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On-the-fly Android Static Analysis with Applications
in Vulnerability Discovery

Daoyuan Wu

Abstract

Static analysis is a common program analysis technique extensively used in the

software security field. Widely-used static dataflow analysis tools for Android, e.g.,

Amandroid and FlowDroid, perform a whole-app analysis that starts from all entry

points and ends in all reachable code nodes. Such analysis is comprehensive yet

at the cost of huge overheads, and is therefore difficult to keep pace with modern

apps that are constantly expanding their app sizes. Since security studies are usually

interested in only a small portion of codes that involve the flows of security-sensitive

sink APIs (e.g., the sendTextMessage() API), it is desirable to have a more

security-oriented tool that can perform an on-demand analysis of the selected sinks.

In this dissertation, we make a first attempt to explore a novel on-demand anal-

ysis that does not generate a whole-app call graph but creatively leverages bytecode

search to guide inter-procedural analysis on the fly or just in time. We develop such

on-the-fly static analysis into a novel tool, called BackDroid, for efficient and ef-

fective targeted security vetting of Android apps. Specifically, BackDroid employs

a novel on-the-fly backward search technique to search over Java polymorphism,

threads, implicit callback flows, and Android inter-component communication. Fur-

thermore, BackDroid performs backward taint analysis of sink API parameters to

generate a backward slicing graph (BSG), and conducts forward points-to analysis

to propagate dataflow facts on top of the generated BSGs.

This dissertation further explores how the core technique of on-the-fly static

analysis in BackDroid can enable different vulnerability studies and their corre-

sponding new findings. Following this direction, we first perform an evaluation

study by applying BackDroid to detect crypto and SSL misconfigurations in modern



apps and comparing it with the state-of-the-art Amandroid tool. The results show

that BackDroid achieves a much better performance than Amandroid, ten times

faster on average, and at the same time, maintains similar detection effectiveness.

In the second study, we explore how BackDroid can facilitate a systematic secu-

rity study of open ports in Android apps. To this end, we first design an on-device

crowdsourcing app to discover 2,778 open-port apps, including 925 popular apps

and 725 built-in system apps. We then enhance BackDroid with the SDK identi-

fication capability and open-port related semantics, e.g., random port number via

Math.random() and IP address array like byte[]{127,0,0,1}, to detect

insecure open ports. Our diagnosis shows that 61.8% of the 1,520 open-port apps

on Google Play are solely due to embedded SDKs and 20.7% suffer from inse-

cure API usages. We further perform three in-depth security assessments, including

vulnerability analysis revealing five vulnerability patterns, denial-of-service attack

evaluation, and network feasibility measurement of the remote open-port attacks.

The first two studies focus on the dataflow analysis of one or two particular

kinds of sink APIs each. We further explore how on-the-fly bytecode search can

benefit a study of measuring the inconsistency between declared SDK (or DSDK)

versions in Android manifest and multiple API calls in app code. We thus customize

a lightweight version of BackDroid by focusing on the control-flow information,

i.e., those SDK conditional statements, of the searched sink APIs, and employ it to

analyze the SDK-API inconsistency for over 22K modern popular apps. We find that

(i) ∼50% apps under-set the minimum DSDK versions and could incur crashes, but

fortunately, only 11.3% apps could crash on Android 6.0 and above; and (ii) ∼2%

apps, due to under-claiming the targeted DSDK versions, are potentially exploitable.

To conclude, this dissertation makes this core contribution: On-the-fly Android

static analysis guided by bytecode search can efficiently and effectively analyze the

security of modern apps. It enables us to perform vulnerability studies with differ-

ent kinds of sink analysis requirements, and to obtain new findings on crypto and

SSL/TLS misconfigurations, insecure open ports, and SDK-API inconsistency.
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Chapter 1

Introduction

Static analysis is a common program analysis technique extensively used in the

software security field. Widely-used static dataflow analysis tools for Android, e.g.,

FlowDroid [69] and Amandroid [132], perform a whole-app analysis that starts from

all entry points and ends in all reachable code nodes. Such analysis is comprehen-

sive yet at the cost of huge overheads. For example, a data-flow mining study [71]

based on FlowDroid had to use a compute server with 730 GB of RAM and 64 Intel

Xeon CPU cores. Even with such a powerful configuration, they stated that “the

server sometimes used all its memory, running on all cores for more than 24 hours

to analyze one single Android app”.

By nature, it is extremely challenging for the whole-app analysis to deal with

large apps or third-party library codes, and this is why existing studies often selected

small apps (e.g., apps under 5MB in AppContext [149], and apps from 14KB to

461KB in TriggerScope [88, 116]) and ignored library code (e.g., Amandroid [133]

by default skipped the analysis of 139 popular third-party libraries) for their anal-

ysis. However, modern apps are constantly expanding their sizes over the years.

According to our measurement (in Chapter 3), the average size of popular apps ex-

pands around three times from 13.8MB in 2014 to 42.6MB in 2018. Hence, an

on-demand analysis is necessary to keep pace with this trend in modern apps.

Fortunately, security studies are usually interested only in a small portion of

1



codes that involve the flows of security-sensitive sink APIs. For example, Android

malware detection [153] is mostly interested in the sink APIs that can make security

harms (e.g., the sendTextMessage() API), and vulnerability analysis works

often just need to spot a particular pattern from the entire app code [85, 106, 154].

Therefore, it is possible for security-oriented tools to perform an on-demand analy-

sis of the selected sinks.

1.1 BackDroid: On-the-fly Android Static Analysis

In this dissertation, we make a first attempt to explore a novel on-demand analy-

sis that does not generate a whole-app call graph but creatively leverages bytecode

search to guide inter-procedural analysis on the fly or just in time. We develop

such on-the-fly static analysis into a novel tool, called BackDroid, for efficient and

effective targeted security vetting of Android apps. Specifically, BackDroid lever-

ages bytecode search to not only initiate the analysis directly from given sinks but

also creatively guide the backward inter-procedural analysis step by step. As a

result, generating an expensive whole-app call graph is no longer needed in Back-

Droid, which makes the required CPU and memory resources always under control

regardless of app size. Such a novel design, however, requires us to solve a num-

ber of unique technical issues that never appear before. Notably, it is challenging

to perform effective bytecode search over Java polymorphism (e.g., parent classes

and interfaces), threads, implicit callback flows, and Android ICC (inter-component

communication). Moreover, our search is conducted in a backward manner, which

further increases the difficulty since it is the reverse of normal program execution.

To enable BackDroid’s inter-procedural analysis, we propose a novel on-the-fly

backward search technique that comprises of several parts. First, we present a ba-

sic method signature based search that constructs appropriate search signatures to

directly locate caller methods for static, private, and constructor callee methods. It

can also search over child classes. However, this basic search is not effective to ad-
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dress complex situations with super classes, interfaces, and implicit Java/Android

flows. We thus further propose an advanced search mechanism. Specifically, in-

stead of directly searching caller methods, we first search the callee class’ object

constructor(s) that can be accurately located. After that, starting from those con-

structors, we then perform instant forward analysis until reaching caller methods.

Furthermore, for Android ICC, we conduct a two-time search for both ICC calls and

parameters and merge their search results. Alongside the inter-procedural analysis

enabled by bytecode search, BackDroid performs backward taint analysis of sink

API parameters to generate a new structure called backward slicing graph (BSG),

and further conducts forward points-to analysis to propagate dataflow facts on top

of the generated BSGs.

Compared with existing Android static analysis tools (e.g., the state-of-the-art

Amandroid), the main advantage of BackDroid is that it can analyze all modern

apps and third-party library codes regardless of their sizes. In contrast, Amandroid

could fail on a significant portion of modern apps, such as timed out on 69 out of

144 modern apps analyzed, as we will introduce in Section 1.2. Hence, BackDroid

and its core technique of on-the-fly static analysis build a foundation for researchers

to thoroughly analyze security problems and obtain new findings that exiting tools

would miss. In principle, BackDroid can facilitate the analysis of any problems due

to misusing sink APIs, but it may require different customization for each specific

problem. As a result, although this dissertation targets at Android app vulnerabili-

ties, BackDroid has the potential to also investigate Android malware/adware.

Following this direction, we explore how the core technique of on-the-fly static

analysis in BackDroid can enable different vulnerability studies on Android and

their corresponding new findings. To this end, we select three vulnerability analysis

problems on Android as three representatives, since they require different extents of

BackDroid customization in their methodology. As shown in Figure 1.1, we conduct

the following three vulnerability studies that have different analysis requirements

according to their respective sink APIs:
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On-the-fly Android Static Analysis Guided by Bytecode Search

Crypto and SSL

misconfiguration study

Android 
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SDK-API 

inconsistency study
Three vulnerability 
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The core technique 

in BackDroid 

Static analysis 

requirements of 

corresponding sinks

Methodology 

employed in the 

three studies

Enable

1) On-device crowdsourcing 

for discovering open-port apps;

2) BackDroid enhanced with 

open-port related semantics and

SDK identification capability.

Dataflow analysis of string 

and constant values in 

crypto and SSL sink APIs

Dataflow analysis of 

complex parameters in 

ServerSocket sink APIs

Control-flow analysis 

of multiple sink APIs 

with inconsistent SDK

A lightweight version 

of BackDroid with

the capability of SDK 

condition checking

The original 

BackDroid

Figure 1.1: An overview of techniques and studies conducted in this dissertation.

• The crypto and SSL misconfiguration study: This study can directly use Back-

Droid without particular customization, because the crypto and SSL/TLS

sink APIs use only string (e.g., “AES/ECB/NoPadding”) and constant (e.g.,

ALLOW_ALL_HOSTNAME_VERIFIER) values that are by default supported

by BackDroid. Hence, we also use this vulnerability study as an evaluation of

BackDroid and compare it with the state-of-the-art Amandroid tool [132].

• The Android open port study: The ServerSocket sink APIs in this study

involve complex parameters that BackDroid requires relevant semantics to

resolve. For example, BackDroid needs to understand the semantic of

Math.random() to conclude a random port number used, and to know

how to assemble an array like byte[]{127,0,0,1} into a local loop-

back IP address. Moreover, SDK identification is also required besides the

dataflow analysis of sink APIs’ parameters. The enhanced BackDroid can

deliver a security diagnosis of open ports, but for a systematic study, we still

need to combine it with a crowdsourcing approach for effectively discovering

open-port apps in the wild, as well as in-depth security assessments.

• The SDK-API inconsistency study: The first two studies focus on the dataflow
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analysis of one or two particular kinds of sink APIs each, whereas this study

involves the control-flow analysis of multiple sink APIs. Specifically, it aims

to measures the inconsistency between declared SDK (or DSDK) versions in

Android manifest and API calls in app code, which requires us to probe many

potentially inconsistent APIs (i.e., APIs with a SDK level inconsistent with

DSDK) and identify those not guarded with SDK version checking. Hence,

we customize a lightweight version of BackDroid by focusing on the control-

flow SDK version checking information of searched sink APIs.

With all these works, this dissertation makes this core contribution: On-the-fly

Android static analysis guided by bytecode search can efficiently and effectively an-

alyze the security of modern apps. It enables us to perform vulnerability studies with

different kinds of sink analysis requirements, and to obtain new findings on crypto

and SSL/TLS misconfigurations, insecure open ports, and SDK-API inconsistency.

In the rest of this chapter, we continue to introduce more details about the three

vulnerability studies and their new findings from Section 1.2 to Section 1.4, and

then list an outline of this dissertation in Section 1.5.

1.2 Detecting Crypto and SSL Misconfigurations

In this section, we introduce the crypto and SSL misconfiguration study that

BackDroid by default supports. Crypto and SSL/TLS misconfigurations are two

known yet serious vulnerabilities commonly appeared in Android apps [83, 86].

In both cases, the root cause is due to using insecure parameters in their cor-

responding sink APIs. Specifically, the insecure ECB mode parameter, either

explicit (e.g., “AES/ECB/NoPadding”) or implicit (e.g., “AES”), is used to cre-

ate the javax.crypto.Cipher instance [83, 107]. Similarly, the insecure

verifier parameter, such as ALLOW_ALL_HOSTNAME_VERIFIER, is used in

setHostnameVerifier() [86]. Since the state-of-the-art Amandroid [132,

133] tool also supports the detection of these two misconfigurations, we thus make
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a comparison on the efficiency and efficacy of both tools in analyzing modern apps.

To perform such an evaluation study, we first select 3,178 popular apps that not

only have at least one million installs each but also get updated recently in 2018, and

then pre-process them to obtain 144 apps with all relevant sink APIs as our dataset

so that Amandroid would not waste its analysis even without a bytecode search

capability. We use a default parameter configuration of Amandroid and run both

tools on a machine with 8-core Intel i7-4790 CPU and 16GB of physical memory,

a memory configuration often used in many academic Android app analysis works

(e.g., [116, 124, 149, 151]). Moreover, we give Amandroid sufficient running time

with a timeout of 100 minutes per app, while BackDroid’s configuration is only 20

minutes per app.

Our evaluation shows that BackDroid achieves a much better performance while

maintaining similar, or even better in some cases, detection effectiveness as Aman-

droid. First, BackDroid’s overall performance is around ten times faster than that in

Amandroid, requiring only 3.3m (or minutes) and 1.1m for the average and median

analysis time, respectively, whereas that in Amandroid is 24.7m and 15.5m, respec-

tively. In particular, BackDroid finished the analysis of 108 (75%) apps within 10

minutes each, whereas only 24 (16.7%) apps were completed by Amandroid in the

same 10-minute slot per app. Moreover, BackDroid still achieves similar detection

effectiveness for the 25 vulnerable apps detected by Amandroid: 22 of them were

also uncovered by BackDroid and the rest of three failures are due to a third-party

library called com.skt.arm.ArmSeedCheck. Specifically, this library uses an

AIDL (Android Interface Definition Language) function that Amandroid considers

whereas BackDroid does not. Furthermore, BackDroid discovered 18 additional

vulnerable apps that were missed by Amandroid: 10 of them were due to Aman-

droid’s default configuration of skipping the analysis of some popular libraries and

static initializers while the rest of eight were timed out in Amandroid. This strongly

demonstrates that on-the-fly static analysis in BackDroid not only shortens the anal-

ysis time but also enables new detection results that would otherwise be missed.
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1.3 Analyzing the Security of Android Open Ports

In this section, we introduce our second vulnerability study that aims to systemat-

ically analyze the security of open ports in Android apps. Open TCP/UDP ports

are traditionally used by servers to provide application services, but they also exist

in many Android apps as shown in our study. Moreover, a few recent studies have

shown that these open ports are susceptible to various attacks. For example, Lin

et al. [103] demonstrated the insecurity of local TCP open ports used in non-rooted

Android screenshot apps, and Wu et al. [139] found that the top ten file-sharing apps

on Android and iOS typically do not authenticate traffic to their ports.

As explained in Section 1.1 (see Figure 1.1), we need not only an enhanced

version of BackDroid for dataflow analysis of complex parameters in open ports’

ServerSocket sink APIs but also an effective crowdsourcing approach for dis-

covering open-port apps in the wild. In this way, we build the first analysis pipeline

that covers the open port discovery, diagnosis, and security assessment.

Our study starts with a crowdsourcing discovery of open-ports apps in the wild.

Specifically, we design and deploy an on-device monitoring app and a server-side

analytic engine to continuously monitor Android apps’ open ports without user in-

tervention. Our Android app, NetMon, has been available on Google Play for an

IRB-approved crowdsourcing study since October 2016. In this dissertation, we

base our analysis on the data over ten months, which already generates a large num-

ber of port monitoring records (over 40 million) from a wide spectrum of users

(3,293 phones from 136 countries). It enables us to observe the actual open ports

in execution on 2,778 Android apps, including 925 popular ones from Google Play

and 725 built-in apps pre-installed by over 20 phone manufacturers.

While crowdsourcing is effective in port discovery, it does not reveal the code-

level information for more in-depth understanding and diagnosis. We then enhance

BackDroid in the following two aspects to diagnose 1,027 TCP open-port apps that

can be retrieved from the AndroZoo repository [65]. First, we add the SDK identi-
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fication capability into BackDroid to identify 13 popular open-port SDKs and show

that 61.8% of the open-port apps are solely due to these embedded SDKs, among

which Facebook SDK is the major contributor. Second, we supply BackDroid with

open-port related semantics, e.g., random port number via Math.random() and

IP address array like byte[]{127,0,0,1}, to reveal that 20.7% make conve-

nient but insecure API calls, unnecessarily increasing their attack surfaces.

As the last part of our analysis pipeline, we perform three in-depth security as-

sessments of open ports. First, we perform vulnerability pattern analysis and iden-

tify five kinds of open-port vulnerabilities, three of which were not reported previ-

ously, in popular apps, such as Instagram, Samsung Gear, Skype, and the widely-

embedded Facebook SDK and Alibaba SDK. Second, we experimentally evaluate

the effectiveness of a generic denial-of-service attack against mobile open ports,

and show that it can significantly downgrade YouTube’s video streaming, WeChat’s

voice call, and AirDroid’s file transmission via their open ports. Third, to under-

stand the effectiveness of launching remote open-port attacks in real networks, we

conduct inter-device connectivity tests in 224 cellular networks and 2,181 WiFi net-

works worldwide and find that 49.6% of the cellular networks and 83.6% of the

WiFi networks allow devices to directly connect to each other in the same network.

