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Abstract

This dissertation comprises three papers that separately study different nonstationary

time series models.

The first paper, titled as ”The Grid Bootstrap for Continuous Time Models”, is a joint

work with Professor Jun Yu and Professor Weilin Xiao. It considers the grid bootstrap for

constructing confidence intervals for the persistence parameter in a class of continuous-

time models driven by a Lévy process. Its asymptotic validity is discussed under the

assumption that the sampling interval (h) shrinks to zero, the time span (N) goes to infinity

or both. Its improvement over the in-fill asymptotic theory is achieved by expanding the

coefficient-based statistic around its in-fill asymptotic distribution which is non-pivotal

and depends on the initial condition. Monte Carlo studies show that the grid bootstrap

method performs better than the in-fill asymptotic theory and much better than the long-

span asymptotic theory. Empirical applications to U.S. interest rate data and volatility

data suggest significant differences between the bootstrap confidence intervals and the

confidence intervals obtained from the in-fill and long-span asymptotic distributions.

The second paper, ”Mildly Explosive Autoregression with Anti-persistent Errors” is

another joint work with Professor Yu and Professor Xiao. It studies a mildly explosive

autoregression model with Anti-persistent Errors. An asymptotic distribution is derived

for the least squares (LS) estimate of a first-order autoregression with a mildly explosive

root and anti-persistent errors. While the sample moments depend on the Hurst parameter

asymptotically, the Cauchy limiting distribution theory remains valid for the LS estimates

in the model without intercept and a model with an asymptotically negligible intercept.

Monte Carlo studies are designed to check the precision of the Cauchy distribution in

finite samples. An empirical study based on the monthly NASDAQ index highlights the

usefulness of the model and the new limiting distribution.

The third paper ”Testing for Rational Bubbles under Strongly Dependent Errors” con-

siders testing procedures for rational bubbles under strongly dependent errors. A het-

eroskedasticity and autocorrelation robust (HAR) test statistic is proposed to detect the

presence of rational bubbles in financial assets when errors are strongly dependent. The

asymptotic theory of the test statistic is developed. Unlike conventional test statistics that



lead to a too large type I error under strongly dependent errors, the new test does not suffer

from the same size problem. In addition, it can consistently timestamp the origination and

termination dates of a rational bubble. Monte Carlo studies are conducted to check the fi-

nite sample performance of the proposed test and estimators. An empirical application to

the S&P 500 index highlights the usefulness of the proposed test statistic and estimators.
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1 The Grid Bootstrap for Continuous Time Models

1.1 Introduction

A popular model to describe the evolution of an economic time series y(t) is given by

the following Ornstein-Uhlenbeck (OU) diffusion process:

dy(t) = κ(µ− y(t))dt+ σdW (t), y(0) = y0, (1)

where κ, µ, and σ are all constants, y0 is the initial condition, and W (t) is a standard

Brownian motion. In this model, κ captures the persistence of y(t) and is the parameter

of interest in the present paper. Consider the case when a discrete sample of observations

for y(t) is available as yt with t = h, 2h, ..., Th (:= N), where h is the sample interval

and T is the sample size. Clearly, N is the time span over which the discrete-sampled

data is available.

Typically κ is estimated by the least squares (LS) method. Denote the LS estimator

by κ̂. To make the statistical inference about κ, one needs to obtain the exact finite sample

distribution of κ̂. Unfortunately, the exact finite sample distribution of κ̂ is not analytically

available. It has to be obtained by simulations (as was done in Yu (2014) and Zhou

and Yu (2015)) or by numerical integrations when κ > 0 (as was done in Bao et al.

(2017)). It generally depends on the initial condition (whether it is fixed or random) and

the random behavior of the stochastic term in the model (whether it is a Brownian motion

or a Lévy process). Not surprisingly, econometricians often rely on asymptotic theory to

approximate the exact finite sample distribution.

Three sampling schemes can be used to obtain a limiting distribution, namely “in-fill”,

or “long-span” or “double”, corresponding to the assumption of h → 0, or N → ∞, or

h → 0 together with N → ∞, respectively. In practice, of course, no matter how small,

h is always strictly positive; and no matter how large, N is always finite. Hence, all

three asymptotic distributions are merely approximations to the finite sample distribution.

Clearly, the double scheme cannot provide a more accurate approximation than the other

two schemes due to an added restriction.

Different schemes lead to different limiting distributions for κ̂. The long-span and
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double schemes lead to a Gaussian distribution for κ̂ when κ > 0 but to a Dickey-Fuller-

Phillips type distribution when κ = 0. The in-fill scheme leads to a non-standard limiting

distribution for κ̂ and there is no discontinuity in the limiting distribution when κ passes

through zero.

The limiting distributions obtained from the three schemes have their advantages and

drawbacks when they are used to make statistical inferences. The long-span and double

limiting distributions are well-known, facilitating the statistical inferences. However, the

limiting distribution typically has poor finite sample performance when κ > 0. On the

other hand, the in-fill limiting distribution is continuous at κ = 0 and outperforms the

long-span and double counterparts in finite samples. Unfortunately, the in-fill limiting

distribution depends on nuisance parameters and is non-standard.

Our paper introduces a method for making statistical inferences about κ. Our method

is based on the grid bootstrap and does not use any limiting distribution. It has three

advantages over the asymptotic theory. First, its validity can be justified by any asymptotic

scheme. This feature frees empirical researchers from using a limit distribution which

depends critically on the asymptotic scheme. Second, the method is uniformly valid for

κ > 0. Third, the method provides excellent finite-sample performance.

This approach is to use the grid bootstrap method to construct confidence intervals

(CIs) for κ. The grid bootstrap was initially introduced by Hansen (1999) to construct CIs

for the autoregressive (AR) coefficient in the AR(1) model. Hansen (1999) showed that

the method is asymptotically valid in the stationary and local-to-unit-root case. Miku-

sheva (2007) showed that under the long-span scheme the grid bootstrap leads to CIs that

have correct coverage uniformly over the parameter space, including the mildly stationary

and the local-to-unit-root case. It is the results obtained in Hansen (1999) and Mikusheva

(2007) that motivates us to make use of the grid bootstrap to construct CIs for κ since our

model is closely related to a local-to-unit-root model, as will be shown later.

This paper justifies the grid bootstrap procedure under the three asymptotic schemes.

In particular, it is shown that CIs for κ obtained by the grid bootstrap have correct cov-

erage uniformly over the parameter space, including any value of κ > 0 and κ = 0.

Moreover, we show that the grid bootstrap provides finite sample improvement over the

2



in-fill asymptotic distribution. This finding is interesting as the in-fill asymptotic distribu-

tion already outperforms the other two limiting distributions in finite samples. We show

this by applying stochastic expansion which uses the in-fill asymptotic distribution as the

leading term.

Our setup and approach have a few attractive features. First, we can justify the boot-

strap method under the in-fill scheme, the long-span scheme, or the double scheme. This

is particularly important in empirical work since the CI remains the same regardless of

which asymptotic scheme is adopted. Second, consistent estimation of κ and µ is not

required for constructing a valid CI of κ under the in-fill scheme. Third, we show that

the bootstrap CIs perform better than CIs based on the in-fill asymptotic distribution and

much better than those based on the long-span asymptotic distribution. Fourth, since the

grid bootstrap has correct coverage uniformly for all values of κ > 0, our method can be

used to test for the unit root as well as for a stationary root. This is in sharp contrast to the

approaches based on the long-span asymptotic scheme where the test statistics and their

asymptotic distributions under the unit root null hypothesis (such as the Dickey-Fuller

test and the Phillips-Perron test) are very different from those under the stationary null

hypothesis (such as the KPSS test of Kwiatkowski et al (1992) and the test proposed in

Chang et al. (2019)). Finally, the grid bootstrap method, with a simple modification, is

applicable in the presence of heteroskedasticity.

We organize the paper as follows. Section 1.2 reviews some relevant results in the

literature on the continuous-time model given by (1) and relates some of them to those

in the discrete-time AR(1) model. The concept of a bootstrap CI is also reviewed. In

Section 1.3, a more general continuous-time model is introduced. The LS estimator of

κ and its in-fill asymptotic distribution are also discussed. Section 1.4 develops the grid

bootstrap method to construct CIs for κ and provides the asymptotic justification to the

procedure. Probabilistic expansions, which use the in-fill asymptotic distribution as the

leading term, and the grid bootstrap under heteroskedasticity are also reported. Simulation

studies, which aim to check the finite sample performance of the bootstrap method, are

carried out in Section 1.5. Section 1.6 reports CIs for κ based on US interest rate data and

Chicago Board Options Exchange’s volatility index data. Section 1.7 concludes. Proofs

3



of the main results in the paper are given in the Appendix.

We use the following notations throughout the paper, “⇒”means weak convergence

in distribution, “
p⇒” means weak convergence in probability, “→” means convergence

in real sequence, “∼” means asymptotic equivalence, “ d
=” means distributional equiva-

lence, “→p”, “→d”, and “→a.s.” mean convergence in probability, distribution, and almost

surely, respectively.

1.2 A Literature Review

In this section, we review some relevant results in the literature on the continuous-

time model given by (1). We also relate some of the results to those in the discrete-time

literature. Then we review the concept of CI based on alternative distributions, including

the bootstrap distributions.

Assume Y := {yth}Tt=1 to be data generated from the continuous-time model given by

(1). The exact discrete model corresponding to (1) is given by

yth = e−κhy(t−1)h + µ
(
1− e−κh

)
+
√

(1− e−2κh)/(2κ)εt,

where εt ∼ i.i.d.N(0, σ2), t = 1, ..., T . Clearly, T can be made to go to infinity by either

increasing N (the long-span scheme) or decreasing h (the in-fill scheme) or both (the

double scheme). Dividing both sides by
√

(1− e−2κh)/(2κ) gives rise to

xth = e−κhx(t−1)h +
µ
(
1− e−κh

)√
(1− e−2κh)/(2κ)

+ εt, x0 =
y0√

(1− e−2κh)/(2κ)
, (2)

where xth = yth/
√

(1− e−2κh)/(2κ).

Model (2) has the same structure as the popular discrete-time AR(1) model with

ρh(κ) = e−κh being the AR coefficient. Let the LS estimator of ρh(κ) be ρ̂h and the

LS estimator of κ be κ̂ = − ln (ρ̂h) /h. If κ = 0, then ρh(κ) = 1, implying the presence

of a unit root. If h→ 0 but N is finite, then e−κh ∼ 1 + (−κh) = 1 + (−κN/T ). So the

in-fill asymptotic scheme implies that Model (2) has a root which is local-to-unity with

the local parameter being c := −κN and the initial condition x0 ∼ O(1/
√
h) if y0 6= 0

and x0 = 0 if y0 = 0. In the local-to-unity literature, the initial condition is typically

assumed to be Op(1) and the corresponding long-span asymptotic distribution involves

4



functionals of the OU process but is independent of the initial condition.1 When y0 6= 0 in

Model (2), it is expected that the in-fill asymptotic distribution of ρ̂h performs better than

the usual long-span asymptotic distribution developed in the local-to-unity literature.

Phillips (1987b) developed the in-fill asymptotic distribution for ρ̂h when y0 = 0 and

µ is known (i.e. µ = 0). In the same paper, Phillips showed that this in-fill asymp-

totic distribution is the same as the long-span asymptotic distribution in the local-to-unity

model with the initial condition of Op(1). Perron (1991) extended the results in Phillips

(1987b) by allowing for a general initial condition for y0. Yu (2014) and Zhou and Yu

(2015) developed the in-fill asymptotic distribution for κ̂ when µ is known and unknown,

respectively. Unless y0 = 0 the in-fill asymptotic distribution explicitly depends on the

initial condition, and hence is different from the long-span asymptotic distribution in the

local-to-unity model with the initial condition of Op(1).

It is straightforward to derive the long-span asymptotic distribution for κ̂ by applying

the Delta method to the long-span asymptotic distribution for ρ̂h. For example, when

κ > 0,
√
T (κ̂−κ)⇒ N (0, (exp(2κh)− 1) /h); see Tang and Chen (2009). When κ = 0,

N(κ̂ − κ) ⇒ −
∫ 1

0
W (r)dW (r)/

∫ 1

0
W (r)2dr with W (r) = W (r) −

∫ 1

0
W (s)ds. The

discontinuity in the long-span limiting distribution of κ echoes that of ρ in the discrete-

time AR(1) model.

When κ is positive but reasonably close to zero, Yu (2014) and Zhou and Yu (2015)

obtained the exact finite sample distribution of κ̂ by simulations. Bao et al. (2017) approx-

imated the finite sample distribution of κ̂ via numerical integrations. All these studies find

that the in-fill distribution is much closer to the finite sample distribution than the long-

span and the double asymptotic distributions, even when 10 years or 50 years of monthly

data are used. The superiority of the in-fill distribution over the long-span distribution is

not surprising as the in-fill distribution depends explicitly on the initial condition and is

asymmetric. While these two features can be found in the finite sample distribution, they

are lost in the long-span asymptotic distribution.

1From Mikusheva (2015), it can be easily shown that as T → ∞, in the local-to-unity model with

intercept, T (ρ̂− ρ)⇒
∫ 1

0
Jc(r)dW (r)/

∫ 1

0
Jc(r)

2dr where Jc(r) = Jc(r)−
∫ 1

0
Jc(s)ds is the de-meaned

OU process with Jc(r) =
∫ r
0

exp(−c(r − s))dW (s).
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For the discrete-time AR(1) model, the in-fill scheme is not available. When the AR

coefficient is in the stationary region (that is, it is less than one in absolute value), the

long-span asymptotic distribution of the LS estimator of the AR coefficient is Gaussian.

However, the finite sample distribution may be far away from Gaussianity, especially

when the AR coefficient is close to one and the sample size is small or moderately large.

This motivates Phillips (1977) and Tanaka (1983) to develop the Edgeworth expansions to

approximate the finite sample distribution of the LS estimator of the AR coefficient. While

the leading term in the Edgeworth expansions is a normal distribution, a departure from

normality manifests in higher-order terms. Alternatively, the finite sample distribution can

be approximated by bootstrap. Bose (1988) showed the linkage between the Edgeworth

expansions and the bootstrap method.

When the AR(1) model has a unit root, the long-span asymptotic distribution is non-

standard. Basawa et al. (1991) and Park (2003) introduced bootstrap procedures which

improve upon the long-span asymptotic theory. In an important study, Park (2003) jus-

tified the bootstrap procedure by obtaining expansions for the Dickey-Fuller unit root

test where the leading term is the Dickey-Fuller-Phillips distribution and showed that the

bootstrap offers a second-order asymptotic refinement for the Dickey-Fuller test. Under

the local-to-unity AR(1) model, Hansen (1999) introduced the grid bootstrap approach.

Mikusheva (2015) obtains expansions of the t-statistic about the local-to-unity asymp-

totic distribution and shows that the grid bootstrap procedure of Hansen (1999) achieves

a second-order refinement of the local-to-unity asymptotic approximation. The results

of Mikusheva (2015) are important because, when the AR(1) coefficient is less than but

close to one, the local-to-unity asymptotic distribution tends to give better approximations

to the finite sample distribution than the normal distribution even when the sample size

is moderately large. However, since the initial condition is assumed to be Op(1) in the

model of Mikusheva (2015), the local-to-unity asymptotic distribution is independent of

the initial condition.

We now review the concept of CI based on alternative distributions. Assume ρ is

the parameter of interest in a statistical model. Without loss of generality, assume ρ is a

scalar. Let T denote the sample size of available data Y and tT (Y, ρ) be a test statistic

6



with sampling distribution FT (x|ρ) = Pr(tT (Y, ρ) < x|ρ). For q ∈ (0, 1), let cT (q|ρ) be

the quantile function of tT (Y, ρ), that is, FT (cT (q|ρ)|ρ) = q. Define a q-level CI for ρ by

CIq := {ρ ∈ R : cT (x1|ρ) 6 tT (Y, ρ) 6 cT (x2|ρ)}, (3)

where x1 = (1 − q)/2 and x2 = 1 − (1 − q)/2. If ρ0 is the true parameter value of ρ,

by definition, Pr(ρ0 ∈ CIq) = q, and hence, the coverage probability is exactly q, the

intended level.

Suppose, as T →∞, FT (x|ρ) converges to an asymptotic distribution (call it F (x|ρ))

which is often pivotal. In this case both F and the corresponding quantile function (call

it c(q|ρ)) are independent of T and the asymptotic CI will have a correct probability

coverage. For example, if the asymptotic distribution is standard normal, then a 95%

asymptotic CI is CIA95% = {ρ ∈ R : −1.96 6 tT (Y, ρ) 6 1.96}.

If the asymptotic distribution of FT (x|ρ) is not pivotal, say, depending on a set of

unknown parameters θ (call the limit distribution F (x, θ|ρ) and the corresponding quan-

tile function c(q, θ|ρ)), replacing cT (xi|ρ) with c(xi, θ|ρ) in Equation (3) does not work

because θ is not known. If θ can be consistently estimated, say by θ̂, then we can replace

cT (xi|ρ) with c
(
xi, θ̂|ρ

)
in Equation (3) to obtain an asymptotic CI, CIAq . It is easy to

show that limT→∞ Pr
(
ρ0 ∈ CIAq

)
= q. If cT (xi|ρ) is approximated by the quantile func-

tion corresponding to a bootstrap distribution, denoted by c∗T (xi|ρ), then the CI is called

a bootstrap confidence interval (BCI), CIBq . For example, a BCI given by the standard

bootstrap procedure is given by

CIBq := {ρ ∈ R : c∗T (x1|ρ̂) 6 tT (Y, ρ) 6 c∗T (x2|ρ̂)},

where ρ̂ denotes an estimate of ρ.

There are some advantages to using BCIs. First, BCIs are obtained by re-sampling

the data. Although asymptotic justification of bootstrap methods requires the knowledge

of asymptotic theory, generating a BCI does not require an asymptotic scheme; see Sec-

tion 1.4. Second, bootstrap methods are known to provide a finite sample refinement to

asymptotic theory in the sense that the bootstrap distribution provides better approxima-

tions to the finite sample distribution than asymptotic distributions; see Hall (2013) and
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Chang and Hall (2015). Not surprisingly, bootstrap methods often lead to CIs that have a

more accurate coverage probability than the traditional asymptotic theory.

1.3 The Model and In-fill Theory

The present paper extends Model (1) by allowing for non-normality in errors. Such

an extension makes the analytical approach of Bao et al. (2017) not applicable. We

then develop the in-fill asymptotic distribution and the long-span asymptotic distribution

for the coefficient-based statistic based on the LS estimator of κ. We then propose the

grid bootstrap to obtain BCIs for κ and discuss its validity under different asymptotic

schemes. Motivated by the better performance of the in-fill asymptotic distribution rela-

tive to the long-span asymptotic distribution, an asymptotic expansion for the coefficient-

based statistic, with the in-fill asymptotic distribution as the leading term, is developed.

The expansion shows that the bootstrap method offers a refinement of the in-fill asymp-

totic distribution and theoretically explains the superiority of the bootstrap method over

the in-fill distribution.

1.3.1 The model

Following Wang and Yu (2016), we consider the following continuous-time model:

dy(t) = κ(µ− y(t))dt+ σdL(t), y(0) = y0 = Op(1), (4)

where σ is a strictly positive constant, κ is a non-negative constant, L(t) is a Lévy

process defined on a probability space (Σ,F , {Ft}t>0, P ), with L(0) = 0 a.s., Ft =

σ
{
{y(s)}ts=0

}
. The generalization from W (t) to L(t) is important in empirical applica-

tions for many financial variables; see Madan and Setena (1990) for equity prices, Bai and

Ng (2005) for interest rates, and Aı̈t-Sahalia and Jacod (2014) for an excellent textbook

explanation of why L(t) is important.

In this paper, we are interested in obtaining CIs for the persistence parameter κ from

discrete-sampled observations {yth}Tt=1, µ, σ and parameters in L(t) are treated as nui-

sance parameters. The exact discrete-time version of (4) is

yth = e−κhy(t−1)h + µ(1− exp(−κh)) + σ

∫ th

(t−1)h

exp(−κ(th− s))dL(s), (5)
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where t = 1, 2, . . . , T .

Note that, the characterization of the Lévy process makes
{
σ
∫ th

(t−1)h
exp(−κ(th− s))dL(s)

}N/h
t=1

an i.i.d. sequence with the distribution depending on the specification of the Lévy mea-

sure. Let the characteristic function ofL(t) be of the form ofE(exp{isL(t)}) = exp{−tψ(s)},

where i is the imaginary unit and the function ψ : R→ C is the Lévy exponent of L(t).

Assuming that L(t) is square-integrable, the error term has the following moments:

E

(
σ

∫ th

(t−1)h

exp(−κ(th− s))dL(s)

)
= σiψ′(0)

1− exp(−κh)

κ
,

V ar

(
σ

∫ th

(t−1)h

exp(−κ(th− s))dL(s)

)
= σ2ψ′′(0)

1− exp(−2κh)

2κ
.

To simplify notations, let

ρh(κ) := exp(−κh), λh :=

√
1− e−2κh

2κ
, σ2

ψ := σ2ψ′′(0),

gh :=

[
µ+

σiψ′(0)

κ

]
(1− exp(−κh)),

uth := (σψλh)
−1

(
σ

∫ th

(t−1)h

exp(−κ(th− s))dL(s)− σiψ′(0)
1− exp(−κh)

κ

)
.(6)

Note that {uth}Tt=1 is a sequence of i.i.d. variables with mean zero and variance 1. When

there is no confusion, we simply omit h in yth and uth. Using notations in (6), we can

rewrite (5) as:

yt = ρh(κ)yt−1 + gh + εt, εt = σψλhut, y(0) = y0 = Op(1). (7)

1.3.2 Estimation

In Model (5), we use the LS method to estimate ρh(κ) and then obtain the estimator

of κ

κ̂h = − ln(ρ̂h)/h,

where ρ̂h is the LS estimator for ρh(κ).

The coefficient-based statistic and the t statistic for ρh(κ) are, respectively

z (Y, ρ, T ) = T (ρ̂h − ρh(κ)) and t (Y, ρ, T ) =
ρ̂h − ρh(κ)

σ̂ρ̂h
,
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where σ̂ρ̂h =

√
1
T

∑T
t=1(yt − ĝh − ρ̂hyt−1)2 ×

(∑T
t=1 y

2
t−1 − 1

T

(∑T
t=1 yt−1

)2
)−1

is the

standard error of ρ̂h. The normalization in z (Y, ρ, T ) is T not
√
T ; see Phillips (1987b).

Following Perron (1991) and Zhou and Yu (2015), we define the coefficient-based

statistic for κ as

z (Y, κ, h) = N (κ̂h − κ) . (8)

Remark 1 Although in this paper we use the coefficient-based statistic for κ to construct

CIs, we can also define the t statistic as tT (Y, κ) = h(κ̂h − κ)/σ̂ρ̂h , and construct CIs

accordingly. However, this may not be a standard t statistic as the standard error of κ̂h is

not defined clearly in the context.

1.3.3 In-fill asymptotic theory

The in-fill asymptotic theory has gained much prominence in recent years. Studies

which have developed the in-fill asymptotics for different econometric models include Li

and Xiu (2016), Jiang et al. (2018, 2020). In this section we extend the in-fill asymptotic

result of Zhou and Yu (2015) to Model (4).

Lemma 1 For Model (4), define z (Y, κ, h) by (8). Then, as h→ 0,

z (Y, κ, h)⇒ zy0(κ, θ) := −
Υ3 −Υ2

∫ 1

0
dW (r)

Υ1 −Υ2
2

, (9)

where θ = (µ, σ, ψ′(0), ψ′′(0)), Υ1, Υ2 and Υ3 are defined in the Appendix.

This limiting distribution in (9) allows us to invert the coefficient-based statistic and

construct CIs for κ. It can be seen that when an error term involves a Lévy process,

the Lévy exponent enters the limiting distribution through σψ and ψ′(0). The approach

is infeasible as there are some unknown parameters in the limiting distribution in (9),

including κ, µ, σ, ψ′(0), ψ′′(0).

Remark 2 If Model (4) is driven by a standard Brownian motion (i.e. L(t) = W (t)),

then ψ′(0) = 0, ψ′′(0) = 1, and the in-fill distribution of κ̂ given in (9) is the same as that

obtained from Zhou and Yu (2015). In addition, if µ is known and equal to 0, the in-fill
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distribution of κ̂ is identical to that in Perron (1991). By further assuming y0 = 0, the

in-fill distribution of κ̂ is the same as that in Phillips (1987b).

Remark 3 If Model (4) is driven by a standard Brownian motion, unless y0 = 0, the

in-fill distribution of κ̂ depends on the initial condition via γ0. If y0 = 0 and µ = 0, then

γ0 and b are both equal to 0 in Lemma 1. If y0 = µ, subtracting y0 from both sides of

equation (5), we obtain ỹth = e−κhỹ(t−1)h + εt, with ỹth = yth − y0. In this case, Lemma

1 implies that

zy0(κ, θ) = −
∫ 1

0
Jc(r)dW (r)−

∫ 1

0
Jc(r)dr

∫ 1

0
dW (r)∫ 1

0
J2
c (r)dr −

(∫ 1

0
Jc(r)dr

)2 = −
∫ 1

0
J c(r)dW (r)∫ 1

0
J c(r)2dr

,

where J c(r) = Jc(r)−
∫ 1

0
Jc(s)ds is the de-meaned OU process with Jc(r) =

∫ r
0

exp(−c(r−

s))dW (s). Similarly, if we further impose κ = 0, we obtain zy0(κ, θ) = −
∫ 1

0
W (r)dW (r)/

∫ 1

0
W (r)2dr

where W (r) is the de-mean Brownian motion.

The in-fill distribution of κ̂ (i.e. −
∫ 1

0
J c(r)dW (r)/

∫ 1

0
J c(r)

2dr) is closely related to

the long-span asymptotic distribution of the coefficient-based statistic for ρ̂ in the local-to-

unity model with the initial condition of Op(1); see Remark 3.1 in Mikusheva (2015). The

reason why the initial condition explicitly enters the asymptotic distribution is that Model

(2) corresponds to a local-to-unity model with the initial condition diverges to infinity

as h → 0. Clearly, the in-fill distribution of κ̂ given in (9) is expected to outperform

−
∫ 1

0
J c(r)dW (r)/

∫ 1

0
J c(r)

2dr when the initial condition is not zero.

To see the impact of the initial condition, we perform a small Monte Carlo experiment.

The following parameter settings are considered: κ = 0.5, µ ∈ {0, 0.1}, y0 ∈ {0, 1, 2, 3}.

The number of replications is always set at 10,000. Let z0 denote−
∫ 1

0
J c(r)dW (r)/

∫ 1

0
J c(r)

2dr.

Table 1 reports the percentiles of z0 and the in-fill distribution zy0(κ, θ). Making a

statistical inference from the discrete-time local-to-unity model with intercept is similar

to making a statistical inference in the continuous-time model (4) by restricting µ = 0,

y0 = 0 or y0 = µ. From Table 1, it can be clearly seen that the distribution depends on

the initial condition, and it is expected that the in-fill distribution zy0(κ, θ) outperforms

z0 in finite samples, as the finite sample distribution depends on the initial condition.
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Table 1: Percentile of z0 and zy0(κ, θ) when κ = 0.5

Percentiles 1% 5% 10% 50% 90% 95% 99%
z0 -2.007 -0.746 0.035 4.219 11.669 14.673 21.084

µ = 0, y0 = 1 zy0(κ, θ) -2.209 -0.930 -0.155 3.766 11.036 13.921 20.148
µ = 0, y0 = 2 zy0(κ, θ) -2.415 -1.264 -0.565 2.815 9.222 11.608 17.867
µ = 0, y0 = 3 zy0(κ, θ) -2.486 -1.466 -0.842 1.910 6.826 8.963 14.346

µ = 0.1, y0 = 0 zy0(κ, θ) -1.984 -0.745 0.026 4.193 11.663 14.627 21.170
µ = 0.1, y0 = 1 zy0(κ, θ) -2.303 -0.995 -0.182 3.887 11.344 14.278 20.587
µ = 0.1, y0 = 2 zy0(κ, θ) -2.542 -1.333 -0.601 2.937 9.717 12.267 18.770
µ = 0.1, y0 = 3 zy0(κ, θ) -2.585 -1.537 -0.898 2.015 7.242 9.517 15.333

Remark 4 If we define the t statistic for κ as t (Y, κ, h) = h(κ̂h−κ)/σ̂ρ̂h , then as h→ 0,

t (Y, κ, h)⇒ ty0(κ, θ) := −
Υ3 −Υ2

∫ 1

0
dW (r)√

Υ1 −Υ2
2

.

Remark 5 By assumingN →∞ with h fixed , it can be shown that the long-span asymp-

totic distribution of t (Y, κ, h) isN(0, 1) when κ > 0. It becomes−
∫ 1

0
W (r)dW (r)/

√∫ 1

0
W (r)2dr

with W (r) = W (r)−
∫ 1

0
W (s)ds being the de-meaned Brownian motion when κ = 0.

Remark 6 As shown in Phillips (1987b), when c→ −∞,
∫ 1

0
Jc(r)dW (r)/

√∫ 1

0
Jc(r)2dr ⇒

N(0, 1). It implies that, when N is fixed but κ → ∞, t (Y, κ, h) converges to N(0, 1),

since all the terms that involve exp(c) and 1/c vanish, and so does the initial condition.

1.4 Confidence Interval for κ

1.4.1 Grid bootstrap confidence interval

The grid bootstrap was first proposed by Hansen (1999) under the local-to-unity AR(1)

model. The grid bootstrap is considered for three reasons. First, Basawa et al. (1991)

showed the conventional residual-based bootstrap methods fail to give correct first-order

asymptotic coverage when the AR parameter is local-to-unity. An implication is that the

conventional residual-based bootstrap methods are not valid in our model unless we as-

sume κ > 0, h is fixed and N → ∞. On the other hand, Hansen (1999) showed that

the grid bootstrap CIs have asymptotically correct coverage under the local-to-unity case.

Under the in-fill scheme, Model (7) is a local-to-unity AR(1) model, giving us strong
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motivations to use the grid bootstrap for Model (4). Second, the grid bootstrap method

is used due to its uniform validity in the parameter space, as pointed out by Mikusheva

(2007). Third, as we will show, the grid bootstrap method has the property of uniform va-

lidity across the three asymptotic schemes and obtains the same valid CI across the three

asymptotic schemes.

Here we show how to use the grid bootstrap procedure to generate bootstrap sam-

ples. Consider generating the following AR(1) pseudo time series {y∗t }
T
t=0 with error u∗t

conditional on κ:

y∗t = ρh(κ)y∗t−1 + g̃h + σ̂cλhu
∗
t , y
∗(0) = y0 = Op(1), (10)

where ρh(κ) = exp(−κh). Let σ̂c :=
√

1
Th

∑T
t=1(yt − ĝh − ρ̂hyt−1)2, λh :=

√
1−exp(−2κh)

2κ
,

and g̃h is obtained from regressing yt − ρh(κ)yt−1 on a constant. This way of obtaining

g̃h is crucial since gh explicitly depends on κ in our model, unlike the usual discrete-time

AR(1) model with intercept. It is important to point out that when we generate the pseudo

time series data, we explicitly retain the initial condition by letting y∗(0) = y0. This is

different from the bootstrap procedure in the usual discrete-time model where some ini-

tially simulated data are burned-in to avoid the dependence of the initialization. Since

the initial condition shows in the in-fill asymptotic distribution, we design the bootstrap

procedure so that it explicitly depends on the initial condition.

The error u∗t is generated in the following way. We first define xt as yt/λh (conditional

on a value of κ). Then we regress xt on xt−1 and a constant by LS. Let {ex,t}Tt=1 be the

LS residuals. We first scale residuals {ex,t}Tt=1 by multiplying 1/σ̂c, then we re-center

the scaled residuals. Finally, we independently draw u∗t from the empirical distribution

function of these re-centered and scaled residuals with replacement. Clearly, model (10)

is a bootstrap version of Model (7) conditional on κ and with the same initial condition

y0.

We can then apply LS to the bootstrap samples to obtain ρ̂∗, κ̂∗(:= − ln(ρ̂∗)/h) and

the bootstrap coefficient-based statistic z (Y ∗, κ, h) = N (κ̂∗h − κ) where Y ∗ = {y∗th}
T
t=1

is a bootstrap sample. We define the BCI as in (3). Since κ is our parameter of interest,

we express the BCI for κ as CI∗q = {κ ∈ R : c∗T (x1|κ) 6 z (Y, κ, h) 6 c∗T (x2|κ)}, and

c∗T (q|κ) is the quantile function of z (Y ∗, κ, h), x1 = (1− q)/2 and x2 = 1− (1− q)/2.
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The following lemma shows that σ̂2
c is a consistent estimator of σ2

ψ under the in-fill

scheme.

Lemma 2 Under Model (7), as h→ 0,

sup
σ>0

sup
κ∈R

Pr

(∣∣∣∣∣ σ̂2
c

σ2
ψ

− 1

∣∣∣∣∣ > ε

)
→ 0, for any ε > 0.

1.4.2 Asymptotic validity of grid bootstrap confidence interval

The following theorem shows that the grid bootstrap can produce BCIs which are

asymptotically valid under the in-fill asymptotic scheme.

Theorem 1 Let κ0 be the true value of κ, and Pr∗ be the bootstrap distribution with the

error term drawn from our resampling method. Assume that

1. κ0 ∈ K = [0,+∞).

2. The increment of the Lévy process L(t+h)−L(t) has a finite variance and bounded

rth absolute moment with r ∈ (2, 4].

3. µ, σ, iψ′(0) and ψ′′(0) are all bounded by C <∞.

4. Let Y = {yth}Tt=1 ,

(S∗(T, κ), R∗(T, κ))

=

 1

σ̂2T

T∑
t=1

y∗t−1ε
∗
t −

1

σ̂T

T∑
t=1

y∗t−1

1

σ̂T

T∑
t=1

ε∗t ,
1

σ̂2T 2

T∑
t=1

y∗2t−1 −

(
1

σ̂T
3
2

T∑
t=1

y∗t−1

)2
 ,

with σ̂ =
√

1
T

∑T
t=1(yt − ĝh − ρ̂h(κ)yt−1)2.2 Let E (R∗(T, κ)) = J . Assume that

the pair of statistics (S∗(T, κ), R∗(T, κ)) has a uniformly continuous distribution

over the parameter space K, such that for any ε > 0, there exists a constant M > 0

such that for all δ1 < ε, δ2 < ε, |b− J | > 2ε and all κ ∈ K, we have

Pr ∗{(S∗(T, κ), R∗(T, κ)) ∈ [a− δ1, a+ δ1]× [b− δ2, b+ δ2]|Y } 6Mδ1δ2,

Pr ∗{S∗(T, κ) ∈ [a− δ1, a+ δ1]|Y } 6Mδ1.

2Note that S∗(T, κ)/R∗(T, κ) = z (Y ∗, ρ, T ).
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Under these assumptions, we have, as h→ 0,

• sup
κ∈K

sup
x
|Pr{z (Y, κ, h) < x|κ} − Pr∗{z (Y ∗, κ, h) < x|κ, Y }| → 0.

• inf
κ∈K

Pr{κ0 ∈ CI∗q } → x2 − x1 = q.

The first assumption requires the parameter space of κ in the nonnegative half-line.

While the in-fill asymptotic theory does not require κ to be nonnegative, for most eco-

nomic and financial time series, the focus has been on cases where κ > 0. Therefore, we

restrict our attention to the nonnegative region of κ. Assumptions 2 and 3 effectively reg-

ulate the error term in the exact discrete-time model, enabling us to apply the invariance

principle. Assumption 4, which restricts the component of our test statistic to be (jointly)

uniformly continuous, is also used in Mikusheva (2007).

