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StressMon: Large Scale Detection of

Stress and Depression in Campus Environment using

Passive Coarse-grained Location Data

Camellia Zakaria

ABSTRACT

The rising mental health illnesses of severe stress and depression is of increasing

concern worldwide. Often associated by similarities in symptoms, severe stress can

take a toll on a person’s productivity and result in depression if the stress is left un-

managed. Unfortunately, depression can occur without any feelings of stress. With

depression growing as a leading cause of disability in economic productivity, there

has been a sharp rise in mental health initiatives to improve stress and depression

management. To offer such services conveniently and discreetly, recent efforts have

focused on using mobile technologies. However, these initiatives usually require

users to install dedicated apps or use a variety of sensors, making such solutions

hard to scale. Moreover, they emphasise sensing individual factors and overlook

‘physical social interaction’ that plays a significant role in influencing stress and de-

pression. This thesis presents StressMon, a monitoring system that can easily scale

across entire campuses by passively sensing location information directly from the

WiFi infrastructure.

This dissertation explores how, by using only single-attribute location informa-

tion, mobility features can be comprehensively extracted to represent individual

behaviours to detect stress and depression accurately; it is important to note that

this is without requiring explicit user actions or software installation on client de-

vices. To overcome the low-dimensional data, StressMon additionally infers physi-

cal group interaction patterns from a group detector system. First, I investigate how

mobility features can be exploited to better capture the dynamism of natural human

behaviours indicative of stress and depression. Then, I present the framework to de-

tect stress and depression accurately, albeit separately. In a supplementary effort, I



demonstrate how optimising StressMon with group-based mobility features greatly

enhances the performance of stress detection, and conversely, individual-based fea-

tures improve depression detection. To extensively validate the system, I conducted

three different semester-long longitudinal studies with different groups of under-

graduate students at separate times, totalling up to 108 participants. Finally, this

dissertation documents the differences learned in understanding stress and depres-

sion from a qualitative perspective.
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CHAPTER 1

INTRODUCTION

Stress and depression are mental health illnesses most commonly associated with

challenges in everyday life. Stress is often underestimated as a normal reaction

to daily pressures with at least 74% of people reportedly struggling to cope with

stress [1]. Depression is a global phenomenon affecting more than 300 million

people of all ages [2]. Much research has progressed towards understanding the

relationship between stress and depression [3]. Stress, depending on its severity –

ranging from acute to chronic – can result in a particular set of consequences on

one’s body, mood and behaviour. For example, acute stress typically causes irri-

tability, but chronic stress causes aggressiveness leading to social isolation [4, 5].

In fact, chronic stress can lead to more serious health consequences of depres-

sion [6–8]. While depression is generally preceded by chronic stress, depression can

occur without an individual feeling stressed at all [3]. Hence, depression remains an

independent health condition, and its treatment must be addressed directly [9, 10].

Recently, depression is reported by the World Health Organisation (WHO) as one of

the leading causes of lost economic productivity estimated to cost the global econ-

omy US $1 trillion each year [11], originating from reasons such as absenteeism

from unmanaged stress [4]. To reduce this impact, it has been shown that treating

symptoms of depression can reduce work absenteeism1 [11]. With work increas-

ingly structured via teams to capitalise on various skill sets and experiences, an

1Note: Without losing its authentic meaning, I refer to ‘work’ as activities that require skills, time
and effort to complete.

1



CHAPTER 1. INTRODUCTION

individual’s stress could be as a result of social factors [12, 13]. Indeed, the under-

lying mechanisms causing stress are much more complex to understand as individu-

als are frequently working in groups where group dynamics and social interactions

can greatly influence the stress levels of group members [12]. For example, be-

ing in supportive groups allows individuals to receive peer support which greatly

helps reduce their stress levels [14]. Having a strong support system allows one

to develop a more positive emotional response towards the group in stressful work

situations [15]. The serious impact of stress and depression have raised much need

for mental health support to be provided in workplaces [4, 11, 13, 16]. For instance,

the inability of individuals to cope with stress is commonly found to increase work

absenteeism [4], while the treatment of depression reduces work absenteeism [11].

Prior studies have shown that recovering from stress to a normal state is much easier,

in terms of the length of time and treatment required, compared to depression [3]

and that treating depression early can result in earlier relative recovery times. Thus,

there is great merit in detecting individuals’ stress and depression early. It is note-

worthy that this dissertation aims to address the binary classification problem of

detecting individuals likely to experience (1) severe stress over 6-days interval and

(2) depression over 15-days interval in a work setting; however, it does not reveal

the underlying causes of those conditions2.

Much work in psychology, small group and systems research has focused on

monitoring stress and depression in work environments [14–16, 18–23]. The domi-

nant paper-pencil stress and depression scales must be validated with different group

and work-related measures to thoroughly assess these mental illnesses in work-

places. Constructs for each measure are bounded by fixed questions; responses

are biased to socially desired norms and highly sensitive to the timing of assess-

ment [24, 25]. While these limitations have spurred initiatives to automatically as-

2I use the term “severe stress” to refer to individuals showing signs suggestive of chronic stress
and “depression” to refer to individuals showing significant signs of depression. It should be high-
lighted that the stress assessment scale used in this study cannot clearly distinguish between acute
to chronic stress, but a high score on the assessment is suggestive of chronic stress [17]. While this
study utilised a clinically validated depression scale, it is not a diagnosis tool for depression.

2



CHAPTER 1. INTRODUCTION

sess mental health through mobile and wearable applications [26–29], existing solu-

tions do not consider the notion of group interaction in the physical environment and

only social interaction through applications [30–32]. Using various combinations of

sensors to appropriately find physiological and behavioural indicators [30, 33–37]

related to stress and depression increases overall power and privacy burdens to

users [38]. Finally, these methods require explicit user interaction of installing a

dedicated app, providing a much less extensible mechanism to conveniently accom-

modate data gathering from tens of thousands of users feeling stressed or depressed

at a given time. Recent research has recommended the use of location information

as single-sourced data to produce strong indicators for depression and schizophrenia

among many other mental illnesses [39–42]. Using location information generally

involves making direct observations on active behaviours, or the lack thereof, in hu-

man mobility. The ability to infer users’ activities and engagements from location

information help associate these traces with social interactions in the same envi-

ronment [43, 44] (Figure 1.1 summarises how my thesis differentiates from prior

work).

A feasible approach to meet these challenges could be the use of a standalone

wearable device such as sociometer [45]. Sociometer was constructed to collect

very fine granularity location information from GPS and Bluetooth sensors. How-

ever, measuring group interaction is through speech emotion analysis from built-

in microphone, which is rather intrusive [28]. Further, using a standalone device

introduces a strong bias to users who own such devices. In contrast, leveraging

publicly available sensors at community-wide scale can support sensing everyone

and bypasses connections to personal devices. Passively sensing at scale is already

enabled by technologies such as video surveillance for public safety [46] and WiFi

for location-independent network access [47]. Live video can be coupled with emo-

tion tracking analysis to detect stress [30], but this method poses significant privacy

threat from direct exposure of a user’s identity [48]. Deriving mobility patterns from

location proximities of WiFi signals [49] is less accurate but relatively unobtrusive.

3



CHAPTER 1. INTRODUCTION

While utilising WiFi infrastructures means monitoring capabilities are localised to

within an indoor vicinity, high concentrations of people spend approximately 70%-

80% of their time indoors [50]. Everyone in the environment can be monitored as

anonymously as possible without additional devices or cost. Advantageously, WiFi

infrastructure is a predominant solution deployed in most public buildings, provid-

ing users with free connection and public services.

Inspired by the aforementioned prior works, in this dissertation I build on exist-

ing WiFi passive-sensing components which provide single-sourced location infor-

mation to easily and accurately detect stress and depression across the entire popu-

lation in a work environment. We overcome data sparsity by (1) using group inter-

action features and (2) measuring the changes in an individual’s behaviour including

group interaction habits by comparing to their own and population’s past periods to

enhance the detection of stress and depression. Therefore, my contribution to this

dissertation lies in (1) synthesising only location information into mobility features

that sufficiently represent individual behaviours and group interaction habits, (2)

statistically analysing these features to build a high-performing machine learning

detection module for stress and depression, and (3) examining several individual

and group measures as optimisation features. I demonstrate the feasibility of our

approach through three rounds of IRB-approved long-term user studies. The stud-

ies ran from Fall AY2017 to the end of Fall AY2018, running for a maximum of

81 days. 108 (out of 140) students actively participated in a standard protocol (of

experience sampling every 3 days, retrospective assessment approximately every 2

weeks, and semistructured interview sessions) to capture their self-evaluations on

mental well being.

In the rest of the chapter, I clarify the boundaries to the topics of this disserta-

tion. Then, I briefly discuss existing technological approaches to stress and depres-

sion monitoring. Accordingly, I describe our proposed solution called StressMon,

and present my thesis statement and validation plan. The chapter closes with an

organising overview of this dissertation.
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CHAPTER 1. INTRODUCTION

1.1 Defining Stress and Depression

Often conceptualised as being a psychological state, stress embodies the dynamic

interaction of individuals with their environment, including people [51]. Specifi-

cally, Lazarus and Folkman describe psychological stress as a perception of how an

individual appraises a situation as harmful, and then makes a secondary appraisal

of how to best cope with the case; either through reacting rationally or emotion-

ally [51–53]. While stress is an everyday occurrence, understanding the most com-

mon types of stress and knowing how to identify them can be challenging. There

are several levels of stress – acute stress, episodic stress and chronic stress – charac-

terised by Lazarus [5] to result in different symptoms and requiring different treat-

ment approaches. It is noteworthy that this thesis does not address other types of

stresses, which are critically influenced by life-threatening events (e.g., violence,

death) or exposed at a very young age – traumatic and toxic stress [54, 55].

Acute stress is commonly observed as a natural response to everyday demands

and pressures; associated wit both negative and positive outcomes. For example, an

individual experiencing acute stress might be motivated to work, but be emotionally

and physically distressed over a short period of time. In that distress, they could feel

frustrated and fatigued after experiencing difficulties concentrating [5]. However,

such stress is highly treatable with treatments generally focusing on mindfulness

and cognitive behavioural therapy [56]. Moving up the scale is episodic stress,

which describes acute stress over more frequent occurrences. An individual’s emo-

tional distress is more severe, as it tends to exhibit aggressiveness and low tolerance;

commonly affecting interpersonal relationships. Unfortunately, episodic stress puts

individuals at risk of heart disease, chest pain and persistent headaches [5]. Thus,

treatment typically involves professional help, which may take many months [57].

Finally, chronic stress constitutes a wide variation of stressors over long periods of

time. More often than not, chronic stress is a result of work-related strains [58].

When left untreated, such stress can cause serious disabilities such as major de-
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pressive disorders, high blood pressure and serious behavioural changes including

insomnia and social isolation [5].

Significant research suggests that depression is the most likely outcome of ex-

posure to psychological stress [7, 12, 59, 60]. Melchior and Siegrist also found de-

pression resulting from chronic work-related stress is more often associated with

individuals whose current work performances are affected by stresses of their previ-

ous jobs [58,60]. Factors such as high work demand, poor social support and work-

ing relationships, and limited control over situations are stressors that commonly

predict depressive symptoms [7, 60]. As a result, substantial evidence observes

severely stressed individuals making changes in their normal behaviours [61–63];

for example, withdrawing from others and the inability to rest [64, 65]. Some of

these behavioural symptoms overlap with depression [10, 66]. Further, the strug-

gle to reorient or adapt can bring about more serious consequences [67]. These

findings highlight the importance of recovering early from severe stress to a nor-

mal state, compared to when more serious conditions (i.e., depression) have mani-

fested [3, 68].

On the other hand, depression, as recognised by the Diagnostic and Statistical

Manual of Mental Disorders Fifth Edition (DSM-5), is a diagnosis which requires

an individual to display at least five specific symptoms in the period of two weeks.

The primary criteria is either being in a depressive mood or anhedonia (i.e., losing

interest to pleasurable stimuli), while secondary criteria include diet changes, sleep

abnormalities, reduced physical movements, fatigue, feelings of worthlessness and

suicidal ideation [69]. Much research has investigated the relationship of stress

and depression. One may argue that a depressive mood could be as a result of a

stressor, thus a compound factor to a stressful situation [70]. However, anhedonia

is an affective response, highly associated with hereditary or substance disorders

(also from taking taking medications or treatments). It is also a complex process

associated with personality characteristics [71–74]. For this reason, depression can

occur without an individual feeling stressed [3], and stress and depression should
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be treated as two separate entities [9, 69, 70].

This dissertation narrows its scope of assessing the psychological stress to expe-

riences of chronic stress. The overlapping symptoms of chronic stress in depression

make depression an essential aspect of this investigation, and an independent men-

tal health issue. It should be noted that the user studies in this work did not include

any formal clinical diagnosis. Hence, this dissertation is not aimed to develop a di-

agnosis tool for stress and depression – rather, it aims to detect individuals showing

signs suggestive of chronic stress (i.e., severe stress) and significant levels of de-

pression. In comparison to prior work, this dissertation explores the use of location

information to generate strong behavioural indicators of stress and depression on

two levels; treating location traces of each individual as a singleton and including

the physical group interactions with others in the same environment. Further, the

value of location data is maximised from measuring the changes in an individual’s

behaviour, including group interaction habits by comparing to their own and their

(work) population’s past periods.

1.1.1 Factoring Group Interactions

To successfully manage stress at work, Lazarus argues that the individual, collec-

tives (e.g., colleagues, social friends), and workplace must be treated as one unit,

not independently [52]. Separately, Cox et al. characterise work-related stress by

work content (e.g., task, load), but in no small degree, driven by work context (e.g.,

interpersonal relationships) [12, 13]. These findings show overwhelming evidence

that group interaction is a critical factor influencing stressful work environments.

With more organisations structuring work within teams to capitalise on skills

and perspectives, much research in Organisational Behaviour (OB) has been ded-

icated to understanding several characteristics of group interaction in team pro-

cesses. These efforts include social identification [22], social cohesion [75], so-

cial loafing [76], and group potency [77], among many others. Positive effects

of group interaction can bring about individual motivation and support for mem-
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bers, but there are also negative implications of group influence including work

stress [21, 23, 78, 79]. Recent research has suggested social identification, the de-

gree to which an individual psychologically associates themselves with a group,

is a strong indicator of loss productivity [80], stress [81, 82] and depression [18].

Since its inception, social identification has been researched in pursuance of defin-

ing and assessing varied aspects of the interaction between an individual and the

group [83–85] including conflict [86, 87]. Conflict is inevitable in groups whose

members have diverse goals, opinions and attitudes, which consequently influences

within-group behaviour [88]. Studies have found individuals with high social iden-

tification towards their (work) group are more likely to receive peer support, be

committed to work [14], and as a result, develop a more positive emotional response

in stressful work situations [15].

To understand how the inner dynamics of groups can affect individuals’ overall

mental wellness and productivity, this dissertation additionally examines if social

identification can similarly be determined from mobility features which are repre-

sentative of group interactions, and the implication for detecting stress.

1.2 Existing Technologies for Mental Health

Monitoring

There has been substantial prior work in developing stress and depression mon-

itoring applications. Some examples of stress applications include UStress [26],

StressSense [28], and AutoSense [33], among many others. These context-aware

applications make use of physiological readings from electrodermal activity (EDA)

and electrocardiogram (ECG) [34,35,89], and device activity data [90,91] from mo-

bile and wearable devices to detect stress in real-life environments. StudentLife [29]

from Wang et al. analysed behavioural changes related to stress and the same au-

thors also analysed symptoms features to predict depression scores [92]. However,

these solutions typically require: (1) the orchestration of multiple mobile and/or
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wearable sensors, which place privacy and power burdens on users and their de-

vices – resulting in lower user participation rates and increased attrition rates [38]

and (2) explicit user interaction of installing a dedicated application on their mobile

device, which may limit the resource to only proactive users who would be willing

to install an app – unfortunately, many studies found highly stressed and depressed

people (in greatest need of help) tend to behave passively and helplessly in finding

a solution [93, 94].

More recently, the understanding of mobility patterns from sensing individuals’

location has represented some of the most promising research areas including men-

tal health and social behaviour. For example, much work has discovered strong rela-

tionships between social isolation and mental disorders such as depression [39,41],

schizophrenia [42] and happiness [40]. Brown et al. [95] used wearable RFID tags

to collect indoor location traces of employees interacting with colleagues in dif-

ferent building spaces. Ware et al. used location data collected from the WiFi in-

frastructure to detect depression [96]. In a similar fashion, Zhou et al. [97] used

WiFi indoor localisation data to learn about student behaviour. [96, 97] are concep-

tually the closest to our approach. However, these works neither monitored stress

nor inferred group interaction factors in detecting depression. In the next section, I

describe our goals and proposed solution. [92]

1.3 Solution: StressMon

Our goal is to develop a stress and depression monitoring solution, StressMon, as

a first-level safety net whose benefits can be distributed across an entire population

of users in a work environment. It complements fine-grained sensing solutions that

require installing dedicated mobile applications where timely interventions can be

made in a more personalised context. Key characteristics of StressMon are:

1. No application installation or additional device required to accommodate

monitoring tens to thousands of users, at any given time. To enable ease of
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deployment, our approach leverages a passive, WiFi-based location detection

to track all users in a work setting.

2. Utilises single-sourced location data, obtained from RSSI values reported

directly by the WiFi access points (APs). Using just the location informa-

tion, individual routine behaviours are derived from inferring different user

activities in the environment.

3. Considers physical group interaction patterns, inferred from grouping loca-

tion traces of individuals in the same vicinity. It utilises a group detection

system, which clusters devices into logical groups from the same location

traces.

4. Ascertains changes in individual and group behaviours, which compares

individuals’ normal behavioural patterns to past periods of their own, called

absolute change, and their work population’s, called relative change.

5. Leverages additional work-related information as features. Specifically, an

individual’s personality traits and social identification towards their work-

group, which were not measured passively from location data, were com-

bined with passive location-based features to improve the detection of stress

and depression.

6. Accurately detects stress and depression over different time windows. Fun-

damentally using the same sets of mobility features, albeit with sufficient dif-

ferences to separate the detection models, an individual with severe stress can

be detected at 6-days interval and an individual with depression can be de-

tected at 15-days interval. The addition of work-related information features

to the stress and depression models leads to more accurate detection results.
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Figure 1.1: Summary differences from prior work; rows highlighted in yellow are
related to stress detection, blue for depression detection, and green are significant
pieces which did not solve detection problems. A tick on “User Study” indicates
user studies of similar scale, “Sensing/Model” indicates similar sensing mecha-
nisms (without the need for direct sensing and/or a dedicated mobile application),
“Features” are extracted from a single sensor data. “Social behaviours” account
for features representing interaction patterns, “Validation” adopts similar method-
ology for validating results, and “Performance” indicates works with best results,
comparable to ours.
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Figure 1.1 summarises the differences of StressMon from prior work. StressMon

makes several clear distinctions. First, it is the only work which builds detection

models for stress and depression as one solution. Unlike prior work on stress detec-

tion, the user study for StressMon was conducted over a longer period of time and

is first work in using location data. StressMon does not detect stress in real-time but

in 6-days – for the reason that signs suggestive of an individual experiencing severe

stress is due to emotional pressures suffered over a prolonged period of time [17]. It

detects depression in 15-days, typically from following symptoms over a two-week

period [98]. Next, StressMon is a first work in utilising physical social interac-

tion [12, 13, 53] and changes in behaviour [61–65] as key features in its detection

model compared to [39, 96]. Compared to [92], features representative of social

patterns were not extracted from a different data source – but from a single-attribute

location data. Finally, using location-based input and optimisation features, it pro-

duces results far different from prior work which utilised fine-grained data [92].

1.3.1 Testbed

As a start to this endeavour, I studied different groups of undergraduate students

to demonstrate the application of StressMon as a campus-wide resource for our

university. The university campus is an excellent testbed for StressMon for two main

reasons: First, considerable evidence suggests students in universities and higher

education are most vulnerable to severe amounts of stress [99, 100], embodying a

trend of campuses as high-stress environments [16,101,102]. Second, as with many

other universities and organizations worldwide [103], our university is deployed

with a campus-wide Wi-Fi system (the LiveLabs) that scales to tens of thousands of

clients and has been running stably since 2013.

It should be noted the long term goal of StressMon, as a fully functional community-

wide health monitoring system, must be principally designed with appropriate poli-

cies and procedures; a deployment of StressMon in a professional work environ-

ment would likely raise concerns among employees fearing negative reviews and
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discrimination from being frequently detected to experience severe stress or depres-

sion. Would such assessment impact a user’s career in any way? Until such privacy

ensuring policies are established, it is viable to use students as test users since they

are not paid employees. Note: The implementation of privacy policies appropriate

for an end-to-end solution as StressMon is not part of this dissertation, however its

implications will be discussed in Chapter 7.

1.3.2 StressMon’s Ethical Practice

With increasing progress in enabling technologies for large-scale behavioural re-

search, ethical concerns remain a challenge within the research community. Since

StressMon considers the influence of social relationships to detect severe cases of

mental health issues, the process of collecting and deriving behavioural patterns in

groups of user data must abide by compelling ethical principles. Referencing the

CSCW guidelines for social computing [104], we argue that the mechanisms oper-

ationalising StressMon comply with principles of the Belmont Report [105] in the

following ways:

1. Respect for Persons: Having an informed consent form (with IRB-approval)

is the most straightforward way of respecting and protecting users from harm. As

StressMon conveniently collects its data through the WiFi access points, it bypasses

the direct communication with the user’s personal device for data collection; thus

minimises privacy threats. It should be highlighted that the localisation mechanism

used in StressMon [106, 107] maintains anonymity by applying a one-way hash

function, which prevents a user’s device from being easily identified. StressMon

itself does not provide anonymous protocol capabilities. Therefore, the system re-

quires additional scrutiny by organisational officials responsible for approving data

security controls to maintain confidentiality of (all) users utilising the WiFi.

2. Beneficence: Beneficence is weighing the risks over the benefits of any re-

search. The risks of exposing users’ identity is minimised because we are making

no direct communication with users’ devices to collect location information and no
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requirement for personally identifiable information to conduct behavioural analy-

ses. At this stage, StressMon operates by detecting individuals who display signs of

severe stress and depression (the minority class), and involves the risk of misclassi-

fication. Ideally, StressMon should achieve high sensitivity (True Positive Rate) and

high specificity (True Negative Rate) in real-world scenarios. As the cost of mis-

classifying a minority-class is substantially greater than the cost of misclassifying

a majority-class, StressMon seeks to maximise sensitivity while ensuring moderate

specificity. While the implication of such performance may possibly lead to more

students being misclassified as severely stressed, StressMon could integrate an early

identification step to verify the severity of stress and depression for borderline cases.

Despite these risks, we believe StressMon provides greater social benefit for both

individual and collective levels. With approximately 66% of college students suf-

fering from either depression or stress [108], and campus service providers facing

resource crises [109], StressMon can be deployed as a campus-wide “safety net” for

those in greatest need of help. StressMon can be an enabler for students to receive

help via external methods such as interventions moderated by counsellors. Another

strength of StressMon is in its ability to detect stress and depression derived from

rudimentary behavioural analysis of different groups of anonymised users within a

population – enabling group-level health interventions, which are less-intrusive to

targeted individuals.

