
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

12-2019

Enhanced gesture sensing using battery-less wearable motion Enhanced gesture sensing using battery-less wearable motion

trackers trackers

Huy Vu TRAN
Singapore Management University, hvtran.2014@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Software Engineering Commons

Citation Citation
TRAN, Huy Vu. Enhanced gesture sensing using battery-less wearable motion trackers. (2019).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/251

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/150?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F251&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

ENHANCED GESTURE SENSING USING BATTERY-LESS
WEARABLE MOTION TRACKERS

TRAN HUY VU

SINGAPORE MANAGEMENT UNIVERSITY
2019

Enhanced Gesture Sensing using Battery-less
Wearable Motion Trackers

by
TRAN Huy Vu

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Computer Science

Dissertation Committee:

Archan MISRA (Supervisor / Chair)
Professor of Information Systems
Singapore Management University

Rajesh Krishna BALAN
Associate Professor of Information Systems
Singapore Management University

Kotaro HARA
Assistant Professor of Information Systems
Singapore Management University

Fahim KAWSAR
Research Director of Pervasive Systems
Nokia Bell-Labs in Cambridge
Design United Professor of IoT
Delft University of Technology

Singapore Management University
2019

Copyright (2019) TRAN Huy Vu

I hereby declare that this PhD dissertation is my original work

and it has been written by me in its entirety.

I have duly acknowledged all the sources of information

which have been used in this dissertation.

This PhD dissertation has also not been submitted for any degree

in any university previously.

Tran Huy Vu

11 Dec 2019

Enhanced Gesture Sensing using Battery-less
Wearable Motion Trackers

TRAN Huy Vu

Abstract

Wearable devices are gaining in popularity, but are presently used primarily for

productivity-related functions (such as calling people or discreetly receiving no-

tifications) or for physiological sensing. However, wearable devices are still not

widely used for a wider set of sensing-based applications, even though their po-

tential is enormous. Wearable devices can enable a variety of novel applications.

For example, wrist-worn and/or finger-worn devices could be viable controllers

for real-time AR/VR games and applications, and can be used for real-time

gestural tracking to support rehabilitative patient therapy or training of sports

personnel. There are, however, a key set of impediments towards realizing this

vision. State-of-the-art gesture recognition algorithms typically recognize ges-

tures, using an explicit initial segmentation step, only after the completion of

the gesture, thereby being less appropriate for interactive applications requir-

ing real-time tracking. Moreover, such gesture recognition & hand tracking is

relatively energy-hungry and requires wearable devices with sufficient battery

capacity. Such battery-driven operation further restricts widespread adoption,

as (a) the device must be periodically re-charged, thereby requiring human in-

tervention, and (b) the battery also adds to the wearable device’s weight, which

potentially affects the wearer’s motion dynamics.

In this thesis, I explore the development of new capabilities in wearable sens-

ing along two different dimensions which we believe can help increase the di-

versity and sophistication of applications and use cases supported by wearable-

based systems: (i) Low-latency, low-complexity gesture tracking, and (ii) Ultra-

low power or Battery-less operation. The thesis first proposes the development

of a battery-less wearable device that permits tracking of gestural actions by har-

vesting power from appropriately beamformed WiFi signals. This work requires

innovations in both wearable and WiFi AP operations, which work together to

support adequate energy harvesting over distances of several meters. Through a

combination of simulations and real-world studies, I show that (a) smart WiFi

beamforming techniques can help support sufficient energy harvesting by up

to 3-4 battery-less devices in a small room, and (b) the prototype battery-less

wearable device can support uninterrupted tracking of significant gestural ac-

tivities by an individual. The thesis then explores the ability of smartwatch

to recognize hand gestures early and to track the hand trajectory with low la-

tency, so that it can be used in realizing interactive applications. In particular,

I show that our techniques allow a wrist-worn device to be used as a real-time

hand tracker and gesture recognizer for an interactive application, such as Table

Tennis. The dissertation also demonstrates that my proposed method provides a

superior energy-vs-accuracy trade-off compared to more complex gesture track-

ing algorithms, thereby making it more conducive to operation on battery-less

wearable devices. Finally, I evaluate whether my proposed techniques for low-

latency gesture recognition can be supported by WiWear-based wearable de-

vices, and establish the set of operating conditions under which such operation

is feasible. Collectively, my work advances the state-of-the-art in low-energy

wearable-based low-latency gesture recognition, thereby opening up the possi-

ble use of battery-less, WiFi-harvesting based devices for gesture-driven appli-

cations, especially for sports & rehabilitative training.

Table of Contents

1 Introduction 1

1.1 Tackling the Challenge: Supporting Low-Latency Gesture Recog-

nition & Tracking on Energy-Harvesting Wearables 6

1.2 Motivating Scenarios . 9

1.2.1 Real-time Monitoring of Interactive Gestures using Battery-

less Wearables . 11

1.2.2 Continuous At-Home Gestural Monitoring of Elderly

with Battery-less Wearables 14

1.3 WiWear Vision . 18

1.3.1 WiWear device . 18

1.3.2 WiWear AP . 19

1.3.3 Fine-grained motion sensing on battery-less wearables . 19

1.4 Thesis statement . 20

2 Literature Review 23

2.1 Battery-less and Energy Harvesting 23

2.1.1 Energy Harvesting for Client Devices 23

2.1.2 WiFi-based indoor localization 25

2.1.3 WiFi-based gesture and activity recognition 26

2.1.4 Battery-less gestural sensing on wearable devices 26

2.2 Gesture and Activity Recognition 27

2.2.1 Effects of latency on interactivity 29

i

2.2.2 Inertial-sensing based gesture and activity recognition . 29

2.2.3 Real-time gesture recognition 31

2.2.4 3-D hand movement tracking 31

3 Battery-less Motion Sensing Device 34

3.1 System Overview . 36

3.1.1 Beamforming Technique 37

3.1.2 Locating the Client Device 38

3.1.3 Transmission & Sensing on the Client 38

3.1.4 Assumptions on System Design 39

3.2 A WiWear System Prototype 40

3.2.1 The WiWear Client Device 40

3.2.2 The WiWear AP . 43

3.3 System numerical analysis . 46

3.3.1 Expected system energy consumption 47

3.3.2 Single device scenario 50

3.3.3 Multi-device device scenario 53

3.4 Performance Evaluation: Micro-Benchmarks 58

3.4.1 Experiment Setup & Calibration 58

3.4.2 Change in Azimuthal Orientation 59

3.4.3 Energy harvesting vs. Distance 60

3.4.4 Energy harvesting vs. Background data 60

3.4.5 Effect of Number of Antennas 61

3.5 Constrained User Studies . 62

3.6 Discussion . 65

3.7 Reflections and Lessons Learned 68

4 Fine-grained Real-time Motion Sensing 70

4.1 Representative Application & Requirements 72

4.1.1 Perceiving Latency and its Effects on Usability 74

ii

4.2 System overview . 75

4.3 Dataset . 77

4.4 Early Gesture Recognition . 80

4.4.1 Inadequacy of Explicit Segmentation 80

4.4.2 Segmentation-less Gesture Detection on Stream Data . . 85

4.4.3 Early detection of gestures 88

4.5 Experimental Results on Early Gesture Detection 90

4.5.1 Accuracy vs. Fraction of Gesture Completed 91

4.5.2 The Utility of the Classifier 93

4.5.3 Performance of Person-Independent Models 94

4.5.4 Comparison with E-Gesture Baseline 97

4.6 Gesture-State-Enabled Trajectory Tracking 98

4.6.1 Existing Approaches of Hand Tracking 98

4.6.2 Gesture-State-Enabled Trajectory Tracking 100

4.6.3 Hand Tracking Performance 101

4.7 User Perceptual Experience . 104

4.8 Discussion . 105

4.9 Reflections and Lessons Learned 107

5 Feasibility Analysis: Early Gesture Recognition and Tracking for

Battery-less Devices 109

5.1 Effects of Varying Sampling Rates and Model Complexity on

Sensing Accuracy . 111

5.1.1 Early gesture recognition 114

5.1.2 Hand tracking . 118

5.2 Effects of Varying Sampling Rates and Model Complexity on

System Power Consumption 120

5.2.1 Energy consumption of gesture recognition on WiWear

wearable . 122

5.2.2 Energy consumption of hand tracking on WiWear wearable125

iii

5.2.3 Operational life time of gesture recognition & tracking

on WiWear wearable 127

5.3 Discussion . 129

6 Conclusion and Future Directions 131

6.1 Summary of Contribution . 131

6.1.1 WiWear: Battery-less Motion Sensing 131

6.1.2 Early Gesture Recognition & Tracking 133

6.1.3 Feasibility Analyses of Early Gesture Recognition &

Tracking on Energy-harvesting Wearable 134

6.2 Reflections and Lessons Learned 135

6.3 Discussion & Future Direction 136

6.3.1 Extended Capabilities for Battery-less Real-time Mo-

tion Sensing . 136

6.3.2 Smart Multi-AP Scheduling for WiFi-based Energy Har-

vesting Wearables . 137

6.3.3 Enhanced Battery-less Hand Tracking using WiFi Signal 138

iv

List of Figures

1.1 A scenario where a patient wears two wearables in a rehabilita-

tion session. The patient looks at a TV screen showing a training

gesture, and tries her best to mimic the gesture. The wearables

read sensors and transmit the data back to a server through an

AP. The server application analyses the data and displays feed-

back and corrective instructions on the TV screen in real time,

allowing the patient to rapidly modify her mistakes. To power

the wearables, the AP generates beam-formed WiFi transmis-

sions (RF wave) to focus energy towards the wearables, and the

wearables harvest energy from these transmissions. 11

3.1 5-step model of WiWear architecture. a) Step1: The wearable

sends a ping packet when triggered by gestures. Step2: The

AP receives ping packets and estimates AoA of the device. b)

Step3: The AP sends beam-formed energy packets toward the

device. Step4: The device harvests the energy from energy

packets and stores it in a super-capacitor. c) Step5: the device

uses the harvested energy to record sensory data, store it locally

and transmit the data back to the server once available. 36

3.2 Beamwidth Observed in Practice (4—8 Antenna Array) 38

3.3 a) Component-level diagram. b) Wearable Implementation. . . . 40

3.4 RF Harvester: FR4 PCB & hand-tuned inductor. 41

3.5 Voltage generated by motion trigger. 42

v

3.6 a) Received signal and RSSI values from nRF24L01+ device

and corresponding RSSI recorded at the same channel. The

RSSI is unstable and some parts become zeros. DC offset is also

observed. b) Received signal of another packet (before and after

applying -5MHz shift) and RSSI values using channel overlap.

Much more stable signal is observed with almost no DC offset. . 45

3.7 AP Modification for beamforming and AoA. The dark blue parts

are our extension. 45

3.8 a) Amplitude response of 8-antenna array with one beam. b)

The corresponding power response. 50

3.9 Upper bound of energy harvested at different distances. 50

3.10 Harvested energy when the device is continuously moving at

different speed. 51

3.11 Average energy harvested by a single device during 5 random

traces of intermittent ”move” and ”stay”. 53

3.12 Beam pattern control (4 devices at �60 deg,�25 deg, 60 deg, 80 deg)

. 54

3.13 Average energy harvested by each device and average minimum

harvested energy using 3 strategies (100 random positions, dis-

tance = 2m). 55

3.14 Average energy harvested by each device with different number

of devices (100 random positions, distance = 2m). 56

3.15 Average energy harvested by each device with different number

of devices (100 random positions, distance = 3m). 56

3.16 Average energy harvested by 4 devices during 5 random traces

of intermittent “move” and “stay”. 57

3.17 a) AoA Estimation Error. b) Harvested energy at different az-

imuth and elevation angle. 59

3.18 Harvested power vs. Distance 60

vi

3.19 Harvested power vs. Varying ‘data’ traffic load 61

3.20 Harvested power vs. No. of antennas 62

3.21 Experimental Setup: (a) Left: The AP, comprising 2 WARP

boards. (b) Right: A user wearing the WiWear device during

the study. 63

3.22 Time series of wearable voltage using 10µF small capacitor. . . 63

3.23 Net energy for 4 users (distance = {1.3, 1.4, 2.2, 2}meters) 64

3.24 AoA error (4 users) . 65

3.25 Active accelerometer sensing period 66

4.1 The Virtual Table Tennis (VTT) application. A user makes real-

world TT gestures while wearing a smartwatch, with the ges-

tures being integrated into the virtual world displayed on the

wearable VR device. 71

4.2 Cumulative distribution of noticed latencies. 75

4.3 System Overview. 76

4.4 The six table tennis strokes used in the study. The arrows show

the direction of motion as applied to a table tennis ball coming

from the right. 76

4.5 (a): Average age and experience of participants. The least expe-

rienced participant has 3 years of experience. (b): Proficiency

of participants in the 6 gestures based on self evaluation. (1)

means ”I cannot perform the stroke”, (5) means ”I am expert in

this stroke”. 80

4.6 Experiment Setup. The participant plays with a table tennis

robot, while a high speed depth camera captures ground truth

position data. A smartwatch worn on the hand provides sensor

data on strokes performed. 81

vii

4.7 (a): Applying E-Gesture technique [96] into our Table Tennis

dataset. Threshold values range from 0.15G to 1.55G. The re-

call reach highest value of 0.6 at a threshold of 0.65G; it means

only 60% true gestures are recognized. The precision is quite

high, more than 0.9 accordingly, and slightly decreases when

the threshold increases. (b): E-Gesture based enhanced classi-

fier that uses the highest confidence value that an HMM’s state

sequence achieves at any intermediate point of the segment. Re-

sults in significantly higher recall, at the expense of reduction in

precision. 84

4.8 Left to right HMM is useful to infer the states of a finite seg-

ment of data. {A-F} indicate the various output (i.e., observ-

able) values–i.e., a vector of sensor values/attributes that are

observed in each of the hidden states. The associated number

denotes the emission probability.The initial state ⇡ serves as a

starting point of the forward and Viterbi algorithm. 85

4.9 Left to right HMM is useful to infer the states of a finite seg-

ment of data. {A-F} indicate the various output (i.e., observ-

able) values–i.e., a vector of sensor values/attributes that are

observed in each of the hidden states. The associated number

denotes the emission probability.The initial state ⇡ serves as a

starting point of the forward and Viterbi algorithm. 87

4.10 A classifier is used to classify gestures, using probabilities of

states as features . 90

4.11 Left: Precision and Right: Recall w.r.t. Normalized Time To

Detect (Across Both Studies) 92

4.12 Box plot of Left: precision and Right: recall across users. X-

axis corresponds to the 6 distinct gestures. 93

viii

4.13 Early detection ability of our stream-HMM model. Left: with-

out the subsequent classifier. Right:with the subsequent classi-

fier. probabilities. 95

4.14 Precision w.r.t. Normalized Time To Detect (Person-Independent

Model). 96

4.15 Early detection capability of proposed method vs. enhanced E-

Gesture baseline. 98

4.16 Tracking error of the dead-reckoning approach. 99

4.17 The overall logic of trajectory tracking 100

4.18 CDF of Average (and Hit Time) Trajectory Tracking Error. . . . 102

4.19 Stroke-specific tracking error distribution using (a): inexperi-

enced user dataset, and (b): experienced user dataset. 103

4.20 Tracking error distribution vs. gesture progress, using (a): inex-

perienced user dataset, and (b): experienced user dataset. 103

4.21 User’s perception of our system response time. 105

5.1 Frequency spectrum of linear acceleration during a forehand

push gesture at different sampling rates. 112

5.2 Reconstruction loss of re-sampled data at different sampling

rates (Hz) . 113

5.3 F1 score of our early gesture recognition at different sampling

rates. 113

5.4 Precision and recall of our method compared with a baseline

(E-Gesture). 114

5.5 Early gesture recognition performance at different sampling rates.115

5.6 Early recognition performance with different number of HMM

states. 117

5.7 Hand tracking performance at different sampling rates. 118

5.8 Hand tracking performance with different number of HMM states.119

ix

5.9 Power consumption of different components at different sam-

pling rates (Hz) . 120

5.10 Power consumption of gesture recognition at different sampling

rates. 122

5.11 Power consumption of gesture recognition with different num-

ber of HMM states (sampling rate = 100 Hz). 122

5.12 Power consumption of hand tracking at different sampling rates. 125

5.13 Operational life time of WiWear wearable, in single-user and

multi-user scenarios, at different sampling rates. 127

x

List of Tables

1.1 Latency and energy consumption of recent works on motion

sensing. 3

2.1 Summary of key related works in comparison with our tech-

nique of battery-less motion sensing wearable. 28

2.2 Summary of key related works in comparison with our tech-

nique of early gesture recognition and tracking. 33

3.1 Power consumption of off-the-shelf conponents needed for a

motion sensing wearable device. 47

4.1 Features used to define the output vector (O) for HMMs 88

4.2 Features used for early gesture classification (for the 6 VTT ges-

tures) . 89

5.1 Analysis methods of different parts in the feasibility study. . . . 110

5.2 Comparison of recent motion sensing studies. 126

xi

Acknowledgments

I would not have been able to complete my Ph.D. journey without the precious

support of many individuals.

First of all, I would like to express my deepest gratitude to my advisor,

Professor Archan Misra. I have been extremely fortunate to be advised by him,

who has patiently listened to me and guided me with his research excellence

and enthusiasm. I am grateful to him for his countless support in shaping and

refining my research even with the smallest details. I have learned from him not

only the research skills but also the working attitude of being committed. I am

profoundly indebted to him for always being patient to guide and support me

throughout my Ph.D. journey.

I would also like to thank my committee: Associate Professor Rajesh Kr-

ishna Balan, Assistant Professor Kotaro Hara and Professor Fahim Kawsar.

Their invaluable comments have strengthened my dissertation, and opened my

eyes to new opportunities and challenges in my research. I would like to spe-

cially thank Fahim who gave me an opportunity to be an intern in Nokia Bell-

Labs, a prestigious research lab where I have learned the most advanced tech-

nologies.

I would like to thank Assistant Professor Youngki Lee–my co-advisor in the

first three years, Richard Davis, Quentin Roy, Kenny Choo for their contribu-

tions in my very first pieces of work. My special thanks to Assistant Professor

Jie Xiong for his guidance in my recent pieces of work. I would like to thank

Chulhong Min for his mentoring and supporting during my internship.

xii

I would like to thank Chew Hong, Pei Huan and Caroline for always being

supportive. I thank LiveLabs, MOE fund for financially supporting my research.

And thank you to Sipei, Kazae, Shuhui and Jonathan for supporting my experi-

ments and travel.

I have been blessed to have many friends who have added many joyful events

to my journey. Thank you to Meera, Kasthuri, Sinh, Loc, Huy, Minh, Sougata,

Amit, Kenny and Camelia for always being available for my experiments. I

will also like to thank Hirunima, Aritra, Vengat for their help to conduct many

experiments.

Finally, I would like to express my special gratitude to my family for their

unconditional love and support. Thank you to Ann my beloved wife, who has

silently sacrificed her career to be with me through the journey and to give me

the best support. I am grateful to my parents for their love, patience and encour-

agement.

xiii

To

Ann my beloved, for always being with me through my journey

&

My parents, for their patience, love and encouragement

xiv

Chapter 1

Introduction

In recent years, wearable devices (hereafter referred to as wearables) have

gained immense interest from consumers. While smartwatches have been

around for a long time (the Seiko TV watch [2] was introduced in 1982), the

introduction of embedded sensors has let to a rapid growth in the wearable mar-

ketplace, with estimates [4] projecting a market of USD $51.6 Billion by 2022.

Wearable is not limited to only wrist-worn devices such as smartwatches, but en-

compasses a variety of ”smart” devices being worn on any part of a user which

can range from smart glasses, smart earbuds to smart clothes, smart tattoo, etc.

”Wearable” now has a specific meaning of wearable computer which must sat-

isfy 3 goals: (1) being mobile, being with the user at all times, (2) being able

to augment reality (to assist users), and (3) being able to sense the context [34].

By virtue of its ability to sense the actions of the user, as well as the ambient en-

vironments, wearable devices become a powerful platform for digital mediation

between an individual and the computing infrastructure.

Wearables enable non-obtrusive sensing applications which were impossible

before its emergence. Nowadays, a person can easily use a smartwatch or a

smartband to measure his heart rate [1] at any time, which used to require a

bulky inflation blood monitor and some skills to operate the equipment. Not

limited to only heart rate, many other sensors are now equipped in a wearable

1

device to measure bio-signals of a user such as blood oxygen saturation (SpO2),

blood pressure [17], body temperature [22], electrocardiogram (ECG) [19] etc.

Any person can monitor his/her bio-signals in real-time using a wearable to

adjust exercise intensity or to track health conditions. Wearable has become an

always-available platform which conveniently provides sensing services.

In reality, what makes wearables stand out from mere bio-signal monitors

is their motion sensing capability. Inertial sensors, such as accelerometer and

gyroscope, have been used for many years in navigation systems in airplanes

and ships. Recent technologies have created miniature, low-cost, low-power

motion sensors which can be embedded in small form-factor wearables. These

sensors, indeed, have revolutionized the way wearable is used. Smartglasses

[15, 18, 20], which provide virtual/augmented reality (VR/AR), can determine

user head direction to render appropriate video content. Motion sensors in a

smartwatch have been used to determine the direction and orientation of user

arm, and the smartwatch is used as a pointing device for ubiquitous displays

[64, 115], or for VR headsets [69].

Motion sensing also makes wearables smarter, and provides mechanisms

for context-aware computing. Motion sensors in wearables reflect user motion-

based behaviours such as activities, gestures and interactions. Human activities

recognition using mobile and wearable devices has been intensively studied for

years. Locomotion modes (such as standing, walking, running) of a user can

be inferred from the inertial sensors [102], and used as context information for

context-aware applications. Wearable motion sensors have been used to recog-

nize activities of daily living (ADL) such as eating [112], smoking [94], drink-

ing [25] and shopping [111] which are useful for life-logging applications or

personalized, context-aware product promotions. Motion sensors also provide

information to assess sport/exercise activities such as swimming [28], and to

give advice to an athlete/player such as a Virtual Coach [86]. Thank to iner-

tial sensors, wearables can be used to track user hand position (hand tracking)

2

[113, 83] which can be used as input for VR/AR applications.

Table 1.1: Latency and energy consumption of recent works on motion sensing.

Reference
(year)

Typical
sense-
making
latency (ms)

Duration of
key gestures
/activities
(ms)

Power con-
sumption
footprint
(mA)

Sensors and
sampling
frequency
(Hz)

[83](2019) 150 NA (general
trajectory)

480 Accelerometer
Gyroscope
Magnetometer
(100)

[113](2016) 10000 NA (general
trajectory)

NA Accelerometer
Gyroscope
Magnetometer
(200)

[36](2016) NA (Offline) 1000 NA (Offline) Accelerometer
Gyroscope
(1000)

[96](2011) 1287 NA 38 Accelerometer
Gyroscope
(40)

[28](2009) 200 1000 - 5000 29 3 Accelerome-
ters: 1 at wrist,
2 at back (256)

However, to fully utilize the potential of motion sensing in wearables, one

needs to overcome several key challenges including: (1) sensor variation, user

variation and context variation, (2) energy consumption of inertial sensing on

wearable platforms, and (3) latency of the sensor processing pipeline. Table

1.1 summarizes the latency and energy consumption of recent works on motion

sensing. The latency mentioned in the table is the latency after the extraction

of a segment of data which probably contains the event of interest (e.g, gesture,

interaction). It means that the system detects an event of interest 0.15 to 10

seconds after the event occurs. As shown in the table, the power consumption

of these methods is exceedingly high compared with recent wearable platforms

whose battery capacities can be as low as 40mAh [65]. As summarized in Table

1.1, motion sensing techniques in recent studies have either high latency or high

power consumption.

3

• Sensor variation, user variation and context variation: Wearable sen-

sors are limited in size and power consumption to fit in a wearable, so

manufacturers have to balance between the accuracy/resolution of the sen-

sors and their size and power consumption based on their own criteria.

The technologies different manufacturers use to manufacture sensors are

also different. Even the same sensors can behave differently under differ-

ent situations (e.g, current voltage level, current CPU load), and a CPU

can set different sampling rates for the same sensor in different cases.

All these factors contribute to variations of sensors which affect accuracy

of application results. Moreover, in many motion sensing applications,

such as activities recognition, pattern analysis is used to detect patterns

of interest. These patterns are known to vary across different subjects

(i.e, wearers). Every person has unique physical characteristics such as

arm length, body weight, muscle strength, which result in highly different

sensor values for the same action. The context in which a user performs

an action also greatly changes the amount of noise added into the data.

For example, a user performs a waving gesture on a bus results in con-

siderably more noise than the same gesture when the user is sitting still.

Because of these variations, an activities/gesture recognition model might

not achieve sufficiently high accuracy with unseen data.

• Energy consumption of inertial sensing on wearable platforms: Wear-

ables such as smartwatches have limited battery capacities to fit their small

form-factor. The gradual emergence of even smaller form-factor wearable

devices, such as smart ring [70] or smart earbud [65], imposes even stricter

limits on battery capacity, and thus, operational lifetime. A study at Wash-

ington university in 2015 showed that having to charge a device frequently

was one of the reasons people abandon their wearable devices [73]. In

addition, the mass production of many small devices makes the battery

disposal an alarming threat to environment. The battery needs rare-earth

4

minerals whose production and eventual disposal are both known to cre-

ate pollution. Miniature batteries also make the used batteries collection

increasingly difficult. Those are the driving reasons that ”battery-less”

devices are being explored for devices such as small calculator or solar-

power smartwatches [78] (which supports recognition of touch gestures).

To support motion sensing (a key capability for many gesture-driven ap-

plications), a device needs several energy-hungry sensors at the same time

such as accelerometer and gyroscope [141, 71, 48] or even including an

additional magnetometer [140, 113, 83]. Among those sensors, gyroscope

and magnetometer are known to be energy hungry in the context of mobile

& wearable sensing [96]. As I shall show later (using numerical analy-

ses), for a low-power wearable device (with off-the-shelf components), to

support real-time gesture recognition for a game-playing session lasting

one hour, the device needs at least an average continuous power supply

of 83µW throughout a day (24 hours). Any energy harvesting wearable

should meet this energy requirement to support fine-grained motion sens-

ing.

• Latency of the sensor processing pipeline: While gesture tracking using

wearables has gained popularity, our analysis showed that most gesture-

based applications currently do not need real-time tracking–e.g., appli-

cations such as eating and drinking [25] or swimming [86] analysis cur-

rently perform offline analytics; similarly, gesture-based control of home

equipment can tolerate 2-5 secs of latency in gesture recognition [16].

Currently developed pipelines for wearable-based inertial sensing data

are unsuitable for certain real-time, interactive applications such as fast-

paced VR/PC games, sport training applications etc. where feedback is

needed even before gesture has finished. Current approaches for gesture

recognition need a segmentation step before recognition, which means a

system needs to extract a segment of sensor data which probably contains

5

a gesture, and then classify that segment into a specific gesture or non-

gesture. This mechanism implies that the system needs to wait until the

end of a gesture, and thus processes a gestural segment only after it fin-

ishes. For interactive applications, such a process is too late. Any gesture

recognition technique for such real-time interactive applications needs to

recognize gestures early (⇠20ms after the actual interaction). Of course,

to coexist with a future of energy-harvesting based operations, the algo-

rithms should also be (i) computationally simple (to reduce computational

energy) and (ii) be robust even with lower sampling rates (because such

rates are one way to reduce power consumption).

There are many studies on how to cope with data variation using data aug-

mentation [124, 91], and many studies on how to adapt a model pre-trained on

one dataset to another dataset with different distribution (transfer learning and

domain adaptation) [68, 47]. However, there is relatively little work on low-

latency motion sensing and how to support fine-grained motion sensing using

harvested energy on wearables. In this dissertation, I specifically focus on these

two challenges, and propose a set of innovations to enable low-latency motion

sensing on energy-harvesting wearables.

1.1 Tackling the Challenge: Supporting Low-

Latency Gesture Recognition & Tracking on

Energy-Harvesting Wearables

Hand tracking using IMU sensors has been studied recently, but those tech-

niques are computationally expensive. For instance, the system in [113] needs

to spend 10⇥T seconds to process a T-second sensor segment on a desktop

computer. Though accurate, this technique is inapplicable to real-time tracking

problem because of the long processing time, which also results in high power

6

consumption.

Fortunately, a system does not need to track user’s hand all the time to be

useful for an interactive application. For example, when a user is playing Table

Tennis game, only the hand trajectories during a game gestures are needed to

detect whether the user’s hand hit a virtual Table Tennis ball or not. During

other moments, if the hand is not accurately tracked, it does not affect the game

playing ability of the user.

If a system can filter out hand trajectories that does not belong to the sup-

ported gestures, the probable space of hand’s position will be significantly re-

duced and easier to be estimated. But firstly, of course, the system must be able

to accurately recognize these gestures. Another interesting observation is that

different gestures usually have different trajectories. Being able to detect a ges-

ture accurately also provides a hint of the trajectory the hand has gone/will go

through.

However, in many interactive applications, even though the system can es-

timate user’s hand trajectory accurately, if the estimation is ready only after the

event of interest (e.g, hit a Table Tennis ball), it will severely affect user experi-

ence. A technique for early gesture recognition will solve this problem. When

combined with gesture-based hand tracking, it enables early gesture recognition

& tracking for interactive applications. Early gesture recognition alone can also

be applied to ”motion correlation” interface [126] to enable low-latency inter-

action with computer system without pointing or touching.

Low-latency gesture recognition and tracking on an energy-harvesting wear-

able is only possible if the wearable can harvest sufficient energy from the am-

bient environment. Though ambient energy sources, in general, are available in

many forms, the ambient energy sources for wearable are very limited. One of

the very intuitive energy sources is the light. People might think about using

photovoltatic cells to harvest energy from light (e.g. sun light or light bulbs).

However, in indoor environment, the light energy is very weak. With a cell area

7

of 4.1cm⇥2.6cm, the maximum harvested energy is only around 50µW [21].

The reason is that the light intensity in indoor environment is much lower than

the sun light. Also, the photo-voltaic cells rarely catch the light at an incident

angle of 90� which gains the highest efficiency. One of the other energy sources

which has been exploit for years is motion energy (the Seiko wrist watch). Ac-

tually, the average harvested energy from this type of harvester is quite low (an

average of 5µW when worn [93]), and not enough for a wearable with motion

sensors. Piezzo electric is another potential energy source, but it is only de-

ployable at places which can cause pressure on the harvester such as in shoes.

For wrist-worn or ear-worn devices, the pressure or vibration is not sufficient to

generate enough energy to support a motion sensing wearable device.

Energy from Radio Frequency (RF) signal has its own advantages to be used

as an energy source for wearables. RF energy has long been used for other pur-

poses such as cooking (e.g. Micro wave oven), and some studies have been

done to use RF signal to create a charging cage. But this approach is too com-

plicated for applying it to power always-on wearables. Energy harvesting from

ambient radio signal from broadcasting station has also been studied, but it need

large antenna to receive sufficient energy for a low-power sensor [97]. Using a

completely different philosophy, RF energy is widely used to power RFID tags

which are completely mobile and powered on demand. RFID readers have been

studied as a possible source for powering small devices such as sensors and

low-power cameras [89]. However, dense and ubiquitous deployment of RFID

readers is not a very popular option.

Recently, WiFi signal has been studied as a medium to transfer energy to

devices, but it is limited to specific deployment of devices and WiFi AP with-

out addressing the problems faced by mobile devices, such as smartphones and

wearables. Exploiting WiFi APs to power wearables has several advantages.

WiFi APs are ubiquitously deployed in almost every indoor environment, as a

means of providing high-speed wireless connectivity. In many urban indoor ar-

8

eas, WiFi APs/repeaters are densely deployed to provide continuous and high

speed services to any device in the area. The WiFi band is commonly used by

many low-power devices such as WiFi, Bluetooth, Zigbee etc. Moreover, WiFi

AP are widely available commercially.

However, WiFi energy is limited and regulated by laws. Unless it is wisely

used, it will not be able to supply enough energy to power wearable devices.

For example, a 2.4GHz signal will observe a loss of 35dB at a distance of 1

metre in perfect environment (without multi-path effect). Because people cannot

increase the transmission power more than a regulated threshold (30dBm or

1 Watt in the US), the available energy at practically longer distance will be

exponentially lower and insufficient for wearable devices. If the APs merely

radiate the energy omnidirectionally, the energy is wasted at places where there

is no harvesting devices.

Since 2008, with the new WiFi standard 802.11n, MIMO has been officially

supported in WiFi APs. MIMO-enabled WiFi AP has multiple antennas to sup-

port transmissions of multiple data streams concurrently. Multi-antenna APs en-

able two distinct key features: (1) being able to estimate angle of arrival (AoA)

of the signal, thus the WiFi device, (2) being able to beam-form the transmitted

signal to increase the gain in different directions. These two key features can be

re-purposed to increase the energy transferred to harvesting devices, by effec-

tively concentrating the transmission power in narrow beams directed towards

the direction of such wearable and mobile devices.

