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Abstract

Dynamic malware analysis schemes either run the target program as is in an isolated

environment assisted by additional hardware facilities, or modify it with instrumen-

tation code statically or dynamically. The hardware-assisted schemes usually trap

the target during its execution to a more privileged environment based on the avail-

able hardware events. The more privileged environment is not accessible by the

untrusted kernel, thus this approach is often applied for transparent and secure ker-

nel analysis. Nevertheless, the isolated environment induces a virtual address gap

between the analyzer and the target, which hinders effective and efficient memory

introspection and undermines the correctness of semantics extraction. Code instru-

mentation mixes the analyzer code together with the target, thus they share the same

execution flow as well as the virtual address space at runtime. The instrumentation

code has native access capabilities to the target’s virtual memory, which seamlessly

introspects and controls the target. However, code instrumentation based schemes

are inadequate to tackle malicious execution since the analysis can be detected,

evaded, or even tampered with as noted in many recent works.

We securely bridge the virtual address gap by designing a system called the On-

site Analysis Infrastructure(OASIS) based on hardware virtualization technology.

OASIS features a one-way address space sharing: on the one hand, the analyzer, as

an independent full-fledged application, runs in a fused virtual address space com-

prising both its own space and the target’s; on the other hand, the analyzer’s space

is separated and isolated from the target which still runs within its unmodified ad-

dress space. We also extend OASIS with a significant instrumentation technique

which allows secure transitions between the analyzer and the target without precip-



itating any CPU mode/privilege switch. In total, OASIS offers three capabilities to

the analyzer: to reference the target virtual memory in the native way with map-

ping consistency; to dynamically control and instrument the target execution; and

to transparently receive unmodified host OS services. With these capabilities, the

analyzer performs onsite analysis on a malicious user/kernel thread running in the

guest VM.

We propose two new dynamic analysis models based on OASIS: Onsite Memory

Analysis (OMA) and Execution Flow Instrumentation (EFI). In OMA, the analyzer

examines the user/kernel thread’s live virtual memory without interposing on its

execution. We developed four tools to demonstrate its capability. The first one is

a virtual machine introspection tool which is up to 87 times faster than the state

of the art. The second one delineates the target’s virtual memory layout without

trusting any kernel objects. The third one captures the target’s system call events

along with their parameters without intercepting its execution. The last one gener-

ates the control flow graph for Just-In-Time emitted code. In EFI, the analyzer is

provisioned with two options to directly intercept the user/kernel thread execution

and dynamically instrument it. Despite being securely and transparently isolated

from the target, the analyzer introspects and controls it in the same native way as

the instrumentation code. We have also conducted three case studies. The first one

is a cross-space control flow tracer which shows OASIS based EFI has better per-

formance than existing hardware trapping based schemes. The second one works

in tandem with Google Syzkaller which demonstrates EFI’s agility in controlling

and introspecting the target thread. The last one examines how a user-space pro-

gram exploits the vulnerability in dynamically loaded kernel modules. EFI tools are

well-suited for targeted and fine-grained analysis.

We have implemented a prototype of OASIS on an x86-64 platform and have

rigorously evaluated it with various experiments including performance and security

tests. OASIS and its tools remain transparent and effective against targets armed

with anti-analysis techniques including packing.
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Chapter 1

Introduction

1.1 Problem Overview

Dynamic malware analysis systems collect and examine runtime intelligence from

an untrusted target program, either by running it as is in a confined environment

assisted by special hardware facilities such as Intel’s Performance Unit(PMU) and

ARM debug facility [1, 2], or modifying it with instrumentation code statically [3]

or dynamically [4, 5]. Both approaches have their pros and cons.

The hardware-based schemes usually induce hardware events during the target

execution. The event is trapped to a more privileged environment, e.g., the x86

VMX root mode [6, 7], the System Management Mode (SMM) [1] and the ARM

Secure World [2]. These environments are not accessible to the kernel running in

the Normal World or in a guest VM, thus this approach is often applied for secure

and transparent kernel analysis. However, the security is attained at the price of

convenience. Besides the non-flexible trapping mechanism which is restricted to

available facilities provided by the hardware, the isolated environment also results in

the so-called virtual address gap between the analyzer and the target as noted in [8].

The analyzer cannot directly read, write or execute in the target virtual memory.

The virtual address gap has several undesirable effects. One obvious drawback

is the overheads of data collection and movement across different spaces, which is
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ill-suited for analysis demanding frequent and massive accesses to the target mem-

ory. A more subtle issue is that the analyzer has to explicitly handle the virtual

address mappings used by the target, for instance, to dereference a pointer. This

hassle not only complicates the analyzer’s logic, but also affects the performance.

More importantly, as in live forensics [9] and virtual machine introspection [10, 11],

exported kernel objects (e.g., VMA structures and page tables) are heavily used to

interpret and process virtual address related information. Hence, it cannot analyze

malware with kernel privilege which fakes those dependent kernel objects or even

stages an innocent-looking memory view. To bridge the virtual address gap is not as

simple as it appears. Besides undesired side effects on code size and performance,

it needs to deal with various kernel attacks such as translation redirection attacks

[12], transient attacks [13, 14] and race condition attacks [15, 8].

Code instrumentation [16, 4, 17, 18] has been used in a myriad of software anal-

ysis applications and does not suffer from the aforementioned problem. Its hallmark

is to integrate the analysis code and the target code into one binary either before ex-

ecution or at runtime. Static code instrumentation inserts call back functions in

the source code level or rewrites the binary. For example, Linux kernel provides

KCOV function to collect code coverage information to support coverage guided

kernel fuzzing tools like Syzkaller [19]. Dynamic binary instrumentation(DBI)

[4, 20, 21, 22] re-compiles the target program’s binary at runtime. The analysis

code executes in the same virtual memory and CPU context as the target, a feature

we denote as native-access in this dissertation. Hence, it seamlessly introspects and

controls the target by directly referencing the latter’s virtual addresses and accessing

the registers.

However, recent research [23, 24, 25, 26, 27, 28] has shown that code instru-

mentation is inadequate to tackle malicious executions, since the analysis can be

detected, evaded, and even tampered with. The culprit is exactly code-level inte-

gration. Sharing the entire address space and the execution flow becomes an attack

surface. Although several mitigation techniques [26, 28] are proposed to improve

2



instrumentation transparency and security, they do not tackle the problem at its root

and cannot cope with kernel-level analysis at all. The approach of using the instru-

mentation code to prevent itself from being tampered faces the cyclic-dependence

challenge and results in a complexly-engineered bulky program with a heavy per-

formance toll. Besides the security and transparency issues, code instrumentation

may acquire distorted intelligence due to target address space alternation and binary

rewriting. Hence, the strengths and weaknesses of the code instrumentation are the

opposite of those hardware-based isolation oriented approaches.

1.2 Research Objectives

In this dissertation, our research objectives are threefold.

Firstly, we aim to design a system infrastructure to securely bridge the afore-

mentioned virtual address gap. The system provides the analyzer with the native

access capability to a target program’s virtual memory, as well as isolation and

transparency protection. We aim to support a full-fledged user space analyzer, while

the analysis target is an untrusted full-space thread.

Secondly, after securely bridging the virtual address gap, we aim to explore the

intelligence recovered from the target program’s live virtual memory which is un-

derutilization in existing dynamic analysis schemes. The patterns and evolution of

the virtual memory should be able to reveal the program’s semantics and behaviors,

such as system call events.

Finally and more importantly, we aim to design a system infrastructure that

allows an analyzer to instrument a running user/kernel thread. The infrastructure

combines the advantages of hardware-based approaches (strong security and non-

intrusiveness) and code instrumentation (native-access) without their disadvantages.

3



1.3 Threat Model

We consider a commodity x86-64 multicore platform with CPU and MMU virtu-

alization extensions. The platform is managed by a host OS (e.g., Linux KVM)

occupying CPUs in the VMX root mode. In the rest of the dissertation, we also

refer to the host OS as “the hypervisor” when the functionality is related to virtu-

alization. The target is a running thread in the hardware-assisted virtual machine

denoted as the guest in the dissertation. The guest software runs in the VMX non-

root mode. We suppose that the analyzer is compiled into a position independent

executable, i.e., no absolute addresses in its code or static data.

We trust the hardware, the firmware and the host OS. The adversary resides in

the guest, possibly in the kernel. We consider attacks attempting to compromise the

analyzer and/or detect its presence. Side-channel and denial-of-service attacks are

out of scope. The analyzer may have memory vulnerabilities. It is orthogonal to our

study to cope with memory corruption attacks [29] which exploit vulnerabilities in

the analyzer’s implementation by feeding poisonous data to the analyzer.

1.4 Background

The following two pieces of background knowledge are necessary to understand

this dissertation. The first is the address translation with and without MMU virtual-

ization. The second is the VMFUNC facility.

1.4.1 Address Translation and Virtualization

Address Translation without MMU Virtualization

Software on an x64 platform typically uses 48-bit virtual addresses (VAs) which

cover 256 Terabytes in total [30]. The kernel occupies the higher half of the address

space and leaves the other half for user space. The paging hierarchy on 64-bit

platforms consists of four levels of paging structures. The top level is the Page Map
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Level 4 (PML4) table whose base address is stored in the CR3 register. The other

three levels are the Page-Directory-Pointer-Tables (PDPTs), the Page-Directories

(PDs), and the Page-Tables (PTs). Each page of these paging structures contains

512 entries indexed by 9 bits in a VA. An entry of a PML4, PDT or PD page stores

the physical address (PA) of the next level paging structure page, while a PT entry

points to the physical page mapped to the VA.

To translate a virtual address X , the MMU uses CR3 to locate the physical

location of the PML4 table in use. X’s PML4 index is then used to locate PML4

entry that stores the physical address of the corresponding PDPT table. Similarly,

X’s indexes for PDPT, PD and PT are used one after another to finally locate the

physical page mapped to X .

Address Translation with MMU Virtualization

When the platform enables MMU virtualization, the kernel in the virtual machine

(a.k.a. the guest) still manages the four levels of paging structures as well as CR3.

The MMU still looks up the entry at each level of the paging hierarchy using the

four 9-bits indexes, respectively. The main difference is that all addresses in CR3

and the four-level paging structures are guest physical addresses (GPAs), instead of

host physical addresses (HPAs). To access a GPA, the MMU traverses the Extended

Page Tables (EPT) to locate the corresponding physical address. Hence, to translate

a virtual address, the MMU must consult the EPTs for four times in order to walk

the PML4, PDPT, PD, and PT pages, and for the fifth time to get the physical page

frame number. We illustrate the involvement of the EPT in address translation with

Figure 1.1.

Hence, the EPTs play a pivotal role in choosing the next level paging structure

page to use. Without modifying the PML4 entry, a change in the EPT mapping can

redirect the MMU to a different PDPT page.
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PML4

CR3

PDPT PTPD

EPT
EPT EPT EPT EPT

Figure 1.1: The EPTs are consulted for four times when the MMU visits four levels
of paging structures and one more time for locating the final physical page.

1.4.2 VMFUNC

VMFUNC is an instruction provided under Intel’s hardware Virtualization Technol-

ogy(VT). It allows a non-root mode CPU to invoke multiple VM functions through

specifying different indexes in the RAX register. The invocation can either come

from the user or kernel space in a guest VM. Relevant controlling bits in the Virtual

Machine Control Structure(VMCS) are set to enable the VMFUNC. By now, only

one VM function with index 0x0 is implemented by Intel, which is to switch the Ex-

tended Page Table Pointer (EPTP) without causing a VM exit. The EPTP-switching

VMFUNC is implemented as follows: the hypervisor prepares an EPTP list, each

entry in the EPTP list points to a valid set of EPT paging structures. Based on the

index specified in the RCX register, a VMFUNC instruction switches the underlying

EPT paging hierarchy. The EPTP-list contains up to 512 8-Byte entries. Readers

may refer to the Intel manual [30] for more details.

As reported in Table 6.1, a VMFUNC instruction costs as low as 147 CPU cy-

cles. The overhead is even less a user-to-kernel switch, and much smaller than a VM

transition. Thus, it has been adopted by many recent works [31, 32, 33, 34, 35, 36]

to isolate different components within a guest VM with a low transition overhead.

For example, SkyBridge [33] uses it to achieve a fast and secure inter-process com-

munication, by using EPTs with different access permissions for those inter-process

components.
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TLB behaviors of EPTP Switching

We report three TLB behaviors of the EPTP-switching VMFUNC to help under-

stand the performance and security of OASIS. First, the EPTP is associated with

TLB entries. Programs running under different EPTPs cannot access each other, un-

less the underlying paging structures are the same. Second, TLB entries associated

with different EPTPs can co-exist. This implies that an EPTP-switching VMFUNC

does not flush TLB entries associated with other EPTPs, as long as there is enough

space left in the TLB. Finally, an INVLPG instruction flushes the TLB entries asso-

ciated with all EPTPs if they are related to the specified Virtual Address(VA) [37].

Our scheme uses this instruction to flush TLB entries of the target program when

handling the self-modification code.

1.5 Dissertation Overview

In this dissertation, we first leverage the hardware Virtualization Technology(VT)

to design and build a system infrastructure named Onsite AnalySis InfraStruc-

ture(OASIS) which securely bridges the virtual address gap. The system pro-

vides an onsite environment where a host analyzer application transparently exe-

cutes within the target program’s live virtual memory. The target’s virtual address

space is shared with the analyzer, but not vice versa. Thus the analyzer has native

access capabilities to the target’s memory as if accessing its own local buffer. The

analyzer is a user space application which receives system services as usual when it

introspects the malicious user/kernel thread.

Then we propose a new dynamic analysis model named Onsite Memory Anal-

ysis(OMA) based on OASIS. The analyzer examines the target’s live virtual mem-

ory without interposing on its execution. As compared with existing out-of-VM

introspection techniques, OMA has the following features. Firstly, it achieves near-

kernel introspection speed with the differences only due to caching effects and code
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optimization. The high speed allows it to monitor system call issuances. Secondly,

an OMA tool uses zero-API for introspection in the sense that the target virtual

memory objects are referenced using their own virtual addresses as if they are in

local buffers. Besides memory introspection, OMA also supports virtual address

testing to reveal a page presence and potential pointers without software-traversing

the paging structures or trusting any kernel objects. Lastly, existing static analysis

tools can adapt to onsite mode to analyze Just-In-Time emitted code. We developed

four tools to showcase the capabilities of OMA.

Finally, we extend the OASIS with a significant instrumentation technique

to support a new dynamic analysis model named Execution Flow Instrumenta-

tion(EFI). The extended system allows the analyzer running in the onsite environ-

ment to directly intercept the user/kernel target execution and dynamically instru-

ment it in a native way. As compared with existing code instrumentation techniques

[16, 4, 17, 18], the analyzer is guaranteed with isolation and transparency protection.

As compared with existing hardware event-trapping based schemes [6, 7, 1, 2], the

transition between the analyzer and the target does not entail any CPU mode/privi-

lege switches such as VM exit. This not only saves the runtime CPU overhead, but

also minimizes privileged software’s involvement which leads to simpler analyzer

development. With the one-way address space sharing, the analysis is conducted in

a consistent execution environment with respect to the target’s setting in the guest.

Address related object dereferencing and instruction handling are more efficient.

We conducted three case studies to demonstrate EFI’s performance and agility in

controlling and introspecting the target thread.

We implemented a prototype of OASIS (both for OMA and EFI) on an x86-

64 platform and rigorously evaluated it with various experiments including perfor-

mance and security benchmark tests. OASIS and its tools remain transparent and

effective against targets armed with anti-analysis techniques including packing.
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1.6 Dissertation Organisation

The remainder of this dissertation is organized as follows. Next, we review related

works in Chapter 2. The OASIS infrastructure is described in Chapter 3. Chapter 4

presents the tools for OMA. The extensions on OASIS and the EFI techniques along

with their case studies are discussed in Chapter 5. The implementation details and

evaluations of OASIS are presented in Chapter 6. Finally, we discuss some of the

issues in Chapter 7 and conclude the dissertation in Chapter 8.
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Chapter 2

Related Work

We first discuss code instrumentation schemes and their security limitations in Sec-

tion 2.1. Since our analysis target is a thread across user-to-kernel space, we briefly

review kernel analysis frameworks in Section 2.2. Then we generally review the

malware analysis and compare them with OMA in Section 2.3. The Virtual Ma-

chine Introspection(VMI) schemes are discussed in Section 2.4.

2.1 Code Instrumentation

Code instrumentation has been widely used in program analysis to collect their

runtime information regarding system calls, API calls [38], control flows or data

flows.

2.1.1 Static Code Instrumentation

Static code instrumentation operates either on source code or binary. The source

code level instrumentation is normally used to enforce the program Control Flow In-

tegrity(CFI) [39] or memory sanitizer [3, 40]. The instrumentation is done at compi-

lation time through customizing open-source compilers such as GCC or LLVM. For

example, the Linux kernel cooperates with GCC to insert Kernel Coverage(KCOV)

and Kernel Address SANitizer(KASAN) code into the compiled kernel image.
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Based on [41], binary-level code instrumentation is more challenging and gener-

ally uses two approaches: the direct modification and the full-translation. The direct

modification approach [42] replaces the instrumentation point with the analysis code

directly. This approach is restrictive since they should respect the original instruc-

tions’ length as well as their semantics. The full-translation approaches [43, 44, 45]

disassemble the binary first, transform it into an Intermediate Representation(IR),

re-compile it with the instrumentation code, and finally store the newly generated

binary on the disk. According to a study in 2016 [46], existing disassembler tools,

such as IDA Pro [47], only detect less than 80% of function boundaries correctly

due to multi-entry functions and tail calls [48, 49]. The study is conducted only on

benign programs. The result should be much worse for malicious programs since

they are intentionally equipped with anti-disassemble techniques [50].

2.1.2 Dynamic Binary Instrumentation(DBI)

Dynamic binary instrumentation (DBI) modifies the target along with its execution.

