 2. qv denotes the set of customer requests

present in the vehicle, where each element of qv is represented by the tuple,

〈oj, dj, tj〉, where oj, dj ∈ L denote the origin and destination location of the

requests and tj denote the decision epoch at which the request was assigned to

the vehicle.

• D represents the demand or the set of customer requests for servers. We use D1

to denote the set of customer requests at current decision epoch. Each element

j ∈ D1 is characterized by a tuple
〈
oj, dj, R

1
j

〉
where oj, dj ∈ L denote the

origin and destination location of the requests and R1
j denotes the number of

requests having origin at location oj and destination at location dj at current

decision epoch. In the context of taxis, this would correspond to the set of

customer requests that travel between certain starting and ending locations. The

set D1
r is derived from D1 with each element j ∈ D1 is repeated R1

j times, i.e.,

D1
r contains each request separately.

• ξD is the set of customer request samples for the future decision epoch, where

ξD,kt , t > 1, represents the set of customer requests at t − 1 decision epochs

in the future in sample k. Each element j ∈ ξD,kt is characterized by a tuple

1For example the set of valid locations can be all the nodes in the street network of a city or the
set of zones which are used to divide the city.

2We use servers and vehicles interchangeably in the dissertation
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〈
oj, dj, R

t,k
j

〉
where oj, dj ∈ L denote the origin and destination location of

requests and Rt,k
j denotes the number of requests having origin at location oj

and destination at location dj at decision epoch t for sample k.

• C represents the objective (e.g., revenue, number of requests served, negative of

waiting time), with Ctv,oj ,dj denoting the objective value obtained by matching a

server v ∈ V to a single customer request with origin and destination locations

given by 〈oj, dj〉 at decision epoch t.

• T (l, l′, t) gives the time taken by a server to move from location l to l′ at decision

epoch t.

• Sp denotes the set of shortest duration paths between all location pairs, with

Sp(l, l
′, t) denoting the shortest path between location l and l′ at decision epoch

t. Shortest paths are computed based on the T (l, l′, t) values.

• µ denotes the initial distribution of servers at locations. µtv(l) is set to 1 if server

v becomes available at location l at decision epoch t and is 0 otherwise.

• κ denotes the maximum capacity of servers.

• τ denotes the maximum allowed waiting time (while pick-up).

• λ denotes the total maximum allowed delay (including pick-up and drop-off).

Please note that the demand variables (D1 and ξ) are exogenous variables, i.e.,

they are not affected by the matching decisions taken by online algorithms. For

U-OLYMPIAD problems, κ = 1. Also, in U-OLYMPIAD, there is no additional

delay allowed during drop-off, therefore, λ = τ .

Justification for considering deterministic travel time durations: The model

considers that the travel time is deterministic and known for the lookahead duration

(ρ) . This assumption is justified as the typical value of ρ is 30 minutes during

which travel times do not change drastically. Moreover, travel time values can be

updated after ∆ duration (decision epoch duration). The value of ∆ is much smaller

than ρ (generally between 10 seconds and 5 minutes), so even if there is a change

in the conditions, the algorithms can use updated travel time values while making
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decisions.

2.2 Related Work

In this section, we describe the multiple threads of research in online sequential

decision making that are of relevance to OLYMPIAD problems. Online algorithms

typically consider requests that are revealed incrementally over time and algorithms

must make decisions based on the requests that are revealed (Borodin & El-Yaniv,

1998). The key threads of research that are of relevance are: online matching, online

MDPs, online stochastic optimization algorithms and online multi-vehicle pick-up

and delivery problems.

2.2.1 Online Matching

A matching, M in a graph G(V,E) is defined as the set of edges M ⊂ E such that

for every v ∈ V there is at most one edge in M incident on v. In classical online

bipartite matching problem (Karp et al., 1990a), one side of the vertices is known,

and the other side of the vertices arrive online. This is formally defined as a graph

G(U, V,E) where vertices in the set U are known and vertices in the set V appear

online. The goal is to maximize the size of the matching M .

A simple generalization of the online bipartite matching is the weighted case

where vertices or edges have weights associated with them and the goal is to max-

imize the total weight of the matching. This problem has applications in online

advertising employed by Yahoo, Google etc. Specifically, in such applications, the

goal is to optimize the allocation of a fixed advertising space to incoming advertisers

who typically arrive at different times.

We describe the commonly used approaches for solving online bipartite match-

ing problems. In the experimental section, we compare our proposed approach with

the following approaches.

1. Greedy: Greedy algorithm matches the incoming vertex with the best avail-
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able choice. In case of weighted models, it matches with the maximum

weighted vertex or edge. Greedy algorithm is shown to have a competitive

ratio3 of 1
2

(Karp et al., 1990a).

2. Randomized Greedy: The randomized greedy algorithm perturbs the value

of matching by multiplying it by a random number w between 0 and 1. It

then greedily matches the servers to customer by using perturbed value. Goel

et.al. (Aggarwal, Goel, Karande, & Mehta, 2011) show that the randomized

greedy algorithm achieves a ratio of 1-1
e

for the vertex weighted bipartite

matching.

In classical online bipartite matching, vertices appear one by one. In our model,

discussed in the introduction, a group of requests (possibly more than one) arrive

simultaneously at each decision epoch, therefore we can apply standard bipartite

matching algorithm on the currently available partial graph. We call this One-Stage

Algorithm as it only considers requests available at one stage (the current deci-

sion epoch). One-Stage Optimal finds the maximum weighted bipartite matching

between available vertices at every decision epoch by solving a linear program. Al-

though most work in online bipartite matching addresses the problem where one

side is fixed (Jaillet & Lu, 2013; Mehta et al., 2013; Manshadi, Gharan, & Saberi,

2012), results in (Blum, Sandholm, & Zinkevich, 2006) show that greedy algorithm

achieves a competitive ratio of 1/2 when both sides of vertices appear online. Re-

cently in Wang et al. (Wang & Wong, 2015) an algorithm based on water-filling

algorithm has been proposed which achieves a competitive ratio of 0.526 in case

both sides of vertices appear online.

While there are similarities, there are multiple differences in our work from

research in online matching:

• We consider a multi-period two-stage problem, where there are multiple con-

nected rounds of bipartite matching. Therefore, unlike in online bipartite match-

3Competitive ratio of an algorithm is defined as the ratio of the worst case solution obtained by
the algorithm and the optimal solution.
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ing that assigns one service to only one customer, in this dissertation, we match

one service to multiple customers over time. A recent work by Dickerson

et.al. (Dickerson, Sankararaman, Srinivasan, & Xu, 2018) proposes a new model

for Online Matching with (offline) Reusable resources in which resources on

one side are reusable, i.e., resources are matched multiple times over time but

their model assumes that each resource has a fixed position and comes back to

its original position before it can be matched again. This assumption is valid

for the special case of last mile transportation which we study in chapters 8 but

for the general problems considered in this dissertation where position of re-

source (server) depends on the previous match (assignment) this assumption is

not applicable.

• In addition, the spatio-temporal aspect of requests (not present in traditional on-

line matching problems) adds further computational complexity to the matching

problem.

• Finally, in terms of approaches, unlike work in online matching which has pri-

marily considered myopic approaches, we pursue multi-period two-stage ap-

proaches that consider potential future requests.

2.2.2 Online MDPs

Another relevant thread of research is Online Markov Decision Processes (MDPs).

In the online setting, rewards and transition functions of MDP for future timesteps

are unknown. To learn these unknown reward and transition functions, following

two cases are considered.

• The more popular sub-thread has focused on the cases where the reward and the

transition function are assumed to be stochastically stationary and the instances

of the reward and the transition function are revealed depending on the action.

In this case, Reinforcement Learning (Szepesvári, 2010) has presented numer-

ous techniques for learning the policies, which are guaranteed to maximize the

expected value.
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• In the second sub-thread (Even-Dar, Kakade, & Mansour, 2009; McMahan,

Gordon, & Blum, 2003; Abbasi, Bartlett, Kanade, Seldin, & Szepesvári, 2013)

the revealed reward and transition functions are adversarial to the executed ac-

tion.

While it is possible to represent our Online Demand Supply Matching Problems

as an online MDP, the number of states and actions are exponential in the number of

agents. Since the number of agents is in the thousands especially for OLYMPIAD

problems, it is even difficult to specify the model. For the large scale MDPs, existing

works have used state aggregation (Li, Walsh, & Littman, 2006) and Approximate

Dynamic Programming methods (Powell, 2007) to compute policies. As described

in Section 2.2.4, Approximate Dynamic Programming methods have been widely

applied for the resource allocation problems. We used linear and piecewise lin-

ear value function approximation which are shown to work well for truckload as-

signment and fleet management problem (Godfrey & Powell, 2002; Simao et al.,

2009). We provide a comparison with this approach in our experiment section for

unit-capacity OLYMPIAD problems. In summary, following are the differentiating

factors of the work presented in this dissertation:

• While it is possible to represent our problem as an online MDP, the number of

states and actions are exponential in the number of agents. We provide an exper-

imental comparison of our model with the Approximate Dynamic Programming

approach which is generally used to solve the large scale MDPs.

• We neither associate adversarial behaviour with the nature nor do we assume

stationarity with respect to reward and transition functions. Instead, we assume

that the behaviour is similar to what has been observed in the training demand

settings.

Given that both Online MDPs and our work are focussed on online sequential deci-

sion making under uncertainty, existing work in online MDPs can benefit by adapt-

ing the following two key ideas mentioned in this dissertation in order to scale to

problems with multiple agents:
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• Exploiting anonymity (lack of identity) and homogeneity of agents to address

the exponential complexity associated with increasing the number of agents.

• Exploiting decomposability across multiple samples of the future state space

evolution.

2.2.3 Online Stochastic Optimization

Stochastic programming is used to model the optimization problems that involve

uncertainty. These models take advantage of the fact that the probability distribu-

tions which represent the data are known or can be estimated (Shapiro, Dentcheva,

& Ruszczyński, 2009). To represent the future uncertainty, multiple samples (sce-

narios) from the known or estimated probability distribution are considered.

The complexity of these multi-period two-stage stochastic programs increases

with increasing the number of timesteps and sample scenarios (Shapiro, 2006). On-

line anticipatory algorithms (Mercier & Van Hentenryck, 2007; R. Bent & Van Hen-

tenryck, 2004; Mercier & Van Hentenryck, 2011; Ghiani, Manni, & Thomas, 2012)

are generally used to solve large scale stochastic integer programs when the set of

feasible decisions at each stage is finite (Mercier & Van Hentenryck, 2007). The

assumption is that there exists an offline deterministic algorithm for the applica-

tion. Online anticipatory algorithms relax the non anticipativity constraints in the

stochastic program and make decisions online at a time t in three steps:

• Sample the distribution to obtain a subset of future scenarios.

• Optimize each scenario for each possible decision.

• Select the best decision over all scenarios.

The above algorithm requires evaluating each decision for each possible sample

which is computationally expensive. Hence, in general, the following two approxi-

mations are used.

• Consensus: Instead of optimizing each sample for each decision, consensus

optimizes each sample once. Only decisions which are optimal for a sample
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receive positive score, other decisions are given zero score. The decision having

highest score is executed at time t.

• Regrets: Regrets algorithm assumes the availability of an application specific

regret function which gives fast approximation on the regret value of any deci-

sion. Now similar to consensus, regrets algorithm optimizes each sample once

but unlike consensus, it assigns score to all decision using the application spe-

cific regret function.

Online Anticipatory algorithms have been used in the applications like online

vehicle routing, packet scheduling, reservation systems but these applications typi-

cally have a small set of feasible decisions at each stage (50-100 requests) (R. Bent

& Van Hentenryck, 2004; R. W. Bent & Van Hentenryck, 2004; Mercier & Van Hen-

tenryck, 2007).

Unfortunately, in our case, the number of feasible decisions are in millions (tens

of thousands of servers and hundreds/thousands of requests). Furthermore, if we

are to optimize for each sample separately, we can only handle very few samples

within the online time constraints. Thus, we provide approaches (relaxation, Ben-

ders Decomposition, Lagrangian decomposition on top of the linear optimization)

that improve scalability considerably to handle millions of decisions. Though Ben-

ders Decomposition (Rebennack, 2016; Legrain & Jaillet, 2016; Murphy, 2013)

and Lagrangian decomposition (Fisher, 1985; Kumar, Wu, & Zilberstein, 2012;

Ghosh et al., 2015, 2017) is typically used to solve the large scale stochastic opti-

mization problems, the novelty is to use this for our updated formulation to obtain

competitive results.

2.2.4 Online Multi Vehicle Pick-up and Delivery Problem

This thread of research is closely related to OLYMPIAD problems considered in

this dissertation. Online Multi Vehicle Pick-up and Delivery problems typically

represent problems where there are multi-capacity servers that transport multiple re-

sources/loads from their origins to destinations. When servers are used to move peo-
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Figure 2.1: Related Work

ple instead of resources, the problem is referred to as dial-a-ride problem (Feuerstein

& Stougie, 2001; Lipmann, Lu, de Paepe, Sitters, & Stougie, 2002; Bonifaci, Lip-

mann, Stougie, et al., 2006) and when all the origins or all the destinations are

located at a depot, the problem is referred to as vehicle routing problem (Ritzinger

et al., 2016).

The general representation of the dial-a-ride problems is ideally suited to repre-

sent problems faced by companies such as super shuttle (transports people from an

airport to different locations in the city), uber pooling (transports customers from

near by start locations to near by destination locations). These problems are hard to

solve and the traditional approaches for these problems can solve only very small

instances of 96 requests and 8 vehicles (Ropke, Cordeau, & Laporte, 2007).

The integer programming formulation, without any spatial or temporal aggre-

gation (Ropke et al., 2007), is difficult to solve and is not scalable to large scale

problems and online decision making even for unit-capacity. Therefore, in recent

times, many heuristic approaches have been proposed to solve the OLYMPIAD

problem. As shown in Figure 2.1, the existing work on OLYMPIAD problems can
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be categorized along three dimensions of capacity, consideration of requests and the

nature of assignment (whether it is myopic or takes future demand into account for

making current assignments).

In case of U-OLYMPIAD problems, servers need to be assigned to atmost one

request at a time. Greedy and randomized ranking (Karp, Vazirani, & Vazirani,

1990b) algorithms have been used in the literature to compute myopic matching

when requests are considered sequentially. The myopic matching for the batch case

is also trivial in this case and can be achieved by performing a bipartite matching

between vehicles and requests (Agatz et al., 2011). To improve the performance

of these myopic algorithms in the batch case, there has been research on providing

multi-period two-stage approaches for U-OLYMPIAD problems.

Multi-period approaches for U-OLYMPIAD problems considered in litera-

ture: There has been some research on multi-period models for unit-capacity servers

(Powell, 1996; Spivey & Powell, 2004; Simao et al., 2009). Similar to approaches

considered in this dissertation for U-OLYMPIAD problems, they consider matching

supply and demand at the level of zones, cities or areas (abstraction of locations) and

not at the level of individual locations. That is to say, all demand and/or supply of

a specific type within an area are deemed equivalent to improve scalability. There

are multiple key differences in assumptions/constraints made in existing work on

truckload assignment problem (and other similar ones) as compared to the problem

of interest in this dissertation (e.g. taxi matching). These differences in assumptions

are significant as the computational complexity class changes due to these assump-

tions/constraints.

• Zone assignment constraints: In the existing models used for truckload as-

signment problem, at any timestep, truck can only be assigned to load in the

same zone 4. This is a strong assumption which makes the formulation a pure

4Some works (Godfrey & Powell, 2002) consider in the evaluation (not in the formulation) that
the loads (tasks/requests) if not served will be available at the future timesteps. But, in the cases
where waiting time is few minutes, i.e., demands are available only for one timestep and disappear if
not assigned (for example in taxi case), using existing formulations, requests can not be served from
the neighboring zones
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network flow problem that can be solved in polynomial time. The complexity

in truckload assignment comes due to other generalizations (such as returning

trucks to their base locations, each truck serving multiple loads etc.). On the

other hand, due to requirement of smaller duration (about 5 minutes) for pick-

ing up customers, zones cannot be very large and a server from a neighboring

zone can be assigned to the customer in a zone (if it is the nearest server). These

assumptions/constraints of our problem result in NP-hardness and thereby in-

crease the complexity.

• Time to compute dispatch strategies: Since truckload tasks typically take any-

where from 1 day to 4 days, the time available to compute a dispatch strategy is

in the order of tens of minutes or even an hour. In the problem of interest of this

dissertation, decisions on dispatch must be decided in real-time (in less than a

minute) and the number of servers is in the order of thousands and demand is in

the order of at least 300-400 customers per minute.

• Representation of current and future assignments in formulation: The dif-

ferences in the assumptions/constraints also introduce a key change in the for-

mulations for modelling the problems. Unlike our approach, the existing work

on truckload (and other similar domains) employ pure network flow formu-

lations (i.e., only assigning demand from the same zone as supply) for both

current and future time steps, or only for the future time step (Powell, 1996).

This is the reason for better approximations provided by our formulation, as

shown in the non-trivial improvements in results (on an average 9%) provided

by our approach over Hybrid Multi-Period Two-Stage Stochastic optimization

(HSS) (Powell, 1996) on three different taxi datasets.

• Linear or piecewise linear approximation of value function: Existing work

on the Approximate Dynamic Programming in solving fleet optimization MDPs

(Spivey & Powell, 2004; Simao et al., 2009; Godfrey & Powell, 2002) approx-

imates the future value using the linear or piece-wise linear functions. While

this seems to have provided good results in the truck fleet optimization prob-
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lems, it is not a good approximation in the taxi fleet optimization. The value

function approximation considered for fleet management problem is separable

over zones but as in our case servers can be assigned from the nearby regions,

the value of having one extra server in a zone will depend on the number of

servers present in the nearby zones. Experimentally, our approaches provide on

an average 9% improvement over ADP as well.

For M-OLYMPIAD problems, due to the complexity of finding a myopic batch

assignment, most of the existing works consider sequential (i.e., one by one) assign-

ment. Widdows et al. (Widdows, Lucas, Tang, & Wu, 2017) and Tang et al. (Tang et

al., 2017) propose an approach which allows 2 passengers to travel in the vehicle at

the same time. It takes one request at a time and generates all feasible driver paths

by inserting the pick-up and drop-off of the request in the existing driver paths.

Pelzer et al. (Pelzer et al., 2015) also allow 2 passengers to share the ride. They

divide the road network into multiple partitions and limit the search space within

the partition to find the match for the incoming request. Ma et al. (S. Ma, Zheng,

& Wolfson, 2013) propose a myopic sequential matching algorithm for high capac-

ity OLYMPIAD problems. They propose a taxi searching algorithm which uses a

spatio-temporal index to quickly retrieve candidate taxis. It then uses a scheduling

algorithm which after comparing the current request with each candidate taxi, insert

into the schedule of taxi which minimizes additional incurred distance for the re-

quest. Other works (Y. Huang, Bastani, Jin, & Wang, 2014; Tong et al., 2018; Chen

et al., 2018; Cheng, Xin, & Chen, 2017) also provide approaches where insertion

operation is widely utilized, i.e., for each request, they find the best place to insert

in a taxi’s path.

While the sequential solution is faster to compute, the quality of solution ob-

tained is typically poor, therefore, there have been works on finding a myopic batch

solution. Most of the works in this case have focussed on low capacity vehicles.

Zheng et al. (Zheng, Chen, & Ye, 2018) consider batch assignment but they only

consider grouping at most two requests in a vehicle. They propose different approx-
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imation and apply matching and optimization based approaches to assign vehicles

to the combination of two requests. Dutta (Dutta, 2018) use a locally sensitive

hashing technique to efficient group two requests together but they do not consider

assignment of vehicles to requests. Brown et al. (Brown, 2016) propose exhaus-

tively generating the combinations of atmost three requests from all the available

requests. For capacity two vehicles, Yu et al. (Yu & Shen, 2019) propose an ap-

proximate dynamic programming approach which is non-myopic. They use a linear

value function approximation to approximate the future effect of assignment and

use spatial and temporal aggregation to group different parts of road network into a

small number of regions. Their approach is not scalable to large number of locations

and higher capacity vehicles.

A leading approach for M-OLYMPIAD problems was provided by Alonso et

al. (Alonso-Mora, Samaranayake, et al., 2017). The approach is divided into two

parts, where the first part constructs an RTV (Request Trip Vehicle) graph. A trip

in an RTV graph corresponds to a combination of requests that is feasible (with

respect to allowed delay). There is an edge between request and trip if the request

is a part of the trip and there is an edge between trip and vehicle if the vehicle can

serve all the requests in trip. From all allowable allocations of vehicles to trips, the

second part computes an optimal allocation of vehicles to trips that minimizes delay

or maximizes the number of requests served. As can be expected, this approach is

limited in scalability since the set of possible trips increases exponentially with

increase in number of requests and capacity of vehicles. For online execution, time

limits are used for different steps.

The non-myopic approach by Alonso et al. (Alonso-Mora, Wallar, & Rus, 2017)

is a minor extension of their myopic approach where they randomly sample 200 or

400 requests for next 30 minutes and then use those requests along with currently

available requests to generate the assignments. Typically, there are 300 requests

per minute so randomly sampling 200 or 400 requests for next 30 minutes does not

help in improving the quality of solution. This is reflected in their results as well,
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where the service rate remains approximately same as the service rate of the myopic

approach. But they observe a minor decrease in the average delay experienced by

the passengers. The sampled requests also increase the computational complexity of

the approach and the runtime of the approach after adding sampled requests is more

than the time available for assignment (duration over which requests are batched).

As a result, it is not possible to use the approach for real-time assignments.

The zone path construction based approaches proposed in this work for M-

OLYMPIAD problems, overcome these limitations of existing work by providing

an offline-online method to generate request combinations efficiently by employ-

ing zone-paths. The future value of assignment to these zone paths is computed by

considering multiple samples of future demand.

2.3 Approximate Dynamic Programming (ADP)

ADP is a framework based on the Markov Decision Problem (MDP) model for

tackling large multi-period stochastic fleet optimization problems (Powell, 2007).

The problem is formulated using the tuple 〈S,A, ξ, T,O〉:

S: denotes the system state with st denoting the state of system at decision epoch

t.

A: denotes the set of all possible actions 5 (which satisfy the constraints on the

action space) with At denoting the set of possible actions at decision epoch t.

at ∈ At is used to denote an action at decision epoch t.

ξ: denotes the exogenous information – the source of randomness in the system.

For instance, this would correspond to demand samples defined for OLYMPIAD

problems. ξt denotes the exogenous information (e.g., demand) at time t.

T : denotes the transition function which describes how the system state evolves

over time.

O: denotes the objective function with ot(st, at) denoting the value obtained on

5We use action and decision interchangeably in the chapter.
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applying action at on state st.

In an MDP, system evolution happens as (s0, a0, s1, a1, s2, ....). However, in an

ADP, the evolution happens as (s0, a0, s
a
0, ξ1, s1, a1, s

a
1, · · · , st, at, sat , · · · ), where st

denotes the pre-decision state at decision epoch t and sat
6 denotes the post-decision

state (Powell, 2007). The transition from state st to st+1 depends on the action

vector at and the exogenous information ξt+1. Therefore,

st+1 = T (st, at, ξt+1)

Using post-decision state, this transition can be written as

sat = T a(st, at); st+1 = T ξ(sat , ξt+1)

Let Vt(st) denotes the value of being in state st at decision epoch t, then using

Bellman equation we get

Vt(st) = max
at∈At

(O(st, at) + γE[Vt(st+1)|st, at, ξt+1])

where γ is the discount factor. Using post-decision state, this expression can be

broken down into two parts:

Vt(st) = max
at∈At

(O(st, at) + γV a
t (sat )) (2.1)

V a
t (sat ) = E[Vt(st+1)|sat , ξt+1] (2.2)

The advantage of this decomposition is that Equation 2.1 can be solved using an LP

in fleet optimization problems. The basic idea in any ADP algorithm is to define a

value function approximation around post-decision state, V a
t (sat ) and to update it by

stepping forward through time using sample realizations of exogenous information

(i.e. demand in fleet optimization that is typically observed in data).

6Here a is just used to indicate that it is post decision state and it does not correspond to any
specific action.
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For any iteration n, suppose we are in state snt , the optimization problem at t can

be written as

v̂nt = max
at∈Ant

(O(snt , at) + γV a,n−1
t (sa,nt )) (2.3)

Due to deterministic transitions in an iteration, the post decision state can be directly

computed. v̂nt is a sample realization of the value of being in state snt , so the value

function approximation is updated using

V n
t (snt ) = (1− αn−1) · V n−1

t (snt ) + αn−1 · v̂nt (2.4)

The above equation will give an estimate of being in pre-decision state st but when

we are solving for decision epoch t we would use V n−1
t+1 (st+1) but since st+1 is a

random variable (depends on the exogenous information), we have to approximate

the expectation. An effective alternative is to use v̂nt to update the value of being in

post decision state.

V a,n
t−1(sa,nt ) = (1− αn−1) · V n−1

t−1 (sa,nt−1) + αn−1 · v̂nt (2.5)

Please refer to Powell (Powell, 2007) for more details. Please note that if the

state st also includes time, we can drop the subscript t from the value function, i.e.,

value function is only defined for states not for each time period. We use this in the

NeurADP formulation in Chapter 4.

2.4 Existing Approaches for solving U-OLYMPIAD

problems

In this section, we describe the existing approaches for solving OLYMPIAD for

unit-capacity servers.
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Algorithm 1 GreedyAlgorithm()

1: Initialize: assignments={},V ′ = V , D′ = D1
r

2: while V ′! = φ || D′! = φ do
3: maxval =0
4: v1 = -1
5: r1 = -1
6: for each server v ∈ V ′ do
7: if

∑
l∈L µ

0
v(l) == 1 then

8: µ0
v(l) == 1 => lv = l

9: for each request r ∈ D′ do
10: if T (lv, or, 0) <= τ && Cv,or,dr > maxval then
11: maxval = Cv,or,dr
12: v1 = v
13: r1 = r
14: if v1! = −1&&r1! = −1 then
15: assignments.put(v1, r1)
16: V ′ = V ′ − v1

17: D′ = D′ − r1

18: else
19: break

2.4.1 Greedy Algorithm (GD)

In each step, the greedy Algorithm assigns the demand element to an available

server which provides the maximum marginal gain. The algorithm 1 provides the

steps for greedy algorithm.

2.4.2 Randomized Greedy Algorithm (RGD)

Randomized greedy algorithm perturbs the value of matching by multiplying it by

a random number w between 0 and 1. It then greedily matches the servers to the

customer request by using the perturbed value. The step 10 and 11 in the greedy

algorithm is modified as follows:

w = random(0, 1)

if(T (lv, or, 0) <= τ && w · Cv,or,dr > maxval) => maxval = w · Cv,or,dr
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OS:

max
∑
v∈V

∑
r∈D1

r

Cv,or,dr · xvr (2.6)

∑
r∈D1

r

xvr ≤ 1 ::: ∀v ∈ V (2.7)

∑
v

xvr ≤ 1 ::: ∀r ∈ D1
r (2.8)

xvr ∈ {0, 1} (2.9)

Table 2.1: One Step Bipartite Matching

2.4.3 One-Step Bipartite Matching (OS)

One Step Bipartite matching matches the available servers with the demand ele-

ments using standard bipartite matching optimization formulation as shown in table

2.1. xvr denotes that the server v is assigned to the request r. Constraints in the for-

mulation ensure that each server is assigned to at most one request and each request

is assigned to at most one server.

2.4.4 Hybrid Multi-Period Two-Stage Stochastic Optimization

(HSS)

In this section, we provide the details and the formulation of the model used by

Powell et.al. (Powell, 1996). This formulation solves the assignment problem at

first stage and a pure network flow approximation at the future stages. As for the

truckload problem, the typical value of decision epoch is one day, therefore, even

after having an assignment problem at first stage, this formulation will be a pure net-

work for the truckload assignment using a single sample of future demand. As we

described in related work (section 2.2), in our case, due to smaller decision epochs

and specifically as the completion decision epoch of the customer request depends

on the server assigned, this formulation will not be a pure network. But using this

formulation for our case, allows us to measure the impact of using more accurate

information for future demands. As opposed to the formulation and experimental
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evaluation in (Powell, 1996), we use multiple samples of future demand for this

approach.

Table 2.2 presents the Hybrid Multi-Period Two-Stage Stochastic optimization

formulation for our problem. The variable xvr denotes that a server v is assigned

to the demand element r. We set xvr to 0 if the server v can not reach the pick-up

location of the request r within τ duration. u1
v denotes that the server v is held at its

initial location.

HSS uses large zones or regions for the future timesteps. We abstract the loca-

tions in set L into a set of large zones Zl. Let zt,kmn denotes the number of servers

moving from the large zone m to the large zone n at decision epoch t in the sample

k and yt,ki denotes the number of servers held at the large zone i at decision epoch t

in sample k. δt,t
′

ij is a binary constant which is 1 if the server starting at the decision

epoch t from the large zone i reaches larger zone j exactly at the decision epoch t′.

We use ozv to denote the initial large zone of server v and ozj and dzj to denote the

origin and destination large zones of the demand element j ∈ D1
r . We use ξD,k,zt to

denote the future demand samples where each demand element has the origin and

destination as a large zone.

Constraints (2.11) ensure that either the server is assigned to at most one request

or it is held at its initial position. Constraint (2.12) ensures that a request is assigned

to at most one server. Constraints (2.13) ensure that for any sample at any decision

epoch, the number of servers moving between large zones is equal to the number

of available requests between those pair of large zones. Constraints (2.14)-(2.15)

ensure that the number of servers held at any large zone at any decision epoch is the

difference between the number of available servers in the large zone and the number

of assigned servers from the large zone.

2.4.5 Approximate Dynamic Programming (ADP)

In this section, we provide the Approximate Dynamic Programming formulation

for U-OLYMPIAD problems. The modeling is similar to the stochastic dynamic re-
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HSS:

max
∑
v∈V

∑
j∈D1

r

C1
v,oj ,dj

· x1
vr +

1

|ξD|
∑
k≤|ξD|

Q+1∑
t=2

∑
j∈ξD,k,zt

Ctoj ,oj ,dj · z
t,k
oj ,dj

(2.10)

s.t.
∑
j∈D1

r

x1
vj + u1

v = 1 ::: ∀v ∈ V (2.11)

∑
v∈V

x1
vj ≤ 1 ::: ∀j ∈ D1

r (2.12)

zt,koj ,dj ≤ Rt,k
j ::: ∀k ≤ |ξD|, j ∈ ξD,k,zt ,∀t > 1 (2.13)

yt,ki = yt−1,k
i +

t−1∑
t′=2

∑
j∈ξD,k,z

t′ ,dj==i

zt
′,k
oj ,i
· δt

′,t
oj ,i

+N t
i +

∑
v∈V

∑
j∈D1

r ,
dzj==i

x1
vj · δ

1,t
ozv ,i

−
∑

j∈ξD,k,zt ,
oj==i

zt,ki,dj ::: ∀i ∈ L, k ≤ |ξD|,∀t > 2 (2.14)

y2,k
i =

∑
v∈V,ov==i

u1
v +N 1

i +
∑
v∈V

∑
j∈D1

r ,
dzj==i

x1
vj · δ

1,2
ozv ,i

−
∑

j∈ξD,k,zt ,
oj==i

z2,k
i,dj

::: ∀i ∈ L, k ≤ |ξD| (2.15)

x1
vj ∈ {0, 1} ::: ∀v ∈ V , j ∈ D1

r (2.16)

u1
v ∈ {0, 1} ::: ∀v ∈ V (2.17)

zt,koj ,dj non− negative integer ::: ∀k ≤ |ξD|, j ∈ ξD,k,zt ,∀t > 1

(2.18)

yt,ki non− negative integer ::: ∀i ∈ L,∀k ≤ |ξD|,∀t > 1
(2.19)

Table 2.2: HSS
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source allocation formulation presented by Godfrey et.al. (Godfrey & Powell, 2002)

for travel time spanning multiple timesteps. Due to large state space and as the value

function approximations are updated using tabular methods, using offline methods

to learn the value of each possible state is not possible and it leaves most of the

states with 0 values. Therefore, we also update the value function approximations

using multiple samples(ξD in OLYMPIAD model) online. So the states which are

reachable based on requests in D1
r get updated. Therefore, in iteration k we use the

demand elements from ξD,kt to populate the Dt element defined below.

We first define some basic elements.

Bt = the total number of servers that we know about at decision epoch t.

Btt′ = the total number of servers that we know about at decision epoch t but

will become available at decision epoch t′, with Bi
tt′ denoting the number of servers

in the location i 7.

Dt = the customer demand at decision epoch t.

Therefore, the system state is given by

st = (Bt, Dt)

xtij are the decision variables denoting the number of servers assigned to the

demand element j at decision epoch t. yti are the intermediate variables denoting

the number of servers in the location i at decision epoch t.

2.4.5.1 Value Function Approximation

The value function defined in section 2.3 is replaced by a suitable approximation.

In general, the value function approximation is defined in terms of the servers, i.e.,

the post decision state is considered to only depend on Bt and not on Dt. It works

well when the requests should be served as soon as possible and in case the requests

are not served they will not be available at the next decision epoch. This holds true

7We can relate this with the variables in OLYMPIAD definition , if t represent current decision
epoch then Bitt′ =

∑
v µ

t′

v (i)
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for OLYMPIAD problems where if the demand is unserved, it is removed from the

system. Therefore, the value function approximation in terms of post decision state

can be written as V a
t (Bt)

The problem is solved by executing a forward pass through time, determining

the set of decisions for a single sample at a time. Godfrey et.al. (Godfrey & Powell,

2002) proposed a separable approximation, for the travel time spanning multiple

timesteps, of the form

V a
t (Bt) =

∑
i∈L
∑Q+1

t′=1

[
V a,i
t,t+t′(B

i
t,t+t′)

]
As the travel times span multiple timesteps, some servers are next available for

assignment at decision epoch t + 1, some at decision epoch t + 2 and so on. The

function V a,i
t,t+t′(B

i
t,t+t′) estimates the expected value of only those servers which are

next available for assignment at decision epoch t+ t′. After taking the sum over all

possible travel times and all locations, we get the estimated future contribution of

all the servers.

Here, we would like to highlight that in our case, as the servers can be assigned

from nearby locations, the value function may not remain separable across locations

as the value of having an extra resource in location i will depend on the number of

resources in nearby locations.

But it is still possible to assume the separation and apply these approximations

for U-OLYMPIAD. Linear and piecewise linear value function approximations are

typically used to solve these problems as the subproblem has network structure but

as we show in the following subsections, in our case the linear and piecewise value

function approximation do not have a network subproblem.

Linear Value Function Approximation Linear value function approximation

generally works well when the value of function is linear in terms of the number of

resources or the number of resources in each state can be either 0 or 1. But even

when this is not the case, sometimes linear approximations can work reasonably

well. Vt(Bt) =
∑

i∈L
∑Q+1

t′=1

[
V a,i
t,t+t′(B

i
t,t+t′)

]
where each of V a,i

t,t+t′(B
i
t,t+t′) is given
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by vi,kt,t+t′ ·Bi
t,t+t′ where vi,kt,t+t′ is the slope of the approximation at kth iteration.

The formulation which is solved at each decision epoch for each sample is pro-

vided in the Table 2.3. δt,t
′

ij are binary constants denoting that the location i server

assigned to demand element j at decision epoch t will become available again for

assignment at decision epoch t′.

As we can see, the formulation does not have a network structure due to the

presence of binary constants δ in equations (2.23) and (2.24).

Updating the value function

The slopes are updated in each forward simulation using the standard update

equation as follows

vi,kt,t+t′ = (1− αk−1) · vi,k−1
t,t+t′ + αk−1 · πit,t+t′

where πit,t+t′ are the dual variable corresponding to equations 2.23 and 2.24. We

use the dual values obtained after solving the linear relaxation. αk−1 is the step

size. We use the stepsize as 2
4+k

as mentioned in (Godfrey & Powell, 2002). For the

case when travel time spans multiple timesteps, we perform adjustment to the dual

values using dual next as proposed in (Godfrey & Powell, 2002).

The complete algorithm is presented in the Algorithm 2.

Algorithm 2 ADPLinear()

1: Initialize: Set vit,t+t′ , ∀t′ = 1, .., Q+ 1 ∀i,∀t
2: Forward Simulation:
3: for each sample s do
4: for t = 1, .., Q+ 1 do
5: Solve the optimization in the Table 2.3
6: Store dual vectors πit,t+t′ , ∀t′
7: for t = 1, .., Q+ 1 do
8: for t′ = 1, .., Q+ 1 do
9: Compute adjusted marginal contribution πit,t′ using DualNext.

10: Update vi,nt+1,t′ = (1− αn−1) · vi,n−1
t+1,t′ + αn−1 · πi,nt+1,t′

Piecewise Linear Value Function Approximation When we need to estimate the

value of having a quantity of some resource and the function is piecewise linear, i.e.,
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max
∑
i∈L

∑
j∈Dt

Cti,oj ,dj · x
t
ij +

Q+1∑
t′=t+1

vt+1,t′

i · yt′i (2.20)∑
i

xtij ≤ Rt
j ::: ∀j ∈ Dt,+ (2.21)∑

j

xtij ≤ Bi
tt ::: ∀i, t (2.22)

yt+1
i = Bi

t′t +Bi
tt −

∑
j

xtij +
∑
m

∑
j,dj=i

xtmj · δ
t,t′

mj ::: ∀i, t′ > t (2.23)

yt
′

i = Bi
t′t +

∑
m

∑
j,dj=i

xtmj · δ
t,t′

mj ::: ∀i, t′ > t+ 1 (2.24)

xtij non− negative integer ::: ∀i, j (2.25)

yt
′

i′ non− negative integer ::: ∀i′, t′ > t (2.26)

Table 2.3: Formulation using the Linear value function approximation

the slopes of the function are monotonically increasing or decreasing, piecewise lin-

ear value function approximations are used. This is more suitable approximation for

U-OLYMPIAD as the value of function increases linearly on having more resources

but after reaching a threshold (when the number of servers is sufficient to serve the

demand), the value remains constant. Therefore, the slope of the value function is

monotonic decreasing, i.e., we have a piecewise linear concave function.

Due to the presence of large number of servers (|N | varies from 1000 to 8000

in our experiments) and the need to execute the formulation multiple times (multi-

ple decision epochs and multiple samples), it is not possible to store all the value

function values by learning offline or to execute this approximation in real-time. We

also tried using the alternate formulation which defines one variable for each com-

ponent of the piecewise approximation instead of having the number of variables

equal to the number of servers but as we need the dual values to update the value

function approximation, we need to solve the linear relaxation of the formulation.

The linear relaxation of this modified formulation provides worse result than the

linear approximation presented previously. Therefore, we only compared against

linear value function approximation.
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2.5 Existing Approaches for Solving M-OLYMPIAD

problems

In this section we describe a leading approach for taxi ridesharing provided by

Alonso et al. (Alonso-Mora, Samaranayake, et al., 2017). We call the approach

as Trip Based Formulation as the approach generates trips and assigns the servers

to the trips.

2.5.1 Trip Based Formulation (TBF)

Following are the steps taken in this approach to perform assignment of trips to

servers.

1. Construction of RV Graph: RV graph constructs a graph with nodes as the

current available requests in D1
r and servers/vehicles in the set V . This graph

represents which requests and servers might be pairwise-shared. Two requests

r1 ∈ D1
r and r2 ∈ D1

r are connected if an empty virtual server starting at the

origin location of one of the request can pick-up and drop-off both requests

subject to the values of τ and λ. Similarly, a server v and a request r are con-

nected if the request can be served by the server following the time window

constraints.

2. Construction of RTV Graph: The second step of the method is to explore

the regions of the RV-graph for which its induced subgraph is complete to

find feasible trips. A trip is a set of requests, for example, (r1, r2, r3, .., rn)

denotes the trip of size n. A trip is feasible if all the requests in the trip can

be combined, picked-up and dropped-off by some server while satisfying the

value of τ and λ for all the requests. A request can be a part of several feasible

trips of varying size, and a trip might be connected to multiple servers. The

RTV-graph contains edges between a request and a trip and between a server

and a trip. The algorithm to compute the feasible trips and edges proceeds
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TBF:

min
∑
j

yj (2.27)∑
p∈Trv

xvp ≤ 1 ::: ∀v ∈ V (2.28)∑
v

∑
p∈Trj∩Trv

xvp + yj = 1 ::: ∀j ∈ D1
r (2.29)

xvp ∈ {0, 1}, yj ∈ {0, 1} (2.30)

Table 2.4: TBF Formulation

incrementally in trip size for each server. This step is parallelized for each

server. Let Tr denotes the set of trips generated with Trv denoting the set of

trips which can be assigned to server v. Similarly, Trj denotes the set of trips

which can be assigned to demand element D1
rj .

3. Integer Programming formulation for assignment of Trips to servers: Once

the RTV graph is constructed the integer programming formulation in ta-

ble 2.4 is used to perform the assignment of trips to servers. The variable

xvp denotes if server v is assigned to the trip p and yj is set to 1 if the request

j is not served. We use the objective of minimizing the number of unserved

requests.

4. Rebalancing of empty vehicles/servers: After the servers are assigned to the

demand elements in the previous step, the unassigned servers which are not

carrying any passenger are rebalanced to move towards unassigned requests.

This is due to the assumption that the ignored passengers may request again,

and it is likely that more requests will come from the same location in future.

Given a set of empty servers and unassigned requests, the servers are assigned

to requests while minimizing the total travel time of all the servers.

2.5.1.1 Heuristics for Online Computation

Following are the heuristics employed in TBF for Online Computation
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1. Limit on the edges in RV Graph: After generating the complete RV graph,

for each request, only 30 server edges are kept in the graph based on the time

required by server to reach the origin location of request.

2. TimeLimit for each server in computation of RTV graph: In the computation

of the RTV-graph, to explore potential trips, a maximum amount of time (0.2

seconds) per server is used.

3. Timelimit in solving Integer Programming Formulation: Integer Program-

ming Formulation is solved with an optimality gap of 0.1% and a maximum

run time of 15 seconds.
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Chapter 3

Optimization Approaches to Solve

U-OLYMPIAD Problems

In this chapter, we provide the optimization approaches to solve U-OLYMPIAD

problems. We first provide the optimization formulation for the offline case. We

use U-OFLYMPIAD to denote the offline problem. In section 3.2 we provide a

two-stage formulation to solve the U-OLYMPIAD. We also provide a multi-period

two-stage extension. To improve the scalability, we propose using the Benders de-

composition approach. We then provide the key assumptions made in this work and

the ways to relax them. We also provide detailed experimental results on three real

world datasets. Finally, we also present the results of the real world deployment of

a driver guidance system built based on the work in this chapter.

3.1 Optimization Formulation for U-OFLYMPIAD

Problems

In the offline setting demand for all the timesteps is known. Therefore, we use

D element in OLYMPIAD model to represent demand for all timesteps with Dt

denoting the demand at timestep t. In this chapter, we consider that the server can

be assigned to a new request, once it finishes serving the currently assigned requests.
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Therefore, a server i is considered available for assignment if and only if qi = φ. In

chapters 4 and 5, we relax this assumption.

We provide the integer linear optimization formulation for U-OFLYMPIAD

problems in Table 3.1. Intuitively, the goal of the formulation is to set values for the

assignment (of servers to demand) variables while ensuring the flow of servers be-

tween locations and the corresponding assignment to demand are valid. Depending

on whether the Markovian property for resource allocation is satisfied, the com-

plexity of this formulation can either be polynomial time or NP-Hard. We provide

a detailed discussion on this aspect in Section 3.1.1.

The notations used in the formulation (apart from the OLYMPIAD model ele-

ments described in previous chapter) are as follows:

1. As for unit-capacity case, all servers present in the same location are homo-

geneous, in the objective function we can replace the server with the location,

i.e., Ci,oj ,dj denotes the objective value obtained on assigning location i server

to demand element j.

2. N t
i indicates the number of servers which first become available at location l

at decision epoch t, i.e., N t
i =

∑
v µ

t
v(i). For the offline case all servers are

available initially, therefore, N t
i = 0,∀i, t > 1.

3. f(l, t) gives the list of locations which can be reached from l within a duration

τ at decision epoch t, i.e., l′ ∈ f(l, t) if and only if T (l′, l, t) ≤ τ . This

ensures that waiting time for any request is less than τ .

