
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

9-2019

Preference learning and similarity learning perspectives on Preference learning and similarity learning perspectives on

personalized recommendation personalized recommendation

Duy Dung LE
Singapore Management University, ddle.2015@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Computer Engineering Commons, and the Programming Languages and Compilers

Commons

Citation Citation
LE, Duy Dung. Preference learning and similarity learning perspectives on personalized recommendation.
(2019).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/241

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/258?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/148?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F241&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

PREFERENCE LEARNING AND SIMILARITY LEARNING

PERSPECTIVES

ON PERSONALIZED RECOMMENDATION

Le Duy Dung

SINGAPORE MANAGEMENT UNIVERSITY

2019

Preference Learning and Similarity Learning

Perspectives on Personalized Recommendation

Le Duy Dung

Submitted to School of Information Systems in partial fulfillment of the requirements

for the Degree of Doctor of Philosophy in Computer Science

Dissertation Committee:

Hady W. Lauw (Supervisor/Chair)
Associate Professor of Information Systems
Singapore Management University

Zheng Baihua
Associate Professor of Information Systems
Singapore Management University

Yuan Fang
Assistant Professor of Information Systems
Singapore Management University

Leong Tze Yun
Professor of Computer Science (Practice)
National University of Singapore

Singapore Management University

2019

Copyright (2019) Le Duy Dung

I hereby declare that this dissertation is my original work

and it has been written by me in its entirety.

I have duly acknowledged all the sources of information

which have been used in this dissertation.

This dissertation has also not been submitted for any degree

in any university previously

Le Duy Dung

15 September 2019

Preference Learning and Similarity Learning Perspectives
on Personalized Recommendation

Le Duy Dung

Abstract
Personalized recommendation, whose objective is to generate a limited list of items (e.g., products

on Amazon, movies on Netflix, or pins on Pinterest, etc.) for each user, has gained extensive

attention from both researchers and practitioners in the last decade. The necessity of personalized

recommendation is driven by the explosion of available options online, which makes it difficult, if

not downright impossible, for each user to investigate every option. Product and service providers

rely on recommendation algorithms to identify manageable number of the most likely or preferred

options to be presented to each user. Also, due to the limited screen estate of computing devices,

this manageable number maybe relatively small, yet the selection of items to be recommended is

personalized to each individual users.

The basic entities of a personalized recommendation system are items and users. Personaliza-

tion can be achieved through custom alternatives for delivering the right experience to the right

user at the right time on the right device. Therefore, personalized recommendation can appear

in many forms, depending on the characteristics of the items and the desired experience that the

system wants users to have. In this thesis, we encompass two perspectives on personalized recom-

mendation: preference learning and similarity learning. The former refers to the personalization

in which the recommendation is tailored towards users’ preference. The latter, on the other hand,

refers to personalization approach in which recommendation is generated based on the users’ per-

sonal perceptions of similarity between the items.

In the preference learning perspective, we focus on the task of retrieving recommendations effi-

ciently and propose two techniques for this objective. For the first technique, we rely on Euclidean

embedding to learn user and item latent vectors from users’ ordinal preferences. Since they operate

in the Euclidean space, these latent vectors natively support efficient nearest neighbor search using

geometric structures such as spatial trees. For the second technique, our key idea is to desensitize

the effect of vector magnitudes when modelling users’ preferences over items. That effectively

reduces the recommendation retrieval problem to the nearest neighbor search problem with cosine

similarity, which can be solved efficiently with various indexing methods such as locality sensitive

hashing, spatial trees, or inverted index. Extensive experiments on publicly available datasets show

significant improvement of proposed techniques over the baselines.

In the similarity learning perspective, we are interested in the setting where there are multiple

similarity perceptions in the data. Towards modelling these perceptions effectively, we propose

two approaches that are natively multiperspective. One is a graph-theoretic framework that yields a

similarity measure for any pair of objects for a perspective. Another is a geometric framework that

learns multiple low-dimensional representation of objects, each for one perspective. Experiments

in both studies show that the adoption of multiperspective approach allows us to better model

the similarity between objects, as compared to classical uniperspective methods, which ignore the

multiperspectivity in the data.

Contents

List of Figures vi

List of Tables vii

List of Notations viii

1 Introduction 1

1.1 Personalized Recommendation . 2

1.1.1 Preference Learning . 3

1.1.2 Similarity Learning . 8

1.2 Thesis Outline and Contributions . 11

2 Related Work 15

2.1 Efficient Retrieval of Personalized Recommendations 15

2.1.1 Efficient Candidate Screening . 17

2.1.2 Efficient Inner Product Computation . 21

2.2 Modelling Multiple Similarity Perspectives . 24

2.2.1 Supervised Similarity Learning . 24

2.2.2 Unsupervised Similarity Learning . 26

i

I Preference Learning:

Efficient Recommendation Retrieval 30

3 Collaborative Ordinal Embedding 31

3.1 Introduction . 31

3.2 Framework . 35

3.2.1 Problem Formulation . 35

3.2.2 Generative Model . 36

3.2.3 Triple Probability Function . 38

3.2.4 Learning Algorithms . 40

3.3 Experiments . 42

3.3.1 Comparison to Embedding Baselines . 44

3.3.2 Efficient Retrieval of Recommendation with KD-Tree 49

3.4 Discussion . 52

4 Indexable Bayesian Personalized Ranking 53

4.1 Introduction . 54

4.2 Framework . 56

4.3 Experiments . 61

4.3.1 Top-k Recommendation with LSH Index 63

4.3.2 Top-k Recommendation with KD-Tree Index 66

4.3.3 Top-k Recommendation with Inverted Index 67

4.4 Analysis on LSH-friendliness of Indexable BPR 70

4.5 Discussion . 75

II Similarity Learning:

ii

Modelling Multiple Perspectives 76

5 Multiperspective Graph-Theoretic Similarity Measure 77

5.1 Introduction . 78

5.2 Framework . 79

5.2.1 Pipelined-SimRank . 83

5.2.2 Joint Solution: MP-SimRank . 86

5.3 Experiments . 89

5.3.1 Experimental Settings . 89

5.3.2 Comparison to Baselines . 92

5.3.3 Inter-Perspective Similarities . 94

5.3.4 Illustrative Case Study . 94

5.4 Efficiency Analysis . 96

5.4.1 Complexity Analysis . 96

5.4.2 Heuristic for More Efficient MP-SimRank 98

5.5 Discussion . 99

6 Spherical Conditional Ordinal Embedding 101

6.1 Introduction . 101

6.2 Framework . 103

6.2.1 Problem Formulation . 103

6.2.2 Proposed Methodology . 104

6.2.3 Model . 105

6.2.4 Parameter Learning . 109

6.3 Experiments . 110

6.3.1 Experimental Setup . 111

6.3.2 Comparison to Baselines . 113

iii

6.3.3 Perspective Relatedness . 116

6.3.4 Multiple Maps vs. Single Map . 117

6.3.5 SCORE vs. MP-SIMRANK . 119

6.4 Coordinate Transformation . 120

6.5 Discussion . 122

7 Conclusion 123

7.1 Summary . 123

7.2 Future Work . 124

Bibliography 126

iv

List of Figures

1.1 An illustration for the incompatibility of inner product kernel for spatial tree index

(Euclidean distance) and inverted index (cosine similarity). 6

1.2 An example of three pin collections (boards) of a Pinterest user. 9

1.3 An overview of this thesis. 12

2.1 Approaches for Efficient MF-based Recommendation Retrieval 16

2.2 An Illustration of Candidate Screening with Indexing 18

2.3 A taxonomy for multiperspective similarity modelling 25

3.1 Euclidean Embedding of Users & Items . 33

3.2 Collaborative Ordinal Embedding (COE) . 37

3.3 Triple Probability Function . 40

3.4 Example Visualization of Users (triangles) and Items (crosses) in MovieLens-100K 47

3.5 nRecall@k with KD-Tree Indexing. 50

3.6 nRecall@10 vs. speedup with KD-tree Indexing. 52

4.1 Number of triples (per user) vs. number of items. 63

4.2 nRecall@k with Hash Table Lookup Strategy (T = 10 hash tables). 64

4.3 nRecall@10 vs. Speedup with Hashtable Lookup Strategy (T = 10 hash tables). . . 65

4.4 nRecall@k with KD-Tree Indexing. 67

4.5 nRecall@10 vs. Speedup with KD-tree Indexing. 68

v

4.6 nRecall@k with Inverted Indexing. 69

4.7 nRecall@10 vs. Speedup with Inverted Indexing. 70

4.8 LSH Friendly Measurement at d = 20. 72

4.9 nDCG@10 at d ∈ {5, 10, 20, 30, 50, 75, 100}. 74

5.1 Illustration of the Hypergraph Representation . 81

5.2 PIPELINED-SIMRANK: Bipartite graph for computing similarity between perspec-

tive nodes . 84

5.3 Recall values of all models . 92

5.4 PRES values of all models . 92

5.5 Illustrative example of multiperspective similarity from Paris Attractions dataset. . 97

5.6 PRES, Recall, and running time of CLUSTEREDMP-SIMRANK with different num-

ber of clusters k. 99

6.1 Approaches for Conditional Ordinal Embedding. 104

6.2 Representations of three objects i, j, k, two perspectives p, p′. 107

6.3 The probability of observing 〈p|i, j, k〉 is a combination of the perspective-specific

probability σpijk and the global probability σijk. 108

6.4 Overall and hidden preservation accuracy . 113

6.5 10-NN classification accuracy at r = 0.5. 114

6.6 Overall preservation accuracies at various split ratios. 115

6.7 Pearson Correlation of Angular similarities vs. NMIs. 116

6.8 Visualization maps for type, #legs, predator (Zoo). 117

6.9 Visualizations for three attributes: immigration, education-spending, crime (Hou-

seVote). 118

6.10 Tranformation of objects’ coordinates from 3-d to 2-d. 121

vi

List of Tables

1 List of Notations . viii

3.1 Datasets Summary . 44

3.2 Rating-Based Dataset (MovieLens-100K): COE vs. Other Baselines 46

3.3 Rating-Based Dataset (Netflix): COE vs. Other Baselines 46

3.4 Cooccurrence-Based Dataset (Last.fm): COE vs. Cooccurrence Embedding 48

3.5 Cooccurrence-Based Dataset (20News): COE vs. Cooccurrence Embedding 48

4.1 Datasets Summary . 63

4.2 Absolute and Relative nDCG@10 of all models as the length of LSH codes (b) varies. 73

5.1 Correlation between NMI scores and inter-perspective similarities for Zoo 95

5.2 Correlation between NMI scores and inter-perspective similarities for HouseVote . 96

5.3 Cluster data of four users from Paris Attractions 97

5.4 Complexity analysis (per iteration) of all SimRank-based methods 98

6.1 Performance of SCORE: multi-maps vs. single-map. 117

6.2 Prediction Accuracies on Unseen Triplets of SCORE and MP-SIMRANK. 120

vii

List of Notations

Symbol Description
U collection of all users
I collection of all items
u a specific user
i a specific item
rui rating of user u for item i
xu latent vector representation for user u
yi latent vector representation for item i
d latent space dimension
k the number of recommendations
P collection of perspectives
O collection of objects
p a specific perspective
o a specific object
X set of all vertices, i.e., P ∪ O
E set of all hyperedges, i.e.,

{(p, oi, oj) : oi and oj are related, according to p}
H 3-uniform hypergraph,H = {X , E}

Np(oi) {oj ∈ O|(p, oi, oj) ∈ E}
Sp(oi, oj) similarity score between vertices oi and ok,

according to perspective p
Sp perspective-specific

inter-object similarity score matrix
sim(p, p′) similarity score between two perspective vertices p, p′

〈t|i, j, k〉 a quadruple of one perspective and three objects, where the first-mentioned object is
more similar to the centered object, compared to the third-mentioned object

Nt the set of observed quadruples for a perspective t, i.e.,
Nt = {〈t|i, j, k〉|i 6= j 6= k ∈ O}.

xt embedding of a perspective t
yo embedding of an object o

Table 1: List of Notations

viii

Acknowledgments

First and foremost, I would like express my sincere gratitude to my advisor, Prof.

Hady Wirawan Lauw for his continuous support of my PhD, for his inspiration, pa-

tience, and immense knowledge. Under his guidance, I have learnt to appreciate the

importance of being perseverant and curious, to strive for success but also to embrace

failure. I could not have imagined having a better advisor and mentor for my PhD.

Besides my advisor, I would like to send special thanks to the rest of my thesis

committee: Prof. Zheng Baihua, Prof. Fang Yuan, and Prof. Leong Tze Yun for

their insighful comments and constructive suggestions to make this dissertation more

complete and comprehensive.

I want to thank my teammates: Dr. Aghiles Salah, Dr. Maksim Tkachenko, Dr.

Nguyen Thanh Son, Dr. Le Duc Trong, Quoc-Tuan, Trung-Hoang, Thanh-Binh, Phu-

Minh, Ween Jiann, Chong Cher, Zhang Ce, Guo Jingyao, Darryl, and other former

colleagues for the amazing and stimulating discussions, for the fun that we experienced

together, and for the close-knit friendships we buid over the years.

I would like to thank the administrative staff of the PhD program in School of

Information Systems: Pei Huan and Caroline for dedicating their time and effort to

incentivize me to progress towards the end of the PhD journey. I also want to thank

Yong Fong from SMU PGR Office, who has helped to improve my communication

skills significantly.

Last but not the least, I would like to thank my family: my parents, my wife, and

my brother for always accompanying me in all sweet and sour momments of my PhD.

Without the unconditionally love and the endless support from them, this thesis would

not have been possible.

ix

Chapter 1

Introduction

Today, we frequently face a multitude of options in various spheres of life, e.g., deciding which

product to buy on Amazon, selecting which movie to watch on Netflix, choosing which article to

read or image to view on social media. However, as their systems are growing rapidly, the number

of options is becoming immense. Recent estimates1 put the number of unique products sold at

Amazon.com at close to 400 million. In the realm of digital artefacts, the scale is even larger. The

number of photos on Facebook and Flickr is estimated2 to have reached billions, and still growing.

On one hand, such a large quantity of information in the Web makes it difficult, if not downright

impossible, for users to investigate every option. On the other hand, it is also challenging for

merchants to present appropriate products to users in a timely manner. That problem leads to the

need for a system for intelligent information access and personalized support in sifting through

large amounts of available information, according to user interests and preferences. One of such

systems is based on the idea of personalized recommendation, whose objective is to learn the user

preferences from their historical feedback, and generate a curated set of items that might be of

interest to the users.
1http://bit.ly/2k6aIrr, http://bit.ly/2g7wVUI, http://bit.ly/2iMehgY
2http://read.bi/1Niw1vS, http://bit.ly/1vlm6zR

1

http://bit.ly/2k6aIrr
http://bit.ly/2g7wVUI
http://bit.ly/2iMehgY
http://read.bi/1Niw1vS
http://bit.ly/1vlm6zR

1.1 Personalized Recommendation

Over the past decades, recommendation algorithms have been one of the key technologies for Web

services. Statistics from McKinsey3 have shown that recommendation systems brought Amazon

35 percent of its revenue and increased up to 75 percent of video consumption on Netflix. Rec-

ommendation feature is also responsible for 70 percent of views on YouTube 4. Pinterest reported

that their recommendation engines have powered over 40% of user engagement on the platform

[64]. A recommendation system is a type of information filter, which can learn users’ interests and

hobbies according to their profile or historical behaviors, and then predict their ratings or prefer-

ences for a given item. It changes the way businesses communicate with users and strengthens the

interactivity between them.

The fundamental entities of a recommender system are items, which are products and services

and users, who are consumers. The basic principle of recommender systems is to deliver the right

experience to the right user at the right time on the right device. Therefore, personalized recom-

mendation can appear in many forms, depending on the characteristics of the Web services and the

desired experience that the system wants users to have. In this thesis, we encompass two of such

perspectives on personalization, namely: preference learning and similarity learning. The former

refers to the personalization in which the recommendation list is tailored towards user preferences.

Examples of preference observations are explicit ratings given by users or implicit feedbacks such

as users’ consumption behaviors. The latter, on the other hand, refers to personalization approach

in which recommendation list is generated based on the personal perspectives of users on the simi-

larity among objects (e.g., products, images). This focuses on learning from “clustering” feedback

(i.e., grouping items into clusters), which enables users to express their own views on the similarity

or relatedness between different items. In the subsequent sections, we elaborate further on these

two perspectives on personalized recommendation.

3https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
4https://www.cnet.com/news/youtube-ces-2018-neal-mohan/

2

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://www.cnet.com/news/youtube-ces-2018-neal-mohan/

1.1.1 Preference Learning

The first perspective is the form of personalization that derives recommendations based on users’

historical feedbacks. In an increasingly digitized world, users are leaving ever greater traces of their

personal preferences. Users express their preferences in diverse forms, both explicitly through rat-

ings and rankings, as well as implicitly through their consumptions behaviors. Due to its great and

ascending importance, preference data has been studied intensively, particularly in the context of

recommender systems to build and update user profiles in order to provide personalization. Ex-

ample techniques include collaborative filtering [88], user-item graph models [4], regression based

models [107], deep learning based models [121], and matrix factorization [49]. In this part of the

thesis, we focus on matrix factorization (MF), which is an established and prevalent methodology

in the literature, thanks to its efficiency in dealing with large and sparse user-item rating matrices.

MF-based methods have improved upon the efficiency of other collaborative filtering approaches

such as neighborhood-based models ([23]). By representing users and items as low-dimensional

latent vectors, MF-based methods can avoid the expensive similarity weight computation (user-

to-user or item-to-item) in high-dimensional space of neighborhood-based collaborative filtering

models.

In this thesis, we seek to further improve the efficiency the recommendation process by jointly

investigating the two phases of a MF-based recommender system: learning and retrieval.

• Learning phase: this phase analyzes user’s historical feedback (e.g., ratings, click behaviors)

to learn user’s preference. Specifically, MF-based methods such as [87], [108] derive from

those inputs a latent vector xu ∈ Rd for each user u ∈ U , and a latent vector yi ∈ Rd for

each item i ∈ I, where d is the dimensionality of the vector space. The degree of preference

of user u for item i is modeled as the inner product score r̂ui ∝ xu
Tyi of vectors xu, yi. A

higher inner product score implies a higher chance of the user to prefer the item.

• Retrieval phase: Given the output latent vectors from the learning phase, to arrive at the

3

recommendation list for a target user u, we need to identify the top-k preferred items ac-

cording to preference scores xuTyi,∀1 ≤ i ≤ n. In the scenarios where there are bias terms

in modelling the preference score, i.e., r̂ui ∝ xTuyi + bu + bi, we can convert each user vector

xu to x̃u = [xu, bu, 1] and each item vector yi to ỹi = [yi, 1, bi]. The problem now become

identifying the top-k items with the highest inner product scores x̃Tu ỹi,∀1 ≤ i ≤ n. For ease

of readability, from this point onward we refer to x̃u and ỹi as xu and yi.

For the learning phase, the objective is to optimize for the accuracy in identifying the items

a user is likely to prefer. For the retrieval phase, the objective is to achieve high efficiency in

constructing the recommendation list in real time for each user. The real-time nature of the re-

trieval task is necessitated by the response time expected by end users. Ideally, all item vectors in

{y1, y2, . . . , yn} are examined and sorted according to their inner product scores. However, the cat-

alog of items is often too large to allow an exhaustive computation of all the inner products within

a budgeted retrieval time. Therefore, having a faster alternative for this process of recommendation

retrieval is desirable.

MF-based Recommendation Retrieval Problem

MF-based recommendation retrieval is essentially a similarity search problem. Indeed, the retrieval

of top-k recommendations is equivalent to the task of ranking every item yi (∀1 ≤ i ≤ n) for each

user xu with respect to the inner product score xuTyi and returning the k items at the top of the

rank list. This can be reduced to the fundamental problem of finding the index of the item that

returns the highest inner product score, as in Equation 1.1.

Problem 1.1. For each user vector xu, u ∈ U , determine the index i of an item in I such that:

i = arg max
1≤i≤n

xTuyi (1.1)

Problem in Equation 1.1, known as Maximum Inner Product Search or MIPS, arises naturally

4

in many large-scale tasks [91], when inner product-based comparisons are done between the em-

bedding vector of a query and many potential candidate objects’ vectors.

Complexity of Exhaustive Search Solution. The MIPS problem is not trivial as a naive brute-

force solution scales linearly with the number of objects to score. In the context of recommendation

systems, the challenge is obvious as the number of items is typically very large (e.g., at the scale

of millions). Naively scanning these millions of items to identify the few most relevant ones

may inhibit truly real-time retrieval performance. Per user (or per query), the cost of such naive

exhaustive approach isO(n×d), which scales linearly with the number of items n and the number

of factors d. However, real-world systems are constrained to perform top-k retrieval in a few

milliseconds and scoring and ranking all items are impossible.

Pre-computing the top-k recommendations for all m users requires the storage cost of O(m×

k), which is not practical for systems where the number of users and items is in the scale of mil-

lions. Also, pre-computing the recommendations restricts the flexibility of the systems in capturing

the rapidly changing preference of users (e.g., target user’s vector is updated online according to

his/her behaviors) and adoptions of new items. Therefore, to achieve real-time retrieval for large-

scale system that handles tens of thousands of users (number of queries), reducing the retrieval

cost of online top-k recommendations is important.

Approaches. An effective approach to improve retrieval efficiency is to use indexing structures

such as locality-sensitive hashing (LSH) [91], spatial trees (e.g., KD-tree [14]), and inverted index

[15]. By indexing items’ latent vectors, we can quickly retrieve a small candidate set for k “most

relevant” items to the user query vector, probably in sub-linear time with respect to the number of

items n. This avoids an exhaustive search, and saves on the computation for those large number of

items that the index considers irrelevant.

We focus on indexing as a faster alternative to exhaustively searching over all items to identify

top-k items. Indexing is preferred over pre-computation of recommendation lists for all users,

which is impractical [15, 47] as user interests change over time and new items appear. By indexing,

5

�� �
� � �

	� � �� � �

	� � �� �� � � ���	� � �� � � � � ���	�

�� � 	� � ��

 � � � �� � 	�

���	�
�� � 	�

��
�
���� � �
� ���� � ���	�
�� � 	�

Figure 1.1: An illustration for the incompatibility of inner product kernel for spatial tree index
(Euclidean distance) and inverted index (cosine similarity).

we avoid the storage requirement of dealing with all possible user-item pairs. Index storage scales

only with the number of items n, while the number of queries could be larger.

Issues. However, getting the top nearest neighbors by the inner products using aforementioned

index structures is trickier than conventional distance metrics like Euclidean or Cosine distance.

The challenge is that the inner product does not form a proper metric space. As the inner product

scores are unbounded, a point might not be its own nearest neighbour. This violates the triangle

inequality and invalidates some common approaches for approximate nearest neighbours. Specif-

ically, it has been established that there cannot exist any LSH family for maximum inner product

search [91]. Also, retrieval on a spatial tree index finds the nearest neighbors based on the Eu-

clidean distance, which are not equivalent to those with maximum inner product [9].

Figure1.1 shows an example to illustrate the above analysis. In Figure 1.1, the inner product

xu
Tyi is greater than xu

Tyj , implying that u prefers i to j. However, the Euclidean distance

computation shows that yj is closer to xu than yi is to xu. Also, the cosine similarity between xu

and yi is smaller than that between xu and yj . This means that the nearest neighbor according to the

inner product kernel is not the same as that according to Euclidean distance and Cosine similarity.

In this thesis, we propose to resolve this issue with the two following approaches:

• Euclidean Embedding. Euclidean embedding takes as input distances between data points

(or their ordinal relationships), and outputs low-dimensional latent coordinates for each

6

point so that the inter-point Euclidean distances have the same ordering as of the input

distances/ordinal relationships [51]. Because they operate in the Euclidean space, the co-

ordinates support efficient nearest neighbor search using geometric index structures such as

spatial trees.

There exist recent works on using Euclidean distance kernel to model user preferences over

items. One of them is Collaborative Filtering via Euclidean Embedding or CFEE [46], which

fits a rating r̂ui by user u on item i in terms of the squared Euclidean distance between xu and

yi. However, fitting ratings directly does not preserve the pairwise comparisons. Therefore,

we propose Collaborative Ordinal Embedding or COE [54] that is based on ordinal triples.

It expresses an ordinal triple tuij , indicating that a user u prefers an item i to another item

j, through the Euclidean distance difference ||xu − yj|| − ||xu − yi||. COE’s objective is to

maximize this difference for each observation tuij . Chapter 3 presents this work in detail.

• Indexable Bayesian Personalized Ranking. The key reason behind the incompatibility

between inner product search that matrix factorization relies on, and the aforesaid index

structures is how a user u’s degree of preference for an item i, expressed as the inner product

xu
Tyi, is sensitive to the respective magnitude of the latent vectors ||xu||, ||yi||. Therefore,

one insight towards achieving geometric compatibility is to desensitize the effect of vector

magnitudes. The challenge is how to do so while still preserving the accuracy of the top-k

retrieval.

There are a couple of recent approaches in this direction. One approach [9] is a post-

processing transformation that expands the latent vectors learnt from matrix factorization

with an extra dimensionality to equalize the magnitude of all item vectors. Because the

transformation is a separate process from learning the vectors, such a workaround would

not be as effective as working with natively indexable vectors in the first place. Another

approach [29] extends the Bayesian Probabilistic Matrix Factorization [87], by making the

7

item latent vectors natively of fixed length. Fitting inner product to absolute rating value may

not be suitable when only implicit feedback (not rating) is available. Moreover, we note that

top-k recommendation is inherently an expression of “relative” rather than “absolute” pref-

erences, i.e., the ranking among items is more important than the exact scores. Therefore,

we propose Indexable Bayesian Personalized Ranking or INDEXABLE BPR that learns from

ordinal triplets tuij and produces native geometrically indexable latent vectors for accurate

and efficient top-k personalized recommendation. We describe INDEXABLE BPR in detail

in Chapter 4.

1.1.2 Similarity Learning

The second perspective on personalized recommendation is to consider how users perceive the

similarity or relatedness between different items/objects. In this setting, a user can cluster or group

related items together, and obtain personalized recommendations based on these clusters. For

example, on Pinterest5, a visual discovery platform, as users pin images onto boards. Each board

consists of photos that belong to an overall concept defined by the user. Pinterest users may wish

to discover other related images to expand their boards (Figure 1.2). On Amazon, two products

may be “related” in different ways: browsed together, purchased together, same manufacturer, etc.

Amazon users may want to get recommended products that are similar or complementary to those

they have purchased or browsed for before. In such scenarios, in order to generate high quality

recommendations, machine learning models should capture the varying similarity perspectives of

different users. We refer to this learning objective as multiperspective similarity modelling. Here,

a similarity perspective could be a human subject or an aspect or a concept being used as reference

for comparing the similarity among objects.

This form of personalization is distinct from multicriteria recommender systems (MCRS) in

the literature [2, 61, 69], which uses multi-criteria preference ratings to further improve the rec-

5www.pinterest.com

8

www.pinterest.com

Figure 1.2: An example of three pin collections (boards) of a Pinterest user.

ommendation quality. MCRS models aim at capturing not only the user’s overall preference for a

given item but also his/her preferences along specific aspects of the items. This setting is different

from our as we are interested in the scenarios where the observations are similarity comparisons

among objects generated by multiple users’ perspectives. MCRS’s objective is to arrive at a final

ranking of items according to the preferences of the targeted users, whereas we seek to model how

different perspectives perceive the similarity among the items.

Challenges. There are two main challenges for learning from such “clustering” behaviors,

according to [116]. For one, since each user only clusters a subset of items, we need to simultane-

ously learn from multiple users’ feedbacks. However, different users may have different similarity

perspectives e.g., two images or products may be similar/related according to one user, but disim-

ilar/unrelated to another. For example, on Pinterest, two images can be saved to the same board

by one user, but to different boards by other users, depending on the overall concept depicted by

the boards. Conventional approaches that do not account for personal perceptions cannot effec-

tively learn similarity measures that are personalized to different users. For another, it is generally

difficult to design a content-based features that can effectively capture similarity preferences of

different users. From earlier examples of Pinterest images, it is unclear that visual features from

images are sufficient to reflect multiple similarity perspectives of different users.

Approaches. Our assumption is that as the perspectives concern the same set of items, they

9

are related or similar to some extent. This is similar to the underlying principle of collaborative

filtering techniques for recommender systems. We therefore adopt the collaborative approaches

for the multiperspective similarity modelling problem. The term collaborative refers to the idea of

learning from all perspectives simultaneously, in which a perspective can learn from observations

of other similar perspectives, instead of solely learning from its’ own similarity observations. With

this principle in mind, we propose two different frameworks that both adopt the multiperspective

approach: one is based on graph-theoretic similarity measure and the other is based on ordinal

embedding:

• Graph-theoretic Similarity Measure. When the basis for similarity is a set of object-to-

object relationships, it is a natural option to rely on graph-theoretic measure. Specifically,

each object can be represented as a node on the graph. Two nodes are connected by an edge

if the corresponding objects are similar or related. One seminal technique for measuring the

structural-context similarity between a pair of graph nodes is SimRank [40], whose under-

lying intuition is that two nodes are similar if they are connected by other similar nodes.

However, by design, SimRank as well as its variants capture only a single perspective of

similarity. We propose a natively multiperspective approach to measuring graph-theoretic

similarity. As input, we are given multiple graphs of the same object nodes and each graph

reflects relationships among objects from a specific perspective. As output, we seek to mea-

sure the similarity between any pair of objects according to a particular perspective. The

key intuition underlying this formulation is to model not only the perspective-specific inter-

object similarity between any pair of objects, but also the inter-perspective similarity be-

tween any two perspectives. Learning these two similarity measures simultaneously renders

an advantage in sharing information across similar perspectives, which helps to address the

problem where observations for each perspective are under-sampled. Details of this approach

can be found in Chapter 5.

