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When Keystroke Meets Password:
Attacks and Defenses

LIU Ximing

Abstract

Password is a prevalent means used for user authentication in pervasive computing

environments since it is simple to be deployed and convenient to use. However,

the use of password has intrinsic problems due to the involvement of keystroke.

Keystroke behaviors may emit various side-channel information, including timing,

acoustic, and visual information, which can be easily collected by an adversary

and leveraged for the keystroke inference. On the other hand, those keystroke-

related information can also be used to protect a user’s credentials via two-factor

authentication and biometrics authentication schemes. This dissertation focuses on

investigating the PIN inference due to the side-channel information disclosure and

exploring the design of a new two-factor authentication system.

The first work in this dissertation proposes a user-independent inter-keystroke

timing attack on PINs. Our attack method is based on an inter-keystroke timing dic-

tionary built from a human cognitive model whose parameters can be determined

by a small amount of training data on any users. Our attacks can thus be potentially

launched in a large scale in real-world settings. We investigate inter-keystroke tim-

ing attacks in different online attack settings and evaluate their performance on PINs

at different strength levels. Our experimental results show that the proposed attack

performs significantly better than random guessing attacks. We further demonstrate

that our attacks pose a serious threat to real-world applications and propose various

ways to mitigate the threat.

We then propose a more accurate and practical PIN attack based on ultrasound,

named UltraPIN, in the second work. It can be launched from commodity smart-

phones. As a target user enters a PIN on a PIN-based user authentication system, an



attacker may use UltraPIN to infer the PIN from a short distance without a line of

sight. In this process, UltraPIN leverages on smartphone speakers to issue human-

inaudible ultrasound signals and uses smartphone microphones to keep recording

acoustic signals. It applies a series of signal processing techniques to extract high-

quality feature vectors from low-energy and high-noise signals. Taking the extracted

feature vectors as input, UltraPIN applies a combination of machine learning mod-

els to classify finger movement patterns during PIN entry, and generates a ranked

list of highly possible PINs as result. Rigorous experiments show that UltraPIN is

highly effective in PIN inference and robust to different attacking settings.

Keystroke timing information and keystroke typing sounds can also be used to

protect users’ accounts. In the third work, we propose Typing-Proof, a usable, se-

cure and low-cost two-factor authentication mechanism. Typing-Proof is similar to

software token based 2FA in a sense that it uses password as the first factor and uses

a registered phone to prove the second factor. During the second-factor authenti-

cation procedure, it requires a user to type any random code on a login computer

and authenticates the user by comparing the keystroke timing sequence of the ran-

dom code recorded by the login computer with the sounds of typing random code

recorded by the user’s registered phone. Typing-Proof achieves good performance

in most settings and requires zero user-phone interaction in most cases. It is se-

cure and immune to the existing attacks to recent 2FA mechanisms. In addition,

Typing-Proof enables significant cost savings for both service providers and users.

This dissertation makes contributions to understanding the potential risk of side-

channel information leaked by keystroke behaviors and designing a secure, usable

and low-cost two-factor authentication systems. On the one hand, our proposed

side-channel attacks make use of human cognitive model and ultrasound, which pro-

vides useful insights into the field of combining cognitive psychology and Doppler

effect with human behavior related insecurity. On the other hand, our proposed two-

factor authentication system eliminates the user-phone interaction in most cases and

can effectively defend against the existing attacks to recent 2FA mechanisms.
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Chapter 1

Introduction

Password is a word or a string of characters used for authenticating the user to prove

the identity or authorization to access certain resources. Personal identification

number (PIN) is a special form of the password, which only consists of numerical

codes. With the advent of computers, username and password are commonly used

during the login process to protect information security and property safety to the

computer operating systems, mobile devices, automated teller machines (ATMs),

point of sale (POS) terminals and electronic door locks. Even with the great de-

velopments of new alternative authentication technologies, such as face authentica-

tion, fingerprint authentication, voice authentication, password still dominates the

authentication field due to its simplicity and convenience.

However, password-based user authentication systems are often exposed to side-

channel attacks in which an attacker can observe the password entry process via one

or more side channels to infer keystrokes pressed by the target victim. Such side

channels can be timing-related information [119, 151, 71, 79], acoustic informa-

tion [9, 18, 155, 131], visual information [150, 115], and sensor-based informa-

tion [31, 32, 83]. Despite the risk against different side-channel attacks, many users

do not secure their PIN entries in any way (such as shielding the PIN entry keypad

or checking surrounding) according to a field study of real-world ATM use [30].

Most side-channel attacks can be used to infer passwords and private information

1



being typed, and given the low entropy of PINs, the risk can be much higher.

On the other hand, side-channel information can also protect users’ accounts

if properly used. In a two-factor authentication system, side-channel information,

such as background sound [67], keystroke timings [78], can be leveraged to verify

the proximity between a user’s registered phone and computer, and then to prove

that the user has the possession of the second factor (i.e., the registered phone).

This approach can effectively eliminate user-phone interactions and lower the cost

of service provider compared to existing 2FA solution.

This dissertation investigates how to make use of keystroke information for both

attacks and defenses. We first propose an inter-keystroke timing attack to PIN entry

leveraging human cognitive model, then propose an acoustic attack to PIN entry via

ultrasound, and last propose a usable, secure, and low-cost two-factor authentication

system based on keystroke timings. The details of these works are introduced as

follows.

1.1 Leveraging Keystroke Timings for PIN Cracking

Timing attacks have been widely studied to reveal useful information about encryp-

tion keys of ciphers and other private information such as information leaked via

user interactions with web browsers. Some researchers have also studied how to

infer PINs and passwords using inter-keystroke timing information in side-channel

attack settings. Existing methods on inter-keystroke timing attacks are mostly based

on the Hidden Markov Models (HMM) which needs to be trained based on a large

number of observations on a victim’s typing behavior, thus limiting their applica-

tions in real-world scenarios.

To solve the problem brought by the above limitations, the first work in this

dissertation proposes a practical and user-independent inter-keystroke timing attack

based on a parameterized human cognitive model. The parameters of our model can

be estimated from a small amount of training data about any users’ inter-keystroke

2



timing information. The training data in our attacks may not be taken from the

victim, but from other users such as the attacker himself or people he/she recruits.

Once the human cognitive model is built, it can be applied to compromise any vic-

tims inputting any PIN on a particular keypad whose geometric measurement is

known.

According to our experimental results, the success rate of our attacks is sig-

nificantly higher than random guessing attacks, which poses a serious threat when

applied to users in a large scale, even in online attack settings. We evaluate the

performance of our attacks with different PIN strength levels under different attack

scenarios. We further provide several solutions to mitigate our attacks.

1.2 Leveraging Ultrasound for PIN Cracking

Personal identification number (PIN) has been widely used for user authentication

to protect user privacy and property. Existing PIN attacks, including shoulder surf-

ing, hidden camera spying and social engineering based guessing, are difficult to

launch in a large scale. Therefore, it is still considered to be secure enough while it

is widely used on most ATMs, POS terminals, electronic door locks, and personal

device logins. The second work in this dissertation proposes UltraPIN, a novel and

practical attack to recover PIN with commodity smartphones by analyzing imper-

ceptible acoustic signals issued by smartphones and reflected by finger movements

during PIN entries.

Motivated by an observation that finger movements on a keypad can be captured

by analyzing surrounding acoustic signals, UltraPIN leverages the speakers and mi-

crophones that are already embedded in commodity smartphones to play an inaudi-

ble ultrasound and record the reflected acoustic signal. In particular, it segments

keypairs based on beep sounds, extracts frequency-shifted pattern based on centroid

frequency, constructs learning models to classify different finger movements, and

recovers the PIN sequence by a backward inference algorithm.

3



We conduct a series of experiments under different attacking scenarios to eval-

uate the performance and robustness of our model. The results show that UltraPIN

can effectively recover 75% PIN sequences within three attempts in the default case.

In addition, UltraPIN is robust with regard to different keypad layout, size and an-

gle, smartphone quantity and position, smartphone-keypad distance, experimental

environment.

1.3 Leveraging Keystroke Timings for Authentica-

tion

Two-factor authentication (2FA) systems provide another layer of protection to

users’ accounts beyond the password. Despite the security improvement intro-

duced by 2FA, most users still prefer password-only authentication where 2FA is

not mandatory. This is probably due to the extra burden that 2FA causes to users

since it typically requires users to interact with hardware tokens or software tokens

on their phones. Reducing extra burden in 2FA triggers increasing interests in recent

years. A recent approach, Sound-Proof, requires zero interaction between user and

phone but has been proved insecure against certain attacks. The third work in this

dissertation designs a new two-factor authentication system called Typing-Proof to

solve the above problems.

In Typing-Proof, the second factor is the proximity of a user’s phone to the

computer being used to log in to an authentication server. The proximity of a user’s

phone to the login computer is verified by comparing keystroke timing sequence

recorded by the login computer with the keystroke sounds recorded by the user’s

registered phone. We provide one-button authentication as a backup solution to

avoid the false rejection cases of the automatic matching. Our proposed 2FA sys-

tem is secure against the existing attacks to recent 2FA mechanisms. In addition,

it enables significant cost savings for both service provider and user compared to

4



existing approaches, including Sound-Proof, SMS-based 2FA and hardware token

based 2FA.

We implement a prototype of Typing-Proof and empirical experiments demon-

strate that Typing-Proof achieves relatively low false acceptance in various set-

tings with recommended configurations. We design several experiments to examine

that Typing-Proof can effectively defend against known typed-text attacks and co-

located attacks. We further conduct a user study to show that Typing-Proof is more

usable than Sound-Proof and SMS-based 2FA.

1.4 Contributions and Organization

To summarize, the following contributions have been made in this dissertation:

• For the first time in the field, we applied human cognitive modeling to design a

timing attack on PINs. We proposed the use of a human cognitive model with

a small number of parameters to replace the HMMs used in previous work, thus

allowing no or less training data and training based on other users. We discovered

that the effectiveness of our attacks is different for different types of PINs and

study the inner structure of the whole PIN space. We considered four different

variants of the attack which are applicable to different attacking scenarios and

have different performances. We conducted experiments involving a user study

with human participants to prove the effectiveness of all four attack variants.

• We uncovered a new vulnerability of numeric keypad by leveraging speakers

and microphones of smartphones. This is the first work to leverage speakers

and microphones to recover the victim’s PIN entry on a numeric keypad with-

out compromising victim’s device, where the sounds of striking keys can hardly

be captured. We exploited the Doppler effect to sense the finger movements by

leveraging inaudible ultrasound. We conducted a series of experiments to exam-

ine the performance of UltraPIN and the results demonstrated that an attacker can
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successfully recover a victim’s PIN typed on a numeric keypad with a probability

of 75% within three attempts when he/she place two smartphones at a distance

of 75cm from the keypad. Our attack is robust to the change of keypad layout,

size and angle, smartphone quantity and position, smartphone-keypad distance,

experimental environment.

• We proposed Typing-Proof, a usable, secure and low-cost two-factor authentica-

tion system. It requires no user-phone interactions in most cases and one-button

press in the backup case. Typing-Proof is practically secure and incurs significant

lower costs compared to other solutions. We implemented a prototype of Typing-

Proof for Android devices and used the prototype to evaluate the effectiveness

of Typing-Proof in a number of different settings. We showed that Typing-Proof

works in any environment is compatible with all major browsers, login comput-

ers, and smartphones, and does not require any additional plug-ins or external

hardware to be used. We conducted a user study to compare the perceived us-

ability of Typing-Proof, Sound-Proof, SMS-based 2FA. Participants ranked the

usability of Typing-Proof higher than Sound-Proof and SMS-based 2FA.

The remainder of this dissertation is organized as follows: Chapter 2 is a lit-

erature review that examines closely related research on side-channel attacks for

keystroke inference and two-factor authentication mechanisms. Chapter 3 proposes

an inter-keystroke timing attacks on PINs. Chapter 4 proposes an accurate and prac-

tical attack via ultrasound. Chapter 5 provides a usable, secure and low-cost two-

factor authentication system leveraging on keystroke timings and typing sounds.

Finally, Chapter 6 summarizes the contributions of this dissertation and points the

future direction.
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Chapter 2

Literature Review

2.1 Side-Channel Attacks

With the computer and network incorporated our life, password leakage events hap-

pened all the time. Many side-channel attacks for keystroke inference have been

proposed in the literature over a decade. We summarize three types of side-channel

attacks, including audio-based attacks, video-based attacks, and sensor-based at-

tacks.

2.1.1 Audio-based Attacks

Acoustic Signature Attacks. Asonov et al. [9] proposed the first keystroke infer-

ence attack based on acoustic signatures. Based on the observation that the sounds

of keystrokes vary from key to key, a supervised learning algorithm was designed

to classify keystroke entries according to their sounds. Zhuang et al. [155] revisited

keyboard acoustic emanations, and showed that a more advanced unsupervised al-

gorithm with cepstrum features achieved better performance in acoustic signature

attacks. Later, a training-free method was proposed by Berger et al. [18] to make

such attacks more practical. Beyond the observation that hitting different keys leads

to different keystroke sounds, they discovered that the similarity of two keystroke

acoustic signals has a negative relationship with the distance between the pressed
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keys.

Those acoustic signature attacks share an essential assumption that an attacker

can capture clear keystroke sounds. However, the keypads on ATMs, POS terminals,

and electronic door locks are usually designed to be soundless or sound-light. An

attacker can hardly capture the sounds of striking keys on such keyboards. Although

many keypads produce a clear beep in response to a keypress action, such beep

sounds cannot be used to recover the keystrokes because they are released via the

same sound speaker on a keypad. No matter which keys are pressed, the acoustic

signatures of the beep sounds are indistinguishable so that they can hardly be used

to infer keystrokes.

Timing Difference of Arrival (TDoA) Attacks. Zhu et al. [131] proposed a

context-free method and made use of multiple microphones to estimate keystrokes’

physical positions based on the Time Difference of Arrival (TDoA) of keystroke

sounds on standard physical keyboards. When a user presses a key on a keyboard,

its keystroke sound arrives at a pair of microphones placed besides the keyboard at

different time. Therefore, a distance range from the key to the microphones can be

measured such that a candidate set of key positions can be estimated and narrowed

using multiple pairs of microphones. Liu et al. [77] combined the TDoA feature

with acoustic signature feature into a training-free and context-free method so as to

improve its performance.

Similar to acoustic signature attacks, the TDoA attacks cannot be applied to

infer PIN entries on ATMs, POS terminals or electronic door locks. Striking keys

on those keypads are mostly soundless while beep sounds are produced clearly.

Since the beep sounds are produced from the same location (i.e., a sound speaker),

TDoA attacks can only estimate the position of the sound speaker rather than any

keys.

Finger Tracking Attack. Zhou et al. [154] proposed an acoustic attack that cracks

pattern lock by analyzing the acoustic signals reflected by a fingertip that draws a

pattern on a touchscreen. The assumption is that an attacker has installed certain
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malware on the victim’s smartphone and acquired necessary permissions to access

speakers, microphones, and motion sensors on the victim’s smartphone. Then the

attacker traces finger movements based on a triangle relationship among a finger,

a smartphone speaker and a smartphone microphone where the ratio between the

longest side and shortest side in the triangle is around 2:1. In addition, they require

an attacker to access the speaker and microphone of the victim’s smartphone.

2.1.2 Video-based Attacks

Early works [14, 13] exploited the reflections of screens on glasses, spoons, eyes of

users to recover the users’ inputs. These attacks require attackers to acquire videos

directly capturing users’ screens or screen reflections. Recent works showed that

even when keyboards or screens are not visible from the videos, attackers can still

infer users’ inputs via analyzing users’ fingers or hand movements using advanced

computer vision algorithms [150, 149, 115]. Even users’ hands movements are

not visible from the videos, Sun et al. [126] analyzed the motion patterns of devices

backsides caused by the users’ keystrokes on different positions of the screens of the

users’ devices and classify them using Support Vector Machine. All these attacks

require attackers to place cameras at proper angles near the users.

2.1.3 Sensor-based Attacks

A range of studies showed that embedded sensors on mobile devices or wearable

devices can reveal sensitive information about users’ keystroke behaviors. Various

embedded sensors were investigated in this context, including accelerometers [83,

10, 80, 81, 96, 137], gyroscopes [31, 24, 89, 146], ambient-light sensors [120] and

WiFi [3, 73]. All these attacks require attackers to hack into mobile devices or

wearable devices for accessing sensor data or to place mobile devices near users’

keyboards.
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2.2 Two-Factor Authentication Mechanisms

On the other hand, researchers also dedicate to providing more secure but still usable

user authentication schemes. Two-factor authentication is one of the most effective

approaches which has been widely used in our daily life. We review two traditional

2FA mechanisms, including hardware token and SMS-based software token, as well

as several recent 2FA proposals which incur less user-phone interactions.

Hardware token based 2FA is a widely deployed 2FA solution in practice (e.g.,

in financial industry). It requires users to carry and use hardware tokens for au-

thentication. During an authentication session, a hardware token is used to generate

an authentication code at fixed time intervals (usually 60 seconds) according to a

built-in clock and a factory-encoded random key (known as “seed”). A user reads

the authentication code from the hardware token and inputs it to a login computer

after the user inputs the first factor.

Hardware token based 2FA requires users to interact with their hardware tokens,

read and remember authentication codes temporarily before input them on login

computers. It also requires a service provider to manufacture a number of hardware

tokens and distribute them to all customers. The cost of tokens is considerably high

(e.g., $60 per token [2]), which is usually bore by service providers. In addition, a

hardware token usually has a limited lifetime of around 3 years, which implies that

service providers should distribute new tokens to each customer every 3 years.

Due to the pervasive use of phones, SMS-based software token is becoming

more popular in recent years. After a user inputs the first factor on a login computer

which sends it to the corresponding server, the server sends a verification code to

the user’s registered phone via SMS. The user reads the verification code from the

registered phone and inputs this code to the login computer to complete an authen-

tication session. This solution does not require any additional hardware but it still

requires the user to interact with his/her phone, temporarily remember a verifica-

tion code, and manually inputs the code on the login computer. In this solution,
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the service provider bears the cost for sending verification codes via SMS to users’

phones.

Sound-Proof is a recent 2FA solution proposed to eliminate user-phone interac-

tions and lower the cost [67]. After a user inputs the first factor, both login computer

and registered phone begin to record background sounds simultaneously; then, the

login computer sends the recorded audio data to the registered phone via server; a

Sound-Proof application installed in the registered phone compares whether the two

pieces of background sounds are similar, and determines if the login computer and

the phone are located in the same environment, and thus decides whether the login

attempt is legitimate or fraudulent.

Sound-Proof has a limitation that it rejects the login attempt if the average power

of any recorded audio sample is below certain threshold in order to prevent an im-

personation attack in the case that a victim’s environment is quiet (e.g., while the

victim is sleeping). This lowers its usability since it is common for a user to lo-

gin to his/her accounts in a quiet place (e.g., home, office, and library). The sound

introduced by user’s typing would not make Sound-Proof work since the average

power of keystroke sound is around 30dB as we measured while the threshold for

sound recording is set to 40dB in Sound-Proof [67]. Sound-Proof suggests users

make certain noise (by, e.g., clearing throat, knocking on the table) in quiet envi-

ronments; however, it may be awkward for some users. It cannot work either if the

login computer is not equipped with a built-in microphone since it cannot record

the background sounds. We notice that most desktops are not equipped with mi-

crophones. In such cases, Sound-Proof demands additional hardware (i.e., external

microphone) which may not be always convenient.

From a security point of view, Sound-Proof is vulnerable to certain practical

attacks. Zhang et al. [153] proposed a sound-danger attack where an attacker may

deliberately make a victim’s registered phone to produce previously known sounds

(e.g., making a phone call or VoIP call, sending an SMS, and triggering an app-

based notification) remotely at the time of an attack. Therefore, the attacker can
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make the same ringtone on his/her side at the same time to bypass the second-factor

authentication since both ambient sounds of the victim and of the attacker are the

same ringtone in such case. Another potential attack is co-located attack [67] where

an attacker and a victim stay in the same environment (e.g., in the same café). The

ambient sounds of the victim and of the attacker are obviously the same so that the

attacker can bypass the second-factor authentication.

One-button authentication requires a user to install an application on user’s

smartphone and bind the application to the user’s account. Whenever a login attempt

occurs on a user’s account, the user is notified via the application and prompted to

approve or reject the request. For certain one-button authentication applications,

users can approve login requests with notifications without even opening the ap-

plications. This solution makes two-factor authentication more user-friendly than

SMS-based 2FA. It has been adopted by several enterprises, including Microsoft

Authenticator [88], Blizzard Entertainment [20], Duo Security [36], LastPass [102],

and Futurea [44].

However, most one-button authentication systems are not secure against syn-

chronized login attack. If an attacker and a victim login to the victim’s account at

the same time, the victim cannot distinguish which login request sent to his/her reg-

istered phone is legitimate, and he/she may mis-approve the login request sent from

the attacker. Although some one-button authentication applications display IP ad-

dresses of login computers along with authentication requests, it is still difficult for

the users who have no knowledge about the IP addresses to distinguish which login

request is legitimate. Furthermore, an attacker may forge an IP address if he/she

knows the victim’s IP address.

Short-range communications, such as Bluetooth, WiFi, or NFC, are also widely

adopted to support two-factor authentication. An authentication service provider

– SAASPASS [108] leverages on location-based iBeacon Bluetooth Low Energy

(BLE) technology to authenticate users via Bluetooth communications between

their registered phones and nearby login computers. Similarly, another 2FA pro-

12



posal, PhoneAuth [29], sets up unpaired Bluetooth communications between a login

computer and user’s phone via Bluetooth using a new challenge-response protocol.

However, these solutions may not be always applicable since most browsers (e.g.,

Firefox, Internet Explorer, and Safari [86]) do not support Bluetooth APIs. In ad-

dition, these solutions are not secure if adversaries set up Bluetooth connections to

victims’ phones to bypass 2FA.

Instead of using Bluetooth, Shirvanian et al. [114] proposed using WiFi commu-

nications between login computer and user’s phone for 2FA. However, this solution

works only when both devices are connected to the same network.

As NFC is widely embedded into today’s commodity smartphones, Face-

book [38] introduced a physical NFC security key that allows users to login to their

accounts on their smartphones via NFC. This solution makes hardware token based

two-factor authentication process faster. Instead of reading an authentication code

from a hardware token and inputting it to a login computer, a user just taps a NFC

security key against his/her smartphone so as to complete an authentication session.

However, this solution requires additional hardware and its cost is of similar concern

as in the case of hardware token based 2FA.
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Chapter 3

User-Independent Inter-Keystroke

Timing Attacks

3.1 Introduction

This chapter investigates the inter-keystroke timing information disclosure threat

against PIN-based authentication systems. Inter-keystroke timing attacks, which

make use of the leaked keystroke timing information to infer a user’s PIN, pose

a serious threat to real-world applications, especially for online financial services

whose authentication systems are based on PINs. Such attacks have triggered

increasing interests in recent years due to the development of many practical ap-

proaches to obtaining users’ keystroke timing information via different side chan-

nels, including CPU cache [57, 93, 99, 56, 76], shared event loops [133], I/O inter-

rupts [33, 75, 151], and SSH [119]. Some approaches do not even require attack-

ers to be physically close to victims or install malware on victims’ devices, which

significantly lower the barrier for launching inter-keystroke timing attacks in real-

world scenarios.