1.4 Measuring the SDK-API Inconsistency

In this section, we introduce our third study on measuring the inconsistency between

declared SDK versions in Android manifest and API calls in app code. Specifically,

to better manage the application’s compatibility across multiple platform versions,

Android allows apps to declare the supported platform SDK versions in their man-

ifest files. We term these declared SDK versions as DSDK versions. The DSDK

mechanism is a modern software mechanism with which few systems are equipped

until Android. Nevertheless, so far it receives little attention and few understandings

are known about its effectiveness of the DSDK mechanism.
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Compared with the first two studies that focus on the dataflow analysis of one

or two particular kinds of sink APIs each, our SDK-API study involves the control-

flow analysis of multiple sink APIs. Specifically, it requires us to probe many poten-

tially inconsistent APIs (i.e., APIs with a SDK level inconsistent with DSDK) and

identify those not guarded with SDK version checking (developers can use such

checking to invoke an API only in certain Android platforms). According to our

measurement in Chapter 5, 22.2% of modern apps invoke more than 10 sink APIs

each that are inconsistent with their DSDK versions. To address this challenge, we

customize a lightweight version of BackDroid that operates on the original byte-

code level and leverages lightweight bytecode search with the capability of SDK

conditional statement checking to detect the DSDK inconsistency in a large num-

ber of modern apps. By focusing on the control-flow information of searched sink

APIs, our lightweight BackDroid preserves a scalability suitable for online vetting:

the median and average time for analyzing an app in our dataset is only 4.75s and

5.39s, respectively.

We then employ this custom BackDroid to analyze the SDK-API inconsistency

for 22,687 modern popular apps. Our study obtains the following three findings:

• First, 4.76% apps still do not claim the targeted DSDK attribute, causing their

DSDK versions to be by default set to the minimum DSDK attribute, although

this percentage has significantly dropped from 2015 to 2018.

• Second, around 50% apps under-set the minSdkVersion value, causing

them to crash when running on lower versions of Android platforms. These

runtime crashes allow an adversary to easily launch the app-level denial-of-

service attack. Fortunately, a further analysis reveals that only 11.3% apps

could crash on Android 6.0 and above.

• Third, around 2% apps still set an outdated targetSdkVersion attribute

when a common WebView API is vulnerable, making them exploitable by re-

mote code execution. In particular, around a half of these vulnerable apps in-

voke the vulnerable API call because of their embedded third-party libraries.
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1.5 Organization of the Dissertation

The reminder of this dissertation is organized as follows. Chapter 2 reviews the

related literature. Chapter 3 presents BackDroid’s design and implementation and

its evaluation study in detecting crypto and SSL/TLS misconfigurations. Chapter 4

presents our study on the security of open ports in Android apps, and Chapter 5 fur-

ther studies the inconsistency between declared SDK versions and API calls. Finally

in Chapter 6, we conclude this dissertation and outline future research directions.
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Chapter 2

Literature Review

In this chapter, we review research works in the literature that are closely related

to this dissertation. Specifically, we first summarize prior developments of Android

static analysis techniques in Section 2.1, and then examine dedicated works that are

relevant to our three vulnerability studies from Section 2.2 to Section 2.4.

2.1 Android Static Analysis Techniques

In this section, we review the major developments of Android static analysis tech-

niques over the past ten years. Specifically, in Section 2.1.1, we first review two

pre-processing techniques that are commonly used in many static analysis tools. Af-

ter that, in Section 2.1.2, we present the core techniques of Android static analysis,

namely control and dataflow analysis. Finally, we explain some difficult technical

issues and review how prior works attempted to handle them in Section 2.1.3.

2.1.1 Manifest and Bytecode Preprocessing

An Android app consists of manifest, bytecode, and resource files. Before perform-

ing the actual control and data flow analysis, a static analysis tool needs to first

pre-process manifest and bytecode.

Manifest analysis. A manifest is a binary-form XML file that describes all
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component information of the app. A few early works focused only on the manifest

files in Android apps, because they are relatively easy to analyze. For example,

Chan et al. [78] analyzed the component exposure information in manifest to infer

privilege escalation vulnerabilities [80]. Since then, manifest analysis had been

used in nearly all Android static analysis. A common way of performing manifest

analysis is to leverage a tool called apktool [11] to uncompress the entire app

and decode the manifest. However, as we will explain in Chapter 5, it is not robust

enough for analyzing modern apps. To address this limitation, we propose a new

way of manifest analysis that leverages aapt (Android Asset Packaging Tool) [2],

which has been successfully used in all our three studies in this dissertation. Besides

analyzing manifest for pre-processing, Xu et al. [146] recently showed that manifest

files can be well trained with deep learning to effectively detect Android malware.

Converting bytecode to IR. To launch meaningful analysis of Android byte-

code, an important step is to convert them into a suitable intermediate representa-

tion (IR). Two commonly used tools are dex2jar [22] and baksmali [53]. The former

converts Android bytecode to Java bytecode, whereas the latter translates bytecode

into a plaintext format called smali. Besides these two industrial tools, the academia

community also proposed a tool called Dare [113] for converting Android bytecode

to Java bytecode, and a tool called Dexpler [74] that translates Android bytecode di-

rectly to Soot Jimple IR. In this dissertation, we use dex2jar in our first two studies

and directly work on the bytecode level in the third study because it employs only

the lightweight bytecode search.

2.1.2 Control and Dataflow Analysis

With a suitable IR, researchers can launch various analysis on Android bytecode.

They can be roughly classified into control flow based reachability analysis and

dataflow based taint analysis, or even combining both.

Reachability analysis. RiskRanker [92] and Woodpecker [91] are the two pio-
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neer works using reachability analysis for malware detection and vulnerability dis-

covery, respectively. Both works tested the reachability from entry points to the

selected sink APIs. To do so, they need to first construct a whole-app control flow

graph and then traverse the entire graph to find suspicious or vulnerable paths that

are reachable from entry points. In the course of such analysis, the major challenge

is how to accurately construct a whole-app control flow graph because there are

many implicit flows in Android apps. Both RiskRanker and Woodpecker used pre-

defined domain knowledge, e.g., connecting start() and run() methods for a

thread, to partially handle some implicit flows.

Dataflow analysis. Most prior works, on the other hand, employed dataflow

analysis to taint propagation flows of entry point values or sink API parame-

ters. They have been applied mainly to malware analysis (e.g., [108, 121, 136,

150]), privacy leakage detection (e.g., [105, 111, 112]), and vulnerability discov-

ery (e.g., [83,115,143,144,147,156]). Among them, CHEX [106], FlowDroid [69],

and Amandroid [132] are the three representative works. In particular, FlowDroid

and Amandroid have been used or customized in many follow-up static analysis

tools (e.g., [149] [71] [98] [93] [124] [95]). Compared with RiskRanker and Wood-

pecker mentioned earlier, these three works tried to systematically handle Android

implicit flows by employing lifecycle modeling and object type analysis.

One common thing between reachability analysis and dataflow analysis is that

they both require to generate an app call graph, the precision of which affects the

entire analysis accuracy. However, generating a high-precision call graph requires

expensive object pointer analysis [132], and this scalability problem motivates us to

propose on-the-fly analysis via bytecode search in this dissertation.

Condition-aware analysis. Furthermore, some studies were concerned with

conditions that trigger a dangerous flow. They usually employed symbolic execution

to perform a condition-aware analysis. Two representative works in this domain

are TriggerScope [88] and HSOMiner [116]. Specifically, TriggerScope leveraged

symbolic execution to identify and characterize the trigger conditions of malicious
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application logic, while HSOMiner utilized efficient feature extraction and proposed

lightweight machine learning based methods for a similar analysis.

2.1.3 Handling Difficult Technical Issues

There are several common difficulties to Android static analysis, notably Java re-

flection, native code, dynamically loaded code, and Webview code. Although there

are no silver bullets yet for these challenging issues, some dedicated works were

proposed to attempt these problems.

Handling reflection and native code. These two issues are still statically an-

alyzable, because both reflection and native code are directly contained in app

binaries. Notably, DroidRA [99] employed app instrumentation to transform re-

flection code into a non-reflection version so that other static analysis tools can

directly use the transformed app for a whole-program analysis. Several recent

works [95,124,131] further analyzed Android native code by leveraging traditional

binary analysis tools like IDA Pro [31] and Angr [125].

Handling dynamic and Webview code. In contrast, dynamically load and We-

bview code usually require a dynamic method to retrieve those code. For example,

StaDynA [152] was a pioneer work to address the problem of dynamic code up-

dates for a more completed security analysis of Android applications. Poeplau et

al. [118] further systematically analyzed unsafe and malicious dynamic code load-

ing in Android apps. Besides dynamically loaded code via DexClassLoader

and PathClassLoader APIs, Webview code is loaded only when the corre-

sponding web pages are viewed. As a result, a hybrid analysis with both static

and dynamic methods is often adopted in prior systems, such as FileCross [138],

BridgeScope [148], and OSV-Hunter [147].
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2.2 Crypto and SSL Misconfigurations on Android

In this section, we review the previous works that studied the problem of crypto and

SSL/TLS misconfigurations in Android apps.

Crypto API misuse in Android apps. Enck et al. [85] was the first to men-

tion the misuse of cryptography in their comprehensive security study of Android

apps. Following this direction, CryptoLint [83] performed the first systematic study

of cryptographic misuse in 15,134 Android apps using a static program slicing ap-

proach. Out of 11,748 apps successfully analyzed, they found that 88% of them

made at least one mistake. This demonstrated the pervasiveness of crypto API mis-

use in Android apps. To help developers automatically mitigate this serious prob-

lem, CDRep [107] proposed a method to automatically repair those misused crypto

API calls in app bytecode by first defining patch templates and then replacing those

insecure crypto parameters with correct ones. Additionally, as mentioned earlier,

Amandroid supported the insecure ECB mode detection since its first release [132].

Both CryptoLint and CDRep used static analysis as their methodology, but there

are several major differences between their static analysis and our on-the-fly static

analysis in Chapter 3. The most significant one is that our on-the-fly analysis does

not need to generate a whole-app call graph for the inter-procedural analysis. In con-

trast, although CryptoLint intended to extract only crypto-related backward slices, it

had to first build a so-called super control flow graph. As a result, CryptoLint failed

on 3,379 apps out of the entire 15,134 apps due to timeouts and the lack of memory.

This 22.3% failure rate indicates the necessity of launching on-the-fly analysis, es-

pecially for modern apps that have larger app sizes. Additionally, CDRep used only

intra-procedural analysis and thus cannot repair many insecure parameters that flow

across multiple methods. This inaccuracy is also the reason why CDRep required

just 20 seconds to patch an app.

Android SSL/TLS misconfiguration. Besides crypto misuse, SSL/TLS mis-

configuration is another common class of vulnerabilities in Android apps. Mallo-
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Droid [86] and the work conducted by Georgiev et al. [89] were the two pioneer

studies on vetting SSL/TLS misconfiguration in mobile apps. To facilitate an au-

tomatic and accurate security testing, SMV-Hunter [126] combined both static and

dynamic analysis techniques to validate whether a SSL/TLS misconfiguration are

actually exploitable or not. Furthermore, Zuo et al. [157] employed a similar ap-

proach to check SSL/TLS misconfiguration in hybrid mobile web apps. Compared

to these works, our BackDroid supports the static detection of SSL/TLS misconfig-

uration in a way similar to that in Amandroid.

2.3 Works Related to Our Android Open-Port Study

In this section, we present the prior works that are related to our open-port study, in-

cluding the general open port research, static analysis techniques specifically related

to ours, and crowdsourcing techniques that are also for security research.

Open port research. Traditionally, research on open ports focus on DoS at-

tacks [117] and Internet scanning studies [96, 127]. This has been changed in the

mobile era — more specific attacks [103,139,145] have been demonstrated on open

ports of mobile apps. However, studies specifically focused on mobile open ports

are not available until recently in the OPAnalyzer paper [95]. Although it is closely

related to our study in Chapter 4, there are a number of significant differences. The

foremost difference is the objectives. We aim at a systematic understanding of open

ports in the wild, while OPAnalyzer focused on detecting vulnerable apps that sat-

isfy the taint-style code patterns. As a result, the approaches proposed to solve the

problems are very different. For example, there is no crowdsourcing or networking

analysis in OPAnalyzer, and its static analysis does not resolve open-port parame-

ters for an in-depth analysis, e.g., identifying SDKs and diagnosing insecure API

usages, as our work does. Furthermore, OPAnalyzer does not show any results for

UDP ports and built-in apps.

Relevant Android static analysis. Technically, OPAnalyzer [95] was built

16



upon Amandroid [132] to forwardly track the flows between server sockets’

accept() calls and sinks. However, it cannot analyze open-port parameters due

to the lack of a backward-style parameter tracking engine. There are a few static

tools for parameter analysis, but they cannot be applied to our open-port problem

due to limitations, such as no complete parameter representation in SAAF [94], no

array handling [155], and no open-port relevant API modeling [73]. Our enhanced

version of BackDroid in Chapter 4 address these issues by introducing the back-

ward slicing graph and semantic-aware constant propagation. Besides uncovering

open-port parameters, it is also the first static analysis tool able to detect open-port

SDKs in Android apps.

Crowdsourcing for security research. With the high popularity of mobile

apps, it becomes realistic to leverage the crowd to discover security problems in

the wild. By deploying an on-device monitoring app, NetMon, to Google Play

for a crowdsourcing study, our work in Chapter 4 is a pioneering study on using

crowdsourcing for open-port security research. Other security-oriented crowdsourc-

ing works include Netalyzr [130] for studying middleboxes in cellular networks,

FBS-Radar [102] for uncovering fake base stations in the wild, UpDroid [129] for

monitoring sensitive API behaviors on non-rooted devices, and Haystack [122] for

detecting mobile apps’ privacy leakage via on-device app traffic analysis [140].

2.4 Declared SDK Versions and Android APIs

In this section, we review the prior research that also studied declared SDK versions

and Android APIs as our SDK-API study in Chapter 5.

Research on Declared SDK versions. There were no systematic stud-

ies on declared SDK versions previously, except for some specific studies on

targetSdkVersion or minSdkVersion in different scenarios. Notably,

Wu and Chang [138] showed that due to using outdated targetSdkVersion

versions, many Android browser apps were vulnerable to file:// vulnerabili-
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ties. They further demonstrated more security consequences caused by outdated

targetSdkVersion versions [139]. Following this line of research, Mutch-

ler et al. [110] conducted a large-scale measurement of multiple vulnerabilities

affected by fragmented targetSdkVersion versions. Wei et al. [134] also

studied Android fragmentation with the focus on compatibility issues. In partic-

ular, the published paper version [143] of our Chapter 5 has triggered two recent

follow-up works [100] [93] on detecting compatibility issues caused by inappropri-

ate minSdkVersion versions. Compared to all these works, our study in Chap-

ter 5 is the first systematic work to measure all kinds of DSDK versions and their

inconsistency with API calls.

Android API studies. Besides DSDK and fragmentation, our work in Chapter 5

is also related to prior studies on Android APIs or SDKs. Among these studies,

the work performed by McDonnell et al. [109] is the closest to our study. They

also studied the Android API evolution, but their focus was how client apps follow

Android API changes whereas we focus on the consistency between apps’ DSDK

and API calls. Other related works have studied the relationship between apps’

API change and their success [104], the deprecated API usage in Java-based sys-

tems [76], the inaccessible APIs in Android framework and their usage in third-

party apps [101]; and the Android Alarm API usage and their impacts to network

latency [66]. In particular, the work performed by Almeida et al. [66] further an-

alyzed the targetSdkVersion in apps that invoke Alarm APIs. Additionally,

several security papers analyzed the mappings between Android APIs and their per-

missions [87] [70] [135].
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Chapter 3

On-the-fly Android Static Analysis:

The Core Technique and Its

Evaluation Study in Detecting

Crypto and SSL Misconfigurations

Both Amandroid and FlowDroid were initially proposed in 2014. Although they

are still improving over these years, they did not consider handling large apps as a

design objective. However, as we will show below, apps have expanded their sizes

dramatically over the last five years from 2014 to 2018. To be able to success-

fully handle these modern apps, we are thus motivated to propose on-the-fly static

analysis in this dissertation. This chapter presents its core technique in tool called

BackDroid and its evaluation study in detecting crypto and SSL Misconfigurations.

To measure the changes in the app sizes, we first obtain a set of popular apps.

Specifically, we collected a set of 22,687 Google Play apps on 11 November 2018

by correlating the AndroZoo repository [65] with the top app lists available on

https://www.androidrank.org. Each app in this set has at least one mil-

lion installs on Google Play. We then record the app sizes and DEX file dates (if

any) in our dataset.
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Table 3.1: A summary of average app size from 2014 to 2018.
Year Average Size Median Size # Samples
2014 13.8MB 8.4MB 2,840
2015 18.8MB 12.4MB 1,375
2016 21.6MB 16.2MB 3,510
2017 32.9MB 30.0MB 1,706
2018 42.6MB 38.0MB 3,178

0 20 40 60 80 100
App Size (MB)

0.0

0.2

0.4

0.6
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D
F

2014

2015
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2017
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Figure 3.1: CDF plot of size change for the same set of 503 apps.

Table 3.1 summaries the average app size from 2014 to 2018. We can see that

in 2014, the average and median app size is only 13.8MB and 8.4MB, respectively.

This number almost doubles in 2016, with an average size of 21.6MB and a median

size of 16.2MB. It further doubles after two years, with an average app size of

42.6MB in 2018. This clearly shows that modern apps have dramatically expanded

their app sizes over the last five years.

