
Singapore Management University Singapore Management University 

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University 

Dissertations and Theses Collection (Open 
Access) Dissertations and Theses 

5-2019 

Three essays on nonstationary time-series analysis and network Three essays on nonstationary time-series analysis and network 

dynamics dynamics 

Yubo TAO 
Singapore Management University, yubo.tao.2014@phdecons.smu.edu.sg 

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll 

 Part of the Economic Theory Commons 

Citation Citation 
TAO, Yubo. Three essays on nonstationary time-series analysis and network dynamics. (2019). 
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/223 

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional 
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses 
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management 
University. For more information, please email cherylds@smu.edu.sg. 

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/344?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F223&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg


THREE ESSAYS ON NONSTATIONARY TIME-SERIES

ANALYSIS AND NETWORK DYNAMICS

YUBO TAO

SINGAPORE MANAGEMENT UNIVERSITY

2019



Three Essays on Nonstationary Time-series
Analysis and Network Dynamics

by
Yubo Tao

Submitted to School of Economics in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Economics

Dissertation Committee:

Peter C.B. Phillips (Supervisor/Co-Chair)
Sterling Professor of Economics and Statistics
Yale University
Distinguished Term Professor of Economics
Singapore Management University

Jun Yu (Supervisor/Co-Chair)
Professor of Economics and Professor of Finance
Singapore Management University

Yichong Zhang
Assistant Professor of Economics
Singapore Management University

Anastasios Magdalinos
Professor of Econometrics
University of Southampton

Singapore Management University
2019

Copyright (2019) Yubo Tao



Abstract

My dissertation consists of three essays which contribute new theoretical results to

nonstationary time-series analysis and network dynamics.

Chapter 2 examines the limit properties of information criteria (such as AIC,

BIC, HQIC) for distinguishing between the unit root model and the various kinds

of explosive models. The explosive models include the local-to-unit-root model,

the mildly explosive model and the regular explosive model. Initial conditions with

different order of magnitude are considered. Both the OLS estimator and the indi-

rect inference estimator are studied. It is found that BIC and HQIC, but not AIC,

consistently select the unit root model when data come from the unit root model.

When data come from the local-to-unit-root model, both BIC and HQIC select the

wrong model with probability approaching 1 while AIC has a positive probability

of selecting the right model in the limit. When data come from the regular explosive

model or from the mildly explosive model in the form of 1 + nα/n with α ∈ (0, 1),

all three information criteria consistently select the true model. Indirect inference

estimation can increase or decrease the probability for information criteria to select

the right model asymptotically relative to OLS, depending on the information cri-

teria and the true model. Simulation results confirm our asymptotic results in finite

sample.

Chapter 3 studies a continuous time dynamic system with a random persistence

parameter. The exact discrete time representation is obtained and related to several

discrete time random coefficient models currently in the literature. The model dis-

tinguishes various forms of unstable and explosive behavior according to specific



regions of the parameter space that open up the potential for testing these forms

of extreme behavior. A two-stage approach that employs realized volatility is pro-

posed for the continuous system estimation, asymptotic theory is developed, and

test statistics to identify the different forms of extreme sample path behavior are

proposed. Simulations show that the proposed estimators work well in empirically

realistic settings and that the tests have good size and power properties in discrim-

inating characteristics in the data that differ from typical unit root behavior. The

theory is extended to cover models where the random persistence parameter is en-

dogenously determined. An empirical application based on daily real S&P 500 in-

dex data over 1928-2018 reveals strong evidence against parameter constancy over

the whole sample period leading to a long duration of what the model characterizes

as extreme behavior in real stock prices.

Chapter 4 develops a dynamic covariate-assisted spectral clustering method to

uniformly estimate the latent group membership of cryptocurrencies consistently.

We show that return inter-predictability and crypto characteristics, including hash-

ing algorithms and proof types, jointly determine the crypto market segmentation.

Based on this classification result, it is natural to employ eigenvector centrality to

identify a cryptocurrency’s idiosyncratic risk. An asset pricing analysis finds that a

cross-sectional portfolio with a higher centrality earns a higher risk premium. Fur-

ther tests confirm that centrality serves as a risk factor well and delivers valuable

information content on cryptocurrency markets.
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Chapter 1 Introduction

Nonstationary time-series and network data are most common data structures that

practitioners come across in the real world and have attracted constant attentions

from researcher in the past decade. This dissertation comprises three papers that

solves three different problems in nonstationary times-series and network analysis.

In the first two essays, we focus on the time-series data and study the model

selection and estimation problems for near-explosive time-series. Specifically, in

Chapter 2, co-authored with Jun Yu1, we study the model selection problem for

time-series exhibit explosive or near-explosive feature. We develop an asymptotic

theory for distinguishing explosive models with the unit root model using informa-

tion criteria. Both OLS estimator and indirect inference estimator are studied in all

three types of explosive models. We find that information criteria may consistently

choose the unit root model under cases where the autoregressive coefficient depends

on the sample size. Moreover, we prove that the validity of using information cri-

teria for explosive model selection against unit root depends crucially on both the

speed of auto-regressive coefficient converging to unity and the speed of informa-

tion criteria specific penalty converging to zero as sample size goes to infinity.

In Chapter 3, co-authored with Peter Phillips2 and Jun Yu, we study the esti-

mation and inference problem in a continuous time dynamic system with a random

persistence parameter proposed by Föllmer and Schweizer (1993). The model dis-

tinguishes various forms of unstable and explosive behaviour according to specific

regions of the parameter space that open up the potential for testing these forms of

1School of Economics, Singapore Management University. Email: yujun@smu.edu.sg.
2Cowles Foundation for Research in Economics, Yale University. Email: pe-

ter.phillips@yale.edu.
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extreme behaviour. We employ a two-stage realized volatility approach proposed

by Phillips and Yu (2009) to estimate the model and construct test statistics to iden-

tify the different forms of extreme sample path behaviour. An empirical application

based on daily real S&P 500 index data over 1964-2015 reveals strong evidence

against parameter constancy after early 1980, which strengthens after July 1997,

leading to a long duration of what the model characterizes as extreme behaviour in

real stock prices.

In the last essay, my focus turns to analyzing network data and seeking its useful-

ness in financial application. In Chapter 4, co-authored with Li Guo3 and Wolfgang

Härdle4, we develop a dynamic covariate-assisted spectral clustering method to pro-

vide uniformly consistent estimates of the latent group membership in a dynamic

network setting. By constructing a dynamic network structure with cryptocurren-

cies’ return inter-predictability relationship and their characteristics, we classify the

cryptocurrencies into 4 groups over time. Based on this classification result, we

employ eigenvector centrality to identify a cryptocurrency’s idiosyncratic risk. The

asset pricing analysis finds that a cross-sectional portfolio with a higher centrality

earns a higher risk premium. Further tests confirm that centrality serves as a risk

factor well and delivers valuable information content on cryptocurrency markets.

3Lee Kong Chian School of Business, Singapore Management University. Email:
li.guo.2014@pbs.smu.edu.sg.

4School of Business and Economics, Humboldt-Universitt zu Berlin. Email: haerdle@hu-
berlin.de.
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Chapter 2 Model Selection for Explosive Mod-

els

2.1 Introduction

Information criteria have found a wide range of practical applications in empirical

work. Examples include choosing explanatory variables in regression models and

selecting lag lengths in time series models. Frequently used information criteria are

AIC of Akaike (1969, 1974), BIC of Schwarz (1978), HQIC of Hannan and Quinn

(1979). A major nice feature in these information criteria is that the penalty term is

trivial to compute and hence the implementation of them is straightforward and can

be made automatic.

With a growing interest in nonstationarity in time series analysis, researchers

have examined the properties of information criteria in the context of nonstation-

ary models with the unit root behavior. An important form of nonstationarity in

time series involves explosive roots. Recent global financial crisis has motivated re-

searchers to study explosive behavior in economic and financial time series; see, for

example, Phillips and Yu (2011), Phillips et al. (2011) and Phillips et al. (2015a,b).

In this paper, we study the limit properties of information criteria for distinguish-

ing between the unit root model and the explosive models. The information criteria

considered in this paper have a general form and include AIC, BIC and HQIC as the

special cases. The impact of the initial condition on the limit properties is examined

by allowing for an initial condition of three different orders of magnitude. More-

over, both the OLS estimator and the indirect inference estimator are studied when

5



investigating the limit properties of information criteria. The motivation for the use

of indirect inference estimator comes from the existence of finite sample bias in the

OLS estimator and the ability that the indirect inference method can reduce the bias.

It is found that information criteria consistently choose the unit root model

against the explosive alternatives when data comes from the unit root model. Sec-

ond, we prove that the probability for information criteria to correctly select the

explosive model models against the unit root model depends crucially on both the

degree of explosiveness and the size of the penalty term in information criteria. Fi-

nally and surprisingly, we show that indirect inference estimation can increase or

decrease the probability for information criteria to select the right model asymptot-

ically relative to OLS, depending on the information criteria and the true model.

The rest of this paper is organized as follows. Section 2.2 introduces the models

and information criteria, and briefly reviews the literature. Section 2.3 gives the

limit properties of information criteria for distinguishing models with an explosive

root from the unit root model when the OLS estimator is used. Section 2.4 gives

the limit properties of information criteria when the indirect inference estimator is

used. Section 2.5 provides Monte Carlo evidence to support the theoretical results.

Section 2.6 concludes. All the detailed proofs are provided in the appendix. To

compress notation, we denote
∫ 1

0
BdB and

∫ 1

0
B2 in short for

∫ 1

0
B(r)dB(r) and∫ 1

0
B(r)2dr respectively throughout the paper, and⇒ denotes weak convergence.

2.2 Models, Information Criteria and A Literature

Review

The model considered in the present paper is of the form:

Xt = ρnXt−1 + ut, t = 1, · · · , n, (2.2.1)

6



where ut
iid∼ (0, σ2) and the model is initialized at t = 0 with some X0. The autore-

gressive (AR) coefficient ρn is the crucial parameter that determines the dynamic

behavior of Xt. When ρn = ρ and |ρ| < 1, Xt is stationary. When ρn = 1, Xt

has a unit root (UR hereafter). When ρn = 1 − cn/n = 1 − c/n for c > 0, Xt

is near-stationary and has a root that is local-to-unity (LTUS hereafter) (Phillips,

1987b; Chan and Wei, 1987). When ρn = ρ and |ρ| > 1, Xt has an explosive root

(EX hereafter). When ρn = 1 + cn/n = 1 + c/n for c > 0, Xt is near-explosive

and also has a root that is local-to-unity (LTUE hereafter). When ρn = 1 − cn/n

for cn →∞ but cn/n↘ 0, the root represents moderate deviations from unity and

Xt is near-stationary (Phillips and Magdalinos, 2007). When ρn = 1 + cn/n for

cn →∞ but cn/n↘ 0, Xt is mildly explosive (hereafter ME).

The asymptotic properties of the OLS estimator of the AR coefficient in the sta-

tionary AR(1) model is well known. The rate of convergence is
√
n and the limiting

distribution is Gaussian. Phillips (1987a) provided the limiting theory for the OLS

estimator in the UR model and the rate of convergence is n. Phillips (1987b) and

Chan and Wei (1987) established the asymptotic theory for the LTUS and LTUE

models. The asymptotic theory is similar to that in the UR model and the rate of

convergence is also n. In the cases of UR and LTU, ut can be weakly dependent

stationary. Anderson (1959) studied the limiting distribution of the OLS estimator

in the EX model under the condition that ut
iid∼ N (0, σ2) and X0 = 0. The limiting

distribution is Cauchy and the rate of convergence is ρn. However, no invariance

principle applies. Assuming X0 = op(
√
n/cn), Phillips and Magdalinos (2007)

developed the asymptotic theory for the model with ρn = 1 − cn/n for cn → ∞

but cn/n ↘ 0 and showed that the asymptotic distribution is invariant to the error

distribution. The rate of convergence is n/
√
cn. If cn = nα with α ∈ (0, 1), this

rate of convergence bridges that of UR/LTU models and that of the stationary pro-

cess. Phillips and Magdalinos (2007) also developed the asymptotic theory for the

ME model. The rate of convergence is nρnn/cn. The limiting distribution is Cauchy

which is the same as in the EX model. Interestingly, in the ME case, the asymptotic

7



theory is independent of the initial condition as long as X0 = op(
√
n/cn).

It is known that the OLS estimator of ρn is biased downward when ρn = 1 or

when ρn is in the vicinity of unity. In this case, the indirect inference estimation is

effective in reducing the bias. Phillips (2012) derives the asymptotic theory of the

indirect inference estimator when the model is UR or LTU and ut
iid∼ N (0, σ2). The

rate of convergence remains unchanged while the limiting distribution is different

from that of the OLS estimator.

Information criteria for model selection have been proposed by Akaike (1969,

1974), Schwarz (1978), Hannan and Quinn (1979), among many others. The gen-

eral form of these criteria is

ICk = log σ̂2
k +

kpn
n
,

where k is the number of parameters to be estimated, σ̂2
k is the estimated σ2 when

k parameters are estimated. In general, ICk trades off the term that measures the

goodness-of-fit (i.e. log σ̂2
k) and the penalty term that measures the complexity of

the model (i.e. kpn/n). Coefficient pn = 2, log n, 2 log log n corresponds to AIC

of Akaike (1974), BIC of Schwarz (1978) and HQIC of Hannan and Quinn (1979).

Other forms of pn are possible.

In the time series literature, information criteria have been widely used to select

the lag length both in the family of stationary models and in the family of nonsta-

tionary models; see for example, Ng and Perron (1995) and Ploberger and Phillips

(2003). The information criteria can also be used to evaluate whether ρn = 1 (i.e.

k = 0) or ρn 6= 1 (i.e. k = 1) in Model (2.2.1). For example, Phillips (2008)

obtained limit properties of ICk for distinguishing between the unit root model and

the stationary model. Phillips and Lee (2015) show that BIC can successfully dis-

tinguish the UR model from the ME model. This is a surprising result as it is well

known that BIC cannot consistently distinguish between the UR model and the LTU

model; see Ploberger and Phillips (2003).

In this paper we focus our attention to distinguishability between the unit root

8



model and the three explosive models (i.e., LTUE, ME and EX) after the candidate

models are estimated by OLS or by the indirect inference method. As a result, we

make contributions in two strands of literature, explosive time series and indirect

inference.

To visually understand the difference between the UR model, the LTU model

and the ME model, we simulate a sample path of different length (n = 100, 200, 500, 1000)

with y0 = 0, based on the same realizations of the error process, iid N (0, 1), from

the following four models, ρn = 1 (UR), ρn = 1 + 1/n (LTUE), ρn = 1 + n0.1/n

(ME1), and ρn = 1 + n0.5/n (ME2). Figures 1-3 give the time series plot of UR

against LTU, UR against ME1, UR against ME2, respectively. It can be seen from

Figure 1 that it is very difficult to distinguish between the UR process and the LTU

process, even when the sample size is as large as 1,000. When the sample size in-

creases, the gap between the UR process and the two ME processes becomes larger

and larger, as apparent in Figure 2 and more so in Figure 3.
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Figure 2.1: A realization of the UR model and the LTU model with ρn = 1 + 1/n.

2.3 Limit Properties Based on the OLS Estimator

When the data generating process (DGP) is the UR model, since ρn = 1, we set

the parameter count to k = 0. For the LTU model, the ME model and the EX

9
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Figure 2.2: A realization of the UR model and the ME process with ρn = 1+n0.1/n
(ME1).
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Figure 2.3: A realization of the UR model and the ME model with ρn = 1 + n0.5/n
(ME2).
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model, we need to estimate the AR coefficient and hence set the parameter count

to k = 1. Throughout the paper we denote ρ̂ the OLS estimator of ρ. k̂IC = 0 or

1 means the information criterion of the UR model is smaller or larger than that of

the competing model when ρ is estimated by OLS. We aim to find the limit of the

following probabilities:

lim
n→∞

P
{
k̂IC = 0|k = 0

}
; (2.3.1)

lim
n→∞

P
{
k̂IC = 1|k = 0

}
; (2.3.2)

lim
n→∞

P
{
k̂IC = 0|k = 1

}
; (2.3.3)

lim
n→∞

P
{
k̂IC = 1|k = 1

}
. (2.3.4)

As shown in Phillips and Magdalinos (2009), the unit root asymptotic distribu-

tion is sensitive to initial conditions in the distant past. To understand how the initial

condition affects the property of k̂IC , we follow Phillips and Magdalinos (2009) by

assuming alternative initial conditions.

Assumption 2.3.1 (IN) The initial condition has the form

X0(n) =
κn∑
j=0

u−j, (2.3.5)

where κn is a sequence of integers satisfying κn →∞ and

κn
n
→ τ ∈ [0,∞] , as n→∞. (2.3.6)

The following cases are distinguished:

(i) If τ = 0, X0(n) is said to be a recent past initialization.

(ii) If τ ∈ (0,∞), X0(n) is said to be a distant past initialization.

(iii) If τ =∞, X0(n) is said to be an infinite past initialization.

Theorem 2.3.1 Under Assumption 2.3.1 (i) or (ii) or (iii), we have
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(1) when pn →∞ and pn/n→ 0 as n→∞,

lim
n→∞

P
{
k̂IC = 0|k = 0

}
= lim

n→∞
P {IC0 − IC1 ≤ 0} = 1,

lim
n→∞

P
{
k̂IC = 1|k = 0

}
= lim

n→∞
P {IC0 − IC1 > 0} = 0.

(2) when pn = 2, the asymptotic distribution under the AIC criterion is

lim
n→∞

P
{
k̂AIC = 0|k = 0

}
= lim

n→∞
P {AIC0 − AIC1 ≤ 0} = P

(
ξ2 < 2

)
,

lim
n→∞

P
{
k̂AIC = 1|k = 0

}
= lim

n→∞
P {AIC0 − AIC1 > 0} = 1− P

(
ξ2 < 2

)
.

where

ξ2 =



(∫ 1

0
BdB

)2

∫ 1

0
B2

, if τ = 0(∫ 1

0
BτdB

)2

∫ 1

0
B2
τ

, if τ ∈ (0,∞)

B(1)2, if τ =∞

,

with B(s) being a Brownian motion, and

Bτ (s) = B(s) +
√
τB0(1),

with B0(s) being an independent Brownian motion.

Remark 2.3.1 Theorem 2.3.1 is the same as Theorem 1 in Phillips (2008) for dis-

tinguishing between the UR model and the stationary model. The condition that

pn → ∞ and pn/n → 0 covers BIC and HQIC and hence, both BIC and HQIC

can consistently select the UR model. The AIC criterion is inconsistent and its

asymptotic distribution depends on ξ2, the squared unit root t-statistic for the OLS

estimator.

Remark 2.3.2 The validity of Theorem 2.3.1 does not require the iid assumption

for the error term ut. If we follow Phillips (2008) by denoting F (L) =
∑∞

j=0 FjL
j ,
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with F0 = 1 and F (1) 6= 0, and letting us have Wold representation

us = F (L)εs =
∞∑
j=0

Fjεs−j , with
∞∑
j=0

j1/2 |Fj| <∞, (2.3.7)

where εt
iid∼ (0, σ2

ε), the results in Theorem 2.3.1 continue to hold. However, both

B0 and ξ2 need to be modified to accommodate the dependence in ut as in Phillips

(2008).

Theorem 2.3.2 Let Assumption 2.3.1 (i) or (ii) holds. Assume the true DGP is the

LTUE model.

(1) When pn →∞ and pn/n→ 0 as n→∞,

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) > 0

}
= 1,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) ≤ 0

}
= 0.

(2) When pn = 2, the asymptotic distribution of the AIC criterion is

lim
n→∞

P
{
k̂AIC = 0|k = 1

}
= lim

n→∞
P {n (AIC1 − AIC0) > 0} = 1− P

(
ζ2 > 2

)
,

lim
n→∞

P
{
k̂AIC = 1|k = 1

}
= lim

n→∞
P {n (AIC1 − AIC0) ≤ 0} = P

(
ζ2 > 2

)
,

where

ζ2 =

(∫ 1

0
JcdB

)2

∫ 1

0
J2
c

+ 2c

∫ 1

0

JcdB + c2

∫ 1

0

J2
c ,

with

Jc(r) =

∫ r

0

exp {c(r − s)} dB(s).

Remark 2.3.3 Theorem 2.3.2 shows that all the information criteria are incon-

sistent in distinguishing between the LTUE model and the UR models when data

comes from the LTUE model. AIC selects the wrong model with probability go-

ing to 1 − P (ζ2 > 2), which depends on the localization constant c. This problem
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worsens for BIC and HQIC as the probability of selecting the wrong model goes to

one. Note that BIC is well known to be blind to local alternatives; see, for example,

Ploberger and Phillips (2003).

Theorem 2.3.3 Let Assumption 2.3.1 (i) or (ii) holds. Assume the true DGP is the

ME model.

(1) When lim
n→∞

pn
ρ2n
n

= 0,

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) > 0

}
= 0,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) ≤ 0

}
= 1.

(2) When lim
n→∞

pn
ρ2n
n

= π ∈ (0,+∞),

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) > 0

}
= P

(
χ2(1) < 4π

)
,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) ≤ 0

}
= 1− P

(
χ2(1) < 4π

)
.

(3) When lim
n→∞

pn
ρ2n
n

→ +∞,

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) > 0

}
= 1,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) ≤ 0

}
= 0.

Remark 2.3.4 Theorem 2.3.3 shows that the limit probability of selecting the cor-

rect model by information criteria under the ME model depends critically on two

parameters, cn, pn. As expected, the larger cn, the further the model away from

the UR model and the higher probability for the information criteria to select the

correct model. Interestingly, the smaller pn, the higher probability for the informa-

tion criteria to select the correct model. From Phillips and Magdalinos (2009), we

know ρ−nn = o(c−1
n ) and hence ρnn/cn → +∞. In the special case where cn = nα,

14



for α ∈ (0, 1), lim
n→∞

pn/ρ
2n
n = 0 no matter whether pn = 2 or log n or 2 log log n.

In this case, all the well-known information criteria can consistently select the true

model.

Theorem 2.3.4 Let Assumption 2.3.1 (i) holds. Assume the true DGP is the EX

model.

(1) When lim
n→∞

pn
ρ2n

= 0,

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) > 0

}
= 0,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) ≤ 0

}
= 1.

(2) When lim
n→∞

pn
ρ2n

= π ∈ (0,+∞),

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) > 0

}
= P

(
χ2(1) < (1 + ρ)2π

)
,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) ≤ 0

}
= 1− P

(
χ2(1) < (1 + ρ)2π

)
.

(3) When lim
n→∞

pn
ρ2n
→ +∞,

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) > 0

}
= 1,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) ≤ 0

}
= 0.

Remark 2.3.5 Theorem 2.3.4 shows that the limit probability of selecting the cor-

rect model by information criteria under the EX model depends also critically on

two parameters, ρ, pn. As expected, the larger ρ, the higher probability for the

information criteria to select the correct model. Interestingly, the smaller pn, the

higher probability for the information criteria to select the correct model. If pn = 2

or log n or 2 log log n, lim
n→∞

pn/ρ
2n = 0 and hence case (1) applies, suggesting that

all the well-known information criteria can consistently select the true model.
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Results in Theorem 2.3.3 can be extended to cover the LTUE model and the

ME model with weakly dependent errors. The following proposition establishes the

results for the ME model.

Proposition 2.3.1 Let Assumption 2.3.1 (i) or (ii) and the assumption specified in

Equation (2.3.7) hold. Assume the true DGP is the ME model.

(1) When lim
n→∞

pn
ρ2n
n

= 0,

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) > 0

}
= 0,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) ≤ 0

}
= 1.

(2) When lim
n→∞

pn
ρ2n
n

= π ∈ (0,+∞),

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) > 0

}
= P

(
χ2(1) <

4π

ω2

)
,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) ≤ 0

}
= 1− P

(
χ2(1) <

4π

ω2

)
.

where ω2 =
(∑∞

j=0 Fj

)2

.

(3) When
pn
ρ2n
n

→ +∞,

lim
n→∞

P
{
k̂IC = 0|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) > 0

}
= 1,

lim
n→∞

P
{
k̂IC = 1|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) ≤ 0

}
= 0.

2.4 Limit Properties Based on the Indirect Inference

Estimator

The OLS estimator of ρn in Model (2.2.1) is known to be biased and the bias is

acute when ρn is close to unity. To reduce the bias, the indirect inference method
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of Smith (1993) and Gourieroux et al. (1993) can be used if Model (2.2.1) is fully

specified. Phillips (2012) derives the asymptotic theory of the indirect inference

estimator when the model is UR or LTU and ut
iid∼ N (0, σ2). Throughout the paper

we denote ρ̆ the indirect inference estimator of ρ. Let h(c) = c + g(c) and g(c) =

g−(c)1{c≤0} + g+(c)1{c>0} with

g−(c) =− 3

4

∫ ∞
0

e−
v
4 k−(v; c)1/2dv +

1

4

∫ ∞
0

e−
v
4 k−(v; c)3/2dv

− e2c

8

∫ ∞
0

e−
5v
4 k−(v; c)3/2vdv,

g+(c) =
3

4

∫ ∞
0

e
w
4 k+(w; c)1/2dw − 1

4

∫ ∞
0

e
w
4 k+(w; c)3/2dw

− e2c

8

∫ ∞
0

e
5w
4 k+(w; c)3/2wdw,

k−(v; c) =
2v − 4c

v + e2cve−v − 4c
,

k+(w; c) =
2w + 4c

w + e2cwew + 4c
.

Phillips (2012) shows that under the UR model,

n (ρ̆− 1)⇒ h−1

(∫ 1

0

BdB/

∫ 1

0

B2

)
as n→ +∞,

and under the LTUE model,

n (ρ̆− ρn)⇒ h−1

(∫ 1

0

JcdB/

∫ 1

0

J2
c + c

)
− c as n→ +∞.

Let k̆IC = 0 or 1 mean the information criterion of the UR model is smaller or

larger than that of the competing model when the model is estimated by the indirect
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inference method. We aim to find is the limit of the following probabilities:

lim
n→∞

P
{
k̆IC = 0|k = 1

}
; (2.4.1)

lim
n→∞

P
{
k̆IC = 1|k = 1

}
; (2.4.2)

lim
n→∞

P
{
k̆IC = 0|k = 0

}
; (2.4.3)

lim
n→∞

P
{
k̆IC = 1|k = 0

}
. (2.4.4)

Theorem 2.4.1 Under Assumption 2.3.1(i) or (ii) or (iii), we have

(1) when pn →∞ and pn/n→ 0 as n→∞,

lim
n→∞

P
{
k̆IC = 0|k = 0

}
= lim

n→∞
P {IC0 − IC1 ≤ 0} = 1,

lim
n→∞

P
{
k̆IC = 1|k = 0

}
= lim

n→∞
P {IC0 − IC1 > 0} = 0;

(2) when pn = 2, the asymptotic distribution under the AIC criterion is

lim
n→∞

P
{
k̆AIC = 0|k = 0

}
= P

(
ς2 < 2

)
,

lim
n→∞

P
{
k̆AIC = 1|k = 0

}
= 1− P

(
ς2 < 2

)
,

where

ς2 =



∫ 1

0
B2 · h−1

(∫ 1

0
BdB∫ 1

0
B2

)2
− 2

∫ 1

0
BdB · h−1

(∫ 1

0
BdB∫ 1

0
B2

)
, if τ = 0,

∫ 1

0
B2
τ · h−1

(∫ 1

0
BτdB∫ 1

0
B2
τ

)2
− 2

∫ 1

0
BτdB · h−1

(∫ 1

0
BτdB∫ 1

0
B2
τ

)
, if τ ∈ (0,∞),

h−1 (C)2B2
0(1)− 2h−1 (C)B(1)B0(1), if τ =∞,

with C being a standard Cauchy variate.

Remark 2.4.1 According to Theorem 2.4.1, as long as pn → ∞ and pn/n →

0, information criteria based on the indirect inference estimator is consistent in
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selecting the UR model. Hence, BIC and HQIC based on the indirect inference

estimator can consistently select the UR model. Like the AIC criterion that is based

on the OLS estimator, the AIC criterion based on the indirect inference estimator

continues to be inconsistent. However, its asymptotic distribution depends on ς2,

the squared unit root t-statistic for the indirect inference estimator.

Remark 2.4.2 As shown in Phillips (2012), the squared unit root t-statistic for the

indirect inference estimator has a smaller variance than that of the squared unit

root t-statistic for the OLS estimator. Consequently, P (ς2 < 2) > P (ξ2 < 2), sug-

gesting that AIC based on the indirect inference estimator can select the true model

(i.e. the UR model) with a larger probability than that based on the OLS estimator.

Theorem 2.4.2 Let Assumption 2.3.1 (i) or (ii) holds. Assume the true DGP is the

LTUE model.

(1) When pn →∞ and pn/n→ 0 as n→∞,

lim
n→∞

P
{
k̆IC = 0|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) > 0

}
= 1,

lim
n→∞

P
{
k̆IC = 1|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) ≤ 0

}
= 0.

(2) When pn = 2, the asymptotic distribution under the AIC criterion is

lim
n→∞

P
{
k̆AIC = 0|k = 1

}
= lim

n→∞
P {n (AIC1 − AIC0) > 0} = 1− P

(
ϑ2 > 2

)
,

lim
n→∞

P
{
k̆AIC = 1|k = 1

}
= lim

n→∞
P {n (AIC1 − AIC0) ≤ 0} = P

(
ϑ2 > 2

)
,

where

ϑ2 ≡ 2h−1

(∫ 1

0
JcdB∫ 1

0
J2
c

+ c

)(∫ 1

0

JcdB + c

∫ 1

0

J2
c

)
−h−1

(∫ 1

0
JcdB∫ 1

0
J2
c

+ c

)2 ∫ 1

0

J2
c .

Remark 2.4.3 Theorem 2.4.2 shows that all the information criteria continue to be

inconsistent in distinguishing between the LTUE model and the UR models when
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data come from the LTUE model even when the indirect inference estimation is

employed. AIC selects the wrong model with probability going to 1 − P (ϑ2 > 2).

Since the variance of ζ2 is bigger than that of ϑ2, the tail probability of ζ2 is larger

than that of ϑ2, suggesting that AIC based on OLS selects the true model (i.e. LTUE

model) with a greater probability than AIC based on the indirect inference estimator.

This is a rather surprising result and suggests that the superiority in estimation does

not necessarily translate to the superiority in model selection.

Theorem 2.4.3 Let Assumption 2.3.1 (i) or (ii) holds. Assume the true DGP is the

ME model.

(1) When lim
n→∞

pn
ρ2n
n

= 0,

lim
n→∞

P
{
k̆IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) > 0

}
= 0,

lim
n→∞

P
{
k̆IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) ≤ 0

}
= 1.

(2) When lim
n→∞

pn
ρ2n
n

= π ∈ (0,+∞),

lim
n→∞

P
{
k̆IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) > 0

}
= P

(
χ2(1) < 4π

)
,

lim
n→∞

P
{
k̆IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
n

(IC1 − IC0) ≤ 0

}
= 1− P

(
χ2(1) < 4π

)
.

(3) When
pn
ρ2n
n

→ +∞,

lim
n→∞

P
{
k̆IC = 0|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) > 0

}
= 1,

lim
n→∞

P
{
k̆IC = 1|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) ≤ 0

}
= 0.

Remark 2.4.4 The results in Theorem 2.4.3 are the same as those in Theorem 2.3.3,

suggesting all the well-known information criteria can consistently select the true

model (i.e. ME model) when cn = nα, for α ∈ (0, 1).

20



Theorem 2.4.4 Let Assumption 2.3.1 (i) holds. Assume the true DGP is the EX

model.

(1) When lim
n→∞

pn
ρ2n

= 0,

lim
n→∞

P
{
k̆IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) > 0

}
= 0,

lim
n→∞

P
{
k̆IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) ≤ 0

}
= 1.

(2) When lim
n→∞

pn
ρ2n

= π ∈ (0,+∞),

lim
n→∞

P
{
k̆IC = 0|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) > 0

}
= P

(
χ2(1) < (1 + ρ)2π

)
,

lim
n→∞

P
{
k̆IC = 1|k = 1

}
= lim

n→∞
P

{
n

ρ2n
(IC1 − IC0) ≤ 0

}
= 1− P

(
χ2(1) < (1 + ρ)2π

)
.

(3) When lim
n→∞

pn
ρ2n
→ +∞,

lim
n→∞

P
{
k̆IC = 0|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) > 0

}
= 1,

lim
n→∞

P
{
k̆IC = 1|k = 1

}
= lim

n→∞
P

{
n

pn
(IC1 − IC0) ≤ 0

}
= 0.

Remark 2.4.5 The results in Theorem 2.4.4 are the same as those in Theorem 2.3.4,

suggesting that all the well-known information criteria can consistently select the

true model (i.e. EX model).