3. Justice: Justice requires fair user participation. This is true for StressMon,

as its data collection is not influenced by factors such as the socioeconomic status

or technical experience of the user. Instead, StressMon leverages Wi-Fi, which is

readily available in public spaces (e.g., offices, campuses and shopping malls) and

commodity devices (e.g., laptops and mobile phones). In fact, a majority of mobile

devices today are designed to prioritise Wi-Fi. StressMon does not require any

explicit user interaction of installing/running a dedicated application on their phone.

Thus, the resource is readily available to all users in the environment having access

the bare minimum of a smartphone that can connect to wireless networks via Wi-Fi.
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The evolution of social sensing enables the measuring of large-scale human be-

haviour. Technologies, such as StressMon, provide foundational mechanisms for

interdisciplinary research communities to explore new methods of facilitating men-

tal health benefits/interventions and studying the natural processes of small group

phenomena, while ensuring such studies stay within the boundaries of ethical prac-

tices.

1.4 Motivating Scenario

Ultimately, the usefulness of StressMon must depend on the value it brings in real-

world situations among a broader group of users. The following scenarios illustrate

the application of StressMon for two different sets of users.

Scenario #1

A Team of Undergraduate Student Developers. Alice, Bob, and Charlie are de-

veloping a game app for their final year project, and have coordinated among them-

selves to work closely together on campus. The campus integrates a WiFi indoor lo-

calisation system that can track the location of devices using data collected directly

from the WiFi infrastructure itself – i.e., without needing any input or apps installed

on client devices. Recently, the university deployed StressMon as a campus-wide

“safety net” to automatically detect students and groups who are displaying signs

suggestive of chronic stress, intending to help them via external methods such as

interventions by student counsellors.

Alice, Bob, and Charlie are predominantly connected to the campus WiFi on all

their smart devices. StressMon determines, from location traces, that Alice predomi-

nantly works with Bob. They are both responsible for front-end development. In the

same way, StressMon detects that Charlie likes working from various workspaces;

albeit by himself. In actuality, Charlie is struggling to deliver his tasks. StressMon

detects that Charlie is under severe stress. An external system (that is beyond the
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scope of this paper), using interventions prescribed by student counsellors, promptly

provides Charlie with stress management tips. At the same time, the external sys-

tem notifies Alice and Bob that their team member is experiencing high stress and

provides them with concrete steps to take to maintain good work balance and har-

mony within their group. Alice and Bob are stunned at this revelation and meet up

with Charlie, asap, and utilise the suggestions provided to them. This intervention

has an immediate impact, Charlie’s stress levels decrease, and he can complete his

portion of the task.

Scenario #2

New Nurse Preceptorship Program. Amy is a new graduate nurse who joins the

med-surgery unit and is assigned to a nurse preceptor, Carol. The hospital employs

a Bluetooth indoor positioning system to help staff find their way to departments

or wards. Recently, the hospital deployed StressMon to similarly detect new nurses

who are showing significant signs of depression with the intention of supporting by

notifying their preceptors.

Three weeks into the programme, StressMon determines Amy making signif-

icantly different behavioural changes and workgroup interactions. For example,

Alice takes shorter break times and deviates further away from common locations

she previously frequented during these times. StressMon detects Amy as depressed.

In actuality, Amy struggles with taking up more caseload and is emotionally af-

fected from experiencing verbal abuse by patients. At the same time, she hesitates

to make a report to her supervisor-in-charge for fear of being appraised as incompe-

tent. Using interventions prescribed by nurse counsellors (beyond the scope of this

dissertation), StressMon promptly provides Amy with self-care tips. At the same

time, StressMon notifies Carol (Amy’s preceptor) and the system provides her with

concrete steps to guide Amy with knowledge and skills that are required for the de-

pressive situations that Amy is struggling with. This intervention helps Amy gain

better learning experiences and her depression levels decrease.
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These scenarios highlight our overall vision wherein StressMon is a key part of

an overall health monitoring and intervention solution that can provide organisation-

wide coverage. This solution has use cases beyond academia, and is of high value

in hospitals where are under significant daily stress leading to depression; many

studies have linked the severe shortages of medical professionals, especially nurses,

to the highly stressful work conditions [110, 111].

1.5 Thesis

My thesis statement is as follows:

It is possible to easily and accurately detect stress and depression across

entire school campuses using location data while overcoming the limitations of

low-dimensional data by incorporating inferred individual and group features.

To restate the main points of this dissertation, StressMon addresses the binary

classification problem of detecting individuals likely to experience (1) severe stress

over 6-days interval and (2) depression over 15-days interval in a work setting;

however, it does not reveal the underlying reasons for those conditions. In the rest

of the dissertation, I use the term “severe stress” to refer to individuals showing

signs suggestive of chronic stress and “depression” to refer to individuals showing

significant signs of depression. This dissertation answers the following research

questions:

1. Can we detect severe stress in a person using only location data?

2. What effects do group-related features have on stress detection?

3. Can we detect depression in a person using only location data?

4. What effects do individual-related features have on depression detection?

5. What can be learned from the findings of severe stress and depression?
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1.5.1 Validation Plan

This dissertation establishes the thesis via the following steps:

1. It presents our solution, StressMon, which leverages a key sensing apparatus

comprised of the LiveLabs and Grumon systems, to collect location data pas-

sively across all users in the entire campus environment and build a detection

module to accomplish its goals.

2. It characterises mobility features extracted from location data, representing

individual and group interaction behaviours. Features are categorised by their

function and degree of specificity; that is, some features require the verifica-

tion of highly specialised references such as a work schedule.

3. It provides a detailed exploratory data analysis on mobility features to distin-

guish significant differences between a group of students with severe stress

versus others, from comparing the changes in their behaviours and group in-

teraction patterns.

4. Then, via a primary user study, Study_SE, it demonstrates how it achieves the

first goal of accurately detecting stress. In addition, it shows the effects of

various group-based features on the prediction accuracy of stress.

5. In the same manner, it demonstrates how it achieves the second goal of accu-

rately detecting depression with sufficient differences to the detection model.

It shows the effects of individual-based features on the prediction accuracy of

depression.

6. Finally, it exhibits how StressMon can effectively maintain its high accuracy

in detecting stress and depression via two validation studies, Study_Valid1 and

Study_Valid2. In particular, the stress and depression models yielded compa-

rable performance to what was achieved in the primary study, Study_SE.
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Section Table/ Experiment Achieved Comparison
Figure Results

4.3 4.6 Severe Stress:
Individual + Group TPR: 99.33% TPR: 95.70%
vs. Individual features TNR: 69.49% TNR: 60.44%
(note: at 3-days interval) ACC: 72.08% ACC: 63.37%

4.3 4.11 Severe Stress:
Location + optimisation TPR: 88.08% TPR: 98.93%
vs. Location-based features TNR: 93.09% TNR: 75.54%
(note: at 6-days interval) ACC: 92.05% ACC: 77.59%

4.4 4.13 Depression:
Individual + Group TPR: 70.25% TPR: 51.83%
vs. Individual features TNR: 63.53% TNR: 64.72%
(note: at 15-days interval) ACC: 65.58% ACC: 63.32%

4.4 4.10 Depression:
Location + optimisation TPR: 90.21% TPR: 70.25%
vs. Location-based features TNR: 69.45% TNR: 63.53%
(note: at 15-days interval) ACC: 77.16% ACC: 65.58%

Table 1.1: Summary of experiments, central to this thesis and its forward refer-
ences to the sections, respectively. Note: all results were tested on primary dataset,
Study_SE students. Refer to sections for results of other populations.

Table 1.1 provides forward references to experiment details that are central to

this thesis.

1.6 Organisation of Document

This dissertation presents seven chapters and three appendices as follows:

Chapter 2 presents the building blocks to StressMon. It details two (out of three)

components: First is the Key Sensing Apparatus, comprised of two existing solu-

tions that have been utilised solely for collecting location data. Second is the Loca-

tion Feature Extractor, a component which I developed to apply various heuristics

and map activities onto location programmatically. Then, it extracts mobility fea-

tures that are representative of individual behaviours and group interactions of users

in the work environment. The third block briefly describes all the detection models

that make up the StressMon detection component.

Chapter 3 describes the long-term study I conducted in three separate phases.
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First is the primary study, Study_SE, which specifically looked at a population of

Information Systems students undertaking a highly stressful course. The second

and third studies, Study_Valid1 and Study_Valid2, included a broader range of stu-

dents from different schools and courses to validate all the detection models. This

chapter details the various assessment scales used to measure participants’ stress (at

a frequency of every 3 days) and depression levels (at a frequency of every 2 weeks)

as ground truth to validate StressMon’s detection models.

Accordingly, Chapter 4 describes in detail the development of a stress model

and depression model separately. The chapter comprehensively includes a clear ex-

planation of how ground truth labels for stress and depression were processed, and

then, mapped to the location data (input) as binary classification problems. The

evaluation of both models adopted a standard procedure of group-fold cross vali-

dation for the primary study, Study_SE, and additional tests on Study_Valid1 and

Study_Valid2 as validations.

Chapter 5 comprehensively presents my findings on participants’ experiences

in stress and depression through validated scales and qualitative interviews. The

interviews were aimed to elicit what caused stress in participants’ life (at the point

of study) and how it affected their behaviours and social interactions, especially

with their workgroups. It is important to note that I did not explore the experience

of depression in interviews due to my clinical inexperience to handle such cases.

Chapter 6 reviews the most relevant research works related to my sociological

understanding of stress, depression and social identification. Then, I expand on

the assessment methods for stress, both traditionally and technologically. Finally,

Chapter 7 closes this dissertation with a summary of its main contributions, a dis-

cussion that combines all findings from evaluating StressMon’s detection engine to

inform its limitations and future work.
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BUILDING BLOCKS OF StressMon

Earlier, I described StressMon as a solution utilising a single-sourced location data.

This decision is based on several reasons: First, prior work found strong associa-

tions between location traces and mental health outcomes such as depression and

schizophrenia. Second, server-side location data provides the ability not only to in-

fer individuals’ behaviours but to group interaction patterns in a less intrusive man-

ner. Further, our decision to adopt WiFi location tracking as a sensing technique

is based on the technology having predominant presence in most public buildings

to provide free connection and services. This chapter begins by discussing our de-

cision’s implications. The rest of the chapter describes in detail the key blocks

comprised in StressMon and the outputs each component produced.

2.1 Understanding Location Sensing Techniques

The increasing availability of location-based services has transformed urban re-

search by exploiting geographical position of personal devices to environmental

information gathered from networks into various applications; ranging from health

to business analytics [29,39,41,92,112]. Location provides a wealth of information

on individual movement patterns and their physical communication patterns; for

example, users can navigate both in physical and virtual space for directions, and

receive updates derived from locating other individuals or routes. Then, activities
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or engagements inferences can be made from the venue and duration [43, 113].

The implementation of location-based services is fundamentally driven by its

sensing technique to actively provide location estimates. A great deal of commercial

services utilise global positioning systems (GPS) [114] but they suffer from indoor

inaccuracies. Indoor-positioning can be enabled by radio-based sensing such as

infrared (IR), radio frequency identification (RFID), ultra-wideband (UWB), Blue-

tooth low energy (BLE) and wireless fidelity (WiFi) among many non-radio based

sensing techniques (e.g., camera, sound, magnetic field) [115]. However, a consid-

erable number of these technologies require massive transceiver and infrastructure

deployments for emitted signals to be picked up periodically [116]. Fortunately,

in the present day, WiFi is almost universally available as a means of ubiquitous

and continuous wireless network coverage. This practice is especially true in public

buildings [117, 118] from campuses to offices, shopping malls to airports. WiFi is

also integrated mainly in consumer communication devices.

Bluetooth might seem comparably common to WiFi as it is supported on most

consumer devices, and beacons are small, inexpensive and long-lasting. Blue-

tooth’s higher beacon density could also provide more accurate positioning than

WiFi [119]. However, a user cannot be tracked continuously (with a fixed Blue-

tooth address) at different periods; unfortunately, Bluetooth address of a device is

replaced with random values at specific time intervals [120]. One of StressMon’s

key characteristics (see Section 1.3) is to ascertain the changes in behaviours and

in group interaction individuals experience when they are stressed. Such a fea-

ture would require continuous identification of the user, albeit anonymously. WiFi

uses MAC address, which is a globally unique ID for a device. One way to main-

tain anonymity is to use reliable one-way hash functions [106, 121]. Identifying a

user from the MAC address can be challenging, but inferences could eventually be

made [121]. For these reasons, WiFi indoor positioning makes a good option for

StressMon to adopt as its sensing technique.
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2.1.1 Implications of Using WiFi Indoor Localisation System

Evidently, WiFi indoor localisation system is one of the most common techniques

due to the widespread deployment of Wifi infrastructures. While accuracy estimates

largely depend on the signal-to-noise ratio of the received signal, these estimates

can be influenced by many other environmental factors related to building struc-

tures [122]. Common hardware concerns such as access point (AP) displacement

could result in inaccuracies of received signal strength indicators. Therefore, radio

maps (i.e., APs in close proximity are annotated by the corresponding location in-

formation) must be constructed and updated regularly. This requirement demands

time and labour, especially in large urban areas [123].

One of the widely adopted methods to determine location from WiFi signals

is through inferring position from the strongest received signal strength of all APs

within range and finding the location that best matches the signal from the radio

map. Studies have found that this technique might be effective in academic build-

ings (such as ours) since fewer human movements are expected periodically com-

pared to large public spaces such as shopping malls [106, 124]. Since StressMon

monitors for deviations in behaviours, it is important that differences in movements

are large enough to be picked up by different APs. Finally, offsite behaviours and

group interactions cannot be supported by this technique. The ability to monitor

outdoor movements can be extended (by StressMon) to use GPS, if necessary. How-

ever, substantial research has found that humans spend approximately 70%-80% of

their time indoors [50].

2.2 StressMon System Overview

Figure 2.1 illustrates an overview of StressMon; comprised of three components:

(1) Key sensing apparatus, (2) Location feature extractor and (3) Machine learning

detection engine. It is important to note that my contribution to this dissertation is

focused on enabling accurate detection of stress and depression using only location
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data supplied by the key sensing apparatus.

2.3 Block 1: Key Sensing Apparatus

StressMon leverages two key sub systems, which make up a crucial component to

collect location and group information directly from the environment’s infrastruc-

ture. Building on existing deployment, performance inaccuracies for these systems

were rare and bounded, as explained below. Note that the evaluation of these sys-

tems is not part of my dissertation contribution.

2.3.1 LiveLabs WiFi Indoor Localisation System

StressMon adopts the LiveLabs WiFi indoor localisation system as a server-side

solution, which uses real-time location services (RTLS) to extract Receiver Signal

Strength Information (RSSI). This is the signal strength of each device connected

to the AP as measured by the AP. These signal strengths decay as the device moves

further away from the AP. Hence, by using RSSI observed by multiple APs, we can

compute the position of each device using a method known as reverse triangulation.

This approach uses data collected solely from the infrastructure (each WiFi AP) and

thus can work across any mobile device (e.g. iOS, Android) and does not require

installing any client software.

The LiveLabs system has been operating in our test environment (Singapore

Management University) since August 2013, including several other public spaces.

The system was tested accurate between 3 to 8 meters in most places; sufficient to

localise a device to a specific room. Based on empirical studies, Khan et al. reported

its performance at 87% accuracy [125]. Further, its location errors could increase to

10-20% for non-negligible periods [106].

By default, the LiveLabs system anonymises the MAC addresses of all con-

nected devices using a 1-way hash function; thus, enables monitoring of users at

community-level without exposing identities of tracked devices. However, personal
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Figure 2.1: Illustration of StressMon, comprised of three blocks, with shaded blocks
indicating my contribution to this dissertation: (1) Key sensing apparatus is made up
of existing systems deployed in the test environment, (2) Location feature extrac-
tor makes decisions on the types of activities inferred from spatial characteristics
and generates predictive features including features that measure the changes in be-
haviours and interaction patterns and (3) Machine learning detection engine, which
consists of separate detection models for stress and depression.
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Size No. of devices Interaction Type
Solo 1 Alone
Small 2 <= Device => 5 With close/work group

Medium 6 <= Device => 20 With medium-sized group
Large Device > 20 Mass participation

Table 2.1: Group sizes are defined to extract interaction patterns on campus.

monitoring of stress can also be supported as a key use case – users (upon consent)

will need to provide their device MAC address to StressMon so the same hash func-

tion can be applied to identify their devices from these location traces. As will be

explained in Chapter 3, the studies conducted as part of this dissertation were to

demonstrate StressMon as a “safety net” solution for a community of users. How-

ever, I collected the MAC addresses of consented participants so their location traces

could be matched against their self-reports to validate the results of StressMon’s de-

tection models.

2.3.2 Grumon Group Detector System

The second sub-system utilised for sensing is the Grumon group detector system, ,

which extracts group information from the localisation system [107]. Specifically,

the group detector processes location information to cluster devices located in the

same vicinity that move together using Markov Cluster algorithm (MCL). GruMon

was shown to be highly accurate, detecting over 80% of the groups, with 97% pre-

cision, within 10 minutes of observing location data. Most of its errors arose in

detecting large groups where a large group was defined as 7 or more individuals. It

was much more accurate when detecting small and medium groups.

2.3.3 Implications of Key Sensing Apparatus

By leveraging these key sub-systems, it is clear that StressMon is susceptible to

some compounding errors accumulating in the final prediction. For example, Balan

and colleagues explained the LiveLabs deployment in our study environment achieved

excellent accuracies. Its performance, however, highly depends on environmental
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factors (e.g, layout of building, number of APs installed) and (changing) density of

crowds [106]. These findings support Bak’s conclusion of indoor localisation sys-

tems performing better in academic buildings than other large public spaces (e.g.,

shopping mall, airports) [124]. Similarly for Grumon, Sen et al. found higher in-

accuracies from the indoor localisation system deployed in malls. With the indoor

location system (LiveLabs) yielding its best case performance in our university, it is

assumed that the Grumon system maintains its reported results of a 91% precision

and 82% recall. Accordingly, Jayarajah and colleagues validated this assumption

by including various levels of random noise in the location data to determine its

robustness, and, subsequently, did not observe any significant changes in its perfor-

mance [49]. Finally, the group detector requires (next-place) transition features to

achieve higher precision to detect a group more accurately [107], and thus fits well

with the student population who are commonly observed to transit between classes

and/or buildings [49].

For these reasons, the negative effects of both key systems’ performances are

expected to be rare and bounded in the current evaluation of StressMon. It is impor-

tant to note that StressMon’s performance might be impacted by the inaccuracies

of its sensing component, especially in public spaces with high density of people

and unpredictable crowd movements [126] – I address this as part of Limitations in

Chapter 7, and discuss how further studies should be focused on testing its robust-

ness. While research to improve the accuracy of indoor positioning mechanisms

is still ongoing, I believe there is sufficient progress to assume that WiFi indoor

location systems will be able to accurately produce location information and, sub-

sequently, group location information in different kinds of public spaces. In this

dissertation, I am focused on identifying the types of behaviours and interaction

patterns that strongly indicate individuals under severe stress and/or depression, so

that these events can be detected accurately.
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2.4 Block 2: Location Feature Extractor

2.4.1 Activity Mapper

The activity mapper determines the most likely activity to occur at a particular lo-

cation based on the detected venue, time thresholds of students’ routines calculated

from population mean, and regular measurements of activity in 15 minute win-

dows. These heuristics were developed in the following steps. First, common pre-

determined activities were manually assigned to each campus facility (e.g., {"loca-

tion":"<building name>_<level number>_Seminar Room3.2", "activities":[ "sem-

inar", "study", "transit" ]}). Then, an activity is decided from the list based on

simple decision making statement of time and day (e.g., lectures are conducted on

fixed time slots on weekdays). Second, the activity is verified against the student’s

project schedule, a material collected as part of the study to assign activities spe-

cific to SE workgroup. Note: while verification was performed manually in this

user study, its process can be automated by synchronising individuals’ calendars.

Further, these activities were confirmed based on time thresholds of students’ daily

activities averaged over the sampled population (note: students were surveyed of

their daily campus routines as part of a demographic survey, described in Chapter

3). For example, an instructor consultation is capped at 1 hour, gym at 2 hours,

transition between places at 15 minutes, eating at 30 minutes. Finally, an activity is

only assigned to a nomadic device switching connections between different APs if

a connection lasts for at least 15 minutes; otherwise labelled as “in transition”.
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2.4.2 Pre-processing Noise and Missing Values

Figure 2.2 illustrates a portion of the location data and group data, inputs to the

activity mapper. Note that (A) is the location record of a specific device (MAC

address), while (B) is the entire Grumon record of the population. To extract group

data of a particular device, records specific to the MAC address needs to be queried.

For example, in (B), the ‘groupid’ consists of hashed MAC addresses joined as part

of a group. The hashed MAC address must first be decrypted by applying a 1-way

hash function, before its records can be filtered. In the interest of space, group data

in (B) only reflects 1 or 2 participants in the group. Having more than 2 participants

would mean that the ‘groupid’ will be a concatenation of more than 2 hashed MAC

addresses.

Notice in (A) of Figure 2.2, location data is sensed every 5 seconds. Occassion-

ally, these records tend to bounce from one access point to another, especially when

users transit to other locations with their connected devices. To resolve the issues

of fluctuating signals, the final location is determined by the mode of a 5-minute

sliding window. Another problem is that devices may not always be connected to

campus WiFi, thus constitute to missing values. Fortunately, missing features were

not in large time intervals (no more than a few days), hence, treated with AKIMA

interpolation. AKIMA spline affects only the curve of neighbouring data points,

minimising the error of its estimates [127].

2.4.3 Mobility Features

Table 2.2 summarises all the mobility features. Once activities were assigned to all

location entries, I proceeded to extract features as described in the following list.

1. Number of unique visits per day records the number of different buildings

visited. Our university campus is comprised of seven buildings (five storeys

each) and has an underground concourse that connects most buildings.

2. Total time spent on <activity type> & Number of times engaged in <activity
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Type Set Mobility Feature
General Non-work count_building

(Location data) count_campus, time_campus
count_gym, time_gym
count_food, time_food
count_clinic, time_clinic
count_transit, time_transit

Work count_study, time_study
(Location data) count_seminar, time_seminar

count_consultation, time_consultation
Group count_group, time_group

(Group data) count_smallgroup, time_smallgroup
count_mediumgroup, time_mediumgroup
count_largegroup, time_largegroup

Domain-specific Workgroup count_meetings, time_meetings
(Location data) count_pairprogramming, time_pairprogramming

count_knowledgeshare, time_knowledgeshare
count_unique, time_unique
count_knowledgeshare, time_knowledgeshare

(Group data) count_groupmembers, time_groupmembers

Table 2.2: Summary of feature types extracted from location and group data,
grouped in sets.

type> per day consist of the following activities with 15 minutes unit time

per activity: on campus (sums up all activities), studying, attending lecture,

group meetings, study consultation, transiting, eating, exercising, visiting the

clinic. Domain-specific workgroup activities include the types of tasks de-

clared in the project schedule such as pair-programming, knowledge sharing,

application design, and milestone preparation and unique events.

3. Total time spent being in <group type> & Number of times being in <group

type> per day consist of the various group types listed in Table 2.1.

