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Models of communication processes sometimes require the computation of the difference between
two variables. For example, information insufficiency is the difference between what people know
and what they think they need to know about an issue, and it can motivate information seeking and
processing. Common methods that compute this differential may bias model estimates as a function
of the correlation between the differentiated variables and other variables in the model. This article
describes the general form of Cohen and Cohen’s (1983) analysis of partial variance for computing
differentials and analyzes simulated data to contrast that method with two alternative methods. The
discussion recommends the use of the general form of the Cohen and Cohen method in other areas of
communication research, such as studies of third-person perception.

Models of communication sometimes require the computation of the difference between two
observed variables. Longitudinal studies generally involve the measurement of an initial condition
and a subsequent condition (i.e., a prescore and postscore, respectively). Some cross-sectional
studies measure analogous variables whose observations are simultaneous.1 The current study
considers the measurement of such differentials in communication research.

This study describes a statistical inadequacy of a common metric of information insufficiency
that uses a variant of Cohen and Cohen’s (1983) analysis of partial variance (APV) in order to
compute a differential. This variant method, which seeks to overcome limitations of using a raw
difference score, tends to overestimate R2 when information insufficiency is either a dependent or
independent variable, and is sensitive to the degree of correlation between the prescore—in this
case, perceived current knowledge—and other variables in the model—for example, perceived
behavioral control over seeking. Researchers continue to use this method with the justification
that “prior researchers used it.”

Thus, this article has specific and generic functions. The specific function is to provide guid-
ance to researchers of information insufficiency and similarly structured models. The generic

1For example, information insufficiency is the difference between current knowledge and desired knowledge.
Although these variables are measured at the same time, they imply a time order: current knowledge precedes future
knowledge.
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function is to draw attention to the measurement of differentials in communication research and
to extend the discussion on the appropriateness of different methods in different research contexts.

First, I outline Cohen and Cohen’s APV and how the variant method can produce potentially
large bias in regression models. Then, I test a series of regression models using simulated data to
evaluate the extent of this bias. Analyses compare three different measurements of change—(a)
an index of change per Cohen and Cohen’s APV, (b) a residual score per the APV variant
method, and (c) and a raw difference score—each as a dependent and independent variable at
varying degrees of correlation between the prescore and a covariate. For clarification, Table 1
distinguishes among the prescore, postscore, differential, covariate, and dependent variable. I use
these labels throughout the manuscript to describe the variables in the regression models.

This study examines the effects of a specific case of multicollinearity that can occur with
certain differentials: when a differential contains variance due to the prescore, the correlation
between the prescore and a covariate will confound the correlation between the differential and
the covariate. Hence, multicollinearity among the prescore, the differential, and the covariate
may bias results. Cohen and Cohen’s APV specifically controls for variance of the prescore
in the differential, which eliminates this potential bias. Residual scores from the APV variant
and raw difference scores do not control for this variance and remain vulnerable to the bias of
multicollinearity. I expand on this argument subsequently.

This study gives statistical examples in reference to models of information seeking and pro-
cessing; thus, I begin with a brief overview of that line of research. The following literature review
provides theoretical context and helps orient the reader to the statistical issue that motivates this
study.

TABLE 1
Examples of Prescores, Postscores, and the Resulting Differentials, Covariates; and Dependent Variables

in Three Research Contexts

Research Context

Risk Information
Seeking and
Processing

Third-Person
Perception

Public Opinion of
War and Peace

Example citation Griffin et al. (1998) Ho et al. (2012) McAlister (2001)
Model

variables
Prescore Perceived current

knowledge
One’s own

susceptibility to
media influences

Past moral
disengagement

Postscore Desired knowledge Others’ susceptibility
to media influences

Current moral
disengagement

Differential Information
insufficiency

Third-person
perception

Change in moral
disengagement

Covariate Affective response
to a perceived
risk

Intrinsic religiosity Exposure to message
supporting moral
engagement

Dependent variable Risk information
seeking intention

Support of censorship Opposition to war

Note. The covariate can be any variable(s) in a statistical model that either predict(s) the differential or moderate(s)
its effect on the dependent variable. Figures 1 and 4 depict these two configurations, respectively.