To have a more fair comparison with the same sample set, we further select a

fixed set of 503 popular apps that have different versions in all last five years. Fig-

ure 3.1 presents a CDF (cumulative distribution function) plot of their size change. It

is very clear that popular apps constantly expand their sizes every year. For medium

apps, the app size almost doubles from 2014 to 2018, while that for large apps, the

increase is even more significant.

The remainder of this chapter is organized as follows. We first give an overview

of BackDroid in Section 3.1. We then present BackDroid’s novel on-the-fly back-

ward search technique in Section 3.2, followed by its implementation in Section 3.3.
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In Section 3.4, we evaluate BackDroid and compare it with Amandroid. Finally,

Section 3.5 discusses some limitations and Section 3.6 concludes this chapter.

3.1 Overview and Challenges

Given the upscaling trend of app sizes, we design the first on-the-fly static analy-

sis for targeted security vetting of Android apps. Figure 3.2 presents a high-level

overview of our novel tool, BackDroid. It works in the following four major steps:

1. Given an input of any Android app(s), BackDroid first extracts original byte-

code and manifest files. After that, BackDroid not only transforms bytecode

into a suitable intermediate representation (IR) as in typical Android analysis

tools, but also employs dexdump [23] to dump (merged, if multidex [17] is

used) bytecode to a bytecode plaintext.

2. With the dumped bytecode text, BackDroid immediately locates the targeted

sink API calls by performing a text search of bytecode and initiates the anal-

ysis from there. To further enable inter-procedural analysis with no call

graph, BackDroid performs novel (backward) bytecode search to identify

caller methods on the fly or just in time.

3. Alongside the inter-procedural analysis enabled by bytecode search, Back-

Droid performs backward taint analysis to trace sink parameters and their

dataflow. To construct a complete representation of such dataflow, BackDroid

generates a backward slicing graph (BSG), instead of individual slices, for

each sink API call analyzed.

4. On top of the generated BSGs, BackDroid further launches forward analysis

to propagate dataflow facts from entry points to sink APIs and to output final

sink parameter values (or expression representation if not a constant value).

It can also remove potential ambiguity during this process via state-of-the-art

points-to analysis.
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Challenges. Given that BackDroid is the first inter-procedural dataflow anal-

ysis tool without relying on a whole-app call graph, its major novelty and biggest

challenge is how to perform the on-the-fly backward search to locate caller meth-

ods. This is very difficult because of Java polymorphism (e.g., parent classes and

interfaces), threads, Android system callbacks, implicit flows, and inter-component

communication, all of which make a basic method signature based search infeasi-

ble. We will present our novel bytecode search technique in Section 3.2. One more

challenge is how to perform backward taint analysis and forward points-to analysis

with a new structure of backward slicing graph. We will present relevant challenges

and our corresponding solutions in Section 3.3.

3.2 On-the-fly Backward Search

In this section, we present our backward bytecode search technique to locate caller

methods on the fly, which is the key to enable BackDroid’s inter-procedural anal-

ysis. We first present basic method signature based search in Section 3.2.1, and

then elaborate our advanced search with instant forward analysis in Section 3.2.2.

Lastly in Section 3.2.3, we explain how BackDroid searches over inter-component

communication (ICC), a fundamental cross-app collaboration mechanism on An-

droid [141].

3.2.1 Basic Search by Constructing Appropriate Search Signa-

ture

To better illustrate our search process, we use a real popular app, LG TV

Plus, which has over 10 million installs on Google Play1, as a running ex-

ample. As depicted in Figure 3.3, we have used initial bytecode search to

find a target method (the one with a sink API call), <com.connectsdk.

1https://play.google.com/store/apps/details?id=com.lge.app1
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service.netcast.NetcastHttpServer: void start()>. For inter-

procedural analysis, our next step is to uncover its caller method (i.e.,

<com.connectsdk.service.NetcastTVService$1: void run()>)

and its call site (i.e., statement virtualinvoke $r13.<com.connectsdk.

service.netcast.NetcastHttpServer: void start()>()). Since

the target callee method here is a regular method (as we will explain soon), search-

ing its caller can be done directly with the following method signature based search.

The basic signature-based search. As illustrated in Figure 3.3, there are five

steps to perform the method signature based search. Given a callee method, we first

translate its method signature from Soot’s [63] IR format to dexdump’s bytecode

format. With the transformed method signature, we can search the entire byte-

code text to locate its invocation(s), as highlighted in the bottom of Figure 3.3.

In the second step, we identify the corresponding method that contains the invo-

cation found in the bytecode text. Here it is com.connectsdk.service.

NetcastTVService.$1.run:()V, where an inner class needs to add back

the symbol “$”. With this caller method signature (in bytecode format), we per-

form another format translation in the third step, and locate its method body via

Soot. Next, we conduct a quick forward analysis via Soot to find the actual call site

in the caller method body. With all these steps done, we finally connect an edge

from the caller (site) to the callee method in BSG (backward slicing graph).

An important question we have not answered is: which kinds of (callee) methods

are suitable for method signature based search. We call such methods signature

methods. Typical signature methods include static methods (either class or method

is marked with static keyword), private methods (similarly, methods declared

with private keyword), and constructors (e.g., <init> methods of a class). For

some searches over child classes, we can also simply launch signature-based search,

as explained below.

Searching over child class. Suppose that the NetcastHttpServer

class in Figure 3.3 has a child class called ChildServer, we can still use
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Virtual methods   -

#0              : (in Lcom/connectsdk/service/NetcastTVService$1;)

name          : 'run'

type          : '()V'

access        : 0x0001 (PUBLIC)

......

insns size    : 46 16-bit code units

13834c:                                   |[13834c] com.connectsdk.service.NetcastTVService.1.run:()V

13835c: 5450 b417                 |0000: iget-object v0, v5, 

Lcom/connectsdk/service/NetcastTVService$1;.this$0:Lcom/connectsdk/service/NetcastTV

Service; // field@17b4

138360: 2201 d207                 |0002: new-instance v1, 

Lcom/connectsdk/service/netcast/NetcastHttpServer; // type@07d2

......

......

1383ac: 5400 1318                  |0028: iget-object v0, v0, 

Lcom/connectsdk/service/NetcastTVService;.httpServer:Lcom/connectsdk/service/netcast/N

etcastHttpServer; // field@1813

1383b0: 6e10 b930 0000         |002a: invoke-virtual {v0}, 

Lcom/connectsdk/service/netcast/NetcastHttpServer;.start:()V // method@30b9

1383b6: 0e00                           |002d: return-void

Forward find call site via Soot

<com.connectsdk.service.NetcastTVService$1: void run()>

virtualinvoke $r13.<com.connectsdk.service.netcast.NetcastHttpServer: void start()>()

<com.connectsdk.service.netcast.NetcastHttpServer: void start()>

r0 := @this: com.connectsdk.service.netcast.NetcastHttpServer

1

4

Callee

Caller

Call site

Translate callee method 

signature format + 

Search bytecode text 
2

Translate format + 

Locate caller method 

via Soot

3

Identify method 

in bytecode text

5 Connect calling edge in BSG

Figure 3.3: Illustrating BackDroid’s basic bytecode search process using a method
signature based search example.

method signature based search but need to construct appropriate search sig-

natures. We handle it according to whether ChildServer overloads the

callee method void start() or not. If it is not overloaded, an invoca-

tion of the callee method start() may also come from a child class ob-

ject. Hence, besides the original signature search, we need to add one more

signature search with the child class, namely Lcom/connectsdk/service/

netcast/ChildServer;.start:()V. The returned caller(s) might be from

both searches, or just one of them, depending on how app developers invoke that

particular callee method. On the other hand, if ChildServer does overload the

start() method, we can still perform only one search with the original callee

method signature. This is because the child class search signature now corresponds

to the overloaded child method only.
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3.2.2 Advanced Search with Instant Forward Analysis

Although the basic search presented in the last section can handle many callee

methods in an app bytecode, it is not effective to address complex situations

with super classes, interfaces, and implicit Java/Android flows. We first explain

the difficulty of searching in the case where NetcastHttpServer.start()

in Figure 3.4 has a super class method called SuperServer.start(). Un-

der this condition, the original signature search may not reveal any valid callers,

which is because developers may write code in this way: SuperServer

server = new NetcastHttpServer(); server.start();. In this

example, the bytecode signature of server.start() is Lcom/connectsdk/

service/netcast/SuperServer;.start:()V. As a result, searching

with NetcastHttpServer’s method signature would hint nothing. We also

cannot use super class SuperServer’s signature to launch the search, because

it could return callers of the super method itself and other class methods that in-

herit from SuperServer. Second, if a callee method implements an interface,

searching using the interface method signature would not work because an interface

method might be implemented by arbitrary classes. Finally, searching over implicit

Java/Android flows could be even more difficult, because they employ different sub-

method signatures for a pair of caller and callee methods.

We design a novel mechanism to accurately handle all these complex searches.

The basic idea is that instead of directly searching caller methods, we first search

the callee class’ object constructor(s) that can be accurately located. Then starting

from those object constructors, we perform instant forward propagation until we

detect caller methods. We depict this process in Figure 3.4, using the same LG

TV Plus app. This time the callee method is <com.connectsdk.service.

NetcastTVService$1: void run()>, which continues the search flow in

Figure 3.3. We now present the four major steps involved, as shown in Figure 3.4.

Searching for the object constructor. After determining a callee method that
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<com.connectsdk.service.NetcastTVService$1: void run()>

0 Determine that it implements Runnable interface’s run() method.

<com.connectsdk.service.NetcastTVService: void connect()>

specialinvoke $r11.<NetcastTVService$1: void <init>(NetcastTVService)>(r0)

staticinvoke <com.connectsdk.core.Util: void runInBackground(java.lang.Runnable)>($r11)

<com.connectsdk.core.Util: void runInBackground(java.lang.Runnable)>

r0 := @parameter0: java.lang.Runnable

staticinvoke <com.connectsdk.core.Util: void runInBackground(Runnable,boolean)>(r0, 0)

<com.connectsdk.core.Util: void runInBackground(java.lang.Runnable,boolean)>

r0 := @parameter0: java.lang.Runnable

interfaceinvoke $r1.<java.util.concurrent.Executor: void execute(java.lang.Runnable)>(r0)

$r1 = <com.connectsdk.core.Util: java.util.concurrent.Executor executor>

S
ea

rc
h

 o
b

je
ct

 c
o

n
st

ru
ct

o
r.

1

2 Perform forward propagation of tainted constructor object. 

3 Determine and stop at ending method.
4

Use maintained call chain instead of just one call site.

Figure 3.4: Using advanced search with instant forward analysis to recover a caller
chain of an interface method, NetcastTVService$1.run(). Note that state-
ment blocks with square dots are not shown in this app’s backward slicing graph.

requires advanced search, we first retrieve all its constructors. In Figure 3.4, the

callee class NetcastTVService$1 has only one constructor, void <init>

(com.connectsdk.service.NetcastTVService). We then launch a

bytecode search using this method signature to locate that the constructor is initial-

ized in a method called NetcastTVService: void connect(), the process

of which is similar to that in Section 3.2.1.

Propagating object using taint analysis. In the second step, we perform

forward propagation of the located constructor object, i.e., $r11 in Figure 3.4,

using taint analysis. Specifically, an object can be propagated via a definition

statement, e.g., r0 := @parameter0: java.lang.Runnable, via an invoke

statement, e.g., runInBackground($r11), or via a return statement. There-

fore, we track only three kinds of statements, namely DefinitionStmt [20],

InvokeStmt [34], and ReturnStmt [48].
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Determining the ending method to stop. An important step is to determine

at which ending method our forward propagation should stop. This is easy for the

case of super class, because we can simply stop at a tainted statement with the same

sub-method signature as the callee method. However, it is difficult for the cases of

interface and implicit flow, because their sub-method signature might be different

from that in a callee method. Some previous works (e.g., [91, 144, 150]) used pre-

defined domain knowledge to connect those implicit flows, e.g., a common example

is to connect Thread class’ start() and run() methods. However, as shown

in Figure 3.4, it will miss the ending method Executor.execute().

To better determine the ending method, we propose a mechanism that does not

rely on prior knowledge but leverages interface’s class type as an indicator. For

example, in Figure 3.4, since the interface class type is java.lang.Runnable,

we thus determine which Java/Android API call contains a tainted parameter that

satisfies this class type.

Maintaining and returning a call chain. Different from the basic

search that returns just one call site, here we need to maintain and re-

turn a call chain, i.e., a chain from NetcastTVService.connect()

to Util.runInBackground(Runnable), and further to Util.

runInBackground(Runnable,boolean). Assuming that we only re-

turn a call site and one caller method, we would still launch backward search of

Util.runInBackground(Runnable,boolean) and it may have multiple

search results or flows. However, only the flow shown in Figure 3.4 could eventu-

ally trace back to the constructor object. Therefore, to avoid mis-added flows, we

need to maintain a call chain during the forward taint analysis.

3.2.3 Searching over Android ICC

Although the basic and advanced searches in the last two sections are useful in most

scenarios, they are not designed to handle Android inter-component communication
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(ICC). In this section, we present our special search mechanism for tracking data

flows over Android ICC.

Our search is based on the inner working mechanism of Android ICC. Specif-

ically, ICC is different from typical API call because it relies on its Intent

parameter values to determine a target callee. A callee could be explicitly

specified by setting the target component class (e.g., via Intent i = new

Intent(activity,HttpServerService.class);), or implicitly speci-

fied by setting an Intent action that will be delivered by the OS to the target

component.

Based on this observation, we propose a two-time search mechanism to

handle ICC. The basic idea is to launch two searches: one is for search-

ing ICC calls (e.g., startService()), and the other is to search ICC pa-

rameters. For explicit ICC, the second parameter search directly searches

component class names, e.g., const-class .*, Lcom/lge/app1/fota/

HttpServerService;. For implicit ICC, we search Intent action names in-

stead. After that, we merge the two search results and check whether an ICC call

satisfies both searches. If there is such an ICC call, it is the caller method we are

looking for.

3.3 Implementation

In this section, we present the major technical challenges in implementing Back-

Droid and our solutions. We start with some implementation enhancements to the

on-the-fly backward search presented in the last section. After that, we summarize

the challenges in generating backward slicing graph (BSG) and performing forward

points-to analysis over BSG.
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3.3.1 Enhancements to Backward Search

In the course of implementing on-the-fly backward search in Section 3.2, we iden-

tify and make several important technical enhancements to guarantee the perfor-

mance of backward search.

Search caching. The first enhancement is to cache different search commands

and their corresponding results. This is necessary because in a valid app analysis,

BackDroid will make a number of searches and a portion of them could be exe-

cuted repeatedly (especially when similar paths are explored across different sinks).

Caching can avoid repeating the same searches. We perform caching with different

granularities, including the caching of invoked class search, caller method search,

static or instance field search, and the caching of various raw search commands.

On-the-fly dead library elimination. Different from Amandroid that skips the

analysis of many third-party libraries2, BackDroid considers all embedded libraries

as long as they contain sink APIs. However, blindly triggering the analysis of any

sink-containing library could lead to unnecessary or wasted analysis, because at a

sink point, we cannot determine whether the library would be eventually invoked

by the main app code, i.e., dead library code or not. To avoid dataflow analysis of

dead libraries, we propose a lightweight and yet effective mechanism called on-the-

fly dead library elimination. For each sink class, we leverage this mechanism to

determine whether or not to start the actual dataflow analysis.

We detect and eliminate dead libraries in several steps. First, we extract

the root class name for a given sink class, e.g., “com.connectsdk” for class

com.connectsdk.service.RokuService. A root name is determined ac-

cording to the class hierarchy: it is the top-level package name that contains direct

Java classes, e.g., several raw class files under package com.connectsdk. Af-

ter that, we match the extracted root class name with app components’ core class

names that are extracted from manifest in the preprocessing (see Section 3.1). As

2Amandroid defines a liblist.txt file that contains 139 packages (e.g., “cn.immob.*”
and “com.facebook.*”) to skip the analysis of these libraries by default.
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soon as one overlap (e.g., “com.lge” overlapping with “com.lge.app1”) is

identified, we stop further estimation and trigger the dataflow analysis immedi-

ately. Otherwise, we continue to check which app classes invoke the sink class

by performing an on-the-fly class search of the extracted root class name. If

one of the searched classes matches with manifest names, we consider that the

sink class is valid. For example, the class search of “com.connectsdk” returns

Lcom/lge/app1/activity/MainActivity$10; class, which matches

with component names in com.lge.app1 app’s manifest. Otherwise, it is from

a dead library, e.g., the “org.apache.log4j” library in the com.lge.app1

app.

3.3.2 Generating the Backward Slicing Graph

During the inter-procedural analysis enabled by bytecode search, we perform (back-

ward) taint analysis and generate a backward slicing graph (BSG) for each sink API

call analyzed. We have addressed three major challenges in the course of our im-

plementation.

Defining a self-contained graph structure to cover all slicing information.

The first is to define a structure that can cover all slicing information across dif-

ferent parameters tracked, different paths traced, and all kinds of bytecode in-

structions. Instead of generating individual path-like slices as in typical An-

droid slicing tools (e.g., [73, 94, 155]), we propose a self-contained graph struc-

ture called backward slicing graph (BSG) to cover all slicing information. In

this dissertation, one BSG corresponds to one unique sink API call, and we

may also extend such per-sink BSG to per-app BSG in the future. Figure 3.5

shows an example BSG that is automatically generated by BackDroid for the

app package com.proxybrowser.vpn.unblock.sites.browser. Com-

pared with traditional slides, our BSG contains the following additional slicing in-

formation within its structure:
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• Hierarchical taint map. Although not displayed in Figure 3.5, a hierarchi-

cal taint map is actually maintained during our inter-procedural backtracking.