Fundamentally, these features were based on activity types; most of these activ-

ities can be generalised to the entire student population (e.g., studying, attending a

lecture, eating), however, a subset of features were highly specific to students en-

rolled in the Software Engineering course (i.e., domain-specific features) as they

were verified against their project team schedule. Note that each schedule entry

captures location, date, duration, types of task, and attendees. Off-campus and

31



CHAPTER 2. BUILDING BLOCKS OF STRESSMON

contradicting entries, that is, a detected location which did not match the logged

location (for a particular time of the day), were identified as ‘unique’ task.

Feature Sets: Further, these mobility features can be categorised into four broad

categories; Work (W), Non-work (NW), Group (G) and Workgroup (WG). Work fea-

tures are events that take place in locations such as open-study areas, seminar rooms,

and group meeting rooms. Non-work features are events that take place in locations

such as the campus gym, dance studio and cafeterias. Group features capture prop-

erties in the group data. Workgroup features are Work features verified against the

project schedule to represent project specific events. Except for Workgroup features,

all features are General in type. Workgroup features are domain-specific.

2.4.4 Changes in Behaviours as Features

We hypothesised that changes in an individual’s behaviour and group interaction

patterns in reference to themselves and their peers are key indicators of perceived

stress. This hypothesis is based on prior research that showed how changes in be-

haviour occur due to stress [62,63,128], and struggles to reorient could entail serious

consequences [67].

xoi,j =
∑

V ∈[1..N ]\u

xui,j/N − 1

x̂∗i,j =
i+w∑
k=i

x∗i,j i ∈ [1..K − w], [w] := {3, 6, 9, . . . , w}

absui,j = x̂ui+1,j − x̂ui,j (1)

relui,j = (x̂ui+1,j − x̂oi+1,j)− (x̂ui,j − x̂oi,j) (2)

To implement changes in behaviours as features, each feature listed in Table 2.2

is compared against its own history of an earlier period, xui,j , as absolute change
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(abs), as in Equation 1. In addition, I compared the changes an individual displayed

against their peer population (i.e., users who were enrolled in the same course), xoi,j ,

as relative change (rel), as in Equation 2. These change values are calculated over

different time windows in multiples of three days (as our ground truth data was

collected every three days).

Conclusively, both General and Domain-specific-typed features comprises raw

(i.e., original counts), abs (i.e., absolute changes) and rel (i.e., relative changes)

features. In the upcoming chapters, I will present the top features used in building

each detection model using ROC curve analysis to quantify the diagnostic ability of

each feature.

2.5 Block 3: Detection Engine

At its core, StressMon uses a standard machine learning pipeline of feature selection

and classification. Note that the design and evaluation of the stress and depression

models are presented as chapters of their own in Chapter 4 and 5.

Similar to existing work [39, 44], I paid particular attention to solving a binary

classification problem of detecting stress and depression. As illustrated in Figure

2.1, the engine is comprised of three machine learning models; they are for stress

and depression, and a social identification model whose outcome is used as addi-

tional predictor for stress. In building each model, the engine adopts a recursive

feature elimination (RFE) process to select the best set of feature (General and

Domain-specific-typed) and parameters.

2.5.1 The Stress Model

Following prior work [26,44], which recommends using Random Forest (RF) to de-

tect stress, I similarly adopted RF and compared the algorithm with Logistic Regres-

sion (LR) and Support Vector Machine (SVM), as much evidence has established

these algorithms to outperform for binary classification [129, 130]. As justified in
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the next Chapter 4, the stress model was rigorously evaluated to best perform using

the RF algorithm.

2.5.1.1 The Social Identification Model

In contrast, automatically detecting social identification through machine learning

techniques is the first of its kind. With no prior work suggesting which technique

works best, I maintained the same choices of algorithms for detecting social iden-

tification. In addition, I sought to consider the temporal sequencing of mobility

features which is inherently related to using a HMM classifier [131]. This decision

is based on prominent research which argues the identity one holds to their (work)

group is likely to change over time from factors such as team conflict [14, 87, 132].

2.5.2 The Depression Model

In separate works by Canzian et al. [39] and Ware et al. [96], the authors employed a

generic SVM model to solve a binary classification problem of depression. Keeping

in mind that stress is commonly associated with depression, I made the decision to

retain the choices of algorithm for depression similar to stress. The results from

evaluating different classifiers presented in Chapter 5 found RF to perform best in

detecting depression.

2.5.3 Success Criteria

StressMon is a successful solution if it fulfils the following:

1. The changes in an individual’s behaviour make the strongest predictors.

A key differentiating factor of StressMon (see Chapter 1.3) is ascertaining

relative changes and absolute changes in behaviours to identify stress and

depression more thoroughly.

2. Detect stress and depression accurately. In this dissertation, ‘accuracy’ is

defined by AUC, ideally a score close to 1. However, it prioritises TPR (i.e.,
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students with severe stress or depressed students) over TNR.

3. Maintains high accuracy on other populations. StressMon must demonstrate

generalisability by achieving high accuracy in detecting stress over a period

of time, sufficient to suggest the stress is likely to be unmanaged, and de-

pression over at least 2 weeks for students in Study_Valid1 and Study_Valid2

population.

2.5.4 Performance Metrics

As will be discussed in Chapter 4, I obtained a highly imbalanced dataset, particu-

larly for stress, from the three user studies. To cater to class imbalances, I defined

the metrics as (1) area under the ROC curve (AUC), indicating whether true posi-

tives are ranked higher than false positives and an AUC score close to 1 indicates

a perfect predictor, (2) true positive rate (TPR or sensitivity) is the frequency the

model correctly identifies positive cases out of all true positives, (3) true negative

rate (TNR or specificity) is the frequency of the model correctly identifying actual

negatives, and (4) overall accuracy (ACC). It is noteworthy that AUC alone can

lead to potentially misleading results when the classifier is tested on an imbalanced

dataset – for example, Florkowski et al. reported an AUC of 0.91 with higher sen-

sitivity (97%) and lower specificity (62%, accuracy is 79%) [133]. Hence, it is

important to consider all different types of metrics to evaluate the models.

In the case of StressMon, it is more important to build a classifier with high

TPR than TNR to prioritise the accuracy of predicting students with signs of severe

stress or depression rather than healthy students as being healthy. As the occurrence

of healthy subjects were more common than others (resulting in skewed predictions

on the majority class), I combined a resampling technique (strictly on the training

set) with modified classification threshold to achieve high TPR over TNR [134].
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2.6 Summary

StressMon is made up of three components. Block (1), Key sensing apparatus,

comprised of the LiveLabs WiFi indoor localisation system and the Grumon group

detector system, is used as crucial systems to collect location and group informa-

tion. It is important to note that my contribution to this dissertation is focused on

enabling accurate detection of stress and depression – requiring Block (2) and (3).

Block (2), the Location feature extractor, details the steps for data-preprocessing,

feature extraction and feature engineering using only location data. In addition,

this component establishes how changes in individuals’ normal behaviours were as-

certained. That is, an individual’s (individual and group) behaviours are compared

against its own history (absolute change) and population (relative change) of an ear-

lier period. Finally, Block (3), the Machine learning detection engine puts together

separate models, mainly for stress and depression. In addition, a social identifica-

tion model whose outcome is used as additional predictor for stress leverages on the

same set of mobility features. The next chapter presents the accuracy of each set of

predictors for detecting stress and depression.

2.6.1 Contribution of Thesis and Acknowledgement

The overall ideation and realisation of this research project were accomplished to-

gether with my advisors, Dr. Rajesh Balan and Dr. Youngki Lee. StressMon was

orchestrated by the works of many. I thank SMU’s LiveLabs Urban Lifestyle In-

novation Platform for providing the LiveLabs and Grumon systems, to act as main

sensing mechanisms, and resources to conduct the user studies for StressMon. In

Table 2.3, I summarise how various people contributed to StressMon.
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CHAPTER 3

LONG-TERM USER STUDY

In this chapter, I describe the long-term user studies conducted across various stu-

dent groups during academic year 2017 (Fall) to 2018 (Fall) at Singapore Manage-

ment University (SMU). These user studies were a means through which I sought

to understand (1) students’ behaviours on campus and group interaction with their

workgroup peers, (2) their mental well-being and team processes associated with

work stress, and (3) the validations of my assumptions and model solutions. Ap-

pendix A lists the IRB-approvals to conduct the studies. Appendix B and C list the

validated scales used to collect ground truth data.

3.1 Ethical User Consideration

With ethics as the moral anchor of mental health research, the user studies were

carried out with a full approval from the Institutional Review Board (IRB) at SMU.

Potential risks include adverse psychological and social effects on students from

reflecting on stressful events. Further, the user study was vulnerable to conflicts

of interest since students’ academic performances (grade point average, GPA, and

course grades) were collected. Hence, the following risk mitigations were taken:

1. We consulted a team of medical professionals from an established mental

health institution and academic professors from other disciplinary depart-

ments (Psychology department for mindfulness and mental health, and Or-
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CHAPTER 3. LONG-TERM USER STUDY

ganisational Behaviour department for team-related processes and states) to

verify scales of assessments and questions for the interviews.

2. I emphasised voluntary participation in the study recruitment advertising to

avoid any form of adverse coercion among students signing up for team par-

ticipation. For this reason, I worked on time arrangements with 10 Professors

for more than 20 different class sections to conduct in-class advertising.

3. Participants’ anonymity was guaranteed in three ways – First, all partici-

pants were issued anonymised Participant ID to identify themselves in assess-

ments/interviews. Second, I maintained a protected file that holds a mapping

of issued IDs and actual records. Third, I manually anonymised unintentional

disclosures of identities in materials such as interview findings and prior to

storing information.

4. I informed and encouraged participants to make sound health consultations

provided by our university from my first-hand encounters of psychological

distresses; for example, when participants broke down emotionally during

the interview session.

5. I avoided a potential conflict of interest, particularly in academic grading, by

collecting course grades and GPA after term results had been finalised and

published to all students.

6. Finally, I worked with course instructors who were not part of this research to

gather anonymised Software Engineering project team schedules.

3.2 Participants

To validate StressMon, I conducted user studies during Fall 2017 to end of Fall

2018, recruiting different student populations. In particular, the primary user study,

Study_SE, was purposed to build the detection models, while the other two studies,
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CHAPTER 3. LONG-TERM USER STUDY

Study_Valid1 and Study_Valid2 were to validate these models. Table 3.1 summarises

the demographics of the three studies.

3.2.1 Main Study: Study_SE

I recruited a total of 76 student participants (39 M, 37 F) in Fall AY2017, over a

period of 81 days. All participants were in the second year of Information Systems

(IS) major, and enrolled in the Software Engineering (SE) module that requires stu-

dents to work in pre-assigned groups to build semester-long projects. SE groups

are made up of 4 to 5 pre-assigned members, with no bias in gender, grade and

nationality. Additionally, students work with people they do not know, and who

have varying capabilities, personalities, and work styles. Project requirements and

team groupings for Software Engineering are typically announced on the first day

of class, and each team has the semester to build a fully working software arte-

fact while following the various processes required. These processes required team

members to spend equal amounts of time coding, then rotate programming pairs,

and deliver in multiple releases. We chose this course as it is reported anecdotally

as a highly stressful IS core module, mostly due to the pressures of having to work

closely with people whom you do not know, and juggling a multitude of technical

and management tasks.

3.2.2 Validation Study: Study_Valid1

Study_Valid1 is a smaller scale study in the Spring AY2017. This study ran on

the second half of the Spring AY2018 semester for 36 days, typically a time per-

ceived to be most stressful due to increasing deadlines and preparation for exams.

13 participants (3 M, 10 F) with a mix of Business Management and Social Science

majors were enrolled in a Business elective module, Social Entrepreneurship. Stu-

dents were in their Sophomore, Junior and Senior years. As part of the curriculum,

students worked in their own groups to complete a business plan presentation and

written report during the last few weeks of the semester.
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CHAPTER 3. LONG-TERM USER STUDY

3.2.3 Validation study: Study_Valid2

In Fall AY2018, 51 students (24 M, 27 F), across different majors and year of study,

participated. There was no specific target module; I approached instructors for five

different courses being Software Project Management (SPM, IS core), Interaction

Design & Prototyping (IDP, IS core), Information Systems & Innovation (ISI, IS

core), Computational Thinking (CT, IS core), and Programme for Writing and Rea-

soning (PWR, University core). In all these modules, students must form their

own groups to work either on a semester-long project (SPM and IDP) or short-term

project (ISI, CT and PWR). None of these courses required the intensive juggling

of technical and management practice, as is expected of SE.

3.2.4 Retention at Study End

Table 3.1 summarises details of all active participants, that is, students who con-

tributed at least 80% of all survey types and attended at least one interview session.

As with other long-term studies, managing user retention is critical yet inherently

challenging. At the end of study, 62 (out of 72) participants remained active in

Study_SE. 35 (out of 51) students, and 11 (out of 13) students were active for

Study_Valid1 and Study_Valid2 respectively. Out of the 11 teams who signed up

for Study_SE, 10 teams participated throughout the study, 5 teams enrolled and par-

ticipated for Study_Valid2. Study_Valid1 did not receive any team participation. I

validated from the interview responses that none of the inactive participants had

reported experiencing a highly stressful semester.

3.3 Study Procedure

Table 3.2 summarises all data collected for the user study. Each participant filled out

a pre-study questionnaire outlining their campus routines (e.g., meal breaks, sports,

frequented campus workspaces), academic (current GPA, modules enrolled), per-

sonal and social backgrounds (e.g., records of part-time jobs, sleeping habit, condi-
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Type Frequency Data Collected
Demographic Once Household, Social, Education,

Campus-related activities routines,
Big-5 [135], Gratitude [136]
Meaning in Life [137],
Satisfaction with Life [138]

Experience Sampling every 3 days Sleep duration, PSS-4 [139]
Self Assessment every 2 weeks PHQ-8 [98], PANAS [140],

Social Identification [141],
Social Loafing [76],
Social Cohesion [142]
Group Potency [143]

Interview mid term, major sources of stress,
term end accounts of significant

group experiences (pos/neg),
ways of managing team conflict

Post Interview term end source of stress [144]
Assessment (M) American Time Use Survey on

weekday activities [145]
MAC address of end of interview 1 location traces from

user’s mobile phone end of interview 2 Wi-Fi localisation system

Table 3.2: Summary of different types of data collected under four different
procedures; demographic survey, experience sampling, self-assessment and semi-
structured interview sessions. Note: Post interview assessment was added as part of
a modification procedure only for students from Study_Valid2, indicated with (M).

tion of living). Further, students self-assessed their personality traits (Big-5 [135])

and several other social and life indicators [136–138]. During the study, students re-

ported their stress levels using the PSS-4 [139], which is commonly adopted among

student and employee populations to evaluate their stresses [139, 146], every three

days. Approximately every two weeks, corresponding to the timeline provided in

Table 3.3, students participated in retrospective assessment for various measures

such as depression [98] and social identification [141]. Note that the practising psy-

chiatrists who evaluated our entire study strongly encouraged using PHQ-8 and not

PHQ-9, to avoid the ninth question about suicidal thoughts – our research team was

not trained to handle a positive answer to that specific question. As I wanted to

strike a balance between frequency of surveying and reducing user burdens, admin-

istering surveys every three days allowed me to collect sufficient samples for every

day of the week. Retrospective assessments were also timed before/after a critical
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CHAPTER 3. LONG-TERM USER STUDY

Event Description Period (in Day)
Collect assessment #1 3
M1: Release of proj. specs. 04 - 08
Collect assessment #2 15
M2: Team Goal 25 - 29
Collect assessment #3 36
1-Week Recess 39 – 43
Conduct interview #1 39 – 43
M3: User Acceptance Test (UAT) 53 – 56
Collect assessment #4 57
M4: Final deliverable 74-78
Collect assessment #5 75
Conduct interview #2 77-81

Table 3.3: Data collection periods were timed before and after critical SE milestones
(shaded rows and indicated as M#).

SE project milestone.

Additionally, students attended two semi-structured interview sessions at the

midpoint and study’s end. Sessions were guided by the questions stated below, with

follow-up questions to better understand how their team experiences affected differ-

ent aspects of their perceptions of being part of the team or how these experiences

were part of their major stressors.

1. What is your main source of stress and experiences of critical (positive or

negative) team events? Elaborate.

2. Did any of these events change the dynamics of the team, and if so, how did

it emotionally affect you?

3. If applicable, were problems in the team solved and how did the group com-

municate?

As part of the interview, students also provided their mobile phone MAC ad-

dress, allowing their location traces to be queried from the LiveLabs and Grumon

systems. Finally, Study_SE participants provided access to their SE project sched-

ule (i.e., a graded document maintained by all teams to keep track of project plans).

These records included information about meeting dates, duration, and location.
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CHAPTER 3. LONG-TERM USER STUDY

Note that all surveys collected were purposed as ground truth labels to validate

StressMon’s detection models - once the system is operational, it evaluates stress

solely based on passive location data.

3.3.1 Modification to Study Procedure

Surveying the main sources of stresses through open-ended means (semi-structured

interview) among students from Study_SE and Study_Valid1 proved inadequate to

understand the nuances and details of stresses students typically face, and thus led

me to revise a small portion of the second interview session with a survey adapted

from Yumba et al. [144]. The survey clearly defined the types of stress: academic,

personal, financial and environmental factors. I adopted the American Time Use

survey [145] to clarify the amount of time students spent on different activities on a

weekday.

3.3.2 Survey Portal

To enhance the process of data collection, I administered all surveys using Qualtrics

[147], embedded in a custom online portal driven by October-CMS open-source

PHP platform [148]. This portal, as illustrated in Figure 3.1, served as the primary

platform to facilitate in sending survey reminders and compensation updates. This

portal can be accessed at http://apollo.smu.edu.sg/mh_portal/ index.php

3.3.3 Compensation

Students were compensated with a maximum amount of USD 30 in two ways, (1)

for entering the study, and (2) for remaining active respectively. The compensa-

tion amount varies depending on how active they were at providing self-reported

surveys. Active participants were entered into a lucky draw to win a USD 76 cash

prize. In addition, a USD 37 bonus was offered to participants whose entire project

group joined and completed the study. All compensations were generously funded

45



CHAPTER 3. LONG-TERM USER STUDY

Figure 3.1: StressMon survey portal for data collection. This portal was developed
using October CMS and Qualtrics, for students to participate in surveys and check
monetary information.

by National Research Foundation (NRF), Prime Minister’s Office, Singapore under

its IDM Futures Funding Initiative.

3.3.4 Description of Assessment Scales

Despite a wide range of survey data being collected in these user studies, not all of

these assessments were used in this dissertation. Instead, they contribute to addi-

tional studies to potentially expand the capabilities of StressMon. In this section, I

describe the scales used to primarily validate StressMon.

Perceived Stress Scale (PSS-4): PSS-4 is a well-established scale, ranging

from 0 to 16, used extensively by students and employees [146, 149]. PSS-4 ac-

counts for negative and positive typed stresses through scoring. Having a score

close to 16 suggests severe amounts of negatively perceived stress [139]. Severe

negative stress has been found to result in adverse cognitive and emotional conse-

quences and in vulnerability to depression [150]. It is important to note that PSS-4

is not a diagnostic tool. Instead, the scale is only used to compare between people

in the same population.

Patient Health Questionnaire (PHQ-8): The use of PHQ-8 is more straight-

forward as the scale is a diagnostic tool with clear cutoffs – 0-4 (no/minimal depres-

sion), 5-9 (mild depression), 10-14 (moderate depression), 15-19 (moderate-severe
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depression), and 20-24 (severe depression). In fact, a PHQ-8 score above 10 can

yield categorical diagnosis of clinically significant depression [98].

Four-item Social Identification (FISI): The FISI item is the rating on a 7 point

Likert scale of ones agreement on the following statements; “I identify with [In-

group]”, “I feel committed to [In-group]”, “I am glad to be [In-group]”, “Being

[In-group] is an important part of how I see myself”. A higher score indicates high

level of social identification. The assessment needs to be conducted with more than

one group in order to determine if an individual highly identifies themselves with

their group. However, an alternative way is to conduct longitudinal studies on how

differently they assess themselves relative to the group over time [151].

Big Five Inventory (Big-5): The Big-5 is a test for personality traits on five

different dimensions; Extraversion, Agreeableness, Conscientiousness, Neuroticism

and Openness to experience. For each of these personality dimension, the scale has

6 sub traits for each trait to be assessed independently. In this study, I am particularly

interested in participants’ Neuroticism scoring. A high score indicates an individual

experiencing negative feeling such as anxiety, anger, or depression.

It is important to note that with the exception of Big-5, all scales were used

as validation of StressMon; as presented in Chapter 5, Neuroticism, one of the five

personality traits of Big-5, was used as a predictor for StressMon’s depression de-

tection model. Further, While these scales used as ground truth, the scores were

not treated as a diagnosis for any mental health condition. Instead, scores for each

assessment were processed into binary categories – for example, for stress, it is 0:

normal stress and 1: severe stress . Process of creating labels will be addressed in

the following chapters.

3.3.5 Location and Group Data

The bulk of my data collection comprised of WiFi signal sensed directly from every

AP to generate location and group information. I extracted three months worth of

WiFi signal data for Study_SE and Study_Valid2 and one-month for Study_Valid1;
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this accumulated to an average of 5,000 preprocessed location data points (equiv-

alent to 7 hours of location data) and 820 preprocessed group data points (2 hours

of group interaction data) per participant each day. Students were also detected to

have visited, on average, 96 unique locations on campus each month.

3.3.5.1 Description of Location Data

Each WiFi location entry corresponds to a connection made from the mobile phone

to an AP every 5 seconds. Each tuple consists of [di, ui, li, ai], where d is date-

time stamp, u is the hashed MAC address of connected devices (representing the

users), l is the location code at which the device is localised, a is the accuracy of

the localisation and i is the number of entries in the dataset. Each location code,

li, is mapped to a location name (in the format of <building name>_<level>_<room

name>), the location’s maximum capacity and current occupancy. Thus, each tuple

informs us of the amount of time a user is detected to be at a room-level location

and how ‘busy’ the location is between 97-99% accuracy.

3.3.5.2 Description of Group Data

Each group data extends a location entry with [di, gi, cti, lli, tti, lhi, si], where d

is datetime stamp, g is a concatenation of hashed MAC addresses connected to the

same AP over a period of time, ct is the last datetime the devices were detected as a

group, ll is the last location code the devices were detected as a group, tt is the total

time detected as a group, lh is the location history which provides a concatenation

of location and the detected time, and s is size of group or number of devices con-

catenated in g. Consequently, group data gives information pertaining to users who

make up the group, and the various locations and amount of time spent at different

locations over a period of time.
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3.4 Summary

Three rounds of long-term user studies were conducted as part of this dissertation.

Study_SE was a primary study purposed to build the detection models in StressMon,

while Study_Valid1 and Study_Valid2 were purposed to validate these models. I

recruited a total of 140 undergraduate participants. The studies ran between Fall

AY2017 to the end of Fall AY2018, running for a maximum of 81 days. 108 (out of

140) students actively participated in a standard protocol (of experience sampling

every 3 days, retrospective assessment approximately every 2 weeks, and semi-

structured interview sessions) to capture their self-evaluations on mental well being

and workgroup processes, as they naturally occur in their everyday life. While a

wide range of survey data was collected, in this dissertation, I narrowed my scope

of investigation to stress and depression and several strong indicators associated

with the mental health issues.
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DETECTION STRESS & DEPRESSION

In this chapter, I address three research questions: First, "Can we detect stress in a

person using only location data?" and, subsequently, "What effects do group-related

features have on stress detection?". With substantial evidence of individuals expe-

riencing depression from severe stress, I will address the third questions: "Can we

detect depression in a person using only location data?" and, subsequently, "What

effects do personalised features have on depression detection?" This chapter de-

scribes in detail the processes followed in building a stress detection model and the

outputs it produced. In addition, the chapter includes the development of a social

identification model to produce an optimisation output for better stress detection

results.

