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Abstract

My dissertation consists of three essays that contribute new theoretical results to ro-

bust inference procedures and machine learning algorithms in nonstationary models.

Chapter 2 compares OLS and GLS in autoregressions with integrated noise

terms. Grenander and Rosenblatt (2008) gave sufficient conditions for the asymp-

totic equivalence of GLS and OLS in deterministic trend extraction. However when

extending to univariate autoregression model yt = ρnyt−1 + ut, ρn = 1 + c
nα

,

ut = ut−1 + εt, and εt is one iid disturbance term with zero expectation and σ2

variance, the asymptotic equivalence no longer holds. Under the mildly explosive

(c > 0, α ∈ (0, 1)) and pure explosive (c > 0, α = 0) cases, the limiting distri-

butions of OLS and GLS estimates are identical as standard Cauchy distribution,

and the OLS estimate has a slower convergence rate. Under the mildly stationary

(c < 0, α ∈ (0, 1)) case, the limiting distribution of OLS is degenerate centered

at −c, while the GLS estimate is Gaussian distributed. Under the local to unity

(α = 1) case, when c ≥ c∗, the mean and variance of the asymptotic distribution of

the OLS estimate are smaller than the GLS estimate, showing the efficiency gains

in OLS.

Chapter 3 proposes novel mechanisms for identifying explosive bubbles in pan-

el autoregressions with a latent group structure. Two post-classification panel data

approaches are employed to test the explosiveness in time-series data. The first

approach applies a recursive k-means clustering algorithm to explosive panel au-

toregressions. The second approach uses a modified k-means clustering algorithm

for mixed-root panel autoregressions. We establish the uniform consistency of both



clustering algorithms. The abovementioned k-means procedures achieve the oracle

properties so that the post-classification estimators are asymptotically equivalen-

t to the infeasible estimators that use the true group identities. Two right-tailed

t-statistics, based on post-classification estimators, are introduced to detect explo-

siveness. A panel recursive procedure is proposed to estimate the origination date

of explosiveness. The asymptotic theory is available for concentration inequalities,

clustering algorithms, and right-tailed t-tests based on mixed-root panels. Extensive

Monte Carlo simulations provide strong evidence that the proposed panel approach-

es lead to substantial power gains compared with the time-series approach.

Chapter 4 explores predictive regression models with stochastic unit root (S-

TUR) components and robust inference procedures that encompass a wide class of

persistent and time-varying stochastically nonstationary regressors. The paper ex-

tends the mechanism of endogenously generated instrumentation known as IVX,

showing that these methods remain valid for short- and long-horizon predictive re-

gressions in which the predictors have STUR and local STUR (LSTUR) generating

mechanisms. Both mean regression and quantile regression methods are consid-

ered. The asymptotic distributions of the IVX estimators are new compared to pre-

vious work but again lead to pivotal limit distributions for Wald testing procedures

that remain robust for both single and multiple regressors with various degrees of

persistence and stochastic and fixed local departures from unity. Numerical exper-

iments corroborate the asymptotic theory, and IVX testing shows good power and

size control. The new methods are illustrated in an empirical application to evaluate

the predictive capability of economic fundamentals in forecasting excess returns in

the Dow Jones industrial average index.
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Chapter 1 Introduction

Nonstationary phenomena are commonly observed in return predictions and bubble

detections. This dissertation comprises three papers that solve several significant

problems in nonstationary time series models.

In the first essay, we focus on the asymptotic efficiency of estimates for time

series data with roots in the vicinity of unity. In Chapter 2, co-authored with Profes-

sor Peter C.B. Phillips and Professor Jun Yu, we compare the asymptotic efficiency

between the OLS and the detrending GLS estimates in the model with integrat-

ed errors. We derive the limiting distributions for pure explosive, mildly explosive,

mildly stationary, and local-to-unity time series models. We find that the asymptotic

equivalence between the OLS and GLS estimates does not exist. For pure explosive

and mildly explosive cases, the detrending GLS estimate has a faster convergence

rate. For mildly stationary cases, the OLS estimate has a degenerate distribution

with an asymptotic bias, while the detrending GLS estimate follows an asymptoti-

cally normal distribution located at the origin. For the local-to-unity case, when the

distance parameter is higher than a cut-off value, both the asymptotic bias and vari-

ance of the OLS estimate are smaller than the GLS counterpart. The observations

under the local-to-unity case show the efficiency of OLS under a specific situation

and complement the econometric theory.

In the second essay, we apply the machine learning algorithm to bubble detec-

tions. In the literature, the bubble detector implements the testing procedure based

on a single time series and suffers from a severe problem of lack of powers. In

Chapter 3, co-authored with Professor Jun Yu, we apply the panel approach to im-

prove the performance of bubble detections. We impose the latent group structure

2



on the panel model where we assume the roots within the same group are identical,

and the slopes across groups are heterogeneous. We believe there are three types of

groups: stationary groups, unity groups, and explosive groups. The explosive roots

represent bubble phenomena. We develop a two-stage algorithm with a k-means

clustering algorithm in the first stage and inferences in the second stage. We show

that the clustering algorithm consistently recovers group identities, and asymptot-

ically the estimated membership is the true membership. Besides, under the joint

convergence framework, we show that the limiting distribution of our estimator is

normal, and the panel t-statistic is pivotally distributed under the null hypothesis of

a unit root. For the structural break case switching from non-explosive regions to

explosive regions, we also propose a real-time detector to estimate the bubble orig-

ination date. In this case, the two-stage procedure still works. The test procedure

can consistently estimate the bubble origination dates at a faster rate than its time

series counterpart in the literature.

In the third essay, my focus turns to analyze the predictive powers of economic

fundamentals on asset returns. In Chapter 4, co-authored with Professor Phillips,

we extend the self-generated instrumentation to predictive regressions with unsta-

ble parameters. Due to the persistence of economic fundamentals, the spurious

correlation exists and contributes to the endogeneity problem of OLS estimates on

predictive regressions. This essay considers the STUR and local STUR models and

employs the robust inference procedure (IVX) based on self-generated instruments.

We show that with STUR and local STUR regressors, the IVX estimator follows an

asymptotic normal distribution. The Wald test based on the IVX estimator follows

an asymptotically chi-square distribution under the null hypothesis of no predictive

phenomena. The IVX estimators in quantile regressions and long-horizon predic-

tive regressions are also considered. Under both cases, the variant estimators of

IVX follow asymptotically normal distributions and contribute to the pivotal test

statistics. We also extend the above results to mixed-root cases. In the empirical

analysis, we apply the IVX inference procedure to the index return of the S&P 500

3



stocks and find the significant predictive powers of economic fundamentals.
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Chapter 2 Asymptotic Comparisons of OL-

S and GLS in Autoregressions with

Integrated Disturbance

2.1 Introduction

Since it was first introduced by Aitken (1936) as an alternative to the ordinary least

squares (OLS) method, the generalized least squares (GLS) estimate has been wide-

ly used in practice, especially when the error term in a regression model is serially

correlated. In general, it is found that GLS and its detrending version are more

efficient than OLS, at least asymptotically.

There exist models, where OLS and GLS are equivalent asymptotically. For

example, Grenander and Rosenblatt (2008) found the sufficient conditions for this

asymptotic equivalence in the context of time series regressions when the regressor

has deterministic trends, and the error process is stationary. Hannan (2009) extended

the Grenander-Rosenblatt theorem to the multivariate time series regression. Park

and Phillips (1988) extended the Grenander-Rosenblatt theorem to the multivariate

time series regression model, where the regressors have stochastic trends. Krämer

and Hassler (1998) extended the Grenander-Rosenblatt theorem to the univariate

time series regression model where the regressor is integrated of order d with d ∈

(0.5, 1.5). The sufficient conditions developed in these studies are satisfied in many

practically relevant time series. Therefore, empirical researchers can employ OLS

in these time series models without sacrificing asymptotic efficiency loss relative to

5



GLS.

The Grenander-Rosenblatt theorem relies on the continuity of the spectrum of

the error process at the origin. This condition is satisfied when the error process is

stationary. However, it is violated when the error process has a unit root. Phillips

and Lee (1996) showed that when the error process is integrated of order d with

0.5 ≤ d < 1 or has a root which is local to unity, the asymptotic equivalence of

GLS and OLS breaks down and GLS is more efficient than OLS asymptotically.

Xiao and Phillips (2002) extended the result of Phillips and Lee (1996) to the model

where the error process is integrated of order d with 0.5 ≤ d < 1.5.

This paper compares the asymptotic efficiency of OLS and GLS in the context

of autoregression (AR) when the error process has a unit root and the true slope is

near unit root.

The paper shows that for the explosive side of the model, OLS is inferior to

GLS only in the convergence rate. Still, for the stationary side of the model, OLS

badly behaves with an asymptotic bias and degenerate distribution. The most excit-

ing phenomenon occurs for the case of the local-to-unity model since the domain

of distance parameter determines the comparisons of asymptotic behaviors between

OLS and GLS. It is revealed that the convergence rates of OLS and GLS are iden-

tical. However, one cut-off point c∗ divides the domain of distance parameter into

two parts: when smaller than the cut-off point c∗, OLS has a larger bias in the sense

of absolute value. For the domain on the right-hand side of the cut-off value, OLS

has both smaller bias and smaller variance. This observation proves the efficiency

gains of OLS under special cases.

The outline of the paper is as follows. In Section 2.2, the paper introduces the

model. In Section 2.2.1 and 2.2.2, the asymptotic theory for explosive root is given.

In Section 2.2.3, the asymptotic theory for stationary root is provided. In Section

2.2.4, the asymptotic theory for local-to-unity case is given. Section 2.3 contains a

brief concluding comment. All the proofs are collected in the appendix.
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2.2 Model Specification and Asymptotic Theory

Suppose a time series yt is generated from the following model

yt = ρnyt−1 + ut, t = 0, 1, . . . n, ut = ut−1 + εt, (2.2.1)

where εt
iid∼ (0, σ2). Assume the true value of ρn takes one of the following cases:



Case 1 ρn = a > 1,

Case 2 ρn = 1 + c
kn
, c > 0,

Case 3 ρn = 1 + c
kn
, c < 0,

Case 4 ρn = 1 + c
n
,

where kn satisfies the condition 1
kn

+ kn
n
→ 0. One widely used function that satifies

this condition is kn = nα with α ∈ (0, 1).

The OLS estimator of ρn is given by

ρ̂nols =
n∑
t=1

yt−1yt/
n∑
t=1

y2
t−1. (2.2.2)

The detrending GLS regression performs OLS estimation on the first-order differ-

enced model:

∆yt = ρn∆yt−1 + ∆ut = ρn∆yt−1 + εt, t = 1, 2, . . . , n, (2.2.3)

where ∆yt = yt − yt−1. The detrending GLS estimator of ρn is

ρ̂ngls =
n∑
t=2

∆yt−1∆yt/
n∑
t=2

∆y2
t−1. (2.2.4)

The GLS estimate clearly makes use of the covariance structure of ut.

7



2.2.1 Case 1: pure explosiveness

In case 1, the model is

yt = ρnyt−1 + ut, a > 1,

ut = ut−1 + εt,

y0 = 0, u0 = 0, ε1 = 0. (2.2.5)

Denote ρ̂ols := ρ̂nols and ρ̂gls := ρ̂ngls. Denote ρn as ρ, so that ρ = a > 1. The

following theorem reports the limiting distribution of two important variables and

GLS estimate.

Theorem 2.2.1 Assume εt
iid∼ N (0, σ2) for t = 2, ..., n in Model (2.2.5). Denote

Xn,gls :=
n∑
t=1

a−(n−t)−1εt, Yn,gls :=
n∑
j=1

a−jεj. (2.2.6)

As n→∞,  Xn,gls

Yn,gls

 a.s.→ N
(

02×1,
σ2

1− a2
I2

)
, (2.2.7)

where I2 is a 2-dimensional identity matrix. The limiting distribution of ρ̂gls is

an

a2 − 1
(ρ̂gls − a)

a.s.→ C, (2.2.8)

where C is a standard Cauchy variate.

Remark 2.2.1 The results in (2.2.8) are the same as those in White (1958) and An-

derson (1959). The above results are not surprising as in the first-order differenced

model εt
iid∼ N (0, σ2) and ∆y1 = 0. Note that the almost sure convergence applies

due to the martingale convergence theorem. The normality assumption cannot be

relaxed, and the invariance principle is not available in this case.

Similarly, in OLS estimates, the asymptotic normality of another two variables

is derived in the following lemma.

8



Lemma 2.2.1 Assume {εt}nt=1 follow joint normality and εt
iid∼ N (0, σ2) for t =

2, ..., n in Model (2.2.5). Denote

Xn,ols :=
1√
n

n∑
t=1

a−(n−t)−1ut, Yn,ols :=
n∑
j=1

a−juj. (2.2.9)

As n→∞,

 Xn,ols

Yn,ols

 d→ N


 0

0

 ,
 σ2

(a−1)2
0

0 a2σ2

(a−1)3(a+1)


 . (2.2.10)

Remark 2.2.2 The asymptotic covariance matrix of (Xn,ols, Yn,ols) is diagonal, sug-

gesting thatXn,ols and Yn,ols are asymptotically independent. However, it is not pro-

portional to the identity matrix, unlike the asymptotic covariance matrix of (Xn,gls, Yn,gls).

Theorem 2.2.2 Assume {εt}Tt=1 follow joint normality and εt
iid∼ N (0, σ2) for t =

2, ..., n in Model (2.2.5). The limiting distribution of ρ̂ols is

an+1

√
n (a2 − 1)

3
2

(ρ̂ols − a)
d→ C, (2.2.11)

where C is a standard Cauchy distribution.

Remark 2.2.3 Both OLS and GLS estimates follow standard Cauchy distributions

with different rates of convergence. The rate for OLS estimate is an/
√
n while the

rate for GLS estimate is an. Obviously, OLS estimate converges more slowly than

the GLS counterpart. This phenomenon suggests that GLS is more efficient than

OLS.

2.2.2 Case 2: mildly explosiveness

In Case 2, the model is

yt = ρnyt−1 + ut, (2.2.12)

ρn = 1 +
c

kn
,

1

kn
+
kn
n
→ 0, c > 0,

9



ut = ut−1 + εt, εt
i.i.d∼ (0, σ2),

y0 = op

(√
kn

)
, u0 = op

(√
kn

)
, ε1 = op

(√
kn

)
.

Note that the normality assumption is not imposed here, different from the case of

pure explosive root.

The detrending GLS regression takes the same form as in Equation (2.2.3) with

ρ being replaced by ρn(> 1). Since y1 = ρny0 + u0 + ε1 = op
(√

kn
)
, the initial

condition of the detrending GLS regression model is ∆y1 = op
(√

kn
)
.

Theorem 2.2.3 For Model (2.2.12), denote

Xn,gls :=
1√
kn

n∑
t=1

ρ−(n−t)−1
n εt, Yn,gls :=

1√
kn

n∑
j=1

ρ−jn εj. (2.2.13)

As n→∞,  Xn,ols

Yn,ols

 d→ N
(

02×1,
σ2

2c
I2

)
.

Under Model (2.2.12), the limiting distribution of ρ̂ngls is

ρnnkn
2c

(ρ̂ngls − ρn)
d→ C, (2.2.14)

where C is a standard Cauchy distribution.

Remark 2.2.4 The limiting distribution in (2.2.14) is identical to the case in Phillip-

s and Magdalinos (2007). Similar to Phillips and Magdalinos (2007), an invariance

principle applies so that we do not need to assume the normally distributed errors.

Lemma 2.2.2 For Model (2.2.12), denote

Xn,ols :=
1

kn
√
n

n∑
t=1

ρ−(n−t)−1
n ut, Yn,ols := k

− 3
2

n

n∑
j=1

ρ−jn uj .

10



As n→∞,  Xn,ols

Yn,ols

 d→ N


 0

0

 ,
 σ2

c2
0

0 σ2

2c3


 .

Remark 2.2.5 The asymptotic covariance matrix for Xn,ols and Yn,ols is diago-

nal, but not proportional to the identity matrix. This covariance matrix indicates

the asymptotic independence between Xn,ols and Yn,ols. The reason is that Xn,ols

and Yn,ols converge to normal distributions involving different normalizations, i.e.,

kn
√
n and k

3
2
n , respectively.

Theorem 2.2.4 For Model (2.2.12), the limiting distribution of ρ̂nols is

k
3
2
nρnn√
n (2c)

3
2

(ρ̂nols − ρn)
d→ C, (2.2.15)

where C is a standard Cauchy variate.

Remark 2.2.6 Both estimators follow standard Cauchy distributions asymptotical-

ly with different rates of convergence. The convergence rate for OLS is k
3
2
n ρ

n
n√
n

, while

the rate for GLS is knρnn. Similarly, the OLS estimate converges more slowly than

the GLS estimate. Again, we demonstrate the efficiency of GLS over OLS.

2.2.3 Case 3: mildly stationarity

In Case 3, the model is

yt = ρnyt−1 + ut, t = 1, 2, . . . , n, (2.2.16)

ρn = 1 +
c

kn
,

1

kn
+
kn
n
→ 0, c < 0,

ut = ut−1 + εt, εt
iid∼ (0, σ2),

y0 = op(
√
kn), u0 = op(

√
kn), ε1 = op(

√
kn).

Different from Phillips and Magdalinos (2007) where a high-order moment con-

dition is needed (E|ε1|2+δ < ∞ for some δ > 0), in our discussions, only the

11



second-moment condition of εt has to be finite. Following the approach of Phillips

and Magdalinos (2007) we develop the asymptotic theory of OLS and GLS esti-

mates on Equation (2.2.16).

The detrending GLS regression takes the same form as in Equation (2.2.3) with

ρ being replaced by ρn(:= 1 + c
kn
< 1). Since y1 = ρny0 + u0 + ε1 = op(

√
kn), the

initial condition in the detrending GLS regression model is ∆y1 = op
(√

kn
)
. As

n→∞, we have the following limit theory.

Theorem 2.2.5 For Model (2.2.16), as n→∞,

(a) 1
nkn

∑n
t=1 (∆yt)

2 p→ σ2

−2c
.

(b) 1√
nkn

∑n
t=1 εt∆yt−1

d→ N (0, σ4

−2c
).

(c)
√
nkn(ρ̂ngls − ρn)

d→ N (0,−2c).

When OLS is conducted for Model (2.2.16), we have the following theorem.

Theorem 2.2.6 For Model (2.2.12), as n→∞,

(a) 1
k2nn

2

∑n
t=1 y

2
t−1 = 1

−2c

{
2ρn

∑n
t=1 yt−1ut
n2kn

}
+ op(1);

(b) ρn
n2kn

∑n
t=1 yt−1ut = Op(1);

(c) kn(ρ̂nols − ρn)
p→ −c, where c is the distance parameter.

Remark 2.2.7 Since
√
nkn/ (kn) → ∞, GLS has a faster rate of convergence and

hence is asymptotically more efficient. Similar efficiency gains of the detrending

GLS estimates are demonstrated in Phillips and Lee (1996) and Xiao and Phillips

(2002). Moreover, the OLS estimate follows a degenerate distribution. One possible

explanation is that the unit root has spectra with a singularity (a pole) at the origin.

2.2.4 Case 4: local-to-unity Autoregression

The local-to-unity model initiated in Phillips (1987b) characterizes the near-unity

behaviors. The model follows,

yt = ρnyt−1 + ut, t = 1, 2, . . . , n, (2.2.17)

12



ρn = 1 +
c

n
, −∞ < c <∞,

ut = ut−1 + εt, εt
i.i.d∼ (0, σ2),

y0 = op (1) , u0 = op(1), ε1 = op(1).

If c = 0, yt has two unit-roots as differencing yt twice gives εt. In this case, dif-

ferencing yt and running OLS on the first differenced equation yield the following

well-known asymptotic theory

n(ρ̂ngls − 1)⇒
∫ 1

0
W (r)dW (r)∫ 1

0
W 2(r)dr

, (2.2.18)

where W (r) is a standard Brownian motion. The discussion of I(2) co-integration

has also provided in Phillips and Chang (1994), and Harris (1996), showing the

Op (n2) convergence rate.

When c 6= 0, the detrending GLS regression takes the same form as in Equation

(2.2.3) with ρ being replaced by ρn = 1 + c
n

. Let Jc(r) :=
∫ r

0
ec(r−s)dW (s) ∼

N
(
0, e

rc−1
2c

)
. The limiting distribution of GLS is summarized in the following the-

orem.

Theorem 2.2.7 For Model (2.2.17), as n→∞,

n
(
ρ̂ngls − ρ

)
⇒
∫ 1

0
Jc(r)dW (r)∫ 1

0
J2
c (r)dr

.

OLS is conducted over model (2.2.17) directly. Denote Ic(r) :=
∫ r

0
ec(r−s)W (s)ds

satisfying dIc(r) = (cIc(r) + W (r))dr with Ic(r) = 0. The asymptotic results of

the OLS estimate are summarized in the following theorem.

Theorem 2.2.8 For Model (2.2.17), as n→∞ and t = [Tr],

(a) n−
3
2y[Tr] ⇒ σIc(r).

(b) n−
5
2

∑n
t=1 yt ⇒ σ

∫ 1

0
Ic(r)dr.

(c) n−4
∑n

t=1 y
2
t ⇒ σ2

∫ 1

0
I2
c (r)dr.

(d) n−3
∑n

t=1 yt−1ut ⇒ σ2

2
{Ic(1)}2 − cσ2

∫ 1

0
I2
c (r)dr.

13



(e) n (ρ̂nols − ρ)⇒
1
2
{Ic(1)}2−c

∫ 1
0 I

2
c (r)dr∫ 1

0 I
2
c (r)dr

.

Remark 2.2.8 Both ρ̂ngls and ρ̂nols are consistent estimates. The rates of conver-

gence of ρ̂ngls and ρ̂nols are the same (n), although the limit distributions are dif-

ferent. The expectations of the two ratios are not zero, representing the existence

of asymptotic bias for both ρ̂ngls and ρ̂nols. Unfortunately, it is almost infeasible to

compute the moments of
1
2
{Ic(1)}2−c

∫ 1
0 I

2
c (r)dr∫ 1

0 I
2
c (r)dr

in the closed forms.

One exciting fact found here is that the detrending GLS is inferior to OLS in

the sense of bias and variance for some region of distance parameter in the local-to-

unity model. This observation contradicts the common sense in econometric theory.

By checking Table 2.1, on the stationary and unit root side, the OLS limiting

distribution has a larger bias than the detrending GLS case. However, when c ≥ 1,

the asymptotic distribution of OLS has both the smaller bias and smaller variance.

Therefore, in contrast to the standard results of GLS and OLS, there are efficiency

gains for OLS when c ≥ 1. Table 2.2 illustrates the abovementioned results. More-

over, from Table 2.3 and Table 2.4, one structure change occurs at c∗ ∈ (0, 1).

When 0 ≤ c ≤ c∗, OLS has a larger bias than detrending GLS. Again, the inter-

esting fact occurs when c∗ ≤ c ≤ 1. In this case, the OLS distribution has both a

smaller bias and smaller variance, similar to the discussions of c ≥ 1.

Table 2.1: Local-to-unity on stationary side(c≤0), iteration=2,000

Distance Parameter c=-3 c=-2 c=-1 c=0
Estimation Method OLS GLS OLS GLS OLS GLS OLS GLS
n=100 mean 4.4044 -1.9615 3.5369 -1.9530 2.7164 -1.9114 1.9642 -1.8110

variance 1.2743 14.9964 1.3089 13.1734 1.3419 11.4686 1.3575 10.0237
n=500 mean 4.5026 -1.8516 3.6150 -1.8473 2.7705 -1.8219 1.9925 -1.7487

variance 1.3588 15.8125 1.3652 14.0048 1.3591 12.2900 1.3485 10.7483
n=1,000 mean 4.4963 -1.9243 3.6093 -1.9024 2.7683 -1.8565 1.9944 -1.7526

variance 1.2817 14.9628 1.3010 13.0747 1.3115 11.2435 1.3032 9.4810
n=2,000 mean 4.5038 -2.0183 3.6163 -1.9934 2.7740 -1.9371 1.9976 -1.8144

variance 1.2605 15.9271 1.2819 13.9369 1.2932 11.9208 1.2816 9.9006

Results for the local-to-unity case are collected in the following corollary.

Corollary 2.2.9 For Model (2.2.17) with c∗ ∈ (0, 1),

(a) when c < c∗, the detrending GLS estimate has a smaller asymptotic bias;
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Table 2.2: Local-to-unity on explosive side(c≥1), iteration=2,000

Distance Parameter c=1 c=2 c=3 c=4
Estimation Method OLS GLS OLS GLS OLS GLS OLS GLS
n=100 mean 1.3060 -1.6087 0.7666 -1.2768 0.3924 -0.8980 0.1784 -0.5477

variance 1.3187 8.7617 1.2436 7.1120 1.1301 5.4769 0.8629 3.7867
n=500 mean 1.3190 -1.5777 0.7903 -1.2729 0.4094 -0.8884 0.1593 -0.5555

variance 1.3263 9.3550 1.2262 7.7584 0.9670 6.6490 0.7831 3.7412
n=1,000 mean 1.3153 -1.5481 0.7694 -1.2745 0.3853 -0.9230 0.1578 -0.5655

variance 1.2691 7.9567 1.1964 7.6006 1.0739 6.0589 0.8404 4.5792
n=2,000 mean 1.3123 -1.5852 0.7538 -1.2633 0.3836 -0.8562 0.1511 -0.5314

variance 1.2371 8.0033 1.2236 6.3402 0.9360 4.6719 0.7540 3.6020

Table 2.3: Local-to-unit on the explosive side(0≤c≤0.4), iteration=2,000

Distance Parameter c=0.1 c=0.2 c=0.3 c=0.4
Estimation Method OLS GLS OLS GLS OLS GLS OLS GLS
n=100 mean 1.8937 -1.7963 1.8242 -1.7805 1.7905 -1.7195 1.6882 -1.7454

variance 1.3568 9.8951 1.3556 9.7685 1.4095 10.2341 1.3509 9.5196
n=500 mean 1.9196 -1.7370 1.8479 -1.724 1.7773 -1.7104 1.7151 -1.7191

variance 1.3474 10.6057 1.3464 10.4649 1.3452 10.3257 1.3537 10.4739
n=1,000 mean 1.9217 -1.7372 1.8500 -1.7207 1.7793 -1.7030 1.6744 -1.7417

variance 1.3009 9.3116 1.2984 9.1443 1.2955 8.9796 1.2892 9.0974
n=2,000 mean 1.9246 -1.7968 1.8525 -1.7779 1.7813 -1.7579 1.7112 -1.7367

variance 1.2784 9.7025 1.2748 9.5058 1.2708 9.3106 1.2664 9.1170

Table 2.4: Local-to-unity explosive model(0.4<c<1), iteration=2,000

Distance Parameter c=0.5 c=0.6 c=0.7 c=0.8
Estimation Method OLS GLS OLS GLS OLS GLS OLS GLS
n=100 mean 1.6218 -1.7260 1.5564 -1.7053 1.4921 -1.6832 1.4290 -1.6598

variance 1.3475 9.3963 1.3432 9.2728 1.3382 9.1485 1.3323 9.0224
n=500 mean 1.6397 -1.6791 1.5728 -1.6616 1.5073 -1.6427 1.4431 -1.6225

variance 1.3423 10.0503 1.3403 9.9132 1.3379 9.7758 1.3348 9.6374
n=1,000 mean 1.6410 -1.6642 1.5735 -1.6431 1.5071 -1.6209 1.4419 -1.5976

variance 1.2890 8.6598 1.2854 8.5061 1.2816 8.3577 1.2776 8.2157
n=2,000 mean 1.6420 -1.7143 1.5739 -1.6907 1.5069 -1.6660 1.4409 -1.6401

variance 1.2616 8.9253 1.2566 8.7356 1.2515 8.5482 1.2464 8.3635
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(b) when c ≥ c∗, the OLS estimate has both the smaller asymptotic bias and vari-

ance.

2.3 Conclusion

The main results discussed above are classified as follows: For autoregressive model

with I(1) error as in the (2.2.1), there is no asymptotic equivalence between detrend-

ing GLS and OLS,

(1) For pure explosiveness (ρn = a > 1), the limiting distributions of both the OLS

and the detrending GLS estimates are standard Cauchy distributions. However, the

OLS estimate has a slower convergence rate than the GLS estimate.

(2) For mildly explosiveness (ρn = 1 + c
kn

, where c > 0), the limiting distributions

of both the OLS and the detrending GLS estimates are standard Cauchy distribu-

tions. The OLS estimate has a slower convergence rate.

(3) For mildly stationary models (ρn = 1 + c
kn

, where c < 0) and local-to-unity

models (ρn = 1 + c
n

with c ≤ c∗), there are efficiency gains in the detrending GLS

estimate.

(4) For local-to-unity models (ρn = 1 + c
n

with c > c∗), there are efficiency gains in

the OLS estimate.
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Chapter 3 Panel Approaches to Economet-

ric Analysis of Bubble Behaviour

3.1 Introduction

Financial bubbles, such as the dot-com bubble, are well recognized as explosive

deviations of asset prices from their fundamental values. According to the present

value model,

Pt =
∞∑
i=0

(
1

1 + rf

)i
Et (Dt+i) +Bt, (3.1.1)

where at time t, Pt is the price of an asset, Dt is the payoff of the asset, rf is the

risk-free interest rate, and Bt represents the bubble component which satisfies the

submartingale property:

Et (Bt+1) = (1 + rf )Bt.

When there are no bubbles (i.e., Bt = 0), the asset price is completely deter-

mined by dividends and unobserved fundamentals. If {Dt+i} contains a unit root

(i.e., I(1)), then the asset prices {Pt} cannot be explosive. However, if there is a

bubble (i.e., Bt 6= 0), {Bt} and hence, {Pt} must be explosive. This outcome is the

economic reason why econometric analysis of bubble behaviour has been focused

on doing right-tailed unit root tests on asset prices adjusted by fundamentals; see,

for example, Phillips, Shi, and Yu (2015a) (PSY hereafter).

Conventional econometric methods for bubble detection, including the Dickey-

Fuller (DF) test and the augmented DF (ADF) test of Diba and Grossman (1987),

the SADF test of Phillips, Wu and Yu (2011) (PWY hereafter) and Phillips and
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Yu (2009, 2011), and the GSADF test of PSY (2015a, b), are always based on

single time-series. After a bubble is found, the time series method is then used to

estimate the bubble origination and termination dates. For example, PWY (2011)

used the ADF test and the first-crossing principle to timestamp a bubble whereas,

PSY (2015a) used the maximum of ADF test and the first-crossing principle to

timestamp each bubble when there are multiple bubbles in the sample.

Unfortunately, the time-series methods may not have good powers, especially

when a bubble is short-lived or when a bubble grows slowly. To demonstrate the

low-power problem of the DF test when a bubble is short-lived or when a bubble

grows slowly, we design two experiments. In both experiments, we simulate data

from the following explosive AR(1) model,

yt = ρyt−1 + ut, y0 = 0, ut ∼ N(0, 1), t = 1, 2, ..., T, (3.1.2)

and use the DF statistic (ρ̂− 1) /s.e.(ρ̂) to test H0 : ρ = 1 against H1 : ρ > 1,

where ρ̂ =
T∑
t=1

(
yt − 1

T

T∑
t=1

yt

)(
yt−1 − 1

T

T∑
t=1

yt−1

)
/

T∑
t=1

(
yt−1 − 1

T

T∑
t=1

yt−1

)2

is

the least-squares (LS) estimator of ρ and s.e.(ρ̂) is the standard error of ρ̂. In the

first experiment, we take the empirical estimate of ρ as found in PWY as the true

value of ρ (i.e., ρ = 1.033 and ρ = 1.040) but set T = 10, 20, 30. In this experimen-

t, the bubble is short-lived but empirically realistic, judged by the empirical results

reported in PSY (2015a). Table 3.1 reports the powers (i.e., relative frequency out

of 10,000 replications) of the right-tailed DF test rejecting the null hypothesis. Es-

sentially, when the bubble is short-lived, the power of the right-tailed DF test is

deficient, ranging from 0.0916 to 0.2334. In the second experiment, we take the

empirical estimates of ρ as found in empirical evidence as the true value of ρ (i.e.,

ρ = 1.0017 and ρ = 1.0068). In this experiment, the bubble grows very slowly, but

these growth rates are empirically reasonable judged by the empirical results that

will be reported later. Once again, when the bubble grows slowly, the power of the

right-tailed DF test is very low, ranging from 0.0598 to 0.2892.

In practice, prices of multiple (say n) assets are often available over the same
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Table 3.1: Power of the right-tailed DF test when a bubble is short-lived.

T 10 20 30 10 20 30
ρ 1.033 1.040

Power 0.0916 0.1202 0.1732 0.0975 0.1403 0.2334

Table 3.2: Power of the right-tailed DF test when the bubble grows slowly

T 50 100 200 50 100 200
ρ 1.0017 1.0068

Power 0.0598 0.0604 0.0766 0.0791 0.1095 0.2892

time, leading to the availability of panel data. In this paper, we propose to use

panel data models to improve the power in bubble detection. Intuitively, as long as

there is some homogeneity over cross-sectional units within groups and the group

structure is known, panel data models based on pooling cross-sectional data within

the same group should sharpen the statistical inferences on the common explosive

root and hence, deliver better power performance than the method based on single

time series.

Unfortunately, in almost all practically relevant cases, the true group structure is

latent and has to be estimated from the panel data. In this paper, to identify the latent

membership, we consider several grouping strategies. To determine the number of

groups, we use the Bayesian information criterion (BIC).

Two different specifications for the panel data model are considered in this pa-

per. The first specification is the explosive panel autoregressive model. We use

the recursive k-means algorithm of Bonhomme and Manresa (2015) to identify the

group structure. The second specification is the mixed-root panel autoregressive

model in which explosive, stationary, and unit root time series are mixed together.

For bubble detection, it is perhaps too restrictive to impose homogeneous explosive

roots. Thus, it is more realistic to argue that explosive roots exist in a proportion

of individuals. For the case of mixed roots, we apply the modified k-means algo-

rithm of Lin and Ng (2012) to identify the group structure. We show the uniform

consistency of both classification algorithms.

We derive the oracle property of two post-classification estimators under the
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joint asymptotic scheme, that is, n →∞ and T →∞. The oracle property reveals

that the distance between the post-classification estimators and the oracle-within

estimators is diminishing. The diminishing distance verifies the optimality of two

the k-means classification procedures from the estimation perspective.

After the classification of groups is made, we provide two right-tailed t-statistics

for the detection of explosiveness. Under the null hypothesis of a unit root in a spe-

cific group, the proposed statistics converge to standard normal distributions. They

diverge under the alternative hypothesis of explosive roots. Our panel t-statistics

are superior to the ADF test in two aspects. First, our panel data based t-tests are

more powerful than the time series based DF test. Our asymptotic theory shows that

the panel t-statistics diverge at a faster rate than the ADF statistic. Extensive Monte

Carlo simulations demonstrate that the empirical power of the panel t-statistics is

much higher than the ADF statistic. Second, unlike the ADF statistic whose limiting

distribution is non-standard, the panel t-statistics have the standard asymptotically

normal distribution under the null hypothesis. Hence, it is easier to implement the

proposed tests than the ADF test.

Based on the panel t-statistics, we then propose a real-time estimate for the bub-

ble origination date and develop the asymptotic theory of the estimator. In particular,

based on the k-means classifications, we employ the forward recursive right-tailed

panel t-test to estimate the starting date of the bubble.

Our paper makes several contributions. First, it contributes to the literature on

bubble detection. Based on the uniformly consistent classification of individuals,

the proposed panel procedure greatly enhances the power of methods based on a

single time series.

Second, our paper contributes to the literature on data-driven classification. Al-

though there are several existing classification algorithms, most of the methods are

developed for the stationary case only. An exception is the LASSO algorithm in

Huang et al. (2019), which, however, does not directly apply to the mixed-root pan-

el autoregression. To the best of our knowledge, our study is the first attempt to
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extend classification algorithms to mixed-root panels.

We use the following notations throughout the study. The notations
p→, d→, and

⇒ denote convergence in probability, convergence in distribution, and convergence

in functional space, respectively. Correspondingly, (n, T ) → ∞ denotes the joint

limit. The notation A � B implies B/A = o (1) as (n, T ) → ∞. The notation

A �p B implies B/A = op (1) as (n, T ) → ∞. The notation A ∼ B represents

B/A = Op (1) as (n, T )→∞

3.2 Model Setup

The generic panel autoregressive model we consider is

yit = µi + ρiyi,t−1 + uit,

yi0 = op

(
T
γ
2

)
,

ρi = 1 +
c0
i

T γ
,

i = 1, 2, ..., n,

t = 1, 2, ..., T, (3.2.1)

where {uit} is a martingale difference sequence with a conditional second moment

σ2 (i.e., E (u2
it|Fi,t−1) = σ2 for any i and t, where Fi,t−1 := σ {ui,t−1, ui,t−2, ...})

and finite qth moments with q ≥ 4 for all i and t. We assume γ ∈ (0, 1). In

this model, µi is an individual fixed effect for each i with µi = O (T−1) whose

magnitude depends on the sample size and is diminishing asymptotically.

For the AR coefficient, we assume there exist positive values cl and cu such that

c0
i ∈ [−cu,−cl] ∪ {0} ∪ [cl, cu]. The boundedness imposes an identification con-

dition for parameters. Otherwise, there exists an identification problem. Generally,

we assume a known and homogeneous scaling parameter γ and unknown hetero-

geneous distance parameters, {c0
i }
n
i=1. As we only care about the signs of distance

parameters, the value of γ is of no interest.
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In this study, we adopt a setup that lies between the homogeneous panel (c0
i =

c0) and the heterogeneous panel (c0
i 6= c0

j for any i 6= j). In particular, we assume

the following group structure as

c0
i =

K0∑
g=1

α0
g1
{
i ∈ G0

g

}
, (3.2.2)

where α0
g 6= α0

l for any g 6= l,
⋃K0

g=1G
0
g = {1, 2, ..., n} , and G0

g ∩ G0
l = ∅ for

any j 6= g. Let ng := #G0
g represents the cardinality of the true group G0

g. Let

A be a set of arbitrary K0 × 1 vectors α (:= (α1, α2, ..., αK0)), and C be a set of

group-specific distance parameters, so that c (:= (c1, c2, ..., cK0)) ∈ C. Within the

same market sector or convergence club, all cross-sectional units share the identical

distance parameter αg. To obtain the asymptotic properties of classification and

inference, we first assume that the true group number, K0, is known while the true

memberships are latent and unknown. We then propose to use the BIC to estimate

the number of groups.

The true group-specific parameters are defined as c0 :=
(
c0

1, c
0
2, ..., c

0
K0

)
∈ C,

α0 := (α0
1, ..., α

0
K0) ∈ A and c0 := (c0

1, ..., c
0
n) ∈ Φn, where Φ := [−cu,−cl] ∪

{0} ∪ [cl, cu]. The true group membership variable {g0
i }

n
i=1 maps individual units

into groups. For each i = 1, 2, ..., n, and g = 1, 2, ..., K0, the event ‘g0
i = g’ is

equivalent to ‘i ∈ G0
g’. With any estimator {ĝi}ni=1, the event ‘ĝi = g’ is equiv-

alent to ‘i ∈ Ĝg’ for each i = 1, 2, ..., n, and g = 1, 2, ..., K0. We denote δ :=

(g1, g2, ..., gn) ∈ ∆K0 as a particular grouping of n, where ∆K0 unit is the set of all

groupings of {1, 2, ..., n} into at most K0 groups. For the gth group, we define the

AR coefficients and their estimators as ρ0
g

(
:= exp

(
α0
g/T

γ
))

, ρ0
ĝ

(
:= exp

(
α0
ĝ/T

γ
))

,

ρ̂ĝ (:= exp (α̂ĝ/T
γ)). For simplicity, we write ρ0

i (:= exp (c0
i /T

γ)) as ρi.

Two kinds of panel autoregressive models are considered in this paper. The first

one is the pure explosive panel, while the second one is the mixed-root panel. For
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the explosive panel, its group structure follows,



Group 1 : α0
1 > 0

Group 2 : α0
2 > 0

...
...

Group K0 : α0
K0 > 0

.

For the mixed-root panel autoregressive model, three potential classes of groups are

considered: (1) explosive roots (α0
g > 0); (2) unity roots (α0

g = 0); (3) stationary

roots (α0
g < 0). For the mixed-root panel, the group structure of the mixed-root

panels follows as



Explosive Groups :



Group 1 : α0
1 > 0

Group 2 : α0
2 > 0

...
...

Group k : α0
k > 0

Unit Root Group : Group : (k + 1) α0
(k+1) = 0

Stationary Groups :



Group (k + 2) : α0
(k+2) < 0

Group (k + 3) : α0
(k+3) < 0

...
...

Group K0 : α0
K0 < 0

.

As it is highly restrictive to assume all individual assets have bubbles, the mixed-

root panels accommodate explosive roots in a proportion of cross-sectional units.