AN ILLUSTRATION OF A DIFFERENTIAL: INFORMATION INSUFFICIENCY

Information is an important basis of decision making, and its quality and quantity can affect the
outcomes of a variety of behaviors, including public policy evaluations (Garber & Sox, 2010),
business decisions (Kassim, 2010; Zacharakis & Meyer, 1998), consumer purchases (Kowatsch
& Maass, 2010), and resource management (Dennis et al., 1996; Holmgren & Thuresson, 1998).
Information needs and uses are myriad: scientists need and use information to draw valid con-
clusions; policy makers need and use information to enact effective and reasonable policies; and
people generally need and use information as the basis of important (and often unimportant)
decisions.

When people perceive that their current knowledge about an issue is inadequate, they may
respond by seeking and processing new information (Griffin, Dunwoody, & Neuwirth, 1999).
The heuristic-systematic model describes such perceived information insufficiency as a precursor
to effortful information processing (Chaiken, 1980; Chen & Chaiken, 1999). According to the
heuristic-systematic model, perceived information insufficiency occurs when perceived current
knowledge falls short of the threshold at which knowledge is considered sufficient to pass con-
fident judgment about an issue. When the issue has high importance, the need for confidence
is relatively high; thus, desired knowledge is relatively high. When the issue is inconsequential,
desired knowledge is relatively low.

NEED FOR A REGRESSION APPROACH

Through this theoretical lens, Griffin, Neuwirth, Dunwoody, and Giese (2004) examined
antecedents of information insufficiency in a model of risk information seeking and process-
ing. They measured information insufficiency using two variables: (a) current knowledge and (b)
desired knowledge (p. 36)2 Current knowledge was measured as follows:

Now, we would like you to rate your knowledge about [a topic]. Please use a scale of 0 to 100, where
0 means knowing nothing and 100 means knowing everything you could possibly know about this
topic. Using this scale, how much do you think you currently know about [the topic]?

Desired knowledge was measured as follows:

Think of that same scale again. This time, we would like you to estimate how much knowledge you
would need to [pass confident judgment about the topic]. Of course, you might feel you need the
same, more, or possibly even less, information about this topic. Using a scale of 0 to 100, how much
information would be sufficient for you, that is, good enough for your purposes?

Information insufficiency reflects the gap between current knowledge and desired knowledge.
As the latter increasingly outsizes the former, information insufficiency grows in proportion. For
subsequent discussion, it may benefit the reader to think of current knowledge as a prescore and
desired knowledge as a postscore.

2The literature uses the terms “perceived knowledge” and “sufficiency threshold” to describe current knowledge and
desired knowledge, respectively. However, for readers who are not familiar with that line of research, the latter two terms
may have more intuitive meaning.



The Deceit of Statistical Intuition

An intuitive approach to computing information insufficiency and other differentials is to subtract
the prescore from the postscore. The result is a raw difference score. For example, on the scale
of 0 to 100, current knowledge of 30 and desired knowledge of 75 would yield an information
insufficiency of 45. The greater the resulting number, the greater the information insufficiency.

However, Cohen and Cohen (1983) suggest that computing a raw difference score “is not the
simple, straightforward proposition it appears to be. Indeed. This is a methodological area fraught
with booby traps, where intuitive ‘doing what comes naturally’ is almost certain to lead one
astray” (p. 413).3 The problem they attribute to computing a difference score is that the resulting
differential often contains variance due to the prescore. As a result, the correlation between the
prescore and a covariate may confound the relationship between the covariate and the difference
score.

More recent research has attributed the extent of this problem to a number of factors, including
measurement error, skewness, and floor and ceiling effects (Jamieson, 1999; Jamieson & Howk,
1992). Consistent with this body of research, Griffin et al. (2004) note that computing information
insufficiency as a difference score can limit the reliability of the differential. In response to the
limitations of raw difference scores, Cohen and Cohen specify the APV to compute an index of
change. This index contains the residual variance of the postscore controlling for the variance
of the prescore. Thus, the index of change is unrelated to the prescore, which circumvents a key
limitation of difference scores, and is less sensitive than raw difference scores to floor and ceiling
effects (Cribbie & Jamieson, 2004).

The previous point warrants brief clarification: computing a raw difference score does not cre-
ate statistical problems in all cases. The problem with a raw difference score occurs in analyses
of covariance (e.g., regression and ANCOVA), while simple comparisons of means (e.g., t-test
and ANOVA) do not have the same problem. For example, the computation of information insuf-
ficiency as a raw difference score allows for a straightforward description of the mean difference,
as it retains the scale (i.e., 0–100) of the prescore and postscore. If a research goal is simply to
report the difference between two variables, then computing the raw difference score is a valid
approach. Rather, an index of change is useful in analyses that examine the correlations among a
prescore, postscore, and at least one covariate that correlates with the prescore.