4.1 Preprocessing Labels Procedure

Recall in Chapter 3, students self-reported their stress levels every three days using

the PSS-4 as ground truth (see Table 3.2). First, I describe how these stress scores

were mapped into their binary equivalent and the way missing survey data was

handled. Then, I discuss the technique employed to deal with a highly imbalanced

dataset from converting the scores to binary labels.
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4.1.1 Labelling Stress

In all three user studies, PSS-4 scores have the following distribution: min=1,

max=16, median=8, mean=7.66, SD=2.35. I divided the scores into two groups:

severe stress (1, positive class) for the scores of 12 and above, two standard devia-

tions away from the mean, otherwise normal stress (0, negative class). Since PSS-4

is not designed as a diagnostic tool for severe stress, the threshold was referenced

from a work by Wartig et al. that provides norms for a sample with various ethnicity

(White, Mixed, Black African, and Asian, N>1500) [146].

Treating Missing Data: Note that all experiments in this dissertation utilised

data strictly from active participants, who self-reported at least 80% for each as-

sessment. That is, out of 27 stress samples collected, some students would have

missed a maximum of 6 data points. I treated the missing data by performing mul-

tiple imputation, particularly using multivariate imputation by chained equations

(MICE) [152]. Unlike more conventional methods (e.g., taking the mean or last

observation carried forward), MICE creates multiple predictions for each missing

data from (generally) 10 cycles to create a complete dataset as the coefficients in

the regression models converge to stability. When the existing data is highly pre-

dictive of missing values, the imputation will result in small but accurate standard

errors [153].

Study_SE Study_Valid1 Study_Valid2
no. of participants 62 11 35
severe stress 145 (9%) 3 (2%) 1 (1%)
normal stress 1529 (91%) 129 (98%) 944 (99%)

Table 4.1: Distribution of stress labels for all studies; 27 samples per Study_SE and
Study_Valid2 participants, and 12 samples per Study_Valid1 participants.

Label Data Distribution

Table 4.1 lists the distribution of labels. The PSS-4 conversion resulted in a distribu-

tion of more than 90% normal stress labels for all studies. Prior work [154] suggests

that the label imbalance is to be expected as individuals overwhelmed by stress tend
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to be outliers. Such skewed datasets can lead to poor prediction performance if not

corrected [154].

Treating Imbalanced Dataset:

I addressed the problem of imbalanced data-set by applying SMOTE [155] to syn-

thetically oversampled training set data in the severe stress classes. SMOTE is

widely applied in similar dataset problems as my own, and has shown to improve

over other re-sampling techniques including modifying loss ratio and class weights

[156]. Instead of duplicating original observations (likely to result in overfitting),

SMOTE works by first segmenting the data and generating synthetic observations

that closely represent the original data. That is, a synthetic sample is created be-

tween an original data point and its nearest neighbour. By creating new examples

inferred from existing ones, SMOTE avoids the problem of overfitting (from ran-

domly copying existing examples), but it introduces noise. Through SMOTE, the

handling of imbalanced dataset is achieved independently of learning algorithm.

Past experiments have found classifiers benefiting from SMOTE if data are low- di-

mensional (variables are not more than 100), and SMOTE reduces the bias towards

the classification in the majority class for SVM, RF and CART [157]. Note that up-

sampling was strictly contained in the training set; thus, the presented results reflect

the true performance of an unaltered imbalanced test set.

4.1.2 Labelling Depression

Based on related work [96, 158], assessments with PHQ-8 score >= 10 are treated

as a significant level of depression. Accordingly, scores of 10 and above (min=0,

max=24, median=8, mean=8.23, SD=4.77) were grouped as depressed (1, positive

class), otherwise non-depressed (0, negative class).
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Study_SE Study_Valid1 Study_Valid2
no. of participants 62 11 35
depressed 534 (32%) 28 (21%) 330 (35%)
non-depressed 1140 (68%) 104 (79%) 615 (65%)

Table 4.2: Distribution of depression labels for all studies; 27 samples per Study_SE
and Study_Valid2 participants, and 12 samples per Study_Valid1 participants.

Label Data Distribution

Table 4.2 lists the distribution of labels. The PHQ-8 conversion resulted in ap-

proximately 30% depressed students for all studies, matching published statistics of

about 4 million college students in the US [159]. Similarly, the data imbalance was

treated with SMOTE sampling.

4.2 Hypothesis Testing

Using the transactional model of stress and coping [53] as a way to understand how

individuals cope with activities, we know that coping is treated as the transactions

between the individual and environmental factors, their perceptions of stress. The

effectiveness of one’s coping strategies [53] determines if an event is indeed per-

ceived as stressful. As part of coping, for instance, it has been suggested in past

works, when experiencing stressful situations, individuals are likely to change their

behaviour, environment or the way they evaluate the situation. Miller et al. found

in their study that the change in behaviour was reported a common reaction in cop-

ing with stress. Specifically, individuals reporting higher levels of stress were more

likely to change their activity entirely [160].

To explore the feasibility of detecting stress using location data, I first developed

a set of hypotheses on mobility-driven features. I characteristically determined the

factors contributing to the presumed effect of stress based on common interview

responses by Study_SE students (to be discussed in Chapter 6), including how stu-

dents mainly felt stressed from spending the majority of their time on study-related

matters and how Software Engineering group project required much of their time.
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Hypothesis testing was performed to statistically validate features that can differen-

tiate students experiencing severe stress. For the ground-truth labels, I placed the

students in Study_SE into severe stress (n=4) and normal stress (n=58) categories,

based on their total average PSS-4 scores.

Methodology: The analysis was conducted in the following order: First, I visu-

ally examined the changes in mobility features over time, between the two groups

by averaging features every three days, and plotting them over the study duration

of 81 days. I defined Time Point, Tx as a sample made every 3 days – i.e., T24

= 24 * 3 = day 72 of the study. A secondary axis was added to plot the average

stress levels (measured by PSS-4 score) between groups. Then, I performed one-

way MANOVA to investigate the significance of the multivariate mean effects on

different features, and ran individual t-tests with Bonferroni correction to check for

specific mean differences across time periods.

4.2.1 Campus Routines

Based on prior research [161] which found high correlations between high per-

ceived stress of students and absenteeism (in classes and work-related activities), I

formulated hypotheses beginning with a conjecture that students with severe stress

are more likely to reduce their (physical) presence and interactions with working

peers on campus.

H1: Students with severe stress spend fewer hours on campus.

Overall, I observed students with normal stress incrementally spent more time on

campus, especially towards the second half of the semester. This is an expected

trend because students generally spend more time working on projects and prepar-

ing for examinations as the semester ends. Yet, students with severe stress were

found to spend significantly less time on campus (p=0.04), specifically on T24 and

T26 (see Figure 4.1). Interestingly, students with severe stress began to show decline

participation during the same time their stress level peaked on Day 21.
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Figure 4.1: Mean plot on total time spent on campus between normal stress and
severe stress student groups - T24 and T26 are highlighted time points where the
two distributions were statistically different (p=0.04).

H2: Students with severe stress participate less in work activities on campus.

Students with severe stress were significantly less involved (p<0.01) in work-related

activities (i.e., seminar attendance, self-study and group project activities) than stu-

dents with normal stress (see Figure 4.2). A more interesting observation is how

severely stressed students began the semester displaying more participation in these

activities, but decreased over time. Further, two large dips occurred around the re-

cess week (T12-T14) and the end of the semester (T23-T25). These time points closely

corresponded to important SE project milestones and were significantly different

between both groups (see Table 3.3 for critical SE milestones). As with the time

spent on campus (Figure 4.1), students with severe stress demonstrated declining

participation in their study activities at the start of Day 21, with more significant

time points spread out throughout the semester.
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Figure 4.2: Mean plot on total time spent on work-related activities between normal
stress and severe stress student groups - multiple time points are highlighted where
the two distributions were statistically different (p<0.01).

4.2.2 Group Interaction

The interview findings identified almost half (42%) of the Study_SE students who

expressed Software Engineering as the primary stressor, and attributed the over-

whelming pressure to relationship tension. With group interaction proving as cru-

cial indicators of stress, I hypothesised:

H3: Students with severe stress participate more in SE-related activities.

Figure 4.3 illustrates trends, specifically for SE sessions among our students. Hav-

ing SE (anecdotally) as one of the most stressful modules among Study_SE stu-

dents, I expected students with severe stress would spend significantly more time

on SE. This is true, however, specifically for project management matters (p=0.04).

Note: students with severe stress spent less time on programming-related tasks (on

campus) but the difference is not significant. In the beginning, their involvement

appeared to be significantly lower than the rest at T4, gradually peaked during the

recess week (Day 39-43), and were significantly different at various time points. As
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Figure 4.3: Mean plot on total time spent on Software Engineering project man-
agement and knowledge sharing sessions between normal stress and severe stress
student groups - multiple time points are highlighted where the two distributions
were statistically different (p=0.04).

explained, this is a typical time among students to ramp up their SE project for two

reasons – (1) class breaks allowed for more project time and (2) it is right before a

major project milestone (user testing). A similar pattern was also displayed between

Day 70 to 80, which corresponds to the final project milestone.

H4: Students with severe stress are generally likely to be more involved in group

activities on campus.

From Figure 4.4, I found students with severe stress spent significantly more time

in groups on work-related activities than normal stress students (p=0.04). For ex-

ample, at T7, severely stressed students spent approximately 5 out of their total 9

hours on campus involved in group-related activities. Note, this record does not

distinguish between work and non-work group activities. However, it was noted

from the interviews that students spent most of their group projects on Software

Engineering. Their group involvement dipped during the term break when group

projects were most expected. Despite showing higher stress levels towards the end
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of the semester, group participation among students with severe stress continued to

peak on Day 70.

Figure 4.4: Mean plot on total time spent with groups on campus between normal
stress and severe stress student groups - T7 and T27 are highlighted time points
where the two distributions were statistically different (p=0.04).

4.2.3 Theoretical Argument for Hypothesis Results

To date, cognitive psychology has led researchers to promising leads on the ef-

fects of stress. Assuming that unmanaged stress will, at some point, change one’s

behaviour, this hypothesis testing sheds light on the activities that were most sig-

nificantly affected by stress. Note that all features were tested but not all yielded

significance.

The transactional model of stress predicts that how an individual interprets a

stressful event influences their reaction to the situation. Additionally, Zohar et al.

found that while individuals are likely to experience various stressors at once, the

most salient stressor takes controls over how the person appraises and respond to a

situation. In this case, I determined that severely stressed students exhibited signif-

icantly different behaviours in their overall involvement on campus and with their

58



CHAPTER 4. DETECTION OF STRESS & DEPRESSION

Software Engineering group. Separately, I determined through the interview ses-

sions that Software Engineering was their main stressor throughout the semester.

For three severely stressed student, workgroup situations were particularly threat-

ening as they perceived themselves as not possessing the skills required to fulfil

group tasks compared to others in the team. In contrast, one student expressed he

did not receive the support of other members to deliver the project up to his stan-

dard. The concept of coping with stress was originally focused on the individual

aspect in terms of personality variables [162]. However, ongoing research efforts

today are defining stress as per [52], where individuals, collectives and place must

be treated as one unit, not independently. These findings led me to conjecture that

a measure sufficiently representing the social dynamics of individuals within their

workgroup is a key indicator of stress.

4.3 Evaluation of Stress Model

Table 4.3 summarises the results with different sets of features used for the stress

models, ModelS_SE and ModelS. ModelS_SE is specific to Study_SE student pop-

ulation as it used Domain-specific (SE-related) features. ModelS is a generalised

version which excluded all Domain-specific features.

Feature Settings Performance
Sec. Model Study Type (Set) raw/abs/rel Interval AUC TPR (%)
4.3.1 ModelS_SE Study_SE General (All) + rel+abs 6-days 0.96 98.93

Domain-
specific (All)

4.3.2 ModelS All General (All) rel+abs 6-days 0.97 96.01
4.3.3.2 ModelS_SE+SI Study_SE General (All) + rel+abs 6-days 0.96 88.08

Domain-
specific (All)

+ SI

Table 4.3: Summary of stress model configurations achieving best performances.
Sections 4.3.1, 4.3.2 and 4.3.3.2 provide detailed results for each experiment.
ModelS_SE is a highly specific stress model that uses Domain-specific (SE-related)
features, while ModelS excludes all Domain-specific features. ModelS_SE+SI adds
social identification binary outcome as additional feature to detect stress.
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Methodology: I conducted the evaluation in three parts: First, I performed a

Group K-fold cross-validation (CV), whereby 12-13 distinct students from Study_SE

made up each test fold to determine various model settings for ModelS_SE. Next, I

conducted Train-Test by training on the whole Study_SE dataset, and validated indi-

vidually on Study_Valid1 and Study_Valid2 . Finally, I built an All-population model

by combining all users from three populations and performed a Group K-fold CV. A

Leave-one-out validation was not used due to the highly imbalanced dataset which

might result in no one severe stress sample in a user. Across 12-13 students each

contributing 27 samples, at least 1 sample in each group reported severe stress. Note

that input to model and performance metrics was defined in Chapter 2.5.

Input and Output: Datasets to build and evaluate the stress model are made up

of location and group features. Over an 81 day study period, these mobility features

were aggregated every three days, where time periods correspond to the frequency

of self-reports collected as ground truth labels. Accordingly, the labels are mapped

to each feature vector. The output for the stress model is a binary outcome of 0:

normal stress and 1: severe stress.

4.3.1 Cross-Validation Experiment: Study_SE – ModelS_SE

Classifier: First, I determined the use of algorithms, comparing Support Vector

Machine (SVM) and Logistic Regression (LR) against Random Forest (RF) and all

features, as the base classifier. Tuning all classifiers to achieve good performance

on the positive class (high AUC), I empirically determine the cutoff of the classifier,

which is typically set at 0.5 to 0.45 (thus, at the cost of a high false negatives rate).

As shown in Table 4.4, RF yielded significance with AUC=0.97 (at p=0.01 level)

than LR and SVM (0.57 and 0.86 respectively) and, subsequently, was retained as

the choice algorithm.

Features: Next, I investigated the hypothesis that change features make the

strongest predictors of stress (see Section 2.4.4). I achieved the highest AUC score

of 0.97 using a combination of raw and change features (raw+rel+abs). However,
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Logistic Support Vector Random
Regression (LR) Machine (SVM) Forest (RF)

AUC 0.57 0.86 0.97
TPR (%) 69.77 79.41 99.60
TNR (%) 35.35 68.27 72.00
ACC (%) 37.35 69.27 74.44 (*)

Table 4.4: Results from using all features on different algorithms. (*) indicates
significance at p=0.01 level.

raw+rel+abs raw rel+abs
AUC 0.97 0.91 0.95

TPR (%) 99.60 98.93 99.33
TNR (%) 72.00 59.65 69.49
ACC (%) 74.44 63.18 72.08

Table 4.5: Results from using different combination of feature types on chosen
Random Forest algorithm; All (raw+rel+abs), Raw (raw) and Change (consists of
relative change, rel and absolute change, abs).

All Change Individual Group
rel+abs (location data) (group data)

AUC 0.95 0.85 0.69
TPR (%) 99.33 95.7 97.99
TNR (%) 69.49 60.44 22.03
ACC (%) 72.08 63.37 28.38

Table 4.6: Results separating the changes in group-related features from individual
(routine) features; Change (rel+abs), Individual (change features extracted from
location data) and Group (change features extracted from group data) to detect stress
at 3-days interval.

the addition of raw set did not lead to significantly better performance. Hence, I

retained only the change set as a smaller set of features to avoid developing an over-

fitted or computationally expensive model. Using change features, I was able to

achieve an AUC of 0.95 (see Table 4.5). In addition, I used recursive feature elim-

ination (RFE), with a backward elimination of step size=1, on all change features.

However, no change features were completely redundant and the performance of

the RF classifier peaked with all change features considered. Note: this includes

Domain-specific change features.

Individual and Group Interaction Features: To better understand the best set

of features used in the stress detection model, my next step was to compare each
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Description Type varImp
Number of times engaged in studying abs (Work) 100.0
Number of times being in solo group abs (Group) 48.57
Number of times being in solo group rel (Group) 40.22
Number of times engaged in eating abs (Non-work) 33.68
Number of times engaged in studying rel (Work) 32.38
Number of times engaged in exercising rel (Non-work) 31.83
Number of unique building visits abs (Non-work) 29.60
Number of times engaged in transiting abs (Non-work) 29.21
Total time spent with all groups abs (Group) 25.34
Number of times engaged in attending lectures rel (Work) 24.67

Table 4.7: Top 10 features for detecting severe stress, using ROC curve analysis,
and sorted by variable importance (varImp).

model performance using only individual routine features (features extracted from

location data, see Table 2.2) and social interaction features (features extracted from

group data). As summarised in Table 4.6, the use of group-related features alone

did not yield high performance. Instead, a large portion of its inaccuracies was at-

tributed by the signification reduction in TNR. In contrast, the changes in individual

routines make stronger predictors from correctly classifying more negative cases.

However, the combination of all change features proved to significantly improve

overall accuracy to 72.08% from 63.37%. Table 4.7 lists the top 10 features sorted

in the order of variable importance, that is, the ROC curve analysis conducted on

each predictor was used as the measure of importance. Accordingly, I retained all

change features.

Time Window Experiment: Finally, I sought to determine the time at which

the stress model would detect severe stress most accurately. With gradual time

increase every 3 days (corresponding to the frequency of PSS-4 samples collected), I

observed the highest AUC=0.96 on a 6-days interval. The reduced misclassification

rate of 22.41% with 6-days interval is a significant improvement (at p=0.1 level)

compared to the 3-days interval (see Table 4.8). As the interval increases to 9-days,

both TPR and TNR achieved comparable results, leading to better overall accuracy

of 85.48%.

At this point, it is important to consider time as key factor of intervention. That
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3-days 6-days 9-days 12-days 15-days 18-days
AUC 0.95 0.96 0.89 0.82 0.89 0.83

TPR (%) 99.33 98.93 88.55 77.91 67.35 56.93
TNR (%) 69.49 75.54 84.62 87.86 90.27 91.52
ACC (%) 72.08 77.59 (*) 85.48 (*) 87.93 89.41 89.83

Table 4.8: Results from calculating chosen Change type (rel+abs) features on dif-
ferent time intervals; from 3 to 18-days. (*) indicates significance at p=0.1 level.

is, while stress is regarded as an everyday experience and chronic stress evolves

over a longer period of time, prolonging detection of severe stress by more than a

week might result in students missing out on vital help, leading to depression. Since

timeliness should be prioritised over accuracy, similarly, prioritising true positives

over true negatives, I concluded the best model settings for detecting severe stress

using Random Forest (RF) algorithm, all change set features (rel+ abs) calculated

at a 6-days interval –ModelS_SE.

4.3.2 Additional Validation: Study_Valid1 & 2 – ModelS

Using all change features included Domain-specific (SE) features for ModelS_SE;

thus, it is highly tailored to SE students in the Study_SE sample. To build a gen-

eralised model for other populations, I excluded all Domain-specific features as

ModelS. First, I trained on Study_SE sample and tested on different populations.

Then, I performed a Group 5-fold CV on all three populations. Table 4.9 lists our

results in detail.

Method Train Test AUC TPR (%) TNR (%) ACC (%)
Train-Test Study_SE Study_Valid1 0.91 66.67 90.70 99.17

Study_SE Study_Valid2 0.94 100.0 81.25 81.27
Group5-fold Folds 2-5 Fold 1 0.98 94.44 86.81 87.06
(All pop- Folds 1,3-5 Fold 2 0.96 88.88 84.26 84.34
ulation) Folds 1-2,4,5 Fold 3 0.97 98.64 80.88 82.09

Folds 1-3,5 Fold 4 0.96 98.07 75.46 77.65
Folds 1-4 Fold 5 0.96 100.0 76.38 77.65

Average 0.97 96.01 80.76 81.76

Table 4.9: Summarised results for stress model, ModelS, on three different vali-
dations. ModelS is a generalised stress model that excludes all Domain-specific
features.
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This solution achieved a reduced AUC=0.91 and 66.67% TPR for Study_Valid1.

That is, out of 3 severe stress reported by 2 students, 1 was misclassified. Approx-

imately 10% misclassification (90.70% TNR) was as a result of 6 students, 2 of

whom did not report severe stress but felt depressed. The same test on Study_Valid2

students successfully yielded an AUC=0.94, 100% TPR as it correctly detected 1

severe stress instance. While misclassification rate dropped to 18.73% (81.25%

TNR), the false detection, unfortunately, affected most students (31) in the sam-

ple. However, out of 35 students, 14 had reported feeling depressed despite not

experiencing severe stress.

The final step combined all students from three user studies to build an all-

population stress model, evaluated using a Group 5-fold CV. I achieved an average

AUC=0.97 and 96.01% TPR (4 out of 149 severe stress instances would go un-

noticed). Unfortunately, the overall accuracy of 81.76% continued to affect most

participants by identifying them as severely stressed at some point in the study. Fur-

ther, at least 19 (out of 108) students who did not report any accounts of severe

stress were misclassified multiple times during the study.

4.3.3 Optimising Stress Model

To the best of my knowledge, there has been no Systems-related work which ex-

amines social dynamics specific to workgroups in detecting stress. Recall in Sec-

tion 4.3.1, I did not fully capitalise on the Domain-specific features (representing

workgroup interactions), which only achieved an overall accuracy for 77.59% and

was eventually left out to build a generalised model for other populations. In this

section, I demonstrate how Domain-specific features can be further exploited to

separate workgroup patterns between groups of students. Prior work has found so-

cial identification to influence the time individuals dedicate themselves to working

with the team [163]. Separately, it was concluded to be a strong indicator of stress

from reasons such as working long hours and burnout [15]. Accordingly, I experi-

mented on generating a collective indicator for individuals of their workgroups us-
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ing mobility features – specifically, by artificially categorising the measure of social

identification. The experiments presented in this section only examined Study_SE

population for Domain-specific features to be used. Unfortunately, generating this

set of features cannot be generalised to other populations as it requires an addi-

tional validation of a specialised resource such as a project schedule. It is impor-

tant to note this dissertation did not investigate the temporal dynamics of social

identification and its relationship to stress – instead, it sought to easily differenti-

ate both workgroup-specific behaviours and interaction patterns of individuals from

the process of distinguishing two groups of students with contrasting identification.

However, I discuss several findings of social identification in relation to stress by

conducting my qualitative assessments in Chapter 5, and present future extensions

to this work in Chapter 7.

4.3.3.1 Labelling Social Identification

To determine a student’s social identification at study’s end, I performed a thorough

inspection on all self-reports related to social identification, specifically by verify-

ing 5 samples of Four-Item Social Identification (FISI) assessment [83, 141, 164]

with 2 interview responses. Recall, the assessments were intentionally timed close

to critical SE milestones (listed in Table 3.3), as I expected to observe changing

identifiers during stressful situations of meeting project milestones. Missing data

were similarly treated with MICE (see Section 4.1.1). A final social identification

outcome at study’s end, SI_final, was achieved in three-folds: (1) FISI scores were

binarised based on a median-split, (2) labels (FISI #1 to #5) were compared with

the interview responses; specifically, FISI #1-3 with Interview #1, and FISI #4 and

#5 with Interview #2, and (3) I manually assigned a concluding social identification

label, annotated by SI_final, based on participant’s interview response in session #2.

