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Stochastic Capacity Management in the Presence of
Production Resource Disruption

Boya Yang

Abstract

This dissertation studies the capacity investment decision of a manufacturing

firm facing demand uncertainty in the presence of shortage possibility in pro-

duction resources, as often ignored in the literature. These production resources

can be physical resources (component / raw material) or financial resources

(working capital / budget). The shortage in these resources can be caused by

a variety of supply chain disruptions; examples include global disruptions like

COVID-19 and financial crisis in 2008 and local disruptions like shortage of

components/workforce. The dissertation analyses two important issues related

to capacity management: (i) the effect of production resource disruption on

the capacity investment strategy and the profitability of the firm (including the

significance of profitability loss incurred when the resource shortage possibility is

ignored, and (ii) the role of production resource disruption management strategies,

i.e. using pre-shipment financing to mitigate the effect of financial resource

disruption and using hedging to mitigate physical resource disruption.

The first part (Chapter 3) examines a two stage capacity-production framework

that capacity investment decision is in anticipation of demand and production

resource uncertainties and production quantity is decided after the revelation

of uncertainties. I characterize the optimal decisions and investigate how the

uncertainties (demand and production resource variability and the correlation

between the two) affect the optimal capacity investment level and the profitability.

My results provide rule of thumb for the managers in capacity management. I also

study the significance of profitability loss incurred when the resource uncertainty

is ignored in choosing capacity level. Through both analytical and extensive

numerical analysis, I show that the profitability loss is high when 1) correlation

is high; 2) either production resource variability is sufficiently high or sufficiently



low; and 3) either demand variability is sufficiently high or sufficiently low.

The second part (Chapter 4) examines the role of pre-shipment finance in

managing financial production resource (working capital/budget) disruption.

Pre-shipment finance allows the firm to transfer the purchase orders (which will

be paid after production) to an external party that provides immediate cash flow

(at a cost) that can be used for financing the production process. To this end, I

characterize the optimal pre-shipment finance level (proportion of sales revenues

transferred) and the production volume in the production stage and the optimal

capacity investment level in the capacity stage. I make comparisons with the

results in the first chapter to understand how pre-shipment financing alters the

effects of demand and production resource uncertainties on the optimal capacity

investment level, expected profit and profitability loss due to ignoring resource

uncertainty. I identify that applying pre-shipment finance makes the capacity

investment and profits more resilient to changes in spot price uncertainty.

The third part (Chapter 5) studies the role of procurement hedging contract in

managing physical production resource (e.g., component/raw material) disrup-

tion. With the hedging contract, the firm can engineer the production resource

uncertainty at the capacity investment stage—for example, with full hedging this

uncertainty can be completely removed. I provide the joint characterization of

the optimal hedging level and capacity investment decisions. I find that these

decisions critically depend on the covariance between demand and production

resource uncertainties and the unit capacity investment cost. For example, I

find that fully hedging is always optimal when the correlation is non-positive. I

highlight conditions under which the firm optimally does not hedge at all or use

partial hedging strategy. I then investigate the significance of the profitability

loss due to i) misspecification of capacity level by ignoring production resource

uncertainty and ii) misspecification of hedging strategy (using full hedging which

is easy to implement), and provide conditions under which these profitability

losses are significant.
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Chapter 1

Introduction

It is well established that capacity investment decision, which is an important

operational decision of manufacturing firms in a variety of industries, is subject

to demand uncertainty; the capacity investment level for a product needs to be

decided long before the actual product demand is realized. In practice, aside

from the demand uncertainty, these manufacturing firms may also experience

uncertainty in the production resources. When the production resources are

variable, a shortage in these resources can limit the actual production; in particular,

when the realized production resources volume is less than the planned production

quantity. A key feature of this paper is to consider production resources uncertainty

together with demand uncertainty.

These production resources can be financial (e.g., budget) or physical (e.g.,

labor, raw material, component) resources. On the financial production resources,

the shortage in these resources can be attributed to the worsened external financing

conditions (e.g., credit crunch, liquidity shocks); or to a decrease in internal

financing (where the financial resources are allocated to another subsidiary). For

example, in 2018, it is reported that majority of the small and medium enterprises

(SMEs) in UK have experienced unavailability of financial resources (Financial

Times, Bounds (2018)). Such liquidity problem due to lack of capital resources

is challenging not only to SMEs but also to capital intensive companies. For
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example, China’s National Electric Vehicle Sweden (NEVS) temporarily halted

output of its Saab car due to shortage of funds in 2014 (The Wall Street Journal,

Stoll (2014)). In Diamond mining industry, Indian diamond manufacturers

released the excess inventory due to struggling to get credit, even though there is

a growth of the middle class in China and India should boost demand (Financial

Times, Dempsey and Parkin (2019)). On the physical resources, the shortage in

these resources can be attributed to a variety of factors, e.g. reduction in raw

material yield, less supply of components and tightening immigration policy.

In recent breakout of Covid-19, the wreaking havoc of production resources

disruption has caught attention in variety of industries (Harvard Business Review,

Haren and Simchi-Levi (2020)). For example, drug-makers are facing significant

disruption to global production due to Chinese lock-down and cutting off supplies

of Chinese-made essential ingredients (Financial Times, Findlay et al. (2020)).

Coincidentally, the world’s fifth-biggest carmaker, Hyundai shut down all its car

factories in South Korea after running out of components from China and searches

new sources of engine wire-harness (Financial Times, White et al. (2020)). These

examples demonstrate that it is important to consider the uncertainty in the

availability of these (financial or physical) production resources in choosing the

right capacity to invest.

The stochastic capacity investment problem has received wide attention in the

operations management literature; see Van Mieghem (2003) for a comprehensive

review. The majority of this literature examine how demand uncertainty affect

capacity investment and profitability in the absence of production resources

uncertainty. Among the few papers that consider production resource and demand

uncertainties, such as Ciarallo et al. (1994) for physical resources, Boyabatlı et al.

(2016) for financial resources, there is no paper that examines how production

resource uncertainty affects the optimal capacity investment and profitability

of the firm. Intuitively, ignoring production resource uncertainty leads to over-

investment in capacity and, thus profitability loss, however, it is still an open

2



question under what conditions this profitability loss is significant. In this paper,

we attempt to fill this void by studying the optimal capacity investment problem

with the presence of demand and production resource uncertainties.

To this end, we formulate a two-stage profit maximization problem. In the

first stage, the firm chooses the capacity level to invest with the presence of

demand and production resource uncertainties. In the second stage, after both

the demand and production resource is realized, the firm then decides on the

optimal production quantity. We note that the demand and resource shocks might

be independent or positively/negatively correlated, as discussed in Babich (2010).

With the model, we characterize the optimal capacity investment policy and

answer the following research questions:

1) How would the optimal capacity level and profitability be impacted by the

demand and production resource variability and the correlation between the two?

2) If the possibility of production resource shortage is ignored in capacity

planning, as often done in practice and the academic literature, would the resulting

profitability loss be significant and how do the demand and production resource

uncertainties affect this profitability loss?

The Optimal Capacity Investment Policy. In answering the first question, we

provide analytical results assuming that the demand and production resource

follow a bivariate normal distribution. In addressing the second question,

we conduct extensive numerical experiments when analytical results are not

attainable. To delineate the impact of production resource uncertainty on our

results, whenever applicable, we make comparisons with a benchmark scenario

in which the possibility of production resource shortage is ignored in capacity

planning. We summarize our main findings as below:

Impacts of Demand and production resource Uncertainties. We conduct

sensitivity analysis, both analytically and numerically, to investigate the impact

of demand and production resource variabilities and their correlation on both

optimal capacity investment level and corresponding expected profit. When the

3



possibility of production resource shortage is ignored, conventional understanding

suggests that a higher demand variability increases optimal capacity level and

profitability, as established in the traditional stochastic capacity investment

literature. Interestingly, we find that a higher demand variability decreases both

optimal capacity level and profitability when the demand variability is lower

than certain threshold and the correlation is negative. Otherwise, the sensitivity

results are consistent with conventional understanding. In terms of the sensitivity

to production resource variability, we find that a higher production resource

variability is beneficial (i.e., increases profitability) only when this variability

is lower than certain threshold, the correlation is positive and unit capacity

investment cost is low; otherwise, a lower production resource variability is

beneficial. However, the optimal capacity level is monotonically increasing

(decreasing) in the production resource variability when unit capacity cost is low

(high) and the correlation is high (low). We also find that a higher correlation

between the demand and production resource leads to higher optimal capacity

level and the profitability. These results provide rules of thumb to manufacturing

firms in managing their capacity investment decisions with respect to changing

environmental conditions once the possibility of production resource shortage is

taken into consideration.

Profitability Loss Incurred by Ignoring the Possibility of production resource

Shortage. We calculate the percentage profit loss when the firm, instead using

the optimal capacity investment policy, heuristically uses the benchmark policy

in which the possibility of production resource shortage is ignored. We also

analytically and numerically perform sensitivity analysis of profitability-loss to

understand the effects of uncertainties. We prove that the profitability-loss is

decreasing in the correlation, which implies that the profitability loss would be

most significant when the demand and production resource is negatively correlated.

We also prove that profitability-loss strictly increases in the production resource

variability when the unit capacity cost is higher than certain threshold. We run
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extensive numerical experiments to obtain a comprehensive understanding on

effects of demand and production resource variabilities on this profitability loss.

There are patterns consistently observed throughout numerical analyses regarding

to the sensitivity of profitability loss. For the impact of production resource

variability under a low unit capacity cost scenario, profitability loss decreases in

production resource variability when the variability is smaller than a threshold;

profitability loss increases in production resource variability otherwise. For the

sensitivity on demand variability, when the correlation between demand and

production resource is positive, profitability loss first decreases then increases in

demand variability; otherwise, as demand variability increases, profitability loss

increases.

Pre-shipment Finance in Managing Financial Production Resource Disrup-

tion. Pre-shipment financing creates necessary liquidity for the firm when the

budget is constraining. The firm chooses a loan that is fully secured within

the product selling revenue. Then, we characterize the optimal pre-shipment

finance level (proportion of sales revenues transferred) and the production vol-

ume in the production stage and the optimal capacity investment level in the

capacity stage. We make comparisons with the results in Chapter 3 to under-

stand how pre-shipment financing alters the effects of demand and production

budget uncertainties on the optimal capacity investment level, expected profit and

profitability-loss due to ignoring budget uncertainty. We identify that applying

pre-shipment finance makes the capacity investment and profits more resilient to

changes in both demand and production budget uncertainties. The profitability-

loss from miss-specifying capacity is significantly reduced by using pre-shipment

financing.

Procurement Hedging Contract in Managing Physical Production Resource

Disruption. When production resource is physical such as raw material or

component, pricing of material costs is directly linked to fluctuations in firm’s

production capability. Therefore, one of theway tomanage the potential disruption

5



of production resource would be to lock in prices for a production resource at a

pre-determined fixed price through arriving at a fixed price procurement contract.

In managing production resource disruption in the capacity investment stage, we

apply procurement hedging contract, which is beneficial if it can allow the firm to

avoid unnecessary fluctuations of physical production resource, e.g. raw material

or component, in capacity investment spending. In this procurement hedging

contract, the firm alters the distribution of production resource to manage the risk

of production resource disruption. We find that the partial hedging dominates

full hedging and no-hedging when demand and production resource is positively

correlated and the unit cost of investing capacity is low; no-hedging dominates

when the positive correlation between demand and production resource is high

and the unit capacity investment cost is even lower. We identify that optimal

partial hedging decreases in both demand variability and the correlation, whereas

it increases in production resource variability. We show that the profitability

increases in demand variability, production resource variability and the correlation.

Our numerical analysis shows that the profitability loss due to ignoring production

resource shortage possibility in choosing capacity investment level is significant

when demand variability is large, production resource variability is large and the

correlation is low. And the profitability loss due to heuristically choosing always

full hedging increases in both demand and production resource variability.

1.1 Organization of the Dissertation

The structure of the rest of dissertation is organized as follows. In Chapter 2, I

provide an extensive overview of the literature and discuss the contribution of our

work by comparison with existing papers. The work contributes to following two

streams of literature: 1) the stream of literature that studies inventory-production

systems under uncertain capacity, 2) the stream of literature in OM-finance that

studies the impact of financial constraints on operational decisions. In addition,
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I discuss the relevance of our work to the financial economic literature about

the relation between productive investment and uncertainties (demand or/and

production resource).

In Chapter 3, we investigate the impact of production resource and demand

uncertainties on capacity investment of a manufacturing firm. The stochastic

capacity management problem of the firm is formulated in Section 3.1, its optimal

strategy is defined in Section 3.2. Then Section 3.3 is the sensitivity analyses

of this basic model and, lastly, Section 3.4 examine the sensitivity analyses

profitability-loss with numerical experiments.

In Chapter 4, we conduct an extension that the firm can finance its production

after the purchase of the products (after demand is resolved) has been committed,

that is, the basic model with a financing instrument called pre-shipment finance

where the formulation is and the corresponding optimal policy is introduced

in Section 4.2. Through sensitivity analyses in Section 4.3, we show that the

financing makes the capacity investment decision and profitability more resilient

to uncertainties. In Section 4.4, we conduct the numerical analysis to show that

the profitability loss due to miss-specify capacity level is negligible.

In Chapter 5, we conduct an extension that the firm can hedge away the

production resource uncertainty at the capacity investment stage, where the

model formulation and the optimal strategy are introduced in Section 5.2 and

5.3, respectively. Through sensitivity analyses with respect to optimal capacity

level, optimal hedging strategy and the corresponding profitability in Section 5.4,

we show that the unfavourable uncertainties are removed by hedging strategy,

in other words, the demand variability, production resource variability and the

correlation between the two are either not affect the optimal decisions or increases

the optimal capacity and profitability. Also, we perform profitability loss in

Section 5.5. In the last, Chapter 6 concludes the thesis with a summary on the

research results, managerial insights and potential research directions.
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Chapter 2

Literature Review

Our work contribute to two streams of literature that study the production

resources uncertainty. The first stream studies the inventory-production systems

with unreliable physical production resources; the second stream is related to

OM-finance interface that studies operational capacity and production decisions

under financial constraints, by reason that financial constraints behave the same

as production resource. I will highlight papers that investigate the impact of

demand uncertainty or/and financial constraints uncertainty on the investment

and point out the research gap that our work try to fill. Throughout the review,

I summarize their research questions, main results and contributions of these

relevant papers, more importantly, based on this review, our contribution to the

literature is proposed.

The stream of literature that studies the inventory-production systems with

supply uncertainty is discussed in Section 2.1. I review researches that study

optimal inventory and production decisions under physical production resources

in different business environments. The physical production resources uncertainty

in the manufacturing industry was earliest identified by Lee and Billington (1993)

who state, in the production process of HP printers, both process and supply

activities may incur uncertainty. Process uncertainty comes from workforce

level uncertainty and production rework; and supply uncertainty comes from

8



quantity and quality of raw materials, components and delivery. Therefore,

from formulation perspective, there are four types of uncertainty: random

capacity, random yield, random supply lead time, and lastly, probabilistic on/off

of production capacity which is called supply disruption and can be considered

as special case of the rest types of uncertainties. Physical production resources

uncertainty refers to random capacity category. Our work contributes to the

literature that relaxing the assumption that random demand and random capacity

are independent and increasing the understanding of random capacity in operations

management, therefore, this part of reviewwould focus on papers study operational

models with random capacity.

The extensive review of operational capacity and production models under

financial constraints is in Section 2.2. Financial constraints come from capital

market imperfection indicating that firms are not always able to secure enough

funds for production. This constraints also service similar effect as what random

capacity does. Specifically, financial constraints may lead to cash crunch, that

further cause the manufacturers unable to proceed the production up to the

planned volume due to lack of working capital. Therefore, financial constraints

can also be regarded as limited production resources. Financial constraints have

been widely studied in OM-finance field, however, only few researches about

the impact of its uncertainty on the operational decisions and corresponding

profitability (excepting Babich (2010) and Boyabatlı et al. (2016)). I will provide

an extensive review of the development of the literature.
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2.1 Physical Production Resources Uncertainty

Physical production resources as the maximum productive capacity usually varies

stochastically because of uncertainties in production processes. It may truncate

planned production volume to the materialized volume of production resources.

There exists a stream of literature that studies the impact of the uncertain capacity

in the content of inventory-production problem.

Ciarallo et al. (1994) is the first to introduce uncertain capacity to the

newsvonder framework. The decision of the framework is the production target

(also called planned production quantity) in the presence of uncertain capacity

and uncertain demand. After the uncertain capacity and demand are realized,

the actual production quantity is the minimum between capacity and production

target. The objective is to minimize the total expected costs that is composed

by production, holding and penalty costs. Since then, researches that study

multi-period newsvonder frameworks with uncertain capacity primarily focus

on adding more operational features, characterizing the structure of the optimal

policy, and understanding the impact of uncertain capacity on the optimal policy

structure comparing with the one without uncertain capacity, so as to serve as a

building block for dynamic inventory models. I will review these researches in

the following paragraph.

The seminal work of Ciarallo et al. (1994) show that for a periodic-review

finite-horizon newsvendor model with uncertain capacity, an order-up-to policy is

optimal, and the optimal planned production quantity is identical to the results of

the model without uncertainty capacity in the single period scenario. Wang and

Gerchak (1996) add another uncertain feature on top of Ciarallo et al. (1994)’s

work, that is random yield in the model describing the fact that only a random

proportion of the actual production quantity could be qualified to satisfy demand.

They also show that the random capacity is irrelevant to the optimal policy,

because the optimal policy possesses the same structure as the optimal policy

obtained by Henig and Gerchak (1990) for the case in which the random capacity
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is not considered. Inspired by frozen seafood industry operations, Khang and

Fujiwara (2000) formulate a multi-period newsvendor model with raw material

supply uncertainty in each period and constant demand, different from Ciarallo

et al. (1994), the raw material supply volume is known and constraints production

volume (one unit of raw material turns to one unit of finished product). They

show that optimal order-up-to level is capped by the realized raw material supply

volume and myopic ordering policy (buy all raw materials or satisfy all demand,

whichever is possible) can be optimal under certain condition. Yang (2004)

also study a multi-period newsvendor model with demand uncertainty and raw

material supply uncertainty in each period. Similar as Khang and Fujiwara

(2000), the raw material is materialized as the beginning of each period, but

differently, raw material is storable and the firm accepts all raw material; also

raw material is tradeable to its spot market. They contribute to the literature

by providing a combination of two base-stock policy: one for raw material

inventory and one for finished product inventory. Yang et al. (2005) extend the

multi-period newsvendor problem with Markovian in-house production capacity

and outsourcing option with setup cost and variable cost. The production level is

decided after the realization of capacity. They obtain that the optimal outsourcing

policy is (B, () policy due to setup cost and optimal inventory policy is modified

base-stock policy. For the sensitivity results: a higher current capacity level

(stochastically) leaves the firm better off and both base-stock level and outsourcing

level decrease. Feng (2010) extend Ciarallo et al. (1994)’s newsvendor framework

with price-dependent random demand. She obtains that basestock policy is not

optimal and the capacity uncertainty induces the optimal policy depending on

the inventory level. She shows that optimal policy is monotone with respect

the average capacity level but not with respect to the variability of the capacity.

Feng and Shi (2012) extend Feng (2010)’s framework by adding multiple supply

resources with uncertain capacity. They reveal that both supply diversification

(due to multiple supply resources) and dynamic pricing are effective in raise profit
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when newsvendor’s cost parameters decreases. Tan et al. (2016) also extend

Ciarallo et al. (1994)’s newsvendor framework with one more ‘slow’ supply

resource with random capacity, therein, ‘slow’ means one more period delivery

lead time than ‘normal’ supply resource. They show that the slower supplier

plays a crucial role in mitigating stockout risk when demand surge and the fast

supplier is restricted by either capacity limitation or capacity uncertainty.

Besides papers that study multi-period newsvendor framework focus on the

optimal policy development, there are papers investigate single-period newsvendor

framework, in concern with other issues. Hu et al. (2008) address the optimal

transshipment for a firm that produces in two manufacturing facilities each

of which serves its individual uncertain market demand and faces capacity

uncertainty. They analytically discuss how optimal policy with transshipment

strategy is affected by stochastically higher facilities capacities; and numerically

discuss under which condition the benefit of transshipment is high. The focus of

this work are the effect of random capacity on optimal policy and profitability

of transshipment strategy. Different from their work, firstly, we don’t consider

transshipment and directly address how capacity and demand variability affecting

optimal policy; secondly, we discuss the significance of profitability-loss due to

ignoring random capacity that is missing in their work. Wang et al. (2010) study

a newsvendor model that can source from two unreliable suppliers, where the

unreliability comes from the random loss of design capacity of suppliers. They

examine two process improvement strategy: dual sourcing and exerting effort

to increase supplier’s reliability (process improvement). And they identify the

conditions, under which dual sourcing or process improvement is more favourable.

The effect of uncertainties is not discussed.

In this stream of literature, Babich (2010) is the closest paper to ours. He

investigates a manufacturer’s capacity reservation and subsidy decisions to a

supplier who has risky financial state to generate the capacity. The goal of his

paper is to model the relationship between the supplier’s financial state and the
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supplier’s capabilities to fulfill the manufacturer’s order. Different from his

model, we consider a manufacturer internalizes the capacity establishment and

the financial trouble may happen in the production stage. In addition, his model

is dynamic periodic-review model and ours is two-stage stochastic programming

model. In his work, the effect of financial constraints from the other party in

supply chain on capacity investment decision has been numerically discussed.

Remark: In this inventory-production system with uncertain capacity stream

of literature, the potential correlation between uncertain capacity and demand

are neglected, therefore they obtain either the relation between optimal inven-

tory/production level and capacity variability is monotone. Our research fill this

gap by assuming uncertain capacity and demand are correlated and analytically

provide the sensitivity results of how capacity and demand uncertainties and their

correlation shape the optimal inventory level.

2.2 FinancialConstraints inCapacityManagement

Our paper also related to the literature that considers financial market frictions in

capacity investment management, because the production resources uncertainty

can also be variable financial constraints. Our contribution to the literature is

to understand when production demand and financial constraint are correlated

how financial constraint variability shapes capacity investment level. Stochastic

models for capacity management has been well studied from operations literature,

see Van Mieghem (2003) for an extensive review, in which all of the models

assume that one is always able to secure funds to adopt ‘optimal’ capacity

investment and production plans. As the value of the interplay between capacity

management and financial risk is illustrated (Birge, 2015), increasingly number

of papers consider stochastic capacity investment models accommodating the risk

due to financial market imperfections, the constraints could be in different forms,

e.g. transaction costs, exchange rate, bankruptcy costs, taxes and regulations,
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costly or slow information diffusion, agency problems, moral hazards and so on.

Particularly, the contemporary researches that demonstrate the value of financial

constraints and its uncertainty in capacity management are listed below.

There are papers that involve the financial constraints as constant so that the

variability feature of it is missing. Babich and Sobel (2004) study a multi-period

model of capacity expansion and production where the IPO event is treated as a

stopping time for entrepreneurs to cash-out. Each period the entrepreneurs make

operational and financial decisions: capacity increment, production, bank loan

amount and whether or not to IPO. They provide monotone threshold rule to yield

an optimal IPO decisions. In the paper, they mentioned that operational capacity

may deteriorate over time in a random rate. The impact of this capacity deteriorate

rate uncertainty and demand uncertainty are not discussed in the paper. Xu and

Birge (2004) extend the newsvendor model to include financing constraint, whom

is called capital-constrained-newsvendor , to elevate the financial constraint, the

newsvendor can issue both debt and dividend. They demonstrate that facing

the bankruptcy risk due to demand uncertainty, the firm will reduce inventory

investment facing financial constraint. Dada and Hu (2008) also consider a

capital-constrained-newsvendor, therein, he borrows from endogenous bank that

determines interest rate. Both of the seminal works prove the negative impact

of financial constraint on the profitability that showing the importance of taking

the financial constraint into account. Ning and Sobel (2018) study a price-taking

firm using only internal financing and lives in a stochastic market environment

to make multi-period capacity investment/divestment, production and dividend

issue decisions. The effects of financial frictions in the form of internal financing

and the goal of their paper is to study how this internal financing affect the optimal

policy. In terms of financing constraint, in their model, all operations are financed

by the cash reserve, whereas in our paper only the production is constrained by a

random budget. In addition, capacity investment is irreversible in our model.

Boyabatlı and Toktay (2011), Chod and Zhou (2014) andBoyabatlı et al. (2016)
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analyze flexible capacity investment in financially constrained environments.

They all study a budget constraint that applies to the capacity investment stage.

Boyabatlı and Toktay (2011) endogenize the cost of borrowing and examine the

effect of capital market imperfections on the firm’s technology choice. Chod

and Zhou (2014) consider the optimal mix of flexible and dedicated capacity

showing that flexibility reduces the risk of costly default and the agency cost.

Also as flexible capacity investment cost decreases and the optimal capacity mix

becomes more flexible, the optimal amount of debt increases monotonically.

In addressing financial market fictions, optimal financial hedging strategy with

capacity investment decision are studied as follows: Chod et al. (2010) examine a

value-maximizing firm that produces two products and show that the firm can

use operational flexibility to mitigate the demand risk and financial hedging to

cope with profit risk. The firm value is a concave function of pre-tax profit due

to market imperfections such as taxes, the cost of financial distress, and costly

external financing (Smith and Stulz, 1985). They show that product flexibility

(flexible capacity for producing two different products) and financial hedging

tend to be complements (substitutes) when demands are positively (negatively)

correlated. In their paper, the financial market imperfections twist the firm being

risk-averse. We model different type of financial market imperfection that is the

risk that production decision is truncated by limited financial resource. Chen et al.

(2014) develop a mean-variance model to investigate manufacturer’s the optimal

financial hedging strategy and capacity investment decision, so as to mitigate the

manufacturer’s risk of multi-country foreign currency exposures due to overseas

suppliers. They numerically study the impact of correlation between production

demand and currency exchange rates on the optimal utility and capacity of the

firm, obtaining that when the exchange rates and demands are perfectly correlated,

the optimal capacities and utilities between a risk-averse and a risk-neutral firm

are identical. They take financial market fictions in a risk preference angle that is

different from our work.
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Other financial issues incurred by financial market friction are also studied:

Natarajan and Swaminathan (2014) study multi-period stochastic inventory

problem in the presence of funding constraints over a finite planning period in

the content of humanitarian operations. The funding constraints in humanitarian

operations have special property, that is, given the total fund fixed, there are

scenarios with uncertain funding and funding timing among the time horizon,

each of the scenario is called a stochastic funding schedule. They identify the

optimal replenishment policy for any given funding schedule and analyze the

impact of uncertainty in funding timing on the total operating costs. Iancu et al.

(2017) study the risk of liquidation for a capital constrained newsvendor with

operating flexibility provided by two-period selling seasons. For leverage, the

newsvendor contracts borrowing base covenant with a bank and thus in the risk

of liquidation. They examine the value of operating flexibility in the presence

of capital market frictions and debt covenants. They find that by providing

risk-shifting incentives in the debt covenant, operating flexibility can substantially

increase borrowing costs. Alan and Gaur (2018) examine the effect of bankruptcy

costs and information asymmetry on the firm’s operating plans under asset-based

lending, where commercial bank screens newsvendor-type firms. They show

that asset-based lending enables the bank to mitigate information asymmetry

by screening firms and control each firm type. de Véricourt and Gromb (2019)

investigate the behavioural feature of capacity investment when investor finance

the activity. They study firm’s capacity choice given that it must be financed by

investor, as a result, sharing profits with investors causes governance problems

(two moral hazards), i.e. the firm may “steal” capital which reduces effective

capacity, and “shirk” on market development which reduces demand, in the

sequel, affecting both capacity and demand.

Start-up firms as few trade records and low loan credit corporates have

different operating target and financial concerns from established firms. Swinney

et al. (2011) analyze the competitive capacity investment timing decisions of
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both established firms and start-ups entering new markets in face with demand

uncertainty. Therein, start-up firm aims to minimize the possibility of bankruptcy

due to unable to repay debt whereas the established firm has no financial constraint

and focuses on maximizing the expected profit. They demonstrate the threat

of start-up bankruptcy significantly impacts the dynamics of the competition.

Tanrısever et al. (2012) address debt-financed start-ups’ concern of production

cost reducing R&D investment, that is, financial distress of unable to meet

bank’s financial requirement in short term resulting in liquidation versus better

business growth in long term. They incorporate important start-ups’ concerns of

uncertain R&D performance, uncertain demand and uncertain production cost

of competitor. Tanrisever et al. (2019) also study a production cost-reduction

investment model. Different from Tanrısever et al. (2012)’s work, the bank is

endogenous and loan is in the present of capital market frictions, specifically, there

is a cost of bankruptcy when firm’s revenue is unable to recover the face value

of the loan. Both of the papers demonstrate that the production-cost-reduction

investment affects firm’s operational and financial capabilities. It is worth noting

that Tanrisever et al. (2019) numerically perform the impact of demand variability

and the aforementioned capital market frictions on the optimal investment.

The closest paper to ours is Boyabatlı et al. (2016). They also consider

production stage budget uncertainty in the capacity investment content. The

differences are 1) we don’t focus on the technology choice of the capacity

investment; 2) we make allowance for the influence of variability of the production

resources on the capacity investment and the profitability.
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Chapter 3

Stochastic Capacity Investment in

the Presence of Physical and

Financial Production Resource

Disruptions

In this chapter, we consider a manufacturing firm which produces and sells

a single type of products on the market. The firm first makes the capacity

investment for the production of the single product, with the presence of random

market demand and random production resources. We define production resource

broadly so that it can represent either a financial budget or the availability of

limiting physical resource, e.g. raw material, components and workforce level.

We adopt stylized stochastic programming approach to characterize the firm’s

optimal capacity investment strategy. We conduct sensitivity analysis analytically

provide the answers of how production resource and demand uncertainties jointly

affect optimal capacity level and the profitability of the manufacturing firm. In

addition, extensive numerical experiments are conducted to verify the above

sensitivity analyses and provide the condition under which the profitability-loss

is significant.
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The organization of this chapter is as follows. In Section 3.1, we introduce

the formulation and assumptions of the model. In Section 3.2, we establish the

optimal capacity investment policy and compare it with the benchmark policy

which ignores the possibility of production resource shortage. Then we derive

analytical results for the sensitivity of optimal capacity investment policy as well

as the profitability in Section 3.3. Specifically, we answer the research question:

Howwould the optimal capacity level and profitability be impacted by the demand

and production resource variability and the correlation between the two? Finally,

in Section 3.4, we use analytical analysis as well as complementary numerical

study to answer second research question, if the possibility of production resource

shortage is ignored in capacity planning, as often done in practice and the

academic literature, would the resulting profitability loss be significant and how

do the demand and production resource uncertainties affect this profitability loss?

3.1 Notations and Assumptions of Basic Model

In the basic model, the capacity investment decision is made in the presence of

uncertainties. Other than consumer demand uncertainty that is widely studied

in the field, we take into account production resource uncertainty. After the

realization of uncertainties, the firm makes decision on the optimal production

quantity, subject to its earlier capacity investment and available resources. Finally,

the firm sells the products in the market and collects revenue. The objective

function is to maximize the firm’s expected profit. In the following section, the

notations and assumptions are introduced.

We formulate the problem as a two-stage stochastic programming model,

capacity investment stage and product manufacturing stage, in time sequence. At

the start of capacity investment stage C = 0, an amount equal to l is invested in

capacity, where firm decides  units of productive capacity to purchase at the

net price of l per unit. This decision, that maximizes expected operating profit
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less the total capacity investment cost, is made in anticipation of the demand and

production resource uncertainties denoted by b̃ and Ṽ respectively.

Specifically, the uncertainty of demand is denoted by b̃ which comes from a

demand-dependent price function denoted by ?(@) = b̃ − 1@, that is the price of

the product is a linear inverse demand function. b̃ indicates the maximal price of

this product, above which there would be no buyer willing to purchase. 1 is a

positive constant parameter that represents the price sensitivity of the the buyers.

This demand-price relation provides that if the firm sells @ unit of the product to

the market, it has to charge price at (b − 1@). This demand-price relationship has

been widely adopted in literature, e.g. Van Mieghem and Dada (1999), Caldentey

and Haugh (2009), Swinney et al. (2011) and Tanrısever et al. (2012). Also

this demand-price relationship is justifiable because in practice, unsold units

are generally liquidated through other channels, e.g. secondary markets, at a

discount price. Therefore, on average, higher quantity of products sold leads to

lower price.

Production resource uncertainty Ṽ (in dollar) represents the production

resource availability for providing the product. Ṽ can be the physical production

resource uncertainty proposed by Ciarallo et al. (1994), motivated by the facts

that the productivity level may fluctuate because of variations in worker skills or

operating conditions, in the case of raw materials or components souring, there

may be a lack of information about the production capability. Ṽ can also denote

random production budget proposed by Boyabatlı et al. (2016), motivated by

the facts that firm may not have access to sufficient external financing due to

credit crunch, liquidity shocks and financial crisis; also its internal financing may

not enough if the parent firm reallocates the fund to other divisions. It has a

continuous distribution with positive support [V, V] and bounded expectation `V.

After making investment decision with the presence of these two uncertainties,

these uncertainties are realized, and the firm then makes decisions on the

production C = 1, which is the beginning of production stage. For clarity
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of exposition, (b, V) is the realization of the uncertainties (b̃, Ṽ). Having

demand function and total production resource materialized, the firm decides

the production quantity @, noting that @ ∈ [0, b]. Producing one unit of product

requires one unit of capacity and H (in dollar $) unit of production resource, which

means the product quantity is constrained either by capacity level  decided

in the capacity investment stage or the realized production resource, whichever

is lower. The objective of the firm is to maximize the expected profit at the

beginning of capacity investment stage. To summarize, we illustrate the sequence

of events for the problem in Figure 3.1.

Figure 3.1: Timeline of events

Let Π denote the expected profit for the firm at a capacity level  at capacity

investment stage and c∗
(
 , b, V

)
denote the firm’s the optimal profit at production

stage given a capacity level  and realization of uncertainties, the formulation of

the problem is as follows. The capacity investment stage problem is

max
 ≥0

Π( ) = max
 ≥0

− l + E
(b,V)

[
c∗( , b̃, Ṽ)

]
, (3.1)

and the production stage problem is

c∗
(
 , b, V

)
= max

@
(b − 1@)@ − H@

s.t. 0 ≤ @ ≤ min
{
 ,

V

H

}
.

According to Theory of Constraints proposed by Goldratt (1990), among all

other constraints that may be binding the production quantity, we assume that

either capacity investment level or production resource is the weakest link that

may get in the way of the optimal production plan, besides the product demand.
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Since on the one hand, capacity investment level can be managed in the first stage,

on the other hand, the production resource is uncertain at the first stage and its

possible shortage leads to production resource crunch. As a result, in line with

the theory of constraints, understand the optimal capacity investment strategy is

equivalent to identify the most important limiting factor.

Without loss of generality, throughout the paper, we assume that the capacity

investment is an unconstrained expenditure and is irreversible. In practice,

capacity investment could also be constrained by some resource availability,

i.e. capital budget or/and supply reliability, practically, capacity investment is

usually financed by equity far earlier than production process. Therefore, having

a capital budget constraint in capacity investment stage wouldn’t change the

optimal production strategy. To isolate the role of the uncertainties in changing

capacity investment level, we abstract away the constraint in capacity investment

stage. Analytically, the analyses on how production resource uncertainty and

demand uncertainty influencing capacity investment are easier without capacity

investment capital constraint, ruling out financial constraint in capacity investment

stage is beneficial in concern with both research focus and analytical convenience.

Assumption 1 The mean value of demand function intercept denoted by `b is

larger than unit production cost, specifically, `b > H.

This condition ensures that investing in capacity to carry out the production

is admissible. Moreover, this assumption implies that the firm engages in a

reasonable production stage profitability. In particular, the expected production

stage profit with no consideration of production resource uncertainty, that is

E
b

[
(b̃ − 1@)@ − H@

]
= (`b − H)@ − 1@2, takes positive value for some @ ∈ [0,∞).

We complete this section with a summary of mathematical notations and

conventions throughout the remainder of the paper. The probability density

function of probability distribution (b̃, Ṽ) is denoted by 5 (b, V). The conditional

distributions b̃ |V and Ṽ |b have probability density function denoted by 5b |V (b)

and 5V |b (V) respectively. The correlation between b̃ and Ṽ is denoted by d.
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The marginal distribution b̃ is characterized by (0,∞), which has mean `b > H,

standard deviationfb > 0. In a similar, themarginal distribution Ṽ is characterized

by [V, V], which has mean `V > 0, standard deviation fV > 0. All notations for

the model are summarized at Table A.1 in Appendix. In addition, some standard

mathematical representation are summarized: E denotes the expectation operator;

Pr denotes probability; (·)+ denotes the maximum between 0 and the value ·, that

is to say (·)+ := max{0, ·}. Any other notation will be introduced as necessary.

Monotonic relations are in the weak sense unless otherwise stated.

3.2 Characterization of the Optimal Strategy

In this section, we characterize the firm’s optimal capacity investment and

production decisions. The problem is solved using backward induction. In

particular, we first analyse the optimal production decision given capacity  . We

partition the state space (b, V) ∈
{
(b, V) : b > 0, V ∈ [V, V]

}
into four regions,

Ω8, 8 = 0, 1, 2, 3 to denote different optimal production quantity scenarios that we

will show in Theorem 1. The formal definitions of these regions are

Ω0 :=
{
(b, V) : 0 ≤ b ≤ H, V ∈

(
V, V

]}
,

Ω1( ) :=
{
(b, V) : H < b < H + 21min

{ V
H
,  

}
, V < V ≤ V

}
,

Ω2( ) :=
{
(b, V) : b ≥ H + 21 ; max

{
V,min{H , V}

}
< V ≤ V

}
,

Ω3( ) :=
{
(b, V) : V ≤ V < max

{
V,min{H , V}

}
, b ≥ H + 21V

H

}
.

With the analysis of production constraints, the optimal production strategy is

characterized in Theorem 1 and the expected profitΠ( ) under optimal allocation

is obtained. In Theorem 2, the optimal resource capacity investment level is

obtained from Π( ) and characterized by unit capacity cost l.

Theorem 1 (Optimal Production Strategy of Basic Model) At given capacity

 and realizations of random variables (b̃ = b, Ṽ = V), the optimal production
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level @∗( , b, V) satisfies that

@∗( , b, V) =



0, if (b, V) ∈ Ω0,

b − H
21

, if (b, V) ∈ Ω1( ),

 , if (b, V) ∈ Ω2( ),
V

H
, if (b, V) ∈ Ω3( ),

and the optimal profit is c∗( , b, V) =



0, if (b, V) ∈ Ω0,
(b−H)2

41 , if (b, V) ∈ Ω1( ),

(b − H) − 1 2, if (b, V) ∈ Ω2( ),
V(b−H)
H
− 1

( V
H

)2, if (b, V) ∈ Ω3( ).

General understanding of this theorem is that, given that the internal optimal

production quantity is @∗ = (b−H)
+

21 , this quantity can be either binding by capacity

 or financial capability V/H. More specifically, the optimal production quantity

decision depend on the values of (b, V). We show this result in Figure 3.2 where

the demand intercept realization is on the horizontal axis and the production

resource realization is on the vertical axis.

Figure 3.2: The Optimal Production Strategy of Basic Model

(a) When  ∈
(
0, V/H

]
(b) When  ∈

(
V/H, V/H

)

Noting that panel (a) of Figure 3.2 describing a case that production resource

is ample. By ample, we mean that the minimal amount of resource V is sufficient

for manufacturing the products up to the capacity level, because of V ≥ H . In

this case, the value of production resource doesn’t affect the production decision

so that we call it as resource-unconstrained case. When (b, V) ∈ Ω0, @∗ = 0
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because the demand intercept b is so low that the selling price is even lower

than the production cost H. When (b, V) ∈ Ω1( ), optimal production quantity

@∗ = b−H
21 is consistent with the internal optimal production quantity. It indicates

no constraint is binding production, because the realization of demand intercept

is not large enough such that both capacity and production resource is larger

than this optimal quantity. When (b, V) ∈ Ω2( ), the demand realization is

very large such that the internal optimal product quantity is not attainable due to

capacity constraint. At the same time, the production resource is large such that

the production resource constraint becomes immaterial comparing with capacity

constraint, as a result, optimal production strategy is utilizing all available capacity

for the production in order to close to the unconstrained optimal quantity.