An Index of Change as Partial Variance

Cohen and Cohen (1983, p. 416) describe the following procedure to compute an index of
change:

1. Use the prescore (PRE) to predict the postscore (POST), and note the unstandardized
regression slope (B).

2. Compute the index of change (C) as C = POST – PRE∗B

3I cite the second edition of Cohen and Cohen’s work. The 2003 third edition, with coauthors West and Aiken,
dedicates considerably less space to the APV and gives less extensive statistical derivations and examples. Compare
currently cited pages with pp. 59–60 and 570–571 in the 2003 edition.



The first step determines the proportion of variance in the postscore that is due to the prescore,
and the second step subtracts that variance from the postscore. The resulting index of change
reflects the variance of the postscore unrelated to the prescore and variance that is due wholly
to the intervening condition and measurement error. The term analysis of partial variance refers
to this residual variance. Furthermore, since the index of change is unrelated to the prescore, it
is also unrelated to the common variance between the prescore and the covariate. Consequently,
the relationship between the differential and the covariate is independent of the prescore, which
precludes the aforementioned bias of multicollinearity.

A detailed discussion of the APV (see Cohen & Cohen, 1983, pp. 413–423) is beyond the
scope of this article; however, the APV is, per Cohen and Cohen’s derivation, an appropri-
ate and useful method in communication research for one key reason: When the regression of
the postscore on the prescore approaches unity and their variances are approximately equal—
which often occurs in the physical sciences, as when measuring children’s height at two different
times—the simple difference score yields unbiased results.4 It is only when the prescore and
postscore are largely unrelated, as often occurs in the social and behavioral sciences, that the
APV may be preferable to using raw difference scores when conducting analyses that involve the
differential and at least one covariate (Cohen & Cohen, 1983, pp. 416–417).

Information Insufficiency as Partial Variance

If current knowledge and desired knowledge are strongly correlated, then using a raw difference
score should suffice to compute information insufficiency; given a weak-to-moderate correlation,
the APV is more statistically appropriate. In a recent study of information insufficiency as a dif-
ferential, Kahlor (2007) reported a moderate correlation between current knowledge and desired
knowledge (r = .32, p < .001); thus, the APV should provide an appropriate estimate of infor-
mation insufficiency. The resulting index of change reflects the portion of variance in desired
knowledge (i.e., the postscore) unrelated to current knowledge (i.e., the prescore) and wholly
due to information insufficiency (i.e., the interceding condition, or differential) and measurement
error.

The purpose of the hitherto discussion of information insufficiency was to ground the current
discussion in existing research. However, I assume the readership comes from diverse theoreti-
cal backgrounds. Thus, for the remainder of this manuscript, I will largely eschew reference to
“current knowledge,” “sufficiency threshold,” and “information insufficiency,” and use the more
generic terms of “prescore,” “postscore,” and “differential,” respectively.

STUDY 1: MODELING THE DIFFERENTIAL AS A DEPENDENT VARIABLE

Researchers have used at least three methods to study differentials: the APV; a variant of APV,
which I describe below; and analysis of raw difference scores. In this section, I test the extent

4Consider the following example: A researcher measures a prescore (PRE) and a postscore (POST). For the set of
observations, it is given that POST = PRE + 1. Thus, rpre,post = 1.00, σ pre = σ post, and Bpre,post = 1.00. The index of
change thus equals POST – PRE∗B = (PRE + 1) – PRE∗1 = PRE + 1 – PRE = 1 for all observations. The raw difference
score would yield an identical result.



to which the correlation between the prescore and the covariate biases the regression of the
differential on the covariate. I compare results across the three methods.

Although the APV is useful for calculating information insufficiency, researchers often
implement a special case of the analysis that may obscure true relationships. Many studies of
information insufficiency reference Griffin et al. (2004), who examined predictors of the differen-
tial with hierarchical regression of the postscore on the prescore in the first step and on predictors
of interest in the second step (see also Griffin et al., 2008; ter Huurne, Griffin, & Gutteling, 2009;
Yang et al., 2011). I label this analysis the two-step method for reference purposes. Figure 1 con-
trasts the APV, the two-step method, and regression of a raw difference score when a covariate
predicts the differential.