I utilised the Four-Item Social Identification (FISI) scale, which is anchored on a

Likert scale from 1 (strongly disagree) to 7 (strongly agree) – a high score indicates

a high identifier. Figure 4.5 illustrates the distribution of FISI scores by Study_SE
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students throughout the study (N=62, mean=5.21, SD=0.99, median=5.5, min=1,

max=7). To simplify the interpretation of social identification, I performed a me-

dian split to transform a continuous variable into a categorical variable – a score

below median (5.5) places an individual as having 0: low social identification, oth-

erwise 1: high social identification. Unfortunately, categorising continuous data

weakens the observed relations between variables, with studies showing reduction

in correlations between variables by 20.2% [165]. Humphreys et al. argued against

using artificial categorised data to perform analysis of variance (ANOVA) to test

influences of an outcome variable [166]. Despite numerous rebukes, Farrington

proposed this method as one way of handling data with highly skewed distribution

while understanding a variable is not linearly related to an outcome [167]. This

study did not address the temporal dynamics of social identification and its rela-

tionship to stress – instead, it sought to easily differentiate workgroup-specific be-

haviours and interaction patterns of individuals from distinguishing two groups of

students with different identification.

Coding Interview Response: To ensure stability, accuracy and reproducibil-

ity, the same two coders were maintained for all interviews, and both coders used

a standard coding scheme to reflect key categorisations such as the main source

Figure 4.5: Social identification: Distribution of scores for Study_SE students on
their Software Engineering workgroup throughout the study.
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of stress, types of and reasons for critical events, changes in team involvement,

types of emotional reaction from critical team events, and main strategy for group

communication. Rousseau et al. concluded that showing care and support for team

members [168] through means of creating opportunities to learn, providing tangi-

ble assistance and communicating with more positive emotional engagement, all

help reinforce a stronger sense of identification in an individual. Hence, responses

that checked negatively on critical events, less engagement with the team, negative

emotional reaction and declining communication would all indicate students did not

identify with their team (0: low social identification), otherwise, a 1: high social

identification.

Label Data Distribution: Grouping participants based on their SI_final resulted

in 36 students with high social identification and 26 students as low social identi-

fication. It is important to note that contradicting labels were determined for at least

7 students who consecutively reported FISI labels not matching their interviews; for

example, FISI #1-3=[0-0-0] but Interview #1=[1] and FISI #4-5=[0-0] but Interview

#2=[1]. Unfortunately, through this method, I was not able to precisely identify un-

true scores. Hence, these samples were retained.

4.3.3.2 Evaluation of Model – ModelS_SE+SI

This experiment aimed to investigate if it is possible to detect patterns that char-

acterise an individual as a high or low identifier through inferring their workgroup

behaviour over a period of time. Here, I defined model performance by three mea-

sures – accuracy, precision, recall and AUC score (i.e., value of 1 indicates perfect

classification). I maintained a group 5-fold CV, splitting participants at 80-20 (%)

for training and testing; that is, 50 participants exclusively for training and 12 par-

ticipants for testing.

Input and Output: Input dataset to build and evaluate the model is made up

of features extracted from location and group data collected from the WiFi infras-

tructure. Over an 81 day study period, features were aggregated at critical time
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points corresponding to Table 3.3 (Day 3, 15, 36, 57 and 75). Each tuple consists

of [xa_t1...tn,xb_t1...tn, xc_t1...tn, y], where xa to xc represent different mobility features at

time point 1 to 5, and y is an individual’s social identification label, 0: low social

identification or 1: high social identification, as described in Section 4.3.3.1.

Features: Figure 4.6 summarises the results for detecting social identification

at study’s end. I employed a wrapper-based feature selection method which trains

a RF classifier, resulting in a small subset of important Group (G) and Workgroup

(WG) typed raw features (all important features selected were based on setting a

threshold of more than 50% using ROC curve analysis). To avoid developing an

overfitted or computationally expensive model, I limited the use of features to only

(G)+(WG) sets with feature threshold above 80%.

Description Type (Set) varImp
Total time spent with all groups General 100.0
Number of times being in solo group (Group-G) 86.28
Number of times being in small group 81.81
Number of times being in medium groups 81.69
Number of times engaged in SE Domain-specific 80.68
Number of times did not engaged in SE on campus (Workgroup-WG) 63.06
Number of times engaged with SE members 57.47
Number of times engaged in SE 54.06
knowledge sharing sessions
Number of times engaged in SE meetings 52.73

Table 4.10: Top 9 features based on a threshold > 50% using ROC curve analysis,
and sorted by variable importance (varImp).

HMM-based Classification: Detecting individuals in two separate groups is

a binary classification problem, which is typically solved using algorithms such

as RF or SVM. However, these algoritms do not consider the temporal sequenc-

ing between observations, which can be achieved from using HMM. I utilised the

HMMWeka package [169] for this implementation. The objective is to determine

from a set of observations over a period of 81 days whether an individual is in either

one of two states – high social identification or low social identification – at every

two weeks. Finally, I classify an individual as a high or low identifier based on the

majority of the sequenced outcomes. Given the model, λ, and (G)+(WG) features
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as sequence of observations V T , an HMM consists of an initial state probability,

t, a matrix T of transition probabilities between states, and emission distribution

e(s) – the maximum likelihood training for these parameters were calculated by

counting the occurrence of the observations and the hidden states (ground truth la-

bels of artificially categorised FISI assessment, see Section 4.3.3.1). Then, given a

new sequence of observations, o, the forward algorithm is used to find the posterior

probability of observing that sequence of states given the model, P(o|λ). Finally, I

determine the final outcome of an individual’s identification by employing a major-

ity rule from the series of outcomes, and measure its accuracy against the ground

truth, SI_final.

As charted in Figure 4.6, the average accuracy of the classification is 75.90%

(79% precision, 76% recall, 0.83 AUC). That is, 15 out of 62 participants’ social

identification were misclassified at study’s end. This experiment also compared

the performance of classification with features treated independently using SVM

and RF as common supervised learning methods (see Chapter 2.5). The HMM-

based classification maintained a significantly better performance (at p=0.01 level).

Figure 4.6: Results from using Group and Workgroup set features on three different
algorithms; HMM-based classification which takes into account the temporal se-
quence of features, and Support Vector Machine (SVM) and Random Forest (RF).
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ModelS_SE incl. manually-assigned incl. mobility-driven
All-typed social identification social identification
features label outcome

AUC 0.96 0.96 0.96
TPR (%) 98.93 90.04 88.08
TNR (%) 75.54 92.43 93.09
ACC (%) 77.59 91.61(*) 92.05 (*)

Table 4.11: Summarised results compared ModelS_SE with mobility-drive predicted
outcomes, ModelS_SE+SI and manually-assigned labels for social identification. (*)
indicates significance at p=0.01 level.

Another concern is deriving poor quality labels; since the final label relied on in-

terview coding, which may not accurately represent an individual’s identification.

For instance, I found at least 7 participants who provided contrasting interview re-

sponses from their FISI assessments (see Section 4.3.3.1). The removal of these

dubious instances from the training set improved precision by 3%, correctly classi-

fying two more participants (79.10% accuracy, 82% precision, 79% recall and 0.85

AUC score).

Including SI-outcome as a Feature: Table 4.11 summarises the difference be-

tween using a mobility-driven social identification feature and manually-assigned

social identification label (described in Section 4.3.3.1). I continued the optimi-

sation experiment by adding the predicted outcomes from the social identification

model as an additional feature to the stress model, noted as ModelS_SE+SI . Inter-

estingly, the use of social identification outcome would lead to improvements in

detecting true negative cases, while maintaining AUC at 0.96 (difference is not sig-

nificant). However, TPR reduced by 8%. Despite the inaccuracies of misclassifying

13 participants using a social identification model, the use of a mobility-driven fea-

ture helps maintain true negative cases with a significantly higher accuracy above

90% (at p=0.01 level). While true positive rate is decreased by approximately 10%

for ModelS_SE+SI compared to ModelS_SE, the AUC score is retained at 0.96.
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4.3.3.3 Workgroup Features Analysis

To better understand how mobility patterns relate to social identification in work-

group (SE) practices, I analysed the domain-specific Workgroup (WG) raw features,

as described in Table 2.2. Specifically, I aimed to investigate if an individual’s

social identification [170] could be explained by observing mobility variations.

For instance, Bos et al. argue that physical proximity can lead to emergence of

groups [171]. As part of the SE course, students are graded for their project man-

agement practices (e.g., students must engage in pair programming, project man-

agerial role and alternate programming partners). For this reason, I began with a

conjecture that:

Students with high social identification demonstrate more physical

proximity to their workgroup-related activities than students with low

social identification.

Methodology: For this analysis, students were grouped based on their SI_final:

high social identification (n=36) and low social identification (n=26) and their

mobility patterns on SE-related activities, totalled for each given period, were com-

pared at different assessment time points (corresponding to Table 3.3). I conducted

a Mann-Whitney U non-parametric test and used the median differences between

groups as they had similar distribution patterns. Note that this analysis included

all (WG) features; however, only presents findings that indicated trends towards

significance.

Results: Figure 4.7 illustrates the different trends of mobility patterns observed

for each group on several SE-related group tasks, most likely to take place on cam-

pus. Overall, the maximum time spent on project-related tasks was lower for stu-

dents with low social identification than for high identifiers. On assessment period 3

(Day 39 to 43), where contributions among members were expected to be the most

(to complete development tasks during recess week and meet UAT milestone, see

Table 3.3), low identifiers spent approximately 1.5 hours less on meetings (p=0.11),
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5 hours less on pair-programming (p=0.11) and 6 hours less on knowledge shar-

ing session (p=0.05) than others. 14 out of 17 low identifiers who reported pri-

marily being burdened by SE throughout the semester, expressed in the interview

they received very little team support from team members for various reasons. For

example, one participant was frustrated for not receiving the guidance needed for

technical tasks. One student admitted that he chose to exclude himself from the

team after failing to deliver components for UAT, one of the key milestones that is

graded in the course.

Students with low social identification were observed to start the semester’s

project with fewer off-campus and/or discrepant tasks (SEunique_count) between

assessment periods 1 and 2. This trend incrementally increased over the semester.

Despite observing close to significant differences for other SE activities (p=0.11),

the contrasting behaviours supported my qualitative findings from the interview ses-

sions that low identifiers spent less time working together with their group members.

For example, one student said that members were often busy (with other project

commitment) and could not dedicate themselves to the project as much as he did.

These students led the technical tasks and quite often juggled project management

responsibilities. Some students believed their technical incompetencies held the

team back, but surprisingly maintained high identification from the support of other

members – in these case, students who found themselves less competent were more

likely to be in conflict with the most (technically) competent in the group. For ex-

ample, one participant reported that she was blamed for making errors in the code.

Later, it became much easier for her not to participate in decision-making processes,

as how other members remained passive. Interestingly, there were more cases of

low identifiers who were technically inclined expressing reluctance to work with

the same group again. Unfortunately, students such as these were the most salient

and emotionally charged with low social identification. Note that when asked to de-

scribe positive critical events such as a celebratory meal for a team member’s birth-

day or milestone completion, there was no mention such events had been shared
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Figure 4.7: Graphs chart median differences for SEmeeting_count, SEknowl-
edge_count, and SEunique_count, and SEprogramming_count that correspond
with assessment periods. Shaded circle on graph indicates significant differences
(p=0.05), and unshaded circle indicates close to approaching significance (p=0.11).

within the team.

Conclusively, these experiments demonstrate the potential of separating differ-

ent behavioural modes by observing an individual’s identification. Nonetheless, it

must be pointed out that the findings related to social identification require in-depth

analysis, particularly in its relation to stress. In Chapter 5, I report several comple-
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Figure 4.8: Detection results of 28 participants from Study_SE; Note that four
Study_SE students who scored an average of 12 in their PSS-4 assessment through-
out the study are indicated by (*). They were the most critical cases of severe stress
.

mentary insights for understanding how social identification affects stress, and vice

versa.

4.3.4 Summary of Stress Detection

This chapter presented the results of detecting stress in three groups of students,

as summarised in Table 4.3. Overall, the evaluation demonstrated the strength of

StressMon in two different ways. First, this approach did not require training a

new stress model to detect severe stress in different groups of students. For ex-

ample, even when using a model trained solely from students enrolled in Software

Engineering (Study_SE), the ModelS still achieved a high 0.91 and 0.94 AUC score

when used on two different populations, Study_Valid1 and Study_Valid2, respec-

tively. Second, the removal of Domain-specific features (i.e., features related to

74



CHAPTER 4. DETECTION OF STRESS & DEPRESSION

Software Engineering project) increased the TNR for our all-population model. I

demonstrated how StressMon was able to achieve and prioritise high TPR, which

improves the likelihood of StressMon detecting the small number of severe stress

cases even at the cost of misclassifying more cases of no stress as normal stress. The

tradeoff which prioritises detecting the more important cases correctly is appropri-

ate for an early warning solution. Third, improving the detection of true negative

cases can be achieved from using social identification as additional feature. Unlike

the baseline stress model, ModelS, which uses strictly change features (rel+abs), the

social identification model is built from utilising raw mobility features to generate a

predicted outcome at study’s end. That is, the model did not account for changes in

behavioural patterns in individuals for predicting social identification. The down-

sides of using social identification predicted outcome are (1) predicting such out-

come, which require the use of Domain-specific features generated from workgroup

activities, and (2) the feature is generated after approximately 2.5 months of be-

havioural analysis; ModelS_SE+SI retrospectively improves detection of true negative

cases in severely stressed students. As shown in Figure 4.8, using social identifi-

cation outcome as an additional feature resulted in the misclassification of severe

stress for 12 students. Overall, however, the reports of severe stress for these stu-

dents were sparse and not what should be considered a critical case for StressMon

to flag.

4.4 Evaluation of Depression Model

In this section, I sought to investigate if the features (and setting) used to build the

stress model, ModelS could accurately detect depressed users. Using a Random

Forest (RF) algorithm, General change set features (rel+ abs) calculated at a 6-days

interval, the model’s predictions were at random chance (TPR: 59%, TNR: 50%)

in detecting individuals showing significant signs of depression; the results were

unsurprising. While stress and depression often bear similarities in behavioural
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Feature Settings Performance
Sec. Model Study Type (Set) raw/abs/rel Interval AUC TPR (%)
4.4.1 ModelD Study_SE General (All) rel+abs 15-days 0.72 70.25
4.4.2 ModelD All General (All) rel+abs 15-days 0.78 77.96
4.4.3 ModelD+ All General (All) + rel+abs 15-days 0.88 91.21

Neuroticism

Table 4.12: Summary of depression model configurations achieving best perfor-
mances. Sections 4.4.1, 4.4.2 and 4.4.3 provide detailed results for each experiment.
ModelD+ is an optimised depression model that uses personality (neuroticism score)
as addition feature, while ModelD operates exclusively on mobility-driven features.

Figure 4.9: Results from calculating Change type (rel+abs) features on different
time intervals; from 6 to 18-days.

symptoms, depression evolves over a much longer period of time. For example,

typical assessment of depression using validated scale is measured at 2 weeks [98].

4.4.1 Cross-Validation Experiment: Study_SE – ModelD

Time Window Experiment: Building on prior work, I repeated the time window

experiment by calculating the change in all General features between 3 days up to

30 days. Through this experiment, I was able to empirically determine the opti-

mal window size for calculating changes in behaviours as 15-days to best detect

depression (differences in time intervals are not significant). Figure 4.9 charts the
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performances (TPR and TNR) from day 6 to day 18. Note that performances from

day 18 onwards continued to decline on both metrics.

Individual and Group Interaction Features: Depression detection using RSSI

values has been previously proposed by Ware et al. [96], but the authors did not

consider group-related features. Note that their experiments ran on two phases, re-

sulting in an average TPR of 77.00% and TNR of 62.50% (Phase 1, TPR:80% and

TNR: 62%. Phase 2, TPR: 73% and TNR: 63% for day-time monitoring). Accord-

ingly, I investigated the difference in model performance from using group-related

features and (individual) location features. To achieve this, I built the depression

model using different sets of change features, calculated at a 15-days interval. As

summarised in Table 4.13, I was able to quickly determine that by removing group

features, the model was correctly classifying the positive cases at random chance.

In comparison, group-related features achieved 65.24% TPR at the expense of cor-

rectly classifying non-depressed students. However, these features alone did not

yield high performance. Table 4.14 lists the top 10 most important features being

used.

Conclusively, these results shed light on two small but interesting differences

in the detection of depression versus stress. First, changes in behavioural features

must be calculated at a longer time interval of 15-days, compared to stress at 6-days.

Second, the group-related features rose as the strong predictors for depression, com-

pared to individual (routine) features for stress. I concluded the best model settings

for detecting depression using Random Forest (RF) algorithm, General change set

General Change Individual Group
rel+abs (location data) (group data)

AUC 0.72 0.63 0.67
TPR (%) 70.25 51.83 65.24
TNR (%) 63.53 64.72 54.88
ACC (%) 65.58 63.32 56.91

Table 4.13: Results separating the changes in group-related features from individ-
ual (routine) features; Change (rel+abs), Individual (change features extracted from
location data) and Group (change features extracted from group data) to detect de-
pression at 15-days interval.

77



CHAPTER 4. DETECTION OF STRESS & DEPRESSION

Description Type varImp
Total time spent with all groups abs (Group) 100.0
Number of times being in solo group abs (Group) 96.66
Number of times being in all groups abs (Group) 91.31
Number of times engaged in studying rel (Work) 85.66
Number of times engaged in transiting abs (Non-work) 82.51
Number of times engaged in attending lectures abs (Work) 66.44
Number of times being in small group abs (Group) 65.64
Number of unique building visits rel (Non-work) 64.88
Number of times engaged in studying abs (Work) 64.75
Number of times engaged in all non-work activities rel (Non-work) 64.28

Table 4.14: Top 10 features for detecting depression, using ROC curve analysis, and
sorted by variable importance (varImp)

Method Train Test AUC TPR (%) TNR (%) ACC (%)
Train-Test Study_SE Study_Valid1 0.70 71.43 62.50 64.39

Study_SE Study_Valid2 0.69 63.03 66.02 64.97
Group5-fold Folds 2-5 Fold 1 0.76 71.98 69.75 70.57
(All pop- Folds 1,3-5 Fold 2 0.78 88.99 53.41 60.47
ulation) Folds 1-2,4,5 Fold 3 0.81 82.14 59.91 65.43

Folds 1-3,5 Fold 4 0.80 82.21 65.65 72.07
Folds 1-4 Fold 5 0.73 64.47 67.31 66.11

Average 0.78 77.96 63.21 66.93

Table 4.15: Summarised results for depression model, ModelD, on three different
validations. ModelD is a generalised depression model that excludes all Domain-
specific features.

features (rel+ abs) calculated at a 15-days interval as ModelD.

4.4.2 Validation Experiment: Study_Valid1 & 2 – ModelD

I replicated the steps in Section 4.3.2 to validate ModelD on different population

sets. Additionally, I combined all students from the three user studies to build an

all-population depression model, evaluated using a Group 5-fold CV. Table 4.15

summarises these results in detail.

Overall, my approach maintained an accuracy of approximately 65% for all

studies. Similarly, I combined all students from three user studies to build an all-

population depression model, evaluated using a Group 5-fold CV. It is worth noting

that the performance of ModelD is comparable to that in [96], achieving 77.96%

TPR and 63.21% TNR. As these numbers were achieved in two different environ-
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ments with different population groups, it is possible that accuracy numbers would

change significantly in different environments. That being said, using only individ-

ual features (as baseline comparison in this environment, see Table 4.13), ModelD

yielded between 18-26% improvement in TPR.

4.4.3 Optimising Depression Model

Considering depression is defined by stricter ethical boundaries, my user studies did

not include subjective assessments of users’ accounts of depression; doing so might

best be moderated by health professionals. Alternatively, I manually analysed the

demographic information of students such as their gender, academic year, GPA and

Big-5 personality assessment [135]. The analysis of Study_SE revealed only 1 case

of depression by a student who scored low on neuroticism (score <= 2.25 out of 5).

The most significant portion of depression reports was by students whose neuroti-

cism scores were 3.75 and 4. Indeed, many studies draw correlations between high

neuroticism scores and depression [73,74]. Thus, I revised the model to include per-

sonality traits (i.e., Openness, Conscientiousness, Extroversion, Agreeableness and

Neuroticism). Additionally, I experimented with the social identification outcome

previously predicted (in Section 4.3.3.2 ) for stress as a possible feature.

4.4.3.1 Cross-Validation Experiment: Study_SE – ModelD+

Table 4.10 charts the results of detecting depression with different types of opti-

misation features. The inclusion of social identification outcome as a feature did

not improve overall accuracy. In contrast, the addition of all personality traits as

features improved overall accuracy by approximately 10% (difference is significant

at p=0.05 level). A brief examination on each dimension revealed ‘Neuroticism’ as

the strongest predictor (achieving 100% variable importance, while the next best-

ranking trait, ‘Openness’, yielded a 10% importance). The exclusion of all other

traits resulted in a higher TPR of 90.21%, however, this difference is not significant

from using all Big-5 dimensions.
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Figure 4.10: Results from adding different optimisation features; SI is the social
identification outcome, Big-5 (All) considers all 5 personality traits and Big-5 (N)
particularly uses Neuroticism score as feature.

Method Train Test AUC TPR (%) TNR (%) ACC (%)
Train-Test Study_SE Study_Valid1 0.41 57.14 47.12 49.24

Study_SE Study_Valid2 0.86 81.52 72.68 75.77
Group5-fold Folds 2-5 Fold 1 0.86 91.3 47.62 63.65
(All pop- Folds 1,3-5 Fold 2 0.93 92.66 76.82 79.96
ulation) Folds 1-2,4,5 Fold 3 0.93 95.71 76.65 81.38

Folds 1-3,5 Fold 4 0.88 90.87 68.69 77.28
Folds 1-4 Fold 5 0.84 85.53 63.75 73.00

Average 0.88 91.21 66.71 75.06

Table 4.16: Summarised results for depression model with Neuroticism as optimi-
sation feature, ModelD+, on three different validations.

At this point, it is important to consider the practicality of using Big-5 assess-

ment. That is, while the Big-5 personality assessment is often deemed too lengthy

(assessment comprises 44 questions), using only a subset of this information could

increase model accuracy (Neuroticism has 8 questions). Since using only one per-

sonality dimension reduces the user burdens of sampling, I concluded ModelD+ as

including Big-5 ‘Neuroticism’ score as an optimisation feature.
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4.4.3.2 Additional Validation: Study_Valid1 & 2 – ModelD+

Validation results of ModelD+ (trained on Study_SE and tested on Study_Valid1 and

Study_Valid2) are summarised in Table 4.16. While overall accuracy of 49.24% and

TPR of 57.14% seemed significantly lower for Study_Valid1 population, the model

was successful in detecting two out of three participants who reported depression.

Finally, I built an all-population depression model and evaluated it using a Group 5-

fold CV. This model achieved an average AUC score of 0.88, maintaining more than

85% TPR across all folds; a total of 9 out of 55 students who reported depression

had several instances of depression misclassified. Unfortunately for 1 student was

completely missed by the model.

