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Quantitative Effects of Two Kinds of Robots

In a Neo-Classical Growth Model

Vu Hoang Phuong Que

Abstract
Advances in artificial intelligence are leading to many revolutions in robotics. How

will the arrival of robots impact the growth of the economy, the workers’ wage,

consumption, and lifetime welfare? This dissertation attempts to answer this ques-

tion by presenting a standard neoclassical growth model with two different kinds

of robots, reflecting two ways that robots can transform the labor market. The first

chapter introduces additive robots- a perfect substitution for human labor, while the

second chapter employs multiplicative robots- a type of robots that augments human

labor. The prevailing main result is that even in the case with no population growth

and technical progress, the application of robots is enough to create a long term eco-

nomic growth. Nevertheless, there is a difference in the behavior of real wage. The

presence of additive robot solely makes wage jumps down and then stays constant

throughout while utilization of multiplicative robots alone can increase productivity

thus real wage increases fast over time.

In the last chapter, both types of robots are applied in the economy with a shrinking

population, motivated by Japan. Under the perfect homogeneous labor market, there

will be a shift of workers from jobs that can be substituted by additive robots to jobs

that can be supported by multiplicative robots. This enables Japan to continue to

enjoy the perpetual growth in real wage, consumption and wealth even after the

labor market has finished its adjustment. However, as the interest rate would slowly

decrease, proportionate to the decline of the population, there would be a point

where it is no longer profitable to adopt robots although it would take a long time

for the economy to face that issue.
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Chapter 1

Introduction

1.1 Motivation Factors

1.1.1 Invasion of Robots

The recent progress in technologies, especially those in automation machines, have

been bringing forward many undeniable advantages for human production and liv-

ing conditions. A new term has emerged throughout the information in news, dis-

cussion forums as well as research community...: Robots.

In general public understanding, robots are equal to industrial robots, especially

those that are used in automation production processes. However, according to the

International Federation of Robotics (IFR), a robot is “ automatically controlled, re-

programmable, multipurpose manipulator, programmable in three or more axes,

which may be either fixed in place or mobile...” (IFR 2017). IFR has reported

constant increases in industrial robots and estimated that the trend will be continued

at around 16% per year for the next few years.

Figure 1.1: Industrial Robots (2009 - est.2021)1

1
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However, the application of robots is no longer limited within the industrial sector.

They are in fact expanding their invasion into the service sector more and more.

The number of professional service robots grew 85% in 2016, 32% in 2017, and is

expected to continue to rise at the rate of about 21% in the next 3 years, reaching

736,600 units by 20212.

On the other hand, human population growth shows a consistently decreasing trend

in the last 30 years, currently staying at around only 1% per year worldwide.

Figure 1.2: World Population Growth Rates 1950-20193

There is no double that there are many benefits and convenience that these robots

bring to our society. Nevertheless, are there purely opportunities or is there any

drawback that we should know or prepare ahead? This big wave of robots invasion

is hence posting huge questions to the research community. Economists and re-

searchers are trying to analyze and predict the impacts that robots might bring. The

most concern aspects are the effects on workers employment and the real wage.

1 https://ifr.org/downloads/press2018/Executive Summary WR 2018 Industrial Robots.pdf

2 https://ifr.org/downloads/press2018/WR Presentation Industry and Service Robots rev 5 12 18.pdf

3 https://www.worldometers.info/world-population/
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1.1.2 Jobs Replacement Apprehension

Early Predictions

Some have been suspecting that with rapid technology improvement, eventually,

we will head toward a robotic economy where human workers are slowly and then

totally replaced by robots and machines, creating mass unemployment. Such fears

arose quite early in history, especially after any extended periods of high unem-

ployment rates. During the Great Depression (1929-1939), John Maynard Keynes

has foreseen the rapid growth of technological progress in the next 90 years which

we are close to the end of it. However, he also noted that “we are being afflicted

with a new disease of which some readers may not have heard the name, but of

which they will hear a great deal in the years to come - namely, technological

unemployment” (Keynes 1930).

Two decades later, Wassily Leontief also predicted a similar problem when writing

“labor will become less and less important... more and more workers will be re-

placed by machines. I do not see that new industries can employ everybody who

wants jobs” (Leontief 1952).

In the 1990s, just before the dot com bubble busted which lowered the unemploy-

ment rate to an all-time dip, Jeremy Rifkin had predicted that technology would

produce the “End of Work” - (Rifkin 1995).

Even though we have gone through three different stages of technology advances

and (luckily?) these predictions have not become true as the industry evolution 4.0

is approaching. Instead, we saw a huge improvement in the productivity of humans

and much efficient production all over the world. However, what set the current

technology innovation wave apart from the previous three earlier phrases?

Chapter 1 3



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

Recent Studies and Evidence

We are entering industrial 4.0 with recent rapid development in technology, espe-

cially with artificial intelligence, which led to a further surge of public interest in

automation and robotics. Headlines about the application of new robots unitized in

different aspects of the economy are everywhere and daily. However, driving that

surge is again not only the fascination with prosperous changes that these technolo-

gies can bring forward but also the concern of the impact on employment that more

and more jobs are now done by robots instead of human labor. A very recent title

from Straits Times stated a fearful prediction:

The authors emphasized that: “...The implications are huge. We will see a sig-

nificant boost to productivity and economic growth and some new types of jobs

we cant even yet foresee”. They, however, noted that starting from the booming in

the 2000s, some 1.7 million manufacturing jobs have already been lost to robots,

including around 400,000 in Europe, 260,000 in the US, and 550,000 in China. The

number is expected to be ten times in the next 10 years, and “...business models will

be disrupted or upturned and millions of existing workers will be displaced4...”.

Frey and Osborne, by using a Gaussian process classifier, have estimated the prob-

4 https://www.straitstimes.com/tech/robots-to-wipe-out-20-million-jobs-around-the-world-by-2030-study
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ability of computerization for 702 detailed occupations, and found out that about

47% of total US employment is at risk. However, only fewer than 5% of occu-

pations can be entirely automated although about 60% of occupations could have

30% or more of their activities substituted by machines (Frey and Osborne 2017).

There are two main conclusions which we can derive from their results. First, it is

very difficult for a job to be fully automated with no human intervention. In other

words, it is hard for workers to lose their job completely to robots. Second, op-

posite to normal belief, their results also showed that “it is no longer the case that

only routine, modifiable activities are candidates for automation and that activities

requiring tacit knowledge or experience that is difficult to translate into task speci-

fications are immune to automation”. For example, according to their data, it is true

that routine tasks such as file clerks can be automated closed to 80% of their jobs

cope. But many other lower-skilled jobs such as home health aides, landscapers,

Chapter 1 5
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and maintenance workers, only a very small percentage of activities could be done

by machines (less than 20%). Conversely, around 25% of a CEOs working time

could be automated.

1.2 Recent Advances in Literature

1.2.1 Pessimistic vs. Optimistic Economic Growth

Technological Pessimists

Sachs and Kotlikoff painted a dark picture by building an over-lapping generation

(OG) model with the labor market consist of the old skilled generation and a CES

combination of robots and the young unskilled generation. Improvement in robots

productivity thus reduces the demand for young unskilled workers and as the re-

sult depresses their wages. As being the only generation that saves, young workers

will reduce their savings as well as the investment for robots and capital in the next

period when they are old5. The lower investment will translate into a lower total

output, which further reduces wages for the next young generation (on top of any

reduction due to the advances in robots). Consequently, the economy will be sent

into a spiral of perpetual contractions, with wages further goes down and down over

time. Under the CES combination of robots and human labor in the workforce, the

higher the elasticity of substitution between robots and human labor, the more se-

vere the results are (Sachs and Kotlikoff 2012). DeCanio further supported Sachs

and Kotlikoff by fitting different distributions to cross-sectional data on US produc-

tivity and found that when the elasticity of substitution between human and robotic

labor is higher than 1.9 then technologies will cause a decline in aggregate wage

(DeCanio 2016).

5 Under log consumption utility function, savings do not depend on investment return rates

Chapter 1 6
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Berg et al. showed their pessimistic view even from the name of their paper “Should

we fear the robot revolution (The correct answer is yes)”. They focused on rather

short-term effects6 and in all scenarios of their models, wages would be decreased

as robots productivity increases (Berg, Buffie, and Zanna 2018). While Freeman

agreed with them in a way that advances in robots are bad for inequality, he also

emphasized that all benefits will be redirected to increase the return for those owned

technology advances only not for normal workers as their wages will be cut down

(Freeman 2015).

Technological Optimists

On the other hand, some technology optimists have not denied the short-term dis-

ruption caused by advances in automation. Their focus, after all, is more on the

medium and long-term, and they agreed that there is a trade-off between short-term

suffering and long-term benefits.

Nevertheless, there is not much progress in theoretical models to support this path.

The latest in the literature is a recent innovative paper by Acemoglu and Restrepo.

Their model uses a task-based approach in which robots replace human labor in

more and more tasks over time. The twisted point is that new tasks, where human

labor has comparative advantages, have emerged at the same time. Hence, the model

would reach a balanced growth path where the rate in which workers are replaced is

the same as the rate that new tasks are invented. Although the short/medium results

are not really clear in their paper, the long-run effect, after the economy reaches the

balanced growth path, is that real wages will increase and labor share will be back

to the original level (Acemoglu and Restrepo 2018).

6 The short-term “defined” by the period when the rates of return for normal capital and robots are
adjusted to match each other as they assumed that at the initial point the rate of return of robots
would be much higher than that of normal capital.
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Even in the paper by Berg et al. (2018), if the focus is shifted toward the longer

term for the economy, their models do report the positive growth in wages in long-

run7. Pointing out short-term adverse effects is important for suggesting mitigation

policies8 toward the long-run prosperity rather than is the denial of the hard path.

1.2.2 Robots, Productivity, and Employment

It is undeniable that technology improvement has been increasing human produc-

tivity tremendously over the past few decades. Robots are naturally another wave of

technology advances, no double will further improve overall productivity. In their

study which focused on robotic impacts across 17 countries, Graetz and Michaels

concluded9 that increases in robots densification contributed approximately 0.36%

points to labor productivity growth, raising total factor productivity and lowering

output prices across 17 countries studied (Graetz and Michaels 2018).

In another recent research done by the Center for Economics and Business Research

in 2017 to study the impact of automation with data from OECD countries from

1993 to 2016, it is found that one unit increased in the robot density is associated

with 0.04% increases in labor productivity (Economics and Research 2017).

Furthermore, there is a link between productivity and demand (Graetz and Michaels

2018), that higher productivity if can translate into higher wages, will induce higher

household demand. That supports the arguments in (Bessen 2016). Bessen tried

to explain why automation can increase employment in some industries while de-

7 According to them it would take a few generations though.
8 For example, (Freeman 2015) pointed out that ownership is the key to resolve the problem of in-

equality. The more workers are encouraged to own part of the technology that replaces them, the
smaller the inequality gap they have to suffer.

9 Based on a model of firm decisions to adobe robots as a Technology choice to replace some of the
tasks from using labor to using robots in relatives with robots prices (with shreds of evidence that
Robots prices have been decreasing over years). Their estimates also suggested that robots only
reduce low-skilled workers employment share.
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pleting labor in some others. He considered automation as labor augmenting tech-

nological changes, which make labors more productive. Although the productivity

of robots defines the magnitude of the changes in that industrys employment, price

elasticity of demand decides the sign of the changes. He argued that in some sectors,

in the beginning when demand is still highly elastic, the demand can increase fast

to catch up with the increase in the productivity of production and hence actually

push up demand for labor workers.

On top of that, increased demand in one sector/industry will then have spilled over

effect to other complementary sectors and eventually spread to the whole economy

(Zierahn, Gregory, and Arntz 2016). As a consequence, robots have no or very

little effect on total hours worked (Graetz and Michaels 2018).

1.2.3 Jobs Substitution vs. Jobs Re-allocation

In their The Second Machine Age book, (Brynjolfsson and McAfee 2014) one

more time raised a similar concern with the predecessors that the rapid automation

of jobs will make human labor redundant in the future. As quoted in (Akst 2013),

economic historian Robert Heilbroner confidently stated that “as machines con-

tinue to invade society, duplicating greater and greater numbers of social tasks, it

is human labor itself - at least, as we now think of labor - that is gradually ren-

dered redundant. The fear is that human labor will find it more and more difficult

to compete against robotics and artificial intelligence just like horses lose their jobs

when cars were invented.

In many tasks or jobs, robots indeed have significantly higher productivity or is a

safer choice for dangerous duties. However, focusing too much on the substitution

effect shadows the fact that, in many cases, automation does not necessarily lead to

job replacement but jobs re-allocation instead.
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Economics follows comparative advantages rather than absolute advantages. Hence,

if that is still true, human labor will always find jobs at the borders at which they

have higher comparative strength than machines. Furthermore, with the emergence

of new technology, we can see the born of many new occupations or tasks where

technology is not yet able to follow. For example, now with live stream features,

many lecturers and teachers can conduct their classes live online, and students can

even watch the videos conveniently at their schedule. Behind the scene, however,

that might need a lot of technical support labor that not used to or needed to do

those tasks before. Another quite obvious example is that the more robots (rather

than just machines) are used, the more labor is needed for producing, program-

ming, and maintaining those robots themselves. (Bessen 2016) hence, concluded

that: “Automation might not cause mass unemployment, but it may well require

workers to make disruptive transitions to new industries, requiring new skills and

occupations.” (Acemoglu and Restrepo 2018) also added on to that direction by

noting there would be “...new tasks ranging from engineering and programming

functions to those performed by audio-visual specialists, executive assistants, data

administrators, and analysts, meeting planners and computer support special-

ists”. Their task-based approach indeed assumes that human has a comparative

advantage in new and more complex tasks, while old tasks are gradually automated

by robots. If the creation of new tasks is sufficient, then the labor share can even be

back to a constant level over time.

1.2.4 Mixed Empirical Results on Wages

Employment is just one side of the labor calculus, wages are far more important to

the humans well-being. Even if we agree that net employment does not change or

even increase, there is nothing that can ensure that compensation for workers will

increase at the same time. Empirically, we have very mixed results.
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(Acemoglu and Restrepo 2017) analyzed the effects of the increase in industrial

robots from 1990 to 2007 on the US labor market. The local impacts are obtained

by regressing the changes in wages on robot usage at the industry-level and across

industries. According to their estimates, one more robot per thousand workers

reduces wages by 0.42%.

On the other hand, (Graetz and Michaels 2018) regressions reported a positive

relationship between robot density and wages. Hence, using more robots actually

can increase wages for workers in general. If the results by (Acemoglu and Re-

strepo 2017) are at industry-level, Graetz and Michael used data for 17 countries

from 1993 to 2007. Hence, it might be that their conclusions are more general or at

a more aggregated level.

1.3 Research Statement

1.3.1 Research Questions and Discussions

With the vast invasion of robots or any type of machine with artificial intelligence,

the big question is that how the economy is affected especially in terms of economic

growth in both the short and long term, as well as that how wages and workers

lifetime welfare will be?

The huge public fear of robots replacing human labor has driven the model of the

first type of robots where they are a perfect substitution of labor in production.

Nevertheless, focus on this aspect of robots and forget the all-long-time effect that

technology has been brought forward which boosting the humans productivity. Just

like Autor commented in his paper (Autor 2014) that “...[people] tend to over-

state the extent of machine substitutions for human labor and ignore the strong

complementaries between automation and labor that increase productivity, raise

earnings, and augment the demand for labor... Focusing only on what is lost
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misses a central economic mechanism by which automation affects the demand

for labor: raising the value of tasks that workers supply uniquely”. And so we

have enough empirical support for the idea of the second type of robots introduced

in Chapter 3, which helps to increase human labors productivity.

Furthermore, the mixed empirical results on wages also suggested that there might

be more than one channel in which robots affect workers wages and we should

expect opposite effects from different channels. It follows that only one way to

model robots is not sufficient. Additionally, it can be argued that not like other

subjects in economics where we have enough empirical data to support parameter

values or regressors, effects from robots might not easily be concluded if they are

built in very complex models. We need a simple but rich enough model to study the

quantitative effects of these robots - a new type of capital10.

At the same time, supported by the discussed results (Bessen 2016, Zierahn, Gre-

gory, and Arntz 2016, Graetz and Michaels 2018, Autor 2015), total working hours

or days is kept unchanged most of the time in models presented in this thesis. The

changes, if there are, are coming from the supply side when workers decide that they

do not need to work as much any more11 or naturally is reduced by the shrinking

population as in Chapter 4.

1.3.2 Directly Related Literature

The models I presented in this thesis are the direct extensions of what has been

suggested by (Hoon 2020) which based on a simple Solow model without any pop-

ulation growth or technological progress12. There, robots can be thought of as a

new type of capital (just like many other types of capital), helicopter-dropped into

10 The general idea is that in most of the economic models, inputs that are not human labor will be
lump into one category of capital including machines, factories, computers....

11 When they do value leisure in the utility function
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the economy, which differs from the conventional machines by the built-in artificial

intelligence. He also suggested two different types of robots, one can substitute

human labor and the other type can support or increase workers productivity.

The Solow Model and the Central Question of Growth Theory

The reason for no population or no technology progress assumptions is that in tra-

ditional growth economics, we can have perpetual growth only when there is an

increase in either population or productivity factor. In the standard Solow model,

entering production function is the effective labor AL where the productivity factor

A grows exogenously at rate g. With the constant saving rate, assuming no popula-

tion growth, then g determines the growth rate of capital stock K, capital per worker

K/L, and output per worker Y/L. Since the saving rate is constant, consumption, as

well as consumption per worker, also grows at the same rate of g at the balanced

growth path.

The Solow model identifies two possibles sources for the variations in output per

worker: accumulation of capital per worker and the effectiveness of labor A. The

interpretations of A are factors such as the education, skills of the labor force, the

quality of the infrastructure... However, only the growth in the effectiveness of labor

A can lead to permanent growth in output per worker. While the accumulation of

capital does not account for the large differences in output per worker across either

time or countries since such a huge difference will require vast differences in the

rate of return (Lucas 1990) which we do not see.

Nevertheless, there was little to say about the effectiveness of labor since the Solow

model assumed it to be exogenously improved. Our model with helicopter robots

presented here, on the other hand, even without both the productivity factor and

12 No technological progress means that rather than the changes persisted to robots, there are no ad-
vances in all other types of capital - which called conventional machines.
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population growth, output per worker still grows perpetually, making consumption

per worker grows steadily over time and thus sending the economy into infinite

endogenous growth phrase. In other words, the usage of robots alone is enough to

create infinite economic growth.

Most Resembled Work

Apart from the direct framework suggested by (Hoon 2020), (Hanson 2001) paper

mostly shared similar ideas with my models. He constructed a simple exogenous

growth model in which computers are not just complementing human labor but

slowly become more productive and finally be able to substitute human. However,

there are many differences. His Cobb Douglas production function includes three

inputs rather than two:

Y = KαMβ Lγ

With this construction, he did not consider computer (M) as a special type of capital

which is moved to join the human labor force13 as we did here. The improvement

in productivity of computers making it more abundant and hence reduces its rate

of return, making it more attractive than human labor14 and hence reduce the labor

demand from the production side. When the effect is still low, the computer is just

a complement to labor and hence still can help to increase wages. However, when

the effect is so dominant that the demand for labor is going down substantially and

finally is replaced by the computer then wages will start to go down. Even though

the final result is similar to mine in the way that the substitution effect reduces

wages while the complementary effect increases wages, the mechanism is actually

different15.

13 This is one of the most crucial basic assumptions for all the models presented in this thesis.
14 He assumed that the marginal product of capital stays constant all the time.
15 We will examine the detailed mechanism the following chapters.
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The other difference is that the models presented here are more general equilibrium

methods where both household and firms maximization problems are used while

Hanson only considered the production side and studied the changes in total out-

put which derive the changes in wages (his method is based on Slow-Swan model

while ours is more Ramsey-Cass-Koopmans model). The lack of general equilib-

rium prohibited him from observing the changes in consumption, workers wealth,

and welfare.

Another distinguished point is that his model is static, and the focus is on compara-

tive statics which is different from my dynamic growth model. Hence, we can view

it as one-period results while the price is adjusted. That is why his model cannot see

the changes in the labor market even when he includes both types of robots (which

defined as two types of computers in his model).

On a different view, that enables his work to complement my work in some ways.

He differentiated the price of computers from the price of ordinary machines (the

argument for a production function with 3 inputs) and assume that the price of

computers falling much faster from an initially high value until the price of the

computer matches with the price of normal capital. Hence, this can be viewed as the

transition result before the market reaches no arbitrate condition where the returns

on both types of capital (conventional and robotic) should be equal16.

1.3.3 Contributions and Main Results

Main Contributions

The series of the model presented in this thesis is built directly upon what has been

suggested by (Hoon 2020). However, Hoons models are of general benchmarks

16 In all models here, I assume that the market will adjust immediately right after the introduction of
robots
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with no specific function forms; hence the initial results he got are general and

purely theoretical. As a result, this dissertation adds contributions to his initial

research in several ways:

• Firstly, I confirmed Hoons initial results in the general form by using spe-

cific forms of functions for both households and producers. I also further

extend the model with the different economic environments such as flexible

vs. inflexible labor market or shrinking population.

• Secondly, I introduce many new elements into the model. In his model, Hoon

assumed that the comparative productivity of robots and humans is always 1:1

which does not affect the general results. However, parameterizing the pro-

ductivity of robots allows me to see other things such as the effect of advances

in robotics, or comparing different scenarios of productivity for two types of

robots. The most prominent extension is in the last chapter when we consider

both types of robots into the economy. If Hoon is stopped at a very general

setup and hence general prediction, I have set up an extensive model with

the specific structure of the labor market17 which enables me to study the

movement of human labor.

• Thirdly, only by using specific functional forms, I can identify different con-

ditions for the models to work. For example, the profitability condition for

robots resulting in a minimum productivity level for robots to be beneficial

enough so that producers are willing to convert part of their capital from con-

ventional machines to robots. Especially for Multiplicative Robots in Chapter

3, I identified the participation condition for the usage of robots in the econ-

omy. Even though Multiplicative Robots is productive enough but producers

17 In (Hoon 2020), he fixed the structure of the labor market which prohibits him from observing the
changes in labor.

Chapter 1 16



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

still not able to use them unless they have a participation condition in which

returns rate for production inputs are only fractions of marginal products of

those inputs. This new markup element complicates the model (hence re-

quires a numerical method to solve) but at the same time allows us to observe

the trend of another economic behavior. Markup is not a new thing, especially

if we have a monopoly market, however, the purpose of using markup, in this

case, is different. It is a facility that allows the producer to alleviate the cost

of financing robots to other input factors.

• Fourthly, by calibrating parameters with either standard literature values or

specific values18, I can further evaluate how strong the quantitative effects

that predicted by theoretical models are. It also allows us to compare the ef-

fects of two types of robots which a general model can not do. However, one

observation is that the results are very sensitive to the values of parameters. In

other words, changing the values of parameters might change the comparison

results. Except for parameters that use standard literature values, the remain-

ing parameters have value based on my judgment. Since this topic of robots

and artificial intelligence is still a new branch of economics, many new pa-

rameters do not have any preceding convenient values. Once we have enough

data to back up or to generate more reliable values then the results would be

more correct. However, the framework I presented here still can serve as the

building block for any further quantitative evaluation.

• Lastly, the model is simulated in the long run to verify the existence of a

balanced growth path where the economy converges to the new steady level.

In the last chapter, the long-run consideration is even more important as we

need to identify the feasibility period - the period in which robots are still

18 With appropriate judgments
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worth to use.

The focus of the paper by Hoon is mostly lying with the economic growth archived

by using robots and the changes in workers wages. My extensions further enable us

to observe many other economic variables such as the comparison between the stock

of robots and conventional machines, market rates such as interest rate, markup

rates, saving rates, and human shares ratio.

Main Results

This dissertation modelings two different kinds of robots, reflecting two ways that

robots can transform the labor market, under a crucial assumption that capital is

fully malleable or instantaneously convertible from conventional machines to robots

and vice versa. In the first chapter, I introduce additive robots - a perfect substitution

for human labor, while in the second chapter, we employ a multiplicative robot -

a type of robot that helps to augment the human labor. In the third chapter, we

investigate if the utilization of both types of robots can help to mitigate the situation

with a shrinking population, motivated by the case of Japan.