The idea behind the two-step method is that by entering the prescore as the first predictor, the
residual variance of the postscore is unrelated to the prescore and thus bears an index of change
per the APV. However, equating the differential (i.e., the residual variable) with the postscore (i.e.,
the dependent variable of the analysis) can inflate explained variance in information insufficiency.
Indeed, when the covariate predicts the postscore, controlling for the prescore, the resulting R2

reflects explained variance in the postscore and not in the differential. The correct R2 for the
differential should account for the correlation between the prescore and any covariates. Without
this correction, the two-step method overexplains variance in the differential as a function of the
partial-r of the postscore’s regression on the prescore. Put differently, in the first step of the two-
step method, the residual variance of the postscore is identical to the variance of the index of
change per the APV; however, in the second step, any correlation between the prescore and the
covariate will confound the portion of explained variance uniquely attributable to the prescore.
I evaluate the extent of this effect with analyses of simulated data.

Method

I used an Excel workbook to generate the following variables: a prescore, a postscore, a
covariate,5 a dependent variable,6 the index of change, and the raw difference score. Appendix A
contains a detailed account of the simulation method.

I estimated three least squares regression models with the intercept constrained to 0. The
dependent variables were (a) the index of change, (b) the postscore controlling for the prescore,
and (c) the raw difference score. I use rpre,cov to denote the zero-order correlation between the
prescore and the covariate, which I manipulated to produce 20 degrees of correlation for each
of the regression analyses.7 I compared unstandardized regression slopes (B) using a procedure I
describe in Appendix B.

5The covariate can be either a predictor variable of direct interest or a control variable; however, it must either be a
predictor of the differential or a predictor with the differential of a dependent variable. In Study 1, the covariate predicts
the differential. In Study 2, the covariate and the differential predict the dependent variable.

6I do not use the dependent variable until Study 2, in which the differential is an independent variable. For example, in
the model of risk information seeking and processing, information insufficiency (the differential) predicts risk information
seeking intention (the dependent variable).

7The different levels of multicollinearity reflect differences in the correlation between the prescore and covariate,
which ranged from 0 to .95 in increments of .05. The remaining correlations among the full set of variables remained
constant.
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FIGURE 1 Regression of the Differential on the Covariate. Methods
1 and 2 have identical first steps. The regression of the index of change
on the covariate (B2) and the regression of the postscore, controlling for
prescore, on the covariate (B3) will have identical values only when the
correlation between the prescore and the covariate (rpre,cov) is equal to
zero. Furthermore, B2 will equal the regression of the raw difference
score on the covariate (B4) when the correlation between the prescore and
postscore is equal to one (see footnote 4).



Results and Discussion

First, the unstandardized slope of the regression of the index of change on the covariate exhibited
a linear trend across values of rpre,cov, declining from B = .40 to B = .11 (Figure 2), with R2

values exhibiting a linear trend, declining from .17 to .01. Intuitively, B and R2 should approach
zero as rpre,cov approaches unity: Since the index of change is unrelated to the prescore, it must
also be unrelated to the covariate, which is perfectly correlated with the prescore.

Second, the unstandardized slope of the regression of the postscore on the prescore (as the
control variable) and the covariate (as the predictor of interest) increased logarithmically across
values of rpre,cov from B = .40 to B = 1.17 (Figure 2) and was significantly different than the slope
of the regression of the index of change for rpre,cov > .15. This difference was significantly larger
at higher values of rpre,cov. Relative to the APV, the two-step method increasingly overestimated
R2 at higher levels of multicollinearity (�R2 range: .07, .22; Figure 3).
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FIGURE 2 Regression of the Differential on the Covariate. The horizon-
tal axis shows different levels of correlation between the prescore and the
covariate (rpre,cov). The vertical axis shows the unstandardized slope (B)
of the regression of the differential on the covariate. The data points indi-
cate B of the three methods at each rpre,cov value. The regression of the
postscore on the prescore controls for the covariate and constitutes the
first step of the two-step method (as integrated in the second step; see
Step 2 in the second panel of Figure 1). The regression of the postscore
on the covariate controls for the prescore and constitutes, per the two-
step method, the regression of the differential on the covariate. Direct
comparisons should be made among the lines with nonshaded markers.



