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Abstract

This dissertation consists of three papers which contribute to the estima-

tion and inference theory of the heterogeneous large panel data models. The

first chapter studies a panel threshold model with interactive fixed effects.

The least-squares estimators in the shrinking-threshold-effect framework are

explored. The inference theory on both slope coefficients and the threshold

parameter is derived, and a test for the presence of the threshold effect is pro-

posed. The second chapter considers the least-squares estimation of a panel

structure threshold regression (PSTR) model, where parameters may exhibit

latent group structures. Under some regularity conditions, the latent group

structure can be correctly estimated with probability approaching one. A

likelihood-ratio-based test on the group-specific threshold parameters is stud-

ied. Two specification tests are proposed: one tests whether the threshold

parameters are homogeneous across groups, and the other tests whether the

threshold effects are present. The third chapter studies high-dimensional vector

autoregressions (VARs) augmented with common factors. An `1-nuclear-norm

regularized estimator is considered. A singular value thresholding procedure

is used to determine the correct number of factors with probability approach-

ing one. Both a LASSO estimator and a conservative LASSO estimator are

employed to improve estimation. The conservative LASSO estimates of the

non-zero coefficients are shown to be asymptotically equivalent to the oracle

least squares estimates. Monte Carlo studies are conducted to check the finite

sample performance of the proposed test and estimators. Empirical applica-

tions are conducted in each chapter to illustrate the usefulness of the proposed

methods.
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Chapter 1

Introduction

In the last two decades, there is a fast development of panel data economet-

rics, as panel data sets have become widely available to empirical researchers

(see e.g. Hsiao 2014 and Pesaran 2015). A major advantage of using panel

data is the ability to control for unobserved heterogeneity. With long panel

data sets, we are able to identify and measure effects that are otherwise not

detetable. Accompanied by the benefit, there is a cost. Technical difficulties

arise when the models are built to capture various heterogeneity and relex

exogeneity assumptions. Hence, it is an area of interest and importance.

In this dissertation, we extend the literature by analyzing three large het-

ergeneous panel data models. We have considered the unobserved hetero-

geneity due to three reasons: (1) threshold effect; (2) interactive fixed effects

(IFEs), and (3) slope coefficients heterogeneity. All these three effects have

received considerable attentions in recent empirical studies. The threshold

effect of government debt on economic output has been well documented in

the literature; see Reinhart and Rogoff (2010), Cecchetti et al. (2011), and

Checherita-Westphal and Rother (2012), among others. Chudik et al. (2017)

finds that the existing studies on the debt-growth nexus fail to incorporate

cross-sectionally dependent errors that may exist across countries and consider

modeling the cross-sectionally dependent errors via interactive fixed effects. In

addition, Durlauf (2001), Su and Chen (2013), and Browning and Carro (2007)

document that slope homogeneity among individuals is usually a vulnerable
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assumption.

In the second chapter, we propose to extend the panel threshold regres-

sion models by replacing the two-way fixed effects by the IFEs, which allow

for the presence of a larger degree of unobserved heterogeneity and cross-

sectional dependence. We have established the asymptotic theory for the least

squares estimators and proposed a likelihood ratio test to make inference on

the threshold parameter. The most challenging part of our analysis is to con-

duct a nonstandard analysis on the threshold parameter estimator jointly with

large dimensional incidental parameters estimators. Due to the presence of

large dimensional estimators, the analyses for consistency and convergence

rate require some novel arguments that are quite different from the existing

literature. We run Monte Carlo simulations to examine the finite sample per-

formance of the LS estimators and the tests. To illustrate the usefulness of

the proposed model, we consider an empirical application on the relationship

between economic growth and financial development with the World Develop-

ment Indicators (WDI) data.

In the third chapter, we propose a new panel threshold model that al-

lows the slope and threshold coefficients to vary across individual units. We

model individual heterogeneity via a grouped pattern, such that all the mem-

bers within the same group share the same slope and threshold coefficients,

whereas these coefficients can differ across groups in an arbitrary manner. We

allow the group membership structure (i.e., which individuals belong to which

group) to be unknown and estimated from the data. We refer to our model as

a panel structure threshold regression (PSTR) model. To estimate the PSTR

model, we consider a least-squares-type estimator that minimizes the sum of

squared errors. Under some regularity conditions, we show that our estima-

tors of the slope and threshold coefficients are asymptotically equivalent to

the corresponding infeasible estimators of the group-specific parameters that

are obtained by using individual group identity information. We evaluate the
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finite-sample performance of the proposed tests and estimation methods via

extensive simulation studies. Our estimation method performs well in het-

erogeneous panels with threshold effects in finite samples. We illustrate the

usefulness of our methods through two real-data examples. First, we revisit

the relationship between capital market imperfections and firms’ investment

behavior. Next, we examine the impact of bank regulation, particularly branch

deregulation, on income inequality in US, allowing observed and unobserved

heterogeneity in their impact.

In the fourth chapter, we propose and study a high-dimensional vector

autoregressions (VARs) model augmented with common factors (CFs) that

allow for strong cross section dependence. To estimate the high dimensional

VAR model with CFs, our approach uses a three-step procedure. The first

step employs `1-nuclear norm regularized estimation that minimizes the sum

of squared residuals with an `1-norm penalty on the transition matrices and a

nuclear norm penalty on the low rank matrix representing the common com-

ponent. In the second step, we include the estimated CFs as regressors and

consider a generalized LASSO estimator to obtain an estimate of the transi-

tion matrices. We show that the estimation errors can be uniformly controlled,

which facilitates the construction of weights for subsequent estimation by con-

servative LASSO in the third step. Under some regularity conditions, we show

that this third step conservative LASSO estimator of the transition matrices

achieves sign consistency (see Zhao and Yu 2006) asymptotically. Besides,

the third step estimator of transition matrices, factors and factor loadings are

asymptotically equivalent to the corresponding oracle least squares estimators

that are obtained by using detailed information about the form of the true

regression model. We illustrate the usefulness of this methodology through a

real-data example. We revisit the financial connectedness measures proposed

by Diebold and Yilmaz (2014) and document strong evidence of the existence

of common factors in the volatilities of 23 sector exchange traded funds (ETFs).

3



Chapter five concludes and some technical results are provided in the ap-

pendix. Additional technical results can be found in the online supplement.
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Chapter 2

Panel Threshold Models with Interac-

tive Fixed Effects

2.1 Introduction

Both threshold effects and interactive fixed effects (IFEs) are of practical

relevance and have received considerable attentions in recent empirical studies.

In this paper, we propose a panel threshold model with IFEs, which includes

both important effects in a model. The proposed model allows us to study

threshold effects, IFEs, or both in a unified way. The proposed model has a

wide range of applications. In a recent study, Chudik et al. (2017) investi-

gate the debt-threshold effect on output. The threshold effect of government

debt on economic output has been well documented in the literature; see Rein-

hart and Rogoff (2010), Cecchetti et al. (2011), and Checherita-Westphal and

Rother (2012), among others. However, as argued by Chudik et al. (2017), the

existing studies on the debt-growth nexus fail to incorporate cross-sectionally

dependent errors that may exist across countries. This motivates them to

consider a panel threshold model with heterogeneous coefficients and cross-

sectionally dependent errors where the latter are modeled via the use of IFEs

to deal with strong cross-sectional dependence. In this paper, we will consider

another empirical example, the nexus of financial depth and economic growth

where numerous studies have documented the presence of both threshold ef-
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fects and unobserved heterogeneity where the latter is controlled via the use of

one-way individual fixed effects or two-way additive fixed effects. In this paper,

we propose to replace the two-way fixed effects by the IFEs, which allow for a

larger degree of unobserved heterogeneity and cross-sectional dependence. It

is interesting to know whether one can continue to find the evidence of thresh-

old effects in the presence of IFEs. Using the World Development Indicators

(WDI) data across 50 countries ranging from 1971 to 2015, we find strong

evidence of threshold effects and IFEs, and the IFEs cannot be simplified into

the two-way fixed effects. This confirms the necessity of incorporating the two

effects into one model.

Apparently, the proposed model is related to two distinct branches of the

econometrics literature, namely, the threshold models and the panel data mod-

els with IFEs. Threshold models can be traced back to Tong (1978), and have

experienced substantial advancements over the last four decades. Early de-

velopments of threshold models focus much on fixed threshold effects. An

undesirable consequence of this framework is that it is very difficult to con-

duct inference on the threshold value. As shown in Theorem 2 of Chan (1993),

the limiting distribution of the least squares (LS) estimator of the threshold

parameter is a functional of compound Poisson process, which involves many

nuisance parameters such as the marginal distribution of the regressors and the

regression coefficients. For this reason, most subsequent studies assume shrink-

ing threshold effects to facilitate the inference in the threshold parameter. For

example, Hansen (2000) develops a full statistical theory of the LS estimator for

a linear cross-sectional regression model with threshold effects. Seo and Linton

(2007) consider a smoothed LS estimation and establish the inferential theory

for their semiparametric estimators in the framework of both shrinking and

fixed threshold effects. As regard to panel threshold models, Hansen (1999)

studies a static panel threshold model where the slope coefficient estimator

is subject to the celebrated incidental parameter issue of Neyman and Scott
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(1948). Dang et al. (2012) propose to apply the GMM technique to estimate

a dynamic panel threshold model under the traditional large-N and short-T

setup where N and T denote the number of cross-sectional units and the num-

ber of time periods, respectively. Ramı́rez-Rondán (2015) considers a similar

model and advocates the use of maximum likelihood estimation. All the above

studies assume that either the regressors or the threshold variable or both are

exogenous. This assumption is restrictive in some empirical applications. To

allow for endogenous regressors, in an empirical paper Kremer et al. (2013)

estimate a dynamic panel threshold model by combining the forward orthog-

onal deviation transformation with the instrumental variable technique. In a

recent paper, Seo and Shin (2016) propose a GMM method by extending the

approaches of Hansen (1999, 2000) and Caner and Hansen (2004) to estimate a

dynamic panel model with endogenous threshold variable and regressors. They

show that if the threshold variable is endogenous, the estimator of the thresh-

old parameter would lose super-consistency. It is worth mentioning that none

of the above papers emphasize the issue of cross-sectional dependence within

the data. If the cross-sectional dependence is not fully captured by model, the

estimator would typically suffer inconsistency. There is a rapidly growing lit-

erature on panel data models with IFEs; see Bai (2009), Bai and Liao (2016),

Moon and Weidner (2015, 2017), Li et al. (2016), Lu and Su (2016), among

others. In a typical panel data model with IFEs, the unobserved errors are

specified to have a factor structure, in which both factors and factor loadings

can have arbitrary correlations with the regressors. This specification gener-

alizes the traditional two-way additive scale form to a two-way multiplicative

vector form. As a result, the IFEs model allows more richness of the unob-

served heterogeneity that may vary across both time and individuals. Since

the allowance and control of unobserved heterogeneity is one of most attrac-

tive features of panel data models, panel data model with IFEs becomes very

appealing to empirical studies. Most of the studies on IFEs so far are limited
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to linear models; see, e.g., Bai (2009), Bai and Liao (2016), Moon and Weidner

(2015, 2017). Other studies, such as Chen et al. (2014), consider the nonlinear

models with IFEs but their analysis relies on the assumption of continuous dif-

ferentiability of the objective function. In the proposed model, the nonlinear

part is not differentiable at the change point, which greatly complicates the

asymptotic analysis.

In this paper, we employ the least squares method to estimate the pro-

posed model under the large-N and large-T setup. We consider the framework

of diminishing threshold effects in the spirit of Hansen (2000). That is, the

threshold effects shrink to zero as the sample size tends to infinity. We al-

low the regressors to be arbitrarily correlated with the IFEs provided that

they have enough variations after projecting out the IFEs. We show that

the threshold parameter can be estimated at a rate related to the magnitude

of the threshold effect and the asymptotic distribution of the threshold pa-

rameter estimator is asymptotically pivotal up to a scale nuisance parameter.

Under some regularity conditions, this rate, together with the shrinking rate of

threshold effects, ensures the estimation of the threshold parameter to have no

asymptotic effect on the estimation of slope coefficients. In other words, the

slope coefficients can be estimated as if one knew the true threshold value. The

most challenging part of our analysis is to conduct a nonstandard analysis on

the threshold parameter estimator jointly with large dimensional incidental pa-

rameters estimators. Although a few previous studies, such as Hansen (1999)

and Seo and Shin (2016), also have incidental parameters in their threshold

models, the analyses in these models essentially only involve with low dimen-

sional estimators because the incidental parameters can be concentrated out

by the within-group transformation or first differencing, and the resultant ob-

jective function eventually depends on the finite dimensional regression coeffi-

cients and threshold parameter. This is in contrast with the current study in

the high dimensional estimators are always present and have to be addressed
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throughout the whole analysis. Due to the presence of large dimensional esti-

mators, the analyses for consistency and convergence rate require some novel

arguments that are quite different from the existing literature. To see this

point, we note that, in a standard threshold model or a panel data model with

IFEs, the consistency can be established by only working with the objective

function. But in the current model, the analysis is much complicated, and

we take three steps to achieve this goal. In the first step, we work with the

objective function to obtain the consistency of the estimators of all parameters

but the threshold parameter, where the consistency of the large dimensional

incidental parameters estimators is defined under some chosen norm invariant

to rotational indeterminacy. In the second step, we work with the first order

condition to derive some preliminary convergence rates for the slope coefficient

estimators. In the third step, we work with the rescaled objective function to

derive the consistency of the threshold-value estimator. Since the rescaled

value is possibly large due to the fast shrinking threshold effects, the objective

function in this step needs to be carefully chosen to offset the impact of the

slow convergence rates of the incidental parameters estimators.1 To the best

of our knowledge, the methodology to prove consistency in this paper is new in

the econometrics literature and can be useful to other discontinuous regression

models in the presence of incidental parameters. For the convergence rate, a

primary tool to deal with large dimensional parameters in panel data mod-

els with IFEs is the Cauchy-Schwarz inequality. Unfortunately, this tool does

not provide useful bound when deriving the convergence rate of the thresh-

old parameter estimator because of the special property of indicator function.

Some new arguments are therefore developed in this paper to deal with this

issue. In view of the fact that the unknown parameter in the limiting distri-

1In the M -estimation framework, if L(θ) is the objective function of the unknown pa-
rameters θ that is to be maximized or minimized, then L(θ) − c is also a valid one for any
constant c. In classical analysis, c is suggested to be L(θ0) where θ0 is the true values.
However, due to the presence of large dimensional parameters, L(θ) − L(θ0) is not a good
objective function in this paper.
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bution of the threshold parameter estimator cannot be estimated accurately,

we follow the lead of Hansen (2000) and propose a likelihood ratio (LR) test

to facilitate inference on the threshold parameter. Again, since the estimators

of the large dimensional incidental parameters would change under different

threshold values, the analysis of the LR statistic is quite different from that

in Hansen (2000). We find that the LR statistic is asymptotically pivotal in

the case of conditional homoskedasticity. When conditional heteroskedasticity

is present, the limiting distribution involves an unknown parameter that can

be consistently estimated nonparametrically. We also consider the hypothesis

testing on the presence of threshold effects, and propose a sup-Wald statistic.

We also propose a procedure to obtain asymptotically correct critical values

via simulations. We run Monte Carlo simulations to examine the finite sample

performance of the LS estimators. For both dynamic and static models, the es-

timators are well-behaved in terms of asymptotic bias, standard deviation and

coverage probability of the 95% confidence interval. Our slope coefficient esti-

mators behave similarly to the infeasible estimators that are obtained when the

threshold value is observed a priori. For the test of threshold effect, our simu-

lations indicate that the rejection rate is close to the nominal level under the

null hypothesis of the absence of threshold effects and the test has reasonable

power under the alternative. In a nutshell, the simulations indicate that the

LS estimators perform well in various data generating processes. To illustrate

the usefulness of the proposed model, we consider an empirical application

on the relationship between economic growth and financial development with

the World Development Indicators (WDI) data. We find that both threshold

effects and IFEs are present in the model, and that the financial development

is beneficial to economic growth when it is below some threshold level and

it harms growth otherwise. The former finding justifies the study of panel

threshold model with IFEs and the latter is consistent with the conventional

wisdom.
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The outline of the paper is as follows. We introduce our model, discuss

the estimation methods and list some basic assumptions in Section 2.2. We

derive the asymptotic properties of these estimators in Section 2.3. We also

study the likelihood ratio test on the threshold value and investigate several

relevant issues associated with our model such as the threshold effect in the

error variance, the determination of the number of factors, and the test of

IFEs versus the two-way additive fixed effects in this section. We consider the

hypothesis testing on the presence of threshold effect in Section 2.4. Section 2.5

reports the Monte Carlo simulation findings. Section 2.6 applies our method

to study the relationship between economic growth and financial development.

Section 2.7 concludes. The proofs of the main results in the paper are given in

Appendix A. Additional materials can be found in the Online Supplemental of

Miao et al. (2020a).

Notation. Let Im denote an m×m identity matrix. For a real m×n matrix

A = (Aij), we use ‖A‖ and ‖A‖sp to denote its Frobenius norm and spectral

norm, respectively. Let A′ denote the transpose of A. When A has rank n, let

PA = A(A′A)−1A′ and MA = Im−PA. When A is symmetric, we use µr(A) to

denote its rth largest eigenvalue; µmax (A) and µmin (A) denote the largest and

smallest eigenvalues of A, respectively. Let 1{·} be the indicator function. The

symbol
p→ denotes convergence in probability,

d→ convergence in distribution,

and plim probability limit. We use (N, T )→∞ to signify that N and T pass

to infinity jointly.
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2.2 Model, estimation method and assump-

tions

2.2.1 Model

Let N be the number of cross-sectional units and T the number of time

periods. Consider the model

yit = β0′xit + δ0′xitdit(γ
0) + λ0′

i f
0
t + eit, i = 1, ..., N, t = 1, ..., T, (2.1)

where xit is a K×1 vector of observable regressors, β0 is a K×1 vector of slope

coefficients, δ0 is a K×1 vector of slope coefficients representing the threshold

effect, γ0 is a scalar threshold coefficient, dit(γ) ≡ 1{qit ≤ γ}, qit is a scalar

threshold variable, λ0
i is an R0 × 1 vector of unobserved factor loadings, f 0

t is

an R0 × 1 vector of unobserved common factors, and eit is the idiosyncratic

error term. Throughout the paper, we use the superscript zero to signify the

true parameter value. We use f 0
tr and λ0

ir to denote the rth component of f 0
t

and λ0
i , respectively, where r = 1, . . . , R0. We assume γ0 ∈ Γ ≡ [γ, γ], where

γ and γ are two fixed constants. Following Hansen (2000), we consider the

shrinking threshold effect framework by assuming that δ0 ≡ δ0
NT → 0 with the

convergence rate specified below as (N, T )→∞.

Let Λ0 ≡ (λ0
1, . . . , λ

0
N)′, F 0 ≡ (f 0

1 , . . . , f
0
T )′, et = (e1t, . . . , eNt)

′, Yt ≡

(y1t, . . . , yNt)
′, Xt ≡ (x1t, . . . , xNt)

′ and Xt(γ) ≡ (x1td1t(γ), . . . , xNtdNt(γ))′.

We can write the model in (2.1) in vector form

Yt = Xtβ
0 +Xt(γ

0)δ0 + Λ0f 0
t + et = Xt,γ0θ0 + Λ0f 0

t + et, (2.2)

where t = 1, . . . , T, θ0 ≡ (β0′, δ0′)′ and Xt,γ ≡ (Xt, Xt(γ)).

For the moment we assume that the true number of factors R0 is known

and given by R. In Section 2.3.6 below, we propose a way to consistently

estimate the number of factors. In factor analysis, it is well known that Λ and
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F can only be identified up to a rotation. We follow Bai and Ng (2002) and

Bai (2003) and consider the following set of identification restrictions:

(i) Λ′Λ/N = IR, and (ii) F ′F is a diagonal matrix with diagonal elements

ordered in descending order.

2.2.2 Estimation method

Given R, we can concentrate out the T × R matrix F and obtain the

following Gaussian QML estimate of (θ,Λ, γ) :

(θ̂, Λ̂, γ̂) ≡ argmin(θ,Λ,γ)∈R2K×L×ΓL(θ,Λ, γ),

where

L(θ,Λ, γ) ≡
T∑
t=1

(Yt −Xt,γθ)
′MΛ(Yt −Xt,γθ), (2.3)

(θ,Λ, γ) ∈ R2K × L× Γ and L ≡ {Λ ∈ RN×R : Λ′Λ/N = IR}.

The above minimization problem can be solved in two steps:

(i) In the first step, we keep γ fixed so that the objective function in (2.3)

can be minimized as in Bai (2009), Moon and Weidner (2015, 2017)

and Lu and Su (2016) to obtain the estimate (θ̂(γ), Λ̂(γ)). Let L∗(γ) ≡

L(θ̂(γ), Λ̂(γ), γ).

(ii) In the second step, one can search over the interval Γ ≡ [γ, γ] to minimize

L∗(γ).

Because L∗(γ) is a step function that takes on less than NT distinct values,

we can follow Hansen (2000) and search for γ over Γn = Γ ∩ {qit, 1 ≤ i ≤

N, 1 ≤ t ≤ T}. When NT is large, we can approximate Γ by grid of n points

for some n ≤ NT. For example, let q(j) denote the (η0 + j−1
n−1

(1 − 2η0))-th

quantile of the sample {qit, 1 ≤ i ≤ N, 1 ≤ t ≤ T} for j = 1, . . . , n and

Γ̄n = {q(1), . . . , q(n)}. We then define γ̂n = argminγ∈Γ̄nL∗(γ), which will provide

a good approximation to γ̂. Hansen (1999) recommends choosing η0 = 1% or
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5%. Given γ̂, the estimates of θ and Λ are calculated according to θ̂ ≡ θ̂(γ̂)

and Λ̂ ≡ Λ̂(γ̂), respectively. Once the estimates of θ, γ, and Λ are obtained,

the estimate of F can be constructed by the plug-in method (see Section 2.3).

Remark 2.1. This paper adopts the approach to concentrate out the

factors first under the identification restrictions stated at the end of Section

2.1. One can alternatively consider concentrating out the factor loadings under

the identification restrictions that F ′F = IR and Λ′Λ is a diagonal matrix with

descending diagonal elements. The estimates of θ and γ under the two sets

of identification restrictions would be the same, and so are their asymptotic

distributions. In this paper, we consider the data scenario of N/T → κ,

as (N, T ) → ∞. Under this scenario, it does not make a big difference in

computational time for the two concentration strategies. In a more general

case where N and T diverge at different rates, it is desirable to concentrate

out the larger dimension matrix.

Remark 2.2. As emphasized in the introduction, the objective function

L(θ,Λ, γ) is non-differentiable with respect to γ, which would have significant

consequence on the asymptotic properties of the LS estimators. Alternatively,

one can adopt the idea of Seo and Linton (2007) and use a smoothed objective

function to estimate the model. Let K (·) be a bounded function such that

lim
s→−∞

K (s) = 0 and lim
s→∞

K (s) = 1. The smoothed objective function is

defined as

Ls(θ,Λ, F, γ, h) =
N∑
i=1

T∑
t=1

[
yit − x′itβ − x′itδK (

γ − qit
h

)− λ′ift
]2

,

where h = o (1) is a bandwidth parameter. The estimators of θ and γ can be

obtained by minimizing the above function. This estimation method has the

benefit that one can analyze the estimators in a unified way, irrespective of

the fixed threshold effects or shrinking threshold effects; see Seo and Linton

(2007) for details. But the computation burden becomes larger and one has

to determine h.
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Remark 2.3. In this paper, we do not consider the case in which the

regressor xit is correlated with the idiosyncratic error eit. When the correlation

is present, we need to apply the instrumental variable (IV) method to estimate

the model. For simplicity, suppose that all the regressors are endogenous, but

we have dw-dimensional instrumental variables wit with dw ≥ K. Let Wt,γ be

defined the same as Xt,γ. The estimation consists of two steps. In this first

step, for each given θ and γ, we estimate φ̂(θ, γ) and Λ̂(θ, γ) according to(
φ̂(θ, γ), Λ̂(θ, γ)

)
= argmax

(φ,Λ)∈Φ×L

T∑
t=1

(
Yt−Xt,γθ−Wt,γφ

)′
MΛ

(
Yt−Xt,γθ−Wt,γφ

)
,

where Φ is some compact parameter space for φ. In the second step, we obtain

the estimator θ̂ and γ̂ by

(θ̂, γ̂) = argmax
(θ,γ)∈Θ×Γ

φ̂(θ, γ)′W−1
NT φ̂(θ, γ).

where WNT is a weighting matrix that can be chosen as a consistent estimate

of var(φ̂(θ0, γ0)) based on some preliminary consistent estimate (θ̃, γ̃) of (θ, γ).

Intuitively, if θ and γ are chosen at their true values, the estimator φ̂ in the

first step would be very close to 0. So by minimizing the weighted norm of φ̂

in the second step, we would obtain the consistent estimators for θ0 and γ0.

Such an estimation idea has been used by Chernozhukov and Hansen (2008)

and Su and Hoshino (2016) in the IV quantile model, and by Lee et al. (2012)

and Moon et al. (2018) in the IFEs framework.

We end this subsection with two equations, which serve as the bases for

our asymptotic analyses. By definition, (θ̂, Λ̂) = argmin(θ,Λ)∈R2K×L L(θ,Λ, γ̂).

This implies that given γ̂, the estimates θ̂ and Λ̂ solve the following system of

equations

θ̂ =

( T∑
t=1

X ′t,γ̂MΛ̂Xt,γ̂

)−1 T∑
t=1

X ′t,γ̂MΛ̂Yt (2.4)

and [
1

NT

T∑
t=1

(Yt −Xt,γ̂ θ̂)(Yt −Xt,γ̂ θ̂)
′
]
Λ̂ = Λ̂VNT , (2.5)

where VNT is a diagonal matrix whose diagonal elements are the R largest
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eigenvalues of the matrix in the square brackets, arranged in decreasing order.

2.2.3 Assumptions

We first introduce some notations for ease of exposition. Let xk,it denote

the kth element of xit. Let Xk and Xk(γ) be two N × T matrices with (i, t)th

entry being xk,it and xk,itdit(γ), respectively. Define

Xk,γ =


Xk if k ≤ K,

Xk−K(γ) if K < k ≤ 2K

.

Define X ≡ (X1, . . . ,XK), X(γ) ≡ (X1(γ), . . . ,XK(γ)) and X∗γ ≡ (X,X(γ)).

Then we can rewrite the model (2.1) in matrix form:

Y = β0 �X + δ0 �X(γ0) + Λ0F 0′ + e,

where β0 �X ≡
K∑
k=1

β0
kXk, δ0 �X(γ0) ≡

K∑
k=1

δ0
kXk(γ

0),

and Y and e are N×T matrices with the (i, t)th entry yit and eit, respectively.

It can be readily shown that Λ̂ is
√
N times the first R left-singular vectors of

the matrix Y − β̂ �X− δ̂ �X(γ̂). According the PC method, the estimator

F̂ is given by F̂ =
[
Y − β̂ �X− δ̂ �X(γ̂)

]′
Λ̂/N .

With the above symbols, we further introduce the following notations that

will be used in the subsequent assumptions. Define NT × 2K matrix Z(Λ, γ)

as

Z(Λ, γ) ≡



Z1(Λ, γ)

Z2(Λ, γ)

...

ZT (Λ, γ)


= (MF0 ⊗MΛ)



X1 X1(γ)

X2 X2(γ)

...
...

XT XT (γ)


= (MF0 ⊗MΛ) (vec(X1,γ), . . . , vec(X2K,γ)),

where Zk(Λ, γ), the k-th column of Z(Λ, γ), is equal to vec(MΛXk,γMF 0) by

the identity ~(ABC) = (C ′ ⊗ A)~(B) and “⊗” denotes the Kronecker product.

From this result, it is obvious that Zk(Λ, γ) has smaller variation compared to

vec(Xk,γ). The matrix Z(Λ, γ) plays an important role in the identification of

θ0; see Assumption A.1 below. Let Xt(γa, γb) ≡ Xt(γa)−Xt(γb) for γa, γb ∈ Γ.
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Similar to Z(Λ, γ), we define an NT ×K matrix:

Z̃(Λ, γ) ≡ (MF0 ⊗MΛ)



X1(γ, γ0)

X2(γ, γ0)

...

XT (γ, γ0)


.

The matrix Z̃(Λ, γ) is related to the identification of γ0.

Let D ≡ σ(F 0,Λ0), the minimal sigma-field generated from F 0 and Λ0, and

PrD(·) ≡ Pr(·|D) and ED(·) ≡ E(·|D). Let FNT,t ≡ σ({(xit, qit, ei,t−1), (xi,t−1,

qi,t−1, ei,t−2), . . . }Ni=1). Let fit,D(γ) denote the probability density function (PDF)

of qit conditional on D, and ED(·|γ) ≡ ED(·|qit = γ). Let M denote a generic

positive constant that may vary across places. We make the following assump-

tions for the asymptotic analysis.

Assumption A.1. There exists some constant τ > 0 such that, as (N, T )→

∞,

(i) Pr(min(Λ,γ)∈L×Γ µmin [B(Λ, γ)] ≥ τ)→ 1, where B(Λ, γ) = 1
NT
Z(Λ, γ)′Z(Λ, γ);

(ii) Pr(minγ∈Γ µmin[I(γ)] ≥ τ min{1, |γ − γ0|})→ 1, where

I(γ) =
1

NT
Z̃(Λ0, γ)′MZ(Λ0,γ)Z̃(Λ0, γ) with,

MZ(Λ0,γ) = INT −Z(Λ0, γ)[Z(Λ0, γ)′Z(Λ0, γ)]−1Z(Λ, γ)′.

Assumption A.2. (i) ED(e8+ε
it ) and ED(‖xit‖8+ε) are uniformly bounded by

a non-random constant for some constant ε > 0.

(ii) E ‖f 0
t ‖

8 ≤M and 1
T

∑T
t=1 f

0
t f

0′
t

p→ Σf > 0 for some R×R matrix Σf as

T →∞;

(iii) E ‖λ0
i ‖

8 ≤M and 1
N

∑N
i=1 λ

0
iλ

0′
i

p→ Σλ > 0 for some R×R matrix Σλ as

N →∞;

(iv) ‖e‖sp = Op(
√
N +

√
T ).
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Assumption A.3. The threshold effect δ0 satisfies that δ0 = (NT )−αC0 for

some α ∈ (0, 1/2), C0 ∈ RK and C0 6= 0.

Assumption A.4. (i) For each i = 1, . . . , N , {(xit, qit, eit) : t = 1, 2, . . . }

is conditional strong mixing given D with the mixing coefficients {αDNT,i(·)};

αm ≡ sup1≤i≤N α
D
NT,i(m) satisfies that αm = O(m−ζ) for some ζ > 12p

4p−1
and

p > 4;

(ii) (xit, qit, eit), i = 1, . . . , N , are mutually independent of each other condi-

tional on D;

(iii) For each i = 1, . . . , N , E(eit|D ∨ FNT,t) = 0 a.s.;

(iv) There exists a constant cf <∞ such that maxi,t supγ∈Γ fit,D(γ) < cf ;

(v) There existD-dependent variables Mit,D such that supγ∈ΓED(‖xit‖4|qit =

γ) ≤Mit,D, supγ∈Γ ED(‖xiteit‖4|qit = γ) ≤Mit,D. We have

Pr(
1

NT

N∑
i=1

T∑
t=1

M2
it,D < M2)→ 1

for some M <∞ as (N, T )→∞.

Assumption A.1 is an identification condition for θ and γ. Assumption

A.1(i) extends Assumption A in Bai (2009) to require the non-colinearity of the

regressors uniformly over γ ∈ Γ. More specifically, it requires that the residuals

from the linear projections of any linear combination of the form α∗ � X∗γ

on the column space of F 0 first and then on that of Λ0 be asymptotically

nondegenerate with α∗ ∈ R2K . Assumption A.1(ii) requires that Z̃(Λ0, γ)

and Z(Λ0, γ) be not colinear uniformly. To gain more intuitions of these two

conditions, consider model (2.2), which is equivalent to

Y =
K∑
k=1

Xkβ
0
k +

K∑
k=1

Xk(γ
0)δ0 + Λ0F 0′ + e.

As pointed out in Bai (2009), the large dimensional nuisance parameters Λ0 and

F 0 are eliminated through projection matrices in the least squares estimation.
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Following this intuition, we therefore premultiply MΛ0 and postmultiply MF 0

on both sides to obtain

MΛ0YMF 0 =
K∑
k=1

MΛ0XkMF 0β0
k +

K∑
k=1

MΛ0Xk(γ
0)MF 0δ0

k + MΛ0eMF 0 .

Taking vector operation on both sides and using the definition of Z(Λ, γ), we

have

(MF 0 ⊗MΛ0)vec(Y) = (MF 0 ⊗MΛ0)

[
K∑
k=1

vec(Xk)β
0
k +

K∑
k=1

vec(Xk(γ
0))δ0

k + vec(e)

]

= Z(Λ0, γ0)θ0 + (MF 0 ⊗MΛ0)vec(e). (2.6)

If we treat equation (2.6) as a linear regression model on θ0 = (β0′, δ0′)′, it is

natural to impose the full column rank assumption on Z(Λ0, γ0) to identify the

parameter θ0, which is equivalent to assuming Pr(µmin[B(Λ0, γ0)] ≥ τ) → 1.

In our model, Λ0 and γ0 are both unobserved and simultaneously estimated

with θ0. So one may expect that Pr(µmin[B(Λ̂, γ̂)] ≥ τ) → 1 still holds. Since

Λ̂ and γ̂ do not have the consistency property so far, and can be any values

in the parameter space, this motivates us to impose Assumption A.1(i). To

understand Assumption A.1(ii), we first consider Hansen (2000)’s model: Y =

Xβ0+Xγ0δ0+e where the definitions of notations are self-evident. We note that

the identification condition for γ0 in the Hansen’s model is that the function

z(γ) = plim
N→∞

µmin

( 1

N
X ′γ0MXγXγ0

)
= plim

N→∞
µmin

( 1

N
(Xγ−Xγ0)′MXγ (Xγ−Xγ0)

)
has the minimum value 0 at γ0. In the transformed model (2.6), the matrices

Z̃(Λ0, γ) and Z(Λ0, γ) play the same roles as Xγ − Xγ0 and Xγ in Hansen’s

model. We therefore impose Assumption A.1(ii) to guarantee the identifica-

tion of γ0. Note that Assumption A.1(ii) is equivalent to the condition that

the matrix I(γ) has minimum value 0 at γ0. More specifically, if γ falls in

some neighborhood of γ0, the minimum eigenvalue behaves like the function

f(γ) = |γ − γ0| which achieves 0 at γ0, and if γ falls outside of this neighbor-

hood, the minimum eigenvalue is always greater than some τ > 0. In Hansen
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(2000), he gives some more primitive conditions to identify γ0. However, this

is feasible because of the special property that X ′γXγ0 = X ′γ0Xγ0 for γ ≥ γ0

and X ′γXγ0 = X ′γXγ for γ < γ0 which only holds in his linear model. In model

(2.6), we generally do not have Z†(Λ0, γ)′Z†(Λ0, γ0) = Z†(Λ0, γ0)′Z†(Λ0, γ0)

for γ ≥ γ0 due to the presence of large dimensional incidental parameters,

where Z†(Λ, γ) = (MF 0 ⊗MΛ)
[~(X1(γ)), . . . ,~(Xk(γ))

]
. So it seems infeasible

to give more primitive conditions like Hansen (2000) in this paper.

Assumption A.2(i)-(iii) imposes some moment conditions on the regressors,

error terms, factors and factor loadings. Note that we only consider strong

factors here. Assumption A.2 (iv) is frequently assumed in the literature; see,

e.g., Su and Chen (2013) and Moon and Weidner (2015). Assumption A.3

specifies a diminishing threshold effect. The same assumption is also imposed

in other studies; see Hansen (1999), Caner and Hansen (2004), among others.

Assumption A.4 is similar to Assumption A.2 of Su and Chen (2013). We

assume conditional strong mixing across t in Assumption A.4(i) and condi-

tional independence across i in Assumption A.4(ii). As Su and Chen (2013)

remark, the conditional strong mixing in Assumption A.4(i) can be replaced

by the unconditional strong mixing if we assume that the factor loadings are

nonrandom. Assumption A.4(ii) does not rule out the possibility of uncon-

ditional cross-sectional dependence among {xit, qit, eit} arising from the com-

mon factors. The martingale difference sequence (m.d.s.) condition in As-

sumption A.4(iii) simplifies the asymptotic analysis. It allows for conditional

heteroskedasticity, skewness, or kurtosis of unknown form in eit but rules out

serial correlations. Note that Assumption A.4(iii) does allow for the presence

of lagged dependent or independent variables. If serial correlations are sus-

pected to exist among errors, we can add lagged dependent or independent

variables into the model to remove them. So this assumption is not restrictive.

Assumption A.4 (iv)-(v) imposes some conditions on the conditional PDF and

moments of xit given D. Assumption A.4(iv) assumes the conditional PDF of
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qit is uniformly bounded; Assumption A.4(v) assumes that the fourth order

conditional moments of xit and xiteit are well behaved. Note that Mit,D is not

assumed to be bounded uniformly over (i, t) but its sample second moment is

well behaved. Therefore Assumption A.4(v) is not restrictive.

2.3 Asymptotic Property

In this section, we study the asymptotic properties of the estimators. We

first establish the consistency of (θ̂, Λ̂, γ̂) and their convergence rates, derive

the asymptotic distributions of θ̂ and γ̂, and consider the statistical inference

on γ based on a likelihood ratio test statistic. Then we investigate several

relevant issues associated with our model such as the threshold effect in the

error variance, the determination of the number of factors, and the test of IFEs

versus the two-way additive fixed effects.

2.3.1 Consistency

This subsection establishes the consistency of the LS estimators defined in

Section 2.2.2. We achieve this goal in three steps. We first show the consistency

of θ̂ and Λ̂ in Theorem 2.1. With consistency, we next give a preliminary

convergence rate of θ̂, which is given in Proposition A.2 in the appendix. Based

on this convergence rate, we finally establish the consistency of γ̂ in Theorem

2.2.

Theorem 2.1. (Consistency of θ̂ and Λ̂) Suppose that Assumptions A.1-

A.4 hold. Then

(i) θ̂ − θ0 p→ 0;

(ii) The matrix N−1Λ0′Λ̂ is invertible and ‖PΛ̂ − PΛ0‖ = op(1).

Theorem 2.1 establishes the consistency of the estimators θ̂ and Λ̂, which is

analogous to Proposition 1 in Bai (2009). It provides the basis for subsequent

analyses. For example, with the consistency of θ̂, the terms involved with ‖θ̂−
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θ0‖2 are of smaller order than ‖θ̂ − θ0‖ and become asymptotically negligible.

The following theorem shows the consistency of γ̂. The proof of this the-

orem requires considerable amount of work. To appreciate the difficulty, we

note that the estimators of the large dimensional incidental parameters (i.e.,

λi’s or ft’s) have slow convergence rates N−1/2 or T−1/2. However, Assumption

A.3 specifies an (NT )−α threshold effect, so we have to multiply (NT )2α on

the objective function L(θ,Λ, γ) to obtain a non-shrinking threshold effect. As

α is close to 1/2 from the below, (NT )2α is slightly smaller than NT . This

gives rise to a challenging issue: the estimation errors coming from incidental

parameters cause serious problems to our analyses because of their slow con-

vergence rates. In contrast, under the fixed threshold effect framework, the

proof of consistency for γ̂ is much easier as the normalization scale over there

is equal to 1.

Theorem 2.2. (Consistency of γ̂) Under Assumptions A.1-A.4, with N/T →

κ > 0 as (N, T )→∞, we have γ̂ − γ0 = op(1).

The proof of Theorem 2.2 consists of two steps. Using the first order

condition (2.4), together with the consistency established in the previous theo-

rem, we first show that the LS estimator θ̂ has a preliminary convergence rate

(NT )−α. Next, we show that the rescaled objective function

L∗(γ) = (NT )2α
[
L
(
θ̂(γ), Λ̂(γ), γ

)
− L

(
θ̂γ0 , Λ̂γ0 , γ0

)]
behaves like the one of a standard linear regression model (2.6), where θ̂γ0

and Λ̂γ0 are the LS estimator when the threshold value γ0 is observed a pri-

ori. Then invoking Assumption A.1(ii), whose implications are discussed in

the linear regression model (2.6) in Section 2.2.3, we obtain the consistency

of γ̂. Note that the magnitude of ‖θ̂γ0 − θ0‖ is Op(
1
N

+ 1
T

), as documented in

the previous studies such as Bai (2009) and Moon and Weidner (2017), im-

plying (NT )α‖θ̂γ0 − θ0‖ = op(1) as N/T → κ. So the estimation error in θ̂γ0

is asymptotically negligible. We emphasize that the adjusting constant here
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should be L
(
θ̂γ0 , Λ̂γ0 , γ0

)
, instead of L(θ0,Λ0, γ0) as the classical analysis sug-

gests. The reason is that with (NT )2α rescaled value, the estimation errors

from Λ0 have an asymptotically non-negligible effect on the objective function.

But L
(
θ̂γ0 , Λ̂γ0 , γ0

)
contains the same estimation errors. So we use it as the

adjusting constant to remove this effect.

2.3.2 Convergence rates

Given the consistency results in Theorems 2.1 and 2.2, we next establish

the convergence rates for θ̂ and γ̂. Because we do not have explicit expressions

for these estimators, the derivations of these rates are tedious. We need the

following assumption for the theoretical analysis.

Assumption A.5. Let MD(γ) ≡ (NT )−1
∑N

i=1

∑T
t=1ED(xitx

′
it|γ)fit,D(γ),

then the following statements hold:

(i) MD(γ0) > 0 a.s. and MD(γ) is continuous at γ = γ0;

(ii) For all ε > 0, there exist constants N, T , B > 0 and τ1 > 0, such that

for all N ≥ N and T ≥ T

Pr

(
inf

|γ−γ0|<B
µmin(MD(γ)) > τ1

)
> 1− ε.

Assumption A.5 (i)-(ii) assumes that the square matrix MD(γ) is well be-

haved in the neighborhood of γ0.

The following theorem establishes the convergence rates of γ̂ and θ̂.

Theorem 2.3. (Convergence rates of γ̂ and θ̂) Suppose that Assump-

tions A.1-A.5 hold and N/T → κ > 0 as (N, T )→∞. Then

(i) (NT )1−2α(γ̂ − γ0) = Op(1);

(ii)
√
NT (θ̂ − θ0) = Op(1).

Theorem 2.3(i) shows that γ̂ − γ0 = Op((NT )−1+2α), which hinges on the

magnitude of threshold effects. This result is quite intuitive. When α is close

to zero, the threshold effects are large, we expect a more precise estimation of

γ0, leading to a faster convergence rate. On the other hand, when α is close to
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1/2, the threshold effects are small, we expect a less precise estimation, which

corresponds to a slower convergence rate. Also note that by equation (2.1),

êit = yit − x′itβ̂ − x′itδ̂dit(γ̂)− λ̂′if̂t

= eit + (λ0′
i f

0
t − λ̂′if̂t)− x′it(β̂ − β0)− x′itdit(γ0)(δ̂ − δ0)− x′it[dit(γ̂)− dit(γ0)]δ̂.

Theorem 2.3(i) implies that for any ε > 0, there is a Cε such that Pr((NT )2α−1|γ̂−

γ0| > Cε) < ε. On the set (NT )2α−1|γ − γ0| ≤ Cε, we have E
[
‖xit(dit(γ) −

dit(γ
0))‖

]
= O(|γ − γ0|) = O((NT )2α−1). This result, in conjunction with the

fact δ̂ = Op((NT )−α) and the inequality Pr(A) ≤ Pr(A|B) + Pr(Bc), implies

that the last term in the last displayed equation is Op((NT )α−1) = op(
1√
NT

).

Compared with the third and fourth terms, which are Op(
1√
NT

) due to the re-

sult in Theorem 2.3(ii), we see that the last term is asymptotically negligible.

However, when γ̂ = γ0, the last term is gone. So the estimation error associ-

ated with γ0 has asymptotically negligible effects on the residual êit. Since our

least squares estimation aims to minimize
∑N

i=1

∑T
t=1 ê

2
it, we expect that the

estimator of θ0 with an unknown γ0 is asymptotically equivalent to that with

a known γ0.

Theorem 2.3 is derived under the shrinking threshold effects assumption.

When the threshold effects are fixed, we conjecture that γ̂− γ0 = Op((NT )−1)

and
√
NT (θ̂− θ0) = Op(1). The first result is a natural extension of the result

in Theorem 2.3(i) by letting α → 0. As regard to the second result, note

that the estimation of θ0 under the fixed threshold effects cannot be worse

than the one under the shrinking case because of the stronger signal for γ0

under the former, but cannot be better than the one when γ0 is observed a

priori. In both the shrinking threshold case and the observed γ0 case, the

estimators are
√
NT -consistent. This leads us to conjecture the second result.

Furthermore, since the limiting distribution of the slope coefficient estimators

under an unknown γ0 in the shrinking case are the same as the one in the

observed-γ0 case, we conjecture that the limiting distribution of θ̂− θ0 are the
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same as the result given in Theorem 2.4 below due to the same arguments.

In this paper, we assume that N and T pass to infinity at the same rate

as in Moon and Weidner (2015, 2017). It is possible to allow N and T to

diverge at different rates as in Bai (2009) and Lu and Su (2016). In this case,

the estimators for slope coefficients would have three asymptotic bias terms

entailed by weak exogeneity and heteroskedasticity, which are of order T−1

and N−1. Then the result in Theorem 2.3(ii) should be changed to θ̂ − θ0 =

Op(N
−1 + T−1).

2.3.3 Asymptotic distributions of θ̂ and γ̂

Given the convergence rates of γ̂ and θ̂, we next present the limiting dis-

tributions. Our analysis indicates that θ̂ has an asymptotically non-negligible

bias. So the explicit expression of bias is also our target. For ease of exposition,

we introduce the following notations.

Let Zk,γ = MΛ0Xk,γMF 0 , where Xk,γ = Xk if k ≤ K, and Xk−K(γ) if

K < k ≤ 2K. Let zk,it,γ be the (i, t)-th entry of the matrix Zk,γ and zit,γ =

(z1,it,γ, . . . , z2K,it,γ)
′ be the 2K-dimensional vector composed of zk,it,γ. Define

ωNT (γ1, γ2) =
1

NT

N∑
i=1

T∑
t=1

zit,γ1z
′
it,γ2

,

ΩNT (γ1, γ2) =
1

NT

N∑
i=1

T∑
t=1

zit,γ1z
′
it,γ2

e2
it,

B1,kNT (γ) =
1

N
tr
[
PF 0ED(e′Xk,γ)

]
,

B2,kNT (γ) =
1

T
tr
[
ED(ee′)MΛ0Xk,γF

0(F 0′F 0)−1(Λ0′Λ0)−1Λ0′
]
,

B3,kNT (γ) =
1

N
tr
[
ED(e′e)MF 0X′k,γΛ

0(Λ0′Λ0)−1(F 0′F 0)−1F 0′
]
.

We impose the following assumption on the above terms.

Assumption A.6. (i) The probability limits ω(γ1, γ2) ≡ plim(N,T )→∞ωNT (γ1, γ2)

and Ω(γ1, γ2) ≡ plim(N,T )→∞ΩNT (γ1, γ2) are present and non-random, and are

finite uniformly over (γ1, γ2) ∈ Γ × Γ; (ii) The probability limits B`,k(γ) ≡
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plim(N,T )→∞B`,kNT (γ) for ` = 1, 2, 3 and k = 1, . . . , 2K are present and non-

random, and are finite uniformly over γ ∈ Γ.

Assumption A.6 imposes some high level conditions on the terms appearing

in the limiting distribution of θ̂. The non-randomness of ω(γ1, γ2) and Ω(γ1, γ2)

is crucial since it consists of the prerequisite conditions for the martingale cen-

tral limit theorem. It is desirable to specify some primitive conditions to guar-

antee that the limits are fixed values. However, we emphasize that any effort

on resorting to the primitive conditions would inevitably specify the internal

structure of ED(Xk), which, however, is generally unknown in practice, and

has no guidance from the economic theories. Following the treatment of IFEs

in the literature, we directly make high-level conditions. In our simulations,

we generate xit in a particular way. With this additional information on xit,

we can verify Assumption A.6 directly.

Let B`(γ0) = (B`,1(γ0), . . . ,B`,2K(γ0))′ for ` = 1, 2, 3. The following theorem

reports the asymptotic distribution of θ̂.

Theorem 2.4. (Asymptotic normality of θ̂) Suppose that Assumptions

A.1-A.6 hold and N/T → κ > 0 as (N, T )→∞. Then

√
NT (θ̂ − θ0)

d→ N(ω−1
0 B, ω−1

0 Ω0ω
−1
0 ),

where ω0 ≡ ω(γ0, γ0), B ≡ −κ1/2B1(γ0)− κ−1/2B2(γ0)− κ1/2B3(γ0) and Ω0 ≡

Ω(γ0, γ0).

Theorem 2.4 indicates that θ̂ has three asymptotically non-negligible bias

terms associated with B1(γ0), B2(γ0) and B3(γ0). B1(·) is related to the pos-

sible appearance of the lagged dependent variables and it vanishes if the re-

gressors are conditionally strictly exogenous in the sense that ED(e′Xk,γ) = 0

(i.e., ED(eitxis) = 0 and ED[eitxisdis(γ
0)] = 0 for all t, s). In our setting both

ED(e′e) and ED(ee′) are diagonal matrices. The second term, B2(·), vanishes

in the absence of cross sectional heterogeneity in which case ED(ee′) is pro-

portional to an identity matrix. Similarly, the third term, B3(·), vanishes in
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the absence of heterogeneity along the time dimension in which case ED(e′e) is

proportional to an identity matrix. In the general case, we allow for weakly ex-

ogenous regressors and both cross-sectional and time series heteroskedasticity

so that all three bias terms are present. In practice, one can follow Bai (2009)

and Moon and Weidner (2017) to construct the bias-corrected estimates. The

procedure is standard and omitted here for brevity.

To make inference on θ0, we also need to estimate the asymptotic variance

ω−1
0 Ω0ω

−1
0 consistently. Let λ̂′i be the ith row of Λ̂ and f̂ ′t be the tth row of F̂ ,

where f̂t = (Λ̂′Λ̂)−1Λ̂′(Yt−Xt,γ̂ θ̂) = Λ̂′(Yt−Xt,γ̂ θ̂)/N . A consistent estimator,

by the plug-in method, is given by ω̂−1Ω̂ω̂−1, where

ω̂ ≡ 1

NT

N∑
i=1

T∑
t=1

ẑit,γ̂ ẑ
′
it,γ̂, Ω̂ ≡ 1

NT

N∑
i=1

T∑
t=1

ẑit,γ̂ ẑ
′
it,γ̂ ê

2
it,

ẑit,γ is defined as a 2K × 1 vector with kth entry equal to (i, t)th entry of

MΛ̂Xk,γMF̂ and êit = yit − x′it,γ̂ θ̂ − λ̂′if̂t.

Next, we establish the asymptotic distribution of γ̂. Let fit(·) denote the

PDF of qit. Let

Df,NT (γ) =
1

NT

N∑
i=1

T∑
t=1

E(xitx
′
it|qit = γ)fit(γ), and

Vf,NT (γ) =
1

NT

N∑
i=1

T∑
t=1

E(xitx
′
ite

2
it|qit = γ)fit(γ).