Intel Pin [21], Valgrind [20], DynamoRIO [22] and Dyninst [51] are the best well-

known versatile DBI frameworks. They normally recompile the target program’s

binary just in time with the instrumentation code and execute them in the tool’s lo-

cal buffer named code cache. Due to the sharing of the code as well as the address

space, they are well-suited to collect runtime fine-grained memory information. For

example, TaintCheck [52] uses Valgrind to make dynamic taint analysis. Instead of

using just-in-time compilation and emulators, LiteInst [17] proposes to use instruc-

tion punning to insert probes into running code. More details can be found in DBI

surveys [41, 28].

2.1.3 Security Limitations of Code Instrumentation

Many latest results [23, 24, 25, 26, 27, 28, 53, 54] have shown that sophisticated

malware may detect the existence of DBI and therefore inhibits its malicious be-
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haviors. Falc et. al. [55] release an open-source benchmark tool, named eXtensi-

ble Anti-Instrumentation Tester(eXait), to automatically test the existence of DBI

frameworks on Windows platforms. PwIN [27] proposes a similar benchmark tool

later named jitmenot [56] working on Linux platforms. Besides the detection,

PwIN also demonstrates that it is easy to bypass the analysis of DBI by modify-

ing the code in code cache directly since that memory region is RWX(readable,

writable, and executable). SafeMachine [53] is the DBI tool targeted on malware

analysis. But it only proposes patches for several well-known anti-instrumentation

techniques, such as self-modifying code, memory relocation detection, and RIP

context detection. It does not touch the essence of the problem which is the address

space sharing. The security limitations are also acknowledged by the DBI tools.

For example, DynamoRIO already makes some effort to preserve transparency by

hiding its libraries from EnumProcessModules().

As summarized in [27, 28], the security properties preserved by a DBI frame-

work should include stealthiness and isolation. The stealthiness refers to that the

instrumented application must not be able to infer the presence of the instrumenta-

tion platform; The isolation refers to that the instrumented application must not be

able to tamper with the analyzing system including the analysis plugins. None of

the existing DBI tools meets the two requirements. The security limitation is one of

the motivations of our Execution Flow Instrumentation(EFI) analysis.

2.2 Kernel Analysis

Kernel analysis is more challenging than user space program analysis since the ker-

nel is the system software managing the platform.

2.2.1 Code Instrumentation based Kernel Analysis

KernInst [57] allows the user to instrument any point of a running kernel by inserting

an unconditional jmp instruction there. The jmp instruction jumps to a patch board
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where stores the analysis code along with the overwritten instructions. Our EFI

analysis also uses the idea of the probe to transfer between the analyzer and the

target, but our framework provides a strong isolation and transparency protection to

the analyzer without suffering the convenience.

DBI has been applied to kernel analysis as well [18, 4, 58, 59, 5]. Cobra [16]

uses DBI to analyze obfuscated code in both user- and kernel-mode. PinOS [4] ex-

tends Pin to instrument the Linux kernel on top of XEN [60]. PinOS steals memory

inside the Guest VM and runs the instrumentation engine there, it is not security-

oriented.

PEMU [5] is an out-of-VM DBI framework which aims to provide isolation

between the instrumentation engine and the target VM. It prevents the direct attack

from the guest. However, the instrumented code runs within the same address space

of the analysis code, the attack surface remains there. Moreover, the out-of-VM

solution introduces the so-called semantic gap [15] to the target VM. They follow

HYPERSHELL [61] to redirect the inspection system calls back to the guest VM

to bridge the semantic gap.

2.2.2 Hardware based Kernel Analysis

The other approach to kernel analysis is to leverage hardware features to trap the

kernel execution into a more privileged system software. One of such hardware

features is CPU and MMU virtualization. Gateway [62] uses a hypervisor to mon-

itor how a driver invokes kernel API. Ether [6] is the first hypervisor-based frame-

work for kernel analysis with the emphasis on transparency. SPIDER [7] achieves

stealthy instruction-level tracing by using an instruction probe (i.e., INT3) to trap

to the hypervisor. Intel SMM is used in MALT [1] to attain stronger transparency

than relying on virtualization. Ninja [2] holistically explores a set of ARM features

including TrustZone, PMU and Embedded Trace Macrocell (ETM), for cross-space

debugging and analysis. kAFL [63] relies on Intel Processor Tracer to collect code
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coverage information for a coverage-guided fuzzer to find kernel vulnerabilities.

2.3 Malware Analysis

There are a vast literature on malware analysis including static analysis [64, 65],

dynamic analysis [52, 66] and memory forensics [9, 67, 68].

Static analysis [64, 65] does not require execution of the malware. It conducts

analysis on intelligences revealed by the static data or code (source code or binary)

in order to understand the malware logic. The commonly used intelligence include

control flow graph and call graphs. For instance, Eureka [69] is a tool that helps to

construct annotated control flow graph of a packed malware. Major challenges of

static analysis include malware’s evasion capability by using obfuscation and self-

modification, ambiguity of disassembly, unpredictability of data (e.g., destination

of indirect transfer instructions). Moser et. al. summarized the limitation of static

analysis in their work [70].

Dynamic analysis are based on intelligences extracted from a running software,

instead of static text or data. According to a survey by Egele et. al. [71], dynamic

malware analysis techniques can be broadly grouped into function call monitor-

ing [38], function parameter analysis, information flow tracking (e.g., taint analysis

[52]), instruction trace [72] and autostart extensibility points. OMA is one of the dy-

namic analysis techniques since it also inspects a running software. Different from

existing schemes, OMA focuses on the target software’s virtual memory, instead of

directly upon runtime activities. Nonetheless, runtime activities leave traces in the

memory. OMA provides a broader scope of intelligence collection and can be used

to guide behavior analysis which is often implemented in an intrusive manner.

OMA is also relevant to memory forensics [9, 67, 68]. Existing memory anal-

ysis techniques require plenty physical memory dumps of the target. Additional

computation has to be applied in order to re-construct the virtual-to-physical ad-

dress mapping semantics. They target on known memory pattern signatures or rely
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on differential analysis to recover the malwares critical behaviors. There are two

shortcomings. Firstly, the analyzer tool cannot use the real-time address mappings

to translate virtual addresses to physical addresses. It therefore faces the thorny

semantic-gap problem [15]. Secondly, it costs time to take memory snapshots.

Once a copy is taken, it may become stale as it is no longer updated by the tar-

get. Therefore, it is more suitable for post-mortem analysis. OMA ensures mapping

consistency and the data fetched on-demand is ensured to be fresh.
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Comparisons. All four types of analysis tap into intelligence sources in order

to gain understanding of various aspects of the target. Due to distinct intelligence

types, they differ in terms of the intelligence acquisition method, the type of knowl-

edge extracted. A detailed comparison is presented in Table 2.1.

2.4 Virtual Machine Introspection

Another related area is virtual machine introspection, especially out-of-VM intro-

spection such as process out-grafting [73], Virtuso [10], VM space-traveling [74],

Hybrid-bridge [11], and ImEE [8]. With out-of-VM introspection techniques, a

monitor program inspects the target VM memory from the outside. As compared

to in-VM introspection schemes (e.g., SIM [75]) relying on a trusted module in the

target kernel, out-of-VM introspection is more secure and easier to deploy.

Among them, ImEE is the closest to OASIS. It tackles the semantic-gap problem

[15] by using the target paging structures outside of the guest to attain mapping

consistency. It allows a carefully crafted agent with dozens of instructions to making

native accesses to the target virtual memory. Nonetheless, the agent does not have

its own address space and cannot make system calls. Hence, ImEE can only be

used as a memory access engine for introspection. It is infeasible to replace the

agent with a full-fledge application.
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Chapter 3

OASIS Infrastructure

In this chapter, we propose a new dynamic analysis paradigm called onsite analysis

whereby the analyzer program securely runs within the malware’s sample’s live

virtual address space. With the space co-residence, the analyzer has native access

to the target’s virtual memory. The address space sharing is one way in the sense

that the target is prevented from detecting or accessing into the analyzer’s space.

To realize onsite analysis, we leverage the hardware virtualization technology to

build a novel system named Onsite Analysis Infrastructure(OASIS). The system

allows a full-fledged analyzer program in the host to securely and transparently

execute in the live virtual address space of the target program running in a hardware-

assisted virtual machine. OASIS makes no modifications to the analyzer’s binary,

the target’s binary, or the target environment including the libraries and the OS.

CAVEAT: The OASIS infrastructure presented in this chapter only allows the an-

alyzer to conduct onsite memory analysis. The target program runs within the guest

VM. The analyzer does not interpose the target’s execution. Later in Chapter 5, we

present the extensions on OASIS to allow flexible and secure instrumentation on the

target execution.

Organization. In the next section, we propose the notion of onsite analysis and

explain the high-level approach of OASIS. We then elaborate the design details of

OASIS in Section 3.2.
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3.1 Onsite Analysis and OASIS

This section elaborates the notion of onsite analysis and sketches out the design of

OASIS that provides the system support for software performing onsite analysis.

3.1.1 Onsite Analysis

The key feature of onsite analysis is the one-way address space sharing, where the

analyzer has the same view of the target’s virtual memory as the target itself, but

not vice versa. Mapping the target’s physical memory into the analyzer’s space does

not realize onsite analysis, because only the physical memory is shared, instead of

the virtual memory.

Implementing onsite analysis is non-trivial. Although Zhao et. al. [8] recently

proposed ImEE which allows a special segment of instructions to run onsite, it is far

from capable for onsite analysis. The reason is that ImEE imposes strict restrictions

on the code running onsite: all instructions must reside in one page and can only

access the target’s address space; no data section is allowed and no OS service is

provided. Below are two major challenges to enable practical onsite analysis.

Address Space Layout Matching. The foremost challenge is to fit the precom-

piled analyzer binary to the live address space of the target which is not known

beforehand. Any solution must take the runtime dynamics of the target address

space into consideration.

OS support. Like other programs, the analyzer execution demands OS services

such as memory allocation and deallocation, file operations, and inter-process com-

munications. Since the analyzer runs in the target’s space, it is challenging to pre-

serve a consistent memory view between the analyzer and the OS.
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3.1.2 Overview of OASIS

We design OASIS as the infrastructure to support a pre-compiled executable to per-

form onsite analysis. Its high-level architecture is showed in Figure 3.1. The soft-

ware components comprise a trampoline and the OASIS manager, both of which

reside within the host OS as shown by the gray regions in Figure 3.1. The analyzer

thread lives in two exclusive modes: onsite mode for the analyzer execution and

host mode for the host OS execution in the same thread context. Hence, onsite/host

mode is corresponding to user/kernel mode of a regular thread. In onsite mode, the

analyzer performs onsite analysis with its CPU in the VMX non-root mode and a

proper set of EPTs prepared by the OASIS manager. With the support of paging

structures, it smoothly accesses both its own virtual memory (managed by the host

OS) and the target’s. Whenever the OS service is needed in onsite mode, e.g., due to

system call issuance or exceptions, the mode is automatically switched to host mode

via the trampoline. Onsite mode is transparent to the host OS so that the analyzer’s

events are handled as if they are from the analyzer thread in host mode.

Target OS

Target

Target VMonsite mode

Analyzer 
process

Analyzer 
process

host mode

Host OS Trampoline

OASIS Manager

Figure 3.1: The architectural view of OASIS. The whole target VM is untrusted.
The analyzer runs in onsite mode to perform onsite analysis upon the target while
the host OS treats it as a normal user-space process.

The cornerstone of OASIS is the paging structures used in onsite mode. We

sketch out the main design of the paging structure below and leave the full details
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in the next section.

Main Design. Let A denote the set of virtual addresses (VAs) used by the analyzer

in onsite mode. Since the analyzer makes both remote accesses to the target and

local accesses to its own code and data, A is split into Al and Ar (namely A = Al∪

Ar) where Ar and Al denote VA sets for remote and local accesses, respectively.

Note that Al∩Ar = ∅ because no VA is used to reference a local object and a target

object. The paging structures for onsite mode ensure mapping consistency and data

consistency:

• cross-domain consistency. ∀A ∈ Ar, the MMU servicing the analyzer in on-

site mode translates A to the same physical address as the target VM’s MMU

does. Cross-domain consistency implies the correctness of the accessing the

target virtual address space.

• cross-mode consistency. ∀A ∈ Al, the MMU servicing the analyzer in onsite

mode translates A to the same physical address as it is mapped to in host

mode. Cross-mode consistency is the prerequisite for the host OS to provide

the correct service to the analyzer, since the host OS and the analyzer have

the same view on the userland.

To attain cross-domain consistency for Ar, we clone the target’s PML4 page to

onsite mode’s PML4 page, denoted as O-PML4. The GPA-to-PA mappings defined

on the target EPTs are copied over to onsite mode, with all execute permissions be-

ing removed. Due to the synchronization between O-PML4 and the target’s PML4

page, the VA-to-PA mappings for Ar are exactly the same as the target’s.

To attain cross-mode consistency for Al, our high-level approach is to graft the

analyzer’s host PDPT page into the paging hierarchy in onsite mode. The analyzer’s

Page Directory (PD) and Page Table (PT) pages in host mode are mapped to the

onsite mode by using the identity GPA-to-PA map. Hence, all of the following

paging structures in the host starting from PDPT are automatically grafted to the

hierarchy in onsite mode, all entries thereof remain valid. By grafting one PDPT
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page only, the analyzer’s local 512 GB virtual address space is fused into the target’s

address space. Our approach does not modify the analyzer’s host paging structures.

Cross-mode consistency is achieved because the host OS and the onsite analyzer

use the same paging structures starting from the PDPT page.

CAVEAT. We acknowledge that detection of virtualization remains possible.

Nevertheless, the presence of virtualization alone is not decisive enough for future

malware to inhibit its malevolent behaviors. Recent years have seen a surge of

virtualization support in computing platforms including mobile phones [76, 77] and

a wider adoption by commodity operating systems including Microsoft Windows

10.

3.2 Main Design of OASIS

In this section, we begin with elaboration of the analyzer thread virtual address

space layouts in both host mode and onsite mode. We then present in details how

Al and Ar are translated properly in onsite mode, followed by the description of

mode switches.

3.2.1 Analyzer’s Address Spaces

The 48-bit virtual addresses on an x64 platform cover 256 Terabytes in total [30].

As shown in Figure 3.2, the leading 9 bits of a VA serve as the index to the PML4

table during address translation. For convenience of expression, we call it the PML4

prefix of a virtual address.

047 11

20

12

212930

3839

PML4 prefix

offset000010010

indexes for PDPT, PDT, PT

01001 011100110

Figure 3.2: Illustration of a 48-bit virtual address on a 64-bit platform. Its PML4
prefix (namely bit 39 - 47) is “00001010”.
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Host Mode. The host OS manages the analyzer’s address space. OASIS imposes

a restriction that all virtual addresses of the analyzer have the same PML4 prefix

(denoted as λh). The implication is that all VAs are in a 512GB region and are

translated via one PDPT page pointed to by one PML4 entry. This facilitates graft-

ing the PDPT page. Since the analyzer does not execute in host mode, only the host

OS accesses its pages using VAs with the PML4 prefix λh.

Our scheme does not require the host OS to change the layout of the analyzer’s

address space, i.e, the distances among its stack, heap, and various data/code sec-

tions.

Onsite Mode. If the analyzer’s VA regions allocated by the host OS are directly

used as Al in onsite mode, it may collide with Ar. To cope with this issue, we

relocate it to a 512 GB space which is unoccupied by the target program. Note there

are 512 512 GB band, most of which are not empty. We denoted the PML4 prefix of

the chosen VA range as λo. It defines Al. The physical pages allocated by the host

OS to the analyzer are not moved. Hence, if the analyzer physical page is accessed

by the host OS using a VA in the form of “λh||offset”, it is visited by the analyzer

in onsite mode using the VA in the form of “λo||offset”.

Address relocation obviously breaks cross-mode consistency, if there is no other

treatments. Section 3.2.3 explains how to cope with the discrepancy of the prefixes

to withhold cross-mode consistency, so that the relocation is transparent to both the

host OS and the analyzer.

3.2.2 Paging Structures in Onsite mode

The definition of onsite analysis mandates that only one set of paging structures are

used in onsite mode to map all VAs in Al ∪Ar. OASIS provides the needed paging

structures without requiring the compiler to differentiate remote and local addresses

or the program developer to explicitly declare them.

Guest Page Table. The guest page tables, which translate VAs to GPAs, are de-
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picted in Figure 3.3 below. It is rooted at O-PML4, followed by the target’s paging

structures in the guest to access Ar, and the analyzer’s paging structures in the host

to access Al. We use an unoccupied entry on O-PML4 and populate it with a ran-

domly generated GPA β, it is redirected in the onsite mode EPT which guides the

MMU to the analyzer’s host PDPT page when it translates β. If we denote the

guest’s GPA domain as [0, T ], T is determined based on the guest VM’s configura-

tion. β and the onsite CR3 are randomly chosen from [T, 248] to avoid conflict GPA

usages with the target VM. With the assistance of the EPTs, the analyzer’s host

mode paging structures starting from the PDPT page are fused into onsite mode

paging hierarchy.

Figure 3.3: Overview of onsite guest paging structures. The analyzer’s PDPT page
in host mode is grafted into onsite mode through the O-PML4 entry β with PML4-
prefix λo. All arrows except those in the host mode involve the underlying GPA-to-
HPA mappings in onsite mode EPT.

EPT. The analyzer’s onsite execution requires physical pages storing its code and

data sections, the stack, the heap, and the paging structures. All these pages are

allocated by the host OS and their physical addresses are used directly as the corre-

sponding GPAs (except the PDPT page). In other words, the EPTs for local GPAs

define an identity map. The host OS allocates those physical pages from the page

pool between T and the maximum physical memory on the platform. The page pool

has no overlap with the target’s GPA domain thus no conflict GPA usages with the

target in onsite mode.
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The EPTs also comprise mappings copied from the target VM to ensure cross-

domain consistency. Namely, if a GPA is used by the target VM, the EPTs map it

into the same physical page as in the target VM.

To summarize, the guest page tables and EPTs presented above, as well as the

aforementioned address space allocation, ensure cross-domain and cross-mode con-

sistency simultaneously.

