
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

3-2020

Using knowledge bases for question answering Using knowledge bases for question answering

Yunshi LAN
Singapore Management University, yslan.2015@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Databases and Information Systems Commons, and the Data Storage Systems Commons

Citation Citation
LAN, Yunshi. Using knowledge bases for question answering. (2020). 1-110.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/261

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/261?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F261&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

USING KNOWLEDGE BASES FOR QUESTION
ANSWERING

YUNSHI LAN

SINGAPORE MANAGEMENT UNIVERSITY

2020

Using Knowledge Bases for Question Answering

by
Yunshi Lan

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Computer Science

Dissertation Committee:

Jing JIANG (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Feida ZHU (Co-supervisor)
Associate Professor of Information Systems
Singapore Management University

David LO
Associate Professor of Information Systems
Singapore Management University

Lun-Wei KU
Associate Research Professor
Institute of Information Science, Academia Sinica

Singapore Management University
2020

Copyright (2020) Yunshi Lan

I hereby declare that this PhD dissertation is my original work
and it has been written by me in its entirety.

I have duly acknowledged all the sources of information
which have been used in this dissertation.

This PhD dissertation has also not been submitted for any degree
in any university previously.

Yunshi Lan
27 Feb 2020

Using Knowledge Bases for Question Answering

Yunshi Lan

Abstract

A knowledge base (KB) is a well-structured database, which contains many of en-

tities and their relations. With the fast development of large-scale knowledge bases

such as Freebase [9], DBpedia [1] and YAGO [67], knowledge bases have become

an important resource, which can serve many applications, such as dialogue system,

textual entailment, question answering and so on. These applications play signifi-

cant roles in real-world industry.

In this dissertation, we try to explore the entailment information and more gen-

eral entity-relation information from the KBs. Recognizing textual entailment (RTE)

is a task to infer the entailment relations between sentences. We need to decide

whether a hypothesis can be inferred from a premise based on the text of two sen-

tences. Such entailment relations could be potentially useful in applications like

information retrieval and commonsense reasoning. It’s necessary to develop auto-

matic techniques to solve this problem. Another task is knowledge base question

answering (KBQA). This task aims to automatically find answers to factoid ques-

tions from a knowledge base, where answers are usually entities in the KB. KBQA

task has gained much attention in recent years and shown promising contribution to

real-world problems. In this dissertation, we try to study the applications of knowl-

edge bases in textual entailment and question answering:

• We propose a general neural network based framework which can inject lex-

ical entailment relations to RTE, and a novel model is developed to embed

lexical entailment relations. The experiment results show that our method

can benefit general textual entailment model.

• We design a KBQA method based on an existing reading comprehension

model. This model achieves competitive results on several popular KBQA

datasets. In addition, we make full use of contextual relations of entities in

the KB. Such enriched information helps our model to attain state-of-art.

• We propose to perform topic unit linking where topic units cover a wider

range of units of a KB. We use a generation-and-scoring approach to gradually

refine the set of topic units. Furthermore, we use reinforcement learning to

jointly learn the parameters for topic unit linking and answer candidate rank-

ing in an end-to-end manner. Experiments on three commonly used bench-

mark datasets show that our method consistently works well and outperforms

the previous state of the art on two datasets.

• We further investigate multi-hop KBQA task, i.e., question answering from

KB where questions involve multiple hops of relations, and develop a novel

model to solve such questions in an iterative and efficient way. The re-

sults demonstrate that our method consistently outperforms several multi-hop

KBQA baselines.

Table of Contents

1 Introduction 1

1.1 Using WordNet for Textual Entailment 3

1.2 Question Answering from Knowledge Bases 4

1.3 Dissertation Structure . 6

I 8

2 Embedding WordNet Knowledge for Textual Entailment 9

2.1 Introduction . 9

2.2 Literature Review . 11

2.3 Method . 12

2.3.1 Learning Entailment Vectors 12

2.3.2 Using Entailment Vectors for RTE 17

2.3.3 Implementation Details . 20

2.4 Experiments . 21

2.4.1 Direct Evaluation of Entailment Vectors 21

2.4.2 Evaluation on Textual Entailment 22

2.4.3 Further Analyses . 25

2.5 Conclusions . 28

i

II 29

3 Knowledge Base Question Answering with a Matching-Aggregation Model

and Question-Specific Contextual Relations 33

3.1 Introduction . 33

3.2 Method . 36

3.2.1 Task Definition and Setup 36

3.2.2 Method Overview . 36

3.2.3 Base Candidate Sequences 37

3.2.4 Enhanced Candidate Sequences 38

3.2.5 Sequence Matching . 39

3.2.6 Combining Additional Relations with Attention 42

3.2.7 Implementation Details . 43

3.3 Experiments . 44

3.3.1 Setup . 44

3.3.2 Results . 46

3.3.3 Further Analyses . 47

3.4 Conclusions . 50

4 Knowledge Base Question Answering with Topic Units 51

4.1 Introduction . 51

4.2 Method . 54

4.2.1 Task Setup . 54

4.2.2 Method Overview . 54

4.2.3 Topic Unit Generation . 55

4.2.4 Topic Unit Scoring . 57

4.2.5 Relation Path Ranking . 59

4.2.6 End-to-End Learning . 60

4.2.7 Implementation Details . 62

4.3 Experiments . 63

ii

4.3.1 Datasets . 63

4.3.2 Main Results . 64

4.3.3 Comparison with Existing Methods 65

4.3.4 Further Analyses . 65

4.4 Conclusions . 66

5 Multi-hop Knowledge Base Question Answering with an Iterative Se-

quence Matching Model 67

5.1 Introduction . 67

5.2 Our Method . 70

5.2.1 Problem Definition . 70

5.2.2 Method Overview . 70

5.2.3 Iterative Path Growth . 71

5.2.4 Incremental Sequence Matching 72

5.2.5 Termination Check . 77

5.2.6 Loss Function . 77

5.3 Experiments . 79

5.3.1 Data Sets . 79

5.3.2 Experiment Setup . 80

5.3.3 Main Results . 81

5.3.4 Ablation Studies . 84

5.3.5 Effect of Threshold and Beam Size 85

5.3.6 Visualization . 87

5.3.7 Error Analysis . 87

5.4 Conclusions . 88

6 Future Direction 89

iii

List of Figures

1.1 A sub-graph of Freebase . 2

1.2 A sub-graph of WordNet . 2

1.3 The organization of the topics in this dissertation. 3

2.1 An overview of our approach. 12

2.2 (a) Visualization of the 4-dimensional h for four types of relations

with the corresponding word pairs labeled on the left and the mean-

ing of the 4 dimensions labeled at the bottom. (b) Visualization of

the weights applied to h with the corresponding relations labeled on

the left and the meanings of the 4 dimensions labeled at the bottom. 25

3.1 An example question and a subgraph of the KB. The correct answer

to the question is Poland. The entity shown in the solid rectangle is

a topic entity, and the two entities shown in dashed rectangles are

candidate answer entities. 34

3.2 An illustration of our model. 41

3.3 Learned relation embeddings in 2-D space. 48

3.4 (a) F1 scores over different question types on WQ. (b) F1 scores

over questions with different numbers of answers on WQ. 48

4.1 Two example questions and how they can be answered by a KB.

The questions are linked to topic entities by imaginary lines. The

shaded entities are the correct answers to the questions. The paths

in bold are correct relation paths towards the questions. 52

iv

4.2 An overview of the various steps of our method. 54

4.3 Performance on WQSP test in terms of avg size of Ūq (in blue) and

topic unit recall (in green) when (a) n-gram threshold ranges from

0 to 30 and PMI threshold is 1. (b) n-gram threshold is 4 and PMI

threshold ranges from -2 to 30. 66

5.1 An example question and a subset of a KB that contains the answer

to the question. The topic entity from the question is “sylvia brett”.

The shaded boxes show the path of entities and relations that leads

to the correct answer. 68

5.2 The incremental sequence matching model. 74

5.3 (a) Hop number accuracy on three datasets of IRN and Ours meth-

ods. (b) Epoch and %hits@1 on test set of MetaQA dataset with

thresholds ⌧ = 0.2, ⌧ = 0.5, ⌧ = 0.8 respectively. (c) Epoch and

%hits@1 on test set of MetaQA dataset with beam sizes K = 1,

K = 3, K = 5 respectively. 84

5.4 Visualization of expanded versions of (a) m(1), (b) m(2), (c) m(3)

respectively for example question “What is the place of birth of

Elena of Greece and Denmark’s mom’s heir?”. The darker color

indicates the larger value. 86

5.5 Visualization of a(1) and a(2) for an example sentence after match-

ing with relation catherine dolgorukov spouse and parent respectively. 86

v

List of Tables

1.1 Three examples from SNLI dataset. 3

2.1 An example of a pair of premise and hypothesis from SICK. 10

2.2 (a) Seven basic semantic relations defined by Bill et al. [44]. Here

D is the universe that contains all entities. Each x1 (or x2) is a

language unit that represents a subset of D. (b) Criteria for different

basic semantic relations based on the counters c0,0, c0,1, c1,0 and c1,1. 13

2.3 (a) Results of direct evaluation on L. d is the optimal dimensional-

ity of the entailment vectors (for NN and ST) or of the word embed-

dings (for word2vec) based on validation. SD stands for standard

deviation. (b) Numbers of sentence pairs in the SICK and the SNLI

datasets. (c) Textual entailment results on the two datasets by differ-

ent methods. MLN-eclassif [5] and CAFE [70] represent the state

of the art on the SICK and the SNLI datasets, respectively. DAM [5]

is the original decomposable attention model. The numbers shown

in the table are what was reported in these dissertations. ** and *

indicate statistical significance (p 0.01) and (p 0.05) compared

with w2v by McNemar’s test, respectively. 23

2.4 Evaluations of concrete concepts and abstract concepts on SICK(ns)

data. 27

2.5 Examples of successful and erroneous predictions. “E” indicates

“entailment”, “n” indicates “neural” and “c” indicates “contradition”. 27

vi

3.1 Two candidates and their candidate sequences for the question “what

country borders slovakia.” Note that X�1 indicates the inverse rela-

tion of X. 37

3.2 Experiment results. The top section contains previously reported

performance on the two datasets. The middle section contains our

results. The bottom section serves as a reference point to show the

state of the art. However, the two studies in the bottom section used

external resources such as Wikipedia. ⇤ and † indicate that the result

is statistically significantly better than Match-Aggr and Enh-Avg,

respectively. 47

4.1 (a) Comparison with existing methods. The top section shows the

performance of our full model. The middle section shows pre-

viously reported performance. The last section shows the perfor-

mance of two existing methods reimplemented by us. (b) Coverage

of Ūq. (c) F1 scores on WQSP when different feature configurations

are used in Eqn. (4.2). 62

4.2 The main experiment results. The metrics used are the commonly-

used ones for each dataset. For WQSP and CWQ the metrics are

hits@1/F1. For SQ the metrics are accuracy. 63

5.1 Some statistics of the three datasets. The first section shows the

number of the questions in different splits and the question patterns.

The second section shows the number of the entities, relations and

triplets in the associated KB. The third section shows the percentage

of the different hop questions. 79

vii

5.2 %Hits@1/F1 scores of various methods on the three datasets. Note

that for VRN, we took the reported performance in [92], and we do

not have its performance on the other datasets. ⇤ indicates that the

result is statistically significantly better than the best baseline for

that dataset at 0.05 significance value based on McNemar test. . . . 82

5.3 %Hits@1 performance on different questions in MetaQA. 83

5.4 Ablation experiment results. ⇤ indicates that the result is statistically

significantly better than ES-MatchAgg at 0.05 significance value

based on McNemar test. 84

viii

Chapter 1

Introduction

Knowledge bases (KB) are structured databases. They encode various kinds of

knowledge inside. Knowledge bases are also known as knowledge graphs, where

each node represents an entity and edges represent relations between entities. Since

usually relations have directions, we consider knowledge graphs to be directed

graphs.

There are diverse knowledge bases. Freebase [9], DBpedia [1] and YAGO [67]

are knowledge bases with entities and their relations in general domains. Figure 1.1

is a sub-graph of Freebase. We can see that the entity “Mike Kelly (American base-

ball player)” is connected with another entity “USA” via the relation “nationality”.

This relation is represented by a triplet (Mike Kelly (American baseball player), na-

tionality, USA), where we say “Mike Kelly (American baseball player)” is the sub-

ject or head entity, “nationality” is the relation and “USA” is the object or tail entity.

This triplet states the fact that “the nationality of Mike Kelly (American baseball

player) is USA”. In addition to these knowledge bases that store general knowledge

about real-world entities and their relations, there are also some other knowledge

bases that contain basic concepts such as words. Examples of such knowledge

bases include WordNet [51], ConceptNet [43], BabelNet [54], SenticNet [16] and

HowNet [23]. Take WordNet for example. It is a large hierarchical knowledge base

encoding various kinds of relations among words. Figure 1.2 shows a sub-graph

1

Grant Show
(America actor)

Big Love

Scoundrels

Swing TownLove Will Find a Way

Chicago

First baseman

Mike Kelly
(American television

writer/producer)

Mike Kelly
(American baseball

player)

starring_roles

starrin
g_roles

st
ar

rin
g_

ro
le

s

episodes
episodes_written

containby

nationality

position_played

...

...

...

write_episodes

USA

place_of_birth
...

...

Figure 1.1: A sub-graph of Freebase

Object

Natural object Artifact

Plant part Mechanism Enclosure Surface

Plant organ Mechanical device

...

...

Figure 1.2: A sub-graph of WordNet

of WordNet. The entities “Object”, “Natural object”, “Artifact”, etc. are semantic

concepts and they are interconnected via the entailment relation “hypernym”. The

triplet (Artifact, hypernym, Object) indicates that “Object” is the hypernym of the

word “Artifact”. We can see knowledge stored in such a structured form is relatively

easy to maintain and to query.

There are many applications that can benefit from knowledge bases. For exam-

ple, when we create a dialogue system for flight reservations, the flight data is stored

as a knowledge base. After analyzing users’ requests and generating queries, we can

retrieve corresponding flight information from the knowledge base that stores all the

data related to flight reservations. Such information should be incorporated into a

dialogue generator and the natural language responses can be sent back to the users.

Similarly, other applications like recommendation and question answering can also

take advantage of knowledge bases.

In this dissertation, we focus on two problems which can benefit from using

knowledge stored in knowledge bases: textual entailment, and knowledge base

question answering. For Recognizing textual entailment (RTE), we managed to

2

KBs

Textual

Entailment

Question

Answering

TASLP’19

Improve Answers’

Representation

Chapter 3

IJCAI’19

Increase Converge

of Topics

Chapter 4

ICDM’19

Solve Multi-

hop Questions

Chapter 5

COLING’18

Help Sentence-

level Entailment

Chapter 2

Figure 1.3: The organization of the topics in this dissertation.

Premise Hypothesis Ground Truth
Multiple males are playing a soccer game.Some men are playing a sport. Entailment
A man inspects the uniform of a figure. The man is sleeping. Contradiction
An older and younger man smiling. Two men are and laughing and the cats playing.Neutral

Table 1.1: Three examples from SNLI dataset.

inject entailment information from the KB to sentence-level entailment. For knowl-

edge base question answering (KBQA), we solved three independent but related

sub-problems. In Figure 1.3, we summarize what we have done with the KBs.

1.1 Using WordNet for Textual Entailment

RTE aims to identify the entailment relation between two sentences. We call these

two sentences premise and hypothesis, respectively. We give three examples from

the SNLI dataset [13] in Table 1.1. In the first example, we know if the premise is

true, the hypothesis must be true, so their entailment label is “Entailment”. In the

second example, we know if the premise is true, then the hypothesis cannot be true.

Thus their entailment label is “Contradiction”. In the last example, since we can’t

find an obvious relation between these two sentences, we annotate their entailment

relation as “Neutral”.

General methods try to learn the entailment patterns from the training datasets

via advanced neural networks. Such methods are powerful to capture general

sentence-level as well as word-level entailment patterns and have shown promis-

ing results on multiple RTE datasets. However, some lexical entailment knowledge

3

is missing from the training data. In particular, if the test data contains a great

number of unseen lexical entailment patterns, it would be difficult to make the right

predictions. For the first example in Table 1.1, if “soccer game” and “sport” never

occur in training set, we cannot infer the relation of this premise and hypothesis.

On the other hand, if we have seen a triplet (Soccer game, hypernym, Sport) in a

knowledge base, we can easily infer the entailment relation for the above example.

Therefore, we attempt to inject lexical knowledge into textual entailment under the

architecture of neural networks, which rarely been explored by current works [37].

We think this could help to improve the efficiency and interpretability of the neural

network model.

1.2 Question Answering from Knowledge Bases

KBQA aims to return entities that could serve as correct answers for given natu-

ral language questions. Given the sub-graph in Freebase of Figure 1.1, we ask one

question “What episode was Mike Kelly the writer of”. Then we need to find the

correct triplet from the whole knowledge graph, which expresses the same rela-

tion of the question. In this example, the triplet (Mike Kelly (American television

writer/producer), write episodes, Love Will Find a Way) represents exactly what the

question asks, so the object of the triplet “Love Will Find a Way” should be retrieved

as the predicted answer.

The main challenge of KBQA task is that from a huge knowledge base with

millions of triplets, finding the matched triplet is not trivial, especially when the

question is ambiguous. A popular method to solve KBQA task is that we can match

all possible relation paths with questions and the object of the relation path with the

highest matching score will be deemed as the predicted answer. In above example,

the triplets (Mike Kelly (American television writer/producer), write episodes, Love

Will Find a Way), (Mike Kelly (American television writer/producer), place of birth,

Chicago) in Table 1.1 are possible relation paths to answer the question. The correct

4

answer should be selected among “Love Will Find a Way” and “Chicago”. While

these techniques have shown good results on KBQA datasets, there are still some

flaws in them. When neural networks are applied to the matching part, the state-of-

art model has not been used. So we plan to adopt a more finely-designed model to

the KBQA system and this model could improve the performance of matching [38].

In addition, to form the features of candidate answers, besides the relation paths,

the contextual relations of answers could also be included. These additional fea-

tures will enrich the representations of candidate answers and bring benefit to more

accurate predictions.

Predicting the relation path is a crucial step in KBQA. Besides, the entity linking

is the first and important step of the overall pipeline. In the above example, we

need to link the mentioned span “Mike Kelly” in the question to the entity “(Mike

Kelly (American television writer/producer))”, so that we could retrieve the possible

relation paths from the KBs. However, linking the question to the correct entities is

not easy. Existing work usually leverages existing entity linking tools to achieve the

linking step. However, such entity linking tools are not supervised via the KBQA

task, we may encounter the cases where the correct entities are ranked low, or the

correct entities are missed out entirely. To solve this problem, we propose a model

to involve in more topic units, including entities, relations or types from the KBs,

which could increase the recall of the answers. We first select those topic units, then

retrieve and rank the relation paths from the KBs. We further connect these two

steps via the Reinforcement Learning algorithm, which could improve the overall

results [39].

The above method demonstrates effectiveness in answering simple questions.

However, for more complicated questions, it may be not good enough. Therefore,

we turn our attention to multi-hop KBQA, where some inferences are necessary

to be included to answer the questions. Still, for Figure 1.1, a possible multi-hop

question could be “Which country is the birthplace of the writer of episode Love

Will Find a Way located in”. To answer such a question, we can start from the entity

5

“Love Will Find a Way”, but only looking for relations one or two hops away from

“Love Will Find a Way” might be limited. More triplets should be involved as the

relation paths. However, the relation paths would be extended a lot, which leads to

the explosive number of candidate answers and features. This gives new challenges

to KBQA task. Therefore, we propose a novel model to retrieve the correct entities

iteratively [40]. After each iteration, we will prune unrelated entities. This will not

only save us from overwhelming computation and memory demands but also make

it easier to differentiate the correct relation path from the candidate relation paths on

a small scale. Furthermore, the model performs well in checking whether a question

has been answered completely and deciding the moment to stop iterations.