0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

R
2

rpre,cov

Index of change Postscore (on prescore) Postscore (on covariate) Raw difference

FIGURE 3 Regression of the Differential on the Covariate. The horizon-
tal axis shows different levels of correlation between the prescore and the
covariate (rpre,cov). The vertical axis shows the R2 of the differential. The
data points indicate R2 of the three methods at each rpre,cov value. The
regression of the postscore on the prescore controls for the covariate and
constitutes the first step of the two-step method (as integrated in the sec-
ond step; see Step 2 in the second panel of Figure 1). The regression of the
postscore on the covariate controls for the prescore and constitutes, per the
two-step method, the regression of the differential on the covariate. Direct
comparisons should be made among the lines with nonshaded markers.

Finally, the unstandardized slope of the regression of the raw difference score on the covariate
declined linearly from B = .40 to B = −.55 (Figure 2), and was significantly different than
the slope of the regression of the index of change for rpre,cov > .01. Up to rpre,cov ≈ .65, the
regression of the raw difference score underestimated R2 relative to regression of the index of
change; at higher values of rpre,cov, it overestimated R2. Notably, R2 approached zero at rpre,cov =
.40, which makes intuitive sense, since the correlation between the postscore and the covariate
was constrained to r = .40 (see Table 2, Figure 3). Furthermore, as rpre,cov values increased, the R2

values of the two-step method and regression of the raw difference score converged (Figure 3). For
additional reference, Figure 2 shows the regression of the postscore on the prescore, controlling
for the covariate, which is marked with shaded squares.

These results show that as the correlation between the prescore and the covariate increases,
regression of the differential either per the two-step method or as a raw difference score
exhibits increasingly biased regression slopes in relation to the regression of the index of
change.



TABLE 2
Simulation Reference Distribution and Covariance Matrix

Distribution Correlations

M SD Skewness Kurtosis 1 2 3

1. Prescore 0.00 1.00 0.00 0.00 –
2. Postscore 0.00 1.00 0.00 0.00 .30 –
3. Covariate 0.00 1.00 0.00 0.00 rpre,cov .40 –
4. Dependent variable 0.00 1.00 0.00 0.00 .30 .25 .30

Note. Values of rpre,cov ranged from 0 to .95 in increments of .05. The remaining coefficients reference those of Kahlor
(2007) in order to achieve a degree of realism in the simulation.

STUDY 2: MODELING THE DIFFERENTIAL AS AN INDEPENDENT VARIABLE

Researchers may also use a differential as an independent variable. In such a configuration, the
two-step method may lead researchers to misinterpret results. For example, Hovick, Freimuth,
Johnson-Turbes, and Chervin (2011) tested a regression model in which a prescore (current
knowledge), a postscore (desired knowledge), and several additional independent variables (e.g.,
education, worry, systematic message processing) predicted a dependent variable (health pro-
tective action). They found that the postscore significantly predicted the dependent variable and
concluded that the differential (i.e., the postscore controlling for the prescore) was a significant
predictor. Their conclusion is logical since the regression on prescore controls for its partial effect
on postscore.

However, as the earlier analysis of simulated data showed, the correlation between the prescore
and the covariate can confound the residual variance of the postscore. Specifically, as the degree
of correlation increases, the differential will increasingly reflect the postscore controlling for the
covariate; the differential should reflect only the postscore controlling for the prescore. Figure 4
contrasts the APV, the two-step method, and regression on a raw difference score when the
differential predicts a dependent variable.

Method

I conducted three least squares regression analyses of a simulated dependent variable to test the
effects of the correlation between the prescore and the covariate. In these analyses, (a) the index
of change and the covariate; (b) the postscore, prescore, and covariate; and (c) the raw difference
score and covariate predicted the dependent variable. The model had an intercept of 0. I compared
across the three methods (a, b, and c) the regression of the dependent variable on the differential,
its regression on the differential controlling for the covariate, and its regression on the covariate
controlling for the differential.

The first comparison tests whether, in the absence of the covariate, the two-step method and
the APV produce identical regression slopes. This comparison includes the regression on the raw
difference score for additional reference. The second comparison tests whether the addition of
the covariate biases the results of the two-step method and regression on the raw difference score
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in relation to the APV. The third comparison evaluates the extent of bias to the regression on the
covariate as a function of its correlation with the prescore.