Most of the existing inter-keystroke timing attacks on PINs or passwords are

user-dependent. Since the seminal work published by Dawn Song et al. in

2001 [119], the Hidden Markov Model (HMM) has been exploited as a major tech-
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nique to launching the inter-keystroke timing attacks [151, 71]. However, HMM

is user-specific in a sense that it relies on the distribution of inter-keystroke times

of a specific user typing each possible key pair (which represents a hidden state in

HMM) so as to infer the user’s PIN from the user’s inter-keystroke timing infor-

mation about a PIN entry. In other words, HMM requires that a sufficiently large

amount of time intervals for each possible key pair that can be part of any PIN be

typed by a specific user for model training so as to make the attacks to that specific

user’s PIN entry accurate and useful. It is usually difficult for an attacker to col-

lect such large amount of inter-keystroke data about a victim before launching an

effective attack. Even if it is possible, such attacks are not scalable. If an attacker

intends to compromise a new victim, he/she needs to collect the new victim’s inter-

keystroke timing data about all possible key pairs and retrain his/her HMM for the

new victim. In addition, the success rate of such attacks is too low to be practical

in online attack settings since the number of guesses that is allowed to launch an

online attack is usually restricted to small numbers (e.g., 3, 10, 100) in common

practice.

In this chapter, we propose a user-independent approach to exploit inter-

keystroke timing information for PIN inference, which makes inter-keystroke tim-

ing attacks much more scalable and practical. The model in our attacks is not user

specific, which can be trained from a small amount of training data (e.g., a few key

pairs instead of all possible key pairs) about any users (e.g., attackers or people

recruited by attackers) instead of the target victims. In addition, our approach can

be applied to attack any new victim without retraining the model. The success rate

of our attacks is significantly higher than random guessing attacks, which poses a

serious threat when applied to users in a large scale, even in online attack settings.

Our proposed approach leverages a human cognitive model to capture the com-

mon characteristics across all skilled users typing PINs. A skilled user can smoothly

type a PIN without any typing error and without considerable recall time between

consecutive keystrokes. The human cognitive model is derived from several PIN
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typing behavioral phenomena which we summarize from the cognitive psychology

literature. These PIN typing behavioral phenomena are universal to all skilled users.

The parameters of our cognitive model can be estimated by a few key pairs from

any user such as the attacker himself. Once the cognitive model is built, it can be

used to attack any user inputting any PIN on a particular keypad whose geometric

measurement is known.

At a high level, our attacks proceed as follows. First, an attacker builds a timing

dictionary including all possible PINs and their corresponding timing sequences.

The timing sequence of each PIN is derived from our cognitive model. Second,

the attacker obtains the timing sequence of a victim’s PIN entry via various side-

channels (e.g., CPU cache, shared event loops, I/O interrupts, and SSH). Third, the

attacker measures the cosine similarity between the observed inter-keystroke timing

sequence and each entry in the timing dictionary and ranks all candidate PINs in the

dictionary by their similarity values. Lastly, with a ranked list of candidate PINs, the

attacker may launch online attacks using the PINs successively from the ranked list

until he/she succeeds or the target account is locked (or the attacker aborts before

the account is locked).

Besides the cognitive model that captures the common characteristics across

all users typing PINs, another contributing factor to the user independence of our

approach is the way an attacker measures the differences between a victim’s PIN

entry and each time sequence in the timing dictionary. We adopt cosine similarity

since it is invariant to scaling of input vector. It can thus mitigate the negative impact

of different typing speeds by different users.

We discover that the effectiveness of our attacks is different for different types

of PINs. To examine the effectiveness of our attacks to different types of PINs, we

study the inner structure of the whole PIN space and partition the PIN space into

different strength levels. In particular, the 6-digit PIN space is partitioned into 5

PIN strength levels according to the directional density of the inter-keystroke timing

sequences in the timing dictionary, where level 1 is the weakest and level 5 is the
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strongest. Our attacks achieve much better performance on the PINs at the first four

levels compared to the strongest level (i.e., level 5). For example, the attacks with

100 guesses on the PINs at levels 1, 2, 3, 4 are 869, 221, 250 and 42 times more

effective than on the PINs at level 5, respectively. The results suggest that users

should choose their PINs at the strongest strength level for better security in the

presence of inter-keystroke timing attacks.

We seek various ways to improve the success rate of our attacks. One question

is whether we can achieve better performance using target victims’ data for model

training, which is commonly used in the existing inter-keystroke timing attacks. In

this case, we train the cognitive model using the victim’s own inter-keystroke timing

data and launch our attacks to this victim’s PIN entry. However, the results show that

this way improves the success rate by about 4% only. Another question is whether

an attacker can improve his/her success rate if he/she observes the victim’s PIN

entry for multiple times. In this case, the attacker can attack based on the average of

the inter-keystroke timing sequences for multiple PIN entries from the same victim.

It achieves around 2% performance improvement which is not significant either.

Our study in these two cases shows that our approach is user-independent and it

does not improve much using user-dependent data.

We further examine the scenario in which an attacker happens to know the values

of certain digits of the target PIN before launching inter-keystroke timing attacks. It

is reasonable to assume that an attacker may attain such knowledge about PIN digits

due to the existence of many side-channel attacks (e.g., [32, 150, 115, 80, 135, 126])

and shoulder surfing attacks [127] to the PIN entry. Unsurprisingly, the success rate

of our attacks is significantly improved due to the shrink of timing dictionary in our

attacks. For example, when the attacker knows 2 digits, the success rate of attacking

the PINs in level 1 within 3 attempts is improved to 34.9% so that one out of every

three target users can be successfully compromised. In this case, our attacks are

practical in online attack settings when applied to a single user or a small number

of users.
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In general, the success rate of the proposed attacks may not be sufficiently high

to pose imminent danger to an individual user’s PIN. Our attacks are still practi-

cal because they are user-independent and can be applied to attack any number of

users in a large scale. To show this, we study two cases in practical settings, where

PINs are used as the only credential to protect users’ accounts and where attackers

can collect many users’ inter-keystroke timing data for PIN entries using malicious

JavaScripts.

To mitigate our attacks, we provide several solutions, including choosing longer

PINs, choosing PINs at the strongest strength level, proposing a new keypad lay-

out design, and implementing leakage resilient password systems (LRPSes). For

the first countermeasure, the security strength of most existing PIN systems is de-

termined by the success probability of random guessing attacks [147]. However,

the security strength of PIN systems would be lowered significantly in the pres-

ence of our inter-keystroke timing attacks. We suggest users to choose 10-digit

PINs to maintain the same security strength under our attacks as that of the 6-digit

PINs under random guessing attacks. This solution does not require any change to

the hardware of current PIN systems, though it requires users to remember longer

PINs.

To relax the requirement on PIN length, our second suggestion is that users

should choose PINs at the strongest strength level (i.e., level 5 for 6-digits PINs1).

Our study on 6-digit PINs shows that the success rate of attacking PINs at level 5

is around 10 times higher than random guessing attacks. Therefore, to achieve the

similar security strength of 6-digit PIN under random guessing attacks, we suggest

users choose 7-digit PINs at the strongest strength level.

For the third countermeasure, if changes can be made to the keypad layout,

we propose a novel keypad design secure against our proposed attack, which is also

easy to use. Our new design nullifies all inter-keystroke timing attacks, which means

1Level 5 includes 900,000 PINs which account for 90% of the total 6-digit PINs. It is thus
relatively easy for a user to obtain a PIN at level 5 if he/she simply chooses his/her PIN randomly.
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the success rate of our attacks would be similar to that of random guessing attacks.

Therefore, users can still use 6-digit PINs as before. For the last countermeasure,

LRPSes have been well studied in the past two decades. A recent work [147] shows

that in order to achieve the same security strength of current 6-digit PIN systems,

LRPSes require hundreds of seconds to complete an authentication session [61, 7],

which sacrifices their usability.

3.2 Preliminaries

In this section, we provide the basics about how to collect inter-keystroke timing in-

formation from users, how to model users’ typing behavior and what our adversary

model is.

3.2.1 Keystroke Timing Collection

To launch any inter-keystroke timing attacks, an attacker needs to collect inter-

keystroke timing information about users’ inputs. Several practical approaches have

been proposed in recent years on how to collect inter-keystroke timing information

through various leakage channels, including CPU cache [57, 93, 99, 56, 76], shared

event loops [133], I/O interrupts [33, 75, 151], and SSH [119].

The first leakage channel through which attackers can collect inter-keystroke

timing information is CPU cache [57, 93, 99, 56, 76]. Through CPU cache, an

attacker can observe the effects of a user’s keystroke operations and deduce the

timestamp of each keystroke the user performs on a keyboard. One of these ap-

proaches [93] can be performed from browser sandboxes through remote websites

using JavaScripts instead of installing malware on users’ devices. Besides users’

keystroke operations originated from hardware keyboard, other interactive opera-

tions, such as tap operations and swipe operations which are usually triggered on a

touch screen, can also be monitored by an attacker [76]. Therefore, inter-keystroke

timing attacks (including ours) can be applied to both devices with hardware key-
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board and devices with soft keyboard. This keystroke timing collection approach

requires malware installed on victim’s device to access CPU cache but it does not

need any permission.

The second leakage channel through which attackers can collect inter-keystroke

timing information is shared event loops [133]. Through shared event loops in

Google Chrome, an attacker can scan an event-delay trace using JavaScript and

deduce the timestamp of each keystroke the user performs on a keyboard. This

keystroke timing collection approach requires an attacker to trick victims to open a

malicious website which has the permission of running JavaScript.

The third leakage channel through which attackers can collect inter-keystroke

timing information is I/O interrupts [33, 75, 151]. An attacker may continuously

acquire timestamps using JavaScript in a measuring process and monitor differ-

ences between subsequent timestamps [75]. Significant time differences will occur

whenever the measuring process is interrupted by I/O operations (i.e., keystroke op-

erations). The exact timestamp where the user presses a key is clearly visible and

can be distinguished from other events. This keystroke timing collection approach

also requires an attacker to trick victims to open a malicious website which has the

permission of running JavaScript.

The last leakage channel through which attackers can collect inter-keystroke

timing information is SSH [119]. Since every individual keystroke typed by a user

is sent to a remote machine in a separate IP packet immediately after the key is

pressed, precise inter-keystroke timings of the user’s keystrokes can be learned from

the arrival times of the packets. This keystroke timing collection approach requires

an attacker to monitor the network and collect the arrival time of SSH packets which

does not require any malware to be installed on victim’s device or any permission

from the victim.

The sampling rates of inter-keystroke timing information collected by differ-

ent approaches are different (e.g., 40,000Hz for shared event loops and 100Hz

for SSH). In our experiments, we use JavaScript to record the key code of each
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keystroke event and the corresponding timestamp to get the ground truth. We ob-

serve that the timings of key-press events are distributed in clusters with a gap

of 15 or 16 milliseconds; thus, the sampling rate in our experiments is no higher

than 1000/15 ≈ 66.7Hz. Although our sampling rate is relatively low, our attacks

still achieve satisfactory performance as shown in our experimental results (Section

3.4.3). The performance of our attacks may be improved further at higher sampling

rates.

To determine the start and the end of victim’s PIN entry, the attacker can monitor

all the packets sent by the victim by a network sniffing tool on network packets

such as Wireshark and records the timestamps of all packets whose destination IP is

the targeted sensitive website (e.g., online banking website or Alipay) [73]. Since

most of the important websites and applications are secured via HTTPS, it does not

protect the meta data of the traffic such as destination server’s IP address, which

can be used to recognize the start of a time window for searching the victim’s PIN

entry using various approaches which have been mentioned earlier in this section.

If the victim is entering PIN on an Android application, Cheng et al. [28] proposed

a no-root approach to detect login activities as they share a common pattern that a

login activity usually consists of two EditText fields for inputting a username, and

a password and the second EditText field sets the attribute inputType to password-

related by developers. In addition, malware installed in the victims’ phone may

make use of accessibility feature to monitor the timing of any event that is activated

by the victim by the id of the view [105]. Since most developers use EditText fields

with an id of ‘password’ or ‘PIN’ in the layout view, it is easy for the attacker to

know the start time of a victim’s PIN entry event.

3.2.2 Human Cognitive Models

History. Human cognitive models have been studied in the field of psychology

for decades. They describe one or more specific human cognitive processes (e.g.,
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memory, perception, attention, reasoning, and problem-solving) for the purpose of

better understanding, predicting and simulating human behavior [4].

Typing PINs on a numeric keypad is one of the most important human-computer

interactions in our daily life and it involves complicated interactions of concurrent

perceptual, cognitive, and motoric processes [144]. To model typing behaviors and

explore its underlying mechanisms, cognitive psychologists apply the knowledge

of psychology, human-computer interaction and neuroscience. Card et al. [25] pro-

pose a keystroke-level model (KLM) to predict the time of a user accomplishing

a given task without errors using a given interactive computer system. For typing

task, KLM gives a rough estimate of the average inter-keystroke time, which is cal-

culated by dividing the total time taken in a typing test by the total number of non-

error keystrokes. Rumelhart and Norman [106] build a model of typing and provide

detailed predictions about the movement of fingers and the relative response time

for letters in different contexts. Furthermore, John [65] proposes a typing perfor-

mance theory which is built within the framework of the Model Human Processor

(MHP) [26] and can offer a more precise estimation. These models of cognitive

processing have provided a wealth of information regarding how humans interact

with keyboards.

Cognitive psychologists and HCI researchers have also developed several soft-

ware tools for estimating human performance in terms of time needed by an av-

erage skilled user to finish a specific task, such as Cogulator [37], CogTool [129],

SANLab-CM [97]. Such tools are normally used for modeling and simulating com-

plicated processes involving both computer and human users, but this work focuses

on determining the parameters of a specific model of the typing behavior, so we do

not use such tools in our work. In the following sections, we build a new keystroke

model combining models mentioned above with empirical analysis.

Typing Behavior Phenomena. Typing is a complex procedure involving cognitive

activities as well as body movements, but we can still capture the common char-

acteristics across all skilled users’ typing behaviors. The typing procedure usually
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involves two parts: (1) cognition of the task and (2) motor of the task. During the

cognition process, the user conducts a memory retrieval process. Specifically in our

scenario, the user recalls his/her PIN from the long-term memory, stores it into the

working memory and mentally prepares for executing physical actions. During the

motoric process, the user moves hand and fingers to the right key, presses the key,

releases the key and prepares for the next keystroke. The total time between two

keystrokes is the sum of the time for these two parts.

PIN entry behavior is one of the most common typing behaviors in our daily

life. In order to explore PIN entry behavior, we generalize four typing behavior

phenomena. They are based on the literature (e.g., [110]) which discusses several

common phenomena about typing behaviors across all skilled users.

Phenomenon 1. The rate of typing is dependent on how familiar the user is with

the typed string. According to a statistics report, 46 percent of the U.S. students

use credit cards on a regular basis for everyday purchases [123]. And the average

iPhone user tends to unlock his/her device 80 times in a day [101] while Android

users tend to unlock their smartphones an average 110 times a day [139], so there is

no doubt that people are proficient in typing their PINs.

Phenomenon 2. The variability of inter-keystroke time decreases with an in-

crease in users’ skill level. The distributions of inter-keystroke time for the same

keystroke in the same context but across multiple repetitions are similar [109]. This

phenomenon indicates that the typing pattern will stabilize after several practices.

Phenomenon 3. Inter-keystroke time of typing decreases following the power law

of practice. Typing speed of a user will be significantly improved as the number of

inputs increases. According to the learning curve of the single user in the study of

Gentner [48], the improvement of inter-keystroke time follows exponential growth.

If a skilled user can input PINs smoothly enough, the time of cognition process may

be negligible. One reason is that muscle memory has been built after frequently

typing and it may take little time for the cognitive processor to make decisions and

schedule actions with the motor processor.
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Phenomenon 4. The inter-keystroke time is dependent on the specific context,

especially for the topography of the keyboard. The specific context here refers to the

character before and after the target character. This topographical effect has been

reported by Gentner [47, 48], Rumelhart and Norman [106], and Shaffer [113].

Intuitively, the latency between two keystrokes has a positive correlation to their

distance on the keypad.

Based on Phenomena 1 and 2, the action of entering a PIN can be regarded as

conducted by a skilled user whose typing pattern is stable and predictable. Based

on Phenomena 2 and 3, we arrange a practice session before data collection in our

experiments in order to collect skilled users’ data and simulate people entering PINs

in real life. For Phenomenon 4, we estimate the topographical effect by a function

of the finger’s moving distance and the size of target key using Fitts’s law [40].

Inter-Keystroke Timing Modeling. We incorporate the above typing behavior

phenomena to construct a linear model for predicting the inter-keystroke timings

of any key pair.

For the topographical effect, our model uses Fitts’s law [40] to make finer pre-

dictions. Fitts’s law is a descriptive model of human movement which can predict

the time required to move to a target area. It is used to model the act of physically

touching an object with a finger or virtually pointing to an object. Striking the nu-

meric keypad with one finger can be seen as this kind of action. It is a function of

the ratio between the distance to the target (D) and target width (W ):

T = a+ b ∗ I = a+ b ∗ log2(
D

W
+ 1), (3.1)

where D is the distance from the start point to the center of the target, W is the

effective width of the target in the direction of the motion2, I = log2(D/W + 1) is

called the index of difficulty, a and b are parameters varying from context to context.

2According to our observations in the experiments, the effective press area of each key is close
to a circle centered on the center of the key and with a radius equal to the shorter side of the key
(which is 0.5 inches). Therefore, we use 0.5 inches as the effective width for all keys including 0
and <Enter> keys.
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Figure 3.1: The layout of the numeric
pad used in our experiments.
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Figure 3.2: Overview of our inter-
keystroke timing attacks.

We use the geometric center of each key to obtain the distance of each key pair.

As for the repeated pressed key like ‘99’, we set I = 0 so that Tmotor = a. We

estimate the values of a and b using inter-keystroke timing data of real human users.

With these inter-keystroke timing data and the geometric measurement of victim’s

keyboard, an attacker can build his/her own inter-keystroke timing model.

3.2.3 Adversary Model

Basic Premises. It is usually difficult for a malware to directly record keystrokes

due to the use of keylogger detection technologies [95, 125, 130, 94, 8]. The bar-

rier for launching inter-keystroke timing attacks in real-world is much lower than

directly recording keystrokes. Recent works (e.g., [57, 93, 99, 56, 76, 133, 33, 75,

151, 119]) have introduced many practical approaches to attaining user’s keystroke

timing information. While these works focused on how to capture keystroke timing

information, our work focuses on how to make use of keystroke timing information

to recover PINs. Therefore, our adversary model assumes that an attacker has al-

ready obtained the inter-keystroke timing information about a target user (victim)

typing his/her PIN on a numeric keypad.

The inter-keystroke timing information about a PIN can be observed just once
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or a number of times via several leakage channels such as CPU cache, shared event

loops, I/O interrupts, SSH as introduced in Section 3.2.1. We notice that directly

recording keystrokes requires certain permissions which are usually difficult to be

gained (e.g., most software keyloggers require Windows hooks); in comparison,

it is relatively easier for an attacker to obtain keystroke timing information. In

particular, the shared event loop approach [133] and the I/O interrupts approach [75]

require that victims’ browsers support JavaScript, which is common for popular

browsers in the default setting. In addition, the CPU cache approach [76] and the

SSH approach [119] require no permission to obtain keystroke timing information.

It is also assumed that an attacker knows the layout of the keyboard (including

the size of each key and the distance between each key pair) which the target victim

uses in advance. This is a reasonable assumption since in most cases, the victim

inputs his/her PINs on the number pads of ATMs, POS terminals, or standard key-

boards. The layouts of these keypads are standardized or can be easily obtained in

the public place. Figure 3.1 shows the layout of a DELL SK-8115 numeric keypad

which is used in our experiments.

For the victim’s PIN typing behavior, it is assumed that one finger is used to

enter the whole PIN followed by an <Enter> key press to signal the end of a PIN

entry process. It is also a reasonable assumption since according to our observation

and the survey3 we conducted during the experiments, a majority of users (63.2%)

prefer using a single finger for PIN entry.

Online Attacks. In online attack settings, an attacker consecutively tries a number

of candidate PINs to attack a PIN-protected account until the correct PIN is found

or the account is locked (or the attacker aborts before the account is locked). The

online attack that has been studied in most previous research on PIN systems [84] is

random guessing attack in which an attacker inputs random PINs. In this work, we

consider four other online attack settings by assuming that an attacker has different

knowledge about a victim’s typing behavior or the target PIN:

3Please refer to the Section 3.6.4 for the detailed statistical results.
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(i) General attacks: An attacker collects a small amount of inter-keystroke timing

data from the attacker himself or people he/she recruits for model training and

obtains a single inter-keystroke timing sequence of a PIN entry made by a

victim for PIN inference.

(ii) Targeted attacks: An attacker collects a small amount of inter-keystroke tim-

ing data about a victim typing known numerical sequences for model training

and obtains a single inter-keystroke timing sequence of a PIN entry made by

the victim for PIN inference.

(iii) Multi-entry attacks: An attacker collects a small amount of inter-keystroke

timing data from the attacker himself or people he/she recruits for model train-

ing and captures several inter-keystroke timing sequences about a victim en-

tering the same PIN. In this case, the attacker may combine all inter-keystroke

timing sequences and obtain an averaged timing sequence for PIN inference.

(iv) Known digits attacks: An attacker knows certain digits of a target PIN be-

fore launching our general attacks. Such knowledge may be attained from

various side-channel attacks [32, 150, 115, 80, 135, 126] or shoulder surfing

attacks [127].

Limited number of login attempts. Most PIN systems enforce suspicious login

detection and lockout [43], and thus the number of PINs an attacker may try in

an online attack is limited. A successful online attack is defined as an attacker

hitting the correct PIN within the number of allowed attempts. The number of login

attempts is normally restricted to 3 for PINs with payment cards. When a payment

card is used on a POS terminal or with a card reader, entering a PIN wrongly for 3

times may get the card locked. This limit is usually larger for mobile devices. For

example, an Android device gets locked temporarily for 30 seconds after every 5

failed attempts, while an iOS device is restored to factory settings after 10 failed

logins. Other cases limit online attackers to no more than 100 consecutive failed
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attempts on a single account according to the digital authentication guidelines [55]

and electronic authentication guidelines [54]. In our experiments, we demonstrate

the success rates of our attacks with various limits on the number of consecutive

login attempts.

Offline Attacks. In offline attack settings, it is assumed that an offline validation of

guessed PINs can be performed. This is a less realistic scenario since users’ PINs

are usually stored in tamper-resistant hardware security modules on the server side

as a common practice. Therefore, we focus on the online attacks in this work.

3.3 Attack Methodology

In this section, we describe the steps of our inter-keystroke timing attacks in detail.