2.5 Monte Carlo Study

In this section, we examine the performance of alternative information criteria,

namely, AIC, BIC and HQIC, in finite sample via simulated data and check the

reliability of the asymptotic results developed in Section 3 and Section 4. In the

simulation study, we use both OLS and the indirect inference method to estimate

ρn from sample paths that are simulated from different DGPs. In total we design
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four experiments. In the first experiment we simulate data from the UR model. In

the second experiment we simulate data from the LTUE model with c = 1 (i.e.

ρn = 1 + 1/n). In the third experiment we simulate data from two ME models

with cn = n0.1, n0.3, respectively. In the last experiment we simulate data from

the EX model with ρ = 1.01, 1.05, respectively. In all experiments, we simulate

10,000 sample paths with initial value X0 = 0 and four sample sizes are consid-

ered, n = 100, 200, 500, 1000. In each experiment, we report the fraction of the

number of times in which the correct model is selected out of 10,000 replications.

Table 2.1 reports the results when the true DGP is UR. Several results can be

found here. First, the probability for BIC and HQIC to select the true model grows

as n grows. However, the probability for AIC to select the true model does not seem

to increase or decrease as n grows. This observation is consistent with the asymp-

totic results reported in Theorem 2.3.1. Second, the probability for BIC to select the

true model is larger than that in HQIC which is in turn larger than AIC in these four

sample sizes. So we can conclude that the probability grows as pn increases since

2 < 2 log log n < log n when 100 ≤ n ≤ 1000. Third, the probability implied by

AIC based on the indirect inference estimator is larger than that based on OLS. This

finding is consistent with Theorem 2.4.1 and Remark 2.4.2.

Table 2.1: Probability of Selecting the Correct Model when Data Come from the
UR Model

n 100 200
IC AIC BIC HQIC AIC BIC HQIC
OLS 0.8160 0.9604 0.9020 0.8155 0.9751 0.9249
IIE 0.8731 0.9702 0.9292 0.8742 0.9810 0.9445
n 500 1000
IC AIC BIC HQIC AIC BIC HQIC
OLS 0.8127 0.9849 0.9335 0.8195 0.9895 0.9402
IIE 0.8704 0.9881 0.9508 0.8759 0.9918 0.9566

Table 2.2 report the results when the true DGP is the LTUE model with cn = 1.

Also reported is the value of pn/ρ2n
n . Several results can be found here. First, the

probability for BIC and HQIC to select the true model becomes smaller as n grows.
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However, the probability for AIC to select the true model does not seem to increase

or decrease as n grows. This observation is consistent with the asymptotic results

in Theorem 2.3.2. Second, the probability implied by AIC based on the indirect

inference estimator is smaller than that based on OLS. This finding is consistent

with in Theorem 2.4.2 and Remark 2.4.3. Finally, it seems that AIC performs better

than BIC and HQIC in all cases.

Table 2.2: Probability of Selecting the Correct Model when Data Come from the
LTUE Model with cn = 1

n 100 200
IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n
n 0.2734 0.6295 0.4175 0.2720 0.7206 0.4536

OLS 0.3516 0.1475 0.2420 0.3406 0.1305 0.2156
IIE 0.1485 0.0445 0.0922 0.1235 0.0269 0.0663
n 500 1000

IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n
n 0.2712 0.8427 0.4955 0.2709 0.9358 0.5236

OLS 0.3474 0.1019 0.1933 0.3416 0.0871 0.1823
IIE 0.1169 0.0134 0.0517 0.1089 0.0090 0.0394

Table 2.3 report the results when the true DGP is the ME model with cn =

n0.1, n0.3. Also reported is the value of pn/ρ2n
n . Several results can be found here.

First, the probability for all three information criteria to select the true model grows

as n increases. This observation is consistent with the asymptotic results reported

in Theorem 2.3.3 and Remark 2.4.4. Second, comparing the results for cn = n0.1

and those for cn = n0.3, the probability for all three information criteria to select the

true model increases when cn is bigger. Third, the probability based on the indirect

inference estimator is smaller than that based on OLS. Finally, it seems that AIC

performs better than BIC and HQIC in all cases.

Table 2.4 report the results when the true DGP is the EX model with ρ =

1.01, 1.05. Also reported is the value of pn/ρ2n. Several results can be found here.

First, when ρ = 1.01, which is larger than the unity by 1%, the probability for infor-

mation criteria to select the correct model is small in all cases when the sample size
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Table 2.3: Probability of Selecting the Correct Model when Data Come from the
ME Model with cn = n0.1 and cn = n0.3

ME Model with cn = n0.1

n 100 200
IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n
n 0.0861 0.1983 0.1316 0.0679 0.1799 0.1132

OLS 0.5183 0.3403 0.4349 0.5554 0.3638 0.4629
IIE 0.3071 0.1741 0.2406 0.3211 0.1624 0.2250
n 500 1000

IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n
n 0.0486 0.1512 0.0889 0.0371 0.1282 0.0718

OLS 0.6151 0.4083 0.5048 0.6469 0.4374 0.5494
IIE 0.3544 0.2008 0.2815 0.3925 0.2351 0.3129

ME Model with cn = n0.3

n 100 200
IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n
n 0.0008 0.0019 0.0012 0.0001 0.0003 0.0002

OLS 0.9374 0.9066 0.9235 0.9749 0.9608 0.9683
IIE 0.9274 0.8979 0.9163 0.9716 0.9578 0.9648
n 500 1000

IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n
n 1.0e-06 1.0e-05 1.0e-06 1.0e-07 1.0e-07 1.0e-07

OLS 0.9948 0.9907 0.9938 0.9988 0.9985 0.9986
IIE 0.9938 0.9901 0.9933 0.9986 0.9985 0.9985
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is small. However, it grows very quickly with the sample size. When ρ = 1.05, the

probability for information criteria to select the correct model is almost 1 in all cases

even when the sample size is small and increases with the sample size. Finally, it

seems that AIC performs better than BIC and HQIC in all cases.

Table 2.4: Probability of Selecting the Correct Model when Data Come from the
Regular Explosive Model with ρ = 1.01, 1.05.

Explosive Model with ρ = 1.01
n 100 200

IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n 0.2734 0.6295 0.4175 0.0374 0.0990 0.0623
OLS 0.3516 0.1475 0.2420 0.6449 0.4820 0.5555
IIE 0.1485 0.0445 0.0922 0.4740 0.3059 0.3845
n 500 1000

IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n 1.0e-4 1.0e-4 1.0e-4 1.0e-9 1.0e-8 1.0e-9
OLS 0.9775 0.9599 0.9704 0.9998 0.9997 0.9998
IIE 0.9733 0.9563 0.9681 0.9998 0.9997 0.9998

Explosive Model with ρ = 1.05
n 100 200

IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n 0.0001 0.0003 0.0002 1.0e-07 1.0e-07 1.0e-07
OLS 0.9741 0.9643 0.9681 0.9999 0.9998 0.9998
IIE 0.9703 0.9626 0.9655 0.9999 0.9998 0.9998
n 500 1000

IC AIC BIC HQIC AIC BIC HQIC
pn/ρ

2n 1.0e-20 1.0e-20 1.0e-20 1.0e-41 1.0e-41 1.0e-41
OLS 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
IIE 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

2.6 Conclusion

This paper studies the limit properties of information criteria for distinguishing be-

tween unit root model and three types of explosive models. Both the OLS estimator

and the indirect inference estimator are employed to estimate the AR coefficient in

the candidate model. This paper contributes to the literature in three aspects. First,

our results extends results in the literature to the explosive side of the unit root, and
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we find that information criteria consistently choose the unit root model when the

unit root model is the true model. Second, we show that the limiting probabilities

for information criteria to select the explosive model depends on both the distance

of autoregressive coefficient from unity and the size of penalty term in the informa-

tion criteria. When the penalty term is not too large and the root is not too close to

unit root, all the information criteria consistently select the true model. It is known

that the indirect inference method is effective in reducing the bias in OLS estima-

tion in all cases as well as reducing the variance in OLS estimation in the UR model

and in the LTU model. However, when information criteria are used in connection

with the indirect inference estimation, the limiting probabilities for information cri-

teria to select the correct model can go up or down relative to that with the OLS

estimation, depending on the true DGP. When the true DGP is the UR model, the

indirect inference estimation increases the probability. When the true DGP is the

LTUE model or the ME model or the EX model, the indirect inference estimation

decreases the probability. This rather surprising result suggests that the superiority

in estimation does not necessarily translate to the superiority in model selection.
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Chapter 3 Random Coefficient Continuous

Systems: Testing for Extreme Sam-

ple Path Behaviour

3.1 Introduction

Many macroeconomic and financial time series are well described by autoregres-

sive processes with roots that are close to unity but not necessarily constant over

time. Motivated by this empirical characteristic, various strands of the literature

have sought to extend pure unit root models to more flexible dynamic systems. One

approach allows for structural breaks in which the autoregressive coefficient takes

a constant value in each regime but changes value in different regimes (e.g. Chong,

2001; Pang et al., 2014; Jiang et al., 2017). Another assumes that the autoregres-

sive coefficient is a continuous random variable or evolves according to a stochastic

process (e.g. Granger and Swanson, 1997; Lieberman and Phillips, 2014, 2017c).

Yet another allows for a time varying autoregressive parameter to capture evolution

in the stochastic process, introduce flexibility, and enhance forecasting capability

(Bykhovskaya and Phillips, 2018, 2019; Giraitis et al., 2014; Kristensen, 2012).

Complementary to this literature on autoregressive specification is a growing

interest in modelling explosive behavior and collapse, particularly since the events

leading up to and following the global financial crisis, where strong upward move-

ments and subsequent major downturns in asset prices have occurred in various

markets (Phillips and Yu, 2011). Empirical methods used to model these events
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have made extensive use of the concepts of mildly explosive and mildly integrated

autoregressive processes (see Phillips and Magdalinos, 2007). Thus, Phillips et al.

(2011, PWY hereafter), Phillips and Yu (2011), Phillips et al. (2015a,b, PSY here-

after) assume data are generated according to unit root processes in one regime

and as mildly explosive processes in another regime; and methods of date-stamping

such regime changes have been developed (Phillips et al., 2011, 2015a,b) stimulat-

ing new empirical research and improvements in test methodology (e.g. Cavaliere

et al., 2016; Phillips and Shi, 2017). Developments in random autoregressive coef-

ficient approaches have also been pursued, with work by Aue (2008), who analyzed

a near-integrated random coefficient autoregressive model, and by Banerjee et al.

(2017) who studied a near-explosive random coefficient autoregressive model.1

The present paper contributes to this literature by working with a continuous

time model in which the parameter that measures persistence is randomized. A

novel advantage arising from this formulation is that extreme sample path behav-

ior can be classified into distinct scenarios that represent various forms of instabil-

ity and explosiveness. These scenarios are distinguished parametrically and corre-

sponding hypotheses are formulated to facilitate empirical testing. Continuous time

specification also enables the localizing coefficients that appear in mildly integrated

and mildly explosive processes to be represented in terms of sampling frequency,

which facilitates econometric estimation. These parameters are of great importance

empirically because they control distance from martingale and unit root behavior in

discrete time models (Banerjee et al., 2017). This advantage of continuous systems

has been used in other recent work by Chen et al. (2017) and Wang and Yu (2016)

in developing the discrete time methodology of Phillips and Magdalinos (2007).

Continuous system formulation and high frequency data open up the opportu-

nity to employ methods such as realized volatility in estimating parameters that are

identified in the quadratic variation process using in-fill asymptotic methods. The

1Considerable work has been done on discrete time random coefficient autoregressive models in
the literature, including Aue et al. (2006), Berkes et al. (2009), Aue and Horváth (2011), and Horváth
and Trapani (2016) among many others.
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two-stage realized volatility approach employed here naturally accommodates het-

eroskedasticity in the process and allows for consistent estimation of the parameters

in the diffusion function under both stationarity and explosiveness. The approach

therefore offers potential for a unified in-fill limit theory of consistent parameter

estimation in random coefficient autoregression.

A further well-known feature of continuous system formulations is that the ef-

fects of initial conditions are naturally incorporated by in-fill asymptotics (as in

Phillips, 1987b) without having to specify orders of magnitude or use distant past

representations (as in Phillips and Magdalinos, 2009) which involve additional un-

known parameters. Moreover, continuous systems readily accommodate endogene-

ity by allowing for dependence between the random coefficient elements and system

shocks. In this respect the present research relates to recent work on generalized

random coefficient autoregressive models (Hwang and Basawa, 1998) and localized

endogenous stochastic unit root models in (Lieberman and Phillips, 2017b). Ini-

tial condition effects appear directly in the asymptotic theory and, as is shown in

the paper, the endogeneity parameter can be consistently estimated using realized

volatility.

The continuous time model used in the present study is a special case of a finan-

cial market model developed in Föllmer and Schweizer (1993) obtained by applying

an invariance principle to a discrete time market equilibrium model derived from

first principles. In particular, Föllmer and Schweizer (1993) developed a microe-

conomic model of rational expectations equilibrium for a market that involves both

information traders and noise traders. They showed that when the proportions of

different types of traders fluctuates randomly the equilibrium outcome is a discrete

time model with a random coefficient. The mapping from the theory model implies

that noise traders contribute positively to the random coefficient whereas informa-

tion traders contribute negatively. Correspondingly, the ratio of trader types affects

the recurrence or transient properties of the resulting price process, thereby impact-

ing the nature of the resulting price trajectories. Thus, the extent of randomness
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in the coefficient reflects underlying market composition characteristics and is in-

formative about the respective trader proportions. Econometric estimation of such

models can therefore help to shed light on some of these properties and possibly

also the changing nature of the market trader composition.

The remainder of the paper is organized as follows. Section 3.2 introduces a

continuous system with randomized persistence and relates this system to several

discrete time models already used in the literature. The multiple forms of behavior

induced by this system are described and characterized parametrically. Section 3.3

proposes a novel two-stage approach to parameter estimation using realized volatil-

ity. Asymptotic theory is developed and test statistics for distinguishing different

forms of explosive behavior are proposed in Section 3.4. Section 3.5 extends the

methodology to the case of endogenous persistence. Section 3.6 gives the results of

Monte Carlo simulations that explore the finite sample performance of the estima-

tors and test statistics. Empirical applications of the model are reported in Section

3.7 using daily real S&P 500 index data from December 1927 to June 2018. Some

empirical applications of the extended model using 5-minute real S&P 500 index

data over the period from November 1, 1997 to October 31, 2013 are also dis-

cussed. Section 3.8 concludes. Proofs and other technical material are given in the

Appendix. Additional simulation and empirical results can be found in an online

supplement.

3.2 The Model

The model used here is a modified version of the Ornstein-Uhlenbeck process

dy(t) = y(t)µ̃dt+ σdBε(t), y(0) = y0. (3.2.1)

where Bε is a standard Brownian motion and the sign of the drift parameter µ̃ deter-

mines stationary (< 0), nonstationary (= 0), and explosive (> 0) behavior in y(t),

the latter corresponding to a discrete time autoregression with a root that exceeds
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unity and whose variance grows exponentially with t. In (3.2.1), the drift parameter

µ̃ is taken as constant, an assumption that may not be well supported by data over

extended periods of time.

The model considered in the present paper extends (3.2.1) by introducing ran-

dom shocks to the drift component of (3.2.1) so that

dy(t) = y(t) [µ̃dt+ σ̃dBu(t)] + σdBε(t), y(0) = y0, (3.2.2)

where Bu(t) and Bε(t) are both standard Brownian motions, and y0 is independent

of Bu(t) and Bε(t). When σ̃2 6= 0, model (3.2.2) may be viewed as an Ornstein-

Uhlenbeck process with randomized drift or persistence. Initially, we focus on the

case of independent noise processesBu(t) andBε(t), and later consider the endoge-

nous case where these processes are dependent.

Model (3.2.2) is a special case of a general model introduced by Föllmer and

Schweizer (1993),

dy(t) = y(t) [µ̃(t)dt+ σ̃(t)dBu(t)] + µ(t)dt+ σ(t)dBε(t), y(0) = y0, (3.2.3)

called an Ornstein-Uhlenbeck process in a random environment. Föllmer and Schweizer

(1993) developed a discrete time version of this process in a market equilibrium

setting that involved both information traders and noise traders and then derived its

continuous-time limit given by the process in (3.2.3). Persistence in the dynamic

model is determined by the relative proportions of the two types of traders, so ran-

dom proportions lead to a randomized degree of persistence in the solution. Infor-

mation traders contribute negatively to persistence while noise traders contribute

positively.2

Föllmer and Schweizer (1993) derived the strong solution of (3.2.2) which takes

2Granger (1980) showed how simple cross section aggregation of random coefficient AR pro-
cesses can – under certain conditions – generate long memory in the aggregated series. In Föllmer
and Schweizer (1993) the aggregation is more complex with time varying weights; see Equation
(3.6) in Föllmer and Schweizer (1993).
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the explicit form

y(t) = exp

(
σ̃Bu(t) +

(
µ̃− 1

2
σ̃2

)
t

)
y(0) +K(t), (3.2.4)

where

K(t) = σ

∫ t

0

exp

(
σ̃ (Bu(t)−Bu(s)) +

(
µ̃− 1

2
σ̃2

)
(t− s)

)
dBε(s)

∼ MN
(

0, σ2

∫ t

0

e2σ̃(Bu(t)−Bu(s))+2(µ̃− 1
2
σ̃2)(t−s)ds

)
(3.2.5)

under independence of Bu and Bε and with

E
{
K(t)2

}
= σ2E

{∫ t

0

e2σ̃(Bu(t)−Bu(s))+2(µ̃− 1
2
σ̃2)(t−s)ds

}
=
σ2

2

e2(µ̃+ 1
2
σ̃2)t − 1(

µ̃+ 1
2
σ̃2
) .

(3.2.6)

Notably, E {K(t)2} diverges exponentially when µ̃+ 1
2
σ̃2 > 0.

The exact discrete time model corresponding to (3.2.2) at the sampling interval

∆ follows directly from the strong solution and has the explicit form

yt∆ = exp

{(
µ̃− 1

2
σ̃2

)
∆ + σ̃

[
Bu,t∆ −Bu,(t−1)∆

]}
y(t−1)∆ (3.2.7)

+ σ

∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ [Bu,t∆ −Bu (s)]

}
dBε(s),

where t = 1, ..., T/∆, T is the time span, and we write discrete time data in sub-

scripted form. This model is a random coefficient autoregression (RCAR) of the

type considered by Nicholls and Quinn (1980) in which the autoregressive (AR)

coefficient is

ρt∆ = exp

{(
µ̃− 1

2
σ̃2

)
∆ + σ̃

[
Bu,t∆ −Bu,(t−1)∆

]}
, (3.2.8)

and is random when σ̃2 > 0.

For the ensuing development it will be helpful to fix the following simpler nota-
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tions for the discrete system

φ := µ̃− 1

2
σ̃2, κ := µ̃+

1

2
σ̃2, ut∆ :=

Bu,t∆ −Bu,(t−1)∆√
∆

∼ N (0, 1) ,

ρt∆ := exp

{(
µ̃− 1

2
σ̃2

)
∆ + σ̃

[
Bu,t∆ −Bu,(t−1)∆

]}
= exp

{
φ∆ + σ̃

√
∆ut∆

}
,

ηt∆ :=

∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ [Bu,t∆ −Bu,s]

}
dBε,s ∼ N

(
0, γ2

∆

)
,

where γ∆ =
√

(e2κ∆ − 1) /2κ. Model (3.2.7) is then

yt∆ = exp
{
φ∆ + σ̃

√
∆ut∆

}
y(t−1)∆ + σηt∆ = ρt∆y(t−1)∆ + σηt∆, (3.2.9)

where yt is initiated at y0.

Importantly, when the driver Wiener processes Bu and Bε are independent, data

generated from (3.2.2) is observationally equivalent to data from the continuous

system

dy(t) = y(t)µ̃dt+
√
σ̃2y2(t) + σ2dBv(t), y(0) = y0, (3.2.10)

where Bv(t) is another standard Brownian motion. In the same way, model (3.2.7),

is observationally equivalent to the (approximate) discrete system3

yt∆ = exp {µ̃∆} y(t−1)∆ +
√

(σ̃2y2
(t−1)∆ + σ2)∆ · vt∆, (3.2.11)

where vt∆ ∼ N (0, 1) and yt∆ exhibits conditional heteroskedasticity. Notably, by

standardization of 1/
√

∆, the conditional variance of the process is σ̃2y2
(t−1)∆ + σ2,

so that large realizations of the process magnify its variability. This dependence

has a substantial bearing on the properties of yt∆ and the form of its trajectories.

Moreover, yt∆ has a submartingale property when eµ̃∆ > 1 and given y(t−1)∆ > 0

because in that case E(t−1)∆(yt∆) = eµ̃∆y(t−1)∆ > y(t−1)∆.

3In Appendix A.1, we derive the discretization error by directly calculating the difference be-
tween equation (3.2.9) and (3.2.11), and we show that this discretization error will not affect the
limiting distribution of our estimators.
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Assuming σ̃2 > 0, models (3.2.9) and (3.2.2) have the following properties:

(1) E(ρt∆) = eµ̃∆, which is unity if and only if µ̃ = 0 and exceeds unity if

and only if µ̃ > 0; (2) E(ρ2
t∆) = exp (2µ̃∆ + σ̃2∆) = exp(2κ∆), which ex-

ceeds unity if and only if κ > 0; (3) V ar(ρt∆) = e2µ̃∆
(
eσ̃

2∆ − 1
)
> 0; (4)

E(ρkt∆) = exp

(
k∆

[
µ̃+

1

2
(k − 1) σ̃2

])
→ ∞ when k → ∞; (5) As shown in

Föllmer and Schweizer (1993), when φ = µ̃ − 1

2
σ̃2 < 0, the process is asymptoti-

cally stationary but may not have finite second moments.4 To ensure the existence

of second moments, we should impose a stronger condition that κ = µ̃+
1

2
σ̃2 < 0.

From (3.2.5), when κ < 0, it is apparent that the variance of K(t) exists and con-

verges to −0.5σ2/κ < ∞ as t → ∞. It then follows that (3.2.2) is asymptotically

covariance stationary; (6) If κ = 0, the variance of K(t) equals to σ2t that di-

verges as t → ∞, which means (3.2.2) is not asymptotically covariance stationary.

Since κ = 0 implies µ̃ < 0 and φ < 0, (3.2.2) is asymptotic stationarity; (7) If

φ = µ̃− 1

2
σ̃2 ≥ 0, y(t) is no longer asymptotically stationary as shown in Föllmer

and Schweizer (1993).

Table 3.1: Properties of Proposed Model Under Different Scenarios

Scenario
Asymptotically

Stationary
Asym. Covariance

Stationary E(ρt∆) E(ρ2
t∆)

µ̃+ σ̃2/2 < 0 Yes Yes < 1 < 1
µ̃+ σ̃2/2 = 0 Yes No < 1 = 1
µ̃+ σ̃2/2 > 0 & µ̃ < 0 Yes No < 1 > 1
µ̃ = 0 Yes No = 1 > 1
µ̃ > 0 & µ̃− σ̃2/2 < 0 Yes No > 1 > 1
µ̃− σ̃2/2 ≥ 0 No No > 1 > 1

Table 3.1 summarizes the stationarity properties mentioned above and the re-

spective values of E(ρt∆), and E(ρ2
t∆) under different regions of the parameter

space depending on the values of µ̃ and σ̃2. When µ̃ + σ̃2/2 < 0, the model is

asymptotically covariance stationary with both E(ρt∆) < 1 and E(ρ2
t∆) < 1. Fig-

ure 1(a) plots a simulated time series in this case with µ̃ = −5, σ̃2 = 0.5 and

µ̃ + σ̃2/2 = −4.75 where stationary behavioral features of the data are apparent.

4When y0 is fixed, the process is not stationary for finite t but is asymptotically stationary.
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When µ̃ + σ̃2/2 = 0, the model retains asymptotic stationarity but is no longer co-

variance stationary with E(ρt∆) < 1 and E(ρ2
t∆) = 1. Figure 1(b) plots a simulated

time series in this case with µ̃ = −2, σ̃2 = 4 and µ̃ + σ̃2/2 = 0 where station-

arity is again apparent but with more evidence of persistence in the trajectory than

in Figure 1(a). It was suggested in Granger and Swanson (1997) that the unit root

hypothesis in a STUR random environment might be represented by the expectation

E(ρ2
t∆) = 1. However, the stationary properties of the time series in this case sug-

gest stable and mean recursive trajectories that have greater persistence than when

E(ρ2
t∆) < 1.

When µ̃ + σ̃2/2 > 0 and µ̃ < 0, the model is asymptotically stationary but is

not covariance stationary and E(ρ2
t∆) > 1. Figure 1(c) plots a simulated time series

in this case with µ̃ = −1, σ̃2 = 3.5 and µ̃+ σ̃2/2 = 0.75. Whereas the expectation

E(ρt∆) is still less than unity, unstable behavior is evident in the simulated time

series. In particular, the unstable subperiod of growth and collapse in the trajectory

mimics bubble phenomena that are observed in actual data, such as that in Figure

3.5 in the empirical section of the present paper and in Figure 1 of PWY (2011).

If µ̃ = 0, the model continues to be asymptotically stationary but is not covariance

stationary and E(ρt∆) = 1, so the model reduces to the stochastic unit root (STUR)

model of Granger and Swanson (1997). Figure 1(d) plots a simulated time series

in this case with µ̃ = 0, σ̃2 = 2 and µ̃ + σ̃2/2 = 1. Compared to the traditional

(nonstochastic) unit root model, unstable behavior with bubble-like phenomenon in

a subperiod of the simulated trajectory is now more evident.

When µ̃ > 0, E(ρt∆) > 1 and Pr(ρt∆ > 1) > 0.5, giving greater probability to

the realization of an explosive root than a unit or stationary root. However, unlike

the traditional (nonstochastic) explosive AR(1) model which is nonstationary, this

model is still asymptotically stationary although not covariance stationary. Figure

1(e) plots a simulated time series in this case with µ̃ = 0.5, σ̃2 = 2, µ̃+ σ̃2/2 = 1.5,

µ̃− σ̃2/2 = −0.5. Although the trajectory in Figure 1(e) appears similar to those of

Figure 1(c) and Figure 1(d), the process exhibits larger variation, as is apparent from

35



the vertical scale of the figure. When µ̃ − σ̃2/2 > 0, the model is asymptotically

nonstationary and both moments E(ρt∆) and E(ρ2
t∆) exceed unity. Figure 1(f) plots

a simulated time series in this case with µ̃ = 1, σ̃2 = 0.5 and µ̃− σ̃2/2 = 1.25. The

explosive growth behavior is clearly evident in the plotted trajectory.
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Figure 3.1: Simulated paths from the proposed model (3.2.2) when µ̃ and σ̃2 are in
different regions.

The exact discrete time representation of our model is closely related to the near

explosive random coefficient (NERC) model proposed recently in Banerjee et al.

(2017) and to the multivariate local STUR model that is studied in Lieberman and

Phillips (2017a) which combines deterministic local unit root (LUR) and random

STUR component departures from unity. In particular, if ∆ is chosen as 1/Tα and

y0 = 0, then model (3.2.9) is the same as model (1) in Banerjee et al. (2017); and

if ∆ is chosen as 1/T and y0 = 0, then our (3.2.9) has the same form as equation

(4) in Lieberman and Phillips (2017a). As discussed in Phillips and Magdalinos

(2007), the power rate α in the fraction 1/Tα controls the degree of mild deviation

from a unit root and is typically assumed to lie strictly between zero and unity,

which assures that such deviations are localized to unity and exceed the usual local

to unity departure of O (T−1) .

In the standard discrete time modeling framework, the localizing rate parameter
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α is difficult to estimate, although it is possible to do so at a slow rate (Phillips,

2012). Following the argument used in Wang and Yu (2016) with double asymp-

totics (i.e., both large span and infill schemes), the discrete time model (3.2.9), or

equivalently (3.2.11), implies mild deviations from a unit root in which the local-

izing rate is determined by the sampling frequency ∆, and so there is no need to

estimate a separate parameter α. This distinction implies an important advantage

of the underlying continuous system framework when it is appropriate in practical

work to employ this model using discrete time observations. A further useful differ-

ence is that the continuous system allows for flexible initial condition assumptions.

The model reduces to a simple autoregression with a time-invariant coefficient

when σ̃2 = 0, in which case κ = φ = µ̃ and then explosive behavior applies when

φ > 0. Conventional tests for a unit versus an explosive root therefore reduce to

testing φ = 0 against φ > 0. This formulation explains the focus on right-tailed unit

root testing (Diba and Grossman, 1988), including the recursive methodology used

in PWY (2011), Phillips and Yu (2011), PSY (2015a, b) and related work.

In the extended model (3.2.9), a wider set of dynamic patterns are possible for

studying various types of extreme behavior in realized sample trajectories. More

specifically, we consider three cases distinguished by the following typology.

1. Unstable trajectory: κ = µ̃+ σ̃2/2 > 0 which is equivalent to E(ρ2
t∆) > 1. In

this case, the model is covariance nonstationary asymptotically and is capable

of generating trajectories with explosive and collapse behavior;

2. Locally Explosive trajectory: µ̃ > 0 which is equivalent to E(ρt∆) > 1. In

this case, there is greater probability for an explosive root to be realized in the

sample than a unit or stationary root and the model is covariance nonstation-

ary asymptotically. The model is capable of generating both explosive and

collapsing behavior;

3. Explosive trajectory: φ = µ̃ − σ̃2/2 > 0. Here the model is nonstationary

asymptotically and generates explosive behavior.
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According to this terminology explosiveness implies local explosiveness which

implies instability. We characterize all of these cases as various forms of extreme

behavior. Figure 3.2 shows regions of the parameter space (µ̃, σ̃2) that accord with

these classifications of sample behavior.

µ̃− 1

2
σ̃2 = 0µ̃+

1

2
σ̃2 = 0

µ̃

σ̃2 Sun
Sle
Se

Figure 3.2: Various explosive regions of {yt} characterized by different parameter
combinations of (µ̃, σ̃2) ∈ R×R+. Sun is the region for instability. Sle is the region
for local explosiveness. Se is the region for explosiveness.

It is helpful to link the above concepts of instability, local explosiveness and

explosiveness to some well-known concepts in the stochastic process literature and

to those used recently in Kim and Park (2016). Note first that the observational

equivalent model (3.2.11) is a special case of generalized Höpfner and Kutoyants

(GHK) diffusion (Höpfner and Kutoyants, 2003):5

dXt =
µ̃Xt

(σ̃2X2
t + σ2)

1−ddt+
(
σ̃2X2

t + σ2
)d/2

dWt

with d = 1. In this case, we can easily calculate the scale density (s′(x)) and the

speed density (m(x)) of the model (3.2.11) as follows:

s′(x) = (σ2 + σ̃2x2)−µ̃/σ̃
2

and m(x) = (σ2 + σ̃2x2)(µ̃/σ̃2−1). (3.2.12)

Thus, the model (3.2.11) is recurrent if µ̃/σ̃2 ≤ 1/2, i.e., φ ≤ 0. It is pos-

5The diffusion process studied here is a generalization of Example 2.1 in Kim and Park (2016)
by adding a coefficient in front of X2

t .
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itive recurrent (PR) if µ̃/σ̃2 < 1/2, i.e., φ < 0. Thus, it is null recurrent (NR)

when φ = 0 and transient (TR) when φ > 0. Therefore, our definition of explo-

siveness corresponds to the transient property, which typically applies to processes

that trend upwards or downwards and may be rendered recurrent after suitable de-

trending techniques as discussed by Kim and Park (2016) who considered various

notions of mean reversion for financial time series. These authors related the mean-

reversion property to the following three conditions:

(ST): the speed measure m is either integrable or barely nonintegrable6;

(DD): The inverse of the scale density 1/s′ is either integrable or barely noninte-

grable;

(SI): square of identity function, ι2, is either m-integrable7 or m-barely noninte-

grable.

NR (φ = 0)

PR
TR

µ̃

σ̃2

(a) Recurrence Properties

STDD & SI

NMRSMR

WMR

µ̃

σ̃2

(b) Mean Reversion Properties

Figure 3.3: Subfigures (a) and (b) characterize the recurrence properties and the
mean reversion properties of {yt} under different combinations of (µ̃, σ̃2) ∈ R ×
R+. PR=positive recurrent, NR=null recurrent, TR=transient; SMR=strong mean
reversion, WMR=weak mean reversion, NMR=no mean reversion.

