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Abstract

In this dissertation, we make a few contributions to the literature of time series and

financial econometrics.

In the second chapter, some asymptotic results are given for first-order autoregressive

(AR(1)) time series with two features: (i). a nonzero constant intercept (ii). a root mod-

erately deviating from unity. Both stationary and explosive sides are studied. It is shown

that the inclusion of intercept will change drastically the large sample properties of the

least-squares (LS) estimator obtained in Phillips and Magdalinos (2007, PM hereafter).

For the near-stationary case, only an unusual convergence of a linear combination of in-

tercept and AR coefficient can be derived. For the near-explosive case, on the other hand,

the limiting distributions of two estimators will be independent and Gaussian, with the

conventional t-test for both of them keeping valid. Due to its relevance in bubble detec-

tion, we also briefly discuss the limiting theory under the shrinking drift assumption for

mildly explosive case. Empirical implication of the limit theory is also discussed.

The third chapter is concerned with the joint test of predictability and stability. The

null hypothesis under investigation is that the potential predictors exhibit no predictability

and meanwhile no structural break occurs during the sample period. We first show that the

recently proposed IVX estimator provides better inference for the structural break of pre-

dictability than OLS. Based on this finding, we consider a new test combining IVX with

the sup-Wald statistic. The limiting distribution of the test statistic is derived and shown to

vary with the level of predictors’ persistence. Though theoretically not applicable under

very strong persistence, simulation results suggest that this test enjoys good finite sam-

ple size and power properties even in that case. Such robustness is informally explained

through a simple simulation investigation. An application to the US stock return data is

used to illustrate its empirical relevance.

The fourth chapter considers the potential impacts of predicted variable’s level shifts

on testing for predictive power, especially when persistent predictors are used. It is shown

that the limiting distribution of the usual t-statistic will depend on the magnitude of break
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size. In particular, if the shift is “large”, it will dominate asymptotically and t-statistic will

blow up, while if it is “moderate”, it will coexist with the original limiting component.

Moreover, applying IVX will not fully fix this problem. In all cases, a spurious relation-

ship will be detected if the breaks are not taken into account. To alleviate this problem,

we propose to base the inference on a sample-splitting procedure. We further discuss the

finite sample issues caused by moderate shifts and propose a partial solution based on

simulation results. Empirical applications to the prediction of stock return volatility and

housing price index are provided.

In the last chapter, we make two contributions to the literature of volatility model-

ing. First, we consider a new multivariate stochastic volatility (MSV) model, applying

a recently proposed novel parameterization of the correlation matrix. This modeling de-

sign is a generalization of Fisher’s z-transformation to higher-dimensional cases and it is

fully flexible as the validity of the resultant correlation matrix is guaranteed automatically,

which allows us to separate the driving factors of volatilities and correlations. Second, we

propose to use a different estimation tool. Like most existing literature on MSV, we work

within a Bayesian framework and hence rely on Markov Chain Monte Carlo (MCMC)

tool. However, when dealing with latent variables, conventional single-move or multi-

move sampler is replaced by a novel technique called Particle Gibbs Ancestor Sampling

(PGAS), which is built upon Sequential Monte Carlo (SMC) method. Extensive simula-

tion studies are conducted to confirm the applicability of this method under the current

setup and provide some guidance on the trade-off between estimation accuracy and com-

putational cost. The new model is then implemented using two financial data sets and the

comparison with existing models is discussed.
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1 Overview

Many financial and macroeconomic time series exhibit non-stationarity. It is of paramount

importance to understand the property of processes with such features. In next chapter,

we consider a special nonstationary model, called mildly integrated autoregression. This

model has been widely studied due to its relevance in bubble detection. Specifically, in

Chapter 2 1, we explore the consequences of a nonzero intercept on the least-squares esti-

mator of model parameters. Both stationary and explosive cases are considered. We show

that the presence of a constant intercept will dramatically alter the large sample properties

derived in Phillips and Magdalinos (2007). For completeness, a brief discussion about the

shrinking drift assumption is also included. We provide some intuition of these results

and discuss their empirical implications as well.

Nonstationarity will also complicate the inference theory of predictive regressions.

What makes things even worse is the presence of structural change. In the following two

chapters, we consider problems related to the potential existence of structural breaks in

a predictive regression model, with a focus on the recently popular methodology called

IVX2. We provide a simple simulation as motivation for our study, which indicates that

structural breaks in both intercept and slope coefficients hurt the test for the predictability.

Specifically, when intercept experiences shifts, “spurious predictability” will be detected

by a standard IVX procedure. Breaks in the slope coefficients, on the other hand, may

result in a loss of power. In light of these deficiencies, we consider the following two

issues.

The first issue we want to address is the joint test of predictability and stability. The

null hypothesis under investigation is that the potential predictors exhibit no predictabil-

ity, and meanwhile, no structural break occurs during the sample period. In Chapter 3,

We first show that the recently proposed IVX estimator provides better inference for the

structural break in predictability than OLS. Based on this finding, we consider a new test

combining IVX with the well-known sup-Wald statistic. The limiting distribution of the

1This chapter is based on Fei, Yijie. “Limit theory for the mildly integrated process with intercept.”
Economics Letters 163 (2018): 98-101.

2See Chapter 3 for a brief review of IVX.
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test statistic is derived and shown to vary with the degree of persistence in predictors.

Though theoretically not applicable under extreme persistence, simulation results suggest

that this test enjoys good finite sample size and power properties even in that case. Such

robustness is explained through a simple simulation investigation.

The second issue we discuss is the potential impact of level shifts in the predicted

variable on the predictability test when highly persistent predictors are used. It is shown

in Chapter 4 that the limiting distribution of conventional t-statistic will depend on the

magnitude of break size. In particular, if the break is “large”, it will dominate asymptot-

ically, and the t-statistic will blow up, while if it is “moderate”, it will coexist with the

original limiting component. Moreover, applying IVX will not fully fix this problem. In

all cases, a spurious relationship will be detected if the breaks are ignored. To alleviate

this problem, we propose to base the inference on a sample-splitting procedure. We fur-

ther discuss the issues caused by moderate breaks and propose a partial solution based on

simulation results.

Another topic in financial econometrics that has attracted long-standing attention is

the modeling of dynamic volatility and correlation of asset returns. In the last chapter,3,

we intend to make two contributions to this already fruitful literature. First, we propose

a novel multivariate stochastic volatility (MSV) model, which is based upon a new pa-

rameterization of the correlation matrix. It is a generalization of the well-known Fisher

z-transformation to higher-dimensional cases, and it is sufficiently flexible as the validity

of the resulting correlation matrix is guaranteed automatically. The new transformation al-

lows us to model the driving factors of volatilities and correlations separately. Second, we

propose to use a different estimation tool. Traditional single-move or multi-move sampler

is replaced by a novel technique called Particle Gibbs Ancestor Sampling (PGAS), which

is built upon Sequential Monte Carlo (SMC) method. Extensive simulation studies are

conducted to confirm the applicability of this method under the current setup and provide

some guidance on the trade-off between estimation accuracy and computational cost. The

new model is then implemented using two financial data sets, and the comparison with

existing models is discussed.

3This chapter is co-authored with Han Chen.
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2 Limit Theory for Mildly Integrated Process with Inter-

cept

2.1 Introduction

The past several decades have witnessed an enormous amount of effort in economet-

rics devoted to the autoregressive (AR) time series model. This simple yet powerful model

has also been widely used in empirical researches. In the present chapter, we focus our

attention on a particular case of first-order autoregression defined by

yt = d+ ρnyt−1 + ut, t = 1, ..., n. (2.1)

Throughout this chapter, we impose following assumptions on model (2.1).

Assumption 2.1 For model (2.1) above, we assume that,

(i). AR coefficient ρn = 1 + c
kn

depends on sample size n and kn = o(n) as n→∞.

(ii). c and d are both nonzero constant real numbers.

(iii). The process is initialized at y0 = op(
√
kn) independent of σ(u1, ..., un).

(iv). ut is a sequence of independent and identically distributed (i.i.d.) random distur-

bances with E(u1) = 0, E(u21) = σ2 ∈ (0,∞). When c < 0, we further assume that

E|u1|2+δ <∞ for some δ > 0.

When d = 0, this model is rigorously studied in PM and often known as mildly integrated

process in the literature . Specifically, when c < 0, it is termed mildly stationary process

and when c > 0, mildly explosive process. Except for the nonzero intercept, all other

assumptions made above are the same as in PM. 4 Assume that a set of observations

{yt}nt=1 is available. Let
∑

denote
∑n

t=1 to simplify notation. When d is known to be

zero a priori, the least-squares estimator of ρn based on the available sample is

ρ̂n =

∑
ytyt−1∑
y2t−1

= ρn +

∑
yt−1ut∑
y2t−1

4For mildly explosive case, the proof suggests that we can relax the restriction on initial condition to
y0 = op(kn), without changing any results that will be obtained.
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In this case, the limiting distribution of ρ̂n is developed in PM. Specifically, they showed

that when c < 0,

(nkn)1/2(ρ̂n − ρn)⇒ N(0,−2c),

and when c > 0,

(knρ
n
n/2c)(ρ̂n − ρn)⇒ C,

where C is a random variable following standard Cauchy distribution. As is discussed in

PM, the main attraction of this setup is that it provides a bridge between pure stationary

or explosive process and unit-root (or local-to-unit-root) process.

If the value of d is unknown ex ante, however, the LS estimators of ρ and d will be,

respectively,

ρ̂n =

∑
(yt − ȳ)(yt−1 − ȳ−)∑

(yt−1 − ȳ−)2
and d̂ = ȳ − ρ̂ȳ−. (2.2)

where ȳ =
∑
yt/n and ȳ− =

∑
yt−1/n. The potential impact of estimating the inter-

cept, together with the AR coefficient on limiting behavior of LS estimator, is by far not

well studied in the literature. Motivated by this incompleteness in theory, in this chapter,

we extend the literature by developing the asymptotic distributions of ρ̂n and d̂ for the

moderately integrated process with an unknown intercept. We first show that an unusual

joint convergence result can be achieved for mildly stationary case. Then, the asymptotic

normality, instead of Cauchy-type distribution, is proved for both intercept and AR coef-

ficient under the mildly explosive assumption. All proofs could be found in Appendix A.

2.2 Models and Main Results

As is similar to the equation (2.1) in Wang and Yu (2015), an equivalent representation

of yt generated by model (1) is

yt =
d

c
kn(ρtn − 1) + ρtny0 +

t∑
j=1

ρt−jn uj, (2.3)

4



where ρn = 1 + c
kn

is utilized. This expression can be written more concisely as

yt =
d

c
kn(ρtn − 1) + y0t , (2.4)

where y0t is a mildly stationary or mildly explosive process (depending on the sign of

c) without intercept. Apparently, {y0t } so defined is equivalent to the {yt} studied in

PM. Decomposing yt into these two components is helpful in terms of the derivation of

asymptotic behaviors, because we can directly borrow some results for y0t from that paper.

In the following, we will discuss the c < 0 case first, and then move to the c > 0 part.

2.2.1 Limit Theory for Mildly Stationary Case

This subsection establish the limit properties of ρ̂n and d̂ when c < 0. First, we derive

the limiting behavior of some components that will be involved in the LS estimators for

both intercept and AR coefficient.

Theorem 2.1 For model (1) with c < 0, we have, as n→∞,

(a). yn = op(n);

(b). n−1/2
∑
ut ⇒ Z, where Z ∼ N(0, σ2);

(c). n−1kn−1
∑
yt−1 ⇒ −d/c;

(d). n−1/2kn−1
∑
yt−1ut ⇒ (−d/c)Z;

(e). n−1kn−2
∑
y2t−1 ⇒ d2/c2.

Note that the centered LS estimators of ρ̂n and d̂ are given by

[
d̂− d
ρ̂n − ρn

]
=

[
n

∑
yt−1∑

yt−1
∑
y2t−1

]−1 [ ∑
ut∑

yt−1ut

]
. (2.5)

Therefore, after some manipulations of this equation and use the convergence results re-
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ported in Theorem 2.1, one can easily show that[ √
n(d̂− d)

√
nkn(ρ̂n − ρn)

]

=

[
1 n−1k−1n

∑
yt−1

n−1k−1n
∑
yt−1 n−1k−2n

∑
y2t−1

]−1 [
n−1/2

∑
ut

n−1/2k−1n
∑
yt−1ut

]

⇒

[
1 −d/c
−d/c d2/c2

]−1 [
1

−d/c

]
Z.

It is obvious that the first matrix in the second line has a zero determinant and is thus not

invertible. If we pre-multiply this singular matrix on both sides of (6), we immediately

achieve the following result.

Theorem 2.2 For model (2.1) with c < 0, the following joint limit applies as n→∞,

√
n(d̂− d) +

d

−c
√
nkn(ρ̂n − ρn)⇒ Z.

Remark 2.1 This theorem suggests that a linear combination of d̂ and ρ̂n converges to

normal distribution. Such a result, however, is not enough if we want to make inference

about these two parameters, which relies on the individual limiting distribution of them.5

Remark 2.2 The joint convergence applies because drift and AR part are multicollinear.

This leads to a singular signal matrix. Utilizing a transformation of regressor, Liu and

Peng (2019) derive the convergence rate and limiting distribution of each estimator. They

make additional assumption that

lim
n→∞

√
n

max(
√
n, kn)

= h1 ∈ [0, 1]

and

lim
n→∞

kn
max(

√
n, kn)

= h2 ∈ [0, 1].

5The Remark 2.3 in the published version of this paper, Fei (2018), is wrong as pointed out by Liu and
Peng (2019) in their Remark 1.
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Under this assumption, they manage to show that

(
max(

√
n,kn)√
kn

(d̂− d)
√
knmax(

√
n, kn)(ρ̂n − ρn)

)
→d

(
d2h2c−2Z1+dh1c−1Z2

d2h22/(−2c3)+σ2h21/(−2c)
dh2c−1Z1+h1Z2

d2h22/(−2c3)+σ2h21/(−2c)

)
, (2.6)

where Z1 and Z2 are independent normal random variables.

2.2.2 Limit Theory for Mildly Explosive Case

This subsection considers the asymptotic behavior of ρ̂n and d̂when c > 0. Mildly ex-

plosive time series has turned out to be important in the econometric analysis of bubbles;

see for example, Phillips et al. (2015a, 2015b). Following PM, we define

Xn :=
1√
kn

n∑
t=1

ρ−(n−t)−1n ut and Yn :=
1√
kn

n∑
j=1

ρ−jn uj.

To obtain the asymptotic distribution of the LS estimator without intercept, PM proved

following results,6 which are reproduced here because they will be used in the proof of

limit theory under nonzero intercept later.

Lemma 2.1 For each c > 0, the sequences (Xn)n∈N and (Yn)n∈N defined above satisfy,

(a) (Xn, Yn)⇒ (X, Y ) as n→∞, whereX and Y are independentN(0, σ2/2c) random

variables.7

(b) As n→∞, we have ρ−nn /kn
∑
y0t−1ut ⇒ XY.

Taking advantage of these properties, we have following theorem which provides the

limiting behavior we will need.

Theorem 2.3 For model (2.1) with c > 0, we have, as n→∞,

(a) ρ−nn k−1n yn ⇒ d/c;

(b) ρ−nn k−2n
∑
yt−1 ⇒ d/c2;

(c) ρ−nn k
−3/2
n

∑
yt−1ut ⇒ (d/c)X;

6See Lemma 4.2 and part (a) of Theorem 4.3 in that paper.
7As pointed out by the referee, this result is no longer necessary under the present setup, as we show

that the normalized
∑n

t=1 y
2
t−1 will approach a constant rather than a random variable
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(d) (ρ2n − 1)ρ−2nn k−2n
∑
y2t−1 ⇒ d2/c2.

Similar to the discussion in the last subsection, we need to examine the centered LS esti-

mators of ρ̂n and d̂. Motivated by the results in Theorem 2.3, we can transform equation

(2.5) into following representation[
n1/2(d̂− d)

ρnnk
3/2
n /2c(ρ̂n − ρn)

]

=

[
1 ρ−nn n−1/2k

−3/2
n

∑
yt−1

ρ−nn n−1/2k
−3/2
n

∑
yt−1 (ρ2n − 1)ρ−2nn k−2n

∑
y2t−1

]−1
[

n−1/2
∑
ut

ρ−nn k
−3/2
n

∑
yt−1ut

]

=

[
1 op(1)

op(1) (ρ2n − 1)ρ−2nn k−2n
∑
y2t−1

]−1
[

n−1/2
∑
ut

ρ−nn k
−3/2
n

∑
yt−1ut

]

⇒

[
1 op(1)

op(1) d2/c2

]−1 [
Z

d/cX

]
.

(2.7)

Consequently, we obtain the following limiting distributions which extend PM’s results

to the mildly explosive process with nonzero intercept.

Theorem 2.4 For model (2.1) with c > 0, the following limits apply as n→∞,

(a)
√
n(d̂− d)⇒ N(0, σ2);

(b) ρnn(ρn − 1)−3/2(ρ̂n − ρn)⇒ N(0, 2σ2/d2).

Remark 2.3 Compared with PM’s result, the limiting behavior of ρ̂n when intercept is

unknown and nonzero is quite different.The convergence rate now is ρnn(ρn − 1)−3/2,

which is faster than the ρnn(ρn − 1)−1/2 in PM. Meanwhile, the asymptotic distribution is

Gaussian under the present model, while it is Cauchy in PM.

Remark 2.4 Note that when d = 0, the asymptotic variance will be infinite and thus the
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above theorem can not be applied. In that case, the Cauchy-type convergence derived in

PM should be used.

Remark 2.5 Wang and Yu (2015) shows that, for pure explosive process (i.e. kn = 1),

when intercept and AR coefficient are estimated together, there exists invariance prin-

ciple for d̂. Their limiting distribution for d̂ is exactly the same as reported in above

theorem. However, they show that, without assuming Gaussianity, no invariance result

can be achieved for ρ̂n, which is not the case when explosiveness is mild. This is not

surprising, as a critical advantage of mildly explosive process over pure explosive one

is that the former allows for invariance principle of LS estimator without imposing the

assumption of normal errors.

Now that both estimators show asymptotic normality, we would like to further study the

t-statistic of these two LS estimators. Since both d̂ and ρ̂n are consistent, we can consis-

tently estimate the variance parameter σ2 as well. That is, if we let σ̂2 = n−1
∑

(yt −

d̂ − ρ̂nyt−1), then σ̂2 →p σ2. With σ̂2 in hand, one can further construct the traditional

t-statistic

td =
(d̂− d)[n

∑
y2t−1 − (

∑
yt−1)

2]1/2

[
∑
y2t−1 · σ̂2]1/2

, (2.8)

tρn =
(ρ̂n − ρn)[n

∑
y2t−1 − (

∑
yt−1)

2]1/2

[n · σ̂2]1/2
. (2.9)

It is not hard to prove the following corollary using the findings reported above.

Corollary 2.1 For the t-statistics defined by equation (6) and (7), we have, as n→∞,

(a) td ⇒ N(0, 1),

(b) tρn ⇒ N(0, 1),

(c) td and tρn are asymptotically independent.

Therefore, the conventional t-test remains valid for both parameters under this scenario.

Similarly, the F-statistic for joint hypothesis of two parameters will have the same asymp-

totic distribution as in stationary case.
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2.2.3 Mildly Explosive Case with Shrinking Drift8

As shown in the last subsection, assuming a constant intercept will make the limiting

theory dominated by this drift term and thus in the literature of bubble detection, people

usually consider a shrinking drift, which is asymptotically negligible. Here, we consider

a case in which the intercept will coexist with the autoregressive component in the limit.

To take into account the asymptotic effect of the initial value, we also assume it diverges

at a faster rate. Specifically, suppose now that dn = δ/
√
kn and y0n = y0

√
kn, where δ

and y0 are constants and we use subscript n to emphasize that both intercept and initial

value depend on sample size. Then it is easy to show that

1

ρnn
√
kn
yn →d Y +

δ

c
+ y0,

1

ρnnkn

∑
yt−1ut →d X(Y +

δ

c
+ y0),

ρ2n − 1

ρ2nn kn

∑
y2t−1 →d (Y +

δ

c
+ y0)

2,

where X and Y are two independent normal random variables. The proof of these results

is omitted as it involves only simple algebra. Since we have

(√
n(d̂n − dn)

ρnn
ρ2n−1

(ρ̂n − ρn)

)
=

(
1 op(1)

op(1) ρ2n−1
ρ2nn kn

∑
y2t−1

)−1( 1√
n

∑
ut

1
ρnnkn

∑
yt−1ut

)
,

it follows that
√
n(d̂n − dn)→d N(0, σ2),

ρnn
ρ2n − 1

(ρ̂n − ρn)→d X

Y + δ
c

+ y0
.

Under this shrinking drift assumption, both the intercept and the initial value enter the

limiting distribution of the estimated slope coefficient, and it deviates from the standard

Cauchy limit. On the other hand, the estimated intercept still has conventional Gaussian

density. This is a special case of the model considered in Wang and Yu (2016), although

we consider the conventional long-span paradigm while their motivation is from the dou-
8This part is not in the version published in Economicc Letters.
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ble asymptotics.

2.3 Some Intuitions

The results reported in the above two subsections, though new, are not unexpected to

a certain extent9. Note that in both cases we have considered, the convergence rate of the

autoregressive coefficient is higher compared with PM. In time series models, it is not

uncommon that including an intercept term would lead to an increase in the convergence

rate of a persistent process. A famous example is the unit root model with a drift. Without

a constant term, the convergence rate of the autoregressive parameter is T , while after

including a drift, it increases to T 3/2. Hamilton (1994, P.407) pointed out that it is due

to the fact “the regressor yt−1 is asymptotically dominated by the time trend. In large

samples, it is as if the explanatory variable yt−1 were replaced by the time trend.” In the

present setup, the drift exclusively dominates the asymptotics as well. One can easily

understand this by looking at the equation (4). If we assume y0 = 0 for simplicity, it is

clear that

when c < 0, E|y0t | = O(k1/2n ) and (d/c)kn(ρtn − 1) = O(kn),

when c > 0, E|y0t | = O(ρtnk
1/2
n ) and (d/c)kn(ρtn − 1) = O(ρtnkn),

uniformly in t ∈ {1, ..., n}. Indeed, in the large sample cases, the impact of the autore-

gressive part will gradually be dominated in the presence of the intercept term. Based on

this result, we can straightforwardly obtain the following approximation of yt uniformly

in t:

yt =
d

c
kn(ρtn − 1){1 + op(1)} = {1 + op(1)} ×


d
−ckn c < 0

d
c
knρ

t
n c > 0

.

This property, then, immediately leads to the results in Theorem 2.2 and 2.4 above. It also

explains why in our explosive case, different from the standard mildly explosive model,

we can achieve some “ergodicity” that the normalized
∑n

t=1 y
2
t−1 converges in probability

9I am grateful to the referee for raising the issues in this part.
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to a constant instead of a random variable. In that sense, the inclusion of intercept actually

changes the nature of the model (1) because, in terms of the limit theory, it is no longer

like a mildly integrated process.

2.4 Empirical Implication

Above theoretical derivation suggests that, under the mildly explosive assumption, an

invariance principle exists for d̂, and its conventional t-statistic still holds. Hence, based

on available observations, we can consistently estimate the intercept and then test whether

it is zero or not. This finding is important because, as can be seen from Remark 2.5, the

limiting behavior of ρ̂n is dramatically influenced by the appearance of intercept. Both the

convergence rate and asymptotic distribution change. Therefore, before making inference

about ρ̂n, one should first choose the proper limit theory according to the test result for

H0 : d = 0 vs. HA : d 6= 0. Since asymptotically d̂ and ρ̂n are independent, this can be

easily implemented by checking either the t-statistic or p-value of d̂ after running an OLS

regression of yt on an constant and yt−1.

The above-mentioned issue is especially relevant in the empirical study of various

types of financial bubbles. As already mentioned, the mildly explosive process is preva-

lent in the modeling of bubble behavior. Usually, a data-generating process like

xt = xt−11{t < τe}+ ρnxt−11{τe 6 t 6 τf}

+

 t∑
k=τf+1

εk + x∗τf

 1{t > τf}+ εt1{t 6 τf},
(2.10)

where ρn = 1 + c
nα

, c > 0, α ∈ (0, 1), will be used to describe the trajectory of a time

series that is likely to experience explosive bubble period. Phillips et al. (2011) propose a

recursive right-tailed unit root testing procedure to test explosive behavior and date stamp

the origination and collapse of economic exuberance. They suggest that, if one rejects the

null hypothesis that there is no explosive behavior, a valid asymptotic confidence interval

for ρn could be constructed using PM’s results, viz., a Cauchy-type distribution10. This

10See section 3.1 in that paper for more detailed discussion.
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advice, which is based on (2.10), however, implicitly assumes that the bubble follows a

mildly explosive process with an intercept known to be zero. As shown in Theorem 2.4,

when the intercept is actually nonzero, the asymptotic distribution of estimator for the AR

coefficient should be normal, and thus critical value based on standard normal distribution

should be applied. Specifically, if a preliminary test on intercept term shows that we have

d 6= 0, then a 100(1− α)% confidence interval for ρn, should be given by the region

(
ρ̂n ±

√
2σ̂(ρ̂n − 1)3/2

d̂ρ̂nn
Zα

)
,

where Zα is the two-sided α percentile critical value of the standard normal distribution.

2.5 Conclusions

In this chapter, the limit theory for processes with a root moderately deviating from

unity and a nonzero intercept is established. The results make several contributions to the

literature. (i) We show that, with the mildly stationary assumption, as long as we allow a

nonzero intercept, an unconventional joint convergence of estimators for intercept and AR

coefficient will apply. (ii) It is shown that for the mildly explosive process with constant

intercept, the LS estimator for the AR coefficient is not asymptotically Cauchy anymore.

It will become Gaussian, and the convergence rate is faster than the no-intercept case.

(iii) Based on the validity of t-tests for both estimators, suggestions are made regarding

the inference for financial bubbles. In this research, however, only the i.i.d. error term is

studied, and meanwhile, the deterministic time trend is excluded. How to incorporate a

dependent error structure and time trend is beyond the scope of the present chapter.
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3 Robust Joint Test Against Predictability and Structural

Break

3.1 Introduction

Predictive regression is a popular research tool in empirical finance and macroeco-

nomics. Potential usage of it includes mutual fund performance evaluation, tests of con-

ditional CAPM, and optimal asset allocation; see Paye and Timmermann (2006) and ref-

erence therein. Concerning the stock market return, a large number of predictors have

been uncovered in past literature, among which are dividend yield, term spread, default

premia, and market sentiment, to name just a few.

In the early days, the routine procedure that an empiricist would apply was to as-

sume a stable prediction relationship and regress target variables, such as equity index

returns, on the lagged value of potential predictors and then check the standard t-statistic

for significance. This common practice, however, is shown to be flawed in many aspects.

Stambaugh (1999) first observed the finite sample bias in the OLS estimator, which is

now known as Stambaugh bias, caused by the autoregressive property of predictors and

proposed a first-order bias-corrected estimator. Based on this insight, Amihud and Hur-

vich (2004) further considered the second-order bias-correction and refined Stambaugh’s

estimator. Note that this problem is a finite sample issue that will eventually vanish when

the sample size goes toward infinity. Under the assumption that predictors are stationary,

the asymptotic property of the OLS estimator remains valid.