3.2.3 A Thread of Two Modes

A normal thread runs in either user-mode or kernel-mode and the CPU privilege

changes along with mode switches. Switches between host mode and onsite mode

in OASIS involves both the CPU privilege change and operation mode change (root

v.s. non-root), as shown in Figure 3.4.

user mode
(ring 3)

kernel mode
(ring 0)

syscall
exception
interrupt

sysret
iret

(a) Normal thread privilege switch

onsite mode
(ring 3, 
non-root)

host mode
(ring 0, root)

VM exitVM entry

(b) Analyzer thread mode switch on OASIS

Figure 3.4: Comparison between normal mode switch and OASIS’s mode switch

The analyzer in onsite mode switches to host mode via VM exit which is trig-

gered by system calls, excepts and interrupts, the same events that trigger privilege

switches in a normal environment. In host mode, the host OS handles the event and

resumes the analyzer thread execution in onsite mode via VM entry. Since neither

the hardware nor the host OS directly supports such mode switches, we introduce

the trampoline and the OASIS manager modules in the host OS to handle them. The

workflow of mode switches is illustrated in Figure 3.5. Switches between host and

onsite modes do not change the thread context (i.e. no task switch incurred), which,

jointly with cross-mode consistency, ensures correct kernel services to the analyzer

events.
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CPU in root mode CPU in non-root mode

Figure 3.5: Mode switches for the host OS to handle events in onsite mode. The
white circle denotes the entry of the kernel event handler while the black circle
denotes the user space entry for the kernel to return.

Onsite-to-Host Switch

The main task for switching to host mode from onsite mode is to adapt the context

produced by the hardware during VM exit into the context that would have been

produced by the hardware during a privilege switch for the same event. When a

VM Exit is triggered (Step 1 in Figure 3.5), the hardware saves the analyzer’s vCPU

registers into the VMCS structure, switches the CPU mode to VMX root mode, and

passes the control to the trampoline which is priorly set as the default VM exit

handler for the analyzer.

System calls and interrupts are simple to handle because only registers are in-

volved. Their occurrences in onsite mode trigger a VM exit because the absence

of kernel handlers leads to an EPT violation, which does not affect those registers.

Hence, the trampoline makes no adaption except loading the physical CPU’s regis-

ters according to the VMCS structure.

It is slightly more complex to adapt the context for exceptions. When handling

a user-space exception in a normal setting, the hardware uses the kernel stack and

some registers to provide the necessary data for the kernel to resolve the issue. A

stub handler is installed in onsite mode to capture the exceptions and save contexts.

It then issues a hypercall to notify the trampoline. The trampoline follows the hard-

ware convention to fill in the kernel stack and load relevant registers based on the
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saved context.

Once the event context is ready, the trampoline invokes the corresponding OS

handler in a returning-boomerang fashion. It first sets a hardware breakpoint to

intercept the kernel’s return to user-mode of the analyzer thread, and then jumps to

the entry of the kernel handler (Step 2). With a properly prepared event context and

cross-mode consistency, the host OS can smoothly attend to the event in question.

Unless the analyzer thread is aborted, the kernel eventually attempts to return to the

user mode of the thread, instead of onsite mode. Hence, the breakpoint hijacks the

control flow right after privilege switch so that the trampoline regains the CPU and

returns to onsite mode.

Signal handling requires a special treatment since the kernel needs to call the

user-space signal handler if any. To maintain the semantics of signals, a dummy

user-space signal handler is registered to the OS if the analyzer program has any

non-default signal handler. When invoked by the OS, the dummy handler saves the

parameters (if any) and sets up a flag to indicate its invocation. In this case, the

actual non-default handler is invoked after the analyzer resumes in onsite mode.

Host-to-Onsite Switch

Entering to onsite mode is always triggered by the debug exception upon the previ-

ously set breakpoint (Step 3). The trampoline removes the breakpoint immediately,

because its execution will be carried out under the analyzer thread context no matter

if it is interrupted or not. The trampoline calls the OASIS manager to prepare the

vCPU and EPTs for onsite mode.

The first time entrance requires the OASIS manager to set up the Virtual Ma-

chine Control Structure (VMCS), O-PML4 as well as the EPTs as described in

Section 3.2.2. The RIP register is loaded with the address of the first user-space

instruction of the analyzer process in onsite mode.

For returns following a VM exit, the OASIS manager needs to update the saved

register context in VMCS if it returns from a system call handling, including RIP,
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RAX and RFLAGS. Then the OASIS manager uses the updated context to resume the

analyzer thread. Besides that, it also checks whether the analyzer’s paging structures

in host mode are updated by the kernel. Exceptions such as page faults may entail

address space changes. For new physical pages added to the paging hierarchy or the

analyzer’s space, the OASIS manager updates the EPTs with new identity mappings.

In the end, the trampoline uses VM-entry instructions to switch the CPU to

VMX non-root mode and the hardware runs the instruction pointed to by the RIP

in the VMCS (Step 4), which launches/resumes the analyzer in onsite mode.

Address Adjustment

The host OS’s service to the analyzer’s event may result in new data being written

into user-space buffers, e.g., the I/O data generated by a peripheral device is copied

to a user-space buffer chosen by the analyzer. It is therefore crucial to maintain

cross-mode consistency so that returns from the OS is properly received by the

analyzer.

Since the analyzer’s VAs have different PML4 prefixes (i.e. λh and λo) in host

and onsite modes, the trampoline handles this difference during mode switches.

When entering host mode from onsite mode, it replaces λo with λh in all addresses

passed to the host OS such as system call parameters in general registers and the

address of the faulting instruction in CR2. When entering onsite mode, it replaces

λh with λo in all addresses returned to the analyzer, such as the new program break

from a brk system call. Note that the host kernel’s update on the analyzer’s paging

structures does not require address adjustment since they are physical addresses.

3.2.4 Security

The adversary we consider resides in the target VM with kernel privileges. Since

onsite mode uses its dedicated O-PML4 page, no artifacts are exposed to the guest

VM. The guest VM cannot manipulate the pages used by the analyzer since those
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pages are not mapped in the EPTs used in the guest VM. Transparency and isolation

protection is guaranteed. Note that we do not consider memory corruption attacks

(e.g., buffer overflow) that exploit the analyzer’s software vulnerability, as the coun-

termeasure [29] is orthogonal to our study. Onsite analysis is not more susceptible

to such attacks than other analysis models.

3.3 Summary

In this chapter, we proposed OASIS as the system infrastructure to provide the on-

site environment which guarantees the mapping consistency as well as native access

speed. Its main idea is to fuse the target program’s virtual address space within the

analyzer’s local address space through page table grafting assisted by EPT. We also

addressed the technique challenges induced by the address space relocation for the

analyzer to transparently receive system services from the host OS. The following

two chapters discuss the two new dynamic analysis models benefiting from OA-

SIS’s native access capability, transparent system services as well as the isolation

and transparency protection. The implementation and system evaluation are left in

Chapter 6.
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Chapter 4

OASIS based Onsite Memory

Analysis

In this chapter, we propose a new dynamic analysis model named Onsite Memory

Analysis (OMA). In OMA, the analyzer examines the target by conducting na-

tive accesses to its live virtual memory without intercepting its execution. Existing

memory-based dynamic analysis such as [78] is essentially based on physical mem-

ory dumps. Additional computation has to be applied in order to reconstruct the

semantics in the virtual memory, which incurs not only performance overhead but

also security risks. We remark that OMA differs from traditional memory analysis

in several ways. The most prominent difference is that the latter relies on intermit-

tent page-level memory snapshots, while onsite memory analyzer makes continuous

and word-granularity memory accesses. Due to the operational difference, the latter

makes postmortem analysis on the target’s momentary state while OMA is fresh and

state. More comparisons are in Chapter 2.

We developed four exemplary tools to showcase the capabilities of OMA. The

first one is a Virtual Machine Introspection(VMI) tool, which achieves near-kernel

introspection speed and references the target memory directly without calling any

VMI APIs. The second one reveals the target’s virtual memory layout without re-

lying on any kernel objects. Existing approaches typically follow the conventional
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address space layout or trust the VMA structures provided by the target kernel [15].

Both methods are exaggerated and fail to work when malware reshapes its address

space or subverts the target kernel. It also discovers potential pointers and link lists

on the memory. The third one monitors the evolution of a particular memory region

to capture the target’s system call events as well as their parameters. Lastly, we

apply an existing static analysis tool to generate control flow graph for Just-In-Time

code. It demonstrates that existing static analysis tools (e.g., CFG generator) can be

adapted for OMA.

Organization. The four tools are present in Section 4.1, 4.2, 4.3, and 4.4 respec-

tively

4.1 Virtual Machine Introspection

Since the analyzer’s address space encloses the subject’s memory introspection is as

natural as referencing its own memory buffer. The analyzer does not need any API

to request OASIS services at runtime. Hence, the analyzer development is much

easier than on other popular VMI schemes such as LibVMI [79] and XenAccess

[80]. We show a toy C program below to demonstrate that the introspection tool

on top of OASIS is easy-to-develop. Then we develop several typical memory in-

trospection tools that fetch kernel objects from the target guest VM and make the

performance comparison with ImEE [8], which represents the state of the art out-of-

VM introspection technique. According to our experiments reported below, onsite

memory introspection is up to 87 times faster then ImEE.

Toy Introspection Program on OASIS

The program showed in Figure 4.1 uses a target’s Virtual Address(VA) to read the

target’s live memory content directly, and saves the result into its local file. The

application requests OS services as usual and does not need any VMI APIs.
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void main ( ) {
/ / an a d d r e s s i n g u e s t
void ∗ t a r g e t a d d r ;
t a r g e t a d d r = 0 x f f f f f f f f 8 1 6 f 3 0 9 0 ;

/ / open a l o c a l f i l e i n h o s t
i n t fd = open ( ”dump . b i n ” , O RDWR ) ;
/ / copy 8 b y t e s from t h e g u e s t
w r i t e ( fd , t a r g e t a d d r , s i z e o f ( long ) ) ;
c l o s e ( fd ) ;
re turn ;

}

Figure 4.1: A toy analyzer that copies 8 bytes from the target’s memory to a local
file.

Performance Comparison

The available ImEE implementation and OASIS use 32-bit and 64-bit guest respec-

tively, so the introspection performance is measured as the ratio of the analysis tool’s

CPU time to the time spent by the respective kernel module performing the same

task. Figure 4.2 reports the performances for reading a consecutive block from the

guest, which reflect the speed in accessing the target’s memory. Our tool is about 9

to 87 times faster than its ImEE counterpart.

1.1 1.6 1.8 1 1
9.9 11.9 13.8 16.2

87

0
10
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90

4K 1K 512 64 4

Times	of	Kernel	
CPU	Cycles

Block	Size	(in	bytes)

OASIS ImEE

Figure 4.2: Tools using ImEE and OASIS have different performance in reading a
block of memory. The smaller number represents higher performance.

Figure 4.3 reports the performances for reading through a list, which reflects the

flexibility of the introspection tool’s reading pattern. Among three analysis tools we

test, the first two have fixed reading pattern, while the last one does not.
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Figure 4.3: Traverse-read CPU time normalized by the kernel expenses for the same
tasks. The smaller number represents higher performance.

Our tools also outperforms their ImEE counterparts with a 40 times gap for the

last tool. The main reason is that, since the read pattern is not fixed, the ImEE tool

cannot make a batch read as in the other two cases. It incurs significantly more

synchronized reads and writes via the interface between the ImEE agent and the

tool itself.

4.2 Virtual Address Space Reconnaissance

The tool discovers the target’s virtual memory layout as well as potential pointers

in the virtual memory and their values. An analysis of the pointers further unearths

link-lists used by the target.

4.2.1 Design Sketch

At the core of the tool is an execution based pointer-test. The tool treats every eight

bytes in the virtual address space as a virtual address P , and uses a mov instruction

to read another eight bytes at P from the target memory. If no exception is thrown

out, the bytes are a pointer which has the memory mapping. More precisely, the test

shows that these bytes are qualified to be a pointer. Further analysis is needed to

determine whether they are actually used as a pointer by the target program.

The reconnaissance tool makes a width-first like search starting with a given

virtual page. It first expands the territory by reading lower and higher pages until
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encountering a page fault. It then explores these newly discovered virtual pages

by running the pointer test to discover pointers at all possible virtual addresses. If

those newly discovered pointers point to pages which have not been visited, the

program appends these new pages to the queue for future expansion. The expand-

then-explore cycle repeats until no new virtual pages are found. At the end, all

memory pointers in all discovered pages are unearthed. By analyzing the relation-

ship among pointers, the program can discover existence of link-lists and frequently

used data objects.

There are several alternatives to obtain the starting page. A straightforward

choice is to choose a random page or choose one from the default layout. Better

options are to select the pages based on the current execution context. One is the

target’s stack page. When the target VM is trapped to the hypervisor, its RSP value

can be read from its VMCS structure. Since stack frames contain return addresses,

the program also finds out the code pages that are currently in execution. Another

alternative is to find possible virtual addresses stored in general registers during VM

exit or the VA of the intercepted instruction.

4.2.2 Implementation

Range checking is the popular method used to decide whether the given eight bytes

are a valid VA or not. They are compared against the known VA ranges whose

information is extracted from the kernel. As compared to the range-checking ap-

proach, the pointer-test approach is much faster for genuine pointers. However, it

costs more CPU cycles for non-pointers due to the exceptions. Our implementation

is optimized to minimize the cost of exceptions.

The first optimization is to filter out non-canonical addresses, namely between

0x7FFFFFFFFFFF and 0xFFFF800000000000, which are considered as illegal by

the hardware implementing 48-bit addresses. The second optimization is a three-

pronged approach to reducing the overhead of handling page faults triggered by
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accessing unmapped addresses. Firstly, we configure the onsite mode GDT so that

the tool runs with Ring 0 privilege, instead of Ring 3. It avoids expensive privilege

switches when page faults are thrown out. Secondly, a special page fault handler

is installed for the tool. The handler’s main task is to set a flag and advances the

test according to the step length. The IDT is configured to disable stack switches

for page faults. Thirdly, different from normal handlers that use iret to resume

the faulting instruction, it uses ret instruction to make faster control transfer. The

total implementation consists of 446 SLOC.

4.2.3 Experiment

We apply the address space reconnaissance tool upon Apache and Ustealer1 which

is a malware stealing Ubuntu information. Starting from the stack page, the tool

gradually discovers the target’s virtual pages and all potential pointers therein. We

use the kernel’s report on the address space as the baseline. Specifically, we count

the number of mapped pages by checking the page table. We also use the VMA

structures in the kernel to calculate the mapped pages. The results from both exper-

iments are summarized in Table 4.1 where the VMA-based page counts are reported

in brackets.

Reported by Pages VMAs Pointers

Apache Our Tool 1021 53 23406
Kernel 1033 (1470) 37 N/A

Ustealer Our Tool 884 26 9544
Kernel 909 (4928) 13 N/A

Table 4.1: Apache and Ustealer’s address spaces

Our tool identifies most pages which do have mappings in the page tables, and

more VMAs than reported by the kernel due to the kernel’s lazy memory alloca-

tion. For the sake of better performance, the kernel may allocate the virtual address

space without mapping all physical pages, which lead to discontinued VMAs. Our

1https://github.com/atmoner/Ustealer
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pointer-test results hence reflect the actual mappings defined in the page tables,

which are more fine-grained and more accurate. Note that in the experiment with

Ustealer, the kernel allocated 4928 pages while only 909 pages are actually mapped

and only 13 VMA regions are reported. This indicates that the malware aggres-

sively requests the kernel to allocate large chunks of memory. Our measurement

shows that the page fault handler execution takes about 194 nanoseconds. It takes

the tool about 26 milliseconds and 40 milliseconds to explore Ustealer and Apache,

respectively. The main overhead is due to page faults induced by non-pointers in

the pages.

We run an analysis upon the 287 (potential) pointers discovered on one 4 KB

stack page of Apache which accommodates up to 512 8-byte pointers. According

to the pointer values, we group them into four categories: heap pointers (i.e., those

pointing to the heap object), stack pointers, library pointers and Apache pointers

(i.e., those pointing to Apache’s code and data sections). A graphic representation

of them is in Figure 4.4(a) which shows a seemingly flat line formed by Apache

pointers. Figure 4.4(b) visualizes that segment and shows that they are 49 adjacent

pointers pointing to adjacent memory locations in Apache’s data section. With a

high probability, they are an array of pointers pointing to another array.

Our analysis tool also attempts to discover possible link-lists using a chain of

pointers in the heap. The analysis is based on the pattern that pointers in link-list

nodes always have the same offset to the respective node’ address. The results are

reported in Table 4.2, where the third column is the distance between the pointer’s

address and its node address, and the last column is the number of pointers pointing

to the head of the list. Interestingly, there is one list whose node structure has the

pointer as the first member.
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Figure 4.4: Visualization of pointers discovered on a stack page. X-axis is the
offset of the pointer’s location in the page in terms of the number of 8-byte memory
words; Y-axis is the offset of the pointer’s value with respect to the base address of
the corresponding zone (displayed in logarithm scale in Figure 4.4(a) and in linear
scale in Figure 4.4(b)).

Head Node Addr. # of nodes Offset # of References
0x5555557FC260 23 32 5
0x5555558007F0 22 24 7
0x555555800110 10 0 1

Table 4.2: Potential link-lists in one of Apache’s heap pages
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4.3 Non-Intrusive System Call Monitoring

This tool captures a user-mode program’s system call issuance without intercepting

its execution. In this case, we do not consider the scenario where the target ker-

nel intentionally hides its user program’s system call events by not respecting the

system call convention.

4.3.1 Design Sketch

The evolution of the kernel stack during a system call is depicted in Figure 4.5.

Whenever the target process runs in user-mode, the process’s kernel stack is empty.