4. g(l, t) provides the list of originating locations for requests that can be as-

signed to a server in location l at decision epoch t, i.e., l′ ∈ g(l, t) =⇒ l ∈

f(l′, t).

5. M is the total number of decision epochs.

6. δt,t
′

ij indicates whether location i server assigned to a single request belonging

to the element j ofDt at decision epoch t completes its trip exactly at decision
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U-OFLYMPIAD(M,L,D,N , C, f, g, T, δ):

max
M∑
t=1

∑
i∈L

∑
j∈Dt,
oj∈g(i,t)

Cti,oj ,dj · x
t
ij (3.2)

s.t.
∑
j∈D1,

oj∈g(i,1)

x1
ij ≤ N 1

i ::: ∀i (3.3)

∑
i∈f(oj ,t)

xtij ≤ Rt
j ::: ∀t, j ∈ Dt (3.4)

∑
j∈Dt,
oj∈g(i,t)

xtij ≤ N 1
i −

t−1∑
t′=1

∑
j∈Dt′ ,
oj∈g(i,t′)

xt
′

ij

+
t−1∑
t′=1

t∑
t′′=t′+1

∑
j∈Dt′ ,
dj=i

∑
i′∈f(oj ,t′)

δt
′,t′′

i′j · x
t′

i′j ::: ∀i, t > 1 (3.5)

xtij non− negative integer ::: ∀i, j, t (3.6)

Table 3.1: U-OFLYMPIAD formulation

epoch t′. The formal definition is as follows:

δt,t
′

ij =


1 if t+ bT (i,oj ,t)+T (oj ,dj ,t)

∆
c+ 1 = t′,

0 otherwise
(3.1)

7. xtij is the integer variable which denotes the number of location i servers

assigned to the element j ∈ Dt at decision epoch t.

We also provide an example in Section 3.1.2 to explain these notations. The com-

plexity of the formulation is determined by the assumptions on the underlying bi-

nary constants δt,t
′

ij , 1 ≤ t ≤ t′ ≤M (refer to Section 3.1.1).

In the optimization formulation, the number of servers available in any location,

at any decision epoch depends on assignments at previous decision epochs. Con-

straints (3.3) and (3.5) ensure that at any decision epoch t, the number of servers

assigned from a location is less than the number of available servers in the location

at decision epoch t. Constraint (3.4) ensures that for each element inDt, the number
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of requests assigned to servers is less than the number of available requests between

origin and destination location pairs corresponding to element j of Dt.

3.1.1 Discussion on δt,t
′

ij

We can observe in equation (3.1) that the values of binary constants δt,t
′

ij depends on

the total time taken by a location i server to reach destination location of element j

of Dt. Therefore, as shown in the Figure 3.1, we have two cases

Server 1

Server 2

Server 3

Request r Server Availability timestep = 𝑡𝑟

Server 1

Server 2

Server 3

Request r

Server Availability timestep = 𝑡𝑟1

Server Availability timestep = 𝑡𝑟2

Server Availability timestep = 𝑡𝑟3

Figure 3.1: Cases for server assignment

• The time at which server becomes available again after serving a request is

independent of the assigned server.

• The time at which server becomes available again after serving a request is

dependent of the assigned server. For example, suppose server A assigned to

a request r at t = 1 becomes available again for assignment at t=4. Now if

request r is served by another server B at t=1, then it is possible that B will still

be serving the request r at t=4 and becomes available again at t = 6. One of the

cases where this is possible is when the time taken by different servers to reach

pick-up location of request is different. In the above example A reaches pick-up

location of r at t = 2 and B reaches pick-up location of r at t = 4.

Case 1 is similar to the Markov property defined in the context of resource allo-

cation problem1 and makes the problem polynomial time solvable as the formulation

1please refer to chapter 13 of the book by Powell (Powell, 2007), which states that attributes of a
transition resulting from a decision acting on a resource with attribute r is independent of r (i.e., the
transition is memoryless). In the context of resource allocation problem, it is mentioned that when
system satisfies the Markov property, then a network formulation is obtained otherwise the formu-
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is equivalent to a minimum cost network flow problem. Formally stating the above

discussion, for the special case when δt,t
′

ij = δt,t
′

i′j , ∀ j, t, t′, i, i′ (i.e., a request com-

pletion decision epoch is same irrespective of the server assigned to it), we show the

reduction of the U-OFLYMPIAD to a min cost flow problem with integer capaci-

ties (Proposition 1). As the min cost flow problem is polynomial time solvable, the

U-OFLYMPIAD is also polynomial time solvable for this special case.

Proposition 1. If ∀ j, i, i′, t, t′ δt,t
′

ij = δt,t
′

i′j , then the U-OFLYMPIAD is reducible to

a min cost flow problem.

Proof: See A.1. �

For case 2 (i.e., for at least one setting of j, i, i′, t, t′ if δt,t
′

ij 6= δt,t
′

i′j ), we show that

the U-OFLYMPIAD is NP-hard by reducing the well known 3-SAT problem to it

(Proposition 2).

Proposition 2. If ∃j, i, i′, t, t′ s.t. δt,t
′

ij 6= δt,t
′

i′j , then the U-OFLYMPIAD is NP-hard.

Proof: See A.2. �

Relaxation of Optimization Formulation As shown in Proposition 1, if special

condition on δ values holds, the problem is reducible to min cost flow. Therefore,

we will get the integer optimal solution even if we relax the integrality constraints

in the integer program for the U-OFLYMPIAD.

For the general case, we do not have any theoretical guarantees on the linear

relaxation of the integer program. But in our experiments, we observed that the

linear relaxation of the U-OFLYMPIAD integer program is tight and the difference

between the optimal value of the integer program and the relaxed linear program

is always less than 1%. Therefore, the objective value obtained on solving the re-

laxation of the U-OFLYMPIAD, provides a tight upper bound on the value of the

lation is not integral but there is no theoretical proof provided. We also obtain a similar result and
provide theoretical proofs for both cases. In (Powell, 2007) authors suggest to use aggregation over
attributes to restore the Markov property (i.e., network structure) but as we show in our experimental
results, this does not give good results in our case.
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Shape Meaning Notation In the Shape
Circle Location i Location number
Black Hexagon Initial servers N 0

i Number of servers associated with the location
next to the hexagon at the decision epoch 1

Black Diamond Request j Request index for the rectangle below
the diamond

Black Rectangle Demand < oj , dj , R
t
j > <source location, destination location, # of

requests from source to destination >
Black Line Assignment xtij Line between location i and demand j

at decision epoch t indicates the possible
assignment of location i server to the demand j.

Green Numbers Revenue Cti,oj ,dj Revenue obtained on performing
the assignment indicated by the line
below the number.

Black Dashed Line Binary Constants δt,t
′

ij Dashed line from the line between location i
and demand j at decision epoch t to the
destination location dj at the decision epoch t′

indicates that δt,t
′

ij = 1. Absence of the

dashed line indicates δt,t
′

ij = 0.

optimal solution. In addition, a major part of the solution has integer values. A

simple heuristic of taking the integer part of the solution satisfying all constraints

provides a solution which is nearly 95% of the optimal integer solution. In Section

3.2, we also provide a heuristic to extract an integral solution from the LP relaxation

solution.

3.1.2 Example

In this section, we show an example that explains the different parameters and ele-

ments of U-OFLYMPIAD model.

Example 1. We consider a 3 location problem and show request assignment over 3

decision epochs (i.e., M = 3) in Figure 3.2. The following table provides a mapping

between formal notation and the visual depiction of the U-OFLYMPIAD problem.

For ease of explanation, we assume that the travel times between locations are same

at all decision epochs, so we drop index t from the definition of T, f and g. Travel

time between each pair of location is mentioned at the bottom of the Figure 3.2.

This represents the set T . The value of τ and ∆ is taken as 5 (min). As mentioned

in the model, the sets f and g are populated based on the travel time and τ values.

Therefore, f(2) will contain all locations which are reachable from 1 in less than

5 minutes,f(2) = 1, 2, 3. Similarly g(2) contains all locations from which it takes

less than 5 minutes to reach location 2, therefore, g(2) = 1, 2. All other values are
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populated in the same way.

The server availability at decision epochs 2 and 3 will depend on the assign-

ments at the decision epoch 1. The server, if assigned, will be available in the

destination location of the requests at the decision epoch where the dashed line

from the corresponding assignment line ends. Unassigned servers will be available

in the same location at next decision epoch.

We can also observe from this example, the importance of considering multi-

period two-stage matching. For this, we compare the revenue earned by two kinds

of decisions

1. Single-stage decision, i.e., decisions which do not consider future requests:

In this case, at decision epoch 1 location 1 server will be assigned to the de-

mand element 2 and location 2 server will be assigned to the demand element

1, i.e., x1
12 = 1, x1

21 = 1 and rest all variables as 0. This will give a total

revenue of 20+14. As none of the servers will be available at decision epoch

2, no other requests can be served.

2. Multi-period two-stage decision, i.e., decisions which consider future re-

quests: In this case, at decision epoch 1, location 1 server will be assigned

to the demand element 1 and location 2 server will not serve any request, i.e.,

x1
11 = 1 and rest all variables for decision epoch 1 are set to 0. At decision

epoch 2 both servers will be available in the location 2 and can serve both re-

quests, i.e., x2
21 = 1 and x2

22 = 1. This will give a total revenue of 15+15+10

= 40.

We have presented the model for the case where the exact demand information

is available for all decision epochs. In the next section, we extend this model to

consider uncertain customer demand which is revealed in an online fashion.
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Decision epoch 3Decision epoch 2Decision epoch 1

1

2

1,2,1

1,3,1

3

1

2

3

1

2

3

2,2,1

15

14
18

20

10

2,3,1

15

1

1

0

Travel Time: 1-1 = 0min, 1-2 = 3min, 1-3 = 7 min, 2-1 = 4 min, 2-2 = 0min,  2 – 3 = 4min, 3-1 = 8 min, 3-2 = 6 min, 3-3 = 0min
𝜏 = 5, Δ = 5,

f(1) = {1,2} , f(2) = {1,2,3} , f(3) ={3}       g(1) = {1,2} , g(2) = {1,2}, g(3) = {2,3}

1

2

1

2

13
8

Figure 3.2: U-OFLYMPIAD Example

3.2 Optimization formulation for U-OLYMPIAD

We now extend the optimization formulation described in previous section for the

online scenario. In an online setting requests are only available for current decision

epoch. The goal is to make matching decisions at each decision epoch so as to

optimize the overall objective.

Similar to the binary constants δ defined in the optimization formulation for U-

OFLYMPIAD problem, we will have binary constants δt,t
′,k

ij (t > 1), which are set

to 1 if location i server assigned to a single request belonging to the element j of

ξD,k
t at decision epoch t completes its trip exactly at decision epoch t′. For ease of

explanation, we first describe the formulation for a two-stage model (Q = 1, one

timestep in future), where we only consider requests at the next decision epoch in

making matching decisions at the current decision epoch.

Our goal is to identify the assignment of requests to the servers so as to max-

imize the sum of objective values for the current decision epoch and the expected

objective value for the next decision epoch. An integer linear optimization formula-

tion is provided in the Table 3.2 for computing the best match at the current decision

epoch while considering multiple samples of potential requests in the next decision

epoch. We refer to this as TSS(). Integer variables x1
ij denote the number of location
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TSS(L,D,N , C, ξD, f, g, T, δ):

max
∑
i∈L

∑
j∈D1,

oj∈g(i,1)

C1
i,oj ,dj

· x1
ij +

1

|ξD|
∑
k≤|ξD|

∑
i∈L

∑
j∈ξD,k2 ,
oj∈g(i,2)

C2
i,oj ,dj

· x2,k
ij (3.7)

s.t.
∑
j∈D1

oj∈g(i,1)

x1
ij ≤ N 1

i ::: ∀i ∈ L (3.8)

∑
i∈f(oj ,1)

x1
ij ≤ R1

j ::: ∀j ∈ D1 (3.9)

∑
j∈ξD,k2 ,
oj∈g(i,2)

x2,k
ij ≤ N

1
i −

∑
j∈D1

x1
ij +N 2

i +
∑

j∈D1,dj=i

∑
i′∈f(oj ,1)

δ1,2
i′j · x

1
i′j

::: ∀i ∈ L, k ≤ |ξD| (3.10)∑
i∈f(oj ,2)

x2,k
ij ≤ R

2,k
j ::: ∀k ≤ |ξD|, j ∈ ξD,k2 (3.11)

x1
ij non− negative integer ::: ∀i ∈ L, j ∈ D1 (3.12)

x2,k
ij non− negative integer ::: ∀i ∈ L,∀k ≤ |ξD|, j ∈ ξD,k2 (3.13)

Table 3.2: TSS optimization formulation

i servers assigned to element j ∈ D1. Similarly, integer variables x2,k
ij denote the

number of location i servers assigned to the element j ∈ ξD,k2 .

While the first component of the objective value corresponds to the current de-

cision epoch, the second component computes the expected value associated with

the future requests (provided in ξD). Constraints (3.8) and (3.10) ensure that at any

decision epoch, the number of assigned servers from the location i is less than the

number of available servers. In Constraint (3.10) the number of servers available at

decision epoch “2” in location i is calculated by considering the remaining servers

in location i after doing assignments for decision epoch “1”. Constraints (3.9) and

(3.11) ensure that at any decision epoch, between any location pair, the number of

requests assigned to servers is less than the number of available requests between

the origin and destination location pair. For a single sample, the above integer pro-

gram is equivalent to an U-OFLYMPIAD integer program with M=2. Therefore, as

shown in Proposition 1, if δ1,2
i′j = δ1,2

ij ∀i, i′, j, the relaxation of TSS, for a single

sample, will have an integer optimal solution.
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For a general case with multiple samples, we show in Proposition 3 that TSS is

NP-hard.

Proposition 3. Solving TSS for more than one sample is an NP-hard problem irre-

spective of δ values.

Proof: See A.2.1. �

Relaxation of the TSS Optimization Formulation

For a general case with multiple samples, the linear relaxation of the TSS integer

program can yield fractional solutions. But in our experiments on synthetic domains

and two real world datasets, we observe that the linear relaxation of TSS is tight

and the difference between the optimal value of the integer program and the relaxed

linear program is always less than 1%. We also observe that most of the time, the

solution is integral and even if the solution is not integral, major part of the solution

has integer values. Therefore, our approach is to solve the relaxed version of the

problem and in case the solution is not integral, we round it to an integer solution as

described below.

While converting a fractional solution to an integer, only the parts of the solution

that are fractional are modified. From the fractional part, variables x1
ij are rounded

in such a way that the number of servers assigned from each location at the first

decision epoch remain close to the fractional optimal solution. This ensures that the

servers which were left unassigned by the TSS, remain unassigned and the assign-

ments at the second stage are least affected. We denote Fi as d
∑

j x
1
ij −

∑
jbx1

ijce,

i.e., the sum of fractional assigned servers from location i rounded up to the nearest

integer. We denote Gj as d
∑

i x
1
ij −

∑
ibx1

ijce, i.e., the number of fractionally as-

signed requests rounded up to the nearest integer. We further divide the set Gj into

two parts with the set G1j containing requests which complete on or before deci-

sion epoch 2 and the set G2j containing remaining requests. We greedily assign the

servers available in Fi,∀i to the requests available in the set Gj,∀ j in two rounds.

In the first round, we only consider the requests in the set G1j , i.e., we give priority

50



to the requests which can be completed by decision epoch 2. If after first round

∃i, Fi > 0, we greedily assign them to the requests in G2j .

3.2.1 Example

In this section, we show an example that explains the different parameters and ele-

ments of the U-OLYMPIAD model.

Sample 2

Sample 1
Decision epoch 3Decision epoch 2

Decision epoch 1

1

2

3

1

2

3

1

2

3

2,2,1

15
7

14

2,3,1

15

1

1

0

Travel Time: 1-1 = 0min, 1-2 = 3min, 1-3 = 7 min, 2-1 = 4 min, 2-2 = 0min,  2 – 3 = 4min, 3-1 = 8 min, 3-2 = 6 min, 3-3 = 0min
𝜏 = 5, Δ = 5,

f(1) = {1,2} , f(2) = {1,2,3} , f(3) ={3}       g(1) = {1,2} , g(2) = {1,2}, g(3) = {2,3}

1

1

2

Decision epoch 3Decision epoch 2
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1,1,1
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1,2,1

2,1,1

7

12
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0

0

0

0

1

0

0

1

00

0

0

Figure 3.3: U-OLYMPIAD Example

Example 2. Similar to U-OFLYMPIAD, we consider a 3 location problem as shown

in the Figure 3.3. The following table provides a mapping between the formal nota-

tion and the visual depiction of the U-OLYMPIAD problem. We only define the new

elements as compared to the U-OFLYMPIAD example.

For decision epoch 1, the assignment decisions are independent of samples, but

server which will become available after serving the request, will be available for

all samples. Therefore, in the graphical representation, we represent it by creating
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Shape Meaning Notation In the Shape
Colored Hexagon Servers N ti Servers which become available in the location

next to the colored hexagon at decision epoch t
due to the completion of previously assigned
requests. The value will be same for all the
samples.

Colored Rectangle Sampled Demand < oj , dj , R
t,k
j > <source location, destination location, # of

requests from the source to the destination
in the sample >

Colored Diamond Sampled Request j Request index for the colored rectangle below
the colored diamond

Colored Line Assignment in xt,kij Line between location i and demand element j
samples in sample k at decision epoch t indicates possible

assignment of the location i server to the demand
element j in sample k.

Colored Dashed Line Binary Constants δt,t
′,k

ij Colored Dashed line from the line between
for sample location i and the demand element j in the

sample k at decision epoch t to the destination
location dj at decision epoch t′ indicates that

δt,t
′,k

ij = 1. Absence of the dashed line indicates

δt,t
′,k

ij = 0.

copies of first stage δ constants for each sample and represent them with colored

dash lines even for first decision epoch. All these copies will have identical values.

In the formulation, this is shown by having δ1,t′

ij and x1
ij in constraint (3.10).

The value of τ and ∆ is taken as 5. Travel time T and sets f and g are populated

as explained in the U-OFLYMPIAD example.

We can also observe from this example, that the optimal decision for individual

samples will not remain optimal when all the samples are considered together. We

show the decisions and revenue computation in following three cases:

1. Only sample 1 is considered: If only sample 1 is considered, it will be ben-

eficial to move both servers to location 2 at decision epoch 2. Therefore, the

optimal decision will be, x1
12 = 1, x1

24 = 1, x2,1
21 = 1, x2,1

22 = 1 and rest all

variables as 0. This will give a total revenue of 15+14+15+14=58.

2. Only sample 2 is considered: Similar to above case, if only sample 2 is con-

sidered, the optimal decision will be x1
11 = 1, x1

23 = 1, x2,1
11 = 1, x2,1

11 = 1 and

rest all variables as 0. This will give a total revenue of 15+14+15+14=58.

3. Both samples are considered: On the other hand if both samples are consid-

ered, the optimal decision will be x1
12 = 1, x1

21 = 1, x2,1
ij = 1, x2,1

ij = 1 and rest

all variables as 0. This will give a total revenue of 14+14+ ((15+12)+(15+12))
2
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= 55. In this case, individual sample’s optimal decision will give a revenue

of 15+14+ ((15+14)+(7+12))
2

= 53.

3.2.2 Benders Decomposition

Given the scale of the problems of interest in this dissertation (i.e., thousands of taxis

serving thousands of customers spread across hundreds of locations), we reduce

the complexity associated with increasing the number of samples by exploiting the

following observation:

Observation 1. In TSS, once the assignment at the first decision epoch, {x1
ij} is

given, the optimization models for computing the assignment at the second decision

epoch, {x2,k
ij } for each of the samples k, are independent of each other.

We exploit Observation 1 by using the Benders Decomposition (Benders, 1962)

method, a master slave decomposition technique where the Master Problem is

responsible for obtaining the solutions for the “difficult” variables; and the Slave

problem(s) is (are) responsible for finding the solutions to other variables, given

a fixed assignment of values to “difficult” variables (from the master). The Slave

problem(s) also generate Benders cuts, which are added to the master problem and

the master problem is solved with these cuts to obtain an improved solution. This

process continues until no more cuts can be added to the master problem.

Based on Observation 1, {x1
ij} are the difficult variables as they impact the val-

ues assigned to all the other variables. Therefore, the master is responsible for

obtaining the assignments for the {x1
ij} variables and the slave(s) are responsible

for obtaining the assignments to the {x2,k
ij }. For the master (Table 3.3), in the opti-

mization provided in TSS, we replace the part of the objective dealing with future

variables, {x2,k
ij } by the recourse function Q({x1

ij}i∈L,(j∈D1,oj∈g(i,1)), k) which be-

comes the objective function in the slave problems. The recourse function Q()

needs to be computed for each value of x1
ij . In the slaves (Table 3.4), we consider

the fixed values of x1
ij and to avoid confusion, we refer to them using the capital

letter notation, X1
ij .

53



Master:

max
∑
i∈L

∑
j∈D1,

oj∈g(i,1)

C1
i,oj ,dj

· x1
ij +

1

|ξD|
∑
k≤|ξD|

Q({x1
ij}i∈L,(j∈D1,oj∈g(i,1)), k) (3.14)

s.t.
∑
j∈D1,

oj∈g(i,1)

x1
ij ≤ N 1

i ::: ∀i ∈ L (3.15)

∑
i∈f(oj ,1)

x1
ij ≤ R1

j ::: ∀j ∈ D1 (3.16)

x1
ij non− negative integer ::: ∀i ∈ L, j ∈ D1 (3.17)

Table 3.3: Master Formulation

Slave Q({X1
ij}i∈L,j∈D1 , k) :

max
∑
i∈L

∑
j∈ξD,k2 ,
oj∈g(i,2)

C2
i,oj ,dj

· x2,k
ij (3.18)

∑
j∈ξD,k2 ,
oj∈g(i,2)

x2,k
ij ≤ N

1
i −

∑
j∈D1,

oj∈g(i,1)

X1
ij +N 2

i +
∑
j∈D1,
dj=i

∑
i′∈f(oj ,1)

δ1,2
i′j ·X

1
i′j ::: ∀i ∈ L

(3.19)∑
i∈f(oj ,2)

x2,k
ij ≤ R

2,k
j ::: ∀j ∈ ξD,k2 (3.20)

x2,k
ij ≥ 0 ::: ∀i ∈ L,∀k ≤ |ξD|, j ∈ ξD,k2 (3.21)

Table 3.4: Slave Formulation

The dual2 of the primal slave problems are provided in Table 3.5, where α vari-

ables are the dual variables corresponding to the constraints (3.19) and β variables

are the dual variables corresponding to the constraints (3.20).

2The idea of taking a dual of a linear program is an important concept in linear programming.
The linear program is typically called the ’primal‘ linear program. For each linear program, there is
an associated linear program called its ’dual’. The dual of a linear program is obtained by creating
one variable for each constraint of the primal, and having one constraint for each variable of the
primal. The maximization problem is changed to minimization and the roles of the coefficients
of the objective function and of the right-hand sides of the inequalities are switched. In addition,
transpose of the matrix of coefficients of the left-hand side of the inequalities is taken.

That is to say for a primal problem,

max
x

CTx s.t. Ax = B

we have the associated dual given by

max
x

BT y s.t. AT y ≥ C
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The weak duality theorem (Bertsimas & Tsitsiklis, 1997) states that the solution

to a maximization primal problem is always less than or equal to the solution of the

corresponding dual problem. Therefore, using the concept of weak duality we can

say that by taking the dual of the slave problems, we can find an upper bound on the

value of the recourse function (Q())(objective of primal slave problem), in terms of

the master problem variables x1
ij . These can then be added as optimality cuts to the

master problem (Murphy, 2013) for generating better first stage assignments3. Let

Dual Slave ({X1
ij}i∈L,j∈D1 , k)) :

min
∑
i∈L

αki · (N 1
i −

∑
j∈D1,

oj∈g(i,1)

X1
ij +N 2

i +
∑
j∈D1,
dj=i

∑
i′∈f(oj ,1)

δ1,2
i′j ·X

1
i′j)

+
∑
j∈ξD,k2

βkj ·R
2,k
j (3.22)

s.t. αki + βkj − C2
i,oj ,dj

≥ 0 ::: ∀i ∈ L, j ∈ ξD,k2 (3.23)

αki ≥ 0 ::: ∀i ∈ L (3.24)

βkj ≥ 0 ::: ∀j ∈ ξD,k2 (3.25)

Table 3.5: Dual Slave Formulation

θk be the approximation of Q() function then the master problem with optimality

cuts is provided in the Table 3.6. It should be noted that we are using x1
ij variables

in the “master with optimality cuts” and not the fixed values, X1
ij . In each iteration

we solve the master problem and the computed x1
ij variable values are passed to

the dual slave problems. After solving the dual slave problems, optimality cuts are

generated. If the current values of θk(∀k) satisfy the optimality cut conditions then

we have obtained an optimal solution, else cuts are added to the master problem

and the master problem is solved again. As we can see in the “Dual Slave” linear

programs, the slave problems are independent of each other and are only connected

by the choice of the master variables (“difficult” variables). Therefore, once the

master variables are fixed, the slave problems can be solved in a parallel fashion.

3As the slave problems are always feasible for any value of the master variables we only need to
add optimality cuts to the master problem.
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Master Formulation with Optimality Cuts:

max
∑
i∈L

∑
j∈D1,

oj∈g(i,1)

C1
i,oj ,dj

· x1
ij +

1

|ξD|
∑
k≤|ξD|

θk (3.26)

s.t. θk ≤
∑
i∈L

αki · (N 1
i −

∑
j∈D2,

oj∈g(i,1)

x1
ij +N 2

i +
∑
j∈D1,
dj=i

∑
i′∈f(oj ,1)

δ1,2
i′j · x

1
i′j)

+
∑
j∈ξD,k2

βkj ·R
2,k
j (3.27)

∑
j∈D1,

oj∈g(i,1)

x1
ij ≤ N 1

i ::: ∀i ∈ L (3.28)

∑
i∈f(oj ,1)

x1
ij ≤ R1

j ::: ∀j ∈ D1 (3.29)

x1
ij non− negative integer ::: ∀i ∈ L, j ∈ D1 (3.30)

Table 3.6: Master Formulation with Optimality Cuts

3.2.3 Complexity Analysis

The complexity of a linear program depends on the number of variables and con-

straints in the formulation. The maximum number of variables in the TSS formula-

tion are |L|.|D1| +
∑

k |L|.|ξ
D,k
2 |. This maximum value will be obtained when any

request can be served using server from any location. But in practice depending on

the value of τ , f and g function will restrict the number of variables. For τ = 0, re-

quest can only be served using the server present at its origin location, therefore, the

number of variables are are |D1|+
∑

k |ξ
D,k
2 |. As the value of τ increases, the number

of variables increases. The number of constraints are |L|+|D1|+|ξD|.|L|+
∑

k ξ
D,k
2 .

Therefore, on increasing the number of locations and the number of samples,

both variables and constraints increase. The size of D1 and ξD,k2 increases with

the value of ∆. This is because ∆ is the duration between 2 decision epochs, so

when ∆ is small, the number of requests between two decision epochs will be less.

Therefore, on increasing the value of ∆, the number of variables and constraints

both increase.

In addition to τ , the travel time between locations (T ) also affect the number

of variables. For a constant τ , if travel time between locations increases, there will
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be less locations from where servers can be used to serve any requests. Hence the

number of variables decrease on increasing travel time keeping the value τ constant.

3.2.4 Competitive Ratio

Competitive analysis is typically employed for evaluating the quality of online al-

gorithms. The metric used is called as the competitive ratio (Borodin & El-Yaniv,

1998) and it compares a solution produced by an online algorithm with the best pos-

sible solution. Specifically, the competitive ratio of an online algorithm is defined

as the worst-case ratio between the objective of the solution found by the algorithm

and the objective of an optimal solution, which assumes all uncertain information is

known beforehand. For deterministic input model and maximization problems, an

online algorithm is called c−competitive if for any instance of the problem

ALG(I)

OPT (I)
≥ c ::: ∀I (3.31)

where ALG(I) is the value of any given online algorithm and OPT (I) is the value

of the offline optimal algorithm for instance I. Equivalently, this can be written as

c = inf
I

ALG(I)

OPT (I)
(3.32)

In stochastic environments, we calculate empirical competitive ratio (competi-

tive ratio in expectation), cDµ that is defined as

cDµ =
ED[ALG(I)]

ED[OPT (I)]
(3.33)

For stochastic input models where multiple distributions of uncertainty are pro-

vided, instead of computing competitive ratio in expectation, we can also calculate

expected competitive ratio (Please refer Section 2.2.1 in (Mehta et al., 2013)). It
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is computed in expectation over the randomness in the input:

cµ = inf
D
ED

[ALG(I)

OPT (I)

]
(3.34)

whereD is the distribution over instances I from which input is drawn and expected

competitive ratio is the expectation over the ratio achieved by the algorithm and the

optimum for that distribution.

Proposition 4. In U-OLYMPIAD without sample information and adversarial be-

havior from environment4, when maximizing the number of requests satisfied for a

fixed number of servers N , the competitive ratio, c for any deterministic b-stage

algorithm (i.e., with information available up to the bth decision epoch) in a M-

decision epoch (M ≥ b) problem is

c ≤ 1

M − b+ 1

Proof: See A.3. �

Proposition 5. In U-OLYMPIAD with sample information and stochastic behav-

ior from environment according to the samples, when maximizing the number of

requests satisfied, the expected competitive ratio, cµ, of the TSS algorithm is

cµ ≤
3

4 · (M − 1)
+

3

4 ·M

where M is the number of decision epochs (M ≥ 3).

Proof: See A.4. �

The expected competitive ratio value is typically overly pessimistic as it mea-

sures the worst case. However, the algorithms can have good average case perfor-

mance, cDµ as demonstrated in our experimental results. We will compute this for

our formulations and other one-stage approaches, by comparing the solution values

obtained with the M-stage optimal offline solution. We solve the U-OFLYMPIAD
4Environment generates demand that creates worst case performance for algorithms decisions
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integer program defined in Section 3.1 to compute the M-Stage optimal offline so-

lution.

MSS(L,D,N , C, ξD, f, g, T, δ, Q):

max
∑
i∈L

∑
j∈D1,

oj∈g(i,1)

C1
i,oj ,dj

· x1
ij +

1

|ξD|
∑
k≤|ξD|

Q+1∑
t=2

∑
i∈L

∑
j∈ξD,kt ,
oj∈g(i,t)

Cti,oj ,dj · x
t,k
ij (3.35)

s.t.
∑
j∈D1

oj∈g(i,1)

x1
ij ≤ N 1

i ::: ∀i ∈ L (3.36)

∑
i∈f(oj ,1)

x1
ij ≤ R1

j ::: ∀j ∈ D1 (3.37)

∑
j∈ξD,kt ,
oj∈g(i,t)

xt,kij ≤ N
1
i −

∑
j∈D1,

oj∈g(i,1)

x1
ij −

t−1∑
t′=2

∑
j∈ξD,k

t′ ,

oj∈g(i,t′)

xt
′,k
ij +N t

i

+
t∑

t′′=2

∑
j∈D1,
dj=i

∑
i′∈f(oj ,1)

δ1,t′′

i′j · x
1
i′j +

t−1∑
t′=2

t∑
t′′=t′+1

∑
j∈ξD,k

t′ ,

dj=i

∑
i′∈f(oj ,t′)

δt
′,t′′,k
i′j · xt

′,k
i′j

::: ∀i ∈ L, k ≤ |ξD|, ∀t > 1 (3.38)∑
i∈f(oj ,t)

xt,kij ≤ R
t,k
j ::: ∀k ≤ |ξD|, j ∈ ξD,kt , ∀t > 1 (3.39)

x1
ij non− negative integer ::: ∀i ∈ L, j ∈ D1 (3.40)

xt,kij non− negative integer ::: ∀i ∈ L, ∀k ≤ |ξD|, j ∈ ξD,kt , ∀t > 1

(3.41)

Table 3.7: MSS

3.3 Relaxing the Assumptions

In our optimization models for the U-OFLYMPIAD and U-OLYMPIAD, we make

a few assumptions. In this section, we describe the assumptions and provide the

ways of relaxing them:

1. The time is divided into discrete blocks (each with duration ∆) and we con-

sider only the next decision epoch in TSS. Such an approach is limiting as

different requests have different travel time. We relax this assumption by pro-

viding a multi-period two-stage model, which allows for smaller values of ∆

59



and also considers multiple discrete blocks at once. More details about the

multi-period two-stage model is provided in the Section 3.3.1.

2. The server moves from one place to another if and only if it is assigned to a

request. It is fairly trivial to relax this assumption by introducing the notion

of dummy requests. We provide a detailed description in the Section 3.3.2.

3. Customers are impatient and if they are not assigned a server in one deci-

sion epoch, they will not wait for the next decision epoch for a server to be

assigned. However, we can easily relax this assumption by representing a

customer staying across multiple decision epochs as a customer who leaves

and arrives as a new customer at the next decision epoch.

4. The server will start moving as soon as it is assigned to a request. The time

taken to compute the assignment is ignored. Therefore, a server assigned to

a request at decision epoch t will start moving towards request at the time

corresponding to decision epoch t. This is a reasonable assumption, as we are

able to obtain solutions in less than a minute (as shown in our experiments).

3.3.1 Multi-Period Two-Stage Stochastic (MSS) Optimization

Formulation for U-OLYMPIAD

In TSS, we only consider the future requests for the next decision epoch. Given

that different requests may have different travel time, we extend the TSS model to

consider the samples for multiple decision epochs to improve the performance for

small ∆ values. The extended model is referred to as MSS.

The optimization model for MSS is shown in the Table 3.7. The number of

variables and constraints in the formulation increase with the value ofQ. Therefore,

the complexity of MSS formulation increases as the value of Q increases.

The variable x1
ij denotes the number of location i servers assigned to the jth

element of D1 at the current decision epoch. The variable xt,kij , t > 1 denotes the
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MSS(L,D,N , C, ξD, f, g, T, δ, Q):

max
∑
i∈L

( ∑
j∈D1,

oj∈g(i,1)

C1
i,oj ,dj

· x1
ij −

∑
j′∈L

Cost1ij′ · u1
ij′

)

+
1

|ξD|
∑
k≤|ξD|

Q+1∑
t=2

∑
i∈L

( ∑
j∈ξD,kt ,
oj∈g(i,t)

Cti,oj ,dj · x
t,k
ij −

∑
j′∈L

Costtij′ · u
t,k
ij′

)
(3.42)

s.t.
∑
j∈D1

oj∈g(i,1)

x1
ij +

∑
j′∈L

u1
ij′ ≤ N 1

i ::: ∀i ∈ L (3.43)

∑
i∈f(oj ,1)

x1
ij ≤ R1

j ::: ∀j ∈ D1 (3.44)

∑
j∈ξD,kt ,
oj∈g(i,t)

xt,kij +
∑
j′∈L

ut,kij′ ≤ N
1
i −

∑
j′∈L

u1
ij′ −

∑
j∈D1,

oj∈g(i,1)

x1
ij

−
t−1∑
t′=2

( ∑
j∈ξD,k

t′ ,

oj∈g(i,t′)

xt
′,k
ij +

∑
j′∈L

ut
′,k
ij′

)
+N t

i

+

t∑
t′′=2

∑
j∈D1,
dj=i

∑
i′∈f(oj ,1)

δ1,t′′

i′j · x
1
i′j +

t−1∑
t′=2

t∑
t′′=t′+1

∑
j∈ξD,k

t′ ,

dj=i

∑
i′∈f(oj ,t′)

δt
′,t′′,k
i′j · xt

′,k
i′j

+

t∑
t′′=2

∑
j′∈L

δ1,t′′

j′i · u
1
j′i +

t−1∑
t′=2

t∑
t′′=t′+1

∑
j′∈L

δt
′,t′′,k
j′i · ut

′,k
j′i

::: ∀i ∈ L, k ≤ |ξD|, ∀t > 1 (3.45)∑
i∈f(oj ,t)

xt,kij ≤ R
t,k
j ::: ∀k ≤ |ξD|, j ∈ ξD,kt , ∀t > 1 (3.46)

x1
ij , , u

1
ij′ non− negative integer ::: ∀i ∈ L, j ∈ D1, j′ ∈ L (3.47)

xt,kij , u
t,k
ij′ non− negative integer ::: ∀i ∈ L, ∀k ≤ |ξD|, j ∈ ξD,kt , j′ ∈ L, ∀t > 1

(3.48)

(3.49)

Table 3.8: MSS formulation with Dummy requests
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number of location i servers assigned to element j of ξD,kt .

Constraints (3.36) and (3.38) ensure that at any decision epoch, the number of

servers assigned from location i is less than the number of available servers. Con-

straints (3.37) and (3.39) ensure that at any decision epoch, between any location

pair, the number of requests assigned to servers is less than the number of available

requests between the origin and destination location pair.

Given the similarity in the formulations, we can again employ Benders Decom-

position to reduce the complexity with increasing the number of samples. Difficult

variables will still be the stage 1 variables, i.e., x1
ij and all other variables, xt,kij (t > 1)

would be the slave variables with a slave for each sample of customer requests.

3.3.2 Dummy Requests

We can remove the assumption that servers will only move when they are assigned

to a request by introducing dummy requests. Dummy requests have zero revenue

and have a destination in a given location. We introduce u1
ij′ as an integer variable

denoting the number of location i servers assigned to move to location j′ at the

current decision epoch, i.e., the number of location i servers assigned to dummy

requests with destination in location j′ at the current decision epoch. Similarly, ut,kij′

denote the number of location i servers assigned to move to location j′ in sample

k at decision epoch t, t > 1. We modify the MSS formulation to include these

variables. There will be a cost associated with the movement of server to serve

dummy requests which is included in the objective function. The modified MSS

formulation is shown in Table 3.8 5. Costti,j′ denotes the cost of moving a server

from location i to location j′ at decision epoch t.

5We abuse the notation a bit and also use δt,t
′

j′i as a binary constant which is 1 if server starting at
decision epoch t from location j′ reaches location i exactly at decision epoch t′
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Section Description Key Content
3.4.1 Datasets Details on the datasets and different data fields

used from the datasets.
3.4.2 Experimental Settings Details on the different inputs, parameters

and evaluation settings used.
3.4.1.1 Zone Creation Describes the process of creating multiple

zones for any dataset.
3.4.3 Main Results Describes our key results and shows the comparison of

seven algorithms at different times on the three
metrics of revenue, number of requests and run-time.

3.4.4 Justification for values Justifies the parameters used
of parameter settings in Section 3.4.3 by comparing the performance of our

algorithms for different parameter values.
3.4.5 Synthetic Scenarios where MSS and Describes the specially created scenarios where

BD do not Improve Performance our algorithms do not provide good results.

Table 3.9: Experiment section outline

3.4 Experiments

In this section, we will compare the performance of seven approaches Multi-Period

Two-Stage Stochastic optimization (MSS)6 and Benders Decomposition (BD), Greedy

(GD) algorithm, Randomized Greedy Algorithm (RGD), One-Stage optimization

(OS), Approximate Dynamic Programming formulation (ADP) and Hybrid Multi-

Period Two-Stage Stochastic optimization approach (HSS) used in (Powell, 1996).

We employ MSS(∆ = x,Q = y) and BD(∆ = x,Q = y) to refer to our approaches

when the time interval ∆ is set to x and the look ahead decision epochs Q is set to

y. We compare different approaches with respect to (i) Revenue earned by servers;

(ii) Number of requests satisfied; and (iii) Run-time to compute the assignment.

Table 3.9 provides the outline for this section. We will show two main results that

demonstrate the significant utility of our approaches:

• MSS and BD consistently outperform myopic (GD, RGD and OS) and multi-

step approaches (ADP and HSS). While the improvement varies, on an average

(across datasets and other settings) there was a 20% improvement over GD,

RGD and OS and 9% improvement over HSS and ADP.

• BD provides the best trade off between run-time and solution quality. It can

solve the problems in quickly while achieving roughly the same solution quality

as MSS.
6MSS is a generalization of TSS, so we only focus on MSS. TSS is equivalent to MSS for Q=1

63



3.4.1 Datasets

We conducted our experiments by taking the demand distribution from three real

world datasets of major taxi companies. The first dataset is the publicly available

New York Yellow Taxi Dataset (NYYellowTaxi), henceforth referred to as NY-

Dataset. The names of the other two real world datasets can not be revealed due

to confidentiality agreements. They are referred to as Dataset1 and Dataset2. These

datasets contain the data of past customer requests for servers at different times of

the day and for different days of the week. From these datasets, we take the follow-

ing fields:

• Pick-up and Drop-off Location (Latitude and Longitude coordinates): These

locations are mapped to the zones as mentioned in the Section 3.4.1.1.

• Pick-up Time: This time is converted to the appropriate timestep based on the

value of ∆. The pick-up time hh : mm is mapped to the timestep/decision epoch

dhh·60+mm
∆

e. For example, for ∆ = 5, 08:04 AM is mapped to the timestep

d8·60+4
5
e = 97, i.e., all the requests between time 08:00 AM and 08:05 AM are

mapped to the the time 08:05 AM.

The distance of a trip and the revenue earned from a trip are computed using the

underlying model typically employed by the taxi companies (an initial base fare + a

quantum that accrues with the distance travelled/time taken). We describe it in the

Section 3.4.2.

Since our approaches perform well on these three real world datasets, we also pro-

vide the specially created scenarios where our approaches may not work as well.

The details of these specially created synthetic scenarios are described in the Sec-

tion 3.4.5.

For the experimental evaluation, we divide the city into multiple zones. There-

fore, set of locations L corresponds to the zones for the experimental evaluation.

In the next subsection, we describe the zone creation process using the publicly

available NYDataset. The zone creation process is important because we perform

matching at the level of zones. The zone level matching ensures scalability while
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providing a good approximation.

3.4.1.1 Zone Creation

Figure 3.4: Zone Creation

We employ past data of pick-ups and drop-offs to divide a city into zones. Using

past data helps in providing the right tradeoff between having few zones and the

error introduced due to consideration of zones. There are four key steps to the zone

creation process for all three datasets:

• We divide the entire city area into small grids (0.5 KM x 0.5 KM).

• We consider the minimum number of grids that make up most of the pick-ups

and drop-offs (> 90%). These are the first set of zones. This will ensure that the

error is negligible for most of the requests.

• We then add a minimum number of zones, so that 9% of the remaining pick-ups

and drop-offs are within 1 KM x 1 KM of a zone.

• We add a minimum number of zones, so that the remaining 1 % of the pick-ups

and drop-offs are within 2 KM x 2 KM of zone.

Figure 3.4 provides the spatial configuration of zones in case of New York city.

All the red grids represent zones. Green grids represent the areas that are within 1

KM x 1 KM of a zone and account for 9% of the pick-ups/drop-offs. Blue grids
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represent the areas that are within 2 KM x 2 KM of a zone and account for 1% of

past pick-ups/drop-offs. We used the trip data for 6 months from Jan 2016-June

2016 (total 136830072 pick-ups/drop-offs) to create these zones. To assign zone to

any new location, we check the distance of the location from the centers of these

created zones and assign the zone with minimum distance. The percentage values

can be changed depending on the need and dataset, while ensuring that for majority

of locations error remains negligible.

3.4.2 Experimental Settings

There are three different categories of settings that have an impact on the perfor-

mance of algorithms:

1. Inputs provided to all algorithms: These include:

• τ : It represents the maximum time within which the server should reach the

pick-up point. We take the value of τ as 5 minutes, i.e., at any decision epoch a

server can be assigned to a request if and only if the time taken by the server to

reach the request origin zone is less than or equal to 5 minutes.

• Revenue model: We employed the following model for experimental evaluation

that is a well accepted standard (Singapore Taxi Fare). The model calculates

revenue as follows:

Ct
i,oj ,dj

= B + R · dist(oj, dj)−P · (dist(i, oj) + dist(oj, dj)) ::: ∀t

where dist(oj, dj) is the distance between the centers of zones oj and dj . For

different cities, the values of B,R and P are different7

• Travel time between zones: For the experimental results, the time taken to travel

7For dataset1, dataset2, we use 3.8, 0.5 and 0.1 for B,R and P respectively. For NYDataset, we
use 2.5, 2.5, 0.1 for B,R and P respectively.
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between zones8 is also same irrespective of the time of day and is calculated as

T (z, z′, t) =
dist(z, z′)

vserver
::: ∀t

where vserver is the speed of server which is taken as 40km per hour.