Figure 3.2 shows an overview of our inter-keystroke timing attacks, including a

learning phase and an attacking phase. In the learning phase, an attacker trains a

cognitive model based on certain collected data and builds a timing dictionary. In

the attacking phase, the attacker (i) observes one or more entries from a victim, (ii)

calculates the similarity between the timing sequence of the observed PIN entry and

the calculated timing sequence of each entry in the timing dictionary, (iii) ranks all

candidate PINs according to the similarity values, and (iv) attempts to login to the

victim’s account using the PINs in the ranked list starting from the top in an online

attack.

3.3.1 Learning Phase

Data Collection. In the learning phase, an attacker needs to collect the inter-

keystroke timing sequences for a small number of key pairs for model training.

Since our cognitive model consists of two parameters, it requires that the training

data consists of the inter-keystroke timing sequences for at least two key pairs (1,350

key pairs are used in our experiment). The training data used in the learning phase

can be collected from the attacker himself or people he/she recruits. The simplest
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Table 3.1: A segment in the inter-keystroke timing dictionary used in our experi-
ments.

PINs K1-K2 K2-K3 K3-K4 K4-K5 K5-K6 K6-K7

504316 232.9502 232.9502 237.2201 231.3787 237.2201 226.0874
504317 232.9502 232.9502 237.2201 231.3787 231.3787 268.5020
504318 232.9502 232.9502 237.2201 231.3787 237.2201 256.9941
504319 232.9502 232.9502 237.2201 231.3787 250.0087 247.2787
504320 232.9502 232.9502 237.2201 199.0121 203.7241 244.2814
504321 232.9502 232.9502 237.2201 199.0121 199.0121 254.0817
504322 232.9502 232.9502 237.2201 199.0121 135.9120 232.9502
504323 232.9502 232.9502 237.2201 199.0121 199.0121 203.7241
504324 232.9502 232.9502 237.2201 199.0121 214.2976 259.6575
504325 232.9502 232.9502 237.2201 199.0121 199.0121 243.2131

way to collect training data is to implement a keylogger which records the key code

of every keystroke event and the corresponding timestamp to get the ground truth.

Cognitive Model Training. With the training data, the attacker can estimate the

coefficients of the linear equation (Equation 3.1) in our cognitive model using the

standard least squares method.

Timing Dictionary Building. Once the cognitive model is fixed, the attacker

can compute the inter-keystroke timing sequences for all PINs and then gener-

ate a timing dictionary D = {(PINi,
−→
Ti)} for i = 1, 2, ..., 10l where

−→
Ti =

(∆Ti1,∆Ti2, ...,∆Til) and l is the PIN length. Here, ∆Tij is computed according to

the cognitive model for j-th key pair (Kij, Ki(j+1)) in the i-th PIN (Ki1, Ki2, ..., Kil),

where j = 1, 2, ..., l and Ki(l+1) =< Enter >. Table 3.1 shows a segment in the

inter-keystroke timing dictionary used in our experiments.

3.3.2 Attacking Phase

Data Collection. In the attacking phase, an attacker needs to obtain a single inter-

keystroke timing sequence
−→
T of a PIN entry made by a victim for PIN inference.

Similar to each timing sequence in the timing dictionary,
−→
T is an l-dimensional

sequence, where l denotes the length of the target PIN.

Similarity Calculation. Once the attacker has an observed timing sequence
−→
T of
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the target PIN (from a victim) and a timing dictionary D, he/she can measure the

similarity between
−→
T and each timing sequence in D.

There are many similarity metrics the attacker can use. We test three different

metrics (cosine similarity, Euclidean distance and Pearson product-moment corre-

lation coefficient) and discover that the cosine similarity gives the best results in

most attacks. The cosine similarity is a measurement of the level of similarity be-

tween two vectors
−→
A and

−→
B that returns the cosine of the angle between them and

is computed as follows:

cos =

−→
A ·
−→
B∥∥∥−→A∥∥∥ · ∥∥∥−→B∥∥∥ =

∑l
i=1 aibi√∑l

i=1 a
2
i ·
√∑l

i=1 b
2
i

, (3.2)

where ai and bi are the i-th elements of l-dimensional vectors
−→
A and

−→
B , respec-

tively. The time complexity for the similarity calculation is O(n), where n is the

number of all possible PINs. The cosine similarity is scale-free, i.e., the amplitudes

of
−→
A and

−→
B have no impact to the result. This feature improves the robustness of

our attacks against variation of typing speeds between victims and different users in

the training data, which thus contributes to the user independence of our approach.

Ranking and using PINs in login attempts. The attacker then ranks all entries

in the timing dictionary according to their similarity values so that those entries

more similar to
−→
T appear closer to the top. Here, we use the Quicksort whose time

complexity isO(n∗log(n)) to rank all candidate PINs. Finally, the attacker attempts

to login to the victim’s account using the PINs starting from the top in the ranked

list in an online attack.

3.4 Experiments

An IRB-approved user study is conducted to collect users’ inter-keystroke timing

data about PIN entries on a numeric keypad. The data collected from participants

are kept confidential and anonymized. To examine the effectiveness of our attacks
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Table 3.2: List of PINs used in our experiments.

Level 1
777777 777333 222233 633333 555553
443333 088886 000553 055333 577773

Level 2
008853 166034 226633 515553 009666
800053 705333 100086 222253 100553

Level 3
911182 590253 537473 086483 084953
331086 410886 547733 537802 199993

Level 4
990872 098046 760973 301509 330117
301246 095653 589107 530271 603294

Level 5
420381 191061 806205 079039 033645
146928 501347 635210 684032 706759

to different types of PINs, we study the inner structure of the whole PIN space and

partition the PIN space into different strength levels. In this section, we present the

performance of our attacks in the general attack setting in which the training data

and testing data are collected from different users.

3.4.1 User Study

Our user study involves 55 participants, including 24 males and 31 females with

ages ranging from 19 to 34. All participants are students or members of staff at

our university. Each participant is paid 10 dollars as a compensation for his/her

time and effort. Since 6-digit PINs are commonly used in many PIN-based authen-

tication systems, we use 6-digit PINs as examples of our attacks. Our user study

consists of two sessions: training session and testing session. In both sessions, we

use JavaScript to record the key code of each keystroke event and the corresponding

timestamp to get the ground truth.

In the training session, 5 participants are asked to enter three 6-digit PINs (i.e.,

146928, 501347, 635210) on a numeric keypad. The PINs they typed are randomly

selected from the whole 6-digit PIN space. The participants are required to mem-

orize one PIN intentionally, type the PIN for several times as exercises and type

more times for data collection; then, they are required to forget the current PIN, and

proceed in the experiment with the next PIN. In our experiments, we observe that
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exercises for five times are sufficient for a participant to type a 6-digit PIN fluently.

Then the participants type each PIN for 15 times continuously for training data col-

lection. We ensure that each PIN entry is typed correctly. If a participant enters

incorrect digits and uses the <Delete> or <Backspace> key to correct an input,

he/she is required to retype the PIN.

In the testing session, we choose 50 PINs with 10 PINs randomly selected from

each of five PIN strength levels as listed in Table 3.2. The other 50 participants

(except the five in training to make our attacks user independent) are asked to enter

PINs on the same numeric keypad. Each participant is assigned to type 25 PINs

with 5 PINs chosen randomly from the 10 PINs in each PIN strength level. Similar

to the training session, the participants type each PIN for 5 times as practice and

type each PIN for 15 times for testing data collection. In total, 225 PIN entries are

collected for training and 18,750 PIN entries for testing.

The raw data of each PIN entry we collected consists of the timestamps of

(l+1) keystroke events for l-digit PINs, where the last keystroke is for pressing the

<Enter> key. We define the inter-keystroke timing between keystrokes Ki and

Ki+1 as the difference between the two consecutive key-down times to cover both

the time of finger movement between the two keys and the time for pressing the

second key:

∆Ti = T ↓Ki+1
− T ↓Ki

. (3.3)

Therefore, the inter-keystroke timing sequence of each PIN entry that is used in our

experiment is represented by an l-dimensional sequence
−→
T = (∆T1,∆T2, ...,∆Tl).

3.4.2 PIN Strength Level

We study the inner structure of the whole PIN space to examine the effectiveness

of our attacks to different PINs. We propose an approach to partition the whole

PIN space into different PIN strength levels according to the directional density of

the inter-keystroke timing sequences in the timing dictionary. Each inter-keystroke
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timing sequence in the timing dictionary can be considered as an l-dimensional

directional vector, where l is the PIN length. Intuitively, if a PIN vector locates in

a dense region according to the cosine similarity measurement in the vector space,

it is more difficult for an attacker to single it out, that is, infer the PIN. This implies

that such a PIN is more secure against our attacks since our attacks rank candidate

PINs according to the cosine similarity between each entry in the timing dictionary

and the observed timing sequence of a target PIN as explained in Section 3.3.2.

Based on this observation, we propose Algorithm 1 to measure the PIN strength of

l-digit PINs.

Algorithm 1 : PIN Strength Measurement
Input: A trained timing dictionary D = {(PINi,

−→
Ti)} for i = 1, 2, ..., 10l where

−→
Ti = (∆Ti1,∆Ti2, ...,∆Til).

Output: The strength measurement
−→
Si for each PINi.

1: for each vector
−→
Ti in D do

2: calculate the cosine similarity between
−→
Ti and all other vectors in D and

obtain a cosine similarity tuple (cosi1, cosi2, .., cosi(i−1), cosi(i+1), .., cosi(10l−1))

where cosij =
−→
Ti·
−→
Tj

‖−→Ti‖·‖−→Tj‖
3: rank all cosine similarities in descending order and obtain a new tuple

(cos′i1, cos
′
i2, ..., cos

′
i(10l−1)) where cos′i1 ≥ cos′i2 ≥ ... ≥ cos′

i(10l−1)

4:
−→
Si = (G1, G2, ..., Gl) where Gj = 1

9∗10j−1

∑
10j−1≤n≤10j−1 cos

′
n and j =

1, 2, ..., l.
5: end for

Algorithm 1 takes a trained timing dictionaryD as input. For each timing vector
−→
Ti for PINi in D, the algorithm first calculates the cosine similarity between

−→
Ti

and all other vectors in D. It then ranks all of the calculated cosine similarities

in descending order and divide them into l groups where the jth group consists of

(10j−1)th to (10j − 1)th cosine similarities. Finally, it calculates the average value

Gj of cosine similarities for group j, where j = 1, 2, ..., l. The algorithm output

an l-dimensional tuple
−→
Si = (G1, G2, ..., Gl) to represent the PIN strength for each

PINi, where i = 1, 2, ..., 10l. The overall time complexity of our PIN strength

measurement algorithm is O(l ∗ 102l) and its space complexity is O(l ∗ 10l).

With the strength measurement (G1, G2, ..., Gl) for all PINs, we partition the
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whole PIN space into (l-1) levels. First, an indirect stable sort with multiple keys

is performed on all PINs. To be specific, it first ranks all PINs by key G1, if two

PINs have the same value for key G1; then it ranks them by key G2; and so on. As

a result, it ranks all 10l PINs according to PIN strength in ascending order. The

first 100 PINs after ranking are categorized into level 1 which includes the weakest

PINs. The 101th to 1000th PINs are categorized into level 2; the 1001th to 10000th

PINs are categorized into level 3; and so on. In our experiments, we take 6-digit

PINs as examples and divide all 6-digit PINs into 5 categories. Level 1 to level 5

consist of 100, 900, 9,000, 90,000, 900,000 PINs, respectively.

We further study the distribution of human-chosen 6-digit PINs according to

our PIN space partition. The human-chosen 6-digit PINs are extracted from two

leaked large-scale password databases (i.e., Rockyou and CSDN) [22, 136]. In total,

we collect 2,353,101 leaked passwords and all of them are 6-digit PIN. Figure 3.3

shows the proportion of human-chosen PINs at each strength level and Figure 3.4

shows the averaged frequency of each PIN at different strength levels. The fre-

quency is calculated by the ratio between the count of leaked passwords at each

strength level and the number of PINs of the corresponding strength level. It is ob-

served that although the PINs at the lowest security level (i.e., level 1) account for

only 0.01% of the total, more than 2.7% of real users prefer to select PINs at this

level and the averaged frequency of at this level is significantly higher than other

strength levels. These results show that users tend to select weak PINs more often

than strong PINs. It is thus meaningful to evaluate PIN attacks at different security

levels.

3.4.3 Performance Evaluation

We evaluate the performance of our attacks in the general attack setting. First,

we use the inter-keystroke timing data from the training session of our user study to

train the cognitive model. The parameter a and b are 135.91 and 47.73, respectively.
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Figure 3.4: The averaged frequency of
each PIN at different strength levels.

Based on this trained cognitive model, we estimate the timing sequence of all 106 6-

digit PINs and generate a timing dictionary. According to our experiments, it takes

21.7s to generate a timing dictionary.

Then, we take each PIN entry typed by the participants from the testing session

as an independent attacking case. In total, there are 18,750 individual cases for 50

PINs. Note that the training data and the testing data in our user study are collected

from different groups of participants, which make our attacks user-independent. For

each attacking case, we measure the cosine similarity between the observed timing

sequence and each entry in the timing dictionary and rank all PINs according to

their similarity values in the descending order. Given an observed timing sequence,

it takes around 1s to get the ranking list of all candidate PINs in the general attack.

If the correct PIN ranks x-th in the ranked list, an attacker needs to login to target

victim’s account for x times until success.

The performance of such general attacks is shown in Figure 3.5, where the x-

axis denotes the position of a correct PIN in the ranked list and the y-axis denotes

the success rate of hitting the correct PIN in an attack. The success rate of our at-

tacks is calculated as the observed frequency that the correct PIN appears in the top

x ranked PINs across all attacking cases. Note that the success rate of our attacks is

0 before any successful case is observed. Figure 3.5 also shows the success rate of

random guessing attacks, assuming that the correct PIN has an equal probability to
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appear at any position between 1 and 106. The success rate of random guessing at-

tacks is
(
10l−1
x−1

)
/
(
10l

x

)
for an l-digit PIN where x is the maximum number of allowed

consecutive failures.

A general trend in Figure 3.5 is that it is more effective to attack PINs at lower

strength levels. Beyond our expectation, the performance of PINs at level 3 is better

than level 2 but the difference between them is not too significant. Maybe it is

because that number of samples in each levels is small in our user study. This trend

suggests that users should choose their PINs at the strongest strength level for better

security in the presence of inter-keystroke timing attacks.

Another trend in Figure 3.5 is that the performance of general attacks is much

better than random guessing attacks. In particular, if the number of allowed attempts

is limited to 100, 10 and 3, our general attacks improve the success rate by 522,

2247 and 4004 times on average of all PIN strength levels over the random guessing

attacks, respectively.

Our experimental results imply that the existing PIN-based authentication sys-

tems are vulnerable to our attacks, especially when they are launched at a large

scale. When a victim types a PIN at level 1, an attacker can launch a successful

attack within 10 attempts with a probability about 10%. It has been argued that

if 10% of accounts in an authentication system are compromised, an attacker may

access all resources of the system [41].

3.5 Other Specific Attacks

While the general attacks we discussed in the previous section are user-independent

(i.e., the training data and the testing data are collected from different users), we

examine other specific attacks to improve the success rate of general attacks with

different assumptions on attackers’ capabilities.
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Figure 3.5: The performance of general attacks.

3.5.1 Target Attacks

We first examine whether the performance of our attacks can be improved using

target victims’ data for model training which is also used in HMM-based attacks

in the literature [119, 151, 71]. Hence, we propose targeted attacks where an at-

tacker obtains a small amount of inter-keystroke timing data about a victim typing

known numerical sequences for model training. Although both targeted attacks and

HMM-based attacks train their models based on a victim’s own data, our approach

requires much less training data. Our approach requires an attacker to know the

inter-keystroke timing data about a few key pairs rather than all key pairs as required

in HMM-based attacks. To collect such training data in practice, an attacker may

trick a victim to install malware on his/her smartphone and collect inter-keystroke

timing data when the victim dials phone numbers. Another possible way of collect-

ing such data is to trick a victim to enter insensitive numerical sequences through

phishing websites or phishing phone calls.

The procedure of the experiment of targeted attacks is similar to that of general

attacks except that we use the inter-keystroke timing data from the testing session
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Figure 3.6: The performance of targeted attacks.

of our user study to train a cognitive model. In particular, to attack any one of the

25 PINs entered by a participant, we randomly choose 2 other PINs out of the 25

PINs entered by the same participant and use 30 collected inter-keystroke timing

sequences for these 2 PINs for model training. In comparison, previous HMM-

based attacks require that an attacker should obtain 30-50 inter-keystroke timing

sequence for each of 110 key pairs (10 × 10 digit-to-digit key pairs and 10 digit-

to-<Enter> key pairs) from a victim for model training. The same as the general

attacks, we take each PIN entry typed by the participants from the testing session as

an independent attacking case.

Figure 3.6 shows that targeted attacks have a similar trend as general attacks in

terms of the effectiveness of attacking PINs at different PIN strength levels. Com-

pared to general attacks, the success rate of targeted attacks is improved by about

4% on average for all levels. Considering that targeted attacks are user dependent,

and they do not improve the success rate significantly over the general attacks, at-

tackers may still prefer general attacks in practice.
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3.5.2 Multi-Entry Attacks

We then examine whether an attacker can improve his/her success rate if he/she

observes the victim’s PIN entry for multiple times. Hence, we propose multi-entry

attacks where an attacker captures the inter-keystroke timing sequences about a

victim entering the same PIN for multiple times. With k inter-keystroke timing

sequences of one PIN, an attacker can calculate an averaged timing sequence for

PIN inference.

First, the attacker normalizes each observed PIN entry’s inter-keystroke tim-

ing sequence so as to attain the same amplitude. The ratio of Sumi to Sum

is considered as the scaling value for the i-th inter-keystroke timing sequence
−→
Ti = (∆Ti1,∆Ti2, ...,∆Til), where Sumi =

∑
1≤j≤l ∆Tij , Sum = 1

k

∑
1≤i≤k Sumi,

and l is the PIN length.

Then, the attacker calculates the i-th scaled inter-keystroke timing se-

quence
−→
T ′i =

−→
Ti × (Sum/Sumi). Given k scaled timing sequences

−→
T ′1 =

(∆T ′11,∆T
′
12, ...,∆T

′
1l), ...,

−→
T ′k = (∆T ′k1,∆T

′
k2, ...,∆T

′
kl), the attacker generates an

averaged timing sequence (∆T ′1,∆T
′
2, ...,∆T

′
l ) where ∆T ′j = 1

k

∑
1≤i≤k ∆T ′ij .

Similar to the general attacks, the attacker trains a cognitive model from other

users’ inputs and builds a timing dictionary. The attacker then calculates the simi-

larity between the calculated averaged timing sequence and each entry in the timing

dictionary and ranks all PINs according to their similarity values. Finally, the at-

tacker attempts to login to the victim’s account using the PINs starting from the top

in the ranked list in an online attack.

In the experiment of multi-entry attacks, the same cognitive model and timing

dictionary are used as in general attacks. We take the averaged inter-keystroke

timing information of 10 PIN entries (i.e., k = 10) from each participant as an in-

dependent case. The procedure of the experiment of multi-entry attacks is similar

to that of general attacks except that we take the averaged timing sequence as the

observed timing sequence in each attacking case. Figure 3.7 shows that multi-entry
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Figure 3.7: The performance of multi-entry attacks.

attacks have a similar trend as general attacks in terms of the effectiveness of attack-

ing PINs at different PIN strength levels. Compared to general attacks, multi-entry

attacks achieves better performance when x ranges from 100 to 106 but achieves

worse performance to the PINs at level 2, 4, 5 when x ranges from 1 to 100. One

possible reason is that the number of samples in multi-entry attacks is much less

than general attacks and the observation of finding the position of correct PIN in

the top 100 is based on a large number of samples. In general, multi-entry attacks

outperform general attacks with insignificant improvement (below 2% on average

for all levels).

3.5.3 Known Digits Attacks

Considering that both targeted attacks and multi-entry attacks bring little improve-

ment over general attacks, we further propose known digits attacks which improve

the success rate significantly.

In this case, an attacker knows certain digits of a target PIN before launching

inter-keystroke timing attacks (e.g., through other side channel attacks[32, 150, 115,
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Figure 3.8: The performance of known digits attacks.

80, 135, 126] or shoulder surfing attacks [127]). Hence, he/she can reduce the

size of his/her timing dictionary. For example, if the first two digits are known to

the attacker which are ‘1’ and ‘2’, the reduced timing dictionary consists of 104
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candidate PINs which range from ‘120000’ to ‘129999’. The attacker measures

the similarity between the observed timing sequence and each timing sequences in

the reduced timing dictionary and ranks these 104 candidate PINs according to their

similarity values. Finally, the attacker attempts to login to the victim’s account using

the PINs starting from the top in the ranked list in an online attack.

In the experiment of known digits attacks, we use the same cognitive model as

in general attacks and generate reduced timing dictionaries. We evaluate the cases

where an attacker obtains 1, 2 or 3 digit(s) of a target PIN. For each attacking case,

one inter-keystroke timing sequence for each PIN entry is used. We enumerate all

cases where the known value(s) are at any position(s) of the target PIN (i.e., 6 cases

for known 1 digit, 15 cases for known 2 digits and 20 cases for known 3 digits for

each PIN entry). For the similarity calculation, we measure the similarity between

the observed timing sequence and each entry in the corresponding reduced timing

dictionary. When an attacker knows any k digits of an l-digit PIN, the success rate

of random guessing attacks is
(
10l−k−1
x−1

)
/
(
10l−k

x

)
where x is the maximum number of

allowed consecutive failures.

The results of known digits attacks are shown in Figure 3.8. It is clear that the

success rate of known digits attacks is significantly higher than general attacks. For

example, the success rates of inferring a target PIN at level 1 within 3 attempts

are 14.2%, 23.3%, and 34.9% when 1 digit, 2 digits, and 3 digits are known by the

attacker, and they are 1.6, 3.3, 5.4 times higher than general attacks, respectively. In

many cases, the success rate of guessing the correct PIN is above 10%. The results

show that known digits attacks are more practical than general attacks. Even known

digits attacks are applied to attack a single user or a small number of users, their

success rates are not impractically low. These results also indicate the effectiveness

of our inter-keystroke timing attacks to 3, 4 or 5-digits PINs and that the attacks

pose a greater threat to shorter PINs as expected.
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3.6 Discussions

In this section, we compare our attacks with HMM-based attacks to show the merits

of our approach. Then, we demonstrate that our attacks pose a serious threat to real-

world applications when applied at large scale. Next, we propose several feasible

countermeasures to mitigate our attacks. Lastly, we discuss the limitations of our

attacks.

3.6.1 Comparison with HMM-based Attacks

Most keystroke timing attacks in the literature follow a similar attacking framework

based on a Hidden Markov Model (HMM) [119, 151, 71]. Compared to HMM-

based attacks, our attacks have two merits.

The first merit is that our attacks are user-independent. The cognitive model

in our attacks captures the common characteristics across all skilled users typing

PINs so that it can be used to attack any users. In addition, the use of cosine sim-

ilarity in our attacks enables an attacker to rank all candidate PINs similarly for

inferring a target PIN even if different users may type the target PIN with different

speeds. In comparison, the HMM-based attacks relies on the distribution of inter-

keystroke timing for a specific user typing each possible key pair so as to calculate

the probability of any possible underlying keystroke sequence given an observed

inter-keystroke timing sequence. Because the distribution of inter-keystroke timing

for different users typing any same key pair may not be similar, the HMM-based

attacks are user-dependent. They require that an HMM be trained with the inter-

keystroke timing data for all possible key pairs collected from a target user, and

such a model is user dependent and has to be retrained from scratch if the target

user changes.