1.3 Dissertation Structure

As shown in Figure 1.3, for the remaining parts of the dissertation, we summarise

them into two parts. For Part I, which only contains a single Chapter 2, we first re-

view the related work and present our work on embedding WordNet knowledge for

textual entailment. Specifically, we propose a novel model to encode the lexical en-

tailment relations and try to inject the lexical knowledge from a knowledge base to

the textual entailment task. For Part II, we first review the historical work on knowl-

edge base question answering. Next, Chapter 3 covers our work on knowledge base

question answering with a matching-aggregation model and question-specific ad-

ditional relations. In this work, we develop a KBQA model and make full use of

connected relations of candidate answers. Then we introduce our work on KBQA

with topic units in Chapter 4. In this work, besides topic entities, we involve more

units in the KBs to increase the recall of the answers. We further apply the Rein-

forcement Learning to select the correct units at the first stage, retrieve and rank the

candidate paths at the second stage. In Chapter 5, we focus on multi-hop KBQA

task and propose an iterative sequence matching model for multi-hop knowledge

base question answering. This model will try to solve this problem by matching

6

entities iteratively. Finally, we talk about future directions in Chapter 6.

7

Part I

8

Chapter 2

Embedding WordNet Knowledge for

Textual Entailment

2.1 Introduction

Recognizing textual entailment (RTE) is the task of determining whether a hypoth-

esis sentence can be inferred from a given premise sentence. The task has been

well studied since it was first introduced by Dagan et al. [20]. Recently, there has

been much interest in applying deep learning models to RTE [13, 62, 73, 56, 65].

These models usually do not perform any linguistic analysis or require any feature

engineering but have been shown to perform very well on this task.

Intuitively, lexical-level entailment relations should help sentence-level RTE.

For example, Table 2.1 shows a premise and a hypothesis taken from the test data

of the SICK dataset [47]. We can see that in this example the premise entails the

hypothesis, and in order to correctly identify this relation, one has to know that the

word kettle entails the word pot. However, if we train a neural network model on a

set of labeled sentence pairs, and if the training dataset does not contain the word

pair kettle and pot anywhere, it would be hard for the learned model to know that

kettle entails pot and subsequently predict the relation between the premise and the

hypothesis to be entailment. On the other hand, from WordNet we can easily find

9

out that pot is a direct hypernym of kettle and therefore kettle should entail pot. If

this kind of prior knowledge can be injected into a trained RTE model, then for

sentence pairs with words that do not occur in the training data but can be found in

WordNet, the RTE predictions could potentially be made easier.

Premise: Someone is stirring chili in a kettle.
Hypothesis: Someone is stirring chili in a pot.

Table 2.1: An example of a pair of premise and hypothesis from SICK.

Indeed, WordNet [51] knowledge has been used to help RTE in a number of pre-

vious studies [19, 5, 48]. However, most of these previous studies were not based

on neural network models, and thus their base models without using WordNet may

not represent the state of the art or may require much human effort. For example,

our baseline model based on a neural network model without using any WordNet

knowledge can achieve an accuracy of 84.1% on the SICK test data, but the baseline

model by Martinez-Gomez et al. [48], which uses logical semantic representations

and a theorem prover, can only achieve an accuracy of 76.7%. Given the advantages

of deep learning approaches to RTE, it is therefore desirable to incorporate Word-

Net knowledge into deep learning based solutions to RTE. In this chapter of the

dissertation, we are going to investigate how WordNet knowledge could be easily

brought into neural network models. This could help to improve the accuracy of the

textual entailment and increase interpretation of the neural network models.

We propose to first embed lexical entailment knowledge contained in Word-

Net into word vectors. We call these special word vectors “entailment vectors.”

We then incorporate these entailment vectors into a recently proposed decompos-

able attention model for RTE. To learn these entailment vectors that encode lexical

entailment relations, we can use a standard neural network. We also propose a

set-theoretic model that has better theoretical justification. Our experiments show

that using these entailment vectors learned from WordNet can indeed significantly

improve the performance of RTE on the SICK dataset and the SNLI dataset. The

10

performance of our method is also better compared with the state of the art on SICK.

2.2 Literature Review

Recently, neural-network-based approaches have been developed to learn vector

representations of words [49, 57]. These word embeddings are trained from an un-

labeled large corpus and for general usage. In contrast, our entailment word vectors

are not meant to be used as general-purpose word embeddings. They are designed

specifically for incorporating external knowledge from WordNet into neural net-

work models for RTE. Although there has been some work attempting to inject

external lexical knowledge into word embeddings [46, 17], these learned word em-

beddings don’t contain lexical entailment information specifically for RTE. To en-

code the lexical entailment relations, some existing methods for lexical entailment

are based on the distributional inclusion hypothesis and leverage co-occurrence in-

formation of words from a large corpus [33, 26, 34, 8]. In contrast, our first work

uses labeled word pairs derived from WordNet to learn entailment vectors to en-

code the lexical entailment relations. The semantic relations we consider are also

designed specifically for natural language inference.

Similar to our motivation, some studies have also attempted to inject lexical

knowledge into the RTE task. [2] proposed compositional distributional models to

extend representations from words to sentences. By mapping from a premise to a

hypothesis by dependency trees or proposition extraction and then comparing lexi-

cal entailment between nodes or words, [30] and [55] tried to solve RTE via Word-

Net. [4], [5] and [48] first changed sentences to logical forms and then leveraged

logic inference engines combined with lexical entailment axioms to make entail-

ment judgments. However, to our best knowledge, we are rarely aware of the work

on how to apply lexical knowledge to textual entailment based on neural networks.

11

Figure 2.1: An overview of our approach.

2.3 Method

In this section, we present our method that learns the entailment vectors that encode

prior knowledge of lexical entailment relations. We also present how we incor-

porate these entailment vectors into a neural network model for RTE. The overall

framework of our method is illustrated in Figure 2.1.

2.3.1 Learning Entailment Vectors

We assume that our prior knowledge of lexical entailment relations is contained

in word pairs and their entailment relations. Specifically, let R denote a set of

lexical entailment relations. For example, R may contain entailment and reverse-

entailment. Let L = {(wi,1, wi,2, ri)}Ni=1 denote a set of N word pairs together with

their relation labels, where wi,1 and wi,2 are two words and ri 2 R. For example, L

may contain the triplet (<pot, kettle>, reverse-entailment). Let V denote the set of

all unique words found in L.

In order to encode the lexical entailment knowledge contained in L, we propose

to learn a dense vector for each word w 2 V such that the entailment relation

between two words in V can be easily detected from their word vectors. We refer to

these dense word vectors as “entailment vectors.” Note that these entailment vectors

are different from commonly-used word embeddings such as GloVe and word2vec,

because the entailment vectors are not learned from a large corpus and thus do not

12

Name Symbol Set-theoretic definition Example
(strict) entailment x1 < x2 x1 ⇢ x2 woman, person
(strict) reverse entailment x1 = x2 x1 � x2 person, woman
equivalence x1 ⌘ x2 x1 = x2 couch, sofa
alternation x1 | x2 x1 \ x2 = ; ^ x1 [x2 6= D woman, man
negation x1 ^ x2 x1 \ x2 = ; ^ x1 [x2 = D able, unable
cover x1 ` x2 x1 \ x2 6= ; ^ x1 [x2 = D person, non-woman
independence x1#x2 (else) woman, doctor

(a)
c0,0 c0,1 c1,0 c1,1

x1 < x2 � > 0 = 0 �
x1 = x2 � = 0 > 0 �
x1 ⌘ x2 � = 0 = 0 �
x1 | x2 > 0 � � = 0
x1 ^ x2 = 0 � � = 0
x1 ` x2 = 0 � � > 0
x1#x2 > 0 � � > 0

(b)

Table 2.2: (a) Seven basic semantic relations defined by Bill et al. [44]. Here D
is the universe that contains all entities. Each x1 (or x2) is a language unit that
represents a subset of D. (b) Criteria for different basic semantic relations based on
the counters c0,0, c0,1, c1,0 and c1,1.

encode the distributional properties of words. They are learned from labeled word

pairs in L. We will show later that they can be used in combination with common

word embeddings such as word2vec to help RTE.

In what follows, we first describe what lexical entailment relations we include in

R. We then present two different neural network models used to learn the entailment

vectors from L. We defer the description of how we derive labeled word pairs L

from WordNet until Section 2.3.3.

Lexical Entailment Relations

Recall that eventually the entailment vectors will be used for textual entailment.

In standard textual entailment datasets such as SICK and SNLI, there are three

sentence-level entailment relations: entailment, contradiction and neutral. How-

ever, at word-level the entailment relations are different.

In a previous study, MacCartney et al. [44] developed a framework for natu-

13

ral language inference. As the basis of their framework, they defined seven basic

semantic relations between language units, which we show in Table 2.2a. These

relations cover all the possible relations between two language units x1 and x2. We

can see that each relation has an equivalent set-theoretic definition, which dates

back to Montague Semantics [32]. Each language unit x1 or x2 is modeled as a

set, and is supposedly a subset of the universe D. Therefore their relations can be

determined by the relation between the two sets. For example, if the language units

we consider are nouns, we can regard D, the universe, as the set of all entities in the

world. If x1 is the word “person,” we can regard x1 as a set that contains all people.

If x2 is the word “woman,” we can regard x2 as a set that contains all people who

are female. Since x1 is a superset of x2, based on the definition, x1 reversely entails

x2, or x1 = x2. This makes sense because “person” reversely entails “woman,” or

in other words, “woman” entails “person.”

In this work, we only use a subset of these relations, namely, entailment (<),

reverse-entailment (=), alternation (|) and equivalence (⌘). In other words, R =

{<,=, |,⌘}. We do not include negation, cover or independence because we find

it hard to automatically derive word pairs with these relations from WordNet.

Standard Neural Network Model

To learn entailment vectors from L, we first consider a standard neural network

model. Let w1,w2 2 Rd denote the entailment vectors of two words, which we are

trying to learn, where d is the number of dimensions of the vectors. We can combine

the two vectors into a single vector as follows:

h = tanh(M

2

64
w1

w2

3

75+ b),

where M 2 Rl⇥2d is a weight matrix, b 2 Rl is a weight vector, tanh(·) is ap-

plied element-wise to the vector, h 2 Rl is a hidden vector and l is the number of

14

dimensions of the hidden vector.

The hidden vector h can then go through a linear transform followed by a soft-

max layer to be used to predict the relation label r between the two words:

p(r | h) = softmax(M0h+ b0), (2.1)

where M0 2 Rk⇥l and b0 2 Rk denote a weight matrix and a bias vector, and

k = |R|.

Given all the labeled word pairs in L, we can use the cross entropy loss as the

objective function to learn the entailment vector for each w 2 V as well as the

various parameters above.

Set-Theoretic Model

Although the standard neural network model above is straightforward, it is hard to

explain how the learned word vectors can encode the lexical entailment relations.

Inspired both by the set-theoretic definitions of the basic semantic relations shown

in Table 2.2a and by some recent work on formal distributional semantics [28, 61],

we hypothesize that a good entailment vector for a word essentially encodes which

elements in D are members of the set representing this word. We now present a

novel set-theoretic model to learn the entailment vectors.

To illustrate our idea, we first show that in the extreme case when word vec-

tors we try to learn are binary vectors precisely representing set memberships, the

semantic relation between two words can be determined by comparing the two vec-

tors element-wise. Specifically, let D denote the size of the universe D. Since a

word x can be regarded as a subset of D, we assume that the entailment vector of

x is a D-dimensional binary vector x, where xi is 1 if the i
th element in D is inside

the set x and 0 otherwise. Given two vectors x1 and x2 representing two words, in

order to determine the relationship between them, we need to check the relationship

15

between the two sets. To do so, we define the following counters for p, q 2 {0, 1}:

cp,q =
DX

i=1

�(x1,i, p)�(x2,i, q),

where �(s, t) is 1 if s is equal to t and 0 otherwise. Essentially if we compare x1 and

x2 element-wise, then c0,0, c0,1, c1,0 and c1,1 count the number of times we see (0,

0), (0, 1), (1, 0) and (1, 1), respectively. It is not hard to show that the seven basic

semantic relations in Table 2.2a correspond to different values of these cp,q. For

example, if c0,1 is 0 and c1,0 is 0, then the two sets (words) are equivalent. If c0,1 is

positive and c1,0 is 0, then x1 is a subset of x2, and therefore the first word entails the

second word. Table 2.2b shows the criteria for each basic semantic relation based

on the values of these counters c0,0, c0,1, c1,0 and c1,1.

We can use a simple example to illustrate the idea above. Suppose the universe

contains four elements: D = {dog, cat, tiger, computer}. The word animal is a set

that contains dog, cat and tiger, and thus can be represented by the vector [1, 1, 1, 0].

The word pet should contain only dog and cat, so it can be represented by the vector

[1, 1, 0, 0]. In this case, the values of the four counters are the following: c0,0 = 1,

c0,1 = 0, c1,0 = 1, and c1,1 = 2. According to Table 2.2b, we can determine that

animal reversely entails pet based on the values of these counters.

Generally speaking, however, the number of elements in the universe is huge

and therefore it is not feasible to learn word vectors that precisely represent the

memberships of all these elements. In the following model we propose, we do

not strictly force the entailment vectors to be binary. We also introduce a hidden

layer that is deterministically derived from the entailment vectors. This hidden layer

essentially represents c0,0, c0,1, c1,0 and c1,1, and it is used for the prediction of the

relation between two words.

Specifically, let w1,w2 2 Rd represent the entailment vectors corresponding to

words w1 and w2.

16

Next, we introduce two complementary vectors:

w̄1 = 1�w1, w̄2 = 1�w2,

where 1 is a d-dimensional vector of 1s.

We then define a hidden vector h to be a 4-dimensional vector as follows:

h =
1

d

w|

1w2 w|
1w̄2 w̄|

1w2 w̄|
1w̄2

�|
. (2.2)

We can see that this hidden vector h roughly correspond to the four counters

c0,0, c0,1, c1,0 and c1,1 defined above if the entailment vectors are binary vectors. But

since we do not have the binary constraint, h actually contains real values rather

than integer values. We also perform normalization by dividing the counts by d.

The same as shown in Eqn. (2.1), we can use h to predict the relation label

between two words through a linear transform and a softmax layer. We can then

again use the cross entropy loss as the objective function to learn the entailment

vectors and the model parameters.

2.3.2 Using Entailment Vectors for RTE

Given the entailment vectors learned from L using either the standard neural net-

work model or our proposed set-theoretic model, we can use them in a neural net-

work model for textual entailment. In this dissertation we use a slightly modified

version of the decomposable attention model proposed by Parikh et al. [56] because

of its relative simplicity and good performance on the SNLI [13] dataset.

The setup of the textual entailment task is as follows. We are given two in-

put sentences: a premise X = ((x1,x0
1), (x2,x0

2), . . . , (xm,x0
m)) and a hypothesis

Z = ((z1, z01), (z2, z
0
2), . . . , (zn, z

0
n)), where each xi (or zj) is a standard word em-

bedding such as the word2vec embedding of the i
th (or j th) word in the premise (or

hypothesis), and x0
i (or z0j) is the newly-learned entailment vector of the i

th (or j th)

17

word in the premise (or hypothesis), as described in Section 2.3.1.1 The goal is to

predict a label y 2 {entailment, contradiction, neutral} from X and Z.

The Modified Decomposable Attention Model

The decomposable attention model consists of the following three steps.

Attend: At this step, we derive attention weights from the word embeddings from

X and Z. We first define

eij = F (xi)
|
F (zj),

↵ij =
exp(eij)Pn

j0=1 exp(eij0)
, �ij =

exp(eij)Pm
i0=1 exp(ei0j)

,

where F (·) is a standard single-layer feed-forward neural network with ReLU acti-

vations [27]. We then define

x̃i =
nX

j=1

↵ij · zj, x̃0
i =

nX

j=1

↵ij · z0j,

z̃j =
mX

i=1

�ij · xi, z̃0j =
mX

i=1

�ij · x0
i.

x̃i is a weighted version of the word embeddings from Z to match xi, and similarly

x̃0
i is a weighted version of the entailment vectors from Z to match x0

i. The same

idea applies to z̃j and z̃0j .

Compare: At this step, another single-layer feed-forward neural network G with

ReLU activations is used to compare the aligned words. Normally, without consid-

ering the entailment vectors, the comparison is done as follows:

v1,i = G(xi � x̃i), v2,j = G(zj � z̃j),

where � is concatenation, and v1,i and v2,j represent the comparison results for the
1For those words which do not appear in L (the set of unique words in the training data), we

randomly generate their entailment vectors in the range (�0.1, 0.1).

18

i-th word in X and the j-th word in Z, respectively.

When we do consider the entailment vectors x0
i and z0j , as well as their counter-

parts x̃0
i and z̃0j from the Attend step, we need to perform the comparison slightly

differently. Here we use two different ways to perform the comparison, depending

on whether the entailment vectors are learned using the standard neural network

model or the set-theoretic model. If the standard neural network model is used to

learn the entailment vectors, we simply concatenate all the vectors to perform com-

parison as follows:

v1,i = G(xi � x̃i � x0
i � x̃0

i), v2,j = G(zj � z̃j � z0j � z̃0j).

However, if the entailment vectors are learned using the set-theoretic model, be-

cause of the special properties of the entailment vectors as explained in Sec-

tion 2.3.1, we perform comparison as follows:

v1,i= G(xi�x̃i�(x0
i�x̃0

i)�(x0
i�(1�x̃0

i))�((1�x0
i)�x̃0

i)�((1�x0
i)�(1�x̃0

i))),

v2,j= G(zj�z̃j�(z0j�z̃0j)�(z0j�(1�z̃0j))�((1�z0j)�z̃0j)�((1�z0j)�(1�z̃0j))),

where � is element-wise multiplication of two vectors.

Aggregate: Given v1,i (1im) and v2,j (1jn) as defined above, we first

use a standard LSTM model to process the two sequences separately, and then we

use MaxPooling to aggregate the derived hidden vectors in order to obtain a single

vector for each sequence:

h1,i=LSTM(v1,i,h1,i�1), h2,j=LSTM(v2,j,h2,j�1),

v1=MaxPooling(h1,1,h1,2,...,h1,m), v2=MaxPooling(h2,1,h2,2,...,h2,n).

19

v1,i=v1,i�v0
1,i, v2,j=v2,j�v0

2,j,

v1=Maxpooling(LSTM(v1,1,...,v1,m)), v2=Maxpooling(LSTM(v2,1,...,v2,n)),

We then use v1 and v2 to make the final prediction:

p(y|v1,v2)=softmax(W(v1�v2)+c),

where W and c are parameters to be learned.

2.3.3 Implementation Details

In this section, we describe how we derive labeled word pairs from WordNet to

construct L. Because eventually we will test the learned entailment vectors on the

SICK and SNLI textual entailment datasets, we focus on extracting word pairs with

at least one word appearing in SICK or SNLI.

Set-theoretic model follows the semantic nature of the nouns. And involving

different parts of speech could lead to multiple universe, which leads to difficulty

of interpretation. Therefore, we only consider lexical relationship between nouns

in our dissertation and filter other verbs, adjectives, adverbials etc. We follow the

following steps to construct L.

• If the synset of w1 is a hypernym of the synset of w2, we add (w1,w2,=) and

(w2,w1,<) to L.

• If w1 and w2 are in the same synset, or w1 (w2) is the plural form of w2 (w1),

we add (w1,w2,⌘) and (w2,w1,⌘) to L.

• If the synsets of w1 and w2 share the same parent synset, we add (w1,w2,|)

and (w2,w1,|) to L.

• We remove word pairs from L where neither word occurs in the SICK or the

SNLI dataset.

20

2.4 Experiments

2.4.1 Direct Evaluation of Entailment Vectors

As a first step to evaluate our method, we first test whether our entailment vectors

learned from labeled word pairs can indeed encode lexical entailment relations. To

do this, we report the prediction accuracy on L. Recall that L is derived from nouns

in WordNet. In total we have 13,029 unique words and 67,935 labeled word pairs in

L. The four entailment relations are quite evenly distributed except for alternation,

which has roughly twice as many word pairs as the other relations.

We compare the entailment vectors learned from the standard neural network

model and from the set-theoretic model. We refer to these two as NN and ST.

In addition, we also consider one baseline method, which train an SVM with RBF

kernel on the word2vec embeddings of two words to predict their semantic relation.2

We refer to this baseline as word2vec.

For all the methods, we take two thirds of L for training/validation and the

remaining one third for testing. We repeat this three times and report the average

accuracies. We tune the hyperparameters as follows: The dimensionality of the

entailment vectors is chosen from {25, 50, 100, 200} and the learning rate from

{0.05, 0.1, 0.15}. We applied stochastic gradient descent with a mini-batch size of

5 for optimization.