The prevailing result is that even in the absence of population growth and tech-

nological progress, the application of helicopter robots (either type) into a simple

aggregate neo-classical model itself is enough to create long-term economic growth,

despite unfavorable outcomes in the process. The economy will be out of the initial

steady-state and enter into perpetual growth. The interest rates under profitability

conditions will reach a higher level. Workers can enjoy a higher stream of con-

sumption despite the initial drops. Total wealth increases fast over time and hence

the lifetime welfare of households also surges. The higher the robots productivity,

the stronger the quantitative effects. There is also a minimum productivity level so

that robots are worth using.
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In the long run, both cases (assumed that start with the correct starting point in the

first period after the introduction of robots), there always exists a balance growth

path where all variables are converged to grow at the same rate.

Compared to Additive Robots, Multiplicative Robots create a better growth effect.

An Additive Robot is assumed to be as productive as 33% of human labor while

a Multiplicative Robot help to increase the whole work forces productivity only

by 1%. Under these values, with Multiplicative Robots usage, there is a less drop

in the first-period consumption (26% compared to 59% for Additive Robots) and a

faster growth along the balanced growth path (10.5% compared to 5.6% for Additive

Robots). As a result, workers will have a higher lifetime welfare increases (112%

compared to 14.6% for Additive Robots). Notably, growth is faster with smaller

saving rates (48% compared to 81% for Additive Robots) since not only non-human

wealth but human wealth is increasing over time. That means the investment with

Multiplicative Robots is more effective. However, since the qualitative results are

extremely sensitive to the value of robot productivity, this is only true upon a specific

set of parameters. If Additive Robots productivity increases so much and dominates

Multiplicative Robots, the story will be reversed.

Besides, there is a difference in the behavior of real wages. Under the presence

of additive robots solely, the workers wage jumps down and then stays constant

throughout, while with multiplicative robots alone, after the initial drop, real wage

increases fast over time, in response to the increased human labors productivity. The

increases in real wage reduce overtime and converge to a constant level (10.5%) the

same as other variables.

As suggested by empirical results, the two types of robots would create two opposite

mechanisms on real wages. Hence, it would be interesting to see what happen when

both kinds of robots are used in the economy, i.e both forces are possible on the

workers wage. It is no surprise that the economy would be no longer in the initial
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steady-state but grows permanently since each type of robot will be enough to create

that effect. Apart from that, there are three remarkable results.

First, under the homogeneous labor market, we would see a shift of workers from

jobs that can be substituted by additive robots to jobs that can be helped by mul-

tiplicative robots, to enjoy the higher wages. This result does not depend on the

robots productivity level. As long as the market is efficient, labor will shift toward

jobs that are not able to be substituted by robots. The force to pull up wages will

hence be stronger, making not only the interest rate but also real wage increases.

Under a shrinking population, the shift will even be faster to compensate for the

loss in the labor force.

Second, the economy can continue to enjoy the perpetual growth in real wages,

consumption, and wealth even after the labor market has finished its adjustment.

When there is no more labor doing jobs that are threatened to be done by robots,

their wage is no longer to be pulled down by the force created by Additive Robots

but only enjoy the higher return paid to higher productivity.

Nevertheless, thirdly, while in the case of a fixed population, the interest rate would

converge to a constant level, under the shrinking population, the interest rate would

slowly decrease, proportionate to the decline of the population. Eventually, there

would be a point where it is no longer profitable to adopt robots although it would

take a rather long time for the economy to face that issue. However, there are

mitigating solutions to prolong that feasibility period.
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Chapter 2

Additive Robots

2.1 Introduction

In this chapter, I introduce the first type of robots which can perfectly substitute

for human tasks, in other words, a robot can do tasks exactly like a human. These

type of robots is creating the most hyped fear that human’s jobs are taken away by

robots.

It follows that if the economy adopts RA units of robots, the “effective labor” would

become:

LA =
(

ΛARA +H
)

(2.1)

in which H is human labor and ΛA is robots’ productivity. One unit of robots is

as productive as ΛA units of human labor. That is why we name them “Additive

Robots”: a simple addition to the labor force. The labor market now includes both

human labor and robotic labor.

It is worth to discuss the role and value of ΛA. In general, people believe that

ΛA should be more than one, which means robots are much more productive than

human labor. It might be true for many automatic resemble or package process.

However, that might not be the case at an aggregate level. As mentioned in the

first chapter, (Frey and Osborne 2017) have analyzed a total of 702 occupations

and shown that only less than 5% of occupations can be entirely replaced by cur-

rent technology. It is very hard for a robot to completely do a job without human

intervention. We would still need to supervise it, maintain it, and still need hu-
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man labor to communicate with other departments or connect between tasks. For

example, robots are replacing surgeons to do surgical operations. These tasks are

highly sophisticated but sometimes robots can do even better than human doctors.

At least, they might not be influenced by emotion or environment. As long as they

are programmed well they will just do what had been planned with almost perfect

precision. Undoubtedly, we will still need doctors to be there to supervise the whole

process, to troubleshoot if any unexpected situations occur. A robot might not be

prepared for all possible scenarios. As a result, at the aggregate level, ΛA should be

less than one.

What should then be the value of ΛA?

There is no such preceded value before in literature. Again as Frey and Osborne

have shown there is a wide range for that value. Almost 80% of a file clerk can be

done by machines, giving us the impression that most simple jobs can be replaced

highly by robots. However, another simple job like sweeping the floor can only be

automated by around 10%. That is because when there are obstacles or corners, the

movement of robots is no longer smooth hence it will not be able to clean well or

might take a longer time to clean. Especially when there are stairs and robots are

not able to bend down or walk down thus unable to do the tasks or can not do tasks

as efficient as a human. On the other hand, even more than 20% of a CEO’s work

can be automated by current technology.

However, their results also show that “...about 60% of occupations could have 30%

or more of their activities substituted by machines...” (Frey and Osborne 2017).

That makes the minimum value for ΛA should be around 0.18. For calibration

purposes, I use the value of 0.2, slightly higher than the minimum value, and con-

servative enough to not create any unreasonable results.

Before introducing this type of robot into the economy, this chapter will layout the
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baseline standard aggregate one-sector model. Then I will present and discuss the

results of model simulations after the adoption of robots. In the last past, I allow

three different extensions. The first one is a variation with flexible labor supply,

the second is allowing a transition to higher productivity for robots and lastly, we

generalize the production technology to a CES function to make use of the elasticity

of substitution.

2.2 The Model Setup

2.2.1 Standard Aggregate One-Sector Model

In this section, I will first describe the setup for the standard Solow-Swan one sector

aggregate model and layout its important solutions. This serves as the baseline

formulas before we introduce the robots into the economy.

• The Representative Household

The setup follows exactly what has been described in (Hoon 2020). The repre-

sentative household has infinite lives1, has θ as the subjective time preference

rate.

At any period t, the agent works a fixed number of hours H, receives vt as a real

hourly wage and earn a real interest rate of rt on his non-human wealth wn
t . He

will need to decide his consumption ct in each period in order to maximize his

lifetime utility:

Ut =
∫

∞

t
logcκ exp

(
−θ(κ− t)

)
dκ (2.2)

1 Although this is a usual setup in the general equilibrium model, we can interpret this assumption
as a continuous overlapping generation, in which in each period, the old generation will pass on
the inheritance wealth to the young generation. This allows capital accumulation in the economy
through many generations.

Chapter 2 23



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

subject to a budget constraint or non-human wealth accumulation rule:

ẇn
t =

dwn
t

dt
= rtwn

t + vtH− ct (2.3)

and the transversality condition that prevents the household agent from going

indefinitely into debt2.

Denote the human wealth which is the total discounted present value of all future

labor income streams as:

wh
t =

∫
∞

t
vκH exp

(∫
κ

t
−r(ν)dν

)
dκ (2.4)

with the accumulation rule as following3:

ẇh
t = rtwh

t − vtH

The solution to the agent’s problem4 is then given by the following consumption

rule in each period t:

ct = θ

(
wh

t +wn
t

)
(2.5)

with a Euler equation for the consumption growth equates the difference between

the real interest rate of period t and the time preference rate.

ċt
ct

= rt −θ (2.6)

• The Representative Firm

On the production side, we start with the simple Cobb Douglas production func-

tion. At each period t, the representative firm produces final goods using technol-

ogy:

Yt = F(K,L) = Kα
t H1−α with α ∈ [0,1]

2 Details can be found in Appendix A.1.1
3 Proof in Appendix A.1.1
4 Proof in Appendix A.1.1
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Denote yt =
Yt
H as the output per day then yt = f (kt) = kα

t with kt =
Kt
H is the

capital intensity - how much capital is spent per working day. These notations

are the same with per labor variables since we have the representative household

as the only one worker.

Thus, the profit function for the period t is:

πt = yt − rK
t kt − vt

where rK
t is return rate or rental rate on capital which is the sum of the real interest

rate and depreciation rate δ :

rK
t = rt +δ

First-order conditions of profit maximization problem give us the following equa-

tions for market rental rate and real wage5:

rK
t = f ′(kt) = αkα−1

t = rt +δ (2.7)

vt = f (kt)− rK
t kt = kα

t −αkα−1
t kt = (1−α)kα

t (2.8)

Financial market clearing condition requires wn
t = Kt hence kt =

Kt
H =

wn
t

H so that:

k̇t =
ẇn

t
H

From the budget constraint(2.3), we have:

ẇn
t

H
= rt

Kt
H

+ vt −
ct
H

Using the real interest rate (2.7) and wage equations (2.8) we have the instanta-

neous flow rule for the capital intensity:

k̇t = f (kt)−
ct
H
−δkt (2.9)

Furthermore, substitute (2.7) into (2.6) we have the following rule for household’s

5 Proof in Appendix A.1.2. Remember that the labor market condition requires that Ht = Lt so that
Kt
Lt

= Kt
Ht

= kt .
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consumption growth rate at labor market clearing condition:

ċt
ct

= αkα−1
t −δ −θ (2.10)

• Initial Steady State

Before the introduction of robots, we assume that the economy is at an initial

steady state, meaning that there are no changes in all variables. Hence, by letting

k̇t = ċt = 0 we have:

αkα−1
ss −δ −θ = 0

f (kss)−δkss =
css
H

Hence the following system of equations characterizes the steady state:

kss =

(
α

δ +θ

) 1
1−α

css =

[(
α

θ +δ

) α

1−α

−δ

(
α

θ +δ

) 1
1−α

]
H

rK
ss = f ′(kss) = αkα−1

ss = δ +θ (2.11)

rss = rK
ss−δ = θ

vss = (1−α)kα
ss = (1−α)

(
α

δ +θ

) α

1−α

And the lifetime welfare for the household at any period t is that:

Ut =
∫

∞

t
logcκe−θ(κ−t)dt =

1
θ

logcss

since cκ = css for all periods κ .

2.2.2 Main Assumptions and Implications

Let assume that there is a sudden invention in technology that makes robots avail-

able in the market, which can be called “helicopter robots”. There are two crucial

assumptions when we introduce these robots into the economy:

Chapter 2 26



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

Assumption 2.1: Capital is fully malleable.

This assumption says that capital is instantaneously convertible from one type to the

other. Why can we make such an assumption?

This is an aggregated model, in which there are only two types of input for produc-

tion. Anything that is not labor would be included in an aggregated category named

capital K. This figure includes buildings, factories, machines, computers, tables,

chairs... and many more. In reality, in the production process, these components are

changing every period. However, we do not distinguish among such different types

of capital or take into account the time of converting from one type to the other, just

only concern about the total aggregated number.

Now, with a new invention of technology, robots appear as a new type of capital

while all previously used capital can be considered as “the conventional machines”.

We continue to assume that it takes no time to convert one unit of the conven-

tional machine to one unit of robots and vice versa. As long as the aggregate

number is what we need to use, this assumption is valid.

Under the no arbitrate condition for the capital market, all units of capital should

bear the same rate of return. Hence, this assumption implies that the return of

conventional machines should be the same as the return on robots:

rK
t = rRA

t for all t (2.12)

where rK
t is the return rate on conventional machine and rRA

t is the return rate on

Additive Robots at period t.

Assumption 2.2: Robots are a perfect substitution for human labor.

As explained in the introduction, Additive Robots perfectly perform some tasks of

human labor. The parameter productivity ΛA can be interpreted as the marginal rate
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of substitution between robotic labor and human labor. In other words, the producer

is indifferent between one unit of Additive Robots and ΛA units of human labor.

Hence, the no-arbitrage condition implies that return on one unit of Additive

Robots to equate ΛA units of human labor:

ΛAvt = rRA

t for all t (2.13)

where vt is an hourly wage of representative household and rRA

t is the return rate on

Additive Robots at period t.

2.2.3 Economy with Additive Robots

The decision to utilize Additive Robots lies with the firm side. Hence we will start

this section with the changes on the technology side and condition that makes Ad-

ditive Robots feasible for the producer to use before move on to the consequences

for market rates and household’s side and end with model predictions in long run.

1. The New Level of Effective Capital Intensity

In each period t, with RA
t units of Additive Robots, the effective labor is as in

(2.1), hence, the firm profit function will be:

π
A
t = F(Kt ,ΛARA

t +H)− rK
t Kt − rRA

t RA
t − vtH

= F(Kt ,ΛARA
t +H)− rK

t Kt −ΛAvtRA
t − vtH

⇔ πA
t

ΛARA
t +H

= F
(

Kt

ΛARA
t +H

,1
)
− rK

t
Kt

ΛARA
t +H

− vt

Define

kA
t =

Kt

ΛARA
t +H

as the new “effective capital intensity” at period t which is the number of con-

ventional machines Kt per unit of new “effective labor” Lt . It follows that the

output per effective labor is f (kA
t ) = F(kA

t ,1) =
(

kA
t

)α

, and first order condi-

tions of maximization profit problem similar to (2.7) and (2.8) give us marginal
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product of conventional machines and marginal product of labor:

rK
t = f ′(kAt) = α

(
kA

t

)α−1
(2.14)

vt = f (kA
t )− rK

t kA
t = f (kA

t )− f ′(kA
t )k

A
t = (1−α)

(
kA

t

)α

(2.15)

Hence, according to assumption 2.1, effective capital intensity turns out to be a

constant number: kA
t = γA ∀t such that:

f ′(γA) = ΛA
[

f (γA)− f ′(γA)γA
]

Use the above marginal products we have:

α(γA)
α−1 = ΛA(1−α)(γA)

α

⇔ γA =
1

ΛA

(
α

1−α

)
(2.16)

It means that the new constant level of capital intensity depends on the robot’s

productivity and initial capital share α .

2. Profitability Condition

In every period t, investors will only find it profitable to convert part of their

assets (in the form of conventional machines) to robots if their return is higher

than the return of capital in the initial steady state, i.e. rRA ≥ rK
ss which means

that f ′(γA)≥ f ′(kss) or

γA ≤ kss

since f (.) is a concave function.

With a higher return rate, demand for robots goes up, the market will adjust rK up

(due to comparatively less supply) while rRA
is down until the two are matched

with each other at f ′(γA). The reached equilibrium level should still be higher

than the steady-state level of return on conventional machines rK
ss = f ′(kss). If

the equilibrium level is lower than the steady-state level then robots will vanish

since no investor would find it beneficial to invest in robots anymore and the

economy moves back to the initial steady state level. Hence, the profitability
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condition indicates that the capital intensity will jump down to a lower level

than the initial steady state. It can be explained that part of initial capital Kss

is converted to robots and becomes robotic labor, the new and lower level of

“conventional machines” (Kss−RA
t ) is spread thinner to a more abundant labor

force Lt > H.

In this series of chapters, I ignore the process of reaching the equilibrium rate of

return since this is the general equilibrium model. The adjustment of two markets

- conventional machines and robots - are partial equilibriums. We assume that it

would take a relatively short time for the markets to adjust and reach equilibriums

and just take the final rates for the aggregated model 6 .

The profitability condition is equivalent to:

1
ΛA

α

1−α
≤
(

α

δ +θ

) 1
1−α

⇔ 1
ΛA
≤
(

α

δ +θ

) 1
1−α 1−α

α

⇔ ΛA ≥
α

1−α

(
δ +θ

α

) 1
1−α

(2.17)

Let

Λ
∗
A =

α

1−α

(
δ +θ

α

) 1
1−α

then Λ∗A is the minimum productivity level of the robot such that it is profitable

to convert conventional machine to robot.

3. Constant Returns rate on conventional machines, Robots and Labor

Since effective capital intensity kA
t stays constant at ΛA all the time as per (2.16),

6 (Berg, Buffie, and Zanna 2018) did a supplement to my work in this dimension. They assumed
that there would be convertible costs to exchange one unit of a conventional machine to one unit of
robots and vice versa. Hence, their set of results can be considered very short term result - only the
first period of my model, when the market still adjusting for the no-arbitrage condition.
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from (2.12), (2.14) and (2.15), all return rates are also constant:

rK = rRA
= f ′(γA) = α (γA)

α−1 = α

(
1

ΛA

α

1−α

)α−1

v =
1

ΛA
rRA

=
1

ΛA
α (γA)

α−1 =
1

ΛA
α

(
1

ΛA

α

1−α

)α−1

The market interest rate is hence also at the constant level:

r = rK−δ = f ′(γA)−δ

To see the changes of these rates from the initial steady stead level, we need to

consider the profitability condition, under which f ′(γA)≥ f ′(kss). That leads to

the return rate on conventional machines will jump up to a higher equilibrium

level rK ≥ rK
ss, and interest rate also increases to more than time preference rate:

r ≥ rss ⇔ r = f ′(γA)−δ > θ (2.18)

How about the real wage? From (2.8), we can prove that real wage v is decreasing

in variable k (since α < 1 then v′k < 0). The profitability condition implies γA ≤

kss therefor v≤ vss.

In summary, when Additive Robots is introduced into the economy, the returns

on conventional machines, robots as well as real interest rate jumps to perma-

nently higher levels. Nevertheless, the real wage is depressed to a lower level

and stays there forever.

4. Consumption: Initial drop but has positive growth rates consequently

At the first period, total wealth still stays at the initial steady state level Kss =

K0 +RA
0 . On the other hand, human wealth is the total present discounted value

of all future labor income streams. Household know that they can expect a higher

interest rate coupling with a lower wage, hence human wealth wh will be smaller
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compared to the level of the initial steady-state:

wh
t =

∫
∞

t
vH exp

(∫
κ

t
−rdν

)
dκ = vH

∫
∞

t
exp
(
−r
∫

κ

t
dν

)
dκ

= vH
∫

∞

t
exp(−r(κ− t))dκ = vH

−1
r

[exp(−∞)− exp(0)]

=
vH
r

<
vssH
rss

(2.19)

We know that, the solution of the household’s maximization problem follow

consumption rule (2.5). During the initial steady state the consumption is:

css = θ

(
Kss +

vssH
rss

)
while in the first period immediately after the introduction of robots, consump-

tion will drop to

c0 = θ

(
wh

0 +wn
0

)
= θ

(
Kss +

vH
r

)
< css

However, the Euler equation (2.10) implies that consumption will later continue

to grow at a same positives rate gc permanently, which is the different between

the new interest rate and time preference rate. And the economy moves out of

the initial steady state:

ċt
ct

= α (γA)
α−1−δ −θ ⇔ gc = rK−δ −θ = r−θ > 0 (2.20)

as a direct result of (2.18).

5. Non-human wealth growth, stock of conventional machine vs. stock of

robots

Substitute the consumption function (2.5) and human wealth (2.4) into the bud-

get constraint (2.3) we have:

ẇn
t = rwn

t + vH−θ

(
wn

t +
vH
r

)
= (r−θ)

(
wn

t +
vH
r

)
From (2.18), we have ẇn

t > 0. In other words, under the profitability condition,

total wealth will keep growing positively over time.
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On the other hand, non-human wealth is the sum of both conventional machines

and robots: wn
t = Kt +RA

t , while the stock of conventional machine and robots

are adjusted to achieve the constant effective capital intensity of γA. There-

fore, we have the following expressions of conventional machines and Additive

Robots:

γA =
Kt

ΛARA
t +H

=
wn

t −RA
t

ΛARA
t +H

=
1

ΛA

α

1−α

⇔ RA
t = (1−α)wn

t −
αH
ΛA

(2.21)

⇔ Kt = wn
t −RA

t = αwn
t +

αH
ΛA

(2.22)

which indicates that the stock of robots and conventional machine will grow

along with non-human wealth:

ṘA
t = (1−α)ẇn

t and K̇t = αẇn
t

It depends on the parameter values which one is higher in absolute terms, conven-

tional machines or robots. But we can compare the growth rates by examining:

ṘA

RA =
(1−α)ẇn

(1−α)wn− αH
ΛA

=
(1−α) ẇn

wn

(1−α)− αH
ΛAwn

=
ẇn

wn

(
(1−α)

(1−α)− αH
ΛAwn

)
(2.23)

As αH
ΛAwn > 0 the element inside the big bracket is more than 1. Hence the stock

of Additive Robots will grow even faster than the total nun-human wealth.

On the contrary, with the same method, we have the stock of conventional ma-

chines grows at a slower rate than total non-human wealth.

K̇
K

=
ẇn

wn

(
1−α

1−α + αH
ΛAwn

)
<

ẇn

wn (2.24)

6. Convergence to a balanced growth path

From (2.23) and (2.24), as wealth keeps accumulated over time (wn
t

t→∞−−−→ ∞),

the element in the big bracket will converge to 1, indicating that conventional
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machines, Additive Robots and total non-human wealth should grow at a same

rate in the long run, which indicates a new balanced growth path.

Furthermore, we can examine the behavioral of consumption by rewriting the

accumulation rule of total wealth as following7,8:

ẇn
t = F

(
Kt ,ΛARA

t +H
)
− ct −δwn

t =
(

ΛARA
t +H

)
f (γA)− ct −δwn

t

= ΛA(1−α)

(
wn

t +
1

ΛA
H
)

f (γA)− ct −δwn
t

Then the growth rate of non-human wealth would be:

ẇn
t

wn
t
= ΛA(1−α)

(
1+

1
ΛA

H
wn

t

)
f (γA)−

ct
wn

t
−δ (2.25)

In the long run, when wn
t keeps increasing and H is fixed, thus H

wn
t

t→∞−−−→ 0 and

again use formula of effective capital intensity (2.16) we have:

ẇn
t

wn
t
= ΛA(1−α) f (γA)−

ct
wn

t
−δ

= (1−α)
1
γA

α

1−α
f (γA)−

ct
wn

t
−δ = α(γA)

α−1−δ − ct
wn

t

=
ċt
ct
+θ − ct

wn
t

(2.26)

Ultimately, there will be a the balance growth path where all variables move at

the same rate gc, making the ratio between consumption and non-human wealth

stays constant.

ẇn
t

wn
t
=

ċt
ct

⇔ ct
wn

t
= θ

7. Lifetime Welfare Increases

7 From the expression of Additive Robots, we can achieve the effective labor formula:

ΛARA
t = ΛA(1−α)(wn

t − γAH) ⇔ ΛARA
t +H = ΛA(1−α)

(
wn

t +
1

ΛA
H
)

8 From (2.3) (2.14) (2.15), it is easy to prove that:

rtwn
t + vtH = (rK

t −δ )wn
t + vtH = rK

t (Kt +RA
t )+ vtH−δwn

t = F(Kt ,ΛARA
t +H)−δwn

t

since F(Kt ,ΛARA
t +H) = rK

t Kt + rK
t RA

t + vtH in perfect competition condition.
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At any period t after the introduction of Additive Robots, the lifetime welfare

is9:

Ut =
1
θ

log(ct)+
gc

θ 2 =
1
θ

log(ct)+
r−θ

θ 2 (2.27)

Compared to the level at the initial steady state Uss =
1
θ

logcss, the first-period

consumption is less thus the first element is less than Uss. However, under the

profitability condition, the second element is always positive. Hence whether the

lifetime welfare in the first period is higher or lower than the steady stead level

depends on our choices of parameters. In any case, we are sure that Lifetime

welfare would increase over time as later consumption keeps growing.