Kim and Park (2016) showed that when both ST and DD hold, the process has

strong mean reversion (SMR) and if only one of ST and DD holds the process has
6A function m is defined to be barely nonintegrable if there exists some slowly varying function

` such that m` is integrable.
7The square of the identity function ι2 is defined by ι2(x) = x2; and a function f is defined to

be m-integrable if mf is integrable.
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weak mean reversion (WMR). By checking these conditions, we find that model

(3.2.11) satisfies: DD if and only if µ̃/σ̃2 ≤ −1/2, i.e., κ ≤ 0; ST if and only if

µ̃/σ̃2 ≤ 1/2, i.e., φ ≤ 0; and SI if µ̃/σ̃2 ≤ −1/2, i.e., κ ≤ 0. So in our model the

condition that ensures ST is the same as that which ensures SI, and is stronger than

that which ensures DD. Thus, if κ ≤ 0, our model has strong mean reversion; if

φ ≤ 0 but κ > 0, our model has weak mean reversion; and if φ > 0, our model does

not imply mean reversion. Hence, our definition of explosiveness is the same as no

mean reversion in Kim and Park (2016). Figure 3.3 summarizes the mean reversion

properties of the process, viz., strong mean reversion (SMR), weak mean reversion

(WMR), and no mean reversion (NMR) of the diffusion process (3.2.11) in different

regions of the respective parameter spaces.

3.3 Model Estimation using Realized Volatility

To estimate the continuous-time model (3.2.2) based on discretely sampled data, we

employ the two-stage estimation procedure proposed by Phillips and Yu (2009). In

the first stage we make use of the feasible central limit theory for realized volatility

to set up a regression model for estimating σ̃2 and σ2. In the second stage the in-fill

log-likelihood function is maximized to estimate µ̃. Consistency and asymptotic

distribution theory are established for all estimates.

To explain the estimation method and to establish the large sample theory of the

estimators, we assume the time interval [0, T ] with span length T can be split into

N equispaced blocks. The time span of each block is h := T/N and we assume

there are M observations of yt within each block. So in total M × N observations

on yt are available over [0, T ] and M ×N = T/∆. Further assume that as ∆→ 0,

M → ∞ and M × N → ∞. Figure 3.4 illustrates this notation and the sampling

scheme. For example, if ten years of daily observations are available and we split

the data into ten blocks, then T = 10, ∆ = 1/252, M = 252, h = 1, and N = 10.

The total number of observations is 2520 and the number of observations contained
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0 h 2h · · · Nh = T

0∆ 1∆ 2∆ · · · M∆ · · · 2M∆ · · · NM∆

Figure 3.4: Notational schematic for individual observations, block divisions, and
full sample span

in each block is 252.

The quadratic variation process [y]t of y(t) in (3.2.2) satisfies d[y]t = (σ̃2y2
t + σ2) dt,

giving

[y]t =

∫ t

0

(
σ̃2y2

s + σ2
)
ds. (3.3.1)

Barndorff-Nielsen and Shephard (2002) showed that quadratic variation may be

consistently estimated using realized variance (RV) when ∆ → 0. Realized vari-

ance and realized quarticity (RQ) are computed using increments y(n−1)h+i∆ −

y(n−1)h+(i−1)∆ in the observed process by means of the following formulae calcu-

lated over the nth block

RVn =
M∑
i=1

[
y(n−1)h+i∆ − y(n−1)h+(i−1)∆

]2
, n = 1, 2, · · · , N,

RQn =
1

3∆

M∑
i=1

[
y(n−1)h+i∆ − y(n−1)h+(i−1)∆

]4
, n = 1, 2, · · · , N.

From Barndorff-Nielsen (2002) realized variance has the following asymptotic dis-

tribution for large M within each block

√
M
(
[y]nh(n−1)h −RVn

) L→MN
(

0, 2h

∫ nh

(n−1)h

(
σ̃2y2

s + σ2
)2
ds

)
, (3.3.2)

whereMN signifies mixed normal and [y]nh(n−1)h =
∫ nh

(n−1)h
(σ̃2y2

s + σ2) ds.

Following the algorithm of Phillips and Yu (2009), the first-stage estimation step

aims to estimate θ := (σ̃2, σ2)′ by least squares using the criterion

θ̂ = arg min
θ∈Θ

Q∆(θ), (3.3.3)
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where

Q∆(θ) = ∆
N∑
n=1

(
logRVn − log[y]nh(n−1)h +

1

2
s2
n

)2

s2
n

,

with

sn = max

{√
2∆

RQn

RV 2
n

,

√
2

M

}
,

and where Θ is a compact subset of R2
+ containing the true value θ0 = (σ̃2

0, σ
2
0)
′

as an interior point. The term s2
n/2 in the numerator of Q∆(θ) is a finite sample

correction on the asymptotic theory. In practice, the quadratic variation element

[y]nh(n−1)h in Q∆(θ) can be approximated by Riemann sums as follows

[y]nh(n−1)h =

∫ nh

(n−1)h

(σ̃2y2
s + σ2)ds = ∆

M∑
t=1

{
σ̃2y2

(n−1)h+t∆ + σ2
}

+O(
√

∆).

In the second stage, µ̃ is estimated by maximizing the approximate log-likelihood

function, viz.,

̂̃µ = arg max
µ̃

1

MN
log `ALF (µ̃), (3.3.4)

`ALF (µ̃) =
M×N∑
t=1

µ̃y(t−1)∆̂̃σ2y2
(t−1)∆ + σ̂2

(
yt∆ − y(t−1)∆

)
− ∆

2

M×N∑
t=1

µ̃2y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2
.,

(3.3.5)

giving

̂̃µ = ∆−1

∑M×N
t=1

y(t−1)∆

(
yt∆ − y(t−1)∆

)
̂̃σ2y2

(t−1)∆ + σ̂2

∑M×N
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

=: ∆−1 ÂN

B̂N

. (3.3.6)

This estimator of µ̃ has the same form as the weighted least squares estimator used

by Hwang and Basawa (2005) in the context of a discrete time RCAR.
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3.4 Asymptotic Theory

This section develops asymptotic theory for the diffusion parameter and drift pa-

rameter estimates. Limit theory for estimates of the diffusion parameters is first

obtained by using infill asymptotic methods where ∆→ 0. We then investigate the

asymptotic theory of the drift parameter by resorting to double asymptotic methods

in which both ∆→ 0 and T →∞.

3.4.1 Diffusion Parameters

This section derives asymptotic theory for the estimates ̂̃σ2 and σ̂2 by assuming

∆→ 0 (with a fixed T ) in an infill asymptotic scheme. Since M = h/∆ it follows

that ∆ → 0 implies M → ∞. Realized variance and realized quarticity are there-

fore consistent estimates of integrated variance and integrated quarticity. Since T

is fixed, N = T/h is also fixed. Let {yt}MN∆
t=∆ be a discrete sample generated

from (3.2.2) where the true parameter values for µ̃, σ̃2, σ2 are denoted µ̃0, σ̃
2
0, σ

2
0 .

Assume that θ0 = (σ̃2
0, σ

2
0)
′ ∈ Int(Θ) where Θ is a compact set in R2

+. Let

ρ0 = exp (µ̃0∆) = E (ρt∆), and ρ̂ = exp
(̂̃µ∆

)
. The following result provides

within block infill asymptotics as ∆→ 0.

Theorem 3.4.1 If θ0 ∈ Int(Θ) and ∆→ 0,

1√
∆

(
θ̂ − θ0

)
L→ N∑

n=1

∫ nh
(n−1)h

∂σ̆2(ys;θ0)

∂θ
· ∂σ̆

2(ys;θ0)

∂θ′
ds∫ nh

(n−1)h
σ̆4(ys;θ0)ds


−1 N∑

n=1

√
2
∫ nh

(n−1)h

∂σ̆2(ys;θ0)

∂θ
σ̆2(ys;θ0)dBs∫ nh

(n−1)h
σ̆4(ys;θ0)ds

 ,

where σ̆2(yt;θ0) = σ̃2
0y

2
t + σ2

0 is the spot variance of y(t).

Remark 3.4.1 In discrete time modeling, it is common for the parameters σ̃2 and

σ2 to be estimated by MLE or QMLE by imposing ARCH-type innovations, see

for example Jensen and Rahbek (2004); Ling and Li (2008); Francq and Zakoı̈an
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(2012); Chen et al. (2014). This approach provides consistent estimates and associ-

ated asymptotics for σ̃2 rather than σ2 when yt is nonstationary. The explanation is

that as T →∞, the log-likelihood function becomes flat because of the dominating

scale effects of yT that occur in the direction where σ̃2 is fixed and σ2 varies. Un-

like previous work, our approach applies an infill asymptotic scheme which fixes the

time span (T ) and shrinks the sampling interval (∆) to 0. These asymptotics ensure

that yT is measurable and finite, so that σ2 continues to play a role in the limit as

∆ → 0. With this approach it is possible to consistently estimate both variance

parameters and establish their asymptotic properties as in Theorem 3.4.1.

Remark 3.4.2 As found in Phillips and Yu (2009), there is a trade-off between large

N and small N . When N is too small, the variance of the estimator is large. How-

ever, when N is sufficiently large, further increases in N fail to improve the vari-

ance. The choice of the optimal N is therefore of interest but is beyond the scope of

the present paper.

It is interesting in practical applications to test the null hypothesis σ̃2 = 0, which

corresponds to the special case of no randomness in the persistence properties of

y(t). To test this boundary condition hypothesis we apply a modified version of the

locally best invariant test (LBI-test) by Lee (1998) for σ̃2 = 0, viz.,

Z̃N :=

M×N∑
t=1

(
ε̃2
t∆ −

(
1

MN

M×N∑
t=1

ε̃2
t∆

))
ỹ2

(t−1)∆√
1

MN

M×N∑
t=1

ε̃4
t∆ −

(
1

MN

M×N∑
t=1

ε̃2
t∆

)2
√

1

MN

M×N∑
t=1

ỹ4
(t−1)∆ −

(
1

MN

M×N∑
t=1

ỹ2
(t−1)∆

)2

where ỹt∆ =
yt∆√

1 + y2
t∆

, ε̃t∆ = yt∆−ρ̃y(t−1)∆ and ρ̃ =

(
M×N∑
t=1

ỹ(t−1)∆y(t−1)∆

)−1 M×N∑
i=1

ỹ(t−1)∆yt∆.

Then, as N →∞,

(MN)−1/2Z̃N
L→ N (0, 1), under H0 : σ̃2 = 0,

and

|(MN)−1/2Z̃N |
p→∞, under H1 : σ̃2 > 0.
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Remark 3.4.3 Note first that we use the self-normalized variable ỹt∆ for construct-

ing the test statistic. This is because the normalization ensures that ỹt∆ is stationary

when yt∆ is nonstationary, which is crucial for Z̃N to converge under the null hy-

pothesis (Lee, 1998; Nagakura, 2009). In fact, the weighting function 1 + y2
t∆ can

be replaced by any function g(x) where g : [0,∞) → (0,∞) is a Borel function

satisfying x2/g(x)→ 1 as |x| → ∞. In practice, we follow the usual convention by

setting the weighting function to be 1 + y2
t∆ as in Hill and Peng (2014) and Horváth

and Trapani (2016).

Remark 3.4.4 A second point worthy of note concerns the use of the IV estimate ρ̃

here. Following Chan et al. (2012), the IV estimate

ρ̃ =
M×N∑
t=1

y(t−1)∆yt∆√
δ + y2

(t−1)∆

/
M×N∑
t=1

y2
(t−1)∆√

δ + y2
(t−1)∆

is uniformly asymptotically normally distributed for both stationary and nonsta-

tionary yt∆. Further, the IV estimate ρ̃ includes the Cauchy estimator (So and Shin,

1999) as a special case (δ = 0), which is known to be asymptotically median-

unbiased. This helps improve the finite sample performance of the test statistic

which depends explicitly on the residuals.

Remark 3.4.5 The above test for coefficient constancy remains valid in the pres-

ence of correlation between the random coefficient and innovations. When the ran-

dom coefficients are endogenous the quadratic covariation 〈Bu, Bε〉t =
∫ t

0
γsds and

the conditional variance of ε̃t∆ under the null is Var(ε̃t∆|y(t−1)∆) = σ2, whereas

under the alternative Var(ε̃t∆|y(t−1)∆) = σ̃2y2
(t−1)∆ + 2γtσ̃σy(t−1)∆ + σ2. The test

may therefore be interpreted as examining evidence for the presence of a relation-

ship between ε̃2
t∆ and y2

(t−1)∆ and y(t−1)∆ – in other words, a test for conditional

heteroskedasticity.
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3.4.2 Drift Parameter

This section first derives limit theory for the estimated drift parameter under the

double asymptotics scheme with ∆ → 0 and T → ∞. In this framework both

M → ∞ and N → ∞. Then we derive limit theory for the expectation of the

random autoregressive coefficient ρt∆ by requiring only that ∆ → 0. Based on the

limit theory for these estimated parameters we construct test statistics for assessing

the nature of extreme sample path behavior in data.

Theorem 3.4.2 In model (3.2.2), assume σ̃2
0 > 0. When T → ∞ and ∆ → 0,

µ̃
p→ µ̃0. Additionally, if T∆→ 0, the asymptotic distribution of ̂̃µ is given by

√
T
(̂̃µ− µ̃0

)
L→ N

(
0, V −1

1

)
,

where

V1 =


E

(
y2
t

σ̃2
0y

2
t + σ2

0

)
, if κ = µ̃0 +

1

2
σ̃2

0 < 0;

σ̃−2
0 , if κ = µ̃0 +

1

2
σ̃2

0 ≥ 0.

. (3.4.1)

Remark 3.4.6 The asymptotics (3.4.2) hold regardless of the value of µ̃0 + σ̃2
0/2,

which may be less than zero, equal zero, or greater than zero. By contrast, it is

well-known that in the case of the pure AR(1) model, the asymptotic theory for the

least squares estimator of the autoregressive coefficient depends critically on the

true value of the coefficient. However, in the RCAR model asymptotic normality

may hold in both the stationary and explosive cases under certain conditions, as

discussed in Hwang and Basawa (2005). The above result reinforces this finding

and extends applicability to the continuous-time random coefficient model examined

here.

The asymptotic theory given in (3.4.2) suggests that consistent estimation of µ̃

requires T → ∞. In practical work, however, the time span is often short making

large span asymptotics less relevant. The following theorem provides infill asymp-
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totics for estimating ρ = exp{µ̃∆}, which is useful for testing nonstationarity in a

finite time span setting.

Theorem 3.4.3 In model (3.2.2), assume σ̃2
0 > 0. When T is fixed and ∆ → 0,

ρ̂
p→ ρ0 = 1 and the asymptotic distribution of ρ̂ is given by

1

∆
(ρ̂− 1)

L→ N
(
0, (TV1)−1

)
. (3.4.2)

where

ρ̂ = 1 +
ÂN

B̂N

, (3.4.3)

and V1 is given in (3.4.1).

Remark 3.4.7 Although the above result does not deliver a consistent estimate of

µ̃ with a finite T , the asymptotic theory in (3.4.2) shows that consistent estima-

tion of ρ is possible when ∆ → 0. This result motivates estimation of βκ :=

exp {(µ̃+ σ̃2/2) ∆} and βφ := exp {(µ̃− σ̃2/2) ∆} instead of the continuous time

parameters κ and φ when the time span of the data is short.

Proposition 3.4.1 For model (3.2.2) with T fixed and σ̃2
0 > 0, as ∆→ 0,

1

∆

(
β̂κ − β0

κ

)
L→ N

(
0, (TV1)−1

)
,

1

∆

(
β̂φ − β0

φ

)
L→ N

(
0, (TV1)−1

)
.

where

β̂κ = exp

{(̂̃µ+
1

2
̂̃σ2

)
∆

}
and β̂φ = exp

{(̂̃µ− 1

2
̂̃σ2

)
∆

}
, (3.4.4)

β0
κ = exp

{(
µ̃0 + σ̃2

0/2
)

∆
}

and β0
φ = exp

{(
µ̃0 − σ̃2

0/2
)

∆
}
.

Remark 3.4.8 To test different forms of unstable/explosive behavior, we need to

test whether κ = µ̃ + σ̃2/2 = 0, or µ̃ = 0, or φ = µ̃ − σ̃2/2 = 0. Testing these

restrictions corresponds to testing the hypotheses βκ = 1, or ρ = 1, or βφ = 1. In

the spirit of Theorem 3.4.3 and Proposition 3.4.1, as ∆ → 0, we can construct the
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following test statistics and derive their asymptotic distributions as detailed below:

tκ =

(
1

∆

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

)1/2 (
β̂κ − β0

κ

)
L→ N (0, 1), (3.4.5)

tµ̃ =

(
1

∆

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

)1/2

(ρ̂− ρ0)
L→ N (0, 1), (3.4.6)

tφ =

(
1

∆

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + σ̂2

)1/2 (
β̂φ − β0

φ

)
L→ N (0, 1). (3.4.7)

These three t-test statistics can be calculated sequentially and compared with the

right-tailed critical value of the asymptotic distributions, giving a real-time testing

strategy of empirical evidence of instability/explosiveness in the data. Accordingly,

the origination and termination dates of different types of extreme behavior may

be estimated in the same fashion as Phillips et al. (2015a). More specifically, date

estimates can be determined from first crossing times as follows

r̂ieun = inf
s∈[r̂

(i−1)f
un ,1]

{s : tκ(s) > Z0.95} and r̂ifun = inf
s∈[r̂ieun,1]

{s : tκ(s) < Z0.95} ,

r̂iele = inf
s∈[r̂

(i−1)f
le ,1]

{s : tµ̃(s) > Z0.95} and r̂ifle = inf
s∈[r̂iele ,1]

{s : tµ̃(s) < Z0.95} ,

r̂iee = inf
s∈[r̂

(i−1)f
e ,1]

{s : tφ(s) > Z0.95} and r̂ife = inf
s∈[r̂iee ,1]

{s : tφ(s) < Z0.95} ,

where: Z0.95 = 1.645 is the 95% critical value of the standard normal distribution;

r̂ieun/r̂
ie
le/r̂

ie
e represent estimates of the origination date of the ith explosive period;

and r̂ifun/r̂
if
le /r̂

if
e represent estimates of the termination date of the ith explosive pe-

riod. To identify the first unstable/explosive period in the sample, a minimum win-

dow is needed to start the recursion. The time-stamping strategy used here is based

on the standard normal distribution whereas the PWY and PSY algorithms rely on

non-standard unit root and sup unit root distributions.
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3.5 The Model with Endogeneity

This section extends the base model (3.2.2) by allowing for endogeneity, quantified

by the correlation between the random coefficient and the equation innovation. In

the discrete time literature Hwang and Basawa (1997, 1998) described this frame-

work as a generalized random coefficient autoregressive model. With stationarity

imposed they studied the local asymptotic normality of the maximum likelihood

estimator and the weighted least squares estimator of the autoregressive coefficient.

Zhao and Wang (2012) considered empirical likelihood estimation of the stationary

model and proposed a likelihood ratio test for testing stationary/ergodicity. Lieber-

man and Phillips (2017c) studied the effects of endogeneity in a multivariate context

and derived the asymptotic distribution for the non-linear least squares (NLLS) es-

timator for the autoregressive coefficient, showing that NLLS is inconsistent for the

autoregressive coefficient under endogeneity. To address inconsistency of NLLS,

Lieberman and Phillips (2017b) proposed a non-linear instrumental variable tech-

nique and a GMM approach, establishing consistency and deriving the asymptotic

distribution for the IV estimator of the autoregressive coefficient.

To incorporate endogeneity in a continuous time random coefficient setting, we

rewrite the model (3.2.2) as the following continuous time system

dy(t) = y(t)dZ̃(t) + dZ(t), y(0) = y0, (3.5.1)

dZ̃(t) = µ̃dt+ σ̃dBu(t),

dZ(t) = σdBε(t),

where (Bu, Bε) is a two-dimensional Brownian motion with covariance parame-

ter γ so that the quadratic covariation process satisfies d〈Bu, Bε〉t = γdt. Then,

d〈Z̃, Z〉t = γσ̃σdt := ωdt, where ω = γσ̃σ is the covariance parameter of (Z̃, Z).
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According to Föllmer et al. (1994), the strong solution to this continuous system is

y(t) = exp

((
µ̃− 1

2
σ̃2

)
t+ σ̃Bu(t)

)
y(0) + J(t), (3.5.2)

where

J(t) = σ

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

}
dBε(s)

− ω
∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

}
ds

= K(t)− L(t).

Compared to the model without endogeneity in (3.2.4), the dynamics of the

process are now driven by J(t) instead of K(t). J(t) has two components, one

being K(t) and the other depending on the covariance of the random coefficient

and the innovation, ω. The model specified in the system (3.5.1) is the continu-

ous time limit of the endogenous stochastic unit root (STUR) model of Lieberman

and Phillips (2017c) and ω corresponds to the one-sided long-run covariance in the

STUR model.

The following proposition shows that the given characterization of instabil-

ity/explosiveness in the model without endogeneity remains valid for the model

with endogeneity.

Proposition 3.5.1 The sample path characteristics of the process (3.5.2) may be

classified into the following three types,

1. unstable: κ = µ̃+
1

2
σ̃2 > 0;

2. locally explosive: µ̃ > 0;

3. explosive: φ = µ̃− 1

2
σ̃2 > 0.

The fact that sample path characteristics of (3.5.2) are unaffected by endogeneity

may be explained intuitively by noting that the model (3.5.1) is observationally
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equivalent to the following continuous system

dyt = µ̃ytdt+
√
σ̃2y2

t + 2ωyt + σ2dBv(t), (3.5.3)

whereBv(t) is another standard Brownian motion in an expanded probability space.

Note that when the variance of yt goes to infinity as t increases, the dominant term

in the diffusion function σ̃2y2
t + 2ωyt + σ2 is σ̃2y2

t , which explains why σ̃2 is the

key parameter in determining long-run volatility.

Remark 3.5.1 From the perspective of diffusion process asymptotics, the recur-

rence and mean reversion characterizations given in Figure 3.3 also remain valid.

This robustness is evident by checking the limit of the scale index function:

p = lim
y→∞

v(y) = lim
y→∞

−2µ̃y2

σ2 + 2ωy + σ̃2y2
= −2µ̃

σ̃2
,

which is apparently unaffected by endogeneity in the limit.

We can rewrite the discrete time model in AR(1) format as

yt∆ = exp

((
µ̃− 1

2
σ̃2

)
∆ + σ̃

√
∆ut

)
y(t−1)∆ + J∆(t) = ρt∆y(t−1)∆ + Jt∆,

(3.5.4)

where ut
i.i.d∼ N (0, 1), and

Jt∆ = σ

∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ (Bu,t∆ −Bu,s)

}
dBε,s

− ω
∫ t∆

(t−1)∆

exp

{(
µ̃− 1

2
σ̃2

)
(t∆− s) + σ̃ (Bu,t∆ −Bu,s)

}
ds.

From earlier derivations we know that

E (Jt∆) =
ω

µ̃
(1− exp(µ̃∆)) = −ω∆ +O(∆2), (3.5.5)

Var(Jt∆) = O(∆). (3.5.6)

Therefore, when standardizing the model by the factor 1/
√

∆, the expectation of the
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correspondingly standardized error process Jt∆/
√

∆ in (3.5.4) has order O(
√

∆) as

∆ → 0. This means that under infill asymptotics we can consistently estimate the

expectation of the random coefficient, ρ0 = Eρt∆ = exp (µ̃∆). This result is natu-

rally achieved in the continuous time setup with infill asymptotics and contrasts with

inconsistency of least squares estimation in discrete time models with endogeneity

(Lieberman and Phillips, 2017c).

As before, we continue to apply the two stage estimation procedure of Phillips

and Yu (2009) to estimate the model under endogeneity. Note that the quadratic

variation of yt now satisfies

d[y]t = (σ̃2y2
t + 2ωyt + σ2)dt. (3.5.7)

In light of the argument of Remark 3.4.1 we cannot consistently estimate ω and σ2 in

explosive cases under long-span sampling because the signal of y2
t is so strong that

it drowns information in the linear and constant terms (i.e., 2ωyt and σ2). However,

infill asymptotics for θ̂∗ :=
( ̂̃σ2, γ̂, σ̂2

)′
can be developed in the same way as before

and the results are summarized in the following theorem.

Theorem 3.5.1 Assume θ∗
0 ∈ Int(Θ∗) where Θ∗ is a compact set inR+× [−1, 1]×

R+. As T is fixed and ∆→ 0, we have

1√
∆

(
θ̂∗ − θ∗

0

)
L→

N∑
n=1

∫ nh

(n−1)h

∂σ̌2(ys;θ
∗
0)

∂θ∗ · ∂σ̌
2(ys;θ

∗
0)

∂θ∗′ ds∫ nh

(n−1)h

σ̌4(ys;θ
∗
0)ds


−1

N∑
n=1

√
2

∫ nh

(n−1)h

∂σ̌2(ys;θ
∗
0)

∂θ∗ σ̌2(ys;θ
∗
0)dBs∫ nh

(n−1)h

σ̌4(ys;θ
∗
0)ds

 ,

where σ̌2(yt;θ
∗
0) = σ̃2

0y
2
t + 2ω0yt + σ2

0 is the spot variance of y(t).

Remark 3.5.2 In principle at least, this limit theory enables us to construct a test

for endogeneity based on the asymptotic distribution of γ̂. However, the limit theory

above is hard to implement as this distribution is non-standard and non-pivotal and
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γ̂ is biased when the frequency is low. Instead, to test the most relevant hypothesis

of interest H0 : γ0 = 0 we propose the likelihood ratio test based on the objective

function Q∆(θ∗):

LR = ∆−1 (Qr
∆ −Qur

∆ ) ∼ χ2(1), under H0 : γ0 = 0. (3.5.8)

For consistent estimation of µ̃, as in the base model, we maximize the following

approximated likelihood

`ALF (µ̃) =
M×N∑
t=1

µ̃y(t−1)∆

(
yt∆ − y(t−1)∆

)
̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2
−∆

2

M×N∑
t=1

µ̃2y2
(t−1)∆̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2
,

(3.5.9)

where ω̂ = γ̂
√ ̂̃σ2σ̂2, which gives

̂̃µ = ∆−1

M×N∑
t=1

y(t−1)∆

(
yt∆ − y(t−1)∆

)
̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

M×N∑
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

=: ∆−1 Â
∗
N

B̂∗N
. (3.5.10)

The following theorem provides asymptotic theory for ̂̃µ and ρ̂ := exp
(̂̃µ∆

)
.

Theorem 3.5.2 In model (3.5.1) assume σ̃2
0 > 0. When T → ∞ and ∆ → 0, we

have µ̃
p→ µ̃0. Additionally, if T∆→ 0, we have,

√
T
(̂̃µ− µ̃0

)
L→ N

(
0, V −1

2

)
, (3.5.11)

where

V2 =


E

(
y2
t

σ̃2
0y

2
t + 2ω0yt + σ2

0

)
if κ = µ̃+

1

2
σ̃2 < 0

σ̃−2
0 if κ = µ̃+

1

2
σ̃2 ≥ 0

. (3.5.12)

Theorem 3.5.3 In model (3.5.1), assume σ̃2
0 > 0. When T is fixed and ∆ → 0, we
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have ρ̂
p−→ ρ0 and its asymptotic distribution is

1

∆
(ρ̂− ρ0)

L→ N
(
0, (TV2)−1

)
, (3.5.13)

where

ρ̂ =

∑M×N
t=1

y(t−1)∆yt∆̂̃σ2y2
(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

∑M×N
t=1

y2
(t−1)∆̂̃σ2y2

(t−1)∆ + 2ω̂y(t−1)∆ + σ̂2

=: 1 +
Â∗N

B̂∗N
.

According to Theorems 3.5.2 and 3.5.3 the estimates ̂̃µ and ρ̂ continue to have

asymptotic normal distributions under infill asymptotics. This convenient feature

allows us to apply the testing procedures proposed in the previous section after

making a minor change in the variance of the limit distribution to accommodate

endogeneity.

3.6 Simulations

This section reports the results of Monte Carlo simulations designed to evaluate the

performance of the two-stage estimator. We also examine the finite sample ade-

quacy of the asymptotic theory for the test statistics developed in Sections 3.4 and

3.5. To save space, we only report the results for model (3.2.2) under explosive-

ness. More tables reporting bias and standard errors under stationary, unstable, and

locally explosive cases are given in the online supplement to this paper (Tao et al.,

2018).

The simulations involved 10,000 replications of sample paths generated from

model (3.2.2) under explosiveness with parameter values µ̃ = 1, σ̃ = 1, σ = 1,

and with initial condition y0 = 10.8 Since φ > 0 this generating process leads

to explosiveness. In the first experiment, we set the time span T = 5, but varied

∆ from 1/252 to 1/19656 and varied M from 21, 63 to 252. ∆ = 1/252 corre-

sponds to daily observations whereas ∆ = 1/19656 corresponds to 5-minute (high
8We also report bias and standard errors under stationary, unstable, and locally explosive cases

in the online appendix.
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frequency) observations. When ∆ = 1/252, M = 21, 63 and 252 implies a cor-

responding block size that is monthly, quarterly, and annual, respectively. When

∆ = 1/19656, we report the estimation bias and standard errors by holding the

number of observations for calculating the realized volatilities (M ) constant as in a

daily frequency. In panel A of Table 3.2, we report the bias and the standard errors

of the two-stage estimates when there is no endogeneity in the model, i.e. when

γ = 0, and in panel B, we report the corresponding results for the model with en-

dogeneity, specifically with γ = 0.8. The bias and the standard errors are computed

using 5,000 replications.

Table 3.2: Bias and standard errors of the two-stage estimates for different ∆ and
M and a fixed T (= 5). The parameter values are µ̃ = 1, σ̃2 = 1, σ2 = 1. y0 = 10.

Case I: ∆ = 1/252
Params M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E.
Panel A: γ = 0
µ̃ -0.0328 0.4942 -0.0347 0.4946 -0.0455 0.4938
σ̃2 -0.0093 0.0471 -0.0135 0.0493 -0.0190 0.0611
σ2 4.6415 13.0303 6.1285 18.5101 28.7040 138.7416
κ -0.0375 0.4952 -0.0414 0.4958 -0.0549 0.4962
ρ -1.3e-04 0.0020 -1.4e-04 0.0020 -1.8e-04 0.0020
φ -0.0282 0.4943 -0.0279 0.4945 -0.0360 0.4933

Panel B: γ = 0.8
µ̃ -0.0487 0.5213 -0.0511 0.5214 0.0208 1.5405
σ̃2 0.0326 0.0974 0.0350 0.1119 0.0776 0.2239
σ2 19.2645 45.3508 28.3990 76.9436 193.6521 1.1e+03
γ -0.4179 0.6293 -0.4519 0.6521 -0.6296 0.7499
κ -0.0324 0.5208 -0.0336 0.5199 0.0596 1.5431
ρ -1.9e-04 0.0021 -2.0e-04 0.0021 9.9e-05 0.0064
φ -0.0650 0.5262 -0.0686 0.5289 -0.0180 1.5461

Case II: ∆ = 1/19656
Params M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E.
Panel A: γ = 0
µ̃ -0.0279 0.5173 -0.0279 0.5173 -0.0279 0.5173
σ̃2 0.0014 0.0056 4.7e-04 0.0055 -8.3e-05 0.0055
σ2 0.2518 1.3496 0.2385 1.3241 0.2414 1.3443
κ -0.0272 0.5172 -0.0276 0.5172 -0.0279 0.5172
ρ -1.4e-06 2.6e-05 -1.4e-06 2.6e-05 -1.4e-06 2.6e-05
φ -0.0285 0.5174 -0.0281 0.5174 -0.0278 0.5174

Panel B: γ = 0.8
µ̃ -0.0368 0.5194 -0.0368 0.5194 -0.0368 0.5194
σ̃2 0.0037 0.0105 0.0028 0.0119 0.0028 0.0104
σ2 1.4455 3.7584 1.4215 3.6797 1.4215 3.7170
γ -0.0884 0.1778 -0.0874 0.1750 -0.0874 0.1762
κ -0.0349 0.5193 -0.0354 0.5193 -0.0354 0.5193
ρ -4.9e-05 1.1e-05 -4.1e-05 2.4e-05 -4.1e-05 2.4e-05
φ -0.0386 0.5196 -0.0382 0.5196 -0.0382 0.5196

First, from Table 3.2 it is apparent that when the sampling frequency increases

the parameters σ̃2, γ and σ2 are all better estimated in terms of bias and standard er-

ror. On the other hand, there is little improvement in the estimation of µ̃ because the
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time span does not change. This finding corroborates the asymptotic theory for µ̃

given in Theorem 3.4.2 and also supports results found in Yu (2012). Furthermore,

due to the difference in the convergence rates shown in Theorems 3.4.1 and 3.4.2,

the bias and the standard errors of κ̂ and φ̂ are mainly determined by those of ̂̃µ,

which explains why estimation performance of κ̂ and φ̂ does not improve as sam-

pling frequency increases. Finally, bias and standard errors both appear reasonably

robust across different values of M .