1.2 Motivating Scenarios

The previous sections show the gap in wearable-based gesture recognition tech-

nology, especially in the ability to recognize gestures & track hand motion with

ultra-low latency or with low power consumption. Through a survey of various

sources, I however discovered a few candidate applications where these capa-

9

bilities would be critical. Broadly speaking, these applications are interactive in

nature, including interactive therapy and VR/AR games:

• In-home Constraint-induced (CI) movement therapy via VR gaming [38]

is a promising rehabilitation technology for patients who underwent a

trauma or accident which affect their limb function and ability. CI ther-

apy was shown to produce significant improvement in limb use after cere-

brovascular accident [120], but a majority of patients were not motivated

to use CI therapy because of the restriction in clinical session and devices

[92]. Borstad et al. [38] proposed and studied the feasibility of In-home

CI therapy using VR game with a Kinect [137] to track users limbs, and

encourage patients to use their limb to play games. The study showed that

the method was acceptable by patients in the study, and improvements in

limb use were observed. Inspired by this rehabilitation method, I depict a

rehabilitation scenario where patients do not need to sit/stand in front of a

camera, but a wearable device will capture all information of his/her limb

movements for assessment.

• The technical innovations, which are used to enable rehabilitation sce-

nario, can also be applied to sport/fitness virtual training applications for

new athletes/trainees. A person, who is new to a sport, game or exercise

he/she participates in, may find it difficult and unmotivated because of a

slow progress or a feeling of being left behind. Eyck et al. studied the

effect of Virtual Coach on motivating new athletes [50, 60] to cycle. The

result showed that the virtual coach increased the intrinsic and extrinsic

motivation. The virtual coach helped participants to bike more in the op-

timal heart rate zone. Based on these prior studies, I envision a virtual

coach application using wearable devices which can assess an athlete/-

trainee movements and provide feedback in real-time.

10

1.2.1 Real-time Monitoring of Interactive Gestures using

Battery-less Wearables

1. Arm angle 90
2. Rotate c lockwise
3. Move arm to the back4. Repeat step 1

1. Arm angle 90
2. Rotate c lockwise3. Move arm to the back4. Repeat step 1

Score: 80%

TV shows
training
gestures

WiWear
device
records
gestures

WiWear
device
records
gestures

Beam-
formed WiFi

energy

Sensor data
transmitted
back to AP

WiWear
AP

Figure 1.1: A scenario where a patient wears two wearables in a rehabilitation
session. The patient looks at a TV screen showing a training gesture, and tries
her best to mimic the gesture. The wearables read sensors and transmit the data
back to a server through an AP. The server application analyses the data and dis-
plays feedback and corrective instructions on the TV screen in real time, allow-
ing the patient to rapidly modify her mistakes. To power the wearables, the AP
generates beam-formed WiFi transmissions (RF wave) to focus energy towards
the wearables, and the wearables harvest energy from these transmissions.

Use case 1: Rehab Exercises

Thompson clinic is a local health-care center. It provides rehabilitation services

for people with different types of traumas. Usually, each patient periodically

visits the center and a physician will instruct the patient to perform different ac-

tivities/exercises. Then a physician observes how the patient carries out her/his

movements and gives her/him necessary advice. This is a time consuming and

costly process as it requires a physician to be with the patient. Even if the patient

wants to practice more (e.g. practice on her/his own at home), there will be no

feedback on her/his movements.

The clinics setups an automatic rehabilitation room (illustrated in Figure 1.1)

11

so that many patients can attend a single session concurrently to save the physi-

cian time and effort. Each patient is given a battery-less wearable which con-

tains IMU sensors. The application shows a training video on a TV screen, and

the patients try their best to repeat the gesture correctly. The application then

collects sensor data from patients in real-time and analyses motion patterns to

evaluate if the patient makes correct training gestures. After each gesture, each

patient is given instantaneous feedback via several channels such as visual &

audio (on the TV screen) and vibration on the wearable. To encourage patients

to participate in the exercises, some games are integrated to the training session.

Patients can use their gestures to play games such as the one explored in [101].

This application requires low-latency gesture recognition to provide feed-

back timely to preserve the interactivity of the patients. It also requires hand

tracking to assess the similarity or correlation of the actual hand movement and

the sample shown on the screen. After each rehabilitation session, the system

summarize statistics of each patient, and the physician knows the problems of

different patients and give them appropriate advice.

Use case 2: Sport Training

Tom is a teenager. Recently he has been interested in Table Tennis and he wants

to be proficient at Table Tennis so that he can join a contest in the city. He

usually practices Table Tennis with his coach. But it is costly, so he can spend

only 2 hours a week to practice Table Tennis with his coach. He improves

his skills slowly, so he wishes to be able to practice more to achieve a certain

proficiency, but he could not afford it.

Fortunately, he has a battery-less wristband which he wears every day. He

also have a Google Cardboard which he uses to watch 3D movies on his smart

phone. He decides to install a Table Tennis training application on his phone.

This application, together with his wristband, can provide him free virtual coach

service. Whenever he wants to practice Table Tennis, he straps on his Cardboard

12

(with his phone inside, running the training application). The application first

shows him a short training video of a Table Tennis stroke, then it renders a

virtual Table Tennis ball flying toward him. Tom then tries to repeat the training

video (shown to him previously) to hit the virtual ball. Based on the sensor data

from Tom’s wristband, the application estimates his hand position, renders a

hand avatar in his phone, and determines whether Tom hits the virtual ball or not

and gives him audio and vibration feedback instantly. Based on the estimated

gesture, the application also assesses his stroke and shows him advice on his

phone.

Similar to rehabilitation scenario, this application requires low-latency hand

gesture recognition & tracking. More importantly, the feedback must be timely

so that he does not feel the lag of the ”hit” moment which negatively affects the

next stroke immediately after the first one.

Key Challenges

Several challenges need to be tackled to realize the above vision. We utilize the

notion of a “virtual table tennis game” as an exemplar of a fast-paced, highly

interactive application to elaborate on these challenges.

Recognize the Gesture Before it is Completed: In the case of using game

for rehabilitation [101], the real-time feed-backs are very important to improve

the experience of patients and make the patients engaged in the session. More-

over, most stroke-based games (e.g., tennis, table tennis and badminton) involve

a significant follow-through–i.e., the actual game gesture involves significant

movement of the hand both before and after the act of striking of the ball. In

fact, as our analysis later (in Section 4) shows, a typical table tennis stroke ges-

ture (the nucleus of gesture) lasts for about 300 msec, with the point of contact

between the ball and racket occurring around 120 msec after the start of the

stroke (i.e., at approx. the 40%th point of the gesture). Accordingly, we cannot

afford to delay the execution of the recognition step till the end of the gesture,

13

as this would seriously impact the interactive feel of the game.

Calculate the Trajectory Fast and Accurately: For rehabilitation, the tra-

jectory of each gesture is crucial to assess the performance of a patient. Es-

pecially, if the rehabilitation process includes gesture-based game playing, the

trajectory estimation must be fast enough to support different paces of patients.

Similarly, Table Tennis is a very fast-paced game, with professional grade play-

ers often exchanging 120 strokes each per minute during a rally [142]. To pro-

vide a truly interactive feel, the game must not exhibit lag - i.e., the game must

detect the instant of contact between a player’s racket and the ball instantly, so

that the virtual reality game can proceed apace. This means that we must not

only compute the hand’s trajectory fast (in real time- e.g., with lag 102 msec cor-

responding to the 80th percentile of lag tolerance reported later in Figure 4.21

in Section 4), but also precisely (as the calculated point of intersection between

the racket and the ball will affect the calculated time instant of contact as well).

Such precise and fast tracking is needed to support lag-free rendering of each

user’s hand movements during such a game.

1.2.2 Continuous At-Home Gestural Monitoring of Elderly

with Battery-less Wearables

Ms. Smith is a retired librarian. She has recently fallen down in her house,

and has been hospitalized. Though the hospital discharged her already, the in-

cident has made her unable to walk properly and stably. The physician then

applies physiotherapy to improve her ability to walk by asking her to come for

a physiotherapy session every week. Each time the physician observes her gait

and gives her his advice, and she improves slowly. Both the physician and Ms.

Smith wish she had an assisting system to help her practice more at home to

help her improve quickly. The physician then askes Ms. Smith to wear an IMU

tracking device on her leg, near the ankle. The device continuously records her

movement using IMU sensors and sends the data back to a cloud service where

14

the physician can use an analytical application to analyse the patient gait. Based

on the analysis, the physician will call Ms. Smith to give her his advice.

However, because she has trouble with her memory, she often forgets things,

especially if the related objects are not on her body. Another problem is that the

IMU tracking device is quite bulky and cause discomforts if she wear it through-

out a day. One day, she may remove her IMU tracking device for charging and

subsequently just forgets to wear it. Alternatively, on another day, she might

forget to charge her IMU tracking device, implying that she cannot use it even

though it is on her wrist. The worst case is when she does not know the device

is out of battery for days. This lack of continuous access to a charged, func-

tional wearable wristband may severely affect her recovering process because

the physician does not have daily data to analyse her gait and thus cannot give

Ms. Smith proper advice, and thus negatively affect her continuous improve-

ment.

These problems would not manifest themselves if her IMU tracking device

harvested energy from the ambient environment. Given such a capability, Ms.

Smith would never need to remove her IMU tracking device, and would never

have to worry about her device running out of energy. In outdoor environment,

the solar energy might be enough for a wearable to operate. However, in indoor

environment, ambient energy sources are not always reliable and may not be ef-

fective (in this case, the device is covered by her trouser leg). Ideally, a wearable

device needs not harvest energy from only one energy source, but should oppor-

tunistically harvest from any available source. RF-based energy is a promising

source for indoor environment and has been shown to even power low-power

cameras [89]. However, unless RFID readers became commonly available in

houses, RFID-based charging would not be a practical solution to Ms. Smith’s

problems. WiFi, on the contrary, is much more ubiquitously available (at least

in urban homes), and could be an interesting source of energy for such wearable

devices.

15

Key challenges

Improving Efficiency of WiFi Transmissions for Power Delivery: Through

empirical experiments, we observed that the harvested power, from a con-

ventional omnidirectionally transmitting WiFi AP, is too low for practical use

(around 1-3µW at distances of 3-4 meters). Note that this problem is partic-

ularly acute for WiFi transmissions (which occur in either the 2.4 GHz or 5.5

GHz frequency bands), as opposed to RFID frequencies (865-868 or 902-928

MHz), because it is well known that the wireless propagation loss is greater for

higher frequencies [54].

To tackle this problem, we propose to leverage on prior work on (angle-of-

arrival) AoA estimation and beamforming to spatially concentrate the transmit-

ted power in the direction of the individual wearable devices. Via experimental

studies, we show that we can effectively perform AoA estimation with errors

usually less than 5 �and achieve an over 100-fold increase in harvested power.

Supporting Intermittent Operation of Wearable: Our ideal outcome is

the design of a wearable device, which utilizes WiFi harvesting to power a rel-

atively high-power inertial sensor used in various gesture-tracking applications.

Such a low-power wearable device, worn by a mobile user, gives rise to two

challenges: (i) the WiFi AP must be able to track the wearables changing lo-

cation, without requiring constant active transmissions from the wearable that

would consume significant energy, and (ii) the peak power overhead of the wear-

able system, including the accelerometer and the RF frontend, is over 40 mW—

while lower than current commodity watches, this is still much higher than the

O(100)micro-W harvested power that RF harvesting is likely to provide. This

implies that executing a continuous sensing mode on the wearable is simply

infeasible.

To tackle both these challenges, I shall describe an approach, where the

wearable usually “sleeps”, employing a simple magnetic field tracker to first

detect significant motion of the wearable device (such significant motion being

16

indicative of a possible gestural action). Such significant motion triggers both

(i) the transmission of ping packets, which allows the AP to determine the wear-

ables new AoA, and (ii) the activation of the accelerometer sensor, to capture

the likely occurrence of meaningful gestures. A supercapacitor helps store the

harvested RF energy, and smoothens out transient fluctuations in power supply

and drainage. By utilizing experimental studies (with 4 individuals in an office

cubicle setting), I show that such a battery-less wearable system can be used to

continuously monitor major hand movements, while being net energy-positive.

Support of Multiple Devices/Individuals: For such a wireless charging of

individual wearable devices to be practically useful, the infrastructure must also

prove to be scalable–i.e., it should be able to simultaneously support the oper-

ation of multiple wearable devices, either belonging to different individuals or

even for situations where a single individual uses multiple wearables. Such a

solution would be needed, for example, to cater to multiple occupants in a smart

home, or alternately, multiple devices associated with a single individual (e.g.,

Mrs. Smith may utilize 2 distinct devices, one on each of her legs). The presence

of multiple occupants, possibly located in distinct angular directions relative to

the AP, gives rise to new tradeoffs in determining beam width and direction-

namely, (a) the beamforming process must use narrow beams to increase the

power transmitted to each individual device, while (b) a broader beam would,

on the other hand, allow multiple devices to be simultaneously covered.

To tackle this problem, I shall propose and develop an optimization frame-

work that can address different objectives–e.g., ensuring max-min fairness or

simply enhancing the total power harvested. Via numerical analysis, I provide

initial evidence that, by appropriately adapting the spatial and temporal patterns

of the RF beams, our AP can support multiple such wearables simultaneously. I

also present details on the development and validation of a more elaborate and

robust beam adaptation mechanism in my dissertation.

17

To support the aforementioned scenarios, two key innovations are needed:

(1) an energy delivery mechanism to provide sufficient power, unobtrusively, to

the wearables so that they can operate the inertial sensors intelligently, and (2)

a low-latency low-complexity motion sensing technique which can be deployed

on ultra low-power wearables and can produce results in real-time. Based on

these considerations, I envision a framework, called WiWear , which enables

battery-less motion sensing on energy-harvesting wearables.

1.3 WiWear Vision

WiWear includes one or more wearables (called WiWear device) and one or more

AP (called WiWear AP). A WiWear device harvests energy in the form of WiFi

signal from a WiWear AP and performs sensing tasks (e.g. gesture, activities

recognition).

1.3.1 WiWear device

A WiWear device supports (but not limited to) motion sensing. As motion sens-

ing requires energy-hungry sensors, if a WiWear device can support motion sens-

ing, it is likely to be able to support many other sensing modalities. The WiWear

device can be worn by a user without having to be removed to recharge. It har-

vests and accumulates energy continuously throughout the day. Of course, the

WiWear device can use any other energy harvesting technologies such as light,

motion as an opportunistic energy harvesting device. It also uses the stored

energy to continuously collect sensor data which will be used for analysis appli-

cations such as physical activities level monitoring. At some point, the user can

use the WiWear device as an interactive input device (e.g. a game controller),

which requires real-time streaming of sensor data, to interact with mobile appli-

cations (e.g. a rehabilitation application or a VR game).

18

1.3.2 WiWear AP

A WiWear AP is a WiFi AP with multiple antennas. There can be multiple

WiWear APs in an area. The WiWear APs fulfill two main goals: (1) fully func-

tioning as a WiFi AP which provides communication medium for normal WiFi

devices, and (2) supports energy transfer to WiWear devices and sensor data col-

lection from the WiWear devices. To smartly transfer energy to WiWear devices

the WiWear APs track the location of WiWear devices and boost energy density

in the directions of the WiWear devices. In the case of a single AP, the angles

(or direction) of WiWear devices are estimated. In the case of multiple APs, the

relative (to the APs) locations of WiWear devices are estimated. Based on the lo-

cations of WiWear devices, the WiWear APs modulate and schedule WiFi signal

beams to maximize the harvested energy at the WiWear devices. Based on the

current topology of the devices and the communication demand of normal WiFi

devices, the system can also schedule appropriate WiWear APs to serve devices

efficiently in terms of both energy and communication satisfaction of devices.

1.3.3 Fine-grained motion sensing on battery-less wearables

The WiWear APs and WiWear devices establish a framework for battery-less

motion sensing. A WiWear device contains IMU sensors which support both

analytic and real-time sensing applications. For analytic applications, the Wi-

Wear device buffers sensor data locally, and only transfers the data to an Wi-

Wear AP in batch mode to save energy. For real-time applications, the WiWear

device transfers each sample to an AP as soon as possible. The WiWear device

may process the data locally and transfer only the result to an AP depending

on the application. For instance, a rehabilitation prepares several battery-less

smart bands which can be worn on patient’s wrist or leg. Each patient comes

to the center, takes one band and wears it. The patient then practices on her/his

own by mimicking the sample gestures shown on the TV. After each gesture, the

TV shows feed-back of the recent gesture so that the patient can adjust her/his

19

movements. A physician can access to the statistics of each patient and give

her/him appropriate advice.

1.4 Thesis statement

In this thesis, I propose a framework to enable truly battery-less wear-

ables which support fine-grained motion sensing using the energy harvested

from WiFi signals. The proposed framework uses a multi-antenna AP

to find the angle of the devices and focus the energy radiation toward

these angles to boost the harvested energy. I also propose and develop

energy-harvesting wearables which harvest energy from WiFi signal

and apply “smart” event-based operations to enable energy-hungry mo-

tion sensors. Therefore the thesis statement can be stated as follows:

I demonstrate that it is feasible to achieve low-latency motion sensing using

battery-less wearables via a combination of:

(a) intelligently beamformed WiFi transmissions, harvested by a battery-

less, inertial sensor-embedded, wearable device, such that the har-

vested power increases sufficiently to permit quasi-intermittent sen-

sor activation;

(b) low-power, inertial sensing based, gesture recognition algorithms that

support early gesture recognition and accurate hand trajectory track-

ing.

Battery-less wearables can enable a variety of applications such as (1) an

unobtrusive patient monitoring system using battery-less wearables, and (2) a

battery-less real-time gesture recognition & hand tracking for interactive ap-

plications. Motivated by the aforementioned vision of battery-less wearable

systems, in this thesis, I specifically focus on the following three problems:

20

1. Develop an energy transfer framework, called WiWear, for light-weight

battery-less motion sensing wearables. This framework is a foundation for

many other novel applications using battery-less wearables. This frame-

work enables smart energy deliver through WiFi signals which is ubiqui-

tously available in most indoor environments and urban spaces. The Wi-

Wear devices support energy-hungry motion sensors thank to the ”smart”

event-based operations. The WiWear vision does not limit the energy

sources to only WiFi, but it rather complements other energy sources so

that a truly battery-less devices can be enabled in indoor environments. In

Chapter 3, I propose an energy transfer and harvest method using beam-

formed WiFi signals, and analyse the feasibility of the technique in multi-

ple scenarios. The analyses suggest that the proposed method can support

multiple devices (⇠ 4) concurrently in a range of 3m from the AP. A pro-

totype of the system can transfer up to 400µW at 1m from the AP and

more than 30µW at 3m from the AP. The experiments on real participants

show that the harvested energy is more than the energy expenditure of

both system overhead and motion sensing.

2. Develop a real-time gesture recognition and hand tracking algorithm. As

discussed previously in this introductory section, motion sensing is one

of the most desired applications of wearable devices. Motion sensing is

an energy-hungry task, but real-time fine-grained motion sensing is even

much more energy hungry. This is one step to explore to what extent

the battery-less wearable device can support real-time fine-grained mo-

tion sensing. In Chapter 4, I propose a solution to achieve low-latency

gesture recognition and hand tracking. The solution includes a HMM

model which is specifically designed to avoid segmentation and contin-

uously evaluate the sensor data stream to detect Table Tennis gestures

(used as an exemplar of complex, real-time gestures) early, before the

gestures end. I also propose a gesture-based hand tracking method whose

21

complexity is sufficiently low to achieve real-time estimation while still

accurately estimates hand position. The results show that the system can

achieve an accuracy of more than 92% within the first 50% of gestures,

and a median tracking error of less than 6.5cm.

3. Study the feasibility of fine-grained motion sensing on battery-less wear-

ables. Due to the lack of machine learning libraries on the low-power mi-

cro controller used in the prototype, the energy consumption of the system

is modeled using synthetic data based on the data-sheets of components

and complexities of sensing models (e.g, HMM); whereas the evaluation

of accuracy is based on the appropriate down-sampling of real-world data.

Based on the analyses and prototype validation of the framework, this

study examines the feasibility of real-time fine-grained motion sensing

with WiFi-powered battery-less devices. Later I shall show that robust

and early gesture detection using WiWear is achievable. When combined

with other energy sources (e.g, light, motion, vibration), many additional

forms of sensing context (e.g, heart-rate, skin conductance) can be sup-

ported by the battery-less wearables. In Chapter 5, I provide feasibility

analyses on early gesture recognition and tracking using WiWear wear-

ables. The numerical analyses show that our early gesture recognition and

tracking is robust against varying sampling rates. The gesture recognition

accuracy slightly degrades down to 90% when sampling rate decreases

from 100Hz to 25Hz (to reduce energy consumption). The analyses also

suggest that the proposed framework can support a WiWear wearable with

an operational life time of more than 2 hours (at a sampling rate of 25Hz)

with a continuous average harvested power of 90µW . Our gesture-based

hand tracking is significantly more light-weight than state-of-the-art hand

tracking method [83] which results in a superiority in operational life time

if deployed on a WiWear wearable.

22

Chapter 2

Literature Review

Though real-time motion sensing on battery-less wearable for indoor environ-

ment has not been possible in the past, recent advances in both wearable sensing

and energy harvesting as well as wireless standards have enabled the WiWear

vision. In this Chapter, I shall review the existing technologies in the literature

which collectively enable WiWear vision.

2.1 Battery-less and Energy Harvesting

There has been a wide variety of related work in the broad areas of energy har-

vesting, including WiFi/RF energy harvesting, low-power wearable design, and

WiFi beamforming. The maturity of WiFi (in more general–Wireless) commu-

nications has facilitated many novel applications such as activity recognition

and indoor localization using WiFi signal.

2.1.1 Energy Harvesting for Client Devices

There is significant prior work on energy harvesting for wearable / embedded

devices using light, kinetic energy, thermal gradients etc. Ambient and solar

lighting generally provides the highest amount of harvested power as demon-

strated by Heliomotes [79] to power embedded devices and Hande et. al [56] to

23

power indoor APs. Kinetic energy is another popular energy harvesting source

that can use body movements (e.g. EnergyBug [106]) and walking (e.g. Sole-

Power [13]) to power ultra-low-power body sensors. Energy from body move-

ments can also be harvested in another form of piezoelectric [139] which is

generated by the deformation of specific materials. Other energy harvesting

modalities such as electric field variation and heat have also been studied. Elec-

tric field variation from a touch screen can be converted into usable energy by

a contacting device to transmit identification tokens [90]. Thermal energy har-

vesting (e.g., Thermes [40] and [133]) uses temperature gradients to generate an

electrical charge. More recent work, such as Flicker [57], provide a platform for

rapid prototyping of energy harvesting-based sensors. Our work is complemen-

tary to these prior methods and can be (a) used to operate higher power devices,

and b) deployed in environments (e.g. dark warehouses) where prior methods

would not work.

Beside conventional energy harvesting techniques, harvesting energy from

wireless transmissions has also been studied and usually requires custom-

designed hardware for the goal of charging RFID tags and devices – with

WISP [107] being a very well known example that is used to power a variety

of sensors. PoWiFi [119] is the work closest in spirit, and the precursor, to our

approach. PoWiFi modifies AP firmware to transmit ‘power packets’ (without

beamforming) on multiple free channels simultaneously, and harvests such RF

energy, across multiple channels, using a matched filter on the receiver. Such

WiFi power harvesting is used to operate low power embedded sensors at dis-

tances of up to 20ft, but with relatively low duty cycles (e.g., a camera image

once every 20 mins). Most recently, PowerBall [51] has utilized careful phase

synchronization across a large number (24) ceiling-mounted RF transmitters to

deliver wireless power to specific locations, enabling the harvesting of around

600µW by static receivers within a 20X20m2 area. However, focusing energy

to only one point is not always good, especially, when there are multiple de-

24

vices around the AP. Indeed, using beamforming to increase energy harvesting

has been studied via simulations by Huang et. al [59] and Liu et. al [81]. I be-

lieve that WiWear is the first prototype to utilize directional WiFi transmissions

from a single AP, together with a motion-triggered wearable sensing platform,

to support human activity sensing.

2.1.2 WiFi-based indoor localization

WiWear requires accurate tracking of a wearable, potentially mobile, device, to

perform accurate beamforming to relieve sufficient RF energy, so localizing a

device is a required step to enable efficient beamforming.

Indoor localization has been studied for many years. Very first WiFi-based

indoor localization systems exploited signal strength (RSSI) [29] as a proxy for

location as signal strength is usually weaker at longer distance from the signal

source. Due to multipath problem and occlusion problem, this technique is

not very accurate. Channel State Information (CSI) provide richer information

compared to RSSI, such as amplitude and phase of all sub-carriers, and thus has

been exploited for localization [134]. Recently, the emerge of multi-antenna

WiFi APs, which are used for MIMO (multiple-input and multiple-output), has

enabled a more accurate indoor localization using multi-antenna APs. Prior

work, such as ArrayTrack [132] and Chronos [125] have shown how to leverage

active client RF transmissions, coupled with precise AoA computations to very

precisely locate the client. We use similar methods in WiWear to detect direction

of WiWear wearables. Device-free localization approaches such as Bharadia et.

al [33], Jain et. al [61], and IndoTrack [77] were also considered. But they

are not robust enough for deployment in environments with multiple human

occupants.

25

2.1.3 WiFi-based gesture and activity recognition

The application of WiFi is not limited to communication and localization, but

recently WiFi has been used for device-free gesture and activity recognition.

WiSee [100] used the Doppler effect to extract the relative velocity of a moving

object reflecting WiFi signal (e.g. our hand). As each gesture has a relatively

different pattern of Doppler profile, a system can classify different gestures by

analysing these pattern. with a relatively similar mechanism [123] use CSI in-

stead of Doppler velocity to recognize gesture using reflective signal. In princi-

ple, one can also extract Doppler velocity from CSI. To recognize gestures using

this method, a system need energy-hungry sophisticated components to extract

Doppler velocity. To enable ultra low-power gesture recognition using wire less

signal, AllSee [66] proposed an exciting device which can passively extract en-

velope of ambient wireless signal (e.g, WiFi or TV). By using a simple analog

circuit to filter the ambient signal, the envelope of the wave is recorded. When

a user moves the device, the envelope of the signal changes correspondingly.

These patterns are then used to classify gestures. To further improve the energy

consumption, AllSee designed an analog circuit to compare the envelope and

achieve several µW power consumption. WiGest [23] is fairly similar to AllSee

in the way that it uses changes pattern of signal strength to recognize gestures

of object around a mobile device. However, WiGest does not require a user to

hold any device.

2.1.4 Battery-less gestural sensing on wearable devices

Along with the exploration of new energy-harvesting techniques for powering

wearable devices, gestural sensing for low-power and battery-less wearable de-

vices has been increasingly studied. Gummeson et al. proposed and developed

a battery-less ring which can track finger gestures on a surface [55]. The ring

uses a microphone to detect the period the finger contacts a surface, and then

uses an accelerometer to recognize specific strokes the user makes on the sur-

26

face. To power the ring, a coil is used to harvest the energy from an NFC reader

in a mobile phone when the user holds the phone. As this technique is induc-

tive coupling, it works in a range of 1-2 cm centimeters only [74]. With limited

amount of energy, the communication between the wearable device and the host

device needs to be optimized. Carvalho et al. [42] proposed an mechanism to

reduce the amount of BLE (Bluetooth Low Energy) communication by transmit-

ting only the data which is sufficiently different from the previously transmitted

data. To further reduce the energy overhead of gestural sensing, the idea of us-

ing the pattern of harvested energy to recognize gestures or activities without

spending energy on real sensors has been studied. Li et al. [78] proposed to use

voltage patterns of an array of solar cells to recognize touch gestures when a

user touch or move a finger on the cells. Lan et al. [72] explored the use of volt-

age pattern of a kinetic energy harvester to recognize locomotion modes (e.g,

standing, walking). However, this sensing modality does not provide sufficient

information for fine-grain motion sensing (e.g, hand tracking).

Table 2.1 summarizes and compares key studies which are closely related to

the innovations in our method of energy transfer and harvest using WiFi signals.

2.2 Gesture and Activity Recognition

Gesture recognition is, in general, an extensively studied area. Similarly, there

has been a spurt of recent activity investigating the use of smartwatches and

other wearable devices to enable gestural interfaces. Given the large volume of

research conducted on this topic, we focus primarily on the four aspects most

relevant to our goals–(a) Effects of latency on interactivity, (b) namely inertial-

sensing based gesture recognition, (c) real-time gesture recognition, and (d) 3-D

hand movement tracking

27

Ta
bl

e
2.

1:
Su

m
m

ar
y

of
ke

y
re

la
te

d
w

or
ks

in
co

m
pa

ris
on

w
ith

ou
rt

ec
hn

iq
ue

of
ba

tte
ry

-le
ss

m
ot

io
n

se
ns

in
g

w
ea

ra
bl

e.

St
ud

y
A

pp
lic

at
io

n
A

pp
ro

ac
h

A
dv

an
ta

ge
s

Li
m

ita
tio

ns
[5

6]
Se

ns
or

ne
t-

w
or

k
ro

ut
er

In
do

or
so

la
r

en
-

er
gy

ha
rv

es
tin

g
En

ab
le

ne
ar

pe
rp

et
ua

lo
pe

ra
tio

n
D

ep
lo

y
cl

os
e

to
a

lig
ht

bu
lb

,l
ar

ge
ha

r-
ve

st
er

s
[1

06
]

En
er

gy
-

ha
rv

es
tin

g
to

y
fo

rk
id

s

K
in

et
ic

&
Pi

ez
o

en
er

gy
ha

rv
es

tin
g

G
en

er
at

e
en

ou
gh

en
er

gy
to

lig
ht

a
la

m
p

N
ee

d
to

w
or

k
ou

tt
o

ge
ne

ra
te

en
er

gy

[4
1]

B
at

te
ry

-le
ss

m
et

er
in

g
of

w
at

er
an

d
he

at
in

ho
m

e

H
ar

ve
st

en
er

gy
fr

om
th

e
he

at
ge

ne
ra

te
d

by
th

e
ap

pl
ia

nc
e

C
an

ha
rv

es
tu

p
to

26
0µ

W
at

a
te

m
pe

r-
at

ur
e

di
ff

er
en

ce
of

21
� C

N
ee

d
to

be
at

ta
ch

ed
to

a
he

at
so

ur
ce

su
ch

as
ho

tw
at

er
pi

pe

[8
9]

B
at

te
ry

-le
ss

ca
m

er
a

En
er

gy
ha

rv
es

t-
in

g
fr

om
R

FI
D

si
gn

al

Tr
an

sf
er

en
ou

gh
en

er
gy

to
op

er
at

e
a

lo
w

-p
ow

er
ca

m
er

a
Lo

w
fr

am
e-

ra
te

(1
fr

am
e

pe
r

m
in

ut
e)

at
1.

5m
fr

om
an

R
FI

D
re

ad
er

.
R

FI
D

re
ad

-
er

s
ar

e
no

tu
bi

qu
ito

us
ly

av
ai

la
bl

e
[1

19
]

B
at

te
ry

-le
ss

se
ns

or
s

En
er

gy
ha

rv
es

t-
in

g
fr

om
W

iF
i

si
gn

al
s

W
iF

ii
s

hi
gh

ly
av

ai
la

bl
e

in
ur

ba
n

ar
ea

.
H

ar
ve

st
su

ffi
ci

en
te

ne
rg

y
fo

rt
em

pe
ra

-
tu

re
se

ns
or

s
an

d
lo

w
-p

ow
er

ca
m

er
a

H
ar

ve
st

ed
en

er
gy

is
lo

w
(1

0µ
W

at
3m

).
La

ck
of

su
pp

or
tf

or
m

ov
in

g
de

vi
ce

s

[5
1]

W
ire

le
ss

en
-

er
gy

tra
ns

fe
r

to
on

e
po

in
t

Fo
cu

s
R

FI
D

si
g-

na
li

nt
o

on
e

po
si

-
tio

n
in

a
ro

om

Tr
an

sf
er

up
to

60
0µ

W
to

an
y

po
in

ti
n

a
20
m

⇥
20
m

ro
om

C
on

tin
uo

us
fe

ed
ba

ck
of

ch
an

ne
l

in
fo

r-
m

at
io

n
dr

ai
ns

en
er

gy
of

th
e

de
vi

ce
.

D
en

se
de

pl
oy

m
en

to
fR

FI
D

tra
ns

ce
iv

er
s.

R
FI

D
is

no
tu

bi
qu

ito
us

ly
av

ai
la

bl
e

O
ur

te
ch

-
ni

qu
e

B
at

te
ry

-le
ss

fin
e-

gr
ai

ne
d

m
ot

io
n

se
ns

-
in

g

En
er

gy
ha

r-
ve

st
in

g
fr

om
be

am
-f

or
m

ed
W

iF
is

ig
na

ls

A
pp

ly
an

gl
e-

of
-a

rr
iv

al
&

be
am

-
fo

rm
in

g
to

bo
os

t
en

er
gy

de
ns

ity
.

D
el

iv
er

30
µ
W

at
3m

fr
om

th
e

A
P.