The first result shows that the distribution of the bootstrap statistic is close to the finite

sample distribution uniformly over the parameter space K, when the sampling interval

is smaller. In the limit of h → 0, the bootstrap statistic behaves like a random variable

whose distribution is the in-fill asymptotic distribution. The second result shows that the

coverage probability of CI∗q converges to q when h→ 0.

Remark 7 If we replace z (Y, κ, h) and z (Y ∗, κ, h) in Theorem 1 by t (Y, κ, h) and

t (Y ∗, κ, h), Theorem 1 remains valid. This implies that we can use the t statistic to

obtain BCIs which are also justifiable under the in-fill scheme.

Remark 8 In Model (4), only the consistency of σψ is required to ensure the asymptotic

validity of BCI. No consistent estimation for (κ, µ, σ, ψ′(0), ψ′′(0)) is needed for the pur-

pose of constructing an asymptotically valid BCI for κ as h→ 0. This is because, in our

bootstrap method, the exact discretization (7) of model (4) is what we try to mimic, and

we only need to ensure the consistent estimation for the discretized parameters such as

gh/λh and σψ.3

Remark 9 While the asymptotic justification of the grid bootstrap has been made under

the in-fill scheme, it can be also made under the long-span scheme and the double scheme.

3We establish the consistency of gh/λh conditional on κ.
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Under the long-span scheme, if κ > 0, ρh(κ) = ρ(κ) < 1, leading to a strictly stationary

AR model. In this case the validity of the grid bootstrap was proven in Theorem 1 of

Hansen (1999). Under the double scheme, if κ > 0 and N = O(log T ), ρh = exp(−κh)

and T (1 − ρh) = T (κh + o(h2) ∼ κN = O(log T ). In this case the AR coefficient falls

into the mildly stationary region defined in Mikusheva (2007) where the validity of the

grid bootstrap was shown. When κ = 0, ρh(κ) = 1 and model (4) can be expressed by

the following AR(1) model:

yth = y(t−1)h + σψλhuth, with y0 = Op(1).

Under the long-span scheme, the model is a usual unit root AR(1) model without intercept.

Under the double scheme, we can write the model as

xth = x(t−1)h + uth, xth = x0 +
t∑
i=1

uih, (11)

with xth = yth/ (σψλh) and x0 = Op(h
−1/2). Since T−1/2xth = T−1/2

t∑
i=1

uih + T−1/2x0

with T−1/2x0 = Op(N
−1/2) = op(1), we have the usual limiting Brownian motion. Model

(11) is a unit root model with an asymptotically negligible initial condition under the

double scheme. In both cases, the model can be regarded as an AR(1) model with a

local-to-unit-root. Hansen (1999) and Mikusheva (2007) showed the validity of the grid

bootstrap in the local-to-unit-root region. In sum, for κ > 0, the grid bootstrap can be

justified under the long-span scheme and the double scheme.

Remark 10 Under the in-fill scheme, we define the coefficient-based statistic as N(κ̂h −

κ). Under the long-span scheme and the double scheme, the normalized statistic should be

defined as
√
T (κ̂ − κ) and

√
N(κ̂ − κ), respectively. However, using the grid bootstrap

method, The BCI is obtained by inverting the coefficient-based statistic. Therefore, the

construction of BCI is independent of the selected normalization.

1.4.3 Expansions and refinements

An important advantage of bootstrap methods over asymptotic distributions is that

bootstrap methods often provide refinements in finite samples. This feature also holds
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true in our model. To prove refinements, we follow Park (2003) and Mikusheva (2015) by

developing the second-order probabilistic expansions of the coefficient-based test statistic.

The expansions were obtained in Park (2003) for both the t statistic and the coefficient-

based statistic around their respective Dickey-Fuller-Phillips distributions which are piv-

otal. The expansions were obtained in Mikusheva (2015) for the t statistic around
∫ 1
0 Jc(r)dW√∫ 1
0 Jc(r)

2dr

which is non-pivotal but independent of the initial condition. Our leading term is the in-

fill asymptotic distribution, which is not only non-pivotal but also dependent on the initial

condition. Although we only report the results for the coefficient-based test statistic, it

can be shown that similar expansions can be developed for the t statistic for κ.

Theorem 2 Assume that in Model (4), the assumptions in Theorem 1 hold, and addition-

ally, the increment of the Lévy process L(t + h) − L(t) has a bounded rth moment for

some r > 8 . We have the following probabilistic expansions for z (Y, κ, h)

z (Y, κ, h) = zy0(κ, θ) + T−1/4A+ T−1/2B + op(T
−1/2), (12)

where the leading term zy0(κ, θ) is the in-fill asymptotic distribution given in (9), and the

full expressions of the higher order terms A and B which are all Op(1), are provided in

the appendix.

Furthermore, for grid bootstrap method, we have the following results for distribu-

tional expansions

sup
x
|Pr ∗(z (Y ∗, κ, h) < x|κ, Y )− Pr(z (Y, κ, h) < x|κ)| = o(T−1/2), (13)

where Y ∗ = {y∗t }
T
t=0 is our bootstrap sample.

Remark 11 Whenψ′(0) = 0, ψ′′(0) = 1, y0 = µ, κ = 0, zy0(κ, θ) = −
∫ 1

0
W (r)dW (r)/

∫ 1

0
W (r)2dr.

Equation (12) extends the result on Gn in Park (2003) from the unit root model without

intercept to the unit root model with intercept. When ψ′(0) = 0, ψ′′(0) = 1, y0 = µ,

zy0(κ, θ) = −
∫ 1

0
J(r)dW (r)/

∫ 1

0
J(r)2dr. Equation (12) extends the result on t(y, n, ρn)

in Mikusheva (2015) from the local-to-unity model with negligible initial condition to the

local-to-unity model with divergent initial condition.
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Remark 12 According to (12), we have

Pr(z (Y, κ, h) < x|κ) = Pr(zy0(κ, θ) < x|κ) +O(T−1/2), (14)

uniformly in x. This suggests that our second-order asymptotic expansions of z (Y, κ, h),

that is, zy0(κ, θ) + T−1/4A+ T−1/2B(:= ξ), provide refinements of the in-fill asymptotic

distribution up to order o(T−1/2) since

Pr(z (Y, κ, h) < x|κ) = Pr(ξ < x|κ) + o(T−1/2).

Remark 13 Comparing equation (13) with equation (14), the grid bootstrap provides a

second-order improvement over the in-fill asymptotic distribution.

Remark 14 Under an AR(1) model with the AR parameter ρ = 1 + cm/T , Phillips et

al. (2010) obtained the local-to-unit-root distribution when T →∞ with a fixed m. They

also showed that the local-to-unit-root distribution makes a first-order refinement of the

double asymptotic distribution when m → ∞ sequentially. This sequential asymptotic

scheme (T →∞ followed by m→∞) is the scheme where N →∞ followed by h→ 0

in Model (7). Therefore, it is expected that the grid bootstrap provides an improvement

over the double asymptotic distribution.

1.4.4 Extensions to heteroskedastic models

It is possible to extend the grid bootstrap methods to more general model specifica-

tions. Here we discuss a model with time-varying volatility given by

dy(t) = κ(µ− y(t))dt+ σ(t)dL(t), (15)

where σ(t) = ω(t/T ) and ω is a measurable function on the interval (0, 1] such that

both the infimum and the supremum of ω over (0, 1] is a bound strictly above 0 and

below infinity and ω satisfies the Lipschitz condition except at a finite number of points

of discontinuity. To keep our exposition simple, we assume ψ′(0) = 0. The exact discrete-

time model is given by

yt = ρh(κ)yt−1 + gh + σtλhut, (16)
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As noted in Xu and Phillips (2008), a general deterministic function for ω and, hence,

unconditional heteroskedasticity are allowed in the model. However, a general stochastic

volatility process is not allowed.

The in-fill asymptotic distribution for N(κ̂h − κ) is developed and documented in

Lemma 16 of Appendix. It turns out that one can apply the wild bootstrap principle with

the grid bootstrap method to generate a bootstrap sample. Analogous to (10), conditional

on κ, we now generate pseudo data in the following manner:

y∗t = ρh(κ)y∗t−1 + g̃h + λh
et√
h
z∗t , y

∗(0) = y0 = Op(1), (17)

where et and z∗t are the LS residual and an i.i.d. N(0,1) random variable, respectively. The

remaining steps are identical to the case where σ is a constant. The following proposition

documents the asymptotic validity of the grid bootstrap method under the in-fill scheme.

Proposition 1 Under model (15), suppose we generate pseudo data as in (17), and con-

struct a grid BCI. As h→ 0, we have

lim
h→0

Pr{κ ∈ CI∗q } → x2 − x1 = q.

In proving Proposition 1, as we do not have the i.i.d. assumption for the error term

due to the time-varying volatility, we cannot use the stochastic embedding with strong ap-

proximation as we did for Theorem 1. As a result, we do not have a uniform convergence

result as in Theorem 1.

1.5 Simulation Studies

1.5.1 Implementation

Before we design experiments to check the performance of the grid bootstrap, we give

the following 7 steps to construct a grid bootstrap CI for κ:

1. Given the data {yth}Tt=0, we run the following regression by LS:

yth = ρ̂hy(t−1)h + ĝh + eth,

where eth is the LS residual. And we use {eth}Tt=1 to construct the consistent esti-

mator for σ2
ψ by 1

Th

∑T
t=1 e

2
th (denoted as σ̂2

c ).
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2. Construct a grid of ρh, AG = {ρh1, ρh2, ...ρhG}, centered at ρ̂h, with the first and

last grid point being calculated from ρ̂h ± 5× se(ρ̂h).

3. Given a point in the grid (ρhG ∈ AG), perform the second regression:

yth − ρhGy(t−1)h = g̃h + νt,

where νt is the residual of the second regression. Note that g̃h is a function of ρhG.

4. Let κG = − ln(ρhG)
h

, λhG =
√

1−exp(−2κGh)
2κG

, and u∗th be generated according to

section 1.4. We generate the bootstrap data {y∗bth}Tt=1 based on {u∗th}Tt=1 and the

same initial condition as the observed data, i.e.,

y∗th = ρhGy
∗
(t−1),h + g̃h + σ̂cλhGu

∗
th, y

∗
0 = y0.

5. Generate B sets of bootstrap data, such that we have
{
{y∗bth}Tt=1

}B
b=1

. For every set

of bootstrap data, obtain the LS estimator of κ (denoted by κ̂∗h) and calculate the

bootstrap coefficient-based statistic z (Y ∗, κG, h) = N(κ̂∗h − κG). Calculate the xth

quantile of the bootstrap statistic z (Y ∗, κG, h) to obtain c∗T (x|κG).

6. Following Hansen (1999), we estimate the quantile function c∗T (x|κ) by applying

the kernel regression:

c∗T (x|κ) =

∑G
g=1K

(
κ−κG
δ

)
c∗T (x|κG)∑G

g=1K
(
κ−κG
δ

) ,

where K(·) is a kernel function and δ is a bandwidth. In our application and simu-

lation, we use the Epanechnikov kernel (K(x) = 3
4
(1− x2)1(|x| 6 1)) and choose

the bandwidth by LS cross-validation.

7. The CI for κ is obtained by inverting the coefficient-based statistic:

CIBq = {κ ∈ R : c∗T (x1|κ) 6 z (Y, κ, h) 6 c∗T (x2|κ)} .

1.5.2 Comparing CIs in finite samples

To evaluate the performance of the proposed bootstrap methods in the continuous-

time model, we construct CIs with the 95% coverage probability using the long-span
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asymptotic distribution, the in-fill asymptotic distribution, and the grid bootstrap method.

To do so, we consider three-parameter settings to generate data (called DGP1 to DGP3)

and simulate discrete-time observations with sampling interval h from Model (4) where

the Lévy process is the variance gamma process with v = 0.5 in DGP1 and DGP2 and

v = 1 in DGP3. In particular we set ψ′(0) = 0 and ψ′′(0) = 1 in DGP1, iψ′(0) = 0.05

and ψ′′(0) = 1 in DGP2 and iψ′(0) = 0.2 and ψ′′(0) = 3 in DGP3. For DGPs 1-3,

the in-fill asymptotic distribution is not feasible as we do not have estimates of ψ′(0) and

ψ′′(0). The following parameter settings are considered, κ ∈ {0.01, 0.1, 1}, h = 1/12,

N = 5, µ = 0.1, σ = 1, y0 = 0.1. The number of replications is always set at 10,000.

We use the following methods to construct the 95% CI for κ:

1. In-fill asymptotic distribution. Since the in-fill distribution depends on κ, µ, σ and

the 2 derivatives of ψ, we simply set the values of these parameters to their true

values. This approach is infeasible in practice. It is only considered as a benchmark

for the purpose of evaluating the performance of other methods.

2. Grid bootstrap method. To calculate BCIs we set the number of bootstrap iterations

B = 399 with grid size G = 50.

3. Long-span asymptotic distribution, that is, N (0, (exp(2κh)− 1) /h).

The Monte Carlo average is used to calculate the empirical coverage of the true value

(κ0), i.e., 1
10000

∑10000
m=1 1

(
κ

(m)
L 6 κ0 6 κ

(m)
U

)
, where κ(m)

L and κ(m)
U are the bounds of a

CI in the mth replication, 1(·) is the indicator function which indicates whether the true

value κ0 is contained in the interval. The closer the empirical coverage to 95%, the better

the performance of the method. Table 2 reports the empirical coverage and the absolute

difference between the nominal coverage and the empirical coverage for alternative meth-

ods when h = 1/12. Numbers in the bold-face indicate that the corresponding methods

have the best performance (in terms of the absolute difference) in each of the parameter

settings.

Several interesting conclusions can be found from Table 2. First, it can be seen that CIs

obtained from the long-span asymptotic distribution have very bad performance across all
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Table 2: 95% Confidence Intervals (h = 1/12)
κ0 = 0.01 κ0 = 0.1 κ0 = 1

Long-span 0.019 (0.931) 0.062 (0.889) 0.272 (0.679)
DGP1 In-fill 0.941 (0.009) 0.940 (0.060) 0.919 (0.031)

Grid bootstrap 0.952 (0.002) 0.953 (0.003) 0.948 (0.002)
Long-span 0.020 (0.93) 0.063 (0.887) 0.270 (0.68)

DGP2 In-fill 0.943 (0.007) 0.940 (0.060) 0.921 (0.029)
Grid bootstrap 0.953 (0.003) 0.951 (0.001) 0.949 (0.001)
Long-span 0.021 (0.929) 0.070 (0.880) 0.281 (0.669)

DGP3 In-fill 0.940 (0.010) 0.936 (0.014) 0.922 (0.028)
Grid bootstrap 0.954 (0.006) 0.952 (0.002) 0.946 (0.004)

DGPs. Although the difference between the nominal and the actual coverage diminishes

when κ0 increases, the problem of under-coverage is very serious. The simulation results

simply suggest that, in these empirically realistic settings, the long-span asymptotic theory

should not be used to construct a CI for κ. This conclusion echoes that in Zhou and Yu

(2015) and Bao et al. (2017). Second, for the in-fill asymptotic theory, the empirical

coverage is much closer to the nominal one. Again, this conclusion echoes that in Zhou

and Yu (2015) and Bao et al. (2017). However, This method is infeasible. Finally, the

grid bootstrap method always performs the best and the coverage is always very close

to 95%. Regardless of κ0, it tends to outperform the in-fill asymptotic distribution in all

DGPs, consistent with the prediction of Theorem 2.

1.6 Empirical Studies

In this section, we apply the proposed grid bootstrap method to construct BCIs for

κ in Model (1) and in Model (4) when these two models are fitted using the monthly

Federal fund effective rate and the logarithmic volatility index of Chicago Board Options

Exchange’s (VIX). In addition to BCI, we also obtain two CIs of κ, one based on the

long-span asymptotic distribution and the other based on the in-fill asymptotic distribution

when the model is assumed to be (1).4 We assume that the initial condition y0 is the same
4In this case, we obtain the CI by replacing the unknown κ, µ, and σ with their estimates in the in-fill

asymptotic distribution.
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as the first observation.

1.6.1 Federal fund effective rate

The Federal fund effective rate data are available from H-15 Federal Reserve Statis-

tical Release and cover the period from July 1954 to December 2017. In total, there are

762 observations with T = 762, h = 1/12 and N = 63.5. Similar datasets over different

sample periods were used in Aı̈t-Sahalia (1999) and Zhou and Yu (2015).

The LS estimates of ρh, gh µ, and κ in Model (1) are: ρ̂h = 0.99, ĝh = 0.0005,

µ̂ = 0.0493, and κ̂h = 0.1201. The constructed CIs for κ are reported in Table 3. It

can be seen that the CI constructed from the long-span distribution is very different from

the other two CIs. It excludes zero, suggesting that we have to reject the unit root null

hypothesis under the long-span scheme. However, the other two CIs all contain zero,

suggesting that we cannot reject the unit root null hypothesis. While both the BCI and the

CI implied by the in-fill asymptotic distribution contain zero, BCI is much narrower than

the CI implied by the in-fill asymptotic distribution.

Table 3: Coverage of 90% and 95% confidence intervals for the interest rate data
90% C.I. 95% C.I.

Long-span (0.0908, 0.1495) (0.0852, 0.1551)
In-fill (-0.1505, 0.2191) (-0.2050, 0.2448)
Grid bootstrap (-0.0319, 0.1785) (-0.0435, 0.2005)

1.6.2 VIX

The CBOE VIX data is available from yahoo.finance.com and contains daily observa-

tions from 4th January 2010 to 31st December 2019. In total, there are 2516 observations

with T = 2516, h = 1/252 and N = 9.98.

The LS estimates of ρh, gh, µ, and κ in Model (1) are: ρ̂h = 0.965, ĝh = 0.098,

µ̂ = 2.775, and κ̂h = 9.0736. The constructed CIs for κ are reported in Table 4. It can

be seen that the CI constructed from the in-fill distribution is very different from the other

two CIs. It includes zero, suggesting that we cannot reject the unit root null hypothesis
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under the in-fill scheme. However, the other two CIs all exclude zero, suggesting that

we have found evidence of stationarity in log-VIX. While the BCI and the CI implied by

the long-span asymptotic distribution exclude zero, the BCI is much wider than the CI

implied by the long-span asymptotic distribution.

Table 4: Coverage of 90% and 95% confidence intervals for the VIX data
90% C.I. 95% C.I.

Long-span (8.9314, 9.2159) (8.9041, 9.2431)
In-fill (-13.2442, 29.6948) (-17.5557, 34.3721)
Grid bootstrap (6.5000, 11.0678) (6.1042, 11.4316)

1.7 Conclusion

In this paper, we discuss the advantages and drawbacks of using three asymptotic

distributions obtained from the long-span, double and in-fill schemes for constructing CIs

of persistence parameter κ under a Lévy-driven OU model. The long-span and double

schemes provide a poor finite sample performance. Moreover, the long-span and double

schemes lead to an asymptotic distribution which is not continuous in κ as κ passes zero.

On the other hand, although the in-fill scheme leads to an asymptotic distribution which

is closer to the finite sample distribution than their long-span and double counterparts and

is continuous in κ, it is infeasible.

We propose to use the grid bootstrap method for three reasons. First, unlike asymp-

totic methods, which depend on a particular scheme, the grid bootstrap can be justified by

any of the three asymptotic schemes. Second, it is asymptotically valid when κ is close

to or equal to zero. Finally, it provides a finite sample improvement over the in-fill distri-

bution. To show this finite sample improvement, we follow Park (2003) and Mikusheva

(2015) by developing probabilistic expansions to the coefficient-based statistic around

the in-fill distribution. Via the second-order expansion we show that the grid bootstrap

method provides refinement of the in-fill asymptotic distribution up to order o(T−1/2).

The in-fill asymptotic justification of the grid bootstrap only requires the consistency of

σψ which is ensured under the in-fill scheme. No consistent estimation of other parame-
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ters in the model is needed under the scheme.

Monte Carlo studies reveal several important results. First, the CIs implied by the

long-span asymptotic distribution lead to serious under-coverage in all cases considered.

Second, the gird bootstrap method performs better than the in-fill asymptotic theory and

much better than the long-span theory.

The empirical application to the U.S. interest rate data shows that the unit root hypoth-

esis cannot be rejected by the bootstrap CIs and the CI obtained from the in-fill asymptotic

distribution, but has to be rejected by the CI obtained from the long-span asymptotic distri-

bution. The empirical application to CBOE’s VIX data shows that the unit root hypothesis

is rejected by the bootstrap CIs and the CI obtained from the long-span asymptotic distri-

bution, but cannot be rejected by the CI obtained from the in-fill asymptotic distribution.
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2 Mildly Explosive Autoregression with Anti-persistent

Errors

2.1 Introduction

The autoregressive (AR) model with an explosive root was first studied in White

(1958) and Anderson (1959) where the following process was considered:

yt = ρyt−1 + ut, ρ > 1, t = 1, 2, ..., n. (18)

Under the assumptions of independent and identically distributed (iid) Gaussian errors

(i.e. ut
iid∼ N(0, σ2)) and the zero initial condition (i.e. y0 = 0), White (1958) and

Anderson (1959) showed that the least squares (LS) estimate of ρ (denoted by ρ̂) has the

following Cauchy limiting distribution:

ρn

ρ2 − 1
(ρ̂− ρ)

as→ C, as n→∞, (19)

where as→ denotes the convergence almost surely and C is a standard Cauchy variate.

It is noteworthy that the above limit theory is not obtained from an invariance prin-

ciple because the distributional assumption ut
iid∼ N(0, σ2) cannot be relaxed.5 To relax

the assumption of Gaussian errors, and, in the meantime, to allow for a non-zero initial

condition, Phillips and Magdalinos (2007a) (PM hereafter) and Phillips, Magdalinos and

Giraitis (2010) (PMG hereafter) considered two variations which are analogous to Model

(18). PM designed a mildly explosive AR model by letting ρ = ρn = 1+c/nα, c > 0, α ∈

(0, 1), while PMG introduced a mildly explosive model by letting ρ = ρm,n = 1 + cm/n,

c > 0. Under some suitable assumptions but without the requirements of Gaussian errors

and the zero initial condition, applying different forms of the central limit theorem and

the martingale convergence theorem, PM and PMG obtained the asymptotic theory:

ρnn
ρ2
n − 1

(ρ̂− ρn) ⇒ C, as n→∞; (20)

ρnm,n
ρ2
m,n − 1

(ρ̂− ρm,n) ⇒ C, as n→∞ followed by m→∞. (21)

5This is because what is used to derive Equation (19) is the martingale convergence theorem which gives

the almost sure convergence.
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Figure 1: Time series plot of four logarithmic stock market indices (left axis) and their

residuals obtained from the fitted AR(1) model with and without intercept by LS (right

axis)

The pivotalness of the Cauchy distribution suggests that it is easy to test a hypothesis

about the AR coefficient. Not surprisingly, it has been used in the literature to test the pres-

ence of rational bubbles in asset prices; see Phillips, Wu and Yu (2011). Moreover, con-

siderable efforts have been made in the literature to explore the explosive-type AR models

with dependent errors. The errors could be weakly dependent as in Phillips and Magdali-

nos (2007b), or strongly dependent as in Magdalinos (2012), or could involve conditional

heteroskedasticity as in Arvanitis and Magdalinos (2018). These generalizations are im-

portant as the explosive-type model with dependent errors can potentially better describe

the movement of real data than the pure explosive AR(1) model. A number of related

studies in the literature allow form-dependent errors (Pedersen and Schütte, 2017), errors

with deterministic time-varying volatilities (Harvey, Leybourne and Zu, 2019a, 2019b).
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To the best of our knowledge, no limit theory has been developed to cover any explosive-

type AR model with anti-persistent errors. The goal of this paper is to fill the gaps in the

context of the explosive-type AR model of PMG. Why are the gaps important? To see the

empirical relevance of an explosive model with anti-persistent errors, Figure 3 presents

time series plots of four logarithmic stock market indices (left axis) and the residuals ob-

tained from the fitted AR(1) model with and without intercept (right axis). In particular,

we consider four monthly indices over different sampling periods, namely FTSE 100 In-

dex from January 2003 to October 2007, Hang Seng Index from May 1989 to June 1997,

NASDAQ Composite Index from January 1990 to December 1999, and Nikkei 225 Index

from August 1982 to November 1989. The sampling periods are selected as these markets

experienced exuberance over the respective periods, as it can be seen from the solid black

lines in Figure 3. After fitting the AR(1) model with and without intercept to each time

series by LS, we obtain two residual series with and without intercept and plot them in the

blue and red dotted lines in Figure 3. These plots show that there is strong anti-persistence

in the residuals.6 When we apply the local Whittle (LW) method of Robinson (1994) to

estimate the memory parameter d in the residuals, we find that the estimated d is always

in the range (−0.5, 0) in all cases. The estimated d is reported in Figure 3 with d̂a and

d̂b corresponding to the model without and with intercept, respectively. These exercises

strongly suggest that the explosive-type AR model with anti-persistent errors is not only

of theoretical interest but also of empirical realism, making important the development of

limit theory for an explosive-type AR model with anti-persistent errors.

The paper is organized as follows. Section 2.2 briefly reviews several forms of serially

dependent error processes and mildly explosive AR models. Section 2.3 studies the mildly

explosive AR model of PMG but with anti-persistent errors and develops the limiting

distribution for the LS estimate of the AR coefficient under a sequential limit. Simulation

studies are carried out in Section 2.4 to check the precision of the limiting distribution

in finite samples. Section 2.5 provides an empirical study of a rational bubble in the

NASDAQ index. Proofs of the main results in the paper are given in the Appendix.

6A detailed discussion on anti-persistence is provided in the next section where we also relate anti-

persistence to the memory parameter d.
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We use the following notations throughout the paper:
p→, as→,⇒, a∼, d= and iid∼ denote

convergence in probability, convergence almost surely, weak convergence, asymptotic

equivalence, equivalence in distribution, and iid, respectively.

2.2 Literature Review

2.2.1 A review of serially correlated errors

Although our paper focuses on anti-persistent errors, to facilitate discussion and com-

parison, we first review the concepts of weakly dependent errors and strongly dependent

errors. Suppose that the error process admits a Wold-decomposition such that

ut =
∞∑
j=0

cjεt−j, c0 = 1, εt
iid∼ (0, σ2), (22)

where {cj}∞j=0 are real coefficients. Denote ψ(k) the kth order autocovariance function of

ut, that is, ψ(k) := E (utut−k).

Weakly dependent errors require
∑∞

j=0 |cj| < ∞ and
∑∞

j=0 cj 6= 0. These conditions

imply that
∑∞

k=−∞ |ψ(k)| ∈ (0,∞) and
∑∞

k=−∞ ψ(k) 6= 0. For strongly dependent

errors, it is assumed that cj in (22) has a slow decay rate, such as cj ∼ j−1+d with d ∈

(0, 0.5) when j is large. This leads to a violation of the summability condition of the linear

coefficients and the autocovariance function as
∑∞

j=0 cj =∞ and
∑∞

k=−∞ |ψ(k)| =∞.

Anti-persistent errors are remarkably different from weakly dependent errors and

strongly dependent errors. First, they are different from strongly dependent errors as

cj has a fast decay rate for anti-persistent errors, such as cj ∼ j−1+d with d ∈ (−0.5, 0)

when j is large. Second, they are different from weakly dependent errors in the sense that∑∞
j=0 cj = 0 and

∑∞
k=−∞ ψ(k) = 0. Moreover, for any k 6= 0, ψ(k) has a negative sign

(see Proposition 3.2.1 (3) in Giraitis, Koul, and Surgailis (2012)), giving rise to the name

of anti-persistence. These properties make the interpretation of corresponding stochastic

integrals different from that when the errors are weakly dependent or strongly dependent.

From the theoretical viewpoint, therefore, it is important to develop the limit theory for

anti-persistent errors.

We now formally introduce the definition of anti-persistence.
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Assumption 1 (AP) Under (22) and let γ be a constant. Assume cj
a∼ γj−1+d for j →∞

with d ∈ (−0.5, 0),
∑∞

j=0 cj = 0 and
∑∞

k=−∞ ψ(k) = 0.

Assumption AP is general enough to include stationary ARFIMA(p, d, q) processes

where ut = (1 − L)−dφ(L)−1θ(L)εt =
∑∞

j=0 cjεt−j , φ(L) = 1 −
∑p

j=0 φjL
j , θ(L) =

1 +
∑p

j=0 θjL
j and L is the lag operator. We can show that cj can be asymptotically

approximated by θ(1)
φ(1)Γ(d)

j−1+d, where Γ(·) is a gamma function. When d ∈ (−0.5, 0),

the stationary ARFIMA process has the zero-sum for the linear coefficients, that is,∑∞
j=0 cj = 0. It is well-known that ut corresponds to a fractional Brownian motion

(fBM) with the Hurst parameter H = 1/2 + d; see Giraitis, Koul and Surgailis (2012).

When H = 0.5, an fBM becomes the standard Brownian motion. When H ∈ (0, 0.5)

which corresponds to the case of interest in the present paper, an fBM has a rough sample

path and is anti-persistent. When H ∈ (0.5, 1), an fBM has a smooth sample path in

the sense that it is 1/2 − ε-Hölder continuous for any ε > 0. The empirical relevance

of anti-persistent processes in financial time series was recently documented in Gatheral,

Jaisson, and Rosenbaum (2018) and Wang, Xiao, and Yu (2019). The empirical relevance

of anti-persistent errors in an explosive model was shown earlier in Figure 3. Assuming

a continuous record of observations is available, Xiao and Yu (2019a, 2019b) recently

developed the limit theory for the persistence parameter in the fractional Vasicek model

which corresponds to the AR coefficient in the discrete-time representation.

2.2.2 A mildly explosive model

PMG considered the following mildly explosive model:

yt =
(

1 +
cm

n

)
yt−1 + ut, c > 0, ut

iid∼ (0, σ2), y0 = Op(1). (23)

As suggested in PMG, one way of thinking of the model specification is that the total

number of observations (n) is partitioned into m blocks with K samples so that n =

m ×K. Thus, the chronological time for yt becomes t = bKjc + k, for k ∈ {1, ..., K}

and j ∈ {0, 1, ...m − 1}. This model is closely related to the model proposed in Park

(2003) where it was assumed that c = −1 < 0.
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It is easy to see that as n → ∞ with fixed m, Model (23) is a local-to-unity model

with the noncentrality parameter cm and hence, the standard local-to-unity asymptotic

theory is applicable. That is,

n(ρ̂− ρn,m)⇒
∫ 1

0

Jcm(s)dW (s)/

∫ 1

0

J2
cm(s)ds,

where Jcm(s) =
∫ s

0
ecm(s−r)dW (r) and W (·) denotes a standard Brownian motion.

However, since c > 0, if one assumes n → ∞ followed by m → ∞, Model (23)

is akin to a mildly explosive AR model of PM whose root is in a larger neighborhood of

unity than a local-to-unit-root. The second asymptotic (m→∞) creates a departure from

the local-to-unit-root region; see Park (2003) and PMG for detailed discussions. With this

sequential asymptotic scheme, we have

1

2c

n

m
ecm (ρ̂− ρn,m) ⇒

e−cm
∫ 1

0
Jcm(s)dW (s)

2ce−2cm
∫ 1

0
J2
cm(s)ds

, as n→∞ with fixed m

=
e−cm

∫ m
0
J̃c(s)dW̃ (s)

2ce−2cm
∫ m

0
J̃2
c (s)ds

⇒ C, as m→∞, (24)

where W̃ (t) =
√
mW (t/m) and J̃c(t) =

∫ t
0
ec(t−s)dW̃ (s). To see the link between this

sequential asymptotic result in (24) and the asymptotic results in (19) and (20), note that

ecm = exp
(
cm
n

)n a∼ ρnn,m and ρ2
n,m − 1

a∼ 2cm
n

.7

2.3 Mildly Explosive Model with Anti-persistent Errors

We now extend the model of PMG to the following model:

yt = µn + ρyt−1 + ut, t = 1, ..., n, (25)

where y0 = op(n
1/2+d), µn = µ/nϑ, ρ = ρn,m =

(
1 + cm

n

)
, ϑ > 1/2− d, and ut satisfies

Assumption AP.

7Although the limiting distribution in PM is the same as that in PMG, the techniques used to develop the

limiting distribution are different in these two studies. PM uses a Lindeberg-Feller CLT while PMG uses

the local-to-unit-root theory together with the martingale convergence theorem. Our proof follows that of

PMG, but there are technical difficulties that we need to deal with in our proof.
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Model (25) is different from Model (23) in two aspects. First and foremost, instead of

assuming an iid error process, we allow for anti-persistent errors in Model (25). Second,

when µ 6= 0, a non-zero intercept µn, which is asymptotically negligible, enters the model.

Following Phillips, Shi and Yu (2014), we assume µn = µ/nϑ so that, in finite samples,

the model can generate a linear trend. Also, the specification of µn = µ/nϑ with ϑ >

1/2 − d regulates µn so that the localized drift cannot dominate the random component

introduced by ut. However, if µ = 0, then µn = 0 and the intercept vanishes.

In this section, we aim to develop the limiting distribution for the centered LS estimate

with and without intercept. To be more precise, we define the LS estimate without inter-

cept by ρ̂a and the LS estimate with intercept by ρ̂b. Thus, we can express the centered

LS estimates as

ρ̂a − ρ =

∑n
t=1 yt−1ut∑n
t=1 y

2
t−1

, (26)

and

ρ̂b − ρ =

∑n
t=1 yt−1ut − 1

n

∑n
t=1 yt−1

∑n
t=1 ut∑n

t=1 y
2
t−1 − 1

n
(
∑n

t=1 yt−1)
2 . (27)

Before we develop the asymptotic theory, we first review the functional central limit

theorem due to Giraitis, Koul, Surgailis (2012) which extends Donsker’s theorem.

Lemma 3 (Corollary 4.4.1 in Giraitis, Koul and Surgailis (2012)) Let ut be as in (22).

Assume cj
a∼ γj−1+d as j → ∞ with γ being a constant and d ∈ (−0.5, 0), E|εt|p < ∞

with p > (0.5 + d)−1 and
∑∞

j=0 cj = 0. Then, as n→∞,

n−H
bnrc∑
t=1

ut ⇒ ςBH(r), (28)

in D[0, 1] with the uniform metric, where ς =
√
σ2γ2 B(d,1−2d)

d(1+2d)
with B(x, y) = Γ(x)Γ(y)

Γ(x+y)
,

H = 1
2

+ d, BH(r) is an fBM with the Hurst parameter H .

An fBM with the Hurst parameter H ∈ (0, 1) is a Gaussian process with zero mean

and the following covariance,

E(BH(r)BH(s)) =
1

2

(
|r|2H + |s|2H − |r − s|2H

)
.

Clearly, if H = 1/2, BH(t) becomes the standard Brownian motion W (t). Unlike W (t),

BH(t) is not a semi-martingale if H 6= 1/2. Therefore, we cannot interpret the stochastic
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integral with respect to fBM as an Itô integral. In this paper, we interpret the stochastic

integral with respect to fBM as a Young integral when we study the asymptotic theory for

the error process under Assumption AP, where the mathematical techniques are related to

those used in EI Machkouri, Es-Sebaiy and Ouknine (2016) and Xiao and Yu (2019a,

2019b). This interpretation is in contrast to PMG where J̃c(t) =
∫ t

0
ec(t−s)dW̃ (s) is

viewed as an Itô integral. Moreover, we need a different asymptotic theory to obtain a

sequential limit. The following lemma obtains the asymptotic behavior of the sample

moments.