3.3 A Two-stage Approach

For explosive analysis, we apply classification methods in the first stage. Based on

the estimated group structures in the first stage, we build post-classification estima-

tors and testing statistics in the second stage. We consider two inference procedures

for explosive analysis. The first is to detect the existence of explosive root using
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the right-tailed t-test. The second is to estimate the bubble origination dates using a

recursive algorithm. Both inference approaches rely on estimated group identities.

In the first panel model, we employ the recursive k-means classification pro-

posed in Bonhomme and Manresa (2015). In the second panel model, we consider

the modified k-means classification proposed in Lin and Ng (2012).

3.3.1 Stage 1: classification

Recursive k-means algorithm for explosive panels

In this subsection, we consider using the recursive k-means classification algorithm

to identify the group structure in the explosive panel autoregressive model. When

memberships are unobserved, two types of parameters are considered: the param-

eter vector {c0
i }
n
i=1 ⊆ [cl, cu], and the group membership variable {g0

i }
n
i=1, which

maps cross-sectional units into groups. Note that group-specific distance parameter-

s, {c0
i }
n
i=1, are well separated with minimum distance c∗ > 0; otherwise, we cannot

correctly allocate individuals into the true groups.

The grouped estimators of {c0
i }
n
i=1, {g0

i }
n
i=1 in (3.2.1) are defined as the solution

to the following optimization problem:

(̂c, δ̂) = arg min
(c,δ)∈C×∆K0

1

nT 2γ

n∑
i=1

1

ρ̆2T
i

T∑
t=1

(
ỹit − ỹi,t−1 exp

(
cgi
T γ

))2

, (3.3.1)

where δ = {g1, g2, ..., gn} groups n units into K0 groups. We employ {ρ̆i}ni=1

as the collection of least squares (LS) estimates for each individual time series.

To eliminate fixed effects, we employ a demeaned process as ỹit := yit − yi and

ỹi,t−1 := yit − yi,−1. For given values of {cg}K
0

g=1, the optimal group classification

for each i = 1, 2, ..., n is

ĝi(c) = arg min
g∈{1,2,...,K0}

1

T 2γ ρ̆2T
i

T∑
t=1

[
ỹit − ỹi,t−1exp

(
cg
T γ

)]2

, (3.3.2)

where the minimum g optimizes a k-means classification problem. The estimator
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{
ĉg

}K0

g=1
of (3.3.1) optimizes the following objective function:

ĉ = arg min
c∈C

1

nT 2γ

n∑
i=1

1

ρ̆2T
i

T∑
t=1

(
ỹit − ỹi,t−1exp

(
cĝi(c)
T γ

))2

, (3.3.3)

where ĝi(c) is derived by (3.3.2). The classification estimates of {g0
i }

n
i=1 are simply

ĝi(̂c).

The following algorithm summarizes the recursive k-means procedure to mini-

mize (3.3.1) in the following steps.

Step 1: Let the initial values
{
c(0)
g

}K0

g=1
be the collection of individual LS esti-

mates for all i ∈ {1, 2, ..., n} ;

Step 2: For any i = 1, 2, ..., n, compute

g
(s+1)
i = arg min

g∈{1,2,...,K0}

1

T 2γ ρ̆2T
i

T∑
t=1

(
ỹit − ỹi,t−1 exp

(
c(s)
g

T γ

))2

; (3.3.4)

Step 3: Compute

ĉ
(s+1)

g = arg min
c∈C

1

n

n∑
i=1

1

T 2γ ρ̆2T
i

T∑
t=1

(
ỹit − ỹi,t−1 exp

(
c
g
(s+1)
i

T γ

))2

; (3.3.5)

Step 4: Set s = s+ 1 and go to Step 2 (until numerical convergence).

This computation algorithm consists of two iterated steps, ‘assignment’ as in

Step 2 and ‘update’ as in Step 3. In the ‘assignment’ step, each cross-section unit

i is assigned to the nearest group gi based on the distance defined in (3.3.4). In the

‘assignment’ step, to re-allocate centres of groups {gi}ni=1, we compute {ĉi}ni=1 (or{
ĉgi

}n
i=1

equivalently) by minimizing (3.3.5).

When conducting the numerical simulations, we assume the value of γ is known,

and report the performance of the two-stage algorithm based on this prior informa-

tion. As γ is assumed to be homogeneous across individuals, the specific value of γ

will not disturb the performance of the classifier.
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Modified k-means algorithm for mixed-root panels

If (3.2.1) incorporates explosive, stationary, and unit roots, the recursive k-means

algorithm fails. Because of heterogeneity in adjustment rates, the sample moments

of stationary individuals are asymptotically unstable. To accommodate the mixed

roots, we follow the clustering approach in Lin and Ng (2012). We summarize the

algorithm in the following steps.

Step 1: We derive LS estimates {ĉi}ni=1 as

ĉi − c0
i = T γ

∑T
t=1 ỹi,t−1ũit∑T
t=1 ỹ

2
i,t−1

= T γ
∑T

t=1

(
yi,t−1 − yi,−1

)
(uit − ui)∑T

t=1

(
yi,t−1 − yi,−1

)2 ; (3.3.6)

Step 2: To recover latent memberships, we apply the k-means cluster algorithm

for {ĉi}ni=1. Specifically, with α = (α1, α2, ..., αK0) ∈ A being any arbitraryK0×1

vector for α1, α2, ..., αK0 , we define

Q̂n (α) =
1

n

n∑
i=1

min
1≤l≤k

(ĉi − αl)2 ,

and α̂ = (α̂1, α̂2, ..., α̂K0) with α̂ := arg minα∈A Q̂n (α). Therefore, we further

compute the estimated cluster identity as

ĝi = arg min
1≤l≤K0

|ĉi − α̂l| ,

where if there are multiple l’s that achieve the minimum, ĝi takes the value of the

smallest one.

When c0
i > 0, we have ĉi − c0

i = Op

(
1
ρTi

)
. When c0

i = 0, we have ĉi − c0
i =

Op

(
1
T

)
. When c0

i < 0, we have ĉi− c0
i = Op

(
1

T
1−γ
2

)
. However, the pointwise con-

vergence rate of each i is insufficient for showing classification consistency. Instead,

we need to verify the uniform convergence rate for ĉi over i = 1, 2, ..., n.
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3.3.2 Stage 2: post-classification estimation, bubble detection

and bubble timestamping

Based on classifications, we consider two pooled LS estimators for α0 (c0 or c0,

equivalently), namely, the oracle estimator and the post-classification estimator. The

oracle within estimator for the AR coefficient in the gth group is

ρ̂g − ρ0
g =

∑
i∈G0

g

∑T
t=1 ỹi,t−1ũi,t∑

i∈G0
g

∑T
t=1 ỹ

2
i,t−1

. (3.3.7)

Similarly, the post-classification within estimator for the gth group is

ρ̂ĝ − ρ0
g =

∑
i∈Ĝg

∑T
t=1 ỹi,t−1ũi,t∑

i∈Ĝg

∑T
t=1 ỹ

2
i,t−1

, (3.3.8)

where we define
{
Ĝg

}K0

g=1
as any consistent classification estimates on

{
G0
g

}K0

g=1
.

Under the model (3.2.1) with latent memberships, we can estimate σ2
g consis-

tently for each g = 1, 2, ...K0. Define

σ̃2
ĝ =

1

2nĝT

∑
i∈Ĝg

T∑
t=1

̂̃u2

it, (3.3.9)

where ̂̃uit = ỹit−ρ̂ĝỹi,t−1, nĝ = #Ĝg, and ρ̂g is defined by (3.3.8). Since we assume

homoskedasticity over i = 1, 2, ..., n, we have

σ̃2 =
1

2nĝT

∑
i∈Ĝg

T∑
t=1

̂̃u2

it, (3.3.10)

for any ĝ = 1, 2, ...K0.

Based on (3.3.10), we can establish the inference procedure to justify the accu-

racy of our post-classification estimator. To test the null hypothesis H0 : c0
g = cr,
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we propose the following t-statistic:

tĝ =
(ρ̂ĝ − ρr)

√
Dĝ,nT

σ̃ĝ
, (3.3.11)

where Dĝ,nT =
∑

i∈Ĝg

∑T
t=1 ỹ

2
i,t−1. If we let cr = 0, the statistic (3.3.11) can be

employed to test the existence of bubbles. To test the null hypothesis H0 : c0
g = 0,

we choose the following the panel statistic as

t̃ĝ =

(
ρ̂ĝ − 1

)√
Dĝ,nT

σ̃ĝ
. (3.3.12)

Under the alternative H1 : c0
g > 0, the fact that the statistics (3.3.12) diverge faster

than the time-series statistic of Diba and Grossman (1988) illustrates the superiority

of our panel approach. Obviously, the statistic t̃ĝ of (3.3.12) corresponds to the

full-sample statistic and can detect the signal of bubbles. However, the full-sample

statistics cannot date the origination of bubbles.

To consistently estimate the origination of explosive subperiod, we propose the

following subsample statistic:

t̃ĝ (r) =

(
ρ̂ĝ (r)− 1

)√
Dĝ,nT (r)

σ̃ĝ(r)
, (3.3.13)

where ρ̂ĝ (r) is the post-classification within estimator of ρ0
g based on the first τ =

[Tr] observations in the gth estimated group, and σ̃2
ĝ(r) is the estimator of σ2

g based

on the first τ = [Tr] observations in the gth estimated group. The notationDĝ,nT (r)

is the sample moment on the first τ = [Tr] observations in the gth estimated group.

The sub-sample statistic (3.3.13) is the foundation for the estimate of the bubble

origination date.

Our inference procedure extends the framework of PWY and PSY. In PSY, the

recursive approach is proposed to detect the explosive behaviour and date-stamp the
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origination of bubbles. The regression model used in PSY is

ỹt = α + βỹt−1 + ut,

where ut is the equation residual. The parameter β = 0 under the null hypothesis

of no bubble and β > 0 under the alternative hypothesis of bubbles. Therefore, the

standard DF test under the null hypothesisH0 : β = 0 is

DF =
β̂

se
(
β̂
) ,

where

β̂ =
T
∑T

t=1 ∆ỹtỹt−1 −
∑T

t=1 ∆ỹt
∑T

t=1 ỹt−1

T
∑T

t=1 ỹ
2
t−1 −

(∑T
t=1 ỹt−1

)2 ,

se
(
β̂
)

= σ̂ỹ

 T∑
t=1

ỹ2
t−1 −

1

T

(
T∑
t=1

ỹt−1

)2
− 1

2

,

σ̂2
ỹ =

1

T

T∑
t=1

(
∆ỹt − α̂− β̂ỹt−1

)2

, α̂ =
1

T

(
∆ỹt − β̂ỹt−1

)
.

The DF statistics obtained from these subsample (starting from r1 and ending at

r2) regressions are represented in the sequence {DFr1,r2}. The detection for the

existence of bubbles relies on the supreme statistics as,

PSYr = sup
r1∈[0,r−rmin],r2=r

{DFr1,r2} ,

where τmin = [Trmin] is the minimum sample size required to initiate the procedure.

The origination date of a bubble is defined to be the first observation where the

supreme statistic exceeds the diverging critical value as,

r̂ = inf
s≥rmin

{s : PSYs > cvβTn} ,

where cvβTn is the critical value with significance level βTn → 0.
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Following PWY, we propose a recursive algorithm to date the bubble origina-

tion. Since we only consider a single bubble case, we employ the t-statistic rather

than the supreme t-test. Based on the recursive procedure of the panel t-test, we use

the classified groups of panels to data-stamp the origination. We date the origination

of an explosive episode as

r̂eg = inf
s≥r0

{
s : t̃g (s) > cvβTn

}
, (3.3.14)

and

r̂eĝ = inf
s≥r0

{
s : t̃ĝ (s) > cvβTn

}
, (3.3.15)

where cvβTn is the right-side 100βTn% critical value of the limiting distribution of

t̃ĝ and t̃g statistics based on τs = [Ts] time horizon, and βTn is the size of the one-

sided statistics. The parameter r0 is the minimum sample size required to initiate the

regression. We allow βTn → 0 as (n, T ) → ∞ because, in this event, cvβTn → ∞.

This recursive method can apply in the same way to the PWY procedure based on

the ADF statistic.

3.3.3 Estimation of K0

To estimate the true number of groups, we rely on the Bayesian information criterion

(BIC) which is defined as:

BIC(K) =
1

nT

n∑
i=1

T∑
t=1

(
ỹit − ỹi,t−1ρ̂

(K)

ĝi

)2

+
K + n

nT
log(nT ),

where
(
ρ̂

(K)

ĝi

)n
i=1

is the post-classification estimator based on K groups and σ̃2 is

the variance estimator (3.3.10). Post-classification estimators based on both the

recursive k-means and the modified k-means are applicable. The estimation of the

group number is achieved by choosing the optimal K which minimize the BIC, that

is,

K̂ = arg min
K=1,2,...,Kmax

BIC(K), (3.3.16)
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where Kmax is a generic upper bound of K. The BIC represents a balance between

model fitness and penalty of over-fitness. In addition to the BIC function considered

in Bai and Ng (2002), Bai (2003, 2009), the Deviance information criterion (DIC)

in Spiegelhalter et al. (2002) and Li et al. (2019) also can be employed to select the

true number of groups.

3.4 Asymptotic Theory

In this section, we study the asymptotic properties of the k-means algorithms un-

der the respective panel models. We will show that the classification algorithms

can recover the latent group structure consistently. Given this consistency, we can

demonstrate that the feasible estimators of the AR coefficients are asymptotically

equivalent to the oracle estimators that are derived as if the true group structure was

known. We also provide the asymptotic distributions of the estimators of the AR

coefficients. In this section, we justify the consistency of explosiveness statistic-

s under the alternative hypothesis of explosive roots. We also show our recursive

method can date the origination dates of explosive episodes with better accuracy

than PWY. At last, we demonstrate that the BIC estimator on K0 is consistent.

To demonstrate the asymptotic theory of our two-stage procedure, we impose

two assumptions.

Assumption 1 (i) For each i, the individual fixed effect µi = O (T−1) or µi = 0.

(ii) The error process {uit} is a martingale difference sequence with a homo-

geneous conditional second moment σ2 (E (u2
it|Fi,t−1) = σ2 for all i and t, where

Fi,t−1 := σ {ui,t−1, ui,t−2, ...}) and finite qth moments with q ≥ 4 for all i and t.

(iii) Initial conditions: Assume that yi0 = 0 almost surely for all i, yi0 is inde-

pendent of uit for all i and t, and uis = 0 for all s ≤ 0.

(iv) There exist cu and cl such that for each i ∈ {1, 2, ..., n} so that we have

0 < cl ≤ |c0
i | ≤ cu <∞ or c0

i = 0.

(v) There exists a constant c∗ ∈ (0,∞) such that inf1≤g≤g′≤K0

∣∣α0
g − α0

g′

∣∣ ≥ c∗.
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Assumption 1(i) provides restrictions on individual fixed effects. Assumption

1(ii) assumes the martingale property for innovations. Assumption 1(iii) imposes

restrictions on the initial conditions. Assumption 1(iv) imposes an identification

condition for distance parameter. Assumption 1(v) gives another identification con-

dition where the group-specific parameters are well separated from each other.

Define σ̃2
G(K) := 1

nT

∑n
i=1

∑T
t=1

(
ỹi,t − ρ̂

(K)

ĝ
(K)
i
ỹi,t−1

)2

where ĝ(K)
i and ĝ

(K)

ĝ
(K)
i

are

membership and slope estimates assuming the number of group is K.

Assumption 2 (i) Let {ng}K
0

g=1 denote the cardinality of latent groups. For each

g ∈ {1, 2, ..., K0}, ng
n
→ πg <∞. Moreover, inf1≤g≤K0 πg ≥M for some M > 0.

(ii) The following rate restrictions hold: T 1−3γn (log n)2 → 0, T 2γ−2n (log n)2 (log2 T )4 →

0, and T
5γ−3

4 n (log n)2 → 0, where log2(·) := log log(·).

(iii) The relationship δnT <
M(c∗)2

15cu
holds for each n and T, where δnT is defined

in Lemma A.2.11.

(iv) As (n, T ) → ∞, min1≤K<K0 infδK∈∆K
σ̃2
G(K)

p→ σ2 > 2σ2, while σ̃2
G(K) is

defined above.

Assumption 2(i) implies that each group size increases proportionally to the di-

mension of individuals. Assumption 2(ii) imposes rate restrictions so that the con-

centration inequality is applicable. Assumption 2(iii) provides necessary conditions

for the uniform consistency of classifications. Assumption 2(iv) imposes necessary

conditions for the consistency of BIC procedure.

We find that incidental parameters do not show up in the asymptotics of sample

moments. The reason why this happens is that for each i = 1, 2, ..., n, the fixed

effect is asymptotically diminishing and dominated by noise. To illustrate this point

clearly, note that,

yit =
ρti − 1

ρi − 1
µi +

t∑
s=1

ρt−si uis. (3.4.1)

Since ρti−1

ρi−1
µi = O (ρtiT

γ−1) and
∑t

s=1 ρ
t−s
i uis = Op (ρtiT

γ), yit is asymptotically e-

quivalent to
∑t

s=1 ρ
t−s
i uis for each i = 1, 2, ..., n. Moreover, noise, not fixed effects,

determines the asymptotics uniformly for all i = 1, 2, ..., n. Therefore, to determine
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uniform bounds of sample moments, we only need to consider innovations. Without

losing generality, we assume µi = 0 when deriving asymptotics for the two-stage

algorithm.

3.4.1 Recursive k-means algorithm

We establish the consistency of the coefficient estimates in the explosive panel au-

toregressions.

Theorem 3.4.1 (Individual Consistency of Classification) Let Assumption 1 and 2

hold. Assume c0
i > 0 for each i = 1, 2, ..., n. With joint convergence (n, T )→∞,

Pr

(
max
1≤i≤n

∣∣ĝi − g0
i

∣∣ > 0

)
= o(1).

Theorem 3.4.1 justifies the consistency of recursive k-means classification algo-

rithm. It is similar to Theorem 2 of Bonhonmme and Manresa (2015). This theorem

states that under the joint convergence framework (n, T ) → ∞, we can correctly

recover the true group structure. From the Theorem 3.4.1, we observe that correc-

t classifications strongly rely on Assumption 1(ii). In our discussion, as long as

the distance parameters
{
c0
g

}K0

g=1
are separated across groups, the misclassification

errors are asymptotically negligible.

The following theorem indicates that the post-classification estimator α̂ĝ is asymp-

totically equivalent to the oracle estimator α̂g for each g ∈ {1, 2, ...K0}. With the

classification consistency of the recursive k-means algorithm, we can verify the

asymptotic equivalence between our parameter estimate and the true value:

√
ng
(
ρ0
g

)T (
α̂ĝ − α0

g

)
=
√
ng
(
ρ0
g

)T (
α̂g − α0

g

)
+ op(1).

Therefore, the post-classification estimator α̂ĝ shares the identical limiting distribu-

tion as the oracle estimator. The following theorem shows the limiting distribution

of α̂ĝ.
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Theorem 3.4.2 Suppose Assumption 1 and 2 hold. Assume c0
i > 0 for i = 1, 2, ..., n.

Under joint convergence (n, T )→∞ and rate restriction n
T 2−2γ = o (1) ,

√
ng
(
ρ0
g

)T
(α̂ĝ − α0

g)
d→ N (0, 4

(
α0
g

)2
).

Remark 3.4.1 To test for explosive roots, we need to accommodate both the grouped

explosive roots and the unit root. The new data generating mechanism follows

(3.2.1) and the group structure as



Explosive Groups:



Group 1 : α0
1 > 0,

Group 2 : α0
2 > 0,

...
...

Group (K0 − 1) : α0
K0−1 > 0,

Unit Root Group: Group K0 : α0
K0 = 0.

.

To apply the recursive k-means approach, we can modify the objective function

(3.3.1) with the self-normalized adjustment rate as

(̂c, δ̂) = arg min
(c,δ)∈C×∆K0

1

n

n∑
i=1

1

ΥiT

T∑
t=1

(
ỹit − ỹi,t−1 exp

(
cgi
T γ

))2

, (3.4.2)

where ΥiT :=
∑T

t=1 y
2
i,t−1. Basically, the optimization of (3.4.2) follows the iden-

tical algorithm in (3.3.2) and (3.3.3) except that we just need to replace ρ̆2T
i T

2γ by

ΥiT . Due to the assumption of latent group structures, self-normalization rates do

not disturb our theoretical derivations and codings. Therefore, the consistency of

classifications and the oracle properties of parameter estimates still hold. For the

technical details, kindly check the proof of Theorem 4.1.

3.4.2 Modified k-means algorithm

We now establish the classification consistency of the modified k-means algorithm

in the mixed-root panel model.
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Theorem 3.4.3 (Individual Consistency of Classification) Suppose Assumptions 1

and 2 hold. When (n, T )→∞,

sup
1≤i≤n

1
{
ĝi 6= g0

i

}
= op (1) .

Theorem 3.4.3 shows that the modified k-means algorithm consistently recovers

latent memberships for the mixed-root panel model. This machinery incorporates

more general cases than the recursive classification algorithm. The following theo-

rem reports the asymptotic distribution of α̂ĝ, the parameter estimate based on the

estimated membership.

Theorem 3.4.4 Suppose Assumptions 1 and 2 hold. Assume n
T 2−2γ = o(1). When

(n, T )→∞,
√
ng
(
ρ0
g

)T
(α̂ĝ − α0

g)
d→ N (0, 4

(
α0
g

)2
).

Based on the modified k-means algorithm, we also obtain the oracle property

of the post-classification estimator. Therefore, we can develop reliable tests for

explosiveness in the context of mixed-root panels. The significant advantage of the

post-classification estimates is that they employ both time-series and cross-sectional

asymptotics.

Remark 3.4.2 The modified k-means algorithm can also consistently identify the
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latent membership with structural breaks in the following model.



Stationary-to-Explosive Groups:



Group 1 : α0
1,1 < 0 α0

1,2 > 0

Group 2 : α0
1,2 < 0 α0

2,2 > 0

...
...

...

Group k1 : α0
1,k1

< 0 α0
2,k1

> 0

Unity-to-Explosive Groups:



Group (k1 + 1) : α0
1,k1+1 = 0 α0

1,k1+1 > 0

Group (k1 + 2) : α0
1,k1+2 = 0 α0

2,k1+2 > 0

...
...

...

Group k2 : α0
1,k2

= 0 α0
2,k2

> 0

Unit Root Group: Group (k2 + 1) : α0
k2+1 = 0

Stationary Groups:



Group (k2 + 2) : α0
k2+2 < 0

Group (k2 + 3) : α0
k2+3 < 0

...
...

Group K0 : α0
K0 < 0

.

(3.4.3)

There are four types of latent groups in the panel: Case (1), Stationary-to-Explosive

Groups (Before the time point τ eg , α0
1,g < 0; After the time point τ eg , α0

2,g > 0); Case

(2), Unity-to-Explosive Groups (Before the time point τ eg , α0
1,g = 0; After the time

point τ eg , α0
2,g > 0); Case (3), Unit Root Group (α0

g = 0); Case (4), Stationary

Groups (α0
g < 0). For both Case (1) and (2), when i = 1, 2, ..., n and re

g0i
< 1,

the time-series LS estimate ĉi is convergent to α0
2,g0i

. This fact shows that the sig-

nal of the explosive subperiods dominates those of unit roots and stationarity. For

technical details, kindly check the proof of the Theorem 3.4.7. As the validity of

the modified k-means algorithm relies on the consistency of LS estimates, we can

still recover the latent membership with structural breaks in slopes. The classifica-

tion consistency for the parameter instability lays down the foundation for bubble

analysis in the forthcoming discussions.
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3.4.3 Test statistic for bubbles

We provide the consistency of both (3.3.9) and (3.3.10) in the following lemma.

Lemma 3.4.1 Suppose Assumptions 1 and 2 hold. When (n, T )→∞,

σ̃2
ĝ

p→ σ2,

for any g = 1, 2, ..., K0.

Consistency of σ̃2
ĝ is essential for valid inference procedures as we can properly

scale the statistic. We collect the details of (3.3.11) in the following theorem.

Theorem 3.4.5 Suppose Assumptions 1 and 2 hold. UnderH0 : c0
g = 0,

t̃ĝ
d→ N (0, 1).

UnderH1 : c0
g > 0,

t̃ĝ = Op

((
ρ0
g

)T √
n
)

,

where (n, T )→∞.

By comparison, the DF statistic under the alternative hypothesis diverges at the

rate Op

(
(ρ0
g)
T
)
. The divergence rate is slower than that in (3.3.12), leading to a

lower power than the panel-based test.

3.4.4 Estimate of bubble origination date

When τ = [Tr]→∞ for all r ∈ [r0, 1], we have

t̃ĝ (r)
d→ N (0, 1) ,

under the null hypothesis of unit root in the gth group. For a bubble to have a

meaningful origination date, we assume the following DGP for at least one group
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(say G0
g) and all i ∈ G0

g,

yit = µi + ρityi,t−1 + uit, t = 1, 2, ..., T, and i = 1, 2, ..., n, (3.4.4)

where uit is a martingale difference sequence with a conditional 2nd moment σ2

and a finite qth moment with q ≥ 4. The initialization of the process is yi0 = 0 for

i = 1, 2, ..., n. The fixed effect is µi = Op

(
1
T

)
. The AR coefficient ρit = 1 + cit

T γ

with time-varying cit. Following PWY and Phillips and Yu (2009), we assume

cit = c0
1i1
{
t < τ eg0i

}
+ c0

2i1
{
t ≥ τ eg0i

}
, with c0

1i ≤ 0 and c0
2i > 0. (3.4.5)

Hence, model (3.4.4) allows for two regimes: a unit root or stationary regime and

an explosive regime with a bubble originating at τ e
g0i

. If individual i does not contain

any explosive root, then re
g0i

= 1.

By Remark 3.4.2, under the case of parameter instability, we can still apply the

modified k-means algorithm to consistently recover the true membership, showing

that the estimated groups are equivalent to the true ones. Therefore we can directly

employ the feasible estimator on the origination date r̂eĝ rather than r̂eg. Based on

r̂eg and r̂eĝ, we establish a limit theory for dating the origination of an explosive root

under the case of no bubbles.

Theorem 3.4.6 Suppose Assumptions 1 and 2 hold. Assume n/T 2−2γ = o (1).

Under the null hypothesis of no episode of explosiveness (α0
g ≤ 0 for each g =

1, 2, ..., K0), and provided that cvβTn → ∞, the probability of detecting the origi-

nation of a bubble using t̃g and t̂ĝ is zero: As (n, T )→∞,

Pr
(
r̂eg∈ [0, 1]

)
→ 0, and Pr

(
r̂eĝ∈ [0, 1]

)
→ 0,

where r̂eg is defined in (3.3.14) and r̂eĝ in (3.3.15).

Next, we show the consistency of the estimator under the case of a single bubble

for g = 1, 2, ..., K0.
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Theorem 3.4.7 Suppose Assumptions 1 and 2 hold. Assume n/T 2−2γ = o (1). If

1
cvβTn

+
cvβTn
PTn
→ 0 with PTn =

√
nT

2−γ
2 , under the model (3.4.4) and (3.4.5),

r̂eg
p→ reg, and r̂eĝ

p→ reg.

When we include observations from the explosive regimes, the signals from

explosive roots dominate those from non-explosive regimes (unit root and stationary

regimes). In this case, we can show that the statistics diverge at the rate ofOp (PTn).

When the critical value cvβTn increases at a slower speed than PTn, we can obtain

the consistency of the origination estimate.

Remark 3.4.3 From practical implementation, we set the critical value sequences

vβTn according to a rule of thumb such as cvβTn = 2
3

log log(nT ). The critical value

diverges at a slower speed than PTn.

3.4.5 Estimate of K0

We show the consistency of the estimator on K0 using BIC.

Theorem 3.4.8 Suppose Assumptions 1 and 2 hold. When (n, T )→∞,

K̂
p→ K0

where K̂ is defined in (3.3.16).

Remark 3.4.4 In the above analysis, we derive all the results, assuming that the

number of groups K0 is known. In practice, the researcher has to determine K0

from data before conducting the two-stage procedure.
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3.5 Monte Carlo Studies

We design several Monte Carlo experiments to check the finite sample performance

of the proposed two-stage algorithm.1 First, we demonstrate the behaviours of the

recursive k-means algorithm and the modified k-means classification algorithm.

The number of replications is always set to 1,000.

3.5.1 Recursive k-means algorithm

To verify the classification accuracy of the recursive k-means classification, we con-

sider only a DGP on explosive roots. We simulate µi ∼ N (0,1)
T

and uit
iid∼ N (0, 2)

over i and t. Data are simulated from a DGP with three groups (K0 = 3) with

n1 : n2 : n3 = 1
3

: 1
3

: 1
3
. The following settings are considered (DGP 1): n = 30,

60, T = 25, 50, 100, c = (0.2, 0.9, 1.6), γ = 0.5.

With correctly selected group numbers, we show the classification consistency

of the recursive k-means procedure and provide the numerical results of its post-

classification estimator. Tables 3.3 shows the classification errors, RMSE, asymp-

totic bias, and probability coverage of the post-classification estimator and its oracle

estimator, the infeasible within estimator when informed of the true group member-

ship. As a comparison, we show results for the oracle within estimator. We only

replace Ĝg with G0
g, since we can observe the true membership.

Tables 3.3 shows extensive discussions on explosive roots. As shown here, the

classification error approaches zero as the time horizon increases, and the RMSE

and bias of the oracle estimator are smaller than the post-classification estimator.

For post-classification estimators, the RMSE and bias generally decrease when T →

∞. When T ≥ 100, the asymptotic difference between the oracle estimator and the

post-classification estimator is almost negligible. The diminishing distance verifies

the asymptotic equivalence between these two estimators. The diminishing distance
1The experiment of chapter uses the codes provided by Professor Stéphane Bonhomme on his

website: https://sites.google.com/site/stephanebonhommeresearch/. This declaration is to honor the
contribution of Professor Stéphane Bonhomme to this chapter and the originality of his invention on
the classification algorithm.
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Table 3.3: Classification and Estimation by Recursive k-means Algorithm

DGP 1 Post-Classification Oracle
n T Cluster Error RMSE Bias Coverage RMSE Bias Coverage

Group 1 30 25 0.0436 0.176 -0.0081 0.874 0.1031 -0.0363 0.8663
30 50 0.0081 0.0886 -0.0151 0.938 0.0458 -0.0149 0.9338
30 100 0.0018 0.1162 -0.0157 0.93 0.024 -0.0069 0.9299
60 25 0.0451 0.1616 0.0065 0.886 0.0697 -0.024 0.8743
60 50 0.0073 0.0574 -0.006 0.954 0.0269 -0.009 0.9485
60 100 0.0006 0.0665 -0.0073 0.97 0.0143 -0.0044 0.968

Group 2 30 25 0.0436 0.1515 -0.0286 0.934 0.0095 -0.0022 0.9326
30 50 0.0081 0.0505 -0.0033 0.94 0.0011 -0.0001 0.9439
30 100 0.0018 0.0001 0 0.94 0.0001 0 0.94
60 25 0.0451 0.1528 -0.0298 0.914 0.0068 -0.0021 0.9121
60 50 0.0073 0.0516 -0.0034 0.936 0.0008 -0.0001 0.9349
60 100 0.0006 0 0 0.944 0 0 0.944

Group 3 30 25 0.0436 0.0005 -0.0001 0.954 0.0005 -0.0001 0.954
30 50 0.0081 0 0 0.954 0 0 0.954
30 100 0.0018 0 0 0.952 0 0 0.952
60 25 0.0451 0.0004 -0.0001 0.924 0.0004 -0.0001 0.924
60 50 0.0073 0 0 0.944 0 0 0.944
60 100 0.0006 0 0 0.954 0 0 0.954

is due to the uniform consistency of our recursive k-means algorithm. The recursive

k-means induces much better finite sample performance than the modified k-means

algorithm. The main explanation for this phenomenon is that once we have larger

n, the uniform convergence rate of individual least squares estimators is reduced.

Last, we evaluate the performance of explosive detection statistic. The nominal

level is set to 5%. We evaluate these tests with the correct number of groups of

K0 = 3. To demonstrate the superiority over the right-tailed DF test, we choose

n = 30, 60, 90, and T = 25, 50, 100. With three groups, we assume π1 = π2 =

π3 = 1
3
. We present the simulated results in Tables 3.4.

The sizes of panel explosiveness tests are well controlled around nominal levels.

The power of the test is greatly improved by the additional degree of cross-sectional

asymptotics, n, when compared with the DF statistic. The power improvement cor-

responds to our aim to create power-enhanced statistic for explosiveness detection.

Based on the panel t-statistics, we can construct a recursive real-time algorithm,

like PWY.
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Table 3.4: Sizes and Powers of DF and Panel Tests on Explosive Roots Detection
(Recursive k-means Algorithm)

n Statistics Size
c1=0(c2=1.5, c3=3),γ=0.5 T=25 T=50 T=100
1 DF 0.07 0.054 0.068

10(30) Post-Classification 0.048 0.044 0.054
20(60) Post-Classification 0.068 0.52 0.048
30(90) Post-Classification 0.066 0.056 0.05

n Statistics Power
c1=0.3(c2 = 1.5, c3 = 3),γ=0.5 T=25 T=50 T=100

1 DF 0.236 0.384 0.514
10(30) Post-Classification 0.84 0.978 0.998
20(60) Post-Classification 0.984 1 1
30(90) Post-Classification 0.994 1 1

n Statistics Power
c1=0.5(c2=1.5, c3=3),γ=0.5 T=25 T=50 T=100
1 DF 0.492 0.63 0.816

10(30) Post-Classification 0.998 1 1
20(60) Post-Classification 1 1 1
30(90) Post-Classification 1 1 1

3.5.2 Modified k-means algorithm

To verify the classification accuracy of the modified k-means algorithm, we consider

a DGP of both explosive and stationary roots. We simulate µi ∼ N (0,1)
T

and ui
iid∼

N (0, 2) over i and t. Data are simulated from a DGP with three groups (K0 = 3)

of n1 : n2 : n3 = 1
3

: 1
3

: 1
3
. The following settings are considered (DGP 2): n = 30,

60, T = 25, 50, 100, c = (−1, 0.5, 1.5), γ = 0.5.

With correctly selected group numbers, we show the classification consistency

of the modified k-means procedure and provide the numerical results of the post-

classification estimator based on the modified k-means procedure. Tables 3.5 shows

the classification errors, RMSE, asymptotic bias, and probability coverage of the

post-classification estimator and its oracle estimator.

Tables 3.5 provides results on mixed-root cases, in which both explosive and

stationary roots appear. As illustrated in the numerical simulations, the classifica-

tion errors approach zero as the time horizon increases, and the RMSE and bias of

the oracle estimator are much smaller than those of the post-classification estimator

based on the modified k-means algorithm. For post-classification estimators, the

RMSE and bias generally decrease and get closer to the RMSE and bias of the ora-
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Table 3.5: Classification and Estimation by Modified k-means Algorithm

DGP 2 Post-Classification Oracle
n T Cluster Error RMSE Bias Coverage RMSE Bias Coverage

Group 1 30 25 0.113 0.5056 -0.0372 0.838 0.2378 -0.0312 0.8091
30 50 0.0944 0.3712 -0.028 0.878 0.1991 -0.0284 0.8692
30 100 0.0841 0.2867 -0.0197 0.874 0.1769 -0.0026 0.8797
60 25 0.1288 0,435 -0.0059 0.766 0.16 -0.0049 0.7557
60 50 0.1183 0.3493 -0.021 0.806 0.1382 -0.0173 0.8099
60 100 0.0935 0.2653 -0.0204 0.834 0.1284 -0.0048 0.8523

Group 2 30 25 0.113 1.3086 0.1195 0.764 0.0138 -0.0021 0.7342
30 50 0.0944 1.3991 0.1288 0.768 0.0029 -0.0002 0.7814
30 100 0.0841 1.0227 0.213 0.792 0.001 -0.0001 0.8109
60 25 0,1288 1.1999 0.2093 0.723 0.0094 -0.0012 0.7117
60 50 0.1183 1.3589 0.2134 0.742 0.0019 -0.0001 0.7343
60 100 0.0935 0.87 0.2523 0.784 0.0006 0 0.7952

Group 3 30 25 0.113 4.0159 -1.7779 0.942 0 0 0.942
30 50 0.0944 5.1474 -2.208 0.95 0 0 0.95
30 100 0.0841 5.9771 -2.5076 0.952 0 0 0.952
60 25 0.1288 4.3123 -2.0501 0.948 0 0 0.948
60 50 0.1183 5.755 -2.76 0.976 0 0 0.976
60 100 0.0935 6.1775 -2.6785 0.964 0 0 0.964

cle estimators as T → ∞. The decreasing RMSE and bias demonstrate that as the

time horizon diverges, the asymptotic difference between the post-classification and

oracle estimators is asymptotically diminishing. The diminishing distance is due to

the uniform consistency of the modified k-means classification technology. Unfor-

tunately, since classification errors of the modified k-means algorithm diminish at

a slower rate than the recursive k-means algorithm, the RMSE and bias of post-

classification estimators are reduced more slowly. Therefore the misclassification

errors contribute to the low probability coverages in Group 1 and 2.

Next, we investigate the performance of the panel t-statistics to detect the ex-

istence of explosive roots. The significance level is set to 5%. We evaluate these

tests with the correct number of groups K0 = 3. We examine the performance

of the proposed tests under a mixture case of both explosive and stationary roots.

The sample sizes over the cross-sectional dimension and time horizon are chosen as

n = 30, 60, 90, and T = 25, 50, 100, respectively. With three groups, we assume

π1 = π2 = π3 = 1
3
. We present the detailed results in Tables 3.6.

The sizes of the proposed panel t-test are well controlled under mixed roots.

As illustrated here, empirical rejection frequency under the null hypothesis is very
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Table 3.6: Sizes and Powers of DF and Panel Tests on Explosive Roots Detection
(Modified k-means Algorithm)

n Statistics Size
c1 = 0(c2 = −1,c3 = 1.5), γ=0.5 T=25 T=50 T=100

1 DF 0.066 0.054 0.044
10(30) Post-Classification 0.074 0.064 0.068
20(60) Post-Classification 0.68 0.058 0.06
30(90) Post-Classification 0.61 0.05 0.056

n Statistics Power
c1 = 0.3(c2 = −1,c3 = 1.5), γ=0.5 T=25 T=50 T=100

1 DF 0.33 0.566 0.774
10(30) Post-Classification 0.966 0.996 1
20(60) Post-Classification 0.998 1 1
30(90) Post-Classification 1 1 1

n Statistics Power
c1 = 0.5(c2 = −1,c3 = 1.5), γ=0.5 T=25 T=50 T=100

1 DF 0.64 0.828 0.918
10(30) Post-Classification 0.998 1 1
20(60) Post-Classification 1 1 1
30(90) Post-Classification 1 1 1

close to the nominal level in the finite sample. The most interesting finding is the

significant power improvement brought by an additional degree of cross-sectional

asymptotics. For example, in Tables 3.6, under the alternative hypothesis of the

distance parameter as small as 0.3, the rejection rate of the panel t-test is almost

unity when n ≥ 50, T ≥ 25. However, the counterpart, the DF test, can detect

explosive roots only by a 50% chance. The loss of powers shows the high priority

of the panel t-test on explosiveness detections.

3.5.3 Detection of bubble origination

This subsection reports some brief simulations examining the performance of the

dating procedure and the accuracy of its asymptotic theory. We employ the panel

recursive dating estimator r̂eĝ based on t̃ĝ for ĝ = 1, 2, ..., K0. We also conduct the

time-series recursive estimate r̂e proposed in PWY. We simulate µi ∼ N (0,1)
T

and

ui
iid∼ N (0, 2) over i and t. Data are simulated from a DGP with three groups

(K0 = 3) of n1 : n2 : n3 = 1
3

: 1
3

: 1
3
. We set the sample size as n = 30 and T = 50,

100, 150. The following settings are considered: c1 = 0, c2 = −1, c3 = −2.5,

γ = 0.5 when r ≤ reg (:= 0.5); c1 = 0.2, 0.4, 0.6, 0.8, c2 = −1, c3 = −2.5, γ = 0.5

when r > reg (:= 0.5). We use critical values as log (nT ) for the panel recursive
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algorithm and log(T ) for PWY procedure.

