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Abstract

The dissertation consists of three chapters which studies a mechanism design approach

to the problem of bilateral trade and public good provision.

Chapter 1 characterizes mechanisms satisfying Bayesian incentive compatibility (BIC)

and interim individual rationality (IIR) in the classical public good provision problem.

We propose a stress test for the results in the standard continuum type space by subject-

ing them to a finite type space. The main contribution of this paper is to propose a set of

techniques that allow us to characterize the efficient and optimal mechanisms in a discrete

setup. Using these techniques, we conclude that many of the known results gained within

the standard continuum type space also hold when it is replaced by a discrete type space.

Chapter 2 seeks for more positive results by employing two-stage mechanisms (Mezzetti

(2004)), as efficient, voluntary bilateral trade is generally not incentive compatible in an

interdependent-value environment (Fieseler, Kittsteiner, Moldovanu (2003) and Gresik

(1991)). First, we show by means of a stylized example that the generalized two-stage

Groves mechanism never guarantees voluntary trade, while it satisfies efficiency and in-

centive compatibility. In a general environment, we next propose Condition α under

which there exists a two-stage incentive compatible mechanism implementing an effi-

cient, voluntary trade. Third, within the same example, we confirm that our Condition

α is very weak because it holds as long as the buyer’s degree of interdependence of

preferences is not too high relative to the seller’s counterpart. Finally, we show by the

same example that if Condition α is violated, our proposed two-stage mechanism fails to

achieve voluntary trade.

Chapter 3 clarifies how the interdependence in valuations and correlation of types

across agents affect the possibility of efficient, voluntary bilateral trade in a model with

discrete types, as efficient, voluntary bilateral trades are generally not incentive compat-

ible in a private-value model with independently distributed continuous types (Myerson

and Satterthwaite (1983)). First, we identify a necessary condition for the existence of in-

centive compatible mechanisms inducing an efficient and voluntary trade in a finite type

model. Second, we show that the identified necessary condition becomes sufficient for

a two-type model. Using this characterization in a model with linear valuations and two



types, we next conduct the comparative statics for how possibility results rely on the inter-

dependence and correlation. Third, using the linear programming approach, we establish

the general existence of an efficient, incentive compatible trade in a model with two types.

This suggests that voluntary trade becomes a stringent requirement in an interdependent

values model with correlated signals.
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1 On Incentive Compatible, Individually Rational Public

Good Provision Mechanisms

1.1 Introduction

This paper revisits the classical public good provision problem in which a group of

agents have to decide whether to produce some indivisible and non-excludable public

good. This has been a central application of the theory of mechanism design (See, for ex-

ample, Krishna (Chapter 5, 2009), Mas-Colell, Whinston, and Green (Chapter 23, 1995),

Börgers (Chapters 3, 2015) for this). To analyze this problem, many papers in the litera-

ture consider the model of ex ante identical agents with a continuous, closed interval of

types.1 In what follows, we call such a model the standard model. One practical benefit

of using the standard model is that we can appeal to the revenue equivalence theorem,

which reduces the search for an appropriate mechanism to the class of the well-known

Vickrey-Clarke-Groves (VCG) mechanism.2 For example, we see this power of reduction

in Krishna and Perry (2000) and Williams (1999). This paper, on the other hand, proposes

a “stress test” for the known results by considering a finite discretization of the standard

model of a continuous, closed interval of types. The difficulty of conducting this test lies

in the fact that we cannot appeal to the optimality of the VCG mechanism established in

the literature, which exploits the continuum type space assumption. The main contribu-

tion of this paper is to re-establish the optimality of a variant of the VCG mechanism in a

discrete setup.3 Exploiting the optimality of the VCG-like mechanism, we conclude that

many of the standard results in the classical public good provision problem gained within

a continuum type space also hold when it is replaced by a discrete type space.

As in the standard model, we assume that each agent’s type, i.e., preferences for pub-

lic good, is chosen independently from an identical distribution over finitely many values.

1The reader is referred to Chapter 3.3 of Börgers (2015) for the textbook treatment of the classical public

good problem with identical agents whose type space constitutes a continuous closed interval on the real

line.
2The VCG mechanism is based on the contribution of Vickrey (1961), Clarke (1971), and Groves (1973).
3Kos and Manea (2009) conducted a similar analysis in the context of bilateral trade setup.
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Throughout this paper, we impose incentive compatibility and individual rationality on

direct mechanisms, which maps each type profile to the probability of providing a public

good and monetary transfers across agents. A direct mechanism satisfies Bayesian incen-

tive compatibility (BIC) if all agents’ announcing their true type constitutes a Bayesian

Nash equilibrium of the direct mechanism. By the celebrated revelation principle, we

focus on direct mechanisms without loss of generality so that we call a direct mechanism

simply a mechanism. A mechanism satisfies interim individual rationality (IIR) if each

agent guarantees a utility of zero (utility of non-participation), provided that all agents an-

nounce their types truthfully. We introduce two more requirements we sometimes impose

on the mechanisms. A mechanism satisfies decision efficiency (EFF) if the public good is

provided if and only if the total surplus from providing the public good is at least as high

as the cost of the public good. A mechanism satisfies ex post budget balance (BB) if it

satisfies budget balance at any state.

To state our results below, we introduce the following categories. By the trivial cases

we mean that it is always efficient to provide a public good or it is always efficient not to

provide a public good. We call any other case a nontrivial case. We obtain the following

Bayesian implementation results in our discrete setup.

• Theorem 1: There exists a variant of the VCG mechanism that maximizes the ex

ante budget surplus among all the mechanisms satisfying BIC, IIR, and EFF.

• Corollary 1: There exists a mechanism satisfying BIC, IIR, EFF, and BB if and only

if a variant of the VCG mechanism results in ex ante budget surplus.

• Theorem 2: In any nontrivial case, as the population size gets large, any mechanism

satisfying BIC, IIR, EFF results in the per capita ex ante budget deficit.

• Theorem 3: There exists a variant of the VCG mechanism that maximizes the ex

ante budget surplus among all the mechanisms satisfying BIC and IIR.

• Theorem 4: In any nontrival case, as the population size gets large, the ex ante

probability that the public good is provided converges to zero in any mechanism

2



satisfying BIC, IIR, and BB.4

Theorem 1 is the key result of this paper, which allows us to obtain Corollary 1 and

Theorem 2. This is a powerful result because it can reduce our search for a mechanism

satisfying BIC, IIR, and EFF to the VCG’ mechanism (a variant of the VCG mechanism)

which we appropriately adapt from the same mechanism of Kos and Manea (2009) in a

bilateral trade environment.

Corollary 1 is considered a discrete type space counterpart of Theorem 2 of Krishna

and Perry (2000) in a public good setup. The difficulty of obtaining this result lies in the

fact that we cannot appeal to the optimality of the VCG mechanism established in Krishna

and Perry (2000) and Williams (1999), who exploit the continuum type space assumption.

We rather appeal to the optimality of the VCG’ mechanism by our Theorem 1.

Next, Theorem 2 characterizes the implications of our Corollary 1 in the context of

large economies. It shows that in all nontrivial cases, “any” mechanism satisfying BIC,

IIR, and EFF results in per capita ex ante budget deficit when the population size of the

economy gets large enough. Thus, for any mechanism satisfying BIC, IIR, and EFF in

large economies, we must accept not only the ex ante budget deficit but also the per capita

ex ante budget deficit. The basic logic for Theorem 2 goes as follows. Each agent of a

higher type can lower his payment by announcing a lower type. The only incentive to not

do so is that the agent is pivotal, i.e., his announcement will change the probability that

the public good is provided. However, in large economies, the probability that an agent is

pivotal converges to zero and thus it is prohibitively costly to induce all agents of higher

types to tell the truth in large economies. For this result, however, we make an additional

assumption, which says that the ex ante probability that the efficient decision rule provides

the public good converges to some positive probability as the population size gets infinite.

This assumption strikes us as being innocuous because if it is not satisfied, the provision

of the public good will not be expected in large economies.

Then, we are left with the case where the ex ante probability that the efficient decision

rule provides the public good converges to zero as the population size gets infinite. In

this case, we show in our Proposition 1 that there exists a mechanism satisfying BIC, IIR,
4For this result, we assume that there are only two types.
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EFF, and BB and as the size of the economy gets large, the probability that the public

good is provided converges to zero in any such mechanism. This is consistent with the

analysis in Section 4.2 of Ledyard and Palfrey (1994).

To understand how large the economy should be for Theorem 2, we also conduct a

simulation analysis for this negative result. Our simulation result roughly suggests that

there are no mechanisms satisfying BIC, IIR, EFF, and BB even for a relatively small

size of the economy. Sometimes, even five agents are large enough to establish the im-

possibility result. However, we can sometimes promote the case for small economies.

For example, if a society is going to decide whether to provide a public good or not, the

social planner selects a small group of representative agents and design a mechanism as

suggested in our paper. In that case, our mechanism will satisfy BIC, IIR, EFF, and BB.

Given the difficulty of imposing all the four properties, BIC, IIR, EFF, and BB on the

mechanisms, we now drop decision efficiency (EFF) from the requirements. Theorem

3 is considered a generalization of Theorem 1 so that we can reduce our search for a

mechanism satisfying BIC and IIR to the tight mechanism which we appropriately adapt

from the same mechanism of Kos and Manea (2009) in a bilateral trade environment.

Note that when we insist on decision efficiency, the tight mechanism is reduced to the

VCG’ mechanism. Using Theorem 3, we show that there are mechanisms satisfying BIC,

IIR, and BB if and only if the tight mechanism results in ex ante budget surplus (Corollary

3).

Our Theorem 4 is concerned with the implications of large economies in a two-type

environment. That is, in any nontrivial case, as the size of the economy gets large, the

ex ante probability that the public good is provided converges to zero in any mechanism

satisfying BIC, IIR, and BB. This theorem is considered a discrete type space counterpart

of Theorem 2 of Mailath and Postlewaite (1990). Therefore, this might even suggest the

necessity of mandatory payment of taxes as opposed to voluntary contribution, which is

embodied by the individual rationality constraint. Our rationale for focusing on a two-

type setup is based on the fact that the negative result is obtained in the continuum type

space and by continuity, there is likely to be a similar negative result on a large finite type

space, which is considered an approximation of the continuum type space. Of course, we

4



benefit a lot from the two-type setup in terms of tractability.

Finally, we strengthen BIC and IIR into dominant strategy incentive compatibility

(DSIC) and ex post individual rationality (EPIR), respectively.5 One benefit of doing so is

that we can completely drop any distributional assumption about types and allow for any

degree of correlation. We obtain the following dominant strategy implementation result.

• Proposition 2 In any nontrivial case, there are no mechanisms satisfying DSIC,

EPIR, EFF, and BB, regardless of the size of the economy.

This result is a discrete type space counterpart of Theorem 7 of Green and Laffont

(1977) and therefore, also considered a stress test for the negative result of dominant

strategy implementation in the public good provision problem.6

The rest of the paper is organized as follows. In Section 1.2, we introduce the general

concepts and notation used throughout the paper. Section 1.3 identifies a necessary and

sufficient condition for the existence of mechanisms satisfying BIC, IIR, EFF, and BB,

investigates the implication of the results in large economies, and finally presents the

simulation results. In Section 1.4, we drop EFF from the requirements and characterize

a condition for the existence of mechanisms satisfying BIC, IIR, and BB and investigate

its implication in large economies. In Section 1.5, we replace BIC and IIR with DSIC

and EPIR, respectively so that we investigate the corresponding implications. Section 1.6

concludes. The Appendix contains all the proofs omitted from the main body of the paper.

1.2 Preliminaries

There are N agents and we denote by N = {1, . . . , N} the set of agents. We assume

N ≥ 2 throughout the paper. A group of N agents must decide whether to undertake

the public project and if undertaken, how to distribute the costs of the project among the

5The reader is referred to Chapter 4.3 of Börgers (2015) for the textbook treatment of the public good

problem using DSIC and EPIR. Once again, a big difference from our paper is that Börgers’ type space is

assumed to be a closed interval in the real line.
6Green and Laffont (1977) need to include non-separable preferences as part of the domain in establish-

ing their Theorem 7. The reader is referred to Green and Laffont (1977) for the exact nature of their rich

environments. On the contrary, we do not need this richness at all.
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members of the group. Each agent i has M > 2 possible types θi ∈ Θ ≡ {θ1, · · · , θM}

such that 0 ≤ θ1 < · · · < θM (i.e., θ1 is allowed to be zero). We assume that every agent i

of the same type θm attach the common value θm to the public project . We further assume

that each agent’s type is private information. Denote by ΘN = {θ1, · · · , θM}N the set of

possible type profiles. The types are independently drawn from an identical distribution

where P (θm) denotes the probability that θm is chosen. Therefore, there is a common

prior PN over ΘN such that for each θ = (θ1, . . . , θN) ∈ ΘN ,

PN(θ) ≡ P (θ1)× · · · × P (θN).

The independence of types is essential for our results.7 Preferences of each agent depend

upon whether or not the public project is implemented and how much of the monetary

payment is incurred by that agent. Agents evaluate lotteries over outcomes using expected

utility. If the public project is built with probability q ∈ [0, 1] and agent imakes a payment

ti to the planner, then i’s preferences can be represented by

vi = qθi − ti.

This formulation assumes that each agent’s preferences are quasilinear in money and each

individual is risk neutral.

A direct mechanism is defined as a triplet Γ = (Θ, x, (ti))i∈N where Θ = {θ1, · · · , θM}

is the set of actions available to agent i, i.e., each agent is asked to reveal his type;

x : ΘN → [0, 1] is the decision rule which specifies the probability that the public good

is provided; and ti : ΘN → R is the payment or subsidy to agent i and t = (t1, . . . , tN) is

called the transfer rule. By the well known revelation principle, we lose nothing to focus

on direct mechanisms. In what follows, we denote by (x, t) a direct mechanism or simply

a mechanism.

Definition 1 A mechanism (x, t) satisfies Bayesian incentive compatibility (BIC) if, for

each i ∈ N , θi, θ
′
i ∈ Θ,∑

θ−i∈ΘN−1

PN−1(θ−i)
[
θix(θi, θ−i)− ti(θi, θ−i)− θix(θ

′

i, θ−i) + ti(θ
′

i, θ−i)
]
≥ 0,

where PN−1(θ−i) ≡ ×j 6=iP (θj).
7We conjecture that the identical distribution assumption is only needed for the ease of computation.

6



We introduce a stronger version of incentive compatibility.

Definition 2 A mechanism (x, t) satisfies dominant strategy incentive compatibility (DSIC)

if, for each i ∈ N , θ ∈ ΘN and θ
′
i ∈ Θ,

θix(θi, θ−i)− ti(θi, θ−i) ≥ θix(θ
′

i, θ−i)− ti(θ
′

i, θ−i).

Dominant strategy incentive compatibility does not need to make any distributional

assumption about how each agent’s type is realized and because of this property, it is

stronger than Bayesian incentive compatibility.

When there are N agents in the economy, providing the public good will incur a

cost equal to c(N) which is assumed to be an increasing function in N . Throughout the

paper, we further assume that θ1 < c(N)/N ≤ θM . We do not discuss the case where

θ1 = c(N)/N because it is considered a trivial case in the sense that the public good

should always be provided. This implies that the non-rivalry property of a pure public

good does not hold here. This is consistent with the setup of Mailath and Postlewaite

(1990).8

Definition 3 A mechanism (x, t) satisfies decision efficiency (EFF) if, for each θ ∈ ΘN ,

x(θ) =

1 if
∑

i∈N θi > c(N)

0 otherwise.

In what follows, we denote by x∗(·) the efficient decision rule.

Definition 4 A mechanism (x, t) satisfies the ex post budget balance (BB) if, for each

θ ∈ ΘN , ∑
i∈N

ti(θ) = c(N) · x(θ).

Remark: Since x : ΘN → [0, 1] is a stochastic decision rule, ti(θ) here is interpreted as

the expected transfer, i.e., ti(θ) = x(θ)t̃i(θ) where t̃i(θ) is agent i’s payment if pub-

lic good is provided at profile θ. This change is inconsequential because the agents
8Hellwig (2003) points out that this assumption is crucial for the result. Indeed, he completely overturns

the result of Mailath and Postlewaite (1990) by isolating the effect of changes in the number of participants,

while keeping cost technologies fixed.

7



are assumed to be risk-neutral. Then the ex post budget balance constraint (BB) is

the same as before, i.e.,
∑

i∈N ti(θ) = c(N)x(θ), but it has a different implication: if∑
i∈N ti(θ) = c(N)x(θ), then, for each θ ∈ ΘN ,

x(θ)

(∑
i∈N

t̃i(θ)− c(N)

)
= 0,

which implies ∑
i∈N

t̃i(θ) = c(N) when x(θ) > 0.

The literature often assumes that every agent must participate in the mechanism; oth-

erwise, he obtains a utility of zero. See, for example, Börgers (2015) for the details.9

With this, we introduce the individual rationality constraint.

Definition 5 A mechanism (x, t) satisfies the interim individual rationality (IIR) if, for

each i ∈ N and θi ∈ Θ,∑
θ−i∈ΘN−1

PN−1(θ−i) [θix(θi, θ−i)− ti(θi, θ−i)] ≥ 0.

We introduce a stronger version of individual rationality.

Definition 6 A mechanism (x, t) satisfies ex post individual rationality (EPIR) if, for each

i ∈ N , θi ∈ Θ and θ−i ∈ ΘN−1,

θix(θi, θ−i)− ti(θi, θ−i) ≥ 0.

Note that ex post individual rationality implies interim individual rationality.

1.3 When the First-Best is Implementable

In this section, we will investigate the existence of mechanisms satisfying BIC, IIR,

EFF, and BB.
9Saijo and Yamato (1999) assume instead that each agent can not be excluded from the consumption of

the public good even if he decides not to participate in the mechanism. Although the individual rationality

of Saijo and Yamato (1999) is a lot more demanding than EPIR, we nevertheless establish a few negative

results. Thus, we rather stick to our weaker individual rationality. The reader is referred to Saijo and

Yamato (1999) for the discussion of their individual rationality constraints. Yenmez (2013) considers a

similar constraint in a one-to-one matching environment.
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1.3.1 Preliminaries

We call a mechanism (x, t) the first-best solution if x is the efficient decision rule and

(x, t) satisfies ex post budget balance. Recall that x∗ : ΘN → [0, 1] denotes the efficient

decision rule. In order for any mechanism (x∗, t) to satisfy ex post budget balance, we set

tN(θ) = x∗(θ) · c(N) −
∑
i 6=N

ti(θ). As usual, the vector θ = (θ1, θ2, · · · , θN) denotes the

types of all agents and the vector θ−i = (θ1, θ2, · · · , θi−1, θi+1, · · · , θN) the types of all

agents other than i. The vector (θ′i, θ−i) = (θ1, θ2, · · · , θi−1, θ
′
i, θi+1, · · · , θN).

In what follows, we construct the transfer rule t = (t1, . . . , tN) such that the direct

mechanism (x∗, t) satisfies BIC, IIR, EFF, and BB.

We consider the following modification of the Vickrey-Clarke-Groves mechanism

(VCG’), which was originally proposed by Kos and Manea (2009) in a bilateral trade

environment. Here we aim to adapt this to our public good environment.

Definition 7 A mechanism (x∗, t
′
) is called the VCG’ mechanism if for each agent i ∈ N

and each θ ∈ ΘN ,

t′i(θ) =


min{θ̃i ∈ Θ :

∑
j 6=i

θj + θ̃i > c(N)} if x∗(θ) = 1

0 otherwise.

(1)

In the VCG’ mechanism, when the public good is provided, each agent’s payment is

equal to the lowest possible type which makes sure that the total valuation is higher than

the cost.

It is easy to see that the VCG’ mechanism satisfies EPIR. We move on to the incentive

compatibility of the VCG’ mechanism.

Claim 1 The VCG’ mechanism satisfies DSIC.

Proof : Fix θm, θn ∈ Θ such that θm > θn arbitrarily. We write down the DSIC con-

straints for these two types: for any θ−i ∈ ΘN−1,

ICθm→θn : θmx∗(θm, θ−i)− ti(θm, θ−i) > θmx∗(θn, θ−i)− ti(θn, θ−i),

ICθn→θm : θnx∗(θn, θ−i)− ti(θn, θ−i) > θnx∗(θm, θ−i)− ti(θm, θ−i),
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where ICθm→θn stands for the incentive constraint which prevents type θm from pretend-

ing to be type θn. We further rewrite the DSIC constraints: for any θ−i ∈ ΘN−1,

ICθm→θn : ti(θ
m, θ−i)− ti(θn, θ−i) 6 θm (x∗(θm, θ−i)− x∗(θn, θ−i)) , (2)

ICθn→θm : ti(θ
m, θ−i)− ti(θn, θ−i) > θn (x∗(θm, θ−i)− x∗(θn, θ−i)) . (3)

We consider the following three cases:

1. if c(N)−
∑

j 6=i θj > θm > θn, then x∗(θm, θ−i) = x∗(θn, θ−i) = 0 and t′i(θ
m, θ−i) =

t′i(θ
n, θ−i) = 0. In this case, for (2), LHS = RHS = 0 and thus ICθm→θn is satis-

fied; on the other hand, for (3), LHS = RHS = 0 and hence ICθn→θm is satisfied;

2. if θm > c(N) −
∑

j 6=i θj > θn, then x∗(θm, θ−i) = 1 and x∗(θn, θ−i) = 0. By

definition, t′i(θ
m, θ−i) ∈ (θn, θm] and t′i(θ

n, θ−i) = 0. In this case, for (2), LHS 6

θm = RHS and thus ICθm→θn is satisfied; on the other hand, for (3), LHS > θn =

RHS and thus ICθn→θm is satisfied;

3. if θm > θn > c(N)−
∑

j 6=i θj , then x∗(θm, θ−i) = x∗(θn, θ−i) = 1 and t′i(θ
m, θ−i) =

t′i(θ
n, θ−i) > 0. In this case, for (2), LHS = RHS = 0 and thus ICθm→θn is satis-

fied; on the other hand, for (3), LHS = RHS = 0 and hence ICθn→θm is satisfied.

Therefore, the VCG’ mechanism satisfies DSIC. �

We also re-express the transfer rule of the VCG’ mechanism.

Claim 2 The transfer rule in the VCG’ mechanism can be rewritten as follows: for each

i ∈ N , θm ∈ Θ, and θ−i ∈ ΘN−1,

t′i(θ
m, θ−i) =

m∑
l=1

θl
(
x∗(θl, θ−i)− x∗(θl−1, θ−i)

)
, (4)

where with abuse of notation, we slightly expand the domain of x∗ by including θ0 < 0 as

a normalization such that x∗(θ0, θ−i) = 0 for every θ−i ∈ ΘN−1.

Proof : Observe that for every θl ∈ Θ, x∗(θl, θ−i) is either 0 or 1, and x∗(θl, θ−i) >

x∗(θl−1, θ−i) because
∑

j 6=i θj + θl >
∑

j 6=i θj + θl−1. So, for each i ∈ N , θm ∈ Θ, and

θ−i ∈ ΘN−1,
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1. if x∗(θm, θ−i) = 0, then t′i(θ
m, θ−i) = 0 according to (1). On the other hand, in

this case, x∗(θl, θ−i) = 0 for each l < m, and the right-hand side of (4) is equal to
m∑
l=1

θl(0− 0) = 0, which is the same as t′i(θ
m, θ−i).

2. if x∗(θm, θ−i) = 1, then there exists l̄ 6 m such that x∗(θl̄, θ−i) = 1 and x∗(θl̄−1, θ−i) =

0, or equivalently,
∑

j 6=i θj + θm >
∑

j 6=i θj + θl̄ > c(N) >
∑

j 6=i θj + θl̄−1. Hence,

t′i(θ
m, θ−i) = θl̄ according to (1). On the other hand, the right-hand side of (4)

becomes
m∑
l=l̄

θl
(
x∗(θl, θ−i)− x∗(θl−1, θ−i)

)
= θl̄(1− 0) +

m∑
l=l̄+1

θl(1− 1) = θl̄,

which is the same as t′i(θ
m, θ−i) in this case.

�

1.3.2 The Existence of Mechanisms satisfying BIC, IIR, EFF, and BB

We will show that the VCG’ mechanism maximizes the ex ante budget surplus among

all mechanisms satisfying BIC, IIR, and EFF. To establish this, we need to compute the

ex ante budget surplus of any decision efficient mechanism (x∗, t). This result reduces

our search for an appropriate mechanism to the class of the VCG’ mechanisms.

To simplify the notation, for each agent i ∈ N in a mechanism (x, t), we denote by

x̄i(θi) the expected probability that the public good is provided and by t̄i(θi) agent i’s

expected payment “when he is of type θi,” respectively. That is,

x̄i(θi) ≡
∑

θ−i∈ΘN−1

PN−1(θ−i)x(θi, θ−i),

and

t̄i(θi) ≡
∑

θ−i∈ΘN−1

PN−1(θ−i)ti(θi, θ−i).

In particular, for the VCG’ mechanism, we have

x̄∗i (θi) =
∑

θ−i∈ΘN−1

PN−1(θ−i)x
∗(θi, θ−i);

t̄′i(θ
m) =

∑
θ−i∈ΘN−1

PN−1(θ−i)
m∑
l=1

θl
(
x∗(θl, θ−i)− x∗(θl−1, θ−i)

)
=

m∑
l=1

θl
(
x̄∗i (θ

l)− x̄∗i (θl−1)
)
.

11



Now, we can compute the ex ante budget surplus Πea(x
∗) of any decision efficient

mechanism (x∗, t):

Πea(x
∗) ≡

∑
θ∈ΘN

PN(θ)

(∑
i∈N

ti(θ)− c(N)x∗(θ)

)
=

∑
i∈N

∑
θ∈ΘN

PN(θ)ti(θ)− c(N)
∑
θ∈ΘN

PN(θ)x∗(θ)

=
∑
i∈N

∑
θi∈Θ

P (θi)

 ∑
θ−i∈ΘN−1

PN−1(θ−i)ti(θi, θ−i)


−c(N)

∑
θi∈Θ

P (θi)

 ∑
θ−i∈ΘN−1

PN−1(θ−i)x
∗(θ)


=

∑
i∈N

∑
θi∈Θ

P (θi)t̄i(θi)− c(N)
∑
θi∈Θ

P (θi)x̄
∗
i (θi).

So, t̄i(θi) for each agent i and θi ∈ Θ must be as large as possible in order to achieve the

maximum ex ante expected budget surplus. Our objective here is to find their maximum

values among all mechanisms satisfying BIC and IIR.

We write down the lowest type’s IIR and the downward adjacent BIC constraints for

each agent i in any decision efficient mechanism (x∗, t):

IRθ1 : θ1x̄∗i (θ
1)− t̄i(θ1) > 0;

ICθm→θm−1 : θmx̄∗i (θ
m)− t̄i(θm) > θmx̄∗i (θ

m−1)− t̄i(θm−1).

We further rewrite the BIC constraints:

ICθm→θm−1 : t̄i(θ
m)− t̄i(θm−1) ≤ θm

(
x̄∗i (θ

m)− x̄∗i (θm−1)
)
.

We are ready to state the key result of this paper.

Theorem 1 The VCG’ mechanism (x∗, t
′
) maximizes the ex ante budget surplus among

all mechanisms satisfying BIC, IIR, and EFF.10 Moreover, the ex ante budget surplus of

the VCG’ mechanism Π
′
ea(x

∗) is given as follows:

Π′ea(x
∗) =

M−1∑
m=1

x̄∗i (θ
m)

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)− c(N)P (θm)

)
+ x̄∗i (θ

M)
(
NθM − c(N)

)
P (θM). (5)

10Since the VCG’ mechanism satisfies DSIC and EPIR, then it also satisfies BIC and IIR.
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Proof : From IRθ1 , we know that for each agent i ∈ N ,

t̄i(θ
1) 6 θ1x̄∗i (θ

1) = t̄′i(θ
1).

If θm > θ1, or equivalently, m > 1, then adding IRθ1 and ICθl→θl−1 for every 2 6 l 6 m,

we obtain that for each agent i ∈ N ,

t̄i(θ
m) 6

m∑
l=1

θl
(
x̄∗i (θ

l)− x̄∗i (θl−1)
)

= t̄′i(θ
m).

Therefore, each type has the largest expected payment in the VCG’ mechanism, and thus

the VCG’ mechanism maximizes the ex ante expected budget surplus. Thus, it only re-

mains to compute Π
′
ea:

Π′ea(x
∗) =

∑
i∈N

∑
θi∈Θ

P (θi)t̄
′
i(θi)− c(N)

∑
θi∈Θ

P (θi)x̄
∗
i (θi)

=
∑
i∈N

M∑
m=1

P (θm)t̄′i(θ
m)− c(N)

M∑
m=1

P (θm)x̄∗i (θ
m)

= N
M∑
m=1

P (θm)
m∑
l=1

θl
(
x̄∗i (θ

l)− x̄∗i (θl−1)
)
− c(N)

M∑
m=1

P (θm)x̄∗i (θ
m)(

recall the definition of t̄′i(θ
m)
)

= N
M∑
m=1

θm
(
x̄∗i (θ

m)− x̄∗i (θm−1)
) M∑
l=m

P (θl)− c(N)
M∑
m=1

P (θm)x̄∗i (θ
m)

=
M−1∑
m=1

x̄∗i (θ
m)

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)− c(N)P (θm)

)
+x̄∗i (θ

M)
(
NθM − c(N)

)
P (θM).

We thus obtain the desired expression for Π
′
ea(x

∗) as in (5). �

The main implication of Theorem 1 is that if there exists a mechanism satisfying BB

together with BIC, IIR and EFF, then the VCG’ mechanism must achieve a nonnegative ex

ante budget surplus. On the other hand, if the VCG’ mechanism generates a nonnegative

ex ante budget surplus, we may redistribute the ex ante surplus in such a way that we can

construct a mechanism that satisfies BB as well as BIC, IIR, and EFF. We formally state

the result below.
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Corollary 1 There exists a mechanism (x∗, t) satisfying BIC, IIR, EFF, and BB if and

only if Π′ea(x
∗) > 0.11

Proof : We first prove the necessity of Π′ea(x
∗) > 0. Suppose that (x∗, t) satisfies BIC,

IIR, EFF, and BB. Then (x∗, t) has zero ex ante expected budget surplus. By Theorem 1,

we obtain Π′ea(x
∗) > 0.

We now prove the sufficiency. Consider the mechanism (x∗, t) where

t1(θ) = (t′1(θ)− Π′ea(x
∗)) +

(
c(N)x∗(θ)−

∑
i∈N

t′i(θ) + Π′ea(x
∗)

)

−

(
c(N)x̄∗1(θ1)−

∑
i∈N

t̄′i(θ1) + Π′ea(x
∗)

)
;

t2(θ) = t′2(θ) +

(
c(N)x̄∗1(θ1)−

∑
i∈N

t̄′i(θ1) + Π′ea(x
∗)

)
;

ti(θ) = t′i(θ) for any i ∈ N\{1, 2}.

Then, the ex post budget balance (BB) is satisfied because for all θ ∈ ΘN ,

N∑
i=1

ti(θ) =
N∑
i=1

t′i(θ)− Π′ea(x
∗) +

(
c(N)x∗(θ)−

N∑
i=1

t′i(θ) + Π′ea(x
∗)

)
= c(N)x∗(θ).

Besides, the interim expected payment of each agent i ∈ N is obtained as follows.