Then we add the following assumption.

Assumption A.7. (i) The limits Df (γ) ≡ lim
(N,T )→∞

Df,NT (γ) and Vf (γ) ≡

lim
(N,T )→∞

Vf,NT (γ) exist uniformly over γ ∈ Γ and are continuous at γ = γ0;

(ii) There is a constant M such that

Var
( 1√

NT

N∑
i=1

T∑
t=1

ED(‖git(γ1, γ2)‖2)
)
≤M max

i,t
E
(
‖git(γ1, γ2)‖4

)
,

where git(γ1, γ2) = xit |dit(γ1)− dit(γ2)| and xiteit |dit(γ1)− dit(γ2)|.

Assumption A.7(i) requires the limits Df (γ) and Vf (γ) to be well defined.

It also assumes the continuity of Vf (γ) at γ0. The discontinuous case can be
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allowed and is discussed in Section 2.3.5 below. Assumption A.7(ii) requires the

conditional expectations of ‖xit‖2|dit(γ1)−dit(γ2)| and ‖xiteit‖2|dit(γ1)−dit(γ2)|

to be well behaved.

Let D0
f ≡ Df (γ

0) and V 0
f ≡ Vf (γ

0). The following theorem gives the

asymptotic distribution of γ̂.

Theorem 2.5. (Asymptotic distribution of γ̂) Suppose that Assump-

tions A.1-A.5 and A.7 hold, and N/T → κ > 0 as (N, T ) → ∞. Then

(NT )1−2α(γ̂ − γ0)
d→ φξ, where ξ = argmax−∞<r<∞[−1

2
|r| + W (r)], φ =

C0′V 0
f C

0/(C0′D0
fC

0)2, and W (·) is a two-sided standard Brownian motion on

the real line.

A two-sided Brownian motion W (·) on the real line is defined as

W (r) = W1(−r)1 {r ≤ 0}+W2(r)1 {r > 0} ,

where W1(·) and W2(·) are two independent standard Brownian motions on

[0,∞). Theorem 2.5 implies that the pseudo statistic (NT )1−2α(γ̂− γ0)/φ has

an asymptotically pivotal distribution, ξ. This result is similar to Theorem 1

in Hansen (2000).

The asymptotic result in Theorem 2.5 relies critically on the shrinking

effect assumption. In the fixed threshold effect framework (i.e., α = 0), it is

possible to demonstrate NT (γ̂ − γ0) = Op(1). But deriving the asymptotic

distribution is not an easy task. Based on Theorem 2 of Chan (1993), we

conjecture that the limiting distribution is the maximizer of some compound

Poisson process, which may involve the marginal distribution of xit and the

regression coefficients.

2.3.4 The likelihood ratio test

To make inference on γ0, one may be tempted to apply the asymptotic

distribution result in Theorem 2.5. But the limiting distribution of γ̂ depends

on the scale parameter φ which is hard to estimate accurately. Inferences based
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on Theorem 2.5 tend to be poor in finite samples. Following the lead of Hansen

(2000), we consider a likelihood ratio (LR) statistic in this subsection to test

the null hypothesis H0 : γ = γ0. Let (θ̂(γ), Λ̂(γ)) be the estimator when the

threshold value γ is given and L∗(γ) = L(θ̂(γ), Λ̂(γ), γ). Define

LRNT (γ) = NT
L∗(γ)− L∗(γ̂)

L∗(γ̂)
,

where L∗(γ̂) = L(θ̂(γ̂), Λ̂(γ̂), γ̂) = L(θ̂, Λ̂, γ̂).

The following theorem reports the asymptotic distribution of LRNT (γ0).

Theorem 2.6. (Likelihood ratio test) Suppose that Assumptions A.1-A.7

hold and N/T → κ > 0 as (N, T )→∞. Then under H0 : γ = γ0, we have

LRNT (γ0)
d−−→ η2Ξ,

where η2 = C0′V 0
f C

0/(σ2C0′D0
fC

0), σ2 = plim(N,T )→∞
1
NT

∑N
i=1

∑T
t=1 e

2
it, and

Ξ = max−∞<r<∞ [−|r|+ 2W (r)] has the distribution function characterized by

Pr(Ξ ≤ z) = (1− e−z/2)2.

The result in Theorem 2.6 is essentially same to Theorem 2 in Hansen

(2000). The major difference lies in the appearance of Λ̂(γ) in our definition of

L∗(γ), which is a large dimensional matrix estimator. Bounding the change of

the likelihood value arising from the change of such a large dimensional matrix

estimator is an indispensable step in our theoretical analysis and it requires the

use of the celebrated Davis and Kahan’s (1970) sin(Θ) theorem. Apparently,

such a step is not needed in Hansen’s analysis.

As Theorem 2.6 suggests, we still have a nuisance parameter η2. In the

special case that the errors are homoskedastic over the cross-section and time

series dimensions, this parameter is equal to 1. But for the general case, one

need to estimate η2 consistently. Noting that

η2 =
plim(N,T )→∞

1
NT

∑N
i=1

∑T
t=1E[(δ0′xiteit)

2|qit = γ0]fit (γ0)

σ2plim(N,T )→∞
1
NT

∑N
i=1

∑T
t=1E[(δ0′xit)2|qit = γ0]fit (γ0)

,
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we propose to estimate η2 by

η̂2 =

∑N
i=1

∑T
t=1 Kh(γ̂ − qit)(δ̂′xitêit)2

σ̂2
∑N

i=1

∑T
t=1 Kh(γ̂ − qit)(δ̂′xit)2

,

where σ̂2 = 1
NT
L∗(γ̂), Kh(u) = h−1K(u/h), h → 0 is bandwidth parameter

and K(·) is a kernel function. We can readily show that σ̂2 = σ2 + op(1) and

η̂2 = η2 + op(1) under some regularity conditions on h and K(·). Given the

consistent estimate of η2, we can consider the normalized LR statistic

NLRNT (γ0) = LRNT (γ0)/η̂2.

We can easily tabulate the asymptotic critical value for NLRNT (γ0). We can

also invert this statistic to obtain the asymptotic 1− α confidence interval for

γ :

CI1−α = {γ ∈ Γ : NLRNT (γ) ≤ Ξ1−α}

where Ξ1−α denotes the 1 − α quantile of Ξ. For example Ξ1−α =5.94, 7.35,

and 10.59 for α =0.10, 0.05, and 0.01, respectively.

2.3.5 Threshold effect in the error variance

So far, the asymptotic results in the previous subsections are derived under

the assumption that Vf (γ) is continuous at γ0 (see Assumption A.7(i)). This

entails a neat and symmetric asymptotic distribution of γ̂. However, there are

cases where this assumption is violated. For example, the conditional distribu-

tion of the regressors given the threshold variable changes across the threshold

value, or the distribution of the error term changes across the threshold value,

or both. Among these cases, a particularly interesting case is that the variance

of the error term has threshold effect; see, e.g., Seo and Linton (2007). In this

subsection, we consider the extension to allow threshold effects in the error

variance.

A direct consequence of the presence of threshold effects in the error vari-

ance is that Vf (γ) has a jump at γ0. We assume that the left and right limits
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exist with V 0
f,− = limγ↑γ0Vf (γ) and V 0

f,+ = limγ↓γ0Vf (γ). The results in Theo-

rems 2.5-2.6 now need to be modified to accommodate the discontinuity fact.

However, we emphasize that the arguments and methods of deriving the re-

sults in Theorems 2.5-2.6 are only slightly affected in this more general case.

In fact, we now need to derive the asymptotic results separately for the γ ≤ γ0

and γ > γ0 cases. But even under Assumption 7(i), the proofs of Theorems

2.5-2.6 are conducted separately for the subcases that γ ≤ γ0 and γ > γ0. So

the only difference in the general case is how to unify the asymptotic results

of the two subcases. Now, the asymptotic distribution of (NT )1−2α(γ̂ − γ0)

changes to

argmax
−∞<r<∞

[
φL
(
− 1

2
|r|+W1(−r)

)
1{r ≤ 0}+ φR

(
− 1

2
|r|+W2(r)

)
1{r > 0}

]
,

with φL = C0′V 0
f,−C

0/(C0′D0
fC

0)2 and φR = C0′V 0
f,+C

0/(C0′D0
fC

0)2. Since

φL and φR do not average out as they do in model (2.1) without a threshold

effect in the error variance, the leading term of (NT )1−2α(γ̂ − γ0) now is not

asymptotically pivotal up to a scalar.

The LR test statistic LRNT (γ0) has the asymptotic distribution

max
−∞<r<∞

[
η2
L

(
− |r|+ 2W1(−r)

)
1{r ≤ 0}+ η2

R

(
− |r|+ 2W2(r)

)
1{r > 0}

]
, (2.7)

where η2
L = C0′V 0

f,−C
0/(σ2C0′D0

fC
0) and η2

R = C0′V 0
f,+C

0/(σ2C0′D0
fC

0). Again,

the asymptotic distribution of LRNT (γ0) is not pivotal up to a scalar any more.

We can construct a nonparametric estimator to estimate η2
L:

η̂2
L =

NT
∑N

i=1

∑T
t=1 Kh(γ̂ − qit)(δ̂′xitêit)21{qit ≤ γ̂}

σ̂2[
∑N

i=1

∑T
t=1 Kh(γ̂ − qit)1{qit ≤ γ̂}][

∑N
i=1

∑T
t=1 Kh(γ̂ − qit)(δ̂′xit)2]

.

The estimator for η2
R can be constructed analogously. Note that the expression

in (2.7) is equivalent to

max
[

max
0<r<∞

η2
L

(
− r + 2W1(r)

)
, max

0<r<∞
η2
R

(
− r + 2W2(r)

)]
.

Given the fact that Pr(max0<r<∞{−1
2
r+W (r)} < z) = 1− e−z for a standard
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Wiener process, the relationship of the asymptotic p-value and LRNT (γ0) can

be easily derived as

Asy. p-value = 1−
[
1− e

− 1

2η̂2
L

LRNT (γ0)][
1− e

− 1

2η̂2
R

LRNT (γ0)]
.

Alternatively, we can calculate the critical value under nominal size α, Cα, by

solving the following equation:

[
1− e

− Cα
2η̂2
L

][
1− e

− Cα
2η̂2
R

]
= 1− α.

The finite sample performance of the above discussed procedure is examined

via Monte Carlo simulations in Section F of the online supplement of Miao

et al. (2020a).

2.3.6 Determination of R0

When implementing the least squares estimation on the proposed model,

one has to determine the number of factors (R0). This is an intrinsic issue

related to factor analyses. For approximate factor models, there are various

ways to determine R0; see Bai and Ng (2002), Onatski (2010), and Ahn and

Horenstein (2013), among others. However, it seems difficult to extend existing

methods to the current model because of the nonlinearity arising from the

threshold effects. Recently, Moon and Weidner (2019) and Chernozhukov et al.

(2019) consider the nuclear norm regularized estimation of panel regression

models and provide methods to determine the number of factors by singular

value thresholding (SVT). This subsection extends these methods to determine

the number of factors in our panel threshold model. Let sr(A) denote the rth

largest singular value of an N × T matrix A. Let ‖A‖∗ =
∑min(N,T )

r=1 sr(A)

denote the nuclear norm of A. The procedure goes as follows:
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1. Conduct the nuclear norm regularized estimation:

(θ̂ψ, γ̂ψ, Θ̂ψ) ≡ argmin(θ,γ,Θ)∈R2K×Γ×RN×TLn,ψ(θ, γ,Θ), where

Ln,ψ(θ, γ,Θ) =
1

2NT

∥∥∥Y − β �X− δ �X(γ)−Θ
∥∥∥2

+
ψ√
NT
‖Θ‖∗,

for some tuning parameter ψ � (N−1/2 + T−1/2).

2. Estimate R0 by R̂ =
∑min(N,T )

r=1 1{sr(Θ̂ψ) ≥ χNT} for some singular value

threshold χNT = log(
√
N +

√
T )(
√
NTψ‖Θ̂ψ‖sp)1/2.

The idea of the above proposed method is similar to that of Moon and

Weidner (2019) and Chernozhukov et al. (2019). The N × T matrix estimator

Θ̂ψ estimates Λ0F 0′. Under some regularity conditions, we can show that

||Θ̂ψ − Λ0F 0′||sp = Op(
√
N +

√
T ). Suppose R0 > 0, the first R0 singular

values of Λ0F 0′ are of the order Op(
√
NT ) and the remaining ones are equal to

zero, implying that sr(Θ̂ψ) �
√
NT for r ≤ R0 and sr(Θ̂ψ) = Op(

√
N +

√
T )

for r > R0. Then one can readily show that Pr(R̂ = R0)→ 1 as (N, T )→∞ if

χNT � log(
√
N +

√
T )(N1/2T 1/4 +N1/4T 1/2). Similar analysis can be applied

to the special case of R0 = 0. The factor log(
√
N +

√
T ) in χNT helps us

to handle the case R0 = 0. If R0 > 0, this factor can be ignored by setting

χNT = (
√
NTψ‖Θ̂ψ‖sp)1/2.

In Section D of the online supplement of Miao et al. (2020a), we provide a

rigorous proof for the consistency of R̂. There, we allow N and T to diverge to

infinity at different rates. We also allow the threshold effects to be either fixed

or shrink to zero. In Section F of the online supplement of Miao et al. (2020a),

we provide some simulation results to demonstrate that the SVT method works

fairly well in finite samples.

In practice, we need to choose the tuning parameter ψ. As discussed in

section 2.5 of Chernozhukov et al. (2019), a desired tuning parameter ψ equals

c‖e‖sp for some constant c ∈ (0, 1). To quantify ψ, we can follow Chernozhukov

et al. (2019) to compute an appropriate tuning parameter via simulation under

the Gaussian assumption. In our framework, as eit’s do not have cross-sectional
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or serial correlation, we can generate uit that is independent across both (i, t)

and uit ∼ N (0, σ2). Then the tuning parameter is given by c‖u‖sp, where u

is a stack of uit’s into an N × T matrix. In practice, we can replace σ2 with

an initial consistent estimator. As the least squares estimator in our model

has similar robust properties as shown in Moon and Weidner (2015) that as

long as the number of factors is not underestimated, we can first estimate the

model with Rmax > R0 and obtain an estimate of σ2.

2.3.7 Two-way additive effects v.s. interactive effects

Our model is attractive in its flexibility to model the unobserved hetero-

geneity and cross-sectional dependence in real data via the IFEs. In traditional

panel data models, the unobserved heterogeneity is usually addressed via the

two-way additive fixed effects. This naturally gives rise to the question on

which model should be used in empirical applications. Let αi and νt be the

individual and time fixed effects. Then

αi + νt = λ′ift

with λi = (αi, 1)′ and ft = (1, νt)
′. This implies that the two-way additive

fixed effects is a very special case of IFEs with the number of factors equal to

2 and a factor and a factor loading set to 1. As a result, if the unobserved

heterogeneity in the data is of two-way additive fixed effects form but one uses

our panel threshold model with IFEs to estimate it, the resultant estimators

are still consistent but inefficient. The inefficiency is due to the fact that

the useful information of partial factors and factor loadings being observed

are not properly accounted in the IFEs estimation. On the other hand, if

the heterogeneity is of the IFEs form and cannot be simplified to the two-way

additive form, but one uses the within-group method to estimate the model, the

resultant estimators would be generally inconsistent because the endogeneity

arising from the unobserved factors and factor loadings are not fully controlled.
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Based on the above discussion, a plausible procedure is that we first invoke

the LS estimation method to estimate the panel threshold model with IFEs,

and then we test whether the estimated heterogeneity can be further reduced

to the two-way additive form. If the test is passed, we turn to the within-group

estimator to achieve efficiency; otherwise we can continue to employ the LS

estimator studied in this paper.

Motivated by the above discussions, we propose a formal statistic to test

the null of two-way additive fixed-effects against the alternative of more general

IFEs in Section E of the online supplement of Miao et al. (2020a). We focus

on the case of R0 = 2 there and propose a test statistic that is asymptotically

standard normal under the null. Alternatively, we can extend the sup-type

test of Castagnetti et al. (2015) to our framework. In addition, we conduct

some simulations in Section F of the online supplement of Miao et al. (2020a)

to evaluate the finite sample performance of the test.

2.4 Testing the existence of threshold effect

Testing the existence of threshold effect is non-standard because the thresh-

old level γ0 is not identified when δ0 = 0. This issue has been well documented

in the econometrics literature; see Andrews (1993), Hansen (1996) and ref-

erences therein. In the current paper, we are interested in testing the null

hypothesis H0 : δ0 = 0 versus the alternative H1 : δ0 6= 0. To study the lo-

cal power of our test, we consider the sequence of Pitman local alternatives

H1n : δ0 = c√
NT

. Note that δ0 shrinks to zero at a faster rate than the one

specified in Assumption A.3. So under the Pitman local alternatives the pa-

rameters γ0 is not identified. Apparently, the case of c = 0 corresponds to the

null of no threshold effect.

For each γ ∈ Γ = [γ, γ], we can obtain the estimator θ̂(γ), Λ̂(γ), F̂ (γ)

and bias-corrected estimator θ̃(γ). Then we construct the asymptotic variance
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estimators

ω̂NT (γ, γ) ≡ 1

NT

N∑
i=1

T∑
t=1

žit,γ ž
′
it,γ , and Ω̂NT (γ, γ) ≡ 1

NT

N∑
i=1

T∑
t=1

žit,γ ž
′
it,γ êit(γ)2,

where žit,γ is a 2K × 1 vector with kth entry equal to (i, t)th entry of

MΛ̂(γ)Xk,γMF̂ (γ) and êit(γ) = yit−x′it,γ θ̂(γ)− λ̂i(γ)′f̂t(γ). The sup-Wald statis-

tic is defined as

supWNT ≡ sup
γ∈Γ

WNT (γ),

where WNT (γ) = NT · θ̃(γ)′LK̂−1
NT (γ)L′θ̃(γ) with L = [0K×K , IK ]′ a section

matrix, and K̂NT (γ) = L′ω̂NT (γ, γ)−1Ω̂NT (γ, γ)ω̂NT (γ, γ)−1L, the estimated

covariance matrix for
√
NTL′θ̃(γ).

The asymptotic property of the supWNT (γ) statistic is presented in the

following theorem.

Theorem 2.7. (Wald test) Suppose that Assumptions A.1-A.2, A.4 and

A.6 hold and N/T → κ > 0 as (N, T )→∞. Then under H1n : δ0 = c/
√
NT,

we have

supWNT
d→ sup

γ∈Γ
W c (γ)

where

W c(γ) =
[
S(γ) +Q(γ)c

]′
K(γ, γ)−1

[
S(γ) +Q(γ)c

]
, Q(γ) = L′ω(γ, γ)−1ω(γ, γ0)L,

and S(γ) = L′ω(γ, γ)−1S(γ) is a mean-zero Gaussian process with covariance

kernel K(γ1, γ2) = L′ω(γ1, γ1)−1 Ω(γ1, γ2)ω(γ2, γ2)−1L.

Under H0, c = 0 and supγ∈ΓW
0(γ) = supγ∈Γ S(γ)′K(γ, γ)−1S(γ). Clearly,

the limiting null distribution of supWNT depends on the Gaussian process S(γ)

and is not pivotal. We cannot tabulate the asymptotic critical values for the

sup-Wald statistic. Nevertheless, given the simple structure of S(γ), we can

follow the literature (e.g., Hansen (1996)) and simulate the critical values via

the following procedure:
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1. Generate {vit, i = 1, . . . , N, t = 1, . . . , T} independently from the stan-

dard normal distribution;

2. Calculate ŜNT (γ) = 1√
NT

∑N
i=1

∑T
t=1 žit,γ êit(γ)vit;

3. ComputesupW ∗NT ≡ supγ∈Γ ŜNT (γ)′ω̂NT (γ, γ)−1LK̂−1
NT (γ)L′ω̂NT (γ, γ)−1ŜNT (γ);

4. Repeat Steps 1-3 B times and denote the resulting supW ∗
NT test statistics

as supW ∗
NT,j for j = 1, . . . , B.

5. Calculate the simulated/bootstrap p-value for the supWNT test as p∗W =

1
B

∑B
j=1 1{supW ∗

NT,j ≥supWNT} and reject the null when p∗W is smaller

than some prescribed nominal level of significance.

The next theorem justifies the asymptotic validity of the above procedure.

Theorem 2.8. (Bootstrap validity) Suppose that Assumptions A.1-A.2,

A.4-A.7 hold and N/T → κ > 0 as (N, T )→∞. Then supW∗
NT

d→ supγ∈Γ W
0(γ).

Theorem 2.8 indicates that the bootstrap statistic can mimic the asymp-

totic null distribution of the statistic supWNT . When B is sufficiently large, the

asymptotic critical value of the level α test based on supWNT is approximately

given by the empirical upper α-quantile of {supW ∗
NT,j, j = 1, . . . , B}. There-

fore, we can reject the null hypothesis H0 : δ0 = 0 if the simulated p-value p∗W

is smaller than α.

2.5 Monte Carlo simulations

In this section, we conduct Monte Carlo simulations to evaluate the finite

sample performance of our estimators and test statistics.

2.5.1 Data generating processes

We consider four data generating processes:

DGP 1: yit = β0yi,t−1 + δ0yi,t−11{yi,t−1 ≤ γ0}+ λ0′
i f

0
t + eit;
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DGP 2: yit = β0yi,t−1 + δ0yi,t−11{qit ≤ γ0} + λ0′
i f

0
t + eit, where the threshold

variable qit is independently and identically distributed (i.i.d.) from N(2, 1);

DGP 3: yit = β0xit + δ0xit1{xit ≤ γ0}+λ0′
i f

0
t + eit, where xit = 2 + vit + (λ0

i +

λ∗i )
′(f 0

t + 0.5f 0
t−1), vit is i.i.d. N(0, 1) and λ∗ir is i.i.d. N(1, 1) for r = 1, 2;

DGP 4: yit = β0xit + δ0xit1{qit ≤ γ0} + λ0′
i f

0
t + eit, where xit is generated in

the same way as in DGP 3 and qit is generated in the same way as in DGP 2.

We set β0 = 0.3, δ0 = (NT )−0.2 and γ0 = 2 for all four DGPs. In all

the above four DGPs, both λ0
i and f 0

t are 2× 1 vectors with each entry of λ0
i

being i.i.d. N(1, 1) and each entry of f 0
t being i.i.d. 0.7×N(1, 1). The factors

and factor loadings are mutually independent of each other. We also generate

the idiosyncratic error terms eit independently from the student t-distribution

with nine degrees of freedom. For the dynamic DGPs 1 and 2, we throw away

the first 1000 time periods of observations to get rid of the start-up effect. For

the static DGPs 3 and 4, we generate correlations between the regressors xit

and the factors and factor loadings.

DGP 1 is a dynamic panel where the lagged dependent variable yi,t−1 also

serves as the threshold variable. DGP 2 is a dynamic panel with a strictly

exogenous variable qit being the threshold variable. DGP 3 is a static panel

with the exogenous regressor xit serving as the threshold variable and DGP 4

is a static panel where the threshold variable qit is different from the regressor

xit. Note that the high level assumption, Assumption A.6, is satisfied in our

DGPs. Take DGP1 as an example. It is easy to see that yit is independent

with yjt condition on F 0 = (f 0
1 , . . . , f

0
T )′ and yit is weakly correlated yis with

exponential-decay correlations conditional on λ0
i . Then we prove the law of

large numbers simply by directly showing that the variance converges to zero.

With the partition arguments as used in the proof of Theorem 2.4.1 in Vaart

et al. (1996), the point convergence can be readily extended to the uniform

convergence.

We are interested in the performance of our estimators and test statis-
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tics in all the above four scenarios. In addition, we also consider generating

conditional heteroskedastic errors as in Su and Chen (2013). The simulation

performance is similar to that reported here.

2.5.2 Implementation and estimation results

For each DGP, we consider the feasible and infeasible bias-corrected esti-

mators, where the infeasible estimators are obtained by using the information

of true threshold parameter γ0. For all bias-corrected estimators, we correct

all three bias terms based on the formula in Section 2.3 by ignoring the fact

that there is no need to correct some bias terms in some DGPs. For example,

the slope coefficient estimator has only the bias term B1(γ0) in DGPs 1 and

2, and has no bias term in DGPs 3 and 4. For the slope coefficients (β0, δ0)

and the threshold parameter γ0, we report the empirical bias (Bias), standard

deviation (Std), and coverage probability (CP) of the 95% confidence interval

for the corresponding true value. The number of repetitions for each case is

set to be 500.

Table 2.1 reports the estimation and inference results with the unknown R0

being estimated by the SVT method in Section 2.3.6. The tuning parameter

ψ is chosen following the description at the end of Section 2.3.6. Specifically,

we chose c = 0.3 in ψ. The number of factors is estimated quite accurately.

When both N and T are not less than 50 for all DGPs, the correct estimation

rate is above 99%. For each combination of N and T in each DGP, the table

reports the estimation and inference results for the feasible estimates of β0 and

δ0 on a row, followed by those of the infeasible estimates in the next row. We

summarize some important findings from Table 2.1. First, as expected, the

infeasible estimates of β0 and δ0 tend to outperform the feasible estimates

slightly in terms of bias and standard deviation, which is especially true for

the estimate of threshold effect δ0. In addition, we find that the two estimates

behave similarly, which supports the theoretical claim that they are asymptot-
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Table 2.1: Performance of the least square estimators

β δ γ
N T Bias Std CP Bias Std CP Bias Std CP

1 25 50 -0.0049 0.0304 93.6% 0.0055 0.0455 91.2% 0.0006 0.2525 90.2%
-0.0039 0.0298 94.2% -0.0016 0.0427 92.0%

50 25 -0.0153 0.0345 88.2% 0.0099 0.0452 92.6% -0.0194 0.2264 91.2%
-0.0141 0.0336 89.4% 0.0011 0.0408 93.6%

50 50 -0.0036 0.0213 93.8% 0.0032 0.0301 92.8% -0.0015 0.1277 91.4%
-0.0028 0.0214 93.4% -0.0011 0.0292 93.6%

50 100 -0.0024 0.0140 94.8% 0.0022 0.0196 95.4% 0.0001 0.0738 94.0%
-0.0019 0.0140 94.6% 0.0000 0.0196 95.2%

100 50 -0.0037 0.0152 91.0% 0.0021 0.0205 92.2% 0.0025 0.0759 93.4%
-0.0033 0.0151 91.4% 0.0001 0.0197 94.0%

100 100 -0.0016 0.0099 95.0% 0.0014 0.0144 94.0% 0.0008 0.0445 94.0%
-0.0013 0.0099 95.2% 0.0002 0.0145 93.0%

2 25 50 -0.0059 0.0306 89.4% 0.0021 0.0209 93.2% 0.0019 0.0279 90.4%
-0.0054 0.0305 90.2% 0.0010 0.0210 92.2%

50 25 -0.0140 0.0289 89.4% 0.0018 0.0196 93.6% -0.0003 0.0266 92.6%
-0.0140 0.0285 90.4% 0.0010 0.0192 93.8%

50 50 -0.0045 0.0201 92.4% 0.0000 0.0139 93.4% -0.0001 0.0150 94.4%
-0.0044 0.0201 92.4% -0.0005 0.0138 93.6%

50 100 -0.0021 0.0138 94.6% 0.0000 0.0103 92.8% 0.0006 0.0098 95.8%
-0.0019 0.0138 94.8% -0.0002 0.0102 93.4%

100 50 -0.0043 0.0148 93.2% 0.0005 0.0097 93.0% 0.0006 0.0128 93.2%
-0.0040 0.0146 93.2% 0.0001 0.0097 93.2%

100 100 -0.0011 0.0102 93.2% 0.0003 0.0074 92.8% 0.0002 0.0068 94.4%
-0.0010 0.0101 94.0% 0.0001 0.0074 93.2%

3 25 50 0.0018 0.0232 92.2% 0.0064 0.0409 92.6% -0.0178 0.2124 91.4%
0.0019 0.0219 93.2% -0.0010 0.0399 94.8%

50 25 0.0036 0.0247 89.2% 0.0089 0.0461 88.2% -0.0242 0.2751 91.2%
0.0034 0.0229 91.4% 0.0002 0.0428 91.4%

50 50 -0.0012 0.0157 92.2% 0.0047 0.0282 92.2% -0.0099 0.1384 91.2%
-0.0007 0.0157 92.4% 0.0002 0.0272 93.4%

50 100 -0.0003 0.0111 93.0% 0.0013 0.0202 91.6% -0.0089 0.1328 92.2%
0.0000 0.0110 93.2% -0.0012 0.0196 92.4%

100 50 0.0001 0.0111 93.4% 0.0028 0.0207 92.0% -0.0094 0.0899 94.4%
0.0003 0.0110 93.6% 0.0004 0.0211 92.2%

100 100 0.0000 0.0075 93.4% 0.0016 0.0132 94.0% 0.0004 0.0418 94.4%
0.0002 0.0075 93.6% 0.0005 0.0133 93.8%

4 25 50 0.0023 0.0299 88.6% 0.0042 0.0355 91.4% -0.0103 0.2241 91.0%
0.0016 0.0265 90.0% 0.0005 0.0357 90.8%

50 25 0.0021 0.0289 85.8% 0.0022 0.0353 91.6% -0.0063 0.1931 92.4%
0.0021 0.0268 86.8% -0.0013 0.0357 90.6%

50 50 0.0010 0.0173 92.2% 0.0003 0.0231 93.8% -0.0015 0.0748 94.6%
0.0014 0.0167 92.4% -0.0015 0.0228 94.4%

50 100 0.0006 0.0114 94.6% 0.0011 0.0153 95.6% -0.0029 0.0517 93.4%
0.0009 0.0113 95.2% -0.0002 0.0154 94.4%

100 50 0.0004 0.0123 92.0% 0.0010 0.0160 94.4% 0.0022 0.0436 95.2%
0.0009 0.0122 92.2% -0.0001 0.0161 94.4%

100 100 -0.0001 0.0083 93.4% 0.0004 0.0109 95.2% 0.0016 0.0292 96.4%
0.0002 0.0083 93.8% -0.0002 0.0109 95.0%

Note. We report the bias, std and CP for the feasible estimates followed those for the infeasible estimates
with true γ0, where CP refers to the coverage probability for the 95% confidence intervals.
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ically equivalent. Second, for both sets of estimates, the biases and standard

deviations decrease to zero as either N or T increases. In terms of inference,

the 95% confidence intervals for the slope coefficients in these DGPs tend to

be under-covered, but their performance generally improves as either N or T

increases. Third, the biases are of asymptotically smaller order compared to

the standard deviations, indicating that the bias-corrected estimator performs

as our theory predicts. As the slope coefficients estimator θ̂ has bias term

in DGPs 1-2, we observe slightly larger biases of the bias-corrected estimator

compared to that in DGPs 3-4. Fourth, for the estimate of γ0, the biases and

standard deviations tend to decrease as N or T becomes large. The 95% con-

fidence intervals tend to under-cover slightly when N or T is small for DGPs

1, 3, and 4, but the coverage probability approaches the nominal level (95%)

quickly as both N and T increase.

2.5.3 Test for the threshold effect

We next consider the test for the presence of threshold effects. We also

consider both dynamic and static cases and all four DGPs. The main difference

is that now we set δ0 = δ0
NT = 0, 2(NT )−1/2 and 10(NT )−1/2 in order to

evaluate both the size and local power performance of our test statistic. We

consider three frequently-used nominal levels in empirical studies, i.e., 1%,

5% and 10%. As before, we employ the bias-corrected estimates with three

potential bias terms corrected in all cases. The number of repetitions is 500.

Table 2.2 reports the test results. First, under H0 : δ0 = 0, the rejection

rates for all DGPs are close to the the nominal levels with moderate deviations

when N or T is not large enough. But as N and T becomes large, the size

of our test improves quickly. Second, the rejection rates increase fast as δ0

deviates from 0 further and further. Note that our asymptotic estimation

theory considers the case where δ0 is of order (NT )−α with α < 1/2. In order

to see the local power to approach 1, we need to have a large constant c for
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Table 2.2: Rejecting frequency for testing the threshold effect at 1%, 5% and
10% nominal levels

DGP N T δ0
NT = 0 δ0

NT= 2/
√
NT δ0

NT= 10/
√
NT

1% 5% 10% 1% 5% 10% 1% 5% 10%

1 50 50 0.018 0.074 0.106 0.100 0.290 0.406 1.000 1.000 1.000

50 100 0.018 0.068 0.142 0.100 0.268 0.358 1.000 1.000 1.000

100 50 0.018 0.076 0.110 0.112 0.256 0.356 1.000 1.000 1.000

100 100 0.006 0.064 0.122 0.094 0.236 0.372 1.000 1.000 1.000

2 50 50 0.024 0.086 0.156 0.460 0.698 0.794 1.000 1.000 1.000

50 100 0.018 0.084 0.144 0.458 0.674 0.776 1.000 1.000 1.000

100 50 0.016 0.068 0.118 0.476 0.666 0.750 1.000 1.000 1.000

100 100 0.012 0.064 0.132 0.400 0.616 0.748 1.000 1.000 1.000

3 50 50 0.024 0.084 0.144 0.150 0.352 0.448 1.000 1.000 1.000

50 100 0.014 0.052 0.104 0.138 0.332 0.424 1.000 1.000 1.000

100 50 0.016 0.080 0.162 0.150 0.362 0.470 1.000 1.000 1.000

100 100 0.010 0.066 0.120 0.140 0.324 0.458 1.000 1.000 1.000

4 50 50 0.026 0.076 0.140 0.136 0.334 0.436 1.000 1.000 1.000

50 100 0.006 0.072 0.136 0.120 0.332 0.454 1.000 1.000 1.000

100 50 0.026 0.098 0.158 0.146 0.276 0.384 1.000 1.000 1.000

100 100 0.024 0.058 0.116 0.122 0.280 0.400 1.000 1.000 1.000

the threshold effect (c/
√
NT ). Third, the local power performance of our test

for the static panel is similar to that for the dynamic panel.

2.6 Empirical Application

In this section, we apply our method to study the relationship between

financial depth and economic growth.

2.6.1 Literature

An important research topic in the economic growth literature is about the

relationship between financial depth and economic growth. Recent empirical

studies frequently suggest that there is a turning point in the effect of financial

development on economic growth; see Levine (2003, 2005), Law and Singh

(2014) and Arcand et al. (2015), among others. Levine (2005) provides an

extensive survey of the theoretical literature that emphasizes how the services

provided by the financial sector would contribute to economic growth. Law and

Singh (2014) construct a sample of 87 countries for the period 1980-2010 from

several datasets including World Development Indicators (WDI), Penn World
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Table 6.3, International Country Risk Guide (ICRG), and the Barro and Lee’s

dataset. They consider the short panel framework by averaging the time series

observations for each country over five-year periods. They find the presence of

threshold effect in the finance–growth relationship. In particular, the level of

financial development is beneficial to growth only up to a certain level of its

value; beyond the level further development of finance tends to adversely affect

growth. Similarly, Arcand et al. (2015) find that financial depth starts to have

a negative effect on output growth for high-income countries when credit to

the private sector reaches 100% of GDP.

Although the effect of financial sector on economic growth has been studied

in a wide range, a potential common drawback of the previous studies, such

as Law and Singh (2014) and Arcand et al. (2015), is that the cross-sectional

dependence among the data that arises from the unobserved common factors

is largely ignored. In this section we revisit the relationship between financial

depth and economic growth by explicitly modeling the cross-sectional depen-

dence with a factor structure.

2.6.2 Model

We extend the panel threshold model of Law and Singh (2014) to allow for

the presence of IFEs. The model is given by

GROWTHit = a · 1{FINit ≤ γ}+ β1FINit · 1{FINit ≤ γ}

+ β2FINit · 1{FINit > γ} + ϕ′xit + λ′ift + eit,

where GROWTHit denotes the economic growth for country i in year t,

F INit denotes the level of financial development for country i in year t, xit is

a vector of control variables, and the remaining symbols are the same as in the

theory part of the paper.

The above model is slightly different from that given by equation (2.1).

First, we do not consider the threshold effect in the coefficient of control vari-
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Table 2.3: Descriptive statistics

Unit of measurement mean std dev median min max

Growth % 3.604 4.520 3.892 -36.700 39.487

Private Sector Credit log(% of GDP) 3.304 0.900 3.266 0.329 5.570

Liquid Liability log(% of GDP) 3.620 0.645 3.595 1.495 5.445

Domestic Credit log(% of GDP) 3.407 0.912 3.363 0.432 5.743

Lag GDP Per Capita log(US$) 2010 constant price 8.358 1.552 8.227 5.390 11.425

Population Growth % 1.781 1.084 1.871 -1.475 6.366

Trade openness log(% of GDP) 4.054 0.600 4.050 1.844 6.090

Government expenditure log(% of GDP) 2.629 0.369 2.617 1.169 3.772

ables xit’s. Second, as we do not allow for the intercept in the regressors, we

only put 1{FINit ≤ γ} as a regressor. Third, we directly write β1 and β2 as

the regime one and the regime two coefficients of FINit.

We follow Law and Singh (2014) and collect annual data from the WDI

database between 1971 and 2015. The dataset is a balanced panel with N = 50

and T = 45. We consider three measures of financial development, namely,

private sector credit (PSC), liquid liabilities (LL), and domestic credit (DC).

All these three banking sector development indicators are expressed as ratios

to GDP. The control variables include: initial per capita GDP, trade open-

ness, government expenditure, and population growth. Table 2.3 reports the

descriptive statistics of the variables used in our regression. It is seen that the

economic growth exhibits a large variation among the 50 countries over the

45 years period under our investigation. In contrast, the three measures of

financial development and control variables have relatively small variations.

2.6.3 Test for the presence of threshold effects

To conduct the hypothesis testing for the presence of threshold effects, we

first need to specify the number of factors. Note that under the null hypothesis,

the model reduces to a standard panel data model with IFEs. So we have a

large room of choices on the methods of determining the number of factors,

such as Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013).

Nevertheless, we find that different methods produce different estimates of R0
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Table 2.4: Test for the presence of threshold effect

R Private Sector Credit Liquid Liability Domestic Credit

supWNT p-value supWNT p-value supWNT p-value

1 44.661 0.000 39.849 0.000 41.839 0.000
2 74.643 0.000 63.684 0.000 66.610 0.000
3 109.856 0.000 69.551 0.000 84.437 0.000
4 36.041 0.000 22.737 0.000 41.788 0.000
5 38.052 0.000 23.387 0.000 49.027 0.000

for our dataset. For this reason, we are conservative to consider the tests

under the various numbers of factors. Specifically, we consider R = 1, . . . , 5

and report the corresponding test statistics and p-values for each case.

Table 2.4 reports the supWNT statistics and the associated bootstrap p-

values based on 500 bootstrap replications when all the three measures of

financial development are considered. Apparently, all these supWNT statistics

suggest that we reject the null hypothesis of no threshold effect at the 1% level.

2.6.4 Number of factors and the test against the addi-

tive fixed effects

To estimate the model, we can also consider different choices of R. We

apply the SVT method in Section 2.3.6 to determine the number of factors.

We also try to modify the existing methods to determine the number of factors

in our framework. First, we estimate the model with Rmax = 5 and obtain the

residuals. Then we conduct the eigenvalue distribution (ED) of Onatski (2010),

the growth rate (GR) and eigenvalue ratio (ER) of Ahn and Horenstein (2013)

and PC and IC of Bai and Ng (2002) to estimate the number of factors in the

residuals.

The results are summarized in Table 2.5. ED, GR and ER choose R = 1 for

all three specifications. PC and IC of Bai and Ng (2002) choose R to be 3 and

2, respectively. Our SVT method chooses R = 2 for all three specifications.

Moon and Weidner (2015) find that in the linear panel data models with IFEs,

we can still estimate the slope coefficients consistently when the number of

factors is overspecified. To be conservative, we focus on the case where R = 3.
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Table 2.5: Number of factors determined by various methods

Bai and Ng Onatski-ReStat AH SVT
FIN PCp1 ICp1 ED ER GR
PSC 3 2 1 1 1 2
LL 3 2 1 1 1 2
DC 3 2 1 1 1 2

Note: Bai and Ng refers to Bai and Ng (2002), Onatski-ReStat refers to Onatski
(2010), and AH refers to Ahn and Horenstein (2013).

As our SVT method chooses R = 2, there is some possibility that the

IFEs can be captured by the two-way additive fixed effects (AFEs). In Section

E of the online supplement of Miao et al. (2020a), we propose a method to

test AFEs against IFEs. We conduct the test for all three specifications here.

The test statistics are 18.11, 17.73, and 18.52 with PSC, LL, and DC serving

as FINit respectively. Under the null of AFEs, the test statistic is N(0, 1)

asymptotically. Therefore, we find a strong evidence to support the IFEs. An

implication of this result is that the existing studies may have endogeneity issue

because the unobserved heterogeneity are not fully controlled by the traditional

two-way additive fixed effects.

2.6.5 Estimation results

Table 2.6 reports the regression results with R = 3. The estimates of

threshold coefficient γ are 4.2322, 4.304 and 4.559, respectively when private

sector credit, liquid liabilities, and domestic credit are used as a measure for the

financial development. In terms of the original percentage scale, these numbers

correspond to 68.87%, 71.30% and 95.13%, respectively, where, e.g., the first

percentage suggests the turning point for the model with private sector credit

occurs when the private sector credit over the GDP ratio reaches 68.87%,

a number that is substantially smaller than 100%, and a number suggested

by Arcand et al. (2015). For these three estimates of γ, we find there are

about 84.3%, 85.1% and 87.5% of observations in the data that are smaller

than the corresponding estimate of γ. In some sense, the estimated threshold
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Table 2.6: Estimates of the slope and threshold coefficients

Model 1 Model 2 Model 3

Fin Development PSC LL DC

Threshold Estimate:

Threshold level (γ̂) 4.232 (log68.87) 4.304 (log74.00) 4.559 (log95.45)

95% CI [4.106, 4.268] [4.225, 4.360] [4.542, 4.567]

Sample Quantile 84.3% 85.1% 87.5%

Impact of finance:

Regime one (β̂1) 0.274 (0.282) 0.298 (0.393) 0.078 (0.267)

Regime two (β̂2) -3.101 (0.698) -3.820 (0.967) -3.014 (0.965)

Impact of Covariates:

Lag GDP Per Capita -2.595 (0.490) -2.561 (0.507) -2.595 (0.497)

Population Growth 1.353 (0.235) 1.188 (0.229) 1.344 (0.237)

Trade Openness 3.098 (0.350) 3.143 (0.351) 3.204 (0.356)

Gov Expenditure -2.827 (0.423) -2.867 (0.436) -2.785 (0.430)

Intercept -13.618 (3.406) -17.031 (4.275) -12.784 (4.556)

Note: The values without parentheses (the left column) are the least square estimates and the values
in parentheses (the right column) are the corresponding standard errors.

coefficient is far apart from the tail of the distribution of the threshold variable.

In Table 2.6, we also report the 95% confidence intervals that are based on the

likelihood-ratio test. The three confidence intervals are quite narrow due to

the fact that threshold effects are not so small.

The estimates of β1 and β2 in model (2.8) suggest that the financial devel-

opment is a positive but not statistically significant determinant of economic

growth if it is less than a certain threshold level, and its effect becomes nega-

tive and statistically significant when it is higher than the threshold level. This

empirical finding is roughly in line with that in Law and Singh (2014) and sup-

ports the conventional wisdom that more finance is definitely not always better

and it tends to harm economic growth after a turning point. However, we em-

phasize that although the final results are changed not so much in comparison

with Law and Singh (2014), our model should be used in this type of empirical

studies since we find strong evidence that both threshold effects and IFEs are

present in the data.

2.7 Conclusion

In this paper, we consider the least squares estimation of the panel threshold

models with IFEs. We study the asymptotic properties of the least squares
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estimators in the shrinking threshold effect framework and propose a likelihood

ratio test for the threshold parameter in the model. We also propose a test for

the presence of threshold effects. Our simulations suggest that our estimators

and test statistics perform well in finite samples. We apply our method to

study the effect of financial development on economic growth and find strong

evidence to support the proposed model.

There are several interesting topics for further research. First, it is inter-

esting to consider panel threshold regressions with both IFEs and endogeneity.

Endogeneity has become a serious concern in recent cross-sectional threshold

models; see, e.g., Yu and Phillips (2018). The extension to our framework will

be complicated by the presence of IFEs. Second, we only consider a panel

threshold model where the regression parameters exhibit homogeneity over

both cross-sectional and time dimensions. In the large N and large T setup,

there is a possibility for unobserved parameter heterogeneity or latent group

structure over the cross-sectional dimensions (e.g., Ando and Bai (2016), Su

et al. (2016) and Su and Ju (2018)) and structural changes along the time

dimension (e.g., Qian and Su (2016), Li et al. (2016), and Okui and Wang

(2020)). We leave these topics for future research.
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Chapter 3

Panel Threshold Regressions with La-

tent Group Structures

3.1 Introduction

Threshold models have a wide variety of applications in economics; see

Durlauf and Johnson (1995), Potter (1995), Kremer et al. (2013), and Arcand

et al. (2015), among others. In both the cross sectional and time series frame-

work, asymptotic theory for estimation and inference in threshold models has

been well developed. See, e.g., Chan (1993) and Hansen (2000) on asymptotic

distribution theory for the threshold estimator in the fixed-threshold-effect and

shrinking-threshold-effect frameworks, respectively, and Hansen (2011) for a

review on the development and applications of threshold regression models in

economics. Both Chan (1993) and Hansen (2000) require the exogeneity of the

regressors. Endogeneity has been considered in some existing papers; see, e.g.,

Caner and Hansen (2004), Kourtellos et al. (2016), and Yu and Phillips (2018).

In the panel setup, Hansen (1999) studies static panel threshold models with

exogenous regressors and threshold variables; Seo and Shin (2016) propose a

GMM method to estimate dynamic panel threshold models with additive fixed

effects, where either the regressors or the threshold variables can be endoge-

nous; and Miao et al. (2020a) study estimation and inference in dynamic panel

threshold regression with interactive fixed effects.

All existing studies in panel threshold models assume that the slope co-

efficients and threshold parameters are common across all individual units.
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However, such an assumption of homogeneity is vulnerable in practice given

that individual heterogeneity has been widely documented in empirical studies

using panel data. See, e.g., Durlauf (2001) and Su and Chen (2013) for cross-

country evidence and Browning and Carro (2007) for ample microeconomic

evidences. In panel threshold regressions, heterogeneity can exist in not only

the slopes but also the threshold coefficients. Neglecting latent heterogeneity

in any aspect can lead to inconsistent estimation and misleading inferences. In

particular, pooling individuals with different threshold values would bias the

threshold and the slope coefficient estimation, and it can even lead to a failure

in detecting any threshold effect in finite samples since heterogeneous thresh-

old effects may offset each other. Even if all units share the same threshold

coefficient, ignoring heterogeneity in the slopes would also lead to inconsistent

estimates.

In this paper, we propose a new panel threshold model that allows the slope

and threshold coefficients to vary across individual units. We model individual

heterogeneity via a grouped pattern, such that all the members within the

same group share the same slope and threshold coefficients, whereas these

coefficients can differ across groups in an arbitrary manner. Hence, the latent

group structure may result from two sources of heterogeneity: that in the

slope coefficients and that in the threshold level coefficients. We allow the

group membership structure (i.e., which individuals belong to which group) to

be unknown and estimated from the data. We refer to our model as a panel

structure threshold regression (PSTR) model.

Using a panel structure model that imposes a group pattern is a convenient

way to model unobserved heterogeneity, and they have recently received much

attention; see Lin and Ng (2012), Bonhomme and Manresa (2015), Ando and

Bai (2016, 2017), Su et al. (2016), Lu and Su (2017), Liu et al. (2020), Su

and Ju (2018), Su et al. (2019), and Okui and Wang (2020), among others.

An important advantage of the panel structure model is that it allows flexible
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forms of unobserved heterogeneity while remaining parsimonious at the same

time. As group structure is latent in such a model, the determination of an

individual’s membership is the key question. Several approaches have been

proposed to address this issue. Sun (2005), Kasahara and Shimotsu (2009)

, and Browning and Carro (2007) consider finite mixture models. Su et al.

(2016) propose a variant of the Lasso procedure (C-Lasso) to achieve a classifi-

cation in this regard, and this method has been extended to allow for two-way

component errors, interactive fixed effects, nonstationary regressor, and semi-

parametric specification, respectively, in Lu and Su (2017), Su and Ju (2018),

Huang et al. (2020) , and Su et al. (2019). Lin and Ng (2012), Bonhomme and

Manresa (2015), Sarafidis and Weber (2015), and Liu et al. (2020) extend the

K-means algorithms to the panel regression framework. Wang et al. (2018)

and Wang and Su (2020) propose to identify the latent group structure based

on the Lasso or spectral clustering techniques in the statistics literature. In the

nonparametric literature, Vogt and Linton (2017, 2020) consider procedures to

estimate the unknown group structures for nonparametric regression curves.

To estimate the PSTR model, we consider a least-squares-type estimator

that minimizes the sum of squared errors. We choose the least-squares ap-

proach for classification because the group, slope, and threshold parameters

can be estimated in the same framework, which facilitates the theory. The

disadvantage is that we cannot allow for endogeneity in the regressors and

threshold variables. Cases with endogenous regressors or threshold variables

require different and more complicated analysis and will be left for future

research. Due to the presence of the latent group structure and threshold pa-

rameters, we do not have an analytically closed-form solution to the problem.

We propose to employ an EM-type iterative algorithm to find the solution with

multiple starting values. Under some regularity conditions, we show that our

estimators of the slope and threshold coefficients are asymptotically equivalent

to the corresponding infeasible estimators of the group-specific parameters that
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are obtained by using individual group identity information.

To study the asymptotic properties of the estimators of the threshold co-

efficients, we follow the lead of Hansen (2000) and consider the shrinking-

threshold-effect framework, where the threshold effect is diminishing as the

sample size approaches infinity. In this framework, we can make inferences

regarding each threshold parameter by constructing a likelihood ratio (LR)

statistic. We show that the LR statistics are asymptotically pivotal in the

case of conditional homoskedasticity and that they depend on a scale nuisance

parameter otherwise. Such a scale parameter can be consistently estimated

nonparametrically when conditional heteroskedasticity is suspected.

We also consider two specification test statistics. The first one is designed

to test the homogeneity of the threshold parameters across each group via

the LR principle. The corresponding LR test statistic is non-standard and in-

volves a linear combination of two-sided Brownian motions. We show how one

can obtain the simulated p-value with estimated parameters in our discussion.

This test is useful since pooling units, if their threshold coefficients pass the

homogeneity test, improves the efficiency of threshold estimation, especially

in small samples. The second is designed to test the absence of the threshold

effect under the null by adopting the method proposed by Hansen (1996). In

our latent group structure framework, one may suspect the presence of a subset

of threshold effects among all groups, and we also need to take into account

the uncertainty caused by the unknown group structure when studying the

asymptotic behavior of the test.

We evaluate the finite-sample performance of the proposed tests and es-

timation methods via extensive simulation studies. First, the proposed in-

formation criterion can determine the correct number of groups with a large

probability, regardless of whether any threshold effect is present. Given the

number of groups, the next task is to test the existence of threshold effects.