The stationarity assumption that underlies the asymptotic normality of the OLS es-

timator, unfortunately, appears to be implausible, given the strong persistence observed

for most predictors. A lot of work has been dedicated to the non-standard inference for

nonstationary predictors, among which the most notable contributions include: (i). the

Bonferroni-type approach, as in Cavanagh et al. (1995) and Campbell and Yogo (2006),

(ii). conditional likelihood method based on sufficient statistic, as in Jansson and Mor-

eira (2006), and (iii). control function method proposed in Elliott (2011). All these tests,

however, bear some undesirable properties that reduce the attraction to empiricists. For
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instance, the first approach is shown to become invalid when the predictor is very far away

from the unit root process. The first and second approaches are hard to be extended to the

multivariate case. The validity of the third approach relies critically on the availability of

a perfect orthogonalizing variable.

A novel approach that recently attracts much attention is the instrumental variable-

based robust test proposed in Kostakis et al. (2015, KMS hereafter), which is built upon

the theoretical advances in Phillips and Magdalinos (2009). The new method, which they

call the IVX-Wald test, provides a new limit theory that keeps valid in predictive regres-

sion with predictors exhibiting very general characteristics by successfully removing the

endogeneity. The limiting distribution of the IVX estimator is proven to be pivotal and

(mixed) normal under all possible degrees of persistence. Hence, a self-normalized Wald

statistic can be constructed that converges in distribution to a χ2 random variable. In

addition to its robustness against the persistence of predictors, the IVX approach enjoys

other important advantages. For instance, it is very straightforward to implement and can

be extended to multivariate predictive regressions easily. In fact, it can be even used to

deliver a joint test for a system of multiple predictive regressions.

All the papers mentioned above maintain the assumption that predictive relationship

is stable over the sample period, which could be as long as ninety years in many appli-

cations. It seems implausible to argue that no structural break happens in an extended

period. Indeed, there is a growing body of literature that focuses on the instability of

predictive regressions and suggests that predictability is time-varying. Paye and Timmer-

mann (2006) applied a series of techniques developed in Bai (1997) and Bai and Perron

(1998) to test the presence of structural break and estimate the break date if it exists.

They also considered the fixed regressor bootstrap method proposed in Hansen (2000)

and the optimal test proposed in Elliott and Muller (2006). Their empirical investiga-

tion on international markets shows evidence of breaks for the vast majority of countries

in multivariate regression models for excess returns, and the predictive relationship may

change dramatically after a break. In a similar study, Rapach and Wohar (2006) used

the same set of econometric tools, as in Paye and Timmermann (2006), to examine the

aggregate US stock returns. They also find evidence of instability and strong variation in
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predictability over time. These results, however, are susceptible due to the particular test

those authors chose, especially the machinery proposed by Bai and Perron (1998). The

reason is that their tests are based on stationary data generating process and by no means

valid for a nonstationary system, such as a predictive regression with persistent predic-

tors. This invalidity is demonstrated by the simulation studies reported in Table 2 of Paye

and Timmermann (2006). They show that when innovations are highly correlated, and

predictors are persistent, the size distortion of Bai and Perron’s supF and UDMax tests

is large. The optimal test of Elliott and Muller shows great size control even under this

situation, but its power appears to be unsatisfactory.

The literature on rigorous tests for structural change aimed specifically at predictive

regressions has recently mushroomed. Georgiev et al. (2018), for instance, extended the

fixed regressor bootstrap approach in Hansen (2001) and proposed a fixed regressor wild

bootstrap procedure to allow for heteroskedasticity. They show that this test is asymptot-

ically valid and consider both SupF and LM test. Other available tests include Pitarakis

(2017), who proposed a CUMSUM-type test, and Cai et al. (2014), who make use of an

L2-type statistic. All these tests are only concerned with the detection of potential insta-

bility and keep silent about the existence of predictability per se. To our best knowledge,

the only existing papers that accommodates both are Demestrescu et al. (2020), who

proposed to combine the predictability with subsampling technique.

The plan for the rest of the paper is as follows. In Section 3.2, we specify the model

and review the recently proposed IVX method. Section 3.3 provides some preliminary

simulation results serving as the motivation for our new test. Section 3.4 contains the

construction of the test statistic, as well as its limiting properties. Simulation results are

reported in Section 3.5, and an empirical illustration is presented in Section 3.6. Section

3.7 concludes the paper. All the proofs are contained in Appendix B.

3.2 Models and IVX methodology

In this section, we introduce the predictive regression model with break and also

briefly review the state-of-the-art technique on statistical inference of this model, namely

IVX-based robust Wald test. Our setup closely follows the one considered in KMS, and
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thus we refer the readers to that paper for a more detailed description of the model as well

as the construction of the IVX-Wald test statistic.

3.2.1 Predictive Regressions

In this chapter, we consider the following predictive regression model with a potential

structural break at time t0:

yt = αt + β′txt−1 + uyt,
11 (3.1)

xt = ΦTxt−1 + uxt, (3.2)

ΦT = Ik −
C

T γx
, (3.3)

αt =

{
α1 , 0 6 t 6 t0

α2 , t0 6 t 6 T
and βt =

{
β1 , 0 6 t 6 t0

β2 , t0 6 t 6 T
, (3.4)

where xt is a k-dimensional vector of predictors with x0 = Op(1) 12, while uyt and uxt

are stationary. We will use T to denote the full sample size.

As presented in equation (3.1), we model the dynamics of predictors as an autoregres-

sion whose degree of persistence is determined by a matrix C and scalar γx. We assume

that C = diag(c1, c2, ...ck), where all ci’s are non-negative real numbers. We also restrict

γx to be a positive real number. As discussed in KMS, this setup is general enough to

accommodate the cases from purely stationary predictors to integrated ones. Note that

this formulation also encompasses the common local-to-unity assumption (e.g., Camp-

bell and Yogo, 2006) as a special case. Such generality is empirically important because,

in practice, it is hard for researchers to accurately assign the predictors to one particular

case using a finite sample. Thus they may wish to apply an approach robust to all possible

cases. We impose the following assumptions on the innovations driving the system.

11In KMS, predictand yt is allowed to be multivariate as well. Here, we focus on the univariate case in
accordance with the most literature on predictive regressions.

12In a recent working paper, Xu and Guo (2019) point out that existing predictability tests are problem-
atic when k becomes large. We do not consider this effect here and pay attention only to a small set of
predictors.
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Assumption 3.1 The innovation to xt is a linear process and can be represented by

uxt =
∞∑
j=0

Cjεt−j,

where {Cj}∞j=0 is a sequence of absolutely summable constant matrices such that
∑∞

j=0Cj

has full rank and C0 = Ik. Let ut = (uyt, ε
′
t)
′, then ut is a martingale difference se-

quence with constant conditional variance matrix Σ and satisfies the moment condition

that suptE||ut||2s <∞ for some s > 1.

We also make the following assumption, which is standard in the literature on struc-

tural breaks.

Assumption 3.2 The fraction of structural break defined as τ0 = t0/T is within the inte-

rior of (0, 1).

When αt and βt are both constant over the whole sample period, that is, α1 = α2 = α

and β1 = β2 = β, this model reduces to the widely used predictive regressions, and there

is a vast volume of literature on the inference for such a model. Within this framework,

the most critical hypothesis that people wish to test isH0 : β = 0, whose rejection implies

the existence of predictability. It has been proven that, if the ordinary least square (OLS)

is used to estimate the model parameters, the limiting theory will be dependent on pre-

dictors’ degree of persistence and become nonstandard when the predictors are (nearly-)

integrated. Specifically, when the covariance of uxt and uyt is nonzero and γx > 1, the

OLS estimator will converge to a non-mixed-Gaussian distribution and thereby suffer an

asymptotic bias. Even worse, since this bias is determined by the location parameters c1,

..., ck, which are not consistently estimable, it can not be corrected. The inference for

predictability, therefore, will be misleading if the traditional t-statistic is used to check

for the significance. Although a battery of methods have been proposed to make better

inference for predictive regressions, in this article, we focus solely on the IVX-based ap-

proach outlined in the next subsection due to its robustness and straightforward extension

to multivariate cases.
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3.2.2 Methodology of IV-based Inference and IVX-Wald test

The idea of the IVX approach was first proposed in Phillips and Magdalinos (2009)

for a cointegration system to design test robust to arbitrary persistence in variables. KMS

adopted this method to the predictive regressions and proposed a similar robust Wald

test to detect the presence of predictability. In both cases, the intuition is to “construct

an instrumental variable whose degree of persistence we explicitly control and avoid the

inference problems arising due to the uncertainty regarding the persistence of the orig-

inal regressors” (KMS, P1510). Moreover, the construction of IV requires no external

information, thus justifying the terminology IVX.

In particular, the IVX approach proceeds by first specifying an artificial coefficient

matrix

RT = Ik − Cz/T δz ,

where Cz is a diagonal matrix with positive entries and δz < 1. In practice, a researcher

needs to make the decision on the choice of these tuning parameters. In this paper, we

follow KMS to set Cz = −Ik and δz = 0.95. 13 After this specification, instrumental

variables are constructed by

z̃t = RT z̃t−1 + ∆xt,

and if we impose zero initialization, can be written as

z̃t =
t∑

j=1

Rt−j
T ∆xj.

One can treat z̃t as a filtered version of original predictors xt and it requires no external

information at all. Critically, it is mildly integrated and correlated with xt. This instru-

mental variable z̃t is subsequently used to obtain an estimator of β, which we denote as

β̃IV X . If no break happens, the formula for estimation will be

β̃IV X =

[
T∑
t=1

z̃t−1(xt − x̄T−1)′
]−1 T∑

t=1

z̃t−1(yt − ȳT ), (3.5)

13See section 4 in Phillips and Lee (2016) for a detail discussion in this regard.
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where x̄T−1 = 1
T−1

∑T−1
j=1 xj and ȳT = 1

T−1
∑T

j=2 yj are sample means.

As proved in KMS, when sample size T goes to infinity, β̃IV X will correctly center

around the true value of β and the limiting distribution will be (mixed-) Gaussian, regard-

less of the degree of predictors’ persistence. Hence, a natural statistic to test H0 : β = 0

is the following IVX-Wald statistic

W = β̃IV X
′
Q̃−1β̃IV X ,

where Q̃ is a consistent estimator of the asymptotic variance-covariance matrix of β̃IV X

that accommodates both long-run endogeneity caused by the correlation between uxt and

uyt, and finite-sample distortion results from the removing of intercept. Specifically,

Q̃ =

(
T∑
t=1

z̃t−1x
′
t−1

)−1
M

(
T∑
t=1

xt−1z̃
′
t−1

)−1
,

M = σ̂2
y

T∑
t=1

z̃t−1z̃
′
t−1 − T z̄T−1z̄′T−1σ̂2

FM ,

σ̂FM = σ̂2
y − Ω̂yxΩ̂

−1
yy Ω̂′yx,

(3.6)

where z̄T−1 = 1
T−1

∑T−1
j=1 z̃j and σ̂2

y is a consistent estimator for σ2
y . Ω̂yx and Ω̂yy are

estimated long-run covariance between uyt and uxt and long-run variance of uyt respec-

tively. For a more detailed discussion on the construction of Q̃, we refer the reader to

KMS (P1514-1515). Under the null hypothesis, this statistic will converge to the stan-

dard χ2 distribution with degree of freedom equal to the number of predictors. Extensive

simulations reported in KMS and the online appendix of that paper suggest this test has

excellent finite sample properties.

3.3 Performance of IVX-Wald Test in the Presence of Structural Break

Although the IVX-Wald test provides an excellent remedy to the inference for pre-

dictability, it still suffers the drawback that all parameters are assumed to be constant over

time, and no structural break is allowed. Given the fact that this assumption is highly
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implausible for an extended period, in this section, we will explore the effects brought

by the failure of constancy restriction. To this end, a simple simulation exercise is under-

taken with a single predictor and one structural break to shed some light on the distortion

brought by the presence of breaks.

3.3.1 Simulation Design

The data generating process that we consider in this section is a special case of equa-

tion (3.1)-(3.4). It is represented by

yt = αt + βtxt−1 + uyt, (3.7)

xt = φxt−1 + uxt, (3.8)

φT = 1− c

T γx
, (3.9)

αt =

{
α1 , 0 6 t 6 t0

α2 , t0 6 t 6 T
and βt =

{
β1 , 0 6 t 6 t0

β2 , t0 6 t 6 T
. (3.10)

In this toy model, the sample size is chosen to be 100, and the persistence of the

predictor is determined by setting c = 10 and γx = 1. The disturbance to the sys-

tem, (uyt, uxt)
′, is generated by an independent multivariate normal distribution with zero

mean and variance matrix

(
1 −0.95

−0.95 1

)
. The choice of these parameters is justified

by its empirical relevance. To address the structural break issue more clearly, we set the

intercept and slope to be αt =

{
−a , t 6 50

a , t > 50
and βt =

{
−b , t 6 50

b , t > 50
, respec-

tively, where a = {0, 0.2, 0.4, ..., 2} and b = {0, 0.02, 0.04, ..., 0.2}. Note that under this

parametrization, the break size is just twice of a for α and twice of b for β.

Figure 1 plots the rejection rates of the IVX-Wald test using the full sample with 2000

replications, under a 10% nominal size. It is clear from this figure that, when no structural

break occurs for both intercept and slope coefficient, the rejection rates are close to the

nominal size, as claimed by KMS. In general, when the break magnitude of either α

or β increases, the rejection rate also rises. To better understand the size and power

performance of IVX-Wald under the structural break, we need to further concentrate on
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Figure 1: Rejection rate of IVX-Wald test under different structural break magnitude
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Figure 2: Size distortion of IVX-Wald test under break in α
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Figure 3: Power loss of IVX-Wald test under break in β

the following two cases.

3.3.2 Size Distortion and Power Loss

The first case we look into is that only α experiences structural break, and β remains

constant. Figure 2 plots the rejection rates when b = 0. Since, in this case, there is no

predictability throughout the sample period, an ideal test should reject the null hypothesis

with a probability no greater than the nominal size. However, as suggested by Figure

2, the IVX-Wald test becomes remarkably over-sized when the value of a grows. For

example, a break of magnitude 1 will lead to a null rejection rate above 40%. The terrible

size control will lead to great concern in empirical research, as it may imply that the

predictability confirmed by the IVX-Wald test is spurious and generated by the change in

the intercept α. Actually, we can show that, when β is a constant over time, β̃IV X − β,

after proper normalization, will converge to a (mixed) Gaussian distribution, plus (α1 −

α2)

{
Op(1) , δz 6 γx

Op(n
γx−δz

2 ) , δz > γx
. Therefore, when the predictors are more persistent than

the IVX we choose, the break in intercept will result in an asymptotically non-negligible

term and severe size distortion as a consequence. We will discuss this issue further in

detail in the next chapter.

The second case we examine is that α keeps unchanged throughout, but β experiences

a jump in value. The result is presented in Figure 3. For this case, β is nonzero within
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the whole sample period, and thus, predictability exists. However, if one uses IVX-Wald,

the rejection rate is very low. Essentially, when the break in β alters the direction of

predictability, the power of the IVX-Wald test deteriorates dramatically. This is by no

means surprising, as in this case, β̃IV X will converge asymptotically to the weighted

average of β1 and β2, which could be very close to zero, even if both of them are far from

zero. The empirical implication of this finding is that, when the IVX-Wald test rejects

the presence of predictive power, it could be a consequence of the change in predictive

direction before and after a structural break.

In summary, the above findings through simulation remind us that using the IVX-

Wald test to detect predictability with a long span of data will incur a couple of potential

problems. Specifically, both size control and power against the alternative are harmed

by the occurrence of structural breaks. A natural question to ask given this discouraging

result is whether it is possible to design a test that can be used under the presence of a

break. We attempt to propose partial solutions in the current and the following chapter.

3.3.3 Preliminary Comparison of OLS against IVX For Testing Break

Before introducing the new test, we consider a simple simulation exercise in this

subsection as a motivation. The results here may shed some light on the difference

between OLS and IVX estimators in terms of testing the existence of structural break.

The data generating process is a simple univariate predictive regression without con-

stant term, yt = βxt−1 + uyt. The sample size is set to be 200. The predictor follows

a local-to-unit-root process, xt = (1 − c
T

)xt−1 + uxt, where non-centrality parameter

c ∈ {100, 50, 10, 5, 1, 0}. Both uyt and uxt are assumed to have unit variance, while

the correlation between them is ρ ∈ {−0.9,−0.7,−0.5, 0, 0.5,−0.7, 0.9}. We apply the

Andrews (1993) sup-Wald test, based on OLS and IVX estimators, respectively, to the

generated data set. Specifically, we first compute the Wald statistic using OLS and IVX

at all partitions of the sample and then take supreme over them. The corresponding vari-

ances are computed in a standard way. Note that here, to focus on the slope coefficients,

we assume the intercept is known to be zero and thereby not estimated. The critical values

for the rejection are taken from Andrews (1993).
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Table 1: Finite sample size performance of OLS vs. IVX for testing structural break

ρ
-0.9 -0.7 -0.5 0 0.5 0.7 0.9

OLS 100 0.08 0.08 0.08 0.08 0.07 0.07 0.07
50 0.09 0.09 0.08 0.07 0.07 0.07 0.08

c 10 0.15 0.12 0.10 0.09 0.12 0.13 0.16
5 0.21 0.15 0.12 0.10 0.14 0.16 0.20
1 0.31 0.23 0.17 0.11 0.19 0.24 0.33
0 0.35 0.26 0.18 0.11 0.20 0.27 0.38

IVX 100 0.06 0.08 0.09 0.10 0.09 0.08 0.07
50 0.07 0.08 0.09 0.10 0.09 0.08 0.07

c 10 0.08 0.09 0.10 0.11 0.10 0.10 0.08
5 0.08 0.09 0.10 0.11 0.10 0.09 0.08
1 0.07 0.08 0.09 0.11 0.09 0.08 0.07
0 0.07 0.08 0.09 0.11 0.09 0.08 0.07

The empirical rejection rates based on 2000 Monte Carlo simulations are reported in

Table 1, where the nominal level is 10%. It can be seen that the traditional OLS-based

sup-Wald test performs well when ρ is zero, even if the predictor is highly persistent.

However, as long as the correlation between innovations deviates from 0, the size distor-

tion is severe. Indeed, when the predictor follows a random walk, the empirical rejection

rate could be as large as 0.38. Given the highly nonstandard limiting distribution of OLS

estimator under such circumstances, this is by no means surprising. On the contrary, when

we modify the sup-Wald statistic by using the IVX estimator and its corresponding vari-

ance, the performance becomes insensitive to the change in the level of both persistence

and correlation. The robustness is precisely the purpose of constructing IVX in the first

place. This simulation study indicates that testing for a structural break in predictive re-

gressions can also benefit from using IVX. This motivates us to propose an IVX-based

test in the predictive regression model with a potential structural break.

3.4 Testing for predictability and Structural Break

In this part, we propose a test that has power against the structural break in the pa-

rameters, as well as the existence of predictability. We start from the case in which the

intercept term α is known to be stable. The null hypothesis remains the same as in the

IVX-Wald test, but the alternative hypothesis we have in mind is now Hβ
A : β1 6= β2, or

β1 = β2 6= 0. Subsequently, we further consider the test valid in the presence of struc-
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tural break in α. For that case, the alternative hypothesis is Hαβ
A : α1 6= α2, β1 6= β2, or

β1 = β2 6= 0.

3.4.1 Test when α is known to be stable

When α is known to be free of structural break, we can focus on the behavior of β.

Encouraged by the simulation results reported in the last section, we propose to construct a

IVX-based sup-Wald statistic to test against the potential existence of shift in β over time.

Specifically, for every t ∈ [tL, tU ], where tL and tU are lower and upper bound for possible

break date14, we split the full sample {yj, xj−1}Tj=1 into two parts, namely the one before

time t, {yj, xj−1}tj=1 and the one after, {yj, xj−1}Tj=t+1. Given each partition, two IVX

estimates of β and also their asymptotic variances are computed, using the observations

in each subperiod respectively. The calculation is based on the equation (3.5) and (3.6)

above. Denote the resulting estimates as β̃IV X1 (t), Q̃1(t), β̃IV X2 (t) and Q̃2(t). Now, we

can construct the test statistic as

Wβ ≡ sup
t∈[tL,tU ]

(Wβ=0 +Wbt),

where

Wβ=0 ≡ β̃IV X
′
Q̃−1β̃IV X ,

is the IVX-Wald statistic using full sample and

Wbt ≡
(
β̃IV X1 (t)− β̃IV X2 (t)

)′ [
Q̃1(t) + Q̃2(t)

]−1 (
β̃IV X1 (t)− β̃IV X2 (t)

)
is a Chow-type statistic for detecting break at time t. The following theorem presents the

limiting distribution of Wbt under the null hypothesis, which depends on the persistence

level of the predictors.

Theorem 3.1 Consider model (3.1)-(3.4) under Assumption 3.1-3.2 and α is known to be

14In this paper, we set tL and tU to be 20% and 80% of sample size, respectively.
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stable a priori. Then, under H0 : β1 = β2, we have Wbt ⇒ H(τ)′M(τ)−1H(τ), where

H(τ) = B(τ)−R(τ)B(1)

M(τ) = τ(Ik −R(τ))(Ik −R(τ))′ + (1− τ)R(τ)R(τ)′

R(τ) =


(τIk +

∫ τ
0
BdB′)(Ik +

∫ 1

0
BdB′)−1 , if γx > 1

(τIk +
∫ τ
0
JCdJ

′
C)(Ik +

∫ 1

0
JdJ ′C)−1 , if γx = 1

τIk , if γx < 1

B(·) is a k-dimensional standard Brownian motion, JC(τ) =
∫ τ
0
eC(τ−s)dB(s) is an

Ornstein-Uhlenbeck (OU) process and B(τ) = B(τ)−
∫ 1

0
B(s)ds and JC(τ) = JC(τ)−∫ 1

0
JC(s)ds are corresponding demeaned process.

Theorem 3.1 makes it clear that if the predictors are integrated or nearly integrated, it

goes to a nonstandard process, in the similar spirit of Hansen (2000). If, on the contrary,

the predictors are stationary or mildly stationary, it will converge to the familiar squared

tied-down Bessell process, as in Andrews (1993). This latter special case is reported in

the following corollary.

Corollary 3.1 When γx < 1, we haveWbt ⇒ BBk(τ)
′BBk(τ)

τ(1−τ) , whereBBk is a k-dimensional

standard Brownian bridge.

As pointed out in Hansen (2000), the arguments in Andrews (1993) that lead to a stan-

dard distribution will fail if the marginal distributions of regressors are not time-invariant.

This failure will occur in our setup if xt is non-stationary, i.e. either nearly integrated or

integrated. In particular, if we apply OLS to estimate β, its limiting distribution will de-

pends on
∑[τn]

t=1(xt−1− x̄n−1)(xt−1− x̄n−1)′ and
∑[τn]

t=1(xt−1− x̄n−1)(uyt− ūn)′. The first

part will converge to the integral of a squared demeaned OU process, while the second

part will go to a stochastic integral of that demeaned OU process. Therefore, the linear

growth of sample variance and the limiting Gaussianity of sample covariance are both

violated, and we can not directly apply the traditional sup-Wald test in the current setup.

Indeed, Georgiev et al. (2018) derive the limiting distribution of sup-Wald test statis-
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tic under the local-to-unit-root assumption, which is highly nonstandard and non-pivotal.

Therefore, in that paper, they propose to make inference using fixed regressor bootstrap.

If, on the contrary, we use IVX to estimate β, the asymptotics is determined by∑[τn]
t=1 z̃t−1(xt−1 − x̄n−1)

′ and
∑[τn]

t=1 z̃t−1(uyt − ūn)′. As summarized in Lemma B.1 in

Appendix, the former will grow linearly if predictors are stationary or mildly stationary,

while still converge to a random limit if they are (nearly-) integrated. On the other hand,

the latter will converge to a Brownian motion in all cases. Therefore, when γx < 1, we

expect the conventional limiting theory applies, while when γx > 1, asymptotic distribu-

tion will still be nonstandard even if we resort to IVX. Theorem 3.1 just confirms above

intuitive argument.

One subtle yet important point to note is that, even if we can not achieve standard

Brownian bridge-type of limit with IVX under strong persistence, we expect that the

deviation should be much smaller than the case of OLS. The reason is twofold. First, the∑[τT ]
t=1 z̃t−1(uyt− ūn)′ part has a Gaussian process limit, instead of a stochastic integral as

in OLS case. Second,
∑[τT ]

t=1 z̃t−1(xt−1− x̄n−1)′, though accumulates nonlinearly, is closer

to a linearly growing second moments than
∑[τT ]

t=1 (xt−1−x̄n−1)(xt−1−x̄n−1)′. To illustrate

this latter claim, let us concentrate on the univariate case with a single local-to-unit-root

predictor. According to the Theorem 3.1, the deviation of Wbt from the conventional

limiting process when γx > 1 is due to the difference between R(τ) and τ . Therefore, we

investigate the behavior of

R(τ)− τ =
τ +

∫ τ
0
JCdJC

1 +
∫ 1

0
JCdJC

− τ

As it is challenging to obtain the analytic property of this object, we rely on simulation

to provide some conducive insights. To this end, we simulate 10000 replication for τ ∈

[0.2, 0.8] and C ∈ {100, 5, 1}. The underlying Brownian motion that drives the OU

process involved in the above object is approximated by a 1000-step random walk. The

mean and 95% confidence interval are plotted in Figure 4 to 6. As a comparison, we also
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Figure 4: Accumulation of Second Moments of IVX vs. OLS when c = −100

plot the counterparts for OLS estimator, which is∫ τ
0
J2
CdJC∫ 1

0
J2
CdJC

− τ.

It can be clearly seen that, when the persistence level is low, the second moments of both

IVX and OLS will grow linearly as R(τ) is very close to τ for all τ ∈ [0.2, 0.8]. However,

for the OLS case, when C converges towards zero, the mean of R(τ) − τ becomes far

from zero and the variation increases dramatically. R(τ) for IVX, on the other hand, still

remains close to τ with a tiny fluctuation and therefore ensures the limiting process of

Wbt can be well approximated by the conventional limit theory. Indeed, our preliminary

simulation reported earlier and more extensive results shown later both indicate that our

test still controls size even when the predictors follow the unit root process. In this sense,

the test we propose is robust for structural break detection, just like the IVX-Wald for

predictability test.
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Figure 5: Accumulation of Second Moments of IVX vs. OLS when c = −10
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Figure 6: Accumulation of Second Moments of IVX vs. OLS when c = 0

30



Corollary 3.2 (i) Under the conditions of Theorem 3.1, we have that when the sample

size tends to infinity,

Wβ ⇒ B(1)′B(1) + sup
τ∈[τL,τU ]

H(τ)′M(τ)−1H(τ)

where B(·), H(τ) and M(τ) are defined in Theorem 3.1.

(ii) As a special case, if γx < 1, we have

Wβ ⇒ χ2
k + sup

τ∈[τL,τU ]

BBk(τ)′BBk(τ)

τ(1− τ)
,

where BBk is a k-dimensional standard Brownian bridge and χ2
k is a random variable

following χ2 distribution with degree of freedom equal to k. Furthermore, these two

components in the limiting distribution are independent of each other.

At first glance, it seems that the interesting part of Corollary 3.2 is the special situation

γx < 1, in which case the test statistic Wβ is pivotal when the sample size goes to infinity.