Lemma 4 In Model (25) with {ut} satisfying Assumption AP, we assume E|εt|p < ∞

with p > (0.5 + d)−1. As n→∞ with m fixed, we have the local-to-unit-root asymptotic

results:

1. 1
n1/2+dybnrc ⇒ ςJHcm(r);

2. 1
n3/2+d

∑n
t=1 yt ⇒ ς

∫ 1

0
JHcm(r)dr;

3. 1
n2+2d

∑n
t=1 y

2
t ⇒ ς2

∫ 1

0
(JHcm(r))2dr;

4. 1
n1+2d

∑n
t=1 yt−1ut + 1

n1+2d
1
2

∑n
t=1 u

2
t ⇒ ς2

[
cmZ(1)

∫ 1

0
ecmsdBH(s) +R(1)

]
,

where

ς =

√
σ2γ2

B(d, 1− 2d)

d(1 + 2d)
,B(d, 1− 2d) =

Γ(d)Γ(1− 2d)

Γ(1− d)
,

JHcm(r) =

∫ r

0

ecm(r−s)dBH(s), Z(1) =

∫ 1

0

e−cmsBH(s)ds,

R(1) =
1

2

[
BH(1)

]2 − cm∫ 1

0

(BH(s))2ds+ (cm)2

∫ 1

0

∫ s

0

ecm(r−s)BH(r)BH(s)drds.

SinceBH(s) is not a semi-martingale, in the present paper, we treat JHcm(r) as a Young

integral. For details about the Young integral, see (A.1) in El Machkouri, Es-Sebaiy and

Ouknine (2016).

Remark 15 The results in Lemma 4 are closely related to Lemma 1 in Phillips (1987),

which can be used to show that for Model (25) with weakly dependent errors, when n→

∞ with m fixed,
1

n1/2
ybnrc ⇒ σJcm(r),

33



1

n3/2

n∑
t=1

yt ⇒ σ

∫ 1

0

Jcm(r)dr,

1

n2

n∑
t=1

y2
t ⇒ σ2

∫ 1

0

(Jcm(r))2dr,

1

n

n∑
t=1

yt−1ut ⇒
1

2

[
σ2Jcm(1)2 − 2cmσ2

∫ 1

0

(Jcm(r))2dr − E(u2
t )

]
,

where Jcm(r) =
∫ r

0
e(r−s)cmdW (s).

Remark 16 For Model (25) with strongly dependent errors, the first three claims in

Lemma 4 remain valid, while for the last claim, we have

1

n1+2d

n∑
t=1

yt−1ut ⇒ ς2

[
cmZ(1)

∫ 1

0

ecmsdBH(s) +R(1)

]
,

because the term 1
n1+2d

1
2

∑n
t=1 u

2
t appearing in Lemma 4.4 asymptotically vanishes as

n → ∞. This difference makes the development of the limiting distribution in the mildly

explosive model with anti-persistent errors more difficult. In particular, when n → ∞

with m fixed, the centered LS involves an additional term where 1
n1+2d

1
2

∑n
t=1 u

2
t appears

in the numerator. Additional rate condition is needed to make sure this additional term

vanishes asymptotically, as shown in the following theorem.

Theorem 3 Let c > 0 in Model (25), under the same set of assumptions as in Lemma 4,

if n→∞ followed by m→∞ with m = δ lnn and δ > −2d
c

, we have

1

2c

n

m
ecm (ρ̂j − ρ)⇒ C ,

ρn

ρ2 − 1
(ρ̂j − ρ)⇒ C , j ∈ {a, b} . (29)

Theorem 3 suggests that the centered LS estimates ρ̂a and ρ̂b in Model (25) have the

Cauchy limiting distribution upon the correct normalization. Since the Cauchy distribu-

tion is pivotal and ρ can be consistently estimated by either ρ̂a or ρ̂b, the limit theory

provides a convenient way for hypothesis testing for ρ.

Remark 17 The rate condition m = δ lnn with δ > −2d
c

suggests that m cannot go to

infinity too slowly relative to n. This condition ensures that 1
n1+2d

1
2

∑n
t=1 u

2
t is dominated

by 1
n1+2d

∑n
t=1 yt−1ut as m→∞.
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Remark 18 As in Phillips, Wu and Yu (2011), Theorem 3 suggests that a confidence

interval (CI) for ρ can be constructed as{
ρ̂j ±

ρ̂2
j − 1

ρ̂nj
Ca

}
, j ∈ {a, b} , (30)

where Ca is the critical value for the two-tailed test with the significance level α and

C0.1 = 6.315, C0.05 = 12.7, C0.01 = 63.65674.

Remark 19 The Cauchy limiting distribution also holds when we have weakly/strongly

dependent errors in Model (23). For example, suppose ut is weakly dependent with∑∞
j=0 |cj| <∞, and

∑∞
j=0 cj 6= 0, y0 = op(n

1/2) and E|εt|β+ε <∞ for some β > 2 and

ε > 0. With the sequential asymptotic, we have

1

2c

n

m
ecm (ρ̂a − ρ) ⇒

e−cm
∫ 1

0
Jcm(s)dW (s) + e−cm 1

2

(
1− υ

λ2

)
2ce−2cm

∫ 1

0
J2
cm(s)ds

, as n→∞ with fixed m

=
e−cm

∫ m
0
J̃c(s)dW̃ (s)

2ce−2cm
∫ m

0
J̃2
c (s)ds

+Op(e
−cm)

⇒ C, as m→∞. (31)

The first convergence follows from Theorem 1 of Phillips (1987), where υ = σ2
∑∞

j=0 c
2
j

and λ = σ
∑∞

j=0 cj . The second convergence follows from the martingale convergence

theorem.

Remark 20 Suppose that ρn = 1+ c/nα with α ∈ (0, 1), c > 0, and ut = εt
iid∼ N(0, σ2).

According to Theorem 4.3 of PM (2007a),

ρ−nn /nα
n∑
t=1

yt−1ut ⇒ ω0η0, ρ
−2n
n /n2α

n∑
t=1

y2
t−1 ⇒ η2

0,

where ω0 and η0 are independent N(0, σ2/2c) random variables. In our model, we have

ρ = ρn,m = 1+cm/n and anti-persistent errors. Under the sequential asymptotic scheme,

we have

e−cm

m

1

n1+2d

1

ζ2

n∑
t=1

yt−1ut ⇒ ωdηd, 2ce−2cm 1

n2+2d

1

ζ2

n∑
t=1

y2
t−1 ⇒ η2

d, (32)

where ωd and ηd are independent N(0, HΓ(2H)/2c) random variables. We complement

the results of PM and PMG to the model with anti-persistent errors.
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Remark 21 When ut is strongly dependent, using the similar arguments in proving The-

orem 3, we can obtain the results of (29) and (32). In this case, the assumptionm = δ lnn

with δ > −2d
c

, which is used to eliminate 1
n1+2d

1
2

∑n
t=1 u

2
t as m→∞, is not needed.

2.4 Monte Carlo Studies

In this section, we design several Monte Carlo experiments to evaluate the precision

of the derived asymptotic distribution in finite samples. In all experiments, we simulate

data from the following data generating process (DGP):

yt = µn + ρyt−1 + ut, t = 1, 2, ..., n, (33)

where ρ =
(
1 + cm

n

)
, y0 = 0, c > 0, µn = µ/nϑ, ut = (1− L)dεt with εt

iid∼ N(0, 1). We

consider the following parameter settings:

(n,m) ∈ {(100, 10), (500, 15), (1000, 20)},

d ∈ {−0.45,−0.4,−0.3,−0.2,−0.1,−0.01}, (34)

c ∈ {0.5, 1}, µ = 1, ϑ =
1

2
− d+ 0.1.

The number of replications is always set at 10,000.

Under the parameter settings (34), we first obtain the LS estimates ρ̂a and ρ̂b, and then

apply the Cauchy distribution to construct the 95% CI (CIa and CIb) based on (30) for

ρn,m. We calculate the empirical coverage of the true value ρ, i.e., 1
10000

∑10000
l=1 1

(
ρ

(l)
L 6 ρ 6 ρ

(l)
U

)
,

where ρ(l)
L and ρ(l)

U are the two bounds of the CI in the lth replication, and 1(·) is the indi-

cator function.

Tables 5 reports the empirical coverage of 95% CIs for alternative parameter settings

in (34). With n = 100, m = 10 and c = 0.5, there is an obvious over coverage problem

for both CIa and CIb. This problem is less severe as c increases to 1 or as both m and

n increase. Moreover, the CIs have good finite sample performance when c is relatively

large and d is between -0.01 and -0.3. When c = 1, it can be seen that both CIa and CIb

provide the empirical coverage which is close to the nominal coverage 95%. Finally, the

empirical coverage obtained from CIa and CIb are similar.
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Table 5: Empirical coverage of 95% CI of ρ
(n = 100,m = 10) (n = 500,m = 15) (n = 1000,m = 20)

c = 0.5 c = 1 c = 0.5 c = 1 c = 0.5 c = 1

d CIa CIb CIa CIb CIa CIb CIa CIb CIa CIb CIa CIb

−0.45 .995 .995 .928 .92 .905 .889 .923 .917 .915 .905 .922 .917

−0.4 .996 .995 .933 .924 .917 .903 .928 .924 .925 .915 .929 .925

−0.3 .996 .994 .945 .937 .934 .923 .939 .933 .936 .928 .937 .935

−0.2 .995 .995 .948 .943 .949 .939 .944 .941 .944 .937 .947 .942

−0.1 .991 .992 .947 .943 .95 .946 .95 .945 .948 .943 .950 .947

−0.01 .988 .99 .951 .947 .952 .946 .952 .949 .950 .946 .952 .950

2.5 An Empirical Study

To highlight the usefulness of the proposed model and the derived limiting distribution

in practice, we now conduct an empirical study of a rational bubble based on Model (23)

and the asymptotic theory in Theorem 3. The standard no-arbitrage condition suggests

that

Pt =
1

1 + rf
Et [Pt+1 +Dt+1] , (35)

where Pt, rf , Dt and Et denote the price of asset, the discount rate, the dividend, and the

expectation based on information at time t, respectively. Equation (35) can be solved by

forward substitutions, giving rise to the following expressions:

Pt = P f
t +Bt, (36)

P f
t =

∞∑
i=1

(
1

1 + rf

)i
Et (Dt+i) , (37)

Bt =
1

1 + rf
Et (Bt+1) . (38)

Equation (36) expresses price as a sum of two components: the fundamental price P f
t

which summarizes all the expected future discounted dividend and a bubble component

Bt which is not related to the fundamentals.

If the transversality condition is imposed, then Bt = 0 and hence, Pt = P f
t . Note that

Bt is an explosive process since (1+rf ) > 1. Therefore, when P f
t is not explosive, testing

the existence of a bubble is equivalent to examining the explosiveness in Pt. That is why
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Figure 2: Price-dividend ratio in NASDAQ from December 1989 to December 1999

in the literature looking for an explosive behavior in the price-dividend ratio (Pt/Dt) has

been widely used; see, for example, Phillips, Shi and Yu (2015a, 2015b).

Our paper studies the price-dividend ratio in the NASDAQ composite index, we obtain

the data set from Phillips, Wu and Yu (2011), which contains the monthly real price

and real dividend series from February 1973 to June 2005. We then construct the price-

dividend (PD) ratio based on the two time series. After obtaining the PD ratio, we focus

on the sample period from December 1989 to December 1999.

In Figure 2, the PD ratio, the real price, and the real dividend are plotted in the black

solid line, the blue dash line, and the red dotted line, respectively. We fit Model (23) with

and without intercept to the PD ratio by LS, and then estimate the memory parameter (d)

in the residuals by the LW method of Robinson (1994). The point estimate (“estimate”

should be “estimates”) of the intercept (µ̂), the AR coefficient (ρ̂), and the memory pa-

rameter (d̂) are reported in Panel A of Table 6. We use the subscript a and b to denote

the LS estimate without and with intercept, respectively. Since the estimates of the AR

coefficient are greater than 1 and d̂ ∈ (−0.5, 0), Model (23) is relevant and the asymptotic
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theory developed in Theorem 3 is applicable. We then use the Cauchy limiting distribu-

tion to form the 95% CI of ρ which is reported in Panel A of Table 6. As the 95% CI

excludes the unity, suggesting that there is strong evidence of explosiveness in the PD

ratio and, hence, strong evidence of the presence of a bubble. In Panel B, we report the

empirical results based on a subsample of the NASDAQ index, namely, January 1993 to

December 1999. We continue to find that ρ̂ > 1, d̂ ∈ (−0.5, 0), and that the 95% CI

suggests the strong evidence of the presence of a bubble in the subsample.

Table 6: Empirical results for the NASDAQ Index
Panel A: Sample Period: December 1989 to December 1999, n = 120

d̂a ρ̂a 95% CIa d̂b µ̂ ρ̂b 95% CIb
Pt/Dt −0.084 1.0437 [1.0370, 1.0504] -0.060 −0.1445 1.0862 [1.0860, 1.0863]

Panel B: Sample Period: January 1993 to December 1999, n = 83

d̂a ρ̂a 95% CIa d̂b µ̂ ρ̂b 95% CIb
Pt/Dt −0.079 1.0478 [1.0220, 1.0736] -0.066 −0.1865 1.0969 [1.0957, 1.0981]

2.6 Conclusion

In this paper, we have made two contributions to the rapidly growing literature on

explosive time series. First, we show that in empirical data, it is very plausible that we may

have to use a mildly explosive model with anti-persistent errors to describe the movement

of financial assets. Second, we show that, when anti-persistent errors are in a first-order

autoregression with a mildly explosive root, the Cauchy limiting distribution remains valid

for the LS estimate. To develop the limiting distribution, we following PMG’s setup by

assuming the autoregressive parameter is ρn,m = 1 + cm
n

and by adopting a sequential

limit with n→∞ followed by m→∞. When the errors are anti-persistent, an extra rate

condition m = δ lnn with δ > −2d
c

is needed.

We also discuss how to obtain a feasible confidence interval for the AR coefficient.

Empirical coverage of CI based on the Cauchy limiting distribution is presented in the

Monte Carlo studies, suggesting that the limiting distribution works well in finite sam-

ples. Finally, an empirical study of a rational bubble in the NASDAQ index is provided,

highlighting the usefulness of the proposed model and the derived asymptotic theory.
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3 Testing for Rational Bubbles under Strongly Depen-

dent Errors

3.1 Introduction

The standard no-arbitrage condition implies that

Pt =
1

1 +R
Et (Pt+1 +Dt+1) , (39)

where R, Et, Pt, and Dt denote the discount rate, the expectation based on informa-

tion at time t, asset price, and the fundamentals (such as the dividend for a stock or

the rent from a house) at time t, respectively. Solving (39) by forward substitution,

we can express Pt = P F
t + Bt where P F

t =
∑∞

i=1

(
1

1+R

)i
Et (Dt+i) is the fundamen-

tal price and Bt = 1
1+R

Et(Bt+1) is the bubble component. Note that Bt is not related

to the fundamentals. If Pt is the price of a stock, P F
t is determined by the sum of

the discounted dividends. Suppose that the transversality condition is satisfied, namely,

limT→∞ (1 +R)−T EtPt+T = 0. This condition implies Bt = 0 and hence, Pt = P F
t .

When the transversality condition is not satisfied, Bt 6= 0. In this case, Bt is an explosive

process since R > 0 and hence, 1 + R > 1. The explosiveness in Bt also makes Pt an

explosive process even when P F
t is not explosive. This is how a rational bubble is related

to explosiveness in time series. In practice, empirical studies often verify the explosive-

ness of the price-fundamental ratio for the purpose of bubble detection; see, for instance,

Phillips et al. (2015a) (hereinafter PSY) and Pedersen and Schütte (2017). A natural

approach to the bubble detection is to employ a right-tailed unit root test, popularized by

Diba and Grossman (1988), Phillips et al. (2011) (hereinafter PWY) and Phillips and Yu

(2011). PSY (2015a, b) extend the work of PWY to detect multiple bubbles. Harvey et

al. (2016, 2019a, 2019b) extend it to account for heteroskedastic errors and Pedersen and

Schütte (2017) for weakly dependent errors.

Considers the following simple first-order autoregressive (AR) model

yt = ρyt−1 + εt, y0 = Op(1), εt
iid∼ (0, σ2), t = 1, ..., n. (40)

Under the null hypothesis, yt is a unit root process (i.e., ρ = 1). Under the alternative
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hypothesis, yt displays explosiveness (i.e., ρ > 1), suggesting why one would use the

right-tailed unit root test.

This paper focuses on model (40) with a simple extension, where errors are assumed to

follow a strongly dependent process. The phenomenon of strong dependence is widespread

in economic and financial time series. Cheung (1993) and Baillie et al. (1996) find em-

pirical evidence of strong dependence in exchange rates. Christensen and Nielsen (2007),

Andersen et al. (2003) and Ohanissian et al. (2008) show empirical evidence of strong

dependence in volatility of stock returns and exchange rate returns. In addition, empirical

studies obtained by Gil-Alana et al. (2014) and Barros et al. (2014) suggest strong de-

pendence in housing prices in US cities. More recently, Chevillon and Mavroeidis (2017)

show statistical learning can generate strong dependence and find empirical evidence of

strong dependence in the US monthly CPI inflation rates.

Consider the following model

yt = yt−1 + ut, t = 1, ..., n,

ut = (1− L)−dεt, d ∈ (0, 0.5), εt
iid∼ (0, σ2),

(41)

where L is the lag operator with (1− L)−d defined as

(1− L)−d =
∞∑
j=0

Γ(j + d)

Γ(d)Γ(j + 1)
Lj and Ljεt = εt−j.

Denote ψ(k) the kth order autocovariance function of ut, namely ψ(k) := E (utut−k).

For ut to be strongly dependent, we have
∑∞

k=−∞ |ψ(k)| =∞. It can be shown that when

d ∈ (0, 0.5),
∑∞

k=−∞ |ψ(k)| = ∞, suggesting ut is indeed strongly dependent. If d = 0

in (41), model (41) becomes model (40) with ρ = 1. In the time series literature, we often

say ut ∼ I(d), fractionally integrated of order d. Since the first difference of yt is I(d),

yt ∼ I(λ) with λ = 1 + d.

Although yt in (41) is a unit root process with strongly dependent errors, it is plausible

to see an explosive trajectory in yt. To see why this is the case, we can express yt =∑t
i=1 ui + y0. Since ut is strongly dependent, a positive realization of the error term is

likely to generate a long stream of positive errors due to strong dependence. Since yt is

the cumulative sum of errors, a long stream of positive errors will generate an upward
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trend that looks like an explosive process.

Suppose that we use the least squares (LS) method to estimate the AR(1) coefficient

when data come from in (41) and then construct the conventional t statistic. Sowell (1990)

shows that the t statistic diverges with the sample size. Therefore, applying a traditional

right-tailed unit root test tends to reject the unit root null hypothesis when the sample

size is large. In the context of rational bubble detection, due to the diverging type I error,

applying a unit root test that ignores the strong dependence in ut (i.e. assuming d = 0)

tends to conclude explosiveness in yt, thereby incorrectly detecting a rational bubble in

model (41) when there is no bubble.

To showcase the empirical relevance of this problem, Figure 3 plots the monthly price-

dividend ratio of S&P 500.8 In particular, we consider six sampling periods: (a) Novem-

ber 1874 to October 1879; (b) June 1882 to May 1887; (c) May 1940 to February 1946;

(d) June 1948 to November 1955; (e) October 1979 to March 1987 and (f) May 1988 to

April 1998. It is noteworthy that each sampling period contains a trajectory in which the

market experiences exuberance with a rising price-dividend ratio. Under the assumption

that the true model is (40), that is, the errors are not strongly dependent, we perform an

LS regression with an intercept and calculate the Dickey-Fuller t statistic for each sample

(denoted by DFn).

Table 7 Right-tailed unit root test for the price-dividend ratio

Sampling Period DFn d̂

(a) Jan 1872 to Feb 1880 1.35*** 0.24***
(b) Jun 1882 to May 1887 0.66*** 0.32***
(c) May 1940 to Feb 1946 1.38*** 0.34***
(d) Jun 1948 to Nov 1955 1.70*** 0.29***
(e) May 1980 to July 1987 1.43*** 0.20**
(f) May 1988 to Apr 1998 3.76*** 0.24***

NOTES: ”*”, ”***” and ”***” denote the 90%, 95% and 99% level of significance

of the right-tailed test for ρ > 1 and d > 0, respectively. For the right-tailed unit

root test, following PWY we use 95% and 99% critical values for the alternatives

(cv90% = −0.44, cv95% = −0.08, and cv99% = 0.6). The right-tailed tests for d

apply the limit theorem of ELW estimator to obtain the critical values.

8The price-dividend ratio was used in PSY (2015a).
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Figure 3: Monthly price-dividend ratio of S&P 500

43



Table 7 reports DFn and it is noteworthy that we reject the unit root hypothesis at the

99% confidence level critical value for each of the sampling period. Therefore, the right-

tailed unit root tests give a very strong evidence of the existence of a rational bubblen in

each period. In fact, adopting a form of recursive unit root test, PSY (2015a) also find

bubbles during similar periods.

However, if we assume that the time series are fractionally integrated as in model

(41), we can estimate λ and d. In particular, we apply the exact local Whittle method

of Shimotsu and Phillips (2005) to estimate d and test i.i.d. hypothesis of εt against

the strongly dependent alternative.9 Table 7 shows that positive estimates d̂ for all three

sampling periods are found. Moreover, for each sampling period, the i.i.d. hypothesis is

rejected under 95% confidence level, suggesting strong evidence of strong dependence in

ut. Therefore, it is possible that the true model is (41) and that the divergent t statistic

leads to the rejection of the unit root null hypothesis in favor of an explosive alternative.

In other words, these rational bubbles can be spurious.

Motivated by the empirical evidence of strongly dependent errors and their implication

for bubble detection, this paper proposes a method to address the spurious explosiveness

problem in detecting rational bubbles when a time series model has strongly dependent er-

rors. We construct a heteroskedasticity-autocorrelation robust (HAR) test statistic, which

converges to a proper distribution under no bubble assumption but diverges when the un-

derlying model has an explosive or a mildly explosive root. Therefore, we can distinguish

between an explosive and unit root time series even when the error process is strongly de-

pendent. After a bubble is detected, a new estimator is proposed to consistently timestamp

its origination and termination dates.

The remainder of this paper is organized as follows. Section 3.2 provides a brief re-

view of the traditional right-tailed unit root test for bubble detection and the estimation

method to timestamp bubble origination and termination dates. Section 3.3 introduces our

model with strongly dependent errors, proposes the new test, and derives the asymptotic

9We first estimate the fractionally integrated order (λ) of yt. Then we subtract 1 from the estimate of

λ to obtain d̂. The confidence interval obtained is based on the asymptotic of the ELW estimate where
√
m(d̂− d)

d→ N(0, 1/4), with m = nδ . We set δ = 0.65 in all applications in this paper.
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theory under the null hypothesis of unit root. Section 3.4 examines the asymptotic prop-

erties of the proposed test statistic under two explosive alternatives. Section 3.5 proposes

new estimators of bubble origination and termination dates based on the new test statistic.

Monte Carlo simulation studies are carried out in Section 3.6 to study the finite sample

performance of the proposed test and estimators. Section 3.7 provides an empirical study

using the S&P 500 index. Finally, Section 3.8 concludes the paper. A discussion of the sup

statistics, detailed graphs for the empirical study and the proofs of the main results in the

paper are provided in the Appendix. We use the following notations throughout the paper:
p→, d→, as→,⇒, a∼ and iid∼ denote convergence in probability, convergence in distribution, al-

most sure convergence, weak convergence, asymptotic equivalence, and independent and

identically distributed, respectively.

3.2 A Brief Review of Literature

In this section, we briefly review the traditional right-tailed unit root test statistic for

bubble detection and the estimation method to timestamp bubble origination and termi-

nation dates. Consider model (40). Suppose that we perform an LS regression with an

intercept from the full sample and obtain our LS estimator ρ̂n of ρ. Denote the t statistic

DFn = (ρ̂n − 1) /se(ρ̂n), where se(ρ̂n) is the standard error of ρ̂n. Under the assumption

that ρ = 1, following Phillips (1987a), we have

DFn =⇒ DF∞ :=

∫ 1

0
W̃ (s)dW (s)(∫ 1

0
W̃ (s)2ds

)1/2
, (as n→∞), (42)

where W (r) is the standard Brownian motion and W̃ (r) = W (r) − 1
r

∫ r
0
W (s)ds is the

demeaned Brownian motion. To implement a right-tailed unit root test, we can obtain the

(1 − β)% critical value as the (1− β) percentile of DF∞ and reject the null hypothesis

when DFn is greater than the critical value.

In practice, a bubble usually starts not from the first observation of the full sample, but

from the middle of the sample, say at τe = bnrec where b·c denotes the integer part of its

argument and re ∈ (0, 1). Moreover, a bubble usually does not last forever, but collapses

later in the sample, say at τf = bnrfc. The collapse of a bubble typically corresponds
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to a market correction. If a bubble emerges and collapses in the sample, Phillips and Yu

(2009) show that DFn → −∞, suggesting that the traditional right-tailed unit root test

statistic, if calculated from the full sample, cannot reject the unit root null hypothesis.

To identify the bubble in the full sample, PWY (2011) propose a sup statistic based

on recursive regressions. The regression in the first recursion is

yt = µ̂+ ρ̂τyt−1 + ût, (43)

where t = 1, ..., τ0(:= bnr0c), µ̂, ρ̂τ , and ût are the intercept estimator, the AR coefficient

estimator and the LS residuals, respectively, and 0 < r0 < re. Subsequent regressions

employ this originating data set supplemented by successive observations giving a sample

of size τ = bnrc for r0 6 r 6 1. Let DFτ denote the DF t statistic based on the first

τ observations of the sample, that is,

DFτ :=
ρ̂τ − 1

sτ
, (44)

where sτ =

(
1
τ

∑τ
t=1 û

2
t∑τ

t=1 y
2
t−1−

1
τ (
∑τ
t=1 yt−1)

2

)1/2

is the standard error of ρ̂τ . The test statistic

proposed by PWY is supτ∈[τ0,n] DFτ , Under the null hypothesis, PWY show

SDF := sup
τ∈[τ0,n]

DFτ =⇒ sup
r∈[r0,1]

∫ r
0
W̃ (s)dW (s)(∫ r

0
W̃ (s)2ds

)1/2
, (as n→∞).

If SDF takes a value larger than the right-tailed critical value, the null unit root hypothesis

is rejected in favor of the explosive alternative. In this case, the evidence of a bubble is

found.

After a bubble is detected, one may want to estimate bubble origination and conclusion

dates, that is, re and rf . Assume the model under the alternative hypothesis is given by

yt = yt−11 {t < τe}+ ρnyt−11 {τe 6 t 6 n}

+

 t∑
k=τf+1

εk + y∗τf

 1 {t > τf}+ εt 1 {t 6 τf} , (45)

ρn = 1 +
c

nα
, c > 0, α ∈ (0, 1) , εt

iid∼ (0, σ2).

Model (45) has two structural breaks. Before the first break (i.e. t < τe), yt follows a unit

root process. After the first break but before the second break (i.e. τe 6 t 6 τf ), it follows
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a mildly explosive process with a root above 1 taking the form ρn = 1 + c
nα

. At τf + 1,

the bubble terminates with a crash to y∗τf which is in the neighborbood of the fundamental

value prior to the emergence of the bubble. Here τe and τf are the true absolute bubble

origination and termination dates. Since τe = bnrec and τf = bnrfc, re and rf are the

true fractional bubble origination and termination dates.

PWY (2011) introduce the estimator of re as

r̂PWY
e = inf

r>r0
{r : DFτ > cvn}. (46)

Conditional on finding some originating date r̂PWY
e of a bubble, PWY introduce the esti-

mator of rf as

r̂PWY
f = inf

s>r̂e+
γ ln(n)
n

{s : DFs < cvn} . (47)

In (46) and (47), cvn is a critical value function that increases with the sample size. Pro-

vided cvn goes to infinity at a slower rate than n1−α/2, Phillips and Yu (2009) showed that

r̂PWY
e

p→ re and r̂PWY
f

p→ rf under some general regularity conditions. In the empirical

applications of PWY, cvn is set to be proportional to ln lnn.

3.3 Model, New Test and Asymptotic Null Distribution

Motivated by the empirical studies in section 3.1, we now consider the following

model

yt = ρnyt−1 + ut, t = 1, ..., n,

ut = (1− L)−dεt, εt
iid∼ (0, σ2), d ∈ [0, 0.5), (48)

y0 = op(n
1/2+d).

Model (48) is different from model (40) in that ut can be strongly dependent. We first

consider the asymptotic property of the traditional Dickey-Fuller t test when ρn = 1.

3.3.1 Asymptotic null distribution of DFτ

Lemma 5 Assume the true data generation process is model (48) with ρn = 1 and d ∈

(0, 0.5). Suppose that DFτ is constructed from the empirical regression (43) based on the
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first τ observations. Then, for any r ∈ (0, 1], as n→∞,

DFτ= Op

(
nd
)
. (49)

Lemma 5 indicates a serious implication for bubble detection using the traditional

method. Namely, the t statistic DFτ diverges with the sample size. When r = 1, DFn =

DFτ = Op

(
nd
)
. This divergence leads to excessive rejection of the null hypothesis when

the sample size is large and conclude with a spurious bubble.

Remark 22 To detect the presence of a bubble, PWY and PSY propose to use SDF and

GSDF defined by

SDF (τ0) = sup
τ∈[τ0,n]

DFτ ,

GSDF (τ0) = sup
τ2∈[τ0,n],τ1∈[0,τ2−τ0]

DF τ2
τ1
,

where τ0 = bnr0c is the minimum data window and DF τ2
τ1

is the t statistic based on the

observations from τ1 = bnr1c to τ2 = bnr2c.

As Lemma 5 holds uniformly for r ∈ (0, 1], under model (48) with ρn = 1 and d ∈

(0, 0.5), we have

SDF (τ0) = Op

(
nd
)
,

GSDF (τ0) = Op

(
nd
)
.

Both statistics can lead to spurious rational bubble detection as they diverge to infinity.

Remark 23 Similar to PSY (2014), our model (48) can be generalized to have an asymp-

totically negligible intercept. In this case,

yt = µn + ρnyt−1 + ut, (50)

where µn = O(n−θ), with θ > 1/2 − d. It can be shown that, since µn is asymptotically

negligible, the result in Lemma 5 remains valid.

Remark 24 Note that if the kth order augmented Dickey-Fuller test is used, the same

result as in (49) can be obtained.
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Remark 25 If the LS regression is carried out without intercept and r = 1, the result

of Lemma 5 coincides with that of Sowell (1990) (see Theorem 4 in Sowell, 1990) when

d ∈ (0, 0.5).

Remark 26 Homm and Breitung (2012) use the CUSUM statistic (CSt) to detect ratio-

nal bubble. They show that if CSt = 1
σ̂

∑t
j=T+1 ∆yt with ∆yt = yt − yt−1, we have

n−1/2CSt=bnkc =⇒ W (k) −W (1) with k > 1 under the assumption that ut is an i.i.d.

error. Clearly, under model (48) with d ∈ (0, 0.5), n−1/2CSt=bnkc is not properly normal-

ized and has order Op

(
nd
)
. Therefore, the CUSUM statistic will also share the spurious

bubble detection problem under model (48) with d ∈ (0, 0.5).

3.3.2 New test statistic

The failure of standard t statistic stems from estimating the variance of ut by the aver-

age squared residuals 1
τ

∑τ
t=1 û

2
t . As this estimator does not provide a proper normaliza-

tion, it results in the divergence of DFτ . In this paper, we use a properly self-normalized

statistic that converges to a proper distribution for d ∈ [0, 0.5). To design the new statistic,

noting that as ut is potentially strongly dependent, we propose to estimate the variance of

ut by using Ω̂HAR =
∑τ

j=−τ+1 K
(
j
M

)
γ̂j , whereK(·) is a kernel function with bandwidth

M and γ̂j = 1
τ

∑τ
t=j+1 ∆yt∆yt−j is the jth order sample autocovariance.

Based on Ω̂HAR, we can define the new t statistic as

DFτ,HAR =
ρ̂τ − 1

sτ,HAR
, (51)

where the robust standard error is defined as

sτ,HAR =

√
Ω̂HAR∑τ
t=1 ȳ

2
t−1

with ȳt = yt −
1

τ

τ∑
t=1

yt−1.

In addition, we select the bandwidth by letting M = b × τ, where b ∈ (0, 1], so that

the bandwidth is the same as the sample size τ in the regression window. This approach

is popularized by Kiefer and Vogelsang (2002a, 2002b, 2005), Bunzel et al. (2002) and

Vogelsang (2003). The test statistic based on Ω̂ is heteroskedasticity-autocorrelation ro-

bust (HAR). Our test also shares the same spirit as the test proposed in Sun (2004), where
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the HAR test statistic with a fix-b approach is used to tackle the problem of spurious

co-integration.

Theorem 4 Suppose M = bτ, and K(x) = KB(x) is the Bartlett kernel function with

KB(x) = (1 − |x|)1 (|x| 6 1). Under model (48), for r ∈ (0, 1], as n → ∞, DFτ,HAR

has the following fixed-b asymptotic distribution,

DFτ,HAR =⇒


Fr,0 :=

b1/2r
∫ r
0 W̃ (s)dW (s)

[2
∫ r
0 W̃ (s)2ds(

∫ r
0 W (p)2dp−

∫ (1−b)r
0 W (p)W (p+br)dp)]

1/2 for d = 0

Fr,d :=
b1/2

[
r
2(BH(r))

2
−(
∫ r
0 B

H(s)ds)BH(r)
]

[
2
∫ r
0 (B̃H(s))

2
ds(
∫ r
0 B

H(p)2−
∫ (1−b)r
0 BH(p)BH(p+br)dp)

]1/2 for d ∈ (0, 0.5)

(52)

whereBH(t) is a fractional Brownian motion (fBm) with the Hurst parameterH = 1/2+

d, and B̃H(r) = BH(r)− 1
r

∫ r
0
BH(s)ds is the demeaned fBm.

Unlike DFτ , Theorem 4 shows that the HAR test statistics converge to proper limit

distributions for both d = 0 and d ∈ (0, 0.5), therefore, it does not share the diverging

size problem as in Lemma 5 and the spurious rational bubble conclusion can be avoided

asymptotically.

Although the test statistic is well normalized within the range of d that we are inter-

ested, it should be be noted that the limit distribution ofDFτ,HAR does not have a uniform

expression for any d ∈ [0, 0.5). This is because the centered LS estimator ρ̂τ − 1 has a

component −n−1−2d (
∑τ

t=1 u
2
t ). When d > 0, this term is asymptotically negligible.

However, when d = 0, this term cannot be ignored and shows up at the limit. As d is

generally unknown and needed to be estimated, to use the asymptotic distribution, one

needs to first obtain a consistent estimator d̂, and determine whether Fr,0 or Fr,d|d=d̂ is

used.

In our unreported simulation, the critical values obtained from the limit distribution of

DFτ,HAR does not provide a satisfactory performance in size especially when d is closed

to zero. We discover that the bad size performance is due to the following two reasons.

Firstly, when d > 0 but reasonably closed to zero, the component n−1−2d (
∑τ

t=1 u
2
t )

converges in probability to zero in a slowly, therefore Fr,d does not provide a good finite

sample approximation. Secondly, when d = 0, it possible that we may end up applying
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Fr,d|d=d̂ with d̂ > 0, therefore, the correct distribution Fr,0 is not used for the construction

of critical values.

This motivates us to design a modified statistic D̃F τ,HAR which has a uniform limit

expression and a satisfactory size performance. We now consider the following test statis-

tic

D̃F τ,HAR =
ρ̃τ − 1

sτ,HAR
(53)

where ρ̃τ = ρ̂τ +
1
2

∑τ
t=1 ∆y2t∑τ
t=1 ȳ

2
t−1

and ∆yt = yt − yt−1.

Theorem 5 Under the same set of assumption in Theorem 4, for r ∈ (0, 1], as n → ∞,

we have

D̃F τ,HAR =⇒ Fr,d, for d ∈ [0, 0.5). (54)

where Fr,d is defined in (52).