Su
pp

or
tm

ot
io

n
se

ns
in

g
on

w
ea

ra
bl

e

La
ck

of
m

ul
ti-

A
P

su
pp

or
t.

28

2.2.1 Effects of latency on interactivity

Latency has long been considered as a key factor which can make human perfor-

mance degrade severely. In a study [85], Mackenzie conducted an experiment

to evaluate the effects of latency to human performance. The “performance” in

this study was the ability of a user to control a computer mouse to hit a target

boundary on a computer screen. By introducing additional latency to the mouse

movement, Mackenzie showed that user performance is not affected with la-

tency up to 25ms, but at 75ms and 225ms, the performance was degraded with

an amount of 36% and 214% correspondingly compared to the 8.3ms latency.

Though later, Cheshire proposed a latency of 100ms as an acceptable threshold

for interactivity [45], it was not clear whether that threshold is appropriate for

any type of interaction. Claypool later explored the latency threshold for dif-

ferent types of online games [46]. Claypool showed that different game genres

have different thresholds, and the First-Person-Shooting genre (which is highly

interactive) should not have a latency more than 100ms. However, for other

types of interactive applications such as sport (e.g. Table Tennis), the action

speed could be much higher (up to 120 Table Tennis strokes per minute [142]),

is this 100ms threshold still suitable? Later I shall show our experiment to vali-

date the latency threshold in Table Tennis game.

2.2.2 Inertial-sensing based gesture and activity recognition

One of the common applications of gesture recognition is touchscreen-based

gesture input [131, 31], where patterns of touch trajectories are classified into

different input commands. Like our problem, touch screen-based recognition

also needs to be near-real time, to support interactive use. Touch screen based

gesture recognition and inertial-sensing based gesture recognition can both be

seen as general problems of pattern recognition. However, the inertial-sensing

based approach need to cope with a more difficult segmentation problem be-

cause the system does not know when a gesture starts.

29

Sensor-based motion gesture recognition can be used to enable detection

and analysis of a variety of gesture-driven lifestyle activities. Typical studies

include eating activity recognition [121, 112] or smoking recognition [94]. In

this class of application, activity recognition is another potential technique such

as locomotion mode recognition [102] which can provide context information

of what a user is doing (e.g, walking, jogging). Higher level activity was also

studied such as shopping activity recognition to analyze shopping behaviour of

shoppers [111]. One of the problem in this type of application is the accuracy

in uncontrolled environments because there can be many ambiguous hand mo-

tion that could be misclassified as gestures. To improve the accuracy of gesture

recognition, a technique called segmentation is also applied. Segmentation se-

lects potential segments of sensor data to classify, and thus reduces the false

positive rate, but it may increase the false negative rate if the segmentation id

not carefully crafted. Park et al. [96] propose adaptive threshold based seg-

mentation which can change the threshold of acceleration based on mobility

situation. However, this method requires the system to wait for a gesture to fin-

ish to avoid segmentation false. So the accuracy of the system depends on both

classifier accuracy and segmentation accuracy. Furthermore, this technique is

not applicable to applications that require early detection.

Recently, wearable-based sensing has also been explored to detect a variety

of sports-related gestures. SwimMaster [28] and SwimCoach [86] explored the

use of mobile and wearable sensors to support swimming training. Blank et

al. [35, 39] recently studied the classification of Table Tennis strokes. Instead

of using smartwatch, they instrumented a racket with sensors accelerometer and

gyroscope to capture the movement of the wrist and the rotation of the racket.

This technique enabled the classifier to be able to differentiate advanced stroke

with spin. However, the user has to have an instrumented racket to play Table

Tennis. Moreover, they evaluate the system using only the different strokes

without non-gesture presented. Therefore it is difficult to confirm if it can be

30

generalized to real game situations.

2.2.3 Real-time gesture recognition

Early detection of gesture is an interesting and open problem. Recently, re-

searchers from NVIDIA Molchanov et al. [88] apply state-of-the-art machine

learning techniques including both Convolutional Neural Network and Recur-

rent Neural Network to recognize hand gesture online from videos. They aim

to recognize gesture with negative lag–i.e., before the gesture has ended. In this

technique, the system needs to use a sliding window to scan through the data

stream smoothly (frame by frame) to detect gesture as soon as possible, so it is

computationally expensive.

Bevilacqua et al. [32] tackled the problem of recognizing the progressive

evolution of gestures. However, they use the conventional HMM scheme on

phrases of sensor readings, so the processing time is very high for long phrases,

and is not suitable for applications requiring real-time recognition. Lee et al.

[76] introduce a method which can recognize gestures from video without using

any sliding window or segmentation. They introduce a loop-back transition to

the start state. However, this start state does not generate any observation, so it

is used to restart the model. Though this method does not require segmentation,

it still requires the system to wait for a while after the gesture ends to confirm

the gesture and restart the Viterbi algorithm.

2.2.4 3-D hand movement tracking

Originally, hand tracking or arm tracking was done using camera [128] or cam-

era with depth sensor [67] to provide 3-D information of user hands. However,

using camera also poses certain problems such as obtrusiveness, set-up effort

requirement. Inertial sensor is less obvious for tracking problems, but it is less

obtrusive and easy to deploy. Inertial sensors has been used to augment 2-D

positional prediction on a touch screen where several touch positions were used

31

as reference samples to predict touch position (up to 99ms into the future) to

reduce the touch latency [75]. 3-D inertial arm tracking is more challenging as

there is no explicit reference point, and the probable arm position space is much

larger. Early studies focused on using inertial sensors for orientation estimation

of sensors and thus body parts [53, 84, 26]. To address the accumulated drift

caused by gyroscope, a magnetometer is usually used to correct the orientation

estimation using the geomagnetic field [104, 130]. By deploying several inertial

sensors at lower and upper arm, the arm orientation can be estimated. When

combining the arm orientation and the arm length, a motion tracking system can

infer positions of arm joints (e.g, elbow, wrist) [114, 130] or even full-body po-

sitional tracking with more sensors [103]. These techniques can usually provide

real-time positional arm tracking (an Android device can compute the device

orientation with a high update rate which can easily exceed 100Hz), but it needs

several sensors to be worn at different body parts. Recently, arm tracking using

inertial sensors in a single wrist worn device has been studied. Shen et al. [113]

propose ArmTrak, a technique which can compute full hand trajectories. They

achieve it by modeling the space around the user as point clouds, then particle

filtering algorithm is used to estimate hand position. This technique requires

powerful hardware to run and imposes significant processing delay (a 1-second

trajectory incurs about 2-seconds of processing delay). More recently, Liu et al.

proposed ArmTroi [83] as a method to address the high complexity of ArmTrak

so that it can track estimate arm position and posture in real-time. It addressed

the problem in ArmTrak by gradually filter out improbable states in a hierarchi-

cal manner. The technique, indeed, improves the processing time when it can

estimate arm position in “real-time”; however, the processing time is still higher

than 150ms which is unlikely to be applied to highly interactive application like

Table Tennis training.

Table 2.2 summarizes and compares key studies which are closely related to

the innovations in our method of early gesture recognition and hand tracking.

32

Ta
bl

e
2.

2:
Su

m
m

ar
y

of
ke

y
re

la
te

d
w

or
ks

in
co

m
pa

ris
on

w
ith

ou
rt

ec
hn

iq
ue

of
ea

rly
ge

st
ur

e
re

co
gn

iti
on

an
d

tra
ck

in
g.

St
ud

y
A

pp
lic

at
io

n
Se

ns
or

s
R

at
e

A
pp

ro
ac

h
A

dv
an

ta
ge

s
Li

m
ita

tio
ns

[9
4]

Sm
ok

in
g

ge
s-

tu
re

de
te

ct
io

n
A

cc
el

er
om

et
er

,
G

yr
os

co
pe

,
M

ag
ne

to
m

et
er

50
H

z
U

si
ng

9-
ax

is
IM

U
se

ns
or

in
a

sm
ar

tw
at

ch
to

re
co

gn
iz

e
ha

nd
-to

-m
ou

th
pr

im
iti

ve
ge

s-
tu

re
sa

nd
an

d
sm

ok
in

g
se

ss
io

ns

A
cc

ur
at

e
sm

ok
in

g
re

co
g-

ni
tio

n
(9

5.
7%

ac
cu

ra
cy

)
N

o
su

pp
or

t
fo

r
lo

w
-la

te
nc

y
re

co
gn

iti
on

[1
21

]
Ea

tin
g

ge
st

ur
e

de
te

ct
io

n
A

cc
el

er
om

et
er

25
H

z
U

si
ng

3-
ax

is
ac

ce
le

ro
m

et
er

in
sm

ar
tw

at
ch

fo
r

ea
tin

g
ge

st
ur

e
re

co
gn

iti
on

Ex
pe

rim
en

ts
in

bo
th

la
b

se
tti

ng
s

an
d

In
-th

e-
w

ild
se

tti
ng

s

N
o

su
pp

or
t

fo
r

lo
w

-la
te

nc
y

re
co

gn
iti

on
[9

6]
G

es
tu

re
re

co
g-

ni
tio

n
fo

r
ga

m
es

A
cc

el
er

om
et

er
,

G
yr

os
co

pe
40

H
z

Pr
op

os
e

ne
w

se
gm

en
ta

tio
n

ap
-

pr
oa

ch
to

re
du

ce
th

e
us

e
of

en
er

gy
-h

un
gr

y
G

yr
os

co
pe

A
da

pt
iv

e
se

gm
en

ta
-

tio
n

re
du

ce
s

en
er

gy
co

ns
um

pt
io

n

N
o

su
pp

or
t

fo
r

lo
w

-la
te

nc
y

re
co

gn
iti

on
.

[3
5]

Ta
bl

e
Te

n-
ni

s
ge

st
ur

e
cl

as
si

fic
at

io
n

A
cc

el
er

om
et

er
,

G
yr

os
co

pe
10

00
H

z
U

si
ng

a
6-

ax
is

IM
U

se
ns

or
at

-
ta

ch
ed

in
si

de
a

Ta
bl

e
Te

ni
s

ba
t

to
cl

as
si

fy
di

ff
er

en
tT

ab
le

Te
n-

ni
s

st
ro

ke
s

H
ig

h
ac

cu
ra

cy
(9

6.
7%

).
B

at
-m

ou
nt

ed
se

ns
or

s
ca

n
ca

pt
ur

e
su

bt
le

ha
nd

m
ov

em
en

ts

N
o

nu
ll

cl
as

s.
N

o
su

pp
or

t
fo

r
lo

w
-la

te
nc

y
re

co
gn

iti
on

[1
13

]
H

an
d

tra
ck

in
g

A
cc

el
er

om
et

er
,

G
yr

os
co

pe
,

M
ag

ne
to

m
et

er

20
0H

z
M

od
el

ea
ch

po
ss

ib
le

el
bo

w
lo

-
ca

tio
n

as
H

M
M

st
at

e
an

d
us

e
V

ite
rb

i
al

go
rit

hm
to

es
tim

at
e

th
e

m
os

tp
ro

ba
bl

e
lo

ca
tio

n

A
cc

ur
at

el
y

es
tim

at
e

el
-

bo
w

an
d

w
ris

tp
os

iti
on

H
ig

h
co

m
pl

ex
ity

,
lo

ng
pr

oc
es

si
ng

tim
e

O
ur

te
ch

-
ni

qu
e

G
es

tu
re

re
co

g-
ni

tio
n

&
ha

nd
tra

ck
in

g

A
cc

el
er

om
et

er
,

G
yr

os
co

pe
,

M
ag

ne
to

m
et

er

D
ow

n
to 25

H
z

A
vo

id
se

gm
en

ta
tio

n
an

d
ev

al
-

ua
te

sa
m

pl
es

co
nt

in
uo

us
ly

fo
r

ea
rly

re
co

gn
iti

on
.

U
se

ge
st

ur
e

st
at

es
fo

rh
an

d
tra

ck
in

g

A
cc

ur
at

el
y

re
co

gn
iz

e
ge

st
ur

es
ea

rly
.

A
cc

u-
ra

te
ly

es
tim

at
e

w
ris

t
po

si
tio

n
du

rin
g

ge
st

ur
es

O
nl

y
pr

od
uc

e
ac

-
cu

ra
te

ha
nd

po
si

-
tio

n
du

rin
g

ge
s-

tu
re

s
of

in
te

re
st

33

Chapter 3

Battery-less Motion Sensing Device

Energy remains perhaps the greatest challenge in the pervasive deployment of

either wearable devices for activity sensing (e.g. eating [122], smoking [95], or

stress levels [49]) or embedded devices for environmental sensing (e.g., [40]).

In particular, sensors such as accelerometers or gyroscopes simply consume too

much energy to operate continuously without either a dedicated power source or

a large battery. However, using battery power introduces three distinct disadvan-

tages: (i) frequent recharging may simply be cumbersome or impractical–e.g.,

for wearable-based monitoring of elderly health at home; (ii) also, high-density

storage batteries give rise to leakage concerns and hazards, especially when the

sensors are deployed in volume and out of sight (e.g., in industrial IoT settings);

(iii) in certain scenarios (e.g., when attached to the limbs of elite athletes or

rehab patients with weak muscles), the added battery weight limits the imper-

ceptibility of the wearable device and interferes with the application’s intended

goals.

To overcome these disadvantages, many solutions using renewable energy

harvesting capabilities have been proposed–such as ambient light [56], temper-

ature gradients [41] and kinetic energy [106]. Each such technique is innova-

tive, but has its own limitations–e.g., ambient light cannot be used for sensors

mounted in poorly lit or occluded locations (e.g., in a dark warehouse or on

34

occluded body locations).

In this chapter, I demonstrate the practical feasibility of using WiFi-

compatible packets transmitted by a multi-antenna WiFi AP (access point) to

power a wearable device with a relatively high-power sensor–an accelerometer

(To be clear, WiFi-based energy transfer need not be the sole form of energy

harvesting (even though it has certain advantages), but can co-exist with, or

augment, other harvesting techniques). Wireless charging, itself, is not novel,

but current solutions require either close proximity (3-5cm) to the transmitting

power source (near field wireless charging, e.g., the Qi [82] standard based on

magnetic induction used by modern high-end phones, which also requires pre-

cise alignment between the transmitter and receiver), or can only charge ultra-

low power passive RFID tags [135] at longer ranges (far field wireless charging).

More recently, PoWiFi [119] has demonstrated the use of WiFi, using multiple

channels simultaneously, to power an ultra-low power wearable (with a temper-

ature or camera sensor), with low duty cycles, while contemporaneous with our

work, Energy-Ball [51] has shown how a grid of ceiling-mounted transmitters

(working at 915MHz, whose propagation loss is much lower than the 2.4GHz

WiFi channel) can collaboratively deliver high wireless power (as high as 0.6

mW in an 20m⇥20m instrumented laboratory using 24 transmitters) to such

tags.

In this chapter, we pose the following two research questions: (a) how to

increase the harvested WiFi power to much higher levels (O(100µW)), even

on a single channel, on an embedded device, at a much greater distance than

had been previously possible? and (b) how can we perform continual gesture

tracking from a batteryless, accelerometer-equipped, wearable sensing device?

We then propose a solution, called WiWear, which uses beam-formed trans-

missions, by a multi-antenna AP, of WiFi “power packets” (transmissions per-

formed explicitly to transfer RF energy) to deliver bursts of directed WiFi energy

to a client device. To point the beam towards the client, WiWear utilizes AoA

35

(angle-of-arrival) estimation techniques [132]. These AP-side techniques are

paired with novel energy-conserving features on the wearable device, which ac-

tivates its communication and sensing components intelligently and selectively,

to help capture only key events. I also design & implement an intermittently-

triggered wearable that utilizes WiFi harvesting to power a relatively high-power

inertial sensor used in various gesture-tracking applications. To assess the feasi-

bility of our WiWear solution, I numerically analyse the operations of the system

under a variety of conditions. I then validate the viability of WiWearby utilizing

multiple controlled and real-world studies.

Access Point Person with wearables

PING

Access Point
Person with wearablesAccess Point

Access Point
Access Point

DATA

Person with wearables
Access Point

Figure 3.1: 5-step model of WiWear architecture. a) Step1: The wearable sends
a ping packet when triggered by gestures. Step2: The AP receives ping packets
and estimates AoA of the device. b) Step3: The AP sends beam-formed energy
packets toward the device. Step4: The device harvests the energy from energy
packets and stores it in a super-capacitor. c) Step5: the device uses the harvested
energy to record sensory data, store it locally and transmit the data back to the
server once available.

3.1 System Overview

In this section, I present the overall functional architecture of WiWear, detailing

the various system-level components needed to deliver sufficiently high WiFi-

based energy to stationary or mobile devices. (The detailed design of the Wi-

Wear wearable and AP is described later, in Sections 4.2 and 3.2.2.)

Figure 3.1 shows the overall flow of WiWear. In this system, the wearable

or embedded device (the ‘client’) transmits an omni-directional ‘ping’ message

when triggered by significant hand movements (Step 1). A WiFi AP computes

the AoA (angle of arrival) of such a ‘ping’ message and thereby establishes

the client’s relative angular orientation (Step 2). The WiFi AP then transmits

36

electronic beamformed energy packets, delivering a more concentrated dose of

RF energy towards the client device (Step 3). The client device utilizes a passive

RF energy-harvesting circuit to convert this RF energy into an electrical current,

storing the resulting energy in a super-capacitor (Step 4). This supercapacitor

thus acts as a nano-battery, providing the transient power needed to activate the

client’s sensing (an accelerometer in our implementation) and communication

modules when needed (Step 5). I shall show that the harvested RF energy, while

two-orders of magnitude higher than prior systems, is still insufficient to power

the (sensing, communication) modules continuously. Accordingly, the client

device (a wrist-worn “wearable” prototype in our implementation) must employ

a set of smart activation strategies, turning on its sensing and communication

components intermittently.

3.1.1 Beamforming Technique

With the adoption of MIMO technologies in the latest 802.11n and 802.11ac

WiFi standards, WiFi APs on the market are now equipped with multiple an-

tennas: 4-antenna APs are quite commonplace, with 6&8 antenna products also

becoming increasingly available1. The availability of such an antenna array pro-

vides us an opportunity to perform beamforming to achieve significantly more

efficient power transfer. Beamforming, which is traditionally used to improve

the reliability of data transfer, involves the careful control of the amplitude and

phase of each antenna’s transmission, so that they constructively add up in the

target direction. The beamwidth is closely related to the number of antennas

employed for beamforming: theoretically, the larger number of antennas, the

thinner the beam we can achieve and thus, higher the concentration of RF power

at a specific location. (Figure 3.2 shows the beamwidths that I obtained in our

lab, using 4 and 8 antenna arrays.)
1For example, the Aruba 320 series APs (http://www.arubanetworks.com/assets/ds/DS

AP320Series.pdf)

37

Received Signal Strength Indicator

0

30

60
90

120

150

180
0 100 200 300 400

4 Antennas
8 Antennas

Figure 3.2: Beamwidth Observed in Practice (4—8 Antenna Array)

3.1.2 Locating the Client Device

For beamformed energy transfer to be effective, the WiFi AP needs to know

the location of the client device–more specifically, the angular direction of the

client, relative to the AP’s own location. To compute this, the WiFi AP uti-

lizes its antenna array to determine the AoA of any wireless transmissions from

the client device. The key principle for such angle/direction estimation is that

the same signal propagates different amounts of distances to reach, and thus

results in slight changes in the signal phase across, different antenna elements.

We employ the state-of-the-art MUSIC algorithm [110] (which has been shown

in [132] to estimate AoA with errors  10� 15�) to perform such AoA estima-

tion. Note also that such AoA estimation is needed only when mobile/wearable

devices move; it is unnecessary for scenarios where the devices are static.

3.1.3 Transmission & Sensing on the Client

Each client device harvests the transmitted RF energy, stores it to cover transient

demand and utilizes such stored energy to perform its necessary sensing and

communication tasks. The client transfers such data only periodically (using

energy-efficient bursts) to the backend/cloud infrastructure. In this prototype

only, due to the limitations of the hardware, the real-time transmission is not

supported yet (to be clear, it can transmit data to the AP in real-time, but at an

exceptionally high cost). We leave it to the future work when we integrate new

hardware to support efficient real-time transmissions. Moreover, the need to

38

make the client device (e.g., the wrist-worn wearable) simple and cheap implies

that the client’s transmissions are omni-directional. The client transmissions

have two distinct uses: (i) to transfer the collected sensor data to the backend,

and (ii) to provide the ‘ping’ packets needed by the AP to estimate the client’s

directionality.

3.1.4 Assumptions on System Design

The WiWear system is proposed based on the following assumptions:

• No obstacle between the WiFi AP and the wearable device: Obstacle is

an object which reflects or absorbs most of the RF signal (for example, a

piece of paper is not an obstacle to RF signal). If there is an obstacle (e.g, a

metal object) between the AP and the wearable device, the estimated angle

will be the angle of a reflecting object, and the beam-formed “power”

packets will be absorbed or scattered by the obstacle.

• No collision of packets from the wearable device and other WiFi devices:

Though a WiWear AP transmits “power” packets in a coordinated manner

(the AP is WiFi compatible), the RF module in the current wearable pro-

totype does not support CSMA, so it transmits packets without waiting

for an “idle” channel state. If other devices (in proximity) also transmit

packets at the same time (using the same frequency range of the AP),

the data will be corrupted. However, in empirical studies later, we have

shown that WiWear can achieve reliability by repeating the transmission

15 times, even when the WiFi AP is operating with a data throughput

utilization of 88% (48Mbps UDP broadcast). The experimental results

presented here do not capture such possible collisions, and can thus be

viewed as representative of having only a single active WiWear device.

• An energy storage (super-capacitor) for high-power burst operation: The

WiWear wearable is assumed to harvest energy continually, whereas the

39

energy is spent in bursty fashion–e.g., only when the accelerometer sensor

is active, or when the collected data is being transmitted back to the AP.

Because the device’s instantaneous power consumption during such ac-

tive periods is much higher than the harvested power, the design assumes

the presence of a short-term energy storage mechanism (a supercapaci-

tor) that helps tide over such transient, instantaneous power deficits. The

super-capacitor needs to be charged to a certain voltage, so it needs a cer-

tain amount of initial power. This can be done by transmitting “power”

packets at a certain angle, and placing the device at the same angle near the

AP until it achieves a working voltage threshold. After the initial charge,

harvesting and using energy can happen at the same time, but the sens-

ing pipeline (e.g, micro-controller, sensors, RF transceiver) must operate

intermittently so that the harvester can accumulate sufficient energy.

M
icr

o-
co

nt
ro

lle
r

RF

Co
mm

.

Ac
ce

le-
ro

me
te

r
Po

we
r

M
gm

t.

Ha
rv

es
te

r

M
ot

ion

Tr
igg

er
Su

pe
r

Ca
p

Sto
ra

ge

(a)

Power Management Microcontroller

Su
pe

r
Ca

pa
cit

or

Storage

Ac
ce

le
ro

m
et

er
RF

 C
om

m
.

M
ot

io
n

Tr
ig

ge
r

(b)

Figure 3.3: a) Component-level diagram. b) Wearable Implementation.

3.2 A WiWear System Prototype

3.2.1 The WiWear Client Device

We now describe the design & implementation of our RF energy harvesting

based wearable device, which includes an accelerometer sensor that can help

track an individual’s movement and gestures. Figure 3.3a illustrates the over-

all component-level design of the wearable device, which contains a few key

40

components: an RF-energy harvester, a low-power microcontroller, the low-

power accelerometer sensor, a storage unit, a wireless communication interface,

a supercapacitor (to provide transient energy storage) and a power management

module. Figure 3.3b shows the implementation on a PCB.

The RF Energy Harvester

The RF harvester works by converting the received wireless transmissions into

an output voltage. In our current effort, we do not focus on developing the “best

harvester”, but instead on demonstrating the overall viability of WiWear. Ac-

cordingly, we implement the harvester (illustrated in Figure 3.4) on a common-

place prototype PCB (FR4 material). The harvester includes an LC network,

followed by a rectifier. We hand-tune the inductor (approximately 1 round of

wire) until the resonant voltage is highest on the WiFi 802.11b channel 1 (the

channel used by the WiFi AP for transmitting “power packets” in our study).

However, the instantaneous output voltage usually fluctuates significantly with

slight movements of the wearable, implying that it is not stable enough to op-

erate the wearable directly. We use a boost converter, BQ25570, which stores

low voltage energy (as low as 100mV) and boosts it into a higher programmable

voltage (set to 2.57V in our implementation) for common electronic devices.

This output voltage is then used to operate an entire embedded system includ-

ing 1 microcontroller, 1 inertial sensor, and 1 RF communication front-end.

Figure 3.4: RF Harvester: FR4 PCB & hand-tuned inductor.

The Microcontroller+ Sensor

We utilize a commodity low-power microcontroller, the STM32L053 [14],

which consumes 6.6 mW power at normal operation, but only 1 µW power

during stop mode. In stop mode, all functions of the device are stopped, but the

content of RAM is preserved. In our system, when the accelerometer records

41

enough data, it generates an interrupt signal to wake up the microcontroller to

read the buffer. The microcontroller wakes up every 3 seconds to read 90 bytes

of acceleration data from the accelerometer if the accelerometer is actually ac-

tive. The wearable can store the acceleration data in a FRAM storage unit,

the Cypress FM25VN10, (for a transmission burst later) or transmit the data

back to the server using the RF front-end. Our device implementation uses the

LIS3DHTR 3-axis accelerometer from STMicroelectronics. This low-power

sensor consumes 2 µA at 1 Hz, and 6 µA at 50 Hz. According to [27], 98% of

frequency spectrum power of accelerometer signals for human activities such as

walking lies under 10 Hz. Accordingly, we use a sampling frequency of 10 Hz,

as this proves adequate in tracking most natural gestures (in addition, gesture

recognition approaches often filter out high-frequency noise).

Figure 3.5: Voltage generated by motion trigger.

Zero-Energy Motion Trigger

To minimize the unnecessary energy drain of the wearable device, we adopt

a triggering-based mechanism, whereby the sensor and the microcontroller are

activated only when the wearable device experiences significant motion (e.g.,

when the user makes a gesture). To avoid the energy drain from such motion

monitoring, we include a very simple, “zero-energy”, passive, motion trigger:

a coil (taken from a shake torch) with a Neodymium magnet inside. Whenever

the device is subject to a significant movement, the coil generates a voltage high

enough (see Figure 3.5) to trigger an external interrupt to the microcontroller,

which then activates the rest of the components. This trigger also causes the

42

controller to generate and send out ‘ping’ packets, which the AP can then use to

infer the client’s updated AoA. Our motion trigger component is more sensitive

to rotational movements but less sensitive to subtle linear motion. However,

this was not a limitation in our current studies (in an office meeting room),

where user gestures typically include a sufficient rotational component. There

are prior studies on tiny MEMS-based motion energy harvesters [87, 136] that

may provide greater linear and rotational motion sensitivity.

3.2.2 The WiWear AP

We now describe the design and implementation of our enhanced WiFi AP. To

support the beamforming-based RF charging vision, the AP needs to perform

the following additional functions: (i) detection of the ‘ping’ packets; (ii) deter-

mination of the AoA and (iii) beamformed transmission of ‘power’ packets. We

implemented our functionality using the WARP [5] platform, which is widely

used within the research community. By default, each WARP board can sup-

port a maximum of 4 antennas. To support more precise beamforming using

an 8-antenna AP, we coupled the operation of 2 separate WARP boards (Fig-

ure 3.7). To enable beamforming and AoA estimation, the phase difference

among the antennas (across the two boards) must be precisely calibrated, and

they must capture or transmit data at exactly the same time. We use a CM-PLL

cable to synchronize the operation of the two boards, setting one board as a

master to perform all the functions of a regular 802.11 AP. The second board

performs as a slave, receive packets (for transmission) via the Ethernet inter-

face and transmitting them wirelessly when triggered by the master. To sup-

port dynamic beamforming of power packets, we insert a complex multiplier at

each antenna interface whose coefficients are specified within the power packet.

Though the transceivers on the WARP board support both 2.4 GHz and 5 GHz

band, the reference design supports only 2.4 GHz. In newer APs, one may con-

ceivably use the 2.4 GHz band for energy and the 5 GHz band for usual data

43

communication. Operating in a higher frequency band (e.g., 5 GHz) involves a

tradeoff between higher path-loss, but greater possible number of antenna ele-

ments (providing narrower beams) due to the smaller wavelength and resulting

inter-antenna gap. I further explore ways to tackle these open challenges in my

on-going work (discussed later in Section 4.8).

Detection of Low-power GFSK ‘Ping’ Packets

The WiWear wearable uses a low power NRF24L01+ module to transmit the

‘ping’ packets, whenever it is subject to a significant movement. This RF mod-

ule uses GFSK modulation with a maximum 2Mbps data rate. The preamble

of each packet is merely 8-bits (”01010101”) followed by a 3-5 byte address.

This makes the packet detection by the AP much more challenging compared

to usual WiFi packet detection for 2 reasons: 1) These packets are not WiFi

compatible. The preamble is too short compared with a usual WiFi preamble

(hundreds of symbols). 2) The signal is too narrow band, with each packet

preceded by 1.5 cycles of very low frequency (⇠40 KHz) while the RSSI cir-

cuit in the transceiver computes the RSSI across the whole range of 20MHz

bandwidth. This produces very low and unstable RSSI readings of ‘ping’ pack-

ets at the WARP, which must support the wider 20 MHz band of WiFi and

thus generates incorrect gain values from its Automatic Gain Control (AGC). I

tackle this problem by using the frequency overlap between consecutive WiFi

channels (consecutive channels have 15MHz overlap, the space between the 2

center frequencies is 5MHz): the wearable transmits such packets at the next

higher channel, while the WARP board is tuned to the lower channel (see Fig-

ure 3.6). Specifically, in our current settings, the RF device transmits at channel

2 (center frequency at 2417MHz) while the WARP AP uses channel 1 (cen-

ter frequency at 2412MHz). As a consequence of the resulting 5 MHz shift

between the transmission and reception center frequencies, the received signal

bandwidth becomes wider because 5MHz will be automatically added to the

44

original GFSK signal (Figure 3.6b, the top plot). Therefore the transceiver on

the WARP board produces a significantly more stable signal. The receiver (AP)

then needs to remove the 5MHz from the received signal to restore the original

narrow-band GFSK signal (Figure 3.6b, the middle plot). Figure 3.6 also shows

that the received signal using overlap channel is less affected by DC offset.

0 500 1000 1500 2000 2500 3000 3500 4000
-0.4

-0.2

0

0.2

0.4
Received Signal (Real Part)

0 200 400 600 800 1000
0

200

400

600
RSSI Values

(a)

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5
Received Signal (Real Part)

0 500 1000 1500 2000 2500 3000 3500 4000
-0.5

0

0.5
Received Signal After 5MHz Removal (Real Part)

0 200 400 600 800 1000
0

500

RSSI Values

(b)
Figure 3.6: a) Received signal and RSSI values from nRF24L01+ device and
corresponding RSSI recorded at the same channel. The RSSI is unstable and
some parts become zeros. DC offset is also observed. b) Received signal of
another packet (before and after applying -5MHz shift) and RSSI values using
channel overlap. Much more stable signal is observed with almost no DC offset.

Tx
 P

hy
 &

M

ac

Rx
 P

hy
 &

 M
ac

An
t A

An
t B

An
t C

An
t D

Ra
w

 R
x B

uf
fe

r
fo

r D
oA

1s
t
W

AR
P

Pk
t d

et Tx

sy
n

s h i f t

Tx
 P

hy
 &

M

ac

Rx
 P

hy
 &

 M
ac

An
t A

An
t B

An
t C

An
t D

Ra
w

 R
x B

uf
fe

r
fo

r D
oA

2n
d

W
AR

P
Pk

t d
et Tx

sy

n
s h i f t

Sy
nc

 C
ab

le
Sy

nc
 C

ab
le

Figure 3.7: AP Modification for beamforming and AoA. The dark blue parts are
our extension.

45

Extension for AoA Estimation

The default 802.11 reference design in WARP board supports only 1 receiver

path, though the system can switch among either its 4 antennas. As AoA estima-

tion requires simultaneously data capture from multiple antennas concurrently,

I modified the design to add a circular buffer. This buffer stores the data from all

4 antennas whenever a packet (from a wearable) is detected, and can also store

similar data from the 4 antennas on the slave WARP board. A control server

then reads the packets in the buffers to estimate the AoA of incoming packets.

Extension for Beamforming

To support the per-antenna phase control needed for beamformed transmission,

I insert a complex multiplier (whose coefficient can be controlled through a reg-

ister) to each antenna output. This allows the dynamic change of the phase of

any transmitted packets before it is transferred. We also need to overcome an

additional challenge, in ensuring concurrency when the two WARP boards are

used concurrently. If each WARP operated as an independent AP, their trans-

mission schedules could differ, due to differences in their underlying carrier

sensing. To overcome this, we disable the MAC layer of the slave board so that

it will transmit a packet as soon as the master sends it a ‘transmit’ signal.