In contrast, panel (b) of Figure 3.2 as resource-constrained case illustrates

a case that production resource could be constraining. The reason is the given

capacity level is in between of minimal and maximal production quantity that

supported by theminimum andmaximum value of production resource realization,

namely  ∗ ∈ (V/H, V/H). Consequently, in a large demand realization scenario

when internal optimal production quantity is not attainable, Ω2( ) and Ω3( )

indicate that either the capacity constraint is tighter or the resource constraint is,

respectively. Particularly, when (b, V) ∈ Ω3( ), production resource is tighter

than capacity level such that the optimal production strategy is to use up all

production resource. It motivates the firm to alarm the potential uncertainty of

production resource in the first stage to alleviate the shortage and spillover of

production capacity.

In the following, we characterize the optimal capacity investment level in

capacity investment stage. The optimization problem in this stage follows from

Equation 3.1 by substituting E
(b,V)

[
c∗( , b̃, Ṽ)

]
with the characterization provided

in Theorem 1. To be specific, the expected profit as a function of capacity level
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under optimal allocation is in following form, Π( ) =

− l +
∫ V

V

∫ H+21min
{
 ,

V

H

}
H

(b − H)2
41

5 (b, V)3b3V

+
∫ V

V

∫ ∞

H+21min
{
 ,

V

H

} (
(b − H)min

{
 ,

V

H

}
− 1

(
min

{
 ,

V

H

})2
)
5 (b, V)3b3V.

(3.2)

Theorem 2 (Optimal Capacity Investment Strategy of Basic Model) The op-

timal capacity investment level  ∗ is characterized as follows:

 ∗(l) =



0, if Ẽ
b

[
(b̃ − H)+

]
≤ l;

 * (l), if Ẽ
b

[
(b̃ − H − 21V/H)+

]
≤ l < Ẽ

b

[
(b̃ − H)+

]
;

 � (l), if 0 < l < Ẽ
b

[
(b̃ − H − 21V/H)+

]
.

 * (l) uniquely satisfies optimality condition:

l =

∫ ∞

H+21 *
(b − H − 21 * ) 5b (b)3b (3.3)

and  � (l) uniquely satisfies optimality condition:

l =

∫ ∞

H+21 �
(b − H − 21 �) Pr

{
Ṽ > H �

��b} 5b (b)3b. (3.4)

Theorem 2 states that the optimal capacity investment level is characterized

by unit capacity cost. When the unit capacity investment cost is high, it is

optimal for the firm to not engage in the investment. When the cost is moderate,

the firm invests in moderate amount of capacity  * (l) ∈
(
0, V/H

]
such that

the lowest resource realization is sufficient to finance the production at a level

that the capacity is fully utilized. We define  * (l) as resource-unconstrained

capacity level in view of the corresponding optimality condition (3.3), the right

side of which representing the expected marginal revenue of investing one more

unit of capacity doesn’t depend on production resource. Also, this capacity is
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corresponding to the panel (a) in Figure 3.2. Lastly, when the unit capacity

cost is low, optimal capacity investment level  � (l) ∈ (V/H, V/H) is defined as

resource-constrained capacity level, because its marginal revenue (right side of

the optimality condition (3.4)) is affected by uncertain production resource and

this capacity level is corresponding to resource-constrained case in production

stage, that is depicted in the panel (b) of Figure 3.2.

An alternative explanation of this optimal capacity investment strategy

through unified marginal profit of investing one more unit of capacity, that is,

both optimality condition (3.3) and (3.4) can be written as l =
∬
Ω2 ( ∗)

(b −

H − 21 ∗) 5 (b, V)3b3V. Since Π( ) is concave in  (referring to the proof of

Theorem 2), optimal capacity investment level  ∗ decreases in unit capacity

cost l is easily derived. As a result, the optimal structure of optimal capacity

investment level is derived by critical values of l, by reason that  ∗ = 0 when

l = Ẽ
b

[
(b̃ − H)+

]
and  ∗ = V/H when l = Ẽ

b

[
(b̃ − H − 21V/H)+

]
. Another

observation from above unified optimality condition is that an additional unit of

the capacity only has positive effect on revenue in (b, V) ∈ Ω2( ∗). The reason

is that the capacity level is binding the production when (b, V) ∈ Ω2( ∗) so

that the product quantity is less than the internal optimal value, adding capacity

relaxes the constrain and therefore leads to a profit nearer to the unconstrained

optimal profit.

The influence of production resource shortfall is captured by the term

Pr
{
Ṽ > H �

��b̃} of optimality condition (3.4) capturing the probability that the

firm has ample production resource to support production up to capacity level

given a demand intercept b̃. The structure of the optimality condition (3.4) and

optimality condition (3.3) are constructed by a unit capacity investment cost at

the left side of the equal sign and expected marginal revenue of investing one

additional unit of capacity at the right side of the equal sign. The only difference

between these two marginal revenues is that there is an additional term in the

integrand of basic model marginal revenue, that is production resource flexibility
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level Pr
{
Ṽ > H 

��b}. Specifically, the probability of production resource shortfall
is 1 − Pr

{
Ṽ > H �

��b̃}. In the case of optimality condition (3.3) that derives

resource-unconstrained capacity level, Pr
{
Ṽ > H *

��b̃} ≡ 1. The Similar concept

of this probability was once introduced by Boyabatlı et al. (2016) called financial

flexibility level in which it is a fixed probability, or equivalently it is exogenous.

Whereas in our model, we define Pr
{
Ṽ > H 

��b̃} as production resource flexibility
level which is endogenous in a way that is a function of capacity level such that

the firm optimally determines production resource flexibility level to maximize

the optimal expected profit in consideration of production resource crunch. A

key observation from optimality condition (3.4) is that the correlation between

demand and production resource uncertainties, demand volatility and production

resource volatility affect resource-constrained capacity level through their impacts

on the production resource flexibility level. We use this observation to explain

corresponding sensitivity results of resource-constrained capacity in the following

section.

In addition, the impact of price sensitivity to product quantity on the optimal

capacity investment level and corresponding expected profit is presented in the

following corollary.

Corollary 1 (Impact of price sensitivity to product quantity 1) Given the op-

timal capacity investment strategy in Theorem 2, we have

1.  * (l) decreases in 1;

2.  � (l) decreases in 1;

3. Π
(
 ∗(l)

)
decreases in 1.

This corollary shows that a higher price sensitivity to product quantity, not only

shrinks the optimal capacity investment level but also hurts the profitability.

Intuitively, as buyers care more about the price, the responsive pricing is less

powerful, because the price of the product they are welling to pay drops quickly

as the firm manufactures more products.
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3.3 Sensitivity of Optimal Capacity Level and Prof-

itability for Basic Model

In this section, we answer the second primary objective of this research, that is

to understand the impact of demand variability, production resource variability

and the correlation between them on the firm’s optimal capacity investment

level and profitability of the firm. Having found the optimal capacity investment

strategy, we analytically prove the properties of the firm’s optimal capacity and

profitability with respect to above mentioned uncertainty parameters. To this

end, we impose distribution assumption for demand intercept and production

resource uncertainties. They follow a bivariate normal distribution throughout

all sensitivity analyses. Due to the tractability of the analysis, bivariate normal

distribution is widely used in the literature to represent two random variables

with correlation, e.g. demand uncertainties (Chod and Rudi, 2005) and revenue

uncertainties (Boyabatlı et al., 2019), since its correlation structure is amenable

to analysis. More specifically, we make the following assumption:

Assumption 2 (b̃, Ṽ) follows a bivariate normal distribution with mean vector

(`b , `V)′ and variance-covariance matrix
©«
f2
b

dfbfV

dfbfV f2
V

ª®®¬, where the correla-
tion coefficient d ∈ (−1, 1).

To deal with the contradiction between non-negativity of demand intercept and

the production resource realizations and real-valued normal distribution outcomes

in Assumption 2, we assume that their variability are not extremely large, hence,

the effect of the negative values are negligible.

Based on Assumption 2, we find the rotational symmetry of production

quantity in section. Define bivariate normal distribution (�̃, �̃) :=
(
b̃−H
21 ,

Ṽ

H

)
and

it has mean vector
(
`b−H

21 ,
`V
H

)′
and variance-covariance matrix

©«
(fb

21
)2 dfbfV

21H
dfbfV

21H
(fV
H

)2

ª®®¬
where the correlation is also d. In the new distribution, we find the rotational
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symmetry of optimal production decision such that

@∗ =



0 if (�, �) ∈ {(�, �) : � ≤ 0}

� if (�, �) ∈ {(�, �) : 0 < � ≤ min{�,  }}

� if (�, �) ∈ {(�, �) : � ≤ min{�,  }}

 if (�, �) ∈ {(�, �) : � ≥  and � ≥  }

Even if the demand and production resource uncertainties in the production

stage affecting the decision in a symmetrical way, however, the impact of their

uncertainty parameters such as variabilities on optimal capacity investment

decision aren’t not symmetrical. The optimal capacity investment decision of the

basic model is given by

 ∗(l) =


0, if l ≥ lmax;

 � (l), if 0 < l < lmax

where lmax := E
b

[
(b̃ − H)+ Pr

{
Ṽ > 0

��b̃}] . Comparing with the optimal capacity

investment structure in Theorem 2, there is no interval of unit capacity cost l

under which the optimal capacity investment level equals to  * , equivalently

 ∗ is always solved by optimal condition (3.4). It is because the domain of the

production resource becomes V ∈ (−∞,∞) so that production resource flexibility

level Pr
{
Ṽ > H 

��b̃} is strictly less than 1 for all finite  ≥ 0.

In the following, we conduct sensitivity analyses to study the effects of the

correlation between demand and production resource uncertainties, demand

variability fb and production resource variability fV on resource-constrained

capacity  � and corresponding optimal expected profit Π( �). Noting that both

optimal capacity level  � and expected profit Π( �) are functions of parameters

l, d, fb andfV, for the ease of exposition, we compress the functional relationship

in the following analysis if it is not necessary to point out a particular functional

relationship, e.g. the functional relationship in terms of d are  � (d) and
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Π
(
 � (d), d

)
, we would omit writing these functional relationships and just use

notation  � and Π( �), if this is not likely to lead to confusion.

The organization of the sensitivity analyses in this section is as follows, we

investigate the effects on optimal capacity investment level  � and corresponding

expected profit Π( �) of correlation between production resource and demand

uncertainties d in Section 3.3.1, of demand variability fb in Section 3.3.2 and of

production resource variability fV in Section 3.3.3.

3.3.1 Sensitivity to the Correlation between Production Re-

source and Demand Uncertainties

We start with the effect of the correlation between production resource and demand

uncertainties. Note that the correlation could be positive, negative or zero, we

illustrate the value of correlation when production resource uncertainty is either

under financial constraints scenario or physical resource scenario, respectively.

1) When the production resource referring to financial constraints, the correlation

depends on the characteristics of the product being produced. It is likely that the

production resource is positively correlated with the demand of discretionary

purchase products, or luxury goods, while negatively correlated with the staple

products. To understand the relationship, consider that both the financial resource

availability and the product demand are closely related to the economic condition.

Under condition that the economy is good (bad), the firm would be able to raise

large (small) amount of finance; and at the same time, the market demand for

discretionary purchase goods is high (low), and the demand for staple products is

low (high) as consumers afford higher-end substitutes. 2) When the production

resource referring to physical resource, e.g. raw materials, components and

workforce level. If the production resource uncertainty comes from raw materials

or components, it can happen that raw materials or components are provided by

other factories of the manufacturing firm so that production resource and demand

could be positively correlated due to abundantly exchange of information; it can
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also happen that raw materials or components are provided by external firms

that are competing with the manufacturing firm in the same final product market,

which may result in the demand for the manufacturing firm negatively correlated

with production resource. If the production resource uncertainty comes from

variations in worker skills, it is likely that production resource uncertainty is

independent to demand uncertainty.

As shown in Proposition 1, resource-constrained capacity level increases in

the correlation and the firm benefits from a higher correlation.

Proposition 1 (Impact of correlation between demand and production resource)

1. The resource-constrained capacity level  � is strictly increasing in d;

2. The optimal optimal expected profit Π( �) are strictly increasing in d.

To understand the effect of d on resource-constrained capacity level  �,

recall that for the production resource flexibility level Pr
{
Ṽ > H 

��b̃} it increases

with the correlation between demand and production resource uncertainties.

For a any fixed  , higher the correlation between Ṽ and b̃, this production

resource flexibility level is higher, which resulting in the increase of expected

marginal revenue from optimality condition (3.4). Therefore, the capacity level

 � increases in d.

For the effect of d on optimal expected profit Π( �), intuitively, as the

correlation increases, high (low) demand is more likely to be associated with high

(low) production resource, and thus the production resource is less constraining for

the high demand scenario. On average, this higher correlation brings production

stage optimal structure closer to the resource-unconstrained case (referring to

panel (a) of Figure 3.2), thus the higher correlation is more beneficial for the firm.
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3.3.2 Sensitivity to Demand Variability - Comparison with

the Resource-unconstrained Benchmark

In this section, we investigate how demand variability fb affects the optimal

capacity investment level and corresponding expected profit. In examining

the demand variability, we make a comparison with the sensitivity result of a

benchmark model where the production resource is always ample for the firm

to proceed the production. We will provide the effect of demand variability on

optimal capacity level and corresponding expected profit of benchmark model, so

as to see the changes in insight by introducing the production resource uncertainty

comparing with the literature.

To show the sensitivity results of benchmark model, we first identify the

optimal strategy. In this case, the production decisions is made with no constraint

on the amount of production resource. Tracing the literature, Van Mieghem and

Dada (1999) introduce price and production postponement strategy to capacity-

production framework that is identical to the benchmark model. Specifically, the

benchmark model is formulated as two-stage problem, the first stage problem

is max
 ≥0

ΠD ( ) = max
 ≥0

{
− l + Ẽ

b

[
c∗D

(
 , b̃

) ]}
, where ‘D’ denotes that the

production process is unconstrained; and the second stage problem is c∗D
(
 , b

)
=

max
@∈[0, ]

{
(b − 1@)@ − H@

}
showing that the production resource constraint V/H

no longer exists. The optimal strategy of this benchmark model is presented in

Lemma 1.

Lemma 1 (Optimal Strategy of Benchmark Model)

1. Optimal production quantity is @∗
(
 , b

)
=


0, if b ∈ [0, H]
b−H
21 , if b ∈ (H, H + 21 ]

 , if b ∈ (H + 21 , ∞) .
The corresponding expected profit in capacity-investment stage is

ΠD ( ) = − l +
∫ H+21 

H

(b − H)2
41

5b (b)3b +
∫ ∞

H+21 

(
(b − H) − 1 2) 5b (b)3b;
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2. Optimal capacity investment level is


0, if l ≥ E

[
(b̃ − H)+

]
;

 * (l), otherwise.

The proof of this Lemma 1 is skipped due to its similarity to the proof of

Theorem 1 and 2. Not surprisingly, the optimal production strategy allocation of

the state space is the same aswhat shows in the panel (a) of the Figure 3.2, where the

strategy only depends on demand realization. For the optimal capacity investment

level, the no investment strategy has the same unit capacity cost condition as what

in Theorem 2. Also, under condition Ẽ
b

[
(b̃ − H − 21V/H)+

]
≤ l < Ẽ

b

[
(b̃ − H)+

]
,

the optimal capacity level for both basic model and benchmark model is  * .

According to above Lemma 1, the effect of demand variability of benchmark

model is introduced in Proposition 2. In line with Assumption 2 on (b̃, Ṽ), the

distribution of b̃ used for proving Proposition 2 is normally distribution with

mean `b and variance f2
b
.

Proposition 2 (Impact of fb on  * and ΠD ( *)) When the production resource

of the firm is large enough, the influence of demand variability on optimal capacity

investment level and optimal expected profit are summarized as follows:

1. Resource-unconstrained capacity level  * is strictly increasing in fb;

2. Optimal profit ΠD ( *) is strictly increasing in fb .

From Proposition 2, we obtain that higher demand variability is, higher

resource-unconstrained capacity level and corresponding optimal expected profit

are. As increasing demand variability means more low/high demand intercept

realizations, the intuition of the results are developed by understanding how these

low or high realizations of demand affect the optimal capacity investment level

and the profitability.

Firstly, we discuss the intuition underlying part 1, Proposition 2, that is the

impact on the resource-unconstrained capacity level  * . We define the right-hand

unit normal linear loss function as ! (C) :=
∫ ∞
C
(I − C)q(I)3I, which is a function
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monotonically decreasing in C. As for demand intercept b̃ is normally distributed

in accordance with Assumption 2, we have close form of resource-unconstrained

capacity level, that is  * = `b−H+fb !−1 (l/fb )
21 , where !−1 is the inverse function

of ! (C). Given a fixed unit cost of capacity investment, the optimal capacity

investment level changes the same way as the marginal revenue of capacity

investment changes in demand variability, as shown by Equation (3.3). Since

marginal revenue is not sensitive to low demand realization and larger in high

demand realization, it increases in demand variability.

For the intuition of Proposition 2 part 2 result, more demand variability

is beneficial due to the price-demand relationship ?(@) = b − 1@ where price

is responsive to product quantity demanded, particularly when the production

quantity is decided after the resolution of uncertainties. The reason behind is

developed by Chod and Rudi (2005): on the one hand, the firm can charge a high

price when capacity is constraining and demand realization is high; on the other

hand, the firm can adjust a low price to have more products sold in the case of

low demand realization. To summarize, demand variability is beneficial to both

marginal revenue of investing capacity and optimal expected profitability of the

firm.

In contract to the effect of demand variability fb on resource-unconstrained

capacity  * , the resource-constrained capacity level  � is not always mono-

tonically increasing in fb . Proposition 3 and Conjecture 1 together present that

the resource-constrained capacity  � increases in demand variability fb when

the correlation satisfies d ∈ [0, 1); the resource-constrained capacity  � first

decreases then increases in fb when d ∈ (−1, 0).

Proposition 3 (Impact of fb on  �) Define

f8
b

:=

{
fb

�����fb < 21fV
H
, lim
d→−1

 � (fb) =
`b −H
fb
−
`V

fV

21
fb
− H

fV

}
and

f88
b

:=

{
fb |fb >

21fV
H
, lim
d→−1

 � (fb) =
`b −H
fb
−
`V

fV

21
fb
− H

fV

}
if exist.

35



Further define f 
b

:=


min{f8
b
,

21fV
H
}, if `b−H21 <

`V

H
;

max{ 21fV
H
, f88

b
}, if `b−H21 >

`V

H
.

The impact of the

demand variability fb on the resource-constrained capacity level is:

1. If d ≥ 0, then  � increases in fb;

2. If d → −1, then  � decreases in fb if fb < f b and  � increases in fb if

fb > f
 
b
.

Additional to analytical sensitivity results in Proposition 3, it is not analytically

tractable to prove the effect of fb on  � when d ∈ (−1, 0). Under condition d ∈

(−1, 0), we can prove the sign of 3 �
3fb

for some particular value of fb , specifically,

lim
fb→0

3 �

3fb
< 0 and 3 �

3fb
> 0 when fb ≥ l√

1−d2
∫ ∞
H (`b −H)

21 −`V
fV

E
[ (
Ĩ+ dI0√

1−d2

)+]
q(I0)3I0

.

Furthermore, we observe the following pattern described in Conjecture 1 through

18,225 numerical instances introduced in Section 3.4.1.

Conjecture 1 (Impact of fb on  � when d < 0) When d ∈ (−1, 0), there ex-

ists a unique f 
b
such that  � decreases in fb if fb < f b and increases in fb if

fb > f
 
b
.

Noting that we purposely define the fb threshold in Conjecture 1 as f 
b

which is the same notation as what’s in Proposition 3 part 2 in order to show the

continuity of the sensitivity results. A graphical representation of the effect of fb

on  � in Proposition 3 as well as in Conjecture 1 is shown in Figure 3.3.

The effect of fb on  � is illustrated by comparing with the effect of demand

variability on resource-unconstrained capacity level  * in benchmark model. The

result is presented in part 1 of Proposition 2 showing that resource-unconstrained

capacity level always increases in the demand variability. In contrast, in basic

model, Proposition 3 and Conjecture 1 show that demand variability would lead

to a negative effect on resource-constrained capacity level under certain condition

and this deviation of the impact is driven by the correlation between demand and

production resource. Specifically, when the correlation is negative, the result
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Figure 3.3: Effect of demand variability fb on resource-constrained capacity
level  �.
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Therein, the baseline scenario is 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4, fV = 16%`V and
d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}, with fb as percentage of `b from

2% to 30%.

deviates from the traditional understanding, that is, higher demand variability

would lead to lower optimal capacity investment level  � when fb < f 
b
.

Otherwise, the resource-constrained capacity  � increases in demand variability,

which is in line with the sensitivity result of benchmark case in Proposition 2.

The intuition behind Proposition 3 and Conjecture 1 is developed by under-

standing why the correlation is the key driver for the impact of demand variability

on resource-constrained capacity level. To undertake the fact that the correlation

between demand and production resource uncertainties is vital, the intuition of the

result is discussed with classification of no correlation, positive correlation and

negative correlation, since changing the sign of correlation changes the behaviour

of marginal revenue in optimality condition (3.4). When there is no correlation

i.e. d = 0, the financial flexibility level is not influenced by demand uncertainty,

as a result, demand variability has the same effect for optimal capacity level in

both models, to put it in another way, we can simply write the optimality condition

(3.4) asl = Pr
{
Ṽ > H �

} ∫ ∞
H+21 � (b−H−21 �) 5b (b)3b. When the correlation

is positive i.e. d > 0, high demand realization is associated with high production

resource, or equivalently, when additional capacity is available because of the

high demand, the production resource is less constraining comparing with no
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correlation case. As a result, financial flexibility level is high and thus marginal

revenue is high so that the the optimal capacity level is increasing in demand

variability. When the demand and production resource is negatively correlated

i.e. d < 0, as demand variability increasing, more and more high (low) demand

associated with low (high) production resource, the financial flexibility level

is therefore getting lower gradually. Even though basic model inherits higher

demand variability higher marginal revenue trend from basic model marginal

revenue similar part, it only dominates the financial flexibility level decreasing

trend when demand variability is larger than a threshold. Our result provides

a new result by illustrating that higher demand variability does not necessarily

result in higher capacity investment level when the uncertain demand is correlated

with the production resource. It depends on the sign of the correlation as well as

the magnitude of the demand variability.

Next to that, the impact of demand variability on the optimal expected profit

is summarized in Proposition 4 in comparison with part 2 of Proposition 2. Also,

we find that the impact of demand variability on the optimal expected profit

shares a similar pattern as that on the resource-constrained capacity level.

Proposition 4 (Impact of fb on Π( �)) In terms of the impact of the demand

intercept variability fb on the optimal expected profit, we have the following

results:

1. If d ≥ 0, Π( �) increases in fb;

2. If d < 0, there exists a unique fΠ
b
such that Π( �) decreases in fb when

fb ≤ fΠb ; and Π( �) increases in fb when fb > fΠb .

The sensitivity of Π( �) on demand variability is represented graphically in

Figure 3.4. The impact of demand variability on the optimal expected profit in

Proposition 4 is illustrated by comparing with Proposition 2 part 2. When the

correlation is negative, different from the benchmark model, the result shows

that there exists a threshold of demand variability denoted by fΠ
b
, below which
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Figure 3.4: Effect of demand variability fb on optimal expected profit Π( �).
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the profit decreases in demand variability, above which the profit increases in

demand variability; when the correlation is non-negative, the profit increasing in

demand variability holds in both basic model and benchmark model.

The intuition of the result is discussed with classification of no correlation,

positive correlation and negative correlation. We first discuss the result when

the correlation is non-negative (part 1 of Proposition 4). If that is the case, it is

not hard to see that the optimal expected profit in the second stage is convex in

the demand intercept, consequently, the optimal profit increases in the demand

variability. Secondly, when the demand and production resource is negatively

correlated (part 2 of Proposition 4), high (low) demand realization is associated

with low (high) production resource realization, indicating that the production

resource is more significantly constraining the production quantity when the

market demand is higher.

Pursuing the intuition for negative correlation case (part 2 of Proposition 4)

further, as demand variability increases from zero, we would observe more high

and low demand realizations. Regardless of the effect of production resource, the

resulting higher demand realization would continue to contribute more revenue

by responsive pricing, and the resulting lower demand would lead to revenue

loss because of the demand shrinkage. However, when the variability is smaller
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than certain threshold, comparing with the revenue loss brought by the lower

demand realizations, the extra revenue brought by higher demand realizations

is less significant due to the association with tightening production resource

realizations. Note that the revenue loss by the the lower demand realizations

is diminishing as the variability increases while the revenue gain by the higher

demand realizations keeps increasing in the demand variability. Therefore, when

the demand variability is large enough, the gain would dominate the loss and thus

the optimal expected revenue starts to increase in the demand variability.

3.3.3 Sensitivity to Production Resource Variability

In this section, we conduct sensitivity analyses to study how manufacturing

firms should adjust their capacity investment level as a response to changing

production resource variability. Also how production resource variability affects

the profitability of the firm is analysed. Starting from the impact of production

resource variability fV on resource-constrained capacity level  �, Proposition

5 characterizes this effect through unit capacity investment cost threshold and

correlation threshold.

Proposition 5 (Impact of fV on  �) Define

l V (d) :=fb
√
(1 − d2)

∫ ∞

0
E
[(
Ĩ2 −

( H + 21`V/H − `b − dfbI0√
f2
b
(1 − d2)

))+]
q(I0)3I0 and

further define l 
V
(−1) := lim

d→−1
l 
V
(d) and l 

V
(1) := lim

d→1
l 
V
(d). The impact of

fV on  � is:

1. If l ∈
(
0, l 

V
(−1)

]
, then  � strictly increases in fV. Note that l V (−1) =

0 when `b−H
2 ≤ `V

H
.

2. For any l ∈
(
l 
V
(−1), l 

V
(1)

)
, there exists a unique d 

V
(l) satisfying

l 
V
(d 

V
(l)) = l such that

(a) if d > d 
V
(l), then  � strictly increases in fV;
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(b) if d = d 
V
(l), then  � = `V/H, which is constant to fV;

(c) if d < d 
V
(l), then  � strictly decreases in fV;

Noting that d 
V
(l) increases in l.

3. If l ∈
[
l 
V
(1), lmax

)
,  � strictly decreases in fV.

Proposition 5 demonstrates that resource-constrained capacity level  � is

monotone in production resource variability fV, and whether it is increasing or

decreasing in fV critically depends on the unit capacity cost and the correlation

between demand and production resource uncertainties. Specifically, when the

unit capacity investment cost l is low enough (part 1 of Proposition 5), higher

production resource variability results in higher resource-constrained capacity

level; when the capacity investment cost is sufficiently high (part 3 of Proposition

5), as production resource variability increases, the resource-constrained capacity

level decreases. When the capacity investment cost is intermediate (part 2

of Proposition 5), the impact of fV on  � crucially depends on value of the

correlation d. In particular, there exists a threshold value of d denoted by

d 
V
(l), above which the resource-constrained capacity level increases in fV; and

below which the capacity level decreases in fV. For visualizing Proposition 5,

Figure 3.5 graphically shows the impact of production resource variability on

resource-constrained capacity level, where three panels have different scenarios

of unit capacity cost.
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Figure 3.5: Effect of production resource variability fV on resource-constrained
capacity level  �.
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The figures are depicted using baseline data 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fb = 16%`b , fV is picked as the percentage of `V ranging from 2% to 30% and and

d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}. We calculated that l 
V
(−1) = 2.73

and l 
V
(1) = 4.7713.

For the effect of production resource variability fV on resource-constrained

capacity level  � presented in Proposition 5, we illustrate intuition behind in

sequence of its part 1, part 3 and part 2. Since the effect critically depends on

unit capacity cost l and correlation between demand and production resource

uncertainties d, we first summarize the effects of l and d on  � so as to

understand how l and d jointly shape the impact of fV on  �. It is easy to

verify that  � decreases in the unit investment cost l (because of 3 �

3l
< 0).

It is consistent with the intuition that when the unit capacity investment cost

is high (low), the firm invests small (large) amount of capacity to control over-

investment (under-investment) cost. For the effect of d on  �, the monotone

increasing relationship is illustrated in Proposition 1 part 1. Observing from part

1 (part 3) of Proposition 5, the unit capacity investment cost is sufficiently low

(high) respectively, the resulting under-investment (over-investment) effect is so

significant that the effect of the correlation is negligible. We first discuss part 1

and part 3.

In part 1 of Proposition 5, the unit capacity investment is sufficiently low so

that controlling under-investment cost of capacity becomes the most important
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consideration. The reason is that investing large amount of capacity so as to prevent

production process being constrained by capacity is less costly more profitable in

terms of capturing potential demand. Under this condition, we discuss the impact

of more high and low production resource realizations on resource-constrained

capacity level respectively as the production resource variability increases. More

high production resource realizations service the same role as high capacity

level in terms of relaxing production process constraint so as to satisfy potential

high demand. Even through more low production resource realizations constrain

the production resulting more leftover capacity, it is not costly due to low unit

capacity investment cost. To control under-investment cost of capacity, the firm

would invest in more capacity when production resource variability is higher.

In part 3 of Proposition 5, the unit capacity investment is sufficiently high

such that the over-investment cost is unbearable, the firm invests small amount of

capacity and refer the production resource to be less volatile. As the production

resource variability increases, there are more high and low production resource

realizations. High resource do not affect the capacity investment decision, yet low

resource constrain production process and therefore increases over-investment cost

of capacity. To control the over-investment cost, resource-constrained capacity

investment level should be decreasing in production resource variability.

To understand the result in part 2 of Proposition 5, note that the effect of

intermediate unit capacity cost l on resource-constrained capacity  � does not

dominate the effect of the correlation between demand and production resource

uncertainties d any more. The value of d determines how  � changes in fV.

Therefore, we recall the impact of d on  �: as the correlation increases, the

revenue margin of investing capacity increases due to the increase of production

resource flexibility level Pr
{
Ṽ > H 

��b̃}, as a result,  � increases. The trade-

off between over- and under- investment is observed from production resource

flexibility. When production resource flexibility level is high (in the case of

high correlation d > d 
V
(l)), due to relevantly ample production resource, it is
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more likely to capture high demand. Therefore the firm should pay attention to

control under-investment cost by invest in moderately large amount of capacity.

As production resource variability increases, more high resource realizations

resulting in a higher production resource flexibility level so that the firm should

invest in more capacity. When production resource flexibility level is low (in

the case d < d 
V
(l)), on expectation, the production resource is not enough,

the firm should invest moderately small amount of capacity and prevent further

over-investment cost as more low production resource realizations caused by

production resource variability increasing.

In summary, the impact of production resource variability on resource-

constrained capacity level crucially depends on the unit capacity investment

cost and the correlation between demand and production resource uncertainties.

Balancing over-investment and under-investment of capacity so as to control cost

is the key factor that explains the impact of fV on  �. Then we introduce the

impact of fV on the optimal expected profit Π( �) of the basic model.

Proposition 6 (Impact of fV on Π( �)) Define lΠ
V
(d) as the unique solution

of

lim
fV→0

{mΠ( )
mfV

���
 � (lΠ

V
)

}
= 0 when d > 0

and lΠ
V
(1) := lim

d→1
lΠ
V
(d). Define dΠ

V
(l) that uniquely solves

lim
fV→0

{
mΠ( )
mfV

���
 = � (l),d=dΠ

V
(l)

}
= 0. For any given correlation and unit capacity

investment cost (d, l),

1. if (d, l) ∈
{
(d, l)

��d ≤ dΠ
V
(l) or l ≥ lΠ

V
(1)

}
, then Π( �) decreases in

fV.

2. if (d, l) ∈
{
(d, l)

��d > dΠ
V
(l) and 0 < l < lΠ

V
(1)

}
, then there exists a

threshold fΠ
V
(l, d) ∈ (0, dfb H21 ] such that Π( �) increases in fV when

fV < f
Π
V
(l, d); and Π( �) decreases in fV when fV > fΠV (l, d).

Proposition 6 presents the impact of production resource variability on optimal

expected profit and this result also crucially depends on unit capacity investment
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Figure 3.6: Effect of production resource fV on optimal expected profit Π( �).
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The baseline data applied are 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4, fb = 16%`b , fV is
picked as the percentage of `V ranging from 2% to 30% and
d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}.

cost l and the correlation d. There exist threshold value of l and d denoted by

lΠ
V
(1) and dΠ

V
(l) respectively, such that only when l < lΠ

V
(1) and d > dΠ

V
(l)

(condition in part 2 of Proposition 6) firm’s optimal expected profit first increases

then decreases in production resource variability; otherwise (condition in part 1

of the Proposition 6), the profit monotonically decreases in production resource

variability. A graphic representation of this proposition is shown in Figure 3.6.

Intuitively, variability of production resource may harm the firm’s profit

as result showed in part 1 of Proposition 6. One supporting example is when

there is no correlation between demand and production resource uncertainties,

i.e. d = 0, the optimal profit in the production stage c∗( , b, V) is concave

in the realization of production resource and thus higher resource variability

would result in lower expected profit in the capacity investment stage according

to Jensen’s inequality. Also, high volatility of production resource is more

harmful for the firm’s profitability fits business insight since on the one hand,

more high production resource realizations may not be beneficial to the firm due

to tightening capacity in the production process, on the other hand, more low

production resource realizations may severely hurt firm’s profit because the not

only capacity is over-invested but also product demand is not satisfied.
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However, in part 2 of Proposition 6, we obtain different pattern, indicating

that the optimal expected profit increases in production resource variability when

the production resource variability is less than a threshold value fΠ
V
(l, d), the

correlation is sufficiently high and the unit capacity investment cost is sufficiently

low. To understand the result we first show how the low value of unit capacity

cost l impacts the optimal expected profit. For one thing, a a very low l results

in a very high resource-constrained capacity level so that the production process

is almost always constrained by production resource, for another, optimal profit

Π( �) decreases in l meaning that over-investment cost is negligible. Then

we recall that when the demand and production resource correlation is very

high, high production resource realizations are more likely to associated with

high demand realizations, which gives more room to satisfy high demand so as

to reduce under-investment cost, or equivalently to capture higher profit. But

as production resource variability increases to a value larger than fΠ
V
(l, d),

more production resource realizations tend to take more extreme values, i.e.

the value is either too high such that the realizations fill into Ω2 or too low

such that the realizations fill into Ω0. Since high production resource doesn’t

increases production quantity when uncertainties are realized in Ω2 and the firm

doesn’t produce when uncertainties are realized inΩ0, higher production resource

variability starts to hurt profitability of the firm.

So far we have discussed the impact of production resource variability on

resource-constrained capacity level and the corresponding expected profit in

Proposition 5 and Proposition 6 respectively. We find that the critical unit

capacity investment cost thresholds as a function of the correlation between

demand and production resource uncertainties in both propositions are analytically

comparable:

Corollary 2 lΠ
V
(d) < l 

V
(d) < lmax, ∀d > 0.

This corollary presents the comparison between the unit capacity cost threshold

l 
V
(d) in Proposition 5 and lΠ

V
(d) in Proposition 6 given the correlation d.
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Recalling that in Proposition 5,  � increases in fV when unit capacity cost

satisfies l < l 
V
(d);  � decreases in fV otherwise; in Proposition 6, optimal

profit Π( �) first increases then decreases in fV when unit capacity cost satisfies

l < lΠ
V
(d); Π( �) decreases in fV otherwise. The intuition is that even through

there is a wide range of (l, d) ∈
{
(l, d) |l < l 

V
(d), d ∈ (−1, 1)

}
under which

a higher production resource variability increases optimal capacity level, only a

proper subset of above (l, d) set, denoted by
{
(l, d) |l < lΠ

V
(d), d ∈ (0, 1)

}
,

is the range under which higher production resource variability is profitable when

production resource variability is less than a certain threshold.

3.4 Profitability-loss

In this section, we address the third research question by extending our analyses

of the impact of the demand and production resource uncertainties on the

profitability-loss incurred once the production resource uncertainty is ignored

in choosing the capacity investment level. Since the expected profit taking

into consideration of the production resource is Π(·), we define the rate of the

profitability-loss due to miss-specifying capacity level as ΔΠ := Π( �)−Π( * )
Π( �) .

Recalling that  * is resource-unconstrained capacity level that the firm would

choose if the production resource is ignored. Therefore, the expected profit with

miss-specified capacity level isΠ( *).  � is resource-constrained capacity level

that is the optimal capacity investment level of the basic model. For the ease of the

analysis, we bring the bivariate normal distribution assumption back and limit unit

capacity cost in the rangel ∈
(
0, lmax

)
wherelmax = E

b

[
(b̃− H)+ Pr

{
Ṽ > 0

��b̃}] .
The following lemma provides the basic theoretical support of the existence of

profitability-loss.

Lemma 2  * (l) >  � (l) and ΠD ( *) > Π( �) > Π( *) for all l ∈(
0, lmax

)
.

This result fits the standard folklore that 1) if the firm has a sufficiently
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large production resource, the firm would make higher capacity investment

and 2) the investment project is not proceed as profitable as planned if the

firm has insufficient production resource for production. Briefly speaking, the

firm would incur an optimality gap, that is called profitability-loss, when the

firm mistakenly chooses higher capacity investment level by ignoring uncertain

production resource. Due to the optimality of  � we have ΔΠ > 0, in addition,

ΔΠ may greater than 1 in the case of Π( *) < 0. Noting that above inequalities

in Lemma 2 also hold without Distribution Assumption 2 when the range of unit

capacity cost is 0 < l < Ẽ
b

[
(b̃ − H − 21V/H)+

]
.

In analysing the sensitivity, results are analytically and numerically provided,

specifically, we show that under what conditions the profitability-loss is significant

by examining the effects of uncertainties on this profitability-loss. At the same

time, we use extensive numerical experiments to show the results that are not

analytically proven. In the following, we investigate the impact of the uncertainty

parameters (d, fb and fV) on the profitability-loss. We first present a proposition

showing how profitability-loss changes in the correlation between demand and

production resource uncertainties.

Proposition 7 (Impact of d on Profitability-loss)

1. Profitability-loss ΔΠ is decreasing in d;

2. The lower bound of profitability-loss is lim
d→1

ΔΠ.

Proposition 7 demonstrates that a high the correlation between demand and

production resource uncertainties results in a low profitability-loss. First of

all,  * is not a function of the correlation. Base on this, we discussion the

general insight. On the one hand, a higher correlation decreases the difference

between product quantity provided by realized production resource V

H
and the

internal optimal production quantity b−H
21 , thus,  

� could be closer to  * as the

correlation increases. On the other hand, from the proof of Proposition 1, we

obtain that mΠ( )
m 

increases in d, meaning that as d increasing, the decreasing

48



trend of Π( ) on  when  >  � (d) tends to be more flat. As a result, the

rate of profitability-loss between optimal expected profit and the profit without

considering production-loss is shrink when d increases.

In analysing the impact of production resource variability on the profitability-

loss, we provide following analytical result.

Proposition 8 (Impact of fV on Profitability-loss) Define

l* := E
[(
b̃ −

(
H + 21`V/H

) )+]
> l 

V
(d). The sensitivity result is calibrated as

follows:

1. when l ≥ l* , ΔΠ strictly increases in fV;

2. when l < l* and d > 0, 3ΔΠ
3fV

< 0 for all fV ≤ max
{
0, fV0

(
 *

)}
, where

fV0( *) denotes the unique fV that solves implicit equation mΠ( )
mfV

���
 = *

=

0.

The first part of Proposition 8 shows that when unit capacity cost is higher than

l* , then the profitability-loss increases in production resource variability. The

part 2 of Proposition 8 is for theoretically supporting Conjecture 2. Specifically,

second part indicates when the unit capacity cost is lower than this threshold l*

and the correlation between demand and production resource is positive, we only

know that the profitability-loss decreases in production resource variability when

the variability is no more than threshold max
{
0, fV0

(
 *

)}
.