We show the results in terms of accuracy and F1 in Table 2.3a. We can observe

the following from the table. (1) The entailment vectors give better accuracies for

predicting the entailment relations compared with using word2vec embeddings. (2)

Between the standard neural network model and our set-theoretic model, the set-

theoretic model achieves better performance.

Levy et al. [41] previously showed that for some models using word embedding

vectors to identify hypernyms, the model is essentially memorizing “prototypical”
2We have also tried to use a standard neural network model instead of SVM on the word2vec

embeddings, and the performance is 68.5%, which is similar to using SVM.

21

hypernyms. In order to check whether this happens to our model, we create a special

set of labeled word pairs in which we introduce some “confusing” word pairs. We

use the following rule to generate these word pairs: If we know (hw2,w1i,<) and

(hw1,w3i,|), then we can infer that (hw2,w3i,|). We obtain 719 labeled word pairs

in this way. For example, (hstaple gun, musical instrumenti,|) is one in this set. We

denote this dataset as confusion set (CS). The accuracy and F1 scores are shown in

the last two columns of Table 2.3a, respectively. We can see that the entailment vec-

tors learned using the standard neural network models perform very poorly on this

special set, suggesting that the learned entailment vectors may be memorizing the

prototypical hypernyms. Using word2vec embeddings performs poorly, too. How-

ever, entailment vectors learned from the set-theoretic model perform very well,

suggesting that the set-theoretic model we proposed does not simply learn “proto-

typical” hypernyms.

2.4.2 Evaluation on Textual Entailment

In this section, we evaluate whether the learned entailment vectors can help RTE.

Here the entailment vectors are trained using the entire set of labeled word pairs

derived from WordNet as we have described in Section 2.3.3. We use the SICK

dataset and SNLI dataset for this experiment.

Recall that we have earlier hypothesized that when there are many word pairs

in the test data that are not found in the training data, external lexical entailment

knowledge about these word pairs is especially important. In order to verify this

hypothesis, we also construct a different split of the data. We use the following

steps to build this split:

• For every sentence pair, find all possible matching word pairs that occur in

the WordNet data. E.g., we extract hsomeone, someonei, hstirring, stirringi,

hchili, chilii and hkettle, poti from the sentence pair in Table 2.1.

• For every word pair, randomly assign all sentence pairs containing such word

22

Acc±SD F1±SD d Acc(CS) F1(CS)
NN 90.19±0.005 89.24±0.458 50 13.35 23.56
ST 94.51±0.002 93.96±0.106 200 93.32 96.55

word2vec 69.01±0.002 67.70±0.354 300 53.00 69.28

(a)
Dataset SICK(ss) SICK(ns) SNLI(ss) SNLI(ns)

train 4439 7163 549367 460451
dev 485 795 9842 51695
test 4906 1882 9824 61054

(b)

Model SICK (ss) SICK (ns) SNLI (ss) SNLI (ns)
Dev Test Dev Test Dev Test Dev Test

w2v 84.2 84.1 85.4 81.8 86.5 86.2 84.7 82.8
w2v+NN 84.4 85.1* 86.3 84.9** 86.6 86.3 85.0 83.3**
w2v+ST 84.6 85.4** 85.8 85.1** 86.7 86.5 85.3 83.6**
MLN-eclassif - 85.1 - - - - - -
DAM - - - - - 86.3 - -
CAFE - - - - - 88.5 - -

(c)

Table 2.3: (a) Results of direct evaluation on L. d is the optimal dimensionality of
the entailment vectors (for NN and ST) or of the word embeddings (for word2vec)
based on validation. SD stands for standard deviation. (b) Numbers of sentence
pairs in the SICK and the SNLI datasets. (c) Textual entailment results on the two
datasets by different methods. MLN-eclassif [5] and CAFE [70] represent the state
of the art on the SICK and the SNLI datasets, respectively. DAM [5] is the original
decomposable attention model. The numbers shown in the table are what was re-
ported in these dissertations. ** and * indicate statistical significance (p0.01) and
(p0.05) compared with w2v by McNemar’s test, respectively.

pair into either the training set or the test set. This is to ensure that the test set

contains word pairs that have not appeared in the training data at all.

• Randomly split the training set into the final training set and a development

set with a ratio of 9:1.

We denote the original split of the data as the “standard split” (ss) and the new

split of the data as the “non-overlap split” (ns). This results in two additional

specific-split datasets. Table 2.3b shows the numbers of sentence pairs of all the

four datasets.

We compare the following settings of using entailment vectors in the decompos-

able attention model for RTE:

23

• w2v: This is the original decomposable attention model for RTE without us-

ing the entailment vectors. The word embeddings used are word2vec.

• w2v+NN: This setting uses the modified decomposable attention model with

both word2vec word embeddings and the entailment vectors learned from the

standard neural network model.

• w2v+ST: This setting uses the modified decomposable attention model with

both word2vec word embeddings and the entailment vectors learned from the

set-theoretic model.

The SICK dataset has a vocabulary of 2,331 words, 1,560 of which can be found

in L. For the SNLI dataset, the vocabulary contains 32,497 words, of which only

3,599 appear in L. Following the experimental setting of the baseline [56], we fix

the word embeddings. During training, we experiment with 2-layer feed-forward

neural networks with 200 neurons in all sets. Learning rate is set to be 0.03 and

batch size is 30. In order to better compare different models, we use the McNe-

mar test to test the statistical significance of the performance differences between

different models.

We show the experiment results in Table 2.3c. We have the following observa-

tions. (1) The result of our baseline w2v on the standard split of the SNLI dataset

is almost the same as the one reported by Parikh et al. [56]. This shows that our

baseline implement is as strong as the DAM model. (2) For the standard split of the

datsets, both w2v+NN and w2v+ST can outperform w2v, and w2v+ST’s accuracy

is significantly better than w2v. In particular, our model outperforms the state-of-

the-art performance on the SICK dataset. Even though the performance on SNLI is

not better than the best result reported [70], where extensive syntactic features were

used, we still can outperform the basic model [56] by injecting WordNet knowledge

into the model. (3) For the non-overlap split, especially on the SICK dataset, using

only word2vec, the RTE performance on the development set is quite high, but when

it comes to the test set, the performance drops drastically. This demonstrates that

24

(a) (b)

Figure 2.2: (a) Visualization of the 4-dimensional h for four types of relations with
the corresponding word pairs labeled on the left and the meaning of the 4 dimen-
sions labeled at the bottom. (b) Visualization of the weights applied to h with the
corresponding relations labeled on the left and the meanings of the 4 dimensions
labeled at the bottom.

without observing the necessary word pairs from the training set, it is hard to make

the right predictions on the test set. In contrast, using entailment vectors performs

better in the non-overlap split setting. For the SNLI dataset, the improvement is not

so obvious. This may be because SNLI has a low percentage of words that can be

found in WordNet. (4) Comparing w2v+NN and w2v+ST, we can see that w2v+ST

performs slightly better than w2v+NN most of the time. This shows the advantage

of our set-theoretic model for learning the entailment vectors.

2.4.3 Further Analyses

We also conduct some further analyses on the results to better understand our

method.

Analysis of the Set-Theoretic Model

Recall that for the set-theoretic model, the hidden vectors h as defined in Eqn. (2.2)

roughly correspond to the four counters cp,q, and these counters are essential to

how the set-theoretic model works. To see whether the set-theoretic model indeed

works as we have expected, we plot the values of h for some example word pairs.

Figure 2.2a shows the h vectors for four word pairs from WordNet with different

lexical entailment relations. Figure 2.2b shows the weights applied to h as defined

in Eqn. (2.1) to make the final predictions of lexical entailment relations. We can see

25

in Figure 2.2a that for the word pair (hchild, juvenilei,<), it has a large value for the

counter c0,1, and this counter has a positive weight for relation < in Figure 2.2b. On

the other hand, for =, the counter c1,0 has a positive weight. Also, | needs positive

weights for c1,0 and c0,1 while ⌘ needs negative weights for them. All these match

our expectations from Table 2.2b.

Analysis of Concrete and Abstract concepts

In Section 2.3.1, we show that our entailment vectors are mainly inspired by the

set-theoretic definitions of basic semantic relations. Intuitively they work mostly

for nouns presenting concrete concepts such as “animal” and “dog.” It would be

interesting to see how well they work for abstract nouns such as “idea” and “pro-

posal.” In order to check this, we conduct the following analysis.

We make use of an existing dataset3 that contains concreteness ratings for 40,000

common English lemmas, collected using Amazon Mechanical Turk [14]. The rat-

ings are from 0 to 5. We select words with scores 4.5 and higher to form our concrete

concept list and words with scores 2.5 and lower to form another abstract concept

list. This results in 596 concrete words and 250 abstract words. We then re-run

the textual entailment experiments on the SICK data with the “non-overlap split”

(ns). But instead of incorporating the entailment vectors of all words found in L,

we try two new settings, where we incorporate only the entailment vectors of the

words found in the concrete word list or the abstract word list. We use entailment

vectors learned from the set-theoretic model. We refer to these two new settings as

w2v+ST(concrete) and w2v+ST(abstract). We show the performance in terms of

accuracy in Table 2.4. For comparison, we also show w2v, which is our baseline

that does not use any entailment vectors, and w2v+ST, which uses entailment vec-

tors of all words. As we can see from the table, incorporating entailment vectors of

concrete words works slightly better than of abstract words, but both settings per-

form better than the baseline w2v. This shows that even for abstract concepts, our
3Available at http://crr.ugent.be/archives/1330

26

http://crr.ugent.be/archives/1330

w2v w2v+ST(concrete) w2v+ST(abstract) w2v+ST
SICK(ns) 81.8% 84.4% 84.0% 85.1%

Table 2.4: Evaluations of concrete concepts and abstract concepts on SICK(ns) data.

sentence pair ground
truth

w2v w2v
+NN

w2v
+ST

WordNet
triplet

Someone is stirring chili in a kettle e n n e (hkettle, poti,
Someone is stirring chili in a pot <)
The black and white dog is running inside c n n c (hinside, out-
The black and white dog is running outside sidei,|)
A shirtless man is playing football on a lawn n e e e (hlawn, fieldi,
A shirtless man is playing football on a field <)
A man is hanging up the phone c n n nA man is making a call on a cell phone

Table 2.5: Examples of successful and erroneous predictions. “E” indicates “entail-
ment”, “n” indicates “neural” and “c” indicates “contradition”.

model is still able to capture lexical-level entailment knowledge and incorporate

such knowledge into the textual entailment model. Overall, incorporating entail-

ment vectors of all words still works the best.

Case Studies

In Table 2.5 we show some successful as well as erroneous RTE predictions made

by our method using the entailment vectors trained by the set-theoretic model. In the

first example, since the words kettle and pot never co-occur in the training set, using

only word2vec embeddings makes a wrong prediction. But injecting the entailment

vectors trained using the set-theoretic model from the WordNet labeled word pairs,

the knowledge that kettle entails pot is brought into the model, and therefore the

w2v+ST method can correctly make a prediction. We can see that the w2v+NN

method could not inject such knowledge either. The same thing happens in the

next example, where WordNet provides the knowledge (hinside, outsidei,|), which

is never learned from the training set.

We also provide two negative examples where w2v+ST makes wrong predic-

tions. In the third example, the knowledge (hlawn, fieldi,<) provided by WordNet

27

is not applicable, because here lawn and field are considered to be different. The last

example shows that for paraphrases not at the lexical level, our entailment vectors

cannot help.

2.5 Conclusions

In this dissertation, we propose to learn entailment vectors that encode lexical en-

tailment knowledge from WordNet. We incorporate such entailment vectors into

a decomposable attention model for RTE. Our empirical evaluation shows that the

entailment vectors can indeed improve the performance of RTE when evaluated on

the SICK and the SNLI datasets. In the future, we plan to study how to automati-

cally obtain more training data for learning entailment vectors and how to encode

phrase-level entailment relations in such entailment vectors. Our data and code have

been made publicly available.4

4https://github.com/lanyunshi/embedding-for-textual-entailment

28

Part II

29

In Part I, we present our work on using WordNet for textual entailment. In Part

II of the dissertation, we turn to another task that uses knowledge bases. This is the

task of knowledge base question answering. We first review the related literature

below and then describe our detailed work in the following chapters.

KBQA has been studied extensively in recent years. We can summarize the

solution of KBQA into two main categories. One category is a kind of seman-

tic parsing-based methods [90, 15, 6, 35, 25, 86, 42]. The idea is to transform

the natural language question into a specific query-language form so that we can

use it to directly retrieve answers from a KB. However, this category of methods

faces the challenge of building accurate and domain-specific parsers. Another cat-

egory of methods matches questions with candidate answers via neural network

models [10, 12, 11, 22, 31, 29, 88]. Different features and neural networks are

proposed to improve the accuracy of matching. [10] represented a question and a

knowledge base constitute as two low-dimensional vectors and computed their sim-

ilarity, but their method ignored word order information and importance of different

words. [88] represented questions and relations of candidate answers via differ-

ent levels of abstraction and sorted relations via the neural network in their staged

framework. Their method makes full use of the question and relations but over-

looks other important information in the KB. [29] collected multiple aspects of the

information about a candidate answer as the representation of the candidate. Then a

cross-attention mechanism was proposed to match it with the question. In addition

they used the TransE method to train representations for candidate answers using

global KB knowledge. Our work in Chapter 3 follows the second line of work.

We try to adopt a more expressive matching neural network and leverage a more

informative feature to do the matching. It’s worth noting that the work [29] also

incorporate some additional knowledge, but there are still some differences: Their

candidate answers are not represented as sequences whereas we use sequence rep-

resentation for candidates. They use TransE to incorporate additional knowledge

about candidates, but TransE requires the entire KB to train. In contrast, we only

30

need to use the local contexts of candidates. Sun et al. [68] adapted graph convo-

lutional network (GCN) to encode the KB knowledge in KBQA task. So that each

entity could be represented by its neighborhood via attention mechanism. But the

difference is that the information of GCN model propagate between any two entities

for ranking the entity while our method is one-way representation from relations to

an entity for describing the entity. Some other work like [83] and [78] incorporated

manually designed rules or Wikipedia as external knowledge to help KBQA. In the

experiment in Chapter 3, we do not make use of any external knowledge. Therefore,

we do not compare with their reported performance.

Our work in Chapter 4 studies the overall architecture of KBQA. A general solu-

tion to KBQA is a pipeline approach, where the question is first linked to some topic

entities in the KB by an existing entity linking tool [82, 11, 21, 29] and then relation

paths connected to the topic entities in the KB are retrieved and ranked by various

ranking models. As we mentioned, these methods include semantic parsing based

models [6, 83, 85] and embedding based models [10, 11, 21, 68]. The top-ranked

relation path will then be used to answer the question. Although these methods have

worked well on KBQA, there are limitations of this pipeline approach using an ex-

ternal entity linking tool [66, 36, 45], as we have pointed out in Section 1. There has

been some work attempting to address the limitations pointed out. Yu et al. [88]

re-rank the topic entities using their associated relations. Xu et al. [78] jointly train

entity linking and path ranking through entity descriptions. However, these studies

still only consider named entities as topic entities rather than linking a question to

other kinds of KB units. In contrast, we consider a wide range of KB units during

our topic unit linking step. Zhang et al. [92] integrate entity linking and relation

path ranking into an end-to-end model. However, their topic entity linking module

considers all candidate topic entities without using a scoring function to rank and

filter them, and as a result, it is hard to scale up their method to large knowledge

bases. In contrast, our work in Chapter 4 takes a topic unit generation-and-scoring

approach, using heuristics for generating topic units and a neural network model for

31

fine-grained scoring. Similar to [92], We also use reinforcement learning to jointly

train the entire system.

Along the line of KBQA, most previous work focuses on single-relation ques-

tions. For multi-hop KBQA, there has been only limited work. We then investigated

the multi-hop KBQA task in Chapter 5. [76] applied Memory Network to KBQA,

where relation triplets are saved in memory and queries are updated at every hop

by interacting with the memory. The Key-Value Memory Network method [50] im-

proves Memory Network by dividing the memory into key and value parts. [92]

proposed a variational reasoning network that integrates entity linking and relation

prediction together and performs reasoning by traversing within the KB. [94] pro-

posed an interpretable reasoning network, which performs relation matching hop-

by-hop and has shown good performance on some datasets. However, as we dis-

cussed earlier, these methods have several limitations. We propose a new method

in our third work in Chapter 5 to address these limitations and we show that our

method can outperform these previous methods. A recently-published work [18]

proposed a general framework to address the multi-hop question answering task,

which achieved outstanding results for evaluation. The difference between their

method and ours is that they re-visit the ranked paths during the expansion of the

relation paths while we propose a more complex mechanism to remember the vis-

ited paths.

32

Chapter 3

Knowledge Base Question Answering

with a Matching-Aggregation Model

and Question-Specific Contextual

Relations

3.1 Introduction

With the development of large-scale knowledge bases such as Freebase [9] , DBpe-

dia [1] and YAGO [67], Knowledge Base Question Answering (KBQA) has become

an important task and gained much attention in recent years [10, 12, 93, 88, 29].

KBQA aims to automatically find answers to factoid questions from a Knowledge

Base (KB), where answers are usually entities in the KB. Figure 3.1 shows a small

subset of a KB and an example question that can be answered from the KB.

Early work on KBQA often uses semantic parsing to transform a question into a

KB-specific structure that can be used to directly query or match the KB [90, 72, 6,

15, 84, 83, 42]. However, this approach depends heavily on a suitable and accurate

semantic parser, which may not be easy to build. More recently, a number of neural

network-based methods have been proposed for KBQA and achieved good results

33

Figure 3.1: An example question and a subgraph of the KB. The correct answer to
the question is Poland. The entity shown in the solid rectangle is a topic entity, and
the two entities shown in dashed rectangles are candidate answer entities.

on benchmark datasets [22, 29, 88].

Typically, these methods start by identifying entities mentioned in the question,

which are referred to as topic entities. From these topic entities and by following

the relation paths in the knowledge graph, candidate answer entities can be located,

which are usually one or two-hops away from a topic entity. Neural network models

are then used to encode both questions and candidate answers as vectors, which are

then matched against each other for candidate ranking. Differences between the

various models proposed lie in the types of KB information they use to represent

candidate answers as well as the way they encode and match.

Although existing neural network-based methods have explored various candi-

date answer representations and matching models, there are at least two limitations

of existing work. The first is about the matching model. KBQA can be regarded

as a sequence matching problem where one sequence is the question and the other

sequence is the relation path in the KB linking a topic entity to a candidate an-

swer entity. For natural language sequence matching, several previous studies have

shown that a “matching-aggregation” framework is preferred [74, 75, 56], in which

two sequences are matched at word-level and the matching results are aggregated

for a final decision. However, existing matching models for KBQA are not based on

this “matching-aggregation” framework, and thus may not achieve optimal match-

ing results between questions and candidate answers.

Second, to represent candidate answers, existing methods usually consider only

34

the entities and relations along the path from a topic entity to a candidate answer en-

tity. A recent work [89] proposed to directly leverage the type mentions of the can-

didate for matching, such as “location”. However, we think other relations linked

to a candidate answer may also contain more expressive information about the can-

didate and should be considered. Take the example shown in Figure 3.1. We can

see that the relations “capital” and “nationality” linked to the candidate “Poland”

strongly indicate that this candidate is a country. If this information is considered

during matching, we can increase the chance of this candidate being ranked high.

In this chapter of the dissertation, we address the two limitations above by

proposing two ideas for KBQA. First, we apply a “matching-aggregation” model

to measure the similarity between a question and a candidate answer, which allows

us to exploit word-level interactions through bi-directional attention mechanisms.

Second, we incorporate additional relations connected to a candidate to enhance its

representation, and we use attention mechanism to weigh these relations based on

their relevance to the question. We evaluate our proposed method on two data sets:

WebQuestions [6] and SimpleQuestions [11]. The empirical results verified our hy-

potheses that a “matching-aggregation” framework works better for finding correct

answers in KBQA, and the additional relations incorporated into the candidate rep-

resentations can further improve KBQA performance. We also find that our overall

method can outperform the reported state-of-the-art performance on both WebQue-

sions and SimpleQuestions datasets by 4.2 percentage points and 2.2 percentage

points, respectively.1

The contributions of our work are two-fold: (1) We demonstrate that a

“matching-aggregation” framework for sequence matching works significantly bet-

ter than a standard sequence matching model for KBQA. (2) We propose to use ad-

ditional relations connected to candidate answers to help candidate ranking, which

can also significantly improve KBQA performance.
1For fair comparison, we do not consider models using external resources such as Wikipedia.