• Number of servers (N 1
i ): The number of servers used is dependent on the fleet

size of the taxi company. At the start of the experiment servers in different zones

are distributed either uniformly if server locations are not observed (NYDataset

and Dataset 1) or as observed in the data (Dataset2). Based on the assignment

obtained by algorithms at any decision epoch availability of servers at the next

decision epoch is updated. In the results section, we vary the number of servers

to show the performance of all algorithms for different number of servers.

• Number of locations/zones (|L|): We described the zone creation process in the

Section 3.4.1.1. Using our zone creation process we obtained 483 zones for the

2 confidential datasets and 436 zones for the NYDataset. For a different city

and dataset, the number of zones will be different.

2. Parameters of algorithms: The parameters required by our algorithms (MSS

and BD) are:

• Decision epoch length (∆): This parameter determines how often, the algorithm

should be executed and assignment decisions are made. We identify the right

value of ∆ through experiments as described in results section.

• Look ahead timesteps (Q): The value of Q is taken such that ∆ · (Q + 1) = 30

minutes, i.e., if ∆ is 1 minute, Q is taken as 29 and if ∆ is 15, Q is taken as 1. We

choose a fix value of 30 minutes because more than 90% of the requests com-

plete within 30 minutes with average travel time between 5-10 minutes. So 30

minutes provides a good look ahead. But this value can be changed depending

on the dataset.
8We can update it to more realistic values from data without impacting the overall results.
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• Number of samples (ξD): While computing an assignment at decision epoch

t, our approaches (MSS and BD) and existing multi-step approaches (HSS and

ADP) require samples of customer requests at decision epochs t+1, t+2, .., t+Q

from past data (at the same decision epoch on a weekday/weekend depending

on whether the decision epochs are on a weekday/weekend). We identify the

right value for the number of samples through experiments as described in re-

sults section.
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Figure 3.5: Comparison of Revenue earned and Number Of Requests served using
different algorithms at each decision epoch. |L| = 483, |ξD| = 10, N 1

i = 2000 (a)
(b) Dataset1 (c) (d) Dataset2

3. Evaluation settings: For each algorithm, once the assignment is computed at

each decision epoch, we evaluate the assignment on the realized requests (which are

samples from the past data that are not considered while computing the assignment).

The objective for all the algorithms is to maximize revenue. To provide the right

trade-off between run-time and solution quality, we considered 3 iterations in BD.
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Figure 3.6: Comparison of Revenue earned and Number Of Requests served using
different algorithms at each decision epoch. |L| = 436 , |ξD| = 10, N 1

i = 2000 (a),
(b) NYDataset

The evaluation settings include the following :

• Number of decision epochs (M ): Typically transitions in the server demand

happen approximately every 3 hours (morning and evening peak hours, lunch),

so we choose the value of 2.5 hours, i.e., M = 2.5·60
∆

. However, we did try other

values for M (lower and higher than 2.5 hrs) and the results were similar.

• Number of days and the time of evaluation: We performed experiments with

requests at various times of the day, 8:00 AM, 3:00 PM, 6:00 PM and on dif-

ferent days. We evaluated the approaches by running them on 45 different days

and taking the average values over 45 days for Dataset1 and Dataset2. For

NYDataset, we evaluated the approaches on 15 weekdays between 4th April

2016-22nd April 2016.

We conducted experiments with all the combinations of settings and inputs men-

tioned in this section. To avoid repeating similar results over and over again, we

provide the representative results.

3.4.3 Main Results

In this section, we compare the revenue and the number of requests served by all

seven algorithms. We also compare the run-time of all the approaches by using

different number of servers.
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We conducted experiments by considering the demand distributions from all the

datasets. We choose the best configuration for parameters of all algorithms (justifi-

cation provided in the next section). All approaches are executed for ∆ = 5. For

our approaches, we use 10 samples and the look ahead timesteps (Q) as 5. For HSS

and ADP as well, we use the number of samples as 10. For HSS similar to MSS, we

use the look ahead timesteps as 5. For ADP, we use the look ahead timesteps as 10.

ADP algorithm as described in the 2.4.5 involves solving an optimization problem

for each sample and for each time step in the planning horizon. As opposed to other

multi-step approaches, ADP algorithm considers one sample at a time, therefore,

we use a higher value of Q for ADP. But it is not possible to run ADP algorithm for

more than 10 time steps for sufficient number of samples in real-time. Moreover,

we checked on few instances by using all the M (30) time steps as planning horizon

and did not see any significant improvement in the performance of ADP algorithm.

Therefore, we report the results for ADP algorithm with a fixed value of Q as 10.

We first compare the revenue obtained by all the algorithms at each time step for

2000 servers starting from 8AM. We have similar results while starting from 3:00

PM and 6:00 PM. Figure 3.5 and 3.6 shows the comparison of the total revenue

obtained and the total number of requests served by different algorithms at each

decision epoch for all the datasets. Here are the key observations:

• For the first decision epoch, the value obtained by the myopic approaches is

higher than MSS and BD. This is because MSS and BD take sub-optimal deci-

sions at the current decision epoch to obtain high revenue over future decision

epochs. After initial decision epochs, MSS and BD starts outperforming other

approaches.

• With respect to the revenue, on NYDataset, MSS and BD provided close to $37

improvement per server as compared to the myopic approaches and close to $22

improvement per server as compared to ADP and HSS. For Dataset2, MSS and

BD provided nearly $41 improvement per server as compared to the myopic

approaches and $26 improvement as compared to ADP and HSS. Similarly, on
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Dataset1, we get $8 improvement as compared to the myopic approaches and

$4 improvement as compared to ADP and HSS.

• With respect to the number of requests served, on NYDataset, MSS and BD

serve 21381 additional requests as compared to the myopic approaches and they

serve 9378 additional requests as compared to ADP and HSS. For Dataset2,

MSS and BD serve 24000 additional requests as compared to myopic ap-

proaches and it serves additional 11000 requests as compared to ADP and HSS.

Similarly, on Dataset1, we serve 3000 additional requests as compared to the

myopic approaches and 1400 additional requests as compared to ADP and HSS.

This is a significant result, because in most cities at rush hours, the number of

servers is almost always lower than the actual demand available.

• On NYDataset, ADP and HSS have identical results (requests served by HSS

is more but revenue is almost the same). On Dataset2, HSS slightly outper-

forms ADP and on Dataset1 ADP outperforms HSS. Dataset1 has higher vari-

ance in requests as compared to the other 2 datasets at 8AM. Therefore, for

NYDataset and Dataset2, ADP gets almost similar samples in each iteration

but with Dataset1 it gets different samples which could be the reason for better

performance of ADP on Dataset1.

The reason for MSS and BD providing better results as compared to HSS is

that HSS works with larger zones at future stages, so MSS and BD have better

approximation of future as compared to HSS. One of the reasons for ADP not per-

forming as well as MSS is that the decision epoch at which the request completes

depends on the assigned server (as described in the Section 3.1) which breaks the

Markov property. In addition, as described in 2.4.5, possible assignment of the

servers from nearby zones makes the value function non separable across zones, but

ADP approximation assumes this separation. Due to these reasons, the value func-

tion approximation updated using the dual variables of a relaxed linear program is

not accurate.

The value function approximation used for ADP is linear. With piece-wise lin-
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ear value function approximation, the time taken to run each optimization increases,

so it is not possible to perform significant number of iterations using piece-wise lin-

ear value function approximation. The results obtained using the piece-wise linear

value function approximation with smaller number of servers are similar to the lin-

ear value function approximation. Therefore, we use linear value function approxi-

mation for reporting the results.
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Figure 3.7: Comparison of Empirical Competitive Ratio of algorithms during Peak
and Non Peak Time, |ξD| = 10,(a) Dataset1 N 1

i = 2000 (b) Dataset2 N 1
i = As

observed in data (c) NYDataset N 1
i = 1000

Peak and Non-Peak Time: To evaluate the sensitivity of performance of algo-

rithms with respect to the time of the day, we now compare the competitive ratio of

algorithms in the morning (8:00AM), evening (06:00PM) and afternoon (03:00PM)

for all datasets. For NYDataset, as shown in the next section, the distribution of

requests remains almost same throughout the day and the number of requests were

low only at the night time. Therefore, for NYDataset, we also compare the compet-

itive ratio at 12AM.
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For Dataset1, the average number of requests at each decision epoch is 700

at 08:00AM, 200 at 03:00PM and 350 at 06:00PM. We can observe in the Figure

3.7 that at 03:00PM, when there are more servers as compared to the number of

requests, the gap between the competitive ratio of MSS, BD and myopic approaches

is less than 10% but at 08:00AM and 06:00PM, on an average the gap between the

competitive ratio of MSS,BD and myopic approaches is more than 25%, the gap

between MSS,BD and ADP is nearly 12% and the gap with HSS is nearly 19%.

Similar results are observed on Dataset2. For Dataset2, the number of available

servers is taken as observed in the data. The average number of requests at each

decision epoch is 2000 at 08:00AM, 1700 at 03:00PM and 1800 at 06:00PM. We can

observe that at 3PM the gap between the competitive ratio of MSS, BD and other

approaches is less than 1% due to fewer requests and more available servers (nearly

8000 servers at 3PM as compared to 5500 servers at 08:00AM). At 08:00AM the

gap is nearly 10% from all the approaches.

For NYDataset, the average number of requests at each decision epoch is 1941.8

at 08:00AM, 1726.1 at 03:00PM, 2407.617 at 06:00PM and 712.88 at 12:00AM.

Figure 3.7 shows the comparison of the competitive ratio of algorithms at different

times. In NYdataset, we did not observe the competitive ratio of myopic algorithm

improve with fixed number of servers at different time but the competitive ratio of

ADP improves at 12:00AM. This improvement is more likely due to variance in

the samples provided. As shown in the Section 3.4.4, NYDataset has low mean

and high variance in the number of requests at night time. The gap between the

competitive ratio of MSS, BD and myopic approaches is more than 40% at all times.

The maximum gap between MSS, BD and ADP is 40% and minimum gap is 20%.

The maximum gap between MSS, BD and HSS is 12% and minimum gap is 7%.

Number of Servers: Finally, we also compare all the algorithms by experimenting

with different number of servers (Figures 3.8 and 3.9). We observe that as the num-

ber of servers increase, the gap between MSS, BD and other approaches decreases.
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Figure 3.8: Comparison of the revenue earned and the number of requests served
using different algorithms. NYDataset: In (a) and (b) |L| = 436,|ξD| = 10

This is because when more servers are available, servers will be free even after ex-

ecuting assignments at the current decision epoch, so future demands can be met

irrespective of the current assignment. Furthermore, when there are significantly

more servers than the demand, sophisticated matching approaches are not required.

We also compare the run-time of algorithms with different number of servers.

Figure 3.10 shows the run-time of MSS and BD with different number of servers.

We observed that when the number of servers are much less or servers are available

in excess, run-time of MSS is lower as compared to the case when the number of

servers is comparable to the available requests. For Dataset1, MSS has maximum

run-time at 2000 servers and for the other 2 datasets it has maximum run-time for

5000 servers. Though run-time of MSS changes with the number of servers, run-

time of BD(P) remains almost same irrespective of the number of servers 9. More-

over we conducted our experiments on academic systems, on commercial servers

this will take much less time.
9Since, the reported run-time for BD is based on sequential solving of slaves, the actual run-time

when slaves are run in parallel on multiple cores is lower. We show the expected time which will
be taken by BD, if slaves are solved in parallel (denoted by BD(P) in the figure). We calculated this
time by considering the time taken to solve slaves in parallel as the maximum time taken by any
slave in each iteration.
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Figure 3.9: Comparison of the revenue earned and the number of requests served
using different algorithms. (a), (b) Dataset1 and (c), (d) Dataset2. In (a), (b), (c)
and (d) |L| = 483,|ξD| = 10

3.4.4 Justification for Values of Parameter Settings

In this section, we show the reason for using the ∆ value as 5 and the number of

samples as 10 in the previous section.

Decision epoch length (∆): We identify the appropriate value of ∆ which provides

the right trade-off between solution quality and run-time. The solution quality in-

creases with decreasing the value of ∆. This is because a server is assigned to only

one request in each decision epoch (Section 3.3). Therefore, for large ∆ values,

even if a server can serve more than one request in ∆ duration, it will be serving

only one request. To observe the change in solution quality on decreasing the value

of ∆, we compare the objective value of U-OLYMPIAD over 2.5 hours for different

value of ∆ on both datasets.

Figure 3.11 shows the comparison of total revenue earned and run-time of U-
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Figure 3.10: Run time comparison of our algorithms for different number of
servers(a) |L| = 483,|ξD| = 10 Dataset1 (b) |L| = 483,|ξD| = 10 Dataset2 (c) |L|
= 436,|ξD| = 10 NYDataset
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Figure 3.11: Revenue and the run-time comparison of the Offline algorithm on
different datasets for different decision epoch length.
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OLYMPIAD for different ∆ values (in minutes) on all the datasets 10.

As mentioned in the Section 3.4.2, the value of Q is taken such that ∆ · (Q+ 1)

= 30 minutes, i.e., if ∆ is 1, Q is taken as 29 and if ∆ is 15, Q is taken as 1.

Figure 3.11a shows the total revenue obtained on executing U-OLYMPIAD. We

observe that on all the datasets, there is a major increase in revenue on decreasing

the value of ∆ from 15 to 10 and 10 to 5. But the increase in revenue on decreasing

the value of ∆ from 5 to 3 and 3 to 1 is comparatively less. Figure 3.11b shows

the maximum time taken to compute a single assignment with 1 sample of future

demand. We observe that the time taken to compute an assignment, drastically

increases on decreasing the value of ∆ from 3 to 1. This is due to the large increase

in the number of constraints in the optimization formulation. Even for ∆ = 3,

the time taken to compute a single assignment with one sample is 100 seconds on

Dataset2.

As the time taken is high for ∆ < 5 and quality of solution at ∆ = 5 is compara-

ble to the solution quality at ∆ = 1, we take the value of ∆ as 5 for our experiments.

Number of samples (|ξD|): Our next set of experiments measure the performance
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Figure 3.12: Mean and Deviation in the number of requests available at each hour
for NYDataset

of our approaches with respect to change in the number of samples. Figure 3.12a

10The average number of requests in Dataset 2 and NYDataset is more than twice the average
number of requests in Dataset1 (nearly 60000 requests in Dataset2 and NYDataset as compared to
30000 requests in Dataset1). Therefore, there is a significant difference between total revenue earned
and time taken to compute an assignment.
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shows the mean and deviation in the number of requests available at each hour over

15 weekdays in NYDataset. From the figure, we can observe that there is a high

variance in the number of requests at night between 10:00PM to 02:00AM, but dur-

ing the day, the variance is low. Therefore, during the day, even with a single sample,

we can obtain good quality results. Due to this reason, to observe the effect of us-

ing different number of samples for NYDataset, we provide the results at 12:00AM

(as there is low mean and high variance at 12:00AM). On the other hand, Dataset1

has high variance in the number of requests in the morning at 8:00AM on weekday

(minimum: 6000, maximum: 60000 over 2.5 hours). Therefore, for Dataset1, we

provide the results at 08:00AM. The average number of requests at each decision

epoch is 700 for Dataset1 and 712.88 for NYDataset. The total number of servers

is set to 1000 for NYDataset and 2000 for Dataset1.
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Figure 3.13: Comparison of empirical competitive ratio of algorithms for different
number of samples. (a)Dataset 1: |L| = 483,

∑
i∈LN 1

i = 2000, (b) NYDataset : |L|
= 436,

∑
i∈LN 1

i = 1000

Figure 3.13 provides the results for the average value of empirical competitive

ratio for Dataset1 and NYDataset. In Figure 3.13a and 3.13b, X-axis denotes the

number of samples considered while computing the assignment and Y-axis denotes

the empirical competitive ratio (from Section 3.2.4). The key observations are as

follows:

(1) The most significant result is that MSS and BD are able to achieve more than

88% of the optimal revenue with 10 samples on Dataset1 and more than 95%

on NYDataset. Even though both datasets have high variance in the number of

78



1 5 8 10 13 15

Number Of Samples

0

50

100

150

200

250

R
u

n
T

im
e

 (
in

 s
e

co
n

d
s)

MSS(∆ = 5, Q=5)
BD(∆ = 5, Q=5)
BD(P)(∆ = 5, Q=5)

RunTime Comparison

(a)

1 5 8 10 13 15

Number Of Samples

0

200

400

600

800

1000

1200

1400

R
u

n
T

im
e

 (
in

 s
e

co
n

d
s)

MSS(∆ = 5, Q=5)
BD(∆ = 5, Q=5)
BD(P)(∆ = 5, Q=5)

RunTime Comparison

(b)

Figure 3.14: Comparison of run time of algorithms for different number of sam-
ples.(a)Dataset 1: |L| = 483,

∑
i∈LN 1

i = 2000, (b) NYDataset : |L| = 436,∑
i∈LN 1

i = 1000

requests, Dataset1 has higher variance. Moreover, Dataset1 has more requests

within the same pair of zones which makes a single zone more prominent than

the others. So in case of Dataset1, the important zones for different samples are

different and can be completely different from the test day. On the other hand,

requests are more distributed in NYDataset, therefore, NYDataset has higher

empirical competitive ratio as compared to the Dataset1.

(2) Even with 1 sample, on an average MSS and BD obtain 8̃4% of the optimal rev-

enue on the Dataset1 and more than 85% of the optimal revenue on NYDataset.

(3) With respect to the revenue, on Dataset1, on an average, MSS provides 1.5%

additional improvement over BD, while on NYDataset, with higher number of

samples, MSS provides 1% improvement over BD.

(4) BD provides the right trade-off between run-time and solution quality. While

MSS provides high quality solutions (especially for Dataset1), it can take sig-

nificantly more time (up to 1500 seconds when making online decisions).

(5) BD(P) on an average takes 24 seconds with 10 samples to compute an assign-

ment for Dataset1 and 8̃3 seconds with 10 Samples for NYDataset.

On the other hand, there is very low variance over the requests on different days in

Dataset2 (minimum:56000 ,maximum:60000 over 2.5 hours). Therefore, the em-

pirical competitive ratio is more than 95% even on taking only one sample and does
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not improve much on adding more samples. The run-time results on Dataset2 are

similar to NYDataset. NYDataset and Dataset2 take more time to compute an as-

signment as compared to Dataset1 because as discussed before Dataset1 has more

requests between same zone pairs while requests are more distributed in other 2

datasets. Therefore, the number of zone pairs which have requests between them is

much lower for Dataset1. Due to this, the overall size of linear program is larger for

other two datasets resulting in higher run-time.
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Figure 3.15: (a)Dataset 2: |L| = 483,
∑

i∈LN 1
i = 5000

On all the datasets, MSS and BD provide high value of competitive ratio with

very few samples. One of the major reasons for this is that the samples need not

be exactly similar to the test data to provide a gain in the competitive ratio. As

mentioned before, a server can be assigned to a request if it can reach the pick-

up location of request within 5 (τ ) minutes and the cost of traveling to reach the

request pick-up location is negligible as compared to the revenue obtained. There-

fore, unless samples are drastically different, they will contribute a lot in increasing

the competitive ratio.

3.4.5 Synthetic Scenarios Where MSS and BD Do Not Improve

Performance

To better understand the settings where our approaches work well and where it does

not, we also performed experiments on the synthetic datasets. We investigate the
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following cases, where our approaches can potentially yield bad results as compared

to the myopic approaches:

1. Requests between zones generated using uniform, binomial and Poisson distri-

butions: For this setting, we obtained similar results (as on the real world datasets)

with MSS and BD outperforming myopic approaches. On synthetic datasets with

uniform distribution, MSS and BD do not get the advantage of making servers avail-

able in the locations with more demand (based on samples) as requests are available

in all the zones. The reason behind MSS and BD still outperforming myopic ap-

proaches in this scenario is the revenue model which rewards shorter trips over

longer trips.

2. Revenue model with no bias for short trips (over long trips): As myopic ap-

proaches consider the revenue for only the current decision epoch, they will assign

servers to a trip having long distance. On the other hand, MSS and BD will prefer

serving multiple short distance trips. When we change the revenue model in equa-

tion (3.4.2) such that the revenue is directly proportional to the distance, MSS and

BD do not get the advantage by serving multiple short distance trips. On synthetic

dataset with uniform distribution of requests and the modified revenue model, all

algorithms have comparable value of the competitive ratio, as shown in Figure 3.16.
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Figure 3.16: Revenue model with no bias for short trips: |L| = 50,
∑

i∈LN 1
i =

2000, 1
30

∑30
t=1Dt = 2507

3. High proportion of long distance trips with far apart zones: To simulate this

scenario, we had to create a specific setting that is hard to replicate in real world

datasets. We took 5 zones and no request has an origin and destination in the same
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zone. The time taken to travel between zones is taken such that the servers need

to be in exactly the same zone to serve the requests. In the 5 zones considered, we

take the minimum time taken to travel between any pair of zones as 15 minutes and

maximum time as 40 minutes. Out of 20 possible (5 · 4) zone pair combinations,

time taken to travel between 6 zone pairs is taken as more than 30 minutes (revenue

12.5), between 6 other zone pairs as 15 minutes (revenue 7.2), 4 other zone pair

as 20 minutes (revenue 8.2) and between remaining 4 zone pairs as 25 minutes

(revenue 10.5). Requests are generated such that the requests with travel time 15,

20 and 25 minutes are not available at all decision epochs but the requests having

travel time 30 minutes or more are available at all decision epochs. The value of τ

and ∆ is 5 minutes and the value of Q is 5, i.e., ρ = ∆ · (Q+ 1) = 30 minutes.

In these settings, MSS and BD can perform arbitrarily bad as compared to the

myopic approaches. The intuition is that MSS and BD can keep on taking sub-

optimal decision at the current decision epoch with an expectation of getting higher

revenue at the next decision epochs but on reaching the next decision epoch it again

takes a sub-optimal decision.

The competitive ratio of MSS and BD in this setting is constantly less than the

myopic approaches even after providing multiple samples as shown in Figure 3.17.

The reason is as MSS and BD are only looking at the next 30 minutes, they decide

to first serve a request with 15 minute travel time followed by a request having

travel time 30 minutes or more. But on reaching the next decision epoch it ignores

the request of higher travel time even if there are no requests with 15-minute travel

time available. MSS and BD find it a better option to be idle for a couple of decision

epochs in order to wait for a 15 minute request so that it can serve that and follow it

with a request having travel time more than 30 minutes. This keeps on happening till

the last decision epoch. As a result, MSS and BD remain idle, waiting for a short

trip and the myopic approaches keep on serving the requests, resulting in higher

revenue for them.
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Figure 3.17: High proportion of long distance trips with far apart zones: |L| = 5,∑
i∈LN 1

i = 10,
∑30

t=1Dt = 21

3.5 Real World Deployment

A recommendation engine built on the optimization formulation proposed in this

chapter is used to provide personalized guidance to taxi drivers in Singapore. The

field trial of the driver guidance system (DGS) was conducted with 500 recruited

taxi drivers from September 2017-end of 2019. Comparing the vacant roaming

times before finding passengers, we discover that by following the DGS recommen-

dations, drivers manage to reduce their vacant roaming times by 27% across all time

periods. Table 3.10 shows the breakdown of the DGS vs. non-DGS performances

in 4 periods: 6-10am, 10am-5pm, 5pm-12am,and 12-6am. Although DGS outper-

forms non-DGS trips in all time periods, we observe that having guidances brings

most advantages for drivers after 5pm. Analyzing further, we discovered that this

might be due to the fact that supply-demand imbalances are much more variable

after 5pm, especially around the midnight hours. Although drivers in general know

where demands are during these hours, they do not know the supply level; this is

where guidances can help them.

Time Period DGS Non-DGS
6am-10am 8.06 minutes 7.32 minutes
10am-5pm 7.10 minutes 5.72 minutes
5pm-12am 8.80 minutes 5.45 minutes
12am - 6am 15.52 minutes 8.50 minutes

Table 3.10: Real World Deployment - DGS results

The optimization formulation used is based on the formulation in table 3.8. In

this work, as only 500 drivers are using the DGS, not all taxis are guided and the
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recommendation engine needs to account for the unguided taxis.

In summary, the recommendation engine performs the following three steps:

1. Generating demand samples: The occurrences of demands (i.e., origins)

are generated using a demand prediction model (part of DGS), but the desti-

nations are generated based on historical distribution.

2. Updating taxi locations and simulating unguided taxis: At each execution,

the current locations of all taxis are updated in the engine. For each demand

sample, the unguided taxis transition from their current zone to another zone

based on the transition probabilities calculated from the historical data. Each

demand in a zone can be serve by either guided or unguided taxis (if they

are present). The assignment decisions are made probabilistically, and if a

demand is picked up by an unguided taxi, it should be removed from the

demand sample before we solve the final optimization model for the guided

taxis.

3. Optimization for the guided taxis: The model is solved for the guided taxis

with the generated demand samples after removing the requests assigned to

unguided taxis.

More details about the demand prediction model and the experiments can be

found in following papers.

1. Jha, Shashi Shekhar, Shih-Fen Cheng, Meghna Lowalekar, Nicholas Wong,

Rishikeshan Rajendram, Trong Khiem Tran, Pradeep Varakantham, Nghia

Truong Trong, and Firmansyah Bin Abd Rahman. ”Upping the game of taxi

driving in the age of Uber.” In Thirty-Second AAAI Conference on Artificial

Intelligence. 2018.

2. Jha, Shashi Shekhar, Shih-Fen Cheng, Meghna Lowalekar, Nicholas Wong,

Rishikeshan Rajendram, Pradeep Varakantham, Nghia Troung Troung, and

Firmansyah Bin Abd Rahman. ”A Driver Guidance System for Taxis in Sin-

gapore.” In Proceedings of the 17th International Conference on Autonomous
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Agents and MultiAgent Systems, pp. 1820-1822. International Foundation

for Autonomous Agents and Multiagent Systems, 2018.

3. Cheng, Shih-Fen, Shashi Shekhar Jha, and Rishikeshan Rajendram. ”Taxis

strike back: A field trial of the driver guidance system.” In Proceedings of

the 17th International Conference on Autonomous Agents and MultiAgent

Systems, pp. 577-584. International Foundation for Autonomous Agents and

Multiagent Systems, 2018.

3.6 Summary

In this chapter, we presented multi-period two-stage optimization model to solve U-

OLYMPIAD problems. We also presented, Benders Decomposition to handle the

large scale nature of the problems. The experimental results on real world datasets

show that our approaches significantly outperform the existing approaches. Finally,

we also present the results from the real world deployment of the driver guidance

system in which the recommendation engine was built based on the the work pre-

sented in the chapter.
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Chapter 4

Neural Approximate Dynamic

Programming Approach to Solve

M-OLYMPIAD Problem

In this chapter 1, we present the Neural Approximate Dynamic Programming ap-

proach to solve M-OLYMPIAD problem.

4.1 NeurADP: Neural Approximate Dynamic

Programming

Figure 4.1 represents the overall framework used for solving the M-OLYMPIAD

problem. As shown in the figure, the framework executes 6 steps at each decision

epoch to assign incoming user requests to available servers. Existing myopic ap-

proaches only execute steps (A), (B), (D) and (F). The crucial steps (C) and (E)

help in maximizing the expected long-term value of serving a request rather than

its immediate value. To learn this long-term value, we model the M-OLYMPIAD

problem using ADP and use deep neural networks to learn the value functions of

1Neural Approximate Dynamic programming is a joint work which was primarily done by Sanket
Shah. My contribution lies in modelling it in approximate dynamic programming framework instead
of reinforcement learning framework.
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Figure 4.1: Schematic outlining our overall approach. We start with a hypothet-
ical G, D∞∇ and V in (A). The grid represents a road network. The blue people and
circles correspond to user requests and the nearest street intersection that they’re
mapped to respectively. The blue dotted lines represent the shortest path between
the pick-up and drop-off points of a request. The red and green triangles correspond
to existing pick-up/drop-off points for the red and green servers respectively. The
dotted lines describe their current trajectory. In (B) we map the requests and their
combinations to servers that can serve them under the constraints defined by τ and
λ to create feasible actions using the approach presented in (Alonso-Mora, Sama-
ranayake, et al., 2017). In (C), we score each of these feasible actions using our
Neural Network Value Function. In (D), we create a mapping of requests to servers
that maximizes the sum of scores generated in (C) using the Integer Linear Program
(ILP) in Table 4.1. In (E), we use this final mapping to update the score function
(Section 4.1.4). In (F), we simulate the motion of servers until the next epoch ei-
ther based on their current trajectories or a re-balancing strategy. This process then
repeats for the next decision epoch.
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post-decision states.

In this section, we first indicate key challenges that preclude direct application

of existing ADP methods. We next provide the ADP model for the M-OLYMPIAD

problem and describe our contributions in using neural function approximations for

scalable and effective policies in M-OLYMPIAD problem.

4.1.1 Departure From Past Work

Approximate Dynamic Programming has been used to model many different trans-

portation problems such as fleet management (Simao et al., 2009), ambulance al-

location (Maxwell, Restrepo, Henderson, & Topaloglu, 2010) etc. While we also

model our M-OLYMPIAD problem using ADP, we cannot use the solutions from

past work for the following reasons:

1. Non-trivial generation of feasible actions: In using ADP to solve the unit-

capacity fleet management problem, the action for a single empty server is to

match a single request. Computing the feasible set of requests for a server is

a straightforward and the best action for all servers together can then be com-

puted by solving a Linear Program (LP). In the case of the M-OLYMPIAD

problem, multiple requests can be assigned to a single empty or partially filled

server. Generating the set of feasible actions, in this case, is complex and real-

time solutions to this problem have been the key challenge in literature on my-

opic solutions to ride-pooling. In this chapter, we use the approach proposed

by (Alonso-Mora, Samaranayake, et al., 2017) to generate feasible actions for

a single server (Section 4.1) and then use an Integer Linear Program (ILP) to

choose the best action (Table 4.1) over all servers.

2. Inability to use LP-duals to update the value function: Past work in ADP for

fleet management (Simao et al., 2009) uses the dual values of the matching LP to

update the parameters of their value function approximation. However, choos-

ing the best action in the M-OLYMPIAD problem requires solving an Integer

Linear Program (ILP) that has bad LP-relaxations. As a result, we cannot use
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duals to update our value function. Instead, we show the connection between

ADP and Reinforcement Learning (RL), and use the more general Bellman up-

date used in RL to update the value function (Section 4.1.4).

3. Curse of Dimensionality: Past work in ADP for transportation problems ad-

dresses the curse of dimensionality by considering the value function to be de-

pendent on a small set of hand-crafted attributes (e.g., aggregated number of

servers in each location) rather than on the states of a large number of servers.

Hand-crafting of state attributes is domain-specific and is incredibly challeng-

ing for a complex problem like M-OLYMPIAD, where aggregation of servers is

not a feasible attribute (as each server can have different number of passengers

going to multiple different locations). Instead, we use a Neural Network based

value function to automatically learn a compact low dimensional representation

of the large state space.

4. Incorporating Neural Network value functions into the optimization problem:

Past work in ADP for fleet management uses linear or piece-wise linear value

function approximations that allow for the value function to be easily integrated

into the matching LP. Non-linear value functions (such as neural networks) can-

not be integrated in this way, however, as they would make the overall opti-

mization program non-linear. In Section 4.1.3), we address this issue by using

a two-step decomposition of the value function that allows it to be efficiently

integrated into the ILP as constants.

5. Challenges of learning a Neural Network value function: In Deep Reinforce-

ment Learning literature (Mnih et al., 2015), it has been shown that naive ap-

proaches to approximating Neural Network value functions are unstable. Addi-

tionally, training them requires millions of samples. To address this, we propose

a combination of methodological and practical solutions in Section 4.1.5.

The combination of using a Neural Network value function (instead of linear ap-

proximations) and updating it with a more general Bellman update (instead of LP-

duals) represents a general alternative to past ADP approaches that we term Neural
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ADP (NeurADP).

4.1.2 Approximate Dynamic Programming Model for the

M-OLYMPIAD problem

We model the M-OLYMPIAD by instantiating the tuple in Section 2.3.

S: The state of the system is represented as st = (rt, ut) where rt is the state of all

servers and ut is contains all the requests waiting to be served. A server r ∈ V

at decision epoch t is described by a vector rit = (µi, t, Li) which represents its

current trajectory. Specifically, it captures the current location (µi), time(t) and

an ordered list of future locations (along with the cut-off time by which each

must be visited) that the server has to visit (Li) to satisfy the currently assigned

requests. Each user request j at decision epoch t is represented using vector

ujt = (oj, ej) which captures its origin and destination.

A: For each server, the action is to assign a group of users from the set D to it.

These actions should satisfy:

1. Constraints at the server level - satisfying delay constraints (τ, λ) and server

capacity constraints

2. Constraints at the system level - Each request is assigned to at most one

server.

Handling exponential action space: To reduce the complexity, feasible actions

are generated in two steps. In the first step, we handle server-level constraints by

generating a set of feasible actions (groups of users) for each server. To do this

efficiently, we first generate an RTV (Request, Trip, Vehicle/Server) graph using

the algorithm by Alonso et.al. (Alonso-Mora, Samaranayake, et al., 2017). We

use F it to denote the set of feasible actions generated for server i at decision
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epoch t.

F it = {f i | f i ∈ ∪cic′=1 [D]c
′
, P ickUpDelay(f i, i) ≤ τ,

DetourDelay(f i, i) ≤ λ}

To ensure that system-level constraints are satisfied, we solve an ILP that con-

siders all servers and requests together. Let ai,ft denote that server i takes action

f at decision epoch t. Then, the decision variables ai,ft need to satisfy following

constraints:

∑
f∈Fit

ai,ft = 1 ::: ∀i ∈ V (4.1)

∑
i∈V

∑
f∈Fit ;j∈f

ai,ft ≤ 1 ::: ∀j ∈ Dt (4.2)

ai,ft ∈ {0, 1} ::: ∀i, f (4.3)

Constraint (4.1) ensures that each server is assigned a single action and con-

straint (4.2) ensures that each request is a part of, at most, one action. Together,

they ensure that a request can be mapped to at most one server.

We use At denote the set of all actions that satisfy both individual and system-

level constraints at time t and at ∈ At to denote a feasible action in this set.

During training time, Dt is populated from ξD,kt , depending on the sample used

in the episode in the algorithm 3. During test time, it is populated using D1
r for

current decision epoch.

ξ: As in previous work, exogenous information ξt represents the user demand that

arrives between time t− 1 and t.

T : The transition function T a defines how the server state changes after taking an

action. In the case of the M-OLYMPIAD problem, all user requests that are

not assigned are lost (Alonso-Mora, Samaranayake, et al., 2017). Therefore, the
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AssignmentILP(t):

max
∑
i

∑
f∈Fit

oi,ft · a
i,f
t + V i(T i,a(ri,at , f)) · ai,ft (4.4)

subject to Constraints (4.1) - (4.3)

Table 4.1: Optimization Formulation for assignment of servers to feasible actions

user demand component of post-decision state will be empty, i.e., uat = φ.

T a(st, at) = rat (4.5)

Here, rat denotes the post decision state of the servers. We use T i,a(sit, a
i
t) = ri,at

to denote the transition of individual servers. At each decision epoch, based on

the actions taken, (µi, t, Li)∀i are updated and are captured in ri,at . Each server

has a fixed path corresponding to each action and as a result the transition above

is deterministic.

O: When server i takes a feasible action f at decision epoch t, its contribution to

the objective is oi,ft . For the objective of maximizing the number of requests

served, oi,ft is the number of requests that are part of a feasible action f . The

objective function at time t is as follows:

ot(st, at) =
∑
i∈V

∑
f∈Fit

oi,ft · a
i,f
t

4.1.3 Value Function Decomposition

Non-linear value functions, unlike their linear counterparts, cannot be directly inte-

grated into the matching ILP. One way to incorporate them is to evaluate the value

function for all possible post-decision states and then add these values as constants.

However, the number of post-decision states is exponential in the number of re-

sources/servers.

To address this, we propose a two-step decomposition of our overall value func-

tion that converts it into a linear combination over individual value functions asso-
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Algorithm 3 NeurADP ()
1: Initialize: replay memory M , Neural value function V

(with random weights θ)
2: for each episode 1 ≤ n < |ξD| do
3: Initialize the state sn1 by randomly positioning servers.
4: Choose a sample path ξD,n

5: for each step 1 ≤ t ≤ Q do
6: Compute the feasible action set Ft based on snt .
7: Solve the ILP in Table 4.1 to get best action ant .

(Add the Gaussian noise for exploration.)
8: Store (rnt ,Ft) as an experience in M .
9: if t % updateFrequency == 0 then

10: Sample a random mini-batch of experiences
from M

11: for each experience e do
12: Solve the ILP in Table 4.1 with the information

from experience e to get the objective value ye

13: for each server i do
14: Perform a gradient descent step on (ye,i − V (ri,nt ))2 with respect to

the network parameters θ
15: Update: sa,nt = T a(snt , a

n
t ), snt+1 = T ξ(sa,nt , ξnt+1)

ciated with each server2:

• Decomposing joint value function based on individual servers’ value func-

tions: We use the fact that we have rewards associated with each server to

decompose the joint value function for all servers’ rewards into a sum over

the value function for each server’s rewards. The proof for this is straightfor-

ward and follows along the lines of (Russell & Zimdars, 2003).

V (rat ) =
∑
i

V i(rat )

• Approximation of individual servers’ value functions: We make the assump-

tion that the long-term reward of a given server is not significantly affected

by the specific actions another server makes in the current decision epoch.

This makes sense because the long-term reward of a given server is affected

by the interaction between its trajectory and that of the other servers and, at

a macro level, these do not change significantly in a single epoch. This as-
2As mentioned in equation (4.5), the post-decision state only depends on the server state. There-

fore, V (sat ) = V (rat ).
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sumption allows us to use the pre-decision, rather than post-decision, state of

other servers.

V i(rat ) = V i(
〈
ri,at , r

-i,a
t

〉
) ≈ V i(

〈
ri,at , r

-i
t

〉
)

Here, -i refers to all servers that are not server i. This step is crucial because

the second term in the equation above r-i
t can now be seen as a constant that

does not depend on the exponential post-decision state of all servers.

Therefore, the overall value function can be rewritten as:

V (rat ) =
∑
i

V i(
〈
ri,at , r

-i
t

〉
)

We evaluate these individual V i values for all possible ri,at and then integrate

the overall value function into the ILP in Table 4.1 as a linear function over these

individual values. This reduces the number of evaluations of the non-linear value

function from exponential to linear in the number of servers.

4.1.4 Value Function Estimation for NeurADP

To estimate the value function V over the post-decision state, we use the Bellman

equation (decomposed in the ADP as equation (2.1) and (2.2)) to iteratively update

the parameters of the function approximation. In past work (Simao et al., 2009),

the parameters of a linear (or piece-wise linear) value function were updated in the

direction of the gradient provided by the dual values at every step. Hence, the LP-

duals removed the need to explicitly calculate the gradients in the case of a linear

function approximation.

Given that we use a neural network function approximation and require an ILP

(rather than an LP), we cannot use this approach. Instead, we use standard symbolic

differentiation libraries (Abadi et al., 2015) to explicitly calculate the gradients as-

sociated with individual parameters. We then update these parameters by trying to
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minimize the L2 distance between a one-step estimate of the return (from the Bell-

man equation) and the current estimate of the value function (Mnih et al., 2015), as

shown in Algorithm 3.

4.1.5 Overcoming challenges in Neural Network Value

Function Estimation

In this section, we describe how we mitigate the stability and scalability challenges

associated with learning neural network value functions through a combination of

methodological and practical methods.

4.1.5.1 Improving stability of Bellman updates:

It has been shown in Deep Reinforcement Learning (DRL) literature that using stan-

dard on-policy methods to update Neural Network (NN) based value function ap-

proximations can lead to instability (Mnih et al., 2015). This is because the NN

expects the input samples to be independently distributed while consecutive states

in RL and ADP are highly correlated. To address these challenges, we propose

using off-policy updates. To do this, we save the current state and feasible action

set for each server ∀i (sit,F it ) during sample collection. Then, offline, we score the

feasible actions using the value function and use the ILP create the best matching.

Finally, we update the value function of the saved post-decision state with that of

the generated next post-decision state. This is different from experience replay in

standard Q-Learning because the state and transition functions are partly known to

us and choosing the best action, in our case, involves solving an ILP. In addition to

off-policy updates, we use standard approaches in DRL like using a target network

and Double Q-Learning (Van Hasselt, Guez, & Silver, 2016).

4.1.5.2 Addressing the data scarcity:

Neural Networks typically require millions of data points to be effective, even on

simple arcade games (Mnih et al., 2015). In our approach, we address this challenge
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in 3 ways:

• Practically, we see that in the M-OLYMPIAD problem, the biggest bottleneck

in speed is in generating feasible actions. To address this, as noted above, we

directly store the set of feasible actions instead of recomputing them for each

update.

• Secondly, we use the same Neural Network for the value function associated

with each of the individual servers. This means that a single experience leads to

multiple updates, one for each server.

• Finally, we use Prioritized Experience Replay (Schaul, Quan, Antonoglou, &

Silver, 2015) to reuse existing experiences more effectively.

4.1.5.3 Practical simplifications:

Finally, based on our domain knowledge, we introduce a set of practical simplifica-

tions that makes learning tractable:

• Instead of using one-hot representations for discrete locations, we create a low-

dimensional embedding for each location by solving the proxy-problem of try-

ing to estimate the travel times between these locations.

• During training, we perform exploration by adding Gaussian noise to the pre-

dicted Vi values (Plappert et al., 2017). This allows us to more delicately control

the amount of randomness introduced into the training process than the standard

ε-greedy strategy.

• We don’t use the pre-decision state of all the other servers to calculate the value

function for a given server (as suggested in Section 4.1.3). Instead, we aggregate

this information into the count of the number of nearby servers and provide this

to the network, instead.

The specifics of the neural network architecture and training can be found in the

appendix.
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4.2 Summary

In this chapter, we presented the Neural Approximate Dynamic Programming ap-

proach to solve M-OLYMPIAD problems. The approach learns the expected future

value of the assignment by learning the value function for each state. To ensure scal-

ability, a two-step decomposition of the overall value function is proposed which

converts it into a linear combination over individual value function associated with

each server. We compare the performance of NeurADP approaches against TBF

approach in chapter 6.
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Chapter 5

Optimization Approaches to Solve

M-OLYMPIAD Problems

In the previous chapter, we presented a NeurADP approach which can assign servers

to combination of request while considering expected future value of current assign-

ment. For generating the set of feasible request combinations, NeurADP approach

uses a faster heuristic version of TBF approach by Alonso et.al. (Alonso-Mora,

Samaranayake, et al., 2017). There are two drawbacks of the NeurADP approach:

1. NeurADP approach uses TBF approach by Alonso et.al. (Alonso-Mora, Sama-

ranayake, et al., 2017) to generate feasible request combinations. Therefore,

it can only compute the future value of those assignments which are generated

by TBF.

2. NeurADP requires training a different network model for each dataset and for

each change in input parameter.

To overcome these limitations, in this chapter, we first present our Zone path

construction approach (ZAC) to efficiently generate request combinations in real-

time. The approach outperforms the TBF approach by generating more combina-

tions in real-time. Then in section 5.2 we provide the future demand driven ap-

proach ZACBenders which can assign incoming customer requests to the servers
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while considering future information. This approach uses ZAC to compute the cur-

rent set of assignments and is an optimization based approach which can work with

different datasets and parameters as shown in the experimental results in the next

chapter.

(a) (b)

Figure 5.1: (a) Representation of RTV graph generated by the model in (Alonso-
Mora, Samaranayake, et al., 2017) for capacity 2. (b) Representation of RPS graph
generated by ZAC approach.

5.1 ZAC: A Zone pAth Construction Approach for

Solving M-OLYMPIAD Problem

We propose a framework called ZAC (Zone pAth Construction), that employs two

crucial ideas to identify significantly more relevant trips in real-time:

• Focus on zone paths instead of trips: A zone path is a path that connects zones

(a zone is an abstraction for multiple individual locations) and therefore it can

group multiple requests that have ”nearby” or ”on the way” pick-ups and drop-

offs. This focus on zone paths helps automatically capture multiple relevant

combinations with one zone path.