Due to the absence of a nuisance parameter, asymptotic critical values for testing the null

hypothesis can be easily established under this assumption. Indeed, one can obtain the

quantile of Wβ through a direct Monte Carlo simulation given any particular number of

predictors k. However, the actual merit of Corollary 3.2 lies in its robustness under very

strong persistence, as discussed above for Wbt. Note that the robustness comes from two

components making up Wβ , as the detection of both predictability and structural break

becomes insensitive to the level of persistence after replacing OLS with an IVX estimator.

Let us summarize the discussion in this subsection. If one wishes to test the null

hypothesis that β1 = β2 = 0, imposing the restriction that constant term α does not expe-

rience any structural break, she can just rely on the test statistic Wβ . Though theoretically

only free of nuisance parameter with mildly stationary predictors, from a pragmatic view-

point, that asymptotic pivotal distribution still works well enough when the predictors are

highly persistent.
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3.4.2 Test with Potential Break in α

For empirical analysis, usually it is not convincing to allow slope coefficient β to

change over time while claim that intercept keeps stable. Hence, it is desirable to have a

test that also shows power against the potential structural break in α. For that purpose, we

need an estimator for α with good property so that we can detect the presence of break. A

natural choice would be α̂ = ȳn−β̃IV X x̄n−1. This choice, however, leads to a complicated

limiting theory and more importantly varies with the persistence level of predictors. The

main reason is that the convergence rate of this estimator depends on the persistence level

of xt and when xt is very persistent, it will converge to a highly nonstandard limit. To see

this, notice that

√
T (α̂− α) =

√
T ε̄−

[
T

1+min[γx,δz ]
2 (β̃ − β)

] [
T−

min[γx,δz ]
2 x̄T−1

]
.

In this formula, it is easy to know that
√
T ε̄ and T

1+min[γx,δz ]
2 (β̃ − β) are both Op(1). The

order of the rest term can been shown to depend on the persistence level of the predictors.

Indeed, since we have

T∑
t=1

xt−1 =


Op(T

−1/2) , γx = 0

Op(T
1
2
+γx) , 0 < γx < 1

Op(T
3
2 ) , γx > 1

it is straightforward too check that T−
min[δz,γx]

2 x̄ will dominate in the limit if γx > (δz +

1)/2, while vanish if the reverse holds. When γx = (δz+1)/2, all three terms will emerge

in the asymptotic distribution, making it very complicated and non-standard.

To circumvent this complexity, we turn to estimate intercept by α̃ = ȳT − β̃IV X z̄T−1,

where z̄T−1 = 1
T−1

∑T
j=2 z̃j−1. Since in this case the persistence level of z̃t is controlled by

researcher, we are free from the varying persistence concern. Another surprising benefit

of this choice is that, it will also bring some power against a nonzero β. To see this point,
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note that the estimator so defined can be written as

α̃ =α + βx̄T−1 + ε̄T − β̃IV X z̄T−1

=α + ε̄n − (β̃IV X − β)z̄T−1 + β(x̄T−1 − z̄T−1)
(3.11)

and therefore α̃ − α consists of three components. It is easy to see that the order of

first term is Op(T
−1/2). We show in the appendix that the second term is asymptotically

dominated by the first term, while the last object will diverge when β is not too close to

zero. It is this third term that results in power against the presence of predictability.

Analogous to the case for β, we compute α̃1(t) and α̃2(t) given the partition at time

t, using data before and after that date. Using this IVX-based estimator for intercept, we

can define the second component as

Wat ≡ (α̃1(t)− α̃2(t))
′
[
Ω̃1(t) + Ω̃2(t)

]−1
(α̃1(t)− α̃2(t)) ,

where

Ω̃1(t) = ê′1ê1/t
2 + z̄′tQ̃1(t)z̄t

and

Ω̃2(t) = ê′2ê2/(T − t)2 + z̄′T−tQ̃2(t)z̄T−t.

Note that the second terms in the definition of Ω̃1(t) and Ω̃2(t) serve as second-order

bias correction. Such correction is necessary because the second term in equation (3.11),

though dominated asymptotically, may have a non-negligible influence in finite sample.

Theorem 3.2 If Assumption 3.1 and 3.2 are satisfied, then under H0 : α1 = α2, β1 =

β2 = β and ||β|| = op(T
γx+1

2 ),

Wat ⇒
BB1(τ)′BB1(τ)

τ(1− τ)
,

where BB1 stands for a one-dimensional standard Brownian bridge.
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With these two components obtained, our final test statistic is simply constructed by

Wαβ = sup
t∈[tL,tU ]

(Wβ=0 +Wat +Wbt).

Since we have already derived the asymptotic distribution for each of the component, it is

easy to obtain the following result for Wαβ .

Theorem 3.3 If Assumption 3.1 and 3.2 are satisfied, then under H0 : α1 = α2, and

β1 = β2 = 0,

(i). When sample size goes to infinity, we have

Wαβ ⇒ B(1)′B(1) + sup
τ∈[τL,τU ]

H̃(τ)′M̃(τ)−1H̃(τ),

where H̃(τ) = (BB1(τ), H(τ))′ and M̃(τ) =

(
τ(1− τ)

M(τ)

)
. Again, H(τ) and

M(τ) are defined in Theorem 3.1.

(ii). As a special case, if γx ∈ (0, 1),

Wαβ ⇒ χ2
k + sup

τ∈[τL,τU ]

BBk+1(τ)′BBk+1(τ)

τ(1− τ)
,

where BBk+1 is a (k+1)-dimensional standard Brownian bridge and χ2
k is a random

variable following χ2 distribution with degree of freedom equal to k. Furthermore, two

components in the limiting distribution are independent of each other.

Again, the limiting distribution is pivotal only when the predictors are stationary or mildly

stationary. However, simulation results reported below shows that, even if we use the

critical value of this pivotal distribution for (nearly-) integrated predictors, the size control

is still satisfactory. Therefore, we do not need to worry about the unknown persistence

level in practice and the part (ii) of above theorem is of greater relevance.
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3.5 Simulation Results

We rely on Monte Carlo simulation to investigate the finite-sample performance of

our new test. The data generating process we consider is

yt = αt + βtxt−1 + uyt, (3.12)

xt = φxt−1 + uxt, (3.13)

φT = 1− c

T
, (3.14)

αt =

{
α1 , 0 6 t 6 t0

α2 , t0 6 t 6 T
and βt =

{
β1 , 0 6 t 6 t0

β2 , t0 6 t 6 T
(3.15)

The disturbance to the system, (uyt, uxt)
′, is generated by independent multivariate normal

distribution with zero mean and and variance

(
1 ρ

ρ 1

)
. The results for empirical size and

power shown below are computed using 10,000 Monte Carlo repetitions.

3.5.1 Empirical Size

A critical issue to explore is whether our test performs well when the autoregressive

root of predictors is near unity. Given any finite sample size, it is impossible to precisely

distinguish between a mildly stationary process and a local-to-unit-root process. Hence,

Monte Carlo simulation is required to check the applicability of our test under empirically

relevant circumstances. To exam the size control of the test under null hypothesis, we set

α1 = α2 = 0 and β1 = β2 = 0. Three sample size, T = 100, T = 200 and T = 400

are considered. For a fixed sample size, the closeness to a unit root is captured by the

parameter c, for which we consider six values, viz c ∈ {100, 50, 10, 5, 1, 0}. This set

ranges from a very stationary case (c = 100) to unit root case (c = 0) and is thus repre-

sentative enough. Another parameter that may have an impact on the testing performance

is the correlation level ρ. In this regard, we also choose seven empirical relevant values,

ρ ∈ {−0.95,−0.7,−0.5, 0, 0.5, 0.7, 0.95}.

In Table 2 and Table 3, we report the empirical rejection rates for two nominal levels,

0.1, and 0.05, respectively. It is clear from these tables that our test shows a good control
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of size in general, except for the case with a very small sample size like T = 100. In

particular, even with the extreme case that the predictor is highly local to the unit root

process and the random shocks are strongly correlated, the rejection rate is still near and

under the nominal level. An interesting finding from this study is that, for a very persistent

predictor, when the absolute value of the correlation coefficient ρ is close to 1, our test

seems to be undersized.

Since the easy application of IVX in multivariate cases is a great advantage of this

technique, it is also critical to investigate the performance of our new test when multiple

predictors are involved simultaneously. To this end, we consider a model with four pre-

dictors, all of which have the same persistence level captured by a different value of c as

in univariate simulation. Two correlation structures are chosen. The first case, labeled

‘uncorrelated case’, assumes the covariance matrix of (uyt, u
′
xt)
′ is identity matrix and

thus no long-run endogeneity exists. The second case, labeled ‘correlated case’, assumes

the errors have the following covariance structure,
0.0412 0.0347 −0.0299 0.1088 −0.0001

0.0347 0.7664 0.1072 0.9606 −0.0008

−0.0299 0.1072 1.4576 0.4638 0.0006

0.1088 0.9606 0.4638 11.4784 0.0011

−0.0001 −0.0008 0.0006 0.0011 0.0001


which is taken from Yang et al. (2020) for its empirical relevance. As can be seen in

Table 4, our test has a good size control under both cases regardless of sample size. The

only exception is when the predictors are very stationary, in which case our test seems to

be over-sized a little bit. To conclude, the simulation results are encouraging, and our test

has a good finite sample performance under various parameter settings.

3.5.2 Empirical Power

To address the structural break issue, we set intercept and slope to be

αt =

{
−a/
√
T , t 6 τ0 · T

a/
√
T , t > τ0 · T
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Table 2: Finite sample size performance of joint test with nominal level 0.1

ρ
-0.9 -0.7 -0.5 0 0.5 0.7 0.9

T=100 100 0.08 0.09 0.11 0.12 0.10 0.09 0.08
50 0.08 0.10 0.11 0.13 0.11 0.10 0.08

c 10 0.10 0.13 0.14 0.14 0.14 0.13 0.10
5 0.12 0.14 0.16 0.14 0.15 0.14 0.11
1 0.12 0.16 0.17 0.14 0.16 0.15 0.12
0 0.12 0.16 0.17 0.14 0.16 0.15 0.12

T=200 100 0.08 0.09 0.10 0.12 0.10 0.09 0.08
50 0.08 0.09 0.10 0.12 0.10 0.09 0.08

c 10 0.08 0.10 0.12 0.12 0.12 0.10 0.09
5 0.08 0.11 0.12 0.13 0.13 0.11 0.08
1 0.08 0.11 0.13 0.12 0.13 0.11 0.08
0 0.08 0.10 0.13 0.12 0.13 0.11 0.08

T=400 100 0.08 0.09 0.10 0.12 0.10 0.09 0.08
50 0.08 0.09 0.10 0.11 0.10 0.09 0.08

c 10 0.07 0.09 0.11 0.12 0.12 0.10 0.07
5 0.06 0.09 0.12 0.12 0.12 0.10 0.06
1 0.06 0.09 0.11 0.12 0.12 0.10 0.06
0 0.07 0.09 0.11 0.12 0.12 0.10 0.06

Table 3: Finite sample size performance of Wαβ test with nominal level 0.05

ρ
-0.9 -0.7 -0.5 0 0.5 0.7 0.9

T=100 100 0.04 0.04 0.05 0.06 0.05 0.04 0.04
50 0.04 0.05 0.05 0.06 0.05 0.04 0.04

c 10 0.05 0.06 0.07 0.07 0.07 0.06 0.05
5 0.05 0.07 0.08 0.07 0.08 0.07 0.05
1 0.06 0.08 0.08 0.07 0.08 0.08 0.05
0 0.06 0.08 0.08 0.07 0.08 0.08 0.05

T=200 100 0.03 0.04 0.04 0.05 0.05 0.04 0.03
50 0.03 0.04 0.05 0.05 0.05 0.04 0.03

c 10 0.03 0.04 0.05 0.06 0.05 0.05 0.03
5 0.03 0.05 0.06 0.06 0.06 0.05 0.03
1 0.03 0.05 0.06 0.06 0.06 0.05 0.03
0 0.03 0.05 0.06 0.06 0.06 0.05 0.03

T=400 100 0.03 0.04 0.04 0.06 0.04 0.03 0.03
50 0.03 0.04 0.04 0.05 0.04 0.03 0.03

c 10 0.02 0.04 0.05 0.06 0.05 0.04 0.03
5 0.02 0.04 0.05 0.06 0.06 0.04 0.02
1 0.02 0.04 0.05 0.06 0.05 0.04 0.02
0 0.02 0.04 0.05 0.06 0.05 0.04 0.02
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Table 4: Finite sample size performance ofWαβ test with nominal level 0.10 with multiple
predictors

c 100 50 10 5 1 0
Uncorrelated Case
T=200 0.13 0.10 0.10 0.10 0.09 0.09
T=400 0.09 0.09 0.09 0.09 0.09 0.08
Correlated Case
T=200 0.14 0.10 0.10 0.10 0.10 0.09
T=400 0.10 0.09 0.09 0.09 0.08 0.08

and

βt =

{
−b
√

1− ρ2/T , t 6 τ0 · T
b
√

1− ρ2/T , t > τ0 · T

respectively, where a = {0, 1, ..., 12}, b = {0, 1, ..., 30}. Three τ0’s are considered,

namely 0.3, 0.5 and 0.7. Note that under this parametrization, the break size is just twice

of a/
√
T for α and twice of b

√
1− ρ2/T for β. All power functions are computed under

three level of persistence, i.e. c = 10, c = 5 and c = 0. The sample size is fixed to be 200

and ρ is selected to be -0.7.

The power against the break in intercept is presented in Figure 7. It can be seen that

the rejection rate of the test statistic quickly goes to 1 as the break size increases. This

is the case for all three levels of persistence, and it is insensitive to the break fraction.

Figure 8-10 exhibit the power against a break in the predictability. The power of the test

is higher when the predictors are more persistent and the break occurs earlier in the data.

The former result can be explained by the fact that when the predictors are more persistent,

IVX estimators will have a higher rate of convergence and thus a smaller variance given

a particular sample size, which suggests an easier detection of the shift in β. As an

important comparison, we also plot the rejection rate of the corresponding IVX-Wald test

for each scenario under consideration. As expected, the power of IVX is deficient, as it

ignores the break. When the direction of predictability is opposite pre and post the break,

the null hypothesis will be rejected by our test. Hence, the rejection of our joint test is

more informative than the IVX-Wald test.
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Figure 7: Power performance of joint test against break in intercept
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Figure 8: Power performance of joint test against non-zero slope when τ=0.3
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Figure 9: Power performance of joint test against non-zero slope when τ=0.5
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Figure 10: Power performance of joint test against non-zero slope when τ=0.7

3.6 Application to the US stock returns

To illustrate the empirical relevance of our proposed procedure, we implement the

test to investigate the predictability of US stock returns. Following much of the existing

literature, we focus on the well-known dataset from Welch and Goyal (2008)15. The vari-

able to be predicted is S&P500 value-weighted log excess returns. To make a comparison

with the results reported in KMS, we consider following 11 predictors: Tbill rate (tbl),

long-term yield (lty), term spread (tms), default yield spread (dfy), dividend-price ratio

(d/p), dividend yield (d/y), earnings-price ratio (e/p), dividend payout ratio (d/e), book-to-

market value ratio (b/m), net equity expansion (ntis) and inflation rate (inf). For quarterly

data, we also consider the consumption-wealth ratio (cay). For the detailed definition and

construction of these variables, see the Online Appendix of KMS. Since our test is de-

signed to have power only under a single break case, including the data from a very long

time span is not reasonable. Hence, the sample period included in our empirical analysis

is from 1952 to 2012.

We first consider the univariate predictor case. The results are reported in table 5. For

most predictors in quarterly frequency case, our new test, in line with the corresponding

15The latest updated version of this dataset can be retrieved from Amit Goyal’s website: http//www.
hec.unil.ch/agoyal.
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Table 5: Joint test with single predictor

predictors quarterly monthly
IVX-Wald Wαβ IVX-Wald Wαβ

Dividend payout ratio 1.097 12.205 0.672 15.444**
Long-term yield 0.782 18.199** 1.396 26.175***
Dividend yield 2.235 9.445 1.425 5.888
Dividend-price ratio 1.525 4.795 1.142 3.649
T-bill rate 2.362 27.870*** 3.537* 32.874***
Earnings-price ratio 0.518 4.617 0.588 5.862
Book-to-market value ratio 0.546 14.074* 0.174 7.453
Default yield spread 0.329 4.506 0.389 5.620
Net equity expansion 0.06 10.934 0.220 15.131**
Term spread 3.057* 17.477** 3.808* 19.986**
Inflation rate 2.356 18.265** 5.922** 19.743**
Consumption-wealth ratio 11.351*** 17.360** - -

1. The critical value for joint test is obtained by simulation. *,** and *** denote rejection of null
hypothesis at 10%, 5% and 1% level respectively.
2. For consumption-wealth ratio, only quarterly data is available.

IVX-Wald result, fails to reject the null hypothesis and thus implies no predictability. The

variables within this group consist of d/p, d/y, d/p, e/p, b/m, dfy and ntis. More impor-

tantly, it also suggests that for these particular predictors, the absence of predictability is

stable over time without any structural break. In this sense, it is more informative than

the original IVX-Wald test, and we can safely argue that these variables are not valid pre-

dictors for stock returns. Notable exceptions are long-term yield, T-bill rate, and inflation

rate. When tested using IVX-Wald, the results are highly insignificant, indicating no pre-

dictability. However, under our joint test, the null hypothesis is strongly rejected. This

seems to be a strong signal supporting the existence of structural break during the sample

period for these predictors. The situation for monthly data is similar, with a few rather

minor differences. For example, d/p and ntis are significantly rejected by joint test when

monthly data is used. Again, the predictive regression using long-term yield and T-bill

rate as predictor exhibits stark difference under IVX-Wald and the joint test, potentially

suffering a break in coefficients.

Now, let us turn to the predictive regressions with multiple predictors. Multivariate

regressions are more informative when used to testing for market efficiency compared

with univariate regressions, as predictability should be evaluated with respect to the entire

information set. Besides, recent advances in financial economics also point out that us-

ing the dividend-price ratio alone is not enough for characterizing expected stock returns.
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Table 6: Joint test with multiple predictors

predictors quarterly monthly
IVX-Wald Wαβ IVX-Wald Wαβ

Ang and Cekaert (2007) 3.745 13.487 4.132 16.545*
Ferson and Schadt (1996) 6.880 27.850** 7.653 36.720***
Kothari and Shanken (1997) 1.883 11.4753 2.085 7.331
Lamont (1998) 1.954 12.042 1.326 15.264
Campbell and Vuolteenaho (2004) 4.574 19.786 5.42 20.180*
Lettau and Ludvigson (2001) 13.199*** 28.437** - -
General-to-specific 23.985*** 41.564*** 8.160** 25.853**

1. The critical value for supW test is obtained by simulation. *,** and *** denote rejection of null
hypothesis at 10%, 5% and 1% level respectively.
2. For the model in Lettau and Ludvigson (2001), only data for quarterly version is available.

Hence, it is interesting to explore whether a set of variables jointly predict the future eq-

uity return movement and whether the predictive power is stable over time. Following

KMS, seven combinations of potential predictors, all of which are either theoretically

or empirically motivated, are considered: (1) d/p and tbl (Ang and Bekaert, 2007), (2)

d/p, tbl, dfy and tms (Ferson and Schadt, 1996), (3) d/p and b/m (Kothari and Shanken

1997), (4) d/p and d/e (Lamont, 1998), (5)e/p, tms, and b/m (Campbell and Vuolteenaho,

2004), (6) d/p, d/e and cay (Lettau and Ludvigson, 2001) and (7) model selected through

a general-to-specific approach. The best model suggested by the general-to-specific ap-

proach is e/p and tbl for the monthly data, and e/p, tbl, dfy and cay for the quarterly case.

Results for multivariate regressions are reported in Table 6. For most models considered,

the conclusions obtained by using the IVX Wald test are reaffirmed by our joint test, in-

dicating no structural break occurs. The only major difference comes from the model

proposed in Ferson and Schadt (1996), which is significantly rejected by our joint test,

while not rejected by IVX Wald test.

3.7 Conclusion

In this chapter, we consider a novel testing procedure built upon the recently devel-

oped technique for inference in predictive regressions. The new test exhibits reasonable

size control under the joint null hypothesis and also has excellent power against both pre-

dictability and the existence of structural break. In the same spirit of KMS, our test is easy

to implement and robust to (i). various degrees of persistence and (ii). the strong corre-
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lation between innovations to predictive regression and those driving predictors. Asymp-

totic properties of the test are established and extensive simulation studies suggest the

excellent size and power performance in finite sample. The major drawback of this joint

test is that when the null hypothesis is rejected, we do not know whether it is due to a

structural break or the existence of predictability. In that case, one may wish to use the

recently proposed structural break test for predictive regression and the IVX Wald statis-

tic for the full sample to further investigate the reason for rejection. A few extensions of

our test are possible. Examples include testing for multiple breaks and smooth structural

change. These are left for future work.
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4 Testing for Predictability under Level Shifts of Predicted

Variable

4.1 Introduction

As is shown in the simulation study conducted in Section 3.3, when the intercept of

predictive regression experiences structural breaks, the IVX-Wald test will suffer severe

size distortion. This phenomenon can be viewed as a signal of the potential spurious

regression effect and is worth a detailed study. In this chapter, we consider the following

model

yt =


α1 + β′1xt−1+ + uyt , 0 6 t < t1

α2 + β′2xt−1+ + uyt , t1 6 t < t2
...

...
αm+1 + β′m+1xt−1+ + uyt , tm 6 t < T

, (4.1)

xt =

(
Ik −

C

T γx

)
xt−1 + uxt, (4.2)

where γx is a positive real number, C is a diagonal matrix and independent of sample size.

Innovations uyt and uxt satisfy the same conditions as in the last chapter. In this model,

we have in total m breaks and thus m+ 1 different regimes.

Assumption 4.1 The innovation to xt is a linear process and can be represented by uxt =∑∞
j=0Cjεt−j, where {Cj}∞j=0 is a sequence of absolutely summable constant matrices

such that
∑∞

j=0Cj has full rank and C0 = Ik. Let ut = (uyt, ε
′
t)
′, then ut is a martingale

difference sequence with constant conditional variance matrix Σ and satisfies the moment

condition that suptE||ut||2s <∞ for some s > 1. Denote σy as the first diagonal element

of Σ.

To accommodate multiple breaks, we modify Assumption 3.2 to

Assumption 4.2 The fractions of structural breaks defined as τ1 ≡ t1
T

, ..., τm ≡ tm
T

satisfy

that 0 = τ0 < τ1 < ... < τm < τm+1 = 1.

45



4.2 Level Shifts and Spurious Predictive Power

In this section, we derive the limiting distribution of OLS and IVX-based t-statistic

under the data generating process (4.1)-(4.2). For simplicity, we consider the univariate

predictor case and thus set k to be one. It is shown that the results depend critically on the

magnitude of the shifts, as well as the degree of persistence of the predictor.

Specifically, the OLS based t-statistic is computed as

tolsβ =
β̂ols

σ̂y

√∑T
t=1(xt−1 − x̄)2

,

where

β̂ols =

[
T∑
t=1

(xt−1 − x̄)2

]−1 T∑
t=1

(xt−1 − x̄)(yt − ȳ),

and x̄, ȳ are the sample average of predictor and predicted variable, respectively. The

standard deviation of the predicted variable, σ2
y , is estimated by

σ̂2
y =

1

T

T∑
t=1

[
yt − α̂− xt−1β̂ols

]2
,

where α̂ = ȳ − x̄β̂ols is the least-squares estimator of the intercept term. The IVX t-

statistic, on the other hand, is defined as

tivxβ =
β̃ivx

σ̂y

√[∑T
t=1 z̃

2
t−1 − T z̄2(1− ρ̂2xy)

][∑T
t=1 z̃t−1(xt−1 − x̄)

]−2 ,

where

β̃ivx =

[ T∑
t=1

z̃t−1(xt−1 − x̄)

]−1 T∑
t=1

z̃t−1(yt − ȳ),

and IVX is constructed by

z̃t = (1− 1

T δz
)z̃t−1 + (xt − xt−1).

z̄ is the sample average of the constructed IVX and ρ̂xy is the estimated correlation co-

46



efficient between uxt and uyt. Note that the estimator for σ2
y is the same as in the least

squares case.

In summary, we consider following cases:

• For the OLS estimator, three cases are considered:

– 1. γx = 0, i.e. stationary predictors

– 2. 0 < γx < 1, i.e. mildly stationary predictors

– 3. γx > 1, i.e. local-to-unit root or unit root

• For the IVX estimator, also three cases are considered:

– 1. δz < γx, which includes local-to-unit-root and unit-root predictors cases

– 2. δz > γx and γx + δz > 1

– 3. δz > γx and γx + δz < 1

• For all cases above with the nonstationary predictor, we discuss three types of break,

whose precise definitions are case-dependent:

– 1. small breaks that are asymptotically negligible

– 2. moderate breaks that lead to a non-standard Op(1) t-statistic

– 3. large breaks that drive the t-statistic going to infinity

Theorem 4.1 below shows that, when the predictor is not persistent, the existence of

level shifts in the predicted variable will not distort the standard inference. The intuition

of this result is straightforward. Taking the single break case with a stationary predictor

as an example, it is straightforward to show that

√
T (β̂ols − β)→d N

(
0, (σ2

y + (α1 − α2)τ(1− τ))E(x21)
−1) ,

σ̂2
y →p σ2

y + (α1 − α2)τ(1− τ),

and thus, the effect of breaks will cancel out, leaving the limiting distribution of the t-

statistic unchanged.
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Theorem 4.1 If the predictor is stationary, i.e., γx = 0, then under the null hypothesis

H0 : β1 = β2 = ... = βm+1 = 0, tolsβ ⇒ N(0, 1) regardless of the number and size of

level shifts.

Now, we consider the cases of non-stationary predictors, which are empirically more

relevant. Before discussing IVX-based statistic, we first examine the influence of breaks

on OLS t-statistic, which is still used in some applied research. We first concentrate on the

case that the predictor is highly persistent, which includes local-to-unit-root and unit-root

processes.

Theorem 4.2 Let

|αi+1 − αi| =
di,T√
T

be the break magnitude of ith shift. As T goes to infinity, we call a break

• ‘small’ if di,T = o(1),

• ‘moderate’ if di,T = di is independent of T,

• ‘large’ if di,T = O(T ε), for some ε ∈ (0, 1/2].

Assume that the predictor is generated by a local-to-unit-root or unit root process, i.e.

γx > 1, then under the null hypothesis H0 : β1 = β2 = ... = βm+1 = 0,

• (i) if all the level shifts are small,

tolsβ ⇒
∫ 1

0
J c(r)dW (r)√∫ 1

0
J2
c(r)dr

;

• (ii) if all the level shifts are moderate,

tolsβ ⇒
∫ 1

0
J c(r)dW (r)√∫ 1

0
J2
c(r)dr

+
(
∑m

i=1 τidi)
∫ 1

0
J c(r)dr −

[∑m+1
i=1 (

∑m
j=i di)

∫ τi
τi−1

J c(r)dr
]

σy

√∫ 1

0
J2
c(r)dr

;
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• (iii) if the size of any shift is large, tolsβ →∞.

Next, we derive the limiting behavior of the OLS t-statistic with a mildly stationary

predictor. In this case, the limiting distribution is Gaussian, but with a larger asymptotic

variance.

Theorem 4.3 Let

|αi+1 − αi| =
di,T
T γx/2

be the break magnitude of ith shift. As T goes to infinity, we call a break

• ‘small’ if di,T = o(1);

• ‘moderate’ if di,T = di is independent of T;

• ‘large’ if di,T = O(T ε), for some ε ∈ (0, γx/2].