Analytical explanation of part 1 of Proposition 8 is as follows. First of all,

 * is not sensitive to production resource variability fV by definition. For

the effect of fV on  �, when unit capacity cost is sufficiently large,  � (fV)

decreases in fV as discussed in part 3 of Proposition 5. As a result, the

difference between two capacity levels  * −  � (fV) increases in fV. Also,
mΠ( )
m 

decreases in fV when l < l* , which implies that as  * −  � (fV)

increases Π
(
 * , fV

)
− Π

(
 � (fV), fV

)
also increases due to sharper decreasing

trend of mΠ( )
m 

caused by increasing fV. The general insight is twofold. For one

thing, similar as what we discussed in Section 3.3.3, that is, the need for control
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over-investment cost outweighs the need for under-investment cost when unit

capacity cost is sufficiently large. For another, higher the production resource

variability more unprofitable the optimal expected profit in basic model is. The

part 2 of Proposition is the analytical support of Conjecture 2 introduced in

Section 4.4.2. In obtaining conjectures of sensitivity of profitability-loss, we

conduct numerical experiment and the numerical study design is introduced in

the following section.

3.4.1 Numerical Study Design

The numerical study is conducted with 18, 225 numerical instances. A wide

range of parameter values extended around the baseline scenario: the cor-

relation between demand and production resource uncertainties takes value

d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}; unit production cost

is standardized as 1 = 1, H = 1; the unit capacity investment cost l ∈ {1, 5, 10};

mean value of demand uncertainty has range `b ∈ {14H, 16H, 18H}; mean value

of production resource uncertainty takes `V
H
= 1

2
(`b−H)

21 for each `b ; the demand

variability fb ∈ [2%, 30%] is the percentage of `b with 2%-unit increments, and

similarly, production resource variability fV ∈ [2%, 30%] is also picked as the

percentage of `V, varying with 2%-unit increments. For this numerical study

design, we have several specifications in what follows.

Firstly, the one to one correspondence between `b and `V, specifically
`V
H
= 1

2
(`b−H)

21 , indicates the quantity of products processed by mean production

resource value equals to half of the product quantity that denotes the internal

optimal production quantity given demand intercept materialized as its average

level. In other words, this equation means, on expectation, the production resource

is short to satisfy the product demand. On count of widely studied less- or non-

resource constrained firms’ capacity management in the OM literature, we would

not focus on the case where the production resource is high on expectation.

Secondly, we choose the standard deviations of the distribution carefully so
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that the probability of having negative realizations is negligible, particularly, the

coefficient of variation no more than 30%. This is because, as a matter of fact,

neither demand intercept nor production resource should be realized in negative

values even if we follow Assumption 2 that their joint distribution is bivariate

normally distributed. In this way, the non-negativity of the (b̃, Ṽ) distribution is

unproblematic.

Lastly, we carefully choose three values of unit capacity investment cost

l ∈ {1, 5, 10}. Mathematically, l should be less than lmax in order to have

positive  ∗. Defined in Section 3.3, lmax is an unit capacity cost threshold such

that  ∗ =  � when l < lmax and  ∗ = 0 otherwise. As lmax is a function of

1, H, d, `b , fb , `V and fV, l should be less than the lowest lmax for all instances

of {1, H, d, `b , fb , `V, fV}. Denoting lmax as the lowest value mentioned above,

we can safely pick l less than lmax = 12.9888. In addition, the early stage unit

capacity cost is usually more expensive than unit production cost, that is l > H,

as we fix H = 1, the capacity cost l should no less than 1.

We numerically compute the percentage profitability-loss ΔΠ × 100% after

obtaining both resource-unconstrained capacity level * and resource-constrained

capacity level  � and optimal expected profit in basic model (Equation (3.2))

using standard MatLab optimization procedures. The baseline scenario for

sensitivity results described in Section 3.3 is based on the numerical study design

by calculating optimal capacity and corresponding expected profit for all d.

3.4.2 Profitability-loss under Different Production Resource

Variability

Continuing on the discussion regarding to the impact of fV on Profitability-loss

in Proposition 8, we perform complementary computational experiments. We

numerically calculate the average profitability-lossΔΠ×100% across all scenarios

fixing fV/`V, d and l and report results in Table 3.1. Similarly, we calculate the

average profitability-loss ΔΠ × 100% fixing only fV/`V and d in Table 3.2. We
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draw a conjecture according to Proposition 8 together with observations in Table

3.1 and Table 3.2. Specifically, we consistently observe following pattern in each

scenario:

Conjecture 2 Observing from Table 3.1 and Table 3.2 and according to Propo-

sition 8, there exists a threshold f%!V (l, d) decreasing in l and increasing in

d, such that Profitability-loss ΔΠ decreases in fV when fV < f%!V (l, d) and

increases in fV when fV > f%!V (l, d).

This conjecture shows that the impact of production resource variability on

profitability-loss is not always monotone. There exists a production resource

variability threshold f%!V (l, d) which critically depends on unit capacity cost

and correlation. Specifically, when production resource variability is below this

threshold, profitability-loss decreases as production resource variability increases;

when production resource variability is above this threshold, profitability-loss

increases in production resource variability. In a special case that unit capacity

cost is no less than l* , the threshold f%!V (l, d) equals to 0. Then, we discuss

observations from Table 3.1 and Table 3.2 for supporting the conjecture.

For the observation of Table 3.1, we start from high unit capacity cost scenario

Table 3.1 (c) l = 10. In line with part 1 of the Proposition 8 where the maximal

l* among all instances equals to 8.6334 that is less than given value of unit

capacity cost 10, the profitability-loss increases in production resource variability

fV. And the value of profitability-loss is in a very low range 0% − 8.8%. In

Table 3.1 (b) where unit capacity cost is moderate, we observe profitability-loss

decreases in fV when fV is smaller than a threshold, which is in accordance

with part 2 of Proposition 8. The value of profitability-loss is relevantly high

14% − 26.9%. For low unit capacity cost scenario l = 1 in Table 3.1 (a), the

profitability-loss span the range of 5.2% − 10%. In this case, as fV increases

profitability-loss is lower, which implies that the production resource variability

threshold f%!V (l, d) may go to∞.

An additional observation from comparing three sub-tables of Table 3.1 is

52



Table 3.1: Effect of production resource variability fV on profitability loss ΔΠ
for each l

fV

ΔΠ d

−0.995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.995

2%`V 10.026% 9.987% 9.951% 9.919% 9.89% 9.863% 9.838% 9.815% 9.793%
4%`V 9.887% 9.809% 9.738% 9.674% 9.615% 9.561% 9.511% 9.465% 9.422%
6%`V 9.757% 9.639% 9.532% 9.435% 9.346% 9.265% 9.19% 9.121% 9.058%
8%`V 9.635% 9.477% 9.333% 9.203% 9.084% 8.976% 8.876% 8.784% 8.701%

10%`V 9.521% 9.322% 9.141% 8.977% 8.829% 8.693% 8.568% 8.454% 8.351%
12%`V 9.416% 9.175% 8.957% 8.759% 8.58% 8.416% 8.267% 8.131% 8.007%
14%`V 9.318% 9.036% 8.78% 8.548% 8.338% 8.146% 7.972% 7.814% 7.671%
16%`V 9.228% 8.905% 8.61% 8.344% 8.103% 7.883% 7.684% 7.503% 7.341%
18%`V 9.147% 8.781% 8.448% 8.148% 7.874% 7.626% 7.401% 7.198% 7.018%
20%`V 9.073% 8.665% 8.294% 7.958% 7.653% 7.376% 7.126% 6.9% 6.701%
22%`V 9.008% 8.557% 8.147% 7.776% 7.439% 7.132% 6.856% 6.609% 6.39%
24%`V 8.95% 8.457% 8.007% 7.601% 7.231% 6.896% 6.593% 6.323% 6.086%
26%`V 8.901% 8.364% 7.875% 7.433% 7.031% 6.666% 6.337% 6.044% 5.789%
28%`V 8.859% 8.278% 7.75% 7.272% 6.838% 6.443% 6.088% 5.772% 5.498%
30%`V 8.824% 8.2% 7.632% 7.119% 6.652% 6.227% 5.845% 5.507% 5.214%

(a) l = 1

fV

ΔΠ d

−0.995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.995

2%`V 26.954% 26.786% 26.618% 26.455% 26.296% 26.142% 25.994% 25.851% 25.718%
4%`V 27.007% 26.671% 26.335% 26.008% 25.691% 25.383% 25.086% 24.801% 24.535%
6%`V 27.077% 26.572% 26.068% 25.577% 25.099% 24.637% 24.192% 23.766% 23.368%
8%`V 27.166% 26.491% 25.818% 25.161% 24.524% 23.908% 23.314% 22.747% 22.219%

10%`V 27.278% 26.432% 25.589% 24.768% 23.972% 23.203% 22.463% 21.757% 21.102%
12%`V 27.417% 26.4% 25.389% 24.407% 23.455% 22.537% 21.656% 20.816% 20.039%
14%`V 27.587% 26.402% 25.226% 24.086% 22.984% 21.924% 20.907% 19.941% 19.05%
16%`V 27.793% 26.441% 25.104% 23.812% 22.567% 21.37% 20.227% 19.142% 18.145%
18%`V 28.038% 26.521% 25.027% 23.589% 22.206% 20.882% 19.619% 18.425% 17.331%
20%`V 28.323% 26.644% 24.998% 23.417% 21.904% 20.458% 19.084% 17.788% 16.605%
22%`V 28.651% 26.812% 25.015% 23.297% 21.658% 20.098% 18.619% 17.229% 15.966%
24%`V 29.023% 27.024% 25.079% 23.228% 21.467% 19.797% 18.22% 16.743% 15.405%
26%`V 29.439% 27.281% 25.189% 23.206% 21.327% 19.552% 17.881% 16.323% 14.916%
28%`V 29.902% 27.582% 25.344% 23.23% 21.236% 19.358% 17.599% 15.962% 14.492%
30%`V 30.411% 27.928% 25.542% 23.298% 21.189% 19.212% 17.366% 15.656% 14.126%

(b) l = 5

fV

ΔΠ d

−0.995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.995

2%`V 0% 0% 0% 0% 0% 0% 0% 0% 0%
4%`V 0% 0% 0% 0% 0% 0% 0% 0% 0%
6%`V 0.001% 0.001% 0% 0% 0% 0% 0% 0% 0%
8%`V 0.025% 0.021% 0.017% 0.013% 0.01% 0.007% 0.004% 0.003% 0.002%

10%`V 0.132% 0.112% 0.094% 0.076% 0.059% 0.045% 0.033% 0.023% 0.016%
12%`V 0.349% 0.303% 0.257% 0.213% 0.173% 0.136% 0.104% 0.076% 0.056%
14%`V 0.684% 0.597% 0.512% 0.431% 0.355% 0.286% 0.224% 0.171% 0.128%
16%`V 1.142% 1.002% 0.864% 0.734% 0.611% 0.499% 0.398% 0.309% 0.237%
18%`V 1.732% 1.524% 1.32% 1.127% 0.945% 0.778% 0.627% 0.495% 0.385%
20%`V 2.463% 2.171% 1.886% 1.615% 1.362% 1.128% 0.917% 0.73% 0.574%
22%`V 3.347% 2.953% 2.57% 2.206% 1.866% 1.553% 1.27% 1.018% 0.808%
24%`V 4.398% 3.884% 3.383% 2.909% 2.467% 2.06% 1.691% 1.364% 1.09%
26%`V 5.638% 4.98% 4.34% 3.736% 3.173% 2.656% 2.188% 1.773% 1.424%
28%`V 7.088% 6.259% 5.455% 4.699% 3.996% 3.351% 2.767% 2.251% 1.815%
30%`V 8.769% 7.74% 6.745% 5.812% 4.946% 4.152% 3.437% 2.803% 2.269%

(c) l = 10
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Table 3.2: Effect of production resource variability fV on profitability loss ΔΠ

fV

ΔΠ d

−0.995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.995

2%`V 12.327% 12.258% 12.19% 12.125% 12.062% 12.002% 11.944% 11.889% 11.837%
4%`V 12.298% 12.16% 12.024% 11.894% 11.769% 11.648% 11.532% 11.422% 11.319%
6%`V 12.278% 12.071% 11.867% 11.671% 11.482% 11.301% 11.127% 10.962% 10.809%
8%`V 12.276% 11.996% 11.722% 11.459% 11.206% 10.963% 10.732% 10.511% 10.307%
10%`V 12.31% 11.955% 11.608% 11.274% 10.953% 10.647% 10.355% 10.078% 9.823%
12%`V 12.394% 11.959% 11.534% 11.126% 10.736% 10.363% 10.009% 9.674% 9.368%
14%`V 12.53% 12.012% 11.506% 11.022% 10.559% 10.119% 9.701% 9.309% 8.95%
16%`V 12.721% 12.116% 11.526% 10.963% 10.427% 9.917% 9.436% 8.985% 8.574%
18%`V 12.972% 12.275% 11.599% 10.954% 10.342% 9.762% 9.216% 8.706% 8.244%
20%`V 13.287% 12.494% 11.726% 10.997% 10.306% 9.654% 9.042% 8.473% 7.96%
22%`V 13.668% 12.774% 11.911% 11.093% 10.321% 9.594% 8.915% 8.285% 7.721%
24%`V 14.124% 13.121% 12.156% 11.246% 10.388% 9.584% 8.835% 8.143% 7.527%
26%`V 14.659% 13.541% 12.468% 11.458% 10.51% 9.625% 8.802% 8.047% 7.376%
28%`V 15.283% 14.04% 12.85% 11.734% 10.69% 9.717% 8.818% 7.995% 7.268%
30%`V 16.001% 14.623% 13.307% 12.076% 10.929% 9.864% 8.883% 7.989% 7.203%

Figure 3.7: Effect of production resource variability fV on profitability loss ΔΠ.
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Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fb = 16%`b and fV is the percentage of `V which are

{2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%}.

that, as unit capacity cost increases, the production resource variability threshold

f%!V (l, d) decreases. To further understand how correlation shapes the impact of

production resource variability on the profitability-loss, we calculate the average

profitability-loss by only fixing fV/`V and d. The result is summarized in Table

3.2, in which we observe that as correlation increasing, production resource

variability threshold f%!V (l, d) increases.

So far we have explained how we draw the Conjecture 2 from both analytical

Proposition and numerical experiments. Now, in complementing intuition of

the impact of profitability-loss on production resource variability, we consider

this impact in a low unit capacity cost scenario. We know that in this case,

there exists a production resource variability threshold f%!V (l, d) critically

depends on unit capacity cost and correlation. This is because the impact of
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Table 3.3: Effect of demand variability fb on profitability loss ΔΠ.

fb

ΔΠ d

−0.995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.995

2%`b 10.198% 10.13% 10.06% 9.991% 9.923% 9.855% 9.787% 9.72% 9.655%
4%`b 10.489% 10.349% 10.207% 10.068% 9.93% 9.795% 9.661% 9.53% 9.403%
6%`b 10.812% 10.596% 10.38% 10.169% 9.962% 9.759% 9.561% 9.367% 9.182%
8%`b 11.166% 10.871% 10.578% 10.293% 10.016% 9.747% 9.486% 9.232% 8.992%
10%`b 11.547% 11.171% 10.799% 10.439% 10.091% 9.755% 9.432% 9.121% 8.828%
12%`b 11.958% 11.498% 11.044% 10.608% 10.189% 9.787% 9.403% 9.036% 8.695%
14%`b 12.404% 11.857% 11.321% 10.807% 10.317% 9.849% 9.405% 8.985% 8.597%
16%`b 12.89% 12.254% 11.635% 11.044% 10.482% 9.949% 9.446% 8.974% 8.542%
18%`b 13.421% 12.695% 11.992% 11.323% 10.69% 10.092% 9.531% 9.009% 8.536%
20%`b 13.998% 13.182% 12.394% 11.648% 10.944% 10.283% 9.664% 9.092% 8.579%
22%`b 14.621% 13.714% 12.842% 12.019% 11.245% 10.52% 9.846% 9.225% 8.674%
24%`b 15.291% 14.292% 13.335% 12.436% 11.592% 10.805% 10.075% 9.407% 8.818%
26%`b 16.005% 14.915% 13.873% 12.897% 11.984% 11.135% 10.35% 9.635% 9.01%
28%`b 16.763% 15.581% 14.455% 13.402% 12.419% 11.508% 10.669% 9.909% 9.248%
30%`b 17.564% 16.289% 15.077% 13.947% 12.895% 11.923% 11.031% 10.225% 9.528%

production resource variability on both resource-constrained capacity  � and

optimal expected profit in basic model Π( �) are characterized by unit capacity

cost and correlation, referring to Proposition 5 and Proposition 6 for details. In

this small unit capacity cost scenario, profitability-loss decreases in production

resource variability when production resource variability is less than the threshold

f%!V (l, d). This is because not only resource-constrained capacity level getting

closer to resource-unconstrained capacity level, but the expected profit in basic

model is less sensitivity to capacity investment level. As a result, we conclude

that either too low or too high production resource variability leads to a large

profitability-loss.
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3.4.3 Profitability-loss under Different Demand Variability

Then, we investigate the impact of demand variability fb on the profitability-loss

ΔΠ × 100%. Since the analytical result is intractable, we conduct numerical

experiment across all scenarios fixing fb/`b , d and report results in Table 3.3.

All entries denote the average profitability-loss with all numerical instances. In

addition, we underline the minimal value of each column, since we observe the

non-monotone trend of how profitability-loss changes in demand variability and

this demand variability threshold changes in the correlation d.

From this table, we first observe that given fixed demand variability fb ,

profitability-loss is decreasing in correlation d, which verify the Proposition

7 again. When d is low, profitability-loss is increasing in demand variability

and when d is high, this monotonicity does not hold anymore. In conclusion,

the observation from Table 3.3 about the impact of fb on profitability-loss is

summarized in following conjecture.

Conjecture 3 There exists a threshold f%!b (d) increasing in d, such that

1. when d > 0, ΔΠ decreases in fb when fb < f%!b (d), otherwise, it

increases in fb;

2. when d ≤ 0, ΔΠ increases in fb , or equivalently, f%!b (d) = 0.

The graphical exposition of the conjecture using baseline scenario is as follows:

Intuitively, how profitability-loss being affected by demand variability critically

depends on the impact of demand variability on resource-unconstrained capacity

level  * (part 1 of Proposition 2), resource-constrained capacity level  � and

the expected profit function Π( ). As we obtain from Proposition 3 and 4, the

sign of correlation shapes the sensitivity results. We explain the intuitions in two

scenarios, negative correlation and positive correlation. Firstly, when the demand

and production resource is negatively correlated, both resource-constrained

capacity level and corresponding optimal expected profit in basic model first

decrease then increase in demand variability. Since resource-unconstrained
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Figure 3.8: Effect of demand variability fb on profitability loss ΔΠ.
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Therein, H = 1, `b = 16H, `V = (`b − H)H/4, fV = 16%`V and fV is percentage of `V , where
the percentage set is

{2%, 4%, 6%, 8%, 10%, 12%, 14%, 16%, 18%, 20%, 22%, 24%, 26%, 28%, 30%}.

capacity level always increases in demand variability, the difference between  *

and  � is larger as demand variability increases. Therefore, when correlation

is negative, profitability-loss higher as demand variability increases. When the

correlation is positive, higher production resource flexibility level relaxes the

pressure of under-investment, so that miss-specify a higher capacity level can be

less hurtful when demand variability increases.

To summarize, we discuss the conditions under which the profitability-loss is

significant. When the correlation between demand and production resource is

non-positively correlated, high demand variability leads to large profitability-loss;

When the correlation is positive, both too low and too high demand variability

results in large profitability-loss.
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Chapter 4

Managing Financial Production

Resource Disruption: Role of

Pre-shipment Financing

This chapter examines the role of pre-shipment finance in managing financial

production resource (working capital/budget) disruption. Hereafter, we use

‘budget’ to denote the financial production resource. Pre-shipment finance allows

the firm to transfer the purchase orders (which will be paid after production) to

an external party that provides immediate cash flow (at a cost) that can be used

for financing the production process. Pre-shipment financing creates necessary

liquidity for the firm when the budget is constraining. In comparing with basic

model, we name the model with pre-shipment finance as pre-shipment finance

model (abbreviated as PSF model). And we assume the partial equilibrium, which

means 1) the buyer(s) exogenously accepts any product quantity and its unit price

on the realized inverse demand curve; 2) the finance is risk free, as the firm would

always chooses a loan that can be fully secured within the product selling revenue.

Then, we characterize the optimal pre-shipment finance level (proportion of sales

revenues transferred) and the production volume in the production stage and the

optimal capacity investment level in the capacity stage. We make comparisons
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with the results in Chapter 3 to understand how pre-shipment financing alters the

effects of demand and production budget uncertainties on the optimal capacity

investment level, expected profit and profitability-loss due to ignoring budget

uncertainty. We identify that applying pre-shipment finance makes the capacity

investment and profits more resilient to changes in both demand and production

budget uncertainties. The profitability-loss by miss-choosing capacity level due

to ignore the constraint of production budget is significantly reduced compared

with that of basic model.

The organization of this chapter is as follows. We review the literature in

Section 4.1. In Section 4.2, we introduce the formulation and assumptions of the

model and establish the optimal capacity investment policy and compare it with

the basic model. Then we derive analytical results for the sensitivity of optimal

capacity investment policy as well as the profitability in Section 4.3. Specifically,

we answer the research question: How would the optimal capacity level and

profitability be impacted by the demand and production resource variability and

the correlation between the two? Finally, in Section 4.4, we use analytical analysis

as well as complementary numerical study to answer second research question, if

the possibility of production resource shortage is ignored in capacity planning, as

often done in practice and the academic literature, would the resulting profitability

loss be significant and how do the demand and production resource uncertainties

affect this profitability loss?

4.1 Literature Review

Pre-shipment finance is a category of financing instruments issued when the

manufacturing firm wants payment (by its buyers directly or financial institutions)

of product selling revenue before the product shipment. In operationsmanagement,

the main objective behind is to release the financial distress of production process.

There are several types of pre-shipment finance including purchase order financing
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(Reindorp et al., 2018; Tang et al., 2018; Zhao and Huchzermeier, 2019), advance

payment discount (Boyacı and Özer, 2010; Zhao and Huchzermeier, 2019) and

buyer intermediated financing (Tunca and Zhu, 2018).

The only paper that consider capacity planning with pre-shipment finance is

Boyacı and Özer (2010), they investigate a capacity planning strategy that collects

commitments to purchase before the capacity decision and uses the acquired

advance sales information to decide on the capacity. In their model, a finite

number of price adjustments are made prior to the capacity decisions, the demand

uncertainty becomes endogenous and demand parameters get updated overtime

when applying the advance sell. Tang et al. (2018) address buyer direct financing

and purchase order financing without the buyer’s guarantee in a signalling game,

and focus on the effect of information asymmetry between buyer and bank on

the firm’s cost. Reindorp et al. (2018) study a two-stage supply chain where

a retailer buys from a supplier who faces financial constraints, also and the

retailer commits purchase order finance to supplier. They address the potential

of purchase commitments for mitigating capital market frictions. Zhao and

Huchzermeier (2019) investigate the interaction between firm’s operational and

financing choice between advance payment discount and buyer-backed purchase

order financing. Tunca and Zhu (2018) compare commercial loan and buyer

intermediated financing in the same supply chain and find that buyer intermediated

financing will improve channel profit.

4.2 Optimal Strategy ofPre-shipmentFinanceModel

The timeline of events for pre-shipment finance starts from (b̃, Ṽ) being resolved.

The firm is aware of the demand pattern of buyer, so does the selling revenue

providing any quantity of product (b − 1@?)@?. Then if necessary, together

with making production quantity decision @?, the firm finances (1 + A?)!?

amount against the product selling revenue to support production. Therein,
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only an advance value !? is used for relaxing production budget constraint,

a constant fraction A? ∈ [0, 1] is repaid to financial institution and spent as

transaction cost due to capital market friction. The pre-shipment financing

!? is decided almost at the same time as product quantity but a little later,

because pre-shipment financing amount is decided after product selling revenue

(b − 1@?)@? is settled with buyer. For the ease of exposition, we write down

the cash flow (in dollar) of the firm regarding to the model in chronological

order: at the beginning of the production stage C = 1, firm has production

budget worth V; and shortly after receiving pre-shipment finance the total amount

becomes (V + !?); then firm produces and ships the products so that leaves

(V + !? − H@?) on hand; finally, at the end of the production stage C = 2, firm

receives selling revenue minus the pre-shipment finance, therefore, end up has

(b − 1@?)@? − (1 + A?)!? + (V + !? − H@?) = (b − 1@?)@? − H@ − A?!? + V on

hand.

In practice, besides firm’s decisions mentioned above, there are inter-plays

among buyer(s), finance provider and the firm to get the deal done, for example,

buyer(s) commitment on purchase quantity and finance provider’s approval of

pre-shipment finance and interest rate (referring to Reindorp et al. (2018) for

endogenous buyer and exogenous finance provider problem; referring to Tang

et al. (2018) for the model having all three parties endogenized). We assume

away the supply chain effect and the bankruptcy risk management of the bank in

order to answer our core research question: how much does the financing release

the impact of production budget uncertainty on the capacity investment level

and the profitability. As the firm is in the profit maximizing scenario, we define

optimal profit the production stage as Π∗?
(
 , b, V

)
in which the firm decides

production quantity @∗ and pre-shipment finance principal !?. The expected

profit function in capacity investment stage is defined as Π? ( ). Noting that ‘?’

denotes pre-shipment finance. The pre-shipment finance model production stage
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formulation is as follows:

c∗?
(
 , b, V

)
= max

@,!?
(b − 1@)@ − H@ − A?!?

s.t. 0 ≤ @ ≤ min
{
 ,

V+!?
H

}
0 ≤ (1 + A?)!? ≤ (b − 1@)@.

The objective function quantifies the firm’s profit at the end of the time horizon.

The first constraint represents both capacity constraint: the production volume

cannot exceed the capacity level decided in the first stage; and financial (production

budget) constraint: the production cost is less than the financing available

which is released by pre-shipment financing. Therein, the pre-shipment finance

adds flexibility on the budget constraint. The second constraint represents

the financing limits that the firm should always be able to repay the loan. In

capacity investment stage, the profit maximizing objective function is denoted by

max
 ≥0

Π? ( ) = max
 ≥0

{
−l + Ẽ

b

[
Π∗?

(
 , b̃, Ṽ

) ]}
, where the decision in concern is

the capacity investment level  in anticipation of the production stage optimal

profit. We presents the result in reverse chronological order since it is solved by

backward induction. Therein, Theorem 3 describes the unique optimal solution

to the production stage of PSF model and Theorem 4 provides unique optimal

capacity investment level. In order to present the optimal production stage

decisions, we define state space Ω?

8
8 = 3, 4, 5 as follows:

Ω
?

3 ( , A?) :=

(b, V) :

(
b − (1 + A?)H

)
H

21
≤ V ≤ (b − H)H

21
,

V < V ≤ max
{
V,min{H , V}

}
 ,

Ω
?

4 ( , A?) :=

(b, V) :
(1 + A?)H < b < (1 + A?)H + 21 ,

V < V ≤ max
{
V,min

{ (
b − (1 + A?)H

)
H

21
, V

}}
 and

Ω
?

5 ( , A?) :=

(b, V) :
b ≥ (1 + A?)H + 21 ,

V < V ≤ max
{
V,min{H , V}

}
 .

Theorem 3 (Optimal Production Stage Strategy of Pre-shipment Finance Model)

62



Given the interest rate of financing A? ∈ (0, 1), the firm’s optimal production

quantity @∗? and optimal loan principal !? are characterized by

(
@∗?

(
 , b, V

)
, !∗?

(
 , b, V

) )
=



(0, 0), if (b, V) ∈ Ω0( b−H
21 , 0

)
, if (b, V) ∈ Ω1( )

( , 0) if (b, V) ∈ Ω2( )( V
H
, 0

)
, if (b, V) ∈ Ω?3 ( , A?)(

b−(1+A?)H
21 ,

(
b−(1+A?)H

)
H

21 − V
)
, if (b, V) ∈ Ω?4 ( , A?)(

 , H − V
)
, if (b, V) ∈ Ω?5 ( , A?)

The optimal sales profit in the product market Π∗? ( , b, V) is characterized by

c∗? ( , b, V) =



0, if (b, V) ∈ Ω0,

(b − H)2
41

, if (b, V) ∈ Ω1( ),

(b − H) − 1 2, if (b, V) ∈ Ω2( ),
(b − H)V/H − 1

(
V/H

)2
, if (b, V) ∈ Ω?3 ( , A?),(

b − (1 + A?)H
)2

41
+ A?V, if (b, V) ∈ Ω?4 ( , A?),(

b − (1 + A?)H
)
 − 1 2 + A?V, if (b, V) ∈ Ω?5 ( , A?).

Recalling the optimal production quantity for basic model, the value takes

the minimal among internal optimal (b−H)
+

21 , capacity constraint  and production

budget constraint V/H. Now in Theorem 3, the only difference is that as production

quantity takes value V/H according to above comparison, it could be optimal

to use pre-shipment finance to weaken the negative effect of production budget

shortage.

Specifically, comparing with the optimal production strategy for basic model

in Theorem 1, this theorem indicates that, given same capacity level  , the

production budget tightening region Ω3 in basic model is replaced by union

of Ω?

8
8 = 3, 4, 5, where Ω?

4 ∪ Ω
?

5 is the region with positive !∗? and optimal

production quantity are the same in region Ω3 and Ω?

3 (see Figure 4.1 Panel

(a)). This indicates that the pre-shipment finance is only valuable when the
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Figure 4.1: State space (b, V) of optimal production strategy of pre-shipment
finance model.

(a) When  ∈
(
V

H
,
V

H

)
(b) When  ≥ V

H

Note: from both Panel (a) and (b), state space becomes identical to resource-unconstrained
benchmark case when A? → 0; and Panel (a) becomes identical to the Basic model when

A? →∞.

production budget is realized low. And comparing with Ω?

8
8 = 3, 4, 5 themselves,

it shows that higher the demand realization more valuable the pre-shipment

financing. Figure 4.1 graphically represents how optimal production quantity and

pre-shipment principal are allocated in state space as stated in Theorem 3. In

the ideal case, higher the realization of demand, higher the optimal production

quantity @∗?, however, there are capacity constraint  and production budget

constraint V/H get in the way of increasing the production volume. As a result,

the intuition of applying pre-shipment finance is when demand is realized high

and production budget is realized low, as what in Ω?

4 ( , A?) and Ω
?

5 ( , A?).

The intuitions behind production and finance decisions in terms of stage space

partition are as follows.

Ω
?

3 ( , A?) is the region having relatively larger market size versus relatively

not enough production budget, quantitatively V ≤ (b−H)H21 , and the production

decision is bounded by available budget at the beginning of production-stage.

What’s interesting is, even though on hand budget are not enough, it is optimal to

not apply pre-shipment finance. This plausible counter-intuitive phenomenon

happens because the cost of this financing is also identified as following statement:

using pre-shipment finance enhances unit production cost to (1 + A?)H, but firm
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gets A?V amount of compensation after production. According to this statement,

if carrying out pre-shipment finance, the optimal production quantity would

be b−(1+A?)H
21 , in addition, under state space Ω?

3 ( , A?), inequality
b−(1+A?)H

21 <
V

H

holds, current available budget are enough to produce b−(1+A?)H
21 , it shows the

needless of pre-shipment finance. So the firm optimally chooses to produce up to

financial limit.

Ω
?

4 ( , A?), by definition, the optimal strategy is producing b−(1+A?)H
21 amount

of products against on hand production budget plus requisite pre-shipment finance,

because cost of production is larger than production budget,
(
b−(1+A?)H

21

)
H > V.

Also  >
b−(1+A?)H

21 indicates that the optimal quantity is attainable rather

than bounded by  . In Ω?

5 ( , A?), the optimal strategy is in line with which

for Ω?

4 ( , A?), except that as demand increases further, the internal optimal

production amount is not attainable because the production is bounded by

capacity  .

Adopting above optimal strategy in production stage, the corresponding first

stage expected profit Π? ( ) can be expended as Π? ( ) =

− l +
∫ V

V

∫ H+21min
{
 ,

V

H

}
H

(b − H)2
41

5 (b, V)3b3V

+
∫ V

max
{
V,min{H ,V }

} ∫ ∞

H+21 

(
(b − H) − 1 2) 5 (b, V)3b3V

+
∫ max

{
V,min{H ,V }

}
V

∫ (1+A?)H+ 21V
H

H+ 21V
H

(
(b − H)V

H
− 1

( V
H

)2
)
5 (b, V)3b3V

+
∫ max

{
V,min{H ,V }

}
V

∫ (1+A?)H+21 

(1+A?)H+ 21V
H

( (b − (1 + A?)H)2

41
+ A?V

)
5 (b, V)3b3V

+
∫ max

{
V,min{H ,V }

}
V

∫ ∞

(1+A?)H+21 

( (
b − (1 + A?)H

)
 − 1 2 + A?V

)
5 (b, V)3b3V.

Now we are in a position to characterize the firm’s optimal investment level for

PSF model.

Theorem 4 (Optimal Capacity Investment Level of PSF Model)
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The optimal capacity investment level  ∗? (l) is characterized as follows:

 ∗? (l) =



0, if Ẽ
b

[
(b̃ − H)+

]
≤ l;

 * (l), if Ẽ
b

[
(b̃ − H − 21V/H)+

]
≤ l < Ẽ

b

[
(b̃ − H)+

]
;

 �? (l), if 0 ≤ l < Ẽ
b

[
(b̃ − H − 21V/H)+

]
;

where  �? (l) is the unique solution of

l =

∫ V

H 

∫ ∞

H+21 
(b − H − 21 ) 5 (b, V)3b3V

+
∫ min{H ,V}

V

∫ ∞

(1+A?)H+21 

(
b − (1 + A?)H − 21 

)
5 (b, V)3b3V.

(4.1)

The above characterization of optimal capacity investment level by unit capacity

cost is the same as the one for basic model. The only difference is that when

0 ≤ l < Ẽ
b

[
(b̃ − H − 21V/H)+

]
, the capacity level in PSF model should be larger

than the one in basic model because of the leverage of financing. Following

corollary shows the relation.

Corollary 3 Define l? := Ẽ
b

[
(b̃ − (1+ A?)H−21V/H)+

]
, the capacity investment

level of basic model and PSF model have following relation:

1. V

H
≥  �? (l) >  � (l) > V

H
and Π? ( �? ) > Π? ( �), when l? ≤ l <

Ẽ
b

[
(b̃ − H − 21V

H
)+

]
;

2.  �? (l) =  * (l) −
A?H

21 >
V

H
>  � (l), when 0 < l < l?.

Noting that  * is resource-unconstrained capacity level and  � is resource-

constrained capacity level.

This corollary shows that with pre-shipment finance, both the optimal capacity

investment level and expected profit are higher than the case without the finance.

In addition, In second part of Corollary 3, when the unit capacity investment

level is very low, the firm optimally chooses a capacity level larger than the
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maximal possible level the production budget V can provide. The optimal capacity

investment level  �? doesn’t not depend on production budget uncertainty and is

only less than resource-unconstrained capacity level a value A?H

21 . This value is

additional marginal production cost when applying pre-shipment finance.

4.3 Sensitivity Analyses for Pre-shipment Finance

Model - Comparison with Basic Model

In this section, we investigate the role of pre-shipment finance by preforming

sensitivity analysis in comparison with results in basic model. Similarly, we

establish optimal capacity investment based on bivariate normal distribution

assumption on (b̃, Ṽ) (referring to Assumption 2). Define l?max := E
b

[
(b̃ −

H)+ Pr
{
Ṽ > 0

��b̃}] + E
b

[
(b̃ − (1 + A?)H)+ Pr

{
Ṽ ≤ 0

��b̃}] , the optimal capacity

investment strategy is simplified as  ∗? (l) =


0, if l ≥ l?max;

 �? (l), if 0 < l < l
?
max

. An

immediate comparison with basic model is that the unit capacity cost threshold

l
?
max is larger than that of basic model lmax. The unit capacity cost threshold for

both models indicates that when unit capacity cost below this value the optimal

capacity investment level is positive. This shows that having the pre-shipment

finance, investing capacity is valuable in a wider range of capacity intensity. This

result fits the intuition that larger assume 0 < l < l
?
max in order to focus on the

analysis of  �? . To this end, we first start with the effect of correlation between

demand and production budget uncertainties on the capacity investment decision

and the profitability of the firm.

Proposition 9 (Impact of correlation d - PSF Model)

1. The optimal capacity investment  �? increases in d;

2. the corresponding optimal expected profit Π? ( �? ) increases in d.
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With a higher d, there will be a higher possibility for high demand associated

with high production budget, so that there will be a lower chance for the production

constrained by production budget. Therefore, same as the basic model case

in Proposition 1, both optimal capacity investment level and optimal profit are

increasing in the correlation.

4.3.1 Sensitivity to Demand Variability

In contrast to the correlation effect where both pre-shipment finance model

and basic model have same monotone sensitivity result, the effect of demand

variability is more complicate. Define a unit capacity cost threshold lb :=(
1−Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H, we briefly summarize the effect of demand variability.

When unit capacity cost is larger than lb , the effect of demand variability on

optimal capacity level and profit for pre-shipment model have the same pattern

as those for budget unconstrained benchmark model; otherwise, the effect of

demand variability on both optimal capacity level and profit for pre-shipment

model have same pattern as those for basic model.

We first introduce the effect on the optimal expected that is fully characterized.

Proposition 10 (Impact of fb on Π? ( �? ) - PSF Model)

1. When either d ≥ 0 or l > lb , Π? ( �? ) increases in fb;

2. When d < 0 and l ≤ lb , there exists a threshold fΠ?
b
(l, d) such that

Π? ( �? ) decreases in fb if fb < f
Π?

b
(l, d) and Π? ( �? ) increases in fb

if fb > f
Π?

b
(l, d).

As what shown in Proposition 10, when unit capacity cost is larger than lb ,

the optimal profit always increases in demand variability regardless of the value

of the correlation; when the unit capacity cost is no more than lb , the result

critically depends on the sign of the correlation, specifically, if the correlation is

non-negative the expected profit increases in demand variability; otherwise, there
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exists a demand variability threshold, below which a higher demand variability

decreases the profit and above which a higher demand variability increases the

profit.

As benchmark model indicates the first best result that the firm can get if there

is no production budget constraint, above result shows that a larger unit capacity

cost leads to production budget less affecting optimal profit in pre-shipment

finance model. The intuition is that, on the one hand, a higher unit capacity cost

is weaken the impact of production budget uncertainty. As we look back the state

space allocation in Figure 4.1 panel (a), the region production budget binding

the optimal decisions Ω?

3 ( , A?) ∪ Ω
?

4 ( , A?) ∪ Ω
?

5 ( , A?) is shrinking due to

the decrease of  and a higher unit capacity cost decreases optimal capacity

investment level in general, it explains why the impact of production budget

uncertainty is weaken. On the other hand, with pre-shipment finance, the optimal

production quantity can be as high as capacity level when demand is high even if

the production budget is realized low. For this reason, the optimal expected profit

in pre-shipment model behaves similar to that in the benchmark model.

Then we move on to the effect of demand variability on optimal capacity

level in Proposition 11 and Conjecture 4, where the conjecture is supported by

partial analytical result and extensive numerical analysis with 54, 675 numerical

instances that will introduce in Section 4.4.1.

Proposition 11 (Impact of fb on  �? if d ≥ 0 - PSF Model) If d ≥ 0,  �?

increases in fb .

When the correlation between demand and production budget is non-negative,

the increasing trend of capacity investment level in demand variability. However,

when the correlation is negative pre-shipment finance reshapes the sensitivity

result.

Conjecture 4 (Impact of fb on  �? when d < 0 - PSF Model) When d < 0,

1. if l > lb ,  �? increases in fb;
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2. if l ≤ lb , there exists a threshold f ?
b

such that  �? decreases in fb if

fb < f
 ?

b
and  �? increases in fb if fb > f

 ?

b
.

The conjecture is from partial analytical result we proved. Specifically, under

condition d < 0, we are able to prove that lim
fb→0

3 �?
3fb

= 0 when l > lb and

lim
fb→0

3 �?
3fb

< 0 when l ≤ lb . In addition, 3 
�
?

3fb
> 0 when fb ≥ f

 ?

b
where f ?

b

is the unique solution of mΠ? ( )
m 

���
 =

`b −H
21

= 0.