• Offline-online computation of zone paths: Since, we focus on zone paths, we

can generate partial zone paths offline. This helps capture more number of rele-

vant combinations online in real-time, where the partial paths are completed.
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Instead of an RTV (Request Trip Vehicle/Server) graph in Alonso et al.’s (Alonso-

Mora, Samaranayake, et al., 2017) approach, we construct an RPS (Request Path

Server) graph, where we associate requests and servers to zone paths. This is shown

in Figure 5.1. Once the RPS is constructed, we then employ a scalable integer lin-

ear program to find the optimal assignment (e.g., maximize revenue, maximize the

number of requests served or minimize the delay) of servers and requests to paths.

Given the importance of zone path to ZAC, we first define and explain about

zone and zone path. We then describe the intuitive advantages of using zone paths

and then we explain the ZAC algorithm.

Definition 1. Zone: refers to an abstracted location obtained by clustering loca-

tions in set L.

In this work, we investigated Grid Based Clustering (GBC), Hierarchical Ag-

glomerative Clustering with Complete Linkage (HAC MAX) and Hierarchical Ag-

glomerative Clustering with Mean Linkage (HAC AVG) to cluster locations into

zones. We use these methods as they do not require prior knowledge about the

number of clusters and have been used in earlier works on similar problems (S. Ma

et al., 2013; Hasan, Van Hentenryck, Budak, Chen, & Chaudhry, 2018).

Definition 2. Zone path: refers to an ordered sequence of nodes, where each node

corresponds to either a location from set L or a zone.

There are two key advantages to a zone path:

• Zone path represents multiple trips that have “nearby” or “on the way” pick-ups

and drop-offs; and

• Zone path can be generated at different levels of granularity (e.g., individual

locations, communities) depending on the time available.

Due to these two advantages, zone paths assist in identifying more relevant trips

(combinations of requests) within a given amount of runtime. We further enhance

the ability to identify more relevant trips within limited runtime, by generating zone

100



paths partially offline and completing them in real-time depending on the set of

active requests.

We generate the zone path of time span τ offline and complete the rest of the

zone path online. This is because requests can be picked up only in initial τ sec-

onds 1. Therefore, partial zone paths generated offline automatically provide a pick-

up order for the active requests. As a result, online, we only need to compute

drop-off order while ensuring that the delay constraints are not violated. This is

in contrast to Alonso et al.’s (Alonso-Mora, Samaranayake, et al., 2017) approach,

where both pick-up and drop-off order along with the delay feasibility have to be

computed online.

Intuitively, the inherent nature of zone paths to capture multiple relevant trips cou-

pled with the extra time made available online due to offline computation of partial

zone paths enables ZAC to consider significantly more relevant trips in real-time.

Due to abstraction of locations into zones, the travel time is approximately rep-

resented when considering zone paths. This can result in longer wait times or longer

estimate of wait times than a path over locations in set L. Customers prefer to have

a shorter wait time pre-process (Dube-Rioux, Schmitt, & Leclerc, 1989; Maister et

al., 1984), i.e., before pick-up in this case. Therefore, it is essential to reduce this

approximation in travel time computation during pick-up. We reduce this approxi-

mation by generating offline partial paths at the level of locations. This is another

benefit of having an offline partial path.

ZAC is an offline-online approach for solving the M-OLYMPIAD every few

seconds on active requests and available servers by using offline generated partial

paths. The key components of the ZAC algorithm are as follows:

• Offline: generation of all partial location paths of time span, τ from every loca-

tion.
1τ is typically 300 and we experiment with values between 120-420 seconds.
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• Online: generation of RPS graph by loading and processing offline partial paths,

completing the partial paths and identifying edges in RPS graph.

• Online: finding optimal assignment of requests to paths to servers by using an

efficient integer (0/1) linear optimization

Figure 5.2: Example Zone Based Path.

Example 1. Figure 5.2 provides an example of a zone path generated using ZAC.

There is a partial zone path (generated offline) over individual locations (i.e., A→

. . . → F ) and the completion of that zone path (online) using larger zones (black

and red).

5.1.1 Offline: Partial Paths Generation

The main challenge with generating a partial path at the level of individual loca-

tions – even for a time span of only maximum wait time, τ – is the time taken to

generate all the paths. Therefore, we compute these partial paths (of span τ sec-

onds) offline by generating all simple paths of duration τ in the network G. The

number of all possible paths grows exponentially with the increase in the value of

τ and increase in the number of locations. In case all possible paths can not be

generated due to memory constraints, we can employ a data driven approach (based
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on historical data) to generate paths which have high likelihood of grouping large

number of requests. These offline partial paths (Poff ) are stored by indexing on the

start location and start time (Poff [l, t]) 2. The start time associated with the path

indicates the time at which the first node (location) in the path is visited. For a clear

explanation, two paths starting at the same location but having different start times

are considered different. This is because servers can become available at the same

location but at different time. These offline partial paths are further indexed by the

location and time of each node present in the path for quick online processing.

Algorithm 4 ZAC-Online()
1: t = starttime (in seconds)
2: Poff =

⋃
l∈L,
t′<τ

Poff [l, t
′] = LoadOfflinePartialPaths()

3: T =LoadTravelTimes(), Sp =LoadShortestPaths()
4: while t < endtime do
5: t1 = t− starttime
6: if (t1)%∆ == 0 then
7: D1

r ,V ←GetCurrentDemand-ServerStatus(t)
8: P , Pv, Pr, b,N = GenerateRPSGraph(t,Poff ,D1

r ,V , T ,Sp)
9: SolveOptimization(P , Pv, Pr, b,N )

10: UpdateServerStatus()
11: t = t+ 1

5.1.2 Online

We now describe the crucial online component of ZAC that generates the RPS graph

and finds the optimal match on the generated RPS graph. The pseudocode for the

online component ZAC-Online is provided in Algorithm 4. After loading the offline

computed partial paths, travel times and shortest paths, at every decision epoch,

ZAC-Online considers the currently available batch of requests and current server

status to find the optimal assignment in two steps: (1) Generation of the Request,

Path and Server (RPS) graph and (2) Finding optimal match in RPS graph using a

linear integer optimization model.

We now describe the two steps of ZAC in detail.

2We discretize the time at the level of 10 seconds.
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5.1.2.1 Generation of the RPS graph

As shown in Algorithm 5, there are three key steps to RPS graph generation: (1)

Online processing of Offline Partial Paths; (2) Online Partial Zone Path Completion;

(3) Identifying edges in the RPS graph.

Algorithm 5 GenerateRPSGraph(t, Poff , D1
r , V , T , Sp)

1: P ′off ,R′ = ProcessOfflinePartialPaths(t, Poff , D1
r , V ,T , Sp)

2: P ,R′′ = OnlineCompletion(t,P ′off ,R′, T ,Sp)
3: P , Pv, Pr, b,N = IdentifyEdgesRPSGraph(t, P , D1

r , V ,R′′)
4: return P , Pv, Pr, b,N

Online Processing of Offline Partial Paths: The offline generated partial paths are

processed online based on the current available demand and server status (server

location, currently assigned requests to server) as shown in Algorithm 6. Steps 1-2

ensure that we consider only those paths which start at a location and time where

atleast one server is present and these paths are processed in parallel using multi-

ple threads. The GetPathsFromIndex function returns the set of offline partial paths

which visit the given location within given time interval and uses the pre-computed

offline indexes for quick online retrieval. Step 12 stores the set of destination lo-

cations of the currently available requests grouped along the path (based on the

pick-up). In addition to the destination location, we also store the lower and upper

bound on the time by which the location should be visited. Similarly, in step 19,

we store the destination locations of the requests previously assigned to servers. In,

step 19, we consider only those paths which can potentially satisfy all the previ-

ously assigned requests for a server. This is because a server will be assigned to

a path if and only if it can serve all the previously assigned requests. In addition,

a server should deviate from its current path only if it can be assigned to a new

request, therefore, we consider only those paths which can pick at least one of the

newly available request.

Steps 14 and 19 ensure that if the drop-off location of request can be visited in

the partial path, then it is considered in the processing. In the end, in steps 20-22, as

an optimization, we only keep those locations in the partial paths which correspond
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to a pick-up or drop-off location and update the travel time and path between the

locations using T and Sp.

The offline generated partial paths significantly improve the scalability of com-

pleting the path online using exhaustive search. This provides more time online for

considering more zone paths and hence more relevant trips.

Algorithm 6 ProcessOfflinePartialPaths(t,Poff ,D1
r ,V ,

T ,Sp)
1: P ′off = [],Ltv =

⋃
i∈V

(µi)

2: Create H threads. Each thread h processes Phoff =
⋃

k′∈Lthv
Poff [k′], ,s.t., Ltav ∩

Ltbv = φ, ∀a 6= b and ∪hLthv = Ltv
3: for each thread h do
4: V ′ ⊂ V , s.t.,∀i′ ∈ V ′, (µi′) ∈ Lthv
5: for j ∈ D1

r do
6: Ph,joff = GetPathsFromIndex(Phoff , oj, aj − t, aj − t+ τ)

7: for each path k ∈ Ph,joff do
8: lbj = aj − t+ T (oj, dj), ubj = lbj + λ
9: ifR[k] contains dj then

10: R[k][dj][1] = max(R[k][dj][1], ubj)
11: else
12: R[k].add(dj, (lbj, ubj))
13: Rp[k].add(oj)
14: if lbj < τ and k visits dj then
15: Rp[k].add(dj)
16: else if ubj < τ and k does not visit dj then
17: R[k].remove(dj, (lbj, ubj))
18: for i ∈ V ′ do
19: R[k],Rp[k] = GetPathsForServer(i, qi,R[k],Rp[k],Poff )
20: for each path k do
21: if |Rp[k]| > 0 then
22: Remove nodes not in Rp[k], updateRk using T , Sp
23: P ′hoff .add(k)
24: for each thread h do
25: P ′off .addAll(P

′h
off )

26: return P ′off ,R

Online Partial Zone Path Completion: The partial paths generated offline are com-

pleted online using exhaustive search starting at the end location of the partial path

as shown in the Algorithm 7. By online processing of offline paths (refer Algorithm
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6), we can identify the requests that can be associated with each of the offline gener-

ated partial paths (based on their pick-up location). We use the destination locations

of these requests to complete the remaining path online. As with each destination

location, we also store a lower and upper limit on the time at which it should be

visited, we only explore those branches in the search tree where these time lim-

its are satisfied. The computational complexity of online partial path completion

is dependent on the number of destination locations (size of R[k] in Algorithm 7)

and can be significant , therefore, we use zones (and not individual locations) in this

step. As mentioned before, by using zones, travel time is approximately represented

which can result in additional delay for requests. The additional delay introduced

is dependent on the size of the zones3 chosen. Therefore, to consider a trade-off

between computational complexity and the quality of solution, we propose picking

the zone sizes dynamically for each offline partial path. In order to fix the amount of

dynamism in zone size, we use a parameter M that defines the number of different

zone sizes that can be used in completion of offline partial paths. M = 1, implies

static zone sizes, i.e., using zones of a fixed size for online completion of all offline

partial paths. The zones of M different sizes are generated offline and in the step 6,

depending on the number of destination locations and M available zone sizes, we

decide the appropriate zone size for the partial path k 4.

As the partial paths are independent of each other, to further speed up the path

generation process, we perform the online path completion process in parallel by

creating multiple threads as shown in the pseudocode provided in Algorithm 7.

Please note that the exhaustive search in step 8, will return multiple completed zone

paths corresponding to a single partial path k.

For the objective of maximizing the number of requests served, the paths which

start at the same location at the same time and serve a subset of requests served by

3The size of the zone is defined as the time taken to travel within a zone. Zone size 0 indicates
that locations in set L are used.

4In the experiments, we use M = 4 with zone sizes 0,60,120,300 and use the zone size which
reduces the number of locations to 12 (this provides the best trade-off between runtime and solution
quality and is determined based on experiments.
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Algorithm 7 OnlineCompletion(t,P ′off ,R′, T ,Sp)
1: P = [],R = []
2: Create H threads.

Each thread h processes P ′hoff ⊂ P ′off ,s.t., P ′hoff ∩ P
′h′

off = φ,∀h 6= h′ and
∪hP

′h
off = P ′off

3: for each thread h do
4: Phon = [],Rh

on = []
5: for each path k do
6: z = getAppropriateZoneSize(R[k],M)
7: R′ = convert(R[k], z)
8: Phon,Rh

on = ExhaustiveSearch(end node(k),R′,Phon,Rh
on)

9: for each thread h do
10: P .addAll(Phon)
11: R.addAll(Rh

on)
12: return P ,R

another path are redundant. This is because, we check for capacity constraints in

the optimization formulation presented in the next section. So a single path serving

r requests can be used to represent all request combinations,
∑r

i=1

(
r
i

)
. Therefore,

the search tree in step 8 of Algorithm 7 can be pruned appropriately to search only

for non redundant paths. This reduces the size of set P which in-turn reduces the

complexity of optimization formulation presented in the Section 5.1.2.2.

Figure 5.3: Representation of assignment of server and request to a zone path

Identifying Edges in the RPS Graph: Once the zone paths (P) are created using

the offline-online method described above, we construct the RPS (Request Path

Server) graph by finding the set of requests and servers which can be assigned to

each of the generated zone path. We use the information available from previous 2

steps about the requests and servers which can be assigned to these zone paths and
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process the paths in parallel using multiple threads to speed up the computation.

This step is essential as in Algorithm 6, when same destination location has different

value for the upper limit on time in step 10, we take the maximum value. Therefore,

in the path generated using Algorithm 7, the delay constraint may be violated for

some requests in such cases.

In this step, we ensure that a request is assigned to a zone path, if and only

if, the path visits the pick-up and drop-off location of a request within the delay

constraints. The binary constants b (defined in Table 5.1 and used in optimization

formulation presented next) are also populated in this step. A server i represented

by the tuple (µi, qi, κ) can be assigned to a zone path if the initial location of server

is same as the starting location of the path, start time of the path is same as the

availability time of server and currently assigned set of requests, qi, can be served

using the path. The server capacity κ along with qi is used to compute the number

of free seats (N ) in the server at each zone/location.

Example 2. Figure 5.3 shows a graphical view of the same for a single server,

request and path. The path is represented using a sequence of locations/zones in

the order in which they will be visited. In Figure 5.3, we use blue arrows to denote

the incoming flow by server i assignment and green numbers indicate the number of

free seats at the location/zone 5 for server i. The red arrows indicate outgoing flow

by request assignment.

At each location, the optimization formulation presented next, will ensure that

the outgoing flow (the number of requests assigned) is less than or equal to the

incoming flow (total number of free seats in the servers assigned to the path), i.e.,

at each location/zone capacity constraints are satisfied.

5Number of free seats is computed by taking κ and qi of the server into consideration. In figure,
in the representation of qi, we use * to indicate that customer is already present in the server and
provide its drop-off location.
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5.1.2.2 Finding Optimal match in RPS graph

We now describe the integer linear programming optimization formulation to op-

timize the assignment of requests and servers to zone paths. P denotes the set of

zone paths generated in previous step. Pnm is used to denote the nth location/zone

in zone path m. Let Prj ⊂ P denotes the set of paths which can serve request j

while satisfying delay constraints. Similarly Pvi denotes the set of paths which can

be assigned to server i based on its current location and availability time (µi) and

already assigned/picked-up requests qi. Binary constants bnjm are set to 1 if the pick-

up location of request j is visited but drop-off location/zone is not visited along path

m by nth location/zone. These are computed as part of generation of RPS graph as

shown in previous section. Table 5.1 describes the notation used in the optimization

formulation.

Variable Description
xjm Binary variable denoting if the request j ∈ D1

r is assigned to path m.
yim Binary variable denoting if the server i is assigned to the path m.
Pvi Pvi ⊂ P denotes the set of paths which can be assigned to server i

based on its current status µi and qi.
Prj Prj ⊂ P denotes the set of paths which can be assigned to request

j ∈ D1
r .

bnjm Binary constant: 1 if ∃n′ : n > n′ Pn
′

m = oj && @n′′ : n′′ < n,

n′′ > n′ Pn
′′

m == dj
N(i,m, n) Number of free seats in the server i for path m at nth location/zone.

Table 5.1: Notations

The objective of the optimization formulation described in Table 5.2 is to max-

imize the number of served requests. Constraints (5.2) and (5.3) ensure that each

server and each request is assigned to at most one path. Constraint (5.4) ensure that

for every path at every location/zone capacity constraints are satisfied. The capac-

ity constraints can be violated only while picking up a new request, therefore, the

constraint (5.4) is redundant for the locations/zones visited after τ duration.

The formulation is run at every decision epoch, i.e., after every ∆ seconds.

The solution of the optimization formulation provides assignment of servers and

requests to paths. Using these assignments, we can perform the assignment of re-
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SolveOptimization(P , Pv, Pr, b,N ):

max
∑
j∈D1

r

∑
m∈Prj

xjm (5.1)

s.t.
∑
m∈Prj

xjm ≤ 1 ::: ∀j ∈ D1
r (5.2)∑

m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (5.3)∑
j∈D1

r

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m∀n (5.4)

xjm ∈ {0, 1} ::: ∀j ∈ D1
r ,∀m ∈ P (5.5)

yim ∈ {0, 1} ::: ∀i ∈ V , ∀m ∈ P (5.6)

Table 5.2: Optimization Formulation for ZAC

quests to servers 6. Once a server is assigned to a set of requests at any decision

epoch, the assignment is not changed but the path of server can change at next deci-

sion epoch to accommodate additional requests. The current set of requests assigned

to a server, qi, limits the number of paths to which it can be assigned in subsequent

decision epochs. The number of free seats in server i for path m at location/zone

n, N(i,m, n) is computed based on κ and qi (as shown in Figure 5.3) and is 0 if

m /∈ Pvi.

Similar to Alonso et al. (Alonso-Mora, Samaranayake, et al., 2017), we perform

a re-balancing of unassigned servers to high demand areas at the end of optimization

formulation.

5.2 ZACBenders: A non-myopic approach for

solving M-OLYMPIAD

In this section, we first present the challenges in solving M-OLYMPIAD with future

information (represented using samples, ξD in the M-OLYMPIAD model) and then

present our non-myopic approach ZACBenders. The potential samples, ξD can be

6The paths assigned to server are also updated to keep only those locations which correspond to
pick-up or drop-off location of assigned requests and update the travel time and path between the
locations using T and Sp.
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obtained by considering the demand observed in the past data. After considering

future information, the goal is to find the assignment of servers to requests that

maximizes the sum of objective value at the current decision epoch and the expected

objective value for the future decision epochs.

5.2.1 Challenges in solving M-OLYMPIAD with future

information

As shown in the Figure 5.4, to solve M-OLYMPIAD with future information (ξD)

we need to assign servers and request to the zone paths at each decision epoch and

for each sample (ξD,k). The state (i.e., location and requests being served) of server

at each decision epoch should be updated based on the assignments (obtained by

solving the RPS graph) at previous decision epochs. The paths at future decision

epochs for each sample need to be generated by taking into account the requests

present in the sample and the optimization problem should be updated to consider

the assignments at future decision epochs for all the samples.

There are two major bottlenecks in the above process.

1. As described in the Section 5.1, the path generation process for a single deci-

sion epoch is challenging, so generating paths in real-time after considering

requests in each sample for all future decision epochs for all possible updates

to the servers states is computationally intractable.

2. The optimization formulation of assigning servers and requests to zone paths

is an integer optimization problem. Including requests for all the samples at

future decision epochs in this integer optimization formulation increases the

number of variables and constraints which makes it difficult to solve online in

real-time.
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Figure 5.4: Assignment of servers and requests to zone paths over multiple samples
of future demand. We use RPSke to denote the RPS graph for decision epoch e
in sample k. For the special case of first decision epoch, we denote the graph by
RPS1. Pke denote the set of paths generated for decision epoch e in sample k. ξD,ke

denote the set of requests available at decision epoch e in sample k. V k
e (RPSke−1)

denote the state of servers at decision epoch e in sample k as a result of assignments
obtained by solving the RPS graph at previous decision epoch in the same sample.
Therefore, at each decision epoch for each sample, it is a tripartite matching between
servers, paths and requests.

112



5.2.2 ZACBenders Approach

The overall flow of ZACBenders is similar to ZAC with the only difference in the

step of finding the optimal assignment of servers and requests to zone paths. Table

5.3 highlights the difference between ZAC and ZACBenders approach. ZACBen-

ders considers future information in the step of finding the optimal assignment of

servers and requests to zone paths. As mentioned in Section 5.2.1, incorporating

future information makes the problem challenging, therefore, we first provide a

two-stage stochastic approximation, ZACFuture to handle these challenges. To ef-

ficiently solve the ZACFuture optimization formulation in real-time, we employ

Benders Decomposition.

ZAC ZACBenders
Offline

1. Generation of all partial location paths 1. Same
of time span, τ from every location.

Online
1. Generation of RPS graph 1. Same
2. Finding optimal assignment of requests 2. Process the requests in |ξD| samples
and servers to zone paths by using the to generate the second stage of the
(0/1) integer optimization in Table 5.2. proposed two-stage approximation.

3. Follow the steps in Figure 5.6 to find
the optimal assignment of requests and
servers to zone paths while considering
future information.

Table 5.3: Differences between ZAC and ZACBenders

5.2.2.1 Two-Stage Stochastic Approximation

As mentioned in the Section 5.2.1, it is difficult to solve M-OLYMPIAD with future

information by generating paths considering requests in all samples, therefore, we

propose a two-stage stochastic approximation 7. The first stage assigns servers and

requests available at current decision epoch to the zone paths. In the second stage,

7We have experimented with many other approximations such as considering simple extensions
of the existing zone paths to include request in samples and then assigning requests in samples to
these extended paths but we describe in detail the approximation which worked best in practice. We
acknowledge that it is possible to improve the performance even more by designing better approxi-
mations.
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for each sample, instead of solving a tripartite matching problem (between servers,

paths and requests) at each future decision epoch, we solve a weighted bipartite

matching between servers and requests available for assignment at all future deci-

sion epochs. The tripartite matching is NP-hard but the weighted bipartite matching

is polynomial time solvable, therefore, this approximation makes the second stage

problem simpler. Specifically, we employ a decomposition of the resultant opti-

mization problem (more details in Section 5.2.2.3) to get real-time performance.

We now describe the approximations which allow us to simplify the second stage

problem for each sample by modelling it as a weighted bipartite matching problem.

• Approximation 1: Instead of using exact locations from set L, we use abstracted

locations, i.e., zones. The origin/destination of each request in sample and the

location of each server is mapped to the zones.

• Approximation 2: A server will serve requests in samples (ξD) only after it

finishes serving all the currently assigned requests. That is to say, we ignore

that any future request can be inserted in the server’s path and as a result a

server is considered available again for assignment only after it reaches the end

of zone path generated in first step.

• Approximation 3: Requests in samples (ξD) can be assigned to the same server

if and only if they have identical origin zone, identical destination zone and the

decision epoch at which they become available for assignment is also the same.

These approximations help in reducing the complexity of the problem but they

still allow us to get a good estimate of the future because of the following reasons:

• The second approximation ensures that the servers which are considered for as-

signment at second stage are empty, i.e., they do not have any request assigned

to them. So when the assignment optimization problem is solved (with limited

look ahead duration of ρ), instead of assigning server to a longer duration path

(which keeps it occupied for more than ρ duration), it will assign the server to

those shorter duration zone paths (in the first stage) which redirect it to zones
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where future requests are present. At any decision epoch, it is easier to as-

sign multiple requests to an empty server as compared to a server which has a

passenger on board. Therefore, in-spite of ignoring that future requests can be

picked up before dropping all currently assigned requests, this provides a good

approximation.

• The third approximation (along with first approximation) ensures that the re-

quests are grouped when they have nearby pick-up and drop-off locations. Though

we will miss grouping the requests that have on the way pick-ups/drop-offs, by

making this approximation and using an appropriate zone size, we will still be

able to implicitly consider a subset of possible paths.

Formally, we map the origin and destination location of requests at future de-

cision epochs to zones of size 8 Zs and the elements in ξD,k are grouped together

based on the origin/destination zone and decision epoch. After grouping, each el-

ement j′ of ξD,k is represented using tuple
〈
oz,kj′ , d

z,k
j′ , e

k
j′ , η

k
j′

〉
where oz,kj′ denotes

the origin zone of the element j′ in sample k, dz,kj′ denotes the destination zone of

the element j′ in sample k, ekj′ denotes the decision epoch at which element j′ of

sample k will be considered for assignment and ηkj′ denotes the number of requests

with origin oz,kj′ , destination dz,kj′ at decision epoch ekj′ in sample k. We use A to

denote the set containing all possible pairs of zones of size Zs and decision epochs

e+1, e+2, .., e+Q (if e is the current decision epoch). Each server is mapped to an

element in setA and is assigned requests in samples by using above approximations.

The assignment of servers to paths at first stage determines the zone and the

decision epoch at which the servers will become available again for assignment

(Approximation 2) and as all the servers have identical maximum capacity 9, in the

second stage, we can group the servers based on the zone and the decision epoch at

which they become available again for assignment. A server can be assigned to a

request if and only if it can reach the origin location of request within the maximum

8As mentioned before, the size of the zone is defined as the time taken to travel within a zone.
9In the experiments, we show that even if all servers do not have identical maximum capacity,

the approximation still works well. In that case, in the second stage, we take maximum capacity of
each server as average of all server’s maximum capacity.

115



allowed wait time, i.e. τ . Let Ek denotes the set of all such assignment edges

between servers and requests for sample k. To ensure that a server can be assigned

at most κ requests and these requests can be grouped together as per Approximation

3, if ηkj′ > κ, we divide the element into d
ηk
j′

κ
e subelements of element j′ and allow

each subelement to be assigned atmost once but if a server of type i′ is assigned to

rth subelement of element j′ in sample k, the weight received is given by

wki′j′r =


0 if(i′, j′, r) /∈ Ek

κ if(i′, j′, r) ∈ Ek and r < b
ηk
j′

κ
c

ηkj′ % κ otherwise

Therefore, this creates a bipartite graph with one side containing servers grouped

based on their type (zone and decision epoch at which they become available based

on the path assigned at first stage) and other side containing the request groups

(all subelements of the element j′ ∈ ξD,k,∀j′). Figure 5.5 shows the graphical

representation of the two-stage stochastic approximation, where first stage performs

the tripartite matching between servers, requests and zone paths and at the second

stage within each sample there is a bipartite matching.

We now describe the optimization formulation which can be used to solve this

two-stage stochastic approximation.

5.2.2.2 ZACFuture: Optimization formulation to Solve the Two-Stage

Stochastic Approximation

In this section, we describe the optimization formulation ZACFuture to solve the

two-stage stochastic approximation presented in previous section. Table 5.4 presents

the optimization formulation ZACFuture, which maximizes the number of requests

served for the current decision epoch and the expected number of requests served

over future demand samples.

We use uki′j′r to denote the assignment of server of type i′ (i.e, the servers present

in the zone zi′ at decision epoch ei′ , where (zi′ , ei′) is the tuple representation of

element i′ ∈ A) to the rth subelement of j′ element of ξD,k. We also use f(m) to
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Figure 5.5: Two-Stage stochastic approximation for assignment of servers and re-
quests to zone paths over multiple samples of future demand (For κ = 4). The
zone and decision epoch mentioned in the oval are the zone and decision epoch at
which the paths at the first stage in set P ends. Therefore, servers have dropped
all the assigned requests from set D1

r (in first stage), once they reach the zone and
decision epoch present in the oval. The number inside diamond represents the num-
ber of empty servers present in the zone and decision epoch mentioned in the oval
box. At second stage, for each sample, a bipartite matching is performed between
empty servers and available requests for all future decision epochs as compared to
the tripartite matching between servers paths and requests for each sample in each
decision epoch as shown in Figure 5.4.
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denote the tuple (zm, em) where zm and em denote the zone and decision epoch at

which the server will become available if it is assigned to path m. Constraints (5.9)

ensure that the each subelement of j′th element of ξD,k is assigned at most once and

Constraints (5.12) ensure that the number of type i′ servers assigned is less than the

number of servers available of type i′.

ZACFuture(P , Pv, Pr, b,N, ξD):

max
∑
j∈D1

r

∑
m∈Prj

xjm +
1

|ξD|

|ξD|∑
k=0

∑
j′∈ξD,k

d
ηk
j′
κ
e∑

r=0

∑
i′∈A

wki′j′r · uki′j′r (5.7)

s.t.
∑

m∈Prj

xjm ≤ 1 ::: ∀j ∈ D1
r (5.8)

∑
i′∈A

uki′j′r ≤ 1 ::: ∀j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e, ∀0 ≤ k < |ξD| (5.9)∑

m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (5.10)∑
j∈D1

r

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m∀n (5.11)

∑
j′∈ξD,k

d
ηk
j′
κ
e∑

r=0

uki′j′r ≤
∑
i∈V

∑
m;f(m)=i′

yim ::: ∀i′ ∈ A (5.12)

yim ∈ {0, 1} ::: ∀i ∈ V,m ∈ P (5.13)
xjm ∈ {0, 1} ::: ∀j ∈ D1

r ,m ∈ P (5.14)

uki′j′r ∈ {0, 1} ::: ∀i′ ∈ A, j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e, 0 ≤ k < |ξD| (5.15)

Table 5.4: Optimization Formulation for Two-Stage stochastic approximation of
M-OLYMPIAD with future samples

5.2.2.3 Benders Decomposition to Efficiently Solve ZACFuture Optimization

Formulation

The complexity of the optimization formulation ZACFuture increases with the in-

crease in the number of samples. To reduce this complexity, we exploit the follow-

ing observation:

Observation 1. In ZACFuture, once the assignment of servers to paths at the cur-

rent decision epoch (yim) is given, the optimization models for computing the as-
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signment of servers to requests at future decision epochs, (ukij′r) for each of the

samples k, are independent of each other.

The observation 1 allows us to use Benders Decomposition (Benders, 1962) to

decompose the large optimization formulation into multiple smaller problems which

can be solved in parallel. Benders Decomposition is a master slave decomposition

technique where the master problem finds the solutions for the integer variables;

and the slave problem(s) is (are) used to find the solutions to all other variables

(which can take any value in the interval and need not be integers) while keeping

the values of the integer variables fixed to the value obtained by the master problem.

The values obtained by slave problems help in generating Benders cuts, which are

added to the master problem and the master problem is solved again with these cuts

to obtain an improved solution. This process is repeated till no more cuts can be

added to the master problem. It is widely used to solve such two-stage stochastic

problems (Murphy, 2013; Lowalekar, Varakantham, & Jaillet, 2018).

Based on Observation 1, yim are the difficult variables as they impact the values

assigned to all the other variables. xjm are also difficult variables as they can take

only integer values. As described in previous section, the second stage problem for

each sample is a weighted bipartite matching problem. As the constraint matrix for

weighted bipartite matching is totally unimodular, therefore, integrality constraints

on the uki′j′r variables can be relaxed (Hoffman & Kruskal, 2010) after fixing the

values of yim variables. Therefore, the master problem obtains the assignments for

the “difficult” integer variables (xjm and yim) and the slave problem(s) obtain the

assignments to the ukij′r variables.

For the master (Table 5.5), in the optimization provided in ZACFuture, we re-

place the part of the objective dealing with future variables, {uki′j′r} by the recourse

function Q({yim}i∈V,(m∈P , k) which becomes the objective function in the slave

problems. The recourse function Q() needs to be computed for each value of yim.

In the slaves (Table 5.6), we consider the fixed values of yim and to avoid confusion,

we refer to them using the capital letter notation, Yim.
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Master(P , Pv, Pr, b,N ):

max
∑
j∈D1

r

∑
m∈Prj

xjm +
1

|ξD|

|ξD|∑
k=0

Q({yim}i∈V , (j ∈ P, k) (5.16)

s.t.
∑

m∈Prj

xjm ≤ 1 ::: ∀j ∈ D1
r (5.17)∑

m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (5.18)∑
j∈D1

r

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m,∀n (5.19)

xjm ∈ {0, 1} ::: ∀j ∈ D1
r ,∀m ∈ P (5.20)

yim ∈ {0, 1} ::: ∀i ∈ V, ∀m ∈ P (5.21)

Table 5.5: Optimization Formulation for Master problem - ZACBenders

SlavePrimal(P , Pv, Pr, b,N, Y, k):

max
1

|ξD|
∑

j′∈ξD,k

d
ηk
j′
κ
e∑

r=0

∑
i′

wki′j′r · uki′j′r (5.22)

s.t.
∑

j′∈ξD,k

d
ηk
j′
κ
e∑

r=0

uki′j′r ≤
∑
i

∑
m

Yim ::: ∀i′ ∈ A (5.23)

∑
i′

uki′j′r ≤ 1 ::: ∀j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e (5.24)

uki′j′r ∈ [0, 1] ::: ∀i′ ∈ A, j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e, 0 ≤ k < |ξD| (5.25)

Table 5.6: Optimization Formulation for Slave problem (Primal)- ZACBenders
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The dual (Bertsimas & Tsitsiklis, 1997) of the primal slave problems are pro-

vided in Table 5.7, where α variables are the dual variables corresponding to the

constraints (5.23) and β variables are the dual variables corresponding to the con-

straints (5.24).

SlaveDual(P , Pv, Pr, b,N, Y, k):

max
∑
i′

∑
i

∑
m∈Pvi

αki′ · Yim +
∑

j′∈ξD,k

∑
r

βkj′r (5.26)

s.t. αki′ + βkj′r ≥ wki′j′r ::: ∀i′ ∈ A, j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e (5.27)

αki′ ≥ 0 ::: ∀i′ ∈ A (5.28)

βkj′r ≥ 0 ::: ∀i′ ∈ A, j′ ∈ ξD,k, 0 ≤ r < d
ηkj′

κ
e (5.29)

Table 5.7: Optimization Formulation for Slave problem (Dual) - ZACBenders

The weak duality theorem (Bertsimas & Tsitsiklis, 1997) states that the solution

to a maximization primal problem is always less than or equal to the solution of the

corresponding dual problem. Therefore, using the concept of weak duality we can

say that by taking the dual of the slave problems, we can find an upper bound on the

value of the recourse function (Q())(objective of primal slave problem), in terms of

the master problem variables yim. These can then be added as optimality cuts to the

master problem (Murphy, 2013) for generating better first stage assignments10.

Let θk be the approximation of Q() function then the master problem with opti-

mality cuts is provided in the Table 5.8.

It should be noted that we are using yim variables in the “master with optimality

cuts” and not the fixed values, Yim. In each iteration we solve the master problem

and the computed yim variable values are passed to the dual slave problems. After

solving the dual slave problems, optimality cuts are generated. If the current values

of θk(∀k) satisfy the optimality cut conditions then we have obtained an optimal

solution, else cuts are added to the master problem and the master problem is solved

again. Figure 5.6 shows the flow diagram for the same.

10As the slave problems are always feasible for any value of the master variables we only need to
add optimality cuts to the master problem.

121



MasterWithOptimalityCuts(P , Pv, Pr, b,N ):

max
∑
j∈D1

r

∑
m∈Prj

xjm +
1

|ξD|
∑
k

θk (5.30)

s.t. θk ≤
∑
i′

∑
i

∑
m∈Pvi

αki′ · yim +
∑

j′∈ξD,k

∑
r

βkj′r (5.31)∑
m∈Prj

xjm ≤ 1 ::: ∀j ∈ D1
r (5.32)∑

m∈Pvi

yim ≤ 1 ::: ∀i ∈ V (5.33)∑
j∈D1

r

xjm · bnjm ≤
∑
i

yim ·N(i,m, n) ::: ∀m ∈ P, ∀n (5.34)

xjm ∈ {0, 1} ::: ∀j ∈ D1
r ,∀m ∈ P (5.35)

yim ∈ {0, 1} ::: ∀i ∈ V,∀m ∈ P (5.36)

Table 5.8: Optimization Formulation for Master problem (with optimality cuts) -
ZACBenders

The slave problems are independent of each other (Table 5.7) and are only con-

nected by the choice of the master variables (“difficult” integer variables). There-

fore, once the master variables are fixed, the slave problems can be solved in a

parallel fashion.

Figure 5.6: ZACBenders Approach: Finding Optimal Assignment of requests to
paths to servers
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5.3 Summary

In this chapter, we presented Zone path Construction approach to efficiently gen-

erate request combinations in real-time. We also propose ZACBenders which can

consider future effects of current assignments by using a two-stage stochastic ap-

proximation. To efficiently solve the two-stage stochastic approximation in real-

time, ZACBenders uses Benders Decomposition. In the next chapter, we compare

ZAC, ZACBenders and NeurADP with TBF on real world and synthetic datasets.
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Chapter 6

Experimental Results for

M-OLYMPIAD Problems

In this chapter, we present the experimental results which compare the performance

of our proposed approaches ZAC, ZACBenders and NeurADP against TBF 1. As

NeurADP requires training a different model for each change in input parameter,

using limited academic resources, it was not possible to run the exhaustive set of ex-

periments with NeurADP. Therefore, we first show the detailed experimental results

comparing the performance of TBF, ZAC and ZACBenders and then in section 6.3.1

we show the experimental results with NeurADP on limited set of parameters. For

ZACBenders we kept a maximum timelimit of ∆ seconds for each assignment but

the Benders Decomposition can converge before the maximum timelimit is reached.

We evaluate the algorithms on following metrics: (1) Service Rate, i.e., per-

centage of total available requests served. (2) Runtime to compute a single step

assignment. We experimented by taking demand distribution from two real world

and one synthetic dataset.

Table 6.1 provides the outline for this section. We will show two main results

that demonstrate the significant utility of our approaches:
1The complexity of TBF increases with the increase in server capacity. It is not possible to run it

up to optimality. Therefore, we run it with the heuristics mentioned in the paper (0.2 second for each
server and keeping 30 servers for each request (but keeping all request edges)). We use the objective
of maximizing the number of requests served for all algorithms. The objective can be changed to the
objective of minimizing the delay or maximizing the revenue for both TBF and ZAC.
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• Our myopic approach ZAC outperforms the current best myopic approach TBF.

While the improvement varies, ZAC serves up to 4% more requests on real

world datasets and up to 20% more requests on synthetic dataset.

• Our non-myopic approach ZACBenders further improves the performance of

ZAC. It provides upto 14.7% improvement over TBF and 4.5% improvement

over other non-myopic approach NeurADP.

Section Description Key Content
6.1 Datasets Details on the datasets and different data

fields used from the datasets.
6.2 Experimental Settings Details on the different inputs, parameters

and evaluation settings used.
6.3 Results on Real World Datasets Describes our key results on real world

datasets and shows the comparison of
TBF, ZAC and ZACBenders for different
parameters at on the three metrics of service
rate and runtime.

6.3.1 Comparison with NeurADP Describes our key result by comparing TBF,
ZAC and ZACBenders with NeurADP
on the limited set of parameters for
which NeurADP trained models are available.

6.4 Results on Synthetic Dataset Describes the performance of algorithms on
specially created first and last mile scenarios
where it is advantageous to explore more
request combinations at a decision epoch.

Table 6.1: Experiment Section Outline

6.1 Datasets

The first real world dataset is the publicly available New York Yellow Taxi Dataset

(NYYellowTaxi, 2016), henceforth referred to as the NYDataset. The name of the

other real world dataset can not be revealed due to confidentiality agreements. It

is referred to as Dataset1. We use the street intersections as the set of locations

L. To find out the street intersections in real world dataset, we take the street net-

work of the city from openstreetmap using osmnx with drive network type (Boeing,

2017). From these we remove the network nodes which do not have any outgoing

edges, i.e., we take the largest strongly connected component of the network. For

NYDataset, as considered in earlier works (Alonso-Mora, Samaranayake, et al.,

2017), we only consider the street network of Manhattan as 75% of the requests

have pick-up and drop-off locations in Manhattan. Moreover, less than 15% of the
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total requests have pick-up and drop-off location in different boroughs of New York

indicating that these boroughs can be solved independently.

Both real world datasets contain data of past customer requests for taxis at dif-

ferent time of the day and for different days of the week. From these datasets, we

take the following fields: (1) Pick-up and drop-off locations (latitude and longitude

coordinates) - These locations are mapped to the nearest street intersection. (2)

Pick-up time - This time is converted to appropriate decision epoch based on the

value of ∆. The travel time on each road segment of the street network is taken as

the daily mean travel time estimate computed using the method proposed in (Santi

et al., 2014).

(a)

Figure 6.1: Street network for synthetic dataset. Train stations are marked with red.

Dataset Locations Edges Avg No. of Requests Avg No. of Requests
(|L|) (|E|) per day (on test days) per hour (Peak)

(on test days)
NYDataset 4373 9540 313683 20910
Dataset1 21212 41424 403770 23664
Synthetic 192 640 173557 8578

Table 6.2: Details for different datasets

To simulate the scenario for on demand shuttle services (Shotl, 2018; Bee-

line, 2016; Grab, 2018) having a small set of pick-up/drop-off points in a city,

we also perform experiments on a synthetic dataset introduced by Bertsimas et
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al. (Bertsimas, Jaillet, & Martin, 2019). The network (Figure 6.1) has one down-

town area represented by the big square in center and 8 suburbs. We create a train

station at one node of each suburb (marked by red circle) to simulate special cases

of first and last mile transportation. At each decision epoch, requests are randomly

generated by taking pick-up and drop-off location uniformly. In addition, every 180

seconds (frequency of arrival of train at the train stations), we generate first and last

mile requests in each suburb (representing arrivals by train).

The number of nodes/locations, edges in the street network of the city and the

number of requests present in each dataset are shown in the Table 6.2.

6.2 Experimental Settings

There are three different categories of experimental settings that have an impact on

the performance of algorithms

1. Inputs provided to all algorithms: These include

• Number of Servers (|V|): The number of servers used is dependent on the

fleet size of the company. At the start of the experiment, empty servers

are distributed uniformly at random in different locations. Based on the

assignment obtained by algorithms at any decision epoch, the status of

servers at the next decision epoch is updated. In the results section, we

vary the number of servers to show the performance of algorithms for

different number of servers.

• Maximum Capacity (κ): The maximum number of passengers which can

be present in a server at any time.

• τ and λ: τ represents the maximum time within which the server should

reach the origin location of request and λ denotes the maximum allowed

travel delay for any request (in seconds).

• Decision epoch duration (∆): This parameter determines how often, the

algorithm should be executed and assignment decisions are made. For
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example if ∆ = 60 seconds, then requests are batched for the duration of

60 seconds and the decision of serving or rejecting these requests is taken

every 60 seconds by the algorithm. We vary this parameter to show the

performance of algorithms for different values.

Table 6.3 show the values of different input parameters considered in the ex-

periments.

Input Parameter Values considered in Experiments
∆ (in seconds) 10,30,60
τ (in seconds) 120,180,300,420
λ (in seconds) 240,600,840,900
|V| 1000,2000,3000,5000,8000,10000
κ 1,2,3,4,8,10

Table 6.3: Inputs to all algorithms

2. Parameters of the algorithm: The parameters required by our algorithms

are:

• Clustering Method: To construct zones from the set of locations L, we

compare the performance by using different clustering methods and dif-

ferent static zone sizes. Zone size is taken as the intra zone travel time (in

seconds).

• Number of Different Zone Sizes (for drop-off locations) (M ): In the on-

line completion phase of the offline path, , instead of using a fixed zone

size, ZAC dynamically decides the zone size to be used from a predefined

fixed set of zone sizes. We vary the number of different zone sizes from

which the ZAC algorithm picks the best zone size for a path.

• Zone Size for Samples (Zs): For samples we use a static zone size of 600

seconds. While it is possible to improve the performance of ZACBenders

by using different zone size for different capacities and different value of

τ and δ, we observe in the experiments that by using a fixed zone size, it

is possible to get improvement across different parameters and different

datasets.
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• Number of Samples (|ξD|): While computing an assignment at decision

epoch e, our non-myopic approach ZACBenders require samples of cus-

tomer requests at decision epochs e+ 1, e+ 2, .., e +Q, where Q = b ρ
∆
c,

from past data (at the same decision epoch on the past days). We iden-

tify the right value for the number of samples through experiments as

described in results section. Each sample correspond to past one day. For

example if 10 samples are used, it means that requests from past 10 days

are used to compute the expected future value in ZACBenders.