In response to the syscall instruction, the kernel always first pushes the user-

mode stack segment and stack pointer into the kernel stack, followed by other infor-

mation including the system call number, the return address and parameters. When

the system call handler completes its service, it pushes RAX storing the system call

return value into the stack, before firing the sysret instruction. In the end, the

kernel stack pointer is restored to its initial position. Note that the contents of the

stack are not zeroed.

reg. flags
code seg

return addr
syscall #.

parameters

user RSP

syscall

RSP

RSP ret. value

RSP

sysret

user SS

reg. flags
code seg

return addr
syscall #.

parameters

user RSP
user SS

(obsolete 
contents)

Figure 4.5: Evolution of kernel stack from receiving syscall to completion of sysret

The tool continuously monitors several kernel stack placeholders which are pos-

sibly updated due to a system call, including the user-mode stack pointer, the return

address, the system call number and parameter(s). If the contents in those place-

holders are found to be different from those recorded in the prior system call, the
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tool reports a new system call issuance and saves the user-mode RSP, RIP, RAX

images, six syscall arguments, the syscall return value, and RFLAGS. By monitor-

ing a combination of placeholders, we maximize the likelihood to catch the event.

It is possible that repeated system calls do not incur any change in those monitored

stack placeholders and therefore are missed by our tool. For instance, the subject is

a network daemon keeps polling the socket while no packet arrives.

4.3.2 Evaluation

Our implementation consists of 121 SLOC. It takes merely around 20 CPU cycles

to record one system call, which is speedy enough to ensure that the tool can resume

its monitoring before the kernel handler returns. Since the system call issuance is a

blocking operation, the application cannot issue another system call during kernel

service. We have tested our tool against four unnamed user space malware samples

downloaded from Github [81] and two benign programs (Firefox and Bash). In the

experiment, we stop malware execution after catching 100 events, and use system

calls recorded by strace in the guest as the baseline to evaluate monitoring effec-

tiveness. The results are shown in Table 4.3 where M1 to M4 denote four unnamed

malware samples.

Our tool captures all system calls from Firefox and Bash, but misses a significant

percentage of system calls from M2 and M4. After manual investigation, we find

that both malware continuously issue system calls from the same calling site which

does not change the user-stack pointer stored in the kernel stack.

Target M1 M2 M3 M4 Firefox Bash
# Captured 100 100 100 76 84 57
# Noise 0 0 0 24 16 43
# Missed 0 39 0 308 0 0

Table 4.3: Results of system call monitoring

Comparison With Existing Methods. The main advantage of onsite-based system

call monitoring is its non-intrusiveness. No hook is placed into the subject or the
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guest kernel. Neither the target execution flow is intercepted. It is therefore more

convenient to deploy and more difficult to detect,

The main disadvantage of onsite-based system call monitoring is the “noise”,

since exceptions and interrupts are also caught because they induce the kernel stack

modification as well. Differentiating system calls from interrupts and exceptions

requires a deeper analysis on the stack. One indicator is the RF bit (i.e. the 16th bit)

in RFLAGS register image stored in the stack. For any fault-class exceptions, the

hardware sets this bit in the register’s stack image; otherwise it is cleared. Therefore,

it is an accurate indicator to differentiate fault-class exceptions and system calls.

Nonetheless, an analyzer may benefit from these noises because they provide extra

intelligence to understand the subject behavior. For instance, frequent non-present

page faults indicate the subject’s intensive memory usage and frequent interrupts

may indicate intensive I/O operations.

4.4 Combining with Static Analysis Tool

OASIS not only facilitates the onsite analysis on a program’s runtime memory, but

also can combine with existing static analysis tool. Static analysis tool normally

takes a ELF/PE format object file as input, while some applications is likely to emit

informative binaries at runtime which needs analysis. For example, JavaScript(JS)

interpretively executes in a confined environment which constrains its malicious

behaviors, so that the runtime emitted JIT code becomes the popular target for a JS

malware. Memory overflow vulnerabilities are here and there, which leaves chance

for a JS malware to trick JIT compiler to emit arbitrary JIT code. Therefore, analysis

on these runtime generated JIT code is necessary. In the following, we show that an

existing static binary analysis tool can run on onsite mode which takes the JIT code

from memory as input directly and generate a Control Flow Graph(CFG) for it.
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4.4.1 Design Sketch

Dyninst2 allows CFG generation on ELF/PE format object file among its strong

binary analysis capabilities. In order to reuse their ParseAPI to analyze on snippets

of JIT code in memory directly, we implement a new code source that can represents

binary from memory.

Dyninst recursively disassembles the binary, which means the target of all

jmp/call instruction would be remembered and used as the start point of next

parsing. It is worth to note that all the pointers from the target program reserve

their semantics under onsite mode. Therefore no additional mapping information is

needed for Dyninst.

The JS engine needs to share the base address and size of the JIT code with

Dyninst whenever there is one emitted. They first negotiate a page, and then share

all the necessary information there, including a flag to indicate there is a new JIT

code emitted, and the base address and size of the new emitted JIT code. Since CFG

tool running in onsite mode has read access to the target program’s address space,

it can continuously checks whether the flag is set.

4.4.2 Attacks on intermediate data of JIT compiler

The JIT compiler is responsible for generating native code for functions and meth-

ods that are invoked frequently. There are several steps that a JIT compiler takes

to convert bytecode into native code. An Intermediate Representation(IR) is first

generated, then it is optimized, register allocated, etc. Once the IR is ready, it will

be encoded into native code. Most of the JS engine would put the finalized JIT

code into a readable-and-executable region to mitigate attacks which overwrites the

JIT code directly. However, since the IR must store in a writable memory region,

the attackers can trick the JIT compiler to generate arbitrary malicious payloads by

manipulating the IR before they are used as inputs to the JIT compiler [82].

2http://www.dyninst.org/
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For ChakraCore [83], which is the JavaScript engine of Internet Explore, it

allocates a buffer which temporarily holds the native code. After all of the na-

tive instructions have been emitted into the buffer, the JIT compiler relocates the

buffer into a readable-and-executable region. Theori [84] targeted on this tempo-

ral buffer to overwrite the native instructions there directly. We emulate this attack

on Chakaracore 1.4.0. Since the modification is conducted after compilation, there

is no check by the compiler to discover the attack. any payload is reasonable to

bypass. In order to mitigate this attack, Microsoft patched the JIT compiler with

a cyclic redundancy checksum of the emitted instructions during compilation, the

JIT code is only executed if the checksum of the relocated buffer corresponds to

the original checksum. In order to emulate this attack, we modify ChakraCore to

let this checking pass at any condition. The payload we emulated is same as [84]

which contains two stage. The native code in the temporal buffer is overwritten with

the first stage payload which issues a mprotect syscall to map a memory region

as RWX, and then jumps there. The second stage payload can be large enough to

contain arbitrary code.

4.4.3 Implementation

We places hook inside ChakraCore, so that its JIT compiler would share the start

address and size of the native code whenever there is one emitted. For more specif-

ically, the hook is placed inside Encode::Encode() which converts IR into

native code. Every JIT code is associated with a JITOutput instance. We get

the start address of the JIT code and its size through class JITOutput’s member

methods GetCodeAddress() and GetCodeSize() respectively.

In Dyninst, the CodeSource interface is used by the ParseAPI to re-

trieve binary code from an binary code object. The ParseAPI provides a de-

fault implementation based on the SymtabAPI that supports many common

binary formats including ELF, COFF, and PE. We implement a set of mem-
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ber methods in class CodeSource to support parsing binary code in memory.

After constructing a CodeSource instance for the new generated JIT code,

parse() function is invoked to analyze the binary. Whenever there is a new

JIT code emitted, a new CodeRegion is added into the existing CodeSource

instance. parse(CodeRegion*, Address, bool recursive) function

can be invoked repeatedly to analyze on the newly added JIT code.

4.4.4 Experiments

We test on a benchmark JS from JetStream3. As shown in Table 4.4, there are 20 JIT

code emitted sequentially with average size of 0x686 bytes at runtime. The CFG

generation tool is able to catch up the emitting of all the 20 JIT code and parsing

them. It takes 0.767ms to parse each JIT code in average.

# of JIT code Average Size Average Time # of BasicBlocks # of Edges
20 0x686 0.767 1665 2290

Table 4.4: Performance of CFG generation tool

Among these 20 JIT code, we rely on gdb to dump one from runtime memory

with size 0x128. We then rely on objdump with -b binary option to disassemble

it, a manual comparison shows the result matches with the one generated by CFG

tool in onsite mode. We also run the CFG generation tool on the emulated attack,

it successfully identifies the first stage payload. While since the first stage payload

use an indirect jmp to jump to its second stage payload, the tool lacks the ability to

identify the target for an indirect jump.

4.5 Summary

In this chapter, we developed several exemplary OMA tools. The first one demon-

strates the native access speed guaranteed by OASIS. The speed facilitates the mem-

ory evolution monitoring, which further helps to infer the program behaviors such
3http://browserbench.org/JetStream/in-depth.html#hash-map
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as the system call events as shown in the third tool. Without memory dumping

or reliance on the target kernel objects such as VMA structures, the second ana-

lyzer efficiently plots the running target’s virtual address space layout and discovers

pointers and link-lists via conducting large-scale and on-demand virtual address

testing. The last one demonstrates that existing static analysis tools can be adapted

for onsite analysis.
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Chapter 5

OASIS based Execution Flow

Instrumentation

In this chapter, we propose a new dynamic analysis model named Execution Flow

Instrumentation(EFI). The concept is for a user-space program (denoted as the

analyzer) to instrument the execution flow of a malicious thread across user and

kernel spaces. Essentially, the target’s and the analyzer’s instruction streams are

interlaced at junctures chosen by the latter. By fusing their execution flows instead

of the static code, we aim to combine the virtues of hardware-trapping (strong secu-

rity and non-intrusiveness) and code instrumentation (native-access) without their

drawbacks.

How to securely and efficiently interleave the analyzer instruction flow with

the target flow in an on-demand fashion? It is not secure to mix up their instruc-

tions in one address space as in code instrumentation. The hardware event trap-

ping approach follows the ideology of isolation rather than integration, as it leads

to executions in a more privileged setting and also has other drawbacks such as

non-negligible trapping overheads and limited triggering conditions provided by

the hardware.

OASIS provides the onsite environment where the analyzer can natively read-

/write into the target’s virtual memory. To realize the EFI, we extend OASIS with
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another address space hierarchy in onsite environment, where the target runs with all

physical pages in the guest and all access permissions set as in the guest. We also ex-

tend OASIS with a significant instrument technique whereby the analyzer securely

and flexibly chooses the junctures to regain the execution flow. To the analyzer, this

is done as native as in the code instrumentation including the memory object and

register information introspection, while the instrumentation remains transparent

and inevitable as in hardware trapping based schemes. The transitions do not entail

any CPU privilege/mode changes. These advantages are derived from one feature

of onsite environment: the target’s address space is shared with the analyzer, but

not vice versa. In contrast, they share no address space in event-trapping systems

[6, 7, 1, 2] and share the space entirely and mutually in code-instrumentation sys-

tems [16, 4].

We developed EFI tools in three case studies. The first case study uses an EFI

tool to trace full-space control flow transfers including asynchronous executions

such as page fault handling. The second case study consists of two EFI tools work-

ing in tandem with Syzkaller [19], a popular kernel fuzzer from Google. One tool

is for postmortem analysis based on a kernel crash report. It uses instruction slicing

to identify instructions relevant to a data flow and then traces their execution. The

other EFI tool analyzes the Syzkaller executor thread exploring a malicious kernel

driver. It uses both breakpoints and tracing to uncover the driver behavior which

successfully evades the fuzzer’s logging mechanism. The third case study examines

how a user-space program exploits the vulnerability in dynamically loaded kernel

modules. All EFI tools are developed and launched as applications despite making

kernel analysis. The case studies show that EFI tools are handy and easy-to-develop.

They are especially well-suited to fine-grained and agile analysis on (malicious) ker-

nel threads.

Organization. Next, we present an overview of OASIS based EFI and the work-

flow of dynamic analysis using EFI . Analyzer’s execution in onsite environment is

discussed in 5.2. The details of target execution in onsite environment is presented
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5.3. EFI techniques are elaborated in 5.4 followed by its security and transparency

analysis in 5.5. The case studies are presented in 5.6. The implementation details

of the case study tools are in 5.7.

5.1 Overview

5.1.1 Overview of OASIS Based EFI

We extend OASIS to support EFI with its new architecture shown in Figure 5.1. It

has a new component OASIS-Lib which consists of one code page and several data

pages to facilitate 1) control transfers between the target and the analyzer; and 2)

event handling during analyzer execution. The Trampoline is used to handle the

analyzer’s interactions with the host OS to provide transparent OS services to the

analyzer which has been discussed thoroughly in Chapter 3. The main extension

is on the Manager which sets up and manages the onsite environment for both the

analyzer(including OASIS-Lib) and the target’s execution.

GuestOnsite Environ.

Host 
OS

TargetOASIS-Lib

Analyzer/Target

Trampoline Manager

OASIS

App

Figure 5.1: The architectural view of OASIS based EFI. The entire guest is un-
trusted including the guest kernel. The boxes in yellow illustrate OASIS software
composition.

The onsite environment consists of one vCPU, two suites of EPTs (denoted as

A-EPT and T-EPT), and four paging structure pages (denote as O-PML4, O-PDPT,

O-PD and O-PT). The analyzer is loaded into the environment immediately after

process creation, while the target thread in the guest is captured and migrated to it.

• When the analyzer runs, the onsite environment uses A-EPT and O-PML4 to
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instantiate the analyzer-target paging hierarchy that merges the target space

with the analyzer.

• When the target thread runs, the onsite environment uses T-EPT, O-PML4,

O-PDPT, O-PD and O-PT to instantiate the target-lib paging hierarchy that

merges the target space with OASIS-Lib. All the target’s memory accesses

are still within the guest.

Our approach to analyzer-target execution interleaving is to switch the underly-

ing EPT paging hierarchy without triggering an interrupt or exception. The switches

are realized through two short instruction segments in OASIS-Lib. The one for

switching from the target to the analyzer is the exit-gate, and the other is the entry-

gate. A combination of techniques are used to safeguard their security and trans-

parency.

5.1.2 Workflow of Dynamic Analysis using EFI

The high level workflow of dynamic analysis using EFI is illustrated in Figure 5.2.

To start the analysis, OASIS exports the target threads from its core in the guest to

the onsite core. The analyzer’s EFI session consists of multiple rounds of target-

analyzer execution flow interleaving at junctures chosen by the analyzer. If needed,

the analyzer restores the target back to the guest to continue its execution. The cycle

repeats until the analyzer completes the entire analysis task.

onsite 
core
target 
core

analyzer

target Manager target

target analyzer analyzer

export

onsite execution instrumentation 

restore

exit
entry

Figure 5.2: The high-level workflow of dynamic analysis using execution flow in-
strumentation. It consists of cyclic switches between the target and the analyzer
within the onsite environment.

The analyzer uses probes to specify the junctures for instrumentation. When the

target execution flow reaches it, the probe transfers to the exit-gate which further
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jumps to the analyzer code. After the analyzer completes execution of the instru-

mentation logic, it jumps to the entry-gate which further returns the control back to

the target. Although the use of probes changes the target code running in the onsite

environment, it neither alters the target address space or affects other threads shar-

ing the code in the guest. OASIS ensures its transparency by setting it as execution-

only. Figure 5.3(a) depicts the i-th round interleaving in an EFI session which has

the same effect as code instrumentation in Figure 5.3(b), but with stronger security

and transparency.

probe iexit-gate

entry-gate

Onsite Environment

TargetAnalyzer

code instrumented target

target code

target code

instrumentation code

(a) EFI across address spaces with no CPU
privilege or mode changes

probe iexit-gate

entry-gate

Onsite Environment

TargetAnalyzer

code instrumented target

target code

target code

instrumentation code

(b) Equivalent effect by using code instru-
mentation

Figure 5.3: Illustration of execution flow instrumentation via probes and gates.

5.2 Analyzer Execution in Onsite Environment

Recall that the system service requests from the analyzer in onsite environment are

transparently handled by the host OS. We briefly review its address mappings here.

When the analyzer runs the underlying EPT is A-EPT. All entries on the target’s

PML4 are copied to O-PML4. The guest’s GPA domain is denoted as [0, T ], the

CR3 on the onsite core is loaded with GPA α ∈R [T, 248], namely α is randomly

chosen between T and 248. Among the kernel half of the VA domain, we choose an

unoccupied 512-GB band for the analyzer. Without loss of generality, suppose that

the λ-th 512-GB band is chosen, where 256 ≤ λ < 511. The λ-th entry in O-PML4

is populated with a randomly generated GPA β ∈R [T, 248] with the supervisor bit

cleared. A-EPT is configured as follows to map GPAs to HPAs.
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• For all GPAs used in the guest, their GPA-to-HPA mappings are the same as

in the guest and the permissions are set as non-executable.

• GPA α is mapped to the HPA of O-PML4 and GPA β is mapped to the HPA

of the analyzer’s PDPT page in the host.

• For all HPAs appearing in the analyzer’s PDPT, PDs, and PTs, their GPAs are

set equal to themselves. Namely, A-EPT uses the identity map for all of them.

O-PML4

target 
pages

β

target PML4

analyzer 
pages

target PDPTsanalyzer PML4

λ
analyzer 
PDPT

in host in guestonsite env.

CR3CR3CR3

Figure 5.4: The analyzer-target hierarchy is rooted at O-PML4. The boxes with
patterns indicate randomized values. All arrows except those in the host involve the
underlying GPA-to-HPA mapping in A-EPT.

The resulting analyzer-target hierarchy is shown in Figure 5.4. All target VAs

are mapped in the same way (except permissions) to the corresponding physical

pages as in the guest. Hence, the analyzer instructions can use those VAs to natively

read/write accesses to the target data and code pages. All analyzer VAs are also

mapped to the corresponding physical pages since the MMU travels the same PDPT

page and subsequent structures as in the host.

Runtime Update. The guest kernel’s updates on the target’s paging hierarchy

(except its PML4) and the host OS’s updates on the analyzer’s paging hierarchy

are both automatically take effects in the onsite environment since their PDPTs,

PDs, and PTs are linked to O-PML4. To ensure consistency between the target’s

PML4 and O-PML4, OASIS sets the former as read-only by configuring the guest
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EPT. The guest kernel’s PML4 update is intercepted and cloned to O-PML4, which

occurs seldom in 64-bit platforms.