From Theorem 5, we can see the new statistic has a uniform expression for d ∈

[0, 0.5). It is noteworthily that BH(r) = W (r) when the H = 1/2. We achieve this

uniform expression by simply algebraically removing the component n−1−2d (
∑τ

t=1 u
2
t )

in the centered LS estimator ρ̂τ − 1. By doing so, the slowly converging to zero behavior

of n−1−2d (
∑τ

t=1 u
2
t ) is no longer relevant and the limit of D̃F τ,HAR does not have an

abrupt shift at d = 0. We have the following corollary for the full sample HAR statistic

D̃F n,HAR.

Corollary 1 Under the assumption of Theorem 4, if d ∈ [0, 0.5), as n→ ∞, D̃F n,HAR

has the following limit distribution

D̃F n,HAR =⇒ F1,d

: =
b1/2

[
1
2

(
BH(1)

)2 −
(∫ 1

0
BH(s)ds

)
BH(r)

]
[
2
∫ 1

0

(
B̃H(s)

)2

ds
(∫ 1

0
BH(p)2 −

∫ (1−b)
0

BH(p)BH(p+ br)dp
)]1/2

.

To carry out right-tailed unit root tests based on the full sample, we can adopt the test

statistic D̃F n,HAR and its (1− β)× 100% critical value cv(1−β)%
HAR (d), which is defined by

Pr
(
F1,d > cv

(1−β)%
HAR (d)

)
= β. (55)
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Moreover, the memory parameter (d) that appears in the critical value can be consistently

estimated (e.g. using the ELW method). Therefore, a feasible critical value can be ob-

tained.

Remark 27 The limit distributions in Theorems 28 and 4 apply when the error term ut

follows a stationary ARFIMA(p, d, q) process with d ∈ (0, 0.5). Indeed, n−1−2d (
∑τ

t=1 u
2
t )

vanishes with d > 0 as n → ∞. It washes out the variance term which is dependent on

the specific form of the ARFIMA(p, d, q) process.

Remark 28 In fact, other kernel functions (K2(.)) can also produce a fixed-b asymptotic

distribution of D̃F τ,HAR. Suppose Ω̂HAR =
∑τ

j=−τ+1K2

(
j
M

)
γ̂j , K2(·) > 0, K2(x) =

K2(−x), with K2(·) being a twice differentiable kernel function, we can easily show as

n→∞,

D̃F τ,HAR =⇒ F̃r,d :=
br3/2

2

(
BH(r)

)2 − br1/2
(∫ r

0
BH(s)ds

)
BH(r)((∫ r

0
B̃H(s)2ds

) ∫ r
0

∫ r
0
−K ′′2

(
p−q
br

)
BH(p)BH(q)dpdq

)1/2
, for d ∈ [0, 0.5)

where K ′′2 (.) is the second derivative of K2(·).

Remark 29 As in PWY, a sup test statistic (e.g. supτ∈[τ0,n] D̃F τ,HAR) can be defined and

we can also obtain the corresponding asymptotic distribution. This recursive formulation

can identify a rational bubble when the time series has a mildly explosive root. We discuss

the construction of this recursive statistic and its test for explosiveness in Appendix C.1.

3.4 Alternative Hypothesis and Asymptotic Theory

To study the asymptotic behavior of the proposed test statistic under the alternative

hypothesis, following the literature we consider two popular explosive models. The first

alternative adopts the local-to-unit-root framework of Phillips (1987b) to study the locally

explosive time series; see Harvey et al. (2016, 2019a, and 2019b). The advantage of using

the locally explosive model is that it facilitates the computation of local power.

The second alternative is the mildly explosive model of Phillips and Magdalinos

(2007). It assumes that the AR parameter has a greater deviation from the unit root than

the local-to-unit-root model; see PWY, PSY and Phillips and Yu (2011). Under this ex-

plosive alternative, a consistent test can be obtained.
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3.4.1 Locally explosive model

We first consider the alternative hypothesis with the following locally explosive set-

ting:

yt = (yt−1 + ut) 1{t < τe}+ (ρnyt−1 + ut) 1{τe 6 t 6 n}, t = 1, ..., n,

ut = (1− L)−dεt, εt
iid∼ (0, σ2), d ∈ [0, 0.5),

ρn = 1 + c/n, c > 0,

y0 = op(n
1/2+d).

(56)

In model (56), yt has a unit root before τe. It becomes mildly explosive after τe. That

is, there is a structural break at τe. During both periods, the error term in the AR model

has strong dependence with the same memory parameter d.

We now consider the asymptotic behavior of the HAR test statistic D̃F τ,HAR.

Theorem 6 Under model (56), for any r > re, as n→∞,

D̃F τ,HAR =⇒ F c
r,d :=

(
( 1
2
Cr,d− 1

r
Ar,dB

H(r))r
Br,d− 1

r
A2
r,d

+ cr

)(
Br,d − 1

r
A2
r,d

)1/2

[
2
b

(∫ r
0
Gre,c(d, p)

2dp−
∫ (1−b)r

0
Gre,c(d, p)Gre,c(d, p+ br)dp

)]1/2
,

(57)

where

Ar,d =

∫ r

0

(
e(x−re)cBH(re) +

∫ x

re

e(x−s)cdBH(s)

)
dx,

Br,d =

∫ r

0

(
e(x−re)cBH(re) +

∫ x

re

e(x−s)cdBH(s)

)2

dx,

Cr,d =

(
e(r−re)cBH(re) +

∫ r

re

e(r−s)cdBH(s)

)2

,

Gre,c(p) = BH(p)− cAp,d −
∫ re

0

BH(p)dp.

The limit distribution in Theorem 6 depends on the non-centralized parameter c. This

parameter departs the distribution of F c
r,d from Fr,d. One can directly verify that if c = 0,

F c
r,d = Fr,d from (54). Since both F c

r,d and Fr,d are ofOp(1), one may use them to compute

the local power of the proposed test.
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3.4.2 Mildly explosive model

We then consider the alternative hypothesis with the following mildly explosive set-

ting:

yt = (yt−1 + ut) 1{t < τe}+ (ρnyt−1 + ut) 1{τe 6 t 6 n}, y0 = op(n
1/2+d1),

ut =

(1− L)−d1εt if t < τe,

(1− L)−d2εt if τe 6 t 6 n,

and εt
iid∼ (0, σ2), d1, d2 ∈ [0, 0.5). (58)

where

ρn = 1 +
c

nα
, c > 0, α ∈

(
0,min

{
1/2− d1

1/2− d2

, 1

})
. (59)

In model (58), yt has a unit root before τe. It becomes mildly explosive after τe. That

is, there is a structural break at τe. During both periods, the error term in the AR model

has strong dependence with memory parameters d1 prior to the break and d2 after the

break. As 0 < α < 1, we obtain a higher degree of explosiveness than the local-to-unit-

root explosiveness considered earlier. The upper bound on α (i.e. 1/2−d1
1/2−d2 ) is needed as

we have to ensure that the explosive observations dominate asymptotically the unit root

observations with long memory errors.

Theorem 7 Under model (56) with (59), as n→∞,

DFn
p→∞,

D̃F n,HAR
p→∞ .

Theorem 7 first shows that DFn diverges to infinity under the mildly explosive as-

sumption. Combining with the result in Lemma 5, it means that the divergence of DFn

can be either from a strong dependent error or a mildly explosive process. So the rejec-

tion of null hypothesis does not solely come from the explosiveness and hence produce

a difficulty for empirical researcher to identify a rational bubble. On the other hand, ap-

ply the robust statistic will not share the same problem as D̃F n,HAR only diverges under

the alternative assumption. Naturally, for any (1 − β)% confidence level critical value

cv
(1−β)%
HAR (d), we have Pr(D̃F n,HAR > cv

(1−β)%
HAR (d)) → 1 under model (56) with (59).

Therefore, we have a consistent test for this explosive alternative.
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3.5 Estimation of Bubble Origination and Termination Dates

In this section, we discuss the estimation of the bubble origination and termination

dates. Following PWY, we consider the following model:

yt = (yt−1 + ut) 1{t < τe}+ (ρnyt−1 + ut) 1{τe 6 t 6 τf}+

 t∑
k=τf+1

uk + y∗τf

 1{t > τf},

ρn = 1 +
c

nα
, c > 0, α ∈

(
0,min

{
1/2− d1

1/2− d2

, 1

})
,

ut = (1− L)−dtεt, εt
iid∼ (0, σ2), (60)

dt = d1 for t ∈ [1, τe) ∪ [τf + 1, n], dt = d2 for t ∈ [τe, τf ], τe = bnrec, τf = bnrfc,

y∗τf = yτe + y∗, and y∗ = Op(1).

Once again, we require α < 1/2−d1
1/2−d2 .

Theorem 8 Under model (60) with τ = bnrc , DFτ,HAR has the following asymptotic

behaviour:

D̃F τ,HAR
p→∞ if τ ∈ [τe, τf ],

D̃F τ,HAR
p→ −∞ if τ ∈ [τf + 1, n].

(61)

The estimators of re and rf are defined as

r̂HARe = inf
r>r0
{r : D̃F τ,HAR > cvn,HAR},

r̂HARf = inf
r>r̂e+γ ln(n)/n

{r : D̃F τ,HAR < cvn,HAR}.
(62)

If re > r0 and the critical value cvn,HAR satisfies the following condition

1

cvn,HAR
+
cvn,HAR

n(1−α)/2 → 0, (63)

then, as n→∞, we have

r̂HARe

p→ re and r̂HARf

p→ rf .

Intuitively,
⌊
nr̂HARe

⌋
represents the first observation when D̃F τ,HAR > cvn,HAR and,

after a bubble is deemed to have emerged and lasts longer than γ ln(n)/n,
⌊
nr̂HARf

⌋
rep-

resents the first observation when D̃F τ,HAR < cvn,HAR. Note that we require a bubble to

have a minimum duration γ ln(n)/n where γ is a frequency dependent parameter.
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Theorem 8 implies that D̃F τ,HAR provides a consistent test when data do not contain

any observations after the bubble collapses. Otherwise, it diverges to negative infinity.

Therefore, if the full sample is used to do the right-tailed unit root test, one should avoid

including observations after a bubble collapses. Otherwise, the test cannot detect the

presence of a bubble. This is known as Evans’s critique (Evans, 1991).

For the consistent estimation of the bubble origination and termination dates, we re-

quire that the critical value cvn,HAR grows to infinity at a rate slower than n(1−α)/2, which

is different from the rate obtained in PWY.

PWY propose to estimate re using r̂PWY
e in (3.6.3) with cvn increasing at the ln lnn

rate. However, in our model (60) with d1 ∈ (0, 0.5), we can easily obtain

r̂PWY
e

p→ r0 6 re.

Indeed, for r < re, DFτ,HAR diverges at the rate nd1 (as shown in Lemma 5), which is

faster than ln lnn. Therefore, we can expect r̂PWY
e with cvn increasing at the ln lnn rate

to be inconsistent when d > 0 and r0 < re. In the Monte Carlo simulations presented in

section 3.6, we show that r̂PWY
e with cvn increasing at the ln lnn rate tends to lead to a

too early estimation of the bubble origination and termination dates. In contrast, r̂HARe is

a consistent estimator if ln lnn is the growth rate adopted for cvn,HAR.

Remark 30 For model (60), as we have a negative divergence when full sample is used to

calculate D̃F n,HAR, the sup statistic (e.g. supτ∈[τ0,n] D̃F τ,HAR) can be employed, as the

sup operator avoids the negative divergence part elicited from observations {yt}t∈[τf+1,n].

We discuss the asymptotic property of the sup statistic in Appendix C.1.

3.6 Monte Carlo Studies

In this section, we design some Monte Carlo experiments to study the size and power

of our proposed test for bubble detection and our estimators of bubble origination and

termination dates in finite samples. We use the normalized partial sum of ut = (1−L)−dεt

, εt
iid∼ (0, 1) to approximate a fractional Brownian motion.10 This approximation allows

10To be more precise, we use 1
σ
√
n

∑bnrc
t=1 εt and 1

ζn1/2+d

∑bnrc
t=1 ut to approximate B(r) and BH(r),

respectively. See Equation (94) for the definition of ζ.
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us to simulateDF∞, Fr,0 and Fr,d to obtain the critical values. The number of replications

is always set to 2,500.

3.6.1 Empirical size

To investigate the empirical size of our test statistic, we perform a small-scale Monte

Carlo study. In particular, we consider the following DGP,

yt = yt−1 + ut, t = 1, ..., n,

ut = (1− L)−dεt, εt
iid∼ N(0, 1),

(64)

with the following parameter settings: d ∈ {0, 0.05, 0.1, ..., 0.45}, y0 = 0, and n ∈

{100, 500}.

Table 8 Empirical size of the right-tailed unit root test with 95% confidence level

n = 100 d

Test statistic 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

DFn 0.05 0.09 0.14 0.20 0.26 0.31 0.36 0.41 0.45 0.48

DFn,HAR 0.13 0.13 0.11 0.09 0.07 0.05 0.04 0.03 0.03 0.04

D̃F n,HAR 0.04 0.04 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06

n = 500

DFn 0.05 0.10 0.18 0.27 0.34 0.40 0.42 0.49 0.53 0.56

DFn,HAR 0.15 0.12 0.07 0.03 0.02 0.03 0.03 0.04 0.04 0.05

D̃F n,HAR 0.04 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Under these parameter settings, we perform a right-tailed unit test and calculate DFn,

DFn,HAR and D̃F n,HAR. For the standard right-tailed unit root test, we reject the null

hypothesis when DFn is greater than the 95% asymptotic critical value cv95% = −0.08.

For the HAR tests, we adopt DFn,HAR and D̃F n,HAR and the corresponding 95%

critical value. Moreover, we let b = 0.05 to calculate Ω̂HAR
11.Note that as d is unknown,

we obtain d̂ using the ELW method proposed by Shimotsu and Phillips (2005) to get a

feasible inference. For the tests with DFn,HAR, the critical value 95% critical value is

11We choose this value of b because in extensive simulations, we find that for any b > 0.05, the test can

deliver a empirical size which is close to its nominal value, while for the power analysis, a lower value of b

yields a higher power.
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obtained from the limit distribution in Theorem 4, we select F1,0 if d̂ = 0, and select F1,d̂

if d̂ > 0. Finally, numerical simulation allows us to generate the 95% critical values based

on Pr
(
Fr,0 > cv95%

DFn,HAR
(0)
)

= 0.95 if d̂ = 0 and Pr
(
Fr,d̂ > cv95%

DFn,HAR
(d̂)
)

= 0.95 if

d̂ > 0. For D̃F n,HAR, we generate the 95% critical value based on (55) for d̂ ∈ [0, 0.5).

Table 8 reports the empirical size of the 5% level right-tailed unit root test based on

DFn, DFn,HAR and D̃F n,HAR. Several observations can be made from Table 8. First, the

standard unit root test only has a decent performance when d = 0, it has a divergent size

when d > 0. For example, it can be seen that when d = 0.3 and n = 500, the test rejects

the null hypothesis about 40% of the time, which is far above the nominal rate of 5%.

These simulation results are consistent with the prediction of the asymptotic theory in

Sowell (1990) and Lemma 5 and suggest that standard unit root test very often produce a

spurious rational bubble detection under DGP (64) when d > 0. Secondly, whenDFn,HAR

is adopted, while we do not see a divergent empirical size, the empirical size performance

is not well controlled for a wide range of d. Finally, our modified statistic has a good

performace across different value of d. In fact, the empirical size under all value of d is

within 1% difference of the nominal size.

3.6.2 Power

To investigate the power of our test under finite sample, we design a Monte Carlo

study based on model (58) with the following parameter settings: n = 100, y0 = 100,

re ∈ {0.6, 0.8}, d1 = d2 = d ∈ {0, 0.05, 0.1, ..., 0.45}, ρn = 1 + c/nα, c = 1, and

α = 0.6. Under these parameter settings, we perform right-tailed unit root tests with DFn

and D̃F n,HAR. We use the same procedures as in section 3.6.1 to perform tests with 95%

confidence level.

Table 9 Finite sample power of the HAR test

n = 100 d

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

re = 0.6 DFn 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99
D̃F n,HAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98

re = 0.8 DFn 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98 0.96 0.94
D̃F n,HAR 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.97 0.93 0.89
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Table 9 reports the empirical rejection rates under different parameter settings. Several

observations can be made from Table 9. First, for both tests, higher power comes with a

smaller re. This is expected as a lower value of re extends the duration of an explosive path

and it leads to an easier bubble detection. Secondly, we see that while the difference in

Finite sample power of tests with DFn and D̃F n,HAR is small, we see that finite sample

power of DFn is higher. This can be explained by the higher divergence rate of DFn.

Therefore, it can be seen that while D̃F n,HAR do not provide a spurious explosiveness

conclusion, a smaller power is a price for such a robust conclusion.

3.6.3 Real time bubble detection and estimation of origination and termination

dates

To study the finite sample performance of the proposed estimators of bubble origi-

nation and termination dates, we design a Monte Carlo experiment based on model (60)

with the following parameter settings: n ∈ {100, 150}, y0 = 100, c = 1, α = 0.6,

d1 = d2 = d ∈ {0, 0.05, 0.1, ..., 0.45}, εt
iid∼ N(0, 1), y∗τf = yτe , re = 0.6, rf = 0.8,

r0 = 0.4, and γ ln(n)/n = 0.1.

To obtain r̂HARe and r̂HARf , we first calculate {DFτ , D̃F τ,HAR}nτ=bnr0c. Second, we let

τ0 be the minimum estimation window and obtain {d̂τ}nτ=τ0
using the ELW method based

on the recursive data window {{yt}τt=1}nτ=τ0
. Third, we specify the following critical

value function cvn,HAR,

cvn,HAR = cv97%
n,HAR

(
d̂τ

)
+ ln(lnns)/100, (65)

where s ∈ (0, 1] is proportional to the sample size.

Note that the critical value function is constructed as the sum of 97% critical value

function under the memory parameter estimate d̂τ and a diverging factor ln(lnns)/100,

while this diverging factor guarantees that cvn,HAR satisfies condition (63) and therefore

ensure the consistency of our bubble origination and terminate date estimators, it has a

small impact in our finite sample simulation as ln(lnns)/100 is between 0.01 and 0.015

while cv97%
n,HAR

(
d̂τ

)
has a much greater magnitude.
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We also follow PWY and specify

cvn = ln(lnns)/100. (66)

It can be seen that cvn,HAR is analogus to cvn, as by construction cvn is between the 95%

and 99% right-tailed test critical value utilized the Dickey-Fuller-Phillips distribution in

(42).

By combining (46), (47), (62), (65), and (66), we can calculate r̂HARe , r̂HARf , r̂PWY
e

and r̂PWY
f .

Table 10 Finite sample performance of r̂HARe , r̂HARf , r̂PWY
e and r̂PWY

f

re = 0.6 d

rf = 0.8 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

n = 100 r̂HARe 0.60 0.60 0.60 0.61 0.61 0.61 0.62 0.63 0.63 0.63

r̂HARf 0.80 0.79 0.79 0.79 0.79 0.79 0.79 0.80 0.80 0.79

r̂PWY
e 0.61 0.61 0.60 0.60 0.59 0.58 0.57 0.56 0.55 0.54

r̂PWY
f 0.81 0.81 0.80 0.80 0.79 0.78 0.78 0.77 0.77 0.77

n = 150 r̂HARe 0.59 0.60 0.60 0.60 0.61 0.62 0.62 0.62 0.63 0.63

r̂HARf 0.78 0.78 0.78 0.78 0.78 0.78 0.79 0.79 0.79 0.78

r̂PWY
e 0.61 0.60 0.59 0.58 0.57 0.57 0.55 0.54 0.53 0.52

r̂PWY
f 0.80 0.80 0.79 0.78 0.78 0.77 0.76 0.76 0.75 0.75

Table 10 reports the average of r̂HARe , r̂HARf , r̂e and r̂HARf across 2,500 replications12.

With different values of d, our estimators of re and rf are reasonably close to the true

values of 0.6 and 0.8, respectively, and it has a stable performance across various values

of d. When d = 0, r̂PWY
e and r̂PWY

f perform very well to estimate re and rf . When

d > 0.2, we can see a too early detection, as r̂PWY
e is smaller than re on average, and

the severeness of too early detection gets worse as d increases. Indeed, when d ∈ (0, 0.5)

with the critical value increasing at the rate ln lnn and r0 < re, r̂PWY
e is an inconsistent

estimator, which converges in probability to r0. Interestingly, when d > 0, r̂PWY
f is also

inaccurate, because when r̂PWY
e is close to r0, the region between r0 and re has a random

wandering and non-standardized test statistic, as the test statistic occasionally falls below

the too small critical value function (as ln lnn is dominated by nd) in this region. In this

12We only report the average of the the estimators when they are well defined.
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experiment, the inconsistent estimator r̂PWY
e also induces an inaccurate estimate of rf in

finite sample. Interestingly, two tests seem to give a similar estimate when d is small, the

simulation exercise therefore suggests that the very different estimate of re and rf can be

a signal of the presence of a strongly dependent error.

The Monte Carlo simulation exercise to estimate re and rf can also be seen as a real-

time bubble detection exercise, as we adopt the first-time crossing principle to mark the

time when the sequence of test statistic D̃F τ,HAR surpasses the 97% critical value function

cv97%
n,HAR

(
d̂τ

)
. Given the current data ({yt}τ0t=1 in our simulations), we can initialize the

calculation of HAR test statistic D̃F τ0,HAR, cv
97%
n,HAR

(
d̂τ0

)
. As we update the HAR test

statistic D̃F τ,HAR and cv97%
n,HAR

(
d̂τ

)
when new data become available, we can detect a

rational bubble in real time.

3.7 Empirical Studies

To highlight the usefulness of our HAR test statistics, we conduct an empirical study

using the same time series as that was used to obtain Table 1. We implement our HAR

test statistics D̃F n,HAR and use the critical values under 95% and 99% confidence level

(also report the 90% confidence level) when performing the right-tailed unit root tests.

Table 11 Test for an explosive alternative

Sampling Period d̂ D̃Fn,HAR cv90%
HAR

(
d̂
)

cv95%
HAR

(
d̂
)

cv99%
HAR

(
d̂
)

(a) Jan 1872 to Feb 1880 0.24 1.25** 0.72 0.93 1.28
(b) Jun 1882 to May 1887 0.32 0.62 0.80 1.02 1.37
(c) May 1940 to Feb 1946 0.34 0.89* 0.78 0.99 1.38
(d) June 1948 to Nov 1955 0.29 1.54*** 0.75 0.96 1.35
(e) Mar 1980 to July 1987 0.20 0.83* 0.67 0.89 1.26
(f) May 1988 to Apr 1998 0.24 1.20** 0.73 0.93 1.28

NOTES: ”*”, ”***” and ”***” denote the 90%, 95% and 99% level of significance for testing

the existence of an mildly explosive epsiode.

Table 11 reports the HAR test statistic D̃F n,HAR and the 90%, 95% and 99% con-

fidence level critical values (cv90%
n,HAR

(
d̂
)
, cv95%

n,HAR

(
d̂
)

and cv99%
n,HAR

(
d̂
)

) for the six

sampling periods. In Table 7, it is clear that the standard test statistics DFn is greater than

its 99% critical value for each sampling period, indicating a strong evidence for existence

of rational bubble.
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From Table 11, we can see that the test for sampling period (a) fails to reject the

null under cv90%
n,HAR

(
d̂
)

, while for sampling period (c) and (e), the tests reject the no

bubble assumption at 90% confidence level. For the other sampling periods, our test finds

strong evidence of the presence of explosiveness based on 95% confidence level13. If the

conventional 95% confidence level is adopted, only sampling period (a), (d) and (f) are

considered having a rational bubble.

Moreover, as discussed in Section 3.5 and Section 3.6.3, a strongly dependent error

term will make the bubble origination date estimate inaccurate, this has a important impli-

cation on real time bubble detection. To showcase the empirical consequence, we use the

sampling periods where we have concluded the existence of explosive episode in Table

5 to do a pseudo real time test. To implement the method, we use 60 monthly observa-

tions to initialize the estimation and calculate a sequence of D̃F τ,HAR, cv
97%
n,HAR

(
d̂τ

)
and

cvn,HAR recursively. Finally, we estimate r̂PWY
e , r̂PWY

f , r̂HARe and r̂HARf as in our previous

Monte Carlo simulation in Section 3.6.3, and we assume the minimum bubble duration

to be 6 months. Through this exercise, we can estimate when an explosive episode starts

and ends and hence the length of the episode in the stock market.

Table 12 Estimation for an explosive episode

Sampling period r̂PWY
e r̂PWY

f Duration r̂HARe r̂HARf Duration

(a’) Jan 1872 to May 1880 July 1879 May 1880 10 mo Oct 1879 Apr 1880 6 mo
(d’) Jun 1948 to Feb 1957 Nov 1954 Feb 1957 26 mo Dec 1954 Feb 1956 14 mo
(f’) Jan 1989 to Dec 1998 Sep 1995 − > 40 mo Feb 1997 Oct 1997 8 mo

Table 12 reports the estimates of bubble origination date (r̂PWY
e , r̂HARe ), termination

date (r̂PWY
f , r̂HARf ) and duration (in months) for the corresponding sampling periods. The

graphs which plot the estimates, sequence of statistics and critical values are documented

in Appendix C.1.

Some conclusions can be drawn from Table 12. Firstly, using the PWY method, we al-

ways have an earlier bubble origination date estimate (r̂PWY
e ) than HAR estimate (r̂HARe )

13In Appendix 1, a robustness checks for the rational bubble conclusion using the sup statistics was

carried out to confirm the explosiveness.
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in the 4 sampling periods, this is particularly obvious in sampling period (e’) and (f’)

where the r̂e using PWY method and our method are drastically different. Secondly, the

bubble termination date estimate from the two methods also have a large difference. In

sampling period (d’) while our method estimates that the explosive episode ends in Febru-

ary 1956, PWY method predicts it ends at a year later. Finally, while the PWY method

concludes that rational bubble can exist in the stock market for more than 2 years, our

HAR method concludes that the longest explosive episode only last slightly longer than a

year.

From these empirical applications, we has two interesting takeaways which are sharply

different from PWY. Firstly, our HAR test concludes that it is less frequent that we have an

explosive episode in US stock market. Secondly, when we do have an explosive episode,

the duration of this exuberance period is shorter than PWY’s estimate.

3.8 Conclusion

This paper introduces a new test and dating algorithm for the purpose of bubble de-

tection. We motivate our test by showing empirical evidence that an autoregressive model

may have strongly dependent errors. Because strongly dependent errors produce diver-

gent Dickey-Fuller t statistics, the use of the traditional right-tailed unit root test statistics,

such as the PWY statistic, spuriously detects a rational bubble. Not surprisingly, the PWY

method also gives inaccurate estimators of the bubble origination and termination dates.

To avoid the spurious bubble detection, we propose a heteroskedasticity autocorre-

lation robust (HAR) test statistic. The idea behind our test is to use a properly self-

normalized estimator of the standard error of the LS estimator of the AR(1) coefficient.

We obtain the limit distribution of the proposed test statistic.

Based on a sequence of proposed test statistic, we then introduce new estimators to

timestamp the bubble origination and termination dates based on the first-time-crossing

principle. We show that the proposed estimators consistently estimate the bubble origina-

tion and termination dates when the true data generate process switches from a unit root

model to a mild explosive model with a crash at the end of the explosive period and then

switch back to a unit root model.
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We have designed several Monte Carlo experiments to study the finite sample prop-

erties of the proposed test and estimator. Via simulated data, we first show that the tra-

ditional unit root test identifies too many bubbles when in an AR model with strongly

dependent errors. We also show that the PWY estimator tends to have a too early esti-

mation on the bubble origination and termination dates. Via the same simulated data, we

then show that the proposed HAR statistic provides a test with well-controlled size and

power in finite samples. The proposed estimator also leads to much better finite sample

performance than the PWY estimators for the bubble origination and termination dates.

Our proposed test and estimators are applied to the data of S&P 500 monthly price-

dividend ratio. According to the new test, one of the rational bubbles ((b) June 1882

to May 1887) identified by the traditional unit root test are not robust against strongly

dependent errors, and some rational bubbles ((c) May 1940 to February 1946 and (e)

March 1980 to July 1987) only are only detected at a weak confidence level. However,

the proposed robust test re-confirm the explosiveness of these time series ((a) January

1872 to February 1880, (d) June 1948 to November 1955 and (f) May 1988 to April

1998). Using the PWY method, we notice that the estimate of bubble origination date

are always earlier, and the bubble duration is noticeably longer than our robust estimate.

Based on our theory and simulation result, we believe our estimate is more accurate, and

the empirical application suggests that the explosive episode in stock market should be

reasonably shorter than the PWY estimate.

While in this paper we have not addressed the issue of multiple bubbles, we should

point out that our test statistic and the estimators can be extended to deal with the multiple

bubbles in the same ways as in PSY (2015a, 2015b). The idea is to replace DFτ with

D̃F τ,HAR. Such an extension will be investigated in a future study.
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A Appendix to Chapter 1

A.1 Proof of Lemma 1 and Remark 4

Proof : Before proving Lemma 1, we define Υ1, Υ2 and Υ3 in Lemma 1 by

Υ1 :=
exp(2c)− 4 exp(c) + 2c+ 3

2c3
b2 +

2b

c

∫ 1

0

(exp(rc)− 1)Jc(r)dr

+

∫ 1

0

J2
c (r)dr +

exp(2c)− 2 exp(c) + 1

c2
bγ0 + 2γ0

∫ 1

0

exp(rc)Jc(r) + γ2
0

exp(2c)− 1

2c
;

Υ2 :=
exp(c)− c− 1

c2
b+

∫ 1

0

Jc(r)dr +
exp(c)− 1

c
γ0;

Υ3 :=
2b

c

∫ 1

0

(exp(rc)− 1)Jc(r)dr +

∫ 1

0

Jc(r)dW (r) + γ0

∫ 1

0

exp(rc)dW (r);

Jc(r) :=

∫ r

0

exp(c(r − s))dW (s); γ0 :=
y0

σψ
√
N

; b :=

(
µ+

σiψ′(0)

κ

) √
−cκ
σψ

; c := −κN.

Proof of Lemma 1 and Remark 4 can be done in the same way as in Zhou and Yu

(2010). The only difference is that in Zhou and Yu (2010) L(t) = W (t). If we divide

Equation (7) by σψλh, and let xt = yt/ (σψλh), then we have xt = ρhxt−1 + ğh + ut,

where ğh = gh
σψλh

. Under the in-fill scheme, we have

1

T 2

T∑
t=1

x2
t−1 ⇒ Υ1,

1

T 3/2

T∑
t=1

xt ⇒ Υ2,
1

T

T∑
t=1

xt−1ut ⇒ Υ3. (67)

Let S(T, κ) = 1
σ̂2T

∑T
t=1 yt−1εt− 1

σ̂T

∑T
t=1 yt−1

1
σ̂T

∑T
t=1 εt, andR(T, κ) = 1

σ̂2T 2

∑T
t=1 y

2
t−1−(

1

σ̂T
3
2

∑T
t=1 yt−1

)2

, where σ̂2 = 1
T

∑T
t=1 (yt − ĝh − ρ̂h(κ)yt−1)2. By construction, it can

be seen that

T (ρ̂h(κ)− ρh(κ)) =
S(T, κ)

R(T, κ)
and t (Y, ρ, T ) =

S(T, κ)√
R(T, κ)

.

Hence,

T (ρ̂h(κ)− ρh(κ)) =

1
T

∑T
t=1 xt−1ut − 1√

T

∑T
t=1 εt

1
T 3/2

∑T
t=1 xt

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2 .

Letting ςh(·) = − ln(·)/h, we have

κ̂h − κ = ςh(ρ̂h(κ))− ςh(ρh(κ)) = ς ′h(ρ̃h(κ))(ρ̂h(κ)− ρh(κ)),
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where ρ̃h(κ) is a value between ρ̂h(κ) and ρh(κ). Therefore, we can write

T

ς ′h(ρh(κ))
(κ̂h − κ) =

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
T (ρ̂h(κ)− ρh(κ)).

This implies

z (Y, κ, h) = hς ′h(ρh(κ))

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
z (Y, ρ, T ) . (68)

Since κ̂h = − ln(ρ̂h(κ))
h

, applying the generalized Delta method and using the relation-

ship in (68), Th = N,
(

1 +
ς′h(ρ̃h(κ))−ς′h(ρh(κ))

ς′h(ρh(κ))

)
→p 1, and hς ′h(ρ̃h(κ)) →p −1, we obtain

the limiting result z (Y, κ, h)⇒ −Υ3−Υ2

∫ 1
0 dW (r)

Υ1−Υ2
2

.

For t (Y, ρ, T ) , we have

t (Y, ρ, T ) =

∑T
t=1 yt−1εt − 1

T

∑T
t=1 yt−1

1
T

∑T
t=1 εt√

σ̂2

(∑T
t=1 y

2
t−1 − 1

T

(∑T
t=1 yt−1

)2
)

=

1
σ̂2T

∑T
t=1 yt−1εt − 1

σ̂T 3/2

∑T
t=1 yt−1

1
σ̂
√
T

∑T
t=1 εt√

1
σ̂2T 2

∑T
t=1 y

2
t−1 −

(
1

σ̂T 3/2

∑T
t=1 yt−1

)2

=
σψλh

σ̂c
√
h

 1
T

∑T
t=1 xt−1ut − 1

T 3/2

∑T
t=1 xt−1

1√
T

∑T
t=1 ut√

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2

 .
By Lemma 2, σψλh

σ̂c
√
h
→p 1. Applying results in (67), we can obtain the limit of t (Y, ρ, T ).

To show the limit of t(Y, κ, h), similar to (68), we have

t (Y, κ, h) = ς ′h(ρh)h

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
t (Y, ρ, T ) .

Later, we will show that ς
′
h(ρ̃h(κ))−ς′h(ρh(κ))

ς′h(ρh(κ))
is op(1), and ς ′h(ρh)h→ −1. Hence, t (Y, κ, h) =

−t (Y, ρ, T ) + op(1) under the in-fill scheme, giving the result in Remark 4. �

A.2 Proof of Lemma 2

Before proving Lemma 2, we need the following lemma to show that we can obtain a

consistent estimator of ğh at the rate of h−1/2.
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Lemma 6 For Model (7), let ˆ̆gh be the LS estimator of ğh. Then under the in-fill scheme,

for any κ > 0, we have

h−1/2(ˆ̆gh − ğh)⇒
1√
N

Υ1η −Υ2Υ3

Υ1 −Υ2
2

,

where η ∼ i.i.d.N(0, 1).

Proof : Note that

ĝh =

∑T
t=1 yt

∑T
t=1 y

2
t−1 −

∑T
t=1 yt−1

∑T
t=1 yt−1yt

T
∑T

t=1 y
2
t−1 −

(∑T
t=1 yt−1

)2 .

Using (7) and let ˆ̆gh = ĝh
σψλh

, we have

ˆ̆gh − ğh =

∑T
t=1 x

2
t−1

∑T
t=1 ut −

∑T
t=1 xt−1

∑T
t=1 xt−1ut

T
∑T

t=1 x
2
t−1 −

(∑T
t=1 xt−1

)2 .

Therefore, we have

T 1/2(ˆ̆gh − ğh) =

 1
T 2

∑T
t=1 x

2
t−1

1√
T

∑T
t=1 ut −

1
T 3/2

∑T
t=1 xt−1

1
T

∑T
t=1 xt−1ut

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2

 .
Note that T = N/h. Using (67), we therefore establish the result in Lemma 6. �

We now prove Lemma 2.

