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Scalable Multi-Agent Reinforcement Learning for
Aggregation Systems

Tanvi Verma

Abstract

Efficient sequential matching of supply and demand is a problem of interest in many

online to offline services. For instance, Uber, Lyft, Grab for matching taxis to cus-

tomers; Ubereats, Deliveroo, FoodPanda etc. for matching restaurants to customers. In

these systems, a centralized entity (e.g., Uber) aggregates supply and assigns them to

demand so as to optimize a central metric such as profit, number of requests, delay etc.

However, individuals (e.g., drivers, delivery boys) in the system are self interested and

they try to maximize their own long term profit. The central entity has the full view

of the system and it can learn policies to maximize the overall payoff and suggest it to

the individuals. However, due to the selfish nature of the individuals, they might not be

interested in following the suggestion. Hence, in my thesis, I develop approaches that

learn to guide these individuals such that their long term revenue is maximized.

There are three key characteristics of the aggregation systems which make them

unique from other multi-agent systems. First, there are thousands or tens of thousands

of individuals present in the system. Second, the outcome of an interaction is anony-

mous, i.e., the outcome is dependent only on the number and not on the identities of

the agents. And third, there is a centralized entity present which has the full view of

the system, but its objective does not align with the objectives of the individuals. These

characteristics of the aggregation systems make the use of the existing Multi-Agent Re-

inforcement Learning (MARL) methods challenging as they are either meant for just

a few agents or assume some prior belief about others. A natural question to ask is

whether individuals can utilize these features and learn efficient policies to maximize

their own long term payoffs. My thesis research focuses on answering this question and

provide scalable reinforcement learning methods in aggregation systems.



Utilizing the presence of a centralized entity for decentralized learning in a non-

cooperative setting is not new and existing MARL methods can be classified based on

how much extra information related to the environment state and joint action is provided

to the individual learners. However, presence of a self-interested centralized entity adds

a new dimension to the learning problem. In the setting of an aggregation system, the

centralized entity can learn from the overall experiences of the individuals and might

want to reveal only those information which helps in achieving its own objective. There-

fore, in my work I propose approaches by considering multiple combinations of levels

of information sharing and levels of learning done by the centralized entity.

My first contribution assumes that the individuals do not receive any extra informa-

tion and learn from their local observation. It is a fully decentralized learning method

where independent agents learn from the offline trajectories by considering that others

are following stationary policies. In my next work, the individuals utilize the anonymity

feature of the domain and consider the number of other agents present in their local ob-

servation to improve their learning. By increasing the level of learning done by the

centralized entity, in my next contribution I provide an equilibrium learning method

where the centralized entity suggests a variance minimization policy which is learned

based on the values of actions estimated by the individuals. By further increasing the

level of information shared and the level of learning done by the centralized entity, I next

provide a learning method where the centralized entity acts as an correlation agent. In

this method the centralized entity learns social welfare maximization policy directly

from the experiences of the individuals and suggests it to the individual agents. The

individuals in turn learn a best response policy to the suggested social welfare maxi-

mization policy. In my last contribution I propose an incentive based learning approach

where the central agent provides incentives to the individuals such that their learning

converges to a policy which maximizes overall system performance. Experimental re-

sults on real-world data sets and multiple synthetic data sets demonstrate that these

approaches outperform other state-of-the-art approaches both in the terms of individual

payoffs and overall social welfare payoff of the system.
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Chapter 1

Introduction

Aggregation systems (e.g., Uber, Lyft, FoodPanda, Deliveroo) have been increasingly

used to improve efficiency in numerous environments, including in transportation, lo-

gistics, food and grocery delivery. In these online to offline service systems, aggregation

companies aggregate supply (e.g., drivers, delivery personnel) and matches demand to

supply on a continuous basis. The individuals who are responsible for supply (e.g., taxi

drivers,delivery bikes or delivery van drivers) earn more by being at the ”right” place

at the ”right” time. However, the objective of the aggregation companies is to optimize

a central metric such as maximizing profit, maximizing number of request served or

minimizing customer delays. Due to optimizing a metric of importance to the aggre-

gation companies, the interests of the individuals can be sacrificed. Therefore, in my

thesis I focus on the problem of learning revenue maximizing policies for individuals

in aggregation systems such that overall performance of the system is maximized.

I first describe the following three aggregation systems which provide motivation

for my work.

Taxi Aggregation: Companies like Uber, Lyft, Didi, Grab etc. all provide taxi sup-

ply aggregation systems. The goal is to ensure wait times for customers is minimal or

amount of revenue earned is maximized by matching taxi drivers to customers on a reg-

ular basis. However, these goals of the aggregation companies may not be correlated to

the individual driver objective of maximizing their own revenue. In this thesis I develop

1



methods to guide individual drivers to ”right” locations at ”right” times based on their

past experiences of customer demand and taxi supply (obtained directly/indirectly from

the aggregation company) to improve their revenue.

Food or Grocery Delivery : Aggregation systems have also become very popular for

food delivery (Deliveroo, Ubereats, Foodpanda, DoorDarsh etc.) and grocery delivery

(AmazonFresh, Deliv, RedMart etc.) services. They offer access to multiple restau-

rants/grocery stores to the customers and use services of delivery boys/delivery vans to

deliver the food/grocery. Similar to taxi aggregation systems, my work can be used to

guide delivery boy/van to be present at right locations at right times so as to improve

their individual revenue.

Supply Aggregation in Logistics: More and more on-line buyers now prefer same

day delivery services and tradition logistic companies which maximize usage of trucks,

drivers and other resources are not suitable for it. Companies like Amazon Flex, Post-

mates, Hitch etc. connect shippers with travelers/courier personnel to serve same day/on-

demand delivery requests. The courier personnel in this system can employ the pro-

posed methods to learn to be at ”right” place at ”right” time by learning from the past

experiences.

Figure 1.1 provides the framework of an aggregation system. The central agent

and individual agents are mutually dependent on each other as it is the individuals who

execute the actions whereas the demand assignment is done by the central entity. The

entire process can be summed up in following steps

• Individuals executes action based on their current location, ex. stay in the current

location or move to a nearby location to maximize their long term payoff.

• Based on the incoming demand, the central entity assigns them to the individuals

such that a central metric (maximum social welfare, minimum delay etc.) is

optimized.

• Environment moves to the next global state and the central entity receives payoff

for the joint-action.
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Figure 1.1: Framework of aggregation systems

• After deducting the commission fee, the central agent provides the individual

payoffs to the individual agents. It also learns from the experience and optionally

provides extra information to them.

• Based on their own experience, individuals learn policies to maximize their own

revenues.

Maximizing the long term revenue by being at a location where probability of being

matched with a demand is high requires the individuals to make a sequence of decisions.

For example, wait in current zone for 5 minutes, if no demand is assigned, wait for 5

more minutes and if a demand is still not assigned then move to some other zone. Also,

customer demand is uncertain in these domains. Hence, Multi-Agent Reinforcement

Learning (MARL) is an ideal approach for the learning problem. However, there are

following characteristics of the aggregation systems, which make them different from

the other multi-agent systems.

• Typically a sizable number of individuals are part of the aggregation systems. For

example, there are around 40000 taxis in a small city like Singapore.

• The interactions among the individuals are anonymous, i.e., the payoff of an agent

depends on the number of other agents selecting the same action rather than the
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identities of the other agents. For example, whether a demand is assigned to a

taxi is dependent on number of other taxis present at the same location and not

on the identities of the other taxis.

• Most importantly, the objectives of centralized agents (aggregation companies)

and individual agents are different. For example, the centralized entity optimizes

overall system performance whereas the individuals are interested in maximizing

their own long term payoffs.

Hence, existing MARL approaches which are either suitable for only a few agents

(Fictitious play (Brown, 1951), JAL (Claus & Boutilier, 1998), WOLF-IGA (Bowling

& Veloso, 2002), Minimax Q-Learning (Littman, 1994), Nash Q-Learning (Hu & Well-

man, 2003), Correlated Q-Learning (Greenwald, Hall, & Serrano, 2003), Friend-or-

Foe Q-learning (FFQ) (Littman, 2001a), AWESOME (Conitzer & Sandholm, 2007),

FSP (Heinrich, Lanctot, & Silver, 2015) etc.) or assume that the learning agent has

some prior belief about the other agents (M* (Carmel & Markovitch, 1996), (Castellini,

Oliehoek, Savani, & Whiteson, 2019), ToMnet (Rabinowitz et al., 2018), Bayes-ToMoP

(T. Yang et al., 2019), LOLA (J. Foerster et al., 2018) etc.) are not suitable for the learn-

ing problem.

Many of the current algorithms assume presence of a centralized entity which pro-

vides extra information about environment state or joint action to the individuals either

during training time (Mean Field Q-Learning (MFQ) (Y. Yang et al., 2018), Multi-

Agent Actor Critic (MAAC) (Lowe et al., 2017), MADDPG (Lowe et al., 2017), COMA

(J. N. Foerster, Farquhar, Afouras, Nardelli, & Whiteson, 2018)) or both at the training

as well as at execution time (JAL, Minimax Q-Learning, FFQ, Nash Q-Learning, Cor-

related Q-Learning etc.). In fact, the existing algorithms can be classified based on the

level of information shared by the centralized entity. As in aggregation systems the cen-

tralized agent has a full view of the system, it can learn policies which optimizes its own

objective and suggest them to the individual agents. The presence of a self-interested

centralized entity which acts as an intermediary between the environment and the indi-

vidual learners adds a new dimension to the learning problem. Therefore, in my work I
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provide methods of learning in aggregation system based on these two dimensions , i.e.

the level of information sharing and the level of learning done by the centralized agent.

There are a few recent algorithms (Neural Fictitious Self Play (NFSP) (Heinrich

& Silver, 2016), MFQ (Y. Yang et al., 2018), MAAC (Lowe et al., 2017)) which are

relevant to the problem presented in this thesis, however they do not consider learning

by the centralized agent and we show in our experiments that the proposed methods

outperform these algorithms.

1.1 Motivating Example

In this section I discuss few scenarios which motivates me to provide different learning

approaches for the aggregation domain. The level of information to be shared and the

level of centralized learning to be done is completely dependent on the discretion of

the centralized entity. For example, a food delivery aggregation company might not be

interested in providing extra assistance to the individuals in the system. Hence, for such

kind of domains I have provided independent learning methods where the individuals

learn from their local experiences.

If the central entity is willing to participate in the learning, there are multiple ways in

which it can do so. For example, it can share global state information to the individuals,

or it can learn policies which improve performance of the overall system and suggest

them to the individuals. Furthermore, as the individuals are self-interested, they might

not be interested in following the suggested action. Hence, instead of suggesting a

policy, the central entity can provide incentives to the individuals such that the overall

system performance is maximized. This motivates me to provide learning approaches

for the individuals in the presence of a self-interested central entity. The proposed

approaches are suitable for different combination of level of information shared and

level of learning done at the end of the centralized entity.
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1.2 Contributions

In my work I provide five different learning methods in aggregation system based on

multiple combinations of the two above-mentioned dimensions which are summarized

as follows

• First, I propose ILT (Independent Learning from offline Trajectories), where the

individuals learn completely from their local observation and no extra information

is shared by the centralized entity. In this method the individuals learn from the

real-world (Global Positioning System) GPS trajectories of the other taxis present

in an offline data set. This approach is suitable when there are very few learning

agents present in the environment and rest of the agents follow stationary policies.

Experimental results using real-world data show that a learning agent is able to

earn revenue which is comparable the revenue earned by the top 10 percentile of

the real-world taxi drivers.

• Second, I present Density Entropy based Deep Q Network (DE-DQN) for the

individual learners where other agents are also simultaneously learning. This ap-

proach utilizes the anonymity feature of the aggregation domain and consider the

local count statistics of the other agents in their learning model. More specif-

ically, DE-DQN predict and control the non-stationarity introduced due to the

presence of other agents by learning policies that maximize the entropy on agent

population distribution. DE-DQN performs better than other relevant algorithms

both in the terms of individual payoffs as well as the social welfare values.

• Third, I provide value Variance Minimization Q-learning (VMQ) approach which

learns ε− Nash equilibrium policies for the individual learners. This a central-

ized learning decentralized execution algorithm where the central agent learns

from the learned values of the individual agents and provides the extra informa-

tion only during the learning phase of the algorithm. Building insights from the

non-atomic congestion games model, I provide theoretical properties of equilib-

rium in anonymous domains. Based on these properties, VMQ learns ε−Nash
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Figure 1.2: Thesis Evolution.

equilibrium policies. I experimentally show that VMQ learn better equilibrium

policies than other state-of-the-art methods.

• Fourth, I propose Correlated Learning (CL) method where central entity learn

directly from the experiences of the individuals. Based on the experiences, the

centralized agent learns a policy which optimizes its objective of maximizing

social welfare and suggests it to the individuals. Individual agents in turn learn

best response policies to the suggested social welfare policy. Experimental results

show that CL results into a ”win-win situation” where both central agents and

individuals receive better payoff than the other learning approaches.

• Fifth, to maximize the overall performance of the system, I propose an Incentive

Based Q-Learning (IBQ) method where the central agent learns a social welfare

maximization policy. Based on the insights from potential based reward shaping,

the central agent provides incentives to the individuals such that they converge

to policies that maximize social welfare value. Experimental results show that

providing incentive is advantageous and both central agent and individual agents

receive better payoff than relevant MARL algorithms.
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These approaches are scalable as they either consider only the individual action or

they consider the aggregated joint action in their model. The experimental results depict

that proposed algorithms outperform relevant state-of-the-art algorithms.

Figure 1.2 shows how my thesis has evolved with respect to the two dimensions.

My initial work involved independent learning with local observations where the central

agent is passive in the environment. Then by gradually increasing the levels, I worked

on providing more robust methods which improve performance both in the terms of

individual payoffs and overall social welfare payoff of the system.

Figure 1.3 categorizes the contribution of this thesis (in red) with respect to the level

of extra information shared to the individual agents and the level of learning done by

the centralized agent. It shows that my thesis covers all the combinations of the two

dimensions where a few of them learn solely from the local observations whereas extra

learning happens at the central agent’s end for the rest of the proposed methods.

Figure 1.3: Thesis Contribution.
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1.3 Overview

Following is the overview of the chapters presented in this thesis

• Chapter 2 presents formal frameworks of related concepts such as RL, MARL

and stochastic games. It provides the background necessary to understand the

detailed research I present in later chapters.

• Chapter 3 discusses the related research on multi-agent reinforcement learning

and game theoretic approaches.

• Chapter 4 introduces the underlying model for anonymous multi-agent rein-

forcement learning. It is a specialization of stochastic games model which con-

sider interaction anonymity. In the chapter I also introduce experimental setups

which have been used throughout the thesis to compare performances of the pro-

posed methods.

• Chapter 5 provides ILT, a method for an individual agent to learn from offline

trajectories of other agents. We show that this method performs extremely well

when number of learning agents are limited in the domain.

• Chapter 6 presents DE-DQN, a method which exploits interaction anonymity of

the domain. We show that by considering entropy of agent state distribution, an

individual agent performs significantly better than the existing algorithms.

• Chapter 7 provides VMQ, an equilibrium learning method where centralized

agent learns based on the learning of individuals. I experimentally show that

VMQ learns better ε-Nash equilibrium policies as compared to the other equilib-

rium learning algorithms.

• Chapter 8 proposes CL, where the central agent learns social welfare maximiz-

ing policy from the experiences of the individuals. The individuals learn to play

best response to the suggested social welfare policy.
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• Chapter 9 presents IBQ, an incentive based learning mechanism which maxi-

mizes the overall performance of the system.

• In Chapter 10 I conclude my thesis with discussion about applicability, opera-

tionalization and future work.
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Chapter 2

Background

In this chapter, we introduce the relevant background concepts.

2.1 Markov Decision Process

Markov Decision Processes (MDPs) are very popular mathematical framework for mod-

eling decision making under uncertainty. Formally, an MDP is represented by the tuple〈
S,A, T,R, γ

〉
, where

• S is the set of states,

• A is the set of actions,

• T : S × A× S → [0, 1] is transition function,

• R : S × A→ R is reward function, and

• γ ∈ [0, 1) is the discount factor, which represents the difference in importance

between immediate reward and future rewards.

Transition function defines a probability distribution over next states as function of

agent’s current state and its action. More specifically, T (s, a, s′) represents the proba-

bility of transitioning from state s to state s′ on taking action a. The reward function

defines the immediate reward received by the agent after selecting actions in given state,
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i.e. R(s, a) represents the reward obtained on taking action a in state s. The transition

function T and reward function R together defines the model of the MDP.

Given an MDP
〈
S,A, T,R, γ

〉
, the core problem is to find an optimal policy for an

agent. A policy π : S → A is a function which determines an action π(s) ∈ A for

every state s ∈ S. An optimal policy for the MDP maximizes the long run expected

reward received by following the policy. V π(s) is the policy π’s state value function

which determines the agent’s expected reward starting from state s and then following

policy π

V π(s) = Eπ
{ ∞∑
k=0

γkrt+k+1|st = s
}

where Eπ{} is the expected value given that agent follows policy π.

The problem of providing guidance to taxi drivers on the ”right” locations so as to

maximize their long-term revenue can be modelled as an MDP as:

• Maximizing the long term revenue by finding customers during cruising requires

making a sequence of decisions (ex: wait in current zone for 5 minutes, if no

customer found, wait for 5 more minutes and if you cannot still find a customer

move to zone B)

• Rewards are well defined, i.e., the sum of revenue earned from a customer (if

customer on board) and cost from travelling between locations;

• Customer demand is uncertain and the transition function of an MDP can capture

such uncertainty quite well.

Hence, in this thesis I model the problem as an MDP.

2.2 Single Agent Reinforcement Learning

Reinforcement Learning (RL) (Sutton & Barto, 1998) is a method of solving MDP when

the model of MDP is not known. A single agent reinforcement learning framework is
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based on the model given in Figure 2.1, where an agent interacts with the environment

by selecting action and then the environment responds by sending a reward signal and

presenting the new state to the agent. The agent learns a policy that maximizes the long

term reward while only obtaining experiences (and not knowing the full reward, R and

transition, T models) of transitions and reinforcements. An experience is defined as

(s, a, r, s′) where s is the current state, a is the action selected by the agent, r is the

immediate reward of taking action a in states and s′ is the next state. An episode is a

sequence of experiences that ends when s′ is a terminal state.

Figure 2.1: Single agent RL framework.

As RL algorithms learn from performing actions and interacting with environment,

they usually estimate state-action value function (Q-value function), instead of estimat-

ing state value function V π(s). The Q-value Qπ : S × A → R function defines the

expected discounted reward of choosing a particular action in a given state and then

following the policy π.

Qπ(s, a) = Eπ
{ ∞∑
k=0

γkrt+k+1|st = s, at = a
}

RL can be broadly divided into two classes, model-based learning and model-free

learning. Model-based methods require a model of transition probabilities and the re-

ward function to compute values of states. There are many existing works which deal
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with learning transition and reward models (Schneider, 1997; Chakraborty & Stone,

2011; Hester & Stone, 2009). Temporal Difference (Tesauro, 1995) and Monte Carlo

(Sutton & Barto, 1998) methods are well known model-free learning methods.

2.2.1 Q-Learning

Q-learning is one of the most popular model-free approaches for RL (Watkins & Dayan,

1992), where the Q function is represented as a table (and initialised to arbitrary fixed

values) with an entry in the table for each state and action combination. The optimal

Q-value function Q∗(s, a) is the immediate reward of selecting action a in state s plus

the expected discounted value attainable from the next state. Q∗ satisfies the Bellman

optimality equation:

Q∗(s, a) = R(s, a) + γ
∑
s′∈S

T (s′|s, a) max
a′∈A

Q∗(s′, a′) (2.1)

Since the model of the MDP is not known, Q-learning modifies the Equation 2.1

into an iterative approximation approach based on sample of experiences (s, a, r, s′) as

follows:

Q(s, a)← Q(s, a) + α[r + γmax
a′

Q(s′, a′)−Q(s, a)] (2.2)

Where α is the learning rate which typically decreases over the course of many itera-

tions. The optimal policy can be deduced from the learned Q-values as follows

π(s) = argmax
a∈A

Q(s, a) (2.3)

Q-learning (Watkins & Dayan, 1992) is guaranteed to converge to the optimal solution

for stationary domains. To ensure a good explore-exploit tradeoff, an ε-greedy (select a

random action with probability ε and select greedy action with 1− ε probability) policy

is typically employed.
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2.2.2 Monte Carlo RL

Monte Carlo (MC) method is a way of solving the reinforcement learning problem

based on averaging sample returns. It learns directly from episodes of experience. As

the experiences of an IL in the domain of interest can be appropriately represented as

episodes, MC methods are well suited to estimate Q-values. Return for an state-action

pair for a given episode is the cumulative reward till the end of the episode. For example,

for episode s0, a0, r0, s1, a1, r1, ....., st, at, rt, sterm (sterm is terminal state), return from

(s1, a1) is given by :

Ret(s1, a1) =
t∑

k=1

rk

Algorithm 1 shows how optimal policy can be computed using MC RL.

Algorithm 1 MC RL
1: Initialize, for all s ∈ S, a ∈ A
2: Q(s, a)← 0
3: Count(s, a)← 0
4: Ret(s, a)← empty list
5: for every episode in training episodes do
6: for each (s, a) pair in the episode do
7: G← return after first occurrence of (s, a)
8: Ret(s, a)← Ret(s, a) +G
9: Count(s, a)← Count(s, a) + 1

10: for all s ∈ S, a ∈ A do

11: Q(s, a)← Ret(s, a)

Count(s, a)
12: for all s ∈ S do
13: π(s)← argmax

a
Q(s, a)

2.2.3 State Abstraction in RL

How the state space is identified is of utmost importance in our problem domains. For

example, how we define the zone structure of a map (explained in detail in Chapter

5) will determine the size of state space. If zones are too large, though state space

size will decrease, it will also decrease the granularity of the actions. State abstraction
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1 is a popular method for large state space RL to reduce the computational burden.