Table 3.7: Results on Estimations of Bubble Origination Date Based on Panel Re-
cursive Algorithm and Time-Series Recursive Algorithm

(c2 = −1, c3 = −2.5) c1 = 0.2 c1 = 0.4 c1 = 0.6 c1 = 0.8
N=30, T=50

Detector Panel TS Panel TS Panel TS Panel TS
Mean 0.5385 0.5929 0.5315 0.5746 0.5261 0.5644 0.5229 0.5565
Std 0.0088 0.0567 0.0071 0.0419 0.0066 0.0372 0.006 0.034

RMSE 0.6834 1.8841 0.5594 1.4822 0.4667 1.2879 0.4096 1.1414
(c2 = −1, c3 = −2.5) c1 = 0.2 c1 = 0.4 c1 = 0.6 c1 = 0.8

N=30, T=100
Detector Panel TS Panel TS Panel TS Panel TS

Mean 0.5311 0.5745 0.5251 0.5601 0.521 0.551 0.5185 0.5444
Std 0.0065 0.0406 0.0055 0.032 0.0047 0.0264 0.0046 0.0231

RMSE 0.5504 1.4684 0.4445 1.1786 0.3725 0.9945 0.3305 0.8676
(c2 = −1, c3 = −2.5) c1 = 0.2 c1 = 0.4 c1 = 0.6 c1 = 0.8

N=30, T=150
Detector Panel TS Panel TS Panel TS Panel TS

Mean 0.5247 0.5599 0.52 0.5479 0.5168 0.5403 0.5146 0.5352
Std 0.0045 0.037 0.0038 0.0283 0.0033 0.0244 0.0029 0.0202

RMSE 0.4348 1.2184 0.3521 0.9629 0.2968 0.8158 0.2577 0.7022

Tables 3.7 report results for both the panel recursive algorithm and the time-

series recursive algorithm, giving means, standard errors, and RMSE for r̂eĝ. We

can observe the following four patterns. First, the panel recursive estimate r̂eĝ can

estimate the true bubble origination date with high accuracy, reflected by a small

bias and standard error. When T = 150, for cases, the mean of r̂eĝ is very close to

0.5, the true value, with small standard errors. Second, the panel recursive estimate

r̂eĝ converges to the true value faster than the time-series estimate r̂e. For almost

all cases, the means of r̂eĝ are closer to 0.5 with smaller standard errors and RMSE.

Especially when the bubble signal is small (c1 = 0.5) or the bubble period is short

(T = 50), the bias of r̂eĝ is much smaller than 0.04 while the bias of r̂e can be

bigger than 0.09. Third, when the explosive signal (c1) is stronger, it is easier to

estimate the true origination date for both algorithms. In this case, bias, standard

error, and RMSE of both recursive estimates are smaller. Fourth, when the sample

size increases, it is easier to estimate
{
reg
}K0

g=1
. Both the bias and standard errors

become smaller, corroborating the consistency results. Specifically, the consistency

of the panel recursive estimate benefits from the increase in both n and T . However,

the time-series recursive estimate benefits only from the increase in T .
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3.6 Conclusions

Explosiveness in time series is related to asset price bubbles in economics. That is

why right-tailed unit root tests have been widely used to detect asset price bubbles

in the literature. For example, PWY develop the sup ADF statistic for the presence

of bubbles and the sequential algorithm for real-time dating of the origination of

a bubble. This procedure relies on the recursive right-tailed unit root tests. PSY

generalize the methods of PWY to deal with multiple bubble episodes. Like PWY,

PSY only use a single time series. We show that when the bubble duration is short

or when the bubble grows slowly, these tests have low power to identify bubbles.

In practice, panel data may be available where multiple time series have explo-

sive behaviour. In this paper, we propose to use panel data models to improve the

power in bubble detection. When there is homogeneity over cross-sectional units

within groups, pooling cross-sectional data within the same group should sharpen

the statistical inferences on the common explosive root.

However, it may be too strong to assume all of the time series in the panel data to

have the same explosive root. In many applications, it may be too strong to consider

all of the time series in the panel data to be explosive. That is why, in this paper,

we introduce two panel models with a latent group structure. In the first model,

we consider all of the time series are explosive, allowing individual heterogeneity

through latent group structures. In the second model, we assume time series have

mixed roots, some with stationary roots, some unit roots, and some explosive roots,

again allowing individual heterogeneity through latent group structures. We pro-

pose a two-stage algorithm to detect the presence of the explosive behaviour and to

estimate the origination date of the explosive period. In the first stage, we apply the

k-means algorithms to recover group structures. In the second stage, we establish

the post-classification estimates and tests based on the estimated groups.

Both model specifications are in the form of panel autoregressions, where we

model individual heterogeneity through latent group structures. The group patterns
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represent the homogeneous slope coefficient within the identical group and hetero-

geneous autoregression coefficients across different groups. Under explosive panel

autoregressions with latent group structures, we apply the recursive k-means algo-

rithm and illustrate the consistency of the group clustering algorithm. Similarly,

within the mixed-root panel autoregressions, a modified k-means clustering algo-

rithm is implemented with consistency. Therefore, in the first stage of the comput-

ing algorithm, we successfully recover the group identities.

With estimated group structures, we can furthermore build post-classification

estimates and inferences in the second stage. The post-classification estimators

based on both k-means algorithms are asymptotically equivalent to the oracle es-

timates. Based on post-classification estimates, we provide two consistent t-tests on

explosiveness detections. By applying the recursive t-statistics, we demonstrate a

consistent estimate for bubble origination dates. Compared to PWY, the additional

asymptotics can provide better limit behaviours.

It is possible to extend our model specifications. For example, an empirically

restrictive assumption for the error process is martingale difference sequence with

cross-sectional independence. For another example, allowing cross-sectionally and

intertemporally dependent noise is more realistic in empirical analysis. These ex-

tensions will be considered in future work.
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Chapter 4 Robust Inference with Stochastic

Local Unit Root Regressors in Pre-

dictive Regressions

4.1 Introduction

Testing the predictability of financial asset returns has generated a vast literature

in empirical finance and remains a major focus of ongoing research. Continuing

concerns in the use of testing procedures are the validity, accuracy, and robustness

of the econometric methods to the properties of the regressors that are used as e-

conomic fundamentals in the regressions. Several methods have been suggested

to address these concerns and are now used in empirical work. Much attention in

the development of these methods has been given to achieving robustness and size

control in testing to the (typically unknown) degree of persistence in the regressors.

One well-established approach employs a local to unity (LUR) formulation to

model potential persistence and simulation-based Bonferroni bounds for inference,

as developed in Campbell and Yogo (2006). This approach is successful in the s-

calar LUR case but fails for stationary regressors (Phillips, 2014a), is challenging to

extend to multiple regressors and is not designed for regressors with varying degrees

of persistence or potentially stochastic departures from unit-roots (Phillips and Lee,

2013). Since these characteristics commonly arise in economic fundamentals, and

their precise nature remains unknown, methods that are capable of robust inference

under these conditions and which apply in multiple regressions are needed to sup-
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port the growing body of empirical research on financial predictability.

A second approach that seeks to address these needs involves the use of endoge-

nous instrumentation for the predictive regressors. This method, which is known as

IVX instrumentation, was developed in Phillips and Magdalinos (2009) and utilized

in an extensive empirical application by Kostakis, Magdalinos, and Stamatogiannis

(2015; KMS, hereafter) to reveal its potential in applied research. The method has

several significant advantages compared with Bonferroni-type simulation-based ap-

proaches. First, standard significance testing procedures such as Wald tests are ap-

plicable with convenient pivotal chi-square limit distributions that hold for a wide

range of persistence characteristics in the regressors, including LUR and mildly

integrated root (MIR) regressors (Phillips and Magdalinos, 2007). No simulation

methods are therefore needed for implementation.

Second, no prior knowledge regarding the degree of persistence or the presence

of stochastic departures from unit root conditions is required for IVX instrumenta-

tion. In contrast, the Bonferroni bound approach applies only to LUR regressors,

and supplemental methods (like switching) are needed to support testing in the p-

resence of MIR or stationary regressors (Elliott, Müller and Watson, 2015). Third,

in contrast to other methods, IVX conveniently accommodates multiple regressors,

as illustrated in KMS (2015), and allows an extension to locally explosive and mild-

ly explosive regressor cases as well as mixed-root cases (Phillips and Lee, 2016).

Fourth, the method applies in both short-horizon and long-horizon predictive re-

gressions, again with pivotal chi-square limit theory for Wald tests. Fifth, the IVX

methodology may be used in quantile regressions, as well as mean predictive re-

gressions, as shown by Lee (2016) and subsequently, Fan and Lee (2019) in models

with heteroskedasticity. This QR-IVX approach is particularly useful in checking

for predictability under tail conditions where more extreme return behavior occurs.

A feature of the empirical finance literature that is particularly important for the

present study is the recognition that parameter instability can be critical in both as-

set price determination as well as economic fundamentals. Coefficients can vary
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over time for many reasons, such as changes in regulatory conditions, shifts in mar-

ket sentiment, or adjustments in monetary policy and targeting, as well as evolution

in financial institutions and the impact of technology on transmission mechanisms

and information dissemination. These influences can, in turn, affect the generating

mechanism of predictive regressors, including the degree of persistence, thereby

supporting formulations such as stochastic departures from unit roots and time-

varying coefficient formulations. In the stock price application discussed later in

the paper, a detection method for stochastic deviations from unity in the autore-

gressive coefficient is used to show empirical evidence of STUR behavior in the

predictive regressor. In past research, there is ample support for time variation of

the parameters in much financial econometric and macroeconomic modeling work.

Bossaerts and Hillion (1999), for instance, cited poor performance in many predic-

tion models and indications that the parameters of even the best models change over

time. Amongst many other studies, Bekaert et al. (2007) showed patterns of time

variation in model coefficients across sub-periods, and random walk specification-

s are frequently employed to capture parameter randomness and time variation in

dynamic macroeconomic models (e.g., Cogley and Sargent, 2001, 2005).

The econometric literature has a long history of modeling with time-varying pa-

rameters, including stochastic process formulations. Granger and Swanson (1997)

introduced the stochastic unit root model in which a stationary process is embedded

into the autoregression coefficient, proposing a unit root test that accommodates

such departures. Other early contributions of stochastic deviations from unit-roots

appear in Leybourne et al. (1996), McCabe and Smith (1998), and Yoon (2006).

More recently, Lieberman and Phillips (2017; hereafter LP) developed asymptot-

ic theory and inferential procedures for nonlinear least-squares estimation of the

STUR model and extended the Black-Scholes asset pricing formula to this more

general model setup. LP (2020) further extended the analysis to a stochastic version

of the local unit root model called the LSTUR model. Tao et al. (2019) studied a

continuous-time variant of the same LSTUR model, which has been used to model
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derivative pricing in mathematical finance, employed infill asymptotics to establish

asymptotic properties and analyzed evidence of instability and bubble behavior in

financial data.

An essential feature of LSTUR models that is relevant for the use of persis-

tent regressors in predictive regressions is that LSTUR processes have means and

variances the same as an elementary random walk process but with kurtosis exceed-

ing 3. This property is consistent with the well-known behavior of much financial

data, thereby offering the prospect of improved modeling representations for both

asset prices and economic fundamentals in predictive regressions. Whereas these

features of STUR, LSTUR, and more general time-varying stochastic models are

recognized as useful in capturing relevant financial data characteristics, there is as

yet no treatment of the properties of predictive regression in the presence of such

regressors.

The present paper seeks to respond to this need by studying short, and long-

horizon mean predictive regressions and quantile predictive regressions with L-

STUR regressors. The analysis reveals size distortions in predictability testing for

both short horizon and long-horizon regressions with standard methods. A ver-

sion of the endogenous instrumentation technique IVX is developed to address

this problem in conventional predictive regression test procedures, together with

the asymptotic properties of the IVX estimators and associated asymptotically piv-

otal tests. Both mean predictive regression (IVX) and quantile predictive regression

(QR-IVX) approaches are considered. The IVX methods are shown to have excel-

lent finite sample performance in simulations, not only with mixed (stationary and

explosive) roots but also with random departures. In sum, the attractive features of

IVX methodology are the availability of standard asymptotic chi-square inference in

models with multiple predictive regressors and the allowance for random departures

from unity in the autoregressive roots of the predictors.

Throughout the paper we use the following notation. For some arbitrary matrix

A, we use ‖A‖
(

:= maxi

{
λ

1
2
i : λi = an eigenvalue of A′A

})
to denote the spec-
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tral norm. The L2 (Frobenius) and L1 norms are specified as ‖·‖F and ‖·‖1. The

symbol Et−1(·) := E(·|Ft−1) denotes conditional expectation with respect to the

filtration Ft−1. The symbol =d denotes equivalence in distribution,
∫

represents
∫ 1

0

unless otherwise stated, and signifies weak convergence in both Euclidean space

and function space according to context.

4.2 Model Setup and Size Distortions

This section presents three models that are commonly used in predictive regression:

the short-horizon mean predictive regression model, the short-horizon quantile pre-

dictive regression model, and the long-horizon mean prediction model. Problems of

size control in such predictive regressions when the regressors have persistent char-

acteristics are well known. The present section discusses these issues in the context

of conventional estimation and inferential methods. The framework provides a u-

nified setting for inferences that allows for both stochastic and deterministic local

departures from unity in the generating mechanisms of the persistent regressors.

4.2.1 Model and assumptions

The standard predictive mean regression model has the form

yt = β0 + β
′

1xt−1 + u0t, with E(u0t|Ft−1) = 0, (4.2.1)

where β1 is an n-vector of regression coefficients and Ft is a suitable filtration, de-

fined later, for which u0t is a martingale difference sequence (mds). The n-vector of

predictors xt−1 in (4.2.1) is assumed throughout this paper to have a stochastic unit

root generating mechanism that belongs to the STUR or LSTUR family, implying

the following persistent autoregressive form,

xt = RTtxt−1 + uxt, RTt =

In + C
T

+ D̆at√
T

+
D̆2
at

T
under LSTUR,

In + D̆at√
T

+
D̆2
at

T
under STUR.

(4.2.2)
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In (4.2.2), T is the sample size, C := diag {c1, c2, ..., cn} with {ci}ni=1 being a set

of scalar localizing coefficients, and D̆at := diag {a′1uat, a′2uat, ..., a′nuat} with uat

a p-vector of random variables that influence stochastic departures from unit roots

in the coefficient matrix RTt. We assume there is one generic bound c, for all i,

|ci| < c. The set {ai}ni=1 collect the p-vector coefficients that appear in the STUR

formulation and A′ := [a1, ..., an]. For simplicity, we assume {ai}ni=1 have the same

value, a. Therefore D̆at =
(
a
′
uat
)
· In. Under the asymptotic scheme, n is fixed

while T →∞ as only finite regressors are considered.

In practical work, the degree of persistence and presence of stochastic depar-

tures from unit roots in economic time series are not observable. In the endogenous

case where there is correlation between uat and uxt in the regression model (4.2.1) a

further complication is that the STUR coefficients ai are not consistently estimable,

as shown in LP (2017). Moreover, standard unit root tests have little discriminato-

ry power in distinguishing between unit root and STUR (or LSTUR) processes in

models such as (4.2.2). It is therefore desirable to have methods of estimation and

inference that are robust to different formulations within this general class of near

I(1) regressors.

The following generating structure for the innovations in (4.2.1) and (4.2.2) al-

lows for weak intertemporal dependences among the uxt and u0t. Within this struc-

ture, a conventional conditionally homoskedastic martingale difference sequence

assumption is made for u0t.

ut =


u0t (1× 1)

uxt (n× 1)

uat (p× 1)

 =
∞∑
j=0

Fjεt−j, εt ∼ mds(0,Σ), E ‖ε1‖4 <∞,
∞∑
j=0

j ‖Fj‖ <∞,

F (1) =
∞∑
j=0

Fj 6= 0, Fj =


F0j

Fxj

Faj

 , F0j =


[
1 : O1×(n+p)

]
for j = 0

O1×(1+n+p) for j ≥ 1
, ut = F (1)εt −∆ε̃t,

ε̃t =
∞∑
j=0

F̃jεt−j, F̃j =
∞∑

s=j+1

Fs, F (z) =
∞∑
j=0

Fjz
j,Ω00 = E(u2

0t),
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Ω0x =
∞∑

j=−∞

E(u0tu
′
x,t−h) = ΣF ′x(1), Ω0a =

∞∑
j=−∞

E(u0tu
′
a,t−h) = ΣF

′

a(1), (4.2.3)

Ωxx =
∞∑

j=−∞

E(uxtu
′
x,t−h) = Fx(1)ΣF ′x(1), Ωaa =

∞∑
j=−∞

E(uatu
′
a,t−h) = Fa(1)ΣF ′a(1),

∆ax =
∞∑
h=0

E(D̆atux,t+h), Ωaa =
∞∑

h=−∞

E
(
D̆atD̆a,t−h

)
.

Σaa = E
(
D̆2
at

)
,∆aa =

∞∑
h=0

E
(
D̆atD̆a,t+h

)
. (4.2.4)

Under these conditions, the usual functional limit theory holds (c.f., Phillips and

Solo, 1992)

1√
T

[Ts]∑
j=1

uj :=
1√
T

[ns]∑
j=1


u0j

uxj

uaj

 

B0(s)

Bx(s)

Ba(s)

 = BM


Ω00 Ω0x Ω0a

Ωx0 Ωxx Ωxa

Ωa0 Ωax Ωaa

 .

The notation BM denotes a Brownian motion. The limit processes for the STUR

and LSTUR cases are given by the following limits:

xbTrc√
T
 Ga(r) := eD̆Ba (r)

{∫ r

0

e−D̆Ba (p)dBx(p)−
(∫ r

0

e−D̆Ba (p)dp

)
∆ax

}
,

(4.2.5)

and

xbTrc√
T
 Ga,c(r) := erC+D̆Ba (r)

{∫ r

0

e−pC−D̆Ba (p)dBx(p)−
(∫ r

0

e−pC−D̆Ba (p)dp

)
∆ax

}
,

(4.2.6)

where D̆Ba (r) := diag {a′1Ba (r) , a′2Ba (r) , ..., a′nBa (r)}. When uat is exogenous,

the covariance ∆ax = 0.

The limits (4.2.5) and (4.2.6) were obtained by LP (2017, 2020) in the scalar

case and similar derivations (not repeated here) lead to (4.2.5) and (4.2.6). LP

(2020) derived the stochastic differential equation satisfied by these stochastic pro-

cesses and showed that they have instantaneous means and variances that resemble

those of Brownian motion but with instantaneous kurtosis exceeding 3, a feature
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that is more coherent with the properties of much financial data for which heavy tail

behavior is commonly present. For this reason, persistent processes such as STUR

and LSTUR with limit processes of the type Ga(r) and Ga,c(r) have the potential to

achieve better predictive performance in practical work with financial data. In what

follows, we examine this potential in the context of both short-horizon predictive

regression (both mean and quantile regressions), and long-horizon mean predictive

regression.

Case I: Short-horizon Mean and Quantile Predictive Regressions

For the short-horizon mean predictive regression case, the model setup and inno-

vation structures are given in (4.2.1), (4.2.2), and (4.2.3).

In addition to the mean predictive regression, the following quantile predictive

regression model is considered. Following Xiao (2009), our model is based on the

linear quantile representation,

Qyt(τ |Ft−1) = β0,τ + β
′

1,τxt−1, (4.2.7)

where Qyt(τ |Ft−1) is the conditional quantile of yt so that

Pr(yt ≤ Qyt(τ |Ft−1)|Ft−1) = τ ∈ (0, 1).

When τ = 1
2
, the quantile predictive regression reduces to a median predictive

regression, whereas (4.2.7) allows for potential predictability for other quantiles

besides the median. The loss function of quantile regression is defined by ρτ (u) :=

u · Ψτ (u) with Ψτ := τ − 1(u < 0). The quantile regression innovations follow

Ψτ (u0tτ ) ∼ mds(0, τ(1 − τ)) where u0tτ := u0t − P−1
u0

(τ) and P−1
u0

(τ) is the

unconditional τ−quantitle of u0t. By Theorem 2.1 of Phillips and Durlauf (1986),

a functional law for relevant components in the quantile regression involving the
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innovations Ψτ (u0tτ ) is given by

1√
T

bTsc∑
j=1


Ψτ (u0jτ )

uxj

uaj

 

BΨτ (s)

Bx(s)

Ba(s)

 = BM


τ(1− τ) ΩΨτx ΩΨτa

ΩxΨτ Ωxx 0

ΩaΨτ 0 Ωaa

 . (4.2.8)

In addition, to facilitate the asymptotic development, several regularity conditions

on the conditional density of u0tτ are imposed.

Assumption 3 (i) The sequence of stationary conditional densities pdf{pu0tτ,t−1(�)}

evaluated at zero satisfies a functional central limit theorem with a nondegenerate

mean pu0τ (0) = E[pu0tτ,t−1(0)], where pu0tτ,t−1(·) is the conditional density of u0tτ

given Ft−1,

1√
T

bTrc∑
t=1

(pu0tτ,t−1(0)− pu0τ (0)) Bpu0τ (r).

(ii) For each t and τ ∈ (0, 1), the conditional density pu0tτ,t−1(0) is bounded above

with probability one, i.e. pu0tτ,t−1(x) <∞ in probability for all |x| < M and some

M > 0.

Case II: Long-horizon Mean Predictive Regression

In short-horizon predictive regressions, the time horizon in prediction accommo-

dates a single period. It is common to use longer horizons in empirical research.

For long horizon predictive models, the time horizon is mildly increasing with the

sample size. In particular, we set the horizon as k = T ν for some ν ∈ (0, 1) and

have the implied rate restriction, 1
k

+ k
T
→ 0. As discussed in Phillips and Lee

(2013), the long horizon prediction model with a mildly increasing time window

has formulations as follows

yt+k = B∗0 + (B∗1)xkt + u0,t+k, x
k
t =

k∑
j=1

xt+j−1,

H′0(k) : B∗1 = 0, (4.2.9)
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under the null hypothesis. The alternative hypothesis is H′1(k) : B∗1 6= 0. Infer-

ence concerning long-horizon predictability under STUR and LSTUR regressors

can be conducted by empirically fitting equation (4.2.9) allowing for stationary dis-

turbances in the long-horizon model.

4.2.2 Size distortions in traditional regressions

Allowing for STUR and LSTUR regressors, we provide below the limit theory for

standard short-horizon quantile and mean predictive regressions. These results facil-

itate the study of the size distortions that arise in the use of standard testing methods.

The ordinary least squares (OLS) estimator β̂ has the usual form in mean regres-

sions, and standard quantile regression estimators optimize the following objective

function

β̂QRτ := arg min
β

T∑
t=1

ρτ (yt − β′Xt−1), (4.2.10)

where ρτ (u) := u(τ − 1(u < 0)), τ ∈ (0, 1). The notation Xt−1 := (1, x′t−1)′

includes both the intercept and the persistent regressor xt−1. By the standardization

matrix DT := diag
{√

T , T × In
}

, we have the limit theory of OLS and standard

quantile estimators.

Proposition 4.2.1 Under LSTUR regressors, as T →∞,

DT (β̂ − β)  

 1
∫ 1

0
G′a,c(r)∫ 1

0
Ga,c(r)

∫ 1

0
Ga,c(r)G

′
a,c(r)


−1  B0(1)∫ 1

0
Ga,c(r)dB0(r)

 ,

DT (β̂QRτ − βτ )  p−1
u0τ (0)

 1
∫ 1

0
G′a,c(r)∫ 1

0
Ga,c(r)

∫ 1

0
Ga,c(r)G

′
a,c(r)


−1  BΨτ (1)∫ 1

0
Ga,c(r)dBΨτ (r)

 .
In the scalar regressor case where n = 1, uxt ∼ mds(0,Σxx), and C = 0,

the LSTUR model reduces to the scalar STUR. By the orthogonal decomposition

of Brownian motion (Phillips, 1989) dBΨτ = dBΨτ |x + ΣΨτxΣ
−1
xxdBx, and setting

Ga,c := Ga,c(r) −
∫ 1

0
Ga,c(r)dr, we have the following limit theory for the QR
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regression coefficient with given τ ,

T (β̂QR1,τ − β1,τ )  pu0τ (0)−1

∫
Ga,cdBΨτ∫
(Ga,c)2

= pu0τ (0)−1

[∫
Ga,cdBΨτ |x∫

(Ga,c)2
+ ΣΨτxΣ

−1
xx

∫
Ga,cdBx∫
(Ga,c)2

]
,

under the null hypothesis of no predictability. The notation
∫

is
∫ 1

0
for short. Using

the estimated standard error s.e.(β̂QR1,τ ) = τ(1 − τ)p̂u0τ (0)−1
{∑T

t=1(xµt−1)2
}− 1

2

where xµt−1 = xt−1− 1
T

∑T
t=1 xt−1, and a consistent nonparametric estimate p̂u0τ (0)

for pu0τ (0), the t-ratio test statistic for a given τ under the null hypothesis H0 :

β1,τ = 0 satisfies,

tβ̂QR1,τ −β1,τ
=

(β̂QR1,τ − β1,τ )

s.e.(β̂QR1,τ )
 

[
1−

Σ2
Ψτ |x

Σxxτ(1− τ)

] 1
2

N (0, 1) +
ΣΨτ |x

(Σxxτ(1− τ))
1
2

∫
Ga,cdBx[∫
(Ga,c)2

] 1
2

=
[
1− λ(τ)2

] 1
2 Z + λ(τ)ηLP (a, c), (4.2.11)

where ΣΨτx is defined as the instantaneous covariance of u0tτ and uxt, and ΣΨτ |x

is define as τ(1 − τ) − Σ−1
xxΣ2

Ψτx
. The random variables Z :=d N (0, 1), and

ηLP (a, c) :=
∫
Ga,cdBx/

(∫
(Ga,c)

2
)1/2

. The non-zero factor λ(τ) in the limit ex-

pression (4.2.11) reveals the presence of size distortions in the usual t-ratio statistic.

The notation Σxx, and ΣΨτx denote the instantaneous variance and covariance of

uxt and Ψτ (u0tτ ).

Similar size distortion problems arise in inferences using OLS. Under the null

hypothesisH0 : β1 = 0, the limit theory of the usual t-ratio statistic is

tβ̂1−β1 =
(β̂1 − β1)

s.e.(β̂1)
 

[
1− Σ2

0x

ΣxxΩ00

] 1
2

N (0, 1) +
Σ0x

(ΣxxΩ00)
1
2

∫
Ga,cdBx[∫
(Ga,c)2

] 1
2

=
[
1− λ2

] 1
2 Z + ληLP (a, c),

where s.e.(β̂1) := Ω̂00

{∑T
t=1(xµt−1)2

}− 1
2

and Ω̂00 is a consistent estimator of Ω00.

Again the non-zero λ arising from the covariance of u0t and uxt, reveals the pres-
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ence of size distortions in the standard hypothesis testing using mean predictive

regressions.

4.3 Limit Theory for IVX Filtering

The intuition that underlies IVX instrument creation is to filter persistent data on en-

dogenous regressors xt to generate an instrument z̃t that has the appealing property

of asymptotic orthogonality to structural equation errors while retaining asymptotic

relevance for the regressors. The generation process can be described in terms of

the following equation

z̃t = F z̃t−1 + ∆xt,

so that the time series of innovations {∆xt} in the endogenous regressor is passed

through an autoregressive filter to produce z̃t using some suitable autoregressive

coefficient matrix F . When F = 0, then z̃t = ∆xt, and the first-order difference

operator is used to remove distortions at the cost of substantial information loss.

When F = In, then z̃t = xt and IVX reduces to ordinary least squares and ordinary

quantile regression estimations with non-negligible bias and size distortion as dis-

cussed above. The key idea in the successful choice of the coefficient matrix F is

to generate instruments z̃t, which are intermediate in forms and properties between

first-difference and level data.

A simple way to accomplish this intermediate form is to select F so that by

virtue of its construction z̃t is a mildly integrated (MIR) process. In particular, for

F = RTz = In + Cz/T
γ , we have

z̃t = RTz z̃t−1 + ∆xt, RTz = In +
Cz
T γ
, (4.3.1)

where γ ∈ (0, 1), Cz = czIn, cz < 0, z̃0 = 0.

With this simple construction, the coefficient matrix RTz is diagonal with entries

that lie between zero and unity but which are much closer to unity, especially for
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large sample sizes. The advantage of IVX estimation, including both QR-IVX and

LH-IVX is that this technique of instrumental variable regression attains robust in-

ference that includes stationary, unit root, and local unit root regressors, as well as

regressors with mixed properties, thereby covering a broad class of cointegrating

regression and predictive regression models and avoiding the size distortions that

are known to arise in traditional methods of estimating and conducting inferences

with such systems.

In this paper, these robustness properties of IVX estimation and inference are

shown to extend to cases of STUR and LSTUR regressors, as well as short-horizon

and long-horizon predictive regression models. With this methodology, inferences

are valid using standard chi-square limit theory for Wald tests, thereby providing a

convenient tool for empirical work in predictive regression with an extensive class

of endogenous regressors.

4.3.1 IVX in short-horizon predictive regression

In short-horizon predictive regressions, IVX instruments are constructed using the

observed data {xt}Tt=1 as

z̃t =
t∑

j=1

Rt−j
Tz ∆xj, where RTz = In +

Cz
T γ
, γ ∈ (0, 1), Cz = czIn, with cz < 0,

(4.3.2)

for some suitable choices of cz and γ, such as γ = 0.95 and cz = −1. The short-

horizon IVX estimate is conducted in terms of the standard IV procedure and the

short-horizon QR-IVX estimate is provided by minimizing the following objective

function:

β̂QRIV X1,τ := arg min
β1

(
T∑
t=1

mt (β1)

)′ (
T∑
t=1

mt (β1)

)
, (4.3.3)

where mt (β1) = z̃t−1

(
τ − 1

(
ytτ ≤ β

′
1xt−1

))
. As the objective function is non-

smooth, this paper employs the method of Xiao (2009) and Lee (2016) to derive the
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limit theory.

Since ∆xj = uxj +
D̆aj√
T
xj−1 + C

T
xj−1 +

D̆2
aj

T
xj−1 in the LSTUR case and ∆xj =

uxj +
D̆aj√
T
xj−1 +

D̆2
aj

T
xj−1 under STUR, the corresponding decomposition for z̃t−1 is

z̃t−1 =
t−1∑
j=1

Rt−j
Tz

(
uxj +

D̆aj√
T
xj−1 +

C

T
xj−1 +

D̆2
aj

T
xj−1

)
(4.3.4)

=
t−1∑
j=1

Rt−j
Tz uxj +

1√
T

t−1∑
j=1

Rt−j
Tz D̆ajxj−1 +

C

T

t−1∑
j=1

Rt−j
Tz xj−1

+
1

T

t−1∑
j=1

Rt−j
Tz D̆

2
ajxj−1

= zt−1 +
1√
T
η

(2)
T,t−1 +

C

T
η

(1)
T,t−1 +

1

T
η

(3)
T,t−1, (4.3.5)

where η(2)
T,t :=

∑t
j=1R

t−j
Tz D̆ajxj−1, η

(1)
T,t :=

∑t
j=1R

t−j
Tz xj−1, and η(3)

T,t :=
∑t

j=1 R
t−j
Tz D̆

2
ajxj−1.

Similarly, for STUR, the decomposition follows z̃t−1 = zt−1 + 1√
T
η

(2)
T,t−1 + 1

T
η

(3)
T,t−1.

By Phillips and Magdalinos (2009, equation A18),

max
1≤t≤T

1

T γ/2
E ‖zt−1‖ = Op (1) , and max

1≤t≤T

1

T 1/2+γ/4
‖zt−1‖ = op (1) .

With LSTUR and STUR regressors in the remainder term, 1√
T
η

(2)
T,t−1, the asymp-

totic theory turns out to be more complicated than the cases studied in Phillips and

Magdalinos (2009). The remainder term has a substantial effect on the limit behav-

ior of both the numerator and denominator in short-horizon IVX estimations. Under

local unit root and mildly integrated regressor cases, the following decomposition

for IVX instruments applies

z̃t−1 =
t−1∑
j=1

Rt−1−j
Tz

(
uxj +

C

Tα
xj−1

)

=
t−1∑
j=1

Rt−1−j
Tz uxj +

C

Tα

t−1∑
j=1

Rt−1−j
Tz xj−1

= zt−1 +
C

Tα
η

(1)
T,t−1,

where α ∈ (0, 1], zt−1 and η(1)
T,t−1 are defined as above. In the numerator, asymptot-
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ically the term associated with latent instrument zt−1 dominates the one containing

the remainder C
Tα
η

(1)
Tt−1, while in the denominator the two terms demonstrate the

same stochastic order. Also, when mildly explosive regressors (See, Phillips and

Lee, 2013) are under consideration, the robust inference is possible using IVX and

QR-IVX. But the asymptotic theory for mildly explosive cases is different from the

stationary side of unity: in this case, the term related to C
Tα
η

(1)
Tt−1 dominates the ones

with the latent instrument zt−1 in both the numerator and the denominator of IVX

estimator.

For STUR and LSTUR regressors, the asymptotic behavior of z̃t−1 is quite dif-

ferent. In the numerator of the IVX estimator, terms containing 1√
T
η

(2)
T,t−1 and zt−1

dominate and lead to a joint mixed normality, so the terms containing the IVX re-

mainders , C
T
η

(1)
T,t−1 and 1

T
η

(3)
T,t−1, are dominated and asymptotically vanish. In the

denominator of the IVX estimator, the term containing 1√
T
η

(2)
T,t−1 shares the same

stochastic order as the ones composed of zt−1, C
T
η

(1)
T,t−1 and 1

T
η

(3)
T,t−1. We collect the

asymptotic results in the following theorem.

Theorem 4.3.1 As T →∞,

T
1+γ
2 (β̂QR−IV X1,τ − β1,τ ) MN

(
0,
τ(1− τ)

p2
u0τ (0)

(Vxz)
−1
[
Vzz + V (2)

ηη

]
((Vxz)

−1)′
)
,

and

T
1+γ
2 (β̂IV X1 − β1) MN

(
0,Ω00(Vxz)

−1
[
Vzz + V (2)

ηη

]
((Vxz)

−1)′
)
,

where the expressions of the limiting matrices Vzz, V
(2)
ηη and Vxz are provided in the

Appendix.

Although the limiting distributions of the IVX and QR-IVX estimates are non-

pivotal, the corresponding Wald tests are asymptotically chi-square distributed.
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Theorem 4.3.2 (i) As T →∞, under the null hypothesisH0 : β1,τ = β0
1,τ ,

p̂u0τ (0)
2

τ(1− τ)
(β̂QR−IV X1,τ − β0

1,τ )
′
(X

′
MZ̃X)(β̂QR−IV X1,τ − β0

1,τ ) χ2(n),

whereX
′
MẐX := (

∑T
t=2 xt−1z̃

′
t−1)(

∑T
t=2 z̃t−1z̃

′
t−1)−1(

∑T
t=2 xt−1z̃

′
t−1)

′
and p̂u0τ (0)

is any consistent nonparametric estimator for pu0τ (0).

(ii) As T →∞, under the null hypothesisH0 : β1 = β0
1 ,

1

Ω̂00

(β̂IV X1 − β0
1)
′
(X

′
MZ̃X)(β̂IV X1,τ − β0

1) χ2(n),

where X
′
MẐX is given in (i) and Ω̂00 is any consistent estimator for Ω00.

These results are readily extended to test predictability under general linear re-

strictions such asH0 : Hβ1,τ = h where H is a known `× n matrix of rank ` and h

is a known `-vector. The statistic for short-horizon QR-IVX testing is

p̂u0τ (0)
2

τ(1− τ)
(Hβ̂QR−IV X1,τ −h)

′
{
H
(
X
′
MZ̃X

)−1

H
′
}−1

(Hβ̂QR−IV X1,τ −h) χ2(`).

Similarly, to testH0 : Hβ1 = h,

1

Ω̂00

(Hβ̂IV X1 − h)
′
{
H
(
X
′
MZ̃X

)−1

H
′
}−1

(Hβ̂IV X1 − h) χ2(`).

4.3.2 IVX in long-horizon predictive regression

As the time horizon in predictive regressions rises, it is convenient to use an alter-

native form of the mean predictive regression model, following Phillips and Lee

(2013). We employ a similar formulation and apply the long-run variant of the IVX

approach, called LHIVX, in the following analysis with LSTUR and STUR regres-

sors. It is shown that LHIVX leads to a mixed normal limit distribution in estimation

and a pivotal chi-square limit theory in Wald testing.

The regressor in the long-horizon fitted regression model (4.2.9) is given by

63



the partial sum xkt :=
∑k

j=1 xt+j−1. Each component of the LHIVX instrument

is constructed in the identical fashion with similar notation as z̃kt :=
∑k

j=1 z̃t+j−1,

zkt :=
∑k

j=1 zt+j−1, η1,k
T,t :=

∑k
j=1 η

(1)
T,t+j−1, η2,k

T,t :=
∑k

j=1 η
(2)
T,t+j−1 and η3,k

T,t :=∑k
j=1 η

(3)
T,t+j−1 where z̃t+j−1, zt+j−1, η

(1)
T,t+j−1, η

(2)
T,t+j−1 and η

(3)
T,t+j−1 are each de-

fined in the short-horizon IVX case of (4.3.5). Therefore, we have the following

decomposition as

z̃kt :=

z
k
t + C

T
η1,k
T,t + 1√

T
η2,k
T,t + 1

T
η3,k
T,t under LSTUR,

zkt + 1√
T
η2,k
T,t + 1

T
η3,k
T,t under STUR.

(4.3.6)

For the development of asymptotic theory, we place further conditions on the

time horizon parameter k and IVX rate parameter γ:

√
T

T γ
+
T γ

k
+
k

T
→ 0.

This restriction requires the horizon k to rise not as fast as T but faster than T γ . The

estimator B̂∗
LHIV X

1 of B∗1 satisfies

B̂∗
LHIV X

1 −B∗1 =

(
T−k∑
t=1

u0,t+k(z̃
k
t )′

)(
T−k∑
t=1

xkt (z̃
k
t )′

)−1

. (4.3.7)

The limit theory for this LHIVX estimator with LSTUR and STUR regressors differ-

s from the LUR and MIR cases. In the LUR and MIR cases, the term
∑T−k

t=1 u0,t+k(z
k
t )
′

determines the behavior of the numerator in the matrix quotient, whereas in the

mildly explosive case the term T−1
∑T−k

t=1 u0,t+k(η
1,k
T,t)
′ dominates other terms in the

numerator. In this paper, with STUR and LSTUR regressors, both
∑T−k

t=1 u0,t+k(z
k
t )′

and T−1/2
∑T−k

t=1 u0,t+k(η
2,k
T,t)

′ dominate T−1
∑T−k

t=1 u0,t+k(η
1,k
T,t)

′ and T−1
∑T−k

t=1 u0,t+k(η
3,k
T,t)

′

in the numerator. Nonetheless, joint convergence to mixed normality still holds and

the numerator of the centred LHIVX estimator (4.3.7) has the following decompo-
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sition

1

T
1
2

+γ
√
k

T−k∑
t=1

u0,t+k(z̃
k
t )
′
=

1

T
1
2

+γ
√
k

T−k∑
t=1

u0,t+k(z
k
t )
′
+

1

T 1+γ
√
k

T−k∑
t=1

u0,t+k(η
2,k
T,t)

′
+op(1).

(4.3.8)

When LSTUR degenerates into STUR (C = 0n×n), the decomposition of (4.3.8)

is still applicable. Similarly, the properties of each term in the LHIVX denominator

can be obtained. Therefore, the denominator of the LHIVX estimator with LSTUR

regressors follows a decomposition as

1

T 1+γk2

T−k∑
t=1

xkt (z̃
k
t )′ =

1

T 1+γk2

T−k∑
t=1

xkt (z
k
t )′ +

1

T
3
2

+γk2

T−k∑
t=1

xkt (η
2,k
T,t)
′

+
1

T 2+γk2

T−k∑
t=1

xkt (η
1,k
T,t)
′C (4.3.9)

+
1

T 2+γk2

T−k∑
t=1

xkt (η
3,k
T,t)
′,

where all four terms contribute to the asymptotics of the denominator. Combin-

ing asymptotic approximations in (4.3.10) and (4.3.8), the limit distribution of the

LHIVX estimator is collected in the following theorem.

Theorem 4.3.3 If
√
T

T γ
+ T γ

k
+ k

T
→ 0,

√
Tk

3
2

(
B̂∗

LHIV X

1 −B∗1
)′
 MN

(
0, (Υ−1)

(
V LH
zz + V (2),LH

ηη + V (2),LH
zη + (V (2),LH

zη )′
) (

Υ−1
)′
· Ω00

)
,

where expressions of V LH
zz , V (2),LH

ηη , V (2),LH
zη , and Υ are collected in the Appendix.

The LHIVX estimator is consistent, asymptotically unbiased, and with a mixed

normal limit distribution. The distribution is nonpivotal as both coefficients A, and

C occur in the variance matrix. However, given the mixed normality and consistent

estimate of variance, Wald tests have standard chi-square distributions. The feature

as mentioned above again demonstrates the critical advantages of IVX type estima-

tion in predictive regression that were emphasized by Kostakis et al. (2015) over

procedures that rely on simulations and restrictions on scalar regressor formulations.
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Theorem 4.3.4 UnderH′0(k) : HB∗1 = h, where H is a known `×n matrix of rank

` and h is a known `-vector,

WLH
T :=

(
H
(
B̂∗

LHIV X

1

)′
− h
)′ [

H

{(
X
′
MZ̃X

)−1

Ω̂00

}
H ′
]−1(

H
(
B̂∗

LHIV X

1

)′
− h
)
 χ2(`),

where

(X
′
KZ̃X)−1 =


(
T−k∑
t=1

xkt (z̃
k
t )′

)(
T−k∑
t=1

(z̃kt )(z̃kt )′

)−1(T−k∑
t=1

xkt (z̃
k
t )′

)′
−1

,

and Ω̂00 is any consistent estimator for Ω00.