In the second experiment, we fix ∆ = 1/252, but vary T from 30 to 60 and M

from 21, 63 to 252. In Panel A of Table 3.3, we report the bias and the standard

errors of the two-stage estimators across 5,000 simulated samples for the model

without endogeneity. The same experiment is repeated for the model with endo-

geneity and the results are reported in Panel B. Several findings are evident from

Table 3.3. First, as the time span enlarges, sharp reductions occur in the bias and

standard error of ̂̃µ. Combined with the results of Table 3.2, this finding suggests

that time span, not sampling frequency, is the primary influence on performance of̂̃µ. Second, the bias and standard errors of ̂̃σ2, γ̂ and σ̂2 do not change significantly

as T increases. Finally, both bias and standard errors are again robust with respect

to M .

From Table 3.2 and Table 3.3, it is evident that the proposed two-stage method is

effective in estimating µ̃, γ, σ̃2, κ, ρ, φ even in the presence of endogeneity. While

the estimate of σ2 is less satisfactory,9 this outcome is unsurprising because when

κ > 0, y2
t grows exponentially with t. Hence, estimates of γ and σ2 are dominated

by the component σ̃2y2
t in σ̃2y2

t + 2ωyt + σ2 when t is large. More importantly, the

three forms of explosive behavior do not depend on γ and σ2 in that case. Hence, it is

expected that the performance of γ̂ and σ̂2 will have little impact on the performance

of the proposed t-tests and the time-stamping strategy.

The third experiment is designed to evaluate the performance of the test statistics

9In both Table 2 and Table 3, the bias and S.E. of σ̃2 and σ2 evidently increase with M . The ex-
planation is that, given ∆ and T , asM increases the effective sample size in the first stage estimation
(N ) decreases, which harms performance of ̂̃σ2 and σ̂2.
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Table 3.3: Bias and standard error of the two-stage estimates for different T and M
and fixed ∆(= 1/252). The parameter values are µ̃ = 1, σ̃2 = 1, σ2 = 1. y0 = 10.

Case I: T = 30
Params M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E.
Panel A: γ = 0
µ̃ -0.0058 0.1861 -0.0060 0.1861 -0.0075 0.1860
σ̃2 -0.0031 0.0175 -0.0066 0.0179 -0.0077 0.0208
σ2 3.8582 11.6119 5.1172 16.6821 24.0530 136.4710
κ -0.0073 0.1864 -0.0093 0.1862 -0.0113 0.1860
ρ -2.3e-05 7.4e-04 -2.4e-05 7.4e-04 -2.9e-05 7.4e-04
φ -0.0042 0.1862 -0.0027 0.1864 -0.0036 0.1866

Panel B: γ = 0.8
µ̃ -9.7e-04 0.1796 -0.0013 0.1796 0.0045 0.6583
σ̃2 -1.6e-04 0.0188 -0.0035 0.0193 -0.0034 0.0225
σ2 12.4166 32.3889 17.3784 53.4253 81.2221 396.9127
γ -0.2879 0.5323 -0.3136 0.5496 -0.3924 0.6223
κ -0.0010 0.1799 -0.0030 0.1798 0.0028 0.6584
ρ -3.6e-06 7.2e-04 5.0e-06 7.2e-04 2.2e-05 0.0027
φ -8.9e-04 0.1797 4.2e-04 0.1800 0.0063 0.6584

Case II: T = 60
Params M = 21 M = 63 M = 252

Bias S.E. Bias S.E. Bias S.E.
Panel A: γ = 0
µ̃ -0.0014 0.1301 -0.0015 0.1301 -0.0023 0.1302
σ̃2 -0.0023 0.0123 -0.0058 0.0126 -0.0068 0.0147
σ2 3.8333 11.6501 5.0750 16.5899 24.4001 137.0690
κ -0.0026 0.1304 -0.0044 0.1303 -0.0057 0.1303
ρ -5.6e-06 5.2e-04 -6.0e-06 5.2e-04 -9.0e-06 5.2e-04
φ -2.7e-04 0.1302 0.0013 0.1303 0.0011 0.1304

Panel B: γ = 0.8
µ̃ 0.0016 0.1277 0.0014 0.1277 0.0127 0.5476
σ̃2 -0.0010 0.0126 -0.0043 0.0130 -0.0048 0.0153
σ2 12.1161 31.6064 16.9538 52.3937 80.3542 393.2385
γ -0.2768 -0.5228 -0.3011 0.5417 -0.3848 0.6138
κ 0.0011 0.1279 -7.8e-04 0.1278 0.0103 0.5475
ρ 6.4e-06 5.1e-04 5.7e-06 5.1e-04 5.3e-05 0.0022
φ 0.0021 0.1278 0.0036 0.1279 0.0151 0.5477
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introduced in Remark 3.4.8. To do so, we simulate 5,000 sample paths from model

(3.2.2) and from model (3.5.1) with γ = 0.8, and calculate the power and size of the

three tests. In the first case, we set the nominal size to 5%,M = 21 and ∆ = 1/252,

but vary the time span T . In the second case, we set the nominal size to 5%,M = 21

and T = 10, but vary the sampling interval ∆. The values of ∆ correspond to 1-

day (1/252), 1-hour (1/1638), and 30-minute (1/3276), respectively. Results for the

power and size are reported in Table 3.4 and 3.5.

Table 3.4: Power and size of the t tests under different forms of unstable/explosive
behavior with fixed ∆ (= 1/252) and growing time span T .

T tκ tµ̃ tφ
γ = 0 Size κ = 0.5 κ = 1 κ = 2 Size µ̃ = 0.5 µ̃ = 1 µ̃ = 2 Size φ = 0.5 φ = 1 φ = 2

5 0.039 0.256 0.658 0.995 0.044 0.281 0.706 0.997 0.047 0.292 0.717 0.998
10 0.034 0.330 0.807 1.000 0.039 0.441 0.912 1.000 0.047 0.468 0.933 1.000
15 0.037 0.409 0.895 1.000 0.038 0.547 0.966 1.000 0.047 0.600 0.984 1.000
30 0.038 0.580 0.984 1.000 0.038 0.747 0.999 1.000 0.048 0.853 1.000 1.000

T tκ tµ̃ tφ
γ = 0.8 Size κ = 0.5 κ = 1 κ = 2 Size µ̃ = 0.5 µ̃ = 1 µ̃ = 2 Size φ = 0.5 φ = 1 φ = 2

5 0.045 0.261 0.634 0.986 0.045 0.273 0.669 0.994 0.044 0.270 0.682 0.996
10 0.041 0.438 0.890 1.000 0.046 0.482 0.915 1.000 0.044 0.453 0.918 1.000
15 0.041 0.583 0.975 1.000 0.054 0.665 0.981 1.000 0.046 0.593 0.981 1.000
30 0.040 0.838 0.999 1.000 0.053 0.926 1.000 1.000 0.047 0.861 1.000 1.000

Table 3.5: Power and size of the t tests under different forms of unstable/explosive
behavior with fixed T (= 10) and shrinking sampling interval ∆.

∆ tκ tµ̃ tφ
γ = 0 Size κ = 0.5 κ = 1 κ = 2 Size µ̃ = 0.5 µ̃ = 1 µ̃ = 2 Size φ = 0.5 φ = 1 φ = 2
1/252 0.034 0.330 0.807 1.000 0.039 0.441 0.912 1.000 0.047 0.468 0.933 1.000

1/1638 0.035 0.326 0.813 0.999 0.044 0.441 0.916 1.000 0.048 0.473 0.930 1.000
1/3276 0.036 0.334 0.816 1.000 0.048 0.446 0.910 1.000 0.050 0.474 0.927 1.000

∆ tκ tµ̃ tφ
γ = 0.8 Size κ = 0.5 κ = 1 κ = 2 Size µ̃ = 0.5 µ̃ = 1 µ̃ = 2 Size φ = 0.5 φ = 1 φ = 2

1/252 0.041 0.438 0.890 1.000 0.046 0.482 0.915 1.000 0.044 0.453 0.918 1.000
1/1638 0.041 0.427 0.887 1.000 0.052 0.473 0.915 1.000 0.047 0.459 0.921 1.000
1/3276 0.043 0.442 0.885 0.999 0.054 0.483 0.911 1.000 0.051 0.460 0.916 1.000

The simulation results show that size distortion of the proposed tests for different

types of explosive behavior becomes smaller when data is sampled more frequently.

In addition, the power of the tests rises rapidly as the sample size increases (by

either increasing the time span T or shrinking the sampling interval ∆) and for

greater departures of the true parameters from the null. The reason for smaller

size distortions as ∆ shrinks is that the approximation errors of the distributions of

∆−1(β̂κ − β0
κ) and ∆−1(β̂φ − β0

φ) to the limiting distributions are of order O(
√

∆);

see (A.2.9).
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Next, we check size and power of the tests under endogeneity. Simulations are

generated by setting σ̃2 = 1 and σ2 = 100 with y0 = 10 under the sampling scheme

∆ = 1/252, M = 21 and T = {5, 10, 15, 30}. Sample paths are generated in

1000 replications for parameter values µ̃ = {−1,−0.5, 0.5, 1} and for correlation

coefficients γ = {0, 0.04, 0.08, 0.4, 0.8}. The results in Table 3.6 show that size

distortion is very small under all parameter scenarios and that test power grows

more slowly as the process becomes more unstable. This phenomenon is due to the

structure of the quadratic variation σ̃2y2
t + 2ωyt + σ2 under endogeneity. When the

process yt is more unstable, the signal from y2
t is stronger and a much larger value

of ω is needed for the component 2ωyt in the quadratic variation to enhance the

probability of rejecting the null. Also, as expected, the power of the test increases

with the increase in sample size.

Table 3.6: Power and size of the LR test for endogeneity.

T
Stationary (µ̃ = −1) Unstable (µ̃ = −0.5)

γ = 0 0.04 0.08 0.4 0.8 γ = 0 0.04 0.08 0.4 0.8
5 0.0470 0.0780 0.1950 0.9510 0.9940 0.0500 0.0810 0.1920 0.9210 0.9850
10 0.0440 0.1290 0.4110 0.9990 1.0000 0.0490 0.1200 0.4030 0.9970 1.0000
15 0.0540 0.1960 0.6000 1.0000 1.0000 0.0560 0.2160 0.5970 1.0000 1.0000
30 0.0490 0.3820 0.8790 1.0000 1.0000 0.0540 0.3990 0.8920 1.0000 1.0000

T
Locally Explosive (µ̃ = 0.5) Explosive (µ̃ = 1)

γ = 0 0.04 0.08 0.4 0.8 γ = 0 0.04 0.08 0.4 0.8
5 0.0600 0.0880 0.1580 0.7260 0.8710 0.0460 0.0580 0.1070 0.5940 0.7850
10 0.0460 0.1120 0.2770 0.8650 0.9490 0.0530 0.0690 0.1640 0.7120 0.8800
15 0.0540 0.1210 0.3680 0.9090 0.9690 0.0540 0.0870 0.1780 0.7310 0.9020
30 0.0520 0.1910 0.5270 0.9480 0.9860 0.0540 0.0810 0.1900 0.7530 0.9130

The final experiment checks performance of the proposed tests of coefficient

constancy, i.e. H0 : σ̃2 = 0. To do so, we simulate 10,000 sample paths from model

(3.5.1) with different parameter values to cover the various explosive scenarios.

Both size and power are calculated. More specifically, we vary µ̃ from -0.1 to 0.1, σ̃

from 0 to 0.2 and γ ∈ {0, 0.8} holding σ = 1, which covers all explosive scenarios.

In these experiments, we set nominal size to 5%, M = 21 and ∆ = 1/252, but vary

the time span T to control for sample sizes. Test size and power are reported in

Table 3.7.
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Table 3.7: Power and size of the modified LBI-test for different null models.

T
µ̃ = −0.1 µ̃ = 0 µ̃ = 0.1

σ̃ = 0 0.04 0.10 0.20 σ̃ = 0 0.04 0.10 0.20 σ̃ = 0 0.04 0.10 0.20
Panel A: γ = 0
5 0.049 0.173 0.868 0.998 0.047 0.155 0.787 0.998 0.050 0.494 0.925 0.998
10 0.047 0.285 0.993 1.000 0.050 0.338 0.984 1.000 0.050 0.966 0.999 1.000
15 0.049 0.345 0.998 1.000 0.046 0.504 0.998 1.000 0.046 0.998 1.000 1.000
30 0.047 0.391 1.000 1.000 0.047 0.794 1.000 1.000 0.053 1.000 1.000 1.000
Panel B: γ = 0.8
5 0.049 0.576 0.944 0.999 0.047 0.434 0.913 0.999 0.050 0.719 0.950 0.999
10 0.047 0.926 0.999 1.000 0.050 0.800 0.998 1.000 0.050 0.982 1.000 1.000
15 0.049 0.986 1.000 1.000 0.046 0.944 1.000 1.000 0.046 0.999 1.000 1.000
30 0.047 0.990 0.998 0.999 0.047 0.997 0.997 0.998 0.053 1.000 1.000 1.000

3.7 Empirical Studies

3.7.1 Daily data

As a practical illustration of our methods with real data, we analyze daily S&P 500

real prices over the period from December 31, 1927 to June 29, 2018 with T =

91.5. For the first stage estimation we use daily prices to calculate monthly realized

variance and monthly realized quarticity within each month. Thus 1098 blocks are

chosen with each block containing daily observations within each calendar month,

i.e., N = 1098, h = 1/12. While on average there are 21 trading days within

each month, the actual number of days within a month is year-dependent as well

as month-dependent. Similarly, while on average there are 252 trading days within

each year, the actual number of days within a year is year-dependent. If there are

M days within a month, we set ∆ = h/M for that month.

We first apply our estimation, testing, and time-stamping strategies to these daily

price data based on the model with no endogeneity, that is, model (3.2.2).10 Follow-

ing PWY (2011), the initial window is taken as the first 5-year of the full sample. For

comparison purposes, we also implement the BADF test of PWY and the BSADF

test of PSY. The empirical results are shown in Figure 3.5, where we plot the test

statistic sequences under the three forms of explosiveness and the test statistic se-

10We used model (3.2.2) largely because the bias in estimation of ω is relatively large in long-span,
low-frequency samples and the bias becomes severe when the process is explosive (c.f., Lieberman
and Phillips (2017a)). The methods of the present paper are more relevant in models without endo-
geneity when high-frequency data are unavailable.
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quences under the assumption of time-invariant coefficients. We also plot the 95%

critical values and the data in each panel.
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Figure 3.5: Date-stamping Explosive Periods in the S&P500 Real Price Index with
Time-Varying Coefficient Model without Endogeneity.

The last panel in Figure 3.5 plots the recursive test statistic sequence for testing

a time-invariant autoregressive coefficient. The test results suggest that throughout

the whole sample period the data are well described by a model with time varying

coefficients as the test statistic for a time varying coefficient always exceeds the

95% critical value. In fact, the test statistic generally increases as the time period

expands. Although the value of the test statistic drops in October 1987, indicative

of a possible change in market behavior at that point, it is still larger than the critical

value. Evidence for time variation becomes much stronger from July 1995 onwards.

This dating coincides well with the estimated origination dates of the three forms of

extreme behavior indicated by the other three panels in Figure 3.5. For example, the

first panel in Figure 3.5 indicates that real stock prices have experienced two major

unstable periods. The unstable behavior is first detected at February 1964 and is

interrupted twice over the succeeding period to May 1969. Afterwards real stock

prices are not unstable or explosive until May 1991, from which point the instability

continues until the end of the sample.
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The second panel in Figure 3.5 indicates that real prices are not locally explosive

between January 1928 to January 1965, at which point locally explosive (submartin-

gale) behavior is detected. This behavior is interrupted twice over the succeeding

period to January 1969. The locally explosive behavior is detected again in July

1995 which continues to the end of the sample. Since local explosiveness is more

extreme behavior than instability, its duration tends to be much shorter than that of

instability.

The third panel in Figure 3.5 indicates that the real price index does not ex-

perience explosive behavior between January 1928 and July 1997. An episode of

explosive behavior is detected in July 1997, lasting for a few years and ending in

June 2002. The end date corresponds to the termination of the well-known internet

bubble period. Then, the test detects a second explosive period starting from May

2003 to August 2008, which corresponds to the pre global financial crisis period.

The panel also suggests a further explosive episode starting in October 2010 and

continuing to the end of the sample period. These three periods of major price esca-

lation in the sample (namely, the second half of 1990s, the pre global financial crisis

period, and the recovery from the global financial crisis) are all deemed to have ex-

plosiveness which seems to be a reasonable empirical finding. Time horizons for

the three forms of extreme behavior detected by our method are summarized in a

table in the online supplement (Tao, Phillips, and Yu (2018)).

For comparison purposes, Figure 3.6 plots the recursive BADF statistic (used in

PWY), the recursive BSADF statistic (used in PSY), and corresponding 95% criti-

cal values together with the sample data in each panel. It is clear that both PWY and

PSY tests identify explosive behavior in the second half of the 1990s earlier than

the method proposed in the present paper. This early origination date identification

is achieved by using a more restrictive reduced form autoregressive model. Interest-

ingly, the PSY test recursion indicates two similar pronounced periods of explosive

behavior, one in the second half of the 1990s and the other at the end of the sam-

ple, both matching those identified by methods of the present paper using a more
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complex modeling framework. Time horizons for the explosive behavior detected

by PWY and PSY are summarized in a table in Tao et al. (2018).
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Figure 3.6: Date-stamping Explosive Periods in the S&P500 Real Price Index with
Fixed Coefficient Model.
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Figure 3.7: Date-stamping Explosive Periods in the S&P500 Real Price Index with
Time-varying Coefficient Model with Endogeneity.

To address the possible presence of endogeneity we estimate the more general

model in which endogeneity effects are permitted, i.e., model (3.5.1). The results

are summarized by the recursions plotted in Figure 3.7. First, from the test for en-

dogeneity it is apparent that the null of exogeneity is rejected almost everywhere

throughout the entire sample, confirming that endogeneity is important in the gen-

erating mechanism for these data. From the plotted realized variance graphic in

Figure 3.7 it is further evident that the rejection of exogeneity is closely associated
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with the behavior of the quadratic variation of the process. This is explained by

the fact that the likelihood ratio statistic is based on an objective function that is

constructed using a central limit theorem (CLT) for the realized variance time se-

ries. The test statistic for endogeneity therefore captures differences in the realized

variance estimates using different models, as is shown in Figure 3.8. Further, more

nonstationary horizons are detected in the data when using the model with endo-

geneity. In particular, extreme behavior is detected in the form of both unstable

and locally explosive behavior during price spike in 1987. Note that this explosive

behavior is also reported in the PSY test. However, previous empirical evidence

for explosiveness before global financial crisis (namely, from May 2003 to August

2008) disappears in the fitted model where endogeneity effects are incorporated in

the autoregressive response mechanism. These findings indicate that endogeneity

feedbacks in the random coefficient autoregressive model framework can play an

important role in assessing evidence for various types of instability and explosive-

ness in the data. These time horizons for different form of extreme behavior are

summarized in a table in Tao, Phillips, and Yu (2018).
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Figure 3.8: Realized Variance and Likelihood Values for Random Coefficient Au-
toregression.
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3.7.2 Intra-day data

To further assess evidence for endogeneity and to reduce bias in the estimation of

γ, we estimate the same model (3.5.1) using 5-minute high-frequency data for the

real prices of the E-mini S&P 500 futures contract over the period from the closing

on October 31, 1997 to the closing on October 31, 2013. Use of this high frequency

intra-day data leads to a substantial increase in sample size, accords more closely

with infill asymptotic theory, but has the limitation that the model itself abstracts

from possible intra-day effects that are known to be present in ultra high frequency

data. On the other hand, use of 5-minute data (rather than even higher frequency

observations) helps to mitigate some of these intra-day effects and gives the benefit

of bias reduction in estimation of the correlation between the equation errors and

the random autoregressive coefficient, thereby improving estimation of the degree

of endogeneity in the random coefficient driver variables.

We collect 16 years of 5-minute high-frequency S&P 500 real prices with T =

16. That is, in each trading day we have 79 real prices, sampled at 9:30am, 9:35am,

..., 3:55pm, 4:00pm. The overnight price movement is captured by the difference

between the price observed at 4:00pm on day t and that at 9:30am on day t+ 1. By

doing so, we treat overnight price movements in the same way as intra-day price

movements over 5-minute intervals.

For the first stage estimation we use price changes over 5-minute intervals and

overnight to calculate monthly realized variance and monthly realized quarticity

within each month. That is, 192 blocks are chosen with each block containing high-

frequency data within each calendar month, i.e., N = 192, h = 1/12. If there are

M days within a month we set ∆ = h/(78 ×M) for that month. Model (3.5.1) is

fitted recursively with an initial window size of 5 years. The empirical results are

summarized in Figure 3.9 on monthly basis.

The recursive test statistic graphics in Figure 3.9 indicate that over this sample

period and allowing for high frequency fluctuations the data are unstable but not
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Figure 3.9: Testing Explosiveness and Endogeneity in the 5-minute S&P 500 Real
Price Index with Time-varying Coefficient Model.

locally explosive or explosive. Based on the simulation findings in the previous sec-

tion, estimates of the endogeneity parameter γ can be expected to have reasonably

small bias at this frequency and the t-tests to have good size and power. From the

second panel in Figure 3.9, the LR-test for endogeneity always exceeds the 5% crit-

ical value of the χ2
1 distribution, which reinforces from the 5-minute high-frequency

data the evidence in support of endogenous effects on the autoregressive coefficient

found in the daily-frequency sample.

3.8 Summary and Conclusions

This paper introduces a continuous time model for financial data where the persis-

tence parameter is allowed to be random and time varying. The model has an ana-

lytical solution and an exact discrete time representation which make analysis con-

venient for studying the properties of the system that are associated with extreme

sample path behavior. The discrete time model relates to some models already

in the literature, including the stochastic unit root model (Granger and Swanson

(1997); Lieberman and Phillips (2014); Lieberman and Phillips (2017c)) and the

near-explosive random coefficient model of Banerjee et al. (2017). The statistical

properties of our model reveal three different forms of potential extreme behav-

ior in generated sample paths: instability, local explosiveness, and explosiveness.

These forms of extreme behavior depend directly on the values of model parame-

ters, including the possible presence of endogeneity in the random autoregressive

coefficient.
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A novel two-stage estimation method that relies on empirical quadratic variation

is developed to estimate the model parameters. Limit theory is developed using an

infill asymptotic scheme that provides a convenient basis for testing parameter con-

stancy and the various forms of extreme sample path behavior. The test statistics all

have asymptotically pivotal standard normal distributions which makes implemen-

tation of the tests straightforward in practical work. Similar to other recent work in

the literature on bubbles, a time-stamping strategy is proposed to detect origination

and termination dates of extreme behavior.

In an empirical application to daily S&P 500 real prices between December 31,

1927 and June 29, 2018. Strong evidence against parameter constancy is found in

the whole sample period and this evidence strengthens after July 1997, leading to

a finding of long durations of parameter instability in the model. Three periods of

explosive instability in the data match well with observed periods of major price

escalation in the data and these largely overlap with the periods of price exuberance

identified in earlier work. Tests for endogeneity in these data provide strong evi-

dence in support of endogenous feedbacks in the random coefficient model frame-

work that materially influence quadratic variation and hence recursive estimates of

realized variation in the data. The empirical findings of extreme sample path behav-

ior in real S&P 500 stock prices are broadly in line with the conclusions of other

recent work on stock price exuberance but now provide new evidence against pa-

rameter constancy and in support of the role of endogenous feedbacks that influence

autoregressive behavior and the time forms of extreme sample paths.
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Chapter 4 A Dynamic Network Perspective

on Cryptocurrencies

4.1 Introduction

The invention of Bitcoin (Nakamoto, 2008) spurred the creation of many cryptocur-

rencies (cryptos hereafter) commonly known as Altcoins. As of December 31, 2018,

more than 1500 cryptos are actively traded worldwide, with a market capitalization

of more than 200 billion USD. The growing number of Altcoins led investors to

investigate interrelationships between Altcoins to make a profit. Unlike stocks that

we can group into different industries by GIC or SIC, there are no stringent criteria

to classify cryptos. By virtue of network analysis, we develop a covariate-assisted

spectral clustering (CASC) method that accommodates important network features

such as connection sparsity, degree heterogeneity, and relation asymmetry, to study

the interrelationships between cryptos systematically. We thereby provide a novel

angle to study the market segmentation problem of cryptos and other financial in-

struments.

The crypto market is distinct from the equity market in various aspects, which

hinders the application of traditional classification methodology. Given that both

cryptos and stocks are traded at high frequency, return information is particularly

important as it serves as timely information to understand the dynamics of the mar-

ket structure. According to market efficiency, the covariance between the prices

of speculative assets cannot exceed the covariance between their fundamental in-

formation. Consequently, in the equity market, return co-movement is frequently
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adopted to project the fundamental similarity between stocks. However, excess re-

turn co-movement has been widely documented in the literature (see, e.g., Kumar

and Lee, 2006; Boyer, 2011) and it is more significant in the crypto market given

the strong behavioral bias of market participants and high information uncertainty

of its future cash flows. Inspired by Hoberg and Phillips (2016), who ameliorate

industry classification by studying a set of dynamic industry structures generated

from product differentiation and competition, we use crypto’s contract information

to help identify the fundamental similarities between cryptos. In particular, we

extract the most fundamental characteristics of each mining contract, that is, the

cryptographic algorithm and proof types, as additional input for clustering analysis.

As we expected, our method shows superior classification accuracy over state-of-

the-art methods available in the literature. In particular, cryptos in the same group

show stronger return co-movement than the cross-group return co-movement across

all empirical settings. Moreover, within-group cryptos show stronger connections

in algorithms and proof types than cross-group cryptos do.

To understand the economic meaning of the latent group structure, we conduct

several tests to verify the asset pricing implication of the grouping results. Ace-

moglu et al. (2012) proposed a theoretical framework to model spillover effects

through sector-level shocks. The model suggests that if the linkages in the inter-

sectoral network are sufficiently asymmetric, then sectoral shocks might not cancel

out through diversification, but aggregate into macroeconomic fluctuations. Ahern

(2013) further pointed out that the stocks with higher incoming linkages tend to re-

ceive more shocks from linked stocks and thus require a higher risk premium. Mo-

tivated by these results, we construct a cross-sectional portfolio by sorting on group

centrality and show that high-centrality cryptos require a higher risk premium than

the low-centrality ones. Next, we investigate whether other factors such as liquidity

(Amihud and Mendelson, 1986), investor attention (Liu and Tsyvinski, 2018), and

macro uncertainty (Baker et al., 2016) could possibly explain this augmented risk

premium. Our results suggest that the return predictability of centrality survives
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after controlling for all of these factors. Hence, it provides an important empirical

implication for both academic studies and participants in the crypto market.

This paper develops statistical theory for dynamic networks and thereby makes

several important contributions to classical finance as well as FinTech. First, we

offer a network angle to study the crypto market by connecting cryptos according to

their inter-predictive relationship estimated by adaptive LASSO. Second, we pro-

vide a new set of quantitative tools to study crypto market segmentation that can be

applied to a wide variety of assets. Specifically, we extend the static spectral cluster-

ing methods (Binkiewicz et al., 2017; Zhang et al., 2018, among others,) to identify

communities in dynamic networks with both time-evolving membership and node

covariates. To make full use of the relevant information, we address the challenges

of the features of the real data, namely, time dependency, degree heterogeneity, spar-

sity, and node covariates. Our proposed community detection method can resolve

the aforementioned data issues. The methodology we present can also be extended

to cover more asset-specific characteristics to achieve higher classification accuracy.

In addition, we deepen the understanding of the crypto market in terms of both

market segmentation and portfolio management. Intensive research in this area con-

siders asset pricing inferences from different angles, but there is limited work that

shows the economic link between crypto fundamentals and its performance. Härdle

et al. (2019) suggest crypto dynamics as an extraordinary research opportunity for

academia and provide some insights into the mechanics of this market. Härdle and

Trimborn (2015) construct the CRIX (thecrix.de), a market index consisting of a se-

lection of cryptos representative of the whole crypto market. Given the low liquidity

in the current Altcoin market compared to traditional assets, Trimborn et al. (2019)

propose a Liquidity Bounded Risk-return Optimization (LIBRO) approach that ac-

counts for liquidity issues by studying the Markowitz framework under liquidity

constraints. Chen et al. (2018) propose an option pricing technique for cryptos

based on a stochastic volatility model with correlated jumps. Lee et al. (2018) com-

pare cryptos with traditional asset classes and find that cryptos provide additional
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diversification to mainstream assets, hence improving the portfolio performance.

Petukhina et al. (2018) characterize the effects of adding cryptos to the set of tradi-

tional eligible assets in portfolio management and find that cryptos can significantly

improve the risk-return profile of mainstream asset portfolios. Our results provide

new insights into the fundamentals of the crypto market structure by dividing them

into different groups. We find that cryptos’ fundamentals have very different fea-

tures from those of traditional assets, and these features indeed affect a crypto’s

price evolution.

The remainder of the paper is organized as follows. In section 4.2, we introduce

the model and method to estimate the dynamic group structure and demonstrate the

effectiveness of our method via simulation. In section 4.3, we employ our method

to identify the latent group structure of cryptos and provide its economic interpre-

tation. Then, in section 4.4, we check the time series and cross-sectional return

predictability and demonstrate its portfolio implications. We conclude in section

4.5. All proofs and technical details are provided in the supplement. R codes to

implement the algorithms are available at QuantNet (quantlet.de) by searching the

keyword “CASC.”

4.2 Models and Methodology

In the equity market, network structures are powerful in revealing risk percolations

in assets such as firms, industries, and financial instruments (Cohen and Frazzini,

2008; Aobdia et al., 2014; Acemoglu et al., 2015; Chen et al., 2019, see, e.g.,). The

latest study, Herskovic (2018), constructs a sector level network based on the Bureau

of Economic Analysis (BEA) Input-Output Accounts. Here, we borrow the network

idea to model the interdependencies in between cryptos, such as technological simi-

larities and return co-movements. However, just applying a network view on cryptos

will not give us any insights into the dominant elements of the market. We there-

fore represent the adjacency matrices stochastically via a block structure to identify
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the latent communities. To build such a stochastic blockmodel with time-varying

communities, we need to establish a more advanced methodology to identify group

memberships. Based on adaptive LASSO in a 60-day rolling window, we generate

a time series of adjacency matrices. By imposing an assumption on the switch in

group memberships, we can uniformly identify communities consistently. We base

our numerical implementation of this procedure on spectral clustering. Binkiewicz

et al. (2017) show that the classification accuracy of the spectral clustering method

can be improved by introducing covariate assistance. Here, we present an extension

of the static covariate-assisted spectral clustering (CASC) algorithm to deal with

the dynamic stochastic blockmodel and co-blockmodel. The theoretical justifica-

tion and simulations also demonstrate the consistency of this method.

4.2.1 Dynamic network model with covariates

Undirected network

Consider a dynamic network defined as a sequence of random undirected graphs

with N nodes, GN,t, t = 1, · · · , T , on the vertex set VN = {v1, v2, · · · , vN}, which

does not change over horizons. For each period, we model the unipartite network

structure with the spectral-contextualized degree-corrected stochastic blockmodel

(SC-DCBM) introduced by Zhang et al. (2018). Specifically, we generate the adja-

cency matrices At by

At(i, j) =


Bernoulli{Pt(i, j)}, if i < j

0, if i = j

At(j, i), if i > j

(4.2.1)

where Pt(i, j) = Pr{At(i, j) = 1}. To reflect the group structure, the probabilities

of a connection Pt(i, j) at period t are blocked. In particular, denote zi,t as the group

label of node i at time t; then, if zi,t = k and zj,t = k′, then Pt(i, j) = Bt(zi,t, zj,t) =

Bt(k, k
′). Hence, for any t = 1, · · · , T , we can obtain the population adjacency
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matrix

At
def
= E(At) = ZtBtZ

>
t , (4.2.2)

where Zt ∈ {0, 1}N×K is the clustering matrix such that there is only one 1 in each

row and at least one 1 in each column.

Since the conventional stochastic blockmodel presumes that each node in the

same group should have the same expected degrees, following Karrer and Newman

(2011), we introduce the degree parameters ψ = (ψ1, · · · , ψN) to capture the de-

gree heterogeneity of the groups. In particular, the edge probability between node i

and j at time t is

Pt(i, j) = ψiψjBt(zi,t, zj,t), (4.2.3)

with the identifiability restriction

∑
i∈Gk

ψi = 1, ∀k ∈ {1, 2, · · · , K}. (4.2.4)

where Gk is the set of nodes that belongs to the kth group. Denote Diag(ψ) by Ψ .

The population adjacency matrices for the dynamic SC-DCBM is then:

At = ΨZtBtZ
>
t Ψ, (4.2.5)

Define the regularized graph Laplacian as

Lτ,t = D
−1/2
τ,t AtD

−1/2
τ,t , (4.2.6)

where Dτ,t = Dt + τtI and Dt is a diagonal matrix with Dt(i, i) =
∑N

j=1 At(i, j).