The second merit is that the cognitive model used in our attacks can be trained

based on inter-keystroke time intervals for a small number of key pairs (minimum

two key pairs). To launch an HMM-based attack, however, an attacker needs to
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collect a sufficiently large number of inter-keystroke time intervals for each possi-

ble key pair from a target user before launching the attack. For PIN inference, an

attacker needs to capture 30-50 inter-keystroke time intervals for each of 110 key

pairs (including 10× 10 digit-to-digit key pairs and 10 digit-to-<Enter> key pairs)

from a target user. It is usually difficult for an attacker to collect such large amount

of data before launching an online attack in practical settings. Under the adver-

sary model of our attacks, attackers cannot collect enough training data to support

HMM-based attacks.

3.6.2 Attack Threats to Real-World Applications

In general, the success rate of the proposed attacks may not be sufficiently high

to pose imminent danger to an individual user’s PIN if the attacker does not have

prior knowledge on any digits of the target PIN. However, our attacks are practical

in online settings because the attacks are user-independent and thus can be applied

to attack any number of users’ PINs in a large scale. To show the threats of our

attacks to real-world applications, we provide two examples where PINs are used as

the only credential to protect users’ accounts and where attackers can collect many

users’ inter-keystroke timing data for PIN entries using malicious JavaScripts.

One example is an Internet banking system of bank with pseudonym XYZ,

which is the largest bank in a Southeast Asia country. It has more than three million

Internet banking users. To login to an Internet banking account, a user needs to

input a user ID and a 6 to 9-digit PIN as the credential (most users choose 6-digit

PINs, which is the default case). Our tests show that users are not blocked within 50

login attempts. Although certain financial services (e.g. bank transactions) require

a second-factor authentication, much sensitive information (e.g. account balances,

usernames, addresses) can be leaked merely after PIN authentication. If ten percent

of users’ inter-keystroke timing data about PIN entries were collected, our online

attacks can be applied to all these users’ accounts with 50 tries per account, which
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do not lead to any account being locked in practice. Consequently, On the av-

erage, around 4.16% of users’ accounts would be compromised according to our

experimental results. In other words, more than 12,000 users’ accounts would be

compromised due to our attacks.

The other example is ABCpay (pseudonym) which is the largest third-party mo-

bile and online payment platform in Asia. It has more than 520 million users over

the world. To make a payment through its service, a user needs to input his/her mo-

bile phone number as user ID and a 6-digit PIN as password. It is not difficult for

attackers to obtain many users’ names, mobile phone numbers, and email addresses

by crawling public web pages. The login attempts of each user’s account in this

platform is limited to 3. On the average, an attacker needs to launch online attacks

to 83 users’ accounts in order to compromise one account. In other words, if our

attacks were applied to 1/1000 of users’ accounts, then 6,000 users’ accounts would

be compromised on the average. Our attacks would cause serious damages in this

case since attackers can transfer money from victims’ accounts to other accounts.

Considering that many financial institutions have a large number of users and

that malicious JavaScripts are easy to spread, our attacks pose a serious threat to

real-world applications when applied in large scale.

3.6.3 Mitigations

Increasing PIN length. The security strength of the most existing PIN systems

is chosen according to the success probability of random guessing attacks [147].

For example, the security strength for 6-digit PINs is considered to be 10−6. How-

ever, our study reveals that the inter-keystroke timing attacks significantly lower

the security strength of PIN systems. A simple approach to mitigating this threat

is to increase the PIN length. Our calculation suggests that users should increase

6-digit PINs to 10-digit PINs whose security strength under the inter-keystroke tim-

ing attacks is higher than that of 6-digit PINs under the random guessing attacks on
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Figure 3.9: A new keypad layout.

the average. This mitigation does not require any change to the hardware of cur-

rent PIN authentication systems, but at the expense of requiring users to memorize

longer PINs.

PIN selection policy. As shown in Section 3.4.3, the performance of our attacks

varies significantly when they apply to PINs at different strength levels. If a user

selects a 6-digit PIN at level 5 instead of level 1 to level 4, the probability of a

successful general attack within 100 attempts can be reduced by 870, 222, 251, and

43 times, respectively.

We thus suggest adopting a PIN selection policy where a user is required to

choose a PIN at level 5 when the user registers his/her account. If a user chooses a

PIN at level 1 to level 4, his/her registration would not succeed until the user changes

his/her PIN to level 5. Level 5 consists of 9 ∗ 105 PINs which account for 90% of all

6-digit PINs. It is thus relatively easy for a user to obtain a PIN at level 5 if he/she

simply chooses his/her PIN randomly.

Considering that the success rate of attacking 6-digit PINs at level 5 is still

around 10 times higher than random guessing attacks, to achieve a similar secu-

rity strength of 6-digit PINs under the random guessing attacks, we suggest users

choose 7-digit PINs at the strongest strength level. Note that when the PIN selection

policy is adopted, it is unnecessary for users to choose 10-digit PINs which has been

mentioned earlier.
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A new keypad layout. As it is shown in the cognitive model, the inter-keystroke

timing measurement for a user types a key pair on a keypad is mainly determined

by the distance between the two keys of the key pair on the keypad. Based on

this observation, we design a new keypad for PIN entry to mitigate inter-keystroke

timing attacks. As shown in Figure 3.9, the keypad is in a circular shape. All 10

digits (0-9) keys are evenly distributed on a circle. An <Enter> key is located in

the center of the keypad. When a user types his/her PIN, the user presses <Enter>

key after pressing each digit. When submitting the PIN, the user may press the

<Enter> key twice. During the PIN entry, the user always moves his/her finger

through the same distance for entering any digit, leading to similar inter-keystroke

timing sequence for entering any PINs.

Although a user may take double time for entering his/her PIN on this new

keypad, the security strength of a PIN system is improved significantly against the

inter-keystroke timing attacks. If this new keypad is adopted, the success rate of

inter-keystroke timing attacks would be similar to that of random guessing attacks.

We implement this keypad on a smartphone where the distances between any digit

key and <Enter> key is 1 inch. It takes around 2.5 seconds for a user to enter

a 6-digit PIN on the new keypad. In comparison, most existing leakage resilient

password systems which have the same security strength as that of 6-digit PINs

require hundreds of seconds for user authentication (e.g. [61, 7, 140, 74]).

Leakage resilient password systems (LRPSes). LRPSes [6, 61, 7, 140, 74, 15,

141, 148] are user authentication systems which do not disclose user credentials

to observers. Such systems are by design secure against any side-channel attacks

including our attacks. However, Yan et al. [147] point out that in order to be secure,

LRPSes have remarkably low usability. A secure LRPS usually takes hundreds of

seconds to complete an authentication session, which may not be practical in many

applications [61, 7, 140, 74].
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3.6.4 Limitations

Ecological validity. In our user study, we recruit students and young staff only

from a single university. The performance of our attacks may vary among different

populations. The ecological validity of our user study is limited, but the qualitative

facts in our research are likely to remain true.

Typing styles. In our experiments, we require all participants to enter their PINs on

a keypad using a single finger. We conducted a larger scale survey on user’s typing

habits through emails and social networks over three weeks. In total, we received

544 responses. The participants of the survey mainly came from Singapore, China

and UK. They were not limited to the students or staffs in universities. According

to the survey results, most participants reported that they tend to use a single finger

when they enter PINs on numeric keypads in real life. In particular, 344 participants

(63.2%) use one finger, 124 participants (22.8%) use two fingers, and 76 participants

(14.0%) use more than two fingers for PIN entry. In order to attack users who use

multiple fingers when typing PINs, our cognitive model should be extended to cover

different typing styles.

Typing error. During the process of entering PINs in real-world scenarios, users

may press a wrong digit and then use the <Delete> or <Backspace> key to cancel

the wrong input. We exclude this situation because it rarely happens in PIN entries.

We plan to address this issue and generalize our attacks for password inference in

the future.
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Chapter 4

UltraPIN: Inferring PIN Entries via

Ultrasound

4.1 Introduction

This chapter proposes UltraPIN, a novel and practical attack to recover PIN with

commodity smartphones by analyzing imperceptible acoustic signals issued by

smartphones and reflected by finger movements during PIN entries. Personal iden-

tification numbers (PINs) are numerical codes used widely in our daily life. PIN-

based user authentication originated with the introduction of automated teller ma-

chines (ATM) in 1967 [132] and it is still irreplaceable owing to the advantages of

its low-cost, ease of deployment, and relatively good security. According to a recent

report [103], about 3.24 million ATMs had been installed worldwide by 2018, and

most of them use PINs to identify users.

As claimed by Ravi Sandhu in 2003, PIN-based ATM systems provide good-

enough security in worldwide scale [111]. It is widely accepted that such systems

are secure enough while providing user-friendly services. The current ATM frauds

are nonzero, but they require highly capable attackers at a cost. In addition, cur-

rent ATM frauds focus mainly on stealing card numbers rather than stealing PINs.

According to a recent report [53], more than 46% data breaches lead to debit/credit
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Figure 4.1: Examples of keypads for PIN entries

card numbers being compromised while only 6% data breaches result in compro-

mised PINs. Current PIN stealing approaches, including shoulder surfing, hidden

camera spying, and social engineering based guessing, are difficult to launch in a

large scale. So far, it is mostly comfortable for users to use ATMs with tolerable

risks.

However, PIN-based user authentication may not be as secure as it appears to

be. In this chapter, we demonstrate a novel and practical attack, named UltraPIN,

to infer a typed PIN effectively. It leverages on an acoustic side-channel to infer

PIN entries on various keypads as shown in Figure 4.1. To launch an attack, an at-

tacker may pretend to be a consumer lining up behind a target victim or stay nearby,

holding smartphones in a distance as normal customers keep, where no line-of-sight

is seen between the attacker and the victim’s hand during PIN entry. The attacker

starts an UltraPIN app on his/her smartphones before the victim enters a PIN. Then,

UltraPIN continuously plays an inaudible ultrasound signal above 20 kHz and be-

low 24 kHz via the attacker’s smartphone speakers and keeps recording the received

signal from smartphone microphones during PIN entry. When the victim finishes

PIN entry, UltraPIN processes the recorded signal and displays a ranked list of can-

didate PINs on the attacker’s smartphones. It is highly likely that the attacker can

discover the victim’s PIN by testing several candidate PINs from the ranked list on

a target PIN-based user authentication system.

UltraPIN poses a serious threat to PIN based user authentication. On the one
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hand, cloning of ATM cards or credit cards is not an uncommon attack in the real

world [82]. Even with a cloned card, it still requires an attacker to know the correct

PIN in order to withdraw money from ATM or make a credit card payment in certain

countries. In such cases, UltraPIN serves as the missing piece to complete the attack

puzzle. On the other hand, users may reuse their ATM PINs in other applications

such as online banking and mobile payment [22]. UltraPIN would enable attacks to

such applications without the need of cloning victims’ cards.

UltraPIN can also be applied to compromise electronic door locks operated on

PINs. Nowadays, more and more condos, hotels, and office buildings use such

electronic door locks. In this scenario, staying too close to a target victim may raise

the victim’s suspicion. Instead, an attacker may deploy hidden wireless speakers

and wireless microphones around the victim’s door and stay 10 meters away from

the victim, which should not raise the victim’s alert. During the victim’s PIN entry,

the attacker uses UltraPIN on his/her smartphones to control the hidden speakers

and microphones via Bluetooth, while the rest of the attack is the same as in the

ATM case. Compared to hidden-camera spying where a high-resolution camera

must be placed at proper position and angle so as to capture the victim’s finger

movements with a line of sight, UltraPIN is more practical since the hidden speakers

and microphones can be placed at any positions near the door lock.

UltraPIN is designed based on the fact that a user’s finger movements on a key-

pad during PIN entry may cause distinguishable frequency changes (i.e., Doppler

shifts) of an acoustic signal and such changes reflect the user’s finger movements.

Our further studies demonstrate that different finger movement patterns can be clas-

sified according to the Doppler shifts; consequently, a ranked list of possible PINs

can be inferred from the classification results using a commodity smartphone.

The Doppler shift effect has been widely exploited by Doppler radars to locate

moving objects [142], for example, on fighter aircrafts and in meteorological ob-

servations [34]. Such specialized Doppler radars cannot function without emitting

microwaves at Giga-Hz level [142]. However, commodity smartphones used by
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UltraPIN cannot generate any acoustic signals above 24 kHz.

Several recent works [154, 138] exploit smartphones for tracking finger move-

ments from a distance shorter than 10 cm. In comparison, UltraPIN requires the

distance to be greater than 50 cm in order not to raise the victim’s suspicion. The

previous finger movement tracing techniques cannot be applied in UltraPIN for two

reasons. The first reason is that the energy of Doppler shifts recorded by attacker’s

smartphones is much lower (around 1/115) in our attacking scenario in comparison

to the Doppler shifts measured at a distance that is commonly used in the previous

works. In addition, the acoustic signals recorded by attacker’s smartphones involve

much more noises due to signal reflections from surrounding static objects and mov-

ing objects in our attacking scenario, which makes it more difficult to discern finger

movements and thus infer a PIN.

The second reason is that finger movements in the previous works are traced

based on a triangle relationship among a target user’s finger, a speaker and a micro-

phone (both are very close to the finger), where the ratio of the longest side to the

shortest side in the triangle is around 2:1. However, this ratio is from 10:1 to 30:1

in our attacking scenario, which would enlarge errors significantly in finger move-

ment tracing. In our attacks, the distance between microphone and speaker (which

are installed in the attacker’s smartphone) is neglected as it is much shorter than the

distance between the victim’s finger and the attacker’s smartphone. Consequently,

the previous finger movement tracing techniques are not applicable.

A series of technical innovations are developed to make UltraPIN effective and

robust. First, high-quality feature vectors are derived from low-energy and high-

noise ultrasound signals that are received by UltraPIN for inferring a target PIN

entry. This is achieved through (i) keypair segmentation, where a received sig-

nal is partitioned into successive keypair segments; (ii) signal energy enhancement,

where the signal energy of each keypair segment is enhanced by signal differenti-

ation; (iii) signal carrier removal, where the source signal and the signals reflected

by surrounding static objects are effectively removed; and (iv) frequency contour
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extraction, where the feature vector of each keypair segment is extracted from the

Doppler shifts of typing finger movements after the Doppler shifts of other moving

objects are filtered out.

Given feature vectors, UltraPIN generates a ranked list of possible PINs as PIN

inference result, from which an attacker can test on a target PIN-based user authen-

tication system. UltraPIN adopts a backward PIN inference strategy to achieve this.

First, UltraPIN trains a convolutional neural network (CNN) for classing a number-

to-Enter keypair from its feature vectors, and generating a ranked list for the last

PIN digit. Next, UltraPIN classifies each number-to-number keypair in a reverse

order, producing a ranked list for each PIN digit until the first digit. In this process,

UltraPIN trains a support vector machine (SVM) to determine whether or not a key-

pair is a repeated keypair. It further applies a CNN model to classify the keypair

among all non-repeated keypair classes. The last step of UltraPIN is to generate an

overall ranked list for inferring the target PIN, where the PINs in the list are ranked

in an anti-lexicographic order according to the ranked list for each PIN digit.

A series of experiments is conducted to evaluate the performance of UltraPIN.

Experimental results show that the success rate of recovering a PIN within three at-

tempts is about 75% in our recommended setting. This is a significant improvement

over random guessing, which requires about 750,000 attempts to achieve a similar

success rate. Experimental results also show that UltraPIN is user-independent and

robust. UltraPIN can be trained with data collected from any users, such as attackers

themselves or people hired by them; once trained, UltraPIN can be used to attack

any victims for PIN inference with high success rates. The success rates of UltraPIN

remain stable even if the settings for PIN inference are moderately different from

the settings in which UltraPIN is trained.

The runtime performance of UltraPIN is evaluated on commodity devices. It

takes hours for UltraPIN to be trained on a laptop with GPU in the training phase,

and less than a second for running on a commodity smartphone in the attacking

phase, with memory requirement below 207 MB on smartphone. Toward the end of
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this chapter, we also discuss an effective countermeasure to thwart UltraPIN attacks.

4.2 Preliminaries

In this section, we introduce the capability of current commodity smartphones

which are used by UltraPIN. We then introduce the concept of Doppler effect and

clarify the attack model for the design of UltraPIN.

4.2.1 Smartphones

Most commodity smartphones in the market are equipped with at least one micro-

phone and one speaker. Certain high-performance smartphones (e.g., iPhone XR,

iPhone XS [63], and Huawei P20) enjoy more than one pairs of microphone and

speaker to reduce background noises and support stereo sounds.

With powerful microphones and speakers, commodity smartphones may be used

for keystroke inference. Recent studies [72, 39] have shown that smartphone speak-

ers are capable of transmitting sound signals with a frequency up to 24 kHz. More-

over, smartphone microphones support audio recording at a sampling rate of 44.1

kHz or 48 kHz [45].

Smartphone has become a promising platform for machine learning and deep

learning which UltraPIN exploits for PIN inference. Apple has implemented a neu-

ral engine on its iPhone X and newer models to accelerate artificial-intelligence

software [116]. Android system has integrated TensorFlow Lite (TFLite) frame-

work since 2017 [52]. It is thus not difficult to deploy UltraPIN on learning-capable

smartphones. On the other hand, if an attacker’s smartphones are not capable of

running UltraPIN, the attacker can still use his/her smartphones to collect PIN en-

try information on-site, and send such information to a remote server or a personal

computer on which UltraPIN’s learning models are running for PIN inference.
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Figure 4.2: Sensing finger movement for PIN entry

4.2.2 Doppler Effect

Doppler effect is the change in frequency or wavelength of a wave (sound wave

in our context) for an observer who is moving in reference to the wave source. A

common example of Doppler effect is that the frequency of an ambulance’s siren

increases as the ambulance comes towards a listener and diminishes as it passes

away. This phenomenon was first described by Austrian physicist Christian Doppler

and has been widely exploited in astronomical measurements, radar, and modern

navigation [27, 142].

UltraPIN leverages on the Doppler effect of ultrasound signals to sense finger

movements during PIN entries. Figure 4.2 illustrates an attacking scenario in which

a user is typing a PIN on an ATM while a nearby attacker uses a smartphone to sense

the user’s finger movements for PIN inference. During this process, the smartphone

emits a human-inaudible ultrasound signal via its built-in speaker, and records the

received signals with its microphone. The Doppler effect in the received signals is

then analyzed by UltraPIN for PIN inference.

In particular, a finger typing a PIN can be considered as a virtual transmitter pro-

ducing reflected sound waves, where the distance between speaker and microphone
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on the same smartphone can be ignored in comparison to the much larger distance

between the smartphone and the target user. If the typing finger moves towards the

smartphone, the reflected frequency should be higher than the emitted frequency.

Conversely, if the finger moves away from the smartphone, the reflected frequency

should be lower than the emitted frequency.

If a typing finger moves at speed v, it generates a reflected sound wave at a

shifted frequency fr:

fr = ft

(
1 + v · cos(α)/vs
1− v · cos(α)/vs

)
= ft

(
vs + v · cos(α)

vs − v · cos(α)

)
, (4.1)

where ft is the frequency of the transmitted sound wave, vs is the speed of sound in

the medium, and α is the angle between the finger’s forward velocity and the line

of sight that is between the finger and the smartphone’s microphone. The Doppler

shift fd can be computed as:

fd = fr − ft = 2v · cos(α)

(
ft

vs − v · cos(α)

)
, (4.2)

Since the finger movement velocity is much smaller than the speed of sound (i.e.,

v · cos(α)� vs), we have (vs − v · cos(α))→ vs, and thus:

fd ≈ 2v · cos(α)
ft
vs

(4.3)

Equation (4.3) indicates that a faster radial velocity (i.e., larger v · cos(α)) leads

to a larger frequency shift. The variation of Doppler shifts depends on the direction

of the typing finger. The Doppler shift reaches its maximum when the typing finger

moves directly toward or away from the smartphone, and it diminishes with increas-

ing angle between the direction of finger motion and the direction of ultrasound

wave, until no Doppler shift is observed when the two directions are perpendicular.

The magnitude of Doppler shift can thus be used to detect the directions of finger

movements during PIN entry.
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UltraPIN chooses to emit ultrasound signals in a range of 20 kHz to 24 kHz.

Such ultrasound signals can be emitted from smartphone speakers and recorded

with smartphone microphones, but they are inaudible to human ears. The human

range of hearing is commonly given as from 20 Hz to 20 kHz. Since the speed of

sound is 346.6 m/s in dry air at 26◦C, the speed resolution is in a range of 346.6
24000

=

1.44 cm/s to 346.6
20000

= 1.73 cm/s. It is significantly smaller than the averaged

speed of finger movement during PIN entry, which is in a range of 10 cm/s to

20 cm/s [128, 79]. In theory, the resolution of UltraPIN is sufficient for sensing

typing finger movements from Doppler effect. The challenge is to ensure that the

sensing of typing finger movements is accurate enough for PIN inference with low-

energy of received signals in the presence of high noises in practice.

4.2.3 Attack Model

We consider a PIN inference attack happening on the site where a user enters his/her

PIN on a numeric keypad. The numeric keypad can be either hardware keypad

mounted on ATM, point of sale (POS) terminal, and electronic door lock, or soft-

ware keypad displayed on smartphone, smart tablet, and any other devices equipped

with a touchscreen. The experiments of this work focus on ATM keypads and POS

keypads, which are shown in Figure 4.6.

An attacker’s objective is to infer the target user’s PIN after PIN entry using

smartphones without raising the target user’s awareness. An attacker is referred

to either a single person holding one or more smartphones, or a small group of

persons each holding a smartphone. It is possible more than one smartphones are

used in a PIN inference attack. In case multiple smartphones are used, UltraPIN

controls all of them emitting inaudible ultrasound signals at different frequencies in

the range of 20 kHz to 24 kHz so as to avoid interference between their signals. It

is assumed that an attacker knows the layout of the keypad used for PIN entry. This

is a reasonable assumption since the layout of keypad is either standardized or can
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be easily obtained in a public place.

We consider two typical attack scenarios, including ATM/POS attack and elec-

tronic door lock attack. In ATM/POS attack, an attacker stays close to a victim

in a distance around 50 cm to 150 cm without raising the victim’s alert. The at-

tacker starts an UltraPIN app on his/her smartphones before the victim enters a PIN

on an ATM or POS keypad. UltraPIN continuously plays ultrasound signals via

the attacker’s smartphone speakers and keeps recording the received signals from

smartphone microphones during PIN entry. After PIN entry, UltraPIN processes

the recorded signals and displays a ranked list of candidate PINs as PIN inference

result.