State abstraction exploits the structure of an MDP to derive an abstract MDP having a

compressed MDP with similar model. It is a powerful tool for scaling by simplifying

complex models.

2.2.4 Deep Reinforcement Learning

In recent years, deep reinforcement learning has become extremely popular among the

RL community due to its success in achieving human level performance in various

games (Mnih et al., 2013; Silver et al., 2016). Deep RL uses deep neural network

to approximate Q-values. Here, we explain two popular deep RL networks - deep Q-

network and actor-critic network

Deep Q-Networks (DQN)

Instead of a tabular representation for Q function employed by Q-Learning, the DQN

approach (Mnih et al., 2015) employs a deep network to represent the Q function. Un-

like with the tabular representation that is exhaustive (stores Q-value for every state,

action pair), a deep network predicts Q-values based on similarities in state and action

features. This deep network for Q-values is parameterized by a set of parameters, θ and

the goal is to learn values for θ so that a good Q-function is learnt.

Network parameters θ are learned using an iterative approach that employs gradient

descent on the loss function. Specifically, the loss function at each iteration is defined

as follows:

Lθ = E(e∼U(J ))[(y
DQN −Q(s, a; θ))2] (2.4)

where yDQN = r + γmaxa′Q(s′, a′; θ−) is the target value computed by a target net-

work parameterized by previous set of parameters, θ−. Parameters θ− are frozen for

some time while updating the current parameters θ. To ensure independence across ex-

1Temporal abstraction (also known as action abstraction), augments the action space which allows the
agents to act on a less granular time-scale reducing the number of of decisions to optimize for.

16



periences (a key property required by Deep Learning methods to ensure effective learn-

ing), this approach maintains a replay memory J and then samples experiences from

that replay memory. Like with traditional Q-Learning, DQN also typically employs an

ε-greedy policy.

Advantage Actor Critic (A2C)

DQN learns the Q-function and then computes policy from the learnt Q-function. A2C

is a policy gradient method that directly learns the policy while ensuring that the ex-

pected value is maximized. To achieve this, A2C employs two deep networks, a policy

network to learn policy, π(a|s; θp) parameterized by θp and a value network to learn

value function of the computed policy, V π(s; θv) parameterized by θv.

The policy network parameters are updated based on the policy loss, which in turn

is based on the advantage (A(s, a; θv)) associated with the value function. Formally, the

policy loss is given by:

Lθp = E(e∼U(J )[∇θplogπ(a|s; θp)A(s, a; θv)] where,

A(s, a; θv) = R− V (s; θv) (2.5)

Here R is the k-step (or till the end of the episode) discounted reward following the

current policy and using a discount factor γ.

2.3 Multi-Agent Reinforcement Learning

The Multi-Agent Reinforcement Learning (MARL) framework is based on the same

model given in Figure 2.1 but, now instead of single agent there are multiple agents

interacting with the environment. As shown in Figure 2.2, there are multiple agents

which interact with the environment simultaneously and state transitions are the result

of joint action of all the agents. In this section, we first discuss the challenges of MARL

and then provide the various classification of MARL algorithms.
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Figure 2.2: Multi-agent RL framework.

2.3.1 Challenges of MARL

Learning in multi-agent environment is inherently more complex than single-agent case,

as agents interact with the environment at the same time. This makes the environment

non-stationary and invalidates the guarantees established for single agent cases as most

of the single agent algorithms assume a stationary environment. Following are the main

challenges of MARL

• In single agent RL, agents adapt their strategy according to the reward signal they

receive and the reward is purely due to their own action. Contrary to it, in MARL

agents also need to adapt to other agents’ learning and actions. The reward they

receive is due to the joint action of the agents.

• Single agent RL learns values of each state-action pair. It can be extended to

MARL by estimating values of state-joint-actions, but as number of agents in-

crease, the size of state-action pair becomes intractable. Hence extending single

agent RL to MARL is not scalable.

• MARL agents do not always have full view of the environment and to learn an

optimal policy they need to predict/access actions of other agents. This makes
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learning in multi-agent setting difficult.

• To learn the optimal/equilibrium policy in multi-agent setting, communication or

coordination between agents are needed which is not always feasible in real-world

settings.

2.3.2 MARL Algorithms

MARL algorithms can be classified based on multiple feature of both multi-agent sys-

tems and agents such as type of tasks to be performed, awareness of the agents, the way

non-stationarity is handled etc. In this section we will focus of two types of classifica-

tions - independent learner (IL) vs. joint action learner (JAL) and cooperative learning

vs. competitive learning.

IL vs. JAL

A straightforward way of extending single agent RL algorithms to MARL is to ignore

the presence of other agents and learn independently. An independent learner estimates

the local state-action value function Qπi
i (s, ai) and tries to find a local policy πi that

maximizes the expected long run reward for its own local action ai.

Qπi(s, ai) = Eπi
{ ∞∑
k=0

γkrt+k+1|st = s, at = ai

}

The main advantage of IL approach is that size of the state-action table is independent

of the number of agents, which make the approach scalable, but it comes at the cost of

loss of theoretical guarantees.

On the other hand, JALs model the strategies of the other agents by learning state-

joint-action values Qπi
i (s,aaa) where aaa is the joint action. It implies that the agents can

observe the actions of others. The JAL also maintains beliefs about the strategies of
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other agents.

Prij(aj) =
Ci
j(aj)∑

a′j∈Aj
Ci
j(a
′
j)

Where Prij(aj) is agent i’s model of agent j’s strategy andCi
j(aj) is the count of number

of time agent i has observed agent j selecting action aj . A JAL then computes expected

value EV (s, ai) of its local action ai as follows

EV (s, ai) =
∑

a−i∈A−i

Qi(s, ai, a−i)
∏
j 6=i

Prij(aj)

Where a−i is joint actions of other agents. The JAL then computes optimal policy based

on the expected value of its local actions.

Cooperative vs. Competitive Learning

This classification of MARL is based on the goal of the learning. In cooperative MARL

the agents have the same reward function and the learning goal is to maximize the

common long term reward. In competitive MARL, on the other hand, each agent has

a distinctive selfish goal. It should be noted that a cooperative MARL setting does

not necessary mean that agents can view actions of other agents. Even if the agents

can view the join action, to learn and execute the optimal policy there is a need of

coordination/communication among the agents.

In a fully competitive MARL, a popular method is to apply minimax principle -

maximize one’s long term reward under the worst-case assumption that the opponents

agents will always attempt to minimize it. The learning which is neither fully coopera-

tive nor fully competitive falls under mixed category.

The aggregation system is an example of competitive domain.
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2.4 Knowledge Based Learning

Knowledge based reinforcement learning deals with incorporating domain knowledge

into the learning to guide exploration. Reward shaping is one of such approach which

provides additional reward representative of prior knowledge in additional to the reward

received from the environment. More formally, Q-values in Q-learning algorithm are

updated as follows

Q(s, a)← Q(s, a) + α[r + F (s, s′) + γmax
a′

Q(s′, a′)−Q(s, a)] (2.6)

where F (s, s′) is a general form of any state based reward shaping function. Reward

shaping has been shown to improve learning (Ng, Harada, & Russell, 1999b; Randløv

& Alstrøm, 1998) in many experiments. However when used improperly, it can result

into agent learning unexpected/undesired behavior. For example, (Randløv & Alstrøm,

1998) demonstrated that it might help to provide additional reward to stay balanced

while learning to ride a bicycle. However, the learning agent discovered that it could

benefit more by staying balanced and cycling in circles than reaching the destination.

To avoid such behavior, (Ng, Harada, & Russell, 1999a) proposed potential based

reward shaping, where additional reward is computed as the difference in some potential

function ϕ defined over states. The potential based reward is computed as follows

F (s, s′) = γϕ(s′)− ϕ(s) (2.7)

γ is the same discount factor used in update rule provided in Equation 2.6. The potential

of a state represents the goodness of the state, for example, potentials of states close to

goal state are generally set to be more than the states that are far from the goal state.

Potential based reward shaping algorithms do not alter the optimal policy in case of

single agent learning. However, in case of multi-agent learning, it is not guaranteed that

the algorithm will converge to the same policy if potential based reward shaping is used.

In multi-agent system, it has been shown that potential based reward shaping does not
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alter the underlying game structure. These guarantees hold if the potential of a state is

static. If the potential is dynamic in nature, the above-mentioned guarantees only holds

if the additional reward is of the form

F (s, t, s′, t′) = γϕ(s′, t′)− ϕ(s, t) (2.8)

2.5 Stochastic Games

Stochastic games (Shapley, 1953) (also called Markov games) are the multi-agent ex-

tension of Markov decision processes with action space being the joint action space and

reward being the vector of rewards, one for each agent. They were first introduced in the

field of game theory, and have now become a formal framework for studying MARL.

The game is played in sequence of stages. At the beginning of each stage, the environ-

ment is in some state. The players select action and receive payoff which is dependent

on the current state and the joint action of players. The environment then probabilisti-

cally moves to the next state. The process is repeated at the new state and continues for

a finite or infinite number of stages. The model of stochastic games is represented by

the tuple

< N ,S, (Ai)i∈N , T , (Ri)i∈N >

• N (|N | = n)is the set of agents.

• S is a set of states.

• Ai is the set of available actions to agent i and A = A1 × ... × An is the joint

action space.

• T : S × A× S → [0, 1] is transition function,

• Ri : S × A→ R is reward function of player i.
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Researchers have used stochastic games as the underlying model for non-cooperative

MARL. Like MDPs, the goal for the player i is to find a policy that maximizes its long-

term reward. A stochastic policy for player i, πi, is a mapping that defines probability of

selecting an action in a state. Formally, πi ∈ S × Ai → [0, 1], where
∑

a∈Ai πi(a|s) =

1,∀s ∈ S. π =< πi, ..., πn > is the joint policy of all the agents. Πi is used to denote

set of all possible policy available to agent i and Π =< Π1, ...,Πn > is the set of all the

joint policies. < πi,π−i > refers to the join policy where player i follows πi while the

joint policy of other players is π−i. In the discounted reward framework, the value of

the joint policy π for agent i in state s ∈ S, with discount factor γ is

V πi (s) = Eπ
{ ∞∑
k=0

γkrt+k+1
i |st = s

}

where Eπ{} is the expected value of player i given that agents follows joint policy π.

Given a joint policy π−i of the other players, the best-response function BRi(π−i)

for player i is the set of all policies that are optimal. Formally,

π∗i ∈ BRi(π−i) if and only if V <π∗i,π−i>
i (s) ≥ V

<π∗i,π−i>
i (s),∀s ∈ S and ∀πi ∈ Πi

As the players are self-interested, the algorithms that solve stochastic games focus on

finding Nash equilibrium solution.

A Nash Equilibrium in a n-player stochastic game is a joint strategy π =< πi ×

· · · × πn > such that πi ∈ BRi(π−i),∀i ∈ N .

2.6 Non-atomic Congestion Games

Non-atomic Congestion Games (NCG) has either been used to model selfish rout-

ing (Roughgarden & Tardos, 2002; Roughgarden, 2007; Fotakis, Kontogiannis, Kout-

soupias, Mavronicolas, & Spirakis, 2009) or resource sharing (Chau & Sim, 2003;

Krichene, Drighès, & Bayen, 2015; Bilancini & Boncinelli, 2016) problems. Though

the underlying model is the same, there is a minor difference in the way the model is

23



represented. Here we present a brief overview of NCG from the perspective of resource

sharing problem as that is of relevance to contributions in this thesis.

In NCG, a finite set of resources L are shared by a set of players N . To capture the

infinitesimal contribution of each agent, the set N is endowed with a measure space:

(N ,M,m). M is a σ-algebra of measurable subsets, m is a finite Lebesgue measure

and is interpreted as the mass of the agents. This measure is non-atomic, i.e., for an

agent i, m({i}) = 0. The set N is partitioned into Z populations, N = N1 ∪ ... ∪NZ .

Each population type z possesses a set of strategies Az, and each strategy corre-

sponds to a subset of the resources. Each agent selects a strategy, which leads to a joint

strategy distribution, a:

a = (faz )a∈Az ,1≤z≤Z with
∑
a∈Az

faz = m(Nz)∀z

Here faz is the total mass of the agents from population z who choose strategy a. The

total consumption of a resource l ∈ L in a strategy distribution a is given by:

φl(a) =
Z∑
z=1

∑
a∈Az :l∈a

faz

The cost of using a resource l ∈ L for strategy a is:

cl(φ
l(a))

where the function cl(.) represents cost of congestion and is assumed to be a non-

decreasing continuous function. The cost experienced by an agent of type z which

selects strategy a ∈ Az is given by:

Caz (a) =
∑
l∈a

cl(φ
l(a))

A strategy a is Nash equilibrium if:

∀z,∀a, a′ ∈ Az : if faz > 0, then Ca′z (a) ≥ Caz (a)
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Intuitively, it implies that the cost for any other strategy, a′ will be greater than or equal

to the cost of strategy, a. In other words, it also implies that for a populationNz, all the

strategies with non-zero mass will have equal costs.

25



Chapter 3

Related Work

In this chapter we explore related work on learning in non-cooperative multi-agent sys-

tems. We will discuss how different algorithms focus on solving different challenges of

multi-agent reinforcement learning.

As discussed in previous chapter, researchers have also utilized game theoretic

framework such as stochastic games and congestion games to solve MARL problems.

We will also explore MARL algorithms in game theoretic framework.

We first discuss dynamic state abstraction approaches which is needed to decide

zone structure.

3.1 Dynamic State Abstraction in RL

The problem of dynamically abstracting states has been studied by a number of re-

searchers. Li et al. (Li, Walsh, & Littman, 2006) provides a list of abstraction tech-

niques and classify them into five different types of abstraction. Bulitko et al. (Bulitko,

Sturtevant, & Kazakevich, 2005) build a hierarchy of abstraction levels, explores at

each level and repairs the abstraction during exploration. Andre and Russell (Andre &

Russell, 2002) provide a method of safe state abstraction while maintaining hierarchical

optimality. Mannor et al.(Mannor, Menache, Hoze, & Klein, 2004) employ a clustering

algorithm to cluster the state space based on computing utility of merging two neigh-

bors. Jong and Stone (2005) encapsulate states based on policy irrelevance, states with
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same optimal action are aggregated.

All the approaches are closely relevant and our iterative dynamic abstraction ap-

proach presented in Chapter 5 builds on these approaches. There are two key differ-

ences:

1. In all the above-mentioned works, action space remains constant. However, in

our problem setting, our action space is correlated to the state space, as actions

correspond to ”moving to a certain location or state”. When state space is altered

during abstraction, action space also changes.

2. Secondly, our abstraction approach employs multiple iterations to modify ab-

stractions based on learned information.

3.2 Independent Learners

An Independent Learner (IL) learns values of its own local action by disregarding pres-

ence of other agents. Though it is difficult to guarantee convergence in independent

learning, researchers have proposed many heuristic algorithms. Lauer and Riedmiller

(2000) proposed Frequency Maximum Q-values (FMQ) which increases the Q-values

of actions that frequently produced good rewards in the past steers the agent toward

coordination. However Kapetanakis and Kudenko (2002) exhibited that FMQ can fail

if reward is strongly stochastic. Distributed Q-learning (Lauer & Riedmiller, 2000)

is based on ”optimistic independent agents”, i.e. agents optimistically assume that all

other agents will act to maximize their reward. Optimistic learners are known to overes-

timate Q-values, to overcome this problem, Hysteretic Q-learning (Matignon, Laurent,

& Le Fort-Piat, 2007) uses two learning rates, one to update the Q-value if the target Q-

value is more than the current estimate and uses another rate otherwise. Most of these

algorithms are more suitable for cooperative settings whereas our domain of interest is

more competitive in nature.

Few approaches have also been proposed for independent learning in competitive

setting. Bowling and Veloso (2002) introduced WoLF principle, standing for ”Win or
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Learn Fast”. The WoLF heuristic uses two learning rates to adjust the policy: δw is

the agent is currently winning, δl otherwise. The agent is assumed to be winning if the

expected value of current policy is greater that the current expected value of average

policy. A number of algorithms such as WOLF-IGA, WoLF-PHC (Bowling & Veloso,

2002), GIGA-WOLF (Bowling, 2005), PD-WoLF (Banerjee & Peng, 2003) uses WoLF

principle for independent learning in competitive settings.

While these approaches are relevant for domain of our interest, all these approaches

assume that the IL has full view of the joint state. Our independent learner (Chapter

6) can view only local observation of the state. Based on the number of other agents

present in the local view, the IL predicts and controls the non-stationarity introduced

due to the presence of other agents by learning policies that maximize (or minimize)

the entropy on agent state distribution.

Despite the lack of theoretical guarantees, independent learning has been success-

fully applied on some applications (Sen & Sekaran, 1998; Busoniu, De Schutter, &

Babuska, 2006; Wang & De Silva, 2006; Guo & Meng, 2008). In fact, Wang and

De Silva (2006) exhibited that IL does a better job than a JAL (Team Q-learning,

(Littman, 2001b)) algorithm in a complicated and unknown environment with many

obstacles for multi-robot box pushing task. Motivated by these results, we propose our

IL approach which uses entropy of agent state distribution to improve its learning.

3.3 Non-Stationarity in MARL

Presence of multiple independent learners in a multi-agent setting introduces the prob-

lem of non-stationary environment. Each agent learns its own Q-value/policy based

on the state and its own action disregarding the fact that the payoff received by it is

the result of joint actions of all the agents. Researchers have proposed various meth-

ods to tackle the non-stationarity of the environment. J. Foerster et al.(2017) provided

multi-agent variant of importance sampling and proposed use of fingerprint to track the

quality of other agents’ policy to tackle the non-stationarity. Lanctot et al. (Lanctot et
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al., 2017) used a game-theoretic approach to learn the best responses to a distribution

over set of policies of other agents.

A comprehensive survey on MARL dealing with non-stationarity has been provided

by Hernandez-Leal, Kaisers, Baarslag, and de Cote (Hernandez-Leal et al., 2017) where

based on how the algorithms cope up with the non-stationarity they are categorized

into five groups: ignore, forget, respond to target opponents, learn opponent models

and theory of mind. The first two categories do not represent other agents, while the

last three categories explicitly represent other agents (in increasing order of richness in

models used to represent other agents).

Learning with Opponent-Learning Awareness (LOLA) was introduced by J. N. Fo-

erster et al. (2017) which explicitly accounts for the fact that the opponent is also learn-

ing. Approaches that explicitly learn policies of all other agents are typically suitable

for domains with few agents, as the state and action spaces are typically combinatorial

in the number of agents.

3.4 Entropy Regularized Learning

Mnih et al. (Mnih et al., 2016) and Haarnoja et al. (Haarnoja et al., 2017) use policy

entropy regularizer to improve performance of policy gradient approaches to Reinforce-

ment Learning. The density entropy approaches provided in Chapter ?? are also based

on the use of entropy, however, there are multiple significant differences. Policy en-

tropy is entropy on policy that is relevant for single agent learning. We employ density

entropy, which is entropy on joint state configuration in multi-agent settings. Unlike

policy entropy which is a regularization term, considering density entropy requires fun-

damental changes to the network and loss functions. Policy entropy is used to encourage

exploration, while density entropy helps in improving predictability of joint state con-

figuration and reduces non-stationarity (by moving all learning agents to high entropy

joint states) due to other agents’ strategies. Finally, since policy entropy is for single

agent exploration, it is complementary to density entropy.
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3.5 Centralized Training Decentralized Execution

Centralized training with decentralized execution (CTDE) is another thread of work in

multi-agent domains which has become very popular recently. In CTDE, it is assumed

that extra information is available to the individual learners during training time. Gen-

erally, a joint action value function is learned during the training phase by a central

entity. During execution, each agent acts independently without direct communica-

tion. It should be noted that to act independently during execution phase, the individual

agents do not model the extra information provided to them during training phase in

their learning. Sunehag et al. (2018) proposed Value Decomposition Network (VDN),

a method that computes the joint action value function by summing up all the action

value functions of each individual agent. Individual agents are then trained as a whole

by updating the joint action value functions iteratively. QMIX (Rashid et al., 2018)

utilizes a neural network to represent the joint action value function as a function of

the individual action value functions and the global state information. The authors of

(Lowe et al., 2017) extend the actor-critic methods to propose Multi-Agent Actor Critic

(MAAC). It allows a centralized critic Q-function to be trained with the actions of other

agents, while the actor needs only local observation to optimize its policy. J. N. Foer-

ster et al. (2018) propose counterfactual multi-agent policy gradient (COMA), which

employs a centralized critic function to estimate the action value function of the joint,

and decentralized actor functions to make each agent execute independently. There are

CTDE algorithms which learn a joint centralized policy assuming agents act indepen-

dently (Nguyen, Kumar, & Lau, 2017). Recently, CTDE algorithm is used innovatively

to reduce traffic congestion in maritime domain (A. J. Singh, Nguyen, Kumar, & Lau,

2019; A. J. Singh, Kumar, & Lau, 2020).

These approaches are either suitable for cooperative domain, or learn a joint cen-

tralized policy or are appropriate only for a few number of agents and do not scale very

well for problem of our interest.
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3.6 Potential Based Reward Shaping in MARL

The potential of a state represents the desirability of being in the state, for example,

potentials of states close to goal state are generally set to be more than the states that

are far from the goal state. In case of single agent learning, (Ng et al., 1999a) proved

that potential based reward shaping does not alter the optimal policy for both infinite

and finite state MDPs. (Wiewiora, 2003) further proved that agents learning with po-

tential based reward shaping with Q-tables initialized to zero will learn identically to

agents with Q-values initialized to same potential values. With good heuristic used for

potential function, single agent learning has been shown to converge quickly (Ng et

al., 1999a; Wiewiora, 2003; Wiewiora, Cottrell, & Elkan, 2003; Asmuth, Littman, &

Zinkov, 2008).