• Ordinal Embedding. Embedding deals with finding a low-dimensional representation of

10

data points or objects based on observations of their similarities. The proximity between

the low-dimensional vectors expresses a specific viewpoint or perspective about the simi-

larity between objects. Particularly, ordinal embedding is the class of embedding methods

that rely on relative comparisons of similarity – given an object, which of two other ob-

jects is more similar to it, rather than on exact similarity values (that may not always be

observed). However, most of classical embedding approaches assume there is only one valid

perspective of similarity and therefore seek to produce only a single embdding map. In the

scenarios where ordinal comparisons are derived from multiple perspectives, we hypothesize

that these perspectives would be better represented by multiple embedding maps. We formu-

late this problem as conditional ordinal embedding, which learns a distinct low-dimensional

embedding map for each perspective, yet allows information sharing across perspectives via

a shared representation. Our geometric approach is novel in its use of a shared spherical

representation and multiple perspective-specific embedding maps on their respective tangent

hyperplanes. We describe this framework in detail in Chapter 6.

1.2 Thesis Outline and Contributions

Organization. Figure 1.3 shows a graphical overview of this thesis. In Chapter 2, we review

related works in the literature for both problems. Next, in Chapters 3 and 4, we respectively

describe two approaches for efficient retrieval of personalized recommendations. In Chapters 5

and 6, we respectively present two frameworks for modeling diverse similarity perspectives in

the data: one is based on graph-theoretic similarity measure and the other is based on ordinal

embedding. Finally, we conclude and outline future research directions in Chapter 7.

Contributions. In this thesis, we explore two perspectives on personalized recommendation:

preference learning and similarity learning. For preference learning, we seek to further improve

upon the efficiency of MF-based methods by focusing on the retrieval step of recommendations

11

Personalized Recommendation

Part I:
Preference Learning:

Efficient Recommendation Retrieval

Part II:
Similarity Learning:

Modelling Multiple Perspectives

Chapter 3:
Collaborative

Ordinal Embedding

Chapter 4:
Indexable

Bayesian Personalized Ranking

Chapter 5:
Multiperspective

Graph-theoretic Similarity Measure

Chapter 6:
Spherical

Conditional Ordinal Embedding

Figure 1.3: An overview of this thesis.

(after learning the latent vectors). As exhaustive search over all items scales linearly with the num-

ber of items, it may not be scalable to very large-scale systems. Particularly, we focus on using

indexing structures (e.g., locality sensitive hashing, spatial tree indexing, and inverted indexing)

as an efficient alternative to exhaustive search over all items. We propose two recommendation

algorithms that produce vector representation for users and items that guarantees high recommen-

dation accuracy returned by searching with the indexing structures. This could potentially lead to

the development of a new category of recommender systems that not only optimize for the accu-

racy of the recommendations but also the efficiency in retrieving these recommendations in real-

time. For similarity learning, our motivation is based on the observation that there are increasingly

more scenarios where there exist multiple similarity perspectives in the data. By modelling these

perspectives effectively, we can better understand the diverse similarity preferences of different

users, via which we can personalize the recommendations to each user based on their ”clustering”

feedbacks. This is a distinct form of personalization as compared to the conventional setting as

described in the preference learning perspective.

12

Overall, this thesis will cover the following papers, which are my publications as the first

author:

• For preference learning perspective, we propose two different learning models that optimize

for both recommendation accuracy and retrieval efficiency:

The first approach is based on Euclidean embedding, which learns from users’ ordinal

preferences and models the user-item relationship as the Euclidean distance between

their respective low-dimensional latent vectors. The search for the most preferred items

is converted to the nearest neighbor search (NNS) problem, which can be solved effec-

tively using spatial indexing methods. This work was published in SIAM International

Conference on Data Mining in 2016 [54].

The second approach is based on the idea of desensitizing the effect of vector magni-

tudes in modeling user-item relationship of MF-based methods. Our INDEXABLE BPR

is formulated with a kernel based on angular distance shows a balance of accuracy and

run-time efficiency, achieving higher recommendation accuracy than the baselines at

the same retrieval speedup level, and higher retrieval speedup at the same accuracy

level. This work was published in ACM Conference on Information and Knowledge

Management in 2017 [55].

• For similarity learning perspective, we propose two approaches that support modelling mul-

tiple similarity perspectives in the data effectively:

In the first approach, we rely on the notion of graph-theoretic similarity measure and

propose a framework that supports multiperspectivity. The proposed framework yields

a similarity score for any pair of items for a specific perspective. Experiments on pub-

licly available datasets showcase the utility of modeling multiple similarity perceptions

compared to uniperspective methods. This work was accepted in the 27th ACM Con-

ference on Information and Knowledge Management in 2018 [56].

13

In the second approach, we propose a geometric framework for the conditional ordinal

embedding problem, i.e., learning multiple maps from a pool of conditional ordinal

triplets, each for one similarity perspective. Experiments on public datasets showcase

the utility of collaborative learning over baselines that learn multiple maps indepen-

dently. This work has been accepted for publication in the proceeding of the 28th

International Joint Conference on Artificial Intelligence in 2019.

14

Chapter 2

Related Work

In this chapter, we review techniques and approaches that are closely related to our topics and

methods in the subsequent chapters. For efficient recommendation retrieval, we provide a sys-

tematic review of relevant approaches in literature in Section 2.1. For multiperspective similarity

modelling, we relate our work to the closet branches in literature in Section 2.2.

2.1 Efficient Retrieval of Personalized Recommendations

As illustrated in Figure 2.1, retrieving the recommendations involves the following steps:

1. Candidate Screening: Given a user vector xu as query, a filtering procedure determines a

candidate set Cu, with an objective of reducing the number of candidates.

2. Candidate Ranking: For the candidates in Cu, we compute their inner products against

the query vector xu, and sort them accordingly to identify the top-k recommendations. The

computational complexity of this process is O (|Cu| × d+ |Cu| × log (|Cu|)).

For the exhaustive search approach (linear scanning), Step 1 essentially means doing nothing,

passing all n items as candidates, i.e., |Cu| = n. Step 2 involves O (nd+ n log n) operations for

full inner product computations and sorting.

15

Any effort to optimize the retrieval efficiency would have to improve the running times of

either or both of the steps outlined above. Therefore, we use these steps as the primary axis for

taxonomizing the works, as shown in Figure 2.1.

Candidate
Screening

Candidate
Ranking

Efficient Inner
Product Computation

Indexing Discrete
Representation

Post-learning
Transformation

Indexable
Representation

Similarity Graph
Exploration

MF-based
Recommendation
Retrieval Pipeline

Approaches for
Efficient MF-based
Recommendation

Retrieval

Euclidean
Embedding

Desensitizing the
Vector Magnitudes

Problem: Determine item such that

Quantization-based
Discretization

Vector
Quantization

Retrieval-Efficient
Structure (RES)

Sorted
Indices Lists

Optimization-based
Discretization

Figure 2.1: Approaches for Efficient MF-based Recommendation Retrieval

Efficient Candidate Screening. Figure 2.1(a) (left) organizes works that seek to quickly dis-

card potentially irrelevant items, resulting in a candidate set Cu in which |Cu| is substantially

smaller than n (however, usually larger than k). The underlying idea is to trade off the cost of

slightly lower recall from potentially missing out on the false negatives, for the benefit of faster re-

trieval through smaller candidate sets. There are two main lines of such strategies. Exact methods

attempt to return an identical top-k to linear scanning, based on sequential scanning [60, 98, 99].

However, in the worst case, these exact methods still need to scan through all items, i.e., the

complexity is O(n). Therefore, approximate reduction strategies, which may generate a slightly

different top-k, are more prevalent in the literature. In Section 2.1.1, we describe those strategies

that use retrieval-efficient structures, which are closely related to our proposed methods in Chap-

ters 3 and 4.

16

Efficient Inner Product Computation. Figure 2.1(b) (right) organizes works that reduce the

cost of each inner product score computation, originally operating in the d−dimensional real-

valued latent feature space. One idea vector quantization decomposes the d−dimensional space

into a Cartesian product of lower dimensional subspaces and quantizing each subspace separately.

The inner product in the original d-dimensional space is approximated as the sum of inner products

in these subspaces. Another idea discrete representation reduces the computational cost of operat-

ing on real-valued latent factors by representing users and items as binary codes in the Hamming

space. The inner product score can be converted to computing the Hamming distance between user

and item binary vectors requiring simple XOR operations [118]. That speeds up the generation of

recommendations, even if we have to exhaustively scan over all items. We will elaborate further

on these two ideas in Section 2.1.2.

2.1.1 Efficient Candidate Screening

In the following, we discourse on the class of approximate methods using retrieval-efficient struc-

tures for top-k recommendation retrieval.

Approximate Methods via Retrieval-Efficient Structure (RES)

This approach performs query-independent preprocessing of item vectors and stores them in a

data structure that supports efficient candidate filtering upon query, probably in sub-linear time

with respect to the number of items n. There are several possible structures, namely: indexing

structures, sorted indices list, and similarity graph exploration.

RES#1: Indexing By indexing item latent vectors, we can quickly retrieve a small candidate

set for the “most relevant” items to the user query vector, as illustrated in Figure 2.2. As opposed

to exhaustive search, indexing offers a speed advantage, probably in sub-linear time with respect

17

to the number of items n, at the cost of some storage. As opposed to full precomputation whose

storage requirement scales with the number of items and users, indexing is significantly more

storage-efficient (only items need to be indexed), while offering greater flexibility for k, the size of

recommendation list to be retrieved. Popular indexing structures include locality-sensitive hashing

(LSH) [92] hash tables, spatial indexing (e.g., KD-tree [14]), and inverted index [15]. Depending

on the structure, it might require a query-dependent processing step to convert the query vector xu

to a suitable form for querying.

Indexing
LSH Hash Table Spatial Tree Inverted Index

Candidate Set

Figure 2.2: An Illustration of Candidate Screening with Indexing

Issues of using Indexing for MIPS. Early attempts towards having efficient MF-based re-

trieval include [48], which constructs a ball tree with item vectors and employs a branch and

bound algorithm and [82], which proposes a dual-tree based search using cone trees to handle

many queries simultaneously. However, these solutions partition the data space based on Euclidean

distance, which could produce different top-k recommendations from the inner product.

The reason is because inner product does not form a proper metric space: for ∀x ∈ Rd, you

can always find y1, y2 ∈ Rd so that xTy1 < xTx < xTy2. A point might not be its own nearest

neighbor. This violates the triangle inequality and invalidates some common approaches for ap-

proximate nearest neighbors search. This means that the inner product kernel does not satify the

underlying assumption for the effectiveness of a spatial tree, or an inverted index.

To resolve this issue, there are two possible solutions:

18

1. Post-Learning Transformation The first solution is to reduce MIPS problem to either Nearest

Neighbor Search (NNS) problem defined as:

i = arg min
1≤i≤n

||xu − yi|| (2.1)

or Maximum Cosine Similarity Search (MCSS) problem:

i = arg max
1≤i≤n

xTuyi
||xu||.||yi||

(2.2)

The three problems are equivalent if all item vectors are of the same length. This can be

solved via post-learning transformations applied to user and item vectors. This typically

adds extra dimensions to user vectors {xu}u∈U and item vectors {yi}i∈I so that solving

MIPS in the original space is equivalent to solving NNS/MCSS in the transformed space.

After the reduction, there are several indexing solutions for the transformed NNS/MCSS

such as locality sensitive hashing (LSH) [76, 92, 93], PCA-tree ([10]).

There are many choices for the transformation itself. For example, [92, 93] augment the

vectors to higher dimensional space. Later, [10, 76] extend the output latent vectors by one

dimension to equalize the magnitude of item vectors:

xu →
[
xu
||xu||

, 0

]
∀u ∈ U ; yi →

[
ỹi,
√

1− ||ỹi||2
]
∀i ∈ I, (2.3)

in which ỹi = yi
maxi∈I ||yi||

∀i ∈ I.

Extensions include [38] that minimizes the distortion error in reducing MIPS to NNS via

Asymmetric LSH scheme and Query Normalized First transformation and [43] that uses

randomized partition trees instead of LSH for a better theoretical guarantee on choosing the

best MIPS-to-NNS/MCSS reduction strategies.

19

Also under this category, [15] transforms user and item dense latent vectors to sparse repre-

sentation, where the sparsity patterns reflect the closeness of original vectors. It then uses

inverted indexing with the resulting sparse vectors for efficient retrieval.

2. Indexable Representation The second solution is to avoid the need for transformation by

designing recommendation algorithms whose latent output vectors can be immediately sub-

linearly searchable using indexing. For instance, CFEE [46] uses Euclidean distance to

model the user preference over items. The retrieval of top recommendations becomes near-

est neighbor search (NNS) with Euclidean distance. Another work on indexable represen-

tation learning is Indexable Probabilistic Matrix Factorization or IPMF [29] , which keeps

the classic formulation of matrix factorization preference learning models, but incorporates

additional constraint that all item vectors have the same magnitude. IPMF produces output

representation in which MIPS is equivalent to both NNS and MCSS. Therefore, one can im-

mediately solve MIPS efficiently with LSH or spatial trees. Our two approaches (in Chapters

3 and 4) fall under this category.

RES#2: Sorted Indices Lists To quickly construct the candidate set, [114] proposes an algo-

rithm Greedy-MIPS based on the following working assumption:

xu
Tyi > xu

Tyj ⇔ max
1≤l≤d

x(l)
u y

(l)
i > max

1≤l≤d
x(l)
u y

(l)
j , (2.4)

In other words, the ranking of inner products between user vector xu and item vectors {yi}ni=1 can

be approximated by the ranking of products of their maximum elements. Before observing any

query, Greedy-MIPS constructs d different lists, in which the l−th list consists of sorted indices

of elements in that dimension of all item vectors, i.e., {y(l)
i }. At the querying phase, a max-heap

is employed to iteratively traverse (j, l) entries of matrix Z = [x
(l)
u y

(l)
j],∀j ∈ [1, 2, . . . , n] and

l ∈ [1, 2, . . . , d] in a greedy sequence, and the first newly visited item indices j will be added to

the candidate set Cu.

20

RES#3: Similarity Graph Exploration Based on the assumption that similar item vectors

may constitute relevant results to the same query, ip-NSW [74] proposes to solve MIPS with the use

of similarity graph based on the inner product between item vectors. In constructing a s-Delaunay

similarity graph, at each step ip-NSW adds the next item i to the graph, connecting it by directed

edges to H vertices, corresponding to most similar item vectors that are already in the graph. At

the query phase, greedy walks on this graph are employed to efficiently determine the candidates

for recommendation. At this stage, ip-NSW maintains a priority queue of size Q of neighbors that

should be visited by the search process. Both H and Q determine the balance/trade-off between

the runtime and search accuracy.

Our two proposed approaches COE and INDEXABLE BPR fall under the indexable represen-

tation category. However, unlike CFEE [46], IPMF [29] that fit ratings, we learn from ordinal

triples. In the experiments, we include CFEE and IPMF as the baselines to validate the effective-

ness of learning from ordinal triples. Another comparable baseline is BPR [83], which also relies

on triples, followed by the post-learning transformation to reduce MIPS to MCSS ([10, 77]).

2.1.2 Efficient Inner Product Computation

The number of inner product computations is determined solely by the size of the candidate set

Cu. Therefore, a valid strategy in the candidate ranking step (Figure 2.1(b)) is to reduce the

cost of each inner product computation. There are two main approaches in this branch. Vector

quantization attacks the dimensionality d of the latent features by operating at lower subspaces.

Discrete representation attacks the real-valued operations by operating at binary representations.

21

Vector Quantization

[34] describes a vector quantization-based technique to approximate inner product search. In par-

ticular, each vector vector is mapped to M subspaces using simple chunking.

xu =
[
x(1)
u ;x

(2)
1 ; . . . ;x

(M)
1

]
; yi =

[
y

(1)
i ; y

(2)
i ; . . . ; y

(M)
i

]

where x(t)
u , y

(t)
i ∈ Rl, l = d d

M
e. The tth subspace containing the tth blocks of all the item vectors

{y(t)
i }, is quantized by a code bookU (t) ∈ Rl×nC , where nC is the number of quantizers in subspace

t. Each item vector yi is quantized in the tth subspace as y(t)
i ∼ U (t)α

(t)
yi , where α(t)

yi is one-hot

indication vector. The inner product of a user query vector and an item vector is approximated as

the sum of inner products with the subspace quantizers, with the cost of O(MnCd dM e):

xu
Tyi =

K∑
k=1

x(k)
u

T
y

(k)
i ≈

K∑
k=1

x(k)
u

T
U (kα(k)

yi

The codebook U (k) and indication vector α(k)
yi are learned by minimizing the inner product quanti-

zation error for held-out queries Z with known top-k, at the cost of O(nnC |Z|).

Discrete Representation

In this approach, each user/item is represented as a sequence of binary values. The inner product

preference score in the Hamming space can be converted to computing the Hamming distance

between user and item binary vectors, which requires simple XOR operations [118]. However,

due to the binary constraints, learning the binary codes in hashing-based learning frameworks to

fit the data generally requires solving a NP-hard discrete optimization problem. To arrive at the

binary vector representation for users and items, there are two main approaches: quantization-

based discretization or optimization-based discretization.

1. Quantization-Based Discretization consists of two phases. The first phase is relaxed opti-

22

mization with some specific constraints to obtain continuous latent representations for users

and items. The second phase is binary quantization to convert the continuous latent repre-

sentations into binary codes. [123] constructs binary codes such that the Hamming distances

of a user and her preferred items are small. [117] proposes a two-stage process: constraining

the learning process, so that users’ preferences can be well approximated by user-item sim-

ilarities and quantization algorithm that generates the binary hashing code from the learned

real-valued user/item features. [63] imposes the uncorrelated constraint of binary codes for

learning compact latent vectors.

2. Optimization-Based Discretization adopts classic matrix factorization formulations, while

imposing further constraints on balance and decorrelation for the binary codes. For instance,

DCF [118] learns from explicit feedback, while DPR [122] learns from implicit feedback

with ranking-based AUC objective function. DCMF [62] also takes into account context

information (such as user’s age and gender, item’s category and textual content), while DDL

[120] combines Deep Belief Network (DBN) and Collaborative Filtering (CF). DFM [65]

also learns binary codes for any side feature based on the factorization machine framework.

Meanwhile DRMF [119] is based on each user’s pairwise preferences, with self-paced learn-

ing.

Approaches under this category are different from our proposed methods. For one, we aim

at reducing the number of candidates for recommendation at the retrieval step. For another, our

models produce real-valued vectors, whereas discrete representation models produce vectors in the

Hamming space, whose performances are usually bounded by conventional matrix factorization

methods ([118]).

23

2.2 Modelling Multiple Similarity Perspectives

Similarity learning and measurement is a broad topic. Since our key thrust is incorporating in mul-

tiperspectivity, in the following we relate our work to the closest branches in the literature. Figure

2.3 presents a taxonomy for related techniques, which are summarized into two main categories:

supervised and unsupervised similarity learning.

The former category refers to the setting where the feature vectors and the similarity labels

are known, and the objective is to learn a mapping function from the feature domain to the label

domain. We further divide this category into two approaches: uniperspective – methods that as-

sume only one similarity perspective in the data and multiperspective – methods that assume the

existence of multiple similarity perceptions in the data.

The latter category, i.e., unsupervised similarity learning refers to the setting where the fea-

ture vectors are unknown and only similarity observations are given. The objective is to discover

the underlying similarity structure between objects or the representation of objects that explains

the observations. There is further consideration on the form of similarity observations and the

corresponding learning strategies. As such, we summarize the work into two subcategories. One

is structure-based similarity measure, which takes in object-to-obect relation graph where two

objects are connected by an edge if they are considered similar and yields a similarity measure

between any pair of objects. Another is ordinal embedding, which learns low-dimensional repre-

sentations of objects from ordinal similarity comparisons between objects. We split each of these

subcategories into either uniperspective or multiperspective approaches.

2.2.1 Supervised Similarity Learning

Uniperspective. Supervised similarity learning [113] is mostly uniperspective, dealing with the

problem where the feature vectors of objects are known. It relies on training labels in the form

of specific similarity values, binary labels (similar vs. dissimilar), or ranked comparisons. The

24

Modelling
Similarity Perspectives

Structure-Based
Similarity Measure

Ordinal
Embedding

Uniperspective Multiperspective

Uniperspective Multiperspective

Supervised
Similarity Learning

Unsupervised
Similarity Learning

Uniperspective Multiperspective

Figure 2.3: A taxonomy for multiperspective similarity modelling

focus is on learning the similarity values from features, and the use case is primarily for clustering

[33, 116] or classification [109]. For multi-modal similarity, [72] uses ordinal triplets but only as

side information, and still primarily relies on features.

Multiperspective. There exist other methods that could be interpreted as learning content-

based multiperspective similarities. The closest is Personalized Collaborative Clustering or PCC

[116], which uses matrix factorization to learn personalized clustering of objects; each person

could be seen as a perspective and two objects are similar if they belong to the same cluster. How-

ever, instead of graph theory, it is framed in terms of similarity learning [20], where the objective

is to derive a function mapping features to similarity labels. In the absence of features, it turns into

learning latent representations from similar labels. In Chapter 5, we include PCC as one of our

baselines. [106] proposes Conditional Similarity Networks (CSN) that jointly learns a disentan-

gled embedding and masks that select and reweight relevant dimensions to induce embedding for

different notions of similarities. However, CSN’s disentangled embedding is learnt from images’

features, which are assummed not known in the general setting. [80] proposes MVE, a network em-

bedding technique that learns node representations by leveraging information from multiple-view

and labeled data. Although it deals with multiple types of proximities between objects, it seeks to

25

learn a robust node representations rather than to reflect a variety of similarity perspectives over

the graph nodes.

2.2.2 Unsupervised Similarity Learning

Structure-based Similarity Measure

In this section, we review related work on structured-based similarity measure.

Uniperspective: Most of the previous works in structural-based similarity measurement are

based on SimRank [40]. We first briefly review SimRank. Given a graph G(V,E), SimRank

measures the similarity between two graph nodes based on the graph structure.

Formally, the SimRank score between two vertices a, b is defined as follows:

S(a, b) =


C

|N(a)||N(b)|

|N(a)|∑
i=1

|N(b)|∑
j=1

S(Ni(a), Nj(b)), if a 6= b,

1, if a = b

(2.5)

in which C is the damping factor between 0 and 1; N(a) andN(b) comprise the neighbors of a and

b respectively. In other words, the SimRank score between a, b is defined in terms of the SimRank

scores of their neighbors. The base case is the similarity between a vertex and itself, which is

always 1. If a vertex a has no neighbor, then we have S(a, b) = 0 for any vertex b 6= a.

SimRank has been extended in diverse directions, of which we cite a few here. [58] proposed

non-iterative computation for dynamically changing graphs. [36] parallelized the similarity com-

putation using GPUs. [59] optimized the computation when the target was computing the similarity

of a single pair of objects. [53, 67, 102, 115] sought to speed up the computation for extremely

large graphs. In the context of translation lexicons, [24] presented a modification of SimRank to

measure similarity across two graphs; this is distinct from the notion of multiperspective as there

is only one perspective.

26

Besides SimRank, there are other notions of graph-based similarity. Most are based on random

walk variants [103] (e.g., Personalized PageRank [39, 84] or hubs and authorities [30]). [95] was

concerned with metapaths in heterogeneous information networks.

Multiperspective: We are not aware of any SimRank extension incorporating multiperspectivity

similarity. In Chapter 5, we further explore this direction and propose a graph-theoretic similarity

measure MP-SIMRANK that deals with multiple input graphs over the same object nodes, each

representing one similarity perspective and producing a score of any two objects for a specific

perspective. The design of MP-SIMRANK natively supports multiperspectivity.

Ordinal Embedding

This section reviews techniques and methods related to our second multiperspective approach

SCORE (Chapter 6).

Uniperspective: Since SCORE learns from a collection of ordinal comparisons between ob-

jects, it falls under the umbrella of ordinal embedding. Previous work in ordinal embedding focuses

on the single map scenario, and are not designed for multi-perspective scenario. Some are based

on quadruplets of objects (distance between the first pair in comparison to that between the second

pair). Generalized Non-metric MultiDimensional Scaling or GNMDS [3] is based on semi-definite

programming. The state-of-the-art is Soft Ordinal Embedding or SOE [101]. Other methods are

based on ordinal triplets of objects, such as t-Stochastic Triplet Embedding or tSTE [105], which

has been compared favorably to Crowd Kernel Learning or CKL [97]. As there is no existing so-

lution for multi-perspective ordinal embedding, we compare to the latest models SOE and tSTE in

Chapter 6.

Multiperspective: We propose a collaborative approach to learning multiple maps from con-

ditional ordinal comparisons by considering the perspectives jointly via a shared representation,

while still respecting each perspective via perpsective-specific representations. While the con-

cept of multiple embedding maps for the same objects has been introduced in different contexts

27

[6, 104], our framework SCORE with shared representation is novel. [104] considers a different

type of input (non-metric distances). Meanwhile, Multi-View Triplets Embedding or MVTE in [6]

also considers ordinal comparisons, but in a different scenario where the associations between per-

spectives and object triplets are not known and to be derived. Their objective is to split the ordinal

observations into a specified number of latent groups, each is associated with an embedding map.

In Chapter 6, we includes MVTE as one of our baselines for comparison.

Multi-view network embedding (MVNE) that deals with multi-view graphs, which consists of

several distinct sets of edges over the same entities/nodes, has received extensive attention recently

([66, 90, 96]). However, existing works in multi-view network embedding aim to combine the

information from all the views and obtain a single low-dimensional feature representation of the

nodes that preserves the structural and semantic relations among them. Though having similar

input as our graph-theoretic framework MP-SIMRANK to some extent, this is distinct from us as

our formulation aims at learning multiple perspective-specific similarity measure for any pair of

objects. The final output of MVNE reflects a common view on the relationships between graph

nodes. There, the focus is not so much to reflect a variety of perspectives as to arrive at the common

consensus.

Multi-task learning [18] is a class of learning problems that leverage on the commonality be-

tween several sufficiently related tasks. It is most advantageous when there may not be sufficient

training data for each task. Aside from having a common general framework, our work is a distinct

formulation from previous works. The particular realization of multi-task learning depends on the

specific problem at hand. In our distinct case, that is ordinal embedding. Related formulations

include metric learning for nearest neighbor classification [79, 112], feature selection [7], and col-

laborative clustering [116]. Aside from different formulations, most of the works rely on features

rather than ordinal similarity comparisons.

The term “embedding” is also used in contexts of representation learning such as distributed

representation [13] or distributional representation [16]. We do not rely on features; rather we

28

learn from similarities or distances (or ordinal comparisons thereof). Ours are low-dimensional

Euclidean coordinates that directly support visual analysis, whereas the above works would require

a separate method for visualization.

29

Part I

Preference Learning:

Efficient Recommendation Retrieval

30

Chapter 3

Collaborative Ordinal Embedding

In this chapter, we present a collaborative filtering approach via Euclidean ordinal embedding for

efficient recommendation retrieval. Euclidean embedding takes as input distances (or their ordinal

relationships), and outputs low dimensional latent coordinates for each point that would preserve

the input as much as possible. Because they operate in the Euclidean space, the coordinates sup-

port nearest neighbor search using geometric index structures such as spatial trees. In addition to

supporting efficient recommendation retrieval, Euclidean embedding could also enable other ap-

plications such as visualization (i.e., when d = 2 or 3). The proposed model Collaborative Ordinal

Embedding or COE is based on generative modelling of ordinal triples. Experiments on publicly

available datasets show that COE outperforms the baselines both in terms of retrieval efficiency

and information preservation for ordinal data.

3.1 Introduction

We are interested in ordinal embedding approach for collaborative filtering. Each user and item

is represented by a coordinate in a low-dimensional Euclidean space, and the relationships among

data points are modelled through Euclidean distances in that space. Most of the previous works

31

on embedding focus on metric embedding, whose objective is to preserve the pairwise similarities

among data points [22, 86, 89, 100]. This is applicable when the main relationships among objects

is similarity, e.g., images of handwritten digits or human faces [22].

Ordinal data refers to data where the ranking established by numerical values is more signif-

icant than the exact values. Such a representation is very common in the domain of preferences,

where users express how much they like various items. For instance, after purchasing a product

on Amazon, a user may leave an explicit rating. While listening to music at Spotify, a user leaves

implicit traces of her liking for a track or an artist by the frequencies at which she consumes them.

In both explicit and implicit cases, it is important to model the relative sense of whether an item is

preferred to another.

Problem. Embedding for ordinal preference data seeks to preserve the ordinal preference of

users over items through their Euclidean coordinates. Our goal is to achieve ordinal co-embedding,

where multiple entities are involved (e.g., users and items), and cross-type ordinal relationships are

key (e.g., users express preferences over items). Suppose for each user, we are given his or her

pairwise rankings over items. A triple tuij indicates that a user u prefers an item i to a different

item j. As output, every user and every item would be respectively assigned a latent coordinate

(to be learned) in a d-dimensional Euclidean space. User u’s preference for item i to item j is

expressed through a shorter distance between u and i than between u and j. Such a representation

supports efficient retrieval for recommendation queries, such as which items are the closest (most

preferred) to a user. Euclidean geometry fits the mould of spatial data management, allowing it

to benefit from such developments as spatial indexing [12] and efficient nearest-neighbor query

processing [85]

In addition to recommendation retrieval, embedding could also enable other applications aris-

ing from its Euclidean metric properties. One potential application is visualization for preference

analytics. Figure 3.1 illustrates an example 2d embedding for three users (blue triangles) and three

items (purple crosses), specifying their respective coordinates. Through our spatial perception of

32

!"#$%&'"#%

!(&'"#)%

"&'!"#$%

!"#$%&'"

"&'!"#%

(&'(

*+,-+

./,0+

u
1

u
2

u
3

i
1

i
2

i
3

Figure 3.1: Euclidean Embedding of Users & Items

the relative distances, we can immediately tell that the user u1 prefers item i1 the most (closest),

followed by item i2, and item i3 the least (furthest). Such information leaps out at us without

our having to consciously compute the distances. For another potential application, as embedding

relies on building a compact model for user preferences, it may eventually enable an interactive

interface for training recommender systems. In text domain [70], we may seek an embedding that

preserves the relative importance of words to a document (for summarization).