4.4 IVX Regression with Mixed Roots

This section applies the IVX procedures to the predictive regression models con-

taining both mixed roots and random departures. Under this case, we prove the

robustness of pivotal chi-square distributions for the corresponding test statistics.

Besides, we propose a method to detect the randomness in the autoregressive coef-

ficients.

4.4.1 Detection on randomness of autoregression coefficient

For simplicity, we consider n = q = p = 1 case where C = c1 and D̆at = a1 · uat,

and the dimensions of xt and uat are both equal to 1. The difference between the

LUR and LSTUR processes depends on the existence of uat. To consistently select

the model, we employ an exogenous instrumental variable to detect the presence of

uat. The reason to use IV estimate is that the OLS estimate for a1 is inconsistent

due to the endogeneity issue (i.e. uat and uxt are correlated). When estimating a1

with an exogenous variable Zt, we have the consistent estimate â1.

In (4.2.2), the OLS estimate of distance parameter c1 is also inconsistent. Unfor-

tunately, the limiting behavior of â1 relies on the true value of c1. As an alternative,
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we develop a two-step IV procedure for a1. As the IV-based test has a nonpivotal

distribution, we employ Bonferroni corrections to compute the confidence intervals

of the statistic.

The two-step IV procedure calls upon the following restrictions.

Assumption 4 Assume Zt is one q × 1 vector of instruments for uat. For all t,

E(Zt) = 0, E(Zt)
2 <∞, E(Ztu

′

xt) = 0, Ωza := E(Ztu
′

at) has full rank p.

We only consider the case where n = p = q = 1. In the first step of our procedure,

we apply the IV estimates of a1 to the linear model,

xt − xt−1 = c1

(xt−1

T

)
+ a1

(
uatxt−1√

T

)
+ (a1)2

(
(uat)

2xt−1

T

)
+ uxt,

and derive the estimator âIV1 as,

âIV1 :=

∑T
t=1 zt(xt − xt−1)∑T

t=1 zt
uatxt−1√

T

,

where we write Zt as zt for the case of p = 1. As T → ∞, the IV estimate âIV1

follows a nonstandard distribution:

√
T (âIV1 − a1)Ωza  

Bzx(1)∫ 1

0
Ga1,c1(r)dr

, (4.4.1)

where Bzx(1) is a Brownian motion. In the second step, we plug the consistent

estimate âIV1 back into the autoregressive model,

xt − xt−1 − âIV1
(
uatxt−1√

T

)
− (âIV1 )2

(
(uat)

2xt−1

T

)
(4.4.2)

= c1
xt−1

T
+ (a1 − âIV1 )

(
uatxt−1√

T

)
+
(
(a)2

1 − (âIV1 )2
)((uat)

2xt−1

T

)
+ uxt.

In (4.4.2), the LHS of the equation, xt−xt−1− âIV1
(
uatxt−1√

T

)
− (âIV1 )2

(
(uat)2xt−1

T

)
is known to us, so we can run OLS to derive the estimate for c1. It is trivial to check
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the limiting distribution of ĉ1 as follows,

ĉ1 − c1  

∫ 1

0
Jc1(r)dWx(r)∫ 1

0
J2
c1

(r)dr
, (4.4.3)

where T →∞. Based on (4.4.1), (4.4.2) and (4.4.3), we propose the following test

statistic,

Ra1 :=
√
T âIV1 Ωza.

Under the null hypothesisH0 : a1 = 0, the limitng distribution of Ra1 is Bzx∫ 1
0 Jc1 (r)dr

,

where Jc1(r) = c1Jc1(r)dr + dWx(r), and Wx(r) is the Brownian motion induced

by uxt.

We cannot compute the confidence interval for â1 directly because of the incon-

sistent estimate ĉ1. In this paper, we borrow the idea from Cavanagh et al. (1995)

and construct the confidence interval of Ra1 using Bonferroni corrections.

To construct a Bonferroni confidence interval forRa1 , we first construct a 100(1−

ε1)% confidence interval for c1, denoted as Cc1(ε1). We then construct a 100(1 −

ε2)% confidence interval for a1 given c1, denoted as Ca1|c1(ε2). A confidence inter-

val that does not depend on c1 can be obtained by

Ca1(ε) =
⋃

c1∈Cc1(ε1)

Ca1|c1(ε2).

By Bonferroni’s inequality, this confidence interval has coverage of at least 100(1−

ε)%, where ε = ε1 + ε2.

When the distance parameter c1 is very small and sample size T are both large,

there is negligible difference between the STUR and LSTUR model. At this case,

there is no harm to replace the statistic Ra1 by the IV-assisted test of Lieberman and

Phillips (2018), a statistic for testing the local STUR model against a simple UR

null. In the empirical part, we directly employ the test of Lieberman and Phillips

(2018) to detect the randomness of autoregressive roots.
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4.4.2 IVX regression with mixed roots in short-horizon case

The model is discussed assuming n = 2 and p = 1. We consider yt as one scalar and

xt−1 as one bivariate AR(1) process with both mixed roots and random departures

from unity. The simplified predictability system is given as,

yt = β′xt−1 + u0t, β
′ = [β1, β2] , xt =

x1t

x2t

 , (4.4.4)

xt = RTtxt−1 + uxt, RTt =

ρTt 0

0 θT

 , uxt =

ux1t

ux2t

 .
The paper imposes mixed roots and stochastic departures from unit root as

ρTt = 1+
c1

Tα1
+
a1uat√
T

+
(a1uat)

2

T
, where

c1 ∈ [−∞,∞] α1 = 1

c1 ∈ (−∞, 0) α1 ∈ (0, 1)
and a1 ∈ (−∞,+∞),

(4.4.5)

θT = 1 +
c2

Tα2
, where c2 ∈ (0,∞) and α2 ∈ (0, 1). (4.4.6)

Accordingly, x1t falls within one of the following specifications as unit root (UR),

LUR, STUR, LSTUR, or MIR regressors, while x2t is a mildly explosive (MER)

regressor. The innovation process follows,

ut =



u0t

ux1t

ux2t

uat


=



F0(1) 1× 4

Fx1(1) 1× 4

Fx2(1) 1× 4

Fa(1) 1× 4





ε0t

εx1t

εx2t

εat


−∆



ε̃0t

ε̃x1t

ε̃x2t

ε̃at


, (4.4.7)

and the long-run variance and the limit theory are the same except that the subscript

0, 1, 2, and a now signify u0t, ux1t, ux2t and uat. The strict exogeneity holds for

(4.4.7) as E(uatu1t) = 0. The IVX instrument has the identical structure as Cz :=

diag {cz1, cz2} < 0 and γ = 0.95.

When H0 : a1 = 0 cannot be rejected, UR or LUR regressors rather than S-
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TUR or LSTUR regressors need to be considered. Such case has been discussed

extensively in Phillips and Lee (2013). If the statistic Ra1 rejects the null hypoth-

esis H0 : a1 = 0, there is strong evidence of stochastic deviation from unit-roots.

Therefore, we prefer STUR/LSTUR regressors.

We provide the pivotal chi-square distribution of the corresponding testing s-

tatistic under the null hypothesis of no predictability: We assume α1 ∈ (1
3
, 1),

γ ∈ ((α2 ∨ 2
3
), 1), and a1 6= 0. Under the null hypothesis H0 : β = β0, as

T →∞,

(β̃ − β0)
′
[
(X

′
MZ̃X)−1Ω̂00

]−1

(β̃ − β0) χ2(2),

where Ω̂00 is any consistent estimator for Ω00, and

(X
′
MZ̃X) =


(

T∑
t=1

xt−1z̃
′

t−1

)(
T∑
t=1

z̃t−1z̃
′

t−1

)−1( T∑
t=1

xt−1z̃
′

t−1

) .

Similarly, the results of QR-IVX estimates are collected here. With persistent

regressors satisfying both mixed roots and random coefficients, the QR-IVX esti-

mate still follows asymptotic normality. Moreover, we show the pivotal distribution

of the Wald test under the null hypothesis of no predictability.

We assume α1 ∈ (1
3
, 1), γ ∈ ((α2 ∨ 2

3
), 1), and a1 6= 0. For any given τ , under

the null hypothesisH0 : βτ = βτ0,

p̂u0τ (0)
2

τ(1− τ)
(β̃QR−IV Xτ − βτ0)

′
(X

′
MZ̃X)(β̃QR−IV Xτ − βτ0) χ2(2),

where p̂u0τ (0) is any consistent estimator for pu0τ (0), and

(X
′
MZ̃X) =


(

T∑
t=1

xt−1z̃
′

t−1

)(
T∑
t=1

z̃t−1z̃
′

t−1

)−1( T∑
t=1

xt−1z̃
′

t−1

) .

The pivotal chi-square distribution illustrates the robustness of the IVX method-

ology under the circumstance of mixed roots and random deviations from the unity.
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4.4.3 IVX regression with mixed roots in long-horizon case

Similar to short-horizon predictive regressions with mixed roots and random depar-

tures from unity, the long-horizon model follows (4.4.4) (4.4.5) and (4.4.6).

The long-run variance and the limit theory are the same except that the subscript

0, 1, 2, and a now signify u0t, ux1t, ux2t and uat. The LHIVX formula follows

b̂LH − b =

∑T−k
t=1 z̃k1tx

k
1t

∑T−k
t=1 z̃k1tx

k
2t∑T−k

t=1 z̃k2tx
k
1t

∑T−k
t=1 z̃k2tx

k
2t


−1 ∑T−k

t=1 z̃1tu0,t+k∑T−k
t=1 z̃2tu0,t+k

 .
Under the null hypothesis of no predictability, the limit distribution of the Wald

test based on LHIVX estimates is pivotal. Again, we verify the robustness of the

self-generated instruments.

We assume that
√
T

T γ
+ T γ

k
+ k

T
→ 0 with k = T υ and

min {1 + α1 − α2, 1 + γ − α2} > υ > α1 + α2 − 1.

Under the null hypothesisH′0(k) : b = b0,

(̂bLH − b0)
′
[
(X

′
MZ̃X)−1Ω̂00

]−1

(̂bLH − b0) χ2(2),

where

(X ′MZ̃X) =


(
T−k∑
t=1

xkt−1(z̃kt−1)′

)(
T−k∑
t=1

z̃kt−1(z̃kt−1)′

)−1(T−k∑
t=1

(z̃kt−1)′xkt−1

) ,

with any consistent estimator Ω̂00 for Ω00.

4.5 Monte Carlo Simulation

This section presents numerical performances of short-horizon QR-IVX statistic-

s under local power and size criteria. To reduce the computational complexity,
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this numerical experiment employs the alternative QR algorithm based on the self-

generated instrument z̃t (Lee, 2016).1 The DGP follows (4.4.4), (4.4.5), with

ut =


u0t

uxt

uat

 ∼ N (0(1+n+p),Ω(1+n+p)×(1+n+p)).

We generate QR-IVX instruments for (4.4.4). we set Cz = −5 · In and vary γ to

explore the size and local power performance. The sample of size is T = 200. The

scaling parameter γ ∈ [0.75, 1).

To investigate local power performances, we employ a sequence of local alter-

natives as HβT : βT = β
T

for integer values of β ∈ [0, 20] and various choices of

γ ∈ [0.75, 1).

4.5.1 Single regressor case

Simulations accommodate the LSTUR regressor case (c1 6= 0 and a1 6= 0) and the

STUR case (c1 = 0 and a1 6= 0). Accordingly, distance parameters c1 ∈ {−5, 0, 5}

and a1 ∈ {−10− 5, 5, 10}. The variance matrix of innovations has the form as,

Ω =


1 −0.75 0.40

−0.75 1 −0.50

0.40 −0.50 1

 ,

where we accommodate the endogeneity case (E(uatuxt) 6= 0).

The following table summarizes the size performance of predictability tests us-

ing a short-horizon QR-IVX estimator under the case of STUR regressor with var-

ious choices of quantiles τ and persistence parameters γ. The empirical size is the

rejection frequency of a chi-square distributed Wald test under the null hypothesis

1The details of the QR method are provided in the Appendix. The experiment of this chapter also
uses the code of the alternative QR procedure provided by Professor Ji Hyung Lee on his website:
https://sites.google.com/site/jihyung412/. This declaration is to honor the contribution of Professor
Ji Hyung Lee to this chapter and the originality of his invention.
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H0 : β = 0. The nominal test size is 0.05. The sample size T = 200. The number

of replication is 2,500.

Table 4.1: Empirical Size with STUR Regressor (T = 200)
c1 = 0

a1 = −10
τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.1100 0.0720 0.0588 0.0460 0.0500 0.0400 0.0364 0.0484 0.0492 0.0784 0.0956
γ=0.80 0.1092 0.0728 0.0624 0.0436 0.0516 0.0412 0.0376 0.0480 0.0496 0.0788 0.0956
γ=0.85 0.1076 0.0708 0.0648 0.0424 0.0568 0.0420 0.0388 0.0516 0.0496 0.0756 0.0936
γ=0.90 0.1116 0.0748 0.0632 0.0436 0.0540 0.0456 0.0404 0.0512 0.0484 0.0740 0.0952
γ=0.95 0.1116 0.0752 0.0628 0.0440 0.0516 0.0480 0.0412 0.0524 0.0472 0.0748 0.0964
c1 = 0
a1 = 10

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.0964 0.0724 0.0540 0.0440 0.0428 0.0412 0.0444 0.0472 0.0608 0.0644 0.1032
γ=0.80 0.0944 0.0732 0.0556 0.0424 0.0408 0.0400 0.0444 0.0508 0.0584 0.0692 0.1004
γ=0.85 0.0936 0.0740 0.0540 0.0428 0.0408 0.0408 0.0452 0.0520 0.0560 0.0720 0.0976
γ=0.90 0.0928 0.0736 0.0576 0.0452 0.0400 0.0404 0.0428 0.0512 0.0528 0.0720 0.0940
γ=0.95 0.0900 0.0724 0.0576 0.0444 0.0384 0.0392 0.0448 0.0524 0.0544 0.0732 0.0956
c1 = 0
a1 = 5

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.0940 0.0800 0.0588 0.0588 0.0552 0.0464 0.0592 0.0592 0.0620 0.0920 0.1212
γ=0.80 0.0996 0.0872 0.0636 0.0640 0.0552 0.0464 0.0616 0.0624 0.0648 0.0928 0.1204
γ=0.85 0.1056 0.0872 0.0632 0.0640 0.0556 0.0484 0.0660 0.0672 0.0644 0.0908 0.1168
γ=0.90 0.1076 0.0840 0.0648 0.0716 0.0632 0.0536 0.0680 0.0704 0.0660 0.0936 0.1176
γ=0.95 0.1124 0.0852 0.0660 0.0712 0.0672 0.0548 0.0676 0.0712 0.0684 0.0952 0.1184
c1 = 0
a1 = −5

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.1132 0.0812 0.0700 0.0540 0.0548 0.0552 0.0456 0.0464 0.0544 0.0812 0.0912
γ=0.80 0.1160 0.0828 0.0692 0.0560 0.0608 0.0580 0.0532 0.0472 0.0600 0.0880 0.0916
γ=0.85 0.1132 0.0828 0.0712 0.0580 0.0592 0.0576 0.0548 0.0524 0.0660 0.0892 0.0964
γ=0.90 0.1208 0.0856 0.0772 0.0584 0.0652 0.0576 0.0552 0.0524 0.0660 0.0928 0.1012
γ=0.95 0.1260 0.0884 0.0808 0.0620 0.0672 0.0588 0.0600 0.0568 0.0720 0.0940 0.1016

The size of the QR-IVX test is well controlled, as the empirical size is slight-

ly smaller 0.05. Besides, empirical sizes are well controlled robustly across γ ∈

[0.75, 1). Such properties hold for the LSTUR regressor as well. The details for

LSTUR cases are omitted here.

To investigate the local power behavior, we employ a sequence of local alterna-

tives as HβT = β
T

for integers values between β ∈ [0, 20] and various γ ∈ [0.75, 1).

Our discussions have four cases, c1 = −5, 5, −10, or 10.

The local power functions approach unity in the LSTUR cases with the fastest

convergence occurring when γ = 0.95. Besides, when there is a larger |a1|, the

local power function reaches unity more rapidly. This result is not surprising since

an LSTUR regressor with a larger |a1| expects to have stronger signals. Similarly,

the above phenomena hold for the STUR case.
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These results confirm that the QR-IVX inference procedure is robust for γ ∈

[0.75, 1) and performs well with both STUR and LSTUR regressors.

4.5.2 Multiple regressor case

This subsection considers short-horizon quantile predictive regressions with multi-

ple regressors in which the STUR and LSTUR regressors are included.

Three examples are considered: (i) STUR and MIR regressors (c1 = 0, a1 = 10,

c2 = {−5,−2} and α2 ∈ {0.25, 0.50, 0.75}); (ii) STUR and LUR (c1 = 0, a1 = 10,

c2 = {−5,−2, 0, 2, 5} and α2 = 1); (iii) STUR and MER regressors (c1 = 0,

a1 = 10, c2 = {1, 2, 5} and α2 ∈ {0.25, 0.50}). Case (i) represents the normal

periods, while Case (iii) stands for the bubble period, and Case (ii) demonstrates

the bubble collapse period. The model setup is given as (4.4.4) with the following

covariance matrix as

Ω =



1 −0.75 −0.4 −0.2

−0.75 1 0.5 0.20

−0.4 0.5 1 0.15

−0.2 0.20 0.15 1


.

We accommodate the endogeneity case (E(uatuxt) 6= 0) in the covariance structure.

For simplicity, we only consider the STUR case where c1 = 0 and a1 = 10.

The following table reports size performances in testingH0 : β1 = β2 = 0 using

the short-horizon QR-IVX test statistics with STUR & MER regressors or STUR &

LUR regressors. In this table, we briefly list several selected cases of all DGPs. The

IVX persistence parameter γ is selected from [0.75, 1). The localizing coefficients

Cz = {−5, 5}. The nominal size is 0.05. The sample size is selected as 200. The

number of replication is 2,500.

Similar results are observed for Case (iii) with both STUR & MER regressors. In

this case, the size distortions of the short-horizon QR test are much more substantial

than the short-horizon QR-IVX, although the sizes of short-horizon QR-IVX test
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Table 4.2: Empirical Size with STUR & MIR or STUR & LUR Regressors (T =
200)
c1 = 0,
a1 = 10,
c2 = −5,
α2 = 0.25

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.1556 0.0972 0.0636 0.0488 0.0416 0.0408 0.0368 0.0468 0.0484 0.0892 0.1396
γ=0.80 0.1572 0.0984 0.0652 0.0472 0.0420 0.0408 0.0344 0.0464 0.0480 0.0872 0.1412
γ=0.85 0.1596 0.1008 0.0612 0.0496 0.0440 0.0384 0.0352 0.0476 0.0472 0.0884 0.1388
γ=0.90 0.1604 0.0988 0.0636 0.0492 0.0460 0.0408 0.0360 0.0452 0.0496 0.0892 0.1408
γ=0.95 0.1636 0.0968 0.0652 0.0476 0.0500 0.0392 0.0376 0.0444 0.0472 0.0852 0.1380
c1 = 0,
a1 = 10,
c2 = −5,
α2 = 0.5

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.1652 0.1056 0.0572 0.0476 0.0484 0.0384 0.0364 0.0424 0.0548 0.0760 0.1368
γ=0.80 0.1636 0.1032 0.0588 0.0508 0.0476 0.0400 0.0376 0.0436 0.0540 0.0772 0.1344
γ=0.85 0.1692 0.1024 0.0588 0.0508 0.0448 0.0400 0.0352 0.0468 0.0556 0.0748 0.1304
γ=0.90 0.1732 0.1044 0.0608 0.0504 0.0452 0.0424 0.0368 0.0468 0.0592 0.0796 0.1376
γ=0.95 0.1696 0.1068 0.0604 0.0488 0.0464 0.0436 0.0396 0.0496 0.0556 0.0796 0.1380
c1 = 0,
a1 = 10,
c2 = −2,
α2 = 1

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.1780 0.1032 0.0716 0.0540 0.0476 0.0520 0.0368 0.0508 0.0572 0.1008 0.1380
γ=0.80 0.1836 0.1064 0.0760 0.0556 0.0508 0.0564 0.0384 0.0580 0.0636 0.0980 0.1364
γ=0.85 0.1876 0.1148 0.0772 0.0636 0.0596 0.0580 0.0388 0.0676 0.0660 0.1076 0.1392
γ=0.90 0.1820 0.1200 0.0848 0.0676 0.0632 0.0652 0.0508 0.0708 0.0704 0.1116 0.1444
γ=0.95 0.1920 0.1300 0.0960 0.0688 0.0728 0.0732 0.0552 0.0820 0.0760 0.1164 0.1568
c1 = 0,
a1 = 10,
c2 = 0,
α2 = 1

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.2012 0.1380 0.0952 0.0680 0.0756 0.0684 0.0584 0.0768 0.0768 0.1176 0.1668
γ=0.80 0.2084 0.1420 0.1072 0.0800 0.0820 0.0772 0.0632 0.0864 0.0820 0.1292 0.1692
γ=0.85 0.2196 0.1560 0.1120 0.0924 0.0896 0.0880 0.0696 0.0988 0.0912 0.1364 0.1844
γ=0.90 0.2316 0.1644 0.1280 0.1044 0.1008 0.0996 0.0800 0.1136 0.1044 0.1488 0.1988
γ=0.95 0.2432 0.1820 0.1424 0.1144 0.1140 0.1084 0.0920 0.1268 0.1152 0.1604 0.2156
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might be comparatively larger than Case (i) and (ii).

Table 4.3: Empirical Size with STUR & MER Regressors (T = 200)
c1 = 0,
a1 = 10,
c2 = 5,
α2 = 0.5

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.1500 0.1240 0.0672 0.0516 0.0512 0.0544 0.0604 0.0656 0.0664 0.0996 0.1452
γ=0.80 0.1552 0.1268 0.0676 0.0532 0.0552 0.0568 0.0552 0.0676 0.0700 0.1016 0.1472
γ=0.85 0.1564 0.1244 0.0692 0.0580 0.0588 0.0580 0.0572 0.0660 0.0736 0.1024 0.1480
γ=0.90 0.1612 0.1272 0.0708 0.0592 0.0644 0.0636 0.0580 0.0656 0.0772 0.1012 0.1532
γ=0.95 0.1704 0.1264 0.0716 0.0621 0.0652 0.0616 0.0576 0.0724 0.0772 0.1048 0.1564
c1 = 0,
a1 = 10,
c2 = 5,
α2 = 0.25

τ=0.05 τ=0.1 τ=0.2 τ=0.3 τ=0.4 τ=0.5 τ=0.6 τ=0.7 τ=0.8 τ=0.9 τ=0.95

γ=0.75 0.0956 0.1144 0.0956 0.0856 0.0808 0.0828 0.0756 0.0900 0.1012 0.1040 0.0964
γ=0.80 0.1080 0.1148 0.0944 0.0924 0.0804 0.0860 0.0856 0.0816 0.0864 0.1008 0.0972
γ=0.85 0.0988 0.1144 0.0884 0.0756 0.0864 0.0716 0.0880 0.0872 0.0952 0.0988 0.0976
γ=0.90 0.1008 0.1072 0.0968 0.0864 0.0944 0.0792 0.0768 0.0836 0.0920 0.1000 0.1040
γ=0.95 0.0948 0.1088 0.0888 0.0864 0.0832 0.0852 0.0816 0.0792 0.1036 0.1036 0.0952

With similar local alternatives, the power functions show relatively faster con-

vergence to unity, analog to the single regressor case. In all cases, the power curves

are steep. The speeds of convergence in Case (iii) are much faster since explosive

roots have more significant signals.

4.6 Empirical Study

We apply our QR-IVX inference procedure to check the predictability of economic

or market fundamentals. If we define yt as the S&P500 excess return and denote

xt−1 as the economic or market fundamental, the empirical model has the formula-

tion as

yt = α + βxt−1 + εt.

To measure market fundamentals, we employ the monthly financial data sets

from Welch and Goyal (2008), ranging from February 1920 to December 2017.

Following Lee (2016), the excess stock return, yt is calculated as

yt = log

(
Pt +Dt

Pt−1

)
− log (Rfreet + 1) ,
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where Pt and Dt indicate the S&P 500 index returns (Index) and dividends (D12)

at time t. In this paper, the persistent regressor xt−1(:= tblt) is the Treasury Bills

Rates. The stochastic component, uat, is corprt, the Long-term Corporate Bond

Returns. The instrument, Zt, is 200 × log(BMt/BMt−1) where BMt is the Book-

to-Market Ratio (b/m) as the ratio of book value to market value for the Dow Jones

Industrial Average. To check the validity of the proposed instrument, the obser-

vations for variables Zt, xt−1, and uat are between January 1926 and December

2017. The sample correlations in the data are ρ̂a,∆x = −0.31, ρ̂a,Z = −0.17, and

ρ̂Z,∆x = 0.05. Since ρ̂∆x,a is far away from zero, the NLLS estimates of the STUR

model are not consistent. Observations of sample correlations reinforce the need

and validity of the instrument Zt. By applying the IV-assisted test of Lieberman

and Phillips (2018), we statistically justify that tbl is a persistent regressor with

a stochastic component corprt in the autoregressive slope. As STUR and LSTUR

regressors share the identical property, there is no need to distinguish between them.

Table 4.4: Short-horizon QR-IVX Estimations & Test(1920:03-2017:12) with tblt
for Monthly Data

τ= 0.05 0.1 0.2 0.3 0.4 0.5
estimate 0.3409 0.1111 0.1639 0.0852 0.091 0.1707

test 2.0548 0.9767 1.832 1.2733 1.4579 2.6879

Table 4.5: Short-horizon QR-IVX Estimations & Test(1920:03-2017:12) with tblt
for Monthly Data

τ= 0.6 0.7 0.8 0.9 0.95
estimate 0.1456 0.1306 0.0738 -0.123 -0.2455

test 2.2611 1.9933 1.0245 -1.3383 -2.2446

Table 4.6: Short-horizon QR-IVX Estimations & Test(1921:Q1-2017:Q4) with tblt
for Quarterly Data

τ= 0.05 0.1 0.2 0.3 0.4 0.5
estimate 0.3739 0.3777 -0.2743 -0.1477 0.0629 0.1102

test 0.536 0.8604 -1.0043 -0.6854 0.3164 0.5831

As shown in Table 4.4 and 4.5, ranging from March 1920 to December 2017,

the persistent predictor tblt shows significant predictive power at certain quantiles.
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τ= 0.6 0.7 0.8 0.9 0.95
estimate 0.1473 0.088 -0.1589 -0.1107 -0.1805

test 0.7803 0.4589 -0.8351 -0.5263 -0.7214

Table 4.7: Short-horizon QR-IVX Estimations & Test(1921:Q1-2017:Q4) with tblt
for Quarterly Data

The results shown with bold letters imply the rejection rate of the null hypothesis of

no predictability at 5% level. For each item, the first line indicates the short-horizon

QR-IVX estimates, and the corresponding second line demonstrates the square root

of the test statistics. The 5% critical value is 1.96 according to the derived limiting

theory. We can easily justify that on 5%, 50%, 60%, 70%, 95% quantiles, the

strong predictability of tblt on the excess returns is shown in monthly data. Since at

extreme quantiles there are severe size distortions, we can only confidently justify

that at 50% 60% and 70% quantiles, tblt shows strong predictability for monthly

data. Related results are demonstrated in Table 4.4 and 4.5. A similar analysis

applies to the quarterly data between 1921:Q1 and 2017:Q4 for all quantiles. There

is no strong evidence that tblt shows predictability for the S&P500 excess return on

quarterly data. Results are demonstrated at Table 4.6 and 4.7.

4.7 Conclusion

This paper shows that the IVX instruments developed in Phillips and Magdalinos

(2009), the QR-IVX method developed in Lee (2016), and the LHIVX method es-

tablished in Phillips and Lee (2013) can extend to STUR and LSTUR regressors.

Since the Wald test built here has an asymptotic chi-square distribution, no numer-

ical simulations are in need to justify the critical values of the limit distributions.

Another advantage of IVX methods is that it can easily extend to the multivariate

case with both mixed roots and random departures from unity.
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Appendix A: Appendix

A.1 Proofs in Chapter 2

A.1.1 Technical lemma in pure explosive model

Lemma A.1.1 Let Xn,ols and Yn,ols be defined as in (2.2.9).

E(Y 2
n,ols) =

a2σ2

(a− 1)3(a+ 1)
+ o(1),

E(X2
n,ols) =

σ2

(a− 1)2
+ o(1), E(XnYn) = o(1).

Proof.

E(Y 2
n,ols) = E

(
n∑
j=1

a−juj

)2

= σ2

(
n∑
j=1

a−j
n∑
i=1

a−i min {i, j}

)

= σ2

n∑
j=1

a−j
j∑
i=1

a−ii+ σ2

n∑
j=1

ja−j
n∑

i=j+1

a−i. (A.1.1)

The first part of Equation (A.1.1) can be computed as,

σ2

n∑
j=1

a−j
j∑
i=1

a−ii

=
a−1σ2

(1− a−1)2

n∑
j=1

a−j
[
1− (j + 1)a−j + ja−j−1

]
=

a−1σ2

(1− a−1)2

n∑
j=1

a−j − a−1σ2

(1− a−1)2

n∑
j=1

(j + 1)a−2j +
a−1σ2

(1− a−1)2

n∑
j=1

ja−2j−1

=
a−1σ2

(1− a−1)2

a−1(1− a−n)

1− a−1
− a−1σ2

(1− a−1)2

a−2(1− a−2n)

1− a−2
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− a−1σ2

(1− a−1)

a−2 [1− (n+ 1)a−2n + na−2n−2]

(1− a−2)2

=
a−1σ2

(1− a−1)2

a−1
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− a−1σ2

(1− a−1)2

a−2

1− a−2
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a−2

(1− a−2)2
+ o(1).

The second part of Equation (A.1.1) is

σ2

n∑
j=1

ja−j
n∑

i=j+1

a−i = σ2

n∑
j=1

ja−j
a−(j+1)(1− a−(n−j))
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a−2 1
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+ o(1).

Therefore we have

E(Y 2
n,ols) =

a2σ2

(a− 1)3(a+ 1)
+ o(1).

Similarly,

E(X2
n,ols) =

1

n
E

(
n∑
j=1

a−(n−j)−1uj

)(
n∑
i=1
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)

=
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n
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n
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n
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Therefore it is shown that E(X2
n,ols) = σ2

(a−1)2
+ op(1). For E(Xn,olsYn,ols), we have

E(Xn,olsYn,ols) =
1√
n
E

[
n∑
t=1

a−(n−t)−1ut

n∑
j=1

a−juj

]

=
a−n−1σ2

√
n

n∑
t=1

at
n∑
j=1

a−j min {t, j}

=
a−n−1σ2

√
n

n∑
t=1

at
t∑

j=1

ja−j +
a−n−1σ2

√
n

n∑
t=1

tat
n∑

j=t+1

a−j.

For the first part of E(Xn,olsYn,ols), we have

a−n−1σ2

√
n

n∑
t=1

at
t∑

j=1

ja−j =
a−n−1

√
n

n∑
t=1

ata−1 1− (t+ 1)a−t + ta−t−1

(1− a−1)2

=
1√
n

a−n−2

(1− a−1)2

n∑
t=1

at(1− (t+ 1)a−t + ta−t−1)

=
1√
n

a−n−2

(1− a−1)2

n∑
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at + o(1)

=
1√
n

−a−n−1 + a−1

(1− a−1)2(a− 1)
+ o(1)

= O

(
1√
n

)
.

For the second part of E(Xn,olsYn,ols), we have

a−n−1σ2

√
n

n∑
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tat
n∑

j=t+1

a−j =
1√
n
a−n−1

(
n∑
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tat

)
a−t−1(1− a−(n−t))

1− a−1

=
1√
n

a−n−2

1− a−1

n∑
t=1

t(1− a−(n−t))

=
1√
n

a−n−2

1− a−1

n∑
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t− 1√
n

a−2n−2
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tat

= − 1√
n
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a [1− (n+ 1)an + nan]

(1− a)2
+ o(1)

= o(1),

where the exponential rates dominate polynomial rates. Denote σ2
X := σ2

(a−1)2
, and

σ2
Y := a2σ2

(a−1)3(a+1)
.
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Lemma A.1.2 As n→∞,

1

a2n−1
E

n∑
t=1

(
n∑
j=t

at−1−jujut

)
= op(1).

Proof. The derivations are as

1

a2n−1
E

n∑
t=1

(
n∑
j=t

at−1−jujut

)

= σ2a−2n+1

n∑
t=1

(
n∑
j=t

at−1−jt

)
= σ2a−2n

n∑
t=1

t · at
n∑
j=t

a−j

= σ2a−2n

n∑
t=1

tata−t
1− a−(n−t)

1− a−1
<

σ2a−2n

1− a−1

n∑
t=1

t = O

(
n2

a2n

)
= o(1).

A.1.2 Proof of Lemma 2.2.1

Proof. We complete the proof in three steps: Step (i) shows the asymptotic normal-

ity of Yn,ols; Step (ii) shows the asymptotic normality of Xn,ols; Step (iii) demon-

strates the joint normality of Xn,ols and Yn,ols using Cramér-Wold device (Kallen-

berg, O., 2006).

(i) As innovations are normally distributed, for any fixed n, the random vari-

able Yn,ols is normally distributed. By Lemma A.1.1, note the fact that E(Y 2
n,ols) =

a2σ2

(a−1)3(a+1)
+ op(1). By the virtue of Cauchy sequence, for any m and n that diverge

with restriction n
m

+ 1
n
→ 0,

|Ym,ols − Yn,ols| =

∣∣∣∣∣
m∑

j=n+1

a−j
j∑
i=1

εi

∣∣∣∣∣ � Op

(
a−n ·

√
m
)

= op(1).

Note the decomposition that

n∑
j=1

a−juj =
n∑
j=1

a−j

(
j∑
i=1

εi

)
=

n∑
i=1

(
n∑
j=i

a−j

)
εi,
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where
(∑n

j=i a
−j
)
εi, for i = 1, 2, ..., n, is a martingale difference sequence. There-

fore the martingale convergence theorem is applied and convergence of Yn,ols is

shown below:

Yn,ols
a.s→ Y =d N

(
0,

a2σ2

(a− 1)3(a+ 1)

)
.

(ii) For Xn,ols,

Xn,ols :=
n∑
t=1

{[
1√
n
a−(n−t)−1

] t∑
s=1

εs

}
=

n∑
s=1

{
n∑
t=s

[
1√
n
a−(n−t)−1

]
εs

}
.

Let ζns :=
∑n

t=s

[
1√
n
a−(n−t)−1

]
εs so that Xn,ols =

∑n
s=1 ζns. Note that ζns is an

independent but not indentically distributed sequence. The Lindeberg-Feller central

limit theorem (Kallenberg, O., 2006) can be applied to obtain the limiting distribu-

tion of Xn,ols. The stability condition is provided in Lemma A.1.1. To check the

Lindeberg condition, ∀η > 0,

n∑
s=1

E(ζ2
ns1|ζns|>η)

=
n∑
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n∑
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n
a−(n−t)−1

])2

E
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ε2s1
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)
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])2

E

[
ε2s1

{[∑n
t=1

1√
n
a−(n−t)−1

]2
ε2s>η

2

}
]

≤ K max
1≤s≤n

E

[
ε2s1

{[∑n
t=1

1√
n
a−(n−t)−1

]2
ε2s>η

2

}
]
,

where some K < ∞. The last step follows
∑n

s=1

(∑n
t=s

[
1√
n
a−(n−t)−1

])2

< K

because
∑n

t=s a
−2(n−t)−2 = a−2s 1−a−2(n−s)

1−a−2 ≤ a−2

(1−a−2)
. Consequently, we have

n∑
s=1

E(ζ2
ns1|ζns|>η) ≤ K max

1≤s≤n
E

[
ε2s1

{[∑n
t=s

1√
n
a−(n−t)−1

]2
ε2s>η

2

}
]

≤ K max
1≤s≤n

E
(
ε2s1

{
2a−2

n(1−a−2)
)ε2i>η

2/2
})→ 0.

As n→∞, Xn
d→ X =d N

(
0, σ2

(a−1)2

)
.
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Case (iii) by the Cramér-Wold device, the following condition is needed to show

the convergence to joint normality,

pXn,ols + qYn,ols
d→ pX + qY,

where Y andX are two independent normal variables that followN
(

0, a2σ2

(a−1)3(a+1)

)
andN

(
0, σ2

(a−1)2

)
respectively and p, q are any two real numbers. If we define Z as

Z =d N
(

0, q2 a2σ2

(a−1)3(a+1)
+ p2 σ2

(a−1)2

)
, then pXn,ols + qYn,ols

d→ Z. We can write

pXn,ols + qYn,ols =
∑T

t=1 %t where the array

%t := p
n∑
j=t

a−jεt +
q√
n

n∑
i=t

a−(n−i)−1εt

=
n∑
j=t

(
pa−j +

q√
n
a−(n−j)−1

)
εt,

consists of independent and non-identically distributed random variables. As we

assume the joint normality distribution for εt, then the term pXn,ols + qYn,ols is also

normally distributed as

pXn,ols + qYn,ols ∼ N
(
0, p2EX2

n,ols + q2EY 2
n,ols + 2pqEXn,olsYn,ols

)
.

By Lemma A.1.1, we have asymptotic uncorrelation for Xn,ols and Yn,ols. The argu-

ment of Cauchy sequence and martingale convergence theorem in (i) can be applied

again to shown convergence to the Gaussian variate Z. As for the joint normality,

the asymptotic uncorrelation implies asymptotic independence:

pXn,ols + qYn,ols
d→ N

(
0, q2 a2σ2

(a− 1)3(a+ 1)
+ p2 σ2

(a− 1)2

)
.

We complete the proof.
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A.1.3 Proof of Theorem 2.2.2

Proof. The explosive model has the following decomposition.

a−2n

n∑
t=1

y2
t−1 =

1

a2 − 1

{
a−2n(y2

n − y2
0)− 2a−2n+1

n∑
t=1

yt−1ut − a−2n

n∑
t=1

u2
t

}
,

where

a−2n+1

n∑
t=1

yt−1ut = y0a
−n

n∑
t=1

a−(n−t)ut + a−2n+1

n∑
t=1

(
t−1∑
j=1

at−1−juj

)
ut

= Op(a
−n) + a−n+1

√
n

(
1√
n

n∑
t=1

a−(n−t)−1ut

)(
n∑
j=1

a−juj

)
+ op(1)

= Op(a
−n√n) +Op(a

−n) = op(1).

Besides, a−2n
∑n

t=1 u
2
t = Op

(
n2

a−2n

)
. In all, we have the following approximation,

a−2n

n∑
t=1

y2
t−1 =

1

a2 − 1
(a−nyn)2 + op(1) =

1

(a2 − 1)

(
n∑
j=1

a−juj

)2

+ op(1)

=
1

(a2 − 1)
Y 2
n,ols + op(1).

For the term a−n√
n

∑n
t=1 yt−1ut,

a−n√
n

n∑
t=1

yt−1ut =
y0√
n

n∑
t=1

a−(n−t)ut +
a−n√
n

n∑
t=1

(
t−1∑
j=1

at−1−juj

)
ut

=

(
1√
n

n∑
t=1

a−(n−t)−1ut

)(
n∑
t=1

a−juj

)
+ op(1)

= Xn,olsYn,ols + op(1).

A.1.4 Technical lemmas in mildly explosive model

The paper defines Xn := 1
kn
√
n

∑n
t=1 ρ

−(n−t)−1
n ut, and Yn := 1

k
3
2
n

∑n
j=1 ρ

−j
n uj .
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Lemma A.1.3 As n→∞, we have ρ−nn · nkn = o(1), ρ−nn ·n
2

k2n
= o(1), and ρ−nn ·

√
n√
kn

=

o(1).

Proof. For ρ−nn · nkn = o(1), see Phillips and Magdalinos (2007). For the other two

results,

log

(
ρ−nn ·

n2

k2
n

)
= −n log ρn + 2 log

(
n

kn

)
= −n log

(
1 +

c

kn

)
+ 2 log

(
n

kn

)
= −n

[
c

kn
+O

(
1

k2
n

)]
+ 2 log

(
n

kn

)
= −nc

kn

[
1 +

2

c

log(n/kn)

n/kn
+O

(
1

kn

)]
= −cn

kn
[1 + o(1)]

= o(1).

Similarly we prove ρ−nn ·
√
n√
kn

= o(1).