Our proposed test has an appropriate size and non-trivial power in detecting
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the threshold effect. The power is an increasing function of the strength of

both the threshold effect and sample size. A nice feature of the test is that

it performs well regardless of whether the threshold is heterogeneous across

units. If the threshold effect is present, one can further test whether the

threshold parameters differ across groups. We demonstrate that our test for

the homogeneity of the threshold is also well-behaved in terms of size and

its power improves as the degree of threshold heterogeneity and sample sizes

increase. Finally, after the model and the number of groups are specified,

we can proceed with parameter estimation. Our estimation method performs

well in heterogeneous panels with threshold effects in finite samples. With

this method, we can precisely estimate group membership, and the clustering

accuracy improves as the number of time periods increases. Both the thresh-

old parameters and slope coefficients can be precisely estimated. Moreover,

we find that when the threshold parameters are homogeneous across groups,

pooling observations with a common threshold does improve the efficiency of

threshold estimation, which in turn highlights the importance of testing the

homogeneity of the threshold parameters.

We illustrate the usefulness of our methods through two real-data exam-

ples. First, we revisit the relationship between capital market imperfections

and firms’ investment behavior. We document a large degree of heterogeneity

in firms’ investment behavior, which is bound by various types of financial

constraints, such as cash flow, Tobin’s Q, and leverage. Such heterogenous

threshold effects cannot be captured by the conventional panel threshold re-

gressions. Next, we examine the impact of bank regulation, particularly branch

deregulation, on income inequality in US, allowing observed and unobserved

heterogeneity in their impact. We find a group pattern of heterogeneity in the

impact of deregulation across states even after controlling for the threshold

effect. The group structure coincides with geographic locations to some extent

but not perfectly, and the threshold effects appear to be salient in each group.
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This application again demonstrates the usefulness of the PSTR since it allows

us to capture both observed heterogeneity through thresholds and unobserved

heterogeneity through the latent group structure.

The remainder of the paper is organized as follows. In Section 3.2, we

introduce our model and estimation method. In Section 3.3, we introduce the

assumptions and examine the asymptotic properties of the estimators of the

latent group structure and the slope and threshold coefficients. In Section 3.4,

we introduce the inference procedure on the threshold parameters and propose

a specification test for the homogeneity of the threshold parameters across

groups. In Section 3.5, we consider the specification test for the presence of

threshold effects. In Section 3.6, we propose a BIC-type information criterion

to determine the number of groups. We conduct Monte Carlo experiments to

evaluate the finite sample performance of our estimators and tests in Section

3.7. We apply our model to study the relationship between investment and

financing constraints and the relationship between bank regulation and income

distribution in Section 3.8. Section 3.9 concludes. The proofs of the main

results in the paper are relegated to the Appendix. Further technical details

can be found in the online supplemental materials.

To proceed, we adopt the following notation. The indicator function is

denoted as 1(·). 0a×b denotes an a × b matrix of zeros. For two constants a

and b, we denote max(a, b) as a ∨ b and min(a, b) as a ∧ b. For an m× n real

matrix A, we denote its transpose as A′ and its Frobenius norm as ‖A‖ (≡

[tr(AA′)]1/2) where ≡ means “is defined as”. For a real symmetric matrix A,

we denote its minimum eigenvalue as λmin(A). The operators
p→ and

d→ denote

convergence in probability and distribution, respectively. We use (N, T )→∞

to denote the joint convergence of N and T when N and T pass to infinity

simultaneously. Alternatively, as the co-editor suggests, one can consider the

pathwise asymptotics as in Phillips and Moon (1999) and Vogt and Linton

(2020).
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3.2 The Model and Estimates

In this section we first present the panel threshold model with latent group

structures and then introduce the estimators of all the parameters in the model.

3.2.1 The Model

Let N denote the number of cross-sectional units and T the number of time

periods. We consider the model

yit = x′itβ
0
g0
i

+ x′itδ
0
g0
i
· dit(γ0

g0
i
) + µi + εit, i = 1, ..., N, t = 1, ..., T, (3.1)

where xit is a K × 1 vector of observable regressors, dit(γ) ≡1(qit ≤ γ), qit

is a scalar threshold variable, µi is the individual fixed effects and εit is the

idiosyncratic error term. Note that we allow both the slope and threshold

coefficients to be group specific: γ0
g is a scalar threshold coefficient, β0

g is a K×1

vector of regression coefficients that lies in a compact parameter space B, and

δ0
g is a K×1 vector of threshold-effect coefficients for g ∈ G ≡ {1, ..., G}, where

G is a fixed integer known as the number of groups. The group-membership

variable g0
i ∈ G indicates to which group individual unit i belongs. This group-

membership variable is unknown and has to be estimated from the data. All

members in group g have the same coefficients (β0′
g , δ

0′
g , γ

0
g)
′. We assume γ0

g ∈

Γ = [γ, γ] for all g ∈ G, where γ and γ are two fixed constants. Following the

lead of Hansen (2000), we will work in the shrinking-threshold-effect framework

by assuming that δ0
g ≡ δ0

g,NT → 0 as (N, T )→∞ for each g ∈ G unless specified

otherwise.

Let D ≡ (γ1, ..., γG)′ ∈ ΓG, G ≡ (g1, ..., gN)′ ∈ GN and Θ ≡ (θ′1, ..., θ
′
G)′ ∈

BG, where θg ≡ (β′g, δ
′
g)
′ ∈ B ⊂ R2K . For any given group structure G, we let

Gg = {i| gi = g, 1 ≤ i ≤ N} be the index set of the members in group g ∈ G.

We denote the true parameters as (Θ0,D0,G0), where Θ0 ≡ (θ0′
1 , ..., θ

0′
G)′,

D0 ≡ (γ0
1 , ..., γ

0
G)′ and G0 ≡ (g0

1, ..., g
0
N)′. Analogously, we denote the true

members in group g ∈ G by G0
g = {i| g0

i = g, 1 ≤ i ≤ N}.

55



For the moment, we assume that the true number of groups G0 is known

and given by G. In Section 3.6, we will discuss how to determine G0 in practice.

3.2.2 Estimation

To remove the individual-specific fixed effects µi, we employ the usual

within-transformation which leads to

ỹit = x̃′itβ
0
g0
i

+ x̃it(γ
0
g0
i
)′δ0

g0
i

+ ε̃it, i = 1, ..., N, t = 1, ..., T, (3.2)

where x̃it(γ) ≡ xitdit(γ) − 1
T

∑T
s=1 xisdis(γ), and x̃it, ỹit and ε̃it are defined

analogously. Let zit(γ) ≡ (x′it, x
′
itdit(γ))′ and z̃it(γ) ≡ zit(γ) − 1

T

∑T
s=1 zis(γ).

Then the model in (3.2) can be rewritten as

ỹit = z̃it(γ
0
g0
i
)′θ0

g0
i

+ ε̃it, i = 1, ..., N, t = 1, ..., T. (3.3)

Given G, we can obtain the following least squares estimator of (Θ,D,G) :

(Θ̂, D̂, Ĝ) = arg min
(Θ,D,G)∈BG×ΓG×GN

Q(Θ,D,G),

where

Q(Θ,D,G) =
N∑
i=1

T∑
t=1

[ỹit − z̃it(γgi)′θgi ]
2
. (3.4)

For any given threshold D and group structure G, the slope coefficients θg,

g = 1, ..., G, can be estimated by

θ̂g(D,G) =

(
N∑
i=1

T∑
t=1

1(gi = g)z̃it(γg)z̃it(γg)
′

)−1 N∑
i=1

T∑
t=1

1(gi = g)z̃it(γg)ỹit.

Concentrating out Θ, we can estimate the threshold D and group structure G

by

(D̂, Ĝ) = arg min
(D,G)∈ΓG×GN

Q̇(D,G), (3.5)

where Q̇(D,G) ≡ Q(Θ̂(D,G),D,G) and Θ̂(D,G) = (θ̂1(D,G)′, ..., θ̂G(D,G)′)′.

To find the solution to the above optimization problem, we need to search

over the space of (D,G) to minimize the objective function in (3.5). We

propose to employ the following EM-type iterative algorithm to conduct the

searching process:
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1. Set G(0) as a random initialization of the group structure G and let

s = 0.

2. Given a s conduct:

(a) For given G(s), compute

D(s) = arg min D∈ΓGQ̇(D,G(s)).

(b) For given D(s) = {γ(s)
g , g = 1, ..., G} and G(s) = {g(s)

i , i = 1, ..., N},
compute the slope coefficients for each group g ∈ G

θ̂
(s)
g =

(
N∑
i=1

T∑
t=1

1(g
(s)
i = g)z̃it(γ

(s)
g )z̃it(γ

(s)
g )′

)−1 N∑
i=1

T∑
t=1

1(g
(s)
i = g)z̃it(γ

(s)
g )ỹit.

(c) Compute for all i ∈ {1, . . . , N},

g
(s+1)
i = arg min

g∈G

T∑
t=1

[ỹit − z̃it(γ(s)
g )′θ̂(s)

g ]2.

(d) Set s = s+ 1. Repeat Steps (a)-(c) until numerical convergence.

The above algorithm is similar to Algorithm 1 in Bonhomme and Manresa

(2015, BM hereafter) and it alternates among three steps. Steps (a) and (b)

are the “update” steps where one updates the estimates of the threshold pa-

rameter and those of the slope coefficients in turn. Step (c) is an “assignment”

step where each individual i is re-assigned to the group g
(s+1)
i . The objective

function is non-increasing in the number of iterations and we find through

simulations that numerical convergence is typically very fast. Nevertheless,

it is hard to ensure that the obtained solution is globally optimal because it

depends on the chosen starting values. In practice, one can start with multiple

random starting values and select the solution that yields the lowest objective

value.

3.3 Asymptotic Theory

In this section, we study the asymptotic properties of the estimators of the

group structure, slope and threshold parameters. We first show the consistency
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of the group structure estimator and then establish the asymptotic properties

of the estimators of the slope and threshold coefficients.

3.3.1 The estimator of the group structure

We establish the consistency of the group structure estimator in this sub-

section. Let FNT,t ≡ σ({(xit, qit, εi,t−1), (xi,t−1, qi,t−1, εi,t−2), ...}Ni=1) where σ (A)

denotes the minimal sigma-field generated from A. Let Xi = (xi1, ..., xiT )′,

εi = (εi1, ..., εiT )′ and qi = (qi1, ..., qiT )′. We use Ng to denote the number

of individuals belonging to group g : Ng =
∣∣G0

g

∣∣. That is,
∣∣G0

g

∣∣ denotes the

cardinality of G0
g. For any group structure G, let

MNT (g, g̃,D,G) ≡ 1

NT

N∑
i=1

T∑
t=1

1(g0
i = g)1(gi = g̃)z̃it(γg̃)z̃it(γg̃)

′.

Let 0 < C < ∞ denote a generic constant that may vary across places. Let

maxi = max1≤i≤N , maxt = max1≤t≤T and maxi,t = max1≤i≤N max1≤t≤T . We

first make the following assumptions.

Assumption A.1: (i.1) For each i = 1, ..., N , t = 1, ..., T , E(εit|FNT,t−1) = 0

a.s., or (i.2) for each i = 1, ..., N , t = 1, ..., T , E(εit|Xi, qi) = 0 a.s.;

(ii) {(xit, qit, εit) : t = 1, 2, . . .} are mutually independent of each other

across i;

(iii) The process {(xit, qit, εit) , t ≥ 1} is a strong mixing process with

mixing coefficients αi[t] satisfying max1≤i≤N αi[t] ≤ cαρ
t for some constants

cα > 0 and ρ ∈ (0, 1).

(iv) The parameter space B and Γ are compact so that supθ∈B ‖θ‖ ≤ C and

Γ= [γ, γ];

(v) maxi,tE ‖xit‖8+ε0 ≤ C and maxi,tE(‖εit‖8+ε0) ≤ C for some ε0 > 0;

(vi) The threshold effect satisfies δ0
g = (NT )−αC0

g for some constants α ∈

(0, 1/2) and C0
g 6= 0 for all g ∈ G.

Assumption A.2: There exists a constant cλ > 0 such that for all g ∈ G,

Pr

(
inf

(G,D)∈GN×ΓG
max
g̃∈G
{λmin[MNT (g, g̃,D,G)]} > cλ

)
→ 1 as (N, T )→ 1.
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Assumption A.3: (i) For all g, g̃ ∈ G with g 6= g̃, we have
∥∥β0

g − β0
g̃

∥∥ > cβ

for some constant cβ > 0;

(ii) For any g 6= g̃ and 1 ≤ i ≤ N , we have E[x̃′it(β
0
g̃ − β0

g)]
2 ≡ cgg̃,i ≥ cgg̃

for some constant cgg̃ > 0;

(iii) For all g ∈ G : limN→∞Ng/N = πg > 0.

(iv) N = O(T 2) and T = O(N2) as (N, T )→∞.

Assumption A.1(i)–(iii) is similar to Assumption A.2(a)–(c) in Su and Chen

(2013) . The major differences lie in four aspects. First, Su and Chen (2013)

consider linear panel data models with interactive fixed effects and the sigma-

field FNT,t there also incorporates the factors and factor loadings, whereas we

consider the panel threshold regression models with a latent group structure

and the additive fixed effects. Second, Su and Chen (2013) only consider

Assumption A.1(i.1) and allow for lagged dependent variables to appear in the

regressor vector. Here we consider both scenarios in Assumption A.1(i): the

martingale difference sequence (m.d.s.) condition in A.1(i.1) and the strict

exogeneity condition in A.1(i.2), where we allow for dynamic panels in the

first scenario and assume strict exogeneity in the second scenario. In the

second scenario, we allow for serial correlation of an unknown form in the

error term. When A.1(i.1) holds, we have asymptotic biases for the estimators

of the slope coefficients. When A.1(i.2) holds and serial correlation is likely

to appear, we have to use the HAC estimator for the asymptotic variance

of the slope estimators. Third, due to the potential appearance of the lagged

dependent variables in the regression model, Su and Chen (2013) use the notion

of conditional strong mixing for the process while we focus on the case of

unconditional strong mixing in our model in Assumption A.1(iii). In other

words, we follow Hahn and Kuersteiner (2011) and treat the fixed effects {µi}

to be nonrandom in our setting in the dynamic case. If {µi} are random,

we can modify the unconditional strong mixing conditions to the conditional

strong mixing conditions as in Su and Chen (2013). Fourth, Su and Chen
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(2013) assume conditional cross-sectional independence whereas we assume

cross-sectional independence in Assumption A.1(ii).

A.1(iv) is imposed to facilitate the proof as we do not have closed form solu-

tions to our optimization problem. Assumption A.1(v) imposes some moment

conditions on the regressors and error terms, which are weaker than the expo-

nential tail assumption in BM (2015). Assumption A.1(vi) assumes shrinking

threshold effect as in Hansen (2000). In this framework, the asymptotic distri-

bution of the estimator of γg is pivotal up to a scale effect, which facilities the

inference procedure. In part E of the online supplement we study the asymp-

totic properties of our estimators in the fixed threshold effect framework. In

the latter case, the inference becomes difficult in practice and one can consider

extending the smoothed least squares estimation of Seo and Linton (2007) to

our PSTR model.

Assumption A.2 is similar to Assumption 1(g) in BM (2015). Given any

conjectured group structure G and for each g ∈ G, we cannot assume λmin[MNT (g, g̃,D,G)] >

cλ for any g̃ ∈ G due to the possibility of very few individuals assigned to be in

group g̃. However, there exists some group g̃ ∈ G, in which a positive propor-

tion of N members are assigned. As BM (2015) remark, such an assumption

is reminiscent of the full rank condition in standard regression models.

Assumption A.3(i) and (iii) parallels Assumption A1(vi)–(vii) in Su, Shi,

and Phillips (2016, SSP hereafter). A.3(i) requires that the group-specific

slope coefficients be separated from each other, and it can be relaxed to allow

the differences between the group-specific slope coefficients to shrink to zero

at some slow rates at the cost of more lengthy arguments. It is worth em-

phasizing that the latent group structure is identified through the separation

of group-specific slope coefficients and we find that the potential separation

of the threshold parameters is not necessary; see the remarks after Theorem

3.1 for futher discussions. A.3(iii) implies that each group has an asymp-

totically non-negligible proportion of individuals as N → ∞. Noting that
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E[x̃′it(β
0
g̃ − β0

g )]
2 = (β0

g̃ − β0
g)
′E(x̃itx̃

′
it)(β

0
g̃ − β0

g), A.3(ii) is automatically satis-

fied under A.3(i) provided that the minimum eigenvalue of E(x̃itx̃
′
it) is bounded

away from zero. Apparently, xit cannot contain time-invariant regressors under

Assumption A.3(ii). Assumption A.3(iv) puts some restrictions on the relative

magnitudes of N and T, which can be easily met in many macro and finan-

cial applications. If we follow BM (2015) and assume exponentially-decaying

tails, we can relax the conditions on (N, T ) to N/T v → 0 as (N, T ) → ∞ for

some v > 0. If we follow Vogt and Linton (2019) and consider the pathwise

asymptotics by setting N = g(T ) for some divergent function g(·) and passing

T → ∞. Then Assumption A.3(iv) can be satisfied when g(T )/T 2 + T/g(T )2

converges to some positive finite constant as T →∞.

The following theorem reports the consistency of the estimators of the

group membership for all individuals.

Theorem 3.1. Suppose that Assumptions A.1–A.3 hold. Then

Pr

(
sup

1≤i≤N
1(ĝi 6= g0

i ) = 1

)
→ 0 as (N, T )→∞.

Theorem 3.1 is similar to Theorem 2 of BM (2015). This theorem states

that as (N, T )→∞, we can correctly estimate the group structure with proba-

bility approaching one (w.p.a.1). From the proof of the above theorem, we can

see that the identification of the true group structure highly hinges on Assump-

tion A.3(i). In particular, since we permit δ0
g = δ0

g,NT → 0 as (N, T )→∞ un-

der the shrinking-threshold-effect framework, the proof of Theorem 3.1 mainly

relies on the differences of β0
g ’s across groups. In this case, as long as the slope

coefficients in one regime are separate from each other across the G groups,

they are also separate from each other asymptotically in the other regime and

whether the threshold parameters in different groups differ from each other

does not matter. In other words, the threshold parameters do not need to sep-

arate from each other. In the online Supplementary Material, we give a proof

of Theorem 3.1 under the fixed-threshold-effect framework. We show that in

that case, either the separation among θ0
g ’s or that among γ0

g ’s is sufficient for
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identifying the latent group structure under some regularity conditions. To

stay focused, we will work in the shrinking-threshold-effect framework below.

3.3.2 The estimators of the slope and threshold coeffi-

cients

Given the fact that the latent group structure can be recovered from the

data at a sufficiently fast rate (see Lemma A.3 in the appendix), we will show

that the estimators of the slope and threshold coefficients are asymptotically

equivalent to the infeasible estimators that are obtained as if the true group

structure were known. Then we derive the asymptotic distributions of the

coefficient estimators.
To establish the asymptotic equivalence, we add some notation. Let x̃it(γ, γ

∗) =
x̃it(γ)− x̃it(γ∗). Let fit(·) denote the probability density function (PDF) of qit.
For all g ∈ G, define

wg(γ) =
1

NgT

∑
i∈G0

g

T∑
t=1

z̃it(γ)z̃it(γ)′,

w̃g(γ) =
1

NgT

∑
i∈G0

g

T∑
t=1

x̃it(γ, γ
0
g )x̃it(γ, γ

0
g )′

−
1

NgT

∑
i∈G0

g

T∑
t=1

x̃it(γ, γ
0
g )z̃it(γ)′ [wg(γ)]−1 1

NgT

∑
i∈G0

g

T∑
t=1

z̃it(γ)x̃it(γ, γ
0
g )′.

Mg,NT (γ) =
1

NgT

∑
i∈G0

g

T∑
t=1

E[xitx
′
itdit(γ)],

Dg,NT (γ) =
1

NgT

∑
i∈G0

g

T∑
t=1

E(xitx
′
it|qit = γ)fit(γ), and

Vg,NT (γ) =
1

NgT

∑
i∈G0

g

T∑
t=1

E(xitx
′
itε

2
it|qit = γ)fit(γ).

Let Mg(γ) = lim(N,T )→∞Mg,NT (γ), Dg(γ) = lim(N,T )→∞Dg,NT (γ), Vg(γ) =

lim(N,T )→∞ Vg,NT (γ), D0
g = Dg(γ

0
g), and V 0

g = Vg(γ
0
g). We add the following

two assumptions.

Assumption A.4: (i) There exists a constant τ > 0 such that

Pr

(
min
γ∈Γ

λmin [wg(γ)] ≥ τ

)
→ 1

as (N, T )→∞ for all g ∈ G;
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(ii) There exists a constant τ > 0 such that

min
γ∈Γ

{
Pr(λmin[w̃g(γ)] ≥ τ min[1,

∣∣γ − γ0
g

∣∣])}→ 1

as (N, T )→∞ for each g ∈ G.

Assumption A.5: (i) maxγ∈Γ maxi,tE(‖ξit‖4 |qit = γ) ≤ C for ξit = xit and

xitεit;

(ii) fit(γ) is continuous over Γ and maxi,t supγ∈Γ fit(γ) ≤ cf <∞.

(iii) For g ∈ G, Dg(γ) and Vg(γ) are continuous at γ = γ0;

(iv) There exists a constant c > 0 such that infγ∈Γ λmin[Mg(γ)] ≥ c for all

g ∈ G.

Assumption A.4(i) is a non-colinearity assumption for the regressors and

A.4(ii) holds because E ‖xit(γ)− xit(γ∗)‖ � |γ − γ∗| under some regularity

conditions on {xit, qit} , where a � b means and both a/b and b/a are bounded

away from zero. It’s natural to expect that the first term in the definition of

w̃g(γ) is of the same probability order as
∣∣γ − γ0

g

∣∣. A.4(ii) requires that after

projecting x̃it(γ, γ
0
g) onto z̃it(γ), the associated residual exhibits the same prob-

ability order of variations groupwise. Assumption A.5 imposes some conditions

on the conditional PDF and moments of xit and xitεit. A.5(i) requires that

the fourth order conditional moment of xitεit and xit be well behaved; A.5(ii)

requires that the PDF of qit be uniformly bounded; A.5(iii)–(iv) requires the

probability limits of some quantities associated with the asymptotic variance

be well behaved.

To state the next theorem, we define the infeasible estimators of the slope

and threshold coefficients that are obtained with known group structures:

(Θ̌, Ď) ≡ arg min
(Θ,D)∈BG×ΓG

Q̌(Θ,D), (3.6)

where Q̌(Θ,D) ≡ Q(Θ,D,G0). With the knowledge of the true group struc-

ture G0, we can split the N individuals into G groups perfectly and estimate

the group-specific parameters for each group. Let Q̌g(θ, γ) =
∑

i∈G0
g

∑T
t=1[ỹit−
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z̃it(γ)′θ]2. Then we have

Q̌(Θ,D) =
G∑
g=1

Q̌g(θ, γ) and (θ̌g, γ̌g) = arg min
(θ,γ)∈B×Γ

Q̌g(θ, γ) for each g ∈ G.

The following theorem establishes the asymptotic equivalence between the fea-

sible estimator (Θ̂, D̂) and the infeasible estimator (Θ̌, Ď).

Theorem 3.2. Suppose that Assumptions A.1–A.5 hold with α ∈ (0, 1/3) in

Assumption A.1(vi). Let αNT = (NT )1−2α. Then we have (NT )1/2
∥∥∥Θ̂− Θ̌

∥∥∥ p→

0 and αNT (D̂− Ď)
p→ 0.

Theorem 3.2 shows that Θ̂− Θ̌ = op((NT )−1/2) and D̂− Ď = op(α
−1
NT ) by

restricting α ∈ (0, 1/3) in Assumption A.1(vi). Under Assumptions A.1–A.5,

we can show that Θ̌−Θ0 = Op((NT )−1/2 +T−1) and Ď has αNT -rate of conver-

gence. Therefore, the estimator (Θ̂, D̂) has the same asymptotic distribution

as that of (Θ̌, Ď). Then we can establish the asymptotic distribution of our

least squares estimator.

To report the asymptotic distributions of θ̂g and γ̂g , we add some notation:

ωg,NT (γ, γ∗) ≡ 1

NgT

∑
i∈G0

g

T∑
t=1

z̃it(γ)z̃it(γ
∗)′,

Ωg,NT1(γ, γ∗) ≡ 1

NgT

∑
i∈G0

g

T∑
t=1

z̃it(γ)z̃it(γ
∗)′ε2

it,

Ωg,NT2(γ, γ∗) ≡ 1

NgT

∑
i∈G0

g

T∑
t=1

T∑
s=1

z̃it(γ)z̃is(γ
∗)′εisεit, and

Bg,NT (γ) ≡ 1

NgT

∑
i∈G0

g

T∑
t=2

∑
s<t

E [zit(γ)εis] .

Assumption A.6: (i) For each g ∈ G, the following probability limits exist

and are finite: ωg(γ, γ
∗) = p lim(N,T )→∞ ωg,NT (γ, γ∗), Ωg,`(γ, γ

∗) = p lim(N,T )→∞Ωg,NT`(γ, γ
∗)

for ` = 1, 2, and Bg(γ) = lim(N,T )→∞ Bg,NT (γ).

(ii) ωg,NT (γ, γ∗)
p→ ωg(γ, γ

∗) and Ωg,NT`(γ, γ
∗)

p→ Ωg,`(γ, γ
∗) for ` = 1, 2

uniformly in γ, γ∗ ∈ Γ.

Assumption A.6 imposes some conditions on the probability limits of ran-

dom quantities that are associated with the asymptotic variance and bias of Θ̂.
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Here, we follow Hansen (2000) and assume directly that ωg,NT and Ωg,NT` for

` = 1, 2 converge uniformly to some limits. The uniformity greatly facilitates

the proofs of Theorem 3.3 below.

We establish the asymptotic distribution of our estimators in the following

theorem.

Theorem 3.3. Suppose that Assumptions A.1–A.6 hold with α ∈ (0, 1/3) in

Assumption A.1(vi). Let αNgT = (NgT )1−2α, ω0
g = ωg(γ

0
g , γ

0
g), B0

g = Bg(γ0
g),

and Ω0
g,` = Ωg,`(γ

0
g , γ

0
g) for ` = 1, 2. Then for each g ∈ G,

(i)
√
NgT (θ̂g − θ0

g) − (ω0
g)
−1

√
Ng
T
B0
g

d→ N (0, (ω0
g)
−1Ω0

g,1(ω0
g)
−1) under As-

sumption A.1(i.1) and
√
NgT (θ̂g − θ0

g)
d→ N (0, (ω0

g)
−1Ω0

g,2(ω0
g)
−1) under As-

sumption A.1(i.2);

(ii) αNgT (γ̂g−γ0
g)

d→ $gTg, where $g =
C0′
g V

0
g C

0
g

(C0′
g D

0
gC

0
g )2 , Tg = arg max r∈R

[
−1

2
|r|+Wg(r)

]
,

and Wg(·), g ∈ G, are mutually independent two-sided Brownian motions.

Theorem 3.3 establishes the asymptotic distributions of the estimators of

the slope and threshold coefficients. Note that we strengthen Assumption

A.1(vi) slightly to require α ∈ (0, 1/3). From the proof of Lemma B.7 that is

used in the proof of the above theorem, we can easily find that such an extra

condition is not needed if we only consider the case where N/T → κ for some

κ ∈ (0,∞).

When we allow for dynamics in Assumption A.1(i.1), the estimator θ̂g of

the group-specific slope coefficient θ0
g exhibits a bias term to be corrected as in

standard dynamic panels. One can conduct the bias correction by estimating

ω0
g and Bg,0 consistently by

ω̂g ≡
1

N̂gT

∑
i∈Ĝg

T∑
t=1

z̃it(γ̂g)z̃it(γ̂g)
′ and B̂g =

1

N̂gT

∑
i∈Ĝg

T∑
t=2

∑
s<t

zit(γ̂g)ε̂is,

where N̂g =
∣∣∣Ĝg

∣∣∣ denotes the cardinality of Ĝg, Ĝg ≡ {i : ĝi = g} for g ∈ G,

and ε̂it = ỹit−z̃it(γ̂g)′θ̂g. Similarly, it is easy to show that a consistent estimator

of the asymptotic variance of θ̂g in this case is given by ω̂−1
g Ω̂g,1ω̂

−1
g , where

Ω̂g,1 = 1

N̂gT

∑
i∈Ĝg

∑T
t=1 z̃it(γ̂g)z̃it(γ̂g)

′ε̂2
it. When (Xi, qi) is strictly exogenous in

Assumption A.1(i.2), we allow for serial correlation in the error terms. In this
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case, we propose to estimate the asymptotic variance of θ̂g by ω̂−1
g Ω̂g,2ω̂

−1
g ,

where Ω̂g,2 is a panel heteroskedasticity and autocorrelation consistent (HAC)

estimator:

Ω̂g,2 =
1

N̂g

∑
i∈Ĝg

[
Λ̂i,0 +

JT∑
s=1

wTs(Λ̂is + Λ̂′is)

]
,

where wTs = 1 − |s| /JT , JT satisfies 1/JT + J3
T/T → 0 as T → ∞, and

Λ̂is = 1
T

∑T
t=s+1 z̃it(γ̂g)z̃i,t−s(γ̂g)

′ ×ε̂itε̂i,t−s. Following Su and Jin (2012) and

the results in Theorems 3.2–3.3, we can show that Ω̂g,2 and ω̂−1
g Ω̂g,2ω̂

−1
g are

consistent estimators of Ω0
g,2 and (ω0

g)
−1Ω0

g,2(ω0
g)
−1, respectively.

Theorem 3.3(ii) indicates that the asymptotic distribution of γ̂g is pivotal

up to a scale parameter $g, which is similar to that given by Theorem 1 in

Hansen (2000). It is well known that this result highly relies on the assumption

that the threshold effect converges to zero as (N, T ) → ∞. Under the fixed-

threshold-effect framework (α = 0), it is possible to demonstrateNT (γ̂g−γ0
g) =

Op (1) but the asymptotic distribution of γ̂g will not be asymptotically pivotal

even after appropriate normalization. In addition, it is well known that the

above scale parameter $g cannot be consistently estimated. To make inference

on the threshold parameters, we propose to apply the likelihood ratio test in

the next section.

3.4 Inference on the Threshold Parameter

In this section, we consider inference on the threshold parameter D =

(γ1, ..., γG)′. We consider three cases. The first case is to test the null hypoth-

esis on the threshold parameter γg for a single group g ∈ G :

H01 : γg = γ0
g for some γ0

g ∈ Γ.

Next, we consider testing the homogeneity of the threshold parameters:

H02 : γ0
1 = ... = γ0

G = γ0 for some γ0 ∈ Γ.
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If one fails to reject the hypothesis of common threshold parameter for all

groups, one can estimate the model with a common threshold parameter, γ,

say. Then we can study the inference on the common threshold parameter

H03 : γ = γ0 for some γ0 ∈ Γ.

3.4.1 Likelihood ratio test for a single γg

To test the null hypothesis H01 : γg = γ0
g , a standard approach is to

use the likelihood ratio (LR) test. If we know the true group structure,

the likelihood ratio test statistic can be constructed as in Hansen (2000).

In our framework, we need to construct the test statistic based on the es-

timated group structure {Ĝg, g ∈ G}. Let θ̄g(γ) ≡ arg minθ∈B Q̄g(θ, γ), where

Q̄g(θ, γ) ≡
∑

i∈Ĝg

∑T
t=1 [ỹit − z̃it(γ)′θ]2 . We follow the lead of Hansen (2000)

and propose to employ the following LR test statistic for γg :

Lg,NT (γ) ≡ N̂gT
Q̄g(θ̄g(γ), γ)− Q̄g(θ̂g, γ̂g)

Q̄g(θ̂g, γ̂g)
.

The major difference is that we consider the minimization of Q̄g(θ, γ) instead

of the infeasible version Q̌g(θ, γ). In the proof of Theorem 3.4 below, we show

that Q̄g(θ, γ) and Q̌g(θ, γ) are asymptotically equivalent so that we can study

the asymptotic distribution of the LR test statistic based on the minimization

of the infeasible objective function.

For each g ∈ G, let σ2
g =lim(N,T )→∞

1
NgT

∑
i∈G0

g

∑T
t=1 E(ε2

it), wg,V = C0′
g V

0
g C

0
g

and wg,D = C0′
g D

0
gC

0
g . Let σ2 =lim(N,T )→∞

1
NT

∑N
i=1

∑T
t=1 E(ε2

it). The follow-

ing theorem establishes the asymptotic null distribution of the above LR test

statistic.

Theorem 3.4. Suppose that Assumptions A.1–A.6 hold with α ∈ (0, 1/3) in

Assumption A.1(vi). Then under H01 : γg = γ0
g , we have

Lg,NT (γ0
g)

d→ η2
gξg for each g ∈ G,

where η2
g =

wg,V
wg,Dσ2

g
and ξg = maxs∈R[2Wg(s)− |s|] has the distribution function

characterized by Pr(ξg ≤ x) = (1− e−x/2)2.
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Theorem 3.4 indicates that the asymptotic distribution of the LR test

statistic constructed from the estimated group structure is asymptotically

equivalent to that of the infeasible test statistic obtained from the true group

structure. Now, we still have a nuisance parameter η2
g . In the special case

where we have conditional homoskedasticity along both the cross-section and

time dimensions, η2
g = 1 and the LR statistic is asymptotically free of any nui-

sance parameter. If heteroskedasticity is suspected, then we need to estimate

η2
g consistently. Noting that

η2
g =

plim(N,T )→∞
1

NgT

∑
i∈G0

g

∑T
t=1E[(δ0′

g xitεit)
2|qit = γ0

g ]fit
(
γ0
g

)
σ2
gplim(N,T )→∞

1
NgT

∑
i∈G0

g

∑T
t=1E[(δ0′

g xit)
2|qit = γ0

g ]fit
(
γ0
g

) ,
we propose to estimate η2

g by

η̂2
g =

∑
i∈Ĝg

∑T
t=1 Kh(γ̂g − qit)(δ̂′gxitε̂it)2

σ̂2
g

∑
i∈Ĝg

∑T
t=1Kh(γ̂g − qit)(δ̂′gxit)2

,

where σ̂2
g = Q̃g(θ̂g, γ̂g)/(N̂gT ), Kh(u) = h−1K(u/h), h → 0 is the bandwidth

parameter and K (·) is a kernel function. We can readily show that σ̂2
g =

σ2
g + op (1) and η̂2

g = η2
g + op (1) under some standard weak conditions on h and

K (·) . Given the consistent estimate of η2
g , we can consider the normalized LR

statistic

NLg,NT (γ0
g) = Lg,NT (γ0

g)/η̂
2
g .

We can easily tabulate the asymptotic critical value for NLg,NT (γ0
g). We can

also invert this statistic to obtain the asymptotic 1− a confidence interval for

γ :

CI1−a = {γ ∈ Γ : NLg,NT ≤ ξ1−a} ,

where ξ1−a denotes the 1 − a percentile of ξ. For example, ξ1−α = 5.94, 7.35,

and 10.59 for a = 0.10, 0.05, and 0.01, respectively.

3.4.2 Test for common threshold parameters

In applications, it is likely that all individuals share a common threshold

parameter, although their slope coefficients may still vary across groups. In
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this case, estimating the model with the common-threshold restriction imposed

improves the asymptotic efficiency of the threshold estimator. Thus motivated,

one may wish to test the homogeneity of the threshold parameter prior to

estimation. In this section, we consider testing the null hypothesis

H02 : γ0
1 = ... = γ0

G = γ0 for some γ0 ∈ Γ.

Let Dr = {D = (γ, ..., γ)′, γ ∈ Γ} ⊆ ΓG be the restricted parameter space

and Dr,γ ≡ (γ, ..., γ)′ ∈ Dr. Then the null hypothesis can be equivalently

rewritten as H02 : D0 ∈ Dr. We can estimate the model by restricting D ∈Dr

under H02 :

(Θ̂r, D̂r, Ĝr) = arg min
(Θ,D,G)∈BG×Dr×GN

Q(Θ,D,G).

Then we can construct the LR test statistic by

LNT = NT
Q(Θ̂r, D̂r, Ĝr)−Q(Θ̂, D̂, Ĝ)

Q(Θ̂, D̂, Ĝ)
.

The following theorem studies the asymptotic distribution of LNT under H02.

Theorem 3.5. Suppose that Assumptions A.1–A.6 hold with α ∈ (0, 1/3) in

Assumption A.1(vi). Under the null hypothesis H02 : D0 ∈ Dr, we have

LNT
d→

G∑
g=1

η̃2
g max
sg∈R

[2Wg(sg)− |sg|]−max
s∈R

[
G∑
g=1

η̃2
g (2Wg(ρgs)− |ρgs|)

]
≡ Ξ,

where ρg =
wg,D
w1,D

πg/η̃
2
g , and η̃2

g = wg,V /(wg,Dσ
2).

Theorem 3.5 indicates that the limiting distribution Ξ of LNT involves

two sets of nuisance parameters, viz, η̃2
g and ρg for g ∈ G. Under conditional

homoskedasticity, we have η̃2
g = 1 for each g. If heteroskedasticity is suspected,

then we need to estimate η̃2
g consistently. If ρg is homogeneous across g, we

do not need to estimate it. However, ρg is generally not homogeneous across

g and we need to estimate it via estimating η̃2
g ,

wg,D
w1,D

, and πg. Using Theorem

3.1, it is easy to show that a consistent estimator of πg is given by π̂g = N̂g/N.

Noting that η̃2
g =

σ2
g

σ2η
2
g and

wg,D
w1,D

=
plim(N,T )→∞

1
NgT

∑
i∈G0

g

∑T
t=1 E[(δ0′

g xit)
2|qit = γ0]fit (γ0)

plim(N,T )→∞
1

N1T

∑
i∈G0

1

∑T
t=1E[(δ0′

1 xit)
2|qit = γ0]fit (γ0)

,
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we propose to estimate η̃2
g and

wg,D
w1,D

respectively by

̂̃η2

g = η̂2
g

σ̂2
g

σ̂2
and

ŵg,D
ŵ1,D

=

1

N̂gT

∑
i∈Ĝg

∑T
t=1 Kh(γ̂g − qit)(δ̂′gxit)2

1

N̂gT

∑
i∈Ĝ1

∑T
t=1Kh(γ̂1 − qit)(δ̂′1xit)2

,

where σ̂2 = 1
NT

∑G
g=1

∑
i∈Ĝg

∑T
t=1[ỹit − z̃it(γ̂g)′θ̂g]2. It is easy to show that the

above estimators are consistent under standard conditions and a consistent

estimator of ρg is given by ρ̂g =
ŵg,D
ŵ1,D

π̂g/̂̃η2

g. To find out the p-value, we can

simulate the asymptotic distribution with these estimates. Basically, we can

estimate G independent two-sided Brownian motions Wg(·) and construct the

corresponding statistic where the nuisance parameters are replaced with their

consistent estimates. Simulating a large number of times, we can mimic the

asymptotic distribution sufficiently well. Then, we can reject the null hypoth-

esis at the prescribed a level, if the test statistic is larger than 1− α quantile

of the simulated distribution.

3.4.3 Likelihood ratio test for common threshold pa-

rameter

Suppose we have common threshold parameters, we can use the restricted

estimator (Θ̂r, D̂r, Ĝr) defined in the last subsection. Even in this case, the

estimators of the group-specific slope coefficients share the same asymptotic

distribution as the unrestricted estimators studied in the last section due to

the asymptotic independence between the estimators of the slope coefficients

and that of the threshold parameter.

To make inference on the common threshold parameter γ, we also consider

an LR test for H03 : γ = γ0. The LR test statistic is now defined by

LcNT (γ) = NT
Q(Θ̂(Dr,γ, Ĝr),Dr,γ, Ĝr)−Q(Θ̂r, D̂r, Ĝr)

Q(Θ̂r, D̂r, Ĝr)
,

where Θ̂(Dr,γ, Ĝr) is defined as in Section 3.2.1 and the superscript c is an

abbreviation for “common”. Note that H03 : γ = γ0 can be equivalently

rewritten as H03 : D0 = Dr,γ0 .
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The next theorem establishes the asymptotic distribution of LcNT (γ) under

H03.

Theorem 3.6. Suppose that Assumptions A.1–A.6 hold with α ∈ (0, 1/3) in

Assumption A.1(vi). Under the null H03 : D0 = Dr,γ0, we have

LcNT (γ0)
d→ η2 max

s∈R
[W (s)− |s|] ,

where η2 =
(∑G

g=1 πgwg,V

)
/
(
σ2
∑G

g=1 πgwg,D

)
.

Like before, we can estimate the nuisance parameter η2 consistently by the

nonparametric estimator:

η̂2 =

∑N
i=1

∑T
t=1Kh(γ̂ − qit)(δ̂′ĝixitε̂it)

2

σ̂2
∑N

i=1

∑T
t=1Kh(γ̂ − qit)(δ̂′ĝixit)2

,

where γ̂ is the estimator of the common threshold parameter γ under H02,

Kh(u) = h−1K(u/h), h→ 0 is the bandwidth parameter and K (·) is a kernel

function.

3.5 Test for the Presence of Threshold Effect

In application, one may suspect that a set of groups do not have the thresh-

old effect. In this case, we can verify the existence of threshold effects for P ≤ G

groups by testing the null hypothesis

H0 : δ0
g1

= ... = δ0
gP

= 0

versus the alternative hypothesis H1 : δ0
gl
6= 0 for some gl ∈ Gs, where Gs ≡ {gl,

l = 1, ..., P} ⊂ G. To study the local power of our test, we consider the

following sequence of Pitman local alternatives

H1NT : δ0
gl

= cl/
√
NT for gl ∈ Gs.

Let c ≡ (c′1, ..., c
′
P )′ and L ≡ (eg1 , ..., egP )′ ⊗ L, where ⊗ denotes Kronecker

product, L ≡ [0K×K , IK ] and egl is a G× 1 vector with glth entry being 1 and

other entries equal to zero. Then we can rewrite the null and local alternative
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hypotheses respectively as

H0 : LΘ0 = 0KP×1 and H1NT : LΘ0 = c/
√
NT.

Note that c = 0KP×1 corresponds to the null hypothesis of no threshold effects

and we allow δ0
gl

for gl ∈ Gs to shrink to zero at the (NT )−1/2-parametric rate

under the local alternative. Under H1NT , the early estimators of Θ0 and G0

continue to be consistent with any D ∈ ΓG despite the fact that we cannot

identify D0.

As we do not know the true group structure, we need to rely on the es-

timated group structure Ĝ. For any fixed D and a preliminary estimate of

group structure Ĝ, we can obtain the bias-corrected estimator Θ̄bc(D, Ĝ) =

(θ̄bc
1 (γ1)′ , ..., θ̄bc

G (γG)′)′. Let

Π̂ = diag(π̂1, ..., π̂G)⊗ I2K and K̂NT (D) = Lω̂(D)−1Ω̂(D)ω̂(D)−1L′,

where

ω̂(D) =


ω̂1(γ1, γ1)

. . .

ω̂G(γG, γG)

 and Ω̂(D) =


Ω̂1,1(γ1, γ1)

. . .

Ω̂G,1(γG, γG)

 .

We can construct the sup-Wald test statisticWNT = supD∈ΓGWNT (D), where

WNT (D) = NT · Θ̄bc(D, Ĝ)′Π̂1/2L′
(
K̂NT (D)

)−1

LΠ̂1/2Θ̄bc(D, Ĝ).

Let Sg,NT (γ) = 1√
NgT

∑
i∈G0

g

∑T
t=1{zit(γ)− 1

T

∑T
s=1 E[zis(γ)]}εit. Let Sg(γ) be

a zero mean Gaussian process with covariance kernel Ωg(γ, γ
∗). Let K(D) =

Lω(D)−1Ω(D)ω(D)−1L′, S(D) = Lω(D)−1S(D), S(D) = (S1(γ1)′, ..., SG(γG)′)′,
and Q(D) = Lω(D)−1Q(D)Π1/2L′, where Π =diag(π1, ..., πG)⊗ I2K ,

Q(D) =


ω1(γ1, γ0

1)

. . .

ωG(γG, γ
0
G)

 , Ω(D) =


Ω1,1(γ1, γ1)

. . .

ΩG,1(γG, γG)

 , and

ω(D) =


ω1(γ1, γ1)

. . .

ωG(γG, γG)

 .

To state the next theorem, we add one assumption.

Assumption A.7: For each g ∈ G, Sg,NT (γ) ⇒ Sg(γ) on the compact set Γ,

where ⇒ denotes the usual weak convergence.
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The following theorem establishes the asymptotic distribution of our sup-

Wald test statistic under H1NT .

Theorem 3.7. Suppose that Assumptions A.1(i.1) and (ii)–(v), and A.2–A.7

hold. Then under H1NT : LΘ0 = c/
√
NT , we have

WNT
d→ sup

D∈ΓG
W c (D) ,

where W c (D) =
[
S(D) + Q(D)c

]′
[K(D)]−1 [S(D) + Q(D)c

]
.

Under H0, c = 0 and w0 ≡ supD∈ΓGW
0(D) = supD∈ΓG S(D)′ [K(D)]−1 S(D).

Clearly, the limiting null distribution ofWNT depends on the Gaussian process

S(D) and is not pivotal. We cannot tabulate the asymptotic critical values

for the above sup-Wald statistic. Nevertheless, given the simple structure of

S(D), we can follow the literature (e.g., Hansen 1996) and simulate the critical

values via the following procedure:

1. Generate {vit, i = 1, ..., N, t = 1, ..., T} independently from the standard

normal distribution;

2. Calculate Ŝg,NT (D) = 1√
N̂gT

∑
i∈Ĝg

∑T
t=1 z̃it(γg)ε̂it(γg)vit;

3. Compute W∗NT ≡ supD∈ΓG Ŝ(D)′ω(D)−1L′[K̂NT (D)]−1Lω̂(D)−1Ŝ(D);

4. Repeat Steps 1–3 B times and denote the resulting W∗NT test statistics

as W∗NT,j for j = 1, ..., B.

5. Calculate the simulated/bootstrap p-value for the WNT test as p∗W =

1
B

∑B
j=1 1{W∗NT,j ≥ WNT} and reject the null when p∗W is smaller than

some prescribed level of significance.

The above discussion was based on the m.d.s. condition in Assumption

A.1(i.1). If we consider the case of static panels such that Assumption A.1(i.2)

holds, then the covariance kernel is given by

Ωg(γ, γ
∗) = lim(N,T )→∞

1
NgT

∑
i∈G0

g

∑T
s=1

∑T
t=1E[z̃is(γ)z̃it(γ

∗)′εitεis] for g ∈ G.

Now, the above simulation procedure needs to be modified because Ŝg,NT (D)
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constructed in Step 2 will not mimic the Gaussian process S(D) in this case. In-

stead of generating the independently and identically distributed (i.i.d.) stan-

dard normal random variables {vit} in Step 1, we can generate vi = (vi1, ..., viT )′

independently from a zero mean multivariate normal distribution with the

variance-covariance matrix Σ = {σts} given by σts = [1− (|t− s| /pT )] 1 (|t− s| ≤ pT )

for some pT such that 1/pT + p3
T/T → 0. Then

Ew

[
Ŝg,NT (D)Ŝg,NT (D)′

]
=

1

N̂gT

∑
i∈Ĝg

T∑
t=1

T∑
s=1

k(
t− s
pT

)z̃it(γg)z̃is(γg)ε̂it(γg)ε̂is(γg),

where Ew(·) denotes the expectation conditional on the sample w ≡ {xit, qit, εit,

i = 1, ..., N, t = 1, ..., T} and k (s) = [1− |s| /pT ] 1 (|s| ≤ pT ). Apparently,

Ew[Ŝg,NT (D)Ŝg,NT (D)′] converges in probability to Ωg(γg, γg) and the modified

simulation procedure will generate statistics that follow the same asymptotic

distribution as that of WNT .

In practice, we frequently consider testing the presence of threshold effects

in all G groups, that is, testing H0 : δ0
1 = ... = δ0

G = 0. In this case, L = IG⊗L

and we can readily rewrite our Wald statistic WNT as

WNT = sup
(γ1,...,γG)∈ΓG

G∑
g=1

WgNT (γg) ≡ Wsum
NT ,

whereWgNT (γg) = N̂gT ·δ̄bc
g (γg)

′ [K̂gNT (γg)]
−1δ̄bc

g (γg) , K̂gNT (γg) = Lω̂g(γg, γg)
−1Ω̂g,1(γg, γg)

×ω̂g(γg, γg)−1L′, and δ̄bc
g (γg) = Lθ̄bc

g (γg) . Here, WgNT (γg) is the Wald statis-

tic used for testing whether δ0
g = 0 for the gth group. For this reason, we can

also refer to WNT as a sup-sum-type of Wald statistic (Wsum
NT ). Alternatively,

we can also consider a sup-sup-type of Wald statistic:

Wsup
NT = sup

1≤g≤G
sup
γg∈Γ

WgNT (γg) .

Following the proof of Theorem 3.7, we can readily find the limiting null dis-

tribution of Wsup
NT . As before, when we allow for serial correlation in the error

terms, we should use Ω̂g,2 in place of Ω̂g,1 and modify the simulation proce-

dure correspondingly to obtain the simulated p-values. We will compare the

performance of Wsum
NT with that of Wsup

NT via simulations in Section 3.7.
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3.6 Determining the number of groups

In practice, the true number of groups G0 is typically unknown. In this

case, we can consider a BIC-type information criterion (IC) to determine the

number of groups. Following BM (2015) and SSP (2016), we consider the

following IC:

IC(G) = ln(σ̂2(G)) + λNTGK, (3.7)

where σ̂2(G) = (NT )−1Q(Θ̂(G), D̂(G), Ĝ(G)), where we make the dependence

of Θ̂, D̂, Ĝ on the group number G explicit, and λNT is a tuning parameter

that plays the role of ln(NT )/(NT ) in the standard BIC for linear panel data

models. The estimated number of groups is given by

Ĝ = arg min
G∈{1,...,Gmax}

IC(G),

whereGmax is an upper bound forG0 that does not grow with (N, T ) . Following

the arguments in SSP (2016), we can readily show that Pr(Ĝ < G0) → 0

provided λNT = o (1) under the standard condition that σ̂2(G)
p→ σ2(G) > σ2

whenever G < G0. This implies that Ĝ ≥ G0 w.p.a.1. As in BM (2015), it

is difficult to further show that Pr(Ĝ = G0) → 1 as (N, T ) → ∞ without

further restrictions given the use of the K-means-type iterative algorithm in

our estimation procedure.

On the other hand, if we require each estimated group should contain a

minimum proportion ν of individuals (e.g., ν = 0.05),1 then we can show

that when G > G0, the threshold parameters and slope coefficients can also be

estimated consistently and it is possible to show that σ̂2(G)−σ̂2(G0) = Op(T
−1)

under some conditions stated in the online supplement. In this case, a choice

of λNT such that T · λNT → ∞ as (N, T ) → ∞ would help to eliminate the

over-selected model. Then we can prove the following theorem.

Theorem 3.8. Suppose that Assumptions A.1–A.5 hold. Suppose that As-

1If a group contains less than bνNc members, the members in this group can be merged
into other groups.

75



sumptions D.1-D.2 in the online supplement holds. Then Pr(Ĝ = G0)→ 1 as

(N, T )→∞.

Theorem 3.8 shows that the use of the IC helps to determine the correct

number of groups w.p.a.1. SSP and Liu et al. (2020) propose a similar IC

to ours. SSP also require that λNT → 0 and λNTT → ∞ as (N, T ) → ∞ for

general nonlinear models but remark this condition can be relaxed substantially

for linear panel data models. In contrast, Liu et al. (2020) require that λNT →

0 and λNTT
1

2(1+ε) → ∞ for some ε > 0, which is much stronger than our

requirement on λNT . The main reason is that they consider general nonlinear

regression models and do not explore the properties of their objective function.