Approach. While there has been prior work on ordinal embedding [3, 52, 101], our work is

novel in a couple of fundamental respects. First, the “classical” ordinal embedding is formulated

mainly for one object type, e.g., cities [101], images [3]. It enforces that for same-type quadruple of

objects 〈i, j, k, l〉, if i is closer to j in the original data than k is to l, the same ordinal relationship

should hold in the embedding space. This presumes that the primary information is similarity

among objects. In contrast, our primary objective is based on ordinal preference ranking, i.e., the

ranking of items according to user preferences. For instance, it is possible for two users to be

“similar”, say in terms of their demographics or their habits of watching horror movies, and yet to

have different rankings over specific items.

33

Moreover, because classical ordinal embedding deals with within-type ordinal relationships, it

implicitly assumes that there is one underlying reality to approximate, e.g., distances of cities in the

map [101]. However, for many ordinal datasets, there may not be a singular ground-truth reality.

For preference data, each user imposes his or her own ranking on the items, and these rankings may

be different and at times conflicting. This fundamental difference motivates two distinguishing

aspects of our approach. Because a common embedding space needs to accommodate the diverse

preferences of users, we harness the collaborative effect among users and among items. In order

to capture the variance in the rankings induced by preferences of different users or items in a

principled way, we also formulate our model in terms of probabilistic generative modelling.

Contributions and Organization. We provide the formal problem statement in Section 3.2.1.

We make the following contributions towards the problem. First, in Section 3.2, we propose a new

embedding model, called Collaborative Ordinal Embedding or COE. This model is notable in its

generative modeling of ordinal embedding allowing various types of triples, as well as in its objec-

tive function with both a penalty component for violated observations and a reward component for

preserved observations on a smooth continuous spectrum modeled by probabilistic Sigmoid distri-

bution. Second, in Section 3.2.4, we describe COE’s learning algorithm to derive the embedding

coordinates that maximize the posterior probability of the generative model based on stochastic

gradient ascent. Third, in Section 3.3, comprehensive experiments on publicly available datasets

show that COE outperforms the baselines in: preserving the observed pairwise comparisons and

predicting unseen pairwise comparisons expressed as relative distances in the Euclidean space, and

achieving efficient recommendation retrieval via spatial indexing. We then briefly summarize the

work in Section 3.4.

34

3.2 Framework

3.2.1 Problem Formulation

We formally define the problem addressed in this chapter, which is co-embedding of users and

items based on ordinal preference triplets.

Input. The set of users is U , and u or v refers to a user. The set of items is I, and i or j

refers to an item. The input is a multiset of triples T = TA ∪ TB, consisting of “type-A” triples

TA ⊂ U × I × I and “type-B” triples TB ⊂ U × U × I. A type-A triple tuij ∈ TA relates a

user u ∈ U and two different items i, j ∈ I, indicating u’s preferring i to j. A type-B tuvi ∈ TB

indicates a user u has greater preference over i than user v does.

Such triples form a general representation of preferences over one object type as expressed by

the other object type. There are examples abound in both explicit and implicit feedback scenarios.

Triples can be derived from ratings, e.g., when u assigns a higher rating to i than to j. Other than

ratings, it could also model implicit feedback [83]. For cable TV, u may watch the channel i but

not j, or spend a longer time watching i than j [37]. For Web search, u may click on the result i

after skipping j [81]. Outside of preference domain, in text, a word i may be more frequent than

another word j in document u. Alternatively, document u may be more relevant to word i than

document v does. In addition to their greater availability, triples are also more reliable than ratings.

Studies in psychology [44] showed that human users were more reliable at determining relative

ordering than at assigning absolute numbers.

While we focus on cross-type triples, it is feasible to accommodate triples involving three

objects of the same type, e.g.,user u is more “similar” to user v than to user v′. Here, we will not

concentrate on such similarity-based triples. More generally, we can use triple form (o1
τ1
, o2
τ2
, o3
τ3

),

where oiτi are objects of types τi, (i = 1, 2, 3) respectively, to represent ordinal relations among

multiple objects. The framework can be extended naturally by adding latent variables for objects

of each type. For simplicity, we only present our model with two types.

35

Output. Given T , the goal is to assign a coordinate xu ∈ Rd to each user u ∈ U , as well as a

coordinate yi ∈ Rd to each item i ∈ I, such that their distances in Rd preserve the relative ordering

indicated by the triples. We denote the collection of all user coordinates as X and the collection

of all item coordinates as Y . The coordinates of users and items lie in the same d-dimensional

Euclidean space.

Problem 3.1 (Ordinal Co-Embedding). Given a set of triples T , find the set of user coordinates X

and item coordinates Y , so as to meet the following respective condition for as many triples in T

as possible, i.e.,

tuij ∈ TA ⇒||xu − yi|| < ||xu − yj||,

tuvi ∈ TB ⇒||xu − yi|| < ||xv − yi||

We now describe our proposed model, called Collaborative Ordinal Embedding or COE. The

challenge is integrating the diverse triples into the same low-dimensional Euclidean space. The

input triples T may also suffer from sparsity, variance, and uncertainties, in the form of incom-

pleteness (not all possible triples are specified), inconsistency (some triples are conflicting), and

repetitions (some triples may occur more than once). Yet the final objective is a unified view for

all items and users.

3.2.2 Generative Model

To achieve this, we harness the “collaborative” effect. Since item coordinates are shared across

users, users with similar coordinates would have similar ordinal relationships with items. To de-

velop this probabilistically, we design a graphical model as is illustrated in Figure 3.2.

We model each user coordinate and each item coordinate as real-valued latent random variables

xu and yi respectively. For each triple 〈u, i, j〉 where i < j, we associate it with a binary random

variable cuij . When cuij takes on the value of 1, it corresponds to an instance of tuij ∈ T . When

36

ux

iy

uvic

uUv >∈)(

Ii∈

γ

β

vx
Uu∈

jy

uijc

iIj >∈)(

Figure 3.2: Collaborative Ordinal Embedding (COE)

cuij = 0, it corresponds to an instance of tuji ∈ T . In Figure 3.2, cuij is shaded and lies within

its own plate, i.e., it is observed and there could be multiple instances. Correspondingly, for each

triple 〈u, v, i〉 where u < v, we associate it with a variable cuvi. The state of cuij (or cuvi) and the

generation of tuij (or tuvi) are related to user and item coordinates through the following generative

process.

The generative process of COE is as follows:

1. For each user u ∈ U :

Draw u’s coordinate: xu ∼ Normal(0, γ2I),

2. For each item i ∈ I:

Draw i’s coordinate: yi ∼ Normal(0, β2I),

3. For each triple 〈u, i, j〉 ∈ TA:

• Draw cuij ∼ Bernoulli(P(cuij = 1 | xu, yi, yj)),

• If cuij = 1, generate a triple instance tuij ,

37

• Else (cuij = 0), generate a triple instance tuji.

4. For each triple 〈u, v, i〉 ∈ TB:

• Draw cuvi ∼ Bernoulli(P(cuvi = 1 | xu, xv, yi)).

• If cuvi = 1, generate a triple instance tuvi,

• Else (cuvi = 0), generate a triple instance tvui.

In Step 1 and Step 2, we generate the users’ and items’ coordinates, placing zero-mean multi-

variate spherical Gaussian priors on these coordinates, with γ2 and β2 controlling the respective

variances of the Normal distributions. I denotes the identity matrix.

In Step 3, we generate type-A triples involving one user and two items, by drawing the outcome

for cuij from a Bernoulli process, where the parameter is specified by the probability P(cuij =

1 | xu, yi, yj) of generating a triple instance tuij . In Step 4, we generate type-B triples involving

two users and one item.

3.2.3 Triple Probability Function

A crucial component is how the latent coordinates of users and items would generate the pairwise

comparisons in T . This bridge between the hidden variables and the observations is the triple

probability function. To keep the discussion streamlined, in the following we discourse on type-A

triple of the form tuij , but a similar principle applies in a symmetric manner to type-B triples.

The principle in relating latent coordinates to a triple tuij is: if u prefers i to j, the distance

from xu to yi is shorter than that from xu to yj . The more evidence there is that u prefers i to

j, the closer xu should be to yi than to yj . To realize this intuition, we express the probability

P(cuij = 1 | xu, yi, yj) in terms of the distances ||xu − yi|| and ||xu − yj||. Let ∆uij be a quantity

expressed in terms of these distances, such that ∆uij is higher the more u prefers i to j. One

38

realization of ∆uij is Equation 3.1.

∆uij = ||xu − yj|| − ||xu − yi|| (3.1)

Because tuij and tuji are two opposite sides of the same coin, we have P(tuij | xu, yi, yj) =

1− P(tuji | xu, yi, yj). ∆uij has a bearing on these probabilities as follows.

• For ∆uij > 0, tuij is more likely, P(tuij|xu, yi, yj) > 0.5.

• For ∆uij < 0, tuji is more likely, P(tuij|xu, yi, yj) < 0.5.

• For ∆uij = 0, they are indifferent, P(tuij|xu, yi, yj) = 0.5.

To relate ∆uij to these probabilities, here we propose the sigmoid σ(.) function, as shown in

Equation 3.2. This is without prejudice on other potential functions that could realize the above

properties as well. As shown in Figure 3.3, the probability that u prefers i to j tends towards 1 as

∆uij →∞, and tends towards 0 as ∆uij → −∞. To model the probabilities of triples as a function

of ∆uij (or ∆uvi), we identify two possible functions.

P(cuij = 1| xu, yi, yj) =
1

1 + e−λ·∆uij
(3.2)

This function allows us to model both a penalty for violating observed triples (probability mass

< 0.5), and a reward for preserving observed triples (probability mass > 0.5). This is different

from classical ordinal embedding. For instance, the state-of-the-art SOE [101] only has a penalty

component, but no reward. This holds two advantages for COE. First, there is a smoother spectrum

of penalty and reward over a continuous function vs. the cliff effect for SOE. Second, there is

discrimination among triples with more vs. less evidence earning different probability masses.

The scaling parameter λ controls the slope of the function. The greater is λ, the steeper is the

penalty/reward. The λ setting may empirically tuned.

39

Figure 3.3: Triple Probability Function

3.2.4 Learning Algorithms

Given T as input observations, our goal is to learn the latent coordinates X and Y with the highest

posterior probability P(X, Y |T). Through Bayes’ Theorem, we have P(X, Y |T) = P(T , X, Y)/P(T).

Since P(T) does not affect the model parameters, the goal is to maximize the joint probability, as

shown in Equation 3.3.

arg max
X,Y

P(T , X, Y |γ, β) (3.3)

The joint probability is decomposed into four terms:

P(T , X, Y |γ, β) = P(X|γ)× P(Y |β)× P(T |X, Y),

40

in which,

P(X|γ) =
∏
u∈U

(2πγ2)−
D
2 e
− 1

2γ2 ||xu||
2

,

P(Y |β) =
∏
i∈I

(2πβ2)−
D
2 e
− 1

2β2 ||yi||
2

,

P(TA|X, Y) =
∏

tuij∈TA

P(cuij = 1 | xu, yi, yj),

P(TB|X, Y) =
∏

tuvi∈TB

P(cuvi = 1 | xu, xv, yi).

Maximizing the joint probability is equivalent to maximizing its logarithm, shown below. To

simplify the parameters, we set γ = β, and equate both 1
γ2 and 1

β2 to a common regularization

parameter η.

L = ln P(X|γ) + ln P(Y |β) + ln P(T |X, Y) = ln P(T |X, Y)− η
∑
u∈U

||xu||2 − η
∑
i∈I

||yi||2

To find the coordinates that maximize the joint probability, we employ stochastic gradient as-

cent for computationally efficiency, an important factor given the potentially huge size of pairwise

comparisons.

The gradient of L w.r.t. each user coordinate xu is:

∂L
∂xu

=
∑

{i,j: tuij∈TA}

λe−λ∆uij

1 + e−λ∆uij

(
xu − yj
||xu − yj||

− xu − yi
||xu − yi||

)

+
∑

{i,v: tuvi∈TB}

λe−λ∆uvi

1 + e−λ∆uvi

(
yi − xu
||yi − xu||

)

+
∑

{i,v: tvui∈TB}

λe−λ∆vui

1 + e−λ∆vui

(
−yi + xu
||yi − xu||

)
− η · xu

41

The gradient w.r.t. each item coordinate yi is:

∂L
∂yi

=
∑

{u,v: tuvi∈TB}

λe−λ∆uvi

1 + e−λ∆uvi

(
yi − xv
||yi − xv||

− yi − xu
||yi − xu||

)

+
∑

{u,j: tuij∈TA}

λe−λ∆uij

1 + e−λ∆uij

(
xu − yi
||xu − yi||

)

+
∑

{u,j: tuji∈TA}

λe−λ∆uji

1 + e−λ∆uji

(
−xu + yi
||xu − yi||

)
− η · yi

Algorithm 2 describes the stochastic gradient ascent algorithm for COE. It first initializes the

coordinates of users and items. In each iteration, a triple is randomly selected from T , and the

model parameters are updated based on the gradients above, with a decaying learning rate ε over

time. The complexity is O(|U| × |I|2 + |U|2× |I|). In case of having triples of multi-type ordinal

relations among multiple objects, the complexity is still a polynomial of variables with highest

degree is 3.

3.3 Experiments

Our objective is to investigate the effectiveness of the proposed COE, for visualization in low-

dimensional Euclidean space and for efficient retrieval of personalized recommendations.

Datasets. While COE assumes ordinal triples as inputs, we experiment with publicly avail-

able datasets with numerical values and derive the triples accordingly. This allows us to compare

to baselines that work directly with the numerical values. We work with four datasets of two

categories, and their sizes are listed in Table 3.1.

The first category includes rating-based preference datasets: MovieLens-100K1 and Netflix2.

The object types are users and movies (items). The raw observations are ratings. As in [26], we

apply Z-score normalization, which compensates for different rating means and rating spreads to
1http://grouplens.org/datasets/movielens/100k
2http://www.cs.uic.edu/˜liub/Netflix-KDD-Cup-2007.html

42

http://grouplens.org/datasets/movielens/100k
http://www.cs.uic.edu/~liub/Netflix-KDD-Cup-2007.html

Algorithm 1 Stochastic Gradient Ascent for COE
1: Initialize xu for u ∈ U
2: Initialize yi for i ∈ I
3:
4: while not converged do
5: Draw a triple at random from T .
6: if it is a type-A triple tuij ∈ TA then
7: xu ← xu + ε ·

[
λe−λ∆uij

1+e−λ∆uij

(
xu−yj
||xu−yj || −

xu−yi
||xu−yi||

)
− η · xu

]
8: yi ← yi + ε ·

[
λe−λ∆uij

1+e−λ∆uij

(
xu−yi
||xu−yi||

)
− η · yi

]
9: yj ← yj + ε ·

[
λe−λ∆uij

1+e−λ∆uij

(
−xu+yj
||xu−yj ||

)
− η · yj

]
10: end if
11:
12: if it is a type-B triple tuvi ∈ TB then
13: xu ← xu + ε ·

[
λe−λ∆uvi

1+e−λ∆uvi

(
yi−xu
||yi−xu||

)
− η · xu

]
14: xv ← xv + ε ·

[
λe−λ∆uvi

1+e−λ∆uvi

(
−yi+xv
||yi−xv ||

)
− η · xv

]
15: yi ← yi + ε ·

[
λe−λ∆uvi

1+e−λ∆uvi

(
yi−xv
||yi−xv || −

yi−xu
||yi−xu||

)
− η · yi

]
16: end if
17: end while
18:
19: Return {xu}u∈U and {yi}i∈I

make ratings more comparable across users. We then generate a type-A triple tuij for each instance

where a user u has higher normalized rating on an item i than on item j, and a type-B triple tuvi for

each instance where a user u has higher normalized rating on i than v does. We do not generate any

triple involving non-rated items. For MovieLens-100K, Netflix, each user has been pre-conditioned

by the original dataset to have at least 20 ratings. We further ensure that each item has at least 4

ratings. We find similar practice in other works [83].

The second category are based on cooccurrences: Last.fm3 and 20News4. Last.fm contains

users’ listening frequencies to music artists (items). As in above, we retain users with at least

20 items, and items with at least 4 users. To show applicability beyond preferences, we include

3http://files.grouplens.org/datasets/hetrec2011/hetrec2011-lastfm-2k.zip
4http://web.ist.utl.pt/acardoso/datasets/

43

http://files.grouplens.org/datasets/hetrec2011/hetrec2011-lastfm-2k.zip
http://web.ist.utl.pt/acardoso/datasets/

users/ items/ ratings/ type-A triples type-B triples
docs words observations 〈u, i, j〉 〈u, v, i〉

MovieLens-100K 943 1,413 99,543 7.80× 106 8.22× 106

Netflix 429,102 17,769 99,841,834 2.29× 1010 2.51× 1011

Last.fm 1,772 3,521 72,955 1.50× 106 3.87× 106

20News 15,744 14,414 1,076,900 5.61× 107 2.19× 108

Table 3.1: Datasets Summary

the text-based 20News, which has documents (“users”) and words (“items”). We downloaded

the dataset with stop words removed and the remaining words stemmed. Following the standard

practice by the baseline [32], we filter out extremely infrequent words (less than 5 documents),

and extremely frequent words (top 100 most frequent). For both datasets, the raw observation is

the term frequency of a word (or an item) in a document (or a user). To normalize the effect of

document length, we divide each word’s frequency by the document length, and generate triples

from these normalized term frequencies.

3.3.1 Comparison to Embedding Baselines

For the applications we have in mind (e.g., visualization), Euclidean dimensionalities of 2 or 3

make the most sense. In this section, we investigate all models in terms of how well the learnt Eu-

clidean embeddings preserve the seen information and generalize to unseen information. Because

of the different natures of the two categories of datasets, which involve some different comparative

baselines, in the following we organize the experiments into two sections, one for each dataset

category.

Rating-Based Datasets

The first baseline is the embedding designed to fit the numerical rating values, i.e., CFEE [45].

As its authors have not made their implementation available, we implement it in Java. The second

baseline is matrix factorization based on pairwise comparisons BPR(MF) [83] with one dimen-

44

sion, followed by [8]’s Euclidean transformation into two dimensions, denoted as BPR(MF)+. For

BPR(MF), we use the Java implementation in LibRec5. We tune the respective parameters for the

best performance on each dataset.

Metrics. We apply several metrics that allow an evaluation of the various methods in terms of

information preservation in two-dimensional Euclidean space.

As is common for dimensionality reduction [42], the primary aim is how well the reduced

dimensionality preserves the observed data. The first and main metric is preservation accuracy,

the extent to which the information within the observed triples is preserved by the coordinates. For

a user u, let T uobserved denote the triples involving u. For u, the preservation accuracy is defined as

the fraction of her triples for which the coordinates reflect the preference direction in the triples.

Overall, the preservation accuracy is the average of users’ preservation accuracies, as shown in

Equation 3.4. By doing so, it is not biased towards few users with many ratings at the expense of

many users with few ratings.

1

|U|
∑
u∈U

|{tuij ∈ T uobserved : ||xu − yi|| < ||xu − yj||}|
|T uobserved|

(3.4)

As mentioned in Section 3.2.1, we do not presume that the input set of triples is complete. It

is therefore interesting to study how well the learnt coordinates could generalize to unseen triples.

We introduce a secondary metric, prediction accuracy, the extent to which the coordinates can

infer the preference directions of hidden triples Thidden. For an embedding solution as a whole, the

prediction accuracy is derived from user-level accuracies, as shown in Equation 3.5.

1

|U|
∑
u∈U

|{tuij ∈ T uhidden : ||xu − yi|| < ||xu − yj||}|
|T uhidden|

(3.5)

The above definitions are for type-A triples. A corresponding version is defined for type-B

triples.

5http://www.librec.net/

45

http://www.librec.net/

We split the ratings randomly into 80% Robserved and 20% Rhidden, in a stratified manner to

maintain the same ratio for every user. The observed set of triples Tobserved is formed within

Robserved. The hidden set of triples Thidden includes triples formed withinRhidden, as well as triples

involving one rating each fromRobserved andRhidden. Ordinal-based methods learn from Tobserved,

while the rest learn from with Robserved. Both preservation and prediction accuracies range from

0% (worst) to 100% (best). For statistical significance, we average the results across 10 random

(80:20) splits.

These metrics are general for ordinal triples. Since the ordinal triples are derived from ratings,

we include a rating-based third measure: average rating among k-nearest neighbors (k-NN). In-

tuitively, a good embedding with high preservation should place higher-rated items closer to the

user. Given a user, we identify the k-nearest rated items based on their Euclidean distances in

the embedding space, and average the user’s ratings on those items. Symmetrically, this can be

measured from each item’s point of view. We average this across users and items for k = 5.

Preservation Accuracy Prediction Accuracy 5-NN Avg Rating
Type-A Type-B H-Mean Type-A Type-B H-Mean Users Items H-Mean

COE 75.0% 65.0% 69.6% 64.0% 59.0% 61.4% 4.33 3.58 3.92
CFEE 67.2% 62.4% 64.7% 59.7% 60.3% 60.0% 4.03 3.50 3.75
BPR(MF)+ 68.4% 60.9% 64.5% 62.1% 59.1% 60.5% 4.13 3.40 3.73

Table 3.2: Rating-Based Dataset (MovieLens-100K): COE vs. Other Baselines

Preservation Accuracy Prediction Accuracy 5-NN Avg Rating
Type-A Type-B H-Mean Type-A Type-B H-Mean Users Items H-Mean

COE 75.2% 66.3% 70.4% 63.3% 61.2% 62.2% 4.51 3.74 4.09
CFEE 66.0% 62.4% 64.2% 58.9% 61.4% 60.2% 4.10 3.74 3.91
BPR(MF)+ 68.2% 60.2% 64.0% 60.3% 58.8% 59.6% 4.00 3.15 3.52

Table 3.3: Rating-Based Dataset (Netflix): COE vs. Other Baselines

In Table 3.2, we compare COE to the baselines with MovieLens-100K dataset. CFEE, which

fits rating values directly, generally achieves lower accuracies. Since rating and visualization

spaces are distinct, forcing their unification may not obtain the best embedding to preserve the

46

triples. BPR(MF)+, which learns matrix factorization by pairwise ranking, followed by Euclidean

transformation, also achieves lower results. As mentioned in Section 2.1, the Euclidean trans-

formation applied to BPR(MF)’s output could only preserve the pairwise comparisons of either

type-A triples or type-B triples (not both at once). However, we present the best results for both

transformations, which evidently are still lower than COE’s. This signifies that for visualization,

directly modelling Euclidean distance, such as in COE, leads to better visualization.

Table 3.3 shows the results for the much-larger Netflix dataset, which also support the major

observations made above. The differences between COE and the baselines are statistically signifi-

cant.

Figure 3.4: Example Visualization of Users (triangles) and Items (crosses) in MovieLens-100K

Visualization. Figure 3.4 shows an example of three users U887 (blue), U222 (red), U903

(green) in MovieLens-100K, and the 17 items (crosses) that all three have rated. For instance, U222

and U903 are closer to Fargo (which they rated 5) than U887 is (who rated it 2). Interestingly, U222

47

is closer to U903 than U222 is to U887, supported by the Pearson correlation of their ratings on

items: 0.31 between (U222, U903), and -0.21 between (U222, U887). The layout of movies are

also intuitive. Horror films Scream and Island of Dr. Moreau are on the top left. Science fictions

Star Wars, Return of the Jedi, and Back to the Future are at the centre. Darker dramas Fargo,

Apocalypse Now are on the top right. Comedies such as Kingpin and Beavis and Butt-head are on

the far right. Family-oriented Searching for Bobby Fischer and Lost World are towards the bottom.

Learning efficiency is not our major focus here. The learning algorithms can be run offline.

On MovieLens-100K and Netflix, COE takes approximately a minute on a PC with Intel Core i5

3.2GHz CPU and 12GB RAM. For 20News, the running time of COE is around 15 minutes. Our

efficiency is comparable to other models running on pairwise comparisons, e.g., BPR(MF), and is

much faster than ordinal embedding, i.e., SOE.

Preservation Accuracy Prediction Accuracy 5-NN Avg Frequency
Type-A Type-B H-Mean Type-A Type-B H-Mean Users Items H-Mean

COE 64.5% 85.6% 73.5% 51.7% 63.2% 56.9% 0.041 0.032 0.036
CODE 53.3% 52.8% 53.1% 49.8% 54.7% 52.2% 0.032 0.032 0.032

Table 3.4: Cooccurrence-Based Dataset (Last.fm): COE vs. Cooccurrence Embedding

Preservation Accuracy Prediction Accuracy 5-NN Avg Frequency
Type-A Type-B H-Mean Type-A Type-B H-Mean Docs Words H-Mean

COE 78.9% 90.3% 84.3% 51.0% 69.2% 58.7% 0.039 0.029 0.037
CODE 59.7% 56.2% 57.9% 48.7% 52.8% 50.7% 0.033 0.020 0.025

Table 3.5: Cooccurrence-Based Dataset (20News): COE vs. Cooccurrence Embedding

Cooccurrence-Based Datasets

We now discuss the comparisons for the other two datasets based on cooccurrences: Last.fm and

20News. Here, we focus on the comparison to CODE [32], which fits co-occurrence frequencies.

For the metrics, we again rely on preservation and prediction accuracies. In addition, we adapt

the “average rating” concept to the cooccurrence scenario. Since the raw observation is normalized

48

term frequency, we evaluate the average term frequencies among the k-nearest neighbors of a

document or a word respectively. The higher it is, the more successful is the embedding in placing

the closest words to a document (vice versa).

Table 3.4 for Last.fm and Table 3.5 for 20News show that COE has significantly higher preser-

vation and prediction accuracies than the baseline CODE. This experiment showcases that the in-

formation within ordinal triples is not easily approximated by fitting probabilities of co-occurrences

(which is semantically closer to similarity/distance-based embedding). This is also evident from

the comparison of average normalized term frequencies among the 5-NN. The values seem decep-

tively low, these frequencies are actually high, considering that each document consists of many

words.

3.3.2 Efficient Retrieval of Recommendation with KD-Tree

The key advantage of modelling user-item interaction through the Euclidean between their respec-

tive latent vectors over matrix factorization is that the recommendation candidates retrieval task is

equivalent to the nearest neighbors search (NNS) problem. Hence, there are numerous methods in

literature on spatial indexing for nearest neighbor search that can be used to find recommendation

candidates efficiently. We consider a well-known tree structure, KD-tree. Approximate kNN re-

trieval can be achieved by restricting the searching time on the tree ([29]). The implementation of

KD-tree in [75] controls this by c, the number of nodes to explore on the tree. For this experiment,

we use the two large rating-based preference datasets MovieLens 20M6 and Netflix for comparison,

and learn only from the Type-A triples for simplicity. We first derive high-dimensional vectors

representation for users and items (e.g., d = 20)7 and employ KD-tree as indexing structure. We

then compare the post-indexing performances of all models.

6http://grouplens.org/datasets/movielens/20m/
7Similar trends are observed across other dimensionalities

49

 http://grouplens.org/datasets/movielens/20m/

0.00

0.02

0.04

0.06

0.08

0.10

0.12

5 10 15 20

nR
ec

al
l@

k

k

c = 500

0.00

0.02

0.04

0.06

0.08

0.10

0.12

5 10 15 20

nR
ec

al
l@

k

k

c = 1000

0.00

0.02

0.04

0.06

0.08

0.10

0.12

5 10 15 20

nR
ec

al
l@

k

k

c = 1500

0.00

0.01

0.02

5 10 15 20

nR
ec

al
l@

k

k

c = 500

0.00

0.01

0.02

5 10 15 20

nR
ec

al
l@

k

k

c = 1000

0.00

0.01

0.02

5 10 15 20

nR
ec

al
l@

k

k

c = 1500

MovieLens

Netflix

Figure 3.5: nRecall@k with KD-Tree Indexing.

Metrics. We assume that the goal of top-k recommendation is to recommend new items to a

user, among the items not seen in the training set. When retrieval is based on an index, the eval-

uation of top-k necessarily takes into account the operation of the index. Because we maintain

one index for all items to be used with all users, conceivably items returned by a top-k query may

belong to one of three categories: those in the training set (to be excluded for new item recom-

mendation), those in the test set (of interest as these are the known ground-truth of which items

users prefer), and those not seen/rated in either set (for which no ground-truth of user preference is

available). It is important to note the latter may not necessarily be bad recommendations, they are

simply unknown. Precision of the top-k may penalize such items. We reason that among the rated

items in the test set, those that have been assigned the maximum rating possible by a user would be

expected to appear in the top-k recommendation list for that user. A suitable metric is the recall of

items in the test set with maximum rating. For each user u with at least one highest rating item in

the test set (for the two datasets, the highest possible rating value is 5), we compute the percentage

50

of these items that are returned in the top-k by the index. The higher the percentage, the better

is the performance of the model at identifying the items a user prefers the most. Equation 3.6

presents the formula for Recall@k:

Recall@k =
1

|Umax|
∑

u∈Umax

|{i ∈ ψuk : rui = max rating}|
|{i ∈ I : rui = max rating}|

, (3.6)

in which Umax is the set of users who have given at least one item with rating of 5 and ψuk is the top-

k returned by the index. We exclude training items for u from both numerator and denominator.