From Conjecture 4 and Proposition 11, we can also find that when unit

capacity cost l is larger than threshold lb , the impact of demand variability on

optimal capacity level in PSF model has the same pattern as what in benchmark

model; whereas when the unit capacity cost is no larger than the threshold, the

impact of demand variability on capacity level in PSF model has the same pattern

as what in basic model. The reason is the same as the one for Proposition 10.

In summary, with pre-shipment finance, both optimal capacity investment

level and expected profit are closer to the first best case in benchmark model.

4.3.2 Sensitivity to Production Budget Variability

In this section, we investigate the impact of production budget variability on

both capacity investment level  �? and profitability Π? ( �? ). Firstly, we find that

the impact of production budget variability on capacity investment level doesn’t

change pattern in comparison with that for basic model.

Proposition 12 (Impact of fV on  �? - PSF Model) Define

l
 ?

V
(d) :=fb

√
(1 − d2)

∫ ∞

0
E
[(
Ĩ2 −

( H + 21`V/H − `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0

+ fb
√
(1 − d2)

∫ 0

−∞
E
[(
Ĩ2 −

( (1 + A?)H + 21`V/H − `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0,

we have that it is not related with fV and l
 ?

V
> lV. Further define l

 ?

V
(−1) :=

lim
d→−1

l
 ?

V
and l ?

V
(1) := lim

d→1
l
 ?

V
. The sensitivity result is characterized by
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1. When l ∈
(
0, l ?

V
(−1)

]
,  �? increases in fV;

2. When l ∈
(
l
 ?

V
(−1), l ?

V
(1)

)
, there exists a unique d ?

V
(l) that satisfies

l
 ?

V
(d ?

V
(l)) = l where d ?

V
(l) increases in l. The sensitivity result is

(a) under condition d > d ?
V
(l),  �? increases in fV;

(b) under condition d = d ?
V
(l),  �? = `V/H which is not sensitive to

fV;

(c) under condition d < d ?
V
(l),  �? decreases in fV;

3. When l ∈
[
l
 ?

V
(1), l?max

)
,  �? decreases in fV.

We find the exact same result structure as what in basic model (Proposition

5), that is larger l leads to optimal capacity investment level monotonically

increasing in production budget variability, low l leads to optimal capacity

monotonically decreasing in budget variability; when l is intermediate, the

sensitivity result critically depends on d, specifically, capacity level increases in

budget variability when d is high and decreases in budget variability when d is

low. What different between the result for pre-shipment finance model and basic

model is that they have different l threshold to separate the increasing trend and

the decreasing trend. The comparison between these l thresholds is provided in

following corollary.

Corollary 4 l
 ?

V
(d) > l 

V
(d).

Noting that l 
V
(d) is the unit capacity cost threshold for the effect of budget

variability on capacity level in basic model. This indicate that when pre-shipment

finance is applied, under a larger range of unit capacity cost, the optimal capacity

increasing in production budget variability. This suggests that the firm can invest

in capacity more aggressively when there are external financing options available.

Then we introduce the impact of fV on the optimal expected profit of the PSF

model, where it also has the same pattern as that of the basic model.
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Proposition 13 (Impact of fV on Π? ( �? ) - PSF Model) DefinelΠ?
V

:= E
[(
b̃−(

(1 + A?)H + 21`V/H
) )+]

,

1. Under condition d ≤ 0 or l ≥ lΠ?
V
, we have Π? ( �? ) decreases in fV;

2. Under condition d > 0 and l < l
Π?

V
, there exists a unique fΠ?

V
(l, d) ∈

(0, dfb H21 ) such that Π? ( �? ) increases in fV when fV < f
Π?

V
(l, d) and

Π? ( �? ) decreases in fV when fV > f
Π?

V
(l, d).

Proposition 13 shows that firm’s optimal expected profit first increases then

decreases in production budget variability only when unit capacity cost is low

and the correlation is high positive; otherwise, the profit monotonically decreases

in production budget variability.

Corollary 5 l
Π?

V
< l

 ?

V
(d) < l?max, ∀d ∈ (−1, 1).

Above corollary is in parallel to Corollary 2 presenting the comparison between

the unit capacity cost threshold l ?
V
(d) in Proposition 12 and lΠ?

V
in Proposition

13 given the correlation d. Recalling that in Proposition 12,  �? increases

in fV when unit capacity cost satisfies l < l
 ?

V
(d);  �? decreases in fV

otherwise; in Proposition 13, optimal profitΠ? ( �? ) first increases then decreases

in fV when unit capacity cost satisfies l < l
Π?

V
; Π? ( �? ) decreases in fV

otherwise. The intuition is that even though there is a wide range of (l, d) ∈{
(l, d) |l < l

 ?

V
(d), d ∈ (−1, 1)

}
under which a higher production budget

variability increases optimal capacity level, only a proper subset of above (l, d)

set, denoted by
{
(l, d) |l < l

Π?

V
, d ∈ (0, 1)

}
, is the range under which higher

production budget variability is profitable when production budget variability is

less than a certain threshold.

4.4 Profitability-loss

In the previous section, we have characterized the role of pre-shipment finance in

shaping the effects of demand and production budget uncertainties on capacity
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investment level and profitability. In this section, we further discuss the role of pre-

shipment finance in reducing profitability loss occurred when the firm mistakenly

chooses higher capacity investment level by ignoring uncertain production budget.

Also, we discuss the role of pre-shipment finance in how it shapes the impact of

the demand and production budget uncertainties on the profitability-loss.

We first introduce the function of profitability-loss. When the production

budget uncertainty is ignored, the firm believes that the problem faced by

himself is corresponding to the benchmark model, therefore, capacity level

is miss-chosen as  * , that is resource-unconstrained capacity level that the

firm would choose if there is no production budget constraint. In fact, the

pre-shipment model is corresponding to firm’s problem and the expected profit

is Π? (·) and the optimal capacity level should be  �? . Briefly speaking, the

firm would incur an optimality gap, since  * >  �? showed in Corollary 3. We

define the rate of the profitability-loss due to miss choosing capacity level as

ΔAΠ? := Π? ( �? )−Π? ( * )
Π? ( �? )

. As both resource-unconstrained capacity level  * and

 �? critically depend on unit capacity investment cost l and both capacity levels

are positive only when limit unit capacity cost in the range l ∈
(
0, l?max

)
where

l
?
max = E

b

[
(b̃ − H)+ Pr

{
Ṽ > 0

��b̃}] +E
b

[
(b̃ − (1+ A?)H)+ Pr

{
Ṽ ≤ 0

��b̃}] , we restrict
our analysis in this range of unit capacity cost.

In analyzing the sensitivity, we investigate the impact of the uncertainty

parameters (d, fb and fV) on the profitability-loss. We first present a proposition

showing how profitability-loss changes in the correlation between demand and

production budget uncertainties.

Proposition 14 (Impact of d on Profitability-loss - PSF Model) Profitability-loss

ΔAΠ? is decreasing in d.

In line with the effect of correlation on profitability-loss in basic model,

Proposition 14 demonstrates that a higher the correlation between demand and

production budget uncertainties results in a lower profitability-loss. The reason

is that,  * is not a function of the correlation. Base on this, we discussion the
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general insight. On the one hand, a higher correlation decreases the difference

between product quantity provided by realized production budget V

H
and the

internal optimal production quantity b−H
21 , thus,  

�
? could be closer to  * as

the correlation increases. On the other hand, we have that mΠ? ( )
m 

increases

in d, meaning that as d increasing, the decreasing trend of Π? ( ) on  when

 >  �? (d) tends to be more flat. As a result, the rate of profitability-loss between

optimal expected profit and the profit without considering production-loss is

shrink when d increases.

4.4.1 Numerical Study Design

The numerical study is conducted relying on 54, 675 numerical instances with

wide range of parameter values extended around the baseline scenario. The only

difference of numerical study design from which for basic model is that we add

the pre-shipment finance interest rate where it takes value A? ∈ {6%, 12%, 18%}.

The value of financing rates are picked based on offers quoted by finance provider,

e.g. Paragon Financial Group charges interest rate ‘3% to 4% for the first 30 days;

1.25% every 10 days after that’ and payment terms that buyers can postpone the

payment date to the product manufacturing firm even after receiving the products,

where the duration of delay payment depends on negotiation result between trade

parties and the global or domestic trade regulation, ranging from 60 days to 180

days.

Recalling that the numerical design for the rest of parameters are: unit produc-

tion cost is standardized as 1 = 1, H = 1; mean value of demand uncertainty has

range `b ∈ {14H, 16H, 18H}; mean value of production budget uncertainty takes
`V
H
= 1

2
(`b−H)

21 for each `b ; the demand variability fb ∈ [2%, 30%] is the percent-

age of `b with 2%-unit increments, and similarly, production budget variability

fV ∈ [2%, 30%] is also picked as the percentage of `V, varying with 2%-unit

increments; the correlation between demand and production budget uncertainties

takes value d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}; lastly,
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Table 4.1: Effect of demand variability fb on profitability loss ΔAΠ?.

fb

ΔAΠ? d
−0.995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.995

2%`b 0.009% 0.009% 0.009% 0.009% 0.009% 0.009% 0.009% 0.009% 0.009%
4%`b 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008%
6%`b 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008%
8%`b 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008% 0.008%
10%`b 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
12%`b 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
14%`b 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
16%`b 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
18%`b 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
20%`b 0.007% 0.007% 0.007% 0.007% 0.007% 0.006% 0.006% 0.006% 0.006%
22%`b 0.007% 0.007% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%
24%`b 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%
26%`b 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%
28%`b 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%
30%`b 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%

the unit capacity investment cost l ∈ {1, 5, 10}.

Similarly as the range of unit capacity cost in basic model picked,l takes value

{1, 5, 10} because l?max is an unit capacity cost threshold such that  ∗ =  �?

when l < l
?
max and  ∗ = 0 otherwise. Moreover, l?max is a function of

A?, 1, H, d, `b , fb , `V and fV such that l should be less than the lowest l?max for

all instances of {A?, 1, H, d, `b , fb , `V, fV}. Denoting l?max as the lowest value

mentioned above, we can safely pick l less than l?max = 12.9999.

4.4.2 Sensitivity to Demand Variability and Production Bud-

get Variability

In this section, we investigate the impact of demand variability fb and the impact

of production budget variability fV on the profitability loss. These impacts

depend on the correlation between demand and production budget uncertainties

and we conduct numerical analysis to uncover the effects.

Firstly, we discuss the impact of demand variability fb on the profitability-loss

ΔAΠ? × 100%. The numerical experiment is across all scenarios fixing fb/`b

and d and corresponding results are reported in Table 4.1.

From Table 4.1, we first observe that given fixed demand variability fb ,

profitability-loss is decreasing in correlation d, which verify the Proposition 7.

However, the decreasing trend is flat, which indicates that the firm is more resilient

to the correlation between uncertainties. Secondly, all entries are in the range of
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Table 4.2: Effect of production budget variability fV on profitability loss ΔAΠ?

fV

ΔAΠ? d
−0.995 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 0.995

2%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
4%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
6%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
8%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
10%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
12%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
14%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
16%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
18%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
20%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
22%`V 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007% 0.007%
24%`V 0.007% 0.007% 0.007% 0.007% 0.006% 0.006% 0.006% 0.006% 0.006%
26%`V 0.007% 0.007% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%
28%`V 0.007% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%
30%`V 0.007% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006% 0.006%

0.006%− 0.009% that is very small to be negligible. Noting that in Section 4.3.1,

we obtain that the pre-shipment finance model is ‘closer’ to the benchmark model

when unit capacity cost is larger than lb =
(
1 − Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H. As

lb < H and the values of l = 1, 5, 10 are greater than H, the numerical analysis

is in the high range that l � lb .

Next, we investigate the impact of fV on Profitability-loss in by performing

computational experiments. We numerically calculate the average profitability-

loss ΔAΠ? × 100% across all scenarios fixing fV/`V and d and report results in

Table 4.2.

In the above, we find that the profitability-loss entries also take very small

values either 0.006% or 0.007%, which also implies the resilience of the firm

in face of uncertainties when using pre-shipment finance. In addition, we

observe that a higher production budget variability decreases the profitability-

loss. Overall, we obtain that pre-shipment finance significantly reduces the

profitability-loss to a negligible value, because capacity investment level is low in

a high unit capacity investment cost scenario so that pre-shipment finance helps

firm dealing with production budget disruption events better in a way that the

resource-unconstrained capacity investment level becomes a good estimation of

optimal capacity level.
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Chapter 5

Managing Physical Production

Resource Disruption: Role of

Procurement Hedging Contract

When production resource is physical such as raw material or component,

pricing of material costs is directly linked to fluctuations in firm’s production

capability. Therefore, one of the way to manage the potential disruption of

production resource would be to lock in prices for a production resource at a

pre-determined fixed price through arriving at a fixed price procurement contract.

In managing production resource disruption in the capacity investment stage, we

apply procurement hedging contract, which is beneficial if it can allow the firm to

avoid unnecessary fluctuations of physical production resource, e.g. raw material

or component, in capacity investment spending. In this procurement hedging

contract, the firm alters the distribution of production resource to manage the risk

of production resource disruption.

We find that the partial hedging dominates full hedging and no-hedging

when demand and production resource is positively correlated and the unit

cost of investing capacity is low; no-hedging dominates when the positive

correlation between demand and production resource is high and the unit capacity
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investment cost is even lower. We identify that optimal partial hedging decreases

in both demand variability and the correlation, whereas it increases in production

resource variability. We show that the profitability increases in demand variability,

production resource variability and the correlation. Our numerical analysis shows

that the profitability loss due to ignoring production resource shortage possibility

in choosing capacity investment level is significant when demand variability is

large, production resource variability is large and the correlation is low. And the

profitability loss due to heuristically choosing always full hedging increases in

both demand and production resource variability.

The organization of this chapter is as follows. We review the literature in

Section 5.1. In Section 5.2, we introduce the formulation and assumptions of

the model. In Section 5.3, we establish the optimal capacity investment policy

and compare it with the basic model. Then we derive analytical results for the

sensitivity of optimal capacity investment policy as well as the profitability in

Section 5.4. Specifically, we answer the research question: How would the

optimal capacity level, hedging strategy and profitability be impacted by the

demand and production resource variability and the correlation between the

two? Finally, in Section 5.5, we use extensive numerical study to answer second

research question: under what conditions, the profitability-loss is significant?

In analysing the profitability-loss, we not only consider the loss incurred due

to miss-specifying capacity level due to ignoring production resource shortage

possibility, but also study the profitability loss incurred because miss-specifying

the hedging decision as heuristically always fully hedging all resource uncertainty.

5.1 Literature Review

Our study is related to the literature on financial hedging in operations. In this

literature, researches study hedging contract decision of firm in conjunction with

operational investments in a variety of settings. In the seminal work of Froot et al.
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(1993), they point out that if capital market imperfections make external funds

more costly than internal funds, they can generate a rationale for risk management.

They show that when the investment opportunities and the availability of internal

funds are correlated, it may become optimal for a firm to utilize partial hedging.

Gaur and Seshadri (2005) study the optimal hedging for a risk-averse newsven-

dor with any given inventory level, based on the empirically proven assumption

that the newsvendor’s demand is correlated with the price of a financial asset.

They demonstrate the effectiveness of financial hedging when one can discover

tradable market assets partially correlated with market demand. Chod et al.

(2010) extend the work of Gaur and Seshadri (2005) by implicitly characterizing

the optimal multidimensional capacity investment and focusing on the comple-

mentarity/substitution effect between the operational (postponement and product)

flexibility and financial hedging. Ding et al. (2007) study the optimal policies

for capacity investment and hedging on currency exchange rates for a risk-averse

multinational newsvendor and find that the futures contract is the optimal hedge.

They establish the value of the joint use of the operational hedge (“allocation”

option) and the financial hedge, and understanding their effects on a risk-averse

firm’s capacity decisions and performance. Kouvelis et al. (2013) study how to

manage commodity risks (price and consumption volume) via physical inventory

and financial hedge in a multiperiod problem (with an interperiod utility function)

for a risk-averse firm procuring a storable commodity from a spot market at

a random price and a long-term supplier at a fixed price, where demand and

spot price of the commodity uncertainties are correlated. They contribute to

the literature and practice for managing storable commodity risks with tractable

optimal policies. Goel and Tanrisever (2017) study a firm that procures an input

commodity to produce an output commodity to sell to the end retailer. They

consider the stochastic dynamics of both input and output prices, and contribute

to the literature with the associated effect of their correlation on hedging decisions.

Turcic et al. (2015) explores the merits of hedging stochastic input costs (i.e.,
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reducing the risk of adverse changes in costs) in a decentralized, risk-neutral

supply chain. They address the role that supply chains play in shaping corporate

financial policies. Kouvelis et al. (2019) study hedging cash-flow risks in a supply

chain where firms invest internal funds to improve production efficiencies. They

contribute to this literature by exploring how the vertical interactions of firms in

a supply chain affect their cash hedging strategies.

In our research, we consider hedging production resource uncertainty that is

correlated with demand. We study how capacity investment level and hedging

contract choice are affected by demand and production resource uncertainties.

5.2 Notations and Assumptions of Hedging Model

Consider a product manufacturing firm that faces a two-stage in capacity invest-

ment/product manufacturing decision. We extend the analysis with a optimal

hedging decision in first stage. In the first stage, the firm chooses capacity

investment level as well as the hedge ratio in anticipation of demand and raw

material or component supply (production resource) uncertainty. The hedging

decision is modelled as linear hedging strategy and the corresponding physical

resource becomes

ℎ`V + (1 − ℎ) Ṽ,

where ℎ ∈ [0, 1] is the ‘hedge ratio’ chosen by the firm. Specifically, the firm

locks in a value for a proportion of physical production resource at production

stage. Define that ℎ = 0 as no hedging, ℎ = 1 as full hedging and ℎ ∈ (0, 1)

as partial hedging. In the second stage, the demand of the end product and the

revised availability of physical resource are realized, and the firm chooses the

production quantity constrained by the minimum of capacity level and physical

resource.

Let Πℎ ( , ℎ) denote the expected profit of the firm at a capacity level  and
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hedge ratio ℎ ∈ [0, 1] in capacity investment stage and let c∗
ℎ

(
 , ℎ, b, V

)
denote

the firm’s the optimal profit at production stage given a capacity level  , hedge

ratio ℎ and realization of uncertainties, the formulation of the problem is as

follows. The capacity investment stage problem is

max
 ≥0,ℎ∈[0,1]

Πℎ ( , ℎ) = max
 ≥0,ℎ∈[0,1]

− l + E
(b,V)

[
c∗ℎ ( , ℎ, b̃, Ṽ)

]
, (5.1)

where c∗
ℎ

(
 , ℎ, b, V

)
is obtained by solving the following production stage

problem:

c∗
ℎ

(
 , ℎ, b, V

)
= max

@
(b − 1@)@ − H@

s.t. 0 ≤ @ ≤ min
{
 ,

(
ℎ`V + (1 − ℎ)V

)
/H

}
.

For short, we name the formulation of the problem with procurement hedging

contract as Hedging Model.

5.3 Characterization of the Optimal Strategy for

Hedging Model

In this section, we characterize the firm’s optimal capacity investment, hedge

ratio and production decisions. The problem is solved using backward induction,

therefore, we first introduce optimal production decision given capacity  and

hedge ratio ℎ. We partition the state space (b, V) ∈
{
(b, V) : b > 0, V ∈ [V, V]

}
into four regions, Ω0 and Ωℎ8 , 8 = 1, 2, 3, each of which corresponds to different

optimal production quantity scenarios that we will show in Theorem 5. The

formal definitions of these regions are

Ωℎ1 ( , ℎ) :=
{
(b, V) : H < b < H + 21min

{ ℎ`V + (1 − ℎ)V
H

,  

}
, V < V ≤ V

}
,

Ωℎ2 ( , ℎ) :=
{
(b, V) : b ≥ H + 21 ; max

{
V,min

{ H − ℎ`V
1 − ℎ , V

}}
< V ≤ V

}
,

Ωℎ3 ( , ℎ) :=
{
(b, V) : b ≥ H +

21
(
ℎ`V + (1 − ℎ)V

)
H

, V ≤ V < max
{
V,min

{ H − ℎ`V
1 − ℎ , V

}}}
,
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and the complementary set of Ωℎ1 ( , ℎ) ∪ Ω
ℎ
2 ( , ℎ) ∪ Ω

ℎ
3 ( , ℎ) is Ω0, which

is the region of not investing in capacity in basic model. With the analysis

of production constraints, the optimal production strategy is characterized in

Theorem 5 and the expected profit Πℎ ( , ℎ) under optimal allocation is obtained.

In Theorem 6, the optimal resource capacity and hedge ratio is obtained from

Πℎ ( , ℎ) and characterized by unit capacity cost l.

Theorem 5 (Optimal Production Strategy of Hedging Model) Given capac-

ity  , hedge ratio ℎ and realizations of random variables (b̃ = b, Ṽ = V), the

optimal production level @∗
ℎ
( , ℎ, b, V) =



0, if (b, V) ∈ Ω0,

b − H
21

, if (b, V) ∈ Ωℎ1 ( , ℎ),

 , if (b, V) ∈ Ωℎ2 ( , ℎ),
ℎ`V + (1 − ℎ)V

H
, if (b, V) ∈ Ωℎ3 ( , ℎ),

and the corresponding optimal expected profit is

c∗
ℎ
( , ℎ, b, V) =



0, if (b, V) ∈ Ω0,
( b−H)2

41 , if (b, V) ∈ Ωℎ1 ( , ℎ),

(b − H) − 1 2, if (b, V) ∈ Ωℎ2 ( , ℎ),(
ℎ`V+(1−ℎ)V

)
( b−H)

H
− 1

( ℎ`V+(1−ℎ)V
H

)2, if (b, V) ∈ Ωℎ3 ( , ℎ).

Figure 5.1 is corresponding to Figure 3.2 panel (b) in basic model, which

illustrates a case that production resource could be constraining and the hedge

ratio ℎ ∈ (0, 1). The reason is the given capacity level is in between of

minimal and maximal production quantity that supported by production resource

realization with revised distribution. Consequently, in a large demand realization

scenario when internal optimal production quantity is not attainable, Ωℎ2 ( , ℎ)

and Ωℎ3 ( , ℎ) indicate that either the capacity constraint is tighter or the resource

constraint is, respectively. Particularly, when (b, V) ∈ Ωℎ3 ( , ℎ), production

resource is tighter than capacity level such that the optimal production strategy

is to use up all production resource. In the case ℎ = 0, the optimal production

decision allocation falls back to the state space division for optimal production

decision in basic model. Finally, in the case ℎ = 1, production resource always

equals to it mean value `V, so the optimal production decision can be irrelevant
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Figure 5.1: State space of optimal production strategy of hedging model

(a) When  ∈
(
ℎ`V+(1−ℎ)V

H
,
ℎ`V+(1−ℎ)V

H

)
and ℎ ∈ (0, 1)

Note: Since the realization of Ṽ is bounded, the state space is characterized by the value of  .
When  ∈

(
0,
ℎ`V+(1−ℎ)V

H

]
, the graphical state space division of optimal production decision of

Hedging model is identical to Figure 3.2 panel (a). Also  >
ℎ`V+(1−ℎ)V

H
is not feasible, because

the maximal amount of product using up physical production resource is ℎ`V+(1−ℎ)V
H

and it’s not
profitable to invest in capacity larger than this.

to capacity level if  ≥ `V/H or can fall back to the benchmark case when

 < `V/H.

We now proceed to characterize the optimal capacity investment level and

hedge ratio in capacity investment stage. The optimization problem in this stage

follows from Equation 5.1 by substituting E
(b,V)

[
c∗( , b̃, Ṽ)

]
by the characteri-

zation given by Theorem 1. To be specific, the expected profit as a function

of capacity level under optimal allocation is in following form: According to

Theorem 5, the expected profit in capacity investment stage when 0 ≤ ℎ < 1 is

denoted by Πℎ ( , ℎ) =

− l +
∫ V

V

∫ H+21min
{
ℎ`V+(1−ℎ)V

H
, 

}
H

(b − H)2
41

5 (b, V)3b3V

+
∫ V

V

∫ ∞

H+21min
{
ℎ`V+(1−ℎ)V

H
, 

} (
(b − H)min

{ ℎ`V + (1 − ℎ)V
H

,  

}
− 1

(
min

{ ℎ`V + (1 − ℎ)V
H

,  

})2
)
5 (b, V)3b3V,

(5.2)
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the expected profit when ℎ = 1 is

Πℎ ( , 1) = − l +
∫ H+21min

{
`V

H
, 

}
H

(b − H)2
41

5b (b)3b

+
∫ ∞

H+21min
{
`V

H
, 

} (
(b − H)min

{ `V
H
,  

}
− 1

(
min

{ `V
H
,  

})2
)
5b (b)3b

=ΠD
(
min{ , `V/H}

)
,

(5.3)

where ΠD (·) is expected profit function of the resource unconstrained benchmark

model.

Then we obtain optimal capacity investment level and hedge ratio using above

equations. The optimal strategy is characterized by unit capacity cost and the

covariance between demand and production resource uncertainties.

Theorem 6 (Optimal Capacity Investment Strategy of Hedging Model) Define

set � =

{
ℎ

��� max
{
0,

H *−V
`V−V

}
≤ ℎ ≤ 1

}
. The optimal strategy is characterized in

two cases:

1. when Cov
(
Ṽ,

(
b̃ − H − 21`V

H

)+) ≤ 0, the optimal strategy is
(
 ∗
ℎ
, ℎ∗

)
=



(0, 0), if Ẽ
b

[
(b̃ − H)+

]
≤ l;(

 * (l), ℎ∗ = �
)
, if Ẽ

b

[(
b̃ − H −

21`V
H

)+]
≤ l < Ẽ

b

[
(b̃ − H)+

]
;

(`V/H, 1), if 0 < l ≤ Ẽ
b

[(
b̃ − H −

21`V
H

)+]
;

2. when Cov
(
Ṽ,

(
b̃ − H − 21`V

H

)+)
> 0, we define lℎ as the unique solution of∫ H � (l)

V
(V − `V)Ẽ

b

[ (
b̃ − H − 21V

H

)+��V] 5V (V)3V = 0, where lℎ is positive

when Cov
(
Ṽ,

(
b̃ − H − 21Ṽ

H

)+)
> 0. The optimal strategy characterized as
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follows
(
 ∗
ℎ
, ℎ∗

)
=



(0, 0), if Ẽ
b

[
(b̃ − H)+

]
≤ l;(

 * (l), ℎ∗ = �
)
, if Ẽ

b

[(
b̃ − H −

21`V
H

)+]
≤ l < Ẽ

b

[
(b̃ − H)+

]
;(

`V

H
, 1

)
, if Ẽ

b ,Ṽ

[
1{Ṽ≥`V }

(
b̃ − H −

21`V
H

)+]
≤ l < Ẽ

b

[(
b̃ − H −

21`V
H

)+]
;(

 �ℎ (l), ℎ
� (l)

)
, if max{lℎ, 0} < l < Ẽ

b ,Ṽ

[
1{Ṽ≥`V } (b̃ − H −

21`V
H
)+

]
;(

 � (l), 0
)
, if 0 < l ≤ max{lℎ, 0}

where
(
 �
ℎ
(l), ℎ� (l)

)
is uniquely solved by


l =

∫ V

H �
ℎ
−ℎ�`V

1−ℎ�

E
[
(b − H − 21 �ℎ )

+��V] 5V (V)3V
0 =

∫ H �
ℎ
−ℎ�`V

1−ℎ�

V

(`V − V)E
[(
b̃ − H −

21
(
ℎ�`V + (1 − ℎ�)V

)
H

)+���V] 5V (V)3V
and Cov

(
Ṽ,

(
b̃ − H − 21Ṽ

H

)+)
> Cov

(
Ṽ,

(
b̃ − H − 21`V

H

)+)
> 0.

Theorem 6 shows that the optimal capacity investment and hedge ratio is

characterized into two cases by a covariance threshold Cov
(
Ṽ,

(
b̃ − H − 21`V

H

)+) .
Within two cases, the optimal strategy is critically decided by the value of unit

capacity cost l. In both cases, the firm should not invest in the project when the

unit capacity cost is too high; and when unit capacity is in a slightly low range, the

firm can optimally invest in a resource-unconstrained capacity investment level

and at the same time the optimal hedge ratio can take any value within the range[
max

{
0,

H *−V
`V−V

}
, 1

]
. Also in both cases, optimal strategy is

(
 ∗
ℎ
, ℎ∗

)
=

(
`V
H
, 1

)
when unit capacity cost is in the range Ẽ

b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
≤ l <

Ẽ
b

[(
b̃ − H − 21`V

H

)+]
. As summarized above, the optimal strategy for both cases

are identical when l ≥ Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
.

Then we discuss the optimal capacity investment and hedging strategy when

><460 < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
. In the case 1 where the covariance

Cov
(
Ṽ,

(
b̃ − H− 21`V

H

)+) is non-positive, the optimal strategy is simply
(
 ∗
ℎ
, ℎ∗

)
=
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(
`V
H
, 1

)
. Whereas in case 2, partial hedge is optimal when unit capacity cost is

larger than max{0, lℎ} and no hedge is optimal when unit capacity is no more

than this value. Noting thatlℎ is positive only when another covariance threshold

Cov
(
Ṽ,

(
b̃ − H − 21Ṽ

H

)+)
> 0.

Corollary 6 When l satisfies max{lℎ, 0} < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
,

we have  � (l) ≤  �
ℎ
(l). As resource constrained capacity level  � (l) is the

unique solution of l =
∫ V

H �

∫ ∞
H+21 � (b − H − 21 �) 5 (b, V)3b3V, we have that

 � (l) =  �
ℎ
(l) when ℎ� = 0.

5.4 Sensitivity Analysis

In this section, we analyse the effect of demand variability, production resource

variability and the correlation between demand and production resource un-

certainties on optimal capacity investment level, optimal hedge ratio and the

corresponding optimal profit. In analysing these sensitivities, we make the same

distribution assumption on demand and production resource uncertainties, that

is, (b̃, Ṽ) follows a bivariate normal distribution with mean vector (`b , `V)′ and

variance-covariance matrix
©«
f2
b

dfbfV

dfbfV f2
V

ª®®¬, where the correlation coefficient

d ∈ (−1, 1). Due to the property of normal distribution, the range of production

resource realization becomes (−∞,∞).

We firstly rewrite the optimal capacity investment and hedge strategy for

the case that demand and production resource uncertainties follows a bivariate

normal distribution.

Proposition 15 With bivariate normal distribution assumption, the covari-

ance thresholds in Theorem 6 are transformed as Cov
(
Ṽ,

(
b̃ − H − 21`V

H

)+)
=

dfVfbΦ
( `b−H−21`V/H

fb

)
and

Cov
(
Ṽ,

(
b̃ − H − 21Ṽ

H

)+)
= fV (dfb −

21fV
H
)Φ

(
`b−H−21`V/H√

(
21fV
H
−dfb )2+f2

b
(1−d)2

)
. The opti-
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mal strategy with bivariate normal distribution assumption is characterized by

following two cases:

1. when d ≤ 0, the optimal strategy is
(
 ∗
ℎ
, ℎ∗

)
=



(0, 0), if Ẽ
b

[
(b̃ − H)+

]
≤ l;(

 * (l), 1
)
, if Ẽ

b

[(
b̃ − H −

21`V
H

)+]
≤ l < Ẽ

b

[
(b̃ − H)+

]
;

(`V/H, 1), if 0 < l ≤ Ẽ
b

[(
b̃ − H −

21`V
H

)+]
;

2. when d > 0, we define lℎ as the unique solution of∫ H � (l)
−∞ (V − `V)Ẽ

b

[ (
b̃ − H − 21V

H

)+��V] 5V (V)3V = 0, where lℎ is positive

only when d > 21fV
Hfb

. We have optimal strategy characterized as follows(
 ∗
ℎ
, ℎ∗

)
=



(0, 0), if Ẽ
b

[
(b̃ − H)+

]
≤ l;(

 * (l), 1
)
, if Ẽ

b

[(
b̃ − H −

21`V
H

)+]
≤ l < Ẽ

b

[
(b̃ − H)+

]
;(

`V

H
, 1

)
, if Ẽ

b ,Ṽ

[
1{Ṽ≥`V }

(
b̃ − H −

21`V
H

)+]
≤ l < Ẽ

b

[(
b̃ − H −

21`V
H

)+]
;(

 �ℎ (l), ℎ
� (l)

)
, if max{0, lℎ} < l < Ẽ

b ,Ṽ

[
1{Ṽ≥`V } (b̃ − H −

21`V
H
)+

]
;(

 � (l), 0
)
, if 0 < l ≤ max{0, lℎ},

where
(
 �
ℎ
(l), ℎ� (l)

)
is uniquely solved by


l =

∫ ∞

H �
ℎ
−ℎ�`V

1−ℎ�

E
[
(b − H − 21 �ℎ )

+��V] 5V (V)3V
0 =

∫ H �
ℎ
−ℎ�`V

1−ℎ�

−∞
(`V − V)E

[(
b̃ − H −

21
(
ℎ�`V + (1 − ℎ�)V

)
H

)+���V] 5V (V)3V.
Noting that the covariance thresholds is calculated as a function with the

sign decided by the value of correlation. Also, due to the range of production

resource realization becomes Ṽ ∈ (−∞,∞) such that the optimal hedge ratio

when Ẽ
b

[(
b̃ − H − 21`V

H

)+]
≤ l < Ẽ

b

[
(b̃ − H)+

]
does not take any value within a

range, since on the one hand, there is no minimal amount of production resource
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guaranteed for production process, on the other hand, a increases in hedge ratio

increases the marginal profit.

Proposition 15 shows that the full hedge is optimal when the correlation

between demand and production resource uncertainties is non-positive. It is

possible for partial hedge being optimal only when the correlation is positive

and the unit capacity cost is small enough. Beside the no capacity investment

case, no hedging is optimal only when correlation is high enough and the unit

capacity cost is even smaller and the optimal expected profit in this case equals to

the optimal profit in basic model, that is Πℎ ( � (l), 0) = Πℎ ( � (l)). Then, we

further discuss how does d shape the optimal expected profit.

Proposition 16 (Impact of d on Πℎ ( ∗ℎ, ℎ
∗) - Hedging Model) When d > 0

and

0 < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
, Πℎ ( ∗ℎ, ℎ

∗) strictly increases in d; other-

wise, Πℎ ( ∗ℎ, ℎ
∗) is not sensitive to d.

Proposition 16 indicates that when partial hedge or no hedge is optimal, the

profit increases in the correlation between demand and production resource

uncertainties. For the effect of d on optimal expected profit Πℎ ( ∗ℎ, ℎ
∗) the result

is in line with the the effect on optimal profit of basic model, intuitively, as the

correlation increases, high (low) demand is more likely to be matched by high

(low) production resource, and the production resource is less constraining for the

high demand to be met. On expectation, this higher correlation brings production

stage optimal structure closer to the resource-unconstrained case thus the higher

correlation is more beneficial for the firm.

For the sensitivity analysis for optimal capacity investment level and hedge

ratio. We’ve discussed how the resource unconstrained capacity level  * and

resource constrained capacity level  � change in uncertainty parameters. Now

what remain unexplored are how optimal partial hedge ratio ℎ� (l) and corre-

sponding optimal capacity investment level  �
ℎ
(l) affected by the correlation,

demand variability and production resource variability. As their sensitivity results
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Figure 5.2: Effect of the correlation between demand and production resource
uncertainties d
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(c) Effect of d on Πℎ ( ∗ℎ, ℎ
∗)

Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fV = 16%`V , fb = 16%`b and d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}

cannot be obtained analytically, we run the extensive numerical analysis to show

the how do uncertainties parameters affect these optimal decisions. Starting from

the effect of the correlation d on ℎ� (l) and  �
ℎ
(l).

We find that a higher correlation leads to ℎ� (l) decreases and  �
ℎ
(l)

increases.

5.4.1 Sensitivity to Demand Variability

In this section, we investigate how demand variability fb affects the optimal

capacity investment level, optimal hedge ratio and corresponding expected profit.

In examine the demand variability, we make a comparison with the sensitivity

result of a basic model where the hedge strategy is not applied.
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Figure 5.3: Effect of demand variability fb on optimal profit Πℎ ( ∗ℎ, ℎ
∗).
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(a) Effect of fb on Π∗
ℎ
when d = −0.5

4% 8% 12% 16% 20% 24% 28%

34

35

36

37

38

39

40

41

42
=0.3

=0.6

=0.9

=1.2

=1.5

=1.8

=2.1

(b) Effect of fb on Π∗
ℎ
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Note: Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fV = 16%`V and fb is the percentage of `b which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.

Proposition 17 (Impact of fb on Πℎ ( ∗ℎ, ℎ
∗) - Hedging Model) Πℎ ( ∗ℎ, ℎ

∗) strictly

increases infb when 0 < l < Ẽ
b

[
(b̃−H)+

]
; otherwise,Πℎ ( ∗ℎ, ℎ

∗) is not sensitive

to fb .

We find that the optimal profit is always increases in demand variability as long

as the optimal capacity investment level is positive. Recalling that the optimal

profit in basic model is first decreasing then increasing in demand variability

when the correlation is negative, in comparison, we find that the negative effect

of the demand variability is vanished due to the optimal hedging. A graphic

representation of this proposition is shown in Figure 5.3.

In above figure, we find that a higher demand variability leads to ℎ� (l)

decreases and  �
ℎ
(l) increases. Similarly, the negative influence of higher

demand variability on capacity investment level is vanished because of the

optimal hedging.

5.4.2 Sensitivity to Production Resource Variability

In this section, we conduct sensitivity analyses to study how firms should

adjust their capacity investment level and hedge ratio as a response to changing

production resource variability. Also how production resource variability affects
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Figure 5.4: Effect of demand variability fb on optimal strategy ( ∗
ℎ
, ℎ∗).
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(a) Effect of fb on ℎ∗ when d = −0.5
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(c) Effect of fb on ℎ∗ when d = 0.5

4% 8% 12% 16% 20% 24% 28%

3.6

3.8

4

4.2

4.4

4.6

4.8

5
=0.3

=0.6

=0.9

=1.2

=1.5

=1.8

=2.1

(d) Effect of fb on  ∗
ℎ
when d = 0.5

Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fV = 16%`V and fb is the percentage of `b which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.
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Figure 5.5: Effect of production resource variability fV on optimal strategy
Πℎ ( ∗ℎ, ℎ

∗).
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(a) Effect of fV on Π∗ℎ when d = −0.5
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Note: Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fb = 16%`b and fV is the percentage of `V which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.

the profitability of the firm is analysed. Proposition 18 shows expected profit

increases in production resource variability.

Proposition 18 (Impact of fV on Πℎ ( ∗ℎ, ℎ
∗) - Hedging Model) When d > 21fV

Hfb

and 0 < l < lℎ, Πℎ ( ∗ℎ, ℎ
∗) strictly increases in fV; otherwise, Πℎ ( ∗ℎ, ℎ

∗) is

not sensitive to fV.

We find that only when optimal hedge ratio is zero, the profit increases in

resource variability, otherwise, the profit doesn’t change in resource variability.

This reflects that the optimal partial hedge and corresponding capacity investment

level are chosen in a way that the optimal expected profit is not a function of

resource variability any more. A graphic representation of this proposition is

shown in Figure 5.5. Recalling the impact of resource variability on the optimal

profit stated in Proposition 6, the result also crucially depends on unit capacity

investment cost l and the correlation d. There exist threshold value of l and d

such that only when l less than its threshold and d larger than its threshold firm’s

optimal expected profit first increases then decreases in production resource

variability; otherwise, the profit monotonically decreases in production resource

variability. Different from the sensitivity result in basic model, in Proposition 18,

where increasing resource variability has negative influence on the optimal profit
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Figure 5.6: Effect of production resource variability fV on optimal strategy
( ∗

ℎ
, ℎ∗).
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(a) Effect of fV on ℎ∗ when d = −0.5
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(c) Effect of fV on ℎ∗ when d = 0.5
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(d) Effect of fV on  ∗ℎ when d = 0.5

Note: Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fb = 16%`b and fV is the percentage of `V which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.

in basic model, for hedging model, it is where the optimal profit is insensitive to

resource variability. Under condition that increasing resource variability is more

profitable in basic model, the optimal profit in hedging model is also increasing

in resource variability.