1. For i = 1, t̄1(θ1) = t̄′1(θ1)− Π′ea(x
∗) 6 t̄′1(θ1) because Π

′
ea(x

∗) ≥ 0;

11This result is considered a discrete type space counterpart of Theorem 2 of Krishna and Perry (2000)

in the context of the public good provision problem.
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2. For i = 2,

t̄2(θ2) = t̄′2(θ2) +
∑

θ−2∈ΘN−1

PN−1(θ−2)

(
c(N)x̄∗1(θ1)−

∑
i∈N

t̄′i(θ1) + Π′ea(x
∗)

)

= t̄′2(θ2) +
∑
θ1∈Θ

P (θ1)

(
c(N)x̄∗1(θ1)−

∑
i∈N

t̄′i(θ1)

)
+ Π′ea(x

∗)(
∵ c(N)x̄∗1(θ1)−

∑
i∈N

t̄′i(θ1) + Π′ea(x
∗) only depends on θ1

)

= t̄′2(θ2) +
∑
θ∈ΘN

PN(θ)

(
c(N)x∗(θ)−

∑
i∈N

t′i(θ)

)
+ Π′ea(x

∗)

(∵ types are independently distributed)

= t̄′2(θ2)− Π′ea(x
∗) + Π′ea(x

∗) = t̄′2(θ2);

3. For i ∈ N\{1, 2}, t̄i(θi) = t̄′i(θi).

Hence, the interim expected transfers of all agents in the mechanism (x∗, t) are the same

as those in the VCG’ mechanism (x∗, t′), except agent 1. In particular, agent 1’s interim

expected transfer in mechanism (x∗, t) differs from that in (x∗, t′) by a negative constant

−Π′ea(x
∗) 6 0. Therefore, (x∗, t) also satisfies BIC and IIR. �

1.3.3 Efficient Mechanisms in Large Economies

Now, let us drop BB and investigate the implication of mechanisms satisfying BIC,

IIR, and EFF in large economies. Let x∗[N ] denote the efficient decision rule in an econ-

omy with N agents. In the theorem below, we shall show that in any nontrivial case,

the VCG’ mechanism results in the per capita ex ante budget deficit in large economies.

For this result, we assume limN→∞
∑

θ∈ΘN P
N(θ)x∗[N ](θ) > 0, which means that the ex

ante probability that the efficient decision rule provides the public good converges to some

positive probability, as the population size N goes to infinity. This assumption strikes us

as being innocuous because if it is not satisfied, the public good will not be expected to

be provided in large economies.
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Theorem 2 Assume limN→∞
∑

θ∈ΘN P
N(θ)x∗[N ](θ) > 0. Then, as the size of the econ-

omy gets large (i.e., N →∞), any mechanism satisfying BIC, IIR, and EFF results in the

per capita ex ante budget deficit, i.e., limN→∞Π′ea(x
∗[N ])/N < 0.

Proof : We have assumed that θ1 < limN→∞ c(N)/N ≤ θM . We take the expression for

Π
′
ea(x

∗[N ]) from Theorem 1:

Π′ea(x
∗[N ]) =

M−1∑
m=1

x̄∗i [N ](θm)

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)− c(N)P (θm)

)
+ x̄∗i [N ](θM)

(
NθM − c(N)

)
P (θM),

where x̄∗i [N ](θm) =
∑

θ−i∈ΘN−1 PN−1(θ−i)x
∗(θm, θ−i) for each θm ∈ Θ. We use the

following lemma whose proof is in the Appendix.

Lemma 1 lim
N→∞

x̄∗i [N ](θm) = lim
N→∞

x̄∗i [N ](θn) for any θm, θn ∈ Θ and i ∈ N .

This lemma says that the probability that any agent can be pivotal is approximately

zero in large economies. Therefore, for N large enough,

Π′ea(x
∗[N ]) ≈ x̄∗i [N ](θM)

{
M−1∑
m=1

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)

)
+NθMP (θM)− c(N)

}

≈ x̄∗i [N ](θM)

{
M∑
m=2

Nθm

(
M∑
l=m

P (θl)−
M∑
l=m

P (θl)

)
+Nθ1

M∑
l=1

P (θl)− c(N)

}
≈ x̄∗i [N ](θM)

(
Nθ1 − c(N)

)
.

We next use the following lemma whose proof is also in the Appendix.

Lemma 2 lim
N→∞

∑
θ∈ΘN

PN(θ)x∗[N ](θ) = lim
N→∞

x̄∗i [N ](θM).

This lemma says that the ex ante expected probability of public good provision is

approximately the same as the interim expected probability of public good provision in

large economies. Hence,

lim
N→∞

Π′ea(x
∗[N ])

N
= lim

N→∞
x̄∗i [N ](θM)

(
θ1 − c(N)

N

)
= lim

N→∞

(∑
θ∈ΘN

PN(θ)x∗[N ](θ)

)(
θ1 − c(N)

N

)
< 0,
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because limN→∞
∑

θ∈ΘN P
N(θ)x∗[N ](θ) > 0 and θ1 < limN→∞ c(N)/N . This com-

pletes the proof of Theorem 2. �

So, as the economy gets large, if the ex ante probability that the efficient decision

rule x∗ provides the public good is strictly positive, the VCG’ mechanism results in the

per capita ex ante budget deficit. Combining Theorem 2 and Corollary 1, we conclude

that there are no mechanisms satisfying BIC, IIR, EFF, and BB in large economies. We

formally state this result below.

Corollary 2 Assume limN→∞
∑

θ∈ΘN P
N(θ)x∗[N ](θ) > 0. Then, as the size of the econ-

omy gets large (i.e., N →∞), there are no mechanisms satisfing BIC, IIR, EFF, and BB.

Therefore, the existence of positive results in large economies, if any, only lies in the

trivial cases: (i) limN→∞
∑

θ∈ΘN P
N(θ)x∗[N ](θ) = 0, i.e., the ex ante expected proba-

bility that the efficient decision rule x∗ provides the public good converges to zero as the

size of the economy gets large; or (ii) θ1 ≥ c(N)/N , i.e., the probability that providing

the public good is efficient is one.

Proposition 1 Suppose that either (i) limN→∞
∑

θ∈ΘN P
N(θ)x∗[N ](θ) = 012 or (ii) θ1 ≥

c(N)/N holds. Then, as the size of the economy gets large (i.e., N → ∞), there exists a

mechanism satisfying BIC, IIR, EFF, and BB in both cases.

Proof : Recall that in the proof of Theorem 2, we obtain

lim
N→∞

Π′ea(x
∗[N ])

N
= lim

N→∞

(∑
θ∈ΘN

PN(θ)x∗[N ](θ)

)(
θ1 − c(N)

N

)
.

Suppose that (i) limN→∞
∑

θ∈ΘN P
N(θ)x∗[N ](θ) = 0. Then, limN→∞Π′ea(x

∗[N ])/N =

0 and by Corollary 1, there exists a mechanism (x∗, t) satisfying BIC, IIR, EFF, and BB.

12In this case, as the size of the economy gets large (i.e., N → ∞), the ex ante probability that the

public good is provided converges to zero. This is consistent with the analysis of Section 4.2 of Ledyard

and Palfrey (1994).
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Suppose that (ii) θ1 ≥ c(N)/N . Then, limN→∞Π′ea(x
∗[N ])/N ≥ 0 and by Corollary

1, there exists a mechanism (x∗, t) satisfying BIC, IIR, EFF, and BB. For example, the

following mechanism (x∗, t) where for any θ ∈ ΘN ,

x∗(θ) = 1,

and

ti(θ) = c(N)/N for every i ∈ N ,

satisfies BIC, IIR, EFF, and BB. �

1.3.4 Simulation Results

In the previous subsection, we have shown that when N is sufficiently large, there

exists no mechanism satisfying BIC, IIR, EFF, and BB. Now we will run simulations to

find out when a mechanism satisfying BIC, IIR, EFF, and BB starts to disappear. For

the sake of simplicity, we confine ourselves to a two type environment in this subsection.

That is, Θ = {θ1, θ2}. Assume P (θ1) = ε ∈ (0, 1) and θ1 < c(N)/N ≤ θ2.

In this case, there must exist k ∈ (0, N ] such that c(N) = kθ2 + (N −k)θ1 is satisfied

for any c(N) ∈ (Nθ1, Nθ2]. We obtain k = (c(N)−Nθ1) /(θ2 − θ1). Note that k need

not be an integer and k/N = (c(N)/N − θ1) /(θ2 − θ1) > 0 because c(N)/N > θ1.

Hence, k is an increasing function of N and in what follows, we denote k by k(N).

Define k∗(N) ≡ dk(N)e, the least integer greater than or equal to k(N) for every N .

Then we have

(k∗(N)− 1)θ2 + (N − k∗(N) + 1)θ1 < c(N) ≤ k∗(N)θ2 + (N − k∗(N))θ1

for every N and the efficient decision rule x∗ can be rewritten as follows:

x(θ) =

1 if at least k∗(N) agents are of type θ2

0 otherwise.

The interim expected probability of public good provision is computed below: for each
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agent i ∈ N ,

x̄∗i (θ
1) = PN−1(θ−i)x

∗(θ1, θ−i) =
N−1∑

k=k∗(N)

pN−1(k);

x̄∗i (θ
2) = PN−1(θ−i)x

∗(θ2, θ−i) =
N−1∑

k=k∗(N)−1

pN−1(k),

where pN−1(k) is the probability that k out of (N − 1) agents are of type θ2, i.e.,

pN−1(k) ≡ εN−1−k · (1− ε)k
(
N − 1

k

)
.

We show the following property:

Lemma 3

Π′ea(x
∗) < (θ2 − θ1)Π̄ea(x

∗)

where

Π̄ea(x
∗) ≡ −(k∗(N)− 1)

N−1∑
k=k∗(N)

pN−1(k) + (1− ε)(N − k∗(N) + 1)pN−1(k∗(N)− 1).

Proof : The proof is relegated to the Appendix. �

Therefore, if Π̄ea(x
∗) > 0, then Π′ea(x

∗) > 0 can be satisfied and by Corollary 1, we

are able to construct a transfer rule t such that the direct mechanism (x∗, t) satisfies BIC,

IIR, EFF, and BB.

In what follows, we run simulations to find out when Π̄ea(x
∗) > 0 is no longer satis-

fied. We first fix k(N) = (1 − ε)N and k∗(N) = d(1 − ε)Ne.13 Recall that (1 − ε) is

the probability that a given agent is of type θ2. So, if θ2 is more likely to occur than θ1 for

each agent, i.e., 1 − ε > 1/2, then it is efficient to provide the public good if more than

N/2 agents are of type θ2.

There are two inputs in the simulation: N > 2 and ε ∈ (0, 1). The output is Π̄ea(x
∗).

The simulation results are shown in Table 1 below and the positive outputs are highlighted

in red color.
13In this case, the VCG’ mechanism results in per capita ex ante budget deficit as the size of economy

gets large. The details of this assertion are in the Appendix.

19



We are particularly interested in finding the cutoff N0 such that Π̄ea(x
∗) > 0 for all

N 6 N0 and Π̄ea(x
∗) < 0 for all N > N0. For example, we consider when ε = 0.5,

N0 = 4. This implies that no mechanisms satisfy BIC, IIR, EFF, and BB in an economy

with more than four agents. This is an extremely small economy. However, N0 reaches its

local maximum at the two extremes of εwhere either ε→ 0 or ε→ 1. For example, when

ε = 0.9, N0 = 18. Nevertheless, these are still relatively small economies. Therefore, we

conclude that the positive results exist only in relatively small economies and the negative

results in large economies are quite prevalent.
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Table 1: Simulation Results for Π̄ea(x
∗)

ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.4 ε = 0.5 ε = 0.6 ε = 0.7 ε = 0.8 ε = 0.9

N = 2 0.810 0.640 0.490 0.360 0.500 0.480 0.420 0.320 0.180
N = 3 0.729 0.512 0.343 0.216 0.250 0.224 0.441 0.384 0.243
N = 4 0.656 0.410 -0.069 0.086 0.063 0.166 0.181 0.410 0.292
N = 5 0.590 -0.573 -0.144 -0.328 -0.063 0.028 0.146 0.410 0.328
N = 6 0.531 -0.655 -0.168 -0.389 -0.375 -0.082 0.068 0.147 0.354
N = 7 0.478 -0.682 -1.000 -0.373 -0.406 -0.289 -0.025 0.127 0.372
N = 8 0.430 -0.671 -0.980 -0.983 -0.816 -0.289 -0.134 0.091 0.383
N = 9 0.387 -0.638 -0.909 -0.908 -0.770 -0.549 -0.274 0.040 0.387
N = 10 -2.402 -2.329 -2.030 -1.661 -1.262 -0.850 -0.251 -0.020 0.387
N = 11 -2.441 -2.282 -1.932 -1.541 -1.146 -0.765 -0.411 -0.101 0.124
N = 12 -2.448 -2.190 -1.783 -1.365 -1.710 -1.112 -0.598 -0.175 0.119
N = 13 -2.429 -2.068 -1.604 -2.250 -1.534 -0.947 -0.803 -0.260 0.111
N = 14 -2.389 -1.927 -2.967 -2.027 -2.162 -1.331 -0.682 -0.353 0.099
N = 15 -2.333 -4.128 -2.750 -3.019 -1.929 -1.744 -0.907 -0.454 0.083
N = 16 -2.265 -3.976 -2.500 -2.761 -2.616 -1.515 -1.151 -0.405 0.064
N = 17 -2.187 -3.786 -4.067 -2.455 -2.331 -1.964 -0.946 -0.516 0.042
N = 18 -2.101 -3.569 -3.790 -3.554 -3.073 -1.669 -1.204 -0.636 0.017
N = 19 -2.011 -3.335 -3.477 -3.209 -2.738 -2.148 -1.481 -0.762 -0.009
N = 20 -6.375 -5.954 -5.221 -4.395 -3.531 -2.651 -1.202 -0.893 -0.038
N = 21 -6.281 -5.710 -4.890 -4.020 -3.150 -2.301 -1.490 -0.740 -0.104
N = 22 -6.164 -5.434 -4.520 -3.603 -3.991 -2.835 -1.795 -0.880 -0.136
N = 23 -6.026 -5.133 -4.129 -4.881 -3.566 -2.427 -2.113 -1.027 -0.170
N = 24 -5.870 -4.817 -6.041 -4.430 -4.452 -2.987 -1.764 -1.180 -0.207
N = 25 -5.701 -7.797 -5.620 -5.783 -3.985 -3.567 -2.096 -1.337 -0.246
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1.4 When the First Best is Not Implementable

Thus far, we conclude, especially by Corollary 2, that there are no mechanisms satis-

fying BIC, IIR, EFF, and BB in large economies. The simulation results in the previous

section even suggest that there are no mechanisms satisfying BIC, IIR, EFF, and BB in

a relatively small economy. In this section, we drop decision efficiency (EFF) from the

requirements and mainly consider the case where Π′ea(x
∗) < 0, which together with our

Corollary 1 implies that no mechanism (x∗, t) satisfies BIC, IIR, EFF, and BB.

1.4.1 Preliminaries

First, we define the expected social welfare of any mechanism (x, t):

SW (x) =
∑
θ∈ΘN

PN(θ)x(θ)

(∑
i∈N

θi − c(N)

)
.

Clearly, the decision efficient rule x∗ maximizes the expected social welfare. However, in

this section, we include the case that no mechanism (x∗, t) satisfies BIC, IIR and BB.

Recall that x̄i(θi) is the interim expected probability of public good provision and that

t̄i(θi) is the expected payment of agent i of type θi. We characterize the mechanisms

satisfying BIC below. We say that a decision rule x is implementable if there exists

a transfer rule t : ΘN → RN such that the mechanism (x, t) satisfies BIC. We first

characterize the implementability in terms of monotonicity of a decision rule.

Lemma 4 A decision rule x is implementable if and only if, for each i ∈ N and θm, θn ∈

Θ with m > n, x̄i(θm) ≥ x̄i(θ
n).

Proof : Now we can write down the BIC constraints for any mechanism (x, t): for any

m 6= n,

ICθm→θn : θmx̄i(θ
m)− t̄i(θm) > θmx̄i(θ

n)− t̄i(θn);

ICθn→θm : θnx̄i(θ
n)− t̄i(θn) > θnx̄i(θ

m)− t̄i(θm).

We further rewrite the BIC constraints: for any m 6= n,

ICθm→θn : t̄i(θ
m)− t̄i(θn) ≤ θm (x̄i(θ

m)− x̄i(θn)) ; (6)

ICθn→θm : t̄i(θ
m)− t̄i(θn) ≥ θn (x̄i(θ

m)− x̄i(θn)) . (7)
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Note that we say that a decision rule x is implementable if there exists a transfer rule t

such that (x, t) satisfies BIC. So, from (6) and (7), we know that x is implementable if

and only if (θm − θn) (x̄i(θ
m)− x̄i(θn)) > 0, i.e., x̄i(θm) > x̄i(θ

n) for any m > n. �

Second, we compute the ex ante budget surplus for the mechanism (x, t):

Πea(x
∗) ≡

∑
θ∈ΘN

PN(θ)

(∑
i∈N

ti(θ)− c(N)x(θ)

)
=

∑
i∈N

∑
θ∈ΘN

PN(θ)ti(θ)− c(N)
∑
θ∈ΘN

PN(θ)x(θ)

=
∑
i∈N

∑
θi∈Θ

P (θi)

 ∑
θ−i∈ΘN−1

PN−1(θ−i)ti(θi, θ−i)


−c(N)

∑
θi∈Θ

P (θi)

 ∑
θ−i∈ΘN−1

PN−1(θ−i)x(θ)


=

∑
i∈N

∑
θi∈Θ

P (θi)t̄i(θi)− c(N)
∑
θi∈Θ

P (θi)x̄i(θi).

So, t̄i(θi) for each agent i and θi ∈ Θ must be as large as possible in order to achieve the

maximum ex ante expected budget surplus.

Finally, let us introduce the tight mechanism (x, tT ), which was originally proposed

by Kos and Manea (2009) in a bilateral trade environment. We adapt this to our public

good environment.

Definition 8 A mechanism (x, tT ) is called the tight mechanism if for each agent i ∈ N ,

θm ∈ Θ and θ−i ∈ ΘN−1,

tTi (θm, θ−i) =
m∑
l=1

θl
(
x(θl, θ−i)− x(θl−1, θ−i)

)
,

where with abuse of notation, we slightly expand the domain of x by including θ0 < 0 as

a normalization such that x(θ0, θ−i) ≡ 0 for every θ−i ∈ ΘN−1.

Remark: Note that if x = x∗, then the tight mechanism indeed reduces to the VCG’

mechanism we discussed in the previous section.

In the tight mechanism, an agent’s payment is equal to his marginal contribution to the

public good. The interim expected payment for agent i of type θm in the tight mechanism
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is

t̄T (θm) =
∑

θ−i∈ΘN−1

PN−1(θ−i)
m∑
l=1

θl
(
x(θl, θ−i)− x(θl−1, θ−i)

)
=

m∑
l=1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)
,

where x̄i(θi) ≡
∑

θ−i∈ΘN−1 PN−1(θ−i)x(θi, θ−i) for every θi ∈ Θ. We shall show that the

tight mechanism satisfies BIC and IIR.

Claim 3 The tight mechanism satisfies BIC and IIR.

Proof : Fix θm, θn ∈ Θ such that θm > θn arbitrarily. Recall that the BIC constraints for

a mechanism (x, t) are given as follows:

ICθm→θn : t̄i(θ
m)− t̄i(θn) ≤ θm (x̄i(θ

m)− x̄i(θn)) ;

ICθn→θm : t̄i(θ
m)− t̄i(θn) ≥ θn (x̄i(θ

m)− x̄i(θn)) .

Note that in the tight mechanism (x, tT ),

t̄Ti (θm)− t̄Ti (θn) =
m∑
l=1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)
−

n∑
l=1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)

=
m∑

l=n+1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)

≤
m∑

l=n+1

θm
(
x̄i(θ

l)− x̄i(θl−1)
)

(∵ θl ≤ θm for any l ≤ m)

= θm
m∑

l=n+1

(
x̄i(θ

l)− x̄i(θl−1)
)

= θm (x̄i(θ
m)− x̄i(θn)) .

Hence, the tight mechanism (x, tT ) satisfies ICθm→θn . In particular, when n = m− 1,

t̄Ti (θm)− t̄Ti (θm−1) = θm
(
x̄i(θ

m)− x̄i(θm−1)
)
.

In other words, each agent’s downward adjacent BIC constraint is binding. Also,

t̄Ti (θm)− t̄Ti (θn) =
m∑

l=n+1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)

>

m∑
l=n+1

θn
(
x̄i(θ

l)− x̄i(θl−1)
)

(∵ θl > θn for any l > n)

= θn
m∑

l=n+1

(
x̄i(θ

l)− x̄i(θl−1)
)

= θn (x̄i(θ
m)− x̄i(θn)) .

24



Hence, the tight mechanism (x, tT ) satisfies ICθn→θm .

Besides, we can write down the IIR constraints of any mechanism (x, t) as follows:

for any θm ∈ Θ,

IRθm : θmx̄i(θ
m)− t̄i(θm) ≥ 0⇒ t̄i(θ

m) ≤ θmx̄i(θ
m).

In the tight mechanism (x, tT ), if m > 1, we have

t̄Ti (θm) =
m∑
l=1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)

= θmx̄i(θ
m) +

m−1∑
l=1

(θl − θl+1)x̄i(θ
l)

< θmx̄i(θ
m). (∵ θl < θl+1 for any l)

On the other hand, if m = 1,

t̄Ti (θm) = t̄Ti (θ1) = θ1
(
x̄i(θ

1)− x̄i(θ0)
)

= θ1x̄i(θ
1).

In other words, each agent’s lowest type’s IIR constraint is binding. Therefore, the tight

mechanism (x, tT ) satisfies IIR. �

Therefore, the tight mechanism (x, tT ) has the following property: each agent’s down-

ward adjacent incentive compatibility constraints as well as his lowest type’s individual

rationality constraints are binding.

1.4.2 Characterizations of Mechanisms Satisfying BIC, IIR, and BB

Recall that a decision rule x is implementable if there exists a transfer rule t such that

the mechanism (x, t) satisfies BIC. We now establish the following theorem. This reduces

our search for mechanisms to the class of the tight mechanisms.

Theorem 3 Let x be an implementable decision rule. Then, the tight mechanism (x, tT )

maximizes the ex ante budget surplus among all mechanisms satisfying BIC and IIR.

Moreover, we obtain the ex ante budget surplus of the tight mechanism as follows:

ΠT
ea(x) =

M−1∑
m=1

x̄i(θ
m)

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)− c(N)P (θm)

)
+ x̄i(θ

M)
(
NθM − c(N)

)
P (θM). (8)
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Proof : The proof is completed verbatim in the proof of Theorem 1, except that x∗ is

replaced by x. The complete proof is in the Appendix. �

The following corollary is a generalization of Corollary 1, which includes the case

that no mechanism (x∗, t) satisfies BIC, IIR and BB.

Corollary 3 Let x be an implementable decision rule. Then, there exists a transfer rule

t : ΘN → RN such that the mechanism (x, t) satisfies BIC, IIR, and BB if and only if

ΠT
ea(x) > 0.

Proof : The proof is completed verbatim in the proof of Corollary 1, except that x∗ is

replaced by x and the VCG’ mechanism is replaced by the tight mechanism. �

1.4.3 Mechanisms Satisfying BIC, IIR, and BB in Large Economies

We will investigate the class of mechanisms satisfying BIC, IIR, and BB in large

economies. To simplify our argument, we restrict ourselves to the two type space in this

subsection. That is, Θ = {θ1, θ2}. After imposing the anonymity assumption which will

be discussed later, we can partition all the possible type profiles based on the number of

agents with type θ2. This is certainly for its tractability. If each agent has more than two

possible types, however, we no longer have such a nice book-keeping property so that we

face a technical difficulty to keep track of all the possible type profiles. Our rationale for

focusing on a two-type setup is reflected in the following consideration: (i) the negative

result is obtained in the continuum type space; and (ii) moreover, by continuity, there is

likely to be a similar negative result on a large finite type space, which is considered an

approximation of the continuum type space.

Assume θ1 < limN→∞ c(N)/N ≤ θ2 and P (θ1) = ε where 0 < ε < 1. Then there

must exist k(N) which is an increasing function of N such that c(N) = k(N)θ2 + (N −

k(N))θ1 is satisfied. We obtain

k(N)

N
=
c(N)/N − θ1

θ2 − θ1
.

Since θ1 < limN→∞ c(N)/N ≤ θ2, 0 < limN→∞ k(N)/N ≤ 1 must be satisfied. Define

k∗(N) ≡ dk(N)e, the least integer greater than or equal to k(N) for every N .
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Denote by k(θ) the number of θ2-type agents in profile θ ∈ ΘN . In particular, if

k(θ) < k∗(N), then
∑N

i=1 θi < c(N). We impose the following assumption:

Assumption 1 Every decision rule x satisfies the following property: k(θ) < k∗(N) ⇒

x(θ) = 0.

In other words, the public good shall not be provided whenever the total surplus gen-

erated by the public good is lower than the cost of providing it. We consider this as a

mild assumption because it is satisfied in a welfare-maximizing mechanism which is in-

deed considered by Theorem 2 of Mailath and Postlewaite (1990). We also impose the

following anonymity condition on decision rules.

Assumption 2 Every decision rule x satisfies the following property: for two profiles

θ, θ
′ ∈ ΘN , x(θ) = x(θ

′
) whenever k(θ) = k(θ

′
).

In other words, the probability that the public good is provided must be the same in any

two type profiles if they have the same number of θ2-type agents as well as the same

number of θ1-type agents. This strikes us as being quite natural in large economies.

By Assumption 2, we can rewrite the decision rule x as x(k), a function of the number

of θ2-type agents which we denote by k. Let pN(k) be the probability that k out of N

agents are of type θ2. We are now ready to state the result.

Theorem 4 Suppose that there are only two types, Θ = {θ1, θ2} and Assumption 1 and

2 hold. Let {x[N ]}N be a sequence of decision rules such that for each population size

N , there exists a transfer rule t for which the mechanism (x[N ], t) satisfies BIC, IIR,

and BB in the N -agent economy.14 Then, as the size of the economy gets large (i.e.,

N → ∞), the ex ante probability that the public good is provided converges to zero, i.e.,∑N
k=1 p

N(k)x(k)→ 0.15

14The existence of such a sequence is automatically guaranteed because we consider the mechanism

(x, t) such that the public good never be provided and no transfers are made. Such a mechanism trivially

satisfies BIC, IIR, and BB and it works for any number of agents.
15Theorem 4 is considered a discrete type space counterpart of Theorem 2 of Mailath and Postlewaite

(1990).
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Proof : The proof is in the Appendix. �

The implication of this result is stronger than that of Corollary 2 in the sense that even

if we drop EFF and consider mechanisms satisfying BIC, IIR, and BB, we end up with a

negative result in large economies. This leads us to the need of dropping IIR so that we

seek for more positive results in large economies. However, we leave this for future work.

1.5 Dominant Strategy Incentive Compatibility and Ex Post Individ-

ual Rationality

Now, let us replace the Bayesian incentive compatibility (BIC) and interim individual

rationality (IIR) constraints with dominant strategy incentive compatibility (DSIC) and

ex post individual rationality (EPIR) constraints, respectively. We then investigate the

existence of mechanisms satisfying DSIC, EPIR, EFF, and BB. In this case, we could

make any distributional assumption about the type space and in particular, we could allow

for any correlation among types.

Suppose there are N > 2 agents in the economy and each agent has M > 2 types

0 ≤ θ1 < · · · < θM . We also assume that the cost of providing the public good c(N) is

an increasing function in N and Nθ1 < c(N) 6 (N − 1)θM . Recall the decision efficient

rule x∗(·): for any θ ∈ ΘN ,

x∗(θ) =

{
1 if

∑
i∈N θi ≥ c(N)

0 otherwise.

In order to satisfy BB, we assume that for every type profile θ ∈ ΘN and decision rule x,

tN(θ) = x(θ) · c(N)−
∑
i 6=N

ti(θ).

Proposition 2 Assume that Nθ1 < c(N) 6 (N − 1)θM . Then, there are no mechanisms

satisfying DSIC, EPIR, EFF, and BB.

Remark: This is considered as a dominant strategy counterpart of our Corollary 2, which

shows that there are no mechanisms satisfying BIC, IIR, EFF, and BB in large economies.

Although DSIC and EPIR each are stronger than BIC and IIR, respectively, we establish
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here the negative result even if we make no assumption over types and do not appeal to

the power of large economies. Theorem 7 of Green and Laffont (1977) shows a similar

negative result in a rich environment with a continuum type space where the agents might

have non-quasilinear preferences.

Proof : Consider the profile θ̄ where θ̄i = θM for every i ∈ N . Since c(N) 6 (N−1)θM ,

then x∗(θ̄) = x∗(θ1, θ̄−i) = 1. By DSIC, for each agent i ∈ N , we have

θM · 1− ti(θ̄) > θM · 1− ti(θ1, θ̄−i)⇒ ti(θ̄) 6 ti(θ
1, θ̄−i),

and

θ1 · 1− ti(θ1, θ̄−i) > θ1 · 1− ti(θ̄)⇒ ti(θ
1, θ̄−i) 6 ti(θ̄).

Combining the above two inequalities, we obtain that for each agent i ∈ N , ti(θ̄) =

ti(θ
1, θ̄−i). In particular, for agent N , we have

tN(θ̄) =tN(θ1, θ̄−N)

⇒ c(N)−
∑
i 6=N

ti(θ̄) =c(N)−
∑
i 6=N

ti(θ
1, θ̄−N) (∵ BB)

⇒
∑
i 6=N

ti(θ̄) =
∑
i 6=N

ti(θ
1, θ̄−N)

⇒
∑
i 6=N

ti(θ
1, θ̄−i) =

∑
i 6=N

ti(θ
1, θ̄−N). (∵ ti(θ̄) = ti(θ

1, θ̄−i) for each agent i.) (9)

Note that on the left-hand side of (9), ti(θ1, θ̄−i) denotes the payment of agent i 6= N if

he unilaterally deviates from the profile θ̄ and reports θ1; on the right-hand side of (9),

ti(θ
1, θ̄−N) denotes the payment of agent i 6= N if agent N unilaterally deviates from the

profile θ̄ and reports θ1.

For each agent i ∈ N under the profile (θ1, θ̄−i), EPIR requires θ1 ·1−ti(θ1, θ̄−i) > 0,

which is equivalent to ti(θ1, θ̄−i) ≤ θ1. So, the left-hand side of (9) must be smaller than

or equal to (N − 1)θ1. Also, for agent N , we have

θ1 · 1− tN(θ1, θ̄−N) > 0

⇒ θ1 · 1− (c(N)−
∑
i 6=N

ti(θ
1, θ̄−N)) > 0 (∵ BB)

⇒
∑
i 6=N

ti(θ
1, θ̄−N) > c(N)− θ1.
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Using (9), we summarize some of the inequalities thus obtained below:

(N − 1)θ1 ≥
∑
i 6=N

ti(θ
1, θ̄−i) =︸︷︷︸

(9)

∑
i 6=N

ti(θ
1, θ̄−N) > c(N)− θ1.

We thus obtain Nθ1 > c(N), which contradicts the assumption that c(N) > Nθ1 for any

N . �

Hence, in all nontrivial cases, we have no hope in finding mechanisms satisfying

DSIC, EPIR, EFF, and BB simultaneously, even if we focus on small finite agent economies.

Thus, we are left with the trivial cases: (i) c(N) = Nθ1 or (ii) c(N) = NθM .

Proposition 3 Suppose that either (i) c(N) = Nθ1 or (ii) c(N) = NθM holds. In both

cases, there exists a mechanism satisfying DSIC, EPIR, EFF, and BB.

Proof : Suppose that (i) c(N) = Nθ1. Then for any θ ∈ ΘN ,

x∗(θ) = 1,

and

ti(θ) = c(N)/N for any i ∈ N .

Suppose that (ii) c(N) = NθM . Then for any θ ∈ ΘN ,

x∗(θ) =

1 if all agents are of type θM

0 otherwise,

and for any i ∈ N ,

t∗i (θ) =

c(N)/N if x∗(θ) = 1

0 otherwise.

Clearly, these two mechanisms satisfy DSIC, EPIR, EFF, and BB in each case, respec-

tively. �
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1.6 Concluding Remark

This paper characterizes mechanisms satisfying BIC, IIR, BB, and/or EFF for public

good production and cost decision in a finite-type environment with risk-neutral, quasi-

linear preferences, and fixed-size projects. The main contribution of this paper is to un-

dercover the structure of public good provision mechanisms in a discrete environment

(Theorems 1 and 3) and make a coherent comparison with many papers in the literature

which deal with the continuum type space. In our discrete setup, we restore many known

results of the classic public good provision problem within the standard model.

Overall, this paper shows that even in a finite type environment, “positive results”

exist only in very small economies. Recall our simulation result in Section 3.4 in which

even five agents are sometime large enough to obtain an impossibility result. This is

largely consistent with the literature which usually assumes a continuum type space. In

particular, we show that a mechanism satisfying BIC, IIR, EFF, and BB exists only in

very small economies and as the size of the economy gets large, the probability that the

public good is provided converges to zero in any mechanism satisfying BIC, IIR, and BB.