Proof : Let the LS residual be et = yt − ĝh − ρ̂hyt−1 and

σ̂2
c =

1

Th

T∑
t=1

e2
t =

1

Th

T∑
t=1

(εt + (gh − ĝh) + (ρh(κ)− ρ̂h)yt−1)2

=
1

Th

T∑
t=1

ε2t +
1

Th

T∑
t=1

(gh − ĝh)2 + (ρh(κ)− ρ̂h)2 1

Th

T∑
t=1

y2
t−1

+2(gh − ĝh)
1

Th

T∑
t=1

εt + 2(gh − ĝh)(ρh(κ)− ρ̂h)
1

Th

T∑
t=1

yt−1

+2(ρh(κ)− ρ̂h)
1

Th

T∑
t=1

yt−1εt. (69)

We now investigate the five terms on the right-hand side of (69) one-by-one.

1

Th

T∑
t=1

ε2t =
1

Th
σ2
ψλ

2
h

T∑
t=1

u2
t →p σ

2
ψ,
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1

Th

T∑
t=1

(gh − ĝh)2 =
(gh − ĝh)2

h
=
σ2
ψλ

2
h(

ˆ̆gh − ǧh)2

h
= Op(h) = op(1), (by Lemma 6)

(ρh(κ)− ρ̂h)2 1

Th

T∑
t=1

y2
t−1

=

(∑T
t=1 yt−1εt − 1

T

∑T
t=1 yt−1εt∑T

t=1 y
2
t−1 − 1

T
(
∑T

t=1 yt−1)2

)2
1

Th

T∑
t=1

y2
t−1

=
σ2
ψλ

2
h

Th

(∑T
t=1 xt−1ut − 1

T

∑T
t=1 xt−1ut∑T

t=1 y
2
t−1 − 1

T
(
∑T

t=1 xt−1)2

)2 T∑
t=1

x2
t−1

=
σ2
ψλ

2
h

Th

(∑T
t=1 xt−1ut

)2

− 2 1
T

(∑T
t=1 xt−1ut

)2

+ 1
T 2

(∑T
t=1 xt−1ut

)2

∑T
t=1 x

2
t−1 − 2 1

T

(∑T
t=1 xt−1

)2

+ 1
T 2

(
∑T
t=1 xt−1)

4∑T
t=1 x

2
t−1

=
σ2
ψλ

2
h

Th

(
1
T

∑T
t=1 xt−1ut

)2

− 2
T

(
1
T

∑T
t=1 xt−1ut

)2

+ 1
T 2

(
1
T

∑T
t=1 xt−1ut

)2

1
T 2

∑T
t=1 x

2
t−1 − 2

(
1

T 3/2

∑T
t=1 xt−1

)2

+

(
1

T3/2

∑T
t=1 xt−1

)4
1
T2

∑T
t=1 x

2
t−1

= Op(T
−1),

(gh − ĝh)
1

Th

T∑
t=1

εt = h−1/2(gh − ĝh)σψ
λh√
h

1

T

T∑
t=1

ut = Op(h
1/2)op(1) = op(1).

(gh − ĝh)(ρh(κ)− ρ̂h)
1

Th

T∑
t=1

yt−1 = Op(h)Op(T
−1)σψ

λh
h

1

T

T∑
t=1

xt−1

= Op(1)σψλh
1

T 2

T∑
t=1

xt−1 = op(1).

And finally,

(ρh(κ)− ρ̂h)
1

Th

T∑
t=1

yt−1εt = (ρh(κ)− ρ̂h)σ2
ψ

λ2
h

h

1

T

T∑
t=1

xt−1ut = Op(T
−1).

Thus,

σ̂2
c

σ2
ψ

− 1 =
λ2
h

h

1

T

T∑
t=1

u2
t − 1 +

1

σ2
ψ

1

Th

T∑
t=1

(gh − ĝh)2 + (ρh(κ)− ρ̂h)2λ
2
h

h

1

σ2
ψ

1

T

T∑
t=1

x2
t−1

+
2

σψ
(gh − ĝh)

λh√
h

1

T

T∑
t=1

ut +
2

σψ
(gh − ĝh)(ρh(κ)− ρ̂h)

1

Th

T∑
t=1

xt−1

+2(ρh(κ)− ρ̂h)
λh√
h

1

T

T∑
t=1

xt−1ut.
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Clearly, all terms on the right-hand side converge to zero in probability when h → 0

and N is fixed. �

A.3 Proof of Theorem 1 and Remark 7

Before proving Theorem 1 and Remark 7, we need some notations. Define ε∗t =

σ̂cλhu
∗
t and a pair of statistics (S∗(T, κ), R∗(T, κ)) by

(S∗(T, κ), R∗(T, κ))

=

 1

σ̂2T

T∑
t=1

y∗t−1ε
∗
t −

1

σ̂T

T∑
t=1

y∗t−1

1

σ̂T

T∑
t=1

ε∗t ,
1

σ̂2T 2

T∑
t=1

y∗2t−1 −

(
1

σ̂T
3
2

T∑
t=1

y∗t−1

)2
 .

By construction, we have z (Y ∗, ρ, T ) = S∗(T, κ)/R∗(T, κ) and t (Y ∗, ρ, T ) = S∗(T, κ)/
√
R∗(T, κ).

The ideas here is to show the asymptotic closeness of z (Y ∗, κ, T ) and z (Y, κ, T ) uni-

formly in κ. We first restate Lemma 2 and Lemma 12 in Mikusheva (2007) which are

used in our proof.

Lemma 7 (Lemma 2 and Lemma 12 in Mikusheva (2007)) Under Model (7), let Sj =∑j
t=1 ui be the partial sums. We can construct a sequence of processes wT (t) = 1√

T
SbTtc

and a sequence of Brownian motions ςT (t) on a common probability space, such that for

every ε > 0, we have sup
06t<1

|wT (t)− ςT (t)| = oas(T
−1/2+1/r+ε).

Suppose that bootstrap error term {u∗t}Tt=1 drawn from our resampling method in

Section 1.4, we can construct a process ηT (t) = 1√
T

∑bTtc
t=1 u

∗
t and ςT (t) on a common

probability space such that as T → ∞, sup
06t<1

|ηT (t) − ςT (t)| = op(T
−δ) for some δ > 0.

Thus, we have

sup
06t<1

|ηT (t)− wT (t)| = op(T
−δ) for some δ > 0. (70)

We now introduce the following Lemma which shows that, for every κ ∈ K, various

bootstrap moments and statistics are close to their finite sample counterparts.

Lemma 8 Suppose κ0 ∈ K, where K is a compact set in the positive half-line, then for

every ε > 0 and δ > 0, we have
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1. lim
h→0

sup
κ∈K

Pr {| (g̃h − gh) /σψλh| > ε} = 0;

2. sup
κ∈K

sup
t

∣∣∣ 1
σ̂

(
yt√
T
− y∗t√

T

)∣∣∣ = op(T
−δ);

3. sup
κ∈K

sup
t

∣∣∣ yt
σ̂
√
T

∣∣∣ = Op(1);

4.
∣∣∣ 1√

T

∑T
t=1 ηT

(
t
T

)
ut − 1√

T

∑T
t=1 wT

(
t
T

)
u∗t

∣∣∣ = op(T
−δ);

5. sup
κ∈K

∣∣∣ 1
σ̂T

∑T
t=1 yt−1εt − 1

σ̂T

∑T
t=1 y

∗
t−1ε

∗
t

∣∣∣ = op(T
−δ);

6. sup
κ∈K

∣∣∣ 1
T 2σ̂2

∑T
t=1 y

2
t−1 − 1

T 2σ̂2

∑T
t=1 y

∗2
t−1

∣∣∣ = op(T
−δ);

7. sup
κ∈K

∣∣∣ 1
σ̂2
√
T

∑T
t=1 εt

1
T 3/2

∑T
t=1 yt−1 − 1

σ̂2
√
T

∑T
t=1 ε

∗
t

1
T 3/2

∑T
t=1 y

∗
t−1

∣∣∣ = op(T
−δ);

8. sup
κ∈K

∣∣∣ 1
σ̂T 3/2

∑T
t=1 yt−1 − 1

σ̂T 3/2

∑T
t=1 y

∗
t−1

∣∣∣ = op(T
−δ);

9. lim
h→0

sup
κ∈K

Pr{|z (Y, ρ, T ) − z (Y ∗, ρ, T ) | > ε} = 0 and lim
h→0

sup
κ∈K

Pr{|z (Y, κ, T ) −

z (Y ∗, κ, T ) | > ε} = 0.

Proof : Since ut is i.i.d. with zero mean and unit variance, the Lindeberg–Lévy CLT

Central Limit Theorem applies. Hence,

1.
g̃h − gh
σψλh

=
1√
T

1√
T

T∑
t=1

ut = Op(T
−1/2).

2.
1

σ̂

yt√
T

=
1

σ̂

1√
T

[
t∑
i=1

ρt−ih εi + ρthy0 + gh

t∑
i=1

ρih

]

=
σψλh
σ̂

1√
T

t∑
i=1

ρt−ih ui +
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

=
σψλh
σ̂

t∑
i=1

ρt−ih

[
ηT

(
i

T

)
− ηT

(
i− 1

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

=
σψλh
σ̂

[
t∑
i=1

(
ρt−ih − ρ

t−i−1
h

)
ηT

(
i

T

)
+ ηT

(
t

T

)
+ ρthηT

(
0

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

=
σψλh
σ̂

[
(ρh − 1)

t∑
i=1

ρt−i−1
h ηT

(
i

T

)
+ ηT

(
t

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih.
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1

σ̂

y∗t√
T

=
σ̂cλh
σ̂

[
(ρh − 1)

t∑
i=1

ρt−i−1
h wT

(
i

T

)
+ wT

(
t

T

)]
+
ρthy0

σ̂
√
T

+
g̃h

σ̂
√
T

t∑
i=1

ρih.

Note that by Lemma 2 and the continuous mapping theorem, when N is fixed and h→ 0,

we have T →∞, σψλh
σ̂
→p 1, and σ̂cλh

σ̂
→p 1. Hence,

sup
κ∈K

sup
t

∣∣∣∣ 1σ̂
(
yt−1√
T
−
y∗t−1√
T

)∣∣∣∣
= sup

κ∈K
sup
t

(1 + op(1))

∣∣∣∣∣ (ρh − 1)
∑t

i=1 ρ
t−i−1
h

(
ηT
(
i
T

)
− wT

(
i
T

))
+ηT

(
t
T

)
− wT

(
t
T

)
+ gh−g̃h

σ̂
√
T

∑t
i=1 ρ

i
h

∣∣∣∣∣
6 sup

κ∈K

[
(1 + op(1)) sup

t

(∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣
∣∣∣∣∣ρh − 1

ρh

t∑
i=1

ρt−ih + 1

∣∣∣∣∣
)]

+ sup
κ∈K

sup
t

∣∣∣∣∣gh − g̃hσ̂
√
T

t∑
i=1

ρih

∣∣∣∣∣
6 (1 + op(1)) sup

t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣ sup
κ∈K

∣∣∣∣ρh − 1

ρh

1− ρth
1− ρh

+ 1

∣∣∣∣+ sup
κ∈K

∣∣∣∣gh − g̃hσ̂c
√
N

ρh(1− ρTh )

1− ρh

∣∣∣∣
6 (1 + op(1)) sup

t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣ sup
κ∈K

∣∣∣∣ 1

ρh
+ 1

∣∣∣∣+ sup
κ∈K
|gh − g̃h|

Cρ,1

σ̂c
√
N

6 (1 + op(1)) sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣ (Cρ,2 + 1) + sup
κ∈K
|gh − g̃h
σψλh

/|
σψλhCρ,1

σ̂c
√
N

= op(T
−δ) ,

where both Cρ,1 and Cρ,2 depend on ρh.

3. sup
κ∈K

sup
t

∣∣∣∣ 1σ̂ yt√
T

∣∣∣∣
= sup

κ∈K
sup
t

∣∣∣∣∣σλhσ̂
[

(ρh − 1)
t∑
i=1

ρt−i−1
h ηT

(
i

T

)
+ ηT

(
t

T

)]
+
ρthy0

σ̂
√
T

+
gh

σ̂
√
T

t∑
i=1

ρih

∣∣∣∣∣
6 sup

κ∈K

[
(1 + op(1))

(
ρh − 1

ρh

t∑
i=1

ρt−jh + 1

)]
sup
t
|ηT (t)|+ sup

κ∈K

∣∣∣∣ y0

σ̂c
√
N

∣∣∣∣+
Cρ

σ̂c
√
N

= Op(1) ,

where Cρ depends on ρh.

4. See Lemma 4c) in Mikusheva (2007).
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5. Let ğh = gh
σψλh

. Then, we have

1

σ̂2T

T∑
t=1

yt−1εt

=
1

σ̂2T

(
yT

T∑
t=1

εt −
T∑
t=1

(yt − yt−1)
t∑

k=0

εk

)

=
1

σ̂2T

(
yT

T∑
t=1

εt −
T∑
t=2

(yt − yt−1)
t∑

k=0

εk − (y1 − y0)ε1

)

=
σ2
ψλ

2
h

σ̂2
ch

(
xT√
T

T∑
t=1

ut√
T
−

T∑
t=2

ğh + (ρh − 1)xt + ut√
T

t∑
k=0

zk√
T

)
− [gh + (ρh − 1)y0 + ε1]ε1

σ̂2T

=
σ2
ψλ

2
h

σ̂2
ch

(
xT√
T
ηT (1)−

T∑
t=2

ğh + (ρh − 1)xt−1 + ut√
T

ηT

(
t

T

))
− σψλh(ρh − 1)y0u1

σ̂2T

−
σ2
ψλ

2
h

σ̂2
ch

(
u1√
T

)2

− ghε1
σ̂2T

.

Similarly, denoting ˇ̃gh = g̃h
σcλh

, we have

1

σ̂2T

T∑
t=1

y∗t−1ε
∗
t =

λ2
h

h

(
x∗T√
T
wT (1)−

T∑
t=2

ˇ̃gh + (ρh − 1)x∗t−1 + u∗t√
T

wT

(
t

T

))

− σ̂cλh(ρh − 1)y0u
∗
1

σ̂2T
− λ2

h

h

(
u∗1√
T

)2

− g̃hε
∗
1

σ̂2T
.

Hence,

1

σ̂2T

T∑
t=1

yt−1εt −
1

σ̂2T

T∑
t=1

y∗t−1ε
∗
t = A+B + C +D + E + F +G,

where

A =
σ2
ψλ

2
h

σ̂2
ch

xT√
T
ηT (1)− λ2

h

h

x∗T√
T
wT (1), B =

λ2
h

h

ˇ̃gh√
T

T∑
t=1

wT

(
t

T

)
−
σ2
ψλ

2
h

σ̂2
ch

ǧh√
T

T∑
t=1

ηT

(
t

T

)
,

C =
(ρh − 1)λ2

h

h

T∑
t=2

x∗t−1√
T
wT

(
t

T

)
−

(ρh − 1)σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

xt−1√
T
ηT

(
t

T

)
,

D =
λ2
h

h

T∑
t=2

u∗t√
T
wT

(
t

T

)
− σ2λ2

h

σ̂2
ch

T∑
t=2

ut√
T
ηT

(
t

T

)
, E =

(ρh − 1)σ̂cλh
σ̂2T

y0u
∗
1 −

(ρh − 1)σψλh
σ̂2T

y0u1,

F =
λ2
h

h

(
z∗1√
T

)2

−
σ2
ψλ

2
h

σ̂2
ch

(
z1√
T

)2

, G =
g̃hε
∗
1

σ̂2T
− ghε1
σ̂2T

.
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We now examine these terms one-by-one.

sup
κ∈K

sup
t
|A| = sup

κ∈K
sup
t

∣∣∣∣σ2
ψλ

2
h

σ̂2
ch

xT√
T
ηT (1)− λ2

h

h

x∗T√
T
wT (1)

∣∣∣∣
= sup

κ∈K
sup
t

∣∣∣∣(1 + op(1))

(
xT√
T
ηT (1)− x∗T√

T
wT (1)

)∣∣∣∣
= sup

κ∈K
sup
t

∣∣∣∣(1 + op(1))

(
xT√
T

(ηT (1)− wT (1)) +

(
xT√
T
− x∗T√

T

)
wT (1)

)∣∣∣∣
6 (1 + op(1))

[
sup
κ∈K

∣∣∣∣ xT√T
∣∣∣∣ sup

t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣+ sup
t

∣∣∣∣wT (t)

(
xt√
T
− x∗t√

T

)∣∣∣∣]
= op(T

−δ).

sup
κ∈K

sup
t
|B| = sup

κ∈K
sup
t

∣∣∣∣∣λ2
h

h

ˇ̃gh√
T

T∑
t=1

wT

(
t

T

)
−
σ2
ψλ

2
h

σ̂2
ch

ǧh√
T

T∑
t=1

ηT

(
t

T

)∣∣∣∣∣
= sup

κ∈K
sup
t

∣∣∣∣∣(1 + op(1))
ǧh√
T

(
T∑
t=1

(
wT

(
t

T

)
− ηT

(
t

T

)))∣∣∣∣∣
6 (1 + op(1)) sup

κ∈K

∣∣∣∣∣ ghT

σψλh
√
T

∣∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣
= (1 + op(1)) sup

κ∈K

∣∣∣∣∣(µκ+ σiψ′(0))
√
N

σψ′′(0)

∣∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣
= op(T

−δ).

sup
κ∈K

sup
t
|C| = sup

κ∈K
sup
t

∣∣∣∣∣(ρh − 1)λ2
h

h

T∑
t=2

x∗t−1√
T
wT

(
t

T

)
−

(ρh − 1)σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

xt−1√
T
ηT

(
t

T

)∣∣∣∣∣
= (1 + op(1)) sup

κ∈K
|ρh − 1| sup

t

T∑
t=2

∣∣∣∣∣∣
x∗t−1√
T

(
wT
(
t
T

)
− ηT

(
t
T

))
+ηT

(
t
T

) (x∗t−1√
T
− xt−1√

T

) ∣∣∣∣∣∣
6 sup

κ∈K
| − κh+ o(h2)|T

 sup
t

∣∣∣x∗t−1√
T

∣∣∣ sup
t

∣∣wT ( tT )− ηT ( tT )∣∣
+ sup

t

∣∣ηT ( tT )∣∣ sup
t

∣∣∣x∗t−1√
T
− xt−1√

T

∣∣∣


6 CN

(
sup
t

∣∣∣∣x∗t−1√
T

∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣+ sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣ sup
t

∣∣∣∣x∗t−1√
T
− xt−1√

T

∣∣∣∣)
= op(T

−δ).
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sup
κ∈K

sup
t
|D| = sup

κ∈K
sup
t

∣∣∣∣∣λ2
h

h

T∑
t=2

u∗t√
T
wT

(
t

T

)
−
σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

ut√
T
ηT

(
t

T

)∣∣∣∣∣
= sup

t

∣∣∣∣∣(1 + op(1))

(
T∑
t=2

u∗t√
T
wT

(
t

T

)
−

T∑
t=2

ut√
T
ηT

(
t

T

))∣∣∣∣∣
= sup

t

∣∣∣∣∣(1 + op(1))

(
T∑
t=2

u∗t√
T

(
wT

(
t

T

)
− ηT

(
t

T

))
+

T∑
t=2

(
u∗t − ut√

T

)
ηT

(
t

T

))∣∣∣∣∣
6 sup

t

∣∣∣∣wT ( t

T

)∣∣∣∣ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣+ sup
t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣ sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣
= op(T

−δ).

sup
κ∈K

sup
t
|E| = sup

κ∈K
sup
t

∣∣∣∣(ρh − 1)σ̂cλh
σ̂2T

y0u
∗
1 −

(ρh − 1)σψλh
σ̂2T

y0u1

∣∣∣∣
= sup

κ∈K
sup
t

∣∣∣∣κh 1

σ

λh√
h

y0√
hT

[
u1√
T

]
− κh 1

σ

λh√
h

y0√
hT

[
u∗1√
T

]∣∣∣∣+ op(h)

6 Cκh
1

σ

|y0|√
N

[
sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣+ sup
t

∣∣∣∣wT ( t

T

)∣∣∣∣]+ op(1) = op(h),

where Cκ depends on κ.

sup
κ∈K

sup
t
|F | = sup

κ∈K
sup
t

∣∣∣∣∣λ2
h

h

(
u∗1√
T

)2

−
σ2
ψλ

2
h

σ̂2
ch

(
u1√
T

)2
∣∣∣∣∣

= sup
κ∈K

sup
t

∣∣∣∣∣(1 + op(h))

((
u∗1√
T

)2

−
(
u1√
T

)2
)∣∣∣∣∣

= sup
κ∈K

sup
t

∣∣∣∣(1 + op(h))

[(
u∗1√
T

)
−
(
u1√
T

)][(
u∗1√
T

)
+

(
u1√
T

)]∣∣∣∣
6 (1 + op(h)) sup

t

∣∣∣∣wT ( t

T

)
− ηT

(
t

T

)∣∣∣∣ (sup
t

∣∣∣∣wT ( t

T

)∣∣∣∣+ sup
t

∣∣∣∣ηT ( t

T

)∣∣∣∣)
= op(T

−δ).

sup
κ∈K

sup
t
|G| 6 sup

κ∈K

∣∣∣∣(1 + op(1))
gh
σ̂2
cN

∣∣∣∣ sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣ = op(T
−δ).

Thus, we have established item 5.
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For item 6,

sup
κ∈K

∣∣∣∣∣
∑T

t=1 y
2
t−1

T σ̂2
−
∑T

t=1 y
∗2
t−1

T σ̂2

∣∣∣∣∣ = sup
κ∈K

∣∣∣∣∣ 1

T σ̂2

T∑
t=2

y2
t−1 −

1

T σ̂2

T∑
t=2

y∗2t−1 +
1

T σ̂2
y2

0 −
1

T σ̂2
y2

0

∣∣∣∣∣
= sup

κ∈K

∣∣∣∣∣σ2
ψλ

2
h

σ̂2
ch

T∑
t=2

(
xt−1√
T

)2

− λ2
h

h

T∑
t=2

(
x∗t−1√
T

)2
∣∣∣∣∣

= sup
κ∈K

∣∣∣∣∣(1 + op(h))

[
T∑
t=2

(
xt−1√
T

)2

−
T∑
t=2

(
x∗t−1√
T

)2
]∣∣∣∣∣

6 (1 + op(h)) sup
t

∣∣∣∣ xt√T − x∗t√
T

∣∣∣∣ (sup
t

∣∣∣∣ xt√T
∣∣∣∣+ sup

t

∣∣∣∣ x∗t√T
∣∣∣∣)

= op(T
−δ).

For item 7,

sup
κ∈K

∣∣∣∣∣ 1

σ̂2
√
T

T∑
t=1

εt
1

T 3/2

T∑
t=1

yt−1 −
1

σ̂2
√
T

T∑
t=1

ε∗t
1

T 3/2

T∑
t=1

y∗t−1

∣∣∣∣∣
= sup

κ∈K

∣∣∣∣σ2
ψλ

2
h

σ̂ch

1

T 3/2

T∑
t=1

xt−1

T∑
t=1

ut√
T
− λ2

h

h

1

T 3/2

T∑
t=1

xt−1

T∑
t=1

u∗t√
T

+
σ2
ψλ

2
h

σ̂2
ch

T∑
t=1

u∗t√
T

(
1

T 3/2

T∑
t=1

xt−1 −
1

T 3/2

T∑
t=1

x∗t−1

)∣∣∣∣
6 sup

κ∈K
sup
t

∣∣∣∣∣ 1

T

T∑
t=1

xt−1√
T

∣∣∣∣∣ sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣
+

1

T
sup
t

∣∣∣∣wT ( t

T

)∣∣∣∣ sup
t

∣∣∣∣ηT ( t

T

)
− wT

(
t

T

)∣∣∣∣+ oa.s.(1) = op(T
−δ).

For item 8,

sup
κ∈K

∣∣∣∣∣ 1

σ̂T 3/2

T∑
t=1

yt−1 −
1

σ̂T 3/2

T∑
t=1

y∗t−1

∣∣∣∣∣ = sup
κ∈K

∣∣∣∣∣ 1

T

T∑
t=1

[
1

σ̂

(
yt−1√
T
−
y∗t−1√
T

)]∣∣∣∣∣ = op(T
−δ).

For item 9,

sup
κ∈K

Pr{|z (Y, ρ, T )− z (Y ∗, ρ, T ) | > ε}

= sup
κ∈K

Pr

{∣∣∣∣S(T, κ)

R(T, κ)
− S∗(T, κ)

R∗(T, κ)

∣∣∣∣ > ε

}
6 sup

κ∈K
Pr {|C (|S(T, κ)− S∗(T, κ)|+ |R(T, κ)−R∗(T, κ)|)| > ε} →p 0.

From the relationship of z (Y, ρ, T ) and z (Y, κ, h), the closeness of z (Y, ρ, T ) and
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z (Y ∗, ρ, T ) implies the closeness of z (Y, κ, h) and z (Y ∗, κ, h).

sup
κ∈K

Pr{|z (Y, κ, h)− z (Y ∗, κ, h) | > ε}

= sup
κ∈K

Pr

{∣∣∣∣ς ′h(ρh(κ))h

(
1 +

ς ′h(ρ̃h(κ))− ς ′h(ρh(κ))

ς ′h(ρh(κ))

)
z (Y, ρ, T )

−ς ′h(ρh)h
(

1 +
ς ′h(ρ̃

∗
h(κ))− ς ′h(ρh)
ς ′h(ρh)

)
z (Y ∗, ρ, T )

∣∣∣∣ > ε

}
= sup

κ∈K
Pr {(1 + op(1))|z (Y, ρ, T )− z (Y ∗, ρ, T ) |} →p 0.

The last step is due to Theorem 1 in Phillips (2012) as the sequence {ς ′h(ρh(κ))} is

asymptotically locally relatively equicontinuous in ρ. Since ρ̂h − ρh = Op(T
−1), let a

shrinking neighborhood denoted by

Bh
δ =

{
ρ̂h : |ρ̂h − ρh| <

δ

T a

}
,

where δ > 0 and a ∈ (0, 1). Note that for any ρh in Bh
δ , we have:

ς ′h(ρ̂h)− ς ′h(ρh)
ς ′h(ρh)

= −
1
hρh
− 1

hρ̂h
1
hρh

=
ρh − ρ̂h
ρ̂h

6
δ

T a(ρh + op(1))
→p 0.

Now we are in the position to show Theorem 1, that is,

sup
κ∈K

sup
x
|Pr{z (Y, κ, h) < x} − Pr ∗{z (Y ∗, κ, h) < x|Y }| → 0;

inf
κ∈K

Pr{κ0 ∈ CIq} → x2 − x2 = q. (71)

Since S∗(T, κ) and R∗(T, κ) are jointly uniformly continuous by Assumption 4, this im-

plies that z (Y ∗, ρ, T ) is uniformly continuous in the following sense (see Lemma 2 in

Mikusheva (2007)),

lim
h→0

sup
κ∈K

sup
x
|Pr{z (Y, ρ, T ) < x|κ} − Pr ∗{z (Y ∗, ρ, T ) < x|κ, Y }| = 0.

Similarly, for Pr(z (Y, κ, h) < x|κ) and Pr ∗{z (Y ∗, κ, T ) < x|κ, Y }, we have

Pr(z (Y, κ, h) < x|κ) = Pr

(
z (Y, ρ, T ) < x

1

ςh(ρh)h

(
1 +

ς ′h(ρh)− ς ′h(ρh)
ς ′h(ρh)

)−1

|κ

)
= Pr (z (Y, ρ, T ) < −xρh + op(1)|κ)

= Pr (z (Y, ρ, T ) < −x+ op(1)|κ) ,
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and

Pr ∗{z (Y ∗, κ, T ) < x|κ, Y } = Pr ∗ (z (Y ∗, ρ, T ) < −x+ op(1)|κ, Y ) .

Thus, as h→ 0, we have

sup
κ∈K

sup
x
|Pr{z (Y, κ, h) < x} − Pr ∗{z (Y ∗, κ, h) < x|Y }| → 0.

The final claim (71) is a direct result of Lemma 1 in Mikusheva (2007). The result in

Remark 7 is established based on the same argument and is omitted. �

A.4 Proof of Theorem 2

Before we prove Theorem 2, we need to introduce three lemmas. All three lemmas

rely on the probabilistic embedding of the partial sum process in an expanded probability

space. For details about the embedding, see Park (2003).

Lemma 9 (Park (2003), Lemma 3.5(a)) Assume that zj are i.i.d. random variable with

mean 0 and variance σ2
z , and E|zj|r <∞ for some r > 8. Let N(t) = W (1 + t)−W (1),

and M(t) be a Brownian motion which is independent on W . Then

1√
Tσz

T∑
t=1

ut = W (1) +
1

T 1/4
M(V ) +

1√
T
N(V ) + op(T

−1/2),

where B = (W,V, U) is a Brownian motion with variance matrix Σ as

Σ =

 1 µ3/3σ
3
z µ3/σ

3
z

µ3/3σ
3
z %/σ4

z (µ4 − 3σ4
z + 3%)/6σ4

z

µ3/σ
3
z (µ4 − 3σ4

z + 3%)/6σ4
z (µ4 − σ4

z)/σ
4
z

 .
Here, µ3 = Ez3

j , µ4 = Ez4
j , % = E(τj − σ2

z)
2. We define τj implicitly by Skorohod’s

embedding scheme (Skorohod, 1965) such that on an extended probability space, we have

the distribution equivalence given by{
1√
Tσz

j∑
i=1

zi

}T

j=1

d
=

{
W

(
1

Tσ2
z

j∑
i=1

τi

)}
,

where
(

1
Tσ2

z

∑j
i=1 τi

)
is known as the stopping time.
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Lemma 10 (Mikusheva (2015), Theorem 1) Suppose c 6 0 and zj satisfies the assump-

tion in Lemma 9. Let x̃t =
∑t

j=1 exp
(
c
(
t−j
T

))
zj , and zj is an i.i.d. random variable with

mean 0 and variance 1. Then we have the following results:

1

T

T∑
t=1

x̃t−1ut =

∫ 1

0

Jc(r)dW (r) +
1

T 1/4
Jc(1)M(V )

+
1√
T

(
−c
∫ 1

0

∫ r

0

ec(r−s)Jc(s)dV (s)dW (r) + Jc(1)N(V ) +
1

2
M2(V )− 1

2
U

)
+op(T

−1/2).

1

T 2

T∑
t=1

x̃2
t =

∫ 1

0

J2
c (r)dr − 2c√

T

∫ 1

0

Jc(r)

∫ r

0

ec(r−s)Jc(s)dV (s)dr

= − 1√
T

∫ 1

0

J2
c (r)dV (r) +

1√
T
J2
c (1)V − 2µ3

3
√
T

∫ 1

0

Jc(r)dr + op(T
−1/2).

1

T 3/2

T∑
t=1

x̃t =

∫ 1

0

Jc(r)dr −
c√
T

∫ 1

0

∫ r

0

ec(r−s)Jc(s)dV (s)dr − 1√
T

∫ 1

0

Jc(r)dV (r)

= +
1√
T
Jc(1)V − µ3

3
√
T

+ op(T
−1/2).

Lemma 11 Under model (4), if κ > 0, then we have

1. 1
T

∑T
t=1 xtzt+1 = Υ3 + 1

T 1/4R3,T−1/4 + 1
T 1/2R3,T−1/2 + op(T

−1/2);

2. 1
T 2

∑T
t=1 x

2
t = Υ1 + 1

T 1/2R1,T−1/2 + op(T
−1/2);

3. 1
T 3/2

∑T
t=1 xt = Υ2 + 1

T 1/2R2,T−1/2 + op(T
−1/2),

where

R3,T−1/4 = Jc(1)N(V ) +
b

c
M(V );

R3/T−1/2 = −c
∫ 1

0

∫ r

0

ec(r−s)Jc(s)dV (s)dW (r) +

(
Jc(1) +

b

c

)
N(V ) +

1

2
M2(V )− 1

2
U ;

R2,T−1/2 = −c
∫ 1

0

∫ r

0

er(c−s)Jc(s)dV (s)dr −
∫ 1

0

Jc(r)dV (r) + Jc(1)V − µ3

3
;

R1,T−1/2 = −2c

∫ 1

0

Jc(r)

∫ r

0

ec(r−s)Jc(s)dV (s)dr −
∫ 1

0

J2
c (r)dV (r) + J2

c (1)V

+2b

∫ 1

0

(erc − 1)

∫ r

0

ec(r−s)Jc(s)dV (s)dr − 2
µ3

3

∫ 1

0

Jc(r)dr.
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Proof : By backward substitutions, we can write xt as

xt =
t∑

j=1

e(t−j)c/T zj +
b√
T

ect/T − 1

ec/T − 1
+ ect/Tx0 + op(T

−1/2)

= x̃t +
b√
T

ect/T − 1

ec/T − 1
+ ect/Tx0 + op(T

−1/2). (72)

This expression allows us to evaluate the asymptotic behavior of 1
T

∑T
t=1 xtzt+1 , 1

T 2

∑T
t=1 x

2
t

and 1
T 3/2

∑T
t=1 xt.

We now show the first claim in Lemma 11.

1

T

T∑
t=1

xtzt+1 =
1

T

T∑
t=1

zt+1

t∑
j=1

ec(
t−j
T )zj +

1

T

T∑
t=1

b√
T

etc/T − 1

ec/T − 1
zt+1 +

x0

T

T∑
t=1

etc/T zt+1

=
1

T

T∑
t=1

x̃tzt+1 +
1

T

T∑
t=1

b√
T

etc/T − 1

ec/T − 1
zt+1 +

x0

T

T∑
t=1

etc/T zt+1.

The approximation to the first term is given in Lemma 10(1). For the second term, we

have

1

T

T∑
t=1

b√
T

etc/T − 1

ec/T − 1
zt+1 =

b

T (ec/T − 1)

1√
T

T∑
t=1

(etc/T − 1)zt+1

=
b

c

1√
T

T∑
t=1

ect/T zt+1 −
b

c

1√
T

T∑
t=1

zt+1 + o(T−1)

=
b

c

∫ 1

0

ercdW (r) +
b

c

(
W (1) +

1

T 1/4
M(V ) +

1√
T
N(V )

)
+ op(T

−1/2),

where the last equality is due to Lemma 9. For the third term, we have

x0

T

T∑
t=1

etc/T zt+1 =
x0√
T

1√
T

T∑
t=1

etc/T zt+1 =
y0

σψ
√
N

1√
T

T∑
t=1

etc/T zt+1 = γ0

∫ 1

0

ercdW (r)+op(T
−1/2).

To show the second claim of Lemma 11, note that

1

T 2

T∑
t=1

x2
t =

1

T 2

T∑
t=1

x̃2
t +

1

T 2

T∑
t=1

b2

T

(etc/T − 1)2

(ec/T − 1)2
+

1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1

T∑
t=1

t∑
j=0

e(t−j)c/T zj

= +
1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1
etc/Tx0 +

1

T 2

T∑
t=1

etc/Tx0

t∑
j=0

e(t−j)c/T zj +
1

T 2

T∑
t=1

e2tc/Tx2
0.

The first term is approximated by using Lemma 10. For the second term, as in Zhou

and Yu (2015), we can write

1

T 2

T∑
t=1

b2

T

(etc/T − 1)2

(ec/T − 1)2
=
e2c − 4ec + 2c+ 3

2c3
b2 +O(T−1).
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For the third term, we have

=
1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1

T∑
t=1

t∑
j=0

e(t−j)c/T zj

=
2b

T (ec/T − 1)

1

T

T∑
t=1

(ect/T − 1)
1√
T

t∑
j=1

e(t−j)c/T zj

=
2b

c

1

T

T∑
t=1

(ect/T − 1)
1√
T

t∑
j=1

e(t−j)c/T zj +Op(T
−1)

=
2b

c

∫ 1

0

(ecr − 1)Jc(r)dr +
2b

c

1

T

T∑
t=1

(ect/T − 1)
c√
T

∫ t/T

0

ec(t/T−s)Jc(s)dV (s) + op(T
−1/2)

=
2b

c

∫ 1

0

(ecr − 1)Jc(r)dr +
2b√
T

∫ 1

0

(ecr − 1)

∫ r

0

ec(r−s)Jc(s)dV (s)dr + op(T
−1/2).