An electronic door lock attack targets at someone entering a PIN for opening

a PIN-operated door lock. If an attacker stays too close to the person as in the

ATM/POS case, the attacker’s behavior may raise an alert. In such case, we suggest

that an attacker should place one or more hidden wireless speakers and microphones

(e.g., AirPods [5], HUAWEI FreeBuds [62]) at any places close to the door (e.g.,

within 50 cm-150 cm) and stay 10 meters away from the victim in order not to

raise the victim’s attention. Instead of using smartphone’s built-in speakers and

microphones, UltraPIN remotely controls the wireless speakers and microphones

via Bluetooth, while the rest of the attack remains the same as in the first scenario.

As for a victim’s PIN typing behavior, it is assumed that a single finger is used

to enter the whole PIN followed by an “Enter” keypress to signal the end of a PIN

entry process. According to our survey [79], a majority of users (about 63.2%)

prefer using a single finger for PIN entry.
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4.3 UltraPIN Design

4.3.1 Overview

UltraPIN consists of six major components, including Audio Capturing, Keypair

Segmentation, Feature Extraction, Movement Modeling, Learning Models, and Key-

pair Combination. While an attacker may use multiple smartphones in PIN infer-

ence attack, we focus on one smartphone in explaining the components unless oth-

erwise clarified since they are mostly the same on different smartphones. While

UltraPIN can be easily extended to attack PINs of various sizes, we focus on 6-digit

PINs, entering of which requires pressing six number-keys and one “Enter” key in

this work.

In Audio Capturing, UltraPIN triggers an attacker’s smartphone to emit an in-

audible ultrasound signal continuously through its speaker with a frequency taken

from the range of 20 kHz to 24 kHz during PIN entry. Meanwhile, UltraPIN acti-

vates the smartphone’s microphone to keep recording acoustic signal in this process.

In Keypair Segmentation, UltraPIN parses the recorded signal once the PIN en-

try process is complete, and segments the recorded signal into a sequence of six

signal segments, each of which corresponds to entering a keypair (i.e., moving a

typing finger from the previously pressed key to the current key) during PIN entry.

In Feature Extraction, UltraPIN extracts a feature vector from each segment of

signal according to its Doppler effect so as to represent the typing finger movement

of pressing a keypair during PIN entry. Because the recorded signal is usually weak

and involves high noises, UltraPIN applies a series of signal processing techniques

to improve the quality of feature extraction.

In Movement Modeling, UltraPIN groups all possible keypairs, including 100

number-to-number keypairs and 10 number-to-Enter keypairs, into 41 classes. The

keypairs in each class share the same finger movement direction and displacement

during PIN entry, which means that typing them during PIN entries causes similar
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feature vectors to be extracted.

In Learning Models, UltraPIN retrieves a feature vector as input for classifying

each keypair segment. In the case multiple smartphones are used for the PIN in-

ference attack, all feature vectors that are retrieved from these phones are used for

classifying each keypair. To maximize PIN inference accuracy, UltraPIN takes a

backward PIN inference strategy to classify the last keypair (i.e., number-to-Enter

keypair) first, and the other keypairs (i.e., number-to-number keypairs) in a reverse

order using two CNN models and one SVM model.

Finally, in Keypair Combination, UltraPIN combines candidate keypairs in the

reverse order and generates a ranked list of possible PINs. An attacker may test

the PINs one by one from the list on a target PIN-based user authentication system

(e.g., ATM, POS, and electronic door lock) within a limit of tries.

4.3.2 Audio Capturing

Audio Capturing leverages on either built-in speaker and microphone on a smart-

phone or wireless speaker and microphone connected to the smartphone. During a

PIN entry process, the speaker emits a continuous acoustic wave A sin(2πft) with

amplitude A and frequency f . Frequency f can be any value taken from 20 kHz to

24 kHz, which is beyond the hiring range of healthy young people (i.e., 20 Hz - 20

kHz [104, 100, 118]), and within a smartphone’s capability (see Section 4.2.1). In

our experiments, a PIN inference attack may employ at most three smartphones for

which the frequencies are set at 20.5 kHz, 21.5 kHz, and 22.5 kHz, respectively.

While the acoustic tone is played, the microphone keeps recording received sig-

nal. The sampling rate of signal recording should be no lower than 48 kHz according

to Nyquist–Shannon sampling theorem. In our experiments, the sampling rate is set

at 48 kHz, which is sufficient for launching effective attacks.

60



0 0.5 1 1.5 2
Time (s)

400

200

0

200

400

Am
pl

itu
de

Figure 4.3: Time domain of a beep
sound signal and key press timestamps

0 0.5 1 1.5 2
Time (s)

22450

22475

22500

22525

22550

Fr
eq

ue
nc

y 
(H

z)
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4.3.3 Keypair Segmentation

Keypair Segmentation segments the recorded acoustic signal into six successive seg-

ments, with each segment representing a keypair during PIN entry. Most, if not all,

PIN entry keypads produce a clear beep sound when a user presses a key. Note that

the beep sound is usually produced from a sound speaker connected to the keypad

instead of from the pressed key itself. This is to avoid keypad acoustic emanation

which leads to acoustic signature attacks [9]. While providing feedbacks to users’

keypress actions, such beep sounds serve as keypress landmarks for keypair seg-

mentation.

Keypair Segmentation identifies the timestamp of each keypress from the

recorded signal by locating the peak point of corresponding beep sound. To achieve

this goal, it first applies two band-pass filters to the recorded signal, one in the ultra-

sound frequency range f ± 50 Hz for producing an ultrasound signal that encodes

finger movement patterns, and the other in the hearing range f ′±200 Hz for produc-

ing a beep-sound signal, where f ′ is the average frequency of beep sounds, which is

500 Hz in our experiments. It then transforms the beep-sound signal into energy lev-

els e(t) using windowed Discrete Fourier Transform (DFT), where e(t) is the sum

of all DFT coefficients of the transformed signal at time t [78]. An accumulated en-

ergy E(t) is calculated using a sliding window of 10 samples, or equivalently 10/48
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ms under 48 kHz sampling rate:

E(t) =

t+10/48 ms∑
j=t

e(j) (4.4)

The timestamp of a keypress tp is identified as the timing of a peak point from the

accumulated energy:

tp = arg max
t
E(t)

s.t. E(t) ≥ E(j) for t− 10 ms ≤ j ≤ t+ 90 ms,

and E(t) ≥ Eθ where Eθ = maxE(t)/10

(4.5)

The search range is set to 100 ms because the period of keypress is typically about

100 ms [77, 131]. Threshold Eθ is empirically set to be one-tenth of the maximum

accumulated energy value. After all key press timestamps are obtained, they are

used to partition the corresponding ultrasound signal into six segments, each of

which corresponds to entering a keypair during PIN entry. To include keypress

time, each segment is extended by 100 ms on both sides. Hereafter, we call each

segment a keypair segment.

Figure 4.3 shows a beep-sound signal in time domain, where the vertical lines

represent identified key press timestamps. Figure 4.4 shows the frequency spectrum

of the corresponding ultrasound signal and its partition according to the identified

key press timestamps.

4.3.4 Feature Extraction

In Feature Extraction, UltraPIN generates a feature vector for each keypair segment,

which should reflect the finger movement pattern for typing a keypair during PIN

entry.

Since each keypair segment is of low-energy and high-noise, the major chal-

lenge in feature extraction is how to enhance signal energy and reduce signal noises.
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Figure 4.5: (a) Spectrogram of a keypair segment. (b) After signal energy enhance-
ment. (c) After signal carrier removal. (d) After frequency contour extraction.

According to our pilot study, the signal energy of Doppler shifts for each keypair

segment in our attacking scenario, where the smartphone-keypad distance is 75 cm,

is about one one-hundred-and-fifteenth of the energy of the Doppler shifts measured

at smartphone-keypad distance 7.5 cm that is commonly used in the previous finger

tracking attack [154]. The signal noises in our attacking scenario originate from

nearby acoustic signal sources, acoustic signal reflections by nearby static objects

and moving objects, and background noises. To address this challenge, Feature

Extraction is decomposed into three steps following keypair segment modeling, in-

cluding signal energy enhancement, signal carrier removal, and frequency contour

extraction.

Keypair Segment Modeling. Assuming that there is only one ultrasound signal

source (i.e., A sin(2πft)) with frequency f in the ultrasound frequency range f ±

50 Hz, a keypair segment s(t) can be modeled as the sum of all received signals,

including the signal received directly from the source, and signals reflected by static

objects and moving objects near the source. In general, s(t) can be modeled as

follows

s(t) =
∑
i

ai sin (2πft+ 2πfdt+ θi) (4.6)

In this model, ai denotes the amplitude of the signal reflected by the ith object; fd is
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the Doppler shift caused by the ith object, which is zero if the object is static, or the

signal is received directly from the source; θi denotes the relative phase difference

between the reflected signal and the source signal. Plugging in Equation (4.3) and

setting the starting time as zero for the keypair segment, one has

s(t) =
∑
i

ai sin

(
2πft+ 2πf · 2

vs

∫ t

0

vi(τ)dτ + θi

)
(4.7)

where vi(τ) denotes the radial velocity of the ith object (along the line of sight

between smartphone microphone and the object), vs is the speed of sound in the air,

and the term 2πf · 2
vs

∫ t
0
vi(τ)dτ indicates Doppler shift.

Signal Energy Enhancement. The signal energy of a keypair segment is enhanced

by differentiating it with respect to time

d

dt
s(t) =

∑
i

(
2πaif +

4πaifvi(t)

vs

)
· cos

(
2πft+ 2πf · 2

vs

∫ t

0

vi(τ)dτ + θi

)
(4.8)

The energy (which is directly proportional to the square of the amplitude) of each

component signal in the differentiated signal d
dt
s(t) is much higher than its coun-

terpart in the original keypair segment. In addition, the energy of each component

signal reflected by a moving object is additionally enhanced if its radial velocity

is non-zero. The differentiated signal is shown in Figure 4.5(b), while the original

keypair segment is shown in Figure 4.5(a). In these figures, the energy of each com-

ponent signal is color coded: the darker the color, the higher the energy. The brown

narrow bands in the center of these figures represent the source signal in combina-

tion with the signals reflected by static objects. The yellow signals in Figure 4.5(a)

represent the signals reflected by moving objects, including the typing finger during

PIN entry. The color of such signals turns red in Figure 4.5(b), indicating that the

energy of signal reflecting typing finger movement is significantly enhanced in this

process.

Signal Carrier Removal. Next, signal carrier components are removed from the
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differentiated signal, where signal carrier components are defined to be the source

signal in combination with the signals reflected by static objects, which correspond

to the brown narrow band in Figure 4.5(b). To achieve this goal, we multiply the

differentiated signal with signal sin(2πft), yielding sin(2πft) · d
dt
s(t). Applying

Equation (4.8), and the product-to-sum formula in trigonometric identities, one has:

sin(2πft) · d
dt
s(t)

=
∑
i

(
2πaif +

4πaifvi(t)

vs

)
· sin(2πft) · cos

(
2πft+ 2πf · 2

vs

∫ t

0

vi(τ)dτ + θi

)
=
∑
i

(
πaif +

2πaifvi(t)

vs

)
·
[

sin
(

4πft+ 2πf · 2

vs

∫ t

0

vi(τ)dτ + θi

)
−

sin

(
2πf · 2

vs

∫ t

0

vi(τ)dτ + θi

)]
(4.9)

The above equation shows that the transformed signal is composed of two types of

component signals, one with frequency around zero, and the other with frequency

around 2f (both with term 2πf · 2
vs

∫ t
0
vi(τ)dτ for Doppler shift).

Then, UltraPIN applies a band-pass filter in the frequency range ±50 Hz so as

to filter out all component signals of frequency around 2f , and keep all component

signals of frequency around zero. As a result, all signal carrier components are

removed. The filtered signal can be written as:

−
∑
i

(
πaif +

2πaifvi(t)

vs

)
· sin

(
2πf · 2

vs

∫ t

0

vi(τ)dτ + θi

)
(4.10)

Figure 4.5(c) shows the spectrogram of the filtered signal. Comparing to Fig-

ure 4.5(b), the brown narrow band representing all signal carrier components is

removed, while the Doppler shifts caused by all surrounding moving objects, in-

cluding typing finger movement, remain unchanged.

Frequency Contour Extraction. Given a filtered signal, the last step of Feature

Extraction is to filter out the Doppler shifts from all moving objects except from

the typing finger. In most cases, it is reasonable to assume that the typing finger
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should have the highest speed among all moving objects surrounding the attacker’s

smartphone, which leads to the largest frequency shift at each time point in the

filtered signal. A frequency contour is thus retrieved from the filtered signal to

represent the Doppler shifts from the typing finger only.

Given a signal within a frequency range, a frequency contour of the signal is

defined to be a time series of centroid frequencies [152, 98], where each centroid

frequency at time t is calculated as the weighted mean of all frequencies present

in the signal at time t. The weight of a frequency at time t in the signal is de-

fined to be its amplitude in the signal transformed by Short-Time Fourier Transform

(STFT) [112].

Two frequency contours are retrieved from the filtered signal, one within the

frequency range from 0 Hz to 50 Hz, and the other within the frequency range from

-50 Hz to 0 Hz. Figure 4.5(d) shows the frequency contours that are retrieved from

the filtered signal given in Figure 4.5(c).

The feature vector of the corresponding keypair segment, which is the output

of Feature Extraction, is the concatenation of the two frequency contours retrieved

from the filtered signal. In our experiments, it takes on average 3367.92 ms for

entering a 6-digit PIN and 561.32 ms for entering each keypair. The feature vector

of each keypair segment is a 40-dimensional real-valued vector as 20 samples are

evenly taken from each frequency contour.

4.3.5 Movement Modeling

Consider two typical keypads as shown in Figure 4.6. All keypairs, including 100

number-to-number keypairs and 10 number-to-Enter keypairs, are grouped into 41

classes according to finger movement patterns during PIN entry. The keypairs in

each class share the same finger movement direction and displacement, indicating

that typing these keypairs during PIN entries causes similar feature vectors to be

extracted. The 41 classes include 31 number-to-number classes, and 10 number-
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Figure 4.6: ATM keypad and POS keypad

to-Enter classes, where each number-to-Enter class consists of one keypair only.

Among the 31 number-to-number classes, it is worth noting that one class consists

of 10 repeated keypairs, including 0→ 0, 1→ 1 . . ., and 9→ 9.

For the ease of reference, a label is assigned to each class of keypairs. In partic-

ular, label l0 is assigned to the class of repeated keypairs; each of the other number-

to-number classes is associated with label li, where i ∈ [1, 30]; in addition, each of

the number-to-Enter classes is assigned with label l30+i, where i ∈ [1, 10]. Please

refer to the Table 4.1 for the composition of the 41 classes and their labels.

4.3.6 Learning Models

The process of entering a 6-digit PIN consists of typing six number-keys, K1,

K2 . . ., K6 followed by an “Enter” key K7. This process can be decomposed into

a sequence of 5 number-to-number keypairs K1 → K2, K2 → K3 . . ., K5 → K6

followed by a number-to-Enter keypair K6 → K7.

UltraPIN retrieves a feature vector for each keypair from the acoustic signal

recorded by a smartphone during a PIN entry. In the case multiple smartphones

are used for the PIN inference attack, all feature vectors that are retrieved on these

phones are used for classifying each keypair.

To maximize PIN inference accuracy, UltraPIN takes a backward PIN inference

strategy to identify the last keypair (i.e., a number-to-Enter keypair) first through a

convolutional neural network (CNN) model, and the other keypairs (i.e., number-to-
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Table 4.1: Composition of 41 classes of keypairs and their labels.

Label Keypairs
l0 0→ 0, 1→ 1, 2→ 2, 3→ 3, 4→ 4, 5→ 5, 6→ 6, 7→ 7, 8→ 8, 9→ 9
l1 1→ 4, 2→ 5, 3→ 6, 4→ 7, 5→ 8, 6→ 9, 8→ 0
l2 4→ 1, 5→ 2, 6→ 3, 7→ 4, 8→ 5, 9→ 6, 0→ 8
l3 1→ 2, 2→ 3, 4→ 5, 5→ 6, 7→ 8, 8→ 9
l4 2→ 1, 3→ 2, 5→ 4, 6→ 5, 8→ 7, 9→ 8
l5 1→ 5, 2→ 6, 4→ 8, 5→ 9, 7→ 0
l6 5→ 1, 6→ 2, 6→ 4, 9→ 5, 0→ 7
l7 3→ 5, 2→ 4, 6→ 8, 5→ 7, 9→ 0
l8 5→ 3, 4→ 2, 8→ 6, 7→ 5, 0→ 9
l9 1→ 7, 2→ 8, 3→ 9, 5→ 0
l10 7→ 1, 8→ 2, 9→ 3, 0→ 5
l11 1→ 8, 2→ 9, 4→ 0
l12 8→ 1, 9→ 2, 0→ 4
l13 3→ 8, 7→ 2, 6→ 0
l14 8→ 3, 2→ 7, 0→ 6
l15 1→ 3, 4→ 6, 7→ 9
l16 3→ 1, 6→ 4, 9→ 7
l17 1→ 6, 4→ 9
l18 6→ 1, 9→ 4
l19 3→ 4, 7→ 6
l20 4→ 3, 6→ 7
l21 2→ 0
l22 0→ 2
l23 1→ 9
l24 9→ 1
l25 3→ 7
l26 7→ 3
l27 1→ 0
l28 0→ 1
l29 3→ 0
l30 0→ 3
l31 0→ Enter
l32 1→ Enter
l33 2→ Enter
l34 3→ Enter
l35 4→ Enter
l36 5→ Enter
l37 6→ Enter
l38 7→ Enter
l39 8→ Enter
l40 9→ Enter
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Figure 4.7: Learning models in UltraPIN

number keypairs) in a reverse order through a support vector machine (SVM) and a

CNN. Without loss of generality, we assume that two smartphones are used for PIN

inference in the rest of this section. Let u = (x1, x2, . . . xn) denote the feature vector

that is retrieved from a keypair segment on one smartphone, and v = (y1, y2, . . . yn)

denote the feature vector that is retrieved from the same keypair segment on the

other smartphone (n = 40 in our experiments). The learning models in UltraPIN

are illustrated in Figure 4.7, and elaborated in the following.

All these learning models are trained in a training phase with training samples,

and evaluated in an attacking phase with testing samples. In our experiments, all

training samples are generated by two users typing all kinds of keypairs on a nu-

merical keypad, where each keypair is entered by each user repetitively for about

m/2 times (in our experiments, m = 200). In the attacking phase, the performances

of the learning models are evaluated with 10 target users entering 6-digit PINs on a

numerical keypad with the same layout (of the same size or different size), and these

10 users are different from the two users who are involved in the training phase.

Number-To-Enter Keypairs. Given two feature vectors u = (x1, x2, . . . xn) and

v = (y1, y2, . . . yn) corresponding to a number-to-Enter keypair, UltraPIN trains
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a CNN for classifying it among all 10 number-to-Enter keypairs, whose labels are

l31, l32, . . . l40. UltraPIN performs this classification first because it is relatively easy

to distinguish among all number-to-Enter keypairs. Recall that each number-to-

Enter keypair belongs to a single-member class, which means its finger movement

pattern is unique; hopefully, it can be classified accurately from its feature vectors

which encode the Doppler shifts of a typing finger’s movement.

UltraPIN exploits CNN because it works well with data that has a spatial re-

lationship and thus suits for processing the feature vectors that are retrieved from

frequency contours. The CNN model we used consists of 8 layers, including one

input layer, two convolutional layers, two pooling layers, two dense layers, and one

output layer.

The training of CNN is performed with 10 · m samples and associated labels,

where each of ten labels l31, l32, . . . l40 is associated with m samples. For each en-

tered keypair, UltraPIN derives two n-dimensional feature vectors, u and v, and

uses their outer product u ⊗ v to train the CNN model to identify the keypair’s

label. Compared to simple concatenation of these vectors, their outer product en-

codes their correlations in detail [60, 59, 19], leading to significant improvement in

classification accuracy (which is about 23.91% in our experiments).

After the CNN model is trained, it is used in the attacking phase to classify the

last keypair segment of a PIN entry. The PIN entry may be performed by any target

user different from the training users. For each number-to-Enter keypair entered in

the attacking phase, UltraPIN also retrieves two n-dimensional feature vectors, u

and v, and takes their outer product u ⊗ v as an input to the CNN model, which

outputs probabilities (p31, p32, . . . p40) for labels (l31, l32, . . . l40).

Number-To-Number Keypairs. Given two feature vectors u = (x1, x2, . . . xn)

and v = (y1, y2, . . . yn) corresponding to a number-to-number keypair, UltraPIN

first trains a SVM for classifying it between repeated keypair, whose label is l0, and

non-repeated keypair, whose label is l1∼30 representing all labels {l1, l2, . . . l30}. Ul-

traPIN then trains a CNN model for further classifying it among all 30 non-repeated
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keypairs, whose labels are l1, l2, . . . l30.

SVM is used to classify each number-to-number keypair into two classes first

because it is memory efficient and suitable for binary classifications [69]. It is highly

accurate for SVM to classify between repeated keypairs and non-repeated keypairs

because their finger movement patterns are clearly different, and so are the Doppler

shifts of typing finger’s movements which are encoded in the retrieved feature vec-

tors.

The training of SVM is performed with 100m samples with associated labels,

where 10m samples are associated with label l0; 90m samples are associated with

label l1∼30; and each sample is the concatenation (u, v) of u, v derived from a key-

pair entry. The SVM model is trained to classify each keypair’s label.

After the SVM model is trained, it is used in the attacking phase to classify the

first five keypair segments of a PIN entry. For each such keypair, UltraPIN retrieves

two n-dimensional feature vectors, u and v, and takes (u, v) as an input to the SVM

model, which outputs probabilities (p0, 1− p0) for labels (l0, l1∼30).

After each number-to-number keypair is classified into two classes by SVM,

it is further classified by a CNN model into 30 classes of non-repeated keypairs.

The training of this CNN model is performed with 90m samples and 30 associated

labels, where ki ·m samples are associated with each label li for i = 1, 2, . . . 30; ki

is the number keypairs in the class of keypairs with label li (see the Table 4.1 for

detail); and each sample is the outer product u ⊗ v of u, v derived from a keypair

entry. The CNN model is trained to classify each keypair’s label.

After the CNN model is trained, it is used in the attacking phase to classify the

first five keypair segments of a PIN entry. For each such keypair entered, UltraPIN

retrieves two n-dimensional feature vectors, u and v, and takes their outer product

u⊗ v as an input to the CNN model, which outputs probabilities (p1, p2, . . . p30) for

labels (l1, l2, . . . l30).

71



4.3.7 Keypair Combination

In the attacking phase, a target user enters a PIN by typing K1 → K2 → . . . K7 on

a numerical keypad, where K1, K2, . . . K6 are number-keys, and K7 is the “Enter”

key. After applying learning models to classify each keypair segment of the PIN

entry, UltraPIN outputs a ranked list of 729 PINs in the default setting, where the

size of the ranked list can be adjusted in practice.