Potential based reward shaping has also been used to improve performance of multi-

agent reinforcement learning methods (Babes, Munoz de Cote, & Littman, 2008; S. De-

vlin, Kudenko, & Grześ, 2011; S. Devlin & Kudenko, 2011). In multi-agent system, it

has been shown that potential based reward shaping can change the converged joint pol-

icy, however it does not change the Nash equilibrium of the underlying game (S. Devlin

& Kudenko, 2011). These guarantees hold if the potential of a state is static. (S. M. De-

vlin & Kudenko, 2012) proved that potential based reward shaping with dynamic poten-

tial function is not equivalent to Q-table initialization. They also demonstrated that the

optimal policy is not altered (single agent case) or Nash equilibrium remains consistent

(multi-agent case) if the potential of a state is evaluated at the time the state is entered

and used in both the potential calculation on entering and exiting the state.

In this thesis, we provide a policy based dynamic reward shaping algorithm where

the central agent computes incentives based on potential of the states.

3.7 Equilibrium Learner

There has been a line of research over the past decade in regards to the development

of equilibrium learning algorithms, as well as determining their conditions for conver-
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gence. Researchers have focused on computing equilibrium policies in MARL prob-

lems, which is represented as learning in stochastic games (Shapley, 1953). Minimax-Q

(Littman, 1994) is one of the early equilibrium-based MARL algorithm that uses min-

imax rule to learn equilibrium policy in two-player zero-sum games. Nash-Q learning

(Hu, Wellman, et al., 1998) is another popular algorithm that extends the classic sin-

gle agent Q-learning (Watkins & Dayan, 1992) to general sum stochastic games. At

each state, Nash-Q learning computes the Nash equilibria for the corresponding single

stage game and uses this equilibrium strategy to update the Q-values. (Littman, 2001a)

proposed Friend-or-Foe Q-learning (FFQ) which has less strict convergence condition

compared to Nash-Q. Another algorithm similar to Nash-Q learning is correlated-Q

learning (Greenwald et al., 2003) which uses value of correlated equilibria to update

the Q-values instead of Nash equilibria. In fictitious self play (FSP) (Heinrich et al.,

2015) agents learn best response through self play. FSP is a learning framework that

implements fictitious play (Brown, 1951) in a sample-based fashion. Unfortunately, all

these algorithms are generally suited for a few agents and do not scale if number of

agents is very large, which is the case in problems of interest in this thesis.

3.8 Best-Response Learner

In the best response based MARL, individual agents try to learn policies which are

best response to the joint policy of the other agents. NSCP (non-stationary converging

policies) learning was proposed by (Weinberg & Rosenschein, 2004) which models

other agents in the environment and learns a best response policy. (Lanctot et al., 2017)

uses deep reinforcement learning to compute the best response to a distribution over

policies, but it assumes prior knowledge of a set of opponent policies. Learning with

Opponent Learning Awareness (LOLA) was introduced by (J. Foerster et al., 2018)

which minutely modifies the objective of the player to take into account their opponents’

goals. Though these algorithms which model opponents are relevant to our work, they

do not scale to a large number of agents present in aggregation systems.
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Fictitious self play (FSP) (Heinrich et al., 2015) is an excellent example of learning

of best response through self play. FSP is a machine learning framework that imple-

ments fictitious play (Brown, 1951) in a sample-based fashion. (Heinrich & Silver,

2016) proposed neural fictitious self play (NFSP) which combines FSP with neural net-

work function approximator. Learning best response through self play in MARL are

known to be scalable. However, they are often sub-optimal because environment be-

comes non-stationary from a single agent’s perspective. While learning best responses,

some recent work (Lowe et al., 2017; Nguyen et al., 2017; Y. Yang et al., 2018) consider

presence of a central agent which provides extra information to the individual agents.

Our work uses the similar framework but we also consider the fact that the objective of

the central agent might not be aligned with the objective of individual agents.
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Chapter 4

Model and Experimental Setup

In this chapter I discuss the underlying model and few experimental setups which I have

used in my thesis.

4.1 Model

As discussed in Chapter 1, the interaction among the individual agents is anonymous

and the payoff of an agent is dependent on the number of other agents selecting the

same action. Building of this characteristic, in this section I provide underlying model

of Anonymous Multi-Agent Reinforcement Learning (AyMARL) by modeling the deci-

sion making problem of individuals and the central agent as Markov Decision Processes

(MDPs). As everyone (including the central agent) is self-interested, they are endowed

with their own MDPs. Though these MDPs are correlated, each individuals act inde-

pendently and use reinforcement learning methods to solve their MDP. Whereas the

central agent does not act directly and learns from the experiences of the individuals.

4.1.1 MDP of Central Agent

The model of central agent for AyMARL is represented using the tuple:

〈
N ,Z,S, {Az}z∈Z , T , {Ri}i∈N

〉
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• N is the set of individual agents.

• Z is the set of local states 1 (ex. zone of a taxi). At any given time instant, N

is partitioned into |Z| disjoint sets based on the local state of all the individual

agents, i.e. N = N s
1 ∪ ...∪N s

|Z|, whereN s
z is the set of individual agents present

in the local state z when the global state is s.

• S is the set of global states (joint states), which is factored over individual agents’

local states. More specifically, by utilizing the anonymity feature of the domain,

I consider global state to be the number of agents present in all the local states.

In case of taxi domain, location (zone) of an agent can be considered as its local

state while vector of number of agents (or fraction of agents) present in each zone

is the global state, i.e. s =< |N s
1 |, ..., |N s

Z | >.

• Az is the action set for the agents present in local state z. In case of the taxi

problem, an action ai(∈ Az) for agent i ∈ N s
z represents the zone to move

to if there is no customer on board. We use a to represent the joint action of

agents. The joint action is the aggregated action of individuals agents, i.e. a =

((faz )a∈Az)z∈Z , where faz is fraction of agents in N s
z selecting action a in state s.

• T is the transitional probability of environment states given joint actions.

• Ri is the reward function of agent i.

I would like the readers to refer to the framework of aggregation system provided in

Figure 1.1. Environment provides an immediate payoff for the actions executed by the

individuals and the central agent provides the corresponding payoff to the individuals

after deducting its commission fee. I use ωiz(s, ai,a−i) to denote the immediate pay-

off provided by the environment when agent i ∈ N s
z takes action ai in global state s

and the joint action executed by other agents is a−i. r(s,a) is the immediate reward

corresponding to the social welfare value. Here, social welfare reward is defined as

1We use the terms local state and zone interchangeably in this thesis.
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the cumulative reward of all the individuals plus reward of the central agent. r(s,a) is

given as follows

r(s,a) =
∑
z∈Z

∑
i∈N sz

ωiz(s, ai,a−i) (4.1)

Let η is the commission fee of the central agent, i.e., the payoff received by the central

agent due to the action of agent i is ηωiz(s, ai,a−i) and the corresponding immediate

reward (denoted by riz(s, ai,a−i)) for the agent i is

riz(s, ai,a−i) = (1− η)ωiz(s, ai,a−i) (4.2)

Similarly, immediate payoff (denoted by rc(s,a)) for central agent in state s for joint

action a is given by

rc(s,a) = η
∑
z∈Z

∑
i∈N sz

ωiz(s, ai,a−i) (4.3)

4.1.2 MDPs of Individual Agents

As I have provided learning methods considering different level of information being

shared by the centralized entity, the state space and action space of individuals change

based on the level of extra information they receive from the central agent. For example,

for the independent learning method ILT, where learning is done from the offline GPS

trajectories (Chapter 5), there is no extra information provided and their state space

comprises of spatio-temporal features of their locations. Similarly, DE-DQN method

(Chapter 6) which exploits interaction anonymity, the state space of individuals agents

comprises of their location and number of other agents present in that location. Whereas

for VMQ (Chapter 7), CL (Chapter 8) and IBQ (Chapter 9), the assumption is that the

central agent shares full view of the environment state. I have explained the state space

and action space of individual agents in detail in each chapter.
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Figure 4.1: State transition of a grid-world example domain.

4.1.3 Learning Experiences

The learning experiences of individuals will have different level of granularity based

on the level of information being shared to them. Whereas, the central agent learns

from the aggregated experiences of the individuals. Let us assume a scenario where

individuals are learning from their local observation and no extra information is being

shared to them. Figure 4.1 represents state transition of a simple grid-world with 100

individual agents and 2 zones z1 and z2. The number in the grid represents number of

agents present in that zone, i.e. s =< 20, 80 > and s′ =< 40, 60 >. Each zone has two

feasible actions, a1 = stay in the current zone and a2 = move to the next zone. Suppose

10 agents in z1 chose a1 and remaining chose to move to z2. Similarly, 48 agents in z2

selected to stay whereas remaining agents selected action a2. Hence, the joint action is

given by a =<< 0.5, 0.5 >,< 0.6, 0.4 >>. Suppose an agent i in z1 selected action

a1 and transitioned to local state z2 and received immediate payoff ri. Also, let the

reward for the central agent for joint action a is rc. The learning experience of agent i

is given by < z1, a1, ri, z2 > whereas the central agent uses the aggregated experience

< s,a, rc, s
′ > for its learning.

4.2 Experimental Setup

In this section I explain the different experimental setups which have been used through-

out this thesis to compare performances of the proposed algorithms. Following are the

two simulators which I have used extensively for the experiments.
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Figure 4.2: Road network of Singapore divided into zones

4.2.1 Taxi Simulator

I built a taxi simulator to simulate a taxi domain with the help of a real-world data

set. The data set is from a large taxi-fleet company in Singapore and it contains GPS

trajectory logs and information related to the corresponding trips. I used an algorithm

(described in Section 5.4.3) to determine that the map of Singapore should be divided

into 111 zones. Figure 4.2 shows the map of Singapore where road network is divided

into zones. Then I used the data to compute the rate of demand arrival between any

two zones and also the time taken to travel between the zones. Based on these values,

I used a grid world to simulate the taxi domain. The taxi agents looking for demand

decide either to stay in their current zone or move to the nearby zones. The demand

in each zone is generated based on the value computed from the data and a demand is

probabilistically assigned to an agent based on the number of agents present in the zone.

As discussed, each agent has their own MDP, hence they maintain their own learn-

ing framework (Q-table or deep Q network). However, simulating thousands of learning

agents at the same time requires extensive computer resources hence, I could not per-

form a simulation with thousands of agents. Therefore, I computed the proportional

demand for 100 agents and simulated for 100 agents.

4.2.2 Synthetic Online to Offline Service Simulator

For this example domain I generated synthetic data to simulate various combinations

of demand and supply scenarios in online to offline service settings described in Chap-
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ter 1. I used grid-world to depict map of a city and each grid is treated as a zone. Pois-

son process is a popular choice to model arrival of random and mutually independent

events. Hence I used Poisson process to model the arrival of demand in our simula-

tor with different zones assigned with different arrival rates. Demands are generated

with a time-to-live value and the demand expires if it is not served within time-to-live

time periods. Furthermore, to emulate the real-world jobs, the revenues are generated

based on the distance of the trip (distance between the origin and destination grids).

Aggregation companies typically deduct 20-25 % of the trip fare (Grab, 2019; Uber,

2019; Lyft, 2019) as commission, hence in our simulation, the central agent receives

20% of the share whereas individual agent which served the trip gets remaining 80% of

the immediate payoff received due to the trip assignment. There are multiple agents in

the domain and they learn to select next zones (they can reach within one time step) to

move to such that their long term payoff is maximized. At every time step, the simu-

lator assigns a trip to the agents based on the agent population density at the zone and

the customer demand. In my experiments, I make a realistic assumption that it can take

multiple time steps to complete a trip and the time taken to serve a trip is proportional

to the distance between the origin and destination grids.

The revenue of an agent can be affected by features of the domain such as

• Demand-to-Agent Ratio (DAR): The average number of customers per time step

per agent.

• Trip pattern: The average length of trips can be uniform for all the zones or there

can be a few zones which get longer trips (for ex. airports which are usually

outside the city) whereas few zones get relatively shorter trips (city center).

• Demand arrival rate: The arrival rate of demand can be either static w.r.t. the time

or it can vary with time (dynamic arrival rate).

I performed exhaustive experiments on the synthetic data set where I simulated different

combinations of these features.
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4.2.3 Implementation Details

Apart from Chapter 5 where a tabular reinforcement learning method was feasible for

independent learning, I have used deep neural network to estimate the values and poli-

cies. I used Adam optimizer (Kingma & Ba, 2014) and for For deep Q network the

learning rate was set to 1e-4, whereas for policy gradient algorithms I used 1e-5 as

learning rate. Two hidden layers were used with 256 nodes per layer. To prevent the

network from overfitting, I also used dropout layer with 50% dropout between hidden

layers. For DQN algorithms, I performed ε−greedy exploration and ε was decayed

exponentially. Training is stopped once ε decays to 0.05.
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Chapter 5

Independent Learning from Offline

Trajectories of Agents

In this chapter we provide Independent Learning from Trajectories (ILT) method where

individuals learn from offline trajectories of other agents. More specifically, we provide

methods to learn from offline data of Global Positioning System (GPS) trajectories col-

lected from real-world taxi domain. As argued in Chapter 1, taxi aggregation domain

is an anonymous domain and can be modeled as multi-agent system. A taxi in the do-

main can be treated as a self interested autonomous agent learning to act to maximize

its log term revenue. Independent learners treat other agents as part of the environment

and learn values for their local actions. In this chapter we show that independent learn-

ing using local observation yields excellent results and the individual agent is able to

generate revenue at par with the top 10 percentile of the taxi drivers.

With the rapid development of information technology, sensing and networking

technologies are widely used in transportation systems. Each taxi’s status and its GPS

location can be collected in real time. Relying on these advances, aggregation sys-

tems such as Uber, Grab, Lyft etc. have been able to activate more cars that act like

taxis thereby significantly improved customer experience by reducing wait times and

increasing availability. In the process, the companies generate enormous amount of

GPS data which contains information related to trajectories of taxis and trips it served.
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In this chapter, we focus on learning from an individual driver’s perspective by using

offline movement trajectories and trips of other drivers.

We present driver-less taxis (Reuters, 2016; Straitstimes, 2016) as another motivat-

ing problem for ILT. Recently, driver-less taxis have been introduced for public trials in

the US and several Asian cities. The vision is to have self-driving taxi fleets. This also

serves as another motivation for pursuing this research from the perspective of taxis, as

there would be no human intuition to continuously adapt to changing demand patterns.

Generally taxis roam around when they do not have a customer on board and this

is referred to as ”cruising”. A cruising taxi can potentially find customers either di-

rectly (on streets) or indirectly (due to being in close proximity to customers who put

in a call/request to taxi companies or taxi aggregation systems). In both cases, it is

imperative for the taxi to be in the ”right” location at the ”right” time to reduce cruising

time and increase revenue. Our focus in this chapter is on developing a Reinforce-

ment Learning (RL) approach that will provide guidance to cruising taxi drivers on the

”right” locations to be at different times of the day on different days of the week so as

to maximize long-term revenue.

5.1 Challenges

Employing an RL approach that learns from trajectory data of taxis requires the pres-

ence of well defined state and action spaces. Furthermore, those state and action spaces

should be populated directly from reading the data. Because of these requirements,

there are multiple translational challenges involved in applying RL for this problem at

city scale:

• Typically in spatio-temporal problems, an abstraction (grouping) of locations and

time is employed as the state space. For the problem of interest, such an abstrac-

tion can work for representing the state space; however, the ”goodness” of the

selected abstraction is not easy to ascertain. The effectiveness of abstraction is

dependent on value of learned policy and learned policy is dependent on abstrac-
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tion.

• Another challenge is with respect to understanding actions of drivers from the

data, specifically when they are cruising. There can be multiple data points that

are combined to retrieve one action and in many cases there can be multiple in-

terpretations to drivers’ action during ”cruising”, such as wandering around in

circles, going to a taxi stand, going to a specific street, etc.

• RL relies on learning not just from single decisions but from a sequence of deci-

sions. Therefore, the data needs to be annotated appropriately (with states, actions

and reinforcements) and then condensed into learning episodes.

• The final challenge is evaluation. While performing human experiments with

actual drivers would be the ideal case, due to the capital intensive nature of such

experiments, it is not feasible to consider many drivers. Therefore, we provide

a detailed simulator that allows performance comparison of actual drivers (using

human intuition) and our agent that uses ILT.

To address the above mentioned challenges we first provide an annotation procedure

that annotates the trajectory data with the decision taken by the taxi driver. This pro-

cedure also compactly represents annotated data as an activity graph for each cruis-

ing trajectory. Then, we employ Monte Carlo RL method to learn from the activity

graphs by computing a static abstraction obtained by using clustering. To account for

the cyclic dependence between state abstraction and learned policy, we provide an it-

erative abstraction approach that continually improves abstraction based on the learned

information. Finally, we provide an evaluation method and use real data set to evaluate

our policy.

5.2 Taxi Dataset

We consider a taxi dataset from a major company in Singapore. Apart from trip1 infor-

mation, the major component of the data is the movement logs. Each log entry captures
1A trip corresponds to movement of taxi from a source to destination with customer on board.
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the following information:

〈
Latitude, Longitude, Taxi ID, Driver ID, Taxi Status

〉

Latitude and longitude provide the GPS coordinates. Since multiple drivers can drive

a single taxi (typically one person drives the morning shift and one person drives the

evening shift), we have two IDs (Taxi ID and Driver ID) to uniquely determine the log

entry. The log entry also contains different states of taxis - free (meter off, actively

looking for next passenger), busy (not accepting bookings), POB(Passenger On Board)

and off-line.

When there is no customer on board a taxi, there is a log entry for that taxi every

30 seconds. On the other hand if there is a customer on board a taxi, then there is a

log entry for that taxi every 1 minute. We have this distinction because there is more

important information to be captured about a cruising taxi than a hired taxi. With more

than 20000 unique drivers, this dataset provides a wealth of information about cruising

taxis.

5.3 From Taxi Dataset to Driver Activity Graphs

For our learning, we need a representation of the decisions taken by taxi drivers during

cruising. Since dataset only contains log entries, we have to annotate groups of log

entries as high level decisions (e.g., going to a certain location). In this section, we

describe details on converting from log entries in data to high level activities.

A ”cruising trajectory” starts when a taxi goes to ”free” state and ends when it goes

to a ”non-free” state (passenger on board, busy, break, off-line, on call etc.). We mine

cruising trajectories of drivers from the dataset and annotate the trajectories with the

decisions made during the course of trajectory. To explain the details, let us consider

the example trajectory shown in Figure 5.1, where a taxi driver’s cruising trajectory

started at A and ended at E.

Initially, we start out by assuming that the driver made the decision to go to E at A
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Figure 5.1: A cruising trajectory which starts at A and terminates at E. B, C and D are
intermediate decision coordinates.

itself. Intuitively, if the driver had made a decision to go to E at A, then he/she would

have chosen a route that is close2 to the shortest path distance between the two points.

In this case, E is not close to the shortest path distance. So we identify the point on the

cruising trajectory which is close to the shortest path distance to E. This point is D. We

then evaluate if the driver could have made the decision to go to D at A itself. If not, we

identify the point where the driver decided to go to D, which in this case happens to be

C. We repeat the computation and the final trajectory is A, B, C, D, E.

As can be noted, this process requires extensive shortest path computations between

different points. In order to perform this efficiently, we had to create special data struc-

tures to pre-store shortest path information between points. A typical cruising trajectory

contains 50-100 coordinates in the real data.

Figure 5.2: Activity graph for the cruising trajectory displayed in Figure 5.1. d1, d2, d3
and d4 are intermediate distances travelled. Nodes contain information about decision
time epoch and GPS coordinate of the node. Terminating node E additionally stores trip
information started there, if any.

Once the data is annotated, we then convert each cruising trajectory into an activity

graph to get a summary view of driver activities. The activity graph can be viewed as

2We allow for a 30% gap from shortest path.
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a directed graph with decision coordinates as nodes. Distance travelled between the

coordinates is treated as weight of the edge between them. The terminating node of the

activity graph also contains information about revenue earned. If the trajectory ended

with getting a trip, the revenue earned is equivalent to the fare of the trip minus the

cost of travel for the trip. The revenue earned is treated as zero if the trajectory ended

without finding a passenger (taxi state changing to break, busy etc.).

5.4 Independent Learning from Trajectories (ILT)

We now provide reinforcement learning model of ILT. As the individual agent learns

from the offline GPS trajectories and the objective is to learn from the local observa-

tions, we use spatio-temporal information from the data as the state space. Specifically,

state is given as follows:

〈
day-of-week, zone, time-interval

〉
(5.1)

We divide the entire map of Singapore into several zones3 and zone division procedures

are described in later parts of this section. Based on traffic intensity, time is divided into

6 time intervals: 0-6 hours, 6-9 hours, 9-12 hours, 12-17 hours, 17-20 hours and 20-24

hours. If there are n zones, there are n actions available to a cruising taxi, i.e., stay in

the current zone or move to remaining n− 1 zones.

5.4.1 Episodes

For reinforcement learning to be applied, we convert activity graphs into episodes. Each

node in the activity graph represents a state and the subsequent node represents the

action taken. We use the zone structure of the map and spatio-temporal information

present in each node to convert activity graphs into a series of state-action pairs. The

last node of the activity graph is always considered as terminal state of the episode. The

cost of travel between nodes is determined by applying a fixed cost per km to the weight

3We use zone and local state interchangeably in this thesis.
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of the edge. If the cruising trajectory ends with finding a passenger, a positive reward

(equivalent to the fare of the trip minus cost to travel the trip) is awarded.

Equation 5.2 represents an episode for activity graph shown in Figure 5.2. Sx is the

state and Zx is the zone of node X , Sterm is the terminal state.

(Sa, Zb)
c1−→ (Sb, Zc)

c2−→ (Sc, Zd)
c3−→ (Sd, Ze)

c4,R−−−→ Sterm (5.2)

R = fare of trip − cost to travel the trip

ci = di ∗ travelling cost per km

We learn Q values of state-action pairs from episodes.

5.4.2 Monte Carlo Estimation of Q Values

Monte Carlo (MC) method is a way of solving the reinforcement learning problem

based on averaging sample returns. We use first-visit MC method to estimate the value

of a state-action (s,a) pair (Sutton & Barto, 1998). Algorithm 2 provides the detailed

algorithm to compute Q-values and the best action in each state.