3.3 System numerical analysis

Before any evaluation with physical devices, it is interesting to see how the prin-

ciples of the system are applied to deliver energy to harvesting wearables. At

this stage, we assume that using AoA estimation and beamforming techniques

(introduced in Section 3.1) the AP can detect the angle (direction) of harvesting

device accurately. The AP is assumed to have 8 antennas, each can transmit sig-

nal at 20dBm or 100mW. We also assume the transmission channel conforms to

free-space-path-loss model. Under these assumption, we can model the energy

46

received by a harvesting device using the following equation (See [54]):

E =
TxPower ⇤ TxGain ⇤RxGain ⇤ �2

(4 ⇤ ⇡ ⇤ d)2 (3.1)

where TxPower is the total transmission power of the AP antenna array.

TxGain and RxGain are the AP antenna array and the receiver antenna gain

correspondingly. � is the wave length of the signal which is ⇠12cm (2.4GHz).

d is the distance from the AP antenna array to the receiver antenna.

This analysis will provide a sense of feasibility of the system or the delivered

energy in the best case. Of course, in real implementation, many other factors

may affect the delivered energy such as multi-path effect (which causes AoA in-

accuracy and destructive resonance), power conversion efficiency (AC to DC),

antenna direction. To better understand the affect the the design choices of the

system, we assume the perfect wireless channel conditions and power conver-

sion efficiciency. I shall show later the feasibility analysis of the system based

on simulation results (using Matlab and Phased-Array toolbox) in both single

and multiple-device cases.

3.3.1 Expected system energy consumption

Table 3.1: Power consumption of off-the-shelf conponents needed for a motion
sensing wearable device.

Component
Name

Power Con-
sumption

Condition Sample

µController 7.5mW 16MHz STM32L053 [14]
Accelerometer 15µW 50Hz LIS3DH [11]
Gyroscope 875µW 52Hz ISM330DLC [10]
Magnetometer 62µW 20Hz IIS2MDC [9]
RF Module 27mW 2Mbps nRF24L01+ [12]
FRAM Storage 0.75mW 2Mbps FM25VN10-G [8]
Super Capacitor 16µW 5V AMK432BJ477 [7]

To understand the energy demand of wearable devices to support sensing

applications, we consider several application scenarios with respect to power

47

consumption of off-the-shelf sensors. Table 3.1 provides the power consump-

tion of sensors and components needed for a motion sensing wearable device.

Though several components have much higher power consumption compared

to others, they are not necessary to stay active all the time. For example, the

Micro-Controller only needs to stay active to read the sensor data (when the

sensor buffer is full) and to transmit the data back to the AP. Likewise, the

RF module needs to be active only during this active data transmission phase.

An intelligent system would be able to apply event based operations to trigger

energy-hungry components only when it is really necessary, and thus reduce the

power consumption of the entire system.

Scenario 1: Battery-less patient monitoring application

Considering a patient monitoring application where doctors want analyse a pa-

tient motion pattern (activities, gait, etc.) and energy expenditure to give appro-

priate consults. For this type of application, the system can use accelerometer

to monitor the physical activity level of a patient [3, 108]. As the doctor needs

to analyse the data for an entire day, even when the patient is sleeping, so the

system needs to record accelerometer data continuously during a day. This ap-

plication does not require real-time sensor streaming, so we can assume that the

device transmits the data back to the AP at a specific time in a day (e.g. sleep-

ing time). Assume the accelerometer running at 50Hz, the sensor can buffer 32

samples before the Mocro-Controller has to read the data out. During a day the

sensor consumes 1.3J. The Micro-Controller needs to wake up 135000 times to

read data. Each time it takes 384µs to read 32 bytes of data, thus 0.39J. It also

takes the same amount of energy to copy the data to the RF module. The RF

module takes 3.6 times as much as energy to transmit all the data, thus 1.4J.

The FRAM module is active while data is storing and transmitting, so it takes

0.078J. Finally, to track the device to adjust the beam direction, the device needs

to send a “ping” packet in every T time (assume 1 minute), so the device spends

48

0.019J for “ping” packets. In total, the system consumes 3.2J for an entire day.

So the supply power should be at least 37µW on average (throughout a day) to

support this application.

Scenario 2: Battery-less VR game controller application

In this scenario, we analyse how much energy the system needs to support a VR-

Game playing session. In this case, the controller, which could be in the form

factor of a ring, is a battery-less device which can functions as a game con-

troller. This application requires real-time streaming of sensor data. Also the

system might need more than one sensor. Previous studies [113, 127] showed

that early gesture recognition and hand tracking can be achieved using 3 sen-

sors: Accelerometer, Gyroscope and Magnetometer. We assume that the system

use the aforementioned 3 sensors. Of course, we cannot expect to use the energy

from WiFi to play VR game continuously. Hence, we assume that the device is

charged continuously throughout the day, but only gets activated at a few ran-

dom time instants (when the user presses a button to activate “Game Mode”).

The device use the stored energy to read the data from all sensors and stream

it back to the AP. We assume the playing session is one hour long. Similar to

the above patient monitoring application, the device spends 0.019J for ”ping”

packets. During 1 hour, the 3 sensors (accelerometer, gyroscope and magne-

tometer) consume 3.4J (952µW for 1 hour). The device wakes up 5625 times to

read sensor data. Each time, it reads 96 bytes from the 3 sensors which results

in 1.15ms. The total time the RF module takes to transmit 96 bytes is 1.45ms

(transmitting short burst is less efficient). The device can do both data trans-

mission and data reading concurrently, so the time for both is 1.45ms. During

1 hour, both Micro-Controller and RF module stay awake for 8156ms. In total,

the energy expense is 7.17J. So the system must be able to supply at least 83µW

on average (throughout the day) to support this application.

Based on these analysis of basic power demand, we perform several sim-

49

ulations of the system to explore the feasibility of the proposed system and

techniques to enable those envisioned applications.

3.3.2 Single device scenario

Static device

-90

-60

-30

0

30

60

90
0 2 4 6 8 10

Amplitude Response
(a)

-90

-60

-30

0

30

60

90
0 5 10

Power Response
(b)

Figure 3.8: a) Amplitude response of 8-antenna array with one beam. b) The
corresponding power response.

1 1.5 2 2.5 3 3.5 4 4.5 5
Distance (m)

0

0.2

0.4

0.6

0.8

1

1.2

Po
w

er
 (m

W
)

Figure 3.9: Upper bound of energy harvested at different distances.

The most simple situation is the case when there is only one harvesting de-

vice in the vacinity around the AP, and the device does not move. The AP needs

to detect the device angle only once and keep boosting energy into that direc-

tion. This is equivalent to the situation when the AP knows exactly the angle of

the device at every moment and changes the beam of signal toward the device

instantly. This is the simplest scenario but it does not mean it is unrealistic.

This can be applied for situations when a user places an device (an object with

50

a battery-less sensing device – a tag) at a specific position and he rarely moves

it. Whenever he moves it, he recalibrates the position (by pressing a button in

an administrator app). Figure 3.8.a shows the amplitude response pattern of the

8-antenna array when beam-formed into one direction, and Figure 3.8.b shows

the corresponding power response. The maximum value of amplitude response

is higher than 8 as we use short dipole antenna model for each of 8 elements.

However, these values only represent how strong the signal is emitted at differ-

ent directions. As shown in equation 3.1, the received power also depends on

the gain of the receiver (harvester) antenna and the distance. Figure 3.9 shows

upper bound of delivered energy at different distances without considering the

mismatch between the estimated angle and the actual angle of the device which

can be caused by both the inaccuracy of AoA algorithm and by the motion of

the device. The results suggest that the harvested energy is sufficient to power

a single device at practically long distance. Even at 5m, the AP still supplies

sufficient power to a device (non-real-time sensing).

Moving device

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6
Velocity (m/s2)

0

0.05

0.1

0.15

0.2

0.25

0.3

Po
w

er
 (m

W
)

Update rate 1Hz
Update rate 2Hz
Update rate 3Hz

Figure 3.10: Harvested energy when the device is continuously moving at dif-
ferent speed.

When the device is not static, but moving, the system behaves differently

as there will be displacement between the pointing direction of the AP and the

51

current direction of the device. Recalling the overview system (discussed in

Section 3.1), the AP only updates the beam when the device sends a packet to

the AP. Of course, the device cannot send a continuous wave for infinite period

of time so that the AP knows exactly the angle of the device at any moment. The

device needs to send a packet in every T seconds, but T cannot be too small as

wireless transmission drains energy of the device. If the device sends a packet

to the AP at time t0, by the time of the next packet at time t1, the actual angle

of the device might have changed significantly already. In general, the amount

of displacement changes differently in response to the velocity of the device

and AoA/Beamforming update frequency. For example, a harvesting device is

moving continuously with an angular velocity of vd, the update interval is Tu,

the displacement is equal to vd ⇥ t, where t = 0 to Tu.

Figure 3.10 shows the harvested energy when the device is moving continu-

ously at different speed from 0m/s
2 - 1.6m/s

2 at a distance of 2m (the device

moves in a circular trajectory). Note that the usual walking speed is 1.4m/s
2.

It can be easily seen that at reasonable speed, the harvested energy is low even

at an update interval of 1 second. It suggests that the system is not likely to

work with objects that continuously move at speeds comparable to usual walk-

ing speed, but it could be applicable to the case of patient wheelchair whose

speed is low and limited. Fortunately, people do not move continuously. Analy-

sis of movement data at Singapore Management University, obtained using the

LiveLabs testbed platform [30] showed that, on average, each person spends

⇠92% of their time in stationary mode. For instance, an employee in an office

usually stays at his desk to work for 2-3 hours before going to the toilet for a

couple of minutes.

Assume a scenario where a device moves for 10 minutes in every 1.5hours

(stay at a position for 1.5 hours) during 10 hours. The devices move randomly

with a speed of 1.0 to 1.4m/s
2; the distance from the device to the AP can

have any value between 1m and 3m. The angle of the device is arbitrary. To

52

10 100 300 600
Update interval (s)

0

0.05

0.1

0.15

0.2

0.25

Po
w

er
 (m

W
)

Figure 3.11: Average energy harvested by a single device during 5 random
traces of intermittent ”move” and ”stay”.

create random trajectory, the device changes its moving direction randomly after

every 0.1s. The estimated energy is averaged over 5 such random trajectories.

Figure 3.11 shows that the update interval between 10 seconds and 10 minutes

does not considerably affect the harvested energy. Of course, shorter update

interval (higher update frequency) results in slightly higher harvested energy,

but in real application, the system needs to spend more energy to send “ping”

packets. In this specific scenario, changing the update interval from 10 seconds

to 1.6 minutes results in only about 8.8µW lower harvested power. But updating

the device angle at every 10 seconds incur more energy as the device needs to

send “ping” packets 10 times more frequently. This simulation suggests that the

system can definitely support a single motion sensing device, which can move

in a range from 1m to 3m, with a reasonable moving/staying ratio of 1/10.

3.3.3 Multi-device device scenario

Static devices

Similar to the static single device scenario, the AP needs to perform beamform-

ing only once and keep that configuration permanently. However, as can be

seen in Figure 3.8a, the beam is unlikely to cover many devices (if they are sig-

53

-90

-60

-30

0

30

60

90
0 1 2 3 4

Power Response

Figure 3.12: Beam pattern control (4 devices at
�60 deg,�25 deg, 60 deg, 80 deg) .

nificantly separated). The simple approach would be time-multiplexing among

the devices, but the energy received by each device is almost evenly divided by

the number of devices. The question is that, should the system adopt the sim-

ple multiplexing technique or beam shaping technique (controlling the antenna

radiation pattern) to cover multiple devices?

To tackle this situation, I developed an optimization algorithm for beam

shaping to maximize the energy delivered to multiple devices. Conceptually,

I divide the antenna array into K subarrays of size N , kth subarray can point to

direction �k, k = 0..K�1, and seek to determine the pointing direction of each

sub-array so that the energy objective is maximized. We consider 2 different

objective functions: (a) maximize the total energy harvested (Max-Sum) and

(b) maximize the minimum harvested energy, across the devices (Max-Min).

The second objective promotes fairness by ensuring that no individual device

“starves” of energy.

For Uniform Linear Array (ULA), the phase of the k
th sub-array (and thus

its pointing direction) is adjusted by adjusting the phase of each of its antennas

in a linear fashion according to: Phase(Antennank) = (K ⇥N +n)⇥�k, n =

0..N � 1. Using this assignment, each sub-array forms one beam separately;

however, if two sub-arrays point to the same direction, they effectively form a

54

narrower single beam. Hence, the angle-selection problem becomes:

Max-Sum : argmax(⌃i=0..M�1P (�0,�1, ...,�K�1)[✓i, di]);

Max-Min : argmax(min
i=0..M�1

P (�0,�1, ...,�K�1)[✓i, di]);

Multiplex : argmax(min
i=0..M�1

⌃k=0..M�1↵k ⇥ P (✓k, ✓k, ..., ✓k)[✓i, di]);

where �k is the phase shift of the k
t
h antenna element, ✓i and di are the angle

and distance of the i
th device correspondingly. ↵k is the percentage of time

the beam point to the k
t
h device. In the case of multiplex strategy, all the

sub-arrays are aligned into the same direction. P (�0,�1, ...�K�1)[✓i, di] is the

power received by the i
th device. The power is cumputed using the equation

3.1.

Max-Sum Max-Min Multiplex
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Po
w

er
 (m

W
)

Average Power
Min Power

Figure 3.13: Average energy harvested by each device and average minimum
harvested energy using 3 strategies (100 random positions, distance = 2m).

The amounts of harvested energy using 3 different strategies are shown in

Figure 3.13. These numbers are achieved by averaging the harvested energy of a

device in 100 iterations. Each iteration includes 4 devices distributed randomly

around the AP at a distance of 2m. It can be seen in the figure that max� sum

strategy achieves the highest average power, but there could be starved devices.

max � min strategy achieve a bit lower average power, but the no device is

starved. multiplex strategy achieves lower power compared with max �min

strategy in both average and minimum power, though it achieves much higher

55

minimum power compared to max� sum. In practice, because of the inherent

characteristic of AC-to-DC converter, if the input power is too low (e.g. input

voltage  200mV for BQ25570 converter), the converter cannot start the con-

version process. In this case, the system needs to switch to multiplex strategy

as the single beam is much more powerful.

1 2 3 4 5 6
Number of devices

0

0.05

0.1

0.15

0.2

0.25

0.3

Po
w

er
 (m

W
)

Average Power
Min Power

Figure 3.14: Average energy harvested by each device with different number of
devices (100 random positions, distance = 2m).

1 2 3 4 5 6
Number of devices

0

0.02

0.04

0.06

0.08

0.1

0.12

Po
w

er
 (m

W
)

Average Power
Min Power

Figure 3.15: Average energy harvested by each device with different number of
devices (100 random positions, distance = 3m).

Another intersting point is that the power is not simply divided by the num-

ber of devices even in the case of multiplex strategy because there could be

two or more devices sharing a beam, or some devices take the advantage of side

lobe. Figure 3.14 shows the harvested power with different number of devices.

56

Even with 4 concurrent devices (at a distance of 2m), the average power of each

device still reach ⇠ 140µW , and no device harvests less than 130µW . At 3m

(Figure 3.15), the average power of one device is more than 60µW . With these

values, it should be able to tolerate the imperfections of components in practical

conditions.

Moving devices

10 100 300 600
Update interval (s)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Po
w

er
 (m

W
)

Average Power Min Power

Figure 3.16: Average energy harvested by 4 devices during 5 random traces of
intermittent “move” and “stay”.

Beam shaping for one device usually maintains the same power gain at any

angle of the device (as the AP can adjust the beam direction). In the case of mul-

tiple devices, depending on relative position of the devices, the beam pattern will

be different, causing different power gain at different directions. Similar to the

case of a single device, I do not target scenarios of continuous moving devices.

I target scenarios where a device move and stay at a position intermittently. The

harvested energy is averaged over 5 10-hour scenarios. In each scenarios, I also

assume the devices spend 90 minutes staying at a position then spend 10 minutes

moving randomly to other positions. Each device have a different speed of 1.0

to 1.4m/s
2. Figure 3.16 suggests that the update interval can be relatively high

compared to the moving time without sacrificing considerable harvested power

as the radiation pattern is more widespread. With considerations of the case of

57

a single device, the update interval of 1.6 minutes would be a good combination

as it requires only 0.015J for “ping” packets throughout a day (0.17µW).

To summarize, the numerical analysis suggests that the system can support 4

devices if the devices are in the range of 3m from the AP. The harvested energy

is sufficient to enable our potential applications of patient monitoring and VR-

Game controller.

3.4 Performance Evaluation: Micro-Benchmarks

In this section, we shall study how WiWear works under controlled conditions–

i.e., when the WiWear wearable platform is stationary, and not mounted on any

real user. These micro studies help establish the performance characteristics of

each individual component (e.g., AoA determination, beamformed energy har-

vesting) and the resulting impact on the harvester energy output, under different

conditions.

3.4.1 Experiment Setup & Calibration

All our experiments were conducted in a meeting room (3.5m x 4.5m) of our

university building. The WARP system was installed on a table (1.1m x 1.9m)

in the middle of the room–Figure 3.21 (shown later) demonstrates the setup

used. For these studies, we use the same wearable device used in user studies

(Section 3.5), but we do not connect the harvester’s output to the power man-

agement unit of the wearable device. The AP transmits standard 802.11 packets

with different power levels, but it transmits power packets at maximum power

(20dBm) per antenna; thus, in all experiments, our total transmitted power was

well within the EIRP upper bound of 800mW. A software program running on a

computer generates 1024-byte ‘power’ packets (UDP packets with phase coeffi-

cients of 8 antennas) continuously (except for the study in Section 3.4, where we

intentionally varied the percentage of ‘power’ packets). We place the wearable

58

device on a tripod. For each study setting, we manually trigger the wearable

device to transmit ‘ping’ packets, such that the AP can update its beam to point

in the estimated direction of the wearable. We then record the average power of

the harvester output with a 10kOhm resistive load.

3.4.2 Change in Azimuthal Orientation

0
5

10
15
20
25
30

30 60 90

A
o

A
 E

rr
o

r
(°

)

Azimuth Groundtruth Angle (°)

(a)

0
100
200
300
400
500

-45 -30 0 30 45H
ar

ve
st

ed
 P

ow
er

 (
µ

W
)

Elevation Angle (°)

30 60 90

(b)

Figure 3.17: a) AoA Estimation Error. b) Harvested energy at different azimuth
and elevation angle.

We investigate the performance of the system (both AoA and Energy Beam-

forming) under different angles, with the wearable placed 1 meter from the AP.

In theory, the performance of the system from 0� to 90� should be similar to

180� to 90� (the front half of the azimuth plane). However, the beam intensity

in the space below and above the antennas (i.e., for different values of the eleva-

tion) should be different. We measure the system performance with 3 different

azimuth angles {30�, 60�, 90�} and 5 different elevation angles at {-45�, -30�,

0�, 30�, 45�}.

Figure 3.17a shows the AoA estimation error for different azimuth and el-

evation angles. It is known that the MUSIC algorithm becomes inaccurate as

the azimuth angle approaches 0� or 180�. Indeed, we see that the AoA error is

 5� when the azimuth angle � 60�, but reaches a median value of 12�, when

the azimuth is 30�. However, 120� (30� to 150�) is indeed an unnaturally wide

field of view for practical scenarios. Figure 3.17b shows the harvested energy

accordingly. The results suggest that the harvested energy remains fairly high as

59

the elevation angle from -30� to 30�. In our office room setting, the AP is able

to cover almost the entire room with an elevation angle of 30� and azimuth of

60�; within this space, the harvester is able to harness over 200 µW.

3.4.3 Energy harvesting vs. Distance

I next study how the efficiency of energy transfer diminishes with an increasing

AP-wearable distance. Figure 3.18 shows the harvested energy, as the distance

is varied from 1m-3m., with (azimuth=90�, elevation=0�). The results show that,

even at 3m, the AP can still transfer about 33µW to the harvester. Given that

our wearable with drains out only 23µW (from the built-in 220µF supercapaci-

tor) even when it is continuously recording the accelerometer reading (without

transmitting ‘ping’ packets), we see that our paradigm of beam-formed WiFi

energy transfer is able to support the uninterrupted operation of the WiWear

wearable essentially anywhere within a standard meeting room.

3.4.4 Energy harvesting vs. Background data

I next study how the energy transfer efficiency is affected by the need for the

AP’s power packet transmissions to co-exist with regular WiFi data packets.

Note that our modified AP implements the 802.11 AP reference design (from

MangoComm [6]), and is thus able to provide data connectivity to regular WiFi

clients. We study the sensitivity of efficiency by varying the percentage of

0
50

100
150
200
250

1 2 3H
ar

ve
st

ed
 P

ow
er

 (µ
W

)

Distance (m)
Figure 3.18: Harvested power vs. Distance

60

broadcasted IP (data) packets & power packets. Figure 3.19 shows that the har-

vested energy decreases quite linearly with the percentage of IP packets. When

the AP exclusively transmits IP packets (100%), the harvested power is almost

zero as the AP transmits such packets using only 1 antenna and usually at less

than the highest permitted power level. At the typical utilization (20%) ob-

served on our campus WiFi network, WiWear appears to be capable of harvest-

ing 200µW, a 100-fold increase from ambient power levels.

3.4.5 Effect of Number of Antennas

We next vary the number of transmitting antennas in the WARP transmitter and

study the impact on the harvested power (wearable-AP distance= 1 meter). Fig-

ure 3.20 plots the harvested power. Matching our intuition, a larger number of

antennas allows the transmission beamwidth to be thinner, thereby effectively

increasing the density of the delivered RF power. Interestingly, we observe that

the angle at which the harvester gets the maximum energy differs a bit from the

ground-truth, with the difference increasing from 5� to 20�, when the number

of antennas is reduced from 8 to 2, respectively. We suspect that this is due to

the inevitable errors in phase control, with the phase errors getting averaged out

when the number of antennas is higher. However, in practical environments,

an overly thin beam may be counterproductive as errors in AoA estimation (es-

pecially in more crowded environments) may cause the narrow RF beam to be

misdirected, resulting in a very sharp drop in the power harvested.

0
50

100
150
200
250
300

0 10 20 30 40 50 60 70 80 90 100H
ar

ve
st

ed
 P

ow
er

 (µ
W

)

Dummy Data Percentage (%)
Figure 3.19: Harvested power vs. Varying ‘data’ traffic load

61

3.5 Constrained User Studies

We now evaluate the performance of the WiWear prototype, under constrained

user studies performed in our 3.5m x 4.5m meeting room, set up to mimic a

typical work environment. These studies are reviewed and approved by our

Institutional Review Board (IRB-18-098-A083(918)). “Constrained” refers to

the fact that the users are requested to stay within the meeting room during the

study duration (30 minutes) and perform their “normal” office activities, while

wearing the WiWear wearable device. Each user is, however, free to perform

one or more activities of their choice (e.g., typing on a laptop, taking short

breaks and stretching, etc.). Unlike Section 3.4, the wearable is now subject

to human-specific movement and resultant changes to its performance metrics

(e.g., AoA estimation error and fluctuations in harvested energy). As before,

experiments are performed using an 8-antenna AP array, with the maximum

total transmission output of 800mW, (below the EIRP limit).

We studied the behavior of 4 distinct users, each of whom was asked to

initially sit at a different corner of our 1.1m x 1.9m table (see Figure 3.21)

and subsequently perform their usual desk-based office chores for 30 minutes.

The super-capacitor helps tide over the fluctuations in harvested power, caused

due to such arm movements. We also experimented with smaller capacitors:

Figure 3.22 shows the transient shortage of energy when using a small capac-

itor (10µF). Our studies revealed a trade-off: a larger (0.47F) capacitor can

0
50

100
150
200
250
300

1 2 4 8H
ar

ve
st

ed
 P

ow
er

 (µ
W

)

Number of Antennas
Figure 3.20: Harvested power vs. No. of antennas

62

Figure 3.21: Experimental Setup: (a) Left: The AP, comprising 2 WARP boards.
(b) Right: A user wearing the WiWear device during the study.

0

1000

2000

3000

1 15 29 43 57 71 85 99 11
3

12
7

14
1

15
5

16
9

Vo
lta

ge
 (m

V)

Time (x10ms)
Harvester Output Embedded system drain

Figure 3.22: Time series of wearable voltage using 10µF small capacitor.

buffer enough energy for hours, but its leakage is higher (⇠13µW higher) than

a smaller (220µF) capacitor, which can support the wearable operation for less

than a minute. To deal with longer-lived periods of deficient harvesting (a user

might cover his hands or move it to a blind spot for several minutes), we chose

the 0.47F super-capacitor, which ensures that the available energy is never de-

pleted during the experiment. The overall operation of the WiWear wearable

is then as follows: The device usually sleeps, until the motion detector unit

(the magnetic coil) triggers the wearable. The accelerometer is then activated,

recording the acceleration values every 3 seconds over a 12-second interval. If a

separate motion trigger is fired during this 12-second period, the activation time

is extended again by 12 seconds. The wearable logs all the collected accelerom-

eter data locally using a FRAM storage. At the end of the study episode, all the

recorded samples are transmitted back to the AP and the voltage at the capacitor

is measured. A comparison of the energy stored in the super-capacitor before

and after the experiment helps to determine if the overall harvested energy is

63

sufficient (or not) to support the sensing, local storage and ‘ping’ packet trans-

mission tasks. We compute the stored energy in a capacitor using the equation:

U =
1

2
CV

2; P =
�U

T
; (3.2)

where C is the capacitance (=0.47F), V is the voltage in Volt, U is the stored

energy in Joule, P is the ‘average’ power in Watt, and T is the observation du-

ration (30 mins). In other words, P represents the power differential (averaged

over 30 minutes) between the harvested and expended power.

As illustrated in Figure 3.21, the AP is placed behind the table, the 8 anten-

nas are raised up to 0.9m and point down to the middle of the table (45�). Fig-

ure 3.23 plots the average differential power (the net change in super-capacitor

energy, divided by 30 minutes) of each user. We observed differences in the

activities performed by the 4 users: one user read paper-based text; one worked

on his aluminum-bodied laptop (primarily reading content), while two used their

smartphones. As expected, the device on two users located at the corners closest

to the AP harvest the highest power and end up with the largest positive residual

power.

However, the AoA estimation of the second user (see Figure 3.24) is some-

times quite inaccurate (maximum error = 32�), in contrast to the other users

whose error is usually  5�. We suspect that the RF reflectivity of the laptop’s

aluminum body may be a contributory factor. Figure 3.25 shows the total dura-

0

50

100

150

200

250

User 1 User 2 User 3 User 4

N
et

 P
ow

er
 (µ

W
)

Figure 3.23: Net energy for 4 users (distance = {1.3, 1.4, 2.2, 2}meters)

64

tion for which each user’s accelerometer data is recorded. We also notice that

the user reading documents on a laptop (user 2) triggers the system less often

than the user reading paper-based document (user 1), likely due to the greater

hand motion involved in turning pages on a physical document. While the 3rd

user (User 3) simply performs browsing on his smartphone, User 4 is much

more active, resulting in the capture of over 4 minutes of his hand movement.

Note that even though these users are located farthest from the AP (2.2m and

2m respectively), the wearable device still ends up being net-power positive.

Overall, our results demonstrate that the WiWear’s batteryless wearable can

indeed continually monitor the key hand movements of users, as the harvested

energy is greater than the expenditure in all 4 cases. This energy-positive oper-

ation occurs even though our current linear antenna is known to have very low

gain near its poles; the use of better antenna designs should further enhance the

energy harvested.

3.6 Discussion

While our results attest to the promise of WiWear, there are, however, several

open issues to explore further.

Non-Line-Of-Sight (NLOS) operation: In the case of NLOS, the simple

beam-forming technique might not work. The system might need to scan for

the optimal phase of antennas (similar to EnergyBall [51]), but continuously

0

5

10

15

20

User 1 User 2 User 3 User 4

A
ng

ul
ar

 E
rr

or
 (

°)

Figure 3.24: AoA error (4 users)

65

transmitting feedback to the AP drains the energy of the device. This method

is promising to enable NLOS operation of static devices as one-time calibration

is usually sufficient (until the environment changes). For a dynamic device (a

wearable), the device is likely to move between LOS and NLOS, and additional

experiments are thus needed to evaluate the performance loss due to NLOS op-

eration, across a variety of environments and device usage contexts.

Alternative low-power channel access: The CSMA (Carrier Sense Multi-

ple Access) mechanism requires an RF transceiver to stay active and listen to

the channel, so it is an extremely power hungry operation in any RF transceiver.

CSMA in a low-power RF transceiver is almost unusable in a WiFi compatible

system as its response time is much higher than the DIFS (distributed inter-

frame space) of WiFi standard. Without a proper channel access protocol, a

device cannot transmit packets back to an AP reliably and efficiently. Ultra low-

power wake-up receiver (WuRx), which has initially been introduced in wireless

sensor networks, potentially provides an alternative low-power channel access

mechanism. WuRx operates at lower frequency, and consumes much less power

(less than 5µA) compared with devices working at WiFi band. WuRx does not

detect “idle” channel, but detects specific signal patterns from AP which in-

dicates that it is safe to transmit data back to the AP. An AP may utilize this

additional channel and normal WiFi channel to coordinate multiple WiFi and

WiWear devices.

Multi-AP Operation: In a practical campus or factory environment, multi-

0

1

2

3

4

5

User 1 User 2 User 3 User 4

A
ct

iv
e

Ti
m

e
(m

in
ut

es
)

Figure 3.25: Active accelerometer sensing period

66

ple APs are likely to ‘cover’ a specific location (e.g., in our campus, the number

of APs overheard at a typical location is 5-6). This opens up additional possibil-

ities. Clearly, as illustrated in EnergyBall [51], transmission of suitably beam-

formed transmissions on a common channel, along with careful phase control,

can significantly increase the harvested energy. Alternately, each AP can trans-

mit its ‘power packets’ on its own independent channel, thereby eliminating the

difficult task of phase synchronization. However, the RF harvester module on

the wearable must be enhanced ([119]) to (a) allow the harvester to simulta-

neously support multiple resonant AP frequencies, and (b) implement dynamic

impedance matching (e.g., [52]).

Power vs. Throughput Tradeoffs: Our early results (Section 3.4.D) show

that there is a tradeoff between the two objectives of data transfer and RF charg-

ing that remains to be explored. Additional mechanisms may be used to opti-

mize this tradeoff: e.g., adjusting the schedule & duty cycle of power packet

transmissions (e.g., by using multiple virtual queues [105]) to avoid unaccept-

able loss or latency of data packets or transmitting data packets at higher power

(for enhanced energy harvesting).

Additional & Improved Energy Harvesting: The current WiWear proto-

type uses a basic whip antenna for energy harvesting (gain=2.1 dBi), whose per-

formance degrades for large values of either the azimuthal or elevation angles. It

is very likely that alternative antenna designs (e.g., a metallic strip-based “patch

antenna) can increase the harvested energy significantly (see [44]). Moreover,

wearables may combine WiFi energy harvesting with other alternative harvest-

ing techniques, such as ambient light, for significantly improved performance.

Also, the magnetic trigger may be replaced with a kinetic energy harvester (such

as the ones used in mechanical watches) that also harvests additional energy.

Other Application Domains & Paradigms: Our investigations focused

on a single AP, with a single user in an office-like setting. While our experi-

ments were limited to an office setting for reasons of practical feasibility, we

67

believe that our experimental setup is conceptually similar to that of our tar-

get use case—one where a user attaches multiple such devices to her limbs and

engages in a real-time interactive rehab or game-training application inside a

confined room. Additional research is needed to apply the core WiWear concept

to other scenarios, such as (a) capturing key locomotion and gesture-related be-

haviors (e.g., fall detection) of elderly inhabitants in smart homes; (b) operating

static sensors, deployed in industrial sites and warehouses.

3.7 Reflections and Lessons Learned

Throughout the development of WiWear system, I have gained several valuable

lessons and insights on the challenges of working with embedded devices and

components. I list a few of my key learning points, such that future researchers

may avoid some of the pitfalls that I encountered.

Your touch might cost a lot of time: We might think that touching a cir-

cuit board when it is completely unplugged is safe. However, when working

with ultra low-power devices, usually there are devices whose input resistor is

extremely large (several M⌦). Our finger has sweat which may be even more

conductive than the input resistor, and the left-over sweat functions as a parallel

resistor which changes the input of a device significantly. In the worst case, it

may kill the device once it is powered again. Likewise, even your exhalation

can also kill a device. The problem is that we may look over these effects and

spend a lot of time investigating other causes. Covering the sensitive part of a

device using polyimide film can avoid this problem.

Floating input might cause big trouble: When working with embedded

system, usually we have to work with floating input (not connected to either

ground or voltage source) of a pin of an IC. There are cases, leaving the pin

floating will drain a lot of energy (if it is a control port) which is crucial for

low-power system. To avoid floating value, one may use a resister to connect it

68

to source voltage or to ground line. But if this connection is not done carefully,

it may eat up the energy of the system silently. For example, a 10K⌦ resistor is

connected from an input pin of component A to 3.3V source to maintain a logic

1 level in normal condition. Another component B also connects to this pin as a

trigger line. The output of component B is usually 0, only becomes 1 to trigger

the component A. So this connection silently consumes 1mW (3.32/10000). So

always maintaining a specific level 0 or 1 for input pins, and avoiding the case

of an implicit source-to-ground connection will protect the device from energy

leakage.