In the process of generating the ranked list, UltraPIN starts from classify-

ing the number-to-Enter keypair K6 → K7. The CNN model trained for clas-

sifying number-to-Enter keypairs outputs labels (l31, l32, . . . l40) with probabilities

(p31, p32, . . . p40), where each of these labels represents a different number-to-Enter

keypair, and thus different number-key K6. UltraPIN sorts these labels according

to their probabilities from highest to lowest. Let the sorted labels be denoted as

(ls31 , ls32 , . . . ls40), where s31, s32, . . . s40 ∈ {31, 32, . . . 40}. Let key(lsi) denote the

number-key K6 corresponding to label lsi , where i ∈ {31, 32, . . . , 40}. In the de-

fault setting, UltraPIN takes a list L6 of three most likely number-keys for K6:

L6 = 〈key(ls31), key(ls32), key(ls33)〉

Next, UltraPIN classifies each of the number-to-number keypairs in the reverse

order. For each keypair Ki → Ki+1, where i = 5, 4, . . . 1, UltraPIN first classifies

it using the trained SVM model, outputting probability p0 for repeated keypairs of

label l0, and probability 1−p0 for non-repeated ones of label l1∼31. UltraPIN further

classifies the keypair using the CNN model trained for classifying non-repeated key-

pairs, which outputs labels (l1, l2, . . . l30) with probabilities (p1, p2, . . . p30). Next,

UltraPIN sorts all labels p0, p1, . . . p30 in two cases:

• Case 1: If p0 > 0.5, put l0 first, followed by sorting l1, l2, . . . l30 according to

their probabilities from highest to lowest.

• Case 2: If p0 ≤ 0.5, sort l1, l2, . . . l30 first according to their probabilities from
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highest to lowest, followed by l0.

The reason UltraPIN sorts all number-to-number keypairs in this way is that the out-

put of SVM is highly accurate for identifying repeated keypairs from non-repeated

keypairs, while CNN is used to further classify among different non-repeated key-

pairs.

For each candidate Ki+1 ∈ Li+1, where i = 5, 4, . . . 1, there are exactly 10

number-to-number keypairs Ki → Ki+1 (associated with different labels) ending

with Ki+1. Let these 10 keypairs be denoted as (ls1 , ls2 , . . . ls10) in the sorted list

of labels p0, p1, . . . p30, where s1, s2, . . . s10 ∈ {0, 1, . . . 30}. In the default setting,

UltraPIN takes a list Li of three most likely number-keys for Ki:

Li = 〈key(ls1), key(ls2), key(ls3)〉

where i = 5, 4, . . . 1.

Finally, UltraPIN generates a ranked list L = 〈K1 → K2 → . . . K6|Ki ∈

Li, i = 1, 2, . . . 6〉 for inferring the target PIN, where the PINs in the list are ranked

in an anti-lexicographic order; that is, they are ranked according to K6 in L6 first,

then K5 in L5, and so on. This anti-lexicographic order is consistent with the back-

ward PIN inference approach taken by UltraPIN.

In the default setting, the size of each candidate list Li is set to three for

i = 1, 2, . . . 6, yielding 729 PINs in the ranked list L. In our experiments, it is

observed that the probabilities of top three labels are usually significantly higher

than other labels for inferring each keypair segment. It is thus reasonable to keep

the top three candidates in each Li. On the other hand, most PIN-based user authen-

tication systems set a limit for the number of attempts which each user may make

for entering a correct PIN without being locked. Such limits are no greater than 100

in most cases. Therefore, it may not be too meaningful for UltraPIN to generate a

lengthy list. Nonetheless, the size of each Li is easily adjustable for producing the

ranked list L of different sizes.

73



4.4 Performance Evaluation

A series of experiments is conducted to evaluate the effectiveness and robustness of

UltraPIN. In this section, we first clarify experimental setting, including keypads,

smartphones, environments, and data collection. We then measure the overall ef-

fectiveness of UltraPIN in a default setting. To evaluate the robustness of UltraPIN,

we report the impacts of keypad layout, keypad size, keypad angle, smartphone

quantity and position, smartphone-keypad distance, and experimental environment.

Lastly, we present the runtime performance of UltraPIN on commodity devices.

4.4.1 Experimental Setting

Keypads. UltraPIN is evaluated on both ATM keypads and POS keypads as shown

in Figure 4.6. These two types of keypads have different layouts: while the Enter

key of ATM keypad is located at the right side of the keypad, it appears below

all number-keys on POS terminal. The keypads used in our experiments include a

120 mm× 90 mm ATM keypad and a 80 mm× 75 mm POS keypad. To examine

the robustness of UltraPIN, a downsized ATM keypad (96 mm × 72 mm) and an

enlarged POS keypad (120mm×112.5mm) are also used in our experiments. Note

that extraordinarily large or small keypads are rarely used for PIN entries in practice

since extraordinarily large keypads make it easy for shoulder surfing and video-

based attacks [150, 145, 115], while extraordinarily small keypads are difficult to

use. We thus choose PIN keypads of typical sizes in our experiments.

In order to obtain ground-truth data for evaluating UltraPIN, we implement a

keypad simulator on a tablet Surface Pro 4. The simulator can display various key-

pad layouts on a touch screen; whenever a key is pressed, it records the pressed key

as well as the timestamp of the keystroke as ground-truth in our experiments. The

keypad simulator produces a 500 Hz beep sound at the time of each keystroke.

Smartphones. Three smartphones are used in each experiment, including a

HUAWEI Mate10 device and two HUAWEI P20 devices. All smartphones run on
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Figure 4.8: In-lab environment

Android 9.0. The microphone and speaker are located at the bottom of each smart-

phone. UltraPIN is developed as an application installed on these smartphones with

the functions of ultrasound emission, sound recording, communications, and so on.

In practice, an attacker may activate UltraPIN on one smartphone before a target

user enters a PIN, while the other smartphones, if they are used for PIN inference,

are activated automatically by the first smartphone via Bluetooth. In our experi-

ments, we automate the activation by connecting UltraPIN on each smartphone to

the keypad simulator on the tablet via Wi-Fi. Whenever a user enters a PIN, the key-

pad simulator sends an indicator to UltraPIN on all three smartphones simultane-

ously. Receiving the indicator, UltraPIN activates the three smartphones to emit an

inaudible ultrasound signal through their speakers at frequency 20.5 kHz, 21.5 kHz,

and 22.5 kHz, respectively. Meanwhile, they keep recording acoustic signals with

their microphones at sampling rate 48 kHz.

Environments. UltraPIN is evaluated in both in-lab environment and on-site envi-

ronment. The in-lab environment is a group study room in a university as shown

in Figure 4.8. The on-site environment is a public place near a real ATM and a café

shop as shown in Figure 4.15, which is exposed to various kinds of noises, such as

people’s walking, talking, and background music. In our experiments, the tablet is

placed flat on a table with its screen/keypad-simulator upside; a user stands facing

the tablet, entering a PIN on its keypad simulator; a HUAWEI Mate10 smartphone
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is placed flat to the left of the tablet on the same table; two HUAWEI P20 smart-

phones are placed to the left-rear and right-rear of the tablet (at 7:30 o’clock position

and 4:30 o’clock position), respectively, on two other tables of the same height as

the first table. The distance between the microphone installed at the bottom of the

smartphone (or wireless microphone controlled by the smartphone) and the center

of the keypad simulator displayed on the tablet is set to 75 cm in the default setting,

and it is changed to 50 cm, 100 cm, and 150 cm in other settings. This distance is

referred to as smartphone-keypad distance hereafter.

Data Collection. Twelve volunteers are recruited, where two serve as “attackers”

training UltraPIN, while the other 10 serve as “victims” in the attacking phase. All

of them enter PINs using their right index fingers during data collection.

In particular, each of the two “attackers” is instructed to enter all possible key-

pairs, including 100 number-to-number keypairs and 10 number-to-Enter keypairs,

on both ATM keypad and POS keypad at smartphone-keypad distance 75 cm in the

in-lab environment. Each keypair is entered by each participant on each keypad for

100 times. In total, 22000 acoustic signals of keypair segments are collected from

the two “attackers” on each smartphone for each keypad in the training phase of

UltraPIN.

In the attacking phase, each of the 10 “victims” is instructed to enter 25 6-

digit PINs on the ATM keypad at smartphone-keypad distance 75 cm in the in-lab

environment. Each PIN is entered by each participant for 10 times. These 25 PINs

are shown in Table 4.2, which are randomly selected from the whole PIN space.

In total, 2500 acoustic signals of PINs are collected from the 10 “victims” on each

smartphone in the default setting. In other settings, 500 acoustic signals of PINs are

collected from two “victims” on each smartphone. The success rate of UltraPIN is

evaluated across all 25 PINs according to the acoustic signals collected.
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Table 4.2: List of PINs used in our experiments.

760973 222233 555553 990872 009666
088886 684032 501347 410886 055333
008853 033645 530271 330117 095653
705333 222253 420381 806205 226633
911182 084953 537473 777777 537802

4.4.2 Overall Effectiveness

In our experiments, no significant difference is observed for the effectiveness of

UltraPIN in inferring different PINs and across different users. Therefore, we report

the overall effectiveness of UltraPIN for inferring 25 PINs entered by 10 different

users in the default setting, where two smartphones are used in both training phase

and attacking phase at smartphone-keypad distance 75 cm for PIN entries on the

same ATM keypad.

The effectiveness of UltraPIN in the default setting is evaluated by averaging

its success rates with top-k candidates over 25 PINs and three combinations of two

smartphones (three smartphones are used in each experiment). The success rate with

top-k candidates for inferring each PIN is defined as the ratio of the sum of top-k

success hits to the total number of attacking cases (100 attacking cases for inferring

each PIN as it is entered by 10 users × 10 times per user). In each attacking case,

the top-k success hit is set to one if the top k candidates in the ranked list returned by

UltraPIN include the correct PIN entered, and it is set to zero otherwise. For ease

of presentation (especially in figures), we round all success rates to two decimal

places.

The success rates of UltraPIN with top-3, top-10, top-25, top-50, top-100 can-

didates in the default setting are 75%, 80%, 81%, 83%, 88%, respectively. We note

that the limit of PIN entry attempts is usually set to three times on ATM in most

places around the world [64]. The limit may vary on POS terminals, electronic

door locks, and other PIN-based user authentication systems. The success rates of

UltraPIN indicate that it is highly likely that a PIN attack would be successful; in
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Figure 4.9: Success rates of PIN attacks on various keypads

comparison, random guessing would require more than 750,000 attempts to achieve

similar success rates, which is either beyond the limit of PIN entry attempts or takes

too much time to complete on any PIN-based user authentication system.

A common trend that can be observed across all of our experiments is that the

success rate of UltraPIN with top-k candidates increases as k increases. However,

the slop of this trend is not too steep, indicating that UltraPIN is particularly suitable

for small k, and thus practical.

4.4.3 Impact of Keypad Layout, Size, and Angle

The keypads of various PIN-based user authentication systems may have different

layouts, sizes, or be installed at different angles. The impact of keypad layout1 to

UltraPIN is measured with two different layouts (see Figure 4.6), including ATM

keypad (120 mm × 90 mm) and POS keypad (80 mm × 75 mm). Our evaluation

results are shown in Figure 4.9, where legend “ATM train, ATM test” means that

UltraPIN is trained and tested on ATM keypad; and “POS train, POS test” means

that UltraPIN is trained and tested on POS keypad. While the success rates of Ul-

traPIN on POS keypad are lower than on ATM keypad, their differences are within
1A keypad’s layout is defined as the specific arrangement of the keys on the keypad, as well as

their relative positioning and sizes.
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10%, indicating that UltraPIN is still highly effective. The weaker performance

on POS keypad is probably due to its smaller size, and thus weaker Doppler shifts

caused by typing finger movements comparing to ATM keypad.

Knowing the keypad layout of a target system before launching a PIN infer-

ence attack, an attacker can always train UltraPIN with a similar keypad layout.

Nonetheless, many PIN keypads share similar layouts but in different sizes. It

may not be convenient for an attacker to train UltraPIN repetitively for similar

keypads in various sizes. Figure 4.9 shows that UltraPIN is still effective to in-

fer PIN entries on resized keypads without retraining, where legend “ATM train,

ATM Small test” means that UltraPIN is trained with ATM keypad, and tested with

downsized ATM keypad (96 mm × 72 mm); and “POS train, POS Large test”

means that UltraPIN is trained with POS keypad, and tested with enlarged POS

keypad (120 mm× 112.5 mm). The success rates drop by about 10% – 15% in the

ATM case, and within 10% in the POS case. It seems better for an attacker to train

UltraPIN on a large keypad and test it on a small keypad instead of vice versa.

In practice, a PIN keypad may be installed at various angles between keypad sur-

face and ground surface. While ATM keypads and keypads of electronic door locks

are usually installed at 0◦ and 90◦, respectively, POS terminals may be installed at

various angles between 0◦ and 90◦. In our default setting, the keypad is flat at angle

0◦, and all smartphones are coplanar with the keypad’s surface. Recall that UltraPIN

infers PINs according to the Doppler shifts received by each microphone, which are

determined by a typing finger’s radial velocity along the line of sight between the

typing finger and the microphone (see Equation 4.3). UltraPIN’s performance is not

affected by any change in keypad angle as long as all microphones (either smart-

phone microphones or wireless microphones controlled by smartphones) are copla-

nar with the keypad’s surface, and their relative positioning remains unchanged.

Nonetheless, we need to consider the case in which a recording microphone is

not coplanar with the keypad’s surface in the attacking phase. Figure 4.10 shows

the performance of UltraPIN, which is trained on POS keypad at 0◦ keypad angle,
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Figure 4.10: Success rates of PIN attacks at various keypad angles

for attacking PIN entries on POS keypad at different keypad angles, including 0◦,

30◦, and 60◦. Even if the success rates of UltraPIN drop considerably at 30◦ and 60◦

compared to 0◦, they are still within the same order of magnitude.

We note that POS terminals are seldom installed at 90◦ as keypads of electronic

door locks. In this latter case, it may raise an alert to a target user entering a PIN

code while an attacker stands nearby launching a PIN inference attack with smart-

phones. To avoid this alert, an attacker may attach hidden wireless speakers and

wireless microphones (e.g., AirPods [5], HUAWEI FreeBuds [62]) to the victim’s

door surface (it is equivalent to the 0◦ setting since the speakers and microphones

are coplanar with the door keypad) or close to the door surface for better perfor-

mance. The attacker may stay 10 meters away from the victim, using UltraPIN on

his/her smartphones to control the wireless speakers and microphones via Bluetooth

for launching a PIN inference attack. Since the layouts of electronic lock keypad

are not as standardized as ATM and POS keypads, we do not evaluate UltraPIN on

numerous electronic door keypads. While the principle of UltraPIN attacks remains

effective, UltraPIN needs to be adapted to various layouts of electronic door locks

in practice.
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Figure 4.11: Success rates of PIN attacks with one smartphone
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Figure 4.12: Success rates of PIN attacks with two smartphones

4.4.4 Impact of Smartphone Quantity and Position

UltraPIN with a single smartphone is able to sense the radial velocity of a finger’

movement in one direction (along the line of sight between the finger and the smart-

phone). Intuitively, if an attacker uses more smartphones in both training and at-

tacking phases, UltraPIN may achieve higher accuracy. To measure the impact of

smartphone quantity, three smartphones are placed at a distance of 75 cm near the

keypad as illustrated in Figure 4.8. For ease of reference, let “Phone-L” denote
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Figure 4.13: Success rates of PIN attacks with three smartphones

the smartphone on the left side, “Phone-LR” denote the smartphone on the left-

rear side, and “Phone-RR” denote the smartphone on the right-rear side. UltraPIN

is trained and tested with various smartphones and their combinations, including

single phones (denoted by Phone-L, Phone-LR, and Phone-RR), two-phone com-

binations (denoted by Phone-LxLR, Phone-LRxRR, and Phone-LxRR), and three

phones (denoted by Phone-LxLRxRR).

Figures 4.11, 4.12, and 4.13 demonstrate the success rates of UltraPIN with

different smartphone combinations. The highest success rates are achieved with

two smartphones, with one placed on the left side and the other on the right-rear

side. Beyond our expectation, the success rates of UltraPIN with three smart-

phones, Phone-LxLRxRR, are similar to or worse than the success rates in the

two-smartphone cases. It would be sufficient to use at most two smartphones to

launch a PIN inference attack.

It is also observed that the success rates of UltraPIN vary if smartphones are

placed at different positions. A single phone placed on the left-rear side (Phone-

LR) performs considerably lower than the other two positions (left and right-rear)

probably because it is most difficult to sense a victim’s right hand’s typing (in our

experiments, all users use their right hands for entering PINs) from the left-rear side
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of the victim’s body.

4.4.5 Impact of Smartphone-Keypad Distance
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Figure 4.14: Success rates of PIN attacks at various smartphone-keypad distances

While UltraPIN is trained at smartphone-keypad distance 75 cm in our de-

fault setting, the success rates of it in the attacking phase are evaluated at different

smartphone-keypad distances, including 50 cm, 75 cm, 100 cm, and 150 cm. Fig-

ure 4.14 shows that UltraPIN performs better at 50 cm than 75 cm even it is trained

at 75 cm. With increasing smartphone-keypad distance, UltraPIN’s performance

drops, but not too drastically.

4.4.6 Impact of Experimental Environment

The performance of UltraPIN is also evaluated in the on-site environment (see Fig-

ure 4.15) and is compared to its performance in the in-lab environment. In both

cases, UltraPIN is trained in the in-lab environment in the default setting (at 75 cm

smartphone-keypad distance). Considering that a one-meter waiting line may be

drawn on the ground in front of an ATM in certain areas, an attacker is required to

hold smartphones one meter away from the victim’s keypad in the attacking phase.
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As it is shown in Figure 4.16, the on-site environment introduces only about 5%

performance loss due to environmental noises (e.g., people walking, talking, and

background music), indicating that most of such noises are effectively filtered out

in the feature extraction phase of UltraPIN.

Figure 4.15: On-site environ-
ment
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Figure 4.16: Success rates of PIN attacks in on-
site experiments

4.4.7 Runtime Performance of UltraPIN on Commodity Devices

The runtime performance of UltraPIN is dominated by its learning models, includ-

ing a SVM model and two CNN models. These learning models are trained on a

commodity personal computer (PC) in the training phase, and run on a commodity

smartphone in the attacking phase.

The training of three learning models is performed on a Lenovo Y7000P laptop

with Intel i7-8750H CPU and NVIDIA GeForce GTX 1060 GPU. All models are

written in Python; machine learning library scikit-learn is used for training the SVM

model, while TensorFlow deep learning framework is used for training the two CNN

models. In the default setting, it takes 2.5 hours to train the SVM model, 3 hours

to train the CNN model for number-to-Enter keypair classification, and 5.25 hours

to train the CNN model for number-to-number keypair classification. The runtime

performance in the training phase is measured on average among six experiments

on two different keypads and with three combinations of two smartphones.
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After training, the parameters of all models are saved to local files and compiled

into mobile applications for PIN inference attacks. These applications are written in

Java, using scikit-learn porter [91] for SVM classification and TensorFlow Lite [52]

for CNN model classification. Running on a HUAWEI P20 smartphone with Kirin

970 CPU and 4 GB RAM, it takes 16 ms for SVM classification, 3.6 ms for CNN

number-to-Enter keypair classification, and 10.8 ms for CNN number-to-number

keypair classification. Overall, it takes about 137.6 ms on average for UltraPIN

to infer each PIN entry (including classifying five number-to-number keypairs and

one number-to-Enter keypair) in the attacking phase. The memory requirement for

running UltraPIN on the smartphone is below 207 MB.

4.5 Discussions

4.5.1 Limitations

Twelve volunteers, including 11 students and one faculty member, were recruited

from a university for entering PINs in our experiments. Among different popula-

tions, UltraPIN’s performance may vary. Although the ecological validity of our

experiment is limited, we believe that the qualitative facts in our research remain

true.

In our experiments, all participants were instructed to enter PINs using a single

finger. According to our survey conducted in 2018 among 544 users across three

countries [79], 344 users (63.2%) prefer using a single finger for PIN entry. If some

users enter PINs with multiple fingers, it is more difficult for UltraPIN to capture

their finger movement patterns unless UltraPIN is trained with similar typing styles.

Wrong typing is not considered in our experiments. If a user types wrongly,

most ATM, POS, and electronic door locks provide a “Cancel,” “Clear,” or “×”

button for uses to terminate the current PIN entry and start a new one. UltraPIN

can be easily extended to cover this case: its Keypair Segmentation component may
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simply output the last six keypair segments.

UltraPIN relies on beep sounds that are produced during a PIN entry to segment

acoustic signals into keypair segments. If such peep sounds are not produced or

cannot be captured in rare cases, the accuracy of UltraPIN may decline. It remains

interesting to train a deep learning model to learn how to segment acoustic signals

into keypair segments without beep sounds. We leave this as a future work direction.

4.5.2 A Countermeasure

An effective defense to UltraPIN attacks is to randomize the layout of the keypad

for each PIN entry such that UltraPIN cannot map each key-position to a PIN-digit

for PIN inference. This requires that soft keypad be implemented on touchscreen,

and touchscreen be adopted by PIN-based user authentication system. While it is

possible to replace the existing hard keypads with soft, randomized keypads at a

large scale, the cost factor is not negligible. Another concern is user experience.

According to a usability evaluation [107], the average completion time for typing

each PIN digit on a randomized keypad is 35.04% longer than typing on a conven-

tional keypad.
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Chapter 5

Typing-Proof: Usable, Secure and

Low-Cost Two-Factor Authentication

Based on Keystroke Timings

5.1 Introduction

This chapter designs a usable, secure and low-cost two-factor authentication mech-

anism which eliminates user-phone interaction in most cases and immune to the ex-

isting attacks to recent 2FA mechanisms. Two-factor authentication (2FA) systems

are pervasively used for protecting login attempts and online transactions. They re-

quire users to provide two separate pieces of credentials for user authentication. The

first factor (credential) is typically a knowledge factor, where passwords or PINs

serve as something that only legitimate users should know. The second factor (cre-

dential) is typically a possession factor, where hardware tokens (e.g., ID cards, USB

tokens, and wireless tags) or software tokens (e.g., smart-phones or smart-watches)

serve as something that only legitimate users should possess.

Hardware token based 2FA introduces extra burden to users since they typically

require a user to carry and interact with a hardware token. A one-time code dis-

played on the hardware token should be submitted by the user to a server for user
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authentication. Besides its usability issue, a service provider must manufacture a

number of hardware tokens and distribute them to all customers, which is expensive

(e.g., $60 per token [2]) if the customer base is large. A hardware token usually

has a lifetime around 3 years; therefore a service provider needs to distribute new

tokens to each customer every 3 years, which also adds to the costs.

In recent years, due to the pervasive use of phones, SMS-based 2FA becomes

more popular. After a user’s first factor is verified by a service provider, a verifi-

cation code is sent to the user via SMS. The user needs to use this code to prove

the possession of the second authentication factor. This solution relaxes the require-

ment on additional hardware but still requires users to interact with their phones so

as to read and input verification codes during authentication processes. In addition,

a service provider bears a significant cost for sending verification codes via SMS to

users’ phones to complete all authentication sessions in daily operations.

To eliminate the user-phone interactions, Karapanos et al. proposed Sound-

Proof [67] recently which enables a server to verify a user’s second factor by match-

ing two pieces of ambient sounds recorded respectively by the user’s phone and by

the browser in a login computer during a short period of time (5 seconds in [67])

right after the server verifies the user’s first factor (i.e., username and password sub-

mitted to the server via the browser in the login computer) for each authentication

session. However, it has usability limitations such that it is not designed to be used

in quiet environments and it cannot work when the login computer has not been

equipped with a microphone or the browser in the login computer does not support

audio recording. In addition, this solution is vulnerable to certain practical attacks,

including sound-danger attack [153] and co-located attack [67].