We thus establish the robustness of the overly negative implications in the classical public

good provision problem.

Our results in large economies might even suggest the necessity of mandatory pay-

ment of taxes as opposed to voluntary contribution. Of course, if we completely ignore

this individual rationality constraint, some agent might be forced to make an extremely

large payment, which we consider unreasonable. Therefore, we seem to need some re-

strictions on the size of transfers. What would be nontrivial is that it is not clear at all how

we relax the individual rationality constraints or, in other words, how much of mandatory

payment should be allowed. This is an interesting question we leave for future research.
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2 Efficient Bilateral Trade with Interdependent Values:

The Use of Two-Stage Mechanisms

2.1 Introduction

This paper investigates efficient, voluntary bilateral trades in an interdependent values

environment. By “bilateral trade” we mean a simple trading problem in which two indi-

viduals, one of whom has a single indivisible object to sell to the other, attempt to agree

on exchange of the object for money. So, in this setup, the seller has the full property

right for the object to be sold. Efficiency adopted in this paper is an ex post notion, which

requires that (i) there be a trade of the good if and only if the buyer’s valuation for the

good is at least as high as the seller’s valuation (decision efficiency) and (ii) whatever

the buyer pays is always exactly what the seller receives (budget balance). This paper is

mainly concerned with the following normative question: when can an efficient, volun-

tary trade be implementable in this bilateral trade problem? By the well-known revelation

principle, we say that efficient, voluntary trades are possible if there exists a direct revela-

tion mechanism that satisfies Bayesian incentive compatibility (BIC), decision efficiency

(EFF), interim individual rationality (IIR), and ex post budget balance (BB). In the case

of private values (i.e., each player is certain of the value of the object at the timing of

trade), the celebrated impossibility result of Myerson and Satterthwaite (1983) shows that

there are generally no mechanisms satisfying BIC, IIR, EFF, and BB in a bilateral trade

setting. On the contrary, Cramton, Gibbons, and Klemperer (1987) show that under the

equal-share ownership, there is a mechanism satisfying BIC, IIR, EFF, and BB. Hence,

the equal-share partnership is dissolved efficiently.

In many practical instances, however, the assumption of private values is violated.

This motivates us to investigate when efficient, voluntary bilateral trades are possible in

interdependent values environments, which capture a class of situations in which the pay-

off of an agent depends not only on his own type, but also on the types (or informational

signals) of the other agents. Such interdependence is natural in many trading situations.

For instance, we consider a situation in which a seller has private information about the
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quality of the good which influences the valuations of both the seller and a potential buyer.

This type of interdependence is the very situation this paper considers. Once we turn to

interdependent values environments, however, we are well aware of bad news. We know

from Fiesler, Kittsteiner, and Moldovanu (henceforth, FKM, 2003) and Gresik (1991) that

Myerson and Satterthwaite’s impossibility result is extended to interdependent values en-

vironments. FKM (2003, Theorem 4) also show that the efficient partnership dissolution

of Cramton, Gibbons, and Klemperer (1987) cannot be extended to interdependent values

environments.

To overcome this negative message in interdependent values environments, we seek

for more positive results by looking at two-stage generalized revelation mechanisms (Mezzetti

(2004)): in the first stage, agents are asked to report their type and the allocation of

the good is determined on the type reports; after agents observe their allocation payoff,

they are asked to report their realized allocation payoff in the second stage; and finally,

the monetary transfers are finalized on the reports of both stages. In his Proposition 1,

Mezzetti (2003) establishes the generalized revelation principle, which says that it en-

tails no loss of generality to focus on two-stage generalized revelation mechanisms we

briefly described above. By this generalized revelation principle, a two-stage generalized

revelation mechanism is simply called a two-stage mechanism in this paper.

The assumption behind the use of two-stage mechanisms can be justified. For ex-

ample, in the context of a labor market, employers learn the quality of the workers after

employing them and after both the employer and the worker find out that the the worker

is qualified for the job, the worker’s contract is upgraded. We find this type of contracts

in a tenure-track contract in academic institutions and consider this as a particular type

of two-stage mechanisms. This example seems to suggest that a long-term relationship

is essential for two-stage mechanisms to be viable. However, we argue this is not even

necessary because of the advent of new technologies. As an example, we take up a smart

contract based on the blockchain technology as a commitment device that prevents agents

from reneging the contract terms. As Matsushima and Noda (2020) argue, the participants

in the mechanism can replace a long-term relationship by the use of smart contracts so

that a two-stage mechanism can be implemented without a trusted third party or long-term
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relationship. Nevertheless, the power of two-stage mechanisms can sometimes be com-

promised when it is difficult to justify that an agent who obtains the good can experience

its quality. To see this, consider a situation in which the object to be traded is some art

work and an agent’s payoff from obtaining this art work depends on how the other peo-

ple appreciate it. In this case, the agent will not be able to experience the quality of the

object by consuming it. Hence, the power of two-stage mechanisms is sometimes dubi-

ous. In any case, we stress that our question here is mainly theoretical. If no two-stage

mechanisms implement an efficient, voluntary trade, it is almost impossible to imagine

that any mechanism used in a more realistic setup can implement it. In this sense, we are

concerned with pushing the boundary between what is implementable and what is not by

expanding our scope into two-stage mechanisms.

Considering two-stage mechanisms, we modify the notion of incentive compatibility.

Following Mezzetti (2004), we say that a two-stage mechanism satisfies BIC if there

exists a perfect Bayesian equilibrium of that two-stage mechanism in which all agents tell

the truth in both stages. Here, the main question of our paper is rephrased: “when does

there exist a two-stage mechanism satisfying BIC, IIR, EFF, and BB in a bilateral trade

model with interdependent values?” In a general mechanism design problem, Mezzetti

(2004) proposes the generalized two-stage Groves mechanism and shows that it always

satisfies BIC, EFF, and BB. When we are concerned with efficient trades, the standard

one-stage Groves mechanism is shown to be a “canonical” mechanism (See Krishna and

Perry (2000) and Williams (1999) for the case of private values and FKM (2003) for

the case of interdependent values). What we mean by “canonical” is that if we are to

investigate the existence of the standard one-stage mechanisms satisfying BIC and EFF,

we lose nothing to restrict our search to the family of the Groves mechanisms.

This paper considers a bilateral trade model with the following features: (i) each

agent’s type space constitutes a nonempty closed, bounded interval over the real line;

(ii) each agent’s type is chosen independently across agents; (iii) each agent’s valuation

depends on not only his own type but also the type of other agent (i.e., interdependent

values); (iv) each agent’s valuation for the object is strictly increasing in both his own

type and the opponent’s type; (v) utilities are quasilinear and so, utilities consist of the
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sum of a payoff from an outcome decision and a monetary transfer; and (vi) the single

crossing property is satisfied. This condition is imposed in FKM (2003). It means that

each agent’s type must have a greater effect on his own valuation than on that of the other

agent.

In Section 2.3, we confine our attention to a stylized model in which each agent’s type

is chosen from the uniform distribution over [0, 1] and each agent i’s valuation for the

object is represented by a linear function, i.e., ũi(θi, θj) = θi + γiθj , where γi denotes the

degree of interdependence of preferences for agent i. In this context, the single crossing

property requires that γi < 1 for each agent i. We find it natural to start our investigation

from the generalized two-stage Groves mechanism. We show that the generalized two-

stage Groves mechanism never satisfies IIR (Proposition 4). Throughout the paper, we

revisit this example multiple times to illustrate the implications of our analysis.

In Section 2.4, we establish the main result of this paper in a general environment.

This section consists of several subsections. In Subsection 2.4.1, we introduce an addi-

tional property imposed on two-stage mechanisms. The property says that if trade does

not occur, no payments are made. We call this property the “no-trade-then-no-payments”

(henceforth, NTNP) property. In the example in Section 2.4.1, we confirm that the gen-

eralized two-stage Groves mechanism violates the NTNP property (Claim 6). We impose

another additional monotonicity property on two-stage mechanisms. We say that a two-

stage mechanism is monotone if the buyer’s payment is nondecreasing in his own type

announcement conditional upon trade occurring. In the example of Section 2.3, we con-

firm that the generalized two-stage Groves mechanism is indeed monotone (Claim 7).

This suggests that monotonicity is a mild condition. In Subsection 2.4.2, we propose a

two-stage NTNP, monotone mechanism which is used for our main result. Subsection

2.4.3 introduces Condition α which is needed for our main result. Subsection 2.4.4 states

Theorem 5 as our main result. Theorem 5 of this paper says that if our Condition α is

satisfied, the two-stage NTNP, monotone mechanism proposed in Subsection 2.4.2 sat-

isfies BIC, EFF, BB, and IIR. Thus, the generalized two-stage Groves mechanism turns

out to be “not” canonical because the generalized two-stage Groves mechanism does not

implement an efficient, voluntary trade, whereas our proposed two-stage mechanism im-
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plements it. What distinguishes our proposed two-stage mechanism from the generalized

two-stage Groves one is the NTNP property.

Section 2.5 assesses the restrictiveness of our Condition α using the example in Sec-

tion 2.3. We argue that our Condition α is very weak because it is satisfied as long as

the buyer’s degree of interdependence of preferences (γ2) is not too high relative to the

seller’s counterpart γ1. By a set of simulation results, we conclude that our Condition α

is satisfied for a large number of cases.

In Section 2.6, we compare our results with the results of Galavotti, Muto, and Oyama

(henceforth GMO, 2011), who consider the problem of partnership dissolution of Cram-

ton, Gibbons, and Klemperer (1987) in an interdependent values environment. GMO

(2011) show in their Theorem 4 that when GMO’s Assumption 5.1 is satisfied, for any

ownership structure, there exists a two-stage mechanism satisfying BIC, IIR, EFF, and

BB.16 To make our comparison meaningful, we focus on our bilateral trade setup, i.e.,

there are only two agents and the seller has the full property right over the good. We first

show in our Lemma 12 that our Condition α is weaker than GMO’s Assumption 5.1. Sec-

ond, we show in Lemma 13 that in the example in Section 3, GMO’s Assumption 5.1 is

satisfied if and only if γ1 = γ2, i.e., the seller’s degree of interdependence of preferences

is exactly identical to the buyer’s counterpart. This suggests that GMO’s Assumption

5.1 is generically violated in our bilateral trade setup. Of course, the advantage of GMO

(2011) lies in rather handling any ownership structure, which exhibits a contrast with this

paper’s focus on a particular ownership structure in which the seller has the full property

right over the good.

The rest of the paper is organized as follows. In Section 2.2, we introduce the general

notation and basic concepts for the paper and go over some key important results in the

literature to benchmark our paper. Section 2.3 specializes in a highly stylized but well

studied model of bilateral trade with interdependent values. In Section 2.4, we introduce

our Condition α and discuss our main result. Section 2.5 assesses the restrictiveness of

our Condition α. In Section 2.6, we compare the results of our paper with those of GMO

16To be precise, their result is stronger than this because GMO (2011) strengthen IIR into ex post indi-

vidual rationality (EPIR). See Section 2.6 for the definition of EPIR.
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(2011). In the Appendix, we provide all the proofs of the results omitted from the main

text of the paper.

2.2 Preliminaries

A seller (agent 1) has one indivisible object for sale and there is one potential buyer

(agent 2). Each agent i ∈ {1, 2} has his type θi about the value of the object. The

set of possible types for agent i is denoted by Θi and we assume that Θi = [θi, θ̄i] is

a closed, bounded interval over R with θi < θ̄i. We use the notation convention that

Θ = Θ1 × Θ2 and Θ−i = Θj where j 6= i with a generic element θ−i. Types are

independently distributed between agents. For each agent i ∈ {1, 2}, denote by fi and Fi

the probability density function and cumulative distribution function of θi, respectively.

We further assume that fi(θi) > 0 for all θi ∈ (θi, θ̄i) and i ∈ {1, 2}.

Let q ∈ Q = [0, 1] be the probability that the good is sold to the buyer, or trading

probability for short. Preferences of each agent i ∈ {1, 2} are given by Ui : Q×Θ×R→

R, which depends on the trading probability q, the type profile θ and his monetary transfer

pi:

U1(q, θ, p1) = u1(q, θ) + p1 = (1− q)ũ1(θ) + p1;

U2(q, θ, p2) = u2(q, θ) + p2 = qũ2(θ) + p2,

where ui(q, θ) is agent i’s allocation payoff and ũi(θ) is agent i’s valuation for the object

in state θ ∈ Θ. We assume that for all i, j ∈ {1, 2} with j 6= i, ũi(θi, θj) is differentiable

in both θi and θj and ũi,i ≡ ∂ũi(θi, θj)/∂θi > 0 and ũi,j ≡ ∂ũi(θi, θj)/∂θj > 0 (i.e.,

strictly increasing in both agents’ types).

We further assume the following single crossing condition:

ũi,i > ũj,i, ∀i, j ∈ {1, 2} with i 6= j.

When the agents’ types are independently distributed, as we assume, Dasgupta and Maskin

(2000, footnote 13) argue that in the auction setups, the single crossing property is nec-

essary for the existence of mechanisms satisfying efficiency. This is one of the reasons

why we impose the single crossing property. Another reason for this imposition is that
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we need to rely on Theorem 5 (shown below) of Fieseler, Kittsteiner, and Moldovanu

(FKM, 2003) who impose the single crossing condition on their environment. We denote

by Πi = {ũi(θ)| θ ∈ Θ} the range of agent i’s allocation payoff. We assume that for any

realization of the type profile θ ∈ Θ, if agent i receives the object, he observes his realized

allocation payoff ũi(θ) before final transfers are made.

We first introduce the notion of (one-stage) direct revelation mechanism. A one-stage

direct revelation mechanism is defined as a triple (Θ, x, t) in which each agent announces

his type and thereafter, the allocation decision is determined by the rule x : Θ→ [0, 1] and

the monetary transfer is determined by t : Θ→ R2 “simultaneously” based on all agents’

type announcements. By the standard revelation principle, we lose nothing to focus on di-

rect revelation mechanisms in which truth-telling each agent’s type constitutes a Bayesian

Nash equilibrium, which is known as Bayesian incentive compatibility (BIC). In the case

of private-value environments, Myerson and Satterthwaite (1983) show that efficiency and

voluntary participation are not achieved in an incentive compatible manner. Focusing on

the standard one-stage direct mechanisms, Fieseler, Kittsteiner, and Moldovanu (2003)

establish the following counterpart of the Myerson and Satterthwaite impossibility result

in an interdependent values environment.

Lemma 5 [Theorem 5 in FKM (2003)] There exists a one-stage mechanism satisfying

Bayesian incentive compatibility (BIC), interim individual rationality (IIR), ex post effi-

ciency (EFF), and ex post budget balance (BB) if and only if either one of the following

two conditions hold:

1. there is a price p such that Eθ1 [ũ2(θ1, θ2)] > p > Eθ2
[
ũ1(θ̄1, θ2)

]
.

2. ũ2(θ) ≤ ũ1(θ) for all θ ∈ Θ.17

Remark: This first condition means that there is a price p such that all types of buyer and

seller agree to trade at this price. The second condition means that it is always efficient

17To be precise, FKM (2003) only require ex ante budget surplus rather than ex post budget balance

(BB), which we assume. However, Borgers (2015) in Proposition 3.6 and Borgers and Norman (2009) in

Proposition 2 show that in the case of independent beliefs, as in our paper, ex ante budget surplus implies

ex post budget balance (BB).
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not to trade. In this second case, a mechanism always dictating no trades and transfers

satisfies BIC, IIR, EFF, and BB trivially. It is important to note that Gresik (1991) already

derived a different condition for the existence of a one-stage mechanism satisfying all the

four properties (Theorem 3 of Gresik (1991)).

In the example in Section 2.3, which is a stylized, representative example, we know

by Lemma 5 that there are no one-stage mechanisms satisfying BIC, IIR, EFF, and BB.

Taking this negative result seriously and looking for more positive results, we then follow

Mezzetti (2004) to define a two-stage mechanism as a quadruple (M1,M2, δ, τ) such that

• M1
i is agent i’s message space in the first stage and M2

i is agent i’s message space

in the second stage, respectively;

• δ : M1 → [0, 1] is the decision rule specifying the trading probability; and

• τ = (τ [1], τ [2]) where τ [i] : M1 ×M2
i → R2 is the transfer rule specifying the

monetary transfer for both agents when agent i receives the good at the beginning

of the second stage.

In words, in the first stage, after observing his own type, each agent sends a message from

M1
i and then the good is allocated according to the decision rule δ; in the second stage,

after agent i who receives the good (either the seller or the buyer) observes his realized

allocation payoff, he is asked to send a message from M2
i ; and finally, the monetary

transfers are finalized based on the reports of both stages. We denote by ri = (r1
i , r

2
i )

agent i’s strategy such that r1
i : Θi → M1

i is his strategy in the first stage and r2
i :

Q×Θi × Πi →M2
i is his strategy in the second stage.

In particular, if we set M1
i = Θi and M2

i = Πi, i.e., the agents are asked to report

their types in the first stage and realized allocation payoffs in the second stage, then we

can construct the corresponding generalized revelation mechanism (Θ,Π, x, t) as follows:

the decision rule x : Θ → [0, 1] is given by the composite function x(θ) = δ(r1(θ)) and

the transfer rule t = (t[1], t[2]) such that t[i] : Θ × Πi → R2 is given by the compos-

ite function t[i](θ;ui) = τ [i](r1(θ), r2(δ(r1(θ)), θ, ui)). Since each agent i’s allocation

payoff ũi(θi, θ−i) depends on the whole type profile, then the second-stage reports in the
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generalized revelation mechanism indeed provide extra information about the type pro-

file, while there is a loss of generality in assuming that the designer only uses the standard

“one-stage” revelation mechanisms.

Following Mezzetti (2003), we adopt perfect Bayesian equilibrium as a solution con-

cept and appeal to the following generalized revelation principle, the counterpart of reve-

lation principle in one-stage mechanisms.18

Lemma 6 (The Generalized Revelation Principle in Mezzetti (2003)) For any perfect

Bayesian equilibrium outcome of any two-stage mechanism (M1,M2, δ, τ), there exist a

generalized revelation mechanism (Θ,Π, x, t) and a perfect Bayesian equilibrium such

that, for each agent, reporting his true allocation payoff in the second stage and reporting

his true type in the first stage constitute the equilibrium strategy.

From now on, by the generalized revelation principle, we call a generalized revelation

mechanisms simply a two-stage mechanism. We now discuss the main properties we

want our two-stage mechanisms to satisfy. We denote by (θr1, θ
r
2) the first-stage report and

(ur1, u
r
2) the second-stage report in a two-stage mechanism, respectively.

Definition 9 A two-stage mechanism (Θ,Π, x, t) satisfies Bayesian incentive compat-

ibility (BIC) if truthtelling in both stages constitutes an equilibrium strategy of each

agent in a perfect Bayesian equilibrium; that is, for each agent i and each type profile

(θi, θ−i), (θ
r
i , θ

r
−i) ∈ Θi×Θ−i, the equilibrium second-stage report is uri = ui(x(θri , θ

r
−i), θi, θ−i)

and the equilibrium first-stage report is θri = θi.

BIC implies that, given the first-stage report, each agent reports his realized allocation

payoff truthfully in the second stage. BIC further implies that, on the equilibrium path,

each agent reports his true type in the first stage and for any type profile (θ1, θ2) ∈ Θ1×Θ2,

ui(x(θ1, θ2), θ1, θ2) is agent i’s true allocation payoff.

We also assume that each agent has the option of not participating in the two-stage

mechanism (Θ,Π, x, t) and let UO
i (θi) be the expected utility of agent i with type θi from

18For perfect Bayesian equilibrium, for example, the reader is referred to Osborne and Rubinstein (1994,

pp.232-233).
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non-participation. To be specific,

UO
1 (θ1) =

∫
Θ2

ũ1(θ1, θ2)dF2(θ2) for all θ1 ∈ Θ1

and

UO
2 (θ2) = 0 for all θ2 ∈ Θ2.

We introduce the following individual rationality constraint:

Definition 10 A two-stage mechanism (Θ,Π, x, t) satisfies interim individual rationality

(IIR) if, for all θ1 ∈ Θ1,∫
Θ2

(u1(x(θ1, θ2), θ1, θ2) + t1(θ1, θ2;u1, u2)) dF (θ2) ≥ UO
1 (θ1),

and for all θ2 ∈ Θ2,∫
Θ1

(u2(x(θ1, θ2), θ1, θ2) + t2(θ1, θ2;u1, u2)) dF (θ1) ≥ UO
2 (θ2),

where u1 = u1(x(θ1, θ2), θ1, θ2) and u2 = u2(x(θ1, θ2), θ1, θ2).

Note that this paper’s formulation of IIR is the same as the one used by FKM (2003)

and Gresik (1991). Next, we require that trade occur if and only if there are gains from

trade from ex post point of view.

Definition 11 A two-stage mechanism (Θ,Π, x, t) satisfies decision efficiency (EFF) if,

for all (θ1, θ2) ∈ Θ1 ×Θ2,

x(θ1, θ2) ∈ arg max
x∈Q

(u1(x, θ1, θ2) + u2(x, θ1, θ2)) .

In what follows, we denote by x∗ the efficient decision rule. We further require that what

the seller receives be exactly the same as what the buyer pays.

Definition 12 A two-stage mechanism (Θ,Π, x, t) satisfies ex post budget balance (BB)

if, for all (θ1, θ2) ∈ Θ1 ×Θ2,

t1(θ1, θ2;u1, u2) + t2(θ1, θ2;u1, u2) = 0,

where u1 = u1(x(θ1, θ2), θ1, θ2) and u2 = u2(x(θ1, θ2), θ1, θ2).
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Mezzetti (2004) proposes the following generalized two-stage Groves mechanism and

shows that it always satisfies BIC, BB and EFF.

Definition 13 A two-stage mechanism (Θ,Π, x∗, tG) is called the generalized two-stage

Groves mechanism if, for each agent i ∈ {1, 2}, type report (θri , θ
r
−i) ∈ Θi × Θ−i and

payoff report (uri , u
r
−i) ∈ Πi × Π−i,

tGi (θri , θ
r
−i;u

r
i , u

r
−i) = ur−i − hi(θri , θr−i)

where

2hi(θ
r
i , θ

r
−i) =

2∑
j=1

uj (x∗(θr), θr)− Eθ−i

(
2∑
j=1

uj (x∗(θri , θ−i), θ
r
i , θ−i)

)

+Eθ−(i+1)

(
2∑
j=1

uj
(
x∗(θri+1, θ−(i+1)), θ

r
i+1, θ−(i+1)

))

with Eθ−i being the expectation operator over θ−i and Eθ−3 = Eθ−1 .

Although the result below is already proved by Mezzetti (2004), we find it instructive

to go through its proof to appreciate how the generalized two-stage Groves mechanism

works in our bilateral trade setup.

Lemma 7 (Proposition 2 in Mezzetti (2004)) The generalized two-stage Groves mech-

anism always satisfies BIC, EFF, and BB.

Proof : The transfer rule is constructed in such a way that the generalized two-stage

Groves mechanism always satisfies BIC and BB. Note that agent i’s transfer is indepen-

dent of his payoff report uri so that he has no incentive to deviate in the second stage. Sup-

pose agent i of type θi misreports θri whereas his opponent always reports the true type θ−i

in the first stage. Assume further that both agents report the allocation payoff truthfully

in the second stage, i.e., uri = ui(x
∗(θri , θ−i), θi, θ−i) and ur−i = u−i(x

∗(θri , θ−i), θi, θ−i).
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Then, agent i’s expected utility is

Eθ−i
[
ui(x

∗(θri , θ−i), θi, θ−i) + tGi (θri , θ−i;ui(x
∗(θri , θ−i), θi, θ−i), u−i(x

∗(θri , θ−i), θi, θ−i))
]

= Eθ−i [ui(x
∗(θri , θ−i), θi, θ−i) + u−i(x

∗(θri , θ−i), θi, θ−i)− hi(θri , θ−i)]

= Eθ−i

(
2∑
j=1

ui(x
∗(θri , θ−i), θi, θ−i)

)
− Eθ−i (hi(θ

r
i , θ−i))

= Eθ−i

(
2∑
j=1

ui(x
∗(θri , θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ), θ)

)

≤ Eθ−i

(
2∑
j=1

ui(x
∗(θi, θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ), θ)

)
,

where E denotes the expectation over (θi, θ−i), and the last inequality follows because,

by definition, x∗(θi, θ−i) ∈ arg maxx∈Q
∑2

j=1 uj(x, θi, θ−i) and the second term is a con-

stant. Hence, agent i achieves the highest expected utility by truth-telling so that BIC is

satisfied.

Furthermore, on the equilibrium path where each agent i reports his true type θi and

true allocation payoff ui = ui(x
∗(θi, θ−i), θi, θ−i), the total transfer is computed as fol-

lows: for each (θ1, θ2) ∈ Θ,

tG1 (θ1, θ2;u1(x∗(θ1, θ2), θ1, θ2), u2(x∗(θ1, θ2), θ1, θ2))

+tG2 (θ1, θ2;u1(x∗(θ1, θ2), θ1, θ2), u2(x∗(θ1, θ2), θ1, θ2))

= u2(x∗(θ1, θ2), θ1, θ2)− h1(θ1, θ2) + u1(x∗(θ1, θ2), θ1, θ2)− h2(θ1, θ2)

=
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

−1

2

[
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)− Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
+ Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

−1

2

[
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)− Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

=
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)−

2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

= 0.

Hence, BB is satisfied. This completes the proof. �
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However, it is not clear whether the generalized two-stage Groves mechanism also

satisfies IIR or not. We investigate this issue by means of an example in the next section.

2.3 An Example

In this section, we show by means of an example that the generalized two-stage Groves

mechanism with lump-sum transfers always fails IIR.

Both agents’ types are uniformly distributed on the unit interval [0, 1] and for each

type profile (θ1, θ2) ∈ [0, 1]2, their valuation functions are ũ1(θ1, θ2) = θ1 + γ1θ2 and

ũ2(θ1, θ2) = θ2 + γ2θ1 where γ1, γ2 > 0. Then,

ũ2(θ1, θ2)− ũ1(θ1, θ2) = (γ2θ1 + θ2)− (θ1 + γ1θ2) = (1− γ1)θ2 − (1− γ2)θ1,

implying that the efficient decision rule depends on the values of γ1 and γ2. We need to

satisfy the single crossing condition, which implies that γ1 < 1 and γ2 < 1. Then, we are

left with two cases to consider: (i) 0 < γ2 ≤ γ1 < 1 and (ii) 0 < γ1 < γ2 < 1.

In this example, the first condition in Lemma 5 amounts to γ2 − γ1 > 2, which

contradicts the assumption γi ∈ (0, 1) for each i ∈ {1, 2}. Similarly, the second condition

in Lemma 5 implies ũ2(θ1, θ̄2) < ũ1(θ1, θ̄2), which amounts to 1 ≥ γ1. It also contradicts

the assumption that γ1 ∈ (0, 1). Therefore, there are no one-stage mechanisms satisfying

BIC, IIR, EFF, and BB in this example.

In Proposition 4 below, we show that the generalized two-stage Groves mechanism

violates IIR in both cases (i) and (ii). For this result, we even allow for lump-sum transfers

in addition to the original transfers in the generalized two-stage Groves mechanism. There

are two reasons why we emphasize the addition of lump-sum transfers to it. First, this

simply makes our result stronger. Second, this has a close connection to Theorem 2 of

Krishna and Perry (2000), which roughly shows that in a private values environment, the

search for a (one-stage) mechanism satisfying all the properties is reduced to the the class

of the generalized (one-stage) Groves mechanisms (or what Krishna and Perry (2000) call

the VCG mechanisms) with lump-sum transfers. As we argue in our Theorem 1, there is

a loss of generality to restrict our search to the generalized two-stage Groves mechanisms

with lump-transfers.
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Proposition 4 The generalized two-stage Groves mechanism (Θ,Π, x∗, tG) with lump-

sum transfers violates IIR in both cases.

Proof : Recall that on the equilibrium path in which both agents’ reports are truthful in

both stages, agent i of type θi receives the following expected utility:

UG
i (θi) = Eθ−i

[
ui(x

∗(θi, θ−i), θi, θ−i) + tGi (x∗(θi, θ−i), ui, u−i)
]

= Eθ−i

(
2∑
j=1

uj(x
∗(θi, θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
,

where ui = ui(x
∗(θi, θ−i), θi, θ−i), u−i = u−i(x

∗(θi, θ−i), θi, θ−i), Eθ−i denotes the ex-

pectation over θ−i, and E denotes the expectation over (θi, θ−i). Then we can derive the

worst-off type θwi of each agent i from participating in the generalized two-stage Groves

mechanism:

θwi ∈ arg min
θi∈Θi

[
UG
i (θi)− UO

i (θi)
]

= arg min
θi∈Θi

[
Eθ−i

(
2∑
j=1

uj(x
∗(θi, θ−i), θi, θ−i)

)
− 1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

i (θi)

]
.

Since the second term is a constant and hence independent of θi, it is equivalent to say

θwi ∈ arg min
θi∈Θi

[
Eθ−i

(
2∑
j=1

uj(x
∗(θi, θ−i), θi, θ−i)

)
− UO

i (θi)

]
.

Let Li ≡ UO
i (θwi )− UG

i (θwi ) be the expected loss for agent i’s worst-off type. By Propo-

sition 3 of Mezzetti (2003), we know that the generalized two-stage Groves mechanism

with lump-sum transfers satisfies IIR without violating BIC, EFF and BB if and only if

L1 + L2 ≤ 0. So, it remains to verify whether L1 + L2 ≤ 0 is satisfied in this example.

There are two cases we consider: (i) 0 < γ2 ≤ γ1 < 1 and (ii) 0 < γ1 < γ2 < 1.

Case (i): 0 < γ2 ≤ γ1 < 1

Since ũ2(θ1, θ2) − ũ1(θ1, θ2) = (1 − γ1)θ2 − (1 − γ2)θ1 for each (θ1, θ2) ∈ Θ, then

we have that ũ2(θ1, θ2) > ũ1(θ1, θ2) if and only if θ2 > (1 − γ2)θ1/(1 − γ1). Hence, the

efficient decision rule dictates that, for each (θ1, θ2) ∈ Θ,

x∗(θ1, θ2) =

1 if θ2 > (1− γ2)θ1/(1− γ1)

0 otherwise.
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The following figure illustrates the decision at different type profiles in this case; in par-

ticular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1 × Θ2 : x∗(θ1, θ2) = 1}, which

exhausts all the type profiles in which trade occurs.

Figure 1: when 0 < γ2 ≤ γ1 < 1

Claim 4 L1 + L2 > 0 when 0 < γ2 ≤ γ1 < 1.

Proof : The proof is in the Appendix. �

Case (ii): 0 < γ1 < γ2 < 1

Similar to the previous case, for each (θ1, θ2) ∈ Θ, we have that ũ2(θ1, θ2) > ũ1(θ1, θ2)

if and only if θ2 > (1 − γ2)θ1/(1 − γ1). Hence, the efficient decision rule dictates that,

for each (θ1, θ2) ∈ Θ,

x∗(θ1, θ2) =

1 if θ2 > (1− γ2)θ1/(1− γ1)

0 otherwise.

Figure 2 below illustrates the decision at different type profiles in this case; in particular,

the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1}, which describes

the set of possible type profiles for which it is efficient to trade.

Claim 5 L1 + L2 > 0 when 0 < γ1 < γ2 < 1.

Proof : The proof is in the Appendix. �

By Claims 4 and 5, the generalized two-stage Groves mechanism fails IIR. �

This example will become important for illustrating many of our results, and we shall

revisit it in multiple times in due course.
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Figure 2: when 0 < γ1 < γ2 < 1

2.4 The Main Result

This section is organized as follows. In Subsection 2.4.1, we propose two properties

on the class of two stage mechanisms. The first property is called the “no-trade-and-then-

no-payment (NTNP) property, which means that when trade does not occur, no agents

either receive subsidies or make payments. The second property requires that a two-

stage mechanism be “monotone” in the sense that, conditional on the trade occurring,

the buyer’s payment is nondecreasing in his own type announcement. Subsection 2.4.2

proposes a NTNP, monotone two-stage mechanism which is used for our main result

(Theorem 1). Subsection 2.4.3 introduces Condition α. In the example in Section 2.3,

Condition α loosely says that the buyer’s degree of interdependence of preferences is not

too high relative to the seller’s counterpart. In Subsection 2.4.4, we show in our Theorem

1 that when Condition α holds, our proposed NTNP, monotone two-stage mechanism

satisfies BIC, IIR, EFF, and BB.