They suggests using the tuning parameter λNT � T−1/4, which satisfies our

theoretical requirement but tends to be too large to be useful in practice. In the

simulations in the next section, we find that by setting λNT = 0.1 ln (NT ) /T,

the above IC works fairly well in determining the true number of groups.

3.7 Monte Carlo Simulations

In this section we evaluate the finite sample performance of our tests and

estimates via a set of Monte Carlo experiments.

3.7.1 Data generation processes

We consider three main cases. The first two cases concern static panels with

different error structures, and the third case examines the dynamic panel. In

each case, we consider two subcases that differ regarding whether the threshold

value is group specific or common across individual units. Thus, we have six

data generating processes (DGPs) in total.

DGP 1: We generate the data from the following static panel structure model:

yit = µi + β1,gixit1(qit ≤ γgi) + β2,gixit1(qit > γgi) + εit, (3.8)

where µi = T−1
∑T

t=1 xit, and we generate xit from an i.i.d. standard normal
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distribution. The slope coefficient vector βgi = (β′1,gi , β
′
2,gi

)′ has a group pattern

of heterogeneity with the number of groups G = 3, and it is specified as

(β1,1, β1,2, β1,3) = (1, 1.75, 2.5), and (β2,1, β2,2, β2,3) = (1, 1.75, 2.5)+c1(NT )−0.1,

where c1 controls the size of the threshold effect and we set c1 = 1 if not

especially mentioned. Let πg be the proportion of units in group g for g =

1, 2, 3, and we fix the ratio of units among groups such that π1 : π2 : π3 =

0.3 : 0.3 : 0.4. The threshold variable qit follows i.i.d. N(1, 1). The error term

εit is heteroskedastic, generated as εit = σiteit, where σit = (s + 0.1x2
it)

1/2,

with s controlling for the signal-to-noise ratio, and eit ∼ i.i.d. N(0, 1). We set

s = 0.5, leading to R2 of about 0.85. Let D = (γ1, γ2, γ3)′. We consider two

subcases: group-specific and homogeneous threshold value, i.e.

DGP 1.1 : D = (0.5, 1, 1.5)′, DGP 1.2 : D = (1, 1, 1)′.

DGP 2: This is the same as DGP 1 except that the error term is generated

from an autoregressive process,

εit = 0.4εit−1 + eit, eit ∼ i.i.d. N(0, 1).

As above, we consider two subcases, with group-specific and homogeneous

threshold values, and we label these two subcases DGP 2.1 and DGP 2.2, re-

spectively.

DGP 3: In this case, we consider dynamic panel data models,

yit = µi + (α1,gi , β1,gi)Xit1(qit ≤ γgi) + (α2,gi , β2,gi)Xit1(qit > γgi) + εit, (3.9)

where Xit = (yi,t−1, xit)
′ and µi = T−1

∑T
t=1 xit. The slope coefficient of yi,t−1

is set as

(α1,1, α1,2, α1,3) = (0.2, 0.4, 0.6), and (α2,1, α2,2, α2,3) = (0.2, 0.4, 0.6)+c2(NT )−0.1,
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with c2 = 1/4 if not especially mentioned. The slope coefficient βgi , the thresh-

old variable qit, and the error term εit are all generated in the same manner

as that in DGP 1. We likewise consider two subcases with different types of

threshold values, and we label them DGP 3.1 and DGP 3.2.

For each DGP, we consider two cross-sectional sample sizes, N = (50, 100),

and two time series periods, T = (30, 60), leading to four combinations of

cross-sectional and time series dimensions. The number of replications is set

to 1000 for the estimation and 500 for the hypothesis testing.

3.7.2 Determining the number of groups

As both of our testing and estimation procedures require specifications of

the number of groups, we first examine the accuracy of the IC in determining

the number of groups, measured by the empirical probability of selecting a

particular number. The proposed IC is calculated by assuming the presence

of the threshold effect. Nevertheless, researchers typically do not have prior

knowledge of the existence of the threshold effect, and tests for the threshold

effect in turn require input of the number of groups. Therefore, we examine

the performance of IC for the PSTR model in both scenarios with and without

the threshold effect (c1 = 1 and c2 = 1/4 in the former case and c1 = c2 = 0

in the latter). In practice, we need to choose an appropriate λNT for the

information criterion. We experiment with many alternatives and find that

λNT = 0.1 ln(NT )/T works fairly well.

TABLE 3.1 around here.

Table 3.1 displays the empirical probability of selecting a particular num-

ber of groups in the three DGPs, and the highest probability in each case is

highlighted in bold. The left panel displays the selection frequency when there

is no threshold effect but only group-specific slope coefficients, and the right
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panel considers the cases in the presence of the threshold effect. In both cases,

our IC can select the correct number of groups with a large probability, more

than 96% in all cases, and this probability increases as either N or T increases.

This result suggests that the proposed IC can correctly determine the number

of groups regardless whether the there is a threshold effect, and this further

allows us to implement tests and estimation given the true number of groups.

3.7.3 Test for the existence of threshold effect

Next, we investigate the performance of the two Wald statistics (Wsum
NT and

Wsup
NT ) to test the existence of a panel structure threshold effect at three conven-

tional significance levels, namely, 1%, 5%, and 10%. These tests are evaluated

given the correct number of groups, say G0 = 3. Prior to the test, one is typi-

cally ignorant whether the threshold is heterogeneous across groups. Hence, we

implement our tests assuming that the threshold is group specific. To facilitate

computation and avoid ill behavior for the test statistic, we truncate the top

and bottom 10% of the threshold values and use the grid {11%, 12%, . . . , 89%}.

The critical values for the two test statistics are simulated based on B = 600

replications.

TABLEs 3.2 and 3.3 around here.

Table 3.2 presents the rejection frequency of the two tests when the thresh-

old is group specific. The left panel presents the size of the test, i.e. the

rejection frequency under the null hypothesis with c1 = 0 in DGP 1 and 2 and

c1 = c2 = 0 in DGP 3. Since the classification is based on the discrepancy of

slope coefficients, heterogeneity in the threshold does not contribute to group

separation. Hence, the size of both tests is generally well controlled. We find

that both tests tend to be oversized when N = 50 and T = 30, but the sizes

improve when either N or T increases. The middle panel shows the power of

the tests in the presence of a weak threshold effect (c1 = 1/5, c2 = 1/15). Both
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tests demonstrate non-trivial power in detecting the threshold effect, and for

the fixed DGP and nominal level, the power function monotonically increases

as either dimension of the sample size grows. Finally, the right panel considers

a stronger threshold effect with c1 = 1/2 and c2 = 1/10. We find that the re-

jection frequency of both tests increases as the threshold effect increases, and

it reaches 1 with large samples.

Table 3.3 considers the case in which the threshold is homogeneous across

groups. Again, both tests demonstrate reasonably good size and power prop-

erties. We find that both tests tend to over reject the null hypothesis when

there are indeed no threshold effects, especially when T = 30. As T increases,

the rejection frequency approaches the nominal level under the null. Under the

alternative hypothesis, the rejection frequency in the presence of homogeneous

thresholds seems to be higher than that in case of heterogeneous thresholds.

This arises potentially because we estimate the threshold for each group, ig-

noring the feature of homogeneity. The inefficiency of threshold estimates may

inflate the rejection frequency.

3.7.4 Test for homogeneity of threshold parameters across

groups

If there exists a threshold effect, the next issue is whether the threshold

is common for individuals. We test the homogeneity of the threshold using

the LR-based statistic discussed in Section 3.4.2. As above, we use the grid

{11%, 12%, . . . , 89%} to facilitate the computation. To estimate η2
g , we employ

the nonparametric method detailed in Section 3.4.2 and follow Hansen (2000)

in using the Epanechnikov kernel and the bandwidth selected according to a

minimum mean square error criterion. The rejection frequency is displayed in

Table 3.4.

TABLE 3.4 around here.
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The left panel of Table 3.4 presents the rejection frequency under the null

hypothesis of homogeneous thresholds with D = (1, 1, 1)′. The size of the test

statistic is generally close to the nominal levels in all DGPs, except that it is

undersized for the 10% level test in DGP 2 and 3. The middle panel reports the

rejection frequency under the alternative hypothesis of weakly heterogeneous

threshold values, i.e., D = (0.85, 1, 1.15)′; the right panel considers the case in

which the threshold is strongly heterogeneous, i.e., D = (0.5, 1, 1.5)′. As the

degree of heterogeneity increases, we observe a stable increase in the power

function. The power is also increasing as either N or T increases for the fixed

degree of heterogeneity and nominal level. This indicates that our test has

reasonably good power in detecting the heterogeneity of threshold values.

3.7.5 Estimation results

Finally, we consider the estimation of the PSTR model in the case of both

homogeneous and group-specific thresholds. When the thresholds are expected

to be common across groups, we impose an equality restriction for threshold

estimation, but we still allow group-specific slope coefficients. We evaluate the

performance of the proposed method with respect to three aspects: clustering,

slope coefficient estimates, and threshold estimates. The accuracy of classifica-

tion is measured by the average of the misclassification frequency (MF) across

replications, defined as

MF =
1

N

N∑
i=1

1(ĝi 6= g0
i ).

For slope coefficient estimates, we focus on the bias, root mean squared error

(RMSE), and coverage probability (CP) of the two-sided nominal 95% confi-

dence interval, while the threshold parameter estimates are evaluated based

on the bias, 95% coverage probability, and average confidence interval length.

In the dynamic panels (DGP 3), the evaluation is based on the bias-corrected

slope coefficient estimates.
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TABLE 3.6 around here.

Table 3.5 presents the average misclassification rate across replications. In

general, the method can correctly estimate the group membership, and the

misclassification rate decreases quickly as T increases. In the static panel with

heteroskedastic error (DGP 1), PSTR can correctly classify at least 96% of

individuals when T = 30 and roughly 99.7% when T = 60. When the er-

rors are serially correlated (DGP 2), PSTR can correctly estimate the group

membership for more than 90% of individuals in the worst case. Allowing

for dynamics does not deteriorate the good performance of classification, and

the misclassification rate remains low in all cases. Interestingly, we find that

the misclassification rate is lower in the case of homogeneous threshold pa-

rameters than in the case of group-specific thresholds. This is consistent with

our theoretical prediction that group identification requires the separation of

group-specific slope coefficients instead of heterogeneity among the threshold

parameters.

TABLEs 3.6–3.8 around here.

Next, we examine the estimates of the slope coefficients and threshold pa-

rameters, and the results are presented in Tables 3.6–3.8. In each DGP, the

slope coefficients can be accurately estimated with a small bias, and the cover-

age probability is generally close to the 95% nominal level. Again, allowing for

group-specific thresholds leads to poorer slope and threshold estimates. We

find that when the threshold is group specific in DGP 2.1, the RMSE of the

slope estimates sometimes decreases disproportionally faster than the speed of

the increase in T . This occurs because the relatively large misclassification rate

in DGP 2.1 is remarkably reduced by increasing T , and precise classification

contributes to better slope estimates.
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The threshold parameter is also estimated accurately in all cases, and the

average length of the confidence interval shrinks as both N and T increase. We

find that the average length of the confidence interval is generally much smaller

in the case of a homogeneous threshold than the group specific threshold. This

suggests that pooling does improve the efficiency of the threshold estimation

for common threshold groups.

3.8 Empirical Applications

We illustrate our procedure through two empirical applications. Our first

application examines the investment decision of firms in the presence of fi-

nancing constraints using the popular data of Hansen (1996). As a second

application, we examine the impact of bank deregulation on the distribution

of income using the historical data of US states.

3.8.1 Investment and financing constraints

We first apply the proposed PSTR estimator to revisit the question whether

capital market imperfections affect firms’ investment behavior. An influential

and seminal study by Fazzari et al. (1987) suggest that firms’ investment is

associated with its cash flow only when the firm is constrained by external

financing. To investigate the threshold effect of financial constraints, Hansen

(1999) examine three investment determinants, i.e., Tobin’s Q, cash flow, and

leverage, allowing the impact of cash flow to vary depending on whether a firm

is financially constrained. This study assume that firms are all homogeneous,

such that they face the same threshold parameters and share a common ef-

fect of determinants. A number of evidence, however, has shown that firms

behave heterogeneously in their financial activities, including investment de-

cisions (see, for example, Spearot (2012), Bernard et al. (2007), and Fazzari

et al. (1987)). Heterogeneity may occur not only in the effect of financial vari-

ables on investment (even after differentiating constrained and unconstrained
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firms), but also in threshold parameters. Firms with diversified characteristics

may be subjected to distinct threshold levels.

Thus motivated, we revisit the determinants of investment and consider

the following model

Invit = αi + β1,gixi,t−11(qi,t−1 ≤ γgi) + β2,gixi,t−11(qi,t−1 > γgi) + εit, (3.10)

where Invit is the ratio of investment to capital and αi denotes the firm fixed

effects. We follow Lang et al. (1996) and Hansen (1999) to consider the

potential determinants xit = (Qit, CFit, Lit), where Qit is Tobin’s Q, CFit is

the ratio of cash flows to capital, and Lit denotes leverage. qit is the threshold

variable, which we specify as Tobin’s Q, cash flow, or leverage, all of which

proxy for a certain degree of financial constraints. The lagged values of Q,

CF , and L are used as regressors and threshold variables to avoid possible

endogeneity (see also Hansen (1999) and Gonzalez et al. (2017)). This model

allows a time-invariant group pattern of heterogeneity in both slope coefficients

and the threshold parameter as well as time-varying heterogeneity depending

on the realization of the threshold variable. We use the same data set as

Hansen (1999) that contains 565 firms over 15 years.

Figure 3.1 around here.

To estimate (3.10), we first determine the number of groups chosen based

on the IC. Figure 3.1 displays the value of the IC when we choose the number

of groups ranging from 1 to 8 under the three specifications of the threshold

variable. For each given number of groups, we estimate the parameters in (3.10)

based on 1000 initializations. The IC selects four groups when we use cash flow

and Tobin’s Q as the threshold variable, while it suggests five groups when

leverage is used. We next test the existence of threshold effects usingWsum
NT and

Wsup
NT defined in Section 3.5. Both tests (based on 600 bootstrap replications)

suggest the presence of threshold effects for the three specifications of the
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threshold variable, and the common-threshold test tends to reject the null

hypothesis of homogeneity in all cases.

TABLE 3.9 around here.

Table 3.9 summarizes the estimation results of (3.10) with three specifi-

cations of the threshold variable. When we specify the threshold variable as

Tobin’s Q, the estimates of the threshold are 10.721, 2.800, 0.854, and 0.282

for the four groups, such that 93%, 87%, 56%, and 15% of the sample fall

below the threshold in each group, respectively. In most groups, both Tobin’s

Q and cash flow are positively associated with investment, as expected. Lever-

age generally has a negative impact on investment, and this impact is stronger

for constrained firms than for unconstrained firms. This result supports the

over-investment hypothesis that leverage serves as a disciplining device that

prevents firms from over-investing (see, e.g., Jensen (1986) and Seo and Shin

(2016)). Group 1 is characterized by relatively low average investment but

high average Tobin’s Q, while firms in Group 2 are mostly undervalued but

still invest aggressively. Group 3 contains very “unsuccessful” firms with high-

est average leverage as well as lowest average cash flow and Tobin’s Q. By

contrast, Group 4 is featured by the highest average cash flow and Tobin’s Q

but lowest average leverage, indicating that firms in this group can be well

operated and active in the market. The estimated thresholds for both Groups

1 and 2 occur at the upper quantiles, whereas the effects of cash flow and lever-

age differ remarkably across the two groups. The effect of cash flow is strongly

and positively significant for overvalued firms in Group 2 but less clear for the

same type of firms in Group 1. When Tobin’s Q is below the threshold, the

leverage effect is stronger for firms in Group 2 than for firms in Group 1. For

the very “unsuccessful” firms in Group 3, investment is more sensitive to To-

bin’s Q and cash flow compared with Groups 1 and 2. This is in line with the

expectation that the marginal benefit from extra cash and a high asset value
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is especially high for firms that lack financial resources. Most firms in Group 4

are “successful”, with average Tobin’s Q greater than 1. For a few firms in this

group that are severely undervalued and thus financially constrained, both the

positive impact of Tobin’s Q and negative impact of leverage are pronounced.

Next, we examine the case in which we use cash flow as the threshold

variable. Again, we find a large degree of heterogeneity in the estimates of

threshold parameters and slope coefficients. Group 1 contains the burgeoning

firms with the largest average cash flow and Tobin’s Q. Most firms in this group

fall below the lower threshold regime, with significantly positive effects of To-

bin’s Q and cash flow and a negative effect of leverage. The threshold effect

in Group 2 is particularly prominent, since the impact of Tobin’s Q and cash

flow on investment is much stronger for cash-constrained firms than for uncon-

strained firms. We find that the effects of Tobin’s Q and cash flow are both

negative and sizable for extremely cash-constrained firms in Group 3. Further

examination reveals that such firms may borrow money to expand, such that

they still invest aggressively when they face a shortage of cash flow. This also

explains a large positive effect of leverage when they are cash constrained.

Finally, we use leverage as a threshold variable. In this case, the IC suggests

five groups. The first three groups share the same threshold at zero, but the

slope coefficient estimates differ. Firms in Groups 1 and 2 generally have a

low investment level, but firms in Group 1 are mostly overvalued, while those

in Group 2 are often undervalued. When these firms have non-zero debt,

their investment is positively affected by their cash flow and Tobin’s Q. The

investment behavior of Group 3 is more sensitive to cash flow than that of

Groups 1 and 2. Group 4 contains a number of overvalued firms with large

cash flow, and the negative effect of leverage on investment in this group is

particularly strong in comparison with that of other groups. Group 5, as an

extra group, emerges in this case because of seven firms with especially high

investment. Such firms also have an abundance of cash and well-valued assets.
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These are possibly the aggressive firms, for which we find a strong and positive

impacts of cash flow and leverage on investment.

In general, we find a large degree of heterogeneity across firms, which is

potentially driven by unobserved firm characteristics, such as their market

performance, investment strategy, and managerial risk-taking behavior. Such

heterogeneity cannot be captured by conventional threshold regressions. The

group pattern varies to some extent for different specifications of the threshold

variable. This suggests that the three candidate threshold variables capture

distinct aspects of financial constraints.

3.8.2 Bank regulation and income distribution

Our second application concerns the relationship between bank regulation

and the distribution of income. Bank regulation plays a crucial role in govern-

ing the financial market. It subjects banks to certain restrictions and guide-

lines regarding, for example, bank mergers, acquisitions, and branching, in the

hope of creating a transparent environment for banking institutions, individu-

als, and corporations. Bank regulations generally consist of two components:

(1) licensing that sets requirements for starting a new bank and (2) govern-

mental supervision of the bank’s activities. Hence, with stiffer regulations,

there could be fewer banks in operation in the market, and banking activities

can be more restricted. In shaping regulation policies, income inequality is

always one of the central concerns. There exists a theoretical debate on the

impact of bank regulation on the distribution of income. On the one hand,

imposing stiffer regulatory restrictions on bank mergers and branching is likely

to create and protect local banking monopolies, which further leads to higher

fixed fees that hurt the poor. Thus, the main motivation for deregulation is

to intensify bank competition and improve bank performance. On the other

hand, objection on deregulation is also raised due to the fears that centralized

banking power would discriminatively curtail the financial opportunities of the
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poor (Kroszner and Strahan (1999)) and thus amplify inequality.

We revisit the relationship between bank regulation, particularly branch

deregulation, and the distribution of income by applying the PSTR estimator.

This analysis was first undertaken by Beck et al. (2010) using US state-level

data in a standard (fixed effects) panel framework. We employ the same data

set that covers 49 US states for 31 years from 1976 to 2006.2 The impact

of branch deregulation may vary remarkably across states depending on their

financial market situations, economic performance, demographic features, and

so forth. For example, Beck et al. (2010) suggested that the impact of bank

deregulation is more prominent if bank performance prior to deregulations is

more severely hurt by intrastate branching restrictions. Moreover, deregulation

may disproportionately affect different income groups that are characterized

by heterogeneous demographic features, and its impact on the distribution of

income could also differ across states depending on their economic and financial

market performance.

To model the heterogeneous impact of bank deregulation on the distribution

of income, we consider the panel structure threshold model as follows:

Incit = αi + (β1,gidit +β1,gixit)1(qit ≤ γgi) + (β2,gidit +β2,gixit)1(qit > γgi) + εit,

(3.11)

where Incit represents the distribution of income, which is measured by the

logistic transformation of the Gini coefficient following Beck et al. (2010) and

αi denotes the state fixed effects.3 dit is a dummy variable that equals one

if a state has implemented deregulation and zero otherwise, and the date of

deregulation refers to that on which a state permitted branching via merg-

ers and acquisitions. The control variables in xit include two salient and ro-

bust demographic determinants of income inequality based on the cornerstone

2The dataset contains 50 US states and the District of Columbia but excludes Delaware
and South Dakota.

3We also consider alternative measures of the distribution of income, such as the logarithm
of the Gini coefficients and Theil index, and the results are qualitatively unchanged.
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study of Beck et al. (2010), namely, the percentage of high school dropouts

(Dropout) and the unemployment rate (Unemp). We consider four specifica-

tions of the threshold variable qit: the two demographic variables in the co-

variates (Dropout and Unemp), the initial share of small banks, and the initial

share of small firms. Obviously, these two demographic variables allow us to

examine the potentially heterogeneous impact of deregulation, which depends

on the demographic features of the state. The initial share of small banks

reflects the degree of bank competition at the date of deregulation, which may

disproportionately determine the impact of deregulation. The initial share of

small firms also plays a role in influencing the impact of deregulation because

the barriers to obtaining credit from distant banks is greater for small firms

than for larger firms, leading to a heterogeneous impact across states with

different initial shares of small firms. To analyze the effect of the two share

variables, we have to use a subsample of the data with 37 states if we wish to

have a balanced panel. Detailed information on the dataset and its source can

be found in Beck et al. (2010).

The moderate effect of the two initial share variables was first proposed and

analyzed by Beck et al. (2010) in a difference-in-difference (DiD) framework.

The advantages of (3.11) compared to the conventional DiD approach are as

follows: (1) DiD can only report a positive or negative (linear) effect of the

moderating variables, (e.g., the same value for all levels of the initial share of

small firms), while PSTR provides information on how such an effect varies

(possibly non-linearly) across different levels of these variables; (2) DiD cap-

tures only observed heterogeneity that is driven by the moderating variables,

while PSTR allows us to model the unobserved heterogeneity as the group

pattern is fully unrestricted.

FIGURE 3.2 around here.

We first examine the optimal number of groups chosen by the IC. Figure
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3.2 displays the value of IC when we choose the number of groups ranging

from 1 to 8 under four specifications of threshold variables. The IC robustly

chooses two groups as the optimal specification in all cases. The p-values of

Wsup
NT and Wsum

NT suggest that the impact of explanatory variables does exhibit

threshold effects for all four specifications of the threshold variable, although

to different extents.

TABLE 3.10 around here.

FIGURE 3.3 around here.

Table 3.10 presents the estimated threshold and effects of the explanatory

variables. In general, we find a large degree of heterogeneity both across groups

and across different levels of the threshold variables. We first examine the im-

pact of deregulation if we specify the threshold variable as the rate of high

school dropouts. In this case, the test for the common threshold rejects the

null of homogeneity with p-value 0.03; thus, we allow the threshold coefficient

to vary across groups in our estimation. The estimation is based on 10000

initial values, and the same number of initializations is used for the estima-

tion with other threshold variables below. Our method assigns 26 states into

Group 1 and 23 states into Group 2. Interestingly, the classification coincides

with the geographic location to some extent (see Figure 3.3). Group 1 contains

mainly coastal states, such as Washington, Oregon, California, New York, New

Jersey, Massachusetts, Vermont, Virginia, and Florida. These states are gener-

ally characterized by good economic performance and active financial markets.

Group 2 includes states with less active financial markets, including mostly in-

land and Southeastern states, such as Montana, North Dakota, Minnesota,

Nebraska, Iowa, North and South Carolina, and Georgia. The two groups are

distinguished by the effects of covariates and the threshold. The estimated
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threshold of Group 1 is 0.295, such that 73% of observations fall below the

threshold. The effect of deregulation on income inequality is significantly neg-

ative (−0.0291) when the dropout rate is below the threshold, and it is of a

similar size as reported by Beck et al. (2010) (see column (1) of Table II of Beck

et al. (2010)). Nevertheless, this effect becomes insignificant when the dropout

rate is particularly high. For Group 2, the estimated threshold is much smaller

with 1.5% of the sample in the lower threshold regime, and a majority of the

sample in this group reports a significantly negative impact of deregulation

on inequality. Compared with Group 1, the inequality reduction induced by

deregulation is much less sizeable in Group 2. This is possibly because bank

competition is disproportionately intensified by deregulation in coastal states

than in inland/south-eastern states, leading to better bank performance and

further to a larger reduction in income inequality.

Next, we examine the deregulation effect when we specify the threshold

variable as the unemployment rate. The p-value of the common-threshold

test is 0.01, strongly favoring the hypothesis of the heterogeneous threshold

coefficients. The group pattern estimated in this case is closely in line with the

specification above, with only two states (Ohio and Wyoming) switching their

group memberships. We again find a large degree of heterogeneity across the

two groups. The estimated thresholds are 9.8 for Group 1 and 2.6 for Group

2, which leads to about 95% and 10% of the sample below the threshold,

respectively. The impact of deregulation on inequality is significantly negative

for the majority of the sample in both groups but insignificant for the minority.

These results suggest that branching deregulation can reduce income inequality

in most states, but the magnitude of reduction is bigger in Group 1. However,

for the states with an extreme unemployment and dropout rate, deregulation

does not significantly help reduce inequality and even enlarges inequality.

To explicitly examine how the degree of bank competition influences the

impact of deregulation, we consider the threshold variable as the initial share
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of small bank. Owing to the unavailability of the initial share in some states,

we employ a subsample of the data with 37 states. In this case, the test

for the common threshold strongly suggests homogeneity; thus, we proceed

with the estimation imposing the homogeneity restriction. The states are

again classified into coastal and inland/south-eastern groups with only four

states (Kentucky, New Hampshire, North Dakota, and West Virginia) switch-

ing their group memberships compared with the case of the dropout rate being

the threshold variable. This confirms the heterogeneity of geographic loca-

tions and demonstrates the robustness of the estimated group pattern. The

estimated threshold is 0.1723 for both groups (due to the common-threshold

restriction), such that most observations are in the lower threshold regime. The

impact of deregulation is negative in all groups and all regimes, but the mag-

nitude of inequality reduction is larger when the share is beyond the threshold

in both groups. This result is in line with the expectation that states with a

comparatively high ratio of small banks benefit more from eliminating branch-

ing restrictions, as such restrictions that protect small banks from competition

have been particularly harmful to bank operations. Since most states are in

the lower threshold regime in both groups, we see that the magnitude of in-

equality reduction induced by deregulation is larger for the majority in Group

1 than the majority in Group 2 as in the previous states.

Finally, we consider the potential threshold effect induced by the initial

share of small firms. Again, the test for the common threshold fails to reject the

null of homogeneity; thus, we estimate the model restricting the two groups to

share the same threshold. The estimated group pattern remains highly similar

to the above case using the initial share of small banks as the threshold variable,

with only one state changing its group membership. The estimated threshold

in both groups is in the 0.783 quantile of the initial share of small firms.

Interestingly, when we specify the threshold variable as the two initial-share

variables, the estimated slope coefficients in Group 1 are close or even identical.
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This is, of course, due to the robustness of the classification; moreover, it

implies that the two share variables result in similar sample thresholding for

Group 1. However, sample thresholding by the two share variables differs in

Group 2, and the impact of deregulation is not significant in Group 2 when we

use the initial shares of small firms as the threshold variable. In both groups,

the inequality reduction is more sizable when the initial share of small firms is

beyond the threshold. This confirms the theoretical argument that the impact

of deregulation is more pronounced in states with a large ratio of small firms

before deregulation, since the existence of branching restrictions impedes the

growth of small firms that typically face greater barriers to obtaining credit

from distant banks and thus enlarges inequality (Beck et al., 2010).

To summarize, the PSTR estimates provide at least two new important

insights that are not provided by standard panel data models with interaction

terms. First, we find a large degree of heterogeneity between the two groups

even after controlling for the threshold effect, and the impact of deregulation

is more sizeable in the group containing most coastal states. This result is

robust regardless of the way in which we specify the threshold variable. The

group structure coincides with the geographic locations to some extent but

not precisely, and this latent group pattern is difficult, if not impossible, to re-

cover using standard panel data approaches. Second, we find a clear threshold

effect in each of the two groups. The degree of inequality reduction induced

by deregulation depends on the demographic features and the composition of

financial markets. Such a group pattern heterogeneity and nonlinear feature

of threshold effects can be simultaneously captured by our PSTR model but

not by the conventional DiD approach.

3.9 Conclusion

In this paper, we consider the least squares estimation of a panel struc-

ture threshold regression (PSTR) model, where both the slope coefficients and
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threshold parameters may exhibit latent group structures. We summarize the

practical procedure of using this model as follows. The procedure starts with

selecting the right number of groups using the IC. With the number of groups

given, we first test the presence of threshold effects using the two proposed

Wald-type statistics. If there are threshold effects, we then need to test whether

the threshold coefficients also vary across groups. Next, we can proceed with

the estimation with or without the homogeneity of thresholds imposed, de-

pending on the results of the common-threshold test. We show that we can

consistently estimate the latent group structure and estimators of the slope

and the threshold coefficients are asymptotically equivalent to the infeasible

estimators that are obtained as if the true group structures were known. More-

over, the standard inference based on LR test statistic can provide a correct

coverage for the group-specific threshold parameters.

There are several interesting topics for further research. First, we only al-

low individual fixed effects in our PSTR model. It is possible to also allow for

fixed time effects in the model, but this will complicate the analysis to a great

deal. Second, it is very interesting but challenging to study the PSTR model

with interactive fixed effects, which can incorporate strong cross-sectional de-

pendence in many macro or financial data. Third, we do not allow the latent

group structures to change over time. It is interesting and extremely challeng-

ing to study PSTR models with a time-varying latent group structure. Fourth,

as mentioned in the introduction, we can also consider a PSTR model with en-

dogenous regressors and threshold variables and latent group structures, which

would require the use of GMM-type estimation. Fifth, one can also consider

a PSTR model with multiple thresholds or multiple threshold variables by ex-

tending the works of Li and Ling (2012) and Seo and Linton (2007) to the

panel setup with or without latent group structures.
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Tables and Figures

Table 3.1: Group number selection frequency using IC when G0 = 3

No threshold effect With threshold effect

N T 1 2 3 4 5 1 2 3 4 5

DGP 1.1 50 30 0.000 0.000 0.967 0.033 0.000 0.000 0.000 0.976 0.024 0.000

50 60 0.000 0.000 0.972 0.026 0.002 0.000 0.000 0.997 0.003 0.000

100 30 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.002 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 1.2 50 30 0.000 0.000 0.974 0.026 0.000 0.000 0.000 0.976 0.024 0.000

50 60 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.998 0.002 0.000

100 30 0.000 0.000 0.996 0.004 0.000 0.000 0.000 1.000 0.000 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 2.1 50 30 0.000 0.000 0.982 0.018 0.000 0.000 0.000 0.982 0.016 0.002

50 60 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.992 0.008 0.000

100 30 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.998 0.002 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 2.2 50 30 0.000 0.000 0.994 0.006 0.000 0.000 0.000 0.946 0.032 0.022

50 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.002 0.000

100 30 0.000 0.000 0.996 0.004 0.000 0.000 0.000 0.997 0.003 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 3.1 50 30 0.000 0.000 0.992 0.008 0.000 0.000 0.000 0.998 0.002 0.000

50 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

100 30 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.000 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

DGP 3.2 50 30 0.000 0.000 0.998 0.002 0.000 0.000 0.000 0.994 0.006 0.000

50 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000

100 30 0.000 0.000 1.000 0.000 0.000 0.000 0.000 0.998 0.002 0.000

100 60 0.000 0.000 1.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000
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Table 3.2: Rejection frequency of test for existence of threshold effect: Hetero-
geneous thresholds

No threshold effect Weak threshold effect Strong threshold effect

(c1 = 0, c2 = 0) (c1 = 1/5, c2 = 1/15) (c1 = 1/2, c2 = 1/10)

N T 1% 5% 10% 1% 5% 10% 1% 5% 10%

Wsup
NT

DGP 1.1 50 30 0.026 0.072 0.122 0.096 0.228 0.332 0.728 0.833 0.923

50 60 0.006 0.044 0.088 0.160 0.304 0.496 0.918 0.985 1.000

100 30 0.016 0.050 0.084 0.160 0.308 0.436 0.923 0.980 0.993

100 60 0.010 0.044 0.080 0.276 0.512 0.606 1.000 1.000 1.000

DGP 2.1 50 30 0.036 0.094 0.138 0.108 0.202 0.308 0.533 0.755 0.878

50 60 0.008 0.058 0.088 0.096 0.240 0.332 0.760 0.923 0.943

100 30 0.024 0.074 0.120 0.126 0.294 0.332 0.788 0.930 0.968

100 60 0.010 0.044 0.080 0.140 0.342 0.442 0.968 0.993 0.998

DGP 3.1 50 30 0.024 0.070 0.150 0.160 0.306 0.444 0.826 0.942 0.970

50 60 0.012 0.050 0.106 0.260 0.526 0.642 0.992 1.000 1.000

100 30 0.018 0.062 0.118 0.212 0.492 0.610 0.984 0.998 1.000

100 60 0.006 0.058 0.086 0.520 0.770 0.868 1.000 1.000 1.000

Wsum
NT

DGP 1.1 50 30 0.030 0.076 0.148 0.152 0.276 0.376 0.853 0.915 0.968

50 60 0.012 0.042 0.086 0.224 0.358 0.544 0.980 1.000 1.000

100 30 0.020 0.060 0.102 0.244 0.398 0.554 0.985 0.995 1.000

100 60 0.016 0.044 0.080 0.378 0.622 0.686 1.000 1.000 1.000

DGP 2.1 50 30 0.042 0.106 0.154 0.148 0.260 0.342 0.673 0.855 0.928

50 60 0.016 0.056 0.090 0.122 0.274 0.382 0.880 0.963 0.980

100 30 0.032 0.112 0.186 0.216 0.418 0.450 0.925 0.973 0.980

100 60 0.012 0.060 0.086 0.244 0.436 0.530 0.995 1.000 1.000

DGP 3.1 50 30 0.012 0.064 0.098 0.178 0.312 0.436 0.888 0.962 0.986

50 60 0.004 0.030 0.080 0.302 0.574 0.668 0.996 1.000 1.000

100 30 0.014 0.054 0.094 0.272 0.528 0.654 1.000 0.998 1.000

100 60 0.004 0.036 0.068 0.596 0.798 0.886 1.000 1.000 1.000
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Table 3.3: Rejection frequency of test for existence of threshold effect: Homo-
geneous thresholds

No threshold effect Weak threshold effect Strong threshold effect

(c1 = 0, c2 = 0) (c1 = 1/5, c2 = 1/15) (c1 = 1/2, c2 = 1/10)

N T 1% 5% 10% 1% 5% 10% 1% 5% 10%

Wsup
NT

DGP 1.2 50 30 0.024 0.072 0.118 0.126 0.356 0.434 0.818 0.964 0.990

50 60 0.006 0.044 0.088 0.164 0.408 0.526 0.984 0.996 1.000

100 30 0.016 0.050 0.095 0.208 0.400 0.512 0.978 0.996 1.000

100 60 0.010 0.044 0.085 0.412 0.635 0.734 1.000 1.000 1.000

DGP 2.2 50 30 0.032 0.076 0.138 0.090 0.220 0.360 0.692 0.926 0.948

50 60 0.016 0.066 0.118 0.140 0.282 0.404 0.906 0.986 0.994

100 30 0.020 0.068 0.116 0.122 0.330 0.440 0.908 0.982 0.996

100 60 0.012 0.052 0.096 0.264 0.474 0.620 0.998 0.998 0.998

DGP 3.2 50 30 0.024 0.094 0.174 0.256 0.474 0.626 0.940 0.990 1.000

50 60 0.008 0.066 0.118 0.454 0.700 0.804 1.000 1.000 1.000

100 30 0.012 0.086 0.134 0.398 0.670 0.730 1.000 1.000 1.000

100 60 0.007 0.056 0.104 0.740 0.906 0.966 1.000 1.000 1.000

Wsum
NT

DGP 1.2 50 30 0.029 0.076 0.140 0.198 0.400 0.454 0.962 0.992 0.996

50 60 0.012 0.042 0.086 0.300 0.508 0.672 0.998 1.000 1.000

100 30 0.018 0.060 0.114 0.362 0.540 0.652 0.998 1.000 1.000

100 60 0.015 0.044 0.086 0.620 0.780 0.881 1.000 1.000 1.000

DGP 2.2 50 30 0.034 0.076 0.154 0.146 0.322 0.408 0.912 0.970 0.980

50 60 0.008 0.070 0.124 0.190 0.400 0.548 0.986 1.000 1.000

100 30 0.041 0.099 0.156 0.298 0.442 0.566 0.990 0.996 1.000

100 60 0.014 0.056 0.096 0.394 0.628 0.734 1.000 1.000 1.000

DGP 3.2 50 30 0.012 0.068 0.138 0.324 0.520 0.626 0.990 1.000 1.000

50 60 0.006 0.036 0.070 0.560 0.760 0.816 1.000 1.000 1.000

100 30 0.010 0.064 0.090 0.480 0.734 0.816 1.000 1.000 1.000

100 60 0.008 0.044 0.088 0.860 0.982 0.992 1.000 1.000 1.000

Table 3.4: Rejection frequency for the test of homogeneous thresholds

Threshold Homogeneous Weakly heterogeneous Strongly heterogeneous

γ = [1, 1, 1] γ = [0.85, 1, 1.15] γ = [0.5, 1, 1.5]

N T 1% 5% 10% 1% 5% 10% 1% 5% 10%

DGP 1 50 30 0.013 0.076 0.110 0.810 0.904 0.960 0.968 0.980 0.994

50 60 0.018 0.061 0.114 0.994 0.986 0.996 1.000 1.000 1.000

100 30 0.014 0.064 0.096 0.990 0.998 1.000 1.000 1.000 1.000

100 60 0.012 0.046 0.112 1.000 1.000 1.000 1.000 1.000 1.000

DGP 2 50 30 0.014 0.034 0.052 0.344 0.592 0.690 0.116 0.312 0.408

50 60 0.010 0.038 0.056 0.862 0.950 0.948 0.498 0.710 0.808

100 30 0.010 0.052 0.058 0.844 0.932 0.956 0.498 0.714 0.794

100 60 0.008 0.042 0.050 0.994 0.998 1.000 0.920 0.970 0.994

DGP 3 50 30 0.006 0.040 0.064 0.936 0.972 0.900 0.692 0.856 0.900

50 60 0.010 0.046 0.048 1.000 1.000 1.000 0.968 0.994 0.998

100 30 0.006 0.042 0.066 0.998 1.000 1.000 0.972 0.992 0.998

100 60 0.010 0.036 0.040 1.000 1.000 1.000 1.000 1.000 1.000
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Table 3.5: Average misclassification rate

N = 50 N = 100

T = 30 T = 60 T = 30 T = 60

DGP 1.1 0.0365 0.0032 0.0316 0.0026

DGP 1.2 0.0203 0.0011 0.0179 0.0013

DGP 2.1 0.0963 0.0141 0.0697 0.0124

DGP 2.2 0.0509 0.0076 0.0470 0.0075

DGP 3.1 0.0041 0.0001 0.0028 0.0000

DGP 3.2 0.0011 0.0000 0.0015 0.0002

Table 3.6: Estimates of coefficients and threshold values: Heteroskedastic error
(DGPs 1.1-1.2)

β1 β2 γ

DGP 1.1: D0= (0.5, 1, 1.5)′

Bias RMSE CP Bias RMSE CP Bias CP Length

N = 50 Group 1 −0.001 0.078 0.908 −0.002 0.056 0.915 0.009 0.958 0.549

T = 30 Group 2 0.003 0.097 0.895 0.015 0.107 0.893 0.018 0.923 0.373

Group 3 0.002 0.078 0.920 0.004 0.103 0.890 0.001 0.960 0.545

N = 50 Group 1 −0.004 0.052 0.925 0.000 0.035 0.940 0.002 0.963 0.214

T = 60 Group 2 −0.001 0.042 0.925 −0.001 0.042 0.928 0.002 0.965 0.202

Group 3 −0.003 0.037 0.948 −0.001 0.055 0.913 0.000 0.973 0.246

N = 100 Group 1 0.001 0.055 0.922 −0.002 0.038 0.898 −0.003 0.966 0.245

T = 30 Group 2 0.004 0.045 0.920 0.000 0.048 0.904 −0.003 0.948 0.207

Group 3 0.007 0.035 0.928 −0.003 0.057 0.922 0.001 0.968 0.240

N = 100 Group 1 0.003 0.037 0.944 −0.002 0.024 0.938 0.000 0.972 0.125

T = 60 Group 2 0.003 0.030 0.938 −0.001 0.029 0.942 −0.002 0.970 0.108

Group 3 0.000 0.025 0.920 −0.004 0.036 0.946 −0.004 0.962 0.119

DGP 1.2: D0= (1, 1, 1)′

Bias RMSE CP Bias RMSE CP Bias CP Length

N = 50 Group 1 0.001 0.057 0.938 −0.010 0.060 0.928 −0.002 0.928 0.073

T = 30 Group 2 −0.002 0.064 0.903 −0.010 0.060 0.923

Group 3 0.006 0.062 0.923 −0.011 0.061 0.913

N = 50 Group 1 0.004 0.038 0.960 −0.003 0.040 0.943 0.001 0.933 0.049

T = 60 Group 2 0.001 0.043 0.927 −0.003 0.043 0.917

Group 3 0.004 0.042 0.940 −0.003 0.038 0.957

N = 100 Group 1 0.001 0.042 0.930 −0.009 0.041 0.947 0.001 0.940 0.051

T = 30 Group 2 0.006 0.045 0.913 −0.006 0.041 0.933

Group 3 0.006 0.040 0.930 −0.011 0.039 0.963

N = 100 Group 1 0.003 0.026 0.963 −0.002 0.028 0.950 −0.001 0.947 0.027

T = 60 Group 2 0.005 0.029 0.933 −0.002 0.029 0.940

Group 3 0.004 0.027 0.953 −0.004 0.029 0.943
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Table 3.7: Estimates of coefficients and threshold values: Autoregressive error
(DGPs 2.1-2.2)

β1 β2 γ

DGP 2.1: D0= (0.5, 1, 1.5)′

Bias RMSE CP Bias RMSE CP Bias CP Length

N = 50 Group 1 −0.014 0.153 0.834 0.015 0.163 0.874 0.048 0.932 0.797

T = 30 Group 2 −0.008 0.198 0.812 0.032 0.225 0.802 −0.010 0.848 0.605

Group 3 −0.024 0.140 0.858 0.001 0.203 0.856 −0.034 0.936 0.924

N = 50 Group 1 −0.008 0.092 0.914 −0.001 0.043 0.930 −0.006 0.966 0.374

T = 60 Group 2 −0.003 0.051 0.924 0.002 0.050 0.942 0.004 0.964 0.291

Group 3 −0.005 0.050 0.922 0.005 0.073 0.892 −0.014 0.958 0.433

N = 100 Group 1 −0.021 0.080 0.894 −0.009 0.050 0.882 −0.015 0.960 0.380

T = 30 Group 2 −0.002 0.076 0.840 0.000 0.073 0.856 0.003 0.918 0.302

Group 3 0.006 0.057 0.880 0.013 0.075 0.910 −0.003 0.946 0.331

N = 100 Group 1 0.002 0.045 0.944 0.002 0.031 0.932 0.001 0.980 0.195

T = 60 Group 2 −0.003 0.037 0.930 0.001 0.037 0.934 0.002 0.950 0.158

Group 3 −0.002 0.031 0.942 0.000 0.046 0.940 0.000 0.972 0.181

DGP 2.2: D0= (1, 1, 1)′

Bias RMSE CP Bias RMSE CP Bias CP Length

N = 50 Group 1 −0.002 0.067 0.937 −0.008 0.074 0.920 0.001 0.960 0.181

T = 30 Group 2 0.012 0.108 0.877 0.000 0.091 0.923

Group 3 0.009 0.091 0.917 −0.008 0.097 0.927

N = 50 Group 1 0.005 0.048 0.965 0.000 0.050 0.938 −0.001 0.985 0.079

T = 60 Group 2 0.001 0.053 0.918 −0.002 0.048 0.945

Group 3 0.004 0.051 0.930 −0.004 0.049 0.955

N = 100 Group 1 −0.004 0.053 0.928 −0.017 0.061 0.851 −0.001 0.950 0.099

T = 30 Group 2 0.001 0.056 0.914 −0.002 0.057 0.910

Group 3 0.019 0.053 0.914 −0.002 0.051 0.932

N = 100 Group 1 0.001 0.033 0.950 −0.005 0.036 0.930 0.000 0.980 0.051

T = 60 Group 2 −0.001 0.031 0.965 −0.001 0.033 0.965

Group 3 0.004 0.033 0.965 −0.001 0.036 0.920

99



Table 3.8: Estimates of coefficients and threshold values: Dynamic panel
(DGPs 3.1-3.2)

β1 β2 γ

DGP 3.1: D0= (0.5, 1, 1.5)′

Bias RMSE CP Bias RMSE CP Bias CP Length

N = 50 Group 1 −0.007 0.035 0.923 −0.010 0.025 0.920 −0.006 0.940 0.184

T = 30 Group 2 −0.003 0.017 0.963 −0.007 0.020 0.907 0.003 0.970 0.161

Group 3 −0.002 0.012 0.923 −0.007 0.019 0.877 −0.008 0.947 0.147

N = 50 Group 1 −0.003 0.025 0.930 −0.005 0.017 0.950 0.001 0.973 0.095

T = 60 Group 2 −0.002 0.013 0.953 −0.003 0.012 0.943 −0.002 0.940 0.073

Group 3 −0.001 0.007 0.960 −0.001 0.011 0.950 0.000 0.947 0.073

N = 100 Group 1 −0.007 0.027 0.927 −0.009 0.019 0.917 0.000 0.973 0.110

T = 30 Group 2 −0.003 0.014 0.937 −0.007 0.015 0.933 0.000 0.943 0.082

Group 3 −0.002 0.008 0.940 −0.005 0.013 0.907 −0.002 0.947 0.074

N = 100 Group 1 −0.005 0.019 0.923 −0.004 0.013 0.927 −0.001 0.947 0.059

T = 60 Group 2 −0.002 0.009 0.930 −0.002 0.009 0.953 0.000 0.960 0.044

Group 3 −0.001 0.005 0.950 −0.003 0.009 0.920 0.000 0.967 0.038

DGP 3.2: D0= (1, 1, 1)′

Bias RMSE CP Bias RMSE CP Bias CP Length

N = 50 Group 1 −0.008 0.029 0.957 −0.014 0.032 0.910 0.001 0.977 0.050

T = 30 Group 2 −0.004 0.019 0.930 −0.005 0.019 0.910

Group 3 0.000 0.012 0.937 −0.005 0.013 0.927

N = 50 Group 1 −0.003 0.018 0.957 −0.005 0.021 0.937 0.000 0.950 0.024

T = 60 Group 2 −0.002 0.013 0.940 −0.002 0.012 0.940

Group 3 −0.001 0.008 0.953 −0.002 0.009 0.923

N = 100 Group 1 −0.008 0.020 0.957 −0.010 0.025 0.897 0.001 0.983 0.029

T = 30 Group 2 −0.002 0.013 0.950 −0.006 0.014 0.933

Group 3 0.000 0.009 0.953 −0.005 0.010 0.893

N = 100 Group 1 −0.006 0.017 0.948 −0.004 0.018 0.938 0.000 0.964 0.201

T = 60 Group 2 −0.002 0.011 0.942 −0.001 0.012 0.944

Group 3 −0.002 0.007 0.958 −0.003 0.008 0.922
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Table 3.9: Investment and financial constraint: Estimated threshold and slope
coefficients

Threshold variable Tobin’s Q

Group 1 Group 2 Group 3 Group 4

γ (Lower regime %) 10.721 (93%) 2.800 (87%) 0.854 (56%) 0.282 (15%)

β1 Q 0.0081∗∗∗ 0.0716∗∗∗ 0.1537∗∗∗ 1.3450∗∗∗

(0.0008) (0.0029) (0.0146) (0.0631)

CF 0.0918∗∗∗ 0.0977∗∗∗ 0.3278∗∗∗ −4.6433∗∗∗

(0.0051) (0.0121) (0.0366) (0.1563)

L −0.0158∗∗∗ −0.0671∗∗∗ 0.0206 −0.8063∗∗∗

(0.0039) (0.0068) (0.0204) (0.1025)

β2 Q 0.0086∗∗∗ 0.0134∗∗∗ 0.0553∗∗∗ −0.0004

(0.0010) (0.0052) (0.0084) (0.0003)

CF −0.0194∗ 0.3007∗∗∗ −0.4886∗∗∗ −0.0161∗∗∗

(0.0116) (0.0579) (0.0617) (0.0080)

L 0.0668 0.0798 0.1251∗∗∗ −0.0143∗∗∗

(0.0803) (0.0830) (0.0270) (0.0061)

Threshold variable Cash flow

Group 1 Group 2 Group 3 Group 4

γ (Lower regime %) 0.853 (98%) 0.279 (66%) −0.084 (1.6%) −0.343(0.2%)

β1 Q 0.0013∗∗∗ 0.1447∗∗∗ −0.4135∗∗∗ −0.0034∗∗∗

(0.0004) (0.0075) (0.0295) (0.0009)

CF 0.0684∗∗∗ 0.1545∗∗∗ −2.0022∗∗∗ −0.1496∗∗∗

(0.0052) (0.0216) (0.0697) (0.0411)

L −0.0096∗ 0.0203∗ 52.6850∗ −0.2208∗∗∗

(0.0041) (0.0106) (0.1284) (0.0435)

β2 Q −0.0010∗∗∗ 0.0068∗∗∗ 0.0468∗∗∗ 0.0117∗∗∗

(0.0005) (0.0013) (0.0028) (0.0013)

CF 0.0806∗∗∗ 0.0054 −0.0835∗∗∗ 0.2958∗∗∗

(0.0081) (0.0138) (0.0128) (0.0110)

L −0.0996∗∗∗ 0.1644∗∗∗ −0.0399∗∗∗ −0.0730∗∗∗

(0.0193) (0.0256) (0.0060) (0.0083)

Threshold variable Leverage

Group 1 Group 2 Group 3 Group 4 Group 5

γ (Lower regime %) 0 (8.5%) 0 (8.5%) 0 (8.5%) 0.002 (8.9%) 0.806 (98%)

β1 Q −0.0003 0.0957∗∗∗ 0.0014 0.0107∗∗∗ 0.0538∗∗∗

(0.0003) (0.0109) (0.0027) (0.0012) (0.0131)

CF 0.0584∗∗∗ −0.0047 0.2276∗∗∗ −0.0519∗∗∗ −0.8202∗∗∗

(0.0097) (0.0509) (0.0247) (0.0132) (0.1507)

L −0.0083 −0.0297 0.0816 −0.8464∗∗∗ 0.1648∗∗∗

(0.0165) (0.0566) (0.0549) (0.0637) (0.0337)

β2 Q 0.0039∗∗∗ 0.0804∗∗∗ 0.0117∗∗∗ 0.0003 1.2055∗∗∗

(0.0008) (0.0033) (0.0021) (0.0005) (0.1284)

CF 0.0304∗∗∗ 0.0423∗∗∗ 0.3854∗∗∗ 0.1164∗∗∗ −4.3237∗∗∗

(0.0054) (0.0133) (0.0163) (0.0086) (0.2463)

L 0.0024 −0.0535∗∗∗ 0.0258∗∗∗ −0.1168∗∗∗ 0.2734∗∗∗

(0.0042) (0.0072) (0.0078) (0.0099) (0.0383)
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Table 3.10: Impact of bank deregulation: Estimated threshold and slope coef-
ficients

Threshold variable Dropout rate Unemployment rate

Group 1 Group 2 Group 1 Group 2

γ (Lower regime %) 0.295 (73%) 0.041 (1.5%) 9.80 (95%) 2.60 (10%)

β1 Dereg −0.0291∗∗∗ 0.2444∗∗∗ −0.0316∗∗∗ −0.0228

(0.0082) (0.0576) (0.0080) (0.0427)

Dropout −0.6749∗∗∗ 3.3793∗∗∗ −0.6959∗∗∗ −5.2629

(0.0778) (0.7635) (0.0805) (3.0658)

Unemp 0.0032∗ 0.0390∗ 0.0007 0.1566∗∗∗

(0.0020) (0.0198) (0.0022) (0.0489)

β2 Dereg −0.1672∗ −0.0199∗∗∗ 0.0339 −0.0197∗∗∗

(0.0779) (0.0086) (0.0415) (0.0088)

Dropout −1.1961∗∗∗ −0.2286∗∗∗ −0.4149 −0.2125∗∗∗

(0.2666) (0.0614) (0.6825) (0.0629)

Unemp 0.0626∗∗∗ 0.0263∗∗∗ 0.0212∗∗∗ 0.0263∗∗∗

(0.0118) (0.0021) (0.0051) (0.0022)

Threshold variable Ratio of small banks Ratio of small firms

Group 1 Group 2 Group 1 Group 2

γ (Lower regime %) 0.1723 (94.5%) 0.8943 (78.3%)

β1 Dereg −0.0291∗∗∗ −0.0067 −0.0354∗∗∗ 0.0003

(0.0092) (0.0091) (0.0091) (0.0117)

Dropout −0.7805∗∗∗ −0.2432∗∗∗ −0.8015∗∗∗ −0.3306∗∗∗

(0.0933) (0.0791) (0.0924) (0.0968)

Unemp 0.0038 0.0253∗∗∗ 0.0030 0.0244∗∗∗

(0.0026) (0.0022) (0.0025) (0.0026)

β2 Dereg −0.0655 −0.1555∗∗∗ −0.0655 −0.0089

(0.0455) (0.0479) (0.0455) (0.0141)

Dropout 0.5417∗∗∗ −1.7011∗∗∗ 0.5417∗∗∗ −0.0295

(0.2723) (0.4793) (0.2723) (0.1294)

Unemp 0.0573∗∗∗ −0.0008 0.0573∗∗∗ 0.0303∗∗∗

(0.0179) (0.0092) (0.0179) (0.0042)
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Figure 3.1: The information criterion for determining the number of groups in
the investment and financial constraint application
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Figure 3.2: The information criterion for determining the number of groups in
the bank deregulation application
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Figure 3.3: Estimates of the group memebership of US states (G = 2)
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Chapter 4

High-dimensional VAR with Common

Factors

4.1 Introduction

Vector autoregressions (VARs) were introduced and a limit theory for es-

timation and inference developed in a pathbreaking study by Mann and Wald

(1943) that also considered structural VAR formulations.1 The VAR approach

was further developed and promoted for empirical macroeconomic research in

an influential paper by Sims (1980). Since then the methodology has become

one of the most heavily used tools in the applied finance and macroeconomic

literatures, giving a simple and useful method of capturing rich dynamics and

interconnectedness in multiple time series. Unrestricted VARs may be effi-

ciently estimated by least squares regression, which makes them particularly

attractive in applied research. But low dimensional VARs often suffer from

omitted variable bias, which makes the approach vulnerable to misleading in-

ference on both coefficients and impulse responses. In a series of articles Sims

and coauthors have explored whether to include more variables in VAR formu-

lations to raise their forecasting performance (see Sims (1992, 1993); Leeper

et al. (1996)).