Assume that the predictor is generated by a mildly stationary process, i.e., 0 < γx < 1,

then the under the null hypothesis H0 : β1 = β2 = ... = βm+1 = 0,

• (i) if all the level shifts are small,

tolsβ ⇒ N(0, 1);

• (ii) if all the level shifts are moderate,

tolsβ ⇒ N

(
0, 1 +

1

σ2
y

m+1∑
i=1

[
m∑
i=1

τidi −
m∑
j=i

dj

]2
(τi − τi−1)

)
;

• (iii) if the size of any shift is large, tolsβ →∞.

Now we turn to the instrumental variable-based test. Theorem 4.4 below shows that,

even if the IVX-based t test replaces the OLS, the spurious effect is still present. For

these results, we need to modify the classification of break magnitude. This is due to the

fact that OLS and IVX estimator has a different convergence rate when the predictor is

non-stationary.
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Theorem 4.4 Let

|αi+1 − αi| =
di,T

T
δz+min[0,γx−1]

2

be the break magnitude of ith shift. As T goes to infinity, we call a break

• ‘small’ if di,T = o(1);

• ‘moderate’ if di,T = di is independent of T ;

• ‘large’ if di,T = O(T ε), for some ε ∈ (0, δz+min[0,γx−1]
2

].

Assume that the chosen persistence level for IVX is lower than that of the process gener-

ating the predictor, i.e. δz < γx, then under the null hypothesis H0 : β1 = β2 = ... =

βm+1 = 0,

• (i) if all the level shifts are small,

tivxβ ⇒ N(0, 1);

• (ii) if all the level shifts are moderate,

tivxβ ⇒ N(0, 1)

+

(
m∑
i=1

τidi

)
J c(1)

σy/
√

2
−

[
m∑
i=1

(
m∑
j=i

di

)
J c(τk+1)− J c(τk)

σy/
√

2

]
;

• (iii) if the size of any shift is large, tivxβ →∞.

Theorem 4.5 Let

|αi+1 − αi| =
di,T

T
δz+γx−1

2

be the break magnitude of ith shift. As T goes to infinity, we call a break

• ‘small’ if di,T = o(1);

• ‘moderate’ if di,T = di is independent of T;

• ‘large’ if di,T = O(T ε), for some ε ∈ (0, δx+γz−1
2

].
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Assume that the chosen persistence level for IVX satisfies that δz > γx and γx + δz > 1,

then under the null hypothesis H0 : β1 = β2 = ... = βm+1 = 0,

• (i) if all the level shifts are small,

tivxβ ⇒ N(0, 1);

• (ii) if all the level shifts are moderate,

tivxβ = N(0, 1) +Op(1);

• (iii) if the size of any shift is large, tivxβ →∞.

Theorem 4.6 Assume that for all i = 1, ...,m, we have |αi+1 − αi| = di
T ε

, where di is

a constant and ε > 0. Also assume that γx + δz < 1. Then under the null hypothesis,

tivxβ ⇒ N(0, 1).

To visually demonstrate the consequences of level shifts on predictability test, we plot

the empirical quantile of IVX-Wald and OLS-Wald statistic, together with that of a χ2(1)

random variable. For simplicity, we consider a single break that occurs in the middle

of the sample. Figure 11 shows the case without a shift. In this case, as expected, the

OLS-based statistic is far from being χ2(1), while IVX-Wald is well approximated by

this limiting distribution. Figure 12 presents the case with a break of magnitude d = 5.

It can be seen that the empirical quantile of the IVX-Wald statistic moves rightward and

thereby deviates from χ2(1), although the deviation is less severe than OLS. When the

break magnitude doubles to d = 10, as shown in Figure 13, the situation is even worse

as the quantile of the IVX-Wald statistic shifts further rightward. In summary, when the

level shift of the predicted variable occurs, both IVX and OLS-based inference will suffer

distortion and this distortion deteriorates as the break magnitude increases.

As suggested by the simulation and theoretical results, there may exist ‘spurious’ pre-

dictability, if y is stationary but experiences some level shifts. This is because stationary

series with mean shifts behaves like process with long-range dependence or nonstation-

arity. See, e.g., Granger and Hyung (2004). Therefore, regressing a stationary variable
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Figure 11: Empirical quantiles of OLS and IVX vs. Asymptotic Distribution (no break)

Figure 12: Empirical quantiles of OLS and IVX vs. Asymptotic Distribution (d=5)
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Figure 13: Empirical quantiles of OLS and IVX vs. Asymptotic Distribution (d=10)

with level shifts on a (nearly)-integrated variable may result in a spurious relationship,

even if they are completely independent. This type of spurious regression is considered

by, for instance, Noriega and Ventosa-Santaularia (2006). However, they do not derive

the limiting distribution and only consider a fixed break magnitude.

4.3 Testing for Predictability With Large Level Shifts

4.3.1 Sampling-splitting-based IVX-Wald Test

Note that here, the hypothesis we wish to test is H0 : β1 = β2 = ... = βm+1 = 0.

Hence, under the null, the model reduces to a break-in-mean model

yt =


α1 + uyt , 0 6 t 6 t1

α2 + uyt , t1 < t 6 t2
...

...
αm+1 + uyt , tm < t 6 T

.

The inference theory for such a model is well studied in the literature, such as Bai and

Perron (1998 BP hereafter). In this section, we consider the case with large shifts, which

can be accurately detected by BP’s method.

Assumption 4.3 The break sizes can be expressed as |αi − αi−1| = di,T
T ε

, where di,T =

O(T ε), for some ε ∈ (0, 1/2].
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Assumption 4.3 imposes that the break size either is independent of sample size or

shrinking towards zero, but with a rate of convergence slower than T−1/2. This assump-

tion is used to ensure that we can consistently estimate the break fraction under the null

hypothesis. The new procedure we propose, which is based on sample-splitting, contains

the following three steps:

• 1. Estimate the break date(s) of the null break-in-mean model using the traditional

method as described in Bai and Perron (1998).

• 2. Split the data set into disjoint regimes according to those estimated date(s).

• 3. Calculate the IVX-Wald test statistic in each individual subperiod and aggregate

them to obtain the final statistic.

Denote the fraction of break date(s) estimated in the Step 1 as (τ̂0, ..., τ̂m̂+1), where we set

τ̂0 = 0 and τ̂m̂+1 = 1 following the convention. For a given number of breaks m, these

break dates can be easily estimated by:

(τ̂1, ..., τ̂m) =
1

T
(t̂1, ..., t̂m),

(t̂1, ..., t̂m) = arg min
(t1,...,tm)

Sn(t1, ..., tm),

where Sn(t1, ..., tm) is the minimized sum of squared residuals

m+1∑
i=1

ti∑
i=ti−1+1

yi − 1

ti − ti−1

ti∑
i=ti−1

yi

2

computed given a particular set of break dates. To consistently estimate the number of

breaks, a few alternative methods can be applied. Here, for convenience, we adopt the

sequential method, which is based on testing (l+1) breaks against l breaks one at time

starting from some pre-specified maximum possible number of breaks.

Correspondingly, we will denote the IVX-Wald statistic calculated using data from τ̂i

to τ̂i+1 by W ivx(i), where i runs from 1 to m̂+ 1. Specifically,
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W ivx(i) = β̃ivx
′
(i)Q̃(i)−1β̃ivx(i), (4.3)

β̃ivx(i) =

 t̂i∑
t=t̂i−1+1

z̃t−1(xt − x̄i)′
−1 t̂i∑

t=t̂i−1+1

z̃t−1(yt − ȳi), (4.4)

where x̄i = 1
ti−ti−1

∑ti
t=ti−1

xt and ȳi = 1
ti−ti−1

∑ti
t=ti−1

yt.

The following theorem indicates that under the null hypothesis, the test statistic,

Wb =
m̂∑
i=0

W ivx(i),

will converge to a chi-squared distribution with degree of freedom equal to the number of

subperiods times the number of predictors.

Theorem 4.7 Under Assumption 4.1-4.3 and the null hypothesis that H0 : β1 = β2 =

... = βm = 0, as T → ∞, we have Wb → χ2 ((m+ 1)k), where m is the number of

breaks and k is the number of predictors considered.

This result is intuitive. If the level shifts of the predicted variable are relatively large,

we can consistently detect them and pin down their locations with high precision. In

particular, the convergence rate of the break fraction estimator will be faster than that of

the IVX estimator of β. Hence, asymptotically, it is as if we know the true dates of those

breaks.

4.3.2 Size and Power under Large Level Shifts

In this section, we examine the finite sample performance of the sample-splitting-

based test proposed above. For all simulation bellow, we consider a single predictor

whose level of persistence is c = 10 and the correlation between uxt and uyt is ρ = −0.9.

Three sample size, T = 200, T = 400 and T = 800, are considered. We first focus on the

single break case, in which we assume

yt =

{
α1 + uyt , 0 6 t 6 t1

α2 + uyt , t1 6 t 6 T
, (4.5)
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where α1 = 0, α2 = {12, 14, ..., 20}/
√
T and t1 = {0.3, 0.4, 0.5} × T . The rejection

rates with the nominal levels of 0.1, 0.05, and 0.01 are reported in Table 7. In general, the

size control is satisfactory, especially when the sample size is large enough. Meanwhile,

as expected, the performance of the test is better when the break is closer to the middle

of the sample period. The finite sample size control under multiple breaks are reported in

Table 8. The data generating process (DGP) for the predicted variable is now

yt =


α1 + uyt , 0 6 t < t1

α2 + uyt , t1 6 t < t2

α3 + uyt , t2 6 t 6 T

, (4.6)

and

yt =


α1 + uyt , 0 6 t < t1

α2 + uyt , t1 6 t < t2

α3 + uyt , t2 6 t < t3

α4 + uyt , t3 6 t 6 T

, (4.7)

For the DGP (4.6), two breaks occur and we consider t1 = 0.3 × T and t2 =

{0.5, 0.7} × T . For this two-break scenario, break magnitude are determined by α1 =

α3 = 0 and α2 = {20, 22, ..., 30}/
√
T . As for the DGP (4.7), we set t1 = 0.3 × T ,

t2 = 0.5× T and t3 = 0.7× T . For this three-break scenario, break magnitude are deter-

mined by α1 = α4 = 0, α2 = {30, 32, ..., 40}/
√
T and α3 = 2α2. In all cases, again, the

size control is good when T is large. An important conclusion drown from this study is

that, in finite samples, the precise meaning of ‘large’ break depends on the true number of

shifts. For a fixed sample size, when the number of breaks increases, we need level shifts

to be larger for our procedure to be satisfactory.

We next turn to the power performance of the test against the departure from null

hypothesis. The DGP for predicted variable is

yt =

{
α1 + β1xt−1 + uyt , 0 6 t < t1

α2 + β2xt−1 + uyt , t1 6 t 6 T
. (4.8)

Two different cases are considered. In the first case, no break in intercept occurs and thus

α1 = α2 = 0. In another case, α1 = 0, α2 = 30/
√
T and thus one large break is present.
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Table 7: Finite sample size performance under single large break

T = 200 T = 400 T = 800
level 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

τ = 0.3
d=12 0.13 0.07 0.02 0.12 0.06 0.01 0.12 0.06 0.02
d=14 0.12 0.06 0.02 0.11 0.05 0.01 0.11 0.06 0.01
d=16 0.12 0.06 0.02 0.11 0.05 0.01 0.11 0.06 0.01
d=18 0.12 0.06 0.02 0.11 0.05 0.01 0.11 0.06 0.01
d=20 0.11 0.06 0.02 0.11 0.05 0.01 0.11 0.06 0.01

τ = 0.4
d=12 0.12 0.06 0.02 0.11 0.06 0.01 0.12 0.06 0.01
d=14 0.11 0.06 0.02 0.11 0.06 0.01 0.11 0.06 0.01
d=16 0.11 0.06 0.01 0.11 0.05 0.01 0.11 0.05 0.01
d=18 0.11 0.06 0.01 0.11 0.05 0.01 0.11 0.05 0.01
d=20 0.11 0.06 0.01 0.11 0.05 0.01 0.11 0.06 0.01

τ = 0.5
d=12 0.12 0.06 0.02 0.12 0.06 0.01 0.12 0.06 0.01
d=14 0.12 0.06 0.01 0.11 0.06 0.01 0.12 0.06 0.01
d=16 0.12 0.06 0.01 0.11 0.06 0.01 0.12 0.06 0.01
d=18 0.11 0.06 0.01 0.11 0.05 0.01 0.12 0.06 0.01
d=20 0.11 0.06 0.01 0.11 0.05 0.01 0.11 0.06 0.01

Table 8: Finite sample size performance under multiple large breaks

T = 200 T = 400 T = 800
level 0.1 0.05 0.01 0.1 0.05 0.01 0.1 0.05 0.01

τ1 = 0.3, τ2 = 0.5
d=20 0.14 0.08 0.02 0.13 0.07 0.02 0.13 0.06 0.01
d=22 0.14 0.08 0.02 0.13 0.07 0.01 0.13 0.06 0.01
d=24 0.14 0.08 0.02 0.12 0.06 0.01 0.12 0.06 0.01
d=26 0.14 0.08 0.02 0.12 0.06 0.01 0.12 0.06 0.01
d=28 0.14 0.08 0.02 0.12 0.06 0.01 0.12 0.06 0.01
d=30 0.14 0.07 0.02 0.12 0.06 0.01 0.12 0.06 0.01

τ1 = 0.3, τ2 = 0.7
d=20 0.13 0.07 0.02 0.12 0.06 0.02 0.13 0.06 0.01
d=22 0.13 0.07 0.02 0.12 0.06 0.01 0.13 0.06 0.01
d=24 0.13 0.07 0.02 0.12 0.06 0.01 0.12 0.06 0.01
d=26 0.13 0.07 0.02 0.12 0.06 0.01 0.12 0.06 0.01
d=28 0.12 0.07 0.02 0.12 0.06 0.01 0.12 0.06 0.01
d=30 0.12 0.07 0.02 0.12 0.06 0.01 0.12 0.06 0.01

τ1 = 0.3, τ2 = 0.5, τ3 = 0.7
d=30 0.15 0.09 0.02 0.13 0.07 0.01 0.12 0.06 0.01
d=32 0.15 0.09 0.02 0.13 0.07 0.01 0.12 0.06 0.01
d=34 0.15 0.08 0.02 0.12 0.07 0.01 0.12 0.06 0.01
d=36 0.15 0.08 0.02 0.12 0.07 0.01 0.12 0.06 0.01
d=38 0.15 0.08 0.02 0.12 0.07 0.01 0.12 0.06 0.01
d=40 0.15 0.08 0.02 0.12 0.07 0.01 0.12 0.06 0.01
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Table 9: Finite sample power of Wb test

d = 30 d = 0
τ = 0.5 τ = 0.3 τ = 0.7 τ = 0.5 τ = 0.3 τ = 0.7

b=3 0.14 0.14 0.13 0.14 0.13 0.13
b=6 0.18 0.16 0.16 0.19 0.16 0.16
b=9 0.22 0.20 0.20 0.26 0.20 0.21
b=12 0.30 0.25 0.24 0.36 0.26 0.27
b=15 0.40 0.32 0.31 0.47 0.32 0.34
b=18 0.53 0.41 0.40 0.58 0.39 0.41
b=21 0.66 0.50 0.50 0.66 0.45 0.48
b=24 0.78 0.62 0.61 0.73 0.51 0.54
b=27 0.87 0.73 0.71 0.79 0.57 0.60
b=30 0.92 0.82 0.80 0.83 0.61 0.65

We assume t1 to be {0.3, 0.5, 0.7} × T . As for slope coefficient, we set β1 = b/T and

β2 = −b/T , where b ∈ {3, ..., 30}. Empirical rejection rates for all parameterization

considered are contained in Table 9. In both cases, we can clearly find a progression

toward 1 of empirical power as b increases. Since we assume the opposite direction of

predictability before and after the shift, the power is better when α also experiences a large

break. However, even if α is constant over time, splitting the sample does not sacrifice

much power. Another finding is that, the power of the test is better when the break is in

the middle of the sample period compared with early or late break.

4.4 Testing for Predictability with Moderate Shift: Single Break Case

4.4.1 Issues with Moderate Break

A critical assumption for the validity of the sample-splitting-based test discussed

above is that the shift magnitude of all breaks must be large enough in the sense that

they either keep constant when sample size goes to infinity or shrink toward zero at a

rate slower than T−1/2. Essentially, this restriction is imposed to guarantee the successful

estimation of the number of breaks and their locations.

As suggested by limiting theory derived in Section 4.2, a break of order T−1/2 is

asymptotically negligible as it will not incur size distortion if IVX-Wald is used to test for

the predictability. Indeed, since we must have δz + min[γx − 1, 0] < 1 by construction,

a break of order T−1/2 goes to zero faster than that of order T−
δz+min[γx−1,0]

2 . This implies
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Table 10: Fraction of break detected by BP’s Method

τ0 = 0.2 τ0 = 0.3 τ0 = 0.4 τ0 = 0.5
d = 1 2% 3% 3% 3%
d = 2 4% 5% 6% 6%
d = 3 7% 10% 12% 12%
d = 4 12% 18% 22% 23%
d = 5 21% 31% 37% 39%
d = 6 32% 47% 55% 57%
d = 7 46% 63% 72% 74%
d = 8 61% 77% 84% 86%
d = 9 74% 88% 93% 94%

that in large samples, even if we can not detect such a break, the performance of our

procedure should be unimpaired. However, in finite sample, this is not the case.

In this section, we consider this issue under the assumption that the maximum number

of breaks is known to be one. The reason for this choice is that, to the best of our knowl-

edge, in the existing literature, there exists no discussion on the multiple moderate breaks

problem. In fact, even in the single break case, the accurate detection of the break date is

challenging enough. This is first shown in Elliott and Muller (2007), which provides the

limiting distribution of break fraction for the single moderate break case. Critically, the

estimated fraction is inconsistent as it converges to true value plus some Op(1) term. This

result is reaffirmed by Jiang et al. (2018) for a simpler break-in-mean case.

To see the consequences of moderate break magnitude on the estimated number of

break as well as the break location, some simulation studies are conducted. We generate a

sequence of stationary variables with break in mean using DGP (4.5) with t0 = τ0 ·T and

α1 = 0, α2 = d√
T

. Four values of τ0 are considered, namely 0.2, 0.3, 0.4 and 0.5. We set d

to be 1,2,...,9. For each case, we first investigate the detection of break using BP’s method.

Table 7 reports the percentile of correct detection of a break for 10000 simulations. One

can find that for the value of d we consider, BP’s method is unreliable as a large fraction

of moderate break is undetected. This is especially the case for break occurring far from

the middle. For instance, when d = 5 and true break fraction being 0.2, the rate of correct

detection is only 21%. That means, in finite sample, applying BP’s method will not split

the sample, which leads to the size distortion caused by the break undetected.

Next, we examine the consequence of moderate break magnitude on the estimation of
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Table 11: Summary of Different Cases

Break Magnitude
Small Moderate Large

Accurate Detection No No Yes
Spurious Effect No Yes Yes

break fraction. To this end, we choose d = 3 as an example and plot the kernel-smoothed

finite-sample distribution of estimated break fraction for τ = 0.2, 0.3, 0.4, 0.5. To remove

the influence of the underestimated number of breaks, in this exercise, we estimate a break

date without estimating the number of breaks. As can be seen from Figure 14, the finite

sample distribution suffers issues like skewness and tri-modality. As argued in Jiang et al.

(2018), these features lead to an estimator that is biased even asymptotically. Hence, for

a moderate break case, even if the number of breaks is known, we still can not pin down

them with high precision.

Table 11 summarizes the cases we have considered. When breaks are small, they are

asymptotically negligible, and hence no special treatment is necessary. When the breaks

are large, they will lead to spurious regression and severe size distortion. However, since

they are easy to detect, we can use BP’s method to split the sample first and construct a

new statistic, which delivers valid inference. The most challenging situation is when the

breaks are moderate. They will distort the distribution of the IVX-Wald test statistic in

finite sample, while in the meantime, we can accurately pin down neither the number of

breaks nor their locations.

To deal with this problem, we propose a partial solution based on the simulation results

shown in the next subsection. The idea is that, compared with the underestimation of the

break number, the uncertainty of the break date induced by a moderate break seems to be

of secondary importance. Hence, we propose to fix the break number instead of estimating

it. As will be shown, this greatly alleviates the size distortion when the break is not large

enough.

One intuitive explanation of this result is the following. The biased estimation of break

fraction is relevant only for d that is quite small. For those cases, however, the distortion of

limiting distribution induced by the break is relatively marginal, which means even if we

estimate an incorrect break date far from the true one, no serious problem occurs. This is
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Figure 14: Finite sample distribution of estimated break fraction when d = 3

not the case for the underestimation of the break number. From Table 10, we see that even

when d = 7, only half of the breaks are detected. Ignoring the break of this magnitude

then causes a sever distortion. Hence, in finite sample with a moderate shift magnitude,

pre-specifying the number of shifts is more important than estimating the break fraction

accurately.

4.4.2 Size Control Under Single Moderate Break

In this section, we compare different estimators under the moderate break case. Here,

again, we focus on the scenario in which the maximum number of the level shifts is

known to be one. We compare the size control of sample-splitting estimator based on

the estimated number of breaks as well as its counterpart with a pre-specified number of

shifts. Three break fractions are considered, namely τ = 0.5, τ = 0.2 and τ = 0.8. For

τ = 0.5 case, we also examine two persistence level, c = 0 and c = 10. To understand

the consequences of break magnitude on size control, we compute the rejection rate with

d ∈ (0, 0.25, 0.5, ..., 10) for IVX-Wald, adjusted IVX with estimated break number, and

adjusted IVX with pre-specified break number. The results are summarized in Figure

15-18. As expected, the IVX-Wald test over-rejects seriously quickly after the break size

deviates from zero. Meanwhile, it can also be found that, in each case, for shift mag-

nitude in some particular interval, the test statistic based on the data-dependent number
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Figure 15: Rejection rate of three test statistic under different structural break magnitude
when c = 10 and τ = 0.5

of breaks will suffer size distortion. As discussed above, this is due to the fact that the

number of breaks is underestimated, and the estimated break fraction is biased and in-

consistent. However, as long as the number of shifts is fixed to be the true value, one,

the size distortion almost disappears for all cases we consider. Hence, in practice, at least

for the single break case, pre-specifying the number of breaks is a partial solution for the

moderate break problem.

4.5 Empirical Illustrations

To illustrate the empirical relevance of the issues discussed above, we consider two

examples in this section. The first example is concerned with the absolute returns of the

stock market index, which serves as a proxy for volatility. The second one is on the

predictability of macroeconomic variables on the Housing Price Index (HPI).

4.5.1 Predicting Absolute Equity Returns

The first empirical application that we consider is the predictability of a few financial

and macroeconomic variables on the volatility of the S&P 500 index. A few candidate

proxies for volatility are available, including the one inferred from the GARCH model

or some realized measures. In this chapter, we opt for the absolute return. Taking the
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Figure 16: Rejection rate of three test statistic under different structural break magnitude
when c = 0 and τ = 0.5

Figure 17: Rejection rate of three test statistic under different structural break magnitude
when c = 10 and τ = 0.2
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Figure 18: Rejection rate of three statistic under different structural break magnitude
when c = 10 and τ = 0.8

absolute return as a proxy for volatility is the basis of much-applied work in the literature.

It has been used primarily in econometrics and econophysics research, e.g., Cizeau et al.

(1997) and, in recent years, has been shown to be a better measurement of volatility, see

Forsberg and Ghysels (2007).

It is well established that volatility of equity return is much more predictable than

the return per se, and thus we expect that there exist some variables showing significant

predictive power. In a recent contribution to predicting volatility of stock return, Paye

(2012) considers dozens of macroeconomic variables. In the current work, we consider,

for simplicity, the potential predictors mentioned in the last chapter. Recall that these

include: Tbill rate (tbl), long-term yield (lty), term spread (tms), default yield spread

(dfy), dividend-price ratio (d/p), dividend yield (d/y), earnings-price ratio (e/p), dividend

payout ratio (d/e), book-to-market value ratio (b/m), net equity expansion (ntis), inflation

rate (inf) and consumption-wealth ratio (cay).

Our sample period is from 1927 to 2012, and both the quarterly and monthly horizons

are examined. We plot the time series of monthly absolute returns in Figure 18. Using

the BP procedure, one structural break of absolute return is identified in the mid-1940s.
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Figure 19: Absolute return of S&P 500 Index with one Level Shift

Note that this is consistent with the finding in Kim et al. (2005). Using Bayesian marginal

likelihood analysis, those authors also find a permanent reduction in the general level of

stock market volatility in the 1940s. The break date and the average level before and after

the break are shown in Figure 18 by the dashed red line.

We first examine the predictability of these potential predictors using the IVX-Wald

test. The results for quarterly and monthly data are reported in the first and third columns

of Table 12, respectively. In the monthly case, all variables we consider except for

earnings-price ratio are highly significant predictors. As for the quarterly horizon, all but

long-term yield and earning-price ratio exhibit great in-sample predictive power. Given

the existence of a level shift in absolute return, it is natural to ask whether these results

are consequences of spurious regression effect. To this end, we carry out tests based on

sample-splitting at the estimated break date. The results are reported in the second and

fourth columns of Table 8, which is for quarterly and monthly data, respectively. It can

be seen that, for several variables, the remarkable predictability disappears after the break

is taken into consideration. For instance, the T-bill rate is much less predictive for both

monthly and quarterly horizons than before. All these examples indicate that, when the

predictability of stock return volatility is investigated, it is necessary to treat the level shift
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Table 12: Predictability of Absolute Return of Stock Index

predictors quarterly monthly
IVX-Wald Wb IVX-Wald Wb

Dividend payout ratio 42.82*** 11.90*** 99.10*** 27.55***
Long-term yield 2.61 1.77 6.10*** 2.30
Dividend yield 14.63*** 12.90*** 35.40*** 37.80***
Dividend-price ratio 25.64*** 31.12*** 42.13*** 36.03***
T-bill rate 5.88** 0.67 13.74*** 5.07*
Earnings-price ratio 0.0502 12.28*** 1.76 4.58
Book-to-market value ratio 37.43*** 30.68*** 62.85*** 37.32***
Default yield spread 137.67*** 40.76*** 252.61*** 63.51***
Net equity expansion 8.77*** 10.06*** 16.55*** 11.33
Term spread 5.59** 2.65 13.20*** 8.25**
Inflation rate 28.29*** 11.23*** 11.01*** 4.39
Consumption-wealth ratio 11.351*** 16.457** - -

explicitly before any test is carried out.

4.5.2 Predicting Growth Rate of Housing Price Index

The second empirical application we consider is the predictability of the growth rate

of the quarterly housing price index (HPI), which was recently studied in Yang et al.

(2020). In that paper, the authors use the IVX-based test as well, but they emphasize

another potential failure of this approach. Specifically, it is argued that when uyt has serial

correlation, the IVX-Wald test will suffer severe size distortion. To solve this problem, a

modification based on Cochrane–Orcutt procedure is proposed and shown to work well.

After conducting adjustment, they find that most macroeconomic variables they consider

have no predictive power, which dramatically contradicts the conclusion led to by a direct

application of the IVX-Wald test.

We re-examine here this exercise with a focus on the level shifts. The predicted vari-

able, HPI, is collected from the Federal Housing Finance Agency (FHFA), and the time

span is from the first quarter of 1975 to the second quarter of 2018. Using this time series,

we can easily obtain the growth rate of HPI. Both the level and growth rate of HPI are

plotted in Figure 19. BP procedure suggests that the growth rate of HPI experiences four

level shifts. The timings of these breaks are approximately 1980, 2000, 2005, and 2012.