2.4.1 A Class of Two-Stage Mechanisms

Since the generalized two-stage Groves mechanism always fails IIR in the example of

Section 2.3, we propose a new class of two-stage mechanisms which satisfy all the desired

properties including IIR. To do so, we first impose the following property on two-stage

mechanisms.

Definition 14 (NTNP) A two-stage mechanism (Θ,Π, x, t) satisfies the “no-trade-then-

no-payments” (NTNP) property if, for any type realization (θ1, θ2) ∈ Θ,

x∗(θ1, θ2) = 0⇒ t1(θ1, θ2;u1, u2) = t2(θ1, θ2;u1, u2) = 0,
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where u1 = u1(x∗(θ1, θ2), θ1, θ2) = ũ1(θ1, θ2) and u2 = u2(x∗(θ1, θ2), θ1, θ2) = 0.

We observe that the NTNP property has a bite only if the reported type profile is the

true type profile and the second stage report is also the agents’ true allocation payoffs.

Therefore, it imposes no restrictions on monetary transfers if the agents deviate from

reporting their true allocation payoffs in the second stage. In other words, large amounts

of penalties can be imposed off the equilibrium path.

In what follows, we call a two-stage mechanism satisfying this property a two-stage

NTNP mechanism. We first confirm that in the example of Section 2.3, the generalized

two-stage Groves mechanism violates this property.

Claim 6 In the example of Section 2.3, the generalized two-stage Groves mechanism

(Θ,Π, x∗, tG) always violates NTNP.

Remark: In the generalized two-stage Groves mechanism, even if trade does not occur

in some state, the buyer might receive some positive subsidy from the seller. This is the

reason why NTNP is violated.

Proof : The proof is in the Appendix. �

This result suggests that the NTNP property is a defining one that is distinguished from

the generalized two-stage Groves mechanism. To propose another property we impose on

two-stage mechanisms, we first establish the following useful lemma:

Lemma 8 Suppose the single crossing condition holds. Then, there exists a unique cutoff

point θ∗2 ∈ (θ2, θ̄2] such that for all θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2.

Proof : There are two cases we need to consider. The first case is that
∫

Θ1
x∗(θ1, θ2)dF1(θ1) <

1 for all θ2 < θ̄2. The second case is that there exists θ∗2 ∈ (θ2, θ̄2) such that
∫

Θ1
x∗(θ1, θ2)dF1(θ1) <

1 for all θ2 < θ∗2 and
∫

Θ1
x∗(θ1, θ2)dF1(θ1) = 1 for any θ2 ≥ θ∗2. When θ∗2 = θ̄2, the event

{(θ1, θ2) ∈ Θ| θ2 ≥ θ∗2} is of measure zero in Θ. Therefore, if θ∗2 = θ̄2, the expression∫
Θ1
x∗(θ1, θ̄2)dF1(θ1) = 1 does not affect the calculation of interim expected payoffs of
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any agent at all so that this requirement is inconsequential. Therefore, the first case can

be handled as a special case of the second case by setting θ∗2 = θ̄2.

Thus, we assume that θ∗2 ∈ (θ2, θ̄2). Suppose on the contrary that there exists some

θ̃2 < θ̂2 such that ∫
Θ1

x∗(θ1, θ̃2)dF1(θ1) = 1,

and ∫
Θ1

x∗(θ1, θ̂2)dF1(θ1) < 1.

Note that
∫

Θ1
x∗(θ1, θ̃2)dF1(θ1) = 1 implies ũ2(θ1, θ̃2) > ũ1(θ1, θ̃2) for all θ1 ∈ Θ1. By

the single crossing condition, for any θ1 ∈ Θ1, ũ2(θ1, θ2) must grow faster than ũ1(θ1, θ2)

as θ2 increases; since θ̂2 > θ̃2 and ũ2(θ1, θ̃2) > ũ1(θ1, θ̃2) for all θ1 ∈ Θ1, it follows that

ũ2(θ1, θ̂2) > ũ1(θ1, θ̂2)

for all θ1 ∈ Θ1, or equivalently,∫
Θ1

x∗(θ1, θ̂2)dF1(θ1) = 1,

contradicting our hypothesis. This completes the proof. �

To have a better understanding of Lemma 8, we also provide two figures for illustra-

tion. The following figures illustrate the allocation decision at different type profiles in

general. The shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1 × Θ2 : x∗(θ1, θ2) = 1},

which describes the set of possible type profiles for which it is efficient to trade. In the

left figure, we have
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2. In the right figure, it is

always efficient to trade when θ2 is greater than the cutoff type θ∗2.

We introduce the following monotonicity property on the class of two-stage mecha-

nisms.

Definition 15 Let θ∗2 ∈ (θ2, θ̄2] be the unique cutoff point identified in Lemma 8. A two-

stage mechanism (Θ,Π, x∗, tM) is monotone if, for any θr1 ∈ Θ1, any θr2, θ̂
r
2 ∈ Θ2, and

any (ur1, u
r
2), (ûr1, û

r
2) ∈ Π1×Π2, whenever θ̂r2 > θr2 and x∗(θr1, θ̂

r
2) = x∗(θr1, θ

r
2) = 1, then{

tM2 (θr1, θ̂
r
2, û

r
1, û

r
2) < tM2 (θr1, θ

r
2, u

r
1, u

r
2) if θ̂r2 < θ∗2

tM2 (θr1, θ̂
r
2, û

r
1, û

r
2) = tM2 (θr1, θ

r
2, u

r
1, u

r
2) if θr2 ≥ θ∗2
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Figure 3: Figure 4

In words, a monotone two-stage mechanism has the property that, conditional on the

trade occurring, the buyer’s payment is strictly increasing in his own type if his type is

smaller than θ∗2 and it is constant if his type is at least as high as θ∗2.

We will show that in the example in Section 2.3, the generalized two-stage Groves

mechanism is monotone.

Claim 7 In the example in Section 2.3, the generalized two-stage Groves mechanism

(Θ,Π, x∗, tG) is monotone.

Proof : The proof is in the Appendix. �

This suggests that monotonicity is a mild requirement imposed on two-stage mecha-

nisms. On the contrary, as we already argued, the NTNP is rather a stringent requirement.

2.4.2 The Proposed Two-Stage Mechanism

In this subsection, we propose a two-stage NTNP, monotone mechanism we use for

our main result in the next subsection.

Recall that the efficient decision rule dictates that, for each (θ1, θ2) ∈ Θ1 ×Θ2,

x∗(θ1, θ2) =

1 if ũ2(θ1, θ2) > ũ1(θ1, θ2)

0 otherwise.

We propose the following two-stage mechanism (Θ,Π, x∗, tM) which satisfies BIC, IIR,

EFF, and BB. By construction, the proposed two-stage mechanism satisfies EFF. For each
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type report (θr1, θ
r
2) ∈ Θ1 ×Θ2 and each payoff report (ur1, u

r
2) ∈ Π1 × Π2,

t1(θr1, θ
r
2;ur1, u

r
2) =



ũ2(θr1, θ
r
2) if θr2 < θ∗2, x

∗(θr1, θ
r
2) = 1, and ur2 = u2(x∗(θr1, θ

r
2), θr1, θ

r
2)

−g(θr1) if θr2 ≥ θ∗2, x
∗(θr1, θ

r
2) = 1, and ur2 = u2(x∗(θr1, θ

r
2), θr1, θ

r
2)

−ψ if x∗(θr1, θ
r
2) = 1 and ur2 6= u2(x∗(θr1, θ

r
2), θr1, θ

r
2)

0 if x∗(θr1, θ
r
2) = 0,

and

t2(θr1, θ
r
2;ur1, u

r
2) =



−ũ2(θr1, θ
r
2) if θr2 < θ∗2 and x∗(θr1, θ

r
2) = 1

g(θr1) if θr2 ≥ θ∗2 and x∗(θr1, θ
r
2) = 1

0 if x∗(θr1, θ
r
2) = 0 and ur1 = u1(x∗(θr1, θ

r
2), θr1, θ

r
2)

−ψ if x∗(θr1, θ
r
2) = 0 and ur1 6= u1(x∗(θr1, θ

r
2), θr1, θ

r
2),

where ψ is a strictly positive constant (which is determined later), θ∗2 ∈ (θ2, θ̄2] is the

cutoff point identified in Lemma 8, and

g(θr1) =

−ũ2(θr1, θ
∗
2) if θ∗2 = θ̄2

G(θr1)/ (1− F2(θ∗2)) if θ∗2 ∈ (θ2, θ̄2)

with

G(θr1) =

∫
Θ∗2(θr1)\Θ∗∗2

ũ2(θr1, θ2)dF2(θ2)−
∫

Θ∗2(θr1)

ũ1(θr1, θ2)dF2(θ2)

−
∫

Θ1

∫
Θ∗2(θ1)\Θ∗∗2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗∗2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1), (10)

where for each θr1 ∈ Θ1,

Θ∗2(θr1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θr1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θr1, θ2) = 1} otherwise,

and Θ∗∗2 = [θ∗2, θ̄2].

In this mechanism, if each agent i reports his true type θi and true allocation payoff

ui = ui(x
∗(θi, θ−i), θi, θ−i), then the following three properties are confirmed.
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1. when x∗(θ1, θ2) = 0, t1(θ1, θ2;u1, u2) = t2(θ1, θ2;u1, u2) = 0, i.e., when no trade

occurs, there are no monetary transfers. Hence, NTNP is satisfied;

2. when x∗(θ1, θ2) = 1 and θ2 < θ∗2, t1(θ1, θ2;u1, u2) = −t2(θ1, θ2;u1, u2) = ũ2(θ1, θ2),

implying that the buyer’s payment is strictly increasing in his type; and

3. when x∗(θ1, θ2) = 1 and θ2 ≥ θ∗2, t1(θ1, θ2;u1, u2) = −t2(θ1, θ2;u1, u2) = −g(θ1)

which is independent of the buyer’s type.

By construction, the proposed two-stage mechanism is monotone. It also satisfies BB by

construction. By contrast, we need break the budget off the equilibrium. If it is efficient

not to trade and the seller’s payoff report in the second stage is inconsistent with the type

reports in the first stage, then the buyer is punished with a penalty ψ. Similarly, if it is

efficient to trade and the buyer’s payoff report in the second stage is inconsistent with the

type reports in the first stage, then the seller is punished with a penalty ψ.

Remark: Our proposed two-stage mechanism can be considered a generalization of the

“shoot-the-liar” mechanism in Mezzetti (2007) in an auction setup. We highlight the

following two aspects. First, in the “shoot-the-liar” mechanism, the seller plays a role

of an outsider whose valuation is normalized to zero and the seller makes no monetary

transfer other than collecting payments from the buyers. In our mechanism, however, the

seller has private information which should be elicited within the mechanism and he is

asked to make monetary transfers based on the reports. Second, in the “shoot-the-liar”

mechanism, the seller always extracts the full surplus. On the contrary, the payment rule

in our mechanism varies over the buyer’s types. Even though the payment rule below

the cutoff θ∗2 shares the same spirit as the “shoot-the-liar” mechanism, the payment above

the cutoff θ∗2 is different from it in the sense that the buyer is left with positive expected

surplus.19

19We will elaborate on the second difference between ours and the “shoot-the-liar” mechanism in Section

4.4.
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2.4.3 A Sufficient Condition for A Possibility Result

To state our main result, we introduce the following condition.

Definition 16 An environment satisfies Condition α if,∫
Θ1

∫
Θ∗2(θ1)\Θ∗∗2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1) > 0, (11)

where for each θ1 ∈ Θ1,

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise,

Θ∗∗2 = [θ∗2, θ̄2], and θ∗2 ∈ (θ2, θ̄2] is the cutoff point identified in Lemma 8.

Remark: If Θ∗2(θ1) = {θ̄2} for some θ1 ∈ Θ1, then Θ∗2(θ1)\Θ∗∗2 is an empty set. In this

case, any integration over Θ∗2(θ1)\Θ∗∗2 is always zero. Since the first term in the left-hand-

side of inequality (11) corresponds to the ex ante gains from trade over [θ1, θ̄1]× [θ2, θ
∗
2], it

is always nonnegative. If θ∗2 = θ̄2, the second term in inequality (11) is zero by definition.

Therefore, Condition α is automatically satisfied when θ∗2 = θ̄2.

To further illustrate this condition, we first consider Case (i) 0 < γ2 6 γ1 < 1 in the

example of Section 2.3. In this case, we have θ∗2 = θ̄2 = 1. Then, we obtain

Θ∗2(θ1) =

{ [
1−γ2
1−γ1 θ1, 1

]
if 0 < θ1 < (1− γ1)/(1− γ2)

{1} if (1− γ1)/(1− γ2) 6 θ1 < 1.

We next consider Case (ii) 0 < γ1 < γ2 < 1. In this case, we obtain θ∗2 = (1− γ2)/(1−

γ1) < 1 = θ̄2 and Θ∗2(θ1) = [(1− γ2)θ1/(1− γ1), 1] for any θ1 ∈ [0, 1].

We describe the logic behind why Condition α is needed for the proposed two-stage

mechanism to satisfy all the desired properties. First, we let the buyer pay an amount equal

to his “reported” valuation when his type report is below the cutoff θ∗2. Next, we solve

the appropriate payment function above the cutoff which satisfies BIC and IIR. It turns

out that we can find an upper bound and lower bound on the buyer’s payment function

above the cutoff θ∗2. Specifically, the upper bound comes from the seller’s IIR constraints

and the lower bound comes from the buyer’s IIR constraints. Condition α plays a role of
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ensuring that the upper and lower bound are compatible with each other in the two-stage

mechanism constructed in Subsection 2.4.2.

As we mentioned in the above remark, Condition α is automatically satisfied in Case

(i) 0 < γ2 ≤ γ1 < 1 in the example of Section 2.3. To check when Condition α is satisfied

even in Case (ii) of the example of Section 2.3, we are going to use the following result.

Lemma 9 In the example of Section 2.3, our Condition α is reduced to

1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) > 0.

Proof : The proof is in the Appendix. �

The lemma below shows that Condition α sometimes holds in Case (ii) of the example

in Section 2.3.

Lemma 10 Suppose that in the example in Section 2.3, both agents’ valuation functions

are ũ1(θ1, θ2) = θ1 + θ2/3 and ũ2(θ1, θ2) = θ2 + θ1/2. That is, 0 < 1/3 = γ1 < 1/2 =

γ2 < 1. Then, Condition α holds.

Proof : Plugging γ1 = 1/3 and γ2 = 1/2 into the inequality in Lemma 9, we obtain

1

6

(1/2)2

2/3
+

1/2

2/3
− 1

2

(
1/2

2/3

)2

+
1

2
(1/2− 1/3− 1) =

11

96
> 0.

Thus, Condition α is satisfied. �

We can also show in the lemma below that Condition α is sometimes violated in Case

(ii) of the example of Section 2.3.

Lemma 11 Suppose that in the example in Section 2.3, both agents’ valuation functions

are ũ1(θ1, θ2) = θ1 + θ1/2 and ũ2(θ1, θ2) = θ2 + 4θ1/5. That is, 0 < 1/2 = γ1 < 4/5 =

γ2 < 1. Then, Condition α fails.

Proof : Plugging γ1 = 1/2 and γ2 = 4/5 into the inequality in Lemma 9 so that we

obtain

1

6

0.22

0.5
+

0.2

0.5
− 1

2

(
0.2

0.5

)2

+
1

2
(0.8− 0.5− 1) = − 1

60
< 0.

Thus, Condition α is violated. �
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2.4.4 The Theorem

Using the two-stage NTNP, monotone mechanism proposed in Subsection 2.4.2, we

are able to establish the main result of the paper.

Theorem 5 Suppose that an environment satisfies Condition α. Then, there exists a two-

stage NTNP, monotone mechanism (Θ,Π, x∗, tM) satisfying BIC, IIR, EFF, and BB.

Proof : We make use of the two-stage mechanism constructed in Subsection 2.4.2.

Since the seller’s transfer tM1 is independent of his payoff report ur1 and the buyer’s

transfer tM2 is independent of ur2, then each agent has no incentive to deviate from the

truth-telling in their payoff report in the second stage. Given this, it remains to verify that

the truth-telling in the first stage constitutes part of a perfect Bayesian equilibrium (Steps

1 and 2) and that IIR is satisfied for both agents (Step 3). The proof is completed by the

following three steps.

Step 1: If the buyer always reports the truth in the first stage, the seller has no incentive

to tell a lie in the first stage.

Proof : The proof is in the Appendix. �

Step 2: If the seller always reports the truth in the first stage, the buyer has no incentive

to tell a lie in the first stage.

Proof : The proof is in the Appendix. �

In Steps 1 and 2, we show that the constructed two-stage mechanism (Θ,Π, x∗, tM)

satisfies BIC.

Step 3: The two-stage mechanism (Θ,Π, x∗, tM) also satisfies IIR.

Proof : The proof is in the Appendix. �

Taking into account that both EFF and BB are already built in the mechanism, we

complete the proof of Theorem 5. �
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We record the implications of Theorem 5 as well as the properties of the proposed

two-stage mechanism in the context of the example in Section 2.3.

1. When 0 < γ2 ≤ γ1 < 1, we have θ∗2 = 1 = θ̄2. In this case, we get g(θr1) =

−ũ2(θr1, θ̄2). Recall t2(θr1, θ
r
2;ur1, u

r
2) = −ũ2(θr1, θ

r
2) when θr2 < θ∗2 and x∗(θr1, θ

r
2) =

1. If both agents report truthfully in both stages, the buyer always pays an amount

equal to his true valuation to the seller. In other words, the seller extracts the full

surplus in this case.

2. When 0 < 1/3 = γ1 < 1/2 = γ2 < 1, we have θ∗2 = 3/4. In this case, we set

g(θr1) = 3(θr1)2/4 − 5θr1/2. If both agents report truthfully in both stages and the

buyer’s true type is θ2 > θ∗2, the buyer’s ex post utility becomes

ũ2(θ1, θ2) + g(θ1) = θ2 +
1

2
θ1 +

3

4
(θ1)2 − 5

2
θ1 = θ2 −

4

3
+

3

4

(
θ1 −

4

3

)2

.

To further illustrate the properties of the proposed two-stage mechanism when γ1 =

1/3 and γ2 = 1/2, we consider the following subcases:

(a) when θ1 = 0, we have g(θ1) = 0. This means that the buyer receives the good

without making any payment. Hence, the buyer receives the full surplus.

(b) when θ1 = 1, we have that ũ2(θ1, θ2) + g(θ1) = θ2 − 5/4 < 0, implying that

the buyer’s ex post utility is always negative because θ2 ≤ 1. Thus, the ex post

individual rationality (EPIR) is violated. Nonetheless, since our Condition α

holds, the proposed two-stage mechanism satisfies IIR (as opposed to EPIR)

together with BIC, EFF, and BB. This exhibits a contrast with the analysis of

GMO (2011) which maintains EPIR throughout.

Moreover, from Step 3 in the proof of Theorem 5 (see the Appendix (Section 8.8)

for the details), we know that if θ2 > θ∗2, the expected utility of the buyer of type θ2

after participation is∫
Θ1

ũ2(θ1, θ2)dF1(θ1)+

∫
Θ1

g(θ1)dF1(θ1) =

∫
Θ1

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1) > 0,

where the weak inequality follows because ũ2(·) is strictly increasing in θ2. There-

fore, if θ2 6 θ∗2, the buyer of type θ2 is always left with zero expected surplus; if

θ2 > θ∗2, the buyer receives a positive expected surplus.
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These features we described above distinguishes our proposed two-stage mechanism

from the “shoot-the-liar” mechanism proposed by Mezzetti (2007) in which the seller

always extracts the full surplus. By contrast, GMO (2011, Section 5) apply the “shoot-

the-liar mechanism” without modifications to their partnership dissolution problem.

We know that Condition α is a necessary and sufficient condition for our proposed

two-stage mechanism to satisfy BIC, IIR, EFF, and BB. However, this does not exclude

a possibility that there might be some other two-stage NTNP monotone mechanism sat-

isfying BIC, IIR, EFF, and BB, even when Condition α is violated. Although it would be

interesting to explore such a possibility, we leave this for future work.

2.5 Simulation

To assess the permissiveness and restrictiveness of Condition α, we provide a set of

simulation results based on the example in Section 2.3. Both agents’ types are uniformly

distributed on the unit interval [0, 1] and for each type profile (θ1, θ2) ∈ [0, 1]2, their

valuation functions are ũ1(θ1, θ2) = θ1 + γ1θ2 and ũ2(θ1, θ2) = θ2 + γ2θ1 where γ1 ∈

{0.01, 0.02, · · · , 0.98} and γ2 ∈ {γ1 + 0.01, γ1 + 0.02, · · · , 0.99} for each γ1. As we

discuss in the previous section, Condition α is always satisfied when 0 < γ2 ≤ γ1 < 1,

which is called Case (i) in the example of Section 2.3. Then, by our Theorem 5, we

know that there exists a two-stage NTNP, monotone mechanism satisfying BIC, EFF, BB,

and IIR. Thus, what remains to investigate is the extent to which there exists a two-stage

NTNP, monotone mechanism satisfying all the desired properties in Case (ii) 0 < γ1 <

γ2 < 1. In the simulation, we select finitely many values of γ1 and γ2 satisfying this

inequality.

We note that ũ2(θ1, θ2) > ũ1(θ1, θ2) if and only if θ2 > (1− γ2)θ1/(1− γ1). Since we

assume γ2 > γ1, the slope of the efficient frontier is (1− γ2)/(1− γ1) < 1. The efficient

decision rule dictates that, for each (θ1, θ2) ∈ [0, 1]2,

x∗(θ1, θ2) =

1 if θ2 > (1− γ2)θ1/(1− γ1)

0 otherwise.

The shaded region in Figure 2 (which is reproduced below) represents Θ∗ = {(θ1, θ2) ∈
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Θ1 × Θ2 : x∗(θ1, θ2) = 1}, which describes the set of possible type profiles for which it

is efficient to trade.

Figure 2: when 0 < γ1 < γ2 < 1

Recall that Lemma 9 allows us to translate our Condition α into the following inequal-

ity:

1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) ≥ 0. (12)

Observe that Condition α becomes an inequality about γ1 and γ2. Then, for each pair

(γ1, γ2) satisfying 0 < γ1 < γ2 < 1, we check whether or not inequality (12) is satisfied.

Here is a summary of the simulation results. There are two possible scenarios:

1. If γ2 ≤ 0.77, inequality (12) is always satisfied for all γ1, γ2 ∈ (0, 1) satisfying

γ1 < γ2;

2. For each γ2 > 0.77, there exist γL1 (γ2), γH1 (γ2) ∈ (0, 1) such that γL1 (γ2) < γH1 (γ2)

and inequality (12) is violated whenever γL1 (γ2) < γ1 < γH1 (γ2) and it is satisfied

otherwise.

We illustrate the second scenario in Figure 6 below. For each γ2 > 0.77, there are

a corresponding point on the upper curve indicating γH1 (γ2) and another corresponding

point on the lower curve indicating γL1 (γ2). Then, if γL1 (γ2) < γ1 < γH1 (γ2), inequality

(12) is violated. The region where inequality (12) is violated is represented by the dot-

ted region in Figure 6. The region outside the dotted region dictates the case in which

inequality (12) is satisfied.

In Figure 7, we track all possible pairs of (γ1, γ2) ∈ (0, 1)2 satisfying inequality (12).

In particular, the upper triangle in [0, 1]2, i.e., the region where γ2 > γ1 corresponds to
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Figure 6: When γ2 > 0.77

Case (ii) of the example in Section 2.3. The lightly shaded region describes all pairs of

(γ1, γ2) within this upper triangle for which our Condition α is satisfied.

On the other hand, the lower triangle in the unit square, i.e., the region where γ2 < γ1

corresponds to Case (i) of the example in Section 2.3. Then, by our Theorem 5, we can

always find a two-stage NTNP, monotone mechanism satisfying BIC, IIR, EFF, and BB

within this region. Hence, the heavily shaded region describes all pairs of (γ1, γ2) within

the lower triangle for which our Condition α is satisfied.

Therefore, the lightly and heavily shaded regions together indicate the set of (γ1, γ2)

for which our Condition α is satisfied. Since the whole shaded (regardless of whether

lightly or heavily) region spans quite a large part of the unit square, we conclude that our

Condition α can be satisfied in many cases in the example of Section 2.3.

We can also verify that if Condition α is violated, then the two-stage mechanism we

propose in Section 2.4.2 violates the seller’s IIR constraint.20 We make this point by the

following claim:

Claim 8 If γ1 = 1/2 and γ2 = 4/5 in the example of Section 2.3, the seller’s IIR con-

straint is violated in our two-stage NTNP, monotone mechanism constructed in Subsection
20By the very proof of Theorem 5, Condition α has a bite exactly when the seller’s IIR constraint has

a bite. In other words, if inequality (11) in Condition α is violated, it is the seller’s IIR constraint that is

violated.
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Figure 7: Summary of Simulation

2.4.2.

Proof : The proof is in the Appendix. �

By this claim, we loosely say that our Condition α is violated when the degree of

interdependence of preferences of the buyer is too high relative to that of the seller.

2.6 The Relation with Galavotti, Muto, and Oyama (2011)

In this section, we will discuss the relation between this paper and Galavotti, Muto,

and Oyama (2011) (hereafter, GMO). GMO (2011) consider the problem of partnership

dissolution in a model with interdependent values where there are one asset, and n risk-

neutral agents indexed by i ∈ {1, . . . , n}where n ≥ 2. Each agent i owns a share αi of the

asset such that 0 ≤ αi ≤ 1 and
∑n

i=1 αi = 1. In private values environments, Cramton,

Gibbons, and Klemperer (1987) show that the equal-share ownership (α1, . . . , αn) =

(1/n, . . . , 1/n) allows us to construct a mechanism satisfying BIC, EFF, IIR, and BB,

which exhibits a contrast with this paper’s extreme ownership structure where the seller

has the full property right over the good. However, FKM (2003) show that this positive

result of Cramton, Gibbons, and Klemperer (1987) cannot be extended to a model with

interdependent values. This explains why GMO (2011, Section 5) also resort to the use

of two-stage mechanisms in order to obtain more positive results.
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To make the comparison between GMO (2011) and our paper, we assume that there

are only two agents, i.e., n = 2. By an ownership structure (α1, α2) where each αi ∈ [0, 1]

and α1 + α2 = 1, we mean that agent 1 (the seller) has the property right over α1 fraction

of the asset and agent 2 (the buyer) has the property right over α2 fraction of the asset. To

discuss the contribution of GMO (2001), we first strengthen our IIR constraint into its ex

post counterpart.

Definition 17 Let (α1, α2) be an ownership structure. A two-stage mechanism (Θ,Π, x, t)

satisfies ex post individual rationality (EPIR) if, for all (θ1, θ2) ∈ Θ and (u1, u2) ∈ Π,

u1(x(θ1, θ2), θ1, θ2) + t1(θ1, θ2;u1, u2) ≥ α1ũ1(θ1, θ2),

and

u2(x(θ1, θ2), θ1, θ2) + t2(θ1, θ2;u1, u2) ≥ α2ũ2(θ1, θ2),

where u1 = u1(x∗(θ1, θ2), θ1, θ2) and u2 = u2(x∗(θ1, θ2), θ1, θ2).

GMO (2011) provide the following sufficient condition (called Assumption 5.1 on

p.14) under which the “shoot-the-liar” mechanism satisfies BIC, EPIR, EFF, and BB for

any ownership structure. We formally state GMO’s Assumption 5.1.

GMO’s Assumption 5.1: There exist M1,M2 ≥ 0 such that for all i ∈ {1, . . . , n}, all

θi, θ̂i ∈ Θi with θ̂i 6= θi,

Eθ−i
[
1{θ−i|i=m(θ̂i,θ−i)}(θ−i)

(
ũi(θ̄i, θ−i)− ũi(θ̂i, θ−i)

)]
6 M1

∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i)6=ũj(θ̂i,θ−i)}(θ−i)

]
, (13)

and ∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i)=ũj(θ̂i,θ−i)}(θ−i)

]
6 M2

∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i) 6=ũj(θ̂i,θ−i)}(θ−i)

]
, (14)

where 1X(x) is the index function such that 1X(x) = 1 if x ∈ X and 0 if x /∈ X , and

m(θ) = max(arg maxj ũj(θ)).
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In our bilateral trade setup, we always have (α1, α2) = (1, 0), i.e., the seller has the

property right over the good, while the buyer has no property right over it. We know from

our Lemma 8 that there are generally two cases: (i) θ∗2 = θ̄2 and (ii) θ∗2 ∈ (θ2, θ̄2) where

θ∗2 is the cutoff point identified in Lemma 8. In Case (i) θ∗2 = θ̄2, which corresponds to the

case that
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2, we can use our proposed two-stage

mechanism and show that it satisfies BIC, IIR, EFF, and BB. As in GMO (2011), we can

strengthen IIR into EPIR for this result.

In what follows, we will focus on the bilateral trade model and then compare GMO’s

Assumption 5.1 with our Condition α. We obtain the following claim:

Lemma 12 The relation between Assumption 5.1 in GMO (2011) and our Condition α is

summarized as follows:

1. Inequality (13) in GMO’s Assumption 5.1 implies our Condition α;

2. Inequality (14) in GMO’s Assumption 5.1 is automatically satisfied under the bilat-

eral trade model in our paper.

Proof : The proof is in the Appendix. �

Intuitively, inequality (13) requires that each agent’s deviation be detected by the other

agent with strictly positive probability, Case (i) θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1

for all θ2 < θ̄2 requires that only the buyer’s deviation be detected by the seller with

strictly positive probability. Therefore, the condition that
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for

all θ2 < θ̄2 is weaker than inequality (13).21

To further illustrate the stringent nature of inequality (13) relative to our Condition α,

we revisit the example in Section 2.3. We obtain the following lemma:

Lemma 13 In the example in Section 2.3, GMO’s Assumption 5.1 is satisfied if and only

if γ1 = γ2.

21The logic behind our first general case is that even if the seller’s deviation is not detected by the

buyer, this is not a profitable deviation because in this case, the seller keeps the good without receiving any

monetary transfer.
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Proof : The proof is in the Appendix. �

This suggests that GMO’s Assumption 5.1 is generically violated in the bilateral trade

model.

2.7 Conclusion

This paper characterizes when efficient, voluntary bilateral trades are incentive com-

patible in an environment with interdependent values. Acknowledging some existing im-

possibility results by Gresik (1991) and FKM (2003), we obtain more positive results by

looking at two-stage mechanisms proposed by Mezzetti (2004). We show by means of an

example that the generalized two-stage Groves mechanism never satisfies IIR. If our Con-

dition α is satisfied in a general environment, we next show that there exists a two-stage

mechanism satisfying BIC, IIR, EFF, and BB. In the context of the example in Section 2.3,

our Condition α roughly says that the buyer’s degree of interdependence of preferences is

not too high relative to the seller’s counterpart. In Section 2.5, we also argue by the same

example that our Condition α can be satisfied for a large number of cases. The prop-

erty that distinguishes our proposed two-stage mechanism from the generalized two-stage

Groves mechanism is the “no-trade-then-no-payments” (NTNP) property, which means

that if trade does not occur, no payments are made. Indeed, the generalized two-stage

Groves mechanism does not satisfy the NTNP property. By expanding our scope into

two-stage mechanisms, we consider our paper as the first attempt to further pushing the

boundary between when efficient, voluntary bilateral trades are implementable and when

they are not.
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3 The Interplay of Interdependence and Correlation in

Bilateral Trade

3.1 Introduction

This paper revisits the bilateral trade problem by focusing on a model with a discrete

type space in which valuations are interdependent as well as signals are correlated. The

primary objective of this paper is to investigate when there are mechanisms satisfying

Bayesian incentive compatibility (BIC), interim individually rationality (IIR), decision

efficiency (EFF), and ex post budget balance (BB) in such an economy.