In the absence of restrictions the number of VAR coefficients increases

1The Mann and Wald extension to the structural VAR (SVAR) case was developed in
the final section of their paper but seems largely to have been forgotten in the vast literature
on that topic that has emerged in the last few decades. For further discussion, readers are
referred to Hurn et al. (2019)

105



quadratically, making VAR estimation inevitably a high dimensional problem

as the number of variables increases. The dynamic factor model (DFM), in-

troduced by Geweke (1977), provides a tool to summarize information from a

large number of time series while avoiding some of the problems of high di-

mensionality. Since then, a large literature has emerged on DFMs . Examples

of theoretical work include Forni et al. (2000), Bai and Ng (2002), Bai (2003),

and Hallin and Lǐska (2007); and in applied finance and macroeconomics, var-

ious studies document the useful capacity of DFMs in capturing comovements

among macroeconomic or financial time series (e.g., Fama and French (1993);

Stock and Watson (1999) and 2002; Giannone et al. (2004) ; Ludvigson and Ng

(2007); and Cheng and Hansen (2015)). In other work, Bernanke et al. (2005)

propose a factor-augmented VAR (FAVAR) model to assist in making struc-

tural inferences while avoiding the problem of information sparsity that occurs

in low dimensional VAR systems. Although the presence of common factors

helps in capturing additional variation and co-variation in the data, there is

still evidence to suggest that misspecification continues to play a role in applied

work with DFMs, particularly in forecasting. Stock and Watson (2005, 2002),

for instance, test the ability of cross variation in forecasting, namely whether

observations on another variable such as xjt help in predicting xit given lagged

values of xit and common factors using 132 U.S. macroeconomic time series.

Their results suggest that exclusion of other variables like xjt from the re-

gression equation for xit involves misspecification that can impair forecasting

performance. A systematic approach to dealing with potential misspecifica-

tion of this type is to emply modern machine learning methods that rely on

regularized estimation. The present paper seeks to do this in the context of

large dimensional FAVAR systems.

Regularized estimation has received intense recent attention in both econo-

metrics and statistics. In the cross-sectional framework, among the most influ-

ential works are Tibshirani (1996), Zhao and Yu (2006), Zhao and Yu (2006),
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Candes and Tao (2007) and Huang et al. (2008). Inspired by the methods

developed in these papers a growing body of literature on high dimensional

autoregressive models has emerged. Haufe et al. (2010) proposed a method

based on Group LASSO to discover causal effects in multivariate time series.

Basu and Michailidis (2015) studied deviation bounds for Gaussian processes

and investigated `1 regularized estimation of transition matrices in sparse VAR

models. Kock and Callot (2015) establish oracle inequalities for high dimen-

sional VAR models. Han et al. (2015) proposed a generalized Dantzig selector

in high dimensional VARs. Guo et al. (2016) studied a class of VAR models

with banded coefficient matrices. These methods have opened up new avenues

for handling high dimensional VAR models in practical work. In particular,

regularized estimation has now been employed in various empirical applications

in economic and financial analysis, among which we mention the following re-

cent studies: Smeekes and Wijler (2018) studied forecasting capabilities of

penalized regression in cases where the generating process is a factor model;

Medeiros et al. (2019) considered inflation forecasting with machine learning

methods; Uematsu and Tanaka (2019) examined high-dimensional forecasting

and variable selection via folded-concave penalized regressions; and high di-

mensional VARs were adopted to estimate networks and construct measures of

financial sector connectedness (see Barigozzi and Brownlees (2019); Barigozzi

and Hallin (2017); Demirer et al. (2018)).

All these studies assume that the model’s idiosyncratic errors have at most

weak cross-sectional dependence (c.f., Chudik et al. 2011). However, the vast

literature on the DFM indicates that this assumption is fragile in applica-

tions. In response to this limitation, the present paper proposes a new high

dimensional VAR model in which some common factors (CFs) figure in the

determination of each time series besides the idiosyncratic errors and lagged

values of the time series themselves. In earlier work, Chudik and Pesaran

(2011) considered a factor-augmented infinite dimensional VAR model. For
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simplicity, they construct a model for which the strong cross section depen-

dence that is due to the factors is explicitly separated from other sources of

cross section dependence. They mention the possibility of using high dimen-

sional VAR models with CFs but do not explicitly analyze the model. The

FAVAR system in the present paper additionally allows for serial correlation

among the CFs, which in turn leads to correlation between the CFs and the

lagged time series. To properly control for the presence of CFs in this FAVAR

system it is necessary to estimate factors, factor loadings, and transition ma-

trices simultaneously. Practical implementation also requires determination of

the number of factors and lag length.

To estimate the high dimensional VAR model with CFs, our approach uses

a three-step procedure. The first step employs `1-nuclear norm regularized es-

timation that minimizes the sum of squared residuals with an `1-norm penalty

on the transition matrices and a nuclear norm penalty on the low rank ma-

trix Θ representing the common component. Imposing the `1-norm penalty

helps to estimate sparse transition matrices. The nuclear norm penalty helps

to estimate the low rank matrix arising from the CFs and the factor loadings.

Nuclear norm regularized estimation, which has appealing computational ef-

ficiency and good theoretical properties in estimating low rank matrices, has

been recently studied by Chernozhukov et al. (2019) and Moon and Weidner

(2019). Under some regularity conditions, we establish nonasymptotic bounds

for the estimation error of the transition matrices and the low rank matrix

Θ. Applying a singular value thresholding procedure on the singular values

of the estimate of the matrix Θ, we obtain an estimate of the number of fac-

tors. We also show that the true number of factors can be estimated correctly

with probability approaching one (w.p.a.1). Then, given the estimated factor

number, preliminary estimates of the common factors can be obtained.

In the second step, we include the estimated CFs as regressors and con-

sider a generalized LASSO to obtain an estimate of the transition matrices. We
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show that the estimation errors can be uniformly controlled, which facilitates

the construction of weights for subsequent estimation by adaptive (or conser-

vative) LASSO in the third step. Under some regularity conditions, we show

that this third step conservative LASSO estimator of the transition matrices

achieves sign consistency (see Zhao and Yu 2006) asymptotically. Besides,

the third step estimator of transition matrices, factors and factor loadings are

asymptotically equivalent to the corresponding oracle least squares estimators

that are obtained by using detailed information about the form of the true re-

gression model. We also study the asymptotic properties of these oracle least

squares estimators and find that they perform as well as if the true common

factors were known.

We illustrate the usefulness of this methodology through a real-data ex-

ample. We revisit the financial connectedness measures proposed by Diebold

and Yilmaz (2014) and document strong evidence of the existence of common

factors in the volatilities of 23 sector exchange traded funds (ETFs). The

findings show that common factors account for a large proportion of the varia-

tion in these volatilities; and, conditional on the common factors, a high level

of connectedness remains present among the idiosyncratic components. This

empirical application demonstrates the particular usefulness of our high di-

mensional VAR with CFs model in its ability to allow for time series with

strong cross section dependence while distinguishing variations that originates

from different sources.

The remainder of the paper is organized as follows. In Section 4.2, we

introduce our model and conduct a stationarity analysis. Section 4.3 introduces

the estimation methods and examines their theoretical properties. In Section

4.4, we conduct Monte Carlo experiments to evaluate finite sample performance

of the methodology. We apply the model and methods to study financial

connectedness in Section 4.5. Section 4.6 concludes. Proofs of the main results

in the paper are given in the Appendix C. Further technical details are provided
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in the online Supplementary Materials.

4.1.1 Notation

To proceed, we introduce some notation. Let A = (aij) ∈ RM×N and

v = (v1, ..., vN)′ ∈ RN be a matrix and a vector, respectively. We denote vI as

the subvector of v whose entries are indexed by a set I ⊂ [N ] ≡ {1, ..., N}. We

denote AI,J as the submatrix of A whose rows are indexed by I and columns

are indexed by J . Let A∗,J ≡ A[N ],J be the submatrix of A whose columns are

indexed by J , AI,∗ ≡ AI,[M ] be the submatrix of A whose rows are indexed by

I. For notational simplicity, we also write the individual columns and rows of

A respectively as A∗,j = A∗,{j} for j = 1, ..., N and Ai,∗ = A{i},∗ for i = 1, ...,M .

For 0 < q <∞, we define the `0, `q, and `∞ norms of a vector v to be

|v|0 ≡
N∑
i=1

1(vi 6= 0), |v|q ≡

(
N∑
i=1

|vi|q
)1/q

, and |v|∞ ≡ max
1≤i≤N

|vi|,

where 1(·) is the indicator function. In the special case q = 2, | · |2 is the

Euclidean norm of v, and we write |v| ≡ |v|2 for notational simplicity.

For 0 < q <∞, we define the `q, `max, Frobenius (F), and nuclear (∗) norms

of the matrix A to be:

||A||q ≡ max
||v||q=1

||Av||q, ||A||max ≡ max
i,j
|aij |,

||A||F ≡

∑
i,j

|aij |2
1/2

and ||A||∗ =

min(N,M)∑
k=1

ψk(A),

where ψk(·) is the kth largest singular value of A for k = 1, ..., min(N,M).

We also denote the largest and smallest singular value of A as ψmax(A) and

ψmin(A). In the special case q = 2, the `2 matrix norm is given by ||A||2 =

||A||op ≡ ψ1(A). For a full rank N × R matrix F with N > R, we denote

the corresponding orthogonal projection matrices as PF = F (F ′F )−1F ′ and

MF = IN−PF , where IN denotes the N×N identity matrix. Let vec(·) denote

the (columnwise) vectorization operator, and ⊗ be the (right hand) Kronecker

operator. For a random variable or vector x, we denote its expectation and
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`p-norm as E(x) and |||x|||p ≡ [E(|x|pp)]1/p. The operators ∨ and ∧ denote max

and min, viz., a ∨ b = max (a, b) and a ∧ b = min (a, b) .

4.2 Model

For a N -dimensional vector-valued time series {Yt} = {(y1t, ..., yNt)
′}, the

high-dimensional vector autoregression model of lag p with CFs is given by:

Yt =

p∑
j=1

A0
jYt−j + Λ0f 0

t + ut, t = 1, ..., T, (4.1)

where A0
1, ..., A

0
p are N×N transition matrices, Λ0 = (λ0

1, ..., λ
0
N)′ is the N×R0

factor loading matrix, f 0
t is an R0-dimensional vector of common factors, and

ut is an N -dimensional vector of unobserved idiosyncratic errors. Throughout

this paper we use the superscript 0 to denote true values. The coefficients

of interest are the A0
j ’s, Λ0, and F 0 ≡ (f 0

1 , ..., f
0
T )′. In practice, we need to

determine the number of factors and lag length. We propose a method to

consistently determine p in Section 4.3. Given p, the number of factors can be

determined in the first step of our estimation procedure introduced in Section

4.3. We consider the framework that both the number of cross-sectional units

N and the time periods T go to infinity. The estimation is a natural high-

dimensional problem with the number of parameters (N2p + R0N + R0T )

growing linearly with T and quadratically with N .

It is convenient to reformulate model (4.1) as a multivariate regression

problem in the form
Y ′1

...

Y ′T


︸ ︷︷ ︸

Y

=


Y ′0 · · · Y ′1−p

...
. . .

...

Y ′T−1 · · · Y ′T−p


︸ ︷︷ ︸

X


A0′

1

...

A0′
p


︸ ︷︷ ︸

B0

+


f 0′

1

...

f 0′
T


︸ ︷︷ ︸

F 0


λ0′

1

...

λ0′
N



′

︸ ︷︷ ︸
Λ0′

+


u′1

...

u′T


︸ ︷︷ ︸

U

, (4.2)

where Y ∈RT×N , X ∈RT×Np, B0 ∈ RNp×N , and U ∈RT×N . A key observa-

tion here is that Θ0 ≡ F 0Λ0′ is a low rank matrix. However, due to the
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correlation between XB0 and Θ0, use of principal component analysis (PCA)

on Y cannot deliver a consistent estimate of the common factors. Note that

both ||XB0||op and ||Θ0||op are OP (
√
NT ) under some regularity conditions,

and ||U||op = OP (
√
N +

√
T ). We cannot separate the low rank matrix Θ0

from Y without information about B0. Besides, when the common factors are

themselves serially correlated, pure VAR(p) estimation generally suffers from

endogeneity bias issues.

4.2.1 Stationarity analysis

Let Xt ≡ X′t,∗. The N -dimensional VAR(p) process {Yt} can be rewritten

in companion form as an Np-dimensional VAR(1) process with CFs, viz.,



Yt

Yt−1

...

Yt−p+1


︸ ︷︷ ︸

Xt+1

=



A0
1 A0

2 · · · A0
p−1 A0

p

IN 0 · · · 0 0

0 IN · · · 0 0

...
...

. . .
...

...

0 0 · · · IN 0


︸ ︷︷ ︸

Φ



Yt−1

Yt−2

...

Yt−p


︸ ︷︷ ︸

Xt

+



Λ0f 0
t

0

...

0


︸ ︷︷ ︸

Ft

+



ut

0

...

0


︸ ︷︷ ︸
Ut

.

(4.3)

If one treats Ft +Ut as an impulse at period t, the process {Xt+1} in (4.3) can

be regarded as a high-dimensional VAR(1) process. We can write the reverse

characteristic polynomial (Lütkepohl 2005) of Yt as

A(z) ≡ IN −
p∑
j=1

A0
jz
p.

In the low-dimensional framework, the process is stationary if A(z) has no

roots in and on the complex unit circle, or equivalently the largest modulus of

eigenvalues of Φ is in unit circle. To achieve identification, we need to study the

Gram or signal matrix SX ≡ X′X/T and ΣX = E(XtX
′
t) in the later analysis.

Basu and Michailidis (2015; hereafter BM) study the deviation bounds for the

Gram matrix, using Gaussianity assumptions and boundedness of the spectral
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density function. Following their lead, we impose some conditions that will

ensure SX is well behaved.

To proceed, we write Xt+1 as a moving average process of infinite order

(MA(∞)):

Xt+1 =
∞∑
j=0

Φj(Ft−j + Ut−j) ≡ X
(f)
t+1 +X

(u)
t+1, where (4.4)

X
(f)
t+1 ≡

∞∑
j=0

ΦjFt−j, and X
(u)
t+1 ≡

∞∑
j=0

ΦjUt−j.

Then we can study the stationarity of Yt by studying X
(f)
t+1 and X

(u)
t+1, respec-

tively. First, we consider X
(f)
t+1, which is the component due to the common

factors. Note that the covariance matrix of Ft is a high-dimensional matrix

with rank R0 and explosive nonzero eigenvalues. Even if the largest modulus

of eigenvalues of Φ is smaller than 1, the variances of entries of X
(f)
t+1 are not

ensured to be uniformly bounded. Specifically, we consider y
(f)
it , which is the

ith entry of X
(f)
t+1. Let ej,M be the jth unit M -dimensional vector. Noting that

y
(f)
it = (e1,p ⊗ ei,N)′X

(f)
t+1, we can write yit as an MA(∞) process

y
(f)
it =

∞∑
j=0

(e1,p ⊗ ei,N)′Φj(e1,p ⊗ Λ0)f 0
t−j ≡

∞∑
j=0

α
(f)
iN (j)f 0

t−j,

where f 0
t can be serially correlated. To ensure y

(f)
it = OP (1), we need to require

the coefficients α
(f)
iN (j) to beO(1) and summable. Note that we generally do not

have ||Φ||op ≤ 1, as explained in the supplement of BM (2015). In assumption

A.1, we impose sufficient conditions that ensure the α
(f)
iN (j) are well-behaved.

The online supplementary material provides a discussion of these conditions.

For the process X
(u)
t+1, stationarity is assured if we assume the covariance

matrix of ut is well-behaved and ut is serially uncorrelated as in BM (2015)

and KC (2015). Similar to y
(f)
it , we define y

(u)
it such that

yit ≡ y
(f)
it + y

(u)
it , (4.5)
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where

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j and α

(u)
iN (j) ≡ (e1,p ⊗ ei,N)′Φj(e1,p ⊗ IN).

Again, imposing zero serial correlation and weak cross-sectional correlation

across uit’s is not enough to ensure y
(u)
it = OP (1) uniformly.

Let c and c̄ denote generic constants that may vary across occurrences.

Throughout the paper, we will treat Λ0 as nonrandom. To ensure the station-

arity of {Yt}, we impose the following assumption.

Assumption A.1. (i) ut = C(u)ε
(u)
t , where ε

(u)
t = (ε

(u)
1,t , ..., ε

(u)
m,t)

′, ε
(u)
i,t ’s are i.i.d.

random variables across (i, t) with mean zero and variance 1, and C(u) is an

N ×m matrix such that C(u)C(u)′ = Σu and c ≤ ψmin(Σu) ≤ ψmax(Σu) ≤ c̄;

(ii) {f 0
t } follows a strictly stationary linear process:

f 0
t − µf =

∞∑
j=0

C
(f)
j ε

(f)
t−j,

where ε
(f)
t ≡ (ε

(f)
1,t , ..., ε

(f)

R0,t)
′ are i.i.d. (0, IR0) across t, supm≥1(m+1)α

∑∞
j=m ||C

(f)
j ||max ≤

c̄ <∞ for some constant α > 1;

(iii) max1≤r≤R0 |||ε(f)
r,t |||q < c̄ and max1≤i≤m |||ε(u)

i,t |||q < c̄ for some q > 4;

(iv) {ε(u)
t } is independent of {ε(f)

t };

(v) the largest modulus of the eigenvalues of Φ is bounded by some constant

0 < ρ < 1;

(vi) ||(Φj)[N ],[N ]||op ≤ c̄ρj and |α(f)
iN (j)| < c̄ρj;

(vii) max|z|=1 Ψmax(A∗(z)A(z)) ≤ c̄, where |z| denotes the modulus of z in

the complex plane, and A∗(z) denotes the conjugate transpose of A(z).

Assumption A.1(i) is frequently made in high dimensional time series anal-

ysis; see, e.g., Bai and Saranadasa (1996), Chen and Qin (2010) and Ma et al.

(2020). It requires that ut be independent over t and weakly dependent across i.

At the cost of more complicated notations, one can allow ψmin(Σu) to converge

to zero and ψmax(Σu) to diverge to infinity, both at a slow rate. Assump-

tion A.1(ii) assumes the common factors to be stationary and allows for weak

114



serial correlation. The factors can have nonzero mean so that y′its can also

have nonzero mean. Assumption A.1(iii) requires that ε
(u)
i,t and ε

(f)
i,t have finite

qth order moments, which is a weak assumption compared to the Gaussianity

distribution assumption of BM (2015) and KC (2015). Assumption A.1(iv) re-

quires independence between {ε(u)
t } and {ε(f)

t }, which facilitates separate study

of y
(f)
it and y

(u)
it . Assumption A.1(v) is a standard assumption to ensure sta-

tionarity. Assumption A.1(vi) is a high level condition to ensure that E(y2
it)

is uniformly bounded. Assumption A.1 (vii) helps to bound the minimum

eigenvalue of ΣX . By the inequalities

max
|z|=1

Λmax(A∗(z)A(z)) ≤ (max
|z|=1
||A(z)||op)2 ≤ 1 +

p∑
k=1

||A0
j ||op,

we can see that requiring all the A0
j ’s to have finite operator norms is a sufficient

condition.

The online Supplementary Material provides further discussion of the As-

sumption A.1(vi)-(vii). The following proposition ensures stationarity of the

yit and establishes a lower bound for ψmin(ΣX).

Proposition 4.1. Suppose that Assumption A.1 holds. (i) Then Yt is a sta-

tionary process, supiE(y2
it) <∞, and

ψmin(ΣX) ≥ ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z))
.

(ii) Let ΣXF ≡ E(Xtf
0′
t ), and Σ ≡ ΣX−ΣXFΣ−1

F Σ′XF . We also have ψmin(Σ) ≥
ψmin(Σu)

max|z|=1 ψmax(A∗(z)A(z))
.

4.3 Estimation method and theoretical results

This section develops an estimation procedure for the model and establishes

some its properties, both asymptotic and non-asymptotic. The procedure as-

sumes at this point that the lag length p is known and that R0 is unknown.

Lag length is actually data-determined in the manner explained later in Sec-

tion 4.3.4. The number of factors can be determined consistently in the first

estimation step.

115



4.3.1 First-step estimator

In the first step, we propose an `1-nuclear norm regularized estimation

procedure to estimate the coefficient B0 and the low rank matrix Θ0 simulta-

neously. Moon and Weidner (2018; hereafter MW) and Chernozhukov et al.

(2019) show that nuclear norm regularized estimation can achieve consistent

estimation of the low rank matrix. In our model, we impose a sparsity condi-

tion on B0 and use `1-norm regularization to achieve regressor selection. For

Θ0, the nuclear norm regularization helps to achieve consistent estimation.

The first step estimator is given by the following procedure.

The first-step estimator: Let γ1 = γ1(N, T ) ≡ c1T
−1/2logN and γ2 =

γ2(N, T ) ≡ c2(N−1/2 + T−1/2) for some constants c1 and c2.

1. Estimate the coefficient B and the low rank matrix Θ by running the

following `1-nuclear norm regularized regression:

(B̃, Θ̃) = arg min (B,Θ)L(B,Θ), where

L(B,Θ) ≡ 1

2NT
||Y −XB −Θ||2F +

γ1

N
|vec(B)|1 +

γ2√
NT
||Θ||∗. (4.6)

2. Estimate the number of factors R0 by singular value thresholding (SVT)

as:

R̂ =
N∧T∑
i=1

1{ψi(Θ̃) ≥ (γ2

√
NT ||Θ̃||op)1/2}.

3. Obtain a preliminary estimate of F 0. Let the singular value decomposi-

tion (SVD) of Θ̃ be Θ̃ = ŨD̃Ṽ ′, where D̃ =diag(ψ1(Θ̃), ..., ψN∧T (Θ̃)).

Let F̃ =
√
TŨ∗,[R̂].

Remark 4.1 The objective function L(B,Θ) minimizes the sum of squared

residuals with both the nuclear norm regularization on Θ and `1-regularization

on B. To obtain the numerical solution, we can apply an EM type algorithm.

In the E-step, we fix B and update the estimate of Θ. The solution can be
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obtained following the result of Lemma 1 of MW (2018).2 In the M-step, we

fix Θ and update B. The optimization problem can be decomposed to N

LASSO-type linear regression problems.

Non-asymptotic results for the first-step estimator

In this subsubsection we establish non-asymptotic properties of the first

step estimator. In particular, for B̃ and Θ̃, we establish a non-asymptotic

inequality for the estimation error. For R̂, we show that R̂ = R0 w.p.a.1.

To proceed, we introduce some notation and assumptions. We first intro-

duce a key invertibility condition for the operator (∆(1),∆(2)) :→ X∆(1) + ∆(2)

when (∆(1),∆(2)) is restricted to lie in a ‘cone’. A similar condition is im-

posed in MW (2018) and Chernozhukov et al. (2018). Following their lead,

we refer to the condition as ‘restricted strong convexity ’. To define the ‘cone’,

let Ji ⊂ [Np] be an index set such that j ∈ Ji if and only if B0
ji 6= 0. Let

J ci = [Np]\Ji. For a T ×N matrix ∆(2), define the operators

P(∆(2)) ≡ U∗,[R0]U∗,[R0]
′∆(2)V∗,[R0]V

′
∗,[R0] and M(∆(2)) ≡ ∆(2) − P(∆(2)).

Hence, the operator P(·) projects a matrix onto a ‘low-rank’ space which con-

tains Θ0. For some c > 0, the ‘cone’ CNT (c) ⊂ RNp×N × RT×N is a set of

(∆(1),∆(2)) satisfying the restriction:

γ1

∑N
i=1 |∆

(1)
Jci ,i
|1

N
+
γ2

∥∥M(∆(2))
∥∥
∗√

NT
≤ c

γ1

∑N
i=1 |∆

(1)
Ji,i
|1

N
+ c

γ2

∥∥P(∆(2))
∥∥
∗√

NT
.

We impose the following condition.

Assumption A.2 (Restricted strong convexity) If (∆(1),∆(2)) ∈ CNT (c) for

some c > 0, then there exist constants κc and κ′c such that∥∥X∆(1) + ∆(2)
∥∥2

F
≥ T · κ′c

∥∥∆(1)
∥∥2

F
+ κc

∥∥∆(2)
∥∥2

F
.

The next assumption involves a regularity condition on the errors and a sparsity

2Let the SVD of A be A = USV ′, where S = diag(s1, ..., sq), with q = rank(A). Then
arg minΘ

(
1
2 ||A−Θ||2F + γ||Θ||∗

)
is given by U · diag((s1 − γ)+, ..., (sq − γ)+) · V ′, where

(s)+ = max(0, s).
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condition on the transition matrix:

Assumption A.3 (i) ‖U‖op /
√
NT ≤ γ2/2, where γ2 is the tuning parameter

for nuclear norm regularization;

(ii) each column of B0 contains at most KJ nonzero entries.

Assumption A.3 (i) requires the idiosyncratic error matrix to have oper-

ator norm of order OP (
√
N +

√
T ). This condition is also assumed in MW

(2018) and Chernozhukov et al. (2018). It holds w.p.a.1 if the ε
(u)
it ’s are i.i.d.

sub-Gaussian (see, e.g., Vershynin 2018). Assumption A.3(ii) is a sparsity as-

sumption. We allow KJ goes to infinity at a slow rate. This sparsity condition

can be relaxed to the approximate sparsity condition as in Belloni et al. (2012)

but that extension is not pursued here.

Theorem 4.1. Suppose that Assumptions A.1-A.3 hold. Then we have

N−1/2
∥∥∥B̃ −B0

∥∥∥
F
≤ c̄(γ1

√
KJ∨γ2) and (NT )−1/2

∥∥∥Θ̃−Θ0
∥∥∥
F
≤ c̄(γ1

√
KJ∨γ2),

with probability at least 1− c̄′(N2T 1−q/4(logN)−q/2 +N2−clogN) for some finite

positive constants c, c̄, and c̄′.

Theorem 4.1 establishes a non-asymptotic inequality for the estimation er-

rors of B̃ and Θ̃. The inequality is valid when both N2T 1−q/4(logN)−q/2 and

N2−clogN are small. In general, the first term dominates the second one for

finite q and divergent N and T. If the error terms are sub-exponential, we can

allow q to diverge to infinity in which case the second term could dominate

the first one. To prove the above theorem, we need to establish a bound for

T−1||U′X||max. Specifically, we need to find a sharp probability bound for a

partial sum like T−1
∑N

t=1 yi,t−kujt. We resort to a Nagaev-type inequality, as

introduced by Wu (2005) and Wu and Wu (2016), allowing for both dependence

among summands and non-Gaussianity. The summand yi,t−kujt has a nonlin-

ear Wold presentation yi,t−kujt = gijk(. . . , εt−1, εt), where εt ≡ (ε
(u)′
t , ε

(f)′
t )′ is

i.i.d. random variables under Assumption A.1. Then one can verify that the

dependence adjusted norm (see Wu and Wu, 2016) of yi,t−kujt is well bounded
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so that one can obtain a sharp probability bound using the Nagaev-type in-

equality for nonlinear processes.

Next, we impose an assumption on the common factor and the factor load-

ings:

Assumption A.4 (i) There exists an N̄ such that for all N > N̄ , ||Λ0′Λ0/N−

ΣΛ||max ≤ c̄N−1/2 for an R0 ×R0 matrix ΣΛ and ||Λ0||max ≤ c̄;

(ii) Let ΣF = E(f 0
t f

0′
t ), there are constants s1 > · · · > sR0 > 0 so that sj

equals the jth largest eigenvalue of Σ
1/2
F ΣΛΣ

1/2
F .

Assumption A.4 requires that the factors and the factor loadings are strong/

pervasive with well-behaved sample second moments. Assumption (ii) requires

distinct eigenvalues of Σ
1/2
F ΣΛΣ

1/2
F in order to identify the corresponding eigen-

vectors.

The next theorem establishes the consistency of R̂ and the mean-square

convergence rate of F̃ :

Theorem 4.2. Suppose Assumptions A.1-A.4 hold. There exist positive con-

stants c, c̄ and c̄′, and a random matrix H̃ depending on (F 0,Λ0) such that

(i) R̂ = R0 and (ii) ||F̃ − F 0H̃||F/
√
T ≤ c̄(γ1

√
KJ ∨ γ2), both with probability

larger than 1− c̄′(N2T 1−q/4(logN)−q/2 +N2−clogN).

Theorem 4.2 establishes the consistency of R̂ and the mean-square conver-

gence rate of F̃ . Intuitively, since Θ̃ is a consistent estimator for Θ0 ≡ F 0Λ0′

with well-controlled estimation errors, we expect the first R0 singular values

of Θ̃ to be OP (
√
NT ) and the other singular values to be OP [

√
NT (γ1 ∨ γ2)].

Then the hard SVT procedure can distinguish the
√
NT -order singular values

from those of smaller order. Alternatively, given the consistency of B̃ estab-

lished in Theorem 4.1, we can regard the ‘residual’ Y−XB̃ as a approximation

of F 0Λ0′+ U. It is reasonable to conjecture that one can also apply the meth-

ods of Bai and Ng (2002), Onatski (2010) and Ahn and Horenstein (2013) to

determine the number of factors. Theorem 4.2 (ii) establishes the convergence

rate of F̃ . The R × R transformation matrix H̃ is similar to the matrix H in
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Bai (2003).

4.3.2 Second-step estimator

In this subsection, we introduce the second-step estimator. The second-step

estimator is a generalization of LASSO estimator, which includes the estimated

factor matrix F̃ as regressors. Our goal is to obatain an estimator which

uniformly converges to the true parameter. Then the second-step estimator

can be utilized to construct adaptive- or conservative- LASSO weights.

The second-step estimator: Let γ3 = c3(γ1

√
KJ ∨ γ2) for some constant

c3. For each i = 1, ..., N , solve the minimization problem:

(Ḃ′∗,i, λ̇
′
j)
′ = argmin(v′,λ′)′∈RNp+R0

1

2T
||Y∗,i −Xv − F̃ λ||2F + γ3|v|1, (4.7)

where the LASSO penalty is only imposed on coefficients of regressors X. Then

the second-step estimators of B0 and Λ0 are given by Ḃ = (Ḃ∗,1, ..., Ḃ∗,N) and

Λ̇ = (λ̇1, ..., λ̇N)′, respectively.

Remark 4.2 In the proof of Theorem 4.3, we show that Ḃ∗,i solves the LASSO

problem with dependent variable MF̃Y∗,i and regressors MF̃X.

Below, we bound the convergence rate of the entries of Ḃ uniformly. Then

the estimate can be used to construct the weights for the adaptive LASSO

estimator in the third step.

Non-asymptotic results for the second step estimator

Recall Σ ≡ ΣX−ΣXFΣ−1
F Σ′XF and let Σ̃ = X′MF̃X/T. By Proposition 4.1,

ψmin(Σ) is bounded below by some constant. Hence, it is straightforward to

see that

min
|v|6=0

v′Σv

|v|2
≥ ψmin(Σ) > 0.

However, the matrix Σ̃ cannot be ensured to be positive definite. If Np > T, Σ̃

is singular, which leads to min|v|6=0
v′Σ̃v
|v|2 = 0. In this case, we follow Bickel et al.

(2009) and Kock and Callot (2015) to establish the restricted eigenvalue
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condition. Specifically, we replace the above minimum by another minimum

over a smaller set. Let J ⊂ [Np] be an index set and J c = [Np]\J . We say

the restricted eigenvalue condition is satisfied for some 1 ≤ K ≤ Np if

min
|J |≤K

min
|v|6=0

|vJc |1≤3|vJ |1

v′Σ̃v

|vJ |2
≡ κΣ̃(K) > 0, (4.8)

where |J | denotes the cardinality of J . In (4.8), the minimum is restricted to

those vectors that ||vJc ||1 ≤ 3||vJ ||1, where J has cardinality below K. In this

restricted space, we can show that (4.8) is satistied with a high probability for

K = KJ .

The following theorem establishes the `max-norm bound for the estimation

error of Ḃ.

Theorem 4.3. Suppose that Assumptions A.1-A.4 hold. Then we have

||Ḃ −B0||max ≤ max
1≤i≤N

|Ḃ∗,i −B0
∗,i|1 ≤

48

[ψmin(ΣX)]2
KJγ3,

with probability larger than 1 − c̄(N2T 1−q/4(logN)−q/2 + N2−clogN), for some

finite positive constants c, amd c̄.

4.3.3 Third-step estimator

In the first and second step, we impose penalty on every parameter, which

introduces the asymptotic bias into the estimators of transition matrices. Zou

(2006) proposed the adaptive LASSO technique in a linear regression frame-

work, which penalizes the true zero parameters more than the non-zero ones.

Then he shows that the adaptive LASSO estimator is asymptotically equiva-

lent to the oracle least-squares estimator, which is obtained with information of

relevant regressors. Kock and Callot (2015) also explore the adaptive LASSO

method in the high-dimensional VAR framework.

In practice, the regressors with zero estimates in the preliminary stage,

which are usually plain LASSO estimates, are excluded in adaptive LASSO.

Hence, any incorrect regressor exclusion by the preliminary stage estimates

directly leads to wrong regressor selection of adaptive LASSO. To solve this
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problem. the conservative LASSO, which gives regressors that are excluded by

the initial estimator a second chance, is introduced (Caner and Kock 2018).

In this subsection, we extend the conservative LASSO estimator to our high

dimensional VAR model with CFs framework.

The third-step estimator (Conservative LASSO): Conduct the following

procedure:

1. Let γ4 = γ4(N, T ) and F̂ (0) = F̃ . Let W be a Np×N matrix with entries

wki =


1 if |Ḃki| < αγ4,

0 if |Ḃki| ≥ αγ4,

(4.9)

where i = 1, ..., Np, i = 1, ..., N, and α > 0.

2. For integer ` ≥ 1, update the estimate of B and Λ:

(B̂
(`)′
∗,i , λ̂

(`)′
i )′ = argmin(v,λ)′∈RNP+R̂

1

2T

∥∥∥Y∗,i −Xv − F̂ (`−1)λ
∥∥∥2

F
+γ4

pN∑
k=1

wki |vk| ,

where vk is the kth entry of v, i = 1, ..., N. Let B̂(`) ≡ (B̂
(`)
∗,1, ..., B̂

(`)
∗,N).

3. Obtain the SVD of Y−XB̂(`) as Y −XB̂(`) = Û (`)D̂(`)V̂ (`)′. Obtain an

updated estimate of F 0 as F̂ (`) =
√
T Û

(`)

∗,[R̂]
.

4. Iterate steps 2-3 until numerical convergence. Denote the final estimators

as B̂, F̂ and Λ̂.

Remark 4.3 The weights wki’s can take various forms. For example, Caner

and Kock (2018) also consider wki ≡ γprec

|Ḃki|∨γprec
, where γprec = O(γ4).

Asymptotic properties of the third-step estimator

We establish two results: (i) the conservative LASSO estimator B̂(`) has

the variable-selection consistency w.p.a.1; (ii) B̂ is asymptotically equivalent

to the oracle least squares estimator.

First, we introduce some notations. Following Zhao and Yu (2006) and

Huang et al. (2008) , we say that B̂(`) =s B
0, or B̂(`) is sign-consistent for B0,
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if and only if

sgn(B̂
(`)
∗,i ) = sgn(B0

∗,i), for all i ∈ [N ], where sgn(B∗,i) ≡ [sgn(B1,i), ..., sgn(BNp,i)]
′,

and

sgn(Bki) ≡


1, if Bki > 0;

0, if Bki = 0;

−1, if Bki < 0.

Assumption A.5 (i) The magnitude of nonzero coefficients has appropriate

order: γ4 = o(mini∈[N ] mink∈Ji |B0
ki|);

(ii)
∑N

i=1 |Ji|/N ≤ C for some constant 0 < C <∞ as N →∞.

Assumption A.5 (i) assumes the nonzero entries ofB0 are uniformly bounded

away from zero. This is a standard assumption in the adaptive LASSO liter-

ature. The lower bound mini∈[N ] mink∈Ji |B0
ki| is allowed to tend to zero at

a slow rate. As N increases, the ’average magnitude’ of nonzero coefficients

often decreases to ensure stationarity. By Theorem 4.3, and Assumption A.5

(i), there are constants c and c̄ such that

max
k∈Ji

wki = 0 and min
k∈Jci

wki = 1

w.p.a.1. In this case, we only put penalty on zero entries. Assumption A.5(ii)

assumes that the number of nonzero coefficients is proportional to N . This

assumption ensures that ||X(B̂(`) −B0)||F has desird convergence rate.

The following theorem establishes the variable selection consistency of B̂(`)

and a preliminary convergence rate of B̂(`) and F̂ (`).

Theorem 4.4. Suppose that Assumptions A.1-A.5 hold, (K
3/2
J T−1/2logN +

K
1/2
J N−1/2) = o(γ4), and N2T 1−q/4(logN)−q/2 → 0, as (N, T )→∞. Then

(i) P (B̂(`) =s B
0)→ 1, as (N, T )→∞;

(ii) ||X(B̂(`) −B0)||F/
√
NT = OP (γ1

√
KJ + γ2);

(iii) ||F̂ (`) − F 0H̃||F/
√
T = OP (γ1

√
KJ + γ2).

Theorem 4.4 shows that B̂(`) has the oracle property in that it selects the

correct variables w.p.a.1. Due to the presence of common factors, we can only
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obtain a preliminary rate OP (γ1

√
KJ+γ2). To improve the rate of convergence,

we study the final estimators B̂, F̂ and Λ̂. Now, F̂ corresponds to the first

R̂ eigenvectors of (Y −XB̂)(Y −XB̂)′, scaled by
√
T , and one can expand

F̂ − F 0H̃ following the lead of Bai and Ng (2002) and Bai (2009). By looking

at the product of F̂ − F 0H̃ and other terms, we can bound the smaller order

terms with sharper bounds. Hence, we can finally improve the probability

order of each element in B̂Ji,i −B0
Ji,i

to 1/
√
T .

The following theorem gives the asymptotic distribution of B̂Ji,i.

Theorem 4.5. Suppose Assumptions A.1-A.5 hold, N2T 1−q/4(logN)−q/2 → 0

and N/T 2 → 0 as (N, T ) → ∞. Let Si denote an L × |Ji| selection matrix

such that ‖Si‖F is finite and L is an fixed integer. Conditional on the event

{B̂ =s B
0}, for i = 1, ..., N , we have

√
TSi(B̂Ji,i −B0

Ji,i
)

d→ N(0, σ2
i Si(ΣJi,Ji)

−1S ′i).

Note that, we specify a selection matrix Si in Theorem 4.5 that is not

needed if |Ji| is fixed. Intuitively, we allow |Ji| to diverge to infinity as (N, T )→

∞ and we cannot derive the asymptotic normality of B̂Ji,i directly when |Ji| →

∞. Instead, we follow standard practice on estimation and inference with a

diverging number of parameters (see, e.g., Fan and Peng 2004; Lam and Fan

2008; Qian and Su 2016) and prove asymptotic normality for arbitrary linear

combinations of the elements of B̂Ji,i. In the special case where |Ji| is fixed, we

can take Si = I|Ji| and obtain the usual joint asymptotic normal distribution

of the B̂Ji,i’s.

4.3.4 Tuning parameter selection

In practice, we need to select the tuning parameters γ`, for ` = 1, ..., 4.

For γ2, which is the tuning parameter for the nuclear norm penalty, we adopt

a simple plug-in approach similar to that introduced in Chernozhukov et al.

(2018). An ideal tuning parameter for γ2 is one such that

||U||op/
√
NT ≤ (1− c)γ2
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for some c > 0 with high probability. Suppose U is a random matrix with i.i.d.

sub-Gaussian entries that have mean zero and variance σ2
u, its operator norm

is bounded by Cσu(
√
N +

√
T ), for some C > 0 with high probability (see

Vershynin, 2018). One can first use γ2 = σ̂y
C

(
√
N +

√
T ) for some C > 1 and

σ̂y is the sample standard deviation of Y . After obtaining an estimate σ̂u of

σu, we can calculate a suitable γ2 via simulation. Specifically, we can simulate

the random matrices U with i.i.d. N(0, σ̂2
u). Then we let γ2 = Q(||U||op, 0.95),

where Q(x, α) denote the αth quantile of x.

For γ1, γ3, and γ4, we propose to use the 5-fold cross validation (CV) pro-

cess. For the first-step estimation, the procedure goes as follows:

1. Partition the data into 5 separate sets along the time dimension (T1, ...,T5 ⊂

[T ]);

2. For k = 1, ..., K, fit the model to the training set by excluding the kth

fold data. Denote the estimators by B̃(γ,k) and Λ̃(γ,k), where Λ̃(γ,k) is a

N×R matrix containing the first R right singular vectors of Θ̃. Calculate

the sum of squared prediction errors

cv(γ, k) = tr[(YTk −XTkB̃
(γ,k))MΛ̃(γ,k)(YTk −XTkB̃

(γ,k))′];

3. Compute the CV error for a fixed tuning parameter by CV (γ) =
∑5

k=1 cv(γ, k).

4. Select γ∗ = arg minγ CV (γ).

Remark 4.4 Once the sample Tk is excluded, we cannot obtain an estimate

of FTk,∗. Hence we cannot obtain the residuals by deducting the estimate of

FTk,∗Λ
′. For this reason, we multiply YTk − XTkB̃

(γ,k) by MΛ̃(γ,k) to project

out FTk,∗Λ
′ in the above procedure.

For the second-step estimator, the CV procedure is standard. For the third

step, we fix the tuning parameter before the iterations begin.
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4.3.5 Lag length selection

In the estimation procedure, we have so far assumed that the lag length

p is known. In practice, the lag length p is usually unknown and requires

estimation. In this subsection, we propose a procedure to determine the lag

length p. Suppose we estimate the model with some pmax ≥ p0, where we

use the superscript ‘0’ to denote the true parameter. The model with pmax

continues to be a correctly specified model except that A0
k = 0 for k > p0. Due

to LASSO regularization, the estimator Âp for p > p0 should shrink to zero.

Noting this point, we propose to determine the lag length by the following

procedure:

1. Obtain the estimates Âk with lag length pmax;

2. Calculate ak = ||Âk||2F ∨ c for some constant c and k = 1, ..., pmax;

3. The criterion function we consider is given by the ratio

GR(p) =

∑pmax

k=p ak∑pmax

k=p+1 ak
, p = 1, ..., pmax − 1.

The term GR refers to the growth ratio of
∑pmax

k=p ak.

4. The estimator of p0 is the maximizer ofGR(p) : p̂ = arg max1≤k<pmax
GR (k).

Remark 4.5 (i) One can also simply run an `1-nuclear penalized regression

with pmax, which is the first step of the estimation procedure given in Section

3.1. We only require that ||Âk − A0
k||F converge to zero at a certain rate.

(ii) In practice, one may obtain a very small or even zero ||Âk||2F for large

k > p0. In this case, if we directly use ak = ||Âk||2F, the growth ratio may

possibly choose a larger p than p0. To solve this problem, we bound ak below

by some constant c > 0.

(iii) The GR(p) criterion function is constructed to allow for zeros A0
k for

k < p0. If we believe all A0
k are nonzero, one can also consider the criterion

function FR(p) = ap/ap+1, where the term FR refers to Frobenius norm ratio.
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4.4 Monte Carlo Simulations

In this section we evaluate the finite sample performance of our estimation

procedure by means of a set of Monte Carlo experiments.

4.4.1 Data generating processes

We consider three main cases with p = 1. In each case, we consider both

strict sparsity and approximate sparsity subcases. Thus, we have six data

generating processes (DGPs) in total. For each DGP, we generate the data

from the following high dimensional VAR(1) process with CFs:

Yt = A0
1Yt−1 + Λ0f 0

t + ut, (4.10)

where A0
1 varies across different DGPs, Λ0 = (λ0

1, ..., λ
0
N)′. The factor load-

ing λ0
ri, for r = 1, ..., R0, is independently and identically distributed (i.i.d.)

standard normal random variables. The factors f 0
tr, for r = 1, ..., R0, follow an

autoregressive process:

f 0
tr = ρf · f 0

t−1,r + ε
(f)
tr ,

where ρf = 0.6 and ε
(f)
tr are i.i.d. N (0, 1). The idiosyncratic error terms are

generated as uit = s · ε(u)
it , where s controls the signal-to-noise ratio, and ε

(u)
it

are i.i.d. N(0, 1).

DGP 1 (Tridiagonal transition matrix): (A0
1)ij = 0.3 · 1(|i− j| ≤ 1).

DGP 2 (Block-diagonal transition matrix): We generate a block-diagonal

matrix A0
1 =blkdiag(S1, ..., SK), where the Sk’s are 5 × 5 random matrices.

The diagonal entries of Sk are fixed with (Sk)i,i = 0.3. In each column of Sk,

we randomly choose 2 out of 4 off-diagonal entries to be −0.3.

DGP 3 (Random matrix): We fix diagonal entries of A0
1 to be 0.3 (i.e. (A0

1)ii =

0.3). In each row of A0
1, we randomly choose 3 out of N − 1 entries to be −0.3.

FIGURE 4.1 around here

Figure 4.1 illustrates the structure of the random transition matrices used in
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our simulation. For each DGP, we consider N = 30, 60, and T = 100, 200, 400,

leading to six combinations of cross-sectional and time series dimensions. The

number of replications is set to 500.

4.4.2 Implementation and estimation results

For each DGP, we consider the feasible estimator proposed in this work

and the oracle least squares estimator. The oracle estimators are obtained by

using the information of the number of factors and the true regressors.

Table 4.1 reports the model selection accuracy. For each combination of

N and T in each DGP, the fourth and fifth columns report the under- and

over-estimation rate of R̂, respectively. The TPR (true positive rate) columns

report the average shares of relevant variables included. The FPR (false pos-

itive rate) columns report the average shares of irrelevant variables included.

We summarize some important findings from Table 4.1. First, the proposed

hard singular value thresholding procedure correctly determined the number

of factors for each case. Second, with N fixed, the TPR increases with T in

all cases as expected. All three step estimators can include almost all the true

regressors when T = 400. Third, among the three estimators, the conservative

LASSO (3rd step) estimator includes the least regressors with zero coefficients

in almost all settings. In addition, only conservative LASSO estimator tends

to exclude more irrelavent regressors as T increases, while the FPRs of the first

and second step estimators increase as T grows.

TABLE 4.1 around here

Table 4.2 reports the estimation error of both the feasible estimators and

the oracle least squares estimator. We report the root mean squared errors

(RMSEs) for all entries and nonzero entries respectively. We summarize some

important findings from Table 4.2. First, as expected, the oracle least squares

estimator uniformly outperforms the feasible estimators. This is mainly due

to the fact that the FPRs of feasible estimators were never zero. Second,
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the RMSE of the oracle estimator for nonzero entries decreases with T at a
√
T rate and changes with N slightly. This is consistent with our theoretical

prediction that the oracle least squares estimator converges to the true values

at the
√
T rate. Third, the conservative LASSO outperforms the other two

feasible estimators in terms of RMSEs in all cases.