The Big-5 assessment is a widely accepted instrument of measuring the most

common aspects of a person’s personality. It has since been rigorously validated

across cultures [172] and encouraged to facilitate open science practices [173]. Un-

like the social identification feature (utilised as a retrospective feature for stress),

this scale could potentially be sampled as demographic variable to improve the per-

formance of StressMon in detecting depression.

4.4.4 Summary of Depression Detection

The evaluation of ModelD, using a Random Forest algorithm and General change

(rel+abs), demonstrated the possibility for StressMon to detect individuals showing

signs of depression. However, two small but critical factors to different the mod-

els from detecting depression from stress are (1) the time interval used to calculate

changes in features – from 3-days (stress) to 15-days (depression) – typically from

following symptoms over a two-week period [98], and (2) the inclusion of group-

related features (extracted from group data) as they make much stronger predictors

than individual features. I have demonstrated that StressMon achieved results that

are comparable to [96]. However, using features from our location data, Stress-

Mon only yielded 51.83% TPR (it is possible that accuracy numbers would change
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significantly in different environments). An error analysis on Study_SE students

for ModelD presented a clear trend of students who frequently reported depression

scoring high on Neuroticism as one of their personality traits; that is, an individ-

ual is more likely to experience negative emotions than those who are emotionally

stable [135]. Results from my experiments support prior work which establishes

the strong association between this personality trait and depression. Building on

this finding, I included students’ Big-5 personality score by particularly using their

scoring for Neuroticism attribute, as additional feature to the model ModelD+. The

addition of this feature resulted in a higher AUC=0.88 (91.21% TPR and 66.71%

TNR) on all studies. Unfortunately, however, this information would require indi-

viduals to participate in a one-time demographic survey as the information cannot

be generated through analysing mobility features. As shown in Figure 4.11, the

addition of Neuroticism as an optimisation feature led to an accurate model for de-

pression for most students. Unfortunately, 2 students (P103 and P217) were left

completely unnoticed by StressMon .
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Figure 4.11: Detection results of 55 participants from all studies; Note that four
Study_SE students who scored an average of 10 or more in their PHQ-8 assessment
throughout the study are indicated by (*). They were the most critical cases of
depressed and severe stress at the same time.
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CHAPTER 5

UNDERSTANDING STRESS &

DEPRESSION

This chapter addresses the final research question: What can be learned from the

findings of stress and depression? This chapter begins by identifying main causes

of stress in students. In addition, I discuss how individual behaviours in workgroup

factors such as roles in leadership, team support and misconducts can be applied

to several existing theoretical perspectives, which are key in explaining why some

students are more stressed than others from working in teams. Finally, I discuss

how the differences in stress and depression influenced our decisions in developing

StressMon.

5.1 Main Stressors

58 out of 62 Study_SE students identified academic stress as the primary cause of

stress (note: these students might not necessarily be overwhelmed by the stress).

Approximately 50% (33) of the population recognised the Software Engineering

group project as their primary stressor, while three others agreed it was due to

another course they were taking at the same time. Four students attributed their

primary stressor (due to personal business or poor health). Of the 33 students, 14

students attributed the "Software Engineering" stress to relationship tension with
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their team members; for example, not receiving a reciprocal commitment from team

members. In addition, 5 out of 11 Study_Valid1 students reported their main stressor

was for academic reasons; specifically, 2 students faced interpersonal relationship

strains with their group members. 3 students were mainly stressed from their job

search as they were in their last semester. 1 Study_Valid1 student was primarily

stressed from settling back into a competitive school environment after spending

the previous semester on exchange studies.

With these findings, however, I was not able to understand the nuances and de-

tails of stresses students typically face. As explained in Chapter 3.3.1, I later mod-

Cat Cause Score
Academic Increased class workload 4.21

Group projects 4.21
Many hours of group projects 4.04
Examinations 3.96
Many hours of studies 3.88
Lower grade 3.77

Environmental Lack of vacations/breaks 3.63
Personal Change in sleeping habits 3.44
Interpersonal Difficult personalities of (school-related) group members 3.40

School-related misunderstanding 3.27
Work with people (school-related group members) you don’t know 3.15

Personal Change in eating habits 3.15
Interpersonal Change in relation with school mates 2.98
Personal Financial difficulties 2.9

Combining job and studies 2.88
Academic Lack of university support 2.88
Personal Personal relationship issues 2.85

Health issues 2.75
Family issues 2.69

Environmental Computer problems 2.67
Academic Language difficulties 2.58
Environmental Unfamiliar educational environment 2.56
Academic Missing seminars/classes 2.52
Environmental Bad living conditions 2.44

Quit jobs 2.23
Moving to a new city 2.04

Table 5.1: Sources of stress among Study_Valid2 students ranked from highest to
lowest score. With the exception of "Environmental" and "Personal" reasons, the
top ranked reasons can be categorised into work content and work context.
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ified the user study procedure for Study_Valid2 students to include two additional

assessments: One is the sources of stress, adapted by Yumba et al. [144]. Out of a

5-point scale, students ranked ‘increasing workload’ (academic, 4.21), and ‘having

to work on group project’ (academic, 4.21) as the top two stressors. With the excep-

tion of ‘lack of vacations’ and ‘change in sleeping habits’, students’ major sources

of stress were related to academic and interpersonal-related linked to working with

their peers. These findings support prior work of students under considerable stress,

especially from high amounts of workload (i.e., work content) and working with

people (i.e., work context), as described by Cox et al. [12].

Figure 5.1: Diagram charts the average amount of time spent (in hours) on different
common activities among Study_Valid2 students, totalling to 12 hours on campus
each day. Unless indicated with (*), all activities took place on campus.

Additionally, Study_Valid2 students estimated the time spent on campus using

a survey adapted from the American Time Use Survey [145]. Interestingly, 35 stu-

dents reported an average of 12 hours each day on various activities on campus (see

Figure 5.1); 3.5 hours spent on attending seminars, 3 working on group projects, 2.5

hours on self-study and the remaining hours spread across sports, leisure and social
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activities. Over a long 12 hour period on campus, it is no wonder that academic-

typed stress has imprinted itself as a major stressor.

5.2 Stress and Social Identification

In practice, it is hard to distinctly associate social identification with stress. For

example, Researchers have claimed that being saliently identified to a group in-

creases an individual’s sense of obligation to work harder and for longer hours,

which may possibly lead to mental strains and burnout [15]. In contrast, an individ-

ual who is less identified from lack of support of coworkers, may experience less

(work-related) stresses as a result of dedicating less time to work. Comparing the

differences in social identification between students with severe stress and normal

stress, as in 4.2, I determined that severely stressed students generally identified

themselves more with the team (see Figure 5.2).

Figure 5.2: Social identification: Distribution of scores for Study_SE students with
severe stress vs. normal stress throughout the study.

Overall, students with severe stress scored above the mean and displayed more

variance in their scores. In contrast, students with normal stress were fairly con-
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sistent with their social identification throughout the semester. 3 (out of 4) of the

severely stressed students indicated facing challenges in fulfilling project tasks due

to their incompetencies in programming. Nonetheless, students generally main-

tained good working relationships with their team members, who actively encour-

aged and assisted them in various tasks. Interestingly, the average score for social

identification was at its lowest (5.4), corresponding to the time students were typi-

cally engaged in development work (see Table 3.3). For 1 low identifier with severe

stress, he expressed feeling overwhelmed from taking the lead in development work.

To better understand how social relationships between and among workgroup

members negatively influence an individual’s stress, I critically evaluated the inter-

view findings by Study_SE students, as their workgroup procedures were intensive

and extensively documented. Accordingly, I made several inferential connections

between students’ behavioural characteristics and theoretical perspectives related to

social identification (i.e., social identity), as summarised by Seering et al. [170].

“The identities we tend to embody are those that are the most acces-

sible and have the best ‘fit’ within a given situation.”

Individuals are quick to associate themselves with an accessible social identity,

which is most likely to be suited to their current goal. I quickly learned that stu-

dents collectively categorised themselves as A-coder, B-coder, and C-coder (from

the interviews). These categories are based on their abilities which manifested

through a prerequisite course and inherently created social comparison between and

among team members. The notion of social comparison based on (academic) abil-

ities, unfortunately, is judgmental and punishing to those who were evaluated less

favourably [174, 175]. I learned that 5 C-coders felt they were less valued for their

opinions and being assigned less challenging types of work. One student reported

being blamed for her task decisions. Another student expressed, “the A-coder [in

his team] values someone of higher IQ than himself.” To the A-coder’s defence, he

said, “[I couldn’t] trust the quality of work by my members throughout the whole
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semester.” The implication of this behavioural existence is an uneven work dis-

tribution where an A-coder was more likely to take on lead responsibilities of the

programming aspects, despite fair work distribution being a project management re-

quirement (this may explain the discrepancies I found in their schedule logs). There

were more instances where non A-coders expressed low identification, however,

these were not among those who reported severe stress.

“A person’s identity can be defined at various distinct levels, with the

most common differentiation being between one’s personal and social

identities.”

Fundamentally, an individual possesses a multitude of social identities for the groups

they belong to. Similarly, in this study, I found cases where students described them-

selves as possessing multiple identities in different subgroups (within the work-

group). For example, one student (a high identifier) believed he mostly acted as

the ‘middle person’ for the group. While not the most technically inclined (he also

identified himself as a B-coder), he was well relied upon by the A-coders for ful-

filling his technical duties and was able to communicate with the C-coders (as the

A-coders were very explicit in showing their dislike of the C-coders). Nonetheless,

he would identify himself more with the A-coders since they contributed more to the

success of their project. Despite being randomly assigned into groups, one student

was teamed up with a good friend, who, regrettably, was in many conflicts with the

rest of the team. Adopting multiple identities as a friend to one and an A-coder to

others, the student eventually felt tired of being part of the team and participated less

in group meetings. She did, however, maintain regular online communication with

the workgroup. Note: All teams managed a SE Telegram group chat as a standard

online communication channel. Forming multiple identities helps students maintain

positive relationships with different members in the group. In the case of three stu-

dents with severe stress, they eventually maintained high social identification from

working with everyone else but the A-coder. Two students described themselves as

having purely functional relationships with members of their team. While they kept
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healthy and respectful working practices, they would treat each other like strangers

outside of work. The most prominent of these cases was an inconsistent report-

ing of critical group events which students reportedly experienced at midweek and

semester end. For instance, two students who broke down in their first interview, ex-

pressed reconciling with their group members over disagreements. The experiences

of intergroup conflict (for some escalating to relationship tensions) may explain the

occurrence of changing social identification assessment scores every few weeks.

“In groups, the leaders who emerge are the members who are the

most prototypical of the group’s norms.”

Bicchieri et al. described ‘prototypical’ as a collection of physical, mental and

psychological characteristics that an individual in the group is believed to em-

body [176]. Our findings support prior research of high identifying A-coders being

liked for their prototypical properties [170, 177], and as a result, became more in-

fluential than others in the group. A-coders reportedly exercised more control over

critical decisions such as directing coding standards, determining system function-

alities and task assignments, and approving completed tasks. It came as no surprise

that many A-coders felt saliently identified to their team. However, the implications

to “follow the leader” can be dangerous and destructive. Many students admitted

to passive participation, fully trusting the A-coder and following their instructions

without hesitation. At times when A-coders reacted aggressively under overwhelm-

ing amounts of stress, their work incivilities were tolerated more than others in

regard of their expertise, and often left the weaker coders disrespected. One student

said, “I am the weakest in the group. It was quite shocking the way I was being

treated [by the A-coder], and I do not dare to voice out my opinion.” Another stu-

dent clarified, “Scolding became [A-coder’s] common practice on Telegram group

chat. Text messages were sent in caps and [he used] coarse language.” Despite hav-

ing trouble dealing with their rude behaviour, group members chose to maintain a

subservient relationship with the A-coder, suggesting: “As long as we stay on [our]
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path, the group work will be fine. So I stayed passive,” when being asked if support

was offered to help group members who were targeted.

5.3 Reports of Stress and Depression

Figure 5.3 charts the percentage of our students in each of three user studies report-

ing severe stress over a 3-days interval amounting to 27 samples.

7% of the Study_SE students reported severe stress at the beginning of the

semester and peaked at 17% on Day 69 before the final project deliverable. Only

one student (3%) from Study_Valid2 reported severe stress on Day 45 when the

semester resumed. I sampled Study_Valid1 students from the second half of the

semester (Day 45 onwards) and received the first reports of severe stress on Day

51 and towards semester end. In contrast, a higher percentage of students reported

feeling depressed (see Figure 5.4). Further, the analysis revealed a concerning trend

of 40 student participants who reported feeling depressed continuously for approx-

imately four weeks (for all studies). Among these 40 were four Study_SE students,

who simultaneously experienced frequent severe stress from SE (see Figure 5.5,

participants are indicated with (*)).

Figure 5.6 charts the stress and depression episodes for Study_Valid1 and

Study_Valid2 students in detail. In real-world operation, students who are con-

currently depressed and severely stressed or frequently depressed but not severely

stressed are those that StressMon detects as “red-flags” so that interventions can

take place as early as possible. The higher percentage of students who reported

depression as compared to severe stress raised a serious need for our technique to

successfully detect depressed students separately from detecting students with se-

vere stress. While models for stress (ModelS) and depression (ModelD+) were fun-

damentally built on similar sets of mobility features, their key differences lie in the

time window for calculating changes in individual behaviour and group interaction.
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Figure 5.4: Histogram of percentage of students from different user studies report-
ing feeling depressed (PHQ-8 score more than 9) approximately every 2 weeks.
Samples for Study_Valid1 students were only collected from day 45 onwards, cor-
responding to sample 4 and 5.

5.4 Summary

In summary, these findings corroborate prior studies that college students mainly ex-

perience academic stress: A significant percentage of students, for example, 93% of

Study_SE students, believed their primary stressor was related to various academic

matters, many of whom confirmed working on the group project as one of the most

stressful involvements. Further, this study documented evidences of students fac-

ing tremendous difficulty in working with unfamiliar people and personalities such

that interpersonal aspects of workgroup stress became most familiar to them. As

summarised by Seering et al. [170], individual behaviours can be explained by key

social identity perspectives to understand the roles of leadership, team support, col-

laborations and misconducts between and among individuals working in a group

having different social identification. It is, however, interesting to note a low per-

centage of severe stress was reported (26%, 28 out of 108 students). One of the

most common remarks made during the interviews implied strong acceptance of

stress being a normal reaction throughout the semester. On the other hand, a more
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Figure 5.5: Reports of severe stress and/or depression of 42 students from Study_SE
charted to illustrate two different patterns; (1) frequent instances of severe stress
and depression (P001-P004), (2) occasional severe stress and depression (P005-
P018), (3) only depression (P019-P034), and (4) only severe stress (P035-(042).
The remaining 20 students did not report such events.
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Figure 5.6: Reports of severe stress and/or depression of 4 students from
Study_Valid1 and 19 students from Study_Valid2 charted to illustrate three different
patterns; (1) occasional severe stress and depression (P101,P201), (2) only depres-
sion (P102,P103,P202-P219), and (3) only severe stress (P104). The remaining 24
students (6 Study_Valid1 , 16 Study_Valid2 ) did not report such events.

concerning takeaway was of students reported feeling more depressed (38%) than

severely stressed. The studies shed light on different patterns of depression and

severe stress. In particular, I found cases where students who reported feeling de-

pressed did not report feeling stressed. Four students, P001-P004, reported multiple

consecutive severely stressed and depressed periods. Eight students reported multi-

ple experiences of severe stress but did not feel depressed. These findings validated

a key design decision of StressMon to use separate detection models for stress and

depression. While stress is commonly associated with depression, depression re-

mains an independent mental health condition [9, 10].
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LITERATURE REVIEW

In reviewing prior work, my first objective was to establish a comprehensive clinical

perspective on the associations of stress and depression. Subsequently, I extended

my research to look into group factors related to stress and individual factors re-

lated to depression. I thoroughly reviewed the assessment methods for stress and

depression in two folds. First, I researched validated scales that have been princi-

pally used by different populations. Second, I concentrated on technology-driven

applications for stress and depression monitoring. In addition, this investigation in-

cluded systems-related research related to large-scale sensing and utilising location

information for stress, depression and group interactions.

6.1 Associations of Stress and Depression

Individuals, ranging from children to working adults [60,99,144,149,178] and hold-

ing different professions [8,179,180], experiencing stressful life events are strongly

associated with being at risk for depression [81, 150, 181–184]. The relationship

between both conditions, however, was often described to be unidirectional. Much

of the early research focused on independent stressful life events. That is, these

events are beyond one’s control such as death of a loved one. More recently, the

investigation on dependent events has gained recognition. Dependent events are oc-

currences influenced by characteristics of another individual; for example, receiv-
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ing little peer support or having a conflict. Unfortunately, dependent stress episodes

play a more significant role in depression or increase the likelihood of subsequent

depression [181]. These findings verified the importance of group interaction as

a key factor in monitoring stressful events and confirmed our decision to include

group interaction as part of stress.

However, it is important to note that while these works suggest the association

of depression with higher likelihood of stress [185, 186], depression can be influ-

enced by anhedonia, which is an affective response linked to an individual’s hered-

itary or personality characteristics [71, 72]. Harkness and colleagues discovered

that cognitive-affective symptoms such as pessimism and sadness are strong pre-

dictors of pressures around interpersonal relationships. Further, researchers found

that personality characteristics, specifically neuroticism, highly influence depres-

sion [71–74].

6.1.1 Social Identification in Stress

Expanding the assessment of stress to include group interaction factors, many stud-

ies have investigated several characteristics of group interaction in team processes;

for example, social identification [22], social cohesion [75], social loafing [76], and

group potency [77]. Among these factors, social identification has been suggested

to be a strong indicator of stress [81, 82] and depression [18].

Since the development of social identity theory (SIT) by Henry Tajfel [187],

social identity has climbed to be of importance in social psychology research –

Our sense of ‘who we are’, defined by ’which group we belong to’ and ’how dif-

ferent are we from other members in the group’, affects our sense of self-worth,

thus influences self-esteem and well being [22, 23]. Substantial research has found

social identification as a strong indicator of mental health such as stress and depres-

sion [18, 81, 82]. Some of this research highlights increased commitment resulting

from social identification with an organisation. On the other hand, developing a high

sense of work commitment from increased identification may also result in long
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working hours, eventually affecting physical health [15]. One of the most common

misconceptions regarding social identity is its association with social identification.

While much work has used these terms interchangeably, the constructs of social

identity and social identification are different. Social identity describes a range of

characteristics to which a person identifies with the group; this, for example, could

be age-related or professionally-related [141, 188]. In contrast, social identification

describes the extent to which a person feels identified to a group (regardless of the

nature); that is, the affective aspect towards the group [141]. With more organisa-

tions structuring work within teams to capitalise on skills and perspectives, much

research in Organisational Behaviour (OB) has been dedicated to understanding so-

cial identification [22] and its implications for workgroups [14, 21, 23, 78, 79]; for

example, social identification is negatively correlated with workplace bullying [189]

and positively correlated with work commitment [15].

6.2 Assessment Methods

Here, I describe my considerations in using a specific assessment scale. The ap-

plicability of an instrument used to measure these conditions depends largely on

how I intended to operationalise each construct in this study. Then, I provide the

most prominent examples of measuring stress and depression through technological

means.

6.2.1 Validated Scales

Stress: The Wheaton measure of chronic stress [190] and UCLA Life Stress In-

terview [178, 181, 182] investigate the construct of chronic stressor for major life

events and the Stressful Life Events Screening Questionnaire (SLESQ) focuses

on traumatic events [183]. Job Stress Survey and the Occupational Stress Indica-

tor [58,179] are specific to employment. While work stress is one of the widespread

psychological stressors among people, the operationalisation of its construct, in this
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study, is not bound to work stress but extends to how participants judge any life

circumstances as stressful. Among the most common methods of assessment is the

Perceived Stress Scale (PSS), which has been used extensively in stress-related stud-

ies investigating factors at workplaces [180, 191, 192] and schools [146, 193, 194]

related to physical health and mental well being [184,195,196]. The scale has been

adapted to over 25 languages to be applied widely for different cultures and social

norms [139,180,191,192,194]. Although PSS is available in various versions (e.g.,

14-items, 10-items), the shortened version of 4-items (PSS-4) has demonstrated ad-

equate internal consistency and reliability [195]. Evidently, the PSS is efficacious

for overall comparison with existing and future studies. Nonetheless, the scale is not

designed as a diagnosis tool and its results should only be interpreted as a screening

tool to judge those in need of further support. That is, the service of a mental health

professional is essential to make formal diagnosis for chronic conditions. PSS does

not determine an individual’s primary stressor.

Depression: The assessment for depression is encouraged by Psychiatry re-

search to follow a diagnostic evaluation of criteria according to DSM and ICD

[197, 198]. These criteria require an individual experiencing multiple symptoms

indicating substantial functional impairment (including decrease or increase in ap-

petite, feeling of worthlessness, recurrent suicidal ideation) within the same 2 week

period [70]. The aim is clearly to avoid misdiagnosis of depression or triviali-

sation of its concept. Many depression rating scales are available. For exam-

ple, the Hamilton Depression Rating Scale (HAM-D) [199], historically a com-

mon tool, is, however, not intended for diagnosis [200]. Other scales include the

Montgomery-Asberg Depression Rating Scale (MADRS) [201], Beck Depression

Inventory (BDI) [202] and Patient Health Questionnaire (PHQ) [98]. While studies

have found reasonably strong correlation between these scales [203,204], PHQ may

indicate an advantage over other scales as it has been frequently adopted by similar

studies (as ours) in Systems research [39,96]. Further, the screener provides compa-

rable results across multiple countries and cultures [205, 206]. In this study, I used
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PHQ-8, an 8-item questionnaire. Advised by colleagues from our behavioural psy-

chology department as well as practicing psychiatrists from a local mental health

hospital, using PHQ-9 was strongly discouraged to avoid the ninth question – it

asks the tough question of suicidal thoughts and our research team was not trained

to handle a positive answer to that specific question.

Social Identification: Several scales were developed to measure social iden-

tification on multiple dimensions of self-esteem, self-categorisation and commit-

ment to group [207–210]. However, the multiple dimensions in these scales are

excessively elaborated and complex for users [141]. In contrast, the development

of Single-Item Social Identification (SISI) [141] was found to strongly correlate

with [209] and has since been preferred [18, 189, 211]. The extension of SISI, a

Four-Item Social Identification (FISI) [83, 141, 164] was found in many studies to

demonstrate much stronger reliability [212].

Conclusively, these prior works validated our decision to measure social iden-

tification with FISI. Despite being established, measuring social identification, as

with any other survey measurements, has its limitations. First, survey questions re-

strict how we conceptualise the construct. Also, surveys do not cater to the sensitive

timing of assessment. Over time, surveys become cumbersome to participants, and

exacerbate the problem of missing data [24]. In the context of longitudinal stud-

ies, attrition (of participants) and non-responses can have severe implications on

analyses [213].

6.2.2 Technology-driven Health Monitoring Systems

Research in developing systems for mental health continuously offers new capa-

bilities to monitor psychological states and mental conditions in real-time [29, 41,

42, 97]. The early works of StudentLife, spearheaded by Wang et al. assesses

mental health and performance of university students using fine-grained sensor

data collected directly from mobile devices [29]. Most recently, the same au-

thors looked at symptoms features to predict depression scores [92]. Other works
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specific to stress includes UStress [26], cStress [27], StressSense [28], and many

more [33, 214, 215]. All these applications utilise electrodermal activity (EDA),

electrocardiogram (ECG) from wearable sensors and/or smartphones to detect stress

in real-life environments. Unfortunately, these applications are prone to fall foul

from active sensing and incompatibility between systems/hardware requirements.