• LookAhead Duration (ρ): This determines how far ahead ZACBenders

look into the future. If look ahead duration is 600seconds and current

time is 09:00AM ZACBenders considers samples of customer requests

up to 09:10AM.

Table 6.4 shows the different values for the parameters used in the experi-

ments for ZAC and ZACBenders. To obtain right set of parameter values

for ZAC and ZACBenders, we compare the performance of approaches by

running them on 5 different weekdays from 21-03-2016 to 25-03-2016 and

taking the average value over these five days. NeurADP is trained using the

data for 8 weekdays (23 March - 1 April 2016).

Algorithm Parameter Values considered in Experiments
M 2,4,6
Clustering Method GBC, HAC MAX,HAC AVG
Number of Samples (|ξD|) 1,3,5,8,10
Look Ahead Duration (in seconds) (ρ) 600, 900 ,1200 ,1500
Zone size for Samples (Zs) (in seconds) 600

Table 6.4: Algorithm Parameter Settings

3. Evaluation Settings:

• Evaluation duration: We evaluate the performance of algorithm over 1

hour by varying different input and algorithmic parameters. For a subset

of parameter combinations, we also compared the performance over 24
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hours 2.

• Number of days and time of evaluation: We performed experiments with

requests at various times of the day, 8:00 AM, 3:00 PM, 6:00 PM, 12:00

AM and on different days. We evaluated the approaches by running them

on 15 different weekdays between 04-04-2016 and 22-04-2016 and taking

the average values over 15 days. These 15 days are different from the 5

days used to obtain the right set of algorithm parameters for ZAC and

ZACBenders and 8 training days for NeurADP.

We conducted experiments with all the combinations of settings and inputs men-

tioned in this section. To avoid repeating similar results over and over again, we pro-

vide the representative results. All experiments are run on 24 core - 2.4GHz Intel

Xeon E5-2650 processor and 256GB RAM. The algorithms ZAC and ZACBenders

are implemented in Java and optimization models are solved using CPLEX 12.6.

NeruADP is implemented in Python.

6.3 Results on Real World Datasets

In this section, we compare the number of requests served by TBF, ZAC and ZA-

CBenders. We also compare the average time taken to compute an assignment by

all the approaches.

We choose the best configuration for parameters of algorithms (justification pro-

vided in the Section 6.5). For ZAC and ZACBenders, we cluster locations into zones

using HAC MAX and use M=4 (with zone sizes 0,60,120,300). ZACBenders uses

5 samples with a look ahead duration of 15 minutes and the value of Zs (zone size

used in second stage) is taken as 600 seconds.

We first compare the service rate and runtime of TBF, ZAC and ZACBenders

by varying different parameters on two real world datasets.

2As running all the algorithms for 24 hours over different set of parameters takes a long time and
the difference in the performance of algorithms over 1 hour was following a similar trend as over 24
hours, we ran it for 24 hours only for a subset of parameters.

130



3 4 8 10
Capacity

50
55
60
65
70
75
80

S
e
rv

ic
e
 R

a
te

Service Rate 1000 vehicles
TBF
ZAC
ZACBenders

3 4 8 10
Capacity

90

95

100

S
e
rv

ic
e
 R

a
te

Service Rate 3000 vehicles
TBF
ZAC
ZACBenders

Uniform_4 Uniform_10 80_20
Capacity-Distribution

40
45
50
55
60
65
70
75
80

S
e
rv

ic
e
 R

a
te

Service Rate 1000 vehicles
TBF
ZAC
ZACBenders

(c)

3 4 8 10
Capacity

0

5

10

15

R
u
n
T
im

e
(i

n
 s

e
c
o
n
d
s
)

RunTime 1000 vehicles
TBF
ZAC
ZACBenders

3 4 8 10
Capacity

0
10
20
30
40
50
60
70

R
u
n
T
im

e
(i

n
 s

e
c
o
n
d
s
)

RunTime 3000 vehicles
TBF
ZAC
ZACBenders

Figure 6.2: Comparison of ZACBenders, ZAC and TBF on NYDataset for τ=180
seconds, λ=600 seconds and ∆ = 60 seconds

Effect of change in server capacity (κ) and number of servers (|V |): Figure 6.2

and Figure 6.3 show the service rate and runtime comparison of TBF, ZAC and

ZACBenders for NYDataset and Dataset1 respectively at 8am (Peak time) .

For the change in the number of servers, we make the following observations:

• On Dataset1, the difference in the service rate obtained by ZAC and TBF in-

creases as the number of servers increases from 3000 to 5000. One of the rea-

sons is that TBF limits the number of servers considered for each request to

30, so the number of requests missed due to this limit will be more for higher

number of servers. But on further increasing the number of servers to 10000,

the gap between ZAC and TBF reduces. This is because, when more servers are

available, it reduces the need of generating all combinations. On NYDataset,

the difference between service rate obtained by ZAC and TBF is maximum for

1000 servers.

• The difference in service rate of ZACBenders and ZAC decreases as the num-

ber of servers are increased. This is because when more servers are available,

they will be free even after executing current assignments at the current decision

epoch, so future demands can be met irrespective of the current assignment. On

Dataset1 for capacity 4, ZACBenders obtains 4.2% improvement over ZAC for

1000 servers, 3.27% improvement for 3000 servers and 2.24% improvement for

5000 servers. For 10000 servers, the service rate obtained by ZAC and ZACBen-

ders is almost same. On NYDataset for capacity 4, the maximum improvement
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obtained by ZACBenders over ZAC is 8.89% which is for 1000 servers.
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Figure 6.3: Comparison of ZACBenders, ZAC and TBF on Dataset1 for τ = 180
seconds, λ = 600 seconds and ∆= 60 seconds

Here are the key observations when server capacity is changed for a fixed number

of servers:

• Service rate obtained by ZAC is more than TBF for both datasets. For capacity

4 with 1000 servers for NYDataset, the service rate obtained by ZAC is 1.36%

more than the service rate obtained by TBF and for capacity 10 we obtain a gain

of 2.03%. On the other hand for Dataset1 for capacity 4 with 5000 servers, the

service rate obtained by ZAC is up to 4% more than the service rate obtained

by TBF. On Dataset1, we do not observe much increase in service rate beyond

capacity 4 due to large size of the network and longer travel times which allows

fewer requests to be paired.

• ZACBenders improves the performance of ZAC by using future information.

For capacity 4 with 1000 servers on NYDataset, it obtains 8.89% improvement

over ZAC which increases to 9.5% for capacity 10. On Dataset1 for 1000 servers

with capacity 4, ZACBenders obtains 4.2% improvement over ZAC which in-

creases to 4.6% for capacity 10.

• While both ZAC and TBF can compute a solution in less than 20 seconds, the

time taken by ZAC is much less than TBF. The time taken by ZACBenders

is much more than the myopic algorithms TBF and ZAC but the service rate

improvement compensates for the additional runtime.

We also experimented with all the servers having different maximum capacity.

In this case, in ZACBenders, to compute the weight of edges in bipartite graph,
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κ is taken as average of all server’s maximum capacity. Figure 6.2c shows the

results where server capacities are generated by taking different distributions. We

experimented with following three distributions:

1. Uniform 4: The maximum capacity of each server is sampled uniformly be-

tween 1 to 4.

2. Uniform 10: The maximum capacity of each server is sampled uniformly

between 1 to 10.

3. 80 20: 80% of the servers have maximum capacity as 4 and 20% of the

servers have maximum capacity as 6. This is based on the observation that

ridesharing companies like Uber, Lyft etc have majority of servers with max-

imum capacity 4 and some servers with maximum capacity 6.

In this case also, we observe that ZACBenders obtains improvement over myopic

approaches. For Uniform 4, the improvement over ZAC is 7.26%, for Uniform 10

the improvement is 11.94% and for 80 20, the improvement obtained is 11.61%.

The two-stage stochastic approximation in this case works better than all servers

having identical maximum capacity as when servers have identical maximum ca-

pacity, the κ value used in second stage will be higher and it will allow more requests

to group at future decision epoch causing the future value to be over estimated in

some cases.
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Figure 6.4: Comparison of ZACBenders, ZAC and TBF for NYDataset for 1000
servers and varying values of ∆, τ = 300, λ = 600 seconds

Effect of change in value of ∆: We compare the service rate and runtime of algo-

rithms for different values of ∆ (Figure 6.4). Here are the key observations:
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Figure 6.5: Comparison of ZACBenders, ZAC and TBF for NYDataset for 1000
servers and different time of the day. τ = 300, λ = 600 seconds

• Service rate increases as the value of ∆ increases. This is because more requests

are available at each decision epoch which allows grouping more requests to-

gether.

• The difference between the service rate of ZACBenders and ZAC increases as

the ∆ increases. One of the reasons is that the value of ∆ limits the time avail-

able for computation of assignments, when ∆ value is low, less number of Ben-

ders decomposition iterations can be executed within time limit which affects

the performance of ZACBenders.

• The time taken by TBF is much more than ZAC for larger ∆ values due to the

presence of more number of requests at each decision epoch.

Effect of time of the day: We compare the effect of time of day on the performance

of algorithms (Figure 6.5). Here are the key observations:

• The service rate of ZAC is more than TBF in each time interval and ZACBenders

further improves this service rate.

• The difference between service rate of ZAC and TBF is more during non-peak

hours (3pm and 12am). This is likely as there are less requests available at each

decision epoch, so as opposed to peak time where there are more possibility of

grouping requests across decision epochs, at non-peak times it is advantageous

to explore more combinations at a single decision epoch. The other reason is

that ZAC is able to rebalance servers better by assigning them to zone paths.

Effect of change in values of τ and λ: We show the service rate and runtime results

for different values of τ and λ in Figure 6.6. Irrespective of the delay constraints,
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service rate obtained by ZAC is either more or same as TBF and the runtime of ZAC

remains less than TBF in all cases. The improvement in the service rate obtained

by ZACBenders over ZAC is also consistent across different values of τ and λ.

The time taken by ZACBenders increases as the value of τ and λ increases due to

increase in the complexity of the optimization formulation.

On real datasets, ZAC obtains up to 4% gain in service rate over TBF across dif-

ferent parameter values. ZACBenders obtains nearly 10% improvement in service

rate over ZAC on NYDataset and 5% improvement on Dataset1 3. Typically, even

a 0.5% gain is considered significant on real taxi datasets (as shown by a real car

aggregation company (Xu et al., 2018)), so the gain obtained by our algorithms is a

significant gain.
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Figure 6.6: NYDataset - 1000 servers, ∆=60 seconds.

6.3.1 Comparison with NeurADP

In this section, we compare TBF, ZAC, ZACBenders and NeurADP on NYDataset.

Both ZACBenders and NeurADP can compute an assignment within maximum ∆

seconds. As mentioned before, NeurADP requires training a neural network model

for each change in input parameter and for each dataset and on academic comput-

ers due to limited resources, it is not possible to get the models trained for all the

datasets and parameter settings. Therefore, we perform a comparison with Neu-

rADP on the limited set of parameters for which trained model is available. We

compare the performance of all algorithms over 24 hours as both ZACBenders and

3This gain further increases when evaluated over longer duration (24 hours) as opposed to 1 hour
as seen in the results in the Section 6.3.1.
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NeurADP consider future information and ignore requests at initial decision epochs

to serve more requests in future and as a result achieve higher service rates when

evaluated over longer durations.
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Figure 6.7: Comparison of service rate on NYDataset. (a) (b) Number of servers
=1000 (b)(c) τ = 300,λ = 600

Following are the key observations:

• ZACBenders consistently outperforms NeurADP across all parameters as shown

in Figure 6.7.

• For faster training on academic computers, NeurADP uses a faster-heuristic ver-

sion of TBF as baseline myopic algorithm and as a result does not generate all

trips generated by TBF. While this heuristic of generating limited trips combined

with learning the future value works well for higher value of τ and λ, it does not

work well when τ is 120 seconds. As a result, the service rate of our myopic

algorithm ZAC is 3% more than NeurADP and ZACBenders further obtains a

8% improvement in service rate over ZAC. This highlights the importance of

considering future information along with using a myopic algorithm which can

generate explore more combinations from currently available requests.

• For 1000 servers of capacity 4 with τ = 300 and λ = 600 seconds, NeurADP

serves 8.2% more requests than ZAC over 24 hours but ZACBenders servers

4.5% more requests than NeurADP. In this case, ZACBenders obtains 14.7%

improvement over TBF. As shown in Figure 6.7, we obtain similar results for

other parameter values.
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6.4 Results on Synthetic Dataset

The real world taxi datasets can not capture the scenarios for on demand shuttle ser-

vices (Shotl, 2018; Beeline, 2016; Grab, 2018) having a small set of pick-up/drop-

off points in a city. These involve scenarios where many requests can be combined

at each decision epoch. We represent these scenarios by simulating the case of first

and last mile transportation in the synthetic network (details provided in experi-

mental setup), where there are multiple requests at each decision epoch with either

identical pick-up location and nearby drop-off locations or identical drop-off loca-

tions and nearby pick-up locations resulting in higher possibility of having large

number of request combinations at a decision epoch.

The gain obtained by ZAC over TBF is even more significant in these scenarios

as TBF will not be exploring all relevant combinations while ZAC can explore more

combinations by using zone paths. ZACBenders provide a slight improvement over

ZAC by using future information but in these scenarios, as the travel times are small

and the pick-up and drop-off locations of requests are near each other, the major im-

provement is obtained by exploring more combinations at a single decision epoch.

We compare the service rate obtained by TBF, ZAC and ZACBenders with dif-

ferent number of servers and different capacities and make following observations:

• We observe that with 500 servers and capacity 10, ZAC can obtain 20.8% im-

provement in service rate over TBF. The gain reduces to 16% on increasing

servers to 1000 as when more servers are available, it reduces the need of gen-

erating all combinations.

• The service rate obtained by ZACBenders and ZAC is almost same on this

dataset as it is more important to explore more combinations in these scenarios.

For 100 servers with capacity 10, ZACBenders obtains 2.2% improvement over

ZAC and for 500 servers with capacity 4 ZACBenders obtains 2% improvement

over ZAC.

137



These results demonstrate that ZAC is able to consider significantly more trips

than TBF.
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Figure 6.8: Synthetic Dataset with τ = 120,λ = 240 and ∆ = 60 seconds

6.5 Justification for values of algorithmic parameter

settings

In this section, we show the reason for using the fixed algorithmic parameter values

(used in previous sections) for ZAC and ZACBenders.
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Figure 6.9: Comparison of service rate, runtime and abstraction error with different
clustering methods and zone sizes for M = 1, number of servers = 1000, capacity
= 10, τ =300, λ = 600 seconds

6.5.1 Identification of Right Clustering Method

We first conduct experiments by using different clustering methods, with M = 1,

by varying the zone sizes. Zone size is taken as the intra zone travel time (in sec-

onds). Figure 6.9 shows the comparison of GBC, HAC MAX and HAC AVG on
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Figure 6.10: Comparison of service rate, runtime and abstraction error with differ-
ent values of M and zone sizes for NYDataset, number of servers = 1000, capacity
10, τ = 300, λ = 600 seconds
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Figure 6.11: Comparison of service rate for different number of samples and looka-
head duration number of servers = 1000, capacity = 4, τ =300, λ = 600 seconds

NYDataset. We compare the service rate, runtime and abstraction error with differ-

ent clustering methods and different zone sizes for ZAC. We measure abstraction

error by computing the percentage of requests having delay above λ and maxi-

mum delay obtained by any request which is above λ. We can observe that with

HAC MAX not only we can serve more requests but the error due to abstraction

is also minimum. We also observe that as the zone size decreases, the number of

requests served increases, error due to abstraction decreases with a slight increase

in runtime. Based on these results, we use HAC MAX as the clustering method for

our next set of experiments.

6.5.2 Identification of Right Value of M

Our next set of experiments compare the service rate, runtime and abstraction error

obtained using different values of M . Based on the observations made earlier, for
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M = 1, we use HAC MAX with zone size 120. For M > 1, the clustering method

used is HAC MAX and we run the experiments with different values of M . We use

the zone sizes as 0, 60, 120, 300, 480, 600. The zone size of 0 means that the actual

locations in the street network are used. Zone size of 60 means that the intra zone

travel time is 60 seconds and so on. For M = 2, zone sizes used are 0 and 60, for

M = 4 zone sizes used are 0, 60, 120 and 300 and for M = 6, zone sizes used are

0, 60, 120, 300, 480, 600.

We show the comparison of service rate and runtime withM = 1 (with zone size

120) and different values of M in Figure 6.10. HAC MAX 120 is used to denote

thatM = 1 with zone size 120 is used. HAC MAX D < m > denotes that value of

M used is m. From the Figure 6.10 we can observe that we can serve more requests

when M > 1, as compared to using fix large size zones. The abstraction error also

reduces significantly by using M > 1. As the value of M is reduced, quality of

solution improves with the increase in runtime. With M = 2 (for zone sizes 0 and

60) , the abstraction error is almost 0 but runtime also increases. With M = 4, the

abstraction error is less than 1%.

From these experiments on NYDataset, we obtain that by clustering locations

into zones using HAC MAX and usingM=4 (with zone sizes 0,60,120,300), we get

the right trade-off between computational complexity and solution quality. There-

fore, we use this configuration for ZAC and ZACBenders. We now identify the right

number of samples and lookahead duration for the ZACBenders algorithm.

6.5.3 Number of Samples

We compare the service rate and runtime by varying number of samples from 1 to 10

as shown in Figure 6.11a. We can observe from the figure, the service rate obtained

by using a single sample is 74.6% and increases to 75.9% on using 5 samples. The

service rate obtained by using 10 samples is 75.96% which is only 0.06% more than

the service rate obtained by 5 samples. As the improvement beyond 5 samples is

not much and comes at the cost of extra average runtime, we use 5 samples for the
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ZACBenders algorithm.

6.5.4 LookAhead Duration

We compare the service rate by varying the look ahead duration from 10 minutes to

25 minutes for a single sample as shown in Figure 6.11b. We can observe from the

figure that the service rate obtained by using look ahead duration of 10 minutes is

72.16% and increases to 74.6% on using look ahead of 15 minutes. The service rate

obtained by using higher lookahead is less as with higher look ahead more requests

are present at future decision epochs which increases the complexity of the problem

and so the number of Benders decomposition iterations which can be completed

within the maximum time limit reduces affecting the performance of ZACBenders.

Moreover, due to the approximations used in the ZACBenders algorithm, it is not

necessary that the performance will improve on using higher look ahead duration.

Based on these experimental results, we choose a look ahead of 15 minutes for the

ZACBenders algorithm.
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Chapter 7

Background for Competitive Ratio

Analysis for M-OLYMPIAD

Problems

In this chapter, we provide the formal definition of expected competitive ratio and

the research relevant (Dickerson et al., 2017) to the competitive ratio analysis for M-

OLYMPIAD problems. The competitive ratio analysis works for a special case of

M-OLYMPIAD problems where each server is assigned a fixed location and servers

come back to their original location after serving requests, therefore, we define the

model for these special cases and do not use the model proposed in chapter 2. We

first describe the related research and then provide the background relevant to the

competitive ratio analysis for the M-OLYMPIAD problems.

7.1 Related Work

There are two major threads of relevant research. The first thread is on online unit-

capacity ridesharing where the underlying problem is an online bipartite match-

ing problem. The standard online bipartite matching problem involves matching

known (i.e., available offline) disposable servers 1 on one side to the online arriv-

1Once a server is assigned, it can not be used by any other incoming vertex/request.
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ing vertices/requests on the other side, over multiple timesteps. Many approaches

provide performance guarantees under different arrival assumptions for incoming

vertices (Karp et al., 1990b; Devanur, Jain, & Kleinberg, 2013; Jaillet & Lu, 2013).

Mehta (Mehta et al., 2013) provides a detailed survey of the same. One popular

arrival assumption is the known identical independent distribution (KIID) (Jaillet &

Lu, 2013; Manshadi et al., 2012), where online vertices arrive over T rounds and

their arrival distributions are assumed to be identically distributed and independent

over T rounds. This distribution is also known to the online algorithm in advance.

The existing literature provide bounds of at least 1− 1
e

on the expected competitive

ratio (ratio of the expected value obtained by the algorithm to the expected value

obtained by an offline optimal algorithm) for online bipartite matching problems

under KIID.

In case of unit-capacity ridesharing, the offline available servers (i.e., vehicles)

are reusable. Dickerson et.al. (Dickerson et al., 2017) were able to provide a 1
2

bound for the unit-capacity ridesharing in which servers are reusable and they join

the system after serving the requests at the same location. Instead of KIID, they

consider that arrival distributions of online vertices can change from time to time

(i.e., it is not iid) but this distribution is also known to the algorithm. They refer to

this distribution as the Known Adversarial Distribution (KAD).

Unfortunately, this thread of work is only applicable for unit-capacity servers

and cannot be directly adapted to consider multi-capacity servers because the un-

derlying problem is no longer an online bipartite matching problem (see below).

Another limitation is that the existing work for unit-capacity ridesharing has pri-

marily focused on requests arriving sequentially (i.e., one by one) and not in batches

which is a desirable property when considering multi-capacity ridesharing problems

(for instance, last mile services at train stations need to consider that the large num-

ber of passengers will arrive and request for last mile transportation to their home

at the same time.).

The second thread of relevant research is on approaches to solve online multi-
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capacity (capacity > 1) ridesharing problems. There have been multiple heuristic

approaches (Alonso-Mora, Samaranayake, et al., 2017; Lowalekar, Varakantham,

& Jaillet, 2019) provided for solving the ridesharing problem for multi-capacity

servers in batch arrival model. However, none of these approaches provide any

bounds on the performance and are typically myopic (i.e., they do not consider any

future information) due to the challenging nature of the problem.

The multi-capacity servers (capacity > 1) make the problem challenging be-

cause servers have to be matched to groups of requests and not just to individual re-

quests. This results in a significant change in the structure of the underlying match-

ing graph. Unlike unit-capacity ridesharing, where the underlying graph is bipartite,

the multi-capacity ridesharing has a tripartite graph (Beineke, 1980) with reusable

servers (vehicles), request groups (i.e., combinations of passenger requests) and on-

line vertices (corresponding to passenger requests). The desired matching between

the servers and request groups (combination of requests) is constrained by the edges

between requests and request groups (i.e., a request can be part of at most one re-

quest group in final assignment) in this tripartite graph. It should be noted that this

matching problem in tripartite graph is not equivalent to any variant of bipartite

matching problem (Aggarwal et al., 2011; Feldman, Korula, Mirrokni, Muthukr-

ishnan, & Pál, 2009; Lee & Singla, 2017; Z. Huang et al., 2018) studied in the

literature. This is because the weight of a match and the time after which server

becomes available again is dependent on the requests which are paired together in

the group assigned to the server.

To the best of our knowledge, there has been no research on providing perfor-

mance guaranteed algorithms for such tripartite graphs. There has been some work

on solving a part of this matching problem which focused on finding the requests

which can be grouped together over time by considering the sequential arrival of

requests (Ashlagi et al., 2018, 2019) in the adversarial and random order arrival.

However, these works ignore the main component of matching the servers to the

request groups.
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7.2 Background

In this section, we provide the formal definition of expected competitive ratio and

the OM-RR-KAD model relevant (Dickerson et al., 2017) to the competitive ratio

analysis presented in next chapter.

7.2.1 Competitive Ratio in expectation

The performance of any online algorithm is measured using a metric called com-

petitive ratio. In case of known distribution models, we measure the competitive

ratio in expectation. The competitive ratio in expectation of any algorithm ALG is

defined (Mehta et al., 2013) as minD
E[ALG(I)]
E[OPT (I)]

, where I denotes the input and D

denotes the arrival distribution and E[OPT (I)] denotes the expected value of the

offline optimal algorithm. In general, an upper bound on the value of E[OPT (I)]

is provided by using a benchmark linear program. This results in providing a valid

lower bound on the resulting competitive ratio.

Since we only employ competitive ratio in expectation for the next chapters, we

henceforth just refer to it as competitive ratio.

7.2.2 OM-RR-KAD

We now describe the Online Matching with (Offline) Reusable Servers/Resources

under Known Adversarial Distributions (OM-RR-KAD) model (Dickerson et al.,

2017) for OLYMPIAD problems in which the server capacity is restricted to 1. OM-

RR-KAD is a bipartite matching problem between offline reusable servers (e.g., ve-

hicles), U , and vertices that arrive online, V (e.g., user requests), over T rounds 2.

Online vertices arrive according to a Known Adversarial Distribution (KAD) repre-

sented by a set of arrival probabilities, {ptv} (
∑

v p
t
v = 1,∀t). Once an online vertex

of type v arrives (i.e., sampled from ptv), an irrevocable decision needs to be taken

immediately to match it to one of the offline servers, for which a weight, wtu,v is re-

2We use round and timestep interchangeably in the dissertation
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LPSequential:

max
∑
t∈T

∑
u∈U

∑
v∈V

wtu,v · xtu,v

s.t.
∑
u∈U

xtu,v ≤ ptv ::: ∀v, t (7.1)∑
t′<t

∑
v′∈V

xt
′

u,v′ · Pr[ct
′

u,v′ > t− t′] +
∑
v∈V

xtu,v ≤ 1,∀u, t (7.2)

0 ≤ xtu,v ≤ 1 ::: ∀u, v, t (7.3)

Table 7.1: Optimization Formulation - Unit-Capacity Sequential Arrival

ceived, or to reject it. The offline server becomes unavailable for a few rounds after

it is matched and the number of rounds of unavailability,ctu,v, is characterized by an

integral distribution, ctu,v ∈ {1, 2, . . . , T}. The offline server rejoins the system after

ctu,v rounds. The goal is to design an online assignment policy that will maximize

the weight.

There are two key steps in obtaining a performance guaranteed online assign-

ment policy:

First, an upper bound on the offline optimal, x∗ is computed using the LP of Ta-

ble 7.1. x∗,tu,v denotes the probability of assigning server u to online vertex of type v

in round t. Constraint (7.1) ensures that the expected number of times a vertex of

type v is matched is less than or equal to the expected number of times the vertex is

available. Constraint (7.2) ensures that the server u is assigned in round t if and only

if it is available in round t. It should be noted that this LP provides a solution over

all realizations of online vertices and hence that solution may not be applicable to a

specific instantiation of online vertex (as the corresponding u may not be available).

Second, an assignment rule is provided to compute the online probability of assign-

ing a server u for a specific instantiation of online vertex (of type v in round t) and

is given by:

x∗,tu,v · γ
ptv · βtu

(7.4)

where x∗,tu,v is a solution to the LP in Table 7.1 and γ is the desired competitive ratio
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of the online assignment; and βtu is the probability that server u is safe for assign-

ment in round t. By simulating the current strategy up to t, βtu can be estimated with

a small error.

The following theorem characterizes the 1
2

bound on the expected competitive

ratio.

Theorem 1. Dickerson et.al.[(Dickerson et al., 2017)] The optimal value of LPSe-

quential in Table 7.1 provides a valid upper bound on the offline optimal value for

OM-RR-KAD. The online assignment rule of Equation 7.4 based on the LP achieves

an online competitive ratio of 1
2
− ε for any given ε > 0.

The ε factor comes in the competitive ratio due to the error in the estimation

of βtu. For a clean presentation, throughout the dissertation, we assume that these

values can be estimated correctly and ignore the estimation error.
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Chapter 8

Competitive Ratio Analysis for

M-OLYMPIAD Problems

In this chapter we first design a performance guaranteed online algorithm that pro-

vides a competitive ratio of 1
2

for the special case of U-OLYMPIAD problems

(where servers/vehicles come back to their original location after serving requests)

in which online vertices 1 arrive in a batch under the known arrival distribution. Due

to the change in the value obtained by optimal algorithm (more details in Section

8.1), it is not obvious whether the competitive ratio will increase or decrease or re-

main the same as compared to the sequential arrival case (Dickerson et al., 2017).

Therefore, this is an important result where in we are able to show that the same

competitive ratio can be achieved even when the vertices arrive in batches.

Next, we provide a performance guaranteed online algorithm that provides a

non-zero competitive ratio for the M-OLYMPIAD problems considering batch ar-

rival of online vertices under the known arrival distribution. The competitive ratio

is:

• 0.31767 for capacity 2

• γ for any arbitrary capacity κ, where γ is solution to the the expression (1 −

γ)κ+1 = γ.

1The online arriving vertices correspond to the requests. Throughout the chapter we use vertices
and requests interchangeably.
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Even though we require groups of vertices in this online algorithm, these groups

can be generated offline and hence does not add to the run-time complexity. These

general bounds for arbitrary capacity M-OLYMPIAD problems are applicable under

the assumption that the type of the servers/vehicles (i.e., their location) rejoining the

system (after serving a group of vertices) does not change (Dickerson et al., 2017).

Finally, we provide simple heuristics (based on the offline optimal LP) which work

well in practice (as demonstrated in our experimental results).

8.1 Batch Arrival of vertices

In OLYMPIAD problems, user requests typically arrive in batches instead of arriv-

ing sequentially (e.g., users coming out of a train, theatre or mall looking for shared

rides). So, we extend the OM-RR-KAD model to consider batch arrival of online

vertices and also provide an online algorithm that achieves the same competitive

ratio of 1
2

as in the sequential arrival case. Batch arrival is different from sequential

arrival because multiple online vertices (more information at each step) have to be

matched to multiple offline servers at each round.

Since there are more vertices available in each round, online algorithms can

potentially make better assignments in the batch case as compared to the sequential

case. Due to this, it seems that the competitive ratio in the batch arrival case will be

higher than the sequential arrival case. However,

• As the assignment for any vertex should be made in the same round of its arrival,

in batch case where each round has multiple vertices, optimal (denominator of

competitive ratio) also considers a greater number of vertices in each round and

hence optimal can also improve (as compared to the optimal for sequential case).

• Compared to the sequential case, more time is spent deliberating (since we must

wait until end of batch to make assignments) and during that time no assignment

will happen and hence number of vertices assigned by optimal can be lower.

Therefore, the relationship between competitive ratio for the sequential and batch
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cases is non trivial. We now provide an algorithm which ensures that the competitive

ratio in batch arrival case is equal to the sequential arrival case.

We first mention the changes required in OM-RR-KAD model for the batch ar-

rival case and then provide the performance guaranteed online algorithm for the

unit-capacity case.

Changes to OM-RR-KAD for Batch Case: In the OM-RR-KAD model, at each

round t, a single vertex is sampled using the probability {ptv}. However, in the batch

extension, bt vertices arrive at each round and each vertex of bt is sampled using the

same probabilities {ptv}. The expected number of vertices of type v arriving in

round t is qtv and is given by:

qtv = bt · ptv

LP for Upper Bound on Offline Batch Optimal, LPBatch: The optimization for-

mulation for the batch case is same as the LP in Table 7.1, except for the constraint

in Equation (7.1). Given that there are qtv (and not ptv) expected arrivals of vertex of

type v at each round, the modified constraint is:

∑
u∈U

xtu,v ≤ qtv ::: ∀v, t (8.1)

We will refer to the modified LP as LPBatch.

Proposition 6. The optimal value of LPBatch provides a valid upper bound on the

offline optimal value 2.

ADAPBatch The online algorithm presented in Algorithm 8 is used to make an on-

line assignment of the servers to the incoming vertices that are arriving in batches.

2Please refer to appendix for the proof.

150



Figure 8.1: The Figure depicts the difference in the processing of algorithms in unit-
capacity sequential, unit-capacity batch and multi-capacity share case. The online
component in each of the algorithms corresponds to the processing in round t for a
single instance of arrival of vertices. We only show the detailed flow diagram in the
first block for each of the algorithms, rest of the blocks will have similar flow.

Algorithm 8 ADAPBatch(γ)
1: for t < T do
2: Generate a random shuffling of the incoming bt vertices. Label the vertices

from 1 to bt.
3: for i = 1 to bt do
4: v = type of vertex with label i
5: If Et

∗,v,i = φ, then reject the vertex with label i;

6: Else choose u ∈ Et
∗,v,i with probability x∗,tu,v ·γ

qtv ·βtu,i
7: Update the sets Et

∗,v,j for all j > i based on the assignment.
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We use an adaptive algorithm 3 that employs the probability of a server being safe

(available for assignment) while making assignments. The assignment rule to com-

pute the online probability of assigning a u for the vertex of type v with label i in

round t is:
x∗,tu,v · γ

bt · ptv · βtu,i

where βtu,i denotes the probability that server u is safe in round t when the vertex

with label i is being considered; and Et
∗,v,i ⊂ U is used to denote the set of safe

neighbors for a vertex of type v in round t when the vertex with label i is being

considered.

In the algorithm, we process the vertices that have arrived in a batch one by

one by considering a uniform random shuffling of incoming vertices. The intuition

behind the assignment rule is to divide the optimal assignment for round t uniformly

into bt steps (x
∗,t
u,v

bt
) and then to make sure that the vertex of type v is matched to

server u at any step with probability x∗,tu,v ·γ
bt

unconditionally. Another key change

in the algorithm from the sequential case is the last step where the availability of

offline servers is updated based on assignments made in the same round. Figure 8.1

highlights the difference in the way the algorithms process online information in the

sequential and batch case.

Proposition 7. The online algorithm ADAPBatch is 1
2

competitive.

Proof Sketch: The maximum value of γ for which the algorithm ADAPBatch is

valid 4 is γ = 1
2
. The proof involves showing that the minimum possible value of βtu,i

is 1
2
, for which we use mathematical induction. Finally, we show that ADAPBatch

is γ competitive and since the maximum value of γ for which the assignment rule

is valid is 1
2
, the algorithm is 1

2
competitive. �

3For an LP-based algorithm, we say that the algorithm is adaptive if for a given LP solution, the
computation of strategy in each round t depends on the strategies in the previous rounds (Dickerson
et al., 2019).

4Algorithm is valid when the assignment rule probability lies between 0 and 1.
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8.2 Multi-capacity Reusable Servers

In this section, we provide a model, an online algorithm and competitive ratio anal-

ysis for the online multi-capacity OLYMPIAD problem with reusable servers.

8.2.1 Model: OPERA

To address the challenges associated with multi-capacity servers, we propose a

new model called OPERA (Online matching with offline multi-caPacity rEusable

Resources in bAtch Arrival Model). In OPERA, online vertices arrive in batches

according to a Known Adversarial Distribution (KAD). Once the online vertices ar-

rive, there has to be an irrevocable decision made immediately on matching each

offline server, u to a group of online vertices, vg. The groups chosen for all servers

should be such that each online vertex appears in at most one group. For each as-

signment of an offline server, u to a group of online vertices, of type vg in round t,

a weight, wtu,vg is received. After the assignment, the offline server u is unavailable

for ctu,vg rounds before joining the system again 5. The goal is to design an online

assignment policy for assigning offline reusable servers to the groups of online ver-

tices that will maximize the weight received over all time steps. Figure 8.2 shows

the tripartite graph formed in the case of OPERA.

Unlike in OM-RR-KAD, the underlying problem in OPERA is no longer a bipartite

matching problem but a matching in a tripartite graph containing offline servers, U

groups of online vertices, Vg and online vertices, V .

Here are other key differences between OPERA and OM-RR-KAD:

U : Each offline server, u ∈ U in OPERA has a fixed capacity κ.

Vg: As κ > 1, unlike in OM-RR-KAD model, servers can be assigned to more than

one vertex at a round, i.e., servers can be assigned to groups of vertices where

5In the context of last mile ridesharing – after serving the group of passengers, server comes back
to its initial location
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Figure 8.2: The Figure depicts the tripartite graph used in the OPERA model. It
is a combination of 2 bipartite graphs. The goal is to find the matching in the first
bipartite graph subject to the constraints enforced due to the edges present in the
second bipartite graph. The blue numbers in V indicate the number of vertices of
each type available and blue numbers in Vg denote the number of groups of each
type which can be formed using available vertices in V . The blue lines indicate
a valid assignment of servers in U to groups in Vg. Red lines indicate an invalid
assignment as the vertex of type v1 is used 3 times in this assignment but there are
only 2 vertices of type v1 available.

group sizes vary from 1 to κ. For ease of analysis, we consider that all the

vertices which can be paired together, and the constraints on the feasibility of

pairing of vertices are handled through the weights received. Types of groups of

vertices are obtained by generating all possible combinations (with repetitions)

of size 1 to κ of the set V6. The resulting set is denoted by Vg. Therefore,

|Vg| =
κ∑
k=1

((
|V|
k

))
=

κ∑
k=1

(
|V|+ k − 1

k

)
For each group of type vg, nv,vg denotes the number of times vertex of type v ∈

V is present in group of type vg (From the example Figure 8.2, for vg = (v1, v1),

nv1,vg will be 2 and for vg = (v1, v2), nv1,vg will be 1.)

qtv: We consider batch arrival of vertices. Therefore, similar to the extension in

Section 8.1, bt vertices arrive at each round and each vertex of bt is sampled

using the same probabilities {ptv}. The expected number of vertices of type v

6
((
n
k

))
denotes the number of multisets of cardinality k, with elements taken from a finite set of

cardinality n.
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arriving in round t is qtv and is given by:

qtv = bt · ptv

wtu,vg : Weight received is now based on the type of group assigned to the server.

ctu,vg : Rounds of unavailability after an assignment is now based on the type of the

group assigned to the server.

Apart from the model differences, there are also differences with respect to the

online assignments that can be made. The irrevocable assignment of servers in U to

Vg should satisfy the following constraints:

C1: Each server u ∈ U is assigned at most once in each round.

C2: The total number of vertices of each type v ∈ V used in the assigned groups is

less than or equal to the number of vertices available.

C3: The number of groups of type vg ∈ Vg assigned in round t is less than or equal

to the number of available groups of type vg.

In order to enforce constraint [C3] above in expectation (i.e., over all possible in-

stantiations of arrivals), we need to compute qtvg — the expected number of times

group of type vg can be formed in round t. It is given by 7:

qtvg = htvg
∏
v∈vg

(ptv)
nv,vg where htvg =

i=|vg |∏
i=0

(bt − i)∏
v∈V

(nv,vg)!
(8.2)

We make the following assumptions in the model: (1) Once a server u is assigned

to a group of type vg at t it becomes unavailable for further matches for ctu,vg rounds

irrespective of the size of vg, i.e., insertion is not allowed. (2) The vertices can be

grouped together iff they are arriving in same round. (3) For ease of explanation,

we assume that bt > κ,∀t. However, this can be relaxed easily.

7It corresponds to drawing nv,vg vertices of each type v ∈ vg out of total bt trials for a multino-
mial distribution. Please refer to appendix for details on deriving the expression.
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LPShare:

max
∑
t∈T

∑
u∈U

∑
vg∈Vg

wtu,vg · xtu,vg (8.3)

s.t.
∑
t′<t

∑
vg′∈Vg

xt
′

u,vg′
· Pr[ct′

u,vg′
> t− t′]+

+
∑
vg∈Vg

xtu,vg ≤ 1 ::: ∀u, t (8.4)∑
vg ;v∈vg

∑
u∈U

nv,vg · xtu,vg ≤ qtv ::: ∀v, t (8.5)∑
u∈U

xtu,vg ≤ qtvg ::: ∀vg, t (8.6)

0 ≤ xtu,vg ≤ 1 ::: ∀u, vg, t (8.7)

Table 8.1: Optimization Formulation - Multi-capacity

8.2.2 Online Algorithm

We first provide an LP for computing the upper bound on the offline optimal and

then provide an adaptive assignment method based on the offline optimal solution.

LP for Upper Bound on Offline Batch Optimal with Multi-Capacity Servers:

The optimization formulation 8 is provided in Table 8.1. We refer to this LP as

LPShare. Since LP is for the offline case over all possible instantiations on arrival

vertices, the constraints hold in expectation. Constraints (8.4), (8.5) and (8.6) refer

respectively to C1, C2 and C3 constraints (described in Section 8.2.1) in expectation

(i.e., over all possible instantiations of arrivals). Constraint (8.4) ensures that the

server u is assigned in round t iff u is available in round t.

Proposition 8. The optimal value of LPShare provides a valid upper bound on the

offline optimal value 9.

ADAPShare-κ: For ease of explanation, we first present the online algorithm and

competitive analysis for κ = 2.

Let x∗,tu,vg denotes the optimal probability of assigning u to a group of type vg in

round t (computed from offline optimal LP). We use Algorithm 9 to make online
8LP is based on satisfying the flow constraints in the graph shown in Figure 8.2.
9Please refer to appendix for the proof.
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Algorithm 9 ADAPShare-2(γ)
1: for t < T do
2: Generate a random shuffling of the incoming bt vertices. Label the vertices

from 1 to bt.
3: for i = 1 to bt do
4: for j = 1 to bt do
5: vg = type of group formed at step (i, j) based on the labels assigned to

the vertices.
6: if vg is available for assignment at step (i, j) then
7: If Et

∗,vg ,(i,j) == φ, reject vg

8: Else choose (u, vg) ∈ Et
∗,vg ,(i,j) with probability p where p =

x∗,t
u,vg
·γ

ht
vg
·P t
vg,(i,j)

·βt
u,(i,j)

9: Update Et
∗,∗,(i,j), available groups based on the assignment.

assignment of servers to the groups of vertices based on {x∗,tu,vg} values from the

offline optimal LP. As shown in the algorithm, we perform a random shuffling of

the bt vertices (that arrive in a batch in round t) and label the vertices from 1 to bt.

The assignment of servers to groups is performed across bt · bt steps (as we consider

groups of size 2). Step (i, j) corresponds to a step where we compute the probability

for assignment of a group formed by vertices with labels i and j. It should be noted

that when i = j, (i, j) corresponds to a group of size 1 with only vertex with label

i.

The assignment rule to compute the online assignment probability of assigning

server u to a group of type vg at step (i, j) of the algorithm is defined by

x∗,tu,vg · γ
htvg · P t

vg ,(i,j) · βtu,(i,j)
(8.8)

where βtu,(i,j) denotes the probability that server u is available for assignment in

round t at step (i, j) over all arrival sequences. Similarly P t
vg ,(i,j) denotes the proba-

bility that group of type vg can be considered for assignment in round t at step (i, j)

over all arrival sequences. htvg was defined in Equation (8.2). We use Et
∗,vg ,(i,j) ⊂ U

to denote the set of safe servers for group of type vg at step (i, j).

Similarities and Differences to ADAPBatch: The intuition behind the assignment
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rule for a step is similar to the one in ADAPBatch. Assignment for a group of type

vg in a step is obtained by dividing the optimal assignment of round t for group of

type vg by the total number of steps where group of type vg can be considered 10.

The key differences in assignment rule of ADAPShare-κ and ADAPBatch:

• For κ = 2, since we can consider 2 vertices together (in a group) for assignment,

we process the groups in bt · bt steps for ADAPShare-2. This is in comparison

to bt steps in ADAPBatch.

• In ADAPBatch, during online processing, vertex with label i in the batch will be

considered for assignment only at one of bt steps. In ADAPShare-κ, a vertex is

part of multiple groups, so it will be considered at multiple steps. Therefore, at

each step, the probability of vertex being available (and as a result a group being

available) needs to be recomputed based on the groups assigned at previous steps

in the same round.

Figure 8.1 highlights the difference in the way the algorithms ADAPBatch and

ADAPShare-κ process the online information.

Competitive Ratio for ADAPShare-2

In this section, we provide the analysis to compute the competitive ratio for

ADAPShare-2. We first find the value of γ for which the assignment rule in Equa-

tion (8.8) is valid, i.e., it corresponds to a valid probability value between 0 and

1.

Proposition 9. The maximum value of γ for which assignment rule in Equation

10Each group of type vg will be considered at htvg steps out of the total bt · bt steps. For κ = 2,
from Equation (8.2)

htvg =


bt, if |vg| = 1,

bt · (bt − 1) if |vg| = 2 and vg = (v, v′),
bt·(bt−1)

2 if |vg| = 2 and vg = (v, v).

This is because when both vertices are of same type in the group, for example if vg = (v, v), then
vg considered at step (i, j) means that the vertex with label i and the vertex with label j both are
v and therefore steps (i, j) and (j, i) would be identical. On the other hand when both vertices are
of different type, for example if vg = (v, v′), then vg considered at step (i, j) means that the vertex
with label i is v and the vertex with label j is v′ but vg considered at step (j, i) means the opposite.
Hence in this case the group of type vg will be considered at bt · (bt−1) steps across different online
arrivals. Please refer to the example in the appendix for more clarity.
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(8.8) is valid is 0.31767.