All the break dates and the average level of HPI growth rate in each sub-period are also

indicated in Figure 19 by the red dashed line. In the presence of these shifts, spurious
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predictability may well be detected by the IVX-Wald test.

Following Yang et al. (2020), we also consider following ten macroeconomic vari-

ables, which are available from Federal Reserve Economic Data (FRED):

• 1. CPI: Consumer price index with all items less shelter for all urban consumers

(Index 1982-1984 = 100).

• 2. DEF: Implicit price deflator of GDP (Index 2012=100).

• 3. GDP: Percent change of GDP from last period.

• 4. INC: Percent change of real disposable personal income from the same quarter

in last year.

• 5. IND: Industrial production index (Index 2012 = 100).

• 6. INT: Effective federal funds rate.

• 7. INV: The shares of the residential fixed investment in GDP.

• 8. MOG: 30-year mortgage rate.
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Table 13: Predictability of Housing Price Index (univariate regressions)

predictors 1975:Q1-2018:Q2 2000:Q1-2018:Q2
IVX-Wald Wb IVX-Wald Wb

CPI 35.542*** 20.206*** 11.3039*** 1.7742
DEF 24.115*** 31.1201*** 3.4594* 3.7734
GDP 21.841*** 9.024 6.8410*** 7.1247*
INC 4.924** 11.314** 5.9425** 0.2463
IND 5.229** 17.158*** 1.3217 1.1243
INT 6.915*** 12.804** 0.8632 5.6860
INV 94.097*** 61.795*** 38.9980*** 7.9640**
MOG 4.528** 11.181** 0.8115 1.9936
RES 8.671*** 6.032*** 3.1489* 4.6965
UNE 22.718*** 13.030** 17.1028*** 1.9788

• 9. RES: Total reserve balances maintained with the Federal Reserve banks.

• 10. UNE: Civilian unemployment rate.

We first consider univariate predictive regressions. The results are reported in Table 13.

As in Yang et al. (2020), in addition to the full sample, we also consider the sub-sample

starting from the first quarter of 2000. The reason for the choice of this sub-period is

that HPI is highly volatile during this time, and it consists of both decline and surge of

the housing market. To make a comparison, we report both the results with and with-

out adjustment for level shifts. As shown by the first two columns of Table 13, taking

breaks into account will not make a big difference for the full-sample test, with only the

GDP becoming an insignificant predictor. More interestingly, however, when we turn to

the sub-period in the 21st century, the conclusion changes remarkably and is in line with

the one obtained in Yang et al. (2020). Indeed, most macroeconomic variables that are

deemed as significantly predictive before adjusting for level shifts show little or no pre-

dictive power after we use the sample-splitting procedure. Similar to Yang et al. (2020),

we also find that INV, the share of the residential fixed investment in GDP, remains sig-

nificant after taking breaks into account and thereby is a pretty robust predictor of the

growth rate of HPI.

Now let us move on to the multivariate regressions. Following Yang et al. (2020), we

consider five combinations

• 1. INV+UNE;
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Table 14: Predictability of Housing Price Index (multivariate regressions)

predictors 1975:Q1-2018:Q2 2000:Q1-2018:Q2
IVX-Wald Wb IVX-Wald Wb

Combination 1 94.43*** 80.51*** 38.51*** 10.6
Combination 2 106.60*** 115.12*** 46.92*** 30.38**
Combination 3 22.89*** 92.48*** 14.14*** 22.38**
Combination 4 22.99*** 35.49*** 17.11*** 7.70
Combination 5 216.60*** 244.00*** 232.18*** 111.86***

• 2. INV+UNE+IND+GDP+INC;

• 3. CPI+DEF+INT+RES;

• 4. CPI+INT+MOG;

• 5. A “kitchen sink” which includes all ten variables.

See Section 4.4 of that paper for a discussion of these choices. The results for multivariate

regressions are reported in Table 14. In general, for the full-sample case, adjusting for

level shifts does not make any difference from the IVX-Wald test. This is, however, not

the case for sub-sample starting from the year 2000. For this specific period, taking breaks

into account will make combination 2 and 3 less significant, while combination 1 and 4

completely lose predictive power. Again, it seems that the predictability in this period is

partly induced by the spurious regression effect.

4.6 Conclusions

In this chapter, we study the potential consequences of predicted variable’s level shifts

on the detection of predictability. We show by both theoretical derivation and simulation

that this type of structural breaks will result in the spurious regression phenomenon and

thereby seriously distort the test based on OLS and IVX estimators. We discussed two

cases. In the first case, the break size is large and the t-statistic tends to infinity in the

limit, which is similar to conventional spurious regression. The second case is concerned

with moderate shifts, which leaves the t-statistic stochastically bounded in large sample.

However, the limiting distribution in that case is not the same as the one used to compute

the critical values, and thus the size distortion will still be present.
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To deal with the large breaks, We propose a testing procedure based on sample-

splitting and show that it enjoys reasonable size control when breaks can be precisely

detected by popular methods like Bai and Perron (1998). Two empirical applications are

provided to illustrate the empirical relevance of our results. As for moderate shifts, we

carefully study the single break case and argue that size control can be partially achieved

by pre-specifying the number of breaks. Simulation suggests that this strategy works well

in various cases. We leave a thorough understanding of moderate break case as future

work.
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5 Multivariate Stochastic Volatility Model with Flexible

Dynamic Correlations

5.1 Introduction

Characterizing the dynamic behavior of volatility of individual asset returns is of great

importance to both portfolio allocation and risk management. Starting from the seminal

paper by Engel (1982), a wide range of univariate models have been considered in the

literature, most of which can be categorized as either GARCH-based models or stochastic

volatility (SV) models. Another notable development during the past few decades is the

focus on multivariate financial data analysis. It is increasingly recognized that analyzing

the asset return individually is not adequate, and the dependence structure among different

assets must be taken into account. To this end, a plethora of multivariate extensions of

GARCH and SV have emerged and been applied in the empirical researches as well as

industry practice. See Bauwens et al. (2006) for an extensive review of multivariate

GARCH (MGARCH) and Asai et al. (2006) for multivariate SV (MSV).

The first MSV model is proposed in Harvey et al. (1994) and is an analogy of the

constant conditional correlation (CCC) model in the MGARCH literature. In this basic

setup, the volatility of each individual asset is assumed to follow a univariate SV process,

while the correlation matrix among all assets is constant over time. This is obviously

a rather restrictive and perhaps unrealistic assumption, as it implies that the correlation

structure keeps unchanged over the whole time span. Great efforts have been dedicated

to the relaxation of the constant correlation assumption ever since. For instance, Yu and

Meyer (2006) proposed a model that mirrors the dynamic conditional correlation (DCC)

model of Engle (2002) in MGARCH. Another parametrization that is also based on DCC

can be found in Asai and McAleer (2009).

All the models mentioned above are built upon a variance-correlation decomposition

of the covariance matrix. It is also possible to characterize the dynamic conditional cor-

relation by modeling the covariance matrix per se. Similar to the case in the MGARCH

literature, the major challenge here is to make sure that the model can produce a posi-
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tive definite covariance matrix. One possibility is to model the matrix logarithm of the

original covariance matrix, which must exist and is free of algebraic constraint by design.

This idea, as an extension of exponential GARCH in Kawakatsu (2006), is explored in

Ishihara et al. (2016). A significant drawback of this approach is that the volatilities and

correlations are interwoven with each other, and thus the estimated model is very hard to

interpret. Another existing approach, considered in Lopes et al. (2002), takes advantage

of the well-known Cholesky decomposition of a symmetric positive definite matrix. The

useful property of this method is that there is a clear and meaningful connection between

elements of the original covariance matrix and that of the component matrices, while

the shortcoming is that the driving forces underlying volatilities and correlations are not

completely separated. Last but not least, the Wishart autoregressive multivariate process

provides a flexible modeling tool for MSV as well; see Philipov and Glickman (2004) and

Gourieroux et al. (2016) for details.

In this paper, we propose to apply a recently developed new parameterization of the

correlation matrix to develop a new MSV model. Such a parameterization, originally

proposed in Archakov and Hansen (2018), has been successfully implemented in the

MGARCH context, see Archakov et al. (2019). They show that this approach can be

deemed as a generalization of the well-known Fisher’s z-transformation to the higher

dimensional case. We seek to extend their work to the MSV setup. Under this new mod-

eling design, the underlying latent states that determine the correlation among assets are

allowed to have an unrestricted domain, and no algebraic constraint of any kind is neces-

sary. This is due to the fact that this new parameterization by construction automatically

guarantees that the estimated correlation matrix is indeed valid. Meanwhile, the under-

lying shocks to volatilities and correlations are fully separated in our model. This is an

appealing feature, as in practice, these two quantities may be determined by completely

distinct factors. Last but not least, our model is invariant to the reordering of assets, and

thus no ex-ante ordering is necessary. All these features indicate that our model is very

flexible in terms of capturing dynamic patterns of volatilities and correlations, imposing

a minimum level of ex-ante restrictions.

As is the case for most MSV models, estimation of our model is challenging due to a
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large number of parameters as well as a high dimension of latent variables. To accommo-

date the former, we follow the existing work and apply Bayesian Markov Chain Monte

Carlo (MCMC) method, as the maximum-likelihood-based approach will be unstable or

even fail to reach a result under this circumstance. Departing from much of the literature,

where carefully designed single-move sampler or multi-move Gibbs sampler are used to

tackle the latent variables issue, we opt to work with the recently proposed particle-filter

based MCMC algorithm. Ever since the seminal paper by Andrieu et al. (2010), the re-

search on the theoretical foundation of PMCMC and its empirical applications to many

different fields has exploded quickly. Though theoretically applicable under a very gen-

eral setup, the practical performance of this approach for a particular model depends on

many factors and requires careful examination. To strike a balance between satisfactory

estimation accuracy and acceptable computational cost, we choose a method called Parti-

cle Gibbs Ancestor Sampling (PGAS). It is a modified version of Particle Gibbs Sampling

(PG) considered in the Andrieu et al. (2010), which dramatically improves the mixing

property under a small number of particles. Extensive simulation results are presented to

justify the choice and also provide some guidance for empirical application.

The structure of this chapter is as follows. Section 5.2 briefly reviews the parameter-

ization and estimation method used in the current literature. Section 5.3 introduces the

new parametrization proposed in Archakov and Hansen (2018) and discuss some of its

properties. The detailed specification of our new multivariate stochastic volatility model

is presented in Section 5.4. Section 5.5 contains how we make inferences for the pro-

posed model using PGAS and present some simulation results. Then, in Section 5, the

new model is implemented to characterize the dynamics of two sets of assets. The first

one is the return of foreign exchange rates, and the second is equity returns. Section 5.6

concludes the paper and points out some potential improvements to our model.

5.2 A Selective Literature Review

We review some literature on modeling multivariate stochastic volatility in this sec-

tion. Yu and Meyer (2006) and Asai et al. (2006) summarized this area of research up

to that time, discussing both estimation techniques and model comparison. A similar ac-
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count can be found in Chib et al. (2009). For early literature, we refer the reader to those

review papers. Here, we mainly consider the models proposed in the most recent decade,

paying particular attention to how they achieve the validity of resulting covariance matri-

ces and the choice of inference method.16

5.2.1 Model Setup

The basic structure of the MSV model is

rt|Ct ∼ N(0, Ct), (5.1)

where rt is a vector of asset returns, and we aim at characterizing the dynamics of its

variance-covariance matrix Ct. Clearly, Ct must be symmetric and positive definite for all

t. Different models usually rely on different designs to guarantee this property. Broadly

speaking, we can categorize MSV models into two groups. For the first group, one directly

builds a model for Ct per se, while, for the latter, we first carry out a volatility-correlation

decomposition and then model each part separately.

Within the first group of models, three methods have been considered. The first one is

based on the matrix exponential. Ishihara et al. (2016) assume that

Ct = exp(Ht/2)

and propose to model vech(Ht) as a vector autoregression process. Due to the definition

of the matrix exponential, Ct is guaranteed to be a valid variance-covariance matrix. The

major drawback of this model is that the relationship between those modeled latent factors

and original volatilies/correlations is highly nonlinear and thus very hard to interpret.

The second one utilizes the well-known Cholesky decomposition. For instance, Lopes

et al. (2012) propose to decompose Ct as

Ct = AtHtA
′
t,

16Note that we do not consider the models based on factor structure in this review, as our new model is
based on direct modeling of covariance matrix
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where Ht is a diagonal matrix and At is a lower triangular matrix, and then model all

the nonzero elements in At and Ht as the autoregression process. Similarly, Shirota et

al. (2017) also use this decomposition to set up their MSV model. Though under this

parameterization we can easily link the latent variables to volatilities and correlations,

other problems arise with the Cholesky decomposition. For instance, the resulting ma-

trix depends on the ordering of assets, which is undesirable. Meanwhile, the underlying

dynamics of volatilities and correlations are not fully separated.

The third set of models take advantage of the Wishart distribution, whose support

includes only positive definite matrices. This is considered in Gourieroux et al. (2009),

where a Wishart autoregression process is used. Specifically, they assume that

Ct =
m∑
i=1

xitx
′
it,

xit = Axi,t−1 + εit and εit ∼ N(0,Σ),

where (v, d, A) are unknown parameters. Alternatively, one can also model Ct uses the

inverse Wishart as in Philipov and Glickman (2006). In this case, we have

C−1t |v, C−1t−1 ∼ Wishart

(
v,

1

v
(A1/2)(C−1t−1)

d(A1/2)′
)
,

where (m,A,Σ) are unknown parameters. A similar model along this line is presented in

Jin and Maheu (2013).

The models in the second group treat volatility of each asset and the correlation matrix

separately, based on the following decomposition

Ct = V
1/2
t RtV

1/2
t ,

where Vt is a diagonal matrix collecting all the variances and Rt correlation matrix. For

our purpose, the major difference of designs among this group lies in how they parame-

terize the Rt. Note that the critical issue in this setup is again how to make sure of the

validity of the model-generated correlation matrix. The first and simplest model in this
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fashion is the constant correlation MSV in Harvey et al. (1994), where

Rt = R, for all t.

A similar assumption is made in Chan et al. (2006) and Asai and McAleer (2006). It can

be easily seen that in these models, the dynamic movement of correlations is not allowed.

Although the inference under this assumption is quite simple, it is clearly too restrictive

for modeling most financial data.

To incorporate a time-evolving correlation structure, Asai and McAleer (2009) con-

sidered two models motivated by the Dynamic Conditional Correlation (DCC) model of

Engle (2002) in the MGARCH literature. The idea is to write the correlation matrix in the

following form

Rt = Q̃−1t QtQ̃
−1
t ,

where Q̃t = (diag(vecd(Qt))
1/2. By this construction, the diagonal elements of Rt must

be 1 and symmetric positive definiteness can be achieved if Qt is symmetric positive

definite. Two Wishart-driven models for Qt they propose are

Qt+1 = (1− φ)Q̄+ φQt + Ξt, where Ξt ∼ Wishart(k,Λ)

and

Q−1t+1|k,Q−1t ∼ Wishart

(
k,

1

k
Q
−φ/2
t ΛQ

−φ/2
t

)
,

where unknown parameters are (k, φ,Λ). Between these two parameterizations, the au-

thors argued that the second one is preferred.

Inspired by the Dynamic Equicorrelation (DECO) model in the MGARCH literature

proposed in Engel and Kelly (2012), Kurose and Omori (2016) proposed to model Rt in

the following way:

Rt = (1− ρt)I + ρtJ,

where I is an identity matrix, and J is a square matrix with all elements equal to 1. To

ensure that ρt is within (−1, 1), they model the Fisher transformation of ρt as an autore-
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gressive process. Note that in this model, Rt is positive definite only if ρt is large than

some lower bound depending on the number of assets. When more assets are considered,

this lower bound will approach 0. Kurose and Omori (2018) further extended this model

to the multiple-block case and included some other features.

More recently, Yamauchi and Omori (2020) propose to model pairwise correlations

by the Fisher transformation. Their parameterization is

Rt = {ρij,t}, where ρij,t =
exp(gij,t)− 1

exp(gij,t) + 1
,

and gij,t is assumed to follow a random walk. Since this element-wise operation does not

guarantee the validity of Rt as a correlation matrix, they further derive algebraic bounds

for ρij,t that guarantee the positive definiteness of Rt. Note that the bounds for one par-

ticular ρij,t are conditional on all other elements in Rt. Therefore, it is well suited for

the single-move Gibbs sampling technique, but hard to be extended to other estimation

method.

5.2.2 Estimation Method

Unlike observation-driven models like univariate and multivariate GARCH, which can

be estimated straightforwardly by the maximum likelihood method, stochastic volatility

models are particularly challenging in terms of estimation and inference. This is due to

the high-dimensional latent variables involved in the models, as well as a large number

of parameters. To deal with these complications, historically, dozens of methods were

proposed and implemented to make inferences for SV models. For a detailed survey on

this topic, see Broto and Ruiz (2004).

The earliest and perhaps most straightforward method for estimating SV models is the

method of moments, which is considered in Taylor (1986). Other moment-based proce-

dures include the generalized method of moments as in Melino and Turnbull (1990) and

Andersen and Sorensen (1996), and the simulated method of moments proposed in Duffie

and Singleton (1993). Though very easy to implement, these methods have less satis-

factory finite sample properties. Moreover, they do not provide estimates of underlying
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latent processes. Later, a quasi-maximum-likelihood estimator (QMLE) is proposed in

Harvey et al. (1994), which relies on a log-linearization of the original model. This trans-

formation results in a linear state space form with log chi-squared errors, and the Kalman

filter is subsequently used to compute the likelihood. However, QMLE does not rely on

the exact likelihood of data, and the approximation of log chi-squared errors by Gaussian

density could be somewhat inappropriate. A better approximation to the exact likelihood

can be achieved either by using a mixture of normals or through numerical simulation.

The former is proposed in Kim et al. (1998). Monte Carlo Likelihood approach proposed

in Sandmann and Koopman (1998) provides an example of the latter.

A majority of recent papers on stochastic volatility work under the Bayesian frame-

work and base their inference on the Markov Chain Monte Carlo technique. This is

particularly the case for multivariate models, as they usually involve a large number of

parameters, and optimizing over a high-dimensional parameter space is well known to be

complicated. For a Bayesian method, this problem becomes computing high-dimensional

integral, which can be efficiently done by MCMC sampling. The critical step of this

procedure is to draw a sample of latent processes given a particular set of static param-

eters. The first method proposed in the literature is the single-move sampler in Jacquier

et al. (1994), where each latent variable is drawn one at a time, given all the other ones.

This approach is well known to be inefficient, as it will generate seriously autocorrelated

samples from the Markov chain, suggesting a vast amount of random draws is required

to achieve a satisfactory accuracy of estimation. This is particularly true for empirically

relevant cases of strongly persistent volatility. In light of this inefficiency, Kim et al.

(1998) provide a highly efficient alternative MCMC method. Their method also starts

with a log-linearization of the model, after which they introduce extra auxiliary variables

to reach a linear state-space form. Simulation smoother of de Jong and Shephard (1994)

is then applied to draw the whole latent process simultaneously. Though very popular

in the univariate SV literature, this method is not easy to be extended to MSV models

with complicated correlation structures. Another significant improvement of the single-

move sampler is proposed in Shephard and Pitt (1997). These authors suggest blocking

to improve the speed of convergence for simulators of non-Gaussian state-space models.
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Within each block, a second-order Gaussian approximation is used to obtain a good pro-

posal density. Since sampling the whole sequence of latent variables in one block leads

to a high rejection rate, they also discuss how to choose a balanced block size. This

method is later modified by, e.g., Omori and Watanabe (2004, 2007), and attracts a lot of

applications.

5.3 Generalized Fisher’s z-Transformation and GFT-MSV Model

In this section, we introduce the new parameterization of the correlation matrix pro-

posed in Archakov and Hansen (2018), which can be considered as a high-dimensional

generalization of widely used Fisher’s z-transformation in bivariate correlation modeling.

Based on this new tool, a flexible multivariate stochastic volatility model is proposed.

5.3.1 Parametrization of Correlation Matrix

When the correlation coefficient between two random variables, say ρ, is to be mod-

eled, an essential constraint is that its value must be within the interval (−1, 1). To avoid

complexity brought by this constraint in inference, one can instead model the Fisher’s z-

transformation of ρ, defined as F (ρ) = 1
2

log 1+ρ
1−ρ . We know that F (·) is a one-to-one map-

ping and for any F (ρ) ∈ R, there exists a unique corresponding ρ ∈ (−1, 1). Therefore,

one can impose any structure on F (ρ) and transform it back to obtain ρ without worrying

about the validity of the resulting correlation coefficient. This idea was first introduced

to multivariate stochastic volatility literature in Yu and Meyer (2006). Unfortunately, it is

acknowledged by the authors that this approach ”is not easy to be generalized into higher

dimension situations”. In particular, a pair-wise transformation applied to each entry in a

high-dimensional correlation matrix, though seems to be natural, is not a valid choice as

it fails to guarantee the positive definiteness of the resulting correlation matrix.

Fisher’s z-transformation has many known nice properties, and it is, therefore, desir-

able to obtain a valid high-dimensional version of this transformation. This is achieved

in a recent paper by Archakov and Hansen (2018). Their proposal is to apply the ma-

trix logarithm to the original correlation matrix and then model all the lower off-diagonal

elements in that new matrix. To fix the idea, suppose we have a p-dimensional corre-
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lation matrix C and let G = logC =
∑∞

k=1
(−1)k(C−I)k

k
. Note that the convergence of

the infinite summation and thus the existence of G is ensured by the fact that C, as a

correlation matrix, is symmetric and positive definite. Further, denote q = vecl(G) as

the p(p−1)
2

-dimensional vector containing all lower off-diagonal entries of G. In summary,

the new parametrization of the original correlation matrix is now defined by the mapping

q = vecl(logC). The key theoretical contribution of Archakov and Hansen (2018) is that,

this mapping from any vector in Rp×p to valid correlation matrix in R
p(p−1)

2
×1, is shown

to be one-to-one. That is to say, given any p(p−1)
2

-dimensional vector q, there exists a

unique valid p-dimensional correlation matrix C. Although the inverse mapping from q

to C does not admit a closed-form analytical solution, C can easily be reconstructed from

q using an iterative algorithm.17

It is straightforward to show that when p = 2, the above-defined transformation will

reduce to Fisher’s z-transformation. As a generalization, the new parametrization inherits

a few advantages from the z-transformation and enjoy some additional desirable proper-

ties. First and foremost, it is very flexible in the sense that when modeling q, we do not

need to impose any algebraic constraint. This suggests that we can consider any reason-

able dynamics for q without worrying about the positive-definiteness of the resulting cor-

relation matrix, which is attractive in the stochastic volatility model. Second, compared

with original elements in correlation matrix C, the sampling distribution of elements in

transformed vector q usually appears to be closer to Gaussian distribution. Hence it is

reasonable to model q through a Gaussian autoregressive process. Third, this transfor-

mation is invariant to the reordering of variables, in contrast to those approaches based

on Cholesky decomposition. Fourth, although elements of q depend on C on a nonlin-

ear way, there are some interesting properties that do carry over to matrix G = log(C),

notably equicorrelation and block-equicorrelation structure, see Archakov et al. (2019).

Note: For the sake of notational simplicity, in the rest of the paper, we will refer to the

mapping vecl(log(·)) by F (·) and the corresponding inverse mapping by F−1(·).

17This algorithm has been implemented in Matlab, Python, Ox, and the corresponding computer code
can be found in the online appendix of Archakov and Hansen (2018). We thank the authors for making it
public.
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5.3.2 Multivariate Stochastic Volatility Model with Generalized Fisher Transfor-

mation

We specify our new MSV model in this section. Let rt = (r1t, ..., rpt)
′ denote the

p × 1 vector of asset returns and ht = (h1t, ..., hpt)
′ the corresponding vector of latent

log-volatilities at time t. We denote the vector of latent factors at time t that underlie the

movement of correlations by qt = (q1t, ..., qdt)
′, where d = p× (p− 1)/2 by construction

. This vector qt is connected to correlation matrix Rt through the transformation detailed

in Section 5.3. Then, the basic model, which we refer to as GFT-MSV, is given by

rt = V
1/2
t εt, where εt ∼ N(0, Rt), t = 1, ...T, (5.2)

Vt = exp(Ht), and ht = diag(Ht), t = 1, ...T, (5.3)

qt = F (Rt), t = 1, ...T, (5.4)

ht+1 = µh + Φh · (ht − µh) + ηht, where ηht ∼ N(0,Σh), t = 1, ...T − 1, (5.5)

qt+1 = µq + Φq · (qt − µq) + ηqt, where ηqt ∼ N(0,Σq), t = 1, ...T − 1, (5.6)

h1 ∼ N(µh, (Ip − Φ2
h)
−1Σh), and q1 ∼ N(µq, (Id − Φ2

q)
−1Σq), (5.7)

where εt = (ε1t, ...εpt)
′, ηht = (ηh1t, ...ηhpt)

′, ηqt = (ηq1t, ...ηqdt)
′, µh = (µh1, ...µhp)

′ and

µq = (µq1, ...µqp)
′. We assume that Φh and Φq are both diagonal matrix, whose diagonal

elements are φh = (φh1, ..., φhp) and φq = (φq1, ..., φqd) respectively. Σh and Σq are also

supposed to be diagonal matrices, with diagonal entries being σ2
h = (σ2

h1, ...σ
2
hp) and σ2

q =

(σ2
q1, ..., σ

2
qd). Hence, all the latent variables are generated by completely independent

autoregressive processes. As usual, h’s represent the log-variance of each individual asset

return. On the other hand, q’s capture the dynamic correlation structure among all assets

and are related to the observations through a nonlinear link transformation F (·).

Note that in the GFT-MSV model, persistence is allowed to vary across all the factors

driving the dynamics of the correlation matrix. This is in sharp contrast to models based

on Engle’s DCC framework or the Wishart autoregression, where the persistence of all

the correlations is usually governed by one scalar parameter. This flexibility could be
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consequential in practice, as in most cases, such ‘equi-persistence’ can not be justified ex

ante. To empirically examine the relevance of this relaxation, we also consider a restricted

model in this paper, which is same as the general model except for the additional assump-

tion that the three driving factors of dynamic correlations share the same persistence and

variance, i.e., φq1 = ... = φqd and σ2
q1 = ... = σ2

qd. As can be easily seen, this structure

is similar to the equicorrelation model proposed by Engle and Kelly (2012), with a minor

difference that we allow the variation in the mean of each correlation.

5.4 Particle Filter and Markov Chain Monte Carlo Estimation

Due to the difficulty of evaluating likelihood, the most recent literature on MSV mod-

els carries out inference under a Bayesian framework. The seminal paper by Jacquire et

al. (1994) introduced the single-move Gibbs sampler, in which all the latent variables are

sampled using full conditional distribution one by one. Kim et al. (1998) showed that this

approach could be quite inefficient and produce highly autocorrelated MCMC samples.

To improve efficiency, the multi-move sampler proposed in Sheppard and Pitt (1997) is

employed by many papers. See also the discussion in Watanabe and Omori (2004) and

Omori and Watanabe (2008). In this paper, we take advantage of a recently proposed

technique known as PMCMC, which builds an efficient, high-dimensional MCMC ker-

nel. Specifically, we use an improved Particle Gibbs sampler that enjoys the good mixing

property even with a small number of particles. Details of our estimation procedure are

discussed in this section.