Finally, for the last three terms, we have:

1

T 2

T∑
t=1

2b√
T

etc/T − 1

ec/T − 1
etc/Tx0 =

e2c − 2ec + 1

c2
bγ0 +O(T−1),

1

T 2

T∑
t=1

etc/Tx0

t∑
j=0

e(t−j)c/T zj = 2γ0

∫ 1

0

ercJc(r)dr +Op(T
−1),

1

T 2

T∑
t=1

e2tc/Tx2
0 = γ2

0

e2c − 1

2c
+O(T−1).

For the last claim, we have

1

T 3/2

T∑
t=1

xt =
1

T 3/2

T∑
t=1

x̃t +
T−2b

ct/T − 1

(
T∑
t=1

etc/T − T

)
+

1

T 3/2

T∑
t=1

ect/Tx0 +Op(T
−1)

=
1

T 3/2

T∑
t=1

x̃t +
b(ec(T+1)/T − ec/T )

T 2(ec/T − 1)2
− b

T (ec/T − 1)
+
ec − 1

c
γ0 +Op(T

−1)

=

∫ 1

0

Jc(r)dr −
c√
T

∫ 1

0

∫ r

0

ec(r−s)Jc(s)dV (s)dr − 1√
T

∫ 1

0

Jc(r)dV (r)

+
1√
T
Jc(1)V − µ3

3
√
T

+
ec − c− 1

c2
b+

ec − 1

c
γ0 + op(T

−1/2).

By summing all three terms, we obtain the results in Lemma 11. �

Now we are in the position to prove Theorem 2.

Proof : To show the probabilistic expansion, we rewrite z (Y, ρ, T ) as:

z (Y, ρ, T ) =

1
T

∑T
t=1 xt−1ut − 1

T 3/2

∑T
t=1 xt−1

1√
T

∑T
t=1 ut

1
T 2

∑T
t=1 x

2
t−1 −

(
1

T 3/2

∑T
t=1 xt−1

)2 .
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For the numerator and the denominator, after applying Lemma 11, we obtain

Υ3 −Υ2W (1) +
1

T 1/4
(R3,T−1/4 −M(V )Υ2)

+
1

T 1/2

(
R3,T−1/2 −N(V )Υ2 −R2,T−1/2W (1)

)
− 1

T 3/4
R2,T−1/2M(V )− 1

T
R2,T−1/2N(V ) + op(T

−1/2),

and

Υ1 −Υ2
2 +

1

T 1/2
(R1,T−1/2 − 2R2,T−1/2)−

1

T
R2,T−1/2 + op(T

−1/2).

Expanding z (Y, ρ, T ) around the in-fill limit by the Taylor series expansion, we obtain

z (Y, ρ, T ) =
Υ3 −Υ2W (1)

Υ1 −Υ2
2

+
1

T 1/4

R3,T−1/4 −M(V )Υ2

Υ1 −Υ2
2

+
1

T 1/2

 R
3,T−1/2−N(V )Υ2−R2,T−1/2W (1)

Υ1−Υ2
2

−Υ3−Υ2W (1)

(Υ1−Υ2
2)2

(
R1,T−1/2 − 2R2,T−1/2

)
+ op

(
T−1/2

)
=zy0 (ρ, θ) + T−1/4Ã+ T−1/2B̃ + op(T

−1/2),

where

Ã =
R3,T−1/4 −M(V )Υ2

Υ1 −Υ2
2

,

B̃ =
R3,T−1/2 −N(V )Υ2 −R2,T−1/2W (1)

Υ1 −Υ2
2

− Υ3 −Υ2W (1)

(Υ1 −Υ2
2)2

(
R1,T−1/2 − 2R2,T−1/2

)
.

The expansion of z (Y, κ, h) can be obtained from (68) and the Taylor series expansion of

hς ′h(ρh(κ)) = − exp(κh).

Finally, for the last claim in Theorem 2, following Theorem 3 in Mikusheva (2015),

we can easily show that the difference between the distribution of the coefficient-based

statistic and the bootstrap statistic is of order o(T−1/2). �

Before proving Proposition 1, we need the following lemma.

Lemma 12 (In-fill distribution under Model (15)) Under Model (16), as h → 0, we

have

z(Y, κ, h)⇒ z̄y0(κ, θ).
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Proof : From the discrete-time model (16), letting xt = yt/λh, we have

xt = ρh(κ)xt−1 + ğh + σtut, (73)

where ğh = gh/λh. Letting h→ 0 and applying Donsker’s theorem, we have

1√
T

bsT c∑
t=1

σtut ⇒ ψ′′(0)

∫ s

0

ω(s)dW (s) = σ̄ψWω(s), (74)

where Wω(s) = σ̄−1
ψ ψ′′(0)

∫ s
0
ω(s)dW (s), and σ̄2

ψ = ψ′′(0)2
∫ 1

0
ω(r)2dr. Applying the

continuous mapping theorem and following the proof of Lemma 1, we have

1

T 3/2

T∑
t=1

xt ⇒
ec − c− 1

c2
b̄+ σ̄ψ

∫ 1

0

Jωc (r)dr +
ec − 1

c
γ̄ := Ῡ2;

1

T 2

T∑
t=1

x2
t ⇒

e2c + 4ec + 2c+ 3

2c3
b̄2 + σ̄ψ

∫ 1

0

(Jωc (r))2 dr +
2b̄σ̄ψ
c

∫ 1

0

erc−1Jωc (r)dr

+
e2c − 2ec + 1

c2
b̄γ̄0 + 2γ̄0σ̄ψ

∫ 1

0

ercJωc (r)dr + γ̄2
0

e2c − 1

2c
:= Ῡ1; (75)

1

T

T∑
t=1

xt−1σtut ⇒
2b̄σ̄ψ
c

∫ 1

0

(erc − 1)dWω(r) + σ̄2
ψ

∫ 1

0

Jωc (r)dWω(r) + γ̄σ̄ψ

∫ 1

0

dWω(r) = Ῡ3,

where Jωc (r) =
∫ r

0
ec(r−s)dWω(s), b̄ = µ

√
cκ and γ̄0 = y0√

N
. Eventually, we can obtain

the in-fill distribution z̄y0(κ, θ) = − Ῡ3−Ῡ2ψ′′(0)
∫ s
0 ω(s)dW (s)

Ῡ1−Ῡ2
2

. �

We are in the position to prove Proposition 1

Proof : We only scratch the proof for the sake of brevity. Let et be the LS resid-

ual. Since 1
Th

∑bsT c
t=1 e2

t ⇒p ψ
′′(0)2

∫ s
0
ω(r)2dr, the scaled sum of squared residuals is

a consistent estimator of the integrated variance ψ′′(0)2
∫ s

0
ω(r)2dr. Since the partial

sum 1√
T

∑bsT c
t=1

et√
h
z∗t is Gaussian with the covariance kernel MT (s ∧ t) and MT (s) =

1
Th

∑bsT c
t=1 e2

t ⇒p ψ
′′(0)2

∫ s
0
ω(r)2dr = σ̄2

ψ and ψ′′(0)
∫ s

0
ω(r)2dr is the kernel function of

the transformed Brownian motion σ̄ψWω(s) = σ̄ψW (ω(s)), it implies the weak conver-

gence in probability, that is,

1√
T

bsT c∑
t=1

et√
h
z∗t

p⇒ σ̄ψWω(s). (76)

Since ğh can be consistently estimated (conditional on κ) as ˆ̆gh − ğh = 1
T

∑bsT c
t=1 σtut =

op(1) from (74), analogous to (73), the bootstrap data generating process can be written
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as

x∗t = ρh(κ)x∗t−1 + ğh + eth
−1/2z∗t + op(1). (77)

Applying the continuous mapping theorem, we obtain the analogous results to those in

(75). Eventually we have

z(Y ∗, κ, h)
p⇒ z̄y0(κ, θ). (78)

The convergence in (78) implies that Pr∗(z(Y ∗, κ, h) < x|κ, Y ∗) → Pr(z̄y0(κ, θ) <

x|κ) uniformly in probability and that Pr∗(z(Y ∗, κ, h) < x|κ, Y ) →d U [0, 1] (since

Pr(z̄y0(κ, θ) < x|κ) is a cumulative distribution function). From the definition of BCI,

we have

CIBq = {κ ∈ R : c∗T (x1|κ) 6 z(Y ∗, κ, h) 6 c∗T (x2|κ)}

= {κ ∈ R : x1 6 Pr ∗(z(Y ∗, κ, h) < x|κ, Y ) 6 x2} .

As Pr∗(z(Y ∗, κ, h) < x|κ, Y )→d U [0, 1], we obtain the desired result. �
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B Appendix to Chapter 2

Lemma 13 (Lemma 2.3 in El Machkouri, Es-Sebaiy and Ouknine (2016)) Suppose we

have the following stochastic differential equation:

dX(t) = cX(t)dt+ dG(t), X(0) = X0 = 0,

where G(t) is a Gaussian process and c > 0. Further assume the following two assump-

tions hold for G = (G(t), t > 0).

1. The process G has Hölder continuous paths of order δ ∈ (0, 1];

2. For every t > 0, E(G2(t)) 6 ct2γ for some positive constants c and γ.

Then, for every t > 0, we have

1

2
X2(t) = c

∫ t

0

X2(s)ds+ cZ(t)

∫ t

0

ecsdG(s) +R(t),

where

Z(t) =

∫ t

0

e−csG(s)ds,

R(t) =
1

2
G2(t)− c

∫ t

0

G2(s)ds+ c2

∫ t

0

∫ s

0

e−c(s−r)G(s)G(r)drds.

Proof of Lemma 4 Throughout the proof, we assume n → ∞ with m fixed. By

backward substitutions, we can write

ybnrc =
1− ρbnrcn,m

1− ρn,m
µn + ρbnrcn,m y0 +

bnrc∑
j=1

ρbnrc−jn,m uj.

Note that ρn,m = exp( cm
n

) + Rρ, with Rρ = −
∑∞

k=2

(
cm
n

)k
/k! = O(n−2). Applying the

binomial expansion, we have

ρbnrcn,m =
(

exp
(cm
n

)
+Rρ

)bnrc
=

bnrc∑
k=0

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rk
ρ

= exp
(cm
n

)bnrc
+

bnrc∑
k=1

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rk
ρ.
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We will show for any k > 1,(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rk
ρ → 0. (79)

To do so, note that
(bnrc

k

)
= O(nk), exp( cm

n
)bnrc−k = O(1), and Rk

ρ = exp(k lnRρ) =

exp (k lnO(n−2)) = exp (−2k ln(O(n))) . Hence,(
nr

k

)
exp

(cm
n

)nr−k
Rk
ρ = O[nk exp(−2k ln(O(n)))].

Moreover,

ln[nk exp(−2k ln(n))] = k ln(n)− 2k ln(n) = −k ln(n)→ −∞.

This proves (79).

Letting k∗ = arg maxk∈{2,...,n}
(
nr
k

)
exp

(
cm
n

)nr−k
Rk
ρ, we have

bnrc∑
k=2

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rk
ρ = O[n1+k∗ exp(−2k∗ ln(O(n)))]→ 0, (80)

because

ln[n1+k∗ exp(−2k∗ ln(n))] = (k∗ + 1− 2k∗) ln(n)

= (1− k∗) lnn→ −∞ since k∗ > 2.

From (79) and (80), we have
bnrc∑
k=1

(
bnrc
k

)
exp

(cm
n

)bnrc−k
Rk
ρ → 0.

So ρbnrcn,m = exp
(
cm
n

)bnrc
+ o(1). Since bnrc /nr → 1, we can write

ybnrc =
1− exp(cmr)

−cm/n
µn + (exp (cmr) + o(1))y0 +

bnrc∑
j=1

ρbnrc−jn,m uj + o(1). (81)

For the third term in (81), we can show that ρbnrc−jn,m = exp
(
cm
n

)bnrc−j
+ o(1) which

allows us to express
bnrc∑
j=1

ρbnrc−jn,m uj =

bnrc∑
j=1

(
exp

(cm
n

)bnrc−j
+ o(1)

)
uj

=

bnrc∑
j=1

exp
(cm
n

)bnrc−j
uj + o(1)

bnrc∑
j=1

uj

=

bnrc∑
j=1

exp
(cm
n

)bnrc−j
uj + op(n

1/2+d).
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We obtain the third equality by using (94) where
∑bnrc

j=1 uj = Op(n
1/2+d).

Eventually, we can rewrite (81) as

ybnrc = nrµn + exp (cmr) y0 +

bnrc∑
j=1

exp
(cm
n

)bnrc−j
uj + op(n

1/2+d). (82)

Let Xn(r) = 1
n1/2+dς

Sbnrc with Sbnrc =
∑bnrc

j=1 uj . Recall that under Model (25),

y0 = op(n
1/2+d), µn = µ/nϑ with ϑ > 1/2 − d. The first two terms in (82) vanish as

n→∞. If we multiply both sides in (82) by n−1/2−d, we have

n−1/2−dybnrc = ς

bnrc∑
j=1

e(bnrc−j)cm/n
∫ j/n

(j−1)/n

dXn(s) + op(1)

= ς

bnrc∑
j=1

∫ j/n

(j−1)/n

e(r−s)cmdXn(s) + op(1)

= ς

∫ r

0

e(r−s)cmdXn(s) + op(1)

⇒ ς

∫ r

0

e(r−s)cmdBH(s) := ςJHcm(r).

We have applied Lemma 16 with the continuous mapping theorem (Billingsley, 1968, p.

30) to obtain the last result.

For the terms involving
∑n

t=1 yt and
∑n

t=1 y
2
t−1, note that we can write

n−3/2−d
n∑
t=1

yt =
1

n

n∑
t=1

(
n−1/2−dyt

)
,

n−2−2d

n∑
t=1

y2
t =

1

n

n∑
t=1

(
n−1/2−dyt

)2
.

By applying the continuous mapping theorem, we obtain the second claim and the third

claim in Lemma 4.

For the last claim, after squaring yt and summing over t, we have

n∑
t=1

y2
t = ρ2

n,m

n∑
t=1

y2
t−1 + 2ρn,m

n∑
t=1

yt−1ut +
n∑
t=1

u2
t

+nµ2
n + 2µnρn,m

n∑
t=1

yt−1 + 2µn

n∑
t=1

ut,

93



which leads to

y2
n =

2cm

n

n∑
t=1

y2
t−1 + 2ρn,m

n∑
t=1

yt−1ut +
n∑
t=1

u2
t

+
(cm)2

n2

n∑
t=1

y2
t−1 + nµ2

n + 2µnρn,m

n∑
t=1

yt−1 + 2µn

n∑
t=1

ut.

Thus, we have

2ρn,m

n∑
t=1

yt−1ut = y2
n −

2cm

n

n∑
t=1

y2
t−1 −

n∑
t=1

u2
t −

(cm)2

n2

n∑
t=1

y2
t−1

−nµ2
n − 2µnρn,m

n∑
t=1

yt−1 − 2µn

n∑
t=1

ut,

2

n1+2d

n∑
t=1

yt−1ut =
1

n1+2d
y2
n −

2cm

n2+2d

n∑
t=1

y2
t−1 −

1

n2d

1

n

n∑
t=1

u2
t

− nµ2
n

n1+2d
− 2

µn
n1+2d

n∑
t=1

yt−1 − 2
µn
n1+2d

n∑
t=1

ut + op(1),

and

2

n1+2d

n∑
t=1

yt−1ut +
1

n2d

1

n

n∑
t=1

u2
t =

1

n1+2d
y2
n −

2cm

n2+2d

n∑
t=1

y2
t−1 −

nµ2
n

n1+2d

−2
µn
n1+2d

n∑
t=1

yt−1 − 2
µn
n1+2d

n∑
t=1

ut + op(1),

as ρn,m → 1, and (cm)2

n2

∑n
t=1 y

2
t−1 =Op(n

2d) is dominated by 2cm
n

∑n
t=1 y

2
t−1 =Op(n

1+2d)

when m is fixed.

Note that 1
n

∑n
t=1 u

2
t
as→ E[u2

t ] by the ergodic theorem and

nµ2
n

n1+2d
=
n−2d

n2θ
µ2 <

n1−2d

n2θ
µ2 =

(
n1/2−d

nϑ

)2

µ2 → 0,

µn
n1+2d

n∑
t=1

yt−1 = µ
1

nϑ
n3/2+d

n1+2d

(
1

n3/2+d

n∑
t=1

yt−1

)
= µ

n1/2−d

nϑ
Op(1) = op(1),

µn
n1+2d

n∑
t=1

ut = µ
1

nϑ
n1/2+d

n1+2d

(
1

n1/2+d

n∑
t=1

ut

)
= µn−1/2−d−ϑOp(1) = op(1) since ϑ > 0, and d < 1/2.
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These results lead to

2

n1+2d

n∑
t=1

yt−1ut +
1

n2d

1

n

n∑
t=1

u2
t ⇒ ς2

[(
JHcm(1)

)2 − 2cm

∫ 1

0

(
JHcm(r)

)2
dr

]
.

So we have

1

n1+2d

n∑
t=1

yt−1ut +
1

n2d

1

2n

n∑
t=1

u2
t ⇒ ς2

[
1

2

(
JHcm(1)

)2 − cm
∫ 1

0

(JHcm(r))2dr

]
= ς2

[
cmZ(1)

∫ 1

0

ecmsdBH(s) +R(1)

]
,

where the last step follows from Lemma 13. This completes the proof of Lemma 4.

To analyze the asymptotics when m→∞, we introduce the following lemma, which

documents some results of distributional equivalence. By the self-similarity property of

fBM, we have BH
(
t
m

) d
=
(

1
m

)H
BH(t). Let B̃H(t) := mHBH

(
t
m

)
.

Lemma 14 Applying the self-similarity property of fBM, we can obtain the following:

1.
∫ 1

0
JHcm(r)drBH(1)

d
= 1

m2H+1

∫ m
0
J̃Hc (s)dsB̃H(m);

2.
(∫ 1

0
JHcm(r)dr

)2 d
= 1

m2H+2

(∫ m
0
J̃Hc (s)ds

)2

;

3.
∫ 1

0
(JHcm(r))2dr

d
= 1

m2H+1

∫ m
0

(
J̃Hc (s)

)2

ds;

4. cmZ(1)
∫ 1

0
ecmsdBH(s) +R(1)

d
= 1

m2H

(
cZ̃(m)

∫ m
0
ecsdB̃H(s) + R̃(m)

)
,

where

J̃Hc (r) =

∫ r

0

ec(r−s)dB̃H(s),

Z̃(m) =

∫ m

0

e−csB̃H(s)ds,

R̃(m) =
1

2

(
B̃H(m)

)2

− c
∫ m

0

(
B̃H(s)

)2

ds+ c2

∫ m

0

∫ r

0

ec(r−s)B̃H(r)B̃H(s)drds.

Proof of Lemma 14

Lemma 14 obtains the distributional representations of different functionals of fBM.

We can prove the lemma by obtaining the distributional representations of all the compo-

nents on the left-hand sides of the four equations in Lemma 14. That is, we only need to

show the following results are correct:
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1. Z(1)
d
= 1

mH+1 Z̃(m);

2.
∫ 1

0
ecmsdBH(s)

d
= 1

mH

∫ m
0
ecsdB̃H(s);

3.
∫ 1

0

(
BH(s)

)2
ds

d
= 1

m2H+1

∫ m
0

(
B̃H(s)

)2

ds;

4.
∫ 1

0
JHcm(s)ds

d
= 1

mH+1

∫ m
0
J̃Hc (s)ds;

5.
∫ 1

0
(JHcm(s))2ds

d
= 1

m2H+1

∫ m
0

(
J̃Hc (s)

)2

ds;

6. m2
∫ 1

0

∫ s
0
ecm(r−s)BH(r)BH(s)drds

d
= 1

m2H

∫ m
0

∫ s
0
ec(r−s)B̃H(r)B̃H(s)drds.

As the steps to prove the above results are similar, we shall only prove the last two

claims. For the fifth claim, we have∫ 1

0

(
JHcm(r)

)2
dr =

∫ 1

0

(∫ r

0

ecm(r−s)dBH(s)

)2

dr

=

∫ 1

0

e2cmr

(∫ r

0

e−cmsdBH(s)

)2

dr

=

∫ 1

0

e2cmr

(∫ mr

0

e−cvdBH
( v
m

))2

dr

=
1

m2H

∫ 1

0

e2cmr

(∫ mr

0

e−cvd
(
mHBH

( v
m

)))2

dr

=
1

m2H

∫ m

0

e2cu

(∫ u

0

e−cvdB̃H(v)

)2

d
( u
m

)
=

1

m2H+1

∫ m

0

(∫ u

0

ec(u−v)dB̃H(v)

)2

du

=
1

m2H+1

∫ m

0

(
J̃Hc (u)

)2

du.

For the sixth result, we have

m2

∫ 1

0

∫ s

0

ecm(r−s)BH(r)BH(s)drds = m2

∫ 1

0

e−cms
(∫ s

0

ecmrBH(r)dr

)
BH(s)ds

= m2

∫ 1

0

e−cms
(∫ ms

0

ecrBH
( r
m

)
d
( r
m

))
BH(s)ds

=
m

mH

∫ m

0

e−cv
(∫ ms

0

ecrB̃H(r)dr

)
BH

( v
m

)
d
( v
m

)
=

1

m2H

∫ m

0

e−cv
(∫ v

0

ecrB̃H(r)dr

)
B̃H(v)dv

=
1

m2H

∫ m

0

∫ v

0

ec(r−v)B̃H(r)B̃H(v)drdv.
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Proof of Theorem 3

To avoid confusion, we now refer n → ∞ with m fixed as the “fix-m asymptotics”,

and n→∞ followed by m→∞ as the “sequential asymptotics”.

From (26) and (27), we can have the following expressions for the normalized centered

LS estimates

ecm

m
n(ρ̂a − ρ) =

ecm

m
n

(∑n
t=1 yt−1ut + 1

2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

−
1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

)
=

ecm

m
n

∑n
t=1 yt−1ut + 1

2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

− ecm

m
Ba
n

:=
ecm

m
Aan −

ecm

m
Ba
n, (83)

where Aan = n
∑n
t=1 yt−1ut+

1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1

and Ba
n = n

2

∑n
t=1 u

2
t/
∑n

t=1 y
2
t−1.

Similarly, we can express

ecm

m
n(ρ̂b − ρ) =

ecm

m
n


∑n
t=1 yt−1ut− 1

n

∑n
t=1 yt−1

∑n
t=1 ut+

1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1−

1
n(
∑n
t=1 yt−1)

2

−
1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1−

1
n(
∑n
t=1 yt−1)

2


:=

ecm

m
Abn −

ecm

m
Bb
n, (84)

where

Abn = n

∑n
t=1 yt−1ut − 1

n

∑n
t=1 yt−1

∑n
t=1 ut + 1

2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1 − 1

n
(
∑n

t=1 yt−1)
2 , Bb

n = n
1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1 − 1

n
(
∑n

t=1 yt−1)
2 .

Since the proofs of the sequential asympotics for e
cm

m
n(ρ̂a−ρ) are very similar to those

for e
cm

m
n(ρ̂b−ρ), we shall only prove the later. In fact, the only difference between the two

estimates is the extra terms induced by the inclusion of an intercept in the LS regression.

As we proceed, we will see the extra terms vanish in the sequential asympotics.

We first show the sequential limit of ecm

m
Abn in (84). Applying Lemma 4 and Lemma
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14, as n→∞ with fixed m,

ecm

m
Abn ⇒

ecm

m

cmZ(1)
∫ 1

0
ecmsdBH(s) +R(1)−

∫ 1

0
JHcm(r)drBH(1)∫ 1

0
(JHcm(r))2dr −

(∫ 1

0
JHcm(r)dr

)2

d
=

ecm

m

1
m2H

(
cZ̃(m)

∫ m
0
e−crB̃H(r)dr + R̃(m)− 1

m

∫ m
0
JHc (s)dsB̃H(m)

)
1

m2H+1

(∫ m
0
J̃Hc (s)2ds− 1

m

(∫ m
0
J̃Hc (s)ds

)2
)

= ecm
cZ̃(m)

∫ m
0
e−crB̃H(r)dr + R̃(m)− 1

m

∫ m
0
JHc (s)dsB̃H(m)∫ m

0
J̃Hc (s)2ds− 1

m

(∫ m
0
J̃Hc (s)ds

)2 . (85)

For the sake of notational simplicity, we now introduce the following process with

m > 0,

ξ(m) =

∫ m

0

e−crdB̃H(r), (86)

where the integral is interpreted in the Young sense.

From Lemma 2.1 of El Machkouri, Es-Sebaiy and Ouknine (2016), we obtain a well-

defined limit Z̃(∞) =
∫∞

0
e−crB̃H(r)dr. As m→∞, we have

Z̃(m)
as→ Z̃(∞) and ξ(m)

as→ ξ(∞) = cZ̃(∞). (87)

These two results are similar to those obtained by the martingale convergence theorem

used in PMG when m→∞.

By the definition of the Young integral, we obtain B̃H(0) = 0. By the definition of

Z̃(m), we have

ξ(m) = e−cmB̃H(m) + c

∫ m

0

e−crB̃H(r)dr = e−cmB̃H(m) + cZ̃(m),

J̃Hc (r) =

∫ r

0

ec(r−s)dB̃H(s) = ecr
∫ r

0

e−csdB̃H(s) = ecrξ(r).

So we can express (85) as

ecm

(
cZ̃(m)

∫ m
0
ecsdB̃H(s) + R̃(m)

)
− ecsξ(s)ds 1

m
B̃H(m)∫ m

0
e2csξ2(s)ds− 1

m

(
e−cm

∫ m
0
ecsξ(s)ds

)2

=
e−cm

[(
cZ̃(m)

∫ m
0
ecsdB̃H(s) + R̃(m)

)
− ecsξ(s)ds 1

m
B̃H(m)

]
e−2cm

[∫ m
0
e2csξ2(s)ds− 1

m

(
e−cm

∫ m
0
ecsξ(s)ds

)2
]

=
e−cm

(
cZ̃(m)

∫ m
0
ecsdB̃H(s) + R̃(m)

)
− ϕ′1

e−2cm
[∫ m

0
e2csξ2(s)ds

]
− ϕ′2

, (88)
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whereϕ′1 =
(
e−cm

∫ m
0
ecsξ(s)ds

) (
1
m
B̃H(m)

)
:= ϕ′1a×ϕ′1b, ϕ′2 = 1

m

(
e−cm

∫ m
0
ecsξ(s)ds

)2.

For the term
∫ m

0
ecsξ(s)ds, Propostion 3.1 in El Machkouri, Es-Sebaiy and Ouknine

(2016) shows it is a Gaussian process with a diverging variance. Therefore, applying (87)

and L’Hospital’s rule, we have, as m→∞,

lim
m→∞

ϕ′1a = lim
m→∞

e−cm
∫ m

0

ecsξ(s)ds

= lim
m→∞

ecmξ(m)

cecm
=
ξ(∞)

c
= Z̃(∞) . (89)

Since E
(

1
m
B̃H(m)

)
= 0, V ar

(
1
m
B̃H(m)

)
= m2H

m2 → 0, as m→∞,

ϕ′1b =
1

m
B̃H(m)

p→ 0.

Moreover, the continuous mapping theorem and Equation (89) imply that, asm→∞,(
e−cm

∫ m

0

ecsξ(s)ds

)2
as→ Z̃2(∞).

As 1
m
→ 0, ϕ′2

p→ 0. Note that ϕ′1 and ϕ′2 are the extra terms due to the inclusion of

the intercept in the LS regression. As they vanish, ecm

m
Aan and ecm

m
Abn are asymptotically

equivalent in the sequential asymptotics. Therefore, as m→∞, we can write (88) as,

e−cm
(
cZ̃(m)

∫ m
0
ecsdB̃H(s) + R̃(m)

)
e−2cm

∫ m
0
e2csξ2(s)ds

+ op(1) (90)

To derive the sequential limit of ecm

m
Abn, we need the following lemma.

Lemma 15 let ω and η be two independent standard normal random variables. Then, as

m→∞, we obtain:

1. e−2cm
∫ m

0
e2csξ2(s)ds

as→ c
2
Z̃2(∞);

2. cZ̃(m)
(
e−cm

∫ m
0
ecsdB̃H(s)

)
⇒ cZ̃(∞)

√
HΓ(2H)
c2H

η;

3. ξ(m)
as→ ξ(∞) =

√
HΓ(2H)
c2H

ω;

4. e−cmR̃(m)
p→ 0.
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The first result is immediate after applying (87) and L’Hospital’s rule. The last three

results can be obtained by applying Lemma 2.1, Lemma 2.2 and Lemma 2.4 of El Machk-

ouri, Es-Sebaiy and Ouknine (2016). Hence, as m → ∞ and using ξ(∞) = cZ̃(∞), we

have

e−cm
(
cZ̃(m)

∫ m
0
ecsdB̃H(s) + R̃(m)

)
e−2cm

∫ m
0
e2csξ2(s)ds

+ op(1) ⇒
cZ̃(∞)

√
HΓ(2H)
c2H

η

c
2
Z̃2(∞)

= 2c× η

ω
= 2c× C, (91)

where C is the standard Cauchy variate.

We now analyze the sequential limit of ecm

m
Bb
n in (84). A standard calculation shows

ecm

m
Bb
n =

ecm

m
n

1
2

∑n
t=1 u

2
t∑n

t=1 y
2
t−1 − 1

n
(
∑n

t=1 yt−1)
2

=
ecm

m

n−1−2d 1
2

∑n
t=1 u

2
t

n−2−2d
(∑n

t=1 y
2
t−1 − 1

n
(
∑n

t=1 yt−1)
2
)

=
e−cm

e−2cm

m2H

m2H+1

Op(n
−2d)

Op

(
e2cm

m2H+1

) as n→∞

= Op

(
m2Hn−2d

ecm

)
.

The third equality is established by 1
n

∑n
t=1 u

2
t = Oas(1), Lemma 4, Lemma 14 and

Lemma 17. The assumption m = δ lnn, with δ > −2d
c

implies that m
2Hn−2d

ecm
→ 0. To see

this,

ln
m2Hn−2d

ecm
= 2H lnm− 2d lnn− cm

= 2H (ln δ + ln lnn)− 2d lnn− cδ lnn

= −(cδ + 2d) lnn+ 2H (ln δ + ln lnn)

→ −∞.

Hence,
ecm

m
Bb
n = op(1). (92)

This suggests that when n → ∞ followed by m → ∞ and when m = δ lnn with

δ > −2d
c

, 1
n1+2d

1
2

∑n
t=1 u

2
t is dominated by 1

n1+2d

∑n
t=1 yt−1ut.

Equations (84), (91) and (92) imply that the sequential limit of 1
2c
ecm

m
n(ρ̂b − ρ) is the

standard Cauchy random variable C.
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C Appendix to Chapter 3

C.1 Sup statistic

In Remark 29 and 30, we mentioned that a version of sup statistics can be employed.

We now construct the sup statistic S̃DFHAR(τ0) which fits our testing purpose. Let

S̃DFHAR(τ0) = sup
τ∈[τ0,n]

ρ̃τ − 1

sτ,HAR

where ρ̃τ is defined in (53), sτ,HAR =
√

Ω̃HAR∑τ
t=1 ȳt−1

, Ω̃HAR =
∑n

j=−n+1KB

(
j
M

)
γ̂j, with

γ̂j being the jth order sample covariance and τ0 = bnr0c is the minimum data window.

We proceed to discuss the limit of S̃DFHAR(τ0) under the null or alternative hypothe-

ses in the following theorem.

Theorem 9 Suppose M = bbτc and KB(x) is the Bartlett kernel function.

Under model (48), as n→∞,

S̃DFHAR(τ0)

⇒ sup
r∈[r0,1]

b1/2
[
r
2(BH(r)2)−

(∫ r
0 B

H(s)dsBH(r)
)][

2r
(∫ r

0 B̃
H(s)2ds

)(∫ 1
0 B

H(p)2dp−
∫ 1−b

0 BH(p)BH(p+ br)
)
dp
]1/2

. (93)

Under model (56), as n→∞,

S̃DFHAR(τ0)

⇒ sup
r∈[r0,1]

b1/2
(
r
2Cr,d −Ar,dB

H(r) +Br,dcr − cA2
r,d

)
[
2r
(
Br,d − 1

rA
2
r,d

)(∫ 1
0 Gre,c(p)

2dp−
∫ (1−b)

0 Gre,c(p)Gre,c(p+ br)dp
)]1/2

.

Under model (56) with (59), furthermore τ0 < τf , as n→∞,

S̃DFHAR(τ0)
p→∞.

Theorem 9 documents the asymptotic behaviour of under the null hypothesis, locally

and mildly explosive alternatives. Under the null hypothesis, as expected, the sup statistic

converges to a stable distribution; under the local alternative, the limit of test statistic gives
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us the expression for asymptotical local power; and under the mildly explosive alternative,

the divergent behaviour for the test statistic implies a consistent detection for an explosive

episode when the data experience a sharp collapse.

The asymptotic distribution (93) and a consistent estimation of d will allow us to

obtain the (1− β)% confidence level critical value scv(1−β)%
HAR

(
d̂
)

.

C.1.1 Size of the sup test

To investigate the empirical size of the sup statistic S̃DFHAR(τ0), we perform a

Monte Carlo study based on DGP (64), and we let y0 = 0, d ∈ {0, 0.05, ..., 0.45}, ,.

To calculate sup statistics, as in Section 3.6.1, we let b = 0.05 to calculate Ω̃HAR. Also,

we need to choose the minimum data window. based on extensive simulations, we find

that the following rule of thumb gives a satisfactory power and size performance in finite

sample: r0 = 0.01 + 4.9/
√
n. So r0 ≈ 0.5 if n = 100 and r0 ≈ 0.23 if n = 500. For

comparison purpose, we report both the empirical size of SDF (τ0) and S̃DFHAR(τ0)

based on the 95% confidence level right-tailed unit root test.

Table 13 Empirical size of the right tailed unit root tests (95% confidence level)

n = 100, r0 = 0.50 d

Test statistics 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

SDF (τ0) 0.04 0.08 0.15 0.23 0.32 0.41 0.50 0.56 0.63 0.68

S̃DFHAR(τ0) 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.06 0.06

n = 500, r0 = 0.23 d

SDF (τ0) 0.04 0.15 0.32 0.49 0.64 0.75 0.83 0.87 0.90 0.93

S̃DFHAR(τ0) 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05

Table 13 documents the empirical size of the right tailed unit root test. The finding

indeed echoes the result in Table 8, where we see that SDF (τ0) has a severe oversize

problem when d becomes large, and S̃DFHAR(τ0) has a empirical size which is reason-

ably close to the nominal level.
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C.1.2 Power of the sup test

To illustrate the power of the sup test, we construct Monte Carlo studies based on

model (60) with the following parameter settings: y0 = 100, n = 100, c = 1, α = 0.6,

re = 0.6, rf ∈ {0.7, 0.75, 0.85} and d ∈ {0, 0.05, 0.1, ..., 0.45}. Similar to Table 7, we

report the power of SDF (τ0) and S̃DFHAR(τ0) based on the 95% confidence level tests.