Specifically, our BSG assigns a taint set to each tracked method and organizes

all sets hierarchically according to their method signatures. For static fields,

we also maintain a global taint set. With this hierarchical taint map, Back-

Droid’s taint analysis module can easily retrieve the current taint set from

BSG whenever its tracking jumps in or out from any (caller or inner) method,

and can also track multiple sink parameters simultaneously.

• Inter-procedural relationships. To differentiate different taint paths with-

out using individual slices, we maintain inter-procedural relationships

via different kinds of cross-method edges in BSG. The most common

one is the edge connecting a caller method, e.g., the edge from caller

a.w.onPostExecute() to m.o.run() in Figure 3.5. It is also

possible for a tracked method to invoke its inner method (e.g., method

m.p.<init>() in Figure 3.5), and we use both calling and return edges

to record this special inter-procedural relationship.

• Raw typed bytecode statements. Lastly, to enable BackDroid to recover full

semantics during the forward analysis, it is necessary to keep raw typed byte-

code instructions in BSG. We thus define a node structure called BSGUnit

to wrap the original bytecode statements in Soot’s Unit format [61]. In this

structure, we record the node ID, the signature of corresponding method, and

most importantly, the typed bytecode Unit statement.
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Tainting across fields, arrays, and inner methods. With the BSG structure de-

fined, our next challenge is to perform precise and efficient backward taint analysis

for the BSG generation. Compared to the forward taint analysis in Amandroid and

FlowDroid, our taint analysis is more difficult because it reverses normal program

execution and thus has no insights into the earlier execution of tainted variables. In

particular, we have the following special taint process for fields, arrays, and inner

methods. First, for an instance field to be tainted, we add not only the instance

field itself (i.e., obj.field) to the taint set but also its class object (i.e., obj)

so that we can trace the same field no matter the class object gets aliased or across

method boundaries. Moreover, when the instance field needs to be untainted, we

first remove obj.field from the taint set and further detect whether there are

more fields for the same instance. If there are no other such fields, then we remove

obj from the taint set as well. Arrays are handled in a similar way.

One more special tainting is to handle inner methods when there are static fields

in the taint set. In this scenario, a normal processing is to jump into all inner methods

(even when their parameters are not tainted) and analyze them, because we cannot

determine whether an inner method uses a tainted static field or not. Analyzing all

inner methods on the backtracking paths certainly slows down the analysis, and we

have proposed a more elegant solution. Specifically, whenever a new static field is

tainted, we launch bytecode search of this field signature to capture all methods that

invoke this particular static field. Hence, we only need to analyze the inner methods

that are matched with search results.

Adding static initializers into BSG on demand. Analyzing static fields in a

whole-app analysis fashion is expensive, because static initializers of all invoked

classes (i.e., not only those app component classes) and all statements contained in

those initializers need to be analyzed. As a result, Amandroid by default does not

analyze static initializers via the configuration “static init = false”, and FlowDroid

also provides the option “–nostatic” for its users to reduce the running time for large
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apps3.

Since BackDroid performs targeted analysis via bytecode search, we can fully

track all tainted static fields. Specifically, after the main taint process is done, if

there are still unresolved static fields in the BSG’s taint map, we retrieve their cor-

responding classes and obtain the <clinit> methods (which are only implic-

itly executed by the Java/Android virtual machine (VM) when the corresponding

classes are loaded to the VM). We then perform backward taint analysis of these

<clinit> methods, and add only relevant statements into a special track of BSG.

During the forward analysis, we first analyze this special track and then handle the

main track of BSG.

3.3.3 Forward Points-to Analysis over BSG

After producing a complete BSG, our forward analysis iterates through each BSG

node, analyzes each statement’s semantic, and propagates dataflow facts along the

graph traversal. The main challenge is how to perform points-to analysis [97] over

our new BSG representation. Below we explain three major steps in our forward

points-to analysis, namely to traverse over BSG, to analyze statement semantics,

and to propagate points-to information.

Overall traversal process over BSG. As mentioned at the end of Section 3.3.3,

a BSG includes two tracks, the special static field track and the normal track. Our

traversal always starts with analyzing the static field track so that we can resolve

fields referred in the normal track. In the course of analyzing each track, we first

retrieve a set of tail nodes (e.g., two entry points in Figure 3.5) and initialize analysis

from each of them. To record facts generated by our analysis, we maintain fact maps

for each analysis flow, but we use only one global fact map for analyzing all static

fields.

Whenever we reach at a new BSG node, we perform graph traversal in several

3https://github.com/secure-software-engineering/FlowDroid/
issues/27
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steps. First, we determine whether the node is an initial BSG node with a sink API

call; and if it is, we correlate and output dataflow facts of all tainted parameters. For

a normal BSG node, we first jump into and analyze its inner methods if any. After

that, we analyze the current node itself and move to the next node(s).

Analyzing and modeling statement semantics. During the traversal of each

BSG node, we parse its bytecode statement and analyze the semantics. There

are three kinds of statements to handle, namely DefinitionStmt [20] (and

its subclass AssignStmt [13]), InvokeStmt [34], and ReturnStmt [48].

After determining the type of the statement, we further extract six kinds

of statement expressions, including CastExpr, InvokeExpr, BinopExpr,

InstanceFieldRef, ArrayRef, and PhiExpr. We then follow these ex-

pression instructions to understand their semantics.

Two special expressions, BinopExpr [14] and InvokeExpr [33], require

dedicated modeling. For the BinopExpr expression, we extract its two operands

and generate a corresponding Java code statement to mimic the semantics of

six major arithmetic operators, +, -, * , /, %, and ˆ. We further model An-

droid or Java APIs to handle InvokeExpr. We provide interfaces to sup-

port different kinds of APIs, and currently BackDroid has modelled Android

Intent APIs (e.g., Bundle.putInt(String,int)), mathematical APIs

(e.g., Math.random() and Math.abs(int)), Java String or Integer APIs

(e.g., String.charAt(int) and Integer.parseInt(String)), IP ad-

dress APIs (e.g., InetAddress.getByAddress(byte[])), and configura-

tion APIs (e.g., SharedPreferences.getInt(String,int)).

Propagating constant and points-to information. To enable dataflow prop-

agation, we maintain a fact map to correlate each variable and its dataflow fact.

Propagating constant facts among different variables is easy — just retrieve the

value from an old variable and assign it to a new variable in the fact map. To

propagate points-to information, we design an object structure to preserve original

points-to information along flow paths.
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We refer such object structure to as InstanceObj and initialize a unique

InstanceObj object for each new statement. Each InstanceObj object con-

tains a pointer to its creator class and a map of member objects (in any class type)

and their reference names. As a result, InstanceObj can be used to save very

complicated points-to information, e.g., one InstanceObj embedding another

inner InstanceObj. To propagate points-to information, we just need to prop-

agate InstanceObj objects along flow paths so that all corresponding objects

being traced can point to the same InstanceObj object. Inner members of

InstanceObj can also be updated by checking classes’ <init> functions or

any other value-assignment statements. Besides the class objects’ points-to infor-

mation, we further define an ArrayObj object to wrap points-to information of

any array expression (i.e., NewArrayExpr [42]) and its array map between in-

dexes and values.

3.4 Evaluation

In this section, we evaluate the efficiency and efficacy of BackDroid in analyzing

modern apps. In particular, we compare BackDroid with Amandroid [132,133], the

state-of-the-art Android static dataflow analysis tool. Note that we do not choose

FlowDroid [69] for comparison because its SPARK-based call graph generation

is not context-sensitive [55]. Moreover, FlowDroid by default does not track ICC

flows, and even after the integration of IccTA [98], it is still less accurate than Aman-

droid’s ICC tracking [133].

3.4.1 Experimental Setup

To perform an evaluation study for both BackDroid and Amandroid, we select two

known yet serious vulnerability patterns that are supported in both tools, namely

crypto and SSL/TLS misconfigurations. In both cases, the root cause is due to

insecure parameters. For example, the ECB mode is used to create the javax.
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crypto.Cipher instance [83, 107] and the insecure parameter ALLOW_ALL_

HOSTNAME_VERIFIER is used in setHostnameVerifier() [86]. Back-

Droid by default supports dataflow analysis of all sink-based API misuse, while

Amandroid also tested these two vulnerabilities as recently reported in [133]. This

makes a fair comparison between Amandroid and our BackDroid possible. In the

following paragraphs, we describe the dataset tested, computing environment used,

and tool parameters configured.

Dataset. We use a set of modern popular apps that satisfy two conditions:

(i) have at least one million installs each, and (ii) were updated recently in 2018.

Specifically, we first select all such 3,178 apps in our app repository (see Ta-

ble 3.1). However, since not all of them contain the specific sink APIs, we pre-

process them to search apps with all three selected sink APIs, namely Cipher.

getInstance(), SSLSocketFactory.setHostnameVerifier(), and

HttpsURLConnection.setHostnameVerifier(). This can help Aman-

droid avoid wasting the analysis, because it has no bytecode search as in BackDroid.

As a result, we use the searched 144 apps for our experiments. The average and me-

dian app size in this dataset are 41.5MB and 36.2MB, respectively. The smallest

app size is 2.9MB while the largest is 104.9MB.

Environment. For the computing environment, we use a desktop PC with Intel

i7-4790 CPU (3.6GHZ, eight cores) and 16GB of physical memory. Note that a

memory configuration with 16GB or less is often used in many academic Android

app analysis works, e.g., [116,124,149,151]. To guarantee sufficient memory for the

OS itself, we assign 12GB RAM to the Java VM heap space in running Amandroid.

Since BackDroid is not sensitive to memory, we use only 4GB (i.e., -Xmx4g). The

OS is 64-bit Ubuntu 16.04, and we use Java 1.8 and Python 2.7 to run the experi-

ments. Additionally, BackDroid employs the latest dex2jar (version 2.1-nightly-28)

to convert Android bytecode to Java bytecode.

Tool configuration. While our BackDroid can always run full-capability analy-

sis, both Amandroid and FlowDroid need to configure a set of parameters to balance
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their performance and precision. In this chapter, we use the default Amandroid pa-

rameters as follows:

• k context = 1: context length for k-context sensitive analysis;

• static init = false: handle static initializer or not;

• timeout = 2: timeout setting for analyzing one component (minutes);

• third party lib file = /liblist.txt: a third-party library file

that lists 139 Java packages to skip.

In particular, we use the latest Amandroid 2.0.5 that supports inter-procedural

API misuse analysis4. We give Amandroid sufficient running time with a timeout of

100 minutes for each app, while BackDroid’s configuration is only 20 minutes per

app.

3.4.2 Performance Results

Out of the 144 apps analyzed, BackDroid successfully finished the analysis of 139

apps while that for Amandroid was 141 apps. The failures are mainly due to man-

ifest errors in those APK files (BackDroid introduced two more errors because of

dex2jar’s failures). Figure 3.6 and Figure 3.7 show the distribution of analysis time

used by BackDroid and Amandroid, respectively. By correlating these two figures,

we make the following three observations on the performance of BackDroid and

Amandroid.

First, BackDroid’s analysis time is always under control, with significant fewer

timeouts as compared to Amandroid. Even though we set a much higher timeout

for Amandroid (five times more than that in BackDroid), there are still as many as

69 app timeouts in Amandroid, as shown in Figure 3.7. In other words, almost half

of all the 141 apps analyzed by Amandroid were time-outed. In contrast, Figure 3.6

4Amandroid after version 2.0.5 uses only intra-procedural dataflow analysis to analyze API mis-
use, see details at https://github.com/arguslab/Argus-SAF/issues/55.
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Figure 3.7: The distribution of analysis time in Amandroid.

shows that only 16 apps reached the 20min timeout in BackDroid. Moreover, after

further analyzing these timeouts, we find that they were mainly caused by a dead

search loop failure in the current BackDroid implementation, which can be fixed in

our next version.

Second, BackDroid can quickly finish the analysis of most of the apps, with 75%

apps analyzed within 10 minutes. After analyzing the cases of large analysis time,

we now focus on apps with shorter analysis time. According to Figure 3.7, only 24

(16.7%) apps can be analyzed by Amandroid within 10 minutes. In contrast, that

percentage is as high as 75% in BackDroid with 108 apps’ analysis time shorter

than 10 minutes. Particularly, as shown in Figure 3.6, the analysis of 61 apps were

quickly finished within just one minute. This gives BackDroid a great potential to

be deployed by app markets for online vetting.

Third, the overall performance of BackDroid is around ten times faster than
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Figure 3.8: Scatter plot of the relationship between BackDroid’s analysis time and
the entire analysis time plus dex2jar.

that in Amandroid, even after excluding timeouts. After studying apps that take

relatively long and short analysis times, we further analyze the overall performance.

We find that after excluding time-outed apps for both tools, the average and median

analysis time of BackDroid is 200s and 66s, while that in Amandroid is 24.7m and

15.5m, respectively. In other words, BackDroid’s overall performance is 7.4 times

(for mean) or 14 times (for median) faster than that in Amandroid. Moreover, after

including the time-outed apps, the performance gap between the two tools is even

more significant: the overall median time of BackDroid is around 50 times faster

than that in Amandroid (92s versus 87m).

One performance overhead of BackDroid we have not measured is the addi-

tional pre-processing time introduced by dex2jar. Figure 3.8 presents a scatter plot

of the relationship between BackDroid’s analysis time with and without time spent

in dex2jar. It is clear that dex2jar introduces very small additional overhead for

all apps except one outlier, the com.jio.myjio app. We find that this app re-

quires significant pre-processing time (542s) because of an OutOfMemoryError

exception in dex2jar.
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3.4.3 Detection Results

After comparing BackDroid’s and Amandroid’s performance, we further analyze

and compare their detection accuracy. We present their detection results from the

following two perspectives:

Vulnerabilities detected by Amandroid but not BackDroid. We first analyze

whether BackDroid could achieve a close detection rate for the app vulnerabili-

ties that are detected by Amandroid. For the crypto API usage, Amandroid detects

that five apps are still using insecure ECB mode. We find that BackDroid can ac-

curately detect all of them. The vulnerable apps include the popular Adobe Fill

& Sign app (com.adobe.fas) and a bank app called IDBI Bank GO Mobile+

(com.snapwork.IDBI). Both apps must guarantee a secure encryption in their

design.

Compared to crypto API misuse, Amandroid detects more SSL misconfigu-

rations in our dataset, with 20 apps discovered with wrong SSL hostname veri-

fication. Among these apps, BackDroid failed on three of them. A further di-

agnosis shows that all of these failures are caused by a third-party library called

com.skt.arm.ArmSeedCheck. Specifically, this library uses an AIDL (An-

droid Interface Definition Language) function that Amandroid considers as an entry

function, whereas BackDroid does not.

Vulnerabilities detected by BackDroid but not Amandroid. We further

find that for some apps, BackDroid can achieve better detection performance than

Amandroid. In particular, BackDroid discovered 15 apps with insecure ECB mode

that were not detected by Amandroid. Due to timeouts, Amandroid failed to

detect eight of these 15 apps. For the other seven apps, an important reason

for Amandroid’s failures is because it skipped the analysis of some popular li-

braries that are specified in its liblist.txt configuration file. Specifically,

among the 14 sink classes in those seven apps, Amandroid ignored six of them,

including class names, such as com.amazon.appexpan.client.util.
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CipherUtils, com.tencent.mm.sdk.platformtools.LogHelper,

and com.inmobi.commons.internal.InternalSDKUtil.

On the other hand, for SSL misconfiguration, BackDroid also discovered three

vulnerabilities that were missed by Amandroid. All the three corresponding apps

were not time-outed, so they are true positives not handled by Amandroid. The

root cause of these failures is that Amandroid by default does not process static

initializers.

To summarize our analysis above, we give this takeaway regarding the detection

accuracy between BackDroid and Amandroid:

Takeaway: BackDroid achieves close detection effectiveness for apps that can be de-

tected by Amandroid, and obtains better detection results for apps with popular libraries

and static initializers that are skipped by Amandroid.

3.5 Discussion

So far, we have elaborated our approach in the context of Android bytecode. There

are some common technical issues in typical Android app analysis works, namely

Java reflection, native code, dynamically loaded code, and packed code. Although

addressing these issues is not our focus in this dissertation, we discuss our plan to

mitigate them in the future work.

Java reflection. To mitigate Java reflection, an immediate solution is to leverage

DroidRA [99] to transform an original app APK to a version without reflection calls.

In the long run, we plan to first resolve reflection parameters using our backtracking

capability and then build caller edges to directly cache them.

Native code. To extend BackDroid’s design principle also to native code, a

potential way is to replace dexdump with objdump. Furthermore, given small

size of native code in Android apps and their limited entry points, it is possible to

launch full-scale forward analysis, as demonstrated in recent SInspector [124] and
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JN-SAF [131] works.

Dynamically loaded and packed code. Static analysis fundamentally suffers

from dynamically loaded or packed code. Fortunately, we can leverage earlier dy-

namic analysis works [137, 152] to first extract those hidden code before running

our BackDroid.