5.4.1 Review of Particle Filter

Before moving to PMCMC, we first briefly introduce the concept of particle filter.

Consider a general non-linear state space model given by

yt|xt = x ∼ fθ(·|x), (5.8)

xt+1|xt = x ∼ gθ(·|x), and x1 ∼ µθ(·), (5.9)
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where yt is the observable variable, xt is latent variable and θ contains all the parameters

of interest. In this subsection, we assume for the moment that θ is given and our target is

to infer the latent variables (x1, ...xt) using observations (y1, ...yt). Specifically, we wish

to obtain an estimator of the conditional distribution pθ(x1, ...xt|y1, ..., yt). A closed-form

analytical solution for this problem is usually unavailable, except for the very special

cases like Gaussian linear model, where Kalman filter is applicable. Approximation must

be relied upon in general models. Particle filter, also known as sequential Monte Carlo

(SMC) in the literature, is exactly the tool to apply in such a case. The only require-

ments for the validity of particle filter are that (i). the measurement density fθ(·|x) can be

numerically evaluated and (ii). one can simulate from the transition density gθ(·|x).

The methodology of particle filter combines importance sampling and Monte Carlo

simulations to approximate the target distribution. The key idea is to represent the distri-

bution by a set of random samples with corresponding weights and calculate the quantity

of interest based on these samples and weights. To fix the idea, let {x(i)1:t, w
(i)
t }Ni=1 be a ran-

dom measure, where {x(i)0:t, i = 1, ..., N} is a set of support points and {w(i)
t , i = 1, ..., N}

are associated weights. Here, we use x1:t = {xj, j = 1, ...t} to denote the set of all states

up to time t. Each point is called a particle, and N is the number of particles used. The

approximated distribution can then be written as

p̂θ(dx1:t|y1:t) =
N∑
i=1

w
(i)
t δx(i)1:t

(dx1:t), (5.10)

where y1:t is similarly defined and δ(·) is Dirac function. p̂θ is a discrete weighted ap-

proximation to the target distribution pθ. Apparently, the accuracy of the approximation

can be improved as an increasing number of particles are included. Doing so, however,

will also dramatically raise the computational burden.

To obtain the weights, we resort to the importance sampling. That is to say, we sample

N times from a candidate distribution, say qθ(x1:t|y1:t), and assign the weight

w
(i)
t ∝ pθ(x

(i)
1:t|y1:t)/qθ(x

(i)
1:t|y1:t)
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to each sample drawn. In practice, it is hard, if not impossible, to pick up a proper im-

portance density for joint distribution of x1:t conditional on the data when sample size

becomes large. Hence, this approach usually proceeds in a sequential fashion. Specifi-

cally, importance density is chosen to admit the factorization such that

qθ(x1:t|y1:t) = qθ(xt|xt−1, yt)qθ(x1:t−1|y1:t−1).

For any existing weighted sample {x(i)1:t−1, w
(i)
1:t−1} that follows from pθ(x1:t−1|y1:t−1), we

augment it with the new state x(i)t randomly drawn from qθ(xt|xt−1, yt). The joint sample,

(x
(i)
t−1, x

(i)
t ) is then a realization from the targeted joint importance density. The corre-

sponding weight for ith sample can easily be updated through

w̃
(i)
t ∝ w

(i)
t−1

fθ(yt|x(i)t )gθ(x
(i)
t |x

(i)
t−1)

qθ(x
(i)
t |x

(i)
t−1, yt)

,

and normalized to be w(i)
t = 1

N

∑N
i=1 w̃

(i)
t . An unavoidable problem of this procedure,

known as degeneracy, is that after a few iterations, only one particle will still have non-

negligible weight, which means a large computational cost is spent on particles with al-

most no contribution. To alleviate this problem, usually a resampling step is necessary.

An important by-product of this filtering strategy is an approximation to the condi-

tional marginal likelihood pθ(y1:t|y1:t−1), which has a simple formula

p̂θ(y1:t|y1:t−1) =
1

N

N∑
i=1

w
(i)
t .

The joint likelihood can then be easily obtained as

p̂θ(y1:T ) =
T∏
t=2

p̂θ(y1:t|y1:t−1) · p̂θ(y1).

Do note that, unlike the case for Kalman filter, where the exact likelihood is available

through analytic formula, the likelihood computed using particle filter is an estimation of

the true likelihood, and thus subject to approximation error from random sampling.
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Despite its general applicability, when implementing particle filter for a particular

model, many subtle points must be considered. These include how to choose a proper

importance density qθ(xt|xt−1, yt), how many particles to use and whether a resampling

step should be added. For a thorough discussion, see Arulampalam et al. (2002) and

Doucet and Johansen (2008).

5.5 Particle Gibbs Sampler and Ancestor Sampling

In practice, model parameters are unknown, and in a Bayesian framework with MCMC

sampling, they must be drawn together with the latent variables. To sample from joint den-

sity p(θ, x1:T |y1:T ), typically we proceed by running a Gibbs sampler, which means draw-

ing alternately from two conditional density, namely p(θ|x1:T , y1:T ) and p(x1:T |y1:T , θ).

Usually, the former is easy to sample, either by imposing conjugate priors or through

Metropolis-Hasting algorithm. The latter, on the other hand, can be handled by the parti-

cle filter approach introduced above. This is the basic idea of particle Gibbs (PG) sampler

proposed in Andrieu et al. (2010).

One subtlety of this algorithm, as suggested in that seminal paper, is that to ensure

the targeted joint distribution is indeed the invariant distribution of Markov chain, we

have to modify the sequential Monte Carlo step a little bit. Specifically, one particle

trajectory must be specified a priori, and it serves as a reference trajectory. Therefore,

after a complete pass of the particle filter is run, a trajectory x(i)1:T is randomly picked with

probability proportional to the corresponding weight w(i)
T . For the next MCMC iteration,

when running particle filter, we only draw N − 1 particles, and the N th particle is fixed at

the chosen one from the last iteration. The intuition of such modification is that this path

can guide the simulated particles to move within a relevant region of state space. For a

formal justification, see Theorem 5 of Andrieu et al. (2010).

A particle-filter-based MCMC procedure has a few desirable properties, which make

it preferred compared with traditional methods. The most significant improvement is in

terms of efficiency. Traditional single-move sampler is well known to be quite inefficient,

as it will usually produce highly autocorrelated samples across MCMC iterations. Such

strong dependency implies that one has to draw a vast number of samples to achieve

85



satisfactory accuracy. As suggested by the simulation studies below, the PG method we

use significantly reduces the sample autocorrelation and thereby is a much more efficient

sampler. Another alternative that could also alleviate the inefficiency in the single-move

sampler is various types of multi-move approaches. Those methods, however, in most

cases, require the derivation of a Gaussian second-order approximation, which could be

tedious and difficult for multivariate non-linear models, like the one we consider in the

current article. Designing a PG sampler, on the contrary, requires a minimal modification

across different models, as long as they could be cast into a state-space form.

As for model comparison, one can also gain a lot from adopting sequential Monte

Carlo. In the Bayesian paradigm, models are usually compared using Bayes factor based

on the posterior model probability, which in turn, is calculated using the marginal like-

lihood of observed data p(y1:T ). To obtain this likelihood for a model with latent pro-

cesses, theoretically, we should integrate out all those latent variables and parameters.

In practice, however, if either single-move or multi-move sampler is used, a one-time

particle filter will be conducted after plugging in the posterior mean of model parameters

θ̂ = E(θ|y1:T ). The likelihood, which is actually a conditional one, will then be computed

as p(y1:T |x̂1:T , θ̂), based on the filtered states x̂1:T = E(x1:T |y1:T , θ̂). In the PG, on the

other hand, this extra particle filter after MCMC sampling is unnecessary, for we obtain

an estimated likelihood as a by-product during each SMC we run to sample the latent

processes. Therefore, we can just calculate the marginal likelihood of data by averaging

those likelihoods.

Though theoretically correct, PG has been shown to perform quite poorly when the

underlying SMC sampler suffers from path degeneracy. As observed in Lindsten and

Schön (2013) and Chopin and Singh (2014), the mixing of the Markov kernel induced

by PG is rather slow under those circumstances. What makes things worse is that for the

high-dimensional problem, like the one we consider in the current paper, path degeneracy

is inevitable. To overcome this severe drawback, Lindsten et al. (2014) proposed a new

method, which includes an additional step called ancestor sampling. While this is a small

modification, the new particle Gibbs with ancestor sampling (PGAS) enjoys fast mixing

of the Markov kernel even when only a seemingly small number of particles are used in
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the underlying SMC. Informally, in the original PG, when degeneracy occurs, the particle

system will collapse toward the chosen reference trajectory, while in the PGAS, it will de-

generate toward something entirely different. As a consequence, the update rates of latent

variables will be much higher with the additional ancestor sampling step, and thereby the

mixing will be much faster. They also provide a proof for the fact that for a state-space

model, PGAS is probabilistically equivalent to particle Gibbs sampler with a backward

smoothing step under certain conditions.

For our purpose, a fast mixing under a small number of particles is highly desirable,

as our likelihood function contains a component that has no closed-form solution and thus

must be computed numerically. Although the cost for one-time computation is relatively

low, it will soon become infeasible when a vast number of particles are included in the

system. Indeed, for MCMC with S iterations, if the sample size is T and N particles are

used, F−1(·) must be evaluated S × T × N times. As S and T are usually quite large

in the empirical application, we can gain a lot in terms of computational efficiency by

choosing the PGAS approach. Due to the same consideration, the particle Metropolis-

Hasting approach is not chosen either as it requires an accurate calculation of marginal

likelihood and thereby a large number of particles. In summary, we think that PGAS

could be a suitable estimation tool given our model setup. Its applicability will be further

examined below through extensive simulation studies.

5.5.1 Model Estimation

After introducing the critical component of our estimation strategy, we can now present

our particle filter-based MCMC sampling algorithm. First of all, we need to specify the

prior distribution of all the parameters θ ≡ (µh, µq, φh, φq, σ
2
h, σ

2
q ). In this regard, our

specification follows previous papers, especially the classical Kim et al. (1998). For

the prior distribution of µh and µq, we assume independent multivariate normal distribu-

tions. The persistence parameters φh and φq are assumed to have a Beta priors. The prior

distribution of σh and σq are chosen to be inverse gamma. In summary, we impose the

following prior distribution:

• µhi ∼ N(mµ0, s
2
µ0) and µqj ∼ N(mµ0, s

2
µ0);

87



• φhi+1
2
∼ Beta(a, b) and φqj+1

2
∼ Beta(a, b);

• σ2
hi ∼ IG(nm0

2
, dm0

2
) and σ2

hi ∼ IG(nm0

2
, dm0

2
),

for i = 1, ..., p and j = 1, ..., d and mµ0, s
2
µ0, a, b, nm0, dm0 are hyperparameters.

Let r = (r1′, ..., r′T ), h = (h′1, ...h
′
T ) and q = (q′1, ...q

′
T ). To carry out the inference,

we implement a Gibbs sampler with four blocks. In the following, we use θ/α to denote

the parameters θ excluding α. Then, the algorithm proceeds as:

1. Initialize h, q and θ.

2. Draw h, q|r, θ.

3. Draw µh, µq|r, θ/(µh,µq).

4. Draw φh, φq|r, θ/(φh,φq).

5. Draw σ2
h, σ

2
q |r, θ/(σ2

h,σ
2
q )

.

Iterating over steps (2)-(4) consists of a complete sweep of MCMC sampler. The joint
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posterior function of our model can be written as

p(θ, h, q|r) ∝ p(r|θ, h, q)p(θ, h, q)

= f(r|h, q)gθ(h)gθ(q)π(θ)

= f(r1|h1, q1)gθ(h1)gθ(q1)
T∏
t=2

[f(rt|ht, qt)gθ(ht|ht−1)gθ(qt|qt−1)] π(θ)

=
T∏
t=1

[(
p∑
i=1

hit

)
|Rt|−1/2 exp

[
−1

2
r′t(V

1/2
t RtV

1/2
t )−1rt

]]

×
T∏
t=2

p∏
i=1

[
(σ2

hi)
−1/2 exp

(
− 1

2σ2
hi

(hit+1 − µhi − φhi(hit − µhi))2
)]

×
T∏
t=2

d∏
j=1

[
(σ2

qj)
−1/2 exp

(
− 1

2σ2
qj

(qjt+1 − µqj − φqj(qjt − µqj))2
)]

×
p∏
i=1

(
σ2
hi

1− φ2
hi

)−1/2
exp

(
− (hi1 − µh1)2

2σ2
hi/(1− φ2

hi)

)

×
d∏
j=1

(
σ2
qj

1− φ2
qj

)−1/2
exp

(
− (qj1 − µq1)2

2σ2
qj/(1− φ2

qj)

)
× π(θ).

(5.11)

We apply the PGAS introduced in the last subsection to sample from the latent variables h

and q given all the observations y and one particular set of parameter values. The detailed

description of the algorithm is presented in Appendix D.1. On the other hand, from the

joint posterior density, it is straightforward to sample from the marginal posterior of each

parameter in θ given one particular realization of latent processes h and q. Specifically,

we can do the following:

1. As the prior and likelihood are both normal, we can directly sample full conditional

posterior of µhi and µqi from a normal distribution. For i = 1, ..., p and j = 1, ..., d,

µhi|y, h, q, θ/µhi ∼ N(m̃hµ, s̃
2
hµ) and µqj|y, h, q, θ/µqj ∼ N(m̃qµ, s̃

2
qµ),

where

m̃hµ = s̃2hµ

{
1− φ2

hi

σ2
hi

hi1 +
1− φhi
σ2
hi

T−1∑
t=1

(hit+1 − φhihit)

}
,
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m̃qµ = s̃2qµ

{
1− φ2

qj

σ2
qj

qj1 +
1− φqj
σ2
qj

T−1∑
t=1

(qjt+1 − φqjqjt)

}
,

and

s̃2hµ = σ2
hi

[
(T − 1)(1− φhi)2 + (1− φhi)2

]−1
,

s̃2qµ = σ2
qj

[
(T − 1)(1− φqj)2 + (1− φqj)2

]−1
.

2. To draw random samples from the full conditional posterior density of φhi and φqi,

one can resort to Metropolis-Hasting sampler. Since

log p(φhi|y, h, q, θ/φhi) ∝ log p(hi|φhi, θ/φhi) + log π(φhi)

= log π(φhi)−
(hi1 − µhi)2(1− φ2

hi)

2σ2
hi

+
1

2
log(1 + φ2

hi)

−
∑T−1

t=1 [(hit+1 − µhi)− φhi(hit − µhi)]2

2σ2
hi

,

we draw φ∗hi from the proposal normal density N(φ̂hi, Vφhi), where

φ̂hi =

[
T−1∑
t=1

(hit+1 − µhi)(hit − µhi)

]/[T−1∑
t=1

(hit − µhi)2
]
,

is the ordinary least square estimator of φhi given hi and

Vφhi = σ2
hi

[
T−1∑
t=1

(hit − µhi)2
]−1

.

Then, the sample drawn is accepted with probability min
[
1, exp

{
g(φ∗hi)/g(φ

(i−1)
hi )

}]
,

where φ(i−1)
hi is the sample from last MCMC iteration and

g(φhi) = log π(φhi)−
(hi1 − µhi)2(1− φ2

hi)

2σ2
hi

+
1

2
log(1 + φ2

hi).

φqi can be treated in a completely same fashion.

3. 3. Similar to the case for µ, due to the conjugacy, full conditional posterior of σ2
hi

can be immediately drawn from a inverse gamma distribution. For i = 1, ..., p and
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j = 1, ..., d,

σ2
hi|y, h, q, θ/σ2

hi
∼ IG

(
ñm
2
,
d̃hm

2

)
and σ2

qj|y, h, q, θ/σ2
qj
∼ IG

(
ñm
2
,
d̃qm
2

)
,

where ñm = nm0 + T and

d̃hm = dm0 + (hi1 − µhi)2(1− φ2
hi) +

T−1∑
t=1

[(hit+1 − µhi)− φhi(hit − µhi)]2 ,

d̃qm = dm0 + (qj1 − µqj)2(1− φ2
qj) +

T−1∑
t=1

[(qjt+1 − µqj)− φqj(qjt − µqj)]2 .

5.5.2 Simulation Studies

To investigate the performance of our chosen estimation procedure, we conduct some

simulation exercises in this section. Our simulation is frequentist in essence as we gener-

ate data from the same data generating process for 100 times and use the posterior mean

as a point estimator for all the parameters in the model. Since we know the true value

of those parameters, we are thus able to examine the estimation bias as well as standard

deviation18.

To appreciate the sampling efficiency, following Kim et al. (1998), we also calculate

the average inefficiency factor (IF), which is defined as the variance of the sample mean

from MCMC sampling divided by that from a hypothetical sampler which draws inde-

pendent samples. The variance of the MCMC sample mean is the square of the numerical

standard error estimated by

NSE = 1 +
2BM

BM − 1

BM∑
i=1

K

(
i

BM

)
ρ̂(i),

where ρ̂(i) is estimated autocorrelation at lag i, BM is the bandwidth and K(·) is the

Parzen kernel. We choose the bandwidth BM to be 1000. Apparently, a smaller IF in

general indicates a faster mixing of Markov chain and thereby a better sampling efficiency.

18Note that here, standard deviation refers to the variation across replications, rather than the numerical
standard error of MCMC sampler introduced below.
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Table 15: Posterior statistics of µ with simulated data

µh1 µh2 µh3 µq1 µq2 µq3
N True Value 0.3 0.3 0.3 0.7 0.7 0.7

T=500 50 Mean 0.311 0.317 0.305 0.632 0.639 0.631
Std 0.094 0.083 0.080 0.063 0.054 0.059
IF 11.5 9.8 9.5 17.3 16.0 14.3

100 Mean 0.305 0.313 0.301 0.646 0.654 0.645
Std 0.093 0.083 0.082 0.064 0.055 0.061
IF 8.5 7.6 7.8 16.4 15.1 12.5

200 Mean 0.304 0.311 0.299 0.657 0.665 0.656
Std 0.092 0.083 0.082 0.064 0.055 0.061
IF 6.4 5.8 5.5 12.2 11.6 12.0

T=1000 50 Mean 0.316 0.315 0.322 0.646 0.651 0.648
Std 0.055 0.051 0.048 0.037 0.038 0.034
IF 11.5 10.8 10.3 19.6 19.1 19.5

100 Mean 0.310 0.310 0.317 0.661 0.666 0.664
Std 0.053 0.052 0.049 0.036 0.038 0.034
IF 9.0 7.6 6.7 17.2 16.9 14.7

200 Mean 0.307 0.308 0.315 0.671 0.676 0.674
Std 0.053 0.051 0.049 0.037 0.038 0.035
IF 6.4 6.7 5.3 14.4 13.5 15.4

T=2000 50 Mean 0.316 0.316 0.316 0.651 0.657 0.655
Std 0.036 0.033 0.034 0.028 0.025 0.024
IF 10.1 9.3 8.6 21.2 25.1 20.8

100 Mean 0.312 0.311 0.312 0.666 0.672 0.671
Std 0.036 0.033 0.035 0.028 0.025 0.024
IF 6.8 6.4 5.9 16.9 19.6 20.2

200 Mean 0.308 0.308 0.309 0.675 0.682 0.681
Std 0.037 0.032 0.035 0.028 0.026 0.024
IF 6.3 4.7 5.4 15.7 15.4 15.5

1. T is the number of time series observations for each asset and N is the
number of particles used in PGAS.
2. Mean is the average posterior mean across replications.
3. Std is the standard error of posterior mean across replications.
4. IF is the average inefficiency factor across replications calculated as sug-
gested in Kim et al. (1998).
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Table 16: Posterior statistics of φ with simulated data

φh1 φh2 φh3 φq1 φq2 φq3
N True Value 0.9 0.9 0.9 0.8 0.8 0.8

T=500 50 Mean 0.894 0.885 0.887 0.784 0.791 0.790
Std 0.033 0.043 0.046 0.051 0.058 0.06
IF 56.4 54.6 55.6 56.9 59.5 58.7

100 Mean 0.898 0.891 0.892 0.794 0.801 0.800
Std 0.034 0.041 0.045 0.055 0.060 0.063
IF 69.1 61.4 68.6 61.3 65.9 64.4

200 Mean 0.902 0.893 0.893 0.798 0.807 0.803
Std 0.033 0.043 0.047 0.059 0.061 0.062
IF 61.3 69.3 71.1 60.7 65.2 72.6

T=1000 50 Mean 0.899 0.889 0.895 0.785 0.787 0.781
Std 0.032 0.036 0.029 0.063 0.051 0.055
IF 91.5 92.6 90.9 94.5 93.3 91.8

100 Mean 0.900 0.891 0.898 0.793 0.795 0.791
Std 0.032 0.032 0.028 0.060 0.051 0.057
IF 103.86 87.1 95.1 101.0 92.5 91.7

200 Mean 0.900 0.894 0.899 0.799 0.800 0.798
Std 0.033 0.032 0.029 0.059 0.056 0.056
IF 102.9 102.0 92.7 103.2 107.3 110.2

T=2000 50 Mean 0.900 0.897 0.899 0.793 0.785 0.787
Std 0.022 0.022 0.023 0.047 0.040 0.044
IF 112.4 105.8 107.0 128.2 125.0 120.9

100 Mean 0.901 0.898 0.900 0.798 0.792 0.792
Std 0.023 0.024 0.022 0.051 0.042 0.042
IF 114.0 106.1 100.9 135.7 144.4 136.3

200 Mean 0.900 0.898 0.900 0.801 0.795 0.796
Std 0.023 0.023 0.024 0.049 0.041 0.044
IF 103.6 99.2 102.0 134.9 131.5 141.8

1. T is the number of time series observations for each asset and N is the number of particles
used in PGAS.
2. Mean is the average posterior mean across replications.
3. Std is the standard error of posterior mean across replications.
4. IF is the average inefficiency factor across replications calculated as suggested in Kim et al.

(1998).
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Table 17: Posterior statistics of σ2 with simulated data

σ2
h1 σ2

h2 σ2
h3 σ2

q1 σ2
q2 σ2

q3

N True Value 0.05 0.05 0.05 0.05 0.05 0.05
T=500 50 Mean 0.026 0.030 0.028 0.027 0.029 0.029

Std 0.013 0.013 0.013 0.012 0.012 0.012
IF 173.6 150.7 148.0 124.2 124.1 122.8

100 Mean 0.032 0.036 0.034 0.032 0.034 0.035
Std 0.017 0.016 0.016 0.015 0.015 0.018
IF 170.7 134.4 143.3 124.3 133.0 125.5

200 Mean 0.036 0.041 0.038 0.037 0.039 0.040
Std 0.019 0.020 0.019 0.018 0.017 0.020
IF 138.0 136.8 134.8 121.8 126.2 138.2

T=1000 50 Mean 0.030 0.030 0.029 0.026 0.028 0.026
Std 0.015 0.011 0.010 0.009 0.010 0.010
IF 198.0 195.1 198.5 185.6 184.5 188.3

100 Mean 0.036 0.037 0.035 0.032 0.034 0.032
Std 0.016 0.012 0.012 0.011 0.012 0.013
IF 182.3 157.5 170.8 180.43 169.5 163.0

200 Mean 0.041 0.040 0.039 0.037 0.038 0.037
Std 0.018 0.014 0.012 0.013 0.014 0.015
IF 170.1 164.7 153.1 169.5 175.9 188.5

T=2000 50 Mean 0.030 0.031 0.031 0.025 0.026 0.024
Std 0.010 0.009 0.009 0.008 0.007 0.006
IF 198.9 196.7 193.0 240.4 239.4 235.0

100 Mean 0.036 0.038 0.037 0.032 0.033 0.031
Std 0.011 0.011 0.010 0.010 0.010 0.008
IF 183.2 173.3 167.5 216.5 232.4 230.0

200 Mean 0.041 0.042 0.041 0.037 0.039 0.037
Std 0.012 0.011 0.011 0.012 0.012 0.010
IF 161.8 157.3 157.8 205.7 200.4 219.6

1. T is the number of time series observations for each asset and N is the number of particles
used in PGAS.
2. Mean is the average posterior mean across replications.
3. Std is the standard error of posterior mean across replications.
4. IF is the average inefficiency factor across replications calculated as suggested in Kim et al.

(1998).
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The number of assets considered for simulation is three and the true value of in total

18 parameters are given by:

1. µh1 = µh2 = µh3 = 0.3 and µq1 = µq2 = µq3 = 0.7.

2. φh1 = φh2 = φh3 = 0.9 and φq1 = φq2 = φq3 = 0.8.

3. σ2
h1 = σ2

h2 = σ2
h3 = 0.05 and σ2

q1 = σ2
q2 = σ2

q3 = 0.05.

All the simulation results reported in this section is based on 5000 MCMC iterations,

among which the first 1000 samples are discarded as burn-in period19. We consider three

different sample sizes, namely T = 500, T = 1000 and T = 2000, as well as three

number of particles, namelyN = 50, N = 100 andN = 200. It is worthwhile to mention

that, the simulated data used across different particle numbers for given sample size are

the same, while it changes when the sample size increases.

The estimation of the mean parameters µ’s is reported in Table 15. It can be seen that

even for a short sample span like 500 and a relatively small number of particles like 50,

the estimated mean for both h and q are close to the true values, in spite of an upward bias

for µh and downward bias for µq. Given a particular number of particles used, as sample

size increases, the bias in the estimator for µq improves, but that is not the case for µh.

Nevertheless, as expected, the standard deviation of both estimators shrinks toward zero

with more observations. On the other hand, an increasing number of particles seems to

alleviate the bias substantially. For example, when the sample size is 2000, the bias in

the estimator for the mean of h diminish from 0.016 to 0.008 if 200 particles are included

instead of 50. A similar improvement applies to µq. In terms of standard deviation, an

increasing number of particles has no effect.

Table 16 presents the results related to the persistence parameter φ’s. The estimation

is already very accurate, with 500 observations and 50 particles, with very small bias and

a low standard deviation. When 200 particles are used, the bias almost vanishes.

The performance of estimated variance parameters σ2’s is shown in Table 17. A sub-

stantial downward bias can be observed for the variance estimator of both volatilities and
19Plot of autocorrelation function suggests that the MCMC sampling has converged after at most 1000

iterations.
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correlations when 50 particles are considered. This bias is insensitive to the increasing

of the number of observations. Fortunately, it can be improved by using more particles.

Indeed, when N=200, the bias becomes much smaller, although it seems that a larger

number of particles are necessary to fully cancel this bias.

As for average IF, in general, it does not vary much as we either change the sample size

or the number of particles. Consistent with previous researches, the IF is lowest for mean

parameter µ and highest for σ2. Compared with traditional single-move or multi-move

Gibbs sampler, our new PGAS sampler enjoys a much better mixing than the former, and

in most cases, is comparable with the latter. In summary, the simulation results confirm

that our chosen approach works well for the particular model we consider in this paper,

and in the light of excellent performance, 200 particles will be used for all of our empirical

applications.

At last, we report the filtered latent volatility and correlation factors, together with the

95% confidence interval and the true processes, in Figure 21 and 22. These figures show

that our sampling of latent variables based on particle filter is reliable.

5.6 Empirical Analysis

In this section, we consider two empirical implementation of our models. The first

one studies weekly exchange rate returns of three European currencies, while the second

one looks at the daily returns of three major Asian equity index.