Lemma A.1.4 As n→∞, the following results are shown,

(1) 1
kn

∑n
j=1 ρ

−j
n = O(1), and lim

n→∞
1
kn

∑n
j=1 ρ

−j
n = 1

c
,

(2) 1
kn

∑n
j=1 ρ

−2j
n = O(1), and lim

n→∞
1
kn

∑n
j=1 ρ

−2j
n = 1

2c
,

(3) 1
k2n

∑n
j=1 jρ

−j
n = O(1), and lim

n→∞
1
k2n

∑n
j=1 jρ

−j
n = 1

c2

(4) 1
k2n

∑n
j=1 jρ

−2j
n = O(1), and lim

n→∞
1
k2n

∑n
j=1 jρ

−2j
n = 1

4c2
.

Proof. When n→∞,

(1)
1

kn

n∑
j=1

ρ−jn =
ρ−1
n

kn

1− ρ−nn
1− ρ−1

n

→ 1

c
.

since

1− ρ−1
n ∼

c

kn

[
1 +O( 1

kn
)
] .

(2)
1

kn

n∑
j=1

ρ−2j
n =

ρ−2
n

kn

1− ρ−2n
n

1− ρ−2
n

→ 1

2c
,

since

1− ρ−2
n ∼

2c

kn

[
1 +O( 1

kn
)
] .
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(3)

1

k2
n

n∑
j=1

jρ−jn =
1

k2
n

(ρ−1
n )(1− (n+ 1)ρ−nn + nρ−n−1

n )

(1− ρ−1
n )2

∼ k2
nρ
−1
n

c2k2
n

(1− ρ−nn − nρ−nn + nρ−n−1
n )

→ 1

c2
.

(4)

1

k2
n

n∑
j=1

jρ−2j
n =

1

k2
n

(ρ−2
n )(1− (n+ 1)ρ−2n

n + nρ−2n−2
n )

(1− ρ−2
n )2

∼ k2
nρ
−2
n

4c2k2
n

(1− ρ−2n
n − nρ−2n

n + nρ−2n−2
n )

→ 1

4c2
.

Lemma A.1.5 As n→∞,

E(X2
n,ols) =

σ2

c2
+ o(1),

E(Y 2
n,ols) =

σ2

2c3
+ o(1),

E(Xn,olsYn,ols) = o(1).

Proof. As n→∞, we derive the following arguments,

(1)

E(Y 2
n ) =

1

k3
n

E

[(
n∑
j=1

ρ−jn uj

)(
n∑
i=1

ρ−in ui

)]
=
σ2

k3
n

n∑
i=1

ρ−in

n∑
j=1

ρ−jn min {i, j}

=
σ2

k3
n

n∑
i=1

ρ−in

i∑
j=1

ρ−jj +
σ2

k3
n

n∑
i=1

iρ−in

n∑
j=i+1

ρ−j. (A.1.2)
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Two terms in (A.1.2) are computed separately. The first term in (A.1.2) follows

σ2

k3
n

n∑
i=1

ρ−in

i∑
j=1

ρ−jj =
σ2

k3
n

n∑
i=1

ρ−in
ρ−1
n [1− (i+ 1)ρ−in + iρ−i−1

n ]

(1− ρ−1
n )2

=
ρ−1
n σ2

c2kn

n∑
i=1

ρ−in (1− (i+ 1)ρ−in + iρ−i−1
n )

=
ρ−1
n σ2

c2kn

n∑
i=1

ρ−in −
ρ−1
n σ2

c2kn

n∑
i=1

(i+ 1)ρ−2i
n +

ρ−1
n σ2

c2kn

n∑
i=1

iρ−2i−1
n

=
ρ−1
n σ2

c2kn

n∑
i=1

ρ−in −
ρ−1
n σ2

c2kn

n∑
i=1

ρ−2i
n +

ρ−1
n σ2

c2kn

(
n∑
i=1

iρ−2i−1
n −

n∑
i=1

iρ−2i
n

)

=
ρ−1
n σ2

c2kn

n∑
i=1

ρ−in −
ρ−1
n σ2

c2kn

n∑
i=1

ρ−2i
n − ρ−1

n σ2

ck2
n

n∑
i=1

iρ−2i
n

=
σ2

4c3
+ o(1).

Similarly, the second term of (A.1.2) is computed as,

σ2

k3
n

n∑
i=1

iρ−in

n∑
j=i+1

ρ−j =
σ2

k3
n

(
n∑
i=1

iρ−in

)
ρ−i−1(1− ρ−(n−i)

n )

1− ρ−1
n

=
σ2ρ−1

n

ck2
n

n∑
i=1

iρ−2i
n − ρ−n−1

n

(
σ2

ck2
n

n∑
i=1

iρ−in

)

=
σ2

4c3
+ o(1).

In all, the following result is derived as,

E(Y 2
n ) =

σ2

2c3
+ o(1).

(2) As n→∞,

E(X2
n) =

1

nk2
n

E

[(
n∑
t=1

ρ−(n−t)−1
n ut

)(
n∑
s=1

ρ−(n−s)−1
n us

)]

=
1

nk2
n

E

[(
n∑
t=1

ρ−tn un−t+1

)(
n∑
s=1

ρ−sn un−s+1

)]

=
1

nk2
n

n∑
t=1

ρ−tn

n∑
s=1

ρ−sn min {n− t+ 1, n− s+ 1}
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=
σ2

nk2
n

n∑
t=1

ρ−tn

n∑
s=1

ρ−s(n+ 1)− σ2

nk2
n

n∑
t=1

ρ−tn

n∑
s=1

ρ−sn max {t, s}

=
σ2

nk2
n

n∑
t=1

ρ−tn

n∑
s=1

ρ−s(n+ 1)−
(
kn
n

)(
σ2

k3
n

n∑
t=1

tρ−tn

)(
t∑

s=1

ρ−sn

)

−
(
kn
n

)(
σ2

k3
n

n∑
t=1

ρ−tn

)(
n∑

s=t+1

sρ−sn

)
. (A.1.3)

Similarly three terms are discussed separately. The second (A.1.3) is calculated as,

(
σ2

k3
n

n∑
t=1

tρ−tn

)(
t∑

s=1

ρ−sn

)
=

σ2

k3
n

n∑
t=1

ρ−tn t
ρ−1
n (1− ρ−tn )

1− ρ−1
∼ σ2ρ−1

n

ck2
n

n∑
t=1

t(ρ−tn − ρ−2t
n )

=
σ2ρ−1

n

ck2
n

n∑
t=1

tρ−tn −
σ2ρ−tn
ck2

n

n∑
t=1

tρ−2t
n =

3σ2

4c3
+ o(1)

= O(1).

The third term in (A.1.3) is calculated as,

(
σ2

k3
n

n∑
t=1

ρ−tn

)(
n∑

s=t+1

sρ−sn

)
≤

(
σ2

k3
n

n∑
t=1

ρ−tn

)(
n∑
s=1

sρ−sn

)

=

(
σ2

kn

n∑
t=1

ρ−tn

)(
1

k2
n

n∑
s=1

sρ−sn

)
= O(1).

In all, we have the following argument as,

E(X2
n) =

(n+ 1)σ2

nk2
n

n∑
t=1

ρ−tn

n∑
s=1

ρ−sn +O

(
kn
n

)
=

(n+ 1)ρ−2
n

n

σ2

c2
(1− ρ−nn )2 + o(1)

=
σ2

c2
+ o(1).

(3) As n→∞,

E(XnYn) = E

[
1

√
nk

5
2
n

n∑
t=1

ρ−(n−t)−1
n ut

n∑
j=1

ρ−jn uj

]
=
ρ−n−1
n
√
nk

5
2
n

[
n∑
t=1

ρtn

n∑
j=1

σ2ρ−jn min {t, j}

]
(A.1.4)
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=
σ2ρ−n−1

n
√
nk

5
2
n

(
n∑
t=1

ρtn

)(
t∑

j=1

ρ−jn j

)
+
σ2ρ−n−1

n
√
nk

5
2
n

(
n∑
t=1

tρtn

)(
n∑

j=t+1

ρ−jn

)
.

The first term of (A.1.4) is computed as,

√
kn√
n

σ2ρ−n−1
n

k3
n

(
n∑
t=1

ρtn

)(
t∑

j=1

ρ−jn j

)
=

√
kn√
n

σ2ρ−n−1
n

k3
n

n∑
t=1

ρtn

(
ρ−1
n

1− (t+ 1)ρ−tn + tρ
−(t+1)
n

(1− ρ−1
n )2

)

=

√
kn√
n

σ2ρ−n−2
n

c2kn

n∑
t=1

ρtn(1− (t+ 1)ρ−tn + tρ−(t+1)
n )

=

√
kn√
n

σ2ρ−n−2
n

c2kn

n∑
t=1

(ρtn + tρ−1
n − (t+ 1))

=

√
kn√
n

σ2ρ−n−1
n

c2kn

ρnn − 1

ρn − 1
+ o

(√
kn√
n

)
= O

(√
kn√
n

)
= o(1),

where exponential rates dominate polynomial rates. The second part of (A.1.4) can

be derived similarly.

σ2ρ−n−1
n

√
nk

5
2
n

(
n∑
t=1

tρtn

)(
n∑

j=t+1

ρ−jn

)
=
σ2ρ−n−1

n
√
nk

5
2
n

n∑
t=1

tρtn
ρ
−(t+1)
n (1− ρ−(n−t)

n )

1− ρ−1
n

=
σ2ρ−n−2

n
√
nk

5
2
n

n∑
t=1

t(1− ρ−(n−t)
n )

1− ρ−1
n

=
σ2ρ−n−2

n

ck
3
2
n
√
n

n∑
t=1

t(1− ρ−(n−t)
n )

=
σ2ρ−n−2

n
√
nk

5
2
n

n∑
t=1

t− σ2ρ−n−2
n

√
nk

5
2
n

n∑
t=1

tρ−(n−t)
n = o(1),

due to Lemma A.1.3 and the dominance of exponential rates over polynomial rates.

Finally, it is justified that

E(XnYn) = o(1).

We complete the proof.

Lemma A.1.6 As n→∞, ρ−nn
√
nk

5
2
n

E
∑n

t=1

∑n
j=t ρ

t−j
n utuj = op(1).

Proof. As n→∞,

ρ−nn
√
nk

5
2
n

E
n∑
t=1

n∑
j=t

ρt−jn utuj = σ2 ρ−nn
√
nk

5
2
n

n∑
t=1

n∑
j=t

ρt−jn t =
σ2ρ−nn
√
nk

5
2
n

n∑
t=1

t
1− ρ−(n−t)

n

1− ρ−1
n
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≤ σ2ρ−nn
√
nk

5
2
n

n∑
t=1

t

1− ρ−1
n

= Op

(
ρ−nn

n
3
2

k
3
2
n

)
= op(1),

due to Lemma A.1.3.

A.1.5 Proof of Lemma 2.2.2

Proof. By Cramér-Wold device, it is sufficient to show that pXn,ols + qYn,ols
d→

pX + qY , equivalent to show that pXn,ols + qYn,ols
d→ N (0, (2cp2+q2)σ2

2c3
). The ex-

pression is rewritten as

pXn + qYn =
n∑
t=1

{[
1

kn
√
n
pρ−(n−t)−1

n +
1

k
3
2
n

qρ−tn

]
t∑

s=1

εs

}

=
n∑
s=1

{
n∑

t=s+1

[
1

kn
√
n
pρ−(n−t)−1

n +
1

k
3
2
n

qρ−tn

]
εs

}
.

Define ζns :=
∑n

t=s+1

[
1

kn
√
n
pρ
−(n−t)−1
n + 1

k
3
2
n

qρ−tn

]
εs. The term ζns is independent

but not identically distributed. The Lindeberg-Feller central limit theorem (White,

2014) is applied to derive the asymptotic normality. First, the stability condition is

shown:

E

[
n∑
s=1

ζns

]2

= p2E(Xn,ols)
2+q2E(Yn,ols)

2+2pqE(Xn,olsYn,ols) =
(2cp2 + q2)σ2

2c3
+o(1).

Then, the Lindeberg condition needs to be checked. For any η > 0,

n∑
s=1

E
(
ζ2
ns1|ζns|>η

)
=

n∑
s=1

(
n∑

t=s+1

[
1√
nkn

pρ−(n−t)−1
n +

1

k
3
2
n

qρ−tn

])2

E

(
ε2s1

{∣∣∣∣∑n
t=s+1

[
pρ
−(n−t)−1
n +k

− 3
2

n qρ−tn

]∣∣∣∣|εs|>η}
)

≤
n∑
s=1

 2

k2
nn

(
n∑

t=s+1

pρ−(n−t)−1
n

)2

+
2

k3
n

(
n∑

t=s+1

qρ−tn

)2
E

ε2s1{[∑n
t=1( 1

kn
√
n
pρ
−(n−t)−1
n +k

− 3
2

n qρ−1
n )

]2
ε2s>η

2

}


≤ K max
1≤s≤n

E

(
ε2s1

{
2

[
1

k2nn
(
∑n
t=s+1 pρ

−(n−t)−1
n )2+ 1

k3n
(
∑n
t=s+1 qρ

−t
n )2

]
ε2s>η

2

}
)
,
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where K is some constant value since 1
k2nn

∑n
s=1

(
p
∑n

t=s+1 ρ
−(n−t)−1
n

)2

≤ p2

c2
and

1
k3n

∑n
s=1

(
q
∑n

t=s+1 ρ
−t
n

)2 ≤ q2

2c3
. For any s ≥ 1,

(∑n
t=s+1 ρ

−(n−t)−1
n

)2

≤ k2n
c2

and(∑n
t=s+1 ρ

−t
n

)2 ≤ k2n
c2

. Further, it follows that

n∑
s=1

E(ζ2
ns1|ζns|>η) ≤ K max

1≤s≤n
E

(
ε2i 1

{
2

(
p2

nk2n
+ q2

k3n

)
k2n
c2
ε2s>η

2

}
)

≤ K max
1≤s≤n

E

(
ε2s1

{
2 p2

nk2n

k2n
c2
ε2s>η

2/2

}
)

+K max
1≤s≤n

E

(
ε2i 1

{
2 q

2

k3n

k2n
c2
ε2s>η

2/2

}
)

≤ K max
1≤s≤n

E
(
ε2s1

{
2p2

c2
ε2s>η

2n/2
})+K max

1≤s≤n
E
(
ε2s1

{
2 q

2

c2
ε2s>η

2kn/2
})→ 0,

where n→∞. Proofs end here.

A.1.6 Proof of Theorem 2.2.4

Proof. First we discuss the denominator as,

ρ−2n
n
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For the numerator, the following decomposition is shown
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by Lemma A.1.6. Then the proof is complete.

A.1.7 Proof of Theorem 2.2.6

Proof. For the mildly stationary case, it is shown that
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(A.1.6)

For (A.1.6), it is shown that 1
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For the first part in (A.1.7), we have ,
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The proof is complete.

A.2 Proofs in Chapter 3

A.2.1 Technical lemmas of recursive k-means algorithm

We collect technical proofs for classifications, estimations and inferences on the

recursive k-means classifications and the modified k-means classifications.

We denote ĝi := ĝi

(
ĉ
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and {ρ̆i}ni=1 are the collection of individual least squares estimates and ρgi := exp
(
cgi
T γ

)
.
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ỹi,t−1ũitc
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we can justify
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By combining above results (A.2.1) and (A.2.2), we have
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where the equalities come from Lemma A.2.1. Because Q̃nT (c, δ) is minimized at

c = c0 and δ = δ0, we have
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The first term on the right hand side of (A.2.6) is bounded away from zero since
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In all, by combining the results for two terms (A.2.4) and (A.2.7), we complete the

proof.

Lemma A.2.3 If Assumption 1 and 2 hold. For any M > 0,
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ỹi,t−1ũit
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Proof. Due to the dominance of exponential rates, the argument can be proved

by the Markov inequality.
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Lemma A.2.4 If Assumption 1 and 2 hold. For arbitrary M̃ ≥ 5σ2
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Proof. Due to the uniform dominance of innovations over the fixed effect in
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ỹ2
i,t−1 =

1

2c0
i

{
ρ−2T
i

T γ
y2
i,T −

2ρ−2T+1
i

T γ

T∑
t=1

yi,t−1uit −
ρ−2T
i

T γ

T∑
t=1

u2
it

}
− 1

ρ2T
i T

2γ−1
y2
i,−1.

Therefore we can derive the following uniform upper bound as

n max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

∣∣∣∣∣
T∑
t=1

ỹ2
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The details follow similar procedures of Lemma A.2.8. We need the following rate

restrictions as in Lemma A.2.8: T 2γ−2n (log n)2 → 0, and T
5γ−3

4 n (log n)2 → 0.

The additional needed rate restriction here is

n (log n)2 T 1−3γ → 0,

as we hope to make sure that for each i = 1, 2, ..., n, the adjustment rate ρ2T
i T

2γ

is larger than the upper bound of (BB.2.1) in Lemma A.2.8 as n
1
4

√
log nT

1+5γ
4 ρ2T

i .

The first and third terms of (A.2.8) can be proved by exponential inequality for mar-
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tingale difference sequence (Freedman, 1975). The second term has been proved in

Lemma A.2.3. The probability of the fourth term is op(1) due the Markov inequality

and the dominating exponential rates. For the fifth term of (A.2.8), if M̃ > 5σ2

2c2l
,

n max
1≤i≤n

Pr

(∣∣∣∣ 1

2ci

ρ−2T
i

T γ
Ey2

i,T

∣∣∣∣ ≥ M̃

)
= 0.

All in all, in order to make sure

max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣ ≥ M̃

)
= o

(
1

n

)
,

we just need to make sure Assumptions 1 and 2 hold and M̃ is large enough as

M̃ > 5σ2

2c2l
.

Lemma A.2.5 If Assumption 1 and 2 hold, for any M satisfying 0 < M ≤ σ2

8c2u
,

max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣ ≤M

)
= o

(
1

n

)

Proof. The proof follows the fashion in Lemma A.2.4 and accommodates the

following decomposition

n max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

T∑
t=1

ỹ2
i,t−1 ≤M

)

≤ n max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

T∑
t=1

ỹ2
i,t−1 ≤M,

1

ρ2T
i T

2γ

T∑
t=1

Eỹ2
i,t−1 > 2M

)

+n max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

T∑
t=1

Eỹ2
i,t−1 ≤ 2M

)

= n max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

T∑
t=1

(
ỹ2
i,t−1−Eỹ2

i,t−1

)
≤ −M

)

+n max
1≤i≤n

Pr

(
1

ρ2T
i T

2γ

T∑
t=1

Eỹ2
i,t−1 ≤ 2M

)

≤ n max
1≤i≤n

Pr

(∣∣∣∣ 1

2c0
i

ρ−2T
i

T γ
(
y2
i,T − Ey2

i,T

)∣∣∣∣ ≥M

)
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+n max
1≤i≤n

Pr

(∣∣∣∣∣ 1

2c0
i

2ρ−2T+1
i

T γ

T∑
t=1

yi,t−1uit

∣∣∣∣∣ ≥M

)

+n max
1≤i≤n

Pr

(∣∣∣∣∣ 1

2c0
i

ρ−2T
i

T γ

T∑
t=1

u2
it

∣∣∣∣∣ ≥M

)

+n max
1≤i≤n

Pr

(∣∣∣∣ 1

ρ2T
i T

2γ−1
y2
i,−1

∣∣∣∣ ≥M

)
+n max

1≤i≤n
Pr

(
1

2c0
i

ρ−2T
i

T γ
Ey2

i,T ≤ 2M

)
. (A.2.9)

The details follow similar procedures of Lemma A.2.8. We need the following rate

restrictions as in Lemma A.2.8: T 2γ−2n (log n)2 → 0, and T
5γ−3

4 n (log n)2 → 0.

The additional needed rate restriction here is

n (log n)2 T 1−3γ → 0,

as we hope to make sure that for each i = 1, 2, ..., n, the adjustment rate ρ2T
i T

2γ

is larger than the upper bound of (BB.2.1) in Lemma A.2.8 as n
1
4

√
log nT

1+5γ
4 .

For any positive constant M > 0, the first four terms in (A.2.9) are o(1). The

asymptotic negligibility can be proved in the identical way to Lemma A.2.4. If we

define 2M < σ2

4c2u
, then

n max
1≤i≤n

Pr

(
1

2c0
i

ρ−2T
i

T γ
Ey2

i,T ≤ 2M

)
= 0.

In all, we complete the proof.

Lemma A.2.6 Suppose Assumption 1 and 2 hold. For some η = O
(

1
T γ

)
, under

joint convergence (n, T )→∞,

sup
c∈Nη

1

n

n∑
i=1

1
{
ĝi(c) 6= g0

i

} p→ 0.

Proof. As the incidental parameter µi is of lower order, it is equivalent to

consider the model where µi = 0. For the definition of ĝi(·), we have for all
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g ∈ {1, 2, ..., K0},

1 {ĝi(c) = g} ≤ 1

{
T∑
t=1

(ỹit − ỹi,t−1ρg)
2 ≤

T∑
t=1

(ỹit − ỹi,t−1ρg0i )
2

}
.

Define ρg0i := exp
(
cg0i /T

γ
)

and ρgi := exp
(
cgi
T γ

)
. For simplicity, we write ρ0

i

(
:= exp

(
c0i
T γ

))
as ρi. We derive the following transformation

1

n

n∑
i=1

1 {ĝi(c) = g} =
K0∑
g=1

1

n

n∑
i=1

1
{
g0
i 6= g

}
1 {ĝi(c) = g}

≤
K0∑
g=1

1

n

n∑
i=1

1
{
g0
i 6= g

}
1

{
T∑
t=1

(ỹit − ỹi,t−1ρg)
2 ≤

T∑
t=1

(ỹit − ỹi,t−1ρg0i )
2

}

= :
K0∑
g=1

1

n

n∑
i=1

Zig(c),

where Zig(c) := 1 {g0
i 6= g}1

{∑T
t=1(ỹit − ỹi,t−1ρg)

2 ≤
∑T

t=1(ỹit − ỹi,t−1ρg0i )
2
}

.

We intend to bound Zig(c) for all c ∈ Nη by the quantity irrelevant to c. Therefore

for all i, it has

Zig(c) ≤ max
g̃ 6=g

1

{
T∑
t=1

(
ỹit − ỹi,t−1ρg

)2 ≤
T∑
t=1

(
ỹit − ỹi,t−1ρg̃

)2

}

= max
g̃ 6=g

1

{
T∑
t=1

ỹi,t−1

(
ρg̃ − ρg

) (
2ỹi,t−1ρ

0
g̃ + 2ũit − ỹi,t−1

(
ρg̃ + ρg

))
≤ 0

}
.

Let us define

HT :=

∣∣∣∣∣∣∣
∑T

t=1 ỹi,t−1

(
ρg̃ − ρg

) (
2ỹi,t−1ρ

0
g̃ + 2ũit − ỹi,t−1

(
ρg̃ + ρg

))
−
∑T

t=1 ỹi,t−1

(
ρ0
g̃ − ρ0

g

) (
2ỹi,t−1ρ

0
g̃ + 2ũit − ỹi,t−1

(
ρ0
g̃ + ρ0

g

))
∣∣∣∣∣∣∣

≤

∣∣∣∣∣2
T∑
t=1

(ρg̃ − ρg)ỹi,t−1ũit

∣∣∣∣∣+

∣∣∣∣∣2
T∑
t=1

(ρ0
g̃ − ρ0

g)ỹi,t−1ũit

∣∣∣∣∣
+

∣∣∣∣∣∣∣
∑T

t=1 ỹi,t−1

(
ρg̃ − ρg

) (
2ỹi,t−1ρ

0
g̃ − ỹi,t−1

(
ρg̃ + ρg

))
−
∑T

t=1 ỹi,t−1

(
ρ0
g̃ − ρ0

g

) (
2ỹi,t−1ρ

0
g̃ − ỹi,t−1

(
ρ0
g̃ + ρ0

g

))
∣∣∣∣∣∣∣

=: H1T +H2T +H3T ,
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where H1T :=
∣∣∣2∑T

t=1(ρg̃ − ρg)ỹi,t−1ũit

∣∣∣, H2T :=
∣∣∣2∑T

t=1(ρ0
g̃ − ρ0

g)ỹi,t−1ũit

∣∣∣ and

H3T :=

∣∣∣∣∣∣∣
∑T

t=1 ỹi,t−1

(
ρg̃ − ρg

) (
2ỹi,t−1ρ

0
g̃ − ỹi,t−1

(
ρg̃ + ρg

))
−
∑T

t=1 ỹi,t−1

(
ρ0
g̃ − ρ0

g

) (
2ỹi,t−1ρ

0
g̃ − ỹi,t−1

(
ρ0
g̃ + ρ0

g

))
∣∣∣∣∣∣∣ .

By the compactness of the parameter support, we have

H1T =

∣∣∣∣∣2
T∑
t=1

(ρg̃ − ρg)ỹi,t−1ũit

∣∣∣∣∣ ≤ 2
∣∣ρg̃ − ρg∣∣

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ ≤ B1

T γ
η

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ ,
where B1 is a constant independent of η and T . We have the above argument by

the definition of η. Similarly we can justify that H2T ≤ B2

T γ
η
∣∣∣∑T

t=1 ỹi,t−1ũit

∣∣∣ where

B2 is a constant independent of η and T . For H3T , we have with B3 as a constant

independent of η and T ,

H3T =

∣∣∣∣∣∣∣
∑T

t=1 ỹi,t−1

(
ρg̃ − ρg

) (
2ỹi,t−1ρ

0
g̃ − ỹi,t−1

(
ρg̃ + ρg

))
−
∑T

t=1 ỹi,t−1

(
ρ0
g̃ − ρ0

g

) (
2ỹi,t−1ρ

0
g̃ − ỹi,t−1

(
ρ0
g̃ + ρ0

g

))
∣∣∣∣∣∣∣

=

∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣
∣∣∣∣ρ0
g̃

(
ρg̃ − ρ0

g̃ − ρg + ρ0
g

)
+

1

2

(
(ρ0
g̃)

2 − ρ2
g̃ + ρ2

g−
(
ρ0
g

)2
)∣∣∣∣

≤ B3

T γ
η

∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣ .
By combining available results, we obtain the following,

Zig(c) ≤ max
g̃ 6=g

1

{
T∑
t=1

ỹi,t−1

(
ρg̃ − ρg

) (
2ỹi,t−1ρ

0
g̃ + 2ũit − ỹi,t−1

(
ρg̃ + ρg

))
≤ 0

}

≤ max
g̃ 6=g

1


∑T

t=1 ỹi,t−1

(
ρ0
g̃ − ρ0

g

) (
2ỹi,t−1ρ

0
g̃ + 2ũit − ỹi,t−1

(
ρ0
g̃ + ρ0

g

))
≤ B1+B2

T γ
η
∣∣∣∑T

t=1 ỹi,t−1ũit

∣∣∣+ B3

T γ
η
∣∣∣∑T

t=1 ỹ
2
i,t−1

∣∣∣
 .

Based on the following fact that

T∑
t=1

ỹi,t−1

(
ρ0
g̃ − ρ0

g

) (
2ỹi,t−1ρ

0
g̃ − ỹi,t−1

(
ρ0
g̃ + ρ0

g

))
=

T∑
t=1

ỹ2
i,t−1

(
ρ0
g̃ − ρ0

g

)2
,
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we define the following argument as

Z̃ig := max
g̃ 6=g

1


(
ρ0
g̃ − ρ0

g

)2∑T
t=1 ỹ

2
i,t−1 + 2

(
ρ0
g̃ − ρ0

g

)∑T
t=1 ỹi,t−1ũit

≤ B1+B2

T γ
η
∣∣∣∑T

t=1 ỹi,t−1ũit

∣∣∣+ B3

T γ
η
∣∣∣∑T

t=1 ỹ
2
i,t−1

∣∣∣
 .

Consequently, we can bound Zig(c) by supc∈Nη Zig(c) ≤ Z̃ig. Note that

sup
c∈Nη

1

n

n∑
i=1

{
ĝi(c) 6= g0

i

}
≤ 1

n

n∑
i=1

K0∑
g=1

Z̃ig.

For i = 1, 2, ..., n, g0
i = g̃ 6= g, we have equivalent representations ρi = ρg̃. For all

g ∈ {1, 2, ...K0}, we have

Pr
(
Z̃ig = 1

)
≤

∑
g̃ 6=g

Pr

 (
ρ0
g̃ − ρ0

g

)2∑T
t=1 ỹ

2
i,t−1 + 2

(
ρ0
g̃ − ρ0

g

)∑T
t=1 ỹi,t−1ũit

≤ B1+B2

T γ
η
∣∣∣∑T

t=1 ỹi,t−1ũit

∣∣∣+ B3

T γ
η
∣∣∣∑T

t=1 ỹ
2
i,t−1

∣∣∣


≤
∑
g̃ 6=g

Pr

 2
(
ρ0
g̃ − ρ0

g

)∑T
t=1 ỹi,t−1ũit ≤ −

(
ρ0
g̃ − ρ0

g

)2∑T
t=1 ỹ

2
i,t−1

+B1+B2

T γ
η
∣∣∣∑T

t=1 ỹi,t−1ũit

∣∣∣+ B3

T γ
η
∣∣∣∑T

t=1 ỹ
2
i,t−1

∣∣∣


≤
∑
g̃ 6=g

Pr

 2
(c0g̃−c0g)
T γ

∑T
t=1 ỹi,t−1ũit ≤ −

(
c0
g̃ − c0

g

)2 (
ρ0
g̃

)2T
M

+(B1 +B2)
(
ρ0
g̃

)2T
ηM +B3T

γ
(
ρ0
g̃

)2T
ηM̃


+
∑
g̃ 6=g

Pr

(
1

ρ2T
i T

γ

T∑
t=1

ỹ2
i,t−1 ≤M

)
+
∑
g̃ 6=g

Pr

(
1

ρ2T
i T

γ

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥M

)

+
∑
g̃ 6=g

Pr

(
1

ρ2T
i T

γ

∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣ ≥ M̃

)

≤
∑
g̃ 6=g

Pr

 2 c∗

T γ

∑T
t=1 ỹi,t−1ũit ≤ − (c∗)2 (ρ0

g̃

)2T
M

+(B1 +B2)
(
ρ0
g̃

)2T
ηM +B3T

γ
(
ρ0
g̃

)2T
ηM̃

+
∑
g̃ 6=g

Pr

(
1

ρ2T
i T

γ

T∑
t=1

ỹ2
i,t−1 ≤M

)

+
∑
g̃ 6=g

Pr

(
1

ρ2T
i T

γ

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥M

)
+
∑
g̃ 6=g

Pr

(
1

ρ2T
i T

γ

∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1

∣∣∣∣∣ ≥ M̃

)
. (A.2.10)

Based on Lemma A.2.3, A.2.4 and A.2.5 we can argue the 2nd, 3rd and 4th terms
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of (A.2.10) are o
(

1
n

)
. We restrict η as η ≤ (c∗)2M

2B3T γM̃
. For example, we can set

η = (c∗)2M

4B3T γM̃
. Therefore we have

∑
g̃ 6=g

Pr

 2 c∗

T γ

∑T
t=1 ỹi,t−1ũit ≤ − (c∗)2 (ρ0

g̃

)2T
M

+(B1 +B2)
(
ρ0
g̃

)2T
ηM +B3T

γ
(
ρ0
g̃

)2T
ηM̃


=

∑
g̃ 6=g

Pr

 2 c∗

T γ(ρ0g̃)
2T

∑T
t=1 ỹi,t−1ũit ≤ − (c∗)2M

+(B1 +B2)ηM +B3T
γηM̃


≤

∑
g̃ 6=g

Pr

(
2

c∗

T γρ2T
i

T∑
t=1

ỹi,t−1ũit ≤
− (c∗)2M

2

)

≤
∑
g̃ 6=g

Pr

(
1

T γρ2T
i

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥ c∗M

4

)

= o

(
1

n

)
.

The last equality is due to Lemma A.2.3. Combining the above results, we obtain

Pr
(
Z̃ig = 1

)
= o

(
1
n

)
. This implies that

sup
c∈Nη

1

n

n∑
i=1

1
{
ĝi(c) 6= g0

i

}
≤ 1

n

K0∑
g=1

n∑
i=1

EZ̃ig =
1

n

K0∑
g=1

n∑
i=1

Pr
(
Z̃ig = 1

)
= K0

(
K0 − 1

)
o

(
1

n

)
= o

(
1

n

)
.

Assume that Ĝg represents the g-th estimated classification group and G0
g de-

notes the g-th true group in the population. To rigorously state the uniform con-

sistency of the recursive k-means algorithm, we define the following sequences of

events as

Êg,i :=
{
i /∈ Ĝg|i ∈ G0

g

}
and F̂g,i :=

{
i /∈ G0

g|i ∈ Ĝg

}
, (A.2.11)

for g = 1, 2, ..., K0 and i = 1, 2, ..., n. Let Êg,nT :=
⋃
i∈G0

g
Êg,i and F̂g,nT :=⋃

i∈Ĝg F̂g,i. Êg,nT demonstrates the error event of not classifying the individual unit

116



of G0
g into Ĝg as a type-I classification error; Êg,nT demonstrates the error event

of not clustering the cross-sectional unit of Ĝg into G0
g as a type-II classification

error. Furthermore, we establish the uniform consistency of the recursive k-means

classifier.

Lemma A.2.7 (Uniform Consistency of Classification) Let Assumption 1 and 2

hold and c0
i > 0 for each i = 1, 2, ..., n. Under joint convergence (n, T )→∞,

(i) Pr
(⋃K0

g=1 Êg,nT

)
≤
∑K0

g=1 Pr
(
Êg,nT

)
→ 0,

(ii) Pr
(⋃K0

g=1 F̂g,nT

)
≤
∑K0

g=1 Pr
(
F̂g,nT

)
→ 0.

Lemma A.2.7 illustrates that for all g ∈ {1, 2, ..., K0} all cross-sectional units

belonging to group G0
g are assigned into the same estimated group Ĝg asymptoti-

cally. Meanwhile, all cross-sectional agents classified into the same group Ĝg for

all g ∈ {1, 2, ..., K0} belong to the same group G0
g in the probability limit. These

observations show that the summation of classification errors is diminishing asymp-

totically.

Proof. For the uniform consistency, observe that Pr
(⋃K0

g=1 Êg,nT

)
≤
∑K0

g=1 Pr
(
Êg,nT

)
≤∑K0

g=1

∑
i∈G0

g
Pr
(
Êg,i

)
. We have

K0∑
g=1

∑
i∈G0

g

Pr
(
Êg,i

)
≤ n max

1≤i≤n
E1{ĝi(̂c) 6= g0

i } = n max
1≤i≤n

Pr{
∣∣∣ĝi(̂c)− g0

i

∣∣∣ > 0}

≤ n max
1≤i≤n

sup
c∈Nη

Pr{
∣∣ĝi(c)− g0

i

∣∣ > 0}+ n max
1≤i≤n

Pr{
∣∣∣̂cĝi − c0

g0i

∣∣∣ > η}

= o(1) + n max
1≤i≤n

Pr{
∣∣∣̂cĝi − c0

g0i

∣∣∣ > η}. (A.2.12)

It remains to show that the second term of (A.2.12) is asymptotically negligible.

Note the fact that η = O
(

1
T γ

)
. By Lemma A.1.1, for any i = 1, 2, ..., n, the estimate

ĉ generated by the recursive k−means algorithm converges to the true value at the

rate of Op

(
1

√
n(ρ0i )

T
T γ

)
which is smaller than the radius, η. Moreover, since the

rate of Op

(
1

√
n(ρ0i )

T
T γ

)
is dominating over the polynomial rate of n, the Markov
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inequality produces

n max
1≤i≤n

Pr{
∣∣∣̂cĝi − c0

g0i

∣∣∣ > η} = o(1).

Then we successfully justify the argument of (i);

For (ii), we basically follow the derivations in Su et al. (2016) and can easily

derive the need results

A.2.2 Proof of Theorem 3.4.1:

Proof. (i) Note the definition of ĝi,

Pr

(
max
1≤i≤n

∣∣∣ĝi(̂c)− g0
i

∣∣∣ > 0

)
≤ Pr

(
ĉ /∈Nη

)
+E

[
sup
c∈Nη

Pr

(
max
1≤i≤n

∣∣ĝi(c)− g0
i

∣∣ > 0

)]
.

Based on the proof of Lemma A.2.6, we know that η = O
(

1
T γ

)
asymptotically.

The convergence rates of our estimates are fast enough to satisfy this condition as

ĉg− c0
g = Op

(
1

√
n(ρ0g)

T
T γ

)
= op

(
1
T γ

)
for g = 1, 2, ..., K0. Therefore we derive the

following argument as,

Pr
(
ĉ /∈Nη

)
= o(1).

Besides,

sup
c∈Nη

Pr

(
max
1≤i≤n

∣∣ĝi(c)− g0
i

∣∣ > 0

)
≤ n sup

c∈Nη
max
1≤i≤n

Pr
(∣∣ĝi(c)− g0

i

∣∣ > 0
)

= n max
1≤i≤n

sup
c∈Nη

Pr
(∣∣ĝi(c)− g0

i

∣∣ > 0
)

= n · o
(

1

n

)
= o (1) .

Then we completed the proof.
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A.2.3 Proof of Theorem 3.4.2:

Proof. Based on the definition of the post-classification estimator, we have for each

g ∈ {1, 2, ..., K0} and cg > 0

√
ngT

γ(ρ0
g)
T
(
ρ̂ĝ − ρ0

g

)
=

1√
ngT γ(ρ0g)T

∑
i∈Ĝĝ

∑T
t=1 ỹi,t−1ũit

1
ngT 2γ(ρ0g)2T

∑
i∈Ĝĝ

∑T
t=1 ỹ

2
i,t−1

.

The numerator and denominator can be decomposed as

1
√
ngT γ(ρ

0
g)
T

∑
i∈Ĝĝ

T∑
t=1

ỹi,t−1ũit

=
1

√
ngT γ(ρ

0
g)
T

∑
i∈G0

g

T∑
t=1

ỹi,t−1ũit +
1

√
ngT γ(ρ

0
g)
T

K0∑
g̃=1,
g̃ 6=g

∑
i∈Ĝĝ\G0

g

i∈G0
g̃ ,α

0
g̃<α

0
g

T∑
t=1

ỹi,t−1ũit

+
1

√
ngT γ(ρ

0
g)
T

K0∑
g̃=1,
g̃ 6=g

∑
i∈Ĝĝ\G0

g

i∈G0
g̃ ,α

0
g̃≥α

0
g

T∑
t=1

ỹi,t−1ũit −
1

√
ngT γ(ρ

0
g)
T

K0∑
ĝ=1

∑
i∈G0

g\Ĝĝ

T∑
t=1

ỹi,t−1ũit,

and

1

ngT 2γ(ρ0
g)

2T

∑
i∈Ĝg

T∑
t=1

ỹ2
i,t−1

=
1

ngT 2γ(ρ0
g)

2T

∑
i∈G0

g

T∑
t=1

ỹ2
i,t−1 +

1

ngT 2γ(ρ0
g)

2T

K0∑
g̃=1,
g̃ 6=g

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃<α

0
g

T∑
t=1

ỹ2
i,t−1

+
1

ngT 2γ(ρ0
g)

2T

K0∑
g̃=1,
g̃ 6=g

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃≥α

0
g

T∑
t=1

ỹ2
i,t−1 −

1

ngT 2γ(ρ0
g)

2T

K0∑
ĝ=1

∑
i∈G0

g\Ĝg

T∑
t=1

ỹ2
i,t−1.

Therefore it remains to justify these arguments:

(i) For any g = 1, 2, ..., K0,

1
√
ngT (ρ0

g)
T

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃<α

0
g

T∑
t=1

ỹi,t−1ũit = op(1),
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1

ngT 2γ(ρ0
g)

2T

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃<α

0
g

T∑
t=1

ỹ2
i,t−1 = op(1);

(ii) For any g = 1, 2, ..., K0,

1
√
ngT γ(ρ

0
g)
T

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃≥α

0
g

T∑
t=1

ỹi,t−1ũit = op(1),

1

ngT 2γ(ρ0
g)

2T

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃≥α

0
g

T∑
t=1

ỹ2
i,t−1 = op(1);

(iii) For any g = 1, 2, ..., K0,

1
√
ngT γ(ρ

0
g)
T

∑
i∈G0

g\Ĝĝ

T∑
t=1

ỹi,t−1ũit = op(1),

1

ngT 2γ(ρ0
g)

2T

∑
i∈G0

g\Ĝĝ

T∑
t=1

ỹ2
i,t−1 = op(1).

For (i) (ii) and (iii), second terms can be proved identically as the first ones. Without

losing generality we just focus on the first terms. For (iii), we have for any ε > 0

Pr

∣∣∣∣∣∣ 1
√
ngT γ(ρ

0
g)
T

∑
i∈G0

g\Ĝg

T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣∣ > ε

 ≤ Pr

(
K0∑
g=1

Êg,nT

)
→ 0,

under joint asymptotics. For (i), for any g̃ 6= g = 1, 2, ..., K0 and for any ε > 0, we

have

Pr


∣∣∣∣∣∣∣∣∣∣

1
√
ngT γ(ρ

0
g)
T

K0∑
g̃=1,
g̃ 6=g

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃<α

0
g

T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣∣∣∣∣∣
> ε

 ≤ Pr

 K0∑
g̃=1

F̂g̃,nT

→ 0,
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under joint asymptotic framework. For (ii), for any ε > 0, we have

Pr


∣∣∣∣∣∣∣∣∣∣

1
√
ngT γ(ρ

0
g)
T

K0∑
g̃=1,
g̃ 6=g

∑
i∈Ĝg\G0

g

i∈G0
g̃ ,α

0
g̃≥α

0
g

T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣∣∣∣∣∣
> ε

 ≤ Pr

 K0∑
g̃=1

F̂g̃,nT

→ 0.