In above figure, we find that a higher production resource variability leads

to ℎ� (l) increases and  �
ℎ
(l) decreases. Recalling from the sensitivity result

for the effect of production resource variability in basic model. The capacity

investment level increases in resource variability only when the correlation is

high and the unit capacity cost is low; otherwise, the capacity level decreases in

resource variability. In this optimal partial hedge scenario, the increasing trend

of capacity investment in resource variability remains and the decreasing trend is
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removed because of hedge.

5.5 Profitability Loss

In this section, we address the third research question by extending our analyses

of the impact of the demand and production resource uncertainties on the

profitability-loss.

Previously, the profitability loss is incurred when the firm miss-specifying

the capacity because of ignoring the production resource. In this section, we also

discuss the significant of this loss in Section 5.5.1, specifically, this profitability

loss denoted by ΔAΠ1
ℎ
is defined as the percentage loss of profit due to ignoring

production resource when choosing optimal capacity investment level at the same

time the hedge ratio is always 0 as the resource is miss-regarded as infinite. The

mathematical formulation is as follows ΔAΠ1
ℎ

:= Πℎ ( ∗ℎ ,ℎ
∗)−Πℎ ( * ,0)

Πℎ ( ∗ℎ ,ℎ∗)
. In addition,

miss-specifying hedge ratio can also lead to profitability loss, specifically, firm

heuristically chooses always fully hedging can cause profitability loss that is

denoted by ΔAΠ2
ℎ

:=
Πℎ ( ∗ℎ ,ℎ

∗)−max
 ≥0

Πℎ ( ,1)
Πℎ ( ∗ℎ .ℎ∗)

.We will investigate the significance of

this profitability in Section 5.5.2.

5.5.1 Profitability Loss due toMiss-specifying Capacity Level

In this section, we study how the correlation between demand and production

resource, demand variability and production resource variability affect the value

of profitability-lossΔAΠ1
ℎ

:= Πℎ ( ∗ℎ ,ℎ
∗)−Πℎ ( * ,0)

Πℎ ( ∗ℎ ,ℎ∗)
.

Starting from the impact of the correlation, following figure shows that the

profitability loss ΔAΠ1
ℎ
decreases in the correlation and the value of the loss.
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Figure 5.7: Effect of correlation d on profitability loss ΔAΠ1
ℎ
.
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Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fV = 16%`V , fb = 16%`b and d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}

Then, we observe that the profitability-loss ΔAΠ1
ℎ
is increasing in demand

variability when the correlation is negative; the profitability-loss first decreases

then increases in demand variability when the correlation is positive. This

observation is consistent with the observation of profitability-loss for basic model.

Figure 5.8: Effect of demand variability fb on profitability loss ΔAΠ1
ℎ
.
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(a) Effect of fb on ΔAΠ1
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when d = −0.5
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(b) Effect of fb on ΔAΠ1
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when d = 0.5

Note: Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fV = 16%`V and fb is the percentage of `b which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.

Lastly, as for the impact of production resource variability, we observe that

the profitability-loss ΔAΠ1
ℎ
is increasing in the resource variability when the

correlation is negative; the profitability-loss first decreases then increases in the

resource variability when the correlation is positive. This observation is also

consistent with the observation of profitability-loss for basic model.
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Figure 5.9: Effect of production resource variability fV on optimal strategy
ΔAΠ

1
ℎ
.
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(a) Effect of fV on ΔAΠ1
ℎ
when d = −0.5
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(b) Effect of fV on ΔAΠ1
ℎ
when d = 0.5

Note: Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fb = 16%`b and fV is the percentage of `V which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.

In summary, we find that how profitability-loss ΔAΠ1
ℎ
change in uncertainty

parameters have the same pattern as the impact of these uncertainty parameters

on the basic model. On average, the loss is larger than the one in basic model.

5.5.2 Profitability Loss due to Miss-specifying Hedge Ratio

In this section, we study how the correlation between demand and production

resource, demand variability and production resource variability affect the value of

profitability-loss ΔAΠ2
ℎ
, which is the percentage Loss of profit due to heuristically

choosing always fully hedge, specifically,ΔAΠ2
ℎ

:=
Πℎ ( ∗ℎ ,ℎ

∗)−max
 ≥0

Πℎ ( ,1)
Πℎ ( ∗ℎ ,ℎ∗)

.

As full hedging can be optimal strategy under certain condition and therefore

the profitability-loss ΔAΠ2
ℎ
= 0, the following corollary provides the condition,

under which this profitability is zero.

Corollary 7 Under condition d ≤ 0 or l ≥ Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
, we

have that ΔAΠ2
ℎ
= 0 .

Or equivalently, the profitability-loss is positive only when the correlation is

positive and the unit capacity cost is large enough.

Starting from the impact of correlation on the profitability-loss ΔAΠ2
ℎ
. The
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Figure 5.10: Effect of correlation d on profitability loss ΔAΠ2
ℎ
.
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Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fV = 16%`V , fb = 16%`b and d ∈ {−0.995,−0.75,−0.5,−0.25, 0, 0.25, 0.5, 0.75, 0.995}

Figure 5.11: Effect of demand variability fb on optimal strategy ΔAΠ2
ℎ
.
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(a) Effect of fb on ΔAΠ2
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when d = −0.5
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(b) Effect of fb on ΔAΠ2
ℎ
when d = 0.5

Note: Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fV = 16%`V and fb is the percentage of `b which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.

profitability-loss increases in the correlation. When the unit capacity cost is

increasing the profitability-loss becomes smaller.

Then the impact of demand variability on the profitability-loss ΔAΠ2
ℎ
. We

also find that a higher demand variability leads to a larger profitability-loss.

Finally, we discuss the observations on the impact of the production resource

variability. As the production resource variability increasing the profitability-loss

ΔAΠ
2
ℎ
.

To summarize, the profitability-loss ΔAΠ2
ℎ
is positive when the correlation

is very high and the unit capacity cost is low. And when the profitability-loss

is positive, it increases when demand variability increases, production resource
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Figure 5.12: Effect of production resource variability fV on optimal strategy
ΔAΠ

2
ℎ
.
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(a) Effect of fV on ΔAΠ1
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when d = −0.5
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(b) Effect of fV on ΔAΠ2
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when d = 0.5

Note: Figures are depicted using baseline scenario 1 = 1, H = 1, `b = 16H, `V = (`b − H)H/4,
fb = 16%`b and fV is the percentage of `V which are {4%, 8%, 12%, 16%, 20%, 24%, 28%}.

variability increases and the correlation between the two increases. Note that

a high positive correlation means that higher demand is more likely to occur

together with high resource availability, at the same time, a low unit capacity cost

translates to a higher capacity investment level, as a result, the internal optimal

production quantity as well as high second stage profit is more possible to attain

as both resource constraint and capacity constraint are large. As uncertainty in

resource is beneficial as stated above, full hedge would lead to less profitability.
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Chapter 6

Conclusion and Discussion

We have studied the stochastic capacity investment problem of how a firm should

anticipate the capacity investment level change in demand and production resource

uncertainties, where the production resource can either be financial, e.g. working

capital / budget, or be physical, e.g. raw material / components. And through

analytical and computational study, we show how significant this jointly influence

of uncertainties make the firm loss when the firm simply ignores the production

resource. Also we investigate two management strategies to counteract against

financial production resource shortage and physical resource shortage respectively,

that are pre-shipment finance and procurement hedging strategy.

More specifically, first of all, we obtain the optimal capacity investment

strategy under these uncertainties and show that the unit capacity cost critically

characterizes the optimal strategy. We perform a whole set of analytical sensitivity

analyses to answer how production resource uncertainty, demand uncertainty

and their correlation shape the optimal capacity and profitability. We find that

demand variability is not always favourable as traditional literature suggests.

The sensitivity results with respect to production resource variability is more

complex, unit capacity cost and the correlation crucially determine the result.

This suggests managers that the capacity intensity together with how the product

demand correlates with the economic condition shape the impact of production
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resource volatility. Then, for the first time in the literature, our study provides

insights on how the correlation between the production resource and demand may

reshape the optimal capacity investment decision as well as the expected profit.

Thirdly, via computational study, we find that high volatility of both demand and

production resource results in high profitability-loss; and lower the correlation,

higher the profitability-loss.

We then extend the model with a pre-shipment finance facility to alleviate the

potential budget shortage in production stage. We also perform a whole set of

analytical sensitivity analyses to answer how production resource uncertainty,

demand uncertainty and their correlation shape the optimal capacity and prof-

itability. And find that when the interest rate of the pre-shipment finance is lower

than a threshold, then higher demand variability is beneficial that is different from

the sensitivity result in basic model. In analyzing profitability-loss, we find that

the loss is negligibly small, suggesting that as long as there is a last minute finance

available for alleviate the budget constraint, the capacity investment decision can

be made without considering the possibility of budget short.

Finally, we extend the model with procurement hedging contract to control

the uncertainty of physical resource uncertainty in the capacity investment stage.

We find that partial hedging can be optimal if the correlation between and

production resource uncertainties is high and the unit capacity investment cost is

very low. The sensitivity analyses show that a increasing in production resource

uncertainty, demand uncertainty and their correlation all lead to the increasing in

the profitability. We find that the always full hedging heuristic strategy leads to

very small profitability-loss.

Our model framework also captures an assemble-to-order system where the

each unit of final product requires one unit of component 1 (which is represented

by capacity investment level in our basic model) and one unit of component 2

(which is represented by the additional production resource—which is either

budget or physical resource). The decision variable of the model is optimizes
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component 1 order quantity under the uncertainty in component 2 volume. This

component 2 can also be regarded as the assembly capacity that limits the volume

of assembling end product. We offer a few future research directions for this

framework. One can extend this framework by also considering optimizing

component 2 order quantity and subject to yield uncertainty (hence production

uncertainty).

One limitation of our study is that it examines one type of production resource

and manages different type of the resource separately. In reality, financial

and physical resources well as other dimensions of constraints affect the firm’s

production process so as to the capacity investment decision. To assess the

impact of both pre-shipment finance and procurement hedging contract as well as

other dimensions of constraints, a simulation study fitting the firm’s operational

structure is likely to be required.

The model and analysis in this study can potentially provide a foundation

and rule of thumb for future research to see the resemblance between the area of

operations-OM and physical supplementary resource reliability management.
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Appendix A

Appendix

For ease of reading, we list the notations used through the paper in Table A.1.

Table A.1: Summary of Notations

Random Variables and Corresponding Parameters
b̃ demand parameter
Ṽ production resource
Constant Parameters
l unit capacity investment cost
H unit production cost
1 price sensitivity to quantity
`b , fb expected value and standard deviation of marginal demand
[V, V] support of production resource
`V, fV expected value and standard deviation of marginal production resource
d correlation coefficient between b̃ and Ṽ
A? interest rate of pre-shipment finance
Optimal Decisions
@ production quantity
 * resource-unconstrained capacity level
 � resource-constrained capacity level
!? pre-shipment finance loan
ℎ the hedge ratio
Profit Functions
c Optimal production stage profit
Π Expected profit under resource constrained case (basic model)
ΠD Expected profit under resource unconstrained case
Π? Expected profit for Pre-shipment finance model
Πℎ Expected profit for Hedging model
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A.1 Proofs for the Optimal Strategy and sensitivity

analyses of Basic Model

A.1.1 Proofs for the Optimal Strategy

Theorem 1 and 2 present the optimal strategy of basic model in production stage

and capacity investment stage respectively. We provide the proofs of these two

theorems in this section. Then we illustrate the proof of Lemma 2 that compare

the capacity investment level and profitability between benchmark model and this

basic model.

Proof of Theorem 1:

The problem is solved by KKT condition. Note that (b − 1@)@ − H@ is concave

with first order derivative equals zero at @ = b−H
21 . If b−H

21 ≤ 0, then @∗ = 0;

if 0 <
b−H
21 < min

{
 ,

V

H

}
, then @∗ = b−H

21 ; lastly, if
b−H
21 ≥ min

{
 ,

V

H

}
, then

@∗ = min
{
 ,

V

H

}
.

Proof of Theorem 2:

The optimal capacity investment level for basic model is derived from the

expected profit in capacity investment stageΠ( ), namely Equation (3.2). Taking

the first order derivative of Π( ) in terms of  , we get that

mΠ( )
m 

=



− l +
∫ ∞

H+21 
(b − H − 21 ) 5b (b)3b, if  ∈

[
0,
V

H

]
− l +

∫ V

H 

∫ ∞

H+21 
(b − H − 21 ) 5 (b, V)3b3V, if  ∈

( V
H
,
V

H

)
− l if  ∈

[ V
H
, ∞

)
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Note that mΠ( )
m 

is continuous, we have the second order derivative m2Π( )
m 2 =



− 2�̄b (H + 21 ), if  ∈
[
0,
V

H

)
− 2

∫ V

H 

∫ ∞

H+21 
5 (b, V)3b3V − H

∫ ∞

H+21 
(b − H − 21 ) 5 (b, H )3b, if  ∈

( V
H
,
V

H

)
0, if  ∈

( V
H
, ∞

)
.

The immediate result from above equation is that Π( ) is concave in  since
m2Π( )
m 2 ≤ 0. Therefore, the optimal  ∗ satisfies that  ∗ = 0 if mΠ( )

m 
| =0 ≤ 0,

that is, l ≥ E
[
(b̃ − H)+

]
;  ∗ satisfies −l +

∫ ∞
H+21 ∗ (b − H− 21 ∗) 5b (b)3b = 0, if

mΠ( )
m 
| =0 ≥ 0 and mΠ( )

m 
| =V/H ≤ 0. That is, E

[ (
b̃−H−21V/H

)+] ≤ l < E
[
(b̃−

H)+
]
; and lastly,  ∗ satisfies that−l+

∫ V

H ∗

∫ ∞
H+21 ∗ (b−H−21 ∗) 5 (b, V)3b3V = 0

if l < E
[ (
b̃ − H − 21V/H

)+] .

A.1.2 Proofs for the sensitivity analyses

In this appendix section, we provide the proofs of sensitivity results for basic

model. For tractability, some preliminaries are introduced before all proofs. We

define several standardized normal distributions to differentiate the transformation

for Ṽ, b̃, b̃ | Ṽ and Ṽ |b̃, which are Ĩ0
3
=

Ṽ−`V
fV

, Ĩ1
3
=

b̃−`b
fb

, Ĩ2
3
=

b̃−`b−d
fb

fV
( Ṽ−`V)√

f2
b
(1−d2)

���Ṽ
and Ĩ3

3
=

Ṽ−`V−d
fV

fb
(b̃−`b )√

f2
V
(1−d2)

���b̃ respectively, therein, the conditional distributions are
normally distributed with parameters b̃ | Ṽ ∼ #

(
`b + d

fb
fV
( Ṽ − `V), f2

b
(1 − d2)

)
and Ṽ |b̃ ∼ #

(
`V + d

fV
fb
(b̃ − `b), f2

V
(1 − d2)

)
. The expected profit in the capac-

ity investment stage Π( ), i.e. Equation (3.2), will be widely used in the proofs

of sensitivity results, for the ease of calculation, we transform it in standard

normal distribution form, that is

Π( ) = −l +
4∑
8=1
+8 ( ), (A.1)
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where +8 ( ) 8 = 1, 2, · · · , 4 are defined as

+1( ) :=
∫ H −`V

fV

−∞

∫ H+
21 (I0fV+`V )+

H −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)2

41
q(I2)3I2q(I0)3I0,

+2( ) :=
∫ ∞

H −`V
fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

(
I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)2

41
q(I2)3I2q(I0)3I0,

+3( ) :=
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)((

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
 − 1 2

)
q(I2)3I2q(I0)3I0,

and +4( ) :=∫ H −`V
fV

−∞

(I0fV + `V)
H

∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H − 1

( I0fV + `V
H

))
q(I2)3I2q(I0)3I0.

AsΠ( ) is the continuous function, the derivatives at the boundaries are cancelled

out. Therefore, the first order derivative with respect to  is mΠ( )
m 

=

−l +
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

(
I2

√
f2
b
(1 − d2) + `b + dfbI0 − H − 21 

)
q(I2)3I2q(I0)3I0.

(A.2)
We introduce the Stein’s Lemma which helps simplifying the proof.

Lemma 3 (Stein, 1972)

1. Suppose Ĩ is a normally distributed random variable with expectation 0 and

variance 1. Further suppose 6 is a function for which the two expectations

E
[
6( Ĩ) Ĩ

]
and E

[
m6( Ĩ)
mĨ

]
both exist (the existence of the expectation of any

random variable is equivalent to the finite of the expectation of its absolute

value). Then

E
[
6( Ĩ) Ĩ

]
= E

[m6( Ĩ)
mĨ

]
.

2. Suppose -̃ is a normally distributed random variable with expectation

` and variance f2. Further suppose 6 is a function for which the two
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expectations E
[
6( -̃) ( -̃ − `)

]
and E

[
m6( -̃)
m-̃

]
both exist (the existence of

the expectation of any random variable is equivalent to the finite of the

expectation of its absolute value). Then

E
[
6( -̃) ( -̃ − `)

]
= f2E

[m6( -̃)
m-̃

]
.

First of all, we prove the impact of correlation between demand and production

resource uncertainties, the result of which is summarized in Proposition 1.

Proof of Proposition 1:

In this proof, we demonstrate that both  � and Π( �) increase in d. Starting

from the proof for  �, 3 �

3d
= −

( (
m2Π
m md

) / (
m2Π
m 2

) )����
 �?

is derived by implicit

differentiation, m2Π
m md

is calculated from Equation (A.2) such that

m2Π( )
m md

=

∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

(
fbI0 −

fbdI2√
1 − d2

)
q(I2)3I2q(I0)3I0

=fbq

( H − `V
fV

) (
1 −Φ

(
fV (H + 21 − `b) − dfb (H − `V)

fbfV
√

1 − d2

))
> 0,

that is, m
2Π( )
m md

> 0 for all K. As a result,  � increases in d is proved.

Subsequently, we provide the proof for the impact of d on Π( �). According

to the Envelope Theorem, 3Π( 
� (l))
3d

=
mΠ( )
md

���
 �

. The derivative of Equation

(A.1) with respect to d is mΠ( )
md

=
∑4
8=1

m+8 ( )
md

, noting that the derivatives at the

boundaries are cancelled out because of the continuity of Π( ). Therefore, we
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have mΠ( )
md

=

fb√
1 − d2

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )+

H −`b −fb dI0
fb

√
1−d2

H−`b −fb dI0
fb

√
1−d2(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0

+
fb√

1 − d2

∫ ∞

H −`V
fV

∫ H+21 −`b −fb dI0
fb

√
1−d2

H−`b −fb dI0
fb

√
1−d2(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0

+
fb√

1 − d2

∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

 
(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0

+
fb√

1 − d2

∫ H −`V
fV

−∞

(I0fV + `V)
H

∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)(

I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0.

Transforming standard normal distributions back to b̃ and Ṽ, we have
mΠ( )
md

=

(
1

1−d2

)
fb
fV

E
b

[
E
V |b

[
@∗( , b̃, Ṽ) ·

(
Ṽ − `V − d

fV
fb
(b̃ − `b)

)���b̃] ] . Since

Ṽ |b̃ follows normal distribution Ṽ |b̃ ∼ #
(
`V + d

fV
fb
(b̃ − `b), f2

V
(1 − d2)

)
and

@∗( , b, V) is piecewise differentiable and continuous, E
V |b

[
@∗( , b, Ṽ) ·

(
Ṽ −

`V − d
fV
fb
(b − `b)

)���b] is able to be simplified by Stein’s lemma such that

E
V |b

[
@∗( , b, Ṽ) ·

(
Ṽ − `V − d

fV
fb
(b − `b)

)���b] = f2
V
(1 − d2) E

V |b

[
m@∗ ( ,b,Ṽ)

mV

���b] , we
then obtain

mΠ( )
md

=fbfVE
b

[
E
V |b

[m@∗( , b, Ṽ)
mV

���b] ] = fbfV ∬
Ω3

1
H
5 (b, V)3b3V > 0.

Proofs for the fb Results

Proof of Proposition 2:

We will investigate the impact of fb on  * and ΠD ( *). ΠD and mΠD ( )
m 

are transformed into expectations with standard normal distribution as follows,
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ΠD ( ) =

−l +
∫ H+21 −`b

fb

H−`b
fb

(I1fb + `b − H)2

41
q(I1)3I1 +

∫ ∞

H+21 −`b
fb

(
(I1fb + `b − H) − 1 2)q(I1)3I1

and mΠD ( )
m 

= −l+
∫ ∞
H+21 −`b

fb

(I1fb + `b − H−21 )q(I1)3I1. Following analyses

are using above two expressions:

1. The impact of fb on  * is calculated by implicit differentiation 3 *

3fb
=

−
( (

m2ΠD
m mfb

) / (
m2ΠD
m 2

) )����
 *

to prove the impact of fb on  * . From normal

distribution property
∫ ∞
G
Iq(I)3I = q(G), we have

m2ΠD ( )
m mfb

=

∫ ∞

H+21 −`b
fb

I1q(I1)3I1 = q
( H + 21 − `b

fb

)
> 0,

We therefore obtain 3 *

3fb
> 0, which implies  * increases in fb .

2. We investigate the impact of fb on expected profit ΠD ( ) ∀ ∈ (0,∞)

using the Envelope Theorem such that the sign of 3ΠD ( 
* )

3fb
for the sensitivity

of ΠD ( *) on fb is gotten from calculating mΠD ( )
mfb

���
 *

. We have

mΠD ( )
mfb

=
fb

21

∫ H+21 −`b
fb

H−`b
fb

q(I1)3I1 > 0 ∀ > 0,

therefore, ΠD ( *) also increases in fb .

Now, we provide the proof of the impact of fb on  � and Π( �).
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Proof of Proposition 3:

How  � changing in fb is derived from implicit differentiation 3 �

3fb
=

−
(

m2Π
m mfb

/
m2Π
m 2

)���
 �

, specifically, 3 �
3fb

and m2Π
m mfb

���
 �

have same sign. The proof

is divided by cases in terms of d, that is d ∈ [0, 1), d → −1 and d ∈ (0, 1).

Calculating from Equation (A.2) that m
2Π( )
m mfb

=

∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0, (A.3)

then we use the normal distribution probability density function structure and

some algebra transforming m2Π( )
m mfb

into
m2Π( )
m mfb

=q

( H + 21 − `b
fb

)
Φ

( dfV (H + 21 − `b) − fb (H − `V)
fbfV

√
1 − d2

)
+ dq

( H − `V
fV

)
Φ

( dfb (H − `V) − fV (H + 21 − `b)
fbfV

√
1 − d2

)
,

(A.4)

which implies m2Π( )
m mfb

> 0 for all  if d ≥ 0.

Then, we discuss how  � changes in fb when d → −1. The goal of this

part of the proof is to obtain the sign of m
mfb

{
lim
d→−1

mΠ( )
m 

}���
lim
d→−1

 �
, since it has the

same sign as
3 lim
d→−1

 �

3fb
according to the implicit differentiation

3 lim
d→−1

 �

3fb
= −

{
m

mfb

{
lim
d→−1

mΠ( )
m 

}/ m

m 

{
lim
d→−1

mΠ( )
m 

}}�����
lim
d→−1

 �

.

The optimality condition for lim
d→−1

 � is lim
d→−1

mΠ( )
m 

=

− l + lim
d→−1

√
f2
b
(1 − d2)

∫ ∞

H −`V
fV

q

( H + 21 − `b − dfb I0√
f2
b
(1 − d2)

)
q(I0)3I0

+ lim
d→−1

∫ ∞

H −`V
fV

(
`b + dfb I0 − H − 21 

) (
1 −Φ

( H + 21 − `b − dfb I0√
f2
b
(1 − d2)

))
q(I0)3I0

=


− l +

∫ `b −H−21 
fb

H −`V
fV

(
`b − H − 21 − fb I0

)
q(I0)3I0, if  <

(`b − H)fV/fb + `V
21fV/fb + H

− l, otherwise,

that is, lim
d→−1

 � must be in the range
[
0, (`b−H)fV/fb+`V21fV/fb+H

)
and solved by
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l =
∫ `b −H−21 

fb

H −`V
fV

(
`b − H − 21 − fbI0

)
q(I0)3I0. Having lim

d→−1
mΠ( )
m 

, we obtain

m

mfb

{
lim
d→−1

mΠ( )
m 

}
= −

∫ `b −H−21 
fb

H −`V
fV

I0q(I0)3I0 = q
( `b − H − 21 

fb

)
− q

( H − `V
fV

)
,

which implies that m
mfb

{
lim
d→−1

mΠ( )
m 

}���
lim
d→−1

 �
< 0 if and only if fb satisfies that����`b − H − 21 lim

d→−1
 �

fb

���� > ���� H lim
d→−1

 � − `V

fV

����. (A.5)

That is to say, we turn Inequality (A.5) into the inequality with respect to fb

explicitly, then the sensitivity result is proved. Note that lim
d→−1

 � is a function of

fb , to prove the result there are two steps: 1) rewrite the Inequality (A.5) as the

inequality of lim
d→−1

 �; 2) use the optimality condition lim
d→−1

mΠ( )
m 

= 0 to convert

corresponding range of lim
d→−1

 � to the range of fb .

Firstly, given lim
d→−1

 � ∈
[
0, (`b−H)fV/fb+`V21fV/fb+H

)
, there are two cases for Inequality

(A.5) to hold, specifically,

(a)
`b−H−21 lim

d→−1
 �

fb
>

H lim
d→−1

 �−`V
fV

≥ 0. In this case, lim
d→−1

 � ∈
[
0, (`b−H)fV/fb+`V21fV/fb+H

)
∩[

`V
H
,∞

)
∩

[
0, `b−H21

)
. According to following possible inequalities

`b − H
21

<
(`b − H)fV/fb + `V

21fV/fb + H
<
`V

H
, if

`b − H
21

<
`V

H
;

`b − H
21

>
(`b − H)fV/fb + `V

21fV/fb + H
>
`V

H
, if

`b − H
21

>
`V

H
;

`b − H
21

=
(`b − H)fV/fb + `V

21fV/fb + H
=
`V

H
, if

`b − H
21

=
`V

H
,

the range of lim
d→−1

 � is lim
d→−1

 � ∈
[
`V
H
,
(`b−H)fV/fb+`V

21fV/fb+H

)
when `b−H

21 >
`V
H
;

the range of lim
d→−1

 � is an empty set when `b−H
21 ≤

`V
H
.

(b)
H lim
d→−1

 �−`V
fV

< 0 <
`b−H−21 lim

d→−1
 �

fb
and

`V−H lim
d→−1

 �

fV
<

`b−H−21 lim
d→−1

 �

fb
. In this

case, lim
d→−1

 � satisfies lim
d→−1

 � ∈
[
0,min

{
`V
H
,
`b−H

21

})
and

(
21fV/fb −

H
)

lim
d→−1

 � < (`b−H)
fV
fb
−`V. To determine the equivalent range of lim

d→−1
 �

for
(
21fV/fb − H

)
lim
d→−1

 � < (`b − H)
fV
fb
− `V, there are sub-cases since

21fV/fb−H can be < 0, = 0 or > 0 and even if 21fV/fb−H ≠ 0 the relation
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among `b−H
21 , `V

H
and (`b−H)fV/fb−`V21fV/fb−H is worth discussed. Particularly,

if 21fV/fb − H > 0 and
`b − H

21
>
`V

H
, then

(`b − H)fV/fb − `V
21fV/fb − H

>
`b − H

21
>
`V

H
;

if 21fV/fb − H < 0 and
`b − H

21
>
`V

H
, then

`b − H
21

>
`V

H
>
(`b − H)fV/fb − `V

21fV/fb − H
;

if 21fV/fb − H > 0 and
`b − H

21
<
`V

H
, then

`V

H
>
`b − H

21
>
(`b − H)fV/fb − `V

21fV/fb − H
.

if 21fV/fb − H < 0 and
`b − H

21
<
`V

H
, then

(`b − H)fV/fb − `V
21fV/fb − H

>
`V

H
>
`b − H

21
,

where the above inequalities is derived by calculating two subtractions:
(`b−H)fV/fb−`V

21fV/fb−H − `V
H
=

(
H(`b−H)−2`V

)
fV/fb(

21fV/fb−H
)
H

and (`b−H)fV/fb−`V21fV/fb−H −
(
`b−H

21

)
=

H(`b−H)−2`V
2
(
21fV/fb−H

) .
In finishing the step 1 of the proof, we sum up Case (a) and (b), that is
m
mfb

{
lim
d→−1

mΠ( )
m 

}���
lim
d→−1

 �
< 0 if and only if

1. lim
d→−1

 � ∈
[
`V
H
,
(`b−H)fV/fb+`V

21fV/fb+H

)
when `b−H

21 >
`V
H
;

2. lim
d→−1

 � ∈
(
(`b−H)fV/fb−`V

21fV/fb−H ,
`V
H

)
when `b−H

21 >
`V
H
and fb >

21fV
H

;

3. lim
d→−1

 � ∈
[
0, `V

H

)
when `b−H

21 >
`V
H
and fb ≤

21fV
H

;

4. lim
d→−1

 � ∈
[
0, (`b−H)fV/fb−`V21fV/fb−H

)
when `b−H

21 <
`V
H
and fb <

21fV
H

;

We now generate the range of fb based on above inequality of lim
d→−1

 �

using the information that lim
d→−1

 � is the unique solution of implicit function

lim
d→−1

mΠ( )
m 

= 0 and lim
d→−1

mΠ( )
m 

decreases in  . In order to do so, we also need to

know how lim
d→−1

mΠ( )
m 

����
 =`V/H

, lim
d→−1

mΠ( )
m 

����
 =

`b −H
21

and lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

change in fb . Since we are discussing the case that m
mfb

{
lim
d→−1

mΠ( )
m 

}
< 0, it is

obvious that lim
d→−1

mΠ( )
m 

����
 =`V/H

and lim
d→−1

mΠ( )
m 

����
 =

`b −H
21

decrease in fb . How
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lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

changes in fb is derived by following calculation:

lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

= − l +
(21`V − (`b − H)H

21fV/fb − H

) ∫ 21`V−(`b −H)H
21fV−Hfb

(`b −H)H−21`V
21fV−Hfb

q(I0)3I0

= − l +
(21`V − (`b − H)H

21fV/fb − H

) (
2Φ

(21`V − (`b − H)H
21fV − Hfb

)
− 1

)
and further 3

3fb

 lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

 =
21fV

(
21`V − (`b − H)H

)
f2
b
(21fV/fb − H)2

(
2Φ

(21`V − (`b − H)H
21fV − Hfb

)
− 1

)
+

2H
(
21`V − (`b − H)H

)2

(21fV/fb − H)3
q

(21`V − (`b − H)H
21fV − Hfb

)
.

From above equation, we obtain two sufficient conditions:

1) 3
3fb

{
lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

}
> 0 when `V

H
≥ `b−H

21 and fb <
21fV
H

;

2) 3
3fb

{
lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

}
< 0 when `V

H
≤ `b−H

21 and fb >
21fV
H

.

Now, we derive the range of fb through the range of lim
d→−1

 �:

1. In the case ‘ lim
d→−1

 � ∈
[
`V
H
,
(`b−H)fV/fb+`V

21fV/fb+H

)
when `b−H

21 >
`V
H
’, we

construct the inequality with respect to fb in a way that lim
d→−1

mΠ( )
m 

����
 =

`V

H

>

0 is equivalent to lim
d→−1

 � ∈
[
`V
H
,
(`b−H)fV/fb+`V

21fV/fb+H

)
because lim

d→−1
mΠ( )
m 

decreases in . Definef888
b
as the uniquefb that solves lim

d→−1
mΠ( )
m 

����
 =

`V

H

= 0,

due to lim
d→−1

mΠ( )
m 

����
 =

`V

H

decreases in fb , we conclude that when
`b−H

21 >
`V
H
,

fb ∈ [0, f888b ) is equivalent to lim
d→−1

 � ∈
[
`V
H
,
(`b−H)fV/fb+`V

21fV/fb+H

)
;

2. in the case ‘ lim
d→−1

 � ∈
(
(`b−H)fV/fb−`V

21fV/fb−H ,
`V
H

)
when `b−H

21 >
`V
H

and

fb >
21fV
H

’,

lim
d→−1

mΠ( )
m 

����
 =

`V

H

< 0 < lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H
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is equivalent to lim
d→−1

 � ∈
(
(`b−H)fV/fb−`V

21fV/fb−H ,
`V
H

)
. Due to

3
3fb

 lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

 < 0 and lim
d→−1

mΠ( )
m 

���
 =

`V

H

decreases

in fb , we conclude that there exists a unique fb defined as f88
b
=fb

����fb > 21fV
H
, lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

= 0
 such thatfb ∈ [f888b , f

88
b
]∩

(21fV/H,∞) equals to lim
d→−1

 � ∈
(
(`b−H)fV/fb−`V

21fV/fb−H ,
`V
H

)
;

3. in the case ‘ lim
d→−1

 � ∈
[
0, `V

H

)
when `b−H

21 >
`V
H

and fb ≤
21fV
H

’,

lim
d→−1

mΠ( )
m 

����
 =

`V

H

< 0 is equivalent to lim
d→−1

 � ∈
[
0, `V

H

)
. Within fb ≤

21fV
H

, due to lim
d→−1

mΠ( )
m 

decreases in both  and fb , we conclude that

fb ∈ [f888b ,∞) ∩ (0, 21fV/H] is equivalent to lim
d→−1

 � ∈
[
0, `V

H

)
;

4. in the case ‘ lim
d→−1

 � ∈
[
0, (`b−H)fV/fb−`V21fV/fb−H

)
when `b−H

21 <
`V
H
and fb <

21fV
H

’,

lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

< 0 is equivalent to lim
d→−1

 � ∈
[
0, (`b−H)fV/fb−`V21fV/fb−H

)
.

Due to 3
3fb

 lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

 > 0 and lim
d→−1

mΠ( )
m 

decreases

in fb , we conclude that there exists a unique fb defined as

f8
b
=

fb
����fb < 21fV

H
, lim
d→−1

mΠ( )
m 

����
 =
(`b −H)fV/fb −`V

21fV/fb −H

= 0
 such that fb <

min{f8
b
, 21fV/H} is equivalent to lim

d→−1
 � ∈

[
0, (`b−H)fV/fb−`V21fV/fb−H

)
.

Therefore, applying some algebra we conclude that when d → −1,

• under condition `b−H
21 >

`V
H
, lim
d→−1

 � decreases infb whenfb < max{f88
b
, 21fV/H};

it increases in fb otherwise;

• under condition `b−H
21 <

`V
H
, lim
d→−1

 � decreases infb whenfb < min{f8
b
, 21fV/H};

it increases in fb otherwise.
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Now we demonstrate some characteristics of  � when d < 0 to theoretically

support Conjecture 1.

Lemma 4 Define fb = l
/(√

1 − d2
∫ ∞
H (`b −H)

21 −`V
fV

E
[(
Ĩ+ dI0√

1−d2

)+]
q(I0)3I0

)
, we

have

1.  � < `b−H
21 when fb < fb;  � =

`b−H
21 when fb = fb; and  � >

`b−H
21

when fb > fb;

2.  � increases in fb when fb ≥ fb;

3. lim
fb→0

3 �

3fb
< 0 when d < 0.

Proof of Lemma 4:

First part of the result is derived by calculating the first order derivative
mΠ( )
m 

��� `b −H
21

from Equation (A.2), mΠ( )
m 

���
 =

`b −H
21

=

− l +
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H − 21 

)
q(I2)3I2q(I0)3I0

�����
 =

`b −H
21

= − l + fb
√

1 − d2
∫ ∞
H (`b −H)

21 −`V
fV

E
[(
Ĩ + dI0√

1 − d2

)+]
q(I0)3I0,

where it shows that mΠ( )
m 

���
 =

`b −H
21

= 0 when fb = fb . Therefore, we proved the

first part:  � > `b−H
21 when fb > fb and  � ≤

`b−H
21 when fb ≤ fb , because

mΠ( )
m 

is decreasing in  .

Now, we prove the second part of the result. First of all, by applying

q(G) − G
(
1 −Φ(G)

)
= E[( Ĩ − G)+] to Equation (A.3), we have m2Π( )

m mfb
=√

1 − d2
∫ ∞

H −`V
fV

E


(
Ĩ2 −

( H + 21 − `b − dfbI0√
f2
b
(1 − d2)

))+ q(I0)3I0

+
√

1 − d2
( H + 21 − `b√

f2
b
(1 − d2)

) ∫ ∞

H −`V
fV

(
1 −Φ

( H + 21 − `b − dfbI0√
f2
b
(1 − d2)

))
q(I0)3I0

meaning that m
2Π( )
m mfb

> 0 for all  >
`b−H

21 , or equivalently,  � increases in fb

when fb ≥ fb .
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Thirdly, to prove that lim
fb→0

m2Π( )
m mfb

< 0 for all  <
`b−H

21 when d < 0, using

Equation (A.4), we calculate lim
fb→0

m2Π( )
m mfb

=

lim
fb→0

q

( H + 21 − `b
fb

)
lim
fb→0

Φ

( dfV (H + 21 − `b) − fb (H − `V)
fbfV

√
1 − d2

)
+ dq

( H − `V
fV

)
lim
fb→0

Φ

( dfb (H − `V) − fV (H + 21 − `b)
fbfV

√
1 − d2

)
,

therein, when  <
`b−H

21 , lim
fb→0

m2Π( )
m mfb

= dq

(
H −`V
fV

)
. Therefore, when d < 0,

lim
fb→0

m2Π( )
m mfb

< 0 for all  <
`b−H

21 including lim
fb→0

 �.

Proof of Proposition 4:

The impact of fb on Π( �) is proved using The Envelope Theorem, the

sensitivity result for Π( �) is gotten from mΠ( )
mfb

���
 �

. We calculate

mΠ( )
mfb

=

4∑
8=1

m+8 ( )
mfb

(A.6)

from Equation (A.1), because the derivative of the integral boundaries are

cancelled out, we have mΠ( )
mfb

=∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )+

H −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

(
I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

(
I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

 
(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

(I0fV + `V)
H

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0.
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Through some algebra, we have
mΠ( )
mfb

=

√
1 − d2

∫ H −`V
fV

−∞

∫ ∞

−∞
I2@
∗(I2, I0)q(I2)3I2q(I0)3I0

+
√

1 − d2
∫ ∞

H −`V
fV

∫ ∞

−∞
I2@
∗(I2, I0)q(I2)3I2q(I0)3I0

+ dE
I0

[
Ĩ0E
I2

[
@∗( Ĩ2, Ĩ0)

��Ĩ0
] ]
.

Therein, @∗( Ĩ2, Ĩ0) one to one corresponds to the optimal production quantity

@∗(b̃, Ṽ) where the normal distribution transformation Ĩ2
3
=

b̃−`b−d
fb

fV
( Ṽ−`V)√

f2
b
(1−d2)

���Ṽ
and Ĩ0

3
=

Ṽ−`V
fV

are made. According to the Stein’s Lemma, above equation

becomes

mΠ( )
mfb

=
fb

21

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )+

H −`b
fb

√
1−d2

− dI0√
1−d2

H−`b
fb

√
1−d2
− dI0√

1−d2

q(I2)3I2q(I0)3I0

+
fb

21

∫ ∞

H −`V
fV

∫ H+21 −`b
fb

√
1−d2
− dI0√

1−d2

H−`b
fb

√
1−d2
− dI0√

1−d2

q(I2)3I2q(I0)3I0

+
dfV

H

∫ H −`V
fV

−∞

∫ ∞

H+
21 (I0fV+`V )

H −`b
fb

√
1−d2

− dI0√
1−d2

q(I2)3I2q(I0)3I0.

(A.7)

From above equation, the immediate result is that mΠ( )
mfb

> 0 for all  when

d ≥ 0.

Then we proof the impact of fb on Π( �) under condition d < 0 through

proving following three parts: i) mΠ( )
mfb

���
 �

increases infb that is 3
3fb

{
mΠ( )
mfb

���
 �

}
>

0, ii) mΠ( )
mfb

���
 �

is negative when fb → 0, specifically, we prove lim
fb→0

mΠ( )
mfb

< 0

∀ ∈ (0,∞) and iii) mΠ( )
mfb

���
 �

is positive when fb is large enough, that is

lim
fb→∞

mΠ( )
mfb

> 0 ∀ ∈ (0,∞).