35

3.2 Method

3.2.1 Task Definition and Setup

We first formally define the task below. We assume that there is a KB from which

questions are to be answered. The KB contains a set of entities E , where each

entity e2E has a textual representation, which is a sequence of words. For ex-

ample, (isthmus,of,panama) is the textual representation of the entity Isthmus of

Panama. The KB also has a set of relations defined, denoted by R, where each

relation r2R also has a textual representation in the form of a word sequence (e.g.,

(contained,by)). We assume that all relations in the KB are directed, binary rela-

tions.2 Facts in this KB are represented as triplets. For example, (e,r,e0) indicates

that the relation r2R holds between the entities e2E and e
02E , where e is called

the head entity and e
0 the tail entity. The KB can also be represented as a graph, as

we can see in Figure 3.1.

A question is represented as a sequence of words Q=(q1,q2,...,qm) (e.g.,

(what,country,borders,slovakia)). Our goal is to return an entity from E as the

answer to a given question. We assume that there is a set of question-answer pairs

used as training data.

3.2.2 Method Overview

Before presenting the details of our method, we first give an overview. Similar to

most previous work, our method begins by identifying topic entities, which are en-

tities mentioned in a given question. We then use these topic entities to identify

candidate answer entities (or candidates for short). In this work, candidates are

those entities that are either directly linked to a topic entity through a single rela-

tion or two-hop away from a topic entity through two relations in the KB. In the

example shown in Figure 3.1, Slovakia is a topic entity, and two candidates can be
2For n-ary relations, we convert them to binary relations following the practice by [31].

36

candidate base candidate sequence additional relations
Europe (slovakia,contained,by) {#continent�1, #currency used, #country of origin�1}
Poland (slovakia,adjoins), {#nationality�1, #religion, #capital, #currency used}

Table 3.1: Two candidates and their candidate sequences for the question “what
country borders slovakia.” Note that X�1 indicates the inverse relation of X.

derived from the topic entity: Europe and Poland. For each candidate, we use the

entities and relations along the path from the original topic entity to the candidate to

construct a sequence, which we refer to as a candidate sequence. Details of candi-

date sequences will be presented in Section 3.2.3 and Section 3.2.4. Finally, using a

neural network-based sequence matching model, we match all candidate sequences

with the question sequence in order to rank the candidates and select the top one as

the answer.

Although the overall framework of our method is similar to previous work, we

propose two novel ideas to address the limitations we pointed out earlier in order

to improve KBQA performance. (1) To match the question sequence with a can-

didate sequence, we adopt a “matching-aggregation” framework, which has been

shown to be more effective than a “Siamese” matching model for various NLP

tasks [74, 75, 56, 53]. Note that although this “matching-aggregation” framework

is not new, to the best of our knowledge, it has not been applied to KBQA. (2)

Based on our observation that additional relations connected to the candidates are

potentially useful, we include them in the candidate representations. We also note

that these relations are not equally important and therefore we propose to use an

attention mechanism to carefully weigh these relations in order to optimize their

effect.

We now present our method in detail.

3.2.3 Base Candidate Sequences

In order to identify a set of entities from the KB as candidate answers, we first iden-

tify a set of topic entities from the given question. For example, given the question

37

“where is isthmus of panama located,” we would identify Isthmus of Panama and

Panama as topic entities. Note that this step follows the practice of several previous

studies [83, 29, 88]. We use external tools to identify the topic entities. Let us use

E t
Q⇢E to denote the set of topic entities found in question Q.

Next, for each topic entity e
t2E t

Q, by following its connections in the KB, we

can identify all the entities that are either one-hop or two-hop away from e
t. We

combine all these entities that are one or two-hop away from any topic entity and

consider them to be our candidate answer entities. Let us use Ec
Q⇢E to refer to this

candidate set.

We first introduce our base candidate sequences, which do not include the ad-

ditional relations. To construct the base candidate sequence for a candidate ec2Ec
Q,

we use the entities and relations along the path connecting this candidate to the

corresponding topic entity. Recall that each entity or relation has a textual represen-

tation in the KB. We concatenate the word sequences representing the entities and

relations along the path to form the base candidate sequence. Note that we exclude

the candidate entity itself in the base candidate sequence representation. This is be-

cause eventually we will match the candidate sequence with the question sequence,

but we do not expect the candidate itself to appear in the question. For example, the

candidate Poland does not appear in the question “what country borders slovakia”

although this candidate is the correct answer.

To illustrate base candidate sequences, we show two candidates and their cor-

responding base candidate sequences in Table 3.1, corresponding to the example

shown in Figure 3.1.

3.2.4 Enhanced Candidate Sequences

To enhance the base candidate sequence for a candidate ec, we further look for other

relations that are linked to e
c, where e

c could be either a head entity or a tail entity.

Following Hao et al. [29]’s work, we have tried to involve candidate answer entity

38

itself into the candidate sequence. However, based on our preliminary experiments,

we find that indeed such additional information does not improve the performance.

Let Rec⇢R denote the set of relations connected to e
c, excluding those that link e

c

to a topic entity. This set of additional relations Rec will be considered an additional

component in the enhanced candidate sequence. For example, for the candidate

Poland, nationality would be one of the additional relations, which could potentially

help better match this candidate. See Table 3.1 for the additional relations of the two

candidates in our example.

3.2.5 Sequence Matching

We are now ready to use a sequence matching model to measure how close a candi-

date sequence is to a question sequence. Inspired by some recent work [56, 74], we

apply a “matching-aggregation” sequence matching model here.

First of all, for the question sequence and the base candidate sequence, we as-

sociate each word with a word embedding vector (which will be initialized using

existing word embeddings but updated during training). Then for the set of addi-

tional relations in the enhanced candidate sequence, we associate each additional

relation with a relation embedding vector (which will be randomly initialized and

updated during training).

Let Q=(q1,q2,...,qm) denote the sequence of word embeddings of the ques-

tion. Let C=(c1,c2,...,cn) denote the sequence of embedding vectors of the en-

hanced candidate sequence for candidate e
c. Here (c1,c2,...,cn�1) are the word

embeddings of the words in the base candidate sequence for ec, and the last em-

bedding cn is defined as a combination of the relation embeddings of the relations

inside Rec , i.e., the additional relations linked to e
c. We will explain how cn is

derived from the relations in Rec later.

Given the two sequences Q and C, we try to derive a matching score between

39

them as follows. First, we try to match qi with cj as follows:

eij=F (qi)
T
F (cj),

where F (·) is a single non-linear layer with ReLU as its activation function.

We then use eij defined above to derive normalized attention weights in both

directions and obtain the following weighted versions of the question (or candidate)

to match each word in the candidate (or question) sequence:

q̃j=
mX

i=1

exp(eij)Pm
i0=1exp(ei0j)

·qi,

c̃i=
nX

j=1

exp(eij)Pn
j0=1exp(eij0)

·cj.

We can see that here q̃j is a weighted sum of all the qi in the question sequence

in order to match cj in the candidate sequence. It follows the standard attention

mechanism in most previous work. The same idea applies to c̃i.

Next, we match qi with c̃i and cj with q̃j by defining the following two vectors:

v1,i=G

0

B@

2

64
qi�c̃i

(qi�c̃i)�(qi�c̃i)

3

75

1

CA,

v2,j=G

0

B@

2

64
cj�q̃j

(cj�q̃j)�(cj�q̃j)

3

75

1

CA,

where� denotes element-wise multiplication and G(·) is another feed-forward neu-

ral network with ReLU activation. Note that our design of these two vectors are

inspired by some recent work on sequence matching [74].

Next, we aggregate the sequences of v1,i and of v2,j using LSTM and then

40

Figure 3.2: An illustration of our model.

extract two values from the resulting vectors through max pooling:

Ṽ1=LSTM([v1,1,v1,2,...,v1,m]), ṽ1=max
i

Ṽ1,i,

Ṽ2=LSTM([v2,1,v2,2,...,v2,n]), ṽ2=max
j

Ṽ2,j.

Finally, we concatenate and feed ṽ1 and ṽ2 to H , which is a feed forward network

followed by a linear layer. It gives us the matching score between question sequence

Q and candidate sequence C:

s(Q,C)=H([ṽ1;ṽ2]).

Using a softmax layer over the matching scores of all candidates, we can then derive

a distribution over the candidates.

During the training stage, we use the KL divergence between the true distribu-

tion and predicted distribution as the objective function to learn the various model

parameters. For prediction, we select the candidate with the highest probability as

the predicted answer.

41

3.2.6 Combining Additional Relations with Attention

We now describe how cn is derived from the additional relations Rec for candidate

e
c.

A naive way is to take the average of all the relation embeddings, which we refer

to as Avg:

cn=
1

|Rec |
X

r2Rec

r,

where r is the embedding vector of relation r.

However, this naive method has its weakness because not all additional rela-

tions are equally relevant to the question. To better capture the relevant additional

relations, we use attentions to weigh the different additional relations.

We first encode the question sequence Q into a single vector q̄ by taking the

average.

q̄=
1

m

mX

i=1

qi.

After that we apply an attention network to decide which relation is important for

the question. We define �r as follows:

�r=
exp(wT [r;q̄]+b)P

r02Rec
exp(wT [r0;q̄]+b)

, (3.1)

where w and br are parameters to be learned, and r is the embedding for relation r.

Then cn is obtained as follows:

cn=
X

r2Rec

�rr.

We refer to this combination method as RelAtt.

Still, for a question Q, oftentimes only some aspects of the question are more

important, such as “country” in the example question we have seen. So we also

explore a self-attention mechanism on the question to decide which parts of the

42

question should be highlighted to match a candidate. We first use LSTM to trans-

form a question sequence into a single vector:

Q̃=LSTM([q1,q2,...,qm]), q̃=Q̃m.

Next, we define

↵i=
exp(uT [q̃;qi]+d)Pm
i0=1exp(u

T [q̃;qi0]+d)
,

where u and d are parameters to be learned.

Then we define

q̄0=
mX

i=1

↵iqi.

Then we can use q̄0 instead of q̄ in Equation (3.1) to obtain cn. We denote this

method as SelfAtt.

3.2.7 Implementation Details

It is worth noting that some questions may give strict constraints of the answer type.

For example, for the question “what state is Harvard College located”, the candi-

date answers include Cambridge, United States of America and Massachusetts. If

we directly have the entity type information of these candidates, we can easily find

that Massachusetts is the best answer. Although our method using additional rela-

tions could possibly also encode such knowledge, we expect that using explicit en-

tity type or entity description would possibly be supplementary because they can en-

code more find-grained entity type information. Thus, we include a post-processing

step with the following heuristic. If we find some exact word match between the

question and either a candidate entity’s textual description or the entity type of the

candidate, we adjust the probability of the candidate by the following formula:

p(ec)0=�+(1��)⇥p(ec), (3.2)

43

where p(ec) is the probability for candidate e
c as computed by the sequence match-

ing model, and � is a hyper-parameter manually set.

It is also possible that sometimes there may be many candidates sharing the same

base candidate sequence. This is because there are often one-to-many relations

in a KB. To reduce the computational costs, instead of treating these as different

candidate sequences, we merge these candidates as well as their additional relations

and construct a single candidate sequence for them. We use the heuristic explained

above to further rank them.

Note that these implementation details are applied to all versions of our model

that are being compared in Section 3.3.

3.3 Experiments

3.3.1 Setup

We evaluate our proposed method on two commonly used benchmark datasets: We-

bQuestions and SimpleQuestions.

WebQuestions
3: This dataset was introduced by Jonathan et al. [6]. The dataset

contains 5,810 question-answer pairs with 3,778 training pairs and 2,032 test pairs.

We randomly split the training data into 3,000 training pairs and 778 develop-

ment pairs. In order to obtain topic entities, we use the entity linking output gener-

ated by YodaQA4. The KB we use is the latest dump of Freebase5 and we process it

the same way as [31].

Due to multiple correct answers for each question are annotated as the ground

truth, our method also return multiple answers based on a tuned threshold. We

evaluate our method using the official evaluation script provided by Jonathan et

al. [6]. The standard valuation metric is average F1 over all test questions.
3https://nlp.stanford.edu/software/sempre/
4https://github.com/brmson/dataset-factoid-webquestions
5https://developers.google.com/freebase/

44

SimpleQuestions
6: The SimpleQuestions dataset was introduced by Bordes et

al. [11]. It contains 108,442 question-answer pairs, with 75,910, 10,845 and 21,687

pairs for training, development and testing, respectively. In order to make fair com-

parison with previous work, we use FB2M as our KB, which is a subset of Freebase

that consists of 2M entities and 6K relations. For topic entities, we start from the

entity linking results from Yu et al. [88]7. For this dataset, the standard evaluation

metric is accuracy, which means we count one prediction as correct if our topic

entity and relation match the ground truth.

For both datasets, we initialize our word vectors with 300-dimensional pre-

trained word embeddings [57]. Adagrad [24] algorithm is employed to optimize

our objective function. We tune the hyper-parameters on the development data in

the following way: (1) The size of hidden states is chosen from {50,100,150,200}.

(2) Dropout ratio is chosen from {0,0.1,0.2,0.3,0.4}. (3) hyper-parameter � for

post-processing is chosen from {0.1,0.2,0.3,0.4,0.5}.

Through the empirical evaluation we aim to test (1) whether the “matching-

aggregation” model works better than a standard sequence matching model for

KBQA, and (2) whether our enhanced candidate sequences with the additional re-

lations are better than the base candidate sequences. Therefore, we compare the

following methods:

Public Baselines: We list the performance of previous works building on end-to-

end neural networks [10, 22, 11, 29, 88] or semantic parsers [3, 79, 7, 80] to solve

WebQestions or SimpleQuestions.

My Baseline: This is a baseline method implemented by ourselves, where we use

the base candidate sequences and a standard sequence matching model that does

not follow the “matching-aggregation” framework. Specifically, we use a BiLSTM

model to process both the question sequence and the candidate sequences first. We

then use max pooling to combine all the hidden states of a question (or a candi-
6https://research.fb.com/downloads/babi/
7https://github.com/Gorov/SimpleQuestions-EntityLinking

45

date sequence) into a single vector. These vectors are then used to compute cosine

similarities between all candidate sequences and questions to rank the candidates.

Match-Aggr: This is our method that uses the base candidate sequences together

with the “matching-aggregation” framework for sequence matching, as presented in

Section 3.2.5.

Enh-Avg: This is our method using the enhanced candidate sequence with the Avg

method to combine the additional relations.

Enh-RelAtt: This is our method using the enhanced candidate sequence with the

RelAtt method to combine the additional relations.

Enh-SelfAtt: This is our method using the enhanced candidate sequence with the

SelfAtt method to combine the additional relations.

For the sake of completeness, we also list the best reported performance on these

datasets. However, it is important to note that the best performing systems [83, 78]

make use of external resources such as Wikipedia. Because we do not make use

of such external resources, it is not fair for us to compare our results with these

state-of-the-art results.

3.3.2 Results

Our results are shown in Table 3.2. As we can see from the table, Match-Aggr

method beats Baseline model with a vast margin and it can already reach the state-

of-the-art performance on both datasets. Next, we can see that after we use en-

hanced candidate sequences with the additional relations, even with the Avg com-

bination method, the performance can be significantly improved. With the attention

mechanisms, the performance can be further improved significantly, and specifi-

cally, SelfAtt performs better than RelAtt. Overall, with our complete method, we

can improve the performance of KBQA by around 4 and 2 percentage points for

WebQuestions and SimpleQuestions datasets respectively.

46

Method
WQ SQ

Avg F1 Avg acc
Bao et al. [3] 37.5 -
Xu et al. [79] 39.1 -
Bordes, Chopra and Weston [10] 39.2 -
Berant and Liang [7] 39.9 -
Yang et al. [80] 41.3 -
Dong et al. [22] 40.8 -
Bordes et al. [11] 42.2 63.9
Yin et al. [87] - 76.4
Hao et al. [29] 42.9 -
Yu et al.[88] - 78.7
My Baseline 39.5 74.1
Match-Aggr 42.9 79.2
Enh-Avg 43.8⇤ 80.3⇤

Enh-RelAtt 45.2⇤† 80.7⇤†

Enh-SelfAtt 47.1
⇤†

80.9
⇤†

Yih et al.[83] 52.5 -
Xu et al. [78] 53.3 -

Table 3.2: Experiment results. The top section contains previously reported perfor-
mance on the two datasets. The middle section contains our results. The bottom
section serves as a reference point to show the state of the art. However, the two
studies in the bottom section used external resources such as Wikipedia. ⇤ and †
indicate that the result is statistically significantly better than Match-Aggr and Enh-
Avg, respectively.

3.3.3 Further Analyses

In this section, we perform some further analyses to better understand our model.

Learned Embeddings of Additional Relations

To check whether the additional relations can indeed encode useful knowledge

about the candidates, we extract the learned relation embeddings of some of the

additional relations and map them to a 2-dimensional space. We show these rela-

tions in Figure 3.3. We can see that indeed relations that are close to each other tend

to be associated with the same type of entities. For example, country and gender are

close to each other in Figure 3.3, probably because both these two relations connect

to entities which are people. We can also see that opening date and date of birth

are also close to each other, probably because they both connect to entities which

are dates.

47

Figure 3.3: Learned relation embeddings in 2-D space.

(a) (b)

Figure 3.4: (a) F1 scores over different question types on WQ. (b) F1 scores over
questions with different numbers of answers on WQ.

Performance Breakdown

To see if our method works better for some types of questions and worse for others,

we group the questions in two ways.

First, we group the questions based on the answer type. This can be done by

looking at the first word of a question, such as “when,”, “where.” We show the

performance of different types of questions on the WebQuestions dataset in Fig-

ure 3.4a. We can see that “how” and “when” questions are harder to answer than

other question types.

Because some questions have multiple answers, we also group the questions

based on how many answers they have. We show the performance vs. the num-

bers of answers on the WebQuestions dataset in Figure 3.4b. We can see when the

number of answers goes up, the performance drops. It is interesting to see that the

48

best performance is achieved when the question has three answers. This is probably

because when there are more than one answers, if we can capture one of them, we

can already gain some points, but if a question’s answer is unique, it is hard to rank

the correct answer at the top.

Error Analysis

We also conduct some error analysis. We sample 100 imperfectly answered ques-

tions from the WebQuestions dataset randomly. We then examine them to identify

the reasons for the mistakes. The following categories of errors are identified:

Ground truth incompletion (29%): There are many sampled questions whose

ground truth answers are not complete. For example, for the question “what team

is Kris Humphries play for,” besides the answer Brooklyn Nets, we find that there

are other correct answers from the KB such as Washington Wizards and Toronto

Raptors.

Question ambiguity (20%): This category contains questions which have ambigu-

ous descriptions. As a result, multiple potential relations may match the questions

correctly. For example, for the question “who was Juan Ponce de Leon family,” the

predicted answer is Barbara Ryan through the parents relation, while the ground

truth is Elizabeth Ryan through the children relation.

Complex questions (18%) : This type of errors occurs when some inference is

needed to answer the question. For example, for the question “who rules Denmark

right now,”, one needs to know the current time and compare it with the time associ-

ated with a relevant relation (e.g., appointed by) in order to find the correct answer.

There are also questions containing qualifiers such as first, last time and after, which

make the questions harder to answer. For this type of questions, our method is not

able to handle them.

49

3.4 Conclusions

In this chapter of the dissertation, we proposed a sequence matching-based solution

to KBQA. We constructed candidate sequences using entities and relations linking

candidate answers to a question. Furthermore, we proposed to include additional

relations connected to a candidate to further enhance its representation. Our exper-

iment results showed that our method could outperform the current state of the art

for two commonly used benchmark KBQA datasets.

50

Chapter 4

Knowledge Base Question Answering

with Topic Units

4.1 Introduction

KBQA attracts increasing attention in recent years due to its wide usage such as in

search engines and decision support systems [15, 35, 10, 22, 83, 78, 88, 58]. Most

existing methods for KBQA use a pipelined approach: First, given a question q, an

entity linking step is used to find KB entities mentioned in q. These entities are often

referred to as topic entities. Next, relations or relation paths in the KB linked to the

topic entities are ranked such that the best relation or relation path matching q is

selected as the one that leads to the answer entities. For example, given the question

Q1 shown in Figure 4.1, an entity linking tool may link the phrase “Morgan Free-

man” in the question to the entity “Morgan Freeman” in the KB. Then starting from

this topic entity, a number of different relation paths are considered such as (Mor-

gan Freeman, education), (Morgan Freeman, place of birth) and (Morgan Freeman,

place of birth, contained by). Ideally, we want the path (Morgan Freeman, educa-

tion) to be ranked the first with respect to the question so that the correct answer at

the end of this path can be extracted.