2.3 Model Simulation Results and Discussions

2.3.1 Calibration Parameters

In the baseline model, there are only three parameters, and one constant need to be

determined. The values of these parameters and constants are given in Table 2.1.

Parameters Explanations Values
α Capital share 0.33
δ Depreciation Rate (annually) 0.085
θ Subjective Time preference 0.04
H Fixed working hours (annually) 0.23*365

Table 2.1: Parameters’ Values in Baseline Model

For the household maximization problem in (2.2), there is only one parameter which

is the subjective time preference rate θ is chosen to match with the real interest rate

of 4%.

For both parameters of the production side, capital share α and depreciation rate δ ,

9 For detail calculation, please refer to Appendix A.1.1
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I use their standard values in literature.

The fixed number of working hours H is a portion of 365 days per year that workers

have to work. The ratio is determined using the assumption that workers work 8

hours per day, 5 days per week and there are 52 weeks per year.

With this set of parameters, we have the minimum productivity for robots Λ∗A is only

0.1157. That means robots only need to work effectively as 11.57% of human labor

then it is already profitable for the producer to adopt them. As a starting point, as

explained in the Introduction part 10, I choose robots productivity of 20%, so that

ΛA = 0.2, a very conservative value which can generate reasonable results. In the

last exercise, I will examine the comparative statics in all the results in case we have

a higher productivity level.

2.3.2 Results of the Baseline Model

• Changes in Constant Variables of the Economy

Table (2.2) summarizes the changes in all constant variables of the economy after

the introduction of robots. All of these changes are permanent, in other words,

all these variables keep their values over time.

As predicted, the capital intensity drops from the initial steady state level kss =

4.26 to γA = 2.46, a decrease of approximately 42%. That makes the return rates

on conventional machines and hence the real interest rate all increase. The interest

rate almost doubles from 4% to 9.5%. Unfortunately, there is a permanent drop

in the real wage of 16.5%.

However, supported by the perpetual increase in consumption of 5.54% every

period, even the first-period lifetime welfare increases by 11.5% (and thereafter

10 Derive from (Frey and Osborne 2017) the empirical robot productivity is around 0.18

Chapter 2 36



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

will grow alongside with consumption).

Variables
Initial

Steady
State Value

Values after
robots

Percentage
Changes

Capital Intensity 4.258 2.462 - 42.2%
Real Interest Rate 0.040 0.095 138.5%
Return on conventional machines 0.125 0.18 44%
Real Wage 1.081 0.902 - 16.5%
First period Lifetime Welfare 122.988 137.019 11.5%
Consumption growth rate 0 5.54% -

Table 2.2: Constant Variables under Baseline Model

• Consumption and Total Wealth

As explained in (2.19), since wage is pressed down to a lower level, at the same

time interest rate increases to a higher level (see table (2.2)), the expected human

wealth (the present discounted value of all future wage income) becomes smaller

compared with the initial wage. Hence, consumption in the first period drops to

60.06 from the initial steady state level of 136.99, a decrease of 55.7%.

Nevertheless, under profitability conditions, we will have a positive endogenous

perpetual growth for consumption as per (2.20). Consumption will grow at the

rate of 5.54% for every period and bounce back to the initial steady state level

after around 16 years. Since the initial drop is slightly more than half, 16 years is

also the required time for consumption to double.

Total wealth as the sum of both conventional machines and Additive Robots also

grows over time. The starting value for total wealth at the first period is still Kss

which is used to allocate into either conventional machines or Additive Robots.

We will see in detail how the number of robots and conventional machine change

in the next part.
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Figure 2.1: Consumption Path, Wealth Accumulation and GDP Growth with Addi-
tive Robots

• Stock of Robots vs. Stock of Conventional Machine

Although effective capital intensity does not change over time, and we have an

assumption that labor H is fixed, it does not indicate that conventional machines

and robots (added to the effective labor) will not change. Their values are adjusted

every period just to keep the ratio kA
t = Kt

ΛARA+H constant at γA. In the first period,

Kss itself was divided into K0 and RA
0 .

From (2.23) and (2.24), we have that as long as wealth keeps accumulating pos-

itively, both robots and conventional machines also grow, however at different

rates, which is shown in Figure 2.2a. Additive Robot stock grows faster than

total wealth, which in turn increases faster than conventional machines. As a re-

sult, the number of robots is only lower than conventional machines for the first

7 years. After that, robots dominate in total wealth.

This result can be further pictured in figure 2.2b. The fraction of wealth that is

used to finance Additive Robots increases over time. In the long run, this ratio

converges to a constant of (1−α).
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(a)
(b)

Figure 2.2: Stock of Additive Robots vs. Stock of Conventional Machines

• Balanced Growth Path

The economy does not reach a new steady-state (where all the variables stay

constant) although effective capital intensity stays constant already. Instead, it

will fall into a perpetual endogenous growth as consumption increase positively

all the time. However, in the long run, the economy does go to a balanced growth

path where all the variables (given that they do change) will change at the same

rate, making their ratios constant. This result presents in Figure (2.3).

Over time, the growth rate of non-human wealth slows down and converges to

the growth rate of consumption, making the consumption to wealth ratio also

converge to the constant level at time preference rate θ as proofed in (2.26).

Figure 2.3 together with Figure 2.2b above show us the convergence of other

ratios such as RA

K and C
Y . At the productivity level of only ΛA = 0.2, the conver-

gences take place quite fast, after around 50 years. In the later extension, we will

be able to see if the changes in productivity can have any effect on the model

convergence.
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Figure 2.3: Balanced Growth Path Convergences

• Human shares and total effective labor share

Since H is fixed and real wage v does not change over time, at every period total

human (labor) incomes vH do not change. On the other hand, total GDP keeps

increasing which has been shown in Figure 2.1. It follows that human share in

national incomes vH
F(K,L) converges to zero over time.

However, if we include the incomes generated by owning robots to form one

category called human and robotic incomes vH + rK
t RA

t , then the ratio of this

income in national incomes always stays constant11 at (1−α) which is the same

with labor shares ratio of the initial steady state.

11 This indicates that by any means if we can transfer some earning from robots to workers (who own
labor only) in can help to soften the reduction in human labor incomes.
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Figure 2.4: Effective Human and Robotic Labor Shares

2.4 Some Extensions from the Baseline Model

2.4.1 Flexible Labor Supply

• Extension Description

In the baseline model, we assume that H stays constant throughout time. Al-

though this might be a valid assumption in reality, for example, the number of

working hours per day and the number of working days per year are fixed. How-

ever, this restriction does not allow us to see the effects (if any) on the labor

market when robots are introduced.

Hence, for the first extension, I include leisure into the utility function so that

the number of working hours is now one of the results of the household’s maxi-

mization problem. For simplification, we use a simple separable c and H utility

function:

U(c,H) = logct +Blog(H̃−Ht)

with H̃−Ht being leisure time left.

For a separable utility function, UcH = 0 thus we have the Euler equation the
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same with a fixed H model as in (2.6)12.

r = θ −Ucc
Uc

ċ = θ − ċ
c
⇔ ċ

c
= r−θ

The intratemporal condition of the optimization problem gives us the labor supply

rules:

vt =−
UH(ct ,Ht)

Uc(ct ,Ht)
=

Bct

H̃−Ht
(2.28)

This extension does not impose any change in the production side, all analysis

on that side still holds except for the fact that now H in all the equations13 does

change over time satisfying (2.28). Hence, the economy still reaches a constant

effective capital intensity level:

γA =
1

ΛA

α

1−α
=

Kt −RA
t

ΛARA
t +Ht

< kss

The difference is that for this flexible labor model, not only K,RA change every

period, now H also changes to achieve a constant ratio of γA every period.

It follows that all market conditions still stay the same throughout. Return rates on

conventional machine and robots, as well as real wage, are all constant, making

interest rate also constant:

rK = rRA
= f ′(γA) ; r = rK−δ

vt = f (γA)− f ′(γA)γA = ΛA f ′(γA)

It indicates that from the Euler equation, consumption will still grow at a constant

positive rate since the interest rate is higher than the previous steady-state level

(which equals to θ ).

At the same time from the intra-temporal condition (2.28), if vt is fixed, while

ct increases over time, then H has to gradually decrease over time either to 0 or

12 Refer to the Appendix A.2.1 for detailed proof
13 Refer to the Appendix A.2.2 for firm’s profit maximization problem
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to the lowest positive level. The latter is more proper since although it might

be reasonable to not work anymore as the earning from the Additive Robots is

enough to finance household’s consumption, in fact, we still need some human

labor14.

• Numerical Solution for Initial Condition

With the decrease in H, we are not able to have a closed-form solution for non-

human wealth as in (2.19), hence we will not be able to have a value of initial

consumption right from available model conditions. Instead, we need to use a

simple shooting algorithm to guess for this value.

1. Guess c0 and generate the time series {ct}Tt=1 using the calculated growth rate

of consumption from (2.20).

2. Calculate Ht using the intratemporal equation

– If
(

H̄t+1− B
v ct

)
> 0 then Ht+1 = H̄− B

v ct

– If
(

H̄t+1− B
v c
)
< 0 then Ht+1 = Ht (keeps the constant minimal positive

labor)

3. Calculate human wealth wh
t using the simulated labor path with fixed wage v

and use fixed interest rate r to time discount the whole series to obtain wh
0.

4. Recalculate the value of consumption in the first period c′0 = θ(Kss+wh
0) since

in the first period wn
0 = Kss

5. Compare c′0 with initial guess. If not match then update15 the guess until we

have a match16.

14 Even in the case Additive Robots are completely able to replace human labor in performing tasks,
we will still need workers to manage, maintain... robots.

16 The difference is smaller than a very small threshold
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• The importance of Leisure

Under this extension, we have one more parameter B that needs to calibrate. The

value of B shows the importance of leisure in the utility function. The higher the

value of B, the stronger the household values leisure. In other words, based on

(2.28), given the same wage and consumption preference, the higher the value of

B, the lower the value of H, meaning household will accept to work less.

To calibrate B, we would want to induce the same Hss as in the baseline model.

So that the initial steady state conditions in both cases are exactly compatible.

Then we can see what will happen to the model if we choose a higher value of B.

Hence, given the same value of baseline model Hss, we will have the value of B

as follow17:

B =
(1−α)

(
H̃
Hss
−1
)

1−δk1−α
ss

• Decreases in Labor Supply only after an initial jump

As we know and already predicted, employment will decrease over time to a very

low level. However, looking at the simulated series as per Figure 2.5, there is

another important observation. Initially, the household will work more (almost

double of their initial steady-state level) then slowly reduce over time.

In general, we might think that since the future stream of H is expected to be

lower, the total present value of human wealth would be even lower in the elastic

H case compared to the baseline model. This could make the initial drop in

consumption be more than in the inelastic labor case. As can be seen from Table

(2.3), this turns out to be not true. Now household can change their labor supply,

and they know that the wage is going to be reduced to a lower level. To not have

16 Updated rule c′′0 = (1−λ )c0 +λc′0 with λ is very small to avoid outline values.
17 Refer to Appendix A.2.3
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Figure 2.5: Changes in Labor Supply (number of working hours per year)

Note: Under B = 2 and ΛA = 0.2 and without control for non-negative RA

to compensate for very low consumption levels, they work more. Compared to

the reduction of initial consumption in the inelastic labor case we even have a

lighter reduction.

Initial Steady
State

Inflexible H -
first period

Flexible H - first
period

136.99 60.06 65.07
Changes -55.7% -52.5%

Table 2.3: Initial Consumption after Robots: Flexible vs. Inflexible Labor Supply.

• Higher Productivity or More Accumulated Wealth

Furthermore, a closer look into the base scenario with B = 2 and productivity

ΛA = 0.2 above reveals that we need to make further constraint on the model

parameters to generate meaningful results. Since given that base scenario, in the

first few periods, there are no Additive Robots are used.

From (2.21), the expression for Additive Robots under flexible labor supply is

such that:

RA
t = (1−α)(wn

t − γAHt)

Hence, the number of working hours needs to satisfy the following condition so
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that the number of Additive Robots to be positive:

Ht <
wn

t
γA

(2.29)

For the scenario with a low value of B (household does not value leisure much),

in the first few periods Ht will be too high to satisfy the above condition. After

wealth is accumulated high enough, there are two consecutive mechanisms. The

right-hand side becomes bigger, while the left-hand side becomes smaller and the

condition is achieved. This can be explained that as the new wage is too low,

at the same time household does not value leisure highly so they would need to

work more to maximize their utility first before the economy can start to use extra

wealth to finance Additive Robots.

For a higher value of B, in contrast, household values leisure more and does not

want to work as much to maximize their utility since the higher leisure already

generate higher utility for them. It would then take the household less time to

accumulate enough wealth to start using robots.

There is another way of solving the issue of (2.29). Instead of waiting for wealth

to accumulate over time, we need the capital intensity γA to have a lower value.

If there is no change in the production function (i.e. α unchanged) then the only

way is to have higher productivity of robots, meaning higher ΛA.

The mechanism is that, with a higher productivity level, capital intensity is lower,

making return rates of robots and conventional machines are higher, and wage

goes down less. With a less reduced wage, the household does not need to in-

crease their labor that much to maximize their utility, compared the case with

lower productivity. That makes Additive Robots becomes possible more easily.

Put it differently, robots with higher productivity earn higher returns, sufficiently

compensate for the drop in human labor incomes, helping households accumu-

late more wealth. It follows that they can increase their consumption faster (now
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the difference between the interest rate and time preference rate is higher) and

generate more utility 18.

• Similar Long run Convergence

However, as long as Ht hits 0 or the minimum positive level, the model comes

back to the inelastic case. Hence, it sure has the same convergence paths com-

pared to scenario under fixed H, implying that ẇn
wn

= ċ
c with c

wn
= θ . Given the

condition that consumption equation (2.5) is satisfied.

In conclusion, this extension shows us that when labor is flexible, the introduction

of Additive Robots does create a decrease in employment over time. However, to

finance their preferred consumption streams, the household would need to work

more initially. The lesser they value leisure in their utility function, the more they

will work initially or economy would require higher productivity of the robots to

start using them and move out of the initial steady state.

2.4.2 Higher Productivity of Additive Robots

In the previous extension, we briefly discuss the need for higher productivity in case

household does not value leisure much in their utility function.

However, all the results are assumed under helicopter robots, meaning robots are

suddenly available in the market at a return rate that is profitable for firms to adopt

them. The appearance should be more gradually. With technology improvement,

robot’s productivity increases slowly, up to the point that it becomes possible to

adopt in production. The model then ignores all individual market partial equilib-

rium, and general equilibrium is immediately achieved in the first period.

In this variation, I assume that from the previous level, technology is further im-

18 These rationales can be seen clearer under the next extension
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proved, increasing productivity to a new level. However, this will not be applied

abruptly into the market. Instead, we have a gradual increase in robots’ productivity

over a few periods until it reaches the new level, meaning:

ΛA(t) = ΛA(2)+
(
ΛA(1)−ΛA(2)

)
ent (2.30)

with n < 0 is the improved speed.

Then the effective capital intensity is no longer constant but converges to the new

steady level, as per:

γA(t) =
α

1−α

1
ΛA(t)

(2.31)

As a result, all other variables such as return on conventional machines (and hence

on robots), real interest rate and real wage also convergences together to their new

respective balanced levels.

Figure 2.6: Convergences to New Balanced Levels under Productivity Improvement
(Flexible Labor)

From Figure (2.6), as robots’ productivity increases, all the results of the baseline
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model becomes stronger. The declined variables will fall even lower. The increased

variables will continue to climb up higher. In summary we will have stronger quan-

titative effects under higher productivity as we can see from the below figure:

Figure 2.7: Higher Consumption Growth and Faster Convergence to the Balanced
Growth Path (Flexible Labor)

We can expect a faster convergence to the balanced growth path as well as faster

growth in variables that grow perpetually.

2.4.3 Extension with CES production function

In the last extension, we come back to the inflexible labor market but use a more

general form of production function:

Yt =
[
αK−ρ

t +(1−α)H−ρ
]−1/ρ

with 0≤ α ≤ 1 and ρ ≥−1

Then output per unit labor will be: yt =
[
αk−ρ

t +(1−α)
]−1/ρ

= f (kt).

The analysis is similar to the baseline model. After the introduction of robots, the

new effective capital intensity and interest rate now depend on values of the elastic-
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ity of substitution between capital and labor ρ .

γA =

(
1

ΛA

α

1−α

) 1
1+ρ

r = α

(
y

γA

)1+ρ

= α

(
1

ΛA

α

1−α

)
y1+ρ −δ (2.32)

In Cobb Douglas production function, which satisfies the Inada conditions, when

we have a reduction in capital intensity we would have a higher interest rate (and

other return rates) and hence a faster consumption growth. On the other hand, with

CES production function, a lower value of ρ would sure make interest rate increase

in (2.32) but the change in capital intensity is undetermined.

In the general case, the changes in capital intensity depend on whether the value

inside the bracket is more than or less than one. But interest rate does move the

same direction with the elasticity of substitution as illustrated in Table 2.4, which

means in any case, a lower value of ρ will create stronger quantitative effects for

our model.

ρ γA y rK

ΛA < α

1−α
↓ ↑ ↑ ↑

ΛA > α

1−α
↓ ↓ ↓ ↑

Table 2.4: Different Scenarios of Elasticity of Substitution

This extension can be applied for industry-specific cases, in which different indus-

tries can have different values of Elasticity of substitution. A lower elasticity of

substitution means that it is easier for that industry to substitute capital by labor.

Since the type of robots in this chapter is additive to human labor with similar

functionality, it follows that it will be easier to replace conventional machines with

Additive Robots, creating stronger quantitative effects.
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Figure 2.8: Consumption Growth ( ct
css

) with Different Values of Elasticity of Substi-
tution.

2.5 Conclusion

In this chapter, robots are a direct substitution of labor however only with a fraction

of a humans capability. Thus, Additive Robots become a “direct extension” of

the labor force. Under a standard literature set of parameters and a Cobb Douglas

production function, the introduction of robots into the initial steady state of the

economy does make capital per labor becomes thinner. Therefore, the effective

capital intensity drops to a permanently lower value, causing the real interest rate to

increase 1.5 times, and the workers wage decreases to a 16.5% lower level. On the

household’s side, after the initial drop of a half, consumption increases at a constant

rate of 5.54% perpetually, driving the lifetime welfare to increase by 11.5%. Total

wealth including robots grows steadily over time, with the stack of robots grows at

a faster rate compared to the conventional machine. In the long run, the simulation

of the economy does confirm the existence of a balanced growth path, where the
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growth of wealth converges to the growth of consumption.

It is significant to notice that the economy will start to adopt robots with as low

productivity as only 11.5% of a human. The higher the productivity of the robots,

the higher the return on robots required for the capital owner to find it profitable to

convert part of their capital from conventional machines to robots. Hence, all the

quantitative results will be stronger by the increase in the robots productivity.

Under the elastic labor supply extension, the household works longer initially to

compensate for the drop in wage and hence slightly mitigates the initial drop in

consumption. Nevertheless, as wealth starts to accumulate to sustain the consump-

tions growth, the model does predict a decrease in employment over time.

Lastly, the exercise with different elasticities of substitution between capital and

labor demonstrates that for industries in which it is easier to substitute capital by

labor, all the effects will be quantitatively stronger.
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Chapter 3

Multiplicative Robots

3.1 Introduction

In this chapter, I introduce the second type of robot, called Multiplication Robots,

into the baseline model. What are the differences between Additive Robots and

Multiplicative Robots?

Additive Robot is a perfect substitution for human’s tasks. It can do exactly what

human labor would do even though that might be only a fraction of the activities of

their jobs. Multiplicative Robots, on the other hand, is not used to substitute human

labor. Instead, this type of robot is used to support human labor in doing their jobs

in, for example, a faster or more accurate way. The differences are not abilities or

technology levels but rather functionalities depend on the nature of the jobs that use

it.

Let us take the examples that I used in the Introduction part of Chapter 2. Instead

of having a robot to do a fraction of ΛA of a cleaner’s job, we can give the worker

better cleaning tools that help him complete the work more efficiently. In the case

of the surgeon, Multiplicative Robots can help him in many different ways such as

collecting data to have more accurate diagnoses or supporting him while he does

the operation himself.

Clarification of this point paves the road for the last chapter where we consider both

types of robots at the same time in the economy. In chapter 2 as well as this chapter

3, we study the effects under the single application of each type of robot without
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the appearance of the other type. In other words, in this chapter, when workers are

given Multiplicative Robots, they do not have an option to use Additive Robots.

In the modeling language, unlike the Additives Robots which enter the labor force

in an additive way LA = ΛARA +H, Multiplicative Robots help humans increase

their productivity. Hence, the “effective labor” would become:

LM =
(

1+ΛMRM
)

H

Due to the way that Multiplicative Robots transform the labor force, the use of

Multiplicative Robots requires more conditions than the simple Additive Robots

which will need to be discussed first in this chapter before describing how the model

reacts with the introduction of Multiplicative Robots. The identification of the first

period immediately after the appearance of robots as well as the stabilization of the

long-run convergence are not straightforward like in the case with Additive Robots,

requiring a numerical method. Only after this stability condition is achieved then we

can have the results to compare with what has been obtained with Additive Robots.

3.2 Market Descriptions and Assumptions

3.2.1 Main Assumptions and Implications

Analog to chapter 2, we have 2 critical assumptions for the model set up in this

chapter. The first one is the same as the first assumption in chapter 2, while the other

is different, showing the differences in the characteristic of two types of robots.

Assumption 3.1: Capital is fully malleable.

This assumption has been explained in the previous chapter when we introduce

Additives Robots into the market. It works in the same way with Multiplicative

Robots. Capital is instantaneously convertible between conventional machines and
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Multiplicative Robots. Hence by no-arbitrage condition, we require the same return

rates on both types of capital, conventional and robotic:

rK
t = rRM

t ∀ t (3.1)

Assumption 3.2: Multiplicative Robots acts as a labor augmented factor.

This assumption assumes that this new type of robots can help to increase the pro-

ductivity of human labor. It seems to be very intuitive since, for so many years,

robots are mainly used to support humans in many areas. With the help of robots,

human labor can perform tasks either faster or more accurately.

To model that characteristic of robots, we assume that robots act as a labor aug-

mented factor with ΛM as their productivity. Hence with RM number of robots

will help to increase every human labor’s productivity by ΛMRM. That means the

effective labor is now:

LM =
(

1+ΛMRM
)

H (3.2)

We define the “marginal effective labor” with respect to humans or robots is an

increase in effective labor if we have an additional unit of human labor or robots

respectively.

MeLH =
∂LM

∂H
=
(

1+ΛMRM
)

MeLR =
∂LM

∂RM = ΛMH

Constant Effective Capital Intensity

As the previous chapter, we define the “effective capital intensity” as kM = K
LM , and

maintain the homogeneous of degree 1 production function: F
(
K,LM)=LM f

(
kM).

The respective Marginal Product of Conventional Machines (MPK) and Total Marginal
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Product of Effective Labor (MPeL) are still as normal:

MPK = F1

(
K,LM

)
=

∂F(.)

∂K
=

∂

(
LM f (kM)

)
∂ (kMLM)

= f ′
(

kM
)

MPeL = F2

(
K,LM

)
=

∂F(.)

∂LM =
∂

(
LM f (kM)

)
∂LM

= f
(

kM
)
+LM f ′

(
kM
)

∂kM

∂LM

= f
(

kM
)
− kM f ′

(
kM
)
= (1−α) f

(
kM
)

We can explain the mechanism as follow, each an extra unit of human labor will

create an extra MeLH units of effective labor whose each unit can create an extra

MPeL units of final products. Accordingly, we have the final Marginal Product of

human labor (MPL) and Marginal Product of robots (MPR) as:

MPL = MeLH ×MPeL =
(

1+ΛMRM
)
(1−α) f

(
kM
)

(3.3)

MPR = MeLR×MPeL = (ΛMH)(1−α) f
(

kM
)

(3.4)

Combine the two main assumptions, we reach a similar condition as in the previous

chapter that to have the same return rate on both conventional machines and Multi-

plicative Robots, the effective capital intensity will have to stay at a constant level,

i.e. kM
t = γM ∀t, which satisfies 1:

f ′ (γM) = (ΛMH)(1−α) f (γM) (3.5)

With the standard Cobb Doughlas production function:

α

(
γ

α−1
M

)
= ΛMH(1−α)γα

A ⇔ γM =
1

ΛMH

(
α

1−α

)
(3.6)

which is constant under fixed H.