Myerson and Satterthwaite (1983) established the following celebrated impossibility

result: in a bilateral trade model with private values (i.e., each agent is certain of the value

of the object at the timing of trade) and independently distributed continuous types, there

are generally no mechanisms satisfying BIC, IIR, EFF, and BB. This paper sheds light

on three features of the setup of Myerson and Satterthwaite (1983): (i) private values; (ii)

independently distributed signals; and (iii) continuous types.

When extending a model of private values to that of interdependent values but keeping

(ii) and (iii), Fieseler, Kittsteiner, and Moldovanu (2003) and Gresik (1991b) restore the

Myerson and Satterthwaite impossibility theorem. This leads us to relax either (ii), (iii),

or both, if we are to obtain a possibility result in an interdependent values environment.

Indeed, this paper relaxes both (ii) and (iii) to obtain positive results.

In contrast to the agents’ continuum type space used in many papers in the literature,

Matsuo (1989) keeps (i) and (ii) but studies a two-type bilateral trade environment and

characterize the set of valuations and independent beliefs that guarantees the existence of

mechanisms satisfying the aforementioned four properties. Roughly speaking, he shows

that such a desirable mechanism exists if and only if the probability that a mutually ben-

eficial trade exists is small. Like Matsuo (1989), Gresik (1991a) also studies a two-type

bilateral trade model and maintain (i) but unlike Matsuo (1989), he allows for correlated

signals. In such an environment, Gresik (1991a) also characterizes the set of correlated

beliefs and valuations that guarantee the existence of desirable mechanisms. With cor-
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related beliefs, such a desirable mechanism can exist even when the probability that a

mutually beneficial trade exists is large. The objective of this paper is to generalize the

analysis of Matsuo (1989) and Gresik (1991a) to a general finite type space with interde-

pendent valuations as well as correlated signals.

We first identify the set of interdependent valuations and correlated beliefs that con-

stitutes a necessary condition for the existence of mechanisms satisfying BIC, IIR, EFF,

and BB in a bilateral trade model with a finite discrete type space. Second, we show that

the identified necessary condition becomes also sufficient when we consider a two-type

model. Third, we apply our characterization to a two-type model with linear valuation

functions and symmetric joint distributions. We call the extent to which the buyer’s valu-

ation depends on the seller’s type “the buyer’s degree of interdependence”, and the extent

to which the seller’s valuation depends on the buyer’s type “seller’s degree of interdepen-

dence”. We find that

1. For any fixed degree of correlation, the upper bound of the seller’s degree of inter-

dependence allowing desirable mechanisms is increasing in the buyer’s degree of

interdependence;

2. If we fix buyer’s degree of interdependence, the upper bound of the seller’s degree

of interdependence allowing desirable mechanisms is increasing in the degree of

correlation.

Finally, we drop IIR as part of the requirement and establish the general existence of

mechanisms satisfying BIC, EFF, and BB in a two-type model. We obtain this result using

Farkas lemma. This suggests that IIR is the most stringent constraint for the existence of

mechanisms satisfying BIC, IIR, EFF, and BB.

The rest of the paper is organized as follows. In Section 3.2, we introduce the general

notation and basic concepts for the paper. Section 3.3 deals with a general finite type space

and identifies a necessary condition for the existence of mechanisms satisfying BIC, IIR,

EFF, and BB. In Section 3.4, we confine our attention to a two-type model. This section

constitutes two subsections. In Subsection 3.4.1, we show that the identified necessary

condition in the previous section also becomes sufficient. In Subsection 3.4.2, we conduct
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the comparative statics for how the interdependence of valuations and correlated signals

interact with each other in order to guarantee the existence of desirable mechanisms. In

Section 3.5, we still consider a two-type model as in Section 3.4 but drop IIR as part of the

requirement for desirable mechanisms. We establish the general existence of mechanisms

satisfying BIC, IIR, and BB by using Farkas lemma. Section 3.6 concludes the paper by

suggesting a few open questions which remain unresolved. In the Appendix, we provide

all the proofs of the results omitted from the main text of the paper.

3.2 Preliminaries

There are one buyer, one seller, and one indivisible good owned by the seller. They

decide whether to trade or not and how much each agent pays or receives. Each agent has

some private information (which we call type) concerning the value of the good. In this

paper, we assume that each agent has m types where m ≥ 2. The buyer’s type space is

B = {B1, B2, · · · , Bm} where B1 < B2 < · · · < Bm; similarly, the seller’s type space is

S = {S1, S2, · · · , Sm} where S1 < S2 < · · · < Sm.

We assume that the agents’ types are drawn from the joint probability function g(·, ·)

so that g(Bi, Sj) > 0 for each (Bi, Sj) ∈ B×S and
∑m

i=1

∑m
j=1 g(Bi, Sj) = 1. We define

the following notation for conditional probabilities: for each Bi ∈ B and each Sj ∈ S,

gb(Bi|Sj) =
g(Bi, Sj)∑m
k=1 g(Bk, Sj)

;

gs(Sj|Bi) =
g(Bi, Sj)∑m
l=1 g(Bi, Sl)

.

We assume that each agent’s valuation for the good depends not only on his own types,

but also on the other’s types. That is, given a type profile (Bi, Sj), vb(Bi, Sj) denotes the

buyer’s valuation of the good and vs(Bi, Sj) denotes the valuation of the good. We assume

that vb(Bi, Sj) is strictly increasing in Bi and nondecreasing in Sj; similarly, vs(Bi, Sj) is

strictly increasing in Sj and nondecreasing in Bi.

Definition 18 The valuation functions satisfy the single crossing condition if,

1. For each Sj , if there exists someBi such that vb(Bi, Sj) > vs(Bi, Sj), then vb(Bk, Sj) >

vs(Bk, Sj) for any k ∈ {i+ 1, · · · ,m}.
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2. For eachBi, if there exists some Sj such that vs(Bi, Sj) > vb(Bi, Sj), then vs(Bi, Sl) >

vs(Bi, Sl) for any l ∈ {j + 1, · · · ,m}.

Roughly speaking, this condition means that if the buyer of some type has a higher

valuation than the seller, the buyer of a higher type continues to have a higher valuation

than the seller. Similar comment applies to the seller. Throughout the paper, we impose

the single crossing condition.

If trade occurs with probability q ∈ [0, 1] and the buyers’ monetary payment tb and

the seller’s ts, and the buyer is of type Bi and the seller is of type Sj , then the buyer’s

state-dependent preferences ub : [0, 1]× R2 ×B × S → R can be represented by

ub(q, tb, ts;Bi, Sj) = q · vb(Bi, Sj)− tb,

and the seller’s state-dependent preference us : [0, 1]× R2 → R is represented by

us(q, tb, ts;Bi, Sj) = (1− q)vs(Bi, Sj)− ts.

A direct mechanism is defined as a triplet Γ = ((B×S), x, t) whereB = {B1, B2, · · · , Bm}

and S = {S1, S2, · · · , Sm} are the set of actions available to the buyer and seller, respec-

tively; x : B × S → [0, 1] is the decision rule which specifies the probability that trade

occurs; and t : B × S → R2 is the transfer rule which describes the monetary pay-

ments for both agents. We further impose the following property on the class of direct

mechanisms:

Definition 19 A mechanism (x, t) satisfies the no-trade-then-no-payments (NTNP) prop-

erty if, for any (Bi, Sj) ∈ B × S,

x(Bi, Sj) = 0⇒ tb(Bi, Sj) = ts(Bi, Sj) = 0.

This property says that if trade does not occur, no monetary transfers are made.22

In what follows, we call such a mechanism satisfying this property a no-trade-then-no-

payments (NTNP) mechanism. In what follows, we call a direct mechanism satisfying

NTNP property simply a mechanism and we denote it by (x, t).

22Theorem 1 of Gresik (1991) also imposes this property.

67



Definition 20 A mechanism (x, t) satisfies Bayesian incentive compatibility (BIC) if, for

all i, j ∈ {1, . . . ,m} with i 6= k,

m∑
j=1

gs(Sj|Bi) [x(Bi, Sj)vb(Bi, Sj)− tb(Bi, Sj)] >
m∑
j=1

gs(Sj|Bi) [x(Bk, Sj)vb(Bi, Sj)− tb(Bk, Sj)] ,

and for all j, l ∈ {1, . . . ,m} with j 6= l,

m∑
i=1

gb(Bi|Sj) [(1− x(Bi, Sj)) vs(Bi, Sj)− ts(Bi, Sj)]

>
m∑
i=1

gb(Bi|Sj) [(1− x(Bi, Sl)) vs(Bi, Sj)− ts(Bi, Sk)] .

We also assume that each agent has the option of not participating in the mechanism

(x, t). In particular, the seller’s outside option utility is
∑m

i=1 gb(Bi|Sj)vs(Bi, Sj) for all

Sj ∈ S and the buyer’s outside option utility is zero for all Bi ∈ B.

Definition 21 A mechanism (x, t) satisfies the interim individual rationality (IIR) if, for

each Bi ∈ B,
m∑
j=1

gs(Sj|Bi) [x(Bi, Sj)vb(Bi, Sj)− tb(Bi, Sj)] > 0,

and for each Sj ∈ S,

m∑
i=1

gb(Bi|Sj) [(1− x(Bi, Sj)) vs(Bi, Sj)− ts(Bi, Sj)] >
m∑
i=1

gb(Bi|Sj)vs(Bi, Sj).

Definition 22 A mechanism (x, t) satisfies decision efficiency (EFF) if, for each (Bi, Sj) ∈

B × S,

x(Bi, Sj) =

1 if vb(Bi, Sj) > vs(Bi, Sj)

0 if vb(Bi, Sj) < vs(Bi, Sj)

We denote by x∗(·) the efficient decision rule. We say that the buyer has no redundant

types if, for any Bi 6= Bk, there exists some j such that

x∗(Bi, Sj) 6= x∗(Bk, Sj).

Similarly, the seller has no redundant types if, for any j 6= l, there exists some i such that

x∗(Bi, Sj) 6= x∗(Bi, Sl).
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Throughout the paper, we assume that every agent has no redundant types.

We further require that what the seller receives be exactly the same as what the buyer

pays. This is ex post budget balance.

Definition 23 A mechanism (x, t) satisfies ex post budget balance (BB) if, for each (Bi, Sj) ∈

B × S,

tb(Bi, Sj) + ts(Bi, Sj) = 0.

3.3 Finite Type Spaces

In this section, we let m > 2, i.e., each agent has at least two types. First, we will

introduce one generalized efficient decision rule and explain the intuition behind. Second,

we will provide a necessary condition under which there exists a mechanism satisfying

BIC, IIR, EFF, and BB under the generalized efficient decision rule.

3.3.1 The Efficient Decision Rule

Consider the following efficient decision rule:

x∗(Bi, Sj) =

1 if i > j

0 otherwise

The following table illustrates the above efficient decision rule:

Table 2

x∗(·) Sm Sm−1 Sm−2 · · · S1

Bm 1 1 1 · · · 1
Bm−1 0 1 1 · · · 1
Bm−2 0 0 1 · · · 1

...
...

...
...

...
...

B1 0 0 0 · · · 1

Indeed, in the above table, every entry in the upper triangle is equal to 1 while all the

other entries are zero. We show below that this table depicts the unique efficient decision

rule considered in our setup.
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Proposition 5 There is a unique efficient decision rule described in Table 2.

Proof : The proof consists of three steps. In Step 1, we show that x∗(Bi, Sj) must be

nondecreasing in Bi. In Step 2, we show that x∗(Bi, Sj) must be nonincreasing in Sj .

Finally, in Step 3, we induce the unique efficient decision rule in Table 2.

Step 1: x∗(Bi, Sj) is nondecreasing in Bi.

Proof : Fix Sj as the seller’s type. Suppose not. Then there exist i > k such that

x∗(Bi, Sj) = 0 and x∗(Bk, Sj) = 1. Notice that x∗(Bk, Sj) = 1 implies vb(Bk, Sj) >

vs(Bk, Sj). According to the single crossing condition, if the buyer’s type increases toBi,

the buyer’s valuation must grow faster; as a result,

vb(Bi, Sj) > vs(Bi, Sj)

must be true, implying x∗(Bi, Sj) = 1, which contradicts our hypothesis that x∗(Bi, Sj) =

0. �

Step 2: x∗(Bi, Sj) is nonincreasing in Sj .

Proof : Fix the buyer’s typeBi. Suppose not. Then there exist j > l such that x∗(Bi, Sj) =

1 and x∗(Bi, Sl) = 0. Notice that x∗(Bi, Sl) = 0 implies vs(Bi, Sl) > vb(Bi, Sl). Ac-

cording to the single crossing condition, if the seller’s type increases to Sj , the seller’s

valuation must grow faster; as a result,

vs(Bi, Sj) > vb(Bi, Sj)

must be true, implying x∗(Bi, Sj) = 0, which contradicts our hypothesis x∗(Bi, Sj) = 1.

�

Step 3: The efficient decision rule is uniquely determined as the one described in Table 2.

Proof : From the previous steps, we know that at profile (Bm, S1), x∗(·) reaches its

maximum; to aviod the trivial cases where it is always efficient not to trade, we let

x∗(Bm, S1) = 1. Also, we know that at profile (B1, Sm), x∗(·) reaches its minimum;

to aviod the trivial cases where it is always efficient to trade, we let x∗(B1, Sm) = 0.

Moreover, we set x∗(B1, S1) = 1 so that it is sometimes efficient to trade and sometimes

70



not;23 since x∗(Bi, S1) is nondecreasing in Bi, we obtain x∗(Bi, S1) = 1 for all i. We

obtain the following lemma:

Lemma 14 x∗(Bi, Si+1) = 0 and x∗(Bi+1, Si+1) = 1 for all i = 1, · · · ,m− 1.

Proof : The proof is in the Appendix. �

From Lemma 14, we obtain the following table:

x∗(·) Sm Sm−1 Sm−2 · · · S2 S1

Bm 1 1
Bm−1 0 1 1
Bm−2 0 1 1

... . . . . . . ...

B2
. . . 1 1

B1 0 0 1

Recall that for all i, x∗(Bi, Sj) is nonincreasing in Sj . Then, since x∗(Bi, Si+1) = 0,

we obtain x∗(Bi, Sj) = 0 for all j > i + 1; similarly, since x∗(Bi, Si) = 1, we have

x∗(Bi, Sj) = 1 for all j 6 i. We thus conclude that the efficient decision rule must be the

one depicted in Table 2. This completes the proof of Step 3. � We complete the proof of

the proposition by Steps 1,2, and 3. �

3.3.2 A Necessary Condition for a Finite Type Space

For a general finite type space, we obtain the following necessary condition for the

existence of mechanisms satisfying BIC, IIR, EFF, and BB:

23Otherwise, x∗(B1, S1) = 0 implies that x∗(B1, Sj) = 0 for all j, because x∗(B1, Sj) is nonincreasing

in Sj ; then, NTNP property implies t(B1, Sj) = 0 for all j. As a result, type B1 is redundant as the

payments associated with it are all zero.
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Theorem 6 There exists a mechanism satisfying BIC, IIR, EFF, and BB only if
m∑
i=1

g(Bi, S1)vb(B1, S1) +
m∑
i=2

i∑
j=2

g(Bi, Sj)vb(Bi, Sj)

≥
m∑
j=1

g(Bm, Sj)vs(Bm, Sm) +
m−1∑
j=1

m−1∑
i=j

g(Bi, Sj)vs(Bi, Sj). (15)

Remark 1 Notice that Theorem 6 is also true when there is no interdependence in valu-

ation or no correlation in distribution. In particular, when there is no interdependence in

valuation, each agent’s valuation depends only on his own type and the valuation func-

tions become vb(Bi) and vs(Sj); then, inequality (15) is rewritten as
m∑
i=1

g(Bi, S1)vb(B1) +
m∑
i=2

i∑
j=2

g(Bi, Sj)vb(Bi)

≥
m∑
j=1

g(Bm, Sj)vs(Sm) +
m−1∑
j=1

m−1∑
i=j

g(Bi, Sj)vs(Sj).

On the other hand, when there is no correlation in distribution, g(Bi, Sj) = gb(Bi)gs(Sj)

for any (i, j); then, inequality (15) becomes
m∑
i=1

gb(Bi)gs(S1)vb(B1, S1) +
m∑
i=2

i∑
j=2

gb(Bi)gs(Sj)vb(Bi, Sj)

≥
m∑
j=1

gb(Bm)gs(Sj)vs(Bm, Sm) +
m−1∑
j=1

m−1∑
i=j

gb(Bi)gs(Sj)vs(Bi, Sj).

Proof : In order to satisfy BB, we let tb(Bi, Sj) = −ts(Bi, Sj) = t(Bi, Sj) for all

(Bi, Sj) ∈ B × S. According to the NTNP property, x∗(Bi, Sj) = 0 for any i < j

implies t(Bi, Sj) = 0 for any i < j. We write down the following IIR constraints:

IRB1 : g(B1, S1) (vb(B1, S1)− t(B1, S1)) ≥ 0;

IRSm : g(Bm, Sm)t(Bm, Sm) ≥ g(Bm, Sm)vs(Bm, Sm).

To stop the buyer from deviating to B1, we have the following BIC constriants: for any

i 6= 1,
i∑

j=1

g(Bi, Sj) (vb(Bi, Sj)− t(Bi, Sj)) ≥ g(Bi, S1) (vb(Bi, S1)− t(B1, S1))

⇒
i∑

j=2

g(Bi, Sj) (vb(Bi, Sj)− t(Bi, Sj)) + g(Bi, S1) (t(B1, S1)− t(Bi, S1)) ≥ 0
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To stop the seller from deviating to Sm, we have the following BIC constraints: for any

j 6= m,
m∑
i=j

g(Bi, Sj)t(Bi, Sj) +

j−1∑
i=1

g(Bi, Sj)vs(Bi, Sj) ≥ g(Bm, Sj)t(Bm, Sm) +
m−1∑
i=1

g(Bi, Sj)vs(Bi, Sj)

⇒
m−1∑
i=j

g(Bi, Sj)t(Bi, Sj) + g(Bm, Sj) (t(Bm, Sj)− t(Bm, Sm)) ≥
m−1∑
i=j

g(Bi, Sj)vs(Bi, Sj).

In the following, we will show that after computation, inequality (15) is obtained as a

necessary condition. First, we multiply IRB1 by
∑m

i=1 g(Bi, S1)/g(B1, S1) and obtain
m∑
i=1

g(Bi, S1) (vb(B1, S1)− t(B1, S1)) ≥ 0. (16)

Second, we multiply IRSm by
∑m

j=1 g(Bm, Sj)/g(Bm, Sm) and obtain
m∑
j=1

g(Bm, Sj) (t(Bm, Sm)− vs(Bm, Sm)) ≥ 0. (17)

Third, adding up ICBi→B1 from i = 2 up to i = m, we have
m∑
i=2

i∑
j=2

g(Bi, Sj)vb(Bi, Sj)−
m∑
i=2

i∑
j=2

g(Bi, Sj)t(Bi, Sj) +
m∑
i=2

g(Bi, S1) (t(B1, S1)− t(Bi, S1)) ≥ 0

⇒
m∑
i=2

i∑
j=2

g(Bi, Sj)vb(Bi, Sj)−
m∑
i=2

i∑
j=1

g(Bi, Sj)t(Bi, Sj) +
m∑
i=2

g(Bi, S1)t(B1, S1) ≥ 0;

notice that the second term can be decomposed into the following:

−
m−1∑
i=2

i∑
j=1

g(Bi, Sj)t(Bi, Sj)−
m−1∑
j=1

g(Bm, Sj)t(Bm, Sj)− g(Bm, Sm)t(Bm, Sm);

therefore, the inequality can be rewritten as follows:
m∑
i=2

i∑
j=2

g(Bi, Sj)vb(Bi, Sj)−
m−1∑
i=2

i∑
j=1

g(Bi, Sj)t(Bi, Sj)−
m−1∑
j=1

g(Bm, Sj)t(Bm, Sj)

−g(Bm, Sm)t(Bm, Sm) +
m∑
i=2

g(Bi, S1)t(B1, S1) ≥ 0 (18)

Fourth, adding up ICSj→Sm from j = 1 up to j = m− 1, we have

m−1∑
j=1

m−1∑
i=j

g(Bi, Sj)t(Bi, Sj) +
m−1∑
j=1

g(Bm, Sj) (t(Bm, Sj)− t(Bm, Sm)) ≥
m−1∑
j=1

m−1∑
i=j

g(Bi, Sj)vs(Bi, Sj)

⇒
m−1∑
j=1

m∑
i=j

g(Bi, Sj)t(Bi, Sj)−
m−1∑
j=1

g(Bm, Sj)t(Bm, Sm)−
m−1∑
j=1

m−1∑
i=j

g(Bi, Sj)vs(Bi, Sj) ≥ 0;
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notice that the first term can be decomposed into the following:
m−1∑
j=2

m∑
i=j

g(Bi, Sj)t(Bi, Sj) +
m∑
i=2

g(Bi, S1)t(Bi, S1) + g(B1, S1)t(B1, S1);

therefore, the inequality can be rewritten as follows:
m−1∑
j=2

m∑
i=j

g(Bi, Sj)t(Bi, Sj) +
m∑
i=2

g(Bi, S1)t(Bi, S1) + g(B1, S1)t(B1, S1)

−
m−1∑
j=1

g(Bm, Sj)t(Bm, Sm)−
m−1∑
j=1

m−1∑
i=j

g(Bi, Sj)vs(Bi, Sj) ≥ 0. (19)

Finally, we obtain the following lemma:

Lemma 15 Adding (16), (17), (18) with (19), we obtain the necessary condition, that is,

inequality (15):
m∑
i=1

g(Bi, S1)vb(B1, S1) +
m∑
i=2

i∑
j=2

g(Bi, Sj)vb(Bi, Sj)

≥
m∑
j=1

g(Bm, Sj)vs(Bm, Sm) +
m−1∑
j=1

m−1∑
i=j

g(Bi, Sj)vs(Bi, Sj).

Proof : The proof is in the Appendix. �

This completes the proof. �

3.4 The Case of Two Types

In this section, we confine our attention to a two-type model, i.e., each agent has only

two types. In Subsection 3.4.1, we show that the identified necessary condition in the

previous section turns out to be sufficient as well. Subsection 3.4.2 conducts the compar-

ative statics for how the existence of desirable mechanisms rely on the interdependence

of valuations and correlated signals in a two-type model with linear valuations.

3.4.1 Sufficiency for the Existence of Mechanisms Satisfying BIC, IIR, EFF, and

BB

Proposition 6 When each agent has only two types, i.e., m = 2. Then, the general nec-

essary condition in Theorem 6 is also sufficient for the existence of mechanisms satisfying
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BIC, IIR, EFF, and BB.

Proof : If m = 2, the efficient decision rule in Table 2 is reduced to the following:

x∗(·) S2 S1

B2 1 1
B1 0 1

Next, the general necessary condition in Theorem 6 becomes

2∑
i=1

g(Bi, S1)vb(B1, S1) + g(B2, S2)vb(B2, S2) >
2∑
j=1

g(B2, Sj)vs(B2, S2) + g(B1, S1)vs(B1, S1).

Dividing both sides of the above inequality by g(B2, S1), we obtain(
g(B1, S1)

g(B2, S1)
+ 1

)
vb(B1, S1) +

g(B2, S2)

g(B2, S1)
vb(B2, S2) >

(
1 +

g(B2, S2)

g(B2, S1)

)
vs(B2, S2) +

g(B1, S1)

g(B2, S1)
vs(B1, S1).

We set α1 = g(B1, S1)/g(B2, S1) and α2 = g(B2, S2)/g(B2, S1). Then, the general

necessary condition can be further rewritten as

(1 + α1) vb(B1, S1) + α2vb(B2, S2) > (1 + α2) vs(B2, S2) + α1vs(B1, S1). (20)

Now we prove that (20) is also sufficient. Let t(B2, S2) = vs(B2, S2), t(B1, S1) =

vb(B1, S1), and pick t(B2, S1) such that

max {vb(B1, S1), vs(B2, S2)− αS1 (vb(B1, S1)− vs(B1, S1))}

6t(B2, S1) 6 min {vs(B2, S2), vb(B1, S1) + αB2 (vb(B2, S2)− vs(B2, S2))}

For simplicity, letA1 ≡ vs(B2, S2)−αSL (vb(B1, S1)− vs(B1, S1)) andA2 ≡ vb(B1, S1)+

αB2 (vb(B2, S2)− vs(B2, S2)). First, we show that t(B2, S1) is well-defined.

1. vb(B1, S1) − vs(B2, S2) < 0 because vb(B1, S1) 6 vb(B1, S2) < vs(B1, S2) 6

vs(B2, S2).

2. vb(B1, S1)− A2 = vb(B1, S1)− vb(B1, S1)− αB2 (vb(B2, S2)− vs(B2, S2))

= −αB2 (vb(B2, S2)− vs(B2, S2))

< 0

because vb(B2, S2)− vs(B2, S2) > 0.
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3. A1 − vs(B2, S2) = vs(B2, S2)− αS1 (vb(B1, S1)− vs(B1, S1))− vs(B2, S2)

= −αS1 (vb(B1, S1)− vs(B1, S1)) < 0

because vb(B1, S1)− vs(B1, S1) > 0.

4. A1 − A2 = vs(B2, S2)− αS1 (vb(B1, S1)− vs(B1, S1))

− vb(B1, S1)− αB2αB2 (vb(B2, S2)− vs(B2, S2))

= −(1 + αS1)vb(B1, S1)− αB2vb(B2, S2) + αS1vs(B1, S1) + (1 + αB2)vs(B2, S2)

6 0

because of (20).

Below we verify that the resulting mechanism (x∗, t) satisfies all the BIC and IIR

constraints.

1. IRB2 : LHS = αB2 (vb(B2, S2)− vs(B2, S2)) + (vb(B2, S1)− t(B2, S1))

> αB2 (vb(B2, S2)− vs(B2, S2)) + vb(B2, S1)

− vb(B1, S1)− αB2 (vb(B2, S2)− vs(B2, S2)) (∵ t(B2, S1) 6 A2)

= vb(B2, S1)− vb(B1, S1)

> 0

because vb(Bi, Sj) is strictly increasing in Bi. Hence, IRB2 is satisfied.

2. IRB1: LHS = αB1 (vb(B1, S1)− vb(B1, S1)) = 0. Hence, IRB1 is satisfied.

3. IRS2: LHS = αS2 (vs(B2, S2)− vs(B2, S2)) = 0. Hence, IRS2 is satisfied.

4. IRS1 : LHS = (t(B2, S1)− vs(B2, S1)) + αS1 (vb(B1, S1)− vs(B1, S1))

> vs(B2, S2)− αS1 (vb(B1, S1)− vs(B1, S1))− vs(B2, S1)

+ αS1 (vb(B1, S1)− vs(B1, S1)) (∵ t(B2, S1) > A1)

= vs(B2, S2)− vs(B2, S1)

> 0

because vs(Bi, Sj) is strictly increasing in Sj . Hence, IRS1 is satisfied.

5. ICB2→B1 : LHS > vb(B2, S1)− vb(B1, S1) according to IRB2 ;

RHS = vb(B2, S1)− vb(B1, S1)
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Hence, ICB2→B1 is satisfied.

6. ICB1→B2 : LHS = 0 according to IRB1 ;

RHS = vb(B1, S2)− vs(B2, S2) + αB1 (vb(B1, S1)− t(B2, S1))

6 vb(B1, S2)− vs(B2, S2) (∵ t(B2, S1) > vb(B1, S1))

< 0 (∵ vb(B1, S2) < vs(B1, S2) 6 vs(B2, S2))

Hence, ICB1→B2 is satisfied.

7. ICS2→S1 : LHS = 0 according to IRS2 ;

RHS = αS2 (t(B2, S1)− vs(B2, S2)) + vb(B1, S1)− vs(B1, S2)

6 vb(B1, S1)− vs(B1, S2) (∵ t(B2, S1) 6 vs(B2, S2))

< 0 (∵ vb(B1, S1) 6 vb(B1, S2) < vs(B1, S2))

Hence, ICS2→S1 is satisfied.

8. ICS1→S2 : LHS > vs(B2, S1)− vs(B2, S1) acoording to IRS1 ;

RHS = vs(B2, S2)− vs(B2, S1)

Hence, ICS1→S2 is satisfied.

This completes the proof. �

Remark 2 Consider a private-value setup where vb(Bi, Sj) = Bi and vs(Bi, Sj) = Sj .

Moreover, we assume that the agents’ types are independently distributed. So, let gb and

gs be the priors over B = {B1, B2} and S = {S1, S2}, respectively, such that

gb(Bi) =

{
δ if Bi = B1

1− δ if Bi = B2

and

gs(Sj) =

{
ε if Sj = S2

1− ε if Sj = S1

Then

αS1 =
g(B1, S1)

g(B2, S1)
=
gb(B1)

gb(B2)
=

δ

1− δ
and

αB2 =
g(B2, S2)

g(B2, S1)
=
gs(S2)

gs(S1)
=

ε

1− ε
.
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The necessary and sufficient condition (20) we identify becomes(
1 +

δ

1− δ

)
B1 +

ε

1− ε
B2 >

δ

1− δ
S1 +

(
1 +

ε

1− ε

)
S2.

This inequality is further summarized as

ε(1− ε)B1 + (1− δ)B2 > δ(1− ε)S1 + (1− δ)S2,

which is the same as Matsuo (1989).

3.4.2 Comparative Statics under Linear Valuations

In this section, we restrict attention to a linear valuation setup and assume that the

valuation functions are given as vb(Bi, Sj) = Bi + γbSj and vs(Bi, Sj) = Sj + γsBi

where γb ∈ [0, 1] denotes the buyer’s degree of interdependence of preferences and γs ∈

[0, 1] denotes the seller’s counterpart. This specification suggests that the single crossing

condition holds and each agent’s valuation function is strictly increasing in his own type

and nondecreasing in the other agent’s type.

The agents’ types are drawn from the following joint probability distribution g(·, ·):

g(·, ·) S2 S1

B2 a 1/2− a
B1 1/2− a a

where 0 ≤ a ≤ 1/2. Then, the marginal distribution g(·, ·) is given as follows:

gb(B2) = gb(B1) = gs(S2) = gs(S1) = 1/2,

and the following probability ratios are given as

αS1 = αB2 =
g(B1, S1)

g(B2, S1)
=

a

1/2− a
.

Notice that if a = 1/4, g(Bi, Sj) = gb(Bi)gs(Sj) for each (Bi, Sj) ∈ B × S, i.e.,

the agents’ types are independently distributed. On the other hand, if a = 1/2, then

g(B1, S2) = g(B2, S1) = 0 so that the types of both the buyer and seller are perfectly cor-

related, i.e., either they both have a high type or they both have a low type. The analysis

of this section considers the following efficient decision rule, that is,
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x∗(·) S2 S1

B2 1 1
B1 0 1

Lemma 16 For each a ∈ [0, 1/2] and γb ∈ [0, 1], there exists γ̄s(a, γb) ∈ R such that if

γ̄s(a, γb) ∈ [0, 1], there exists a NTNP mechanism satisfying BIC, IIR, EFF, and BB in any

model specified by (a, γb, γs) where γs ∈ [0, γ̄s].

Proof : Recall the necessary and sufficient condition in Proposition 6:

(1 + αS1)vb(B1, S1) + αB2vb(B2, S2) ≥ αS1vs(B1, S1) + (1 + αB2)vs(B2, S2).

Plugging the probability ratios αS1 = αB2 = a/(0.5 − a) into the above inequalities, we

obtain(
1 +

a

0.5− a

)
vb(B1, S1) +

a

0.5− a
vb(B2, S2) >

a

0.5− a
vs(B1, S1) +

(
1 +

a

0.5− a

)
vs(B2, S2).

This can be summarized as follow:

0.5vb(B1, S1) + avb(B2, S2) > avs(B1, S1) + 0.5vs(B2, S2).

Plugging vb(Bi, Sj) = Bi + γbSj and vs(Bi, Sj) = Sj + γsBi into the above inequalities

and thereafter summarizing the terms for γs, we obtain

γs ≤
0.5(B1 − S2) + a(B2 − S1)

aB1 + 0.5B2

+
0.5S1 + aS2

aB1 + 0.5B2

γb.