Results and Discussion

First, the regression of the dependent variable on the differential—without controlling for the
covariate—was insensitive to the correlation between the prescore and the covariate (i.e., it did
not vary across levels of rpre,cov; Figure 5). Although regression of the dependent variable on the
index of change (B= .18; R2= .03) and on the postscore and prescore (B= .18; R2= .12) produced
identical slopes,8 the latter regression explained more variance. The higher R2 from the two-step
method is due to the partial-r of the prescore predicting the dependent variable, which is marked
with shaded squares in Figure 5. Relative to the regression on the index of change, regression on
the raw difference score had significantly different slopes at all values of rpre,cov (B= −.04) and
had lower explained variance (R2= .00).
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FIGURE 5 Regression of the Dependent Variable on the Differential. The
horizontal axis shows different levels of correlation between the prescore
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slope (B) of the regression of the dependent variable on the differential.
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8Estimates of B were identical to more than 10 decimal places.



–0.15

–0.10

–0.05

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

B

rpre,cov

Index of change Prescore Postscore Raw difference

FIGURE 6 Regression of the Dependent Variable on the Differential,
Controlling for the Covariate. The horizontal axis shows different levels of
correlation between the prescore and the covariate (rpre,cov). The vertical
axis shows the unstandardized slope (B) of the regression of the depen-
dent variable on the differential, controlling for the covariate. The data
points indicate B of the three methods at each rpre,cov value. Note that, in
addition to controlling for the covariate, prescore controls for postscore
and postscore controls for prescore. Direct comparisons should be made
among the lines with nonshaded markers.

Second, I evaluated the effects of adding the covariate (Figure 6). The regression of the depen-
dent variable on the index of change, controlling for the covariate, produced regression slopes
that increased from B = .06 to B = .14. The regression on the postscore, controlling for the
prescore and the covariate, produced slopes that increased from B = .06 to B = .18, which were
significantly different than those of the APV for rpre,cov > .07. Recall that the correct comparison
between these methods is between regression on the index of change, controlling for the covariate,
and regression on the postscore, controlling for the prescore and the covariate (reference B2 and
B3, respectively, in Figure 4). Finally, regression on the raw difference score, controlling for the
covariate, produced slopes that increased from B = −.13 to B = .11, which were significantly
different than those of the APV for all values of rpre,cov. Figure 6 shows the regression of the
dependent variable on the prescore for additional reference.

Finally, I examined the regression of the dependent variable on the covariate controlling for the
differential. When controlling for the index of change, the slope remained approximately static
across all rpre,cov values (B= .28; Figure 7). When controlling for the prescore and postscore,
slopes followed a logarithmic trend, declining from B = .28 to B = −.05, and were significantly
different than those of the APV for rpre,cov > .03. When controlling for the raw difference score,
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the relationship between rpre,cov and B appeared to follow a second-degree polynomial trend,
achieving its minimum value (B = .30) at moderate levels of multicollinearity and its maximum
values (B ≈ .35) at both extremes. These slopes were significantly different than those of the APV
for all values of rpre,cov. Notably, R2 values of all three methods converged as rpre,cov approached
unity (Figure 8).

These results show that when the differential solely predicts a dependent variable, the two-
step method produces regression slopes that match those of the APV, while regression on the raw
difference score produces significantly different slopes. Both the two-step method and regression
on the raw difference score bias R2 relative to the APV. The addition of a covariate biases the
results of both the two-step method and regression on a raw difference score. As the correlation
between the prescore and the covariate increases, the slope of the regression of the dependent
variable on the postscore, controlling for the prescore and the covariate, diverges from that of the
APV, and the slope of its regression on the raw difference score, controlling for the covariate,
converges with that of the APV. At lower degrees of correlation between the prescore and the
covariate, the two-step method markedly overestimates R2 relative to the APV.

GENERAL DISCUSSION

Often, statistical models require the computation of the difference between (or differential of)
a prescore and postscore. Cohen and Cohen (1983) describe the APV as a useful method to
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compute the residual variance of a postscore controlling for a prescore. Such a computation can
be necessary when the prescore is correlated with a covariate and the relationship between the
differential and the covariate is of interest to a researcher. As a bulk of literature has argued,
simply calculating the raw difference between the two variables by subtracting one from the
other can yield unreliable results (Cohen & Cohen, 1983; Griffin et al., 2008; Jamieson & Howk,
1992). When the prescore is correlated with the covariate, using the raw difference score does not
account for this correlation. Rather than using the raw difference score, researchers have used the
APV to remove the variance of the prescore from the postscore. By controlling for this variance,
the APV specifically addresses the problem of multicollinearity that can occur when using raw
difference scores.

This study compared the APV with two alternative methods for computing difference scores.
One method, the two-step method, is a variant of the APV, which I have encountered mostly in
studies of risk information seeking and processing. The other method uses a raw difference score.
Comparisons among these three methods address the necessity of computing a differential as the
partial variance of a postscore controlling for a prescore per the APV.