1 The difference is that in Chapter 2, this result does not depend on the assumption on H. Hence,
it still hold even in the extension with flexible H. While in this chapter, it is only correct under
the assumption that labor supply H is fixed. However, the effect of changes in H will rather be
incorporated into Chapter 4.
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3.2.2 Participation Conditions - Markups

With the new effective labor (3.2), the firm’ profit function will be changed to

π
M
t = F

(
Kt ,
(

1+ΛMRM
t

)
H

)
− rK

t Kt − rRM

t RM
t − vtH

and first order conditions of profit maximization problem require that each produc-

tion inputs are paid (in terms of final product) according to their respective marginal

products:

rK = MPK rRA
= MPR v = MPL

Hence the total cost incurred would be:

TC = K×MPK +H×MPL+RM×MPR

= KF1 +H
(

1+ΛMRM
)

F2 +RM (ΛMH)F2

However, since production function is homogeneous of degree one, according to

Euler Theorem, the following must be true:

Y = F
(

K,
(

1+ΛMRM
)

H
)
= KF1 +

(
1+ΛMRM

)
HF2

Compare the two expressions above, we see that the output Y is just enough to cover

the cost for conventional machines and human labor. Therefore firms will always

suffer from a negative profit if they choose to use the Multiplicative Robots.

This is a similar problem with Solow Residuals in the Solow model as well as

the Ramsey model. Empirically, there are increases in the final output that is not

accounted for by capital accumulation and/or increases in labor (Solow 1957). In

the Solow model, that was taken care of by the technology progress or the total

factor productivity term A in F(K,AL). However, A is exogenously given, without

any extra cost incurred for producers. There is no incentive for the producer to

invest in A or create the technological progress since the extra output created is

used to increase the pay for labor v = AF2 as they demand higher pay for higher

productivity.
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Similarly, in our model with Multiplicative Robots, the producer does not want to

both employ costly Multiplicative Robots and increase the pay for human labor.

The output is just not enough to cover the cost if all input resources are paid

according to their marginal products above. Hence, the condition for Multi-

plicative Robots to be applied is that producers can pay lower than each inputs’

marginal products. On other words, they pay the same 2 fraction 1
µt
< 1 with µt > 1

of marginal product to each input factors. The idea is similar to the monopolis-

tic competition. Under perfect competition we would have the profit maximization

condition is that all the firms will set price equals marginal cost: P = MC. However,

monopolist with market power will be able to charge at a higher price: P
MC = µ > 1

to have a positive profit.

That means we need to impose the followings to the first-order conditions:

rK =
1
µ

MPK rRA
=

1
µ

MPR v =
1
µ

MPL (3.7)

with µ > 1.

Note that by applying the same fraction across all production inputs, it does not

make any changes to the no-arbitrage condition between conventional machines

and Multiplicative Robots in (3.5).

3.2.3 Overhead Labor Cost

As discussed in the previous part, for Multiplicative Robots to be applicable, we

need to impose markups which means a depress in the payments to all production

inputs which is similar to monopolistic condition.

However, I would not want to impose the monopolistic condition in the model

2 Markups for each production’s inputs do not need to be the same. However, since markup rates are
not the focus of this thesis, for simplification, I assume that they are the same.
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as well as just to have intervention so that after the introduction of Multiplicative

Robots, producers suddenly have market power and can pay less than the marginal

products. Instead, We would make the changes in the market condition even from

the original initial steady state so that the existence of markups rate µt is expected

oven before the application of Robots. After robots, producers just need to adjust

the value of markup.

That is not impossible. In literature, there are already few methods to do so, for

example, to impose a fixed cost into the production function. So that right from the

beginning the producers need to pay at a lower level than the marginal products to

finance the fixed cost.

Another method is to assume that there is an overhead labor cost that requires pro-

ducers to cover besides the cost of the inputs. And this is the way I choose to apply

to the model. In the next subsection, I will introduce the notion of overhead labor

as well as derive the implied markups’ formula.

3.2.4 Overhead Labor

By nature, overhead or overhead expense refers to ongoing expenses of operating a

business that can’t be linked to creating or producing a product or service. Hence

overhead labor can be understood as part of working hours that are wasted and are

not used to produce the final products. This can include time spend for breaks,

socialization, or even unfocused time (such as in the early morning).

If all the working days provided by the workers are H then a fraction of it: h̄ = H̄
H

is overhead labor fraction with H̄ is the overhead labor. Therefore, the “actual

productive working hours” is only:

H− H̄ = H
(
1− h̄

)
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We can assume that h̄ does not change, meaning that you always have the same

fraction of working time without producing any product. As we assume H is fixed,

overhead labor H̄ is also fixed. This is to ensure the same behavior in the labor

market.

Overhead labor expenses and Markups

This part will explain why overhead issue requires the application of markups and

how can we derive the relationship between h̄ and markups µ .

The shortage arises when the firm still needs to pay for the wasted overhead labor

time while not produce any final output. According to profit maximization, it fol-

lows that the normal total cost is TC = F1K +F2H. However, outputs produced is

just enough to cover the cost of “non-overhead” labor as per Euler theorem:

Y = F1K +F2H
(
1− h̄

)
< F1K +F2H = TC

That is why firms will be able to pay only a fraction of each marginal product. Here

I emphasize again that we use the same fraction across all inputs. Thus, the real

total cost becomes:

TC =

(
1
µ

F1

)
K +

(
1
µ

F2

)
H

As the product market is perfectly competitive, the zero-profit condition needs to

hold or Y = TC. Hence,

µY = F1K +F2H(1− H̄)+F2H̄ = Y +F2H̄

⇔ (µ−1)H(1− H̄) f (k) =
(

f (k)− k f ′(k)
)

Hh̄

⇔ µ =

(
f (k)− k f ′(k)

f (k)

)
h̄

1− h̄
+1

Given the Cobb Douglas production function, we have the formula for the markup

ratio which can be used for the initial steady state.

µ = (1−α)

(
h̄

1− h̄

)
+1 (3.8)
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3.2.5 The Purpose of Using Markups

Through the above calculation, we see the role of markups in this case. With over-

head labor cost, by right the productivity of human labor is lower. In other words,

instead of being paid F2, workers should be paid only (1− h̄)F2. However, for some

reason, producers are not able to do so. For example, the producers only can observe

the cost incurred but not be able to identify the source. It can be included in a fixed

cost, which is not able to decide which factor should bear it. Hence, by using the

same markups across all inputs, we distribute that fixed cost to all production inputs.

More precisely, markups redistribute the overhead labor cost from workers to

capital owners instead of letting the workers bear all of it.

As a result, we do not use h̄ to adjust the value of the marginal product of labor

alone. However, it appears in the expression for markups and we use markups to

adjust both MPK and MPL.

3.2.6 Additives Robots Not Require Markups

Unlike Multiplicative Robots that can increase the productivity of labor workers,

Additives Robots are just simple additions (extensions) into the labor force. They do

take part in the production and create extra final outputs. However, as productivity

is unchanged, the wage for human labor does not change 3. As a consequence,

the extra final outputs created can be used to finance the cost of Additives Robots.

Although at the end of the day, it would be returned to the robots’ owner, ultimately,

the representative household.

By the Euler theorem for homogeneous of degree one function, we have output is

3 This refers to the changes just because of the increase/decrease in productivity, not to say that there
is no change due to the introduction of robots.
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the same with the total cost in the model with Additives Robots.

Y = F
(

K,ΛARA +H
)
= F1K +F2

(
ΛARA +H

)
= F1K +(F2ΛA)RA +F2H = TC

If we impose the overhead labor cost in the model with Additives Robots, that will

be the only factor contributes to the need for markups as well as affects the markups’

value. Therefore, the expression for markups in (3.8) is applicable for both the initial

steady-state and after the introduction of robots.

There are only two changes that need to be made to model under Additive Robots.

Firstly, we need to use the markups in (3.8) to readjust all the return rates on con-

ventional machines, robots, and human labor 4. Secondly, the effective labor with

Additive Robots in (2.1) needs to be adjusted to:

LA = Λ
ARA +H(1− h̄)

For the rest of this chapter (as well as the next chapter), in all comparisons between

two scenarios, the economy with either Additives Robots or Multiplicative Robots,

the model with Additives Robots is adjusted (as compared to what have been pre-

sented in Chapter 2) with overhead labor cost. As a result, both models will have

the same initial steady-state which will be express in the next section.

3.3 The Model Setup

3.3.1 Initial Steady State

We maintain the same simple setup used in the framework model in Chapter 2 with

representative household and representative producer. Notably, the introduction of

overhead labor cost and hence the use of markups will change the market conditions

4 Hence, interest rate and consumption growth are both scaled down by markups accordingly.
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that market participants need to accept, which are the real interest rate and real wage:

rt = rK
t −δ =

1
µt

f ′ (kt)−δ

vt =
1
µt

(
f (kt)− kt f ′(kt)

)
=

1
µt

(1−α) f (k)

The household still has to solve the same maximization problem given the above

market conditions. Hence the growth rate of consumption as per Euler Equation in

(2.6) needs to be modified as follow:

ċt
ct

= rt −θ =
1
µt

f ′ (kt)−δ −θ (3.9)

However, as now only H(1− h̄) is effective in the production, the capital intensity

is now:

k =
K

H
(
1− h̄

)
and growth rate of k as in (2.9) will be calculated as follow:

K̇ = Y −δK− c = H
(
1− h̄

)
f (k)−δK− c

⇔ k̇ =
K̇

H
(
1− h̄

) = f (k)−δk− c
H (1− H̄)

Hence,we have the followings to solve for the initial steady state:

1
µss

αkα−1
ss −δ −θ = 0

kα
ss−δkss =

css

H
(
1− h̄

)
As a result, the following system of equations 5 characterizes the initial steady state:

kss =
(

α

µss(δ+θ)

) 1
1−α Kss = kssH

(
1− h̄

)
yss = kα

ss Yss = H
(
1− h̄

)
yss css = Yss−δKss

vss =
1

µss

(
f (kss)− kss f ′ (kss)

)
=

(1−α)
µss

f (kss) =
(1−α)

µss

(
α

µss(δ+θ)

) α

1−α

with µss follows (3.8).

5 Compared to the system of equations in Chapter 2, only those have H will need to be adjusted to
H
(
1− h̄

)
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And the Lifetime Welfare for household at any period t is still:

Ut = u(css)
∫

∞

t
e−θ tdt = u(css)

1
−θ

[
e−θ t

]∞

0
=

1
θ

u(css) =
1
θ

logcss

3.3.2 Introduction of Multiplicative Robots into the Economy

Since now only a fraction
(
1− h̄

)
of labor participate in production function (h̄ is

wasted), we have the followings:

Effective Labor in (3.2):

LM =
(

1+ΛMRM
)

H
(
1− h̄

)
(3.10)

Effective Capital Intensity:

kM
t =

Kt(
1+ΛMRM

)
H
(
1− h̄

) = wn
t −RM

t(
1+ΛMRM

)
H
(
1− h̄

) (3.11)

Total Output:

Yt = F

(
Kt ,
(

1+ΛMRM
)

H
(
1− h̄

))
=
(

1+ΛMRM
t

)
H
(
1− h̄

)
f
(

kM
t

)
which satisfies the Euler theorem for homogeneous of degree 1 function:

Yt = F1Kt +F2

(
1+ΛMRM

t

)
H
(
1− h̄

)
(3.12)

And first-order conditions of profit maximization problem as per (3.7) become:

rK
t =

1
µt

f ′
(

kM
t

)
(3.13)

vt =
1
µt

(
1+ΛMRM

t

)[
(1−α) f

(
kM

t

)]
(3.14)

rRM

t =
1
µt

ΛMH
[
(1−α) f

(
kM

t

)]
(3.15)

We need two preconditions to solve the model. One is the value of effective capital

intensity kt which we already have under the implications of two main assump-

tions in (3.6) 6. The second is the markup rate. We need to recalculate the markup

6 As noted, the application of the same markups for all production inputs does not change the expres-
sion for the no-arbitrage condition. Also, the use of overhead labor cost does not affect the marginal
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rates after the introduction of Multiplicative Robots as explained before since Mul-

tiplicative Robots are also a source for Solow residual (besides overhead labor in

our model).

Before going into the solutions, we derive some expressions of effective capital

intensity that are useful for later manipulations.

From (3.5):

γM =
1

ΛMH
α

1−α
⇔

(
1− γMΛMH

)
=

1
1−α

Then, apply into (3.6) we have:

ΛMH f (γM) = f ′ (γM)
1

1−α
= f ′ (γM)

(
1− γMΛMH

)
(3.16)

• Markups

Since in this setup, the economy is closed without any trade or borrowing or

lending from outside, the national income and national output need to be equal.

In the same manner with what we did for the initial steady-state, we obtain the

markup rate for each period:

Yt = TC = 1
µt

(
F1Kt +F2ΛMHRM

t +F2
(
1+ΛMRM

t
)

H
)

⇔ µtYt =
[
F1Kt +F2

(
1+ΛMRM

t
)

H
(
1− h̄

)]
+F2

(
1+ΛMRM

t
)

Hh̄+F2ΛMHRM
t

= Yt +F2
(
1+ΛMRM

t
)

Hh̄+F2ΛMHRM
t

⇔ (µt −1)Yt = HF2

[(
1+ΛMRM

t
)

h̄+ΛMRM
t

]
⇔ µt −1 =

H
(

f (γM)−γM f ′(γM)

)[
(1+ΛMRM

t )h̄+ΛMRM
t

]
(1+ΛMRM

t )H(1−h̄) f (γM)

=
(

f (γM)−γM f ′(γM)
f (γM)

)(
(1+ΛMRM

t )h̄+ΛMRM
t

(1+ΛMRM
t )(1−h̄)

)
=
(

f (γM)−γM f ′(γM)
f (γM)

)(
h̄

1−h̄
+

ΛMRM
t

(1+ΛMRM
t )(1−h̄)

)

product expression hence the formula for γM is still the same.

Chapter 3 65



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

Hence 7 , we have

µt −1 =
h̄(1−α)

1− h̄
+

(1−α)

(1− h̄)

(
ΛMRM

t
1+ΛMRM

t

)
µt =

(
µss +

1−α

(1− h̄)

)
− 1−α

(1− h̄)
(
1+ΛMRM

t
) (3.17)

There are three observations we can derive from the above formula of markup

ratio:

– Firstly, (3.17) can be rewrite as:

µt = µss +
1−α

1− h̄

(
1− 1

1+ΛMRM
t

)
(3.18)

Since the second component is always positive, in the first period after the in-

troduction of robots µ0 > µss. In general we have µt > µss ∀t ≥ 0. That means

the markup rates after the introduction of Multiplicative Robots are always

more than the markup of the initial steady-state µss. This is because although

the Multiplicative Robots can help to make non-overhead labor becomes more

productive i.e produce more final outputs, at the same time this non-overhead

labor is paid a higher wage. Hence, there is a pressure on producers to set aside

investment to invest in robots still there, pushing them to charge a higher price

over the marginal cost.

– Secondly, as RM
t increases, 1

1+ΛMRM
t

decreases thus µt increases over time. Put

it differently, as the stock of robots grows, there are more and more investment

is needed to finance them.

– However, thirdly we see that as RM
t

t→∞−−−→∞, 1
1+ΛMRM

t
→ 0 then in the long run

7 With Cobb Douglas function we have:

f (kt)− kt f ′(kt)

f (k)
=

kα
t −αktkα−1

t

kα
t

= 1−α
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µt will converges to a constant level µ∗.

µ
∗ = µss +

1−α

(1− h̄)
= (1−α)

h̄
1− h̄

+1+
1−α

(1− h̄)

=
1−α

(1− h̄)
(1+ h̄)+1 (3.19)

Hence from (3.17), we have:

µt −µ
∗ =

1−α

(1− h̄)
(
1+ΛMRM

t
) (3.20)

In summary, after the introduction of Multiplicative Robots, the markup jumps to

a higher level then keeps increasing over time, and finally converges to the upper

boundary µ∗.

• Return rates on Conventional Machine, Multiplicative Robots, and Real in-

terest rate

In the model with Additives Robots, when the effective capital intensity stays

constant at γA then all of these rates are constant8. On the contrary, due to the use

of markup rates which changes over time, these rates are no longer constant with

Multiplicative Robots. From (3.13) we have return rates and market real interest

rate as follow:

rK
t = rRM

t =
1
µt

f ′(γM) and rt = rK
t −δ (3.21)

As have shown in the previous part, when the stock of robots increases, µt in-

creases over time, making the return rates and interest rate decrease over time.

As t goes to infinity, µt → µ∗. It follows that in the long run, return rates on

conventional machines and Multiplicative Robots would also converge.

rK
t = rRM

t
t→∞−−−→ 1

µ∗
f ′ (γM)

rt
t→∞−−−→ 1

µ∗
f ′ (γM)−δ

8 Even when we adjust the model with overhead labor cost, the markup is unchanged throughout time
and hence only proportionately devalues these rates.
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• Profitability Condition

With the above predictions of market rates, we can answer the next question,

regarding the profitability condition.

For Additive Robots: γA < kss is enough to ensure the profitability condition

which is the requirement that:

rRA
= f ′(γA)> rK

ss = f ′(kss) = θ +δ ∀t

In the case of the Multiplicative Robots, due to the participation condition µt ,

investors will only find it profitable to convert part of their assets (in the form of

the conventional machine) to robots if rRM

t ≥ rK
ss which means:

rRM

t =
1
µt

f ′(γM)>
1

µss
f ′(kss) = rK

ss = θ +δ (3.22)

It is quite clear that the effective capital intensity γM is less than the steady state

capital intensity kss, as the numerator (conventional machines) decreases while

denominator (labor) increases. Since γM is constant, we can just use the first

period formula to demonstrate:

γM =
Kss−RM

0(
1+ΛMRM

0
)

H(1− h̄)
<

Kss

H(1− h̄)
= kss

Hence, f ′(γM) > f ′(kss), similar to Additives Robots case. Nevertheless, in the

case of Multiplicative Robots, we have the markups that: 1
µt

< 1
µss

. That is why

(3.22) can not be achieved automatically.

Besides, the profitability condition needs to be held for all periods. And in the

previous part we know that µt increases overtime and converges to µ∗. Hence, 1
µt

is the minimum value of rRM

t for all t. So in order to achieve (3.22) for all period

t, we require the following constraints on the model’s parameters:
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1
µ∗

α(γα−1
M ) > α

1
µ∗
(kα−1

ss ) = δ +θ

⇔ γM <
(

µ∗(θ+δ )
α

) 1
α−1

⇔ 1
ΛMH

α
1−α

<
(

µ∗(θ+δ )
α

) 1
α−1

⇔ ΛM > α

(1−α)H

(
µ∗(θ+δ )

α

) 1
1−α

The choice of Multiplicative Robots’ productivity need to be higher than the min-

imum productivity level Λ∗M

ΛM > Λ
∗
M =

α

(1−α)

(
(θ +δ )

α

) 1
1−α (µ∗)

1
1−α

H
(3.23)

with µ∗ can be taken from (3.19).

Compared to the Additives Robots case, the minimum required productivity should

be lower. Multiplicative Robots help increase workers’ productivity hence each

unit of Multiplicative Robots will have effects on the whole labor force H, rather

than just a single add up into the labor force like Additives Robots. Consequently,

if given the same R units of robots (we do not take into account the issue with

markups since it is not applicable in Additives Robots), we have:

ΛAR+H = (1+ΛMR)H⇔ ΛM =
1
H

ΛA

• Stock of Multiplicative Robots and Conventional Machine

From the formula for effective capital intensity (3.6), we have:

γM =
wn

t −RM
t(

1+ΛMRM
t
)

H(1− h̄)
=

1
ΛMH

(
α

1−α

)
With some manipulations

α
(
1+ΛMRM

t
)
(1− h̄) = ΛM(1−α)

(
wn

t −RM
t
)

⇔ α(1− h̄)ΛMRM
t +α(1− h̄) = (1−α)ΛMwn

t − (1−α)ΛMRM
t

⇔ ΛMRM
(

α(1− h̄)+(1−α)
)

= (1−α)ΛMwn
t −α(1− h̄)

⇔
(
1+ΛMRM

t
)
(1−α h̄) = (1−α)ΛMwn

t +1−α

= (1−α)(1+ΛMwn
t )
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We have the following results:(
1+ΛMRM

t

)
=

1−α

1−α h̄
(1+ΛMwn

t ) (3.24)

RM
t =

(1−α)

(1−α h̄)
wn

t −
α(1− h̄)

(1−α h̄)ΛM
(3.25)

Kt = wn
t −RM

t =
α(1− h̄)
1−α h̄

wn
t +

α(1− h̄)
(1−α h̄)ΛM

(3.26)

A closer look into equation (3.25) reveals that the profitability condition (3.23)

should be enough to make sure that RM has a positive value9. In order to compare

the changes speed of conventional machines and Multiplicative Robots, we need

to compare the fraction of the increases in non-human wealth that is used to invest

in Multiplicative Robots versus the fraction invested in conventional machines:

(1−α)

(1−α h̄)
>

α(1− h̄)
1−α h̄

⇔ 1−α > α(1− h̄) ⇔ α <
1

2− h̄

If the above inequality holds, then the stock of Multiplicative Robots will grow

faster than the stock of conventional machines as total wealth is accumulated.

In fact, with 1
2−h̄

> 1
2 , that should be the case for most of the frequently used

value of α as standard literature value for α is only one third.

• Real Wage Increases under Profitability Condition

We now turn to real wage. From the first-order condition for real wage in profit

maximization problem (3.14) we have:

vt =
1
µt

(
1+ΛMRM

t

)[
f (γM)− γM f ′(γM)

]
=

1
µt

(1−α)2

(1−α h̄)
(1+ΛMwn

t ) f (γM) (3.27)

As noted, as RM
t increases µt increases along, making 1

µt
decreases overtime.

Then how real wage change will depend on whether the increase in robots is

faster or the increase in markups rate is faster before the convergence of markups.

9 RM > 0⇔ ΛM > α(1−h̄)
(1−α)Kss

which is same with profitability condition (3.23).
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After µt converges to a constant level µ∗, vt will grow at a proportional rate of

Multiplicative Robots.

However, we can also see that:

∂vt

∂RM
t

=
(1−α)2

(1−α h̄)
f (γM)

[
ΛM

1
µt

+
(

1+ΛMRM
t

) −1
(µt)2

∂ µt

∂RM
t

]
=

(1−α)2 f (γM)

(1−α h̄)µt

[
ΛM−

(
1+ΛMRM

t

) 1
µt

1−α

(1− h̄)
ΛM(

1+ΛMRM
t
)2
]

=
ΛM(1−α)2 f (γM)

(1−α h̄)µt

[
1− 1−α

(1− h̄)
1

µt
(
1+ΛMRM

t
)]> 0

The inequality hold since both µt and
(
1+ΛMRM

t
)

is more than 1, thus 1
µt(1+ΛMRM

t )
<

1. At the same time, most of the case h̄ < α as we should not have that much

wasted overhead labor, thus 1−α

1−h̄
< 1.

Hence in the normal case, real wage will rise if the stock of Multiplicative robots

grows overtime even before the convergence of markups. Unless we have very

high overhead labor cost that 1−α

1−h̄
dominates 1

µt(1+ΛMRM
t )

.