Although a plethora of methods has been proposed for KBQA, most work fo-

51

Q1: Where did Morgan Freeman graduate ?
Q2: What body of water does St. Lawrence flow into ?

Morgan
Freeman

Los Angeles
City College

actor
Memphis

USA

Saint
Lawrence

Romecountry

Canada

Niger River body of water

Atlantic
Ocean

Saint Lawrence
River

education

place
of birth

notable types

contained by
notable
types

notable
types

notable
types

flow
through

river mouth

river mouth notable
types

contained by

KB

Figure 4.1: Two example questions and how they can be answered by a KB. The
questions are linked to topic entities by imaginary lines. The shaded entities are
the correct answers to the questions. The paths in bold are correct relation paths
towards the questions.

cuses on the relation path ranking step. For entity linking, many methods rely en-

tirely on existing entity linking tools [78, 21, 29], which generally use traditional

rule-based methods to perform named entity recognition and linking. There are at

least two limitations with this approach. First, oftentimes an entity mention in a

question is ambiguous and an entity linking tool may not link it to the correct en-

tity in the KB. Take the question Q2 in Figure 4.1 for example. An entity linking

tool is more likely to mistakenly link the entity mention “St. Lawrence” to the en-

tity “Saint Lawrence” in the KB, which is far away from the correct answer entity

“Atlantic Ocean.” On the other hand, the question in Figure 4.1 shows that words

that are not part of a named entity, such as “body”, “water” and “flow”, can also be

linked to relevant entities and relations in the KB such as “body of water” and “flow

through” that can help find the correct answer entity. The second limitation with

a pipeline approach is that the entity linking step cannot be trained using the final

KBQA results. Again, let us look at the Q2 in Figure 4.1. If both “Saint Lawrence”

and “Saint Lawrence River” are recognized as topic entities, an entity linking mod-

ule developed outside of the KBQA system would not be able to know which one

is more relevant to the question. However, if we could train a topic entity ranking

function using the ground truth answer to the question, we may learn that with “wa-

ter” and “flow” appearing in the question, “Saint Lawrence River” should be ranked

52

higher than “Saint Lawrence” as a topic entity.

In this chapter of the dissertation, we address the two limitations above by re-

placing the standard topic entity linking module with a novel topic unit generation-

and-scoring module. Our topic units include not only named entities but also other

KB units such as entities containing common nouns (e.g., “body of water”) and re-

lation types (e.g., “flow through,” “river mouth”). By flexibly considering a wide

range of topic units, we can increase the chance of the correct answer being con-

nected to one of the topic units. However, we do not want to consider too many

topic units for the subsequent relation path ranking step as this would incur high

computational costs. We therefore propose to identify topic units in two steps: a

generation step and a scoring step. First, in a topic unit generation step, we use

heuristics with low computational costs (e.g., n-gram matching with an inverted in-

dex) to identify an initial set of topic units that has a high coverage. Subsequently,

in a topic unit scoring step, we use a neural network-based scoring function to rank

the initial topic units and select a small number of them that are highly relevant to

the question. We then only consider relation paths derived from this small set of

topic units. Our method is trained in an end-to-end manner using reinforcement

learning such that the ranking function in the topic unit scoring step can be learned

without knowing the ground truth topic units.

We evaluate our method on three benchmark datasets: WebQuestionsSP, Com-

plexWebQuestions and SimpleQuestions. We find that our method can clearly out-

perform the state of the art on two datasets, especially on ComplexWebQuestions

where the improvement is substantial. It also performs competitively on the third

dataset. Further analyses also show that considering a wide range of topic units is

crucial to the performance improvement.

53

4.2 Method

4.2.1 Task Setup

We first formally define the KBQA task. A KB (knowledge base) consists of a set of

entities E (e.g., Morgan Freeman), a set of relation types1 R (e.g., place of birth) and

a set of relation triplets (h,r,t) (e.g., (Morgan Freeman,place of birth,Memphis),

where h2E is the head entity, t2E is the tail entity, and r2R is a directed relation

between h and t. The triplets (h,r,t) are facts or knowledge contained in the KB.

A KB can also be seen as a knowledge graph whose nodes are the entities and

edges are the relations. We assume that each entity or relation type has a textual

description, which is a sequence of words.

We define KB units (denoted as U) to be the union of the entities and the relation

types, i.e., U=E[R. Given a question q, the task of KBQA (knowledge base ques-

tion answering) is to find a set of entities in E that are answers to q. It is assumed

that a set of questions together with their correct answers in the KB is given for

training.

4.2.2 Method Overview

Q: What body of water does St Lawrence flow into ?

• Saint Lawrence
• river mouth
• body of water
• Saint Lawrence
River

……

Atlantic
Ocean

Topic Unit
Generation

KB initial topic units ഥ𝑈𝑞 ranked topic units 𝑈𝑞 candidate relation paths 𝐶𝑞

Topic Unit
Scoring

• Saint Lawrence
River

• river mouth
• body of water

•

•

•

……

Saint
Lawrence River

Atlantic
Ocean

river mouth

Saint
Lawrence River Canada

flow through

Niger River Atlantic
Ocean

river mouth

Candidate Relation Path
Identification

Relation Path Ranking

answer

Figure 4.2: An overview of the various steps of our method.

Like many existing methods for KBQA, our method follows the general ap-

proach of first linking the words in the question to some parts of the KB as starting

points for search and then following the edges of the knowledge graph to look for
1Since sometimes relations may refer to relation triplets, to avoid confusion, here we use the term

relation type.

54

answer entities whose relation path best matches the question. Different from previ-

ous methods, instead of confining the first linking step to only named entities in the

question, we consider a wider range of KB units to be linked to the question. We

also propose a generation-and-scoring strategy such that we can gradually refine the

linked KB units.

Specifically, we divide our method into the following three steps: (1) Topic

unit generation. In this step, our goal is to identify all KB units that are likely

mentioned in the question. We want to achieve high coverage without incurring any

heavy computation. So in this step we rely mostly on existing entity linking tools as

well as string matching, pre-computed corpus statistics and pre-constructed inverted

index. The output of this step is an initial set of topic units for a given question. (2)

Topic unit scoring. In this second step, we want to refine the topic units obtained

in the first step by selecting the top ones based on a sophisticated ranking function

learned from the training data. The output of this step is a much smaller subset of

the initial topic units. (3) Relation path ranking. Given the topic units selected in

the previous step, we can derive a set of relation paths where each path starts from

a topic unit and contains one or multiple hops of relations. We then use a neural

network-based scoring function to rank these relation paths. Finally, we pick the

entities connected to the top-ranked relation path as the answers to the question.

Our main contributions lie in the first two steps. We regard the third step as

a standard procedure to complete the entire KBQA system. The three steps are

illustrated in Figure 4.2. In the rest of this section we present the details of each

step and describe how we use reinforcement learning to train the entire method in

an end-to-end manner.

4.2.3 Topic Unit Generation

The goal of topic unit generation is to identify all KB units that are possibly men-

tioned in the question. For named entities appearing in the question, we rely on

55

existing entity linking tools to recognize and link them. Here we mainly describe

how we identify other KB units possibly mentioned in the question.

A straightforward solution would be to identify those KB units whose textual

descriptions contain one of the words in the question. However, exact word match-

ing is too restrictive. Here we use two strategies to relax the matching conditions.

One is to allow character-level n-gram matching. Another is to expand the question

with additional words that are highly related to some original question words.

Specifically, we do the following to identify topic units that are not named enti-

ties:

1. We build an inverted index to map each unique character n-gram (where n>

4) and each unique word found in the descriptions of all KB units to the

corresponding KB units. This allows us to quickly link a character n-gram or

a word found in a question to the KB units contain it.

2. Next, we link the question to some highly correlated words based on statistics

obtained from the training data. E.g., the word “flow” appearing in the ques-

tion in Figure 4.2 could be linked to the word “river” in a relation path, which

would help us link “flow” from a question to relation types such as “river

mouth” in the KB. To achieve this, for those training questions whose topic

entities can be identified by existing entity linking tools, we find the relation

paths between the topic entities and the ground truth answer entities. We thus

obtain a set of (question, relation path) pairs. We then compute the pointwise

mutual information (PMI) between each pair of a question word and a relation

path word. Note that although the relation paths used here are not always cor-

rect, most of them are still relevant to the question, and therefore the mutual

information computed can still indicate strongly correlated words.

3. Given a question q, we first use an entity linking tool to identify named entities

in q. Then we remove the linked named entities and stop words in q. For

the remaining question words, we use the pre-computed PMI values to find

56

other words highly correlated with one of the question words (using a PMI

threshold of 1) and add these additional words to the question.

4. Finally, we find those KB units linked to all the character n-grams and the

words inside the expanded question, based on the inverted index built earlier.

This is our initial set of topic units for question q, which we denote with Ūq.

4.2.4 Topic Unit Scoring

The topic unit generating step aims to increase coverage but usually returns a large

set of topic units. In the topic unit scoring step, we use a scoring function to derive

a distribution over the topic units identified from the previous step with respect to

the question.

The probability function is based on a standard linear feed-forward neural net-

work as follows:

s(u,q)=w|
1fu+b1, (4.1)

p(u|q)= exp(s(u,q))P
u02Ūq

exp(s(u0,q))
, (4.2)

where u2Ūq, fu is a feature vector associated with u, and w1 and b1 are parameters

to be learned.

The feature vector fu is the concatenation of four vectors:

fu=f semantic
u �f character

u �f category
u �f link

u . (4.3)

• f semantic
u is the output of a neural network-based sequence matching model [64]

that measures the semantic relatedness between the topic unit u and the ques-

tion q. Here the topic unit u is a represented by the embedding vectors of

the words in the textual description of u, denoted as (u1,u2,...,u|u|), and

q is also represented by the embedding vectors of its sequence of words,

57

(q1,q2,...,q|q|). The sequence matching model first uses the attention mech-

anism to obtain attention weights aij as follows:

↵ij=w|
2(qi�uj�(qi�uj)), (4.4)

aij=
exp(↵ij)P|q|
k=1exp(↵kj)

. (4.5)

Then for each word uj in the topic unit u, we obtain an attention-weighted

version of the question as follows:

q̃j=
|q|X

i=1

aijqi. (4.6)

Finally, we match each unit word uj with its corresponding question repre-

sentation q̃j , and aggregate the matching results to obtain the vector f semantic
u :

f semantic
u =w|

3

|u|X

j=1

(q̃j�uj). (4.7)

Essentially f semantic
u is a 1-dimensional vector that encodes the knowledge

about how well unit u matches question q using the attention-based sequence

matching model. Here w2 and w3 are parameters to be learned.

• f character
u is a 1-dimensional vector that measures the percentage of characters

in u that are also found in q.

• f
category
u is a 3-dimensional one-hot vector indicating the category of the topic

unit u, i.e., whether it is a named entity recognized by the entity linking tool,

an entity that is a common noun, or a relation type.

• f
link
u is a 1-dimensional vector, which contains the entity linking score returned

by the entity linking tool if u is a named entity and 0 otherwise.

Based on Eqn. (4.2), we can rank the topic units in Ūq and pick the top-K to

form a new set Uq for the next step.

58

4.2.5 Relation Path Ranking

Given the set Uq, in the relation path ranking step we first identify candidate relation

paths that are connected to some u2Uq and then rank these relation paths based on

how well they match the question. Note that this step is not the focus of our work

and we omit some of the implementation details.

To identify the candidate relation paths, for each u2Uq we extract a set of re-

lation paths. If u is an entity, we take those relation paths starting from u and

containing one or two relations. If u itself is a relation type, we take all relation

paths in the KB with one or two relations where at least one of the relations is u.

When a unit u gives us more than 500 relation paths, we use character-level overlap

with the question q to rank these relation paths and take only the top 500. In the

end, we take the union of all the extracted relation paths from all u2Uq. Let us use

Cq to denote this set of candidate relation paths.

Next, we would like to obtain a distribution over the paths inside Cq. We again

use a standard linear feed-forward neural network for this:

s(c,q)=w|
4fc+b4,

p(c|q)= exp(s(c,q))P
c02Cq exp(s(c

0,q))
, (4.8)

where c2Cq, w4 and b4 are parameters to be learned, and

fc=f link
c �f semantic

c �f pattern
c �f answer

c . (4.9)

The four feature vectors are defined as follows:

• For a candidate path c, we consider all its components that are topic units

inside Uq and define f link
c to be a 1-dimensional vector containing the sum of

the probabilities of these units as computed by Eqn. (4.2).

• f semantic
c is based on a previous work on KBQA [83]. It is the output of a se-

59

quence matching model that matches the question sequence with the relation

path sequence, where the relation path sequence contains the words from the

descriptions of the components of the relation paths and a CNN network with

a max-pooling layer is used to encode each sequence into a vector before the

dot product of the two vectors is computed to measure their similarity.

• f pattern
c is also based on some existing work on KBQA [22]. It also uses the

same sequence matching model [83] to measure the similarity between the

question and a relation path, but entities in the question and the relation path

are replaced by placeholders. E.g., “where did Morgan Freeman graduate”

becomes (where, did, hei, graduate).

• Since previous work [78] has shown that contexts in the KB of candidate

answer entities are useful for KBQA, here we adopt this idea to define f answer
c .

For the relation path c, we collect those entities linked to the answer entities

that characterize them. E.g., from the answer entity “Jamie Dornan” we can

collect entities “person” and “actor,” which are linked to “Jamie Dornan” in

the KB. We call these answer contexts. We then use another CNN network to

match the question pattern with these answer contexts to derive f answer
c .

4.2.6 End-to-End Learning

The model parameters we need to learn include those used in the scoring function

at the topic unit scoring step (which we denote as ✓1) and those in the scoring func-

tion at the relation path ranking step (which we denote as ✓2). Although these are

two separate steps, we jointly learn the parameters in an end-to-end manner. (See

Algorithm 1.)

We define the overall loss function as follows. For each relation path, we treat

the set of the connected tail entities as the predicted answer. Given a training ques-

tion q and its ground truth answers, we can compute the F1 score of each relation

path c2Cq. We normalize these F1 scores over all paths and treat it as an empirical

60

Algorithm 1 Model training
1: Input: KB, training questions Q and their answers
2: Output: (✓1,✓2)
3: Initialize: (✓1,✓2) pre-trained models (see Section 4.2.7)
4: for each q2Q do

5: Identify the initial set Ūq according to Section 4.2.3
6: Sample K topic units Ûq according to p✓1(u|q)
7: Use the topic units Ûq to identify relation paths Cq
8: Rank the relation paths using p✓2(c|q) and pick the top one to extract the

answers
9: Compute the reward r(Ûq) based on the F1 score of the answers

10: Update ✓1 through the policy gradient according to Eqn. (4.11)
11: Update ✓2 through the gradient of the loss according to Eqn. (4.10)

distribution over Cq, which we denote as p̂(c|q). We use the KL-divergence between

p̂(c|q) and the predicted distribution p(c|q) from Eqn. (4.8) to measure the loss on

q, and we sum over all the training questions in our training set Q as the total loss:

L(✓1,✓2,Q)=�
X

q2Q

X

c2Cq

p̂(c|q)log p(c|q)
p̂(c|q) . (4.10)

Because at the topic unit scoring step we pick the top-K topic units, which is a

discrete choice, the loss function above is not differentiable over ✓1. We thus adopt

reinforcement learning and use policy gradient to learn ✓1 [77]. Specifically, let

r(Ûq) denote the reward of selecting a set of K topic units Ûq⇢Ūq as the final topic

units, the gradient for ✓1 is

r✓1J(✓1)=E[r(Ūq)·r✓1 logp✓1(u|q)]. (4.11)

For the reward r(Ūq), we use the final F1 score of the extracted answers when Ūq is

selected. We use the sampling method to estimate the expected reward. To update

✓2, we fix ✓1 and use the loss function shown in Eqn. (4.10).

61

Method WQSP CWQ SQ

Our FullModel 68.2 / 67.9 39.3 / 36.5 80.3

SOTA -/69.0 34.2/- 78.1
HR-BiLSTM - / - - / - 77.0
GRAFT-Net 67.8 / 62.8 - / - -

HR-BiLSTM† 62.9 / 62.3 33.3 / 31.2 77.6
GRAFT-Net† 67.8 / 62.5 30.1 / 26.0 -

(a)

WQSP CWQ SQ

avg size of Ūq
FullModel 24.5 22.6 194.0
NEOnly 2.9 9.8 163.6

topic unit recall FullModel 97.3% 83.1% 97.8%
NEOnly 93.3% 78.4% 96.7%

answer recall FullModel 93.4% 52.0% 97.7%
NEOnly 89.5% 48.0% 96.6%

(b)

Feature WQSP

all features 67.9
without f semantic 61.5 (-6.4)
without f character 65.9 (-2.0)
without f category 66.1 (-1.8)
without f link 64.9 (-3.0)

(c)

Table 4.1: (a) Comparison with existing methods. The top section shows the per-
formance of our full model. The middle section shows previously reported perfor-
mance. The last section shows the performance of two existing methods reimple-
mented by us. (b) Coverage of Ūq. (c) F1 scores on WQSP when different feature
configurations are used in Eqn. (4.2).

4.2.7 Implementation Details

We use S-MART [81] as our entity linking tool. We leverage 300-dimensional

GloVe [57] word embeddings at the topic unit scoring step and the relation path

ranking step. We use Adam optimizer with an initial learning rate of 0.001. All

hidden vectors are 200-dimensional. All hyper-parameters are turned on the devel-

opment data. During training of reinforcement learning, to initialize ✓1, we distantly

train the model with surrogate labels of the topic units by checking whether the unit

has a relation path leading to the correct answer. To initialize ✓2, we train a baseline

using only topic entities returned by our entity linking tool. We set K to be 3.

62

Method WQSP CWQ SQ

FullModel 68.2/67.9 39.3/36.5 80.3

NEOnly 64.8/64.0 38.4/34.0 78.2
BL 63.6/62.8 36.3/33.8 77.9

Table 4.2: The main experiment results. The metrics used are the commonly-used
ones for each dataset. For WQSP and CWQ the metrics are hits@1/F1. For SQ the
metrics are accuracy.

4.3 Experiments

4.3.1 Datasets

We evaluate our KBQA method on three benchmark datasets.

WebQuestionsSP (WQSP): This is a dataset that has been widely used for

KBQA [85]. It contains 2848 training questions, 250 development questions and

1639 test questions. ComplexWebQuestions (CWQ): This dataset was introduced

by Alon Talmor et al. [69] with the intention to create more complex questions from

the WebQuestionsSQ dataset. Questions in this dataset often involve relation paths

with more than one relations. CWQ contains 27K, 3K and 3K questions for train-

ing, development and test, respectively. SimpleQuestions (SQ): This is another

popularly used KBQA dataset, introduced by Antonie Bordes et al. [11]. Questions

in this dataset can be answered by single-hop relation paths. SQ contains 76K, 11K

and 21K for training, development and test, respectively.

For WQSP and CWQ, the knowledge base used is the entire Freebase. For SQ,

the knowledge base used is a subset of Freebase that comes with the SQ dataset,

which is called “FB2M.” To measure the performance, we follow the standard eval-

uation metric for each dataset. We use hits@1 and F1 scores for WQSP and CWQ,

and accuracy for SQ2.

63

4.3.2 Main Results

First, we would like to check whether our ideas to consider a wide range of KB

units for topic unit linking and to use the generation-and-scoring strategy work. We

use ablation experiments to do the comparison. In Table 4.2, FullModel refers to

our full model that first links a question to a wide range of KB units and then uses

the topic unit scoring function to select a small set of topic units for the subsequent

relation path ranking. NEOnly refers to a degenerate version of the full model

where during the topic unit generation step we only consider named entities, i.e.,

we only use the topic entities returned by the entity linking tool. However, the

topic unit scoring step is still retained and trained using reinforcement learning. BL

refers to a baseline version of our method where only named entities are considered

as topic units (same as in NEOnly) and there is no scoring and selection of these

topic entities.