Analyzer Execution. Initially, the analyzer runs in Ring 3. It may also run in Ring

0 by promoting itself for privileged operations (e.g., accessing the target kernel)

or by following the target kernel-mode execution through the exit-gate. In order to

support self privilege escalation and to handle exceptions, OASIS provides new IDT,

GDT and TSS. The GDT has a call gate for the analyzer own privilege escalation.

Note that these descriptor tables are exclusively used for the analyzer’s execution,

they are different from the ones when the target runs.

5.3 Target Execution in Onsite Environment

The target thread is exported to the onsite environment. We describe below its un-

derlying target-lib hierarchy, consistent execution, and target-analyzer control trans-

fers.

5.3.1 Address Mapping For Target Execution

Constructed by using T-EPT, the target-lib hierarchy merges the target address space

and OASIS-Lib’s. Its details are elaborated in Figure 5.5. Both CR3 and O-PML4

remain the same as in the analyzer-target hierarchy. T-EPT clones all GPA-to-HPA

mappings in the guest including their permissions. To prevent the target from de-

tecting and accessing OASIS-Lib, we randomize both its base VA within the 512

GB band occupied by the analyzer and also the GPAs of the paging structure pages

used in translation. Specifically, T-EPT maps GPA β to O-PDPT’s physical address.

The GPAs for O-PD and O-PT are also randomly selected from range [T, 248]. Ac-

cording to the random VA assigned to OASIS-Lib, the corresponding entries in O-

PDPT, O-PD, and O-PT are assigned properly to construct traversal paths leading

to OASIS-Lib’s physical pages. Note that O-PDPT, O-PD and O-PT are exclusively

for OASIS-Lib, no other entries on them are populated.

51



OASIS-Lib 
pages

O-PML4

target 
pages

β

target PML4 target PDPTs

λ

in guestonsite env.

CR3CR3

O-PDPTO-PDO-PT

Figure 5.5: The target-lib hierarchy rooted at O-PML4. The boxes with patterns
have randomly assigned GPA contents. All arrows use the underlying GPA-to-HPA
mappings in T-EPT.

5.3.2 Execution Consistency

With the target-lib hierarchy, the exported target has consistent memory references.

Hence, the remaining issues are to handle the CPU context as well as system-level

structures that are vital for interrupts and exceptions.

Exportation & Restoration. The target thread is captured via VM-exit in the guest

so that its entire CPU context is saved to the main memory. The context includes

general-purpose registers, control registers and model specific registers (MSRs). To

export it to the onsite environment, OASIS configures the VMCS of the onsite core

according to the saved target core context, except that CR3, CR4, IDTR,GDTR and

TR are the same as in analyzer execution.

The trapped target core is hold by OASIS until the target thread is restored,

to mimimic the target’s supposed CPU occupancy in the guest and also facilitate

subsequent restoration and I/O operations. Upon the analyzer’s request to restore

the target, OASIS updates the target core VMCS structure with the onsite core’s

(including RIP) so that the target continues its execution in the guest from the

context in the onsite environment.

I/O Operations.

In the onsite environment, the target directly accesses the guest’s memory-
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mapped I/O regions and DMA buffers via their VAs. However, port I/O operations

and interrupt delivery do not use virtual addresses and hence require special treat-

ments. The design is dependent on the underly I/O mechanism provided by the host

OS to the guest.

In Linux KVM, I/O requests are trapped to the hypervisor which dispatches it

to QEMU to execute. When the hardware completes the task, the external interrupt

is therefore delivered to QEMU which notifies the hypervisor to inject the interrupt

into vCPU during VM-enter. In OASIS, the general idea is to let the Manager to

replace QEMU. The target’s I/O operation in the onsite environment is trapped to

the Trampoline which passes it to the Manager withholding the target core in the

guest (shown in Figure 5.2). The Manager executes the operation so that it appears

to the host OS as a request from the target core. After I/O operation completion,

the target core’s VM re-entry is intercepted by the Manager which then notifies the

Trampoline in the onsite core to resume the target execution and inject the exter-

nal interrupt if any. In this way, the exported target has the same behavior in I/O

operations and interrupt delivery as in the guest.

System Data Structure Relocation. To support analysis on exception and inter-

rupt handling in the target thread, OASIS relocates the target’s system-level data

structures to OASIS-Lib, including the IDT, GDT, TSS. For TSS relocation, it also

updates the TSS descriptor in the GDT accordingly. The target’s exception and

interrupt handling are the same as under the original setting.

To protect transparency, OASIS prevents the target from accessing those regis-

ters by configuring the VMCS structure. Any software access to them is trapped to

the analyzer which returns the original address. Note that the target thread’s read to

these tables using their original VAs are not affected, because thee tables are physi-

cally in the guest and are not changed. Updates to the tables are intercepted so that

OASIS clones the changes to the relocated counterparts.

The relocation allows the analyzer to customize these data structures in order

to monitor and control asynchronous events in target execution. For instance as
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described later in 5.4, an analyzer interested in the target’s page fault handling may

hook the target’s #PF hander to capture the event and then traces the execution. Note

that the analyzer has its own set of system-level data structures which are provided

by and located in the host kernel.

5.3.3 Cross-Flow Control Transfer

The target execution in the onsite environment is instrumented via cross-flow con-

trol transfers. The basic idea is to switch the EPTs by using the vmfunc instruction1

in order to switch the paging hierarchies for the execution flows. After the switch,

the CPU fetches the next instruction from the new address space as it translates VAs

under the new hierarchy.

Straddling in both hybrid hierarchies, the exit-gate switches from the target-lib

hierarchy to the analyzer-target hierarchy while the entry-gate switches in the oppo-

site direction. The two gates are in the OASIS-Lib code page which is set as writable

in the analyzer-target hierarchy in order for the analyzer to flexibly customize the

entry-gate. An OASIS-Lib data page is used to save registers and to facilitate control

transferring to destinations more than two GB away from the gates.

Exit-gate. Figure 5.6(a) presents the assembly code of the exit-gate which is

called from the target flow to pass the control to the analyzer flow. It first saves

the target’s current RAX and RCX to the pre-defined locations in the OASIS-Lib

data page as the two registers are needed to load vmfunc parameters. A-EPT is

pointed by the 9th EPTP in the pre-prepared EPTP-list. It issues vmfunc with

index 9 specified in RCX to instruct the hardware to switch to A-EPT. Finally, it

jumps to the analyzer’s handler with an indirect IP-relative JMP which fetches the

destination from OASIS-Lib’s read-only data page. Note that instruction at Line 6

is fetched and executed from the analyzer-target hierarchy. The hierarchy switch

does not disrupt the instruction sequence because the OASIS-Lib page containing

1According to Intel specification, vmfunc invokes a predefined hypervisor function specified by
RAX and RCX without incurring VM-exit.
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(a) Exit-gate (b) Entry-gate

Figure 5.6: Pseudo-assembly code of the exit-gate that passes the control to the
analyzer and the entry-gate that returns the control to the target.

the gate is mapped as executable in both hierarchies with the same VA and PA. To

minimize the exit-gate’s code size, it does not save the target’s CPU context except

two registered used by itself. It is the analyzer handler’s responsibility to retrieve

the target’s RAX and RCX from the data page and save the target CPU context.

Entry-gate. Figure 5.6(b) presents the assembly code of the entry-gate which

is called from the analyzer flow. It issues vmfunc with index 0 specified in RCX

instructing the hardware to switch to T-EPT. Line 4 to 6 check the value of RCX

in case the target jumps to Line 3 directly with RCX prepared by itself. From line

7, it restores RAX and RCX and jumps to the destination specified by the analyzer.

None of the instructions before line 7 modifies the CPU context except RAX and

RCX. Especially, RFLAGS are not affected. The transfer destination in line 31 is

also loaded from the read-only data page with an indirect IP-relative JMP. Note that

it is the analyzer’s responsibility to prepare the desirable CPU context (including

the transfer destination) for the target to resume its execution. The instructions

following vmfunc are fetched from the target-lib hierarchy. A slide of 22 nop

instructions is placed before the final jmp instruction. The slide is long enough
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for two instructions used for make-up execution due to the probe (as explained in

5.4.2). We discuss the security of the gates in 5.5.1.

In short, the cross-flow control transfers do not incur any CPU privilege or mode

changes. As shown in Figure 5.7, OASIS-Lib is mapped into the same VA in both

hierarchies. The analyzer and the target use the same set of IDTR,GDTR and TR

while their hierarchies map them into different sets of physical pages. Hence, the

analyzer does not need to set those registers in a cross-flow switches, which may

demand the analyzer to escalate its privilege.

Code
Data
IDT
GDT
TSS

rw
rwx
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r
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OASIS-Lib in 
analyzer-target

physical pages
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Figure 5.7: The OASIS-Lib are mapped in the same VA region in both hierarchies.
The shadowed physical pages are for analyzer execution only. The analyzer ac-
cesses the target’s IDT, GDT and TSS from its data section VAs.
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5.4 Execution Flow Instrumentation

Recall that execution flow instrumentation (EFI) interlaces the analyzer’s execution

into the target flow at chosen junctures and that the exit/entry-gates are the switches

between the two executions flows. In this section, we explain how the analyzer

flexibly and securely specifies EFI junctures. The basic idea is to use probes [17, 28]

to replace target instructions at the desirable virtual addresses. When the target flow

reaches a probe, the flow is diverted to the exit-gate and further to the analyzer.

5.4.1 Page Substitution for Probe Installation

Probe installation inevitably changes the target code, though not the virtual address

space. To support secure and transparent probe installation, OASIS offers the page-

substitution and page-reinstatement hypercalls for the analyzer to substitute a target

physical page with a new physical page from the host memory. The mechanism is

illustrated in Figure 5.8.

Guest EPT
...
mov ...
call ...

PFAPFB T-EPT
RWXX...

jmp
call ...

Target VA0

GPA0

probed page in host original code page in guest

Analyzer VA1

GPA1
A-EPT

RW

Figure 5.8: EPT redirection is applied on T-EPT for probe installation and uninstal-
lation.

Suppose that target code page VA0 is mapped to physical page frame PFA in the

guest via the guest physical address GPA0, and that the analyzer has a data page

VA1 mapped to physical page frame PFB in the host. To install a probe in VA0,

the analyzer copies it to VA1, modifies VA1 with the probe, and then issues the

page-substitution hypercall. In response, OASIS modifies the GPA-to-PA mapping

in T-EPT to map GPA0 to PFB with execution-only permission to prevent the target

from reading/writing it. As a result, when the target control flow reaches VA0, it

fetches instructions from PFB instead of PFA. The analyzer running under A-EPT
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can read/write the probed page PFB via VA1. When the probe in VA0 is no longer

visited, the analyzer uses the page-reinstatement hypercall to restore the original

entry in T-EPT so that it is mapped to PFA.

Permission Conflict Resolving. For the sake of transparency, we follow the ap-

proach in SPIDER [7] to redirect the target’s read and write to VA0 back to PFA.

The basic idea is to load the onsite core’s data TLB with EPT mappings to the orig-

inal code page (with read-only permission) and to load the instruction TLB with

EPT mappings to the probed page (with execution-only permissions). The target’s

write to VA0 is single-stepped so that a modification on PFA is also cloned to PFB.

The key difference between OASIS and SPIDER [7] is that the data TLB loading is

through OASIS-Lib instead of the target’s own instructions. Therefore, there is no

need to single-step reading instructions in OASIS.

Mapping Modification. The exported target may change its VA-to-GPA map-

pings. It is likely that VA0 is re-mapped to GPA∗
0 either out of benign reasons such

as page swapping or for a malicious purpose. Although the change does not affect

the target execution in the onsite environment, it invalidates the probe in VA0 since

PFB will not be accessed any more when executing code in VA0. To resolve the

issue, OASIS traps such a modification by configuring T-EPT to write-protect the

paging structure pages translating VA0. If the trapped modification maps VA0 to

GPA∗
0, it updates T-EPT to map GPA∗

0 to PFB. Note that only the mappings to the

probed pages are under monitoring.

It is possible that another kernel thread in the guest updates VA0’s mapping in

parallel. Such an update is not subject to T-EPT restrictions and therefore is not

trapped. However, since the thread runs in a different core from the target core,

it is expected to notify the target thread to invalidate the TLB at the target core

so as to avoid mapping inconsistence. The cross-core notification is captured by

OASIS which then updates T-EPT accordingly.
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5.4.2 EFI Probes

An EFI probe kickstarts the transition from the target flow to the analyzer. Depend-

ing whether it is removed after being triggered or not, a probe can be used for tracing

or as a breakpoint. We propose two EFI probes: INT3-probe and JMP-probe for the

analyzer to use, although the analyzer can use its own probes. The INT3-probe, as

in [17, 7], is a one-byte instruction (opcode 0xCC) and can be used for tracing or as

a breakpoint. When the probe triggers the INT#3, the exception handler jumps to

the exit-gate. (Recall that the target’s IDT and GDT are relocated and modified to

install new handlers provided by the analyzer.)

The JMP-probe jumps to the exit-gate without triggering any hardware event.

The main challenge stems from the addressing modes in x86-64. In the address

space mapped by the target-lib hierarchy, the distance between the exit-gate and the

target code page containing the probe can be more than 2GB, which is beyond the

reachable range of any addressing mode if no general register is used. However, a

register indirect transfer requires the probe to save the register to the memory, which

is intrusive and undermines transparency.

In OASIS, the JMP-probe is a far jump instruction to a call gate which transfers

the control to the exit-gate. The probe is in the form of:

REX.W ljmp *offset(%rip)

There are three micro-operations in a ljmp. 1) The CPU fetches 80-bit from

offset(%rip) and takes the upper 16-bit as a selector; 2) The CPU gets the

call-gate entry from the GDT/LDT based on the selector; 3) The CPU uses the

address from the call gate entry directly as the control transfer destination if the

permission checking passed. The ljmp transfers to the exit gate because its address

is specified in the address field of the call gate entry. The call gate’s Descriptor

Privilege Level(DPL) is set as 3 to allow the invocation from both user and kernel

privilege, while the Code Segment(CS) selector in the call-gate entry is set as Ring
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0 or Ring 3 selector to transfer to the kernel or user privilege respectively.

When installing the JMP-probe, the analyzer constructs the probe instruction on-

the-fly by determining the value of offset so that (1) the instruction operand is a

far pointer pointing to the desired call-gate selector; and (2) the referenced memory

page is read-only so that the selector is not modified after probe installation.

The main steps for composing the probe is as follows. Initially, the analyzer

populates all unused GDT entries with the call gates. To install a JMP-probe during

an EFI session, the analyzer randomly picks 16 bits from one target code page with

the only restriction that the 3rd least significant bit be ‘0’, so that they form a GDT

segment selector. It then checks whether bits 3 to 15 form up a valid a call gate

index. Since there are up to 8K valid GDT indexes, the checking succeeds with

a almost 1 probability2. If it fails, the analyzer picks and checks another 16 bits.

Once a selector is found, the analyzer calculates offset according to its virtual

address. Note that a selector can be used for any JMP-probe installation within ±2

GB range. Hence, the analyzer does not have to search it for each probe installation.

Since the JMP-probe is multiple bytes long, it cannot be used as a breakpoint due

to unintended transfers and attacks on transparency.

Makeup Execution

A thorny issue about probes is the makeup execution of the target instruction(s)

being replaced. Two solutions are used in the literature. One is to emulate those

instructions in a separate space and the other is to restore them and single-step

them before replacing them with the probe again [7]. Obviously, both solutions are

cumbersome and incur significant CPU time.

Attributing to the analyzer’s native-access to the target, it is comparatively easier

to resolve the issue in OASIS. For the JMP-probe, the analyzer writes back the

replaced target instruction(s) and resumes the target execution from the probed VA.

2Since most Linux kernel uses less than eight entries in the GDT, the success probability is
213−8
213 ≈ 0.999.
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For a transfer instruction affected by the INT3-probe, the analyzer uses the entry-

gate to transfer the control to the due destination. Stack operations are also made

properly if it is a call or ret instruction. For a non-transfer instruction affected by

the INT3-probe, it copies the affected instructions to the entry-gate’s NOP-slide

and rewrites them according to their new VAs. If the memory operand is referenced

using RIP-relative addressing in the original instruction, the analyzer rewrites it

with register-indirect addressing mode followed by another instruction to restore

the register used in addressing. The total length of the two instructions is up to

22 bytes. Note that the transformation is necessary since the distance between the

entry-gate and the probe is probably larger than 2GB which is the maximum value

represented by the 32-bit signed offset.

In short, EFI probes incur much less overhead than probes in other systems since

the analyzer does not need to emulate the target execution or single-step it.

5.4.3 EFI Using Probes

All probes can be installed and uninstalled at anytime by the analyzer. By choosing

the timing strategy, the analyzer can make different types of EFI, which empowers

it to tightly and flexibly control the target execution in user and kernel modes.

EFI With Tracing

To trace the target, the JMP-probe3 is installed and then removed (after being ex-

ecuted) along a sequence of virtual addresses 〈VA1,VA2, · · · ,VAn〉 in the target

instruction flow. A requirement for successful tracing is no transfer instruction be-

tween VAi and VAi+1 for 1 ≤ i < n. Hence, the tracing granularity ranges from the

instruction level to the basic block level.

All the probe sites for tracing (i.e., VAi-s) can be decided at runtime. When

the target flow reaches VAi, the control is switched to the analyzer code through

3In rare cases when there is no suitable segment selector for the JMP-probe, the analyzer uses the
INT3-probe for tracing.
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the JMP-probe and the exit-gate. After executing its analysis function, the analyzer

restores the bytes replaced by the JMP-probe at VAi, determines VAi+1 and installs

the probe there. It then updates the entry-gate so that the target resumes execution

from VAi with original instructions. For cross-block tracing, the JMP-probe is in-

stalled at the transfer instruction of a block. When the analyzer gains the control, it

evaluates the transfer destination of the instruction. Note that it inherits the target

CPU context and also has native accesses to the virtual memory. Since the analyzer

can pass the control to the next block via the entry-gate.

EFI With Breakpoints

The INT3-probes are installed at a set of virtual addresses in the target code. When-

ever the target control flow reaches a probe, the analyzer gains control via the INT#3

handler and the exit-gate. The analyzer uses the aforementioned recovery technique

to make up for execution of the affected instruction.