For the initial period, real wage would be:

v0 =
1

µ0

(1−α)2

(1−α h̄)
(1+ΛMKss)(γM)α

while at the initial steady state

vss =
1

µSS
(1−α)(kss)

α

then we have:

v0
vss

=
µss
µ0

(1−α)

(1−α h̄)
(1+ΛMKss)

(
γM
kss

)α

=

(
µss
µ0

(
γM
kss

)α−1
)

(1−α)

(1−α h̄)
(1+ΛMKss)

(
γM
kss

)

=

( 1
µ0

f ′(γM)

1
µss

f ′(kss)

)
(1−α)

(1−α h̄)

(
γM
kss

+
ΛM(kssH)γM

kss

)

=

( 1
µ0

f ′(γM)

1
µss

f ′(kss)

)(
(1−α)γM
(1−α h̄)kss

+α

)
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From the profitability condition in the first period:

1
µ0

f ′(γM)>
1

µss
f ′(kss)

thus the first element is greater than 1. However, the second component is the

weighted average between γM and kss. And since γM < kss this weighted average

should be less than kss. As a result, the second component is always less than 1.

That means in the first period, it is undetermined if the real wage increases or

decreases from the initial steady-state level. That depends on the parameters of

the model. The only thing can be determined is that wage will increase as the

stock of Multiplicative Robots grows.

This result is different from the model under Additives Robots, in which from

the initial steady state, real wage will definitely go down and then stay constant

forever. Multiplicative Robots bring extra productivity for human labor thus cre-

ate wage effects as wage continues to grow as long as Multiplicative Robots are

used.

3.3.3 Long run Balanced Growth Path

We have the following to complete the model:

wn
t = Kt +RM

t

ċt
ct

=
1
µt

f ′(γM)−δ −θ = rK
t −δ −θ (3.28)

ẇn
t =

[
ΛMRM

t +1
]

H(1− h̄) f (γM)−δwn
t − ct (3.29)

where the first one means that total wealth is used to finance either conventional

machines or Multiplicative Robots. The second equation is the consumption rule

for households that the growth of consumption is the difference between the market

interest rate and time preference rate with a market interest rate is return on either

conventional machines or Multiplicative Robots minus off the depreciation rate.

Chapter 3 72



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

The third equation is the wealth accumulation rule or budget constraint for a house-

hold rewrite in the form of general equilibrium (which means take into account the

production side). The first element is the total market output

F

(
Kt ,
[
ΛMRM

t +1
]

H(1− h̄)

)
=
[
ΛMRM

t +1
]

H(1− h̄) f (γM)

Then take out the necessary cover for depreciation of current wealth of household

δwn
t (or also the total investment capital of firm) and take out the household con-

sumption ct , what is left is the increase (accumulated amount) for wealth (or total

capital investment) of the next period.

• Reducing but Positive Consumption growth

From (3.28), there are two conclusions can be made regarding the growth rate of

consumption. Firstly, since the effective capital intensity stays constant kt = γM

while µt increases over time (as the stock of robots continues to grow), the growth

rate of consumption will reduce over time. Until the time when µt converges to

the constant µ∗ then consumption changes with the same rate:

η
∗
C =

1
µ∗

f ′(γM)−δ −θ > 0

Secondly, as long as the profitability condition (3.22) still holds even when µt

has been converged, we always have rK
t − δ > rss, that means (3.28) is always

positive.

In summary, consumption always grow at a positive rate, but the growth rate

reduces over time and converges to the constant η∗c .

• Non-human wealth growth

From (3.29), the growth rate of non-human wealth is:

ẇn
t =

(1−α)

(1−α h̄)
(1+ΛMwn

t )H(1− h̄) f (γM)− ct −δwn
t

⇔ ẇn
t

wn
t
=

(1−α)

(1−α h̄)

(
1

wn
t
+ΛM

)
H(1− h̄) f (γM)− ct

wn
t
−δ

In the long run, as H is fixed while wn
t keeps increasing, the fraction 1

wn
t
→ 0.
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Thus from (3.16) we have

ẇn
t

wn
t
→ (1−α)

(1−α h̄)
ΛMH(1− h̄) f (γM)− ct

wn
t
−δ

=
1− h̄

(1−α h̄)
f ′(γM)− ct

wn
t
−δ

It is not straightforward to derive the same expression to observe the convergence

of c
w ratio as in (2.26) since the growth rate of consumption is no longer fixed (due

to markups and overhead labor cost). Theoretically, when we have the conver-

gence of ẇn
t

wn
t

then based on the above expression, the ratio ct
wn

t
should also converge

to a constant.

• Convergence of consumption to wealth ratio

To identify the convergence of the consumption to wealth ratio, we use the growth

rate of wealth from household budget constraint:

ẇn

wn =
rwn + vH− c

wn = r+
vH
wn −

c
wn

=
ċ
c
+θ +

vH
wn −

c
wn

From the above expression, we see that if consumption and non-human wealth

grow at the same rate then c
wn = vH

wn +θ .

In the previous chapter, with Additive Robots, we easily have vH
wn → 0 since v

is fixed and H is either fixed or decreases, at the same time wn goes to infinity.

And hence, consumption to wealth ratio will converge to θ . This result can also

be proved directly from the consumption equation of household maximization

problem:

c = θ(wn +wh)⇒ c
wn = θ +θ

(
wh

wn

)

We have v, H and interest rate r are all fixed and human wealth wh is fixed at vH
r

as proved in (2.19). Thus when wealth increase to infinity the second component

goes to zero. It follows that we have c
wn → θ .
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However, with Multiplicative Robots, one of the main results is that wages will

increase as the stock of robots increases (together with wealth accumulation). At

the same time interest rate r = 1
µ

f ′(γM)−θ goes down as µ increases. Can we

still achieve the same convergence here?

Using the wage equation from (3.27) we see that:

vH
wn =

(1−α)2(1+ΛMwn) f (γM)H
(1−α h̄)µwn =

(1−α)2

(1−α h̄)
f (γM)

1
µ

(
1

wn +ΛM

)
−→ (1−α)2

(1−α h̄)

(
ΛM f (γM)H

) 1
µ∗

=
(1−α)

(1−α h̄)
f ′(γM)

µ∗

which indicates that vH
wn does not go to zero but a positive constant as wealth goes

to infinity. Hence, consumption to wealth ratio will converge to a higher level

than Additives Robots case:

c
wn −→ θ +

(1−α)

(1−α h̄)
f ′(γM)

µ∗
(3.30)

3.4 Numerical Methods for Initial Condition

Why is the value of first-period consumption important? If this value is too high,

meaning households consume too much compared to their utility maximization

problem’s solution, then the accumulation of non-human wealth is lower than the

optimal level. In the long run, if consumption keeps increasing according to their

optimal growth rate, there will be a point that non-human wealth will start to de-

crease toward zero.

The reverse is true. Household starts with too low consumption, i.e too high wealth

accumulation will make the increase of non-human wealth too fast compared to the

optimal level. Hence, instead of c
wn converges to a constant, it will go down all the

way to zero as wn increase too fast compared to consumption.
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3.4.1 Problems with Simple Guessing Method

It seems that we can find the initial condition (consumption) by using the simple

shooting algorithm as in the case of flexible H in the previous chapter. From the

expression for markups after the introduction of robots (3.17), µt only depends on

the value of Multiplicative Robots RM
t and (3.24) shows the relationship between

robots RM
t and total wealth wn

t . In the first period, wealth still stays at the initial

steady-state level. Hence, markup rate in the first period is specified as:

µ0 = µss +
1−α

1− h̄

(
1− 1−α h̄

(1−α)(1+ΛMKss)

)
(3.31)

Hence, we can implement the following steps for the fixed point iterations:

1. Given µ0, calculate other market condition for the first period v0 and r0

2. Guess c0

• For the second period:

– Calculate non-human wealth next period wn
1−Kss = r0Kss + v0H− c0

– Use µ0, γM and wn
1 to infer the next period market conditions: µ1,v1,r1

from (3.21),(3.27),(3.31).

– Use µ1 and r1 to update consumption for the next period: ċ1
c1
= 1

µ1
r1−θ

• Repeat the above 3 steps, simulate for T number of periods.

3. Use the series of wage (vt)
T
t=1 and interest rate (vt)

T
t=1 to calculate human wealth

at t = 0.

4. Calculate c′0 = θ

(
wh

0 +Kss

)
and compare with the guess. Update the guess until

we have a match.

Chapter 3 76



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

However, there is an issue with the above iteration. First period human wealth

expression as in (2.4) is:

wh
0 =

∫
∞

0
vκH exp

(∫
κ

0
−r(ν)dν

)
dκ (3.32)

As time goes to infinity, the discounted factor does make the series inside the inte-

gral goes down to zero, meaning the further the human income is, the less important

its contribution to the human wealth is. However, with Multiplicative Robots, wage

increases to infinity in the long run. Thus, no matter how good our guess is and how

long the simulation is, there are still some errors in the value of the initial guess of

c0.

This is different from the previous chapter. For the case where we have inflexible

labor, i.e. fixed H, We can even derive the exact expression for human wealth as in

(2.19). Or even under the extension of flexible labor H, as we simulate the economy

long enough so that H reaches a constant then from there onward we can again

calculate the value of non-human wealth. Hence, there was no error in updating the

value for initial consumption in iterations. With Multiplicative Robots, all market

conditions are changed as time goes hence the guessing technique can not preserve

the convergence of the model. In other words, the model does not stable.

3.4.2 Convergence Stability Condition

As explained above, the simple technique to guess for the initial consumption does

not work, hence, we need to find another technique to pin down the initial condition.

Theoretically, we know that the ratio c
wn will converge to a ratio in the long run.

The idea for this part is that instead of finding the initial value of consumption c0,

we will find the initial value of that ratio q0 = c0
Kss

. Since the non-human wealth in

the first period is still at Kss, from there we can derive the first-period consumption.

The first step is to examine the dynamics of c/w to see if its changes depend on any
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other variables.

Consumption over wealth ratio

Let denote q = c
wn or c = qwn. Use wage equation (3.27) we have:

q̇
q
=

ċ
c
− ẇn

wn = (r−θ)− rwn + vH− c
wn =−vH

wn +q−θ

= q−θ − (1−α)2(1+ΛMwn
t ) f (γM)H

(1−α h̄)µtwn

= q−θ − (1−α)2(1+ΛMwn
t )

(1−α h̄)µtwn
f ′(γM)

ΛM(1−α)

= q−θ − (1−α) f ′(γM)

(1−α h̄)µt

 1

1− 1
1+ΛMwn

t


= q−θ − (1−α) f ′(γM)

(1−α h̄)µt

 1

1− (µ∗−µt)
(1−h̄)
(1−α h̄)


Note that in the second line we use relationship in (3.16) and in the third line, both

(3.20) with (3.24) are used.

There are two things can be noted from the above:

• Firstly, the change in q only depends on the change in the markup ratio.

• Secondly, as µt → µ∗ then along the balanced growth path, q also converges to a

constant value:

q∗ = θ +
(1−α) f ′(γM)

(1−α h̄)µ∗

which is consistent with what we noted before in (3.30).

As a result, to have the convergence in q we need to find the rate of change in

markup rate over time.
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Growth rate of mark-up ratio

From the expression of markups in (3.17), use the relationship between Multiplica-

tive Robots and non-human wealth in (3.24) we have:

µt = µ
∗− 1−α

(1− h̄) (1−α)(1+ΛMwn)
(1−α h̄)

= µ
∗− (1−α h̄)

(1− h̄)(1+ΛMwn)

⇔ µ̇t =
ΛMẇn

t
(1+ΛMwn

t )
2

1−α h̄
(1− h̄)

=
ΛMẇn

t
(1+ΛMwn

t )

1−α h̄
(1− h̄)

(µ∗−µt)(1− h̄)
(1−α h̄)

= (µ∗−µt)
ΛMẇn

t
(1+ΛMwn

t )
(3.33)

Substitute the expression for non-human wealth accumulation and c= qwn we have:

µ̇t = ΛM(µ∗−µt)

 1−α

(1−α h̄)
(1+ΛMwn

t )H(1− h̄) f (γM)−δwn
t −qtwn

t

(1+ΛMwn
t )


= ΛM(µ∗−µt)

[
(1− h̄)

1−α

(1−α h̄)
H f (γM)− (δ +qt)wn

t
(1+ΛMwn

t )

]
= (µ∗−µt)

[
(1− h̄)

1−α

(1−α h̄)
ΛMH f (γM)− (δ +qt)

(
1− 1

1+ΛMwn
t

)]
= (µ∗−µt)

[
(1− h̄)

1−α

(1−α h̄)
f ′(γM)

1−α
− (δ +qt)

(
1− (µ∗−µt)

(1− h̄)
1−α h̄

)]
= (µ∗−µt)

[
1− h̄

1−α h̄
f ′(γM)+(δ +qt)

(
µ
∗ (1− h̄)

1−α h̄
−1
)
− (δ +qt)

(1− h̄)
1−α h̄

µt

]
Along the balanced growth path, the consumption growth rate is positive. The non-

human wealth growth rate will converge to the same rate as consumption, so the

second component is always positive. As a result along the balanced growth path,

markups are constant at µ∗.
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Linearization around balanced level

• For markup ratio: Let denote µ̇t = ψ(µt ,qt). We have the following:

ψ(µ∗,q∗) = 0

∂ψ

∂ µt

∣∣∣∣
µ∗,q∗

=

[
−
(

1− h̄
1−α h̄

f ′(γM)− (δ +qt)

(
1− (µ∗−µt)

(1− h̄)
1−α h̄

))
+

+(µ∗−µt)(δ +qt)
(1− h̄)
1−α h̄

]∣∣∣∣
µ∗,q∗

= (q∗+δ )− 1− h̄
1−α h̄

f ′(γM)

∂ψ

∂qt

∣∣∣∣
µ∗,q∗

= (µ∗−µt)

(
1− (µ∗−µt)

(1− h̄)
1−α h̄

)∣∣∣∣
µ∗,q∗

= 0

Then by Taylor expansion for two variables we have:

ψ(µt ,qt)≈ ψ(µ∗,q∗)+(µt −µ
∗)

∂ψ

∂ µt
(µ∗,q∗)+(qt −q∗)

∂ψ

∂qt
(µ∗,q∗)

= 0+(µt −µ
∗)
(
(q∗+δ )− 1− h̄

1−α h̄
f ′(γM)

)
+0

= (µt −µ
∗)
(
(q∗+δ )− 1− h̄

1−α h̄
f ′(γM)

)
Let A = (q∗+δ )− 1−h̄

1−α h̄
f ′(γM), since µt increases over time (i.e. µ̇t > 0 and

µt < µ∗) then we need A < 0.

• For c/w ratio: Denote Φ(µt ,qt) = q̇t , we have:

Φ(µt ,qt) = q2
t −

θ +
(1−α) f ′(γM)

(1−α h̄)µt

 1

1− (µ∗−µt)
(1−h̄)
(1−α h̄)


qt

Φ(µ∗,q∗) = 0

∂Φ

∂qt

∣∣∣∣
µ∗,q∗

=

2qt −θ − (1−α) f ′(γM)

(1−α h̄)µt

 1

1− (µ∗−µt)
(1−h̄)
(1−α h̄)



∣∣∣∣∣∣∣
µ∗,q∗

= 2q∗−
(

θ +
(1−α) f ′(γM)

(1−α h̄)µ∗

)
= q∗
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∂Φ

∂ µt

∣∣∣∣
µ∗,q∗

=

−qt
(1−α)

(1−α h̄)
f ′(γM)

 −1
(µt)2

1

1− (µ∗−µt)
(1−h̄)
(1−α h̄)

+
1
µt

−1(
1− (µ∗−µt)

(1−h̄)
(1−α h̄)

)2



∣∣∣∣∣∣∣∣
µ∗,q∗

= q∗
(1−α) f ′(γM)

(1−α h̄)(µ∗)2 (1+µ
∗)

Then by Taylor expansion, we have:

Φ(µt ,qt)≈Φ(µ∗,q∗)+(qt −q∗)
∂Φ

∂qt
(µ∗,q∗)+(µt −µ

∗)
∂Φ

∂ µt
(µ∗,q∗)

= (qt −q∗)(q∗)+(µt −µ
∗)q∗

(1−α) f ′(γM)

(1−α h̄)(µ∗)2 (1+µ
∗)

Now we have a system of two differential equations: µ̇t = A(µt −µ∗) (1)

q̇t = q∗(qt −q∗)+B(µt −µ∗) (2)

with A=(q∗+δ )− 1− h̄
1−α h̄

f ′(γM) and B=(1−α) f ′(γM)
q∗

(1−α h̄)(µ∗)2 (1+µ
∗)

The solution for the first equation is:

µt −µ
∗ = (µ0−µ

∗)eAt

Plug this result into equation (2) we have a first-order linear differential equation

for qt :

q̇t = q∗qt +
(

B(µ0−µ
∗)eAt − (q∗)2

)
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The solution for this equation is:

qt = q0eq∗t + eq∗t
∫ t

0
e−q∗s

(
B(µ0−µ

∗)eAs− (q∗)2
)

ds

= q0eq∗t + eq∗t
[

B(µ0−µ
∗)
∫ t

0
e(A−q∗)sds− (q∗)2

∫ t

0
e−q∗sds

]
= q0eq∗t + eq∗t

[
B(µ0−µ

∗)
e(A−q∗)t −1

A−q∗
− (q∗)2 e−q∗t −1

−q∗

]

= eq∗t

[
q0−

B(µ0−µ∗)
A−q∗

+
(q∗)2

−q∗

]
+

B(µ0−µ∗)
A−q∗

eAt − (q∗)2

−q∗

= eq∗t
[

q0−q∗− B(µ0−µ∗)
A−q∗

]
+

B(µ0−µ∗)
A−q∗

eAt +q∗ (3.34)

Conditions for stability convergence

As we noted before, for µt to be able to converge to µ∗ then we need A < 0, thus

the second component will converge to 0 as t→ ∞.

At the same time we have eq∗ > 1 since q∗ > 0. Hence, in order to ensure the

convergence of qt to q∗ the coefficient of eq∗t needs to be zero as eq∗ > 1. It follows

that:

q0 = q∗+
B(µ0−µ∗)

A−q∗
(3.35)

Profitability Condition Revisit

The right chosen value for the initial q0 will make sure that q converges over time.

The stability of the whole model, however, depends on the initial condition of con-

sumption which needs to satisfy (3.35):

c0 = Kss

(
q∗+

B(µ0−µ∗)
A−q∗

)
However, there is still one more condition we have noted above but haven check.

That is for markups convergence we need A < 0. In this part, we will prove that this

condition is taken care of by the profitability condition, i.e Multiplicative Robots

have productivity higher than the minimum required level.
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Remember the profitability condition in (3.22) is such that:

1
µt

f ′(γM)>
1

µ∗
f ′(γM)>

1
µss

f ′(kss) = θ +δ

Now for the stability of the model, we need A < 0, which mean:

q∗+δ − 1− h̄
1−α h̄

f ′(γM)< 0

⇔ θ +
(1−α) f ′(γM)

(1−α h̄)µ∗
+δ − 1− h̄

1−α h̄
f ′(γM)< 0

⇔ f ′(γM)

(1−α h̄)µ∗
(
(1− h̄)µ∗− (1−α)

)
> δ +θ

⇔ f ′(γM)

(1−α h̄)µ∗
(1−α h̄)> δ +θ

which is the same with profitability condition 10 .

Furthermore, we can show that A < 0 is also implied by the condition that wealth

grows positively ẇn
t > 0.

ẇn
t =

(1−α)

(1−α h̄)
(1+ΛMwn

t )H(1− h̄) f (γM)− (δ +qt)wn
t > 0

(1−α)

(1−α h̄)
(1+ΛMwn

t )
f ′(γM)(1− h̄)
ΛM(1−α)

> (δ +qt)wn
t

1− h̄
1−α h̄

f ′(γM)> (δ +qt)
ΛMwn

t
(1+ΛMwn

t )

As t → ∞, ΛMwn
t

(1+ΛMwn
t )
→ 1 and q→ q∗ then the above inequality is equivalent to

A < 0.

In summary, as long as the profitability condition holds, i.e. ΛM > Λ∗M then we

will have a positive non-human wealth growth as well as a stability convergence for

markup rate and consumption.

10 From formula for µ∗ (3.19) we have:

(1− h̄)µ∗− (1−α) = (1− h̄)
(
(1−α)(1+ h̄)

1− h̄
+1
)
− (1−α)

= (1−α)h̄+1− h̄ = 1−α h̄
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3.5 Model Simulation and Results

3.5.1 Parameters Calibration

Apart from all the same parameters as used in the previous chapter as per Table

2.1, we have two more variables that need to determine the results: the robots’

productivity ΛM and the overhead labor cost h̄.

Multiplicative Robots’ Productivity

The minimum productivity for Multiplicative Robots is Λ∗M = 0.004, meaning as

long as Multiplicative Robots can help to increase at least 0.4% of human labor’s

productivity, it is profitable to use them.

By construction, the application of the Multiplication Robots will help to increase

the productivity of the whole workforce, not just a single worker which is a very

strong effect. Compared to the Additives Robots case, the effective capital intensity

as in (3.6) is already very low due to the fraction 1
H . Hence we could expect stronger

quantitative effects compared to the previous chapter. Furthermore, a higher value

of ΛM , as in the previous chapter will generate even higher quantitative effects.

Therefore, we chose a very conservative rate of 1% which can help to generate

reasonable results.

For comparison purposes, we will use Additives Robots at the productivity level of

ΛA = 0.26 slightly higher than in the previous chapter to account for the reduction

due to the use of markup and overhead labor cost.

Calibrating value for overhead labor

As we assume the same h̄ is hold even after the introduction of Multiplicative

Robots. We need to calibrate the value for it. Note the following from the formula
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of markup ratio:

h̄
1− h̄

=
µt −1
1−α

=
1

1− h̄
+1

⇔ h̄ =
µt −1
µt −α

(3.36)

Hence, we can infer the value of the overhead labor ratio h̄ if we have the value of

markup µss.

Robert E. Hall recently reported the latest mean markup ratio of all industries is

1.31, grew from 1.12 in 1988 to 1.38 in 2015 (Hall 1988, Hall 2018). However, it

is only the markup for labor cost while we are using µ as a gross markup ratio.

Hence in terms of per labor we have,

1
µG

(rk+ v) = rk+
1

µH
v⇔ 1

µG
f (k) = k f ′(k)+

1
µH

(
f (k)− k f ′(k)

)
⇔

(
1

µG
− 1

µH

)
f (k) = k f ′(k)

(
1− 1

µH

)
⇔ 1

µG
=

k f ′(k)
f (k)

(
1− 1

µH

)
+

1
µH

= α +(1−α)
1

µH
(3.37)

Using the value suggested by (Hall 2018) we have µH = 1.31 hence, the gross

markup rate is µG = 1.18.

Substitute the value into (3.36), we obtain the value for overhead labor cost ratio of

h̄ = 0.2195

That means every unit of human labor put into the production only 79.1% effectively

produce final products.
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3.5.2 Stabilized Results in Comparison with Additives Robots

Market Rates

Note that for the markups under Additives Robots, it does not change even after the use of robots.

Figure 3.1: Market Rates after Multiplicative Robots

The Figure 3.1 shows the dynamics of market rates. Although the markup ratio in

the initial steady-state stays at the low level of only µss = 1.18 11 , after the introduc-

tion of Multiplicative Robots, markups rate jumps to µ0 = 1.67, keeps increasing

over time, and then converges to value µ∗ = 2.05 after around 76 years. Intuitively,

as we have more and more Multiplicative Robots, the higher the value of Solow

Residuals, which requires the deeper depression of marginal products. While there

is no such thing for Additives Robots, so the markups still stay the same with the

initial level.

For the interest rate, even with so low productivity of Multiplicative Robots of 1%,

the effective capital intensity was depressed lower compared to the Additives Robots

of 26% productivity, making the interest rate increase to a much higher rate of

around 19.73%, then reduce overtime to a constant level of 14.53% while interest

11 As that the value we use to calibrate the value for overhead labor cost ratio h̄.
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rate only jump from steady stead level of 4% to 9.59% 12 with Additives Robots.

However, the main difference stays with the human labor wage. While wage reduces

by 16.64% 13 from the initial steady-state with Additives Robots and then stays

constant, it does not do the same under Multiplicative Robots.