Return of (s,a) pair (Ret(s, a)) in an episode is the cumulative reward accumu-

lated till the end of the episode. For example in episode mentioned in equation 5.2,

Ret(Sc, Zd) is (R − c4 − c3). Q(s, a), the value of (s, a) pair, is estimated as the av-

erage of the returns following the first time that the state s was visited and action a

was taken in each episode. Value of s is defined as maxaQ(s, a). Line 9 computes the

return for each (s, a) pair over all episodes and line 13 computes the average Q value

for every (s, a) pair.

During learning, there might be a few (s, a) pairs which are visited rarely. Estima-

tion of Q(s, a) will not be accurate if very few number of episodes are used to estimate

the value. To avoid such inaccuracies, we introduce a variable min-count and estimate

values for only those (s, a) pairs which have been visited in atleast min-count number

of episodes. Count(s, a) is the total number of training episodes in which (s, a) was

visited. Policy π(s) maps state s to its optimal action. S is the set of states and A is set
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of actions. Slearned is the set of states for which we could learn optimal policy.

Algorithm 2 MC state-action value estimation
1: Initialize, for all s ∈ S, a ∈ A
2: Q(s, a)← 0
3: Count(s, a)← 0
4: Ret(s, a)← empty list
5: Slearned ← empty set
6: for every episode in training episodes do
7: for each (s, a) pair in the episode do
8: G← return after first occurrence of (s, a)
9: Ret(s, a)← Ret(s, a) +G

10: Count(s, a)← Count(s, a) + 1
11: for all s ∈ S, a ∈ A do
12: if Count(s, a) ≥ min-count then

13: Q(s, a)← Ret(s, a)

Count(s, a)
14: if s not in Slearned then
15: add s to Slearned
16: for all s ∈ Slearned do
17: π(s)← argmax

a
Q(s, a)

5.4.3 Zone Structure

In our model, states rely on the zone of the taxi and actions correspond to the zone the

driver should move to if he/she does not find a customer. Therefore, to learn effectively

from the data, we need to have the ”right” set of zones. ”Right” in the previous state-

ment refers to having a set of zones which yield high Q-values while having enough

data points for each (s,a) pair. More specifically, if zones are too big, it would increase

uncertainty in outcome for actions (as taxi can be anywhere in a big zone). Similarly, if

zones are too small, we may not have sufficient training data to learn something mean-

ingful. We explore ways to find a balance between uncertainty and granularity. In this

section, we propose two ways to learn zone structure of the map:

Static Zones

In this method, we learn zone structure by merging zones to neighbour zones based on

the training data available in each zone. A zone z maps to a state s and vice versa if
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z is the zone of s as mentioned in equation 5.1. An episode is said to be relevant to

z if there is any state s in the state-action pairs of the episode, which maps to z . We

start with a large number of uniformly distributed zones and check how many relevant

episodes are present in each zone, if the number is less than min-count, we merge the

zone to its nearest zone. We repeat merging zones till each zone has sufficient data to

learn from. In our experiment, we started with 500 zones and the final zone structure

had 111 zones.

Dynamic Zones

We now describe an iterative method to learn zone structure dynamically based on Q-

values of a state. As environment dynamics are different for different time-intervals, we

have different zone structures for different combinations of time-interval and day-of-

the-week to improve the performance. In this method, we fix time-interval and day-of-

the-week so that each zone maps to a unique state and a unique action. We learn separate

zone structures for different combinations of time-interval and day-of-the-week.

At a high level, at each iteration of this method, we learn Q-values for the current

zone structure based on a good part of the data (about a month of data in our case).

Then, based on insights explained later in this section, we decide whether certain low

valued zones need to be split into smaller zones. Once certain zones are split, we learn

Q-values for the new set of zones from another part of the data. We then again check if

certain zones can be split. This process is continued until our data is exhausted.

Q(s, a) is expected revenue earned till the end of cruising if action a was taken in

state s. Suppose action a is optimal action for a state which maps to a large zone z. As

zone is large the uncertainty in outcome of taking a is also high. If the large zone is split

into smaller zones, it is possible that a is not optimal any more for states mapping to

smaller zones as the uncertainty is reduced. To decrease the uncertainty in outcome of

optimal action, we split larger zones into smaller zones if smaller zones have adequate

data and if it results in increasing the overall value of the bigger zone.

Suppose s and a are state and action that map to zone z. If z is split, it affects
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Q-values of s as well as Q-values of all the other states s′ in which action a was taken.

We term these other states as incoming states. Let z1 and z2 are new smaller zones. s1,

s2 are states and a1, a2 are actions which map to new zones. a′ represents rest of the

actions.

Theorem 1. The value of an incoming state s′ either increases or remains same after

the zone split.

Proof. Suppose as per algorithm 2,Ret(s′, a) = x and Count(s′, a) = n. After split all

the (s′, a) pair will either map to (s′, a1) or (s′, a2). Let,Ret(s′, a1) = x1,Ret(s′, a2) =

x2, Count(s′, a1) = n1 and Count(s′, a2) = n2. We can see that

x = x1 + x2, n = n1 + n2

Q(s′, a) =
x

n
, Q(s′, a1) =

x1
n1
, Q(s′, a2) =

x2
n2

There are two possibilities for state-action values of the new actions

1. Q(s′, a1) = Q(s′, a2)

Q(s,′ a1) = Q(s′, a2)⇒
x1
n1

=
x2
n2

⇒ x1
n1

=
x− x1
n− n1

⇒ x1
n1

(n− n1) + x1 = x⇒ x1
n1

(n− n1 + n1) = x

⇒ x1
n1

=
x

n
⇒ Q(s1, a) = Q(s, a)

Therefore: Q(s′, a1) = Q(s′, a) = Q(s′, a2) (5.3)

2. Q(s′, a1) 6= Q(s′, a2)

Without loss of generality, let us assume Q(s′, a1) > Q(s′, a2)
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Q(s′, a1) > Q(s′, a2)

⇒x1
n1

>
x2
n2

⇒x1
n1

>
x− x1
n− n1

⇒x1
n1

(n− n1) + x1 > x

⇒x1
n1

(n− n1 + n1) > x

⇒x1
n1

>
x

n

⇒Q(s′, a1) > Q(s′, a)

Q(s′, a1) > Q(s′, a2)

⇒x1
n1

>
x2
n2

⇒x− x2
n− n2

>
x2
n2

⇒x > x2
n2

(n− n2) + x2

⇒x > x2
n2

(n− n2 + n2)

⇒x

n
>
x2
n2

⇒Q(s′, a) > Q(s′, a2)

Therefore: Q(s′, a1) > Q(s′, a) > Q(s′, a2) (5.4)

If awas the optimal action of state s′ before the split, a1 becomes the new optimal action

and its value increases to Q(s′, a1). If any other action a′ was the optimal action then

max(Q(s′, a′), Q(s′, a1)) becomes the new value of s′. Hence, the value of s′ either

remains same or increases after the split. �

Thus we do not worry about the values of incoming states and only consider the

value of s to decide if it is good to split.

To learn zone structure dynamically, instead of constructing episodes, we use ac-

tivity graph to construct a list of < start-point, end-point, return > tuples. Tuple

< A,B, ret > can be read as at point A, it was decided to move to point B and ret

was the cumulative reward accumulated till the end of the activity graph. A tuple can

be easily mapped to an (s, a) pair by determining zones of start-point (maps to state)

and end-point (maps to action). Tuple < A,B, ret > maps to zone z if point A is in

zone z. We construct a tuple list (TListz) for each zone. The Q-values of a state can

be easily estimated by mapping tuples to (s, a) pairs and averaging the corresponding

returns. We use k-means clustering algorithm to split a zone into two zones. start-point
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Algorithm 3 Dynamic zoning
1: Preprocessing - Construct Tn from activity graphs
2: Initialize zone-structure with 4 large uniform zones
3: for n ∈ N do
4: for each tuple ∈ Tn do
5: Append the tuple to appropriate TListz
6: repeat
7: converged← true
8: sort zone-structure in descending order of size of zones
9: for z ∈ zone-structure do

10: if WorthSplitting(z) then
11: converged← false
12: Split z into z1 and z2
13: Re-align any affected tuple
14: Update zone-structure
15: until converged

of all the tuples present in TListz are divided into two clusters. The tuple list of par-

ent zone can easily be divided into tuple lists of children zones by simply checking if

start-point of a tuple maps to z1 or z2. As our objective is to increase the granularity

at the same time maintaining meaningful learning, we split the zone if overall value of

parent state increases after split and optimal action of children state are different than

the optimal action of parent state. To avoid a zone structure which is too dense, we

define a threshold value of minimum zone size. We split only if children zones have

sufficient training data and they are larger than the threshold value.

Algorithm 3 provides the pseudo code for learning zone structure dynamically. We

start with dividing the map of Singapore into four large uniform zones and then split

the zones repeatedly until further split is not possible. If tuples are from N months of

data, Tn represents group of tuples which are from nth month.

As after split there are new zone centres, it is possible that tuples which are mapped

to a nearby zone now maps to new zones. We construct a list of affected tuples and

realign them after we have split a zone. Algorithm 4 provides steps to decide if it is

favourable to split a zone. Table 5.1 displays the learned number of zones for each

time-interval on weekdays and weekends.
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Algorithm 4 WorthSplitting(z)
1: Divide z into z1 and z2 using k-means clustering
2: if size of children zones ≤ min-size then
3: return false
4: Construct tuple lists and Q-values for children zones
5: if max

a
Q(s, a) ≥ max

a
Q(s1, a) +max

a
Q(s2, a) then

6: return false
7: if argmax

a
Q(s, a) == argmax

a
Q(s1, a)

and argmax
a

Q(s, a) == argmax
a

Q(s2, a) then

8: return false
9: return true

Table 5.1: Number of Dynamic Zones

Day 0-6 6-9 9-12 12-17 17-20 20-24
Weekdays 54 48 51 53 86 75
Weekends 63 58 66 64 97 86

5.5 Experiments

We now describe the set up and results to compare the performance of our RL agent

with actual drivers.

5.5.1 Evaluation Method

In this section ”driver” means real world taxi drivers for whom we have historical data

and ”agent” means our learning agent which follows the learned policy. To evaluate the

Table 5.2: Notations

Notation Description Value
travelling-cost travelling cost per km 15 c / km

cruising-cost travelling cost per minute 10 c / min

δ decision interval 2 minutes

γ duration used to compute pstassign 2 minutes

min-count min number of training data needed to learn Q-values 10

min-size min width of a zone 500m

pstassign taxi assignment probability from data

pstay probability to stay in current zone 0.5
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quality of policies learned by our approaches, we compare average revenue earned by

our learning agent with the top percentile revenue of drivers. We also compare against

revenue earned by greedy heuristics typically employed by drivers during cruising. For

our experiments, we simulate the agent movements on real data. Since, we only advise

one driver, we can assume that rest of the data about other drivers’ movements does not

change. Table 5.2 describes the terms and notation used in this section.

Simulation of Agent Movements

A key aspect of the agent movement simulation is assigning the available trips to the

agent while considering competition from active drivers. To accurately simulate the

agent movements according to the real data, we look at the trip data and trajectories of

all active drivers during a given date and time-interval. We find the relevant available

trips (non pre-booked trips) that originated from each state during that date and time.

Revenue earned, duration and distance also stored for each trip.

When the agent visits state s at time t, we try to assign an available trip which

originated from that state. As the agent is competing with other drivers present in the

state at that time, we compute an assignment probability (pstassign) with which a trip

can be assigned to the agent. The probability can be computed as the number of trips

available divided by the number of cruising drivers present in the state at that time.

To compute pstassign, we consider durations of γ minutes. We maintain a list of trips

available in every γ minute interval and the number of cruising drivers available in the

corresponding interval. This way we have multiple assignment probabilities for a single

state, and a trip is assigned based on when (time of day, t) the agent visits the state.

A second aspect of the agent movement simulation is identifying the cost while

”cruising”. To estimate the travel time between zones, we compute the average time

taken to travel between zones based on trip information present in the data. We maintain

a list of average travel time between zones for every hour of the day. This information

is used when the agent cruises from one zone to another zone.
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Driver revenue

Driver’s earning is computed from the trip data. It is difficult to estimate the exact

cruising distance of our agent. Hence for fair comparison, instead of applying a cost

of travel per km, we apply cost of travel per cruising minute. To estimate cruising cost

of drivers, we compute time duration for which the driver was not hired in the time-

interval. Then a cruising-cost per minute is applied for this duration. Thus, a driver’s

revenue in a time interval is computed as the revenue from all the driver trips in the time

interval minus cost of travelling all trip distances minus cost of all cruising.

Heuristic strategy

Another benchmark we employ to evaluate performance of our learning approach is a

heuristic strategy that is typically employed by drivers. When a cruising driver is in a

locality, he generally takes one of two options - stay in the current locality or move to

a nearby locality. When the agent follows the heuristic strategy, it stays in the current

zone with a probability equal to pstay and with the remaining probability moves to a

nearby zone. Since pstay = 0.5 worked the best, we employ this strategy.

Agent revenue

We compute the agent’s revenue for each time-interval for a given date. The actual time

(t) of the day is also maintained. t is initialized with a start time of the interval. The

evaluation ends when the value of t reaches the end of the time-interval. We observe the

top earning drivers of the given date and time-interval and find their GPS location at the

start of the interval. The corresponding state of the GPS location is used to initialize the

agent’s starting state. Following are the steps employed to compute the agent’s revenue:

1. We use pstassign to assign a trip originated from state s. One random trip is assigned

from the list of available trips.

2. If a trip was assigned to the agent, its next state becomes end zone of the trip and

time t is updated. The fare of the trip (in the data) is considered as the revenue of
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the agent.

3. If trip was not assigned, the agent waits for decision-interval (δ) minutes in the

current zone before again taking decision based on learned policy.

4. After taking action, the agent moves to the suggested zone and t is updated based

on precomputed travel time between zones for the given hour of the day.

5. After the agent reaches the next state s’, it tries to assign a trip to the agent based

on the ps′tassign.

6. If the action was to stay in the same zone, a trip assignment is attempted after δ

minutes. The assignment strategy remains same as explained in step 1.

7. Steps 1-6 are repeated until t is equal to the end time of the time-interval.

8. If a policy is not available for state s, the agent takes action based on heuristic

strategy.

9. The agent’s revenue is equivalent to the fare of all the assigned trips during the

time interval minus cost of travelling associated with all the trips minus cost of

cruising during the time interval.

We use approximately 2 million episodes extracted from around 1% of movement

trajectories over a period of 8 months to learn a policy for our agent. Total number of

GPS coordinates present in experimental dataset were 197 million and there were total

84 million decision points.

5.6 Results

To evaluate the learning, we selected one month (not used for learning) and compared

average agent revenue against average of top percentile revenues earned by drivers dur-

ing that month. There were 20 weekdays and 10 weekends in the evaluation month. We

find starting state of top 500 drivers in each time interval and use those states as initial
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Algorithm 5 Agent’s Revenue
1: Initialize the agent’s initial state s
2: tstart = start time of the time-interval
3: tend = end time of the time-interval
4: t← tstart, rev ← 0
5: fare← 0, cost← 0, cruising time← 0
6: while t ≤ tend do
7: assign trip with pstassign probability
8: if trip was assigned then
9: s← end state of trip

10: fare← fare+ trip fare
11: cost← cost+ cost of travelling the trip distance
12: t← t+ trip duration
13: else
14: t← t+ δ
15: if s ∈ Slearned then
16: use learned strategy
17: else
18: use heuristic strategy
19: go to advised zone
20: t← t+ time to travel to advised zone
21: cruising time← cruising time+time to travel to the advised zone
22: rev ← fare− cost− cruising time ∗ cruising cost
23: return rev

state of the agent for evaluation. For each initial state, the revenue is averaged over

1000 executions. Hence for a given time interval and day, the agent revenue is averaged

over 500,000 executions (500 different initial states * 1000 executions).

It should be noted that we are comparing average revenue of the agent against aver-

age of top percentile revenues of the drivers. Since we take best cases for the drivers (in

terms of always finding customers) and average case for the agent, this provides a huge

advantage to the driver revenues. This advantage is provided so as to offset any errors

in cruising costs (which typically have a minor impact). Also, if the agent performs on

par with top 10 percentile revenues, then this comparison allows us to claim extremely

good performance for the agent.

Tables 5.3 and 5.4 present the evaluation results for weekdays and weekends respec-

tively. We see that early morning hours when drivers mostly roam to find passengers,

the agent performs much better than the other drivers. During morning time interval

on weekdays, the agent’s revenue is 14.7% higher for static zones and 30% higher for

dynamic zones. Apart from peak-hour in the evening, the agent always fares better than
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Table 5.3: Performance of ILT on weekdays (revenues in SGD)

Strategy 0-6 6-9 9-12 12-17 17-20 20-24
hours hours hours hours hours hours

Average of top 1% drivers 143.26 91.86 70.81 107.75 97.09 126.97
Average of top 5% drivers 112.82 77.85 60.09 91.97 82.52 110.27
Average of top 10% drivers 97.09 69.71 54.26 83.13 74.89 101.55
Average of top 20% drivers 78.66 59.71 47.24 72.20 65.59 90.97
Heuristic 147.4 72.42 52.7 85.13 66.3 93.59
Static zone 164.77 84.98 57.71 93.32 74.76 100.99
Dynamic zone 186.52 88.37 58.3 91.43 75.25 110.95

Table 5.4: Performance of ILT on weekends (revenues in SGD)

Strategy 0-6 6-9 9-12 12-17 17-20 20-24
hours hours hours hours hours hours

Average of top 1% drivers 188.21 76.35 76.68 117.69 102.29 136.93
Average of top 5% drivers 161.27 63.74 66.22 102.44 89.31 121.35
Average of top 10% drivers 145.95 56.79 60.35 93.41 82.07 112.67
Average of top 20% drivers 126.69 48.15 52.94 81.86 72.89 102.01
Heuristic 175.92 60.48 55.43 95.23 70.31 99.94
Static zone 189.35 69.67 59.91 108.13 79.24 104.81
Dynamic zone 195.35 74.37 69.77 111.54 79.75 114.96

top 10 percentile revenue of drivers. We believe the slightly lower performance during

17-20 hours time-interval is due to traffic congestion. The agent always follows the

shortest distance route while cruising, and there might be longer routes which take less

time. As time taken to travel is taken from the real data, the agent might be wasting

time while following the shortest route during peak hours. To get a better sense of the

revenue earned by the agent with other drivers, we select a weekday and a weekend

from the test data set. For the selected days we generate a list of top 500 drivers during

each interval in terms of their revenues. We then find the corresponding starting state

of drivers from their GPS logs. We use these starting states as the initial state of the

agent during our evaluation. Figure 5.3 compares revenues of samples of an individual

agent (a sample corresponds to one instantiation of trip allocation to the agent) with

the top 500 drivers over different time intervals. The X-axis represents driver IDs of

the best 500 drivers or 500 samples for the agent. We also evaluate utilization of the

agent, which is computed as the percentage of time the agent is occupied during a given
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Figure 5.3: Revenue comparison for various time-intervals on weekdays and weekends.
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Figure 5.4: Taxi utilization comparison for weekdays and weekends.

time-interval. Figure 5.4 compares utilization on weekdays and weekend. We observe

that though maximizing taxi utilization is not the learning objective, the agent’s taxi

utilization is always high (always better than 20 percentile and slightly worse than 1

percentile value of driver utilizations).

Table 5.5: Performance of ILT with multiple individual learners present in the system
(weekdays)

Number of ILs in 0-6 6-9 9-12 12-17 17-20 20-24
the environment hours hours hours hours hours hours
1 164.77 84.98 57.71 93.32 74.76 100.99
10 164.08 84.78 57.62 92.93 68.85 100.51
50 160.41 83.65 57.55 89.93 68.6 100.19
100 149.28 82.43 56.96 86.99 68.07 99.84
500 96.65 68.91 49.99 67.83 64.21 92.72
1000 69.89 55.69 41.28 54.57 58.62 81.74

Table 5.6: Performance of ILT with multiple individual learners present in the system
(weekends)

Number of ILs in 0-6 6-9 9-12 12-17 17-20 20-24
the environment hours hours hours hours hours hours
1 189.35 69.67 59.91 108.13 79.24 104.81
10 189.09 69.15 59.68 107.55 78.91 104.57
50 181.26 68.38 59.43 106.84 78.63 103.31
100 175.78 66.4 59.29 106.7 78.52 102.07
500 124.31 54.48 57.01 102.5 74.83 92.45
1000 103.62 39.31 49.56 93.41 66.58 82.87

Tables 5.5 and 5.6 compare the performance of ILT when there are multiple inde-
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pendent learners present in the environment. As the number of free taxis in the data set

are not constant and vary with time, we can not ascertain exact percentage of individu-

als present in the system. In the data set the number varied from 5500 to 8000 free taxis

at any given time. Hence if there are 1000 independent learner in the simulation, we

can safely say that the percentage of individuals in the environment is 11-15%. As can

be seen in the tables, as the number of independent agents increase the performance of

ILT start deteriorating.

5.7 Summary

In this chapter, we show that an independent agent, with no knowledge of the environ-

ment or taxi demand scenario, is capable of obtaining revenue which is comparable to

(and in some cases higher than) revenue earned by top 10 percentile of drivers. Ex-

perimentally, we found that ILT is effective and except in one time interval (evening

peak hour), the average revenue earned by the learned policy is better than the top 10

percentile revenue among all drivers. For some time intervals the agent performance is

better than top 1 percentile revenue among all drivers. Though we employ the revenue

maximization objective, we show that taxi utilization also increases significantly.

We also observed that with increase in number of individuals in the system, the

performance starts declining. Hence, in the next chapter we provide learning methods

when the individuals utilize anonymity feature of aggregation systems by considering

that other individuals are also learning.
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Chapter 6

Exploiting Interaction Anonymity to

Improve Independent Learning

In Chapter 5 we presented learning method for individuals to learn a decision making

policy. However, we assumed that other agents employ stationary and fixed strate-

gies, rather than adaptive strategies. This led to a decline in performance with increase

in number individuals present in the environment. Continuing our work on providing

learning methods to the individuals in aggregation systems, in this chapter we propose

methods where agents also account for the presence of other learning agents in the en-

vironment. More specifically, they utilize the anonymity feature of aggregation systems

and consider number of other learning agents present in local state in their learning

model. Though the individuals consider more information as compared to ILT, we still

assume that the count statistics can be observed in their local state and no extra infor-

mation is shared by the centralized entity. Therefore for the proposed method in this

chapter we do not consider the presence of a centralized entity.