As Chaudhuri et al. (2012) shows, regularization improves the spectral clustering

performance, especially for sparse networks. We fix τt as the value of average node

degree, that is, τt = N−1
∑N

i=1Dt(i, i).

Recent developments suggest that using node features or covariates can greatly

improve classification accuracy. For example, Binkiewicz et al. (2017) add the co-
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variance XX>, with X ∈ [−J, J ]R being the node covariate matrix, to the regu-

larized graph Laplacian and perform the spectral clustering on the static similarity

matrix. We extend the static similarity matrix to cover the dynamic case below:

St = Lτ,t + αtC. (4.2.7)

where C = XX> and αt ∈ [0,∞) is a tuning parameter that controls the in-

formational balance between Lτ,t and X in the leading eigenspace of St. As a

generalization of the model, Zhang et al. (2018) refines this by replacing C with

Cw = XWX>, where W is some weight matrix. Finally, we substitute C with the

new covariate-assisted component Cw
t = XWtX

>, and the population similarity

matrix now becomes

St = Lτ,t + αtCwt , (4.2.8)

where Lτ,t = D−1/2
τ,t AtD

−1/2
τ,t and Cwt = XWtX .

The setup in (4.2.8) addresses several extensions of existing methods. First, Wt

creates a time-varying interaction between different covariates. For instance, we

may think of different refined algorithms that stem from the same origins. Such

inheritance relationships will potentially lead to an interaction between the cryptos.

In addition, over time, some algorithms may become more popular while the others

may near extinction. Thus, this interaction would also change over time. These

interactions are not included in C.

Second, we can easily select covariates by setting certain elements ofWt to zero.

This is necessary as it helps us to model the evolution of technologies. At some

point in time, some cryptographic technology may be eliminated due to upgrades

or cracking. Therefore, Wt offers us the flexibility to exclude covariates, which we

cannot do easily with C.

Lastly, the role of C is to link similarity in covariates to a high probability of

node connection. However, this is questionable in crypto networks. Due to the open

source nature of the blockchain, crypto developers can easily copy and paste the

74



source code and launch a new coin without any costs. Consequently, we observe

a high degree of homogeneity in the crypto market. However, this homogeneity

does not necessarily result in a co-movement of prices: some cryptos are negatively

correlated. In this case, we may set Wt(i, i) to be negative and Cw
t will eventually

bring the cryptos with different technologies closer in the similarity matrix.

Directed network

To model the dynamic block structure in a directed network, we employ the dyanmic

spectral-contextualized degree-corrected stochastic co-blockmodel (SC-DCcBM).

For a directed network, the adjacency matrix At is not necessarily symmetric; that

is,

At(i, j) =


Bernoulli{Pt(i, j)}, if i 6= j

0, if i = j

(4.2.9)

Similarly, define the regularized graph Laplacian Lτ,t ∈ RN×N for the directed

network as

Lτ,t = D
−1/2
R,t AtD

−1/2
C,t , (4.2.10)

where DR,t and DC,t are diagonal matrices with DR,t(i, i) =
∑N

j=1 At(i, j) + τR,t

and DC,t(i, i) =
∑N

j=1 At(j, i) + τC,t, where τR,t and τC,t are set to be the average

row and column degrees at each period, respectively.

We now include the node covariates by constructing a similarity matrix from

regularized graph Laplacian Lτ,t and covariate matrix X in the same way as in an

undirected network; that is, for each t = 1, · · · , T ,

St = Lτ,t + αtXWtX
> = D

−1/2
R,t AtD

−1/2
C,t + αtXWtX

>, (4.2.11)

where αt ∈ [0,∞) is the tuning parameter. Then, let ZR,t ∈ {0, 1}NR×KR and

ZC,t ∈ {0, 1}NC×KC , such that there is only one 1 in each row and at least one 1 in

each column. Let the block probability matrix in each period be Bt ∈ [0, 1]KR×KC
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with rank K = min{KR, KC}. Then, the population adjacency matrix is

At = E(At) = ΨRZR,tBtZ
>
C,tΨ

C , (4.2.12)

and the population regularized graph Laplacian is

Lτ,t = D−1/2
R,t AtD

−1/2
C,t . (4.2.13)

Therefore, the population similarity matrix is

St = Lτ,t + αtXWtX>. (4.2.14)

By construction, we know DR,t(i, i) =
∑N

j=1 1
(t)
{i→j} + τR,t, which controls for

the number of the parents of node j, and DC,t(i, i) =
∑N

i=1 1
(t)
{j→i} + τC,t, which

controls the number of the offspring of node j. To analyze the asymmetric ad-

jacency matrix At caused by directional information, Rohe et al. (2016) propose

using the singular value decomposition instead of eigen-decomposition for the reg-

ularized graph Laplacian. The intuition behind this methodology is to use both the

eigenvectors of L>τ,tLτ,t and Lτ,tL>τ,t, which contains information about “the num-

ber of common parents” and “the number of common offspring”; that is, for each

t = 1, · · · , T ,

(L>τ,tLτ,t)ab =
1√

DC,t(a, a)DC,t(b, b)

N∑
i=1

1
(t)
{i→a and i→b}

DR,t(i, i)
,

(Lτ,tL
>
τ,t)ab =

1√
DR,t(a, a)DR,t(b, b)

N∑
i=1

1
(t)
{a→i and b→i}

DC,t(i, i)
.

4.2.2 Dynamic CASC

To set up a dynamic CASC, we face two major difficulties: (i) defining Wt and (ii)

estimating the similarity matrix with dynamic network information. For the first

issue, we follow Zhang et al. (2018) by setting Wt = X>Lτ,tX , which measures
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the correlation between covariates along the graph. For the second issue, we follow

Pensky and Zhang (2017) by constructing the estimator of St with a discrete kernel

to bring in historical network information. Klochkov et al. (2019) present a similar

idea. Specifically, we first pick an integer r ≥ 0, obtain two sets of integers

Fr = {−r, · · · , 0}, Dr = {T − r + 1, · · · , T},

and assume that |Wr,l(i)| ≤ Wmax, where Wmax is independent of r and i, and

satisfies

1

|Fr|
∑
i∈Fr

ikWr,l(i) =


1, if k = 0,

0, if k = 1, 2, · · · , l.
(4.2.15)

Obviously, the Wr,l is a discretized version of the continuous boundary ker-

nel that weighs only the historical observations. This kernel assigns more recent

similarity matrices higher scores. To choose an optimal bandwidth r, Pensky and

Zhang (2017) propose an adaptive estimation procedure using Lepski et al. (1997)’s

method. Here, we also employ their method and construct the estimator for edge

connection matrices:

Ŝt,r =
1

|Fr|
∑
i∈Fr

Wr,l(i)St+i. (4.2.16)

Once we obtain Ŝt,r, we create an eigen-decomposition of Ŝt,r = ÛtΛ̂tÛ
>
t for

each t = 1, 2, · · · , T . As Lei and Rinaldo (2015) discuss, the matrix Ût may now

have more thanK distinct rows due to the degree correction, whereas the rows of Ût

still only point to at most K directions. Therefore, we apply the spherical clustering

algorithm to find a cluster structure among the rows of the normalized matrix Û+
t

with Û+
t (i, ∗) = Ût(i, ∗)/‖Ût(i, ∗)‖. More specifically, we consider the following

spherical k-means spectral clustering:

∥∥∥Ẑ+
t Ŷt − Û+

t

∥∥∥2

F
≤ (1 + ε) min

Z+
t ∈MN+,K

Yt∈RK×K

∥∥∥Z+
t Yt − Û+

t

∥∥∥2

F
(4.2.17)
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where Yt is some rotation matrix. In the last step, we extend Ẑ+
t to obtain Ẑt by

adding N −N+ canonical unit row vectors at the end. Ẑt is the estimate of Zt from

this method. We summarize the algorithm in detail below.

Algorithm 1: CASC in the Dynamic SC-DCBM
Input : Adjacency matrices At for t = 1, · · · , T ;

Covariates matrix X;
Number of communities K;
Approximation parameter ε.

Output: Membership matrices Zt for any t = 1, · · · , T .
1 Calculate regularized graph Laplacian Lτ,t and weight matrix Wt.
2 Estimate St by Ŝt,r as in (4.2.16).
3 Let Ût ∈ RN×K be a matrix representing the first K eigenvectors of Ŝt,r.
4 Let N+ be the number of nonzero rows of Ût. Then, obtain Û+ ∈ RN+×K

consisting of normalized nonzero rows of Ût; that is,
Û+
t (i, ∗) = Ût(i, ∗)/

∥∥∥Ût(i, ∗)∥∥∥ for i such that
∥∥∥Ût(i, ∗)∥∥∥ > 0.

5 Apply the (1 + ε)-approximate k-means algorithm to the row vectors of Û+
t

to obtain Ẑ+
t ∈MN+,K .

6 Extend Ẑ+
t to obtain Ẑt by arbitrarily adding N −N+ canonical unit row

vectors at the end, such as Ẑt(i) = (1, 0, · · · , 0) for i such that∥∥∥Ût(i, ∗)∥∥∥ = 0.

7 Output Ẑt.

Similar to the dynamic SC-DCBM case, we estimate the block structure of the

dynamic SC-DCcBM by analyzing the normalized singular vectors on both sides.

Then, using the spherical k-means analysis, we can also obtain the clustering ma-

trices. The spectral clustering algorithm for the dynamic SC-DCcBM is below.

4.2.3 Uniform consistency

Undirected case

In the subsequent analysis, we illustrate that the dynamic CASC is uniformly con-

sistent over time for both undirected and directed networks. We first make some

assumptions on the graph that generates the dynamic network. The major assump-

tion we need here is assortativity, which ensures that the nodes within the same

cluster are more likely to share an edge than nodes in two different clusters.
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Algorithm 2: CASC in the Dynamic SC-DCcBM
Input : Adjacency matrices At for t = 1, · · · , T ;

Covariates matrix X;
Number of row clusters KR and number of column clusters KC ;
Approximation parameter ε.

Output: Membership matrices of rows and columns ZR,t and ZC,t for
t = 1, · · · , T .

1 Calculate regularized graph Laplacian Lτ,t.
2 Estimate St by Ŝt,r as in (4.2.16).
3 Compute the singular value decomposition of Ŝt,r = UtΣtV

>
t for

t = 1, · · · , T .
4 Extract the first K columns of Ut and Vt that correspond to the K largest

singular values in Σt, where K = min{KR, KC}. Denote the resulting
matrices UK

t ∈ RN×K and V K
t ∈ RN×K .

5 Let NR
+ be the number of nonzero rows of UK

t ; then, obtain UK
t+ ∈ RNR

+×K

consisting of normalized nonzero rows of UK
t+; that is,

UK
t+(i, ∗) = UK

t (i, ∗)/
∥∥UK

t (i, ∗)
∥∥ for i such that

∥∥UK
t (i, ∗)

∥∥ > 0.
6 Similarly, let NC

+ be the number of nonzero rows of V K
t ; then, obtain

V K
t+ ∈ RNC

+×K consisting of normalized nonzero rows of V K
t+ ; that is,

V K
t+(i, ∗) = V K

t (i, ∗)/
∥∥V K

t (i, ∗)
∥∥ for i such that

∥∥V K
t (i, ∗)

∥∥ > 0.
7 Apply the (1 + ε)-approximate k-means algorithm to cluster the rows

(columns) of Ŝt into KR (KC) clusters by treating each row of UK
t+ (V K

t+)
as a point in RK to obtain Ẑ+

R,t (Ẑ+
C,t).

8 Extend Ẑ+
R,t (Ẑ+

C,t) to obtain ẐR,t (ẐC,t) by arbitrarily adding N −NR
+

(N −NC
+ ) canonical unit row vectors at the end, such as

ẐR,t(i) = (1, 0, · · · , 0) (ẐC,t(i) = (1, 0, · · · , 0)) for i such that
‖Ut(i, ∗)‖ = 0 (‖Vt(i, ∗)‖ = 0).

9 Output ẐR,t and ẐC,t.
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Assumption 4.2.1 1 The dynamic network is composed of a series of assortative

graphs that are generated under the stochastic blockmodel with covariates whose

block probability matrix Bt is positive definite for all t = 1, · · · , T .

Intuitively, the more frequent the group membership changes, the less stable the

network will be. Consequently, it becomes harder to make use of the information

from the historical and future network structures to detect the communities in the

present network structure. In Assumption 4.2.2, we restrict the maximum number of

nodes that switch memberships (s) to some finite number. Based on this assumption,

the proportion of nodes that switch their memberships shrinks to 0 as the size of the

network grows to infinity. Additionally, we can easily bound the dynamic behavior

of clustering matrices (Zt+r − Zt) by noting that there are at most rs nonzero rows

in the differenced matrix.

Assumption 4.2.2 2 At most, s < ∞ number of nodes can switch their member-

ships between any consecutive time instances.

Assumption 4.2.3 3 For 1 ≤ k ≤ k′ ≤ K, there exists a function f(·; k, k′) such

that Bt(k, k
′) = f(ςt; k, k

′) and f(·; k, k′) ∈ Σ(β, L), where Σ(β, L) is a Hölder

class of functions f(·) on [0, 1] such that f(·) are ` times differentiable and

|f (`)(x)− f (`)(x′)| ≤ L|x− x′|β−`, for any x, x′ ∈ [0, 1], (4.2.18)

with ` being the largest integer smaller than β.

Assumption 4.2.3 states that neither the connection probabilities nor the cluster

memberships change drastically over the horizons. Lastly, to guarantee the per-

formance of our clustering method, we impose some conditions to regularize the

behavior of the covariate matrix and the eigenvalues of the similarity matrices.

Assumption 4.2.4 4 Let λ1,t ≥ λ2,t ≥ · · · ≥ λK,t > 0 be the K largest eigenvalues

of St for each t = 1, · · · , T . In addition, assume that

δ = inf
t
{min

i
Dτ,t(i, i)} > 3 log(8NT/ε) and αmax = sup

t
αt ≤

a

NRJ2ξ
,
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with

a =

√
3 log(8NT/ε)

δ
and ξ = max(σ2‖Lτ‖F

√
log(TR), σ2‖Lτ‖ log(TR), NRJ2/δ),

where σ = maxi,j ‖Xij −Xij‖φ2 , Lτ = supt Lτ,t.

To establish the consistency of the CASC for the dynamic SC-DCBM, we need

to determine the upper bounds for the misclustering rates. Following Binkiewicz

et al. (2017), we denote Ci,t and Ci,t as the cluster centroids of the ith node at time t

generated using k-means clustering on the sample eigenvector Ut and the population

Ut, respectively. Then, we define the set of mis-clustered nodes at each period as

Mt =
{
i:
∥∥Ci,tO>t − Ci,t∥∥ > ∥∥Ci,tO>t − Cj,t∥∥, for any j 6= i

}
, (4.2.19)

where Ot is a rotation matrix that minimizes ‖UtO>t −Ut‖F for each t = 1, · · · , T .

The misclustering error in Mt has two sources: the estimation error of St using

the discrete kernel estimator and from spectral clustering. In Theorem 4.2.1, we

provide the uniform upper bound of the misclustering rate for the undirected and

directed networks separately.

Theorem 4.2.1 Let clustering proceed according to Algorithm 1 based on the es-

timator Ŝt,r of St. Let Zt ∈ MN,K and Pmax = maxi,t(Z
>
t Zt)ii denote the size

of the largest block over the horizons. Then, under Assumptions 4.2.1-4.2.4, the

misclustering rate satisfies

sup
t

|Mt|
N
≤ c1(ε)KW 2

max

m2
zNλ

2
K,max

{
(6 + cw)

b

δ1/2
+

2K

δ
(
√

2Pmaxrs+ 2Pmax) +
NL

δ · l!

( r
T

)β}2

.

with a probability of at least 1− ε, where c1(ε) = 29(2 + ε)2, b =
√

3 log(8NT/ε),

and λK,max = maxt{λK,t} with λK,t being the Kth largest absolute eigenvalue of

St.
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Directed case

Analogous to the undirected case, we modify Assumption 4.2.4 to accommodate

the stochastic co-blockmodel setup.

Assumption 4.2.5 4’ Let λ1,t ≥ λ2,t ≥ · · · ≥ λK,t > 0 be the K = minKR, KC

largest singular values of St for each t = 1, · · · , T . In addition, assume that

δ′ = inf
t
{min{min

i
DR,t(i, i),min

i
DC,t(i, i)}} > 3 log(16NT/ε)

and

αmax = sup
t
αt ≤

a

NRJ2ξ
,

with a =
√

3 log(16NT/ε)
δ′

and ξ = max(σ2‖Lτ‖F
√

log(TR), σ2‖Lτ‖ log(TR), NRJ2/δ′),

where σ = maxi,j ‖Xij −Xij‖φ2 , Lτ = supt Lτ,t.

Following Rohe et al. (2016), we define the “R-mis-clustered” and “C-mis-

clustered” vertices as

Mp
t =

{
i:
∥∥Cp

i,t − C
p
i,tO

p
t

∥∥ > ∥∥Cp
i,t − C

p
j,tO

p
t

∥∥, for any j 6= i
}
, p ∈ {R,C},

(4.2.20)

where Cp
i,t and Cpi,t for p ∈ {R,C} are the cluster centroids of the ith node at time

t generated using the k-means clustering on the left/right singular vectors and the

population left/right singular vectors, respectively.

Theorem 4.2.2 Assuming KR ≤ KC , let ZR,t ∈ MN,KR , ZC,t ∈ MN,KC , and

Pmax = max{maxi,t(Z
>
R,tZR,t)ii,maxi,t(Z

>
C,tZC,t)ii} denote the size of the largest

block over the horizons. Then, under Assumptions 4.2.1-4.2.3 and 4.2.5, the mis-

clustering rate satisfies

sup
t

∣∣MR
t

∣∣
N
≤ c2(ε)KW 2

max

m2
rNλ

2
K,max

{
(6 + c′w)

b′

δ′1/2
+

2KC

δ′
(
√

2Pmaxrs+ 2Pmax) +
NL

δ′ · `!

( r
T

)β}2

,

sup
t

∣∣MC
t

∣∣
N
≤ c3(ε)KW 2

max

m2
cNγ

2
cλ

2
K,max

{
(6 + c′w)

b′

δ′1/2
+

2KC

δ′
(
√

2Pmaxrs+ 2Pmax) +
NL

δ′ · `!

( r
T

)β}2

,
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with a probability of at least 1 − ε, where c2(ε) = 26(2 + ε)2, c3(ε) = 27(2 + ε)2,

b′ =
√

3 log(16NT/ε), γc are defined in supplement equation (44), and λK,max =

maxt{λK,t} with λK,t being the Kth largest absolute singular value of St.

4.2.4 Choice of tuning parameters

Obviously, we must choose the tuning parameters r, α, and K carefully. For the

choice of r, we first need to determine the upper bound of the variance proportion

of the estimation error ‖Ŝt,r−St‖, which is ‖Ŝt,r−St,r‖. In the following lemma, we

derive a sharp probabilistic upper bound on ‖Ŝt,r − St,r‖ using the device provided

in Lei and Rinaldo (2015).

Lemma 4.2.1 Let d = rN‖St‖∞ and η ∈ (0, 1). Then,

‖Ŝt,r − St,r‖ ≤ (1− η)−2Wmax

√
d

r ∨ 1
,

with probability 1− ε, where ε = N

(
3

16‖St‖∞
−2 log( 7

η )
)
.

From Lemma 4.2.1 and the proofs of the previous theorems, we can see that

‖Ŝt,r − St,r‖ is decreasing, while ‖St,r − St‖ is increasing in r. Therefore, there

exists an optimal r∗ that achieves the best bias-variance balance; that is,

r∗ = arg min
0≤r≤T/2

(
(1− η)−2Wmax

√
d

r ∨ 1
+ ‖St,r − St‖

)
. (4.2.21)

Then, we can apply Lepski’s method (Lepski et al., 1997) to construct the adaptive

estimator for r∗. Without loss of generality, we choose η = 1/2. The, we define the

adaptive estimator as

r̂ = max

{
0 ≤ r ≤ T/2 :

∥∥∥Ŝt,r − Ŝt,ρ∥∥∥ ≤ 4Wmax

√
N‖St‖∞
ρ ∨ 1

, for any ρ < r

}
.

(4.2.22)

Next, for the choice of αt, we select αt to achieve a balance between Lτ,t and
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Cw
t :

αt =
λK(Lτ,t)− λK+1(Lτ,t)

λ1(Cw
t )

. (4.2.23)

Lastly, to determine K, we have several choices. Wang and Bickel (2017) im-

plement a pseudo likelihood approach to choose the number of clusters in a stochas-

tic blockmodel without covariates. Chen and Lei (2017) propose a network cross-

validation procedure to estimate the number of clusters by utilizing adjacency infor-

mation. Li et al. (2016) refine the network cross-validation approach by proposing

an edge sampling algorithm. In our case, we apply the network cross-validation

approach directly by inputting the similarity matrix instead of the adjacency matrix

because the covariate matrix Cw
t behaves just like an adjacency matrix when we use

dummy variables to indicate different technology attributes. Therefore, the network

cross-validation applies to the similarity matrix in our study.

4.2.5 Monte Carlo simulations

In this section, we carry out several simulation studies using our algorithm and ex-

isting clustering methods under different model setups. Our benchmark algorithms

for undirected networks are the dynamic degree-corrected spectral clustering for the

sum of the squared adjacency matrix (DSC-DC) by Bhattacharyya and Chatterjee

(2018) and the dynamic spectral clustering method (DSC-PZ) by Pensky and Zhang

(2017). For the directed networks, as we do not have a fair competitor for a dynamic

model, we choose several algorithms designed for a static model. In particular, we

compete with the degree-corrected DI-SIM (DI-SIM-DC) by Rohe et al. (2016) and

the covariate-assisted DI-SIM (CA-DI-SIM-St) method by Zhang et al. (2018) for

the adjacency matrix in each period.

First, we set the block probability matrix Bt as

Bt =
t

T


0.9 0.6 0.3

0.6 0.3 0.4

0.3 0.4 0.8

 , with 1 ≤ t ≤ T.

84



and set the order of the polynomials for kernel construction at L = 4 for all simu-

lations. In the next step, for the undirected network, we simulate the first period’s

clustering matrix Z1 by randomly choosing one entry in each row and assign it to 1

to generate clustering matrices (Zt). Then, for t = 2, · · · , T , we fix the last N − s

rows of Zt−1 and re-assign 1s in the first s rows of Z1 to mimic the group mem-

bership change behaviors. Similarly, for the directed network, we generate each

period’s row/column clustering matrix (ZR,t or ZC,t) in the same way, separately.

Lastly, we assume that the number of communities K = 3 (or KR and KC for

directed network) is known throughout the simulations. The time-invariant node

covariates are R = blog(N)c dimensional with values X ∼ U(0, 10). We replicate

all experiments 100 times and the misclustering rate we report is the temporal av-

erage of the misclustering rates; that is, T−1
∑T

t=1 |Mt|/N (or T−1
∑T

t=1 |MR
t |/N

and T−1
∑T

t=1 |MC
t |/N for the directed network).

We first examine the clustering performance with a growing network size. The

number of vertices in the network varies from 10 to 100 with step size 5. The time

span is T = 10. We summarize the results in Figure 4.1. Evidently, as the size of the

undirected network becomes larger (panel (a)), the misclustering rates of the CASC-

DC decrease sharply and dominate DSC-PZ in all cases. DSC-DC only performs as

well as CASC-DC when the network is large, while CASC-DC retains an acceptable

misclustering rate in small networks. It also shows that although using the covariate

per se for clustering (DSC-Cw) is unsatisfactory, we can still add covariates to the

adjacency matrix for better grouping.

Next, we check the relative performance for a growing maximal number of

group membership changes. Here, we fix the total number of vertices at 100 and we

vary the group membership changes for each period, s, in {0, N/50, N/25, N/20, N/10, N/5, N/4, N/2, N}.

The total number of horizons is T = 10. We summarize the results in Figure

4.2. Obviously, our methods are sensitive to the total number of group membership

changes. In other words, the more unstable the group membership is, the higher the

misclustering rate will be. Despite the result, our method still achieves the lowest
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Figure 4.1: This figure reports the misclustering rate of different spectral clustering al-
gorithms for networks with a growing number of vertices. Panel (a) reports the results
for undirected networks, while Panels (b) and (c) report the results for directed networks.
CASC-DC represents Algorithm 1. DSC-DC denotes the dynamic spectral clustering in
Bhattacharyya and Chatterjee (2018). DSC-PZ denotes the dynamic spectral clustering
methods in Pensky and Zhang (2017). DSC-Cw is the spectral clustering based on only
covariates. CA-DI-SIM-Dym represents Algorithm 2. DI-SIM-DC is the degree-corrected
DI-SIM in Rohe et al. (2016) and CA-DI-SIM-Stc is the static covariate-assisted DI-SIM
method in Zhang et al. (2018). In all cases, the number of nodes varies from 10 to 100,
and the number of membership changes is fixed at s = N1/2. The horizon T = 10 and all
simulations are repeated 100 times.
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misclustering rate amongst all methods when the group memberships are relatively

stable (s ≤ N/2).
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Figure 4.2: This figure reports the misclustering rate of different spectral clustering algo-
rithms for networks with a growing number of membership changes. Panel (a) reports the
results for undirected networks, while Panels (b) and (c) report the results directed networks.
CASC-DC represents Algorithm 1. DSC-DC denotes the dynamic spectral clustering in
Bhattacharyya and Chatterjee (2018). DSC-PZ denotes the dynamic spectral clustering
methods in Pensky and Zhang (2017). DSC-Cw is the spectral clustering based on only
covariates. CA-DI-SIM-Dym represents Algorithm 2. DI-SIM-DC is the degree-corrected
DI-SIM in Rohe et al. (2016) and CA-DI-SIM-Stc is the static covariate-assisted DI-SIM
method in Zhang et al. (2018). In all cases, the network size is fixed at 100, and the number
of membership changes varies in {0, N/50, N/25, N/20, N/10, N/5, N/4, N/2, N}. The
horizon is T = 10 and all simulations are repeated 100 times.

4.3 Crypto Networks and Clusters

In this section, we illustrate how we construct a dynamic network structure using

crypto returns and its contract information. Specifically, we first form a return-

based network using the inter-predictive relations between cryptos. In addition, we
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add linkages between the cryptos that adopt similar cryptography techniques. We

then perform clustering with our new algorithm.

4.3.1 Data and variables

We collected data on the historical daily prices, trading volumes, and contract at-

tributes of the top 200 cryptos by market capitalization from an interactive platform

(Cryptocompare.com) with free API access. After excluding cryptos with incom-

plete contract information, we obtain a sample of 199 cryptos. The sample covers

August 31, 2015 to March 31, 2018, and we used an in-sample period for commu-

nity detection from August 31, 2015 to December 31, 2017and an out-of-sample

period of three months (2018-01-01 to March 31, 2018) for return predictability

tests and portfolio construction. In term of the time-invariant attributes, we mainly

collected algorithm and proof types from each crypto’s contract:

Algorithm, which is short for the hashing algorithm, plays a central role in de-

termining the security of the crypto. For each crypto, there is a hash function in

mining; for example, Bitcoin (BTC) uses double SHA-256 and Litecoin (LTC) uses

Scrypt. As security is one of the most important features of cryptos, the hashing

algorithm naturally–in terms of trust–determines the intrinsic value of a crypto. In

the example above, the Scrypt system was used with cryptos to improve upon the

SHA256 protocol. The SHA256 preceded the Scrypt system and was the basis

for BTC. Specifically, Scrypt was employed as a solution to prevent specialized

hardware from brute-force efforts to out-mine others. Thus, Scrypt-based Altcoins

require more computing effort per unit, on average, than the equivalent coin using

SHA256. The relative difficulty of the algorithm confers a relative value.

Proof Types, or proof system/protocol, is an economic measure to deter denial

of service attacks and other service abuses such as spam on a network by requiring

some work from the service requester, usually the equivalent to processing time by a

computer. For each crypto, at least one of the protocols will be chosen as a transac-

tion verification method; for example, BTC and Ethereum (ETH) currently use the
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Proof-of-Work (PoW), and Diamond (DMD) and Blackcoin use the Proof-of-Stake

(PoS). PoW-based cryptos such as BTC use mining–the solving of computation-

ally intensive puzzles–to validate transactions and create new blocks. In PoS-based

cryptos, the creator of the next block is chosen through various combinations of

random selection and wealth (in terms of crypto) or age (i.e., the stake). In sum-

mary, the proof protocol determines the reliability, security, and effectiveness of the

transactions.

4.3.2 Crypto network construction

To study how risk or information propagates through the network, we construct it

from the interrelations between the crypto returns. More precisely, we focus on

one crypto and regresses its returns on the other cryptos’ lagged returns in a 60-

day estimation window. We employ adaptive LASSO (Zou, 2006) to estimate the

regression coefficient; that is,

b̂∗i = arg min


∥∥∥∥∥rsi,t+1 − αi −

∑
j 6=i

bi,jr
s
j,t

∥∥∥∥∥
2

+ λi
∑
j 6=i

ŵi,j|bi,j|

 , (4.3.1)

where rsj,t is the standardized return for crypto j, b̂∗i = (b̂∗i,1, · · · , b̂∗i,N)> is the adap-

tive LASSO estimate, λi are non-negative regularization parameters, and ŵi,j are the

weights corresponding to |bi,j| for j = 1, · · · , N in the penalty term. Convention-

ally, one defines ŵi,j = 1/|b̂olsi,j |γ with some γ > 0. The LASSO technique yields

an active set that has “parental” influence on the focal crypto. Thus, we obtain an

adjacency matrix for each period, At, t = 1, · · · , T .

In Figure 4.3, we visualize a subgroup of 20 cryptos on selected dates to illus-

trate the structural features revealed by (4.3.1). The node color indicates the esti-

mated group membership and the node size denotes its degree centrality from the

receiver’s perspective. Evidently, the predictive relations between cryptos are highly

asymmetrical (rare double-sided arrows). Acemoglu et al. (2012) also observe this

feature, which will later help us argue that sectoral shocks might not cancel out
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through diversification, but aggregate into a systematic fluctuation. Therefore, de-

termining the centered cryptos and the group structure is crucial for understanding

how information or shocks propagate in the crypto market.
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Figure 4.3: This figure presents the return-based network structure on selected dates
in January 2018. We selected 20 cryptos, including BTC, ETH, LTC and other top
cryptos by market capitalization as of December 31, 2017 within each group esti-
mated by dynamic CASC. We obtained the connections from the predictive regres-
sion rsi,t+1 = αi +

∑N−1
j=1,j 6=i bi,jr

s
j,t + εi,t, where rsi,t is the standardized daily return

on crypto i and N is the total number of cryptos. Adaptive LASSO is employed
to estimate the regression above and only the cryptos selected by adaptive LASSO
will be linked to crypto i.

As Figure 4.3 shows, the return-inferred network is time-varying and sparse

in general. Taking subfigures (a) and (d) as an example, the interrelation between
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BTC and DMD vanishes on January 1, 2018, and the connections on 2018-01-01 are

sparser than those on January 15, 2018 are. This observation requires a more refined

clustering and the use of node attributions. To demonstrate how node attribution

assists classification, we replot the network with the same cryptos in Figure 4.3 and

link the cryptos that share at least one fundamental characteristic to obtain Figure

4.4. Both LTC and DOGE adopt the Scrypt algorithm; hence, these two cryptos are

fundamentally connected.
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(c) Combined Fundamentals

Figure 4.4: This figure depicts the contract-based network structure. We link two
cryptos if they share the same fundamental technology, that is, algorithm and proof
types. Node size denotes the degree centrality of the crypto.

Clearly, due to the limited choices of algorithms and other attributes, the cryp-
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tos are more likely to connect with each other when using attribute commonality to

form linkages. However, using contract information alone is enough to identify the

group structure, as crypto returns carry information on investors’ beliefs, which is

particularly important for the crypto market. In addition, the relationship between

a crypto’s fundamental characteristics to its value is more complicated than is a

firm’s fundamental to its equity. It is possible that a new algorithm does not add

any valuable features to the existing algorithms. In fact, many developers simply

copy and paste the blockchain source code with minor modifications on the param-

eters to launch a new coin for speculative purposes through an initial coin offering

(ICO). Although these Altcoins may show little differences between their funda-

mental characteristics, their abilities to generate future cash flows vary considerably.

A good example is IXCoin, the first BTC clonecoin. While IXCoin copied every

detail from Bitcoin, IXCoin was unable to replicate the success of BTC. The de-

velopers stopped working on IXCoin for months after its ICO. This example shows

that a clonecoin could be more risky than its protocoin for speculation reasons.

www.deadcoins.com provides other similar cases.