From the right figure of Figure (3.1) we see that it is not only that the initial drop

in wage is less for Multiplicative Robots (8.21%), but also as time goes by, with the

help of Multiplicative Robots, human labor’s productivity increases, wage increases

very fast over time, surpass the initial steady-state level after only 3 years.

Consumption and Total Wealth

Similarly, the initial drop in consumption with Multiplicative Robots is less than

the case with Additives Robots. From the initial consumption of css = 78.69, the

consumption drops by 58.09% to cA
0 = 32.98 in the model with Additives Robots

while it drops by 26.59% to cM
0 = 57.77 in the model with Multiplicative Robots.

We know that optimal consumption is θ fraction of the sum of total wealth and

human wealth. Even though total wealth in the first period is still the same with

initial steady-state total capital, human wealth depends on the household prediction.

With Multiplicative Robots, although wages fall initially it grows fast afterward.

However, interest rate also increases very high (Figure(3.1). In other words, further

higher human income streams are discounted at a higher rate. Therefore, these

high human incomes become less important to the household. That’s why they

still reduced their initial consumption. Nevertheless, the magnitude is less than

under Additives Robots since Additives Robots depress the wage forever coupling

with a higher interest rate compared to the initial steady state. After that, while

12 The differences compared to the previous chapter is due to the use of overhead labor cost to adjust
the results under Additives Robots.

13 See footnote (12)
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consumption grows at a constant rate of only 5.59% 14 , with Multiplication Robots,

consumption grows at a much faster rate from nearly 20% converges to the constant

level of 10.53% per period (which can be seen from Figure (3.4). This is the result

of higher interest rates streams under Multiplicative Robots compared to Additives

Robots case. The reasons why such a high consumption plan can be financed is

because the growth in GDP as well as the speed of wealth accumulation are both

very high, which can be seen in the Figure (3.2).

Figure 3.2: Consumption Path, Wealth Accumulation and GDP Growth

Stock of Robots vs. Conventional Machines

From Figure (3.3), we can see that as time goes by the gap between the stock of

robots and the stock of conventional machines is widened in both types of robots.

Multiplicative Robots even outnumber conventional machines right from the begin-

ning. In terms of growth rates, robots even increase faster than non-human wealth.

Although the Additives Robots does increase faster in the initial periods, the rate of

its’ change decreases faster making it is less than 10% after 12 years and converge

14 See footnote (12)
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to the same level with consumption growth of 5.59% 15 . While the multiplicative

grows slower in the first place, the rate of change reduces slowly and converge to

10.53% after 77 years 16 . The economy will employ even more Multiplicative

Robots than Additives Robots given our choice of robots’ productivity. There is

one more point worth noting that although during the first 10 years, Multiplicative

Robots grows at lower rates, it generates much higher growth rates in non-human

wealth compared to Additives Robots. This is because Multiplicative Robots are not

the simple addition into the workforce but instead help to increase the productivity

of the whole workforce which helps to generate much more output. This explains

the fast-growing of the total wealth and GDP that we have seen in Figure (3.2).

15 Same with the convergence of consumption path, which is the proof of the balanced growth path in
the next part

16 See footnote (15)
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Figure 3.3: Robots vs. Conventional Machines

Balanced Growth Path

In the long run, for both cases, the economy converges to balanced growth paths

where all the variables grow at the same rates. We already see that some proof

of these in the previous parts, where over time, consumption growth rates are the

same with the growth rate in stock of robots and non-human wealth, which can

be visualized in (Figure (3.4)), making their ratios constant. As per Figure (3.5),

consumption over wealth ratio while converges to the time preference rate θ with
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Additives Robots, it converges to a much higher level (q∗ is always θ plus a positive

number).

Figure 3.4: Growth rates of Consumption and Total Wealth

Figure 3.5: Convergence of Consumption over Wealth Ratio

The higher consumption stream under Multiplicative Robots can also be seen through

the savings rate convergences. Over time, the household saves more and more un-

der Additives Robots, while they spend more and more under Multiplicative Robots.
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From the below figure, after reaching the balanced growth path, the household saves

only 47.95% of their incomes under Multiplicative Robots, while they save 81.4%

under Additives Robots.

Figure 3.6: Convergence to Constant Saving Rates

This can be explained that under Multiplicative Robots, household human wealth

(labor income) accumulates over time since they can expect higher and higher

wages. On the other hand, under Additives Robots, wage stays constant, their hu-

man wealth is constant. Therefore, the only way for a household to accumulate more

wealth is to save more (meaning they reinvest more into the capital and robots). This

can be seen through Figure (3.7) of human income shares in the national income.

As H stays constant, the wage is also constant while output grows as the stock of

robots grows, the human shares in national incomes reduces toward zero in the long

run for the model with Additives Robots. While in the model with Multiplicative

Robots, these shares converge to a constant positive ratio (0.419).
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Figure 3.7: Human Share in National Incomes

3.6 Conclusion

In this chapter, we have seen that for producers to utilize Multiplicative Robots,

there is not only profitability condition but also participation conditions. While

profitability condition requires that the new rate of return (either on conventional

machines or robots) is higher than the rate in the initial steady-state, making interest

rate jumps to a very high level of 19.7% from the initial value of 4%. However,

that is not enough for producers to decide whether to use robots. That is because of

the way Multiplicative Robots affect real wages. Human labor, under the support

of robots, is now having much higher productivity and will demand much higher

wages. Unlike the Additive Robots case that real wage reduced permanently by

16.6%, not only the initial drop is less under Multiplicative Robots (8.21%) but it

increases fast after that, surpassing the initial steady-state level only after 3 years.

The extra output created by higher efficient labor is hence used to pay higher wages

for labor. There is no resource left to finance the cost of Multiplicative Robots 17.

17 This is due to the use of a constant return to scale production function.
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The use of markup is then necessary, to redistribute resources from conventional

capital and labor to Multiplicative Robots. Producers use the same markup rate to

adjust down the marginal products for conventional machines and labor to partially

pay returns on robots. The more robots are used, the higher the markup ratios before

it converges to a constant value along the balanced growth path.

Besides, to have markups even from the initial steady-state, I introduce the overhead

labor cost into the model. The way overhead labor cost requires markups is similar

but in the opposite way. Overhead labor reduces effective labor, but producers still

have to pay full labor costs, causing not enough output produced. Hence, rates of

return are only a fraction of marginal products.

Unlike the model with Additive Robots where we have closed-form solutions for

the first-period variables. To have a stable convergence in the longterm, we need to

use a numerical method for the model with Multiplicative Robots. This is because

with wages keep increasing infinitely, there is no way to estimate the human wealth

at any time. No matter how good is our estimation there will always be an error in

obtaining the true value for first-period value. Theoretically, we know that markup

ratios and consumption over wealth ratio need to converge. Hence, I need to use the

linearization of these variables to derive the movement of other variables.

Compared to Additive Robots, Multiplicative Robots create much better economic

growth. Not only first-period consumption drops only 26.6% (vs. 58.1% under

Additive Robots), but also later, consumption, total wealth, and total output grow at

a much faster rate which converges to 10.53% along the balanced growth path (vs.

5.59% under Additive Robots).

For both cases, the stock of robots increases even faster than total wealth. Additive

Robots increase very fast in the first periods, from more than 50% compared to

around 30% only of Multiplicative Robots. However, total wealth increases faster
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with Multiplicative Robots, making it a more effective investment. Over time, the

growth rate of Additive Robots reduces fast, being less than 10% in just 12 years,

while it takes around 77 years for Multiplicative Robots’ growth rates to convert to

10.53% in the balanced growth path.

Another worth mentioning point is that Multiplicative Robots is a more effective

investment even though the savings rate from the household is much lower than

what they do under Additive Robots. Real wage reduces and stays constant over

time under Additive Robots, while workers can expect higher and higher wages

with the support of Multiplicative Robots. Hence, not just total wealth but human

wealth is also accumulated over time. Therefore the only way for households under

Additive Robots to invest more (or maintain their investment) is to save more.
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Chapter 4

Two Kinds of Robots with Diminish-

ing Population

4.1 Additive Robots vs. Multiplicative Robots

In this last chapter, I include both kinds of robots at the same time in the economy to

study the combined net effect of using both types of robots in the economy. Before

that let do a summary of the main results that we obtained in the previous two

chapters.

Looking at table 4.1, both kinds of robots - satisfied profitability condition - when

used would create economic growth. We will have perpetual growth in consump-

tion, in total wealth (and hence lifetime welfare). However, the main difference lies

with the real wage. The two types of robots have two different mechanisms and thus

create two opposite forces on human labor’s real wage.

Additive Robots are just a simple extension of the labor force which is similar to

an increase in population. Hence, in the Production Inputs Frontier, the new market

equilibrium point is achieved just by moving along (down) the curve, resulting in

an increase in the interest rate and a decline in wage. Multiplicative Robots, on

the other hand, works like technology progress factor, increasing the productivity

of human labor even without any population growth. Hence, the application of

Multiplicative Robots shifts the curve outward. In the short run, it might still result

in a higher interest rate and lower wage. But with the constant shift of the frontier

outward, there will be a point where wage starts to increase higher than the initial
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Variables Multiplicative Robots Additive Robots
Markups Increases over time and then converges to a

constant level
Does not change (from the
initial steady state level)

Interest
Rates • Jumps to a higher level r ≥ rss (under the

profitability condition)

• Later, decreases and converges (due to
the behavior of markups) but still higher
than initial level.

• Jumps to a permanently
higher level r ≥ rss (un-
der the profitability con-
dition)

Real
Wage • Might drop down in the first period

• Rapidly grows as the stock of robots in-
creases, pushing up the human’s produc-
tivity

• Depressed to a perma-
nently lower level

Consumption
• Drops in the first period (requires numer-

ical method - use the convergence of con-
sumption to wealth ratio - to identify)

• Later, continue grows perpetually with a
positive but decreasing rate

• Growth rate converges to a constant level
(same with wealth accumulation growth
rate) during balanced growth path.

• Drops initially (due to
lower expected human
wealth)

• Grows at a constant rate
(same with wealth accu-
mulation growth rate.

Table 4.1: Comparison of Main Results under Additive Robots vs. Multiplicative
Robots

equilibrium point, making both wage and interest rate increase over time.

Hence, it would be a very interesting question to see which force is stronger and

under which conditions we can ensure that wages will not fall.

Another point for this chapter, motivated by the case of Japan, a country is suffering

from negative population growth. Japan is not the only country experiencing a

shrinking population but is one of the largest declines1

1 https://www.ft.com/content/29d594fa-5cf2-11e9-9dde-7aedca0a081a
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Figure 4.1: Production Factor Frontier

The change in the interest rate in both cases are due to the behavior of markups. In this graph, we
abstract it away from those effects. Hence, the application of robots will result in an immediate jump
in the interest rate only.

Figure 4.2: World Largest Population Declines

Despite that, Japan still enjoys economic growth, a high living standard, and very

low interest rates. At the same time, Japan is also one of the countries with the high-

est robot application. By considering the scenario when the population is shrinking,
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we can see if my model of both types of robots can explain the case for Japan that

with the introduction of robots can help send the economy into a spiral of perpetual

growth, increases of wages and low interest rates.

4.2 Model Pre-Setup Conditions

4.2.1 Effective Labor Market

The first step in explaining the model is the re-categorization of the labor market,

which enables the use of both kinds of robots. Additives Robots and Multiplicative

Robots transform the human labor market in two different ways. As a result, for

both of them being used, we need to differentiate two different types of labor or two

types of jobs.

Labor type A:

This type of labor (which I refer to as worker type A) does jobs (which I refer to

as type A jobs) that are repetitive and easy to be done or substituted by Additive

Robots. Denote the Effective Labor type A as LA then it is the combination of

worker type A and Additive Robots. We follow the usual setup used in Chapter 2:

LA
t = ΛARA

t +HA
t (4.1)

in which RA is the number of Additive Robots, ΛA is Additive Robots’ productivity

compared to worker type A, and HA is the number of worker type A.

Labor type M:

This type of labor (which I refer to as Worker type M) does jobs (which I refer to

as type M jobs) that are not be able to fulfill do by robots. Hence, Multiplicative

Robots can help to increase worker type M’s productivity only but can not be able

to replace them. Denote the Effective Labor type M as LM then we follow the setup
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used in chapter 3:

LM
t =

(
1+ΛMRM

t

)
HM

t (4.2)

in which RM is the number of Multiplicative Robots, ΛM is Additive Robots com-

pared to worker type M, and HM is the number of Worker type M.

Then, the Total Effective Labor Market is the function G
(

LA,LM
)

with G(.) is

homogeneous of degree 1 such that:

L = G
(

LA,LM
)
=
(

LA
)ρ (

LM
)1−ρ

(4.3)

Denote Effective Labor Ratio as φt =
LA

LM then by constant return to scale proper-

ties, we have:

G
(

LA,LM
)
= LMg(φ) with g(φ) = φ

ρ (4.4)

Marginal Effective Labor of Worker (MeLW )- Marginal Effective Labor of

Robots (MeLR) measure how many units of Effective Labor L we can achieve with

every one extra unit of each type of labor and each type of robots respectively.

MeLWA =
∂G
(

LA,LM
)

∂HA =
∂

(
LMg(φ)

)
∂HA = LMg′(φ)

∂φ

∂HA

= LMg′(φ)
1

LM
∂LA

∂HA = g′(φ)

MeLWM =
∂G
(

LA,LM
)

∂HM =
∂

(
LMg(φ)

)
∂HM =

∂LM

∂HM g(φ)+LMg′(φ)
∂φ

∂HM

=
(

1+ΛMRM
)

g(φ)+LMg′(φ)LA −1
(LM)2

(
1+ΛMRM

)
=
(

1+ΛMRM
)(

g(φ)−φg′(φ)
)

=
(

1+ΛMRM
)
(1−ρ)g(φ)
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MeLRA =
∂G
(

LA,LM
)

∂RA =
∂
(
LMg(φ)

)
∂RA = LMg′(φ)

∂φ

∂RA

= LMg′(φ)
1

LM
∂LA

∂RA = ΛAg′(φ)

MeLRM =
∂G
(

LA,LM
)

∂RM =
∂
(
LMg(φ)

)
∂RM =

∂LM

∂RM g(φ)+LMg′(φ)
∂φ

∂RM

= ΛMHMg(φ)+LMg′(φ)
LA

HM
−ΛM(

1+ΛMRM
)2 = ΛMHM

(
g(φ)−φg′(φ)

)
= ΛMHM(1−ρ)g(φ)

Lastly, we have:

HA +HM = H

4.2.2 Production Function and Total Marginal Products

We continue with the simple Cobb Douglas production function F(K,L)=KαL1−α .

The only difference is now L is the Total Effective Labor function: L =G
(

LA,LM
)

.

Denote the Effective Capital Intensity as normal k = K
L then:

F(K,L) = L f (k) with f (k) = kα

Hence, we have the following usual results:

Marginal Product of Conventional Machines

MPK =
∂F(K,L)

∂K
= f ′(k) (4.5)

Marginal Product of Total Effective Labor

MPL =
∂F(K,L)

∂L
= f ′(k)− k f ′(k) = (1−α) f (k) (4.6)

While MPK is straightforward, MPL needs some further explanation. MPL mea-

sures how many final products are produced if there is one more extra unit of ef-

fective labor. Total Effective Labor can be changed by the changes of four compo-
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nents: worker type A, worker type B, Additive Robots, and Multiplicative Robots.

Take Additive Robots as an example, the mechanism is that: one extra unit of Ad-

ditive Robots will create MeLRA units of Effective Labor. In turn, each unit of this

extra effective labor will create MPL units of the final product. Hence, the Total

Marginal Product of Additive Robots should be:

MPRA = MPL×MeLRA = ΛA(1−α) f (k)g′(φ) (4.7)

With the same logic we have the followings:

Total Marginal Product of Multiplicative Robots

MPRM = MPL×MeLRM = ΛMHM(1−α) f (k)(1−ρ)g(φ) (4.8)

Total Marginal Product of Worker type A

MPLA = MPL×MeLWA = (1−α) f (k)g′(φ) (4.9)

Total Marginal Product of Worker type M

MPLM = MPL×MeLWM =
(

1+ΛMRM
)
(1−α) f (k)(1−ρ)g(φ) (4.10)

4.2.3 Overhead Labor and Return Rates

As explained in the chapter 3, whenever we have Multiplicative Robots in the

model, we encounter the issue with “Solow residuals” as outputs need to cover

for both cost of Multiplicative Robots and increased wage for higher productivity

human labor.

Hence, we need to use the markup rate to scale down the payments to all production

inputs compared to their respective marginal product. In other words, return rates

for all inputs are only the (same) fraction of marginal product.
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We have the following system of equations of return rates:

rK =
1
µ

MPK =
1
µ

f ′(k)

rRA
=

1
µ

MPRA =
1
µ

ΛA(1−α) f (k)g′(φ)

rRM
=

1
µ

MPRM =
1
µ

ΛMHM(1−α) f (k)(1−ρ)g(φ)

vA =
1
µ

MPLA =
1
µ
(1−α) f (k)g′(φ)

vM =
1
µ

MPLM =
1
µ

(
1+ΛMRM

)
(1−α) f (k)(1−ρ)g(φ) (4.11)

Again, we do not want markups to become abrupt after the introduction of robots.

We would impost “overhead labor” even from the initial steady state. So that even

in the initial state there exist markups.

Although all the marginal products above are not affected in formulas. Their changes

are through the changes of effective labor ratio φ and effective capital intensity k

since now only a fraction (1− h̄) of labor is participating in the production (while h̄

portion of time is wasted). Thus we have:

Effective Labor Ratio

φ =
LA

LM =
ΛARA +HA(1− h̄)(

1+ΛMRM
)

HM(1− h̄)
(4.12)

Total Effective Labor

L = G
(

LA,LM
)
=
(

1+ΛMRM
)

HM(1− h̄)g(φ) (4.13)

= g′(φ)LA +
(

g(φ)−φg′(φ)
)

LM

= ΛAg′(φ)RA +g′(φ)HA(1− h̄)+(1−ρ)g(φ)
(

1+ΛMRM
)

HM(1− h̄)

Effective Capital Intensity

k =
K

G
(
LA,LM

) = K(
1+ΛMRM

)
HM(1− h̄)g(φ)

(4.14)
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and Total Output

Y = F(K,L) = L f (k) =
(

1+ΛMRM
)

HM(1− h̄)g(φ) f (k)

= f ′(k)K +(1−α) f (k)

(
g′(φ)HA(1− h̄)+ΛAg′(φ)RA + ...

...+(1−ρ)g(φ)
(

1+ΛMRM
)

HM(1− h̄)

)

4.3 Model Solving

4.3.1 Initial Steady State

Total Labor and Labor Multiplier

We assume that in the initial steady-state the effective labor takes a similar form.

L =
(

HA
)ρ (

HM
)1−ρ

(4.15)

which is different from both of the previous chapters. Hence, we need to recalculate

all the initial steady-state values.

For the baseline model, we consider the model under fixed H, before allowing H to

be exogenously exponentially decline over time, meaning Ht = H ∀t or Ḣ
H = 0.

Denote capital intensity k = K
L , the profit maximization problem is

max
(K,HA,HM)

L f (k)− rKK− vAHA− vMHM

such that: L =
(

HA
)ρ (

HM
)1−ρ
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First order conditions:

rK = f ′(k)

vA =
∂L

∂HA f (k)+L f ′(k)
∂k
∂L

∂L
∂HA

=
∂L

∂HA

(
f (k)− k f ′(k)

)
= ρ

(
HM

HA

)1−ρ (
f (k)− k f ′(k)

)
vM =

∂L
∂HM f (k)+L f ′(k)

∂k
∂L

∂L
∂HM

=
∂L

∂HM

(
f (k)− k f ′(k)

)
= (1−ρ)

(
HM

HA

)−ρ (
f (k)− k f ′(k)

)
We assume that the labor market is perfectly mobile i.e. labor is freely movable

between two types of jobs 2 . Hence, no arbitrage condition requires:

vA = vM ⇔ HA

HM =
ρ

1−ρ
⇔ HA = ρH and HM = (1−ρ)H

Then the total labor will be:

L = H(ρ)ρ(1−ρ)1−ρ = (1−ρ)H
(

ρ

1−ρ

)ρ

Denote the ηL = L
H = ρρ(1−ρ)1−ρ as labor multiplier, which is a constant, then

we have Total Effective Labor and real wage:

L = ηLH

v = ηL

(
f (k)− k f ′(k)

)
(4.16)

which are both constant since effective capital intensity k should be at the steady-

state level.

Since ηL is a constant, the growth rate of total capital L will be the same with

population growth, which is correct in the steady state:

L̇
L
− Ḣ

H
=

L̇
L
−n = 0

2 Will be discussed in details in the next section
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Markup Rates

As explained in the chapter 3, we continue to use the overhead labor cost even in the

initial steady state, meaning only (1− h̄)L effectively produce final goods. Hence,

the capital intensity is:

k =
K

(1− h̄)L
=

K
(1− h̄)ηLH

And total output is:

Y = L(1− h̄) f (k) = ηLH(1− h̄) f (k)

At the same time, we know that we need to use the markups rate to adjust all the

marginal products to achieve zero profit. Hence, we can infer the markup value as

following 3 :

TC =
1
µ

(
rKK + vH

)
= Y

⇔ µY = f ′(k)K +ηL

(
f (k)− k f ′(k)

)
H

= f ′(k)K +
(

f (k)− k f ′(k)
)

L(1− h̄)+
(

f (k)− k f ′(k)
)

Lh̄

= Y +
(

f (k)− k f ′(k)
)

Lh̄

⇔ µ−1 =

(
f (k)− k f ′(k)

)
Lh̄

L(1− h̄) f (k)
⇔ µ =

(1−α)h̄
(1− h̄)

+1 (4.17)

the same expression that we got in the chapter 3.

Steady State Levels

The growth rate of consumption per working day:

c̃ =
c
H

⇔
˙̃c
c̃
=

ċ
c
− Ḣ

H
=

1
µ

f ′(k)−δ −θ −n (4.18)

3 where we use Euler theorem that
Y = F(K,L(1− h̄) = f ′(k)K +

(
f (k)− k f ′(k)

)
L(1− h̄)
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While Effective Capital Intensity k has growth rate of:

k̇
k
=

K̇
K
− L̇

L

On the other hand, from capital accumulation rules of production side we have:

K̇
K

=
Y −δK− c

K
=

L(1− h̄) f (k)−δK− c̃H
K

=
L(1− h̄) f (k)

kL(1− h̄)
− c̃H

kHηL(1− h̄)
−δ =

f (k)
k
− c̃

ηL(1− h̄)k
−δ

⇔ k̇ = f (k)− c̃
ηL(1− h̄)

− (δ +n)k (4.19)

At the steady state we have ˙̃c
c̃ = k̇ = 0. Hence the followings characterize the initial

steady state:

kss =

(
µss(δ +θ +n)

α

) 1
α−1

c̃ss = (1− h̄)ηL

(
f (kss)− (δ +n)kss

)
rK
ss =

1
µss

f ′(kss) = δ +θ +n

rss = θ +n

vss =
1

µss
ηL(1−α) f (kss)

From the above expression, we see that all the variables will only stay constant

when there is no change in population which translated into no changes in H. When

H does change, although the capital intensity is constant, aggregate variables such

as total wealth and consumption change at the same rate with population, keeping

only the per working day (per H) variables are constant.

Kt = kssηL(1− h̄)Ht

ct = Ht c̃ss
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4.3.2 Model Main Assumptions

Assumption 4.1: Labors can freely move between two types of jobs.