From Table 4.2 we have the following findings: (1) FullModel consistently

works better than NEOnly on all three datasets, verifying the effectiveness of in-

cluding a wide range of KB units as topic units in the topic unit generation step.

Note that since both FullModel and NEOnly have the topic unit scoring step, their

performance difference is not due to the neural network-based ranking function.

(2) NEOnly consistently works better than BL on all three datasets, showing that

even with only named entities as topic units, it is still beneficial to use the neural

network-based ranking function to select the top topic units for the subsequent re-

lation path ranking. (3) The improvement of NEOnly over BL is not as large as the

improvement of FullModel over NEOnly, suggesting that the idea of using a wide

range of KB units for topic unit linking is more important.
2For hits@1, we used the official evaluation script at https://www.tau-nlp.org/

compwebq. For F1, we retrieved the ground truth via SPARQL queries and measured by ourselves.

64

https://www.tau-nlp.org/compwebq
https://www.tau-nlp.org/compwebq

4.3.3 Comparison with Existing Methods

Next, we compare our method with the state-of-the-art (SOTA) performance on each

of the three datasets. NSM [42], SPLITQA [69] and BiLSTM-CRF [58] achieve the

state of the art on WQSP, CWQ and SQ, respectively. We show their originally

reported results in Table 4.1a. Besides, we also consider two recent methods that

have been shown to generally work well for KBQA: HR-BiLSTM [88] and GRAFT-

Net [68]. We reimplemented these two methods and report both our results and the

originally reported results of these two methods.

From Table 4.1a we can see the following: (1) Our full model outperforms the

previous state of the art on CWQ and SQ. On WQSP, in terms of hits@1, our model

also achieves the state of the art, while in terms of F1, our model still performs

competitively although not as good as NSM. (2) Previous state-of-the-art methods

NSM, SPLITQA and BiLSTM-CRF were each tested on a single dataset. It is un-

clear whether they could perform consistently well on different datasets. Our full

model is shown to consistently work well on three datasets.

4.3.4 Further Analyses

Coverage of Ūq. We would like to check if the initial set of topic units Ūq as

returned by our method indeed has a higher coverage than traditional entity linking.

We therefore compare FullModel and NEOnly in three aspects. We first look at the

average size of Ūq. We then look at topic unit recall of Ūq. This is defined as the

percentage of questions for which Ūq contains at least one of the KB units found in

the ground truth relation paths (which are provided in the datasets but not used for

training in our method). We also look at answer recall of Ūq, which is defined as the

percentage of questions for which one of the relation paths derived from Ūq leads

to the correct answer. We show the numbers in Table 4.1b. We can see that indeed

FullModel gives a larger size of Ūq in general and can increase the topic unit recall

and answer recall.

65

(a) (b)

Figure 4.3: Performance on WQSP test in terms of avg size of Ūq (in blue) and
topic unit recall (in green) when (a) n-gram threshold ranges from 0 to 30 and PMI
threshold is 1. (b) n-gram threshold is 4 and PMI threshold ranges from -2 to 30.

Configurations of Topic Unit Generation. In the topic unit generation step, we

defined some thresholds, namely, n-gram threshold and PMI threshold. Figure 4.3

shows that with increasing n-gram and PMI thresholds, both average size of Ūq and

topic unit recall decrease. To obtain scalable topic units without too much decrease

of topic unit recall, we set n-gram and PMI thresholds as 4 and 1, respectively.

Features for Topic Unit Scoring. Recall that in the topic unit scoring step our

scoring function uses four feature vectors. In Table 4.1c we show the performance in

terms of F1 on the WQSP dataset when we use the full model and when we remove

each of the feature vectors. We can see that if we remove any of the feature vectors,

the performance drops. In particular, the performance decreases the most when

the feature f semantic is removed, showing the importance of measuring the semantic

relevance of a topic unit to the question.

4.4 Conclusions

In this chapter of the dissertation, we propose method that uses topic units for

KBQA, which allows us to leverage more information of the questions. We show

that our method can achieve either the state of the art or competitive results on

benchmark datasets.

66

Chapter 5

Multi-hop Knowledge Base Question

Answering with an Iterative

Sequence Matching Model

5.1 Introduction

Previous work on KBQA largely focused on simple questions which can be an-

swered from a single relation connecting two entities in the KB [84, 10, 11, 60].

For example, the question “who is Sylvia Brett’s other half” can be answered

solely from the triplet (sylvia brett,spouse,charles vyner brooke) in the KB. How-

ever, questions in real applications can be more complex and require multiple hops

of relations to answer. The question shown in Figure 5.1, for example, requires a

relation path of 3 hops in the KB, i.e., (spouse!parent!place of birth), in order to

reach a correct answer. Clearly such questions are much harder to handle, because

the correct answers are multiple hops away in the KB from the entity appearing in

the question, leading to a much larger search space.

We refer to this kind of KBQA problem where the answer entities are multiple

hops away in the KB from the entities in the questions the multi-hop KBQA problem.

Recently, there have been a few attempts to tackle the multi-hop KBQA problem,

67

sylvia brett

writer
profession

spouse gender

charles vyner brooke female

united kingdom
nationaility

parent

charles anthoni johnson brooke

place of
birth

burnhamonsea

empress jito

mutnedjmet

profession

gender

tey

gender

Question: Where is Sylvia Brett's other half's parent's birthplace?

Figure 5.1: An example question and a subset of a KB that contains the answer to
the question. The topic entity from the question is “sylvia brett”. The shaded boxes
show the path of entities and relations that leads to the correct answer.

together with a few benchmark datasets released. For example, Zhang et al. [92]

proposed a variational reasoning method that recursively traverses the entities in a

KB to predict their probabilities as correct answers. Zhou et al. [94] proposed an

interpretable reasoning network for multi-hop KBQA.

Although these studies proposed novel ideas to address multi-hop KBQA and

showed promising results, they have a number of limitations. In this chapter of the

dissertation, we propose an iterative sequence matching model to address these lim-

itations and empirically show that our method can outperform the previous methods.

First, the two existing studies [92, 94] consider a large number of candidate answers

or candidate relation paths (albeit in a probabilistic way). This not only makes the

methods less efficient but also makes it harder to rank the candidates, because the

model has to learn to separate the correct answers from many competing wrong an-

swers. In contrast, we propose to iteratively grow the candidate relation paths that

will eventually lead to the candidate answers, and at each iteration we prune away

branches that are unlikely to lead to a correct answer. This allows our model to

focus on differentiating the correct answers from only those competing candidates

that are the most confusing. Our experiments show that indeed this iterative pruning

approach works better than a baseline that considers all candidates.

Second, when it comes to matching a question with a relation path that leads to

a candidate answer, Zhang et al. [92] and Zhou et al. [94] encoded both the question

68

and the candidate answer as a single embedding vector, and then the two vectors’

dot product is computed to measure their similarity. Several previous studies have

shown that this kind of sequence matching is not as effective as a match-aggregate

sequence matching framework [56, 74, 75]. In our method, we adopt a match-

aggregate framework to match the question with a candidate answer’s sequence

representation. In addition, because we iteratively grow the relation paths leading

to candidate answers, we propose a novel incremental sequence matching model to

efficiently compute the sequence matching scores without having to revisit the ear-

lier relations in a relation path. Our experiments show that indeed this incremental

sequence matching mechanism works better than standard sequence matching.

Third, the two previous studies made some strong assumptions about the prob-

lem setup. Zhang et al. [92] assumed that the number of hops needed to answer a

question is known in advance, which seriously limits the applicability of the method.

In contrast, we propose a mechanism to automatically determine the number of hops

needed. Zhou et al. [94] proposed two versions of their method, and for the bet-

ter performing version, it is assumed that the sequences of relations leading to the

correct answers are known during training time. In contrast, our method does not

require such information for training and yet we can outperform their method.

Specifically, our method consists of three modules: iterative path growth, in-

cremental sequence matching, and termination check. The three modules work to-

gether to iteratively consider relation paths of 1 hop, 2 hops, etc. and iteratively

match these paths with the question in order to rank these paths. The method auto-

matically detects when to terminate the iterations. We conduct experiments on three

recently released multi-hop KBQA datasets and find that our method performs sig-

nificantly better than existing methods. We also conduct ablation studies to analyze

the contributions of the different components of our method, and we find that both

the idea of iteratively pruning the relation paths and the idea of incrementally com-

puting the matching scores are important for our performance gain.

69

5.2 Our Method

5.2.1 Problem Definition

We assume that a knowledge base (or knowledge graph) is defined over a set of

entities E and a set of relations R. The knowledge base is a set of triplets, which we

use KB={(e,r,e0)} to represent, where e,e02E and r2R. We also assume that each

entity e2E or relation r2R has a sequence of words as its textual representation.

A question q is a sequence of words. We assume that entity detection and linking

has been done by an entity linking tool and a topic entity e02E has been identified

inside q. Our goal is to find an entity a2E that answers the question, and gener-

ally speaking, we expect that this answer a is linked to e0 in the knowledge graph

through one or more hops of relations, and these relations between e0 and a corre-

spond to what is expressed in q. For example, given the question in Figure 5.1, the

topic entity is sylvia brett. The sequence of relations between sylvia brett and the

correct answer entity burnham-on-sea is (spouse,parent,place of birth), and we can

see that these relations collectively correspond to what is expressed in the question.

For training, we assume that we have a set of (q,a) pairs but we do not know

which path of relations in the KB leads to the answer a from the topic entity e0 in q.

5.2.2 Method Overview

The general idea behind our method is to find answer entities that are linked to the

topic entity through one or more hops of relations in the knowledge graph. For

single-hop KBQA, previous methods typically exhaustively enumerate all the re-

lation paths originating from the topic entity and match them with the question in

order to find the best answer. For multi-hop KBQA, exhaustively enumerating all

relation paths would lead to too many candidates, which would not only affect ef-

ficiency but also making the candidate ranking task harder because of the many

competing wrong candidates. Our method iteratively grows the candidate paths and

70

prunes away those paths that are unlikely to lead to the correct answers at each iter-

ation. We also design a novel incremental sequence matching method to score the

candidate paths as well as to help check when to terminate the iterations.

Our method consists of three modules: (1) an iterative path growth module, (2)

an incremental sequence matching module and (3) a termination check module.

5.2.3 Iterative Path Growth

The iterative path growth module grows the candidate paths up to T hops, one hop

at each iteration. At the end of each iteration, it keeps only the top-K candidate

paths that best match the question.

Let us first define some terms and notation to facilitate the discussion.

Candidate path: Formally, given a question q, we first detect its topic entity e0. A

candidate path is the sequence of entities and relations along a path that starts from

e0 in the knowledge graph. Let us use p=(e0,r1,e1,r2,e2,...,rt,et) to represent a

candidate path with t hops of relations. Here, for all 1lt, (el�1,rl,el)2KB.

Candidate path set: We define the candidate path set after the t-th iteration to be

the set of the top-K candidate paths we keep at the end of the t-th iteration of our

method. We use P (t) to represent this candidate path set. Note that each |P (t)|=K

and each p2P (t) has t hops of relations.

Tail entity: The tail entity of a candidate path, denoted as tail(p), is the last entity

in the candidate path p.

Our iterative path growth module works as follows. In the beginning, starting

from e0, we identify all the relations linked to e0 in the knowledge graph. This gives

us the initial candidate path set P (1). Subsequently, at the t-th iteration, for each

p2P(t�1), we identify all the relations linked to tail(p) in the knowledge graph and

use them to grow p by one hop of relation. This gives us multiple new candidate

paths, each with t hops of relations. Call this set of candidate paths P̃ (t). We then

use the sequence matching module (presented in the next section) to score and rank

71

Algorithm 2 Iterative Path Growth
1: Input: KB, question q, topic entity e0, number of hops T
2: Output: P (T)

3: Initialize: P (0) {(e0)}
4: for t=1,2,...,T do

5: P̃ (t) ;
6: for each p2P (t�1)

do

7: et�1 tail(p)
8: for each (e,r,e0)2KB such that e=et�1 do

9: p
0 p�(r,e0) . sequence concatenation

10: P̃ (t) P̃ (t)[{p0}
11: score and rank elements in P̃ (t)

12: P (t) top-K elements in P̃ (t)

the paths in P̃ (t), and keep the top-K paths to form P (t).

For example, given the topic entity sylvia brett in Figure 5.1, we first construct

P (1) that contains the following candidate paths: (sylvia brett, profession, writer),

(sylvia brett, nationality, united kingdom), (sylvia brett, gender, female), (sylvia

brett, spouse, charles vyner brooke). Next, during the second iteration, we grow

each of these candidate paths to construction P̃ (2). Given the subset of the KB

shown in Figure 5.1, P̃ (2) contains the following candidate paths: (sylvia brett, pro-

fession, writer, profession�1, empress jito),1 (sylvia brett, gender, female, gender�1,

tey), (sylvia brett, gender, female, gender�1, mutnedjmet), (sylvia brett, spouse,

charles vyner brooke, parent, charles anthoni johnson brooke). But after pruning

away the less relevant branches, P (2) may contain only (sylvia brett, spouse, charles

vyner brooke, parent, charles anthoni johnson brooke).

The algorithm is formally defined in Algorithm 2.

5.2.4 Incremental Sequence Matching

The objective of the incremental sequence matching module is to assign a score to

each candidate path p such that we can rank the paths in P̃ (t). The score should

reflect how well a path p matches the question q.

Since both the question and a candidate path are sequences, normally we could
1We use a single symbol “�1” to denote the reverse of a relation.

72

employ a standard sequence matching model such as the ones commonly used in

natural language inference [56], paraphrase detection [75] and machine compre-

hension [52]. However, because our candidate paths grow iteratively, at the t-th

iteration, when we need to match a candidate path p2P̃ (t) with the question, the

prefix of p up to the (t�1)-th relation has already been matched with the question

in previous iterations. Therefore, it makes sense for us to only match the last rela-

tion of p with the question and aggregate the matching score at this iteration with

the matching scores from previous iterations. Therefore, our sequence matching

mechanism is incremental.

We first further introduce some notation to facilitate our discussion.

• To enable sequence matching, we represent question q as Q=(q1,q2,...,qm),

where qi is the embedding vector of the i-th word in q.

• For a candidate path p=(e0,r1,e1,...,rt,et), we represent it as P(t)=

(wrt,1,wrt,2,...,wrt,n), where wrt,j is the embedding vector of the j-th word

in the textual representation of rt.2 Note that here we only consider rt and ig-

nore the other relations in p because our matching mechanism is incremental,

i.e., at the current iteration, we should focus on the matching between rt and

q. Also note that we ignore the entities e1,e2,... along the path because we

do not expect these entities to be mentioned in the question. Our preliminary

experiments also confirmed that including these entities was not useful.

• For p2P̃ (t), let p(t�1) denote the prefix of p up to the (t�1)-th rela-

tion. That is, if p=(e0,r1,e1,...,rt�1,et�1,rt,et), then p(t�1) is defined as

(e0,r1,e1,...,rt�1,et�1).

We now describe the incremental sequence matching module. At the t-th itera-

tion, let p be a candidate path from P̃ (t) (the set of candidate paths that need to be

scored and ranked), and let P(t) be the representation of p. We first use a standard
2For P(1), we include the words in the textual representations of both e0 and r1.

73

ഥ𝑚(1)

𝑄
𝑃(1)

𝛾(1)

𝑠(1)

ҧ𝑧(1) ഥ𝑚(2)

𝑄
𝑃(2)

𝛾(2)

𝑠(2)

ҧ𝑧(2)

𝑤𝑟𝑡,,1

ഥ𝑚(𝑡)

𝑄
𝑃(𝑡)

𝛾(𝑡)

𝑠(𝑡)...

𝑤𝑟𝑡,,2 𝑤𝑟𝑡,,𝑛

ത𝑤𝑟𝑡,1 ത𝑤𝑟𝑡,2 ത𝑤𝑟𝑡,𝑛

𝑣1
(𝑡) 𝑣2

(𝑡) 𝑣3
(𝑡) 𝑣4

(𝑡) 𝑣𝑚
(𝑡)

𝑚1
(𝑡) 𝑚2

(𝑡) 𝑚3
(𝑡) 𝑚4

(𝑡) 𝑚𝑚
(𝑡)

ത𝑞1 ത𝑞2 ത𝑞3 ത𝑞4 ത𝑞𝑚

𝑞1 𝑞2 𝑞3 𝑞4 𝑞𝑚

...

...

ഥ𝑚(𝑡)

...

𝑄

𝑃(𝑡)

Terminate? Terminate?

ҧ𝑧(𝑡)

Terminate?

Figure 5.2: The incremental sequence matching model.

BiLSTM to process Q and obtain Q=(q1,q2,...). Essentially qi represents the i-

th word in the question together with its contextual information. We can similarly

obtain P
(t)
=(wrt,1,wrt,2,...) using BiLSTM.

Next, we compute two sets of attention weights, one normalized across Q and

the other normalized across P(t), as shown below:

ei,j=F (qi)
|
F (wrt,j), (5.1)

↵i,j=
exp(ei,j)Pn

j0=1exp(ei,j0)
, (5.2)

�i,j=
exp(ei,j)Pm
i0=1exp(ei0,j)

, (5.3)

where F (·) is a single non-linear layer with ReLU as its activation function.

Now to measure how well P(t) matches Q, for each word qi in Q, we derive an

attention-weighted sum of P(t) as follows:

74

v(t)
i =

nX

j=1

↵i,j ·wrt,j.

Intuitively, we can compare qi with v(t)
i to measure how well the i-th word in

the question is matched in the current iteration by relation rt. However, recall that

we are doing incremental matching. qi may have been previously matched with

some other words in p(t�1), and if so, it may not be so critical to match qi with rt in

the current iteration.

To capture this intuition, we borrow an idea from neural machine transla-

tion [71, 63], where it is important not to re-translate a word in the source sentence

when sequentially generating the target sentence. We define a scalar value a(t)i to re-

member how well qi has been matched in path p up to the t-th iteration. Specifically,

we set a(0)i =0. We then define

a
(t)
i =a

(t�1)
i +

nX

j=1

�i,j.

Note that �i,j is as defined above in Eqn. (5.3), based on matching the question

with rt in the t-th iteration. Intuitively,
Pn

j=1�i,j represents how well qi has been

matched by all the words in rt, as compared with other words in Q.

Now with a
(t)
i clearly defined, let us define the following matching vector:

m(t)
i =

2

664

a
(t�1)
i

qi�v
(t)
i

(qi�v
(t)
i)�(qi�v

(t)
i)

3

775, (5.4)

where � represents element-wise multiplication of two vectors. Note that using

v1�v2 and (v1�v2)�(v1�v2) to represent how well vectors v1 and v2 match

has been commonly used in previous work [75, 74]. Here we add a
(t�1)
i in the

75

matching vector in order to take previous matching results into consideration. Our

preliminary experiments also show that not including a
(t�1)
i here would markedly

affect the results.

Given the sequence (m(t)
1 ,m(t)

2 ,...,m(t)
m), we use an LSTM to process the se-

quence followed by maxpooling to derive a single vector m(t):

m(t)=Max-Pool(LSTM(m(t)
1 ,m(t)

2 ,...,m(t)
m)). (5.5)

We then use this vector to derive a matching score between Q and P(t) as follows:

�
(t)=w|m(t)+b, (5.6)

where the vector w and scalar b are parameters to be learned.

Note that although �
(t) has implicitly encoded the matching results of previ-

ous relations in p with the question through a
(t�1)
i in Eqn. (5.4), it does not tell us

whether each relation in p is critical. When we score the entire path p, we would

want to promote those paths in which each segment is highly relevant to the ques-

tion. To do so, we define the final score for p to be the product of �(t) with �
(t�1),

�
(t�2) and so on. Let s(t)(p) denote the complete matching score between candidate

path p and the question. s
(t)(p) can be recursively defined as follows: s

(0)(·)=1.

For p with t relations,

s
(t)(p)=s

(t�1)(p(t�1))·�(t)
. (5.7)

The scoring function s
(t)(·) is then used to rank the candidate paths in P̃ (t) in order

to derive P (t).

Figure 5.2 illustrates how our incremental sequence matching model works.

76

5.2.5 Termination Check

We now describe how our method determines when to terminate the iterations. In-

tuitively, if a candidate path p has matched the entire question q well, then we can

terminate the iterations. Based on the matching method described above, the vec-

tor m(t) encodes how well p matches q. To turn it into a single value to facilitate

our termination checking, we first define the following score z(p)2[0,1] for each

candidate path p at the t-th iteration:

z
(t)(p)=�(v|m(t)+c),

where the vector v and scalar c are parameters to be learned. Then we take the

maximum z among all the paths in P (t). This implicitly leverages the z
(t)(p) of the

best-matched candidate path.

z
(t)=max

p2P(t)
z
(t)(p).