In this chapter, we improve the leading independent RL methods, specifically DQN

(Deep Q-Networks) and A2C (Advantage Actor Critic) for solving problems of interest.

Specifically:

• We provide mechanisms to exploit interaction anonymity in independent learn-

ing by extending the well known DQN (Deep Q-Network) and A2C (Advan-
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tage Actor-Critic) methods. Specifically, we aim to predict and control the non-

stationarity introduced due to the presence of other agents by learning policies

that maximize the entropy on agent population distribution.

• To demonstrate the utility of our approaches, we performed extensive experiments

on a synthetic data set (that is representative of many problems of interest) and

a real taxi data set. We observe that our individual learners based on DQN and

A2C are able to learn policies that are fair (minor variances in values of learning

individuals) and most importantly, the individual and joint (social welfare) values

of the learning agents are significantly higher than the existing benchmarks.

6.1 State Transition in AyMARL

In this section, compute state transition function based on individual agent’s transitions

in AYMARL. Figure 6.1 shows the global state transition dynamics for an anonymous

multi-agent domain. We argue that in anonymous domain with large number of agents,

individual agent’s transitions are not dependent on other agents’ states and actions di-

rectly but through agent population distribution, d. That is to say, given d, individual

agent transitions are independent of each other in AyMARL. Let dsz = |N s
z | is the num-

ber of agents in zone z in joint state s and ds = (dsz)z∈Z .

The state of an individual agent i ∈ N s
z is given by (z, dsz) and we use ai ∈ Az to

represent the action of the agent. We use Ti(z, dsz, ai, z′) to represent the probability of

agent i to move to zone z′ after taking action ai in zone z given the environment state

is s. The transition function of the environment state is given by

T (s′|s, a) =
∏
z∈Z

∏
i∈N sz

Ti(z, dsz, ai, z′) (6.1)

Equation 6.1 can be rewritten in terms of p(ds′−i |ds, a−i), which is the probability of

other agents (except agent i) having an agent population distribution ds′−i given current
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Figure 6.1: Agent population distribution dt(s) and action ati affects reward rti of agent
i. Distribution dt+1(s) is determined by the joint action at time step t.

distribution ds and joint action of the other agents a−i

T (s′|s, a) = Ti(z, dsz, ai, z′) · p(ds′−i |ds, a−i) (6.2)

Like with transitions, as shown in DBN, agent rewards are independent given agent

population distribution, d. In AyMARL, it is given by riz(dsz, ai).

6.2 Entropy based Independent Learning in Anonymous

Domains

As discussed earlier, in this chapter we focus on independent learning approaches for

AyMARL problems. In this section, we provide mathematical intuition and a general

framework for independent learning based on the use of principle of maximum entropy

in settings of interest.
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Q-function expression for a given agent i in stochastic games (Hu & Wellman, 2003)

is given by:

Qi(s, a) = ri(s, ai) + γ ·
∑
s′

p(s′|s, a) ·max
a′

Qi(s
′, a′) (6.3)

The assumption in this chapter is that the individual agents do not get access to the

global state s, or joint action a. Q-function expression for an individual agent i that

can observe number of other agents in the zone of agent i, i.e., dsz in stochastic games

setting will then be:

Qiz(d
s
z, ai) = riz(d

s
z, ai) + γ

∑
z′,ds

′
z′

[
p
(
z′, ds

′

z′ |z, dsz, ai
)
·
a′i∈Az′
maxQiz′(d

s′

z′ , a
′
i)
]

(6.4)

The above expression is obtained by considering (z, dsz) as the state of agent i in Equa-

tion 6.3.

The probability term in Equation 6.4 is a joint prediction of next zone and num-

ber of agents in next zone for agent i. Assuming a Naive Bayes approximation for

p
(
z′, ds

′

z′|z, dsz, ai
)
, we have:

p
(
z′, ds

′

z′|z, dsz, ai
)
≈ p
(
z′|z, dsz, ai

)
· p
(
ds
′

z′|z, dsz, ai
)

(6.5)

While the term p
(
z′|z, dsz, ai

)
is stationary, the term p

(
ds
′

z′|z, dsz, ai
)

is non-stationary.

ds
′

z′ is dependent not only on action of agent i but also on actions of other agents (as

shown in Figure 6.1) and hence p
(
ds
′

z′|z, dsz, ai
)

is non-stationary.

Directly adapting the Q-learning expression of Equation 2.2 to the settings of inter-

est, we have:

Qiz(d
s
z, ai)← Qiz(d

s
z, ai) + α[r + γ · max

a′i∈A′z
Qiz′(d

s′

z′ , a
′
i)−Qiz(d

s
z, ai)] (6.6)

Since a part of the transition dynamics are non-stationary, this Q value update results

in significantly inferior performance (as shown in experimental results) for existing
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approaches (Q-learning, DQN, A2C). This is primarily because prediction of ds′z′ can

become biased due to not representing actions of other agents. We account for such

non-stationarity by ensuring that prediction of ds′z′ does not get biased and all options

for number of agents in a state (that are viable given past data) are feasible.

The principle of maximum entropy (Jaynes, 1957) is employed in problems where

we have some piece(s) of information about a probability distribution but not enough to

characterize it fully. In fact, this is the case with the underlying probability distribution

of p
(
ds
′

z′|z, dsz, ai
)

for all z′ or in other words normalized ds′ . For purposes of easy

explainability, we abuse the notation and henceforth refer to the normalized agent pop-

ulation distribution as d′ ( i.e.,
∑

z′ dz′ = 1) corresponding to actual agent population

distribution, ds′ .

The principle of maximum entropy states that the best model of a probability dis-

tribution is one that assigns an unbiased non-zero probability to every event that is not

ruled out by the given data. Intuitively, anything that cannot be explained is assigned

as much uncertainty as possible. Concretely, when predicting a probability distribution,

principle of maximum entropy requires that entropy associated with the distribution be

maximized subject to the normalization (sum of all probabilities is 1) and known ex-

pected value constraints observed in data (for example average density d̄′z′ observed in

Kz′ experiences). In case of d′, this corresponds to:

max−
∑
z′

d′z′log
(
d′z′
)

:: [MaximizeEntropy]

s.t.
∑
z′

d′z′ = 1 :: [Normalization]

1

Kz′

∑
k∈Kz′

d
′k
z′ = d̄′z′ :: [ExpectedV alue] (6.7)

The key challenge is in performing this constrained maximization of entropy for nor-

malized agent density distribution, d′ along with a reinforcement learning method. We

achieve this by making two major changes to existing RL methods:

[MaximizeEntropy]: Including a term for entropy of d′ referred to asHd′ as
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part of the reward term. This will ensure entropy is maximized along with

the expected value.

[Normalization]: Normalized prediction is achieved through softmax com-

putation on p
(
ds
′

z′ |z, dsz, ai
)

prediction.

[Expected Value]: We predict normalized d′ given observed experiences

of ds′z′ . The objective of the prediction is to minimize mean square loss

between predicted and observed value of d′z′ . Due to minimizing mean

square loss, we approximately satisfy the expected value constraint.

In domains of interest, there are two other key advantages to constrained entropy maxi-

mization of d′:

• Controlling the non-stationarity: The domains of interest have reward/expected

reward values that decrease with increasing number of agents (e.g., chances of

taxis getting assigned to customers and hence earning revenue are higher when

there are fewer taxis in the same zone) . Due to this property, it is beneficial

for agents to spread out across zones with demand rather than assemble only in

zones with high demand. In other words, agents taking actions that will maximize

the entropy of d′ introduces predictability in agent actions and therefore reduces

non-stationarity.

• Reduced variance in learned policies: There is homogeneity and consistency in

learning experiences of agents because the rewards (revenue model) and transi-

tions (allocation of demand to individuals) are determined consistently by a cen-

tralized entity (e.g., Uber, Deliveroo ). The only non-stationarity experienced by

an agent is due to other agent policies and/or potentially demand, so the impact of

better predicting d′ and controlling non-stationarity through maximizing entropy

minimizes variance experienced by different learning agents.

Given their ability to handle non-stationarity better than tabular Q-learning, we im-

plement this idea in the context of DQN (Mnih et al., 2015) and A2C (Mnih et al., 2016)

67



(a) DQN and DE-DQN

(b) A2C and DE-A2C

Figure 6.2: DE-DQN and DE-A2C networks

methods. It should be noted that an experience e in AyMARL is more extensive than in

normal RL and is given by
(
z, dz, ai, ri, z

′, dz′
)

.

6.2.1 Density Entropy based Deep Q-Networks, DE-DQN

We now operationalize the general idea of applying principle of maximum entropy in

the context of Deep Q-Networks by modifying the architecture of the neural network

and also the loss functions. We refer to entropy for the predicted future agent population

distribution as density entropy. We use ddd to denote the predicted density distribution

while d is the true density distribution.

As indicated in Equation 6.7, there are three key considerations while applying prin-

ciple of maximum entropy: (a) maximizing entropy alongside expected reward; (b)

ensuring expected value of the computed distribution follows the expected observed

samples of d′; and (c) finally ensure prediction of d′ is normalized. We achieve these

considerations using three key steps:
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• Including entropy in the Q-loss: This step enables us to maximize entropy along-

side expected reward. The Q-loss, LQθ is updated to include entropy of the pre-

dicted agent density for the next step, i.e., ddd ′. Extending from the description of

DQN in Section 2.2.4, LQθ is given by:

LQθ = E(e∼U(J ))

[(
yDE−DQN −Qiz

(
dz, ai; θ

))2]

To maximize entropy of ddd ′ alongside the expected reward, the target value is:

yDE−DQN = r + βHddd ′ + γmax
a′i

Qiz′(dz′ , a
′
i; θ
−)

Here H is the density entropy and β is a hyperparameter which controls the

strength of the entropy.

• Softmax on output layer: We modify the architecture of the neural network as

shown in Figure 6.2a. This involves introducing a new set of outputs correspond-

ing to prediction of ds′ . By computing softmax on the output, we ensure ddd ′ is

normalized.

• Introduce a new density loss, LDθ : This step enables us to minimize loss in predic-

tion of agent density for the next step. Specifically, by minimizing loss we ensure

that density entropy maximization occurs subject to observed samples of d′. The

independent learner agent gets to observe only the local density, ds′z′ and not the

full density distribution d′. Hence, we compute mean squared error (MSE) loss,

LDθ for the local observation.

LDθ = E(e∼U(J ))[(dz′ −D(z′|z, dz, ai; θ))2] (6.8)

D(z, dz, ai; θ) is the density prediction vector and D(z′|z, dz, ai; θ) is the pre-

dicted density in zone z′ if action ai is taken in state (z, dz). DE-DQN optimizes

a single combined loss with respect to the joint parameter θ, Lθ = LQθ + λLDθ .

Here λ is the weightage term used for the density prediction loss.

69



6.2.2 Density Entropy based A2C, DE-A2C

Figure 6.2b depicts how A2C network can be modified to DE-A2C network. Similar to

DE-DQN, DE-A2C also considers density entropy in value function and a density loss.

In addition, DE-A2C has to consider policy network loss and this is the main difference

between DE-A2C and DE-DQN.

DE-A2C maintains a policy network π(.|z, dz; θp) parameterized by θp and a value

network parameterized by θv. Value network maintains a value function output viz(dz; θv)

and a density prediction output D(z, dz, ai; θv). R is k-step return from the experience.

While computing the value function loss Lvθv , density entropy is included as follows

Lvθv = E(e∼U(J )[(R + βHddd ′ − viz(dz; θv))2] (6.9)

Density prediction loss LDθv can be computed as given in equations 6.8. The value

network loss Lθv is the combination of value loss and density loss, Lθv = Lvθv + λLDθv .

Similarly, density entropy is included in the policy network loss as follows.

Lθp = E(e∼U(J )[∇θplogπ(ai|z, dz; θp) · (R + βHddd ′ − viz(dzi ; θv))]

6.3 Experiments

In this section, we demonstrate that our approaches that employ density entropy along-

side Q-function or value function are able to outperform leading independent RL ap-

proaches (DQN, A2C, Q-Learning). DQN, A2C and Q-Learning serve as lower bound

baselines on performance. We also compare our results with Mean Field Q (MFQ)

learning algorithm (Y. Yang et al., 2018) which is a centralized learning decentralized

execution algorithm. MFQ computes target values by using previous iteration’s mean

action (mean of actions taken by neighboring agents), but in our experimental domain

the previous mean actions are different for different zones, hence we use the modified

MFQ algorithm where agents present in same zone are considered neighbors and pre-

vious iteration’s mean actions of every zone is available to the all the learning agents.
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Figure 6.3: Comparison of tabular Q-learning, standard DQN and standard A2C .

As MFQ agents have more information than our DE algorithms, it serves as the upper

bound baseline on performance.

We first provide results on a taxi simulator that is validated on a real world taxi

dataset. Second, we provide results on a synthetic online to offline matching simulator

under various conditions.

Computing Density Entropy from Local Observation

The independent learner agent gets to observe only the local density, dz′i and not the

full density distribution d′. This makes computing a cross-entropy loss (or any other

relevant loss) for density prediction difficult. Hence, as shown in Equation 6.8, we

compute MSE loss and to get normalized density prediction ddd ′, we apply softmax to the

density output D(z, dz, ai; θ). Density entropy can be computed asHddd ′ = −ddd ′ · log(ddd ′)

6.3.1 Results

We now benchmark the performance of our learning approaches (DE-DQN and DE-

A2C) with respect to DQN, A2C and MFQ. One evaluation period consists of 1000

(1e3) time steps1 and revenue of all the agents is reset after every evaluation period.

All the graphs plotted in the upcoming sub-sections provide running average of revenue

1A time step represents a decision and evaluation point in the simulator.
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Figure 6.4: Error is density prediction.

over 100 evaluation periods (1e5 time steps).

We evaluated the performance of all learning methods on two key metrics:

1. Mean payoff of all the individuals. This indicates social welfare of all the indi-

vidual agents. Higher values imply better performance.

2. Variation in payoff of individual agents after the learning has converged. This

is to understand if agents can learn well irrespective of their initial set up and

experiences. This in some ways represents fairness of the learning approach. We

use box plots to show the variation in individual revenues, so smaller boxes are

better.

To provide a lower benchmark, we first compared our approaches with tabular Q-

Learning. We also performed experiments with DQN and A2C algorithms when density

input is not provided to the neural network. Figure 6.3 shows the comparison between

tabular Q-learning; DQN with and without agent density input and A2C with and with-

out agent density input where we plot average payoff of all the individuals (social wel-

fare). We used non-uniform trip pattern with DAR = 0.6 for this experiment. We can

see that DQN with agent density input and A2C with agent density input perform sig-

nificantly better than the other three algorithms. For other demand/supply experimental

setups also we obtained similar results. Hence, for our remaining experiments we used

DQN and A2C with agent density input as our lower baseline algorithm. In Figure 6.4

we empirically show that the MSE loss between predicted density ddd and true density
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(a) Social welfare of individuals (b) Variance in individual payoffs

Figure 6.5: Real world dataset

(a) Social welfare of individuals (b) Variance in individual payoffs

Figure 6.6: DAR = 0.25 with uniform trip pattern.

distribution d converges to a low value (≈ 0.2).

First plots in Figures 6.5 - 6.10 provide comparison of social welfare value of all the

individuals for the respective experimental setups2. Second plots uses boxplots to show

the variation in the individual average revenues after the learning has converged.

Experiment on real-world dataset (Figure 6.5) show that DE-DQN and DE-A2C

outperformed DQN and A2C approaches by ≈10%. For low DAR (Figure 6.6) there is

no overall improvement in the social welfare (Figure 6.6a) which is expected as with

too many agents and too less demand, random action of some or the other agent will

serve the demand. However, the variance is lower than the baseline algorithms. In Fig-

ures 6.7 -refent-dar75 we can see that with increase in DAR, the performance gap starts

increasing (≈ 7% for DAR = 0.4, ≈10% for DAR = 0.6 and ≈15% for DAR = 0.75)

DE-DQN and DE-A2C were able to perform as well as MFQ even with local obser-

2The demand arrival rate is static and trip pattern is uniform for the experimental setups until stated
otherwise.
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(a) Social welfare of individuals (b) Variance in individual payoffs

Figure 6.7: DAR = 0.4 with dynamic demand arrival rate.

(a) Social welfare of individuals (b) Variance in individual payoffs

Figure 6.8: DAR = 0.5 with non-uniform trips pattern.

(a) Social welfare of individuals (b) Variance in individual payoffs

Figure 6.9: DAR = 0.6 with uniform trip pattern.
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(a) Social welfare of individuals (b) Variance in individual payoffs

Figure 6.10: DAR = 0.75 with non-uniform trip pattern.

vations on the real world dataset validated simulator. Even on the synthetic simulator,

the gap was quite small (about 5% for DAR = 0.75). The gap is lesser for lower values

of DAR. The variation in revenues was significantly3 lower for DE-DQN and DE-A2C

compared to other approaches, thus emphasizing no unfair advantage for any agents.

6.4 Summary

In this chapter we provided methods where individuals exploits the anonymity feature

of the aggregation systems. Due to the key advantages of predicting agent density distri-

bution (required for accurate computation of Q-value) and controlling non-stationarity

(due to agents changing policies), our key idea of maximizing agent density entropy

is extremely effective for the individuals in anonymous multi-agent settings. We were

able to demonstrate the utility of our approaches on a taxi simulator validated on real

world data set and an online to offline service simulator simulated using synthetic data

set. The results exhibited that the learning methods provide better results than existing

algorithms with respect to the overall value for all agents and fairness in values obtained

by individual agents.

The proposed methods presented in the thesis till now learn only from the local ob-

servation and do not utilize the presence of the central agent in the system. In upcoming

chapters, we show that how presence of a central agent can be utilized to improve the

3Differences between DE algorithm and their counterpart base algorithm are statistically significant
at 5% level.
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both individual and system wide performances.
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Chapter 7

Learning Equilibrium Policies

In Chapter 5 and Chapter 6, we provided methods for individual learning from local

observation in the aggregation system. In this chapter, we assume increased level of

information sharing from the centralized entity. As discussed in Chapter 1, the ag-

gregation companies have full view of the system and they can learn policies which

improve overall performance. Hence, in this chapter we propose a method where cen-

tral agent learns from the learning of individual agents and share information about the

global state. More specifically, the central agent learns policy based on the action-values

estimated by the individual agents.

In aggregation systems, some suppliers can receive lower profits (e.g., due to ser-

vicing low demand and high cost areas) in maximizing overall profit for the centralized

entity. This results in suppliers moving out and creating instability in the system. One

way of addressing this instability is to learn equilibrium solutions for all the players

(centralized entity and individual suppliers). We note the fact that even though there are

thousands of individual players, their contribution to overall social welfare is infinites-

imal and the effect of a single agent on the environment dynamics is negligible. We

also observe that the learning in aggregation system bears a resemblance to learning

problems in multi-stage non-atomic congestion games. Using these insights, we focus

on learning equilibrium policies in this chapter.

Specifically, the key contributions of this chapter are as follows:
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• We use the equilibrium solution from games with infinite players to derive a learn-

ing method for games with large (yet finite) number of agents.

• We propose Stochastic Non-atomic Congestion Games (SNCG) model which is

suitable for infinite number of infinitesimal agents. It also considers anonymity

in the interaction of the agents.

• We then provide key theoretical properties of equilibrium in SNCG problems.

• Inspired from the equilibrium property of SNCG, we provide an algorithm for

finitely many agents which reduces the variance in agent values to move joint

solutions towards equilibrium solutions.

• We provide detailed experimental results on multiple benchmark domains from

literature and compare against leading MARL approaches.

In this chapter, we build on key results from non-atomic congestion game (Fotakis

et al., 2009; Roughgarden & Tardos, 2002; Roughgarden, 2007; Chau & Sim, 2003;

Krichene et al., 2015; Bilancini & Boncinelli, 2016) by accounting for transitional un-

certainty. While, there has been some research (Angelidakis, Fotakis, & Lianeas, 2013)

on considering uncertainty in congestion games, the uncertainty considered there is in

cost functions and not in state transitions. There has been other work (Varakantham,

Cheng, Gordon, & Ahmed, 2012) that has considered congestion in the context of

stochastic games. However, the focus there is on planning (and not learning) with-

out a centralized entity and there is also an approximation on value function considered

in that work.

7.1 Stochastic Non-atomic Congestion Games

In this section we propose Stochastic Non-atomic Congestion Game (SNCG) model

which represents both anonymity in interactions and infinitesimal agents in aggregation
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systems. Formally, SNCG is represented using the tuple:

〈
N ,S,Z,A, T ,R

〉
N : Similar to NCG,N is the set of agents endowed with a measure space, (N ,M,m),

whereM is a σ-algebra of measurable subsets and m is a finite Lebesgue mea-

sure. For an agent i, {i} is a null-set and m({i}) is zero. N is an element of the

interval [0, 1].

Z: is the set of local states of individual agents (e.g., location of a taxi).

S: is the set of global states (e.g., distribution of taxis in the city). The set of agents

present in local state z in global state s is given by N s
z and the mass of agents

present in the local state z is given by m(N s
z ). The distribution of mass of agents

is considered as the global state, i.e.,

s =< m(N s
1 ),m(N s

2 ), ...,m(N s
|Z|) >, with

|Z|∑
z=1

m(N s
z ) = 1∀s ∈ S

The total mass of agents in any global state s is 1.

A: is the set of actions whereAz represents the set of actions (e.g., locations to move

to) available to individual agents in the local state z.

A = {Az}z∈Z

Let act(i) provides the action selected by agent i. We define faz (s) as the total

mass of agents inN s
z selecting action a in state s, i.e.