Summarizing above results,

1
√
ngT γ(ρ

0
g)
T

∑
i∈Ĝg

T∑
t=1

ỹi,t−1ũit =
1

√
ngT γ(ρ

0
g)
T

∑
i∈G0

g

T∑
t=1

ỹi,t−1ũit + op(1).

and

1

ngT 2γ(ρ0
g)

2T

∑
i∈Ĝg

T∑
t=1

ỹ2
i,t−1 =

1

ngT 2γ(ρ0
g)

2T

∑
i∈G0

g

T∑
t=1

ỹ2
i,t−1 + op(1).

The asymptotics for the post-classification estimator is asymptotically equivalent to

the infeasible within estimator. The joint limit (n, T )→∞ for the infeasible within

estimator follows Phillips and Moon (1999).

A.2.4 Technical lemmas of modified k-means algorithm

We also intend to establish the asymptotic properties of the mixed-root panel autore-

gressions. We collect the individual least squares {ĉi}ni=1 and discuss their uniform

bound.

Lemma A.2.8 If Assumptions 1 and 2 hold,

sup
1≤i≤n,c0i>0

∣∣ĉi − c0
i

∣∣ = Op

(
(ρu)

−T T
−γ
2

)
,

where ρu := exp
(
cu
T γ

)
.
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Proof. If ci > 0, there is one explosive root. The time series estimator is as,

ĉi − c0
i = T γ

(
T∑
t=1

ỹ2
i,t−1

)−1( T∑
t=1

ỹi,t−1ũit

)
,

and

sup
1≤i≤n

∣∣ĉi − c0
i

∣∣ ≤ T γ

(
inf

1≤i≤n

T∑
t=1

ỹ2
i,t−1

)−1(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣
)

= T γ

(
inf

1≤i≤n

T γ

2c0
i

Ey2
i,T− sup

1≤i≤n

(
T γ

2c0
i

Ey2
i,T −

T∑
t=1

ỹ2
i,t−1

))−1(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣
)
.

(i) To justify the uniform upper bound for
∣∣∣∑T

t=1 ỹi,t−1ũit

∣∣∣, we apply the exponential

inequality of Freedman (1975) as

Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥MnT

)

≤ Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

yi,t−1uit

∣∣∣∣∣ ≥MnT

)
+ Pr

(
sup

1≤i≤n

∣∣Tyi,−1ui
∣∣ ≥MnT

)

≤ n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

yi,t−1uit

∣∣∣∣∣ ≥MnT

)
︸ ︷︷ ︸

(AA.1)

+n sup
1≤i≤n

Pr
(∣∣Tyi,−1ui

∣∣ ≥MnT

)
︸ ︷︷ ︸

(AA.2)

,

where the innovations uniformly dominate the fixed effect. For (AA.1) we apply the

exponential inequality of Freedman (1975). The process {yi,t−1uit}Tt=1 is a martin-

gale difference sequence as E (yi,t−1uit|Fi,t−1) = 0 withFi,t−1 := σ {ui,t−1, ui,t−2, ...} .

We set a truncation rate di,nT = ρTi n
1
4T

1+2γ
4 . We define zit := yi,t−1uit and make

the following decomposition
T∑
t=1

zit =
T∑
t=1

z1it +
T∑
t=1

z2it −
T∑
t=1

E [z2it|Fi,t−1] . Define

z1it := zit1it − E [zit1it|Fi,t−1] and z2it := zit1it. Define 1it := 1 {|zit| ≤ di,nT}

and 1it = 1 − 1it. We need to derive the uniform upper bound from the following

negligible conditions. It suffices to find MnT to ensure

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

z1it

∣∣∣∣∣ ≥MnT

)
= o (1) ,
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n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

z2it

∣∣∣∣∣ ≥MnT

)
= o (1) ,

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

E [z2it|Fi,t−1]

∣∣∣∣∣ ≥MnT

)
= o (1) . (A.2.13)

The second and third arguments of (A.2.13) share identical derivations, and without

losing generality we only focus on the second term. We define ViT :=
∑T

t=1 E [z2
1it|Fi,t−1],

and vi,nT = ρ2T
i n

1
2T

1
2

+ 3γ
2 as a truncation rate for ViT .

E
[
V 2
iT

]
= E

[
T∑
t=1

E
[
z2

1it|Fi,t−1

]]2

≤ T
T∑
t=1

E
[
z4

1it

]
≤ 16T

T∑
t=1

E
[
z4
it

]
≤ CT 1+2γ

T∑
t=1

ρ4t
i = Op

(
T 1+3γρ4T

i

)
.

By Proposition 2.1 in Freedman (1975),

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

z1it

∣∣∣∣∣ ≥MnT

)

≤ n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

z1it

∣∣∣∣∣ ≥MnT , ViT ≤ vi,nT

)
+ n sup

1≤i≤n
Pr (ViT > vi,nT )

≤ sup
1≤i≤n

exp

(
−M2

nT + 2vi,nT log (n) + 4MnTdi,nT log (n)

2vi,nT + 4MnTdi,nT

)
+ sup

1≤i≤n
o
(
nT 1+3γρ4T

i v
−2
i,nT

)
= o(1). (A.2.14)

To show asymptotic negligibility of (A.2.14), we needMnT � sup1≤i≤n ρ
T
i n

1
4T

1+3γ
4

√
log (n).

For the second term of (A.2.13), we have

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

z2it

∣∣∣∣∣ ≥MnT

)

≤ n sup
1≤i≤n

Pr

(
max

1≤t≤T
|zit| ≥ di,nT

)
≤ nT

d4
i,nT

sup
1≤i≤n
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1≤t≤T

E
[
|zit|4 1 {|zit| > di,nT}

]
= sup

1≤i≤n
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1≤t≤T
o

(
nT 1+2γ

d4
i,nT

ρ4t
i

)
= o (1) ,
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which is guaranteed by our assumption for di,nT . It is easily justified that

sup
1≤i≤n

ρTi n
1
4T

1+3γ
4

√
log (n) � sup

1≤i≤n
ρTi n

1
4T

1+2γ
4 log (n) .

Therefore, for (AA.1) we need MnT � ρTun
1
4T

1+3γ
4

+ε
√

log (n) for any ε > 0.

For (AA.2) term, the uniform upper bound follows decompositions as

sup
1≤i≤n

∣∣Tyi,−1ui
∣∣ ≤ T sup

1≤i≤n

∣∣yi,−1

∣∣ sup
1≤i≤n

|ui| .

For sup1≤i≤n |ui| term, the exponential inequality of Freedman (1975) is easily ap-

plied, and shows sup1≤i≤n |ui| = Op

(
T−

1
2n

1
4

√
log n

)
. For the term sup1≤i≤n

∣∣yi,−1

∣∣,
T∑
t=1

yi,t−1 =
T∑
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(
t−1∑
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ρt−1−s
i uis

)
=
T γ

c0
i

T−1∑
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(
ρT−si uis − uis

)
.

Therefore,

sup
1≤i≤n

∣∣∣∣∣
T∑
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yi,t−1

∣∣∣∣∣ = sup
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∣∣∣∣∣T γc0
i
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(
ρT−si uis − uis

)∣∣∣∣∣
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∣∣∣∣∣T γρTic0
i
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ρ−si uis

∣∣∣∣∣+ sup
1≤i≤n

∣∣∣∣∣T γc0
i
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uis

∣∣∣∣∣ .
For the term of sup1≤i≤n

∣∣∣T γc0i ∑T−1
s=0 uis

∣∣∣, the upper bound is Op

(
n

1
4T

1
2

+γ
)

. For

the term of sup1≤i≤n

∣∣∣T γρTic0i

∑T−1
s=0 ρ

−s
i uis

∣∣∣, the exponential inequality of martingale

(Freedman, 1975) applies and shows

sup
1≤i≤n

∣∣∣∣∣T γρTic0
i

T−1∑
s=0

ρ−si uis

∣∣∣∣∣ = Op

(
n

1
4T

1+5γ
4 (ρu)

T
√
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)
,

and

sup
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T
∣∣yi,−1ui
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(
n

1
2 (ρu)

T T
5γ−1

4 log(n)
)
.
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Once T 2γ−2n (log n)2 → 0, we have

sup
1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ = Op

(
n

1
4T

3γ+1
4

+ε (ρu)
T
√

log(n)
)
.

(ii) To justify the uniform lower bound for the denominator inf1≤i≤n

∣∣∣∑T
t=1 ỹ

2
i,t−1

∣∣∣,
we employ the following decomposition as

inf
1≤i≤n

T∑
t=1

ỹ2
i,t−1 = inf

1≤i≤n

T γ

2c0
i

Ey2
i,T︸ ︷︷ ︸

(BB.1)

− sup
1≤i≤n

(
T γ

2c0
i

Ey2
i,T −

T∑
t=1

ỹ2
i,t−1

)
︸ ︷︷ ︸

(BB.2)

.

For (BB.1) term, expectation operator removes randomness. We have

inf
1≤i≤n

T γ

2c0
i

Ey2
i,T = O

(
ρ2T
l T

2γ
)
,

where ρl := exp
(
cl
T γ

)
.

For (BB.2) term, the martingale exponential inequality is not directly applicable.

Therefore, we employ the following decomposition,

Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹ2
i,t−1 −

T γ

2c0
i

Ey2
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∣∣∣∣∣ ≥ M̃nT

)

≤ n sup
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T γ

2c0
i

Ey2
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∣∣∣∣∣ ≥ M̃nT

)
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(∣∣∣∣ T γ2c0
i
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i,T − Ey2

i,T

)∣∣∣∣ ≥ M̃nT

)
︸ ︷︷ ︸

(BB.2.1)

+n sup
1≤i≤n
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(∣∣∣∣∣ T γ2c0
i
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yi,t−1uit

∣∣∣∣∣ ≥ M̃nT
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︸ ︷︷ ︸
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+n sup
1≤i≤n

Pr
(∣∣Ty2

i,−1

∣∣ ≥ M̃nT
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︸ ︷︷ ︸

(BB.2.4)

,

where the innovations dominate the fixed effect uniformly. For (BB.2.1) term, we

have

n sup
1≤i≤n

Pr

(∣∣∣∣ T γ2c0
i
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i,T − Ey2
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Note that
{
ρ−2t
i (u2

it − Eu2
it)
}T
t=1

is a martingale difference sequence as E
(
ρ−2t
i (u2

it − Eu2
it) |Fi,t−1

)
=

0 with Fi,t−1 := σ {ui,t−1, ui,t−2, ...} . We set a truncation rate φi,nT = n
1
4T

1
4 . We

define xit := ρ−2t
i (u2

it − Eu2
it) and make the following decomposition

T∑
t=1

xit =

T∑
t=1

x1it +
T∑
t=1

x2it −
T∑
t=1

E [x2it|Fi,t−1] . Define x1it := xit1it − E [xit1it|Fi,t−1] and

x2it := xit1it. Define 1it := 1 {|xit| ≤ φi,nt} and 1it = 1 − 1it. We need to derive

the uniform upper bound from the following negligible conditions. It suffices to find

M̃nT to ensure that

n sup
1≤i≤n
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n sup
1≤i≤n

Pr

(
T γρ2T

i

2c0
i

∣∣∣∣∣
T∑
t=1

x2it

∣∣∣∣∣ ≥ M̃nT

)
= o (1) ,

n sup
1≤i≤n

Pr

(
T γρ2T

i

2c0
i

∣∣∣∣∣
T∑
t=1

E [x2it|Fi,t−1]

∣∣∣∣∣ ≥ M̃nT

)
= o (1) . (A.2.15)

The second and third arguments of (A.2.15) share identical derivations, and without

losing generality we only focus on the second term. We define ṼiT :=
∑T

t=1 E [x2
1it|Fi,t−1],

and ṽi,nT = n
1
2T

1
2

+ γ
2 is a truncation rate for ṼiT . With some constant C̃ > 0, we

have

E
[
Ṽ 2
iT

]
= E

[
T∑
t=1

E
[
x2

1it|Fi,t−1

]]2

≤ T
T∑
t=1

E
[
x4

1it

]
≤ 16T

T∑
t=1

E
[
x4
it

]
≤ C̃T

T∑
t=1

ρ−8t
i = Op

(
T 1+γ

)
.

By Proposition 2.1 in Freedman (1975), we have

n sup
1≤i≤n

Pr

(
T γρ2T

i

2c0
i

∣∣∣∣∣
T∑
t=1

x1it

∣∣∣∣∣ ≥ M̃nT

)

≤ n sup
1≤i≤n

Pr

(
T γρ2T

i

2c0
i

∣∣∣∣∣
T∑
t=1

x1it

∣∣∣∣∣ ≥ M̃nT , ṼiT ≤ ṽi,nT

)
+ n sup

1≤i≤n
Pr
(
ṼiT > ṽi,nT

)
≤ sup

1≤i≤n
exp

(
−4(c0

i )
2M̃2

nT/
(
T 2γρ4T

i

)
+ 2ṽi,nT log (n) + 8c0

i M̃nTφi,nt log (n) /
(
T γρ2T

i

)
2ṽi,nT + 8c0

i M̃nTφi,nt/ (T γρ2T
i )

)
+ sup

1≤i≤n
o
(
nT 1+γ ṽ−2

i,nT

)
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= o(1). (A.2.16)

By our assumptions for ṽi,nT , we have sup1≤i≤n o
(
nT 1+γ ṽ−2

i,nT

)
= o(1). The asymp-

totic negligibility of the exponential term in (A.2.16) follows

M̃nT � sup
1≤i≤n

T γ
√

log(n)T
1+γ
4 ρ2T

i n
1
4 ,

M̃nT � sup
1≤i≤n

T γ log(n)T
1
4ρ2T

i n
1
4 .

Since sup1≤i≤n T
γ
√

log(n)T
1+γ
4 ρ2T

i n
1
4 � sup1≤i≤n T

γ log(n)T
1
4ρ2T

i n
1
4 , we only

require M̃nT � sup1≤i≤n T
γ
√

log(n)T
1+γ
4 ρ2T

i n
1
4 . For the second term of (A.2.15),

we show

n sup
1≤i≤n

Pr

(
T γρ2T

i

2ci

∣∣∣∣∣
T∑
t=1

x2it

∣∣∣∣∣ ≥ M̃nT

)
≤ n sup

1≤i≤n
Pr

(
max

1≤t≤T
|xit| ≥ φi,nt

)
≤ nT

φ4
i,nT

sup
1≤i≤n

max
1≤t≤T

E
[
|xit|4 1 {|xit| > φi,nT}

]
= sup

1≤i≤n
o

(
nT

φ4
i,nT

)
,

where the assumption for φi,nt ensures that sup1≤i≤n o
(

nT
φ4i,nT

)
= o(1).

Therefore, for (BB.2.1) term, we have

sup
1≤i≤n

∣∣∣∣ T γ2c0
i

(
y2
i,T − Ey2

i,T

)∣∣∣∣ = Op

(
sup

1≤i≤n

√
log(n)T

1+5γ
4 ρ2T

i n
1
4

)
.

For (BB.2.2) term, we have, for any ε > 0,

sup
1≤i≤n

∣∣∣∣∣ T γ2c0
i

T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ = Op

(
n

1
4T

7γ+1
4

+ε (ρu)
T
√

log(n)
)
,

based on our derivations for the numerator.

For (BB.2.3) term, we have

sup
1≤i≤n

T γ

2c0
i

T∑
t=1

u2
it = sup

1≤i≤n

T γ

2c0
i

T∑
t=1

Eu2
it − sup

1≤i≤n

T γ
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i

T∑
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(
Eu2

it − u2
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)
.
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We easily show sup1≤i≤n
T γ

2c0i

∑T
t=1Eu2

it = O (T 1+γ) . Similarly by the law of iterat-

ed logarithm, we show sup1≤i≤n
T γ

2c0i

∑T
t=1 (Eu2

it − u2
it) = op (T 1+γ). Therefore we

show

sup
1≤i≤n

T γ

2c0
i

T∑
t=1

u2
it = Op

(
T 1+γ

)
.

For (BB.2.4) term, we have the following decomposition as

n sup
1≤i≤n
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(∣∣Ty2
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∣∣ ≥MnT

)
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2yi,−1

∣∣∣ ≥√MnT

)
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2
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i uis
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√
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)
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2

T−1∑
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i

)
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√
MnT

)
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(∣∣∣∣∣T −1
2
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s=0

ρT−si − 1

ρi − 1
uis
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√
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)
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(∣∣∣∣∣T
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2

(c0
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)
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)

≤ n sup
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(∣∣∣∣∣T
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2 ρTi
(c0
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)
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)
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2γ−1

2

(c0
i )

T−1∑
s=0

uis

∣∣∣∣∣ ≥
√
MnT

)
,

where innovations dominate the fixed effect for each individual. Note that
{
ρ−si uis

}T
s=1

is a martingale difference sequence as E
(
ρ−si uis|Fi,s−1

)
= 0 withFi,s−1 := σ {ui,s−1, ui,s−2, ...} .

We set a truncation rate oi,nT = n
1
4T

1
4 . We define x̃it := ρ−si uis and make the

following decomposition
T∑
t=1

x̃it =
T∑
t=1

x̃1it +
T∑
t=1

x̃2it −
T∑
t=1

E [x̃2it|Fi,t−1] . Define

x̃1it := x̃it1it − E [x̃it1it|Fi,t−1] and x̃2it := x̃it1it. Define 1it := 1 {|x̃it| ≤ oi,nt}

and 1it = 1 − 1it. We need to derive the uniform upper bound from the following

negligible conditions. It suffices to show to find MnT to ensure that

n sup
1≤i≤n
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T

2γ−1
2 ρTi

(c0
i )

∣∣∣∣∣
T∑
t=1

x̃1it

∣∣∣∣∣ ≥
√
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)
= o (1) ,
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n sup
1≤i≤n
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T

2γ−1
2 ρTi
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T∑
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x̃2it
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)
= o (1) ,
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E [x̃2it|Fi,t−1]

∣∣∣∣∣ ≥
√
MnT

)
= o (1) . (A.2.17)

The second and third arguments of (A.2.17) share identical derivations, and without

losing generality we only focus on the second term. We define V iT :=
∑T

t=1 E [x̃2
1it|Fi,t−1],

and vi,nT = n
1
2T

1
2

+ γ
2 is a truncation rate for V iT . With some constant C > 0, we

have

E
[
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2
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]
= E

[
T∑
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E
[
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]
≤ 16T
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E
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]
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ρ−4t
i = O

(
T 1+γ

)
.

By Proposition 2.1 in Freedman (1975),
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1≤i≤n
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(
T
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2 ρTi
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∣∣∣∣∣
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)
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2 ρTi
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)
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)
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√
(c0
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2
√
MnToi,nt log (n)T
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2 ρ−Ti

2vi,nT + 4
√

(c0
i )

2
√
MnToi,ntT
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2 ρ−Ti

)
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1≤i≤n
o
(
nT 1+γv−2

i,nT

)
= o(1). (A.2.18)

By our assumptions for ṽi,nT , we have sup1≤i≤n o
(
nT 1+γv−2

i,nT

)
= o(1). The asymp-

totic negligibility of the exponential term (A.2.18) is ensured by the following facts,

MnT � sup
1≤i≤n

T
4γ−1

2 (log(n))2 ρ2T
i n

1
2 ,

MnT � sup
1≤i≤n

T
5γ−1

2 log(n)ρ2T
i n

1
2 .

Since sup1≤i≤n T
5γ−1

2 log(n)ρ2T
i n

1
2 � sup1≤i≤n T

4γ−1
2 (log(n))2 ρ2T

i n
1
2 , we only re-

quire MnT � sup1≤i≤n T
5γ−1

2 log(n)ρ2T
i n

1
2 . For the second term of (A.2.17), we
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show

n sup
1≤i≤n
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T

2γ−1
2 ρTi
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i

∣∣∣∣∣
T∑
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√
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)
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(
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)
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E
[
|x̃it|4 1 {|x̃it| > oi,nT}

]
= sup

1≤i≤n
o

(
nT

o4
i,nT

)
.

The assumption for oi,nt ensures that sup1≤i≤n o
(

nT
o4i,nT

)
= o(1).

Combining results of (BB.1), (BB.2.1), (BB.2.2), (BB.2.3), and (BB.2.4), if

T 5γ−3n (log n)2 → 0, we have

inf
1≤i≤n

T∑
t=1

ỹ2
i,t−1 =Op

(
n

1
4

√
log nT

1+5γ
4

+ε (ρu)
2T
)
. (A.2.19)

for any ε > 0.

All in all, based on (A.2.19) and (A.2.15), we have

sup
1≤i≤n
c0i>0

∣∣ĉi − c0
i

∣∣ = Op

(
(ρu)

−T T
−γ
2

)
.

This concludes our proof.

Lemma A.2.9 If Assumptions 1 and 2 hold,

sup
1≤i≤n,c0i<0

∣∣ĉi − c0
i

∣∣ = Op

(
n

1
4

+ε
√

log(n)

T
1+γ
2

)
,

with arbitrary ε > 0.

Proof. Similarly, we demonstrate the uniform upper bounds and uniform lower

bound of several terms as

inf
1≤i≤n

T∑
t=1

Eỹ2
i,t−1,︸ ︷︷ ︸

(CC.1)

sup
1≤i≤n

T∑
t=1

∣∣Eỹ2
i,t−1 − ỹ2

i,t−1

∣∣
︸ ︷︷ ︸

(CC.2)

, sup
1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣︸ ︷︷ ︸
(CC.3)

.

130



For the term of (CC.1), we have

inf
1≤i≤n

T∑
t=1

Eỹ2
i,t−1 = O

(
T 1+γ

)
,

since the expectation operator removes randomness. For (CC.2), by applying the

exponential inequality (Freedman, 1975) and Markov inequality (White, 2014), we

can readily show

sup
1≤i≤n

T∑
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∣∣Ey2
i,t−1 − ỹ2

i,t−1

∣∣ = op
(
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)
.

Therefore we show
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ỹ2
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Eỹ2
i,t−1− sup
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(
Eỹ2
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)
= Op

(
T 1+γ

)
.

For the term of (CC.3), we accommodates the following decomposition as,
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(
sup

1≤i≤n

∣∣∣∣∣
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ỹi,t−1ũit

∣∣∣∣∣ ≥ M̌nT

)
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)
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(∣∣∣∣∣
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(CC.3.1)

+n sup
1≤i≤n

Pr
(∣∣Tyi,−1ui

∣∣ ≥ M̌nT

)
︸ ︷︷ ︸

(CC.3.2)

,

where the innovations dominate the fixed effect uniformly. For (CC.3.1) we apply

the exponential inequality of Freedman (1975). The process {yi,t−1uit}Tt=1 is a mar-

tingale difference sequence as E (yi,t−1uit|Fi,t−1) = 0 withFi,t−1 := σ {ui,t−1, ui,t−2, ...} .

We set a truncation rate ďi,nT = n
1
4T

1+2γ
4 . We define žit := yi,t−1uit and make

the following decomposition
T∑
t=1

žit =
T∑
t=1

ž1it +
T∑
t=1

ž2it −
T∑
t=1

E [ž2it|Fi,t−1] . Define

ž1it := žit1it − E [žit1it|Fi,t−1] and ž2it := žit1it. Define 1it := 1
{
|žit| ≤ ďi,nT

}
and 1it = 1 − 1it. We need to derive the uniform upper bound from the following
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negligible conditions. It suffices to show find M̌nT to ensure that

n sup
1≤i≤n

Pr

(∣∣∣∣∣
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ž1it
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)
= o (1) ,
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)
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∣∣∣∣∣ ≥ M̌nT

)
= o (1) . (A.2.20)

The second and third arguments of (A.2.20) share identical derivations, and without

losing generality we only focus on the second term. We define V̌iT :=
∑T

t=1 E [ž2
1it|Fi,t−1],

and v̌i,nT = n
1
2T

2+2γ
2 is a truncation rate for V̌iT .

E
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.

By Proposition 2.1 in Freedman (1975), we have
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= o(1). (A.2.21)

To show asymptotic negligibility of (A.2.21), we need M̌nT � n
1
4T

2+2γ
4

√
log (n)

and M̌nT � n
1
4T
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4 log (n) .Our assumption for v̌i,nT ensures sup1≤i≤n o
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)
=

o(1). For the second term of (A.2.20), we have
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= sup
1≤i≤n
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ď4
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)
= o (1) ,

which is guaranteed by our assumption for di,nT . Since n
1
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4

√
log (n) � n

1
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4 log (n) ,
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log (n). Therefore we have, for any ε > 0,
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.

For (CC.3.2) term, we have
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Note the fact that
{
ρ−si uis

}T
s=1

is a martingale difference sequence with Fi,s−1 :=

σ {ui,s−1, ui,s−2, ...} . We set a truncation rate ǒi,nT = n
1
4T

1
4ρ−Ti . We define x̌it :=

ρ−ti uit and make the following decomposition
T∑
t=1

x̌it =
T∑
t=1

x̌1it+
T∑
t=1

x̌2it−
T∑
t=1

E [x̌2it|Fi,t−1] .

Define x̌1it := x̌it1it−E [x̌it1it|Fi,t−1] and x̌2it := x̌it1it. Define 1it := 1 {|x̌it| ≤ ǒi,nt}
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and 1it = 1 − 1it. We need to derive the uniform upper bound from the following

negligible conditions. It suffices to show find f̌nT to ensure that

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

x̌1it

∣∣∣∣∣ ≥ −c0
i f̌nT
T γ

)
= o (1) ,

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

x̌2it

∣∣∣∣∣ ≥ −c0
i f̌nT
T γ

)
= o (1) ,

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

E [x̌2it|Fi,t−1]

∣∣∣∣∣ ≥ −c0
i f̌nT
T γ

)
= o (1) . (A.2.22)

The second and third arguments of (A.2.22) share identical derivations, and without

losing generality we only focus on the second term. We define W̌iT :=
∑T

t=1 E [x̌2
1it|Fi,t−1],

and w̌i,nT = n
1
2T

1
2

+ γ
2 ρ−2T

i is a truncation rate for W̌iT . With some constant Č > 0,

we have

E
[
W̌ 2
iT

]
= E

[
T∑
t=1

E
[
x̌2

1it|Fi,t−1

]]2

≤ T
T∑
t=1

E
[
x̌4

1it

]
≤ 16T

T∑
t=1

E
[
x̌4
it

]
≤ ČT

T∑
t=1

ρ−4t
i = Op

(
T 1+γρ−4T

i

)
.

By Proposition 2.1 in Freedman (1975),

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

x̌1it

∣∣∣∣∣ ≥ −c0
i f̌nT
T γ

)

≤ n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

x̌1it

∣∣∣∣∣ ≥ −c0
i f̌nT
T γ

, W̌iT ≤ w̌i,nT

)
+ n sup

1≤i≤n
Pr
(
W̌iT > w̌i,nT

)
≤ sup

1≤i≤n
exp

(
(c0
i )

2
f̌ 2
nT/T

2γ + 2w̌i,nT log (n) + (−c0
i )4f̌nT ǒi,nt log (n) /T γ

2w̌i,nT + (−c0
i )4f̌nT ǒi,nt/T

γ

)
+ sup

1≤i≤n
o
(
nT 1+γρ−4T

i w̌−2
i,nT

)
= o(1). (A.2.23)

To show asymptotic negligibility of (A.2.23), we need f̌nT � n
1
4T

5γ+1
4 ρ−Ti

√
log (n)

and f̌nT � n
1
4T

4γ+1
4 ρ−Ti log (n). Our assumption for w̌i,nT ensures sup1≤i≤n o

(
nT 1+γw̌−2

i,nT

)
=
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o(1). For the second term of (A.2.22), we have

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

ž2it

∣∣∣∣∣ ≥ (−c0
i )f̌nT
T γ

)

≤ n sup
1≤i≤n

Pr

(
max

1≤t≤T
|x̌it| ≥ ǒi,nt

)
≤ nT

ǒ4
i,nT

sup
1≤i≤n

max
1≤t≤T

E
[
|x̌it|4 1 {|x̌it| > ǒi,nt}

]
= sup

1≤i≤n
max

1≤t≤T
o

(
nTρ−4T

i

ǒ4
i,nT

)
= o (1) ,

which is guaranteed by our assumption for ǒi,nt. Since n
1
4T

5γ+1
4 ρ−Ti

√
log (n) �

n
1
4T

4γ+1
4 ρ−Ti log (n), we need f̌nT � n

1
4T

5γ+1
4 ρ−Ti

√
log (n). The abovementioned

derivation shows

sup
1≤i≤n

∣∣yi,−1

∣∣ = Op

(
n

1
4T−

1
2

+γ log n
)
.

For any ε > 0, this shows

sup
1≤i≤n

∣∣Tyi,−1ui
∣∣ ≤ T sup

1≤i≤n

∣∣yi,−1

∣∣ sup
1≤i≤n

|ui| = Op

(
(log n)n

1
2T γ+ε

)
.

Therefore, if T 2−2γ � n (log(n))2,

sup
1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ = Op

(
n

1
4T

1+γ
2

+ε
√

log (n)
)
,

and

sup
1≤i≤n,c0i<0

∣∣ĉi − c0
i

∣∣ = Op

(
n

1
4

+ε
√

log(n)

T
1+γ
2

)
,

with arbitrary ε > 0.

Lemma A.2.10 If Assumptions 1 and 2 hold,

sup
1≤i≤n,c0i=0

∣∣ĉi − c0
i

∣∣ = Op

(
n

1
2

+ε
√

log(n) log2 (T )

T

)
,

with arbitrary ε > 0. The notation log2(·) := log log(·).

135



Proof. Similarly, we demonstrate the uniform upper bounds and uniform lower

bound of several terms as

inf
1≤i≤n

T∑
t=1

ỹ2
i,t−1,︸ ︷︷ ︸

(DD.1)

sup
1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣︸ ︷︷ ︸
(DD.2)

.

For the term of (DD.1), by Lemma A.2 of Huang et al. (2019)

inf
1≤i≤n

T∑
t=1

ỹ2
i,t−1 = Op

(
T 2

log2(T )

)
,

due to the law of the iterated logarithm. For the term of (DD.2), we accommodates

the following decomposition as,

Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ ≥ ṀnT

)

≤ Pr

(
sup

1≤i≤n

∣∣∣∣∣
T∑
t=1

yi,t−1uit

∣∣∣∣∣ ≥ ṀnT

)
+ Pr

(
sup

1≤i≤n

∣∣Tyi,−1ui
∣∣ ≥ ṀnT

)

≤ n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

yi,t−1uit

∣∣∣∣∣ ≥ ṀnT

)
︸ ︷︷ ︸

(DD.2.1)

+n sup
1≤i≤n

Pr
(∣∣Tyi,−1ui

∣∣ ≥ ṀnT

)
︸ ︷︷ ︸

(DD.2.2)

,

where the innovations dominate the fixed effect uniformly. For (DD.2.1) we apply

the exponential inequality of Freedman (1975). The process {yi,t−1uit}Tt=1 is a mar-

tingale difference sequence as E (yi,t−1uit|Fi,t−1) = 0 withFi,t−1 := σ {ui,t−1, ui,t−2, ...} .

We set a truncation rate ḋi,nT = n
1
4T

3
4 . We define żit := yi,t−1uit and make the

following decomposition
T∑
t=1

żit =
T∑
t=1

ż1it +
T∑
t=1

ż2it −
T∑
t=1

E [ż2it|Fi,t−1] . Define

ż1it := żit1it − E [żit1it|Fi,t−1] and ż2it := żit1it. Define 1it := 1
{
|żit| ≤ ḋi,nT

}
and 1it = 1 − 1it. We need to derive the uniform upper bound from the following

negligible conditions. It suffices to find ṀnT to ensure that

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

ż1it

∣∣∣∣∣ ≥ ṀnT

)
= o (1) ,
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n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

ż2it

∣∣∣∣∣ ≥ ṀnT

)
= o (1) ,

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

E [ż2it|Fi,t−1]

∣∣∣∣∣ ≥ ṀnT

)
= o (1) . (A.2.24)

The second and third arguments of (A.2.24) share identical derivations, and without

losing generality we only focus on the second term. We define V̇iT :=
∑T

t=1 E [ż2
1it|Fi,t−1],

and v̇i,nT = n
1
2T 2 is a truncation rate for V̇iT .

E
[
V̇ 2
iT

]
= E

[
T∑
t=1

E
[
ż2

1it|Fi,t−1

]]2

≤ T

T∑
t=1

E
[
ż4

1it

]
≤ 16T

T∑
t=1

E
[
ż4
it

]
≤ CT 4 = Op

(
T 4
)
,

where C > 0 is some constant value. By Proposition 2.1 in Freedman (1975), we

have

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

ż1it

∣∣∣∣∣ ≥ ṀnT

)

≤ n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

ż1it

∣∣∣∣∣ ≥ ṀnT , V̇iT ≤ v̇i,nT

)
+ n sup

1≤i≤n
Pr
(
V̇iT > v̇i,nT

)
≤ sup

1≤i≤n
exp

(
−Ṁ2

nT + 2v̇i,nT log (n) + 4ṀnT ḋi,nT log (n)

2v̇i,nT + 4ṀnT ḋi,nT

)
+ sup

1≤i≤n
o
(
nT 4v̇−2

i,nT

)
= o(1). (A.2.25)

To show asymptotic negligibility of (A.2.25), we need ṀnT � n
1
4T
√

log (n) and

ṀnT � n
1
4T

3
4 log (n) . Our assumption for vi,nT ensures sup1≤i≤n o

(
nT 4v̇−2

i,nT

)
=

o(1). For the second term of (A.2.24), we have

n sup
1≤i≤n

Pr

(∣∣∣∣∣
T∑
t=1

ż2it

∣∣∣∣∣ ≥ ṀnT

)

≤ n sup
1≤i≤n

Pr

(
max

1≤t≤T
|żit| ≥ ḋi,nT

)
≤ nT

ď4
i,nT

sup
1≤i≤n

max
1≤t≤T

E
[
|żit|4 1

{
|żit| > ḋi,nT

}]
= sup

1≤i≤n
max

1≤t≤T
o

(
nT 3

ḋ4
i,nT

)
= o (1) ,
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which is guaranteed by our assumption for ḋi,nT . Since n
1
4T
√

log (n) � n
1
4T

3
4 log (n) ,

we need ṀnT � n
1
4T
√

log (n). Therefore we have, for any ε > 0,

sup
1≤i≤n

∣∣∣∣∣
T∑
t=1

yi,t−1uit

∣∣∣∣∣ = Op

(
n

1
4T 1+ε

√
log (n)

)
.

For (DD.2.2) term, we have

sup
1≤i≤n

∣∣Tyi,−1ui
∣∣ ≤ T sup

1≤i≤n

∣∣yi,−1

∣∣ sup
1≤i≤n

|ui| .

By applying exponential inequality, we have sup1≤i≤n |Tui| = Op

(√
log nn

1
4T

1
2

)
.

Similarly, by applying exponential inequality, we can show that T sup1≤i≤n
∣∣yi,−1

∣∣ =

Op

(√
log nn

1
4T

3
2

)
. Therefore we have

sup
1≤i≤n

∣∣Tyi,−1ui
∣∣ ≤ T sup

1≤i≤n

∣∣yi,−1

∣∣ sup
1≤i≤n

|ui| = Op

(
(log n)n

1
2T
)
.

and

sup
1≤i≤n

∣∣∣∣∣
T∑
t=1

ỹi,t−1ũit

∣∣∣∣∣ = Op

(
n

1
2

+εT log (n)
)
.

Therefore, the uniform upper bound for individual least squares is

sup
1≤i≤n,c0i=0

∣∣ĉi − c0
i

∣∣ = Op

(
n

1
2

+ε log(n) log2(T )

T

)
,

with arbitrary ε > 0.

Lemma A.2.11 Suppose Assumption 1 and 2 hold. Then,

sup
1≤i≤n

∣∣ĉi − c0
i

∣∣ = Op

(
n

1
4

+ε log (n)

T
1+γ
2

)
=: Op(δnT ),

for arbitrary ε > 0.

Proof. The uniform convergence rate of individual estimator follows

sup
1≤i≤n

∣∣ĉi − c0
i

∣∣
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= max

{
sup

1≤i≤n,c0i>0

∣∣ĉi − c0
i

∣∣ , sup
1≤i≤n,c0i<0

∣∣ĉi − c0
i

∣∣ , sup
1≤i≤n,c0i=0

∣∣ĉi − c0
i

∣∣}

= max

{
Op

(
1

T
γ
2 (ρu)

T

)
, Op

(
n

1
4

+ε
√

log (n)

T
1+γ
2

)
, Op

(
n

1
2

+ε log (n) log2(T )

T

)}

= Op

(
n

1
4

+ε
√

log (n)

T
1+γ
2

)
= Op(δnT ),

by the rate restriction T 2γ−2n (log(n))2 (log2 T )4 → 0, Lemma A.2.8, Lemma

A.2.9, Lemma A.2.10 and the dominance of exponential rates. We conclude our

proof.

Lemma A.2.12 If Assumption 1 and 2 hold,

dH
(
c0, α̂

)
= Op

(
δ

1
2
nT

)
,

where δnT is defined in Lemma A.2.11.

When n grows more slowly than T , the Hausdorff distance between c0 and α̂ is

asymptotically diminishing. This lemma shows the individual and uniform consis-

tency of the modified k-means algorithm.

Proof. (This proof follows derivations in Su et al. (2019)). Let Qn (α) =∑K0

g=1 min1≤l≤K
(
c0
g − αl

)2
πg.

(i) Firstly we derive the convergence rate of Q̂n (α) − Qn (α) uniformly over

α ∈M :=
{

(α1, ..., αK0) : sup1≤g≤K0 |αg| ≤ 2cu
}

for the defined upper bound cu.

Let Rn = sup1≤i≤n

∣∣∣ĉi − c0
g0i

∣∣∣. By Assumptions 1 and 2,

Rn = sup
1≤i≤n

∣∣∣ĉi − c0
g0i

∣∣∣ � Op(δnT ) ≤ cu a.s.,

by our previous derivations. In addition, we have,

(ĉi − αl)2 ≥
(
c0
g0i
− αl

)2

− 2
∣∣∣(c0

g0i
− ĉi

)(
c0
g0i
− αl

)∣∣∣− (c0
g0i
− ĉi

)2
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≥
(
c0
g0i
− αl

)2

− 2
∣∣∣(c0

g0i
− ĉi

)(
c0
g0i
− αl

)∣∣∣− ( sup
1≤i≤n

(
c0
g0i
− ĉi

))2

≥
(
c0
g0i
− αl

)2

− 2

(
sup

1≤i≤n

∣∣∣c0
g0i
− ĉi

∣∣∣)(∣∣∣c0
g0i
− αl

∣∣∣)− ( sup
1≤i≤n

(
c0
g0i
− ĉi

))2

≥
(
c0
g0i
− αl

)2

− 2

(
sup

1≤i≤n

∣∣∣c0
g0i
− ĉi

∣∣∣)(∣∣∣c0
g0i

∣∣∣+ |αl|
)
−
(

sup
1≤i≤n

(
c0
g0i
− ĉi

))2

.

Taking min1≤l≤K0 on both sides and take average over i, we have

1

n

n∑
i=1

min
1≤l≤K0

(ĉi − αl)2 ≥ 1

n

n∑
i=1

min
1≤l≤K0

(
c0
g0i
− αl

)2

− 2δnT (2cu + cu)− cuδnT ,

where
(

sup1≤i≤n

(
c0
g0i
− ĉi

))2

≤ cuδnT is of lower order term. Therefore we have

Q̂n (α) ≥ Qn (α)− 7cuδnT . Similarly we have

(ĉi − αl)2 ≤
(
c0
g0i
− αl

)2

+2

(
sup

1≤i≤n

∣∣∣c0
g0i
− ĉi

∣∣∣)(∣∣∣c0
g0i

∣∣∣+ |αl|
)

+

(
sup

1≤i≤n

(
c0
g0i
− ĉi

))2

.

Hence we derive Q̂n (α) ≤ Q (α) + 7cuδnT and supα∈M

∣∣∣Q̂n (α)−Qn (α)
∣∣∣ ≤

7cuδnT .

(ii) Secondly, we show that α̂ ∈ M. Denote α̂ := {α̂1, α̂1, ..., α̂K0} . By our

assumption, we have

sup
1≤i≤n

|ĉi| ≤ sup
1≤i≤n

∣∣∣ĉi − c0
g0i

∣∣∣+ sup
1≤i≤n

∣∣∣c0
g0i

∣∣∣ ≤ 2cu.