TABLE 4.2 around here

For all DGPs, we also consider estimation of a misspecified VAR(1) model,

Yt = A0
1Yt−1 + ut, where the common factors are ignored. We first estimate

the model with LASSO as in KC (2015). Then we construct the weights as

in 4.9 and use conservative LASSO to estimate the misspecified model. Table

4.3 reports the performance of these two estimators. We summarize some

important findings from Table 4.3. First, the FPRs for both estimators are

quite high. This indicates that the misspecification may lead to non-sparse

estimates of the transition matrices, in the presence of latent factors. Second,

the estimators for the misspecified model also have higher RMSEs. Third, in

many cases, the conservative LASSO estimator performs even worse than the

LASSO estimator in terms of RMSEs.

TABLE 4.3 around here

4.5 Empirical application

4.5.1 Evaluating a network of financial assets volatilities

In recent years, financial asset connectedness has been an active topic in

financial econometrics. Examples of contributions to this literature include

Barigozzi and Brownlees (2019; hereafter BB), Barigozzi and Hallin (2017),

Billio et al. (2012), Diebold and Yilmaz (2014; hereafter DY) and Diebold and

Yilmaz (2015) , and Hautsch et al. (2014). Some of these authors directly

model the large panel of time series as a vector autoregressive process with-

out considering the existence of potential common factors. A LASSO type
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method is employed to estimate the transition matrices. However, Barigozzi

and Hallin (2017) and BB (2019) documented evidence for the existence of a

factor structure in volatility. Barigozzi and Hallin (2017) considered control-

ling for the presence of common factors by means of a dynamic factor model.

BB (2019) use regression residuals of individual volatilities on observed fac-

tors (e.g., market volatility or sector-specific volatility) to represent the id-

iosyncratic components of the volatilities. Neither of these papers provides

theoretical justification for the approach.

In this empirical application, we extend the measure of connectedness of

DY and study the connectedness of financial assets. Specifically, we study

the connectedness in a panel of volatility measures. As remarked by DY, the

volatilities of financial assets can be interpreted as a form of ‘investor fear’.

Then volatility connectedness represents ‘fear connectedness’ across assets. In

this scenario, it is natural to take into account common factors, which reflect

confidence in the market. Spillover effects across assets is another reason for

connectedness. We use the econometric methodology derived in the present

work to analyze a panel of return volatilities of 23 sector ETF funds. The

findings show that common factors account for 58% of the overall variabil-

ity. Conditioning on these factors, the interdependence across individuals still

captures a relatively high proportion of the variation.

Data description and empirical framework

We collect the weekly ‘open price’, ‘close price’, ‘high price’ and ‘low price’

of a series of sector ETF funds from Yahoo finance. A list of the fund names

and tickers is given in Table 4.4.

Table 4.4 around here

They fall into several categories. The ‘Energy’, ‘Financial’ and ‘Consumer

cyclical’ are three large categories which contain three to four funds. The other

categories contain at most two funds. The sample spans July 2007 to August

2019, which corresponds to 688 weeks. As volatility is unobserved, we use the
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observed price data to estimate it. Specifically, we follow Garman and Klass

(1980) and Alizadeh et al. (2002) to estimate asset volatility by the measure

σ̃2
it = 0.511(Hit − Lit)2 − 0.019[(Cit −Oit)(Hit + Lit − 2Oit)− 2(Hit −Oit)(Lit −Oit)]

−0.383(Cit −Oit)2,

where Oit, Cit, Hit, and Lit are natural logarithms of weekly ‘open price’,

‘close price’, ‘high price’ and ‘low price’, respectively. We present descriptive

statistics for volatilities in Table 4.5. The kurtosis of each time series is quite

large. We follow DY (2014) to normalize the data by taking natural logarithms

and then center each time series, that is our yit is given by log(σ̃2
it)− log(σ̃2

i·).

Table 4.5 around here

Given the panel of volatilities, we fit the data in our VAR with common

factors model in (4.1). By the decomposition (4.5), yit = y
(f)
it + y

(u)
it , where

y
(f)
it is due to the common factors and y

(u)
it is due to the idiosyncratic errors.

In addition var(yit) =var(y
(f)
it )+var(y

(u)
it ). Then νi ≡var(y

(f)
it )/var(yit) mea-

sures the proportion of variance in yit that is due to common factors and

ν̄ ≡
∑N

i=1var(y
(f)
it )/

∑N
i=1var(yit) measures the proportion of variation in all

time series.

For the idiosyncratic component y
(u)
it , we can calculate the measure of con-

nectedness proposed by DY (2014). As discussed in the Section 4.2, we have

y
(u)
it =

∑∞
j=0 α

(u)
iN (j)C(u)ε

(u)
t−j, where α

(u)
iN (j) = (e1,p ⊗ ei,N)′Φj(e1,p ⊗ IN) and

ε
(u)
t ∼ (0, IN). One can treat the ε

(u)
it ’s as the idiosyncratic shocks to indi-

vidual i. The variance of H-step ahead prediction error due to {ε(u)
j,t+h}Hh=1

is sHij =
∑H−1

h=0 ([α
(u)
iN (h)C(u)]j)

2. If we can identify both Φ and C(u), we

can easily estimate the variance decomposition matrix ĎH with (i, j)th en-

try sHij /
∑N

k=1 s
H
ik. However, C(u) is not identified without further assumption.

Although we cannot identify C(u), the matrix Σu = C(u)C(u)′ is identified.

DY (2014) propose to calculate the H-step generalized variance decomposition
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matrix DH = [dHij ]N×N , where

dHij =
σ−1
jj

∑H−1
h=0 (α

(u)
iN (h)Σuej,N)2∑H−1

h=0 α
(u)
iN (h)Σuα

(u)
iN (h)′

, and ej,N is jth unit N dimensional vector.

Unlike ĎH , the row sums of DH are not necessarily unity. We normalize

DH to D̃H with (i, j)th entry d̃Hij = dHij /
∑N

k=1 d
H
ik so that

∑N
j=1 d̃

H
ij = 1 and∑N

i,j=1 d̃
H
ij = N . Hence, overall connectedness in the y

(u)
it ’s can be measured as

d̃H =
∑

i 6=j d̃
H
ij /N . In addition, we let d̃Hi← ≡

∑
j 6=i d̃

H
ij . Following DY (2014),

we call d̃Hi← the ‘FROM’ index, as it measures the proportion of generalized

variance decomposition that is due to other individuals. Similarly, we let

d̃H←j ≡
∑

i 6=j d̃
H
ij and call this the ‘TO’ index.

Estimation results

We use the procedure proposed in section 4.3.3 to determine the lag length

with pmax = 8. The result gives p̂ = 4. When we run the regression with p = 4,

the number of factors is determined to be one (R̂ = 1).

Figure 4.2 around here

Figure 4.2 reports the heat map which represents the estimates of the Âk’s.

The element value is represented by scaled color. First, most of the nonzero

entries are estimated to be positive. The positive coefficients represent the

propagation of investor fear across assets. Second, the diagonal elements of

Âk’s are mostly nonzero. The magnitude of the diagonal elements is larger than

that of the off diagonal elements on average. Third, the number of nonzero

coefficients in Âk decreases as k increases and the average magnitude of the

entries also decreases. More recent investor fear causes greater present investor

fear. In all, 330 out of 2116 entries are nonzero.

Table 4.6 around here

Next we calculate the statistics introduced in the last subsection. Table 4.6

provides the estimates of νi, d̃
H
i←, and d̃H←j. Almost all the γi’s are above 50%,
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and the overall variation due to the common factors is ν̄ = 58.4%. The market

level investor fear is playing a dominant roll in investor trading behavior. After

conditioning on the factors, we consider the idiosyncratic part by looking at

d̃Hi←, d̃
H
←j and the H-step generalized variance decomposition matrix D̃H . The

‘FROM’ index ranges between 28.7% and 72.7%. Interestingly, the ‘energy’ and

‘finance’ funds have higher ‘FROM’ index compared to other funds. A similar

observation applies for the ‘TO’ index. Specifically, the ‘TO’ index of XLE

and IYE are close to 100% and both are ‘energy’ funds. The energy industry

therefore transmits considerable investor fear to the entire market. This finding

is intuitive as the oil price has been extremely volatile in recent years and

the energy price affects all industries. The fund GDX (VanEck Vectors Gold

Miners ETF) has the least connectedness. It receives only 28.7% connectedness

from other assets and transmits only 23.6% connectedness to others. The

overall connectedness measure is 49.8%. Conditioning on the factors, there

is still substantive transmission of investor fear across individuals. Figure 4.3

reports the heat map of the H-step generalized variance decomposition matrix

D̃H at H = 12. We observe that the interconnections within the same category

is high, whereas connectedness across categories is relatively low.

Figure 4.3 around here

The lower panel of Table 4.6 provides the measure of connectedness with

the pure VAR model estimation as in Demirer et al. Without controlling for

the common factors, the ’FROM; and ’TO’ index of each fund becomes much

larger. However, we observe little heterogeneity across categories. In this case,

all the connectedness due to common factors is interpreted as the individual

level connectedness, which potentially leads to wrong inference.

In sum, our framework extends traditional VAR(p) analysis of financial

asset connectedness to control for the presence common factors in the deter-

mination of volatility. We have found that common factors account for more

than half of the variation in the data. In addition to the connectedness that
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is due to common factors there is still a remarkable degree of connectedness

that arises from spillover channels that operate among the assets themselves.

4.6 Conclusion

The methodology developed in this paper provides for regularized estima-

tion of high dimensional VARs with unobserved common factors that allow for

strong cross section dependence as well as serial dependence among the time

series. Incorporating such dependence is particularly important in high di-

mensional disaggregated data where connectedness between the variables may

arise through many different channels. This dependence and connectedness

are seen to be especially relevant in studying the transmission of investor fear

across financial assets in our study of asset price volatility.

The practical elements involved in implementing our procedure can be sum-

marized as follows. Given VAR lag length, which is later chosen by means of a

growth ratio criterion, preliminary estimates of the model are obtained using

`1-nuclear norm regularized estimation. The number of factors and a prelimi-

nary estimate of the common factors are obtained and the correct number of

factors can be estimated with probability approaching one. Next, we estimate

the model using the generalized LASSO using the preliminary estimate of the

common factors as regressors. Conservative LASSO is then used to obtain the

final estimates, which are asymptotically equivalent to the oracle least squares

estimates obtained as if the true regression model were known.

The methods and results open up multiple avenues for further research.

First, following Barigozzi and Brownlees (2019) it may be useful in practice

to impose some sparsity assumptions on the large dimensional error variance

matrix and develop estimation methods to achieve this. Second, frequency do-

main methods can be used to estimate the common factor components. Third,

the model studied here does not allow for structural change in the transition

matrices or the factor loadings. It will also be interesting and challenging to
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study high dimensional VAR models with common factors that may involve

time-varying transition matrices and factor loadings, which can help to capture

empirically evolution in institutional and regulatory frameworks.

Tables and Figures

Table 4.1: Model Selection Accuracy

Number of factors Step 1 Step 2 Step 3

DGP N T UER OER TPR FPR TPR FPR TPR FPR

1 30 100 0.0% 0.0% 97.4% 19.3% 98.8% 18.5% 93.7% 8.0%

30 200 0.0% 0.0% 99.6% 19.1% 99.9% 18.1% 99.4% 5.8%

30 400 0.0% 0.0% 99.9% 21.8% 100.0% 19.5% 99.9% 4.9%

60 100 0.0% 0.0% 96.8% 12.7% 98.2% 12.2% 90.5% 5.1%

60 200 0.0% 0.0% 99.9% 12.2% 100.0% 11.7% 99.1% 2.6%

60 400 0.0% 0.0% 100.0% 11.9% 100.0% 11.1% 99.9% 1.7%

2 30 100 0.0% 0.0% 86.2% 21.8% 83.9% 18.9% 94.0% 15.7%

30 200 0.0% 0.0% 95.3% 28.0% 93.7% 24.8% 99.4% 12.8%

30 400 0.0% 0.0% 99.2% 37.0% 98.7% 33.3% 99.9% 8.2%

60 100 0.0% 0.0% 76.7% 10.3% 76.5% 9.4% 90.6% 10.7%

60 200 0.0% 0.0% 88.9% 12.5% 89.7% 12.0% 99.2% 8.9%

60 400 0.0% 0.0% 96.4% 17.7% 95.8% 16.7% 100.0% 5.5%

3 30 100 0.0% 0.0% 93.2% 24.9% 92.3% 22.0% 96.5% 17.4%

30 200 0.0% 0.0% 98.1% 31.4% 97.6% 27.6% 99.6% 11.7%

30 400 0.0% 0.0% 99.5% 38.4% 99.3% 34.4% 99.7% 7.3%

60 100 0.0% 0.0% 88.1% 12.8% 88.4% 11.8% 95.9% 11.8%

60 200 0.0% 0.0% 96.1% 15.6% 95.5% 13.9% 99.8% 9.4%

60 400 0.0% 0.0% 98.9% 19.5% 98.6% 17.9% 100.0% 4.5%

Note: We report the under/over-estimation rate (UER and OER) of the number of factors in the UER and
OER column, respectively. The true positive rate (TPR) columns report the average shares of relevant
variables included. The FPR (false positive rate) columns report the average shares of irrelevant variables
included.
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Table 4.2: Root mean squared errors of the feasible and oracle transition matrix
estimators

All entries Nonzero entries

DGP N T Oracle Step
1

Step
2

Step
3

Oracle Step
1

Step
2

Step
3

1 30 100 0.019 0.063 0.059 0.050 0.062 0.145 0.132 0.117

30 200 0.014 0.055 0.051 0.033 0.044 0.118 0.106 0.066

30 400 0.010 0.052 0.049 0.029 0.033 0.100 0.092 0.047

60 100 0.013 0.044 0.041 0.038 0.061 0.150 0.138 0.131

60 200 0.010 0.035 0.032 0.021 0.043 0.108 0.098 0.066

60 400 0.007 0.033 0.031 0.016 0.032 0.089 0.080 0.041

2 30 100 0.018 0.065 0.065 0.057 0.056 0.177 0.184 0.154

30 200 0.012 0.055 0.055 0.038 0.039 0.142 0.150 0.103

30 400 0.009 0.047 0.047 0.027 0.028 0.110 0.119 0.070

60 100 0.012 0.050 0.049 0.044 0.054 0.204 0.205 0.179

60 200 0.008 0.042 0.041 0.028 0.038 0.170 0.168 0.114

60 400 0.006 0.035 0.035 0.019 0.027 0.138 0.143 0.081

3 30 100 0.019 0.065 0.064 0.055 0.051 0.150 0.155 0.127

30 200 0.013 0.053 0.053 0.035 0.035 0.117 0.123 0.082

30 400 0.009 0.047 0.047 0.027 0.025 0.095 0.100 0.058

60 100 0.013 0.050 0.049 0.042 0.049 0.173 0.173 0.146

60 200 0.009 0.039 0.040 0.024 0.034 0.135 0.140 0.085

60 400 0.006 0.033 0.033 0.015 0.024 0.109 0.113 0.056

Note: We report the root mean squared errors (RMSEs) of the feasible and oracle transition matrix
estimators. 4th-7th columns report the RMSEs of all entries. 8th-11th columns report the RMSEs of
non-zero entries.

Figure 4.1: Structure of transition matrices
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Table 4.3: Results of misspecified estiamtes

LASSO Conservative LASSO

DGP N T TPR FPR RMSEa RMSEb TPR FPR RMSEa RMSEb

1 30 100 78.7% 34.9% 0.115 0.208 78.4% 45.2% 0.178 0.227

30 200 88.9% 37.7% 0.094 0.178 88.1% 43.3% 0.129 0.173

30 400 95.3% 45.0% 0.083 0.150 94.5% 43.0% 0.103 0.134

60 100 71.0% 22.6% 0.086 0.216 72.8% 39.5% 0.161 0.240

60 200 86.7% 25.7% 0.070 0.179 87.0% 38.9% 0.114 0.175

60 400 94.9% 30.2% 0.058 0.148 95.3% 37.9% 0.083 0.128

2 30 100 86.2% 59.6% 0.150 0.202 81.9% 54.8% 0.211 0.233

30 200 95.0% 61.5% 0.107 0.152 91.7% 51.4% 0.139 0.159

30 400 98.9% 66.3% 0.080 0.113 97.7% 50.5% 0.098 0.110

60 100 77.0% 46.6% 0.135 0.218 74.1% 48.9% 0.222 0.263

60 200 91.6% 51.9% 0.100 0.165 86.8% 44.6% 0.143 0.175

60 400 98.3% 56.1% 0.072 0.120 96.7% 44.4% 0.097 0.116

3 30 100 89.2% 59.2% 0.139 0.186 85.7% 55.9% 0.196 0.215

30 200 96.2% 61.4% 0.102 0.141 94.0% 54.3% 0.133 0.148

30 400 99.1% 67.1% 0.079 0.107 98.3% 53.2% 0.096 0.106

60 100 82.0% 46.1% 0.126 0.203 79.8% 50.6% 0.208 0.247

60 200 94.0% 51.7% 0.093 0.151 90.5% 46.6% 0.135 0.164

60 400 98.8% 55.5% 0.068 0.110 97.6% 45.0% 0.091 0.109

Note: We report the true positive rate (TPR), false positive rate (FPR), root mean squared errors of all
entries (RMSEa) and nonzero entries (RMSEb) of misspecified estimates. We consider the LASSO
estimator as in Kock and Callot (2015) and a conservative LASSO estimator. The LASSO estimator was
used to construct weights for conservative LASSO.

Figure 4.2: Heat map of the transition matrices
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Table 4.4: Funds information

category ticker fund name category ticker fund name

Energy XLE
Energy Select Sector SPDR
Fund

Natu XLB
Materials Select Sector SPDR
Fund

XOP
Spdr S&P Oil & Gas Explo &
Prod Etf

XME
SPDR S&P Metals & Mining
ETF

IYE iShares U.S. Energy ETF Tech XLK
Technology Select Sector
SPDR Fund

OIH
VanEck Vectors Oil Services
ETF

SMH
VanEck Vectors
Semiconductor ETF

Financial XLF
Financial Select Sector SPDR
Fund

Heal XLV
Health Care Select Sector
SPDR Fund

KBE SPDR S&P Bank ETF IBB
iShares Nasdaq Biotechnology
ETF

KRE
SPDR S&P Regional Banking
ETF

Def XLP
Consumer Staples Select
Sector SPDR Fund

Cyc XLY
Cons. Disc. Select Sector
SPDR Fund

Util XLU
Utilities Select Sector SPDR
Fund

XHB Spdr S&P Homebuilders Etf Indu XLI
Industrial Select Sector SPDR
Fund

ITB
iShares U.S. Home
Construction ETF

EPM GDX
VanEck Vectors Gold Miners
ETF

XRT Spdr S&P Retail Etf
Rea IYR iShares U.S. Real Estate ETF

VNQ
Vanguard Real Estate Index
Fund ETF

Note. Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,
natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.

Table 4.5: Descriptive statistics

TICKER XLE XOP IYE OIH XLF KBE KRE XLY
mean 0.00136 0.00246 0.00141 0.00220 0.00157 0.00194 0.00184 0.00082

median 0.00063 0.00130 0.00059 0.00128 0.00041 0.00059 0.00066 0.00029
max 0.06034 0.06290 0.11527 0.05856 0.05743 0.04793 0.09748 0.03063
min 0.00004 0.00005 0.00004 0.00008 0.00001 0.00002 0.00002 0.00001
std 0.00369 0.00472 0.00549 0.00418 0.00463 0.00484 0.00539 0.00214

skewness 10.954 7.604 15.469 8.159 7.645 5.823 11.530 8.869
kurtosis 151.595 77.386 291.137 88.226 77.152 44.720 175.439 102.667

TICKER XHB ITB XRT IYR VNQ XLB XME XLK
mean 0.00218 0.00251 0.00115 0.00137 0.00146 0.00098 0.00264 0.00071

median 0.00079 0.00102 0.00056 0.00039 0.00041 0.00047 0.00133 0.00031
max 0.05071 0.04660 0.03094 0.04847 0.04831 0.02948 0.05631 0.03112
min 0.00007 0.00001 0.00001 0.00003 0.00004 0.00004 0.00014 0.00002
std 0.00431 0.00473 0.00231 0.00377 0.00403 0.00205 0.00510 0.00187

skewness 5.305 4.936 7.783 6.789 6.958 8.059 6.912 9.814
kurtosis 41.414 33.799 83.839 61.695 64.487 90.224 62.231 128.784

TICKER SMH XLV IBB XLP XLU XLI GDX
mean 0.00111 0.00054 0.00105 0.00036 0.00062 0.00075 0.00263

median 0.00069 0.00025 0.00058 0.00016 0.00030 0.00036 0.00154
max 0.02010 0.02865 0.03488 0.02197 0.03903 0.02108 0.07009
min 0.00004 0.00002 0.00003 0.00001 0.00003 0.00001 0.00010
std 0.00153 0.00162 0.00207 0.00111 0.00193 0.00156 0.00439

skewness 5.713 11.898 9.968 13.670 14.053 7.405 8.300
kurtosis 52.259 176.016 135.878 237.109 250.309 76.935 102.080
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Table 4.6: Connectedness measures across funds

Connectedness measures by estimates of VAR with CFs model
TICKER XLE XOP IYE OIH XLF KBE KRE XLY
νi 64.9% 59.1% 65.4% 58.0% 65.2% 56.8% 56.6% 72.0%
FROM 71.4% 65.4% 71.7% 64.3% 61.7% 61.3% 62.3% 51.8%
TOi 106.8% 86.0% 103.9% 71.5% 57.8% 72.6% 51.4% 37.3%
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
νi 53.6% 49.5% 60.1% 50.7% 49.7% 67.2% 56.9% 70.5%
FROMi 60.5% 58.3% 36.5% 57.9% 58.6% 37.5% 44.1% 39.0%
TOi 56.3% 41.7% 19.0% 79.7% 74.4% 26.3% 37.2% 37.3%
TICKER SMH XLV IBB XLP XLU XLI GDX average
νi 54.8% 64.3% 50.7% 61.3% 50.6% 67.7% 31.0% ν̄ =56.1%

FROMi 31.9% 38.3% 28.8% 30.7% 29.7% 40.9% 27.7% d̄12 =49.8%

TOi 23.3% 34.1% 33.0% 21.2% 19.6% 20.7% 19.1%

Connectedness measures by estimates of pure VAR model
TICKER XLE XOP IYE OIH XLF KBE KRE XLY
FROMi 89.3% 87.1% 89.4% 87.0% 89.6% 86.8% 87.6% 90.9%
TOi 105.0% 79.5% 103.0% 77.7% 112.9% 97.0% 89.1% 110.5%
TICKER XHB ITB XRT IYR VNQ XLB XME XLK
FROMi 87.3% 86.3% 88.8% 85.7% 86.2% 90.1% 88.8% 89.8%
TOi 95.8% 80.8% 79.1% 94.0% 89.6% 105.6% 80.1% 103.8%
TICKER SMH XLV IBB XLP XLU XLI GDX average
FROMi 87.6% 88.1% 83.8% 88.4% 85.7% 89.8% 76.5% d̄12 =87.40%

TOi 74.8% 81.2% 60.8% 80.0% 60.0% 104.3% 45.8%

Note. Cyc, Rea, Natu, Tech, Heal, Def, Util, Indu and EMP stand for consumer cyclical, real estate,
natural resource, technology, health care, consumer defensive, utilities, industrials and equity precious
metals, respectively.

Figure 4.3: Heat map of D̃12
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Chapter 5

Conclusion

This study contribute to the estimation and inference theory of the hetero-

geneous large panel models. We have considered several types of heterogeneity

in our three models: (1) slope heterogeneity due to the threshold effect; (2)

slope and threshold parameters heterogeneity due to latent group structure; (3)

time varying heterogeneity due to interactive fixed effects or common factors.

The asymptotic properties of the proposed estimators of regression coefficients

are established. For each model, we have proposed various tests to correctly

specify the models, for instance, determining the number of factors or groups.

Extensive Monte Carlo experiments are done to show the good performance

of the proposed estimators and tests. In empirical applications, the methods

are employed to study several problems in macro-economics and finance. We

document significant level of heterogeneity in various real datasets.

In the future research, it is interesting to extend the models in several direc-

tions. First, one can consider heterogeneous panel threshold regressions with

endogeneity. Second, one can extend the models by allowing for parameters

to allow for structural change. Third, since we are in large T framework, it is

interesting to extend the models to consider nonstationary time series data.
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Appendix A

Technical Results for Chapter 2

Proof of the main results

In this appendix we prove the main results in the paper. The proof relies on

some technical lemmas whose proofs are given in the online supplement.

Let πNT = min(
√
N,
√
T ). As we require N/T → κ as (N, T ) → ∞, we may

use the property O(T ) = O(N) in various places.

Proof of Theorem 2.1

To prove Theorem 2.1, we need the following two lemmas.

Lemma A.1. Suppose Assumptions A.2 and A.4 hold. Then

(i)
1

NT
‖ee′‖ = Op(π

−1
NT ),

1

NT
‖e′e‖ = Op(π

−1
NT ),

1

NT
‖e′eF 0‖ = Op(π

−1
NT ),

1

NT
‖Λ0′ee′‖ = Op(π

−1
NT );

(ii)
1√
NT
‖eF 0‖ = Op(1),

1√
NT
‖Λ0′e‖ = Op(1),

1√
NT
‖Λ0′eF 0‖ = Op(1);

(iii) sup
γ∈Γ

1

NT
‖eX′k,γ‖ = Op(π

−1
NT ) for k = 1, . . . , 2K;

(iv) sup
γ∈Γ

1√
NT
|tr(eX′k,γ)| = Op(1), sup

γ∈Γ

1√
NT
|tr(eX′k,γMΛ0)| = Op(1) for k = 1, . . . , 2K.
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Lemma A.2. Under Assumptions A.2 and A.4,

(i) sup
Λ∈L

∥∥∥ 1

NT

T∑
t=1

X ′tMΛet

∥∥∥ = Op(π
−1
NT ),

(ii) sup
(Λ,γ)∈L×Γ

∥∥∥ 1

NT

T∑
t=1

Xt(γ)′MΛet

∥∥∥ = Op(π
−1
NT ),

(iii) sup
Λ∈L

∥∥∥ 1

NT

T∑
t=1

f0′
t Λ0′MΛet

∥∥∥ = Op(π
−1
NT ),

(iv) sup
Λ∈L

∣∣∣ 1

NT

T∑
t=1

e′tPΛet

∣∣∣ = Op(π
−2
NT ),

where L =
{

Λ ∈ RN×R : N−1Λ′Λ = IR
}
.

Proof of Theorem 2.1. (i) Let Xt(γ1, γ2) = Xt(γ1)−Xt(γ2). Note that

Yt −Xtβ −Xt(γ)δ ≡ Λ0f0
t + et + Ψt(θ, γ),

where Ψt(θ, γ) ≡ −Xt(β − β0) − Xt(γ)(δ − δ0) − Xt(γ, γ
0)δ0 = −Xt,γ(θ − θ0) −

Xt(γ, γ
0)δ0. The objective function can be rewritten as

L(θ,Λ, γ) =

T∑
t=1

[
Λ0f0

t + et + Ψt(θ, γ)
]′MΛ

[
Λ0f0

t + et + Ψt(θ, γ)
]

= L1(θ,Λ, γ) + L2(θ,Λ, γ) +

T∑
t=1

e′tMΛet, (A.1)

where

L1(θ,Λ, γ) =
T∑
t=1

Ψt(θ, γ)′MΛΨt(θ, γ) +
T∑
t=1

f0′
t Λ0′MΛΛ0f0

t + 2
T∑
t=1

Ψt(θ, γ)′MΛΛ0f0
t , and

L2(θ,Λ, γ) = 2
T∑
t=1

f0′
t Λ0′MΛet + 2

T∑
t=1

Ψt(θ, γ)′MΛet.

It is easy to verify that L(θ0,Λ0, γ0) =
∑T

t=1 e
′
tMΛ0et. Then we have

L(θ,Λ, γ)− L(θ0,Λ0, γ0) = L1(θ,Λ, γ) + L2(θ,Λ, γ)−
T∑
t=1

e′t(PΛ − PΛ0)et. (A.2)

By Lemma A.2(i)-(iv), we have

sup
‖θ‖≤M

sup
(Λ,γ)∈L×Γ

∣∣∣ 1

NT
L2(θ,Λ, γ)− 1

NT

T∑
t=1

e′t(PΛ − PΛ0)et

∣∣∣ = op(1).
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This result, together with the fact that L(θ̂, Λ̂, γ̂) − L(θ0,Λ0, γ0) ≤ 0, implies

1
NT L1(θ̂, Λ̂, γ̂) + op(1) ≤ 0.

Let Ψ(θ, γ) = (Ψ1(θ, γ), . . . ,ΨT (θ, γ)), which is an N × T matrix. Noting that

T∑
t=1

Ψt(θ, γ)′MΛΨt(θ, γ) = tr[Ψ(θ, γ)′MΛΨ(θ, γ)]

= tr[(MF 0 + PF 0)Ψ(θ, γ)′MΛΨ(θ, γ)]

= tr[MF 0Ψ(θ, γ)′MΛΨ(θ, γ)]

+ tr
[
(F 0′F 0)−1/2F 0′Ψ(θ, γ)′MΛΨ(θ, γ)F 0(F 0′F 0)−1/2

]
,

T∑
t=1

f0′
t Λ0′MΛΛ0f0

t = tr[(F 0′F 0)1/2Λ0′MΛΛ0(F 0′F 0)1/2], and

T∑
t=1

Ψt(θ, γ)′MΛΛ0f0
t = tr[(F 0′F 0)1/2Λ0′MΛΨ(θ, γ)F 0(F 0′F 0)−1/2],

we have

L1(θ,Λ, γ) = tr[MF 0Ψ(θ, γ)′MΛΨ(θ, γ)] + tr[Ξ(θ, γ)′MΛΞ(θ, γ)],

where Ξ(θ, γ) ≡ Λ0(F 0′F 0)1/2 + Ψ(θ, γ)F 0(F 0′F 0)−1/2. Let B(Λ, γ), Z(Λ, γ) and

Z̃(Λ, γ) be the notations introduced in Section 2.3. Let

B̃(Λ, γ) ≡ 1

NT
Z(Λ, γ)′Z̃(Λ, γ) and B̆(Λ, γ) ≡ 1

NT
Z̃(Λ, γ)′Z̃(Λ, γ).

Using the properties that tr (B1B2B3) =vec(B1)′ (B2 ⊗ I)vec(B′3) and

tr (B1B2B3B4) = vec (B1)′
(
B2 ⊗B′4

)
vec

(
B′3
)

for any conformable matrices B1, B2, B3, B4 and an identity matrix I (see, e.g.,

Bernstein (2005, p.253)), we have

tr[MF 0Ψ(θ, γ)′MΛΨ(θ, γ)] = vec
(
Ψ(θ, γ)

)′
(MF 0 ⊗MΛ) vec

(
Ψ(θ, γ)

)
.

Noting that (MF 0 ⊗MΛ)~(Ψ(θ, γ)) = −Z(Λ, γ)(θ − θ0) − Z̃(Λ, γ)δ0 and MF 0 ⊗MΛ

is a projection matrix, we have 1
NT tr [MF 0Ψ(θ, γ)′MΛΨ(θ, γ)]

=
[
θ − θ0 + B(Λ, γ)−1B̃(Λ, γ)δ0

]′B(Λ, γ)
[
θ − θ0 + B(Λ, γ)−1B̃(Λ, γ)δ0

]
+ δ0′[B̆(Λ, γ)− B̃(Λ, γ)′B(Λ, γ)−1B̃(Λ, γ)

]
δ0

≡ 1

NT
L1,1(θ,Λ, γ) +

1

NT
L1,2(Λ, γ), say, (A.3)

where the invertibility of B(Λ, γ) is ensured by Assumption A.1(i). By quadratic
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form, we have (NT )−1L1,1(θ,Λ, γ) ≥ 0. Noting that (NT )−1L1,2(Λ, γ) can be writ-

ten as δ0′Z̃(Λ, γ)′MZ(Λ,γ)Z̃(Λ, γ)δ0, we also have (NT )−1L1,2(Λ, γ) ≥ 0. It is easy

to verify that B(Λ, γ), B̃(Λ, γ) and B̆(Λ, γ) are Op(1) uniformly in (Λ, γ). Noting

that δ0 = o(1), (NT )−1L1,2(Λ, γ) ≥ 0 and (NT )−1tr[Ξ(θ, γ)′MΛΞ(θ, γ)] ≥ 0 for all

(γ,Λ), the fact that 1
NT L1(θ̂, Λ̂, γ̂) + op(1) ≤ 0 implies

(θ̂ − θ0)′B(Λ̂, γ̂)(θ̂ − θ0) + op(1) < 0.

This implies that ‖θ̂ − θ0‖ = op(1) by Assumption A.1(i).

(ii) Given ‖θ̂ − θ0‖ = op(1), we can readily show that

1

NT
tr[Ψ(θ̂, γ̂)′M

Λ̂
Ψ(θ̂, γ̂)] = op(1) and

1

NT
tr[Ψ(θ̂, γ̂)′M

Λ̂
Λ0F 0′] = op(1).

These results, in conjunction with the fact that 1
NT L1(θ̂, Λ̂, γ̂) = op(1), implies that

1
NT tr[Ξ̂′M

Λ̂
Ξ̂] = op(1) where Ξ̂ ≡ Ξ(θ̂, γ̂). It follows that

1

NT
tr
(
F 0Λ0′M

Λ̂
Λ0F 0′) = tr

(
Λ0′M

Λ̂
Λ0

N

F 0′F 0

T

)
= op(1).

Because T−1F 0′F 0 > 0, the above equation implies that

Λ0′M
Λ̂

Λ0

N
=

Λ0′Λ0

N
− Λ0′Λ̂

N

Λ̂′Λ0

N
= op(1).

Hence, Λ̂′Λ0/N is invertible and it follows that IR − Λ̂′PΛ0Λ̂ = op(1). Consequently,

we have

∥∥P
Λ̂
− PΛ0

∥∥2
= tr[

(
P

Λ̂
− PΛ0

)2
] = 2tr(IR − Λ̂′PΛ0Λ̂/N) = op (1) .

This completes the proof of (ii). �

Proof of Theorem 2.2

To prove Theorem 2.2, we need two propositions. In proposition A.1 and A.2,

we establish preliminary convergence rates of Λ̂ and θ̂ respectively. Given the rates,

we go back to equation (A.2) and show the consistency of γ̂.

Proposition A.1. Let H ≡ (F 0′F 0/T )(Λ0′Λ̂/N)V −1
NT . Under Assumptions A.1-

A.4,

(i) VNT
p→ V , where V is a diagonal matrix consisting of eigenvalues of ΣΛ0ΣF 0;

(ii) H is invertible and 1
N ‖Λ̂− Λ0H‖2 = Op(‖θ̂ − θ0‖2 + ‖δ0‖2 + π−2

NT ).
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Proof of Proposition A.1. Let ẽt ≡ Yt−Xtβ̂−Xt(γ̂)δ̂ = et+Λ0f0
t −Xt,γ0(θ̂−θ0)+

Xt(γ
0, γ̂)δ̂. By the eigenvalue equation

(
1
NT

∑T
t=1 ẽtẽ

′
t

)
Λ̂ = Λ̂VNT , we can obtain the

following decomposition

Λ̂− Λ0H =
1

NT

{
ee′ + eF 0Λ0′ + Λ0F 0′e′ −

2K∑
k=1

(θ̂k − θ0
k)eX′k,γ0

−
2K∑
k=1

(θ̂k − θ0
k)Xk,γ0e′ +

K∑
k=1

δ̂keXk(γ
0, γ̂)′ +

K∑
k=1

δ̂kXk(γ
0, γ̂)e′

−
2K∑
k=1

(θ̂k − θ0
k)Λ

0F 0′X′k,γ0 −
2K∑
k=1

(θ̂k − θ0
k)Xk,γ0F 0Λ0′

+

K∑
k=1

δ̂kΛ
0F 0′Xk(γ

0, γ̂)′ +

K∑
k=1

δ̂kXk(γ
0, γ̂)F 0Λ0′

+
2K∑
k=1

2K∑
k′=1

(θ̂k − θ0
k)(θ̂k′ − θ0

k′)Xk,γ0X′k′,γ0 +
K∑
k=1

K∑
k′=1

δ̂kδ̂k′Xk(γ
0, γ̂)Xk′(γ

0, γ̂)′

−
K∑
k=1

2K∑
k′=1

δ̂k(θ̂k′ − θ0
k′)Xk(γ

0, γ̂)X′k′,γ0 −
2K∑
k=1

K∑
k′=1

δ̂k′(θ̂k − θ0
k′)Xk,γ0Xk′(γ

0, γ̂)′

}
Λ̂

≡ (I1 + · · ·+ I15)Λ̂V −1
NT , (A.4)

where Xk(γ1, γ2) ≡ Xk(γ1)−Xk(γ2) for k = 1, . . . ,K.

For I1, we have ‖I1‖ = 1
NT ‖ee′‖ = Op(π

−1
NT ) by Lemma A.1(ii). For I2 and I3,

we have

‖I2‖ = ‖I3‖ =
1

NT
‖eF 0Λ0′‖ ≤ 1√

T

‖eF 0‖√
NT

‖Λ0‖√
N

= Op(
1√
T

).

For I4 and I5, noting that ‖eX′k,γ0‖ = Op(N
√
T ) and |θ̂k − θ0

k| ≤ ‖θ̂ − θ0‖, we

have ‖I4‖ = ‖I5‖ = Op(T
−1/2‖θ̂ − θ0‖). For I5 and I6, noting that ‖eXk(γ

0, γ̂)′‖ ≤
2 supγ∈γ ‖eXk(γ)′‖ = Op(N

√
T ) by Lemma A.1(i), we have ‖I6‖ = ‖I7‖ = Op(T

−1/2‖δ̂‖).
For I8 and I9, we cam show that

1

NT
‖Λ0F 0′X′k,γ0‖ ≤

‖Λ0‖√
N

‖F 0‖√
T

‖Xk,γ0‖
√
NT

= Op(1),

which implies that ‖I8‖ = ‖I9‖ = Op(‖θ̂− θ0‖). Similarly, ‖I10‖ = ‖I11‖ = Op(‖δ̂‖).
For I12, . . . , I15, we can bound their Frobenius norm by Op(‖θ̂ − θ0‖ + ‖δ̂‖). By

the triangle inequality, ‖δ̂‖ ≤ ‖δ0‖ + ‖δ̂ − δ0‖ ≤ ‖δ0‖ + ‖θ̂ − θ0‖. It follows that

‖I1 + · · ·+ I15‖ = Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1
NT ).

Premultiplying Λ0′/N on both sides of (A.4), we can obtain that

Λ0′Λ̂

N
VNT =

Λ0′Λ0

N

F 0′F 0

T

Λ0′Λ̂

N
+ op(1).
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Noting that both Λ0′Λ0

N
F 0′F 0

T and Λ0′Λ̂
N are asymptotically nonsingular matrices, the

above equality shows that the columns of Λ0′Λ̂
N are the (non-normalized) eigenvectors

of the matrix Λ0′Λ0

N
F 0′F 0

T , and VNT consists of the eigenvalues of the same matrix (in

the limit). Thus, VNT
p→ V where V is a diagonal matrix consisting of eigenvalues

of ΣΛ0ΣF 0 .

(ii) Noting that VNT is invertible, we have

N−1/2‖Λ̂− Λ0H‖ = N−1/2
∥∥(I1 + · · ·+ I15)Λ̂V −1

NT

∥∥
Checking the terms one by one, we can readily show that N−1/2‖Λ̂−Λ0H‖ = Op(‖θ̂−
θ0‖+ ‖δ0‖+ π−1

NT ), or equivalently, 1
N ‖Λ̂− Λ0H‖2 = Op(‖θ̂ − θ0‖2 + ‖δ0‖2 + π−2

NT ).

�

Lemma A.3. Under Assumptions A.1-A.4,

(i)
1

N
Λ0′(Λ̂− Λ0H) = Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−2

NT );

(ii)
1

N
Λ̂′(Λ̂− Λ0H) = Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−2

NT );

(iii) HH ′ = (
1

N
Λ0′Λ0)−1 +Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−2

NT );

(iv) ‖P
Λ̂
− PΛ0‖2 = Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−2

NT ).

Lemma A.4. Under Assumptions A.1-A.4, as N,T →∞ and N/T → κ > 0,

(i)
1√
NT
‖e′(Λ̂− Λ0H)‖ = Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1

NT );

(ii)
1

(NT )1−2α

∣∣∣ T∑
t=1

Ψ̃t(θ̂, γ̂)′M
Λ̂
et

∣∣∣ = op(1),

(iii)
1

(NT )1−2α

∣∣∣ T∑
t=1

Ψ̃t(θ̂, γ̂)′M
Λ̂

Λ0f0
t −R

∣∣∣ = op(1),

(iv)
1

(NT )1−2α

∣∣∣ T∑
t=1

f0′
t Λ0′M

Λ̂
et + tr[e′MΛ0ePF 0 ]

∣∣∣ = op(1),

(v)
1

(NT )1−2α

∣∣∣ T∑
t=1

e′t(PΛ̂
− PΛ0)et

∣∣∣ = op(1),

(vi)
1

(NT )1−2α

∣∣∣ T∑
t=1

f0′
t Λ0′M

Λ̂
Λ0f0

t − tr(e′MΛ0ePF 0)−R
∣∣∣ = op(1),
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where Ψ̃(θ, γ) = Xt,γ(θ − θ0) +Xt(γ, γ
0)δ0 and

R =
2K∑
k=1

2K∑
k′=1

(θ̂k − θ0
k)(θ̂k′ − θ0

k′)
1

NT
tr
[
Xk,γ̂MΛ̂

Xk′,γ̂PF 0

]
+

K∑
k=1

K∑
k′=1

δ0
kδ

0
k′

1

NT
tr
[
Xk(γ̂, γ

0)M
Λ̂
Xk′(γ̂, γ

0)PF 0

]
+ 2

2K∑
k=1

K∑
k′=1

(θ̂k − θ0
k)δ

0
k′

1

NT
tr
[
Xk,γ̂MΛ̂

Xk′(γ̂, γ
0)PF 0

]
.

Proposition A.2. Suppose that Assumptions A.1-A.4 hold and N/T → κ > 0.

Then ‖θ̂ − θ0‖ = Op((NT )−α).

Proof of Proposition A.2. By definition,

θ̂ =

( T∑
t=1

X ′t,γ̂MΛ̂
Xt,γ̂

)−1( T∑
t=1

X ′t,γ̂MΛ̂
Yt

)
.

Substituting Yt = Xt,γ̂θ
0 +Xt(γ

0, γ̂)δ0 + Λ0f0
t + et into the above equation yields

( 1

NT

T∑
t=1

X′t,γ̂MΛ̂
Xt,γ̂

)
(θ̂− θ0) =

1

NT

T∑
t=1

X′t,γ̂MΛ̂
et+

1

NT

T∑
t=1

X′t,γ̂MΛ̂
Λ0f0

t +
1

NT

T∑
t=1

X′t,γ̂MΛ̂
Xt(γ

0, γ̂)δ0.

(A.5)

Consider the first term on the right hand side (RHS) of (A.5). By

P
Λ̂
− PΛ0 =

1

N
(Λ̂− Λ0H)(Λ̂− Λ0H)′ +

1

N
(Λ̂− Λ0H)H ′0′

+
1

N
Λ0H(Λ̂− Λ0H)′ +

1

N
Λ0
[
HH ′ − (

Λ′Λ

N
)−1
]
Λ0′, (A.6)

the first term on the RHS of (A.5) is equal to

1

NT

T∑
t=1

X′t,γ̂MΛ0et −
1

NT

T∑
t=1

X′t,γ̂

[ 1

N
(Λ̂− Λ0H)(Λ̂− Λ0H)′

]
et −

1

NT

T∑
t=1

X′t,γ̂

[ 1

N
(Λ̂− Λ0H)H′0′

]
et

−
1

NT

T∑
t=1

X′t,γ̂

[ 1

N
Λ0H(Λ̂− Λ0H)′

]
et −

1

NT

T∑
t=1

X′t,γ̂

[ 1

N
Λ0
(
HH′ − (

Λ′Λ

N
)−1
)

Λ0′
]
et = II1 − · · · − II5, say

Let IIl,k be the kth element of IIl for l = 1, . . . , 5 and k = 1, . . . , 2K. Because K

is a finite value, it suffices to consider IIl,k for each k. Term II1,k is Op(
1√
NT

) since

supγ∈Γ | 1√
NT

∑T
t=1X

′
t,γMΛ0et| = Op(1). For II2,k,

|II2,k| ≤
‖Λ̂− Λ0H‖2

N

‖eX′k,γ̂‖
NT

=
1√
T
Op(‖θ̂ − θ0‖2 + ‖δ0‖2 + π−2

NT )

since supγ∈Γ
1
NT ‖eX′k,γ‖ = Op(

1√
T

). For II3,k,

|II3,k| ≤
1√
N

‖Λ̂− Λ0H‖√
N

‖H ′‖
‖Λ0′eX′k,γ̂‖

NT
= Op(

1√
NT

)Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1
NT )
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since supγ∈Γ
1
NT ‖Λ

0′eX′k,γ‖ = Op(
1√
T

). For II4,k,

|II4,k| ≤ ‖H‖
‖eX′k,γ̂‖
NT

‖Λ0‖√
N

‖Λ̂− Λ0H‖√
N

= Op(
1√
T

)Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1
NT ).

For II5,k,

|II5,k| ≤
1√
N

‖Λ0‖√
N

‖Λ0′eX′k,γ̂‖
NT

‖HH ′−(
Λ′Λ

N
)−1‖ = Op(

1√
NT

)Op(‖θ̂−θ0‖+‖δ0‖+π−2
NT ).

Summarizing all the above results, we have

1

NT

T∑
t=1

X ′t,γ̂MΛ̂
et = op(‖θ̂ − θ0‖+ ‖δ0‖) +Op(π

−2
NT ). (A.7)

Next, we consider the second term on the right hand side of (A.5). By the fact

that M
Λ̂

Λ0 = M
Λ̂

(Λ0 − Λ̂H−1) and equation (A.4), we can write the kth entry of
1
NT

∑T
t=1X

′
t,γ̂MΛ̂

Λ0f0
t as

1

NT
tr
[
(Λ0 − Λ̂H−1)′M

Λ̂
Xk,γ̂F

0
]

= − 1

NT
tr
[
(I1 + · · ·+ I15)′M

Λ̂
Xk,γ̂F

0G′Λ̂′
]

= −(J1,k + · · ·+ J15,k), say. (A.8)

where G = (N−1Λ0′Λ̂)−1(T−1F 0′F 0)−1 and J1,k, . . . , J15,k are implicitly defined in

the above expression. For J1,k, we use Lemma A.1(ii) and the fact that Λ̂ = Λ0H +

(Λ̂− Λ0H) to obtain

|J1,k| =
1

N2T 2

∣∣∣tr(Λ̂′ee′M
Λ̂
Xk,γ̂F

0G′)
∣∣∣

≤
{

1√
N
‖H‖‖Λ

0′ee′‖
NT

+
‖Λ̂− Λ0H‖√

N

‖ee′‖
NT

}‖M
Λ̂
Xk,γ̂‖√
NT

‖F 0‖√
T
‖G‖

= Op(
1√

NπNT
) +Op(π

−1
NT ‖θ̂ − θ

0‖+ π−1
NT ‖δ

0‖+ π−2
NT ).

For J2,k, we have

J2,k =
1

N2T 2
tr
(
e′M

Λ̂
Xk,γ̂F

0G′Λ̂′Λ0F 0′
)

=
1

NT
tr(e′M

Λ̂
Xk,γ̂PF 0).

Then we have

|J2,k| ≤
1

NT

∣∣∣tr(e′MΛ0Xk,γ̂PF 0)
∣∣∣+

1

NT

∣∣∣tr[e′(PΛ0 − P
Λ̂

)Xk,γ̂PF 0 ]
∣∣∣.

The first term is Op(
1√
NT

) since supγ∈Γ | 1√
NT

tr(e′MΛ0Xk,γPF 0)| = Op(1). For the
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second term, by the expression of P
Λ̂
− PΛ0 , it is equal to

− 1

NT
tr
[ 1

N
(Λ̂− Λ0H)(Λ̂− Λ0H)′Xk,γ̂PF 0e′

]
− 1

NT
tr
[ 1

N
Λ0H(Λ̂− Λ0H)′Xk,γ̂PF 0e′

]
− 1

NT
tr
[ 1

N
(Λ̂− Λ0H)H ′0′Xk,γ̂PF 0e′

]
− 1

NT
tr
[ 1

N
Λ0(HH ′ − 1

N
(Λ0′Λ0)−1)Λ0′Xk,γ̂PF 0e′

]
We use II6,k, . . . , II9,k to denote the above four terms. For II6,k,

|II6,k| ≤
‖Λ̂− Λ0H‖2

N

‖Xk,γ̂PF 0e′‖
NT

=
1√
T
Op(‖θ̂ − θ0‖2 + ‖δ0‖2 + π−2

NT )

since supγ∈Γ
1
NT ‖Xk,γPF 0e′‖ = Op(

1√
T

). For II7,k,

|II7,k| ≤
1
√
NT
‖H‖

‖Xk,γ̂F
0‖

√
NT

T‖(F 0′F 0)−1‖
‖F 0′e′0‖
√
NT

‖Λ̂− Λ0H‖
√
N

=
1
√
NT

Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1
NT )

by supγ∈Γ
1√
NT
‖Xk,γF

0‖ ≤ ‖XkF
0‖ = Op(1). For II8,k,

|II8,k| ≤
1
√
T
‖H‖

‖Λ0‖
√
N

‖Xk,γ̂F
0‖

√
NT

T‖(F 0′F 0)−1‖
‖F 0′e′‖
√
NT

‖Λ̂− Λ0H‖
√
N

=
1
√
T
Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1

NT ).

For II9,k,

|II9,k| ≤
1
√
T

‖Λ0‖
√
N

‖Xk,γ̂F
0‖

√
NT

T‖(F 0′F 0)−1‖
‖F 0′e′0‖
√
NT

∥∥∥HH′− 1

N
(Λ0′Λ0)−1

∥∥∥ =
1
√
T
Op(‖θ̂−θ0‖+‖δ0‖+π−2

NT ).

Summarizing the above results, we have |J2,k| = op(‖θ̂ − θ0‖ + ‖δ0‖) + Op(π
−2
NT ).

For J3,k, we have

|J3,k| =
∣∣∣∣ 1

N2T 2
tr
(

Λ̂′eF 0(Λ0 − Λ̂H−1)′M
Λ̂
Xk,γ̂F

0G′
)∣∣∣∣

≤ 1√
NT

‖Λ̂′eF 0‖√
NT

‖Λ̂− Λ0H‖√
N

‖H−1‖
‖M

Λ̂
Xk,γ̂‖√
NT

‖F 0G′‖√
T

=
1√
NT

Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1
NT ) +

1√
T
Op(‖θ̂ − θ0‖2 + ‖δ0‖2 + π−2

NT ),

where we use the fact that

‖Λ̂′eF 0‖√
NT

≤ ‖H‖‖Λ
0′eF 0‖√
NT

+
√
N
‖Λ̂− Λ0H‖√

N

‖eF 0‖√
NT

= Op(1)+
√
NOp(‖θ̂−θ0‖+‖δ0‖+π−1

NT ).