Simultaneously, collecting multiple sources of information poses higher risk to

one’s privacy.

One form of lightweight sensing technique is the use of location data. Canzian

et al. explored the correlation between GPS-based location features and depres-

sions [39]. While informative, relying on GPS suffers from insufficient indoor pre-

cision; as a result, disregarding a substantial amount of behavioural information

from humans spending 70%-80% of the time indoors [50]. Furthermore, group

interaction habits were not considered as part of their investigation. To make up

for indoor imprecisions, Brown et al. utilised wearable RFID tags to collect in-

door location traces of employees interacting with colleagues in different building

spaces [95]. However, this study was not intended for studying stress or depression.

Moreover, while the technique is feasible to support indoor monitoring, it might

pose impracticality problems as RFID tags are not (part of) commodity devices.

6.2.2.1 Large-scale Sensing Solutions

There has also been a lot of research devoted to developing sensing applications

that scale from individuals to entire communities [216]. These applications, how-

ever, are mostly in the areas of urban planning [217] and security [46]; for example,

using community-wide video surveillance for purposes of public safety. Specific to

the area of mental health, Ware et al. [96] utilised WiFi association data from the

university’s WiFi infrastructure to detect depression. In a similar fashion, Zhou et

al. [97] used WiFi indoor localisation data to learn about student behaviour. These

works are conceptually the closest to our approach, however, they neither moni-

tored stress nor inferred group interaction factors. StressMon uses a similar method
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to [96] but differs in the following ways: 1) it is a full system that works in real-

time by pulling data directly from the WiFi infrastructure while prior work used

data provided in an offline fashion from campus IT, 2) it incorporates group fea-

tures into its models which prior work did not, 3) it achieves a significantly higher

detection of individuals with depression at 91.21% true positive rate. (Note: these

numbers were achieved in two different environments with two different popula-

tion groups. It is possible that performance results would change significantly in

different environments).

6.2.3 Sensing Group Interaction Patterns

Motivated by a desire to investigate how the assessment of social identification can

evolve from its paper-pencil traditions, a promising step is to extend the afore-

mentioned sensing technique, which had proven successful in capturing individual

and collective behaviours [49]. Further, location information had previously shown

favourable results in deriving social behaviours from knowing a person’s activities

or engagements [43, 113].

6.2.3.1 Workgroup Interactions And Location

Nemeth and Staw argue that workgroups tend to develop norms as a collective

in their work practices [218]. This claim is supported by Jetten et al. who de-

scribed highly (socially) identified individuals are more likely to incorporate salient

in-group norms as a guide for behaviour [219]. However, a sudden change from

these norms could be indicative of team friction or emotional upset within the group

[220]; for example, members with high conflict tend to avoid each other [86, 87].

In fact, low identifiers might react against group norms by engaging in the opposite

of group norms [219]. Ultimately, these prior works suggest that in-group partic-

ipation varies to the degree with which individuals perceive their social identifica-

tion [219, 221, 222]. We build on these findings to investigate if the location can be

used to distinguish individual differences from their group norms, and accordingly,
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detect social identification. This question remains unclear in present literature.

6.2.3.2 Social Identification in Systems

Recently, Seering et al. enriched our knowledge on a set of ACM-related work [170]

which referenced the scientific work of Henri Tajfel [187]. Most of these works are

related to identifying key aspects of productivity in distributed groups through on-

line collaborative spaces such as WikiProjects [80, 223], GitHub [224, 225], online

multi-player games [171] and chatrooms [226]. The closest to our area of explo-

ration is Min et al. – using call and message logs and applying SVM machine-

learning technique, the authors sought to classify the relationships of people in an

individual’s contact list into groups of family, work and social [227]. While this

work presented social identity theory as part of its background work to differen-

tiate social roles, they did not directly investigate the constructs of social identity.

In [170], Seering et al. argue that technologies could define various typical forms

of groups and how high identifiers are more likely to be influenced by the group’s

norms. Building on these findings, we were determined to investigate if individ-

ual behaviours measured by technologies could similarly present distinct patterns

in their groups. However, we did not use social identity in our investigation – as

explained in Section 6.1.1, we utilised the measure of social identification.

6.3 Summary

These bodies of prior work inspired StressMon, and it differs in two distinct ways.

First, we use passively collected coarse-grained location data, computed from RSSI

signal strengths reported by the environment’s WiFi infrastructure, as our primary

source of data and show how even this coarse single-attribute data can be effectively

used to generate a variety of location and group interaction features. Second, we use

these features to calculate changes in work routines and group interactions and then

to measure and detect stress and depression effectively. The use of these features to

103



CHAPTER 6. LITERATURE REVIEW

detect stress and depression has until now been unexplored. Overall, StressMon is

designed to be a first-level safety net that provides mental health information about

the entire population. It thus nicely complements more fine-grained solutions that

require installing active stress trackers etc. that can be used to better understand the

health of specific individuals who desire closer monitoring.
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CONCLUSION & FUTURE WORK

Ultimately, the long term goal of StressMon is to serve as an end-to-end solution

in work environments, professional or academic, as an extra factor providing effec-

tive interventions after timely detections. This dissertation has detailed a solution

to the problem of detecting stress and depression, separately using different models

but fundamentally built on the same set of mobility features. In this chapter, I sum-

marise the main contributions of this dissertation. Then, I address its limitations and

discuss the deeper implications of deploying a solution such as StressMon that can

automatically detect stress and depression across entire campuses without explicit

user involvement.

7.1 Thesis Conclusion

In this dissertation, I demonstrated the possibility of easily and accurately detect-

ing stress and depression across entire school campuses using location data while

overcoming the limitations of low-dimensional data by incorporating inferred in-

dividual and group features. This is easily achieved through leveraging two key

sensing mechanisms, the LiveLabs WiFi indoor location system and Grumon group

detector system – where single-attribute RSSI values were directly sensed from the

WiFi APs – to enable the passive collection of location and group data for any mo-

bile device, without installing any client software.
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To overcome the limitations of low-dimensional data, individual routine be-

haviours and group interaction patterns were inferred based on various activity

heuristics. Then, changes in behaviours in comparison to an individual’s past period

and population were ascertained every 6-days and 15-days as features for detecting

stress and depression, respectively. Detection models for stress and depression pri-

oritise the accuracy of predicting individuals with signs of severe stress or depres-

sion rather than healthy individuals as being healthy – higher TPR at the expense of

TNR. Using only mobility-driven features, ModelS accurately detects individuals

showing signs of severe stress at 0.97 AUC score, 96.01% TPR, 80.76% TNR and

overall accuracy of 81.76% for three student populations (see Section 4.3.2). The

inclusion of a social identification [141] predicted outcome for ModelS_SE+SI , simi-

larly from building a detection model with Domain-specific mobility features, helps

to increase overall accuracy to 92.05% (see Section 4.3.3). However, this feature

requires a specialised resource such as a project schedule to extract workgroup-

related features. The detection of individuals showing significant signs of depres-

sion using only location data, unfortunately, yielded a reduced performance of 0.78

AUC, 77.96% TPR, 63.21% TNR and overall accuracy of 66.93% (see Section

4.4.2). However, the addition of neuroticism (one of five personality dimensions

in the Big-five assessment [135]) successfully achieved improved performance of

0.88 AUC score, 91.21% TPR, 66.71% TNR and overall accuracy of 75.06% (see

Section 4.4.3).

7.2 Summary Contributions

This dissertation makes contributions in three folds. First, we present StressMon,

which is conceptually novel in that it is able to accommodate monitoring stress and

depression to tens to thousands of users, at any given time. Second, this dissertation

produced a set of mobility-based features, which comprehensively capture individ-

uals’ behaviours and physical group interaction patterns in their work environment.

106



CHAPTER 7. CONCLUSION & FUTURE WORK

The final contribution is the evaluation and longitudinal user studies which vali-

date the detection models for stress and depression, making up the core engine of

StressMon.

StressMon Solution: In this dissertation, I illustrated the development of Stress-

Mon, which we envisioned as a first-level safety net to monitor stress and depression

for an entire population of users. We adopted the LiveLabs indoor localisation sys-

tem to passively collect single-attribute location data, obtained from RSSI values

reported directly by the WiFi access points (APs). In doing so, we were able to

bypass the installation of dedicated mobile applications and direct connections with

individual devices for data collection. Further, location data does not directly expose

user identities, thus minimises privacy risks. To make up for the lack of data, we

proposed including physical group interactions and employed the Grumon group de-

tector system, which clusters the location traces into logical groups. Altogether, the

location traces allowed us to extract user behaviours and group interaction patterns.

Finally, we tested our hypothesis on capturing changes in individuals’ behaviours

and interactions to maximise the value of location data. Expanding feature charac-

teristics from just a single attribute (location) significantly reduces the pipeline of

collecting and processing fine-grained mobile and wearable inputs, established in

prior works.

System Artefacts: In developing an exhaustive set of mobility-based features,

this dissertation has produced several system artefacts. First is the activity mapper,

which is a fully functional data processing pipeline whose input is location infor-

mation, provided in a .CSV format. I programmed the activity mapper to procedu-

rally clean the location data in a 5-min time window, and treat missing data with

AKIMA interpolation. Then, activities were programmatically determined based

on a consolidation of the population’s routined activities from demographic survey

and project schedules. Second is the feature extractor, which extracts individuals’

behaviour and interaction patterns; they can be generalised to the entire student

population (general features), and a subset of features are highly specific to a cer-
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tain course (domain-specific features). In addition, I calculated the changes in an

individual’s behaviour and interaction patterns by comparing each feature against

its own history of an earlier period (absolute change, abs), and against their peer

population (relative change, rel) over a 6-day time window for stress and 15-day

time window for depression.

Evaluation of Detection Engine: The evaluation results of StressMon detec-

tion engines reported several important findings. I conducted a thorough evalu-

ation on three different populations of students, degrees and year of study, over

long periods of time (between 36 to 81 days); Study_SE (primary), Study_Valid1

and Study_Valid2 (validations). The first evaluation demonstrated the high perfor-

mance of StressMon’s stress model in detecting individuals with severe stress at

every 6 days; severe stress is equivalent to an individual whose stress score is 12

or more, out of a validated 16 points PSS-4 scale. Specifically, ModelS achieved a

high 0.97 AUC score and 96% TPR. I conducted additional experiments to build a

social identification detection model, specific to Study_SE students based on their

domain-specific mobility features. Then, the output of their social identification

was used as optimisation feature, which significantly improved detection of true

negative cases, thus increased overall accuracy from 81.76% to 92.05%. The sec-

ond evaluation demonstrated high performance of StressMon’s depression model in

detecting depressed individuals at a slightly longer interval of every 15 days; de-

pressed is equivalent to an individual whose depression score is 10 or more, out of

a 24 points PHQ-8 scale. The depression model takes in an additional feature based

on individual’s personality trait, neuroticism, to achieve an AUC score of 0.88 and

91.21% TPR. The requirement of this additional feature, however, would mean that

individuals must be surveyed for their personality at the start of the assessment.
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7.3 Practical Limitations

7.3.1 Indoor Location SubSystem Requirement

StressMon fundamentally requires the availability of an indoor positioning system

that can generate location information for every device in the environment using

data collected solely from the infrastructure. This data is then processed by our

software to generate group information and predictions. Currently, we use WiFi

as it is the predominant solution deployed and used on our campus and we believe

it is the predominant solution deployed on most campuses worldwide as well. If

the WiFi deployment in a particular environment is sparse, then the accuracy of

the location tracking will decrease and this could affect the performance of Stress-

Mon. The indoor location solution used by StressMon currently works with WiFi

networks that use equipment from Aruba [228], Cisco [229], Zebra [230], or Ubiq-

uiti [231]. StressMon can leverage other techniques such as Bluetooth if it is de-

ployed generally; for example, at hospitals to help staff find their way to depart-

ments or wards [232]. In the future, if new technologies such as 5G replace WiFi in

indoor environments, StressMon will be modified to use these technologies for its

base sensing needs.

7.3.2 Beyond an Academic Setting

In this dissertation, I demonstrated how StressMon can accurately detect stress and

depression amongst students in a university campus setting. StressMon would work

on other campuses as well as there is nothing in our solution that is tied specifically

to our campus. But how easy is it to deploy StressMon in other work environments?

Fundamentally, StressMon uses deviations in work routines and interactions to pro-

duce its output and thus it will not work well in highly regimented work environ-

ments where the location of an individual does not change significantly across time

– for example, factories where each worker is assigned to a dedicated point in the
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assembly process and stays there the entire day with minimal interaction with their

peers (except during brief breaks) or elementary level education where students are

in the same classroom the entire day. Instead, StressMon works best in work en-

vironments where monitoring deviations in work schedules and collaborative prac-

tices is possible; for example, on university campuses, hospitals, or military bases

where students, nurses, and service personnel frequently move, daily, to different

parts of the environment, and have ample opportunities to interact with different

people. Moreover, offsite work behaviours and online work collaborations are not

yet supported. It is important to note that StressMon primarily operationalises in

work settings. Stressors come in varying forms (e.g., death of a loved one, di-

vorce/separation, losing a job etc.) and are prioritised differently across the popula-

tion. Recent surveys in the US and UK found those nations increasingly concerned

about money (62% US, 43% UK (female), 30% UK (male)) and work (61% US,

41% UK (male)) [233,234]. Work characteristically reflects numerous factors of an

individual’s well-being and effects on their well-being.

Above all, I have learned that depression is a condition, which may occur en-

tirely independently of stress; for example, due to an experience of mood disorder.

While my experiments have shown that stress is more likely to affect one’s cam-

pus routines, the same cannot be said for depression. The strongest predictors of

depression are related to social interactions, which might not have been compre-

hensively captured within campus; students spent at least 3.5 hours off-campus on

leisure, socialising and commuting (see Figure 5.1). As in [39], Canzian et al. con-

sidered the mobility patterns of users to their homes and workplaces by collecting

their GPS data. This study did not go beyond the academic setting. However, I

believe StressMon’s technique can easily extend to use more sensors, such as GPS,

if necessary. Scalable features which could be extracted from GPS and incorporated

in StressMon include the time taken to commute from campus to home, number of

places visited or transitions made between campus to home, and the types of places

visited. However, adding more sensors reduces the scalability (as these sensors will
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require apps or other mechanisms) and increases the privacy concerns.

7.3.3 Latency of Predictions

StressMon currently detects stress every 6 days and depression every 15 days. Thus,

it is not real-time even though it collects and processes real-time data. There are

health monitoring solutions that offer real-time stress analysis [235] and then sug-

gest interventions. However, we have designed StressMon to detect large and sig-

nificant swings in mental health and this requires a sufficiently long measurement

period – for example, to differentiate a truly stressed individual from one that is

just instantaneously stressed and then recovers. In addition, detecting depression

requires a longer observation window as this is a fairly fundamental change in men-

tal health which needs to be carefully assessed. As stated previously, our goal was

to design a first level safety net that flagged dramatic changes in mental health at

scale and we believe StressMon succeeds at that – indeed its detection abilities are

much faster than any competing solution at the scale in which it was designed to

operate.

7.3.4 Other Limitations

I have shown that changes in an individual’s routine and their group interactions,

extracted from coarse-grained location data, make useful features in detecting se-

vere stress and depression. It should be highlighted that this dissertation did not

evaluate the sensitivity/robustness of StressMon , particularly to the data collected

of its sensing mechanisms (LiveLabs and Grumon). It is possible that the accuracy

numbers would change significantly in different environments. These experiments

were tested on three different and separate student populations, sampled at differ-

ent times. However, it is possible that students in other environment/cultures might

adopt different routines on campus. Hence, further studies will be required to deter-

mine the efficacy of StressMon in other work settings (scholastic and professional).
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7.4 Future Work

7.4.1 Providing Appropriate Interventions

One of the more interesting takeaways from our studies was a validation of prior

findings that stress and depression are inconsistently correlated [236]. In partic-

ular, I found cases, see Figure 5.5 and 5.6, where students who were detected as

depressed (and who indicated as such on their PHQ-8 surveys) did not report being

stressed. I also found cases of highly stressed students, who reported being highly

stressed over multiple consecutive reporting periods, who do not report themselves

as being depressed. Overall, this reinforced my decision to use separate models for

stress and depression. While the models share many features, sufficient differences

make them unique and distinct. This highlights the impact of (solutions such as)

StressMon as it accurately detected students who were depressed even though they

were not stressed – these students would be almost impossible for peers or faculty

to identify.

7.4.1.1 Individual-level Interventions

This dissertation has only addressed the detection of severe stress and depression

without determining the underlying reasons for those conditions. For effective pre-

vention and treatment to take place, greater attention is needed to understand the

main stressor an individual is exposed to. Our goal is to create an end-to-end so-

lution that also provides effective and timely interventions, which needs to be done

quite carefully. For example, StressMon is a probabilistic system and thus it will

make errors and sending interventions to individuals who do not need them could

be problematic. Even more importantly, sending interventions to individuals with

problems needs to be even more carefully monitored – to avoid the intervention ac-

cidentally worsening the condition. We are currently working with our psychology

colleagues, our student counsellors, and with practicing psychiatrists from our pri-
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mary mental health hospital to design and evaluate various interventions that can be

sent by a system that uses triggers generated by StressMon. This is a very important

and exciting area of future research as it raises questions such as “Should inter-

ventions be sent to individuals or to groups? Sending to groups would minimise

the impact of an incorrect detection but might also result in less effective inter-

ventions”, “When should interventions be sent and with what frequency?”, “When

should technology assisted (e.g. using an app) interventions be sent versus inter-

ventions provided by a human (e.g. a student counsellor)”, “How can technology

be used to send novel and potentially more effective interventions?”, and “What are

the appropriate privacy and ethical policies to ensure that no individual feels un-

fairly targeted or discriminated against while ensuring that anyone who needs help

(even if they are not aware of it) receives it?”.

7.4.1.2 Group-level Interventions

I learned that a common practice among teams was to maintain a computer-mediated

communication (CMC) such as a SE workgroup Telegram chat. We found evidence

to support Lampinen’s claim that users perform self-censorship to manage adverse

group situations even through communicative platforms [237]. For example, some

of the top programmers would remove themselves from the chat groups of their

teams as they did not identify with their groups and did not want to “stay in touch”.

However, cutting off the team’s most convenient form of communication only led

to more tenuous relationships between the students. Further, many students report-

edly allowed this type of anti-social behaviour and remained passive as they feared

provoking the top programmer who was leading their group. One possible use of

our detection model, with the goal to build more supportive and productive groups,

could be as an intervention mechanism where changing social identification scores

could be revealed to the group early so that corrective actions could be taken before

the situation became irreparable.
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7.4.1.3 Evaluate Mental Wellness Programs

With increasing awareness in mental wellness, many organisations, academic insti-

tutions and governments [11] are actively developing actionable plans to improve

the overall well-being of individuals, communities, and nations. Concurrently, it is

important that these programs are objectively measured for the mental health out-

comes. Hence, much work has gone into developing surveys that systematically

evaluate one’s career, social, financial, physical, and community from enrolling in

such mental health programs. We believe StressMon can contribute to research

in evaluating mental wellness programs. At its current state, StressMon can pro-

vide continuous behavioural monitoring, complementing the manual participation

in surveys to evaluate individuals’ work performances and mental progresses. As

mentioned in Section 7.3, its sensing mechanism can be extended to include more

fine-grained sensors for measuring off-work behaviours.

7.4.2 Dynamics of Social Identification

This dissertation only scratched the surface of investigating whether binary levels

of social identification can be detected using mobility patterns. This dissertation

did not provide a synthesis on the temporal dynamics of social identification. One

way to take this analysis forward is to build on the preliminary findings in Chap-

ter 5.2, where I noted students with severe stress tend to display more variance in

their social identification compared to students with normal stress. In reality, so-

cial identification can be influenced by many factors other than stress; for example

social comparison, leadership or even personality. Understanding such dynamics

will require connecting individual-level dynamics (of their behaviours) with social

identification, which is generally difficult to observe on a longitudinal basis using

traditional assessments (i.e., interview, observations). Instead, StressMon can be

leveraged to offer explanatory breadth of behavioural insights.
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7.4.3 Privacy Policies

In the three longitudinal user studies, it was possible to obtain IRB approval to

deploy StressMon, as university students are not paid employees, and detecting stu-

dents with severe stress and depression has no lasting negative implications. Indeed

the university has numerous mechanisms in place to help students with issues that

do not impact their careers in any way. In contrast, a deployment of StressMon in

a professional work environment, including its use to monitor university employ-

ees, would likely raise concerns among employees fearing negative reviews and

discrimination. Thus, StressMon must have appropriate policies and mechanisms

protecting employee rights before it can be widely deployed. This is especially im-

portant as StressMon is likely to be used, due to its inherent mechanisms, without

explicit user consent. This is a rich area for future research, especially with the

rise of community-wide sensing systems, and we are currently working with ex-

perts in Privacy and Ethics Law to develop appropriate policies and procedures for

community-wide health monitoring systems such as StressMon that balance the pri-

vacy of individuals with the ability to provide help to those who most need it (and

may not realise it).

7.5 Concluding Remarks

Stress and depression are increasingly prevalent mental illnesses all around the

world. We see these topics progressively gaining research partnerships in different

areas from Psychology to Organisational Behaviour to various Computing disci-

plines. With mobile devices becoming a commodity, mental health resources have

evolved and transformed greatly from patient-clinical services to personalised mo-

bile assessments, encouraging individuals to be more proactive in keeping up with

their wellness plans. While promising, existing approaches exhibit limitations by

posing higher privacy risk and power demands relative to collecting and transmit-

ting data. Furthermore, they introduce a strong self-bias where only users who are
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interested in getting help would install the application on their phone. With more

and more people in need of help to manage their stress and depression, it is not only

critical the aforementioned limitations are addressed, but such resource should be

made easily available and accessible to users in large scale. Moreover, the design of

these apps is highly personalised and may unintentionally ignore the unique forms

of collective factors that can result in experiencing stress and depression.

This dissertation aims to provide a feasible solution to overcome the three lim-

itations. We envisioned providing a campus-wide “safety net” solution to automat-

ically and non-intrusively detect individuals exhibiting signs of excessive stress or

depression. Leveraging on the LiveLabs indoor localisation system and the Grumon

group detector system as the sensing apparatus allows StressMon to easily scale

across entire campuses as it does not require any dedicated app or explicit user in-

teraction. In addition, the sensing apparatus supports grouping devices into logical

groups based on location alone. The development and evaluation of both systems

are not part of this dissertation. This dissertation is focused on synthesising location

information from the sensing apparatus into mobility features that adequately repre-

sent individual behaviours and group interaction habits. I statistically analysed these

features to build a high-performing machine learning detection engine for stress and

depression, and examining how individual and group characteristics improved the

performance of identifying the onset of stress or depression more thoroughly. The

design of StressMon’s detection engine are fundamentally similar in terms of the

classification algorithm (Random Forest) and mobility features (features measuring

changes in behaviours and interaction patterns) being used. However, both mod-

els are sufficiently different to distinguish a stressed and depressed individual from

longer observation windows, 6 to 15 days. The models competently flag extreme

changes in behaviours, supporting evidences of behavioural symptoms for stress

and depression. With the evaluation of our engine based on several user popula-

tions, we believe StressMon succeeds at its detection abilities to provide mental

health assessment easily, effectively and at scale.
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INSTITUTIONAL REVIEW BOARD

APPROVAL

1. IRB-17-079-A087(817) was approved for Study_SE , which ran for 81 days

for Software Engineering students.