We can think that there are two types of jobs: type A and type M. Another alternative

set up is that a representative worker will have two types of tasks for his daily work,

one is type A tasks in which he can let Additive Robots replace him (depends on

the robots’ productivity ΛA), other is type M tasks in which he has to do it but can

be helped by Multiplicative Robots (with productivity ΛM). Depends on the market

equilibrium conditions (daily wages paid to each type of job), he will decide how

much time he wants to spend for type A jobs: HA and how much time he does type

M jobs: HM. Hence by the no-arbitrage condition, we require the following for all

periods:

vA = vM ⇔ 1
µt

MPLA =
1
µt

MPLM

From (4.9) and (4.10) we have:

(1−α) f (k)g′(φ) =
(

1+ΛMRM
)
(1−α) f (k)(1−ρ)g(φ)

⇔ g′(φ) =
(

1+ΛMRM
)
(1−ρ)g(φ) (4.20)

⇔ ρ(φ)ρ−1 =
(

1+ΛMRM
)
(1−ρ)(φ)ρ

⇔ φ =

(
ρ

1−ρ

)
1(

1+ΛMRM
) (4.21)

Note that the above results only hold when we have perfect mobility between two

types of jobs. Later, when we consider a different scenario, they might not behold.

Assumption 4.2 :Capital are perfectly malleable.

This assumption is a combination of Assumption (2.1) and Assumption (3.1) in

two previous chapters. Capital is freely converted among conventional machines,

Additive Robots, and Multiplicative Robots.

There are three implications under this assumption. Firstly, as long as we have both
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types of robots, the returns that investors earned from both of them need to be the

same.

rRM
= rRA

⇔ 1
µt

MPRA =
1
µt

MPRM

Substitute (4.7) and (4.8), we have the expression for capital ratio:

ΛA(1−α) f (k)g′(φ) = ΛMHM(1−α) f (k)(1−ρ)g(φ)

ΛAg′(φ) = ΛMHM(1−ρ)g(φ)

φ =
ΛA
ΛM

(
ρ

1−ρ

)
1

HM (4.22)

which will behold whenever we have both types of robots used in the economy.

The second implication requires that the rate of return for conventional machines

needs to equate the rate of return for each type of robots. Use the formula for MPK

and (4.7), the first equality give us effective capital intensity in terms of labor ratio:

rK = rRA
⇔ f ′(k) = ΛA(1−α) f (k)g′(φ)

⇔ k =
(

α

1−α

)(
1

ρΛA

)
(φ)1−ρ (4.23)

Combine the formula for MPK and (4.8), we have another expression for the effec-

tive capital intensity in terms of labor ratio:

rK = rRM
⇔ f ′(k) = ΛMHM(1−α) f (k)(1−ρ)g(φ)

⇔ k =
(

α

1−α

)(
1

(1−ρ)ΛMHM

)
(φ)−ρ (4.24)

Note that (4.23) and (4.24) are linked by (4.22). In the scenario when both types of

robots are used, either (4.23) or (4.24) and (4.22) are enough. However, in scenario

when only one type of robots is used, we need to use (4.22) and respective condition

for that type of robots.
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Assumption 4.3 : Additive Robots are perfect substitution for human labor.

This is the assumption we used in the second chapter. As long as Additive Robots is

used, the no-arbitrage condition requires that the return rate of an Additive Robots

is 1
ΛA

human labor do type A jobs.

By construction, it is achieved automatically:

vA = (1−α) f (k)g′(φ)

rRA
= ΛA(1−α) f (k)g′(φ)

However, if both previous assumptions hold, we have wages for both types of work-

ers are the same, and returns on both types of robots are also the same. Hence, the

return on Multiplicative Robots also need to satisfy the following condition:

rRM
= ΛAvM

ΛMHM(1−α) f (k)(1−ρ)g(φ) = ΛA

(
1+ΛMRM

)
(1−α) f (k)(1−ρ)g(φ)

ΛMHM = ΛA

(
1+ΛMRM

)
(4.25)

4.3.3 Labor Market Adjustment

For convenience, in every period, we denote the fraction of human labors who do

type M job is ϕt , meaning:

HM
t = ϕtH ⇔ HA

t = (1−ϕt)H

In this framework model, we focus on the scenario where we have both types of

robots with perfect mobility for human labor. In other words, all assumptions in the

previous section are held which can be used to identify the value and changes of ϕt .
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Stock of Additive Robots

From effective labor ratio in (4.12) and (4.20), we have:

φ =
ΛARA +(1−ϕ)H(1− h̄)(

1+ΛMRM
)

ϕH(1− h̄)
=

(
ρ

1−ρ

)
1

1+ΛMRM

⇔ ΛARA +(1−ϕ)H(1− h̄) =
ρ

1−ρ
ϕH(1− h̄)

⇔ RA =
H
ΛA

(1− h̄)
(

ϕ

(
ρ

(1−ρ)
+1
)
−1
)
=

H
ΛA

(1− h̄)
(

ϕ

(1−ρ)
−1
)

(4.26)

Stock of Conventional Machines

From (4.23), effective capital intensity in (4.14) and effective labor ratio (4.20) we

have:

K(
1+ΛMRM

)
ϕH(1− h̄)g(φ)

=

(
α

1−α

)(
1

ρΛA

)
(φ)1−ρ

⇔ K(
1+ΛMRM

)
ϕH(1− h̄)

=

(
α

1−α

)(
1

ρΛA

)
φ

=

(
α

1−α

)(
1

ρΛA

)(
ρ

1−ρ

)
1

1+ΛMRM

⇔ K = ϕH
(

α

1−α

)
1− h̄

ΛA(1−ρ)
(4.27)

Stock of Multiplicative Robots

Directly from (4.25) we have stock of Multiplicative Robots formula:

RM =

(
ΛM
ΛA

ϕH−1
)

1
ΛM

=
1

ΛA
ϕH− 1

ΛM
(4.28)
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Total non-human wealth

wn = ϕH
(

1
ΛA

+

(
α

1−α

1− h̄
ΛA(1−ρ)

)
+

1
ΛA

(1− h̄
(1−ρ)

)
−H

1
ΛA

(1− h̄)− 1
ΛM

=
1

ΛA
ϕH

(
1+

1− h̄
1−ρ

(
α

1−α
+1
))
−H

1
ΛA

(1− h̄)− 1
ΛM

⇔ 1+ΛMwn =
ΛM
ΛA

(
ϕH

(
1− h̄

(1−ρ)(1−α)
+1
)
−H(1− h̄)

)
= H

ΛM
ΛA

(
ϕ

(
1− h̄

(1−ρ)(1−α)
+1
)
− (1− h̄)

)
(4.29)

In the initial period, total wealth is still at Kss, (4.29) results in the first period value

ϕ0. For consequent periods, wealth can be identified using the instantaneous flow

of wealth ẇn which helps us to calculate the value of ϕt in each period.

The important result we can observe from the above expressions is that ϕt needs to

increase over time as wealth accumulates.

ẇ > 0 ⇔ ϕ̇ > 0 (4.30)

This is true for both cases of fixed H and diminishing H. When H decreases over-

time, ϕt will need to increase even faster to keep the right-hand side still growing4.

4.3.4 Markups and Market Rates during Labor Market Adjust-

ment

Markups

In the previous section, we have obtained the value of ϕt , meaning we have the labor

market allocation in each period. It follows that we can have the value of effective

labor ratio φt in (4.22) and effective capital intensity kt in (4.23) (by using with the

value of RM
t in (4.28)). To derive the interest rate and other return rates, we first

need the expression for markups to adjust the marginal products system of equation

4 Just for discussion if the economy is being able to keep population growth as normal, i.e. H increases
over time, then there would be less pressure on the labor market adjustment to keep wealth grow.
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(4.11).

We can derive the markup rate in the same manner in the chapter for Multiplicative

robots. Below, I present an alternative way. Although they give the same result, this

method shows the characteristic of markups. As all the marginal products are scaled

down by the same markup, so is the total cost. And that lowered total cost needs

to equate to actual total output under perfect competition. From another point of

view, we need to scale up the actual total output to have the normal total cost (in the

case we do not need to use markups) which is µYt . In other words, the difference

between that normal total cost with the actual output is due to the cost that needs to

cover the overhead labor and to finance Multiplicative Robots if no markup is used.

Note that wages for both types of labor are same, and is equal to a ΛA fraction

of return on Multiplicative Robots which in turn equals to returns on conventional

machines. Then we have:

µY −Y = MPL×Hh̄+MPRMRM =
1

ΛA
f ′(k)Hh̄+ f ′(k)RM = f ′(k)

(
1

ΛA
Hh̄+RM

)
µ−1 =

f ′(k)
Y

(
1

ΛA
Hh̄+RM

)
=

(1−α) f (k)ΛMHM(1−ρ)g(φ)
(1+ΛMRM)HM(1− h̄)g(φ) f (k)

(
1

ΛA
Hh̄+RM

)
=

(1−α)(1−ρ)

(1− h̄)
ΛM

1+ΛMRM

(
1

ΛA
Hh̄+RM

)
=

(1−α)(1−ρ)

(1− h̄)

[
1− 1

1+ΛMRM

(
1− ΛMHh̄

ΛA

)]
Since we have all assumptions hold, we then can apply (4.25):

µ−1 =
(1−α)(1−ρ)

(1− h̄)

[
1+

ΛA
ΛMϕH

(
ΛMHh̄

ΛA
−1
)]

⇔ µ =
1
ϕ

(1−α)(1−ρ)

(1− h̄)

[
h̄− ΛA

ΛMH

]
+

(
(1−α)(1−ρ)

(1− h̄)
+1
)

(4.31)

When H is fixed, the markup will only depend on the fraction ϕ of the human labor

workforce that does type M jobs. However, the movement of markup depends on

the sign of
(

ΛMHh̄−ΛA
ΛMH

)
. If it is negative then markups increase with the increase in

ϕ and vice versa. The first component ΛMHh̄ is the increase in the overhead labor

cost of the whole human workforce due to the increase in productivity under the
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support of Multiplicative Robots. In other words, although Multiplicative Robots

help the human workforce H increases its productivity by ΛMH, a h̄ fraction of that

increase is still wasted5. The higher this new overhead labor cost is, the higher the

markup value is.

On the other hand, using a unit of Additive Robots does not encounter any extra

overhead labor cost. As a result, using Additive Robots reduces the value of markup.

The difference between these two forces determines the movement of markups6.

Real Wage

Under two main assumptions, we know that both types of robots and conventional

machines have the same return rate which equates 1
µt

f ′(kt) with kt is the effective

capital intensity of period t. At the same time wages for two types of jobs are also

same and linked to robots and machine return rates by multiplier ΛA. It follows that:

v =
1

µΛA
f ′(k) ⇔ lnv =− ln µ + ln

(
α

ΛA

)
+(α−1) lnk

⇔ d lnv =−d ln µ− (1−α)d lnk

⇔ v̇
v
=− µ̇

µ
− (1−α)

k̇
k

As µ is most likely increase over time, We need to examine what happens to the

effective capital intensity k. From (4.23), we have:

lnk = ln
(

α

1−α

1
ρΛA

)
+(1−ρ) lnφ

⇔ d lnk = (1−ρ)d lnφ ⇔ k̇
k
= (1−ρ)

φ̇

φ
(4.32)

5 Under the assumption that human labor does not change their working pattern, i.e h̄ is fixed.
6 With our choice of parameter values, it is indeed negative. However, it is can be positive. In general,

the condition for it to be positive is when we have a quite high level of overhead labor cost ratio.

Chapter 4 114



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

Which in turns, depends on the rate of change for labor ratio φ . From (4.22), we

have:

lnφ = ln
(

ΛA
ΛM

ρ

1−ρ

)
− lnϕ− lnH

⇔ d lnφ =−d lnϕ−d lnH ⇔ φ̇

φ
=− ϕ̇

ϕ
− Ḣ

H

Hence, the rate of change for effective capital intensity is:

k̇
k
=−(1−ρ)

(
ϕ̇

ϕ
+

Ḣ
H

)
(4.33)

Since ρ−1< 0, effective capital intensity moves opposite of labor market allocation

ϕ and population. Previous analysis indicates that ϕ would increase. Thus, the

effective capital intensity would reduce over time. In the scenario that Ḣ
H < 0, the

decrease of k will be slower.

The final rate of change of real wage is:

v̇
v
=− µ̇

µ
+(1−α)(1−ρ)

(
ϕ̇

ϕ
+

Ḣ
H

)
(4.34)

When H is fixed, as the labor market is adjusting, the increase of ϕ results in the

increase in wage. However, since wage is adjusted using µ to finance overhead cost

and Multiplicative Robots, the increase in µ will slow down the wage expansion.

When H is decreasing, it offsets partially the effect of labor market adjustment and

also slows down wage expansion. If we ignore the effect from markups 7 , real wage

will only not increase under the condition that:

ϕ̇

ϕ
+

Ḣ
H

< 0 ⇔ ϕ̇

ϕ
<−n

The above condition says that wage will decline only when the rate at which the

labor force shifting from type A to type M jobs is slower than the rate of decrease

in population. That means the movement of wages depends on the effectiveness of

7 In either case when the real wage is increasing or decreasing, markups just mitigate the changes of
wages by diverting partially to return rates of other inputs.
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the labor market.

Interest Rate

Since r = rK−δ , to see the change of interest rate, we need to examine the expres-

sion for the return rate of conventional machines:

rK =
1
µt

f ′(kt) =
1
µt

αkα−1

⇔ ṙK

rK =− µ̇

µ
+(α−1)

k̇
k
=− µ̇

µ
+(1−α)(1−ρ)

(
ϕ̇

ϕ
+

Ḣ
H

)
(4.35)

which is exactly same with (4.34). It is not surprising since return rate are linked to

wage by no arbitrage condition for Additive Robots.

r = rK−δ = ΛAv−δ

Thus, the movement of all return rates are exactly same with changes of real wage.

It follows that interest rate should also increase over time during the period of labor

market adjustment.

In summary, during the adjustment phase of the labor market, real wage will most

likely increase although the increase of the markup rates will mitigate the movement

of wage. Since during this phase, we still have type A labor, all the market return

rates will be binding to the wage of labor type A through ΛA. That is why all the

market rates will move parallel to the real wage. The final result will still depend on

the effectiveness of the labor market (how quickly the labor is shifting from type A

to type M) to win over the effect from the markup rates. We also have shown that if

the labor market shifting rate is even slower than the decrease in the population, it

is highly that real wage (and thus all other rates) will decrease.
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4.3.5 Long run after Labor Market Adjustment

Recalculation after ϕt reaches its upper bound?

So far, all the above analyses hold during the process ϕ increases or the process

that the labor market is adjusting. The next question we would like to ask is what

happens if all the labor force finishes moving. It does not simply mean that we just

impose the value ϕ = 1 in all the above analysis. Because when all the human labor

force has moved, there would be no human worker who does type A jobs HA = 0.

That also means the no-arbitrage condition which makes real wages for two types

of jobs equate in (4.20) is no longer valid, as well as comparable returns between

robots and human (who do type A jobs). That is why we are not able to generate

the relationship between RM and ϕH (now is H) as in (4.25) while (4.22) and (4.23)

both still hold, only instead of HM is full H.

Total Wealth, Conventional Machines and Robots

As there is no more human labor doing type A job, labor ratio and and effective

labor: will be:

φ =
ΛARA(

1+ΛMRM
)

H(1− h̄)
L =

(
1+ΛMRM

)
H(1− h̄)g(φ)

With these new relationships, we derive the new expression for conventional ma-

chines and two types of robots. From the expression of effective capital intensity

and result in and (4.22) effective labor we have the expression of conventional ma-
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chines.

k =
K
L
=

K(
1+ΛMRM

)
H(1− h̄)g(φ)

=

(
α

1−α

)(
1

ρΛA

)
φ

1−ρ

K =
(

1+ΛMRM
)

H(1− h̄)
(

α

1−α

)(
1

ρΛA

)
φ

=
(

1+ΛMRM
)

H(1− h̄)
(

α

1−α

)(
1

ρΛA

)
ρΛA

(1−ρ)ΛMH

=

(
α

1−α

)(
(1− h̄)

ΛM(1−ρ)

)(
1+ΛMRM

)
(4.36)

From new expression for labor ratio and (4.22), we have formula of Additive Robots

ΛARA(
1+ΛMRM

)
H(1− h̄)

=
ρΛA

(1−ρ)ΛMH

RA = (1− h̄)
(

ρ

1−ρ

)((
1+ΛMRM)

ΛM

)
(4.37)

Then total non-human wealth would be

wn = K +RA +RM

=
(

1+ΛMRM
) 1

ΛM

[(
α

1−α

)(
(1− h̄)
(1−ρ)

)
+(1− h̄)

(
ρ

1−ρ

)]
+RM

ΛMwn = (1− h̄)
(

1+ΛMRM
)[(

α

1−α

)(
1

(1−ρ)

)
+

(
ρ

1−ρ

)]
+ΛMRM

1+ΛMwn =
(

1+ΛMRM
)[

(1− h̄)
(

α

(1−α)

1
(1−ρ)

+
ρ

1−ρ
+1
)
+ h̄
]

=

(
1− h̄

(1−α)(1−ρ)
+ h̄
)(

1+ΛMRM
)

(4.38)

We use the above expression to rewrite formulas for conventional machine and
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robots in terms of non-human wealth

RA =
(1− h̄)ρ

ΛM(1−ρ)

(1−α)(1−ρ)

(1− h̄)
(1+ΛMwn)

=
(1−α)ρ

ΛM
(1+ΛMwn) = (1−α)ρwn +

(1−α)ρ

ΛM
(4.39)

RM =

(
(1−α)(1−ρ)

(1− h̄)
(1+ΛMwn)−1

)
1

ΛM

=
(1−α)(1−ρ)

(1− h̄)
wn +

(
(1−α)(1−ρ)

(1− h̄)
−1
)

1
ΛM

(4.40)

K =

(
α

1−α

)(
(1− h̄)

ΛM(1−ρ)

)
(1−α)(1−ρ)

(1− h̄)
(1+ΛMwn)

=
α

ΛM
(1+ΛMwn) (4.41)

Hence, we can see that as long as non-human wealth continues to accumulate, stock

of conventional machines and robots are both increasing.

Markup Rate

To identify markups, we first need to have effective output and total cost:

L = ΛARAg′(φ)+
(

1+ΛMRM
)

H(1− h̄)(1−ρ)g(φ)

Y = f ′(k)K +(1−α) f (k)L

= f ′(k)K +(1−α) f (k)
(
ΛARAg′(φ)+

(
1+ΛMRM

)
H(1− h̄)(1−ρ)g(φ)

)
= f ′(k)K + f ′(k)RA +(1−α) f (k)

(
1+ΛMRM

)
H(1− h̄)(1−ρ)g(φ)

TC =
1
µ

[
f ′(k)(K +RA +RM)+(1−α) f (k)(1−ρ)g(φ)

(
1+ΛMRM

)
H
]
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Zero-profit condition will give us the expression for markups:

µY = Y + f ′(k)RM +(1−α) f (k)(1−ρ)g(φ)
(

1+ΛMRM
)

Hh̄

µ−1 =
h̄

1− h̄
(1−α)(1−ρ)+

αkα−1RM

LMg(φ)kα
=

h̄
1− h̄

(1−α)(1−ρ)+
αRM

LMkg(φ)

=
h̄

1− h̄
(1−α)(1−ρ)+

αRM

LM α
1−α

1
ρΛA

φ
=

h̄
1− h̄

(1−α)(1−ρ)+
RM(1−α)ρΛA

LA

=
h̄

1− h̄
(1−α)(1−ρ)+

RM(1−α)ρΛA
ΛARA =

h̄
1− h̄

(1−α)(1−ρ)+
RM(1−α)ρ

RA

=
h̄

1− h̄
(1−α)(1−ρ)+

RM(1−α)ρ

(1− h̄)
(

ρ

1−ρ

)(
(1+ΛMRM)

ΛM

)
=

(1−α)(1−ρ)

(1− h̄)

(
h̄+

ΛMRM

1+ΛMRM

)
µ =

(1−α)(1−ρ)

(1− h̄)

(
h̄+1− 1

1+ΛMRM

)
+1

=
(1−α)(1−ρ)

(1− h̄)

(
h̄+1− 1− h̄

(1−α)(1−ρ)(1+ΛMwn)

)
+1

= (1−α)(1−ρ)
h̄+1
(1− h̄)

+1− 1
(1+ΛMwn)

(4.42)

Hence, as non-human wealth increases, markup also increases and converges

to the constant level:

µ
∗ = (1−α)(1−ρ)

h̄+1
(1− h̄)

+1 (4.43)

Interest Rate

Interest rate from (4.33) we have:

r = rK−δ =
1
µ

f ′(k)−δ =
1
µ

αkα−1−δ

ṙ
r
= (α−1)

k̇
k
− µ̇

µ

= (1−α)(1−ρ)

(
ϕ̇

ϕ
+

Ḣ
H

)
− µ̇

µ
(4.44)

Under fixed H, after labor market adjustment ϕ̇

ϕ
= 0, the movement of interest rate

totally depends on markup. In the previous part, we know that markup increases

overtime before converting to µ∗. As a result, interest rate would decrease and
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then converge to a constant level when markups converge in the long run after

labor market adjustment.

Under diminishing H, before markup converges, the decrease of interest rate is

more than the scenario with the fixed H due to the contribution of decline in H.

However, we can expect that even after markup has converged, the interest rate

continues to decrease over time as the population shrinking since Ḣ
H < 0.

Real wage

The difference between before and after labor market adjustment is that now real

wage is no longer linked to interest rate through the no-arbitrage condition for Ad-

ditive Robots. The real wage has its normal form based on worker’s productivity.

v =
1
µ

(
1+ΛMRM)

(
f (k)− f ′(k)

))
=

1
µ

(
1+ΛMRM

)
(1−α)kα (4.45)

Under fixed H, from (4.33) effective capital intensity will be fixed. Hence, wages

continue to increase as human productivity keeps increase with the support from

Multiplicative Robots. Although this increase will be offset slightly through the

increase of markup (before the markup gets converged).

Furthermore, under the diminishing population, not just productivity improvement

increases wage, but effective capital intensity k now increases also further making

real wage increase. The effect of markup might be even more negligible in this case.
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4.4 Main Results

4.4.1 Parameters Calibration

Apart from all the parameters’ values that we have used in the previous two chap-

ters, there are two new parameters in this chapter. Firstly is the parameter ρ: labor

market allocation in 4.3. ρ is the percentage of jobs that can be substituted by Ad-

ditive Robots and (1−ρ) is the percentage of jobs that can only be supported by

Multiplicative Robots. There is no preceded value of such a parameter in literature.

Again, I took the hint from (Frey and Osborne 2017), suggesting that approxi-

mately 60% of occupations can be automated by technology. Hence, ρ = 0.6.

The second parameter is the decline growth rate of H when we consider the case

of the population shrinking. For the last 5 years, Japan has been experiencing pop-

ulation shrinking8. The average population growth in the last 5 years for Japan is

−0.2%. Hence,

nH =−0.002

4.4.2 Endogenous Growth

As expected, the application of robots helps to move the economy out of the initial

steady-state and enter endogenous growth.

8 https://www.worldometers.info/world-population/japan-population/
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Figure 4.3: Consumption and Wealth per Capita

In the initial steady-state, all the aggregate variables change at the same speed as

population growth (through the change in H). Hence, they are either constant or

decreasing at the same rate with H. When H is diminishing then they are decreasing,

but the per capita ratios (represented by the ratios over H) still stay constant. As a

result, to see the overall growth, regardless of the change in H, I plot the graphs

with per capita ratios instead of aggregate variables.

From the previous two chapters, we already saw that the use of both types of robots

will result in a reduction in the first period. Hence from the left-hand side of Figure

(4.3), it is no surprise that consumption per capita will drop in the first period, then

perpetually increase and surpass the initial level after around 22 years. Consumption

growth rate increases from 1.1% to almost 4% then reduces slowly and converges

to 2% after 270 years.

Non-human wealth increases very fast initially. The growth rate reduces from al-

most 13% and also converges to 2% just like consumption in the long run.

Chapter 4 123



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

4.4.3 Labor Market Adjustment

As explained in (4.30), and we see in the previous part that non-human wealth does

increase over time, hence labor will adjust over time. Starting from the optimal

Figure 4.4: Labor Market Adjustment

allocation under the initial steady state, workers will slowly move to do type M

jobs. Even though we assume that the labor market is perfectly mobile, meaning

that wage should be equal between two types of jobs vA = vM, there can be two

explanations why workers still move to do type M jobs:

• Firstly, there are more and more Additive Robots are used while there is no

change in the structure of the jobs market (i.e. ρ does not change), there would

be less and fewer jobs left for human labor. Hence, they need to move to other

types of jobs where robots can not replace them.