To address the issues raised above fully, we combine the return-based network

and the contract-based network using a similarity matrix. Figure 4.5 illustrates the

combined network for selected dates. Compared to the network based on a single

information set, the combined network is denser and the degrees of the cryptos

are distributed more evenly. Consequently, the similarity matrix will most likely

improve classification accuracy.

4.3.3 Clusters in crypto networks

The combined network structure and application of the CASC created four groups.

Table 4.2 summarizes the grouping results for one example. The table indicates

that as of December 31, 2017, the largest cryptos (BTC, ETH, and LTC) in terms

of market capitalization are not necessarily categorized into the same group. Take

LTC and BTC as an example. Although their return patterns are closely related, the
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Figure 4.5: This figure depicts the dynamic combined network structure based on
a similarity matrix, which combines return information and contract information
simultaneously. The color of the node labels indicates the group estimated by dy-
namic CASC and the node size denotes the degree centrality of the crypto.
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fundamental attributes between them are rather different: BTC employs SHA256

while LTC uses Scrypt. As a comparison, we also show the grouping results for the

same 20 cryptos under DISIM from Rohe et al. (2016) in Table 4.2.

Table 4.1: Representative Cryptos of Groups Estimated by the Dynamic CASC.

Group ID Group 1 Group 2 Group 3 Group 4

Cryptocurrencies

BBR BLITZ BTS BTCD
BTC DGB DOGE BTM

CLAM LSK ETH DMD
GNT NMR FCT STEEM

OMNI SC LTC STRAT

Table 4.2: Representative Cryptos of Groups Estimated by DISIM from Rohe et al.
(2016).

Group ID Group 1 Group 2 Group 3 Group 4

Cryptocurrencies

BBR BTC BLITZ BTCD
LSK DGB STEEM CLAM

DOGE LTC SC GNT
ETH NMR BTS

OMNI DMD
BTM STRAT

To illustrate the performance of our method, we check the differences between

the within- and cross-group connections of each group, defined as

Within-Group Connectioni =
# of Degrees of Coins within Group i

4Ni

,

Cross-Group Connectioni =
# of Degrees of Coins between Group i and other Groups

4N̄i

,

where Ni is the number of cryptos in group i and N̄i is the number of cryptos not

in group i. Intuitively, if the clustering method correctly classifies all cryptos, then

the within-group connections should be stronger than the cross-group connections;

that is, the difference between them should be positive. Table 4.3 summarizes the

within- and cross-group connections of different information sets based on DISIM

from Rohe et al. (2016) and dynamic CASC, respectively. Panel A reports the

average return-based connection over the sample period. Panels B and C report the
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algorithm-inferred connections and proof-types-inferred connections, respectively.

The differences between the within- and cross-group connection (W-C difference)

are reported in the last column of each panel.

Table 4.3: Within- and Cross-group Connections using DISIM and Dynamic CASC

Panel A reports the average return-based connection across the sample period. Panels B and C
report the algorithm-inferred connections and proof-type-inferred connections, respectively. Statis-
tical significance indicated by 1% 5% 10% for the positive signs and 1% 5% 10% for
the negative signs.

Panel A: Return Panel B: Algorithm Panel C: Proof Types
Within Cross Diff. Within Cross Diff. Within Cross Diff.

DISIM by Rohe et al. (2016)
Group 1 0.033 0.051 −0.018 0.252 0.204 0.048 0.251 0.229 0.021
Group 2 0.084 0.074 0.010 0.216 0.198 0.018 0.277 0.238 0.039
Group 3 0.086 0.075 0.011 0.215 0.196 0.019 0.279 0.238 0.041
Group 4 0.084 0.073 0.011 0.216 0.197 0.019 0.278 0.238 0.040
Overall 0.072 0.068 0.004 0.225 0.199 0.026 0.271 0.236 0.035

Dynamic CASC
Group 1 0.029 0.026 0.003 0.232 0.202 0.030 0.266 0.232 0.033
Group 2 0.029 0.025 0.004 0.243 0.203 0.041 0.272 0.232 0.040
Group 3 0.031 0.025 0.005 0.240 0.202 0.038 0.274 0.233 0.041
Group 4 0.031 0.026 0.006 0.240 0.202 0.038 0.273 0.233 0.040
Overall 0.030 0.025 0.005 0.239 0.202 0.037 0.271 0.233 0.039

Evidently, the dynamic CASC method has superior classification efficiency than

DISIM does given that it delivers higher overall differences in both return-inferred

connections and contract-inferred connections. For example, the overall W-C dif-

ference of DISIM is 0.004, 0.026, and 0.035, while that of dynamic CASC is 0.005,

0.037, and 0.039, respectively. Indeed, dynamic CASC utilizes fundamental in-

formation better in the sense that the contract-inferred network structure (Panels

B and C) generates a higher W-C difference without discounting the grouping in-

formation from the return-inferred network. These facts indicate that fundamental

information introduces an extra dimension of commonality for classifying cryptos,

and improves the information extraction from return dynamics by emphasizing the

return co-movement induced by fundamental commonality.
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4.4 Asset Pricing Inference

In this section, we apply the classifications we obtained to asset pricing. We first

study whether the group structure achieves good risk diversification. Then, we sort

the cryptos into 4 quartiles according to eigenvector centrality and construct a port-

folio that goes long on the high-centrality cryptos and short on the low-centrality

cryptos. Lastly, we conduct several robustness tests to exclude alternative explana-

tions of the centrality measure.

4.4.1 Risk diversification

Risk diversification is one of the most important issues in portfolio management.

Portfolio managers seek to achieve a target return with the smallest variance pos-

sible. Therefore, it is crucial to invest in different assets or equity sectors that are

not highly correlated with each other. We calculate the correlation coefficients of

cryptos within the same group and those of the cryptos across groups. Table 4.4

summarizes the results.

Table 4.4: Within- and Cross-group Cryptos’ Average Return Correlations by Dy-
namic CASC.

This table reports the within- and cross-group average return correlation based on dynamic
CASC. Each trading day, we balance the portfolio according to the clustering results and calculate
the within- and cross-group correlations. The number in brackets below are the t-statistics, which
are adjusted by the Newey-West lags(4) method. Statistical significance is indicated by 1% 5%

10% for the positive signs and 1% 5% 10% for the negative signs. The sample period spans
from August 31, 2015 to March 31, 2018.

Within Group Cross Group Diff.
Group 1 0.169 0.154 0.014

(7.626) (7.423) (6.856)
Group 2 0.179 0.154 0.021

(8.077) (7.423) (6.077)
Group 3 0.181 0.157 0.021

(8.191) (7.506) (10.374)
Group 4 0.188 0.157 0.027

(8.114) (7.416) (5.607)
Overall 0.188 0.157 0.021

(7.697) (7.381) (6.331)
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In Table 4.4, we compare the average pair-wise correlations between two groups.

For the within-group portfolio, we randomly pick 10 cryptos from the same group,

and for the cross-group portfolio, we randomly pick 5 cryptos in one group and

pick the remaining 5 cryptos from other groups. Then, for each trading day, we

balance the portfolio according to the clustering results and calculate the within-

and cross-group correlations. Table 4.4 demonstrates that the correlations between

cryptos within the same group are on average significantly higher than those across

groups are. Indeed, the average correlation coefficient within a group is 0.18, while

it is 0.15 across groups. In economic terms, this result indicates a 17% reduction in

return co-movement when investing in cross-group cryptos. The difference is sta-

tistically significant at the 1% level with a Newey-West adjusted t-statistic of 6.33.

The result suggests that investment practitioners can find attractive upside and diver-

sification possibility through allocating portfolio weights on cryptos from different

groups. As buying all cryptos is costly, the findings provide portfolio managers the

opportunity to select group representatives with a significant diversification effect.

4.4.2 Centrality and crypto return

One major advantage of jointly modelling cryptos with a dynamic network is its

convenience for studying how risk and trading information propagates from one

crypto to another. Acemoglu et al. (2012) propose a theoretical model to explain the

spillover effects through sector-level shocks. The model suggests that if the linkages

in the inter-sectoral network are sufficiently asymmetric, then sectoral shocks might

not cancel out through diversification, but aggregate into macroeconomic fluctua-

tions. Ahern (2013) also finds that idiosyncratic shocks could travel between linked

stocks following the direction of the linkages. Therefore, stocks with more “receive

linkages” tend to bear more risks in the network and thus require a higher risk pre-

mium. Similarly, we would expect that cryptos in a more central position in the

network require a higher risk premium.

Centrality, as the key measure describing the importance of the nodes in the
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network, best proxies the concentration of risks or trading information. There are

several measures of centrality, such as degree, closeness, betweenness, and eigen-

vector centrality. Among them, eigenvector centrality is the most appropriate mea-

sure for an asymmetric network for two reasons. First, shocks that transmit across

the crypto market do not have final recipients and are unlikely to follow the shortest

path between nodes. Therefore, we cannot use closeness and betweenness central-

ity to describe market shocks as they implicitly assume that traffic follows geodesic

paths (Borgatti, 2005). Second, cross-asset shocks are likely to have feedback ef-

fects evidenced by the two-way connections between paired cryptos in Figure 4.3.

Thus, using degree centrality tends to overestimate the importance of cryptos with

more asymmetric linkages. Eigenvector centrality is calculated via the principal

eigenvector of the network’s adjacency matrix (Bonacich, 1972). Nodes are more

central if they are connected to other nodes that are themselves more central. Figure

4.6 plots the average return of each group portfolio, labelled as high-, median- (2

groups in the middle), and low-centrality groups. Based on the thoughts on port-

folio performance above, we find that the group with a higher centrality wins the

horse race.

Next, we formally test this discovery by studying cross-sectional portfolio re-

turns. We first sort cryptos into quartile portfolios based on the eigenvector central-

ity calculated from the similarity matrix on each trading day. We then look at each

portfolio’s average future returns. Next, we test the statistical significance of the

difference in average future return between the high and low portfolios. To show

the informativeness of our centrality measure, we construct the portfolio for several

formation periods, ranging from day t+1 to t+7 days. Table 4.5 reports the results.

In line with the observations from Figure 4.6, the cryptos with a higher quar-

tile of centrality receive a higher portfolio return. Particularly, the average portfolio

return is 39.78 bps for the highest-centrality group, while it is -0.01 bps for the

lowest-centrality group. The difference is statistically significant at the 1% level.
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Figure 4.6: This figure depicts the cumulative portfolio return of the high-, median-
, and low-centrality groups. Centrality is based on the similarity matrix, which
combines return information and contract information simultaneously. The sample
period spans from August 31, 2015 to March 31, 2018.

Table 4.5: Average Future Returns of the Cross-sectional Portfolios by Centrality
Sorting.

This table reports the average future return for quartile portfolios sorted by the centrality mea-
sure. Each trading day, we balance the portfolio according to the centrality score of the previous
trading day and calculate the average portfolio returns for both short and long legs. Statistical sig-
nificance is indicated by 1% 5% 10% for the positive signs and 1% 5% 10% for
the negative signs. The t-statistics in parentheses are computed based on standard errors with a
Newey-West lags(4) adjustment. The sample period spans from August 31, 2015 to March 31, 2018.

Centrality Rett+1 Rett+2 Rett+3 Rett+4 Rett+5 Rett+6 Rett+7

Low 0.00% 0.00% -0.03% -0.01% 0.03% 0.02% 0.06%
2 0.15% 0.18% 0.18% 0.19% 0.16% 0.18% 0.16%
3 0.34% 0.34% 0.28% 0.36% 0.38% 0.28% 0.29%
High 0.40% 0.36% 0.48% 0.38% 0.34% 0.42% 0.39%
High - Low 0.40% 0.36% 0.51% 0.39% 0.32% 0.40% 0.33%
t-statistic (3.53) (3.10) (4.24) (3.33) (2.74) (3.44) (2.85)
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We find similar results across different portfolio formation periods. The result

provides strong evidence that an informational channel, such as risk and liquidity,

should be applied to interpret the eigenvector centrality measure.

4.4.3 Alternative Interpretation

We showed that the centrality measure is economically meaningful as a risk factor.

However, it does not rule out other explanations. We therefore conduct several

tests to seek other possibilities to link the centrality measure to economic theory.

In particular, we test if limit-to-arbitrage, investor attention, and macroeconomic

uncertainty can deliver meaningful explanatory power of the anomaly.

The first typical explanation for asset return anomaly is the limit-to-arbitrage.

According to Shleifer and Vishny (1997), sophisticated investors would quickly

eliminate any return predictability arising from anomalies in a liquid market with-

out impediments to arbitrage. Therefore, when cryptos are illiquid, an arbitrage

opportunity is more likely to exist between central and non-central cryptos. As a

formal test, we proxy liquidity with trading volume and first sort the cryptos into

two groups (high and low) according to their previous day’s trading volume. Then,

for each group, we sort cryptos by their eigenvector centrality as in the previous

sections, and report the corresponding portfolio returns in the first two columns of

Table 4.6.

We find that the centrality portfolio return (High–Low) remains significantly

positive for both high- and low-volume cryptos. For example, in the low-volume

group, the portfolio return is 5 bps for the low-centrality group, while it increases to

28 bps for the high-centrality group. The significantly positive portfolio returns in

both groups indicate that the limit-to-arbitrage does not fully explain the centrality

measure.

The recent study of Liu and Tsyvinski (2018) provides an alternative expla-

nation. The authors find that investor attention is a powerful predictor of crypto

returns. Barber and Odean (2008) point out that excess attention usually drives in-
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vestors to overreact to information and thus causes mispricing. Guo et al. (2018)

show that investor attention could spill over along the network linkages. Hence,

cryptos in a high-investor-attention period are more likely to be mispriced. Fol-

lowing Liu and Tsyvinski (2018), we proxy investor attention by constructing the

deviation of Google searches for the word “crypto” on a given day compared to the

average of those in the preceding four weeks. We split the sample into two peri-

ods (high and low) and test for the existence of the anomaly in each period. We

summarize the results in the middle columns of Table 4.6.

In general, the proposed centrality measure—under both high- and low-attention

periods—is a better choice. The effect seems to be stronger in high-attention peri-

ods. For example, the centrality portfolio achieves a 0.45% daily return during a

high-attention period, while it retains a 0.35% return, if not higher, for the low-

attention period. However, we can observe that the results are not fully explained

by investor attention, as our centrality measure shows significant cross-sectional

return predictability.

Last, observing that government policy and crypto price movement has a strong

synchronization (Demir et al., 2018), we must check whether the centrality mea-

sure relates to underlying economic uncertainty. Naturally, when macroeconomic

conditions become uncertain, investing in a certain asset is more risky and investors

will require a higher risk premium (Brogaard and Detzel, 2015). We employ Baker

et al. (2016) policy uncertainty index, which is constructed from three types of un-

derlying components: media news; the Congressional Budget Office (CBO), which

compiles lists of temporary federal tax code provisions; and the Federal Reserve

Bank of Philadelphia’s Survey of Professional Forecasters. Similarly, we divide

the sample into two parts, high- and low-uncertainty periods, and test the existence

of abnormal returns in each period. The last two columns of Table 4.6 report the

results.

Evidently, the centrality portfolio return remains significantly positive under

both high- and low-economic-uncertainty periods. Specifically, in a high-period,
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the portfolio return is 1 bps for the low-centrality group and 49 bps for the high-

centrality group, which reveals a difference of 48 bps with a Newey-West adjusted

t-statistic of 2.71. The results are a bit weaker in the low-uncertainty period, but

the overall pattern remains. In this case, the centrality measure cannot be fully

explained by economic uncertainty.

In summary, the proposed centrality measure is not driven by the pricing factors

listed above. Although we did not exhaust all possibilities, the facts suggest that the

centrality measure serves well as an idiosyncratic risk factor to predict future crypto

returns.

Table 4.6: Portfolio Returns: Trading Volume, Investor Attention, and Macro Un-
certainty

This table reports the quartile portfolio returns sorted by the centrality measure for cryptos
with high and low trading volume, in high- and low-investor-attention periods, or under high- and
low-macro-uncertainty circumstances. Statistical significance is indicated by 1% 5% 10%
for the positive signs and 1% 5% 10% for the negative signs. t-statistics in parentheses are
computed based on standard errors with Newey-West lags(4) adjustment. The sample period spans
from August 31, 2015 to March 31, 2018.

Centrality
Trading Volume Investor Attention Macro Uncertainty
Low High Low High Low High

Low 0.05% -0.04% 0.04% 0.01% 0.01% 0.01%
2 0.16% 0.27% 0.11% 0.21% 0.02% 0.26%
3 0.38% 0.12% 0.46% 0.32% 0.22% 0.54%
High 0.56% 0.28% 0.39% 0.46% 0.32% 0.49%
High - Low 0.51% 0.33% 0.35% 0.45% 0.31% 0.48%
t-statistic (3.62) (2.73) (2.27) (3.06) (2.23) (2.71)

4.5 Conclusion

This study examined the market segmentation problem in the crypto market. To

solve the problem, we constructed a dynamic network of cryptos using return inter-

predictive relationship and proposed a dynamic CASC method to make full use

of the dynamic linkage information, as well as the node attributions, to improve

classification accuracy. Based on the fitted crypto network and in the spirit of Ahern

(2013), we proposed using eigenvector centrality as the idiosyncratic risk factor for
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predicting future returns. We find that the cross-sectional portfolio constructed from

eigenvector centrality sorting can deliver a persistent 40 bps daily return.
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Chapter 5 Summary of Conclusions

In Chapter 2, studies the limit properties of information criteria for distinguishing

between unit root model and three types of explosive models. Both the OLS estima-

tor and the indirect inference estimator are employed to estimate the AR coefficient

in the candidate model. This paper contributes to the literature in three aspects.

First, our results extends results in the literature to the explosive side of the unit

root, and we find that information criteria consistently choose the unit root model

when the unit root model is the true model. Second, we show that the limiting

probabilities for information criteria to select the explosive model depends on both

the distance of autoregressive coefficient from unity and the size of penalty term in

the information criteria. When the penalty term is not too large and the root is not

too close to unit root, all the information criteria consistently select the true model.

It is known that the indirect inference method is effective in reducing the bias in

OLS estimation in all cases as well as reducing the variance in OLS estimation in

the UR model and in the LTU model. However, when information criteria are used

in connection with the indirect inference estimation, the limiting probabilities for

information criteria to select the correct model can go up or down relative to that

with the OLS estimation, depending on the true DGP. When the true DGP is the UR

model, the indirect inference estimation increases the probability. When the true

DGP is the LTUE model or the ME model or the EX model, the indirect inference

estimation decreases the probability. This rather surprising result suggests that the

superiority in estimation does not necessarily translate to the superiority in model

selection.

In Chapter 3, introduces a continuous time model for financial data where the
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persistence parameter is allowed to be random and time varying. The model has

an analytical solution and an exact discrete time representation which make anal-

ysis convenient for studying the properties of the system that are associated with

extreme sample path behavior. The discrete time model relates to some models al-

ready in the literature, including the stochastic unit root model (Granger and Swan-

son (1997); Lieberman and Phillips (2014); Lieberman and Phillips (2017c)) and

the near-explosive random coefficient model of Banerjee et al. (2017). The statisti-

cal properties of our model reveal three different forms of potential extreme behav-

ior in generated sample paths: instability, local explosiveness, and explosiveness.

These forms of extreme behavior depend directly on the values of model parame-

ters, including the possible presence of endogeneity in the random autoregressive

coefficient.

A novel two-stage estimation method that relies on empirical quadratic variation

is developed to estimate the model parameters. Limit theory is developed using an

infill asymptotic scheme that provides a convenient basis for testing parameter con-

stancy and the various forms of extreme sample path behavior. The test statistics all

have asymptotically pivotal standard normal distributions which makes implemen-

tation of the tests straightforward in practical work. Similar to other recent work in

the literature on bubbles, a time-stamping strategy is proposed to detect origination

and termination dates of extreme behavior.

In an empirical application to daily S&P 500 real prices between December 31,

1927 and June 29, 2018. Strong evidence against parameter constancy is found in

the whole sample period and this evidence strengthens after July 1997, leading to

a finding of long durations of parameter instability in the model. Three periods of

explosive instability in the data match well with observed periods of major price

escalation in the data and these largely overlap with the periods of price exuberance

identified in earlier work. Tests for endogeneity in these data provide strong evi-

dence in support of endogenous feedbacks in the random coefficient model frame-

work that materially influence quadratic variation and hence recursive estimates of
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realized variation in the data. The empirical findings of extreme sample path behav-

ior in real S&P 500 stock prices are broadly in line with the conclusions of other

recent work on stock price exuberance but now provide new evidence against pa-

rameter constancy and in support of the role of endogenous feedbacks that influence

autoregressive behavior and the time forms of extreme sample paths.

In Chapter 4, we examine the market segmentation problem in the crypto mar-

ket. To solve the problem, we constructed a dynamic network of cryptos using

return inter-predictive relationship and proposed a dynamic CASC method to make

full use of the dynamic linkage information, as well as the node attributions, to im-

prove classification accuracy. Based on the fitted crypto network and in the spirit

of Ahern (2013), we proposed using eigenvector centrality as the idiosyncratic risk

factor for predicting future returns. We find that the cross-sectional portfolio con-

structed from eigenvector centrality sorting can deliver a persistent 40 bps daily

return.
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Appendix A: Appendix

A.1 Proofs in Chapter 2

A.1.1 Proof of Theorem 2.3.1

The proof is same as the proof for Theorem 1 in Phillips (2008), and hence omitted.

A.1.2 Proof of Theorem 2.3.2

When the true DGP is the LTUE model, we have 0 < c <∞ and

IC0 = log σ̂2
0 = log

{
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}
.

By Lemma 1 in Phillips (1987b), when the process is initialized at X0, we know
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X2
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∫ 1

0

J2
c , (A.1.1)

and
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∫ 1

0

JcdB, (A.1.2)

where

Jc(r) =

∫ r

0

ec(r−s)dB(s).
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Therefore, by Equation (A.1.1) and (A.1.2) we have

IC0 = log

{
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. (A.1.3)

We also know from Phillips (1987b) that
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0
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, (A.1.4)

Hence,
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Therefore, by Equation (A.1.3) and (A.1.5), we have
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Hence, if pn = 2 (as in AIC), as n→∞, we have
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If pn →∞ and
pn
n
→ 0, we have

n

pn
(IC1 − IC0)⇒ 1.

A.1.3 Proof of Theorem 2.3.3

When the true DGP is the ME model, we have
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(A.1.7)

According to Phillips and Magdalinos (2007), when the process is initialized at

X0 = op(
√
n/cn), we have
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where X, Y ∼ N (0, 1) and C is a standard Cauchy variate.

Therefore, by (A.1.8) and (A.1.9) we have
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On the other hand,
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By equation (A.1.8) to (A.1.10), we obtain
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Therefore, by equation (A.1.11) and (A.1.12), we have
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A.1.4 Proof of Theorem 2.3.4

When the true DGP is EX model, we have
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By results established in Anderson (1959), we know
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where X, Y iid∼ N (0, 1) and C is a standard Cauchy variate. Then we have
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For the OLS estimator for the general explosive series, we have
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By equation (A.1.13) to (A.1.15), we have
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. (A.1.17)

Now, by equation (A.1.16) and (A.1.17), we obtain
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Since lim
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A.1.5 Proof of Proposition 2.3.1

When the true DGP is ME model, we have 0 < c <∞, and

IC0 = log σ̂2
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When the process is initialized at X0, by Lemma 5 in Magdalinos (2012), we

know
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and
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where by Lemma 2 in Magdalinos (2012), we know Y and Z are independent

N (0, 1) variates with ω2 =
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Therefore, by Equation (A.1.18) and (A.1.19) we have
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We also know from Magdalinos (2012) that
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(ρ̂n − ρn)⇒ C. (A.1.21)

Hence,
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Therefore, by Equation (A.1.20) and (A.1.22), we have
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Note Y 2, Z2 ∼ χ2(1) and ρ−nn = o (c−1
n ). If lim
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A.1.6 Proof of Theorem 2.4.1

When the true DGP is the UR model, we have

IC0 = log σ̆2
0 = log

{
1

n

n∑
t=1

u2
t

}
= log σ2.

Also, we have

IC1 = log σ̆2
1 +

pn
n

= log

{
1

n

n∑
t=1

(Xt − ρ̆Xt−1)2

}
+
pn
n

= log

{
1

n

n∑
t=1

[(1− ρ̆)Xt−1 + ut]
2

}
+
pn
n

= log

{
1

n
(1− ρ̆)2

n∑
t=1

X2
t−1 +

2

n
(1− ρ̆)

n∑
t=1

Xt−1ut +
1

n

n∑
t=1

u2
t

}
+
pn
n
.

According to Phillips (2012), we have
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where h(c) was defined in Section 4.
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According to Phillips and Magdalinos (2009), we have
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− log

{
1

n
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h−1 (C)B(1)B0(1) + 1

}
− pn

n

.

A.1.7 Proof of Theorem 2.4.2

When the true DGP is the LTUE model, we have 0 < c <∞. There is no difference

between IC0 based on the OLS estimator and that based on the indirect inference

estimator. For IC1, we have

IC1 = log σ̆2
1 +

pn
n

= log

{
n−1

n∑
t=1

(Xt − ρ̆nXt−1)2

}
+
pn
n

= log

{
1

n

n∑
t=1

[(ρn − ρ̆n)Xt−1 + ut]
2

}
+
pn
n

= log

{
1

n
(ρn − ρ̆n)2

n∑
t=1

X2
t−1 +

2

n
(ρn − ρ̆n)

n∑
t=1

Xt−1ut +
1

n

n∑
t=1

u2
t

}
+
pn
n
.
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By the limit theory for the indirect inference estimator developed in Phillips

(2012), we have

n (ρ̆n − ρn)⇒ h−1

(∫ 1

0
JcdB∫ 1

0
J2
c

+ c

)
− c. (A.1.23)

By equation (A.1.1), (A.1.2) and (A.1.23), we have

IC1 ⇒ log

1− 2

n

[
h−1

(∫ 1

0
JcdB∫ 1

0
J2
c

+ c

)
− c

]∫ 1

0

JcdB +
1

n

[
h−1

(∫ 1

0
JcdB∫ 1

0
J2
c

+ c

)
− c

]2 ∫ 1

0

J2
c


+ log σ2 +

pn
n
. (A.1.24)

Therefore, by equation (A.1.11) and (A.1.23), we have

IC1 − IC0 ⇒ log

1−
2
∫ 1

0
JcdB

n

[
h−1

(∫ 1

0
JcdB∫ 1

0
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)
− c

]
+
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∫ 1

0

JcdB +
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n

∫ 1

0

J2
c

}
+
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n
.

When pn = 2, as n→∞ we have

n (IC1 − IC0)⇒ 2− ϑ2.

where

ϑ2 ≡ 2h−1

(∫ 1

0
JcdB∫ 1

0
J2
c

+ c

)(∫ 1

0

JcdB + c

∫ 1

0

J2
c

)
−h−1

(∫ 1

0
JcdB∫ 1

0
J2
c

+ c

)2 ∫ 1

0

J2
c .

When pn →∞ and
pn
n
→ 0, we have

n

pn
(IC1 − IC0)⇒ 1.
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A.1.8 Proof of Theorem 2.4.3

When the true DGP is the ME model, we have

IC0 = log σ̆2
0 = log

{
1

n

n∑
t=1

(Xt −Xt−1)2

}

= log

{
1

n

n∑
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2

}

= log

{
1

n
(ρn − 1)2

n∑
t=1

X2
t−1 +

2

n
(ρn − 1)

n∑
t=1

Xt−1ut +
1

n

n∑
t=1

u2
t

}
.

By equation (A.1.8) and (A.1.9) we have

IC0 ⇒ log

{
σ2

4nρ−2n
n

Y 2 +
σ2

nρ−nn
XY + σ2

}
= log σ2 + log

{
1

4nρ−2n
n

Y 2 +
1

nρ−nn
XY + 1

}
. (A.1.25)

Similarly, for IC1 based on the indirect inference estimator, we have

IC1 = log σ̆2
1 +

pn
n

= log

{
n−1

n∑
t=1

(Xt − ρ̆nXt−1)2

}
+
pn
n

= log

{
1
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}
+
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= log

{
1

n
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X2
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2

n
(ρn − ρ̆n)

n∑
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Xt−1ut +
1
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n∑
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u2
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}
+
pn
n

Using the results in Phillips (2012) , equation (A.1.8) and (A.1.9), we obtain

IC1 ⇒ log

{
4c2
n

n3ρ2n
n

(
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(
1

2cn

))2
n2σ2

4c2
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n2ρnn
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1
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+
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n

⇒ log σ2 + log

{
1− 1

n
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(
1

cnn

)}
+
pn
n
. (A.1.26)

Therefore, the similar results to those in Theorem 2.3.3 are obtained.
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A.1.9 Proof of Theorem 2.4.4

When the true DGP is the EX model, for the indirect inference estimator, we know

that for IC0, it is the same as OLS estimator. Therefore, we only need to derive the

IC1. Note that for IC1, we have

IC1 = log

{
1

n
(ρ− ρ̆)2

n∑
t=1

X2
t−1 +

2

n
(ρ− ρ̆)

n∑
t=1

Xt−1ut +
1

n

n∑
t=1

u2
t

}
+
pn
n
.

According to the results in Phillips (2012), for |ρ| > 1, we know the binding

function for ρ is

bn(ρ) = ρ+O(ρ−n).

Therefore, we obtain

IC1 = log σ2 + log

{
1

n

(
C +O

(
1

ρ2 − 1

))2

Y 2 − 2

n

(
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(
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}
+
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= log σ2 + log

{
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n
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(
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+
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n
. (A.1.27)

Now, by equation (A.1.16) and (A.1.27), we obtain

IC1−IC0 = log

{
1− 1

n
X2 +O

(
1

n (ρ2 − 1)

)}
−log

{
1 +

2ρn

n (ρ+ 1)
XY +

ρ2n

n (ρ+ 1)2X
2

}
+
pn
n
.

Since lim
n→∞

pn
ρ2n

= π, we have

n

kn
(IC1 − IC0)⇒


π − 1

(1 + ρ)2
χ2(1), if π ∈ [0,∞)

1, if π =∞
,

where

kn =


ρ2n, if π ∈ [0,∞)

pn, if π =∞
.

130



A.2 Proof of Chapter 3

A.2.1 List of Symbols and Notations

The symbols and notations used in Chapter 3 are summarized in the following table.

Symbol Meaning Definition
µ̃ Drift parameter of the random coefficient Equation (3.2.2)
σ̃ Diffusion parameter of the random coefficient Equation (3.2.2)
σ Diffusion parameter of the Ornstein-Uhlenbeck Equation (3.2.2)

process in a random environment
Bu, Bε Standard Brownian motion that generates randomness Equation (3.2.2)

in the drift component/the diffusion component
γ Covariance between the Brownian motions Bu and Bε γ = d〈Bu,Bε〉t

dt
ω Covariance between the drift process and diffusion process ω = γσ̃σ
∆, h Sampling interval/block
M Number of observations within each sampling block M = h/∆
T Time span
N Number of sampling blocks N = T/h
ρt∆ Random autoregressive coefficient Equation (3.2.8)
ηt∆ Innovation of the random coefficient autoregression Equation (3.2.9)
ρ Expectation of the random autoregressive coefficient ρ = E(ρt∆) = eµ̃∆

κ Key parameter controls the unstable behavior κ = µ̃+ σ̃2/2
φ Key parameter controls the explosive behavior φ = µ̃− σ̃2/2
βκ, βφ Exponential transformation of κ and φ βκ = eκ∆, βφ = eφ∆

[y]ba Quadratic variation process of yt for t ∈ [a, b] Equation (3.3.1)
Q∆(·) Objective function of the first-stage estimation Equation (3.3.3)
`ALF (·)Approximate log-likelihood function in Equation (3.3.5)

the second stage

The proofs of Theorem 3.4.1 and 3.5.1 follow directly from Phillips and Yu

(2009) and are omitted.

A.2.2 Proof of Theorem 3.4.2

To show consistency of ̂̃µ, by the Taylor expansion of exp{µ̃0∆} in the observation-

ally equivalent model (3.2.11), we have

yt∆ − y(t−1)∆ = exp {µ̃0∆} y(t−1)∆ − y(t−1)∆ +
√

(σ̃2
0y

2
(t−1)∆ + σ2

0)∆ · vt∆

= (µ̃0∆ + o(∆))y(t−1)∆ +
√

(σ̃2
0y

2
(t−1)∆ + σ2

0)∆ · vt∆, (A.2.1)
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where vt∆
i.i.d∼ N (0, 1). Let ζ(t−1)∆ :=

1̂̃σ2y2
(t−1)∆ + σ̂2

− 1

σ̃2
0y

2
(t−1)∆ + σ2

0

, then

according to (3.3.6), we have

ÂN =
M×N∑
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y(t−1)∆

(
yt∆ − y(t−1)∆

)
̂̃σ2y2

(t−1)∆ + σ̂2

=
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(
yt∆ − y(t−1)∆

)
σ̃2

0y
2
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0
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(
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)
ζ(t−1)∆
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y2
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σ̃2
0y

2
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0

+
M×N∑
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y2
(t−1)∆ζ(t−1)∆ := BN +RB.