3.6 Summary

In this chapter, we presented BackDroid, an on-the-fly static dataflow analysis tool

for targeted security vetting of Android apps. Different from existing Android static

analysis tools, BackDroid does not generate an expensive whole-app call graph

but creatively leverages bytecode search to guide inter-procedural analysis on the

fly. Specifically, BackDroid employs a novel on-the-fly backward search technique

to search over Java polymorphism, threads, implicit callback flows, and Android

inter-component communication. To evaluate BackDroid’s efficiency and efficacy,

we compared it with the state-of-the-art Amandroid tool in analyzing modern apps

for crypto and SSL/TLS misconfigurations. The results showed that BackDroid

achieves a much better performance, around ten times faster on average, while

maintaining close detection effectiveness as Amandroid. Moreover, BackDroid can

detect additional vulnerabilities for apps with some popular libraries and static ini-

tializers that are by default skipped by Amandroid.
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Chapter 4

Analyzing the Security of Open Ports

in Android Applications

4.1 Introduction

A network port is an abstraction of a communication point. Servers on the Internet

offer their services by “opening” a port for clients to send requests to, e.g., web

servers on TCP port 80. A TCP/UDP port is regarded as open if a server process

listens for incoming packets destined to the port and potentially responds to them.

Since mobile devices are generally not suitable for providing network services due

to their non-routable addresses and lack of CPU and bandwidth resources, one may

argue that mobile apps are not suitable for hosting open ports. However, a few

recent studies have shown otherwise and these open ports are susceptible to various

attacks. Lin et al. [103] demonstrated the insecurity of local TCP open ports used

in non-rooted Android screenshot apps. Wu et al. [139] found that the top ten file-

sharing apps on Android and iOS typically do not authenticate traffic to their ports.

Bai et al. [145] further revealed the insecurity of Apple ZeroConf techniques that

are powered by ports such as 5353 for mDNS.

Besides these manual studies on specific apps, Jia et al. [95] recently developed

a static tool OPAnalyzer to identify TCP open ports and detect vulnerable ones in
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Android apps. They identified potential open ports in 6.8% of the top 24,000 An-

droid apps, among which around 400 apps were likely vulnerable and 57 were man-

ually confirmed. Nevertheless, OPAnalyzer still suffers from the inherent limitation

of static analysis (i.e., the code detected might not execute) and the incapability of

typical Android static analysis to handle dynamic code loading [118,120], complex

implicit flows [75, 119], and advanced code obfuscation [82, 137]. Moreover, the

focus of OPAnalyzer is about detecting permission-misuse-related vulnerabilities in

TCP open ports (via pre-selected sink APIs), while the entire picture of open ports

in the Android ecosystem is still largely unexplored.

In this chapter, we aim to systematically understand open ports in Android

apps and their threats by proposing the first analysis pipeline that covers the open

port discovery, diagnosis, and security assessment. The key of this pipeline is to

first discover open-port apps using crowdsourcing and then use an enhanced ver-

sion of BackDroid to identify insecure open ports and open-port SDKs in the dis-

covered open-port apps. Specifically, one enhancement is to supply BackDroid

with open-port related semantics, e.g., random port number via Math.random()

and IP address array like byte[]{127,0,0,1}, which are often used by the

ServerSocket sink API in the open port problem. The other is to add the SDK

identification capability into BackDroid. As shown in Figure 4.1, our pipeline first

adopts a novel crowdsourcing approach to continuously monitor open ports in the

wild, and then employs static analysis to collect and diagnose the code-level in-

formation of discovered open ports. It also performs three security assessments:

vulnerability analysis, inter-device connectivity measurement, and denial-of-service

attack evaluation. We further elaborate our contributions as follows.
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First, we design and deploy the first crowdsourcing platform (an on-device mon-

itoring app and a server-side analytic engine) to continuously monitor open-port

apps without user intervention, and show that such a crowdsourcing approach is

more effective than static analysis in open port discovery. Our Android app, Net-

Mon1, has been available on Google Play for an IRB-approved crowdsourcing study

since October 2016. It is still an on-going deployment cumulatively with 6K+ in-

stalls. In this chapter, we base our analysis on the data over ten months (a pe-

riod when most of our evaluations were performed and security findings were con-

firmed), which already generates a large number of port monitoring records (over

40 million) from a wide spectrum of users (3,293 phones from 136 countries). It

enables us to observe the actual open ports in execution on 2,778 Android apps,

including 925 popular ones from Google Play and 725 built-in apps pre-installed

by over 20 phone manufacturers. Besides the built-in apps missed by OPAnalyzer,

NetMon also covers both TCP and UDP ports.

We further quantify the efficacy of crowdsourcing through a comparison with

static analysis. Out of the 1,027 apps that are confirmed with TCP open ports by

our crowdsourcing, 25.1% of them use dynamic or obfuscated codes for open ports,

and only 58.9% can be detected by typical Android static analysis techniques. With

the help of NetMon, we manage to quantify the pervasiveness of open ports in a

controlled set of the top 3,216 apps from Google Play, and find TCP open ports

in 492 of them. This level of pervasiveness (15.3%) is more than twice previously

reported (6.8%) using static analysis [95]. Moreover, we are the first to measure the

distribution of open-port apps across all 33 Google Play categories.

While crowdsourcing is effective in port discovery, it does not reveal the code-

level information for more in-depth understanding and diagnosis. As the second

contribution, we include a diagnosis phase through enhancing BackDroid with

open-port related semantics and SDK identification capability, to understand the

1NetMon is short for “Network Scanner & Port Monitor” and is available at https://play.
google.com/store/apps/details?id=com.netmon.
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code-level open port constructions and the corresponding security implications. We

focus on two kinds of diagnoses: whether an open port is introduced by develop-

ers themselves or embedded via a third-party SDK (Software Development Kit) by

default, and whether developers apply secure open-port coding practice. The de-

tection results are quite alarming. First, 13 popular SDKs are identified with open

ports and 61.8% of open-port apps are solely due to these SDKs, among which

Facebook SDK is the major contributor. Second, 20.7% of the open-port apps make

convenient but insecure API calls, unnecessarily increasing their attack surfaces.

In the last phase of our pipeline, we perform three novel security assessments:

Vulnerability analysis. Unlike OPAnalyzer which concentrates on the pre-defined

vulnerability pattern, our vulnerability analysis aims to identify popular apps’

vulnerabilities that may not contain a fixed pattern — therefore more difficult

to detect. The five vulnerability patterns identified by us present themselves

in apps, such as Instagram, Samsung Gear, Skype, and the widely-embedded

Facebook SDK.

Denial-of-service attack evaluation. We experimentally evaluate the effectiveness

of a generic denial-of-service (DoS) attack against mobile open ports. We

show that DoS attacks can significantly and effectively downgrade YouTube’s

video streaming, WeChat’s voice call, and AirDroid’s file transmission via

their open ports.

Inter-device connectivity measurement. Remote open-port attacks require the vic-

tim device to be connected (intra- or inter-network). To measure the extent

to which this requirement is satisfied, we extend NetMon to conduct inter-

device connectivity tests. With 6,391 network scan traces collected from de-

vices in 224 cellular networks and 2,181 WiFi networks worldwide, we find

that 49.6% of the cellular networks and 83.6% of the WiFi networks allow

devices to directly connect to each other in the same network. Furthermore,

23 cellular networks and 10 WiFi networks assign public IP addresses to their

users, which allows inter-network connectivity from the Internet.
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4.2 Background and Threat Model

Before presenting our analysis pipeline, we first introduce the necessary background

and our threat model.

An open port, in this chapter, is defined as a TCP/UDP port that binds to any

legitimate IP address and is configured to accept packets. Legitimate IP address

includes public, private, any (0.0.0.0), and also the local loopback IP address.

We use such a generalized definition primarily due to the threat model in smart-

phones — any third-party apps running on the phone could be untrusted and could

utilize even the local loopback address for attacks. To make it simple, we use host

IP address to refer to all IP addresses except the loopback IP address, which will be

explicitly stated. Under such a convention, a local open port refers to one that binds

to the loopback address.

Open ports on Android are typically created using TCP stream or UDP data-

gram sockets. BluetoothSocket [15] (in Android SDK), NFCSocket [43]

(an open-source library), and in particular, the previously studied UNIX domain

socket [124] are out of our scope because they do not use network ports. For exam-

ple, Unix domain sockets use file system as their address name space, and therefore

there are no IP addresses and port numbers. The communication also occurs entirely

within the operating system between processes.

We consider three types of adversaries in our threat model:

• A local adversary is an attack app installed on the device on which the vic-

tim app (with open ports) runs. Such a adversary does not require sensitive

permissions but needs the INTERNET permission to access the open ports.

• A remote adversary resides in the same WiFi or cellular network to which

the victim device connects. Such an adversary can send TCP/UDP pack-

ets to other nodes if the network provides intra-network connectivity or even

inter-network connectivity (with public IP addresses assigned to clients), sur-

prisingly true for numerous networks as we will show in Section 4.5.3.
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• A web adversary remotely exploits a victim’s open ports by enticing the vic-

tim to browse a JavaScript-enabled web page under the adversary’s control.

This threat is only applicable to HTTP-based ports with a fixed port num-

ber, because (i) JavaScript and WebSocket can issue only HTTP packets, and

(ii) the resource constraint makes it infeasible for a web page to iterate the

ephemeral port range [25] according to our test.

Note that local open ports could be attacked only by the first and the third ad-

versaries, while other open ports may suffer from all three adversaries.

4.3 Discovery via Crowdsourcing

The first phase of our pipeline is to discover open ports. Instead of using static

analysis as in [95], we propose the first crowdsourcing approach for the discovery

of open ports. It has the following unique advantages: (i) it can monitor open ports

in the wild, covering not only third-party apps but also built-in apps that are usually

difficult to analyze due to the heavy Android fragmentation [6]; (ii) it results in no

false positive; (iii) it captures the exact port number and IP address used as well

as their timestamps; and (iv) it covers both TCP and UDP ports. Furthermore,

as to be evaluated in Section 4.3.3, our crowdsourcing is much more effective in

terms of port discovery than typical Android static analysis, which cannot handle

dynamic code loading [118, 120], complex implicit flows [75, 119], and advanced

code obfuscation [82, 137].

Our crowdsourcing platform consists of an on-device port monitoring app Net-

Mon (Section 4.3.1) and a server-side open-port analytic engine (Section 4.3.2).

We have deployed NetMon to Google Play and collected the crowdsourcing re-

sults from a large number of real users (Section 4.3.3). Before moving to the tech-

nical details, it is worth highlighting the overall challenges in our crowdsourcing

approach. The development of NetMon requires us to handle many product-level

issues for a long-term and user-friendly deployment, let alone we are the first to
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explore on-device crowdsourcing for monitoring other open-port apps in real user

devices. Moreover, compared to the typical app-based crowdsourcing (e.g., Net-

alyzer [130], MopEye [140], and Haystack [122]), our open-port crowdsourcing is

unique in that the collected raw records cannot be directly analyzed due to the ex-

istence of random port numbers. We thus need to design an “intelligent” analytic

engine that can effectively cluster raw records into per-app open port results.

4.3.1 On-device Open Port Monitoring

Different from ZMap [96] and Nmap [44] that probe ports by externally sending

network traffic, we launch on-device port monitoring directly on crowdsourced de-

vices to collect not only open port numbers but also their app information. Fig-

ure 4.2 shows two NetMon user interfaces for port monitoring. Figure 4.2(a) shows

a partial list of apps running with open ports, while Figure 4.2(b) shows the de-

tailed records for a specific app (YouTube), including the TCP/UDP port numbers,

IP addresses to which the ports bind, and the timestamps.

Port monitoring mechanism. NetMon leverages a public interface in

the proc file system [47] to monitor open ports created by all apps on

the device. The four pseudo files under the /proc/net/ directory (i.e.,

/proc/net/tcp|tcp6|udp|udp6) serve as a real-time interface to the TCP

and UDP socket tables in the kernel space. Each pseudo file contains a list of cur-

rent socket entries, including both client and server sockets. Any Android app can

access these pseudo files without explicit permissions, and this works on all An-

droid versions including the latest Android 9. By using such an interface, NetMon

can obtain the following port-related information:

• Socket address. It covers a port number and an IP address.

• TCP socket state. There are 12 possible TCP states [56], such as LISTEN and

ESTABLISHED.

• The app UID. Using the PackageManagerAPIs, NetMon obtains the app’s
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(a) A sample of open-port apps. (b) Detailed records for YouTube.

Figure 4.2: User interfaces in NetMon showing open ports.

name from its UID (user ID).

According to the definition in Section 4.2, NetMon considers server ports as

open ports. Therefore, it identifies a TCP open port from the proc file when it is

in the LISTEN state. On the other hand, since UDP has no state information, we

rely on the server-side analytic engine to further identify UDP open ports. Hence,

the collected UDP port records are only the initial results and not all of them will be

treated as open ports (e.g., the client UDP port used by YouTube in Figure 4.2(b)).

Challenges. The goal of long-term port monitoring on real user devices requires

NetMon to periodically analyze those four proc files with minimal overhead. A

simple idea of creating a “long-lived” service to periodically monitor open ports

would not work as the service will be stopped by Android after a certain amount of

time (e.g., after the device goes to sleep) or simply terminated by users. To over-

come this, we leverage Android AlarmManager [3] to schedule periodic alarms to

perform the proc file analysis robustly. We chose five minutes as the alarm interval

because it provides a good sampling rate (excluding many client UDP ports) while

incurring negligible overhead. Our experience shows that the potential information

loss within the five-minute interval is well compensated by the large number of users

contributing data in our crowdsourcing campaign. Moreover, we take advantage of
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the batched alarm mechanism [4] introduced since Android 4.4 and a characteristic

in /proc/net/tcp6|tcp — the server socket entries always appear in the top

rows — to further minimize the overhead. As a result, NetMon incurs less than 1%

overhead on CPU and battery for a daily usage.

4.3.2 Server-side Open-Port Analytic Engine

The open port information gathered from individual phones, e.g., the Netflix app

opens TCP port 9080 at time t1 and opens UDP port 39798 at time t2, constitute in-

dividual observations that need to be clustered to generate per-app open port results,

e.g., Netflix has a fixed TCP port 9080 and a random UDP port. More specifically,

different port records associated with the same “random” open port should be uni-

fied, and open ports with “fixed” port numbers should be recognized. This may

sound straightforward, but it turns out to be a challenging task because fixed and

random ports could exhibit indistinguishable observations. To overcome this chal-

lenge, we introduce a server-side analytic engine, as shown in Figure 4.3, to perform

a three-step clustering:

Step 1: Aggregation. We first aggregate each app’s observations by different

types of ports and IP addresses. This is a “narrow down” step to effectively reduce

the complexity of clustering — open ports with different types or IP addresses shall

be in different clusters, since they are created by different APIs or InetAddress

parameters at the code level. Specifically, we divide the observations into 12 groups,

enumerating the combination of four types of ports (TCP/UDP ports in IPv4 or

IPv6) and three types of IP addresses (loopback address 127.0.0.1, ANY ad-

dress 0.0.0.0, and the specific host address such as 192.168.X.X). In the Net-

flix example shown in Figure 4.3, we have two groups — TCP4 and UDP4 (both

with IP 0.0.0.0).
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Step 2: Clustering by occurrences. A fixed port on an app presents itself as

identical records on multiple user devices, while a random port presents its obser-

vations with different port numbers. Based on this observation, we can differentiate

between fixed and random ports by analyzing the occurrences of a record within

each group (constructed in Step 1). We define this occurrence as the fraction of user

devices presenting a specific port number within the group. For example, the UDP

port 39798 for IPv4 address in our Netflix set has an occurrence of 3.6%.

With this definition of the occurrence, we perform port clustering where fixed

ports are those with a high occurrence and random ports are those with low ones. As

shown in Figure 4.3, Netflix’s UDP port 39798 in our dataset is certainly a random

port because its occurrence is only 3.6% among the 84 Netflix users in the UDP4

group, whereas TCP port 9080 is a fixed port because its occurrence has reached

100% in the TCP4 group. In practice, we use 50% as the upper bound for the low-

occurrence scenario, which is based on the assumption that fixed ports should cover

at least more than half of the users in the group. We consider those with occurrences

higher than 80% as fixed ports. However, the threshold-based occurrence strategy

tends to be unreliable when group sizes are small because a random port exhibiting

a number of different observations may have one or several of them show up with

high occurrences. In these cases (and others with occurrences between 50% and

80%), we apply a heuristics approach, to be described next, to get a more accurate

inference.

Step 3: Clustering by heuristics. For observations that cannot be reliably

determined by occurrences, we further leverage three heuristics to handle them.

We first separate port numbers into the “random” range (for port numbers be-

tween 32,768 and 61,000, i.e., those randomly assigned by the OS or the so-called

ephemeral ports [25]) and the “fixed” range (for other port numbers). For each

group, we count the numbers of unique port numbers within these two ranges, and

denote them by Nr and Nf , respectively. We then have the following three port

distribution patterns and their corresponding heuristics:
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• All ports are in the random range (Nr > 0 and Nf = 0). We simply mark

them as one random port based on the conservative principle that we can

tolerate misclassifying a fixed port to be a random one but not the opposite.

• Ports are in both ranges (Nr > 0 and Nf > 0). We first consider all ports in

the random range as presenting one random port. If Nr is significantly bigger

than Nf (e.g., ten times) and Nf is relatively small (e.g., less than 3), we mark

ports in the fixed range as fixed ports.

• All ports are in the fixed range (Nr = 0 and Nf > 0). We conservatively

output just one random port if Nf is not small (e.g., larger than 3); otherwise,

we consider them as fixed ports.