• Secondly, the prospect that the support of Multiplicative Robots increases work-

ers’ productivity in type M jobs can create the expectation for a higher wage in

the future.

The free movement creates the relative shortage of human labor supply for type A

jobs and relatively excess human labor supply for type M jobs. As a result, wages
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for type A jobs are pulled up while wages for type M jobs are pulled down until the

two are matched in the market equilibrium conditions.

4.4.4 Market Rates - Wages and Interest Rates

Interest Rate Increases Initially then Decreases and Converges

Figure 4.5: Interest Rates

From the interest rate of 4% in the initial steady state, the interest rate will immedi-

ately jump up to 5.2% then continues to increase as the labor market adjusting. This

is expected since in the economy with each type of robot the increases in interest

rate are observable. The effect of Multiplicative Robots causes a higher increase in

the interest rate. As the labor market shift toward type M labor effectively, the inter-

est rate would increase further. Only after the labor market has finished adjusting, if

we do not have the effect of the markup, the interest rate should stay constant at that

high level. But due to more and more Multiplicative Robots are used, the markup

rate increases making interest rates fall. And only when markup has been con-

verged, the interest rate also converges to a constant value of 6.1%. This value must

be higher than the initial steady-state interest rate otherwise robots do not make any

profit for the producer. The long-run interest rate is still higher than it is in the first

period of 5.2%. This is because the stock of Multiplicative Robots later dominates

the Additive Robots, putting a positive effect on the interest rate.
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Real Wage Increases Throughout

Figure 4.6: Wage gaps in Labor Market with and without Adjustment

Different from interest rate, which increases then decreases and converges, real

wage increases through out over time. Although initially, as expected in economy

with each type of robots, there is an initial drop in real wage:

Figure 4.7: Initial Drop in Wage

It takes real wages only around 8 years to bounce back to the initial level. This is

the result ensured by the assumption of a perfectly mobile labor market. As long as

the labor market is effective, the movement of human labor will create an increase

in the real wage. Even though, there are pulldown force from Additive Robots as

well and markup rates. After the labor market finishes adjustment, the increase in

wage is ensured by the use of Multiplicative Robots, which is used to boost human
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labor productivity. When productivity increases, wages will increase.

4.4.5 Real Wage and Inequality

However, in reality, the labor market is not perfectly mobile. Changing jobs requires

training or cost and should not be a short term action. Sometimes it is even impossi-

ble for a worker in type A jobs to move to type M jobs. For example, investing cost

and time to train a cleaner to be a professor might just be the necessary condition

for a successful transition.

However, with more and more number of Additive Robots, there is a constant force

pull down the wage for type A workers. While the bigger the number of Multi-

plicative Robots, the higher the wage for type M workers. The policy implication is

hence such that even there is some movement (if any) is good enough to close the

wage gap between two types of jobs. In Figure (4.8), the lines with marks show vA

Wages under no labor shift are assumed that the allocation in the labor market stays at the initial level (i.e. 40% in type A and
60% in type M. On the other case, labor shift is kept at 3% every period.)

Figure 4.8: Wage gaps in Labor Market with and without Adjustment

and vM if the movement is not allowed in the labor market. The allocation of work-

ers between type A and type M jobs stays at the initial steady-state level. Starting

from the initial gap, the wage gaps between two types of jobs get bigger and bigger
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over time.

For the dashed lines, although the gaps still get bigger over time, it is lesser com-

pared to the total no movement scenario. The encouraged movement will help to

lessen the reduction in wage for type A jobs while depressing the increase in wage

for type M jobs.

It suggests that the government can help to close the gaps by encouraging as much

as possible the labor force to move from type A to type M jobs such as providing

free and frequent training, upgrading skills courses. It might not be as perfect as the

perfect mobile market, it still helps on certain levels. The faster the movement the

better the gaps would be closed.

4.4.6 Fixed vs. Diminishing Population

For this part, we come back with a perfect labor market, where workers are free to

move between two types of jobs. It is still worth to mention that the result would

be only one wage for both types of jobs. Nevertheless, after the labor market has

finished its adjustment, there still be only one wage for type M jobs as there are no

more human workers doing type A jobs.

Faster Labor Market Adjustment

With a very conservative shrinking rate of 0.01%, it takes the labor market around

3 years less to complete the adjustment. When the population gets smaller, wealth

accumulation in the absolute term is bigger (only the per capita ratios same with

fixed H scenario), facilitate a faster increase in ϕ . Higher wealth enables faster

increases in the number of robots (both Additive and Multiplicative Robots), making

more and more type A workers who have jobs replaced need to move to type M jobs.

Chapter 4 128



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

H is decreasing 0.01% every periods

Figure 4.9: Labor Market Adjustment under Fixed vs. Diminishing Population

Real Wage

H is decreasing 0.01% every periods

Figure 4.10: Real Wage under Fixed vs. Diminishing Population

Under both scenarios, real wage will always increase either during the labor market

adjusting as per (4.34) or as per (4.45). However, when the population is decreasing,

wage increases even faster. That is because the human labor supply becomes rela-

tively less, making effective labor L is less. It follows that effective capital intensity

of k = K
L is higher compared to the fixed H scenario. As a result, from (4.45), we

have that wage will increase faster. The shortage of human labor will pull up the
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wage for workers.

Interest Rates

H is decreasing 0.01% every periods

Figure 4.11: Interest Rates under Fixed vs. Diminishing Population

We know that during the process of labor market adjustment, the interest rate will

increase as shown in (4.44) in both scenarios, although the speed is less under di-

minishing H. The difference is after the adjustment. Under fixed H the decrease

in interest rate is due to the use of markups. Hence when markups converge to the

constant µ∗ then interest rate also converges to a constant level of around 6% which

is higher than the initial interest rate of 4%. Hence, profitability condition always

holds, meaning robots is always a benefit to use.

However, under the case where H decreases over time, also from (4.44), the interest

rate will keep falling. As a result, there will be a point where it crosses the initial

interest rate of 4%. That means after that point, it is no longer profitable to use

robots, however, it would be into a quite far future, around 300 years, based on our

choice of parameters.

This can again be explained through the changes of effective capital intensity that
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keeps falling when H is decreasing, making the interest rates fall.

4.5 Regime Switching and Feasibility Period

4.5.1 Additive Robots Participation Condition

From the expression for Additive Robots (4.26), we see that the stock of Additive

Robots will be positive, if and only if:

ϕ

1−ρ
−1 > 0 ⇔ ϕ > 1−ρ (4.46)

From (4.29), a too low ϕ can only be the result of a too low wealth. As ϕ increases

and decreases together with wealth overtime, the only two concerns will be at the

initial points and when wealth starts to decrease (if any). If initial wealth Kss is not

enough, then the condition (4.46) might not hold. As a result, the economy has to

take more time to accumulate wealth until it can start to utilize Additive Robots.

The reverse is true when wealth starts to decrease. There will be a point when the

condition is violated and Additive Robots are no-longer usable.

4.5.2 Multiplicative Robots Participation Condition

Given the expression for Multiplicative Robots (4.28), stock of Multiplicative Robots

will be positive if and only if:

ϕ >
ΛA

ΛMH
(4.47)

There are two cases that the condition (4.47) does not hold. When H is fixed or

in the periods where H is still high, it will only be violated when we have too low

ϕ which again, similar to the condition for Additive Robots. Hence, even if the

technology is available, the economy still has to wait until it accumulates enough

wealth.

Chapter 4 131



Vu Hoang Phuong Que Quantitative Effects of Robots in a Growth Model

As wealth increase, ϕ increase, it will be easier for (4.47) to holds. However, under

the scenario where H declines, the right-hand side would increase over time, and the

condition might be violated. The human labor workforce is too small that even with

the help of Multiplicative Robots, it can not compete with the productivity from a

unit of Additive Robots.

Since ϕ ≤ 1, this condition also indicates that, unless the increased productivity of

all human labor who do type M jobs is higher than the productivity of an Additive

Robots, then Multiplicative robots is not worth to use. As H is exogenously given

(either fixed or decreased), and even if ϕ already increases up to its limit, i.e all

workforce has already been working in type M jobs. We can only help ΛA
ΛMH < 1,

by decreasing the ratio of ΛA
ΛM

. The productivity of Multiplicative Robots needs to

increase at a higher speed than the productivity of Additive Robots.

Λ̇M
ΛM

>
Λ̇A
ΛA

(4.48)

4.5.3 Prolonging the Feasibility Period

As discussed above, it depends on the parameter choices that make economy switch-

ing among Additive Robots alone, Multiplicative Robots alone, and both types of

Robots. Even though our choices of parameters ensure the application of both types

of robots (since it is the focus of our questions), there is still a point worth notic-

ing. Under the result part, we see that in the case of a diminishing population, the

interest rate will keep decreasing to the point it crosses the initial interest rate of

the steady-state, making robots no-longer profit enough to use. Then how can we

prolong that feasibility period? It is back to the fundamental reason why interest

rate declines are due to the increase in capital intensity k which again due to the

increase in the effective labor ratio φ as per (4.32). Hence to prolong the feasibility

period, we need to slow down the increase of labor ratio which has the following
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expression from (4.22):

φ =
ΛA
ΛM

(
ρ

1−ρ

)
1

HM

Hence, to control the increase of effective labor ratio, we need to:

• Firstly, it is very clear that the more the population decreases, the more φ in-

creases. Hence we need to control to maintain population growth or at lease

no change. It can be done by encouraging policies to increase the birth rate or

through immigration.

• Secondly, control the increase in the productivity of Additive Robots. During

the labor market adjustment process, this will even help to reduce the force on

the labor market to adjust since Additive Robots is not so productive and replace

human labor slower.

• And lastly, increase the productivity of Multiplicative Robots to further support

the shrinking group of human labor. As long as the increase in productivity

of Multiplicative Robots is more than the increase in productivity of Additive

Robots is enough to ensure the decrease in φ rather than increase.

There is another method that is not straightforward from the expression is through

the adjustment of ρ since in our model we assume that ρ is a constant. A decline

in ρ can slow down the increase in φ . That suggests the creation of more jobs that

can only be supported by Multiplicative Robots rather than focus on jobs that can

be replaced by Additive Robots.

4.6 Conclusion

In this chapter, I incorporated both types of robots into one aggregate models and

structured the labor market as a Cobb Douglas combination of two types of jobs:

type A jobs are those that can be automated by Additive Robots and type M jobs
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are those that can only be supported by Multiplicative Robots. Furthermore, after

the labor market has finished adjustment, there would be no more human labor that

does type A jobs. The real wage is thus only payable to human labor do type M

jobs, who have higher and higher productivity under the support of Multiplicative

Robots. As a result, the real wage will continue to increase over time.

Under the assumption that the labor market is perfectly mobile, along with the

wealth accumulation process, there is a transition of labor from doing type A jobs

to doing type M jobs. If the labor market is so effective that the transition is un-

conditional and smooth, both interest rates and real wages will effectively increase.

In other words, the pull-up force from Multiplicative Robots is so attractive and

stronger than the pull-down force from Additive Robots.

Even under the case where the labor market is not perfect, meaning there exist two

different wages for two types of jobs, as long as there is a small transfer of labor

from type A to type M, it is good enough to narrow the wage gap. It might be the

case that changing jobs require costly training or upgrading skill. As a result, the

government can help to mitigate the inequality by policies that encourage such job

transfer such as free training or education loans.

Apart from real wage, the main focus, the model does generate endogenous growth.

This is no surprise since each type of robots can create economic growth, the effect

should be stronger when both types are used.

Under the extension where the population is shrinking, the labor market even has to

adjust faster to compensate for the shortage in labor supply. The relative shortfall

of human labor makes the marginal product of labor increase more than under the

case of a fixed population. Consequently, the real wage will also increase faster.

However, as the labor force becomes smaller, capital is spread thinner, reducing ef-

fective capital intensity. That makes interest rate start to fall after the labor market’s
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adjustment (since now there is no longer the effective force - the movement of la-

bor - to keep the interest rate increase). If the time is long enough, the interest rate

might even fall below the original interest rate in the initial steady-state. Upon that

point, the profitability condition is violated, making robots is no longer beneficial to

apply. Although a long time easily means hundreds of years, there might be a good

idea to have precautions to prolong that feasible period.
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Appendix A

Quantitative Appendix

A.1 Baseline Model

A.1.1 Solving the consumer maximization problem

The representative agent maximizes∫
∞

t
logcκe

(
−θ(κ−t)

)
dκ

subject to
dwn

t
dt

= rtwn
t + vtH− ct

and the transversality condition that prevent agents from going indefinitely into debt.

lim
κ→∞

{
wn

κ .e
−
∫

κ

t r(ν)dν
}
= 0

Present Value Halmitonian function:

H(c,µ) =U(c)e−θ(κ−t)+µ

[
vH + rwn− c

]
First Order Condition  Uce−θ(κ−t) = µ (1)

µ̇ =−rµ (2)

Transversality condition: From (2) the evolution of the shadow price is

µt+κ = µt .e[−
∫

κ

t r(ν)dν]

substitute into the transversality:

lim
κ→∞

[wn
κ .µt+κ .µt ] = 0

i



, with µt =Uc > 0 hence the transversality condition becomes:

lim
κ→∞

{
wN

κ .µt+κ

}
= 0

The Euler Equation: Differentiate (1) with respect to time to get µ̇ and then

substitute into (2), we get:

r =− µ̇

µ
=−Uccċe−θ t −θe−θ tUc

Uce−θ t =−Ucc
Uc

ċ+θ = θ −
[

Ucc.c
Uc

]
ċ
c

Given the choice of utility function, we have:

r = θ +
ċ
c

The consumption function

Define the average interest rate between time t and time κ as following:

r̄(κ) =
1

κ− t

∫
κ

t
r(ν)dν

then the present discount factor to convert an unit of income in period κ to an unit

of income at time t will be: e−r̄(κ)(κ−t).

Solve the flow budget constrain as a first order differential equation in wn to get an

intertemporal budget constrain for any period T > t:

wn
T .e
−r̄(T )T +

∫ T

t
cκe−r̄(κ)κdκ = wn

t +
∫ T

t
vκHe−r̄(κ)κdκ

As T → ∞ the first element of the left hand side vanish as per transversality condi-

tion.

Let denote human wealth at time t - the sum of discounted future wage income as

such: wh
t =

∫
∞
t vκHe−r̄(κ)κdκ then we have:∫

∞

t
cκe−r̄(κ)κdκ = wn

t +wh
t

At the same time from the Euler Equation integrate between time t and κ and solve
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the first order differential equation in c we have:

ċt
ct

= rt −θ

⇔
∫

κ
t

ċν

cν

dν =
∫

κ
t (rν −θ)dν

⇔
∫

κ
t d(lncν) =

∫
κ
t rνdν−θ

∫
κ
t dν

⇔ ln cκ

ct
= (r̄(κ)−θ)(κ− t)

⇔ cκ = ct .exp((r̄(κ)−θ)(κ− t))

Plugin back into the intertemporal budget constrain:

ct .e
(

r̄(κ)−θ

)
(κ−t)e−r̄(κ)κdκ = wn

t +wh
t

Use the formula for r̄(κ), and let u(κ) = r̄(κ)t−θ(κ− t) the left hand side would

be:

LHS = ct

∫
∞

t
e[(r̄(κ)−θ)(κ−t)−r̄(κ)κ]dκ

= ct

∫
∞

t
e[r̄(κ)t−θ(κ−t)]dκ

= ct

[
1

u′(κ)
eu(κ)

]∞

κ=t

When κ = ∞, r̄(κ) = 0 as 1
κ−t −→ 0 and u(κ)−→−∞ hence eu(κ) −→ 0

When κ = t then r̄(κ) = 0 since
∫ t
t r(ν)dν = 0 and u(κ) = 0 hence eu(κ) = 1.

Also we have: u′(κ)|κ=t = [r̄′(κ)t−θ ]κ=t with

r̄′(κ)|κ=t =
dr̄(κ)

dκ
|κ=t =

[
(−1)(κ− t)−2

∫
κ

t
r(ν)dν +

1
κ− t

d
dκ

∫
κ

t
r(ν)dν

]
κ=t

= 0

Hence, LHS = ct(0− 1
−θ

) = 1
θ

ct

The solution to agent’s problem is then given by:

ct = θ

(
wh

t +wn
t

)
where human wealth is given by

wh
t =

∫
∞

t
vκHe(

∫
κ

t −r(ν)dν)dκ

Human wealth instantaneous flow
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Use Leibniz’s Rule to find ẇh
t

dwh
t

dt
=

d
dt

∫
∞

t
vκHe(

∫
κ

t −r(ν)dν)dκ

=
∫

∞

t
vκHe(

∫
κ

t −r(ν)dν)
(

d
dt

∫
κ

t
−r(ν)dν

)
dκ+

vκHe(
∫

κ

t −r(ν)dν)
κ=∞

d(∞)

dt
− vκH exp

(∫
κ

t
−r(ν)dν

)
κ=t

dt
dt

=
∫

∞

t
vκH exp

(∫
κ

t
−r(ν)dν

)(
d
dt

∫
κ

t
−r(ν)dν

)
dκ +0− vtH

Use Leibniz’s one more time we have:

d
dt

∫
κ

t
−r(ν)dν = 0+(−r(ν)|ν=κ)

dκ

dt
− (−r(ν))|ν=t)

dt
dt

= rt

Hence,

ẇh
t =

[
rt

∫
∞

t
vκH exp

(∫
κ

t
−r(ν)dν

)
dκ

]
− vtH = rtwh

t − vtH

Lifetime Welfare after Introduction of Robots The new level of lifetime welfare

would be

U =
∫

∞

t
log(cκ)e−θ(κ−t)dκ =

∫
∞

t
log[ctexp(ηc(κ− t))]e−θ(κ−t)dκ

=
∫

∞

t
[log(ct)+ηc(κ− t)]e−θ(κ−t)dκ

=
∫

∞

t
log(ct)e−θ(κ−t)dκ +

∫
∞

t
ηc(κ− t)e−θ(κ−t)dκ

=
1
−θ

log(ct)[e−θ(κ−t)]∞t +ηc

∫
∞

t
(κ− t)e−θ(κ−t)dκ

=
1
θ

log(ct)+ηc

∫
∞

t
(κ− t)e−θ(κ−t)dκ

Integration by part for the second integral:∫
∞

t
(κ− t)e−θ(κ−t)dκdκ =

∫
∞

0
µe−θ µdµ

=

[
µ

(
1
−θ

e−θ µ

)]∞

µ=0
−
∫

∞

0

1
−θ

e−θ µdµ

=
1
θ

[
1
−θ

e−θ µ

]∞

µ=0
=

1
(θ)2

Hence, the lifetime utility is

U =
1
θ

log(ct)+
ηc

(θ)2
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A.1.2 Solving the firm profit maximization problem

Each period t, the representative firm will have to decide the level of capital used Kt

and amount of labor employed Lt in order to maximize the profit:

max
Kt ,Lt

(
F(Kt ,Ht)− rK

t Kt − vtLt
)

with F(Kt ,Ht) = Kα
t L1−α

t .

The firs-order conditions:

αKα−1
t L1−α

t − rK
t = 0

(1−α)Kα
t L−α

t − vK
t = 0

In term of per labor variables we have:

rK
t = α

(
Kt
Lt

)α−1

vK
t = (1−α)

(
Kt
Lt

)α

And labor market clearing condition for general equilibrium model requires that

labor demand to meet the labor supply from the representative household:

Lt = Ht

A.2 Baseline Model with Flexible Labor Supply

A.2.1 Consumer’s Maximization Problem

Present Value Halmitonian function:

H(c,H,µ) =U(C,H)e−θ t +µ [vH + ra− c]

First Order Condition 
Uce−θ t = µ (1)

UHe−θ t =−µv (2)

µ̇ =−rµ (3)
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Intratemporal condition from (1) and (2):

vt =−
UH(Ct ,Ht)

UC(Ct ,Ht)

=−
−B

H̄−Ht

1
Ct

=
BCt

H̄−Ht

The Euler equation:

From (1) we have:

µ̇ =
dUC
dt

e−θ t −θe−θ tUC

= (UCCĊ+UCHḢ)e−θ t −θe−θ tUC

⇔ µ̇

µ
=

(UCCĊ+UCHḢ)e−θ t −θe−θ tUC
Uce−θ t =−r

=

(
UCCĊ+UCHḢ

UC
−θ

)
⇔ r = θ −UCC

UC
Ċ−UCH

UC
Ḣ

For a separable C and H utility function, UCH = 0 hence we have the Euler equation

exactly the same with fixed H model.

r = θ −UCC
UC

Ċ = θ − Ċ
C

⇔ Ċ
C

= r−θ

A.2.2 Firm’s Profit Maximization

Let kt =
Kt
Ht

then output per unit labor is: f (kt) = kα
t . Hence, wage and return of

conventional machine is still same with the baseline model. rK = f ′(k)

w = f (k)− k f ′(k)

However, now the with the flow of effective capital depends on the change in labor

as well:
k̇
k
=

K̇
K
− Ḣ

H
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Hence,
ċ
c
= f ′(k)−δ −θ = αkα−1−δ −θ − Ḣ

H

and since Kt = wn
t we have:

k̇
k
=

ẇn

wn −
Ḣ
H

= r+
vH
wn −

C
wn −

Ḣ
H

= r+ v
H
K
− C

K
− Ḣ

H
= (rK−δ )+

v
k
− c

k
− Ḣ

H

Substitute equation for wage and return on conventional machine, we have

k̇
k
= ( f ′(k)−δ )+

1
k
( f (k)− k f ′(k))− c

k
− Ḣ

H
=

f (k)
k
−δ − c

k
− Ḣ

H

⇔ k̇ = f (k)−δk− c− Ḣ
H

k

A.2.3 Initial Steady State

At steady state ċ
c = Ḣ

H = k̇
k = 0 then:

αkα−1
SS −δ −θ = 0⇔ kSS =

(
α

δ +θ

) 1
1−α

f (kSS)−δkSS = cSS =
CSS
HSS

= kα
SS−δkSS

f (kSS)− kSS f ′(kSS) = (1−α)kα
SS = vSS

From the intratemporal condition between consumption and work:

vSS =
BCSS

H̄−HSS
⇔ vSS

(
H̄

HSS
−1
)
= B

CSS
HSS

⇔ HSS = H̄
(

B
CSS
HSS

1
vSS

+1
)−1

Then the labor and consumption level at steady state will be

HSS = H̄

(
B

(
kα

SS−δkSS
)

(1−α)kα
SS

+1

)−1

= H̄

(
B

1−δk1−α

SS
1−α

+1

)−1

= H̄

(
(1−α)

(B+1−α)−Bδk1−α

SS

)

CSS = HSS ( f (kSS)−δkSS)

= H̄

(
(1−α)

(B+1−α)−Bδk1−α

SS

)(
kα

SS−δkSS
)
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Plug in the formula for kSS, labor and consumption in terms of model’s parameters

are:

HSS = H̄

(
B

1−δ
α

δ+θ

1−α
+1

)−1

CSS = H̄

(
(1−α)

(B+1−α)−Bδ
α

δ+θ

)((
α

δ +θ

) α

1−α

−δ

(
α

δ +θ

) 1
1−α

)

A.2.4 Algorithm loop for consumption and labor path after Ad-

ditive Robots

Now since H does not stay constant anymore, we cannot have a close form solution

for human wealth wh
t at the initial period. Instead we need to guess the initial con-

sumption c0 and induce the series of {Ht}Tt=1 to have wh
0 and recalculate the initial

consumption. If it does not match with the guess, we need to update the guess.

1. Guess C0 and generate {Ct}Tt=1 using the growth rate of consumption.

2. Calculate Ht using the intratemporal equation

• If
(

H̄− B
v C
)
> 0 then Ht+κ = H̄− B

v C

• If
(

H̄− B
v C
)
< 0 then Ht+κ = 0

3. Calculate human wealth using labor path and fixed wage rate W n
t

4. Recalculate C′t = θ(W h
t +W n

t )

5. Compare C′t with initial guess. If not match then update the guess.
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