∑
a∈Az f

a
z (s) = m(N s

z ). If

the agents are playing deterministic policies, faz (s) is given by

faz (s) =

∫
i∈N sz

1(act(i)=u)dm(i) (7.1)
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The joint action a is given by

a = ((faz )a∈Az)z∈Z (7.2)

R : is the reward function1. The total mass of agents selecting action a for a joint

action a in state s is given by

φu(a) =

|Z|∑
z=1;a∈Az

faz (s)

Similar to the cost functions in NCG, the reward function is assumed to be a non-

decreasing continuous function. The immediate reward is dependent on the mass

of the agents selecting the same action. Also, all the agents in local state z which

select action a receive equal reward2 which is given by

Rz(s, φ
a(a))

T : is the transitional probability of global states given joint actions. We define

pz(z
′|s, ai,a−i) as the probability of moving to local state z′ when agent i ∈ N s

z

take action ai and the induced joint action is a. a−i is the joint action induced

by all the agents except i and s′−iz is the global state without agent i where iz

indicates that agent i is in local state z. The global transition from the perspective

of an individual agent i is provided as

T (s′|s,a) =
∑
z′

T (s′−iz′ |s,a) · pz(z′|s, ai,a−i) (7.3)

The policy of agent i is denoted by πi. We observe that given a global state s (we

assume increased level of information sharing from the central agent where the central

1Researchers generally use the term ”cost” in the context of NCG. To be consistent with the MARL
literature we use the term ”reward”. However, reward and cost can be used interchangeably by observing
that reward is negative of cost.

2In aggregation systems, expected reward is equal for all the agents in a local state who perform the
same action in a local state, i.e. who select to move to the same zone.
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agent provides information about the global state), an agent will play different policies

based on its local state z as the available actions for local states are different. Hence, πi

can be represented as

πi = (πiz(s))s∈S,z∈Z such that
∑
a∈Az

πiz(a|s) = 1

We define Πz as the set of policies available to an agent in local state z, hence, πiz(s) ∈

Πz∀i ∈ N s
z ,∀s ∈ S. π = (πi)(i∈N ) is the joint policy of all the agents.

Let γ be the discount factor and ρπ denotes the state-action marginals of trajectory

distribution induced by the joint policy π. ρiπ is the local state-action trajectory distri-

bution of agent i induced by the joint policy (πi,π−i). The value of agent i for being

in local state z given the global state is s and other agents are following policy π−i is

given by

viz(s, πiz,π−i) = E((s,a)∼ρπ ,(z′,a)∼ρiπ)

[ ∞∑
t=0

γtRz′(s, φa(a))
]

= Rz(s, φπiz(s)(a)) + γ

∫
s′

∑
z′

T (s′−iz′ |s,a) · pz(z′|s, ai,a−i)viz′(s′, πiz′ ,π−i)ds′

(7.4)

The goal in an SNCG is to compute an equilibrium joint strategy, where no agent has an

incentive with respect to their individual value to unilaterally deviate from their solution.

Here, we provide key properties of value function and equilibrium solution in SNCG that

will later be used for developing a learning method for SNCGs.

Proposition 7.1.1. Values of other agents do not change if agent i alone changes its policy. For

any agent j in any local state z:

vjz(s, πjz,π−j) = vjz(s, πjz,π
′
−j)

where π−j =
(
πi, (πk)k∈N\{i,j}

)
and π′−j =

(
π′i, (πk)k∈N\{i,j}

)
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Proof. Adapting Equation 7.4 for agent j in local state z, we have:

vjz(s, πjz,π−j) = Rz(s, φπjz(s)(a))

+ γ

∫
s′

∑
z′

T (s′−iz′ |s,a) · pz(z′|s, πjz(s),a−j)vjz′(s′, πjz′ ,π−j)ds′ (7.5)

When policy of agent i is changed, the main factor that is impacted in the RHS of the above

expression is a and due to that, the reward and transition terms can be impacted. a is solely

dependent on faz (s) values and faz (s) values are dependent on the mass of agents taking action

a in local state z and global state s (Equation 7.1):

faz (s) =

∫
k∈N sz

1(act(k)=a)dm(k)

If policy change makes agent i move out of local state z then the new mass of agents selecting

action a in z is:

f̃az (s) =

∫
k∈N sz \{i}

1(act(k)=a)dm(k)

Since f is primarily mass of agents (which is a Lebesgue measure), using the countable addi-

tivity property of Lebesgue measure (Bogachev, 2007; Hartman & Mikusinski, 2014), we have:

=

∫
k∈N sz

1(act(k)=a)dm(k)−
∫
k∈{i}

1(act(k)=a)dm(k) (7.6)

Since integral at a point in continuous space is 0 and mass measure is non-atomic, so we have

{i} is a null set and m({i}) = 0

=

∫
k∈Zsz

1(act(k)=a)dm(k) (7.7)

Since faz (s) = f̃az (s), action, a remains same. Hence neither reward nor transition values

change. Thus, RHS of Equation 7.5 remains same when π−j is changed to π′−j in the LHS.
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7.1.1 Nash Equilibrium in SNCG

A joint policy π is a Nash equilibrium if for all z ∈ Z and for all i ∈ N s
z , there is no incentive

for anyone to deviate unilaterally, i.e.

viz(s, πiz,π−i) ≥ viz(s, π′iz,π−i)

∀s ∈ S,∀i ∈ N s
z ,∀z ∈ Z,∀πiz(s), π′iz(s) ∈ Πz (7.8)

Proposition 7.1.2. Values of agents present in a local state are equal at equilibrium, i.e.,

viz(s, πiz,π−i) = vjz(s, πjz,π−j),

∀s ∈ S,∀i, j ∈ N s
z ,∀z ∈ Z, ∀πiz(s), πjz(s) ∈ Πz (7.9)

Proof. In the proof of Proposition 7.1.1, we showed that adding or subtracting one agent from

a local state does not change other agent’s values, as contribution of one agent is infinitesimal.

Thus,

viz(s, πiz,π−i) = viz(s, πiz,π) and also

viz(s, π
′
iz,π−i) = viz(s, π

′
iz,π) (7.10)

This implies that the value is dependent only the policy of the individual agent given its state

and joint policy. Hence if agent i in local state z gets a highest value of viz(s, πiz,π) over all

policies, then any other agent j in the same local state z should get the same value. Otherwise,

agent j can swap to the same policy (all agents have access to the same set of policies in each

local state) being used by i. Thus,

viz(s, πiz,π) = vjz(s, πjz,π)

and from the arguments in proof of Proposition 7.1.1, we have

viz(s, πiz,π−i) = vjz(s, πjz,π−j)

When there are multiple types of agents, we can provide a similar proof that values of same

type of agents would be equal in a local state at equilibrium.

While SNCG model is interesting, it is typically hard to get the complete model before
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hand. Hence, we pursue a multi-agent learning approach to compute high-quality and fair joint

policies in SNCG problems.

7.2 Value Variance Minimization Q-learning, VMQ

Since aggregation systems have a large number of agents (not infinite, but large) with each agent

making minimal contribution, we extrapolate the property of equilibrium in SNCG to propose

a variance minimization algorithm. As argued in Proposition 7.1.2, the values of all the agents3

present in any local state are equal at equilibrium. However please note that the converse is not

true, i.e., even if the values of agents in local states are equal, the policy is not guaranteed to

be an equilibrium policy. For a joint policy to be an equilibrium policy, agents should also be

playing their best responses in addition to having values of agents in same local states being

equal.

This is an ideal insight for computing equilibrium solutions in aggregation systems, as the

centralized entity can focus on ensuring values of agents in same local states are (close to) equal

by minimizing variance in values, while the individual suppliers can focus on computing best

responses.

VMQ is a centralized training decentralized execution algorithm which assumes that during

training a centralized entity has the access to the current values of the agents. The role of the

central entity is to ensure that the exploration of individual agents moves towards a joint policy

where the variance in values of agents in a local state is minimum. The role of the individual

agents is to learn their best responses to the historical behavior of the other agents based on

guidance from central entity.

Algorithm 6 provides detailed steps of the learning:

• Central agent suggests joint action ac based on the joint policy it has estimated to all the

individual agents. Line 11 of the algorithm shows this step. For the central agent, we

consider a policy gradient framework to learn the joint policy. σ(s,a) is the long term

mean variance in the values of agents in all the local states if they perform joint action a.

We define two parameterized functions: joint policy function µ(s; θµ) and variance func-

3Values of all the agents of same type in a local state are equal if there are multiple types of agent
population present in the system.
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Algorithm 6 VMQ

1: Initialize replay buffer J , action-variance network σ(s,a; θσ), policy network
µ(s; θµ) and corresponding target networks with parameters θ−σ and θ−µ respectively
for the central agent

2: Initialize replay buffer Ji, action-value networkQiz(s, a; θi) and corresponding tar-
get network with parameter θ−i for all the individual agents i

3: while not converged do
4: for z ∈ Z do
5: for i ∈ N s

z do
6: compute value of i, viz = maxaQiz(s, a; θi)
7: Compute νz, variance in viz values for i ∈ N s

z

8: Compute mean variance ν =
1

|Z|
∑

z∈Z νz

9: Compute suggested joint action by the central entity ac ← µ(s, θµ).
10: for all z ∈ Z and for all agent i ∈ N s

z do
11: with probability ε1,

ai ← sample from acz
with remaining probability 1− ε1

ai ← ε2-greedy(Qiz)
12: Perform action ai and observe immediate reward ri and next local state z′

13: Compute true joint action a and observe next state s′

14: Store transition (s, ν,a, s′) in J and respective transitions (s, zi, ai, ri, s
′, z′i) in

Ji for all agents i
15: Periodically update the network parameters by minimizing the loss functions

provided in Equations 7.12-7.14
16: Periodically update the target network parameters

85



tion σ(s,a; θσ). Since the goal is to minimize variance, we will need to update joint

policy parameters in the negative direction of the gradient of σ(s,a)4. Hence, policy

parameters θµ can be updated in the proportion to the gradient −∇θµσ(s, µ(s; θµ); θσ).

Using chain rule, the gradient of the policy will thus be

−∇θµσ(s,µ(s; θµ); θσ) =

−∇θµµ(s; θµ)∇aσ(s,a; θσ)|a=µ(s;θµ) (7.11)

• Individual agents either follow the suggested action with ε1 probability or play their best

response policy with 1 − ε1 probability. While playing the best response policy, the

individual agents explore with ε2 probability (i.e. ε2 fraction of (1− ε1) probability) and

with the remaining probability ((1− ε2) fraction of (1− ε1)) they play their best response

action. Line 13 shows this step. The individual agents imaintain a networkQi(s, z, a; θi)

to approximate the best response to historical behavior of the other agents in local state z

when global state is s.

• Environment moves to the next state. All the individual agents observe their individual

reward and update their best response values. Central agent observes the true-joint action

a performed by the individual agents. Based on the true joint-action and variance (ν) in

the values of agents, the central agent updates its own learning.

As common with deep RL methods (Mnih et al., 2015; J. Foerster et al., 2017), replay buffer

is used to store experiences (J for the central agent and Ji for individual agent i) and target

networks (parameterized with θ′) are used to increase the stability of learning. We define Lθσ ,

Lθµ and Lθi as the loss functions of σ, µ and Qi networks respectively. The loss values are

computed based on mini batch of experiences as follows

Lθσ = E(s,ν,a,s′)∼J

[(
ν + γ · σ(s′, µ(s′; θ−µ ); θ−σ )− σ(s,a; θσ)

)2]
(7.12)

Lθµ = E(s)∼J

[
−∇θµµ(s; θµ)∇aσ(s,a; θσ)(a=µ(s;θµ))

]
(7.13)

Lθi = E(s,z,a,r,s′,z′)∼Ji

[(
r + γ ·max

a′
Qiz′(s

′, a′; θ−i )−Qiz(s, a; θi)
)2] (7.14)

Lθσ and Lθi are computed based on TD error (Sutton, 1988) whereas Lθµ is computed based on

4Joint action a is continuous.

86



the gradient provided in Equation 7.11.

7.3 Experiments

We perform experiments on four different domains: taxi simulator based on real-world data set

(described in Section 4.2.1), a synthetic online to offline service simulator (described in Section

4.2.2), a single stage packet routing (Krichene, Drighes, & Bayen, 2014) and a muti-stage traffic

routing (Wiering, 2000). In all these domains there is a central agent that assists (or provides

guidance to) individual agents in achieving equilibrium policies. For example, a central traffic

controller can provide suggestions to the individual travelers where as discussed earlier, the

aggregation companies act as a central entity for the taxi domain.

As argued in Proposition 7.1.2, for SNCG the values of all the agents in a local state would

be the same or variance in their values should be zero. Hence, we use variance in the values of

all the agents as comparison measure (we use boxplots to show the variance). We compare with

three baseline algorithms: Independent Learner (IL), neural fictitious self play (NFSP) (Heinrich

& Silver, 2016) and mean-field Q-learning (MFQ) (Y. Yang et al., 2018). IL is a traditional Q-

Learning algorithm that does not consider the actions performed by the other agents. Similar

to VMQ, MFQ is also a centralized training decentralized execution algorithm and it uses joint

action information at the time of training. However, NFSP is a self play learning algorithm and

learns from individual agent’s local observation. Hence, for fair comparison, we provide joint

action information to NFSP as well. We compared with original NFSP as well, but it performed

worse than the NFSP with joint action information. Hence we do not include those results here.

7.3.1 Taxi Simulator

Apart from comparing variances in the payoffs of individuals, we also provide mean payoff of

agents (with respect to the time) as the learning progresses. The mean payoff is an indicator of

social welfare of individual agents. We show that VMQ learn policy which yield higher social

welfare values for the individuals. The social welfare plots are for the running average of mean

payoff of all the agents for every 1000 time steps.

Figure 7.1 show results for simulation based on the real-world data set. Plot in Figure 7.1a

show that agents earn≈5-10% more value than NFSP and MFQ. Boxplots in Figure 7.1b exhibit
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(a) Social welfare of individuals (b) Variance in the values of agents

Figure 7.1: Taxi simulator using real-world data set

(a) Social welfare of individuals (b) Variance in the values of agents

Figure 7.2: DAR=0.4 with dynamic demand arrival rate

that the variance in the values of individual agents is minimum for VMQ. As agents are playing

their best response policy and variance in values is low as compared to other algorithms, we can

say that VQM learn policy which is closer to the equilibrium policy.

7.3.2 Synthetic Online to Offline Service Simulator

Figures 7.2 - 7.4 show results for synthetic data set where we include results for various combi-

nation of features. Figures 7.2a and 7.2b plot social welfare and variance in values of agents for

(a) Social welfare of individuals (b) Variance in the values of agents

Figure 7.3: DAR=0.5 with non-uniform trips pattern
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(a) Social welfare of individuals (b) Variance in the values of agents

Figure 7.4: DAR=0.6 with uniform trip pattern.

Figure 7.5: Routing network

a setup with dynamic arrival rate, non-uniform trip pattern with DAR=0.4. The social welfare

value for VMQ is ≈8-10% higher that NFSP and MFQ. Figures 7.3a and 7.3b show results for

a setup with dynamic arrival rate, uniform trip pattern and DAR=0.5. VMQ outperforms NFSP

and MFQ by ≈5-10% in terms of social welfare of all the individual agents.

Comparison for an experimental setup with static arrival rate, non-uniform trip pattern and

DAR=0.6 is shown in Figures 7.4a and 7.4b. Similar to other setups, social welfare for VMQ

is ≈5-10% more than NFSP and MFQ respectively. For all the setups the variance in values of

individual agents is minimum for VMQ. Hence VMQ provides better approximate equilibrium

policies.

7.3.3 Packet Routing

We first performed experiments with a single stage packet routing game (Krichene et al., 2014).

Two population of agents N1 and N2 of mass 0.5 each share the network given in Figure 7.5.

The first population sends packets from node A to node B, and the second population sends
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Table 7.1: Comparison of policies and ε values for packet routing example

Method policy ε value
Equilibrium Policy ((0, 0.187, 0.813),(0.223, 0.053, 0.724)) 0

VMQ ((0, 0.180, 0.820), (0.220, 0.040, 0.740)) 0.07
NFSP ((0.004, 0.116, 0.88), (0.01, 0.164, 0.826)) 0.792
MFQ ((0, 0.162, 0.838), (0.220, 0.040, 0.740)) 0.15

IL ((0.055, 0.176, 0.769), (0.217, 0.088, 0.695)) 0.971

from node E to node F . Paths AB,ACDB,ADB are available to agents in N1 whereas paths

EF,ECDF,ECF are available to agents inN2. The cost incurred on a path is sum of costs on

all the edges in the path. The costs functions for the edges when mass of population on the edge

is φ are given by:

cAB(φ) = φ+ 2, cAC(φ) =
φ

2
, cAD(φ) = φ,

cDB(φ) =
φ

3
, cCD(φ) = 3φ, cEC(φ) =

1

2
,

cCF (φ) = φ, cDF (φ) =
φ

4
, cEF (φ) = φ+ 1

If the cost functions are known, equilibrium policy can be computed by minimizing Rosenthal

potential function (Rosenthal, 1973). We use equilibrium policy and costs on paths computed

by minimizing potential function to compare quality of the equilibrium policy learned. We

performed experiments with 100 agents of each type. We also compute ε values of the learned

policy, which is the maximum reduction in the cost of an agent when it changes its policy

unilaterally. Table 7.1 compares the policies and ε values where the first row contain values

computed using potential minimization method. The policy is represent as

((πAB1 , πACDB1 , πADB1 ), (πEF2 , fECDF2 , πECF2 ))

where πpi is the fraction of mass of population of type i selecting path p. We see that the VMQ

policy is closest to the equilibrium policy and ε value is also lowest as compared to NFSP, MFQ

and IL. The equilibrium cost on paths as computed by the potential minimization method are:

AB = 2, ACDB = ADB = 1.14, EF = ECDF = ECF = 1.22, i.e. at equilibrium agents

in population N1 incur a cost of 1.14 whereas cost for agents in population N2 is 1.22. Figures
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(a) Population N1 (b) Population N2

Figure 7.6: Variance in costs of agents for packet routing example.

(a) Population N1 (b) Population N2

Figure 7.7: Variance in values of agents for multi-stage traffic routing

7.6a and 7.6b provide variance in costs of agents for population N1 and N2 respectively. We

can see that not only variance in the costs of agents is minimum for VMQ but the values are also

very close to the equilibrium values computed using potential function minimization method.

7.3.4 Multi-Stage Traffic Routing

We use the same network provided in Figure 7.5 to depict a traffic network where two pop-

ulation of agents N1 and N2 navigate from node A to node B and from node E to node F

respectively. Unlike to the packet routing example, agents decide about their next edge at every

node. Available edges to population type at every node remains the same as explained in the

previous example. As the decision is made at every node, the domain is an example of SNCG

where agents make a sequence of decision to minimize their long term cost. Hence, the values

of agents from a population at a given node would be equal at equilibrium.

In this example, agents perform episodic learning and the episode ends when the agent

reach their respective destination nodes. The distribution of mass of population over all the

nodes is considered as state. We perform experiments with 100 agents of each type. Figures
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7.7a and 7.7b show the variance in values of both the population. Similar to the packet routing

domain, the variance is minimum for VMQ. Furthermore, we notice that for both single-stage

and multi-stage cases, the values of agents from N2 is affected only by their own aggregated

policy and fraction of agents from N1 selecting path AC. However, for agents from N1, the

values would be different from single-stage case. For example, agents selecting path ACDB

and ADB would reach the destination node at different time steps and hence cost of agents on

edge DB would be different from the single-stage case. Hence we can safely assume that the

equilibrium value of agents fromN2 would be 1.22 as computed for the single-stage case which

is the value for VMQ as shown in Figure 7.7b.

7.4 Summary

In this chapter we proposed a Stochastic Non-atomic Congestion Games (SNCG) model to

represent anonymity in interactions and infinitesimal contribution of individual agents for ag-

gregation systems. We show that the values of all the agents present in a local state are equal at

equilibrium in SNCG. Based on this property we proposed VMQ which is a centralized learn-

ing decentralized execution algorithm where the central agent learns policy from the state-action

values of individual agents and suggests it to the individuals. Individual agents use the suggested

policy to explore and learn equilibrium policies. Experimental results on multiple domains de-

pict that VMQ learn better equilibrium policies than the other state-of-the-art algorithms.

In the next chapter we explore methods where the centralized agent learns directly from the

experiences of the individual agents.
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Chapter 8

Correlated Learning

In Chapter 7 we provided VMQ, which is a centralized learning decentralized execution al-

gorithm where central agent ensures that the exploration of individual agents moves towards a

joint policy where the variance in values of individuals is minimum (as we have shown that at

equilibrium, the values of individuals in a local state are equal). However equilibrium policies

are known to be sub-optimal. Hence in this chapter we focus on learning policies which in-

crease long term payoff of individuals as well as ensures that overall performance of the system

is improved.

In this chapter we increase the level of learning done by the centralized agent. Now the

central agent learns from the direct experiences of the individuals and learn a social welfare

maximizing policy. MARL algorithms which consider presence of a central agent assume that

the central agent shares true joint action with the learning agents. However in the proposed

method here, instead of sharing the true joint action, the central agent suggests the social welfare

maximizing policy it has learned to the individuals. The individuals in turn learn to play a best

response policy to the suggested social welfare policy.

Existing work (Littman, 1994; Hu et al., 1998; Hu & Wellman, 2003) has focused on com-

puting equilibrium policies by representing MARL problems as learning in Stochastic Games

(SG). Due to the existence of multiple equilibria and the challenge of coordinating agents to

focus on the same equilibria, other alternatives have been considered (Shoham, Powers, &

Grenager, 2003; Weinberg & Rosenschein, 2004). (Bowling & Veloso, 2001) proposed the

following criteria for multi-agent learning:

1. rationality: learning should terminate with a best response to the play of other agents and
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2. convergence: learning should converge to a stationary policy.