4.3.3 Crowdsourcing Results

We have deployed NetMon to Google Play for an IRB-approved2 crowdsourcing

study since 18 October 2016. In this chapter, we base our analysis on the data

collected till the end of July 2017 (a period of around ten months when most of our

evaluations were performed and security findings were confirmed), which involves

3,293 user phones from 136 different countries worldwide. Users of NetMon are

attracted solely via Google Play without advertisements or other incentives. About

a quarter of the devices (26%) are from the US, while the percentage for other

countries is very diverse, which makes our dataset more representative.

In our dataset, we collect 40,129,929 port monitoring records and discover 2,778

open-port apps (2,284 apps with TCP open ports and 1,092 apps with UDP ones)

and a total of 4,954 open ports (3,327 TCP ports and 1,627 UDP ports). Note that

with the help of our analytic engine, we can classify UDP random ports bound to

the host IP address as client UDP ports. Figure 4.4 shows the distribution of open-

port apps with different types of socket addresses. We find that both TCP and UDP

2IRB approval was obtained from Singapore Management University on 14 October 2016. Under
this study, we do not collect personally identifiable information (PII) or IMEI. We use only the
anonymized ANDROID ID (hashed with a salt) for device identification. Users are also explicitly
informed about all the information we collect through a pop-up confirmation dialog.
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Figure 4.4: Apps with open ports in different types of socket addresses (symbols are
“H”/“L”: host/local IP; “F”/“R”: fixed/random port number), including 1,390 apps
with long-lasting client UDP ports.

open ports have their fair share in these apps, and many of these ports expose them

to potential network attacks (e.g., bound to non-local IP addresses). In addition,

we find that 1,390 apps use long-lasting (more than 5 minutes) client UDP ports to

communicate with servers. To the best of our knowledge, this work constitutes the

first report of crowdsourcing Android apps with open ports and their IP address and

port number information.

Open Ports in Popular Apps

With the help of Selenium [51], a web browser automation tool, we obtain the num-

ber of installs of the 1,769 open-port apps on Google Play, and find that 925 apps

(52.3%) have over one million installs. Among them, 100 apps even have over

100M installs each. We thus take a closer look at these 100 highly popular apps and

present 28 representatives of them in Table 4.1. We can see that popular apps such

as Facebook, Instagram, Skype, WeChat, YouTube, Spotify, Netflix, and Plants vs.

Zombies are surprisingly not free of open ports.

An interesting observation is that 89 out of the 925 popular apps (9.6%), includ-

ing Firefox and Google Play Music as listed in Table 4.1, use UDP port 1900 and/or

5353 for the UPnP and mDNS services, respectively. Furthermore, the open-port
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Table 4.1: Representative apps that have open ports.

Category App Name Type IP† Port # of Installs

Social

Facebook TCP L Random 1B - 5B
Instagram TCP L Random 1B - 5B

Google+
TCP H Random

1B - 5B
TCP L Random

VK
TCP H 48329

100M - 500M
TCP L Random

Communication

Messenger TCP L Random 1B - 5B
WeChat TCP H 9014 100M - 500M

Skype
TCP H Random

500M - 1B
TCP L Random

Chrome TCP L 5555 1B - 5B

Firefox
TCP H 8080

100M - 500MTCP L Random
UDP H 1900

YouTube
TCP H Random

1B - 5B
TCP L Random

Video Players
GPlay Music

TCP L Random
1B - 5B

or UDP H 1900
Music & Audio Spotify TCP H Random 100M - 500M

Amazon Music
TCP L Random

100M - 500M
TCP H Random

Tools

Google Play UDP H 2346
5B - 10B

Services UDP H 5353
Google TCP H 20817 1B - 5B

Clean Master TCP L Random 500M - 1B
360 Security TCP L Random 100M - 500M

Avast
TCP H 20817

100M - 500M
TCP L Random

Productivity

Google Drive TCP L Random 1B - 5B
Cloud Print UDP H 5353 500M - 1B

TCP H 42135

100M - 500M
ES File TCP H 59777

Explorer TCP L Random
UDP H 5353

Entertainment

GPlay Games TCP L Random 1B - 5B

Netflix
TCP H 9080

100M - 500MUDP H 1900
UDP L Random

Peer Smart TCP L Random
100M - 500M

Remote UDP H 5353

Games

Plants vs.
UDP H 24024 100M - 500M

Zombies 2
Asphalt 8 TCP H 7940 100M - 500M
Solitaire TCP L Random 100M - 500M

Sonic Dash TCP L Random 100M - 500M
† “L” is for the local IP address and “H” is for the host IP, as termed in

Section 4.2.
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timeline analysis shows that both ports cumulatively last for over a month for each

of their top ten apps, which provides enough time window for adversaries to launch

attacks. In particular, Bai et al. [145] has demonstrated that such ports in iOS and

OSX apps could suffer from Man-in-the-Middle attacks.

Compared to UDP, TCP open ports have more diverse usages. The top five

open TCP port numbers, port 8080, 30102, 1082, 8888, and 29009, have no well-

defined fixed usage (unlike the UDP port 1900 and 5353 above) and appear in only

14 to 64 apps. Despite this diversity, it is interesting to see some uncommon TCP

port numbers (e.g., 30102 and 29009) appearing in multiple apps. To gain a better

understanding of these open ports, we perform static analysis and find that many

of them are introduced by SDKs (see Section 4.4.4 for more details). As the most

interesting example, Facebook SDK is the major contributor to 997 apps (of the

entire dataset) for their random TCP ports bound to the local IP address (i.e., the

fourth sector in Figure 4.4). Such local random TCP ports appear in 62.8% of the

925 popular apps, and the percentage goes up to 78% in the 100 highly popular

apps. As shown in Table 4.1, even anti-virus apps, 360 Security, and Avast, are also

affected.

Open Ports in Built-in Apps

Besides the popular apps on Google Play, we also identify 755 built-in apps (apps

pre-installed by phone manufacturers) containing open ports (excluding those that

also appear as standalone apps on Google Play, such as Facebook and Skype).

We recognize them by collecting user devices’ system app package names (via the

SYSTEM flags of the ApplicationInfo class).

With vendor-specific package keywords, we identify over 20 vendors that in-

clude open ports in their built-in apps. Table 4.2 lists the top ten according to the

number of built-in apps with open ports. We can see that Samsung, LG, and Sony

are the top three vendors, with 186, 75, and 69 open-port apps, respectively. Con-

sidering the huge numbers of phones sold by these vendors, their built-in open ports
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Table 4.2: Top smartphone vendors that include open-port apps.

Vendor # Apps Top Five Open Port Numbers

Samsung 186
UDP: 5060 68 1900 6100 6000
TCP: 5060 6100 6000 7080 8230

LG 75
UDP: 68 1900 19529 5060 39003
TCP: 5060 59150 59152 8382 39003

Sony 69
UDP: 68 1024 1900 1901 -
TCP: 5000 5900 5001 9000 30020

Qualcomm 42
UDP: 68 5060 1900 32012 -
TCP: 5060 6100 4000 4500 4600

MediaTek 26
UDP: 68 5060 50001 50002 50003
TCP: 5060 50001 - - -

Lenovo 25
UDP: 68 5060 50000 50001 52999
TCP: 2999 5060 50001 55283 39003

Motorola 21
UDP: 68 32012 16800 - -
TCP: 2631 20817 - - -

Huawei 13
UDP: 68 1900 8108 - -
TCP: - - - - -

ASUS 13
UDP: 68 5353 11572 11574 -
TCP: 2222 5577 8258 8282 8990

Xiaomi 11
UDP: 68 1900 5353 - -
TCP: 6000 8081 8682 - -

are expected to exist in a significant portion of the entire smartphone market. By

analyzing each vendor’s top five open ports, we identify three major reasons for

including these open ports in these built-in apps.

First, more than half (489 apps, 64.8%) of these apps3 contain UDP open port

68, which is for receiving DHCP broadcasts and updating the host IP address. As

shown in Table 4.2, UDP port 68 appears in all top ten device vendors, and it often

affects the largest number of built-in apps in each vendor. Furthermore, we find that

opening UDP port 68 is often long-lasting, with the median value of cumulative

port-opening time being 32.3 hours per app. This port can leak the host name of the

phone, which was fixed only in the latest Android 8 [16].

Second, about one quarter (175 apps, 23.2%) have TCP/UDP port 5060 open,

which is for VoIP SIP connection setup [57]. These built-in apps are from five de-

vice vendors: Samsung, LG, Lenovo, Qualcomm, and MediaTek. By inspecting

3Note that 175 of them also contain other ports.
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these apps, we find that quite a number of them do not seem to require the SIP

capability, e.g., com.lenovo.powersetting, com.sec.knox.bridge,

com.sec.automation, and com.qualcomm.location, to name a few.

Moreover, we surprisingly find that 41 Samsung models and 16 LG mod-

els modify some Android AOSP apps (e.g., com.android.settings and

com.android.keychain) to introduce the open port 5060. Other cases where

Android AOSP apps are customized to introduce open ports include TCP port 6000

in Xiaomi’s com.android.browser app, and UDP port 19529 opened by LG’s

18 system apps. Most of these apps, e.g., com.lge.shutdownmonitor and

com.lge.keepscreenon, generally have no networking functionality. This

suggests that their open ports could be unnecessary. We leave an in-depth analysis

of these cases to our future work.

Third, the rest of the open ports are mainly for network discovery and data shar-

ing. Besides common port numbers such as 1900 (UPnP) and 5353 (mDNS), ven-

dors use custom ports to implement their own discovery and data sharing services.

Examples include TCP ports 7080 and 8230 for Samsung’s Accessory Service [49],

TCP port 59150 and 59152 for LG’s Smart Share [37], and TCP port 5000 and

UDP port 1024 for Sony’s DLNA technique [54]. We reverse engineer Samsung

Accessory and identify a security bug; see Section 4.5.1.

Pervasiveness and Effectiveness

The crowdsourcing results presented above have demonstrated the pervasiveness of

open ports in Android apps and the efficacy of using crowdsourcing to discover open

ports. For example, the number of apps found with TCP open ports (2,284 apps) is

significantly more than that found in the state-of-the-art research [95] (1,632 apps),

which is based on a large set of 24,000 apps. To further quantify those two metrics,

we correlate the crowdsourcing results with two sets of apps used in static analysis.

To quantify the open-port pervasiveness, we crawled a set of top 9,900 free apps

from Google Play in February 2017 (fitting the period of our crowdsourcing). These
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apps are comprised of the top 300 free apps from 33 Google Play categories, with

all gaming apps consolidated into a single category. By looking into the overlapping

of this set and the apps monitored by NetMon, we count a total of 3,216 apps (with

vendor built-in apps excluded). Out of these 3,216 apps, our results show that 492

of them present TCP open ports, i.e., 15.3% of pervasiveness, which is significantly

higher than a previous report (6.8%) based on static analysis [95].

To quantify the effectiveness of our crowdsourcing approach, we first prepare

a baseline set of apps. Out of the 2,284 TCP open-port apps (some are built-in

apps) discovered by crowdsourcing, we are able to obtain 1,027 apps from the pub-

lic AndroZoo app repository [65]. According to the experimental results in Section

4.4.3, only 58.9% of these apps can be detected by typical Android static analy-

sis. In particular, 25.1% of them use dynamic code loading [118] or advanced code

obfuscation [137]. They are therefore not possibly detected by a pure static analy-

sis [82,120]. This indicates that crowdsourcing is much more effective than Android

static analysis in the context of open port discovery.

4.4 Diagnosis via Static Analysis

While crowdsourcing is effective in discovering open ports, it does not reveal the

code-level information for more in-depth understanding and diagnosis. To under-

stand how open ports are actually constructed at the code level and its security im-

plication, our pipeline (Figure 4.1) includes a diagnosis phase through an enhanced

version of BackDroid that is specifically designed for the open-port diagnosis. Note

that the goal of our diagnosis is not to rediscover (and analyze) all open ports iden-

tified by our crowdsourcing as we have shown that crowdsourcing is more effective

for port discovery. Instead, we aim to understand the major open-port usages by en-

hancing typical Android static analysis with open-port context and semantics. As a

result, we limit our static analysis to TCP open ports as similar to OPAnalyzer [95],

since UDP open ports have much more fixed usages (mainly for providing system-
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level networking services) as we have seen in Section 4.3.3. In addition, overcom-

ing the common difficulties in existing Android static analysis (e.g., dealing with

dynamic or reflected codes) is also not our focus.

In this section, we first cover the background of code-level open port construc-

tion and the objectives of our analysis (Section 4.4.1), and then present the details

of the enhanced version of our BackDroid (Section 4.4.2). Finally, we present the

experiments we have performed (Section 4.4.3) and the diagnosis results (Section

4.4.4 and Section 4.4.5).

4.4.1 Open Port Construction and Our Analysis Objectives

At the code level, an open port on Android could be constructed in either Java

or C/C++ native code. The native construction is similar to the traditional server-

side programming by calling socket(), bind(), listen(), and accept()

system calls sequentially, while the Java construction is to simply initialize a

ServerSocket object and call the accept() API. The first objective of our

static analysis is to trace each construction to (i) differentiate if the construction

constitutes a “live port” or a “dead port,” and (ii) determine if a third-party SDK is

on the call hierarchy. Such understanding is important because we want to filter out

false positives of open-port constructions, and Android apps usually include various

SDKs [72], especially the advertisement or analytics SDKs [90, 128], which could

introduce open ports without developers’ awareness. This analysis is challenging

because many networking libraries included in the app may contain open-port code

that is never invoked by the host app. We therefore need a backward slicing analysis

that can accurately trace back to every node on the call hierarchy. Such analysis has

to be sensitive to the calling contexts, class hierarchy, implicit flows, and so on.

After digging deeper into the Java constructions, we find a total of 11 open-port

constructor APIs shown in Listing 4.1. These ServerSocket APIs were origi-

nally from Java SDK, and have been directly ported over to Android. A convenient
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way of invoking these APIs is to pass only the port number parameter, and the APIs

will automatically assign the addr and backlog parameters. The default set-

ting of addr, interestingly, is the ANY IP address instead of the local loopback IP

address. Moreover, if addr is set to null, the ANY IP address is also used by

default. This legacy design in the original Java SDK might be appropriate for open

ports on PCs but not for mobile — as we saw earlier in Table 4.1, many Android

open ports are designed for local usages. We consider this kind of “convenient”

usage potentially insecure in the sense that they could inadvertently increase the

attack surface.

// API #1-#3
ServerSocket(int port);
ServerSocket(int port, int backlog);
ServerSocket(int port, int backlog, InetAddress addr);

// API #4-#6
SSLServerSocket(int port);
SSLServerSocket(int port, int backlog);
SSLServerSocket(int port, int backlog, InetAddress addr);

// API #7-#9
//class ServerSocketFactory:
createServerSocket(int port);
createServerSocket(int port, int backlog);
createServerSocket(int port, int backlog,InetAddress addr);

// API #10-#11
//ServerSocket socket = new ServerSocket();
socket.bind(SocketAddress addr);
socket.bind(SocketAddress addr, int backlog);

Listing 4.1: All ServerSocket constructor APIs.

In view of such potentially insecure use of the APIs, we come up our second ob-

jective of identifying the precise parameter values of all open-port constructions, so

that we can evaluate the extent to which Android developers adopt such convenient

but potentially insecure Java APIs. Note that these parameters might evolve across

different objects, fields, arrays, and involve arithmetic operators and Android APIs.

We need to understand all these semantics and calculate a complete representation

of the parameters (instead of just capturing isolated constants in SAAF [94]). Last

but not the least, it is important for our analysis to be efficient and scalable with a

large number of Android apps.
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4.4.2 Design and Implementation

We design and implement an enhanced version of BackDroid to specifically handle

these challenges. Instead of generating traditional slicing paths, BackDroid uses

a structure called backward slicing graph (BSG) to simultaneously track multiple

parameters (e.g., port and addr) and capture a complete representation of the

parameters. On the generated BSGs, BackDroid performs graph traversal and con-

ducts semantic-aware constant propagation. We also include a preprocessing step

in BackDroid to quickly search for open-port constructions to improve its scalabil-

ity.

Locating open-port constructions. This can be done by searching for the

accept() API of ServerSocket and ServerSocketChannel classes,

which are the only Android APIs to open TCP ports in Java. To enable fast search-

ing and to handle the multidex issue (where Android apps split their bytecodes into

multiple DEX files to overcome the limit of having a maximum of 65,536 meth-

ods [17]), we use dexdump [24] to dump (multiple) app bytecodes into a (com-

bined) plaintext file and then perform the searching. Additionally, for the native

code, BackDroid searches each .so file for the four socket system calls.

Backward parameter slicing via BSG. After locating the open-port construc-

tions, we apply backward slicing on their parameters to generate BSGs. Each BSG

corresponds to one target open-port call site and records the slicing information of

all its parameters and paths. The BSG not only enables BackDroid to track multiple

parameters in just one backward run, but also makes our analysis flow- and context-

sensitive, e.g., the process of constructing BSG naturally records the calling context

when analyzing the target of a function call so that it can always jump back to the

original call site. BackDroid is also sensitive to arrays and fields. With the help of

forward constant propagation shown below, our backtracking just needs to taint both

the instance field (or the array index) and its class object. Handling static fields does

not need the extra help, but requires us to add their statically uninvoked <clinit>
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methods (where static fields get initialized) into the BSG.