As a comparison, we consider the following four models:

1. GFT-MSV model: The general model that we propose in Section 3.

2. GFT-MSV model with equi-persistence: Same as general GFT-MSV model except

for the additional assumption of ‘equi-persistence’ on correlation factors.

3. CC-MSV: Model with constant correlation matrix over time, similar to the one

considered in Harvey et al. (1994)

4. DCC-MSV: Model proposed in Asai and McAleer (2009), where a DCC structure

with a Wishart transition dynamics is used to characterize the movement of corre-

lation matrix.
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Figure 21: True and filtered latent volatily factors
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Figure 22: True and filtered latent correlation factors
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Note that in all these models, the parameterization of volatility movement is the same,

and we focus on the different assumptions imposed upon the dynamics of correlations.

To estimate and compare these models in a unified framework, we treat all of them as a

nonlinear state-space model and then exploit the PGAS algorithm introduced above. The

details of the estimation procedure and the computation of likelihood are presented in the

appendix.

5.6.1 Weekly Foreign Exchange Rates

In the first application, the data used are 1406 weekly mean-corrected log-returns of

Euro, Pound sterling and Swiss franc, all against the US dollar, from January 1993 to

December 2019. Ex ante, these three series are expected to be significantly correlated, as

the underlying economies are very closely connected. The three time series are plotted

in Figure 23. Filtered log-variance of each pair of exchange rate and filtered correlations

between them are plotted in Figure 25 and Figure 26 respectively.

Table 18 reports the posterior statistics of parameters related to volatility dynamics.

Three measures are provided namely posterior mean, posterior standard deviation, and

95% confidence interval. It can be seen that the result is very similar to the existing

literature. All log-variances have a very high level of persistence, with autoregressive

root close to 1. This reaffirms that our new estimation strategy works well for the current

setup.

Table 19 reports the posterior statistics of parameters related to underlying correla-

tion factors. For the second model, since persistence levels and standard deviations are

restricted to be the same among all q’s, we have only one φq and one σ2
q . For the third

model, no φq and one σ2
q is present as all correlations are assumed to be constant over time.

An important finding from this table is that, if these three correlation factors are allowed to

have separate dynamics, q1 will have a very low level of persistence and seems to be highly

stationary. Specifically, the posterior mean of φq in this case is (0.212, 0.911, 0.812)′. This

is in sharp contrast to the model with only one parameter governing all the factors. In the

latter case, a φq as high as 0.957 will be concluded. To see whether this additional flex-

ibility brings any improvement in terms of model performance, we further compare the

99



Table 18: Posterior statistics of volatilities with exchange rate data

GFT-MSV GFT-MSV CC-MSV DCC-MSV
(Equipersistence)

µh1 Mean -1.701 -1.68 -1.872 -1.764
SD 0.120 0.108 0.182 0.098
95%CI [-1.963,-1.470] [-1.904,-1.468] [-2.231,-1.507] [-1.964,-1.575]

µh2 Mean -1.804 -1.774 -1.864 -1.893
SD 0.101 0.099 0.142 0.097
95%CI [-2.005,-1.599] [-1.973,-1.582] [-2.132,-1.565] [-2.034,-1.655]

µh3 Mean -1.504 -1.481 -1.688 -1.578
SD 0.106 0.093 0.131 0.083
95%CI [-1.733,-1.317] [-1.672,-1.311] [-1.939,-1.406] [-1.752,-1.422]

φh1 Mean 0.980 0.977 0.98 0.972
SD 0.016 0.016 0.01 0.015
95%CI [0.958,0.994] [0.952,0.993] [0.962,0.992] [0.939,0.990]

φh2 Mean 0.962 0.960 0.966 0.970
SD 0.019 0.031 0.015 0.036
95%CI [0.921,0.987] [0.849,0.989] [0.929,0.987] [0.843,0.990]

φh3 Mean 0.970 0.957 0.960 0.962
SD 0.027 0.037 0.014 0.036
95%CI [0.927,0.991] [0.888,0.988] [0.928,0.982] [0.847,0.987]

σ2
h1 Mean 0.005 0.004 0.01 0.005

SD 0.005 0.004 0.006 0.005
95%CI [0.002,0.008] [0.002,0.008] [0.005,0.020] [0.002,0.012]

σ2
h2 Mean 0.013 0.013 0.017 0.006

SD 0.008 0.016 0.009 0.016
95%CI [0.004,0.028] [0.004,0.080] [0.008,0.037] [0.002,0.066]

σ2
h3 Mean 0.006 0.008 0.022 0.005

SD 0.007 0.008 0.009 0.012
95%CI [0.002,0.021] [0.003,0.017] [0.008,0.037] [0.002,0.032]

1. Mean is the posterior mean based on 4000 MCMC samples after a 1000 burn-in period.
2. SD is the numerical standard errors of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.

integrated log-likelihood of each model, and the results are reported in the last row of

Table 16. Apparently, the fully flexible model has a much better likelihood and dominates

all other restricted versions. We can then conclude that adopting the generalized Fisher

transformation is indeed beneficial for modeling multivariate asset returns.
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Figure 23: Time series of exchange rate returns
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5.6.2 Daily Stock Market Indices

Our second application uses 2237 daily mean-corrected log-returns of three stock mar-

ket indices, namely Hong Kong Heng Seng Index, Nikkei 225 Index of Tokyo Stock Ex-

change, and SSE composite Index of Shanghai Stock Exchange. The time span of the

data is from the beginning of 2005 to the end of 2014. Note that we intentionally pick a

data span that includes the Great Financial Crisis period. This exercise is interesting, as

it can provide some insights on the co-movement of these three arguably most important

market indices in Asia. The three series are plotted in Figure 26. Filtered log-variance

of each stock index and filtered correlations between them are plotted in Figure 27 and

Figure 28 respectively.

The general conclusion from this dataset is similar to the case in exchange rate data.

For example, as shown in Table 20, all the log-variances are strongly persistent with au-

toregressive root approximately equal to one. As for correlation factors, presented in

Table 21, the flexible model results in a φq equal to (0.519, 0.654, 0.664)′ while the equi-

persistence model suggests a higher persistence level equal to 0.859. In this dataset, how-

ever, the improvement of integrated log-likelihood is not as impressive as in the previous

example. The reason is that the autoregressive roots of three correlation factors are not as

dispersed as in exchange rate examples, and thus equi-persistence is not as restrictive as in

that example. Anyway, even for such a scenario, using the new flexible parameterization

lead to a better result. Indeed, an increase of log-likelihood by four could have significant

empirical relevance.

5.7 Conclusion

We propose a novel multivariate stochastic volatility model in this paper, using a gen-

eralized version of Fisher’s z-transformation to characterize the dynamics of correlation

structure in a highly flexible manner. The leading features are that our model will auto-

matically generate a positive definite correlation matrix, and the driving forces underly-

ing volatilities and correlations are fully separated. Different from much of the existing

literature, when making inference for our model, we apply the state-of-the-art particle-
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Table 19: Posterior statistics of correlations and log-likelihood with exchange rate data

GFT-MSV GFT-MSV CC-MSV DCC-MSV
(Equipersistence)

µq1 Mean 0.705 0.615 0.697 k 9.690
SD 0.029 0.126 0.127 0.145
95%CI [0.647,0.762] [0.327,0.812] [0.438,0.946] [9.430,10.064]

µq2 Mean 1.511 1.392 1.103 d 0.005
SD 0.085 0.135 0.123 0.014
95%CI [1.337,1.674] [1.078,1.600] [0.871,1.354] [-0.015,0.026]

µq3 Mean 0.444 0.379 0.359 a11 5.639
SD 0.047 0.126 0.121 0.487
95%CI [0.351,0.533] [0.114,0.576] [0.128,0.589] [4.900,6.506]

φq1 Mean 0.212 0.957 a21 -1.232
SD 0.107 0.019 0.137
95%CI [0.014,0.417] [0.916,0.988] [-1.484,-1.001]

φq2 Mean 0.911 a22 -4.312
SD 0.022 0.425
95%CI [0.862,0.948] [-5.053,-3.644]

φq3 Mean 0.812 a31 1.751
SD 0.055 0.085
95%CI [0.685,0.898] [1.612,1.912]

σ2
q1 Mean 0.116 0.018 a32 0.098

SD 0.018 0.007 0.097
95%CI [0.083,0.155] [0.010,0.032] [-0.086,0.298]

σ2
q2 Mean 0.061 a33 4.779

SD 0.014 0.397
95%CI [0.039,0.091] [4.135,5.459]

σ2
q3 Mean 0.055

SD 0.016
95%CI [0.031,0.095]

Integrated
log-likelihood -1271.4 -1449.4 -1424.2 -1441.2

1. Mean is the posterior mean based on 4000 MCMC samples after a 1000 burn-in period.
2. SD is the numerical standard errors of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. Integrated likelihood is computed by averaging the marginal likelihood produced by particle filter at each MCMC

iteration.
5. For DCC-MSV model, the notation of parameters is consistent with the usage in Asai and McAleer (2009).
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Figure 24: Filtered log-variance of each exchange rate pair
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Figure 25: Filtered correlation between each exchange rate pair
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Figure 26: Time series of stock index returns
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Table 20: Posterior statistics of volatilities with daily stock index data

GFT-MSV GFT-MSV CC-MSV DCC-MSV
(Equipersistence)

µh1 Mean 0.370 0.343 0.397 0.375
SD 0.246 0.257 0.247 0.232
95%CI [-0.144,0.851] [-0.180,0.845] [-0.096,0.889] [-0.085,0.849]

µh2 Mean 0.525 0.502 0.539 0.525
SD 0.175 0.175 0.171 0.161
95%CI [0.186,0.872] [0.147,0.836] [0.195,0.887] [0.203,0.839]

µh3 Mean 0.758 0.738 0.767 0.757
SD 0.203 0.216 0.215 0.195
95%CI [0.357,1.156] [0.287,1.155] [0.335,1.194] [0.347,1.144]

φh1 Mean 0.991 0.990 0.987 0.989
SD 0.004 0.005 0.005 0.005
95%CI [0.982,0.995] [0.981,0.95] [0.977,0.994] [0.979,0.995]

φh2 Mean 0.981 0.980 0.978 0.979
SD 0.007 0.006 0.007 0.008
95%CI [0.968,0.991] [0.965,0.990] [0.962,0.989] [0.961,0.991]

φh3 Mean 0.983 0.984 0.983 0.983
SD 0.007 0.006 0.006 0.007
95%CI [0.968,0.993] [0.970,0.994] [0.968,0.993] [0.967,0.994]

σ2
h1 Mean 0.011 0.014 0.016 0.012

SD 0.006 0.006 0.008 0.007
95%CI [0.006,0.021] [0.008,0.023] [0.009,0.027] [0.006,0.026]

σ2
h2 Mean 0.020 0.023 0.024 0.020

SD 0.006 0.006 0.007 0.008
95%CI [0.013,0.030] [0.013,0.035] [0.016,0.040] [0.010,0.036]

σ2
h3 Mean 0.022 0.020 0.022 0.019

SD 0.009 0.007 0.008 0.009
95%CI [0.011,0.035] [0.011,0.034] [0.011,0.039] [0.008,0.034]

1. Mean is the posterior mean based on 4000 MCMC samples after a 1000 burn-in period.
2. SD is the numerical standard errors of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
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Table 21: Posterior statistics of correlations and log-likelihood with daily stock index data

GFT-MSV GFT-MSV CC-MSV DCC-MSV
(Equipersistence)

µq1 Mean 0.715 0.631 0.674 k 39.634
SD 0.028 0.065 0.071 0.174
95%CI [0.663,0.771] [0.476,0.736] [0.540,0.827] [39.261,39.968]

µq2 Mean 0.542 0.5 0.535 d 0.000
SD 0.027 0.052 0.067 0.015
95%CI [0.489,0.595] [0.368,0.578] [0.408,0.658] [-0.017,0.015]

µq3 Mean 0.123 0.109 0.123 a11 1.915
SD 0.024 0.047 0.065 0.115
95%CI [0.077,0.171] [-0.003,0.179] [-0.009,0.248] [1.745,2.063]

φq1 Mean 0.519 0.859 a21 -0.962
SD 0.115 0.141 0.098
95%CI [0.277,0.733] [0.524,0.994] [-1.077,-0.829]

φq2 Mean 0.654 a22 -0.685
SD 0.104 0.075
95%CI [0.429,0.836] [-0.793,-0.583]

φq3 Mean 0.664 a31 1.561
SD 0.090 0.070
95%CI [0.479,0.820] [1.451,1.654]

σ2
q1 Mean 0.069 0.007 a32 0.058

SD 0.020 0.010 0.039
95%CI [0.037,0.114] [0.001,0.038] [-0.012,0.133]

σ2
q2 Mean 0.029 a33 1.323

SD 0.010 0.044
95%CI [0.015,0.050] [1.256,1.399]

σ2
q3 Mean 0.017

SD 0.008
95%CI [0.008,0.038]

Integrated
log-likelihood -11035 -11039 -11056 -11152

1. Mean is the posterior mean based on 4000 MCMC samples after a 1000 burn-in period.
2. SD is the numerical standard errors of the posterior means.
3. 95% CI is constructed using the 2.5th and 97.5th percentiles of the MCMC draws.
4. Integrated likelihood is computed by averaging the marginal likelihood produced by particle filter at each MCMC iteration.
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Figure 27: Filtered log-variance of each stock index
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Figure 28: Filtered correlation between each stock index
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filter-based MCMC technique. We show through simulation that the technique we choose

works well for our particular model.

Though our model enjoys excellent properties, there are still many potential improve-

ments. First of all, we do not address the leverage effect in our model. To accommodate

this salient empirical fact, one can extend the current model by adding correlations be-

tween innovations to returns and to volatilities. Another fundamental task is to find a

parsimonious yet plausible way to tackle the vast parameter space when a large pool of

assets are considered simultaneously in our framework. In this regard, particular assump-

tions like (block) equicorrelation structures or latent factor models must be imposed. Last

but not least, a comparison of our model with existing competitors based on out-of-sample

performance is also of great interest. These issues are left for our future work.
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A Appendix to Chapter 2

This appendix includes the technical details and proof of the results reported in Chap-

ter 2.

Proof of Theorem 2.1. (a). Note first that kn = o(n) by assumption and y0n = op(
√
n)

by the part (a) of Lemma 3.1 in PM. Also note that ρnn = o(1) when c < 0. Then, using

expression (2.4), we have yn = d
c
kn(ρnn − 1) + y0n = d

c
· o(n) · o(1) + op(

√
n) = op(n).

(b). This comes immediately from Lindeberg-Feller central limit theorem.

(c). From model (2.1), it is easy to get yt − yt−1 = d + c
kn
yt−1 + ut. Then, taking

summation on both sides, c
kn

∑
yt−1 = yn−y0−dn−

∑
ut. Based on the limiting distri-

bution derived in (a) and (b), we have c
nkn

∑
yt−1 = −d+ op(1) and thus

∑
yt−1

nkn
⇒ −d

c
.

(d). Expression (2.4) leads to yt−1 = −d
c
kn(1−ρt−1n )+y0t−1. Hence, n−1/2k−1n

∑
yt−1ut =

d
c

1√
n

∑
ρt−1n ut − d

c
1√
n

∑
ut + n−1/2k−1n

∑
y0t−1ut. The second term will converge to a

normal distribution by (b). The third term is op(1) because PM shows that
∑
y0t−1ut is

Op(
√
nkn)20. Therefore, we have n−1/2k−1n

∑
yt−1ut = −d

c
1√
n

∑
ut + op(1)⇒ −d

c
Z.

(e). Squaring both sides of Model (2.1), we get y2t = d2 + ρ2ny
2
t−1 + u2t + 2dρnyt−1 +

2dut+2ρnyt−1ut, which leads to (ρ2n−1)
∑
y2t−1 = y2n−y20−d2n−

∑
u2t−2dρn

∑
yt−1−

2d
∑
ut−2ρn

∑
yt−1ut. Based on the limiting results above and the assumption about y0,

it is straightforward to derive that (ρ2n− 1)/(nkn)
∑
y2t−1 = −2d

∑
yt−1

nkn
+ op(1)⇒ 2d2/c.

Using the fact that ρ2n − 1 = (2c/kn)[1 + o(1)], we can write this result as
∑
y2t−1

nk2n
⇒ d2

c2
.

Proof of Theorem 2.3. (a). We first derive the order of y0n. Since y0n = ρnny0 +
∑
ρn−tn ut,

we have y0n
ρnn
√
kn

= y0√
kn

+ 1√
kn

∑
ρ−tn ut = op(1) + Yn = Op(1), due to the assumption on

initialization and the definition of Yn. Note that when c > 0, ρ−nn = o(1). Hence, we
20See part (b) of Theorem 3.2 in that paper.
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conclude that yn
ρnnkn

= d
c
(1− ρ−nn ) + 1√

kn
·Op(1)⇒ d

c
.

(b). Identical to the proof of Theorem 2.1(c), we use the relationship that c
kn

∑
yt−1 =

yn−y0−dn−
∑
ut. Based on the convergence in (a), we easily obtain that c

ρnnk
2
n

∑
yt−1 =

d
c

+ op(1)⇒ d
c
, which is exactly the result we need to prove.

(c). Since
∑
yt−1ut =

∑
[d
c
kn(ρt−1n − 1) + y0t−1]ut =

d
c
kn(
∑
ρt−1n ut −

∑
ut) +

∑
y0t−1ut, we have that

ρ−nn k
−3/2
n

∑
yt−1ut = ρ−nn k

−3/2
n

∑
y0t−1ut + d

c
1√
kn

∑
ρ
−(n−t)−1
n ut − d

c
1√
kn
ρ−nn

∑
ut

= Op(1)/
√
kn + d

c
Xn − d

c
(ρ−nn

√
n
kn

) 1√
n

∑
ut = d

c
Xn + op(1)⇒ d

c
X .

(d). Again, parallel to the proof of Theorem 2.1(e), we have (ρ2n − 1)
∑
y2t−1 =

y2n−y20−d2n−
∑
u2t−2dρn

∑
yt−1−2d

∑
ut−2ρn

∑
yt−1ut. Using the limiting behavior

justified above, one can compare the order of terms on the right-hand side. It’s not hard

to find that y2n goes to infinity faster than all other terms. Thus, we have (ρ2n−1)
ρ2nn k2n

∑
y2t−1 =

d2

c2
+ op(1)⇒ d2

c2
.

Proof of Corollary 2.1. (a). It is obvious and hence the proof is omitted.

(b). Starting from the definition of tρn , it can be obtained that

tρn =
(ρ̂n − ρn)[n

∑
y2t−1 − (

∑
yt−1)

2]1/2

[n · σ̂2]1/2

=

[
ρnn(ρn − 1)−3/2

ρ̂n − ρn
σ̂

]
·

[n
∑
y2t−1 − (

∑
yt−1)

2]1/2

ρnn(ρn − 1)−3/2

=

[
ρnn(ρn − 1)−3/2

ρ̂n − ρn
σ̂

]
· c

3
2

∑ y2t−1
k3nρ

2n
n

−

( ∑
yt−1

√
nk

3/2
n ρ2nn

)2
1/2

=

[
ρnn(ρn − 1)−3/2

ρ̂n − ρn
σ̂

]
· c

3
2

(
d2

2c3
+ op(1)

)1/2

⇒ c3/2
(
d2

2c3

)1/2

N

(
0,

2

d2

)
= N(0, 1).
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(c). It suffices to show that Z and X are independent of each other. To prove that, let

W̃n =
1√
n

bnc∑
t=1

ut, W ∗ =
1√
n

n∑
t=b
√
nc+1

ut,

and

X̃n =
1√
n

n∑
t=b
√
nc+1

ρ−(n−t)−1n ut, X∗ =
1√
n

bnc∑
t=1

ρ−(n−t)−1n ut.

Then X∗n and W ∗
n are independently distributed because they involve disjoint sets of u’s.

As n→∞, we have

E(Wn −W ∗
n)2 = E(W̃n)2 =

b
√
nc
n

σ2 → 0

and

E(Xn −X∗n)2 = E(X̃n)2 =
σ2

nρ
2(n−1)
n

n∑
t=b
√
nc+1

ρ2tn

=
ρ
2(b
√
nc+1)

n (1− ρ2(n−b
√
nc))

n

(1− ρ2n)nρ
2(n−1)
n

σ2

=
(1− ρ2(b

√
nc−n)

n )ρ4n
2c(n/kn)

σ2 → 0

Hence,Wn−W ∗
n andXn−X∗n converge with probability 1 to 0. Therefore, the asymptotic

independence between X and Z follows. The independence between td and tρn as n goes

to infinity then comes immediately.

122



B Appendix to Chapter 3

This appendix includes the technical details and proof of the results reported in the

Chapter 3. Before proceeding to the proof, it’s convenience to summarize in the follow-

ing lemma the limiting theory from KMS and Phillips and Magdalinos (2009) that we will

use.

Lemma B.1 Let Vxz =
∫∞
0
erC(

∫∞
0
esCΩxxe

sCds)erCzdr, where Ωxx is the long-run vari-

ance of uxt. Then, absent of break in both α and β, we have under Assumption 1:

(i). the sample covariance satisfies that

1

T (1+min(δz ,γx))/2

[τT ]∑
t=1

z̃t−1(uyt − ūT )⇒ U(τ),

where U(·) is a Brownian motion with variance σ2
yṼ and

Ṽ =


∫∞
0
erCzΩxxe

rCzdr , if γx > δz∫∞
0
erCz(CVxzCz + CzV

′
xzC)erCzdr , if γx = δz∫∞

0
erCΩxxe

rCdr , if 0 < γx < δz

E(x0,1x
′
0,1) , if γx = 0

where x0,t =
∑∞

j=0(Ik + C)jux,t−j is stationary version of xt when γx = 0.

(ii). the sample second moment satisfies that

1

T 1+min(δz ,γx)

[τT ]∑
t=1

z̃t−1(xt−1 − x̄n−1)′ ⇒ Ψ(τ)

Ψ(τ) =



−C−1z Ωxx(τ +
∫ τ
0
JCdJ

′
C) , if γx > 1

−C−1z Ωxx(τ +
∫ τ
0
BdB′) , if γx = 1

−τC−1z (Ωxx +
∫∞
0
erCΩxxe

rCdrC) , if δz < γx < 1

−τCVxz , if γx = δz

τ
∫∞
0
erCΩxxe

rCdr , if 0 < γx < δz

τE(x0,1x
′
0,1) , if γx = 0
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where B(·) is a k-dimensional standard Brownian motion, JC(τ) =
∫ τ
0
eC(τ−s)dB(s) is

an Ornstein-Uhlenbeck process and B(τ) = B(τ) −
∫ 1

0
B(s)ds and JC(τ) = JC(τ) −∫ 1

0
JC(s)ds are corresponding demeaned process.

(iii). The joint convergence applies and the limiting objects in (i) and (ii) are indepen-

dent.

Proof of Theorem 3.1. Let Y denote the vector stacking all demeaned yt and X be the

matrix collecting all demeaned xt−1, i.e.

Y = (y1 − ȳT , y2 − ȳT , ..., yn − ȳT )′ and X = (x0 − x̄T−1, x1 − x̄T−1, ...xT−1−x̄T−1)′.

Also, use uy to stack all the demeaned uyt in a vector. For any 1 6 t 6 T , we define Xt

to be a T ×k matrix, whose first t rows are the same as X while the rest are all zeros. In a

similar fashion, let Z = (z0, z1, ...zT−1)
′ collect all the IVX, and Zt = (z0, ..., zt, 0, ...0)′

be the corresponding time-t truncated matrix. Given these notations, we can rephrase the

original model as

Y = Xβ2 +Xtθ + uy, (B.1)

where θ = β2 − β1 measures the magnitude of structural break. In the following, we will

use θt to denote the break size associated with partition at time t. Therefore, given any

particular t, testing the structural break in β is equivalent to testing the null hypothesis

θt = 0. Define Mxz = Ik − X(Z ′X)−1Z ′, which is idempotent and orthogonal to both

X and Z. Multiplying Mxz on both sides of equation (B.1), we deduce that MxzY =

MxzXt + Mxzuy. Using MxzZt as the instrumental variables for MxzXt, we obtain an

estimator for parameter of interest θ

θ̃t = (Z ′tMxzXt)
−1Z ′tMxzY. (B.2)

It’s straightforward to show that θ̃t = β̃1(t)−β̃2(t). To obtain its limiting characterization,
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first notice that

θ̃t − θt = (Z ′tMxzXt)
−1Z ′tMxzuy

= (Z ′tXt − Z ′tX(Z ′X)−1Z ′Xt)
−1(Z ′tuy − Z ′tX(Z ′X)−1Z ′uy)

= (Z ′tXt − Z ′tXt(Z
′X)−1Z ′tXt)

−1(Z ′tuy − Z ′tXt(Z
′X)−1Z ′uy)

=

 [τT ]∑
t=1

z̃t(xt − x̄T−1)′ −
[τT ]∑
t=1

z̃t(xt − x̄T−1)′
(

T∑
t=1

z̃t(xt − x̄T−1)′
)−1 [τT ]∑

t=1

z̃t(xt − x̄T−1)′
−1

 [τT ]∑
t=1

z̃t(uyt − ūT−1)′ −
[τT ]∑
t=1

z̃t(xt − x̄T−1)′
(

T∑
t=1

z̃t(xt − x̄T−1)′
)−1 T∑

t=1

z̃t(uyt − ūy)


Applying the results in Lemma B.1, we can derive that

T
1+min[γx,δz ]

2 (θ̃t − θt)⇒
[
Ψ(τ)−Ψ(τ)Ψ(1)−1Ψ(τ)′

]−1 (
U(τ)−Ψ(τ)Ψ(1)−1U(1)

)
.