Prove of part i): First of all, due to
3

3fb

{mΠ( )
mfb

���
 �

}
=
m2Π( )
mf2

b

���
 �
+

(m2Π( )
mfbm 

���
 �

)
· m 

�

mfb
,
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we first calculate from Equation (A.6) that m
2Π( )
mf2

b

=

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )+

H −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

(
I2

√
1 − d2 + dI0

)2

21
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

(
I2

√
1 − d2 + dI0

)2

21
q(I2)3I2q(I0)3I0 > 0,

where there is no term from differentiating the limits of integration, because the in-

tegrand
(
I2

√
1 − d2+dI0

)
@∗( , I2, I0) is continuous. Furthermore,

(
m2Π( )
mfb m 

���
 �

)
·

m �

mfb
≥ 0, because m2Π( )

mfb m 

���
 �

and m �

mfb
have same sign by implicit differentiation

3 �

3fb
= −

( (
m2Π

m mfb

) / (
m2Π
m 2

) )����
 �

. Therefore, 3
3fb

{
mΠ( )
mfb

���
 �

}
> 0.

Prove of part ii): we take the limits lim
fb→0

mΠ( )
mfb

. Define G2 = fb ·
(
I2 + dI0√

1−d2

)
and apply the transformation to first two terms of Equation (A.7), we obtain that

mΠ( )
mfb

=
1

21

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )+

H −`b√
1−d2

H−`b√
1−d2

q

(
G2/fb −

dI0√
1 − d2

)
3G2q(I0)3I0

+ 1
21

∫ ∞

H −`V
fV

∫ H+21 −`b√
1−d2

H−`b√
1−d2

q

(
G2/fb −

dI0√
1 − d2

)
3G2q(I0)3I0

+
dfV

H

∫ H −`V
fV

−∞

∫ ∞

H+
21 (I0fV+`V )

H −`b
fb

√
1−d2

− dI0√
1−d2

q(I2)3I2q(I0)3I0.

(A.8)
Therefore, we have

lim
fb→0

mΠ( )
mfb

=
dfV

H
lim
fb→0

∫ H −`V
fV

−∞

∫ ∞

H+
21 (I0fV+`V )

H −`b
fb

√
1−d2

− dI0√
1−d2

q(I2)3I2q(I0)3I0

=
dfV

H

∫ Hmin{ ,
`b −H

21 }−`V
fV

−∞
q(I0)3I0 < 0,

which implies that lim
fb→0

mΠ( )
mfb

< 0 for all  > 0.

Prove of part iii): Lastly, given Equation (A.8), we take the limit lim
fb→∞

{ mΠ( )
mfb

}
.
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We have lim
fb→∞

mΠ( )
mfb

=

∫ H −`V
fV

−∞

(I0fV + `V)+/H√
1 − d2

q

( dI0√
1 − d2

)
q(I0)3I0 +

∫ ∞

H −`V
fV

 √
1 − d2

q

( dI0√
1 − d2

)
q(I0)3I0

+
dfV

H

∫ H −`V
fV

−∞
Φ

(
dI0√

1 − d2

)
q(I0)3I0.

In addition,
m

m 

{
lim
fb→∞

mΠ( )
mfb

}
=

1√
1 − d2

∫ ∞

H −`V
fV

q

( −dI0√
1 − d2

)
q(I0)3I0 + d

(
1 −Φ

(
− d√

1 − d2

( H − `V
fV

)))
q

( H − `V
fV

)
=

1√
1 − d2

∫ ∞

H −`V
fV

q

( −dI0√
1 − d2

)
q(I0)3I0 − d

{(
1 −Φ

(
− dI0√

1 − d2

))
q(I0)

}�����∞H −`V
fV

=

√
1 − d2

∫ ∞

H −`V
fV

(
q

( −dI0√
1 − d2

)
−

( −dI0√
1 − d2

) (
1 −Φ

( −dI0√
1 − d2

)))
q(I0)3I0 > 0,

because the last expression has structure q(G) − G
(
1 −Φ(G)

)
= E[( Ĩ − G)+] > 0.

Due to lim
fb→∞

mΠ( )
mfb

���
 =0

= 0 and m
m 

{
lim
fb→∞

mΠ( )
mfb

}
> 0, we can conclude that

lim
fb→∞

mΠ( )
mfb

is positive for all  ∈ (0,∞).

Proofs for the fV Results

Proof of Proposition 5:

The impact of fV on  � is derived by implicit differentiation, 3 �

3fV
=

−
(

m2Π
m mfV

/
m2Π
m 2

)���
 �

. We calculate m2Π( )
m mfV

by taking derivative of Equation (A.2)

with respect to fV. The calculation is according to Leibniz’ formula and due to

fV only appears at the lower bound of outer integration, we have m2Π( )
m mfV

=

(H − `V)
f2
V

q

( H − `V
fV

)√
f2
b
(1 − d2)E

[(
Ĩ2 −

( H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+]
.

The immediate conclusion from above equation is that m
2Π( )
m mfV

< 0 when H < `V;
m2Π( )
m mfV

= 0 when H = `V; and m2Π( )
m mfV

> 0 when H > `V. Since these

conditions depend on  , we then apply the optimality condition such that  is
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substituted with � for these conditions. The necessary and sufficient condition of

 � < `V/H,  � = `V/H and  � > `V/H are mΠ( )
m 

���
`V/H

< 0, mΠ( )
m 

���
`V/H

= 0 and
mΠ( )
m 

���
`V/H

> 0 respectively, because of the optimality condition mΠ( )
m 

���
 �
= 0 and

mΠ( )
m 

decreasing in  . To write above conditions clearly, we further investigate
mΠ( )
m 

��� `V
H

=

− l +
∫ ∞

0

∫ ∞

H+21`V/H−`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 21`V/H

)
q(I2)3I2q(I0)3I0

doesn’t depend on fV. Define l V (d) :=

∫ ∞

0

∫ ∞

H+21`V/H−`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 21`V/H

)
q(I2)3I2q(I0)3I0,

which denotes mΠ( )
m 

��� `V
H

= −l + l 
V
(d). Therefore, we have

3 �

3fV
< 0 i.e.

m2Π( )
m mfV

���
 = �

< 0, if l > l V (d)

 � is not sensitive to fV, if l = l V (d)

3 �

3fV
> 0 i.e.

m2Π( )
m mfV

���
 = �

> 0, if l < l V (d).

(A.9)

Since d ∈ (−1, 1), we identify the range of l 
V
(d) according to the domain.

We obtain that l 
V
(d) increases in d from m2Π( )

m md
> 0 for all  (result in part

1 of Proof of Proposition 1), that is mΠ( )
m 

��� `V
H

= −l + l 
V
(d) also increases in

d. Pursuing this further, we define l 
V
(−1) = lim

d→−1
l 
V
and l 

V
(1) = lim

d→1
l 
V
,

specifically,

l V (−1) =fb
∫ max

{
0,
`b −H−21`V/H

fb

}
0

(( `b − H − 21`V/H
fb

)
− I0

)
q(I0)3I0

and

l V (1) =fb
∫ ∞

max
{

0,
H+21`V/H−`b

fb

} (
I0 −

( H + 21`V/H − `b
fb

))
q(I0)3I0

such that we identify the range of l 
V
(d) is l 

V
(d) ∈ (l 

V
(−1), l 

V
(1)). Then,

we derive d threshold when l ∈ (l 
V
(−1), l 

V
(1)), specifically the threshold
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denoted by d 
V
(l) is the unique solution that solves

l =

{
fb

√
(1 − d2)

∫ ∞

0
E
[(
Ĩ2 −

( H + 21`V/H − `b − dfbI0√
f2
b
(1 − d2)

))+]
q(I0)3I0

}�����
d=d 

V
(l)
.

Recalling the conditions wrote in Equation (A.9), we conclude the sensitivity

result for all l ∈ (0, lmax)

1. if l > l 
V
(1), 3 �

3fV
< 0 for any d.

2. if l < l 
V
(−1), 3 �

3fV
> 0 for any d.

3. if l ∈ (l 
V
(−1), l 

V
(1)), we have: under condition d < d 

V
(l), 3 �

3fV
> 0;

under condition d = d 
V
(l),  � = `V/H which is not sensitive to fV; and

under condition d > d 
V
(l), 3 �

3fV
< 0.
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Proof of Proposition 6:

The impact of fV on Π( �) is derived according to the Envelope Theorem,

that is 3Π( � (l))
3fV

=
mΠ( )
mfV

���
 �

. We take derivative of Equation (A.1) with respect

to fV such that the remaining term is the one that contains fV in integrand,
mΠ( )
mfV

=

∫ H −`V
fV

−∞

I0
H

∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 21

( I0fV + `V
H

))
q(I2)3I2q(I0)3I0

=

√
f2
b
(1 − d2)

∫ H −`V
fV

−∞

I0
H

E
[(
Ĩ2 −

( H + 21 (I0fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0.

(A.10)

Under condition l ≥ l 
V
(d), we prove that Π( �) decreases in fV. Ob-

serving from Equation (A.10), mΠ( )
mfV

< 0 when H ≤ `V, because the integrand

is non-positive for all I0 ∈
(
− ∞, (H − `V)/fV

]
. Recalling from the proof of

Proposition 5 that the necessary and sufficient condition for  � ≤ `V/H to be true

is mΠ( )
m 

���
`V/H

= −l + l 
V
(d) ≤ 0, we conclude that under condition l ≥ l 

V
(d),

Π( �) decreases in fV.

Under condition l < l 
V
(d), we derive the result on how Π( �) changes

in fV step by step. Noting that l < l 
V
(d) is equivalent to H � (l) > `V,

we use these two forms of the condition interchangeably. Firstly, we prove

that mΠ( )
mfV

���
 �

< 0 when fV is large enough, specifically fV ≥
dHfb

21 . Define

6(I0) := E
[(
Ĩ2 −

(
H+

21 (I0fV+`V )
H

−`b−dfb I0√
f2
b
(1−d2)

))+]
, we have 6(I0) decreases in I0 if
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fV ≥
dHfb

21 . As a result, if fV ≥
dHfb

21 , we obtain

mΠ( )
mfV

���
 �
=

√
f2
b
(1 − d2)

( ∫ 0

−∞

I0
H
6(I0)q(I0)3I0 +

∫ H �−`V
fV

0

I0
H
6(I0)q(I0)3I0

)
<

√
f2
b
(1 − d2)6(0)

( ∫ 0

−∞

I0
H
q(I0)3I0 +

∫ H �−`V
fV

0

I0
H
q(I0)3I0

)
=

√
f2
b
(1 − d2)6(0)

H

(
− q

( H � − `V
fV

))
< 0.

It is worth note that 1) this result holds for all l < lmax, not just l < l 
V
(d); 2)

mΠ( )
mfV

���
 �

< 0 for all fV ≥ 0 when d ≤ 0.

Secondly, we prove mΠ( )
mfV

���
 �

decreases in fV when H � (l) > `V as follows,
3
3fV

{
mΠ( )
mfV

���
 �

}
=

( H � − `V
f2
V

) (
−
( � − `V/H)

fV
+ 3 

�

3fV

)
q
( H � − `V

fV

)
·∫ ∞

H+21 �−`b −dfb
(
H �−`V
fV

)
√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb

( H � − `V
fV

)
− H − 21 �

)
q(I2)3I2

− 2
∫ H �−`V

fV

−∞

( I0
H

)2 ∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

q(I2)3I2q(I0)3I0

where the second term is apparently negative and the first term is also negative

if ( 
�−`V/H)
fV

− 3 �

3fV
> 0. Further, we prove ( 

�−`V/H)
fV

− 3 �

3fV
> 0 by writing the

expression of 3 �
3fV

according to 3 �

3fV
=

( (
m2Π

m mfV

) / (
− m2Π
m 2

) )����
 �

. Since m2Π( )
m mfV

��
 �

is known, we calculate

m2Π( )
m 2 = − 2

∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2 )

q(I2)3I2q(I0)3I0

−
H
√
f2
b
(1 − d2)

fV
q

( H − `V
fV

)
E
[(
Ĩ2 −

( H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+]
,

and define )� ( ) =
H
√
f2
b
(1−d2)
fV

q

(
H −`V
fV

)
E
[(
Ĩ2−

( H+21 −`b−dfb ( H −`VfV

)√
f2
b
(1−d2)

))+]
, as
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a result, 3 �
3fV

is written as follows:

3 �

3fV
=

( �−`V/H)
fV

· )� ( �)

)� ( �) + 2
∫ ∞

H �−`V
fV

∫ ∞

H+21 �−`b −dfb I0√
f2
b
(1−d2 )

q(I2)3I2q(I0)3I0

<
 � − `V/H

fV
,

which proves that 3
3fV

{
mΠ( )
mfV

���
 �

}
< 0 when H � (l) > `V.

Thirdly, summarizing results above: 1) mΠ( )
mfV

���
 �

< 0 when fV ≥
dHfb

21 and 2)
mΠ( )
mfV

���
 �

decreases in fV when l ∈
(
0, l 

V
(d)

)
, what we need to uncover is the

impact offV ∈ (0,
dHfb

21 ) onΠ( 
�) under condition d > 0 for alll ∈

(
0, l 

V
(d)

)
.

1. When l = l 
V
, we already know that mΠ( )

mfV

���
 =`V/H

< 0 for all fV;

2. Whenl→ 0, we know that  � →∞. The sign of lim
 →∞

mΠ( )
mfV

is calculated

from Equation (A.10) as follows, lim
 →∞

mΠ( )
mfV

=

lim
 →∞

∫ H −`V
fV

−∞

I0
H

√
f2
b
(1 − d2)E

[(
Ĩ2 −

( H + 21 (I0fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0

=

∫ ∞

−∞

I0
H

√
f2
b
(1 − d2)E

[(
Ĩ2 −

( H + 21 (I0fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0.

Since 6(I0) > 0 increases in I0 when fV ∈ (0,
dfb H

21 ), we obtain

lim
 →∞

mΠ( )
mfV

=

∫ ∞

−∞

I0
H

√
f2
b
(1 − d2)6(I0)q(I0)3I0

>

√
f2
b
(1 − d2)6(0)

( ∫ 0

−∞

I0
H
q(I0)3I0 +

∫ ∞

0

I0
H
q(I0)3I0

)
= 0.

To sum up, lim
 →∞

mΠ( )
mfV

> 0 when fV ∈ (0,
dfb H

21 ) and lim
 →∞

mΠ( )
mfV

≤ 0 when

fV ∈ [
dfb H

21 ,∞).

3. When l is in between of 0 and l 
V
(d), we prove mΠ( )

mfV

���
 � (l)

decreases in

l ∈
(
0, l 

V
(d)

)
for any fixedfV. Firstly, we know that mΠ( )

mfV
increases in  

when  > `V/H, for details referring to the proof of Proposition 5. We also

know from Proposition 5 that  � > `V/H when l ∈
(
0, l 

V
(d)

)
. Thirdly,

for all fixed fV,  � decreases in l by optimality condition for solving  �.

Lastly, we also know that mΠ( )
mfV

is irrelevant to l from Equation (A.10).
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Therefore, mΠ( )
mfV

���
 � (l)

decreases in l ∈
(
0, l 

V
(d)

)
for any fixed fV.

Having all above information, we can conclude that given d > 0, as l increases

from 0 to l 
V
(d), there exists a threshold lΠ

V
(d) ∈

(
0, l 

V
(d)

)
such that when

l ≥ lΠ
V
(d) mΠ( )

mfV

���
 � (l)

< 0 for all fV; and when l < lΠ
V
(d), there exists a fV

threshold fΠ
V
(l, d) ∈ (0, dfb H21 ) such that

mΠ( )
mfV

���
 � (l)

> 0 when fV < fΠV (l, d);

and mΠ( )
mfV

���
 � (l)

< 0 when fV > fΠV (l, d). In addition, fΠV (l, d) is decreasing

in l.

We further investigate the characteristic of lΠ
V
(d) given domain d ∈ (0, 1).

First of all, lΠ
V
(d) is solved by the unique solution of implicit equation

lim
fV→0

{
mΠ( )
mfV

���
 �

}
= 0 given d > 0; secondly, lΠ

V
(0) = 0; thirdly, lΠ

V
(d) in-

creases d, because mΠ( )
mfV

���
 �

decreases in l for all fV ≥ 0 and lim
fV→0

{
mΠ( )
mfV

���
 �

}
increases in d, therein, the decreasing trend of lim

fV→0

{
mΠ( )
mfV

���
 �

}
in d is proved

through following steps: 3
3d

{
mΠ( )
mfV

���
 �

}
=

m2Π( )
mfVmd

���
 �
+ m

2Π( )
mfVm 

���
 �
· 3 �
3d

> 0,where

firstly, for all fV ≥ 0, we have m2Π( )
mfVm 

���
 �
· 3 �
3d

> 0 because m2Π( )
mfVm 

> 0 when

 � > `V/H and 3 �

3d
> 0; secondly

m

md

{
lim
fV→0

mΠ( )
mfV

}
=

1
H

∫ ∞

−∞
I0

∫ ∞

H+
21`V
H −`b −dfb I0√
f2
b
(1−d2 )

(
fb I0 −

I2fb d√
(1 − d2)

)
q(I2)3I2q(I0)3I0

=
fb

H
−
fb

H

∫ ∞

−∞
Φ

©«
H + 21`V

H
− `b − dfb I0√

f2
b
(1 − d2)

ª®®¬ q(I0)3I0 > 0.

As a result, we define lΠ
V
(1) = lim

d→1
lΠ
V
(d), which is also the unique solution

of lim
d→1

lim
fV→0

{
mΠ( )
mfV

���
 �

}
= 0, then we can properly define the d threshold: when

l ∈
(
0, lΠ

V
(1)

)
, there exists a unique d denoted by dΠ

V
(l) that uniquely solves

lim
fV→0

{
mΠ( )
mfV

���
 � (l)

}
= 0. The result can be written as what in the proposition.

A.1.3 Sensitivity Analyses on Profitability-loss

Proof of Lemma 2:

Under condition 0 < l < E
[ (
b̃−H−21V/H

)+] , we first prove � (l) <  * (l).
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According to definition of  * (l), we have  * (l) > V/H and thus  * (l) can

be taken into mΠ( )
m 

such that
mΠ( )
m 

���
 *

=
mΠD ( )
m 

���
 *
−

∫ H *

V

∫ ∞

H+21 *
(b − H − 21 *) 5 (b, V)3b3V

= −
∫ H *

V

∫ ∞

H+21 *
(b − H − 21 *) 5b |V (b)3b 5V (V)3V < 0.

Since we know that mΠ( )
m 

decreasing in  and mΠ( )
m 

��
 �
= 0,  � (l) <  * (l)

is proved.

Then we prove ΠD ( *) > Π( �) by calculating ΠD ( ) − Π( ) =∫ V

V

∫ H+21 

H+2 min
{
 ,

V

H

} (
(b − H)2

41
−

(
(b − H)min

{
 ,

V

H

}
− 1

(
min

{
 ,

V

H

})2
))
5 (b, V)3b3V

+
∫ V

V

∫ ∞

H+21 

((
(b − H) − 1 2

)
−

(
(b − H)min

{
 ,

V

H

}
− 1

(
min

{
 ,

V

H

})2
))
5 (b, V)3b3V

>0.

Therefore, we have inequality Π( �) < ΠD ( �) < ΠD ( *).

Proof of Proposition 7:

In this proof, we demonstrate Profitability-loss is decreasing in d. Given

the definition of Profitability-loss ΔΠ(d) = 1 − Π
(
 *

)
Π( �) , we will prove how ΔΠ

changes in d, which is equivalent to derive the sign of 3ΔΠ(d)
3d

. Due to only Π( )

and  � are function of d, we have

3ΔΠ(d)
3d

= −
©«
mΠ( )
md

���
 *
· Π( �) −

(
mΠ( )
md

���
 �
+ mΠ( )

m 

���
 �

3 �

3d

)
· Π

(
 *

)
(
Π( �)

)2

ª®®®®¬
=

− mΠ( )
md

���
 *
· Π( �) + mΠ( )

md

���
 �
· Π

(
 *

)(
Π( �)

)2 .

We can conclude 3ΔΠ(d)
3d

< 0 by the following reason: firstly, from Proposition

1, we have mΠ( )
md

is greater than 0 and increases in  , specifically we obtain
mΠ( )
md

���
 *

>
mΠ( )
md

���
 �

because  * >  �; secondly, according to the optimality

of  � we have Π( �) > Π
(
 *

)
.
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Lemma 5 (The value of mΠ( )
mfV

)

1. mΠ( )
mfV

< 0 when  ≤ `V/H;

2. when d ≤ 0, mΠ( )
mfV

< 0 for all fV ≥ 0;

3. when d > 0,

(a) if fV ≥
dHfb

21 , mΠ( )
mfV

< 0 ;

(b) if fV <
dHfb

21 , there exists a unique fV defined as fV0( ) that solves
mΠ( )
mfV

���
fV=fV0 ( )

= 0, such that mΠ( )
mfV

< 0whenfV > max
{
0, fV0

(
 
)}

and mΠ( )
mfV

> 0 when fV ≤ max
{
0, fV0

(
 
)}
.

Proof of Lemma 5:

Proof of part 1: From Proposition 6, we have mΠ( )
mfV

=∫ H −`V
fV

−∞

I0
H

∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H − 21

( I0fV + `V
H

))
q(I2)3I2q(I0)3I0

=

√
f2
b
(1 − d2)

∫ H −`V
fV

−∞

I0
H
6(I0)q(I0)3I0,

where 6(I0) := E
[(
Ĩ2 −

(
H+

21 (I0fV+`V )
H

−`b−dfb I0√
f2
b
(1−d2)

))+]
> 0, therefore, it is easy to

see that when  ≤ `V/H, we have that mΠ( )mfV
< 0 for all fV ≥ 0.

Proof of part 2: Further organizing mΠ� ( )
mfV

, we obtain mΠ( )
mfV

=

−

√
f2
b
(1 − d2)

H
q
( H − `V

fV

)
E
[(
Ĩ2 −

( H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+]

+ 1
H

(
dfb −

21fV
H

) ∫ H −`V
fV

−∞

(
1 −Φ

( H + 21(I0fV+`V)
H

− `b − dfbI0√
f2
b
(1 − d2)

))
q(I0)3I0,

(A.11)

we conclude another result: when d ≤ 0, mΠ( )
mfV

< 0 for all fV ≥ 0.
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Proof of part 3: When d > 0, we can conclude from Equation (A.11) that
mΠ( )
mfV

< 0 when fV ≥
dHfb

21 . Given m2Π( )
m mfV

=

(H − `V)
f2
V

q

( H − `V
fV

)√
f2
b
(1 − d2)E

[(
Ĩ2 −

( H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+]
,

we know that mΠ( )
mfV

decreases in  when  ≤ `V/H and increases in  when

 > `V/H. According to mΠ( )
mfV

< 0 for all  ≤ `V/H, we obtain that given a fixed

fV <
dHfb

21 , there exists unique  0(fV) > `V/H such that mΠ( )
mfV

���
 = 0 (fV)

= 0,
mΠ( )
mfV

< 0 when  <  0(fV) and mΠ( )
mfV

> 0 when  >  0(fV). We calculate

how  0(fV) changes in fV by the implicit differentiation
m 0 (fV)
mfV

= −
(
m2Π( )
mf2

V

/
m2Π( )
mfVm 

) ���
 0 (fV)

, where m2Π( )
mfVm 

���
 0 (fV)

> 0. By calculation,

we have m2Π( )
mf2

V

=

−
(H − `V)2

Hf3
V

q
( H − `V

fV

)
·∫ ∞

H+21 −`b −dfb
(
H −`V
fV

)
√
f2
b
(1−d2)

(
I2

√
f2
b
(1 − d2) + `b + dfb

( H − `V
fV

)
− H − 21 

)
q(I2)3I2

− 2
∫ H −`V

fV

−∞

( I0
H

)2 ∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

q(I2)3I2q(I0)3I0 < 0,

which concludes that m 0 (fV)
mfV

> 0. Since  0 is increasing in fV, we have

that mΠ( )
mfV

< 0 when fV > max
{
0,  −1

0
(
 *

)}
and mΠ( )

mfV
> 0 when fV ≤

max
{
0,  −1

0
(
 *

)}
where  −1

0 (·) is the inverse function of  0(fV), we define

this inverse function as fV0(·).

Proof of Proposition 8:

In this proof, we partially characteristic the impact of fV on Profitability-loss.

Given the definition of Profitability-loss ΔΠ = 1 − Π
(
 *

)
Π( �) , we will prove how ΔΠ

changes in fV, which is equivalent to derive the sign of 3ΔΠ
3fV

. Due to only Π( )
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and  � are function of fV, we have

3ΔΠ

3fV
= −

©«
mΠ( )
mfV

���
 *
· Π

(
 � (fV)

)
−

(
mΠ( )
mfV

���
 � (fV)

+ mΠ( )
m 

���
 � (fV)

3 � (fV)
3fV

)
· Π

(
 *

)
(
Π( �)

)2

ª®®®®¬
=

mΠ( )
mfV

���
 � (fV)

· Π
(
 *

)
− mΠ( )

mfV

���
 *
· Π

(
 � (fV)

)
(
Π( � (fV))

)2 .

Proof of part 1: In this part, we will demonstrate following result: when

l ≥ l* , 3ΔΠ
3fV

> 0 for all fV - the case where  * ≤ `V/H. We define

l* := fbE
[(
Ĩ1 −

(
21`V/H−`b+H

fb

))+]
= E

[(
b̃ −

(
21`V/H + H

))+]
, in this case, we

have l > l 
V
which indicates  � < `V/H and mΠ( )

mfV

���
 � (fV)

< 0. As for l ≥ l*

is equivalent to  * ≤ `V/H, because
mΠD ( )
m 

���
`V/H

= − l +
∫ ∞

21`V/H−`b +H
fb

(I1fb + `b − H − 21`V/H)q(I1)3I1

= − l + fbE
[(
Ĩ1 −

(21`V/H − `b + H
fb

))+]
≤ 0.

As a result, mΠ( )
mfV

���
 *

< 0. Also because for all  ∈ ( �, `V/H], we have
mΠ( )
m 

< 0, mΠ( )
mfV

< 0 and m2Π( )
mfVm 

≤ 0, we obtain that

3

3 


Π( )
mΠ( )
mfV

 =
mΠ( )
m 
· mΠ( )

mfV
− Π( ) · m

2Π( )
mfVm (

mΠ( )
mfV

)2 > 0

for all ∈ [ �, `V/H). Therefore mΠ( )mfV

���
 � (fV)

·Π
(
 *

)
>

mΠ( )
mfV

���
 *
·Π

(
 � (fV)

)
.

To sum up, we obtain that 3ΔΠ
3fV

> 0 when l ≥ l* . Noting that l 
V
=∫ ∞

21`V/H−`b +H
fb

(I1fb+`b−H−21`V/H)Φ
(

dI1√
1−d2

)
q(I1)3I1 < fbE

[(
Ĩ1−

(
21`V/H−`b+H

fb

))+]
.

Proof of part 2: In this part, we demonstrate following result: when l < l*

and d > 0, 3ΔΠ
3fV

< 0 for allfV ≤ max
{
0,  −1

0
(
 *

)}
- the case where * > `V/H.

We first discuss the case when lV < l < l* . In this case, we know that

 * > `V/H and  � < `V/H. According to the property of mΠ( )
mfV

, we have

that mΠ( )
mfV

���
 � (fV)

< 0. Observing from 3ΔΠ
3fV

, as long as mΠ( )
mfV

���
 *

> 0 we have
3ΔΠ
3fV

< 0.

Then, we investigate the case when l ≤ lV. Since l ≤ lV is equivalent to
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 � (fV) ≥ `V/H and  * >  � (fV), therefore, we have

mΠ( )
mfV

���
 *
− mΠ( )

mfV

���
 � (fV)

=

√
f2
b
(1 − d2)

∫ H *−`V
fV

H � (fV )−`V
fV

I0
H
6(I0)q(I0)3I0 > 0.

According to the optimality of  �, that is Π
(
 � (fV)

)
/Π( *) > 1, the term

mΠ( )
mfV

���
 *

has to be non-negative in order to have Π
(
 � (fV)

)
Π( * ) · mΠ( )

mfV

���
 *

>

mΠ( )
mfV

���
 � (fV)

.

In summary, a sufficient condition for 3ΔΠ
3fV

< 0 whenl < l* is mΠ( )
mfV

���
 *

> 0.

Since  * is irrelevant to fV, according to Lemma 5 part 3, we know that
mΠ( )
mfV

���
 *

> 0 when d > 0 and fV ≤ max
{
0, fV0

(
 *

)}
. To sum up, we obtain

that 3ΔΠ
3fV

< 0 for all fV ≤ max
{
0, fV0

(
 *

)}
when l < l* and d > 0.

A.2 Proofs for theOptimal Strategy and Sensitivity

Analyses of Pre-shipment Finance Model

A.2.1 Proofs for the Optimal Strategy

Proof of Theorem 3 part 1:

production-stage optimal decisions are production quantity and pre-shipment

financing. We solve them by using Karush-Kuhn-Tucker condition. Given the

production-stage problem formulation,

c∗?
(
 , b, V

)
= max

@,!?
(b − 1@)@ − H@ − A?!?

s.t. 0 ≤ @ ≤ min
{
 ,

V+!?
H

}
0 ≤ (1 + A?)!? ≤ (b − 1@)@,

the problem is naturally divided into two scenarios, because production quantity

is binding either by capacity  or by resource constraint V+!?
H

. We discuss two

scenarios one by one.

When production quantity is binding by capacity  ,the straightforward

relation is  ≤ V+!∗?
H

. According to this inequality, !∗? = 0, because pre-shipment

finance will be applied only when production resource is constraining production
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decision due to the cost of pre-shipment finance. The problem formulation

followed by above discussion is:

c∗?
(
 , b, V

)
= max

@
(b − 1@)@ − H@

s.t. 0 ≤ @ ≤  

 ≤ V

H
,

which is identical to the formulation of basic model when  ≤ V

H
. It is easy to

have that

(@∗, !∗?) =



(0, 0), if (b, V) ∈
{
0 ≤ b ≤ H, H ≤ V

}(
b − H

21
, 0

)
, if (b, V) ∈

{
H < b < H + 21 , H ≤ V

}
( , 0), if (b, V) ∈

{
b ≥ H + 21 , H ≤ V

}
.

When production quantity is binding by resource constraint, or equiv-

alently,  > V/H, we focus on optimal decision under the relation  ≥ V+!∗?
H

.

Therefore, problem formulation becomes:

c∗?
(
 , b, V

)
= max

@,!?
(b − 1@)@ − H@ − A?!?

s.t. 0 ≤ @ ≤ V+!?
H

V+!?
H
≤  ,

0 ≤ (1 + A?)!? ≤ (b − 1@)@.
and each primal constraint is coupled with a dual variable, we define the variables

as follows:
H@ − !? ≤ V < _1 >

!? ≤ H − V < _2 >

−(b − 1@)@ + (1 + A?)!? ≤ 0 < _3 >

−@ ≤ 0 < `1 >

−!? ≤ 0 < `2 >

(A.12)

Then, the dual feasible equations are

b − 21@∗ − H = H_1 − (b − 21@∗)_3 − `1, (A.13)

−A? = −_1 + _2 + (1 + A?)_3 − `2, (A.14)

_1, _2, _3, `1, `2 ≥ 0,
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and complementary slackness are

_1(V + !∗? − H@∗) = 0,

_2(H − V − !∗?) = 0,

_3
(
(b − 1@∗)@∗ − (1 + A?)!∗?

)
= 0,

`1@
∗ = 0,

`2!
∗
? = 0.

The optimal decisions are categorized by all permutations of value of dual

variables (_1, _2, _3, `1, `2), specifically, the value of each dual variable takes

either ≥ 0 or = 0 indicating the corresponding constraint is either binding or not

binding respectively.

We classify the optimal decisions into four cases by whether @∗ and !∗? taking

positive or zero value, or equivalent condition from complementary slackness,

whether `1 and `2 are ≥ 0 or = 0. Therein, the case @∗ = 0 and !∗? ≥ 0 doesn’t

exist, because the negative profit occurs, specifically, on the one hand there is no

revenue generated due to no production, on the other hand pre-shipment finance

is applied with some cost.

The remaining three cases are as follows:

Case 1: @∗ = !∗? = 0.

In this case, `1 ≥ 0 and `2 ≥ 0. The value of remaining dual variables calculated

from substituting optimal decisions into complementary slackness are _1 = 0,

_2 = 0 and _3 ≥ 0. The uncertainties in the region derived through replacing

all above primary and dual variables with their value into Equation (A.13) and

(A.14) are 
V < H 

0 ≤ b ≤ H,
Case 2: @∗ > 0 and !∗? = 0.

In this case, we have `1 = 0 and `2 ≥ 0. Immediate results drew in this case are
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_2 = 0 because of  > V/H. The complementary slackness for _1 and _3 are

_1(V − H@∗) = 0 and _3(b − 1@∗)@∗ = 0,

as a result, we have following sub-cases based whether _1 and _3 are ≥ 0 or = 0:

1. when _1 = _3 = 0, @∗ < V

H
and @∗ < b

1
are drew from complementary

slackness. Dual feasible (A.13) becomes b − 21@∗ − H = 0 and (A.14)

becomes −A? = −`2. Therefore, we have @∗ = b−H
21 . Since 0 < @∗ < V/H

and  > V/H, the corresponding state space is
b−H
21 <

V

H
<  

b > H, V > 0
because V/H > @∗ > 0 and  > V/H;

2. when _1 = 0 and _3 ≥ 0, @∗ < V

H
and @∗ = b

1
are drew from complementary

slackness. The dual feasible (A.13) and (A.14) are −b − H = b_3 and

−A? = (1 + A?)_3 − `2 respectively. Noting that the dual feasible (A.13)

can’t hold because b ≥ 0, H ≥ 0 and _3 ≥ 0. Therefore, this case doesn’t

exist;

3. when _1 ≥ 0 and _3 = 0, @∗ = V

H
and @∗ < b

1
are drew from complementary

slackness. The dual feasible (A.13) and (A.14) are b − 21V
H
− H = H_1

and −A? = −_1 − `2 respectively. From the dual feasible (A.13), we have

b ≥ H + 21V
H
, then substitute _1 with A? − `2 for the dual feasible (A.13),

we have b ≤ (1 + A?)H + 21V
H
, so we obtain that this case exists only when

state space satisfies
H + 21V

H
≤ b ≤ (1 + A?)H + 21V

H

0 < V < H ;

4. when _1 ≥ 0 and _3 ≥ 0, @∗ = V

H
=

b

1
is drew from complementary

slackness. For simplicity, we use @∗ = b

1
to write over dual feasible (A.13)

and (A.14), they are −b − H = H_1 + b_3 and −A? = −_1 + (1 + A?)_3 − `2

respectively. Noting that the dual feasible (A.13) can’t hold, therefore this

case doesn’t exist.

138



Case 3: @∗ > 0 and !∗? > 0. In this case `1 = `2 = 0. Observing that the

dual feasible (A.14) −A? = −_1 + _2 + (1 + A?)_3 holds only if _1 > 0, because

A? is strictly positive. In addition, _1 > 0 results in V + !∗? − H@∗ = 0 according

to the complementary slackness. Therefore, given _1 > 0 and `1 = `2 = 0, there

are only four sub-cases in terms of whether _2 and _3 are ≥ 0 or = 0:

1. when _2 = _3 = 0, !∗? < H − V and (b − 1@∗)@∗ > (1 + A?)!∗? are

drew from complementary slackness. The corresponding dual feasible

(A.13) and (A.14) are b − 21@∗ − H = H_1 and A? = _1, which lead to

@∗ =
b−(1+A?)H

21 and thus !∗? =
(
b−(1+A?)H

)
H

21 − V because V + !∗? − H@∗ = 0.

Due to (b − 1@∗)@∗ > (1 + A?)!∗?, @∗ > 0 and H − V > !∗? > 0, the state

space is restricted in the range
(1 + A?)H + 21V

H
< b ≤ (1 + A?)H + 21 

V < H ;

2. when _2 = 0 and _3 ≥ 0, !∗? < H − V and (b − 1@∗)@∗ = (1 + A?)!∗?
are gotten from complementary slackness. The dual feasible (A.13) and

(A.14) are b − 21@∗ − H = H_1 − (b − 21@∗)_3 and A? = _1 − (1 + A?)_3,

losing _1 by combining the two dual feasible equations together we yield

−
(
b − 21@∗ − (1 + A?)H

)
(1 + _3) = 0, which obtains @∗ = b−(1+A?)H

21 and

thus !∗? =
b2−(1+A?)2H2

4(1+A?) because (b − 1@∗)@∗ = (1 + A?)!∗?. In addition,

by substituting @∗ and !∗? into V + !∗? − H@∗ = 0, we have that the state

space must satisfies V + b2−(1+A?)2H2

4(1+A?) −
(
b−(1+A?)H

)
H

21 = 0. Define a quadratic

function with respect to b as 6V (b) = −
( b2−(1+A?)2H2

4(1+A?)
)
+

(
b−(1+A?)H

)
H

21 , which

has maximizer b = (1 + A?)H because 36V (b)
3b

= − b

2(1+A?) +
H

21 . Since

6V
(
(1 + A?)H

)
= 0 and V ∈ [V, H ), there is no state space for this case to

be held;

3. when _2 ≥ 0 and _3 = 0, !∗? = H − V and (b − 1@∗)@∗ > (1 + A?)!∗? are

drew from complementary slackness, we further have @∗ =  because of

V + !∗? − H@∗ = 0. As a result, (b − 1 ) > (1 + A?) (H − V) should be
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satisfied. From dual feasible (A.13) and (A.14), that are b − 21 − H = H_1

and A? = _1 − _2 respectively, b > (1 + A?)H + 21 is derived. Overall,

state space that leads to optimal decisions equal to @∗ =  and !∗? = H − V

is 

b ≥ (1 + A?)H + 21 

(b − 1 ) > (1 + A?) (H − V)

V < H ;

⇒


b ≥ (1 + A?)H + 21 

V < H ;

4. when _2 ≥ 0 and _3 ≥ 0, we have complementary slackness !∗? = H − V,

(b − 1@∗)@∗ = (1 + A?)!∗? and V + !∗? − H@∗ = 0. Therefore, optimal

decisions are identical to previous case, that are @∗ =  and !∗? = H − V,

and state space follows a linear relation (b −  ) = (1 + A?) (H − V). In

addition, using dual feasible (A.13) and (A.14), that are b − 21 − H =

H_1 − (b − 21 )_3 and A? = _1 − _2 − (1 + A?)_3 in case, we have(
b−21 − (1+A?)H

)
(1+_3) = H_2 by losing _1, which provide a range for

state space b ≥ (1+A?)H+21 . Because line (b− ) = (1+A?) (H − V)

doesn’t pass through
{
(b, V) : b ≥ (1 + A?)H + 21 , V < H 

}
, this case

doesn’t exist.

The definition of state spaces in proposition is gotten from combing above ranges

with same optimal decisions and consider the lower and upper bound of Ṽ that

are V and V.

Proof of Theorem 3 part 2:

We derive the optimal capacity investment level for pre-shipment finance model

by proving the concavity of Π? ( ) in  and then  ∗? being solved by
mΠ? ( )
m 

= 0.

We prove Π? ( ) is concave in  by demonstrating the first order derivative of

Π? ( ) is continuous and monotonically decreasing in  . We first calculate the
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first order derivative of Π? ( ):
mΠ? ( )
m 

= − l +
∫ V

max
{
V,min{H ,V}

} ∫ ∞

H+21 
(b − H − 21 ) 5 (b, V)3b3V

+
∫ max

{
V,min{H ,V}

}
V

∫ ∞

(1+A?)H+21 

(
b − (1 + A?)H − 21 

)
5 (b, V)3b3V.