A notable challenge for Android backward slicing is to deal with implicit flows

and callbacks. BackDroid builds in support of class hierarchy, interface methods,

asynchronous execution (e.g., in Thread, AsyncTask, and Handler), and ma-

jor callbacks in the EdgeMiner list [77]. Furthermore, we support backtracking

across (explicit) inter-component communication (ICC) [114], and model Android

component lifecycle [69].

Semantic-aware constant propagation. After performing the inter-procedural

backward slicing, we calculate the complete parameter representation in a for-

ward manner. Besides the instruction semantics as in the typical forward propa-

gation [84], we handle the following semantics:

Maintaining object semantics. To determine the correct object for each

instance field, we perform points-to analysis [97] for all new statements in

the BSG. Specifically, we define an InstanceObj structure and initialize a

unique InstanceObj object for each new statement. We then propagate the

InstanceObj objects along the path and update their member fields if neces-

sary. As a result, whenever a target instance field is to be resolved, we can retrieve

its corresponding InstanceObj and extract its value. Array and ICC objects can

be treated similarly with our modeling of the Intent APIs for updating/retrieving

the ICC object fields.

Modeling arithmetic and API semantics. We model not only the five ma-

jor arithmetic operators, +, -, *, /, and % (by extracting the two operands and

generating a corresponding statement in Java code), but also mathematical APIs,

e.g., Math.abs(int) and Math.random() (via a special constant “RAN-

DOM”). We also model all other encountered Android framework APIs, which in-

clude IP address APIs, Integer and StringAPIs, and SharedPreferences

APIs. There are also a few APIs that are statically unresolvable, e.g., retrieving

values from user interface via EditText.getText() and from database via

Cursor.getInt(int). We save these cases to the final results without resolv-
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ing their parameters.

Removing dead ports and resolving SDK names. An important feature in

the enhanced version of BackDroid is the removal of “dead ports” that are never

executed. We analyze the port liveness in three steps of BackDroid. First, during

the backward slicing, we perform reachability analysis to exclude slices that cannot

trace back to the app entry functions. Second, in the forward propagation, we con-

sider ports with unresolvable parameters as dead ports. Third, the post-processing

step excludes dead ports with illegal parameters, e.g., we have detected tens of cases

with port parameter -1.

Resolving names of the SDKs is non-trivial due to code obfuscation. That said,

we have had successes with (i) extracting the name of each “sink” class that di-

rectly calls ServerSocket constructor APIs — typically the non-obfuscated por-

tions, e.g., com.facebook.ads.internal.e.b.f for the Facebook Adver-

tisement SDK; (ii) extracting Android Logcat tags [7] of the sink classes which may

embed plaintext class names, as demonstrated in Google’s official document [7];

and (iii) correlating different apps’ open-port parameters and tags, e.g., most Al-

ibaba AMap SDK [5] classes are obfuscated, but we can still find non-obfuscated

instances, e.g., com.amap.api.location.core.SocketService.

4.4.3 Static Analysis Experiments

As explained in Section 4.3.3, we have two sets of apps for analysis: (i) the top 9,900

apps across 33 Google Play categories and (ii) the 1,027 apps from AndroZoo that

are confirmed with TCP open ports.

We use the first set to measure the distribution of open-port apps across differ-

ent categories. Out of the 9,900 apps statically analyzed by BackDroid, we identify

1,061 apps and their corresponding 1,453 TCP open ports. Figure 4.5 plots a bar

chart of the percentage of open-port apps in each Google Play category. It clearly

shows that open port functionality has been planted into apps in all 33 Google Play
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Figure 4.5: Percentage of open-port apps in each Google Play category.

categories, ranging from the lowest 2.67% in “Libraries & Demo” to the highest

26.67% in “Tools”. After excluding Facebook SDKs, the percentage drops to be-

tween 0.33% in “Art & Design” and 12.0% in “Video Players & Editors”. This

suggests that open ports may have a wider adoption in mobile systems than that in

the traditional PC environment.

We then use the second set of apps to quantify the effectiveness of crowdsourc-

ing in a comparison with static analysis, as mentioned in Section 4.3.3. Out of

the 1,027 open-port apps as ground truth, BackDroid flags 671 apps with poten-

tial Java open-port constructions and 98 apps with native open-port constructions.

Among the remaining 258 (25.1%) apps, 110 of them implement open ports via

dynamic code loading4, and the rest of 148 apps are likely equipped with advanced

code obfuscation (e.g., multiple anti-virus apps, such as Avast shown in Table 4.1,

appear in this set). For the 671 apps analyzed by BackDroid for open-port parame-

ters, it successfully recovers the parameters of 459 apps and identifies 48 statically

unresolvable cases (e.g., values from EditText). Other cases are mainly due to

the complex implicit flows (e.g., [75, 99]) that BackDroid currently cannot address,

4We measure it via DexClassLoader and PathClassLoader APIs.
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even we have adopted the state-of-the-art methods [69, 73, 77]. We argue that in an

“ideal” situation (where all 98 apps with native constructions are successfully ana-

lyzed and 48 statically unresolvable cases are included), a typical static analysis tool

can detect only 58.9% of open-port apps that are discovered by our crowdsourcing

approach.

Considering both sets of apps and focusing on those with their parameters suc-

cessfully recovered by BackDroid, we further analyze the 1,520 (1,061 + 459) apps

with open ports in the next two subsections.

4.4.4 Detection of Open-Port SDKs

Out of these 1,520 apps, we are able to detect 13 open-port SDKs that affect at least

three apps each in our dataset. Table 4.3 lists their details, including the class pattern

(we use “%” to represent obfuscated fields), the Android Logcat tag (if any), raw

open-port parameters, and the number of affected apps. Note that the app number

here is the number of apps that actually invoke the SDK code, because some apps

may embed an open-port SDK but never invoke it. For example, we found a total

of 1,110 apps embedding Facebook Audience Network SDK [26] but only 897 of

them triggering the SDK code.

These SDKs are invoked in 1,018 apps (a few apps embed multiple SDKs), and

only 581 open-port apps are not affected at all. In other words, 61.8% of the 1,520

open-port apps are solely due to SDKs, among which Facebook SDK is the major

contributor. Even after excluding the impact of Facebook SDK, we could still count

117 (16.8%) open-port apps that are solely due to SDKs. These results indicate that

SDK-introduced open ports are significant and should be considered seriously in

terms of their necessity as we will discuss in Section 4.6.
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We take a closer look at Table 4.3 to see what kinds of SDKs introduce open

ports and whether it could raise an alarm to developers. We find that only three

SDKs, the UPnP SDK from CyberGarage [19] and two mobile push SDKs [27,58],

are networking related. The others are about advertisements [9, 26, 39, 64] (e.g.,

Facebook and Yandex), Javascript generation [10, 40, 46, 60] (e.g., App Inventor

and PhoneGap), gaming engines [40] and map navigation [5]. Hence, we argue

that developers could hardly realize the existence of these open ports by simply

examining their functionality.

4.4.5 Identification of Insecure API Usages

We further analyze the 581 apps whose open ports are not introduced by SDKs, and

their corresponding 869 open ports. We find that 515 port constructions did not set

the IP addr parameter and 96 ports set it as “null”. Hence, the default setting of

addr, i.e., the ANY IP address, is automatically used for these ports. In total, these

convenient API usages account to 611 open ports from 390 apps (67.1%). Further-

more, 164 of these ports (coming from 120 apps) have their port parameter set as

random, which has nearly no chance of being able to accept external connections

and thus binding to the ANY IP address clearly increases their attack surfaces. This

translates to a (lower bound) estimation of 26.8% of the 611 convenient API usages

being insecure, and correspondingly 20.7% (120/581) open-port apps adopting con-

venient but insecure API usages.

Such an insecure coding practice is not limited to app developers but also SDK

producers. In Table 4.3, six SDKs make a random port yet using the default addr

parameter binding the port to ANY IP addresses. Hence, Google may reconsider

the design of ServerSocket APIs to enhance its security at the API level.
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4.5 Security Assessment

In the last phase of our pipeline (Figure 4.1), we perform comprehensive security

assessment of open ports in three directions: vulnerability analysis in Section 4.5.1,

denial-of-service attack evaluation in Section 4.5.2, and inter-device connectivity

measurement in Section 4.5.3.

4.5.1 Vulnerability Analysis of Open Ports

According to our experience of analyzing open-port vulnerabilities over more than

two years, it is easy for open-port apps to become vulnerable, especially for TCP

open ports that do not provide system networking services as UDP open ports (as

explained in Section 4.3.3). Therefore, instead of developing tools to detect individ-

ual vulnerable open ports, we attempt to uncover vulnerability patterns in popular

apps that are usually more representative and more difficult to detect. Hence, our

vulnerability analysis is quite different from the previous work [95] that uses pre-

defined pattern for vulnerability detection. Instead, we explore all possible ways in

which an open port could become vulnerable, as long as they fit our threat model

discussed in Section 4.2, by performing in-depth reverse engineering via the state-

of-the-art JEB Android decompiler [35] and extensive dynamic testing.

Table 4.4 summarizes the five vulnerability patterns we have identified. The

first two have been reported in [95], while the third is a new variant of the crash

vulnerability mentioned in the traditional Android app security research [85]. The

last two have not been reported and they are specific to open ports.

P1: No or insufficient checks for information transmission. One major us-

age of (TCP) open ports is to transmit data to the connecting parties. However,

apps may employ weak authentication or even no authentication, which allows

unauthorized access to sensitive contents. We identify this type of vulnerabili-

ties in ES File Explorer, Cloud Mail.Ru, and a popular photo/video hiding app

called Vaulty. For example, Cloud Mail.Ru’s TCP port 1234 leaks users’ videos
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Table 4.4: Vulnerability patterns identified in open ports.

ID Vulnerability Patterns Representative Apps Affected

P1
No/insufficient checks for Samsung Gear, Cloud Mail.Ru,
information transmission Vaulty, ES File Explorer

P2
No/insufficient checks for Tencent XG Push SDK,

command execution Baidu Root, Coolpad V1-C Phone
P3 Crash-of-Service (CoS) Skype, Instagram
P4 Stealthy Data Inflation Facebook SDK, Instagram
P5 Insecure Analytics Interface Sina Weibo, Alibaba & Baidu SDKs

at http://127.0.0.1:1234//filename, where the name can be leaked by

eavesdropping Cloud Mail.Ru’s broadcast messages [79]. Similarly, Vaulty leaks

users’ sensitive videos and pictures to a remote adversary through port 1562, and

the adversary does not even need to know the target filename because only an in-

teger starting from one is required. ES File Explorer’s always-on TCP port 59777

performs some security checks by validating the IP addresses of incoming requests

with a white list. However, there is also an implicitly exposed [79] Activity

component for adding a remote adversary’s IP address to the white list.

A particularly interesting example is Samsung Gear and other built-in apps

based on the Accessory service [49] mentioned in Section 4.3.3. Sam-

sung Accessory provides an automatic (service) discovery feature via TCP

port 8230, but replies with sensitive information, e.g., GT-I9305;samsung;

UserName(GT-I9305);SWatch;SAP_TokenId(omitted), to any con-

necting party. Generally, it is important, yet challenging, to return only appropriate

information in such UPnP-like apps (e.g., 19 apps using CyberGarage UPnP SDK;

see Table 4.3).

P2: No or insufficient checks for command execution. Another usage of open

ports is to execute commands sent by authorized clients. We can see such open-port

usage in Tencent XG Push SDK for executing push commands and the Coolpad

V1-C phone’s vpowerd system daemon for shutdown and reboot commands.

However, the command interfaces in both cases are not well protected.

We also notice that some open ports are used as a debugging interface. For ex-
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ample, MIT App Inventor [40] and Titanium SDK [60] in Table 4.3 use open ports

for instant debugging or the so-called living programming [123]. This debugging

interface, however, must be disabled in release versions; otherwise, sensitive debug-

ging information could be leaked. For example, Baidu Root, a popular rooting app

in China, suffers from this vulnerability in its TCP port 10010 (bound to the host IP

address).

P3: Crash-of-Service. Apps could crash when receiving malformed inputs

from their open ports — we call this Crash-of-Service (CoS). Traditionally, Android

apps suffer from CoS due to inter-component communications [85]. Now open ports

provide a new channel for launching CoS. For example, we can crash Instagram

by sending it an invalid HTTP URL via the open ports. We also find that SIP

VoIP apps (e.g., built-in apps using the standard VoIP port 5060 as discussed in

Section 4.3.3) could be victims of CoS attacks. Here we analyze Skype voice/video

calls’ VoIP-like mechanism — it uses one UDP port for receiving control messages

from a Microsoft Azure server, and another UDP port for exchanging media data

with the other Skype user in a P2P mode. Unfortunately, a remote adversary can

terminate the on-going Skype session by just sending two packets to the first UDP

port. This leads to a very effective CoS attack without even involving application-

layer packets.

P4: Stealthy data inflation. Many open ports are for caching purposes (or as

connection proxies in VPN apps). For example, Facebook SDK uses its open ports

to cache video-based advertisements. Individual apps, such as Instagram, can also

build their own cache servers upon an open-source library called AndroidVideo-

Cache [8]. Since these apps typically support opening arbitrary URLs via the open

ports, one can easily launch stealthy data inflation attacks. Specifically, an adversary

can send special URLs, e.g., an URL pointing to a large file, to maliciously inflate

victim apps’ cellular data usage in the background. This process is fully stealthy

without catching user attention, and the data usage is attributed to the victim app.

Our vulnerability reports on Facebook SDK and Instagram were confirmed by
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Figure 4.6: The model of using open ports for analytics.

Facebook in March 2017 with two bug bounty awards, which demonstrate the ef-

fectiveness of the stealthy data inflation attack. Generally, it is applicable to any

open port with the caching or proxy functionality, e.g., most of the 997 apps with a

local random TCP port (see Section 4.3.3) and Corona Game Engine SDK (in Ta-

ble 4.3). The only exception we have seen is the open port on YouTube, which uses

a checksum to restrict opening illegal URLs.

P5: Insecure analytics interface. Lastly, we present a special vulnerability

pattern that appears in open port used as an analytics interface, which is used by

host apps/SDKs’ campaign websites to retrieve analytics information. Figure 4.6

depicts its basic architecture, in which a victim user has installed an app a that

hosts an analytic open port p (with a fixed port number num). Whenever a user

visits a web page w (that has a campaign relationship with a) from her mobile

browser or from user-shared links in social apps, w sends an HTTP request to

http://127.0.0.1:num/cmdwith the by-default added HTTP referrer point-

ing to the URL of w. The analytics app receives the request over its open port and

checks whether the request is from a campaign website through the HTTP refer-

rer. If it is, the app executes one of its pre-defined commands as requested by the

cmd parameter. A common command is geolocation, upon executing which

the geographical location of the device is returned to the web page.

However, such open-port usage is fundamentally insecure, because any other
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local apps or even a remote adversary (if the open port bound to the host IP ad-

dress, which is often the case) can set an arbitrary referrer in their HTTP requests

to execute privileged commands (e.g., retrieving IMEI and list of installed apps).

We uncover this class of vulnerabilities in Sina Weibo, Alibaba AMap SDK, and

two Baidu SDKs (which were fixed quite long ago and thus not in Table 4.3). We

reported these issues to the vendors in the first half of 2015, much earlier than the

subsequent industrial reports (e.g., WormHole [52])5.

4.5.2 Denial-of-Service Attack Evaluation

We now evaluate denial-of-service (DoS) attacks against mobile open ports and their

effectiveness. Note that this analysis differs from those in Section 4.5.1 in that DoS

attacks are typically possible even without exploiting any code-level vulnerabilities.

Different from the traditional DoS attacks that often require a large number of bots

(i.e., compromised computers), we show that DoS targeting mobile open ports can

be performed by a single adversary using much less powerful devices (e.g., just one

laptop), because the victim has much more limited computation, memory, and net-

working capabilities. Specifically, an adversary can first scan a WiFi/LTE network

to identify targets (those with open ports) and then send large (number and/or size

of) packets to deny victims from certain services or downgrade their quality of ser-

vice. Therefore, this DoS attack is mostly effective for UDP ports that are open

for communication purposes (recall that we have discovered 1,390 apps containing

such ports; see Section 4.3.3).

Figure 4.7 shows the experimental results of DoS attacks against WeChat,

YouTube, and AirDroid in an isolated WiFi network. The victim is a Samsung S6

edge+ phone, and we use hping3 [29] on a MacBook Pro (with 2.9 GHz CPU and

16GB memory) to flood UDP ports opened by WeChat and YouTube as well as TCP

ports opened by AirDroid. Figure 4.7(a) shows that the throughput of WeChat’s

5A list of our original reports (in Chinese) can be found at https://tinyurl.com/
opWooyun, and cached at https://tinyurl.com/opDropbox.
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(a) WeChat’s voice call (DoS at ∼26s).Wireshark IO Graphs: Youtube_UDP64352
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(b) YouTube’s video streaming (DoS at ∼32s).Wireshark IO Graphs: airdroid
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(c) AirDroid’s file transmission (DoS at ∼13s).

Figure 4.7: DoS attacks against open ports. The x-axis is the time in seconds, and
the y-axis is the victim apps’ throughput (packets/sec).

voice call drops to 50% when the attack launches at the 26-second mark, and is

fully denied at around 50 seconds (forcing WeChat to automatically terminate the

voice call). Figure 4.7(b) and Figure 4.7(c) respectively show that the throughput of

video streaming on YouTube and file transmission on AirDroid drop significantly

right after the attack begins. Cellular networks, on the other hand, are less affected
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(a) A list of networks scanned. (b) Detailed results of one scan.