Specifically, the analyzer configures the relocated GDT, IDT and TSS to provide

a new exception stack and a new handler in OASIS-Lib. When INT#3 is asserted,

the hardware saves the context to the new exception stack, instead of any stack

page from the target. The new handler determines whether the event is due to a

probe. If true, it jumps to the exit-gate. Otherwise, it prepares the target’s kernel

or except stack according to the guest system setting, and then jumps to the target’s

own INT#3 handler.

Interrupt & Exception EFI

The target instruction stream may encounter interrupts or exceptions such as page

faults. The analyzer can intercept these events and examine how they are handled.

We take the page fault exception (#PF) as an example as it is often used by the

kernel to manage virtual address spaces. To analyze the target kernel’s page fault

handling, the analyzer installs a new #PF handler to the relocated target IDT. When a

page fault occurs, the hardware passes the control to the new handler which deploys
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the INT3-probe and/or the JMP-probe on the target handler before its execution.
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5.5 Security and Transparency Assessment

The analyzer security means that the adversary cannot tamper with its code, data and

control flow, and transparency means that the adversary cannot detect any analysis

related artifact. No artifacts of OASIS or the analyzer is exposed to the guest and

no modification is made on the guest software or hardware settings. All memory

accesses from the guest are restricted to the mapped physical pages. The adversary

may manipulate the target page tables which are enclosed in the analyzer-target hi-

erarchy for accessing the target. Nonetheless, this is equivalent to feeding poisonous

data to the analyzer, an indispensable risk for all dynamic analysis systems. Hence,

no direct attack from the guest compromises OASIS security and transparency. Note

that side-channel attacks are possible, especially those leveraging L3 cache lines.

Next, we assess security and transparency against attacks from the target thread

running in the onsite environment. The onsite core’s IDTR, GDTR and control reg-

isters are set inaccessible to the target in order to prevent the target from changing

the system setting secretly and detecting OASIS existence. A read access to them is

trapped and returned with the original value. The main attack surface is OASIS-Lib

mapped in the target-lib hierarchy. The library consists of one code page (execution-

only), four read-only data pages and one writable data page in the virtual address

space. In addition, four paging structure pages are used in the target-lib hierarchy

though they are not mapped to virtual addresses. Note that access permissions on

OASIS-Lib pages are all set at the T-EPT entries, which are inaccessible to the

target.

5.5.1 Security Against the Exported Target

We show that, even if the target knows the VAs used by OASIS-Lib, the target

cannot compromise the analyzer security except feeding malicious data. We con-

sider attacks that modifies OASIS-Lib data or executing OASIS-Lib code. The only

writable data in OASIS-Lib is used for the exit-gate to save RAX and RCX. Hence,
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their illicit modifications only imply faked data in the two registers.

The target cannot modify OASIS-Lib’s code page as it is not writable under T-

EPT. Nonetheless, the target can jump to any instruction in it. Since the analyzer

runs under A-EPT and the target runs under T-EPT, a prerequisite for a successful

security attack is to switch the underlying EPT to A-EPT. The target cannot achieve

its goal by using the vmfunc instruction in the gates, because the destination of

the transfer instruction in both gates are stored in a read-only page and cannot be

manipulated. The only attack surfaces left on the gates are the 22 nops on the entry

gate which are used for the makeup execution. If the target successfully switches to

A-EPT, those instructions may read/write into the analyzer’s space.

We propose to use three instructions from line 4 to line 6 to check the index in

RCX. There are only two valid EPTPs in the EPTP-list with index 0 and 9 pointing

to T-EPT and A-EPT respectively, vmfunc with other indexes causes a VM exit

which is captured by the OASISManager. The idea of the checking is to make line

6’s transfer destination has a dependence on the value in RCX. There are 6 bytes

in total for line 5 & 6, 36 bytes in total from line 7 to line 30. With the two LEA

instructions in line 5 and 6, RAX points to line 7 if RCX is 0, or to line 31 if RCX is

9. If the target switches to A-EPT with index 9, the execution flows from line 6 to

line 31 directly and finally results in an EPT violation since the destination of line

31 is the target’s code which is not executable in A-EPT.

The target cannot use its own vmfunc instruction either, because the instruction

next to vmfunc is not executable in A-EPT. The two boundary pages in the ana-

lyzer’s 512-GB band are not mapped, thus the execution cannot sequentially flow

from the target to the analyzer.

Hence, on the premise that OASIS-Lib’s transparency is broken, the target can

only feed the analyzer with faked RAX and RCX. Other parts of the CPU context are

still genuinely fetched from the target. The analyzer security still withholds.
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5.5.2 Transparency Against the Exported Target

When the target runs, all OASIS related artifacts (e.g., the GDT, IDT, and CR3)

are protected against the target accesses by configuring the hardware, except that

OASIS-Lib is protected by hiding it with randomization. To detect the existence of

OASIS-Lib, the target has to guess its VAs by making read or execution references

to them. Detection success is dependent on a success guess of the VA or GPA. We

highlight that a wrong guess leads to an EPT violation and the EFI analysis is then

aborted. Thus, the target can only make one guess.

Under the target-lib hierarchy, OASIS-Lib occupies 6 continuous pages with

a random base address in the 512-GB band. Supposing that the band (i.e., λ in

Figure 5.5) is known, the average success probability for one target instruction to

access OASIS-Lib data or code is 6 × 212/239 ≈ 2−24. More discussions are in

Chapter 7.

To guess a GPA used by OASIS-Lib, the target fills in one page table entry with

the guess. A successful read at corresponding VA implies a correct guess. Note

that GPAs of OASIS-Lib are randomly chosen from (T, 248). Besides six pages for

OASIS-Lib code and data, there are four paging structure pages. Hence, supposing

that the guest is configured with 8 GB main memory, the success probability is

merely 6+4
(248−233)/212

≈ 2−31. In short, the probability to compromise transparency is

significantly low.
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5.6 Case Studies

We develop three analyzers as case studies to showcase OASIS based EFI. All of

them use Dyninst [85] APIs to disassemble the target binary code before analysis

or on-the-fly to extract instruction level semantics. Dyninst is slightly customized

to load memory-resident binaries.

5.6.1 Case I: Full-space Tracing

Since tracing is a basic function in dynamic analysis, our first case is a full-space EFI

tracer using the JMP-probe, which also demonstrates OASIS capability of coping

with complex kernel execution scenarios. The tracer is tested against three Linux

shell commands (ls, pwd, and kill) and SuperPI [86] which computes 16K digits

of π. While SuperPI mainly runs in user-space with a huge number of small-sized

basic blocks, the Linux commands have more kernel mode execution. For each

target, the tracing starts at the first user-space instruction, i.e., the entry of the default

loader, and stops at the issuance of exit so that the target process is released and

completes the exit procedure in the guest. The tracer successfully traces not only

the synchronous execution of these targets, but also asynchronous executions due

to events like page faults and I/O interrupt handling. For system calls, the tracer

places the probe to the first block of the corresponding system call handler so as to

tracing the system call handler execution. Asynchronous events are captured due

to the relocated IDT. The installed handler notifies the tracer to place the probe to

the target’s own interrupt handler. The experiments results are reported in Table 5.1

below.

The OASIS based EFI tracer has its pros and cons as compared hardware-aided

full-space tracers such as MALT [1] using PMU and Ninja [2] using ARM ETM.

The main advantages is its tracing flexibility. Since the probe can be installed any-

where in the target, it can trace an arbitrary slice of instructions within a basic block.

In contrast, a hardware-aided tracing is restricted to the types of events and instruc-
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Target
Program

# of
syscalls

# of
PFs

# of code
pages

# of trans-
fers

# of cross
page transfer

SuperPI 68 138 283 1,674,155 302,609
ls 38 60 275 114,430 21,437
pwd 33 57 237 95,498 17,341
kill 33 55 253 94,078 17,147

Table 5.1: Tracing Report.

tions supported by the facility. Hence, it cannot make flexible intra-block tracing

except single-stepping. Moreover, the EFI tracer is better at introspection and con-

trol due to its native accesses and CPU mode sharing with the target. Since hardware

facility typically reports the virtual address of the monitored event only, a hardware-

assisted tracers in a higher privileged environment still needs to bridge the gap to

retrieve data from the target. The EFI tracer also has better performance than MALT

since no hardware event is incurred by the tracer. We report the target slowdown in

Table 5.2, where “preprocessing” refers to disassembling the target before tracing.

Although ARM ETM does not incur overhead for tracing, it only outputs the VAs

to Ninja which cannot pause and then control the target as in MALT and OASIS.

Hence, Ninja’s introspection to the target essentially races with the target.

SuperPI ls pwd kill
MALT [1] 192 595 134 n/a
Ninja [2] 1 n/a n/a n/a
OASIS w/o preprocessing 195 99 82 72
OASIS w/ preprocessing 183 77 62 54

Table 5.2: Times of slowdown on test cases

The main drawback of the EFI tracer is that all transfer instructions have to be

checked to avoid losing the control, whereas the hardware facility functions as long

as the configuration is not changed.

5.6.2 Case II: Kernel Analysis With Fuzzing and EFI

Kernel analysis benefits from fuzzing techniques to generate and mutate userland

inputs in order to explore different kernel execution paths. As important as input
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fuzzing is runtime intelligence collection which is instrumental to deep understand-

ing of the tested execution. Existing kernel fuzzing tools [87, 88, 89, 19] rely on

static kernel code instrumentation to achieve it. For instance, Google Syzkaller

[19] relies on the kernel address sanitizer (KASAN) [90] to report memory related

operations and ftrace to log kernel function calls.

Code instrumentation shows two limitations under the kernel fuzzing context.

Firstly, it is not adaptive enough to meet different analysis demands because the

concerned code region and behaviors vary from case to case. Secondly, it is inap-

plicable to those dynamically loaded kernel modules that cannot be (easily) instru-

mented, e.g., a proprietary driver built for a production OS and a malicious module

armored with anti-instrument techniques. In this case study, we use two examples to

show how EFI complements code instrumentation in Syzkaller kernel fuzzing. The

common approach is to export the Syz-executor process to the onsite environment

so that the EFI analyzer makes on-demand analysis and acquires runtime data inac-

cessible to the instrumentation code. Figure 5.9 below depicts how the EFI analyzer

works in tandem with Syzkaller.

Test VMOnsite Env.

Host OS

Syz-
executor

OASIS-Lib

EFI-Tool & 
Syz-executor

OASIS

Syz-
Manager

Syz-
fuzzer

kernel

export
input

Figure 5.9: An EFI analyzer works in tandem with Syzkaller (the gray boxes).

Dynamic Postmortem Analysis

In our fuzzing test, one reported reproducible crash is caused by a page fault when

KASAN accessing 0xffffef010d3415ff. The report also shows that the faulting ac-

cess is to validate a memory access to ata bmdma prd[pi-1] within the kernel

function ata bmdma fill sg().4 To understand the build-up of the page fault,

4Both the function and its caller are in the default ACSI device driver in the kernel.
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we develop an EFI analyzer to collect runtime data from the reproduced execution

by following the strategy derived from a static analysis.

To choose the EFI instrumentation junctures, we make a backward slicing upon

the instruction reading ata bmdma prd[pi-1]. We then determine the memory

objects to introspect at each juncture by checking the source code correlating to

the sliced instructions. The objects to collect mainly include the input parameter to

ata bmdma fill sg(), the variable pi, and objects the function’s control flow

depends on. After the Syz-executor is exported to the onsite environment, the ana-

lyzer uses the INT3-probe to monitor every ata bmdma fill sg() invocation.

When the invocation matches the one in the report, the analyzer removes the INT3-

probe and traces the control flow with the JMP-probe until the page fault occurs. For

blocks containing the sliced instructions, the analyzer runs a sub-block tracing on

those slices. At each EFI juncture, it references and fetches the needed objects with

their VAs, which means that all pointers in the kernel objects can be dereferenced

directly.

Upon experiment completion, the analyzer reports the trace comprising 152

basic blocks including blocks from KCOV and KASAN. The control flow shows

that the code incrementing pi within ata bmdma fill sg() is never executed.

Since pi is initialized with 0, the access to ata bmdma prd[pi-1] becomes an

array underflow with index −1. Consequently, validation of this memory access

causes KASAN to read a nonexistent metadata object, which triggers the page fault

the kernel cannot handle. A further analysis of the collected data objects shows that

pi is not incremented because none of the objects nested in the function input (from

the fuzzer) is well-formed.

Exploration of Untrusted Driver

Our second analyzer runs with Syzkaller to uncover hidden behaviors of an un-

instrumented kernel-space driver without relying on its source code. KCOV,

KASAN and ftrace cannot report its behavior due to absence of instrumentation.
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Moreover, it conceals its kernel function invocations against ftrace by adding

5-byte offset to the call destinations so that ftrace instrumentation in the callee’s

prologue is skipped. Specifically, the target is a synthesized malicious driver with

stealthy behaviors based on a rootkit in Github 5. When the third parameter of

the driver’s ioctl handler ends with 0xFF, the handler escalates the privilege and

removes the current task from the task list.

In the experiment, Syzkaller generates the fuzzing inputs to the driver’s ioctl

while the EFI analyzer extracts the runtime information. For each exported Syz-

executor, the analyzer installs an INT-3 probe at the entrance of the driver’s ioctl

handler. Since the driver is randomly loaded when the system boots up, the ana-

lyzer locates the handler at runtime via a series of introspections, starting from the

current task struct object in the PERCPU data structure to files struct,

fdtable, and so on until reaching the unlocked ioctl object containing the

driver’s ioctl handler address. When the INT3-probe is triggered, the analyzer

removes it and installs an INT3-probe at the return address. It then starts the control

flow tracing within the driver’s code. If a control transfer to the kernel is encoun-

tered, it stops tracing and installs another INT3-probe on the instruction which the

handler is expected to resume, so that it can continue to trace the driver. The analysis

ends when the driver ioctl returns to its kernel caller.

In the end, the analyzer successfully captures the fuzzed system call parame-

ters triggering the hidden path. In the hidden path, the handler executes for 65

basic blocks and 7 of calls to kernel functions including prepare cred() and

commit creds(). In the non-hidden path, there are only 7 basic blocks exe-

cuted.
5https://github.com/croemheld/lkm-rootkit
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5.6.3 Case III: Kernel Device Driver Exploit Analysis

Our third case shows an EFI analyzer that dynamically chooses what probe to be

installed to what address. By using breakpoint EFI and tracing EFI in a concerted

fashion, the analyzer examines how a user-space program issues ioctl system

calls with malicious parameters to exploit vulnerable dynamically-loaded kernel

drivers. The analyzer proceeds in three steps.

STEP I). The analyzer begins with installing an INT3-probe BP1 at the entry of the

ioctl system call handler.

STEP II). When BP1 is triggered, the analyzer locates the driver’s ioctl han-

dler which the kernel’s default handler is to call. It installs the second INT3-probe

BP2 at the device handler entry and makes a forward slicing on it with the third

ioctl parameter (namely the address of the user-space supplied parameter) being

the slicing criterion. All virtual addresses of instructions in the slice are saved.

STEP III). When BP2 is triggered, the analyzer traces the basic-block control flow

of the device handler execution using the JMP-probe, until encountering an iret

which returns to userland. For those basic blocks containing instructions in the

forward slice, it makes an intra-block tracing along sliced instructions to capture the

data flow. For those basic blocks not in kernel space, it makes single-step tracing.

All traced virtual addresses and instructions are recorded. For instructions in the

slice, the analyzer also records its memory operations (if any).

We test the analyzer against a Linux malware prototype6 which launches an ROP

attack in the kernel by exploiting a vulnerable device driver. The tool’s forward slic-

ing finds 10 instructions in 2 blocks of the driver’s handler and the last instruction is

an indirect call. It means that the parameter determines the indirect call destination.

During tracing, the analyzer finds that the destination turns out to be in user space.

Its subsequent single-step tracing shows that there are 94 basic blocks executed in-

cluding 8 blocks which are ROP gadgets ending with ret or indirect call. These

6https://github.com/vnik5287/kernel rop
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gadgets prepare parameters and invoke two kernel functions prepare creds()

and commit creds() to elevate the privilege of current thread to the root. It also

reveals that the kernel stack is replaced with a user-space stack.

Summary. The case studies demonstrate EFI’s agility in controlling and intro-

specting a kernel thread. EFI analyzers are well-suited for targeted and fine-grained

analysis as the analyst can flexibly choose when and where to deploy the INT3-

probe and the JMP-probe. The case studies also show the benefits of native target ac-

cesses. Both in the postmortem analysis and case study III, the analyzer accesses the

target thread’s kernel object thread info, task struct, files struct,

fdtable etc, by directly referencing their VAs. In addition, it shows that existing

analysis APIs such as instruction slicing can be conveniently applied by the EFI ana-

lyzer despite its non-conventional runtime environment. It is not difficult to develop

them as they are user-space programs and can benefit from existing libraries.

5.7 Case Study Implementation Report

To support EFI analyzer implementation, we develop OASIS APIs listed in Ta-

ble 5.3. Most of the functions are to instruct OASIS to facilitate the EFI session.

find n entry and find n exit are entirely the analyzer’s logic as they resolve

target instructions by calling Dyninst APIs. Our tools uses these two functions to

locate the probe site, especially for tracing. All three analyzers are quite short and

tidy. Table 5.4 reports their source code sizes.

In the following, we report more implementation details of the postmortem an-

alyzer. Table 5.5 lists the virtual address space layout of the postmortem analyzer.

OASIS API functions and the analyzer are compiled and linked as one position-

independent-executable binary. The analyzer code, static data, and its heap oc-

cupy around 500 KB. The shared libraries dominate the address space consumption,

mainly due to Dyninst libraries.