69

Chapter 4

Fine-grained Real-time Motion

Sensing

Inertial sensing on wrist-worn devices, such as smartwatches, has recently been

used to infer a variety of gesture-driven lifestyle activities, such as smoking [94]

and eating [112, 121, 25]. These approaches typically focus on the problem

of gesture recognition, i.e., using features defined over the inertial sensor data

to identify specific gestures. Separately, researchers have investigated the use

of such possibly-noisy inertial sensor data to track the hand’s 3-D location or

movement trajectory, for applications such as pointing based interaction [98]

and handwriting recognition [24].

In this chapter, I investigate the possibility of using such wrist-based sensing

(e.g., via a smartwatch) to enable a novel class of pervasive, real-time, gesture-

driven interactive applications, such as immersive virtual reality (VR) games.

For these applications, the objective is to accurately track the movement of the

human hand, but with latencies low enough to preserve the interactivity of the

application or the game. As an exemplar of such a gesture-centric game, con-

sider a VR-based Virtual Table Tennis (VTT) application (corresponding to the

use case 2 in Section 1.2.1), as illustrated in Figure 4.1. Here, the user is either

competing or training against an opponent. While the user sees the table ten-

70

Virtual Table Tennis Game

Figure 4.1: The Virtual Table Tennis (VTT) application. A user makes real-
world TT gestures while wearing a smartwatch, with the gestures being inte-
grated into the virtual world displayed on the wearable VR device.

nis board, the ball and the opponent in the VR display, she uses the real-world

physical movement of her hand (wearing a smartwatch) to hit the ball. The hand

motions are tracked and integrated into the virtual world, and appropriately pro-

jected in the VR display. Accurate tracking of the hand movement is needed to

faithfully replicate real-world mechanics—for example, the time instant when

the racket hits the ball in VR should closely reflect the time that the user’s hand

would have struck the ball in the real world.

Achieving these goals requires overcoming several challenges. The key

characteristic of the target class of immersive applications considered is that

they require us to both (a) classify individual gestures and (b) to concurrently

track the hand’s movement trajectory, in real time. To provide the user with spe-

cific training on the type of stroke played, the system needs to correctly identify

the stroke; moreover, to provide accurate visualization of when and where the

user hits the ball, the system needs to track the hand’s trajectory as well. A

closer analysis of the representative interactive application reveals the following

unique challenges:

• Calculate the Trajectory Fast and Accurately: Table Tennis is a fast-paced

game, with professional grade players often exchanging ⇡ 120 strokes

71

each per minute (see [142]) during a rally. To provide a truly interactive

feel, the game must not exhibit lag—i.e., the game must detect the in-

stant of contact between a player’s racket and the ball instantly, so that

the virtual reality game can proceed apace. This means that we must not

only compute the hand’s trajectory fast, but also precisely (as the calcu-

lated point of intersection between the racket and the ball will affect the

calculated time instant of contact as well).

• Recognize the Gesture Before It is Completed: Most stroke-based games

(e.g., tennis, table tennis and badminton) involve a significant “follow-

through”—i.e., the actual game gesture involves significant movement of

the hand both before and after the act of striking of the ball. Accordingly,

we cannot afford to delay the execution of the recognition step till the end

of the gesture, as this would seriously impact the interactive feel of the

game.

The above requirements thus require an entirely new class of gesture recognition

techniques, that can recognize gestures fast (even before the gesture is complete)

and simultaneously track the hand’s trajectory accurately, in real-time. In this

chapter, I develop an integrated smartwatch-based gesture recognition frame-

work that tackles these two objectives: (a) gesture recognition and (b) hand

tracking concurrently, and with low latency.

4.1 Representative Application & Requirements

The requirements for an enhanced gesture recognition cum trajectory tracking

solution come from our vision for a new class of multi-device immersive ap-

plications. In these applications, the user relies on multiple mobile & wearable

devices, whose input and output interfaces are combined to offer an integrated,

multi-modal experience. In particular, we consider the class of VR or AR (aug-

mented reality) applications, where the user experiences a virtual/augmented

72

world on her smartglasses, with other wearable devices providing fine-grained

tracking of the user’s gestural activities.

In the representative VTT application (illustrated in Figure 4.1), the wrist-

worn smartwatch (or smartwatches) are used to monitor the fine-grained move-

ment of the arm. The inertial sensors on the smartwatch can then be combined

with the inertial sensing data from the head-mounted smartglasses, to obtain the

movement trajectory of the arm relative to the user’s body orientation, and this

movement trajectory can then be embedded inside the virtual world displayed

on the smartglasses (e.g., a point-of-view representation of the user’s avatar).

The VTT application can then be used to provide a realistic emulation of two

(or four) players playing Table Tennis without being in physical proximity, with

the players sharing a common view of the court and having to play actual strokes

in the real world. Furthermore, to provide more realistic feedback of the expe-

rience of a real Table Tennis game, we can envision that the wrist-worn device

provides some form of tactile feedback (e.g., by vibrating the wearable device)

whenever the system detects that the user’s racket has hit the ball. To provide

a high-quality user experience, the tracking of each user’s strokeplay should be

of low-latency (to ensure that the virtual world rendering and the tactile feed-

back do not perceptibly lag the physical world gestural activities) and accurate

(to ensure that the outcome of the strokes reflect the physical world with high

fidelity).

While the investigations in this chapter are confined to this representative

VTT application, the general requirements for low-latency gesture recognition

and trajectory tracking apply to a much broader class of applications. For ex-

ample, consider other VR-based applications such as a Dancing Tutor (where a

user’s dance-related moves are tracked and projected into the virtual world) or a

Racing Emulator (where a driver is assumed to steer a racing car using a virtual

steering wheel, with the wearable sensors providing real-time vibratory feed-

back about the road surface conditions). Another application could be real-time

73

interactive feedback for gesture-based rehab training, a scenario detailed as use

case 1 in Section 1.2.1. All of these applications exhibit the previously described

characteristics of (i) a critical interaction occurring not at the end, but at an in-

termediate point, of a gesture, and (ii) the need to accurately track a user’s arm

movement, in real time, but only for a finite set of application-relevant gestures.

4.1.1 Perceiving Latency and its Effects on Usability

Before proceeding further, it is useful to understand and quantify the desired

performance characteristics of the representative VTT application. In particular,

I am interested in examining the latencies generated from gesture recognition

and hand trajectory tracking, and understanding the point at which the latencies

becomes noticeable to the user, thus impacting the user experience.

Jota et al. [62] examined the effects of latency on direct-touch pointing tasks.

They found that no participant could notice latency below 20ms, with most par-

ticipants (85%) not being able to differentiate between 1-40ms of latency. I

conducted experiments with 12 participants to examine the noticeability of la-

tency within the context of VTT. Participants were asked to hit a suspended table

tennis ball with a table tennis bat 30 times. On detecting the hit event (this was

measured via visual tracking with a high-speed camera (100 fps), attached to

a powerful desktop that achieves near-zero frame processing latency), an audio

alert was played after a randomly generated delay ranging from 0 to 500ms.

I take the time difference between the audio alert and the hit event to be the

lag/latency, and asked participants to indicate if they noticed the delay.

Figure 4.2 plots the cumulative distribution of the probability of user percep-

tion (i..e, the fraction of instances where the user indicated a perceptible delay)

as a function of this lag/latency, for the experiment described above.The results

are similar to Jota et al., with no user being able to perceive latencies below

19ms, and only 5% of the noticed latencies being between 19-40ms. We ob-

serve that 80% of users are completely oblivious to lags less than or equal to

74

0%
10%
20%
30%
40%
50%
60%
70%
80%
90%

100%

0 200 400 600 800 1000
Pr
op
or
tio

n	
of
	n
ot
ic
ed
	e
va
lu
at
io
ns

Latency	(ms)

Figure 4.2: Cumulative distribution of noticed latencies.

100 msec, and thus set ourselves a benchmark of developing a tracking system

that can identify the specific stroke within 100 msec of the actual hit event.

4.2 System overview

To realize the vision of a practical gestural interface which can both recognize

gestures early and track user’s wrist accurately, I propose a system architecture

(Figure 4.3) where a Continuous Progressive Gesture Recogniser cooperates

with a Gesture Based Trajectory Tracker to enable early detection of gestures

and infer the position of user’s wrist during a gesture.

This system uses only sensors on a smartwatch without any environmen-

t/infrastructure installment. The Data Collector collects Accelerometer, Gy-

roscope, Magnetometer and additional derivative sensors (which are computed

from the three physical sensors)–i.e., the Rotation Vector, Game Rotation Vec-

tor, Linear Acceleration and Gravity. The Rotation Vector, Linear Acceleration,

and Gravity values are conveyed to the recognizer. The Rotation Vector is con-

veyed to the Trajectory Tracker. In general, the system includes the following

two key components:

• Continuous Progressive Gesture Recogniser (using a combination of

HMM+ Classifier): Firstly, a Feature Extraction block extracts the Arm

motion features including the velocity in vertical and horizontal direction

75

Feature
Extraction

Data
Collector

Vector	
Quantisation StreamHMM

Random	
Forest	

Classifier

Continuous Gesture Recogniser

Multi-Layer	
Perceptron	
Regression

Trajectory Tracker

HMM states

Sensor Inputs:
e.g.,
Accelerometer,
Gyroscope,
Magnetometer

Gestures

Position
Wrist

Orientation

Figure 4.3: System Overview.

and the angular orientation of the lower arm. These features are then con-

catenated as a feature vector and are quantized into discrete values by the

Vector Quantization block. These discrete values are fed into a modified

HMM model (StreamHMM) to compute the probability of gestures states.

Finally, a classifier (Random Forest) is applied to enable the early detec-

tion of gestures.

• Gesture-Based Trajectory Tracker: The orientation (values of the X-Axis

of the smartwatch) is extracted from the sensors by Data Collector, and is

used as one feature of the Trajectory Tracker. It also uses the probabilities

of the HMM states (of the Recogniser) to improve the tracking accuracy.

A regression model uses the gesture states and instant wrist orientation as

features to accurately estimate the position of the wrist.

Our early gesture recognition and hand tracking technique is proposed based

Figure 4.4: The six table tennis strokes used in the study. The arrows show the
direction of motion as applied to a table tennis ball coming from the right.

76

on the following assumptions:

• Hand tracking for only legit gestures: As our hand tracking method is

based on the gesture recognition, the hand position estimation during

other movements, which are not legit gestures, are invalid. Applications,

which require hand tracking of arbitrary movements (e.g, free drawing)

might not benefit from our technique.

• No consecutive gestures: Our gesture recognition model uses a universal-

state to automatically re-calibrate state probabilities. It implies that each

gesture should return to non-gesture state before another gesture may

start. This is not expected to be a major problem for most sports-based or

therapy-related gesture movements, where the user usually performs a set

of discrete gestures (e.g., table tennis strokes, swings of a golf club, hand

stretches during therapy), punctuated by intervals of non-gestural activity.

• Minimum gesture length of 110 ms (11 samples): As each gesture is mod-

eled as a 10-state HMM sequence with a return-connection from the last

state, each gesture is expected to have a length of at least 11 sample (110

ms with 100Hz signal) to reach the last state and return to the universal-

state. This minimum gesture length is much shorter than the average ges-

ture duration of common stroke-based games such as table tennis (510ms)

[138, 37] or golf (836ms) [116], and even shorter than the duration of

forward-swing phase (moving hand forward until the point of contact)

which is 170ms and 387ms with table tennis and golf strokes respectively.

4.3 Dataset

I conduct two experiments to collect sensor and ground truth positional data,

while participants perform the six basic table tennis strokes (see Figure 4.4).

These studies are reviewed and approved by our Institutional Review Board

77

(IRB-16-127-A131-M2(817)). The sensor data is recorded using a smartwatch

on a participant’s wrist, and contain 3 hardware sensors: Accelerometer, Magne-

tometer, Gyroscope, and 4 derived sensors: Linear acceleration, Gravity, Rota-

tion vector, and Game rotation vector. The ground truth positional data contain

RGB video and the position corresponding to each pixel in the video. We use

a ZED camera [117] mounted on the ceiling of the experiment room to record

the positional ground truth data. To later extract the position of the wrist and

head, I provided a yellow band and a pink band and asked participants to wear

the yellow band on their head and the pink band on their wrist (wrapped around

the smartwatch). Note that the head/wrist bands, as well as the camera, are

merely used to collect ground truth data for validation, and do not form part of

our proposed wearable-based recognition technology. I use a RoboPong 10501

table tennis robot to automatically serve balls to our participants. The robot was

placed at the other end of the table (see Fig. 4.6).

In the first experiment, I recruited 10 participants, without any criteria on the

experience or skill level of the participants. All participants were male univer-

sity students in the age group of 21-30 years and had a working understanding

of how to play table tennis. Nine of them did not play on a regular basis, and

one used to play on average once a month. I used a Samsung Gear Live smart-

watch to record sensor data at a sampling rate of 100Hz. At the beginning of the

experiment, participants watched 6 training videos of the 6 gestures on a table

tennis training channel [99]. Participants were given a short period of time (⇠5

minutes) to get familiar with the robot and gestures until they feel comfortable

to play. For the study task, participants were asked to execute the strokes with

balls served by the robot to achieve 24 successful returns per stroke. A stroke

is deemed successful if the participant is able to return the ball to either the left

or right halves of the opposite side based on our prompting from a balanced,

randomized schedule (e.g., Left, Right, Left, Left, Right, Right). If a partici-
1https://www.newgy.com/p-279-robo-pong-1050-plus.aspx

78

pant fails to return the ball to the correct half, he is asked to repeat that stroke

until he is successful. The focus on successful stroke completion is intended to

encourage participants to perform the gestures conscientiously, and to provide

a sufficient number of usable gesture instances. As such, while a stroke may

be deemed unsuccessful, the attempt can still be considered as a data point for

that stroke. I examined the captured data, post-session, to remove invalid stroke

instances (i.e., warm-up strokes). The table tennis robot was configured to serve

balls at consistent spin, and to serve balls to two positions for each stroke, to

increase the variation of gestures.

Results from the first experiment achieved a high average gesture recogni-

tion accuracy, but also exhibited higher variance. Given that most participants

had insufficient playing experience, it was unclear if the gestures performed

were representative, and if the results obtained were affected by the likely vari-

ability in stroke-making among the participants. Accordingly, I conducted a

second experiment, where I collected sensor data from 17 experienced players,

recruited from an online table tennis group, where I explicitly indicated the need

for a minimum of 3 years of playing experience. The group had only one left-

handed player and one penhold-style player, whom we’ve excluded from our

studies due to the low sample size. Figure 4.5a plots the age and experience

of the remaining 15 participants, who were 23–56 years old, with an average

age of 32.8. The least experienced players have played table tennis for 3 years,

while the most experienced players have 25 years of table tennis experience.

Except for one player who plays table tennis daily, the others play table tennis

weekly. Prior to playing, users were also asked to perform a self-evaluation

of their proficiency in the 6 gestures (illustrated in Figure 4.5b), using a Likert

scale ranging from 1-5: (1) corresponds to I don’t know how to play that stroke,

while (5) corresponds to I am expert at it. For these set of experiments, I used

a more-modern LG Urbane W150 smartwatch to record sensor data with the

same sampling rate as in the first dataset. Participants were not asked to watch

79

0

10

20

30

40

50

Age Experience

Ye
ar

(a) Participants’ age and experience.

0
2
4
6
8

10
12
14
16

FHP FHC FHD BHP BHC BHD

Fr
eq
ue
nc
y 5

4
3
2
1

(b) Self evaluation of proficiency.

Figure 4.5: (a): Average age and experience of participants. The least experi-
enced participant has 3 years of experience. (b): Proficiency of participants in
the 6 gestures based on self evaluation. (1) means ”I cannot perform the stroke”,
(5) means ”I am expert in this stroke”.

the video again because they had seen it during the online registration form.

However, they were allowed to practice some shots to become familiar with the

robot. Each participant in this study was asked to finish 30 successful instances

of each of the 6 strokes.

4.4 Early Gesture Recognition

In this section, I tackle the problem of recognizing gestures accurately and

early–i.e., before the entire gesture has been completed. In Section 4.4.1, I

discuss why the conventional approach for continuous gesture recognition, in-

volving the cascaded steps of segmentation and classification, is insufficient,

Accordingly, I propose and evaluate an alternative approach with two novel

characteristics: (a) a unified HMM model, with a novel universal state that

allows a gesture to be recognized in a streaming fashion, and (b) an explicit

additional classifier, which uses features defined over the evolving HMM states,

to recognize gestures early and robustly.

4.4.1 Inadequacy of Explicit Segmentation

Conventional gesture recognition techniques usually combine two stages: seg-

mentation and classification. Segmentation first partitions the incoming sen-

sor data into consecutive segments; each individual segment is then classi-

80

Figure 4.6: Experiment Setup. The participant plays with a table tennis robot,
while a high speed depth camera captures ground truth position data. A smart-
watch worn on the hand provides sensor data on strokes performed.

fied to assign it a particular gesture label. Gesture classification is typically

performed using techniques such as Dynamic Time Warping (DTW) [80] or

HMMs [109, 96].The overall accuracy of gesture recognition thus depends on

both the segmentation and classification steps.

The basic segmentation technique is based on thresholds, with the gesture

deemed to have started when some sensor-derived value exceeds a threshold and

to have ended when the value falls below another threshold. Typical examples

include setting the threshold on the hand acceleration magnitude (derived from

accelerometer readings) and/or rotation values (derived from gyroscope read-

ings). More sophisticated techniques can set these thresholds adaptively; for

example, the authors in [96] propose a method of adaptively adjusting the accel-

eration threshold based on the observed false-positive (FP) and false-negative

(FN) rates of the accelerometer segmentation compared with gyroscope seg-

mentation.

This pipelined model of “segmentation followed by classification” suffers

from three drawbacks:

81

1. Longer Latency: By definition, a segment can be identified from a sensor

stream only after the last sample for the segment has been collected—i.e.

after the associated gesture has been completed [63]. Moreover, segmen-

tation algorithms (e.g.,E-Gesture [96]) often impose additional latency

by requiring an additional observation period (beyond the end of the cur-

rent gesture) to guard against the problem of ‘gesture splitting’, where a

more complex gesture is inadvertently split into several segments. This

approach is thus problematic for interactive gesture-based applications,

where users expect the system to essentially react “instantaneously” (in

real-time). More specifically, for our VTT application, we notice that a

player typically hits the ball halfway (40%) into the gesture.

2. Poor Segmentation Accuracy Under Large Differences in Gesture Dynam-

ics: Threshold-based approaches typically work well when the different

gestures have similar dynamics, such as similar overall duration or ini-

tial hand-force intensity. However, finding an appropriate threshold value

is challenging, when the dynamics of gestures vary considerably (as is

the case for table tennis, where certain strokes involve rapid and extended

hand movement, while other strokes, for e.g., Backhand Push, involve sig-

nificantly lesser movements of the hand). To illustrate this point, I eval-

uated the accuracy of a single threshold-based segmentation technique

(similar to E-Gesture, the mechanism outlined in [96]) on table tennis

gestures. Figure 4.7a shows the accuracy of the table tennis gesture data

set as a function of the acceleration threshold.

The figure plots both the segmentation recall/precision (i.e., determin-

ing how many segments were identified compared to the ground truth),

as well as the classifier recall/precision (what fraction of the segment

duration was truly a part of the associated gesture?). Here precision

is defined as:
P

TruePositiveP
TruePositive+

P
FalsePositive , while recall is defined as:

P
TruePositiveP

TruePositive+
P

FalseNegative . We notice that with low threshold, the seg-

82

mentation step rarely misses gestures, but the segments contain redundant

data which will lower the classification recall. With high threshold value,

the segmentation step misses gesture more frequently, and thus also re-

sults in low classification recall. In general, using E-Gesture, the system

gets the highest recall of about 0.6 at a threshold of 0.65G. The precision

is quite high and does not change considerably.

3. Inaccurate Segmentation, Leading to Poor Classification: Even if the seg-

mentation process can identify the occurrence of a gesture, it can misalign

the start or end samples of the gesture–i.e., it can either truncate part of

the entire gesture (in this case, the identified segment of samples is smaller

than the true gesture duration) or it can falsely append spurious samples to

a gesture (now, the segment duration is longer than the true gesture dura-

tion). This misalignment can reduce the accuracy of the downstream clas-

sification step. This can be observed by noting the classification recall and

accuracy values presented in Figure 4.7a. We see that the classifier preci-

sion decreases slightly but still remains higher than 90% as the threshold

is increased; however, the recall is fairly low (mostly below 60%) indi-

cating that segmentation typically misses (truncates) a significant portion

of individual gestures. A careful inspection of our dataset showed that a

fixed-threshold segmenter tended to append spurious samples to gestures

that involved more vigorous hand movement (such as Forehand Drive and

Backhand Drive). In contrast, the segment was often truncated for less

vigorous gestures (such as Forehand Push and Backhand Push).

Improved Baseline for Segmentation-based Classifier:

Our initial results showed that the gesture classification accuracy was low, of-

ten because the segmentation step included spurious non-gesture accelerometer

readings before and after the true gestural segment. More specifically, the HMM

models in [96] output the final gesture only after the sensor data of the entire

83

(a) e-Gesture Performance (b) Enhanced e-Gesture Performance

Figure 4.7: (a): Applying E-Gesture technique [96] into our Table Tennis
dataset. Threshold values range from 0.15G to 1.55G. The recall reach highest
value of 0.6 at a threshold of 0.65G; it means only 60% true gestures are recog-
nized. The precision is quite high, more than 0.9 accordingly, and slightly de-
creases when the threshold increases. (b): E-Gesture based enhanced classifier
that uses the highest confidence value that an HMM’s state sequence achieves
at any intermediate point of the segment. Results in significantly higher recall,
at the expense of reduction in precision.

segment has been processed. Due to the spurious trailing non-gestural sensor

data, the confidence level of the state sequence of each HMM classifier would

fall below the confidence threshold.

To remedy this issue, I developed an alternative personalized model, where

the confidence levels of the hidden states were tracked throughout the evolu-

tion of the identified gestural segment. More specifically, a per-HMM counter

(each HMM corresponding to one of the 6 distinct gestures) was used to keep

track of the maximum confidence value associated with the state sequence of

each HMM, at any point during the segmented gesture. In the other words, this

model computes the confidence value (probability) of each HMM on the current

sub-segment until the end of the segment is detected. The segment was subse-

quently classified to be the gesture that matched the longest sub-segment with

the highest confidence value.

Figure 4.7b plots the resulting precision and recall for this improved clas-

sifier. We observe a better balance of precision and recall. The recall value

improves because this approach can effectively ignore the spurious motion arte-

facts that follow the true gesture. However, the precision drops (the false-

84

A: .3
B: .7

C: .5
D: .5

E: .2
F: .8

.4

π S0 S1 S2
.6

.7
.3

1.0

Figure 4.8: Left to right HMM is useful to infer the states of a finite segment
of data. {A-F} indicate the various output (i.e., observable) values–i.e., a vector
of sensor values/attributes that are observed in each of the hidden states. The
associated number denotes the emission probability.The initial state ⇡ serves as
a starting point of the forward and Viterbi algorithm.

positive rate increases) as this approach also results in several non-gesture seg-

ments being classified as a legitimate gesture, especially if parts of the segment

had motion that bore a resemblance to one of the gestures. Based on empiri-

cal analysis, we found that a threshold of 0.45G served as an effective choice:

yielding a recall value of 87.9% and a precision value of 87.9%.

4.4.2 Segmentation-less Gesture Detection on Stream Data

I now describe our novel approach for gesture detection that dispenses with

the aforementioned segmentation step, and instead continually tries to identify

gestures that occur within an incoming stream of sensor data.

Our approach is based on appropriate modifications to the basic Hidden

Markov Model (HMM) based recognizers. HMMs have been widely used for

gesture recognition (e.g., [109, 96]). The Left-To-Right HMM (See Figure 4.8)

has been popularly used, as its structure matches well with the sequential evo-

lution of gestures. In the traditional technique (which required a preceding seg-

mentation step), each gesture is modeled as an HMM. Whenever a segment is

identified (e.g., consisting of the inertial sensor samples {X0X1..Xt}, the prob-

ability of the segment with respect to each HMM is computed using Viterbi

85

algorithm (4.1) as follows 2:

P
0
s = ⇡s ⇤B[s][X0];P t

s = max
i

P
t�1
i ⇤ A[i][s] ⇤B[i][X t] (4.1)

This classical HMM approach requires an explicit starting state (corresponding

to the start of the gesture) and operates on a finite length segment. We thus need

to modify the HMM model to account for an infinite stream, with no explicitly

delineated gesture segments.

In this work, we modify an HMM-based approach, as an example of a prob-

abilistic state machine. Note that there are more sophisticated recent techniques,

such as Long Short Term Memory (LSTM) neural networks, that have been pro-

posed for processing sequential sensor data. In this work, our primary focus is

on developing an overall framework for low-latency gesture detection and 3-D

tracking; hence, we select the relatively low-complexity HMM as our candi-

date recognizer, as it can be executed on a smartwatch with very low processing

overhead.

Our approach is based on the integration of a new Universal State into an

existing HMM model (See Figure 4.9). The goal of the Universal State is to

allow a “regular-expression like” matching of a gesture signature (an approach

previously investigated in [118]), within a continuous sequence of observations

with arbitrarily long non-gesture periods. In effect, the Universal State serves as

a wildcard character (⇤), capturing the arbitrarily long sequence of non-gestural

observables. The Universal state generates observations with the same proba-

bilities of observations in the entire dataset–in the simplest case, this can be a

uniform distribution, while it can also reflect the observed probability of a ges-

ture occurring over the entire observation period. The Universal state also has

a self-transition loop, implying that the HMM can stay at Universal state for an

indefinite time; this corresponds to the arbitrary interval between two consecu-
2A[s][ns]: Probability of a transition from state s to state ns. B[s][O]: Probability of state s

generating observation O

86

U

S0

S4

S1

S5

S2

S6

…

S3

S7

Figure 4.9: Left to right HMM is useful to infer the states of a finite segment
of data. {A-F} indicate the various output (i.e., observable) values–i.e., a vector
of sensor values/attributes that are observed in each of the hidden states. The
associated number denotes the emission probability.The initial state ⇡ serves as
a starting point of the forward and Viterbi algorithm.

tive gestures. To reduce the chance that the observations are assigned to the final

state of a gesture model for a long period, a return connection is added from the

final state of each gesture model to the Universal State. Finally, whenever the

system receives an observation (a vector of features), it updates the probabilities

of states using equation 4.2 and 4.3. Initially, the probability of Universal State

is 1.0; St
i is state i at time t, Ot is observation at time t.

P (St+1
i |Ot+1) =

P (Ot+1|St+1
i)⇥ P (St+1

i)

P (Ot+1)
(4.2)

P (St+1
i |Ot+1) =

B[i][Ot+1]⇥
Pn

1 P (St
j)⇥ A[j][i]

P (Ot+1)
(4.3)

Features used in the VTT Application

To build a working implementation of our VTT application, we need to define

the sensor-driven set of features (i.e., the observation vector O in Equation 4.3)

that we use to compute state transition probabilities. Prior work on HMMs

for gesture recognition has defined O using relatively simple features over the

raw data, such as discretization, quantization[80, 109], or taking differentials

or integrals of accelerometer and gyroscope data[96]. In our work, we utilize

a small set of more-complex relative orientation features, computed from the

underlying accelerometer and gyroscope data as described in Table 4.1. These

87

Feature Description
Horizontal velocity Arm’s angular velocity in horizontal plane

Vertical velocity Arm’s angular velocity in vertical plane
Wrist vertical angle Wrist’s rotation angle compared with vertical line

Table 4.1: Features used to define the output vector (O) for HMMs

features are then quantized to 256 discrete levels, using a K-Means module with

256 centroids.

4.4.3 Early detection of gestures

I now describe the cascaded HMM-cum-classification technique that forms the

core novel component of our early gesture detection algorithm. The Universal-

state augmented unified HMM model allows us to detect the occurrence of

candidate gestures in a streaming fashion, without requiring a separate and ex-

plicit segmentation step. However, in its base implementation, the unified HMM

model (Figure 4.10) still identifies a gesture only when it is complete–i.e., only

when the corresponding Left-to-Right model has its end-state exceed a specified

likelihood threshold. Additional modifications to the gesture detection logic are

needed to support our second objective: of detecting a gesture early, even before

the entire gesture has been completed.

The simplest way of inference using this model is to define a threshold of

probability. The system will select the model whose probability is the highest

among gesture models. If this probability is higher than a threshold, the system

outputs the corresponding gesture, otherwise, it will output null-gesture. How-

ever, the specification of a single explicit probability threshold value does not

work across different gestures that have very different kinetic vectors.

Accordingly, we do not use an explicit threshold to perform early gesture

detection. Instead, we develop a novel technique, where the probability values

of the hidden states of the HMM are used as features by a supervised clas-

sifier to generate the output gesture. More specifically, for each individual

Left-to-Right HMM (corresponding to a single gesture), after every incoming

88

Type Feature Description
Model Normalized Ex-

pected State

P
i2S pi⇤si)P
i2S pi)

(a total of 6 features, one for each
HMM)

Model Sum prob.
P

i2S pi)-a total of 6 features, one for each
HMM

Model Universal The probability of the Universal state
Data Acceleration Instant magnitude of acceleration:p

a2x + a2y + a2z

Data Gravity The value of X component of gravity
Time Elapse time For each HMM, the time elapsed since state 0

had the highest probability
–a total of 6 features

Table 4.2: Features used for early gesture classification (for the 6 VTT gestures)

observation sample O(t), we compute the following features, : (i) sum of the

probabilities of each of its hidden states–i.e.,
P

i2S pi); (ii) normalized expected

value of the hidden state–i.e.,
P

i2S pi⇤siP
i2S pi

. Given N gestures, this leads to a 2N -

element vector of state-related features. In addition, we also consider the fol-

lowing additional features: (iii) the probability of the Universal state; (iv) the

magnitude of the acceleration data (i.e.,
p

a2x + a2y + a2z, where ai represents the

acceleration value along the i
th axis); (v) the X-component of the gravity vec-

tor (as this is an indirect indicator of the hand’s orientation); and (vi) a vector

TS = [ts1, . . . , tsN], where the ith element expresses the time elapsed since the

initial state (s0) in the ith HMM had the highest probability among all its hidden

states. The acceleration feature helps distinguish deliberate strokes (which typ-

ically have higher acceleration) from other ‘random’ gestures, while the vector

TS effectively guards against strokes being recognized too early (especially for

the ‘push’ and ‘drive’ gestures).

Table 4.2 summarizes these features. This set of features is then used by

a Random Forest classifier (trained in a supervised fashion) to determine the

most likely gesture, for each incoming observation sample O(t). Initially, the

probability of the Universal State is the highest, and the classifier indicates that

the inertial data (observed till this point) is most likely to be a ‘non-gesture’. The

classifier automatically outputs a gesture label, once sufficient data has arrived.

89

P(U)
P(S0)
P(S1)
…

P(SN)

……

Classifier

Gesture1

Gesture2

NULL

Figure 4.10: A classifier is used to classify gestures, using probabilities of states
as features

4.5 Experimental Results on Early Gesture Detec-

tion

We first evaluate the efficacy of our proposed stream-compatible, early gesture

detection technique using a personalized model–i.e., where a separate HMM

(per gesture) is trained for each individual. This is similar to many prior studies

on gesture recognition [109, 96, 80] that have also utilized personalized HMM

models. The evaluation is done using the ‘leave one gesture out’ (LOGO)

method. Because our system includes 2 stages: the HMM and the classifica-

tion, we apply 2 training passes. At the first pass, we train the HMM model on

the N � 1 instances of each gesture (N is the total number of each gesture).

We then feed the stream of the entire dataset into the HMM model. The fea-

tures extracted from the training part (containing N �1 instances of gesture and

non-gesture) are stored and used as training data for the downstream classifier

(Random Forest). The features extracted from the testing part (containing the

test gesture and non-gestures) are used to test the classifier. Of course, our clas-

sifier produces a label for every sensor sample. To make the classification more

efficient, the Universal State is used to pre-filter the result. If the Universal

State has the highest probability or the most probable gesture has not reached a

state threshold (empirically chosen as 3), non-gesture is assigned; otherwise, the

downstream classifier classifies the candidate gesture. Whenever the classifier

declares a gesture A, our system considers the current and subsequent sensor

sample as gesture A until the probability of the corresponding HMM state se-

90

quence drops below that of the Universal State.

We sum up the total true positives, false positives, false negatives in each

class across all participants; subsequently, we compute the average precision

and recall values based on these numbers.

4.5.1 Accuracy vs. Fraction of Gesture Completed

Because our principal goal is to understand the early gesture detection capabil-

ity, we compute the precision and recall of our model as a function of different

fraction of the total gesture duration. More precisely, we compute the gesture

detection accuracy for various values of Normalized Time To Detect (NTtD)[58]

(in increments of 10%), which is the portion of gesture that has been completed.