We normalize Recall@k with the ideal Recall@k that a perfect algorithm can achieve, and denote

the metric as nRecall@k.

To investigate the efficacy of using the indexing schemes for top-k recommendation, we intro-

duce the second metric speedup, which is the ratio between the time taken by exhaustive search to

return the top-k, to the time taken by an index.

Speedup =
Retrieval time taken by exhaustive search

Retrieval time taken by the index
. (3.7)

We will discuss the results in terms of trade-off between recall and speedup. There are in-

dex parameters that control the degree of approximation, i.e., higher speedup at the expense of

lower recall. Among the comparative recommendation algorithms, a better trade-off means higher

speedup at the same recall, or higher recall at the same speedup. For each comparison below, we

control for the indexing scheme, as different schemes vary in ways of achieving approximation,

implementations, and deployment scenarios.

Figure 3.5 shows the nRecall@k with various c ∈ {500, 1000, 1500}. We also experimented

with c ∈ {50, 150, 300, 750, 2000} and get similar trends. COE consistently outperforms the

CFEE and BPR(MF) at all values of c. Notably, COE outperforms BPR(MF)+ on MovieLens

dataset and is comparable on Netflix dataset. The likely reason is that we are experimenting in

51

0.00

0.01

0.02

0.03

2 4 8 16 32 64 128

nR
ec

al
l@

10

Speedup (log scale)

MovieLens 20M

0.000

0.002

0.004

0.006

1 2 4 8 16 32 64 128

nR
ec

al
l@

10

Speedup (log scale)

Netflix

Figure 3.6: nRecall@10 vs. speedup with KD-tree Indexing.

a high-dimensional space (d = 20), therefore BPR(MF) is capable of learning the user prefer-

ence accurately, and the Euclidean transformation is useful in preserving the performance after

indexig. Figure 3.6 plots the accuracy in terms of nRecall@10 vs. the retrieval efficiency in terms

of speedup. As we increase c, a longer searching time on KD-tree is allowed, resulting in higher

quality of the returned top-k. Here too, COE achieves higher accuracy at the same speedup, higher

speedup at the same accuracy, as compared to the baselines.

3.4 Discussion

We address the problem of ordinal co-embedding based on cross-type ordinal relationships, whereby

every user and every item is respectively associated with a latent coordinate in a low-dimensional

Euclidean space. The objective is to place a user closer to a more preferred item. This accom-

modates datasets including ratings and co-occurrences. Experiments on public datasets show that

Collaborative Ordinal Embedding or COE outperforms comparable baselines in both information

preservation in the visualization space and efficient retrieval of recommendation candidates.

52

Chapter 4

Indexable Bayesian Personalized Ranking

As mentioned in Section 2.1, one direction towards retrieval efficiency is to formulate retrieval as

approximate k most similar neighbors (kNN) search aided by indexing schemes, such as locality-

sensitive hashing, spatial trees, and inverted index. These schemes, applied on the output represen-

tations of recommendation algorithms, speed up the retrieval process by automatically discarding

a large number of potentially irrelevant items when given a user query vector. However, many

previous matrix factorization recommendation algorithms commonly use inner product as the pre-

dictor that may not necessarily align well with the structural properties of these indexing schemes,

eventually resulting in a significant loss of accuracy post-indexing. In this chapter, we introduce

Indexable Bayesian Personalized Ranking (INDEXABLE BPR) that learns from ordinal preference

to produce latent representation that is inherently compatible with the aforesaid indices. Experi-

ments on publicly available datasets show superior performance of the proposed model compared

to state-of-the-art methods on top-k recommendation retrieval task, achieving significant speedup

while maintaining high accuracy.

53

4.1 Introduction

As discussed in Chapter 1, two overriding goals for personalized top-k recommendations include

accuracy in placing items that user u prefers most into u’s recommendation list and retrieval

effiency in delivering the recommendation list upon request. Faster retrieval helps the system

to cope with a large number of consumers, and minimize their waiting time to receive recom-

mendations. In contrast, learning efficiency or minimizing model learning time, while useful, is

arguably less mission-critical, as it can be done offline and involves mainly machine time, rather

than human time. Therefore, we seek to keep the learning time manageable, while improving re-

trieval efficiency. Many previous recommendation algorithms focus mainly on accuracy and the

efficiency of the learning process. One challenge in practice is the need for an exhaustive search

over all candidate items to identify the top-k, which is time-consuming when the number of items

n is extremely large [47].

In this work, we seek to further improve upon the efficiency of MF-based methods by focusing

on the retrieval step of recommendations (after learning the latent vectors). Particularly, we focus

on using indexing structures (e.g., locality sensitive hashing, spatial tree indexing, and inverted

indexing) as an efficient alternative to exhaustive search over all items.

Approach. The key reason behind the incompatibility between inner product search that matrix

factorization relies on, and the aforesaid index structures is how a user u’s degree of preference

for an item i, expressed as the inner product xuTyi, is sensitive to the respective magnitude of the

latent vectors ||xu||, ||yi||. Therefore, one insight towards achieving geometric compatibility is to

desensitize the effect of vector magnitudes. The challenge is how to do so while still preserving

the accuracy of the top-k retrieval.

There are a couple of recent approaches in this direction. One approach [9] is a post-processing

transformation that expands the latent vectors learnt from matrix factorization with an extra dimen-

sionality to equalize the magnitude of all item vectors. Because the transformation is a separate

54

process from learning the vectors, such a workaround would not be as effective as working with

natively indexable vectors in the first place. Another approach is Indexable Probabilistic Matrix

Factorization, proposed in [29], which extends the Bayesian Probabilistic Matrix Factorization

[87], by making the item latent vectors natively of fixed length. Fitting inner product to absolute

rating value may not be suitable when only implicit feedback (not rating) is available. Moreover,

we note that top-k recommendation is inherently an expression of “relative” rather than “absolute”

preferences, i.e., the ranking among items is more important than the exact scores. Therefore, we

propose to work with ordinal expressions of preferences. Ordinal preferences can be expressed as a

triple (u, i, j), indicating that a user u prefers an item i to a different item j. Ordinal representation

is prevalent in modeling preferences [83], and also accommodates both explicit (e.g., ratings) and

implicit feedback.

Contributions. We make the following contributions in this work. First, we propose Index-

able Bayesian Personalized Ranking model or INDEXABLE BPR in short, which produces native

geometrically indexable latent vectors for accurate and efficient top-k recommendation. BPR [83]

is a generic framework modeling ordinal triples. Each instantiation is based on a specific kernel

[35, 50, 57, 78]. [83] has inner product kernel, which is not well-fitted to indexing structures.

In contrast, our INDEXABLE BPR is formulated with a kernel based on angular distances (see

Section 5.2). Second, we describe how the resulting vectors are used with LSH, spatial tree, and

inverted index for top-k recommendation in Section 4.3. We conduct experiments with available

datasets to compare INDEXABLE BPR with baselines. Empirically, we observe that INDEXABLE

BPR achieves a balance of accuracy and run-time efficiency, achieving higher accuracy than the

baselines at the same speedup level, and higher speedup at the same accuracy level. Third, to sup-

port the observation on the robustness of INDEXABLE BPR, we provide a theoretical analysis in

the context of LSH, further bolstered with empirical evidence, on why our reliance on angular dis-

tances results in more index-friendly vectors, smaller loss of accuracy post-indexing, and balanced

all-round performance.

55

4.2 Framework

Problem. We consider a set users U and a set of items I. We consider as input a set of triples

T ⊂ U × I × I, which has been defined in Section 3.2.1. The goal is to derive a d-dimensional

latent vector xu ∈ Rd for each user u ∈ U , and a latent vector yi ∈ Rd for each item i ∈ I, such

that the relative preference of a user u over two items i and j can be expressed as a function (to be

defined) of their corresponding latent vectors xu, yi, and yj . We denote the collection of all user

latent vectors and item latent vectors as X and Y respectively.

Framework. Given the input triples T , we seek to learn the user and item vectors X , Y with

the highest posterior probability.

arg max
X,Y

P (X, Y |T) (4.1)

The Bayesian formulation for modeling this posterior probability is to decompose it into the

likelihood of the triples P (T |X, Y) and the prior P (X, Y), as shown in Equation 4.2.

P (X, Y |T) ∝ P (T |X, Y)P (X, Y) (4.2)

We will define the prior later when discussing the generative process. We now focus on defining

the likelihood, which can be decomposed into the probability for individual triple tuij:

P (T |X, Y) =
∏

tuij∈T

P (tuij|xu, yi, yj) (4.3)

Weakness of Inner Product Kernel for Top-k Retrieval. To determine the probability for

an individual triple, we need to define a kernel function. The kernel proposed by the matrix

factorization-based (not natively indexable) BPR [83] is shown in Equation 4.4 (σ is the sigmoid

function). This assumes that if xuTyi > xu
Tyj , then user u is likely to prefer item i to j.

P (tuij|xu, yi, yj) = σ(xu
Tyi − xuTyj) (4.4)

56

Since our intended application is top-k recommendation, once we learn the user and item latent

vectors, the top-k recommendation task is reduced to searching for the k nearest neighbors to the

query (user vector) among the potential answers (item vectors).

As discussed in Section 1.1.1, an indexing-based approach which prioritize or narrow the

search to a smaller search space, is a faster alternative to an exhaustive search over all the items.

For the nearest neighbors identified by an index to be as accurate as possible, the notion of sim-

ilarity (or distance) used by the index should be compatible with the notion of the similarity of

the underlying model that yields that user and item vectors. Therein lies the issue with the inner

product kernel in Equation 4.4. It is not necessarily compatible with indexing structures that rely

on similarity functions other than inner products.

First, we examine its incompatibility with spatial tree index. Suppose that all item latent vectors

yi’s are inserted into the index. To derive the recommendation for u, we use xu as the query.

Nearest neighbor search on spatial tree index is expected to return items that are closest in terms

of Euclidean distance. The relationship between Euclidean distance and inner product is expressed

in Equation 4.5. It implies that items with the closest Euclidean distances may not have the

highest inner products, due to the magnitudes ||xu|| and ||yi||. Spatial tree index retrieval may be

inconsistent with Equation 4.4.

||xu − yi||2 = ||xu||2 + ||yi||2 − 2xu
Tyi (4.5)

Second, we examine its incompatibility with inverted index that relies on cosine similarity

(Equation 4.6). Similarly, the pertinence of the magnitudes ||xu|| and ||yi|| implies that inverted

index retrieval may be inconsistent with maximum inner product search.

cos(xu, yi) =
xu

Tyi
||xu|| · ||yi||

(4.6)

57

Third, in terms of its incompatibility with LSH, we note that it has been established that there

cannot exist any LSH family for maximum inner product search [91], while there exist LSH fami-

lies for Euclidean distances and cosine similarity respectively.

Proposed Angular Distance Kernel. To circumvent the limitation of the inner product kernel,

we propose a new kernel to express the probability for a triple tuij in a way that is insensitive

to vector magnitudes. A different kernel is a non-trivial, even significant, change as it requires a

different learning algorithm. Our proposed kernel is based on angular distance.

Let θxy denote the angular distance between vectors x and y, evaluated as following:

θxy = cos−1(
xTy

||x||.||y||
) (4.7)

Proposing the angular distance, i.e., the arccos of the cosine similarity, to formulate the user-

item association is a novel and appropriate design choice for the following reasons.

• Firstly, since arccos is a monotone function, the closest point according to the angular dis-

tance is the same as the point with the highest cosine similarity, resulting in its compatibility

with the inverted index structure.

• Secondly, since angular distances are not affected by magnitudes, it preserves all the in-

formation learnt by the model. Before indexing, the learnt vectors could be normalized to

unit length for compatibility with indexing that relies on either Euclidean distance or cosine

similarity.

• Lastly, the angular distance is also compatible to LSH indexing. A theoretical analysis and

empirical evidence on this compatibility is provided in Section 4.4.

While the vectors xu and item yi could be of varying lengths, the magnitudes are uninformative

as far as the user preferences encoded by the triples are concerned. This advantageously allows

greater flexibility in parameter learning, while still controlling the vectors via the regularization

terms, as opposed to constraining vectors to fixed length during learning (as in [29]).

58

We formulate the probability of a triple tuij for INDEXABLE BPR as in Equation 4.8:

P (tuij|xu, yi, yj) = σ(θxuyj − θxuyi) (4.8)

The probability is higher when the difference θxuyj − θxuyi is larger. If u prefers i to j, the angular

distance between xu and yi is expected to be smaller than that between xu and yj .

Generative Process. The proposed model INDEXABLE BPR as a whole could be expressed

by the following generative process:

1. For each user u ∈ U : Draw xu ∼ Normal(0, η2I),

2. For each item i ∈ I: Draw yi ∼ Normal(0, η2I),

3. For each triple of one user u ∈ U and two items i, j ∈ I:

• Draw a trial from Bernoulli(P(tuij|xu, yi, yj)),

• If “success”, generate a triple instance tuij ,

• Otherwise, generate a triple instance tuji.

The first two steps place zero-mean multi-variate spherical Gaussian priors on the user and item

latent vectors. η2 denotes the variance of the Normal distributions; for simplicity we use the same

variance for users and items. I denote the identity matrix.

The prior P (X, Y) is defined as following:

P (X, Y) = (2πη2)−
D
2

∏
u∈U

e
− 1

2η2 ||xu||
2 ∏
i∈I

e
− 1

2η2 ||yi||
2

(4.9)

Triples in T are generated from users and items’ latent vectors according to the probability

P(tuij|xu, yi, yj) as defined in Equation 4.8.

59

Parameter Learning. The objective is to maximize the log-posterior in Equation 4.2:

L = lnP (T |X, Y) + lnP (X, Y) =∝ ln P(T |X, Y)− 1

η2

∑
u∈U

||xu||2 −
1

η2

∑
i∈I

||yi||2 (4.10)

Let us denote ∆uij = θxuyj − θxuyi , x̃u = xu
||xu|| ∀u ∈ U and ỹi = yi

||yi|| ∀i ∈ I. The gradient of

L w.r.t each user vector xu is:

∂L
∂xu

=
∑

{i,j: tuij∈T }

1

||xu||2
e−∆uij

1 + e−∆uij
×

−ỹj.||xu||+ cos(xu, yj).xu√
1− cos(xu, yj)

2
− −ỹi.||xu||+ cos(xu, yi).xu√

1− cos(xu, yi)
2

 ,

in which, cos(xu, yi) = xTu yi
||xu||.||yi|| ∀u ∈ U and ∀i ∈ I.

The gradient of L w.r.t each item vector yk is:

∂L
∂yk

=
∑

{u,j: tukj∈T }

1

||yk||2
e−∆ukj

1 + e−∆ukj
.
x̃u.||yk|| − cos(xu, yk).yk√

1− cos(xu, yk)
2

+
∑

{u,i: tuik∈T }

1

||yk||2
e−∆uik

1 + e−∆uik
.
−x̃u.||yk||+ cos(xu, yk).yk√

1− cos(xu, yk)
2

.

Algorithm 2 describes the learning algorithm with full gradient ascent. It first initializes the

users and items’ latent vectors. In each iteration, the model parameters are updated based on the

gradients, with a decaying learning rate ε over time. The output is the set of normalized user

vectors x̃u and item vectors ỹi. On one hand, this normalization does not affect the accuracy of the

top-k recommendation produced by INDEXABLE BPR, since the magnitude of the latent vectors

does not affect the ranking. On the other hand, normalized vectors can be used for approximate

kNN search using various indexing data structures later. The time complexity of the algorithm is

linear to the number of triples in T , i.e., O(|U| × |I|2).

60

Algorithm 2 Gradient Ascent for INDEXABLE BPR

Require: Ordinal triples set T = {tuij,∀u ∈ U , i 6= j ∈ I}.
1: Initialize xu for u ∈ U , yi for i ∈ I
2:
3: while not converged do
4: for each u ∈ U do
5: xu ← xu + ε. ∂L

∂xu
6: end for
7:
8: for each i ∈ I do
9: yi ← yi + ε. ∂L

∂yi
10: end for
11: end while
12:
13: Return {x̃u = xu

||xu||}u∈U and {ỹi = yi
||yi||}i∈I

4.3 Experiments

The key idea is achieving speedup in the retrieval time of top-k recommendation via indexing,

while still maintaining high accuracies via better representations that minimize any loss of infor-

mation post-indexing. Hence, in the following evaluation, we are interested in both the accuracy of

the top-k recommendation returned by the index, and the speedup in retrieval time due to indexing

as compared to exhaustive search.

To showcase the generality of INDEXABLE BPR in accommodating various index structures,

we experiment with three indexing schemes: locality-sensitive hashing, spatial tree index, and

inverted index. Note that our focus is on the relative merits of recommendation algorithms, rather

than on the relative merits of index structures. It is our objective to investigate the effectiveness of

INDEXABLE BPR, as compared to other algorithms, for top-k recommendation when using these

index structures. Yet, it is not our objective to compare the index structures among themselves.

Comparative Methods. In this study, we consider the following baselines:

• BPR(MF): the non-index friendly BPR with inner product (MF) kernel [83]. This would

validate whether our angular distance kernel is more index-friendly.

61

• BPR(MF)+: a composite of BPR(MF) and the Euclidean transformation described in [9] to

make the item vectors indexable as post-processing. This allows validation of our learning

inherently indexable vectors in the first place.

• IPMF: matrix factorization that learns fixed-length item vectors but fits rating scores [29].

This allows validation of our modeling of ordinal triples.

• CFEE: Euclidean embedding that fits rating scores [46]. This allows validation of our mod-

eling of ordinal triples.

• COE: Euclidean embedding that fits ordinal triples [54]. Comparison to CFEE and COE

allows validation of our compatibility with non-spatial indices such as some LSH families

as well as inverted index.

We tune the hyper-parameters of all models for the best performance. For IPMF, we adopt

the parameters provided by its authors for Netflix dataset. For the ordinal-based algorithms (BPR,

COE, and INDEXABLE BPR), the learning rate and the regularization are 0.05 and 0.001. For

CFEE, they are 0.1 and 0.001. All models use d = 20 dimensionalities in their latent representa-

tions. Similar trends are observed across other dimensionalities (see Sec. 4.4).

Datasets. We experiment on two publicly available rating-based datasets and derive ordinal

triples accordingly. One is MovieLens 20M1, the largest among the MovieLens collection. The

other is Netflix2. Table 4.1 shows a summary of these datasets. By default, MovieLens 20M in-

cludes only users with at least 20 ratings. For consistency, we apply the same to Netflix. For each

dataset, we randomly keep 60% of the ratings for training and hide 40% for testing. We conduct

stratified sampling to maintain the same ratio for each user. We report the average results over five

training/testing splits. For training, we generate a triple tuij if user u has higher rating for item i

than for j, and triples are formed within the training set.

As earlier mentioned, our focus in this work is on online retrieval speedup. We find that the

1http://grouplens.org/datasets/movielens/20m/
2http://academictorrents.com/details/9b13183dc4d60676b773c9e2cd6de5e5542cee9a

62

#users #items #ratings
#training

ordinal triples
MovieLens 20M 138,493 27,278 20,000,263 5.46× 108

Netflix 480,189 17,770 100,480,507 2.29× 1010

Table 4.1: Datasets Summary

model learning time, which is offline, is manageable. Our learning times for MovieLens 20M and

Netflix are 5.2 and 9.3 hours respectively on a computer with Intel Xeon E2650v4 2.20GHz CPU

and 256GB RAM. Algorithm 2 scales with the number of triples, which in practice grows slower

than its theoretical complexity of O(|U| × |I|2). Figure 4.1 shows how the average number of

triples per user grows with the number of items, showing that the actual growth is closer to linear

and lower than the quadratic curve provided as reference.

0 0.5 1 1.5 2 2.5 3
x 104

0

2

4

6

8 x 108

Number of Items

N
um

be
r o

f T
rip

le
s

(p
er

 u
se

r)

quadratic
actual

(a) MovieLens 20M

0 0.5 1 1.5 2
x 104

0

1

2

3

4 x 108

Number of Items

N
um

be
r o

f T
rip

le
s

(p
er

 u
se

r)

quadratic
actual

(b) Netflix

Figure 4.1: Number of triples (per user) vs. number of items.

Metrics. For evaluation, we employ two metrics defined in Section 3.3.2: Recall and Speedup.

4.3.1 Top-k Recommendation with LSH Index

We first briefly review LSH and how it is used for top-k recommendation. Let h = (h1, h2, . . . , hb)

be a set of LSH hash functions. Each function assigns a bit for each vector. h will assign each user

u a binary code h(xu), and each item i a binary hashcode h(yi), all of length b. Assuming that

xu prefers yi to yj , h is expected to produce binary hashcodes with a smaller Hamming distance

||h(xu)− h(yi)||H than the Hamming distance ||h(xu)− h(yj)||H .

63

The most frequent indexing strategy for LSH is hash table lookup. We store item codes in

hash tables, with items having the same code in the same bucket. Given a query (user) code, we

can determine the corresponding bucket in constant time. We search for the top-k only among

items in that bucket, reducing the number of items on which we need to perform exact similarity

computations. We use the LSH package developed by [5]. The LSH family for INDEXABLE BPR

for generating hashcodes is SRP-LSH, which is also used for IPMF following [29]. We apply it

to BPR(MF) and BPR(MF)+, as [94], [77] claim it to be the more suitable family for transformed

vectors. In turn, the LSH scheme for COE and CFEE is L2-LSH, since both use l2 distance.

When using hash tables, one specifies the number of tables T and the code length b. We

experiment with various T , and T = 10 returns the best performance (consistent with [29]). We

also vary b and larger b is expected to lead to fewer items in each bucket.

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20

nR
ec

al
l@

k

k

b = 8

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20

nR
ec

al
l@

k

k

b = 12

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20

nR
ec

al
l@

k

k

b = 16

0.000

0.009

0.018

0.027

0.036

0.045

5 10 15 20

nR
ec

al
l@

k

k

b = 8

0.000

0.009

0.018

0.027

0.036

0.045

5 10 15 20

nR
ec

al
l@

k

k

b = 12

0.000

0.009

0.018

0.027

0.036

0.045

5 10 15 20

nR
ec

al
l@

k

k

b = 16

MovieLens 20M

Netflix

Figure 4.2: nRecall@k with Hash Table Lookup Strategy (T = 10 hash tables).

Figure 4.2(a) shows the nRecall@k using hash table lookup with T = 10 tables and differ-

ent values of code length b = 8, 12, 16 for MovieLens20M. Across the b’s, the trends are similar.

INDEXABLE BPR has the highest nRecall@k values across all k. It outperforms BPR(MF)+ that

64

conducts vector transformation as post-processing, which indicates that learning inherently index-

able vectors is helpful. In turn, BPR(MF)+ outperforms BPR(MF), which indicates that the inner

product kernel is not conducive for indexing. Interestingly, INDEXABLE BPR also performs better

than models that fit ratings (IPMF, CFEE), suggesting that learning from relative comparisons may

be more suitable for top-k recommendation.

Figure 4.2(b) shows the results for Netflix. Again, INDEXABLE BPR has the highest nRecall@k

values across all k. The relative comparisons among the baselines are as before, except that IPMF

now is more competitive, though still lower than INDEXABLE BPR.

nR
ec

al
l@

10

Speedup (log scale)

nR
ec

al
l@

10

Speedup (log scale)

Figure 4.3: nRecall@10 vs. Speedup with Hashtable Lookup Strategy (T = 10 hash tables).

We also investigate the tradeoff between the speedup achieved and the accuracy of the top-k

returned by the index. Figure 4.3 shows the nRecall@10s and the speedup when varying the value

of b. Given the same speedup, INDEXABLE BPR can achieve significantly higher performance

compared to the baselines. As b increases, the speedup increases and nRecall@10 decreases. This

is expected, as the longer the hashcodes, the smaller the set of items on which the system needs to

perform similarity computation. This reflects the trade-off of speedup and approximation quality.

65

4.3.2 Top-k Recommendation with KD-Tree Index

Spatial trees refer to a family of methods that recursively partition the data space towards a bal-

anced binary search tree, in which each node encompasses a subset of the data points [73]. For

algorithms that model the user-item association by l2 distance, spatial trees can be used to index

the item vectors. Top-k recommendation is thus equivalent to finding kNN to the query. The tree

will locate the nodes that the query belongs to, and exact similarity computation is performed only

on the points indexed by those nodes.

For INDEXABLE BPR, Algorithm 2 returns two sets of normalized vectors x̃u∀u ∈ U and

ỹi∀i ∈ I. We observe that:

||x̃u − ỹi|| < ||x̃u − ỹj|| ⇔ x̃Tu ỹi > x̃Tu ỹj ⇔ θx̃uỹi < θx̃uỹj , (4.11)

i.e., the ranking of items according to l2 distance on normalized vectors is compatible to that

according to angular distance, implying INDEXABLE BPR’s output can support kNN using spatial

tree.

In this experiment, we consider a well-known tree structure, KD-tree. Approximate kNN

retrieval can be achieved by restricting the searching time on the tree ([29]). The implementa-

tion of KD-tree in [75] controls this by c, the number of nodes to explore on the tree. Fig-

ure 4.4 shows the nRecall@k with various c ∈ {500, 1000, 1500}. We also experimented with

c ∈ {50, 150, 300, 750, 2000} and get similar trends. INDEXABLE BPR consistently outperforms

the baselines at all values of c. Notably, INDEXABLE BPR outperforms BPR(MF)+, which in turn

outperforms BPR(MF), validating the point made earlier about native indexability. Figure 4.5 plots

the accuracy in terms of nRecall@10 vs. the retrieval efficiency in terms of speedup. As we in-

crease c, a longer searching time on KD-tree is allowed, resulting in higher quality of the returned

top-k. Here too, INDEXABLE BPR achieves higher accuracy at the same speedup, higher speedup

at the same accuracy, as compared to the baselines.

66

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20

nR
ec

al
l@

k

k

c = 500

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20

nR
ec

al
l@

k

k

c = 1000

0.00

0.05

0.10

0.15

0.20

0.25

5 10 15 20

nR
ec

al
l@

k

k

c = 1500

0.00

0.01

0.02

0.03

0.04

0.05

5 10 15 20

nR
ec

al
l@

k

k

c = 500

0.00

0.01

0.02

0.03

0.04

0.05

5 10 15 20

nR
ec

al
l@

k

k

c = 1000

0.00

0.01

0.02

0.03

0.04

0.05

5 10 15 20

nR
ec

al
l@

k

k

c = 1500

MovieLens 20M

Netflix

Figure 4.4: nRecall@k with KD-Tree Indexing.

4.3.3 Top-k Recommendation with Inverted Index

For recommendation retrieval, [15] presents an inverted index scheme, where every user or item is

represented with a sparse vector derived from their respective dense real-valued latent vectors via

a transformation. Given the user sparse vector as query, the inverted index will return items with

at least one common non-zero element with the query as candidates. Exact similarity computation

will be performed only on those candidates to find out the top-k.

Here, we describe very briefly the indexing scheme. For an extended treatment, please refer to

[15]. The sparse representations for users and items are obtained from their dense latent vectors

(learnt by the recommendation algorithm, e.g., INDEXABLE BPR) through a set of geometry-aware

permutation maps Φ defined on a tessellated unit sphere. The tessellating vectors are generated

from a base set Bd = {−1,−d−1
d
, . . . ,−1

d
, 0, 1

d
, . . . , d−1

d
, 1}, characterized by a parameter d. The

obtained sparse vectors have the sparsity patterns that are related to the angular closeness between

the original latent vectors. The angular closeness between user vector xu and item vector yi is

67

0.00

0.02

0.04

0.06

0.08

1 2 4 8 16 32 64 128

nR
ec

al
l@

10

Speedup (log scale)

MovieLens 20M

0.000

0.005

0.010

0.015

0.020

1 2 4 8 16 32 64 128

nR
ec

al
l@

10

Speedup (log scale)

Netflix

Figure 4.5: nRecall@10 vs. Speedup with KD-tree Indexing.

defined as dac(xu, yj) = 1− xTu yj
||xu||.||yi|| .

In the case of ||xu|| = ||yi|| = 1 ∀u ∈ U , i ∈ I, we have (∀i 6= j ∈ I):

dac(xu, yi) < dac(xu, yj)⇔
xu

Tyi
||xu||.||yi||︸ ︷︷ ︸

θxuyi

>
xu

Tyj
||xu||.||yj||︸ ︷︷ ︸

θxuyj

(4.12)

The item ranking according to dac is equivalent to that according to θ-angular distance, indi-

cating that INDEXABLE BPR based on angular distance would be compatible with this structure.

The parameter d can be managed to control the trade-off between the efficiency and the quality

of approximation of kNN retrieval. Increasing the value of d leads to a higher number of dis-

carded items using the inverted index, which leads to higher speedup of the top-k recommendation

retrieval.

We run the experiments with different values of parameter d to explore the trade-off between

speed and accuracy. Figure 4.6 presents the nRecall@k of the two datasets at d ∈ {150, 300, 500}.