During training we learn the parameters v and c for z. During prediction time,

we compare z
(t) with a threshold ⌧ to determine when to stop the iterations.

5.2.6 Loss Function

We now describe the loss function we use during training. The parameters of our

model that need to be learned include the following: the parameters of the various

LSTMs we use, the parameters of the function F (·) used in Eqn. (5.1), the param-

eters w and b in Eqn. (5.6) and v and c in Eqn. (5.7). We train these parameters in

an end-to-end fashion.

For the loss function, we consider two factors. First, we would like the candidate

path that leads to the correct answer entity or entities to be ranked higher than the

77

other paths in the candidate path set. Second, we want the value z
(t) to be close to

1 if we should terminate at the t-hop and close to 0 if we still need to continue to

grow the paths.

Specifically, consider the candidate path set P (t). For each p2P(t), by compar-

ing the tail entity (or tail entities if the sequence of relations in p leads to more than

one tail entities) with the ground truth answer entity or entities, we can calculate the

F1 score of this path p. We then normalize these scores using the following formula:

ĝ(p)=
F1(p)P

p02P(t) F1(p0)
.

We can think of ĝ(p) as the empirical probability for us to choose p among all

candidate paths in P (t).

On the other hand, we derive the probability for p from our model:

g(p)=
exp(s(t)(p))P

p02P(t) exp(s(t)(p0))
,

where s
(t)(·) is as defined in Eqn. (5.7).

We use the KL-divergence between ĝ(·) and g(·) as the first part of our loss

function:

L1=
X

p2P(t)

g(p)ln
g(p)

ĝ(p)
.

A second goal of our loss function is to help termination check. Based on the

ground truth answers, if at iteration t one of the candidate paths in P (t) can give a

F1 score of 1, then we consider t to be the last iteration. We also cap the number

of iterations at a constant T . So if t reaches T before we see any F1 score of 1, we

also consider this to be the last iteration. Let t̂ represent the ground truth number of

78

iterations. We can then define the second part of our loss function as follows:

L2=�

0

@log(z(t̂))+
t̂�1X

t=1

log(1�z(t))

1

A.

Our final loss funtion is

L=L1+L2.

5.3 Experiments

5.3.1 Data Sets

To evaluate the method we have proposed, we conduct experiments using three

recently released datasets designed for multi-hop KBQA.

MetaQA PathQuestion WC2014
#Train 100k 5688 6416
#Dev 50k 722 758
#Test 10k 696 780
#Pattern 47 128 12
#Entities 40k 2256 1127
#Relations 18 26 12
#Triplets 134k 4050 3977
% 1-hop 25.3 0 80.5
% 2-hop 38.0 25.4 19.5
% 3-hop 36.7 75.6 0

Table 5.1: Some statistics of the three datasets. The first section shows the number
of the questions in different splits and the question patterns. The second section
shows the number of the entities, relations and triplets in the associated KB. The
third section shows the percentage of the different hop questions.

MetaQA (MoviE Text Audio QA): This dataset was introduced by Zhang et al.

[92].3 It contains more than 400K questions in the movie domain which require

either 1-hop, 2-hop or 3-hop reasoning. While the original dataset separates ques-
3https://github.com/yuyuz/MetaQA

79

https://github.com/yuyuz/MetaQA

tions of different hops, we mix all questions together for our evaluation. We take

the vanilla text version of the dataset.

PathQuestion: This dataset was used in [94].4 The questions were created by

first identifying the relation paths between pairs of entities in a KB followed by

generating natural language questions based on these paths using templates. Some

further post-processing was done to vary the questions to make them more real. We

mix the 2-hop and 3-hop questions in PathQuestions for our evaluation.

WC2014 (WorldCup2014): This dataset was created by Zhang et al. [91].5 It

contains a mixture of 1-hop and 2-hop questions related to 2014 World Cup.

Some statistics of the datasets are shown in Table 5.1.

In all the original KBs, relation triplets are directional. To simplify our path

growth module, we add new edges to the KBs by reversing the direction of each

triplet and adding the suffix INV to the relation description. For example, from

(sylvia brett,profession,writer), we create (writer,profession INV,sylvia brett) and

add it the the KB.

5.3.2 Experiment Setup

Although the three datasets already have topic entities annotated, here for fair com-

parison we perform our own entity linking based on simple string matching. Due

to the simple pattern of the question, we have achieved near-perfect entity linking

accuracy on the three datasets. We do not provide more details here because entity

linking is not the focus of this chapter.

It is worth noting that when we train on the PathQuestion dataset, since there

are many 3-hop questions where the answer entity is also directly connected to

the topic entity in the KB but the relation between them is not relevant to the

question, our method would mistakenly treat these 1-hop connections as cor-

rect candidate paths. For example, “The place of birth of parent of Henri Vic-
4https://github.com/zmtkeke/IRN
5https://github.com/zmtkeke/IRN

80

https://github.com/zmtkeke/IRN
https://github.com/zmtkeke/IRN

tor Regnault’s offspring”, the golden relation path “Henri Victor Regnault children����!

Henri Regnault parent���!Henri Victor Regnault place of birth������!Aachen” and fake golden re-

lation path “Henri Victor Regnault place of birth������!Aachen” both give us correct answers,

if we follow the same criteria to supervise our model, the fake relation path cheat

the model to obtain an early stop signal. Such scenarios happen a lot in PathQues-

tion dataset. To avoid this problem, for PathQuestion, we also make use of the

ground truth hop numbers to supervise our model. Note that even with this setting

on PathQuestion, we are not using any more information for training than previous

methods by Zhang et al. [92] and by Zhou et al. [94],

We use the Adagrad optimizer [24] with an initial learning rate of 0.01. We

use 300 as the dimension of all word embedding vectors. Word embeddings

are initialized via GloVe [57]. All hyper-parameters are tuned on the develop-

ment data. All hidden dimensions in the model are set to 200 after tuning it

among {100,150,200,250}. The dropout ratio is set to 0 after tuning it among

{0,0.1,0.2,0.3,0.4}. For our iterative sequence matching method, the threshold ⌧ is

set to 0.5 after tuning it among {0.3,0.5,0.8}. Finally, we set T=3 and K=3.

We use accuracy of the top-1 predicted answer entity as our evaluation metric,

where a predicted answer is considered correct if it is one of the ground truth an-

swers. This metric is the same as the one used by Zhou et al. [94] and essentially

the same as % hits@1 used by Zhang et al. [92]. Note that in the case when our top-

ranked candidate path in the last iteration leads to more than one answer entities,

we randomly pick one of these answer entity as the top-1 predicted answer entity.

5.3.3 Main Results

We first show the comparison of the following methods on the three datasets:

VRN: This is the Variational Reasoning Network method proposed by Zhang et al.

[92]. Since their code is not publicly available, we take their reported performance

on MetaQA. Note however that their method assumes that the correct number of

81

MetaQA PathQuestion WC2014
VRN 59.6/- -/- -/-
IRN 21.8/9.2 89.8/82.9 92.6/70.5
MemNN 12.0/6.4 87.1/55.6 90.7/46.6
KVMemNN 16.6/6.5 88.0/56.3 90.5/47.1
Ours 98.6/98.1* 96.7/96.0* 99.9/99.9*

Table 5.2: %Hits@1/F1 scores of various methods on the three datasets. Note that
for VRN, we took the reported performance in [92], and we do not have its perfor-
mance on the other datasets. ⇤ indicates that the result is statistically significantly
better than the best baseline for that dataset at 0.05 significance value based on
McNemar test.

hops to answer a question is known, which we do not assume we have except for

PathQuestion.

IRN: This is the Interpretable Reasoning Network proposed by Zhou et al. [94].

When re-implementing the IRN method, we realized that this method does not re-

strict the relation paths to only those that are connected to the topic entities. We

therefore implemented an improved version of IRN by imposing such a constraint.

MemNN: This is the Memory Network method proposed by Weston et al. [76]

for KBQA. Following work [11], the memory contains all relevant triplets of topic

entities. In our implementation, we include triplets up to 3 hops away from the topic

entities in the memory.

KVMemNN: This is the Key-Value Memory Network method [50]. It improves

MemNN by splitting memory into two parts: key and value. The key stores the

subject entity and relation, and the value stores the object entity. When we train this

model and MemNN, we set hop number as 3.

Ours: This is our overall method that iteratively searches the space of candidate

paths while pruning away branches with low scores. It also uses our incremental se-

quence matching to score the candidate paths and our termination check mechanism

to determine when to stop the iterations.

Table 5.2 shows the comparison between these methods on the three datasets.

From the results, we can observe the following: (1) First of all, our method clearly

82

1-hop 2-hop 3-hop
VRN 82.0 75.6 38.3
IRN 14.6 10.7 38.2
MemNN 7.0 11.3 16.0
KVMemNN 6.2 12.6 27.9
Ours 96.3 99.1 99.6

Table 5.3: %Hits@1 performance on different questions in MetaQA.

outperforms all the baseline methods on all three datasets consistently 6. This

demonstrates the effectiveness of our method. (2) Our method in general achieves

very high accuracy values on all datasets. This is probably because these datasets

were to a large extent generated from templates. Using a neural network model with

enough complexity and sufficient training data, it is possible for the model to capture

the patterns of these templates. (3) We can see that IRN, MemNN and KVMemNN

perform poorly on MetaQA although they can perform well on PathQuestion and

WC2014. We think there are a few reasons for this. First, the MetaQA dataset has

a much larger KB (see Table 5.1) and thus a larger search space. This shows that

these methods cannot easily scale with large KB. Second, both the PathQuestion

and WC2014 datasets have a large bias to questions with certain hop number (see

Table 5.1) while we sample questions of MetaQA evenly. This shows instead of

memorizing the major hop number, our method could detect the hop number accu-

rately. Figure 5.3a verifies that our termination check mechanism performs well on

these datasets even with a shrunken searching space.

Next, we show the %hits@1 of these different methods on MetaQA when we

group questions by the number of hops needed. The results are shown in Table 5.3.

We can see that for VRN, the performance is high on 1-hop questions and gradually

drops for 2-hop and 3-hop questions. This is reasonable as longer questions are

generally harder to answer. For IRN, MemNN and KVMemNN, their performance

increases as the number of hops increases. This is because these methods cannot

automatically detect the correct number of hops needed, and in our implementation
6We acknowledged that the currently published paper [18] could achieve even better results.

Since their paper has not been published at that moment, we didn’t compare the results with them.

83

(a) (b) (c)

Figure 5.3: (a) Hop number accuracy on three datasets of IRN and Ours methods.
(b) Epoch and %hits@1 on test set of MetaQA dataset with thresholds ⌧=0.2, ⌧=
0.5, ⌧=0.8 respectively. (c) Epoch and %hits@1 on test set of MetaQA dataset with
beam sizes K=1, K=3, K=5 respectively.

MetaQA PathQuestion WC2014
ES-Siamese 95.7/93.7 89.2/88.8 94.9/90.1
ES-MatchAgg 97.0/96.3 91.5/90.9 96.3/92.1
IS-Prune 97.5/96.5* 92.7/91.8 99.7/99.7*
Ours 98.6/98.1* 96.7/96.0* 99.9/99.9*

Table 5.4: Ablation experiment results. ⇤ indicates that the result is statistically sig-
nificantly better than ES-MatchAgg at 0.05 significance value based on McNemar
test.

we force them to always take T=3 hops. Therefore, they end up performing better

for 3-hop questions. In contrast, our method automatically detects when to stop the

iterations and thus performs consistently well for 1-hop, 2-hop and 3-hop questions.

5.3.4 Ablation Studies

Next, we conduct some ablation studies to test whether each component of our

method is necessary. Specifically, we compare with the following variants of our

method:

ES-Siamese: This is a basic method that exhaustively searches all candidate paths

up to T hops for the best answer entity, i.e., there is no pruning as in our method.

When ranking the different paths, a traditional Siamese architecture is used where

both the question and the candidate path are each separately encoded into a single

vector before the two vectors are matched.

84

ES-MatchAgg: This method also performs the exhaustive search as ES-Siamese

but uses a match-aggregate framework for sequence matching.

Is-Prune: This method uses our iterative path growth mechanism together with

the path pruning mechanism. However, it does not use the incremental sequence

matching model. Instead, it uses a standard match-aggregate matching method as

in ES-MatchAgg. The purpose of this baseline is to measure the effect of pruning.

Table 5.4 shows the ablation experiment results. We can observe the following.

(1) ES-MatchAgg is better than ES-Siamese, which shows that match-aggregate

sequence matching is useful for our problem. (2) IS-Prune is better than ES-

MatchAgg. It is worth noting that pruning is not only to reduce the search space

but also to improve the model by restricting the negative candidate paths within the

ones that are very similar to the correct candidate paths and the most confusing in-

correct answers. Thus our iterative and pruning-based path growth mechanism has

the benefit of training a more accurate matching function. (3) Our overall method is

better than IS-Prune, showing that the incremental sequence matching mechanism

is also effective. It’s worth noting that even ES-Siamese baseline could outperform

the IRN, MemNN and KVMemNN a lot. We suspect the main reason is that above

comparable methods simply represent the question as the unordered bag-of-words

and represent the relation or entity by a single embedding without any pre-training.

Such methods are not strong enough to select the best-matched relation paths from

a large scale of candidates while ES-Siamese baseline can do it using the word-level

embedding and expressive encoding method.

5.3.5 Effect of Threshold and Beam Size

Threshold ⌧ and beam size K are two important hyper-parameters in our method.

To see how they influence the results, we draw the line plot figures. These figures

display the changes of %hits@1 with the increase of training epochs regarding dif-

ferent ⌧ or K. Figure 5.3b displays the effect of the threshold. In Eqn. (5.6), �(t) is a

85

(a) (b) (c)

Figure 5.4: Visualization of expanded versions of (a) m(1), (b) m(2), (c) m(3) re-
spectively for example question “What is the place of birth of Elena of Greece and
Denmark’s mom’s heir?”. The darker color indicates the larger value.

Sampled Sentence Relation Path
hop 2: What is the nationality of father of Catherine Dolgorukov's spouse catherine dolgorukov spouse

> parent > nationalityhop 3: What is the nationality of father of Catherine Dolgorukov's spouse

What is the nationality of father of Catherine Dolgorukov's spouse

What is the nationality of father of Catherine Dolgorukov's spouse

Question Path

catherine dolgorukov

spouse

parent

Hop 1

Hop 2

Figure 5.5: Visualization of a(1) and a(2) for an example sentence after matching
with relation catherine dolgorukov spouse and parent respectively.

indicator which measures how much information of question is already matched by

candidate sequences at the t-th iteration, when �
(t) is larger than a threshold ⌧ , we

terminate the iteration and extract the answer. So when ⌧=0.2, it’s easier to stop the

iteration and its performance is relatively good at the beginning, but it falls behind

with the increase of training epochs. when ⌧=0.8, it’s harder to stop the iteration

at the start of training. Among these three values of threshold, 0.5 achieves best

%hits@1 score at last.

In Figure 5.3c, we show the effect of the beam size K. As we can see, when

K=3, the performance increases with relatively fast speed and it achieves the best

accuracy at last. However, when K=1, the accuracy improves relatively slowly and

it’s more likely to trap into a local optimum. But increasing K means that we need

to sacrifice efficiency, and larger K doesn’t always provide better accuracy (See

K=5). So this is a trade off for us to choose a proper K. In our experiment, we

select K as 3.

86

5.3.6 Visualization

We visualize parts of the incremental matching model to understand its working

mechanism.

In Eqn. (5.5), the matched sequence is processed by a LSTM. After that, the

most important words are maintained and the other words are filtered by the max-

pooling function. In Figure 5.4, we first draw the heatmaps of the output of LSTM.

For the position whose value is the maximum along a dimension, we keep the value.

Otherwise, we assign 0 to it. If we squeeze the heatmap vertically, we will obtain

the exact vectors m(1), m(2) and m(3). So we denote them as expanded versions

of m(1), m(2) and m(3). Based on such figures, we could tell which sub-question

the model is handling at each iteration. Figure 5.4a displays that at the 1st iteration,

the maximum values are mostly distributed among the phrase “elena of greece and

denmark’s mom”. At the 2nd iteration, the maximum values are distributed among

“’s heir” and the 3rd iteration has maximum values around “place of birth”. This in-

dicates that for a multi-hop question, our model tries to split them to sub-questions

and solve sub-questions in the right order.

With similar intuition, we draw the Figure 5.5 to show the value of a(t)i associ-

ated with each of its words for two hops of matching. The words in the dark color

are the ones that have been matched up to that iteration. We can see that at the 1st

iteration, the phrase “catherine dolgorukov’s spouse” has been well matched. At the

2nd iteration, the phrase “father of catherine dolorukov’s spouse” has been matched.

This accumulative value indeed records how much information of the question we

have matched or answered, which could provide clue to decide the termination time.

5.3.7 Error Analysis

Even though our termination check mechanism works well in most cases, we no-

ticed that there are a few wrong stops, which may come from redundant relation

matching of the question. For example, in the PathQuestion dataset, the “husband”

87

in the question “what religious belief does Rani Mangammal’s husband have” has

been matched twice. Other errors mainly come from incorrect relation matching.

Around 74% of the errors with such mis-matching happens at the first hop for 1-hop,

2-hop or 3-hop questions, which might be due to the fact that the first hop relation

requires more complex dependency analysis of the question.

5.4 Conclusions

In this chapter of the dissertation, we proposed a novel iterative sequence matching

model for multi-hop KBQA. Our method iteratively grows candidate relation paths,

prunes away unrelated paths and also automatically detects the end of iterations,

which could make the candidate relation path ranking procedure more effective

and accurate. Our method achieved state-of-the-art performance on three multi-

hop KBQA benchmarks. We further do some analysis to demonstrate the working

mechanism of our method 7.

7We release our code at https://github.com/lanyunshi/Multi-hopQA.

88

https://github.com/lanyunshi/Multi-hopQA

Chapter 6

Future Direction

So far, we have explored multiple downstream applications of KBs. The KB is

treated as a powerful structured resource. There remain a lot of potential problems

of the KBs that the research communities could investigate in the future.

• Complex question answering over the KBs

KBQA has been studied for decades. Recently, answering complex questions

over KBs has become an emerging research problem. For example, answering

the question “Which baseball team in American League West was founded

first” need more complex inference and reasoning. Linear extension of the

graph is not enough. We need to propose more complex searching strategies

to find the answers to the complex questions. Meanwhile, controlling the

exploding candidate size of the complex question is another challenge. In the

future, we are going to focus on solving the more complex question answering

over the knowledge bases.

• Extracting commonsense information from the KBs

Our works have shown that the entailment information and entity-relation

information in the KB could be leveraged in diverse tasks. Recently, some

KBs (e.g., ConceptNet 1) with commonsense knowledge have attracted re-
1https://conceptnet.io/

89

https://conceptnet.io/

searchers’ attention. Such resources could be used in some general tasks. For

example, developing commonsense aware dialogue system; generating sto-

ries based on commonsense knowledge. Therefore, in the future, it should be

a promising direction to explore the applications of the commonsense KBs.

• Exploring Multimodal relational data in the KBs

Recently, the Multimodal KBs [59] have been introduced by some re-

searchers. Besides the numerical and textual attributes (such as ages, dates

and descriptions), the images are involved in the KBs as a special attribute.

Such image information could play a supplementary role in the KBs. At

present, the applications of the Multimodal relational data has not been stud-

ied widely. For example, the question answering based on the Multimodal

KBs could provide more enriched graphical answers when the user wants the

tourist information of a city. Or the user could use the image as part of the

questions. It could be interesting to investigate the applications of the Multi-

modal KBs.

90

Bibliography

[1] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives. Dbpedia: A
nucleus for a web of open data. In Proceedings of the International Semantic Web and
Asian Conference on Asian Semantic Web Conference, 2007.

[2] E. Balkir, D. Kartsaklis, and M. Sadrzadeh. Sentence entailment in compositional
distributional semantics. In Proceedings of Conference on International Symposium
on Artificial Intelligence and Mathematics, 2015.

[3] J. Bao, N. Duan, M. Zhou, and T. Zhao. Knowledge-based question answering as
machine translation. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics, 2014.