(B.3)

Now, we turn to analyze the variance estimator Q̃1(t) and Q̃2(t). Ignoring the second-

order bias correction, we have

Q̃1(t) = (Z ′tXt)
−1Z ′tZt(X

′
tZt)

−1

=

 [τn]∑
t=1

z̃t(xt − x̄n−1)′
−1 [τn]∑

t=1

z̃tz̃
′
t

 [τn]∑
t=1

(xt − x̄n−1)z̃′t

−1

and thus

T 1+min[γx,δz ]Q̃1(t)⇒ Ψ(τ)−1
(
τσ2

yṼ
)

Ψ(τ)−1
′

(B.4)

Similarly, we can obtain that

T 1+min[γx,δz ]Q̃2(t)⇒ (Ψ(1)−Ψ(τ))−1
(

(1− τ)σ2
yṼ
)

(Ψ(1)−Ψ(τ))−1
′

(B.5)
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Combining all these together leads to the result that

Wbt =
(
β̃2(t)− β̃1(t)

)′ [
Q̃1(t) + Q̃2(t)

]−1 (
β̃2(t)− β̃1(t)

)
=
[
T

1+min[δz,γx]
2

(
β̃2(t)− β̃1(t)

)]′ [
T 1+min[δz ,γx]

(
Q̃1(t) + Q̃2(t)

)]−1 [
T

1+min[δz,γx]
2

(
β̃2(t)− β̃1(t)

)]
⇒
(
U(τ)−Ψ(τ)Ψ(1)−1U(1)

)′ [
Ψ(τ)−Ψ(τ)Ψ(1)−1Ψ(τ)

]−1′[
Ψ(τ)−1

(
τσ2

yṼ
)

Ψ(τ)−1
′
+ (Ψ(1)−Ψ(τ))−1

(
(1− τ)σ2

yṼ
)

(Ψ(1)−Ψ(τ))−1
′
]−1

[
Ψ(τ)−Ψ(τ)Ψ(1)−1Ψ(τ)

]−1 (
U(τ)−Ψ(τ)Ψ(1)−1U(1)

)
Let A = Ψ(τ), C = Ψ(1) and Σ = σ2

yṼ , then the above object can be written as

Wbt ⇒
(
U(τ)− AC−1U(1)

)′ (
A− AC−1A

)−1′ [
τA−1ΣA−1

′

+ (1− τ)(C − A)−1Σ(C − A)−1
′
]−1 (

A− AC−1A
)−1(

U(τ)− AC−1U(1)

)
=

(
U(τ)− AC−1U(1)

)′{(
A− AC−1A

) [
τA−1ΣA−1

′

+ (1− τ)(C − A)−1Σ(C − A)−1
′
] (
A− AC−1A

)′}−1(
U(τ)− AC−1U(1)

)
=

(
U(τ)− AC−1U(1)

)′{
τ
[
(A− AC−1A)A−1ΣA−1

′
(A− AC−1A)′

]
+ (1− τ)

[
(A− AC−1A)(C − A)−1Σ(C − A)−1

′
(A− AC−1A)′

]}−1(
U(τ)− AC−1U(1)

)
=

(
U(τ)− AC−1U(1)

)′{
τ(I − AC−1)Σ(I − AC−1)′ + (1− τ)(AC−1)Σ(AC−1)′

}−1
(
U(τ)− AC−1U(1)

)

Since U(·) is known to be a Brownian motion with variance Σ, this can be further simpli-
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fied to be

Wbt ⇒
(
B(τ)− AC−1B(1)

)′{
τ(I − AC−1)(I − AC−1)′

+ (1− τ)(AC−1)(AC−1)′
}−1(

B(τ)− AC−1B(1)

)
=

(
B(τ)−Ψ(τ)Ψ(1)−1B(1)

)′{
τ(I −Ψ(τ)Ψ(1)−1)(I −Ψ(τ)Ψ(1)−1)′

+ (1− τ)(Ψ(τ)Ψ(1)−1)(Ψ(τ)Ψ(1)−1)′
}−1(

B(τ)−Ψ(τ)Ψ(1)−1B(1)

)
,

(B.6)

where B(·) is a standard Brownian motion. From Lemma 1, it’s easy to observe that

Ψ(τ)Ψ(1)−1 =


(τIk +

∫ τ
0
BdB′)(Ik +

∫ 1

0
BdB′)−1 , if γx > 1

(τIk +
∫ τ
0
JCdJ

′
C)(Ik +

∫ 1

0
JdJ ′C)−1 , if γx = 1

τIk , otherwise
.

This completes the proof of Theorem 3.1.

Proof of Corollary 3.1. When γx < 1, we have R(τ) = τIk and thus M(τ) =

τ(Ik−τIk)(Ik−τIk)′+(1−τ)τIk(τIk)
′ = [τ(1−τ)2+(1−τ)τ 2]Ik = τ(1−τ)Ik. Hence,

in this case, the limiting object in the Theorem 3.1 will reduce to (B(τ)−τB(1))′(B(τ)−

τB(1))/[τ(1− τ)] and justify the claim.

Proof of Corollary 3.2. (i). Using the above notations, it’s straightforward to obtain that

under the null hypothesis β1 = β2 = 0, we have

β̃′Q̃−1β̃ ⇒ U(1)′[Ψ(1)−1
′
ΣΨ(1)−1]−1U(1).
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Combining this result with Theorem 3.1, we can deduce that

Wβ=0 +Wbt ⇒(
Ψ(1)−1U(1)

U(τ)−Ψ(τ)Ψ(1)−1U(1)

)′Ψ(1)−1
′
ΣΨ(1)−1 0k×k

0k×k
τ(I −Ψ(τ)Ψ(1)−1)Σ(I −Ψ(τ)Ψ(1)−1)′

+(1− τ)(Ψ(τ)Ψ(1)−1)Σ(Ψ(τ)Ψ(1)−1)′


−1

(
Ψ(1)−1U(1)

U(τ)−Ψ(τ)Ψ(1)−1U(1)

)

=

(
Ψ(1)−1B(1)

B(τ)−Ψ(τ)Ψ(1)−1B(1)

)′Ψ(1)−1
′
Ψ(1)−1 0k×k

0k×k
τ(I −Ψ(τ)Ψ(1)−1)(I −Ψ(τ)Ψ(1)−1)′

+(1− τ)(Ψ(τ)Ψ(1)−1)(Ψ(τ)Ψ(1)−1)′


−1

(
Ψ(1)−1B(1)

B(τ)−Ψ(τ)Ψ(1)−1B(1)

)

=

(
B(1)

B(τ)−R(τ)B(1)

)′(
Ik 0k×k

0k×k M(τ)

)−1(
B(1)

B(τ)−R(τ)B(1)

)
= B(1)′B(1) +H(τ)′M(τ)−1H(τ)

Since the first component is independent of τ , then by Continuous Mapping Theorem, we

conclude thatWβ = supτ∈[τL,τU ](Wβ=0+Wbt)⇒ B(1)′B(1)+supτ∈[τL,τU ]H(τ)′M(τ)−1H(τ).

(ii). In case that γx < 1, by Corollary 3.2, the second component in the limiting

process would be a function of Brownian bridge B(τ) − τB(1). Since both B(1) and

B(τ)− τB(1) are Gaussian and we have Cov(B(1), B(τ)− τB(1)) = τ − τ = 0, these

two objects are independent of each other. Hence, we prove the statement.

Proof of Theorem 3.2. As discussed in the main text, under the null that there’s no break

in intercept, α̃−α can be decomposed into following three parts, viz. ε̄T , (β̃IV X−β)z̄T−1

and β(x̄T−1 − z̄T−1). We first show that the second term is asymptotically dominated by

the first term. Note that we have

√
T (β̃IV X − β)z̄T−1 =

[
T

1+min(γx,δz)
2 (β̃IV X − β)

]
·

[
T−(1+

min(γx,δz)
2

)

T∑
t=1

z̃t−1

]
.
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The term in the first bracket isOp(1) due to convergence property of IVX estimator estab-

lished in Phillips and Magdalinos (2009). The order of the term in the second bracket is

determined by the convergence rate of
∑T

t=1 z̃t−1. Part (i) of Lemma A1 in the Online Ap-

pendix of KMS indicates that
∑T

t=1 z̃t−1 =

{
Op(T

min(γx,1)
2

+δz) , if δz < γx

Op(T
γx+

δz
2 ) , if 0 < γx 6 δz < 1

Hence, the term in the second bracket will beOp(T
min(γx,1)+δz

2
−1). As min(γx, 1)+δz < 2,

this also suggests that it is op(1). Therefore, we prove that the second component of α̃−α

is asymptotically dominated by the first part.

Now, we turn to show that the third component is also dominated by first term if β is

small enough. First we rewrite it as
√
Tβ(x̄T−1− z̄T−1) = β 1√

n

∑T
t=1(xt−1− z̃t−1). Using

the representation formula in equation (23) of Phillips and Magdalinos (2009), this term

can be represented as−βCzT ( 1
2
+δz)

∑n
t=1 ψn,t−1, where ψnt =

∑t
j=1R

t−j
T xj−1. Hence, if

we set Cz = Ik for simplicity, we have

||
√
Tβ(x̄T−1 − z̄T−1)|| 6||β||T−(

1
2
+δz)

T∑
t=1

||ψT,t−1||

6||β||T−(
1
2
+δz)n sup

26t6t
||ψT,t−1||

=||β||T
1
2
−δz sup

26t6n
||ψT,t−1||

6||β||T
1
2
−δzOp(T

γx
2
+δz)

=||β||Op(T
1+γx

2 ),

where the forth line is justified by the uniform bound of ||ψT,t−1||, which is shown to

be Op(T
γx
2
+δz) in the Phillips and Magdalinos (2009). Thus, if β = op(T

− 1+γx
2 ), then

||
√
Tβ(x̄T−1− z̄T−1)|| = op(1) and the third component of α̃−α will also be asymptoti-

cally dominated. Also note that if β is a nonzero constant, this third term will dominate.

Combining the above two results together, we obtain that
√
T (α̃−α) = 1√

T

∑T
t=1 uyt+

op(1). The required result then follows straightforwardly from the use of standard algebra

and continuous mapping theorem.
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Proof of Theorem 3.3. Given Theorem 3.1 and Theorem 3.2, the only step left is to

show that Wat and Wbt are asymptotically independent of each other. Note that Wat is

driven by
∑[Ts]

t=1 uyt, while Wbt is determined by
∑[Ts]

t=1 z̃t−1uyt. These two partial sums

will converge jointly to two independent Brownian motions, as shown in the Proposition

A1 in Phillips and Magdalinos (2009). Hence the asymptotic independence is guaranteed.

Convergence of Wαβ then follows from continuous mapping theorem.
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C Appendix to Chapter 4

This appendix includes the technical details and proof of the results reported in the

Chapter 4. Before proceeding to the proof, it’s convenience to summarize some notation

we use in the following. Let αt be the true value of α at time t and

ᾱ =
1

T

m+1∑
i=1

(ti − ti−1)αi =
m+1∑
i=1

(τi − τi−1)αi

be the weighted average value of α. We will use Ωx to denote the long-run variance of the

predictor.

Proof of Theorem 4.1. The least square estimator for slope coefficient β can be ex-

pressed as

β̂ols =

[
T∑
t=1

(xt−1 − x̄)2
]−1 T∑

t=1

(xt−1 − x̄)(yt − ȳ)

=

[
T∑
t=1

(xt−1 − x̄)2
]−1 T∑

t=1

(xt−1 − x̄)

(
(αt + uyt)− (ᾱ + ū)

)

=

[
T∑
t=1

(xt−1 − x̄)2
]−1 T∑

t=1

(xt−1 − x̄)uyt +

[
T∑
t=1

(xt−1 − x̄)2
]−1 T∑

t=1

(xt−1 − x̄) (αt − ᾱ)

(C.1)

Since αt =
∑m+1

i=1 αiI(ti−1 < t 6 ti), the second component can be written as

[
T∑
t=1

(xt−1 − x̄)2
]−1 m+1∑

i=1

(αi − ᾱ)

ti∑
t=ti−1

(xt−1 − x̄)


and thus we have

√
T β̂ols =

[
1

T

T∑
t=1

(xt−1 − x̄)2
]−1

1√
T

T∑
t=1

(xt−1 − x̄)uyt

+

[
1

T

T∑
t=1

(xt−1 − x̄)2
]−1 m+1∑

i=1

(αi − ᾱ)
1√
T

ti∑
t=ti−1

(xt−1 − x̄)


→d N

(
0,
σ2
y +

∑m+1
i=1 (αi − ᾱ)2(τi − τi−1)

E(x2t−1)

)
(C.2)
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As for estimated variance of uyt, we have following decompostion

σ̂2 =
1

T

T∑
t=1

(yt − α̂− xt−1β̂)2

=
1

T

T∑
t=1

(αt + uyt − ȳ + x̄β̂ − xt−1β̂)2

=
1

T

T∑
t=1

(αt − ᾱ + uyt − ūy + x̄β̂ − xt−1β̂)2

=
1

T

T∑
t=1

(αt − ᾱ)2 +
1

T

T∑
t=1

(uyt − ūy)2 +
1

T

T∑
t=1

(xt−1 − x̄)2β̂2

2

T

T∑
t=1

(αt − ᾱ)(uyt − ūy) +
2

T

T∑
t=1

(αt − ᾱ)(xt−1 − x̄)β̂ +
2

T

T∑
t=1

(uyt − ūy)(xt−1 − x̄)β̂

(C.3)

It’s easy to see by simple application of law of large number that

1

T

T∑
t=1

(αt − ᾱ)2 =
m+1∑
i=1

(αi − ᾱ)2(τi − τi−1)

1

T

T∑
t=1

(uyt − ūy)2 →p σ2
y

1

T

T∑
t=1

(xt−1 − x̄)2β̂2 =
1

T
(
√
T β̂)2

[
1

T

T∑
t=1

(xt−1 − x̄)2

]
= op(1)

and all cross-prodcut terms are of smaller order. Therefore, we can conclude that

σ̂2 →p σ2
y +

m+1∑
i=1

(αi − ᾱ)2(τi − τi−1). (C.4)

Combining (C.2) and (C.4), it’s obvious that t-statistics converges to a standard normal

random variable.

Proof of Theorem 4.2. It’s well known that when the regressors is nonstationary, least

square estimator has a faster rate of convergence. Similar to (C.2), we have following
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expression with a different normalizing rate

T β̂ols =

[
1

T 2

T∑
t=1

(xt−1 − x̄)2
]−1

1

T

T∑
t=1

(xt−1 − x̄)uyt

+

[
1

T 2

T∑
t=1

(xt−1 − x̄)2
]−1 m+1∑

i=1

√T (αi − ᾱ)
1

T
√
T

ti∑
t=ti−1

(xt−1 − x̄)

 (C.5)

Using the standard results in Phillips (1987), we have

1

T 2

T∑
t=1

(xt−1 − x̄)2 ⇒
∫ 1

0

J c(r)
2dr

1

T

T∑
t=1

(xt−1 − x̄)uyt ⇒
∫ 1

0

J c(r)dWy(r)

1

T
√
T

ti∑
t=ti−1

(xt−1 − x̄)⇒
∫ τi

τi−1

J c(r)dr

whereWy is Brownian motion with standard deviation equal to σy. Therefore, by compar-

ing the terms in (C.5), we find that the limiting distribution is determined by the asymp-

totic behavior of
√
T (αi−ᾱ). Note that, by simple algebraic manipulation, we can deduce

αi − ᾱ = αi −
m+1∑
j=1

αj(τj − τj−1)

= αi − [α1τ1 + α2(τ2 − τ1) + ...+ αm+1(1− τm)]

= αi − [(α1 − α2)τ1 + (α2 − α3)τ2 + ...+ (αm−1 − αm)τm + αm+1]

= (α2 − α1)τ1 + (α3 − α2)τ2 + ...+ (αm+1 − αm)τm − (αm+1 − αi)

(C.6)

(i). When all breaks are small, for i = 1, 2, ...,m+1,
√
T (αi− ᾱ) are o(1). Therefore, the

second compnent in (C.5) will be dominated. It’s also obvious in this case that σ̂2 →p σ2
y .

This implies that the breaks are asympotically neglible and thus the limiting distribution
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of t-statistics is the same as in the no-break case, which is

tolsβ ⇒
∫ 1

0
J c(r)dW (r)√∫ 1

0
J c(r)

2dr

(ii). For moderate breaks case, we have
√
T (αi− ᾱ) =

∑m
i=1 τidi−

∑m
j=i dj . Combining

all these limiting components together, we have that

T β̂ols ⇒
∫ 1

0
J c(r)dWy(r)∫ 1

0
J c(r)

2dr
+

∑m+1
i=1

[∑m
i=1 τidi −

∑m
j=i dj

] ∫ τi
τi−1

J c(r)dr∫ 1

0
J c(r)

2dr

=

∫ 1

0
J c(r)dWy(r)∫ 1

0
J c(r)

2dr
+

(∑m
i=1 τidi

)∫ 1

0
Jc(r)dr −

∑m+1
i=1

[
(
∑m

j=i dj)
∫ τi
τi−1

J c(r)dr
]

∫ 1

0
J c(r)

2dr
(C.7)

Now, we derive the limiting behavior of σ̂2. To this end, we can still rely on (C.3). The

only difference is that now we have

1

T

T∑
t=1

(αt − ᾱ)2 =
1

T

m+1∑
i=1

[√
T (αi − ᾱ)

]2
(τi − τi−1) = o(1)

and thus σ̂2 →p σ2
y . Therefore, we have that

tolsβ =
T β̂ols√

σ̂2
[

1
T 2

∑T
t=1(xt−1 − x̄)2

]−1

⇒
∫ 1

0
J c(r)dW (r)√∫ 1

0
J c(r)

2dr
+

(∑m
i=1 τidi

)∫ 1

0
J c(r)dr −

∑m+1
i=1

[
(
∑m

j=i dj)
∫ τi
τi−1

J c(r)dr
]

σy

√∫ 1

0
J c(r)

2dr

(C.8)

(iii). If any of the breaks is large and
√
T (αi − ᾱ) → ∞ as sample size increases, then

the second term in (C.5) will dominate the limting behavior. More importantly, the con-

vergence rate of β̂ols will be slower. At the meantime, the convergence rate of the terms

in denominator will remain the same. Therefore, t-statistics will explode to infinity in this

134



case.

Proof of Theorem 4.3. Similar to the proof of Theorme 4.2, we re-normalize the least

square estimator with a different rate to accommadate the limiting behavior of mildly

stationary process.

T
1+γx

2 β̂ols =

[
1

T 1+γx

T∑
t=1

(xt−1 − x̄)2
]−1

1

T
1+γx

2

T∑
t=1

(xt−1 − x̄)uyt

+

[
1

T 1+γx

T∑
t=1

(xt−1 − x̄)2
]−1 m+1∑

i=1

T γx
2 (αi − ᾱ)

1

T
1
2
+γx

ti∑
t=ti−1

(xt−1 − x̄)

 .
(C.9)

As shown in Phillips and Magdalinos (2005) and Giraitis and Phillips (2006), when xt−1

is mildly stationary, we have the following asymptotic results

1

T 1+γx

T∑
t=1

(xt−1 − x̄)2 →p Ωx

∫ ∞
0

e2rdr =
1

2
Ωx,

1

T
1+γx

2

T∑
t=1

(xt−1 − x̄)uyt ⇒ U(1),

1

T
1
2
+γx

ti∑
t=ti−1

(xt−1 − x̄)⇒ B(τi)−B(τi−1),

whereU(·) andB(·) are independent Brownian motions with variance equal to 1
2
σ2
yΩx and

Ωx, respectively. Therefore, the limiting behavior of t-statistics is captured by T
γx
2 (αi −

ᾱ). It’s also easy to show that we still have σ̂2
y →p σ2

y . Hence, when all the breaks are
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moderate, we can deduce that

tolsβ =
β̂ols

σ̂y

√[∑T
t=1(xt−1 − x̄)2

]−1
=

T
1+γx

2 β̂ols

σ̂y

√[
1

T 1+γx

∑T
t=1(xt−1 − x̄)2

]−1
⇒

(1
2
Ωx)

−1U(1)

σy(
1
2
Ωx)−1/2

+
(1
2
Ωx)

−1∑m+1
i=1 (

∑m
i=1 τidi −

∑m
j=i dj)(B(τi)−B(τi−1))

σy(
1
2
Ωx)−1/2

= N

(
0, 1 +

1

σ2
y

m+1∑
i=1

(
m∑
i=1

τidi −
m∑
j=i

dj

)2

(τi − τi−1)
)

(C.10)

When all the breaks are small, the second component of (C.9) is dominated and thus we

have tolsβ ⇒ N(0, 1). Oppositely, if any break is large, the second component will dom-

inate, which results in a slower convergence rate of β̂ols and consequently an explosive

t-statistics.

Proof of Theorem 4.4. We focus on the proof of part (ii), i.e. moderate break case,

as other two cases can seen as trivial implication of it. In the following, we assume that

the predictor is local to unit root. The proof under unit-root regressor is similar and thus

omitted. The IVX estimator of slope coefficient β can be written as

β̃ivx =

[
T∑
t=1

(xt−1 − x̄)z̃t−1

]−1 T∑
t=1

z̃t−1(yt − ȳ)

=

[
T∑
t=1

(xt−1 − x̄)z̃t−1

]−1 T∑
t=1

z̃t−1 [(αt − ᾱ) + (uyt − ūy)]

=

[
T∑
t=1

(xt−1 − x̄)z̃t−1

]−1  T∑
t=1

z̃t−1(uyt − ūy) +
m+1∑
i=1

(αi − ᾱ)

ti∑
t=ti−1

z̃t−1


(C.11)
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which can be further normalized to obtain that

T
1+δz

2 β̃ivx =

[
1

T 1+δz

T∑
t=1

(xt−1 − x̄)z̃t−1

]−1 [
1

T
1+δz

2

T∑
t=1

z̃t−1(uyt − ūy)

]

+

[
1

T 1+δz

T∑
t=1

(xt−1 − x̄)z̃t−1

]−1
m+1∑
i=1

(
T

min[1,γx]
2

+δz− 1+δz
2 (αi − ᾱ)

) 1

T
min[1,γx]

2
+δz

ti∑
t=ti−1

z̃t−1


(C.12)

Since the standard deviation of IVX estimator is estimated by

σ̂y

(
T∑
t=1

z̃2t−1

)1/2( T∑
t=1

z̃t−1(xt−1 − x̄)

)−1
,

the IVX t-statistics can be expressed as

tivxβ =
T

1+δz
2 β̃ivx

σ̂y

(
1

T 1+δz

∑T
t=1 z̃

2
t−1

)1/2 (
1

T 1+δz

∑T
t=1 z̃t−1(xt−1 − x̄)

)−1
=

1

T
1+δz

2

∑T
t=1 z̃t−1(uyt − ūy)

σ̂y

(
1

T 1+δz

∑T
t=1 z̃

2
t−1

)1/2 +

∑m+1
i=1

(
T
δz+min[0,γx−1]

2 (αi − ᾱ)
)(

1

T
min[1,γx]

2 +δz

∑ti
t=ti−1

z̃t−1

)
σ̂y

(
1

T 1+δz

∑T
t=1 z̃

2
t−1

)1/2
(C.13)

As proved in Phillips and Magdalinos (2009) and Kostakis et al. (2015), following limit-

ing theory applies
1

T 1+δz

T∑
t=1

z̃2t−1 →p Ωx

∫ ∞
0

e2rdr =
1

2
Ωx

1

T
1+δz

2

T∑
t=1

z̃t−1(uyt − ūy)⇒ N(0,
1

2
σ2
yΩx)

1

T
min[1,γx]

2
+δz

ti∑
t=ti−1

z̃t−1 =
1√
T
xT + op(1)⇒ Ω1/2

x

(
Jc(τi)− Jc(τi−1)

)
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Combining these results with (C.11), we can deduce that

tivxβ ⇒N(0, 1)+

(
∑m

i=1 τidi) Jc(1)−
∑m+1

i=1

(∑m
j=i dj

)(
Jc(τi)− Jc(τi−1)

)
σy/
√

2

(C.14)

This is exactly the result that we want to prove.

Proof of Theorem 4.5. The proof is very similar as in the proof of Theorem 4.4. The

only difference to note is that in this case, we have
∑T

t=1 z̃t−1 = Op(T
γx+

δz
2 ), as is proved

in Online Appendix of Kostakis et al. (2015). Meanwhile, we have

1

T 1+γx

T∑
t=1

z̃2t−1 →p Ωx

∫ ∞
0

e2rdr =
1

2
Ωx

1

T
1+γx

2

T∑
t=1

z̃t−1(uyt − ūy)⇒ N(0,
1

2
σ2
yΩx)

Hence, by normalizing the β̃ivx using T
1+γx

2 , it is straightforward to obtain the results.

Proof of Theorem 4.7. Under our assumption, the model under null hythothesis is a

special case of the model considered in Bai and Perron (1998). Thus, we have that m̂ is

consistent and τ̂i converges to τi with rate T . Meanwhile, we know that the convergence

rate of β̃ivx is T
min[δz,γx]+1

2 , which must be slower than T . Therefore, by similar argu-

ment as in Bai (1997) and Bai and Perron (1998), we can easily see that the estimation

error induced by break detection is of smaller order and thereby asymptotically negligi-

ble. Consequently, the IVX-Wald statistics in each regime converges to a χ2(k) random

variable, which implies that their summation goes to χ2(k(m+ 1))
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D Appendix to Chapter 5

D.1 Details of PGAS algorithm

Recall that a state space model is in the form

yt|xt = x ∼ fθ(·|x), (D.1)

xt+1|xt = x ∼ gθ(·|x), and x1 ∼ µθ(·), (D.2)

The output of a PGAS algorithm is a random draw from the joint smoothing distribution

pθ(x1:T |y1:T ), conditional on one particular set of parameter values. In the following, we

will omit parameters in all densities with an understanding that they depend on a same

θ. The input of this algorithm, except for θ, is a reference trajectory of x1:T , which is a

sample from last MCMC iteration. Let’s denote that reference trajectory by x′1:T . Then,

the algorithm proceeds as following:

• 1. Draw x
(i)
1 from q1(x1|y1), for i = 1, 2, ..., N − 1.

• 2. Set x(N)
1 = x′1.

• 3. Set w(i)
1 = f(y1|x(i)1 )/q1(x

(i)
1 |y1), for i = 1, 2, ..., N .

• 4. For t = 2 to T , do the following:

– (a). Generate {x̃(i)1:t−1}N−1i=1 by sampling with replacement N − 1 times from

{x(i)1:t−1}Ni=1 with probabilities proportional to the importance weights {w(i)
t−1}Ni=1.

– (b). Draw J from {1, 2, ..., N}with probabilities proportional tow(i)
t−1g(x′t|x

(i)
t−1)

and then set x̃(N)
1:t−1 = x

(J)
1:t−1.

– (c). Simulate x(i)t from qt(xt|x̃(i)t−1, yt), for i = 1, 2, ..., N − 1.

– (d). Set x(N)
t = x′t.

– (e). Set x(i)i:t = (x̃
(i)
1:t−1, x

(i)
t )

– (f). Set weight to be w(i)
t = f(yt|x(i)t )g(x

(i)
t |x̃

(i)
t−1)/qt(x

(i)
t |x̃

(i)
t−1, yt), for i =

1, 2, ..., N .
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• 5. Draw k from {1, 2, ..., N} with probabilities proportional to w
(i)
T and return

x∗1:T = x
(k)
1:T .

Note that this procedure is very similar to the original conditional sequential Monte Carlo-

based particle Gibbs sampler. The major modification is in the Step 4(b), where a new

index is drawn and thus theN th trajectory may not be the reference one from last iteration.

In conditional PG, on the contrary, we fix the last particle to follow the input trejectory

x′1:T .

It is worth mentioning that the probability of drawing J depends on g(x′t|x
(i)
t−1) and

x′t is drawn in the last iteration conditional on all observations y1:T . Therefore, this step

makes the algorithm more like a smoothing instead of filtering.

D.2 Additional Figures

This section includes some additional figures that are related to the empirical applica-

tion with weekly exchange rate data we consider in the main text. Corresponding figures

for stock return data are similar and thus omitted for saving the space. Specifically, we

present the following figures:

• Figure 29: Kernel-smoothed posterior distributions of volatility-related parameters.

• Figure 30: Kernel-smoothed posterior distributions of correlation-related parame-

ters.

• Figure 31: Mixing of volatility-related parameters represented by the decay of au-

tocorrelation.

• Figure 32: Mixing of correlation-related parameters represented by the decay of

autocorrelation.
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Figure 29: Posterior distributions of volatility-related parameters for weekly exchange
rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row includes
σ2’s. All densities are kernel-smoothed.
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Figure 30: Posterior distributions of correlation-related parameters for weekly exchange
rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row includes
σ2’s. All densities are kernel-smoothed.
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Figure 31: Mixing of volatility-related parameters for weekly exchange rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row includes
σ2’s. Blue curves show the decay of sample autocorrelations of MCMC sampler.
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Figure 32: Mixing of correlation-related parameters for weekly exchange rate data

Note: The first row includes µ’s, the second row includes φ’s and the third row includes
σ2’s. Blue curves show the decay of sample autocorrelations of MCMC sampler.
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