In all cases, INDEXABLE BPR outperforms the baselines in terms of nRecall@k. This suggests

that INDEXABLE BPR produces a representation that has greater degree of compatibility in terms

of angular closeness dac between users and their preferred items. As a result, the corresponding

68

0.00

0.04

0.08

0.12

0.16

0.20

5 10 15 20

nR
ec

al
l@

k

k

d = 150

0.00

0.04

0.08

0.12

0.16

0.20

5 10 15 20

nR
ec

al
l@

k

k

d = 300

0.00

0.04

0.08

0.12

0.16

0.20

5 10 15 20

nR
ec

al
l@

k

k

d = 500

0.000

0.008

0.016

0.024

0.032

0.040

5 10 15 20

nR
ec

al
l@

k

k

d = 150

0.000

0.008

0.016

0.024

0.032

0.040

5 10 15 20

nR
ec

al
l@

k

k

d = 300

MovieLens 20M

Netflix

0.000

0.008

0.016

0.024

0.032

0.040

5 10 15 20

nR
ec

al
l@

k

k

d = 500

Figure 4.6: nRecall@k with Inverted Indexing.

sparse vectors will have highly similar sparsity patterns, which enhances the quality of kNN using

inverted indexing. Figure 4.7 shows the speedup using the inverted index as we vary the value

of parameter d. We observe that the speedup increases as d increases. INDEXABLE BPR shows

superior performance as compared to other models, given the same speedup.

Overall, INDEXABLE BPR works well on the indexing schemes. Effectively, we develop a

model that work with multiple indices, and leave the choice of index structure to the respective

application based on need. Our focus is on indexable recommendation algorithms. Here, sev-

eral consistent observations emerge. INDEXABLE BPR produces representations that are more

amenable to indexing, as compared to baselines BPR(MF)+ and BPR(MF). This validates the aim

of INDEXABLE BPR in learning natively indexable vectors for users and items. It also outperforms

models that fit ratings, as opposed to ordinal triples, for top-k recommendations.

69

d = 50
d = 750

d = 50 d = 500 d = 750

d = 300
d = 750

d = 50 d = 100 d = 200

d = 750

d = 50

d = 100
d = 150

d = 200

d = 300
d = 500 d = 750

Speedup (log scale)

Netflix

d = 50

d = 100

d = 500 d = 750
d = 50 d = 100 d = 150 d = 300

d = 750

d = 50 d = 100 d = 200 d = 500 d = 750

d = 50
d = 100

d = 150
d = 200

d = 300
d = 500

d = 750

Speedup (log scale)

Figure 4.7: nRecall@10 vs. Speedup with Inverted Indexing.

4.4 Analysis on LSH-friendliness of Indexable BPR

Since LSH is inherently an approximate method, the loss of information caused by random hash

functions is inevitable. Informally, a representation is LSH-friendly if the loss after hashing is

as minimal as possible. To achieve such small loss, a user’s ranking of items based on the latent

vectors should be preserved by the hashcodes.

Analysis. For xu, yi, yj in RD, one can estimate the probability of the corresponding hash-

codes to preserve the correct ordering between them. Since the hash functions h1, h2, . . . , hb are

independent of one another, ||h(xu)− h(yi)||H follows the binomial distribution with mean bpxuyi

and variance bpxuyi(1 − pxuyi), where pxuyi is the probability of xu and yi having different hash

values. Since binomial distribution can be approximated by a normal distribution with same mean

and variance, and the difference between two normal distributions is also a normal distribution, we

have the following estimation on the probability that ||h(xu)− h(yj)||H > ||h(xu)− h(yi)||H :

Pr(||h(xu)− h(yj)||H − ||h(xu)− h(yi)||H > 0) (4.13)

∼ Normal(bpxuyj − bpxuyi , bpxuyj(1− pxuyj) + bpxuyi(1− pxuyi))

70

Due to the shape of the normal distribution, Equation 4.13 implies that a higher mean and

smaller variance would lead to a higher probability of the hashcode of xu is more similar to the

hashcode of yi than to the that of yj . Therefore, for a fixed length b, if indeed u prefers i to j, we say

that xu, yi, yj is a more LSH-friendly representation for u, i, and j if the mean value (pxuyj −pxuyi)

is higher and the variance (pxuyj(1− pxuyj) + pxuyi(1− pxuyi)) is smaller.

Hence, the mean and the variance in Equation 4.13 could potentially reveal which representa-

tion is more LSH-friendly, i.e., preserves information better after hashing. For each user u ∈ U ,

let τuk be the set of items in the top-k by a method before hashing, and τ̄uk be all the other items

not returned by the models. We are interested in whether after hashing, the items in τuk would be

closer to the user than the items in τ̄uk .

To account for this potential, we introduce two measures MeanNorm@k and VarNorm@k,

defined as following:

MeanNorm@k =
1

|U|
∑
i∈τuk

∑
j∈τ̄uk

(pxuyj − pxuyi)
|τuk |.|τ̄uk |

VarNorm@k =
1

|U|
∑
i∈τuk

∑
j∈τ̄uk

pxuyj(1− pxuyj) + pxuyi(1− pxuyi)
|τuk |.|τ̄uk |

To achieve LSH-friendly representation, MeanNorm@k should be high and VarNorm@k should

be low. Figure 4.8 shows the bar charts displaying values of those metrics. From Figure 4.8, IN-

DEXABLE BPR shows higher mean values MeanNorm@10 (i.e., k = 10) at d = 20 (we observe

the same results with other values of D and k). Though BPR(MF) and BPR(MF)+ have smaller

variance, their mean values are among the lowest. This result gives us a hint that INDEXABLE

BPR can preserve information after hashing more effectively.

Compatible Hash Function. There is an explanation for the superior numbers of INDEXABLE

BPR in Figure 4.8. Specifically, the probability pxuyi depends on the LSH family. In particular,

signed random projections [19, 41] or SRP-LSH is meant for angular similarity. The angular

71

CFEE COE IPMF BPR(MF) BPR(MF)
+

Indexable
BPR

MeanNorm@10 0.137 0.188 0.065 0.017 0.023 0.219

VarNorm@10 0.726 0.576 0.484 0.171 0.138 0.428

0.00

0.05

0.10

0.15

0.20

0.25
M

ea
nN

or
m

@
10

MovieLens 20M

CFEE COE IPMF BPR(MF) BPR(MF)
+

Indexable
BPR

MeanNorm@10 0.163 0.080 0.072 0.018 0.025 0.247

VarNorm@10 0.699 0.755 0.480 0.192 0.146 0.424

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

nN
or

m
@

10

Netflix

Figure 4.8: LSH Friendly Measurement at d = 20.

similarity between x, y is defined as sim∠(x, y) = 1− cos−1(xT y
||x||.||y||)/π.

The hash function is defined as hsrp
a (x) = sign(aTx), in which he parameter a is a random

vector chosen with each component from i.i.d normal.

The probability of x, y having different hash values is:

pxy = Pr(hsrp
a (x) 6= hsrp

a (y)) = cos−1(
xTy

||x||.||y||
)/π =

θxy
π
, (4.14)

For INDEXABLE BPR, as shown in Equation 4.8, for each observation “u prefers i to j”,

we would like to maximize the difference θxuyj − θxuyi . From Equation 4.14, we observe that

the probability pxuyi is a linear function of the angular distance θxuyi . Thus, we can infer that

INDEXABLE BPR’s objective corresponds to maximizing pxuyj − pxuyi . According to Equation

4.13, this increases the probability that the Hamming distance between u and i is smaller than that

between u and j. In other words, the hashcodes are likely to preserve the ranking order. This

alignment between the objective of INDEXABLE BPR and the structural property of SRP-LSH

helps the model minimize information loss, and show better post-indexing performance.

Also, the appropriate LSH family for methods based on l2 distance, which includes COE, is

L2-LSH [21]. However, there is a question as to how compatible the objective of COE is with the

hash functions. The hash function of L2-LSH is defined as follows:

hL2
a,b(x) = ba

Tx+ b

r
c; (4.15)

72

where r - the window size, a - random vector with each component from i.i.d normal and a scalar

b ∼ Uni(0, r). The probability of two points x, y having different hash values under L2-LSH

function is:

FL2
r (dxy) = Pr(hL2

a,b(x) 6= hL2
a,b(y)) = 2φ(− r

dxy
) +

1√
(2π)(r/dxy)

(1− exp(−(
r

dxy
)2/2)); (4.16)

where φ(x) is cumulative probability function of normal distribution and dxy = ||x − y|| is the

l2 distance between x, y. From Equation 4.16, we see that FL2
r (dxy) is a nonlinear monotonically

increasing function of dxy. COE’s objective to maximize dxuyj − dxuyi does not directly maximize

the corresponding mean value of the normal distribution, i.e., FL2
r (dxuyj) − FL2

r (dxuyi), since

FL2
r (dxuyj) is not a linear function of l2 distance dxuyj . Our hypothesis is that though both rely on

ordinal triples, COE may not be as compatible with LSH as INDEXABLE BPR.

Empirical Evidence. For each user u, we rank the items that u has rated in the test set, and

measure how closely the ranked list is to the ordering by ground-truth ratings. As metric, we turn to

the well-established metric for ranking nDCG@k, where k is the cut-off point for the ranked list.

Figure 4.9 shows the nDCG@10 values for MovieLens 20M and Netflix respectively at various

MovieLens 20M - nDCG@10 Netflix - nDCG@10
Absolute Relative Absolute Relative

b 8 12 16 8 12 16 8 12 16 8 12 16
CFEE 0.582 0.582 0.585 0.805 0.806 0.809 0.559 0.561 0.562 0.834 0.836 0.838
COE 0.605 0.609 0.608 0.886 0.891 0.890 0.570 0.565 0.575 0.906 0.898 0.914
IPMF 0.702 0.728 0.704 0.920 0.955 0.923 0.705 0.737 0.747 0.896 0.936 0.949

BPR(MF) 0.599 0.603 0.605 0.831 0.837 0.840 0.560 0.551 0.553 0.863 0.849 0.853
BPR(MF)+ 0.603 0.604 0.606 0.837 0.840 0.841 0.569 0.569 0.566 0.877 0.877 0.873
Indexable

BPR 0.743 0.745 0.754 0.977 0.980 0.991 0.732 0.761 0.756 0.924 0.960 0.954

Table 4.2: Absolute and Relative nDCG@10 of all models as the length of LSH codes (b) varies.

dimensionality of the latent vectors D. We observe that, INDEXABLE BPR is among the best,

with the most competitive baseline being IPMF (which fits ratings). More important is whether

73

the models will still perform well when used with index structures. As similar trends are observed

with other values of d, subsequently we show results based on d = 20.

Here, the objective is to investigate the effectiveness of the LSH hashcodes in preserving the

ranking among the rated items in the test set. We use Hamming ranking, repeating the same ex-

periment in Figure 4.9, but using Hamming distances over hashcodes. This is to investigate how

well INDEXABLE BPR preserves the ranking compared to the baselines. As hashing relies on

random hash functions, we average results over 10 different sets of functions. Table 4.2 shows

0.50

0.60

0.70

0.80

5 25 45 65 85

nD
C

G
@

10

D

MovieLens 20M

0.50

0.60

0.70

0.80

5 25 45 65 85

nD
C

G
@

10

D

Netflix

Figure 4.9: nDCG@10 at d ∈ {5, 10, 20, 30, 50, 75, 100}.

the performances of all models. The two metrics are: Absolute nDCG@10 is the nDCG@10 of

LSH hashcodes, and Relative nDCG@10 is the relative ratio between the Absolute nDCG@10 and

that of original real-valued latent vectors. INDEXABLE BPR consistently shows better Absolute

nDCG@10 values than the baselines when using LSH indexing. This implies that INDEXABLE

BPR coupled with SRP-LSH produces more compact and informative hashcodes. Also, the Rela-

tive nDCG@10 of INDEXABLE BPR are close to 1 and higher than those of the baselines. These

observations validate our hypotheses that not only is INDEXABLE BPR competitively effective

pre-indexing, but it is also more LSH-friendly, resulting in less loss in the ranking accuracy post-

indexing.

74

4.5 Discussion

In this chapter, we propose a probabilistic method for modeling user preferences based on ordinal

triples, which is geared towards top-k recommendation via approximate kNN search using index-

ing. The proposed model INDEXABLE BPR produces an indexing-friendly representation, which

results in significant speedups in top-k retrieval, while still maintaining high accuracy due to its

compatibility with indexing structures such as LSH, spatial tree, and inverted index. As future

work, a potential direction is to go beyond achieving representations more compatible with exist-

ing indexing schemes, to designing novel data structures or indexing schemes that would better

support efficient and accurate recommendation retrieval.

75

Part II

Similarity Learning:

Modelling Multiple Perspectives

76

Chapter 5

Multiperspective Graph-Theoretic

Similarity Measure

In many real-world scenarios, there emerge multiple perspectives of similarity, i.e., two objects

may be similar from one perspective, but dissimilar from another. For instance, human subjects

may generate varied, yet valid, clusterings of objects. In this chapter, we propose a graph-theoretic

similarity measure for modelling these multiple perspectives effectively. In our approach, the

observed object-to-object relationships due to various perspectives are integrated into a unified

graph-based representation, stylised as a hypergraph to retain the distinct perspectives. We then

introduce a novel model for learning and reflecting diverse similarity perceptions given the hyper-

graph, yielding the similarity score between any pair of objects from any perspective. In addition to

proposing an algorithm for computing the similarity scores, we also provide theoretical guarantees

on the convergence of the algorithm.

77

5.1 Introduction

There are various ways to measure similarity. Some, such as cosine similarity, are based on content

or features, e.g., whether two documents contain the same words, or two products have the same

attributes. Others, such as KL-divergence, are based on probability distributions. Yet other mea-

sures may be domain-specific, such as sequence alignment [25]. These diverse types of similarity

are orthogonal, reflecting various aspects. They are not so much alternatives as complements, and

indeed they have been used in conjunction in some applications such as entity resolution.

Problem. Here, we focus on the notion of graph-theoretic similarity, based on object-to-object

“relationships” (the specific definition of which may be domain-dependent). For instance, a Web

page may link to another; two images may belong to the same Pinterest’s board. In each case,

object-to-object relationships become the basis for inferring the similarity between any two objects

of interest (pages, images). Naturally, such notion of relationship-based similarity lends itself well

to a graph-based formulation, with vertices for objects, and edges for relationships between objects.

SimRank [40] lays a foundation for graph-based similarity measurement, premised on the in-

tuition that the similarity between a pair of objects is dependent on the similarity of other object

pairs. We consider two objects (i, j) similar, if the two objects are respectively related to other

objects k (related to i) and l (related to j) that are themselves similar. Under this definition, two

Web pages are similar if they respectively link to two other pages that are similar. Two images on

Pinterest are similar if they respectively belong to the same boards as two other images that are

themselves similar. Two users are similar if they respectively adopt similar products.

However, SimRank is a uniperspective measure. It assumes only one perception of similarity.

In some scenarios, there are actually multiple perspectives of similarity. What may be similar ac-

cording to one perspective may be different according to another. This may arise due to different

facets of relationships, e.g., two products may be “related” in different ways: browsed together,

purchased together, same manufacturer, etc. This may also arise due to different agents that ex-

78

press the relationships, e.g., someone may group tourist attractions based on activities (strolling,

amusement park), while another based on artistic value (architecture, museums) or neighborhoods

[116]. A uniperspective approach (e.g., SimRank) is not designed for capturing “different strokes

for different folks”.

How then do we cope with the presence of multiple perspectives? There are a couple of naive

approaches. One is to ignore the multiplicity, creating a uniperspective measure by merging the

disparate relationships into a single graph and applying the SimRank on this one graph. Another is

to isolate each perspective, creating multiperspective measures by maintaining a distinct graph for

each perspective and applying SimRank on each graph separately. The former may underfit, due

to a lack of capacity to model idiosyncratic nuances of similarity. The latter may overfit, due to the

sparsity of relationships within each perspective and the potential to capture incidental relationship

instances that may not generalize.

Proposed Approach. Therefore, we propose a natively multiperspective approach to measur-

ing graph-theoretic similarity. As input, we are given not one graph, but multiple graphs corre-

sponding to multiple perspectives, with each graph reflecting relationships among objects from

a specific perspective. As output, we seek to measure the similarity between a pair of objects

according to a particular perspective. The key intuition underlying this formulation is to model

not only the perspective-specific inter-object similarity between any pair of objects, but also the

inter-perspective similarity between any two perspectives. Learning these two similarity measures

simultaneously renders an advantage in sharing information across similar perspectives, which

helps to address the problem where observations for each perspective are under-sampled.

5.2 Framework

In this section, we provide an overview of the problem formulation and solutions. After for-

mally introducing our notations and defining the data representation in terms of our hypergraph

79

formulation, we outline the solution framework for deriving the perspective-specific inter-object

similarities and inter-perspective similarities.

Problem Formulation. Let O = {o1, o2, . . . , on} be the universal set of objects for which

we seek to infer similarities. Suppose that we are interested in modeling m different perspectives

P = {p1, p2, . . . , pm} over the similarities of objects in O. For each perspective p ∈ P , we are

given a graph Gp(O, Ep), where Ep ⊆ O × O comprises edges between pairs of objects that p

considers related. The collection of such graphs G = {G1, G2, . . . , Gm} make up the input to the

problem.

Because the respective Gp’s are defined over the same set of vertices O, we seek a unified

representation that allows the integration of the m separate graphs. There are several equivalent

representations for what is essentially the same data. One is a multi-labeled graph, with perspec-

tives serving as edge labels. Another is a bipartite graph, with perspectives as one type of vertices,

and object pairs as the other type. Since we are as concerned with the inter-perspective similarity

as we are with the inter-object similarity, for most of the subsequent discussions, we resort to a

representation where perspectives and objects are both vertices. A natural candidate for such a

representation is a 3-uniform hypergraph, whereby each edge relates exactly three vertices: one

perspective vertex and two object vertices considered similar by the former.

From the input G, we construct a 3-uniform hypergraph H = (X , E) consisting of a set of

verticesX = P∪O and a set of hyperedges E = {(pk, oi, oj) : 1 ≤ k ≤ m; 1 ≤ i, j ≤ n}, in which

(pk, oi, oj) ∈ E means that oi and oj are related according to perspective pk, i.e., (oi, oj) ∈ Epk

in Gpk . Figure 5.1 illustrates an example hypergraph with two perspectives P = {p1, p2} (red)

and four objects O = {o1, o2, o3, o4} (green). Hyperedges (p1, o1, o4) and (p1, o2, o3) indicate that

according to perspective p1, object o1 is related to object o4, while object o2 is related to object o3.

In contrast, according to p2, o1 is related to o2, and o3 is related to o4.

Given a multiperspective hypergraph H(X , E), the similarity score of two objects oi, oj ∈ O

according to perspective p ∈ P is denoted as Sp(oi, oj), whose value is bounded by [0, 1]. A special

80

�� ��

�� ��

����

Figure 5.1: Illustration of the Hypergraph Representation

case is Sp(oi, oj) = 1 when i = j. We are now ready to state the problem formally as follows.

Problem 5.1 (Multiperspective Similarity). Given a multiperspective hypergraph H, determine

the similarity score Sp(oi, oj) for each perspective p ∈ P and pair of objects oi 6= oj ∈ O.

Proposed Methodology. To recall how SimRank measures the similarity between two vertices

based on the graph structure, we reproduce its similarity measure here. Formally, the SimRank

similarity score S(a, b) between two vertices a, b is defined as follows:

S(a, b) =


C

|N(a)||N(b)|

|N(a)|∑
i=1

|N(b)|∑
j=1

S(Ni(a), Nj(b)), if a 6= b,

1, if a = b

(5.1)

in which C is the damping factor between 0 and 1; N(a) and N(b) comprise the neighbors of a

and b respectively. If a vertex a has no neighbor, then we have S(a, b) = 0 for any vertex b 6= a.

A naive solution to Problem 5.1 is to run SimRank (Equation 5.1) on each perspective’s com-

ponent graph Gp separately. We refer to this solution as Disjoint-SimRank. While this produces

perspective-specific inter-object similarities, the main issue is that there may not be sufficient in-

formation within each Gp to learn the similarities among objects effectively. If every perspective

81

is distinct and unique, then perhaps we could do no better than this. However, realistically, the

various perspectives may share some degree of agreement in how they perceive the similarities

among objects. If so, then there would be an opportunity to let a perspective collaborate with other

similar perspectives, filling the gaps in each other’s knowledge of object similarities.

Therefore, for a truly multiperspective solution, we advocate enabling information sharing

across perspectives, to a degree correlated with the similarity among the corresponding perspec-

tives. Let’s denote sim(p, p′) ∈ [0, 1] to be the similarity between two perspectives p, p′ ∈ P . How

these values may be derived for p, p′ ∈ P will be discussed shortly.

To infer the similarity Sp(oi, oj) between oi and oj according to p, we propose to expand the

definition in Equation 5.1 to incorporate inter-perspective similarity sim(p, p′), in such a way that

Sp(oi, oj) is expressed in terms of the corresponding object similarities according to other perspec-

tives p′ as well, as shown in Equation 5.2. Here, Np(oi) comprises the neighbors of oi in Gp.

Sp(oi, oj) =
C

|P|

∑
p′∈P

sim(p, p′)
∑

ok∈Np′ (oi)

∑
ol∈Np′ (oj)

Sp′(ok, ol)

|Np′(oi)||Np′(oj)|
, (5.2)

Equation 5.2 captures a couple of fundamental principles. First, the similarity between two ob-

jects depends on the similarities between other objects related to those objects of interest. Second,

distinctly in our formulation, the similarity between two objects of interest according to a specific

perspective also depends on the similarities between related objects as seen by similar perspectives.

Let Sp = [Sp(oi, oj)]n×n be the matrix representation of the perspective-specific inter-object

similarity scores, and Wp be the column-normalized matrix of the adjacency matrix with respect

to p ∈ P . We can express Equation 5.2 in matrix form as follows:

Sp =
C

|P|

∑
p′∈P

sim(p, p′).Wp′
TSp′Wp′ (5.3)

In this multiperspective framework, one important component is the inter-perspective simi-

82

larity sim(p, p′), determining the degree to which information is shared between one perspective

and another. The straightforward solution is to treat it as a pipeline: first compute the similar-

ity between perspectives, then solve Equation 5.2 to compute the perspective-specific inter-object

similarities. We refer to this as PIPELINED-SIMRANK (Section 5.2.1). In Section 5.2.2, we further

propose a refined formulation MP-SIMRANK to compute the inter-perspective similarities and the

perspective-specific inter-object similarities simultaneously. We expect that jointly learning both

types of similarities would reinforce the performance of the framework at lower complexities than

the former solution.

5.2.1 Pipelined-SimRank

We now describe PIPELINED-SIMRANK, which enables information sharing across perspectives

through a pipelined solution. The key idea is to induce unidirectional dependency from the inter-

perspective sim(p, p′) to the inter-object Sp(oi, oj), but not the other way around. This directional-

ity implies that sim(p, p′) has to be inferred from the hypergraphH itself.

Inter-Perspective Similarity

As mentioned in Section 5.2, each perspective p is associated with a graph of object-to-object rela-

tionshipsGp. Intuitively, we consider two perspectives p and p′ to be similar, if their corresponding

graphs Gp and Gp′ are similar, which implies that when p considers two objects related, it is likely

that p′ does as well. We express this intuition in graph-theoretic form as follows.

Let us transform the input hypergraphH = ({P ,O}, E) into a bipartite graph B with two types

of vertices, as illustrated in Figure 5.2 (unrelated to Figure 5.1). The first type are perspective

vertices P (left). The second type are “object-pair” vertices O ×O, formed from all pairs of non-

identical objects (right). An edge from a perspective p to an object-pair vertex oij exists in this

bipartite graph B iff (p, oi, oj) ∈ E in the original hypergraphH.

83

� �

��
��
��

��

���
���

��	

����
��
Figure 5.2: PIPELINED-SIMRANK: Bipartite graph for computing similarity between perspective

nodes

Once the bipartite graph B is in place, we can apply a graph-theoretic measure such as the

bipartite variant of SimRank [40] to compute the inter-perspective similarity sim(p, p′), which will

be used in the next phase for computing Sp(oi, oj).

Learning Algorithm

Algorithm 3 encapsulates the pipelined solution PIPELINED-SIMRANK, which involves two phases.

In the first phase, we compute inter-perspective similarities sim(p, p′) for all p, p′ ∈ P as described

above. Thereafter, in the second phase, we use these inter-perspective similarities in Equation 5.2

to compute the inter-object similarities for each perspective. Note that sim(p, p′) is now fixed

in the second phase. The initial values S(0)
p (∗, ∗)∀p ∈ P at the start of the iterations (line 7) of

Algorithm 3 are specified in Equation 5.4 below:

S(0)
p (oi, oj) = 0 if i 6= j and 1 if i = j (5.4)

The solution to Equation 5.2 can be reached by iteration to a fixed-point. Finally, the algorithm

returns the converged inter-object similarities, as well as the inter-perspective similarities.

84

Algorithm 3 PIPELINED-SIMRANK

Require: HypergraphH (defined as in Section 5.2)
1: /*—- create bipartite graph from hypergraph —- */
2: B ← bipartiteTransform(H)
3:
4: /*—- compute the similarity between perspectives —- */
5: {sim(∗)(p, p′)}∀p,p′∈P ← bipartiteSimRank(B)
6:
7: Initialize S(0)

p ← In,∀p ∈ P
8: while not converged do {

S(t+1)
p (oi, oj) =

C

|P|

∑
p′∈P

sim(∗)(p, p′) (5.5)

×
∑

ok∈Np′ (oi)

∑
ol∈Np′ (oj)

S
(t)
p′ (ok, ol)

|Np′(oi)||Np′(oj)|
,

(for 1 ≤ i 6= j ≤ n)

and S(t+1)
p (oi, oi) = 1(for 1 ≤ i ≤ n)

9: end while
10:
11: Return {Sconverged

p (oi, oj),∀p ∈ P , oi, oj ∈ O}
12: and {sim(∗)(p, p′),∀p, p′ ∈ P}.

Convergence Property

We now prove that Algorithm 3 will eventually converge, showing the existence of a simultaneous

solution of Equation 5.2.

Lemma 5.1. The sequence of perspective-specific similarity score produced by Algorithm 3 is

non-decreasing and bounded by [0, 1], i.e., for p ∈ P , oi, oj ∈ O, t ≥ 0.

1 ≥ S(t+1)
p (oi, oj) ≥ S(t)

p (oi, oj) ≥ 0,

85

Proof: From the initialization step and update equations (5.5) (described in Algorithm 3), it is

straightforward to see that:

S(1)
p (oi, oj) ≥ 0 = S(0)

p (oi, oj),∀p ∈ P , oi 6= oj ∈ O

and S(1)
p (oi, oi) = 1 = S(0)

p (oi, oi), ∀p ∈ P , oi ∈ O.

That means Lemma 5.1 is true for t = 0. By induction, one can verify the statement in Lemma 5.1

still holds true for ∀t ≥ 1.

Hence, each sequence {S(t)
p (oi, oj)}t≥0 is non-decreasing and bounded. By the Completeness

Axiom of calculus, each sequence {S(t)
p (oi, oj)}t≥0 therefore converges to a limit Sp(oi, oj) ∈

[0, 1]. Moreover, {Sp(oi, oj)} and {sim(∗)(p, p′)} are the solution for Eq. 5.2.

5.2.2 Joint Solution: MP-SimRank

We now describe our proposed joint solution MultiPerspective SimRank or MP-SIMRANK. The

key idea is to induce bidirectional dependencies between the inter-perspective sim(p, p′) and the

inter-object Sp(oi, oj) similarities.

Inter-Perspective Similarity

The dependency from the inter-perspective sim(p, p′) to inter-object Sp is already encoded in Equa-

tion 5.2. To induce the dependency in the opposite direction, we need to define sim(p, p′) in terms

of Sp. While there could be many possible definitions, we propose the following definition in

Equation 5.6, which, as we will show later would still preserve the convergence property.

sim(p, p′) = 1−
∥∥Sp − S ′p∥∥F

n
, (5.6)

86

The similarity between two perspectives p, p′ is inversely proportional to the Frobenius norm be-

tween Sp and Sp′ . If they are similar, i.e., ‖
Sp−S′p‖F

n
is close to 0 then sim(p, p′) is close to 1.

Otherwise, if Sp and Sp′ are extremely different, i.e., ‖
Sp−S′p‖F

n
is close to 1, then sim(p, p′) is

close to 0.

Algorithm 4 MP-SIMRANK

Require: HypergraphH (defined as in Section 5.2)
1: Initialize S(0)

p ← In,∀p ∈ P
2: Initialize sim(0)(p, p′) = 1 if p = p′ and 0 if p 6= p′

3:
4: while not converged do {
5:

S(t+1)
p (oi, oj) =

C

|P|

∑
p′∈P

sim(t)(p, p′)×
∑

ok∈Np′ (oi)

∑
ol∈Np′ (oj)

S(t)
p′ (ok, ol)

|Np′(oi)||Np′(oj)|
, (1 ≤ i 6= j ≤ n)

and S(t+1)
p (oi, oi) = 1 (for 1 ≤ i ≤ n)

6: sim(t+1)(p, p′) = 1−
∥∥∥S(t+1)

p −S(t+1)

p′

∥∥∥
F

n
,∀p, p′ ∈ P

7: end while}
8:
9: Return {Sconverged

p (oi, oj),∀p ∈ P , oi, oj ∈ O} and {simconverged(p, p′),∀p, p′ ∈ P}.

Learning Algorithm

Algorithm 4 shows the joint-learning solution for Equation 5.2. We initialize the perspective-

specific similarity score S(0)
p (∗, ∗)∀p ∈ P as in Equation 5.4. For the similarity between perspec-

tives, we initialize sim(0)(p, p′)∀p, p′ ∈ P as in Equation 5.7 below.

sim(0)(p, p′) = 0 if p 6= p′ and 1 if p = p′ (5.7)

In contrast to the two-phase Algorithm 3, in this Algorithm 4 we iterate the computation of inter-

object similarity in line 4 and that of inter-perspective similarity in line 5 until both converge.

87

Convergence Property

For MP-SIMRANK, we show that the computations for both types of similarities will converge to

a fixed point.