Although mΠ? ( )
m 

is continuous in  , it has a piecewise form depending on the

permutation among H , V and V. For the ease of calculation, we write the

piecewise form of the first order derivative of Π? ( ) as follows:

mΠ? ( )
m 

=



mΠD ( )
m 

, if  ∈
[
0,
V

H

]
mΠ?1( )
m 

, if  ∈
( V
H
,
V

H

)
mΠ?2( )
m 

if  ∈
[ V
H
, ∞

)
,

where mΠ?1 ( )
m 

= −l+
∫ V

H 

∫ ∞
H+21 (b−H−21 ) 5 (b, V)3b3V+

∫ H 

V

∫ ∞
(1+A?)H+21 

(
b−

(1 + A?)H − 21 
)
5 (b, V)3b3V and mΠ?2 ( )

m 
= −l +

∫ ∞
(1+A?)H+21 

(
b − (1 + A?)H −

21 
)
5b (b)3b. Then we prove the monotonically decreasing trend by calculating

the second derivative of Π? ( ) with respect to  piece by piece: m2Π?1 ( )
m 2 =

− 2
∫ V

H 

∫ ∞

H+21 
5 (b, V)3b3V − 2

∫ H 

V

∫ ∞

(1+A?)H+21 
5 (b, V)3b3V

− H
∫ ∞

H+21 
(b − H − 21 ) 5 (b, H )3b

+ H
∫ ∞

(1+A?)H+21 
(b − (1 + A?)H − 21 ) 5 (b, H )3b

<0

and m2Π?2 ( )
m 2 = −2

∫ ∞
(1+A?)H+21 

5b (b)3b < 0. As a result, we finish the proof of

the concavity of Π? ( ) in  .

Next, we discuss  ∗? piece by piece according to the piecewise structure

of mΠ? ( )
m 

, because mΠ? ( )
m 

in different piece has unique form. Specially, we

discuss the conditions under which  ∗? = 0,  ∗? ∈ (0, V/H],  ∗? ∈ (V/H, V/H] and

 ∗? ∈ (V/H,∞) respectively:

1. under condition mΠD ( )
m 

��
0 ≤ 0, or equivalently l ≥ E

[
(b̃ − H)+

]
, Π? ( )

decreases in  ≥ 0, therefore,  ∗? equals to 0;
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2. under condition mΠD ( )
m 

��
V

H

=
mΠ?1 ( )
m 

��
V

H

≤ 0 and mΠD ( )
m 

��
0 > 0, where the

inequalities are equivalent to E
[ (
b̃ − H − 2V

H

)+] ≤ l < E
[
(b̃ − H)+

]
,  ∗?

lies in (0, V/H] which is solved from mΠD ( )
m 

= 0, namely  ∗? =  * ;

3. under condition mΠ?1 ( )
m 

��
V

H

> 0 and mΠ?2 ( )
m 

��
V

H

≤ 0, namely E
[
(b̃ − (1 +

A?)H − 2V/H)+
]
≤ l < E

[
(b̃ − H − 21V/H)+

]
,  ∗? is the unique solution of

mΠ?1 ( )
m 

= 0, we define  ∗? under this condition as  �? (l) which is in the

range (V/H, V/H];

4. lastly, under condition mΠ?2 ( )
m 

��
V

H

> 0 which is l < E
[
(b̃ − (1 + A?)H −

2V/H)+
]
,  ∗? > V/H and is the unique solution of

mΠ?2 ( )
m 

= −l + E
[
(b̃ −

(1+A?)H−21 )+
]
= 0. Furthermore, knowing that  ∗? under this condition

is the unique solution of l = E
[
(b̃ − (1 + A?)H − 21 )+

]
and  * (l) is

the unique solution of l = E
[
(b̃ − H − 21 )+

]
,  * and  ∗? have following

relation (1 + A?)H + 21 ∗? = H + 21 * , so  ∗? =  * −
A?H

21 .

Proof of Corollary 3:

Pre-shipment finance shows the value under condition 0 ≤ l < Ẽ
b

[
(b̃−H− 2V

H
)+

]
where optimal capacity level for basic model is  � which is the unique solution of
mΠ( )
m 

= −l+
∫ V

H 

∫ ∞
H+21 (b− H−21 ) 5 (b, V)3b3V = 0. Meanwhile, the optimal

capacity investment level for pre-shipment model is either  % or  * − A?H/2.

We discuss the value of pre-shipment finance in terms of capacity investment

level given same l case by case:

1.  % optimizes the pre-shipment model objective when Ẽ
b

[
(b̃ − (1 + A?)H −

2V
H
)+

]
≤ l < Ẽ

b

[
(b̃ − H − 2V

H
)+

]
and  �? ∈

(
V

H
,
V

H

)
is the unique solution of

mΠ?1 ( )
m 

= −l+
∫ V

H 

∫ ∞
H+21 (b−H−21 ) 5 (b, V)3b3V+

∫ H 

V

∫ ∞
(1+A?)H+21 

(
b−

(1 + A?)H − 21 
)
5 (b, V)3b3V = 0. In order to compare  � and  %, we
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derive the first order derivative between Π?1( ) and Π( ) with respect to

 :
mΠ?1( )
m 

=
mΠ( )
m 

+
∫ H 

V

∫ ∞

(1+A?)H+21 

(
b − (1 + A?)H − 21 

)
5 (b, V)3b3V

and assign  � to  yielding mΠ?1 ( )
m 

���
 �
=

mΠ( )
m 

���
 �
+

∫ H �

V

∫ ∞

(1+A?)H+21 �

(
b − (1 + A?)H − 21 �

)
5 (b, V)3b3V

=

∫ H �

V

∫ ∞

(1+A?)H+21 �

(
b − (1 + A?)H − 21 �

)
5 (b, V)3b3V > 0.

The above inequality shows  � (l) <  �? (l), because
mΠ?1 ( )
m 

is decreas-

ing in  and mΠ?1 ( )
m 

���
 �?

= 0.

2.  * − A?H/2 optimizes the pre-shipment model objective when 0 < l <

Ẽ
b

[
(b̃ − (1 + A?)H − 2V

H
)+

]
and  * − A?H/2 > V/H >  �.

We then discuss the value of pre-shipment finance in terms of optimal expected

profit given same l case by case: The value generated from pre-shipment finance

given any  ∈ (V/H, V/H) when Ẽ
b

[
(b̃−(1+A?)H− 2V

H
)+

]
≤ l < Ẽ

b

[
(b̃−H− 2V

H
)+

]
is:
Δ? ( ) :=Π?1( ) − Π( )

= −
∫ H 

V

∫ ∞

(1+A?)H+ 21V
H

(
(b − H)V

H
− 1

( V
H

)2
)
5 (b, V)3b3V

+
∫ H 

V

∫ (1+A?)H+21 

(1+A?)H+ 21V
H

( (b − (1 + A?)H)2

41
+ A?V

)
5 (b, V)3b3V

+
∫ H 

V

∫ ∞

(1+A?)H+21 

( (
b − (1 + A?)H

)
 − 1 2 + A?V

)
5 (b, V)3b3V,

(A.15)

we have Δ?
(
V

H

)
= 0. In addition, Δ? ( ) increasing in  is derived from the first

order derivative of Δ? ( ) with respect to  , that is mΔ? ( )
m 

=

mΠ?1( )
m 

− mΠ( )
m 

=

∫ H 

V

∫ ∞

(1+A?)H+21 

(
b − (1 + A?)H − 21 

)
5 (b, V)3b3V > 0.

Therefore, Δ? ( ) > 0 for all  ∈ (V/H, V/H). Π( �) < Π?1( �) is derived

from following inequalities, that is Π?1( �? ) − Π( �) > Π?1( �) − Π( �) =

Δ? ( �) > 0.
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A.2.2 Proofs for the sensitivity analyses

From analytical result in Theorem 3 part 2, in the pre-shipment finance model,

the sensitivity results that are not yet explored only if  ∗? takes value  �? . We will

prove the sensitivity analyses results through the implicit function of  �? that is
mΠ?
m 

= 0. Utilizing bivariate normal distribution property 5 (b, V) = 5b |V (b) 5V (V),

Ĩ2
3
=
b̃−`b−d

fb

fV
( Ṽ−`V)√

f2
b
(1−d2)

���Ṽ and Ĩ0
3
=

Ṽ−`V
fV

,we have mΠ? ( )
m 

=

− l +
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 21 

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − (1 + A?)H − 21 

)
q(I2)3I2q(I0)3I0

(A.16)

Similarly, in order to derive sensitivity analyses for Π? ( �? ), we standardize the

first stage objective function as follows

Π? ( ) = −l +
7∑
8=1
+
?

8
( ), (A.17)

where + ?
8
( ) 8 = 1, 2, · · · , 7 are defined as:

+
?

1 ( ) :=
∫ ∞

H −`V
fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)2

41
q(I2)3I2q(I0)3I0,

+
?

2 ( ) :=
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)((

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
 − 1 2

)
q(I2)3I2q(I0)3I0,
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+
?

3 ( ) :=
∫ H −`V

fV

−∞

∫ H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)2

41
q(I2)3I2q(I0)3I0,

+
?

4 ( ) :=
∫ H −`V

fV

−∞

(I0fV + `V)
H

∫ (1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H − 1

( I0fV + `V
H

))
q(I2)3I2q(I0)3I0,

+
?

5 ( ) :=
∫ H −`V

fV

−∞

∫ (1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2)

(1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − (1 + A?)H

)2

41
q(I2)3I2q(I0)3I0,

+
?

6 ( ) :=
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2 )((

I2

√
f2
b
(1 − d2) + `b + dfb I0 − (1 + A?)H

)
 − 1 2

)
q(I2)3I2q(I0)3I0,

and

+
?

7 ( ) :=
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

A?
(
I0fV + `V

)
q(I2)3I2q(I0)3I0.

Proof of Proposition 9:

We will prove the impact of d on  �? andΠ? ( �? ) one by one. Firstly, we prove

 �? increases in d. By implicit differentiation, 3 
�
?

3d
= −

( (
m2Π?
m md

) / (
m2Π?
m 2

) )����
 �?

,
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we calculate m2Π?
m md

=∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

(
fbI0 −

fbdI2√
1 − d2

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2)

(
fbI0 −

fbdI2√
1 − d2

)
q(I2)3I2q(I0)3I0.

Through some normal distribution properties, we have m2Π?
m md

=

fbq

( H − `V
fV

) (
1 −Φ

(
fV (H + 21 − `b) − dfb (H − `V)

fbfV
√

1 − d2

))
− fbq

( H − `V
fV

) (
1 −Φ

(
fV

(
(1 + A?)H + 21 − `b

)
− dfb (H − `V)

fbfV
√

1 − d2

))
> 0.

Up to here, we prove that m
2Π? ( )
m md

> 0 for all  , therefore, the sensitivity analyses

with respect to  �? are derived, that is  �? increases in d.

We then proof the impact of d on Π? ( ).
Π? ( )
md

will have no term from

differentiating the limits of integration, because the integrands (optimal profit

in production stage) among con-terminal domain of integrations are continuous.

Starting from the derivative of Equation (A.17) with respect to d, since profit

function Π? ( ) is continuous and it derivatives at the boundaries are cancelled
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out, we have mΠ? ( )
md

=
∑6
8=1

m+
?

8
( )

md
, the derivatives is mΠ? ( )

md
=∫ ∞

H −`V
fV

∫ H+21 −`b −fb dI0
fb

√
1−d2

H−`b −fb dI0
fb

√
1−d2

(
I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

·

(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0 ·

fb√
1 − d2

+
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

 
(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0 ·

fb√
1 − d2

+
∫ H −`V

fV

−∞

∫ H+
21 (I0fV+`V )+

H −`b −fb dI0
fb

√
1−d2

H−`b −fb dI0
fb

√
1−d2

(
I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

·

(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0 ·

fb√
1 − d2

+
∫ H −`V

fV

−∞

(I0fV + `V)
H

∫ (1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)(

I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0 ·

fb√
1 − d2

+
∫ H −`V

fV

−∞

∫ (1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2)

(1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

(
I2

√
f2
b
(1 − d2) + `b + dfbI0 − (1 + A?)H

)
21

·

(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0 ·

fb√
1 − d2

+
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2)

 
(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0 ·

fb√
1 − d2

.

When transforming standard normal distribution back to (b̃, Ṽ) following Ĩ2
3
=

b̃−`b−d
fb

fV
( Ṽ−`V)√

f2
b
(1−d2)

���Ṽ and Ĩ0
3
=

Ṽ−`V
fV

, we have mΠ? ( )
md

=

(
1

1−d2

)
fb
fV

E
b

[
E
V |b

[
@∗( , b̃, Ṽ) ·(

Ṽ − `V − d
fV
fb
(b̃ − `b)

)���b̃] ] , through turning I0
√

1 − d2 − I2d in integrands of

all terms into(
V−`V
fV

)√
1 − d2 −

(
b−`b−d

fb

fV
(V−`V)√

f2
b
(1−d2)

)
d = 1

fV

√
1−d2

(
V− `V − d

fV
fb
(b − `b)

)
. Since

Ṽ |b̃ is normally distributed with parameters #
(
`V + d

fV
fb
(b̃ − `b), f2

V
(1 − d2)

)
and @∗( , b, V) is piecewise differentiable and continuous, E

V |b

[
@∗( , b, Ṽ) ·

(
Ṽ −

`V − d
fV
fb
(b − `b)

)���b] is able to be simplified using Stein (1972)’s lemma such
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that E
V |b

[
@∗( , b, Ṽ) ·

(
Ṽ − `V − d

fV
fb
(b − `b)

)���b] = f2
V
(1 − d2) E

V |b

[
m@∗ ( ,b,Ṽ)

mV

���b] ,
we have

mΠ? ( )
md

=

( 1
1 − d2

)fb
fV

E
b

[
E
V |b

[
@∗( , b̃, Ṽ) ·

(
Ṽ − `V − d

fV

fb
(b̃ − `b )

)���b̃] ]
=fbfVE

b

[
E
V |b

[m@∗( , b, Ṽ)
mV

���b] ] = ∫ H 

−∞

∫ (1+A?)H+ 21V
H

H+ 21V
H

1
H
5 (b, V)3b3V > 0.

Proof of Proposition 10 - The impact of fb on Π? ( �? ):

According to the Envelope Theorem, 3Π? ( 
�
? (l))

3fb
=

mΠ? ( )
mfb

���
 �?

, the result is

proved by investigating the sign of mΠ? ( )
mfb

���
 �?

. Therefore, we first calculate
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mΠ? ( )
mfb

=

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

H−`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − H

)
21(

I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ (1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

(I0fV + `V)
H

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ (1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2 )

(1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − (1 + A?)H

)
21

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2 )

 

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2 )

 

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2 )

H−`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − H

)
21(

I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0.

(A.18)

Noting that there is no term from differentiating the limits of integration,

because the integrand equals to 0 when substituting the variable of integra-

tion with the corresponding limits containing fb . By the definition of @∗,

we have that mΠ? ( )
mfb

= E
(I2,I0)

[ (
Ĩ2

√
1 − d2 + dĨ0

)
@∗( , Ĩ2, Ĩ0)

]
. Therefore, we

further apply Stein (1972)’s Lemma such that mΠ? ( )
mfb

= dE
I0

[
mE
I2
[@∗ (I2,I0)]

mI0

]
+
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√
1 − d2

∫ H −`V
fV

−∞ E
I2

[
m@∗ (I2,I0)

mI2

]
q(I0)3I0+

√
1 − d2

∫ ∞
H −`V
fV

E
I2

[
m@∗ (I2,I0)

mI2

]
q(I0)3I0 =

fb

21

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

q(I2)3I2q(I0)3I0

+
fb

21

∫ H −`V
fV

−∞

∫ (1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2)

(1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

q(I2)3I2q(I0)3I0

+
dfV

H

∫ H −`V
fV

−∞

∫ (1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

q(I2)3I2q(I0)3I0

+
fb

21

∫ ∞

H −`V
fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

q(I2)3I2q(I0)3I0.

(A.19)

Observing from above equation, we obtain that mΠ? ( )
mfb

> 0 for all  when d ≥ 0.

Then, we investigate the sign of mΠ? ( )
mfb

��
 �?

when d < 0. First of all,

we prove mΠ? ( )
mfb

��
 �?

increases in fb as follows: Due to 3
3fb

{
mΠ? ( )
mfb

���
 �?

}
=

m2Π? ( )
mf2

b

���
 �?

+
(
m2Π? ( )
mfb m 

���
 �?

)
· 3 

�
?

3fb
, we first calculate m2Π? ( )

mf2
b

using Equation (A.18)

such that m
2Π? ( )
mf2

b

=

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

(
I2

√
1 − d2 + dI0

)2

21
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ (1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2)

(1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)

(
I2

√
1 − d2 + dI0

)2

21
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)

(
I2

√
1 − d2 + dI0

)2

21
q(I2)3I2q(I0)3I0 > 0,

where there is no term from differentiating the limits of integration, because the in-

tegrand
(
I2

√
1 − d2+dI0

)
@∗( , I2, I0) is continuous. Furthermore,

(
m2Π? ( )
mfb m 

���
 �?

)
·

3 �?
3fb
≥ 0, because m2Π? ( )

mfb m 

���
 �?

and 3 �?
3fb

have same sign by implicit differentiation

3 �?
3fb

= −
( (

m2Π?
m mfb

) / (
m2Π?
m 2

) )����
 �?

. Therefore, we obtain 3
3fb

{
mΠ? ( )
mfb

���
 �?

}
> 0.
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Since mΠ? ( )
mfb

��
 �?

increases in fb , we prove the sign of lim
fb→∞

{
mΠ? ( )
mfb

���
 �?

}
and

lim
fb→0

{
mΠ? ( )
mfb

���
 �?

}
in order to determine the sign of mΠ? ( )

mfb

��
 �?

for all fb > 0.

Starting from lim
fb→∞

{
mΠ? ( )
mfb

���
 �?

}
, we prove lim

fb→∞
mΠ? ( )
mfb

> 0 for all  > 0.

First of all, we transform Equation (A.19) by substituting I2 with
C−`b−dfb I0√
f2
b
(1−d2)

such

that

mΠ? ( )
mfb

=
1

2
√

1 − d2

∫ H −`V
fV

−∞

∫ H+
21 (I0fV+`V )

H

H

q
©«
C − `b − dfb I0√
f2
b
(1 − d2)

ª®®¬ 3Cq(I0)3I0

+ 1
2
√

1 − d2

∫ H −`V
fV

−∞

∫ (1+A?)H+21 

(1+A?)H+
21 (I0fV+`V )

H

q
©«
C − `b − dfb I0√
f2
b
(1 − d2)

ª®®¬ 3Cq(I0)3I0

+
dfV

H

∫ H −`V
fV

−∞

∫ (1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

q(I2)3I2q(I0)3I0

+ 1
2
√

1 − d2

∫ ∞

H −`V
fV

∫ H+21 

H

q
©«
C − `b − dfb I0√
f2
b
(1 − d2)

ª®®¬ 3Cq(I0)3I0,

(A.20)

therefore, we have lim
fb→∞

mΠ? ( )
mfb

=∫ H −`V
fV

−∞

(I0fV + `V)/H√
1 − d2

q

( −dI0√
1 − d2

)
q(I0)3I0

+
∫ H −`V

fV

−∞

 − (I0fV + `V)/H√
1 − d2

q

( −dI0√
1 − d2

)
q(I0)3I0

+
∫ ∞

H −`V
fV

 √
1 − d2

q

( −dI0√
1 − d2

)
q(I0)3I0

=

∫ ∞

−∞

 √
1 − d2

q

( −dI0√
1 − d2

)
q(I0)3I0 > 0

which means lim
fb→∞

mΠ? ( )
mfb

> 0 for all  > 0.
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Lastly, from Equation (A.20), we calculate lim
fb→0

{
mΠ? ( )
mfb

���
 �?

}
=

dfV

H
lim
fb→0

∫ H lim
fb→0

 �? −`V

fV

−∞

(
Φ

( (1 + A?)H + 21 (I0fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

)
−Φ

( H + 21 (I0fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

))
q(I0)3I0,

(A.21)

we have that the sign of lim
fb→0

{
mΠ? ( )
mfb

���
 �?

}
highly depends on the value of lim

fb→0
 �? .

Knowing that lim
fb→0

 �? ∈
(
0, `b−(1+A?)H21

)
ifl >

(
1−Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H and

lim
fb→0

 �? ∈
[ `b−(1+A?)H

21 ,
`b−H

21
)
ifl ≤

(
1−Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H, we further cal-

culate Equation (A.21) and obtain that, 1) whenl >

(
1−Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H,

lim
fb→0

{
mΠ? ( )
mfb

���
 �?

}
= 0 and 2) when l ≤

(
1 −Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H,

lim
fb→0

{mΠ? ( )
mfb

���
 �?

}
=
dfV

H

(
Φ

( H lim
fb→0

 �? − `V

fV

)
−Φ

( H (`b−(1+A?)H)
21 − `V
fV

))
< 0.

Therefore, we summarize the impact of fb on Π? ( �? ) as what showed in

Proposition 10.

Proof of Proposition 11 - The impact of fb on  �? :

By implicit differentiation 3 �?
3fb

= −
( (

m2Π?
m mfb

) / (
m2Π?
m 2

) )����
 �?

, we are interested

in where m2Π? ( )
m mfb

��
 �?

lies above or below zero. Therefore, we calculate m2Π? ( )
m mfb

from Equation (A.16) using Leibniz’ formula, obtaining m2Π? ( )
m mfb

=∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2)

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

(A.22)

we find that m
2Π? ( )
m mfb

> 0 for all  when d ≥ 0.
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Then, we investigate the value of m
2Π? ( )
m mfb

��
 �?

when d < 0 by several steps.

Firstly, we prove that  �? increases in fb when fb is greater than f
 ?

b
, where

f
 ?

b
is the unique solution of mΠ? ( )

m 

���
 =

`b −H
21

= 0. Due to mΠ? ( )
m 

decreases

in  , we want to prove mΠ? ( )
m 

���
 =

`b −H
21

increases in fb ∈ [f
 ?

b
,∞) so that

as fb increasing from f
 ?

b
,  �? increases. From Equation (A.16), we obtain

mΠ? ( )
m 

���
 =

`b −H
21

=

− l + fb
∫ ∞
H (`b −H)

21 −`V
fV

∫ ∞

−dI0√
1−d2

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+ fb
∫ H (`b −H)

21 −`V
fV

−∞

∫ ∞

A? H/fb −dI0√
1−d2

(
I2

√
1 − d2 + dI0 − A?H/fb

)
q(I2)3I2q(I0)3I0

and we use this equation to prove m
mfb

{
mΠ? ( )
m 

���
 =

`b −H
21

}
> 0 when fb ∈ [f

 ?

b
,∞).

Further calculating m
mfb

{
mΠ? ( )
m 

���
 =

`b −H
21

}
=

∫ ∞
H (`b −H)

21 −`V
fV

∫ ∞

−dI0√
1−d2

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ H (`b −H)

21 −`V
fV

−∞

∫ ∞

A? H/fb −dI0√
1−d2

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0,

we can prove m
mfb

{
mΠ? ( )
m 

���
 =

`b −H
21

}
increases in fb ∈ [f

 ?

b
,∞), through

m

mfb

{mΠ? ( )
m 

���
 =

`b −H
21 ,fb=f

 ?

b

}
=
l

f
 ?

b

+
A?H

fb

∫ H (`b −H)
21 −`V
fV

−∞

∫ ∞

A?H/fb −dI0√
1−d2

q(I2)3I2q(I0)3I0 > 0

and

m2

mf2
b

{mΠ? ( )
m 

���
 =

`b −H
21

}
=

A2
?H

2

f3
b

√
1 − d2

∫ H (`b −H)
21 −`V
fV

−∞
q

(A?H/fb − dI0√
1 − d2

)
q(I0)3I0 > 0.

To summarize this part, we conclude that  �? increases in fb when fb > f
 ?

b
.

Secondly, we calculate the sign of m
2Π? ( )
mfb m 

���
 �?

when fb → 0 from Equation

(A.22). Noting that the sign of lim
fb→0

{
m2Π? ( )
mfb m 

���
 �?

}
highly depends on the value of
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lim
fb→0

 �? , Therefore, we characterize lim
fb→0

 �? by calculating lim
fb→0

mΠ? ( )
m 

, that is

lim
fb→0

mΠ? ( )
m 

=



−l +
∫ ∞

H −`V
fV

(
`b − H − 21 

)
q(I0)3I0

+
∫ H −`V

fV

−∞

(
`b − (1 + A?)H − 21 

)
q(I0)3I0,

if 0 <  <
`b−(1+A?)H

21

−l +
(
`b − H − 21 

) ∫ ∞

H −`V
fV

q(I0)3I0, if `b−(1+A?)H21 ≤  <
`b−H

21

−l, if  ≥ `b−H
21 ,

which we derive that

• lim
fb→0

 �? ∈
(
0, `b−(1+A?)H21

)
if l >

(
1 −Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H,

• lim
fb→0

 �? =
`b−(1+A?)H

21 if l =
(
1 −Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H and

• lim
fb→0

 �? ∈
( `b−(1+A?)H

21 ,
`b−H

21
)
if l <

(
1 −Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H.

Having above result, since lim
fb→0

{
m2Π? ( )
mfb m 

���
 �?

}
=

dq

( H lim
fb→0

 �? − `V

fV

)
·
(
Φ

( (1 + A?)H + 21 lim
fb→0

 �? − `b

lim
fb→0

fb
√
(1 − d2)

−
d
( H lim

fb→0
 �? −`V

fV

)√
1 − d2

)

−Φ
( H + 21 lim

fb→0
 �? − `b

lim
fb→0

fb
√
(1 − d2)

−
d
( H lim

fb→0
 �? −`V

fV

)√
1 − d2

))

we obtain that lim
fb→0

{
m2Π? ( )
mfb m 

���
 �?

}
= 0 if l >

(
1 − Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H;

lim
fb→0

{
m2Π? ( )
mfb m 

���
 �?

}
= dq

( H lim
fb→0

 �? −`V

fV

)
Φ

(
−

d
( H lim
fb→0

 �? −`V

fV

)
√

1−d2

)
< 0 if l =

(
1 −

Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H; and lim

fb→0

{
m2Π? ( )
mfb m 

���
 �?

}
= dq

( H lim
fb→0

 �? −`V

fV

)
< 0 if

l <

(
1 −Φ

( H (`b −(1+A? )H)
21 −`V
fV

))
A?H.
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Proof of Proposition 12 - The impact of fV on  �? :

We proof the sensitivity analysis result by implicit differentiation, 3 �?
3fV

=

−
( (

m2Π?
m mfV

) / (
m2Π?
m 2

) )����
 �?

. We calculate m2Π? ( )
m mfV

using Leibniz’ formula, that is

m2Π? ( )
m mfV

=

(H − `V)
√
f2
b
(1 − d2)

f2
V

q

( H − `V
fV

) (
E
[(
Ĩ2 −

( H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+]

− E
[(
Ĩ2 −

( (1 + A?)H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+])
,

at which we can immediately conclude that when H < `V,
m2Π? ( )
m mfV

< 0 and

when H ≥ `V,
m2Π? ( )
m mfV

> 0. Furthermore, the necessary and sufficient condition

for  �? < `V/H and  �? ≥ `V/H are mΠ? ( )
m 

���
`V/H

> 0 and mΠ? ( )
m 

���
`V/H

≤ 0

respectively, where mΠ? ( )
m 

��� `V
H

=

− l +
∫ ∞

0

∫ ∞

H+21`V/H−`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 21`V/H

)
q(I2)3I2q(I0)3I0

+
∫ 0

−∞

∫ ∞

(1+A? )H+21`V/H−`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − (1 + A?)H − 21`V/H

)
q(I2)3I2q(I0)3I0.

From above equation, we have mΠ? ( )
m 

��� `V
H

=

fb

√
(1 − d2)

∫ ∞

0
E
[(
Ĩ2 −

( H + 21`V/H − `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0

+ fb
√
(1 − d2)

∫ 0

−∞
E
[(
Ĩ2 −

( (1 + A?)H + 21`V/H − `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0,
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that doesn’t depend on fV. Then, define l
 ?

V
(d) :=

fb

√
(1 − d2)

∫ ∞

0
E
[(
Ĩ2 −

( H + 21`V/H − `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0

+ fb
√
(1 − d2)

∫ 0

−∞
E
[(
Ĩ2 −

( (1 + A?)H + 21`V/H − `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0,

we can conclude the sensitivity result:  �? increases in fV when l < l
 ?

V
(d);

 �? decreases in fV when l > l
 ?

V
(d).

We know that mΠ? ( )
m 

strictly increases in d for any given  > 0, therefore,
mΠ? ( )
m 

��� `V
H

= l
 ?

V
(d) strictly increases in d. For this reason, we can further

investigate the effect of d on the sensitivity result. Define l ?
V
(−1) = lim

d→−1
l
 ?

V

andl ?
V
(1) = lim

d→1
l
 ?

V
such thatl ?

V
(−1) < l ?

V
(1), we have a unique d denoted

by d ?
V
(l) that solves following equation

l =fb

√
(1 − d2)

∫ ∞

0
E
[(
Ĩ2 −

( H + 21`V/H − `b − dfbI0√
f2
b
(1 − d2)

))+]
q(I0)3I0

+ fb
√
(1 − d2)

∫ 0

−∞
E
[(
Ĩ2 −

( (1 + A?)H + 21`V/H − `b − dfbI0√
f2
b
(1 − d2)

))+]
q(I0)3I0

for all l ∈
(
l
 ?

V
(−1), l ?

V
(1)

)
. Therefore, the sensitivity result can be re-

calibrated as follows: under condition


l > l

 ?

V
(1) for all d ∈ (−1, 1);

or l ∈
(
l
 ?

V
(−1), l ?

V
(1)

)
and d < d ?

V
(l),

we have H �? < `V which implies m2Π? ( )
m mfV

��
 �?

< 0;

under condition


l < l

 ?

V
(−1) for all d ∈ (−1, 1);

or l ∈
(
l
 ?

V
(−1), l ?

V
(1)

)
and d > d ?

V
(l),

wehave H �? >

`Vwhich implies m
2Π? ( )
m mfV

��
 �?

> 0; and lastly, under conditionl ∈
(
l
 ?

V
(−1), l ?

V
(1)

)
and d = d ?

V
(l), we have H �? = `V which implies m2Π? ( )

m mfV

��
 �?
= 0.

Proof of Proposition 13 - The impact of fV on Π? ( �? ):

According to the Envelope Theorem, 3Π? ( 
�
? )

3fV
=

mΠ? ( )
mfV

���
 �?

, we prove the result
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by investigating the sign of mΠ? ( )
mfV

���
 �?

. Since Equation (A.17) has no term from

differentiating the limits of integration, we take the derivative of it with respect to

fV such that the remaining terms are ones that contain fV in integrand mΠ? ( )
mfV

=

fb

√
1 − d2

∫ H −`V
fV

−∞

I0
H

E
[(
Ĩ2 −

( H + 21 (I0fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0

− fb
√

1 − d2
∫ H −`V

fV

−∞

I0
H

E
[(
Ĩ2 −

( (1 + A?)H + 21 (I0fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0.

apparently, when H �? ≤ `V, we have
mΠ? ( )
mfV

��
 �?

< 0 for all fV.

Then we discuss the sign of mΠ? ( )
mfV

��
 �?

under condition H �? > `V. First of all,

we prove mΠ? ( )
mfV

��
 �?

decreases in fV when  �? > `V/H by following calculation,
3
3fV

{
mΠ? ( )
mfV

���
 �?

}
=

−2
∫ H �? −`V

fV

−∞

( I0
H

)2 ∫ (1+A? )H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

H+
21 (I0fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

q(I2)3I2q(I0)3I0

−fb
√
(1 − d2)

( H �? − `V
f2
V

) (
( �? − `V/H)

fV
−
3 �?

3fV

)
q

( H �? − `V
fV

)
·

(
E
[(
Ĩ2 −

( H + 21 �? − `b − dfb
( H �? −`V

fV

)√
f2
b
(1 − d2)

))+]

− E
[(
Ĩ2 −

( (1 + A?)H + 21 �? − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+])

where the first term is apparently negative and the second term is negative

if ( 
�
? −`V/H)
fV

− 3 �?
3fV

> 0. We prove ( 
�
? −`V/H)
fV

− 3 �?
3fV

> 0 is true by writing

the expression of 3 �?
3fV

according to 3 �?
3fV

=

( (
m2Π?
m mfV

) / (
− m

2Π?
m 2

) )����
 �?

. Since
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m2Π? ( )
m mfV

��
 �?

is known, we calculate m2Π? ( )
m 2 =

− 2
∫ ∞

H −`V
fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2 )

q(I2)3I2q(I0)3I0

− 2
∫ H −`V

fV

−∞

∫ ∞

(1+A? )H+21 −`b −dfb I0√
f2
b
(1−d2 )

q(I2)3I2q(I0)3I0

−
H
√
f2
b
(1 − d2)

fV
q

( H − `V
fV

) (
E
[(
Ĩ2 −

( H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+]

− E
[(
Ĩ2 −

( (1 + A?)H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+])
.

Define )? ( ) :=

H
√
f2
b
(1 − d2)

fV
q

( H − `V
fV

) (
E
[(
Ĩ2 −

( H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+]

− E
[(
Ĩ2 −

( (1 + A?)H + 21 − `b − dfb
( H −`V

fV

)√
f2
b
(1 − d2)

))+])
,

we can write 3 �?
3fV

=

( �? −`V/H)
fV

· )? ( �? )

)? ( �? ) + 2
∫ ∞
H �? −`V
fV

∫ ∞
H+21 �? −`b −dfb I0√

f2
b
(1−d2 )

q (I2)3I2q (I0)3I0 + 2
∫ H �? −`VfV
−∞

∫ ∞
(1+A? )H+21 �? −`b −dfb I0√

f2
b
(1−d2 )

q (I2)3I2q (I0)3I0

<
( �? − `V/H)

fV
,

which we finish the prove of 3
3fV

{
mΠ? ( )
mfV

���
 �?

}
< 0.

Secondly, we investigate the sign of mΠ? ( )
mfV

���
 �?

when fV takes special values,

that arefV → 0 andfV =
dfb H

21 . Starting from lim
fV→0

{
mΠ? ( )
mfV

���
 �?

}
when lim

fV→0
 �? >

`V
H
, we have lim

fV→0

{
mΠ? ( )
mfV

���
 �?

}
=

dfb

H

∫ ∞

−∞

©«Φ
( (1 + A?)H + 21`V

H
− `b − dfb I0√

f2
b
(1 − d2)

)
−Φ

(
H + 21`V

H
− `b − dfb I0√

f2
b
(1 − d2)

)ª®®¬ q(I0)3I0,

that is to say:
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• when lim
fV→0

 �? >
`V
H
and d > 0, lim

fV→0

{
mΠ? ( )
mfV

���
 �?

}
> 0;

• otherwise, lim
fV→0

{
mΠ? ( )
mfV

���
 �?

}
≤ 0.

Noting that, the condition under which lim
fV→0

 �? >
`V
H
is highly depend on the

value of lim
fV→0

 �? , we calculate lim
fV→0

mΠ? ( )
m 

=



− l +
∫ ∞

−∞

∫ ∞
H+21 −`b −dfb I0√

f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 21 

)
q (I2)3I2q (I0)3I0 if  <

`V

H
;

− l +
∫ ∞

−∞

∫ ∞
(1+A? )H+21 −`b −dfb I0√

f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − (1 + A? )H − 21 

)
q (I2)3I2q (I0)3I0 if  >

`V

H
,

from which we obtain that lim
fV→0

 �? >
`V
H
is equivalent to

l <

∫ ∞

−∞

∫ ∞

(1+A? )H+21`V/H−`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − (1 + A?)H − 21`V/H

)
q(I2)3I2q(I0)3I0

=

√
f2
b
(1 − d2)

∫ ∞

−∞
E
[(
Ĩ2 −

( (1 + A?)H + 21`V/H − `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0

=E
[(
b̃ −

(
(1 + A?)H +

2`V
H

) )+]
.

DefinelΠ?
V
(l, d) := E

[(
b̃−

(
(1+A?)H+21`V/H

) )+]
, we conclude that lim

fV→0
 �? >

`V
H
is equivalent to l < l

Π?

V
(l, d). Then, we calculate mΠ? ( )

mfV

���
fV=

dfb H

21 , = �?

when d > 0 and obtain mΠ? ( )
mfV

���
fV=

dfb H

21 , = �?

=

−

√
f2
b
(1 − d2)

H
E
[(
Ĩ2 −

( H + 21`V
H
− `b√

f2
b
(1 − d2)

))+]
q

( H �? − `V
dfb H

21

)

+

√
f2
b
(1 − d2)

H
E
[(
Ĩ2 −

( (1 + A?)H + 21`V
H
− `b√

f2
b
(1 − d2)

))+]
q

( H �? − `V
dfb H

21

)
< 0.

As a result, we obtain that only when l < l
Π?

V
(l, d) and d > 0 there exists

a unique fΠ?
V
(l, d) ∈ (0, dfb H21 ) such that mΠ? ( )

mfV

��
 �?
≥ 0 when fV < f

Π?

V
(l, d)

and mΠ? ( )
mfV

��
 �?

< 0 when fV > f
Π?

V
(l, d). Otherwise, mΠ? ( )

mfV

��
 �?
≤ 0 for all fV.
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Proof of Proposition 14:

The proof is similar to that of Proposition 7, so we omit the proof steps.

A.3 Proofs for theOptimal Strategy and Sensitivity

Analyses of Hedging Model

A.3.1 Proofs for the Optimal Strategy

Proof of Theorem 6:

The optimal capacity investment level for basic model is derived from the

expected profit in capacity investment stage Πℎ ( , ℎ), namely Equation (5.2).

To prove the concavity of Πℎ ( , ℎ) on ( , ℎ), we calculate the hessian-matrix

H
(
Πℎ ( , ℎ)

)
=

©«
m2Πℎ ( ,ℎ)

m 2
m2Πℎ ( ,ℎ)
m mℎ

m2Πℎ ( ,ℎ)
m mℎ

m2Πℎ ( ,ℎ)
mℎ2

ª®®¬ term by term.

mΠℎ ( , ℎ)
m 

=



− l +
∫ ∞

H+21 
(b − H − 21 ) 5b (b)3b, if  ∈

[
0,
ℎ`V + (1 − ℎ)V

H

]
−l +

∫ V

H −ℎ`V
1−ℎ

∫ ∞

H+21 
( b − H − 21 ) 5 ( b , V)3b3V, if  ∈

( ℎ`V + (1 − ℎ)V
H

,
ℎ`V + (1 − ℎ)V

H

)
− l, if  ∈

[ ℎ`V + (1 − ℎ)V
H

, ∞
)
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m2Πℎ ( , ℎ)
m 2

=



− 21
∫ ∞

H+21 
5b (b)3b, if  ∈

[
0,
ℎ`V + (1 − ℎ)V

H

]
− 21

∫ V

H −ℎ`V
1−ℎ

∫ ∞

H+21 
5 ( b , V)3b3V

−
( H

1 − ℎ

) ∫ ∞

H+21 
( b − H − 21 ) 5

(
b ,
H − ℎ`V

1 − ℎ

)
3b

, if  ∈
( ℎ`V + (1 − ℎ)V

H
,
ℎ`V + (1 − ℎ)V

H

)
0, if  ∈

[ ℎ`V + (1 − ℎ)V
H

, ∞
)

m2Πℎ ( , ℎ)
m mℎ

=



0, if  ∈
[
0,
ℎ`V + (1 − ℎ)V

H

]
(`V − H )
(1 − ℎ)2

∫ ∞

H+21 
( b − H − 21 ) 5

(
b ,
H − ℎ`V

1 − ℎ

)
3b, if  ∈

( ℎ`V + (1 − ℎ)V
H

,
ℎ`V + (1 − ℎ)V

H

)
0 if  ∈

[ ℎ`V + (1 − ℎ)V
H

, ∞
)

mΠℎ ( , ℎ)
mℎ

=



0, if  ∈
[
0,
ℎ`V + (1 − ℎ)V

H

]
∫ H −ℎ`V

1−ℎ

V

( `V − V
H

)
·
∫ ∞

H+
21 (ℎ`V+(1−ℎ)V)

H(
b − H −

21
(
ℎ`V + (1 − ℎ)V

)
H

)
5 ( b , V)3b3V

, if  ∈
( ℎ`V + (1 − ℎ)V

H
,
ℎ`V + (1 − ℎ)V

H

)
∫ V

V

( `V − V
H

) ∫ ∞

H+
21 (ℎ`V+(1−ℎ)V)

H

·

(
b − H −

21
(
ℎ`V + (1 − ℎ)V

)
H

)
5 ( b , V)3b3V

, if  ∈
[ ℎ`V + (1 − ℎ)V

H
, ∞

)
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m2Πℎ ( , ℎ)
mℎ2

=



0, if  ∈
[
0,
ℎ`V + (1 − ℎ)V

H

]
−
(H − `V )2

H (1 − ℎ)3

∫ ∞

H+21 
( b − H − 21 ) 5

(
b ,
H − ℎ`V

1 − ℎ

)
3b3V

− 21
∫ H −ℎ`V

1−ℎ

V

∫ ∞

H+
21 (ℎ`V+(1−ℎ)V)

H

( `V − V
H

)2
5 ( b , V)3b3V

, if  ∈
( ℎ`V + (1 − ℎ)V

H
,
ℎ`V + (1 − ℎ)V

H

)
− 21

∫ V

V

∫ ∞

H+
21 (ℎ`V+(1−ℎ)V)

H

( `V − V
H

)2
5 ( b , V)3b3V , if  ∈

[ ℎ`V + (1 − ℎ)V
H

, ∞
)

From above equations, we obtain the hessian-matrix and observe that
m2Πℎ ( ,ℎ)

m 2 ≤ 0 and m2Πℎ ( ,ℎ)
mℎ2 ≤ 0. Through simple algebra, we have m2Πℎ ( ,ℎ)

m 2 ·
m2Πℎ ( ,ℎ)

mℎ2 ≥
(
m2Πℎ ( ,ℎ)
m mℎ

)2
for all ( , ℎ) which proves that the Hessian is negative

semi-definite. Thus Πℎ ( , ℎ) is concave in ( , ℎ). As Πℎ ( , ℎ) is concave in

( , ℎ), we now solve for max
 ≥0,ℎ∈[0,1]

Πℎ ( , ℎ) by dividing the expected profit into

three sub-problems i = 1,2,3 according to the range of  as follows:

Πℎ ( , ℎ) =



Π1
ℎ ( , ℎ) if  ∈

[
0,
ℎ`V + (1 − ℎ)V

H

]
Π2
ℎ ( , ℎ) if  ∈

( ℎ`V + (1 − ℎ)V
H

,
ℎ`V + (1 − ℎ)V

H

)
Π3
ℎ ( , ℎ) if  ∈

[ ℎ`V + (1 − ℎ)V
H

, ∞
)

.