Denote In (g) := {i : g = arg min1≤g≤K |ĉi − α̂l|} for some g ≤ K0. Following Su

et al. (2019), we use contradictions to demonstrate our results:

(ii.1) If |α̂g| > 2cu and In (g) = ∅, then we choose α̂′ :=
{
α̂1, ..., α̂g−1, α̂

′
g, α̂g+1..., α̂K0

}
,

with α̂′g = ĉi for each i ∈ {1, 2, ..., n} . Therefore we can get
∣∣α̂′g∣∣ ≤ 2cu < |α̂g| and

Q̂n

(
α̂
′)
< Q̂n (α̂) . This demonstrates a contradiction.

(ii.2) If |α̂g| > 2cu and In (g) 6= ∅, then we choose α̂′ :=
{
α̂1, ..., α̂g−1, α̂

′
g, α̂g+1..., α̂K

}
,

with α̂′g = 1
|In(g)|

∑
i∈In(g) ĉi for any i ∈ {1, 2, ..., n} . Here |In (g)| denotes the car-

dinality of In (g) . This shows
∣∣α̂′g∣∣ ≤ 2cu <

∣∣α̂g∣∣ and Q̂n

(
α̂
′)
< Q̂n (α̂). This is a

contradiction too.
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Based on (ii.1) and (ii.2),
∣∣α̂g∣∣ ≤ 2cu for each g ∈ {1, 2, ..., K0} .

(iii) We show for any η > 0 infα:dH(α,c0)>ηQn (α) ≥ M min
{
η2, (c∗)2} where

c0 :=
{
c0

1, c
0
2, ..., c

0
K0

}
and M ≤ πg ≤ 1 for g = 1, 2, ..., K0. If there exists some

lo ∈ {1, 2, ..., K0} and two indexes g1 and g2 such that

lo = arg min
1≤l≤K

∣∣c0
g1
− αlo

∣∣ = arg min
1≤l≤K

∣∣c0
g2
− αlo

∣∣ ,
then we have

Qn (α) ≥ πg1

(
c0
g1
− αlo

)2

+ πg2

(
c0
g2
− αlo

)2

≥ M
(∣∣∣c0

g1
− αlo

∣∣∣+
∣∣∣c0
g2
− αlo

∣∣∣)2

≥M
(
c0
g1
− c0

g2

)2

≥ M (c∗)2 .

Besides, if there does not exist such an lo, then there is one-to-one mapping h:

{1, 2, ..., K0} → {1, 2, ..., K0} such that

h (g) = arg min
1≤l≤K

∣∣c0
g − αl

∣∣ .
Thus Qn (α) =

∑K0

g=1 πg
(
c0
g − αh(g)

)2 ≥ (inf1≤g≤K0 πg) d
2
H (α, c0) ≥ Mη2. Then

we show (iii).

(iv) Lastly, we show that dH (α̂, c0) ≤
√

15cδnT√
M

for some constant D > 0 and

arbitrary ε > 0. We have

Pr

(
dH
(
α̂, c0

)
≥
√

15cδnT√
M

)
= Pr

(
dH
(
α̂, c0

)
≥
√

15cδnT√
M

,Qn (α̂) ≥ Qn

(
c0
)

+ min
{
M (c∗)2 , 15cuδnT

})
≤ Pr

(
Qn (α̂) ≥ Qn

(
c0
)

+ min
{
M (c∗)2 , 15cuδnT

})
≤ Pr

(
Q̂n (α̂) +Rn ≥ Q̂n

(
c0
)
−Rn + min

{
M (c∗)2 , 15cuδnT

})
= Pr

(
2Rn ≥ Q̂n

(
c0
)
− Q̂n (α̂) + min

{
M (c∗)2 , 15cuδnT

})
≤ Pr

(
2Rn ≥ min

{
M (c∗)2 , 15cuδnT

})
= o (1) ,
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since Q̂n (c0)− Q̂n (α̂) ≥ 0. Note the fact that for large enough n and T , we have

2Rn ≤ 2 · 7cuδnT < 15cuδnT < M (c∗)2 .

We complete the whole proof.

A.2.5 Proof of Theorem 3.4.3

Proof. By Assumptions 1 and 2, under joint convergence framework (n, T ) → ∞,

there is a one-to-one mapping Fn : {1, 2, ..., K0} → {1, 2, ..., K0} , such that

sup
g

∣∣α̂g − c0
Fn(g)

∣∣ � Op

(
δ

1
2
nT

)
.

Without losing generality, we can assume that Fn (g) = g such that

Rn = sup
g

∣∣α̂g − c0
Fn(g)

∣∣ = sup
g

∣∣α̂g − c0
g

∣∣ � Op

(
δ

1
2
nT

)
.

If ĝi 6= g0
i , then |ĉi − α̂ĝi | ≤

∣∣∣ĉi − α̂g0i ∣∣∣ . This, in conjunction with triangle inequali-

ty, implies that

∣∣∣α̂ĝi − α̂g0i ∣∣∣− ∣∣∣ĉi − α̂g0i ∣∣∣ ≤ |α̂ĝi − ĉi| ≤ ∣∣∣ĉi − α̂g0i ∣∣∣ .
It follows that

∣∣∣ĉi − α̂g0i ∣∣∣ ≥ 1
2

∣∣∣α̂ĝi − α̂g0i ∣∣∣ . Therefore we have,

δnT +Rn ≥
∣∣∣ĉi − c0

g0i

∣∣∣+
∣∣∣c0
g0i
− α̂g0i

∣∣∣ ≥ ∣∣∣ĉi − α̂g0i ∣∣∣ ≥ 1

2

∣∣∣α̂ĝi − α̂g0i ∣∣∣
=

1

2

∣∣∣(c0
ĝi
− c0

g0i

)
+
(
α̂ĝi − c0

ĝi

)
+
(
c0
g0i
− α̂g0i

)∣∣∣
≥ 1

2

∣∣∣(c0
ĝi
− c0

g0i

)∣∣∣− 1

2

∣∣(α̂ĝi − c0
ĝi

)∣∣− 1

2

∣∣∣(c0
g0i
− α̂g0i

)∣∣∣
≥ 1

2

∣∣∣(c0
ĝi
− c0

g0i

)∣∣∣− sup
g

∣∣(α̂g − c0
g

)∣∣
=

1

2

∣∣∣(c0
ĝi
− c0

g0i

)∣∣∣−Rn ≥
c∗

2
−Rn.
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This implies that 1 {ĝi 6= g0
i } ≤ 1

{
2Rn + δnT ≥ c∗

2

}
. Noting that the right hand

side of the above term is independent of i, we have

Pr

{
sup

1≤i≤n
1
{
ĝi 6= g0

i

}
> 0

}
≤ Pr

{
2Rn + δnT ≥

c∗

2

}
≤ Pr

{
δnT + 2δ

1
2
nT ≥

c∗

2

}
p→ 0,

as (n, T )→∞. This concludes our proof.

A.2.6 Proof of Theorem 3.4.4

Proof. For mixed-root panel with latent groups, the difference between the post-

classification estimator and the oracle estimator is asymptotically diminishing. For

the explosive group, the proof here is identical to the case of recursive k-means algo-

rithm. For the stationary and unit root group, derivations follow similar procedures.

These results are also shown in Phillips (2014b).

A.2.7 Proof of Lemma 3.4.1

Proof. For any g = 1, 2, ..., K0 with α0
g > 0, we have

̂̃uit = ỹit − ρ̂ĝỹi,t−1,

ũit = ỹit − ρ0
gỹi,t−1.

Therefore we have

1

2nĝT

∑
i∈Ĝg

T∑
t=1

̂̃u2

it =
1

2nĝT

∑
i∈Ĝĝ

T∑
t=1

ũ2
it + (ρ̂ĝ − ρ0

g)
2 1

2nĝT

∑
i∈Ĝg

T∑
t=1

ỹ2
i,t−1

−(ρ̂ĝ − ρ0
g)

1

2nĝT

∑
i∈Ĝg

T∑
t=1

ỹi,t−1ũit

=
1

2nĝT

∑
i∈G0

g

T∑
t=1

ũ2
it +

1

2nĝT

∑
i∈Ĝg\G0

g

T∑
t=1

ũ2
it −

1

2nĝT

∑
i∈G0

g\Ĝg

T∑
t=1

ũ2
it
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+(ρ̂ĝ − ρ0
g)

2 1

2nĝT

∑
i∈G0

g

T∑
t=1

ỹ2
i,t−1 + (ρ̂ĝ − ρ0

g)
2 1

2nĝT

∑
i∈Ĝg\G0

g

T∑
t=1

ỹ2
i,t−1

−(ρ̂ĝ − ρ0
g)

2 1

2nĝT

∑
i∈G0

g\Ĝg

T∑
t=1

ỹ2
i,t−1 − (ρ̂ĝ − ρ0

g)
1

2nĝT

∑
i∈G0

g

T∑
t=1

ỹi,t−1ũit

−(ρ̂ĝ − ρ0
g)

1

2nĝT

∑
i∈Ĝg\G0

g

T∑
t=1

ỹi,t−1ũit

+(ρ̂ĝ − ρ0
g)

1

2nĝT

∑
i∈G0

g\Ĝg

T∑
t=1

ỹi,t−1ũit. (A.2.26)

To demonstrate the dominance of the first term in (A.2.26), we first show that nĝ −

ng = op(1). Note the fact that 1
{
i ∈ Ĝg

}
− 1

{
i ∈ G0

g

}
= 1

{
i ∈ Ĝg\G0

g

}
−

1
{
i ∈ G0

g\Ĝg

}
. By Markov inequality, for any ε > 0, we have

Pr (|nĝ − ng| > 2ε) ≤ Pr

(
n∑
i=1

1
{
i ∈ Ĝg\G0

g

}
≥ ε

)
+ Pr

(
n∑
i=1

1
{
i ∈ G0

g\Ĝg

}
≥ ε

)

≤ 1

ε

n∑
i=1

Pr
(
F̂g,i

)
+

1

ε

n∑
i=1

Pr
(
Êg,i

)
=

1

ε

K0∑
g=1

∑
i∈G0

g

Pr
(
F̂g,i

)
+

1

ε

K0∑
g=1

∑
i∈G0

g

Pr
(
Êg,i

)
= o(1).

The asymptotic negligibility of 1
2nĝT

∑
i∈G0

g\Ĝg

∑T
t=1 ũ

2
it, (ρ̂ĝ−ρ0

g)
2 1

2nĝT

∑
i∈G0

g\Ĝg

∑T
t=1 ỹ

2
i,t−1

and (ρ̂ĝ − ρ0
g)

1
2ngT

∑
i∈G0

g\Ĝg

∑T
t=1 ỹi,t−1ũit follows the same techniques as in (ii-

i) of the Theorem 3.4.2. The asymptotic negligibility of 1
2nĝT

∑
i∈Ĝg\G0

g

∑T
t=1 ũ

2
it,

(ρ̂ĝ−ρ0
g)

2 1
2nĝT

∑
i∈Ĝg\G0

g

∑T
t=1 ỹ

2
i,t−1 and (ρ̂ĝ−ρ0

g)
1

2nĝT

∑
i∈Ĝg\G0

g

∑T
t=1 ỹi,t−1ũit fol-

lows the same techniques as in (i) (ii) of the Theorem 3.4.2. The asymptotic negligi-

bility of (ρ̂ĝ − ρ0
g)

2 1
2nĝT

∑
i∈G0

g

∑T
t=1 ỹ

2
i,t−1 and (ρ̂ĝ − ρ0

g)
1

2nĝT

∑
i∈G0

g

∑T
t=1 ỹi,t−1ũit

follows identically as the proof of the oracle estimator. Therefore, under the joint

convergence (n, T )→∞, we have

1

2nĝT

∑
i∈Ĝg

T∑
t=1

̂̃u2

it =
1

2ngT

∑
i∈G0

g

T∑
t=1

ũ2
it + op(1).
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For the stationary and unit root group, the consistency of the variance estimate fol-

lows Hahn and Kuersteiner (2002), and Phillips and Moon (1999).

A.2.8 Proof of Theorem 3.4.5

Proof. Under the joint convergence (n, T ) → ∞ and the null hypothesis, the t̃ĝ

statistics follows chi-square distribution. Under the alternative hypothesis of explo-

sive roots, we have

(
ρ̂g − 1

)(√∑
i∈G0

g

∑T
t=1 ỹ

2
i,t−1

)
σ̃

=

(
ρ̂g − ρ0

g

)
−
(
1− ρ0

g

)
σ̃

√√√√∑
i∈G0

g

T∑
t=1

ỹ2
i,t−1

=

(
ρ̂g − ρ0

g

)(√∑
i∈G0

g

∑T
t=1 ỹ

2
i,t−1

)
σ̃

−

(
1− ρ0

g

) (√∑
i∈G0

g

∑T
t=1 ỹ

2
i,t−1

)
σ̃

= Op (1) +Op

(√
n
(
ρ0
g

)T)
.

Therefore we conclude our proof.

A.2.9 Proof of Theorem 3.4.6

Proof. As (n, T ) → ∞, we have βTn → 0 and cvβTn → ∞. Since t̃g
d→ N (0, 1)

under the null hypothesis of no bubble episode for g = 1, 2, ...K0, we have

lim
(n,T )→∞

Pr
(
t̃g (·) > cvβTn

)
= Pr (N (0, 1) =∞) = 0,

where cvβTn → ∞. Hence, with joint convergence (n, T ) → ∞, no origination

point for an explosive model in the data will be detected under the null hypothesis.

A.2.10 Proof of Theorem 3.4.7

Proof. We fix g = 1, 2, ..., K0. Due to the uniform consistency of the classification

algorithm, Ĝg is equivalent to G0
g, and ĝi is equivalent to g0

i asymptotically. There-

fore, there is no difference between the true group and the estimated group. For all
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individual in G0
g, the time series data is sampled from

yit = µi + ρityi,t−1 + uit; i = 1, 2, ..., n; i = 1, 2, ..., n, (A.2.27)

where ρit = 1+ cit
T γ
, and cit = c0

1i1
{
t < τ e

g0i

}
+ c0

2i1
{
t ≥ τ e

g0i

}
. For the g-th group,

the true distance parameter of explosive episode is α0
2g (or c2g0i

and c0
2i equivalently).

The true value of the slope in the g-th group is ρ0
2g

(
:= exp

(
α0
2g

T γ

))
, and we write

as ρ2g for simplicity. The true value of the explosive slope in the i-th individual

is ρ0
2i

(
:= exp

(
c02i
T γ

))
, and we write as ρ2i for simplicity. For any i ∈ G0

g (The

estimated group Ĝg is equivalent to the true group G0
g, for g = 1, 2, ..., K0), we

have g0
i = g. For rg < reg, we have the convergence in distribution,

t̃g (rg)
d→ N (0, 1) ,

under the model of (A.2.27). Therefore, under the alternative hypothesis, we have

for rg < reg, Pr
(
r̂eg < reg

)
→ 0 as (n, T )→∞.

Next suppose the data is sampled over t = 1, 2, ..., τg0i =
[
Trg0i

]
, where rg0i ≥

re
g0i

for each i ∈ G0
g. In this case, the data

{
yit : t = τ e

g0i
, ..., τg0i

}
satisfies

yit = µi + ρ2iyi,t−1 + uit =

t−τe
g0
i∑

j=0

ρj2iui,t−j +

t−τe
g0
i∑

j=0

ρj2iµi + ρ
t−τe

g0
i

+1

2i yi,τe
g0
i

−1.

As t− τ e
g0i
→∞, the following asymptotic theory holds,

1

T
γ
2

t−τe
g0
i∑

j=0

ρ
j−
(
t−τe

g0
i

)
2i ui,t−j

d→ N
(

0,
σ2

2c0
2i

)
,

where 1√
T
yi,τe

g0
i

−1 ⇒ Bi

(
τ e
g0i

)
by the functional central limit theorem. Then as
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t− τ e
g0i
→∞, we have

ρ
−
(
t−τe

g0
i

)
2i√

T
yi,t =

1

T
1−γ
2

1√
T γ

t−τe
g0
i∑

j=0

ρ
−
(
t−τe

g0
i

−j
)

2i ui,t−j +
ρ2i√
T
yi,τe

g0
i

−1

+
1

T
1−γ
2

1√
T γ

t−τe
g0
i∑

j=0

ρ
−
(
t−τe

g0
i

−j
)

2i µi

⇒ Bi

(
reg0i

)
.

So that for each i ∈ G0
g, we have yit ∼

√
Tρ

(
t−τe

g0
i

)
2i Bi

(
re
g0i

)
, for all t− τ e

g0i
→∞.

Now consider the centered quantities ỹit = yit− 1
τ
g0
i

∑τ
g0
i

j=1 yi,j . Note the fact that

g0
i = g. For τg = [Trg] (or τg0i =

[
Trg0i

]
) and reg < rg (or re

g0i
< rg0i ), we have

1

τg0i

√
T

τ
g0
i∑

j=1

yij =
1

τg0i

√
T

τ
g0
i∑

j=τe
g0
i

yij+
τ e
g0i

τg0i

1

τ e
g0i

τe
g0
i

−1∑
j=1

yij√
T
∼ 1

τg0i

√
T

τ
g0
i∑

j=τe
g0
i

yij+
re
g0i

rg0i

∫ 1

0

Bi (s) ds,

and

1

τg0i

τ
g0
i∑

j=τe
g0
i

yij =
1

τg0i

τ
g0
i∑

j=τe
g0
i

ρ
(j−τe

g0
i

)

2i

(
ρ
−(j−τe

g0
i

)

2i yij

)
=
yi,τe

g0
i

τg0i

τ
g0
i
−τe

g0
i∑

k=0

ρk2i (1 + o(1))

= yi,τe
g0
i

ρ
τ
g0
i
−τe

g0
i

+1

2i − 1

τg0i (ρ2i − 1)
(1 + o (1))

= yi,τe
g0
i

T γρ
τ
g0
i
−τe

g0
i

+1

2i

τg0i c
0
2i

(1 + o (1)) .

It follows that

ỹit = yit −
1

τg0i

τ
g0
i∑

j=1

yi,j =

ρ
(
t−τe

g0
i

)
2i − T γρ

(
τ
g0
i
−τe

g0
i

)
2i

τg0i c
0
2i

 yi,τeg0
i

{1 + o (1)} .

Therefore we have the following asymptotics for the sample moment in the post-
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classification estimator as,

∑
i∈G0

g

τeg∑
j=1

ỹ2
it =

ngT
2γτ egρ

2(τg−τeg)
2g

τ 2
g

(
α0

2g

)2 Ey2
i,τeg
{1 + o (1)} .

Using these results in conjunction with the standard unit root limit theory, we have

∑
i∈G0

g

τ
g0
i∑

j=1

ỹ2
i,j−1 =

∑
i∈G0

g

τe
g0
i

−1∑
j=1

ỹ2
i,j−1 +

∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹ2
i,j−1 ∼

∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹ2
i,j−1, (A.2.28)

and

∑
i∈G0

g

τ
g0
i∑

j=1

ỹi,t−1 (yi,j − ρ2iyi,j−1) =
∑
i∈G0

g

τe
g0
i

−1∑
j=1

ỹi,t−1

(
ui,j −

c0
2i

T 2γ
yi,j−1

)
+
∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹi,t−1ui,j (1 + o (1)) .

(A.2.29)

Explicit probability limits of (A.2.28) and (A.2.29) are as,

∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹ2
i,j−1 =

∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ρ
2

(
j−τe

g0
i

)
2i y2

i,τe
g0
i

(1 + op (1)) =
ngρ

2(τg−τeg+1)
2g

ρ2
2g − 1

Ey2
i,τeg
{1 + op (1)}

=
ngT

γρ
2(τg−τeg)
2g

2α0
2g

Ey2
i,τeg
{1 + op (1)} ,

which dominates
∑

i∈G0
g

∑τe
g0
i

j=1 ỹ
2
i,j−1. The above derivations rely on the uniform

consistency of the classification algorithms. Besides, we have for each i,

τ
g0
i∑

j=τe
g0
i

ỹi,j−1ũi,j =

τ
g0
i∑

j=τe
g0
i

ρ
j−1−τe

g0
i

2i yi,τe
g0
i

ui,j (1 + op (1))

= T
γ
2 ρ

τ
g0
i
−τe

g0
i

2i yi,τe
g0
i

 1

T
γ
2

τ
g0
i∑

j=τe
g0
i

ρ
−
(
τ
g0
i
−j+1

)
2i ui,j

 (1 + op (1))

∼ T
γ+1
2 ρ

τg−τeg
2g · N

(
0,

σ2

2α0
2g

)
· N

(
0, reg0i

σ2
)
.
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The terms 1√
T
yi,τe

g0
i

and

 1

T
γ
2

∑τ
g0
i

j=τe
g0
i

ρ
−
(
τ
g0
i
−j+1

)
2i ui,j

 are joint Guassian and un-

correlated. Therefore the two limiting Guassian processes are independent. Under

the joint convergence (n, T )→∞, we also have

∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹi,j−1ũi,j ∼
√
ngT

γ+1
2 ρ

(τg−τeg )

2g · N
(

0,
σ2

2α0
2g

)
· N

(
0, regσ

2
)
,

and ∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹ2
i,j−1 ∼

ngT
γ+1ρ

2(τg−τeg )

2,g

2α0
2g

regσ
2.

It follows that for τg = [Trg] and rg > reg,

√
ngT

1+γ
2 ρ

τg−τeg
2g

(
ρ̂2g − ρ2g

)
d→ N

(
0,

2
(
α0

2g

)
reg

)
,

where under (n, T )→∞, we have

ρ
−(τg−τeg)
2g
√
ngT

1+γ
2

∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹi,j−1ũi,j
d→ N

(
0,

σ2

2α0
2g

)
· N

(
0, regσ

2
)
,

and
2α0

2gρ
−2(τg−τeg)
2g

ngT 1+γ

∑
i∈G0

g

τ
g0
i∑

j=τe
g0
i

ỹ2
i,j−1

p→ regσ
2.

The regression residuals variance estimate is as, for any rg ∈ [r0, 1] and g =

1, 2, ..., K0,

σ̃2
g (rg) =

1

2ngτg

∑
i∈G0

g

τg∑
j=1

(ỹi,j − ρ̂2i (rg) ỹi,j−1)2

=
1

2ngτg

∑
i∈G0

g

τg∑
j=1

(
ũi,j − (ρ̂2i (rg)− ρ2i) ỹi,j−11

{
j ≥ τ eg0i

}
− (ρ̂2i (rg)− 1) ỹi,j−11

{
j < τ eg0i

})2

∼
τ egρ

2(τg−τeg)
2g

2
(
α0

2g

)2
τ 3
g

Ey2
i,τeg

(1 + op (1)) ,
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due to the fact that 1
2ngτg

∑
i∈G0

g

∑τg
j=1 ỹ

2
i,j−1 =

τeg ρ
2(τg−τeg)
2g

2(α0
2g)

2
τ3g

Ey2
i,τeg

(1 + op (1)) .

Collecting all results, the t̃g (rg) statistics for any rg ∈
[
reg, 1

]
, is as

t̃g (rg) =

(
ρ̂2g(rg)− 1

)√∑
i∈Ĝg

∑τg
j=1 ỹ

2
i,j−1

σ̃g (rg)

=

(
ρ̂2g(rg)− 1

)
τg
√

1
τ2g

∑
i∈G0

g

∑τg
j=1 ỹ

2
i,j−1

σ̃g (rg)

=
T 1−γ (rg · α0

2g

)
(1 + op (1))

√
1
τ2g

∑
i∈G0

g

∑τg
j=1 ỹ

2
i,j−1

σ̃g (rg)

=
T 1−γ (rg · α0

2g

)
(1 + op (1))

√
ngT γρ

2(τg−τeg )
2g

2τ2gα
0
2g

Ey2
i,τeg√

regρ
2(τg−τeg )
2g

2rg(α0
2g)

2
τ2g
Ey2

i,τeg
(1 + op (1))

=

√
ngT γα0

2grgT
1−γ (rg · α0

2g

)
(1 + op (1))√

reg
= O

(√
nT 1− γ

2

)
= O (PTn) .

This argument shows that the proposed test diverges at the speed of Op (PTn) un-

der the alternative hypothesis. Therefore the consistency of the bubble origination

estimate is also verified.

A.2.11 Proof of Theorem 3.4.8

Proof. Based on Theorem 3.4.4 and Lemma 3.4.1, we have

BIC(K0) =
(
σ̃2
Ĝg(K0)

)
+
K0 + n

nT
log(nT )

=

 1

nT

K0∑
g=1

∑
i∈Ĝg(K0)

T∑
t=1

(
ỹit − ρ̂

(K0)

ĝ
(K0)
i

ỹi,t−1

)2

+ o(1)

→ σ2.

Moreover, under the under-fitted model with K∗ < K0, note that

σ̃2
Ĝ(K∗)

=

 1

nT

K∗∑
g=1

∑
i∈Ĝg(K∗)

T∑
t=1

(
ỹit − ρ̂

(K∗)

ĝ
(K∗)
i

ỹi,t−1

)2


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≥ min
1≤K∗<K0

inf
δ(K∗)∈∆K∗

1

nT

K∗∑
g=1

∑
i∈Gg(K∗)

T∑
t=1

(
ỹit − ρ̂

(K∗)

ĝ
(K∗)
i

ỹi,t−1

)2

= min
1≤K∗<K0

inf
δ(K∗)∈∆K∗

σ̃2
G(K∗).

Under Assumptions 1 and 2, we have

min
1≤K∗<K0

BIC (K∗) ≥ min
1≤K∗<K

inf
δ(K∗)∈∆K∗

(
σ̃2
G(K∗)

)
+
K∗ + n

nT
log (nT )

p→
(
σ2
)

> 2
(
σ2
)
,

and it follows that

Pr

(
min

1≤K∗<K0
BIC (K∗) > BIC

(
K0
))
→ 1.

Lastly, under the overfitted moel, and in this case K0 < K∗ ≤ Kmax,

Pr

(
min

K0<K∗≤Kmax

BIC (K∗) > BIC
(
K0
))

= Pr

(
min

K0<K∗≤Kmax

nT
(
σ̃2
G(K∗) − σ̃2

G(K0)

)
+
(
K∗ −K0

)
ln (nT ) > 0

)
→ 1,

as (n, T )→∞.

A.3 Proofs in Chapter 4

A.3.1 Technical lemmas in short-horizon predictive regression

Lemma A.3.1 As T →∞, then

sup
1≤t≤T

E
∥∥∥η(1)

T,t−1

∥∥∥ = Op(T
γ+ 1

2 ),

sup
1≤t≤T

E
∥∥∥η(2)

T,t−1

∥∥∥ = Op(T
1+γ
2 )

sup
1≤t≤T

E
∥∥∥η(3)

T,t−1

∥∥∥ = Op(T
γ+ 1

2 )
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Proof. Let x0 = 0, then xj−1 =
∑j−2

k=1(
∏j−1

m=k+1RTm)uxk + ux,j−1, D̆at :=

diag {a′1uat, a′2uat, ..., a′nuat} , D̆Ba (r) := diag {a′1Ba (r) , a′2Ba (r) , ..., a′nBa (r)}

and denote the autocovariance matrix of uxt and uat as Γux(h) := E(uxtu
′

x,t−h), and

Γua(h) := E(uatu
′

a,t−h).

(i) For η(2)
T,t−1, following the decomposition of Eqn (42) in Phillips and Magdali-

nos (2009),

∥∥∥η(1)
T,t−1

∥∥∥2

= tr

{
t−1∑
j=1

Rt−j−1
Tz Rt−i−1

Tz (xj−1x
′

i−1)

}

≤
t−1∑
i,j=1

j∑
k=1

i∑
l=1

∥∥∥R2t−2−j−i
T z R

(j,k)
Tt R

(i,l)
Tt

∥∥∥
F

∥∥∥uxku′xl∥∥∥
F

≤
√
n

t−1∑
i,j=1

j∑
k=1

i∑
l=1

‖RTz‖2t−2−j−i
∥∥∥R(j,k)

Tt

∥∥∥
F

∥∥∥R(i,l)
Tt

∥∥∥
F

∥∥∥uxku′xl∥∥∥
F
,

where R(j,k)
Tt :=

∏j
m=k+1RTm and R(i,l)

Tt :=
∏i

m=l+1RTm. By Phillips and Mag-

dalinos (2009), sup1≤t≤T ‖RTz‖t−j = O(T γ). By the definition of R(t,j)
Tt−1,

1

T
sup

1≤t≤T

t∑
j=1

∥∥∥R(t,j)
Tt

∥∥∥
F

= sup
0≤r≤1

1

T

[Tr]∑
j=1

∥∥∥R([Tr],j)
Tt

∥∥∥
F

=
1

T
sup

0≤r≤1

[Tr]∑
j=1

∥∥∥∥∥exp

(
[Tr]− j − 1

T
C +

∑[Tr]
m=j+1 D̆am√

T

)∥∥∥∥∥
=

1

T
sup

0≤r≤1

[Tr]∑
j=1

∥∥∥∥∥exp

(
[Tr]− j − 1

T
C +

∑j
m=1 D̆am√

T

)∥∥∥∥∥
F

·

∥∥∥∥∥exp

(∑[Tr]
m=1 D̆am√

T

)∥∥∥∥∥
F

= ‖exp(Ba(r))‖F ·
∫ r

0

∥∥∥exp((1− p)C − D̆Ba (p))
∥∥∥
F
dp+ op(1) < +∞,

for LSTUR and STUR cases. By the assumption
∑∞

l=−∞ ‖Γux(l)‖F <∞,

sup
1≤t≤T

∥∥∥η(1)
T,t−1

∥∥∥2

≤
√
n

(
sup

1≤t≤T

t∑
i=1

‖RTz‖t−i
)2(

sup
1≤t≤T

t∑
k=1

∥∥∥T (t,k)
Tt

∥∥∥
F

)(
∞∑

l=−∞

‖Γux(l)‖F

)
= Op(T

1+2γ).
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(ii) For η(2)
T,t−1,

∥∥∥η(2)
T,t−1

∥∥∥2

≤ tr

{
t−1∑
i,j=1

R2t−2−j−i
T z D̆aiR

(i,l)
Tt xi−1x

′

j−1R
(j−k)
Tt D̆aj

}

≤
√
n

t−1∑
i,j=1

j∑
k=1

i∑
l=1

‖RTz‖2t−2−j−i
∥∥∥R(i,l)

Tt

∥∥∥
F

∥∥∥R(j,k)
Tt

∥∥∥
F

∥∥∥D̆aiD̆ajuxku
′

xl

∥∥∥
F
,

since sup1≤t≤T
∑t

j=1 ‖RTz‖t−j = O(T γ), and sup1≤t≤T
∑t−1

j=1

∥∥∥R(t,j)
Tt

∥∥∥
F

= Op(T ).

Moreover,
∑∞

i=−∞ ‖Γua(i)‖F <∞ and
∑∞

k=−∞ ‖Γux(k)‖F <∞, then

sup
1≤t≤T

∥∥∥η(2)
T,t−1

∥∥∥2

≤
√
n

(
sup

1≤t≤T

t−1∑
i=1

‖RTz‖t−i
)(

∞∑
j=−∞

‖Γua(j)‖F

)

·

(
sup

1≤t≤T

t−1∑
k=1

∥∥∥R(t,k)
Tt

∥∥∥
F

)
·

(
∞∑

l=−∞

‖Γux(l)‖F

)
= O(T 1+γ),

due to the orthogonal assumptions imposed for innovations.

(iii) The proof of this case follows (i).

Lemma A.3.2 As T →∞,

(i) 1

T
1+γ
2

∑T
t=1 z̃t−1u0t = 1

T
1+γ
2

∑T
t=1 zt−1u0t + 1

T 1+
γ
2

∑T
t=1 η

(2)
T,t−1u0t + op(1),

(ii) 1
T 1+γ

∑T
t=1 z̃t−1z̃

′
t−1 = 1

T 1+γ

∑T
t=1 zt−1z

′
t−1+ 1

T
3
2+γ

(
∑T

t=1 zt−1(η
(2)
T,t−1)

′
+
∑T

t=1 η
(2)
T,t−1z

′
t−1)+

1
T 2+γ

∑T
t=1 η

(2)
T,t−1(η

(2)
T,t−1)

′
+ op(1),

(iii) 1
T 1+γ

∑T
t=1 z̃t−1x

′
t−1 = 1

T 1+γ

∑T
t=1 zt−1x

′
t−1+ 1

T
3
2+γ

∑T
t=1 η

(2)
T,t−1x

′
t−1+ C

T 2+γ

∑T
t=1 η

(1)
T,t−1x

′
t−1+

1
T 2+γ

∑T
t=1 η

(3)
T,t−1x

′
t−1.

Proof. For part (i), note the fact that

T∑
t=1

zt−1u0t = Op(T
1+γ
2 ),

T∑
t=1

η
(2)
t u0t = Op(T

2+γ
2 ),

T∑
t=1

η
(1)
t−1u0t = Op(T

1+γ),
T∑
t=1

η
(3)
t−1u0t = Op(T

1+γ).
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Therefore 1

T
1+γ
2

∑T
t=1 z̃t−1u0t = 1

T
1+γ
2

∑T
t=1 zt−1u0t+

1

T 1+
γ
2

∑T
t=1 η

(2)
T,t−1u0t+op(1).

The proof of (ii) is a natural extension of (i). In (iii), define RT := 1 + C
T

, then

xtz
′

t = RTxt−1z
′

t−1RTz +RTxt−1u
′

xt + uxtz
′

t−1RTz + uxtu
′

xt +
D̆at√
T
xt−1z

′

t−1RTz +
D̆at√
T
xt−1u

′

xt

+
D̆2
at

T
xt−1z

′

t−1RTz +
D̆2
at

T
xt−1u

′

xt.

Note the following facts that
∑T

t=1
D̆at√
T
xt−1z

′
t−1 � Op(T

1+γ
2 ),

∑T
t=1

D̆at√
T
xt−1u

′
xt =

Op(T ),
∑T

t=1 uxtz
′
t−1 = Op(T ), and

[In×n −RTz ⊗RT ]
T∑
t=1

(xt−1 ⊗ zt−1) (A.3.1)

= x0 ⊗ z0 − xT ⊗ zT + (In×n ⊗RT )
T∑
t=1

xt−1 ⊗ (uxt) + (RTz ⊗ In)
T∑
t=1

uxt ⊗ zt−1

+
T∑
t=1

uxt ⊗ uxt + (RTz ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗ zt−1 + (In ⊗ In)

T∑
t=1

(
D̆at√
T
xt−1

)
⊗ uxt

+(RTz ⊗ In)
T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ zt−1 + (In ⊗ In)

T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ uxt.

In (A.3.1), sup1≤t≤T ‖xt−1‖ = Op(
√
T ),
∑T

t=1 xt−1u
′
xt = Op(T ) and

∑T
t=1 zt−1u

′
xt =

Op(T ),
∑T

t=1 uxtu
′
xt = Op(T ),

∑T
t=1 xt−1 ⊗ (uxt) = Op(T ),

∑T
t=1 uxt ⊗ zt−1 =

Op(T ),
∑T

t=1

(
D̆at√
T
xt−1

)
⊗ zt−1 � Op(T

1+γ
2 ),

∑T
t=1

(
D̆at√
T
xt−1

)
⊗ uxt = Op(T ).

Based on Cauchy-Schwarz inequality,
∑T

t=1
D̆2
at

T
xt−1⊗zt−1 � Op(T

1+γ
2 ), and

∑T
t=1

(
D̆2
at

T
xt−1

)
⊗

uxt � Op (1). When γ ∈ (0, 1),

In×n −RTz ⊗RT =
1

T γ
(Cz ⊗ In)

[
In +Op

(
1

T 1−γ

)]
.

Then we have
∑T

t=1 xt−1z
′
t−1 = Op(T

1+γ).

In order to justify
∑T

t=1 xt−1(η
(2)
T,t−1)

′
= Op(T

3
2

+γ), and define RT := 1 + C
T

.

Note the fact that

xt(η
(2)
T,t)

′
= RTxt−1(η

(2)
T,t−1)

′
RTz +RTxt−1(D̆atxt−1)

′
+ uxt(η

(2)
T,t−1)

′
RTz + uxt(D̆atxt−1)

′
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+
D̆at√
T
xt−1(η

(2)
T,t−1)

′
RTz +

D̆at√
T
xt−1(D̆atxt−1)

′

+
D̆2
at

T
xt−1(η

(2)
T,t−1)

′
RTz +

D̆2
at

T
xt−1(D̆atxt−1)

′
.

Therefore,

[In×n −RTz ⊗RT ]
T∑
t=1

(xt−1 ⊗ η(2)
T,t−1) (A.3.2)

= x0 ⊗ η(2)
T,0 − xT ⊗ η

(2)
T,T + (In ⊗RT )

T∑
t=1

xt−1 ⊗ (D̆atxt−1) + (RTz ⊗ In)
T∑
t=1

uxt ⊗ η(2)
T,t−1

+(In ⊗ In)
T∑
t=1

uxt ⊗ (D̆atxt−1) + (RTz ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗ η(2)

T,t−1

+(In ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗ (D̆atxt−1) + (RTz ⊗ In)

T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ η(2)

T,t−1

+(In ⊗ In)
T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ (D̆atxt−1).

Note the fact that x0(η
(2)
T,0)′ = Op(1), xT (η

(2)
T,T )

′
= Op(T

1+ γ
2 ),
∑T

t=1 xt−1(D̆atxt−1)
′
=∑T

t=1 xt−1x
′
t−1D̆at = Op(T

3
2 ),
∑T

t=1 uxt⊗η
(2)
T,t−1 = Op(T

2+γ
2 ),

∑T
t=1 uxt(D̆atxt−1)′ =

Op(T
3
2 ),
∑T

t=1

(
D̆at√
T
xt−1

)
(η

(2)
T,t−1)

′ � Op(T
1+ γ

2 ),
∑T

t=1

(
D̆at√
T
xt−1

)
(D̆atx

′
t−1)′ =∑T

t=1

(
D̆at√
T
xt−1

)
(x
′
t−1D̆at) = Op(T

3
2 ). By Cauchy-Schwarz inequality,

∑T
t=1

(
D̆at
T
xt−1

)
(η

(2)
T,t−1)′ �

Op(T
1+γ
2 ) and

∑T
t=1

(
D̆2
at

T
xt−1

)
(D̆atxt−1)′ � Op(T

1
2 ).By combining above results,

In×n −RTz ×RT =
1

T γ

[
−Cz ⊗ In×n +Op

(
1

T 1−γ

)]
,

and

1

T
3
2

+γ

T∑
t=1

[
xt−1 ⊗ η(2)

T,t−1

]
= −(C−1

z ⊗ In)
1

T
3
2

T∑
t=1

xt−1 ⊗ (D̆atxt−1)− (C−1
z ⊗ In)

1

T
3
2

T∑
t=1

uxt ⊗ (D̆atxt−1)

−(C−1
z ⊗ In)

1

T
3
2

T∑
t=1

(
D̆at√
T
xt−1

)
⊗ (D̆atxt−1) + op(1)

= Op(1).
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In order to justify
∑T

t=1 xt−1(η
(1)
T,t−1)

′
= Op(T

2+γ), define RT := 1 + C
T

. Note

the following fact that

xt(η
(1)
T,t)

′
= RTxt−1(η

(1)
T,t−1)

′
RTz +RTxt−1 [xt−1]

′
+ uxt(η

(1)
T,t−1)

′
RTz + uxt(xt−1)

′

+
D̆at√
T
xt−1(η

(1)
T,t−1)

′
RTz +

D̆at√
T
xt−1(xt−1)

′

+
D̆2
at

T
xt−1(η

(1)
T,t−1)

′
RTz +

D̆2
at

T
xt−1(xt−1)′,

thus

[In×n −RTz ⊗RT ]
T∑
t=1

(xt−1 ⊗ η(1)
T,t−1) (A.3.3)

= x0 ⊗ η(1)
T,0 − xT ⊗ η

(1)
T,T + (In ⊗RT )

T∑
t=1

xt−1 ⊗ [xt−1] + (RTz ⊗ In)
T∑
t=1

uxt ⊗ η(1)
T,t−1

+(In×n ⊗ In)
T∑
t=1

uxt ⊗ (xt−1) + (RTz ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗ η(1)

T,t−1

+(In ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗ (xt−1) + (RTz ⊗ In)

T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ η(1)

T,t−1

+(In ⊗ In)
T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ (xt−1).

Here we have x0(η
(1)
T,0)

′
= Op(1) and xT (η

(1)
T,T )

′
= Op(T

1+γ),
∑T

t=1 xt−1(xt−1)′ =

Op(T
2),
∑T

t=1 uxt(η
(1)
T,t−1)′ = Op(T

2+2γ
2 ),

∑T
t=1 uxt(xt−1)′ = Op(T ),

∑T
t=1

(
D̆at√
T
xt−1

)
(η

(1)
T,t−1)

′ �

Op(T
1+γ),

∑T
t=1

(
D̆at√
T
xt−1

)
(xt−1)

′
=
∑T

t=1

(
D̆at√
T
xt−1

)
x
′
t−1 = Op(T ). By Cauchy-

Schwarz inequality, then
∑T

t=1

(
D̆2
at

T
xt−1

)
(η

(1)
T,t−1)′ � Op(T

1+γ) and
∑T

t=1

(
D̆2
at

T
xt−1

)
(xt−1)′ �

Op(T ). We have

In×n −RTz ×RT =
1

T γ

[
−Cz ⊗ In×n +Op

(
1

T 1−γ

)]
.