Lemma 5.2. The sequence of similarity between perspectives produced by Algorithm 4 is non-

decreasing and bounded by [0, 1], i.e., for t ≥ 1,

1 ≥ sim(t+1)(p, p′) ≥ sim(t)(p, p′) ≥ 0, ∀p, p′ ∈ P . (5.8)

Proof: Proving that, for t ≥ 0:
∥∥∥S(t+1)

p − S(t+1)
p′

∥∥∥
F
≤
∥∥∥S(t)

p − S(t)
p′

∥∥∥
F

From Equation 5.3, ∀p, p′ ∈ P we have:

∥∥∥S(t+1)
p − S(t+1)

p′

∥∥∥
F

=

∥∥∥∥∥∥ C|P|
∑
p′′∈P

(
sim(t)(p, p′′)− sim(t)(p′, p′′)

)
W T
p′′ · S

(t)
p′′ ·Wp′′

∥∥∥∥∥∥
F

≤ C

|P|

∑
p′′∈P

∣∣sim(t)(p, p′′)− sim(t)(p′, p′′)
∣∣ .∥∥∥W T

p′′ · S
(t)
p′′ ·Wp′′

∥∥∥
F

=
C

|P|

∑
p′′∈P

∣∣∣∥∥∥S(t)
p − S

(t)
p′′

∥∥∥
F
−
∥∥∥S(t)

p′ − S
(t)
p′′

∥∥∥
F

∣∣∣ .
∥∥∥W T

p′′ · S
(t)
p′′ ·Wp′′

∥∥∥
F

n

=
C

|P|

∑
p′′∈P

∥∥∥(S(t)
p − S

(t)
p′′)− (S(t)

p′ − S
(t)
p′′)
∥∥∥
F
.

∥∥∥W T
p′′ · S

(t)
p′′ ·Wp′′

∥∥∥
F

n

≤ C

|P|

∑
p′′∈P

∥∥∥S(t)
p − S

(t)
p′

∥∥∥
F
<
∥∥∥S(t)

p − S
(t)
p′

∥∥∥
F

⇒ sim(t+1)(p, p′) ≥ sim(t)(p, p′).

Since, 0 ≤
∥∥∥S(t)

p −S
(t)

p′

∥∥∥
F

n
≤ 1,∀t ≥ 1 and p, p′ ∈ P , we also have sim(t)(p, p′) ∈ [0, 1],∀t ≥

0 and p, p′ ∈ P . By the Completeness Axiom of calculus, sim(t)(p, p′) converges to a limit

sim(p, p′).

88

From Lemma 5.2 and by induction, we can prove that Lemma 5.1 still holds true for the

perspective-specific sequences produced by Algorithm 4. That means {S(t)
p (oi, oj)}t≥0 converges

to a limit Sp(oi, oj) ∈ [0, 1] and {sim(t+1)(p, p′)}t≥0 converges to a limit sim(p, p′). Moreover,

Sp(oi, oj) and sim(p, p′) solve Equation 5.2.

5.3 Experiments

Our experimental objectives are to study the comparative performance of the proposed graph-

theoretic multiperspective approach against comparable baselines, and to investigate the role and

effectiveness of inter-perspective similarities.

5.3.1 Experimental Settings

Datasets. For experiments, we seek publicly available datasets that could reflect the notion of

multiperspectivity. We identify the following three datasets, whereby the first two model multiper-

spectivity due to different facets or attributes of objects, and the third models multiperspectivity

due to different agents.

Zoo1 contains 101 animals with 17 attributes (excluding name), e.g., #legs, type (mammals,

birds, etc.). We treat attribute as perspective and animal as object, and model the varying similarity

of animals according to attributes. We form a hyperedge (p, oi, oj) if oi and oj have the same value

for p. For example, one hyperedge is (#legs, elephant, giraffe), since both aminals have four legs.

Congressional Voting Records (or HouseVote)2 contains 435 instances (congress members)

and 16 attributes (votes). After excluding instances with missing values, we get a dataset with 232

instances. Considering each attribute as a perspective, we generate hypergraph in the same way as

we do with Zoo dataset.
1https://archive.ics.uci.edu/ml/datasets/Zoo
2https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

89

https://archive.ics.uci.edu/ml/datasets/Zoo
https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records

Paris Attractions3 has 237 users organize 250 attractions in Paris into clusters. Each is a group

of similar attractions from the perspective of a user. We induce hyperedges involving two attrac-

tions i and j that the user (perspective) puts into the same cluster.

The density ratio is measured by dividing the number of present hyperedges by the maximum

number of hyperedges possible, i.e., m ∗ n2. Paris Attractions has the lowest density at 0.16%, as

compared to 57.2% for Zoo and 52.3% for HouseVote.

Task and Metrics. We evaluate similarity methods as follows. In each dataset, a perspective is

associated with a clustering of objects (based on attribute values or groupings). For each cluster, we

sample 70% of objects for training, and keep the 30% hidden for testing. From the training set, we

induce a hypergraph, and learn the similarity scores. At the prediction stage for each perspective,

we measure the affinity between a hidden object and the clusters, and assign the object to the

highest-affinity cluster. Here, affinity is the average similarity (as measured by the comparative

method) between the hidden object and the known objects in the cluster.

While presences of hyperedges indicate similarity, absences may not necessarily indicate dis-

similarity (maybe missing values). Thus, we evaluate predictions via two recall-oriented metrics.

We conduct stratified sampling to maintain the same ratio for each perspective and report the aver-

age results over ten train/test splits.

Recall: For a p ∈ P , hiding an object from one of its clusters essentially creates hidden hyper-

edges in the test set involving the perspective, the hidden object, and other objects in the cluster.

Correspondingly, at prediction stage, the assignment of a hidden object to the highest-affinity clus-

ter “predicts” another set of hyperedges. Let Ehid
p denote the former, and Epred

p the latter. Recall is

the fraction of Ehid
p recovered by Epred

p , averaged across perspectives.

Recall =
1

m

∑
p∈P

|Epred
p ∩ Ehid

p |
|Ehid
p |

(5.9)

3http://projects.yisongyue.com/collab_cluster/

90

http://projects.yisongyue.com/collab_cluster/

PRES: As the recall measure above relies on discrete assignments, we use a second metric that

relies on rankings. For a cluster, we rank the candidate objects based on the affinity scores. We

then evaluate the rank positions of the ground-truth hidden objects using PRES (Patent Retrieval

Evaluation Score) [68], which had been designed for recall-oriented retrieval tasks. Equation 5.10

shows the formula for a cluster of a given perspective, where n is the number of ground-truth

objects hidden from this cluster, ri is the rank order of each ground-truth object in the output,

and Nmax is the total number of candidates. To report the overall result, we average it across the

clusters of a perspective, and then across perspectives.

PRES = 1−

∑
ri
n
− n+1

2

Nmax

(5.10)

Methods. We compare the two methods described in this work: PIPELINED-SIMRANK and

MP-SIMRANK to several baselines. Since our work is related to SimRank, and the key contribu-

tion is to incorporate native multiperspectivity, our main baselines are variants of SimRank. For all

the graph-theoretic methods, including ours, the damping factor C is set to 0.8, as recommended

in [40].

The first two are uniperspective SimRank-based methods. Merged-SimRank is obtained by tak-

ing the union of graphs due to different perspectives, and applying SimRank on the merged graph.

Average-SimRank is obtained by running SimRank on each perspective’s graph independently, and

then averaging the SimRank scores to be used as a common inter-object score. Comparing to these

uniperspective variants allows us to see the effect of multiperspectivity.

Disjoint-SimRank recognizes multiperspectivity, but assumes they can be obtained separately.

For each perspective, we create a single graph to represent its own similarity viewpoint. We then

run classic SimRank on each graph independently. In this mode, each perspective can only learn

from its own graph, without collaborating with others. Comparing to this variant allows us to see

the effect of inter-perspective collaboration that underpins both of our models.

91

0 0.15 0.3 0.45 0.6 0.75

Merged-SimRank

Average-SimRank

Disjoint-SimRank

PCC

Pipelined-SimRank

MP-SimRank

Recall

Zoo

0 0.15 0.3 0.45 0.6 0.75

Merged-SimRank

Average-SimRank

Disjoint-SimRank

PCC

Pipelined-SimRank

MP-SimRank

Recall

HouseVote

0 0.01 0.02 0.03 0.04 0.05

Merged-SimRank

Average-SimRank

Disjoint-SimRank

PCC

Pipelined-SimRank

MP-SimRank

Recall

Paris Attractions

Figure 5.3: Recall values of all models

0 0.2 0.4 0.6 0.8 1

Merged-SimRank

Average-SimRank

Disjoint-SimRank

PCC

Pipelined-SimRank

MP-SimRank

PRES

Zoo

0 0.2 0.4 0.6 0.8 1

Merged-SimRank

Average-SimRank

Disjoint-SimRank

PCC

Pipelined-SimRank

MP-SimRank

PRES

Paris Attractions

0 0.2 0.4 0.6 0.8 1

Merged-SimRank

Average-SimRank

Disjoint-SimRank

PCC

Pipelined-SimRank

MP-SimRank

PRES

HouseVote

Figure 5.4: PRES values of all models

The final method Personalized Collaborative Clustering or PCC [116] is not graph-theoretic

per se. Given our focus, strictly speaking it is not a baseline. However, it is included for complete-

ness because it supports some notion of multiperspectivity, but relies on matrix factorization. We

tune the parameters of PCC (learning rate, dimension of latent space) for its best performance.

5.3.2 Comparison to Baselines

We now discuss the experimental results, focusing on the similarity values among objects. Fig-

ure 5.3 shows the Recall of all comparative methods across the three datasets.

Disjoint-SimRank is consistently the weakest. Its Recall for Zoo, HouseVote, and Paris Attrac-

tions are 24.65%, 25.14%, and 0.65%. We attribute this to the lack of information within each

perspective, since each only runs SimRank on its own graph.

Merged-SimRank achieves slightly better Recall than Disjoint-SimRank on three datasets: 26.0%

92

for Zoo, 41.7% for HouseVote, and 3.4% for Paris Attractions. By pooling together all the perspec-

tives, it learns the consensus view. Average-SimRank interestingly achieves the best Recall values

among all the baselines: 50.7% for Zoo, 55.3% for HouseVote, and 3.7% for Paris Attractions.

Perhaps it captures the dominant perspective, as this model would give higher similarity score for

those pairs of objects that have been clustered as similar more frequently in the data than the score

for other pairs.

The natively multiperspective models show better performances than the uniperspective base-

lines. PIPELINED-SIMRANK achieves Recall of 68.8% for Zoo, 74.3% for HouseVote, and 3.9%

for Paris Attractions. MP-SIMRANK is even better, its Recall for the three datasets are 70.2%,

75.0%, and 4.9% respectively. This supports our intuition that by modeling multiple perspectives,

we can capture nuances specific to some perspectives, and yet still allow collaboration among

similar perspectives.

The results for non-graph theoretic PCC are middling and mixed, 32.2% for Zoo, 27.8% for

HouseVote, and 0.9% for Paris Attractions. It is still better than Disjoint-SimRank, ostensibly due

to the sharing across perspectives. However, it is not always better than Merged-SimRank and is

generally worse than Average-SimRank.

Figure 5.4 presents the PRES values. The trends are consistent with the Recall values for all

datasets, in terms of the relative performance of the comparative methods. Compared to Recall,

the PRES values tend to be higher. Especially, the PRES of the two multiperspective models are

close to 1. This indicates that while recalling all ground-truth objects may be challenging, those

that we do recall tend to be ranked almost at the top of the candidates.

Comparing the three datasets, Paris Attractions is the most sparse, which explains why the

Recall and PRES values of all models for this dataset are relatively lower than that of the two other

datasets.

93

5.3.3 Inter-Perspective Similarities

As a byproduct of determining the similarities among objects, multiperspective models also pro-

duce the similarities among perspectives. We are interested in investigating the inter-perspective

similarity sim(p, p′), ∀p, p′ ∈ P of the two models. Intuitively, for effective information sharing,

two “similar” perspectives p, p′ should have higher sim(p, p′) value than two “dissimilar” perspec-

tives.

To attempt to understand how meaningful the sim(p, p′) values are, we turn to the concept of

Normalized Mutual Information or NMI [27]. In particular, for Zoo and HouseVote, each perspec-

tive corresponds to an attribute, whose values effectively define a clustering of objects. Supposing

we see the full dataset, we can quantity how similar two attributes are, using NMI on the two

clusterings over the same objects. For each p ∈ P , we measure the Pearson correlation of its NMI

scores and its inter-perspective similarities with other perspectives in P . We do not include Paris

Attractions, since each user only clusters a different subset of objects.

Table 5.1 and Table 5.2 show the Pearson correlation values of each perspective for PIPELINED-

SIMRANK and MP-SIMRANK respectively. Both achieve high correlation values between the

NMI scores and the inter-perspective similarities for each perspective. That means both are able

to reflect very well the underlying similarity between two perspectives. The joint learning MP-

SIMRANK seems to better learn the similarity between two perspectives than the PIPELINED-

SIMRANK. This explains the improvement in the performance of MP-SIMRANK upon PIPELINED-

SIMRANK in the earlier experiment.

5.3.4 Illustrative Case Study

To gain an intuition of how multiperspectivity plays a part in the similarity measurement, here we

include a small case study. For this example, we use the Paris Attractions dataset to showcase the

role of multiperspective similarity measure. Table 5.3 shows the clustering data of four users in the

94

dataset, each represented by user id. Each cluster is separated from another by the symbol ||. Of

particular interest to us are objects with id: 30, 50, 62, 76, and 88 (in bold). We can observe that

users may cluster objects similarly or differently from one another. For example, both U53 and

U86 place objects 30, 50, 62, and 88 in the same cluster. On the other hand, U94 places object 62

and 88 in the same cluster, but places object 50 in a different cluster. U168, however, places three

objects: 30, 76, and 88 in three different clusters.

Perspective MP-SIMRANK PIPELINED-SIMRANK

p1 0.9531 0.6914
p2 0.8163 0.7702
p3 0.9576 0.6430
p3 0.9451 0.6051
p5 0.8954 0.8514
p6 0.9669 0.8670
p7 0.9952 0.9891
p8 0.9191 0.7410
p9 0.7920 0.7612
p10 0.8434 0.8208
p11 0.8574 0.9832
p12 0.8445 0.8391
p13 0.9049 0.7840
p14 0.9229 0.8490
p15 0.9139 0.9932
p16 0.9846 0.9400
p17 0.8492 0.6174

Table 5.1: Correlation between NMI scores and inter-perspective similarities for Zoo

We apply the MP-SIMRANK on the full Paris Attractions dataset and investigate the inter-

perspective similarities between the four mentioned users. In Figure 5.5, each big circle represents

the clustering data of each user. Clusters are wrapped inside inner circles. The values on the dashed

lines represent the Frobenius distance between perspectives (users). We observe that the distance

between U53 and U86 is smaller than those between U53 and either U94, U86 or U94. This

is expected since U53 and U86 have more similar perspectives. The inter-perspective distances

reflect that U53 and U86 are more similar to U94 than to U168. This is reasonable, since U53,

U86, and U94 place object 62 and object 88 in the same cluster.

95

Perspective MP-SIMRANK PIPELINED-SIMRANK

p1 0.9963 0.9763
p2 0.9999 0.9990
p3 0.9790 0.8295
p4 0.9764 0.7586
p5 0.9733 0.6552
p6 0.9789 0.8715
p7 0.9811 0.8732
p8 0.9749 0.7106
p9 0.9783 0.7335
p10 1.0000 0.9998
p11 0.9992 0.9975
p12 0.9763 0.7793
p13 0.9865 0.8866
p14 0.9641 0.8197
p15 0.9883 0.9335
p16 0.9713 0.9376

Table 5.2: Correlation between NMI scores and inter-perspective similarities for HouseVote

5.4 Efficiency Analysis

This section discusses the theoretical complexity and efficiency of the SimRank-based methods.

5.4.1 Complexity Analysis

First, we look into the theoretical storage and time complexities, which are summarized in Table

5.4. For the uniperspective Merged-SimRank, its complexities are the same as the original Sim-

Rank’s, which is square to the number of object pairs, i.e., n2. Suppose for a given perspective,

dp is the average product of neighbor counts, i.e., |Np(oi)|.|Np(oj)| across object pairs oi, oj ∈ O.

Then dmax is the maximum such average among all perspectives ∀p ∈ P .

For the methods that require computation for each perspective, Average-SimRank and Disjoint-

SimRank, it is reasonable that the complexity will also scale with m the number of perspectives.

However, both of these act independently for each perspective.

For the natively multiperspective methods, there is a need to compute the inter-perspective

similarities. For PIPELINED-SIMRANK, this is done by inducing a bipartite graph of perspectives-

96

ID Clustering Data
U53 14 21——30 40 50 62 76 88——17 156——78

79 106 126 201 232 247
U86 72 78 96 109 164 208——2 30 50 62 88 178

224——79 84 207
U94 7 91 115 140 159 167 248——34 49 62 73 79 88

142 151 238——50 90 154
U168 40 48 73 84 85 88 89 90 117 154 166 171——45

51 61 76 111 116 126 133 146 200——28 30 52
60 78 86 100 128 132 195——21

Table 5.3: Cluster data of four users from Paris Attractions

�

�

50

62

30
88

�
�

�

50

62

30
88

��
�

50

62
88�

�
�

�

76

76

88�

�
�

�

30

id:�	�

id:�
�
id:��

id:��
�

�����

�����

�����

���
�

�����

Figure 5.5: Illustrative example of multiperspective similarity from Paris Attractions dataset.

by-object pairs. Therefore, in addition to the perspective-specific inter-object similarities (mn2),

we store and compute the inter-perspective similarities (m2) and the similarity between any two

object pairs (n4). dbi is the average product of neighbor counts in the bipartite B (Section 5.2.1).

In terms of time, we further need to consider the computation of perspective-specific inter-object

similarities, iterated over all perspectives, i.e.,m2n2dmax. This is computationally intensive, which

motivates the development of MP-SIMRANK.

For MP-SIMRANK, the joint computation of both inter-perspective and inter-object similarities

avoids the instantiation of the bipartite graph, dropping the n4 term from the complexities. This

97

Methods Storage Time
Merged-SimRank O (n2) O (n2dmax)
Average-SimRank O (n2) O (mn2dmax)
Disjoint-SimRank O (mn2) O (mn2dmax)

PIPELINED-SIMRANK O (m2 + n4 +mn2) O ((m2 + n4 +mn2)dbi +m2n2dmax)
MP-SIMRANK O (m2 +mn2) O (m2n2dmax)

Table 5.4: Complexity analysis (per iteration) of all SimRank-based methods

dramatically improves the running time of MP-SIMRANK.

We are also interested in how many iterations are generally required for convergence in prac-

tice. The convergence rate of the algorithm is defined as follows:

Dt =
1

m

∑
p∈P

∥∥∥S(t+1)
p − S(t)

p

∥∥∥
F

n
,

as the algorithm converges, the value of Dt should approach 0 as t goes to infinity. Overall, both

models converge after reasonably few iterations (less than 5 iterations for Zoo and HouseVote, and

less than 8 iterations for Paris Attractions).

5.4.2 Heuristic for More Efficient MP-SimRank

Since our main focus is multiperspectivity, one possible avenue to further improve efficiency is

to reduce the number of perspectives, by grouping similar perspectives into a cluster with one

representative perspective. We test the feasibility of this concept here.

Algorithm 5 describes CLUSTEREDMP-SIMRANK that adopts the idea of clustering perspec-

tives. We first run Disjoint-SimRank on each graph and produce Sdisjoint
p ,∀p ∈ P (Step 1) with

computational cost of O(mn2dmax). Next, we compute the Frobenious distance between all per-

spectives, cluster them using the k-medoids algorithm (k ≤ m is given), and merge graphs of

perspectives in the same cluster together (Steps 2 and 3). A medoid here is defined as the perspec-

tive with the smallest average distance to all others in the same cluster. These two steps require a

98

�����

� �� �� �� �	 �
 �� �����

���

� ��
��

�� �	 �

�� ����

��

���

���

��

���

���

�

� ���
�� ��� ��� ���� ���� �
��
Running Time (second)

HouseVote

PRES Recall

k = 1

9 10 11 12 13 14 15 16
k=17

k=1

9
10 11

12 13
14

15 16
k=17

���

��	��

��
�

���
�

��

�����

����

� ��� ��� 	��
�� ���
Running Time (second)

Zoo

PRES Recall

��� �� ��
� ��� ��� ��� �
�
��� ���	

��� �� ��
� ��� ��� ��� �
� ��� ���	

�

�����

����

��	
�

���

�����

��
�

���
�

� ���
�� ��� ��� ���� ����
Running Time (second)

Paris Attractions

PRES Recall

Figure 5.6: PRES, Recall, and running time of CLUSTEREDMP-SIMRANK with different number
of clusters k.

computational cost ofO(m2 +km). We then run MP-SIMRANK on the new hypergraphHc, yield-

ing the cluster-specific inter-object similarity Sc (Step 4) with the cost of O(k2n2dmax). Finally,

perspectives of the same cluster share the same cluster-specific inter-object scores. The total com-

putational cost isO(mn2dmax+m2+km+k2n2dmax), less complex than the cost of MP-SIMRANK,

i.e., O (m2n2dmax).

Figure 5.6 shows the performance of CLUSTEREDMP-SIMRANK and its running time as we

vary the number of clusters k. The horizontal axis shows the required running time in second and

the vertical axis shows the peformances in terms of Recall (in blue) and PRES (in red). We observe

that by choosing a small number of clusters, we can improve significantly the speed of the learning.

As k increases, CLUSTEREDMP-SIMRANK approaches the performance of MP-SIMRANK (when

k = m). With a reasonable choice of k, we can speed up the learning process while still obtaining

acceptable level of performances from the learnt similarity scores.

5.5 Discussion

In certain real world applications, there is a need for expressing diverse perspectives of similarity.

We propose a multiperspective graph-based framework for learning similarity from data. The pro-

posed framework relies on a unified hypergraph representation of object-to-object relationships.

99

Algorithm 5 CLUSTEREDMP-SIMRANK

Require: HypergraphH and number of clusters k
1: /*– Step 1: run disjoint-simrank on each perspective graph – */
2: Sdistjoint

p ← Disjoint− SimRank(Gp),∀p ∈ P .
3:
4: /*- Step 2: compute Frobenius distances between perspectives - */
5: F = [F (p, p′)]p,p′∈P , where
6:

F (p, p′) =
∥∥Sdistjoint

p − Sdistjoint
p′

∥∥
F

7:
8: /*– Step 3: cluster perspectives and merge graphs – */
9: C ← K− Medoids(F , k); Hc ← merge− graph(H, C)

10:
11: /*– Step 4: run MP-SIMRANK on the new hypergraphHc – */
12: {Sc}c∈C ← MP-SIMRANK(Hc)
13:
14: /*– Step 5: assign each perspective the inter-object similarity –
15: – of the cluster it belongs to–*/
16: Sp ← Sc,∀p ∈ P , c ∈ C, and p ∈ c
17:
18: Return {Sp,∀p ∈ P}

The key is to learn not only the similarity between two objects for each perspective, but also the

similarities across perspectives so as to allow information sharing across perspectives. We present

two models, PIPELINED-SIMRANK and MP-SIMRANK, and provide their proof of convergence.

Experiments on publicly available datasets show that multiperspective similarity models outper-

form baseline models that either ignores multiplicity of perspectives or treats each perspective sep-

arately. As future work, we will investigate strategies for improving the efficiency of the proposed

framework, towards creating potential applications involving large-scale networks.

100

Chapter 6

Spherical Conditional Ordinal Embedding

Ordinal embedding seeks a low-dimensional representation of objects based on relative compar-

isons of their similarities. This low-dimensional representation expresses a specific view of sim-

ilarity between objects. Classical embedding approaches assume only one valid perspective of

similarity. In this chapter, we are interested in the scenarios involving ordinal comparisons that

inherently reflect multiple similarity perspectives, which would be better represented by multiple

embedding maps. We formulate this problem as conditional ordinal embedding, which learns a dis-

tinct low-dimensional representation for each perspective, yet allows information sharing among

similar/related perspectives via a shared representation. Our geometric approach is novel in its

use of a shared spherical representation and multiple perspective-specific projection maps on tan-

gent hyperplanes. Experiments on public datasets showcase the utility of collaborative learning

approach over baselines that learn multiple maps independently.

6.1 Introduction

Increasingly, there are more scenarios where we know some relative comparisons – which object

is more similar to another, even as their exact similarities are not known. For instance, [3, 111]

101

investigated human perception of “gloss” by studying how human subjects compared images. It is

now commonplace to employ human intelligence tasks to generate categorization labels for images

[33, 110]. [116] modeled how different users organized attractions.

Such observations can be represented as object triplets. Observing a triplet 〈i, j, k〉 indicates

the reference (center) object j’s greater similarity to the first-mentioned i than to k. The problem

of interest is to arrive at object coordinates in a low-dimensional space – effectively a map as the

output, such that their relative distances would preserve the observed quadruples. This problem

is known as ordinal embedding. The output representation is useful for various applications such

as estimation of relative similarities for unseen quadruples or “features” for other machine learn-

ing tasks. Another important application that we focus on here is visualization on a scatterplot.

Without loss of generality, in the subsequent discussion, we will assume 2d for ease of illustration.

Previous works [101, 105] mostly output one visualization map, reflecting a singular similarity

perception. However there could be more than one similarity perception. For instance, when the

quadruples have been generated by different human subjects, there may be natural “disagreements”

on some quadruples. Classically, such disagreements are assumed to be noisy conflicts to be

removed in order to uncover the one map.

Multiple Maps. We postulate that these quadruples may be expressing multiple perspectives

of similarities. The disagreements among quadruples reflect idiosyncratic perspectives of simi-

larity. The varying perspectives are valid, and should be preserved by the embedding. A single

visualization map is insufficient to accommodate the different points of view simultaneously. It

would be more appropriate to learn multiple maps, each of which reflects a particular perspective

of similarity.

Hence, we are dealing not with ordinal triplets per se, rather with ordinal quarduples in the form

of 〈p|i, j, k〉 expressing relative comparison between object i, j and k, according to a perspective

p. We refer to the problem of learning multiple maps from such conditional ordinal comparisons

as conditional ordinal embedding. As input, we are given ordinal quadruples where the asso-

102

ciations among object triplets to perspectives are known. As output, we seek to learn multiple

low-dimensional Euclidean maps, one for each perspective.

6.2 Framework

6.2.1 Problem Formulation

Input. The set of objects of interest is denoted O, e.g., images, documents, items, and the set

of perspectives P . For generality, we assume no feature for an object beyond its identity. A

perspective could be a human subject, an attribute, etc., whose perception of similarity is to

be modeled. Each perspective p ∈ P observes conditional ordinal quadruples in the form of

〈p|i, j, k〉, where (i 6= j 6= k) ∈ O. Such a quadruple indicates that according to perspective

p, j is more similar to i than to k. The set of observed quadruples for an perspective p ∈ P is:

Np = {〈p|i, j, k〉|i 6= j 6= k ∈ O}. The input is thusN , the union of quadruples of all perspectives.

Output. For each perspective p ∈ P , we derive an embedding map of all objects. For the map

associated with perspective p, every object i ∈ O is associated with a coordinate ypi ∈ Rd, where

d is the desired dimensionality of the target representation. For visualization purpose, we assume

d = 2 in this study. The objective is to satisfy the following condition for as many quadruples in

Np specifically, and N generally, as possible:

〈p|i, j, k〉 ∈ N ⇐⇒ ||ypj − y
p
i || < ||y

p
j − y

p
k|| (6.1)

For |P| ≥ 2, we refer to this problem as conditional ordinal embedding. For |P| = 1, this problem

degenerates to the classical “single-perspective” ordinal embedding problem.

103

a) disjoint learning b) collaborative

shared
representation

Conditional Ordinal Embedding

- perspective ’s quadruples - embedding map for perspective

Figure 6.1: Approaches for Conditional Ordinal Embedding.

6.2.2 Proposed Methodology

Figure 6.1 outlines two approaches for conditional ordinal embedding. The straightforward ap-

proach is disjoint learning, i.e., deriving a map for each perspective independently. Specifically,

the map mp1 is learnt from only perspective p1’s quadruples, and the various maps mp1 to mp3 are

not related (Figure 6.1 left).

We believe that the perspectives are potentially related as they concern the same set of objects.

Their latent relationships could render significant advantage when perspectives are sufficiently re-

lated, and yet each perspective is under-sampled. In practice, we do not necessarily observe all

possible quadruples, but a subset. For sparse data, an perspective may have insufficient informa-

tion. Furthermore, the quadruples of any one perspective may not cover all objects [3].

We propose a collaborative approach as shown on (Figure 6.1 right). The challenge is to

design a shared representation that allows “sharing” across perspectives, and yet to still allow each

perspective to remain distinct. Here, we adopt a well-known instance of Riemannian manifold

[31], namely: hypersphere.

Each perspective p ∈ P and object i ∈ O are respectively associated with a spherical coor-

dinate xp, yi ∈ Sd, where Sd = {v ∈ Rd+1 : ||v|| = 1}. The output coordinate ypi ∈ Rd is the

104

projection of yi onto task-specific d-dimensional hyperplane defined by xp. The projection of the

objects’ spherical coordinates onto the tangent hyperplane of an perspective constructs a map that

reveals that perspective’s distinct view of proximities between objects. The intuition for a sphere

as the shared representation is that it allows greater flexibility for each perspective to model its

own similarity perspective, while each perspective’s embedding map is embedded within the same

space as the shared sphere representation. Also, one advantage of the sphere is that it is not a

higher-dimensional structure, since its effective dimensionality is still d.

6.2.3 Model

To arrive at shared Y = {yi : i ∈ O}, while accommodating variances among perspectives, we

turn to probabilistic modeling.