Next, we consider J4,k. Note that

J4,k =
2K∑
k′=1

(θ̂k′ − θ0
k′) ·

1

N2T 2
tr
(
Xk′,γ0e′MΛ̂

Xk,γ̂F
0G′Λ̂′

)
≡

2K∑
k′=1

(θ̂k′ − θ0
k′) · J4,k(k

′).
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We can show that |J4,k(k
′)| is bounded by

1√
T

‖Xk′,γ0e′‖
N
√
T

‖Xk,γ̂‖√
NT

‖F 0G′Λ̂′‖√
NT

= Op(
1√
T

).

It follows that J4,k = op(‖θ̂ − θ0‖). By the same token, we can show that J5,k =

op(‖θ̂ − θ0‖), J6,k = op(‖δ̂‖) = op(‖δ0‖ + ‖θ̂ − θ0‖) and J7,k = op(‖δ0‖ + ‖θ̂ − θ0‖).
Next, we consider J8,k. Note that

J8,k =
2K∑
k′=1

(θ̂k′−θ0
k′)·

1

N2T 2
tr
[
Xk′,γ0F 0(Λ0 − Λ̂H−1)′M

Λ̂
Xk,γ̂F

0G′Λ̂′
]
≡

2K∑
k′=1

(θ̂k′−θ0
k′)·J8,k(k

′),

where

|J8,k(k
′)| ≤

‖Xk′,γ0‖
√
NT

‖F 0‖√
T

‖Λ̂− Λ0H‖‖H−1‖√
N

‖Xk,γ̂‖√
NT

‖F 0G′Λ̂′‖√
NT

= Op(‖θ̂ − θ0‖+ ‖δ0‖+ π−1
NT ).

Then J8,k = op(‖θ̂ − θ0‖). By the same token, we can show that J10,k = op(‖θ̂ −
θ0‖+ ‖δ0‖). For J9,k, we have that

J9,k =
1

N2T 2

2K∑
k′=1

(θ̂k − θ0
k)tr[Λ0F 0X′

k′,γ0MΛ̂
Xk,γ̂F

0G′Λ̂′] =
1

NT

2K∑
k′=1

(θ̂k′ − θ0
k′ )tr

[
X′
k′,γ0MΛ̂

Xk,γ̂PF0

]
.

It follows that J9,k = Op(‖θ̂ − θ0‖). For J11,k, we have that

J11,k =
1

NT

K∑
k′=1

δ̂k′tr
[
Xk′(γ

0, γ̂)M
Λ̂
Xk,γ̂PF 0

]
.

It follows that J11,k = Op(‖θ̂ − θ0‖ + ‖δ0‖). For the terms J12,k, . . . , J15,k, we can

readily show that they are all op(‖θ̂ − θ0‖ + ‖δ0‖). Given the above results, with
some manipulations on the terms J9,k and J11,k, we have

1

NT

T∑
t=1

X′t,γ̂MΛ̂
Λ0f0

t =
( 1

NT

T∑
t=1

X′t,γ̂MΛ̂

T∑
s=1

Xs,γ̂ast
)

(θ̂ − θ) +
( 1

NT

T∑
t=1

X′t,γ̂MΛ̂

T∑
s=1

Xs(γ̂, γ
0)ast

)
δ0

+Op(π−2
NT ) + op(‖θ̂ − θ0‖+ ‖δ0‖). (A.9)

Substituting (A.7) and (A.9) into (A.5), we have

[B(Λ̂, γ̂) + op(1)](θ̂ − θ0) = −[B̃(γ̂, Λ̂) + op(1)]δ0 +Op(π
−2
NT ). (A.10)

Multiplying (NT )α on both sides, by Assumptions A.1(i) and Assumption A.3, we

have (NT )αθ̂ = Op(1). �

Proof of Theorem 2.2. We use Lemma A.4 (ii)-(vi) to prove this theorem. Con-
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sider the objective function L(θ̂, Λ̂, γ̂). By definition, we have

1

(NT )1−2α
L(θ̂, Λ̂, γ̂) =

1

(NT )1−2α

T∑
t=1

[
Λ0f0

t + et − Ψ̃t(θ̂, γ̂)
]′
M

Λ̂

[
Λ0f0

t + et − Ψ̃t(θ̂, γ̂)
]

=
1

(NT )1−2α

T∑
t=1

Ψ̃t(θ̂, γ̂)′M
Λ̂

Ψ̃t(θ̂, γ̂) +
1

(NT )1−2α

T∑
t=1

e′tMΛ̂
et

+
1

(NT )1−2α

T∑
t=1

f0′
t Λ0′M

Λ̂
Λ0f0

t − 2
1

(NT )1−2α

T∑
t=1

Ψ̃t(θ̂, γ̂)′M
Λ̂

Λ0f0
t

− 2
1

(NT )1−2α

T∑
t=1

Ψ̃t(θ̂, γ̂)′M
Λ̂
et + 2

1

(NT )1−2α

T∑
t=1

f0′
t Λ0′M

Λ̂
et,

where Ψ̃t(θ, γ) is defined in Lemma A.4. Using results (a)-(e), together with the fact

that

1

(NT )1−2α

T∑
t=1

Ψ̃t(θ̂, γ̂)′M
Λ̂

Ψ̃t(θ̂, γ̂) =
2K∑
k=1

2K∑
k′=1

(θ̂k − θ0
k)(θ̂k′ − θ0

k′)
1

NT
tr
[
Xk,γ̂MΛ̂

Xk′,γ̂

]
+

K∑
k=1

K∑
k′=1

δ0
kδ

0
k′

1

NT
tr
[
Xk(γ̂, γ

0)M
Λ̂
Xk′(γ̂, γ

0)
]

+ 2
2K∑
k=1

K∑
k′=1

(θ̂k − θ0
k)δ

0
k′

1

NT
tr
[
Xk,γ̂MΛ̂

Xk′(γ̂, γ
0)
]

we have

1

(NT )1−2α
L(θ̂, Λ̂, γ̂) =

2K∑
k=1

2K∑
k′=1

(θ̂k − θ0
k)(θ̂k′ − θ0

k′)
1

NT
tr
[
Xk,γ̂MΛ̂

Xk′,γ̂MF 0

]
+

K∑
k=1

K∑
k′=1

δ0
kδ

0
k′

1

NT
tr
[
Xk(γ̂, γ

0)M
Λ̂
Xk′(γ̂, γ

0)MF 0

]
+ 2

2K∑
k=1

K∑
k′=1

(θ̂k − θ0
k)δ

0
k′

1

NT
tr
[
Xk,γ̂MΛ̂

Xk′(γ̂, γ
0)MF 0

]
+

1

(NT )1−2α
tr
[
e′MΛ0eMF 0

]
+ op(1).

Let θ̂γ0 and Λ̂γ0 be the estimator defined by

(θ̂γ0 , Λ̂γ0) = argmax
(θ,Λ)∈Θ×L

L(θ,Λ, γ0).

Note that θ̂γ0 is the least squares estimator for a standard IFEs model with known

γ0. According to Bai (2009) and Moon and Weidner (2017), θ̂γ0 − θ0 = Op(π
−2
NT ), or

equivalently (NT )α(θ̂γ0 − θ0) = op(1) under N/T → κ. Given this, with the same
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arguments in deriving the above expression, we have

1

(NT )1−2α
L(θ̂γ0 , Λ̂γ0 , γ0) =

1

(NT )1−2α
tr
[
e′MΛ0eMF 0

]
+ op(1).

However, we also have L(θ̂, Λ̂, γ̂) ≤ L(θ̂γ0 , Λ̂γ0 , γ0) due to the definition of (θ̂, Λ̂, γ̂).

Given this result, with some algebra manipulation on the first three terms of L(θ̂, Λ̂, γ̂),
we have

[
(NT )α(θ̂ − θ0) + B(Λ̂, γ̂)−1B̃(Λ̂, γ̂)C0

]′
B(Λ̂, γ̂)

[
(NT )α(θ̂ − θ0) + B(Λ̂, γ̂)−1B̃(Λ̂, γ̂)C0

]
+ C0′

[
B̆(Λ̂, γ̂)− B̃(Λ̂, γ̂)′B(Λ̂, γ̂)−1B̃(Λ̂, γ̂)

]
C0 ≤ op(1).

Noting that (l, k)th entry of B(γ, Λ̂) is 1
NT tr[X′l,γMΛ̂

Xk,γMF 0 ], we have

sup
γ∈Γ

∥∥∥B(γ, Λ̂)− B(γ,Λ0)
∥∥∥ ≤ [ 2K∑

l,k=1

( 1

NT
tr[MF 0X′l,γ(MΛ̂ −MΛ0)Xk,γ ]

)2]1/2

≤
[ 2K∑
l,k=1

( 1

NT
‖MF 0X′l,γ‖‖Xk,γ‖‖PΛ̂

− PΛ0‖
)2]1/2

= Op(1) · ‖P
Λ̂
− PΛ0‖ = op(1),

since supγ∈Γ ‖Xk,γ‖/
√
NT ≤ ‖Xk‖/

√
NT = Op(1). Similarly we have that

sup
γ∈Γ

∥∥∥B̃(γ, Λ̂)− B̃(γ,Λ0)
∥∥∥ = op(1), and

∥∥∥B̆(γ, Λ̂)− B̆(γ,Λ0)
∥∥∥ = op(1).

Hence we can get

C0′
[
B̆(γ̂,Λ0)− B̃(γ̂,Λ0)′B(γ̂,Λ0)−1B̃(γ̂,Λ0)

]
C0 = op(1).

By Assumption A.1(ii), we have

op(1) = C0′
[
B̆(γ̂,Λ0)− B̃(γ̂,Λ0)′B(γ̂,Λ0)−1B̃(γ̂,Λ0)

]
C0 = C0′I(γ̂)C0 ≥ ‖C0‖2τ min[1, |γ̂ − γ0|],

for some constant τ > 0 with probability approaching 1. Hence, we must have

|γ̂ − γ0| = op(1). �

Proposition A.3. Suppose that Assumptions A.1-A.4 hold and N/T → κ. Then

we have

(i) ‖θ̂ − θ0‖ = op((NT )−α);

(ii) For Proposition A.1 and Lemmas A.3-A.4, we can strengthen Op(‖θ̂ − θ0‖ +

‖δ0‖) to op((NT )−α).

Proof of Proposition A.3. (i) Revisit (A.10). We have shown above that

supγ∈Γ ‖B(Λ̂, γ)−B(Λ0, γ)‖ = op(1) and supγ∈Γ ‖B̃(Λ̂, γ)− B̃(Λ0, γ)‖ = op(1). How-
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ever, we also have B(Λ0, γ̂)
p−→ B(Λ0, γ0) and B̃(Λ0, γ̂)

p−→ B̃(Λ0, γ0) = 0 due to the

continuous mapping theorem and the definition of B̃. Given this, we have that

µmin(B(Λ̂, γ)) ≥ τ + op(1) and B̃(Λ̂, γ̂) = op(1). These two results, together with

(A.10), give (i).

(ii) Note that in the previous analysis, all the terms involving δ0 or δ̂ must include

the symbol Xk(γ
0, γ̂). Given the consistency of γ̂, the “Op” terms now change to

“op” terms. This result, together with (NT )α(δ̂ − δ0) = op(1), leads to (ii). �

Proof of Theorem 2.3

Let hit(γ1, γ2) ≡ ‖xiteit‖|dit(γ1) − dit(γ2)|, kit(γ1, γ2) ≡ ‖xit‖|dit(γ1) − dit(γ2)|,
and αNT ≡ (NT )1−2α. Define

JNT (γ) =
1√
NT

N∑
i=1

T∑
t=1

xiteitdit(γ),

J∗NT (γ) =
1√
NT

T∑
t=1

Xt(γ)′PΛ0et,

KNT (γ) =
1

NT

N∑
i=1

T∑
t=1

kit(γ, γ
0)2,

K∗NT (γ) =
1

N2T

N∑
i=1

N∑
j=1

T∑
t=1

‖xit‖ ‖xjt‖
∥∥λ0

j

∥∥∥∥λ0
i

∥∥ ∣∣dit(γ0)− dit(γ)
∣∣ ,

GNT (γ) =
1

NT

N∑
i=1

T∑
t=1

(C0′xit)
2
∣∣dit(γ)− dit(γ0)

∣∣ , and

G∗NT (γ) =
1

T

T∑
t=1

∥∥∥ 1

N

N∑
i=1

xitλ
0′
i dit(γ, γ

0)
∥∥∥2
.

To prove Theorem 2.3, we add the following proposition and three lemmas.

Lemma A.5. Suppose that Assumptions A.4-A.5 hold. For all η > 0 and ε > 0,

there exists some v <∞ such that for any B <∞,

(i) Pr

(
sup

v
αNT

≤|γ−γ0|≤B

∥∥JNT (γ)− JNT (γ0)
∥∥

√
αNT |γ − γ0|

> η

)
≤ ε;

(ii) Pr

(
sup

v
αNT

≤|γ−γ0|≤B

∥∥J∗NT (γ)− J∗NT (γ0)
∥∥

√
αNT |γ − γ0|

> η

)
≤ ε.

Lemma A.6. Suppose Assumptions A.4-A.5 hold. There exist constants B > 0 and
0 < d, k < ∞, such that for all 1 > η > 0, ε > 0, and cNT → 0, cNTαNT → ∞,
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there exists a v <∞ such that for large enough (N,T ),

Pr

(
inf

v
αNT

≤|γ−γ0|≤B
GNT (γ)

|γ − γ0|
< (1− η)d

)
≤ ε, Pr

(
sup

v
αNT

≤|γ−γ0|≤cNT

G∗NT (γ)

|γ − γ0|
> η

)
≤ ε,

Pr

(
sup

v
αNT

≤|γ−γ0|≤B

KNT (γ)

|γ − γ0|
> (1 + η)k

)
≤ ε, and Pr

(
sup

v
αNT

≤|γ−γ0|≤B

K∗NT (γ)

|γ − γ0|
> (1 + η)k

)
≤ ε.

Lemma A.7. Let

H1,NT (γ) ≡
1

NT

T∑
t=1

Xt(γ, γ
0)′(P

Λ̂
− PΛ0 )Xt,γ0 , H2,NT (γ) ≡

1

(NT )1−α

T∑
t=1

Xt(γ, γ
0)′(P

Λ̂
− PΛ0 )Λ0ft,

H3,NT (γ) ≡
1

(NT )1−α

T∑
t=1

Xt(γ, γ
0)′(P

Λ̂
− PΛ0 )et, and H4,NT (γ) ≡

1

NT

T∑
t=1

Xt(γ, γ
0)′(P

Λ̂
− PΛ0 )Xt(γ, γ

0).

Suppose Assumptions A.1-A.5 hold, and N/T → κ > 0 as (N,T ) → ∞. Then for

arbitrary ε > 0 and η > 0, there are constants B > 0 and v > 0 such that

Pr

(
sup

v
αNT

≤|γ−γ0|≤B

‖Hl,NT (γ)‖
|γ − γ0|

> η

)
≤ ε, for l = 1, 2, 3, 4.

Proof of Theorem 2.3. (i) Now we have that γ̂−γ0 = op(1), θ̂−θ0 = op((NT )−α)

and 1
NΛ0′Λ0 p→ Σλ > 0. Let the constants B, d and k be as defined in Lemmas

A.5-A.7, and m ≡ 2||Σ−1
λ ||. Let M ≡ max(d, k,m, ||C0||, 1) and choose η and ν

small enough such that max(η, ν) < M and d−M3(18ν + 22η + 20νη) > 0. Let the

event ENT be the joint event that

(1)
∣∣γ̂ − γ0

∣∣ ≤ B,

(2) ‖(N−1Λ0′Λ0)−1‖ ≤ m,

(3) (NT )α‖θ̂ − θ0‖ ≤ ν,

(4) inf v
αNT

≤|γ−γ0|≤B
GNT (γ)
|γ−γ0| > (1− η)d,

(5) sup v
αNT

≤|γ−γ0|≤B
KNT (γ)
|γ−γ0| < (1 + η)k,

(6) sup v
αNT

≤|γ−γ0|≤B
K∗NT (γ)

|γ−γ0| < (1 + η)k,

(7) sup v
αNT

≤|γ−γ0|≤B
‖J∗NT (γ)−J∗NT (γ0)‖√

αNT |γ−γ0| < η,

(8) sup v
αNT

≤|γ−γ0|≤B
‖JNT (γ)−JNT (γ0)‖√

αNT |γ−γ0| < η,

(9) sup v
αNT

≤|γ−γ0|≤B
‖Hl,NT (γ)‖
|γ−γ0| < η, for l = 1, 2, 3, 4, and

(10) sup v
αNT

≤|γ−γ0|≤B
G∗NT (γ)

|γ−γ0| < η,
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Fix ε > 0, one can choose v for large enough (N,T ) such that Pr(ENT ) ≥ 1 − ε,
by the Assumption A.2(ii) and Lemmas A.5-A.7. Let δ̂ = (NT )−αĈ, we have

‖Ĉ − C0‖ ≤ (NT )α‖θ̂ − θ0‖ ≤ ν.
It suffices to show that ENT implies

∣∣γ̂ − γ0
∣∣ ≤ v

αNT
. Conditional on ENT , we

consider v
αNT

≤
∣∣γ − γ0

∣∣ ≤ cNT ≤ B and calculate

(NT )2α−1

|γ − γ0|

(
L(θ̂, Λ̂, γ)− L(θ̂, Λ̂, γ0)

)
=

(NT )2α

|γ − γ0|
1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′M

Λ̂
Xt(γ, γ

0)δ̂

− 2
(NT )2α

|γ − γ0|
1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′M

Λ̂
Xt,γ0 (θ̂ − θ0)

− 2
(NT )2α

|γ − γ0|
1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′M

Λ̂
Λ0f0

t

− 2
(NT )2α

|γ − γ0|
1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′M

Λ̂
et

≡ L̃1 + · · ·+ L̃4. (A.11)

For L̃1, we have

L̃1 =
(NT )2α

|γ − γ0|
1

NT

T∑
t=1

δ0′Xt(γ, γ
0)′MΛ0Xt(γ, γ

0)δ0

+
(NT )2α

|γ − γ0|
1

NT

T∑
t=1

(δ̂ + δ0)′Xt(γ, γ
0)′MΛ0Xt(γ, γ

0)(δ̂ − δ0)

− (NT )2α

|γ − γ0|
1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′(P

Λ̂
− PΛ0)Xt(γ, γ

0)δ̂

≡ L̃11 + L̃12 + L̃13.

By events (10) and (4) we have

L̃11 ≥
(NT )2α

|γ − γ0|
1

NT

T∑
t=1

δ0′Xt(γ, γ
0)′Xt(γ, γ

0)δ0

− (NT )2α

|γ − γ0|
1

N2T

T∑
t=1

‖δ0′Xt(γ, γ
0)′Λ0‖2

∥∥∥(
1

N
Λ0′Λ0)−1

∥∥∥
>
GNT (γ)

|γ − γ0|
− ‖C0‖2

G∗NT (γ)

‖γ − γ0‖

∥∥∥(
1

N
Λ0′Λ0)−1

∥∥∥
> (1− η)d− ‖C0‖2mη > d− (M +M3)η.
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For L̃12, we have

|L̃12| ≤ ‖Ĉ − C0‖‖Ĉ + C0‖ 1

|γ − γ0|NT

∥∥∥ T∑
t=1

Xt(γ, γ
0)′MΛ0Xt(γ, γ

0)
∥∥∥

≤ ‖Ĉ − C0‖‖Ĉ + C0‖KNT (γ)

|γ − γ0|

≤ ν(2‖C0‖+ ν)(1 + η)k ≤ 2M2(1 + η)ν,

by events (3) and (5). For L̃13, we have

|L̃13| ≤ (‖C0‖+ ν)2 ‖H4,NT (γ)‖
|γ − γ0|

≤ 4M2η,

by events (3) and (9). For L̃2, we have

|L̃2| ≤ 2
(NT )2α

|γ − γ0|

∥∥∥∥ 1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′Xt,γ0(θ̂ − θ0)

∥∥∥∥
+ 2

(NT )2α

|γ − γ0|

∥∥∥∥ 1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′PΛ0Xt,γ0(θ̂ − θ0)

∥∥∥∥
+ 2

(NT )2α

|γ − γ0|

∥∥∥∥ 1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′(P

Λ̂
− PΛ0)Xt,γ0(θ̂ − θ0)

∥∥∥∥
≡ L̃21 + L̃22 + L̃23.

For L̃21, noting that

∥∥∥∥ 1

NT

T∑
t=1

Xt(γ, γ
0)′Xt,γ0

∥∥∥∥ ≤ ∥∥∥∥ 1

NT

T∑
t=1

Xt(γ, γ
0)′Xt

∥∥∥∥+

∥∥∥∥ 1

NT

T∑
t=1

Xt(γ, γ
0)′Xt(γ

0)

∥∥∥∥ ≤ 2KNT (γ),

we have

L̃21 ≤ 4‖Ĉ‖
[
(NT )α‖θ̂ − θ0‖

]KNT (γ)

|γ − γ0|
≤ 8M2(1 + η)ν,

by events (3) and (5). Similarly, we have

L̃22 ≤ 4‖Ĉ‖
(

(NT )α‖θ̂ − θ0‖
)∥∥∥(

Λ0′Λ0

N
)−1
∥∥∥K∗NT (γ)

|γ − γ0|
≤ 8M3(1 + η)ν, and

L̃23 ≤ 2‖Ĉ‖
(

(NT )α‖θ̂ − θ0‖
)H1,NT (γ)

|γ − γ0|
≤ 2Mην,
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by events (3), (6) and (9). Next, we consider L̃3. We have

|L̃3| ≤ 2
(NT )2α

|γ − γ0|

∥∥∥ 1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′(P

Λ̂
− PΛ0)Λ0f0

t

∥∥∥
≤ 2‖Ĉ‖

∥∥∥ 1

(NT )1−α

T∑
t=1

Xt(γ, γ
0)′(P

Λ̂
− PΛ0)Λ0ft

∥∥∥ 1

|γ − γ0|

= 2‖Ĉ‖
H2,NT (γ)

|γ − γ0|
≤ 4Mη,

by events (3) and (9). For L̃4, we have

|L̃4| = 2
(NT )2α

|γ − γ0|

∥∥∥ 1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′M

Λ̂
et

∥∥∥
≤ 2

(NT )2α

|γ − γ0|

∥∥∥ 1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′et

∥∥∥+ 2
(NT )2α−1/2

|γ − γ0|

∥∥∥ 1√
NT

T∑
t=1

δ̂′Xt(γ, γ
0)′PΛ0et

∥∥∥
+ 2

(NT )2α

|γ − γ0|

∥∥∥ 1

NT

T∑
t=1

δ̂′Xt(γ, γ
0)′(P

Λ̂
− PΛ0)et

∥∥∥
≡ L̃41 + L̃42 + L̃43.

By events (3) and (7)-(9), we have

L̃41 ≤ 2‖Ĉ‖‖JNT (γ)− JNT (γ0)‖
√
αNT |γ − γ0|

≤ 4Mη,

L̃42 ≤ 2‖Ĉ‖
‖J∗NT (γ)− J∗NT (γ0)‖
√
αNT |γ − γ0|

≤ 4Mη,

L̃43 ≤ 2‖Ĉ‖
‖H3,NT (γ)‖
|γ − γ0|

≤ 4Mη.

Therefore, we conclude that

(NT )2α

|γ − γ0|
(L(θ̂, Λ̂, γ)− L(θ̂, Λ̂, γ0)) ≥ L̃1 − |L̃2| − |L̃3| − |L̃4|

≥ d−M3(18ν + 22η + 20νη) > 0

for v/αNT ≤ |γ − γ0| ≤ cNT . We can conclude that when ENT occurs, we have

|γ̂ − γ0| < v/αNT . Note that ENT happens with probability larger than 1 − ε.

Therefore, for any ε > 0, there is a constant v such that for (N,T ) sufficiently large,

we have

Pr
(
|γ̂ − γ0| ≥ v

αNT

)
< ε.

This shows that |γ̂ − γ0| = Op(α
−1
NT ).

(ii) As mentioned in the proof of the second result of Proposition A.3, all the

terms involving δ0 or δ̂ have Xk(γ̂, γ
0). Given the obtained convergence rate of γ̂,
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these terms now are Op((NT )α−1) = op(
1√
NT

). Now revisit the proof of Proposition

A.2. Neglecting all the terms involving δ0, we immediately obtain
√
NT‖θ̂ − θ0‖ =

Op(1) when N/T → κ. In addition, all the results in Lemma A.3 can be sharpened

to Op(π
−2
NT ), and the second result of Proposition A.1 can also be sharpened to

Op(π
−2
NT ). �

Proof of Theorem 2.4

To prove Theorem 2.4, we need the following two lemmas. Lemma A.8 finds

the asymptotic bias terms and Lemma A.9 establishes a central limit theorem

(CLT). The main difficulty is to find the asymptotic distribution of CNT (γ) =

(NT )−1
∑

i,t zit,γeit. Because zit,γ is a variable depends on all entries of {Xk,γ}2Kk=1, it

is difficult to show CLT directly. To establish the CLT, we follow the same strategy

as used by Moon and Weidner (2017).

We define some notations. For each k = 1, . . . , 2K, we define N × T matrices

Xk,γ , X̃k,γ and Z̃k,γ as follows:

Xk,γ = ED(Xk,γ), X̃k,γ = Xk,γ −Xk,γ , and Z̃k,γ = MΛ0Xk,γMF 0 + X̃k,γ .

Because X̃k,γ is centered around zero conditional onD, one can verify that ‖X̃k,γPF 0‖
and ‖PΛ0X̃k,γ‖ are op(

√
NT ). In the proof of Lemma A.9, we can see that eitz̃it,γ is

an m.d.s., where z̃it,γ is defined analogously to zit,γ .

Lemma A.8. Suppose that Assumptions A.1-A.6 hold and N/T → κ > 0. Then for

k = 1, . . . , 2K, we have

(i) (NT )−1/2tr(MΛ0Xk,γMF 0e′) = (NT )−1/2tr(e′Z̃k,γ) −
√
κB1,kNT (γ) + op(1),

uniformly on γ

(ii) B2,NT (γ̂) = B2,NT (γ0) + op(1);

(iii) B3,NT (γ̂) = B3,NT (γ0) + op(1).

Lemma A.9. Suppose that Assumptions A.2, A.4 and A.6 hold. Then

1√
NT

N∑
i=1

T∑
t=1

eitz̃it,γ
d−→ G(γ) in `∞(Γ),

where G(γ) is some Gaussian process with E(G(γ1)G(γ2)′) = Ω(γ1, γ2) and `∞(Γ)

denotes the space of bounded functions over the compact set Γ endowed with the

uniform metric.
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Proof of Theorem 2.4. Revisit equation (A.5) in the proof of Proposition

A.2. The first term on the RHS is 1
NT

∑T
t=1X

′
t,γ̂MΛ̂

et, whose kth element is studied

in details. According to the analysis there, only II1,k and II4,k matter since the

remaining terms are either op(‖θ̂ − θ0‖), or op(π
−3
NT ), or involve δ0. For those terms

involving δ0, they are Op((NT )α−1) due to the arguments in the proof of result

(ii) of Theorem 2.3. For II4,k, substituting (A.4) into it and some straightforward

computation shows that

II4,k =
1

N
tr
[
ED(e′e)X′0k,γ̂(Λ0′Λ0)−1(F 0′F 0)−1F 0′

]
+Op(π

−3
NT )+op(‖θ̂−θ0‖)+Op((NT )α−1).

Given this, we have

1

NT

T∑
t=1

X′tk,γ̂MΛ̂
et =

1

NT

T∑
t=1

X′tk,γ̂MΛ0et −
1

N
tr
[
ED(e′e)X′0k,γ̂(Λ0′Λ0)−1(F 0′F 0)−1F 0′

]
+ op(

1
√
NT

),

whereXtk,γ̂ is the kth column ofXt,γ̂ . Next, we consider the second term 1
NT

∑T
t=1X

′
t,γ̂MΛ̂

Λ0f0
t ,

whose kth term is analyzed according to (A.8). By the same arguments, i.e., ne-

glecting all the terms that are op(‖θ̂− θ0‖), or Op(π
−3
NT ), or involve δ0, we only keep

J1,k, J2,k and J9,k. This gives

1

NT

T∑
t=1

X ′tk,γ̂MΛ̂
Λ0f0

t =
1

NT 2

T∑
t=1

T∑
s=1

astX
′
tk,γ̂MΛ̂

Xs,γ0(θ̂ − θ0)

− 1

NT 2

T∑
t=1

T∑
s=1

astX
′
tk,γ̂MΛ̂

es − J1,k + op(
1√
NT

).

For the second term on the RHS of the above equation, it can be decomposed into

five terms, which are given in the analysis of J2,k in the proof of Proposition A.2.

The analysis there indicates that only the first term 1
NT tr(e′MΛ0Xk,γ̂PF 0) and II8,k

matter. Substituting (A.4) into II8,k, we have

II8,k =
1

N
tr
[
ED(e′e)PF 0X′0k,γ̂(Λ0′Λ0)−1(F 0′F 0)−1F 0′

]
+Op(π

−3
NT )+op(‖θ̂−θ0‖)+Op((NT )α−1).

In addition, with the results in Lemma A.3, we can readily show that J1,k =

B2,k,NT (γ̂) + op(
1√
NT

). With the above results, we have

1

NT

T∑
t=1

X′tk,γ̂MΛ̂
Λ0f0

t =
1

NT 2

T∑
t=1

T∑
s=1

astX
′
tk,γ̂MΛ̂

Xs,γ0 (θ̂ − θ0)−
1

NT 2

T∑
t=1

T∑
s=1

astX
′
tk,γ̂MΛ0es − B2,k,NT (γ̂)

+
1

N
tr
[
ED(e′e)PF0X′0k,γ̂(Λ0′Λ0)−1(F 0′F 0)−1F 0′

]
+ op(

1
√
NT

).

Finally, we consider the last term:

1

NT

T∑
t=1

Xtk,γ̂MΛ̂
X(γ0, γ̂)δ0 = Op(|γ̂ − γ0|)Op(‖δ0‖) = Op((NT )α−1) = op(

1√
NT

).
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Given the above analysis, we have

[B(Λ0, γ̂)+op(1)]
√
NT (θ̂−θ0) =

√
NTCNT (γ̂)−

√
T

N
B2,NT (γ̂)−

√
N

T
B3,NT (γ̂)+op(1).

Given the convergence rate of γ̂, one can verify that

B(Λ0, γ̂) = ωNT (γ0, γ0) + op(1),

√
NTCNT (γ̂) =

1√
NT

N∑
i=1

T∑
t=1

eitz̃it,γ̂ −
√
N

T
B1,NT (γ̂),

√
NTB`,NT (γ̂) =

√
NTB`,NT (γ0) + op(1), for ` = 1, 2, 3,

1√
NT

N∑
i=1

T∑
t=1

eitz̃it,γ̂ =
1√
NT

N∑
i=1

T∑
t=1

eitz̃it,γ0 + op(1),

where the last result is due to Lemma A.9. It follows that

[
ωNT (γ0, γ0)

]−1√
NT (θ̂ − θ0) =

1√
NT

N∑
i=1

T∑
t=1

eitz̃it,γ0 −
√
N

T
B1,NT (γ0)

−
√
T

N
B2,NT (γ0)−

√
N

T
B3,NT (γ0) + op(1).

Then by Lemmas A.8 and A.9 as well as Assumption A.6, we have that as N/T → κ,

ω0

√
NT (θ̂ − θ0)− B d→ N(0,Ω0),

where B = −κ1/2B1(γ0)− κ−1/2B2(γ0)− κ1/2B3(γ0) and ω0 = ω(γ0, γ0). �

Proof of Theorem 2.5

Let g̃ ≡ C0′D0
fC

0 and h̃ ≡ C0′V 0
f C

0. Let

RNT (v) ≡
√
αNT

[
JNT (γ0 +

v

αNT
)− JNT (γ0)

]
,

G̃NT (v) ≡ αNTGNT (γ0 +
v

αNT
), and K̃NT (v) ≡ αNTKNT (γ0 +

v

αNT
).

Define

L̃NT (v) = L(θ̂, Λ̂, γ0)− L(θ̂, Λ̂, γ0 +
v

αNT
).

To prove Theorem 2.5, we need the following three lemmas.

Lemma A.10. Suppose that Assumptions A.2 and A.4–A.5 and N/T → κ > 0.

Then RNT (v) ⇒ B(v), where B(v) is a Brownian motion with covariance matrix

E [B(u)B(v)′] = V 0
f min (u, v).

Lemma A.11. Suppose that Assumptions A.2 and A.4–A.5 hold and N/T → κ > 0.
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Then G̃NT (v)
p→ g̃ |v| and K̃NT (v)

p→ ‖Df‖ |v| uniformly in v ∈ Υ, where g̃ =

C0′D0
fC

0 and Υ is a compact set on the real line that includes 0 as its interior

point.

Lemma A.12. Suppose that Assumptions A.1-A.7 hold and N/T → κ > 0. Then

L̃NT (v)⇒ L̃(v) = −g̃ |v|+ 2
√
h̃W (v),

where h̃ = C0′V 0
f C

0.

Proof of Theorem 2.5. Noting that γ̂ = argminγL(θ̂(γ), Λ̂(γ), γ) = argminγL(θ̂, Λ̂, γ)

where θ̂ = θ̂(γ̂) and Λ̂ = Λ̂(γ̂), we have αNT (γ̂−γ0) = argmaxvL̃NT (v). By Theorem

2.3, αNT (γ̂ − γ0) = Op(1). So it suffices to confine the analysis on some compact

set K. By Lemma A.12, L̃NT (v) ⇒ L̃(v) in `∞(K), the space of all the bounded

functions over some compact set K endowed with the uniform metric. The limit

functional L̃(v) is continuous, has a unique maximum, and lim|v|→∞ L̃(v) = −∞ al-

most surely. It therefore satisfies the conditions in Theorem 2.7 of Kim and Pollard

(1990). By the argmax continuous mapping theorem (CMT), we have

αNT (γ̂ − γ0)
d→ argmaxv∈RL̃(v).

Following the proof of Theorem 1 in Hansen (2000), we have

argmaxv∈RL̃(v) = φargmaxr∈R

[
−g̃φ |r|+ 2

√
h̃
√
φW (r)

]
= φargmaxr∈R[−g̃φ |r|+ 2g̃φW (r)]

= φargmaxr∈R[−|r|
2

+W (r)],

where we apply the change of variables with v = φr, φ = h̃/g̃2 and the distributional

equality W (a2r) = aW (r). This completes the proof of the theorem. �

Proof of Theorem 2.6

To prove theorem 2.6, we need the following lemma.

Lemma A.13. Suppose Assumptions A.1-A.5 hold and N/T → κ > 0. Then

L(θ̂γ0 , Λ̂γ0 , γ0)− L(θ̂, Λ̂, γ0) = op(1).

Proof of Theorem 2.6. Recall that σ̂2 = 1
NT L(θ̂, Λ̂, γ̂). It is easy to show that

σ̂2 p→ σ2. By the definitions of LRNT (·) and L̃NT (·), we have

σ̂2LRNT (γ0)− L̃NT (v̂) =
[
L(θ̂γ0 , Λ̂γ0 , γ0)− L(θ̂, Λ̂, γ0 +

v̂

αNT
)
]
−
[
L(θ̂, Λ̂, γ0)− L(θ̂, Λ̂, γ0 +

v̂

αNT
)
]

= L(θ̂γ0 , Λ̂γ0 , γ0)− L(θ̂, Λ̂, γ0) = op(1),
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where the last result is due to Lemma A.13. By Lemma A.12 and the CMT,

LRNT (γ0) =
L̃NT (v̂)

σ̂2
+ op(1) =

supv L̃NT (v)

σ̂2
+ op(1)

d→ supv L̃(v)

σ2
.

The limit distribution is

1

σ2
sup
v

[
− g̃|v|+ 2

√
h̃W (v)

]
=

1

σ2
sup
u

[
− g̃
∣∣∣ h̃
g̃2
u
∣∣∣+ 2

√
h̃W (

h̃

g̃2
u)
]

=
h̃

g̃σ2
sup
u

[
− |u|+ 2W (u)

]
= η2Ξ,

where the first equality holds by the change of variables (v = h̃
g̃2u) and the second

equality holds by the fact that W (a2r) = aW (r).

Note that we can write Ξ = 2 max(Ξ1,Ξ2), where Ξ1 = supr≤0[−1
2 |r| + W (r)]

and Ξ2 = supr≥0[−1
2 |r| + W (r)]. Ξ1 and Ξ2 are independent exponential random

variables with distribution function Pr(Ξ1 ≤ x) = 1− e−x. It follows that

Pr(Ξ ≤ x) = Pr(2 max (Ξ1,Ξ2) ≤ x) = Pr(Ξ1 ≤ x/2) Pr(Ξ2 ≤ x/2) = (1− e−x/2)2..

This completes the proof of the theorem. �

Proof of Theorem 2.7

Proof of Theorem 2.7. Let θ̃(γ) be the bias corrected estimator that can be

obtained as in Bai (2009) or Moon and Weidner (2017) by treating γ as known.

Note that the model can be written as

yit = x′itθ
0 + λ0′

i f
0
t +

(
eit +

1√
NT

x′itcdit(γ
0)
)
.

Treating the expression in the brackets as a new error term, by Bai (2009) or Moon

and Weidner (2017),

√
NT (θ̃(γ)− θ0) = ωNT (γ, γ)−1 1√

NT

N∑
i=1

T∑
t=1

z̃it,γeit

+ ωNT (γ, γ)−1 1

NT

N∑
i=1

T∑
t=1

z̃it,γ(z̃it,γ − z̃it,γ0)′Lc+ opγ(1).

where opγ(1) denotes the terms which are op(1) uniformly in γ. Recall that SNT (γ) ≡
1√
NT

∑N
i=1

∑T
t=1 z̃it,γeit and let ω̃NT (γ1, γ2) ≡ 1

NT

∑N
i=1

∑T
t=1 z̃it,γ1 z̃

′
it,γ2

. By L′θ0 =
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δ0,
√
NTδ0 = c and c = L′Lc, we have

√
NTL′θ̃(γ) = L′Lc+ L′ω̃NT (γ, γ)−1SNT (γ) + L′ω̃NT (γ, γ)−1

[
ω̃NT (γ, γ0)− ω̃NT (γ, γ)

]
Lc+ opγ(1)

= L′ω̃NT (γ, γ)−1SNT (γ) + L′ω̃NT (γ, γ)−1ω̃NT (γ, γ0)Lc+ opγ(1)

⇒ L′ω(γ, γ)−1S(γ) + L′ω(γ, γ)−1ω(γ, γ0)Lc ≡ S(γ) +Q(γ)c,

where S(γ) ≡ L′ω(γ, γ)−1S(γ) and Q(γ) ≡ L′ω(γ, γ)−1ω(γ, γ0)L.

Next, it is standard to show that L′V̂NT (γ)L
p→ L′ω(γ, γ)−1Ω(γ, γ)ω(γ, γ)−1L =

K(γ, γ) uniformly in γ. Then by the CMT, we have WNT (γ)⇒W c(γ). �

Proof of Theorem 2.8

Proof of Theorem 2.8. Let WNT = {(yit, xit, qit) , 1 ≤ i ≤ N, 1 ≤ t ≤ T} and

S∗NT (γ) = 1√
NT

∑N
i=1

∑T
t=1 zit,γeitvit. Let P ∗ (·) , E∗ (·) and Var∗ (·) denote the

probability, expectation and variance conditional on the random sample WNT . We

say that ANT = op∗ (1) is Pw (‖ANT ‖ ≥ ε) = op (1) for any ε > 0. Note that ANT =

op (1) implies that ANT = op∗ (1) . It suffices to prove the theorem by showing that

(i) S∗NT (γ) ⇒ S(γ) conditional on w, (ii) ω̂NT (γ, γ) = ω (γ, γ) + op∗ (1) uniformly

in γ ∈ Γ, and (iii) ŜNT (γ) = S∗NT (γ) + op∗ (1) uniformly in γ ∈ Γ, (iv) Ω̂NT (γ, γ) =

Ω (γ, γ) + op∗ (1) uniformly in γ ∈ Γ.

We first show (i). Note that by Assumption A.7(i)

E∗
[
S∗NT (γ1)S∗NT (γ2)′

]
=

1

NT

N∑
i=1

T∑
t=1

zit,γ1z
′
it,γ2

e2
it = ΩNT (γ1, γ2) = Ω(γ1, γ2)+op∗ (1) .

So S∗NT (γ) is a zero-mean Gaussian process with covariance function kernel Ω(γ1, γ2)

asymptotically. In addition, it is standard to show that the finite dimensional dis-

tribution of S∗NT converges to that of SNT as (N,T )→∞. The stochastic equicon-

tinuity also holds by standard arguments. Then we have S∗NT ⇒ S conditional on

WNT .

To show (ii), it suffices to show 1
NT

∑
i,t ‖zit,γ − žit,γ‖2 = op∗ (1) . We have

1

NT

∑
i,t

‖zit,γ − žit,γ‖2 =
1

NT

2K∑
k=1

‖MΛ0Xk,γMF 0 −M
Λ̂(γ)

Xk,γMF̂ (γ)
‖2.

We can readily show ‖PΛ0 − P
Λ̂(γ)
‖ = Op(π

−1
NT ) and ‖PF 0 − P

F̂ (γ)
‖ = Op(π

−1
NT )

uniformly. Hence, the result follows.

To show (iii), notice that

S∗NT (γ)− ŜNT (γ) =
1√
NT

∑
i,t

zit,γ (eit − êit(γ)) vit +
1√
NT

∑
i,t

(zit,γ − žit,γ) êit(γ)vit

≡ A1 (γ) +A2 (γ) . say.
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For A1 (γ) , we have êit(γ) = yit − xit,γ
′θ̂(γ) − λ̂′if̂t = eit − x′it,γ(θ̂(γ) − θ0) −

(λ̂i(γ)′f̂t(γ)− λ0′
i f

0
t ), and that

A1 (γ) = − 1√
NT

∑
i,t

zit,γx
′
it,γ(θ̂(γ)− θ0)vit −

1√
NT

∑
i,t

zit,γ(λ̂i(γ)′f̂t(γ)− λ0′
i f

0
t )vit

≡ −A11 (γ)−A12 (γ) , say.

The first term is bounded by ‖ 1√
NT

∑
i,t zit,γx

′
it,γvit‖‖θ̂(γ)−θ0‖ = Op(‖θ̂−θ0‖ (lnN)3) =

op∗ (1) uniformly in γ because one can show that supγ∈Γ ‖ 1√
NT

∑
i,t zit,γx

′
it,γvit‖ =

Op∗((lnN)3) by using Bernstein-type inequality for independent observations (see,

e.g., the online supplement of Miao et al. (2020a) of Su et al. (2016)). Note that

‖Var∗(A12)‖ = ‖ 1

NT

∑
i,t

zit,γz
′
it,γ(λ̂i(γ)′f̂t(γ)− λ0′

i f
0
t )2‖

≤
( 1

NT

∑
i,t

‖zit,γ‖4
)1/2( 1

NT

∑
i,t

(λ̂i(γ)′f̂t(γ)− λ0′
i f

0
t )4
)1/2

= op∗ (1)

as we can readily show that 1
NT

∑
i,t(λ̂i(γ)′f̂t(γ)− λ0′

i f
0
t )4 = op∗(1) uniformly in γ.

Consider A2 (γ), we have

A2 (γ) =
1√
NT

∑
i,t

(zit,γ − žit,γ) eitvit −
1√
NT

∑
i,t

(zit,γ − žit,γ)xit(γ)′(β̂(γ)− β)vit

− 1√
NT

∑
i,t

(zit,γ − žit,γ) (λ̂i(γ)′f̂t(γ)− λ0′
i f

0
t )vit.

≡ A21 (γ)−A22 (γ)−A23 (γ) , say.

For A21 (γ), we can calculate the variance of A21 conditional on WNT :

‖Var∗(A21)‖ = ‖ 1

NT

∑
i,t

(zit,γ − žit,γ) (zit,γ − žit,γ)′ e2
it‖

≤ sup
i,t
e2
it ·

1

NT

∑
i,t

‖zit,γ − žit,γ‖2

= Op((NT )2/(8+ε)) ·Op(π−1
NT ) = op∗ (1) .

For A22(γ) and A23(γ), we can follow the arguments as used in the analysis of A11(γ)

and A12(γ) and show they are op∗ (1) uniformly in γ. Then ŜNT (γ)−S∗NT (γ) = op∗ (1)

uniformly in γ. Thus we have ŜNT (γ)⇒ S(γ).

To show (iv), we can follow similar arguments to (iii). The analysis is tedious

and omitted.

The final result follows from the CMT. �
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Appendix B

Technical Results for Chapter 3

In this appendix we prove the main results in the paper. The proofs rely on some

technical lemmas whose proofs can be found in Appendix B of the online supplement

of Miao et al. (2020b). They also call on some other technical lemmas in Appendix

C of the online supplement of Miao et al. (2020b).

Proof of the main results

To prove Theorem 3.1, we first need three technical lemmas, viz, Lemmas B.1–

B.2 below. To state these lemmas, we define some notation. First, we introduce the

following auxiliary objective function:

Q̃(Θ,D,G) =

N∑
i=1

T∑
t=1

[
x̃′it(β

0
g0
i
− βgi) + x̃it(γ

0
g0
i
)′δ0

g0
i
− x̃it(γgi)δgi

]2
+

N∑
i=1

T∑
t=1

ε̃2
it. (B.1)

Lemma B.1 shows that the distance between Q̃(Θ,D,G) and Q(Θ,D,G) is op(1) uniformly

in (Θ,D,G) so that we can study the asymptotic properties of Θ̂ through Q̃(Θ,D,G) in

Lemma B.2. Now, define the Hausdorff distance dH : BG × BG → R as follows

dH(a, b) ≡ max

{
max
g∈G

(
min
g̃∈G
‖ag − bg̃‖

)
, max
g̃∈G

(
min
g∈G
‖ag − bg̃‖

)}
.

Lemma B.1. Suppose that Assumption A.1 holds. Then

sup
(Θ,D,G)∈BG×ΓG×GN

1

NT
|Q(Θ,D,G)− Q̃(Θ,D,G)| = op(1).

Lemma B.2. Suppose that Assumptions A.1–A.3 hold. Then dH(Θ̂,Θ0)
p→ 0 as (N,T )→

∞.

Remark. The proof of Lemma B.2 shows that there exists a permutation σΘ̂ such that∥∥∥θ̂g − θ0
σΘ̂(g)

∥∥∥ = op(1). We can take σΘ̂(g) = g by relabeling. In the following analysis, we

shall write θ̂g − θ0
g = op(1) without referring to the relabeling any more.

Lemma B.3. Let ĝi(Θ,D) = arg ming∈G
∑T
t=1 [ỹit − z̃it(γg)′θg]2 . Suppose Assumptions

A.1–A.3 hold. For some η > 0 small enough and (N,T ) large enough such that maxg∈G
∥∥δ0
g

∥∥ ≤
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√
η, we have

Pr

(
sup

(Θ,D)∈Nη×ΓG

[
1

N

N∑
i=1

1(ĝi(Θ,D) 6= g0
i )

])
= o(T−4),

where Nη =
{

Θ ∈ BG :
∥∥θg − θ0

g

∥∥2
< η, g ∈ G

}
.

Proof of Theorem 3.1: By Lemma B.2, we have (Θ̂, D̂) ∈ Nη × ΓG. Therefore, we can

conclude that 1
N

∑N
i=1 Pr(ĝi 6= g0

i ) = o(T−4) by Lemma B.3 Hence, we have

Pr

(
sup
i

1
(
ĝi 6= g0

i

)
= 1

)
≤

N∑
i=1

Pr(ĝi 6= g0
i ) = N · o(T−4) = o

(
NT−4

)
. �.

To prove Theorem 3.2, we need Lemmas B.4–A.7.

Lemma B.4. Suppose wit is any random variable with 1
NT

∑
i,tE ‖wit‖

3+ε ≤ C for some

constant ε > 0 and C > 0. Suppose Assumptions A.1–A.5 hold. Then∥∥∥∥∥ 1

NT

N∑
i=1

T∑
t=1

1(ĝi 6= g0
i )wit

∥∥∥∥∥ = op((NT )−1).

To state the next lemma, we define an auxiliary estimator Θ̌(D) ≡ (θ̌1(γ1)′, ..., θ̌G(γG)′)′,

which is the least squares estimator of Θ with fixed D and true group specification G0, that

is,

θ̌g(γ) =

∑
i∈G0

g

T∑
t=1

z̃it(γ)z̃it(γ)′

−1∑
i∈G0

g

T∑
t=1

z̃it(γ)ỹit

 for g ∈ G.

Then the infeasible estimator is given by Θ̌ = Θ̌(Ď) with Ď = arg minD∈ΓG Q̌(Θ̌(D),D).

See also (3.6) in Section 3.3.1. In the online supplemental material we derive the asymptotic

properties of Θ̌. The next lemma establishes the asymptotic equivalence by exploiting the

properties of infeasible estimators.

Lemma B.5. Suppose that Assumptions A.1–A.5 hold. Then (N,T ) → ∞ we have θ̂g =

θ̌g(γ̂g) + op((NT )−1) for all g ∈ G.

Lemma B.6. Suppose that Assumptions A.1–A.5 hold and α ∈ (0, 1/3). Then αNT (γ̂g −
γ0
g) = Op(1) for all g ∈ G.

Lemma B.7. Suppose that Assumptions A.1–A.5 hold. For any γ = γ0
g +Op(1/αNT ) and

g ∈ G, the following statement holds:

θ̌g(γ)− θ̌g(γ0
g) = op((NT )−1/2) and Q̌g(θ̌g(γ), γ)− Q̌g(θ̌g, γ) = op(1).

Proof of Theorem 3.2: For the first result, we can show
√
NT [θ̌g(γ̂g) − θ̌g] → 0 by

Lemmas B.5–B.7. It suffices to show the second result. Given Lemma B.6, we can denote
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γ̂g ≡ γ0
g + v̂g/αNgT and γ̌g ≡ γ0

g + v̌g/αNgT . Let

Q∗∗g,NT (vg) ≡ Q̌g(θ̌g(γ̂g), γ
0
g)− Q̌g(θ̌g(γ̂g), γ0

g + vg/αNgT ) and (B.2)

Q∗g,NT (vg) ≡ Q̌g(θ̌g, γ
0
g)− Q̌g(θ̌g, γ0

g + vg/αNgT ). (B.3)

First we show that Q∗∗g,NT (v) − Q∗g,NT (v)
p→ 0 uniformly on any compact set Ψ. It is

straightforward to calculate that

Q∗∗g,NT (v)−Q∗g,NT (v) = L∗g,NT (v)− Lg,NT (v),

where Lg,NT (v) is a remainder term that is defined in Lemma C.14 in the online Sup-

plementary Material and L∗g,NT (v) can be defined analogously. We show in the proof of

Lemma C.14 that L∗g,NT (v)
p→ 0 uniformly on any compact set Ψ. Similar arguments can

be used to show that L∗g,NT (v)
p→ 0 uniformly on any compact set Ψ. Therefore, we have

Q∗∗g,NT (v)−Q∗g,NT (v)
p→ 0 uniformly on any compact set Ψ.