Proof: Since the assignment rule always generates a positive value, the condition

to be satisfied for the assignment rule to be valid is

x∗,tu,vg · γ
htvg · P t

vg ,(i,j) · βtu,(i,j)
≤ 1 (8.9)

Using Equation (8.2) in Constraint (8.6) of optimization formulation in Table 8.1,

we have

∑
u

x∗,tu,vg ≤ htvg ·
∏
v∈vg

(ptv)
nv,vg =⇒ x∗,tu,vg ≤ htvg ·

∏
v∈vg

(ptv)
nv,vg

Substituting this in Equation (8.9) and rearranging terms, we get

βtu,(i,j) ≥
γ ·

∏
v∈vg

(ptv)
nv,vg

P t
vg ,(i,j)

∀t, i, j, vg (8.10)

By considering the probabilities with which each of the vertex of type v ∈ vg is

available at step (i, j), we can show that 11,

∏
v∈vg

(ptv)
nv,vg

P t
vg ,(i,j)

≤ 1

(1− γ)2
, ∀t, i, j, vg (8.11)

Using Equations (8.10) and (8.11), for the assignment rule to be valid it is sufficient

to show that βtu,(i,j) ≥
γ

(1−γ)2
.

We can compute a lower bound on the value of βtu,(i,j) based on assignments per-

formed in previous steps and rounds. Specifically, using mathematical induction,

we can show that βtu,(i,j) ≥ 1− γ.

So, to find the maximum value of γ for which the assignment rule is valid, we take

γ such that 1 − γ = γ
(1−γ)2

Therefore, the possible value of γ is the solution to the

equation γ = (1− γ)3, which is γ = 0.31767.

11Please refer to appendix for the detailed proof.
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Proposition 10. The online algorithm ADAPShare-2 is 0.31767 competitive.

Proof: The proof involves first showing that the ADAPShare-2 is γ competitive.

Now, as from Proposition 9, the maximum value of γ for which assignment rule is

valid is 0.31767, therefore the algorithm is 0.31767 competitive.

To show that the ADAPShare-2 is γ competitive, we compute with respect to the

optimal, the fraction of times any server u is assigned to any group of type vg. The

probability that the server u is assigned to a group of type vg in round t in step (i, j)

is given by

x∗,tu,vg · γ
htvg · P t

vg ,(i,j) · βtu,(i,j)
· βtu,(i,j) · P t

vg ,(i,j) =
x∗,tu,vg · γ
htvg

where first term in the product is the assignment rule, second term is the probability

that u is available and the last term is the probability that vg is available in round t

at step (i, j).

As mentioned before, each group of type vg will be considered for assignment at a

total of htvg steps. Therefore, the expected number of times a server u is assigned to

a group of type vg in round t is given by htvg ·
x∗,t
u,vg
·γ

ht
vg

= x∗,tu,vg · γ, i.e., in online case

each server u is matched to group of type vg with probability equal to x∗,tu,vg · γ.

Therefore, ADAPShare-2 is γ competitive. �

Corollary 1. The online algorithm ADAPShare-κ (generalization of ADAPShare-

2 for any value of κ) is γ competitive where the value of γ is the solution to the

equation γ = (1− γ)κ+1.

Proof Sketch: The proof is along the same lines as the proof for Proposition 10. In

the Equation (8.11), instead of (1−γ)2, we will have (1−γ)κ. Therefore, the value

of γ for which assignment rule is valid is the solution to the Equation γ = (1−γ)κ+1.

�

Hardness Results: Dickerson et.al. (Dickerson et al., 2017) prove that no non-

adaptive algorithm based on LPSequential can achieve a competitive ratio of more
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than 1
2

+ o(1) in OM-RR-KAD model. The analysis can be easily extended for

the batch arrival case when κ = 1. As unit-capacity batch arrival is a special case

of multi-capacity OPERA model with all wtu,vg = 0, if |vg| ≥ 2, therefore, no

non-adaptive algorithm based on LPShare can achieve a competitive ratio of more

than 1
2

+ o(1) for OPERA model. For a general case of adaptive algorithms the

upper bound of 0.823 provided by Manshadi et.al. (Manshadi et al., 2012) for unit

capacity disposable resources will be applicable. This is because OM-RR-KAD

model generalizes the setting proposed in Manshadi et.al. (Manshadi et al., 2012)

and multi-capacity OPERA model generalizes the setting in OM-RR-KAD model.

Discussion:We now provide the justifications for the choices made in the modelling

and analysis in section 8.1 and 8.2.1. (1) We assume that there are bt arrivals in

round t and bt is known in advance. However, this is not at all a strong assumption

because by considering a null type vertex in V and ptφ as the probability of null ver-

tex, bt can be used to denote the maximum number of arrivals in round t. (2) For

theoretical analysis of the solution quality, we ignore the computational complexity

of generating exponential number of groups in OPERA model. For practical pur-

poses, the algorithms provided in (Alonso-Mora, Samaranayake, et al., 2017) can

be used to heuristically prune the exponential set and generate the feasible groups

efficiently. The pruned set of groups is used by both offline and online algorithms.

This is because, if the offline optimal algorithm can generate the groups, as the

type of vertices are known in advance (through the known distribution), the online

algorithm can also use those groups.

8.3 Experiments

In this section, we compare the following five approaches on the empirical compet-

itive ratio metric:
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• Greedy - Runs an integer optimization at each timestep (based on the current

information) to assign the incoming requests/vertices to the available offline

servers 12.

• Random - Shuffles incoming requests/vertices in the current batch randomly

and then assigns each request/vertex randomly to an available offline server.

• Alg-OPERA-1 - Algorithm based on the offline optimal LP where match for

any available server u to a vertex or group is performed by looking at the value

of
x∗,t
u,vg

qt
vg

13.

• Alg-OPERA-2 - Another algorithm based on the offline optimal LP where

match for any available server u to a vertex or a group is performed by look-

ing at the value of
x∗,t
u,vg∑
u x
∗,t
u,vg

.

• ε-Greedy - With probability ε, greedy algorithm is executed and with probability

1− ε, Alg-OPERA-1 algorithm is executed.

The goal of the experiments is to show that the algorithms which use guidance from

the offline optimal LP, outperform the myopic approaches 14, which do not consider

future information. All the values in the results are computed by taking an average

over 10 instances and each instance is run 100 times.

Synthetic Dataset: We first present the results on a synthetic dataset. We use 200

timesteps/rounds and generate the unavailability (or time occupied serving requests)

time (ctu,v or ctu,vg ) for each server and vertex/group pair randomly between 1 and

60. Weights received (revenue) are generated based on revenue model used by taxi

companies – base revenue + 0.5 · ctu,v or ctu,vg . The probability of arrival of each

vertex type at each round (ptv) is also generated randomly. The test instances are

generated by sampling the online vertices from the generated ptv values. We vary

12Equivalent to the myopic approaches used in practice (Alonso-Mora, Samaranayake, et al.,
2017; Lowalekar et al., 2019)

13We provide heuristics, which are close to ADAPShare-κ, as computing β exactly is not always
simple and may require large number of simulations. We observed that even though these heuristics
are non-adaptive, they can achieve empirical competitive ratio higher than the theoretical competitive
ratio of ADAPShare-κ.

14Currently used in practice for multi-capacity servers (Alonso-Mora, Samaranayake, et al., 2017;
Lowalekar et al., 2019)
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Figure 8.3: |U| = 10 , |V| =10, T = 200 (a) Varying κ (b) κ = 2

the batch size and capacity and present the representative results.

Figure 8.3a shows the total revenue obtained by different algorithms for different

values of capacity κ. The key observations are:

(1) Our online approaches (Alg-OPERA-1 and Alg-OPERA-2) outperform other

algorithms, with Alg-OPERA-2 performing better than Alg-OPERA-1 on all the in-

stances.

(2) The performance of greedy algorithm decreases with the increase in capacity.

Higher capacity provides more opportunity to serve requests at each timestep. Due

to its myopic nature, greedy algorithm serves more requests initially, keeping the

servers occupied for a longer time. On the other hand Alg-OPERA-1 and Alg-

OPERA-2, based on the guidance provided by the offline optimal LP, ignore some

requests/groups which have higher ctu,vg value, to serve more requests at future

timesteps.

(3) Figure 8.3b shows the empirical value of competitive ratio for different batch

sizes. For these experiments, we take the identical value of batch size for all the

timesteps. Higher batch size for multi-capacity servers provides an opportunity to

group more requests. Therefore, as the batch size increases Alg-OPERA-1 and Alg-

OPERA-2 show an improvement in performance.

Real World Dataset: We used the New York Yellow Taxi dataset which con-

tains the records of trips in Manhattan city. We divided the map of the city into a

grid of squares, each 4 by 4 km, which resulted in a total of 11 squares. There-

fore, there can be 121 different types of requests, i.e., |V| = 121 (origin-destination
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Figure 8.4: |U| = 30 , |V| =121, T = 240, Real Dataset (a) 12am (b) 8am

pairs). We experimented by taking real trips from the taxi dataset. We take the data

across 10 days to compute the ptv values and the average number of requests at each

round/timestep, i.e., average value of bt. We run the offline optimal LP with these

values and get a solution. The online algorithms are tested on actual instances (10

days) which are different from the ones we used for computing the parameter values.

Therefore, the actual batch size bt can be different from the value used by an offline

optimal solution. The taxis are initialized at random locations and since we are test-

ing the last mile scenario after serving the trips, they come back to their starting

location. We observe a high variance in the performance of our algorithms on this

dataset during night time (Figure 8.4a). This is because the distribution of requests

during night have high variance across days. During the day, the variance in distri-

bution of requests is low, and as a result our algorithms also show low variance. On

an average , Alg-OPERA-1 and Alg-OPERA-2 outperform other algorithms on this

dataset as well. These results indicate that the algorithms which use the guidance

from offline optimal solution can consider the future effects of current matches and

as a result provide better performance.

We would like to highlight that, to ensure that the theoretical bound on the com-

petitive ratio holds empirically, correct estimates of probability values (ptv, β) are

required, which requires running multiple simulations. It is possible to create sce-

narios, where a high number of simulations are required to get the correct estimates

(e.g., when all the ptv values are very small and V is large.). In such cases, empir-

ical competitive ratio measured over low number of simulations, will be a wrong
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indicator. We would also like to mention that, it is possible to synthetically create

unrealistic scenarios where Greedy algorithm can achieve close to optimal value

(essentially having a revenue model such that the difference between one long trip

and multiple short trips is almost negligible, so myopic decisions do not hurt) and

can perform better than the LP based approaches.
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Chapter 9

Background for Decision Making in

OLYMPIOD Problems

This chapter explains the model and related research for decision making in OLYM-

PIOD problems. It also explains the details of the simulation model used for obtain-

ing experimental results presented in chapter 10.

9.1 Model

In this section, I provide a generic model for representing the OLYMPIOD prob-

lem while considering future demand samples. We divide the time into discrete

timesteps of duration ∆ minutes and the future demand samples are considered for

the next Q timesteps. In OLYMPIOD, resources are transported between pick-up

and drop-off locations using a set of carrier vehicles/servers. Each request element

has a single customer location which can serve as a supply location allowing pick-up

of resources or can serve as a demand location where resources need to be delivered

to meet the required demand. In addition to the customer locations from where the

resources can be picked up or delivered, there are stations or warehouses which keep

the resources and carrier vehicles/servers are used to redistribute resources across

these stations/warehouses. Along with the explicit customer requests for pick-up

or drop-off of resources at the customer location (referred to as remote customer
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requests here onwards), these stations/warehouses will also have walk-in customers

who can purchase/rent these resources. The resources can be consumable resources

like food items which can not be reused or rental resources like bikes, car, equip-

ments, clothes which will be returned after usage. The walk-in customers can rent

resources from one station/warehouse and can return the resources at any other sta-

tion/warehouse. Remote customers will return the rented resources by requesting

pick-up at their location. While the resources which need to be transferred using

carrier vehicles can be of a single type or can have multiple types, in this disserta-

tion, I consider only single type of resources.

OLYMPIOD is formally defined using the following tuple:

〈
B,V ,D, J, C, d, σ,X ,R, τ, π

〉
• B denotes the set of all locations. B can be represented as B = S ∪ L where

S is the set of stations/warehouses/shops and L denotes the set of customer

locations.

• V denotes the set of servers/carrier vehicles used for pick-up and drop-off of

resources.

• D denotes the set of remote customer requests at the current timestep. D+ de-

notes the set of remote customers requesting pick-up of resources with D+,n
l

denoting the number of resources to be picked up from location l. D+,c denotes

the cost of ignoring the pick-up request at location l. Similarly, D− denotes the

set of remote customers requesting drop-off of resources withD−,nl denoting the

number of resources required at customer location l. D−,cl denotes the cost of

ignoring the drop-off request at location l 1.

• J denotes the set of customer requests for the future timesteps. J can be rep-

resented as J = F ∪G, where F denotes samples of walk-in customer requests

1Customer Requests are kept in this set until they are served by a server. The cost of ignoring
requests which were assigned to a server in previous decision epochs is higher than the cost of
ignoring the new requests.
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and G denotes the set of remote customer requests for the future timesteps. F t,k

denotes the set of customer requests in demand sample k at decision epoch t.

We use F t,t′,k
s,s′ to denote the number of resources which will be rented at station

s timestep t and returned at station s′ at timestep t′ in sample k 2. F t,k
s denotes

the total number of resources rented at station s, decision epoch t in sample k.

G−,t,k,nl is used to denote the total number of resources required at location l at

timestep t in sample k . SimilarlyG+,t,k,n
l is the total number of resources which

needs to be picked up from location l at timestep t in sample k. G−,t,k,cl is used

to denote the cost of ignoring the dropoff request at location l at timestep t in

sample k . Similarly G+,t,k,c
l is used to denote the cost of ignoring the pick up

request at location l at timestep t in sample k.

• C denotes the capacity of stations and servers with Cs denoting the capacity of

station s. Similarly Cv denotes the capacity of server v.

• d denotes the initial distribution of resources at the stations and in the servers.

ds denotes the initial number of resources at the station s and dv denotes the

initial number of resources in the server v.

• σ denotes the distribution of carrier vehicles/servers at stations and locations.

σtv(b) is set to 1, if the server v starts from the station or customer location b

(b ∈ B) at decision epoch t and is 0 otherwise.

• X t,k
s denotes the additional number of resources which will become available at

the station s at decision epoch t in sample k 3.

• R denotes the objective function to be minimized, it can be the lost demand,

travel cost for the servers etc. In this dissertation, I use the objective of min-

imizing lost demand with Rt
b denotes the lost demand at station/location b at

timestep t.

• τ denotes the maximum allowed time for fulfilling remote customer requests

2To consider the case of consumable resources, we use F t,φ,ks,φ to denote the number of resources
which will be rented at stations s at timestep t and will not be returned.

3This could be due to the resources rented in previous decision epochs which will be returned at
station s at decision epoch t
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with τ+
l denoting the timestep by which remote customer request for pick-up of

resources at location l should be fulfilled. Similarly, τ−l denotes the timestep by

which remote customer request for drop-off of resources at location l should be

fulfilled.

• π denotes the maximum allowed time for fulfilling samples of remote customer

requests with π+,t,k
l denoting the timestep by which remote customer request for

pick-up of resources at location l at timestep t in sample k should be fulfilled.

Similarly, π−,t,kl denotes the timestep by which remote customer request for

drop-off of resources at location l at timestep t in sample k should be fulfilled.

The goal in OLYMPIOD is to minimize the expected value of objective R over

multiple samples of demand scenarios over the entire time horizon Q ·∆. It should

be noted that all static elements of the OLYMPIOD tuple except D can be popu-

lated directly from the datasets. D are the online elements representing incoming

demand. We assume that if a remote customer requests for the rental resources, the

rental period will be long and resources will not be returned within Q timesteps.

For applications such as bikesharing which only involve walk-in customers and

do not have any remote customer requests, the elements D, G, τ and π are empty.

9.2 Related Work

The OLYMPIOD problems (Dror, Fortin, & Roucairol, 1998) did not receive much

attention before the rise of bikesharing systems. Most of the earlier work on these

problems is in the offline setting with a single server (Hernández-Pérez & Salazar-

González, 2004, 2007). Dror et al. (Dror et al., 1998) present mixed integer pro-

gramming approach, a constrained program and local search heuristic method which

are used to solve instances involving to nine locations. Gunes et.al. (Gunes, van Ho-

eve, & Tayur, 2010) solve the problem for the food rescue program domain where

excess food is collected from restaurants and redistributed through agencies to peo-

ple in need. They also provide a mixed integer program and a constraint program-
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ming formulation in offline setting. Similar to food rescue program domain, bike-

sharing systems also involve redistribution of bikes between different locations and

can be formulated as an OLYMPIOD problem. There has been extensive research

on static repositioning approaches (Schuijbroek et al., 2017; Chemla et al., 2013;

Raviv et al., 2013) for bike sharing systems. These approaches perform reposition-

ing only at the beginning of the day, when the movements of bikes by the customers

are negligible, to ensure desired distribution of bikes across different stations. But

they do not consider stations getting imbalanced during the day. Hence there is a

need to focus on dynamic repositioning of bikes (Contardo, Morency, & Rousseau,

2012; Ghosh et al., 2015, 2017) during the day.

Shu, Chou, Liu, Teo, and Wang (2013) provide an optimization model for dy-

namic repositioning of bikes, but they do not consider routing of carrier vehicles

/servers. Ghosh et al. (2015, 2017) consider the problem of dynamic reposition-

ing of bikes along with the problem of finding the routing policy for carrier vehi-

cles/servers. They provide an offline policy generation approach based on mean

demand computed from the historical data. To overcome the inherent complex-

ity of the problem, they propose a decomposition and abstraction based approach.

While the offline policy provides significant improvement over static repositioning

approaches, it is unable to consider the changing demand scenarios in real-time.

Recently Ghosh and Varakantham (2017) propose a novel dynamic repositioning

approach by combining optimization and mechanism design, to reduce carbon foot-

print using bike trailers. Ghosh, Trick, and Varakantham (2016) provide an online

approach to compute dynamic repositioning and routing policy. The focus of their

work is on providing a robust approach which optimizes for the worst case scenario.

While robust policies provide guarantees for the adversarial inputs, they do not work

well when demand follows an expected distribution. In this dissertation, we provide

an online approach to compute dynamic repositioning and routing policy using de-

mand samples from historical data. Due to its online nature, this approach can adapt

and react to the changing demand patterns in real-time.
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9.3 Simulation Model

To evaluate the approaches for solving OLYMPIOD problems, we employ the sim-

ulation model similar to the one proposed in (Ghosh et al., 2016). The walk-in

customer requests are served every minute in the simulation from the resources

available in the stations/warehouses. Remote customer requests are aggregated for

∆ duration and the OLYMPIOD solution is computed every ∆ minutes, i.e., the

resources are picked up and dropped off from the stations and customer locations

using carrier vehicles/servers every ∆ minutes. Let tsim denotes the simulation time

in minutes and d#,tsim
s denotes the number of resources at station s at tsim minutes.

f t,t
′

s,s′ denotes the number of arrival customers at station s at timestep t who want to

reach station s′ at timestep t′.

We assume the following sequence of events at any station s:

1. Return of resources by walk-in customers.

2. Pick-up/drop-off of resources by carrier vehicles/servers.

3. Renting of resources by walk-in customers.

If the number of resources available at station are less than the number of resources

required by walk-in customers, the actual flow of walk-in customers is computed as

follows:

xtsim,t
′

s,s′ =


f tsim,t

′

s,s′ if
∑

t′,s′ ≤ d#,tsim
s

f
tsim,t

′

s,s′∑
t′,s′ f

tsim,t
′

s,s′
· d#,tsim

s Otherwise

On the other hand at any customer location l, if the customer request can be

fulfilled based on the server status (resources in the server), the server drops or

picks up resources at the location depending on the customer request.

1. if tsim%∆ == 0, availability of resources at the stations is updated as follows:

d#,tsim+1
s = d#,tsim

s +
[∑

t′

∑
s′

xtsim−t
′,tsim

s′,s

]
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d#,tsim+1
s = d#,tsim+1

s +
[
Y −,tsims − Y +,tsim

s

]
d#,tsim+1
s = d#,tsim+1

s −
∑
t′

∑
s′

xtsim,tsim+t′

s,s

]
2. if tsim%∆ != 0, availability of resources is updated as follows:

d#,tsim+1
s = d#,tsim

s +
[∑

t′

∑
s′

xtsim−t
′,tsim

s′,s

]
d#,tsim+1
s = d#,tsim+1

s −
∑
t′

∑
s′

xtsim,tsim+t′

s,s

]
where Y −,tsims and Y +,tsim

s denotes the total number of resources picked up/

dropped off by servers/carrier vehicles at station s at time tsim. These values are

obtained by solving the OLYMPIOD problem at tsim.

In our experimental results, we compare against the Static Repositioning ap-

proach which does not perform any repositioning during the planning period. There-

fore, for static repositioning approach Y −,tsims and Y +,tsim
s will be 0.
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Chapter 10

Optimization Approaches to Solve

OLYMPIOD Problems

To solve the OLYMPIOD model described in the previous chapter, we need to find

a routing strategy which decides the path to be taken by carrier vehicles/servers

and a repositioning strategy which decides the number of resources to be picked

up or dropped off at each location at each timestep. In this chapter, we provide a

multi-period two-stage stochastic optimization formulation and a Lagrangian dual

decomposition approach to compute these repositioning and routing decisions. We

also provide a greedy online anticipatory heuristic approach to solve large scale

problems effectively and efficiently for special cases when there are no remote cus-

tomer requests.

10.1 Multi-Period Two-Stage Stochastic

Optimization

We now formulate OLYMPIOD as a mixed integer linear optimization formula-

tion. Unlike most current online repositioning approaches that are typically my-

opic (Pfrommer, Warrington, Schildbach, & Morari, 2014), this multi-period two-

stage stochastic (MSS) formulation considers future demand scenarios while opti-
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Variable Description
y+,0
b,v Number of resources picked up from the station/location b by

server v at current decision epoch.
y−,0b,v Number of resources dropped at the station/location b by server v

at current decision epoch.
y+,t,k
b,v Number of resources picked up from the station/location b by

server v at decision epoch t in sample k
y−,t,kb,v Number of resources dropped at the station/location b by server v

at decision epoch t in sample k
ht,ks Resources rented in sample k at station s at decision epoch t
gt,ks Resources returned in sample k at station s at decision epoch t
Rb Lost demand at the location b at current decision epoch
Rt,kb Lost demand in the sample k at location b at epoch t
dt,ks Number of resources present at the station s at epoch t in sample k
x+,t′

l Indicates that the demand element D+,n
l is fulfilled at

decision epoch t′.
x−,t

′

l Indicates that the demand element D−,nl is fulfilled at
decision epoch t′.

x+,t,k,t′

l Indicates that the demand element G+,t,k,n
l is fulfilled in

sample k at decision epoch t′.
x−,t,k,t

′

l Indicates that the demand element G−,t,k,nl is fulfilled in
sample k at decision epoch t′.

u0
v Number of resources present in the server v at current decision epoch.
ut,kv Number of resources present in the server v at the decision epoch t

in sample k
zt,kb,v Indicates whether server v is present at station/location b at decision epoch

t in sample k
m0,t
b,v Indicates whether server v moves towards b at current decision epoch

and reaches b at t
mt,t′,k
b,v Indicates whether server v moves towards b at t and reaches b at decision

epoch t′ in sample k

Table 10.1: Notation
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MSS ():

min
∑
l

Rl +
1

|F |

Q−1∑
t=0

∑
k

∑
b

Rt,k
b (10.1)

s.t. Rt,k
s = F t,k

s − ht,ks ::: ∀s, t, k (10.2)

Rt,k
l = [(1−

π+,t,k
l∑
t′=t

x+,t,k,t′

l ) ·G+,t,k,n
l ] ·G+,t,k,c

l

+ [(1−
π−,t,kl∑
t′=t

x−,t,k,t
′

l ) ·G−,t,k,nl ] ·G−,t,k,cl ::: ∀l, t, k

(10.3)

Rl = [(1−
τ+l∑
t′=0

x+,t′

l ) ·D+,n
l ] ·D+,c

l

+ [(1−
τ−l∑
t′=0

x−,t
′

l ) ·D−,nl ] ·D−,cl ::: ∀l (10.4)

y+,t,k
b,v + y−,t,kb,v ≤ Cv · zt,kb,v ::: ∀b, v, t > 0, k (10.5)

zt,kb,v,m
0,t
b,v,m

t,t′,k
b,v ∈ {0, 1} (10.6)

x+,t
l , x−,tl , x+,t,k,t′

l , x−,t,k,t
′

l ∈ {0, 1} (10.7)
Constraints (3.3)− (3.24)

Table 10.2: MSS Formulation
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Repositioning:

D−,nl · x−,0l =
∑
v

y−,0l,v ::: ∀l (10.8)

D−,nl · x−,tl +
t∑

t′=1

G−,t
′,k.n

l · x−,t
′,k,t

l =
∑
v

y−,t,kl,v ::: ∀l, k, t (10.9)

D+,n
l · x+,0

l =
∑
v

y+,0
l,v ::: ∀l (10.10)

D+,n
l · x+,t

l +
t∑

t′=1

G+,t′,k,n
l · x+,t′,k,t

l =
∑
v

y+,t,k
l ::: ∀l, k, t (10.11)

τ+l∑
t′=0

x+,t′

l ≤ 1;

τ−l∑
t′=0

x−,t
′

l ≤ 1 ::: ∀l (10.12)

πt,kl∑
t′=t

x−,t,k,t
′

l ≤ 1;

πt,kl∑
t′=t

x−,t,k,t
′

l ≤ 1 ::: ∀t, l, k (10.13)

ht,ks ≤ F t,k
s ::: ∀s, t, k (10.14)

h0,k
s ≤ ds −

∑
v

y+,0
s,v +

∑
v

y−,0s,v ::: ∀s, k (10.15)

ht,ks ≤ dt,ks −
∑
v

y+,t,k
s,v +

∑
v

y−,t,ks,v ::: ∀s, t > 0, k (10.16)

gt,ks ≤
t−1∑
t′=0

∑
s′

ht
′,k
s′ ·

F t′,t,k
s′,s

F t′,k
s′

+ X t
s ::: ∀s, t > 0, k (10.17)

dt,ks = dt−1,k
s −

∑
v

y+,t−1,k
s,v +

∑
v

y−,t−1,k
s,v

− ht−1,k
s + gt,ks ::: ∀s, t > 1, k (10.18)

d1,k
s = ds −

∑
v

y+,0
s,v +

∑
v

y−,0s,v − h0,k
s + g1,k

s ::: ∀s, k (10.19)

dt,ks ≤ Cs ::: ∀s, t, k (10.20)∑
v

y+,0
s,v ≤ d0

s;
∑
v

y−,0s,v ≤ C#
s − d0

s ::: ∀s (10.21)∑
v

y+,t,k
s,v ≤ dt,ks ;

∑
v

y−,t,ks,v ≤ C#
s − dt,ks ::: ∀s, k, t > 0 (10.22)

ut,kv = ut−1,k
v +

∑
s

y+,t,k
s,v −

∑
s

y−,t,ks,v ::: ∀v, k, t > 0 (10.23)

u0,k
v = dv +

∑
s

y+,0
s,v −

∑
s

y−,0s,v ::: ∀v, k (10.24)

ut,kv ≤ Cv ::: ∀v, k, t (10.25)

y+,0
b,v + y−,0b,v ≤ Cv · σ0

v(b) ::: ∀b, v (10.26)

Table 10.3: Repositioning Constraints
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Routing:

zt,kb,v =
t−1∑
t′=1

mt′,t,k
b,v +m0,t

b,v + σtv(b) ::: ∀b, v, t > 0, k (10.27)

mt,t′,k
b,v ≤

∑
b′

zt,kb′,v · δ
t,t′

b′,b,v ::: ∀b, v, t, k (10.28)

m0,t
b,v ≤

∑
b′

σ0
v(s
′) · δ0,t

b′,b,v ::: ∀b, v, t (10.29)

Q−1∑
t′=t+1

∑
b

mt,t′,k
b,v =

∑
b′

zt,kb′,v ::: ∀v, t, k (10.30)

Q−1∑
t′=1

∑
b

m0,t′

b,v =
∑
b′

σ0
v(s
′) ::: ∀v (10.31)

Table 10.4: Routing Constraints

mizing repositioning of resources. The variables used in MSS are described in Table

10.1. The total number of samples is equal to |F | or |G|. Here onwards, we use |F |

as the number of samples. Table 10.2 presents the MSS formulation. Here are the

key constraints that are not specific to only one of repositioning and routing:

Lost demand: Constraints (10.2)-(10.4) ensure that lost demand at any station, at

any decision epoch is the difference between demand available and rented resources

at the location. For the remote customers, we do not allow split pick-up/drop-off.

Therefore, either all the demand is fulfilled or all the demand is lost. For remote

customer pick-up requests as well, if the resources are not picked up, we consider it

as a lost demand.

Validity of Pick-up/Drop-off : Constraints (10.5) ensure that a server v picks or

drops resources from any station/location b at any decision epoch t in any sample k

if and only if the station/location b is visited by server at decision epoch t in sample

k.

Rest of the constraints are specific to either Repositioning or Routing. Table

10.3 presents the constraints related to the repositioning problem:

Remote customer demand : Constraints (10.8)-(10.9) ensure that if the demand
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elementD+,n
l orD−,nl is satisfied at the timestep t, then the total number of resources

picked up from the customer location at timestep t is exactly equal to the available

demand. Similarly Constraint (10.10)-(10.11) ensure that if the demand element

D−,nl is satisfied at the timestep t, then the total number of resources dropped at

the location l at timestep t is exactly equal to the available demand. Constraint

(10.12)-(10.13) ensure that each customer demand element is satisfied at exactly

one timestep.

Rented resources : Constraints (10.14)-(10.16) ensure that at any station at any de-

cision epoch, the number of rented resources is the minimum of available resources

at station and walk-in demand at the station.

Returned resources: Constraint (10.17) compute the number of returned resources

at any station and decision epoch as the sum of resources returned due to hiring at

previous decision epochs (within formulation) and resources which will be returned

due to previous rentals.

Resources availability: Constraints (10.18)-(10.20) ensure that the number of avail-

able resources at any station at any decision epoch is less than the capacity of that

station. At any station, at any decision epoch, the number of resources available

is calculated by considering rented resources at previous decision epoch, resources

picked up/dropped by servers in previous decision epoch and resources returned by

customers in current decision epoch.

Station capacity: Constraints (10.21)-(10.22) ensure that the number of resources

picked up from any station is less than the number of available resources and the

number of resources dropped at any station is less than the number of available free

slots.

Server capacity: The number of resources present in any server v is calculated by

considering resources picked up and dropped by server in current decision epoch

and the number of resources already present in the server. Constraints (10.23)-

(10.25) ensure that at any decision epoch, in any sample, the number of resources

in any server v is less than capacity of server.
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Table 10.4 contains the constraints related to routing problem. These constraints

ensure that there exists a valid path between server positions at different decision

epochs. m0,t
b,v variables are used to ensure that at current decision epoch, server

moves towards same station/location across all samples. All the constraints in this

case ensure that movement of servers are valid.

Constraint (10.27) ensure that a server v is present at station/location b, at de-

cision epoch t, in sample k, if and only if , either it is reaching station/location

b at decision epoch t due to previous assignments (given by σtv values) or if it is

going to reach station/location b at decision epoch t due to assignments which are

part of current formulation. Constraints (10.28)-(10.29) ensure that a server v starts

moving towards station/location b′ at decision epoch t and reaches b′ at decision

epoch t′, if at decision epoch t it was present at some station/location b, such that

the distance between b and b′ can be covered in time t′− t. We use binary constants

δt,t
′

b,b′,v to indicate if server v starting at station/location b at decision epoch t reaches

station/location b′ exactly at decision epoch t′ or not. We assume a fixed travel time

between stations/locations based on average speed of server so these binary con-

stants can be calculated beforehand. Constraints (10.30)-(10.31) ensure that at any

decision epoch, if a server is present at some station/location, then it will start mov-

ing towards exactly one of the stations/locations. A movement between the same

station/location indicates server is staying at the same station/location.

We solve the MSS optimization formulation online at each decision epoch to

compute the repositioning and routing strategy. At each decision epoch, distribution

of resources at stations and server positions are updated based on actual realized

customer requests and repositioning strategy executed by servers.

10.2 Lagrangian Dual Decomposition

Since we have to make decisions online, the solution has to be generated quickly.

On increasing the number of stations/locations and the number of samples, the num-
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ber of variables and constraints increases in MSS which makes it difficult to solve

quickly. Decomposition across samples does not help in reducing the computa-

tion time, as for problems with large number of stations/locations, even for a single

sample MSS takes a long time (thousands of seconds). Therefore, we extend the

Lagrangian Dual Decomposition (LDD) (Fisher, 1985) method proposed by Ghosh

et al. (Ghosh et al., 2015) for solving the offline repositioning and routing prob-

lem in bike sharing. Our key contributions within this LDD approach when applied

to OLYMPIOD are two fold:(i) We update LDD to account for multiple demand

samples; (ii) We significantly improve the computational complexity of solving the

routing problem by using dynamic programming.

In our MSS formulation, as we can see in Table 10.2, only constraints (3.29)

link the routing and repositioning variables across samples. Therefore, we dualize

constraint (3.29) using price variables αt,kb,v and obtain Lagrangian as follows:

L(α) = min
[∑

l

Rl +
1

|F |

Q−1∑
t=0

∑
k

∑
b

Rt,k
b

+

Q−1∑
t=1

∑
v

∑
k

∑
s

αt,kb,v · (y
+,t,k
b,v + y−,t,kb,v − Cv · zt,kb,v)

]
(10.32)

= min
[ 1

|F |

Q−1∑
t=0

∑
k

∑
s

Rt,k
s +

∑
v

Q−1∑
t=1

∑
k

∑
b

αt,kb,v · (y
+,t,k
b,v +

y−,t,kb,v )
]
−min

[Q−1∑
t=1

∑
v

∑
k

∑
b

(Cv · αt,kb,v · z
t,k
b,v)
]

(10.33)

In equation (10.33) the first two terms correspond to the repositioning problem and

last term corresponds to the routing problem. Therefore, we have a decomposition

of dual problem into repositioning and routing slaves. The repositioning slave min-

imizes the first two terms of equation (10.33) subject to constraints (10.8)-(10.26)

and (10.2)-(10.4). The routing problem minimizes the last term of equation (10.33)

subject to constraints in Table 10.4.

As the task of routing constraints is to ensure the presence of a valid path be-

tween server positions at different timesteps and the objective of routing slave is to
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minimize the weights of visited station timestep pairs, instead of solving it as an

integer optimization problem, we can also solve it using dynamic programming to

significantly improve efficiency. We can observe in the routing constraints (Table

10.4) that servers are independent of each other. Therefore, if we have a single

sample, for each server the routing problem can be solved separately. The routing

problem can be viewed as node weighted shorted path problem with each station at

each decision epoch as graph node and node weights as −1 · Cv · αt,kb,v.

In case of multiple samples, once the m0,t
b,v variables are fixed, samples are inde-

pendent of each other. Therefore, for each server and each sample we can still solve

using dynamic programming and at t=0, instead of taking minimum for individual

sample, we take the minimum of sum of weights for all samples. Algorithm 10 pro-

vides the detailed steps. Steps 3-9 identify the starting station/location and timestep

for the server. We then use wb,v variables to store the weight at the vertex and ab,v

variables to store the path. Steps 15-18 are the key dynamic programming steps that

update the weight at the vertices using backward induction. Steps 29-37 update the

variables of the optimization formulation using the stored path in ab,v variables.

To obtain the solution to MSS,we optimize maxα Lα. Given an α, the dual

value corresponding to the MSS is obtained by adding the solution from both slaves.

The master optimization problem is solved iteratively using sub-gradient descent

on price variables α as described in Algorithm 11. Convergence in the process is

detected when difference between primal solution (defined as p in Algorithm 11)

and dual solution (defined as sum of objective values of repositioning and routing

slaves) is lesser than a small predetermined value (ε).

We need to extract a feasible primal solution from the solution obtained from

slaves. The solution obtained from repositioning slave may not be consistent with

the routes computed by routing slave but the solution obtained by routing slave is

always feasible solution to the original MSS optimization. Therefore, to extract

a feasible primal solution, we solve the MSS optimization by fixing the routing

variables to the values obtained from routing slave.
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Algorithm 10 SolveRouting(α)
1: obj = 0
2: for v ∈ V do
3: startts = −1
4: for t=0 to Q-1 do
5: if σtv(b) == 1 then
6: startts← t
7: if t > 0 then
8: for k = 1 to |F | do
9: zt,kb,v ← 1

10: t1 = startts > 0?startts : startts+ 1
11: for k = 1 to |F | do
12: for t = Q− 1 to t1 do
13: for b ∈ B do
14: if t==Q-1 then
15: wt,kb,v ← −1 · Cv · αt,kb,v
16: else
17: wt,kb,v ← min

b′,t′
((wt

′,k
b′,v − Cv · α

t,k
b,v) · δ

t,t′

b,b′,v)

18: at,kb,v ← arg min
b′,t′

((wt
′,k
b′,v − Cv · α

t,k
b,v) · δ

t,t′

b,b′,v)

19: if startts == 0 then
20: w0

b,v ← min
b′,t′

(
∑

k(w
t′,k
b′,v) · δ

0,t′

b,b′,v)

21: a0
b,v ← arg min

b′,t′
(
∑

k(w
t′,k
b′,v) · δ

0,t′

b,b′,v)

22: obj ← w0
b,v

23: else
24: for k = 1 to |F | do
25: obj+ = wstartts,kb,v

26: b← startstation
27: if startts == 0 then
28: b′, t′ ← a0

b,v

29: m0,t′

b′,v ← 1
30: for k = 1 to |F | do
31: zt

′,k
b,v ← 1

32: b← b′,t1 ← t′

33: for k = 1 to |F | do
34: t = t1
35: while t < Q− 1 do
36: b′, t′ ← at,kb,v
37: mt,t′,k

b′,v ← 1,zt
′,k
b′,v ← 1

38: b← b′, t← t′

39: return obj, z,m
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Algorithm 11 SolveLDD()
α← 0, iter ← 0
repeat
o1, y

+, y− ← SolveRepositioning(αiter)
o2, z,m← SolveRouting(αiter)
p← ExtractPrimal(z,m)
αt,k,iter+1
b,v =

[
αt,k,iterb,v + γ · (y+,t,k

b,v + y−,t,kb,v − Cv · zt,kb,v)
]

+
iter ← iter + 1

until p− (o1 + o2) ≤ ε

10.3 Greedy Online Anticipatory Heuristic

There are many applications such as bikesharing, electric vehicle sharing which do

not involve any remote customer requests. In these applications, resources need to

be redistributed across stations to reduce the lost demand for walk-in customers. In

this section, for these special cases, we provide Greedy Online Anticipatory Heuris-

tic (GOAH) approach based on online anticipatory algorithms (Mercier & Van Hen-

tenryck, 2007) that can quickly provide solution for large scale problems. Typically,

online anticipatory algorithms are used to solve large scale online stochastic integer

programs. These algorithms optimize for each sample scenario and then select the

best solution over all samples. We use a similar idea to develop our approach but

instead of optimally solving each sample, we approximate the value obtained for

each sample due to scalability issues. In our case, solution for a sample would cor-

respond to a set of repositioning and routing decisions for each server. Each server

v has maximum |S| routing choices where |S| is the number of stations and it has

Cv repositioning choices where Cv denotes the capacity of server v. As server v

already has dv resources in server, it can pick at most Cv − dv resources or it can

drop at most dv resources. So all possible solutions for each server are Cv · |S|.

Unlike in typical anticipatory algorithms where there is only one entity, here,

we have multiple carrier vehicles and therefore, the space of possible joint solutions

grows exponentially. To address this, we consider one server at a time and use

the greedy algorithm (Algorithm 12) to pick the best server policy in each iteration

and execute that policy. To pick the best server policy in each iteration, we can
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use MSS/LDD for a single server to compute individual server’s policy. But using

MSS/LDD for a single server will not provide desirable gain in runtime (as this

will not reduce the complexity in the MSS/LDD formulations due to presence of

multiple samples). Therefore, we use a heuristic approach, which computes policy

for individual server in two steps: (i) Approximate computation of repositioning

decisions (extra resources available for pick-up/drop-off) at each station, timestep

in each sample. (ii) Compute policy (repositioning and routing decisions) for a

server across all samples by using approximate repositioning decisions calculated

in previous step.

Algorithm 12 GOAH()
e←ComputeApproxRepositioningValues()
V ′ = φ
while |V ′| < |V| do

for v ∈ V\V ′ do
valv = 0
valv, av ← GetServerPolicy(v, e)

v′ ← arg min
v

valv

e← ExecutePolicy(v′, av′ , e)
V ′ ← V ′ ∪ v′

Approximate computation of repositioning decisions: We use et,ks to denote the

extra resources available for pick-up or drop-off at station s timestep t in sample

k. A positive et,ks value indicates availability of extra resources and a negative value

indicates the number of resources which should be dropped to meet the lost demand.

These values can be used by servers to decide the number of resources to pick-

up/drop-off at a station timestep pair.

For each sample, we execute ”no repositioning” strategy, i.e., simulate the hiring

and return of resources (according to demand observed in the sample) on the current

distribution of resources at the stations, to calculate the available resources, lost

demand and rented resources at each station timestep pair.

Since the resources which are not required at timestep t can be used to meet

demand at timestep t + 1, if we use the current computed et,ks value, it can be a

wrong indicator for server to pick resources. Therefore, we ensure that et,ks val-
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ues are positive if and only if resources are not required at any future timesteps.

Similarly, unallocated resources at time t can remain unallocated at time t + 1, so

same resources will contribute to the et,ks values for two different timesteps. To for-

bid server from considering same resource as available for pick-up at two different

timesteps, we assume that a station will be visited at most once. This is a valid

assumption if the lookahead period is small (i.e., less than one hour).

As the station is visited only once, when server visits any station at any timestep,

the decision of the number of resources picked up/dropped by server should con-

sider future timesteps as well. Therefore, we update the et,ks values for each timestep

to account for lost demand at future timesteps or requirement of extra resources at

future timesteps. The updated et,ks values are used in next step, to guide the policy

computation for server.

Computing policy for server given et,ks values: In this step, for each sample, we

construct a graph. The nodes in the graph correspond to s, c, t, where s is the station

id, c is the number of resources in the server and t is the timestep. An edge is created

between node {s, c, t} and node {s′, c′, t′} if and only if δt,t
′

s,s′ = 1 (i.e., s′ is reachable

from s). The edge between nodes {s, c, t} and {s′, c′, t′} indicates that at timestep t

server is moving from station s towards station s′ and reaches station s′ at timestep

t′. Positive value of c− c′ indicates server dropped c− c′ resources at station s and

negative value indicates server picked |c − c′| resources from station s. Therefore,

an edge in the graph represents the routing and repositioning decision of server. We

create an additional sink node T . The policy for a single server is computed by

finding the maximum weighted path between server start position and node T .

185



The weight of edges is defined as follows:

Rk({s, c, t}, {s′, c′, t′}) =
min(0, et,ks + c− c′) if c <= c′

min(c− c′,−et,ks ) if c > c′ and et,ks < 0

0 otherwise

Rk({s, c, t}, T ) =


min(c,−et,ks ) if et,ks < 0

0 otherwise

i.e., edges have positive weight on dropping resources at station with lost demand,

negative weight on picking resources from a station with lost demand and 0 weight

otherwise. In other words, weight of edge indicates reduction in lost demand. To

incorporate the assumption of visiting a station only once (for picking up or drop-

ping off resources) in the graph, we need to consider constrained graphs where a set

of edges can not be part of a path. This problem is NP-hard (Ziegelmann, 2001).

However, for Q=3, we can easily incorporate this assumption without using con-

strained graphs. This is because at t=0, server position is known, so we can avoid

creating edges between same stations at different timesteps.

Once we compute policies for individual server, in each iteration, we execute the

policy for server which maximizes the marginal reduction. As a result of executing

server policy, the et,ks values are updated to take into account the pick-up/drop-off

of resources at stations by server.