The kernel function under analysis is ata bmdma fill sg() which is de-
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OASIS API name Description
onsite register int3 handler register a breakpoint handler on OASIS
onsite register trace handler register a tracing handler on OASIS
onsite register pf handler register a #PF handler on OASIS
onsite wait for request inform OASIS that the analyzer is ready to

analyze
onsite t run start/resume the target execution
onsite end analysis restore the target back to guest
onsite install int3 probe install an INT3-probe at the given address
onsite install trace probe install a JMP-probe at the given address
onsite rm int3 probe remove the INT3-probe at the given address
onsite rm trace probe remove the JMP-probe at the given address
find n exit With the given address, it returns the address

of next control transfer instruction, i.e., the
exit point of the current basic block.

find n entry With the given address, it returns the destina-
tion if the address points to a control transfer
instruction, or the address itself if it points to
a non-control transfer instruction.

Table 5.3: OASIS APIs and their descriptions.

Analyzer # of Lines of C Code
postmortem analyzer 228
untrusted driver analyzer 160
full-space control flow tracer 124

Table 5.4: source code size of analyzers.

VMA Region Start Address Size
Analyzer code & data 0x7ff000000000 68K
Analyzer heap 0x7ff000211000 496K
Analyzer stack 0x7ff07ffdf000 132K
System shared libraries 0x7ff010000000 40,820K
System loader ld 0x7ff020000000 144K

Table 5.5: Virtual Memory Layout of the postmortem analyzer.
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fined at line 2615 of kernel source file libata-sff.c 7. The postmortem analyzer

mainly comprises three functions: a main() function, a breakpoint handler

ana int3 handler() and a tracing handler ana trace handler(). We

provide below an abridged version of these functions’ source code. All log related

code is not shown. The objective is to shed light on the structure of the analyzer and

how it controls and introspect the target thread.

Main. In the main function, the analyzer registers its handlers to OASIS and waits

for OASIS to export the target to the onsite environment. When the target context

is ready, it installs the INT3-probe at 0xffffffff9b5a2420, which is the address of the

target function and kicks of the EFI session by yielding the CPU to the target. It

only re-gains the control when the INT3-probe is triggered.

i n t main ( vo id )

{

/ / r e g i s t e r INT3 and t r a c e h a n d l e r s

o n s i t e r e g i s t e r h a n d l e r s ( ) ;

. . . .

/ / i n fo r m OASIS t h a t i t i s r e a d y t o a n a l y z e ;

i n t r e t = o n s i t e w a i t f o r r e q u e s t ( ) ;

i f ( r e t ){

/ / i n s t a l l INT3−probe

o n s i t e i n s t a l l i n t 3 p r o b e (0 x f f f f f f f f 9 b 5 a 2 4 2 0 ) ;

o n s i t e t r u n ( ) ; / / s t a r t t o run t h e t a r g e t ;

}

r e t u r n 0 ;

}

Breakpoint handler. When the INT3-probe is fired, the exit-gate passes the con-

7https://git.kernel.org/pub/scm/linux/kernel/git/torvalds/linux.git/tree/drivers/ata/libata-
sff.c?h=v4.13-rc1
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trol to this handler. The analyzer first remove the probe as it is not used any more.

Since the target function body is not executed yet, the handler first retrieves the ad-

dresses of local variables and then introspects the input objects by directly derefer-

encing the qc pointer which is the function input parameter. All objects are dumped

into a local file in the host OS by calling fprintf (Line 22). As shown in the for

loop, the analyzer traverses a kernel object list and dumps their members in the

same way as in the target kernel. The analyzer then installs a JMP-probe at the VA

in probAddr which is determined at runtime according to the basic block and the

instruction slices chosen by an offline preprocessing.

vo id a n a i n t 3 h a n d l e r ( vo id )

{

. . .

/ / i f i t i s t h e t a r g e t f u n c t i o n invoked

i f ( t a r g e t c t x −>r i p == BP1 ) {

/ / remove t h e INT3−probe

o n s i t e r m i n t 3 p r o b e ( BP1 ) ;

/ / t a r g e t i n t r o s p e c t i o n

qc = t a r g e t c t x −>r d i ;

ap = qc−>ap ;

p rd = ap−>bmdma prd ;

. . .

/ / t r a v e r s e and dump k e r n e l o b j e c t l i s t

sg = qc−>sg ;

f o r ( i = 0 ; i < qc−>n e lem ; i ++)

{
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s g l e n = sg−>l e n g t h ;

sg dma addr = sg−>d m a a d d r e s s ;

f p r i n t f ( fp , ‘ ‘ sg a t : %p , , . . . ” , . . . ) ;

sg ++;

}

/∗ f i n d n e x t b l o c k e x i t ∗ /

b l k E x i t = o n s i t e f i n d n e x i t ( BP1 ) ;

/ / a s s i g n probAddr : b l k E x i t o r s l i c e

. . .

/ / i n s t a l l JMP−probe

o n s i t e i n s t a l l t r a c e p r o b e ( probAddr ) ;

}

o n s i t e t r u n ( ) ; / / resume t a r g e t ;

r e t u r n ;

}

Tracing handler. When the tracing handler is triggered by the JMP-probe, it

first checks the current probe site to determine the analysis actions. As shown in

the switch, it makes different introspections if the probe site is in the instruction

slice. It then determines the next probe site by installing a new probe and resumes

the target.

vo id a n a t r a c e h a n d l e r ( vo id )

{

/ / remove JMP−probe

o n s i t e r m t r a c e p r o b e ( probAddr ) ;
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. . . . .

s w i t c h ( s l i c e i d x )

{

c a s e 0 : / / a f t e r l i n e 2622

a d d r l e n = t a r g e t c t x −>rbp−0x2c ;

a d d r s g = t a r g e t c t x −>rbp−0x38 ;

a d d r q c = t a r g e t c t x −>rbp−0x40 ;

p rd = t a r g e t c t x −>r15 ;

p i = t a r g e t c t x −>r14 ;

b r e a k ;

c a s e 1 : / / a f t e r l i n e 2632

/ / a c q u i r e f r e s h sg p o i n t e r from s t a c k

sg = ∗ a d d r s g ;

s g l e n = sg−>l e n g t h ;

sg dma addr = sg−>d m a a d d r e s s ;

. . . .

b r e a k ;

c a s e 2 : / / a f t e r l i n e 2638

l e n = ∗ a d d r l e n ;

. . .

b r e a k ;

c a s e 3 : / / a f t e r l i n e 2641

/ / r e a d p i from R14 r e g i s t e r

p i = t a r g e t c t x −>r14 ;

p r d a d d r = prd [ p i ] . add r ;

p r d f l a g s l e n = prd [ p i ] . f l a g s l e n ;

. . .
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b r e a k ;

. . .

d e f a u l t :

b r e a k ;

}

/ / f i n d n e x t b l o c k e n t r y and e x i t

b l k E n t r y = o n s i t e f i n d n e n t r y ( probAddr ) ;

b l k E x i t = o n s i t e f i n d n e x i t ( b l k E n t r y ) ;

/ / a s s i g n probAddr : b l k E x i t o r s l i c e

. . .

/ / i n s t a l l JMP−probe

o n s i t e i n s t a l l t r a c e p r o b e ( probAddr ) ;

. . .

o n s i t e t r u n ( ) ; / / resume t a r g e t ;

r e t u r n ;

}
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5.8 Summary

In this chapter, we introduced the notion of EFI and extended OASIS to support it.

OASIS based EFI combines the advantages of hardware-trapping and code instru-

mentation without their disadvantages. Running in the onsite environment, an EFI

analyzer uses software probes to choose the junctures for execution flow interleav-

ing. The probes are transparent to the target. Our case studies demonstrate EFI’s

performance, its flexibility to control the target execution at various granularity lev-

els and its convenience to introspect memory objects.
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Chapter 6

Implementation and Evaluation

6.1 Implementation of OASIS

We have implemented OASIS on a PC with an Intel Core i5-4590 3.3 GHz processor

(supporting VT-x) and 16 GB DRAM. It runs Linux kernel 3.13.0 with KVM for 64

bit x86-64 SMP. The target VM runs the same Linux version with 4 GB memory.

The software of OASIS consists of 3608 SLOC for the OASIS manager, 312 SLOC

for the trampoline, 77 SLOC for the execve handler and 90 SLOC for OASIS-Lib.

6.1.1 Launching of Analyzer

OASIS uses a wrapper program, a customized dynamic loader (named as the OASIS

loader), and a customized execve handler in the host OS to launch and load the

analyzer which is priorly compiled into a Position Independent Executable (PIE).

The first two components are in user space while the last is in the kernel.

The wrapper program is used to launch the analyzer. When it starts, it forks

out a child process which issues an execve system call with parameters indicat-

ing the request of running the analyzer program in onsite mode. The customized

execve handler maps the analyzer binary together with the OASIS loader to the

512 GB virtual memory space between 0x7F8000000000 and 0x7FFFFFFFFF. In

other words, we choose λh = 011111111. Once the starting addresses of the stack
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and the heap are chosen by the execve handler, the kernel only uses the address

ranges in between for future memory allocation. Hence, all new virtual memory

regions allocated at runtime fall in the same 512 GB range.

By using a debug register, the execve handler sets a hardware breakpoint at

the entry instruction of the OASIS loader which is presumed by the kernel as the

first user-space instruction to execute. When the execve attempts to switch to

the analyzer’s user mode, the debug exception is triggered and the control flow is

intercepted by the trampoline. Note that since the debug exception has the higher

priority than interrupts, no context switch occurs when the trampoline takes con-

trol. This ensures that the trampoline runs under the same process context as the

execve, namely, the analyzer’s.

After the analyzer thread entering to onsite mode, the mapped OASIS loader

starts its execution. It maps and loads the dependent shared libraries into the des-

ignated 512 GB space before passing the control to the entry of the analyzer. Note

that all system calls issued from the OASIS loader are actually handled by the host

OS. Hence, there are frequent mode switches in the loading procedure.

6.1.2 OASIS Manager

The OASIS manager is implemented as a kernel module which allocates and con-

figures needed hardware and software infrastructure for onsite mode, including the

VMCS structure, EPTP-list, two sets of EPTs, O-PML4, O-PDPT, O-PD, O-PT,

onsite CR3 and the mappings to the OASIS-Lib pages. In our implementation, we

used the entry with prefix 111111101 in the kernel side to graft the analyzer paging

structures. Namely, we set λ = 111111101. We describe the settings of control

registers and descriptor tables in onsite mode first.

Control Registers. The read and write accesses to the CR3 register are config-

ured as directly trapping to the hypervisor, this prevents the target from knowing

the onsite CR3 value or switching to other threads. For the CR4 register, the FS-
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GSBASE bit is set while the SMEP and SMAP bits are cleared. The read shadows

for the CR4 register in onsite core’s VMCS is configured with its value in the guest,

thus a read access to the CR4 register returns its original value in the guest instead

of the genuine value in the onsite mode’s CR4. Its guest/host masks are also set

accordingly to prevent the target from modifying those bits. The reason for onsite

mode to set the FSGSBASE bit is to allow the analyzer conveniently switch the FS

segment base address during the transitions with the target. This is crucial since the

analyzer as a user space program has its own FS segment, which is distinct from the

target’s. The FS.base is mapped in an MSR register, while the MSR registers are

only accessible in the kernel mode. The FSGSBASE bit in the CR4 register enables

the instructions RDFSBASE, RDGSBASE, WRFSBASE and WRGSBASE, which

allows a user mode software to read and write the FS.base and GS.base. Hence,

the analyzer can switch the FS.base conveniently without escalating to the kernel

privilege.

Descriptor Tables. There are two sets of IDT, GDT and TSS tables, one is for the

analyzer-target and the other is for target-lib hierarchy. Those two sets of descriptor

tables share the same VA while they are redirected to different physical pages in

A-EPT and E-EPT. Hence, there is no need to switch these descriptor tables during

transitions between the analyzer and the target. In the target-lib hierarchy, the an-

alyzer registers its own handlers in the IDT table to capture the target’s exceptions

and interrupts. The TSS table is configured accordingly so that those events use the

stack page prepared in the OASIS-Lib instead of the original kernel or exception

stack. In the analyzer-target hierarchy, OASIS also installs stub handlers in the IDT

table, so that all exceptions are trapped to the stub handler which saves the context

and issues a hypercall to notify the trampoline. For the #PF stub handler, it delivers

the #PF event to the analyzer if the faulting address in the CR2 register belongs to

the target’s address range. This happens when the analyzer’s access to the target

page violates with the access permissions on the GPT, e.g., placing a probe on a

non-present page. Those events are handled by the analyzer instead of the host OS.
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In EFI, the target thread is captured and exported to onsite mode for analysis.

The CPU context is saved and restored during the transitions of the target and the

analysis. We describe some of the implementation details below.

Thread Capturing. We implemented multiple ways to capture the target thread.

In the LMbench benchmark testing experiments, onsite core continuously captures

guest threads by sending IPIs to the guest core. Due to the IPI, the guest traps to

the host OS and its current thread is exported to onsite mode for analysis. In the

Syzkaller EFI case studies, we modify the syz-executor so that it issues a hypercall

before it tests the ioctl system call. For those anti-analysis experiments, we hook

the guest kernel’s execve handler so that it issues a hypercall if it is about to launch

the target program. The hypercall notifies the OASIS Manager to export the thread

to onsite mode.

Thread Exportation & Restoration. For every thread exported to onsite mode,

OASIS Manager clones its PML4 page to O-PML4 except the λth entry. The ker-

nel stacks configured in the TSS table are also replicated to the onsite mode’s TSS

except the one reserved by the OASIS-Lib. After thread exportation, the target’s

PML4 page is marked as Read-only on the target VM’s EPT. Any updates are syn-

chronized to O-PML4 if there is no confliction with the chosen λth entry. The

updates happen during the target thread’s initialization. Upon the analyzer’s request

to restore the target, OASIS updates the guest core’s VMCS structures using on-

site core’s context, including general purpose registers, XMM resgisters and MSR

registers. The target continues its execution in the guest from the new context.

Context Saving & Restoring. The general purpose registers, RFLAGS, XMM reg-

isters, FS and GS base address are saved and restored during the transitions between

the analyzer and the target. Since MSR registers, e.g., IA32 KERNEL GS BASE

MSR, are only accessible in the kernel mode, they are saved and restored only if the

target runs in the kernel mode. Note that the analyzer inherits the privilege from the

target. The only exception is the IA32 LSTAR MSR which stores the destination
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address of SYSCALL instruction. The analyzer and the target share the same value

for the IA32 LSTAR MSR, which is the guest kernel’s system call entrance. Since

that location is not executable in the A-EPT, the system calls issued by the analyzer

trap to the trampoline due to an EPT violation.

EPT Synchronization. The target VM’s EPTs can be updated at runtime by

Linux KVM. To ensure the consistency at the EPT level, the OASIS manager hooks

the KVM’s EPT management routines so that any EPT update on the target is also

replicated for onsite mode. The EPT management routines are mmu set spte and

remap remove, they are responsible for creating new entries or clearing existing

entries on the EPT respectively.

6.1.3 Trampoline

The trampoline is also implemented as a kernel module, which is hooked to the host

OS’s debug exception pointer and the VM Exit handler. Proper filters are added so

that the trampoline only handles OASIS related debug exception and VM Exit. The

bulk of its workload is on handling VM Exit.

VM Exit. The trampoline uses data stored in the VMCS structure of the onsite

mode environment to identify the event type (system call, page fault and general

exception/interrupt). It prepares the context for the host OS accordingly, including

the kernel stack for the analyzer process as well as all relevant general and control

registers in the physical CPU.

For system calls, it copies RAX, RDI, RSI, RDX, R10, R8, R9 registers from

the VMCS to the physical registers, where RAX contains the system call number

and others store parameters (if any). For exceptions, it pushes RIP, RFLAGS, RSP,

CS and SS from the context saved by onsite mode’s stub handler to the host’s kernel

stack in case of a general exception. In case of a #PF, it also copies the saved CR2

to the physical CR2 which is supposed to store the faulting linear address.

The trampoline uses the processor’s debug registers to set a breakpoint, which is
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execution-triggered and local to the analyzer task. The breakpoint is set at the virtual

address of the instruction which the analyzer resumes execution. For exceptions, it

uses the address in RIP which points to the faulting instruction; for system calls,

it uses the address in RCX which points to the instruction next to the system call

instruction. Since Linux does not use the processor’s task switch facility, the local

breakpoint is in fact valid for all processes in the host. Nonetheless, the likelihood of

being triggered by other processes remains slim, because the 512 GB linear address

at the base 0x7F8000000000 is rarely used by others.

In the end, the trampoline uses a jump instruction to pass the control to the

kernel exception/interrupt/system call handler. The kernel handler locates its stack

based on the Per-processor Data Area (PDA) and processes the event as if it origi-

nates in the analyzer’s userland.

Debug Exception. Once the debug exception is triggered due to the priorly set

breakpoint, the trampoline’s task is to start or resume the analyzer thread in onside

mode. With the hardware’s Interrupt Stack Table (IST), the trampoline handles the

debug exception with a different stack from the analyzer’s kernel stack. (The inter-

rupt stack is also the one used during handling VM exit.) It ensures that the kernel

stack used for handling the analyzer events is not contaminated by the trampoline

execution.

Note that the breakpoint is triggered after the iret or sysret in the OS’s

handler is executed successfully. Hence, the kernel objects relevant to the analyzer

thread reflect that the thread has entered into user mode. The execution of the tram-

poline after the debug exception, which is still under the analyzer thread’s context,

is transparent to the rest of kernel. Hence, entering or exiting onsite mode preserves

the analyzer thread context in the OS’s view.
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6.2 OASIS Performance

To better understand OASIS’s performance, we measure the CPU time taken by rel-

evant hardware events and instructions in our platform and report them in Table 6.1.

Note that the time does not cover software processing.

INT3 vmfunc iret VM Exit & Enter
340 147 367 916

Table 6.1: CPU cycles for relevant events and instructions

We first study the performance of OASIS (its support to analyzer application,

robustness and performance), then we study the CPU time spent by OASIS for EFI.

6.2.1 OASIS Support to Analyzer

We first verify whether the host OS views the analyzer as a regular thread though

it runs in onsite mode. In the experiment, the launcher program issues getpid in

the host while the analyzer issues getpid in onsite mode. The result shows that

the launcher program’s Process ID (PID) is 4617 while the analyzer gets 4618. It

corroborates the correctness of OASIS as the analyzer in onsite mode is indeed the

child process of the launcher.