Figures 4.11 illustrate the overall precision and recall for each of the 6 strokes

(gestures) as a function of the NTtD value, with the first 2 figures corresponding

to study 1 (novice/inexperienced users) and the latter 2 figures corresponding to

study 2 (experienced users). We see that:

• Early Detection: At NTtD values of 0.5 (i.e., at about 50% of the gesture),

both precision and recall are higher than ⇠ 84% for all the strokes. More-

over, after the NTtD value of 0.5, all the precision and recall values do

not change considerably with an average precision of 87.4% and average

recall of 95.2% (for inexperienced users).

• Better Performance under Stable Gestures: We see that, at identical NTtD

values, the gesture recognition performance is superior for experienced

users, compared to inexperienced users. In particular, at NTtD=30%, the

precision & recall for users in study 2 is 64-87% and 65-94% respectively,

while the comparative precision & recall is between 50-73% and 52-76%,

respectively, for study 1. Clearly, experienced users exhibit more consis-

tent stroke-making, implying that even a modest 30% samples of testing

gesture are enough, whereas novice users tend to exhibit higher variability

91

(a) Dataset1 Precision (Inexperienced) (b) Dataset1 Recall (Inexperienced)

(c) Dataset2 Precision (Experienced) (d) Dataset2 Recall (Experienced)

Figure 4.11: Left: Precision and Right: Recall w.r.t. Normalized Time To Detect
(Across Both Studies)

in performing the same stroke multiple times.

Variation Across Users:

We observed that even person-specific models show significant differences in

the cross-user variation in gesture recognition accuracy, for different gestures.

Figures 4.12 plots the variation in the precision and recall, respectively, of ges-

ture detection for each of the 6 VTT gestures, for both Study 1 and Study 2.

(This is in contrast to Figures 4.11, which plot the average values, across all in-

dividuals.) We see that the median precision values (almost always above 87%

for Study 1, and above 90% for study 2) and recall (above approx. 95% for

study 1 and 95% for study 2) values are fairly high. However, there was one

individual user (in study 1) who exhibited significantly lower accuracy, due to

the specific individual’s inability to play the 6 strokes distinctly. In general, the

92

(a) Dataset1 Precision (Inexperienced) (b) Dataset1 Recall (Inexperienced)

(c) Dataset2 Precision (Experienced) (d) Dataset2 Recall (Experienced)

Figure 4.12: Box plot of Left: precision and Right: recall across users. X-axis
corresponds to the 6 distinct gestures.

variation across experienced users (Dataset 2) is significantly smaller than for

inexperienced users (Dataset 1).

4.5.2 The Utility of the Classifier

For early gesture detection, our approach combines the streaming-oriented

HMM with an HMM-state driven classifier. To understand the importance of

the classifier, we studied the accuracy of gesture recognition both with and with-

out the final HMM-based classifier. In general, HMM-based models can use a

threshold (on the confidence value) to classify gestures [96, 109]. Similarly,

we can classify gestures directly using our modified HMM model, where the

Universal State serves as a dynamic threshold. Moreover, our model produces

confidence value for every sample, as well as the most probable current state.

Intuitively, we would choose the gesture that evolves to the higher state (a per-

93

fect gesture would, in fact, evolve to the final state). However, waiting for the

evolution to the final state incurs latency, and we cannot perform early detection

of a gesture. On the other hand, if the system declares a gesture too early, it is

more likely to produce a false positive.

A little reflection will show that determining the threshold is the main prob-

lem with the threshold method. Our addition of a classifier is intended precisely

to tackle this conundrum and to reinforce the decision making of the system. In

particular, the classifier observes the states, probabilities and gesture labels of

every sample of training data, and can thus avoid recognizing a gesture under

isolated samples of spurious observations. For example, in certain situations, a

non-gesture may manifest in a high (close to final) HMM state and probability

of Forehand push gesture; however, at that point, the hand may be pointing up-

ward (x-axis value of gravity is high), making a Forehand push very unlikely.

By using features corresponding to different evolutionary points of the gesture,

our gesture recognizer becomes more robust.

Figure 4.13 demonstrates that the subsequent Random Forest classifier sig-

nificantly improves the recognition accuracy. Without the classifier, the accu-

racy is low because many non-gestures can evolve to the equally high state and

probability. The classifier eliminate those false positives by looking at the ori-

entation of the wrist and the strength of the gesture. We see that our modified

HMM continues to be effective in detecting gestures correctly and early.

4.5.3 Performance of Person-Independent Models

To additionally understand the need for such personalized models, we also

study the overall gesture recognition perform for a person-independent model.

Note that, in general, the accuracy of person-independent gesture recognition

algorithms is usually quite low–e.g., Thomaz et. al. [121] reported low val-

ues for precision and recall when detecting ‘eating’ gestures using a person-

independent model.

94

(a) Dataset1 Precision (Inexperienced) (b) Dataset1 Recall (Inexperienced)

(c) Dataset2 Precision (Experienced) (d) Dataset2 Recall (Experienced)

Figure 4.13: Early detection ability of our stream-HMM model. Left: without
the subsequent classifier. Right:with the subsequent classifier. probabilities.

95

(a) Dataset1 Precision (Inexperienced) (b) Dataset1 Recall (Inexperienced)

(c) Dataset2 Precision (Experienced) (d) Dataset2 Recall (Experienced)

Figure 4.14: Precision w.r.t. Normalized Time To Detect (Person-Independent
Model).

We use the Leave One Person Out (LOPO) validation technique, whereby

we train the model using K � 1 participants and test the system with the other

participant, repeating this process for every distinct participant. As before, we

measure the precision (See Figure 4.14a) and recall (See Figure 4.14b) as a

function of NTtD, with a step of 10%. As expected, the person-independent

model gives rise to significantly lower accuracy. However, even then, we see

that the early detection capability of the gestural model is relatively unaffected–

e.g., for an NTtD value of 0.6 (i.e., at the time instant when a gesture is 60%

complete), the recall of the person-independent model is higher than 50% for all

gestures.

This LOPO validation shows that the development of a generalized model

may not be impossible. All gestures show quite high recall and the precision

is around 50%. The two gestures Forehand Push and Backhand Push have the

96

lowest precision and recall in the study 1 (inexperienced players). As we men-

tioned before, the participants in this study are not professional players, so they

usually play these two gestures very similarly to either Drive or Chop gestures.

Even in study 2 (experienced users), the Backhand Push has significantly lower

recall compared to other gestures. These results suggest that more sophisticated

classification models (e.g., the Deep Learning-based LSTM models) may in-

deed offer more robust, person-independent classification. However, we do not

pursue this investigation further in this thesis, as the development of “improved

classifiers” is not the core focus.

4.5.4 Comparison with E-Gesture Baseline

To evaluate how well our method can recognize gestures early, we compare the

precision and recall of our proposed approach with a competitive baseline. As

described in Section 4.4.1, the baseline is based on a modified version of the

segmentation-cum-HMM model of [96], which we showed to provide better

results. This baseline classifier operates on the data of each segment and outputs

the gesture with the highest confidence value at any intermediate point of the

gesture.

Figure 4.15 plots this comparative performance–with the horizontal line

showing the precision and recall values for the baseline (which operates on the

entire segment and thus does not vary with NTtD values). The figure shows that

our proposed approach matches the precision and recall values of the baseline at

an NTtD value of 0.4 (the precision is 87.0% compared to 88.0% of the baseline,

and the recall is 92.0% compared to 88.0% of the baseline), implying that we

are able to detect gestures as accurately as the baseline (which needs to wait for

the entire gesture segment) much earlier, using only the first 40% of a gesture.

97

Figure 4.15: Early detection capability of proposed method vs. enhanced E-
Gesture baseline.

4.6 Gesture-State-Enabled Trajectory Tracking

While many studies rely on hand tracking to recognize gestures, hand tracking

using sensors in a wearable device is not trivial because of the noise in sensory

data. In this work, we explore the reverse problem: Use knowledge of the gesture

being performed to improve the accuracy of hand tracking. This is based on

the observation that during gestures of a specific type, a user’s hand is likely to

follow a more-limited “trajectory cone” in the 3-D space. In particular, if we can

detect gestures accurately and early (which we’ve demonstrated in Section 4.4),

we are likely to be able to estimate the position of user’s hand based on the

instant orientation of the hand more accurately.

4.6.1 Existing Approaches of Hand Tracking

A widely-used prior approach is to use dead-reckoning over the inertial sensing

data. As we can extract the angle of the hand and its acceleration, we can intu-

itively apply the integral to calculate the 3D positions of the hand, assuming that

we can obtain the initial reference position of the hand. However, this method

often suffers from accumulated errors caused by noises in acceleration and ori-

entation sensor readings. In addition, it is not easy to reset the reference point

to offset the integral calculation once the table tennis play is started; note the

98

5 10 15 20 25 30
0

1

2

3

·104

time (sesond)
er
ro
r
(c
m
)

Error

x

Figure 4.16: Tracking error of the dead-reckoning approach.

periodic reset of the reference point is essential for reckoning-based approaches

to reset the accumulating error. We implemented and evaluated this method over

our dataset described in Section 4.3. Figure 4.16 shows the trajectory tracking

errors as the time progresses. The tracking error increased to 300 meters after

just 30 seconds, making the approach infeasible for our scenario.

ArmTrack [113] adopted a different approach to address this problem of

error accumulation. Its key idea is to use a pre-built look-up table (LUT) that

maps an orientation of the hand in a particular position to a specific 3-D location;

in particular, they consider the possible angles of the shoulder and elbow joints

to decide the mapping. This approach works well under the assumption that the

user’s shoulder is fixed. However, this method does not correspond well with

our scenario, as table tennis interactions have complex kinematics and usually

involve significant body movement during a game session. For the same stroke,

the spine orientation, as well as the angles of the shoulder and elbow, could be

highly variable, making it difficult to build an accurate look-up table. Moreover,

for a VR-based game such as VTT, the wrist position should be computed, not

relative to the body, but relative to the “virtual world” coordinates. For example,

a user starting VTT on her VR display will see the board straight ahead, but as

she moves her body, the location of her hand should shift, relative to the table

(and thus the trajectory of an incoming ball), even if the hand doesn’t move

relative to the body. Accordingly, in our approach, (1) we assume the ’virtual

world’ coordinates to be defined by the user’s orientation at the start of the

99

API

Stream	HMM

Orientation	
Estimation

Regressor
(MLP)

Rotation Vector
Accelerometer
Gravity

Rotation Vector

States

Orientation
(Lower arm direction)

Instant
Position

Sensor stream

Figure 4.17: The overall logic of trajectory tracking

game; (2) during subsequent game-play, we first compute the hand trajectory

relative to the body (the user’s forehead); (3) we separately track the forehead’s

motion, relative to the virtual world coordinates, using a separate head-mounted

device (e.g., a smartphone mounted on a VR device such as Samsung Gear VR);

and (4) finally, utilize the forehead motion vector to translate the hand’s body-

coordinates to the virtual world coordinates.

4.6.2 Gesture-State-Enabled Trajectory Tracking

To enable accurate, real-time hand tracking, we proposed a new method called

Gesture-state-enabled Trajectory Tracking. The core idea behind this method

is to utilize the intermediate states of the gesture’s progress, along with the ori-

entation of the hand. As described in Section 4.4, our gesture recognizer con-

tinuously outputs which gesture the player is likely performing as the gesture

progresses. When the information of the gesture progress is combined with the

hand orientation, it is possible to quickly narrow down the possible positions of

the hand to a smaller, plausible area.

Figure 4.17 illustrates the trajectory tracking logic. As the first step, it com-

putes two different features upon a sensor reading:

• Orientation of the hand: the trajectory tracker first computes the orienta-

tion of the hand, more specifically the orientation of the wrist-elbow limb.

This can be calculated by computing the X-axis unit vector (1.0, 0.0, 0.0)

of the smartwatch in the reference coordinate system (i.e., the coordinate

system at the start of the game, when the table tennis board is directly in

100

front of the user). The use of the x-axis component is important as it is

least affected by the wrist rotation; note that table tennis gestures involve

wide rotations of the wrist, and thus, y-axis and z-axis components can

vary considerably even at the same position of the hand.

• Current state of the gesture: it retrieves the current HMM states of the

gesture, which indicates how much progress has been made for the ges-

ture being currently performed. We still utilize the average states and

probabilities which are described in section 4.4 as features to estimate the

wrist position.

These two input values are streamed into a regression model, named Multi-

layer Perceptron (MLP), which computes the possible location of the hand. We

use a fully connected MLP (in Weka machine learning library [129]) with 3 lay-

ers of hidden units. Number of nodes in the 3 hidden layers are empirically set

to 9, 18 and 9 correspondingly.The model is pre-trained with the hand trajec-

tory data (computed using the “ground truth” video data of a player captured by

the ZED camera). As mentioned before, the hand trajectory is defined relative

to the ’virtual game’ coordinates– this positional ground-truth is measured (and

used in training the MLP) by tracking the user’s head location, and adding the

head-to-hand vector to this location.

4.6.3 Hand Tracking Performance

We evaluate the system using 10-fold cross validation (each gesture instance

is a primitive unit). The data in this experiment is generated from the gesture

recognition experiment. The states and wrist orientation of each test gesture are

combined with the corresponding position ground truth to create a new hand

tracking dataset.

Figure 4.18 shows the CDF of the average hand tracking error (the average

computed over all points of a gesture instance), based on a personalized model.

101

(a) Dataset1 (Inexperienced) (b) Dataset2 (Experienced)

Figure 4.18: CDF of Average (and Hit Time) Trajectory Tracking Error.

We compare the tracking error of our approach with a baseline (named ”only-

orientation”) that performs regression, but without using the intermediate state

of HMM. In addition, we also plot the CDF of the errors, computed only at the

‘hit time’ (when the bat hits the ball). While the baseline model achieves a me-

dian error of 9.5cm, our approach improves the tracking error significantly with

a median error of 6.3 cm (for experienced users). The error at hit time (6.2cm)

is slightly lower (but not by a significant amount) compared to the average error.

As anticipated, the experiment with inexperienced users shows a slightly higher

median error of 7.2cm. We can see a significant improvement (around 15-30cm)

in tracking accuracy over the baseline at the 90th percentile. The results show

that using intermediate HMM-state information helps the regression model to

estimate wrist position more accurately.

We further break down the tracking error per gesture type. Figure 4.19 shows

the CDF of the average tracking error, for each of the 6 strokes. In this experi-

ment (with experienced players), we observe a lower difference in the tracking

error, across different gestures, for experienced users. However, at 90th per-

centile, we still see higher error values for the Forehand Drive, Backhand Drive

and Backhand Chop gestures. The two Drive gestures are sometimes occluded

in our training data because the player moves the racket towards the camera

during the gesture. In these cases, the interpolated ground-truth is used. The

Backhand Chop also has the higher error, but less than the two Drive gestures.

102

(a) Dataset1 (Inexperienced) (b) Dataset2 (Experienced)

Figure 4.19: Stroke-specific tracking error distribution using (a): inexperienced
user dataset, and (b): experienced user dataset.

(a) Dataset1 (Inexperienced) (b) Dataset2 (Experienced)

Figure 4.20: Tracking error distribution vs. gesture progress, using (a): inexpe-
rienced user dataset, and (b): experienced user dataset.

Both Drive gestures and Chop gestures usually involved fast movements of the

arm, as a result of which the orientation and ground truth estimators are less

accurate, compared to the slower hand movements in the other strokes.

We further investigate how the tracking error change as a gesture progresses.

Figure 4.20 shows the tracking error as a function of the percentage progress of

the gesture. Contrary to our expectation, there appears to be no discernible trend

relating the tracking error to the progress of the gesture. There is an apparent

significant increase in the error of Backhand Drive or Backhand Chop towards

the end–however, note that these two gestures are often occluded, as a result of

which the ground-truth samples of the hand’s location are sometimes missing or

not as accurate as the other strokes.

103

4.7 User Perceptual Experience

The previous sections have demonstrated that our approach can recognize ges-

tures early and accurately (with over 90% precision by the mid-point of a VTT

gesture) and that it can then track the hand’s trajectory, in real time, with an error

of no more than 6-8cm. Clearly, such errors in tracking will manifest themselves

in errors in estimating the hit time–i.e., when the racket makes contact with the

ball. For a system such as VTT to be used, users must have the perception that

the virtual experience faithfully recreates the “real world”.

To study this perceptual effect, we recruited 5 players who are students in

our university. We suspended a table tennis ball in the experiment room; each

participant adjusted their body position, as well as the ball’s height, such that

they are comfortable in striking the suspended ball using the Forehand Push or

Backhand Push strokes. Each participant wore a smartwatch (on their stroke-

playing hand), which was instrumented with our gesture recognition software.

The software was provided with the ball’s ground truth location (computed us-

ing the Zed camera). The participant was then required to try to hit the ball with

25 Forehand Push shots and 25 Backhand Push shots. Whenever the smartwatch

detected a gesture, it estimated the position of the wrist. If the estimated wrist

position is within 8cm (which is about the diameter of the bat) of the suspended

ball’s position, then the system will emit a “beep” sound. We then asked the

participant if they perceived the ”beep” sound to be before, later or at the true

hit time (the time when the user saw his hand actually hit the suspended ball).

To avoid the need for building a personalized gesture model (which would have

required additional training data from each user), we instead used a previously

existing gesture recognition model derived from a participant of the prior stud-

ies. As expected, as this is a model trained on a different user, the gesture recog-

nition accuracy is a bit lower than the results reported earlier (for personalized

models).

As mentioned before, the user study measures users’ perception of system

104

Figure 4.21: User’s perception of our system response time.

response time. Figure 4.21 summarizes the users’ response to our query: we see

that for ⇡ 85.7% of the gesture instances, users felt the ”beep” sound happened

concurrently with the true hit time. To further understand the likely usability of

a system built using our technology, each user was asked (once each after the

forehand and backhand sessions) about the “usability” of a future VTT training

system built using this gesture recognition technology. The user rated the us-

ability of the technique on a scale from varying from 1(unusable)-5 (absolutely

usable). The average score across 5 users (based on sessions where the gesture

recognizer was most accurate) is 4.2 out of 5. This result gives us confidence

that our gesture recognition and hand tracking system can indeed be embedded

in useful interactive applications (such as VTT).

4.8 Discussion

Our experimental results show that our system outperforms competitive base-

lines by a significant margin–both in terms of the gesture detection latency and

the 3-D hand tracking accuracy. However, there are several additional questions

and issues that we must consider.

Diversity of dataset: Currently I have studied early gesture recognition and

hand tracking with 6 table tennis gestures. It is still unclear how well the same

technique performs with other types of gestures. In addition, the dataset in-

105

cludes only right-handed adults. A more diverse dataset (e.g, including children,

elderly) may reveal other person-specific factors which affect the performance

of the proposed technique.

Limitation of early gesture recognition technique: Our current approach for

early detection is based on the features derived from the HMM state probabili-

ties. However, the speed of the gestures among players may vary considerably

across expertise level (even within the same level). We may need to consider fea-

tures that can represent the gesture speed and/or clustering the data before recog-

nizing gestures. Moreover, the early detection approach implicitly assumes that

the gestures are prefix-free–i.e., one gesture isn’t a sub-trajectory of another ges-

ture. If the gestures are not prefix-free, then the observation interval will need to

be larger than the duration of the smallest prefix, to help disambiguate between

multiple gestures. Finally, though our proposed technique have high accuracy

with personalized model, the accuracy with person-independent model is much

lower. Perhaps the HMM model is not able to model all the essential person-

independent relations. Newer machine learning techniques for sequential data

such as Long-Short-Term-Memory might be able to address the problem by au-

tomatically extracting features from the data, but the processing time and power

consumption of the system might increase respectively.

Limitation of hand tracking technique: The current experimental study fo-

cused primarily on determining the trajectory of the hand, under the assumption

that the body position and orientation was relatively unchanged. In applica-

tions where a user needs to change his/her body orientation continuously, such

as dancing, our technique may fail to estimate wrist position. For this type of

applications, the system will need to fuse the body orientation together with

the smartwatch orientation to get improved 3-D tracking of hand movement.

In particular, the gesture detection logic is currently based on features that are

computed in the earth’s reference frame, whereas the actual gesture trajectory

may vary depending on the body orientation. Accordingly, accurate gesture

106

recognition itself may require fusing of the hand orientation with the body ori-

entation/posture data (e.g., obtained from the smartglasses)–this may be difficult

to execute at the desired low latency.

Need for sensors with high sampling rate: our current work and results uti-

lized multiple sensors (accelerometer, gyroscope and magnetometer) for hand

tracking and also implicitly used high sampling rates (100Hz for accelerometer,

gyroscope and magnetometer). While our results show the efficacy in improv-

ing early gesture recognition and hand tracking, the resulting energy profile may

be too expensive for execution on highly battery-constrained platforms (e.g., the

battery-less WiWear platform presented in the previous chapter). Accordingly,

we will need to additionally evaluate the accuracy vs. sensing energy tradeoffs

(e.g., by using the sensor sampling frequency as a ‘control knob’) to understand

the regime of applicability for our technique to such battery-less devices. I shall

discuss this issue further, in Chapter 5.

4.9 Reflections and Lessons Learned

During the development and the experiments for this Chapter, I have learned

several lessons which might benefits other students who plan to work in this

area of research.

Having step-by-step printed script for an experiment: Usually an exper-

iment is an expensive process in both time and finance. Redoing an experiment

session with one participant is really difficult, and sometime, invalid. Every

mistake during an experiment is costly, and usually results in losing the data of

that participant. An experiment usually consists of many ordered steps. Every

change in these steps may result in a failure. So it is important to follow these

steps exactly for every participant. If I do not have a step-by-step printed script,

it is very easy to forget one step or take one step in wrong order even if I remem-

ber the experiment procedure by heart. The reason could be another participant

107

is waiting for his session while the first session is over due.

Managing participant’s data is not simple: It seems very simple to store

experiment data in a computer. However, when there are many participants for

an experiment, it completely matters how the data is stored. Especially, if the

data is stored under participants’ encoded name (e.g, p1, p2 etc.), and there are

more than one type of data to be stored, it is extremely confusing later when

there are so many files and folders with the same name. Another problem is

that, smartphones and smartwatches are commonly used to collect data. In many

cases, the data must be buffered locally before it is stored in a secure place. A

common problem is that some unexpected events happen during a session and

the session must be restarted. Later we might loose track of which is the correct

data to be used. So it is important to store the data of each participant in an

identifiable way immediately after the experiment session before starting any

other experiment session.

108

Chapter 5

Feasibility Analysis: Early Gesture

Recognition and Tracking for

Battery-less Devices

In Chapter 3, I presented our proposed WiWear framework to enable motion

sensing on a battery-less wearable which harvests energy from beam-formed

WiFi transmissions. In Chapter 4, I detailed our method of early gesture recog-

nition and tracking which enable low-latency (and also low-complexity) recog-

nition of gesture, and accurate hand trajectories tracking. However, it is still

unclear if it is feasible to deploy such a low-complexity motion sensing model

on a WiWear device to support the motivating scenarios mentioned in Chapter 1.

Of course, one can expect better accuracy with higher fidelity of motion sensor

data. However, higher fidelity also results in higher power consumption. To an-

swer the research question: Is it feasible to achieve low-latency motion sensing

using battery-less wearables?, I shall analyse to what extent of fidelity a WiWear

wearable supports low-latency motion sensing.

In this chapter, I shall investigate whether the early gesture recognition and

techniques, described in the previous chapter, are amenable to execution in tan-

dem with the WiWear battery-less wearable devices previously described. The

109

key consideration is, of course, the energy overhead–i.e., to determine if the

energy consumption of such algorithms (including the sensor sampling, compu-

tation and communication overheads) fits within the energy-harvesting envelope

of the WiWear platform. More specifically, as the energy overhead is known to

be affected by the sampling frequency, I shall study how the accuracy of the ges-

ture recognition technique varies with such sampling frequencies, and thereby

establish the salient energy-vs-accuracy tradeoffs. Another factor, which affects

the energy consumption of the device if the device performs the processing task,

is the complexity of the processing pipeline. Based on such analyses, I shall

identify the operating regimes (and thereby the gesture-based use cases) that a

WiWear-like device can support.

Table 5.1: Analysis methods of different parts in the feasibility study.

Part Analysis Method Data Sub-
section

Accuracy vs. sam-
pling rate

re-training models sub-sampled real-
world data

5.1

Accuracy vs. com-
plexity

re-training models original real-world
data

5.1

Power consumption
vs. sampling rate

simulation data-sheets, model
complexity

5.2.1,
5.2.2

Power consumption
vs. complexity

simulation data-sheets, model
complexity

5.2.1

Operational life-
time

simulation data-sheets, model
complexity, sim-
ulated harvested
energy

5.2.3

Due to the lack of support for machine learning libraries on low-power

micro-controller (STM32L053) used in the WiWear prototype, the actual im-

plementation of our early gesture recognition and hand tracking on a WiWear

wearable is not possible. Therefore, the power consumption of components are

analyzed using synthetic data; whereas the accuracy of algorithms are evaluated

using sub-sampling of real-world data. To provide the reader an easy summary

of the evaluation strategies, Table 5.1 summarizes relevant aspects of the analy-

110

ses reported in different sections of this chapter.

5.1 Effects of Varying Sampling Rates and Model

Complexity on Sensing Accuracy

Though higher sampling rate usually results in better sensing fidelity, it also

drains more energy. However, the impacts of the of varying the sensor sam-

pling rate differ depending on the underlying application. This is a trade-off

that can be exploited to achieve an optimal operating condition in which the

sensing fidelity is sufficiently high and the energy consumption (by the sensors)

is low enough to be compatible with the limited amount of energy harvested by

WiWear wearables. To explore different sampling rates on the dataset I have

recorded from Table Tennis players with a sampling rate of 100Hz, the dataset

is first sub-sampled at different rates (50Hz, 25Hz, 12.5Hz, 6.25Hz). Then, it is

interpolated again to 100Hz so that the same model can be applied to different

sampling rates. Depending on the frequency spectrum of the original data, the

sub-sampled data may lose a certain essential frequency components. Figure

5.1 shows the frequency spectrum of linear acceleration at different sampling

rates. Figure 5.1.a shows two main frequency components of 1.6Hz (very close

to the DC component) and 4.6Hz (the second peak). Figure 5.1.e shows that the

sub-sampled data at 6.25Hz loses an essential component of 4.6Hz (the second

peak has disappeared). The sub-sampled data at 25Hz and 12.5Hz show some

frequency losses, but can preserve the 2 strongest components. Figure 5.2 shows

the reconstruction loss of linear acceleration in root mean square error (RMSE).

As expected, the reconstruction loss of re-sampled data increases dramatically

at 6.25Hz to more than 1.25m/s
2 (the mean value of linear acceleration during

gestures is 8.2m/s
2).

111

(a) 100Hz data (b) 50Hz data

(c) 25Hz data (d) 12.5Hz data

(e) 6.25Hz data

Figure 5.1: Frequency spectrum of linear acceleration during a forehand push
gesture at different sampling rates.

Specifically for the early gesture recognition and tracking, which I have de-

scribed in Chapter 4, the Figure 5.3 shows that the system can achieve an F1

score of 90% with a sampling rate of 25Hz compared to 93% with a sampling

rate of 100Hz. Even at 12.5Hz, the system can still achieve a fairly high F1

score of 86%, but then the achieved accuracy drops significantly down to only

55% when the sampling rate drops down to 6.25Hz. The fact that the same

model was kept across different sampling rates suggests that our early gesture

recognition is robust to sampling rate change (e.g, the system can dynamically

112

Figure 5.2: Reconstruction loss of re-sampled data at different sampling rates
(Hz)

Figure 5.3: F1 score of our early gesture recognition at different sampling rates.

113

Figure 5.4: Precision and recall of our method compared with a baseline (E-
Gesture).

change its sensor sampling rate to adapt to dynamic changes in the available

energy budget).

Equally importantly, our gesture recognition and tracking technique is more

robust, than other baseline alternatives, to varying sampling rates. As shown in

Figure 5.4, which compares our method with a baseline based on an implemen-

tation of EGesture [96]. EGesture precision drops almost linearly when sam-

pling rate drops from 100Hz down to 6.25Hz. The precision drops much faster

than recall. It means that, at lower sampling rates, EGesture segmentation pro-

poses too many spurious segments, and the subsequent threshold-based HMM

technique is not robust enough to filter out such spurious data. On the contrary,

our method still maintains fairly high precision and accuracy even when the

sampling rate drops down to 25Hz.

5.1.1 Early gesture recognition

Early gesture recognition under different sampling rates

Figure 5.5 plots the precision of gesture recognition for different strokes, as a

function of the fraction of completed gesture (NTtD), for different sampling

rates. We see that the ability to perform early gesture recognition is not signif-

114

(a) Precision at 100Hz (b) Recall at 100Hz

(c) Precision at 50Hz (d) Recall at 50Hz

(e) Precision at 25Hz (f) Recall at 25Hz

(g) Precision at 12.5Hz (h) Recall at 12.5Hz

(i) Precision at 6.25Hz (j) Recall at 6.25Hz

Figure 5.5: Early gesture recognition performance at different sampling rates.

115

icantly affected even if the sampling rate drops down to 25Hz. But at 25Hz,

the backhand push gesture has much lower precision compared to other ges-

tures, but then BHP class re-gains a higher precision when the sampling rate

drops down to 12Hz. Possibly, during BHP session, there were some move-

ments around 6Hz when the participants were not playing. However, a com-

mon trend is that the performance (both precision and recall) drops slowly until

12.5Hz, with the precision and recall then dropping significantly (a ‘knee in the

curve’) when the sampling rate is 6.25Hz. It is possible that the significant sig-

nal frequency (for Table Tennis gestures) is above 6.25Hz, so sampling at lower

frequencies effectively cause loss of crucial gestural signals and features.

Early recognition with different number of HMM states

The default version of the gesture recognition uses 10 states for each HMM

sub-model (e.g, each gesture). It is possibly that the performance of the gesture

recognition pipeline is affected when the number of HMM states changes as the

complexity of the model changes. Figure 5.6 shows the gesture recognition ac-

curacy with different number of states. When the number of states increases to

15 and 20, the accuracy does not change noticeably. However, when the num-

ber of states decreases down to 5, the early recognition ability is significantly

affected. Though the final recognition accuracy is not significantly decreased,

the accuracy at 40% of gestures is much lower.

116

(a) Precision with 20 states (b) Recall with 20 states

(c) Precision with 15 states (d) Recall with 15 states

(e) Precision with 10 states (f) Recall with 10 states

(g) Precision with 5 states (h) Recall with 5 states

Figure 5.6: Early recognition performance with different number of HMM
states.

117

5.1.2 Hand tracking

Hand tracking under different sampling rates

(a) Tracking error at 100Hz (b) Tracking error at 50Hz

(c) Tracking error at 25Hz (d) Tracking error at 12.5Hz

(e) Tracking error at 6.25Hz

Figure 5.7: Hand tracking performance at different sampling rates.

Similar to the case of early gesture recognition, the tracking accuracy degrades

slowly until the sampling rate is 12.5Hz, with a median error of nearly 8cm,

then it suddenly increases to around 10cm when the sampling rate is 6.25Hz. At

this sampling rate, as the gesture state is not accurate (as shown in Figure 5.5),

the gesture recognizer actually does not help to improve the tracking accuracy.

These analyses suggest that our early gesture recognition and tracking can

118

be used with much lower sensor sampling rate and still achieve comparably high

accuracy. This is extremely important for the technique to be deployed on ultra

low-power devices as sensors drain more energy at higher sampling rate. In the

next sections, I shall investigate if our method can be applied to a WiWear device

at some useful sampling rates.

Hand tracking with different number of HMM gestures

(a) Tracking error with 20 states (b) Tracking error with 15 states

(c) Tracking error with 10 states (d) Tracking error with 5 states

Figure 5.8: Hand tracking performance with different number of HMM states.

Though the HMM is used in the gesture recognition pipeline only, the state val-

ues are used as features for the hand tracking model (MLP). So it is possible that

the tracking error is also affected by the number of states in the HMM model.

Figure 5.8 shows the tracking errors with different number of the HMM states.

As expected, the median error with 15 and 20 states is not considerably de-

creased (from 6.2cm compared with 6.0cm). Interestingly, the error with 5 states

is not significantly lower either (6.2cm compared with 6.5 cm). As described

in Chapter 4, the hand tracking model uses average state values as features (not

119

Figure 5.9: Power consumption of different components at different sampling
rates (Hz)

the discrete state values), so it is less affected by the number of states because

the state values can still indicate the full progress of gestures (e.g, 3.5/5.0 equals

to 7.0/10.0). However, the system cannot detect the gesture early, and it is con-

fused that the current estimated position belongs to a Null gesture and ignores

it.