10.4 Experiments and Results

While the MSS and LDD approaches proposed in this dissertation are applicable to

different OLYMPIOD problems, we perform our experiments on a highly relevant

real-life domain of bikesharing systems. As mentioned before, in bikesharing sys-

tems there are no remote customers, therefore, D and G elements are empty. The
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GOAH approach is also applicable for bikesharing systems.

In this section, we compare our approaches Multi Stage Stochastic Optimization

(MSS), Lagrangian Dual Decomposition (LDD) and Greedy Online Anticipatory

Heuristic (GOAH) with the following approaches:

1. Static Repositioning (STREP) - In this approach, stations are rebalanced at

the end of the day. That is to say, no repositioning is performed during the

planning period.

2. Expected Sample Offline Policy Generation (ESOF): In this case, mean de-

mand between stations from past 30 days of data is used as a demand sample

to generate offline repositioning policy. We execute MSS/LDD for this ex-

pected sample with Q as evaluation decision epochs for different ∆ values to

generate an offline policy1.

3. Expected Sample Offline Policy Generation with revenue as objective (ESOF-

Rev) (Ghosh et al., 2015): As the objective of the formulation is to maximize

the revenue, the approach tries to minimize the cost of server movement in

addition to minimizing lost demand. We compare the lost demand values and

fuel cost with this approach.

4. Expected Sample Online Policy Generation (ESON): In this case we use the

mean demand sample online in the MSS/LDD approaches.

We use MSS(∆ = x,Q = y), LDD(∆ = x,Q = y), GOAH(∆ = x,Q = y) and

ESON(∆ = x,Q = y) to refer to our approaches when the time interval ∆ is set

to x and lookahead Q is set to y. We compare the value of lost demand for all the

approaches. For MSS, LDD and ESON the time limit to compute solution is set as

1 minute.

Setup: We conducted our experiments by taking the demand distribution over 3

months from 2 real world bike sharing datasets. The first dataset is from Hubway

1For ∆ = 10 (in minutes) and evaluation period of 6 hours, we use Q as 36.
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BSS2 which has 95 stations and the second dataset is from Capital BikeShare BSS3

which has 305 stations. For the Hubway dataset, we use 3 servers for repositioning

of bikes and for the Capital BikeShare 6 servers are used.

STREP ESOF-Rev ESOF(∆ = 10)

Hubway(3PM) 278.32 225.95 225.93

Capital BikeShare(3PM) 1320.93 960.30 795.28

Hubway(6AM) 184.82 130.30 122.69

Capital BikeShare(6AM) 508.27 456.96 410.60

ESON LDD GOAH

(∆ = 10, Q = 6) (∆ = 10, Q = 6) (∆ = 10, Q = 3)

Hubway(3PM) 172.11 141.16 181.67

Capital BikeShare(3PM) 745.61 666.78 824.03

Hubway(6AM) 98.63 56.85 92.75

Capital BikeShare(6AM) 323.17 288.87 341.71

Table 10.5: Lost demand reduction

ESOF-Rev ESOF(∆ = 10) ESON(∆ = 10, Q = 6)
Fuelcost 7.84 32.64 31.26

Revenue 431.10 422.87 461.11

Gain 423.25 390.23 429.85

LDD(∆ = 10, Q = 6) GOAH(∆ = 10, Q = 3)
Fuelcost 30.60 26.60

Revenue 488.58 441.72

Gain 457.98 415.11

Table 10.6: Fuel cost comparison-Hubway 3pm

As the historical trip data only contains successful bookings and does not cap-

ture the unobserved lost demand, we employ a micro-simulation model with 1

minute of timestep to identify the duration when a station got empty and intro-

duce artificial demand at the empty station based on the observed demand at that

station in previous timestep. In the 3 months trip data of both datasets, we have

data for 60 weekdays. We use the first 30 weekdays to compute the mean demand

sample which is used by ESOF and ESOF-Rev approaches. All the approaches are

evaluated on remaining 30 weekdays and the average lost demand is computed over

these 30 days.
2http://hubwaydatachallenge.org/trip-history-data/
3http://www.capitalbikeshare.com/system-data
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Figure 10.1: (a) and (d) Performance comparison of MSS and LDD. (b) and (e) Lost
demand comparison of LDD for different ∆ and Q values. (c) and (f) Lost demand
comparison of LDD for different Q values.
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Figure 10.2: Performance comparison of GOAH

Trip Duration ESOF-Rev ESOF(∆ = 10) ESON(∆ = 10, Q = 6)
0-30 1166.74 1169.26 1212.17

30-60 93.43 91.24 102.84

60-90 11.27 11.11 11.62

>90 7.88 7.69 8.11

Trip Duration LDD(∆ = 10, Q = 6) GOAH(∆ = 10, Q = 3)
0-30 1232.34 1205.55

30-60 112.51 97.73

60-90 12.50 11.39

>90 8.22 7.95

Table 10.7: Number of bikes rented for different trip duration (in minutes)- Hubway
3pm
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While computing the repositioning and routing policy at decision epoch t, for

our approaches MSS, LDD and GOAH, we consider k samples of customer requests

at decision epoch t,t + 1,..,t+Q-1 from past k days (from the evaluation day at the

same time). Once the repositioning and routing policy is computed, we evaluate the

policy on realized customer demand.

We evaluate all the approaches using the simulation model described in previ-

ous chapter. The simulation model is run every one minute to serve the customer

demand. In contrast, repositioning/routing strategy is computed at an interval of ∆

minutes. After the repositioning/routing policy is obtained by algorithms at time ∆,

2 · ∆,... minutes, the availability of bikes at station and in servers is updated. In

case there is no free slot at the station available while returning of bikes, the bikes

are distributed in the nearby stations. The simulator is run for 6 hours for each day

starting at different time of the day. We experimented with starting time as 6:00AM

and 03:00PM. At the start of the experiment starting position of servers is randomly

chosen. The objective of all the algorithms (except ESOF-Rev) is to minimize the

lost demand4.

Results: We first show results for MSS and LDD by varying the values of ∆ and

Q. For GOAH, as described in Section 10.3, Q is fixed to 3. Therefore, we do not

show results for GOAH for different Q values.

Number of Samples: In the first set of experiments on MSS and LDD, we ex-

periment with different numbers of samples. Figure (10.1a) shows results for the

Hubway dataset and Figure (10.1d) shows results for the Capital BikeShare dataset.

The X-axis represents the number of samples and Y-axis represents the lost demand

values. On the Hubway dataset, MSS could not compute a reasonable quality solu-

tion (the optimality gap remained at 80%) within 1 minute for more than 5 samples

for ∆ = 5 and for more than 10 samples for ∆ = 10. On the Capital Bikeshare

dataset, for ∆ = 5 and a time limit of 1 minute, MSS did not find a solution of rea-

sonable quality even when only a single sample was used. On both the datasets, we

4All approaches have been implemented in Java using the IBM CPLEX 12.6.0.
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observe that for LDD, lost demand reduces on increasing the number of samples,

but the reduction in lost demand is less than 5% on increasing samples beyond 10.

For ∆ = 5, on the Capital BikeShare, LDD could not complete even 10 iterations

within 1 minute and hence, the lost demand increases on increasing samples from

10 to 15. As the lost demand reduction is not significant after 10 samples and the

problem also becomes complex , we use 10 samples for LDD and MSS in the next

experiments.

Decision Epoch Duration(∆): In the next set of experiments, we fix the lookahead

period for approaches to 30 minutes and experiment with different decision epoch

duration. As ∆ ·Q =30 minutes, the value of Q is taken as 30
∆

. Figure (10.1b) shows

results on the Hubway dataset and Figure (10.1e) shows the results on the Capital

BikeShare dataset. We fix the number of samples as 10. We only show results for

LDD as MSS was not able to compute a reasonable quality solution within 1 minute

for 10 samples for majority of scenarios. On both datasets, lost demand decreases

on decreasing the value of ∆. This is because server is allowed to make more

movements and also because we are looking at demand values at smaller intervals

which allows making better online decisions. On decreasing ∆ from 10 to 5, lost

demand reduces by nearly 15% on both datasets.

Lookahead Period: For a fixed value of ∆, we experiment with different lookahead

period durations. We show the results for ∆ = 10 with lookahead period between

30 minutes and 1 hour. For ∆ = 15, we show the results for lookahead period

between 30 minutes and 1.5 hours. Figures (10.1c) and (10.1f) show the results for

different Q values. On increasing the look ahead period lost demand reduces for

both ∆ values but the reduction is more with ∆ = 10. With ∆ = 10 and Q = 6

(i.e., lookahead period of 1 hour), the lost demand values are comparable to ∆ = 5

andQ = 6 (lookahead period of 30 minutes). With ∆ = 10, lost demand reduces by

12% on increasing Q value from 3 to 6. But the rate of reduction is low with higher

∆ value. As the lost demand reduction provided by ∆ = 10, Q = 6 is comparable to

lost demand reduction with ∆ = 5, we use ∆ = 10, Q = 6 for further comparison
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as this involves lesser server movement.

GOAH Performance: We experiment with different number of samples for GOAH

for ∆ = 10, Q = 3. In case of GOAH, along with lost demand we also compare

the runtime on both datasets with different number of samples. Figure (10.2a) and

(10.2b) show the lost demand comparison on increasing the number of samples. On

both datasets, on increasing samples from 5 to 15, lost demand reduces by 8% but on

increasing beyond 15 samples reduction is 2%. With 15 samples, on both datasets,

GOAH obtains a runtime of less than 8 seconds (Figure (10.2c)). Therefore, it is

possible to execute GOAH on larger bike sharing systems where it is even difficult

for offline approaches to compute a solution. As described later, GOAH provides

nearly 35% reduction in lost demand as compared to no repositioning strategy.

Comparison Of Different Algorithms: Next, we compare the reduction in lost de-

mand values obtained by different algorithms. We compare LDD(∆ = 10, Q = 6),

GOAH(∆ = 10, Q = 3) with ESOF(∆ = 10), ESOF-Rev, ESON(∆ = 10, Q = 6)

and STREP on both datasets. For LDD we use 10 samples and for GOAH 15 sam-

ples. Table 10.5 shows the lost demand values on both datasets for 6AM and 3PM.

As we can see on both datasets, LDD reduces the lost demand by nearly 50% as

compared to STREP and provides 20% gain over ESOF and ESON. The lost de-

mand reduction by GOAH is comparable to ESOF and ESON but it provides im-

provement in runtime which is the main advantage of using it against other ap-

proaches.

Comparison Of Fuel cost: Finally we compare the fuel cost incurred by different

algorithms. We use the cost of diesel as 1.5 USD per litre and assume that the server

can travel 12 kilometer with 1 litre of fuel. Here, we show the results on the Hubway

dataset at 3pm. We obtained similar results on the other dataset. We then compare

the fuel cost incurred by various algorithms in Table 10.6. As we do not consider

the fuel cost in our objective, fuel cost of our algorithm is nearly 4 times the cost

of fuel consumed by ESOF-Rev. We also compute the revenue obtained by bike

sharing company by using the standard price model where only rides greater than
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30 minutes are charged5. The revenue increase compensates for the additional fuel

cost in case of LDD. With GOAH, both the fuel cost and revenue gain are less than

LDD. Overall gain provided by GOAH is less than ESOF-Rev.

As the rides having travel time less than 30 minutes are included in the subscrip-

tion cost, we also compare the number of bikes rented for different trip duration by

various algorithms (Table 10.7). Once again, LDD provides the best results. As

the major percentage of bikes are rented for duration 0-30 minutes, the lost demand

reduction of these rides does not directly contribute to daily revenue. But this re-

duction will help in increasing the number of new subscribers which will provide

additional profit to bike sharing companies.

10.5 Summary

In this chapter, we provide multi-period two-stage stochastic optimization and greedy

online anticipatory heuristic approaches for efficient repositioning and routing in

OLYMPIOD problems. We also provide a Lagrangian Dual Decomposition ap-

proach overcome the scalability issues. The empirical results on two real world

datasets demonstrate that our approaches outperform the existing best known ap-

proaches.

5https://www.thehubway.com/pricing/day
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Chapter 11

Conclusion and Future Work

In this dissertation, I presented future demand driven approaches to solve the online

spatio-temporal demand supply matching problems and by extensive experiments

on the real world datasets, we show that by considering expected future demand the

quality of matching can be significantly improved. For a special case, when servers

have a fixed location and they come back to their original location after serving the

requests, we also provide theoretical bounds on the performance of algorithms.

11.1 Future Directions

For the future research, we highlight the following directions:

Improving competitive ratio bounds for M-OLYMPIAD problems: In this dis-

sertation, we show that we can obtain a γ competitive (where γ is a solution to

equation γ = (1 − γ)κ+1 and κ is the capacity) online adaptive algorithm for spe-

cial case of M-OLYMPIAD problems. As the proposed online adaptive algorithm

performs sequential processing and does not use the full power of the batch, it is

possible to improve the algorithm and obtain a better competitive ratio. Therefore,

the first future direction is to improve the proposed algorithm. The other direction

is to improve the existing upper bound on the competitive ratio for M-OLYMPIAD

problems. Existing hardness results say that no algorithm can achieve a competi-
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tive ratio of more than 0.823 (Manshadi et al., 2012) for unit capacity disposable

resources. As the setting used by Manshadi et.al. (Manshadi et al., 2012) is a spe-

cial case of M-OLYMPIAD problem, the upper bound of 0.823 is applicable for

M-OLYMPIAD problems as well. The future direction is to create a worst case in-

stance for which the best possible competitive ratio obtained by any online adaptive

algorithm for M-OLYMPIAD problems is less than 0.823.

Handling of Multiple Types of resources for OLYMPIOD Problems: In this dis-

sertation, we focus on only single type of resources for OLYMPIOD problems. In

future, the work can be extended to provide scalable approaches for OLYMPIOD

problems having multiple types of resources. In context of bikesharing, handling

multiple types will allow us to differentiate between normal bikes which need to be

transported between stations and faulty bikes which need to be taken to service cen-

ters. Also with the station-less bikesharing systems becoming popular, considering

multiple types will also help us in assigning different priorities to bikes parked at

valid and invalid locations (by considering them as different types).

Dynamic Pricing Scheme for OLYMPIAD Problems: In this dissertation, we

considered a fixed revenue model based on distance for U-OLYMPIAD problems.

For M-OLYMPIAD problems, we considered the objective of number of requests

served. The revenue computation is much more challenging for multi-capacity

problems, as it needs to consider about the inconvenience caused due to delay, num-

ber of passengers in the server during the course of journey (for which we need to

take into account the future customer requests). It is important to come up with a

pricing scheme which can consider the expected future demand and supply and is

also profitable to the company. Banerjee et.al. (Banerjee, Johari, & Riquelme, 2015,

2016) have shown that while the performance of dynamic pricing does not exceed

static pricing (which knows all system parameters) but dynamic pricing scheme is

more robust to fluctuation in system parameters as opposed to static pricing scheme.

They provide a detailed analysis for single region case but the extension to network
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of regions is not well explored. Ma et.al. (H. Ma, Fang, & Parkes, 2018) design a

spatio-temporal pricing mechanism and prove that under full observation, follow-

ing the mechanism’s dispatches forms a subgame perfect equilibrium among the

drivers. Biswas et.al. (Biswas et al., 2018) assume that discount for sharing ride

is a linear function of the fractional distance-wise detour and propose a iterative

discount function learning algorithm to learn the discount parameter. They do not

consider the expected demand and supply to compute the price. Therefore, there

is a need to develop a dynamic pricing scheme which can computes the price of

each assignment by taking into account the expected demand and supply and is also

fair to the customers. The dynamic pricing scheme will be useful for unit-capacity

OLYMPIAD problems as well because this will help in modelling the surge price

scenarios.
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Appendix A

Supplementary material for the

Chapter 3

A.1 Proof of Proposition 1

Proposition 1: If ∀ j, i, i′, t, t′ δt,t
′

ij = δt,t
′

i′j , then the U-OFLYMPIAD is reducible

to a min cost flow problem.

Proof: Min cost flow optimization problems are polynomial time solvable, as they

consider deterministic unconditional flows. For the case when each request com-

pletes at a fixed decision epoch irrespective of the server assigned to it, we show

that the U-OFLYMPIAD problem also has deterministic unconditional flows and

hence the optimization model for U-OFLYMPIAD is equivalent to the min cost

flow optimization model. We first describe the network corresponding to the U-

OFLYMPIAD problem.

Nodes: Nodes of the network represent the server locations and requests. Formally,

we create a node for each element in the set L at each decision epoch. A node

is also created for each element in Dt,∀t. We also create a source node S and a

sink node T . Therefore, the maximum number of nodes in the network will be

(|L|+ (|L| · |L|)) ·M + 2.

Edges: Intuitively, we have edges to indicate the assignment (server location to a

198



request) and movement (origin location to the destination location). Specifically,

we have the following edges in the network.

• An edge is created between a node corresponding to the location i at the decision

epoch t and a node for the element j of Dt if oj ∈ f(i, t). The capacity of the

edge is equal toRt
j and the cost of the edge is−Ct

i,oj ,dj
. The flow on these edges

is given by xtij .

• An edge is created between the element j of Dt and the node correspond-

ing to the location i at decision epoch t′ (t′ > t), if dj = i and δt,t
′

j = 1

(∀ j, i, i′, t, t′ δt,t
′

ij = δt,t
′

i′j , therefore we define δt,t
′

j = δt,t
′

ij ∀i, j, t, t′). The ca-

pacity of the edge is Rt
j and the cost is 0. We denote the flow on these edges by

ytj .

• An edge is created between the node corresponding to the location i at decision

epoch t and the node corresponding to the location i at decision epoch t + 1 to

have the flow of unassigned servers, i.e., to ensure that the unassigned servers

from the location i at decision epoch t remain in the same location at next deci-

sion epoch. The capacity of this edge is equal to
∑

iN 1
i and the cost is 0. The

flow on these edges is denoted by wti .

• From source node S, we create an edge to all the location nodes at the decision

epoch 1. The capacity of edge between the source node S and the location i

node is N 1
i (the number of initial servers in location i) and the cost is 0.

• If the requests present in the element j of Dt,∀t complete at a decision epoch

> M , then we create an edge between the element j of Dt to the sink T . The

capacity of the edge is Rt
j and the cost is 0.

• We also create edges from the location nodes at decision epochM (last decision

epoch) to the sink node T . The capacity of the edge is
∑

iN 1
i and the cost is 0.

Given this network, we can view the similarity of the two optimization models

in Table A.1. The transformation uses slack variables (wti) and the intermediate

variables (ytj) to convert the original U-OFLYMPIAD constraints into the flow and

capacity constraints present in the min cost flow model. As the min cost flow is
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U-OFLYMPIAD(L,D,N , C, f, g, T, δ,M): MinCostFlow: G(V,E):

Objective

min

M∑
t=1

∑
i∈L

∑
j∈Dt,

oj∈g(i,t)

−1 · Cti,oj ,dj · x
t
ij

+

M∑
t=1

∑
i∈L

wti · 0 +

M∑
t=1

∑
j∈Dt

ytj · 0 (A.1)

min
∑

(u,v)∈E
cuv · fuv (A.2)

Flow Constraints

∑
j∈D1,

oj∈g(i,1)

x1ij + w1
i = N 1

i ::: ∀i (A.3)

ytj −
∑

i∈f(oj ,t)
xtij = 0 ::: ∀t, j ∈ Dt (A.4)

∑
j∈Dt,

oj∈g(i,t)

xtij + wti − w
t−1
i

−
t−1∑
t′=1

∑
j∈Dt′ ,
dj=i

δt
′,t
j · yt

′
j = 0 ::: ∀i, t > 1 (A.5)

− 1 ·
∑
i∈L

wMi +
M∑
t′=1

∑
j∈Dt′ ,
dj=i

δt
′,M+1
j · yt

′
j

= −1 ·
∑
i∈L
N 1
i (A.6)

∑
k|(j,k)∈E

fjk −
∑

i|(i,j)∈E
fij = bj ::: ∀j ∈ V (A.7)

Capacity Constraints

0 ≤ ytj ≤ Rtj ::: ∀t, j ∈ Dt (A.8)

0 ≤ xtij ≤ Rtj ::: ∀i, t, j ∈ Dt (A.9)

0 ≤ wti ≤
∑
i∈L
N 1
i ::: ∀i, t (A.10)

0 ≤ fij ≤ uij ::: ∀(i, j) ∈ E (A.11)

Table A.1: MinCost Flow and U-OFLYMPIAD
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polynomial time solvable and gives integral flow values for the integer capacities,

we can solve the U-OFLYMPIAD also in polynomial time to get integer solutions.

�

Example 3. The example network with three locations and M=3 is shown in the

Figure A.1. S and T denote the source and sink node. Circular nodes represent the

server location nodes and rectangular nodes represent the request nodes between

locations. Requests between the locations L2 and L3 at decision epoch 1 complete

at decision epoch 3. Requests between the locations L1 and L3 complete at decision

epoch 4 and as M=3, they are connected to sink node T . N denotes the total number

of servers available initially, i.e.,N = N 1
1 +N 1

2 +N 1
3 . Each arc contains 2 values

with the first value representing capacity and the second value representing the cost.
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Figure A.1: Example min cost flow network for U-OFLYMPIAD

In general, depending on the server assigned, a request can have a maximum of

d τ
∆
e+1 different completion decision epochs. Therefore, in the network constructed

in the Proposition 1, we will have edges between the decision epoch t request nodes

to the decision epoch t′, t′ + 1, .., t′ + d τ
∆
e location nodes with the flow on these

edges conditioned to be equal to the flow on the edges from the server node to

request nodes.
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In the example shown in the Figure A.1, suppose if the L2 server is assigned

to the request between locations L2 and L3, then the request completes at decision

epoch 3 and if the L1 server is assigned to the request between locations L2 and L3,

the request will complete at decision epoch 4. The modified network is shown in

Figure A.2. Now the node L2, L3 at decision epoch 1 will have the capacity R1
23

with the condition that flow on 2 green edges should be equal and flow on 2 orange

edges should be equal. Proposition 2 shows that in the above case where there are

conditional flows, the U-OFLYMPIAD is NP-hard.
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Figure A.2: Modified Example flow network for U-OFLYMPIAD

A.2 Proof of Proposition 2

Proposition 2: If ∃j, i, i′, t, t′ s.t. δt,t
′

ij 6= δt,t
′

i′j , then the U-OFLYMPIAD is NP-hard.

Proof: To show that the U-OFLYMPIAD is NP-hard in general case, we reduce the

well known 3-SAT problem to U-OFLYMPIAD. We construct an instance of the U-

OFLYMPIAD for any arbitrary instance of 3-SAT with L clauses and V variables.

We show that we obtain the optimal value for the U-OFLYMPIAD if and only if

there exists an assignment to variables in 3-SAT formula such that all the clauses in
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3-SAT will evaluate to true.

For any arbitrary instance of 3-SAT withL clauses and V variables, we construct

an instance of U-OFLYMPIAD as follows:

• We create an U-OFLYMPIAD problem instance with 4L + 1 decision epochs,

i.e., M=4L + 1. At first decision epoch, we create 2V requests. At remaining

4L decision epochs, we create one request each.

• We create 2V +1 locations, denoted by L0 and Li, L
′
i, i <= V . So the set of

locations L = {L0, Li, L
′
i, i <= V }.

• Initially locations Li have one server each and locations L0 and L′i have zero

servers.

• We create 2V requests at first decision epoch. Each location Li is the ori-

gin location of two requests with one request having destination in Li and

one request having destination in L
′
i. Requests having origin in Li at deci-

sion epoch 1, can only be assigned server from the location Li. Therefore,

D1 = {< Li, Li, 1 >,< Li, L
′
i, 1 >} and f(Li, 1) = {Li}. All the requests at

the first decision epoch have unit revenue.

• If location i server is assigned to the request between location pairs < Li, Li >

then the variable xi is true else if it is assigned to the request between location

pairs< Li, L
′
i > then xi is false. Requests served at decision epoch 1 determines

the value of variables xi. Therefore, at second decision epoch, server will be

available in location Li if xi is true, and will be available in the location L′i if xi

is false.

• If there are L clauses, we create L requests with request corresponding to kth

clause at decision epoch 4k − 2. Each of these requests have destination in the

location L0. The origin location of these requests is the location corresponding

to the first literal of the kth clause.

In addition, if the kth clause has literal xi then the location Li server can be

assigned to the request at decision epoch 4k − 2 and if the kth clause has literal

¬xi, then the location L′i can be assigned to the request. On the other hand, if the
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kth clause does not contain literal xi then location Li server can not be assigned

to the request at decision epoch 4k − 2. In short, request at the decision epoch

4k − 2 can be assigned server only from 3 locations which correspond to the

literals present in the kth clause. Therefore, the request at decision epoch 4k−2

will have at least one server available if clause evaluates to true, i.e., if at least

one of the literals has true value.

On assigning a server from the location corresponding to the first literal, request

completes at decision epoch 4k−1 earning revenue 1, on assigning a server from

the location corresponding to second literal, request completes at decision epoch

4k earning revenue 2 and on assigning a server from the location corresponding

to the third literal, request completes at decision epoch 4k + 1 earning revenue

3.

• At decision epoch 4k− 1, a request is present between location L0 and the loca-

tion corresponding to first literal of kth clause with revenue 3. At decision epoch

4k, a request is present between location L0 and the location corresponding to

second literal of kth clause with revenue 2. Similarly, at the decision epoch

4k+1, a request is present between locations L0 and the location corresponding

to the third literal of kth clause with revenue 1.

The requests at decision epoch 4k−1, 4k and 4k+1 can be assigned a server only

from location L0. The server will be available in location L0 only if the request

at decision epoch 4k − 2 is served. As there is only one request available at

the decision epoch 4k − 2, maximum one of these three requests can be served.

The maximum revenue which can be earned by serving the requests between

decision epochs 4k − 2 to 4k + 1 is 4.

After serving the request at decision epoch 4k − 2 and one of the requests at

decision epochs 4k− 1, 4k or 4k+ 1 such that total revenue is 4, the availability

of servers in the locations at decision epoch 4k + 2 will be same as decision

epoch 4k − 2. Therefore, next clause will be evaluated for the same assignment

of variables.
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We now show that there is an assignment of values to the variables in the 3-SAT

instance so that the formula evaluates to true if and only if there exists a solution to

the U-OFLYMPIAD problem with objective value V + 4L.

The “if” direction: Suppose there exists a solution with the objective value

V +4L. As maximum revenue which can be earned by serving the requests between

decision epochs 4k − 2 and 4k + 1 is 4 and the maximum revenue earned at first

decision epoch is V , it means that V requests are assigned a server at first decision

epoch earning a total revenue V and one request is served at each of the decision

epochs 4k−2,∀k = 1..L and one request is served from every three decision epochs

4k−1, 4k and 4k+1 earning a total revenue of 4L. The variable xi is set to true if at

first decision epoch location Li server is assigned to the request having destination

in location Li otherwise it is set to false.

This will be a solution to 3-SAT instance as all the request at decision epoch 4k−

2 are served (i.e., all clauses are true) and as the revenue earned between decision

epochs 4k − 2 and 4k + 1 is 4, at decision epoch 4k + 2 the servers availability is

same as at decision epoch 2.

So if there is a solution to the U-OFLYMPIAD problem, we can find an assign-

ment for 3-SAT instance.

The “only if” direction: Suppose there is an assignment of values to the vari-

ables such that the 3-SAT formula evaluates to true. So at decision epoch 1, if xi is

true, we assign Li server to request having destination in location Li otherwise it is

assigned to the request having destination in location L′i. Therefore, revenue earned

at decision epoch 1 will be V . Now, as the 3-SAT formula evaluates to true, at de-

cision epoch 2, we will have at least one server available to serve the request. If the

first literal of the first clause is true we assign it to request at decision epoch 2 and

serve the request at decision epoch 3 earning a revenue of 4. If first literal is false

but second literal is true, then we assign it to request at decision epoch 2 and serve

the request at decision epoch 4 earning a revenue of 4. If first and second literal

are false but the third literal is true then we assign it to request at decision epoch 2
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and serve the request at decision epoch 5 earning a revenue of 4. Therefore we can

serve request at decision epoch 2 and one of the requests at decision epoch 3, 4 or

5 and earn a total revenue of 4. At decision epoch 6 the servers, the availability of

servers will be same as at decision epoch 2. As all the clauses of 3-SAT evaluate

to true, the second clause will also be true and at decision epoch 6 we will have at

least one server available to serve the request. Therefore, for each clause in 3-SAT,

we will serve 2 requests earning a revenue of 4 resulting in objective value of the

U-OFLYMPIAD to be V + 4L �.

Example 4. We show the graphical representation in the Figure A.3 for an example

3-SAT clause (x1∨x2∨x3)∧(x1∨¬x2∨¬x3). Initially, there is one server available

in location L1, L2 and L3 denoted by flow of 1 from the source S. At each decision

epoch, the circular nodes represent the server location nodes and rectangular nodes

represent the request nodes with vertex capacity as the number of requests between

the location pairs. The edge between the server node and the request node at a

decision epoch represent that server can be assigned to the request. The revenue

obtained on assigning a server to the request is marked on the edge. The value of

flow on the edge will represent the number of location servers assigned to request.

At first decision epoch, depending on the assignment of server to the requests, the

value of x1, x2, x3 will be 1 or 0 (true or false). At second decision epoch, the re-

quest node has edges from L1, L2 and L3. That is the server will be assigned to

the request if one of these locations has a server available. Also as the capacity of

node is 1, only one of the servers from these locations will be assigned a request.

If server of L1 is assigned to the request at decision epoch 2, the black edges rep-

resent the movement of server. After serving the request at decision epoch 3, the

server will become available in the location L1 again. Similarly green edges show

the movement of server if server from location L2 is assigned and orange edges

show the movement of server, if server from location L3 is assigned. Unassigned

servers at decision epoch 2, will remain in the same locations and their movement

is represented through dotted lines in the graph. At decision epoch 6, the server
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distribution in the locations will be same as decision epoch 2 as the servers which

moved between decision epoch 2 and 6 came back into the same location at decision

epoch 6.
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Figure A.3: Example clause - (x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

A.2.1 Proof of Proposition 3

Proposition 3: Solving TSS for more than one sample is an NP-hard problem irre-

spective of the δ values.

Proof: To show that solving TSS for more than one sample is NP-hard, we re-
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duce the 3-SAT problem to TSS. We construct an instance of TSS for any arbitrary

instance of 3-SAT with L clauses and V variables. We show that we obtain the op-

timal value of V + 1 for TSS if and only if there exists an assignment of variables

such that the 3-SAT clause evaluates to true.

Each clause of 3-SAT corresponds to one sample in TSS. Each sample has one

request, i.e., if the clause evaluates to true, request in the sample is served by a server

else it will not be served. The first stage requests are created so that they consider

all possible (true/false) values for the variables. Intuitively, the first stage decides

the assignment of variables present in clauses and the second stage evaluates the

clauses for those variable assignments.

The detailed steps are as follows:

• If there are V variables L clauses we create 2V + L locations, denoted by

{Li, L
′
i, i <= V } and {Lsk, k = 1, 2, ..., L}.

• Initially locations Li have one server each and other locations have zero servers.

• We create 2V requests at the first stage. Each location Li is the origin location of

two requests with one request having destination in Li and one request having

destination in L′i. Requests having origin in location Li can only be assigned

servers from locations Li. Therefore,D1 = {< Li, Li, 1 >,< Li, L
′
i, 1 > i <=

V }, f(Li, 1) = {Li}. All the requests have unit revenue.

• If the location Li server is assigned to the request having destination in location

Li then the variable xi is true else if it is assigned to the request having desti-

nation in the location L′i then xi is false. Requests served at the first decision

epoch determine the value of variables xi. Therefore, at the second stage, server

will be available in the location Li if xi is true, and will be available in location

L
′
i if xi is false.

• If there are n clauses, we create n requests (one request in each sample). |ξD| =

L and ξD,k2 has one element. Request in kth sample has origin in the location Lsk

and destination in L1.ξD,k2 = {< Lsk, L1, 1 >. All requests have unit revenue.

• If the kth clause has literal xi then location Li server can be assigned to the
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request in sample k, and if the kth clause has literal ¬xi, then location L′i can be

assigned to the request in sample k. On the other hand, if the kth clause does

not contain literal xi then location Li server can not be assigned to the request

in sample k. In short, request in kth sample can be assigned server only from 3

locations which correspond to literals present in kth clause.

• Now, the request in sample k will have at least one server available if clause

evaluates to true, i.e., if one of the literals has true value.

We now show that there is an assignment of values to the variables in the 3-SAT

instance so that the formula evaluates to true if and only if there exists a solution to

TSS with objective value V + 1.

The “if” direction: Suppose there exists a TSS solution with the objective value

V + 1, it means that V requests are assigned a server at the first stage and in all the

L samples requests are assigned a server. The variable xi is set to true if at the first

stage location Li server is assigned to the request having destination in location Li

otherwise it is set to false. This will be a solution to the 3-SAT instance as requests

in all the samples are served so at least one of the literals in each clause is set to

true. So if there is a solution to TSS instance, we can find an assignment for 3-SAT

instance.

The “only if” direction: Suppose there is an assignment of values to the variables

such that the 3-SAT formula evaluates to true. So if xi is true, we assign Li server

to request having destination in location Li otherwise it is assigned to the request

having destination in location L′i. Now, in each sample for each request, we will

have at least one server available so we can serve all the L requests at the second

stage. Therefore objective value of TSS will be V + 1
L
· L = V + 1. �

A.3 Proof of Proposition 4

Proposition 4 In U-OLYMPIAD without sample information and adversarial be-

havior from environment, when maximizing the number of requests satisfied for a

209



fixed number of servers N , the competitive ratio, c for any deterministic b-stage

algorithm (i.e., with information available up to the bth decision epoch) in a M-

decision epoch (M ≥ b) problem is

c ≤ 1

M − b+ 1

Proof. Before we describe the key elements of the proof, we first provide the

key terms that will be used in this proof:

• ALG denotes the value of the best deterministic b-stage algorithm over M

decision epochs.

• OPT denotes the value obtained by an M-Stage optimal algorithm over M

decision epochs.

• N is the number of servers available.

• Let OPTb denote the value of optimal solution for first b decision epochs

(i.e., the maximum number of requests which can be served in first b decision

epochs).

In order to show the upper bound on competitive ratio, we will consider different

cases on values that can be taken by o. Since we are computing competitive ratio

(least value of ALG(I)
OPT (I)

), we identify the least value of the numerator and the highest

value of the denominator.

(1) OPTb ≥ N , i.e., the number of requests served in the first b decision epochs is

greater than N

As ALG denotes the number of requests served by the best deterministic b-stage

algorithm over M decision epochs. Therefore, at the very least, it can obtain the
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optimal solution for b decision epochs and hence:

ALG ≥ OPTb

Since OPT is the value obtained by an M-stage optimal algorithm, it can po-

tentially serve N requests for every one of the remaining (M − b) time steps.

Therefore,

OPT ≤ (M − b) ·N +OPTb

Hence, we have:

c ≤
( OPTb
OPTb +N · (M − b)

) =
( 1

1 + (M−b)
OPTb
N

)

The above expression will be minimum when OPTb
N

is minimum. As OPTb ≥

N , the minimum value of OPTb
N

is 1. Therefore,

c ≤ 1

M − b+ 1

(2) OPTb < N , i.e., the number of requests served in first b decision epochs is

lower than N

As the number of requests served in first b decision epochs is lower than N ,

there will be some servers which did not move from their initial position. So if

optimal algorithm uses these servers to serve requests, deterministic algorithm

can also serve requests using them, As the minimum value of ALG and OPT

is OPTb, we take ALG = OPTb + x and OPT = OPTb + y. Assume the
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competitive ratio in this case is better than 1
1+M−b . Therefore,

OPTb + x

OPTb + y
<

1

1 +M − b
(A.12)

=⇒ (OPTb + x) · (M − b) +OPTb + x < OPTb + y (A.13)

=⇒ y > OPTb · (M − b) + x · (M − b+ 1) (A.14)

As the maximum number of requests served in remainingM−b decision epochs

is N · (M − b),

y ≤ N · (M − b) (A.15)

From equation (A.14) and (A.15),

OPTb · (M − b) + x · (M − b+ 1) < N · (M − b)

=⇒ x < (N −OPTb) ·
M − b

M − b+ 1

=⇒ x < N −OPTb

=⇒ x+OPTb < N

As the value of ALG in all M decision epochs is less than N , N − (OPTb + x)

servers did not move from their initial position. Therefore, even for the optimal

algorithm, N − (OPTb + x) servers will not be moving. So,

y ≤ (OPTb + x) · (M − b)

=⇒ OPTb + y ≤ (OPTb + x) · (M − b) +OPTb

=⇒ OPTb + y

OPTb + x
≤ (M − b) +

OPTb
OPTb + x

=⇒ OPTb + x

OPTb + y
≥ 1

OPTb
OPTb+x

+ (M − b)
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RHS > 1
M−b+1

. But we assumed OPTb+x
OPTb+y

< 1
M−b+1

which is a contradiction. Thus,

c ≤ 1

M − b+ 1
�

We can also extend the above reasoning for the case when objective is to max-

imize revenue. If revenue of any request C ∈ {Cmin, Cmax}, then at first b stages,

requests with revenue Cmin are served by both deterministic and optimal algorithm

and for the remaining decision epochs requests with revenue Cmax are served by

optimal algorithm. Therefore, the competitive ratio will be Cmin
Cmin+(M−b)·Cmax .

The competitive ratio is low mainly due to the assumption that server only moves

when it is assigned to a request. Therefore, the adversary can take more advantage

by creating requests in the locations which are not reachable from the server posi-

tion.

It should be possible to improve the competitive ratio on removing this assump-

tion. By taking decision to move randomly to another location if no request is avail-

able at the current stage, we may improve the competitive ratio against an online

adversary (i.e., the adversary who is not aware of the output of random decision).

A.4 Proof of Proposition 5

Proposition 5: In U-OLYMPIAD with sample information and stochastic behaviour

from environment according to the samples, when maximizing the number of re-

quests satisfied, the expected competitive ratio, cµ, of the TSS algorithm is

cµ ≤
3

4 · (M − 1)
+

3

4 ·M

where M is the number of decision epochs (M ≥ 3).

Proof: To prove the upper bound on the expected competitive ratio, we construct

a worst case distribution and show the value of expected competitive ratio for that

distribution. The value of expected competitive ratio for any specific distribution is
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upper bound on the true value.

We assume that there is a positive probability of having a request at second

decision epoch 1.As the TSS only knows distribution for the next decision epoch, we

create an instance such that TSS can not serve any requests after first two decision

epochs.

We construct a worst case instance with one server and two requests at first two

decision epochs. Initially, the server is located in location L1, the two requests are

request 1, r1 =< L1, L1 > and request 2, r2 =< L1, L2 >. Requests originat-

ing in location L1 can only be served by server in location L1. Similarly request

originating in location L2 can only be served by server in L2.

As per the distribution at decision epoch 2, the probability that request has origin

and destination in L1 is P1 and probability that request has origin and destination in

L2 is P2 and the probability is zero for all other location pairs. P1 and P2 are inde-

pendent of each other. Also as per the distribution, at subsequent decision epochs,

there is zero probability of a request having origin in location L1 and 1 probability

of requests having origin and destination at L2.

The TSS algorithm will make the first stage assignment based on the expected

number of requests served, i.e., it will maximize 1+ max(P1, P2). If P1 ≥ P2,

TSS will assign the server to request 1 at decision epoch 1 and will serve request

at decision epoch 2 with probability P1. TSS will not be able to serve any more

requests at subsequent decision epoch.

The M-stage optimal algorithm will assign server to request 2 at first decision

epoch. At second decision epoch, the M-stage optimal algorithm will be able to

serve the request if it originates in location L2 otherwise it will not. The M-stage al-

gorithm will be able to serve requests at all subsequent decision epochs2. Therefore,

1If the probability of having a request at second decision epoch is 0, TSS will not have any
future information available and will be as good as deterministic one-stage algorithm. In case of
zero probability, from Proposition 4, the competitive ratio will be 1

M .
2The number of decision epochs (M ) is greater than or equal to 3
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the expected competitive ratio is given by

cµ ≤ P1 · (1− P2) · 2

M − 1
+ P1 · P2 ·

2

M
+ (1− P1) · P2 ·

1

M

+ (1− P1) · (1− P2) · 1

M − 1
(A.16)

The four terms correspond to four possible cases of drawing 2 requests from the

given distribution. Rearranging the terms, we get

cµ ≤ (1 + P1) · 1

M − 1
− P2 · (1 + P1) · ( 1

M − 1
− 1

M
) (A.17)

From equation (A.17), as 1
M−1

> 1
M

, for a fix value of P1, on increasing the value of

P2 the expected competitive ratio decreases. As P1 ≥ P2, to minimize the expected

value of competitive ratio, we take P2 = P1. Substituting P2 = P1 in equation

(A.17), we get

cµ ≤ (1 + P1) · 1

M − 1
− P1 · (1 + P1) ·

( 1

M − 1
− (

1

M
)
)

The above expression will be minimum when the derivative (with respect to P1) is

0, i.e.,

(1) · 1

M − 1
− (1 + 2 · P1) · ( 1

M − 1
− 1

M
) = 0

=⇒ 2 · P1 · (
1

M − 1
− 1

M
) =

1

M

=⇒ P1 =
M − 1

2

As 0 ≤ P1 ≤ 1, and M is a positive integer, the possible value of P1 are 0, 0.5

and 1.0. Since, we have a positive probability of having request at second decision

epoch, P1 = 0 is not possible. Therefore, the competitive ratio will be minimum

when P1 = 0.5 or 1. On substituting P1 = P2 = 1.0, in equation (A.17), we get 2
M

and on substituting P1 = P2 = 0.5, in equation (A.17), we get 3
4·(M−1)

+ 3
4·M
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As 2
M
> 3

4·(M−1)
+ 3

4·M , for M ≥ 3, therefore

cµ ≤
3

4 · (M − 1)
+

3

4 ·M
(A.18)

As there exists an instance for which the expected competitive ratio of TSS can

not be more than 3
4·(M−1)

+ 3
4·M , we can say that 3

4·(M−1)
+ 3

4·M is the upper bound

on the expected competitive ratio of TSS. �
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Appendix B

Supplementary material for the

Chapter 4

B.1 Neural Network and Training Specifics

Location embeddings – Generated separately using a two-layer neural network that

attempts to estimate the travel times between two locations. As locations are part of

a street network, instead of this, node2vec or any other similar method can be used

to learn the embedding for each location. h(l) is used to denote the embedding of

location l.

Inputs: As mentioned in chapter 4, the state of server i is represented using

tuple < pi, t, Li >, where pi denotes the current location of server, t denotes the

current time and Li denotes the ordered list of future locations (pickup/dropoff lo-

cation of currently assigned requests) along with the cut off time by which the lo-

cation should be visited. Therefore, Li = [(l1, t1), (l2, t2), ..., (ln, tn)] where l1, l2..

denotes the list of locations and t1, t2... denotes the corresponding cutoff times. The

cutoff time for visiting current location is t. We use the location embeddings of each

location generate following input.

Ai = [(h(pi, t), (h(l1), t1), (h(l2), t2), ..., (h(ln), tn).

Additionally, we add information about the current decision epoch (t), the num-
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(a)

Figure B.1: Neural Network Architecture

ber of servers in the vicinity of server i (M i) and the total number of requests that

arrived in the epoch Dt. Due to the constraint that a single request can only be

assigned to a single server, multiple agents compete for the same request. As a con-

sequence, the value of being in a given state is dependent on the competition it faces

from other agents when it is in that state. Adding the information about other servers

and the number of current requests stabilizes learning significantly.The complete ar-

chitecture of the neural network which is used to predict the V-value is shown in the

Figure B.1a. The loss considered is the mean squared error and it is minimized us-

ing the Adam optimizer using default initial parameters. We need to explore despite

having deterministic transition and reward functions because the action space, in

our model, is stochastic.