Table 14 Power of the right tailed unit root tests (95% confidence level)

n = 100, r0 = 0.5 d

Test statistic 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45

re = 0.6, rf = 0.7 SDF (τ0) 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.96 0.95 0.94

S̃DFHAR(τ0) 1.00 1.00 1.00 0.99 0.97 0.94 0.90 0.85 0.80 0.75

re = 0.6, rf = 0.75 SDF (τ0) 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.99 0.98 0.97

S̃DFHAR(τ0) 1.00 1.00 1.00 1.00 0.99 0.98 0.95 0.91 0.87 0.82

re = 0.6, rf = 0.8 SDF (τ0) 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.99 0.98

S̃DFHAR(τ0) 1.00 1.00 1.00 1.00 1.00 0.98 0.98 0.95 0.92 0.87

C.1.3 Sup tests for empirical studies in Table 7

To verify the robustness of the rational bubble conclusion section 3.7, we perform tests

using S̃DFHAR(τ0) based on the following time periods in the S&P 500 monthly data :

January 1872 to June 1880, June 1948 to September 1956 and January 1989 to August

1997. In the following applications, we let r0 = 0.01 + 4.9/
√
n and b = 0.05 to calculate

S̃DFHAR(τ0).

Table 15 Sup tests for the explosiveness in S&P 500

Sampling period d̂ S̃DFHAR(τ0) scv90%
n,HAR

(
d̂
)

scv95%
n,HAR

(
d̂
)

scv99%
n,HAR

(
d̂
)

Jan 1872 to Jun 1880 0.32 1.742** 1.291 1.465 1.927

Jun 1948 to Sep 1956 0.3 1.980*** 1.311 1.507 1.859

Jan 1989 to Aug 1997 0.26 1.303* 1.301 1.471 1.868

From Table 15, we see that all the conclusions of rational bubble from Section 3.7 are

robust at least at 90% confidence level.
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Figure 4: Estimation of the bubble origination and termination dates
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C.1.4 Estimation for an explosive episode

In Figure 4, the green, brown, blue, black and yellow lines represent the price dividend

ratio of the S&P 500 index, DFτ , cvn, D̃F τ,HAR and cvn,HAR respectively. While the left

axis shows the sequence of test statistics and critical values, the right axis shows the values

of price-dividend ratio. We use the first-time crossing principle to calculate the result in

Table 12. Note that for sampling period (f’), r̂PWY
f is not well defined, we assume the

explosive episode does not end at the end of the sampling period.

C.2 Proofs of main results

Before we prove the main results in the paper, it is useful to list the following lemmas.

Lemma 16 (Corollary 4.4.1 in Giraitis et al. (2012)) Suppose ut =
∑∞

j=0 cjεt−j , and

εt
iid∼ (0, σ2). Assume cj

a∼ γj−1+d with d ∈ (0, 0.5), γ being a constant, as j →∞,

Then we have

n−( 1
2

+d)
bnrc∑
t=1

ut ⇒ ςBH(r), (94)

in D[0, 1] with the uniform metric, where H = 1
2

+ d, ς =
√
σ2γ2 B(d,1−2d)

d(1+2d)
with B(x, y) =

Γ(x)Γ(y)
Γ(x+y)

, BH(r) being an fBm with Hurst parameter H .

Note that Lemma 16 is general enough to include the fractional intergraded process

where ut = (1−L)dεt with εt
iid∼ (0, σ2). As one can show ut = (1−L)dεt =

∑∞
j=0 cjεt−j ,

with cj
a∼ j−1+d

Γ(d)
.

Lemma 17 Suppose that we have the following data generating process:

yt = yt−1 + ut, y0 = op(n
1/2+d),

(1− L)dut = εt, εt
iid∼ (0, σ2), d ∈ [0, 0.5)

Let τ = bnrc with r ∈ (0, 1], as n→∞, we have

1

n1+2d

τ∑
t=1

yt−1ut =⇒


σ2
d

2

[
(W (r))2 − r

]
if d = 0,

σ2
d

2

[(
BH(r)

)2
]

if d ∈ (0, 0.5)

, (95)
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1

n3/2+d

τ∑
t=1

yt−1 =⇒ σd

∫ r

0

BH(s)ds, (96)

1

n2+2d

τ∑
t=1

y2
t−1 =⇒ σ2

d

∫ r

0

BH(s)2ds, (97)

where σd = σ if d = 0, and σd = ς =
√
σ2 Γ(1−2d)

Γ(d)Γ(1−d)
.

Suppose empirical regression (43) with observations indexed by t = 1, ..., τ is applied,

for r ∈ (0, 1], as n→∞, we have

τ(ρ̂τ − 1)=⇒


r
2((W (r))2−r)

2−(
∫ r
0 W (s)ds)W (r)∫ r

0 (W̃ (s))
2
ds

if d = 0,

r
2(BH(r))

2−(
∫ r
0 B

H(s)ds)BH(r)∫ r
0 (B̃H(s))

2
ds

if d ∈ (0, 0.5)

. (98)

Furthermore, let ρ̃τ = ρ̂τ +
1
2

∑τ
t=14y2t∑τ
t=1 ȳ

2
t−1

, we have the following limit

τ(ρ̃τ − 1)=⇒
r
2

(
BH(r)

)2 −
(∫ r

0
BH(s)ds

)
BH(r)∫ r

0

(
B̃H(s)

)2

ds
, for d ∈ [0, 0.5). (99)

Proof of Lemma 17.

Note that when d = 0, the error term is just an i.i.d. process and the results (95), (96),

(97) and (98) are well known in the literature. Therefore, we shall only prove the claims

under d ∈ (0, 0.5).

For the first claim, note that by standard calculation, we have
∑τ

t=1 yt−1ut = 1
2

(
y2
bnrc − y2

0 −
∑τ

t=1 u
2
t

)
,

upon normalization, we have

n−1−2d

τ∑
t=1

yt−1ut =
1

2

[(
n−1/2−dybnrc

)2 − 1

n2d

(
1

n

τ∑
t=1

u2
t

)]
+ op(1)

=⇒ ς2

2

[(
BH(r)

)2
]
,

where we have the last result since n−1/2−dybnrc ⇒ ςBH(r) (from Lemma 16), 1
n

∑τ
t=1 u

2
t =

τ
n

1
τ

∑τ
t=1 u

2
t ,

1
τ

∑τ
t=1 u

2
t
a.s.→ E[u2

t ] (by ergodic theorem) and τ
n
→ r. These imply 1

n2d

(
1
n

∑τ
t=1 u

2
t

) p→

0, and we obtain (95).

For the second claim, since
∑τ

t=1 yt−1 =
∑τ

t=1

(∑t−1
i=1 ui + y0

)
, upon the correct

normalization, applying the result of Lemma 16 and continuous mapping theorem (CMT),

106



it is straightforward to see 1
n3/2+d

∑τ
t=1 yt−1 = 1

n

∑τ
t=1

(
1

n1/2+d

∑t−1
i=1 ui

)
+ op(1) =⇒

σd
∫ r

0
BH(s)ds.

Applying the similar argument, we can establish the third claim by expressing 1
n2+2d

∑τ
t=1 y

2
t−1 =

1
n

∑τ
t=1

(
1

n1/2+d

∑τ−1
i=1 ui

)2
+ op(1) 1

n2+2d

∑τ
t=1 y

2
t−1 =⇒ σ2

d

∫ r
0
BH(s)2ds.

For the normalized centered LS estimator τ(ρ̂τ − 1), note that we can write

τ(ρ̂τ − 1) =
τ

n

n−1−2d

n−2−2d

[∑τ
t=1 yt−1ut − 1

τ

∑τ
t=1 yt−1

∑τ
t=1 ut∑τ

t=1 y
2
t−1 − 1

τ
(
∑τ

t=1 yt−1)
2

]

=
τ

n

n−1−2d
∑τ

t=1 yt−1ut − n
τ
n−3/2−d∑τ

t=1 yt−1n
−1/2−d∑τ

t=1 ut

n−2−2d
∑τ

t=1 y
2
t−1 − n

τ
(n−3/2−d

∑τ
t=1 yt−1)

2

=⇒
r
2

[(
BH(r)

)2
]
−
∫ r

0
BH(s)dsBH(r)∫ r

0
BH(s)2ds− 1

r

(∫ r
0
BH(s)ds

)2 , (100)

where we obtain the last result after applying (94), (96) and (97).

As expression (100) is equivalent to (98) when d ∈ (0, 0.5), we have shown (98).

To show (99), note that we can express

ρ̃τ − 1 = ρ̂τ − 1 +
1
2

∑τ
t=14y2

t∑τ
t=1 ȳ

2
t−1

=

∑τ
t=1 yt−1ut − 1

τ

∑τ
t=1 yt−1

∑τ
t=1 ut∑τ

t=1 ȳ
2
t−1

+
1
2

∑τ
t=14y2

t∑τ
t=1 ȳ

2
t−1

=
Dτ∑τ
t=1 ȳ

2
t−1

−
1
τ

∑τ
t=1 yt−1

∑τ
t=1 ut∑τ

t=1 ȳ
2
t−1

,

where Dτ =
∑τ

t=1 yt−1ut + 1
2

∑τ
t=14y2

t .

Note that we can express
∑τ

t=1 yt−1ut = 1
2

(y2
τ − y2

0)− 1
2

∑τ
t=1 u

2
t . Under the assump-

tion that ρn = 1, 4yt = ut, this makes
∑τ

t=1 yt−1ut + 1
2

∑τ
t=14y2

t = 1
2

(y2
τ − y2

0) . And

after normalization, we have

n−1−2dDτ =⇒ 1

2
BH(r)2. (101)

Eventually,

τ(ρ̃τ − 1) =
τ

n

n−1−2dDτ − n
τ
n−3/2−d∑τ

t=1 yt−1n
−1/2−d∑τ

t=1 ut

n−2−2d
∑τ

t=1 y
2
t−1 − n

τ
(n−3/2−d

∑τ
t=1 yt−1)

2

=⇒
r
2

[(
BH(r)

)2
]
−
∫ r

0
BH(s)dsBH(r)∫ r

0
BH(s)2ds− 1

r

(∫ r
0
BH(s)ds

)2 , for d ∈ [0, 0.5).
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Proof of Lemma 5

We proceed to show the divergence of DFτ under d ∈ (0, 0.5). For the test statistics

DFτ = ρ̂τ−1
sτ

, note that by definition s2
τ =

1
τ

∑τ
t=1 û

2
t∑τ

t=1 y
2
t−1−

1
τ (
∑τ
t=1 yt−1)

2 .

As the LS residuals ût = ut + (1− ρ̂τ )yt−1− µ̂ involves the intercept estimator µ̂, we

first study the asymptotic of µ̂. From standard calculation, we can express

µ̂ =

∑τ
t=1 y

2
t−1

∑τ
t=1 ut −

∑τ
t=1 yt−1ut

∑τ
t=1 yt−1

τ
n

∑τ
t=1 y

2
t−1 − 1

n
(
∑τ

t=1 yt−1)
2 .

Upon normalization, we have

n1/2−dµ̂ =
1

n2+2d

∑τ
t=1 y

2
t−1

1
n1/2+d

∑τ
t=1 ut −

1
n1+2d

∑τ
t=1 yt−1ut

1
n3/2+d

∑τ
t=1 yt−1

τ
n

1
n2+2d

∑τ
t=1 y

2
t−1 −

(
1

n3/2+d

∑τ
t=1 yt−1

)2

=⇒
σ3
d

∫ r
0
BH(s)2dsBH(r)− σ3

d

2
BH(r)2

∫ r
0
BH(s)ds

rσ2
d

∫ r
0
BH(s)2ds− σ2

d

(∫ r
0
BH(s)ds

)2 . (102)

This implies µ̂ = Op(n
−1/2+d) = op(1).

For the average squared residuals 1
τ

∑τ
t=1 û

2
t , we can write

1

τ

τ∑
t=1

û2
t =

1

τ

τ∑
t=1

(ut + (1− ρ̂τ )yt−1 − µ̂)2

=
1

τ

τ∑
t=1

u2
t +

2(1− ρ̂τ )
τ

τ∑
t=1

yt−1ut +
(1− ρ̂τ )2

τ

τ∑
t=1

y2
t−1

−2µ̂
1

τ

τ∑
t=1

ut − 2
(1− ρ̂τ )µ̂

τ

τ∑
t=1

yt−1 +
µ̂2

τ

τ∑
t=1

1.

=
1

τ

τ∑
t=1

u2
t +

2τ(1− ρ̂τ )
τ 2

τ∑
t=1

yt−1ut +
(τ(1− ρ̂τ ))2

τ 3

τ∑
t=1

y2
t−1

−2τ(1− ρ̂τ )µ̂

(
1

τ 2

τ∑
t=1

yt−1

)
+ µ̂2.

From Lemma 17, τ(1 − ρ̂τ ) = Op(1), τ−2
∑τ

t=1 yt−1ut = Op(n
2d−1) = op(1),

τ−3
∑τ

t=1 y
2
t−1 = Op(n

2d−1) = op(1), τ−2
∑τ

t=1 yt−1 = Op(n
d−1/2) and from (102),

µ̂2 = Op(n
−1+2d) = op(1), we can express 1

τ

∑τ
t=1 û

2
t = 1

τ

∑τ
t=1 u

2
t + op(1)

p→ E[u2
t ] by

ergodic theorem.
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Note that applying Lemma 17, we know the limit of the sum of demeaned yt,

n−(2+2d)

 τ∑
t=1

y2
t−1 −

1

τ

(
τ∑
t=1

yt−1

)2
 = n−(2+2d)

τ∑
t=1

y2
t−1 −

(
n−3/2−d∑τ

t=1 yt−1

)2
τ
n

=⇒ σ2
d

(∫ r

0

(
BH(s)

)2
ds− 1

r

(∫ r

0
BH(s)ds

)2
)
.(103)

Therefore it is straightforward to show

n−dDFτ

=
n(ρ̂τ − 1)

(n2+2ds2
τ )

1/2

=
n
τ
τ(ρ̂τ − 1)

(n2+2ds2
τ )

1/2

=⇒ 1

r

r
2

[(
BH(r)

)2
]
−
∫ r

0
BH(s)dsBH(r)∫ r

0
BH(s)2ds− 1

r

(∫ r
0
BH(s)ds

)2 ×

σ2
d

(∫ r
0

(
BH(s)

)2
ds− 1

r

(∫ r
0
BH(s)ds

)2
)

E[u2
t ]

1/2

.

This implies the test statistic DFτ is of Op(n
d) and completes the proof of Lemma 5.

Proof of Theorem 4, Theorem 5 and Corollary 1

Note that we can express

DFτ,HAR =
(ρ̂τ − 1)

sτ,HAR
=

τ (ρ̂τ − 1)(
τ 2s2

τ,HAR

)1/2
(104)

and

D̃F τ,HAR =
τ (ρ̃τ − 1)(
τ 2s2

τ,HAR

)1/2
. (105)

To show the limit we first study the denominator of (104) and ( 105). Note that s2
τ,HAR =

Ω̂HAR∑τ
t=1 ȳ

2
t−1
. For Ω̂HAR, letting Ki,j = K

(
i−j
bτ

)
and St =

∑t
i=1 ∆yi allow us to write
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Ω̂HAR =
τ∑

j=−τ+1

K

(
j

bτ

)
γ̂j

=
1

τ

τ∑
i=1

τ∑
i=1

∆yiKi,j∆yj

=
1

τ

τ−1∑
i=1

1

τ

τ−1∑
j=1

τ 2 [(Ki,j −Ki,j+1)− (Ki+1,j −Ki+1,j+1)]
1√
τ
Ŝi

1√
τ
Ŝj

=
1

τ

τ−1∑
i=1

1

τ

τ−1∑
j=1

τ 2Dτ

(
i− j
bτ

)
1√
τ
Si

1√
τ
Sj (106)

where Dτ

(
i−j
bτ

)
= (Ki,j − Ki,j+1) − (Ki+1,j − Ki+1,j+1). The last equality follows

from Equation (A.1) in Kiefer and Vogelsang (2002a) .

From straightforward calculation, we can showDτ

(
i−j
bτ

)
=


2
bτ

if |i− j| = 0,

− 1
bτ

if |i− j| = bbτc ,

0 otherwise.
This implies

Ω̂HAR =
τ−1∑
i=1

τ−1∑
j=1

Dτ

(
i− j
bτ

)
1√
τ
Si

1√
τ
Sj

=
2

bτ

τ−1∑
i=1

(
1√
τ
Si

)2

− 2

bτ

τ−bbτc−1∑
i=1

(
1√
τ
Si

)(
1√
τ
Si+bbτc

)

=
2

b

n

bnrc
1

n

τ−1∑
i=1

(
1√
τ
Si

)2

− 2

b

n

bnrc
1

n

τ−bbτc−1∑
i=1

(
1√
τ
Si

)(
1√
τ
Si+bbτc

)
(107)

Thus, with i = bnpc and under the assumption ρn = 1, we have Si =
∑i

j=1 ∆yj =∑bnpc
j=1 uj, it implies that

1

nd
1√
τ
Sbnpc

=
(n
τ

)1/2 1

n1/2+d

bnpc∑
t=1

ui =⇒ σd
r1/2

BH(p). (108)

Therefore we have,
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1

n2d
Ω̂HAC

=
2n

bτ

1

n

τ−1∑
i=1

(
1

nd
1√
τ
Sbnpc

)2

− 2n

bτ

1

n

τ−bbτc−1∑
i=1

(
1

nd
1√
τ
Si

)(
1

nd
1√
τ
Si+bbτc

)
=⇒ 2

br

∫ r

0

( σd
r1/2

BH(p)
)2

dp− 2

br

∫ (1−b)r

0

σ2
d

r
BH(p)BH(p+ br)dp (109)

=
2σ2

d

br2

(∫ r

0

BH(p)2dp−
∫ (1−b)r

0

BH(p)BH(p+ br)dp

)
(110)

where we have applied (108) and continuous mapping theorem to obtain the limit (109).

Combining (103) and (109), upon normalization, we can show

τ 2s2
τ,HAR =

(τ
n

)2 1
n2d Ω̂HAR

1
n2+2d

(∑τ
t=1 y

2
t−1 − τ−1 (

∑τ
t=1 yt−1)

2
)

=⇒
2
(∫ r

0
BH(p)2dp−

∫ (1−b)r
0

BH(p)BH(p+ br)dp
)

b
∫ r

0
B̃H(s)2ds

(111)

We now proceed to show the limit of DFτ,HAR.

Suppose d = 0, we have

DFτ,HAR

=
τ (ρ̂τ − 1)(
τ 2s2

τ,HAR

)1/2

=
bnrc
nr

r
n (ρ̂τ − 1)(
τ 2s2

τ,HAR

)1/2

=⇒
r
∫ r

0
W̃ (s)dW (s)∫ r

0
W̃ (s)2ds

 b
∫ r

0
W̃ (s)2ds

2
(∫ r

0
W (p)2dp−

∫ (1−b)r
0

W (p)W (p+ br)dp
)
1/2

=
b1/2r

∫ r
0
W̃ (s)dW (s)[

2
∫ r

0
W̃ (s)2ds

(∫ r
0
W (p)2dp−

∫ (1−b)r
0

W (p)BH(p+ br)dp
)]1/2

,

where we use the well known result that n (ρ̂τ − 1) =⇒
∫ r

0
W̃ (s)dW (s)/

∫ r
0
W̃ (s)2ds

and (111) with H = 1/2.

111



For d ∈ (0, 0.5), similarly, we can express

DFτ,HAR =
τ (ρ̂τ − 1)(
τ 2s2

τ,HAR

)1/2

=⇒
r
2

(
BH(r)

)2 −
(∫ r

0
BH(s)ds

)
BH(r)∫ r

0

(
B̃H(s)

)2

ds

 b
∫ r

0
B̃H(s)2ds

2
(∫ r

0
BH(p)2dp−

∫ (1−b)r
0

BH(p)BH(p+ br)dp
)
1/2

=
rb1/2

2

(
BH(r)

)2 − b1/2
(∫ r

0
BH(s)ds

)
BH(r)[

2
∫ r

0

(
B̃H(s)

)2

ds
(∫ r

0
BH(p)2dp−

∫ (1−b)r
0

BH(p)BH(p+ br)dp
)]1/2

, (112)

where we obtain the limit from using (100) and (111).

To show the limit of D̃F τ,HAR, using the similar steps to show (112) with the use of

(99) and (111), we have

D̃F τ,HAR =
τ (ρ̃τ − 1)(
τ 2s2

τ,HAR

)1/2

=⇒
rb1/2

2

(
BH(r)

)2 − b1/2
(∫ r

0
BH(s)ds

)
BH(r)[

2
∫ r

0

(
B̃H(s)

)2

ds
(∫ r

0
BH(p)2dp−

∫ (1−b)r
0

BH(p)BH(p+ br)dp
)]1/2

.

Corollary 1 is a special case under Theorem 5 with r = 1.

This completes the proof of Theorem 4, Theorem 5 and Corollary 1.

Proof of Remark 28

Let Ω̂HAR =
∑τ

j=−τ+1K
(
j
M

)
γ̂j as in Theorem 5. Furthernore, K(.) > 0, K(x) =

K(−x) and K(·) is a twice differentiable function. As in (106), we can express Ω̂HAR =

1
τ

∑τ−1
i=1

1
τ

∑τ−1
j=1 τ

2Dτ

(
i−j
bτ

)
1√
τ
Si

1√
τ
Sj, and following the steps in proving Theorem 4 in

Sun (2004) we can show lim
n→∞

τ 2Dτ

(
i−j
bτ

)
= − 1

b2r2
K ′′
(
p−q
br

)
, given (i/n, j/n)→ (p, q).

Combining (106), (108) and applying continuous mapping theorem, we have

1

n2d
Ω̂HAR =

1

τ

τ−1∑
i==1

1

τ

τ−1∑
j=1

Dτ

(
i− j
bτ

)
1

nd
1√
τ
Ŝi

1

nd
1√
τ
Ŝj

=⇒ − σ2
d

b2r3

∫ r

0

∫ r

0

K ′′
(
p− q
br

)
BH(p)BH(q)dpdq. (113)
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Since s2
τ,HAR = Ω̂HAR∑τ

t=1 y
2
t−1−τ−1(

∑τ
t=1 yt−1)

2 , combining (103) and (113) gives us

τ 2s2
τ,adj =⇒

∫ r
0

∫ r
0
−K ′′

(
p−q
br

)
BH(p)BH(q)dpdq

b2r
∫ r

0
B̃H(s)2ds

. (114)

Finally, D̃F τ,HAR = τ(ρ̃τ−1)

(τ2s2τ,HAR)
1/2 , from (99), (114) and standard calculation yields

D̃F τ,HAR =⇒
br3/2

2

(
BH(r)

)2 − br1/2
(∫ r

0
BH(s)ds

)
BH(r)((∫ r

0
B̃H(s)2ds

) ∫ r
0

∫ r
0
−K ′′

(
p−q
br

)
BH(p)BH(q)dpdq

)1/2
.

This completes the proof of Remark 28.

Before we proof Theorem 6, it is useful to introduce the following lemma.

To study the limit distributions of DFτ,HAR and DFBartlett
τ,HAR , we first introduce the

following lemma.

Lemma 18 Under the local alternative model (56), let τ = bnrc with r ∈ (re, 1], as

n→∞,

1. 1
n1/2+dyτ ⇒ σd

(
e(r−re)cBH(re) +

∫ r
re
e(r−s)cdBH(s)

)
;

2. 1
n3/2+d

∑τ
t=1 yt−1 ⇒ σdAr,d;

3. 1
n2+2d

∑τ
t=1 y

2
t−1 ⇒ σ2

dBr,d;

4. 1
n1+2d

(∑τ
t=1 yt−1ut + 1

2

∑τ
t=1 ∆y2

t

)
⇒ σ2

d

2
Cr,d;

5. n(ρ̃τ − ρc)⇒ Xc(r, d);

6. n(ρ̃τ − 1)⇒ Xc(r, d) + c;
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where

Ar,d =

∫ r

0

(
e(x−re)cBH(re) +

∫ x

re

e(x−s)cdBH(s)

)
dx,

Br,d =

∫ r

0

(
e(x−re)cBH(re) +

∫ x

re

e(x−s)cdBH(s)

)2

dx,

Cr,d =

(
e(r−re)cBH(re) +

∫ r

re

e(r−s)c)dBH(s)

)2

−BH(re)
2,

Xc(r, d) =
1
2
Cr,d − 1

r
Ar,dB

H(r)

Br,d − 1
r
A2
r,d

,

Yc(r, d) : =
Br,dB

H(r)− 1
2
Cr,dAr,d

r
(
Br,d − A2

r,d

) .

C.2.1 Proof of Lemma 18

1. To show the first claim, note that by backward substitution, we can express ybnrc as

ybnrc = ρbnrc−(bnrec−1)
n ybnrec−1 +

bnrc∑
j=brec

(
1 +

c

n

)bnrc−j
uj.

Note that ρbnrc−(bnrec−1)
n = (1 + c/n)bnrc−(bnrec−1) = exp(c (bnrc − (bnrec − 1)) /n)+

o(1) = exp((r − re)c) + o(1). Therefore we have

1

n1/2+d
ybnrc = exp((r − re)c)

1

n1/2+d
ybnrec−1 +

1

n1/2+d

bnrc∑
j=brec

(
1 +

c

n

)bnrc−j
uj

⇒ σd

(
e(r−re)cBH(re) +

∫ r

re

e(r−s)cdBH(s)

)
, (115)

where we obtain the limit by applying Lemma 16 and continuous mapping theorem

(add footnote here to cite my OBES paper).

For the second and the third claims, note that we can express 1
n2/3+d

∑τ
t=1 yt−1 =

1
n

∑τ
t=1

(
1

n1/2+dyt−1

)
and 1

n2+2d

∑τ
t=1 y

2
t−1 = 1

n

∑τ
t=1

(
1

n1/2+dyt−1

)2
, (115) and CMT

will yiled the results.

For the fourth claim, we first study the second component 1
2

∑τ
t=1 ∆y2

t . Since

∆yt =

ut if t < τe,

c
n
yt−1 + ut otherwise

,
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we can express

τ∑
t=1

∆y2
t =

τe−1∑
t=1

u2
t +

τ∑
t=τe

( c
n
yt−1 + ut

)2

=

τ∑
t=1

u2
t +

c2

n2

τ∑
t=τe

y2
t−1 +

2c

n

τ∑
t=τe

yt−1

=

τ∑
t=1

u2
t +

c2

n2
n2+2d

(
1

n2+2d

τ∑
t=τe

y2
t−1

)
+

2c

n
n3/2+d

(
1

n3/2+d

τ∑
t=τe

yt−1

)
.(116)

For the term 1
n2+2d

∑τ
t=τe

y2
t−1, as n→∞, we have

1

n2+2d

τ∑
t=τe

y2
t−1 =

1

n2+2d

τ∑
t=1

y2
t−1 −

1

n2+2d

τe−1∑
t=1

y2
t−1

⇒ σ2
dBr,d − σ2

d

∫ re

0

BH(s)2ds, (117)

where we have applied the results Lemma 18.3 and (97) to obtain the limit.

For the term 1
n3/2+d

∑τ
t=τe

yt−1, similarly, using Lemma 18.2 and (96), we have the

limit
1

n3/2+d

τ∑
t=τe

yt−1 ⇒ σdAr,d − σd
∫ re

0

BH(s)ds. (118)

Combining (116), (117) and (118), it can be seen that,
τ∑
t=1

∆y2
t =

τ∑
t=1

u2
t +R1,n, R1,n = Op(n

1/2+d).

This implies that, upon normalization, we can express

1

n1+2d

(
τ∑
t=1

yt−1ut +
1

2

τ∑
t=1

∆y2
t

)

=
1

n1+2d

(
τ∑
t=1

yt−1ut +
1

2

τ∑
t=1

u2
t +R1,n

)

=
1

n1+2d

bnrec−1∑
t=1

yt−1ut +
1

2

bnrec−1∑
t=1

u2
t

+
1

n1+2d

 τ∑
t=bnrec

yt−1ut +
1

2

τ∑
t=bnrec

u2
t

+
R1,n

n1+2d
.(119)

For the first component in (119), applying (101) we have

1

n1+2d

bnrec−1∑
t=1

yt−1ut +
1

2

bnrec−1∑
t=1

u2
t

⇒ σ2
d

2

[
(BH(re))

2
]
.
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For the second component 1
n1+2d

(∑τ
t=bnrec yt−1ut + 1

2

∑τ
t=bnrec u

2
t

)
, as from stan-

dard calculation we can write

τ∑
t=bnrec

yt−1ut =
1

2ρn

τ∑
t=bnrec

y2
t −

ρn
2

τ∑
t=bnrec

y2
t−1 −

1

2ρn

τ∑
t=bnrec

u2
t ,

we have

τ∑
t=bnrec

yt−1ut +
1

2

τ∑
t=bnrec

u2
t =

1

2ρn

τ∑
t=bnrec

y2
t −

ρn
2

τ∑
t=bnrec

y2
t−1 −

1

2ρn

τ∑
t=bnrec

u2
t +

1

2

τ∑
t=bnrec

u2
t

=
1

2ρn

τ∑
t=bnrec

y2
t −

ρn
2

τ∑
t=bnrec

y2
t−1 +

1

2

(
1− 1

ρn

) τ∑
t=bnrec

u2
t .

As ρn = 1 + o(1), we can express

1

n1+2d

τ∑
t=bnrec

yt−1ut =
1

n1+2d

1

2

[
y2
τ − y2

bnrec−1

]
− 1

n1+2d

1

2

τ∑
t=bnrec

u2
t + op(1).

This makes

1

n1+2d

 τ∑
t=bnrec

yt−1ut +
1

2

τ∑
t=bnrec

u2
t

 =
1

n1+2d

1

2

[
y2
τ − y2

bnrec−1

]
+ op(1)

⇒
σ2
d

2

[(
e(r−re)cBH(re) +

∫ r

re

e(r−s)c)dBH(s)

)2

− (BH(re))
2

]
,(120)

where we obtain the limit by applying Lemma 18.1 and Lemma 16.

The last term R1,n/n
1+2d in (119) vanishes as∞ → ∞, as R1,n = Op(n

1/2+d). So

we have shown the fourth claim.

To show the fifth claim, note that

ρ̃τ − ρn = (ρ̂τ − ρn) +
1
2

∑τ
t=1 ∆y2

t∑τ
t=1 ȳ

2
t−1

=

∑τ
t=1 ȳt−1 (yt − ρnyt−1) + 1

2

∑τ
t=1 ∆y2

t∑τ
t=1 ȳ

2
t−1

. (121)
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We now analyse the numerator in (121).
τ∑
t=1

ȳt−1 (yt − ρnyt−1) +
1

2

τ∑
t=1

∆y2
t

=
τe−1∑
t=1

ȳt−1 (yt − ρnyt−1) +
τ∑

t=τe

ȳt−1 (yt − ρnyt−1) +
1

2

τ∑
t=1

u2
t +R1,n

=
τe−1∑
t=1

ȳt−1 (yt−1 + ut − ρcyt−1) +
τ∑

t=τe

ȳt−1ut +
1

2

τ∑
t=1

u2
t +R1,n

=

(
τ∑
t=1

ȳt−1ut +
1

2

τ∑
t=1

u2
t

)
− c

n

τe−1∑
t=1

ȳt−1 +R1,n. (122)

Upon normalization, the first component in (122)

1

n1+2d

(
τ∑
t=1

ȳt−1ut +
1

2

τ∑
t=1

u2
t

)

=
1

n1+2d

(
τ∑
t=1

yt−1ut +
1

2

τ∑
t=1

u2
t −

1

τ

τ∑
t=1

yt−1

τ∑
t=1

ut

)

=
1

n1+2d

(
τ∑
t=1

yt−1ut +
1

2

τ∑
t=1

u2
t

)
− n

τ

1

n3/2+d

τ∑
t=1

yt−1
1

n1/2+d

τ∑
t=1

ut

⇒ 1

2
σ2
dCr,d −

1

r
σ2
dAr,dB

H(r), (123)

1. where we have applied (120), Lemma 18 and Lemma 16 to obtain the limit.

For the second component, note that

c

n

τe−1∑
t=1

ȳt−1 =
c

n

τe−1∑
t=1

yt−1 −
c

n

1

τ

τe−1∑
t=1

τ∑
j=1

yj−1

=
c

n

τe−1∑
t=1

yt−1 −
c

n

τe − 1

τ

τ∑
j=1

yj−1.

After normalization, we have

1

n1/2+d

(
c

n

τe−1∑
t=1

yt−1 −
c

n

τe − 1

τ

τ∑
j=1

yj−1

)
=

c

n3/2+d

τe−1∑
t=1

yt−1 −
τe − 1

τ

c

n3/2+d

τ∑
j=1

yj−1

⇒ cσd

∫ re

0

BH(s)ds− creσdAr,d
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where we have obtain the limit by using Lemma 17 and 18.2.

Therefore, the first component in (122) isOp(n
1+2d) dominates c

n

∑τe−1
t=1 ȳt−1 = Op(n

1/2+d)

and the third component R1,n = Op(n
1/2+d), consequently, we have

1

n1+2d

(
τ∑
t=1

ȳt−1 (yt − ρnyt−1) +
1

2

τ∑
t=1

∆y2
t

)
⇒ 1

2
σ2
dCr,d −

1

r
σ2
dAr,dB

H(r).

For the denominator in (121), applying Lemma 18.2 and 18.3 we have

1

n2+2d

τ∑
t=1

ȳ2
t−1 =

1

n2+2d

 τ∑
t=1

y2
t−1 −

1

τ

(
τ∑
t=1

yt−1

)2


⇒ σ2
d

(
Br,d −

1

r
A2
r,d

)
. (124)

Eventually, we have

n(ρ̃τ − ρn) =
1

n1+2d

(∑τ
t=1 ȳt−1 (yt − ρnyt−1) + 1

2

∑τ
t=1 ∆y2

t

)
1

n2+2d

∑τ
t=1 ȳ

2
t−1

⇒
1
2
Cr,d − 1

r
Ar,dB

H(r)

Br,d − 1
r
A2
r,d

:= Xc(r, d) .

For the sixth claim,

As n(ρ̃τ − 1) = n(ρ̃τ − ρn) + n(ρn − 1) = n(ρ̃τ − ρn) + c, we have

n(ρ̂τ − 1)⇒ Xc(r, d) + c.

This completes the proof of Lemma 18.

Proof of Theorem 6

Recall that from (107), we have

Ω̂HAR =
2

b

n

bnrc
1

n

τ−1∑
i=1

(
1√
τ
Si

)2

− 2

b

n

bnrc
1

n

τ−bbτc−1∑
i=1

(
1√
τ
Si

)(
1√
τ
Si+bbτc

)
(125)

with Sbnpc =
∑bnpc

i=1 ∆yi.

For the partial sum Sbnpc =
∑bnpc

i=1 ∆yi, we can express
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Sbnpc =
τe−1∑
i=1

∆yi +

bnpc∑
i=τe

∆yi

=
τe−1∑
i=1

ui +
c

n

bnpc∑
i=τe

yi−1 +

bnpc∑
i=τe

ui

=

bnpc∑
i=1

ui +
c

n

bnpc∑
i=1

yi−1 −
c

n

τe−1∑
i=1

yi−1.

Upon normalization, we have

1

n1/2+d
Ŝbnpc

=
1

n1/2+d

bnpc∑
i=1

ui +
c

n3/2+d

bnpc∑
i=1

yi−1 −
c

n3/2+d

τe−1∑
i=1

yi−1

⇒ σd

(
BH(p) + cAp,d −

∫ re

0

BH(p)dp

)
:= σdGre,c(p). (126)

So, combining (125) and (126), as n→∞, we have

1

n2d
Ω̂HAR ⇒

2σ2
d

br2

(∫ r

0

Gre,c(d, p)
2dp−

∫ (1−b)r

0

Gre,c(d, p)Gre,c(d, p+ br)dp

)
.