In the first region of  , we solve optimal decisions for

max
 ∈

[
0,
ℎ`V+(1−ℎ)V

H

]
,ℎ∈[0,1)

Π1
ℎ
( , ℎ), we find that Π1

ℎ
( , ℎ) = ΠD ( ) where ΠD ( )

is the expected profit function of the benchmark model. Since mΠℎ ( ,ℎ)
mℎ

≡

0, the value of ℎ doesn’t affect the optimal expected profit. Utilizing the

optimal capacity investment strategy for ΠD ( ), we have  ∗
ℎ
= 0 and ℎ∗ ∈

[0, 1) when Ẽ
b

[
(b̃ − H)+

]
≤ l;  ∗

ℎ
=  * (l) when Ẽ

b

[
(b̃ − H − 21

(
ℎ`V + (1 −

ℎ)V
)
/H)+

]
≤ l < Ẽ

b

[
(b̃ − H)+

]
, or equivalently,  ∗

ℎ
=  * (l) and ℎ∗ is a set that

is
{
ℎ

��� max
{
0,

H * (l)−V
`V−V

}
≤ ℎ ≤ 1

}
when Ẽ

b

[
(b̃− H− 21`V

H
)+

]
< l < Ẽ

b

[
(b̃− H)+

]
.

Then in the third region of  , we derive optimal  ∗
ℎ
and ℎ∗ for

max
 ∈

[
ℎ`V+(1−ℎ)V

H
, ∞

)
,ℎ∈[0,1)

Π3
ℎ
( , ℎ). As mΠℎ ( ,ℎ)

m 
= −l < 0 and mΠℎ ( ,ℎ)

m 
is continu-
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ous, the optimal decision is never in this region.

Lastly, in the second region of  , we derive optimal  ∗
ℎ
and ℎ∗ for sub-

problem Π2
ℎ
( , ℎ). According to the constraint  ∈

( ℎ`V+(1−ℎ)V
H

,
ℎ`V+(1−ℎ)V

H

)
and ℎ ∈ [0, 1], to simplify analysis and deal with 1− ℎ appearing at denominator,

we further divide the range of optimal decisions into following three sub-cases

 ∗
ℎ
∈ (V/H, `V/H), ℎ∗ ∈

[
0,

H ∗
ℎ
−V

`V−V

]
;

 ∗
ℎ
= `V/H, ℎ∗ ∈ [0, 1] ;

 ∗
ℎ
∈ (`V/H, V/H), ℎ∗ ∈

[
0, V−H 

∗
ℎ

V−`V

]
.

To obtain ( ∗
ℎ
, ℎ∗), we discuss under what condition the internal and boundary solutions

are obtained using following first order derivatives.

mΠ2
ℎ
( , ℎ)
m 

= − l +
∫ V

H −ℎ`V
1−ℎ

E
[
(b − H − 21 )+

��V] 5V (V)3b3V (A.23)

mΠ2
ℎ
( , ℎ)
mℎ

=

∫ H −ℎ`V
1−ℎ

V

(`V − V)
H

E
[(
b̃ − H −

21
(
ℎ`V + (1 − ℎ)V

)
H

)+���V] 5V (V)3V
(A.24)

From Equation (A.24), we have immediate result

Lemma 6 mΠ2
ℎ
( ,ℎ)
mℎ

> 0 for all ℎ ∈ [0, 1) when  ≤ `V/H.

Sub-case 1  ∗
ℎ
∈ (V/H, `V/H) and ℎ∗ ∈

[
0,

H ∗
ℎ
−V

`V−V

]
In this case, define  ∗

ℎ
(ℎ) as the internal optimal point which is solved by Equation

(A.23) equals to 0 for a given ℎ. Noting that mΠ
2
ℎ
( ,ℎ)
mℎ

> 0 for all ℎ ∈
[
0,

H ∗
ℎ
−V

`V−V

)
in

this region and mΠ2
ℎ
( ,ℎ)
mℎ

= 0 only when ℎ =
H ∗

ℎ
(ℎ)−V

`V−V . As a result, optimal capacity

level  ∗
ℎ
is solved by mΠ2

ℎ
( ,ℎ)
m 

���
ℎ=

H ∗
ℎ
−V

`V−V
= −l +

∫ ∞
H+21 (b − H − 21 ) 5b (b)3b = 0

which implies  ∗
ℎ
equals to the resource unconstrained capacity level  * . As

 ∗
ℎ
∈ (V/H, `V/H), the optimality condition should satisfy Ẽ

b

[(
b̃ − H − 21`V

H

)+]
≤

l < Ẽ
b

[(
b̃ − H − 21V

H

)+]
. To summarize, ( ∗

ℎ
, ℎ∗) =

(
 * (l), H 

* (l)−V
`V−V

)
when

Ẽ
b

[(
b̃ − H − 21`V

H

)+]
≤ l < Ẽ

b

[(
b̃ − H − 21V

H

)+]
.

Sub-case 2  ∗
ℎ
∈ (`V/H, V/H), ℎ∗ ∈

[
0, V−H 

∗
ℎ

V−`V

]
In this case,  is an interior solution. We define  ∗

ℎ
(ℎ) is an internal optimal

163



solution uniquely solved by l =
∫ V
H −ℎ`V

1−ℎ
E
[
(b − H − 21 )+

��V] 5V (V)3V for a

given ℎ. And ℎ∗ can be internal optimal solved by
∫ H ∗

ℎ
(ℎ)−ℎ`V
1−ℎ

V
(`V − V)E

[(
b̃ −

H − 21
(
ℎ`V+(1−ℎ)V

)
H

)+���V] 5V (V)3V = 0 or take boundary value ℎ = 0 or ℎ = V−H ∗
ℎ

V−`V
.

We first discuss the optimality condition under which ℎ∗ is at two boundaries:

boundary 1)  ∈ (`V/H, V/H) and ℎ = 0; and boundary 2)  = ℎ`V+(1−ℎ)V
H

and

ℎ ∈ (0, 1), respectively.

For the optimal solution for Sub-case 2 lies in boundary 1)  ∈ (`V/H, V/H)

and ℎ = 0, we obtain that the condition under which ℎ∗ = 0 is optimal. For

a given  , from Equation (A.24), we have mΠ2
ℎ
( ,ℎ)
mℎ

���
ℎ=0

=
∫ H 

V

(`V−V)
H

E
[(
b̃ −

H − 21V
H

)+���V] 5V (V)3V ≤ 0. As mΠ2
ℎ
( ,ℎ)
mℎ

���
 =`V/H,ℎ=0

> 0 always hold and
m2Π2

ℎ
( ,ℎ)

mℎm 
< 0 for all  ∈ (`V/H, V/H), we define  ℎ as the unique solu-

tion of mΠ2
ℎ
( ,ℎ)
mℎ

���
ℎ=0, = ℎ

= 0 where  ℎ > `V/H always holds. As a result,

ℎ∗ = 0 is attainable only when  ∗
ℎ
∈

[
min{ ℎ, V/H}, V/H

)
. For the set[

min{ ℎ, V/H}, V/H
)
not empty, the inequality mΠ2

ℎ
( ,ℎ)
mℎ

���
 =V/H,ℎ=0

=
∫ V

V
(`V −

V)Ẽ
b

[(
b̃ − H − 21V

H

)+���V] 5V (V)3V < 0 must holds indicting  ℎ < V/H. From

Equation (A.23), we have mΠ2
ℎ
( ,0)
m 

���
 = ℎ

> 0 and mΠ2
ℎ
( ,0)
m 

���
 =V/H

< 0. As  ∗
ℎ

is the unique solution of Π2
ℎ
( , 0) = 0, equivalently, l =

∫ V

H 

∫ ∞
H+21 (b − H −

21 ) 5 (b, V)3b3V, we find that  ∗
ℎ
equals to the resource constrained capacity

level  � (l). From above discussion about Equation (A.24),  � (l) >  ℎ is

equivalent to∫ H � (l)

V

(`V − V)
H

E
[(
b̃ − H − 21V

H

)+���V] 5V (V)3V ≤ 0. (A.25)

To transform Inequality (A.25) into an inequality with respect to l, we define

lℎ as the unique solution of
∫ H � (l)
V

(`V − V)Ẽ
b

[(
b̃ − H − 21V

H

)+���V] 5V (V)3V = 0,

then Inequality (A.25) is equivalent to l ≤ lℎ. Therefore, the condition

for ( ∗
ℎ
, ℎ∗) = ( � (l), 0) is l ∈

(
0, lℎ

]
. And this case exists only when∫ V

V
(`V − V)Ẽ

b

[(
b̃ − H − 21V

H

)+���V] 5V (V)3V < 0, because if∫ V

V
(`V − V)Ẽ

b

[(
b̃ − H − 21V

H

)+���V] 5V (V)3V ≥ 0, we have that  � (lℎ) ≥ V/H

meaning that lℎ ≤ 0.
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Then we discuss the optimality condition under which the optimal solution

for Sub-case 2 lies in boundary 2)  = ℎ`V+(1−ℎ)V
H

and ℎ ∈ (0, 1). From Equation

(A.23), we have mΠ2
ℎ

(
 ,ℎ

)
m 

���
 =

ℎ`V+(1−ℎ)V
H

= −l < 0, so this boundary doesn’t contain

optimal point.

Lastly, we discuss the internal optimal decision for Sub-case 2. Define

( �
ℎ
, ℎ�) as the unique solution jointly solved by Equation (A.23) and Equation

(A.24) equal to 0, that is


l =

∫ V

H −ℎ`V
1−ℎ

E
[
(b − H − 21 )+

��V] 5V (V)3V
0 =

∫ H −ℎ`V
1−ℎ

V

(`V − V)E
[(
b̃ − H −

21
(
ℎ`V + (1 − ℎ)V

)
H

)+���V] 5V (V)3V,
where  �

ℎ
∈ (`V/H,

ℎ`V+(1−ℎ)V
H

), ℎ� ∈ [0, 1). From Equation (A.23), to obtain

internal optimal capacity level, we have mΠ2
ℎ

(
 ,ℎ

)
m 

���
 =

ℎ`V+(1−ℎ)V
H

= −l < 0 and

mΠ2
ℎ

(
 ,ℎ

)
m 

���
 =

`V

H

= −l +
∫ V

`V
Ẽ
b

[
(b̃ − H − 21`V

H
)+

]
5V (V)3V > 0 for all ℎ ∈ [0, 1),

that is 0 < l <
∫ V

`V
Ẽ
b

[
(b̃ − H − 21`V

H
)+

]
5V (V)3V. In addition, define  ∗ℎ (ℎ) as the

implicit solution of Equation (A.23) for a given ℎ. Substituting  with  ∗
ℎ
(ℎ) to

Equation (A.24), to obtain ℎ∗ ∈ (0, 1), we have
mΠ2

ℎ
( ,ℎ)
mℎ

���
 = ∗

ℎ
(0),ℎ=0

=
∫ H ∗

ℎ
(0)

V

(`V−V)
H

E
[(
b̃ − H − 21V

H

)+���V] 5V (V)3V > 0 and

mΠ2
ℎ
( ,ℎ)
mℎ

���
 = ∗

ℎ
(1),ℎ=1

=
∫ V

V
(`V − V)E

[(
b̃ − H − 21`V

H

)+���V] 5V (V)3V < 0, since in

this region  ∗
ℎ
(0) =  �,  ∗

ℎ
(1) = `V

H
and lim

ℎ→1

H ∗
ℎ
(ℎ)−ℎ`V
1−ℎ = V, above inequalities

are equivalent to l > lℎ and Ẽ
b,Ṽ

[ (
Ṽ − `V

) (
b̃ − H − 21`V

H

)+]
> 0 respectively. We

conclude that

• when Ẽ
b,Ṽ

[ (
Ṽ − `V

) (
b̃ − H − 21Ṽ

H

)+]
> 0 > Ẽ

b,Ṽ

[ (
Ṽ − `V

) (
b̃ − H − 21Ṽ

H

)+]
,

the condition for ( �
ℎ
, ℎ�) to be optimal is 0 < l <

∫ V

`V
Ẽ
b

[
(b̃ − H −

21`V
H
)+

]
5V (V)3V;

• when Ẽ
b,Ṽ

[ (
Ṽ − `V

) (
b̃ − H − 21Ṽ

H

)+]
> 0, the condition for ( �

ℎ
, ℎ�) to be

optimal is lℎ < l <
∫ V

`V
Ẽ
b

[
(b̃ − H − 21`V

H
)+

]
5V (V)3V.
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Sub-case 3  ∗
ℎ
= `V/H, ℎ∗ ∈ [0, 1]

As  ∗
ℎ
= `V/H, we calculate

mΠ2
ℎ
( ,ℎ)
mℎ

���
 =`V/H

=
∫ `V

V
(`V − V)E

[(
b̃ − H − 21

(
ℎ`V+(1−ℎ)V

)
H

)+���V] 5V (V)3V > 0 for

all ℎ ∈ [0, 1], so we obtain optimal strategy ( ∗
ℎ
, ℎ∗) = (`V/H, 1). Define

 ∗
ℎ
(ℎ) is an internal optimal solution uniquely solved by l =

∫ V
H −ℎ`V

1−ℎ
E
[
(b −

H − 21 )+
��V] 5V (V)3V for a given ℎ. Since m2Π2

ℎ
( ,ℎ)

mℎm 
< 0 if  > `V/H and

m2Π2
ℎ
( ,ℎ)

mℎm 
> 0 if  < `V/H, we discuss two cases.

When  ∗
ℎ
(ℎ) > `V/H, as  ∗ℎ = `V/H, we have mΠ2

ℎ
( ,ℎ)
m 

���
 = ∗

ℎ
(ℎ)

= −l +∫ V

H ∗
ℎ
(ℎ)−ℎ`V
1−ℎ

E
[
(b − H − 21 )+

��V] 5V (V)3V ≥ 0 for all ℎ ∈ [0, 1], or equivalently,

l <
∫ V

`V
Ẽ
b

[
(b̃ − H − 21`V

H
)+

]
5V (V)3V because of

m2Π2
ℎ
( ,ℎ)

mℎm 
< 0. Also, as ℎ∗ = 1,

mΠ2
ℎ
( ,ℎ)
mℎ

���
 = ∗

ℎ
(ℎ)
=

∫ H ∗
ℎ
(ℎ)−ℎ`V
1−ℎ

V

(`V−V)
H

E
[(
b̃−H− 21(ℎ`V+(1−ℎ)V)

H

)+���V] 5V (V)3V ≥ 0

for all ℎ ∈ [0, 1], equivalently, Ẽ
b,Ṽ

[ (
Ṽ − `V

) (
b̃ − H − 21`V

H

)+]
≤ 0. To summarize,

we have ( ∗
ℎ
, ℎ∗) = (`V/H, 1) when l ∈

(
0,

∫ V

`V
Ẽ
b

[
(b̃ − H − 21`V

H
)+

]
5V (V)3V

)
and Ẽ

b,Ṽ

[ (
Ṽ − `V

) (
b̃ − H − 21`V

H

)+]
≤ 0.

When  ∗
ℎ
(ℎ) < `V/H, we also discuss the condition under which ( ∗

ℎ
, ℎ∗) =

(`V/H, 1). According to
m2Π2

ℎ
( ,ℎ)

mℎm 
> 0, we have that

mΠ2
ℎ
( ,ℎ)
m 

���
 <

`V

H
,ℎ=1

= −l + Ẽ
b

[(
b̃ − H − 21`V

H

)+]
> 0 and

mΠ2
ℎ
( ,ℎ)
m 

���
 =

`V

H
,ℎ∈[0,1)

= −l+
∫ V

`V
Ẽ
b

[
(b̃−H− 21`V

H
)+

]
5V (V)3V < 0. To summarized,

we have ( ∗
ℎ
, ℎ∗) = (`V/H, 1)whenl ∈

(∫ V

`V
Ẽ
b

[
(b̃ − H − 21`V

H
)+

]
5V (V)3V,

[
(b̃ − H − 21`V

H
)+

] )
.

Noting that Ẽ
b,Ṽ

[ (
Ṽ− `V

) (
b̃ − H− 21`V

H

)+]
= Cov

( (
Ṽ− `V

)
,

(
b̃ − H− 21`V

H

)+)
=

Cov
(
Ṽ,

(
b̃ − H − 21`V

H

)+) and Ẽ
b,Ṽ

[ (
Ṽ − `V

) (
b̃ − H − 21Ṽ

H

)+]
= Cov

( (
Ṽ − `V

)
,

(
b̃ −

H − 21Ṽ
H

)+)
= Cov

(
Ṽ,

(
b̃ − H − 21Ṽ

H

)+) , we therefore have cases in Theorem 6.

Proof of Corollary 6:

We prove this proposition by recalling from Chapter 3 that the resource con-

strained capacity level  � (l) is the unique solution of l =
∫ V

H �

∫ ∞
H+21 � (b − H −
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21 ) 5 (b, V)3b3V and � (l) > `V/Hwhenmax{0, lℎ} < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃−

H − 21`V
H
)+

]
. From Theorem 6, we have that  �

ℎ
(l, ℎ) is solved by mΠℎ ( ,ℎ)

m 
=

−l +
∫ V

H �
ℎ
−ℎ`V

1−ℎ

E
[
(b − H − 21 �

ℎ
)+

��V] 5V (V)3b3V = 0. To compare  �
ℎ
and  �,

we calculate
mΠℎ ( , ℎ)

m 

���
 = �

= − l +
∫ V

H �−ℎ`V
1−ℎ

E
[
(b − H − 21 �)+

��V] 5V (V)3b3V
= −

∫ H �−ℎ`V
1−ℎ

H �
E
[
(b − H − 21 �)+

��V] 5V (V)3b3V ≤ 0

since H � ≤ H �−ℎ`V
1−ℎ . As mΠℎ ( ,ℎ)

m 
decreases in  , we conclude that  � (l) ≥

 �
ℎ
(l, ℎ) for all ℎ ∈ (0, 1] and  � (l) =  �

ℎ
(l, ℎ) when ℎ = 0.

A.3.2 Proofs for the Sensitivity Analyses

Proof of Proposition 15:

Since now (b̃, Ṽ) follows bivariate normal distribution, we have the conditional

distributions are normally distributed with parameters

b̃ | Ṽ ∼ #
(
`b + d

fb
fV
( Ṽ − `V), f2

b
(1 − d2)

)
and Ṽ |b̃ ∼ #

(
`V + d

fV
fb
(b̃ − `b), f2

V
(1 − d2)

)
.

We transform the covariance thresholds using their double-integral form using

standardized normal distribution Ĩ0
3
=

Ṽ−`V
fV

and Ĩ2
3
=

b̃−`b−d
fb

fV
( Ṽ−`V)√

f2
b
(1−d2)

���Ṽ and

1 −Φ(−C) = Φ(C). For the first covariance,

Cov
(
Ṽ,

(
b̃ − H −

21`V
H

)+)
=

∫ ∞

H+
21`V
H

(
b − H −

21`V
H

) ∫ ∞

−∞
(V − `V) 5V |b (V)3V 5b (b)3b

=d
fV

fb

∫ ∞

H+
21`V
H

(
b − H −

21`V
H

)
(b − `b) 5V |b (V)3V 5b (b)3b

=dfVfb

∫ ∞

H+
21`V
H −`b
fb

I1

(
I1 +

`b − H −
21`V
H

fb

)
,

as
∫ ∞
C
I2q(I)3I = 1 − Φ(C) + Cq(C) and

∫ ∞
C
Iq(I)3I = q(C), we obtain that

Cov
(
Ṽ,

(
b̃ − H − 21`V

H

)+)
= dfVfbΦ

( `b−H−21`V/H
fb

)
. For the second covariance,
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we have

Cov
(
Ṽ,

(
b̃ − H − 21Ṽ

H

)+)
=

∫ ∞

−∞
(V − `V)

∫ ∞

H+ 21V
H

(
b − H − 21V

H

)
5b |V (b)3b 5V (V)3V

=fV

∫ ∞

−∞
I0

∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0
fb

√
1−d2(

I2fb

√
1 − d2 + `b + dfb I0 − H −

21(I0fV + `V)
H

)
q(I2)3I2q(I0)3I0

Observing that the last expression of above equation can be transformed using

Stein’s lemma E
[
6( Ĩ0) Ĩ0

]
= E

[
m6( Ĩ0)
mĨ0

]
where

6( Ĩ0) =
∫ ∞
H+

21 (I0fV+`V )
H −`b −dfb I0
fb

√
1−d2

(
I2fb

√
1 − d2+`b+dfbI0−H−

21(I0fV+`V)
H

)
q(I2)3I2.

Therefore, we obtain that the above equation also equals to

fV

(
dfb −

21fV
H

) ∫ ∞

−∞

∫ ∞

H+
21 (I0fV+`V )

H −`b −dfb I0
fb

√
1−d2

q(I2)3I2q(I0)3I0

=fV

(
dfb −

21fV
H

) ∫ ∞

−∞
Φ

©«
(
dfb −

21fV
H

)
I0 + `b − H −

21`V
H

fb
√

1 − d2

ª®¬ q(I0)3I0.

Noting that Cov
(
Ṽ,

(
b̃ − H − 21V

H

)+)
= 0 when dfb =

21fV
H

, we further transform

above equation for the case dfb ≠
21fV
H

. Since
∫ ∞
−∞Φ

( (
dfb−

21fV
H

)
I0+`b−H−

21`V
H

fb

√
1−d2

)
q(I0)3I0

is in the form
∫ ∞
−∞Φ

(
I−0
1

)
q(I)3I = E

I

[
Φ

(
Ĩ−0
1

) ]
where Ĩ ∼ # (0, 1), 0 and 1 are

constant parameters and 1 ≠ 0. We transform E
I

[
Φ

(
Ĩ−0
1

) ]
in following steps:

Φ
(
(I − 0)/1

)
= Pr

{
-̃ < I−0

1

}
for all I, where -̃ follows standard normal

distribution # (0, 1) and is independent of Ĩ, we have that

E
I

[
Φ

( Ĩ − 0
1

) ]
= Pr

{
-̃ <

Ĩ − 0
1

}
=


1 −Φ

( 0
√

1 + 12

)
, if 1 > 0;

Φ

( 0
√

1 + 12

)
, if 1 < 0.

.

We then apply this result and obtain that Cov
(
Ṽ,

(
b̃ − H − 21Ṽ

H

)+)
= fV (dfb −

21fV
H
)Φ

(
`b−H−21`V/H√

(
21fV
H
−dfb )2+f2

b
(1−d)2

)
. The optimal capacity investment and hedging

strategy proof is omitted due to the similarity to the proof of Theorem 6.

To prove the sensitivity of Πℎ ( ∗ℎ, ℎ
∗), the expected profit in the capacity
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investment stage Πℎ ( , ℎ), i.e. Equation (5.2) is transformed in standard normal

distribution form using Ĩ0
3
=

Ṽ−`V
fV

and Ĩ2
3
=
b̃−`b−d

fb

fV
( Ṽ−`V)√

f2
b
(1−d2)

���Ṽ, that is
Πℎ ( , ℎ) = −l +

4∑
8=1
+ ℎ8 ( , ℎ) (A.26)

where + ℎ
8
( , ℎ) 8 = 1, 2, · · · , 4 are defined as follows

+ℎ1 ( , ℎ) :=
∫ H −`V

(1−ℎ)fV

−∞

∫ H+
21 (I0 (1−ℎ)fV+`V )+

H −`b −dfb I0√
f2
b
(1−d2 )

H−`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − H

)2

41
q(I2)3I2q(I0)3I0,

+ ℎ2 ( , ℎ) :=
∫ ∞

H −`V
(1−ℎ)fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2)

H−`b −dfb I0√
f2
b
(1−d2)(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)2

41
q(I2)3I2q(I0)3I0,

+ℎ3 ( , ℎ) :=
∫ ∞

H −`V
(1−ℎ)fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2 )((

I2

√
f2
b
(1 − d2) + `b + dfb I0 − H

)
 − 1 2

)
q(I2)3I2q(I0)3I0,

and + ℎ4 ( , ℎ) :=

∫ H −`V
(1−ℎ)fV

−∞

(I0(1 − ℎ)fV + `V)
H

∫ ∞

H+
21 (I0 (1−ℎ)fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 1

( I0(1 − ℎ)fV + `V
H

))
q(I2)3I2q(I0)3I0.

Proof of Proposition 16:

Noting from Proposition 15, Πℎ ( ∗ℎ, ℎ
∗) is sensitive to d only when d > 0
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and 0 < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
, since both  ∗

ℎ
= 0 and ℎ∗ = 1 imply

Πℎ ( ∗ℎ, ℎ
∗) is not a function of d. There are two cases of optimal solutions to

discuss.

Firstly, when optimal strategy is ( ∗
ℎ
, ℎ∗) =

(
 �
ℎ
(l), ℎ� (l)

)
that is charac-

terized by d > 0 and max{0, lℎ} < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
, we obtain

that 3Πℎ ( 
∗
ℎ
,ℎ∗)

3d
=

mΠℎ ( ,ℎ)
md

���
 = �

ℎ
(l),ℎ� (l)

as
(
 �
ℎ
(l), ℎ� (l)

)
is interior optimal

solution. To derive the sensitivity result, we take derivative of Equation (A.26)

with respect to d, as the derivative as integral boundaries are vanished due to the

continuity of the integrands, we have yielding mΠℎ ( ,ℎ)
md

=
∑4
8=1

m+ℎ
8
( ,ℎ)
md

, where

the derivatives in each term is mΠℎ ( ,ℎ)
md

=

fb√
1 − d2

∫ H −`V
(1−ℎ)fV

−∞

∫ H+
21 (I0 (1−ℎ)fV+`V )+

H −`b −fb dI0
fb

√
1−d2

H−`b −fb dI0
fb

√
1−d2(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0

+
fb√

1 − d2

∫ H −`V
(1−ℎ)fV

−∞

∫ H+21 −`b −fb dI0
fb

√
1−d2

H−`b −fb dI0
fb

√
1−d2(

I2

√
f2
b
(1 − d2) + `b + dfbI0 − H

)
21

(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0

+
fb√

1 − d2

∫ ∞

H −`V
(1−ℎ)fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2)

 
(
I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0

+
fb√

1 − d2

∫ H −`V
(1−ℎ)fV

−∞

(I0(1 − ℎ)fV + `V)
H

∫ ∞

H+
21 (I0 (1−ℎ)fV+`V )

H −`b −dfb I0√
f2
b
(1−d2)(

I0

√
1 − d2 − I2d

)
q(I2)3I2q(I0)3I0,

that is, mΠℎ ( ,ℎ)
md

=

(
1

1−d2

)
fb
fV

E
b

[
E
V |b

[
@∗
ℎ
( , b̃, Ṽ) ·

(
Ṽ − `V − d

fV
fb
(b̃ − `b)

)���b̃] ] .
Since Ṽ |b̃ follows normal distribution Ṽ |b̃ ∼ #

(
`V + d

fV
fb
(b̃ − `b), f2

V
(1 − d2)

)
and @∗

ℎ
( , b, V) is piecewise differentiable and continuous, E

V |b

[
@∗
ℎ
( , b, Ṽ) ·(

Ṽ − `V − d
fV
fb
(b − `b)

)���b] is able to be simplified by Stein’s lemma such that

E
V |b

[
@∗
ℎ
( , b, Ṽ) ·

(
Ṽ − `V − d

fV
fb
(b − `b)

)���b] = f2
V
(1 − d2) E

V |b

[
m@∗

ℎ
( ,b,Ṽ)
mV

���b] , we
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then obtain
mΠℎ ( , ℎ)

md
=fbfVE

b

[
E
V |b

[m@∗
ℎ
( , b, Ṽ)
mV

���b] ] = fbfV ∬
Ωℎ3

(1 − ℎ)
H

5 (b, V)3b3V > 0

for all  > 0 and ℎ ∈ [0, 1).

Secondly, we prove the sensitivity result when optimal strategy is ( ∗
ℎ
, ℎ∗) =(

 � (l), 0
)
that is characterized by d > 21fV

Hfb
and 0 < l < lℎ. In this case,

Πℎ
(
 � (l), 0

)
= Π

(
 � (l)

)
where Π( ) is the expected profit of basic model.

As we’ve proved that Π
(
 � (l)

)
increases in d, we proved that Πℎ

(
 � (l), 0

)
increases in d under condition d > 21fV

Hfb
and 0 < l < lℎ.

Proof of Proposition 17:

Weprove the effect offb onΠℎ ( ∗ℎ, ℎ
∗). NotingΠℎ ( , 1) = ΠD

(
min{ , `V/H}

)
where ΠD ( ) is the expected profit function for resource unconstrained bench-

mark model, we have 3Πℎ ( ∗ℎ ,ℎ
∗)

3fb
=

3ΠD

(
min{ * ,`V/H}

)
3fb

=
mΠD ( )
mfb

���
 =min{ * ,`V/H}

under all conditions that lead to ℎ∗ = 1. And we proved in Proposition 2 that
mΠD ( )
mfb

> 0 for all  > 0. Therefore, we obtain that Πℎ ( ∗ℎ, ℎ
∗) strictly increases

in fb under all conditions that lead to ℎ∗ = 1.

Then we prove the sensitivity result for cases that ℎ∗ ≠ 1. There are two

cases. Firstly, when optimal strategy is ( ∗
ℎ
, ℎ∗) =

(
 �
ℎ
(l), ℎ� (l)

)
that is

characterized by d > 0 and max{0, lℎ} < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
,

we obtain that 3Πℎ ( 
∗
ℎ
,ℎ∗)

3fb
=

mΠℎ ( ,ℎ)
mfb

���
 = �

ℎ
(l),ℎ� (l)

as
(
 �
ℎ
(l), ℎ� (l)

)
is interior

optimal solution. Taking derivative of Equation (A.26) with respect to fb , we
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have mΠℎ ( ,ℎ)
mfb

=

∫ H −`V
(1−ℎ)fV

−∞

∫ H+
21 (I0 (1−ℎ)fV+`V )+

H −`b −dfb I0√
f2
b
(1−d2 )

H−`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − H

)
21

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ H −`V

(1−ℎ)fV

−∞

∫ ∞

H+
21 (I0 (1−ℎ)fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )

(I0(1 − ℎ)fV + `V)
H

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
(1−ℎ)fV

∫ H+21 −`b −dfb I0√
f2
b
(1−d2 )

H−`b −dfb I0√
f2
b
(1−d2 )

(
I2

√
f2
b
(1 − d2) + `b + dfb I0 − H

)
21

(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

+
∫ ∞

H −`V
(1−ℎ)fV

∫ ∞

H+21 −`b −dfb I0√
f2
b
(1−d2 )

 
(
I2

√
1 − d2 + dI0

)
q(I2)3I2q(I0)3I0

=

√
1 − d2

∫ H −`V
(1−ℎ)fV

−∞

∫ ∞

−∞
I2@
∗
ℎ (I2, I0)q(I2)3I2q(I0)3I0

+
√

1 − d2
∫ ∞

H −`V
(1−ℎ)fV

∫ ∞

−∞
I2@
∗
ℎ (I2, I0)q(I2)3I2q(I0)3I0

+ dE
I0

[
Ĩ0E
I2

[
@∗ℎ ( Ĩ2, Ĩ0)

��Ĩ0
] ]
.

According to the Stein’s Lemma, above equation is transformed into

mΠℎ ( , ℎ)
mfb

=
fb

21

∫ H −`V
(1−ℎ)fV

−∞

∫ H+
21 (I0 (1−ℎ)fV+`V )+

H −`b
fb

√
1−d2 − dI0√

1−d2

H−`b
fb

√
1−d2 −

dI0√
1−d2

q(I2)3I2q(I0)3I0

+
fb

21

∫ ∞

H −`V
(1−ℎ)fV

∫ H+21 −`b
fb

√
1−d2 −

dI0√
1−d2

H−`b
fb

√
1−d2 −

dI0√
1−d2

q(I2)3I2q(I0)3I0

+
dfV

H

∫ H −`V
(1−ℎ)fV

−∞

∫ ∞

H+
21 (I0 (1−ℎ)fV+`V )

H −`b
fb

√
1−d2 − dI0√

1−d2

q(I2)3I2q(I0)3I0,

as d > 0, we have that mΠℎ ( ,ℎ)
mfb

> 0 for all  > 0 including  =  ∗
ℎ
. To

summarize, we proved that Πℎ ( ∗ℎ, ℎ
∗) strictly increases in fb .

Secondly, we prove the sensitivity result when optimal strategy is ( ∗
ℎ
, ℎ∗) =
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(
 � (l), 0

)
that is characterized by d > 21fV

Hfb
and 0 < l < lℎ. In this case,

Πℎ
(
 � (l), 0

)
= Π

(
 � (l)

)
where Π( ) is the expected profit of basic model,

so that 3Πℎ ( 
∗
ℎ
,ℎ∗)

3fb
=

3Π( � (l))
3fb

=
mΠ( )
mfb

���
 = � (l)

according to Envelope theorem.

As we’ve proved that Π
(
 � (l)

)
increases in fb when d > 0, we proved that

Πℎ
(
 � (l), 0

)
increases in fb under condition d >

21fV
Hfb

and 0 < l < lℎ.

Proof of Proposition 18:

Noting from Proposition 15, Πℎ ( ∗ℎ, ℎ
∗) can be sensitive to fV only when

d > 0 and 0 < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
, since both  ∗

ℎ
= 0 and ℎ∗ = 1

imply Πℎ ( ∗ℎ, ℎ
∗) is not a function of fV. To derive the sensitivity result, we

discuss the sign of
3Πℎ ( ∗ℎ ,ℎ

∗)
3fV

=
mΠℎ ( ,ℎ)
mfV

���
 = ∗

ℎ
,ℎ=ℎ∗
+ mΠℎ ( ,ℎ)

m 

���
 = ∗

ℎ
,ℎ=ℎ∗

3 ∗
ℎ

3fV
+ mΠℎ ( ,ℎ)

md

���
 = ∗

ℎ
,ℎ=ℎ∗

3ℎ∗

3fV
.

As there are two optimal strategies within the unit capacity cost range 0 < l <

Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
when d > 0, we discuss the sensitivity result one by

one.

Firstly, when optimal strategy is ( ∗
ℎ
, ℎ∗) =

(
 �
ℎ
(l), ℎ� (l)

)
that is charac-

terized by d > 0 and max{0, lℎ} < l < Ẽ
b,Ṽ

[
1{ Ṽ≥`V} (b̃ − H −

21`V
H
)+

]
, we obtain

that 3Πℎ ( 
∗
ℎ
,ℎ∗)

3fV
=

mΠℎ ( ,ℎ)
mfV

���
 = �

ℎ
(l),ℎ� (l)

as
(
 �
ℎ
(l), ℎ� (l)

)
is interior optimal

solution. We take derivative of Equation (A.26) with respect to fV to obtain
mΠℎ ( ,ℎ)
mfV

=

∫ H −`V
(1−ℎ)fV

−∞

I0(1 − ℎ)
H

∫ ∞

H+
21 (I0 (1−ℎ)fV+`V )

H −`b −dfb I0√
f2
b
(1−d2 )(

I2

√
f2
b
(1 − d2) + `b + dfb I0 − H − 21

( I0(1 − ℎ)fV + `V
H

))
q(I2)3I2q(I0)3I0

=fb

√
1 − d2

∫ H −`V
(1−ℎ)fV

−∞

I0(1 − ℎ)
H

E
[(
Ĩ2 −

( H + 21 (I0 (1−ℎ)fV+`V)
H

− `b − dfb I0√
f2
b
(1 − d2)

))+]
q(I0)3I0.

Then we use the optimality condition of ℎ∗ given  to obtain the result. ℎ∗( )

is solved by
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0 =
∫ H −ℎ∗ ( )`V

1−ℎ∗ ( )
−∞ (`V− V)E

[(
b̃− H− 21

(
ℎ∗ ( )`V+

(
1−ℎ∗ ( )

)
V
)

H

)+���V] 5V (V)3V, we stan-
dardize this optimality condition yielding

0 = fbfV
√

1 − d2
∫ H −`V
(1−ℎ∗ ( ))fV
−∞ I0E

[(
Ĩ2−

(
H+

21 (I0 (1−ℎ∗ ( ))fV+`V )
H

−`b−dfb I0√
f2
b
(1−d2)

))+]
q(I0)3I0.

Using above optimality condition of ℎ∗( ), we have mΠℎ ( ,ℎ)
mfV

���
ℎ=ℎ∗ ( )

= 0 for all

 > 0 including  =  ∗
ℎ
.

Secondly, we prove the sensitivity result when optimal strategy is ( ∗
ℎ
, ℎ∗) =(

 � (l), 0
)
that is characterized by d > 21fV

Hfb
and 0 < l < lℎ. In this case,

Πℎ
(
 � (l), 0

)
= Π

(
 � (l)

)
where Π( ) is the expected profit of basic model,

so that 3Πℎ ( 
∗
ℎ
,ℎ∗)

3fV
=

3Π( � (l))
3fV

=
mΠ( )
mfV

���
 = � (l)

according to Envelope theorem.

We have mΠ( )
mfV

���
 = � (l)

=√
f2
b
(1 − d2)

∫ H � (l)−`V
fV

−∞

I0
H

E
[(
Ĩ2 −

( H + 21(I0fV+`V)
H

− `b − dfbI0√
f2
b
(1 − d2)

))+]
q(I0)3I0.

As we obtained in the proof of Theorem 5 that l < lℎ is equivalent to∫ H � (l)
−∞

(`V−V)
H

E
[(
b̃ − H − 21V

H

)+���V] 5V (V)3V < 0 and this inequality can be stan-

dardized as

−
√
f2
b
(1 − d2)fV

∫ H � (l)−`V
fV

−∞
I0
H

E
[(
Ĩ2 −

(
H+

21 (I0fV+`V )
H

−`b−dfb I0√
f2
b
(1−d2)

))+]
q(I0)3I0 <

0, we can conclude that 3Πℎ ( 
∗
ℎ
,ℎ∗)

3fV
> 0 in this case.
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