In this chapter, we propose Typing-Proof, a usable, secure and low-cost two-

factor authentication system. In Typing-Proof, the second factor is the proximity

of a user’s phone to the computer being used to log in to an authentication server.

A user needs to place his/her registered phone near the login computer. After the

user passes the first-factor authentication using a browser in the login computer,
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he/she is required to type a random code by the user’s choice (i.e., a sequence of

any keys) on the computer’s keyboard. During the typing, the browser in the login

computer records the keystroke timing sequence (i.e., a sequence of all keystrokes’

timestamps) by JavaScript and the user’s phone records the keystroke sound. After

finishing the typing, the keystroke timing sequence is sent to the user’s phone via

the server. Then the user’s phone compares the keystroke timing sequence with the

recorded keystroke sound, and approves the second factor if they “match”, meaning

that the registered phone is near the computer. If this second-factor authentication

fails, Typing-Proof provides a backup solution where the user’s phone displays the

random code through an application. The user checks whether it matches the code

typed and displayed on the browser, and presses an “Approve” or “Deny” button

accordingly.

Typing-Proof is user-friendly. It requires no user-phone interactions in most

cases, and one-button press in the backup case. Typing-Proof works in any environ-

ment, even in a noisy place. It can be easily deployed since it is compatible with

all major browsers, login computers, and smartphones, and does not require any

additional plug-ins or external hardware to be used.

Typing-Proof is practically secure. In particular, Typing-Proof is more secure

than Sound-Proof since it is immune to sound-danger attack and co-located attack.

In sound-danger attack, an attacker deliberately makes a victim’s registered phone

to produce particular sounds. However, it is difficult to simulate keystroke sound on

a victim’s side remotely and such simulation can be easily blocked in Typing-Proof.

In co-located attack, an attacker logins to a victim’s account using 2FA in the same

environment with the victim. It is still difficult for the victim’s phone to capture the

attacker’s keystroke sound in Typing-Proof, except that the distance between the

attacker’s login computer and the victim’s phone is sufficiently short (e.g., within

100cm), which may raise the victim’s awareness.

Typing-Proof incurs significant lower costs compared to other solutions, includ-

ing Sound-Proof, hardware token based 2FA, and SMS-based 2FA. In particular,
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Typing-Proof lowers the charges of data transfer compared to Sound-Proof. Only

a keystroke timing sequence and a random code (around 250 bytes) need to be

sent from a user’s login computer to the user’s phone in Typing-Proof during the

second-factor authentication; this is smaller in size than the audio signal transmit-

ted in Sound-Proof. For hardware token based 2FA and SMS-based 2FA, they do

not involve any data transfer cost, but they cost much more on manufacturing hard-

ware tokens and sending short messages, respectively.

We have implemented a prototype of Typing-Proof for Android devices. Com-

pared to password-only authentication mechanisms, Typing-Proof takes around 4.3

seconds longer for completing user authentication on average. This additional time

is not only substantially shorter than the time overhead of 2FA mechanisms based

on verification codes (roughly 10.4 seconds longer than the password-only solu-

tion) but also shorter than Sound-Proof mechanisms (around 5 seconds longer than

the password-only solution). A user study we conducted shows that users prefer

Typing-Proof over both SMS-based 2FA [50] and Sound-Proof [67].

5.2 Assumptions and Goals

System Model. Our two-factor authentication system requires two devices – a com-

puter and a phone on the user side, and an authentication server on the server side

(hereinafter referred as the “server”). The computer is used to login to the user’s

account through a web browser application (hereinafter referred as the “login com-

puter”). The phone is installed with a “Typing-Proof” application which is bound

to the user’s account (hereinafter referred as the “registered phone”). Note that the

login computer and the registered phone can be the same physical device when a

user logs in from the browser on his/her registered phone.

During an authentication procedure, a user points his browser to the server’s

webpage and enters his/her username and password. The server verifies the user’s

credential and challenges the user to prove the second authentication factor.

90



Threat Model. We assume that an adversary has obtained a victim’s username

and password. This assumption is reasonable since password database suffers from

various cyber-attacks. Many companies, including Dropbox [68], LinkedIn [58],

Yahoo [117], are targets of password database leakage recently. An adversary is

successful in impersonating a victim user if the adversary is able to convince the

server that he/she also holds the second authentication factor of the victim.

We further assume that the adversary cannot compromise the victim’s registered

phone. In other words, the victim’s registered phone is trusted by the server. This

assumption is also shared by other two-factor authentication systems based on soft-

ware tokens.

We do not consider Man-In-The-Middle attack. Client-web authentication can-

not fully prevent such attacks even if web applications employ HTTPS communi-

cations [66]. We leave out active phishing attack where attackers trick users to visit

phishing websites and relay stolen credentials to legitimate websites in real-time.

Such attacks can be defended using anti-phishing technologies [46, 121].

Design Goals of 2FA Mechanism.

• Usability. A 2FA mechanism should be easy to learn and efficient to use. In most

cases, users should not be asked to interact with their phones. In particular, a

registered phone (i.e., software token) should work well even when the phone is

locked or the authentication application in it runs in its background. In addition,

the second authentication factor should require no memory demand for users.

• Security. A 2FA mechanism should be secure under a general threat model shared

by other 2FA mechanisms. It should be resilient to guessing. The second factor

should be independent with the first factor. This implies that the leak of any single

factor should not affect the security of the other factor.

• Low-cost. A 2FA mechanism should not consume too much computing resources,

especially for the authentication applications installed on registered phones. The

total costs using 2FA, including the costs at the server’s end (e.g., SMS fee and
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data transfer cost) and at the user’s end (e.g., data transfer cost), should be low or

negligible.

5.3 Typing-Proof

In this section, we introduce Typing-Proof in detail. Our solution uses password as

the first factor and the proximity of a user’s registered phone to a login computer

as the second factor. The proximity of the two devices is determined by comparing

the keystroke timing sequence recorded by the login computer for the user’s typing

of a random code on the computer with the keystroke sound recorded by the user’s

registered phone which is placed closed to the login computer. We analyze that our

approach is usable, secure and low-cost.
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Figure 5.1: The overview of Typing-Proof two-factor authentication login proce-
dure.
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5.3.1 Enrollment and Login

Similar to other 2FA mechanisms based on software tokens, Typing-Proof requires

a Typing-Proof application to be installed on a user’s smartphone as a software

token and be bound to his/her account on the server. This is a one-time operation,

which can be carried out using similar existing techniques to enroll software tokens

(e.g., [50, 67]).

Figure 5.1 shows an overview of the login procedure, in which a user places

his/her registered phone near a login computer and uses the login computer to login

to a server. In the login procedure, a user points the browser to the URL of the

server on a login computer and enters his/her username and password. If both user-

name and password are correct, the server sends two separate indicators to the login

computer and the user’s registered phone, respectively for activating the second au-

thentication process. Upon receiving an indicator, the browser pops up an input box

for the user to type a random code by the user’s choice. At almost the same time,

the registered phone receives another indicator and starts recording audio through its

embedded microphone. During the user’s typing, the browser records a timing se-

quence of the user’s keystrokes using JavaScript. After finishing typing, the browser

stops recording and sends the random code as well as the keystroke timing sequence

to the registered phone through the server. When receiving the random code and the

keystroke timing sequence, the registered phone stops recording and compares the

keystroke timing sequence with the recorded audio signal for the second-factor au-

thentication. In particular, it calculates a similarity score between the two. If and

only if the similarity score is above a threshold τsim, the Typing-Proof application

in the registered phone concludes that it is close to the login computer and informs

the server that this login attempt is legitimate. Note that this second-factor authen-

tication process is automatically carried out without any user-phone interactions.

When a user logins to his/her account using Typing-Proof in an abnormal en-

vironment, such as the keyboard is soundless, or the environment is too noisy, the
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automatic second-factor authentication may fail. Typing-Proof provides a backup

solution where the registered phone displays the random code and ‘Approve/Deny’

buttons. The user presses an ‘Approve’ and ‘Deny’ button to manually accept or re-

ject the login attempt after checking whether the random code displayed on the reg-

istered phone is the same as the one typed and displayed on the login computer. Our

approach is specific to our proposed scheme and securer than the existing one-button

authentication solutions described in Section 2.2 since it is immune to the synchro-

nized login attack: the user can easily identify his/her login request by checking the

random code displayed on the registered phone.

For the security reason that an attacker may infer the password from keystroke

timing information [119, 151], the keystroke timing sequence is recorded from typ-

ing a random code instead of from password entry. In addition, all browser-server

and phone-server communications over the Internet are transmitted via HTTPS and

the server does not need to store any keystroke information (i.e., keystroke timing

sequence, random code, and keystroke audio sample).

5.3.2 Similarity Score

The Typing-Proof application on a registered phone computes a similarity score

between a keystroke timing sequence and a piece of audio signal in three main steps

including noise reduction, energy level extraction, and cross-correlation.

Noise Reduction. The environment where a user conducts his/her authentication

may have various kinds of noise, such as other users’ typing on their computers,

people’s talking, and background music. A user’s keystroke sound using Typing-

Proof may be covered by such noise. We observe that the keystroke sound mainly

lies in the frequencies higher than 15,000Hz. Therefore, we utilize a high pass filter

to remove the noise below. Figure 5.2(a) and Figure 5.2(b) show a raw audio sample

recorded in a Starbucks café and the corresponding filtered audio sample. We have

evaluated this step over a number of samples, and it turns out that keystroke signals
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(a) The raw audio signal (b) The filtered audio signal

(c) The energy level signal
(d) The energy level signal with 

corresponding keystroke timing vertical

Figure 5.2: Example of an audio signal which is recorded in a café.

can be correctly ‘sanitized’ in most cases.

Energy Level Extraction. Similar to previous study [9, 18, 155, 131], we ob-

serve that the acoustic signal of one keystroke usually involves three peaks: touch

peak, hit peak, and release peak. According to our experiments, when a registered

phone is placed more than 50cm away from the keyboard of a login computer or

the environment is too noisy, the touch peak and the release peak may become in-

conspicuous while the hit peak remains clear. We thus use the hit peak to serve as a

landmark of a keystroke. To highlight the hit peak, we transform the signal sequence

into energy levels using time windows. Particularly, we calculate the energy levels

of a keystroke sound using windowed discrete Fourier transform (DFT) and take

the sum of all FFT coefficients as its energy. Figure 5.2(c) shows the energy-level

signal corresponding to the filtered audio signal that is shown in Figure 5.2(b).

Cross-correlation. We choose cross-correlation as our similarity metrics. Cross-

correlation is a standard measure of similarity between two time series. We use

x to denote the energy-level signal converted from the audio signal recorded by a

registered phone and use k to denote the keystroke timing sequence recorded by the

login computer. First, we transform the keystroke timing sequence k into a pulse
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sequence y:

y[t] =


0 if t is not a element in k

1 if t is a element in k
(5.1)

where t ranges from 0 to the length of the energy-level signal x. Given two time

series x and y, we then let:

CCx,y(l) =
n−1∑
i=0

x[i] · y[i− l] (5.2)

This is a sliding dot-product of the two time series, where y is shifted by l samples

over x. To accommodate different amplitudes of the two signals, the cross correla-

tion is normalized as:

CC ′x,y(l) =
CCx,y(l)√

CCx,x(0) · CCy,y(0)
(5.3)

where CCx,x(0) and CCy,y(0) is the auto-correlation. The cross-correlation is

maximized at the offset l where the two time series are most similar. We define

maxl(CC
′
x,y) to be the similarity score between the keystroke timing sequence and

the audio signal where l is bounded between 0 and tmax. Figure 5.2(d) shows a plot

of the keystroke timing sequence and the audio signal where the two time series are

matched best. The red vertical lines in the Figure 5.2(d) denote the timestamps of

all keystrokes.

5.3.3 Usability Analysis

Typing-Proof requires users to place their phones near the login computer but it

does not require users to interact with their phones in most cases. Users need not

take any action to launch the Typing-Proof application on their registered phones

before they conduct authentications. Even the Typing-Proof application is running

in the background, or the registered phone is locked, the Typing-Proof application

can still be activated to record keystroke sound in the second-factor authentication
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process as long as the registered phone is connected to a network.

The usability of Typing-Proof is slightly lower than the user authentication with

password only. In most cases, Typing-Proof requires no user-phone interactions

for 2FA. It takes 4.3 seconds on average without user-phone interactions, and it

takes additional 7.1 seconds on average for using the backup solution in case it is

triggered.

The usability of Typing-Proof is significantly higher than Sound-Proof. First,

Sound-Proof is not designed to work in a quiet environment while Typing-Proof

works well in various environments. Second, Sound-Proof requires a login com-

puter to equip with a microphone for audio recording while Typing-Proof does not

require any additional hardware. Third, many browsers (e.g., Internet Explorer and

Safari [87]) do not support audio recording. In comparison, Typing-Proof can work

with all major browsers since they all support keydown event API. On the other

hand, we acknowledge that Sound-Proof is convenient to use since it does not re-

quire random typing.

The usability of Typing-Proof is also significantly higher than hardware to-

ken based 2FA and SMS-based 2FA. Typing-Proof does not require users to re-

member anything. In the backup solution, users need to check whether the ran-

dom code displayed on the registered phone is the same as the one typed and

displayed on the login computer. According to a quantitative usability analysis

framework [147], the cognitive workload of this comparison can be calculated by

0.4077 · dx/4e = 0.101925 ·x (seconds), where x is the length of random code. The

cognitive workload is about 1.02 seconds for x = 10. However, for hardware token

based 2FA and SMS-based 2FA, a user needs to memorize the verification code (in

most case, the length of the code is 6) temporarily and then inputs it into the browser

on a login computer. The memory demand in these solutions can be calculated by

d6/4e /29.6% = 6.76 (seconds) when the length of a verification code is 6 [147].

Therefore, Typing-Proof takes a shorter time for cognitive operations than hardware

token based 2FA and SMS-based 2FA.
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5.3.4 Cost Analysis

The costs for Typing-Proof stem from data transfer. During the second-factor au-

thentication of Typing-Proof, a random code and its corresponding keystroke timing

sequence (around 250 bytes) are sent from a login computer to a registered phone

via server. In comparison, Sound-Proof transmits a piece of audio signal (around

250k bytes) whose data size is about 1000 times larger than that in Typing-Proof.

Thus, Typing-Proof costs significant less than Sound-Proof for data transfer. For

hardware token based 2FA and SMS-based 2FA, they do not involve any data trans-

fer cost (e.g., $0.09 per GB [11]), but they cost more on manufacturing hardware

tokens (e.g., $60 per token1 [2]) and sending short messages (e.g., $0.00645 per

SMS [12]), respectively.

5.4 Prototype Implementation

Web Server Settings. Authentication server is implemented using CherryPy web

framework. SQLite database is used to store username and password information.

For experimental evaluation, we store each keystroke timing sequence and the cor-

responding random code into a text document and store the corresponding audio

data into a 16-bit byte array in the debug version for data collection. In the re-

leased version of Typing-Proof, no keystroke timing information or audio is stored

on server side. HTTPS is supported for communications between browsers/login

computers and server, and between server and registered phones.

Web Client Settings. All major browsers support our prototype without any

browser code modifications or plug-ins. In our experiment, we test our pro-

totype on Google Chrome (version 55.0.2883.87), Internet Explorer 11 (version

11.0.9600.18860) and Microsoft Edge (version 41.16299.15.0). The client web-

site is written entirely in HTML and JavaScript. We use jQuery keydown()

1The price of hardware token may drop significantly if a large number of hardware tokens are
purchased.
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Method [134] to record the timestamp of each key press event. We use Ajax to

send and retrieve data from the server to the client asynchronously.

Mobile Client Settings. We develop an Android application and test it on a Google

Nexus 5x, a Google Nexus 6 (both running on Android version 6.0.1) and a Huawei

P10 (running on Android 8.0.1) smartphones. We use the Google Firebase Cloud

Messaging (FCM) service [49] to send indicators to Android devices.

Time Synchronization. Typing-Proof requires that registered phones and corre-

sponding login computers are loosely synchronized. For this reason, login com-

puters and registered phones run a simple time-synchronization protocol (Network

Time Protocol [143]) with the server. In a server-client scenario (where the client

can be either login computer or registered phone), the client initiates a time-request

exchange with the server so that the client is able to calculate the link delay and its

local offset, and adjust its local clock to match the clock at the server’s computer.

The protocol can synchronize all participating devices and mitigate the effects of

variable network latency. According to our experimental results, the NTP proto-

col usually maintains clock difference within tens of milliseconds, which is good

enough for Typing-Proof.

5.5 Evaluation

In this section, we conduct an experiment to examine the effectiveness of Typing-

Proof. We use our prototype to collect a large number of keystroke timing sequences

and their corresponding audio samples. Following the similarity score calculation

algorithm described in Section 5.3.2, we find the threshold of the similarity score

that leads to the best results in terms of false rejection rate (FRR) and false ac-

ceptance rate (FAR).The performance evaluations of Typing-Proof are conducted in

different settings.
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One-person Office Research Lab Starbucks Café

Figure 5.3: An illustration of the three different environments tested in our experi-
ment: One-person Office, Research Lab, Starbucks café.

5.5.1 Data Collection

Two volunteers recruited from our university logged in their accounts using Google

Chrome, Internet Explorer, and Microsoft Edge2 over 2 weeks. At each login, the

volunteers are required to type at least 5 characters for the second-factor authenti-

cation. A login computer records keystroke timing sequence and a registered phone

records audio through its microphone. This pair of data samples was stored for

post-processing. The login attempts were conducted in various settings:

Environment: Different environment settings were used in our experiments, in-

cluding a one-person office which is quiet, a research lab where many users sitting

surrounding the user type on their own computers at the same time, and a Starbucks

café with people’s talking and background music. Figure 5.3 provides an illustra-

tion of the three environments tested in our experiment. Note that the cubicle in the

research lab environment was surrounded by other 5-8 cubicles with a distance of

around 1.5 meter between two cubicles next to each other.

Phone Position: In our experiment, the volunteers place their registered phones

at various distances from the corresponding login computers, including a short dis-

tance (i.e., 20cm), a medium distance (i.e., 50cm), and a long distance (i.e., 100cm).

Here, the phone-keyboard distance is measured from the center of a registered phone

to the center of a login computer’s keyboard.

2We used Google Chrome, Internet Explorer, and Microsoft Edge since they are currently most
popular browsers [92]. We also test Typing-Proof with other browsers during our user study and
experience similar performance.
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Table 5.1: The number of the login attempts per volunteer for each combination of
settings.

One-person Office Research Lab Café
Desktop Keyboard 50S, 50M, 50L1 50S, 50M, 50L1

Laptop Keyboard 50S, 50M, 50L1 50S, 50M, 50L1 50S2

Software Keyboard 50 50 50
1 50S, 50M, and 50L refer to collecting 50 login attempts per volunteer in the

setting of short, medium, and long phone-keyboard distance, respectively.
2 The table in the Starbucks is small so that we only consider the cases where users

place registered phones 20cm away from keyboards.

Keyboard Model: We tested three different keyboard models for volunteers to use

Typing-Proof on login computers, including a standard QWERTY keyboard (Acer

PR1101U), a laptop keyboard on Mac Book Pro 13”, and a software keyboard on

Google Nexus 5x. In particular, the software keyboard setting refers to the sce-

nario where a login computer and a registered phone are the same device (i.e., the

registered phone). In our experiment, we used Google Keyboard-English (US) for

the input, with the keypress vibration turned on and the keypress sound turned off.

Therefore, for the software keyboard on a smartphone, we record the sound of key-

press vibration instead of directly recording the sound of touching on the screen

which is too slight to be recorded.

We collected 50 login attempts per volunteer for each combination of settings,

totaling 1600 login attempts (1600 keystroke timing sequences and 1600 audio sam-

ples). Table 5.1 shows the structure of our dataset.

5.5.2 Parameters Configuration

The collected data is used to discover the best threshold τsim for comparing

keystroke timing sequences with keystroke sound. The best threshold is selected

according to FRR and FAR, where FRR measures the proportion of legitimate lo-

gins which are falsely rejected by the server, and FAR measures the proportion of

fraudulent logins which are falsely accepted by the server. Note that in Typing-
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Table 5.2: FRR and FAR when usability and security have different weights.

FRR FAR Threshold
α = 0.1, β = 0.9 0.07625 0.00603 0.394
α = 0.2, β = 0.8 0.02188 0.01336 0.370
α = 0.3, β = 0.7 0.00125 0.01961 0.358
α = 0.4, β = 0.6 0.00125 0.01961 0.358
α = 0.5, β = 0.5 0.00125 0.01961 0.358
α = 0.6, β = 0.4 0.00000 0.02091 0.356
α = 0.7, β = 0.3 0.00000 0.02091 0.356
α = 0.8, β = 0.2 0.00000 0.02091 0.356
α = 0.9, β = 0.1 0.00000 0.02091 0.356

Proof, the use of backup solution ensures that FRR is negligible assuming that users

do not make any mistakes using the backup solution3. Therefore, we use “FRR” to

denote how frequent the backup solution is activated in the following evaluations.

We set tmax to 200ms since this is the highest clock difference experienced while

testing our synchronization protocol (see Section 5.4). Using Typing-Proof, a vol-

unteer/user is authenticated if and only if the similarity score is greater than the

threshold τsim and l < tmax, where l is the offset where the two time series are most

similar.

To compute FAR, we use the following strategy. For each audio sample recorded

from one of the volunteers (acting as the victim), we use all the keystroke timing

sequences recorded from the other volunteer as the attacker’s samples. We then

switch the roles of the two volunteers and repeat the above process. Since the

length of the victim’s audio sample and the duration of the attacker’s keystroke

timing sequence are mostly different, we cut the longer sample/sequence according

to the shorter one for similarity comparison. The total number of comparisons is

800*800*2=1,280,000 in our experiment.

Figure 5.4 plots FRR curve and FAR curve as a function of threshold τsim when

3No mistake was observed in our experiments for users to compare two random codes displayed
on a browser and on a registered phone, using the backup solution. The cognitive workload of
comparing two random codes in Typing-Proof is significantly lower than remembering of a code
displayed on a hardware token or phone and typing it on a browser [147] as it is required by hardware
token based 2FA and SMS-based 2FA.
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Figure 5.4: False rejection rate and false acceptance rate as a function of threshold
τsim.

the backup solution of Typing-Proof is not used. The threshold τsim for similarity

score can be determined based on the Equal Error Rate (ERR). ERR is the rate at

which FRR and FAR are equal. The value of ERR is derived from the crossing point

of FRR and FAR, which is 0.015625. We have τsim = 0.365235 at this point.

The threshold for similarity score can also be computed when usability and se-

curity are weighted differently by the service provider. In particular, we compute

the threshold that minimizes f = α · FRR + β · FAR, for α ∈ [0.1, ..., 0.9] and

β = 1 − α. Table 5.2 provides FRR and FAR when usability and security have

different weights. In Typing-Proof, we value security higher than usability since

we have the backup solution which reduces FRR to almost zero. The FAR can be

reduced to 0.006 if we set α = 0.1, β = 0.9.