Though the above mentioned criteria (Shoham et al. (2003) named the criteria as AI Agenda)

look similar to criteria of Nash equilibrium, however the difference lies between their

approach towards bounded rationality. The idea of bounded rationality was introduced

by Simon (1972) which states that in decision making, rationality of individuals is lim-

ited by the information they have, the cognitive limitation of their mind and the finite

amount of time they have to make a decision. Traditional game theory assumes per-

fect reasoning and infinite mutual modeling of agents. However, AI Agenda focuses

on achieving above-mentioned criteria and do not care about reaching an equilibrium

solution. In this chapter, we focus on these two criterion for MARL problems with a

large number of homogeneous agents.

The key contribution of this chapter is in developing a generic learning approach

that exploits the presence of an aggregation system (e.g., Uber, Lyft, FoodPanda). We

propose Correlated Learning (CL), where individual agents learn to play best response

against a central agent, which learns joint actions that maximize social welfare. Sim-

ilar to the work by (Bowling & Veloso, 2001), we demonstrate that CL satisfies the

rationality and convergence criteria when the agent population is large.

We empirically show on multiple MARL problems that CL results into a “win-win

situation” where both central agent and individual agents receive better payoff than

the other MARL algorithms suitable for individual learning in the presence of a large

number of agents. For aggregation systems, where there are many similar agents, we

consider Anonymous MARL model that can capture homogeneity in agent models and

anonymity in agent interactions to ensure scalable and efficient learning.

8.1 Correlated Learning for Homogeneous Agents

To understand the core facets of the approach, we first develop correlated learning

method for homogenous agents in this section. We extend it to AyMARL problems

in the next section. As discussed earlier, the objective of the central agent is to maxi-
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mize the social welfare whereas individual agents try to maximize their own payoff.

There are set of N individual agents and one central agent present in the environ-

ment. Central agent does not interact directly with the environment and learns only

from the experiences of the individual agents. Just to reiterate, ai ∈ A denote action of

agent i, where A is the action space of the individual agents. As agents are homoge-

neous, instead of modeling their joint action as a vector of actions of individual agents,

we model it as a vector of number of agents selecting each available action. We use

a = (nj)j∈A,a ∈ A to denote the joint action where nj is the number of agents select-

ing action j ∈ A,
∑

j∈A nj = |N | and A is the joint action space. Superscript c is used

to denote that action ac has been derived from the central agent’s policy. a−i is the joint

action of all the agents except agent i, i.e., a = (a−i, ai). Note that as a is count based

and does not consider agents’ identities, there are |A| possible combinations of a−i and

ai which will produce a single joint action a. State space is denoted by S.

Algorithm 7 Correlated Learning

1: Initialize central agent’s Q-values arbitrarily, Qc(s,a)∀s ∈ S,∀a ∈ A
2: For all the individual agent i, initialize best response Q-values arbitrarily
Qi(s,a−i, ai)∀s ∈ S,∀(a−i, ai) ∈ A

3: while not converged do
4: compute joint action for the central entity

ac ← ε1-greedy
(
Qc(s,a)

)
.

5: for All agent i do
6: with probability ε2,

ai ← follow ac

with remaining probability 1− ε2
ai ← ε3-greedy

(
Qi(s,a

c
−i, a)

)
7: Perform action ai and observe next sate s′ and reward ri. Update agent’s learn-

ing.
Qi(s,a

c
−i, ai)← (1− α)Qi(s,a

c
−i, ai) + α

[
ri + γmaxa′,a′c

−i
Qi(s

′,a′c
−i, a

′)
]

8: Compute true joint action a, central agent’s reward rc =
∑

i ri. Update central
agent’s learning.
Qc(s,a)← (1− α)Qc(s,a) + α

[
rc + γmaxa′ Qc(s

′,a′)
]

Algorithm 7 provides the key four steps involved in CL.

• Central agent suggests current social welfare policy to all the individual agents.

Line 4 of the algorithm shows this step.
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• Individual agents either follow the suggested action with ε2 probability or play

their best response policy with 1−ε2 probability. While playing the best response

policy, the individual agents explore with ε3 probability (i.e. ε3 fraction of (1−ε2)

probability) and with the remaining probability ((1− ε3) fraction of (1− ε2)) they

play their best response action. Line 6 shows this step.

• Environment moves to the next state. All the individual agents observe their

individual reward and update their best response values assuming that the other

agent followed the suggested action. Line 7 shows this step.

• Central agent observes the true-joint action performed by the individual agents.

Based on the cumulative reward of all the individual agents and the true joint-

action, the central agent updates its own learning. Line 8 shows this step.

To follow ac is step 6, individual agents take action j with probability nj/|N |. a′c

in step 7 is the social welfare policy of central agent for state s′. The individual agents

play their best response based on their belief that others are following the suggested

policy whereas the central agent acts as a correlation entity, hence we call it correlated

learning. There is a difference between the way individual agents and central agent

update their Q-values in steps 7 and 8. While central agent updates the value based

on true joint action performed, the individual agents update their values based on the

recommendation of joint action by the central entity.

Central agent’s learning is dependent on the experiences of the individual agents.

Hence, if individual agents explore sufficiently (infinite exploration is a criteria for the

learning to converge), the central agent’s joint-action exploration would also be suffi-

cient. We now argue that social welfare policy and individual agents’ best response

policies converge to a stationary policy.

Lemma 1. Central agent’s learning converges to a stationary policy.

Proof. Given the ε-greedy approach for each of the individual agents, all the joint state

and joint action combinations will be explored in the limit with infinite exploration

(GLIE) (S. Singh, Jaakkola, Littman, & Szepesvári, 2000). Since learning of central
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agent is only dependent on the combined experiences of the individual agents and since

individual agent exploration is exhaustive, central agent’s learning is equivalent to rein-

forcement learning. Therefore, it will converge to a stationary policy.

8.1.1 Discussion

As indicated earlier, our focus is on finding rational policies that are stationary. While

we cannot yet guarantee, we are able to intuitively argue for these properties.

First, as individual agents update their Q-values over individual action and joint rec-

ommended action for all other agents, it will be ideal if our approaches learn the true

best response values for ensuring rational behavior. This is feasible if we generate suf-

ficient experiences of the suggested joint action. In Algorithm 7, each individual agent

either follows the suggested action, or selects a random action. Selecting random action

while exploration can be considered as idiosyncratic i.i.d. (independent and identically

distributed) noise. We argue that during high exploration phase they do generate expe-

riences of the suggested joint action. The intuition comes from the common assumption

in the game theory that the idiosyncratic noise is averaged away if the agent population

is large (Sandholm, 2010; Carmona & Delarue, 2014; Nutz, 2018). Hence, during ex-

ploration they generate experiences of suggested joint action and thus learn the values

for true joint action.

Once the individual agents have learned values of true joint actions, the action sug-

gested by the central agent works as a synchronization mechanism for them. Suppose

for suggested joint action ac for state s, agents have figured out their respective best

response action and the resulting aggregated joint action is a. Even if in reality ac and

a are not same, whenever joint action ac is suggested, agents will play their respective

best response and the true joint action will always be a. As shown in Lemma 1, the

social welfare policy converges to a stationary policy, hence the best response policies

will also converge to a stationary policy.

Hence under normal assumptions of Q-learning, CL intuitively satisfies the two

criteria of the rationality and convergence if the agent population is large.
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8.2 CL for Aggregation Systems

Algorithm 8 CL for aggregation systems
1: for central agent do
2: Initialize replay memory Jc
3: Initialize DDPG state-action value networkQc(s,a; θc) and corresponding target

network with parameter θ−c
4: Initialize DDPG policy network µ(s; θµ) and corresponding target network with

parameter θ−µ
5: for each individual agent i do
6: Initialize replay memory Ji
7: Initialize best response network Qiz(s,az, a; θi) and corresponding target net-

work with parameter θ−i
8: while not converged do
9: compute joint action for the central entity

ac ← µ(s, θµ)
10: for All agent z ∈ Z do
11: for All agent i ∈ N s

z do
12: with probability ε1,

ai ← sample from acz
with remaining probability 1− ε1

ai ← ε2-greedy
(
Qiz(s,a

c
z, a)

)
13: Perform action ai and observe next sate (s′, z′) and reward ri
14: Store transition (s, z,acz, ai, ri, s

′, z′) in Ji
15: Compute central agent’s reward rc = η

∑
i ri

16: Store transition (s,a, rc, s
′) in Jc

17: Periodically update the networks with following losses

Lθc = E(e∼Jc)

[(
rc + γQc(s

′, µ(s′; θ−µ ); θ−c )−Q(s,a; θc)
)2]

Lθµ = E(e∼Jc)

[
∇aQc(s,a; θc)(a=µ(s;θµ))∇θµµ(s; θµ)

]
Lθi = E(e∼Ji)

[(
ri + γmaxa′Qiz′(s

′, (µ(s′; θ−µ )z), a
′; θ−i )−Qiz(s,a

c
z, a; θi)

)2]
18: Periodically update target network parameters

While the basic version of CL described in the previous section is easy to under-

stand, it does not scale very well due to the combinatorial state and action spaces when

considering large numbers of agents. We now extend CL for large scale AyMARL

problems in aggregation systems by converting discrete combinatorial state and action

spaces into continuous values.

The underlying model for CL in anonymous settings remains the same as described
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in Section 4.1.1. Both joint state and joint action are vector of continuous values

(mass/fraction of agent population), hence, a tabular learning of Q-values is difficult.

Deep neural network, which is popular for function approximation, can be used to esti-

mate Q(s,a) values for the central agent1. Deep deterministic policy gradient (DDPG)

(Lillicrap et al., 2015) is an excellent algorithm to learn deterministic policies for do-

mains with continuous actions. The assumption is that the policy is deterministic, which

is a reasonable assumption for the problems of interest. Central agent maintains an ac-

tor network µc(s; θµ) and a critic network Qc(s,a; θc). Central agent learns a policy to

maximize the social welfare (as given in Equation 4.1) from the experiences of the in-

dividual agents and its learning experience is given by < s,a, r(s,a), s′ >. The target

value mentioned in Equation 2.4 for the central agent is computed as follows.

y = rc(s,a) + γQc(s
′, µc(s

′; θµ); θc)

The experience of an individual agent is given by < s, zi,a
z
c , ai, ri, s

′, z′i > which

can be interpreted as after taking action ai in state (s, zi) agent i received ri as imme-

diate payoff and moved to state (s′, z′i) given the joint action suggested by the central

agent was azc . The agents maintain their best response value network Qiz(s,a
c
zi
, ai; θi)

where ai ∈ Az is the available actions in zone z. Furthermore, the individual agents

compute their target value as follow.

yi = riz(s,a
c
z, ai) + γmax

a′i

Qiz′(s
′,acz′i , a

′
i; θi)

Here az′c is the social welfare policy of the central agent for zone z′ for the next joint

state s′. CL steps for aggregation system has been given in the Algorithm 8.

1Use of non-linear function approximator such as neural network does not preserve any mathematical
convergence guarantees. However in practice it has been seen to converge (Mnih et al., 2013, 2015).
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8.3 Experiments

We analyze and evaluate CL on four different example domains. The first two domains

are taxi simulator and a synthetic online to offline service aggregation simulator as

described in Sections 4.2.1 and 4.2.2 respectively. To show the effectiveness of CL, we

also perform experiments on two stateless games described as follows

8.3.1 Traffic Game

Traffic game (Chen et al., 2018) is a stateless coordination game motivated by traffic

control task where players need to select a route such that they do not cause congestion.

N players present in the domain need to coordinate in a way such that congestion on

route k, lk =
∑

i∈N 1(xi=k) is neither too many or too few, where xi is the route selection

of agent i. The reward function for maintaining desired congestion on a route k is

Gaussian function lk ·e−(lk−µk)
2/σ2

k where µk is the desired mean value of congestion and

σk is the penalty for deviation from the mean value. All the players on the same route

receives same reward. The objective of a central traffic controller is to have congestion

on each route to be as close to the respective mean value as possible. Hence its goal

is to maximize the social welfare whereas the other players are self interested player

maximizing their own reward.

8.3.2 When does the meeting start?

”When does the meeting start?” (Guéant, Lasry, & Lions, 2011) is a stateless coordi-

nation game where a number of participants need to attend a meeting. The meeting is

scheduled to start at T but it will start only after a minimum number of participants are

present for the meeting. Hence very often it starts several minutes after the scheduled

time. As a result, each participant i has their own preference Ti when they would like

to arrive for the meeting. Also, when participant i decides to arrive at ti, in reality he

arrives at ti ± σi due to uncertainties (traffic etc.). More precisely, ti is the action taken

by the participant and σi is the uncertainty he is subjected to.
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To decide about their arrival time, each participant optimize their cost. Suppose the

meeting started at t and participant i arrived at ti, then he incurs following cost

β1(|t− ti|) + β2(Ti − ti) + β3max(0, ti − T )

Here first part is lateness/waiting cost, second part is deviation from the preference cost

and the last part is reputation cost. β parameters are weigtages of these cost compo-

nents. Participants learn when to arrive given T and Ti such that their individual cost is

minimum. We can assume presence of a central entity (say manager of the team whose

member are supposed to attend the meeting) whose objective is to minimize the social

welfare cost.

8.4 Results

We compare CL with three baseline algorithms: (1) density entropy based deep Q-

learning (DE-DQN) presented in Chapter 6(Verma, Varakantham, & Lau, 2019), (2)

neural fictitious self play (NFSP) (Heinrich & Silver, 2016) and (3) mean-field Q-

learning (MFQ) (Y. Yang et al., 2018). As discussed in Chapter 6, DE-DQN is an

independent learning algorithm which learns from local observation. It predicts agent

population density distribution and uses entropy of population density distribution to

improve individual learning. NFSP is a fictitious self play learning algorithm where

agents learn from their local observation. As CL has advantage of having a central

agent providing more information, for fair comparison we provided joint action infor-

mation to NFSP. As we have mentioned in previous chapter, we compared with original

NFSP as well, but it performed worse than the NFSP with joint action information.

Hence we do not include those results here. Also, we considered the action space of the

central agent to be continuous for all our experimental domains.

DE-DQN algorithm is suitable for the setup with partial observation and uses en-

tropy of population density distribution to improve learning. As we consider full view

of joint action in case of the two stateless coordination game example, we do not per-
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form experiments for DE-DQN for these examples.

A centralized cooperative learning will ensure an optimal social welfare revenue

given the reward function and transition function are same for all the individual agents.

Hence, as an upper bound we also compare with social welfare (SW) policy where the

all the agents execute the social welfare policy cooperatively.

We evaluated the performance of all learning methods on two key metrics:

• Social welfare payoff of all the individuals computed by aggregating payoffs of

all the individual agents. Higher values imply better performance.

• Variation in payoff of individual agents after the learning has converged. This

is to understand if agents can learn well irrespective of their initial set up and

experiences. This in some ways represents fairness of the learning approach. We

use box plots to show the variation in individual revenues, so smaller boxes are

better.

Payoff of all the agents is reset after every evaluation period time steps2. For taxi

simulator and online to offline service simulator one evaluation period consisted of 1000

(1e3), whereas for traffic game and ”when does the meeting start” experiments, it was

set to 100 time steps. The graphs where social welfare has been compared provide

running average of revenue over 100 evaluation periods for taxi simulator and online

to offline service simulator, whereas for the remaining two experimental domains it

provides running average of 20 evaluation periods.

8.4.1 Taxi Simulator

Figure 8.1 presents the performance comparison for taxi simulator where the zone struc-

ture and demand distribution were simulated using real-world data. In Figure 8.1a we

can see that CL’s social welfare value is similar to that of centralized cooperative learn-

ing. However Figure 8.1b shows that variance in the payoff of individual agents is

2A time step represents a decision and evaluation point in the simulator.
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(a) Social welfare of individuals (b) Variance in individual revenue

Figure 8.1: Taxi simulator

minimum for SW. This is expected as all the agents follow the same mixed policy com-

puted by the central agent. Furthermore variance for CL is lower than the other three

algorithms.

As seen in Figure 8.1a, the social welfare value of CL is ≈ 13 − 20% higher than

the other three algorithms. It means that there are some “lost demand” (demands that

were not served) for NFSP, MFQ and DE-DQN which are being served by SW and

CL. Figure 8.2 displays error between central agent’s social welfare policy and the

Figure 8.2: Difference in central agent’s social welfare policy and aggregated policy of
individual agents

aggregated joint policy of individual agents. To compute aggregated joint policy of

individual agents in zone z, we compute best response of agents present in the zone and

then compute azbs = (akbsz)k∈Az , where akbsz is the fraction of agents present in zone z

whose best response is to move to zone k. Then we compute root mean squared error

(RMSE) between vectors azc and azbs to compute error in policies for zone z. Finally, we

compute average error over all the zones to get the error between social welfare policy

and the joint best response policy.

We can see that the social welfare policy and the joint best response policy converges
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(a) Social welfare of individuals (b) Variance in individual revenue

Figure 8.3: DAR=0.4 with dynamic demand arrival rate

(a) Social welfare of individuals (b) Variance in individual revenue

Figure 8.4: DAR=0.5 with non-uniform trips pattern

to different policies as the error between them does not go down to zero. However our

argument in Section 8.1.1 that the policy converges to a stationary policy is validated

empirically here.

8.4.2 Synthetic Online to offline service simulator

Figures 8.3 - 8.5 presents plots for social welfare and boxplots for variance in individual

revenue for various experimental setups. The first result is for a setup with dynamic

arrival rate, non-uniform trip pattern with DAR=0.4. Social welfare value of CL is≈10-

12% more than NFSP, MFQ and DE-DQN (Figure 8.3a). In Figure 8.3b we can see that

the best agent of CL generates revenue more than its counterpart for the algorithms.

For setup with dynamic arrival rate and DAR=0.5 in Figure 8.4a, social welfare value

of CL is ≈8-12 % more than NFSP, MFQ and DE-DQN. Also as seen in boxplots of

Figure 8.4b, there are around 50 % of the agents who earn more than the social welfare

value of SW. We observed similar results for the setup with non-uniform trip pattern and
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(a) Social welfare of individuals (b) Variance in individual revenue

Figure 8.5: DAR=0.6 with uniform trip pattern.

DAR=0.6 (Figures 8.5a and 8.5b), CL generated ≈6-10 % more social welfare revenue

than NFSP, MFQ and DE-DQN.

Here are the key conclusions:

• SW performs best due to its cooperative learning and uniformity of the agents.

• Performances of NFSP, MFQ and DE-DQN with respect to SW vary with varying

complexity of the experimental setup (with and without dynamic arrival rate and

non-uniform trips). However CL’s social welfare was consistently at par with

SW’s social welfare. This provides the motivation to the central entity to compute

social welfare policy and share it with the non-cooperative individual learners.

• Apart from having lesser variance in the individual revenues, the best and worst

performing agents of CL always perform better than the best and worst perform-

ing agents of NFSP, MFQ and DE-DQN respectively. This provides motivation

for the individual agents to use CL instead of other individual learning algorithms.

• A considerable number (20-50%) of individual agents earn more than the social

welfare value of SW. This justifies for the self-interested agents to play best re-

sponse policy (CL) instead of learning cooperatively (SW).

8.4.3 Traffic Game

Figure 8.6 shows results for traffic game with 100 agents with 10 routes. We generated

different values and µ and σ for each route to make the learning more complex (as
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(a) Social welfare of individuals (b) Variance in individual reward

Figure 8.6: Traffic game

(a) Social welfare of individuals (b) Individual costs of 40 agents

Figure 8.7: Social welfare and individual costs for ”when does the meeting start?”
experiment

opposed to having same µ and σ for every route). As seen in previous example domains,

the social welfare value of CL is similar to that of SW and is ≈15-18% more than

NFSP and MFQ. As it is stateless game, other algorithms were also able to achieve low

variance in the individual values.

8.4.4 When does the meeting start?

We performed experiments with 40 participants with options of arriving at 15 different

time steps. We used normal distribution to introduce uncertainty σi and β values were

set to 1. Each participant had their own preference of arrival time which makes the

domain asymmetric and hence, a central policy might not provide a social optimal.

Figure 8.7a confirms this and we see that performance of SW is worst. Also, cost for

CL is≈6-8 % lesser than MFQ and NFSP. Figure 8.7b illustrates costs of 40 participants

where the results has been shown as stacked bar chart. Each bar represents cost of single

participant for these forur algorithms. We can observe that the cost of individual agents
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are minimum for CL.

8.5 Summary

In this chapter we presented correlated learning (CL) for aggregation systems. The

centralized agent learn social welfare maximizing policy by observing learning expe-

riences of the individual agents. Instead of sharing information about the true joint

action, it suggest the social welfare maximizing policy to everyone. The central agent

acts as a correlation agent where non-cooperative individual agents learn to play best

response against the suggested social welfare policy. We first provide a generic CL and

then extend it to use in anonymous domains. Our experiments on multiple example

domains show that both central agent and individual agents get benefited by using CL

as compared to other individual learning algorithms.

To generate the relevant experiences, CL assumes that the individuals will follow the

suggested policy during the high exploration phase of the individual learning. However

this is an optimistic assumption and the self interested agents might not follow the

suggestion. Hence, in the next chapter, we propose an incentive based learning where

the central agent provides incentive based on social welfare value of the current joint

policy.
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Chapter 9

Incentive Based Q-Learning

We saw in the last chapter that CL performs extremely well, where the fairness is high

(in terms of individual payoffs) and the social welfare value is at par with a cooperative

centralized algorithm. However, it is optimistic in its assumption that the individuals

will follow the suggestion during exploration phase. Hence, in this chapter we provide

an incentive based learning where the central agent still learns social welfare maximiza-

tion policy from the learning experiences of the individuals. However, instead of sug-

gesting the policy/corresponding joint action, it provides incentives (charges penalty,

which can be deducted from the immediate payoffs of the individual agents) to the

agents based on the value of the current joint policy.