Note that, by Theorem 3.4.1, we have

ζ(t−1)∆ =
(σ̃2

0 − ̂̃σ2)y2
(t−1)∆ + (σ2

0 − σ̂2)

( ̂̃σ2y2
(t−1)∆ + σ̂2)(σ̃2

0y
2
(t−1)∆ + σ2

0)
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( √
∆

y2
(t−1)∆

)
.

This implies that

RA = µ̃0∆
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√
∆
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t=1
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√
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0y
2
(t−1)∆ + σ2
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= Op(MN∆3/2) +Op(
√
MN∆) = Op(T

√
∆) +Op(

√
T∆) = Op(T

√
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and

RB =
M×N∑
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(t−1)∆ζ(t−1)∆ = Op(MN

√
∆) = Op(T/

√
∆).

Now, first solve

AN = µ̃0

M×N∑
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0y

2
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0

+
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y(t−1)∆vt∆ ·
√

∆√
σ̃2

0y
2
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where

CN :=
M×N∑
t=1

y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + σ2

0

,

DN :=
M×N∑
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y(t−1)∆ςt∆
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0y
2
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0
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y2
(t−1)∆O(∆3/2)

σ̃2y2
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.

Denote Ut∆ :=
y2

(t−1)∆

σ̃2
0y

2
(t−1)∆ + σ2

0

. Clearly {Ut∆} is bounded for all t. Let us look

at the asymptotic behavior of BN . First consider the case φ < 0 where {yt∆} is

asymptotically stationary and ergodic as shown in Föllmer and Schweizer (1993).

In this case {Ut∆} is also asymptotically stationary and ergodic. By the ergodic

theorem we then have,

1

MN
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2
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)
.

In the case φ ≥ 0 where {yt} is nonstationary, by equation (3.2.9),

y(t−1)∆ = ρ1∆y0+σ0

(
η(t−1)∆ + ρ(t−1)∆η(t−2)∆ + · · ·+ ρ(t−1)∆ρ(t−2)∆ · · · ρ2∆η1∆

)
.

Hence, we have

E
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[∣∣∣∣∣ σ2
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=

∫ ∞
0

σ2
0

σ̃2
0y

2
0 + σ̃2

0λ
2x2 + σ2

0

dΦ(x),

where Φ(·) is the cdf of ηt∆ ∼ N(0, γ2
∆) and λ2 = 1+ρ2

(t−1)∆+· · ·+ρ2
(t−1)∆ρ

2
(t−2)∆ · · · ρ2

2∆

p−→

∞ as t → ∞. Thus, E
(∣∣Ut∆ − σ̃−2

0

∣∣∣∣ ρ(t−1)∆, · · · , ρ2∆

) p−→ 0. Since {Ut∆} is

bounded, E
∣∣Ut∆ − σ̃−2

0

∣∣ p−→ 0 as t→∞. Consequently,

1
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To unify the results for both stationary and nonstationary cases, we write

1

MN

M×N∑
t=1

y2
(t−1)∆

σ̃2
0y

2
(t−1)∆ + σ2

0

p−→ V1, (A.2.2)

where V1 is defined in (3.4.1). This result implies that ∆BN = Op(MN∆) =

Op(T ).

To examine the asymptotic behavior of CN , denote

ξt :=
y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + σ2

0

,

and note that ξt is a martingale difference sequence with respect to the filtration

Ft := σ(Bv(s) : 0 ≤ s ≤ t) because

E (ξt|Ft−1) = E

 y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + σ2

0
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y(t−1)∆√

σ̃2
0y

2
(t−1)∆ + σ2

0

E (vt∆| Ft−1) = 0.

To apply the martingale CLT to {ξt}, we need to check the stability and Lindeberg

conditions. For the stability condition, the conditional variance of the standardized

martingale is

〈
1√
MN

M×N∑
t=1

ξt

〉
=

1

MN

M×N∑
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E
(
ξ2
t |Ft−1

)
=

1
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(t−1)∆

σ̃2
0y

2
(t−1)∆ + σ2

0

a.s.−−→ V1.

For the Lindeberg condition, we have for any δ > 0,

E

[
1

MN

M×N∑
t=1

E
{
ξ2
t 1
(
|ξt| >

√
MNδ

)∣∣∣Ft−1

}]

≤ sup
t
E

{
ξ2
t 1

{
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(t−1)∆v
2
1∆

σ̃2
0y

2
(t−1)∆ + σ2

0

> MNδ2

}}
→ 0,

since ξ2
t is uniformly integrable. By the martingale CLT, as T →∞, we deduce that

1√
MN

M×N∑
t=1

ξt
L→ N (0, V1) ,
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which implies
√

∆CN = Op(
√
MN∆) = Op(

√
T ).

Similarly, applying martingale CLT to the first term ofDN and note that
y(t−1)∆wt∆

σ̃2y2
(t−1)∆ + σ2

is bounded, we then have, as T∆→ 0,

DN = Op(
√
MN∆) + op(

√
MN∆) +Op(MN∆3/2)

= Op(
√
T∆) + op(

√
T ) +Op(

√
T ·
√
T∆)

= op(
√
T ).

This leads to

˘̃µ := ∆−1AN
BN

= µ̃0 +
CN√
∆BN
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(
1√
T

)
. (A.2.3)

and hence,

√
T
(

˘̃µ− µ̃0

)
=

1√
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y(t−1)∆vt∆√
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0
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(t−1)∆
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0y

2
(t−1)∆ + σ2

0

+ op(1). (A.2.4)

It follows from this result, (A.2.4) and (A.2.2) that

√
T
(

˘̃µ− µ̃0

)
L→ N

(
0, V −1

1

)
.

Then, by the fact that AN = Op(∆BN), RA = Op(∆RB) and BN + RB =

Op(T/∆), we know

̂̃µ = ∆−1 ÂN

B̂N

= ∆−1AN +RA

BN +RB

= ∆−1AN
BN

+ ∆−1

(
AN +RA

BN +RB

− AN
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)
= ˘̃µ+ ∆−1RABN −RBAN

BN(BN +RB)
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)
= ˘̃µ+Op(

√
∆).

Therefore, by assuming T∆→ 0, we have

√
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)
=
√
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˘̃µ− µ̃0

)
+
√
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)
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(
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1

)
. (A.2.5)
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Consistency of ̂̃µ follows naturally from the results above.

A.2.3 Proof of Theorem 3.4.3

Similar to the previous proof, by equation (3.2.11) and consistency of θ̂, we have

ρ̂− ρ0 =

T/∆∑
t=1

y(t−1)∆(yt∆ − ρ0y(t−1)∆)̂̃σ2y2
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0
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∆
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2
(t−1)∆ + σ2

0

+RB

=

√
∆CN +RC

BN +RB

,

which leads to the decomposition

1

∆
(ρ̂− ρ0) =

√
∆CN +RC

∆BN + ∆RB

,

where BN and CN are defined in the proof of Theorem 3.4.2, and

RC :=
√

∆

T/∆∑
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y(t−1)∆vt∆
√
σ̃2

0y
2
(t−1)∆ + σ2

0ζ(t−1)∆ = Op(
√

∆). (A.2.6)

when T is finite.

In the previous proof, we have shown thatCN = Op(
√

∆BN) and one can easily

check that RC = Op(∆RB) given the order of RB in the previous proof. Therefore,

we have

1

∆
(ρ̂−ρ0) =

√
∆CN +RC

∆BN + ∆RB

=

√
∆CN

∆BN

+Op

(
RB
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)
=

√
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+Op(
√

∆).
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By the similar arguments to those in the proof of Theorem 3.4.2,

∆

T
BN =

∆

T

T/∆∑
t=1

y2
(t−1)∆

σ̃2
0y

2
(t−1)∆ + σ2

0

p−→ V1, i.e. ∆BN
p−→ TV1.

Further, by the martingale CLT,

√
∆

T
CN =

√
∆

T

T/∆∑
t=1

y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + σ2

0

L−→ N (0, V1),

when ∆→ 0. This is equivalent to
√

∆CN
L−→ N (0, TV1). Combining these results

gives
1

∆
(ρ̂− ρ0) =

√
∆ · CN

∆ ·BN

L−→ N (0, (TV1)−1).

A.2.4 Proof of Proposition 3.4.1

Under the assumption that ∆→ 0 with fixed T , we have

β̂κ − β0
κ = exp

(̂̃µ∆ +
̂̃σ2∆

2

)
− exp

(
µ̃0∆ +

σ̃2
0∆

2

)
=
(̂̃µ∆− µ̃0∆

)
+

1

2

( ̂̃σ2∆− σ̃2
0∆
)

+Op(∆
2)

=
(̂̃µ∆− µ̃0∆

)
+

∆3/2

2

{
1√
∆

( ̂̃σ2 − σ̃2
0

)}
+Op(∆

2)

=
(̂̃µ∆− µ̃0∆

)
+Op(∆

3/2).

By Theorem 3.4.3,
1

∆
(ρ̂− ρ0)

L−→ N (0, (TV1)−1). (A.2.7)

Then, by the Taylor expansion, we obtain

ρ̂− ρ0 = ̂̃µ∆− µ̃0∆ +Op(∆
2). (A.2.8)
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Therefore, by Theorem 3.4.1 and 3.4.3 we have

1

∆

(
β̂κ − β0

κ

)
=

1

∆
(ρ̂− ρ0) +Op(

√
∆)

L−→ N (0, (TV1)−1). (A.2.9)

The same argument yields the asymptotic result for β̂φ. Details of the proof are

omitted.

A.2.5 Proof of Modified LBI Test Statistic Z̃N

Under the null, by Chan et al. (2012), we have the following asymptotic distribution

result for ρ̃,

(
M×N∑
t=1

y2
(t−1)∆

δ + y2
(t−1)∆

)−1/2(M×N∑
t=1

y2
(t−1)∆

(δ + y2
(t−1)∆)1/2

)
×(ρ̃−ρ0)

L−→ N (0,Var(εt∆)) .

(A.2.10)

Then, we know for y(t−1)∆, no matter it is stationary or nonstationary, we have

ε̃t∆ − εt∆ = (ρ̃− ρ0)y(t−1)∆ = op(1).

Note ỹt∆ is always stationary, by WLLN and the ergodic theorem, we can easily

show that, for any p ∈ Z+ such that p ≤ 4,

1

MN

M×N∑
t=1

ε̃pt∆
p−→ E(εpt∆),

1

MN

M×N∑
t=1

ỹpt∆
a.s.−−→ E(ỹpt∆).

Therefore, for the denominator, we have

√√√√ 1

MN

M×N∑
t=1

ε̃4
t∆ −

(
1

MN

M×N∑
t=1

ε̃2
t∆

)2

p−→
√
E(ε4

t∆)− E(ε2
t∆)2 = Std(ε2

t∆),√√√√ 1

MN

M×N∑
t=1

ỹ4
t∆ −

(
1

MN

M×N∑
t=1

ỹ2
t∆

)2

a.s.−−→
√
E(ỹ4

t∆)− E(ỹ2
t∆)2 = Std(ỹ2

t∆).

For the numerator, denote ξ̃t∆ = ε̃2
t∆ −

(
1

MN

M×N∑
t=1

ε̃2
t∆

)
and ξt∆ = ε2

t∆ −
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(
1

MN

M×N∑
t=1

ε2
t∆

)
. We know E(ξ̃t∆) = 0 = E(ξt∆) and Var(ξ̃t∆) = Var(ε̃2

t∆)
p−→

Var(ε2
t∆).

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆ξ̃t∆ =

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆(ξ̃t∆−ξt∆)+

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆ξt∆.

By equation (3.3) in Lee (1998), one can easily show

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆(ξ̃t∆ − ξt∆) = op(1),

and by applying the martingale CLT (cf. Hall and Heyde, 1980), we have

1√
MN

M×N∑
t=1

ỹ2
(t−1)∆ξt∆

L−→ N
(
0,Var(ỹ2

t∆)Var(ε2
t∆)
)
.

Then, by combining the results above, we can derive the asymptotic distribution of

Z̃N under H0 : σ̃2
0 = 0, i.e.,

1√
MN

Z̃N
L−→ N (0, 1).

Lastly, under the alternative, one just need to note that Cov(ε2
t∆, y

2
(t−1)∆) di-

verges when σ̃2
0 6= 0, and this leads to the divergence of Z̃N .

A.2.6 Proof of Proposition 3.5.1

It has been proved in Föllmer et al. (1994) that yt is strictly stationary and ergodic

when µ̃ − 1

2
σ̃2 < 0. This means that we can still characterize explosiveness using

φ := µ̃ − 1

2
σ̃2. However, for characterizing instability, we need to calculate the

second moment of yt.
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The expectation of J(t) is

EJ(t) = −ω
∫ t

0

E

(
exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

})
ds

= −ω
∫ t

0

exp {µ̃(t− s)} ds =
ω

µ̃
(1− exp(µ̃t)),

and so EJ(t) is finite as t→∞ if and only if µ̃ < 0. Further, to figure out the order

of Var(J(t)), we apply the Cauchy-Schwartz inequality to EJ(t)2, giving

EJ(t)2 = E[K(t)− L(t)]2 ≤ 2EK(t)2 + 2EL(t)2

This inequality indicate that we only need to calculate EK(t)2 and EL(t)2 to eval-

uate the asymptotic order of EJ(t)2. By Itō’s isometry

EK(t)2 = σ2

∫ t

0

E
(
exp

{(
2µ̃− σ̃2

)
(t− s) + 2σ̃ (Bu(t)−Bu(s))

})
ds = σ2 e

2κt − 1

2κ
,

EL(t)2 = ω2E

(∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(t− s) + σ̃ (Bu(t)−Bu(s))

}
ds

)2

= ω2E

(∫ t

0

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) + σ̃ (2Bu(t)−Bu(s)−Bu(r))

}
dsdr

)
= ω2

∫ t

0

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) +

1

2
σ̃2 (2t− s− r + 2 min{t− s, t− r})

}
dsdr

= ω2

∫ t

0

∫ r

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) +

1

2
σ̃2 (4t− s− 3r)

}
dsdr

+ ω2

∫ t

0

∫ t

r

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s− r) +

1

2
σ̃2 (4t− 3s− r)

}
dsdr

= ω2

(∫ t

0

(eµ̃r − 1)e2κ(t−r)

µ̃
dr +

∫ t

0

eµ̃(t−r)(e(µ̃+σ̃2)(t−r) − 1)

µ̃+ σ̃2
dr

)

= ω2

(
µ̃(e2κt − 2eµ̃t + 1)− σ̃2(eµ̃t − 1)

2µ̃κ(µ̃+ σ̃2)
+

1− eµ̃t

µ̃(µ̃+ σ̃2)
+

e2κt − 1

2κ(µ̃+ σ̃2)

)
= ω2

(
µ̃e2κt − 2κeµ̃t + µ̃+ σ̃2

µ̃κ(µ̃+ σ̃2)

)
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Note that for κ < 0

lim
t→∞

EJ(t)2 ≤ lim
t→∞

2EK(t)2 + 2EL(t)2 =
2ω2

µ̃κ
− σ2

κ
<∞, (A.2.11)

showing that, when κ < 0, J(t) has finite second-order moments as t → ∞. Fur-

ther, for κ→ 0, by L’Hôpital’s rule, we have

lim
κ→0

EK(t)2 = lim
κ→0

σ2 2te2κt

2
= σ2t, (A.2.12)

lim
κ→0

EL(t)2 = lim
µ̃→−σ̃2/2

ω2

(
µ̃e2κt − 2κeµ̃t + µ̃+ σ̃2

µ̃κ(µ̃+ σ̃2)

)
= 4γ2σ2t+

2(e−
1
2
σ̃2t − 1)

σ̃2
. (A.2.13)

Combining results (A.2.12) and (A.2.13), we obtain EJ(t)2 = Op(t), as t→∞.

Lastly, for κ > 0, note that κ = µ̃+ 1
2
σ̃2 ≥ µ̃, we then have

EK(t)2 = σ2 e
2κt − 1

2κ
= Op(e

2κt) (A.2.14)

EL(t)2 = ω2

(
µ̃e2κt − 2κeµ̃t + µ̃+ σ̃2

µ̃κ(µ̃+ σ̃2)

)
= Op(e

2κt) (A.2.15)

which leads to EJ(t)2 = Op(e
2κt).

From the results above we know that EJ(t) is finite if and only if µ̃ < 0, and

EJ(t)2 is finite if and only if κ < 0. Since κ < 0 implies µ̃ < 0, Var(J(t)) <∞ if

and only if κ < 0. We can now work out the first two moments of yt,

Eyt = E

[
exp

(
σ̃Bu(t) +

(
µ̃− 1

2
σ̃2

)
t

)]
y0 +EJ(t) = eµ̃ty0 +

ω

µ̃
(1− exp(µ̃t)),
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Ey2
t = E

[
exp

(
2σ̃Bu(t) +

(
2µ̃− σ̃2

)
t
)]
Ey2

0

+ 2Ey0E

[
exp

(
σ̃Bu(t) +

(
µ̃− 1

2
σ̃2

)
t

)
J(t)

]
+ EJ(t)2

= e2κtEy2
0 − 2Ey0E

(
ω

∫ t

0

exp

{(
µ̃− 1

2
σ̃2

)
(2t− s) + σ̃ (2Bu(t)−Bu(s))

}
ds

)
+ EJ(t)2

= e2κtEy2
0 − 2ω

∫ t

0

E

(
exp

{(
µ̃− 1

2
σ̃2

)
(2t− s) + σ̃ (2Bu(t)−Bu(s))

})
dsEy0 + EJ(t)2

= e2κty2
0 − 2ω

∫ t

0

exp
(
2κt−

(
µ̃+ σ̃2

)
s
)
dsEy0 + EJ(t)2

= e2κtEy2
0 − 2ω

e2κt − eµ̃t

µ̃+ σ̃2
Ey0 + EJ(t)2.

Evidently from these expressions Eyt is asymptotically finite if and only if µ̃ < 0,

and Ey2
t is asymptotically finite if and only if κ < 0. This indicates that Var(yt) <

∞ if and only if κ < 0. Therefore, we can still characterize instability with κ ≥ 0

and locally explosiveness with µ̃ ≥ 0.

A.2.7 Proof of Remark 3.5.2

DenoteXn =
logRVn − log[y]nh(n−1)h +

1

2
s2
n

sn
, where sn = max

{√
2∆

RQn

RV 2
n

,

√
2

M

}
.

According to Barndorff-Nielsen and Shephard (2005), {Xn}Nn=1
L→ N (0, 1) as

∆→ 0. Note N = T
M∆

, so when ∆→ 0 with T,M being finite, we have N →∞.

Therefore, the log-likelihood function for θ = (σ̃2, γ, σ2) is given by

`ur(θ) = −N
2

log 2π − 1

2

N∑
n=1

Xn(θ)2 +O(∆). (A.2.16)

As `ur(θ) is based on the standard normal distribution, Wilks’s theorem applies in

this case, i.e. underH0 : γ0 = 0, as N →∞,

LR = −2 (`r − `ur) =
N∑
n=1

Xn(θ0)2 −
N∑
n=1

Xn(θ)2 + op(1)

= ∆−1 (Q∆(θ0)−Q∆(θ)) + op(1)
L→ χ2(1),
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where θ0 = (σ̃2
0, γ0, σ

2
0).

A.2.8 Proof of Theorem 3.5.2

The dependence of Bu and Bε leads to a complex relationship among y(t−1)∆, ρt∆

and Jt∆ in model (3.5.4). Without loss of generality, we know that yt can also

be viewed as generated from model (3.5.3) by virtue of the observational equiva-

lence of these mechanisms. Note that the approximate representation of the exact

discretized model of (3.5.3) is

yt∆ − y(t−1)∆ = µ̃0∆y(t−1)∆ ·+
√

(σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0)∆ · vt∆ + ς̃t∆,

(A.2.17)

where vt∆
i.i.d∼ N (0, 1) and ς̃t∆ is the discretization error.

Similar to the proof of Theorem 3.4.2, the limiting distribution of the feasible

estimator will converge to that of the infeasible estimator given T∆→ 0. Therefore,

we only need to figure out the distribution of the infeasible estimator. According to

(3.5.10) and with a similar derivation of the order the discretization error in the

proof of Theorem 3.4.2, we have

A∗N =
M×N∑
t=1

y(t−1)∆

(
yt∆ − y(t−1)∆

)
σ̃2

0y
2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

= µ̃0∆
M×N∑
t=1

y2
(t−1)∆

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1) + σ2

0

+
√

∆
M×N∑
t=1

y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

+ op(
√
T )

= µ̃0∆B∗N +
√

∆C∗N + op(
√
T ),

where C∗N =
∑M×N

t=1

y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

. This leads to

˘̃µ = µ̃0 +
C∗N√
∆B∗N

+ op

(
1√
T

)
, (A.2.18)
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and hence,

√
T
(

˘̃µ− µ̃0

)
=

1√
MN

M×N∑
t=1

y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

1

MN

M×N∑
t=1

y2
(t−1)∆

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

+ op(1). (A.2.19)

Note that
y2

(t−1)∆

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

is bounded above by σ̃−2
0 . Similarly, by

the same argument as in the proof of Theorem 3.4.2, we have

1

MN

M×N∑
t=1

y2
(t−1)∆

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

p−→ V2,

where V2 is defined in (3.5.12).

Further, denote

ξt :=
y(t−1)∆vt∆√

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

and observe that ξt is a martingale difference sequence with respect to the filtration

Ft := σ(Bv(s) : 0 ≤ s ≤ t) as

E (ξt|Ft−1) = E

 y(t−1)∆vt∆√
σ̃2

0y
2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

∣∣∣∣∣∣Ft−1


=

y(t−1)∆√
σ̃2

0y
2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

E (vt∆| Ft−1) = 0.

To apply the martingale CLT, we check the stability condition and the Lindeberg

condition. For the stability condition, we have

〈
1√
MN

M×N∑
t=1

ξt

〉
=

1

MN

M×N∑
t=1

E

(
y2

(t−1)∆

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

∣∣∣∣∣Ft−1

)
a.s.−−→ V2.
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For the Lindeberg condition, we have for any δ > 0

1

MN

M×N∑
t=1

E
{
ξ2
t 1
(
|ξt| >

√
MNδ

)∣∣∣Ft−1

}
≤ sup

t
E

{
ξ2
t 1

{
y2

(t−1)∆v
2
1∆

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

> MNδ2

}∣∣∣∣∣Ft−1

}
→ 0,

since ξ2
t is uniformly integrable and MN → ∞. From the martingale CLT, as

T →∞,
√
T
(

˘̃µ− µ̃0

)
L→ N

(
0, V −1

2

)
,

and hence,
√
T
(̂̃µ− µ̃0

)
L→ N

(
0, V −1

2

)
.

Consistency of ̂̃µ follows naturally from the results above.

A.2.9 Proof of Theorem 3.5.3

Similar to the proof of Theorem 3.4.3 by substituting equation (A.2.17) into ρ̂, we

obtain

ρ̂− ρ0 = ̂̃µ∆− µ̃0∆ + op(∆) =
A∗N
B∗N
− µ̃0∆ + op(∆) =

√
∆C∗N
B∗N

+ op(∆).

Then, by the same arguments as those in the proof of Theorem 3.4.2, we have

∆

T
B∗N =

∆

T

T/∆∑
t=1

y2
(t−1)∆

σ̃2
0y

2
(t−1)∆ + 2ω0y(t−1)∆ + σ2

0

p−→ V2, i.e. ∆B∗N
p−→ TV2,

Further, as proved in the previous section,
√

∆/TC∗N
L−→ N (0, V2) by the mar-

tingale CLT, which gives
√

∆C∗N
L−→ N (0, TV2). Combining these results gives

1

∆
(ρ̂− ρ0) =

√
∆C∗N

∆B∗N
+ op(1)

L−→ N (0, (TV2)−1).
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A.3 Proof of Chapter 4

The notations that have been frequently used in the proofs are as follows: [n]
def
=

{1, 2, · · · , n} for any positive integer n, Mm,n be the set of all m × n matrices

which have exactly one 1 and n − 1 0’s in each row. Rm×n denotes the set of all

m× n real matrices. ‖ · ‖ is used to denote Euclidean `2-norm for vectors in Rm×1

and the spectral norm for matrices on Rm×n. ‖ · ‖∞ denotes the largest element

of the matrix in absolute value. ‖ · ‖F is the Frobenius norm on Rm×n, namely

‖M‖F
def
=
√

tr(M>M). ‖ · ‖φ2 is the sub-Gaussian norm such that for any random

variable x, there is ‖x‖φ2
def
= supκ≥1 κ

−1/2(E|x|κ)1/κ. 1m,n ∈ Rm×n consists of

all 1’s, ιn denotes the column vector with n elements of all 1’s. 1A denotes the

indicator function of the event A.

A.3.1 Preliminary Lemmas

Lemma A.3.1 Suppose At and X are the adjacency matrix and the node covariate

matrices sampled from the SC-DCBM/SC-DCcBM. RecallWt andWt are empirical

and population weight matrices. Then, we have

sup
t
‖Wt −Wt‖∞ = Op(ξ),

where ξ = max(σ2‖Lτ‖F
√

log(TR), σ2‖Lτ‖ log(TR), NRJ2/δ) and δ = inft{miniDτ,t(i, i)}.

Proof. Define It = XLτ,tX . Then we have

sup
t
‖Wt −Wt‖∞ ≤ sup

t
‖Wt − It‖∞ + sup

t
‖It −Wt‖∞.

For the first part, defineLτ = supt Lτ,t and ζ = max(σ2‖Lτ‖F
√

log(TR), σ2‖Lτ‖ log(TR)),

then by Hansen-Wright inequality (c.f., Theorem 1.1 of Rudelson and Vershynin
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(2013)), we have

Pr(sup
t
‖X>Lτ,tX −X>Lτ,tX‖ > ζ) ≤

T∑
t=1

Pr(‖X>LτX −X>LτX‖ > ζ)

≤ 2T exp

{
−cmin

(
ζ2

σ4‖Lτ‖2
F

,
ζ

σ2‖Lτ‖

)}
= O(1/R).

Next, denote Ct = D−1/2
τ,t AtD−1/2

τ,t , then we can decompose the second part into

two parts:

sup
t
‖It−Wt‖∞ = sup

t
‖X (Lτ,t−Lτ,t)X‖∞ ≤ sup

t
‖X (Lτ,t−Ct)X‖∞+sup

t
‖X (Ct−Lτ,t)X‖∞.

Then, for part one, we have

sup
t
‖X (Lτ,t − Ct)X‖∞

= sup
t

max
s,r

∣∣∣∣∣∑
i,j

XisXjr
At(i, j)√

Dτ,t(i, i)Dτ,t(j, j)

(√
Dτ,t(i, i)Dτ,t(j, j)√
Dτ,t(i, i)Dτ,t(j, j)

− 1

)∣∣∣∣∣
≤ 1

δ
max
s,r

∑
i,j

|XisXjr| sup
t

{
max

(∣∣∣∣Dτ,t(i, i)Dτ,t(i, i)
− 1

∣∣∣∣ , ∣∣∣∣Dτ,t(j, j)Dτ,t(j, j)
− 1

∣∣∣∣)}
= max

s,r

∑
i,j

|XisXjr|Op(δ−3/2 log(TR))

= Op
(
NRJ2

δ3/2
log(TR)

)
,

where the second to the last equality comes from the following proof. For any

i ∈ {1, · · · , N} and ς = δ−1/2 log(TR), from Bernstein inequality,

Pr

(
sup
t

∣∣∣∣Dτ,t(i, i)

Dτ,t(i, i)
− 1

∣∣∣∣ > ς

)
≤

T∑
t=1

Pr

(∣∣∣∣Dτ,t(i, i)

Dτ,t(i, i)
− 1

∣∣∣∣ > ς

)
≤ 2T exp

{
−ς

2Dτ,t(i, i)
2 + 2

3
ς

}
≤ 2T exp

{
− ς2δ

2 + 2
3
ς

}
= O(1/R).
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For part two, similarly, we have

sup
t
‖X (Ct − Lτ,t)X‖∞ = sup

t
max
s,r

∣∣∣∣∣∑
i,j

XisXjr
At(i, j)−At(i, j)√
Dτ,t(i, i)Dτ,t(j, j)

∣∣∣∣∣
≤ max

s,r

∣∣∣∣∣∑
i,j

XisXjr

∣∣∣∣∣ sup
t

max
i,j

∣∣∣∣∣ At(i, j)−At(i, j)√
Dτ,t(i, i)Dτ,t(j, j)

∣∣∣∣∣
= Op

(
NRJ2

δ

)
.

Note that ς → 0 as δ, R→∞, we then know

sup
t
‖It −Wt‖∞ = Op

(
NRJ2

δ

)
.

Thus, by union bounds, we obtain

sup
t
‖Wt −Wt‖∞ = Op

(
ζ +

NRJ2

δ

)
= Op(ξ).

Lemma A.3.2 Under Assumption 4, for any ε > 0, we have

sup
t
‖St − St‖ ≤ (4 + cw)

{
3 log(8NT/ε)

δ

}1/2

, (A.3.1)

with probability at least 1− ε.

Proof. Note by triangular inequality, we have

sup
t
‖St − St‖ ≤ sup

t

∥∥αtXWtX
> − αtXWtX>

∥∥ (A.3.2)

+ sup
t

∥∥∥D−1/2
τ,t AtD−1/2

τ,t −D
−1/2
τ,t AtD

−1/2
τ,t

∥∥∥ (A.3.3)

+ sup
t

∥∥∥D−1/2
τ,t AtD

−1/2
τ,t −D

−1/2
τ,t AtD−1/2

τ,t

∥∥∥ . (A.3.4)
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For equation (A.3.2), we have,

sup
t

∥∥αtXWtX
> − αtXWtX>

∥∥
= sup

t

∥∥αtX(Wt −Wt)X
>∥∥+ sup

t

∥∥αtXWtX
> − αtXWtX>

∥∥
≤ αmaxNRJ

2 sup
t
‖Wt −Wt‖+ 2αmaxNRJ

2 sup
t
‖Wt‖

= Op(αmaxNRJ
2ξ).

So, by Assumption 4 we know, for large enoughN , with probability at least 1−ε/2,

sup
t

∥∥αtXWtX
> − αtXWtX>

∥∥ ≤ cwa

For equation (A.3.3), let Yt(i, j) = D−1/2
τ,t [(At(i, j)− pt(i, j))Eij]D−1/2

τ,t with Eij ∈

RN×N being the matrix with 1 in ij and ji’th positions and 0 everywhere else. Then

we know

sup
t
‖Yt(i, j)‖ ≤ sup

t

√
Dτ,t(i, i)Dτ,t(j, j) ≤

1

δ
, v2 = sup

t
‖
∑

E(Y 2
t (i, j))‖ ≤ 1

δ
.

So, denote a =

{
3 log(8NT/ε)

δ

}1/2

, which is smaller than 1 by assumption, and

by matrix Bernstein inequality, we have

Pr(sup
t
‖D−1/2

τ,t [At(i, j)−At(i, j)]D−1/2
τ,t ‖ > a)

≤
T∑
t=1

Pr(‖D−1/2
τ,t [At(i, j)−At(i, j)]D−1/2

τ,t ‖ > a)

≤ 2NT exp

(
− a2

2/δ + 2a/3δ

)
≤ 2NT exp

(
−3 log(8NT/ε)

3

)
= ε/4.
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Hence, with probability at least 1− ε/4,

sup
t
‖D−1/2

τ,t AtD−1/2
τ,t −D

−1/2
τ,t AtD

−1/2
τ,t ‖ ≤ a (A.3.5)

Lastly, for equation (A.3.4), by Qin and Rohe (2013) and setting λ = aDτ,t(i, i)

we have

Pr(|Dτ,t(i, i)−Dτ,t(i, i)| ≥ λ) ≤ exp

{
− λ2

2Dτ,t(i, i)

}
+ exp

{
− λ2

2Dτ,t(i, i) + 2
3
λ

}
≤ 2 exp

{
− λ2

2Dτ,t(i, i) + 2
3
λ

}
= 2 exp

{
−a

2Dτ,t(i, i)
2 + 2

3
a

}
≤ 2 exp

{
− log(8NT/ε)× Dτ,t(i, i)

δ

}
≤ ε

4NT
.

Further note that

Pr

(
sup
t
‖D−1/2

τ,t D
1/2
τ,t − I‖ ≥ a

)
≤

T∑
t=1

Pr
(
‖D−1/2

τ,t D
1/2
τ,t − I‖ ≥ a

)
≤

T∑
t=1

Pr

(
max
i

∣∣∣∣Dτ,t(i, i)

Dτ,t(i, i)
− 1

∣∣∣∣ ≥ a

)

≤
T∑
t=1

N∑
i=1

Pr (|Dτ,t(i, i)−Dτ,t(i, i)| ≥ aDτ,t(i, i))

≤ NT × ε

4NT

= ε/4.