This value function over individual servers is learned offline. When the approach

is running online, we compute the assignment (of customer requests to servers) that

maximizes the value function computed in the offline phase.
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B.2 Details of Baseline algorithm

There are some differences in our implementation of the approach by (Alonso-

Mora, Samaranayake, et al., 2017). We refer to our implementation as Baseline

and the approach by Alonso et.al. as Alonso approach. The differences are high-

lighted in table B.1. The difference in generation of feasible trips is due to following

practical considerations

1. Training time: To effectively train RL algorithms, we need a large number of

experiences. To generate samples to train from, we must run our approach

for some training days. Using (Alonso-Mora, Samaranayake, et al., 2017)’s

strategy for generating feasible trips takes significantly longer than the modi-

fication we propose. Given that our training time already takes multiple days,

this is not viable. During test time, we maintain the same strategy to ensure

coherence with what our value function is trained on.

2. Limitation due to academic computational resources: Our problem is com-

pletely parallelisable across different servers and so, in commercial set-ups,

the consideration above would not stay relevant. In our case, however, we are

bound by academic infrastructure.

This is not a limitation for our approach. We expect the results of both the

baseline and our approach improve proportionally if the feasible trips are generated

as proposed in the paper by (Alonso-Mora, Samaranayake, et al., 2017).

B.2.1 Rebalancing

Rebalancing empty servers has a significant impact on the number of requests served

(Wallar, Van Der Zee, Alonso-Mora, & Rus, 2018). Similar to (Alonso-Mora,

Samaranayake, et al., 2017), we perform a re-balancing of unassigned servers to

high demand areas after each batch assignment. But unlike them we do not per-

form rebalancing by using only current unserved requests. This is because by using
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Alonso approach Baseline
Generation of Feasible Trips

1. Generate RV graph by checking feasibility 1. Same
of each request with each server. Keep only

30 closest servers for each request.

2. Perform exhaustive search for up to 4 2. Insert request into current server path,
requests (in the server currently and in the irrespective of number of requests, for faster

proposed trip). For more requests, check if computation.
the request can be inserted into the current

server path.

3. The exploration of feasible trips for a 3. Exploration is stopped when feasibility
server is stopped when a time limit of 0.2 constraints are evaluated 150 times. This is

seconds is reached. done to make the performance independent of
the processing speed.

Rebalancing Strategy

Number of servers rebalanced is All unassigned servers are rebalanced
min(unassigned servers, unassigned requests).

Table B.1: Differences between Baseline and Alonso Approach

RebalanceServers(t):

min
∑
j∈Dt

∑
i∈Vtu

T (pi, oj) ·mt
ij (B.1)

subject to
∑
i∈Vtu

mt
ij ≤ ntj ::: ∀j ∈ Dt (B.2)∑

j∈Dt
mt
ij = 1 ::: ∀i ∈ Vtu (B.3)

0 ≤ mt
ij ≤ 1 ::: ∀i, j (B.4)

Table B.2: Optimization Formulation for Rebalancing unassigned servers
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only current unserved requests for rebalancing, number of servers rebalanced will

be minimum of unassigned servers and requests leaving majority of servers not be-

ing rebalanced in case of low demand scenarios. This means that servers that could

be stuck in areas where requests are infrequent. Our approach differs from (Wallar

et al., 2018) as we do not use the concept of ’regions’ which are disjoint sets of

locations. We work with individual locations, instead.

Therefore, we sample min(500,|V|) requests from the number of requests seen

so far and rebalance all servers to move to the areas of these sampled request by

performing the optimization provided in table B.2.

Let V tu denotes the set of unassigned servers at decision epoch t and Dt denotes

the set of sampled customer requests (as described above). mt
ij is a binary variable

indicating that server i is moving towards customer request j. The objective of the

linear optimization program is to minimize the sum of travel times. We use T (pi, oj)

to denote the time taken to travel from initial location pi of server i to the origin oj of

request j. Constraint B.2 ensures that each server is assigned to exactly one request.

Constraint B.3 ensures that each customer request is assigned to exactly ntj servers

where ntj = b |V
t
u|

500
c or d |V

t
u|

500
e such that

∑
j∈Dt n

t
j = |V tu|.
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Appendix C

Supplementary material for the

Chapter 8

LPBatch:

max
∑
t∈T

∑
u∈U

∑
v∈V

wtu,v · xtu,v

s.t.
∑
u∈U

xtu,v ≤ qtv ::: ∀v, t (C.1)∑
t′<t

∑
v′∈V

xt
′

u,v′ · Pr[ct
′

u,v′ > t− t′] +
∑
v∈V

xtu,v ≤ 1,∀u, t

(C.2)
0 ≤ xtu,v ≤ 1 ::: ∀u, v, t (C.3)

Table C.1: Optimization Formulation - Unit-Capacity Batch Arrival

C.1 Proof of Proposition 6

Proposition 11. The optimal value of the LPBatch provides a valid upper bound on

the offline optimal value.

Proof: To show that the optimal value of the LP provides a valid upper bound on

the offline optimal value, we prove that the expected value of the optimal matching

is less than or equal to the optimal value of the LP. We have two distributions,
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first one corresponding to the arrival of vertices (ptv) and another corresponding

to the number of rounds of unavailability (ctu,v). To prove that the optimal value

of LP provides a valid upper bound in the presence of both distributions, similar

to earlier works (Sankararaman, 2019), we need to make an assumption that the

optimal assignment only depends on the arrival distribution and is independent of

the value of ctu,v
1.

Consider a realization of arrivals denoted by sequence a. Let mt
v(a) denotes

the number of vertices of type v arriving in round t for arrival sequence a. Sim-

ilarly, consider a realization of the number of rounds of unavailability denoted by

sequence r, where ctu,v(r) denotes the number of rounds for which server u becomes

unavailable on matching with vertex of type v in sequence r. Let δ(ct′u,v(r) > t− t′)

is an indicator variable denoting that the number of rounds for which server u be-

comes unavailable on being assigned to vertex of type v in round t′ is greater than

t− t′ rounds in sequence r. Now, for any arrival sequence a and any realization of

the number of rounds of unavailability r, the offline solution can be computed by

solving the optimization program in Table C.2 2.

As mentioned before, we make an assumption that the optimal assignment is

independent of the realization of the number of rounds of unavailability, i.e., it only

depends on a and not on r. Therefore, we use x∗(a) to denote the optimal solution

of the formulation in Table C.2 for sequence a and r. The expected number of

times edge (u, v) is matched at t is given by
∑

a x
∗,t
u,v(a) · P (a). To prove that, the

LP in Table C.1 is a valid upper bound on the offline optimal value, we show that

∀u, v, t
∑

a x
∗,t
u,v(a) · P (a) is a feasible solution to the LP.

The optimization in Table C.2 is solved for each sequence a and r. As x∗(a)

denotes the optimal assignment for the sequence a and r, therefore, x∗(a) satisfies

the constraints of the formulation in Table C.2. Hence, we get

1Instead of this, we can also assume that ctu,v is a known constant which is a weaker assumption
than assuming that the optimal assignment is independent of distribution. The proof is similar for
both assumptions.

2We index each of mt
v , xtu,v by a and ctu,v by r to denote the instance for sequence a and r.
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∑
u∈U

x∗,tu,v(a) ≤ mt
v(a) ::: ∀v, t (C.4)

∑
t′<t

∑
v′∈V

x∗,t
′

u,v′(a) · δ(ct′u,v′(r) > t− t′) +
∑
v∈V

x∗,tu,v(a) ≤ 1 ::: ∀u, t (C.5)

Multiplying Equations (C.4) and (C.5) by P (a) ·P (r) 3, probability of sequence

a and r, and performing summation over a and r, we get

∑
u∈U

∑
a

∑
r

x∗,tu,v(a) · P (a) · P (r) ≤
∑
a

∑
r

mt
v(a) · P (a) · P (r) ::: ∀v, t (C.6)

∑
t′<t

∑
v′∈V

∑
a

∑
r

x∗,t
′

u,v′(a) · δ(ct′u,v′(r) > t− t′) · P (a) · P (r)

+
∑
v∈V

∑
a

∑
r

x∗,tu,v(a) · P (a) · P (r) ≤
∑
a

∑
r

1 · P (a) · P (r) ::: ∀u, t

(C.7)

∑
a

∑
r 1 ·P (a) ·P (r) = 1 and

∑
a

∑
rm

t
v(a) ·P (a) ·P (r) =

∑
am

t
v ·P (a) denotes

the expected number of vertices of type v arriving in round t. Therefore,

∑
a

mt
v · P (a) = qtv

.

As x∗ is independent of r, therefore,

∑
a

∑
r

x∗,tu,v(a) · P (a) · P (r) =
∑
a

x∗,tu,v(a) · P (a)

On substituting these values, we get,

3a and r are independently drawn from the distributions.
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max
∑
t∈T

∑
u∈U

∑
v∈V

wtu,v · xtu,v(a) (C.10)

s.t.
∑
u∈U

xtu,v(a) ≤ mt
v(a) ::: ∀v, t (C.11)∑

t′<t

∑
v′∈V

xt
′

u,v′(a) · δ(ct′u,v′(r) > t− t′) +
∑
v∈V

xtu,v(a) ≤ 1 ::: ∀u, t

(C.12)
xtu,v(a) ∈ {0, 1} (C.13)

Table C.2: Optimization Formulation - Batch Arrival - For a fixed sequence a and r

∑
u∈U

∑
a

x∗,tu,v(a) · P (a) ≤ qtv ::: ∀v, t (C.8)

∑
t′<t

∑
v′∈V

∑
a

x∗,t
′

u,v′(a) · P (a) ·
∑
r

δ(ct
′

u,v′(r) > t− t′) · P (r)

+
∑
v∈V

∑
a

x∗,tu,v(a) · P (a) ≤ 1 ::: ∀u, t (C.9)

As, ∑
r

δ(ct
′

u,v′(r) > t− t′) · P (r) = Pr(ct
′

u,v′ > t− t′)

Therefore, the Equations (C.8) and (C.9) are same as the constraints of the op-

timization formulation in Table C.1 with xtu,v =
∑

a x
∗,t
u,v(a) · P (a). Therefore,∑

a x
∗(a) · P (a) is a feasible solution to the LP in Table C.1. As the value of the

optimal solution is greater than or equal to the value of any feasible solution, hence

it is proved that the optimal value of LP provides a valid upper bound on the offline

optimal value.

C.2 Proof of Proposition 7

Proposition 12. The online algorithm ADAPBatch is 1
2

competitive.

Proof: The proof proceeds in two steps:
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1. We first prove that the maximum value of γ for which the assignment rule of

ADAPBatch is valid is 1
2
.

2. Next, we prove that the online algorithm is γ competitive. As the maximum

value of γ for which the assignment rule is valid is 1
2
, therefore, the online

algorithm is 1
2

competitive.

Computing Maximum value of γ for which the assignment rule is valid:

Since x∗,tu,v ≥ 0,∀u, v, t, the assignment rule will always generate a positive value.

Therefore, the only condition which should be satisfied for the batch assignment

rule to be valid is,

x∗,tu,v · γ
bt · ptv · βtu,i

≤ 1 ::: ∀u, v, i, t (C.14)

Using the expression qtv = bt · ptv in Constraint (C.1) of the optimization formu-

lation in Table C.1, we have,

∑
u

x∗,tu,v ≤ bt · ptv =⇒ x∗,tu,v ≤ bt · ptv

Substituting this in Equation (C.14) and rearranging terms, we get

βtu,i ≥ γ, ∀u, i, t (C.15)

Therefore, we focus on finding the value of βtu,i,∀u, i, t. We use mathematical in-

duction to prove that βtu,i ≥ 1− γ, ∀u, i, t.

Proving βtu,i ≥ 1 − γ, ∀u, i, t: βtu,i denotes the probability that the server u is safe

in round t while considering the ith vertex. Initially, as all the servers are available,

therefore,

β1
u,1 = 1 ≥ 1− γ, ∀u
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Please note that βtu,i ≥ βtu,i−1,∀i > 0, therefore, we only show the computation

for the value of β1
u,b1 .

βtu,i for any i and t is computed by computing the probability that u is assigned

to any v before round t step i such that it has not rejoined the system yet.

β1
u,b1 = 1−

∑
v

b1−1∑
i=1

β1
u,i·p1

v·
x∗,1u,v · γ

b1 · p1
v · β1

u,i

= 1−(b1−1)·
∑
v

x∗,1u,v · γ
b1

≥ 1−γ(As b1 ≥ 1)

As it is valid for t = 1, we prove it by induction. Assume that it is valid for

all t′ < t, i.e., in online case the edge (u, v) is matched x∗,tu,v · γ times in round t.

Therefore,

βtu,1 = 1−
∑
v

∑
t′<t

(x∗,t
′

u,v · γ · Pr(ct
′

u,v > t− t′))

From Equation (C.2) of the optimization program in Table C.1, we have

∑
v

∑
t′<t

(x∗,t
′

u,v · γ · Pr(ct
′

u,v > t− t′)) ≤ γ −
∑
v

x∗,tu,v · γ

Multiplying both sides of the above equation by -1, we get

−1 ·
∑
v

∑
t′<t

(x∗,t
′

u,v · γ · Pr(ct
′

u,v > t− t′)) ≥ −1 · (γ −
∑
v

x∗,tu,v · γ)

Adding 1 on both sides in above equation, we get

1−
∑
v

∑
t′<t

(x∗,t
′

u,v · γ · Pr(ct
′

u,v > t− t′)) ≥ 1− γ +
∑
v

x∗,tu,v · γ

1−
∑
v

∑
t′<t

(x∗,t
′

u,v · γ · Pr(ct
′

u,v > t− t′)) ≥ 1− γ +
∑
v

x∗,tu,v · γ

Therefore,

βtu,1 ≥ 1− γ +
∑
v

x∗,tu,v · γ ≥ 1− γ
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Similarly, we compute βtu,bt , by computing the probability that u is assigned to

any v before round t step i such that it has not rejoined the system yet.

βtu,bt = 1−
∑
v

∑
t′<t

(x∗,t
′

u,v · γ · Pr(ct
′

u,v > t− t′))−
∑
v

bt−1∑
i=1

βtu,i · ptv ·
x∗,tu,v · γ

bt · ptv · βtu,i

=⇒ βtu,bt ≥ 1− γ +
∑
v

x∗,tu,v · γ −
∑
v

(bt − 1) ·
x∗,tu,v · γ
bt

≥ 1− γ (C.16)

Therefore, βtu,i ≥ 1 − γ, ∀u, i, t. From Equation (C.15), for assignment rule to

be valid βtu,i ≥ γ. Therefore, the maximum possible value of γ is the solution of

equation 1− γ = γ =⇒ γ = 1
2
.

Online Algorithm ADAPBatch is γ competitive: Let M t
u,v,i is an indicator

variable denoting that the server u is tried for assignment to vertex of type v in

round t while processing ith vertex of the batch. Let N t
u,i is an indicator variable

denoting that the server u is available in round t while processing ith vertex of the

batch and Ot
v,i denotes that the vertex of type v is processed as ith vertex in round

t. - Therefore, probability that the server u is assigned to the vertex of type v while

processing ith vertex of the batch in round t is given by

P [M t
u,v,i = 1] · P [N t

u,i = 1] · P [Ot
v,i = 1] =

x∗,tu,v · γ
bt · ptv · βtu,i

· βtu,i · ptv =
x∗,tu,v · γ
bt

Expected Number of times vertex of type v is matched to u in round t =

bt ·
x∗,tu,v · γ
bt

= x∗,tu,v · γ

i.e., in online case the edge (u, v) is matched x∗,tu,v · γ times in round t.

As each edge is made with the probability x∗,tu,v · γ and the maximum value of γ

for which the assignment rule is valid is 1
2
, therefore, using Lemma 1 the competitive

ratio of the algorithm is γ = 1
2
.
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Lemma 1. (Sankararaman, 2019) Let x∗ denote the optimal solution to LP in Table

C.1. Suppose we have that for every edge (u, v) at any round t, Pr[(u, v) is included

in the matching] ≥ γ · x∗,tu,v then the competitive ratio is at least γ.

C.3 Expected Number of times group of type vg can

be formed in round t

Let qtvg denote the expected number of times group of type vg can be formed in

round t. As each of the bt vertices are sampled independently from a categorical

distribution ptv, ∀v, we can consider it as having bt trials and use Yv,i as an indicator

variable denoting that v is sampled in the ith trial (as the ith vertex or not, out of

bt vertices). Please note that Yv,i · Yv′,i = 0, v 6= v′ and if i 6= j, Yv,i and Yv′,j are

independent.

We first consider a simple case, where vg = (v, v′), v 6= v′. Therefore, if any of

two different vertices are of type v and v′ then we can form the group of type vg.

So, we have

qtvg = E
[ ∑
i,j;i 6=j

Yv,i · Yv′,j
]

By linearity of expectation, we get

qtvg =
∑
i,j;i 6=j

E[Yv,i · Yv′,j] (C.17)

As each vertex is independently sampled, the event of sampling ith vertex and
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jth vertex are independent of each other. Therefore,

qtvg =
∑
i,j;i 6=j

E[Yv,i] · E[Yv′,j]

E[Y t
v,i] = ptv

E[Y t
v′,j] = ptv′

qtvg =
∑
i,j;i 6=j

ptv · ptv′

qtvg = bt · (bt − 1)ptv · ptv′

Similarly if we have vg = (v, v), we can form the group if any of the two vertices

are of type v

qtvg = E
[ ∑
i,j;i<j

Yv,i · Yv,j
]

By linearity of expectation

qtvg =
∑
i,j;i<j

E[Yv,i · Yv,j]

As each vertex is independently sampled, event of sampling ith vertex and jth

vertex are independent. Therefore,

qtvg =
∑
i,j;i<j

E[Yv,i] · E[Yv,j]

E[Y t
v,i] = ptv

qtvg =
∑
i,j;i<j

ptv · ptv

qtvg =
bt · (bt − 1)

2
· ptv · ptv′

Now extending the above reasoning to any group of type vg, a group of type vg

can be formed if we have nv,vg vertices of type v for each v ∈ vg.
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qtvg = E
[ ∏
v∈vg

∑
iv1 ,i

v
2 ,..,i

v
nv,vg

Yv,iv1 · Yv,iv2 · .. · Yv,ivnv,vg
]

(C.18)

In the above expression, ivl < ivm ifm > l (Please refer to above derivation for

simple case when vg = (v, v).)

When ivl = iv
′
m the product of Yv,ivl and Yv′,iv′m will be 0. Also E[Yv,ivl ] = ptv,∀l,

therefore, the expression in Equation (C.18) is equivalent to

WS ·
∏
v∈vg

(ptv)
nv,vg

where WS denotes the number of ways to select the ivl indices in Equation
(C.18) such that the the indicator variables multiplied provide a value 1. Therefore,
if group of type vg = (v1, v2, ..., vk) then this is equivalent to selecting nv1,vg vertices
of type v1 from bt followed by selecting nv2,vg vertices from bt− nv1,vg vertices and
so on. Therefore, WS for vg = (v1, v2, ..., vk) is computed as follows

WS =
(bt)!

(bt − nv1,vg )! · (nv1,vg )!
·

(bt − nv1,vg )!

(bt − nv1,vg − nv2,vg ) · (nv2,vg )!
· · ·

(bt −
∑k−1
i=1 nvi,vg )!

(nvk,vg )! · (bt −
∑k
i=1 nv−k,vg )!

(C.19)

WS =

∏|vg |
i=0(bt − i)∏k
i=1(nvi,vg)!

Now for any vg WS can be written as follows

WS =

∏|vg|
i=0 (bt − i)∏
v∈vg (nv,vg )!

(C.20)

Therefore, qvg =
∏|vg |
i=0 (bt−i)∏

v∈vg (nv,vg )!
·
∏
v∈vg

(ptv)
nv,vg
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LPShare:

max
∑
t∈T

∑
u∈U

∑
vg∈Vg

wtu,vg · xtu,vg (C.21)

s.t.
∑
t′<t

∑
vg′∈Vg

xt
′

u,vg′
· Pr[ct′

u,vg′
> t− t′]+

+
∑
vg∈Vg

xtu,vg ≤ 1 ::: ∀u, t (C.22)∑
vg ;v∈vg

∑
u∈U

nv,vg · xtu,vg ≤ qtv ::: ∀v, t (C.23)∑
u∈U

xtu,vg ≤ qtvg ::: ∀vg, t (C.24)

0 ≤ xtu,vg ≤ 1 ::: ∀u, vg, t (C.25)

Table C.3: Optimization Formulation - Multi-Capacity

C.4 Details about the Optimization Formulation

LPShare

Let the number of vertices of type v available in round t ismt
v. We usemt

vg to denote

the number of groups of type vg which can be formed in round t. nv,vg denotes the

number of vertices of type v present in the group of type vg. Let xtu,vg denotes the

assignment of server u to the group of type vg. Let ytv,vg denotes the flow on the

edge from v to vg where v is a part of the group of type vg. Therefore, we will have

following flow preservation constraints:

∑
t′

∑
vg′∈Vg

xt
u,vg′
· Pr(ct′

u,vg′
> t− t′) +

∑
vg∈Vg

xtu,vg ≤ 1 ::: ∀u, t (C.26)

∑
u∈U

xtu,vg ≤ mt
vg ::: ∀vg, t (C.27)

∑
vg ;v∈vg

ytv,vg · nv,vg ≤ mt
v ::: ∀v, t (C.28)

∑
v∈vg

nv,vg · ytv,vg ≤ sizeof(vg) ·mt
vg ::: ∀vg, t (C.29)

ytv,vg =
∑
u∈U

xtu,vg ::: ∀vg; v ∈ vg, t (C.30)
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The Equation (C.30) is the conditional equal flow constraint which states that the

total incoming flow to a group will be equal to the total outgoing flow to each of the

vertex which is a part of the group.

Substituting Equation (C.30) in Equation (C.28), we get

∑
vg ;v∈vg

∑
u∈U

xtu,vg ≤ mt
v ::: ∀v, t (C.31)

Asmt
vg ≥ min(mt

v), if mt
v is an integer, therefore, Equation (C.27) is redundant

in the presence of Equation (C.31).

Similarly on substituting Equation (C.30) in Equation (C.29), we get,

∑
v∈vg

nv,vg
∑
u∈U

xtu,vg ≤ sizeof(vg) ·mt
vg ::: ∀vg, t (C.32)

∑
u∈U

xtu,vg ≤ mt
vg ::: ∀vg, t (C.33)

This is same as Equation (C.27) which is redundant.

Therefore, we get the optimization formulation provided in Table C.4. Please

note that we keep the redundant constraint in the optimization formulation.

We replace mt
vg and mt

v by qtvg and qtv which denote the expected number of

groups/vertices. The equations remains same as Equations (C.26) - (C.30).

But unlike earlier case, we can not say that Equation (C.27) is redundant in

presence of Equation (C.31).

This is because qtv can lie between 0 and 1.

Therefore, we get the optimization formulation presented in Table C.3.

C.5 Proof of Proposition 8

Proposition 13. The optimal value of the LPShare provides a valid upper bound on

the offline optimal value.

Proof: The proof is similar to the proof of Proposition 6.
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To show that the LP provides a valid upper bound on the offline optimal solution,

we prove that the expected value of matching is less than or equal to the optimal so-

lution of LP. We have two distributions, one corresponding to the arrival of vertices

(ptv) and another corresponding to the number of rounds of unavailability (ctu,vg ). To

prove that the optimal value of the LP provides a valid upper bound in presence of

both distributions, similar to earlier works (Sankararaman, 2019), we need to make

an assumption that the optimal assignment only depends on the arrival distribution

and is independent of the value of ctu,vg
4.

Consider a realization of arrivals denoted by sequence a. Let mt
v(a) denotes the

number of vertices of type v arriving in round t for arrival sequence a and mt
vg(a)

denotes the number of groups of type vg which can be formed in round t in the

arrival sequence a. Similarly, consider a realization of the number of rounds of un-

availability denoted by sequence r, where ctu,vg(r) denotes the number of rounds for

which server u becomes unavailable on matching with group of type vg in sequence

r. δ(ct′u,vg(r) > t − t′) is an indicator variable denoting that the number of rounds

for which server u becomes unavailable on being assigned to group of type vg in

round t′ is greater than t − t′. Now, for any arrival sequence a and any realization

of the number of rounds of unavailability r, the offline solution can be computed by

solving the optimization program in Table C.4 5.

As mentioned before, we make an assumption that the optimal assignment is

independent of the realization of the number of rounds of unavailability, i.e., it only

depends on a and not r. Therefore, we use x∗(a) to denote the optimal solution of

the formulation in Table C.4 for sequence a and r. The expected number of times

(u, vg) is matched at t is given by
∑

a x
∗,t
u,vg(a) · P (a). To prove that, the optimal

value of LP in Table C.3 is a valid upper bound on the optimal solution, We show

that ∀u, vg, t
∑

a x
∗,t
u,vg(a) · P (a) is a feasible solution to the LP.

4Instead of this, we can also assume that ctu,vg is a known constant which is a weaker assumption
than assuming that the optimal assignment is independent of distribution of the number of rounds of
unavailability. The proof is similar for both assumptions.

5We index each of mt
v , mt

vg , xtu,v by a and ctu,vg by r to denote the instance for sequence a and
r.
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The optimization in Table C.4 is solved for each sequence a and r. As we

used x∗(a) to denote the optimal solution for the sequence a and r, therefore, x∗(a)

satisfies the constraints of formulation in Table C.4. Hence, we get

∑
t′<t

∑
vg′∈Vg

x∗,t
′

u,vg′
(a) · δ(ct′

u,vg′
(r) > t− t′) +

∑
vg∈Vg

x∗,tu,vg(a) ≤ 1 ::: ∀u, t (C.34)

∑
vg ;v∈vg

∑
u∈U

nv,vg · x∗,tu,vg(a) ≤ mt
v(a) ::: ∀v, t (C.35)

∑
u∈U

x∗,tu,vg(a) ≤ mt
vg(a) ::: ∀vg, t (C.36)

Multiplying Equations (C.34),(C.35) and (C.36) by P (a) · P (r), probability of

sequence a and r, and performing summation, we get

∑
a

∑
r

∑
t′<t

∑
vg′∈Vg

x∗,t
′

u,vg′
(a) · δ(ct′

u,vg′
(r) > t− t′) · P (a) · P (r)+

∑
a

∑
r

∑
vg∈Vg

x∗,tu,vg(a) · P (a) · P (r) ≤
∑
a

∑
r

1 · P (a) · P (r) ::: ∀u, t

(C.37)∑
a

∑
r

∑
vg ;v∈vg

∑
u∈U

nv,vg · x∗,tu,vg(a) · P (a) · P (r) ≤

∑
a

∑
r

mt
v(a) · P (a) · P (r) ::: ∀v, t (C.38)

∑
a

∑
r

∑
u∈U

x∗,tu,vg(a) · P (a) · P (r) ≤
∑
a

∑
r

mt
vg(a) · P (a) · P (r) ::: ∀vg (C.39)

∑
a

∑
r 1 · P (a) · P (r) = 1 and

∑
a

∑
rm

t
v(a) · P (a) · P (r) =

∑
am

t
v(a) ·

P (a) denotes the expected number of vertices of type v arriving in round t and∑
a

∑
rm

t
vg(a) · P (a) · P (r) =

∑
am

t
vg(a) · P (a) denotes the expected number of

groups of type vg formed in round t. Therefore,

∑
a

mt
v(a) · P (a) = qtv
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. ∑
a

mt
vg(a) · P (a) = qtvg

.

Also, as x∗ is independent of r, therefore,

∑
a

∑
r

x∗,tu,vg(a) · P (a) · P (r) =
∑
a

x∗,tu,vg(a) · P (a)

On substituting these values, we get,

∑
a

∑
t′<t

∑
vg′∈Vg

x∗,t
u,vg′

(a) · P (a)
∑
r

δ(ct
′

u,vg′
(r) > t− t′) · P (r)

+
∑
a

∑
vg∈Vg

x∗,tu,vg(a) · P (a) ≤ 1 ::: ∀u, t (C.40)

∑
a

∑
vg ;v∈vg

∑
u∈U

nv,vg · x∗,tu,vg(a) · P (a) ≤ qtv ::: ∀v, t (C.41)

∑
a

∑
u∈U

x∗,tu,vg(a) · P (a) ≤ qtvg ::: ∀vg, t (C.42)

As,

∑
r

δ(ct
′

u,vg′
(r) > t− t′) · P (r) = Pr(ct

′

u,vg′
> t− t′)

On substituting these values, Equations (C.40),(C.41) and (C.42) become sim-

ilar to the constraints of the optimization formulation in Table C.3 with xtu,vg =∑
a x
∗,t
u,vg(a) ·P (a). Therefore,

∑
a x
∗(a) ·P (a) is a feasible solution to LP in Table

C.3. Hence it is proved that the LP provides a valid upper bound on the optimal

solution.
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max
∑
t∈T

∑
u∈U

∑
vg∈Vg

wtu,vg · xtu,vg(a) (C.43)

s.t.
∑
t′<t

∑
vg′∈Vg

xt
′

u,vg′
(a) · δ(ct′

u,vg′
(r) > t− t′) +

∑
vg∈Vg

xtu,vg(a) ≤ 1 ::: ∀u, t

(C.44)∑
vg ;v∈vg

∑
u∈U

nv,vg · xtu,vg(a) ≤ mt
v(a) ::: ∀v, t (C.45)∑

u∈U

xtu,vg(a) ≤ mt
vg(a) ::: ∀vg (C.46)

xtu,vg(a) ∈ {0, 1} ::: ∀u, vg, t (C.47)

Table C.4: Optimization Formulation - Multi-Capacity - For a fixed sequence a and
r

C.6 Example showing the groups considered at

different steps

Example 3. Suppose V = {v1, v2}, bt = 3. Out of the three incoming vertices -

two vertices are of type v1 and one vertex is of type v2. To distinguish between two

vertices of type v1, we refer them by v1(1) and v1(2). On random shuffling of these

three vertices, they are present in the following order:

Sequence : (v1(1), v2, v1(2))

Step (1, 2) represent that the first and second vertex in the above sequence is con-

sidered. We define an ordering over types of vertices. In this example, let v1 ¿ v2.

So, whenever we are considering group formed with these two types of vertices, we

will always consider (v1, v2) and not (v2, v1). Therefore, in this example, we will

consider the group at (1, 2) and (3, 2) not at (2, 1) or (2, 3). This ensures that we

are processing each group only once.

Step vg Step vg Step vg

(1,1) v1(1) (2,1) (v2, v1(1)) (3,1) (v1(2), v1(1))
(1,2) (v1(1), v2) (2,2) v2 (3,2) (v1(2), v2)
(1,3) (v1(1), v1(2)) (2,3) (v2, v1(2)) (3,3) v1(2)

In another arrival sequence, two vertices are of type v2 and one vertex is of type
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v1. To distinguish between these two vertices of type v2, we refer to them by v2(1)

and v2(2). On random shuffling of these three vertices, they are present in following

order:

Sequence : (v2(1), v1, v2(2))

In this case the groups will be processed as shown in the below table,

Step vg Step vg Step vg

(1,1) v2(1) (2,1) (v1, v2(1)) (3,1) (v2(2), v2(1))
(1,2) (v2(1), v1) (2,2) v1 (3,2) (v2(2), v1)
(1,3) v2(1), v2(2)) (2,3) (v1, v2(2)) (3,3) v2(2)

So across these 2 sequences, we can see that the group of type (v1, v2) is pro-

cessed at 4 places: (1, 2)(2, 1), (2, 3)(3, 2) – Similarly if we create more sequences,

we will observe that the group of type (v1, v2) can be considered at 6 places (all

places except (1, 1)(2, 2)(3, 3)).

C.7 Complete proof of Proposition 9

Proof of Proposition 9: We now show the detailed steps of finding the maximum

value of

∏
v∈vg

(ptv)
nv,vg

P t
vg,(i,j)

used in the proof. For any values of i, j and t, we can com-

pute P t
vg ,(i,j) in terms of the probabilities of individual vertices in the group being

available. Let P t
v,i,(i,j) denotes the probability that the vertex of type v with label i

is available in round t at step (i, j). Similarly, P t
v,j,(i,j) denotes the probability that

the vertex of type v with label j is available in round t at step (i, j). Since the two

vertices with labels i and j are independent, the probability that both of them are

available for assignment at t is just a product of the two vertices being available.

Therefore, probability that a group of type vg is available in round t at step (i, j) is:

P tvg ,(i,j) =



P tv,i,(i,j) · P
t
v′,j,(i,j) where v

g = (v, v′), i 6= j,

P tv,i,(i,j) · P
t
v,j,(i,j) where v

g = (v, v), i 6= j,

P tv,i,(i,j) where v
g = (v), i = j

(C.48)
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P t
v,i,(1,1) and P t

v,j,(1,1) will be equal to ptv ∀v, t, i, j. From Equation (C.48), we can

see that to compute P t
vg ,(i,j), we need to compute P t

v,i,(i,j) and P t
v,j,(i,j)∀v, t, i, j. If

P t,−
v,i,(i,j) denotes the probability that the vertex with label i is assigned prior to step

(i, j) then

P tv,i,(i,j) = ptv − P
t,−
v,i,(i,j) (C.49)

Using the assignment rule in Equation (8.8) and considering the steps where vertex
of type v with label i is used, we get,

P tv,i,(i,j) = ptv − P
t,−
v,i,(i,j)

(C.50)

P tv,i,(i,j) = ptv

−
∑
u∈U

∑
vg

′
;v∈vg′

j−1∑
j′=1

xt
u,vg

′ · γ

htvg · P tvg′ ,(i,j′) · β
t
u,(i,j′)

· P t
vg

′
,(i,j′)

· βtu,(i,j′) · sv,vg,i,(i,j′)

−
∑
u∈U

∑
vg

′
;v∈vg′

i−1∑
i′=1

xt
u,vg

′ · γ

htvg · P tvg′ ,(i′,j) · β
t
u,(i′,j)

· P t
vg

′
,(i′,j)

· βtu,(i′,j) · sv,vg,i,(i′,j) (C.51)

where, sv,vg ,i,(i,j′) is a binary constant denoting that the vertex v ∈ vg is considered

as a vertex with label i in step (i, j′) or not. Please note that while the group of

type vg will be considered at htvg steps, when we are computing P t
v,i,(i,j), we will

not be considering all htvg steps but only the steps where vg is formed with v as a

vertex with label i. This is because we are computing the probability of vertex of

type v with label i being available at step (i, j). Therefore, in the Equation (C.51),

if |vg| = 2, at most bt−1 steps will affect the computation of P t
v,i,(i,j) and if |vg| = 1

then only one step will affect the computation 6. Let etvg ,i,(i,j) denote the maximum

number of steps (for group of type vg) which can affect the computation of P t
v,i,(i,j),

then

P tv,i,(i,j) ≥ p
t
v −

∑
u

∑
vg′ ,v∈vg′

xt
u,vg′
· γ · etvg ,i,(i,j)
htvg

(C.52)

6Please refer to the example present in the Section C.6 for more clarity
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For κ = 2, we have

etvg ,v,i,(i,j)

htvg
=



2
bt if |v

g| = 2 and vg = (v, v)

1
bt if |v

g| = 2 and vg = (v, v′)

1
bt if |v

g| = 1 and vg = (v)

Therefore,
et
vg,v,i,(i,j)

ht
vg

=
nv,vg

bt
. Substituting this in Equation (C.52), we get

P tv,i,(i,j) ≥ p
t
v −

∑
u

∑
vg
′
;v∈vg′

xt
u,vg′
· γ · nv,vg

bt
(C.53)

From the Constraint (8.5) in the optimization program of Table 8.1, we have,∑
vg ;v∈vg

∑
u∈U

nv,vg · xtu,vg ≤ bt · ptv. Therefore,

P tv,i,(i,j) ≥ ptv − γ · ptv =⇒ P tv,i,(i,j) ≥ (1− γ) · ptv (C.54)

Similarly, we can show that P t
v,j,(i,j) ≥ (1−γ) · ptv. Substituting (C.54) in Equation

(C.48),

P tvg ,(i,j) ≥


(1− γ)2 ·

∏
v∈vg

(ptv)
nv,vg if |vg| = 2

(1− γ) ·
∏
v∈vg

(ptv)
nv,vg if |vg| = 1

(C.55)

Rearranging terms, we get 7

∏
v∈vg

(ptv)
nv,vg

P tvg ,(i,j)
≤ 1

(1− γ)2
, ∀vg, t, i, j (C.56)

This is because 1
1−γ ≤

1
(1−γ)2

. Equation (C.56) is same as the Equation (8.11) used

in the proof of Proposition 9 .

Proving βtu,(i,j) ≥ 1− γ:

To prove that βtu,(i,j) ≥ 1− γ, we use mathematical induction, at t = 1, initially

7As all the above computation is valid for all value of i, j and t
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all u are available, therefore,

β1
u,(1,1) = 1

Please note that βtu,(i,j) keeps on decreasing as i, j increases for fixed u and t,

therefore, we only show for the value of β1
u,(b1,b1).

β1
u,(b1,b1) = 1−

∑
vg

b1−1∑
i=1

b1∑
j=1

x∗,1u,vg · γ
h1
vg · P 1

vg ,(i,j) · β1
u,(i,j)

· P 1
vg ,(i,j) · β1

u,(i,j)

−
∑
vg

b1−1∑
j=1

x∗,1u,vg · γ
h1
vg · P 1

vg ,(i,j) · β1
u,(i,j)

· P 1
vg ,(i,j) · β1

u,(i,j) (C.57)

As mentioned before in ADAPShare-κ description, each group will be consid-

ered for assignment at htvg steps, and at step (bt, bt), a single vertex will be consid-

ered, therefore,

β1
u,(b1,b1) ≥ 1−

∑
vg

(x∗,1u,vg · γ) (C.58)

As maximum value of
∑

vg x
∗,t
u,vg is 1. Therefore, β1

u,(b1,b1) ≥ 1− γ.

As it is valid for t = 1, we prove it by induction. Assume that it is valid for all

t′ < t, i.e., in online case the server u is matched x∗,tu,vg · γ times in round t to group

of type vg. Therefore,

βtu,(1,1) = 1−
∑
vg′

∑
t′<t

x∗,t
′

u,vg′
· γ · Pr(ct′u,vg ≥ t− t′) (C.59)

From Equation (C.22) of the optimization program in Table C.3, we have

∑
vg′

∑
t′<t

(x∗,t
′

u,vg′
· γ · Pr(ct′

u,vg′
> t− t′)) ≤ γ −

∑
vg

x∗,tu,vg · γ

Multiplying both sides of the above equation by -1, we get
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−1 ·
∑
vg′

∑
t′<t

(x∗,t
′

u,vg′
· γ · Pr(ct′

u,vg
′ > t− t′)) ≥ −1 · (γ −

∑
vg

x∗,tu,vg · γ)

Adding 1 on both sides in above equation, we get

1−
∑
vg′

∑
t′<t

(x∗,t
′

u,vg′
· γ · Pr(ct′

u,vg′
> t− t′)) ≥ 1− γ +

∑
vg

x∗,tu,vg · γ

Therefore,

βtu,(1,1) ≥ 1− γ +
∑
vg

x∗,tu,vg · γ ≥ 1− γ

βtu,(bt,bt) = βtu,(1,1) −
∑
vg

bt−1∑
i=1

bt∑
j=1

x∗,tu,vg · γ
htvg · P t

vg ,(i,j) · βtu,(i,j)
· P t

vg ,(i,j) · βtu,(i,j)

−
∑
vg

bt−1∑
j=1

x∗,tu,vg · γ
htvg · P t

vg ,(i,j) · βtu,(i,j)
· P t

vg ,(i,j) · βtu,(i,j) (C.60)

Similar to t = 1 case

βtu,(bt,bt) = βtu,(1,1) −
∑
vg

(x∗,tu,vg · γ)

βtu,(bt,bt) ≥ 1− γ +
∑
vg

x∗,tu,vg · γ −
∑
vg

(x∗,tu,vg · γ) (C.61)

βtu,(bt,bt) ≥ 1− γ (C.62)

Therefore,

βtu,(i,j) ≥ (1− γ),∀t, i, j
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C.8 Proof of Corollary 1

Proposition 14. The online algorithm ADAPShare is γ competitive (The value of γ

is the solution to the equation (1− γ)(κ+1) = γ).

Proof: Using Proposition 10, we can show that ADAPShare-κ is γ competitive.

Therefore, we need to find the maximum value of γ for which the assignment rule

for ADAPShare-κ is valid. We highlight the differences in comparison to proof of

Proposition 9.

We can now group κ vertices together from the bt vertices arriving in round t,

therefore, we define (bt)κ steps in our algorithm.

Similar to ADAPShare-2, Step (i1, i2, ..., iκ) (i1 6= i2 6= ... 6= iκ) denotes that

the group formed by vertex at ith1 , i
th
2 ... and ..ithκ label is considered. Step (i, i, .., i)

denotes that a group of size 1 with one vertex at ith position is considered. Similarly,

we can define steps where groups of size 2 to κ − 1 are considered. Group of size

s will be considered at
s−1∏
i=0

(bt − i) steps. There will be (bt)κ −
κ∑
s=1

s∏
i=0

(bt − i) steps

where algorithm does not do anything, i.e., none of the groups is considered for

assignment at these steps.

Similar to ADAPShare-2 case, we find the maximum value of

∏
v∈vg

(ptv)
nv,vg

P t
vg,(i1,i2,..,iκ)

and

then show that βtu,(i1,i2,...,iκ) ≥
γ·

∏
v∈vg

(ptv)
nv,vg

P t
vg,(i1,i2,..,iκ)

for this maximum value.

Please note that

P t
vg ,(i1,i2,..,iκ) =

∏
v∈vg

P t
v,iv ,(i1,i2,..,iκ). Therefore, we compute P t

v,iv ,(i1,i2,..,iκ)∀v

where P t
v,iv ,(i1,..,iκ) denotes the probability that vertex of type v labeled as ithv vertex

is available at step (i1, .., iκ). Please note that P t
v,i,(1,1,..,1) = ptv∀i.
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P t
v,iv ,(i1,..,iκ) = ptv−∑
u

∑
vg′ ;v∈vg′

i1−1∑
j1=1

..

iκ−1∑
jκ=1

xt
u,vg′
· γ

htvg · P t
vg′ ,(j1,..,jκ)

· βtu,(j1,..,jκ)

· P t
vg′ ,(j1,..,jκ)

· βtu,(j1,..,jκ)

(C.63)

Now, similar to κ = 2 case, in the above equation we only consider the steps

where vertex of type v has label iv. Let etvg ,v,iv ,(i1,..,iκ) denote the maximum number

of steps (for group of type vg) which can affect the computation of P t
v,iv ,(i1,..,iκ), then

P t
v,iv ,(i1,..,iκ) = ptv−∑
u

∑
vg′ ;v∈vg′

etvg ,v,iv ,(..) ·
xt
u,vg′
· γ

htvg
(C.64)

And etvg ,v,iv ,(i1,..,iκ) =
∏|vg |
i=1 (bt−i)

(
∏
v′∈vg ;v 6=v′ (nv′,vg )!)(nv,vg−1)!

Therefore,
et
vg,v,iv,(i1,..,iκ)

ht
vg

=
nv,vg

bt

Therefore, we can get following by proceeding in similar way as the analysis for

κ = 2

P t
v,iv ,(i1,..,iκ) ≥ ptv − γ · ptv (C.65)

P t
v,iv ,(i1,..,iκ) ≥ (1− γ) · ptv (C.66)

Similar to κ = 2, we can use mathematical induction to show βtu,(i1,..,iκ) ≥
γ

(1−γ)κ

Therefore, maximum value of γ for which assignment rule is valid is the solution to

the equation, γ = (1− γ)κ+1
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Algorithm 13 ADAPShare-κ(γ)
1: for t < T do
2: Generate bt uniform random numbers and sort the vertices in order of gener-

ated random numbers. Label the vertices from 1 to bt.
3: i1 = 1, i2 = 1, ..., iκ = 1
4: while i1 ≤ bt||i2 ≤ bt||...||iκ ≤ bt do
5: vg = group formed at step i1, i2, ..., iκ based on the labels assigned to the

vertices.
6: if vg is a valid group then
7: If E∗,vg ,t! = φ, then choose (u, vg) ∈ E∗,vg ,t with probability p where

p =
x∗,t
u,vg
·γ

ht
vg
·P t
vg,(i1,i2,..,iκ)

·βt
u,(i1,..,iκ)

8: Update E∗,∗,t,available groups based on the group considered in previous
steps.

9: Increment the step i1 = 1, i2 = 1, ..., iκ
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