By combining the above results,

1

T 2+γ

T∑
t=1

[
xt−1 ⊗ η(1)

T,t−1

]
= −(C−1

z ⊗ In×n)
1

T 2

T∑
t=1

xt−1 ⊗ xt−1 + op(1) = Op(1).
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Last, in order to justify
∑T

t=1 xt−1(η
(3)
T,t−1)

′
= Op(T

2+γ), we apply the following

decomposition as

xt(η
(3)
T,t)

′
= RTxt−1(η

(3)
T,t−1)

′
RTz +RTxt−1(D̆2

atx
′

t−1) + uxt(η
(3)
T,t−1)

′
RTz + uxt(xt−1)

′

+

(
D̆at√
T
xt−1

)
(η

(3)
T,t−1)

′
RTz +

(
D̆at√
T
xt−1

)[
D̆2
atxt−1

]′
+

(
D̆2
at

T
xt−1

)
(η

(3)
T,t−1)

′
RTz +

(
D̆2
at

T
xt−1

)[
D̆2
atxt−1

]′
.

Therefore,

[In×n −RTz ⊗RT ]
T∑
t=1

(xt−1 ⊗ η(3)
T,t−1) (A.3.4)

= x0 ⊗ η(3)
T,0 − xT ⊗ η

(3)
T,T + (In ⊗RT )

T∑
t=1

xt−1 ⊗ (D̆2
atxt−1) + (RTz ⊗ In)

T∑
t=1

uxt ⊗ η(3)
T,t−1

+(In ⊗ In)
T∑
t=1

uxt ⊗ (D̆2
atxt−1) + (RTz ⊗ In)

T∑
t=1

(
D̆at√
T
xt−1

)
⊗ η(3)

T,t−1

+(In ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗
[
D̆2
atxt−1

]
+ (RTz ⊗ In)

T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ η(3)

T,t−1

+(In ⊗ In)
T∑
t=1

(
D̆2
at

T
xt−1

)
⊗
[
D̆2
atxt−1

]
.

Here x0(η
(3)
T,0)

′
= Op(1) and xT (η

(3)
T,T )

′
= Op(T

1+γ),
∑T

t=1 xt−1 ⊗ (D̆2
atxt−1) =

Op(T
2),
∑T

t=1 uxt⊗η
(3)
T,t−1 = Op(T

2+2γ
2 ),

∑T
t=1 uxt⊗(D̆2

atxt−1) = Op(T ),
∑T

t=1

(
D̆at√
T
xt−1

)
(η

(1)
T,t−1)

′ �

Op(T
1+γ),

∑T
t=1

(
D̆at√
T
xt−1

)
⊗(D̆2

atxt−1) = Op(T ). By Cauchy-Schwarz inequality,∑T
t=1

(
D̆2
at

T
xt−1

)
⊗η(3)

T,t−1 � Op(T
1+γ) and

∑T
t=1

(
D̆2
at

T
xt−1

)
⊗
[
D̆2
atxt−1

]
� Op(T ).

Besides, we have

In×n −RTz ×RT =
1

T γ

[
−Cz ⊗ In×n +Op

(
1

T 1−γ

)]
.

By combining the above results,

1

T 2+γ

T∑
t=1

[
xt−1 ⊗ η(3)

T,t−1

]
= −(C−1

z ⊗ In×n)
1

T 2

T∑
t=1

xt−1 ⊗
(
D̆2
atxt−1

)
+ op(1) = Op(1).
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Lemma A.3.3 (i) As T →∞,

1

T 1+γ

T∑
t=1

zt−1z
′

t−1  
∫ ∞

0

eCzrΩxxe
Czrdr,

1

T 2+γ

T∑
t=1

η
(2)
T,t−1(η

(2)
T,t−1)

′
 


∫∞

0
eCzs

[∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr

]
eCzsds, under LSTUR,∫∞

0
eCzs

[∫ 1

0
Ga(r)G

′
a(r)Σaadr

]
eCzsds, under STUR,

1

T
3
2

+γ

T∑
t=1

zt−1(η
(2)
T,t−1)

′
 0,

(ii) As T →∞,

1

T 1+γ

T∑
t=1

xt−1z
′

t−1  

−(
∫ 1

0
Ga,c(r)dB

′
x(r) + Ωxx) · C−1

z , under LSTUR,

−(
∫ 1

0
Ga(r)dB

′
x(r) + Ωxx) · C−1

z , under STUR,



1

T
3
2

+γ

T∑
t=1

xt−1(η
(2)
T,t−1)

′
 



−
∫ 1

0
Ga,c(r)G

′
a,c(r)dD̆Ba (r) · C−1

z

−
[∫ 1

0
Ga,c(r)G

′
a,c(r)Ωaadr

]
C−1
z ,

under LSTUR,

−
∫ 1

0
Ga(r)G

′
a(r)dD̆Ba (r) · C−1

z

−
[∫ 1

0
Ga(r)G

′
a(r)Ωaadr

]
C−1
z ,

under STUR,


1

T 2+γ

T∑
t=1

xt−1(η
(1)
T,t−1)

′
 

−
∫ 1

0
Ga,c(r)G

′
a,c(r)dr · C−1

z , under LSTUR,

−
∫ 1

0
Ga(r)G

′
a(r)dr · C−1

z , under STUR,


1

T 2+γ

T∑
t=1

xt−1(η
(3)
T,t−1)

′
 

−
∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr · C−1

z , under LSTUR,

−
∫ 1

0
Ga(r)G

′
a(r)Σaadr · C−1

z , under STUR,


where dD̆Ba (r) := diag {a′1dBa (r) , a′2dBa (r) , ..., a′ndBa (r)}.

Proof. (i) For the term
∑T

t=1 zt−1z
′
t−1 follows the decomposition as

[In×n −RTz ⊗RTz]
T∑
t=1

zt−1 ⊗ zt−1 = z0 ⊗ z0 − zT ⊗ zT + (In ⊗RTz)
T∑
t=1

uxt ⊗ zt−1

+(RTz ⊗ In)
T∑
t=1

zt−1 ⊗ uxt +
T∑
t=1

uxt ⊗ uxt,
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where z0⊗ z0 = Op(1), zT ⊗ zT = Op(T
γ),
∑T

t=1 zt−1⊗ uxt = Op(T ),
∑T

t=1 uxt⊗

zt−1 = Op(T ). Besides,
∑T

t=1 uxt ⊗ uxt = Op(T ), thus

−
(
Cz
T γ
⊗ In + In ⊗

Cz
T γ

+O

(
1

T 2γ

))
1

T

T∑
t=1

zt−1 ⊗ zt−1

=
1

T

T∑
t=1

(uxt ⊗ uxt + zt−1 ⊗ uxt + (uxt ⊗ zt−1)) + op(1).

The above equation is a Lyapunov equation ((In⊗A+A
′⊗In)vec(X) = −vec(Q):

If A is stable, the solution of X is given by X =
∫∞

0
eAτQeA

′
τdτ ). Note the fact

that
1

T

T∑
t=1

zt−1uxt  Λxx,

where Λxx :=
∑T

h=1 E
(
ztz

′

t−h
)

and Ωxx = Σxx + Λxx + Λ
′
xx. Hence

1

T 1+γ

T∑
t=1

zt−1z
′

t−1  
∫ ∞

0

eCzrΩxxe
Czrdr.

For the term
∑T

t=1 η
(2)
T,t−1(η

(2)
T,t−1)

′ , the following decomposition applies as

η
(2)
T,t(η

(2)
T,t)

′
= RTzη

(2)
T,t−1(η

(2)
T,t−1)

′
RTz +RTzη

(2)
T,t−1(D̆atxt−1)

′

+(D̆atxt−1)(η
(2)
T,t−1)

′
RTz + (D̆atxt−1)x

′

t−1D̆at.

Therefore

[In×n −RTz ⊗RTz]
T∑
t=1

η
(2)
T,t−1 ⊗ η

(2)
T,t−1

= η
(2)
T,0 ⊗ η

(2)
T,0 − η

(2)
T,T ⊗ η

(2)
T,T + (In ⊗RTz)

T∑
t=1

η
(2)
T,t−1 ⊗ (D̆atxt−1)

+(RTz ⊗ In)
T∑
t=1

(D̆atxt−1)⊗ η(2)
T,t−1 +

T∑
t=1

(D̆atxt−1)⊗ (D̆atxt−1),

where η(2)
T,0 ⊗ η

(2)
T,0 = Op(1), η(2)

T,T ⊗ η
(2)
T,T = Op(T

1+γ),
∑T

t=1 η
(2)
T,t−1 ⊗ (D̆atxt−1) �

Op(T
3+γ
2 ),

∑T
t=1(D̆atxt−1) ⊗ η(2)

T,t−1 � Op(T
3+γ
2 ),

∑T
t=1(D̆atxt−1) ⊗ (D̆atxt−1) =
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Op(T
2). Therefore,

−
(
Cz
T γ
⊗ In + In ⊗

Cz
T γ

+O

(
1

T 2γ

))
1

T 2

T∑
t=1

η
(2)
t−1⊗η

(2)
T,t−1 =

1

T 2

T∑
t=1

(D̆atxt−1)⊗(D̆atxt−1)+op(1),

and

1

T 2+γ

T∑
t=1

η
(2)
T,t−1(η

(2)
T,t−1)

′
 


∫∞

0
eCzs

[∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr

]
eCzsds under LSTUR,∫∞

0
eCzs

[∫ 1

0
Ga(r)G

′
a(r)Σaadr

]
eCzsds under STUR.

For the term
∑T

t=1 zt−1(η
(2)
T,t−1)

′ , the following decomposition applies as,

zt(η
(2)
T,t)

′
= RTzzt−1(η

(2)
T,t−1)

′
RTz+RTzzt−1(D̆atxt−1)

′
+uxt(η

(2)
T,t−1)

′
RTz+uxtx

′

t−1D̆at.

Therefore

[In×n −RTz ⊗RTz]
T∑
t=1

zt−1 ⊗ η(2)
T,t−1

= z0 ⊗ η(2)
T,0 − zT ⊗ η

(2)
T,T + (In ⊗RTz)

T∑
t=1

zt−1 ⊗ (D̆atxt−1)

+(RTz ⊗ In)
T∑
t=1

uxt ⊗ η(2)
T,t−1 +

T∑
t=1

uxt ⊗ (D̆atxt−1),

where z0 ⊗ η
(2)
T,0 = Op(1), zT ⊗ η

(2)
T,T = Op(T

1+2γ
2 ),

∑T
t=1 zt−1 ⊗ (D̆atxt−1) �

Op(T
2+γ
2 ),

∑T
t=1 uxt ⊗ η

(2)
T,t−1 � Op(T

2+γ
2 ). Besides,

∑T
t=1 uxt ⊗ (D̆atxt−1) =

Op(T
3
2 ). Therefore,

−
(
Cz
T γ
⊗ In + In ⊗

Cz
T γ

+O

(
1

T 2γ

))
1

T 2

T∑
t=1

zt−1 ⊗ η(2)
T,t−1 =

1

T 2

T∑
t=1

uxt ⊗ (xt−1D̆at) + op(1),

and under strict exogeneity condition where Σ∗ax := E(D̆atuxt) = 0,

1

T
3
2

+γ

T∑
t=1

zt−1(η
(2)
T,t−1)

′
 0.
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(ii) For
∑T

t=1 xt−1z
′
t−1 term, based on (A.3.1) , we have the following decompo-

sition.

[In×n −RTz ⊗RT ]
1

T

T∑
t=1

(xt−1 ⊗ zt−1) (A.3.5)

=
1

T
x0 ⊗ z0 −

1

T
xT ⊗ zT + (In×n ⊗RT )

1

T

T∑
t=1

xt−1 ⊗ uxt + (RTz ⊗ In)
1

T

T∑
t=1

uxt ⊗ zt−1

+
1

T

T∑
t=1

uxt ⊗ u
′

xt + (RTz ⊗ In)
1

T

T∑
t=1

(
D̆at√
T
xt−1

)
⊗ zt−1 + (In ⊗ In)

1

T

T∑
t=1

(
D̆at√
T
xt−1

)
⊗ uxt

+(RTz ⊗ In)
1

T

T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ zt−1 + (In ⊗ In)

1

T

T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ uxt (A.3.6)

=
1

T

T∑
t=1

xt−1 ⊗ uxt + (RTz ⊗ In)
1

T

T∑
t=1

uxt ⊗ zt−1 +
1

T

T∑
t=1

uxt ⊗ uxt (A.3.7)

+
1

T

T∑
t=1

(
D̆at√
T
xt−1

)
⊗ u′xt + op(1).

Therefore,

1

T

T∑
t=1

xt−1u
′

t +
1

T

T∑
t=1

zt−1u
′

xt +
1

T

T∑
t=1

uxtu
′

xt  
∫ 1

0

Ga,c(r)dB
′

x(r) + Ωxx.

By the exogeneity condition Σ∗ax := E(D̆atuxt) = 0, then 1
T

∑T
t=1

D̆at√
T
xt−1u

′
t  0.

When γ ∈ (0, 1) case, In×n − RTz ⊗ RT = − 1
T γ

(Cz ⊗ In×n)
[
In×n +Op(

1
T 1−γ )

]
.

By combining the above intermediate results, we can derive the desirable results.

For
∑T

t=1 xt−1(η
(2)
T,t−1)

′ term, based on (A.3.2), we have the following decom-

position:

[In×n −RTz ⊗RT ]
T∑
t=1

(xt−1 ⊗ η(2)
T,t−1) (A.3.8)

= x0 ⊗ η(2)
T,0 − xT ⊗ η

(2)
T,T + (In ⊗RT )

T∑
t=1

xt−1 ⊗ (D̆atxt−1) + (RTz ⊗ In)
T∑
t=1

uxt ⊗ η(2)
T,t−1

+(In ⊗ In)
T∑
t=1

uxt ⊗ (D̆atxt−1) + (RTz ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗ η(2)

T,t−1

+(In ⊗ In)
T∑
t=1

(
D̆at√
T
xt−1

)
⊗ (D̆atxt−1) + (RTz ⊗ In)

T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ η(2)

T,t−1
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+(In ⊗ In)
T∑
t=1

(
D̆2
at

T
xt−1

)
⊗ (D̆atxt−1).

Here the three leading terms are
∑T

t=1 xt−1 ⊗ (D̆atxt−1), (In ⊗ In)
∑T

t=1 uxt ⊗

(D̆atxt−1) and (In ⊗ In)
∑T

t=1

(
D̆at√
T
xt−1

)
⊗ (D̆atxt−1). By Lieberman and Phillips

(2020), the following functional law applies here as

1

n
3
2

∑
t

utY
2
t−1  

∫ 1

0

G2
a,c(r)dBu(r) + 2

(
Λuua

∫ 1

0

G2
a,c(r)dr + ΛuεGa,c(r)dr

)
,

(A.3.9)

where ut and εt are the notations of Lieberman and Phillips (2017). By applying

(A.3.9) and exdogeneity condition Σ∗ax := E(D̆atuxt) = 0,

1

T
3
2

+γ

T∑
t=1

xt−1(η
(2)
T,t−1)

′
 



−
∫ 1

0
Ga,c(r)G

′
a,c(r)dD̆Ba (r)C−1

z

−
[∫ 1

0
Ga,c(r)G

′
a,c(r)Ωaadr

]
C−1
z

under LSTUR,

−
∫ 1

0
Ga(r)G

′
a(r)dD̆Ba (r)C−1

z

−
[∫ 1

0
Ga(r)G

′
a(r)drΩaa

]
C−1
z

under STUR.


For the term of

∑T
t=1 xt−1(η

(1)
T,t−1)′, we have In×n−RTz⊗RT = 1

T γ

[
−Cz ⊗ In +Op(

1
T 1−γ )

]
.

By combining above results, the following derivations are justified as,

1

T 2+γ

T∑
t=1

xt−1(η
(1)
T,t−1)

′
C = − 1

T 2

T∑
t=1

xt−1x
′

t−1 · CC−1
z + op(1)

 

−
∫ 1

0
Ga,c(r)G

′
a,c(r)dr · CC−1

z under LSTUR,

−
∫ 1

0
Ga(r)G

′
a(r)dr · CC−1

z under STUR.

Similarly, as η(1)
T,t−1 and η(3)

T,t−1 share the identical stochastic order,

1

T 2+γ

T∑
t=1

xt−1(η
(3)
T,t−1)

′
= − 1

T 2

T∑
t=1

xt−1x
′

t−1D̆
2
at · C−1

z + op(1)

 

−
∫ 1

0
Ga,c(r)G

′
a,c(r)drΣaaC

−1
z under LSTUR,

−
∫ 1

0
Ga(r)G

′

a(r)drΣaaC
−1
z under STUR.
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Lemma A.3.4 (i) As T →∞,

 1

T
1+γ
2

∑T
t=1 zt−1u0t

1

T 1+
γ
2

∑T
t=1 η

(2)
T,t−1u0t

 MN

 0

0

 , Ω00

 Vzz 0

0 V
(2)
ηη


 ,

where Vzz :=
∫ 1

0
erCzΩxxe

rCzdr,

V (2)
ηη :=


∫∞

0
eCzs

[∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr

]
eCzsds, under LSTUR,∫∞

0
eCzs

[∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr

]
eCzsds, under STUR,

 .

(ii) As T →∞, with dD̆Ba (r) := diag {a′1dBa (r) , a′2dBa (r) , ..., a′ndBa (r)},
1

T 1+γ

∑T
t=1 xt−1z̃

′
t−1  

Vxz :=



−(Ωxx +
∫ 1

0
Ga,c(r)dB

′
x(r)) · C−1

z −
∫ 1

0
Ga,c(r)G

′
a,c(r)dD̆Ba (r) · C−1

z

−
[∫ 1

0
Ga,c(r)G

′
a,c(r)Ωaadr

]
C−1
z −

∫ 1

0
Ga,c(r)G

′
a,c(r)dr · C−1

z C

−
[∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr

]
C−1
z

under LSTUR,

−(Ωxx +
∫ 1

0
Ga(r)dB

′
x(r)) · C−1

z −
∫ 1

0
Ga(r)G

′
a(r)dD̆Ba (r) · C−1

z

−
∫ 1

0
Ga,c(r)G

′
a(r)ΩaadrC

−1
z −

[∫ 1

0
Ga(r)G

′
a(r)Σaadr

]
C−1
z

under STUR,


.

Proof. For (i), by Cramér-Wold device, in order to justify the joint convergence

to normality, it is sufficient to show that

α

(
1

T
1+γ
2

T∑
t=1

zt−1u0t

)
+β

(
1

T
2+γ
2

T∑
t=1

η
(2)
T,t−1u0t

)
 MN

(
0, Ω00

(
α2Vzz + β2V (2)

ηη

))
,

for any real numbers α, and β. We rewrite αXT +βYT =
∑T

t=1 ξTt, where the array

is as ξTt := α

T
1+γ
2
zt−1u0t + β

T
2+γ
2
η

(2)
T,t−1u0t. To satisfy the martingale CLT (White,
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2014), the stability condition is shown by

T∑
t=1

Et−1

[
ξTtξ

′

Tt

]
= Ω00

[
α2
∑T

t=1 zt−1z
′
t−1

T 1+γ
+
β2
∑T

t=1 η
(2)
T,t−1(η

(2)
T,t−1)

′

T 2+γ

]

+ Ω00αβ

[
T∑
t=1

zt−1(η
(2)
T,t−1)

′
+

T∑
t=1

η
(2)
T,t−1(zt−1)

′

]
/T

3+γ
2

 Ω00

[
α2Vzz + β2V (2)

ηη

]
.

Secondly, the Lindeberg condition is also confirmed. The function 1 (·) is an

indication function. For any ε > 0,

T∑
t=1

Et−1

[
‖ξTt‖2 1(‖ξTt‖ > ε)

]
≤

T∑
t=1

Et−1

[
‖ξTt‖2 1

(∥∥∥∥ α

T
1+γ
2

zt−1u0t +
β

T 1+ γ
2

η
(2)
T,t−1u0t

∥∥∥∥ > ε

)]

≤
T∑
t=1

[∥∥∥∥∥zt−1z
′
t−1

T 1+γ
+
zt−1η

(2)′

T,t−1 + η
(2)
T,t−1z

′
t−1

T
3+γ
2

+
η

(2)
T,t−1η

(2)′

T,t−1

T 2+γ

∥∥∥∥∥
]

· Et−1

{
|u0t|2 1

(∥∥∥∥∥αzt−1u0t

T
1+γ
2

+
βη

(2)
T,t−1u0t

T 1+ γ
2

∥∥∥∥∥ > ε

)}

≤ K · max
1≤t≤T

Et−1

|uot|2
 1

(
max1≤t≤T

∥∥∥ α2

T 1+γ zt−1z
′
t−1

∥∥∥ |u0t|2 > ε2

2

)
+1
(

max1≤t≤T

∥∥∥ β2

T 2+γ η
(2)
T,t−1η

(2)′

T,t−1

∥∥∥ |u0t|2 > ε2

2

)



≤ K · max
1≤t≤T

Et−1

|uot|2
 1

((
max1≤t≤T

∥∥∥∥α2zt−1z
′
t−1

T γ

∥∥∥∥) |u0t|2 > ε2T
2

)
+1

((
max1≤t≤T

∥∥∥∥β2η
(2)
T,t−1η

(2)′
T,t−1

T 1+γ

∥∥∥∥) |u0t|2 > ε2T
2

)



≤ K · max
1≤t≤T

Et−1

{
2|u0t|2

[
1

(
M · |uot|2 >

ε2T

2

)]}
= op(1),

where M and K are two constants. Hence the Lindeberg condition is satisfied and

martingale CLT shows the joint normality.

Lemma A.3.5 (i) For the numerator of short-horizon IVX and QR-IVX, as T →∞,

1

T
1+γ
2

T∑
t=1

z̃t−1Ψτ (u0tτ ) Mτ :=MN
(
0, τ(1− τ)

[
Vzz + V (2)

ηη

])
,
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for short-horizon QR-IVX, and

1

T
1+γ
2

T∑
t=1

z̃t−1u0t  M :=MN
(
0,Ω00

[
Vzz + V (2)

ηη

])
,

for short-horizon IVX, where Vzz :=
∫ 1

0
erCzΩxxe

rCzdr,

V
(2)
ηη :=


∫∞

0
eCzs

[∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr

]
eCzsds under, LSTUR,∫∞

0
eCzs

[∫ 1

0
Ga,c(r)G

′
a,c(r)Σaadr

]
eCzsds, under STUR,

.

(ii) As T →∞,

1

T 1+γ

T∑
t=1

z̃t−1(z̃t−1)
′
 (Vzz + V (2)

ηη ),

where Vzz, V
(2)
zη are defined in (i).

(iii) For the denominator,

1

T 1+γ

T∑
t=1

pu0tτ,t−1(0)xt−1z̃
′

t−1

 



−pu0τ (0)(Ωxx +
∫ 1

0
Ga,c(r)dB

′
x(r)) · C−1

z

−pu0τ (0)
∫ 1

0
Ga,c(r)G

′
a,c(r)dr · C−1

z C

−pu0τ (0)
∫ 1

0
Ga,c(r)G

′
a,c(r)dD̆Ba (r) · C−1

z

−pu0τ (0)
∫ 1

0
Ga,c(r)G

′
a,c(r)ΩaadrC

−1
z

−pu0τ (0)
∫ 1

0
Ga,c(r)G

′
a,c(r)ΣaadrC

−1
z ,

under LSTUR,

−pu0τ (0)(Ωxx +
∫ 1

0
Ga(r)dB

′
x(r)) · C−1

z

−pu0τ (0)
∫ 1

0
Ga(r)G

′
a(r)dD̆Ba (r) · C−1

z

−pu0τ (0)
∫ 1

0
Ga(r)G

′
a(r)ΩaadrC

−1
z

−pu0τ (0)
∫ 1

0
Ga(r)G

′
a(r)ΣaadrC

−1
z ,

under STUR,


for short-horizon QR-IVX, and

1

T 1+γ

T∑
t=1

xt−1z̃
′

t−1
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

−(Ωxx +
∫ 1

0
Ga,c(r)dB

′
x(r)) · C−1

z −
∫ 1

0
Ga,c(r)G

′
a,c(r)dD̆Ba (r) · C−1

z

−
∫ 1

0
Ga,c(r)G

′
a,c(r)dr · C−1

z C −
∫ 1

0
Ga,c(r)G

′
a,c(r)ΩaadrC

−1
z

−
∫ 1

0
Ga,c(r)G

′
a,c(r)ΣaadrC

−1
z ,

under LSTUR,

−(Ωxx +
∫ 1

0
Ga(r)dB

′
x(r)) · C−1

z −
∫ 1

0
Ga(r)G

′
a(r)dD̆Ba (r) · C−1

z

−
∫ 1

0
Ga(r)G

′
a(r)ΩaadrC

−1
z −

∫ 1

0
Ga(r)G

′
a(r)ΣaadrC

−1
z ,

under STUR,


for short-horizon IVX, where dD̆Ba (r) := diag {a′1dBa (r) , a′2dBa (r) , ..., a′ndBa (r)}.

Proof. For (i) under the QR-IVX case, use Ψτ (u0tτ ) to replace u0t, and use Ω00

to replace τ(1 − τ), the way of proving the asymptotic normality of short-horizon

IVX can be easily extended to the case of short-horizon QR-IVX.

Lemma A.3.6 For a generic constant C > 0, thus

sup
{
‖HT (ε)−HT (0)‖ : ‖ε‖ ≤ T

1+γ
2 C

}
= op(1).

Proof. The results are identical to the statements of Lee (2016).

A.3.2 Proof of Theorem 4.3.1

Proof. Since the uniform convergence is confirmed in Lemma A.3.6, the standard

result for the extreme estimation with non-smooth criterion function holds following

the approach in Lee (2016). Let β̂1,τ = β̂QRIV X1,τ within the proof. Define ε̂τ =

(β̂1,τ − β1,τ ), then

β̂1,τ ∼ arg min

(
T∑
t=1

mt(β1)

)′( T∑
t=1

mt(β1)

)
,

wheremt(β1) = z̃t−1Ψτ (u0tτ (β1)) = z̃t−1

(
τ − 1(ytτ ≤ β

′
1,τxt−1)

)
. Based on Lem-

ma A.3.6, the first-order condition for the QR-IVX objective function is given as,

op(1)

=
1

T
1+γ
2

T∑
t=1

z̃t−1

{
Ψ

(
u0tτ −

(
β̂1,τ − β1,τ

)′
xt−1

)}
166



=
1

T
1+γ
2

T∑
t=1

z̃t−1

{
Ψτ

(
u0tτ − ε̂

′

τxt−1

)
− Et−1

(
Ψτ

(
u0tτ − ε̂

′

τxt−1

))
−Ψτ (u0tτ ) + Et−1 (Ψτ (u0tτ ))

}
+

1

T
1+γ
2

T∑
t=1

z̃t−1Et−1

(
Ψτ

(
u0tτ − ε̂

′

τxt−1

))
+

1

T
1+γ
2

T∑
t=1

z̃t−1 {Ψτ (u0tτ )}+ op(1)

=
1

T
1+γ
2

T∑
t=1

z̃t−1Et−1

(
Ψτ

(
u0tτ − ε̂

′

τxt−1

))
+

1

T
1+γ
2

T∑
t=1

z̃t−1 {Ψτ (u0tτ )}+ op(1).

The term Et−1

(
Ψτ

(
u0tτ − ε̂

′
τxt−1

))
can be expanded around ετ = 0 as

Et−1

(
Ψτ

(
u0tτ − ε̂

′

τxt−1

))
= Et−1

[
1
(
u0tτ − ε

′

τxt−1

)]
|ετ=0 +

∂Et−1

(
Ψτ

(
u0tτ − ε̂

′
τxt−1

))
∂ε′τ

|ετ=0ε̂τ + op (ε̂τ ) ,

where

Et−1

(
Ψτ

(
u0tτ − ε

′

τxt−1

))
= τ−Et−1

(
1
(
u0tτ < ε

′

τxt−1

))
= τ−

∫ ε
′
τxt−1

−∞
pu0tτ,t−1(s)ds,

and
∂Et−1

[
ξτ (uotτ − ε

′
τxt−1)

]
∂ε′τ

|ετ=0 = −x′t−1pu0tτ,t−1(0).

So we have

Et−1

[
ξτ (u0tτ − ε̂

′

τxt−1)
]

= −x′t−1pu0tτ,t−1(0)ε̂τ + op(1).

Therefore, the first order condition follows

T
1+γ
2 (β̂1 − β1) =

(
1

T 1+γ

T∑
t=1

z̃t−1x
′

t−1

)−1(
1

T
1+γ
2

T∑
t=1

z̃t−1u0t

)
+ op(1).

In all, we complete our proofs.

A.3.3 Proof of Theorem 4.3.2

Proof. Based on the asymptotic distribution results in Theorem 4.3.1, the proof for

the Wald test is trivial and straightforward.
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A.3.4 Technical lemmas in long-horizon predictive regression

Lemma A.3.7 Under the rate condition
√
T

T γ
+ T γ

k
+ k

T
→ 0, with D̆Ba (r) :=

diag {a′1Ba (r) , a′2Ba (r) , ..., a′nBa (r)}, then

(i) With t = [Tr], Cz

kT
1
2+γ

η1,k
T t  

 Ga(r), under LSTUR,

Ga,c(r), under STUR.

(ii)
∑T−k

t=1 u0,t+k(η
1,k
T,t)

′
= Op(kT

1+γ), thus 1
√
kT

3
2+γ

∑T−k
t=1 u0,t+k(η

1,k
T,t)

′
= op(1).

(iii) Cz√
kT γ

zkt ⇒ Bx(1) =d N (0,Ωxx), and 1
T

∑T−k
t=1 ( Cz√

kT γ
zkt )( Cz√

kT γ
zkt )

′
 Ωxx.

(iv) 1

T
1
2+γ
√
k

∑T−k
t=1 u0,t+k(z

k
t )
′
 N (0, C−1

z ΩxxC
−1
z Ω00).

(v) With t = [Tr], Cz√
kT

1
2+γ

η2,k
T,t  

D̆Ba (1)Ga,c(r), under LSTUR,

D̆Ba (1)Ga(r), under STUR.

(vi) Cz√
kT 1+γ

∑T−k
t=1 u0,t+k(η

2,k
T,t)

′
 


∫ 1

0
D̆Ba (1)Ga,c(r)dB0(r), under LSTUR,∫ 1

0
D̆Ba (1)Ga(r)dB0(r), under STUR.

(vii)

1
kT 3+2γ

∑T−k
t=1 η2,k

T,t(η
2,k
T,t)

′
 

C
−1
z ·

∫ 1

0
D̆Ba (1)Ga,c(r)G

′
a,c(r)D̆Ba (r) dr · C−1

z , under LSTUR,

C−1
z ·

∫ 1

0
D̆Ba (1)Ga(r)G

′
a(r)D̆Ba (r) dr · C−1

z , under STUR.

(viii) 1

kT
5
2+2γ

∑T−k
t=1 zkt (η2,k

T,t)
′
 

C
−1
z ·

∫ 1

0
Bx(1) ·G′a,c(r)D̆Ba (r) dr · C−1

z , under LSTUR,

C−1
z ·

∫ 1

0
Bx(1) ·G′a(r)D̆Ba (r) dr · C−1

z , under STUR.

(ix) With t = [Tr], Cz

kT
1
2+γ

η3,k
T t  

ΣaaGa,c(r), under LSTUR,

ΣaaGa(r), under STUR.

(x)
∑T−k

t=1 u0,t+k(η
3,k
T,t)

′
= Op(kT

1+γ), thus 1
√
kT

3
2+γ

∑T−k
t=1 u0,t+k(η

3,k
T,t)

′
= op(1).

Proof. (i)(ii) and (iii) are identical to those of Lemma A.1 in Phillips and Lee

(2013). Just replace Jc(r) by Ga(r) and Ga,c(r), since sup1≤t≤T E
∥∥∥η(1)

T,t−1

∥∥∥ =

Op(T
1+2γ) under LP(2017) and LP(2020). This rate is the standard rate for the

unit-root and local-to-unity case; (iv) is identical to the proof of Lemma A.2 in

Phillips and Lee (2013);
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(v) The recursive formula is satisfied as η(2)
T,t = RTtη

(2)
T,t−1+D̆atxt−1, and η(2)

T,t+j−1 =

RTtη
(2)
T,t+j−2 + D̆a,t+j−1xt+j−2. Take summation up to k,

η2,k
T,t =

k∑
j=1

η
(2)
T,t+j−1 = RTz

k∑
j=1

η
(2)
T,t+j−2 +

k∑
j=1

D̆a,t+j−1xt+j−2

⇒ (In −RTz)
k∑
j=1

η
(2)
T,t+j−1 =

k∑
j=1

D̆a,t+j−1xt+j−2 −RTzη
(2)
T,t+k−1 +RTzη

(2)
T,t−1

⇒ Cz√
kT

1+2γ
2

k∑
j=1

η
(2)
T,t+j−1 =

1√
kT

1
2

k∑
j=1

D̆a,t+j−1xt+j−2 + op(1),

where [Tr] = t and 1
lT

+ lT
k
→ 0. Hence 1√

k

∑lT
j=1 D̆at+j−1(xt+j−2/

√
T ) = op(1).

By the techniques of summation splitting and residuals putting back, we have

Cz√
kT

1+2γ
2

k∑
j=1

η
(2)
T,t+j−1 =

1√
k

k∑
j=1

D̆at+j−1(xt+j−2/
√
T ) + op(1)

=
1√
k

k∑
j=lT

D̆at+j−1(xt+j−2/
√
T ) + op(1)

=
1√
k

k∑
j=lT

D̆at+j−1(Ga,c(r) + op(1)) + op(1)

 D̆Ba (1)Ga,c(r),

for LSTUR, under 1√
kT
η

(2)
T,t = Op(

T
γ
2√
k

) = op(1). Let C = 0n×n, we then have the

STUR casse.

(vi) For the LSTUR case,

Cz√
kT 1+γ

T−k∑
t=1

u0,t+k(η
2,k
T,t)

′
=

T−k∑
t=1

(
u0,t+k√
T

)(
η2,k
T,t√

kT
1+2γ

2

)′
=

∫ 1

0

dB0(r)G
′

a,c(r)D̆Ba (1)+op(1),

and for STUR, Cz√
kT 1+γ

∑T−k
t=1 u0,t+k(η

2,k
T,t)

′
=
∫ 1

0
dB0(r)G

′
a(r)D̆Ba (1) + op(1).

(vii) From (v) and FCLT (White, 2014),

1

kT
3
2

+2γ

T−k∑
t=1

zkt (η2,k
T,t)

′
= C−1

z

1

T

T−k∑
t=1

(
Cz√
kT γ

zkt

)(
Cz√
kT

1
2

+γ
η2,k
T,t

)′
C−1
z

 C−1
z

∫ 1

0

Bx(1)G
′

a,c(r)D̆Ba (1) drC−1
z .
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(viii) From (iii) (v) and the FCLT (White, 2014),

1

kT 2+2γ

T−k∑
t=1

η2,k
T,t(η

2,k
T,t)

′
= C−1

z

1

T

T−k∑
t=1

(
Cz√
kT

1
2

+γ
η2,k
T,t

)(
Cz√
kT

1
2

+γ
η2,k
T,t

)′
C−1
z

 C−1
z

∫ 1

0

D̆Ba (1)Ga,c(r)G
′

a,c(r)D̆Ba (1) drC−1
z .

(ix) The recursive formula applies for η(3)
T,t = RTzη

(3)
T,t−1 + D̆2

atxt−1, and take

summation up to k,

η3,k
T,t =

k∑
j=1

η
(3)
T,t+j−1 = RTz

k∑
j=1

η
(3)
T,t+j−2 +

k∑
j=1

[D̆2
at]xt+j−2

⇒ (In −RTz)
k∑
j=1

η
(3)
T,t+j−1 =

k∑
j=1

[D̆2
at]xt+j−2 −RTzη

(3)
T,t+k−1 +RTzη

(3)
T,t−1

⇒ Cz

kT
1+2γ

2

k∑
j=1

η
(3)
T,t+j−1 =

1

kT
1
2

k∑
j=1

[D̆2
at]xt+j−2 + op(1),

where [Tr] = t and 1
lT

+ lT
k
→ 0. Hence Cz√

k

∑lT
j=1(D̆2

at+j−1)(xt+j−2/
√
T ) = op(1).

Therefore,

Cz

kT
1+2γ

2

k∑
j=1

η
(3)
T,t+j−1 =

1

k

k∑
j=1

[D̆2
a,t+j−1](xt+j−2/

√
T ) + op(1)

=
1

k

k∑
j=lT

[D̆2
a,t+j−1](xt+j−2/

√
T ) + op(1)

=
1

k

k∑
j=lT

[D̆2
a,t+j−1](Ga,c(r) + op(1)) + op(1)

 ΣaaGa,c(r),

for LSTUR. Let C = 0n×n, these results extend to STUR.

(x) follows Lemma A.1 of Phillips and Lee (2013).

Lemma A.3.8 Under the rate condition that
√
T

T γ
+ T γ

k
+ k

T
→ 0,

1√
kT

1
2

+γ

T−k∑
t=1

u0,t+k(z̃
k
t )
′
 MN (0, (V LH

zz +V (2),LH
ηη +V (2),LH

zη + (V (2),LH
zη )

′
)Ω00),

(A.3.10)
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where V LH
zz := C−1

z ΩxxC
−1
z ,

V (2),LH
ηη :=

C
−1
z ·

∫ 1

0
D̆Ba (1)Ga,c(r)G

′
a,c(r)D̆Ba (r) dr · C−1

z , under LSTUR,

C−1
z ·

∫ 1

0
D̆Ba (1)Ga(r)G

′
a(r)D̆Ba (r) dr · C−1

z , under STUR,

and

V (2),LH
zη :=

C
−1
z ·

∫ 1

0
Bx(1)G

′
a,c(r)D̆Ba (1) dr · C−1

z , under LSTUR,

C−1
z ·

∫ 1

0
Bx(1)G

′
a(r)D̆Ba (1) dr · C−1

z , under STUR.

Proof. It is sufficient to justify the joint asymptotical normality of two leading

terms, as
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By Cramér-Wold device, it is sufficient to show that for any constants α and β,
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Here ξTt are martingale difference sequence for any t ∈ {1, 2, ..., T}. In order to ap-

ply the martingale CLT (White, 2014), the stability and Lindeberg conditions need

to be justified.

First, with Et+k−1(·) := E(·|Ft+k−1), the stability condition is shown as,
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Second, Lindeberg condition is shown: For any ε > 0, with Et+k−1(·) :=
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where K, M1 and M2 are three constants. Then the martingale CLT (White, 2014)

applies, and shows the asymptotics by letting α = β = 1.

Lemma A.3.9 Under the rate condition,
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where Vax is defined in Lemma A.3.9.

Proof. The proof is easily derived based on the results of Lemma A.3.9.

A.3.5 Simulation methods

As shown in Lee (2016), the computational burden of original IVX method is heavy

as the non-smooth objective function can generate multiple local optima. Instead,

Chapter 4 follows the alternative computational method proposed in Lee (2016),

where we testH0 : ϑτ = 0 in the alternative ordinary QR model:

ϑ̂QRIV Xτ := arg min
ϑ

T∑
t=1

ρτ

(
yτt − ϑ

′

τ z̃t−1

)
, (A.3.11)

where ρτ (u) = u (τ − 1 (u < 0)), τ ∈ (0, 1). As the self-generated instrument z̃t is

produced by the persistent regressor xt, their ”distance” can be asymptotically neg-

ligible. This argument justifies the validity and convenience of the conventional QR

method based on the self-generated instrument z̃t. Following the above discussions

of Chapter 4, we can show the limit distribution of ϑ̂τ is Gaussian for each τ for S-

TUR/LSTUR regressors, while the cases of MER, MIR and LUR have already been

proved in Lee (2016). Although the asymptotic normality is not free of nuisance

parameter C and A, the self-normalized Wald test still follows pivotal distribution

under the null hypothesis of no predictability: UnderH0 : ϑτ = 0,

p̂u0τ (0)
2

τ(1− τ)

(
ϑ̂QRIV Xτ − ϑτ

)′ ( T∑
t=1

z̃t−1z
′

t−1

)(
ϑ̂QRIV Xτ − ϑτ

)
 χ2(n),

with STUR/LSTUR regressors. The mixed-root case follow similar derivations.

The Monte Carlo simulation shows the robustness of the alternative procedure in

Lee (2016). The numerical simulation of this chapter employs the codes provided by

Professor Ji Hyung Lee on his website: https://sites.google.com/site/jihyung412/.
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