So, we set

γ̄s(a, γb) =
0.5(B1 − S2) + a(B2 − S1)

aB1 + 0.5B2

+
0.5S1 + aS2

aB1 + 0.5B2

γb.

This completes the proof. �

Therefore, the necessary and sufficient condition in two-type space implies an upper

bound on γs. The intuition is as follows: if γs is very large, the seller is asking such a

high price that the buyer would rather quit the mechanism. In other words, the buyer’s

IIR constraint is violated.

We establish the following comparative statics results.
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Proposition 7 The following comparative statics results are obtained.

1. For any a ∈ [0, 1/2], γ̄s(a, γb) is increasing in γb.

2. Assume that B1S2 −B2S1 > 0. For any γb ∈ [0, 1], γ̄s(a, γb) is increasing in a.

Proof : This proof follows straightforwardly from the following:

∂γ̄s(a, γb)

∂γb
=

0.5S1 + aS2

aB1 + 0.5B2

> 0;

∂γ̂2(γb, a)

∂a
=

0.5 [(B2 −B1)(B2 +B1) + (B1S2 −B2S1) + 0.5γb(B2S2 −B1S1)]

(aB1 + 0.5B2)2 ≥ 0.

�

The intuition is as follows:

1. when γb increases, the buyer has a higher valuation on average and is willing to pay

a higher price; hence, the seller can ask for a higher price and γs increases.

2. If a increases, after the seller knows his own type, he also has some information

about the buyer’s type which he can use to extract full surplus. For example, if a

increases, a high-type seller is more likely to meet the high-type buyer and thus he

can ask for a price which is very close to buyer’s valuation. Hence, the upper bound

of γs increases.

3.5 Dropping IIR: A Linear Programming Approach

In this section, we drop IIR as part of the requirement for desirable mechanisms and

characterize the set of valuation functions and correlated beliefs that guaranteeing mech-

anisms satisfying BIC, EFF, and BB as a system of inequalities. We solve this system of

inequalities by using Farkas Lemma, which allows us to check whether such a system of

inequalities admits a solution or not. Throughout this section, we restrict our attention to

a model with two types for each agent.

First of all, in order to satisfy BB, we let tb(Bi, Sj) = −ts(Bi, Sj) = t(Bi, Sj) for all

(Bi, Sj) ∈ B × S.
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Suppose each agent have m types. Then we write down the BIC constraints for each

agent. If the buyer’s true type isBi and he deviates toBk, then BIC requires that the buyer

obtain a higher expected utility under truth-telling, that is,
m∑
j=1

gs(Sj|Bi) (x∗(Bi, Sj)vb(Bi, Sj)− t(Bi, Sj))

>
m∑
j=1

gs(Sj|Bi) (x∗(Bk, Sj)vb(Bi, Sj)− t(Bk, Sj)) ;

after rearrangment, we obtain
m∑
j=1

gs(Sj|Bi)t(Bi, Sj)−
m∑
j=1

gs(Sj|Bi)t(Bk, Sj)

6
m∑
j=1

gs(Sj|Bi) (x∗(Bi, Sj)− x∗(Bk, Sj)) vb(Bi, Sj).

Analogously, if the seller’s true type is Sj and he deviates to Sl, then BIC requires that the

seller obtain a higher expected utility under truth-telling, that is,
m∑
i=1

gb(Bi|Sj) [(1− x∗(Bi, Sj)) vs(Bi, Sj)− ts(Bi, Sj)]

>
m∑
i=1

gb(Bi|Sj) [(1− x∗(Bi, Sl)) vs(Bi, Sj)− ts(Bi, Sl)] ;

after rearrangement, we obtain
m∑
i=1

gb(Bi|Sj)ts(Bi, Sj)−
m∑
i=1

gb(Bi|Sj)ts(Bi, Sl)

6
m∑
i=1

gb(Bi|Sj) (x∗(Bi, Sl)− x∗(Bi, Sj)) vs(Bi, Sj);

since ts(Bi, Sj) = −t(Bi, Sj) for all (Bi, Sj) ∈ B × S, the seller’s BIC constraint can be

further rewritten as follows:
m∑
i=1

gb(Bi|Sj)t(Bi, Sl)−
m∑
i=1

gb(Bi|Sj)t(Bi, Sj)

6
m∑
i=1

gb(Bi|Sj) (x∗(Bi, Sl)− x∗(Bi, Sj)) vs(Bi, Sj).

Putting all the BIC constraints together, we have
m∑
j=1

gs(Sj|Bi)t(Bi, Sj)−
m∑
j=1

gs(Sj|Bi)t(Bk, Sj) 6
m∑
j=1

gs(Sj|Bi) (x∗(Bi, Sj)− x∗(Bk, Sj)) vb(Bi, Sj)
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for any i 6= k, and

m∑
i=1

gb(Bi|Sj)t(Bi, Sl)−
m∑
i=1

gb(Bi|Sj)t(Bi, Sj) 6
m∑
i=1

gb(Bi|Sj) (x∗(Bi, Sl)− x∗(Bi, Sj)) vs(Bi, Sj)

for any j 6= l.

In what follows, we will consider the two-type space and show that the system of BIC

and BB constraints has a solution.

Proposition 8 When each agent has only two types, there exists a mechanism (x∗, t) sat-

isfying BIC, EFF, and BB, where x∗ is the efficient decision rule.

Remark 3 The proposition remains correct even when the agents’ types are indepen-

dently distributed, because the proof also works under independent distribution.

Proof : The proof consists of three steps. In Step 1, we write down all the constraints that

the transfer rule t must satisfy in order to satisfy BIC and BB. In Step 2, we treat these

constraints as a system of inequalities and write down its Farkas alternative. In Step 3, we

show that the Farkas alternative has no solution. Finally, by Farkas Lemma, the original

system of inequalities must have a solution.

Step 1: We write down all the constraints that the transfer rule t must satisfy in order to

achieve BIC and BB.

Proof : Putting all the BIC constraints together, we have

2∑
j=1

gs(Sj|B1)t(B1, Sj)−
2∑
j=1

gs(Sj|B1)t(B2, Sj) 6
2∑
j=1

gs(Sj|B1) (x∗(B1, Sj)− x∗(B2, Sj)) vb(B1, Sj);

2∑
j=1

gs(Sj|B2)t(B2, Sj)−
2∑
j=1

gs(Sj|B2)t(B1, Sj) 6
2∑
j=1

gs(Sj|B2) (x∗(B2, Sj)− x∗(B1, Sj)) vb(B2, Sj);

2∑
i=1

gb(Bi|S1)t(Bi, S2)−
2∑
i=1

gb(Bi|S1)t(Bi, S1) 6
2∑
i=1

gb(Bi|S1) (x∗(Bi, S2)− x∗(Bi, S1)) vs(Bi, S1);

2∑
i=1

gb(Bi|S2)t(Bi, S1)−
2∑
i=1

gb(Bi|S2)t(Bi, S2) 6
2∑
i=1

gb(Bi|S2) (x∗(Bi, S1)− x∗(Bi, S2)) vs(Bi, S2).

Recall that the efficient decision rule in Table 2 becomes the following when m = 2:
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x∗(·) S2 S1

B2 1 1
B1 0 1

Then we can simplify the right-hand sides of the BIC constraints and obtain the fol-

lowing:

2∑
j=1

gs(Sj|B1)t(B1, Sj)−
2∑
j=1

gs(Sj|B1)t(B2, Sj) 6 −gs(S2|B1)vb(B1, S2);

2∑
j=1

gs(Sj|B2)t(B2, Sj)−
2∑
j=1

gs(Sj|B2)t(B1, Sj) 6 gs(S2|B2)vb(B2, S2);

2∑
i=1

gb(Bi|S1)t(Bi, S2)−
2∑
i=1

gb(Bi|S1)t(Bi, S1) 6 −gb(B1|S1)vs(B1, S1);

2∑
i=1

gb(Bi|S2)t(Bi, S1)−
2∑
i=1

gb(Bi|S2)t(Bi, S2) 6 gb(B1|S2)vs(B1, S2). (21)

Therefore, finding a transfer rule t which, together with the efficient decision rule in Table

2, satisfies EFF, BIC, and BB, is equivalent to check whether (21) has a solution or not.

�

Step 2: We write down the Farkas alternative of (21).

Proof : First, we will convert (21) into the standard form {x : Ax = b, x > 0}. Observe

that any inequality in (21) can be turned into an equation by the addition of a slack variable

ε. That is, define four new variables ε1, ε2, ε3, ε4 > 0 such that

2∑
j=1

gs(Sj|B1)t(B1, Sj)−
2∑
j=1

gs(Sj|B1)t(B2, Sj) + ε1 = −gs(S2|B1)vb(B1, S2);

2∑
j=1

gs(Sj|B2)t(B2, Sj)−
2∑
j=1

gs(Sj|B2)t(B1, Sj) + ε2 = gs(S2|B2)vb(B2, S2);

2∑
i=1

gb(Bi|S1)t(Bi, S2)−
2∑
i=1

gb(Bi|S1)t(Bi, S1) + ε3 = −gb(B1|S1)vs(B1, S1);

2∑
i=1

gb(Bi|S2)t(Bi, S1)−
2∑
i=1

gb(Bi|S2)t(Bi, S2) + ε4 = gb(B1|S2)vs(B1, S2).

Beside, the monetary transfer t(Bi, Sj) for any (i, j) that is unrestricted in sign can be

replaced by two non-negative variables aij and bij by setting t(Bi, Sj) = aij − bij . Then,
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(21) becomes

2∑
j=1

gs(Sj|B1) (a1j − b1j)−
2∑
j=1

gs(Sj|B1) (a2j − b2j) + ε1 = −gs(S2|B1)vb(B1, S2);

2∑
j=1

gs(Sj|B2) (a2j − b2j)−
2∑
j=1

gs(Sj|B2) (a1j − b1j) + ε2 = gs(S2|B2)vb(B2, S2);

2∑
i=1

gb(Bi|S1) (ai2 − bi2)−
2∑
i=1

gb(Bi|S1) (ai1 − bi1) + ε3 = −gb(B1|S1)vs(B1, S1);

2∑
i=1

gb(Bi|S2) (ai1 − bi1)−
2∑
i=1

gb(Bi|S2) (ai2 − bi2) + ε4 = gb(B1|S2)vs(B1, S2),

where aij, bij > 0 for all (i, j) and ε1, ε2, ε3, ε4 > 0. We can also rewrite it into matrix

form: let

A =


gs(S1|B1) −gs(S1|B1) gs(S2|B1) −gs(S2|B1) −gs(S1|B1) gs(S1|B1) −gs(S2|B1) gs(S2|B1) 1 0 0 0

−gs(S1|B2) gs(S1|B2) −gs(S2|B2) gs(S2|B2) gs(S1|B2) −gs(S1|B2) gs(S2|B2) −gs(S2|B2) 0 1 0 0

−gb(B1|S1) gb(B1|S1) gb(B1|S1) −gb(B1|S1) −gb(B2|S1) gb(B2|S1) gb(B2|S1) −gb(B2|S1) 0 0 1 0

gb(B1|S2) −gb(B1|S2) −gb(B1|S2) gb(B1|S2) gb(B2|S2) −gb(B2|S2) −gb(B2|S2) gb(B2|S2) 0 0 0 1


x =

[
a11 b11 a12 b12 a21 b21 a22 b22 ε1 ε2 ε3 ε4

]T

b =


−gs(S2|B1)vb(B1, S2)

gs(S2|B2)vb(B2, S2)

−gb(B1|S1)vs(B1, S1)

gb(B1|S2)vs(B1, S2)


Then, (21) is converted into the standard form {x ∈ R12 : Ax = b, x > 0}.

According to Farkas Lemma, either (21) has a solution or there exists y ∈ R4 such

that yA > 0 and y · b < 0. Let

y =
[
y1 y2 y3 y4

]
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Then, yA > 0 implies

y1gs(S1|B1)− y2gs(S1|B2)− y3gb(B1|S1) + y4gb(B1|S2) > 0; (22)

−y1gs(S1|B1) + y2gs(S1|B2) + y3gb(B1|S1)− y4gb(B1|S2) > 0; (23)

y1gs(S2|B1)− y2gs(S2|B2) + y3gb(B1|S1)− y4gb(B1|S2) > 0; (24)

−y1gs(S2|B1) + y2gs(S2|B2)− y3gb(B1|S1) + y4gb(B1|S2) > 0; (25)

−y1gs(S1|B1) + y2gs(S1|B2)− y3gb(B2|S1) + y4gb(B2|S2) > 0; (26)

y1gs(S1|B1)− y2gs(S1|B2) + y3gb(B2|S1)− y4gb(B2|S2) > 0; (27)

−y1gs(S2|B1) + y2gs(S2|B2) + y3gb(B2|S1)− y4gb(B2|S2) > 0; (28)

y1gs(S2|B1)− y2gs(S2|B2)− y3gb(B2|S1) + y4gb(B2|S2) > 0; (29)

y1, y2, y3, y4 > 0. (30)

Notice that

1. Inequality (22) and (23) imply

y1gs(S1|B1)− y2gs(S1|B2)− y3gb(B1|S1) + y4gb(B1|S2) = 0;

2. Inequality (24) and (25) imply

y1gs(S2|B1)− y2gs(S2|B2) + y3gb(B1|S1)− y4gb(B1|S2) = 0;

3. Inequality (26) and (27) imply

y1gs(S1|B1)− y2gs(S1|B2) + y3gb(B2|S1)− y4gb(B2|S2) = 0;

4. Inequality (28) and (29) imply

y1gs(S2|B1)− y2gs(S2|B2)− y3gb(B2|S1) + y4gb(B2|S2) = 0.

On the other hand y · b < 0 implies

−y1gs(S2|B1)vb(B1, S2) + y2gs(S2|B2)vb(B2, S2)− y3gb(B1|S1)vs(B1, S1) + y4gb(B1|S2)vs(B1, S2) < 0.
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To summarize, the Farkas alternative of (21) is

y1gs(S1|B1)− y2gs(S1|B2)− y3gb(B1|S1) + y4gb(B1|S2) = 0; (31)

y1gs(S2|B1)− y2gs(S2|B2) + y3gb(B1|S1)− y4gb(B1|S2) = 0; (32)

y1gs(S1|B1)− y2gs(S1|B2) + y3gb(B2|S1)− y4gb(B2|S2) = 0; (33)

y1gs(S2|B1)− y2gs(S2|B2)− y3gb(B2|S1) + y4gb(B2|S2) = 0; (34)

−y1gs(S2|B1)vb(B1, S2) + y2gs(S2|B2)vb(B2, S2)

−y3gb(B1|S1)vs(B1, S1) + y4gb(B1|S2)vs(B1, S2) < 0, (35)

where y1, y2, y3, y4 > 0. �

Step 3: We show that the Farkas alternative of (21) has no solutions.

Proof : Multiplying (32) by −vs(B1, S2), we obtain

vs(B1, S2) [−y1gs(S2|B1) + y2gs(S2|B2)− y3gb(B1|S1) + y4gb(B1|S2)] = 0. (36)

Define

A(y1, y2, y3) = −y1gs(S2|B1) (vb(B1, S2)− vs(B1, S2)) + y2gs(S2|B2) (vb(B2, S2)− vs(B1, S2))

−y3gb(B1|S1) (vs(B1, S1)− vs(B1, S2)) .

Notice that A(y1, y2, y3) > 0 because

1. vb(B1, S2)− vs(B1, S2) < 0 because x∗(B1, S2) = 0;

2. vb(B2, S2)− vs(B1, S2) > 0 because vb(B2, S2) > vs(B2, S2) > vs(B1, S2);

3. vs(B1, S1)− vs(B1, S2) < 0 because vs(Bi, Sj) is strictly increasing in Sj .

Adding A(y1, y2, y3) to the left-hand side of (36), we obtain

−y1gs(S2|B1)vb(B1, S2) + y2gs(S2|B2)vb(B2, S2)

−y3gb(B1|S1)vs(B1, S1) + y4gb(B1|S2)vs(B1, S2) > 0,

contradicting (35). Therefore, the Farkas alternative of (21) has no solutions. Then, by

Farkas Lemma, (21) must have a solution. �
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Steps 1 through 3 show that there exists a transfer rule t which, together with the

efficient decision rule in Table 2, satisfies BIC, EFF, and BB in a two-type model. This

completes the proof of the proposition. �

This proposition says that there generally exists a mechanism satisfying BIC, EFF, and

BB. Therefore, IIR imposes a stringent restriction on the class of desirable mechanisms

together with the other three properties.

3.6 Concluding Remarks

This paper identifies a necessary condition for the existence of mechanisms satisfying

BIC, IIR, EFF, and BB in a bilateral trade model with a discrete type space. In the rest

of the paper, however, we confine our attention to a two-type model to further obtain

the implications of the paper’s model. What clearly needs to be done is to extend the

whole analysis of the paper to a general finite type space. Although this is a technically

challenging question, we are currently working on this extension.
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A Appendix to Chapter 1

In the Appendix, we provide all the proofs which are omitted from the main body of

the paper.

A.1 Proof of Lemma 1

Proof : Fix i ∈ N and θm, θn ∈ Θ arbitrarily. By definition, we obtain

x̄∗i (θ
m) =

∑
θ−i∈ΘN−1

PN−1(θ−i)x
∗(θm, θ−i) =

∑
θ−i:

∑
j 6=i θj>c(N)−θm

PN−1(θ−i);

x̄∗i (θ
n) =

∑
θ−i∈ΘN−1

PN−1(θ−i)x
∗(θn, θ−i) =

∑
θ−i:

∑
j 6=i θj>c(N)−θn

PN−1(θ−i).

Observe that as N →∞,

lim
N→∞

(c(N)/N − θm/N) = lim
N→∞

(c(N)/N − θn/N) = lim
N→∞

c(N)/N.

because θ1 < limN→∞ c(N)/N < θM . For each θm ∈ Θ and N ≥ 2, we have{
θ−i ∈ ΘN−1

∣∣∣ ∑
j 6=i

θj ≥ c(N)− θm
}

=

{
θ−i ∈ ΘN−1

∣∣∣ 1

N

∑
j 6=i

θj ≥
c(N)

N
− θm

N

}

Therefore, for each θm ∈ Θ, as N →∞,∑
θ−i:

∑
j 6=i θj≥c(N)−θm

PN−1(θ−i) ≈
∑

θ−i:
1
N

∑
j 6=i θj≥

c(N)
N

PN−1(θ−i),

which does not depend on θm. This implies limN→∞ x̄
∗
i (θ

m) = limN→∞ x̄
∗
i (θ

n). �

A.2 Proof of Lemma 2

Proof : For the ease of notation, we define

ΘN
∗ ≡

{
θ ∈ ΘN :

∑
i∈N

θi ≥ c(N)

}
,

and for each θi ∈ Θ,

ΘN−1
∗ (θi) ≡

{
θ−i ∈ ΘN−1 :

∑
j 6=i

θj ≥ c(N)− θi

}
.
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Then we obtain the desired expression in Lemma 2 as follows:

LHS = lim
N→∞

∑
θ∈ΘN

PN(θ)x∗[N ](θ)

= lim
N→∞

∑
θ∈ΘN∗

PN(θ) ( recall the definition of x̄∗(θ))

= lim
N→∞

∑
θi∈Θ

∑
θ−i∈ΘN−1

∗ (θi)

P (θi)P
N−1(θ−i) (∵ types are independently distributed )

= lim
N→∞

∑
θi∈Θ

P (θi)x̄
∗
i [N ](θi)

∵ x̄i∗[N ](θi) =
∑

θ−i∈ΘN−1
∗

PN−1(θ−i)


= lim

N→∞
x̄∗i [N ](θM)

∑
θi∈Θ

P (θi)
(
∵ lim

N→∞
x̄∗i [N ](θm) = lim

N→∞
x̄∗i [N ](θn) for any m 6= n by Lemma 1

)

= lim
N→∞

x̄∗i [N ](θM) = RHS

(
∵
∑
θi∈Θ

P (θi) = 1

)
.

�

A.3 Proof of Lemma 3

Proof : We take the expression of Π′ea(x
∗) from Theorem 1:

Π′ea(x
∗) =

M−1∑
m=1

x̄∗i (θ
m)

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)− c(N)P (θm)

)
+ x̄∗i (θ

M)
(
NθM − c(N)

)
P (θM).
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In particular, when M = 2,

Π′ea(x
∗) = x̄∗i (θ

1)

(
Nθ1

2∑
l=1

P (θl)−Nθ2P (θ2)− c(N)P (θ1)

)
+ x̄∗i (θ

2)
(
Nθ2 − c(N)

)
P (θ2)

= x̄∗i (θ
1)
(
Nθ1 − (1− ε)Nθ2 − εc(N)

)
+ x̄∗i (θ

2)(1− ε)
(
Nθ2 − c(N)

)
=

N−1∑
k=k∗(N)

pN−1(k)
(
Nθ1 − (1− ε)Nθ2 − εc(N)

)
+

N−1∑
k=k∗(N)−1

pN−1(k)(1− ε)
(
Nθ2 − c(N)

)
( recall the formulas of x̄∗i (θ

1) and x̄∗i (θ
2))

=
N−1∑

k=k∗(N)

pN−1(k)
(
Nθ1 − (1− ε)Nθ2 − εc(N) + (1− ε)Nθ2 − (1− ε)c(N)

)
+pN−1(k∗(N)− 1)(1− ε)

(
Nθ2 − c(N)

)
=

N−1∑
k=k∗(N)

pN−1(k)
(
Nθ1 − c(N)

)
+ pN−1(k∗(N)− 1)(1− ε)

(
Nθ2 − c(N)

)
.

We know that (k∗(N)− 1)θ2 + (N − k∗(N) + 1)θ1 < c(N). Plugging this inequality in

Π
′
ea(x

∗), we obtain

Π′ea(x
∗) <

(
Nθ1 − (k∗(N)− 1)θ2 − (N − k∗(N) + 1)θ1

) N−1∑
k=k∗(N)

pN−1(k)

+(1− ε)
(
Nθ2 − (k∗(N)− 1)θ2 − (N − k∗(N) + 1)θ1

)
· pN−1(k∗(N)− 1)

= −(k∗(N)− 1)(θ2 − θ1)
N−1∑

k=k∗(N)

pN−1(k) + (1− ε)(N − k∗(N) + 1)(θ2 − θ1)pN−1(k∗(N)− 1)

= (θ2 − θ1)

−(k∗(N)− 1)
N−1∑

k=k∗(N)

pN−1(k) + (1− ε)(N − k∗(N) + 1)pN−1(k∗(N)− 1)

 .

Defining

Π̄ea(x
∗) ≡ −(k∗(N)− 1)

N−1∑
k=k∗(N)

pN−1(k) + (1− ε)(N − k∗(N) + 1)pN−1(k∗(N)− 1),

we rewrite the expression for the upper bound of Π
′
ea(x

∗) as follows:

Π′ea(x
∗) < (θ2 − θ1)Π̄ea(x

∗).

�
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A.4 Proof of the Assertion in Footnote 13

Proof : Recall that x∗[N ] is the efficient decision rule in an economy with N agents. In

this example,

lim
N→∞

∑
θ∈ΘN

PN(θ)x∗[N ](θ) = lim
N→∞

N∑
k=k∗(N)

pN(k)

where pN(k) is the probability that k out of N agents are of type θ2.

Moreover, asN →∞, pN(k) can be approximated by fN(k), which is the probability

density function of the normal distribution with mean N(1− ε) and variance N(1− ε)ε.

This approximation is formally called De Moivre-Laplace theorem. See, for example,

Papoulis (1991) for the details. Therefore,

lim
N→∞

∑
θ∈ΘN

PN(θ)x∗[N ](θ) = lim
N→∞

N∑
k=k∗(N)

pN(k) = lim
N→∞

∫ N

k∗(N)

fN(k)dk > 0

because k∗(N) = d(1−ε)Ne, which is the mean of the approximated normal distribution.

Hence, Theorem 2 applies so that we obtain limN→∞Π′ea(x
∗[N ])/N < 0. �

A.5 Proof of Theorem 3

Proof : From IRθ1 , we know that for each agent i ∈ N ,

t̄i(θ
1) 6 θ1x̄i(θ

1) = t̄Ti (θ1).

If θm > θ1, or equivalently, m > 1, then adding IRθ1 and ICθl→θl−1 for every 2 6 l 6 m,

we obtain that for each agent i ∈ N ,

t̄i(θ
m) 6

m∑
l=1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)

= t̄Ti (θm).

Therefore, each agent has the largest interim expected payment in the tight mechanism,

and thus the tight mechanism maximizes the ex ante expected budget surplus. Finally, we

obtain the expression for the ex ante budget surplus of the tight mechanism (x, tT ):
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ΠT
ea(x) =

∑
i∈N

∑
θi∈Θ

P (θi)t̄
T
i (θi)− c(N)

∑
θi∈Θ

P (θi)x̄i(θi)

=
∑
i∈N

M∑
m=1

P (θm)t̄Ti (θm)− c(N)
M∑
m=1

P (θm)x̄i(θ
m)

= N

M∑
m=1

P (θm)
m∑
l=1

θl
(
x̄i(θ

l)− x̄i(θl−1)
)
− c(N)

M∑
m=1

P (θm)x̄i(θ
m)(

recall the definition of t̄Ti (θm)
)

= N
M∑
m=1

θm
(
x̄i(θ

m)− x̄i(θm−1)
) M∑
l=m

P (θl)− c(N)
M∑
m=1

P (θm)x̄i(θ
m)

=
M−1∑
m=1

x̄i(θ
m)

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)− c(N)P (θm)

)
+x̄i(θ

M)
(
NθM − c(N)

)
P (θM).

�

A.6 Proof of Theorem 4

Proof : We take the expression for ΠT
ea(x[N ]) from Theorem 3:

ΠT
ea(x[N ]) =

M−1∑
m=1

x̄i[N ](θm)

(
Nθm

M∑
l=m

P (θl)−Nθm+1

M∑
l=m+1

P (θl)− c(N)P (θm)

)
,

+ x̄i[N ](θM)
(
NθM − c(N)

)
P (θM),

where x̄i[N ](θm) =
∑

θ−i∈ΘN−1 PN−1(θ−i)x[N ](θm, θ−i) for each θm ∈ Θ. In particular,

when M = 2,

ΠT
ea(x[N ]) = x̄i[N ](θ1)

(
Nθ1 −Nθ2(1− ε)− εc(N)

)
+(1−ε)x̄i[N ](θ2)

(
Nθ2 − c(N)

)
.
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Hence,

ΠT
ea(x[N ])

N
= x̄i[N ](θ1)

(
θ1 − θ2(1− ε)− εc(N)

N

)
+ (1− ε)x̄i[N ](θ2)

(
θ2 − c(N)

N

)
=

∑
θ−i∈ΘN−1

PN−1(θ−i)x[N ](θ1, θ−i)

(
θ1 − θ2(1− ε)− εc(N)

N

)

+(1− ε)
∑

θ−i∈ΘN−1

PN−1(θ−i)x[N ](θ2, θ−i)

(
θ2 − c(N)

N

)
( recall the definition of x̄i[N ](θ1) and x̄i[N ](θ2))

=
N−1∑
k=0

pN−1(k)x[N ](k)

(
θ1 − θ2(1− ε)− εc(N)

N

)

+(1− ε)
N−1∑
k=0

pN−1(k)x[N ](k + 1)

(
θ2 − c(N)

N

)
(x is anonymous by Assumption 2 )

where pN−1(k) is the probability that k out of (N − 1) agents are of type θ2 and x[N ](k)

is the probability of public good provision when there are k agents who are of type θ2.

The expression can be further rewritten as follows:

ΠT
ea(x[N ])

N

=
N−1∑
k=1

x[N ](k)

[
pN−1(k)

(
θ1 − θ2(1− ε)− εc(N)

N

)
+ pN−1(k − 1)(1− ε)

(
θ2 − c(N)

N

)]
+(1− ε)pN−1(N − 1)x[N ](N)

(
θ2 − c(N)

N

)
+ pN−1(0)x[N ](0)

(
θ1 − θ2(1− ε)− εc(N)

N

)
=

N−1∑
k=k∗(N)

x[N ](k)

[
pN−1(k)

(
θ1 − θ2(1− ε)− εc(N)

N

)
+ pN−1(k − 1)(1− ε)

(
θ2 − c(N)

N

)]

+(1− ε)Nx[N ](N)

(
θ2 − c(N)

N

)
,

because x[N ](k) = 0 whenever k < k∗(N) by Assumption 1.
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Hence,

lim
N→∞

ΠT
ea(x[N ])

N

= lim
N→∞

N−1∑
k=k∗(N)

x[N ](k)

[
pN−1(k)

(
θ1 − θ2(1− ε)− εc(N)

N

)
+ pN−1(k − 1)(1− ε)

(
θ2 − c(N)

N

)]

+ lim
N→∞

(1− ε)Nx[N ](N)

(
θ2 − c(N)

N

)
= lim

N→∞

N−1∑
k=k∗(N)

x[N ](k)

[
pN−1(k)

(
θ1 − θ2(1− ε)− εc(N)

N

)
+ pN−1(k − 1)(1− ε)

(
θ2 − c(N)

N

)]
,

because (1− ε)N → 0 as N →∞. For simplicity, let

A ≡ θ1 − θ2(1− ε)− εc(N)

N
= ε

(
θ1 − c(N)

N

)
+ (1− ε)(θ1 − θ2) < 0;

B ≡ (1− ε)
(
θ2 − c(N)

N

)
≥ 0.

Observe that

|A| − |B| = −A−B

= −ε
(
θ1 − c(N)

N

)
− (1− ε)(θ1 − θ2)− (1− ε)

(
θ2 − c(N)

N

)
= −ε

(
θ1 − c(N)

N

)
− (1− ε)

(
θ1 − c(N)

N

)
= −

(
θ1 − c(N)

N

)
> 0.

The expression of limN→∞ΠT
ea(x[N ])/N is rewritten as follows:

lim
N→∞

ΠT
ea(x[N ])

N
= lim

N→∞

N−1∑
k=k∗(N)

x[N ](k)
[
pN−1(k)A+ pN−1(k − 1)B

]
.

Since limN→∞ k
∗(N)/N = α for some α ∈ (0, 1], k∗(N) can be approximated by

αN for N large enough. So,

lim
N→∞

ΠT
ea(x[N ])

N
= lim

N→∞

N−1∑
k=dαNe

x[N ](k)
[
pN−1(k)A+ pN−1(k − 1)B

]
,

where dαNe denotes the least integer greater than or equal to αN for every N . Moreover,

for anyN large enough and any integer k, if dαNe ≤ k ≤ N−1, there exists βk,N ∈ (0, 1)

such that k is approximated by βk,NN . We thus obtain that for N large enough,

βk,NN

βk,NN − 1
≈ 1.
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We also know that as N → ∞, pN−1(k) can be approximated by fN−1(k), which is the

probability density function of the normal distribution with mean (N − 1)(1 − ε) and

variance (N − 1)(1 − ε)ε. This approximation is formally called De Moivre-Laplace

theorem. See, for example, Papoulis (1991) for the details. Since fN−1(·) is continuous,

for any N large enough and any integer k, if dαNe ≤ k ≤ N − 1,

fN−1(βk,NN) ≈ fN−1(βk,NN − 1).

This implies that for any integer k and N , if k∗(N) ≤ k ≤ N − 1,

lim
N→∞

pN−1(k) = lim
N→∞

pN−1(k − 1).

In other words, the difference in the binomial probabilities of k and (k − 1) is negligi-

ble in large economies. We thus replace pN−1(k − 1) by pN−1(k) in the expression of

limN→∞ΠT
ea(x[N ])/N and rewrite it as follows:

lim
N→∞

ΠT
ea(x[N ])

N
= lim

N→∞

N−1∑
k=k∗(N)

x[N ](k)
[
pN−1(k)A+ pN−1(k)B

]
= lim

N→∞

N−1∑
k=k∗(N)

pN−1(k)x[N ](k)(A+B)

= (A+B) lim
N→∞

N−1∑
k=k∗(N)

pN−1(k)x[N ](k).