Generative Process. Let us first consider an individual conditional ordinal quadruple 〈p|i, j, k〉 ∈

N . We associate an perspective p and three objects i, j, and k with a binary-valued random vari-

able cpijk. When cpijk = 1, we generate the quadruple 〈p|i, j, k〉 ∈ N , i.e., p considers j to be more

similar to i than to k. If cpijk = 0, opposing quadruple 〈p|k, j, i〉 ∈ N is generated.

There are two views of relative proximity, which determines the outcome of cpijk. First, there is

the perspective-specific view of an perspective p, based on the projected coordinates on p’s tangent

hyperplane, for which the probability is Pp(c
p
ijk = 1|ypi , y

p
j , y

p
k). Second, there is the global view,

based on coordinates on the shared sphere, for which the probability is Ps(c
p
ijk = 1|yi, yj, yk).

We assume that some quadruples are perspective-specific, generated according to Pp, while other

quadruples are generic, generated according to Ps. The balance between the two is modeled by

parameter δp ∈ [0, 1].

Now we describe the generative process for quadruples in N :

1. For each perspective p ∈ P:

• Draw p’s coordinate: xp ∼ VMF (µP , κP)

105

• Draw p’s parameter δp: δp ∼ U(0, 1)

2. For each object i ∈ O:

• Draw i’s coordinate: yi ∼ VMF (µO, κO)

3. For objects i, j, k ∈ O, i < k, j 6= i, k:

• If a draw from Bernoulli (δp) turns up 1, then: cpijk ∼ Bernoulli
(
Pp(c

p
ijk = 1|ypi , y

p
j , y

p
k)
)

Else: then cpijk ∼ Bernoulli
(
Ps(c

p
ijk = 1|yi, yj, yk)

)
• If cpijk = 1, generate a quadruple instance〈p|i, j, k〉,

Else: generate a quadruple instance〈p|k, j, i〉.

In the above generative process, xp and yi have von Mises-Fisher (vMF) [71] priors, param-

eterized by mean unit vector µ and concentration κ. Higher κ translates to greater concentration

around µ. κ = 0 models the uniform prior. In this work, we assume that δp has a uniform prior.

Perspective-Specific Probability Function. Given the shared spherical representation, and

the intention to maintain each perspective’s embedding on a Euclidean space, a natural choice is

to have the perspective-specific representation lie on the tangent hyperplane of sphere Sd at xp,

defined as: TxpSd = {v ∈ Rd+1 : (xp)
Tv = 0}. We define the perspective-specific representation

for p to be the projection of objects’ coordinates {yi : i ∈ O} onto the tangent hyperplane at xp as

following:

ypi = Projxp(yi) =
[
I − xp(xp)T

]
yi. (6.2)

where I is (d+1)−dimensional identity matrix. Though Projxp(yi) is a (d+1)-dimensional vector,

it still effectively lies on a d-dimensional tangent hyperplane in the (d + 1)-dimensional space. In

Section 6.4, we describe in details the d−dimensional coordinate transformation.

Figure 6.2 illustrates an example of the representations yi, yj, yk of three objects i, j, k (red

points) and xp, xp′ of two perspectives p, p′ (blue points) on the unit sphere. The left tangent hyper-

plane TxpSd corresponds to the representation map of perspective p. On this map, ypj is closer to ypk

106

Figure 6.2: Representations of three objects i, j, k, two perspectives p, p′.

than to ypi through the projection Projxp . The right tangent hyperplane Txp′S
d is the representation

map of perspective p′. There, yp
′

j is closer to yp
′

i than to yp
′

k . These are “conflicting” ordinal rela-

tionships between p and p′, yet they arise from the same spherical coordinates of objects, indicating

the role of perspectives’ tangent hyperplanes in accommodating different similarity perceptions.

There are also quadruples which both p and p′ agree on.

We now express Pp in terms of such projected distances. Let us denote the distance dpij between

two objects i, j on perspective p’s map, i.e., dpij = ||Projxp(yj − yi)||. We express Pp(c
p
ijk =

1|ypi , y
p
j , y

p
k) in terms of difference between dpjk and dpij (Equation 6.3). The smaller is dpij relative

to dpjk, the higher is this probability. α is the scaling factor.

σpijk = Pp(c
p
ijk = 1|ypi , y

p
j , y

p
k) =

1

1 + e−α.(d
p
jk−d

p
ij)

(6.3)

Global Probability Function. We now describe the “global” probability Ps - the likelihood of

107

shared representation perspective p representationperspective representation

perspective ’s quadruples perspective ’s quadruples

Figure 6.3: The probability of observing 〈p|i, j, k〉 is a combination of the perspective-specific
probability σpijk and the global probability σijk.

observing the quadruple 〈p|i, j, k〉 based on the objects’ spherical coordinates. On the unit sphere,

the distance between yi and yj is the geodesic distance [28]: gd(yi, yj) = cos−1(yi
Tyj).

Given yi, yj, yk ∈ Sd, the following relation holds:

gd(yi, yj) < gd(yk, yj)⇔ yi
Tyj > yk

Tyj (6.4)

On one hand, Equation 6.4 implies that the inner product yields the same ordering as the

geodesic distance. On the other hand, inner product computation is more computationally effi-

cient compared to the geodesic distance. Therefore, the global probability is defined as follows:

σijk = Ps(c
p
ijk = 1|yi, yj, yk) =

1

1 + e−α.(yiT yj−ykT yj)
, (6.5)

Objective Function. The likelihood of observing the quadruple 〈p|i, j, k〉 is the normalized

weighted sum of Pp and Ps (Figure 6.3). The formula is described in Equation 6.6 below.

lpijk = δp.σ
p
ijk + (1− δp).σijk (6.6)

108

The model’s parameters are learnt to maximize the joint probability P(N , X, Y |κP , µP , κO, µO)

of the model across the observed quadruples (Equation 6.7), which can be factorized as product of:

P(Np|X, Y) =
∏
〈p|i,j,k〉∈Np l

p
ijk – the likelihood, P(X|κP , µP) and P(Y |κO, µO) - the priors.

arg max
X,Y

P(N , X, Y |κP , µP , κO, µO)

= arg max
X,Y

∏
p∈P

P(Np|X, Y)× P(X|κP , µP)× P(Y |κO, µO) (6.7)

Maximizing the joint probability in Equation 6.7 is equivalent to maximizing its logarithm L

(to simplify the parameters, we tie κP = κO = κ and µP = µO = µ):

L =
∑
p∈P

ln P(Np|X, Y) + ln P(X|κ, µ) + ln P(Y |κ, µ)

∝
∑
p∈P

∑
〈p|i,j,k〉∈Np

ln
(
lpijk
)

+
∑
p∈P

κ · µTxp +
∑
i∈O

κ · µTyi. (6.8)

6.2.4 Parameter Learning

Line Search on Manifold. The learning requires solving an optimization problem on the spherical

manifold. [1] presents the line-search method on a manifoldM. The update formula is: xk+1 =

Rxk(tkηk), - Rxk , pk, and ηk ∈ TxkM are the retraction map at xk, the step size, and the search

direction respectively. Retraction map ensures the update process to be performed on the manifold.

Here, we consider the following map ([17]):

Rx(η) = arg min
y∈Sd

||x+ η − y|| = x+ η

||x+ η||
(6.9)

For parameter learning, we adopt the stochastic gradient descent strategy for functions defined

on a Riemannian manifold [17], which requires the computation of the Riemannian gradient. Ac-

cording to [28], the gradient on the sphere of a differentiable function f : Ω → R (let Ω ∈ Sd be

109

an open set), at x ∈ Ω is defined by (where∇f(x) is the usual gradient of f(x) at x ∈ Ω):

gradf(x) = [I − xxT]∇f(x), (6.10)

Learning Algorithm. Algorithm 6 shows that in each iteration, a quadruple 〈p|i, j, k〉 is ran-

domly selected, and the parameters are updated using the line-search optimization technique on the

unit sphere. Specifically, we first compute the partial derivatives with respect to xp, yi, yj, yk. The

gradients on the spherical surface are computed through the project map Proj(.). Then we update

the model parameters using the retraction map as described earlier. Learning rate ε is decayed over

time. The last update guarantees that δt ∈ [0, 1]. The complexity is linear to the size of N -the set

of all quadruples, which is bounded by O(|P| × |O|3).

Algorithm 6 SCORE
1: Initialize xp for p ∈ P and yi for i ∈ O.
2: While not converged
3: Draw a quadruple 〈p|i, j, k〉 randomly from N .
4: Compute the likelihood:
5: lpijk = δp.σ

p
ijk + (1− δp)σijk.

6: Compute the partial derivatives:
7: ∆z ← ∂L

∂z
for each z ∈ {xp, yi, yj, yk}

8: Update the model parameters:
9: z ← Rz (ε.Projz (∆z)), for z ∈ {xp, yi, yj, yk} ;

10: δp ← δp + ε.
(
σpijk − σijk

)
; δp = arg min

δ∈[0,1]

|δp − δ|;

11: Return {xp}P∈P and {yi}i∈O.

6.3 Experiments

Our objective is primarily to investigate the effectiveness of multiple maps for conditional ordinal

embedding, which is expressed in terms of how well the resulting output embedding coordinates

could preserve the ordering reflected by the quadruples.

110

6.3.1 Experimental Setup

Datasets. We experiment with three datasets mentioned in Chapter 5, which could model varying

similarity perspectives.

• Zoo1 contains 17 attributes of 101 animals (excluding animal name). We model each attribute

as a similarity perspective. For perspective p, we form the quadruple 〈p|i, j, k〉 if i and j have

the same attribute value, which is different from k. There are 3.24× 106 quadruples.

• Congressional Voting Records (or HouseVote)2 contains 435 instances (congressmen) and

16 attributes (voting issues). After excluding all instances with missing values, we get a

fully-observed dataset with 232 instances and 16 attributes. We generate quadruples in the

same way as we do with Zoo dataset. That induces totally 2.4× 107 quadruples.

• Paris Attractions3 contains 237 users organizing 250 Paris attractions into clusters. Con-

sidering each user as an perspective, we induce 3.48 × 105 quadruples, each involves two

attractions i and j that the user puts into the same cluster, and another attraction k in a

different cluster. As in [116], we exclude attractions uninteresting to users.

Comparative Methods. We compare SCORE to several baselines. The disjoint learning

approach learns a distinct map from the quadruples of a perspective. We use two recent ordinal

embedding methods: SOE4 [101] and tSTE5 [105].

Multiview Triplet Embedding (MVTE) [6] divides the collection of quadruples into clusters.

The number of views is set to the number of perspectives, i.e., |P|. Since the associations between

perspectives and object triplets are unknown, we match each view with a ground-truth perspective

using Hungarian maximum bipartite matching algorithm, so as to maximize the accuracy.

Multiview Multidimensional Scaling (MVMDS) [11] performs MDS on multi-view data, learns

1https://archive.ics.uci.edu/ml/datasets/Zoo
2https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
3http://projects.yisongyue.com/collab_cluster/
4http://rpackages.ianhowson.com/cran/loe/
5http://homepage.tudelft.nl/19j49/ste/

111

https://archive.ics.uci.edu/ml/datasets/Zoo
https://archive.ics.uci.edu/ml/datasets/Congressional+Voting+Records
http://projects.yisongyue.com/collab_cluster/
http://rpackages.ianhowson.com/cran/loe/
http://homepage.tudelft.nl/19j49/ste/

the weights of these views, and produces one consensus map. This is akin to learning a single map

by consolidating multiple views. Since MVMDS expects distance matrices, we feed it feature

vectors learnt by SOE from the ordinal quadruples.

For visualization purpose, we set the dimensionality of the embedding space d = 2. We tune the

parameters of all methods for their best performances on the training data. For SCORE, the setting

is κ = 10−3 for Paris Attractions, and 0 for Zoo and HouseVote, vMF mean vector µ = (0, 0, 1),

the learning rate ε = 0.05, and the scaling factor α = 30. For SOE, the scaling factor is 0.1 for all

the datasets. For tSTE, the learning rate and regularization parameter are 2 and 0 respectively for

all datasets. For MVTE, the learning rate is 1 for all datasets. For MVMDS, γ = 5 for all datasets.

Evaluation Measure. The preservation accuracy for an perspective p is the fraction of its

ordinal quadruples Np for which p’s coordinates reflect the correct direction. The fewer the vio-

lated quadruples, the higher is the accuracy. The overall accuracy is the average of perspectives’

preservation accuracies:

1

|P|
∑
p∈P

|〈p|i, j, k〉 ∈ Np : ||ypj − y
p
i || < ||y

p
j − y

p
k||}|

|Np|
, (6.11)

- ypi , y
p
j , y

p
k are p’s embedding coordinates of objects i, j, k.

Since in practice we may not observe all quadruples or even all objects beforehand, we sample

a fraction r (split ratio) of objects for each perspective, then evaluate the coordinates against the

full set of quadruples. For this study, we set r = 0.5, which has a relative balance between the

information that an perspective sees and the information that it could learn from others. We average

the results across 30 random samples.

The running times are reasonable. For the Paris Attractions, including all perspectives, SCORE

takes 5 minutes on a PC with Intel Core i5 3.2 GHz CPU and 12 GB RAM. The learning times for

the Zoo and HouseVote are less than 10 minutes.

112

0.50

0.58

0.65

0.73

0.80

5 10 15

Pr
es

er
va

tio
n

A
cc

ur
ac

y

Number of perspectives

(a) Zoo (overall)

0.50

0.58

0.65

0.73

0.80

4 8 12 16

Pr
es

er
va

tio
n

A
cc

ur
ac

y

Number of perspectives

(b) HouseVote (overall)

0.45

0.54

0.63

0.72

0.81

50 100 150 200

Pr
es

er
va

tio
n

A
cc

ur
ac

y

Number of perspectives

(c) Paris Attractions (overall)

0.50

0.58

0.65

0.73

0.80

5 10 15

Pr
es

er
va

tio
n

A
cc

ur
ac

y

Number of perspectives

(d) Zoo (hidden)

0.50

0.58

0.65

0.73

0.80

4 8 12 16

Pr
es

er
va

tio
n

A
cc

ur
ac

y

Number of perspectives

(e) HouseVote (hidden)

0.45

0.54

0.63

0.72

0.81

50 100 150 200

Pr
es

er
va

tio
n

A
cc

ur
ac

y

Number of perspectives

(f) Paris Attractions (hidden)

Figure 6.4: Overall and hidden preservation accuracy

6.3.2 Comparison to Baselines

We vary the number of perspectives by randomly sampling perspectives. Figure 6.4 shows the

preservation accuracies of all models.

Overall Preservation Accuracy. SCORE shows significantly higher performance than SOE,

tSTE (Figure 6.4(a,b,c)). In the latter, an perspective cannot collaborate with other perspectives,

leading to poor performance on unseen quadruples. This highlights the benefit of collaborative

learning, as it helps perspectives fill in each other’s missing information. MVTE and MVMDS

show even weaker performances. For MVTE, the likely reason is the lack of information about the

associations between perspectives and quadruples. If this information is provided, MVTE reduces

to tSTE, which is showing relatively higher performance than MVTE. For MVMDS, the likely

reason is the consolidation into a single map, which, though learnt from multiple distance matrices,

cannot fit conflicting quadruples.

With more perspectives, SCORE has even more opportunities to find other related perspectives

to collaborate with, resulting in increasing accuracy. SOE and tSTE do not benefit from more per-

113

0.30

0.43

0.55

0.68

0.80

4 8 12 16

A
cc

ur
ac

y

Number of perspectives

(b) HouseVote (hidden)

0.50

0.58

0.65

0.73

0.80

5 10 1510
-N

N
 C

la
ss

ifi
ca

tio
n

A
cc

ur
ac

y

Number of perspectives

(a) Zoo (hidden)

Figure 6.5: 10-NN classification accuracy at r = 0.5.

spectives as each perspective has its own map. MVTE’s accuracies decrease with more perspectives

as it gets more difficult for it to discover clusters that are well-aligned to perspectives. MVMDS

with one map does not benefit much from more perspectives.

Performance on Predicting Hidden Triplets. The earlier accuracies are evaluated for the full

set of quadruples, which is the combination of the observed subset (from the r fraction) and the

hidden subset (the unseen quadruples). To see how well the models generalize to the unseen data,

we now investigate the preservation accuracy measured on the hidden alone (Figure 6.4(d,e,f)).

We observe the same picture as before but with generally lower accuracies than that for full sets

(Figure 6.4(a,b,c)), which are expected as these are unseen quadruples. The reduction is more

dramatic for SOE and tSTE, which tend to overfit the observed, and generalize poorly to the hidden

quadruples. SCORE does commendably well on the hidden set, showing greater robustness in

generalizing to the unseen quadruples.

For an alternative measure of generalization, we test the learnt coordinates as features to clas-

sify the hidden objects by attribute values associated with the perspective. An object is assigned

the majority label among its 10-nearest neighbors. Figure 6.5 shows the 10-NN classification ac-

curacy, averaged across perspectives. Only Zoo and HouseVote have “labels” and are involved

in this experiment. SCORE has better results than the baselines (statistically significant at 0.05)

114

in predicting the labels of unseen instances. Interestingly, MVTE performs better than disjoint

learning baselines in this task. Since quadruples are learned jointly, some quadruples may have

been assigned to clusters correlated with the class labels, though the clusters may not reflect the

perspective-specific view perfectly.

Exploration on the Split Ratio. To better understand the benefits of multi-perspective model-

0.40

0.50

0.60

0.70

0.80

0.2 0.3 0.4 0.5 0.6 0.7

Pr
es

en
ta

tio
n

A
cc

ur
ac

y

Split Ratios

(a) Zoo (17)

0.40

0.50

0.60

0.70

0.80

0.2 0.3 0.4 0.5 0.6 0.7

Pr
es

en
ta

tio
n

A
cc

ur
ac

y

Split Ratios

(b) HouseVote (16)

0.40

0.50

0.60

0.70

0.80

0.2 0.3 0.4 0.5 0.6 0.7

Pr
es

en
ta

tio
n

A
cc

ur
ac

y

Split Ratios

(c) Paris Attractions (237)

Figure 6.6: Overall preservation accuracies at various split ratios.

ing, we shows the accuracies with varying r for the complete set of perspectives in Figure 6.6.

The disjoint learning baselines perform poorly for low value of r. This is expected since

the amount of observed data is insufficient for a single task to learn its own map effectively.

For extremely high r, e.g., 0.7, the disjoint learning baselines tend to do well. For Zoo, Hou-

seVote, and Paris Attractions, r = 0.7 respectively corresponds to approximately 1.1M, 16.1M,

and 155dquadruples in training, which are 34.23%, 34.17%, and 44.42% of all possible quadru-

ples. With sufficiently large data that cover majority of objects, each perspective has more flexi-

bility to specialize, with little risk in missing out information. Also in Figure 6.6, SCORE shows

significantly better performances than MVTE and MVMDS for the same reasons as in previous

comparison.

Importantly, SCORE is robust across values of r. It is the best around 0.2-0.6, and never the

worst. This result has two implications. First, it reiterates the benefit of collaborative approach

when the data is under-sampled, yet sufficient to learn the relatedness and specialization of tasks.

115

Second, in practice it is often unclear whether the data is sufficient. Upon such ambiguity, multi-

perspectives ameliorates the risk of performing badly, while providing reasonable performance.

6.3.3 Perspective Relatedness

Two similar perspectives would be expected to be closer on the hypersphere than two dissimilar

perspectives. For Zoo and HouseVote, each perspective corresponds to an attribute, whose values

effectively define a clustering of objects. We define the attribute-based similarity between two

perspectives as the Normalized Mutual Information or NMI [27] between the two clusterings. We

also define the proximity between two perspectives on the shared hypersphere as their angular

similarity. For each perspective p ∈ P , we measure the Pearson correlation of the NMI scores and

angular similarities between p and other perspectives inP . We observe positive correlations among

the NMI scores and the angular similarities (Figure 6.7). The minimum values for both datasets

are non-negative and the median values are quite positive 0.34 and 0.36 for Zoo and HouseVote

respectively, indicating that SCORE captures perspective relatedness during learning, with similar

perspectives more likely to be closer on the hypersphere.

0.00 0.10 0.20 0.30 0.40 0.50 0.60

Min

Min

Median Max

Median
Max

Zoo (17 perspectives)

HouseVote (16 perspectives)

Pearson Correlation

Figure 6.7: Pearson Correlation of Angular similarities vs. NMIs.

116

6.3.4 Multiple Maps vs. Single Map

To better illustrate the need for multiple maps, we consider a scenario involving three attributes

of a dataset (type, #legs, predator from Zoo, and immigration, education-spending, crime from

HouseVote). We compare SCORE in two modes: multiple maps when we learns three distinct

maps collaboratively and single map when we pool quadruples from the three attributes to learn

one map. Table 6.1 compares the preservation accuracies of the two modes, showing that multiple

maps have significally higher accuracies, indicating its greater capacity for reflecting multiple

perspectives than a single map.

SCORE Zoo HouseVote
Single Map 0.82 0.70

Multiple Maps 0.98 0.89

Table 6.1: Performance of SCORE: multi-maps vs. single-map.

Figure 6.8: Visualization maps for type, #legs, predator (Zoo).

As a visual illustration, Figure 6.8(a, b, c) shows the three maps (corresponding to multiple

maps) concerning animals from Zoo. Each animal is shown as a point, whose color, number, and

shape indicate type, #legs, and predator attributes respectively. Figure 6.8(a) visualizes animals

based on type (color). Animals of the same type (color) flock together, e.g., insects (purple) on

the top left, birds (yellow) on the bottom right. Figure 6.8(b) visualizes animals in terms of #legs.

117

Figure 6.9: Visualizations for three attributes: immigration, education-spending, crime
(HouseVote).

Animals of the same number of legs tend to be found together, e.g., 6 legs on the top left, 2 legs on

the bottom right. Figure 6.8(c) visualizes animals based on whether they are predator (shape). The

binary separation of predators (triangles) on the top right and non-predators (circles) on the lower

left is evident. A single map cannot capture diverse perceptions of similarity. Figure 6.8(d) depicts

the single map mode for the same three attributes. It could only represent separation by predator

(shape), but is unable to represent type or #legs well.

Figure 6.9 provides another example from the HouseVote dataset, visualizing three binary

attributes: immigration, education-spending, and crime. For HouseVote, each object is a congress-

man. Some objects overlap as they may have similar attribute values. We use size, shape, and

color to represent the attribute values of immigration, education-spending, and crime respectively.

According to the sizes, the labels, and the colors in Figure 6.9, instances with same attribute values

are grouped intuitively. For example, Figure 6.9(a) visualizes immigration attribute (represented

by size: small indicates a ‘no’ vote, while large indicates a ’yes’ vote). We see the clear separa-

tion between points of similar size: small shapes on the right, large shapes on the left. Similarly,

Figure 6.9(b) is a visualization for education spending (represented by shape: inverted triangles

for ‘no’ and circles for ’yes’). Triangular objects tend to flock to the left, while circular objects

flock to the right. Finally, in Figure 6.9(c) - a map of the crime vote (represented by color: blue for

118

‘no’ and red for ’yes’). It is evident blues tend to be on the left, while red tend to be on the right.

These are multiple maps defined over the same set of objects, yet reflecting different perceptions

of similarity.

Upon a closer inspection of the data, we uncover further insights. For instance, the HouseVote

data contains the political affiliation of congressmen (Republican or Democrat), which was not

used for learning the embedding maps. Overall, there is a tendency for Democrats to vote ‘no’

on education spending and crime, while Republicans tend to vote ‘yes’ on both counts. On Fig-

ure 6.9(b), most of blue triangles on the left are in fact Democrats, while most of the red circles on

the right are Republicans. Interestingly, there are red triangles on the left, who are likely to be Re-

publicans voting with Democrats, whereas the red triangles on the right are likely to be Democrats

voting with Republicans. Thus the map helps highlight the varying similarities between congress-

men depending on the voting issues. Figure 6.9(d) is produced by SCORE, running on single-map

mode. Again, a single visualization map is not efficient to capture diverse similarity perceptions.

This highlights the need for multiple maps, each for a similarity perspective.

6.3.5 SCORE vs. MP-SIMRANK

Both SCORE and MP-SIMRANK are designed for modelling multiple similarity perspectives and

have shown better performances in the scenarios where each perspective’s data is insufficient and

under-sampled as compared to uniperspective methods.

SCORE and MP-SIMRANK are not directly comparable, since the two frameworks are de-

signed for different purposes. MP-SIMRANK attempts to estimate similarity values, whereas

SCORE estimates similarity rankings. However, for the sake of completeness, we compare the

two models on a same task as in Section 6.3.2: predicting the unseen ordinal quadruples. Specif-

ically, for MP-SIMRANK, we measure how well the learnt similarity scores can predict correctly

the direction of the quadruples. Whereas, for SCORE, we derive such scores based on the Eu-

clidean distances between the object coordinates on each perspective-specific map.

119

Zoo HouseVote Paris Attractions
MP-SimRank 0.71 0.72 0.67

SCORE 0.77 0.74 0.76

Table 6.2: Prediction Accuracies on Unseen Triplets of SCORE and MP-SIMRANK.

Table 6.2 shows the prediction accuracies of the two models for all three datasets. In this

particular task, SCORE shows better performances as compared to MP-SIMRANK in predicting

the unseen quadruples. This is expected since this task may be more aligned to SCORE’s objective.

These results, however, do not imply that SCORE is more effective in modelling multiperspec-

tivity than MP-SIMRANK. A complete answer would require more comprehensive experiments to

evaluate the output of both models on several other downstream tasks.

6.4 Coordinate Transformation

A necessary step is to transform the (d + 1)−dimensional coordinate of objects on p’s tangent

hyperplane, i.e., {Projxp(yi)}i∈O, to their corresponding d−dimensional coordinates, i.e., {ypi }i∈O.

For the purpose of visualizing the embedding for an perspective p on a scatterplot, we describe

how to transform the 3-d coordinates of objects on p’s tangent hyperplaneto their corresponding

2-d coordinates in the following. However, the analysis below is also applicable to d > 2.

Since xp,Projxp(yi),Projxp(yj), Projxp(yk) lie on the tangent hyperplane TxpSd of the task p,

the three vectors are on TxpSd as well:

u = Projxp(yi)− xp; v = Projxp(yj)− xp;w = Projxp(yk)− xp

As illustrated in Figure 6.10, the cross product xp × u is a vector on TxpSd and perpendicular

to xp, u. Let’s denote:

e1 =
u

||u||
, e2 =

xp × u
||xp × u||

.

120

We can see that e1, e2 form a basis of TxpSd (since ||e1|| = ||e2|| = 1, e1
T e2 = 0). From linear

algebra, for each point y ∈ TxpSd, there exists unique ay, by ∈ R such as:

(y − xp) = ay.e1 + by.e2

Consider the following transformation map where ay, by ∈ R are defined as above:

Trp : TxpSd → R2

y 7→ Trp(y) = (ay, by) (6.12)

Figure 6.10: Tranformation of objects’ coordinates from 3-d to 2-d.

Let (aj, bj) and (ak, bk) be the transformation of Projxp(yj) Projxp(yk) respectively:

||Projxp(yj)− Projxp(yk)|| = ||(Projxp(yj)− xp)− (Projxp(yk)− xp)||

= ||v − w|| = ||(aj.e1 + bj.e2)− (ak.e1 + bk.e2)||

= ||(aj − ak).e1 + (bj − bk).e2|| =
√

(aj − ak)2 + (bj − bk)2

= ||Trp(Projxp(yj))− Trp(Projxp(yk))||. (6.13)

Equation 6.13 implies that the L2-norm between points on TxpSd are preserved through the trans-

121

formation map Trp. Therefore, the ordinal relations between points are also preserved through the

transformation. Hence, we express ypi = Trp(Projxp(yi)), for all i ∈ O.

6.5 Discussion

In this work, we formulate the problem of ordinal embedding involving comparisons from mul-

tiple perspectives as conditional ordinal embedding. Our proposed geometric approach seeks to

represent perspectives and objects on a shared hypersphere, as well as on perspective-specific tan-

gent hyperplanes. Experiments on public datasets show that the proposed framework is robust, and

particularly beneficial when there is variance across perspectives yet with insufficient data to learn

each perspective’s map separately, thus collaboration across perspectives is helpful.

122

Chapter 7

Conclusion

7.1 Summary

This thesis considers personalized recommendation problem, whose fundamental entities include

items (e.g., products, movies, etc.) and users (who are consumers). The objective of personalized

recommender systems is to mine from users’ historical feedbacks in order to learn their prefer-

ences, and apply the learnt knowledge to filter out items that are tailored towards users’ tastes.

Personalization can appear in many forms, depending on the characteristics of the items and the

desired experience that the system wants users to have. In this thesis, we explore two such per-

spectives on personalized recommendations: preference learning and similarity learning.

For the first perspective, i.e., preference learning, we focus on the problem of retrieving per-

sonalized recommendations via indexing as a faster alternative to an exhaustive search over all

items. We drill down to the problem of designing recommendation algorithms whose output rep-

resentations natively support sub-linear time retrieval of candidates for recommendation requests.

In Chapters 3 and 4, we respectively describe two frameworks: Collaborative Ordinal Embed-

ding (COE) and Indexable Bayesian Personalized Ranking (INDEXABLE BPR) that are ”retrieval-

friendly”, i.e., the learning output natively supports efficient top preferred recommendation re-

123

trieval. Experiments on real-world datasets show that COE and INDEXABLE BPR outperform

their baselines both in terms of recommendation accuracy and retrieval efficiency. This shows our

approach on redefining the user-item interaction modelling of classic matrix factorization model is

useful in improving the retrieval efficiency of the recommendation process.