Analyses of simulated data showed that when a differential is either a dependent or indepen-
dent variable, regression slopes are sensitive to the magnitude of correlation between the prescore
and the covariate. Specifically, using the two-step method or the raw difference score produced
significantly different slopes that did the APV at most or all degrees of correlation.

This study focused on the APV in models of information seeking and processing. However,
the approach may find use in a variety of communication models that require computation of the



difference between two longitudinal or cross-sectional variables. Consider, for example, third-
person perceptions, in which people rate themselves as less influenced than others by the effects
of media (Davison, 1983). Researchers often measure this perception by presenting study partici-
pants with a persuasive message and then asking participants to estimate the amount of influence
it would have on them and on other people. Then, researchers compare the difference between
the two estimations using t tests or ANOVA (e.g., Davison, 1983; Gunther & Thorson, 1992;
Lee, 2009; Perloff, 1989). As I described in the literature review, such analyses benefit from
retaining the scale of the original items. The APV does not retain this scale and may not be the
ideal approach in such research settings. Furthermore, since these comparisons of mean differ-
ences do not consider the correlation between the prescore and a covariate, the problem with
multicollinearity does not arise.

However, some recent research of third-person perceptions has used a raw difference score as
an independent variable in a regression model in which the prescore correlated with a covariate
(Ho, Detenber, Malik, & Neo, 2012; Lewis, Watson, & Tay, 2007; Shin & Kim, 2011; Wei, Chia,
& Lo, 2011). As the current study shows, regression on a raw difference score can produce biased
estimates at most degrees of correlation between a prescore and a covariate. Researchers have also
used a raw difference score as a dependent variable (Shin & Kim, 2011; Wei, Lo, & Lu, 2010), and
at least one study (Wei et al., 2010) analyzed a prescore and postscore separately in accordance
with the two-step method. As the current results suggest, either method can bias regression slopes
significantly relative to the APV. For multivariate analyses that include a prescore, postscore,
and at least one additional independent variable that correlates with the prescore, I recommend
researchers use the APV to compute an index of change, which they can analyze as either a
dependent or independent variable.

Limitations

This study had several limitations. First, I used a very large sample (N = 100,000) in order
to minimize estimation errors and clarify differences. However, in most empirical studies, such
a large sample would be impractical. In a real-world sample, the differences among the three
methods might not be statistically significant.

Furthermore, with any sample size, the results might not be practically significant. When the
differential was regressed on the covariate, the two-step method produced similar slopes to those
of the APV at roughly rpre,cov < .50, and regression of a raw difference score produced similar
slopes to those of the APV at roughly rpre,cov < .10 (see Figure 2). When the differential and the
covariate are independent variables in a regression model, the two step-method produced similar
slopes to those of the APV at all rpre,cov values, and using a raw difference score produced similar
slopes to those of the APV at roughly rpre,cov > .80 (see Figure 6). Thus, I would recommend
that researchers generally avoid using raw difference scores in regression models; however, if
imprecision is tolerable, researchers can achieve acceptable results with the two-step method
when the prescore and covariate have a weak-to-moderate correlation.

Second, this study treated the APV as the most statistically appropriate approach to computing
differentials. One justification for using the APV is that it reduces problems related to floor
and ceiling effects. However, in ANCOVA, between-group differences on a prescore will bias
postscore means in the direction of the difference, where a higher prescore results in greater
positive change (Jamieson, 1999). In other words, the correct interpretation of a differential



may depend on the level of the prescore, although researchers have not determined the level of
prescore at which this bias is problematic. Furthermore, some studies eschew separate prescore
and postscore measures entirely and measure the differentiating construct directly with Likert-
type scale items (e.g., ter Huurne, 2008; Trumbo, 2002). For example, Trumbo asked respondents
to indicate their agreement with the statement, “The information I have at this time meets all of
my needs for knowing about the issue. . . .” This scale measures information insufficiency in
a single step and obviates the need to compute a differential. Whether such measurement has
greater validity than the APV is unknown.