Potential based reward shaping is a way to include prior domain knowledge in the

learning. Taking inspiration from potential based reward shaping methods, in this chap-

ter we propose Incentive Based Q-Learning (IBQ) where the incentive is computed

based on the social welfare values. In experiments we show that due to providing in-

centives the agents learn a joint policy which provide similar results to CL which works

on atring assumption that individual agents would sometime follow the suggested pol-

icy during high exploration phase. This results into scenario where the social welfare is

high as well as the variance in individuals’ payoffs is minimum.
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9.1 Dynamic Potential Function

In this chapter, we propose use of joint policy based potential function for reward shap-

ing. Suppose, πc is the joint policy which maximizes the social welfare and π is the

current joint policy of the individual agents. We define potential of a state as the differ-

ence in the social welfare value for these two policies as follows

ϕ(s) = v(s,π)− v(s,πc) (9.1)

Intuitively, it represents how far the current policy is from the optimal policy. As both

πc and π continuously change during learning, the above computed potential function

is dynamic.

9.2 Potential Difference based Incentive

During a global state transition, the local state transition of individuals depend on their

current local state. Hence computing incentive based on potential values of global state

might not be helpful. Hence, we further increase the granularity and compute potential

value of a global state - local state pair as

ϕ(s, z) = v(s,πz,π−z)− v(s,πcz,π−z) (9.2)

πz is the joint policy of agents in local state z and π−z is the joint policy of agents from

all the remaining local states. To ensure that the underlying game structure remains

unchanged, we need to compute the potential of a state at the time it is entered and use

the same value when the state is exited. We use superscript t to denote policy at time t.

Hence potential at time t is computed as follows

ϕt(s, z) = v(s,πtz,π
t
−z)− v(s,πtcz ,π

t
−z) (9.3)
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For an individual agent transitioning from (s, z) to (s′, z′), the additional reward is

provided as

F (s, z, t, s′, z′, t′) =
1

|N |

[
γϕt

′
(s′, z′)− ϕt(s, z)

]
(9.4)

For the ease of notation we use δzz′ to denote F (s, z, t, s′, z′, t′). The corresponding

value update for agent i is given by

Qiz(s, ai,a−i)←Qiz(s, ai,a−i) + α
[
(1− η)ωiz(s, ai,a−i)+

δzz′ + max
a′i

Qiz′(s
′, a′i,a

′
−i)−Qiz(s, ai,a−i)

]
(9.5)

9.3 Incentive Based Q-Learning (IBQ)

We now provide IBQ, where the central agent provides incentives/charges penalties

based on the potential difference value given by Equation 9.4. As discussed in Chapter

4, both joint state and joint action are vector of continuous values (fraction of agent

population), hence we assume that the social welfare policy is deterministic. The as-

sumption helps us in utilize policy gradient theorem of DDPG (Deep Deterministic

Policy Gradient) (Lillicrap et al., 2015), which is popular to learn deterministic poli-

cies for domains with continuous actions. Hence, to estimate social welfare policy, the

central agent maintains an actor network µ(s; θµ) and a critic network Qc(s,a; θq). To

compute the potential value, central agent needs to know the current joint policy of the

agents. Hence, it also maintains an average policy network π(s; θπ) which estimates the

current joint policy of the agents based on the joint action execute by them.

The experience of an individual agent is given by < s, z, ai, ri, s
′, z′ > which can

be interpreted as after taking action ai in state (s, z) agent i received ri as immediate

payoff and moved to state (s′, z′). The agents maintain their value networkQiz(s, ai; θi)

which estimates value of taking action ai ∈ Az in local state z and global state s.

As common with deep RL methods (Mnih et al., 2015; J. Foerster et al., 2017),

replay buffer is used to store experiences (Jc for the central agent and Ji for individual

110



agent i) and target networks (parameterized with θ−) are used to increase the stability

of learning. We define Lθµ , Lθπ , Lθq and Lθi as the loss functions of µ, π, Qc and Qi

networks respectively. The loss values are computed based on mini batch of experiences

as follows

Lθµ = E(s)∼J

[
∇aQ(s,a; θv)|a=µ(s,θµ)∇θµµ(s; θµ)

]
(9.6)

Lθπ = E(s,a)∼J

[
− alog(π(s; θπ))

]
(9.7)

Lθq = E(s,a,r,s′)∼J

[(
r + γ ·Qc

(
s′, µ(s′; θ−µ ); θ−q

)
−Qc(s,a; θq)

)2]
(9.8)

Lθi = E(s,z,ai,ri,s′,z′)∼Ji

[(
ri + γ ·max

a′
Qiz′(s

′, a′; θ−i )−Qiz(s, ai; θi)
)2] (9.9)

Algorithm 9 Incentive Based Q-Learning
1: for central agent do
2: Initialize replay memory Jc.
3: Initialize social welfare value network Qc(s,a; θq) and a target network with

parameter θ−q
4: Initialize social welfare policy network µ(s; θµ) and a target network with pa-

rameter θ−µ
5: Initialize an average policy network π(s; θπ).
6: for all the individual agents i do
7: Initialize replay memory Ji.
8: Initialize the action-value Q network, Qiz(s, a; θi) and a target network with pa-

rameter θ−i
9: while not converged do

10: for all z ∈ Z do
11: for all agent ∈ N s

z do
12: ai ← ε-greedy

(
Qiz

)
13: Perform action ai and observe next local state z′

14: Compute true joint action a and observe total reward
r =

∑
z∈Z

∑
i∈N sz

ωiz(s, ai,a−i) and next state s′.
15: Compute incentive values δzz′ as per Equation 9.4.
16: for all agent i do
17: update ri = (1− η)ωiz(s, ai,a−i) + δzz′ as per their local transition
18: Store transition (s, r,a, s′) in Jc
19: for all agent i ∈ N do
20: Store transition (s, z, ai, ri, s

′, z′) in Ji
21: Periodically update the network parameters with loss functions provided in Equa-

tions 9.6-9.9
22: Periodically update the target network parameters.

Algorithm 9 provides detailed steps of IBQ. Individual agents act as per their own
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learning (Line 12). Central agent observes r values (Line 14) and computes incentive

values for local state transition (Line 15). It then provides corresponding payoffs to the

agents (Line 17). Bothe central agent and individual agents update their replay memory

(Line 18-20). Then the central agent and individual agents periodically update their

network parameters (Line 21-22).

9.4 Experiments

We perform experiments on the two simulators we have used in previous chapters - taxi

simulator (Section 4.2.1) and online to offline service simulator (Section 4.2.2).

We compare performance of IBQ with two different relevant algorithms (1) CL

(Verma & Varakantham, 2019) method presented in Chapter 8, and (2) multi-agent actor

critic (MAAC) (Lowe et al., 2017). Similar to CL, MAAC is also a centralized learning

decentralized execution algorithm which allows a centralized critic Q-function to be

trained with the actions of other agents, while the actor needs only local observation

to optimize its policy. As discussed in Chapter 4, we consider the action space of the

central agent to be continuous for all our experimental domains. As done in previous

chapters, we also compare with social welfare the (SW) policy where the all the agents

execute the suggested social welfare policy cooperatively.

Similar to earlier chapters, we evaluate the performance of all learning methods on

two key metrics:

• Social welfare payoff computed by aggregating payoffs of all the individual agents.

• Variation in payoff of individual agents after the learning has converged.

Payoff of all the agents is reset after every 1000 (1e3) time step. The graphs where

social welfare of individuals has been compared provide running average of revenue

over 100 evaluation periods.
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(a) Social welfare of individuals (b) Variance in individual revenue

Figure 9.1: Taxi simulator using real-world data set

(a) Social welfare of individuals (b) Variance in individual revenue

Figure 9.2: DAR=0.4 with dynamic demand arrival rate

9.4.1 Taxi Simulator

Figure 9.1 presents the performance comparison for taxi simulator where the zone struc-

ture and demand distribution were simulated using real-world data. In Figure 9.1a we

can see that IBQ’s social welfare value only slightly lesser (2-3 %) than that of central-

ized cooperative learning and CL. As seen in previous chapters, variance is minimum

for SW(Figure 9.1b). Also, variance for IBQ is lower than the other algorithms. The

social welfare value of individuals is considerably low for MAAC.

As seen in Figure 9.1a, the social welfare value of individuals for IBQ is≈ 13−20%

higher than MAAC. As discussed in the last chapter, it means that there are some “lost

demand” (demands that were not served) for MAAC which are being served by SW and

CL and IBQ.
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(a) Social welfare of individuals (b) Variance in individual revenue

Figure 9.3: DAR=0.5 with non-uniform trips pattern

(a) Social welfare of individuals (b) Variance in individual revenue

Figure 9.4: DAR=0.6 with uniform trip pattern.

9.4.2 Synthetic Online to Offline Service Simulator

Figures 9.2 - 9.4 presents plots for social welfare of individuals and boxplots for the

variance in individual revenue for various experimental setups. The first result is for a

setup with dynamic arrival rate, non-uniform trip pattern with DAR=0.4. Social welfare

value for both IBQ and CL is ≈10-12% more than MAAC, NFSP and MFQ (Figure

9.2a). In Figure 9.2b we can see that variance for IBQ is slightly lesser than CL.

For setup with dynamic arrival rate and DAR=0.5 in Figure 9.3a, social welfare

value for IBQ and CL is ≈8-12 % more than MAAC. Though the social welfare values

are similar for IBQ and CL, the variance is significantly high for CL. As seen in box-

plots of Figure 9.3b, the variance is lower for IBQ, which indicates that the joint policy

of agents converge to social welfare maximizing policy. As the suggested action is sam-

pled from the same mixed policy (social welfare policy), everyone’s long term payoff

is similar. We observed similar results for the setup with non-uniform trip pattern and

DAR=0.6 (Figures 9.4a and 9.4b), IBQ and CL generated≈6-10 % more social welfare
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revenue than MAAC and variance for IBQ is considerably lower than that of CL.

Here are the key conclusions:

• Performances of MAAC with respect to SW vary with varying complexity of

the experimental setup (with and without dynamic arrival rate and non-uniform

trips). However IBQ’s and CL’s social welfare is consistently at par with SW’s

social welfare.

• Based on the complexity of experimental setup, IBQ’s performance is either sim-

ilar (Figures 9.1, 9.3, 9.4) or better than CL (Figure9.2).

It is notable that IBQ is able to achieve similar performance as CL even without explic-

itly providing any information related to the joint action.

9.5 Summary

In this chapter we introduced IBQ, where central agent provides incentives based on the

potential values of state. The central agent learns a social welfare policy which maxi-

mized combined values of both central and individual agents. The level of information

sharing for IBQ is lesser than CL (Chapter 8) as the central agents do not suggest any

policy to individuals. However, level of learning remains the same for the central agent

for both IBQ and CL. Experimental results confirms that the proposed scheme of com-

puting payment/penalties based on difference in the social welfare values for current vs.

optimal joint policy is effective. IBQ is robust than CL as it does not rely on the as-

sumption that the individuals will explore the suggested action during high exploration

phase of the learning.
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Chapter 10

Discussion

This thesis presents methods of learning for individual agents in a non-cooperative

anonymous multi-agent settings. I have focused on aggregation systems where we can

exploit the presence of a centralized entity with full view of the system. However, the

objectives of the centralized entity and individual agents are not correlated hence the

proposed approaches here accommodates the fact that the centralized entity is also self-

interested. Based on two learning dimensions - level of extra information shared to the

individual learners and level of learning done by the centralized entity, I have provided

various methods of learning in my thesis. First, I provided a fully decentralized learning

method where independent agents learn from the offline trajectories (ILT) by consider-

ing that others are following stationary policies. I then propose Density Entropy Deep

Q-Network (DE-DQN) where the agents utilize the anonymity feature of the domain

and consider the number of other agents present in their local observation to improve

their learning. By increasing the levels of the two dimensions, I provide a variance

minimizing Q-learning (VMQ) approach to learn ε-Nash equilibrium policies where

the the centralized entity also learns based on the learning of the individuals. My next

contribution is Correlated Learning (CL) approach, where the centralized agent learns

a social welfare policy and suggests it to the individuals. Whereas the individual agents

learn best response policies to the social welfare policy suggested to them. Finally, I

propose an incentive based Q-learning (IBQ) approach where apart from learning social
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(a) Social welfare of individuals (b) Variance in individual revenue

Figure 10.1: Taxi simulator validated on real world data set

welfare policy, the centralized agent also provides incentives to the individuals such that

they converge to a policy which improves overall system performance. Experimental

results on real-world data sets and multiple synthetic data sets demonstrate that these

approaches outperform other state-of-the-art approaches both in the terms of individual

payoffs and overall social welfare payoff of the system.

Figure 10.1 provide a detailed comparison of the methods proposed in this thesis.

We can see that as the level of information sharing and level of learning done by the

centralized entity increases, the performance of the overall system starts improving with

CL and IBQ achieving performance similar to a cooperative centralized learning in

terms of the social welfare values. Increasing the levels of the two dimensions also help

in achieving fairness (individuals earning similar amount of payoffs) in the terms of

individual payoffs.

Having provided multiple learning methods to maximize revenue in aggregation

systems, few natural questions arise:

• Which method is applicable in different setups of aggregation systems?

• Which method is best suited for individuals?

• Which method is best suited for an aggregation company?

It is possible that a food delivery aggregation company is not willing to provide extra

assistance to the individuals. In food delivery systems, customers do not leave if a de-

livery boy is not readily available to deliver their food and they will wait even if the food
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delivery is a little delayed. Therefore, the lost demand scenario does not arise frequently

is this subsystem. In a setup of aggregation system where the aggregation companies

are not willing to participate in the learning, the proposed density entropy based learn-

ing (DE-DQN/DE-A2C) which learns from local observation is more suitable for the

individual learners.

For aggregation systems where scenarios of lost demand is more prevalent, it is

best for the aggregation companies as well as the individuals that the company invest

and participate in the learning. Though we have proposed equilibrium based solution

(VMQ), other methods have shown to perform better. Furthermore, equilibrium solu-

tions are known to be sub-optimal. Hence in such scenario, CL or IBQ is more suited.

Moreover, as CL works on strong assumption that individuals will follow the sugges-

tion during exploration, it might not be practical to use CL in real-world. Hence, if the

company is willing to participate in learning, IBQ is the best suited method of learning

for both individuals as well as the central agent.

Operationalization

There are few challenges in operationalizing the proposed methods in the real-world.

The biggest challenge is to deal with initial learning phase when the learned policy is

too random. The company will loose trust of individuals if it suggests them random

actions during exploration phase. One way to mitigate this problem is to first learn a

reasonable policy in simulation and use it in the field only when the learned policy has

stabilized to an extent. Having a threshold value with respect to the cost involved in

performing an action (for example distance/time required to travel), or a threshold on

the level of confidence in the suggested action can be applied before suggesting actions

to the individual agents.

One challenge with respect to individual learning is computational resources re-

quired to perform learning. The proposed methods utilize neural network framework to

estimate values in continuous state space. As a results, the mobile device used by indi-

viduals for navigation may not be suitable to perform intensive computation needed for

deep learning. However, cloud computing infrastructure which has become very popu-
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lar recently can be used to solve this problem. The real resource intensive computation

can be done in the cloud and the mobile device can be used as an interface between the

individual agents and learning model. In fact, I feel that this is an exciting business idea

to provide a subscription based learning platform to the individual agents.

With respect to IBQ, another challenge is to handle the incentives. Specifically

during the initial learning phase when the policies are not stabilized and might provide

unrealistic values as incentive. As discussed in previous paragraph, we assume that

when IBQ is operationalized, the learning is not done from scratch and the company

has a fair idea about the social welfare policy. Initial learning can be done in simulation

and when the suggested incentive values instill some confidence, it can be implemented

in the field. Furthermore, instead of using the exact value to provide incentive/charge

penalties, a fraction of suggested value can be used.

Future Research

I believe the contribution of this thesis is an important progress towards applying AI

learning into real-world problems where a large number of autonomous agents are

present and there is a self-interested centralized entity who has the full view of the sys-

tem. In the future, I would like to build upon my work by pursuing following research

directions

-Dynamic agent population: A majority of MARL algorithms which focus on pro-

viding optimal solution in multi-agent settings assume that the number of agents is

fixed. However, in reality it is seldom true. There is a need to accommodate arrival and

departure of agents in the learning dynamics. Considering dynamic agent population

in an environment with large number of agents is an interesting future direction for my

work.

-Mixed cooperative competitive environments: Most of the MARL work either fo-

cus on competitive or cooperative environments. In reality, it is difficult to clearly

classify real world domains into competitive or competitive. A more practical approach

is provide solutions for mixed settings which acknowledge the existence of adversarial

and collaborative agents together. I would like to extend my work where presence of
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centralized entity is exploited in a mixed cooperative-competitive setting.

-Domains other than aggregation systems: There are other real-world domains such

as maritime traffic control, traffic light signal control, mobile crowd sourcing etc. where

presence of a central entity can be exploited to achieve higher system wide performance.

However each domain are endowed with different features and and have their own limi-

tations. Hence in future I would like to explore and extend my work for these domains.

120



References

Andre, D., & Russell, S. J. (2002). State abstraction for programmable reinforcement

learning agents. In Aaai/iaai (pp. 119–125).

Angelidakis, H., Fotakis, D., & Lianeas, T. (2013). Stochastic congestion games with

risk-averse players. In International symposium on algorithmic game theory (pp.

86–97).

Asmuth, J., Littman, M. L., & Zinkov, R. (2008). Potential-based shaping in model-

based reinforcement learning. In Aaai (pp. 604–609).

Babes, M., Munoz de Cote, E., & Littman, M. L. (2008). Social reward shaping in the

prisoner’s dilemma.

Banerjee, B., & Peng, J. (2003). Adaptive policy gradient in multiagent learning. In

Proceedings of the second international joint conference on autonomous agents

and multiagent systems (pp. 686–692).

Bilancini, E., & Boncinelli, L. (2016). Strict nash equilibria in non-atomic games with

strict single crossing in players (or types) and actions. Economic Theory Bulletin,

4(1), 95–109.

Bogachev, V. I. (2007). Measure theory (Vol. 1). Springer Science & Business Media.

Bowling, M. (2005). Convergence and no-regret in multiagent learning. In Advances

in neural information processing systems (pp. 209–216).

Bowling, M., & Veloso, M. (2001). Rational and convergent learning in stochastic

games. In International joint conference on artificial intelligence (ijcai) (Vol. 17,

pp. 1021–1026).

Bowling, M., & Veloso, M. (2002). Multiagent learning using a variable learning rate.

Artificial Intelligence, 136(2), 215–250.

Brown, G. W. (1951). Iterative solution of games by fictitious play. Activity analysis of

production and allocation, 13, 374–376.

Bulitko, V., Sturtevant, N., & Kazakevich, M. (2005). Speeding up learning in real-time

search via automatic state abstraction. In Aaai (Vol. 214, pp. 1349–1354).

Busoniu, L., De Schutter, B., & Babuska, R. (2006). Decentralized reinforcement

121



learning control of a robotic manipulator. In Control, automation, robotics and

vision, 2006. icarcv’06. 9th international conference on (pp. 1–6).

Carmel, D., & Markovitch, S. (1996). Incorporating opponent models into adversary

search. In Aaai/iaai, vol. 1 (pp. 120–125).

Carmona, R., & Delarue, F. (2014). The master equation for large population equilib-

riums. In Stochastic analysis and applications (pp. 77–128).

Castellini, J., Oliehoek, F. A., Savani, R., & Whiteson, S. (2019). The representa-

tional capacity of action-value networks for multi-agent reinforcement learning.

In Proceedings of the 18th international conference on autonomous agents and

multiagent systems (pp. 1862–1864).

Chakraborty, D., & Stone, P. (2011). Structure learning in ergodic factored mdps

without knowledge of the transition function’s in-degree. In Proceedings of the

28th international conference on machine learning (icml-11) (pp. 737–744).

Chau, C. K., & Sim, K. M. (2003). The price of anarchy for non-atomic congestion

games with symmetric cost maps and elastic demands. Operations Research Let-

ters, 31(5), 327–334.

Chen, Y., Zhou, M., Wen, Y., Yang, Y., Su, Y., Zhang, W., . . . Liu, H. (2018). Factorized

q-learning for large-scale multi-agent systems. arXiv preprint arXiv:1809.03738.

Claus, C., & Boutilier, C. (1998). The dynamics of reinforcement learning in coopera-

tive multiagent systems. AAAI/IAAI, 1998, 746–752.

Conitzer, V., & Sandholm, T. (2007). Awesome: A general multiagent learning al-

gorithm that converges in self-play and learns a best response against stationary

opponents. Machine Learning, 67(1-2), 23–43.

Devlin, S., & Kudenko, D. (2011). Theoretical considerations of potential-based re-

ward shaping for multi-agent systems. In The 10th international conference on

autonomous agents and multiagent systems-volume 1 (pp. 225–232).
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Roughgarden, T., & Tardos, É. (2002). How bad is selfish routing? Journal of the ACM

(JACM), 49(2), 236–259.

Sandholm, W. H. (2010). Population games and evolutionary dynamics. MIT press.

Schneider, J. G. (1997). Exploiting model uncertainty estimates for safe dynamic con-

trol learning. Advances in neural information processing systems, 1047–1053.

Sen, S., & Sekaran, M. (1998). Individual learning of coordination knowledge. Journal

of Experimental & Theoretical Artificial Intelligence, 10(3), 333–356.

Shapley, L. S. (1953). Stochastic games. Proceedings of the national academy of

sciences.

Shoham, Y., Powers, R., & Grenager, T. (2003). Multi-agent reinforcement learning: a

critical survey. Web manuscript.

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., Van Den Driessche, G.,

. . . others (2016). Mastering the game of go with deep neural networks and tree

search. Nature, 529(7587), 484–489.

Simon, H. A. (1972). Theories of bounded rationality. Decision and organization, 1(1),

161–176.

Singh, A. J., Kumar, A., & Lau, H. C. (2020). Hierarchical multiagent reinforcement

learning for maritime traffic management. In Proceedings of the 19th interna-

tional conference on autonomous agents and multiagent systems. International

Foundation for Autonomous Agents and Multiagent Systems.

Singh, A. J., Nguyen, D. T., Kumar, A., & Lau, H. C. (2019). Multiagent decision

making for maritime traffic management. In Proceedings of the aaai conference

127



on artificial intelligence (Vol. 33, pp. 6171–6178).

Singh, S., Jaakkola, T., Littman, M. L., & Szepesvári, C. (2000). Convergence results
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