With (124),

τ 2s2
τ,HAR =

(τ
n

)2 1
n2d Ω̂HAR

1
n2+2d

(∑τ
t=1 y

2
t−1 − τ−1 (

∑τ
t=1 yt−1)

2
)

⇒
2
b

(∫ r
0
Gre,c(d, p)

2dp−
∫ (1−b)r

0
Gre,c(d, p)Gre,c(d, p+ br)dp

)
Br,d − 1

r
A2
r,d

.(127)

Eventually, for our test statistic D̃F τ,HAR,

D̃F τ,HAR =
bnrc
nr

nr (ρ̃τ − 1)(
τ 2s2

τ,HAR

)1/2

=⇒
( 1
2
Cr,d− 1

r
Ar,dB

H(r))r
Br,d− 1

r
A2
r,d

+ cr√
2
b (
∫ r
0 Gre,c(d,p)

2dp−
∫ (1−b)r
0 Gre,c(d,p)Gre,c(d,p+br)dp)
Br,d− 1

r
A2
r,d

=

(
( 1
2
Cr,d− 1

r
Ar,dB

H(r))r
Br,d− 1

r
A2
r,d

+ cr

)(
Br,d − 1

r
A2
r,d

)1/2

[
2
b

(∫ r
0
Gre,c(d, p)

2dp−
∫ (1−b)r

0
Gre,c(d, p)Gre,c(d, p+ br)dp

)]1/2
,
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where we obtain the above limit from noticing bnrc
nr
→ 1, applying Lemma18.6 and (127).

This complete the proof of Theorem 6.

C.2.2 Proof of Theorem 7 and Theorem 8

Since the proofs of Theorem 7 and Theorem 8 are similar, we shall only prove the

latter. It is useful to list the following lemmas (Lemma 19 to 27) which study various

sample moments.

Lemma 19 Let B = [τe, τf ] be the bubble period, N0 ∈ [1, τe) and N1 = [τf + 1, n] are

the normal market period before and after the bubble period respectively. Under the dgp

(60), with t = bnrc, we have the following asymptotic approximation :

1. For t ∈ N0,

yt
a∼ n1/2+d1σd1B

H1(re).

2. For t ∈ B,

yt
a∼ ρ(t−τe)

n n1/2+d1σd1B
H1(re).

3. For t ∈ N1,

ybnrc
a∼


n1/2+d1σd1B

H1(re) if d1 > d2,

n1/2+d2σd2
(
BH2(r)−BH2(rf )

)
if d1 < d2,

n1/2+d1
[
σd2
(
BH2(r)−BH2(rf )

)
+ σd1B

H1(re)
]

if d1 = d2

where σd1 =
√
σ2 Γ(1−2d1)

Γ(d1)Γ(1−d1)
, σd2 =

√
σ2 Γ(1−2d2)

Γ(d2)Γ(1−d2)
, BH1(r) and BH2(r) are

fractional Brownian motion with Hurst parameter H1 = 1/2 + d1 and H2 = 1/2 +

d2, respectively.

Proof.

1. From Lemma 16, we have 1
n1/2+d1

ybnrc =⇒ σd1B
H1(re).
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2. For t ∈ B, we have

yt = ρt−τe+1
n yτe−1 +

t−τe∑
j=0

ρjnut−j

Pre-multiplying the both term by ρ−(t−τe)
n , we have

ρ−(t−τe)
n yt = ρnyτe−1 +

t−τe∑
j=0

ρ−jn ut−j (128)

From Lemma 3 in Magdalinos (2012), the second term in (128) is of orderOp(n
(1/2+d2)α),

and the first term is of order Op

(
ρnn

1/2+d1
)
. The order of ρ−(t−τe)

n yt depends on

the ratio n1/2+d1

n(1/2+d2)α
.

As ρnyτe−1 is asymptotically dominant in (128) and ρn → 1, we have

ρ−(t−τe)
n

1

n1/2+d1
yt

a∼ ρn
n1/2+d1

yτe−1
a∼ σd1B

H1(re).

3. For t ∈ N1, we have

ybnrc =

bnrc∑
k=τf+1

uk + y∗τf =

bnrc∑
k=τf+1

uk + yτe + y∗

ybnrc =

bnrc∑
k=τf+1

uk + y∗τf =

bnrc∑
k=1

uk −
τf∑
k=1

uk + yτe + y∗

Note that yτe
a∼ n1/2+d1σd1B

H1(re), we need to compare the order of
∑bnrc

k=τf+1 uk

and yτe .

Suppose that d1 = d2, we have

ybnrc
a∼ n1/2+d1

[
σd2
(
BH2(r)−BH2(rf )

)
+ σd1B

H1(re)
]
.

Suppose that d1 > d2, we have

ybnrc
a∼ n1/2+d1σd1B

H1(re).

Suppose that d1 < d2, we have

ybnrc
a∼ n1/2+d2σd2

(
BH2(r)−BH2(rf )

)
.
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This completes the proof of Lemma 19.

Lemma 20 For the sample average,

1. For τ ∈ B,
1

τ

τ∑
j=1

yj
a∼ nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re)

2. For τ ∈ N1,
1

τ

τ∑
j=1

yj
a∼ nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re).

Proof. For τ ∈ B, we have

1

τ

τ∑
j=1

yj =
1

τ

τe−1∑
j=1

yj +
1

τ

τ∑
j=τe

yj

The first term is

1

τ

τe−1∑
j=1

yj = n1/2+d1
τe
τ

(
1

τe

τe−1∑
j=1

1

n1/2+d1
yj

)
a∼ n1/2+d1

re
r
σd1

∫ re

0

BH1(s)ds, (129)

where have applied Lemma 19.1 and continuous mapping theorem to obtain (129).

For the second term,

1

τ

τ∑
j=τe

yj

a∼ 1

τ

τ∑
j=τe

ρ(j−τe)
n n1/2+d1σd1B

H1(re)

= n1/2+d1σd1B
H1(re)

1

τ

τ∑
j=τe

ρj−τen

=
n1/2+d1σd1B

H1(re)

τ

ρτ−τe+1
n − 1

ρn − 1

=
n1/2+d1σd1B

H1(re) [(ρτ−τen ρn)nα − nα]

bnrcc
a∼ nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re) (130)
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where we obtain the asymptotic equivalence because ρτ−τen nα asymptotically dominates

nα.

Comparing (130) with (129), as the second term is of higher order in all three cases,

therefore, we have the results in Lemma 20.1.

For τ ∈ N1,
1

τ

τ∑
j=1

yj =
1

τ

τe−1∑
j=1

yj +
1

τ

τf∑
j=τe

yj +
1

τ

τ∑
j=τf+1

yj.

For the first term, similar to (129), we have

1

τ

τe−1∑
j=1

yj
a∼ n1/2+d1

re
r
σd1

∫ re

0

BH1(s)ds.

For the second term, similar to (130), we have

1

τ

τf∑
j=τe

yj
a∼ nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re).

For the last term, using Lemma 19.3, we have

1

τ

τ∑
j=τf+1

yj =
τ − τf
τ

n1/2+d1Op(1)
a∼ Op(n

1/2+d1).

Similar to the proof in Lemma 20, the second term has the highest order, therefore we

obtain the result in Lemma 20.2.

Lemma 21 Define the centered quantity ȳt = yt − 1
τ

∑τ
j=1 yj−1.

1. For τ ∈ B,

if t ∈ N0

ȳt
a∼ −nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re), (131)

if t ∈ B,

ȳt
a∼
(
ρ(t−τe)
n − nα

nrc
ρτ−τen

)
n1/2+d1σd1B

H1(re). (132)

2. For τ ∈ N1,

if t ∈ N0,

ȳt
a∼ −nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re), (133)
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if t ∈ B

ȳt
a∼
(
ρ(t−τe)
n − nα

nrc
ρτ−τen

)
n1/2+d1σd1B

H1(re), (134)

if t ∈ N1

ȳt
a∼ −nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re). (135)

Proof.

1. Suppose τ ∈ B.

ȳt = yt −
1

τ

τ∑
j=1

yj−1

If t ∈ N0, from Lemma 19.1, yt = Op(n
1/2+d1), for the second term, 1

τ

∑τ
j=1 yj−1,

following Lemma 20.1, we can obtain 1
τ

∑τ
j=1 yj−1

a∼ nα+d1−1/2ρτ−τen
1
rc
σd1B

H1(re).

Therefore if t ∈ N0, the second term has a higher order and we obtain

ȳt
a∼ −nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re).

If t ∈ B, from Lemma 19.2,

ȳt
a∼ ρ(t−τe)

n n1/2+d1σdB
H
u (re)− nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re).

2. Suppose that τ ∈ N1.

If t ∈ N0,

ȳt = yt −
1

τ

τ∑
j=1

yj−1

Similar to the proof in Lemma 21.1, as yt is asymptotically dominated by the latter

term, we can express

ȳt
a∼ −nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re).

If t ∈ B,
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ȳt
a∼
(
ρ(t−τe)
n − ρτf−τen

nα

nrc

)
n1/2+d1σd1B

H1(re).

If t ∈ N1, components in yt will be dominated by the components in 1
τ

∑τ
j=1 yj−1,

eventually, following the proof of Lemma 21.1, we have

ȳt
a∼ −nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re).

Lemma 22 The sample variance terms involving ȳt behave as follows.

1. If τ ∈ B,
τ∑
j=1

ȳ2
j−1

a∼ n1+2d1+αρ
2(τ−τe)
n

2c
σ2
d1
BH1(re)

2.

2. if τ ∈ N1,

τ∑
j=1

ȳ2
j−1

a∼ n1+α+2d1
ρ

2(τf−τe)
n

2c
σ2
d1
BH1(re)

2.

Proof.

1. For τ ∈ B
τ∑
j=1

ȳ2
j−1 =

τe−1∑
j=1

ȳ2
j−1 +

τ∑
j=τe

ȳ2
j−1. (136)

For the first term in (136),

τe−1∑
j=1

ȳ2
j−1

a∼
τe−1∑
j=1

(
−nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re)

)2

=
(τe − 1)

n
n2(α+d1)ρ2(τ−τe)

n

1

r2c2
σ2
d1
BH1(re)

2

a∼ re
r2c2

n2(α+d1)ρ2(τ−τe)
n σ2

d1
BH1(re)

2.

For the second term in (136),
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τ∑
j=τe

ȳ2
j−1

a∼
τ∑

j=τe

[(
ρ(j−τe)
n − nα

nrc
ρτ−τen

)
n1/2+d1σd1B

H1(re)

]2

= n1+2d1σ2
d1
BH1(re)

2

τ∑
j=τe

(
ρ(j−τe)
n − nα

nrc
ρτ−τen

)2

= n1+2d1σ2
d1
BH1(re)

2

τ∑
j=τe

(
ρ2(j−τe)
n − 2ρ(j−τe)

n

nα

nrc
ρτ−τen +

n2α

n2r2c2
ρ2(τ−τe)
n

)

= n1+2d1σ2
d1
BH1(re)

2

[
nαρ

2(τ−τe)
n

2c
− 2

n2α−1ρ
2(τ−τe)
n

nrc
+
r − re + 1/n

r2c2
n2α−1ρ2(τ−τe)

n

]
a∼ n1+2d1+ασ2

d1
BH1(re)

2ρ
2(τ−τe)
n

2c
(since α > 2α− 1).

Since 1 + 2d1 + α > 2(α+ d1),
∑τ

j=τe
ȳ2
j−1 dominates

∑τe−1
j=1 ȳ2

j−1 asymptotically,

and we have
τ∑
j=1

ȳ2
j−1

a∼ n1+2d1+ασ2
d1
BH1(re)

2ρ
2(τ−τe)
n

2c
.

2. For τ1 ∈ N0 and τ2 ∈ N1

τ2∑
j=τ1

ȳ2
j−1 =

τe−1∑
j=τ1

ȳ2
j−1 +

τf∑
j=τe

ȳ2
j−1 +

τ∑
j=τf+1

ȳ2
j−1. (137)

For the first term in (137), we have

τe−1∑
j=1

ȳ2
j−1

a∼ re
r2c2

n2(α+d1)ρ
2(τf−τe)
n σ2

d1
BH1(re)

2.

For the second term, we have

τf∑
j=τe

ȳ2
j−1

a∼ n1+α+2d1σ2
d1
BH1(re)

2ρ
2(τf−τe)
n

2c
.

For the third term,
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τ∑
j=τf+1

ȳ2
j−1

a∼
τ∑

j=τf+1

(
−nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re)

)2

=
τ − τf
n

n2(α+d1)ρ
2(τf−τe)
n

1

r2c2
σ2
d1
BH1(re)

2

a∼ (r − rf )
r2c2

n2(α+d1)ρ
2(τf−τe)
n σ2

d1
BH1(re)

2.

As 1 + α + 2d1 > 2 (α + d1) , the middle term dominates, and we have
τ∑
j=1

ȳ2
j−1

a∼ n1+α+2d1σ2
d1
BH1(re)

2ρ
2(τf−τe)
n

2c
.

This ends the proof of Lemma 22.

Lemma 23 The sample variances of ȳt and ut behave as follows:

1. For τ ∈ B,
τ∑
j=1

ȳj−1uj
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ. (138)

2. For τ ∈ N1,
τ∑
j=1

ȳj−1uj
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (rf − re)(1/2+d2)α σd1B
H1(re)Φ, (139)

where Φ is a normally distribution random variable with a finite variance.

1. For τ ∈ B,
τ2∑
j=1

ȳj−1uj =
τe−1∑
j=1

ȳj−1uj +
τ∑

j=τe

ȳj−1uj. (140)

The first term in (140) is

τe−1∑
j=1

ȳj−1uj
a∼

τe−1∑
j=1

(
−nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re)

)
uj

=

(
−nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re)

) τe−1∑
j=1

uj

=
−nα+d1−1/2+d1+1/2

rc
ρτ−τen σd1B

H1(re)
1

n1/2+d1

τe−1∑
j=1

uj

a∼ −n
α+2d1

rc
ρτ−τen σ2

d1
BH1(re)

2. (141)
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For the second term in (140),
τ∑

j=τe

ȳj−1uj

a∼
τ∑

j=τe

[(
ρ(j−τe)
n − ρτ−τen

nα

nrc

)
n1/2+d1σdB

H
1 (re)

]
uj

= n1/2+d1σd1B
H1(re)

ρτ−τen

τ∑
j=τe

ρ−(τ−j+1)
n uj − ρτ−τen

nα

nrc

τ∑
j=τe

uj


= n1/2+d1σd1B

H1(re)

 ρτ−τen
(τ−τe+1)(1/2+d2)α

(τ−τe+1)(1/2+d2)α

∑τ
j=τe

ρ
−(τ−j+1)
n uj

−ρτ−τen
nα−1/2+d2

rc
1

n1/2+d2

∑τ
j=τe

uj


a∼ n1/2+d1σd1B

H1(re)

[
ρτ−τen [n (r − re)](1/2+d2)α Φ− ρτ−τen

nα−1/2+d2

rc
σd2
(
BH2(r)−BH2(re)

)]
a∼ n1/2+d1σd1B

H1(re)ρ
τ−τe
n [n (r − re)](1/2+d2)α Φ.

= ρτ−τen n
1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ. (142)

We have applied Lemma 3 in Magdalinos(2012) to acquire the second asymptotic

equivalence and since (1/2 + d2)α− (α− 1/2 + d2) = (1/2− d2)(1−α) > 0, we

have the last asymptotic equivalence.

The assumption that 1/2−d1
1/2−d2 > α implies 1

2
(1 + α) + d1 + d2α > α + 2d1, so the∑τ

j=τe
ȳj−1uj asymptotically dominates

∑τe−1
j=1 ȳj−1uj , eventually, we have

τ∑
j=1

ȳj−1uj
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H
1 (re)Φ.

2. For τ1 ∈ N0 and τ2 ∈ N1,
τ2∑
j=τ1

ȳj−1uj =
τe−1∑
j=τ1

ȳj−1uj +

τf∑
j=τd

ȳj−1uj +

τ2∑
j=τf+1

ȳj−1uj.

As in (141), the first term is
τe−1∑
j=τ1

ȳj−1uj
a∼ −n

α+2d1

rc
ρτ−τen σ2

d1
BH1(re)

2.

As in (142), the second term is
τf∑
j=τe

ȳj−1uj
a∼ ρ

τf−τe
n n

1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ.
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The third term is
τ∑

j=τf+1

ȳj−1uj
a∼

τ∑
j=τf+1

(
−nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re)

)
uj

= −nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re)
τ∑

j=τf+1

uj

= −nα+d1−1/2ρτ−τen

1

rc
σdB

H1(re)n
1/2+d1

(
BH1(r)−BH1(rf )

)
a∼ −nα+2d1ρτ−τen

1

rc
σdB

H1(re)
(
BH1(r)−BH1(rf )

)
.

Note that 1/2−d1
1/2−d2 > α implies 1

2
+ 1

2
α + d1 + d2α > α + 2d1. So the second term

dominates the first and third term and we have
τ2∑

j=τf+1

ȳj−1uj
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ.

So we have completed the proof of Lemma 23.

Lemma 24 The sample covariances of ȳj−1 and yj − ρnyj−1 behave as follows:

1. For τ ∈ B,
τ∑
j=1

ȳj−1(yj − ρnyj−1)
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ.

2. For τ ∈ N1,
τ∑
j=1

ȳj−1(yj − ρnyj−1)
a∼ −ρ2(τf−τe)

n n1+2d1σ2
d

(
BH1(re)

)2
.

Proof.

1. Note that we can separate
∑τ

j=1 ȳj−1(yj − ρnyj−1) into two parts such that

τ∑
j=1

ȳj−1(yj − ρnyj−1) =
τe−1∑
j=1

ȳj−1(yj − ρnyj−1) +
τ∑

j=τe

ȳj−1(yj − ρnyj−1)

=
τe−1∑
j=1

ȳj−1 [(1− ρn) yj−1 + ut] +
τ∑

j=τe

ȳj−1ut

=
τ∑
j=1

ȳj−1ut −
c

nα

τe−1∑
j=1

ȳj−1yj−1.
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From (138),
∑τ

j=1 ȳj−1ut
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ,

for the second term, applying (131) gives us

c

nα

τe−1∑
j=1

ȳj−1yj−1
a∼ c

nα

τe−1∑
j=1

(
−nα+d1−1/2ρτ−τen

1

rc
σd1B

H1(re)

)
yj−1

=

(
−nd1−1/2ρτ−τen

1

r
σd1B

H1(re)

)
τe

(
1

τe

τe−1∑
j=1

yj−1

)
a∼
(
−nd1−1/2 1

r
ρτ−τen σd1B

H1(re)

)
τe

(
n1/2+d1σd1

∫ re

0

BH1(s)ds

)
= −n2d1+1ρτ−τen

re
r
σ2
d1
BH1(re)

∫ re

0

BH1(s)ds. (143)

Under the assumption α < 1/2+d1
1/2+d2

, we can show 1
2
(1 + α) + d1 + d2α > 2d1 + 1

thus
∑τ

j=1 ȳj−1ut asymptotically dominates − c
nα

∑τe−1
j=1 ȳj−1yj−1, and we have

τ∑
j=1

ȳj−1(yj − ρnyj−1)
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ.

2. For τ ∈ N1, we can express
τ∑
j=1

ȳj−1(yj − ρnyj−1)

=
τe−1∑
j=1

ȳj−1(yj − ρnyj−1) +

τf∑
j=τe

ȳj−1(yj − ρnyj−1) + ȳτf (yτf − ρnyτf )

+
τ∑

j=τf+2

ȳj−1(yj − ρnyj−1)

=
τe−1∑
j=1

ȳj−1

[
− c

nα
yj−1 + ut

]
+

τf∑
j=τe

ȳj−1ut + ȳτf (yτf+1 − ρnyτf )

+
τ∑

j=τf+2

ȳj−1

[
− c

nα
yj−1 + ut

]

=
τ∑
j=1

ȳj−1ut −
c

nα

τe−1∑
j=1

ȳj−1yj−1 −
c

nα

τ∑
j=τf+2

ȳj−1yj−1 − ρnȳτfyτf .

For the first term, similar to (138), we have
τ∑
j=1

ȳj−1ut
a∼ ρτ−τen n

1
2

(1+α)+d1+d2α (rf − re)(1/2+d2)α σd1B
H1(re)Φ,
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for the second term, following the step to obtain (143), we have

c

nα

τe−1∑
j=1

ȳj−1yj−1
a∼ −n2d1+1ρ

τf−τe
n

re
r
σ2
d1
BH1

∫ re

0

BH1(s)ds,

for the third term,

c

nα

τ∑
j=τf+2

ȳj−1yj−1
a∼ c

nα

τ∑
j=τf+2

(
−nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re)

)
yj−1

= −nd1−1/2ρ
τf−τe
n

1

rc
σd1B

H1(re)
τ∑

j=τf+2

yj−1

= −nd1−1/2ρ
τf−τe
n

1

rc
σd1B

H1(re) (τ − τf − 1)
n1/2+d1

τ − τf − 1

τ∑
j=τf+2

1

n1/2+d1
yj−1

a∼ −n2d1+1ρ
τf−τe
n

1

rc
σ2
d1
BH1(re)

2 (r − rf )
∫ r

rf

BH1(s)ds.

For the last term, from Lemma 19.2 and (134)

ρnȳτfyτf
a∼ ȳτfyτf (as ρn → 1)

a∼
(
ρ
τf−τe
n − ρτf−τen

nα

nrc

)
n1/2+d1σd1B

H1

(
ρ
τf−τe
n n1/2+d1σd1B

H1(re)
)

= ρ
2(τf−τe)
n n1+2d1σ2

d1

(
BH1(re)

)2
.

Note that the last component dominates the previous terms as ρ
2(τf−τe)
n is over-

whelming. Finally, we have

τ∑
j=1

ȳj−1(yj − ρnyj−1)
a∼ −ρ2(τf−τe)

n n1+2d1σ2
d1

(
BH1(re)

)2
.

This ends the proof of Lemma 24.

Lemma 25 For the sum of squared difference
∑τ

t=1 ∆y2
t , we have the following limit

results:

1. When τ ∈ B,
τ∑
t=1

∆y2
t = Op(n

1+2d1−αρ
2(τf−τe)
n ). (144)
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2. When τ ∈ N1,
τ∑
t=1

∆y2
t = Op(n

1+2d1ρ
2(τf−τe)
n ). (145)

Proof.

For ∆yt, note that it has a different expression for different period,

∆yt =



ut if t < τe,

(ρn − 1)yt−1 + ut if τe 6 t 6 τf ,

yτe + y∗ + uτf+1 − yτf if t = τf + 1,

ut if t > τf + 1.

. (146)

Note that,

τ∑
t=1

∆y2
t =

τe−1∑
t=1

∆y2
t +

τf∑
t=τe

∆y2
t + ∆y2

τf+1 +
τ∑

t=τf+2

∆y2
t . (147)

And using (146), we can write

τ∑
t=1

∆y2
t

=

τe−1∑
t=1

u2
t +

τf∑
t=τe

((ρn − 1)yt−1 + ut)
2 +

(
yτe + y∗ + uτf+1 − yτf

)2
+

τ∑
t=τf+2

u2
t

=

τe−1∑
t=1

u2
t +

c2

n2α

τf∑
t=τe

y2
t−1 +

2c

nα

τf∑
t=τe

yt−1ut +

τf∑
t=τe

u2
t

+
(
yτe + y∗ − yτf

)2
+ 2

(
yτe + y∗ − yτf

)
uτf+1 + u2

τf+1 +

τ∑
t=τf+2

u2
t

=

τ∑
t=1

u2
t +

c2

n2α

τf∑
t=τe

y2
t−1 +

2c

nα

τf∑
t=τe

yt−1ut +
(
yτe + y∗ − yτf

)2
+ 2

(
yτe + y∗ − yτf

)
uτf+1.(148)

We now proceed to compare the stochastic order of different component in (148).

By ergodic theorem
∑τ

t=1 u
2
t = Op(n). For the second term, applying Lemma 20, we
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have

c2

n2α

τf∑
t=τe

y2
t−1

a∼ c2

n2α

(
n1/2+d1σd1B

H1(re)
)2

τf∑
t=τe

ρ2(t−τe)
n (149)

=
c2

n2α

(
n1/2+d1σd1B

H1(re)
)2 nαρ

2(τf−τe)
n

2c

=
c

2
n1+2d1−αρ

2(τf−τe)
n σ2

d1
BH1(re)

2

= Op(n
1+2d1−αρ

2(τf−τe)
n ). (150)

Suppose τ ∈ B, we do not have the term in (147), and (150) yields (144).

For the third term, note that

yτe + y∗ − yτf
a∼ n1/2+d1σd1B

H1(re) +Op(1)− ρ(τf−τe)
n n1/2+d1σd1B

H1(re)

= Op(ρ
(τf−τe)
n n1/2+d1).

It implies
(
yτe + y∗ − yτf

)2
= Op(ρ

2(τf−τe)
n n1+2d1).

Finally,

2
(
yτe + y∗ − yτf

)
uτf+1 = Op(ρ

(τf−τe)
n n1/2+d1)×Op(1)

= Op(ρ
(τf−τe)
n n1/2+d1).

Therefore, the third term dominates the other term as n → ∞, and we have (145).

This completes the proof.

Lemma 26 For the LS estimator ρ̂τ , we have the following asymptotic results:

1. When τ ∈ B,

n (ρ̃τ − 1)
p→∞.

2. When τ ∈ N1,

n (ρ̃τ − 1)
p→ −∞.

Proof.

By our definition, ρ̃τ = ρ̂τ +
1
2

∑τ
j=1 ∆y2t∑τ
j=1 ȳ

2
j−1

, while from Lemma 22 and Lemma 25, it is

clear that 1
2

∑τ
j=1 ∆y2

t is at mostOp(n
1+2d1ρ

2(τf−τe)
n ), and

∑τ
j=1 ȳ

2
j−1 = Op(n

1+2d1+αρ
2(τf−τe)
n )
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for τ ∈ B ∪ N1. So the term
1
2

∑τ
j=1 ∆y2t∑τ
j=1 ȳ

2
j−1

= op(1), it means we only need to study the

asymptotic properties of ρ̂τ .

We first focus on the centered statistics ρ̂τ − ρn =
∑τ
j=1 ȳj−1(yj−ρnyj−1)∑τ

j=1 ȳ
2
j−1

.

1. When τ ∈ B,∑τ
j=1 ȳj−1(yj − ρnyj−1)∑τ

j=1 ȳ
2
j−1

a∼ ρτ−τen n
1
2

(1+α)+d1+d2α (r − re)(1/2+d2)α σd1B
H1(re)Φ

n1+2d1+α ρ
2(τ−τe)
n

2c
σ2
d1
BH1(re)2

=
2c (r − re)(1/2+d2)α Φ

ρτ−τen n1/2+d1+(1/2−d2)ασd1B
H1(re)

= Op(n
−αρ−(τ−τe)

n ), (151)

where we have applied Lemma 22.1 and 24.1 to obtain the asymptotic equivalence.

Note that 151 also implies ρ̃τ − ρn = Op(n
−αρ

−(τ−τe)
n ).

As n(ρ̃τ − 1) = n(ρn − 1) + n(ρ̃τ − ρn),

n(ρn − 1) + n(ρ̃τ − ρn) = n1−αc+Op(n
1−αρ−(τ−τe)

n )

= n1−αc+ op(1)→∞. (152)

2. When τ ∈ N1,∑τ
j=1 ȳj−1(yj − ρnyj−1)∑τ

j=1 ȳ
2
j−1

a∼
−ρ2(τf−τe)

n n1+2d1σ2
d1

(
BH1(re)

)2

n1+α+2d1 ρ
2(τf−τe)
n

2c
σ2
d1
BH1(re)2

= −n−α2c. (153)

Similarly, (153) also gives the order of ρ̃τ − ρn.

As n(ρ̃τ − 1) = n(ρn − 1) + n(ρ̃τ − ρn),

n(ρn − 1) + n(ρ̃τ − ρn) = n1−αc− n
(
n−α2c

)
= −n1−αc→∞. (154)

This completes the proof of Lemma 26.

Lemma 27 Under model (60), we have the following asymptotic result.

Ω̂HAR = Op(n
2d1ρ2(τ−τe)

n ).
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Proof. From (106), we have

Ω̂HAR =
1

τ

τ−1∑
i=1

1

τ

τ−1∑
j=1

τ 2Dτ

(
i− j
τ

)
1√
τ
Ŝi

1√
τ
Ŝj. (155)

To study the order of ΩHAR, we only need to study the limit of 1√
τ
Ŝi.

Suppose τ ∈ B,

1√
n
Ŝτ =

1√
n

τ∑
i=1

(ȳi − ρ̂τ ȳi−1)

=
1√
n

[
τe−1∑
i=1

(ȳi − ρ̂τ ȳi−1) +
τ∑

i=τe

(ȳi − ρ̂τ ȳi−1)

]

=
1√
n

τe−1∑
i=1

(ui − (ρ̂τ − 1)ȳi−1) +
1√
n

τ∑
i=τe

(ui − (ρ̂τ − ρn)ȳi−1)

=
1√
n

τ∑
i=1

ui − (ρ̂τ − 1)
1√
n

τe−1∑
i=1

ȳi−1 − (ρ̂τ − ρn)
1√
n

τ∑
i=τe

ȳj−1. (156)

We now compare the order of the three terms. It is clear that 1√
n

∑τ
i=1 ui = Op(n

max{d1,d2}).

For the second term (ρ̂τ − 1) 1√
n

∑τe−1
i=1 ȳi−1, note that (ρ̂τ − 1)

a∼ c
nα

and

√
n

1

n

τe−1∑
i=1

ȳi−1 =
√
n
bnrc
n

1

τ

τe−1∑
i=1

ȳi−1

=
√
n
bnrc
n

(
1

τ

τe−1∑
i=1

yi−1 −
τe − 1

τ

1

τ

τ∑
i=1

yi

)
= O(

√
n)
(
Op(n

1/2+d1)−Op

(
nα+d1−1/2ρτ−τen

))
= Op

(
nα+d1ρτ−τen

)
This makes (ρ̂τ − 1) 1√

n

∑τe−1
i=1 ȳi−1 = c

nα
Op

(
nα+d1ρτ−τen

)
= Op

(
nd1ρτ−τen

)
. For the

last term, note that from (152), we have (ρ̂τ − ρn) = Op

(
1

nαρτ−τen

)
, and

1√
n

τ∑
i=τe

ȳj−1 = r
√
n
bnrc
nr

1

τ

τ∑
i=τe

ȳj−1

= r
√
n
bnrc
nr

1

τ

τ∑
i=τe

(
yj−1 −

1

τ

τ∑
i=1

yj

)

= r
√
n
bnrc
nr

(
1

τ

τ∑
i=τe

yj−1 −
τ − τe + 1

τ

1

τ

τ∑
i=1

yj

)
.
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Note that from Lemma 20.1 and (130) we have

1

τ

τ∑
j=τe

yj−1 = Op

(
nα+d1−1/2ρτ−τen

)
,

and

1

τ

τ∑
j=1

yj = Op

(
nα+d1−1/2ρτ−τen

)
.

So we have

1√
n

τ∑
i=τe

ȳj−1 = O
(
n1/2

)
Op

(
nα+d1−1/2ρτ−τen

)
= Op

(
nα+d1ρτ−τen

)
.

This implies

(ρ̂τ − ρn)
1√
n

τ∑
i=τe

ȳj−1 = Op

(
1

nαρτ−τen

)
Op

(
nα+d1ρτ−τen

)
= Op

(
nd1
)
. (157)

Comparing the order of three terms in (156), we obtain

1√
n
Ŝτ

a∼ −(ρ̂τ − 1)
1√
n

τe−1∑
i=1

ȳi−1 = Op

(
nd1ρτ−τen

)
. (158)

Then (155) implies Ω̂HAR = Op(n
2d1ρ

2(τ−τe)
n ).

Suppose τ ∈ N1,

1√
n
Ŝτ

=
1√
n

τ∑
i=1

(ȳi − ρ̂τ ȳi−1)

=
1√
n

τe−1∑
i=1

(ȳi − ρ̂τ ȳi−1) +

τf∑
i=τe

(ȳi − ρ̂τ ȳi−1) +
τ∑

i=τf+1

(ȳi − ρ̂τ ȳi−1)


=

1√
n

τe−1∑
i=1

(ui − (ρ̂τ − 1)ȳi−1) +
1√
n

τf∑
i=τe

(ui − (ρ̂τ − ρn)ȳi−1) +
1√
n

τ∑
i=τf+1

(ui − (ρ̂τ − 1)ȳi−1)

=
1√
n

τ∑
i=1

ui + (ρ̂τ − 1)
1√
n

τe−1∑
i=1

ȳi−1 − (ρ̂τ − ρn)
1√
n

τ∑
i=τe

ȳj−1 + (ρ̂τ − 1)
1√
n

τ∑
i=τf+1

ȳi−1. (159)
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Note that the order of the first three terms in (159) are Op(n
d1), Op

(
nd1ρτ−τen

)
, and

Op

(
nd1
)
, respectively. For the last term, we have

(ρ̂τ − 1)
1√
n

τ∑
i=τf+1

ȳi−1
a∼ c

nα
1√
n

τ∑
i=τf+1

(
−nα+d1−1/2ρ

τf−τe
n

1

rc
σd1B

H1(re)

)
= Op(n

d1ρ
τf−τe
n ),

where we have applied (135) and (154) to obtain the asymptotic equivalence.

As τ ∈ N1, τf < τ, eventually we have the same expression as (158) and it implies

ΩHAR = Op(n
2d1ρ

2(τ−τe)
n ). This ends the proof of Lemma 27.

Proof of Theorem 8

Note that D̃F τ,HAR =
(∑τ

i=1 ȳ
2
i−1

Ω̂HAR

)1/2

(ρ̃τ − 1).

Suppose that τ ∈ B, applying the results in Lemma 22.1, (152) and Lemma 27 , we

obtain

(∑τ
i=1 ȳ

2
i−1

Ω̂HAR

)1/2

(ρ̃τ − 1) = Op

(
n1+α+2d1ρ

2(τ−τe)
n

n2d1ρ
2(τ−τe)
n

)1/2
c

nα

= Op

(
n

1−α
2

)
→∞.

Suppose that τ ∈ N1,applying the results in Lemma 22.1, (154) and Lemma 27, we

have

(∑τ
i=1 ȳ

2
i−1

Ω̂HAR

)1/2

(ρ̃τ − 1) = Op

(
n1+α+2d1ρ

2(τf−τe)
n

n2d1ρ
2(τ−τe)
n

)1/2 (
− c

nα

)
= −Op

(
n

1−α
2

)
→ −∞.

To show r̂HARe

p→ re and r̂HARf

p→ rf , note that if τ ∈ N0,

lim
n→∞

Pr(D̃F τ,HAR > cvn,HAR) = Pr (Fr,d >∞) = 0.

If τ ∈ B, limn→∞ Pr(D̃F τ,HAR > cvn,HAR) = 1, given that cvn,HAR
n(1−α)/2 → 0. If τ ∈ N1,

limn→∞ Pr(D̃F τ,HAR > cvn,HAR) = 0, as D̃F τ,HAR = −Op

(
n

1−α
2

)
.

It follows that for any η, ϑ > 0,
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Pr(r̂HARe > re + η)→ 0, and Pr(r̂HARf < rf + ϑ)→ 0,

due to the fact that Pr(D̃F (τe+αη/n),HAR > re + η) → 1 for all 0 < αη < η and

Pr(D̃F (τf−αϑ/n),HAR > cvn,HAR) → 1 for all 0 < αϑ < ϑ. As η and ϑ are arbitrary and

Pr(r̂HARe < re)→ 0 and Pr(r̂HARf > rf )→ 0, we can deduce Pr(
∣∣r̂HARe − re

∣∣ > η)→ 0

and Pr(
∣∣r̂HARf − rf

∣∣ > ϑ)→ 0 as n→∞, provided that

1

cvn,HAR
+
cvn,HAR

n(1−α)/2 → 0.
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