[4] I. Beltagy, C. Chau, G. Boleda, D. Garrette, K. Erk, and R. Mooney. Montague meets
Markov: Deep semantics with probabilistic logical form. In Proceedings of the Joint
Conference on Lexical and Computational Semantics, 2013.

[5] I. Beltagy, S. Roller, P. Cheng, K. Erk, and R. J. Mooney. Representing meaning
with a combination of logical and distributional models. Computational Linguistics,
42:763–808, 2016.

[6] J. Berant, A. Chou, R. Frostig, and P. Liang. Semantic parsing on freebase from
question-answer pairs. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, 2013.

[7] J. Berant and P. Liang. Semantic parsing via paraphrasing. In Proceedings of the
Annual Meeting of the Association for Computational Linguistics, 2014.

[8] M. B. R. Bernardi, N.-Q. Do, and C.-c. Shan. Entailment above the word level in
distributional semantics. In Proceedings of Conference of the European Chapter of
the ACL, 2012.

[9] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor. Freebase: a collabo-
ratively created graph database for structuring human knowledge. In Proceedings of
ACM SIGMOD International Conference on Management of Data, 2008.

[10] A. Bordes, S. Chopra, and J. Weston. Question answering with subgraph embeddings.
In Proceedings of the Conference on Empirical Methods in Natural Language Pro-
cessing, 2014.

[11] A. Bordes, N. Usunier, S. Chopra, and J. Weston. Large-scale simple question answer-
ing with memory networks. In arXiv preprint, 2015.

[12] A. Bordes, J. Weston, and N. Usunier. Open question answering with weak supervised
embedding models. In Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases, 2014.

91

[13] S. R. Bowman, G. Angeli, C. Potts, and C. D. Manning. A large annotated corpus
for learning natural language inference. In Proceedings of Conference on Empirical
Methods in Natural Language Processing, 2015.

[14] M. Brysbaert, A. B. Warriner, and V. Kuperman. Concreteness ratings for 40 thousand
generally known english word lemmas. 46, 2014.

[15] Q. Cai and A. Yates. Large-scale semantic parsing via schema matching and lexicon
extension. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2013.

[16] E. Cambria, D. Olsher, and D. Rajagopal. Senticnet 3: A common and common-
sense knowledge base for cognition-driven sentiment analysis. In Proceedings of the
Twenty-Eighth AAAI Conference on Artificial Intelligence, 2014.

[17] Z. Chen, W. Lin, Q. Chen, X. Chen, S. Wei, H. Jiang, and X. Zhu. Revisiting word
embedding for contrasting meaning. In Proceedings of Annual Conference of the
Association for Computational Linguistics, 2015.

[18] Z.-Y. Chen, C.-H. Chang, Y.-P. Chen, J. Nayak, and L.-W. Ku. An unrestricted-hop
relation extraction framework for knowledge-based question answering. In Proceed-
ings of the Annual Conference of the North American Chapter of the Association for
Computational Linguistics, pages 345–356, 2019.

[19] C. Corley and R. Mihalcea. Measuring the semantic similarity of texts. In Proceedings
of ACL Workshop on Empirical Modeling of Semantic Equivalence and Entailment,
2005.

[20] I. Dagan, O. Glickman, and B. Magnini. The PASCAL recognising textual entailment
challenge. Machine Learning Challenges, 3944:177–190, 2006.

[21] L. Dong, J. Mallinson, S. Reddy, and M. Lapata. Learning to paraphrase for ques-
tion answering. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing, pages 875–886, 2017.

[22] L. Dong, F. Wei, M. Zhou, and K. Xu. Question answering over freebase with multi-
column convolutional neural networks. In Proceedings of the Annual Meeting of the
Association for Computational Linguistics and the International Joint Conference of
the Asian Federation of Natural Language Processing, 2015.

[23] Z. Dong, Q. Dong, and C. Hao. Hownet and its computation of meaning. In Proceed-
ings of the 23rd International Conference on Computational Linguistics: Demonstra-
tions, 2010.

[24] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12:2121–2159,
2011.

[25] A. Fader, L. Zettlemoyer, and O. Etzioni. Open question answering over curated
and extracted knowledge bases. In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, 2014.

[26] M. Geffet and I. Dagan. The distributional inclusion hypotheses and lexical entail-
ment. In Proceedings of the Annual Conference of the Association for Computational
Linguistics, 2005.

92

[27] X. Glorot, A. Bordes, and Y. Bengio. Deep sparse rectifier neural networks. In Pro-
ceedings of International Conference on Artificial Intelligence and Statistics, 2011.

[28] E. Grefenstette. Towards a formal distributional semantics: Simulating logical cal-
culi with tensors. In Proceedings of Joint Conference on Lexical and Computational
Semantics, 2013.

[29] Y. Hao, Y. Zhang, K. Liu, S. He, Z. Liu, H. Wu, and J. Zhao. An end-to-end model
for question answering over knowledge base with cross-attention combining global
knowledge. In Proceedings of the Annual Conference of the Association for Compu-
tational Linguistics, 2017.

[30] J. Herrera, A. Penas, and F. Verdejo. Textual entailment recognition based on depen-
dency analysis and WordNet. In Proceedings of the 1st PASCAL Recognising Textual
Entailment, 2005.

[31] S. Jain. Question answering over knowledge base using factual memory networks. In
Proceedings of the Annual Conference of the North American Chapter of the Associa-
tion for Computational Linguistics, 2016.

[32] T. M. V. Janssen. Montague semantics. The Stanford Encyclopedia of Philos-
ophy. http://plato.stanford.edu/archives/win2011/entries/
montague-semantics/, 2011.

[33] W. Julie, W. David, and M. Diana. Characterising measures of lexical distributional
similarity. In Proceedings of International Conference on Computational Linguistics,
2004.

[34] L. Kotlerman, I. Dagan, I. Szpektor, and M. Zhitomirsky-Geffet. Directional distri-
butional similarity for lexcial inference. Natural Language Engineering, 16:359–389,
2010.

[35] T. Kwiatkowski, E. Choi, Y. Artzi, and L. Zettlemoyer. Scaling semantic parsers with
on-th-fly ontology matching. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2013.

[36] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami, and C. Dyer. Neural
architectures for named entity recognition. In Proceedings of Annual Conference of
the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, 2016.

[37] Y. Lan and J. Jiang. Embedding wordnet knowledge for textual entailment. In Pro-
ceedings of The 27th International Conference on Computational Linguistics, 2018.

[38] Y. Lan, S. Wang, and J. Jiang. Knowledge base question answering with a
matching-aggregation model and question-specific contextual relations. The Journal
of EEE/ACM Transactions on Audio, Speech, and Language Processing, 27:1629 –
1638, Oct. 2019.

[39] Y. Lan, S. Wang, and J. Jiang. Knowledge base question answering with topic units.
In Proceedings of The 28th International Joint Conference on Artificial Intelligence,
2019.

[40] Y. Lan, S. Wang, and J. Jiang. Multi-hop knowledge base question answering with an
iterative sequence matching model. In Proceedings of The 19th IEEE International
Conference on Data Mining, 2019.

93

http://plato.stanford.edu/archives/win2011/entries/montague-semantics/
http://plato.stanford.edu/archives/win2011/entries/montague-semantics/

[41] O. Levy, S. Remus, C. Biemann, and I. Dagan. Do supervised distributional methods
really learn lexical inference relations? In Proceedings of the Annual Conference of
the North American Chapter of the Association for Computational Linguistics, 2015.

[42] C. Liang, J. Berant, Q. Le, K. D. Forbus, and N. Lao. Neural symbolic machines:
learning semantic parsers on freebase with weak supervision. In Proceedings of the
Annual Conference of the Association for Computational Linguistics, 2017.

[43] H. Liu and P. Singh. Conceptnet — a practical commonsense reasoning tool-kit.
BT Technology Journal, 22(4):211–226, Oct. 2004.

[44] B. MacCartney and C. D. Manning. An extended model of natural logic. In Proceed-
ings of International Conference on Computational Semantics, 2009.

[45] K. Mai, T.-H. Pham, M. T. Nguyen, T. D. Nguyen, D. Bollegala, R. Sasano, and
S. Sekine. An empirical study on fine-grained named entity recognition. In Proceed-
ings of International Conference on Computational Linguistics, pages 711–722, 2018.

[46] F. Manaal, D. Jesse, K. Sujay, D. E. H. Chris, and A. Noah. Retrofitting word vectors
to semantic lexicons. In Proceedings of Conference of the North American Chapter of
the ACL, 2015.

[47] M. Marelli, S. Menini, M. Baroni, L. Bentivogli, R. Bernardi, and R. Zamparelli. A
SICK cure for the evaluation of compositional distributional semantic models. In Pro-
ceedings of International Conference on Language Resources and Evaluation, 2014.

[48] P. Martinez-Gomez, K. Mineshima, Y. Miyao, and D. Bekki. On-demand injection of
lexical knowledge for recognising textual entailment. In Proceedings of Conference
of the European Chapter of the ACL, 2017.

[49] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed represen-
tations of words and phrases and their compositionality. In Proceedings of Annual
Conference on Neural Information Processing Systems, 2013.

[50] A. H. Miller, A. Fisch, J. Dodge, and A.-H. Karimi. Key-value memory networks for
directly reading documents. In Proceedings of the Conference on Empirical Methods
in Natural Language Processing, 2016.

[51] G. A. Miller. WordNet: A lexical database for english. Communications of the ACM,
38:39–41, 1995.

[52] S. Minjoon, K. Aniruddaha, F. Ali, and H. Hananneh. Bi-directional attention flow for
machine comprehension. In Proceedings of the International Conference on Learning
Representations, 2016.

[53] T. Munkhdalai and H. Yu. Neural tree indexers for text understanding. In Proceedings
of the European Chapter of the Association for Computational Linguistics, 2017.

[54] R. Navigli and S. P. Ponzetto. Babelnet: Building a very large multilingual semantic
network. In Proceedings of the 48th Annual Meeting of the Association for Computa-
tional Linguistics, 2010.

[55] B. Ofoghi and J. Yearwood. From lexical entailment to recognizing textual entailment
using linguistic resources. In Proceedings of the Australasian Language Technology
Association Workshop, 2009.

94

[56] A. P. Parikh, O. Taskstrom, D. Das, and J. Uszkoreit. A decomposable attention model
for natural language inference. In Proceedings of Conference on Empirical Methods
in Natural Language Processing, 2016.

[57] J. Pennington, R. Socher, and C. D. Manning. GloVe: Global vectors for word repre-
sentation. In Proceedings of Conference on Empirical Methods in Natural Language
Processing, 2014.

[58] M. Petrochuk and L. Zettlemoyer. Simple questions nearly solved: a new upperbound
and baseline approach. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing, pages 554–558, 2018.

[59] P. Pezeshkpour, L. Chen, and S. Singh. Embedding multimodal relational data for
knowledge base completion. In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing, 2018.

[60] C. Ran, W. Shen, J. Wang, and X. Zhu. Domain-specific knowledge base enrichment
using wikipedia tables. In Proceedings of the IEEE International Conference on Data
Mining, pages 349–358, 2015.

[61] T. Rocktaschel, M. Bosnjak, S. Singh, and S. Riedel. Low-dimensional embeddings
of logic. In Proceedings of the ACL 2014 Workshop on Semantic Parsing, 2014.

[62] T. Rocktaschel, E. Grefenstette, K. M. Hermann, T. Kocisky, and P. Blunsom. Reason-
ing about entailment with neural attention. In Proceedings of International Conference
on Learning Representations, 2016.

[63] A. See, P. J. Liu, and C. D. Manning. Get to the point: summarization with pointer-
generator networks. In Proceedings of the Annual Meeting of Association for Compu-
tational Linguistics, 2017.

[64] M. Seo, A. Kembhavi, A. Farhadi, and H. Hajishirzi. Bidirectional attention flow for
machine comprehension. In Proceedings of International Conference on Learning
Representations, 2017.

[65] L. Sha, B. Chang, Z. Sui, and S. Li. Reading and thinking: Re-read LSTM unit for
textual entailment recognition. In Proceedings of the 26th International Conference
on Computational Linguistics, 2016.

[66] W. Shen, J. Wang, and J. Han. Entity linking with a knowledge base: Issues, tech-
niques, and solutions. IEEE Transactions on Knowledge and Data Engineering,
27(2):443–460, 2015.

[67] F. M. Suchanek, G. Kasneci, and G. Weikum. Yago: a core of semantic knowledge.
In Proceedings of the World Wide Web Conference, 2007.

[68] H. Sun, B. Dhingra, M. Zaheer, K. Mazaitis, R. Salakhutdinov, and W. W. Cohen.
Open domain question answering using early fusion of knowledge bases and text. In
Proceedings of the Conference on Empirical Methods in Natural Language Process-
ing, pages 4231–4242, 2018.

[69] A. Talmor and J. Berant. The web as a knowledge-base for answering complex ques-
tions. In Proceedings of the Annual Conference of the North American Chapter of the
Association for Computational Linguistics, pages 641–651, 2018.

95

[70] Y. Tay, L. A. Tuan, and S. C. Hui. A compare-propagate architecture with aligment
factorization for natural language inference. In arXiv:1801.00102, 2018.

[71] Z. Tu, Z. Lu, Y. Liu, X. Liu, and H. Li. Modeling coverage for neural machine trans-
lation. In Proceedings of the Annual Meeting of Association for Computational Lin-
guistics, 2016.

[72] C. Unger, L. Bühmann, J. Lehmann, A.-C. N. Ngomo, D. Gerber, and P. Cimiano.
Template-based question answering over rdf data. In Proceedings of the World Wide
Web Conference, 2012.

[73] S. Wang and J. Jiang. Learning natural language inference with LSTM. In Proceed-
ings of the Annual Conference of the North American Chapter of the Association for
Computational Linguistics, 2016.

[74] S. Wang and J. Jiang. A compare-aggregate model for matching text sequences. In
Proceedings of International Conference on Learning Representations, 2017.

[75] Z. Wang, W. Hamza, and R. Florian. Bilateral multi-perspective matching for natural
language sentences. In Proceedings of the International Joint Conference on Artificial
Intelligence, pages 4144–4150, 2017.

[76] J. Weston, S. Chopra, and A. Bordes. Memory networks. In Proceedings of the
International Conference on Learning Representations, 2015.

[77] R. J. Williams. Simple statistical gradient following algorithms for connectionist re-
inforcement learning. Machine Learning, pages 8:229–256, 1992.

[78] K. Xu, S. Reddy, Y. Feng, S. Huang, and D. Zhao. Question answering on freebase
via relation extraction and textual evidence. In Proceedings of the Annual Conference
of the Association for Computational Linguistics, 2016.

[79] K. Xu, S. Zhang, F. Yansong, and D. Zhao. Answering natural language questions
via phrasal semantic parsing. In Proceedings of the Natural Language Processing and
Chinese Computing, 2014.

[80] M.-C. Yang, N. Duan, M. Zhou, and H.-C. Rim. Joint relational embeddings for
knowledge-based question answering. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, 2014.

[81] Y. Yang and M.-W. Chang. S-mart: Novel tree-based structured learning algorithms
applied to tweet entity linking. In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the 7th International Joint Conference
on Natural Language Processing, pages 504–513, 2015.

[82] X. Yao and B. V. Durme. Information extraction over structured data: Question an-
swering with freebase. In Proceedings of the the Annual Meeting of the Association
for Computational Linguistics, 2014.

[83] W.-t. Yih, M.-W. Chang, X. He, and J. Gao. Semantic parsing via staged query graph
generation: question answering with knowledge base. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics and the International Joint
Conference of the Asian Federation of Natural Language Processing, 2015.

96

[84] W.-t. Yih, X. He, and C. Meek. Semantic parsing for single-relation question an-
swering. In Proceedings of the Annual Meeting of the Association for Computational
Linguistics, 2014.

[85] W.-t. Yih, M. Richardson, C. Meek, M.-W. Chang, and J. Suh. The value of semantic
parse labeling for knowledge base question answering. In Proceedings of ACL, pages
201–206, 2016.

[86] P. Yin, N. Duan, B. Kao, J. Bao, and M. Zhou. Answering questions with complex se-
mantic constraints on open knowledge bases. In Proceedings of the ACM International
Conference on Information and Knowledge Management, 2015.

[87] W. Yin, M. Yu, B. Xiang, B. Zhou, and H. Schütze. Simple question answering by at-
tentive convolutional neural network. In Proceedings of the International Conference
on Computational Linguistics, 2016.

[88] M. Yu, W. Yin, K. S. Hasan, C. d. Santos, B. Xiang, and B. Zhou. Improved neural re-
lation detection for knowledge base question answering. In Proceedings of the Annual
Meeting of the Association for Computational Linguistics, 2017.

[89] Y. Yu, K. S. Hasan, M. Yu, W. Zhang, and Z. Wang. Knowledge base relation detection
via multi-view matching. In arXiv, 2018.

[90] L. Zettlemoyer and M. Collins. Learning context-dependent mappings from sentences
to logic form. In Proceedings of Joint conference of the Annual Meeting of the Associ-
ation for Computational Linguistics and the International Joint Conference on Natural
Language Processing of the Asian Federation of Natural Language Processing, 2009.

[91] L. Zhang, J. Winn, and T. Ryota. Gaussian attention model and its application to
knowledge base embedding and question answering. In arXiv, 2016.

[92] Y. Zhang, H. Dai, Z. Kozareva, A. J. Smola, and L. Song. Variational reasoning
for question answering with knowledge graph. In Proceedings of the Conference on
Artificial Intelligence, 2017.

[93] Y. Zhang, S. He, K. Liu, and J. Zhao. A join model for question answering over mul-
tiple knowledge bases. In Proceedings of AAAI Conference on Artificial Intelligence,
2016.

[94] M. Zhou, M. Huang, and X. Zhu. An interpretable reasoning network for multi-
relation question answering. In Proceedings of the International Conference on Com-
putational Linguistics, 2018.

97

	Using knowledge bases for question answering
	Citation

	1 Introduction
	1.1 Using WordNet for Textual Entailment
	1.2 Question Answering from Knowledge Bases
	1.3 Dissertation Structure

	I
	2 Embedding WordNet Knowledge for Textual Entailment
	2.1 Introduction
	2.2 Literature Review
	2.3 Method
	2.3.1 Learning Entailment Vectors
	2.3.2 Using Entailment Vectors for RTE
	2.3.3 Implementation Details

	2.4 Experiments
	2.4.1 Direct Evaluation of Entailment Vectors
	2.4.2 Evaluation on Textual Entailment
	2.4.3 Further Analyses

	2.5 Conclusions

	II
	3 Knowledge Base Question Answering with a Matching-Aggregation Model and Question-Specific Contextual Relations
	3.1 Introduction
	3.2 Method
	3.2.1 Task Definition and Setup
	3.2.2 Method Overview
	3.2.3 Base Candidate Sequences
	3.2.4 Enhanced Candidate Sequences
	3.2.5 Sequence Matching
	3.2.6 Combining Additional Relations with Attention
	3.2.7 Implementation Details

	3.3 Experiments
	3.3.1 Setup
	3.3.2 Results
	3.3.3 Further Analyses

	3.4 Conclusions

	4 Knowledge Base Question Answering with Topic Units
	4.1 Introduction
	4.2 Method
	4.2.1 Task Setup
	4.2.2 Method Overview
	4.2.3 Topic Unit Generation
	4.2.4 Topic Unit Scoring
	4.2.5 Relation Path Ranking
	4.2.6 End-to-End Learning
	4.2.7 Implementation Details

	4.3 Experiments
	4.3.1 Datasets
	4.3.2 Main Results
	4.3.3 Comparison with Existing Methods
	4.3.4 Further Analyses

	4.4 Conclusions

	5 Multi-hop Knowledge Base Question Answering with an Iterative Sequence Matching Model
	5.1 Introduction
	5.2 Our Method
	5.2.1 Problem Definition
	5.2.2 Method Overview
	5.2.3 Iterative Path Growth
	5.2.4 Incremental Sequence Matching
	5.2.5 Termination Check
	5.2.6 Loss Function

	5.3 Experiments
	5.3.1 Data Sets
	5.3.2 Experiment Setup
	5.3.3 Main Results
	5.3.4 Ablation Studies
	5.3.5 Effect of Threshold and Beam Size
	5.3.6 Visualization
	5.3.7 Error Analysis

	5.4 Conclusions

	6 Future Direction