We observe that FAR is highly correlated with the length of random code. If

the length of random code is longer, the keystroke patterns of different users are

more diverse so that an attacker has a lower probability to bypass the second-factor

authentication. Figure 5.5 shows the relationship between ERR and the minimum

length lmin of random code. Figure 5.6 further shows the relationship between FAR

and lmin for fixed FRRs. The FAR can be reduced significantly if users are required

to type longer random codes for the second-factor authentication. For example, if it
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is acceptable to resort to the backup solution by 30% of chance, the FAR is 0.003%

for 10-digit or longer random codes.

In the following evaluations, we provide the performance of Typing-Proof under

two configurations: a general configuration and a recommended configuration. The

general configuration is set according to ERR: tmax = 200ms, lmin = 5, and τsim =

0.365235. In practice, we recommend service providers to value security higher

than usability and require users to type at least 10 characters for the second-factor.

Our recommended configuration sets α = 0.1, β = 0.9, tmax = 200ms, lmin = 10,

and τsim = 0.37.

5.5.3 False Rejection Rate

We evaluate the impacts of settings, including different environments, phone posi-

tions, and keyboard models, to FRR if the backup solution is not in use. The results

are shown in Figure 5.7. The overall FRR is 0.015625 in the general configuration

and 0.01847 in the recommended configuration. This implies that the frequency of

Typing-Proof resorting to the backup solution is relatively low since users do not

need to interact with their registered phones in most cases (i.e., over 98%). As a

comparison, the FRR due to mistyped passwords is around 0.04 [70, 67].

Typing-proof performs equally well in one-person office and research lab, which
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Figure 5.7: Impacts of different environments, phone positions, keyboard models to
FRR and FAR in different configurations.

implies that the sounds of many users’ typings at the same time do not affect the

performance of Typing-Proof. In terms of phone positions, Typing-Proof performs

best when the registered phone is placed 20cm away from the keyboard of a login

computer. The performance of the long distance (i.e., 100cm) is 5 times worse

than that of the short distance (i.e., 20cm). As for keyboard models, the standard

QWERTY keyboard performs the best since this kind of keyboards produces loudest

and clearest keystroke sound while laptop keyboard and software keyboard perform

much worse. However, even in the worst case, the FRR is around 3% which is still

low for resorting to the backup solution.

5.5.4 False Acceptance Rate

We further evaluate FAR in Figure 5.7. The overall FAR is 0.015625 in the general

configuration and 0.00569 in the recommended configuration. In comparison, the

FAR of Sound-Proof is 0.00200. It is worth noting that the FAR of Typing-Proof

is measured in the worst case scenario where a victim is typing at the time of an

attack. In practice, if the victim is not typing or his/her phone is put away from

the victim’s keyboard at the time of the attack, the attack may easily fail unless the

attacker’s keyboard is close enough to the victim’s phone. We argue that the FAR

of Typing-Proof is small enough for protecting not-so-sensitive user accounts such

as those in online social networks. While for highly sensitive user accounts such
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as those in financial services, FAR of Typing-Proof can be further reduced (e.g.,

0.003%) by setting higher FRR (e.g., 30%) as shown in Figure 5.6.

With regard to FAR in different settings, we observe that the setting which leads

to lower FRR would make FAR higher. In particular, Typing-Proof has a lower prob-

ability to be attacked when a victim stays in a noisier environment, places his/her

registered phone farther away from the keyboard, and uses sound-lighter keyboard.

5.6 Security Analysis

Remote Attack. A remote attack requires an attacker to obtain a victim’ username

and password, pass the first-factor authentication, submit a keystroke timing se-

quence as the second factor on a login computer. The keystroke timing sequence is

then sent to a victim’s registered phone for similarity comparison. It also requires

the victim to type at the same time so that the keystroke timing sequence x submitted

by the attacker and the keystroke sound y recorded by the victim’s registered phone

are highly correlated within certain time lag tmax, that is, maxl(CC ′x,y) > τsim with

l < tmax.

The security of Typing-Proof against remote attack stems from the attacker’s

inability to know whether the victim is typing and guess what the victim is typing

at the time of the attack. We bound the time lag l between 0 and tmax to enhance

the security of Typing-Proof.

Known Typed-Text Attack. A known typed-text attack is that a remote adversary

could correctly guess what a victim is typing or predict what a victim will type at

some point in time and submit the same typing sequence at the same time. Note

that during such attack, the victim might be typing certain meaningful text rather

than random code. However, it is still difficult to bypass Typing-Proof because

the keystroke patterns of typing a same code are typically different for different

users [90, 17]. To prove this, we conduct an experiment to evaluate the success rate

of known typed-text attacks.
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In this experiment, we select 25 frequently-used 5-letter words (e.g., ‘there’,

‘would’, ‘about’, and etc.) and 25 frequently-used words or phrases with no less

than 10 characters (e.g., ‘thanks so much’, ‘for instance’, and etc.). One volunteer

(acting as the victim) is required to type these words or phrases using Typing-Proof.

The audio samples of his typing are collected. Another 9 volunteers (acting as

attackers) are asked to type the same words or phrases as the victim has typed. Each

word or phrase is typed for 5 times per volunteer and the corresponding keystroke

timing sequences are recorded. In total, 50 ∗ 5 ∗ 9 = 2250 attacking cases are

generated.

We calculate the similarities between an attacker’s keystroke timing sequences

and the victim’s audio samples for typing a same word or phrase. All similarities

are lower than the thresholds selected in the Section 5.5.2 (i.e., τsim = 0.365235

for the general configuration and τsim = 0.37 for the recommended configuration),

which implies that all known typed-text attacks failed. It is observed that if the

minimum required length of random code is longer, the similarities in the attacking

cases are lower. In particular, the average similarity of attacking a 5-letter word and

attacking a word or a phrase no shorter than 10 characters are 0.17750, 0.12895,

respectively. This indicates that service providers may set the minimum required

length of random code to 10 or more so as to provide better protection against

known-typed text attacks.

Co-located Attack. In a co-located attack, an attacker logins to a victim’s account

and types a random code in the same environment where the victim stays. Typing-

Proof can withstand such attack since it is difficult for the victim’s registered phone

to capture the attacker’s keystroke sound unless the victim’s registered phone is very

close to the attacker’s keyboard. We conduct an additional experiment to evaluate

the success rate of such co-located attack.

In this experiment, we assume that a victim and an attacker are located in a same

environment and there is a certain distance between the attacker’s keyboard and the

victim’s registered phone. In particular, in the one-person office and research lab
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environments, we set the distance between the attacker’s keyboard and the victim’s

registered phone as 150cm and 200cm, respectively. In the café environment, we

let the attacker sit at the same table with the victim (phone-keyboard distance is

around 50cm), and the attacker sit at the next table to the victim (phone-keyboard

distance is around 100cm). We also consider the cases where the attacker and the

victim typing at the same time and the cases where the victim is not typing at the

time of co-located attack in each environment and for each phone position. In each

test case, we run the attack 50 times and calculate the similarity between each audio

sample collected by the victim’s registered phone and the corresponding keystroke

timing sequence generated by the attacker.

Our results show that the success rate of co-located attack is 0.00667 (4 out of

600 cases). In particular, 3 successful cases occur when the attacker sits at the same

table with the victim in a Starbucks, and the rest successful case occurs when the

attacker sits 150cm away from the victim in the one-person office. The victim is not

typing at the time of attack in all four successful attacking cases. In order to launch a

successful attack, the attacker needs to sit very close to the victim’s registered phone

and ensures that the victim himself/herself does not make any keystroke sound.

However, this is likely to raise the victim’s suspicion anyway. In suspicious cases,

vigilant users can simply move their registered phones farther away (e.g., larger than

150cm) from the keyboards used by suspicious attackers.

Relay Attack. A relay attack is that an attacker obtains a victim’ username and

password, passes the first-factor authentication, records the keystroke sound of

his/her typing of a random code, and plays the keystroke sound near a victim’s

registered phone with a speaker in real time. In a legitimate authentication, the real

keystrokes are produced from different positions on a keyboard unless a user types

repeated keys as random code. In a relay attack, however, the sounds played from a

speaker come from the same source. Such relay attack can be detected by analyz-

ing the time-difference-of-arrival of keystroke sound and determining whether the

sound source is moving. This approach was first proposed by Zhang et al. for voice
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liveness detection [153]. It requires that the registered phone is equipped with two

microphones, which is met by most popular smartphones (the smartphone products

of Samsung, Apple, Huawei, and Xiaomi whose total market share is more than

62.32% [122] are equipped with at least two microphones). Although an attacker

may deliberately choose to type repetitive “random” code like “aaaaa” in a relay

attack, we recommend users not to type repetitive codes and if such codes are sent

to the registered phones, Typing-Proof is switched to the backup solution.

Sound-Danger Attack. A sound-danger attack [153] is that an attacker deliberately

makes a victim’s registered phone to produce previously known sounds (see Sec-

tion 2.2). In order to launch a successful sound-danger attack against Typing-Proof,

an attacker needs to trigger the victim’s registered phone to produce the keystroke

sound that matches the timing sequences of the attacker’s typing for 2FA.

While an attacker may use ringtone, notification tones or notification vibra-

tions to simulate keystroke sound on the victim’s phone, such attack can be de-

tected by checking the signatures of keystroke sound which are different from

the signatures of triggered tones/vibrations [131]. Another countermeasure is

to temporarily disable the function of a Typing-Proof application on a regis-

tered phone whenever a notification is received. Android platform provides Class

NotificationListenerService [51] to monitor whether any new notifica-

tion is received.

Alternatively, an attacker may choose a random code, craft an audio signal

which contains the keystroke sound for typing this code, hide the audio signal into

a video or audio recording, and trick a victim to play the recording (e.g., through a

manipulated website or YouTube video). At the same time when the victim plays

the recording, the attacker submits the chosen random code to the victim’s account.

Since Typing-Proof uses only the frequency higher than 15000Hz from an audio

sample, it is even easier to hide the high-frequency part of the keystroke sound,

which is inaudible to human. However, such attacks can still be detected by ana-

lyzing the time-difference-of-arrival of keystroke sound, which is the same as the
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countermeasure of relay attacks.

5.7 User Study

An IRB-approved user study was conducted to evaluate the usability of Typing-

Proof and to compare it with the usability of Sound-Proof and SMS-based 2FA.

5.7.1 Procedure

Our user study involved 25 participants, including 16 males and 9 females with ages

from 21 to 27. All participants were students or staff in a university. All participants

were informed that no personal information is collected and that the survey in the

user study is anonymous.

The user study took place in a classroom. Most participants used their own

laptops and their own Android smartphones for 2FA logins. For the participants who

did not have any Android phones, we provided our test-phones for them. All devices

were connected to the Internet through WiFi. We set up a server on a desktop, Acer

Veriton M4630G running Windows 7, and created a website that integrates Typing-

Proof, Sound-Proof, and SMS-based 2FA. All participants were required to install

our application on their phones which supports all three authentication mechanisms.

During the user study, each participant was asked to log in to the server using

all three mechanisms in random order and for several times. After using all 2FA

mechanisms, participants were required to fill in a survey. The survey includes

three parts: demographic information, System Usability Scale (SUS) [23], and a

post-test questionnaire which covers various aspects of 2FA mechanisms that are

not covered by the SUS.
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Table 5.3: The items of the System Usability Scale [23]. All items are answered
with a 5-point Likert-scale from Strongly Disagree to Strongly Agree.

Q1 I would like to use this system frequently.
Q2 I found the system unnecessarily complex.
Q3 I thought the system was easy to use.
Q4 I would need the support of a technical person to be able to use this system.
Q5 I found the various functions in this system were well integrated.
Q6 I thought there was too much inconsistency in this system.
Q7 I would imagine that most people would learn to use this system very quickly.
Q8 I found the system very cumbersome to use.
Q9 I felt very confident using the system.
Q10 I needed to learn a lot of things before I could get going with this system.

Table 5.4: The items of the post-test questionnaire. All items are answered with a
5-point Likert-scale from Strongly Disagree to Strongly Agree.

Q1 I thought this system was quick. (2FA-quick)
Q2 If 2FA were mandatory, I would use this system to log in (2FA-mandatory).
Q3 If 2FA were optional, I would use this system to log in (2FA-optional).
Q4 I would feel comfortable using this system at home (Use @ home).
Q5 I would feel comfortable using this system at workplace (Use @ workplace).
Q6 I would feel comfortable using this system at café (Use @ café).
Q7 I would feel comfortable using this system at library (Use @ library).

5.7.2 Usability

Survey Results. All participants had ever used 2FA for online banking and 88%

of them had the experience of using 2FA for online payment. Only 28% and 24%

of them respectively ever used 2FA in Google Services (e.g., Gmail) and Apple

Services (e.g., iCloud). Our experience is that many finance-related services, like

online banking or online payment, enforce users to use 2FA, while other services,

such as Gmail or iCloud, make 2FA optional, in which case many users choose to

opt out.

The System Usability Scale (SUS) is widely used to assess the usability of

IT systems [16]. Its score ranges from 0 to 100, where a higher score indicates

better usability. Table 5.3 reports the items of SUS. The mean SUS scores for

Typing-Proof, Sound-Proof, and SMS-based 2FA are 81.7 (±14.68), 69.2 (±18.02),

73.4 (±12.62), respectively. The result shows that the usability of Typing-Proof is
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obviously better than the other two mechanisms. One interesting observation is that

the mean SUS score of Sound-Proof is a little bit lower than that of SMS-based 2FA

while the standard deviation of Sound-Proof’s SUS score is larger than that of SMS-

based 2FA. One potential reason is that some participants’ browsers do not support

audio recording, which contributes to the low scores on the usability evaluation of

Sound-Proof.

The post-test questionnaire is similarly designed as that in [67], aiming to col-

lect information on the perceived quickness of the three mechanisms (2FA-quick

for short in Figure 5.8) and participants’ willingness to adopt them (2FA-mandatory

in mandatory setting, and 2FA-optional in optional setting for short in Figure 5.8).

It also inquires of participants whether they feel comfortable using the mechanisms

in different environments, including use @ home, use @ workplace, use @ café,

use @ library in Figure 5.8. The full post-test questionnaire is listed in Table 5.4.

Figure 5.8 summarizes the participants’ answers on 5-point Likert-scales in a radar

chart plot. In general, participants show the strongest willingness to adopt Typing-

Proof. Most participants evaluated that both Typing-Proof and Sound-Proof are

much quicker than SMS-based 2FA. Similar to [67], our results show that partici-

pants tend not to use SMS-based 2FA if it is optional, while for Typing-Proof and

Sound-Proof, the difference in users’ acceptance between mandatory setting and

optional setting is much less significant. More than 88% of participants evaluated

that Typing-Proof is suitable to be used at home, at their workplace, while fewer

participants would use Typing-Proof in a public place (i.e., at a café or library). As

for SMS-based 2FA, participants shared a similar willingness in various scenarios.

Login Time. The login time we measured in our user study is from the start of the

second-factor authentication (i.e., after username and password is verified), to the

moment when the login attempt is accepted. We did not witness any login failure

in our experiment. Therefore, the login time of Typing-Proof does not include the

potential time of one-button authentication in the backup solution, which takes 7.1

seconds on average as measured separately in our experiments. The averaged login
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Figure 5.8: Answer to the post-test questionnaire.

time for Typing-Proof is 4.3 seconds while it is 5.0 seconds for Sound-Proof and

10.4 seconds for SMS-based 2FA. Among the three mechanisms, Typing-Proof is

the most favorable in terms of login time.

5.8 Discussion

Adjustable Security. When Typing-Proof is used, a longer random code makes

it more difficult for an attacker to launch a successful attack. On the other hand,

typing longer random codes will lower the usability of Typing-Proof. Therefore,

users may take different typing strategies according to their needs. For important

authentications in a less secure environment, users may choose to type longer ran-

dom codes, while for less important authentications in a more secure environment,

users may choose to type shorter random codes.

Transaction Authentication. Transaction authentication is another important ap-

plication of 2FA. Transaction authentication may suffer from Man-in-the-Mobile

attack and Man-in-the-Browser attack [1] in which an attacker may change the con-

tent of a transaction such as destination account number and transaction amount.

To solve this problem in Typing-Proof, user’s transaction details should be sent to
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user’s registered phones via the server. Users should use the backup solution of

Typing-Proof and check it out before pressing the ‘Approve’ button for transaction

authentication.

CAPTCHA. Many existing authentication systems involve the use of CAPTCHA.

Typing-Proof can be easily used when CAPTCHA is involved. Instead of typing

random codes, users may type CAPTCHA codes for 2FA. The overall user expe-

rience of Typing-Proof is same with CAPTCHA-based password authentication if

the backup solution is not triggered.

Keyboard Protector. Some users may place keyboard protectors on their keyboards

in order to prevent dust entry or liquids. Commercial keyboard protectors made of

silicone can effectively reduce keystroke sound. It may lead to high FRR when users

login to their accounts using Typing-Proof. In the light of this, we recommend users

to take the keyboard protector off when they use Typing-Proof (otherwise they need

to resort to the backup solution).

Combined with other mechanisms. Typing-Proof can be combined with other

2FA mechanisms, including Sound-Proof, hardware token based 2FA, and SMS-

based 2FA. Furthermore, Typing-Proof and Sound-Proof can work simultaneously

to make authentications more usable and secure. In particular, if a user logins to

his/her account in a quiet environment where Sound-Proof does not work, the server

can rely on Typing-Proof for 2FA. On the other hand, if the user uses 2FA in a noisy

environment, Sound-Proof activated for a better decision.

Alternative Devices. Currently, Typing-Proof uses a smartphone as a software to-

ken. It is straightforward to replace it with other smart devices such as smartwatch

for 2FA. Compared to using smartphone, the use of smartwatch in Typing-Proof

may further lower FRR since the distance between the keyboard of a login computer

and the smartwatch of a user who logins to his/her account wearing the smartwatch

should be shorter than the short distance (i.e., 20cm) that is used in our experiments.

Comparative Analysis. The framework of Bonneau et al. [21] can be used to com-

pare Typing-Proof, Sound-Proof and SMS-based 2FA in terms of usability, deploy-
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Table 5.5: Comparison of Typing-Proof against Sound-Proof [67] and SMS-based
2FA [50] using the framework of Bonneau et al. [21]. We use ‘Y’ to denote that the
benefit is provided and ‘S’ to denote that the benefit is somewhat provided.
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ability, and security. Table 5.5 shows the comparison. In general, both Typing-Proof

and Sound-Proof achieve better usability than SMS-based 2FA. The deployability

of Typing-Proof is better than Sound-Proof since Sound-Proof may not be exactly

browser-compatible. We observed several cases where participants’ browsers did

not support audio recording in our user study. As for the security aspect of the

comparison, Typing-Proof is better than Sound-Proof.
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Chapter 6

Dissertation Conclusion and Future

Work

6.1 Summary of Contribution

This dissertation makes contributions to understanding the potential risk of inter-

keystroke timing information disclosure and designing a secure, usable and low-cost

two-factor authentication systems.

Our first work proposed a user-independent inter-keystroke timing attack on

PINs based on a human cognitive model. The human cognitive model allows an

attacker to build a timing dictionary of all possible PINs ranked according to the

cosine similarity between the observed timing sequence of a target PIN and each

possible PIN’s predicted timing sequence. We examined the effectiveness of our

attacks to the PINs at different PIN strength levels in different online attack set-

tings. The results demonstrated that our attacks achieve satisfactory performance.

We also suggested several countermeasures to mitigate our attacks. This work has

been published in Computers & Security journal [79].

We proposed UltraPIN to infer PIN entries via inaudible ultrasounds in the sec-

ond work. UltraPIN is practical as it can be launched from commodity smart-

phones which are widely available today. UltraPIN is effective since the success
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rate of recovering a PIN within three attempts reaches 75% in our recommended set-

ting. Rigorous experiments showed that UltraPIN is robust with respect to different

keypad layouts, keypad sizes, keypad angles, smartphone quantities and positions,

smartphone-keypad distances, and experimental environments. We hope UltraPIN

would help raise the awareness that PIN-based user authentication systems, includ-

ing ATM, POS, and electronic door locks, may not be as secure as previously con-

sidered. It may also help promote further studies and the adoption of more secure

solutions such as using randomized keypads in the near future.

In the third work, we proposed Typing-Proof, a usable, secure, and low-cost

two-factor authentication mechanism. Typing-Proof does not require a user to in-

teract with his/her phone in most cases and does not have any memory demand.

It can be used in any environment and is compatible with major browsers, PCs,

and phones without requiring any additional plug-ins or hardware. Typing-Proof

is secure against practical attacks, including remote attack, sound-danger attack,

co-located attack, and relay attack. Compared to hardware token based 2FA, SMS-

based 2FA and Sound-Proof, Typing-Proof enables significant cost saving for both

service providers and users. This brings in high commercial potential which may

foster large-scale adoptions. This work has been published in 2018 Annual Com-

puter Security Applications Conference (ACSAC 2018) [78].

6.2 Future Research Plan

One of the main weaknesses of our proposed two attacks is that our attacks may

have low performance or even become invalid when a victim uses more than one

finger. Although according to our survey conducted in 2018, a majority of users

(about 63.2%) prefer using a single finger for PIN entry, it is easy to mitigate our

attacks by warning the user to intentionally enter his/her PIN using multiple fin-

gers. Furthermore, our attacks are not powerful enough to infer the inputs on a

standard QWERTY keyboard, which involves more complicated hand and finger
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movements. To solve this challenge, It may require to launch a targeted attack and

train a customized model for other typing styles.

In addition, keystroke is a common behavior for inputting sensitive informa-

tion, including password, PIN or other secret documents. It inevitably becomes

an attractive target to cyber-criminals. On the rise of various sensors embedded in

commodity off-the-shelf mobile devices (e.g., smartphones, smartwatches), certain

side channels may emit more useful information about a victim’s typing behaviors.

For instance, Google Pixel 4 which will be released in the near future, has embed-

ded a radar chip called soli [124]. This sensor enables gesture recognition, but may

also be abused by an attacker. More powerful sensors may introduce larger sensitive

information leakage in real world.

On one hand, it is urgent to seek for effective defense mechanism to address

the above problems. Although many efforts have been made to design a securer

authentication system, few of them are adopted by existing service providers. The

underlying reason is that a securer authentication system will lead to user-unfriendly

to some extent. Therefore, it is important for an authentication system designer to

balance the trade-off between security and usability.

On the other hand, as revealed in Chapter 5 in this dissertation, side-channel

information can also be leveraged as a second authentication factor or biometric

factor. In the future, as more and more Internet of Thing (IoT) devices, including

vehicles, becoming a part of people’s life gradually, passive keyless authentication

will get a lot of attention. The current passive keyless entry systems for vehicles

are based on Bluetooth communication between car and car owner’s trusted smart-

phone. However, this method is subject to relay attacks [42]. Although sophisticated

anti relay attack approaches have been proposed [35, 85], all of them are based on

professional hardware, which costs considerably. It is still a challenge to design a

software-based authentication against relay attacks. Proximity-based authentication

via side-channel information may be a promising solution.
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