5.2 Effects of Varying Sampling Rates and Model

Complexity on System Power Consumption

Before analysing any sensing technique on WiWear wearable, I shall show the

energy consumption of hardware components used in a WiWear wearable based

on the data-sheets of manufacturers. Figure 5.9 shows energy consumption of

3 sensors (accelerometer, gyroscope and magnetometer) from ST [11, 9, 10],

the micro-controller (MCU) also from ST [14] and the rf-transceiver (RFU)

from Nordic [12]. The energy consumption values at sampling rates that are not

directly stated in the data-sheets are interpolated or extrapolated. Though the

sampling rate does not directly modify the MCU or the RFU, it has an implicit

impact on their power consumption as well. When a sensor is active, it will

signal the MCU to wake-up and read the data. As I target real-time applications,

I assume that the MCU needs to read the data as soon as the data is available

120

(equal to the sensor sampling rate). If the MCU needs to transmit the data back

to an AP, it signals the RFU to wake-up and transmit the data using RF signal.

Accordingly, the data rates of sensor reading and RF transmission affect the

active time of the MCU and RFU. Currently I use a data rate of 2Mbps. Another

point, that also affects the energy consumption, is the deployment mode. There

are two possible, commonplace approaches to execute early gesture recognition

& tracking with WiWear wearables.

Streaming data mode: In this case, the wearable transmits all the sensor data

to the host device (WiWear AP) as soon as possible (after every sample), and the

actual gesture recognition/tracking algorithms are deployed and executed on the

host device. But note that data transmission at high rate with short packets is

extremely costly, and this approach effectively saves computational energy but

can incur significantly higher communication energy overheads.

On-device processing mode: Alternatively, the WiWear wearable executes the

algorithm on its local processor if the algorithm is low-complexity enough, and

transmits only the results to the AP. This approach, on the contrary, tries to save

the expensive communication energy, but sacrifice the MCU power to process

the data.

However, an ultra low-power MCU usually has lower power consumption

compared to an RFU, and the optimal solution might be completely different

depending on how long the MCU processes the data as well as how much data

the RFU needs to transmit. In the Figure 5.9, we can see that the power con-

sumption of the MCU using streaming data is a bit lower than on-device pro-

cessing. However, the power consumption of the RFU is much higher in the

streaming mode compared to on-device processing mode. Depending on how

long the processing time is, processing the data on the device (on-device pro-

cessing) might outperform streaming the data to an AP to be processed at the

AP or vice versa.

121

Figure 5.10: Power consumption of gesture recognition at different sampling
rates.

Figure 5.11: Power consumption of gesture recognition with different number
of HMM states (sampling rate = 100 Hz).

5.2.1 Energy consumption of gesture recognition on WiWear

wearable

Currently, due to the lack of support of machine learning models on ultra low-

power micro-controllers, I shall project the complexity of machine learning

models used in the implementation to the micro-processor processing capabil-

ities, and compute the estimated energy consumption of the algorithm. This

projection also enables me to compare the performance of my techniques with

a recent work on real-time hand tracking using inertial sensors [83].

As described in Chapter 4, the entire system consists of two main compo-

nents: (1) gesture recognition model, and (2) hand tracking model. The gesture

recognition model consists of a Hidden Markov Model (HMM) and a Random

Forest model. The HMM computes raw probabilities that each sample belongs

122

to a specific states. The Random Forest uses these state probabilities values as

part of a feature vector to determine if a sample actually belongs to a gesture

or not. The hand tracking model is a Multi-Layer-Perceptron regression model.

It also uses the state probabilities values as part of a feature vector to estimate

the hand position. Note that the hand tracking model always need the HMM

to estimate the raw state probabilities. In total, our algorithm uses 5 machine

learning models: (a) an HMM and, (b) a Random Forest model to recognize

gesture early; (c) 3 Multi-Layer-Perceptron (MLP–a simple neural net) to esti-

mate hand position (3 axes). The computational cost of each of these 5 models

is computed as follows:

• The HMM includes 6 10-state sub-models (each state in a sub-model can

transit to only states in that sub-model) for 6 gestures. So the probabilities

update takes 600 operations. The input data is quantized into one of 256

values, so it takes 256 operations for quantization. The emission proba-

bilities are implemented as a look-up table, so it takes only one look-up.

So in total, the HMM model needs 856 operations.

• The number of trees in the Random Forest is set at 10. The input is a

vector of 21 values, and the max depth of trees is set at 21. In the worst

case, it needs to spend 210 operations to search through all trees (each

tree has a depth of 21–worst case) for a prediction.

• The MLP includes 3 hidden layers with the size of (9, 18, 9), and the input

size of 15. Layers in MLP are fully connected. The output has a size of

only 1 (x/y/z value). The 3 MLP models need 1404 operations to estimate

one sample.

In total, the number of operations is 2470 operations. Usually, each operation

includes a multiplication and an addition. So the total number of CPU instruc-

tions is 4940. The Miro-controller CPU frequency is 16MHz, and it supports

both addition and multiplication. So the total time needed for a recognition and

123

estimation is 0.31ms. Depending on the sampling rate of the sensors, the total

active time of the micro-controller will be different, and the active time is com-

puted from this sampling rate. For example, if the sampling rate is 100Hz, the

active time of the MCU to process data in 1 second is 31ms (0.31ms ⇥ 100),

and thus the average power is 0.2325mW (7.5 ⇥ 0.031). Figure 5.10 shows the

power consumption of only gesture recognition component in 2 settings (a) all 3

sensors (acclerometer, gyrscope and magnetometer), and (b) just the accelerom-

eter sensor alone. In each setting, the power consumption of the full gesture

recognition pipeline (HMM + Random Forest) or only the HMM (excluding the

Random Forest classifier) is also shown. For this candidate gesture recognition

application, we see that the total power consumption is affected significantly by

(1) the use of additional energy-hungry sensors (gyroscope, magnetometer), and

(2) frequent RFU usage (as consequence of which streaming mode is typically

more power-hungry than on-device computation). The inclusion/exclusion of

the Random Forest classifier causes inconsiderable effect on the total energy

consumption as the prrediction time of the Random Forest is much less than the

time the MCU spends on reading sensors and transmitting data.

As the number of HMM states contributes the most to the computation of

the gesture recognition. The change in the number of states will affect the en-

ergy consumption of the system. Figure 5.11 shows the power consumption of

the a WiWear wearable if the gesture recognition algorithm is executed on the

wearable using all 3 sensors (accelerometer, gyroscope and magnetometer) with

a sampling rate of 100Hz. In this case, the streaming energy consumption is not

shown because in the case of streaming data, the wearable does not execute the

gesture recognition task. Figure 5.11 shows a noticeable increase in energy con-

sumption. Increasing the number of states from 5 to 10 incurs 50µW . Different

applications might perceive these relative power differences to be significant (or

not). Moreover, depending on the exact latency bound that an application must

meet, it can additionally determine if 10 or 5 states is more suitable.

124

Figure 5.12: Power consumption of hand tracking at different sampling rates.

5.2.2 Energy consumption of hand tracking on WiWear wear-

able

In the previous section, I showed the power consumption of only gesture recog-

nition on a WiWear device. I now study the corresponding power consumption

profile for the additional “hand tracking” functionality. As our hand tracking

algorithm utilizes the gesture as an input, its power profile implicitly includes

the power consumed by gesture recognition. Figure 5.12 shows that the power

consumption using on-device processing mode is still lower than the stream-

ing mode, but the difference is lower than the case of gesture recognition. The

reason is that the MCU needs to spend more time to estimate the wrist position.

To position our technique among related studies on arm tracking, relative

comparisons are provided in Table 5.2. The NFC ring can recognize finger ges-

tures with lower power consumption compared to our system, but it does not

support arm tracking. The system proposed by Wittmann et al. is potentially

a low-latency and low-power arm tracking technique for battery-less devices

as it requires only several multiplications to estimate wrist position using arm

orientation and arm length. However, it requires several sensors to be worn

at different body parts (chest, lower arm, upper arm). ArmTrak supports arm

tracking using only one smartwatch, but its processing time is extremely high.

125

ArmTroi addressed the high processing time of ArmTrak by applying a hierar-

chical search technique. Like our system, ArmTroi target is to support real-time

arm tracking and gesture/activity recognition. The reported power consump-

tion of ArmTroi was measured on a smart phone. So it is interesting to see the

projected power consumption of ArmTroi on the same micro-controller used in

our system (only the arm tracking function). Figure 5.12 shows that ArmTroi

consumes more energy than our technique, and the difference is even higher at

higher sampling rates.

Table 5.2: Comparison of recent motion sensing studies.

Study Accuracy Tracking
error

Processing
time

Power con-
sumption

De-
vices

NFC
Ring
[55]

70% (12
gestures)

NA 250ms
(1MHz
micro-
controller)

731µW
(1MHz
micro-
controller)

1

Wittmann
[130]

NA 6� (ar-
bitrary
movement)

61ms (end-
to-end,
including
transmis-
sion time
and screen
response)

Low 3

ArmTrak
[113]

NA 9.2cm
(arbitrary
movement)

10s (1s seg-
ment, desk-
top)

High 1

ArmTroi
[83]

92% (17
activities)

11.5cm
(arbitrary
movement)

150ms (1s
segment,
desktop)

1776mW
(Phone)

1

Our
tech-
nique

93% (6
gestures)

6.3cm (dur-
ing 6 ges-
tures)

1.4ms (An-
droid watch)

1.95mW
(projected,
16MHz
micro-
controller)

1

126

Figure 5.13: Operational life time of WiWear wearable, in single-user and multi-
user scenarios, at different sampling rates.

5.2.3 Operational life time of gesture recognition & tracking

on WiWear wearable

In this section, I shall compare how long and how fine-grained the WiWear

wearable can support continuous real-time sensing. I shall also compare our

technique with a recent hand tracking technique, ArmTroi [83]. ArmTrak [113]

proposed a hand tracking algorithm using inertial sensors, but its high complex-

ity makes it unlikely to be used in real-time applications. The complexity comes

from the large state space of the HMM model. This method relies on a known

upper arm length of a user and tries to estimate the user elbow location in a

sphere with a radius of the upper arm length. So each possible location is mod-

eled as a HMM state. To increase the robustness of state estimation, each HMM

state is actually modeled as a pair of consecutive elbow locations. To determine

the most probable elbow locations, it needs to observe a segment of sensor read-

ings and uses Viterbi algorithm to find out the most probable sequence of states

corresponding to the segment of sensor readings. Consequently, the complexity

is O(N3
T), where N is the number of possible elbow locations, T is the number

of samples in a sensor segment. Assume that the elbow can move freely in part

of a sphere with a radius (upper arm length) of 25cm, and a coverage angle of

90� (a hemisphere). This probable space has an area of 3927cm2 (2⇡252). If

127

this space is divided into 5cm⇥5cm squares, there will be 157 elbow positions.

Assume that the algorithm computes the elbow positions for every 1-second

sensor segment (T = 100 at 100Hz), it needs 387 millions operations. ArmTroi

[83] addresses this issue by limiting the search space from a state to only the

most probable ones, and also apply hierarchical search to reduce the complexity

to O((N
n1)

2
T), where n is the first grid division with the default value of 10. So

the total number of operations to compute a 100-sample trajectory is reduced to

24649, and thus the total needed instructions in a micro-controller is 49298.

There are several assumptions in this analysis. I assume that the device can

harvest an average power of 90µW throughout a day (in single user case), which

is validated in our experiment with our prototype. As the harvested power of the

prototype is almost one third of the simulated value in the same condition, I

assume that the efficiency of a real prototype is 30% of that achieved under

ideal conditions. Accordingly, for a multi-device scenario, the harvested power

is ⇠ 40µW . I also assume that a user performs one gesture in every 10 sec-

onds, and the wearable transmits estimated hand position corresponding to each

sample in a 1-second window to the AP whenever a gesture is done (on-device

processing method). For the ArmTroi approach, it is not clear how the dura-

tion of the “tracking windows” are defined–i.e., whether it tracks overlapping

consecutive windows (which requires running the algorithm for every sample)

or uses segmented ‘tumbling’ windows (which will decrease the accuracy for

several initial samples). Accordingly, I assume that it runs with continuous win-

dows (1 sample shift) so as to achieve the highest possible tracking accuracy.

In addition, my estimation of this alternative ArmTroi technique is conserva-

tive, as I do not consider the energy overhead of additional operations, such

as the Gaussian calculation for transition probabilities (compared to our Look-

up table). The Gesture recognition model (based on estimated position) is not

considered either, as there is not enough information to infer the number of

operations of that deep learning model. It is also likely that the model is too

128

large for an ultra low-power wearable. Figure 5.13 plots the total operational

lifetime (defined as the maximum daily duration for which such tracking can

be sustained such that the total energy drain equals the daily harvested energy)

of our technique (which always includes an initial gesture recognition step) on

a WiWear wearable, compared to that of ArmTroi. Both are quite similar at

extremely low sampling rate (6.25Hz), but ArmTroi’s active operational life-

time decreases quickly when sampling rate increases. Figure 5.13 shows that,

even in multi-device (4 devices or users) scenario, at the highest sampling rate

of 100Hz, the device can support continuous real-time sensing, using our tech-

nique, for 0.34 hour if streaming data back to AP, but can extend the operational

lifetime to 0.44 hour if running the algorithm on-device. In the same condition,

ArmTroi can support only 0.19 hour of continuous sensing. At a sampling rate

of 25Hz, our hand tracking accuracy just slightly decreases, but the operation

time can be extended up to 0.95 hour and 0.82 hour using on-device processing

and streaming method correspondingly (in contrast to 0.75 hours for ArmTroi).

5.3 Discussion

Previously in this Chapter, I have investigated the performance of our early ges-

ture recognition & tracking to under different sampling rates which is a key

factor to reduce energy consumption of sensors. Though I have not deployed

the algorithm on the ultra low-power WiWear device due to the lack of library

support, the complexity analysis of each component in the algorithm suggests

that it is possible to deploy such an low-complexity algorithm on a WiWear

wearable. In particular, using a relative low sampling frequency of 25Hz, al-

lows us to achieve early gesture recognition (with F1-score of 90%) and op-

erate a single WiWear device for a period of 2.16 hours/day, with the gesture

recognition logic being performed directly on the wearable platform. Based

on the assumption that each operation in the gesture recognition algorithm can

129

be mapped 1-to-1 to the micro-controller instruction, the on-device processing

method outperforms the streaming method. But there could be cases that one

operation in the algorithm is translated into several CPU instructions. In that

case, the streaming might outperform the on-device processing method. How-

ever, in both situations, my work suggests that it is possible to deploy early

gesture recognition & tracking techniques on WiWear wearables, and thereby

support the new class of real-time, interactive gesture-based applications that I

target.

130

Chapter 6

Conclusion and Future Directions

This dissertation has shown that it is possible to enable real-time motion sens-

ing on energy-harvesting wearables by incorporating various techniques to over-

come (i) the limitations of energy harvesting for wearables in indoor environ-

ments, and (ii) high complexity & latency of gesture recognition and tracking

using wearable inertial sensors. In this chapter, I shall summarize the key con-

tributions of this dissertation and discuss the future directions to be explored.

6.1 Summary of Contribution

In this dissertation, I have proposed a new way of powering wearable de-

vices through WiFi-based beamforming, and a real-time low-complexity gesture

recognition and tracking which can be applied to energy-harvesting devices.

6.1.1 WiWear: Battery-less Motion Sensing

In chapter 3, I described WiWear, an approach for battery-less motion sens-

ing that uses beam-formed WiFi transmissions to deliver energy to energy-

harvesting wearables. WiWear platform can co-exist with, and even augment,

other energy harvesting technologies (e.g. light, motion) to enable energy-

hungry real-time motion sensing.

131

I also proposed an algorithm to optimize the antenna power pattern to sup-

port multiple wearables concurrently moving around the AP. The numerical

analysis results suggest that one WiWear AP can support multiple devices. In a

range from 1m to 3m, it can support 4 devices even with real-time sensing thank

to the beam shaping algorithm.

To validated the viability of the system in realistic conditions, I have im-

plemented one prototype of the WiWear AP and one prototype of the WiWear

wearable. The AP supports complete functions of an 802.11g AP, and supports

AoA estimation & beam-forming to detect the direction of the wearable and

beam-form energy toward that direction. The wearable is able to harvest energy

from WiFi signal, and apply smart event-based operations using zero-energy

motion detector to operate a full accelerometer-equipped wearable device.

To evaluate the capability of the system to deliver energy to the wearable via

WiFi transmissions (UDP packets). I have conducted several experiment in an

office meeting room environment. The wearable receiver can harvest more than

400µW of energy at a distance of 1 meter, and more than 30µW at 3 meters.

Though lower than the simulated values, this is expected as the imperfection

of devices and environment, and the wearable is still able to use the harvested

energy to record accelerometer data and transfer it back to the AP.

I have also conducted a constrained user study to evaluate the viability of

the system when the wearable is worn by a user in a representative office set-

ting. WiWear wearable achieve positive net energy (after spending on recording

accelerometer and transfer data in burst mode) in all 4 positions (4 participants)

with a distance from 1.2m to 2m. These results have suggested that WiWear can

be a viable approach for battery-less motion sensing such as gestures/activities

recognition.

132

6.1.2 Early Gesture Recognition & Tracking

In Chapter 4, I described a novel early gesture recognition & tracking technique

which can recognize gestures early, even before the gesture has finished, and

track the position of user’s hand with low latency. Being able to track gestures

with low-latency is crucial for interactive applications, and the low complexity

of the algorithm make it applicable to energy-harvesting wearables.

To enable early gesture recognition, I have identified the problem of exist-

ing gesture recognition techniques which is the requirement of segmentation to

be done before actual classification of the segment into different gestures. It

implies that a system has to wait until the end of a gesture, which is too late

when applied to interactive applications. I have shown that by smartly construct

a time series processing model (in this case, an HMM), the segmentation can be

omitted, and thus enable early gesture recognition.

Using a representative application of Virtual Table Tennis, I described a

novel method which can recognize Table Tennis gestures before the gesture

ends. Then I explained the how low-complexity (and thus low latency) hand

tracking can be realized based on the gesture being recognized. Throughout

the experiments with 10 novice Table Tennis players and 15 experienced play-

ers, our technique achieved more than 92% recognition accuracy within the first

50% of the gestures, and a tracking median error less than 6.5cm. I believe that

the proposed technique is applicable to many other interactive applications such

as virtual sport coach (e.g. for volley ball) or virtual rehabilitation assistant.

To achieve low-complexity hand tracking, I have presented a gesture-based

tracking approach which utilize the information the progress of the gesture being

recognized and other supported IMU sensor features to estimate user’s hand

position. This is based on an observation that each type of gestures usually

have different trajectories, and gestures of the same type usually have similar

(but not identical) trajectories. As the gesture recognition helps narrow down

the probable space of hand position, a simple regression model (in this case, a

133

3-layer neural network) is able to estimate hand position accurately.

The entire system of gesture recognition and tracking is low-complexity and

able to recognize gestures early. The entire system was deployed on a Samsung

Gear Live smartwatch. Through a user study with 5 participants with the task

of hitting a real, suspended Table Tennis ball, 85.7% of times, participants feel

the audio feed-back of the smartwatch (when a ”hit” is estimated) is at the same

time as the physical ”hit” moment. These results showed that a low-complexity

early gesture recognition and tracking was, indeed, achieved.

6.1.3 Feasibility Analyses of Early Gesture Recognition &

Tracking on Energy-harvesting Wearable

In Chapter 5, I investigate the feasibility of early gesture recognition and track-

ing on a WiWear wearable which harvests energy from WiFi signals. I first

studied the robustness of our early gesture recognition and tracking technique

under different sampling rates. The results showed that the performance of the

system only degrades slightly when sampling rate drops from 100Hz (original)

down to 25Hz. With these sampling rates, I have analysed the viability of a

WiWear wearable when it executes early gesture recognition and tracking algo-

rithm. The analyses suggest that the WiWear device can support early gesture

recognition and tracking for 2.16 hours of active running with a continuous av-

erage harvested power of 90µW (throughout a day) under the sampling rate of

25Hz which results in 90% accuracy. Even in a multi-user scenario (4 users), the

system can still support gesture recognition and tracking for almost 1 hour. The

analyses also show that our gesture recognition and tracking technique outper-

forms ArmTroi [83] in operational life time if deployed on a WiWear wearable.

134

6.2 Reflections and Lessons Learned

Throughout the studies of the two key research pieces in this dissertation, I

have learned two valuable lessons that I believe are important for these types of

studies.

• Need for identifying the right target user segment early: For studies

whose main material comes from user studies, having a right target for the

participants at the beginning is crucial. An experiment requires a great

amount of time and effort. To recruit participants for an experiment is

hard, to recruit appropriate participants is even harder, especially, if we

need participants with some special skills (e.g, play Table Tennis). If

we recruit wrong target participants, we need to spend time and effort to

conduct the experiment, but later the experiment results are insignificant

(or even invalid). Having a clear, detailed selection criteria (e.g, 3-year

experience, regular player) at the beginning is crucial to avoid this type of

problems.

• Be aware of signal leakage even when the transmitter is inactive:

In multi-antenna device such as our multi-antenna AP, the antennas are

very close to each other. Because of the imperfection of circuit inside

transceiver ICs, the transmitter still transmits a weak continuous cosine

wave even if it is inactive. It would not be a problem if the receiving an-

tenna is far away. But if the antennas are relatively close to each other,

this will be added to the receiving antenna. Though this leakage is weak,

it still causes problems if the receiving antenna increases it gain to listen

to signal afar. To avoid this, switch the antenna to inactive receiving mode

instead of inactive transmitting mode.

135

6.3 Discussion & Future Direction

Through this dissertation, I have shown that it is possible to enable energy-

hungry motion sensing on battery-less wearables using energy harvested

from smartly beam-formed WiFi signals. I have also shown that a low-

complexity, low-latency gesture recognition and tracking using inertial sensors

was achieved. The numerical analyses suggested that low-latency regesture

recognition & tracking is feasible on energy-harvesting wearables. However,

this dissertation still has several limitations. Though WiWear prototype and

the numerical analyses partially proved the feasibility of the WiWear vision,

additional, longer-term, in-the-field deployments are needed before the viabil-

ity of the WiWear vision is conclusively demonstrated. The current prototype

has also intrinsic limitations of third-party components which reduce the effi-

ciency of power delivery. At present, my techniques make it possible to sup-

port robust early gesture detection (using just low sampling-rate accelerometer

data), but is insufficient to support highly accurate hand tracking (as this re-

quires a more energy-hungry gyroscope sensor) for long active using sessions.

The lack of support for machine learning libraries on pow-power embedded

micro-processors also hinders the implementation of early gesture recognition

& tracking algorithm on the WiWear prototype. However, these limitations are

addressable.

This dissertation has also laid a basis for exploration of further potentials

of battery-less motion sensing. Below, I shall discuss several possible future

directions.

6.3.1 Extended Capabilities for Battery-less Real-time Mo-

tion Sensing

To support extended periods of real-time motion sensing on energy-harvesting

wearables, of course, it is unrealistic to assume that sensing algorithms can be

136

infinitely shrunk to fit in a energy-harvesting device. Another approach would

be using an energy harvester to perform both functions: (1) harvest energy, and

(2) recognize gesture and/or track hand. For example, using different receiver

antennas to receive more energy and also to detect hand orientation (e.g, us-

ing phase shift of different antennas). Such an idea has been explored [78], for

example, in using the temporal patterns of light harvesting by photodiodes at-

tached to a smartwatch/smartglasses to determine the touch gestures performed.

Especially, upcoming millimeter wave technologies, which provide fine-grained

sub-cm spatial resolution, will definitely unleash fine-grained orientation sens-

ing to a new level. Or similar to the motion trigger (described in Chapter 3)

which can detect significant hand movement and generate some energy. We can

also think of more futuristic devices, such as a piezoelectric patch, that intrinsi-

cally perform both energy harvesting and sensing. The deformation of our wrist

could generates energy through the piezoelectric patch and also provide some

information of muscle contraction, which can be used to recognize gestures.

6.3.2 Smart Multi-AP Scheduling for WiFi-based Energy

Harvesting Wearables

In our WiWear vision there can be multiple APs to serve multiple wearables.

Similarly, in practice, many APs and repeaters could be densely deployed in

indoor environment (e.g, in a foodcourt). Scheduling which AP to serve which

energy-harvesting device would provide a two-fold benefit: (1) reduce the num-

ber of devices one AP has to serve, and thus increase the energy density at other

devices, and (2) balance the energy versus data communication load. Also,

multiple APs can enable accurate device localization (e.g, using triangulation)

which can be exploited for better scheduling, and many other applications.

In addition, the presence of multiple WiFi APs leads to their possible coor-

dinated function–techniques such as Energy-Ball [51] have already provided

early demonstrations of such possibilities, albeit under unrealistically dense in-

137

frastructure deployment. With the increasing trend of cloudRANs [43], which

provide centralized, cloud-based control of AP infrastructures, such coordinated

control is likely to become increasingly feasible.

6.3.3 Enhanced Battery-less Hand Tracking using WiFi Sig-

nal

In this dissertation, hand tracking using IMU sensors was studied which can

be applied on battery-less wearables. But hand tracking without IMU might be

achieved without IMU sensors using multiple APs, or using the CSI information

from the AP to enhance the hand tracking using less energy-hungry sensors

(e.g. using only accelerometer and magnetometer without using gyroscope).

For example, if there are multiple APs (e.g, 3 APs) installed near a big screen

for playing games, the APs can collectively estimate micro position of user’s

hand with a battery-less device on it by tracking the periodic “ping” packets

from the device. In a less extreme case, the application in a AP can combine

the CSI information from the device with the accelerometer and magnetometer

reading from the device to accurately estimate hand position. This might be

possible as it is known that the movement will create Doppler effect which is

captured by the receiving antenna.

138

Bibliography

[1] Best heart rate monitor 2019: Hrm watches and chest straps com-
pared. https://www.wareable.com/fitness-trackers/

best-heart-rate-monitor-and-watches. Accessed: 2019-05-
29.

[2] History of the only manufacture with every watchmaking expertise. https://
www.seikowatches.com/global-en/special/heritage/, 2012.
Accessed: 2019-10-05.

[3] Ultra-low-power arm cortex-m0+ mcu with 64 kbytes flash, 32 mhz cpu,
usb, lcd. https://www.accessdata.fda.gov/scripts/cdrh/

cfdocs/cfmaude/detail.cfm?mdrfoi__id=2913825, 2012. Ac-
cessed: 2019-10-05.

[4] Wearable technology market growing at a cagr of 15.5% and ex-
pected to reach $51.6 billion by 2022 - exclusive report by. https:

//www.bloomberg.com/press-releases/2019-07-01/

wearable-technology-market-growing-at-a-cagr-of-15-5\

-and-expected-to-reach-51-6-billion-by-2022-\

exclusive-report-by, 2012. Accessed: 2019-10-05.

[5] Warp wireless open-access research platform. https://mangocomm.com/
products/kits/warp-v3-kit, 2017. Accessed: 2017-08-25.

[6] 802.11 reference design for warp v3. https://warpproject.org/

trac/wiki/802.11, 2018. Accessed: 2018-09-29.

[7] Amk432bj477. https://octopart.com/

amk432bj477mm-t-taiyo+yuden-61790332#, 2018. Accessed:
2018-04-08.

[8] Fm25vn10g. https://mw.infinite-electronic.hk/pdf/

d7e4771220/FM25VN10-G.pdf, 2018. Accessed: 2018-04-08.

[9] Iis2mdc. https://www.st.com/en/mems-and-sensors/iis2mdc.
html, 2018. Accessed: 2018-04-08.

[10] Ism330dlc. https://www.st.com/en/mems-and-sensors/

ism330dlc.html, 2018. Accessed: 2018-04-08.

[11] Lis3dh. https://www.st.com/en/mems-and-sensors/lis3dh.

html, 2018. Accessed: 2018-04-08.

[12] nrf24 series. https://www.nordicsemi.com/Products/

Low-power-short-range-wireless/nRF24-series, 2018. Ac-
cessed: 2018-04-08.

139

https://www.wareable.com/fitness-trackers/best-heart-rate-monitor-and-watches
https://www.wareable.com/fitness-trackers/best-heart-rate-monitor-and-watches
https://www.seikowatches.com/global-en/special/heritage/
https://www.seikowatches.com/global-en/special/heritage/
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/detail.cfm?mdrfoi__id=2913825
https://www.accessdata.fda.gov/scripts/cdrh/cfdocs/cfmaude/detail.cfm?mdrfoi__id=2913825
https://www.bloomberg.com/press-releases/2019-07-01/wearable-technology-market-growing-at-a-cagr-of-15-5%5C-and-expected-to-reach-51-6-billion-by-2022-%5Cexclusive-report-by
https://www.bloomberg.com/press-releases/2019-07-01/wearable-technology-market-growing-at-a-cagr-of-15-5%5C-and-expected-to-reach-51-6-billion-by-2022-%5Cexclusive-report-by
https://www.bloomberg.com/press-releases/2019-07-01/wearable-technology-market-growing-at-a-cagr-of-15-5%5C-and-expected-to-reach-51-6-billion-by-2022-%5Cexclusive-report-by
https://www.bloomberg.com/press-releases/2019-07-01/wearable-technology-market-growing-at-a-cagr-of-15-5%5C-and-expected-to-reach-51-6-billion-by-2022-%5Cexclusive-report-by
https://www.bloomberg.com/press-releases/2019-07-01/wearable-technology-market-growing-at-a-cagr-of-15-5%5C-and-expected-to-reach-51-6-billion-by-2022-%5Cexclusive-report-by
https://mangocomm.com/products/kits/warp-v3-kit
https://mangocomm.com/products/kits/warp-v3-kit
https://warpproject.org/trac/wiki/802.11
https://warpproject.org/trac/wiki/802.11
https://octopart.com/amk432bj477mm-t-taiyo+yuden-61790332%23
https://octopart.com/amk432bj477mm-t-taiyo+yuden-61790332%23
https://mw.infinite-electronic.hk/pdf/d7e4771220/FM25VN10-G.pdf
https://mw.infinite-electronic.hk/pdf/d7e4771220/FM25VN10-G.pdf
https://www.st.com/en/mems-and-sensors/iis2mdc.html
https://www.st.com/en/mems-and-sensors/iis2mdc.html
https://www.st.com/en/mems-and-sensors/ism330dlc.html
https://www.st.com/en/mems-and-sensors/ism330dlc.html
https://www.st.com/en/mems-and-sensors/lis3dh.html
https://www.st.com/en/mems-and-sensors/lis3dh.html
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF24-series
https://www.nordicsemi.com/Products/Low-power-short-range-wireless/nRF24-series

[13] Solepower smart boots. http://www.solepowertech.com/

smartboots/, 2018. Accessed: 2018-04-04.

[14] Ultra-low-power arm cortex-m0+ mcu with 64 kbytes flash, 32 mhz cpu, usb,
lcd. http://www.st.com/en/microcontrollers/stm32l053r8.

html, 2018. Accessed: 2018-04-08.

[15] Focals smart glasses: Buy them anywhere, wear them everywhere. https:

//www.bynorth.com/, 2019. Accessed: 2019-10-10.

[16] Google home assistant. https://developers.google.com/

assistant/smarthome/faq, 2019. Accessed: 2019-10-10.

[17] Heart guide. https://omronhealthcare.com/products/

heartguide-wearable-blood-pressure-monitor-bp8000m/,
2019. Accessed: 2019-10-10.

[18] Hololens 2. https://www.microsoft.com/en-us/hololens, 2019.
Accessed: 2019-10-10.

[19] Maxim ecg monitor. https://www.maximintegrated.com/en/

products/sensors/MAX-ECG-MONITOR.html, 2019. Accessed: 2019-
10-10.

[20] Occulus. https://www.oculus.com/?locale=en_US, 2019. Ac-
cessed: 2019-10-10.

[21] Panasonic amorphous silicon solar cells. https://panasonic.co.jp/

ls/psam/en/products/pdf/Catalog_Amorton_ENG.pdf, 2019.
Accessed: 2019-10-10.

[22] T02 heathy smart band body temperature blood oxy-
gen heart rate monitor. https://gearvita.com/

t02-heathy-smart-band-body-temperature-blood-oxygen-\

heart-rate-monitor.html, 2019. Accessed: 2019-10-10.

[23] H. Abdelnasser, M. Youssef, and K. A. Harras. Wigest: A ubiquitous wifi-based
gesture recognition system. In 2015 IEEE Conference on Computer Communi-
cations (INFOCOM), pages 1472–1480. IEEE, 2015.

[24] S. Agrawal, I. Constandache, S. Gaonkar, R. Roy Choudhury, K. Caves, and
F. DeRuyter. Using mobile phones to write in air. In Proceedings of the 9th
international conference on Mobile systems, applications, and services, pages
15–28. ACM, 2011.

[25] O. Amft, H. Junker, and G. Troster. Detection of eating and drinking arm gestures
using inertial body-worn sensors. In Wearable Computers, 2005. Proceedings.
Ninth IEEE International Symposium on, pages 160–163. IEEE, 2005.

[26] W. T. Ang, P. K. Khosla, and C. N. Riviere. Kalman filtering for real-time ori-
entation tracking of handheld microsurgical instrument. In 2004 IEEE/RSJ In-
ternational Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No.
04CH37566), volume 3, pages 2574–2580. IEEE, 2004.

[27] E. K. Antonsson and R. W. Mann. The frequency content of gait. Journal of
biomechanics, 18(1):39–47, 1985.