Additionally, the separate analyses of a postscore and prescore can address some of the com-
plexities of communication processes that the APV would conceal. The benefit of the two-step
method is that it allows researchers to examine separately the antecedents of both the prescore and
postscore, which was an original purpose of the method (R. Griffin, personal communication).
Models that draw this distinction can produce valuable results, and certain research contexts can
benefit from using the two-step method. For example, Kahlor (2007) reported that current knowl-
edge (the presore) positively predicted desired knowledge (the postscore), which then positively
predicted information seeking intention (the dependent variable). This finding comports with the
adage that “the more you know, the more you know you don’t know,” and extends it to include
“and the more you know you don’t know, the more you want to know.” However, Kahlor’s model
labels the postscore as the differential, assuming that its earlier regression on the prescore resulted
in its partial variance. Thus, I recommend that researchers who opt for the two-step method clar-
ify the source of partial variance and also consider the effects of multicollinearity. If a differential
is an independent or dependent variable in a regression model and the prescore has a moderate or
high correlation with a covariate, researchers should supplement results of the two-step method
with a separate analysis of an index of change per the APV.

A third limitation concerns the object of change in analyses of partial variance. Researchers
describe the APV as a means to compute an index of change for measurement of the same con-
sruct at two different times (Cohen & Cohen, 1983; Jamieson, 1995, 1999; Jamieson & Howk,
1992). However, information insufficiency and third-person perception is each a differential of
two cross-sectional variables. Thus, the calculation of information insufficiency and third-person
perceptions per Cohen and Cohen’s approach does not bear a true index of change, since no
change occurs. I am unaware of research that has compared APV of cross-sectional data with
APV of longitudinal data. Such a comparison could be informative.

Finally, this study did not account for effects of reliability; rather, it assumed perfect measure-
ment. However, low reliability of the prescore can dramatically bias the relationship between the
residualized postscore and the covariate, and this bias increases with the number of independent
variables (Cohen & Cohen, 1983). A full exposition of the APV should describe not only the steps
to compute an index of change, but also the effects of low reliability and the necessary corrective
procedures. With regard to the latter elements, Cohen and Cohen (1983, pp. 407–412) give useful
guidance.
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APPENDIX A: DATA SIMULATION

Distribution

Following Mayes (2010), I used the Excel function “=NORM.INV(RAND(),0,1)” to generate an
array of 4 (variables) × 100,000 (observations) of normal, pseudorandom data. The data could
not be completely random, since each data point in a normal distribution has a higher probability
of being close to the mean than far from the mean. The “0,1” portion of the Excel function
specifies that the variables will have a mean of 0.00 and a standard deviation of 1.00. The benefit
of constraining standard deviations to 1.00 is that it controls for effects due to heterogeneity of
variance, and the correlation and covariance matrices are equivalent.

Structure

Next, I generated the Cholesky decomposition (C) of a reference correlation matrix (see Table 2),
which for any positive definite matrix (M) is a lower triangular matrix such that:

M = CC′

where C’ is the complex conjugate transpose of C. The reference correlation matrix included a
prescore, a postscore, a covariate, and a dependent variable. Thus, the matrix had dimensions of
4 × 4, as did its Cholesky decomposition.

I multiplied the 4 × 100,000 array of simulated data by the transpose of the Cholesky
decomposition. The resulting array contained normal, pseudorandom data with variable means
of approximately 0.00, standard deviations of 1.00, and a correlation structure approximately
equal to the reference matrix. Based on prescore and postscore values, I calculated the index of
change and difference score, resulting in an array of 6 × 100,000.

Finally, I manipulated the zero-order correlation between the prescore and the covariate
(rpre,cov) in the reference table and re-estimated the model in increments of .05, ranging from
rpre,cov = 0 to rpre,cov = .95. I constructed a table of unstandardized regression slopes (B) and R2

values, with each row comprising data corresponding to a discreet rpre,cov increment.



APPENDIX B: COMPARING SLOPES

The following equation gives an approximate t-value estimate of the difference between two
regression slopes from independent samples (Wuensch, 2007).

t = b1 − b2

sb1−b2

(1)

This equation computes the difference between the two slopes divided by the standard error of the
difference between the slopes (df = n − 4), where b1 and b2 are the regression slopes for group
1 and group 2, and sb-b2 is the standard error of the difference between slopes. I calculated the
standard error of the difference between slopes (the denominator) with the following equation:

sb1−b2 =
√

s2
b1 + s2

b2 (2)

where sb1 and sb2 are the standard errors of the individual slopes. Thus,

t = b1 − b2√
s2

b1 + s2
b2

(3)

I used Equation 3 to compare slopes at different rpre,cov values, and determined approximate
values at which t > 1.96. I report for each comparison the range of rpre,cov values that produce a
significant difference in regression slopes.