For the second perspective, i.e., similarity learning, we focus our attention on effectively mod-

elling multiple similarity perceptions in the data. Towards this goal, we respectively propose two

different approaches in Chapters 5 and 6 that are both multiperspective. One approach adopts

the idea of graph-theoretic similarity measure and proposes a framework MP-SIMRANK that

yields a similarity measure for any pair of objects for a specific perspective. Another approach

is based on multi-perspective ordinal embedding, dealing with the problem of learning multiple

low-dimensional maps, each for one perspective, from a collection of multi-perspective ordinal

comparisons. Experiments on several public datasets with varying similarity perspectives show-

case the utility of multiperspective modelling as compared to the uniperspective baselines.

7.2 Future Work

In this thesis, the two problems of our interest are efficient recommendation retrieval and mul-

tiperspective similarity modelling. Though we proposed several methods towards solving these

problems, we ackowledge that there are still many open problems that worth further investigation,

namely:

• Stochastically Robust Representation for LSH Recommendation Retrieval

From the analysis in Section 4.4, INDEXABLE BPR has shown greater compatibility with

LSH indexing structure as compared to the baselines. However, since LSH is inherently

a stochastic method, performance degeneration caused by randomly-drawn LSH hash func-

tions is inevitable. One interesting direction for further exploration is to factor in the stochas-

ticity of LSH hash functions when learning real-valued user and item latent vectors. The out-

124

put vectors will be more robust to the stochasticity of LSH structure, potentially producing

superior post-LSH-indexing performances as compared to INDEXABLE BPR.

• Scalable Multiperspective Similarity Measurement

Though MP-SIMRANK has shown the utility of multiperspective approaches over conven-

tional uniperspective methods, we are aware of the high computational expenses of this

graph-theoretic framework (as analyzed in Section 5.4). This might hinder the adoption of

multiperspective similarity approaches for real-world systems. As MP-SIMRANK also suf-

fers the inefficiency from the recursive dependency in the computation as SimRank, one

future direction is to investigate earlier works on speeding up SimRank (Section 2.2.2) and

look for potential scaling solutions that can be integrated in the multiperspective formulation

in Equation 5.2.

125

Bibliography

[1] Absil, P.-A.; Mahony, R.; and Sepulchre, R. 2009. Optimization algorithms on matrix mani-
folds. Princeton University Press. 6.2.4

[2] Adomavicius, G., and Kwon, Y. 2015. Multi-criteria recommender systems. In Recommender
Systems Handbook. 1.1.2

[3] Agarwal, S.; Wills, J.; Cayton, L.; Lanckriet, G.; Kriegman, D. J.; and Belongie, S. 2007.
Generalized non-metric multidimensional scaling. In AISTATS. 2.2.2, 3.1, 6.1, 6.2.2

[4] Aggarwal, C. C.; Wolf, J. L.; Wu, K.-L.; and Yu, P. S. 1999. Horting hatches an egg: A new
graph-theoretic approach to collaborative filtering. In Proceedings of the fifth ACM SIGKDD
international conference on Knowledge discovery and data mining, 201–212. ACM. 1.1.1

[5] Aly, M.; Munich, M.; and Perona, P. 2011. Indexing in large scale image collections: Scaling
properties and benchmark. In IEEE Workshop on Applications of Computer Vision (WACV),
418–425. IEEE. 4.3.1

[6] Amid, E., and Ukkonen, A. 2015. Multiview triplet embedding: Learning attributes in multiple
maps. In ICML, 1472–1480. 2.2.2, 6.3.1

[7] Argyriou, A.; Evgeniou, T.; and Pontil, M. 2007. Multi-task feature learning. In NIPS, 41–48.
2.2.2

[8] Bachrach, Y.; Finkelstein, Y.; Gilad-Bachrach, R.; Katzir, L.; Koenigstein, N.; Nice, N.; and
Paquet, U. 2014a. Speeding up the xbox recommender system using a euclidean transformation
for inner-product spaces. In RecSys. 3.3.1

[9] Bachrach, Y.; Finkelstein, Y.; Gilad-Bachrach, R.; Katzir, L.; Koenigstein, N.; Nice, N.; and
Paquet, U. 2014b. Speeding up the xbox recommender system using a euclidean transformation
for inner-product spaces. In Proceedings of the 8th ACM Conference on Recommender systems,
257–264. ACM. 1.1.1, 1.1.1, 4.1, 4.3

[10] Bachrach, Y.; Finkelstein, Y.; Gilad-Bachrach, R.; Katzir, L.; Koenigstein, N.; Nice, N.; and
Paquet, U. 2014c. Speeding up the xbox recommender system using a euclidean transformation
for inner-product spaces. In RecSys, 257–264. 1, 2.1.1

[11] Bai, S.; Bai, X.; Latecki, L. J.; and Tian, Q. 2017. Multidimensional scaling on multiple
input distance matrices. In AAAI, 1281–1287. 6.3.1

[12] Beckmann, N.; Kriegel, H.-P.; Schneider, R.; and Seeger, B. 1990. The R*-tree: An efficient
and robust access method for points and rectangles. In SIGMOD. 3.1

126

[13] Bengio, Y.; Courville, A.; and Vincent, P. 2013. Representation learning: A review and new
perspectives. TPAMI 35(8):1798–1828. 2.2.2

[14] Bentley, J. L. 1975. Multidimensional binary search trees used for associative searching.
Communications of the ACM 18(9):509–517. 1.1.1, 2.1.1

[15] Bhowmik, A.; Liu, N.; Zhong, E.; Bhaskar, B. N.; and Rajan, S. 2016. Geometry aware
mappings for high dimensional sparse factors. In AISTATS. 1.1.1, 2.1.1, 1, 4.3.3

[16] Blei, D. M.; Ng, A. Y.; and Jordan, M. I. 2003. Latent dirichlet allocation. JMLR 3(Jan):993–
1022. 2.2.2

[17] Bonnabel, S. 2013. Stochastic gradient descent on riemannian manifolds. IEEE Transactions
on Automatic Control 58(9):2217–2229. 6.2.4, 6.2.4

[18] Caruana, R. 1997. Multitask learning. Machine Learning 28(1):41–75. 2.2.2

[19] Charikar, M. S. 2002. Similarity estimation techniques from rounding algorithms. In Pro-
ceedings of the thiry-fourth annual ACM symposium on Theory of computing, 380–388. ACM.
4.4

[20] Chechik, G.; Sharma, V.; Shalit, U.; and Bengio, S. 2010. Large scale online learning of
image similarity through ranking. Journal of Machine Learning Research 11(Mar):1109–1135.
2.2.1

[21] Datar, M.; Immorlica, N.; Indyk, P.; and Mirrokni, V. S. 2004. Locality-sensitive hashing
scheme based on p-stable distributions. In Proceedings of the twentieth annual symposium on
Computational geometry, 253–262. ACM. 4.4

[22] der Maaten, L. V., and Hinton, G. 2008. Visualizing data using t-SNE. JMLR 9. 3.1

[23] Desrosiers, C., and Karypis, G. 2011. A comprehensive survey of neighborhood-based
recommendation methods. In Recommender Systems Handbook. 1.1.1

[24] Dorow, B.; Laws, F.; Michelbacher, L.; Scheible, C.; and Utt, J. 2009. A graph-theoretic
algorithm for automatic extension of translation lexicons. In Proceedings of the Workshop on
Geometrical Models of Natural Language Semantics, 91–95. Association for Computational
Linguistics. 2.2.2

[25] Edgar, R. C. 2004. Muscle: a multiple sequence alignment method with reduced time and
space complexity. BMC bioinformatics 5(1):113. 5.1

[26] Ekstrand, M. D.; Riedl, J. T.; and Konstan, J. A. 2011. Collaborative filtering recommender
systems. Foundations and Trends in Human-Computer Interaction 4(2):81–173. 3.3

[27] Estévez, P. A.; Tesmer, M.; Perez, C. A.; and Zurada, J. M. 2009. Normalized mutual
information feature selection. IEEE Transactions on Neural Networks 20(2):189–201. 5.3.3,
6.3.3

[28] Ferreira, O.; Iusem, A.; and Németh, S. 2014. Concepts and techniques of optimization on
the sphere. TOP 22(3):1148–1170. 6.2.3, 6.2.4

[29] Fraccaro, M.; Paquet, U.; and Winther, O. 2016. Indexable probabilistic matrix factorization
for maximum inner product search. In AAAI, 1554–1560. 1.1.1, 2, 2.1.1, 3.3.2, 4.1, 4.2, 4.3,

127

4.3.1, 4.3.2

[30] Geerts, F.; Mannila, H.; and Terzi, E. 2004. Relational link-based ranking. In Proceedings
of the Thirtieth international conference on Very large data bases-Volume 30, 552–563. VLDB
Endowment. 2.2.2

[31] Gilkey, P. B., et al. 1975. The spectral geometry of a riemannian manifold. Journal of
Differential Geometry 10(4):601–618. 6.2.2

[32] Globerson, A.; Chechik, G.; Pereira, F.; and Tishby, N. 2007. Euclidean embedding of
co-occurrence data. JMLR 8:2047–2076. 3.3, 3.3.1

[33] Gomes, R. G.; Welinder, P.; Krause, A.; and Perona, P. 2011. Crowdclustering. In NIPS,
558–566. 2.2.1, 6.1

[34] Guo, R.; Kumar, S.; Choromanski, K.; and Simcha, D. 2016. Quantization based fast inner
product search. In AISTATS, 482–490. 2.1.2

[35] He, R., and McAuley, J. 2016. Vbpr: Visual bayesian personalized ranking from implicit
feedback. In AAAI. 4.1

[36] He, G.; Feng, H.; Li, C.; and Chen, H. 2010. Parallel simrank computation on large graphs
with iterative aggregation. In Proceedings of the 16th ACM SIGKDD international conference
on Knowledge discovery and data mining, 543–552. ACM. 2.2.2

[37] Hu, Y.; Koren, Y.; and Volinsky, C. 2008. Collaborative filtering for implicit feedback
datasets. In ICDM. 3.2.1

[38] Huang, Q.; Ma, G.; Feng, J.; Fang, Q.; and Tung, A. K. H. 2018. Accurate and fast asymmet-
ric locality-sensitive hashing scheme for maximum inner product search. In KDD, 1561–1570.
1

[39] Hughes, T., and Ramage, D. 2007. Lexical semantic relatedness with random graph walks. In
Proceedings of the 2007 joint conference on empirical methods in natural language processing
and computational natural language learning (EMNLP-CoNLL). 2.2.2

[40] Jeh, G., and Widom, J. 2002. Simrank: a measure of structural-context similarity. In Pro-
ceedings of the eighth ACM SIGKDD international conference on Knowledge discovery and
data mining, 538–543. ACM. 1.1.2, 2.2.2, 5.1, 5.2.1, 5.3.1

[41] Ji, J.; Li, J.; Yan, S.; Zhang, B.; and Tian, Q. 2012. Super-bit locality-sensitive hashing. In
Advances in Neural Information Processing Systems, 108–116. 4.4

[42] Jolliffe, I. 2005. Principal Component Analysis. Wiley Online Library. 3.3.1

[43] Keivani, O.; Sinha, K.; and Ram, P. 2018. Improved maximum inner product search with
better theoretical guarantee using randomized partition trees. Machine Learning 1–26. 1

[44] Kendall, M. G. 1948. Rank correlation methods. Griffin. 3.2.1

[45] Khoshneshin, M., and Street, W. N. 2010a. Collaborative filtering via euclidean embedding.
In RecSys. 3.3.1

[46] Khoshneshin, M., and Street, W. N. 2010b. Collaborative filtering via euclidean embedding.
In Proceedings of the fourth ACM conference on Recommender systems, 87–94. ACM. 1.1.1,

128

2, 2.1.1, 4.3

[47] Koenigstein, N.; Ram, P.; and Shavitt, Y. 2012a. Efficient retrieval of recommendations in
a matrix factorization framework. In Proceedings of the 21st ACM international conference on
Information and knowledge management, 535–544. ACM. 1.1.1, 4.1

[48] Koenigstein, N.; Ram, P.; and Shavitt, Y. 2012b. Efficient retrieval of recommendations in a
matrix factorization framework. In CIKM, 535–544. 2.1.1

[49] Koren, Y.; Bell, R.; and Volinsky, C. 2009. Matrix factorization techniques for recommender
systems. Computer 42(8). 1.1.1

[50] Krohn-Grimberghe, A.; Drumond, L.; Freudenthaler, C.; and Schmidt-Thieme, L. 2012.
Multi-relational matrix factorization using bayesian personalized ranking for social network
data. In WSDM, 173–182. ACM. 4.1

[51] Kruskal, J. B. 1964a. Multidimensional scaling by optimizing goodness of fit to a nonmetric
hypothesis. Psychometrika 29(1). 1.1.1

[52] Kruskal, J. B. 1964b. Nonmetric multidimensional scaling: a numerical method. Psychome-
trika 29(2). 3.1

[53] Kusumoto, M.; Maehara, T.; and Kawarabayashi, K.-i. 2014. Scalable similarity search for
simrank. In Proceedings of the 2014 ACM SIGMOD international conference on Management
of data, 325–336. ACM. 2.2.2

[54] Le, D. D., and Lauw, H. W. 2016. Euclidean co-embedding of ordinal data for multi-type
visualization. In SDM, 396–404. 1.1.1, 1.2, 4.3

[55] Le, D. D., and Lauw, H. W. 2017. Indexable bayesian personalized ranking for efficient
top-k recommendation. In Proceedings of the 2017 ACM on Conference on Information and
Knowledge Management, 1389–1398. ACM. 1.2

[56] Le, D. D., and Lauw, H. W. 2018. Multiperspective graph-theoretic similarity measure. In
Proceedings of the 27th ACM International Conference on Information and Knowledge Man-
agement, 1223–1232. ACM. 1.2

[57] Lerche, L., and Jannach, D. 2014. Using graded implicit feedback for bayesian personalized
ranking. In RecSys, 353–356. ACM. 4.1

[58] Li, C.; Han, J.; He, G.; Jin, X.; Sun, Y.; Yu, Y.; and Wu, T. 2010a. Fast computation of
simrank for static and dynamic information networks. In Proceedings of the 13th International
Conference on Extending Database Technology, 465–476. ACM. 2.2.2

[59] Li, P.; Liu, H.; Yu, J. X.; He, J.; and Du, X. 2010b. Fast single-pair simrank computation.
In Proceedings of the 2010 SIAM International Conference on Data Mining, 571–582. SIAM.
2.2.2

[60] Li, H.; Chan, T. N.; Yiu, M. L.; and Mamoulis, N. 2017. Fexipro: Fast and exact inner
product retrieval in recommender systems. In SIGMOD, 835–850. 2.1

[61] Li, Z. 2018. Towards the next generation of multi-criteria recommender systems. In Pro-
ceedings of the 12th ACM Conference on Recommender Systems, RecSys ’18, 553–557. New

129

York, NY, USA: ACM. 1.1.2

[62] Lian, D.; Liu, R.; Ge, Y.; Zheng, K.; Xie, X.; and Cao, L. 2017. Discrete content-aware
matrix factorization. In KDD, 325–334. 2

[63] Liu, X.; He, J.; Deng, C.; and Lang, B. 2014. Collaborative hashing. 2014 IEEE Conference
on Computer Vision and Pattern Recognition 2147–2154. 1

[64] Liu, D. C.; Rogers, S.; Shiau, R.; Kislyuk, D.; Ma, K. C.; Zhong, Z.; Liu, J.; and Jing,
Y. 2017. Related pins at pinterest: The evolution of a real-world recommender system. In
Proceedings of the 26th International Conference on World Wide Web Companion, 583–592.
International World Wide Web Conferences Steering Committee. 1.1

[65] Liu, H.; He, X.; Feng, F.; Nie, L.; Liu, R.; and Zhang, H. 2018. Discrete factorization
machines for fast feature-based recommendation. In IJCAI. 2

[66] Ma, G.; Lu, C.-T.; He, L.; Philip, S. Y.; and Ragin, A. B. 2017. Multi-view graph embedding
with hub detection for brain network analysis. In 2017 IEEE International Conference on Data
Mining (ICDM), 967–972. IEEE. 2.2.2

[67] Maehara, T.; Kusumoto, M.; and Kawarabayashi, K.-i. 2014. Efficient simrank computation
via linearization. arXiv preprint arXiv:1411.7228. 2.2.2

[68] Magdy, W., and Jones, G. J. 2010. Pres: a score metric for evaluating recall-oriented infor-
mation retrieval applications. In Proceedings of the 33rd international ACM SIGIR conference
on Research and development in information retrieval, 611–618. ACM. 5.3.1

[69] Majumder, G. S.; Dwivedi, P.; and Kant, V. 2018. Matrix factorization and regression-
based approach for multi-criteria recommender system. In Satapathy, S. C., and Joshi, A., eds.,
Information and Communication Technology for Intelligent Systems (ICTIS 2017) - Volume 1,
103–110. Cham: Springer International Publishing. 1.1.2

[70] Manning, C. D.; Raghavan, P.; and Schütze, H. 2008. Introduction to information retrieval.
3.1

[71] Mardia, K. V. 1975. Distribution theory for the von Mises-Fisher distribution and its appli-
cation. In A Modern Course on Statistical Distributions in Scientific Work. Springer. 6.2.3

[72] McFee, B., and Lanckriet, G. 2011a. Learning multi-modal similarity. JMLR 12:491–523.
2.2.1

[73] McFee, B., and Lanckriet, G. R. G. 2011b. Large-scale music similarity search with spatial
trees. In ISMIR. 4.3.2

[74] Morozov, S., and Babenko, A. 2018. Non-metric similarity graphs for maximum inner
product search. In Advances in Neural Information Processing Systems, 4722–4731. 2.1.1

[75] Muja, M., and Lowe, D. G. 2009. Fast approximate nearest neighbors with automatic algo-
rithm configuration. In International Conference on Computer Vision Theory and Application
VISSAPP’09), 331–340. INSTICC Press. 3.3.2, 4.3.2

[76] Neyshabur, B., and Srebro, N. 2015a. On symmetric and asymmetric lshs for inner product
search. In ICML, 1926–1934. 1

130

[77] Neyshabur, B., and Srebro, N. 2015b. On symmetric and asymmetric lshs for inner product
search. In ICML. 2.1.1, 4.3.1

[78] Pan, W., and Chen, L. 2013. GBPR: Group preference based bayesian personalized ranking
for one-class collaborative filtering. In IJCAI, volume 13, 2691–2697. 4.1

[79] Parameswaran, S., and Weinberger, K. Q. 2010. Large margin multi-task metric learning. In
NIPS, 1867–1875. 2.2.2

[80] Qu, M.; Tang, J.; Shang, J.; Ren, X.; Zhang, M.; and Han, J. 2017. An attention-based
collaboration framework for multi-view network representation learning. In Proceedings of the
2017 ACM on Conference on Information and Knowledge Management, CIKM ’17, 1767–1776.
New York, NY, USA: ACM. 2.2.1

[81] Radlinski, F., and Joachims, T. 2005. Query chains: learning to rank from implicit feedback.
In KDD. 3.2.1

[82] Ram, P., and Gray, A. G. 2012. Maximum inner-product search using cone trees. In KDD,
931–939. 2.1.1

[83] Rendle, S.; Freudenthaler, C.; Gantner, Z.; and Schmidt-Thieme, L. 2009. BPR: Bayesian
personalized ranking from implicit feedback. In UAI. 2.1.1, 3.2.1, 3.3, 3.3.1, 4.1, 4.2, 4.3

[84] Rothe, S., and Schütze, H. 2014. Cosimrank: A flexible & efficient graph-theoretic similarity
measure. In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), volume 1, 1392–1402. 2.2.2

[85] Roussopoulos, N.; Kelley, S.; and Vincent, F. 1995. Nearest neighbor queries. In SIGMOD.
3.1

[86] Roweis, S. T., and Saul, L. K. 2000. Nonlinear dimensionality reduction by locally linear
embedding. Science 290. 3.1

[87] Salakhutdinov, R., and Mnih, A. 2008. Bayesian probabilistic matrix factorization using
markov chain monte carlo. In Proceedings of the 25th international conference on Machine
learning, 880–887. ACM. 1.1.1, 1.1.1, 4.1

[88] Sarwar, B. M.; Karypis, G.; Konstan, J. A.; Riedl, J.; et al. 2001. Item-based collaborative
filtering recommendation algorithms. Www 1:285–295. 1.1.1

[89] Shepard, R. N. 1962. The analysis of proximities: Multidimensional scaling with an unknown
distance function. i. Psychometrika 27(2). 3.1

[90] Shi, Y.; Han, F.; He, X.; He, X.; Yang, C.; Luo, J.; and Han, J. 2018. mvn2vec: Preservation
and collaboration in multi-view network embedding. arXiv preprint arXiv:1801.06597. 2.2.2

[91] Shrivastava, A., and Li, P. 2014a. Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips). In Advances in Neural Information Processing Systems, 2321–2329.
1.1.1, 4.2

[92] Shrivastava, A., and Li, P. 2014b. Asymmetric lsh (alsh) for sublinear time maximum inner
product search (mips). In NIPS, 2321–2329. 2.1.1, 1

[93] Shrivastava, A., and Li, P. 2015a. Improved asymmetric locality sensitive hashing (alsh) for

131

maximum inner product search (mips). In UAI, 812–821. 1

[94] Shrivastava, A., and Li, P. 2015b. Improved asymmetric locality sensitive hashing (alsh) for
maximum inner product search (mips). In UAI. 4.3.1

[95] Sun, Y.; Han, J.; Yan, X.; Yu, P. S.; and Wu, T. 2011. Pathsim: Meta path-based top-k
similarity search in heterogeneous information networks. Proceedings of the VLDB Endowment
4(11):992–1003. 2.2.2

[96] Sun, Y.; Bui, N.; Hsieh, T.-Y.; and Honavar, V. 2018. Multi-view network embedding via
graph factorization clustering and co-regularized multi-view agreement. In 2018 IEEE Interna-
tional Conference on Data Mining Workshops (ICDMW), 1006–1013. IEEE. 2.2.2

[97] Tamuz, O.; Liu, C.; Shamir, O.; Kalai, A.; and Belongie, S. J. 2011. Adaptively learning the
crowd kernel. In ICML, 673–680. 2.2.2

[98] Teflioudi, C., and Gemulla, R. 2016. Exact and approximate maximum inner product search
with lemp. TODS 42(1):5:1–5:49. 2.1

[99] Teflioudi, C.; Gemulla, R.; and Mykytiuk, O. 2015. Lemp: Fast retrieval of large entries in a
matrix product. In SIGMOD. 2.1

[100] Tenenbaum, J. B.; Silva, V. D.; and Langford, J. C. 2000. A global geometric framework
for nonlinear dimensionality reduction. Science 290. 3.1

[101] Terada, Y., and Luxburg, U. V. 2014. Local ordinal embedding. In ICML. 2.2.2, 3.1, 3.2.3,
6.1, 6.3.1

[102] Tian, B., and Xiao, X. 2016. Sling: A near-optimal index structure for simrank. In SIGMOD
Conference. 2.2.2

[103] Tong, H.; Faloutsos, C.; and Pan, J. Y. 2006. Fast random walk with restart and its applica-
tions. In 6th International Conference on Data Mining, ICDM 2006. 2.2.2

[104] Van der Maaten, L., and Hinton, G. 2012. Visualizing non-metric similarities in multiple
maps. Machine Learning 87(1):33–55. 2.2.2

[105] Van der Maaten, L., and Weinberger, K. 2012. Stochastic triplet embedding. In MLSP, 1–6.
2.2.2, 6.1, 6.3.1

[106] Veit, A.; Belongie, S.; and Karaletsos, T. 2017. Conditional similarity networks. Computer
Vision and Pattern Recognition (CVPR 2017). 2.2.1

[107] Vucetic, S., and Obradovic, Z. 2005. Collaborative filtering using a regression-based ap-
proach. Knowledge and Information Systems 7(1):1–22. 1.1.1

[108] Weimer, M.; Karatzoglou, A.; Le, Q. V.; and Smola, A. J. 2007. Cofi rank - maximum
margin matrix factorization for collaborative ranking. In NIPS. 1.1.1

[109] Weinberger, K. Q., and Saul, L. K. 2009. Distance metric learning for large margin nearest
neighbor classification. JMLR 10:207–244. 2.2.1

[110] Wilber, M. J.; Kwak, I. S.; and Belongie, S. J. 2014. Cost-effective hits for relative similarity
comparisons. In HCOMP. 6.1

132

[111] Wills, J.; Agarwal, S.; Kriegman, D.; and Belongie, S. 2009. Toward a perceptual space for
gloss. TOG 28(4):103. 6.1

[112] Yang, P.; Huang, K.; and Liu, C.-L. 2013. Geometry preserving multi-task metric learning.
Machine Learning 92(1):133–175. 2.2.2

[113] Yang, L. 2007. An overview of distance metric learning. In CVPR. 2.2.1

[114] Yu, H.-F.; Hsieh, C.-J.; Lei, Q.; and Dhillon, I. S. 2017. A greedy approach for budgeted
maximum inner product search. In NIPS, 5453–5462. 2.1.1

[115] Yu, W.; Lin, X.; Zhang, W.; Pei, J.; and McCann, J. A. 2018. Simrank*: effective and
scalable pairwise similarity search based on graph topology. The VLDB Journal 1–26. 2.2.2

[116] Yue, Y.; Wang, C.; El-Arini, K.; and Guestrin, C. 2014. Personalized collaborative cluster-
ing. In WWW, 75–84. 1.1.2, 2.2.1, 2.2.2, 5.1, 5.3.1, 6.1, 6.3.1

[117] Zhang, Z.; Wang, Q.; Ruan, L.; and Si, L. 2014. Preference preserving hashing for efficient
recommendation. In Proceedings of the 37th international ACM SIGIR conference on Research
& development in information retrieval, 183–192. ACM. 1

[118] Zhang, H.; Shen, F.; Liu, W.; He, X.; Luan, H.; and Chua, T.-S. 2016. Discrete collaborative
filtering. In Proc. of SIGIR, volume 16. 2.1, 2.1.2, 2, 2.1.2

[119] Zhang, Y.; Wang, H.; Lian, D.; Tsang, I. W.; Yin, H.; and Yang, G. 2018a. Discrete
ranking-based matrix factorization with self-paced learning. In KDD, 2758–2767. 2

[120] Zhang, Y.; Yin, H.; Huang, Z.; Du, X.; Yang, G.; and Lian, D. 2018b. Discrete deep learning
for fast content-aware recommendation. In WSDM, 717–726. 2

[121] Zhang, S.; Yao, L.; Sun, A.; and Tay, Y. 2019. Deep learning based recommender system:
A survey and new perspectives. ACM Comput. Surv. 52(1):5:1–5:38. 1.1.1

[122] Zhang, Y.; Lian, D.; and Yang, G. 2017. Discrete personalized ranking for fast collaborative
filtering from implicit feedback. In AAAI, 1669–1675. 2

[123] Zhou, K., and Zha, H. 2012. Learning binary codes for collaborative filtering. In KDD,
498–506. 1

133

	Preference learning and similarity learning perspectives on personalized recommendation
	Citation

	List of Figures
	List of Tables
	List of Notations
	1 Introduction
	1.1 Personalized Recommendation
	1.1.1 Preference Learning
	1.1.2 Similarity Learning

	1.2 Thesis Outline and Contributions

	2 Related Work
	2.1 Efficient Retrieval of Personalized Recommendations
	2.1.1 Efficient Candidate Screening
	2.1.2 Efficient Inner Product Computation

	2.2 Modelling Multiple Similarity Perspectives
	2.2.1 Supervised Similarity Learning
	2.2.2 Unsupervised Similarity Learning

	I Preference Learning: Efficient Recommendation Retrieval
	3 Collaborative Ordinal Embedding
	3.1 Introduction
	3.2 Framework
	3.2.1 Problem Formulation
	3.2.2 Generative Model
	3.2.3 Triple Probability Function
	3.2.4 Learning Algorithms

	3.3 Experiments
	3.3.1 Comparison to Embedding Baselines
	3.3.2 Efficient Retrieval of Recommendation with KD-Tree

	3.4 Discussion

	4 Indexable Bayesian Personalized Ranking
	4.1 Introduction
	4.2 Framework
	4.3 Experiments
	4.3.1 Top-k Recommendation with LSH Index
	4.3.2 Top-k Recommendation with KD-Tree Index
	4.3.3 Top-k Recommendation with Inverted Index

	4.4 Analysis on LSH-friendliness of Indexable BPR
	4.5 Discussion

	II Similarity Learning: Modelling Multiple Perspectives
	5 Multiperspective Graph-Theoretic Similarity Measure
	5.1 Introduction
	5.2 Framework
	5.2.1 Pipelined-SimRank
	5.2.2 Joint Solution: MP-SimRank

	5.3 Experiments
	5.3.1 Experimental Settings
	5.3.2 Comparison to Baselines
	5.3.3 Inter-Perspective Similarities
	5.3.4 Illustrative Case Study

	5.4 Efficiency Analysis
	5.4.1 Complexity Analysis
	5.4.2 Heuristic for More Efficient MP-SimRank

	5.5 Discussion

	6 Spherical Conditional Ordinal Embedding
	6.1 Introduction
	6.2 Framework
	6.2.1 Problem Formulation
	6.2.2 Proposed Methodology
	6.2.3 Model
	6.2.4 Parameter Learning

	6.3 Experiments
	6.3.1 Experimental Setup
	6.3.2 Comparison to Baselines
	6.3.3 Perspective Relatedness
	6.3.4 Multiple Maps vs. Single Map
	6.3.5 SCORE vs. MP-SimRank

	6.4 Coordinate Transformation
	6.5 Discussion

	7 Conclusion
	7.1 Summary
	7.2 Future Work

	Bibliography