140

http://www.solepowertech.com/smartboots/
http://www.solepowertech.com/smartboots/
http://www.st.com/en/microcontrollers/stm32l053r8.html
http://www.st.com/en/microcontrollers/stm32l053r8.html
https://www.bynorth.com/
https://www.bynorth.com/
https://developers.google.com/assistant/smarthome/faq
https://developers.google.com/assistant/smarthome/faq
https://omronhealthcare.com/products/heartguide-wearable-blood-pressure-monitor-bp8000m/
https://omronhealthcare.com/products/heartguide-wearable-blood-pressure-monitor-bp8000m/
https://www.microsoft.com/en-us/hololens
https://www.maximintegrated.com/en/products/sensors/MAX-ECG-MONITOR.html
https://www.maximintegrated.com/en/products/sensors/MAX-ECG-MONITOR.html
https://www.oculus.com/?locale=en_US
https://panasonic.co.jp/ls/psam/en/products/pdf/Catalog_Amorton_ENG.pdf
https://panasonic.co.jp/ls/psam/en/products/pdf/Catalog_Amorton_ENG.pdf
https://gearvita.com/t02-heathy-smart-band-body-temperature-blood-oxygen-%5Cheart-rate-monitor.html
https://gearvita.com/t02-heathy-smart-band-body-temperature-blood-oxygen-%5Cheart-rate-monitor.html
https://gearvita.com/t02-heathy-smart-band-body-temperature-blood-oxygen-%5Cheart-rate-monitor.html

[28] M. Bächlin, K. Förster, and G. Tröster. Swimmaster: a wearable assistant for
swimmer. In Proceedings of the 11th international conference on Ubiquitous
computing, pages 215–224. ACM, 2009.

[29] P. Bahl, V. N. Padmanabhan, V. Bahl, and V. Padmanabhan. Radar: An in-
building rf-based user location and tracking system. 2000.

[30] R. K. Balan, A. Misra, and Y. Lee. Livelabs: Building an in-situ real-time mo-
bile experimentation testbed. In Proceedings of the 15th Workshop on Mobile
Computing Systems and Applications, page 14. ACM, 2014.

[31] O. Bau and W. E. Mackay. Octopocus: a dynamic guide for learning gesture-
based command sets. In Proceedings of the 21st annual ACM symposium on
User interface software and technology, pages 37–46. ACM, 2008.

[32] F. Bevilacqua, B. Zamborlin, A. Sypniewski, N. Schnell, F. Guédy, and
N. Rasamimanana. Continuous realtime gesture following and recognition. In
Gesture in embodied communication and human-computer interaction, pages
73–84. Springer, 2009.

[33] D. Bharadia, E. McMilin, and S. Katti. Full duplex radios. In ACM SIGCOMM
Computer Communication Review, volume 43, pages 375–386. ACM, 2013.

[34] M. Billinghurst and T. Starner. Wearable devices: new ways to manage informa-
tion. Computer, 32(1):57–64, 1999.

[35] P. Blank, J. Hoßbach, D. Schuldhaus, and B. M. Eskofier. Sensor-based stroke
detection and stroke type classification in table tennis. In Proceedings of the
2015 ACM International Symposium on Wearable Computers, pages 93–100.
ACM, 2015.

[36] P. Blank, T. Kautz, and B. M. Eskofier. Ball impact localization on table tennis
rackets using piezo-electric sensors. In Proceedings of the 2016 ACM Interna-
tional Symposium on Wearable Computers, pages 72–79. ACM, 2016.

[37] R. J. Bootsma and P. C. van Wieringen. Timing an attacking forehand drive
in table tennis. Journal of experimental psychology: Human perception and
performance, 16(1):21, 1990.

[38] A. L. Borstad, R. Crawfis, K. Phillips, L. P. Lowes, D. Maung, R. McPher-
son, A. Siles, L. Worthen-Chaudhari, and L. V. Gauthier. In-home delivery
of constraint-induced movement therapy via virtual reality gaming. Journal of
patient-centered research and reviews, 5(1):6, 2018.

[39] E. Boyer, F. Bevilacqua, F. Phal, and S. Hanneton. Low-cost motion sensing of
table tennis players for real time feedback. Int. J. Table Tennis Sci, 8:1–4, 2013.

[40] B. Campbell and P. Dutta. An energy-harvesting sensor architecture and toolkit
for building monitoring and event detection. In Proceedings of the 1st ACM
Conference on Embedded Systems for Energy-Efficient Buildings, BuildSys ’14.
ACM, 2014.

[41] B. Campbell, B. Ghena, and P. Dutta. Energy-harvesting thermoelectric sens-
ing for unobtrusive water and appliance metering. In Proceedings of the 2Nd
International Workshop on Energy Neutral Sensing Systems, ENSsys ’14. ACM,
2014.

141

[42] N. S. Carvalho. Movement Tracking using Bluetooth Low Energy. PhD thesis,
Trinity College Dublin, 2015.

[43] A. Checko, H. L. Christiansen, Y. Yan, L. Scolari, G. Kardaras, M. S. Berger,
and L. Dittmann. Cloud ran for mobile networksa technology overview. IEEE
Communications surveys & tutorials, 17(1):405–426, 2014.

[44] S. J. Chen, T. Kaufmann, and C. Fumeaux. Wearable textile microstrip patch
antenna for multiple ism band communications. In 2013 IEEE Antennas and
Propagation Society International Symposium (APSURSI), July 2013.

[45] S. Cheshire. Latency and the quest for interactivity. In White paper commis-
sioned by Volpe Welty Asset Management, LLC, for the Synchronous Person-to-
Person Interactive Computing Environments Meeting, 1996.

[46] M. Claypool and K. Claypool. On latency and player actions in online games.
2006.

[47] D. Cook, K. D. Feuz, and N. C. Krishnan. Transfer learning for activity recogni-
tion: A survey. Knowledge and information systems, 36(3):537–556, 2013.

[48] M. A. El-Gohary. Joint angle tracking with inertial sensors. 2013.

[49] E. Ertin, N. Stohs, S. Kumar, A. Raij, M. al’Absi, and S. Shah. Autosense:
Unobtrusively wearable sensor suite for inferring the onset, causality, and con-
sequences of stress in the field. In Proceedings of the 9th ACM Conference on
Embedded Networked Sensor Systems, SenSys ’11, pages 274–287. ACM, 2011.

[50] A. Eyck, K. Geerlings, D. Karimova, B. Meerbeek, L. Wang, W. IJsselsteijn,
Y. De Kort, M. Roersma, and J. Westerink. Effect of a virtual coach on athletes
motivation. In International Conference on Persuasive Technology, pages 158–
161. Springer, 2006.

[51] X. Fan, H. Ding, S. Li, M. Sanzari, Y. Zhang, W. Trappe, Z. Han, and R. E.
Howard. Energy-ball: Wireless power transfer for batteryless internet of things
through distributed beamforming. Proc. ACM Interact. Mob. Wearable Ubiqui-
tous Technol., 2(2), July 2018.

[52] C. Felini, M. Merenda, and F. G. D. Corte. Dynamic impedance matching net-
work for rf energy harvesting systems. In 2014 IEEE RFID Technology and
Applications Conference (RFID-TA), Sept 2014.

[53] E. Foxlin. Inertial head-tracker sensor fusion by a complementary separate-bias
kalman filter. 1996.

[54] A. Goldsmith. Wireless communications. Cambridge university press, 2005.

[55] J. Gummeson, B. Priyantha, and J. Liu. An energy harvesting wearable ring
platform for gestureinput on surfaces. In Proceedings of the 12th annual interna-
tional conference on Mobile systems, applications, and services, pages 162–175.
ACM, 2014.

[56] A. Hande, T. Polk, W. Walker, and D. Bhatia. Indoor solar energy harvesting for
sensor network router nodes. Microprocess. Microsyst., 31(6), Sept. 2007.

142

[57] J. Hester and J. Sorber. Flicker: Rapid prototyping for the batteryless internet-
of-things. In Proceedings of the 15th ACM Conference on Embedded Network
Sensor Systems, SenSys ’17. ACM, 2017.

[58] M. Hoai and F. De la Torre. Max-margin early event detectors. International
Journal of Computer Vision, 107(2):191–202, 2014.

[59] W. Huang, H. Chen, Y. Li, and B. Vucetic. On the performance of multi-antenna
wireless-powered communications with energy beamforming. IEEE Transac-
tions on Vehicular Technology, 65(3):1801–1808, 2016.

[60] W. A. IJsselsteijn, Y. d. Kort, J. Westerink, M. d. Jager, and R. Bonants. Vir-
tual fitness: stimulating exercise behavior through media technology. Presence:
Teleoperators and Virtual Environments, 15(6):688–698, 2006.

[61] M. Jain, J. I. Choi, T. Kim, D. Bharadia, S. Seth, K. Srinivasan, P. Levis, S. Katti,
and P. Sinha. Practical, real-time, full duplex wireless. In Proceedings of the 17th
annual international conference on Mobile computing and networking, pages
301–312. ACM, 2011.

[62] R. Jota, A. Ng, P. Dietz, and D. Wigdor. How Fast is Fast Enough?: A Study
of the Effects of Latency in Direct-touch Pointing Tasks. In Proceedings of
the SIGCHI Conference on Human Factors in Computing Systems, pages 2291–
2300. ACM, 2013.

[63] H. Junker, O. Amft, P. Lukowicz, and G. Tröster. Gesture spotting with body-
worn inertial sensors to detect user activities. Pattern Recognition, 41(6):2010–
2024, 2008.

[64] K. Katsuragawa, K. Pietroszek, J. R. Wallace, and E. Lank. Watchpoint: Free-
hand pointing with a smartwatch in a ubiquitous display environment. In Pro-
ceedings of the International Working Conference on Advanced Visual Inter-
faces, pages 128–135. ACM, 2016.

[65] F. Kawsar, C. Min, A. Mathur, M. Van den Broeck, U. G. Acer, and C. Forlivesi.
esense: Earable platform for human sensing. In Proceedings of the 16th Annual
International Conference on Mobile Systems, Applications, and Services, pages
541–541. ACM, 2018.

[66] B. Kellogg, V. Talla, and S. Gollakota. Bringing gesture recognition to all de-
vices. In 11th {USENIX} Symposium on Networked Systems Design and Imple-
mentation ({NSDI} 14), pages 303–316, 2014.

[67] C. Keskin, F. Kıraç, Y. E. Kara, and L. Akarun. Real time hand pose estimation
using depth sensors. In Consumer depth cameras for computer vision, pages
119–137. Springer, 2013.

[68] M. A. A. H. Khan, N. Roy, and A. Misra. Scaling human activity recognition
via deep learning-based domain adaptation. In 2018 IEEE International Confer-
ence on Pervasive Computing and Communications (PerCom), pages 1–9. IEEE,
2018.

[69] D. Kharlamov, K. Pietroszek, and L. Tahai. Ticktockray demo: Smartwatch
raycasting for mobile hmds. In Proceedings of the 2016 Symposium on Spatial
User Interaction, pages 169–169. ACM, 2016.

143

[70] W. Kienzle and K. P. Hinckley. Smart ring, Feb. 28 2017. US Patent 9,582,076.

[71] J. Kim, S. Yang, and M. Gerla. Stroketrack: wireless inertial motion tracking
of human arms for stroke telerehabilitation. In Proceedings of the First ACM
Workshop on Mobile Systems, Applications, and Services for Healthcare, page 4.
ACM, 2011.

[72] G. Lan, W. Xu, S. Khalifa, M. Hassan, and W. Hu. Transportation mode de-
tection using kinetic energy harvesting wearables. In 2016 IEEE International
Conference on Pervasive Computing and Communication Workshops (PerCom
Workshops), pages 1–4. IEEE, 2016.

[73] A. Lazar, C. Koehler, J. Tanenbaum, and D. H. Nguyen. Why we use and aban-
don smart devices. In Proceedings of the 2015 ACM International Joint Confer-
ence on Pervasive and Ubiquitous Computing, pages 635–646. ACM, 2015.

[74] A. Lazaro, R. Villarino, and D. Girbau. A survey of nfc sensors based on energy
harvesting for iot applications. Sensors, 18(11):3746, 2018.

[75] H. V. Le, V. Schwind, P. Göttlich, and N. Henze. Predictouch: A system to reduce
touchscreen latency using neural networks and inertial measurement units. In
Proceedings of the 2017 ACM International Conference on Interactive Surfaces
and Spaces, pages 230–239. ACM, 2017.

[76] H.-K. Lee and J.-H. Kim. An hmm-based threshold model approach for gesture
recognition. IEEE Transactions on pattern analysis and machine intelligence,
21(10):961–973, 1999.

[77] X. Li, D. Zhang, Q. Lv, J. Xiong, S. Li, Y. Zhang, and H. Mei. Indotrack:
Device-free indoor human tracking with commodity wi-fi. Proc. ACM Interact.
Mob. Wearable Ubiquitous Technol., 1(3), Sept. 2017.

[78] Y. Li, T. Li, R. A. Patel, X.-D. Yang, and X. Zhou. Self-powered gesture recogni-
tion with ambient light. In The 31st Annual ACM Symposium on User Interface
Software and Technology, pages 595–608. ACM, 2018.

[79] K. Lin, J. Yu, J. Hsu, S. Zahedi, D. Lee, J. Friedman, A. Kansal, V. Raghunathan,
and M. Srivastava. Heliomote: Enabling long-lived sensor networks through
solar energy harvesting. In Proceedings of the 3rd International Conference on
Embedded Networked Sensor Systems, SenSys ’05. ACM, 2005.

[80] J. Liu, L. Zhong, J. Wickramasuriya, and V. Vasudevan. uwave: Accelerometer-
based personalized gesture recognition and its applications. Pervasive and Mo-
bile Computing, 5(6):657–675, 2009.

[81] L. Liu, R. Zhang, and K.-C. Chua. Multi-antenna wireless powered commu-
nication with energy beamforming. IEEE Transactions on Communications,
62(12):4349–4361, 2014.

[82] X. Liu. Qi standard wireless power transfer technology development toward spa-
tial freedom. IEEE Circuits and Systems Magazine, 15(2):32–39, Secondquarter
2015.

[83] Y. Liu, Z. Li, Z. Liu, and K. Wu. Real-time arm skeleton tracking and gesture
inference tolerant to missing wearable sensors. In Proceedings of the 17th Annual
International Conference on Mobile Systems, Applications, and Services, pages
287–299. ACM, 2019.

144

[84] H. J. Luinge, P. H. Veltink, and C. T. Baten. Estimation of orientation with
gyroscopes and accelerometers. In Proceedings of the First Joint BMES/EMBS
Conference. 1999 IEEE Engineering in Medicine and Biology 21st Annual Con-
ference and the 1999 Annual Fall Meeting of the Biomedical Engineering Society
(Cat. N, volume 2, pages 844–vol. IEEE, 1999.

[85] I. S. MacKenzie and C. Ware. Lag as a determinant of human performance in
interactive systems. In Proceedings of the INTERACT’93 and CHI’93 conference
on Human factors in computing systems, pages 488–493. ACM, 1993.

[86] J. Marshall. Smartphone sensing for distributed swim stroke coaching and re-
search. In Proceedings of the 2013 ACM conference on Pervasive and ubiquitous
computing adjunct publication, pages 1413–1416. ACM, 2013.

[87] P. Miao, P. Mitcheson, A. Holmes, E. Yeatman, T. Green, and B. Stark. Mems in-
ertial power generators for biomedical applications. Microsystem Technologies,
12(10-11):1079–1083, 2006.

[88] P. Molchanov, X. Yang, S. Gupta, K. Kim, S. Tyree, and J. Kautz. Online detec-
tion and classification of dynamic hand gestures with recurrent 3d convolutional
neural network. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 4207–4215, 2016.

[89] S. Naderiparizi, A. N. Parks, Z. Kapetanovic, B. Ransford, and J. R. Smith. Wis-
pcam: A battery-free rfid camera. In 2015 IEEE International Conference on
RFID (RFID), pages 166–173. IEEE, 2015.

[90] P. Nguyen, U. Muncuk, A. Ashok, K. R. Chowdhury, M. Gruteser, and T. Vu.
Battery-free identification token for touch sensing devices. In Proceedings of the
14th ACM Conference on Embedded Network Sensor Systems CD-ROM, pages
109–122. ACM, 2016.

[91] H. Ohashi, M. Al-Nasser, S. Ahmed, T. Akiyama, T. Sato, P. Nguyen, K. Naka-
mura, and A. Dengel. Augmenting wearable sensor data with physical constraint
for dnn-based human-action recognition. In ICML 2017 Times Series Workshop,
Sydney, Australia, pages 6–11, 2017.

[92] S. J. Page, P. Levine, S. Sisto, Q. Bond, and M. V. Johnston. Stroke patients’ and
therapists’ opinions of constraint-induced movement therapy. Clinical rehabili-
tation, 16(1):55–60, 2002.

[93] J. A. Paradiso and T. Starner. Energy scavenging for mobile and wireless elec-
tronics. IEEE Pervasive computing, (1):18–27, 2005.

[94] A. Parate, M.-C. Chiu, C. Chadowitz, D. Ganesan, and E. Kalogerakis. Risq:
Recognizing smoking gestures with inertial sensors on a wristband. In Proceed-
ings of the 12th annual international conference on Mobile systems, applications,
and services, pages 149–161. ACM, 2014.

[95] A. Parate, M.-C. Chiu, C. Chadowitz, D. Ganesan, and E. Kalogerakis. Risq:
Recognizing smoking gestures with inertial sensors on a wristband. In Proceed-
ings of the 12th Annual International Conference on Mobile Systems, Applica-
tions, and Services, MobiSys ’14, pages 149–161. ACM, 2014.

145

[96] T. Park, J. Lee, I. Hwang, C. Yoo, L. Nachman, and J. Song. E-gesture: a col-
laborative architecture for energy-efficient gesture recognition with hand-worn
sensor and mobile devices. In Proceedings of the 9th ACM Conference on Em-
bedded Networked Sensor Systems, pages 260–273. ACM, 2011.

[97] A. N. Parks, A. P. Sample, Y. Zhao, and J. R. Smith. A wireless sensing platform
utilizing ambient rf energy. In 2013 IEEE Topical Conference on Biomedical
Wireless Technologies, Networks, and Sensing Systems, pages 154–156. IEEE,
2013.

[98] K. Pietroszek, L. Tahai, J. R. Wallace, and E. Lank. Watchcasting: Freehand 3d
interaction with off-the-shelf smartwatch. In 3D User Interfaces (3DUI), 2017
IEEE Symposium on, pages 172–175. IEEE, 2017.

[99] Pingskills. Pinkskills. https://www.pingskills.com/tutorials/

advanced-strokes/forehand-chop, 2017. [Online; accessed 15-
November-2017].

[100] Q. Pu, S. Gupta, S. Gollakota, and S. Patel. Whole-home gesture recognition us-
ing wireless signals. In Proceedings of the 19th annual international conference
on Mobile computing & networking, pages 27–38. ACM, 2013.

[101] M. Radhakrishnan, A. Smailagic, B. French, D. P. Siewiorek, and R. K. Balan.
Design and assessment of myoelectric games for prosthesis training of upper
limb amputees. In 2019 IEEE International Conference on Pervasive Computing
and Communications Workshops (PerCom Workshops), pages 151–157. IEEE,
2019.

[102] N. Ravi, N. Dandekar, P. Mysore, and M. L. Littman. Activity recognition from
accelerometer data. In Aaai, volume 5, pages 1541–1546, 2005.

[103] D. Roetenberg, H. Luinge, and P. Slycke. Xsens mvn: Full 6dof human motion
tracking using miniature inertial sensors. Xsens Motion Technologies BV, Tech.
Rep, 1, 2009.

[104] D. Roetenberg, H. J. Luinge, C. T. Baten, and P. H. Veltink. Compensation of
magnetic disturbances improves inertial and magnetic sensing of human body
segment orientation. IEEE Transactions on neural systems and rehabilitation
engineering, 13(3):395–405, 2005.

[105] E. Rozner, V. Navda, R. Ramjee, and S. Rayanchu. Napman: Network-assisted
power management for wifi devices. In Proceedings of the 8th International
Conference on Mobile Systems, Applications, and Services, MobiSys ’10. ACM,
2010.

[106] K. Ryokai, P. Su, E. Kim, and B. Rollins. Energybugs: Energy harvesting wear-
ables for children. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, CHI ’14, New York, NY, USA, 2014. ACM.

[107] A. P. Sample, D. J. Yeager, P. S. Powledge, A. V. Mamishev, and J. R. Smith. De-
sign of an rfid-based battery-free programmable sensing platform. IEEE Trans-
actions on Instrumentation and Measurement, 57(11):2608–2615, Nov 2008.

[108] A. Santos-Lozano, A. Hernández-Vicente, R. Pérez-Isaac, F. Santı́n-Medeiros,
C. Cristi-Montero, J. A. Casajús, and N. Garatachea. Is the sensewear armband
accurate enough to quantify and estimate energy expenditure in healthy adults?
Annals of translational medicine, 5(5), 2017.

146

https://www.pingskills.com/tutorials/advanced-strokes/forehand-chop
https://www.pingskills.com/tutorials/advanced-strokes/forehand-chop

[109] T. Schlömer, B. Poppinga, N. Henze, and S. Boll. Gesture recognition with a wii
controller. In Proceedings of the 2nd international conference on Tangible and
embedded interaction, pages 11–14. ACM, 2008.

[110] R. Schmidt. Multiple emitter location and signal parameter estimation. IEEE
transactions on antennas and propagation, 34(3):276–280, 1986.

[111] S. Sen, A. Misra, V. Subbaraju, K. Grover, M. Radhakrishnan, R. K. Balan, and
Y. Lee. I 4 s: capturing shopper’s in-store interactions. In Proceedings of the
2018 ACM International Symposium on Wearable Computers, pages 156–159.
ACM, 2018.

[112] S. Sen, V. Subbaraju, A. Misra, R. K. Balan, and Y. Lee. The case for
smartwatch-based diet monitoring. In Pervasive Computing and Communica-
tion Workshops (PerCom Workshops), 2015 IEEE International Conference on,
pages 585–590. IEEE, 2015.

[113] S. Shen, H. Wang, and R. Roy Choudhury. I am a smartwatch and i can track
my user’s arm. In Proceedings of the 14th annual international conference on
Mobile systems, applications, and services, pages 85–96. ACM, 2016.

[114] Y. K. Shetty. Robust Human Motion Tracking Using Low-cost Inertial Sensors.
PhD thesis, Arizona State University, 2016.

[115] S. Siddhpuria, S. Malacria, M. Nancel, and E. Lank. Pointing at a distance with
everyday smart devices. In Proceedings of the 2018 CHI Conference on Human
Factors in Computing Systems, page 173. ACM, 2018.

[116] M. Sim and J.-U. Kim. Differences between experts and novices in kinematics
and accuracy of golf putting. Human movement science, 29(6):932–946, 2010.

[117] StereoLabs. Zed stereo camera. https://www.stereolabs.com/, 2017.
[Online; accessed 15-November-2017].

[118] T. Stiefmeier, D. Roggen, and G. Troster. Gestures are strings: efficient on-
line gesture spotting and classification using string matching. In Proceedings of
the ICST 2nd international conference on Body area networks, page 16. ICST
(Institute for Computer Sciences, Social-Informatics and Telecommunications
Engineering), 2007.

[119] V. Talla, B. Kellogg, B. Ransford, S. Naderiparizi, S. Gollakota, and J. R. Smith.
Powering the next billion devices with wi-fi. In Proceedings of the 11th ACM
Conference on Emerging Networking Experiments and Technologies, page 4.
ACM, 2015.

[120] E. Taub, G. Uswatte, R. Pidikiti, et al. Constraint-induced movement therapy:
a new family of techniques with broad application to physical rehabilitation-a
clinical review. Journal of rehabilitation research and development, 36(3):237–
251, 1999.

[121] E. Thomaz, I. Essa, and G. D. Abowd. A practical approach for recognizing
eating moments with wrist-mounted inertial sensing. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing,
pages 1029–1040. ACM, 2015.

147

https://www.stereolabs.com/

[122] E. Thomaz, I. Essa, and G. D. Abowd. A practical approach for recognizing
eating moments with wrist-mounted inertial sensing. In Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous Computing,
UbiComp ’15, pages 1029–1040. ACM, 2015.

[123] Z. Tian, J. Wang, X. Yang, and M. Zhou. Wicatch: a wi-fi based hand gesture
recognition system. IEEE Access, 6:16911–16923, 2018.

[124] T. T. Um, F. M. J. Pfister, D. Pichler, S. Endo, M. Lang, S. Hirche, U. Fi-
etzek, and D. Kulić. Data augmentation of wearable sensor data for parkin-
son’s disease monitoring using convolutional neural networks. arXiv preprint
arXiv:1706.00527, 2017.

[125] D. Vasisht, S. Kumar, and D. Katabi. Decimeter-level localization with a single
wifi access point. In Proceedings of the 13th Usenix Conference on Networked
Systems Design and Implementation, NSDI’16, pages 165–178. USENIX Asso-
ciation, 2016.

[126] E. Velloso, M. Carter, J. Newn, A. Esteves, C. Clarke, and H. Gellersen. Motion
correlation: Selecting objects by matching their movement. ACM Transactions
on Computer-Human Interaction (TOCHI), 24(3):22, 2017.

[127] T. H. Vu, A. Misra, Q. Roy, K. C. T. Wei, and Y. Lee. Smartwatch-based early
gesture detection 8 trajectory tracking for interactive gesture-driven applications.
Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Tech-
nologies, 2(1):39, 2018.

[128] R. Y. Wang and J. Popović. Real-time hand-tracking with a color glove. ACM
transactions on graphics (TOG), 28(3):63, 2009.

[129] Weka. Weka 3: Data Mining Software in Java. https://www.cs.

waikato.ac.nz/ml/weka/downloading.html, 2017. [Online; ac-
cessed 15-November-2017].

[130] F. Wittmann, O. Lambercy, and R. Gassert. Magnetometer-based drift correction
during rest in imu arm motion tracking. Sensors, 19(6):1312, 2019.

[131] J. O. Wobbrock, A. D. Wilson, and Y. Li. Gestures without libraries, toolkits
or training: a $1 recognizer for user interface prototypes. In Proceedings of the
20th annual ACM symposium on User interface software and technology, pages
159–168. ACM, 2007.

[132] J. Xiong and K. Jamieson. Arraytrack: A fine-grained indoor location system.
In 10th Usenix Symposium on Networked Systems Design and Implementation.
USENIX, 2013.

[133] G. Xu, Y. Yang, Y. Zhou, and J. Liu. Wearable thermal energy harvester powered
by human foot. Frontiers in Energy, 7(1), 2013.

[134] Z. Yang, Z. Zhou, and Y. Liu. From rssi to csi: Indoor localization via channel
response. ACM Computing Surveys (CSUR), 46(2):25, 2013.

[135] D. J. Yeager, P. S. Powledge, R. Prasad, D. Wetherall, and J. R. Smith.
Wirelessly-charged uhf tags for sensor data collection. In 2008 IEEE Interna-
tional Conference on RFID, April 2008.

148

https://www.cs.waikato.ac.nz/ml/weka/downloading.html
https://www.cs.waikato.ac.nz/ml/weka/downloading.html

[136] E. M. Yeatman, P. D. Mitcheson, and A. S. Holmes. Micro-engineered devices
for motion energy harvesting. In Electron Devices Meeting, 2007. IEDM 2007.
IEEE International, pages 375–378. IEEE, 2007.

[137] Z. Zhang. Microsoft kinect sensor and its effect. IEEE multimedia, 19(2):4–10,
2012.

[138] Z. Zhang, B. Halkon, S. M. Chou, and X. Qu. A novel phase-aligned analysis
on motion patterns of table tennis strokes. International Journal of Performance
Analysis in Sport, 16(1):305–316, 2016.

[139] J. Zhao and Z. You. A shoe-embedded piezoelectric energy harvester for wear-
able sensors. Sensors, 14(7):12497–12510, 2014.

[140] Y. Zheng, K.-C. Chan, and C. C. Wang. Pedalvatar: An imu-based real-time body
motion capture system using foot rooted kinematic model. In 2014 IEEE/RSJ
International Conference on Intelligent Robots and Systems, pages 4130–4135.
IEEE, 2014.

[141] H. Zhou, T. Stone, H. Hu, and N. Harris. Use of multiple wearable inertial sen-
sors in upper limb motion tracking. Medical engineering & physics, 30(1):123–
133, 2008.

[142] ZoomTT. The Fastest Sport. https://zoomtt.com/2017/04/15/

fastest-sport-table-tennis-vs-badminton/, 2017. [Online; ac-
cessed 15-May-2017].

149

https://zoomtt.com/2017/04/15/fastest-sport-table-tennis-vs-badminton/
https://zoomtt.com/2017/04/15/fastest-sport-table-tennis-vs-badminton/

	Enhanced gesture sensing using battery-less wearable motion trackers
	Citation

	1 Introduction
	1.1 Tackling the Challenge: Supporting Low-Latency Gesture Recognition & Tracking on Energy-Harvesting Wearables
	1.2 Motivating Scenarios
	1.2.1 Real-time Monitoring of Interactive Gestures using Battery-less Wearables
	1.2.2 Continuous At-Home Gestural Monitoring of Elderly with Battery-less Wearables

	1.3 WiWear Vision
	1.3.1 WiWear device
	1.3.2 WiWear AP
	1.3.3 Fine-grained motion sensing on battery-less wearables

	1.4 Thesis statement

	2 Literature Review
	2.1 Battery-less and Energy Harvesting
	2.1.1 Energy Harvesting for Client Devices
	2.1.2 WiFi-based indoor localization
	2.1.3 WiFi-based gesture and activity recognition
	2.1.4 Battery-less gestural sensing on wearable devices

	2.2 Gesture and Activity Recognition
	2.2.1 Effects of latency on interactivity
	2.2.2 Inertial-sensing based gesture and activity recognition
	2.2.3 Real-time gesture recognition
	2.2.4 3-D hand movement tracking

	3 Battery-less Motion Sensing Device
	3.1 System Overview
	3.1.1 Beamforming Technique
	3.1.2 Locating the Client Device
	3.1.3 Transmission & Sensing on the Client
	3.1.4 Assumptions on System Design

	3.2 A WiWear System Prototype
	3.2.1 The WiWear Client Device
	3.2.2 The WiWear AP

	3.3 System numerical analysis
	3.3.1 Expected system energy consumption
	3.3.2 Single device scenario
	3.3.3 Multi-device device scenario

	3.4 Performance Evaluation: Micro-Benchmarks
	3.4.1 Experiment Setup & Calibration
	3.4.2 Change in Azimuthal Orientation
	3.4.3 Energy harvesting vs. Distance
	3.4.4 Energy harvesting vs. Background data
	3.4.5 Effect of Number of Antennas

	3.5 Constrained User Studies
	3.6 Discussion
	3.7 Reflections and Lessons Learned

	4 Fine-grained Real-time Motion Sensing
	4.1 Representative Application & Requirements
	4.1.1 Perceiving Latency and its Effects on Usability

	4.2 System overview
	4.3 Dataset
	4.4 Early Gesture Recognition
	4.4.1 Inadequacy of Explicit Segmentation
	4.4.2 Segmentation-less Gesture Detection on Stream Data
	4.4.3 Early detection of gestures

	4.5 Experimental Results on Early Gesture Detection
	4.5.1 Accuracy vs. Fraction of Gesture Completed
	4.5.2 The Utility of the Classifier
	4.5.3 Performance of Person-Independent Models
	4.5.4 Comparison with E-Gesture Baseline

	4.6 Gesture-State-Enabled Trajectory Tracking
	4.6.1 Existing Approaches of Hand Tracking
	4.6.2 Gesture-State-Enabled Trajectory Tracking
	4.6.3 Hand Tracking Performance

	4.7 User Perceptual Experience
	4.8 Discussion
	4.9 Reflections and Lessons Learned

	5 Feasibility Analysis: Early Gesture Recognition and Tracking for Battery-less Devices
	5.1 Effects of Varying Sampling Rates and Model Complexity on Sensing Accuracy
	5.1.1 Early gesture recognition
	5.1.2 Hand tracking

	5.2 Effects of Varying Sampling Rates and Model Complexity on System Power Consumption
	5.2.1 Energy consumption of gesture recognition on WiWear wearable
	5.2.2 Energy consumption of hand tracking on WiWear wearable
	5.2.3 Operational life time of gesture recognition & tracking on WiWear wearable

	5.3 Discussion

	6 Conclusion and Future Directions
	6.1 Summary of Contribution
	6.1.1 WiWear: Battery-less Motion Sensing
	6.1.2 Early Gesture Recognition & Tracking
	6.1.3 Feasibility Analyses of Early Gesture Recognition & Tracking on Energy-harvesting Wearable

	6.2 Reflections and Lessons Learned
	6.3 Discussion & Future Direction
	6.3.1 Extended Capabilities for Battery-less Real-time Motion Sensing
	6.3.2 Smart Multi-AP Scheduling for WiFi-based Energy Harvesting Wearables
	6.3.3 Enhanced Battery-less Hand Tracking using WiFi Signal