Next, we have

Q∗∗g,NT (v̂g) = Q̌g(θ̌g(γ̂g), γ
0
g)− Q̌g(θ̌g(γ̂g), γ0

g + v̂g/αNgT )

= Q̌g(θ̌g, γ
0
g)−

[
Q̌g(θ̌g(γ̂g), γ

0
g + v̂g/αNgT ) + op(1)

]
= Q̌g(θ̌g, γ

0
g)− Q̌g(θ̌g, γ0

g + v̌g/αNgT ) + op(1)

= Q∗g,NT (v̌g) + op(1)

= max
v∈R

Q∗g,NT (v) + op(1),

where the first and second equalities hold by (B.2) and Lemma B.7, respectively, the fourth

equality holds by (B.3) and the fact that θ̌g = θ̌g(γ̌g), and the last equality follows from the

definition of γ̌g. On the other hand side, Q∗∗g,NT (v̂g) = Q∗g,NT (v̂g) + op(1) by the uniform

convergence of Q∗∗g,NT (v)−Q∗g,NT (v) in probability to zero. It follows that

Q∗g,NT (v̂g) = max
v∈R

Q∗g,NT (v) + op(1).

Noting that Q∗g,NT (·) converges weakly to a continuous stochastic process that has a unique

maximum and v̌g = arg maxv∈RQ
∗
g,NT (v), we must have

v̂g = arg max
v∈R

Q∗g,NT (v) + op(1) = v̌g + op(1),

which implies αNgT (γ̂g − γ̌g) = op(1). �

Lemma B.8. Suppose Assumptions A.1(ii)–(vi) and A.3–A.6 hold. Let M0 = IT − 1
T ιT ι

′
T

with ιT being a T × 1 vector of ones.

(i) Under Assumption A.1(i.1) we have 1√
NgT

∑
i∈G0

g
Zi(γ

0
g)′M0εi +

√
Ng
T Bg,NT (γ0

g)
d→

N(0,Ω0
g,1), where Bg,NT (γ0

g) = 1
NgT

∑
i∈G0

g

∑T
t=1

∑
s<tE

[
zit(γ

0
g)εis

]
for each g ∈ G;

(ii) Under Assumption A.1(i.2) we have: 1√
NgT

∑
i∈G0

g
Zi(γ

0
g)′M0εi

d→ N(0,Ω0
g,2), where

Ωg,2(γ0
g , γ

0
g) is as defined in Assumption A.6.

Proof of Theorem 3.3. (i) By Theorem 3.2, we only need to consider the infeasible
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estimator Θ̌. By Lemma B.7, we have that

√
NgT (θ̌g − θ0

g) =
√
NgT (θ̌g(γ

0
g)− θ0

g) + op(1)

=

 1

NgT

∑
i∈G0

g

Zi(γ
0
g)′M0Zi(γ

0
g)

−1

1√
NgT

∑
i∈G0

g

Zi(γ
0
g)′M0εi + op(1).

Then the result follows from Lemma B.8 and Assumption A.6.

(ii) The result follows from Theorem 3.2 and Lemma C.14 in the online supplement. �

Proof of Theorem 3.4. First, using Lemma B.3, we can readily show that N̂g/Ng
p→ 1

and Q̌g(θ̌g, γ̌g)/(NgT )
p→ σ2

g . Let θ̄g(γ) be the minimizer of Q̄g(θ, γ) that is defined in

Section 3.4.1. Following the proof of Lemma B.5, we can also show that θ̄g(γ
0
g) = θ̌g

(
γ0
g

)
+

op((NT )−1). With this and using Lemma B.4, we can readily show that

Q̄g(θ̄g(γ
0
g), γ0

g) = Q̄g(θ̌g
(
γ0
g

)
, γ0
g) + op(1) = Q̌g(θ̌g(γ

0
g), γ0

g) + op(1). (B.4)

On the one hand, by the definitions of (θ̌g, γ̌g) and {(θ̂g, γ̂g), g = 1, ..., G}, we have

Q̌g(θ̌g, γ̌g) ≤ Q̌g(θ̂g, γ̂g) and

G∑
g=1

Q̄g(θ̂g, γ̂g) ≤
G∑
g=1

Q̌g(θ̌g, γ̌g).

On the other hand, we can apply Lemma B.4 to show that

Q̄g(θ, γ) = Q̌g(θ, γ) + op(1). (B.5)

This, in conjunction with the first inequality in the above displayed equation implies that

Q̌g(θ̌g, γ̌g) ≤ Q̄g(θ̂g, γ̂g) + op(1) and hence
∑G
g=1 Q̌g(θ̌g, γ̌g) ≤

∑G
g=1 Q̄g(θ̂g, γ̂g) + op(1).

Combining this last inequality with the second inequality in the above displayed equation

yields
G∑
g=1

Q̌g(θ̌g, γ̌g) =

G∑
g=1

Q̄g(θ̂g, γ̂g) + op(1),

which, in conjunction with Q̌g(θ̌g, γ̌g) ≤ Q̄g(θ̂g, γ̂g) + op(1) for each g ∈ G, implies that

Q̄g(θ̂g, γ̂g) = Q̌g(θ̌g, γ̌g) + op(1). (B.6)

Noting that θ̌g(γ
0
g) − θ0

g = [
∑
i∈G0

g
Zi(γ

0
g)′M0Zi(γ

0
g)]−1

∑
i∈G0

g
Zi(γ

0
g)′M0εi and using the

analysis of θ̌g − θ0
g in the proof of Theorem 3.3, we can readily show that θ̌g(γ

0
g) − θ̌g =

op(1/
√
NT ). With this, we can also show that

Q̌g(θ̌g(γ
0
g), γ0

g)− Q̌g(θ̌g, γ0
g) = op(1). (B.7)
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Then we have

Q̄g(θ̄g(γ
0
g), γ0

g)− Q̄g(θ̂g, γ̂g) = Q̌g(θ̄g(γ
0
g), γ0

g)− Q̌g(θ̌g, γ̌g) + op(1)

= Q̌g(θ̌g(γ
0
g), γ0

g)− Q̌g(θ̌g, γ̌g) + op(1)

= [Q̌g(θ̌g, γ
0
g)− Q̌g(θ̌g, γ̌g)] + [Q̌g(θ̌g(γ

0
g), γ0

g)− Q̌g(θ̌g, γ0
g)] + op(1)

= Q̌g(θ̌g, γ
0
g)− Q̌g(θ̌g, γ̌g) + op(1), (B.8)

where the first equality follows from (B.5) and (B.6), the second and last equalities hold by

(B.4) and (B.7), respectively. By Lemma C.14 in the online Supplementary Material, we

have

Q̌g(θ̌g, γ
0
g)− Q̌g(θ̌g, v/αNgT + γ0

g)⇒ −π2α
g wg,D |v|+ 2

√
wg,V π2α

g Wg(v),

where wg,D ≡ C0′
g D

0
gC

0
g and wg,V ≡ C0′

g V
0
g C

0
g . Then by the continuous mapping theorem

(CMT),

Q̌g(θ̌g, γ
0
g)− Q̌g(θ̌g, v̌g/αNgT + γ0

g) ⇒ max
v∈R

[
−π2α

g wg,D |v|+ 2
√
wg,V π2α

g Wg(v)
]

=
wg,V
wg,D

max
v∈R

−w2
g,D

wg,V

∣∣π2α
g v
∣∣+ 2

√
w2
g,Dπ

2α
g

wg,V
Wg(v)


=

wg,V
wg,D

max
v∈R

[
−

∣∣∣∣∣w2
g,D

wg,V
π2α
g v

∣∣∣∣∣+ 2Wg(
w2
g,D

wg,V
π2α
g v)

]
=

wg,V
wg,D

max
r∈R

[− |r|+ 2Wg(r)] , (B.9)

where the second equality holds by the distributional equality aWg(v) = Wg(a
2v) and the

last equality follows from the change of variable (by setting r ≡ w2
g,D

wg,V
π2α
g v). Lastly, we

have

Lg,NT
(
γ0
g

)
=

Q̄g(θ̄g(γ
0
g), γ0

g)− Q̄g(θ̂g, γ̂g)
Q̄g(θ̂g, γ̂g)/(NgT )

=
Q̌g(θ̌g, γ

0
g)− Q̌g(θ̌g, v̌g/αNgT + γ0

g)

Q̌g(θ̌g, γ̌g)/(NgT )
+ oP (1)

d→ wg,V
σ2
gwg,D

max
r∈R

[− |r|+ 2Wg(r)] ,

where the first equality holds by (B.8) and (B.6), and the convergence follows from (B.9)

and the fact that Q̌g(θ̌g, γ̌g)/(NgT ) = σ2
g + op (1) . �

Proof of Theorem 3.5. Under the null hypothesis, one can study the asymptotic property

of (Θ̂r, D̂r, Ĝr) similar to that of (Θ̂, D̂, Ĝ). Following the arguments as used in the proof

of Lemma B.5, we can show that

Q(Θ̂r, D̂r, Ĝr) = Q̌(Θ̌(Ďr), Ďr) + op(1),

where Ďr = arg minD∈Dr Q̌(Θ̌(D),D). This, in conjunction with the fact that Q(Θ̂, D̂, Ĝ) =
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Q̌(Θ̌, Ď) + op(1), implies that

Q(Θ̂r, D̂r, Ĝr)−Q(Θ̂, D̂, Ĝ) = Q̌(Θ̌(Ďr), Ďr)− Q̌(Θ̌, Ď) + op(1)

=
[
Q̌(Θ̌(Ďr), Ďr)− Q̌(Θ̌(Ďr),D

0)
]

+
[
Q̌(Θ̌,D0)− Q̌(Θ̌, Ď)

]
+
[
Q̌(Θ̌(Ďr),D

0)− Q̌(Θ̌,D0)
]

+ op(1)

=
[
Q̌(Θ̌,D0)− Q̌(Θ̌, Ď)

]
−
[
Q̌(Θ̌(Ďr),D

0)− Q̌(Θ̌(Ďr), Ďr)
]

+ op(1),

where we use the fact that Q̌(Θ̌(Ďr),D
0)−Q̌(Θ̌,D0) = op(1) that can be proved by following

the same arguments as used to derive (B.7).

For Q̌(Θ̌,D0)− Q̌(Θ̌, Ď), we have that under H02 : D0 ∈ Dr (i.e., γ0
1 = ... = γ0

G = γ0),

Q̌(Θ̌,D0)− Q̌(Θ̌, Ď) =

G∑
g=1

[
Q̌g(θ̌g, γ

0)− Q̌(θ̌g, v̌g/αNgT + γ0)
]

=

G∑
g=1

Q∗g,NT (v̌g)

⇒
G∑
g=1

wg,V
wg,D

max
vg∈R

[
−

∣∣∣∣∣w2
g,D

wg,V
π2α
g vg

∣∣∣∣∣+ 2Wg(
w2
g,D

wg,V
π2α
g vg)

]

=
G∑
g=1

wg,V
wg,D

max
vg∈R

[− |vg|+ 2Wg(vg)]

by Lemma C.13 in the online supplement. Writing Ďr = (γ0 + v̌r/αNT , ..., γ
0 + v̌r/αNT )′,

we have that under H02 : D0 ∈ Dr,

Q̌(Θ̌(Ďr),D
0)− Q̌(Θ̌(Ďr), Ďr) =

G∑
g=1

[
Q̌g(θ̌g(Ďr), γ

0)− Q̌(θ̌g(Ďr), π
1−2α
g v̌r/αNgT + γ0)

]
=

G∑
g=1

Q∗g,NT (π1−2α
g v̌r)

⇒ max
v∈R

(
G∑
g=1

wg,V
wg,D

[
−

∣∣∣∣∣w2
g,D

wg,V
πgv

∣∣∣∣∣+ 2Wg(
w2
g,D

wg,V
πgv)

])

= max
u∈R

(
G∑
g=1

wg,V
wg,D

[
−
∣∣∣∣wg,Dw1,D

σ2wg,D
wg,V

πgu

∣∣∣∣+ 2Wg(
wg,D
w1,D

σ2wg,D
wg,V

πgu)

])
,

where the last equality is obtained by changing variable u = v · σ2/w1,D. This completes

our proof. �

Proof of Theorem 3.6. This proof is analogous to the first half of that of Theorem 3.5

and thus omitted. �

Proof of Theorem 3.7. Following the arguments as used in the proof of Theorem 3.2, the

Wald test statistic is asymptotically equivalent to the infeasible Wald test statistic uniformly

for D. Therefore, we can focus on the study of the asymptotic property of the infeasible

Wald test statistic. To avoid introducing new notations, we just assume Ĝ = G0, which

occurs w.p.a.1. Then θ̄bc
g (γg) = θ̌bc

g (γg) w.p.a.1., where θ̌bc
g (γg) is the bias-corrected version

of θ̌g(γg) when necessary (e.g., in the dynamic case) and θ̌g(γg) is defined before Theorem

3.2. Similarly, let Θ̌bc(D) be the bias corrected version of Θ̌(D) when necessary
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For g ∈ G, we can readily establish

√
NgT

[
θ̌bc
g (γg)− θ0

g

]
= ωg,NT (γg, γg)

−1 1√
NgT

∑
i∈G0

g

T∑
t=1

z̃it(γg)[x̃it(γ
0
g)− x̃it(γg)]′δ0

g

+ωg,NT (γg, γg)
−1Sg,NT (γ) + op(1).

Note that ωg,NT (γg, γg)
p→ ωg(γg, γg) uniformly in γg by Assumption A.6 and Sg,NT (γ)⇒

Sg(γ) on Γ by Assumption A.7. In addition, by Assumption A.6,

1√
NgT

∑
i∈G0

g

T∑
t=1

z̃it(γg)[x̃it(γ
0
g)− x̃it(γg)]′δ0

g =
√
πg

1

NgT

∑
i∈G0

g

T∑
t=1

z̃it(γg)[z̃it(γ
0
g)− z̃it(γg)]′L′cg

=
√
πg

1

NgT

∑
i∈G0

g

T∑
t=1

[
z̃it(γg)z̃it(γ

0
g)′ − z̃it(γg)z̃it(γg)′

]
L′cg

p→ √πg
[
ωg(γg, γ

0
g)− ωg(γg, γg)

]
L′cg,

where the convergence follows by Assumption A.6. Then under H1NT : LΘ0 = c/
√
NT,

√
NgTLθ̌

bc
g (γg) ⇒

√
NgTLθ

0
g + Lωg(γg, γg)

−1
{
Sg(γg) +

√
πg
[
ωg(γg, γ

0
g)− ωg(γg, γg)

]
L′cg

}
=
√
πgcg + Lωg(γg, γg)

−1[Sg(γg) +
√
πgωg(γg, γ

0
g)L′cg]−

√
πgLL

′cg

= Lωg(γg, γg)
−1[Sg(γg) +

√
πgωg(γg, γ

0
g)L′cg].

Then by the CMT, we can conclude that

√
NTLΠ̂1/2Θ̌bc(D) =


√
Ng1

TLθ̌bc
g1

(γg1
)

...√
NgP TLθ̌

bc
gP (γgP )

⇒ Lω(D)−1
[
S(D) + Q(D)Π1/2L′c

]
.

It is standard to show that K̂NT (D)
p→ Lω(D)−1Ω(D)ω(D)−1L′ uniformly in D. Then we

have WNT (γ)⇒W c(γ) by the CMT. �

Proof of Theorem 3.8. Using Theorem 3.2 and the analysis of the infeasible estima-

tors in Section C of the online supplement, we can readily show that σ̂2
(
G0
) p→ σ2 as

(N,T ) → ∞. Then IC(G0) = ln
(
σ̂2
(
G0
))

+ λNTG
0K → σ2 by Assumption D.2(ii) in the

online supplement, where σ2 =lim(N,T )→∞
1
NT

∑N
i=1

∑T
t=1E(ε2

it). When 1 ≤ G < G0, by

Assumption D.2(ii) we have that w.p.a.1. IC(G) = ln
(
σ̂2 (G)

)
+λNTGK ≥ ln(σ̄2) > ln(σ2)

as (N,T )→∞. So we have

Pr(Ĝ < G0) = Pr(∃1 ≤ G < G0, IC(G) < IC(G0))→ 0 as (N,T )→∞. (B.10)

Next, we consider the case where G0 < G ≤ Gmax. When G > G0, we have by

Proposition D.1 in the online supplement that maxG0<G≤Gmax
[σ̂2 (G)− σ̂2(G0)] = Op(T

−1).
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It follows that

Pr(Ĝ > G0) = Pr(∃G0 < G ≤ Gmax, IC(G) < IC(G0))

= Pr(∃G0 < G ≤ Gmax, T [ln(σ̂2 (G))− ln(σ̂2(G0))] > (G−G0)TλNT )

→ 0 as (N,T )→∞, (B.11)

where the last line follows from the fact that T [ln(σ̂2 (G))−ln(σ̂2(G0))] = T ln(1+ σ̂2(G)−σ̂2(G0)
σ̂2(G0) ) =

O(T (σ̂2 (G) − σ̂2(G0)) = Op (1) and TλNT → ∞ as (N,T ) → ∞ by Assumption D.2(ii).

Combining (B.10) and (B.11), we have Pr(Ĝ = G0)→ 1 as (N,T )→∞. �
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Appendix C

Technical Results for Chapter 4

Proof of the main results

Proof of Proposition 4.1: (i) Under Assumption A.1 (vi), the MA(∞) representation in

equation (4.4) is valid. However, Xt+1 is a high dimensional vector and the properties of yit

have to be examined more carefully. By Assumption A.1 (iv), y
(u)
it ’s and y

(f)
it ’s are mutually

independent. It suffices to study them separately. By Assumption A.1 (i), we can write y
(u)
it

as a linear process:

y
(u)
it =

∞∑
j=0

α
(u)
iN (j)ut−j =

∞∑
j=0

α
(u)
iN (j)C(u)ε

(u)
t−j ≡

∞∑
j=0

C
(i,u)
j ε

(u)
t−j ,

where C
(i,u)
j ≡ α

(u)
iN (j)C(u). Under Assumption A.1 (vi), one can bound |(e1,p ⊗ ei,N )′Φj |

by Ψmax([Φj ][N ],[N ]) ≤ c̄ρj . It follows that |α(u)
iN (j)| ≤ c̄ρj . Then the MA(∞) representation

of y
(u)
it is valid with E(y

(u)
it ) = 0 and Var(y

(u)
it ) =

∑∞
j=0 α

(u)
iN (j)Σuα

(u)
iN (j)′ <∞.

Under Assumption A.1(vi), we can also show that E(|y(f)
it |) =

∑∞
j=0 |α

(f)
iN (j)µf | < ∞.

The MA(∞) representation of y
(f)
it is

y
(f)
it = E(y

(f)
it ) +

∞∑
j=0

α
(f)
iN (j)(f0

t−j − µf ) = E(yit) +

∞∑
j=0

C
(i,f)
j ε

(f)
t−j ,

where C
(i,f)
j ≡

∑j
k=0 α

(f)
iN (k)C

(f)
j−k. Under Assumption A.1(vi), |C(i,f)

j | ≤
∑j
k=0 |α

(f)
iN (k)| ·

||C(f)
j−k||op. In addition, by Assumption A.1(ii),

∞∑
j=0

j∑
k=0

ρk||C(f)
j−k||max =

∞∑
k=0

ρk
∞∑
j=k

||C(f)
j−k||max ≤ c̄

∞∑
k=0

ρk(k + 1)−α,

for some constant c̄ <∞. Hence C
(i,f)
j is absolutely summable, Var(y

(f)
it ) =

∑∞
j=0 C

(i,f)
j C

(i,f)′
j <

∞, and the MA(∞) representation of y
(f)
it is valid.

Similar to the decomposition (4.5), we can write Xt = X
(u)
t + X

(f)
t . For ΣX , due to

the independence between X
(u)
t and X

(f)
t , we can also write it as ΣX = Σ

(f)
X + Σ

(u)
X , where

Σ
(u)
X ≡ E(X

(u)
t X

(u)′
t ) and Σ

(f)
X ≡ E(X

(f)
t X

(f)′
t ). By the fact that Σ

(f)
X is positive semi

definite, we have ψmin(ΣX) ≥ ψmin(Σ
(u)
X ). It suffices to show Ψmin(Σ

(u)
X ) is bounded below.
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By Proposition 2.3 of BM (2015), we have

ψmin(Σ
(u)
X ) ≥ ψmin(Σu)

max|z|=1ψmax(A∗(z)A(z))
.

Given Assumption A.1 (vii), we have that ψmin(Σ
(u)
X ) is bounded below by some constant.

(ii) By the independence between X
(u)
t and X

(f)
t , one can also show that ψmin(Σ) ≥

ψmin(Σ
(u)
X ). �

Theoretical analysis of the first-step estimators

Lemma C.1. For the T ×N matrices Θ0 and ∆, we have

(i)
∥∥Θ0 +M(∆)

∥∥
∗ =

∥∥Θ0
∥∥
∗ + ‖M(∆)‖∗;

(ii) ‖∆‖2F = ‖M(∆)‖2F + ‖P(∆)‖2F;

(iii) rank(P(∆)) ≤ 2R0;

(iv) ‖∆‖2F =
∑
j ψj(∆)2 and ‖∆‖2∗ ≤ ‖∆‖

2
Frank(∆);

For any conformable matrices M1 and M2, the following statement holds:

(v) |tr(M1M2)| ≤ ‖M1‖max |vec(M2)|1 and |tr(M1M2)]| ≤ ‖M1‖op ‖M2‖∗ .

Lemma C.2. Suppose that Assumption A.1 holds. There exists absolute constants c, c,

c̄ ∈ (0,∞) such that

(i) ‖U′X‖max /T ≤ γ1/2 with probability greater than 1 − c̄(N2T 1−q/4(logN)−q/2 +

N2−clogN );

(ii) ‖U′PF 0X‖max /T ≤ c · γ1 with probability greater than 1− c̄(NT 1−q/4(logN)−q/2 +

N1−clogN ).

Proof of Theorem 4.1. Let ∆̃(1) = B̃ − B0, ∆̃(2) = Θ̃ − Θ0 and the event E(1)
NT =

{‖U′X‖max /T ≤ γ1/2, ‖U‖op /
√
NT ≤ γ2/2}. By Lemma C.2, and Assumption A.3(i), E(1)

NT

holds with probability at least 1− c̄[N2T 1−q/2(logN)−q/2 +N2−clogN ]. By the definition of

(B̃, Θ̃), we have that

0 ≥ L(B̃, Θ̃)− L(B0,Θ0)

=
1

2NT
(||Y −XB̃ − Θ̃||2F − ||U||

2
F) +

γ1

N
(|vec(B̃)|1 − |vec(B0)|1) +

γ2√
NT

(||Θ̃||∗ − ||Θ0||∗)

= d1 + d2 + d3. (C.1)

To establish the asymptotic property of B̃ and Θ̃, we have to study the three terms d1, d2

and d3 in order.

First, we consider d1. By the identity Y = XB0 + Θ0 + U, we have∥∥∥Y −XB̃ − Θ̃
∥∥∥2

F
− ‖U‖2F =

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2

F
− 2tr[U′(X∆̃(1) + ∆̃(2))].

For tr[U′(X∆̃(1) + ∆̃(2))], conditional on the event E(1)
NT , we have that

1

NT
|tr[U′(X∆̃(1) + ∆̃(2))]| ≤ 1

NT
‖U′X‖max |vec(∆̃(1))|1 +

1

NT
‖U‖op

∥∥∥∆̃(2)
∥∥∥
∗

≤ γ1

2N
|vec(∆̃(1))|1 +

γ2

2
√
NT

∥∥∥∆̃(2)
∥∥∥
∗
,
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where the first inequality holds by the triangle inequality and Lemma C.1(v). It follows that

d1 ≥ 1

2NT

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2

F
− γ1

2N
|vec(∆̃(1))|1 −

γ2

2
√
NT

∥∥∥∆̃(2)
∥∥∥
∗

≥ 1

2NT

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2

F
− γ1

2N

N∑
i=1

(
|∆̃(1)

Ji,i
|1 + |∆̃(1)

Jci ,i
|1
)

− γ2

2
√
NT

(∥∥∥P(∆̃(2))
∥∥∥
∗

+
∥∥∥M(∆̃(2))

∥∥∥
∗

)
. (C.2)

Next, we consider d2. By the identities |B̃∗,i|1 = |B̃Ji,i|1 + |B̃Jci ,i|1 and |B0
∗,i|1 = |B0

Ji,i
|1,

we have

d2 =
γ1

N

N∑
i=1

(|B̃Ji,i|1 + |B̃Jci ,i|1 − |B
0
Ji,i|1)

≥ γ1

N

N∑
i=1

(|∆̃(1)
Jci ,i
|1 − |∆̃(1)

Ji,i
|1). (C.3)

where we use the fact that |B̃Ji,i|1 + |∆̃(1)
Ji,i
|1 ≥ |B0

Ji,i
|1 by the triangle inequality and that

B0
Jci ,i

= 0.

Now, we consider d3. By the triangle inequality and Lemma C.1(i), we have∥∥∥Θ̃
∥∥∥
∗

=
∥∥∥∆̃(2) + Θ0

∥∥∥
∗

=
∥∥∥Θ0 + P(∆̃(2)) +M(∆̃(2))

∥∥∥
∗

≥
∥∥∥Θ0 +M(∆̃(2))

∥∥∥
∗
−
∥∥∥P(∆̃(2))

∥∥∥
∗

=
∥∥Θ0

∥∥
∗ +

∥∥∥M(∆̃(2))
∥∥∥
∗
−
∥∥∥P(∆̃(2))

∥∥∥
∗
.

It follows that

d3 ≥
γ2√
NT

(
∥∥∥M(∆̃(2))

∥∥∥
∗
−
∥∥∥P(∆̃(2))

∥∥∥
∗
). (C.4)

Combining the results in (C.1)-(C.4), we have

1

2NT

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2

F
+

γ1

2N

N∑
i=1

||∆̃(1)
Jci ,i
||1 +

γ2

2
√
NT

∥∥∥M(∆̃(2))
∥∥∥
∗

≤ 3γ1

2N

N∑
i=1

||∆̃(1)
Ji,i
||1 +

3γ2

2
√
NT

∥∥∥P(∆̃(2))
∥∥∥
∗
. (C.5)

The above inequality indicates that (∆̃(1), ∆̃(2)) ∈ CNT (3). By Assumption A.2, we obtain

that
1

N

∥∥∥∆̃(1)
∥∥∥2

F
+

1

NT

∥∥∥∆̃(2)
∥∥∥2

F
≤ κ3

1

NT

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2

F
. (C.6)

By the inequality (C.5), we have

1

NT

∥∥∥X∆̃(1) + ∆̃(2)
∥∥∥2

F
≤ 3γ1

N

N∑
i=1

|∆̃(1)
Ji,i
|1 +

3γ2√
NT

∥∥∥P(∆̃(2))
∥∥∥
∗

≤ 3γ1

√
KJ

∥∥∥∆̃(1)
∥∥∥

F√
N

+ 3
√

2R0γ2

∥∥∥∆̃(2)
∥∥∥

F√
NT

≤ 3(γ1

√
KJ ∨ (

√
2R0γ2))

√
1

N

∥∥∥∆̃(1)
∥∥∥2

F
+

1

NT

∥∥∥∆̃(2)
∥∥∥2

F
,(C.7)
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where the second inequality is by Lemma C.1(ii)-(iv) and the inequality
∑N
i=1 |∆̃

(1)
Ji,i
|1 ≤

√
KJN(

∑N
i=1 |∆̃

(1)
Ji,i
|2)1/2 ≤

√
KJN

∥∥∥∆̃(1)
∥∥∥

F
. Combining (C.6)-(C.7) yields

1

N

∥∥∥∆̃(1)
∥∥∥2

F
+

1

NT

∥∥∥∆̃(2)
∥∥∥2

F
≤ 6κ6[(γ1

√
KJ) ∨ (

√
2R0γ2)]

√
1

N

∥∥∥∆̃(1)
∥∥∥2

F
+

1

NT

∥∥∥∆̃(2)
∥∥∥2

F
,

which implies that 1√
N

∥∥∥∆̃(1)
∥∥∥

F
≤ c̄(γ1

√
KJ ∨ γ2) and 1√

NT

∥∥∥∆̃(2)
∥∥∥

F
≤ c̄(γ1

√
KJ ∨ γ2) with

c̄ = 3κ6(1 ∨
√

2R0) <∞. This completes the proof. �

Lemma C.3. Suppose that Assumptions A.1 and A.3 holds. Let SF ≡ F 0′F 0/T. Then for

any x > 0,

P (T 1/2||SF − ΣF ||max > x) ≤ C1x
−q/2T 1−q/4 + C2 exp

(
−C3x

2
)

for some absolute constants C`, ` = 1, 2, 3.

Proof of Theorem 4.2. We operate conditional on the event that E(2)
NT = {‖U′X‖max /T ≤

γ1/2, ‖U‖op /
√
NT ≤ γ2/2 and ||SF − ΣF ||op ≤ c}. One can verify that

P (E(2)
NT ) ≥ 1− c̄′(N2T 1−q/4(logN)−q/2 +N2−clogN ),

by Lemmas A.2-A.3. With Theorem 4.1, we have with probability at least 1−c̄′(N2T 1−q/4(logN)−q/2+

N2−clogN ),

(NT )−1/2
∥∥∥Θ̃−Θ0

∥∥∥
op
≤ (NT )−1/2

∥∥∥Θ̃−Θ0
∥∥∥

F
≤ c̄(γ1

√
KJ ∨ γ2).

Next, we show that E(2)
NT implies the desired results.

Step 1: Bound the eigenvalues.

Let SΛ = Λ0′Λ0/N and SF = F 0′F 0/T. Let σ2
1 ≥ · · · ≥ σ2

R0 be the R0 nonzero eigen-

values of 1
NT Θ0Θ0′ = 1

T F
0′SΛF

0. Note that σ2
1 , ..., σ

2
R0 are the same as the eigenvalues of

S
1/2
F SΛS

1/2
F . Conditional on the event E(2)

NT and by Assumption A.4 (i)-(iii), we have

|σ2
j − sj | ≤ c̄(

√
logNT−1/2 +N−1/2) for some c̄ <∞ and j = 1, ..., R0.

This also implies that ||Θ0||op =
√

(s1 + oP (1))NT. Let σ̃2
1 ≥ · · · ≥ σ̃2

N∧T be the eigenvalues

of 1
NT Θ̃Θ̃′. Again by the Weyl’s theorem, we have

∣∣σ̃2
j − sj

∣∣ ≤ ∣∣σ̃2
j − σ2

j

∣∣+
∣∣σ2
j − sj

∣∣
≤ 1

NT

∥∥∥Θ̃Θ̃′ −Θ0Θ0′
∥∥∥

op
+
∣∣σ2
j − sj

∣∣
≤ 2

NT

∥∥Θ0
∥∥

op

∥∥∥Θ̃−Θ0
∥∥∥

op
+

1

NT

∥∥∥Θ̃−Θ0
∥∥∥2

op
+
∣∣σ2
j − sj

∣∣ ,
implying

∣∣σ̃2
j − sj

∣∣ ≤ c̄(γ1

√
KJ ∨ γ2). Then for r ≤ R0, w.p.a.1,

∣∣σ2
j−1 − σ̃2

j

∣∣ ≥ ∣∣σ2
j−1 − σ2

j

∣∣− ∣∣σ̃2
j − σ2

j

∣∣ ≥ (sj−1 − sj)/2∣∣σ̃2
j − σ2

j+1

∣∣ ≥ ∣∣σ2
j − σ2

j+1

∣∣− ∣∣σ̃2
j − σ2

j

∣∣ ≥ (sj − sj+1)/2 (C.8)
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with σ2
j+1 = sj+1 = 0.

Step 2: Prove the consistency of R̂.

Note that ψr(Θ̃) = σ̃r
√
NT. By step 1, we have that ψr(Θ̃) ≥

√
[sR0 + o(1)]NT , for all

r ≤ R0, and ψR0+1(Θ̃) = (s1 +o(1))
√
NT (γ1

√
KJ+γ2). Noting that

√
NT

∥∥∥Θ̃
∥∥∥

op
= O(NT ),

implying that

mini≤R0ψi(Θ̃) ≥ γ2

√
NT

∥∥∥Θ̃
∥∥∥

op
)1/2 and ψR0+1(Θ̃) < (γ2

√
NT

∥∥∥Θ̃
∥∥∥

op
)1/2,

when N and T are larger than some N̄ and T̄ , respectively. In this case, we have P (R̂ =

R0)→ 1 as (N,T )→∞.

Step 3: Characterize the eigenvectors.

Next we show that there is an R0 × R0 matrix H̃, so that the columns of 1√
T
F 0H̃

are the first R0 eigenvectors of Θ0Θ0′. Let v be the R0 ×R0 matrix whose columns are the

eigenvectors of S
1/2
F SΛS

1/2
F . Then D = v′S

1/2
F SΛS

1/2
F v is a diagonal matrix of the eigenvalues

of S
1/2
F SΛS

1/2
F that are distinct according to Assumption A.3 and Weyl’s theorem. Let

H̃ = S
−1/2
F v, then

1

NT
Θ0Θ0′F 0H̃ =

1

T
F 0SΛF

0′F 0H̃ = F 0SΛSF H̃ = F 0SΛS
1/2
F v

= F 0S
1/2
F S

−1/2
F SΛS

1/2
F v = F 0S

1/2
F vv′S

−1/2
F SΛS

1/2
F v

= F 0H̃D.

In addition, we have (F 0H̃)′F 0H̃/T = v′S
−1/2
F

F 0′F 0

T S
−1/2
F v = v′v = IR0 . So the columns of

1√
T
F 0H̃ are the eigenvectors of Θ0Θ0′, corresponding to the eigenvalues in D.

Step 4: Prove the convergence.

We bound
∥∥∥F̃ − F 0H̃

∥∥∥
F

conditional on the event R̂ = R0. By the Davis-Kahan sin(Θ)

theorem (see, e.g., Yu et al. 2015) and (C.8),

1√
T

∥∥∥F̃ − F 0H̃
∥∥∥

F
≤

1
NT

∥∥∥Θ̃Θ̃′ −Θ0Θ0′
∥∥∥

op

minj≤R0min{
∣∣σ2
j−1 − σ̃2

j

∣∣ , ∣∣σ̃2
j − σ2

j+1

∣∣}
≤ c̄

1

NT

∥∥∥Θ̃Θ̃′ −Θ0Θ0′
∥∥∥

op
≤ c̄(γ1

√
KJ ∨ γ2).

Next we have

‖PF̃ − PF 0‖
F

=

∥∥∥∥∥ F̃ F̃ ′T − PF 0

∥∥∥∥∥
F

≤ 2c̄

∥∥∥∥ 1√
T
F̃ − 1√

T
F 0H̃

∥∥∥∥
F

+

∥∥∥∥∥F 0H̃H̃ ′F 0′

T
− PF 0

∥∥∥∥∥
F

≤ c̄(γ1

√
KJ ∨ γ2),

where the second equality is by the fact H̃H̃ ′ = S
−1/2
F vv′S

−1/2
F = S−1

F . This proves the

result in (ii). �

Theoretical analysis of the second-step estimators

Recall that v is the R0 ×R0 matrix whose columns are the eigenvectors of S
1/2
F SΛS

1/2
F .

Define v0 to as the R0×R0 matrix whose columns are the eigenvectors of Σ
1/2
F ΣΛΣ

1/2
F . Let
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H0 ≡ Σ
−1/2
F v0. One can easily verify that ||H0||max ≤ c̄, for some absolute constant c̄ <∞.

To prove Theorem 4.3, we impose the next Lemma.

Lemma C.4. Suppose that Assumptions A.1-A.3 hold. Let Σ̃ ≡ T−1X′X−T−2X′F̃ F̃ ′X.

Then there exist some constants c, c̄ and c̄′ such that with probability larger than 1 −
c̄′(N2T 1−q/4(logN)−q/2 +N2−clogN ) we have

(i) ||H̃||max ≤ ||H̃||∞ ≤ c̄,
(ii) max1≤j≤pN |X∗,j |/

√
T < c̄, and max1≤j≤N |U∗,j |/

√
T < c̄;

(iii) ||F 0′U||max/T ≤ T−1/2logN/(8c̄2) and
∥∥T−1X′F 0 − ΣXF

∥∥
max
≤ c̄T−1/2logN ;

(iv) ||Σ̃− Σ||max ≤ γ3;

(v) suppose 16KJγ3 ≤ ψmin(Σ)/2, Σ̃ satisfies the restricted eigenvalue condition for KJ ,

and κΣ̃(KJ) ≥ ψmin(Σ)/2.

Proof of Theorem 4.3. In this proof, we choose a large enough γ3 > (γ1

√
KJ ∨ γ2) and

fix c̄ as in Lemma C.4. Let the E(3)
NT be the joint event of

(1) T−1 ‖U′X‖max ≤ γ3/4; (2) max1≤j≤pN |X∗,j |/
√
T ≤ c̄;

(3) max1≤j≤N |U∗,j |/
√
T ≤ c̄; (4) ||F̃ − F 0H̃||F/

√
T ≤ γ3/(16c̄2);

(5) ||F 0′U||max/T ≤ γ3/(16c̄2); (6) ||H̃||∞ ≤ c̄;

(7) R̂ = R0;

and (8) Σ̃ satisfies the restricted eigenvalue condition for KJ with κΣ̃(KJ) ≥ ψmin(Σ)/2.

Under the Assumptions A.1-A.3, by Lemmas C.2 and Lemma C.4, E(3)
NT holds with proba-

bility larger than 1− c̄′(N2T 1−q/4(logN)−q/2+ N2−clogN ). Conditional on the event E(3)
NT ,

we also have that

(9) T−1||F̃ ′U||max ≤ T−1||(F̃ − F 0H̃)′U||max + T−1||H̃ ′F 0′U||max

≤ T−1||F̃ − F 0H̃||F ·max1≤j,N ||U∗,j ||+ ||H̃ ′||∞T
−1||F 0′U||max

≤ γ3/(8c̄),

and

(10) max
1≤i≤N

T−1/2|λ0′
i F

0′MF̃ | ≤ max
1≤i≤N

T−1/2|λ0
i | · ||F 0′MF̃ ||F

≤ c̄T−1/2||F̃ − F 0H̃||F ≤ γ3/(8c̄).

Conditional on the event E(3)
NT , we establish the bound of |∆̇∗,i|1 ≡ |Ḃ∗,i − B0

∗,i|1, for j =

1, ..., N .

Step 1. Concentrating out λ.

The objective function (4.7) is a least squares objective function with respect to λ. Given

Ḃ∗,i, we have that

λ̇j = (F̃ ′F̃ )−1F̃ ′(Y∗,i −XḂ∗,i) = T−1F̃ ′(Y∗,i −XḂ∗,i),

where the second equality is by the identity F̃ ′F̃ /T = IT . After concentrating out λ, the
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optimization problem becomes

Ḃ∗,i = argmin(v′,λ′)′∈RNp+R0

1

2T
||MF̃ (Y∗,i −Xv)||2F + γ3|v|1, (C.9)

where MF̃ = IT − F̃ F̃ /T .

Step 2. Compare objective functions at Ḃ∗,i and B0
∗,i.

By the identity Y∗,i = XB0
∗,i + F 0λ0

i + U∗,i and the definition of Ḃ∗,i, we have

0 ≥ 1

2T
[||MF̃ (Y∗,i −XḂ∗,i)||2F − ||MF̃ (F 0λ0

i + U∗,i)||2F] + γ3(|Ḃ∗,i|1 − |B0
∗,i|1)

=
1

2T
||MF̃X∆̇∗,i||2F −

1

T
tr[(F 0λ0

i + U∗,i)
′MF̃X∆̇∗,i] + γ3(|Ḃ∗,i|1 − |B0

∗,i|1),

where ∆̇ ≡ Ḃ − B0 and ∆̇∗,i denotes the ith column of ∆̇. By Lemma C.1 (v), the above

inequality becomes

1

T
||(F 0λ0

i + U∗,i)
′MF̃X||max|∆̇∗,i|1 ≥ 1

2T
||MF̃X∆̇∗,i||2F + γ3(|Ḃ∗,i|1 − |B0

∗,i|1)

≥ 1

2T
||MF̃X∆̇∗,i||2F + γ3|∆̇Jci ,i

|1 − γ3|∆̇Ji,i|1.

Step 3. Bound T−1maxi[||(F 0λ0
i + U∗,i)

′MF̃X||max], conditional on the event E(3)
NT .

By triangle inequality and Cauchy Schwarz inequality, we have

||(F 0λ0
i + U∗,i)

′MF̃X||max ≤ ||λ0′
i F

0′MF̃X||max + ||U′∗,iMF̃X||max

≤ max
1≤j≤Np

|X∗,j |·|λ0′
i F

0′MF̃ |+ max
1≤j≤Np

|U′∗,iX∗,j |+T−1||U′∗,iF̃ F̃ ′X||max

≤ max
1≤j≤Np

|U′∗,iX∗,j |+ (|U′∗,iF̃ /
√
T |+ |λ0′

i F
0′MF̃ |) max

1≤j≤Np
|X∗,i|.

Combining event (1) (9) and (10) of E(3)
NT , the right hand side of the above inequality is

bounded by γ3/2.

Step 4. Obtain the final bound for ||Ḃ∗,i −B0
∗,i||1.

Combining the results of Steps 2-3, we obtain that

3γ3|∆̇Ji,i|1 ≥
1

T
||MF̃X∆̇∗,i||2F + γ3|∆̇Jci ,i

|1.

It follows that |∆̇Jci ,i
|1 ≤ 3|∆̇Ji,i|1 and

∆̇∗,iΣ̃∆̇∗,i ≤ 3γ3|∆̇Ji,i|1 ≤ 3
√
KJγ3|∆̇Ji,i|

≤ 6
√
KJ

ψmin(Σ)
γ3

√
∆̇∗,iΣ̃∆̇∗,i,

where the last inequality is by E(3)
NT (8). It follows that

√
∆̇′∗,iΣ̃∆̇∗,i, ≤ 6

√
KJ

ψmin(Σ)γ3 and

|∆̇Ji,i|1 ≤ 2
√
KJ

ψmin(Σ)

√
∆̇∗,iΣ̃∆̇∗,i,. Hence, we have established

|∆̇∗,i|1 ≤ 4|∆̇Ji,i|1 ≤
48

(ψmin(Σ))2
KJγ3.

�
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Theoretical analysis of the third-step estimators

Lemma C.5. Suppose that Assumptions A.1-A.4 hold and N2T 1−q/4(logN)−q/2+N2−clogN →
0. Then

(i) For i = 1, ..., N, ψmin(Σ̃Ji,Ji) ≥ c w.p.a.1 for some finite constant c;

(ii) ||Σ̃Jci ,Ji ||max ≤ c̄ w.p.a.1 for some finite constant c̄.

The same results also apply on F̂ (`), once we have established that ||F̂ (`)−F 0H̃||F/
√
T =

OP (γ1

√
KJ + γ2).

Proof of Theorem 4.4: For any n-dimensional vector v = (v1, ..., vn)′, denote

abs(v) = (|v1|, ..., |vn|)′,

and say that v < v′ if and only if vi < v′i for all i = 1, ..., n. Let W (i) =diag(w1i, ..., wNp,i),

W (1,i) = W
(i)
Ji,Ji

and W (0,i) = W
(i)
Jci ,J

c
i
.

The following proof is by induction. Based on error bounds on F̂ (`)’s, we show that

results (i)-(iii) holds for (` + 1)th-step estimators. Then the results follows as we already

have ||F̂ (0) − F 0H̃||F/
√
T = OP (γ1

√
KJ + γ2).

For notational simplicity, let Σ̃ denote T−1X′MF̂ (`)X for ` = 0, 1, 2, . . . .

(i) For all (k, i)’s such that B0
ki = 0, sup(k,i):B0

ki=0 |Ḃki| ≤ ||Ḃ −B0||max ≤ OP (KJγ3) =

oP (γ4). It follows that W (0,i) = I|Jci | with probability approaching one. For all (k, i)’s such

that B0
ki 6= 0,

min
k,i:B0

ki 6=0
|Ḃki| > min

i∈[N ]
min
k∈Ji
|B0
ki| − ||Ḃ −B0||max

= min
i∈[N ]

min
k∈Ji
|B0
ki| − oP (γ4) ≥ αγ4,

with probability approaching one, by Assumption A.5. It follows that W (1,i) = 0 with

probability approaching one. For each i ∈ [N ], the estimator B̂
(`)
∗,i can be written as

B̂
(`)
∗,i = argminv∈RNPL(i)(v, F̂ (`−1)),

where

L(i)(v, F ) ≡ 1

2T
(Y∗,i −Xv)′MF̂ (`−1)(Y∗,i −Xv) + γ4

pN∑
k=1

wki |vk| for i = 1, ..., N.

Following the proof of Proposition 1 of Zhao an Yu (2006), sgn(B̂
(l)
∗,i) =sgn(B0

∗,i) is implied

by event Ei,1 ∩ Ei,2, where

Ei,1 ≡
{

abs[T−1/2Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)(U∗,i + F 0λ0
i )] < T 1/2abs(B0

Ji,i)− T
1/2γ4abs[Σ̃−1

Ji,Ji
W (1,i)sgn(B0

Ji,i)]
}

;

and

Ei,2 ≡ {abs[T−1/2(−Σ̃Jci ,JiΣ̃
−1
Ji,Ji

·X′∗,Ji + X′∗,Jci )MF̂ (`−1)(U∗,i + F 0λ0
i )]

< T 1/2γ4W
(0,i) · ι|Jci | − T

1/2γ4abs[Σ̃Jci ,JiΣ̃
−1
Ji,Ji

W (1,i)sgn(B0
Ji,i)]}.

We prove (i) by showing that Ei,1 and Ei,2 hold w.p.a.1.
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First, we consider Ei,1. It suffices to show that each entry of T−1/2abs[Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)(U∗,i+

F 0λ0
i )] is oP (

√
T mini mink∈Ji |B0

ki|). Applying the triangle inequality, one has

T−1/2abs[Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)(U∗,i + F 0λ0
i )] (C.10)

≤T−1/2abs(Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)U∗,i) + T−1/2abs(Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)F
0λ0
i )

≤T−1/2abs(Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)U∗,i) + T−1/2abs[Σ̃−1
Ji,Ji

X′∗,Ji(PF 0 − PF̂ (`−1))U∗,i]

+ T−1/2abs[Σ̃−1
Ji,Ji

X′∗,JiMF̂ (`−1)(F̂
(`−1) − F 0H̃)H̃−1λ0

i ].

Note that maxi ||Σ̃−1
Ji,Ji
||op ≤ c̄ w.p.a.1 by the Lemma A.5. This, in conjunction with Lemma

A.2(i)-(ii), implies that the first term on the RHS of (C.10) is uniformly OP (logN). With

||F̂ (`−1) − F 0H̃||F/
√
T = OP ((logN)T−1/2

√
KJ + N−1/2),1 we have ||PF 0 − PF̂ (`−1) ||op =

OP ((logN)T−1/2
√
KJ + N−1/2). Note that Lemma A.4(ii) ensures max1≤j≤pN ||X∗,j ||/

√
T

and max1≤j≤N ||U∗,j ||/
√
T are both bounded by an absolute constant. It follows that each

entry of the second term on the RHS of (C.10) is OP (logN ·
√
KJ +

√
T/N). Similarly, each

entry of the third term on the RHS is OP (logN ·
√
KJ +

√
T/N). These results, along with

the fact that logN ·T−1/2
√
KJ = o(mini mink∈Ji |B0

ki|) and N−1/2 = oP (mini mink∈Ji |B0
ki|)

imply that P (Ei,1)→ 1.

Next, we consider Ei,2. Similar to the analysis for Ei,1, we can use Lemma A.5 (ii)

to show that each entry of T−1/2(−Σ̃Jci ,JiΣ̃
−1
Ji,Ji

· X′∗,Ji + X′∗,Jci
)MF̂ (`−1)(U∗,i + F 0λ0

i ) is

OP (logN ·
√
KJ +

√
T/N) = o(

√
Tγ3). By the fact that γ3 = o(γ4), we have P (Ei,2) → 1,

as (N,T )→∞.

(ii) Conditional on the event {B̂(`) =s B
0}, we can follow the proof of Lemma 1 in Zhao

and Yu (2006) to establish the first order condition that

Σ̃Ji,Ji(B̂
(`)
Ji,i
−B0

Ji,i) =
1

T
X′∗,JiMF̂ (`−1)F

0λ0
i +

1

T
X′∗,JiMF̂ (`−1)U∗,i,

for i ∈ [N ]. Note that
∑N
i=1 |Ji|/N < C, by Assumption A.5 (ii). It follows that

||X(B̂(`) −B0)||2F
NT

=
1

N

N∑
i=1

||X(B̂
(`)
∗,i −B0

∗,i)||2

T
=

1

N

N∑
i=1

1

T
||X∗,Ji(B̂

(`)
Ji,i
−B0

Ji,i)||
2

=
1

N

N∑
i=1

OP [(γ1

√
KJ + γ2)2|Ji|] = OP [(γ1

√
KJ + γ2)2].

(iii) Note that Y −XB̂(`) − F 0Λ0′ = U − X(B̂(`) − B0). By the result in (ii) and

Assumption A.3(i), the operator norm of U−X(B̂(`)−B0) is of the order OP (γ1

√
KJ +γ2).

One can apply analysis similar to proof of Theorem 4.2 to obtain the desired result. �

Proof of Theorem 4.5: Let Σ̂ = X′MF̂X/T . From the proof of Theorem 2.4, we have

that

Σ̂Ji,Ji(B̂Ji,i −B0
Ji,i) =

1

T
X′∗,JiMF̂F

0λ0
i +

1

T
X′∗,JiMF̂U∗,i − γ4W

(1,i)sgn(B0
Ji,i). (C.11)

Noting that the columns of F̂ /
√
T are the first R̂ eigenvectors of 1

NT

(
Y −XB̂

)(
Y −XB̂

)′
,

1This claim holds for ` = 1 by Theorem 3.2. Given this claim, we will show below that
||F̂ (`) − F 0H̃||F/

√
T = OP ((logN)T−1/2

√
KJ +N−1/2).
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we have

F̂ VNT =
1

NT

(
Y −XB̂

)(
Y −XB̂

)′
F̂ =

1

NT

N∑
i=1

(
Y∗,i −X∗,JiB̂Ji,i

)(
Y∗,i −X∗,JiB̂Ji,i

)′
F̂ ,

where VNT is a diagonal matrix that consists of the R̂ largest eigenvalues of the matrix

(NT )−1 ×
(
Y −XB̂

)(
Y −XB̂

)′
, arranged in descending order along its diagonal line.

As the term γ4W
(1,i) ×sgn(B0

Ji,i
) = op(T

−1/2), we can follow the analysis of oracle least

squares estimator to establish the asymptotic distribution of B̂Ji,i. By Proposition B.1 of

the online supplement, we have

Si(B̂Ji,i −B0
Ji,i) = Si[T

−1(X′∗,JiMF 0X∗,Ji)]
−1 1

T
X′∗,JiMF 0U∗,i + oP (T−1/2).

It follows that

√
TSi(B̂Ji,i −B0

Ji,i) =
1√
T
Si(ΣJi,Ji)

−1(X∗,Ji − F 0Σ−1
F (ΣXF )′Ji,∗)

′U∗,i + oP (1)

≡ T−1/2
T∑
t=1

z∗ituit + oP (1),

One can easily see that {z∗ituit} is a martingale difference sequence. One can verify the

conditions of central limit theorems for martingale difference sequence by straightforward

calculation and establishes that
√
TSi(B̌Ji,i −B0

Ji,i
)
d→ N(0, σ2

i Si(ΣJi,Ji)
−1S′i). �
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