Moreover, for N large enough, we have N/(N − 1) ≈ 1 so that we can replace (N − 1)

by N and rewrite the expression of ΠT
ea(x[N ])/N as follows:

lim
N→∞

ΠT
ea(x[N ])

N
= (A+B) lim

N→∞

N∑
k=k∗(N)

pN(k)x[N ](k),

where pN(k) is the probability that k out of N agents are of type θ2. Recall that A+B =

−(−A − B) < 0. Since {x[N ]}N is a sequence of mechanisms satisfying BIC, IIR,

and BB, by Corollary 3, we must have ΠT
ea(x[N ]) ≥ 0 for each N . This together with

Assumption 1 implies that we obtain the following equivalence:

lim
N→∞

ΠT
ea(x[N ])/N ≥ 0
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if and only if

lim
N→∞

N∑
k=1

pN(k)x[N ](k) = 0.

This concludes that the ex ante probability that the public good is provided converges to

zero as the population size of the economy gets large. �
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B Appendix to Chapter 2

B.1 Proof of Claim 4

Proof : We first identify the worst-off type for each agent by checking the following

cases.

Case 1: 0 ≤ θ1 ≤ (1− γ1)/(1− γ2)

We compute the following.

Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

=

∫ 1−γ2
1−γ1

θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

ũ2(θ1, θ2)dθ2

=

∫ 1−γ2
1−γ1

θ1

0

(θ1 + γ1θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

(γ2θ1 + θ2)dθ2

=
1− γ2

1− γ1

(θ1)2 +
1

2

γ1(1− γ2)2

(1− γ1)2
(θ1)2 + γ2θ1

(
1− 1− γ2

1− γ1

θ1

)
+

1

2

[
1−

(
1− γ2

1− γ1

)2

(θ1)2

]

=
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2. (37)

Hence, the objective function becomes

Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

1 (θ1) =
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2 −
∫ 1

0

ũ1(θ1, θ2)dθ2

=
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2 − θ1 −
1

2
γ1

=
1

2

(1− γ2)2

1− γ1

(
θ1 −

1− γ1

1− γ2

)2

.

So, when θ1 = (1 − γ1)/(1 − γ2), the objective function attains its minimum, which is

zero. So, in this case, the seller’s worst-off type is θw1 = (1− γ1)/(1− γ2).

Case 2: (1− γ1)/(1− γ2) < θ1 ≤ 1
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We compute the following:

Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

1 (θ1) =

∫ 1

0

ũ1(θ1, θ2)dθ2 −
∫ 1

0

ũ1(θ1, θ2)dθ2 = 0.

Therefore, in this case, the seller’s worst-off type is θw1 = 1.

We compute the expected loss for his worst-off type θw1 below:

L1 ≡ UO
1 (θw1 )− UG

1 (θw1 )

= −

[
Eθ2

(
2∑
j=1

uj(x
∗(θw1 , θ2), θw1 , θ2)

)
− UO

1 (θw1 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= 0 +
1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

=
1

2
Eθ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]
,

where Eθ1 denotes the expectation operator over Θ1. Note that for each θ2 ∈ Θ2,

Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

=

∫ 1−γ1
1−γ2

θ2

0

ũ2(θ1, θ2)dθ1 +

∫ 1

1−γ1
1−γ2

θ2

ũ1(θ1, θ2)dθ1

=

∫ 1−γ1
1−γ2

θ2

0

(γ2θ1 + θ2)dθ1 +

∫ 1

1−γ1
1−γ2

θ2

(θ1 + γ1θ2)dθ1

=
1

2
γ2

(
1− γ1

1− γ2

θ2

)2

+
1− γ1

1− γ2

(θ2)2 +
1

2

(
1−

(
1− γ1

1− γ2

θ2

)2
)

+ γ1θ2

(
1− 1− γ1

1− γ2

θ2

)
=

1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2. (38)

Therefore, we compute the expected loss for the seller’s worst-off type θw1 :

L1 =
1

2
Eθ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

=
1

2

∫ 1

0

[
1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2

]
dθ2

=
1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

. (39)
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Since γ1 > 0 and γ2 < 1, we obtain L1 > 0, which implies that the seller is worse off

after participating in the mechanism. On the other hand, we obtain the buyer’s worst-off

type θw2 from participating in the generalized two-stage Groves mechanism:

θw2 ∈ arg min
θ2∈Θ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

2 (θ2)

]

= arg min
θ2∈Θ2

[
1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2 − 0

]
,

where the equality follows from (38). It is easy to see that the buyer’s worst-off type is

θw2 = 0. So, we compute the expected loss for his worst-off type θw2 = 0 as follows:

L2 ≡ UO
2 (θw2 )− UG

2 (θw2 )

= −

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ

w
2 ), θ1, θ

w
2 )

)
− UO

2 (θw2 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

( recall (39))

So, the total expected loss is

L1 + L2 =
1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

− 1

4
+

1

4
γ1 +

1

12

(1− γ1)2

1− γ2

=
1

2
γ1 +

1

6

(1− γ1)2

1− γ2

> 0,

where the last inequality follows because γ1 > 0 and 0 < γ2 < 1. This completes the

proof of Claim 4. �
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B.2 Proof of Claim 5

Proof : We compute the seller’s worst-off type from participating in the generalized two-

stage Groves mechanism.

θw1 ∈ arg min
θ1∈Θ1

[
Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

1 (θ1)

]

= arg min
θ1∈Θ1

[∫ 1−γ2
1−γ1

θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0

ũ1(θ1, θ2)dθ2

]

= arg min
θ1∈Θ1

[
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2 − θ1 −
1

2
γ1

]
( recall (37) )

= arg min
θ1∈Θ1

[
1

2

(1− γ2)2

1− γ1

(
θ1 −

1− γ1

1− γ2

)2
]
.

Note that 0 < γ1 < γ2 < 1 implies (1 − γ1)/(1 − γ2) > 1. Hence, the seller’s worst-off

type is θw1 = 1. We compute the expected loss for his worst-off type as follows:

L1 ≡ UO
1 (θw1 )− UG

1 (θw1 )

= −

[
Eθ2

(
2∑
j=1

uj(x
∗(θw1 , θ2), θw1 , θ2)

)
− UO

1 (θw1 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2

(1− γ2)2

1− γ1

(
1− 1− γ1

1− γ2

)2

+
1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
.

We further compute the following:

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
=

1

2
Eθ1

[
Eθ2

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)]

=
1

2

∫ 1

0

[∫ 1−γ2
1−γ1

θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

θ1

ũ2(θ1, θ2)dθ2

]
dθ1

=
1

2

∫ 1

0

[
1

2
+ γ2θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1 ( recall (37))

=
1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

. (40)

Therefore, the expected loss for the seller’s worst-off type is

L1 = −1

2

(1− γ2)2

1− γ1

(
1− 1− γ1

1− γ2

)2

+
1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2

(γ2 − γ1)2

1− γ1

+
1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

.
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On the other hand, the buyer’s worst-off type from participating in the generalized

two-stage Groves mechanism is given as follows:

θw2 ∈ arg min
θ2∈Θ2

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
− UO

2 (θ2)

]
= arg min

θ2∈Θ2

Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)
.

We identify the worst-off type for each agent by the following cases.

Case 1: 0 < θ2 < (1− γ2)/(1− γ1)

then

Eθ1

[
2∑
j=1

uj(x
∗(θ2, θ1), θ2, θ1)

]
=

∫ 1−γ1
1−γ2

θ2

0

ũ2(θ1, θ2)dθ1 +

∫ 1

1−γ1
1−γ2

θ2

ũ1(θ1, θ2)dθ1

=
1

2
+ γ1θ2 +

1

2

(1− γ1)2

1− γ2

(θ2)2 ( recall (38)).

It is easy to see that θ2 = 0 achieves its minimum, which is 1/2.

Case 2: (1− γ2)/(1− γ1) ≤ θ2 ≤ 1

then

Eθ1

[
2∑
j=1

uj(x
∗(θ2, θ1), θ2, θ1)

]
=

∫ 1

0

ũ2(θ1, θ2)dθ1 =

∫ 1

0

(γ2θ1 + θ2)dθ1 =
1

2
γ2 + θ2.

Clearly, θ2 = (1−γ2)/(1−γ1) achieves its minimum, which is γ2/2 + (1−γ2)/(1−γ1).

Since
1

2
−
[

1

2
γ2 +

1− γ2

1− γ1

]
= −(1− γ2)(1 + γ1)

2(1− γ1)
< 0,

the buyer’s worst-off type is θw2 = 0. We compute the expected loss for his worst-off type.

L2 ≡ UO
2 (θw2 )− UG

2 (θw2 )

= −

[
Eθ1

(
2∑
j=1

uj(x
∗(θ1, θ

w
2 ), θ1, θ

w
2 )

)
− UO

2 (θw2 )

]
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2
+

1

2
E

(
2∑
j=1

uj(x
∗(θ1, θ2), θ1, θ2)

)

= −1

2
+

1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

( recall (40)).

Therefore, the total expected loss is

L1 + L2 = −1

2

(γ2 − γ1)2

1− γ1

+
1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

− 1

4
+

1

4
γ2 +

1

12

(1− γ2)2

1− γ1

=
1

2(1− γ1)

[
γ2(1− γ1)− (γ2 − γ1)2

]
+

1

6

(1− γ2)2

1− γ1

.
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Since γ2 > γ2 − γ1 and 1 − γ1 > γ2 − γ1, we obtain L1 + L2 > 0. This completes the

proof of Claim 5. �

B.3 Proof of Claim 6

Proof : We divide our argument into the following two cases.

Case (i): 0 < γ2 ≤ γ1 < 1

From Figure 1, we know that if θ1 = 1 and θ2 = 0, it is efficient not to trade and the

buyer’s transfer in the generalized two-stage Groves mechanism is given as follows:

tG2 (1, 0;u1, u2)

= u1 −
1

2
h2(1, 0)

= u1 −
1

2

[
2∑
j=1

uj (x∗(1, 0), 1, 0)− Eθ1

(
2∑
j=1

uj (x∗(θ1, 0), θ1, 0)

)
+ Eθ2

(
2∑
j=1

uj (x∗(1, θ2), 1, θ2)

)]

= ũ1(1, 0)− 1

2

(
ũ1(1, 0)−

∫ 1

0

ũ1(θ1, 0)dθ1 +

∫ 1

0

ũ1(1, θ2)dθ2

)
,

where the third equality follows because u1 = u1(x∗(1, 0), 1, 0) = ũ1(1, 0), u2 = u2(x∗(1, 0), 1, 0) =

0 and x∗(θ1, 0) = x∗(1, θ2) = 0 for any θ1, θ2 ∈ [0, 1]. Plugging the linear valuations in

tG2 (1, 0;u1, u2) above, we obtain

tG2 (1, 0;u1, u2) = 1− 1

2

(
1−

∫ 1

0

θ1dθ1 +

∫ 1

0

(1 + γ1θ2)dθ2

)
=

1

4
(1− γ1) > 0,

where the last strict inequality follows because 1 > γ1 in Case (i). Hence, in the type

profile (θ1, θ2) = (1, 0), the buyer receives positive subsidy under no trade, contradicting

NTNP.

Case (ii): 0 < γ1 < γ2 < 1

From Figure 2, we know that if θ1 = 1 and θ2 = 0, it is efficient not to trade. We then
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compute the buyer’s transfer in the generalized two-stage Groves mechanism:

tG2 (1, 0;u1, u2)

= u1 −
1

2

[
2∑
j=1

uj (x∗(1, 0), 1, 0)− Eθ1

(
2∑
j=1

uj (x∗(θ1, 0), θ1, 0)

)
+ Eθ2

(
2∑
j=1

uj (x∗(1, θ2), 1, θ2)

)]

= ũ1(1, 0)− 1

2

(
ũ1(1, 0)−

∫ 1

0

ũ1(θ1, 0)dθ1 +

∫ 1−γ2
1−γ1

0

ũ1(1, θ2)dθ2 +

∫ 1

1−γ2
1−γ1

ũ2(1, θ2)dθ2

)
,

where the last equality follows because u1 = u1(x∗(1, 0), 1, 0) = ũ1(1, 0), u2 = u2(x∗(1, 0), 1, 0) =

0, x∗(θ1, 0) = 0 for any θ1 ∈ [0, 1], x∗(1, θ2) = 0 if θ2 < (1 − γ2)/(1 − γ1) and

x∗(1, θ2) = 1 otherwise. Plugging the linear valuations in tG2 (1, 0;u1, u2), we obtain

tG2 (1, 0;u1, u2) = 1− 1

2

(
1−

∫ 1

0

θ1dθ1 +

∫ 1−γ2
1−γ1

0

(1 + γ1θ2)dθ2 +

∫ 1

1−γ2
1−γ1

(θ2 + γ2)dθ2

)

= 1− 1

2

[
1− 1

2
+

1− γ2

1− γ1

+
γ1

2

(
1− γ2

1− γ1

)2

+
1

2
− 1

2

(
1− γ2

1− γ1

)2

+ γ2 − γ2
1− γ2

1− γ1

]
.

After rearranging the terms above, we simplify its expression:

tG2 (1, 0;u1, u2) = 1− 1

2

(
1 + γ2 +

1

2

(1− γ2)2

1− γ1

)
,

which is strictly decreasing in γ1. Since γ1 < γ2, then for any γ2 ∈ (0, 1), tG2 (1, 0;u1, u2)

reaches its greatest lower bound when γ1 = γ2, i.e.,

tG2 (1, 0;u1, u2) > 1− 1

2

(
1 + γ2 +

1

2

(1− γ2)2

1− γ2

)
=

1

4
(1− γ2) > 0,

where the last strict inequality holds because 1 > γ2 in Case (ii). Therefore, we conclude

tG2 (1, 0;u1, u2) > 0, implying that, in the type profile (θ1, θ2) = (1, 0), the buyer receives

positive subsidies under no trade. Hence, NTNP is violated. This completes the proof. �

B.4 Proof of Claim 7

Proof : We divide our argument into two cases.

Case (i): 0 < γ2 ≤ γ1 < 1

Fix θ̂1 ∈ [0, 1] and let α, β ∈ [0, 1] be two distinct types of the buyer such that α > β

and x∗(θ̂1, α) = x∗(θ̂1, β) = 1. Then, the difference between the buyer’s transfer under
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(θ̂1, α) and that under (θ̂1, β) is computed below:

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 )

= uα1 −
1

2

[
ũ2(θ̂1, α)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

−uβ1 +
1

2

[
ũ2(θ̂1, β)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

= −1

2

[
α− β − Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)]
, (41)

where the second equality follows because x∗(θ̂1, α) = x∗(θ̂1, β) = 1 implies uα1 = uβ1 =

0 and ũ2(θ̂1, α)− ũ2(θ̂1, β) = α + γ2θ̂1 − β − γ2θ̂1 = α− β.

Moreover, we compute the following term in the above expression:

−Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)

= −

(∫ 1−γ1
1−γ2

α

0

ũ2(θ1, α)dθ1 +

∫ 1

1−γ1
1−γ2

α

ũ1(θ1, α)dθ1

)
+

(∫ 1−γ1
1−γ2

β

0

ũ2(θ1, β)dθ1 +

∫ 1

1−γ1
1−γ2

β

ũ1(θ1, β)dθ1

)

= −
∫ 1−γ1

1−γ2
α

0

(α + γ2θ1)dθ1 −
∫ 1

1−γ1
1−γ2

α

(θ1 + γ1α)dθ1 +

∫ 1−γ1
1−γ2

β

0

(β + γ2θ1)dθ1 +

∫ 1

1−γ1
1−γ2

β

(θ1 + γ1β)dθ1

= −1− γ1

1− γ2

α2 − 1

2
γ2

(
1− γ1

1− γ2

α

)2

− 1

2

(
1−

(
1− γ1

1− γ2

α

)2
)
− γ1α

(
1− 1− γ1

1− γ2

α

)

+
1− γ1

1− γ2

β2 +
1

2
γ2

(
1− γ1

1− γ2

β

)2

+
1

2

(
1−

(
1− γ1

1− γ2

β

)2
)

+ γ1β

(
1− 1− γ1

1− γ2

β

)
.

After making a further rearrangement of the above expression, we obtain

−Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)

= −γ1(α− β)− 1

2

(1− γ1)2

1− γ2

(
α2 − β2

)
.

Plugging this back into (41), we obtain

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 ) = −1

2

[
α− β − γ1(α− β)− 1

2

(1− γ1)2

1− γ2

(
α2 − β2

)]
= −1

4

1− γ1

1− γ2

(α− β) [2(1− γ2)− (1− γ1)(α + β)]

< 0,
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where the last strict inequality above follows because α > β and 2(1−γ2)− (1−γ1)(α+

β) > 0, which is followed by the assumption that 2 > α + β and 1 − γ2 ≥ 1 − γ1 > 0.

Therefore, we show that the generalized two-stage Groves mechanism is monotone in this

case.

Case (ii): 0 < γ1 < γ2 < 1

Fix θ̂1 ∈ [0, 1] and let α, β ∈ [0, 1] be two distinct types of the buyer such that α > β

and x∗(θ̂1, α) = x∗(θ̂1, β) = 1. Let θ∗2 ∈ (θ1, θ̄2] be the unique cutoff point identified in

Lemma 8. There are two subcases:

Case 1: α 6 θ∗2

In this subcase, we can apply here the same argument in Case (i) and the buyer’s

payment is strictly increasing in his type report.

Case 2: β > θ∗2

The difference between the buyer’s transfer under (θ̂1, α) and (θ̂1, β) is computed

below:

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 )

= uα1 −
1

2

[
ũ2(θ̂1, α)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

−uβ1 +
1

2

[
ũ2(θ̂1, β)− Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)
+ Eθ2

(
2∑
j=1

uj(x
∗(θ̂1, θ2), θ̂1, θ2)

)]

= −1

2

[
α− β − Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)]
, (42)

where the second equality follows because x∗(θ̂1, α) = x∗(θ̂1, β) = 1 implies uα1 = uβ1 =

0 and ũ2(θ̂1, α)− ũ2(θ̂1, β) = α + γ2θ̂1 − β − γ2θ̂1 = α− β.
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Moreover, we compute the following term in the above expression:

−Eθ1

(
2∑
i=1

uj(x
∗(θ1, α), θ1, α)

)
+ Eθ1

(
2∑
i=1

uj(x
∗(θ1, β), θ1, β)

)

= −
∫ 1

0

ũ2(θ1, α)dθ1 +

∫ 1

0

ũ2(θ1, β)dθ1

= −
∫ 1

0

(α + γ2θ1)dθ1 +

∫ 1

0

(β + γ2θ1)dθ1

= −α− 1

2
γ2 + β +

1

2
γ2 = −α + β.

Plugging this back into (42), we obtain

tG2 (θ̂1, α;uα1 , u
α
2 )− tG2 (θ̂1, β;uβ1 , u

β
2 ) = −1

2
[α− β − α + β] = 0.

Therefore, the generalized two-stage Groves mechanism is monotone in this subcase. This

completes the proof of the claim. �

B.5 Proof of Lemma 9

Proof : Recall our Condition α says that∫
Θ1

∫
Θ∗2(θ1)\Θ∗∗2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

> 0,

where θ∗2 ∈ (θ2, θ̄2] is the cutoff point identified in Lemma 8, Θ∗∗2 = [θ∗2, θ̄2], and for each

θ1 ∈ Θ1,

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise,

Here, the cutoff point θ∗2 is equal to min{(1−γ2)/(1−γ1), 1} above which it is always

efficient to trade and below which it is efficient not to trade for some θ1 ∈ Θ1. Moreover,

we have Θ∗2(θ1) = [min{(1 − γ2)θ1/(1 − γ1), 1}, 1] and Θ∗∗2 = [min{(1 − γ2)/(1 −

γ1), 1}, 1]. So, Θ∗2(θ1)\Θ∗∗2 = [min{(1− γ2)θ1/(1− γ1), 1},min{(1− γ2)/(1− γ1), 1}].

We divide our argument into the following two cases:
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Case (i): 0 < γ2 ≤ γ1 < 1

From Figure 1, we know that if θ1 > (1− γ1)/(1− γ2), then (1− γ2)θ1/(1− γ1) > 1;

hence,

Θ∗2(θ1) =

[
min

{
1− γ2

1− γ1

θ1, 1

}
, 1

]
=

{
{1} if θ1 > (1− γ1)/(1− γ2)[

1−γ2
1−γ1 θ1, 1

]
otherwise.

Moreover, in Case (i), we know (1− γ2)/(1− γ1) > 1; hence,

Θ∗∗2 =

[
min

{
1− γ2

1− γ1

, 1

}
, 1

]
= {1}.

As a result,

Θ∗2(θ1)\Θ∗∗2 =

[
min

{
1− γ2

1− γ1

θ1, 1

}
,min

{
1− γ2

1− γ1

, 1

}]
=

{
∅ if θ1 > (1− γ1)/(1− γ2)[

1−γ2
1−γ1 θ1, 1

)
otherwise.

Reflecting the type space Θ = [0, 1]2 and each agent i’s valuation function ũi(θi, θ−i) =

θi + γiθ−i in Condition α, we obtain∫ 1−γ1
1−γ2

0

∫ 1

1−γ2
1−γ1

θ1

((1− γ1)θ2 − (1− γ2)θ1) dθ2dθ1 > 0.

We compute the left-hand side of the above inequality:∫ 1−γ1
1−γ2

0

[
1

2
(1− γ1)

(
1−

(
1− γ2

1− γ1

θ1

)2
)
− (1− γ2)θ1

(
1− 1− γ2

1− γ1

θ1

)]
dθ1

=

∫ 1−γ1
1−γ2

0

[
1

2
(1− γ1)− (1− γ2)θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1.

We continue our computation below:∫ 1−γ1
1−γ2

0

[
1

2
(1− γ1)− (1− γ2)θ1 +

1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1 =

1

2

(1− γ1)2

1− γ2

− 1

2

(1− γ1)2

1− γ2

+
1

6

(1− γ1)2

1− γ2

=
1

6

(1− γ1)2

1− γ2

,

which is strictly positive. Therefore, Condition α is satisfied in Case (i).

Case (ii): 0 < γ1 < γ2 < 1

From Figure 2, we know that (1− γ2)θ1/(1− γ1) < 1 for all θ1 ∈ [0, 1]; hence,

Θ∗2(θ1) =

[
min

{
1− γ2

1− γ1

θ1, 1

}
, 1

]
=

[
1− γ2

1− γ1

θ1, 1

]
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for all θ1 ∈ [0, 1]. Moreover, in Case (ii), we know (1− γ2)/(1− γ1) < 1; hence,

Θ∗∗2 =

[
min

{
1− γ2

1− γ1

, 1

}
, 1

]
=

[
1− γ2

1− γ1

, 1

]
.

As a result, we have that for all θ1 ∈ Θ1,

Θ∗2(θ1)\Θ∗∗2 =

[
1− γ2

1− γ1

θ1,
1− γ2

1− γ1

)
.

Reflecting the type space Θ = [0, 1]2 and each agent i’s valuation function ũi(θi, θ−i) =

θi + γiθ−i in Condition α, we obtain∫ 1

0

∫ 1−γ2
1−γ1

1−γ2
1−γ1

θ1

((1− γ1)θ2 − (1− γ2)θ1) dθ2dθ1+

∫ 1

0

∫ 1

1−γ2
1−γ1

(
1− γ2

1− γ1

− (1− γ2)θ1 − γ1θ2

)
dθ2dθ1 > 0.

We compute the left-hand side of the above inequality:∫ 1

0

[
1

2

(1− γ2)2

1− γ1

(
1− (θ1)2

)
− (1− γ2)2

1− γ1

θ1(1− θ1)

]
dθ1

+

∫ 1

0

[
1− γ2

1− γ1

(
1− 1− γ2

1− γ1

)
− (1− γ2)

(
1− 1− γ2

1− γ1

)
θ1 −

1

2
γ1

(
1−

(
1− γ2

1− γ1

)2
)]

dθ1

=

∫ 1

0

[
1

2

(1− γ2)2

1− γ1

− 1

2

(1− γ2)2

1− γ1

(θ1)2 − (1− γ2)2

1− γ1

θ1 +
(1− γ2)2

1− γ1

(θ1)2

]
dθ1

+

∫ 1

0

[
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

− (1− γ2)θ1 +
(1− γ2)2

1− γ1

θ1 −
1

2
γ1 +

1

2
γ1

(
1− γ2

1− γ1

)2
]
dθ1.

We continue our computation below:

∫ 1

0

[
1

2

(1− γ2)2

1− γ1

− (1− γ2)2

1− γ1

θ1 +
1

2

(1− γ2)2

1− γ1

(θ1)2

]
dθ1

+

∫ 1

0

[
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

− (1− γ2)θ1 +
(1− γ2)2

1− γ1

θ1 −
1

2
γ1 +

1

2
γ1

(
1− γ2

1− γ1

)2
]
dθ1

=
1

2

(1− γ2)2

1− γ1

− 1

2

(1− γ2)2

1− γ1

+
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

− 1

2
(1− γ2) +

1

2

(1− γ2)2

1− γ1

− 1

2
γ1 +

1

2
γ1

(
1− γ2

1− γ1

)2

.

Rearranging the terms above, we obtain
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1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) +

[
1

2

(1− γ2)2

1− γ1

+
1

2
γ1

(
1− γ2

1− γ1

)2
]

=
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) +

[
1

2

(
1− γ2

1− γ1

)2

(1− γ1 + γ1)

]

=
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

−
(

1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) +

1

2

(
1− γ2

1− γ1

)2

=
1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1).

Therefore, our Condition α is reduced to

1

6

(1− γ2)2

1− γ1

+
1− γ2

1− γ1

− 1

2

(
1− γ2

1− γ1

)2

+
1

2
(γ2 − γ1 − 1) ≥ 0.

�

B.6 Proof of Step 1 in the Proof of Theorem 5

Step 1: If the buyer always reports the truth in the first stage, the seller has no incentive

to tell a lie in the first stage.

Proof :

Consider the seller of type θ1. Then, the expected utility of the seller of type θ1 under

truth-telling is∫
Θ2\Θ∗2(θ1)

(ũ1(θ1, θ2) + 0) dF2(θ2)+

∫
Θ∗2(θ1)\Θ∗∗2

(0 + ũ2(θ1, θ2)) dF2(θ2)+

∫
Θ∗∗2

(0− g(θ1)) dF2(θ2).

On the other hand, if the seller deviates to θr1 6= θ1 and trade occurs, the second-stage

report by the buyer of type θ2 becomes ur2 = ur2(x∗(θr1, θ2), θ1, θ2) = ũ2(θ1, θ2). Since

ũ2(·) is strictly increasing in θ1, then ur2 = ũ2(θ1, θ2) 6= ũ2(θr1, θ2) and the seller must pay

a penalty ψ according to the transfer rule tM1 . Therefore, the expected utility of the seller

of type θ1 becomes∫
Θ2\Θ∗2(θr1)

(ũ1(θ1, θ2) + 0) dF2(θ2) +

∫
Θ∗2(θr1)

(0− ψ)dF2(θ2).

By Lemma 8, we divide our argument into the following two cases:
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Case 1: θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.

Then, the expected utility of the seller of type θ1 becomes∫
Θ2\Θ∗2(θ1)

(ũ1(θ1, θ2) + 0) dF2(θ2) +

∫
Θ∗2(θ1)

(0 + ũ2(θ1, θ2)) dF2(θ2),

where

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise.

Since ψ > 0, the best possible deviation the seller of type θ1 can achieve is to announce

θr1 such that Θ∗2(θr1) = ∅. This implies that the seller keeps the good so that the seller’s

expected payoff becomes
∫

Θ2
ũ1(θ1, θ2)dF2(θ2). However, we claim that this expected

utility is at most the same as that under truth-telling. To see this, we compute the dif-

ference between the seller’s expected utility under truth-telling and that under the best

deviation:∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ2

ũ1(θ1, θ2)dF2(θ2)

=

∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ2(θ1, θ2)dF2(θ2)

−

[∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)

]
=

∫
Θ∗2(θ1)

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)

≥ 0,

where the weak inequality follows because whenever θ2 ∈ Θ∗2(θ1), it is efficient to trade,

implying that ũ2(θ1, θ2)− ũ1(θ1, θ2) > 0. So, the seller will never be better off after such

a deviation so that he has no incentive to deviate from truth-telling.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that for any θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2

To stop the seller of type θ1 from deviating to θr1, the penalty ψ must be large enough so

that the seller always receives at most the same expected utility as that under truth-telling
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whenever he deviates. That is, what we want is that for any θ1, θ
r
1 ∈ Θ1,∫

Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ∗∗2

g(θ1)dF2(θ2)

≥
∫

Θ2\Θ∗2(θr1)

ũ1(θ1, θ2)dF2(θ2)− ψ
∫

Θ∗2(θr1)

dF2(θ2),

where

Θ∗2(θ1) =

{
{θ̄2} if {θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} = ∅

{θ2 ∈ Θ2 : x∗(θ1, θ2) = 1} otherwise,

and Θ∗∗2 = [θ∗2, θ̄2]. After rearranging the terms for ψ, we obtain

ψ ≥ 1∫
Θ∗2(θr1)

dF2(θ2)

(∫
Θ2\Θ∗2(θr1)

ũ1(θ1, θ2)dF2(θ2)−
∫

Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)

)

+
1∫

Θ∗2(θr1)
dF2(θ2)

(
−
∫

Θ∗2(θ1)\Θ∗∗2
ũ2(θ1, θ2)dF2(θ2) +

∫
Θ∗∗2

g(θ1)dF2(θ2)

)
.

Then, it remains to find an upper bound of the right-hand side of the above inequality. We

obtain this upper bound as follows:

ψ ≥ sup
θ1∈Θ1
θr1∈Θ1

[
1∫

Θ∗2(θr1)
dF2(θ2)

(∫
Θ2\Θ∗2(θr1)

ũ1(θ1, θ2)dF2(θ2)−
∫

Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)

)

+
1∫

Θ∗2(θr1)
dF2(θ2)

(
−
∫

Θ∗2(θ1)\Θ∗∗2
ũ2(θ1, θ2)dF2(θ2) +

∫
Θ∗∗2

g(θ1)dF2(θ2)

)]
.

In this case, we know [θ∗2, θ̄2] ⊆ Θ∗2(θr1) for all θr1 ∈ Θ1.24 Therefore, Θ∗2(θr1) is

nonempty and carries positive measure underF2(·) so that the denominator
∫

Θ∗2(θr1)
dF2(θ2)

is strictly positive. Moreover, since the type space Θ is bounded and each valuation func-

tion ũi(·, θ) is bounded, the right-hand side of the above inequality is bounded and we

denote it by A1. So, if

ψ ≥ A1,

the seller will never be better off after such a deviation so that he has no incentive to

deviate from truth-telling. This completes the proof of Step 1.

�

24In the first general case, the denominator may be zero because Θ∗
2(θ1) may be a singleton for some

θ1 ∈ Θ1.
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B.7 Proof of Step 2 in the Proof of Theorem 5

Step 2: If the seller always reports the truth in the first stage, the buyer has no incentive

to tell a lie in the first stage.

Proof :

Consider the buyer of type θ2 < θ∗2. Then, the buyer’s expected utility under truth-

telling, denoted by U2(θ2), is

U2(θ2) =

∫
Θ∗1(θ2)

(ũ2(θ1, θ2)− ũ2(θ1, θ2)) dF1(θ1) = 0,

where Θ∗1(θ2) = {θ1 ∈ Θ1 : x∗(θ1, θ2) = 1}. On the other hand, if the buyer of type

θ2 deviates to θr2 6= θ2 such that θr2 < θ∗2 and no trade occurs, the second-stage report of

the seller of type θ1 becomes ur1 = ur1(x∗(θ1, θ
r
2), θ1, θ2) = ũ1(θ1, θ2). Since the seller’s

utility function ũ1(·) is strictly increasing in θ2, then ur1 = ũ1(θ1, θ2) 6= ũ1(θ1, θ
r
2) and

the buyer must pay a penalty ψ according to the transfer rule tM2 . Therefore, the expected

utility of the buyer of type θ2 when announcing θr2 becomes∫
Θ∗1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1) +

∫
Θ1\Θ∗1(θr2)

(0− ψ)dF1(θ1).

To stop the buyer from deviating, the penalty ψ must be large enough so that the buyer

always receives at most the same expected utility as that under truth-telling whenever he

deviates. That is, for any θ2 < θ∗2 and θr2 < θ∗2,

0 ≥
∫

Θ∗1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1)− ψ

∫
Θ1\Θ∗1(θr2)

dF1(θ1).