Although the analyzer in onsite mode receives the same service in host mode,

its system calls take longer time than in a native environment due to the overhead

of OASIS mode switches. To understand the actual performance drop, we measure

the execution of five commonly used system calls in onsite mode and normal user

mode. As shown in Table 6.2, the average overhead of system calls from onsite

mode is about 2.21 µs.

System Call open read (4KB) write (4KB) brk getpid
User mode 1.41 0.79 1.14 0.84 0.39

Onsite mode 3.55 2.97 3.50 3.04 2.56
Overhead 2.14 2.18 2.36 2.20 2.17

Table 6.2: Popular system call time in two modes (in µs)
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We also experiment OASIS with three off-the-shelf applications: SVM1, a pro-

gram using OpenSSL library to encrypt and decrypt files, and a network program

to evaluate the overhead of program loading and the correctness of system call and

signal support. It takes about 20.31 milliseconds, 32.27 milliseconds and 16.39

milliseconds to launch SVM, OpenSSL, and SSH respectively. The dominant cost

contains two parts. One is to initialize the needed VMCS structure and EPTs; and

the other is to handle the system services requested by the loader to find and map

shared libraries. These experiments show that OASIS correctly supports file opera-

tions (used by SVM and OpenSSL), keyboard I/O (used by OpenSSL and SSH) and

network I/O (used by SSH).

6.2.2 OASIS EFI Transition Performance

Now, we study the EFI overhead characterized by the average round trip transition

time, i.e., the time taken by the control flow to depart from the target to the analyzer

and return back. Following the method in SPIDER [7], we measure the overall time

difference between the target execution without being traced and execution with a

null EFI tracer which has no payload function, and then divide it by the number

of round-trips. The result is in Table 6.3, together with the data reported in the

literature for the hypervisor-based approach [7] and the SMM-based approach [1].

The dominant overhead of using the JMP-probe includes the vmfunc instruction,

restoring the target instruction and probe relocation (391 cycles), as well as the

analyzer’s CPU context saving and restoration (90 cycles). Our technique is 3.8

times faster than those in SPIDER [7]. The overhead SPIDER is attributed to the

hassle of single-stepping the restored instruction while the overhead in MALT is

entirely due to the hardware.

We also measure the overhead of using the INT3-probe for EFI breakpoints. It

comprises of the INT#3 exception, the make-up execution of the affected instruction

1LIBSVM, https://www.csie.ntu.edu.tw
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Transition JMP-probe INT3 Trap to Hyp [7] Trap to SMM [1]
Cost 836 3,217 28,128

Table 6.3: Round-trip transition overhead using JMP-probe (in CPU cycles).

as well as control transferring between the target and the analyzer. The exception

overhead varies with the probe privilege, i.e., in Ring 0 or Ring 3, while the make-up

overhead varies with the types of the overwritten instructions since different meth-

ods are used for make-up execution. Table 6.4 below reports our experiment results.

Note that the largest overhead (i.e., a probe on a user-space non-transfer RIP-relative

instruction) is still less than 50% of the cost in SPIDER. The main reason is that,

benefiting from the native-access feature of EFI, the make-up execution does not

require single-stepping.

Type of Overwritten Instruction
Transfer Non-transfer RIP-relative Others

From Ring 3 1100 1286 1280
From Ring 0 669 935 934

Table 6.4: Round-trip transition overheads using INT3-probe (in CPU cycles).

6.3 Benchmark Testing

We evaluate the impact of EFI upon the guest kernel, by running the LMbench

tools [91] in the guest with and without OASIS based EFI. When the benchmark

tools are running in the guest, a randomly chosen guest kernel thread is captured

and exported to the onsite environment for analysis. We conduct the experiments

with two analyzers. One is a null analyzer which releases the thread without any

analysis and the other traces one basic block execution before releasing it. The first

experiment measures the performance impact due to target thread exportation and

restoration while the second assesses the overall effect due to prolonged target ex-

ecution. Although the analyzer does not consume hardware resources of the guest,

the slowdown of the captured thread may affect others due to synchronization or
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96

98 98
97

99

90

100
98

97
98

85

90

95

100

File	System	Lantency Context	switching Comm	Latency Comm	Bandwidth Processor,	Processes

N
or
m
al
ize

d	
Sc
or
e	
(%
)

Capture	
Only

Tracing

Figure 6.1: Normalized LMbench results (in % of the native benchmark results).

Figure 6.2: Normalized LMbench results on file systems (in % the native benchmark
results).

The normalized results on all system aspects of LMbench in two experiments are

shown in Figure 6.1. Except File System Latency showing significant performance

slowdown (4% and 10% in two experiments), other four benchmarks only report

up to 3% drop. Figure 6.2 reports the detailed data in File System Latency sub-

category. The deeper investigation reveals that the performance slowdown on file

system latency is largely due to page fault handling whose performance drops 11.3%

and 22.3% in two experiments, respectively. One plausible reason is frequent guest

EPT updates during file creation, deletion and page fault handling. Every guest EPT

update has to be cloned to A-EPT and T-EPT.
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6.4 Transparency Experiments

By and large, there exist three attack strategies to detect and evade dynamic anal-

ysis. The first is to discover environment related evidences such as existence of

an emulator; the second is to discover software state related artifacts such as unex-

pected code and data modifications [27]. The third is to obstruct analysis by code

and data obfuscation, usually via packing/unpacking [92]. A sophisticated malware

may use a combination of them.

6.4.1 System Environment Detection

Existing techniques include anti-emulation, anti-VM, anti-sandbox and anti-

debugging, targeting different dynamic analysis systems. Since OASIS does not

rely on emulation or sandbox, anti-emulation and anti-sandbox attacks are irrele-

vant. OASIS is dependent on memory virtualization and its implementation is upon

Linux KVM. Hence, anti-VM attacks can detect the KVM setting. However, we

argue that with the wider adoption of virtualization in personal computers and the

trend of cloud computing, the anti-VM threat is diminishing because the mere pres-

ence of a virtual machine becomes a less strong indicator of dynamic analysis than

the past years.

We run experiments against anti-debugging attacks. We test OASIS against

Pangu2, an off-the-shelf program implementing popular anti-debugging techniques

used by Linux malware [93, 94, 95]. We analyze it using both EFI tracing and EFI

breakpoints. The results are in Table 6.5.

The first four attacks cannot detect any artifacts of the EFI analyzer. The Sigtrap

attack checks whether malware receives its own SIGTRAP signal which is delivered

to the GDB if it is under debugging. OASIS allows the target in the onsite environ-

ment to deliver and receive signals in the same way as in the guest. Hence, the attack

cannot detect OASIS. We consider the rdtsc attack as one type of side-channel

2https://github.com/jvoisin/pangu
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Technique Brief description Status
envvar Checks for GDB specific environ-

ment through getenv()
PASS

ptrace Checks whether the program is
ptraced or not through ptrace sys-
tem call

PASS

sigtrap Checks whether the program re-
ceives a SIGTRAP signal

PASS

parent Checks the program’s parent name
through /proc/getppid()/status and
/proc/getppid()/cmdline

PASS

rdtsc Checks whether the time taken of a
loop exceeds a pre-specified bound

NO

Table 6.5: Anti-debugging techniques.

attacks that infer the analyzer presence by observing behavioral patterns (e.g., pro-

longed execution time), and leave it as future work to adjust timers and counters

of the platform. In general, it remains as an open problem to systematically nullify

all side-channel attacks. As noted in MALT [1], an ultimate solution may require

fine-grained instruction level semantics.

6.4.2 Software State Detection

This strategy is mainly used by malware to detect code instrumentation. The most

straightforward way is to compute a fingerprint of the code in the virtual address

space and compare the outcome with the expected value. We test OASIS against

the self-checksum program3 which calculates a hash digest of its executable and

read-only data memory. Although we install a few INT3-probes in its code, it still

reports its original checksum because of our techniques in 5.4.1. We also test the

self-checksum program in GDB with and without setting a BP at its main function

as a comparison. They output two different values which are also different from

the original checksum. This proves that the self-checksum program can detect the

environment modification as well as INT-3 installed by GDB

Kirsch et. al. [27] propose thirteen methods to detect DBI tools including Pin

3https://github.com/Barro/self-checksum
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[21], DynamoRIO [22] and Valgrind [20]. We test OASIS against their methods in-

tegrated in jitmenot [56]. Our EFI tracing and breakpoint tools pass all the detection

methods listed in Table 6.6.

Technique Brief description Status
enter Checks whether enter instruction is

legal and can be executed
PASS

fsbase Checks if fsbase value is the
same using rdfsbase and prctl

PASS

nx Tries to execute code on a non-
executable page

PASS

ripfxsave Executes fxsave instruction and
chekcs the saved rip value

PASS

ripsiginfo Causes an int3 and checks the saved
rip value in fpregs

PASS

ripsyscall Checks whether rip value is saved
in rcx after a syscall

PASS

smc Check whether the framework de-
tects self-modifying code

PASS

jitbr Detect time overhead when a condi-
tional branch is jitted

PASS

jitlib Detects JIT compiler overhead
when a library is loaded

PASS

envvar Checks for Pin specific environ-
ment variables on stack

PASS

pageperm Checks for pages with rwx permis-
sions

PASS

vmleave Checks for known code pat-
terns(VMLeave)

PASS

mapname Checks mapped files’s name for
known values (pinbin, vgpreload)

PASS

Table 6.6: representative anti-instrument techniques.

The methods are grouped to three categories [27]. The first seven techniques are

in the code cache/instrumentation artifacts category, which checks whether the code

is the original code. These techniques can be applied to static binary instrumentation

as well. They cannot break OASIS transparency, because OASIS does not change

the target code. When probes are used, OASIS ensures that the target’s view to

its code remains unchanged. The next two techniques (i.e., jitbr and jitlib)

detect execution time changes due to JIT compilation. EFI tracing does incur longer

delay to control transfering. However, it is not detected by the tools because the EFI
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overhead is much shorter than using JIT. The last four techniques are in the category

of runtime environment artifacts. Although OASIS relocates the target’s IDT, GDT

and TSS, they are invisible to the target.

6.4.3 Packer

According to Cozzi et. al. [92], the most popular packer used by Linux malware is

UPX [96] which is a Type-I packer [97]. Since unpacking is essentially malware’s

dynamic modification in its own virtual address space, it has no adverse impact

on OASIS. Note that the hierarchies used in the onsite-environment is designed to

be consistent with the one in the guest and any EPT update in the guest is also

cloned to the onsite-environment. However, the EFI probes are dependent on the

target virtual address space. The unpacking process may read or write the page with

probes or change the page’s mapping to another physical page. We have explained

how OASIS protects probes in these two scenarios in 5.4.1, by leveraging d-TLB

and i-TLB to cope with read/write accesses and by monitoring GPA update to cope

with mapping changes.

To check whether EFI tools can deal with packers, we apply UPX on a Linux

shell command program uname which displays the system identification informa-

tion. We test EFI breakpoint and tracing on the packed uname. In both experiments,

the packed program runs successfully and the analyzer also achieves the intended

analysis goal. In the breakpoint experiment, we place the INT3-probe at address

0x4016ab where the struct utsname is stored on the current stack top after being

updated by the kernel. For EFI-tracing, the analyzer obtains all basic block trans-

fers, including the unpacking procedure. The tracing results are in Table 6.7.

Target No. of
basic
blocks

No. of
syscalls

No. of
#PF

No. of
self-write
bebaviors

Packed uname 311,994 38 51 388

Table 6.7: EFI-tracing for UPX packed uname.
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Since our current OASIS implementation is for Linux guests, we are unable to

test it against packers on Windows which have more complex packing schemes,

e.g., more rounds of unpacking. Nonetheless, we foresee that Windows packers

cannot compromise transparency either, because their system-level building blocks

are the same as UPX, i.e., page permission changing and code modification, despite

of using a more complex application-level logic.

6.5 Summary

In this chapter, we implemented OASIS and evaluated its performance as well as

security with benchmarks and experiments. OASIS has robust support to a variety

of pre-compiled analyzer applications with acceptable overhead. The highest tran-

sition cost of its EFI is still less than 50% of the cost in SPIDER. The performance

improvement comes from twofold: 1) no CPU mode/privilege switches during the

execution flow transition; 2) the consistent environment as in the guest makes the

makeup execution efficient. OASIS and its EFI tools remain transparent and effec-

tive against target programs equipped with anti-analysis techniques.
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Chapter 7

Discussion

Target Control Without Probes. Hardware based event-trapping methods can

also be applied in OASIS to control the target execution. Hardware facilities such as

PMU and debug registers can be utilized by the analyzer in a similar way to MALT

[1] and Ninja [2]. Since OASIS allows the analyzer to replace the target’s system

level structures including IDT, interrupts triggered by PMU and debug registers can

be directly handled by the analyzer. To ensure transparency, the exported target

thread should be prevented from accessing PMU or debug registers. OASIS can use

virtualization techniques to configure the onsite core’s VMCS so that any access to

those relevant registers are trapped to the hypervisor or delivered to the analyzer as

a virtual exception.

The probe-based EFI in 5.4 helps the analyzer to actively tame the target execu-

tion in order to acquire fine-grained software semantics, while the trapping-based

EFI is more suitable for event-centric responsive analysis. The two EFI styles only

differ in target control, i.e., how the interleaving juncture is chosen and triggered.

As compared with MALT and Ninja, the EFI analyzer still enjoys the advantage of

native-accesses.

ARM Platform. The design of OASIS is also applicable to ARM platforms sup-

porting virtualization extension. In ARM virtualization, virtual addresses are trans-

lated to host physical addresses through the Stage I translation table managed by
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the kernel and the Stage II translation table managed by the hypervisor. Similar to

the guest kernel page table in an x86 platform, the Stage I translation table also uses

guest physical addresses. Hence, the analyzer-target hierarchy and the target-lib hi-

erarchy can also be constructed on an ARM platform, which is the foundation for

the onsite environment.

The key difference is that the ARM architecture does not have a user-space

instruction equivalent to Intel’s vmfunc which switches the underlying Stage II

translation table. Hence, interleaving the target and the analyzer instruction flows

mandates privilege level switches (or exception level switches in ARM terminol-

ogy). Nevertheless, due to different virtualization strategies, the switch consumes

much faster (about 300 CPU cycles) than VM-exit and VM-entry in x86-86 plat-

forms.

Security. Here we discuss one scenario where the target aggressively occupies

all PML4 entries by mapping at least one page there. Then there is no available

PML4 entry left for the analyzer/OASIS-Lib. OASIS can choose the λ-th entry

from O-PDPT or O-PD instead of from O-PML4 to graft the paging structures for

the analyzer and OASIS-Lib. If that is the case, at most three target’s paging struc-

ture pages should be set as write protect in the guest VM’s EPT to synchronize the

modifications into O-PML4, O-PDPT, and O-PD. One entry from O-PD specifies

2MB continuous VA region, OASIS can use multiple O-PD entries for the analyzer

if one is not enough. Loading the analyzer’s code, stack, libraries into different VA

regions does not have technique issues since that is the normal case for an appli-

cation. There are at most 227 O-PD entries, the attacker needs 512GB (227*4K)

physical memory in the platform if it wants to occupy all of O-PD entries. It is im-

practical. Another attacking scenario is that the target wants to dynamically guess

the λ chosen by OASIS by mapping one page within the VA range specified by

λ. The essence of this attack is the same as the previous one thus share the same

solution.
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Chapter 8

Dissertation Conclusion and Future

Directions

8.1 Conclusion

In this dissertation, we designed a system infrastructure named OASIS. The key

feature of OASIS is to fuse the target’s paging hierarchy with the analyzer by us-

ing virtualization techniques. OASIS offers three capabilities to the analyzer: to

natively access the target’s live virtual memory with mapping consistency; to dy-

namically control and instrument the target execution; and to receive transparent

system services from the host OS.

We also proposed two new dynamic analysis models on top of OASIS . In OMA,

the tools successfully collect the target program’s virtual memory intelligence and

its system call events via conducting large-scale and intensive target memory ac-

cesses. In EFI, the analyzer natively introspects and instruments the target’s ex-

ecution flow with isolation and transparency protection. The case studies in EFI

demonstrate its performance and the great flexibility to control the target execution

at various granularity levels. Developing tools on top of OASIS is easy since they

are normal user space applications despite the capability for kernel analysis.

We implemented a prototype of OASIS and conducted experiments to evaluate
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its security and performance. OASIS provides robust OS supports to a full-fledged

analyzer application with acceptable overhead. It remains effective and transparent

towards the target programs which are equipped with anti-analysis techniques.

8.2 Future Directions

In the future, we aim to extend OASIS to support more analysis scenarios. Follow-

ings are the possible directions.

Testing and Analysis. The onsite environment has the potential to be extended and

applied for kernel testing by leveraging the hybrid paging hierarchies. OASIS can

be used to either test the target code or analyze the target data. To test an untrusted

kernel, the tester program in the analyzer-target hierarchy supplies the testing inputs

to the kernel thread. It then uses EFI to introspect the target thread to collect the

testing results. A potential application of such code tests is to conduct kernel con-

colic execution [98] which is mainly realized using QEMU (e.g., the popular S2E

platform [99]) as of now.

Although the OASIS design has the architectural support for such tests, there

remain several challenges. One of the main hurdles is how to efficiently and effec-

tively confine the impact of the tests within the onsite environment, instead of on

the guest. Another is how to handle subject crashes and roll-backs.

Paralleled Analysis. The onsite environment we have described so far has a single

core which is occupied by the analyzer and the target alternately. The analyzer

cannot gain the control until the target “relinquishes” the core due to the probes,

exceptions or external interrupts. The single-core setting does not allow the analyzer

to proactively control the target. To overcome with this limitation, OASIS can be

extended to launch a multicore onsite environment for two or more analyzer threads.

One potential application is to run two analyzer threads with two target threads. The

two analyzer threads can coordinate with each other to tune the timing of execution

in order to trigger a racing condition vulnerability in the target threads. Another
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application is to run two analyzers upon the same target with one for monitoring

and the other for operation. The monitoring thread persistently occupies one core

to monitor events in the target execution. When needed, it sends an IPI to preempt

the target execution so that the operation thread makes due analysis.
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