150



Therefore, with probability at least 1− ε/4, we have

sup
t
‖D−1/2

τ,t AtD
−1/2
τ,t −D

−1/2
τ,t AtD−1/2

τ,t ‖

= sup
t
‖Lτ,t −D−1/2

τ,t D
1/2
τ,t Lτ,tD

1/2
τ,t D

−1/2
τ,t ‖

= sup
t
‖(I −D−1/2

τ,t D
1/2
τ,t )Lτ,tD

1/2
τ,t D

−1/2
τ,t + Lτ,t(I −D1/2

τ,t D
−1/2
τ,t )‖

≤ sup
t
‖D−1/2

τ,t D
1/2
τ,t − I‖ sup

t
‖D−1/2

τ,t D
1/2
τ,t ‖+ sup

t
‖D−1/2

τ,t D
1/2
τ,t − I‖

≤ a2 + 2a

where the second last inequality comes from the fact that supt ‖Lτ,t‖ ≤ 1.

Therefore, joining the results for these three equations, we have, with probability

at least 1− ε,

sup
t
‖St − St‖ ≤ a2 + 3a+ cwa ≤ (4 + cw)a = (4 + cw)

{
3 log(8NT/ε)

δ

}1/2

.

(A.3.6)

Lemma A.3.3 Under the dynamic SC-DCBM with K blocks, define Γτ,t ∈ RN×K

with columns containing the top K eigenvectors of St. Then, under Assumption 4,

there exists an orthogonal matrix Ut depending on τt for each t = 1, · · · , T , such

that for any i, j = 1, · · · , N ,

Γτ,t = Ψ
1/2
τ,t Zt(Z

>
t Ψτ,tZt)

−1/2Ut and Γ ∗τ,t(i, ∗) = Γ ∗τ,t(j, ∗)⇐⇒ Zt(i, ∗) = Zt(j, ∗),

where Γ ∗τ,t(i, ∗) = Γτ,t(i, ∗)/‖Γτ,t(i, ∗)‖.

Proof. Denote DB,t as a diagonal matrix with entries DB,t(i, i) =
∑K

j=1Bt(i, j),

and Ψτ,t = Diag(ψτ,t) with ψτ,t(i) = ψt
Dt(i,i)
Dτ,t(i,i) . Then, Under the dynamic SC-

DCBM, we have the decomposition below

Lτ,t = D−1/2
τ,t AtD

−1/2
τ,t = Ψ

1/2
τ,t ZtBL,tZ

>
t Ψ

1/2
τ,t ,
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where BL,t = D
−1/2
B,t BtD

−1/2
B,t .

Define Mt such that X = E(X) = Ψ
1/2
τ,t ZtMt, and Ωt = BL,t + αtMtWtM

>
t ,

then we know

St = Ψ
1/2
τ,t ZtΩtZ

>
t Ψ

1/2
τ,t . (A.3.7)

Now, denote Yτ,t = Z>t Ψτ,tZt, and let Hτ,t = Y
1/2
τ,t ΩtY

1/2
τ,t . Then, by eigen-

decomposition, we have Hτ,t = UtΛtU
>
t . Define Γτ,t = Ψ

1/2
τ,t ZtY

−1/2
τ,t Ut, then

Γ>τ,tΓτ,t = U>t Y
−1/2
τ,t Z>t Ψ

1/2
τ,t Ψ

1/2
τ,t ZtY

−1/2
τ,t Ut

= U>t Y
−1/2
τ,t Yτ,tY

−1/2
τ,t Ut

= U>t Ut = I,

and we have

StΓτ,t = (Ψ
1/2
τ,t ZtΩtZ

>
t Ψ

1/2
τ,t )Ψ

1/2
τ,t Zt(Z

>
t Ψτ,tZt)

−1/2Ut

= Ψ
1/2
τ,t ZtΩtY

1/2
τ,t Ut

=
{
Ψ

1/2
τ,t ZtY

−1/2
τ,t

(
Y

1/2
τ,t ΩtY

1/2
τ,t

)}
Ut

= Ψ
1/2
τ,t ZtY

−1/2
τ,t (UtΛtU

>
t )Ut

= Γτ,tΛt.

Following Qin and Rohe (2013), it is obvious that

Γ ∗τ,t(i, ∗) =
Γτ,t(i, ∗)
‖Γτ,t(i, ∗)‖

= Zi,tUt.

Then, by directly applying the Lemma 1 in Binkiewicz et al. (2017), we complete

the proof.

Lemma A.3.4 Under Assumption 4’, for any ε > 0, we have

sup
t
‖sym (St − St)‖ ≤ δmax{3 log(16NT/ε)}1/2, (A.3.8)
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with probability at least 1− ε

Proof. By triangular inequality, we have

sup
t
‖sym (St − St)‖ ≤ sup

t

∥∥sym
(
αtXWtX

> − αtXWtX>
)∥∥ (A.3.9)

+ sup
t

∥∥∥sym
(
D−1/2
R,t AtD−1/2

C,t −D
−1/2
R,t AtD

−1/2
C,t

)∥∥∥
(A.3.10)

+ sup
t

∥∥∥sym
(
D
−1/2
R,t AtD

−1/2
C,t −D

−1/2
R,t AtD−1/2

C,t

)∥∥∥ .
(A.3.11)

For equation (A.3.9), by similar results in proof of Lemma 2, the spectral norm

of the symmetrized αtXWtX
> − αtXWtX> is bounded by

sup
t

∥∥sym
(
αtXWtX

> − αtXWtX>
)∥∥

= αmax sup
t

∥∥sym
(
X(Wt −Wt)X

>)∥∥+ αmax sup
t

∥∥sym
(
XWtX

> −XWtX>
)∥∥

≤ αmaxNRJ
2 sup

t
‖sym (Wt −Wt) ‖+ 2αmaxNRJ

2 sup
t
‖sym (Wt) ‖

= Op(αmaxNRJ
2ξ).

So, by Assumption 4’, we know that for large enough N , with probability at least

1− ε/2,

sup
t

∥∥sym
(
αtXWtX

> − αtXWtX>
)∥∥ ≤ c′wa.

For equation (A.3.10), by Assumption 4’ and matrix Bernstein inequality, we

know under assumption δ′ > 3 log(16NT/ε), a < 1. Therefore, similar to proof of
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Lemma 2, we have

Pr

(
sup
t

∥∥∥sym
(
D−1/2
R,t AtD−1/2

C,t −D
−1/2
R,t AtD

−1/2
C,t

)∥∥∥ > a

)
≤

T∑
t=1

Pr
(∥∥∥sym

(
D−1/2
R,t AtD−1/2

C,t −D
−1/2
R,t AtD

−1/2
C,t

)∥∥∥ > a
)

≤ 4NT exp

(
−3 log(16NT/ε)/δ′

2/δ′ + 2a/(3δ′)

)
≤ 4NT exp (− log(16NT/ε))

= ε/4.

Lastly, for equation (A.3.11), by Rohe et al. (2016), we know with probability

at least 1− ε/2,

sup
t

∥∥∥sym
(
D
−1/2
R,t AtD

−1/2
C,t −D

−1/2
R,t AtD−1/2

C,t

)∥∥∥
= sup

t

∥∥∥sym
(
Lτ,t −D−1/2

τ,t D
1/2
τ,t Lτ,tD

1/2
τ,t D

−1/2
τ,t

)∥∥∥
= sup

t

∥∥∥sym
(

(I −D−1/2
τ,t D

1/2
τ,t )Lτ,tD

1/2
τ,t D

−1/2
τ,t + Lτ,t(I −D1/2

τ,t D
−1/2
τ,t )

)∥∥∥
≤ sup

t

∥∥∥sym
(
D−1/2
τ,t D

1/2
τ,t − I

)∥∥∥ sup
t

∥∥∥sym
(
D−1/2
τ,t D

1/2
τ,t

)∥∥∥+ sup
t

∥∥∥sym
(
D−1/2
τ,t D

1/2
τ,t − I

)∥∥∥
≤ a2 + 2a

Therefore, combine the results above, we obtain the upper bound for ‖sym (St − St)‖,

i.e., with probability at least 1− ε,

sup
t
‖sym (St − St)‖ ≤ a2+3a+c′wa ≤ (4+c′w)a = (4+c′w)

{
3 log(16N/ε)

δ′

}1/2

.

(A.3.12)

Lemma A.3.5 Under the dynamic SC-DCcBM withKR row blocks andKC column

blocks, define ΓR,t ∈ R
N×KR with columns containing the top KR left singular

vectors of St and ΓC,t ∈ RN×KC with columns containing the topKC right singular

vectors of St. Then, under Assumption 4’, there exist orthogonal matrices UR,t and
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UC,t depending on τt for each t = 1, · · · , T , such that for any i, j = 1, · · · , N ,

Γp,t = Ψ pτ,t
1/2Zp,t(Z

>
p,tΨ

p
τ,t

1/2Zp,t)
−1/2Up,t

and

Γ ∗p,t(i, ∗) = Γ ∗p,t(j, ∗)⇐⇒ Zp,t(i, ∗) = Zp,t(j, ∗).

where Γ ∗p,t(i, ∗) = Γp,t(i, ∗)/‖Γp,t(i, ∗)‖ with p ∈ {R,C}.

Proof. DefineDR
B,t andDC

B,t are diagonal matrices with entriesDR
B,t(i, i) =

∑K
j=1Bt(i, j)

andDC
B,t(i, i) =

∑K
j Bt(j, i), and Ψ pτ,t = Diag(ψpτ,t) withψpτ,t(i) = ψpi

Dp,t(i, i)
Dp,t(i, i) + τp,t

for p ∈ {R,C}. Then under dynamic SC-DCcBM, we have the decomposition be-

low,

Lτ,t = D−1/2
R,t AtD

−1/2
C,t = ΨRτ,t

1/2
ZR,tBL,tZ

>
C,tΨ

C
τ,t

1/2
,

where BL,t =
(
DR
B,t

)−1/2
Bt

(
DC
B,t

)−1/2
.

DefineMR,t andMC,t such thatX = E(X) = ΨRτ,t
1/2
ZR,tMR,t = ΨCτ,t

1/2
ZC,tMC,t,

and Ωt = BL,t + αtMR,tWtM
>
C,t, then we know

St = ΨRτ,t
1/2
ZR,tΩtZ

>
C,tΨ

C
τ,t

1/2
. (A.3.13)

Now, denote YR,t = Z>R,tΨ
R
τ,tZR,t and YC,t = Z>C,tΨ

C
τ,tZC,t, and let Hτ,t =

Y
1/2
R,t ΩtY

1/2
C,t . Then, by singular value decomposition, we have Hτ,t = UR,tΛtU

>
C,t.

Define ΓR,t = ΨRτ,t
1/2
ZR,tY

−1/2
R,t UR,t and ΓC,t = ΨCτ,t

1/2
ZC,tY

−1/2
C,t UC,t, then, for

p ∈ {R,C},

Γ>p,tΓp,t = U>p,tY
−1/2
p,t Z>p,tΨ

p
τ,t

1/2Ψ pτ,t
1/2Zp,tY

−1/2
p,t Up,t

= U>p,tY
−1/2
p,t Yp,tY

−1/2
p,t Up,t

= U>p,tUp,t = I,
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and we have

ΓR,tΛtΓC,t = ΨRτ,t
1/2
ZR,tY

−1/2
R,t UR,tΛtU

>
C,tY

−1/2
C,t Z>C,tΨ

C
τ,t

1/2

= ΨRτ,t
1/2
ZR,tY

−1/2
R,t Hτ,tY

−1/2
C,t Z>C,tΨ

C
τ,t

1/2

= ΨRτ,t
1/2
ZR,tY

−1/2
R,t

(
Y

1/2
R,t ΩtY

1/2
C,t

)
Y
−1/2
C,t Z>C,tΨ

C
τ,t

1/2

= ΨRτ,t
1/2
ZR,tΩtZ

>
C,tΨ

C
τ,t

1/2
= St

Following Rohe et al. (2016), it is obvious that

Γ ∗p,t(i, ∗) =
Γp,t(i, ∗)
‖Γp,t(i, ∗)‖

= Zp,t(i, ∗)Up,t, for p ∈ {R,C},

which completes the proof.

A.3.2 Proof of Theorem 4.2.1

Proof. By Binkiewicz et al. (2017) and the solution of (1+ε)-approximate k-means

method, we know for each period t = 1, 2, · · · , T , we have

|Mt|
N
≤ 2(2 + ε)2

m2
zN

‖Ut − UtOt‖2
F (A.3.14)

and

‖Ut − UtOt‖F ≤
8K1/2

λK,t

∥∥∥Ŝt,r − St∥∥∥ , (A.3.15)

where mz
def
= mini,t{min{‖Γτ,t(i, ∗)‖, ‖Γτ,t(i, ∗)‖}} with Γτ,t and Γτ,t being de-

fined in Lemma 3.

Then, we have

sup
t

|Mt|
N
≤ 29(2 + ε)2K

m2
zNλ

2
K,max

sup
t

∥∥∥Ŝt,r − St∥∥∥2

. (A.3.16)

Then, for St, we have the following representation:

St = D−1/2
τ,t ΨZtBtZ

>
t ΨD

−1/2
τ,t + αtXWtX>, (A.3.17)
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To figure out the upper bound of the estimation error, we have to evaluate the

error bound supt

∥∥∥Ŝt,r − St∥∥∥. Define

St,r =
1

|Fr|
∑
i∈Fr

Wr,l(i)St+i, (A.3.18)

then by triangle inequality, we have

∆(r) = sup
t

∥∥∥Ŝt,r − St∥∥∥ ≤ sup
t

∥∥∥Ŝt,r − St,r∥∥∥+ sup
t
‖St,r − St‖ = ∆1(r) + ∆2(r).

(A.3.19)

For ∆1(r), by Lemma A.3.2, we have

∆1(r) =
1

|Fr|
∑
i∈Fr

Wr,l(i) sup
t
‖St+i − St+i‖

≤ 1

|Fr|
∑
i∈Fr

Wr,l(i)

{
(4 + cw)

[
3 log(8NT/ε)

δ

]1/2
}

≤ Wmax(4 + cw)

{
3 log(8NT/ε)

δ

}1/2

. (A.3.20)

For ∆2(r), we have the following decomposition

∆2(r) = sup
t
‖St,r − St‖ ≤ sup

t

∥∥∥St,r − S̃t,r∥∥∥+sup
t

∥∥∥S̃t,r − St∥∥∥ = ∆21(r)+∆22(r),

(A.3.21)

where

S̃t,r =
1

|Fr|
∑
i∈Fr

Wr,l(i)
(
D−1/2
τ,t ΨZtBt+iZ

>
t ΨD

−1/2
τ,t + αt+iXWt+iX>

)
.

(A.3.22)

157



Then for ∆21, we have

∆21(r)

≤ Wmax
1

|Fr|
∑
i∈Fr

sup
t

∥∥∥D−1/2
τ,t+iΨZt+iBt+iZ

>
t+iΨD

−1/2
τ,t+i −D

−1/2
τ,t ΨZtBt+iZ

>
t ΨD

−1/2
τ,t

∥∥∥
≤ Wmax

1

|Fr|
∑
i∈Fr

sup
t

{(∥∥∥D−1/2
τ,t+iΨZt+i

∥∥∥+
∥∥∥D−1/2

τ,t ΨZt

∥∥∥) ‖Bt+i‖
∥∥∥D−1/2

τ,t+iΨZt+i −D
−1/2
τ,t ΨZt

∥∥∥}
≤ Wmax

1

|Fr|
∑
i∈Fr

sup
t

{(∥∥∥D−1/2
τ,t

∥∥∥ ‖Zt+i‖+
∥∥∥D−1/2

τ,t

∥∥∥ ‖Zt‖) ‖Bt+i‖
∥∥∥D−1/2

τ,t+iΨZt+i −D
−1/2
τ,t ΨZt

∥∥∥} ,
where the last inequality comes from the fact that ‖Ψ‖ = maxi

∣∣√ψi∣∣ ≤ 1.

Then, observe that supt

∥∥∥D−1/2
τ,t

∥∥∥ ≤ δ−1/2, supt ‖Zt‖ ≤ P
1/2
max, supt ‖Bt‖ ≤ K,

we then have

sup
t

{∥∥∥D−1/2
τ,t

∥∥∥ ‖Zt+i‖+
∥∥∥D−1/2

τ,t

∥∥∥ ‖Zt‖} ≤ 2δ−1/2P 1/2
max. (A.3.23)

Further, note that

sup
t

∥∥∥D−1/2
τ,t+iΨZt+i −D

−1/2
τ,t ΨZt

∥∥∥ (A.3.24)

≤ sup
t

{∥∥∥D−1/2
τ,t+iΨZt+i −D

−1/2
τ,t+iΨZt

∥∥∥+
∥∥∥D−1/2

τ,t+iΨZt −D
−1/2
τ,t ΨZt

∥∥∥}
≤ sup

t

{∥∥∥D−1/2
τ,t+i

∥∥∥ ‖Ψ‖ ‖Zt+i − Zt‖+
(∥∥∥D−1/2

τ,t+i

∥∥∥ ‖Ψ‖+
∥∥∥D−1/2

τ,t

∥∥∥ ‖Ψ‖) ‖Zt‖}
≤

√
2|r|s
δ

+

√
4Pmax

δ
.

Then, combine the results above with the assumption δ > 3 log(8NT/ε) in Lemma

A.3.2, we have

∆21(r) ≤ 2WmaxK

δ
(
√

2Pmaxrs+ 2Pmax). (A.3.25)

Lastly, for ∆22(r), for notational simplicity, denote Yτ,t
def
= D−1/2

τ,t ΨZt. Then,
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apply the results in Pensky and Zhang (2017) and proof of Lemma A.3.2, we obtain

∆22(r) = sup
t

∥∥∥S̃t,r − St∥∥∥
=

1

|Fr|
∑
i∈Fr

Wr,l(i) sup
t

(
Yτ,t ‖Bt+i −Bt‖Y >τ,t +

∥∥αt+iXWt+iX> − αtXWtX>
∥∥)

≤ sup
t

{
max

1≤j′≤N

N∑
j=1

∣∣(Yτ,tQr,tY
>
τ,t)(j, j

′)
∣∣}+ 2αmaxWmaxNRJ

2 sup
t
‖Wt‖

≤ sup
t

max
k,k′
|Qr,t| max

1≤j′≤N

K∑
k=1

K∑
k′=1

∑
j∈Gt,k

Yτ,t(j, k)

Yτ,t(j′, k′)


(A.3.26)

+ 2Wmax

{
3 log(8NT/ε)

δ

}1/2

≤ NLWmax

δ · l!

( r
T

)β
+ 2Wmax

{
3 log(8NT/ε)

δ

}1/2

(A.3.27)

where the second last inequality comes from Assumption 4 and the last inequality

come from the fact that maxi ψi ≤ 1.

Now, combine the results provided by equation (A.3.16), (A.3.20), (A.3.25),

and (A.3.27), we derive the upper bound for misclustering rate of dynamic DCBM:

with probability at least 1− ε,

sup
t

|Mt|
N
≤ c1(ε)KW 2

max

m2
zNλ

2
K,max

{
(6 + cw)

b

δ1/2
+

2K

δ
(
√

2Pmaxrs+ 2Pmax) +
NL

δ · l!

( r
T

)β}2

.

where b =
√

3 log(8NT/ε), λK,max = maxt{λK,t} and c1(ε) = 29(2 + ε)2.

A.3.3 Proof of Lemma 4.2.1

Proof. Firstly, by Lemma B.1 in Supplementary material of Lei and Rinaldo (2015),

fix η ∈ (0, 1), we have

∥∥∥Ŝt,r − St,r∥∥∥ ≤ (1− η)−2 sup
x,y∈T

∣∣∣x>(Ŝt,r − St,r)y
∣∣∣ , (A.3.28)
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where T = {x = (x1, · · · , xN) ∈ RN , ‖x‖ = 1,
√
Nxi/η ∈ Z, ∀i}. Then, let

d = rN‖St‖∞ with r ≥ 1, we can split the pairs (xi, yj) into light pairs

L = L (x, y)
def
= {(i, j) : |xiyj| ≤

√
d/N},

and into heavy pairs

L̄ = L̄ (x, y)
def
= {(i, j) : |xiyj| >

√
d/N}.

For the light pair, first denote

uij = xiyj1{|xiyj |≤
√
d/N} + xjyi1{|xjyi|≤

√
d/N},

then we have

∑
(i,j)∈L (x,y)

xiyj(Ŝt,r(i, j)− St,r(i, j))

=
1

|Fr|
∑

1≤i≤j≤N

∑
k∈Fr

uijWr,`(k) [St+k(i, j)− St+k(i, j)] .

Denote wij = |Fr|−1
∑

k∈Fr Wr,`(k) [St+k(i, j)− St+k(i, j)] and ξij = wijuij ,

then we have |wij| ≤ Wmax‖St‖∞, and by Pensky and Zhang (2017), it is known

that ξij is a independent random variable with zero mean and absolute values bounded

by |ξij| ≤ 2Wmax

√
r‖St‖3

∞/N , using the fact that |uij| ≤ 2
√
d/N .
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Now, applying Bernstein inequality, for any c > 0, we have

Pr

(
sup
x,y∈T

∣∣∣∣∣ ∑
1≤i≤j≤N

ξij

∣∣∣∣∣ ≥ c
√
d

r

)

≤ 2 exp

−
c2d

2r∑
1≤i≤j≤N E

(
ξ2
ij

)
+

2Wmax

3

√
r‖St‖3

∞
N

× c
√
d

r



≤ 2 exp

−
c2d

2r(∑
1≤i≤j≤N u

2
ij

)
W 2

max‖St‖2
∞ +

2Wmax

3

√
r‖St‖3

∞
N

× c
√
d

r


≤ 2 exp

(
− 3c2N

12W 2
max‖St‖∞ + 4cWmax‖St‖∞

)
.

Then, by a standard volume argument, we have the cardinality of T ≤ exp(N log(7/η)),

and this ensures

Pr

 sup
x,y∈T

∣∣∣∣∣∣
∑

(i,j)∈L (x,y)

xiyj(Ŝt,r(i, j)− St,r(i, j))

∣∣∣∣∣∣ ≥ c
√
d

r


≤ exp

{
−
(

3c2

12W 2
max‖St‖∞ + 4cWmax‖St‖∞

− 2 log

(
7

η

))
N

}
. (A.3.29)

For the heavy pairs, we know

∣∣∣∣∣∣
∑

(i,j)∈L̄ (x,y)

xiyj(Ŝt,r(i, j)− St,r(i, j))

∣∣∣∣∣∣
=

∣∣∣∣∣∣ 1

|Fr|
∑

(i,j)∈L̄ (x,y)

xiyj
∑
k∈Fr

Wr,`(k)(St+k(i, j)− St+k(i, j))

∣∣∣∣∣∣
≤

∣∣∣∣∣∣ 1

|Fr|
∑

(i,j)∈L̄ (x,y)

x2
i y

2
j

|xiyj|
∑
k∈Fr

Wr,`(k)(St+k(i, j)− St+k(i, j))

∣∣∣∣∣∣
≤ N√

d
Wmax‖St‖∞

∑
(i,j)∈L̄ (x,y)

x2
i y

2
j

=
Wmax

r

√
d

∑
(i,j)∈L̄ (x,y)

x2
i y

2
j

≤ Wmax

r

√
d.
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Therefore, choosing c = Wmax in equation (A.3.29), we have

Pr

(
sup
x,y∈T

∣∣∣∣∣ ∑
1≤i≤j≤N

xiyj(Ŝt,r(i, j)− St,r(i, j))

∣∣∣∣∣ ≤ Wmax

√
d

r

)
≥ 1− ε (A.3.30)

where ε = N

(
3

16‖St‖∞
−2 log( 7

η )
)
.

In the end, by equation (A.3.28) and (A.3.30), we obtain, with probability 1− ε,

∥∥∥Ŝt,r − St,r∥∥∥ ≤ (1− η)−2 sup
x,y∈T

∣∣∣x>(Ŝt,r − St,r)y
∣∣∣ ≤ (1− η)−2Wmax

√
d

r
.

A.3.4 Proof of Theorem 4.2.2

Proof. In this proof, we deal with the clustering of left singular vector and the right

singular vectors separately.

(1) Clustering forZR,t. First, by Rohe et al. (2016) and solution of (1+ε)-approximate

k-means clustering, for each period t = 1, · · · , T , we have

∣∣MR
t

∣∣
N
≤ 8(2 + ε)2

m2
rN

‖Ut − UtOt‖2
F , (A.3.31)

where denote mr
def
= mini,t{min{‖ΓR,t(i, ∗)‖, ‖ΓR,t(i, ∗)‖}}, and by improved ver-

sion of Davis-Kahn theorem from Lei and Rinaldo (2015), we have

‖Ut − UtOt‖F ≤
2
√

2KR

λKR,t
‖sym (St,r − St)‖ , (A.3.32)

as KR ≤ KC .

Then, base on equation (A.3.31) and (A.3.32), we have

sup
t

∣∣MR
t

∣∣
N
≤ 26(2 + ε)2KR

m2
rNλ

2
KR,max

sup
t
‖sym (St,r − St)‖2 . (A.3.33)
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Then, for St, we have the following representation:

St = D−1/2
R,t ΨRZR,tBtZ

>
C,tΨ

CD−1/2
C,t + αtXWtX>, (A.3.34)

where Ψ p = Diag(ψp) with p ∈ {R,C}. Then, by definition of St,r
def
= |Fr|−1

∑
i∈Fr Wr,`(i)St+i,

we have the decomposition

∆(r) =≤ sup
t

∥∥∥sym
(
Ŝt,r − St,r

)∥∥∥+ sup
t
‖sym (St,r − St)‖ = ∆1(r) + ∆2(r).

(A.3.35)

Now, we evaluate ∆1(r) and ∆2(r) respectively. For ∆1(r), by Lemma 4, we

have

sup
t

∥∥∥sym
(
Ŝt,r − St,r

)∥∥∥ =
1

|Fr|
∑
i∈Fr

Wr,`(i) sup
t
‖sym (St+i − St+i)‖ (A.3.36)

≤ Wmax(4 + c′w)

{
3 log(16N/ε)

δ′

}1/2

.

For ∆2(r), we first define

S̃t,r =
1

|Fr|
∑
i∈Fr

Wr,`(i)
(
YR,tBt+iY

>
C,t + αt+iXWt+iX

)
. (A.3.37)

where YR,t
def
= D−1/2

R,t ΨRZR,t and YC,t
def
= D−1/2

C,t ΨCZC,t.

Then, we decompose ∆2(r) as

sup
t
‖sym (St,r − St)‖ ≤ sup

t

∥∥∥sym
(
St,r − S̃t,r

)∥∥∥+sup
t

∥∥∥sym
(
S̃t,r − St

)∥∥∥ = ∆21(r)+∆22(r).

(A.3.38)

For notation simplicity, we define Yp,t
def
= D−1/2

p,t Ψ pZp,t for p ∈ {R,C}, and the

block diagonal matrix Yt such that

Yt
def
=

 YR,t 0N×KC

0N×KR YC,t

 . (A.3.39)
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Note that

∥∥∥sym
(
St,r − S̃t,r

)∥∥∥ ≤ Wmax max
|i|≤r

∥∥sym
(
YR,t+iBt+iY

>
C,t+i − YR,tBt+iY

>
C,t

)∥∥
= Wmax max

|i|≤r

∥∥Yt+isym(Bt+i)Y>t+i − Ytsym(Bt+i)Y>t
∥∥

≤ Wmax max
|i|≤r

(‖Yt+i‖+ ‖Yt‖) ‖sym(Bt+i)‖ ‖Yt+i − Yt‖ ,

and ‖sym(Bt+i)‖ ≤ KC and ‖Ψ p‖ ≤ 1 for p ∈ {R,C}, we then have

‖Yt‖ = max{‖D−1/2
R,t ΨRZR,t‖, ‖D−1/2

C,t ΨCZC,t‖}

≤ max{‖D−1/2
R,t ‖‖Ψ

R‖‖ZR,t‖, ‖D−1/2
C,t ‖‖Ψ

C‖‖ZC,t‖}

≤ δ′
−1/2

P 1/2
max,

and

‖Yt+i − Yt‖ = max {‖YR,t+i − YR,t‖ , ‖YC,t+i − YC,t‖}

≤ max
{∥∥∥D−1/2

R,t+iZR,t+i −D
−1/2
R,t ZC,t

∥∥∥ ,∥∥∥D−1/2
C,t+iZC,t+i −D

−1/2
C,t ZC,t

∥∥∥}
≤

√
2|r|s
δ′

+

√
4Pmax

δ′
,

where the last inequality comes from the same derivation as equation (A.3.24).

Therefore, we have

∆21(r) = sup
t

∥∥∥sym
(
St,r − S̃t,r

)∥∥∥ (A.3.40)

≤ Wmax × (2δ′
−1/2

P 1/2
max)×KC ×

(√
2|r|s
δ′

+

√
4Pmax

δ′

)

=
2WmaxKC

δ′

(√
2Pmaxrs+ 2Pmax

)
.
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Lastly, for ∆22(r), define

Zt
def
=

ΨRτ,t1/2ZR,t 0N×KC

0N×KR ΨCτ,t
1/2
ZC,t

 . (A.3.41)

Then, by Assumption 4’, we have

∆22(r) = sup
t

∥∥∥sym
(
S̃t,r − St

)∥∥∥
≤ 1

|Fr|
∑
i∈Fr

Wr,`(i) sup
t

∥∥sym
(
YR,t(Bt+i −Bt)Y

>
C,t

)∥∥
+

1

|Fr|
∑
i∈Fr

Wr,`(i) sup
t
‖sym (αt+iXWt+iX − αtXWtX )‖

≤ 1

|Fr,j|
∑
i∈Fr,j

W j
r,`(i)

∥∥Ytsym(Bt+i −Bt)Y>t
∥∥+ 2αmaxWmaxNRJ

2 sup
t
‖sym(Wt)‖

≤ ∆
(1)
22 + 2Wmax

{
3 log(16N/ε)

δ′

}1/2

.

For ∆
(1)
22 , apply the same argument in previous proof for ScBM, we know

∆
(1)
22 ≤ max

k,k′
|Qr,t(k, k

′)| max
1≤j′≤2N

KR+KC∑
k=1

KR+KC∑
k′=1

∑
j∈Gt,k

Yt(j, k)

Yt(j′, k′)
≤ Wmax

NL

δ′ · `!

( r
T

)β
. (A.3.42)

Therefore, combine equation (A.3.33), (A.3.35), (A.3.36), (A.3.40), and (A.3.42),

we obtain

∣∣MR
t

∣∣
N
≤c2(ε)KRW

2
max

m2
rNλ

2
KR,max

{
(6 + c′w)

b′

δ′1/2
+

2KC

δ′
(
√

2Pmaxrs+ 2Pmax) +
NL

δ′ · `!

( r
T

)β}2

,

where c2(ε) = 26(2 + ε)2, b′ = {3 log(16NT/ε)}1/2 and λKR,max = maxt{λKR,t}.

(2) Clustering for ZC,t.

As shown in equation (A.3.13), the population regularized graph Laplacian of
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dynamic DCcBM has following decomposition

St = ΨRτ,t
1/2
ZR,tΩtZ

>
C,tΨ

C
τ,t

1/2
(A.3.43)

Then, let YR,t = Z>R,tΨ
R
τ,tZR,t and YC,t = Z>C,tΨ

C
τ,tZC,t, and

Hτ,t = Y
1/2
R,t ΩtY

1/2
C,t . (A.3.44)

Now, following Rohe et al. (2016), we can define

γc
def
= min

t
{min
i 6=j
‖Ht(∗, i)−Ht(∗, j)‖}, (A.3.45)

and thus ∣∣MC
t

∣∣
N
≤ 16(2 + ε)2

m2
cNγ

2
c

‖Ut − UtOt‖2
F . (A.3.46)

where mc
def
= mini,t{min{‖ΓC,t(i, ∗)‖, ‖ΓC,t(i, ∗)‖}}.

Now, combining equation (A.3.46) with equations (A.3.32), (A.3.35), (A.3.36),

(A.3.40), and (A.3.42), we obtain

sup
t

∣∣MC
t

∣∣
N
≤ c3(ε)KRW

2
max

m2
cNγ

2
cλ

2
KR,max

{
(6 + c′w)

b′

δ′1/2
+

2KC

δ′
(
√

2Pmaxrs+ 2Pmax) +
NL

δ′ · `!

( r
T

)β}2

where c3(ε) = 27(2 + ε)2, b′ = {3 log(16N/ε)}1/2 and λKR,max = maxt{λKR,t}.
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