After rearranging the terms for ψ in the above inequality, we obtain

ψ ≥

∫
Θ∗1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1)∫

Θ1\Θ∗1(θr2)
dF1(θ1)

,

where Θ1\Θ∗1(θr2) = {θ1 ∈ Θ1 : x∗(θ1, θ
r
2) = 0}. We know that for any θr2 < θ∗2, there

must exist some θ1 ∈ Θ1 such that x∗(θ1, θ
r
2) = 0. Therefore, Θ1\Θ∗1(θr2) is nonempty

and carries positive measure under F1(·) so that the denominator is strictly positive. Then,

it remains to find an upper bound of the right-hand side of the above inequality. Such an

upper bound can be found as follows:

ψ ≥ sup
θ2∈[θ2,θ

∗
2)

θr2∈[θ2,θ
∗
2)

∫
Θ∗1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1)∫

Θ1\Θ∗1(θr2)
dF1(θ1)

.
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since [θ2, θ
∗
2) is bounded and each ũ2(·, θ) is bounded, the numerator is also bounded.

Therefore, the right-hand side of the above inequality is bounded and we denote its upper

bound by A2. So, if

ψ ≥ A2,

the buyer of type θ2 < θ∗2 will never be better off after such a deviation so that he has no

incentive to deviate to θr2 < θ∗2 from truth-telling.

Moreover, if the buyer deviates to θr2 ≥ θ∗2, it is always efficient to trade and the ex-

pected utility of the buyer of type θ2 when announcing θr2, denoted by U2(θ2, θ
r
2), becomes

U2(θ2, θ
r
2) =

∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1).

Then, the difference between the expected utility of the buyer of type θ2 under truth-telling

and that under deviation to θr2 is

U2(θ2)− U2(θ2, θ
r
2) = 0−

∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1)

= −
∫

Θ1

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ1

g(θ1)dF1(θ1).

By Lemma 8, we divide our argument into the following two cases:

Case 1: θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.

Recall that in this case, g(θ1) = −ũ2(θ1, θ̄2). Then, we evaluate the utility difference.

U2(θ2)− U2(θ2, θ
r
2) = −

∫
Θ1

ũ2(θ1, θ2)dF1(θ1 +

∫
Θ1

ũ2(θ1, θ̄2)dF1(θ1)

=

∫
Θ1

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ2)

)
dF1(θ1)

> 0,

where the last inequality follows because θ2 6 θ̄2 and ũ2(·) is strictly increasing in θ2.

Therefore, the buyer is never better off after a deviation to θr2 ≥ θ∗2 so that he has no

incentive to deviate from truth-telling to θr2 ≥ θ∗2 in this case.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that for any θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2
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Recalling the definition of g(θ1), we obtain

(1− F2(θ∗2))

∫
Θ1

g(θ1)dF1(θ1)

=

∫
Θ1

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)dF1(θ1)−
∫

Θ1

∫
Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗2(θ1)\Θ∗∗2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗∗2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

=

∫
Θ1

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)dF1(θ1)−
∫

Θ1

∫
Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)dF1(θ1) +

∫
Θ1

∫
Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)dF1(θ1)

−
∫

Θ1

∫
Θ∗∗2

ũ2(θ1, θ
∗
2)dF2(θ2)dF1(θ1).

Noticing that the first four terms are cancelled out, we obtain

(1− F2(θ∗2))

∫
Θ1

g(θ1)dF1(θ1) = −
∫

Θ1

∫
Θ∗∗2

ũ2(θ1, θ
∗
2)dF2(θ2)dF1(θ1)

= − (1− F2(θ∗2))

∫
Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

Therefore, we obtain∫
Θ1

g(θ1)dF1(θ1) = −
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1).

Plugging this back into the utility difference, we obtain

U2(θ2)− U2(θ2, θ
r
2) = −

∫
Θ1

ũ2(θ1, θ2)dF1(θ1) +

∫
Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

=

∫
Θ1

(ũ2(θ1, θ
∗
2)− ũ2(θ1, θ2)) dF1(θ1)

> 0,

where the last strict inequality follows because θ2 < θ∗2 and ũ2(·) is strictly increasing in

θ2. Therefore, the buyer is never better off after a deviation to θr2 ≥ θ∗2 so that he has no

incentive to deviate from truth-telling to θr2 ≥ θ∗2.

Consider the buyer of type θ2 ≥ θ∗2. In this case, it is always efficient to trade the

good regardless of the seller’s type. Therefore, the expected utility of the buyer of type θ2
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under truth-telling is ∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1).

On the other hand, if the buyer deviates to θr2 6= θ2 such that θr2 ≥ θ∗2, then it is still always

efficient to trade regardless of the seller’s type. Thus, the expected utility of the buyer of

type θ2 under the deviation to θr2 is∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1),

which is the same as the expected utility under truth-telling. Therefore, the buyer of type

θ2 ≥ θ∗2 has no incentive to deviate to θr2 ≥ θ∗2.

Moreover, if the buyer of type θ2 deviates to θr2 < θ∗2 and trade does not occur,

the second-stage report of the seller of type θ1 becomes ur1 = ur1(x∗(θ1, θ
r
2), θ1, θ2) =

ũ1(θ1, θ2). Since ũ1(·) is strictly increasing in θ2, we have that ur1 = ũ1(θ1, θ2) 6=

ũ1(θ1, θ
r
2) so that the buyer must pay a penalty ψ according to the transfer rule tM2 . There-

fore, the expected utility of the buyer of type θ2 when announcing θr2 becomes∫
Θ∗1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1) +

∫
Θ1\Θ∗1(θr2)

(0− ψ)dF1(θ1).

To stop the buyer from deviating, the penality ψ must be large enough so that the buyer

always receives at most the same expected utility as that under truth-telling whenever he

deviates. That is, what we want to have is that for any θ2 ≥ θ∗2 and θr2 < θ∗2,∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1) ≥
∫

Θ∗1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1)− ψ

∫
Θ1\Θ∗1(θr2)

dF1(θ1).

As we argued previously, we know that
∫

Θ1
g(θ1)dF1(θ1) = −

∫
Θ1
ũ2(θ1, θ

∗
2)dF1(θ1).

Hence, the above inequality can be rewritten as∫
Θ1

(ũ2(θ1, θ2)− ũ2(θ1, θ
∗
2)) dF1(θ1) ≥

∫
Θ∗1(θr2)

(ũ2(θ1, θ2)− ũ2(θ1, θ
r
2)) dF1(θ1)− ψ

∫
Θ1\Θ∗1(θr2)

dF1(θ1).

After rearranging the terms above for ψ in the above inequality, we obtain

ψ ≥ 1∫
Θ1\Θ∗1(θr2)

dF1(θ1)

[
−
∫

Θ1\Θ∗1(θr2)

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ∗1(θr2)

ũ2(θ1, θ
r
2)dF1(θ1) +

∫
Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

]
.
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Then, it remains to find an upper bound of the right-hand side of the above inequality.

Therefore, we want to satisfy the following inequality:

ψ ≥ sup
θ2∈[θ∗2 ,θ̄2]
θr2∈[θ2,θ

∗
2)

[
1∫

Θ1\Θ∗1(θr2)
dF1(θ1)

(
−
∫

Θ1\Θ∗1(θr2)

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ∗1(θr2)

ũ2(θ1, θ
r
2)dF1(θ1)

)

+
1∫

Θ1\Θ∗1(θr2)
dF1(θ1)

∫
Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

]
.

Previously, we have argued that if θr2 < θ∗2, then Θ1\Θ∗1(θr2) carries positive measure under

F1(·), that is,
∫

Θ1\Θ∗1(θr2)
dF1(θ1) > 0. Moreover, since [θ∗2, θ̄2] and [θ2, θ

∗
2) are bounded

and ũ2(·) is bounded, the right-hand side of the above inequality is bounded. We denote

this upper bound by A3. So, if

ψ ≥ A3,

the buyer will never be better off after such a deviation so that he has no incentive to

deviate to θr2 < θ∗2. This completes the proof of Step 2. �

B.8 Proof of Step 3 in the Proof of Theorem 5

Step 3: The two-stage mechanism (Θ,Π, x∗, t) also satisfies IIR.

Proof : By Steps 1 and 2, we set ψ = max{A1, A2, A3}. We first show that IIR is

satisfied for the seller. Consider the seller of type θ1. Recall that if both agents report

truthfully in both stages, the expected utility of the seller of type θ1 after participating in

the mechanism, denoted by U1(θ1), is

U1(θ1) =

∫
Θ2\Θ∗2(θ1)

(ũ1(θ1, θ2) + 0) dF2(θ2) +

∫
Θ∗2(θ1)\Θ∗∗2

(0 + ũ2(θ1, θ2)) dF2(θ2)

+

∫
Θ∗∗2

(0− g(θ1)) dF2(θ2).

By Lemma 8, we continue our discussion by considering the following two cases:

Case 1: θ∗2 = θ̄2. That is,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.

Then, the expected utility of the seller of type θ1 after participating in the mechanism

becomes

U1(θ1) =

∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ2(θ1, θ2)dF2(θ2).
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Then, we compute the difference between the expected utility of the seller of type θ1 after

participating in the mechanism and θ1’s outside option utility:

U1(θ1)− UO
1 (θ1)

=

∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ2

ũ1(θ1, θ2)dF2(θ2)

=

∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ2(θ1, θ2)dF2(θ2)

−

[∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)

]
=

∫
Θ∗2(θ1)

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)

≥ 0,

where the weak inequality follows because whenever θ2 ∈ Θ∗2(θ1), it is efficient to trade,

implying ũ2(θ1, θ2)− ũ1(θ1, θ2) > 0.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2.

We compute the difference between the expected utility of the seller of type θ1 after par-

ticipating in the mechanism and θ1’s outside option utility:

U1(θ1)− UO
1 (θ1)

=

∫
Θ2\Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ∗∗2

g(θ1)dF2(θ2)

−
∫

Θ2

ũ1(θ1, θ2)dF2(θ2)

= −
∫

Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)−
∫

Θ∗∗2

g(θ1)dF2(θ2)

= −
∫

Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)− g(θ1) (1− F2(θ∗2)) .
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Plugging the formula of g(θ1) (1− F2(θ∗2)) in the above expression, we obtain

U1(θ1)− UO
1 (θ1) = −

∫
Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)\Θ∗∗2

ũ2(θ1, θ2)dF2(θ2)

−
∫

Θ∗2(θ1)\Θ∗∗2
ũ2(θ1, θ2)dF2(θ2) +

∫
Θ∗2(θ1)

ũ1(θ1, θ2)dF2(θ2)

+

∫
Θ1

∫
Θ∗2(θ1)\Θ∗∗2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1).

Further rearranging the terms above, we obtain

U1(θ1)− UO
1 (θ1) =

∫
Θ1

∫
Θ∗2(θ1)\Θ∗∗2

(ũ2(θ1, θ2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1)

+

∫
Θ1

∫
Θ∗∗2

(ũ2(θ1, θ
∗
2)− ũ1(θ1, θ2)) dF2(θ2)dF1(θ1).

Then, by our Condition α, we conclude

U1(θ1)− UO
1 (θ1) ≥ 0.

Therefore, in both cases, the seller’s expected utility by participating in the mechanism is

at least as high as that from the outside option. This implies that IIR is satisfied for the

seller.

Consider the buyer of type θ2. If θ2 < θ∗2 and both agents report truthfully in both

stages, the expected utility of the buyer of type θ2 after participating in the mechanism is∫
Θ∗1(θ2)

(ũ2(θ1, θ2)− ũ2(θ1, θ2)) dF1(θ1) = 0 = UO
2 (θ2).

Hence, if θ2 < θ∗2, by participating in the mechanism, the buyer receives exactly the same

expected utility as his outside option utility.

If θ2 ≥ θ∗2, the expected utility of the buyer of type θ2 after participating in the mech-

anism is∫
Θ1

(ũ2(θ1, θ2) + g(θ1)) dF1(θ1) =

∫
Θ1

ũ2(θ1, θ2)dF1(θ1) +

∫
Θ1

g(θ1)dF1(θ1).

By Lemma 8, we divide our argument into the following two cases:

Case 1: θ∗2 = θ̄2, i.e.,
∫

Θ1
x∗(θ1, θ2)dF1(θ1) < 1 for all θ2 < θ̄2.
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Recall that in this case, g(θ1) = −ũ2(θ1, θ̄2). Then, the expected utility of the buyer

of type θ2 = θ̄2 after participation is∫
Θ1

ũ2(θ1, θ̄2)dF1(θ1) +

∫
Θ1

g(θ1)dF1(θ1) =

∫
Θ1

ũ2(θ1, θ̄2)dF1(θ1)−
∫

Θ1

ũ2(θ1, θ̄2)dF1(θ1) = 0.

Therefore, if θ2 ≥ θ∗2, by participating in the mechanism, the buyer of type θ2 receives

exactly the same expected utility as his outside option utility.

Case 2: θ∗2 ∈ (θ2, θ̄2) such that for any θ2 ∈ Θ2,∫
Θ1

x∗(θ1, θ2)dF1(θ1)

{
< 1 if θ2 < θ∗2
= 1 if θ2 ≥ θ∗2.

As we argued previously, we know that

∫
Θ1

g(θ1)dF1(θ1) = −
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1).

Hence, if θ2 ≥ θ∗2, the expected utility of the buyer of type θ2 after participating in the

mechanism is∫
Θ1

ũ2(θ1, θ2)dF1(θ1) +

∫
Θ1

g(θ1)dF1(θ1) =

∫
Θ1

ũ2(θ1, θ2)dF1(θ1)−
∫

Θ1

ũ2(θ1, θ
∗
2)dF1(θ1)

=

∫
Θ1

(ũ2(θ1, θ2)− ũ2(θ1, θ
∗
2)) dF1(θ1)

≥ 0 = UO
2 (θ2),

where the weak inequality follows because θ2 ≥ θ∗2 and ũ2(·) is strictly increasing in θ2.

Therefore, if θ2 ≥ θ∗2, by participating in the mechanism, the buyer of type θ2 receives at

least the same expected utility as his outside option utility. We thus conclude that IIR is

satisfied for the buyer. This completes the proof. �

B.9 Proof of Claim 8

Proof : We show that the two-stage mechanism we propose in Subsection 2.4.2 violates

the seller’s IIR constraint.
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In this case, ũ2(θ1, θ2) > ũ1(θ1, θ2) if and only if θ2 > (1 − γ2)θ1/(1 − γ1) = 0.4θ1.

Hence, the efficient decision rule dictates that, for each (θ1, θ2) ∈ Θ1 ×Θ2,

x∗(θ1, θ2) =

1 if θ2 > 0.4θ1

0 otherwise.

Figure 8 below illustrates the decision at different type profiles in this case. In particular,

the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1}, which describes

the set of possible type profiles for which it is efficient to trade. Note that if θ2 ≥ 0.4, it is

always efficient to trade regardless of the seller’s type.

Figure 8

Observe that in this case, θ∗2 = 0.4 and Θ∗∗2 = [0.4, 1]. Moreover, the sum of the last

two terms in expression (10) in the definition of G(θr1) (See Subsection 2.4.2) is exactly

the negative of the left-hand side of inequality (11) in our Condition α, which is equal to

1/60. Then, expression (10) can be rewritten as the following: for each θr1 ∈ [0, 1],

G(θr1) =

∫ 0.4

0.4θr1

(θ2 + 0.8θr1)dθ2 −
∫ 1

0.4θr1

(θr1 + 0.5θ2)dθ2 +
1

60

= 0.08
(
1− (θr1)2

)
+ 0.32θr1(1− θr1)− θr1(1− 0.4θr1)− 0.25

(
1− (0.4θr1)2

)
+

1

60
.

Rearranging the terms, we obtain: for each θr1 ∈ [0, 1],

G(θr1) = −0.68θr1 − 0.17 +
1

60
+ 0.04(θr1)2.

Then, we have

g(θr1) =

(
−0.68θr1 − 0.17 +

1

60
+ 0.04(θr1)2

)
/(1− 0.4)

= −17

15
θr1 −

23

90
+

1

15
(θr1)2.
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Consider the IIR constraint for the seller of type θ1. If both agents report truthfully in

both stages, the seller’s expected utility after participation in the mechanism, denoted by

U1(θ1), is

U1(θ1) =

∫ 0.4θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 0.4

0.4θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0.4

g(θ1)dθ2.

Then, the difference between the seller’s expected utility after participation in the mech-

anism and his outside option utility is computed as follows: for any θ1 ∈ [0, 1],

U1(θ1)− UO
1 (θ1) =

∫ 0.4θ1

0

ũ1(θ1, θ2)dθ2 +

∫ 0.4

0.4θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0.4

g(θ1)dθ2 −
∫ 1

0

ũ1(θ1, θ2)dθ2

=

∫ 0.4

0.4θ1

ũ2(θ1, θ2)dθ2 −
∫ 1

0.4

g(θ1)dθ2 −
∫ 1

0.4θ1

ũ1(θ1, θ2)dθ2.

Plugging the specific valuation functions and g(·) function into the above equation, we

obtain

U1(θ1)− UO
1 (θ1) =

∫ 0.4

0.4θ1

(θ2 + 0.8θ1)dθ2 −
∫ 1

0.4

(
−17

15
θ1 −

23

90
+

1

15
(θ1)2

)
dθ2 −

∫ 1

0.4θ1

(θ1 + 0.5θ2)dθ2

= 0.08
(
1− (θ1)2

)
+ 0.32θ1(1− θ1)− 0.6

(
−17

15
θ1 −

23

90
+

1

15
(θ1)2

)
−θ1(1− 0.4θ1)− 0.25

(
1− (0.4θ1)2

)
.

Rearranging the terms above further, we obtain

U1(θ1)− UO
1 (θ1) = − 1

60
< 0,

implying that the seller’s IIR constraint is violated. �

B.10 Proof of Lemma 12

Proof : We will first show that if inequality (13) is satisfied, our Condition α is satisfied.

In our bilateral trade model, inequality (13) becomes the following condition: for all

θ̂1 6= θ1, there exists M1 > 0 such that

Eθ2
[
1{θ2|x∗(θ̂1,θ2)=0}(θ2)

(
ũ1(θ̄1, θ2)− ũ1(θ̂1, θ2)

)]
6M1Eθ2

[
1{θ2|x∗(θ̂1,θ2)=1,ũ2(θ1,θ2)6=ũ2(θ̂1,θ2)}(θ2)

]
,

(43)
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and for all θ̂2 6= θ2, there exists M̃1 > 0 such that

Eθ1
[
1{θ1|x∗(θ1,θ̂2)=1}(θ1)

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
6 M̃1Eθ1

[
1{θ1|x∗(θ1,θ̂2)=0,ũ1(θ1,θ2)6=ũ1(θ1,θ̂2)}(θ1)

]
.

(44)

Since ũ1(·) is assumed to be strictly increasing in θ2 in our paper, we have that ũ1(θ1, θ2) 6=

ũ1(θ1, θ̂2) for all θ1 ∈ Θ1 and all θ̂2 6= θ2. Then, inequality (44) can slightly be simplified

as follows: for all θ̂2 6= θ2, there exists M̃1 > 0 such that

Eθ1
[
1{θ1|x∗(θ1,θ̂2)=1}(θ1)

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
6 M̃1Eθ1

[
1{θ1|x∗(θ1,θ̂2)=0}(θ1)

]
.

Suppose on the contrary that our Condition α is violated. Then, there exists θ̂2 < θ̄2 such

that
∫

Θ1
x∗(θ1, θ̂2)dF1(θ1) = 1, or equivalently, x∗(θ1, θ̂2) = 1 for all θ1 ∈ Θ1. As a

result, the above inequality becomes

Eθ1
[
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

]
6 M̃1Eθ1 [0] = 0.

Since θ̄2 > θ̂2, by the strict increasingness of ũ2(·) in θ2, we have ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2) >

0 for all θ1 ∈ Θ1. Thus, the left-hand side of the above inequality is strictly positive,

leading to a contradiction. So, if inequality (13) is satisfied, then our Condition α is also

satisfied.

Second, we will show that inequality (14) is automatically satisfied in our bilateral

trade model. First we reproduce inequality (14): there exists M2 ≥ 0 such that for all

i ∈ {1, 2}, all θi, θ̂i ∈ Θi with θ̂i 6= θi,

∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i)=ũj(θ̂i,θ−i)}(θ−i)

]
6M2

∑
j 6=i

Eθ−i
[
1{θ−i|j=m(θ̂i,θ−i),ũj(θi,θ−i) 6=ũj(θ̂i,θ−i)}(θ−i)

]
,

where m(θ) = max{arg maxj ũj(θ)}. We assume throughout that each agent’s valuation

is strictly increasing in the other agent’s type. Thus, for all j 6= i and all θ̂i 6= θi, it

is impossible to have ũj(θi, θ−i) = ũj(θ̂i, θ−i) so that the left-hand side of the above

inequality is zero. On the other hand, the right-hand side of the above inequality is always

nonnegative. Therefore, the above inequality is automatically satisfied in our bilateral

trade model. This completes the proof. �
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B.11 Proof of Lemma 13

Proof : We revisit the example in Section 2.3. We divide our argument into the following

three cases.

Case 1: 0 < γ2 < γ1 < 1

Recall that Figure 9 below illustrates the decision at different type profiles when γ2 <

γ1. In particular, the shaded region in the figure represents Θ∗ = {(θ1, θ2) ∈ Θ1 × Θ2 :

x∗(θ1, θ2) = 1}, which describes the set of possible type profiles under which it is efficient

to trade. We will show that inequality (13) in GMO’s Assumption 5.1 is violated in this

case.

Figure 9: 0 < γ2 < γ1 < 1

If the seller’s true type is θ1 = 1 and he deviates to report θ̂1 = (1 − γ1)/(1 − γ2),

then it is always efficient not to trade under θ̂1, i.e., x∗(θ̂1, θ2) = 0 for any θ2 ∈ Θ2. As a

result, inequality (13) becomes

Eθ2
[
ũ1(θ̄1, θ2)− ũ1(θ̂1, θ2)

]
6 0.

However, the left-hand side of the above inequality is strictly positive because θ̄1 > θ̂1

implies ũ1(θ̄1, θ2) − ũ1(θ̂1, θ2) > 0 by strict increasingness of ũ1(·) in θ1. This is a

contradiction. Therefore, inequality (13) in GMO’s Assumption 5.1 is violated in this

case.

Case 2: 0 < γ2 = γ1 < 1

Figure 10 illustrates the decision at different type profiles when γ1 = γ2. In particular,

the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1×Θ2 : x∗(θ1, θ2) = 1}, which describes
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the set of possible type profiles under which it is efficient to trade. We will show that

inequality (13) in GMO’s Assumption 5.1 is satisfied in this case.

Figure 10: 0 < γ1 = γ2 < 1

We first consider the seller. In this case, we know that for any θ̂1 < θ̄1, there exists

θ2 ∈ Θ2 such that x∗(θ̂1, θ2) = 1. Thus, inequality (13) can be rewritten as

M1 >
Eθ2
[
1{θ2|x∗(θ̂1,θ2)=0}(θ2)

(
ũ1(θ̄1, θ2)− ũ1(θ̂1, θ2)

)]
Eθ2
[
1{θ2|x∗(θ̂1,θ2)=1}(θ2)

] .

Since its denominator is positive and its numerator is bounded, the right-hand side of the

above inequality is well defined so that we can choose M1 appropriately. Moreover, if

θ̂1 = θ̄1, then ũ1(θ̄1, θ2) − ũ1(θ̂1, θ2) = 0 so that the left-hand side of inequality (13)

is zero. Since the right-hand side of inequality (13) is always nonnegative, there exists

M1 > 0 such that inequality (13) is satisfied.

Next consider the buyer. In this case, we know that for any θ̂2 < θ̄2, there exists some

θ1 ∈ Θ1 such that x∗(θ̂1, θ2) = 0. Thus, inequality (13) can be rewritten as

M̃1 >
Eθ1
[
1{θ1|x∗(θ1,θ̂2)=1}(θ1)

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
Eθ1
[
1{θ1|x∗(θ1,θ̂2)=0}(θ1)

] .

Since its denominator is positive and its numerator is bounded, the right-hand side is well

defined so that we can choose M̃1 appropriately. Moreover, if θ̂2 = θ̄2, then ũ2(θ1, θ̄2) −

ũ2(θ1, θ̂2) = 0 so that the left-hand side of inequality (13) is zero. Since the right-hand

side of the above inequality is always nonnegative, there always exists M̃1 > 0 such that

inequality (13) is satisfied in this case.

Case 3: 0 < γ1 < γ2 < 1
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Figure 11 illustrates the decision at different type profiles when γ1 < γ2. In partic-

ular, the shaded region represents Θ∗ = {(θ1, θ2) ∈ Θ1 × Θ2 : x∗(θ1, θ2) = 1}, which

describes the set of possible type profiles for which it is efficient to trade. We will show

that inequality (13) is violated in this case.

Figure 11: 0 < γ1 < γ2 < 1

If the buyer’s true type is θ2 = 1 and he deviates to report θ̂2 = (1−γ2)/(1−γ1), then

it is always efficient to trade under θ̂2, i.e., x∗(θ1, θ̂2) = 1 for any θ1 ∈ Θ1. As a result,

inequality (13) becomes

Eθ1
[
1{x∗(θ1,θ̂2)=1}

(
ũ2(θ1, θ̄2)− ũ2(θ1, θ̂2)

)]
6 0.

However, the left-hand side of the above inequality is strictly positive because θ̄2 > θ̂2

implies ũ2(θ1, θ̄2) − ũ2(θ1, θ̂2) > 0 by the strict increasingness of ũ2(·) in θ2. This is a

contradiction. Therefore, inequality (13) is violated in this case.

In the example in Section 2.3, we conclude that inequality (13) is satisfied if and only

if γ1 = γ2. This completes the proof. �
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C Appendix to Chapter 3

C.1 Proof of Lemma 14

Proof : We will prove by induction that x∗(Bi, Si+1) = 0 and x∗(Bi+1, Si+1) = 1 for all

i = 1, · · · ,m− 1. First, we consider the base case where i = 1.

1. We show x∗(B1, S2) = 0.

Suppose on the contrary that x∗(B1, S2) = 1. Since x∗(Bi, S2) is nondecreasing in

Bi, we have x∗(Bi, S2) = 1 for all i. Notice that in this case,

x∗(Bi, S1) = x∗(Bi, S2) = 1

for any i, violating the condition that the seller has no redundant type. Therefore,

x∗(B1, S2) = 0 must be satisfied.

2. We show x∗(B2, S2) = 1.

Suppose on the contrary that x∗(B2, S2) = 0. Since x∗(B2, Sj) is nonincreasing in

Sj , we have x∗(B2, Sj) = 0 for all j > 3; similarly, since x∗(B1, S2) = 0, we also

have x∗(B1, Sj) = 0 for all j > 3. Notice that in this case,

x∗(B1, Sj) = x∗(B2, Sj)

for any j, violating the condition that the buyer has no redundant type. Therefore,

x∗(B2, S2) = 1 must be satisfied.

Second, we consider the inductive step and show that if x∗(Bi, Si+1) = 0 and x∗(Bi+1, Si+1) =

1, then x∗(Bi+1, Si+2) = 0 and x∗(Bi+2, Si+2) = 1.

1. Suppose on the contrary that x∗(Bi+1, Si+2) = 1. We will show that the alloca-

tion outcomes under Si+1 and Si+2 are exactly the same and thus one of them is

redundant.

Since x∗(Bi, Sj) is nonincreasing in Sj and x∗(Bi, Si+1) = 0, we have x∗(Bi, Si+2) =

0. Furthermore, since x∗(Bk, Si+2) is nondecreasing in Bk and x∗(Bi, Si+2) = 0,

we have x∗(Bk, Si+2) = 0 for any k 6 i; similarly, since x∗(Bi+1, Si+2) = 1, we
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obtain x∗(Bk, Si+2) = 1 for any k > i + 1. Lastly, since x∗(Bk, Si+1) is nonde-

creasing inBk and x∗(Bi, Si+1) = 0, we have x∗(Bk, Si+1) for any k 6 i; similarly,

since x∗(Bi+1, Si+1) = 1, we have x∗(Bk, Si+1) = 1 for any k > i + 1. The above

argument is also illustrated in the following table.

x∗(·) Sm · · · Si+2 Si+1 · · · S1

Bm 1 1 1
...

...
...

...
Bi+1 1 1 1
Bi 0 0 1
...

...
...

...
B1 0 0 0 1

To summarize,

x∗(Bk, Si+1) = x∗(Bk, Si)

for any k, violating the condition that the seller has no redundant type. Therefore,

x∗(Bi+1, Si+2) = 0 must be satisfied.

2. Suppose on the contrary that x∗(Bi+2, Si+2) = 0. We will show that the alloca-

tion outcomes under Bi+2 and Bi+1 are exactly the same and thus one of them is

redundant.

Since x∗(Bk, Si) is nondecreasing inBk and x∗(Bi+1, Si+1) = 1, we have x∗(Bi+2, Si+1) =

1. Moreover, since x∗(Bi+2, Sj) is nonincreasing in Sj and x∗(Bi+2, Si+2) = 0, we

have x∗(Bi+2, Sj) = 0 for all j > i + 2; similarly, since x∗(Bi+2, Si+1) = 1, we

have x∗(Bi+2, Si+1) = 1 for all j 6= i+ 1. Lastly, since x∗(Bi+1, Sj) is nonincreas-

ing in Sj and x∗(Bi+1, Si+2) = 0, we have x∗(Bi+1, Sj) = 0 for all j > i + 2;

similarly, since x∗(Bi+1, Si+1) = 1, we have x∗(Bi+1, Sj) = 1 for all j 6 i + 1.

The above argument is also illustrated in the following table.

To summarize,

x∗(Bi+2, Sj) = x∗(Bi+1, Sj)

for any j, violating the condition that the buyer has no redundant type. Therefore,

x∗(Bi+2, Si+2) = 1 must be satisfied.
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x∗(·) Sm · · · Si+2 Si+1 · · · S1

Bm 1
...

...
Bi+2 0 · · · 0 1 · · · 1
Bi+1 0 · · · 0 1 · · · 1

...
...

B1 0 1

Finally, since both the base case and the inductive steo have been performed, by

mathematical induction, x∗(Bi, Si+1) = 0 and x∗(Bi+1, Si+1) = 1 hold for all i =

1, · · · ,m− 1. �

C.2 Proof of Lemma 15

Proof : Notice that inequality (15) is equal to the summation of the constant terms in

inequalities (16), (17), (18) and (19). Below we will show that by adding up inequalities

(16) to (19), all the terms regarding the payment t(Bi, Sj) where i ≥ j are cancelled out.

To do so, we can divide the the payment into three groups: t(B1, S1), t(Bm, Sm), and the

payment at all the other type profiles.

1. For the payment t(B1, S1):

Notice that the paymentt(B1, S1) appears in inequality (16) with coefficient−
∑m

i=1 g(Bi, S1);

it also appears in inequality (18) with coefficient
∑m

i=2 g(Bi, S1); finally, it appears

in inequality (19) with coefficient g(B1, S1). Therefore, the summation of the coef-

ficients is

−
m∑
i=1

g(Bi, S1) +
m∑
i=2

g(Bi, S1) + g(B1, S1) = 0,

and hence the terms regarding t(B1, S1) are cancelled out.

2. For the payment t(Bm, Sm):

Notice that the paymentt(Bm, Sm) appears in inequality (17) with coefficient
∑m

j=1 g(Bm, Sj);

it also appears in inequality (18) with coefficient −g(Bm, Sm); finally, it appears in
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inequality (19) with coefficient −
∑m−1

j=1 g(Bm, Sj). Therefore, the summation of

the coefficients is

m∑
j=1

g(Bm, Sj)− g(Bm, Sm)−
m−1∑
j=1

g(Bm, Sj) = 0,

and hence the terms regarding t(Bm, Sm) are cancelled out.

3. For all the other payment t(Bi, Sj):

Notice that any other payment t(Bi, Sj) appears in inequality (18) with coefficient

−g(Bi, Sj); it also appears in inequality (19) with coefficient g(Bi, Sj). Therefore,

the summation of the coefficients is

−g(Bi, Sj) + g(Bi, Sj) = 0,

and hence the terms regarding all the other payments t(Bi, Sj) are cancelled out.

We conclude that the summation of inequalities (16) to (19) is equal to the summation

of the constant terms in these inequalities and thus we obtain inequality (15). �
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