2. Modification IRB-17-079-A087-M2(218) was approved for Study_Valid1 study,

which lasted 36 days for Social Entrepreneurship course

3. Modification IRB-17-079-A087-M5(1118) was approved for Study_Valid2

study, which lasted 81 days for multiple courses and included two additional

scales in Appendix B.6 and B.7.
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Administration Building   81 Victoria Street   Singapore 188065 
Tel: +65 6828 0100   Fax: +65 6828 0101   www.smu.edu.sg                                              Reg. No. 200000267Z 

 

21 August 2017 
 
Nur Camellia Binte Zakaria  
SMU Student 
School of Information Systems 
 
Dear Camellia, 
 
IRB APPROVAL OF RESEARCH  
CATEGORY 2A: Expedited Review  
Title of Research: Understanding the Relation of Time Management to Stress 
among College Students 
SMU-IRB Approval Number: IRB-17-079-A087(817) 
 
Thank you for your IRB application for the above research that we received the latest 
revised application on 21 Aug 2017. 
 
I am pleased to let you know that, based on the description of the research in your IRB 
application, the IRB has determined that your research falls under Category 2 and has 
approved your application. 
 
Please note the following: 
 

1. Indicate the above SMU-IRB approval number in all your correspondence with 
the IRB on this research. 

 
2. If any adverse events or unanticipated problems involving human subjects occur 

during the course of the research project, you must complete in full the  
SMU-IRB Unanticipated Problem/Adverse Events Report Form (see SMU-IRB 
website) and submit it to the SMU-IRB within 24 hours of the event. 

 
3. If you plan to modify your original protocol that was approved by the SMU-IRB, 

you must complete in full the SMU-IRB Protocol Modification Request Form  
(see SMU-IRB website) and submit it to the SMU-IRB to seek approval before 
implementing any modified protocol. 
 

4. This IRB approval for your research is valid for one year (12 months) from the 
date of this letter.  If you plan to extend your research project beyond one year 
from the date of the IRB approval, you must submit a request to renew the 
research protocol using the Continuation Review Form (see SMU-IRB website) or 
Protocol Modification Request Form prior to the IRB approval expiry date. 
 

5. Please be reminded to be compliant with Singapore’s Personal Data Protection 
laws in carrying out your research activities. 

 
If you have any queries, please contact the IRB Secretariat at irb@smu.edu.sg or 
telephone +65 6828-1925. 
 
Yours Sincerely, 

 
Li Jing 
Committee Member 
Institutional Review Board 
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Administration Building   81 Victoria Street   Singapore 188065 
Tel: +65 6828 0100   Fax: +65 6828 0101   www.smu.edu.sg                                              Reg. No. 200000267Z 

SMU Classification: Restricted 

 

21 February 2018 
 
Nur Camellia Binte ZAKARIA  
SMU Student  
School of Information Systems 
 
Dear Camellia, 
 
IRB PROTOCOL MODIFICATION REQUEST APPROVAL 
CATEGORY 2A: EXPEDITED REVIEW 
Title of Research: Understanding the Relation of Time Management to Stress among College 
Students  
SMU-IRB Exemption/Approval Number: IRB-17-079-A087(817) 
SMU-IRB Modification Number: IRB-17-079-A087-M2(218) 
 
Thank you for your IRB Protocol Modification Request application for the above research in which we 
received the latest revised copy on 21 February 2018. 
 
I am pleased to let you know that, the IRB has approved your application for the modification based on the 
description of modified research protocol stated in your Modification Request form.  
 
Please note the following: 
 
1. Indicate the above SMU-IRB approval number and SMU-IRB modification number in all your 

correspondence with the IRB on this research. 
 
2. If any adverse events or unanticipated problems involving human subjects occur during the course of 

the research project, you must complete in full the SMU-IRB Unanticipated Problem/Adverse Events 
Report Form (see SMU-IRB website) and submit it to the SMU-IRB within 24 hours of the event. 

 
3. If you plan to modify your original protocol that was approved by the SMU-IRB, you must complete in 

full the SMU-IRB Protocol Modification Request Form (see SMU-IRB website) and submit it to the SMU-
IRB to seek approval before implementing any modified protocol. 

 
4. This IRB approval for your modified protocol is valid one year from the date of this letter. If you plan to 

extend your research project beyond one year from the date of the IRB approval, you must submit a 
request to renew the research protocol using the Continuing Review Form (see SMU-IRB website) or 
Protocol Modification Request Form prior to the IRB approval expiry date. 

 
5. Please be reminded to be compliant with Singapore’s Personal Data Protection laws in carrying out 

your research activities. 
 
If you have any queries, please contact the IRB Secretariat at irb@smu.edu.sg or telephone +65 6828-1925. 
 

       Yours Sincerely, 

 
 

Christopher Chen        
Deputy Chair 
Institutional Review Board     
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Administration Building   81 Victoria Street   Singapore 188065 
Tel: +65 6828 0100   Fax: +65 6828 0101   www.smu.edu.sg                                              Reg. No. 200000267Z 

SMU Classification: Restricted 

 

2 November 2018 
 
Nur Camellia Binte ZAKARIA  
SMU Student  
School of Information Systems 
 
Dear Camellia, 
 
IRB PROTOCOL MODIFICATION REQUEST APPROVAL 
CATEGORY 2A: EXPEDITED REVIEW 
Title of Research: Understanding the Relation of Time Management to Stress among College 
Students  
SMU-IRB Exemption/Approval Number: IRB-17-079-A087(817) 
SMU-IRB Modification Number: IRB-17-079-A087-M5(1118) 
 
Thank you for your IRB Protocol Modification Request application for the above research in which we 
received the latest revised copy on 1 November 2018. 
 
I am pleased to let you know that, the IRB has approved your application for the modification based on the 
description of modified research protocol stated in your Modification Request form.  
 
Please note the following: 
 
1. Indicate the above SMU-IRB approval number and SMU-IRB modification number in all your 

correspondence with the IRB on this research. 
 
2. If any adverse events or unanticipated problems involving human subjects occur during the course of 

the research project, you must complete in full the SMU-IRB Unanticipated Problem/Adverse Events 
Report Form (see SMU-IRB website) and submit it to the SMU-IRB within 24 hours of the event. 

 
3. If you plan to modify your original protocol that was approved by the SMU-IRB, you must complete in 

full the SMU-IRB Protocol Modification Request Form (see SMU-IRB website) and submit it to the SMU-
IRB to seek approval before implementing any modified protocol. 

 
4. This IRB approval for your modified protocol is valid one year from the date of this letter. For Expedited 

Review applications, if you plan to extend your research project beyond one year from the date of the 
IRB approval, you must submit a request to renew the research protocol using the Continuing Review 
Form (see SMU-IRB website) or Protocol Modification Request Form prior to the IRB approval expiry 
date. Please note that for Full Review applications, continuing review applications must be submitted 
and approved until the research study is closed (i.e., at least one research paper has been published or 
presented).    

 
5. Please be reminded to be compliant with Singapore’s Personal Data Protection laws in carrying out 

your research activities. 
 
If you have any queries, please contact the IRB Secretariat at irb@smu.edu.sg or telephone +65 6828-1925. 
 

       Yours Sincerely, 

                  
 

Forrest Zhang         
Chair     
Institutional Review Board      

121



APPENDIX B

StressMon-RELATED ASSESSMENTS

B.1 Demographics Questions

Instructions: Please answer the following questions. Your answers will be kept con-

fidential. However, feel free to skip any questions you might find uncomfortable in

addressing.

Note: Questions indicated with (*) are only for students taking Software Engineer-

ing course.

1. What is your Participation ID? ________________
2. What is your mobile phone MAC Address? ________________
3. What is your age? ________________
4. What is your gender? ________________
5. What is your citizenship? ________________
6. What is your marital status? ________________
7. Are you pursuing a Double major? ________________
8. Are you working alongside your studies to support ________________

yourself? And if so, why?
9. What is the highest education level you would ________________

like to achieve?
10. What is the highest education level you are ________________

expected to achieve by your family?
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11. How many credit units (CUs) are you taking ________________
this semester?

(*) 12. Are you taking PMSB module this semester ________________
13. What type of housing are you currently living in? Dorm

(select one) rented room
rented home
owned public home
owned private home

14. Are you paying for your accommodation? Yes / No
15. How many people are living with you at present? ___ Grandparents

___ Parents
___ Siblings
___ Relatives
___ Friends
___ Others:_______

Eating/Sleeping/Physical Activities Patterns
16. In general, how many meals do you eat in a day? ________________
17. In general, how many times do you go to the campus ________________

eateries in a day? (e.g Koufu, 1983 etc.)
18. In general, what are your usual meal hours when on ___ 07:00-08:00

campus? (You can tick more than one option) ___ 08:00-09:00
___ 09:00-10:00
___ 10:00-11:00
___ 11:00-12:00
___ 12:00-13:00
___ 13:00-14:00
___ 14:00-15:00
___ 15:00-16:00
___ 16:00-17:00
___ 17:00-18:00
___ 18:00-19:00
___ 19:00-20:00
___ 20:00-21:00

19. In general, what are the top 3 most frequented (1)______________
locations to study when on campus? (2)______________

(3)______________
20. In general, how many hours of sleep do ________________

you get in a day?
21. While on campus, do you take naps in general? ________________

If so, how many hours approximately? And which
location are you most likely to go to?

22. How often do you exercise in a week? ________________
23. Do you frequent any of these facilities when ___ campus gym

on-campus? Select where applicable ___ swimming pool
___ sports hall

123



APPENDIX B. STRESSMON-RELATED ASSESSMENTS

B.2 Perceived Stress Scale 4, PSS-4

Referenced Cohen et al. [139]

Note: The questions in this scale ask you about your feelings and thoughts during

the last 3 days.

1. In the last 3 days, how often have you felt that you were unable to control the

important things in your life?

2. In the last 3 days, how often have you felt confident about your ability to

handle your personal problems?

3. In the last 3 days, how often have you felt that things were going your way?

4. In the last 3 days, how often have you felt difficulties were piling up so high

that you could not overcome them?

Scoring for the PSS-4:

Questions 1 and 4: 0 = Never, 1 = Almost Never, 2 = Sometimes, 3 = Fairly Often,

4 = Very Often

Questions 2 and 3: 4 = Never, 3 = Almost Never, 2 = Sometimes, 1 = Fairly Often,

0 = Very Often

Lowest score: 0, Highest score: 16 – Higher scores are correlated to more stress.
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B.3 Patient Health Questionnaire, PHQ-8

Referenced Kroenke et al. [98]

Note: Over the last 2 weeks, how often have you been bothered by any of the

following problems?

Not at all Several Days More than Nearly
half the days every day

Little interest or pleasure 0 1 2 3
in doing things
Feeling down, depressed, 0 1 2 3
or hopeless
Trouble falling or staying asleep, 0 1 2 3
or sleeping too much
Feeling tired or having little energy 0 1 2 3
Poor appetite or overeating 0 1 2 3
Feeling bad about yourself, or that 0 1 2 3
you are a failure, or have let
yourself or your family down
Trouble concentrating on things, 0 1 2 3
such as reading the newspaper
or watching television
Moving or speaking so slowly that 0 1 2 3
other people could have noticed. Or
the opposite – being so fidgety or
restless that you have been moving
around a lot more than usual

Scoring for PHQ-8:

Total score and severity of depression: 0–4 None, 5–9 Mild depression, 10–14 Mod-

erate depression, 15–19 moderately severe depression, 20–24 severe depression.

125



APPENDIX B. STRESSMON-RELATED ASSESSMENTS

B.4 Four-Item Social Identification, FISI

Referenced Postmes et al. [141]. Adapted from Doosie [83, 164].

Note: [In-group] refers to the workgroup you are assigned to in the course you have

registered as part of this study. For example, "Software Engineering (SE)", "Social

Entrepreneurship (ScE)" etc.

1. I identify with [In-group].

2. I feel committed to [In-group].

3. I am glad to be [In-group].

4. Being [In-group] is an important part of how I see myself.

Scoring for FISI: On a scale from 1 (strongly disagree) to 7 (strongly agree).
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B.5 The Big Five Inventory, Big-5

Referenced John et al. [135]

Note: Please write a number next to each statement to indicate the extent to which

you agree or disagree with that statement.

I see myself as someone who...

01. Is talkative 23. Tends to be lazy
02. Tends to find fault with others 24. Is emotionally stable, not easily upset
03. Does a thorough job 25. Is inventive
04. Is depressed, blue 26. Has an assertive personality
05. Is original, comes up with new ideas 27. Can be cold and aloof
06. Is reserved 28. Perseveres until the task is finished
07. Is helpful and unselfish with others 29. Can be moody
08. Can be somewhat careless 30. Values artistic, aesthetic experiences
09. Is relaxed, handles stress well 31. Is sometimes shy, inhibited
10. Is curious about many different things 32. Is considerate and kind to almost

everyone
11. Is full of energy 33. Does things efficiently
12. Starts quarrels with others 34. Remains calm in tense situations
13. Is a reliable worker 35. Prefers work that is routine
14. Can be tense 36. Is outgoing, sociable
15. Is ingenious, a deep thinker 37. Is sometimes rude to others
16. Generates a lot of enthusiasm 38. Makes plans and follows through

with them
17. Has a forgiving nature 39. Gets nervous easily
18. Tends to be disorganised 40. Likes to reflect, play with ideas
19. Worries a lot 41. Has few artistic interests
20. Has an active imagination 42. Likes to cooperate with others
21. Tends to be quiet 43. Is easily distracted
22. Is generally trusting 44. Is sophisticated in art, music,

or literature

Scoring for Big-5: On a scale from 1 (strongly disagree) to 5 (strongly agree).

“R” denotes reverse-scored items

Extraversion: 1, 6R, 11, 16, 21R, 26, 31R, 36

Agreeableness: 2R, 7, 12R, 17, 22, 27R, 32, 37R, 42

Conscientiousness: 3, 8R, 13, 18R, 23R, 28, 33, 38, 43R

Neuroticism: 4, 9R, 14, 19, 24R, 29, 34R, 39

Openness: 5, 10, 15, 20, 25, 30, 35R, 40, 41R, 44
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B.6 Sources of Stress

Adapted from Yumba et al. [144]

Please kindly reply to the following questions:

During your studies you may some how experience stress. How would you rate

these sources of stress that may cause stressful situations at any time during your

studies? What do you think is causing stress during your studies?

Strongly disagree: 1 to 2, Agree: 3, Strongly agree: 4 to 5, Don’t know: 6

A. INTERPERSONAL FACTORS
1. Change in relation with school mates 1 2 3 4 5 6
2. Work with people (school-related group members) you don’t know 1 2 3 4 5 6
3. School-related misunderstandings 1 2 3 4 5 6
4. Difficult personalities of (school-related) group members 1 2 3 4 5 6
B. PERSONAL FACTORS
1. Change in sleeping habits 1 2 3 4 5 6
2. Change in eating habits 1 2 3 4 5 6
3. Financial difficulties 1 2 3 4 5 6
4. Combining job with studies 1 2 3 4 5 6
5. Personal relationship issues 1 2 3 4 5 6
6. Family issues 1 2 3 4 5 6
7. Health issues 1 2 3 4 5 6
C. ACADEMIC FACTORS
1. Increased class workload 1 2 3 4 5 6
2. Lower grade 1 2 3 4 5 6
3. Many hours of studies 1 2 3 4 5 6
4. Language difficulties 1 2 3 4 5 6
5. Lack of university support 1 2 3 4 5 6
6. Examinations 1 2 3 4 5 6
7. Missing lectures 1 2 3 4 5 6
8. Group projects 1 2 3 4 5 6
9. Many hours of group projects 1 2 3 4 5 6
D. ENVIRONMENT FACTORS
1. Lack of vacations/breaks 1 2 3 4 5 6
2. Computer problem 1 2 3 4 5 6
3. Bad living conditions 1 2 3 4 5 6
4. Quit job 1 2 3 4 5 6
5. Unfamiliar educational environment 1 2 3 4 5 6
6. Moving to a new city 1 2 3 4 5 6
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B.7 Time on Education

Adapted from the American Time Use Survey [145]

Estimate the average amount of time IN HOURS spent EACH DAY on the following

activities:

1. Classes (seminars, lab sessions, extra-classes etc.)

2. Self-study ON campus

3. Group project ON campus

4. Co-curriculum activities ON campus

5. Leisure and sports such as gym and swimming ON campus

(exclude hours spent for sports-related CCA)

6. Social hangouts ON campus

7. Leisure and sports OFF campus

8. Social hangouts OFF campus

9. Commute to campus (both ways)
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ADDITIONAL DATA COLLECTION

C.1 Gratitude

Referenced McCullough et al. [136]

Using the scale below as a guide, indicate how much you agree with the following

statements:

Strongly disagree: 1, Disagree: 2, Slightly disagree: 3, Neutral: 4, Slightly

agree: 5, Agree: 6, Strongly agree: 7

1. I have so much in life to be thankful for 1 2 3 4 5 6 7
2. If I had to list everything that I felt grateful for, 1 2 3 4 5 6 7

it would be a very long list
3(*). When I look at the world, I don’t see much to be grateful for 1 2 3 4 5 6 7

4. I am grateful to a wide variety of people 1 2 3 4 5 6 7
5. As I get older I find myself more able to appreciate the 1 2 3 4 5 6 7

people, events, and situations that have been part of
my life story

6(*). Long amounts of time can go by before I feel grateful to 1 2 3 4 5 6 7
to something or someone

Scoring instructions: Add up the scores for items 1, 2, 4, and 5. Then, reverse

the scores for items 3 and 6. That is, if a question is scored "7," it is "1," if the

question is scored a "6," it is "2," etc. Finally, add the reversed scores for items 3

and 6 to the total from Step 1. The score for GQ-6 is a number between 6 and 42.
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C.2 Meaning in Life

Referenced Steger et al. [137]

Please take a moment to think about what makes your life and existence feel impor-

tant and significant to you. Please respond to the following statements as truthfully

and accurately as you can, and also please remember that these are very subjective

questions and that there are no right or wrong answers. Please answer according to

the scale below:

Absolutely untrue: 1, Mostly untrue: 2, Somewhat untrue: 3, Can’t say true

or false: 4, Somewhat true: 5, Mostly true: 6, Absolutely true: 7

1. I understand my life’s meaning. 1 2 3 4 5 6 7
2. I am looking for something that makes my life feel 1 2 3 4 5 6 7

meaningful.
3. I am always looking to find my life’s purpose. 1 2 3 4 5 6 7
4. My life has a clear sense of purpose. 1 2 3 4 5 6 7
5. I have a good sense of what makes my life meaningful. 1 2 3 4 5 6 7
6. I have discovered a satisfying life purpose. 1 2 3 4 5 6 7
7. I am always searching for something that makes my 1 2 3 4 5 6 7

life feel significant.
8. I am seeking a purpose or mission for my life. 1 2 3 4 5 6 7
9. My life has no clear purpose. 1 2 3 4 5 6 7

10. I am searching for meaning in my life. 1 2 3 4 5 6 7

Scoring instructions:

Presence = 1, 4, 5, 6, & 9-reverse-coded

Search = 2, 3, 7, 8, & 10
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C.3 Satisfaction with Life

Referenced Diener et al. [138]

Below are five statements that you may agree or disagree with. Using the 1 – 7 scale

below, please indicate your agreement with each item.

Strongly disagree: 1, Disagree: 2, Slightly disagree: 3, Neither agree nor dis-

agree: 4, Slightly agree: 5, Agree: 6, Strongly agree: 7

1. In most ways my life is close to my ideal 1 2 3 4 5 6 7
2. The conditions of my life are excellent 1 2 3 4 5 6 7
3. I am satisfied with my life. 1 2 3 4 5 6 7
4. So far I have gotten the important things I want in life. 1 2 3 4 5 6 7
5. If I could live my life over, I would change almost nothing. 1 2 3 4 5 6 7

Scoring instructions:

The SWLS is a 7-point Likert style response scale. The possible range of scores is

5-35, with a score of 20 representing a neutral point on the scale. Scores between 5-

9 indicate the respondent is extremely dissatisfied with life, whereas scores between

31-35 indicate the respondent is extremely satisfied.
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C.4 Positive and Negative Affect Schedule, PANAS

Referenced Watson et al. [140]

Rate your feelings and emotions in the past 2 weeks:

Very slightly/not at all: 1, A little: 2,

Moderately: 3, Quite a bit: 4, Extremely: 5

# Score Feelings/Emotions # Score Feelings/Emotions
1 Interested 11 Irritable
2 Distressed 12 Alert
3 Excited 13 Ashamed
4 Upset 14 Inspired
5 Strong 15 Nervous
6 Guilty 16 Determined
7 Scared 17 Attentive
8 Hostile 18 Jittery
9 Enthusiastic 19 Active
10 Proud 20 Afraid

Scoring instructions

Positive Affect Score: Add the scores on items 1, 3, 5, 9, 10, 12, 14, 16, 17 & 19.

Scores can range between 10 – 50. Higher scores represent higher levels of positive

affect. Mean scores: momentary = 29.7 and weekly = 33.3.

Negative Affect Score: Add the scores on items 2, 4, 6, 7, 8, 11, 13, 15, 18 & 20.

Scores can range between 10 – 50. Higher scores represent higher levels of negative

affect. Mean scores: momentary = 14.8 and weekly = 17.4.
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C.5 Social Loafing

Adapted from a 10-item measure of George et al. [76]

Not at all: 1, A little: 2, Somewhat: 3, Moderately: 4, Quite a bite: 5, A

great deal: 6

During the [workgroup] project, I. . .

1. Deferred responsibilities I should have assumed to other people. 1 2 3 4 5 6
2. Did not do my share of the work. 1 2 3 4 5 6
3. Put forth less effort than other members of my project team. 1 2 3 4 5 6
4. Took it easy if other teammates were around to do the work. 1 2 3 4 5 6

C.6 Social Cohesion

Referenced Kozlowski et al. [142]

Not at all: 1, A little: 2, Somewhat: 3, Moderately: 4, Quite a bite: 5, A great

deal: 6

Members of my project team . . .

1. get along well together. 1 2 3 4 5 6
2. enjoy spending time together. 1 2 3 4 5 6
3. have good relationships with each other. 1 2 3 4 5 6
4. like to socialise together. 1 2 3 4 5 6
5. are friends with each other. 1 2 3 4 5 6
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C.7 Group Potency

Referenced Guzzo et al. [143]

Note: [In-group] refers to the workgroup you are assigned to in the course you have

registered as part of this study. For example, "Software Engineering (SE)", "Social

Entrepreneurship (ScE)" etc.

Not at all: 1, A little: 2, Somewhat: 3, Moderately: 4, Quite a bite: 5, A great

deal: 6

1. My project team has confidence in itself. 1 2 3 4 5 6
2. My team expects to be known as a high-performing team. 1 2 3 4 5 6
3. My team feels it can solve any problem it encounters 1 2 3 4 5 6
3. during the [In-group] project.
4. My team believes it can be very productive. 1 2 3 4 5 6
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