Figure 4.8: User interfaces in NetMon for network scans.

by such DoS attacks according to our tests, mainly because of their limited uplink

throughput (attackers have to also use cellular to launch DoS as user devices in

most cellular networks use private IP addresses; see our measurements in Section

4.5.3). We expect the effectiveness of the attacks on cellular networks be signifi-

cantly improved when client devices are assigned with public IP addresses and in

the upcoming 5G era [1, 30].

4.5.3 Inter-device Connectivity Measurement

Most of the vulnerabilities and attacks demonstrated so far rely on connectivity to

the victim device. To measure the extent to which such inter-device connectivity

is allowed in public and private networks around the world, we embed a second

service, the network testing component, in NetMon. Figure 4.8 presents its two

user interfaces, in which Figure 4.8(a) shows a partial list of networks scanned and

the detailed results are shown in Figure 4.8(b). We can see that NetMon provides

most of the functionality in typical network scanning apps (for attracting users to

use this service in our app), and performs tests for the inter-device connectivity.

The following three policies are tested in both WiFi and cellular networks, an effort

never pursued before.

Inter-Pingable: whether an ICMP Ping packet could be transmitted from one device

to another. This tests the basic inter-device connectivity of a network. To mea-
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sure it, we leverage the ping program to issue ICMP requests to neighboring

hosts whose IP addresses share a common 24-bit prefix (i.e., ping around 28

IP addresses).

Inter-TCPable and Inter-UDPable: whether a TCP/UDP packet could be transmit-

ted from one device to another. To test them, NetMon launches TCP SYN and

UDP scans to all Pingable hosts. In each scan, NetMon sends a SYN packet

or a small UDP packet to a target port number (randomly selected from the

list of TCP/UDP open ports based on the results in Section 4.3.3). If Net-

Mon could receive a response (including failure packets, e.g., RST for TCP

and ICMP port unreachable for UDP), we conclude that the inter-TCPable or

inter-UDPable policy is employed.

Through the crowdsourcing deployment discussed in Section 4.3.3, NetMon

performs network connectivity tests in the wild. Similar to its port monitoring

component, the network testing component is also very energy efficient — only

33.01KB consumed on average in one scan in an LTE network. By gathering and ag-

gregating 6,391 network scans, we report the result and analysis on the inter-device

connectivity for the first time for 224 cellular networks and 2,181 WiFi networks

worldwide.

We find that almost 50% of the cellular networks (111 networks, 49.6%) al-

low their devices to ping each other, including AT&T, T-Mobile, Verizon Wire-

less, China Mobile, EE (in UK), Orange (in France), Airtel (in India), Celcom (in

Malaysia), and SingTel (in Singapore). All of these 111 cellular networks also allow

cross-device TCP packets, but the inter-UDPable tests fail in 14 networks, proba-

bly because they filter the ICMP unreachable messages sent by a closed UDP port.

Note that we did not test networks that filter Ping packets while allowing TCP/UDP

packets.

WiFi networks seem to have even worse security in terms of the inter-device

connectivity in that 83.6% (1,823 out of 2,181) allow devices to ping each other.

The inter-TCPable and inter-UDPable policies are also generally supported among
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the inter-Pingable WiFi networks with 95.6% and 88.3% success rates, respectively.

The unsuccessful cases are probably due to their WiFi routers/APs filtering TCP

RST and ICMP unreachable packets. University campus WiFi, enterprise office

WiFi, airport WiFi, hotel WiFi, public transportation WiFi, and department store

WiFi are among those that support inter-device connectivity. Allowing inter-device

connectivity in these public-domain WiFi will facilitate remote open-port attacks.

Furthermore, 23 cellular networks (10% of all cellular networks tested) and 10

WiFi networks (including the “eduroam” WiFi provided by two universities in the

US) assign public IP addresses to their users, which allow not only intra-network

connectivity but connectivity from any host on the Internet. This is astonishing as it

opens up exploit opportunities to any adversary on the Internet.

4.6 Mitigation Suggestions

To mitigate the threats of open ports, we propose countermeasures for different

stakeholders in the Android ecosystem, including app developers, SDK producers,

system vendors, and network operators.

App developers. The first thing developers need to assess is whether an

open port is necessary. For example, for local inter-app communication, using

LocalServerSocket [38] is more secure than establishing ServerSocket.

If open ports are really needed, developers should minimize the attack surface by

avoiding insecure coding behaviors as discussed in Section 4.4.5 and employ effec-

tive authentication against unintended access. Moreover, we suggest developers to

use our NetMon app to evaluate a third-party SDK before including it.

SDK producers. Similarly, SDK producers should use open ports only when

there are no better alternatives. For example, Facebook could reconsider its caching

mechanism via an open port in its SDK. In particular, SDKs should abandon us-

ing open ports for the analytics purpose, because it is fundamentally insecure (see

Section 4.5.1).
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System vendors. Besides having vendors assess open ports in their built-in

apps carefully, Google can consider taking more proactive measures. For exam-

ple, a new permission dedicated for the open port functionality, beyond the general

INTERNET permission, could be introduced, so that both developers and users are

better aware of it. As explained in Section 4.4.1, Google could also modify existing

ServerSocket APIs to better cope with open ports in mobile environment.

Network operators. To stop remote open-port attacks, a quick mitigation is

to restrict inter-device connectivity. For cellular or certain public WiFi networks

(e.g., in airports), it is reasonable for them to prioritize the security for the safety

of their users. Private WiFi networks (e.g., enterprise networks) may even leverage

software-defined networking to better regulate such connectivity.

4.7 Summary

In this chapter, we proposed the first open-port analysis pipeline to conduct a sys-

tematic study on open ports in Android apps and their threats. By first deploying

a novel crowdsourcing app on Google Play for ten months, we observed the actual

execution of open ports in 925 popular apps and 725 built-in apps. Crowdsourcing

also provided us a more accurate view of the pervasiveness of open ports in An-

droid apps: 15.3% discovered by our crowdsourcing as compared to the previous

estimation of 6.8%. We then showed the significant presence of SDK-introduced

open ports and identified insecure open-port API usages through BackDroid’s static

analysis enhanced with open-port semantics and SDK identification capability. Fur-

thermore, we uncovered five vulnerability patterns in open ports and reported vul-

nerabilities in popular apps and widely-embedded SDKs. The feasibility of remote

open-port attacks in today’s networks and the effectiveness of denial-of-service at-

tacks were also experimentally evaluated. We finally discussed mechanisms for

different stakeholders to mitigate open-port threats.
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Chapter 5

Measuring Declared SDK Versions

and Their Inconsistency with API

Calls in Android Applications

5.1 Introduction

Along with the fast-evolving Android, its fragmentation problem becomes more and

more serious. Although new devices ship with the recent Android versions, there are

still huge amounts of existing devices running old Android versions [67]. To better

manage the application’s compatibility across multiple platform versions, Android

allows apps to declare the supported platform SDK versions in their manifest files.

We term these declared SDK versions as DSDK versions. The DSDK mechanism is a

modern software mechanism with which, to the best of our knowledge, few systems

are equipped until Android. Nevertheless, so far it receives little attention and few

understandings are known about the effectiveness of the DSDK mechanism.

In this chapter, we aim to conduct a systematic study on the Android DSDK

mechanism. Specifically, our objective is to measure the current practice of DSDK

versions in real apps, and the (in)consistency between DSDK versions and their host

apps’ API calls. To make our measurement results representative, we select popu-
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lar apps that have at least one million installs each on Google Play as the dataset.

More specifically, we have collected a large-scale dataset with 22,687 popular apps

(570.8GB in total, with an average app size of 25MB), which covers 90.2% of all

such apps (both free and paid ones) available on Google Play. Furthermore, our

study utilizes the latest Android API evolution and covers all 28 versions of An-

droid SDKs or API levels1. We also find an effective way to accurately map 39,034

APIs to their corresponding SDK versions.

After selecting the dataset and building the API-SDK mapping, we perform a

systematic DSDK and API call analysis of each individual app. Our design is ro-

bust and scalable so that it can be readily deployed by online app markets (e.g.,

Google Play) to timely notify developers of the DSDK inconsistency in their apps.

Given this objective, dataflow-based analysis is not very suitable because existing

Android dataflow analyses (notably FlowDroid [69] and Amandroid [132]) are ex-

pensive even when analyzing medium apps, e.g., requiring∼4 minutes for the 8MB

Nextcloud app2 [93]. Moreover, they need to first transform or decompile Android

app bytecode into an intermediate representation (usually Java bytecode), the pro-

cess of which is not fully accurate [113] and often leaves some apps unanalyzable

in many previous studies [149] [71] [108] [116].

In our approach, we thus operate on the original Android bytecode level and

employ a lightweight version of BackDroid for app analysis. Specifically, we re-

trieve DSDK versions and API calls directly from each app without decoding the

manifest file via apktool [11] or decompiling app bytecodes via dex2jar [22],

which enables robust processing of all 22,687 popular apps. We also handle mul-

tidex [17], a special Android bytecode format often skipped by prior works but is

common in modern apps — 5,008 apps in our dataset split their bytecodes into

multiple files. With the correctly extracted app bytecodes, our lightweight Back-

Droid searches these bytecode texts to obtain valid API calls that are not guarded by

1The latest Android version at the time of our writing is Android 9 (API level 28).
2https://f-droid.org/en/packages/com.nextcloud.client/
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VERSION.SDK INT checking (developers can use such if statements to invoke

an API only in certain Android platforms) and also not in uninvoked third-party

libraries. In this way, it preserves a scalability suitable for online vetting: the me-

dian and average time for analyzing an app in our dataset is only 4.75s and 5.39s,

respectively. Moreover, the number of inconsistency warnings per app reported is

well manageable for developers to perform a one-time manual check, with fewer

than 10 potentially inconsistent API calls in around 80% apps each.

Our study sheds light on the current DSDK practice by app developers and quan-

titatively measures two side effects caused by the inconsistency between DSDK ver-

sions (configured by the app developers in the manifest file) and API calls (made

by the app during its execution). Specifically, the compatibility effect occurs when

a minimum DSDK version is set too low that certain APIs do not even exist in the

corresponding lower versions of Android platforms. The consequence of such com-

patibility effect can cause runtime crashes. Additionally, the security effect could

also happen when a target DSDK version is outdated (i.e., a lower version is used

despite device actually running on later versions of Android), causing that a vul-

nerable API is still rendered by the underlying system even when the app runs on

higher versions of Android. Next, we present our three sets of measurement results

on DSDK versions and their inconsistency with API calls.

Firstly, our measurement reveals some interesting characteristics of de-

clared SDK versions in the wild. Specifically, nearly all apps define

the minSdkVersion attribute, but 4.76% apps still do not claim the

targetSdkVersion attribute (in our dataset obtained in 2018), although this

percentage has significantly dropped from 16.54% in 2015. This indicates that

DSDK attributes nowadays are more widely adopted in modern apps. We further

find that the minimal platform version most apps support nowadays is Android 4.1,

whereas the most popular targeted platform version is Android 8.0. The median

version difference between targetSdkVersion and minSdkVersion also in-

creases from 8 in our last analysis in 2015 to 9 currently in the 2018 dataset.
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Secondly, in terms of compatibility inconsistency, we first find that around 50%

apps under-set the minSdkVersion value, causing them to crash when running

on lower versions of Android platforms. Fortunately, only 11.3% apps could crash

on Android 6.0 and above. We also show that by employing bytecode search for

SDK INT checking, our approach can reduce 17.3% false positives of compatibility

inconsistency results. A detailed analysis of Android APIs that incur compatibil-

ity inconsistency further reveals that some API classes, such as view, webkit, and

system manager related classes, are commonly misused.

Thirdly, our analysis of security inconsistency shows that around 2% apps

still set an outdated targetSdkVersion attribute when a common Web-

View API is vulnerable, making them exploitable by remote code execution.

In particular, around a half of these vulnerable apps invoke the vulnerable

addJavascriptInterface() API call because of their embedded third-party

libraries. Moreover, our bytecode search of the addJavascriptInterface()

invocation also helps reduce 12.2% false positives.

To summarize, we highlight the contributions of this chapter as follows:

• (New problem) To the best of our knowledge, we are the first to conduct a

systematic study on DSDK, a modern software mechanism that allows apps to

declare the supported platform SDK versions. We also give the first demysti-

fication of the DSDK mechanism and its two side effects on compatibility and

security. In particular, our paper [143] has motivated several recent follow-up

works [100] [93] on bug detection.

• (Novel approach) We propose a robust and scalable approach that operates

on the original bytecode level and leverages lightweight bytecode search in

BackDroid to timely notify developers the DSDK inconsistency in their apps.

The evaluation using 22,687 popular apps (with an average app size as large

as 25MB) shows that our approach achieves good performance suitable for

online app vetting, requiring only ∼5 seconds to process an app on average.
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• (New findings) Our measurement study obtains three major new findings, in-

cluding (i) 4.76% apps still do not claim the targetSdkVersion attribute,

although this percentage has significantly dropped from 2015 to 2018, (ii)

around 50% apps under-set the minimum DSDK versions and could incur run-

time crashes, but fortunately, only 11.3% apps could crash on Android 6.0

and above, and (iii) around 2% apps, due to under-claiming the targeted DSDK

versions, are potentially exploitable by remote code execution, and a half of

them actually invoke the vulnerable API via embedded third-party libraries.

5.2 Demystifying Declared SDK Versions and Their

Two Side Effects

In this section, we first demystify declared platform SDK versions in Android apps,

and then explain their two side effects if inappropriate DSDK versions are used.

Note that DSDK is different from the typical compilation SDK, which is only for

compiling apps while DSDK is mainly for interpreting run-time API behaviors.

5.2.1 Declared SDK Versions in Android Apps

Listing 5.1 illustrates how to declare supported platform SDK versions in An-

droid apps by defining the <uses-sdk> element [62] in apps’ manifest files (i.e.,

AndroidManifest.xml [59]). These DSDK versions are for the runtime An-

droid system to check apps’ compatibility, which is different from the compiling-

time SDK for compiling source codes. The value of each DSDK version is an integer,

which represents the API level of the corresponding SDK. For example, if a devel-

oper wants to declare Android SDK version 5.0, she can set its value to 21. Since

each API level has a precise mapping of the corresponding SDK version [68], we

do not use another term, declared API level, to represent the same meaning of DSDK

throughout this chapter.
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<uses-sdk android:minSdkVersion="integer"

android:targetSdkVersion="integer"

android:maxSdkVersion="integer" />

Listing 5.1: The syntax for declaring platform SDK versions in Android apps.

We explain the three DSDK attributes as follows:

• The minSdkVersion integer specifies the minimum platform API level

required for an app to run. The Android system refuses to install an app if its

minSdkVersion value is greater than the system’s API level. Note that if

an app does not declare this attribute, the system by default assigns the value

of “1”, which means that the app can be installed in all versions of Android.

• The targetSdkVersion integer designates the platform API level that

an app targets at. An important implication of this attribute is that Android

adopts backward-compatible API behaviors of the declared target SDK ver-

sion, even when an app is running on a higher version of the Android plat-

form. Android makes such compromised design because it aims to guarantee

the same app behaviors as expected by developers, even when apps run on

newer platforms. It is worth noting that if this attribute is not set, the default

minSdkVersion is used.

• The maxSdkVersion integer specifies the maximum platform API level on

which an app can run. However, this attribute is not recommended and al-

ready deprecated since Android 2.1 (API level 7). Modern Android no longer

checks or enforces this attribute during the app installation or re-validation.

The only effect is that Google Play continues to use this attribute as a filter

when it presents users a list of applications available for downloading. Note

that if this attribute is not set, it implies no restriction on the maximum plat-

form API level.
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From app manifest:

minSDK maxSDK

From app API calls:

minLevel maxLevel

Added APIs Removed APIs

Android platforms:

Crash Less secure

targetSDK

A patched API

1 2 3 4

Figure 5.1: Illustrating the two side effects of inappropriate DSDK versions.

5.2.2 Two Side Effects of Inappropriate DSDK Versions

Figure 5.1 illustrates two side effects of inappropriate DSDK versions. We first

explain the symbols used, and then describe the two side effects. As shown in

Figure 5.1, we can obtain minSDK, targetSDK, and maxSDK from an app

manifest file. Based on the API calls of an app, we can calculate the minimum

and maximum API levels it requires, i.e., minLevel and maxLevel. Eventually,

the app will be deployed to a range of Android platforms between minSDK and

maxSDK.

Side Effect I: Causing Runtime Crashes

The blue part of Figure 5.1 shows two scenarios in which inappropriate DSDK

versions could cause compatibility-related inconsistency. The first scenario is

minLevel > minSDK, which means a new API is introduced after the minSDK.

Consequently, when an app runs on Android platforms between minSDK and

minLevel (marked as the block 1 in Figure 5.1), it will crash. We verified this

case by using VpnService class’s addDisallowedApplication() API,

which was introduced on Android 5.0 at API level 21. We invoked this API

in the MopEye app [140] and ran it on an Android 4.4 device. When the app

executed the addDisallowedApplication() API call, it crashed with the

java.lang.NoSuchMethodError exception.
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The second scenario is maxSDK > maxLevel, which means an old API is

removed at the maxLevel. Although it looks like the app would crash when it runs

on Android platforms between maxLevel and maxSDK, it turns out that Google

intentionally keeps the forward compatibility (by keeping those removed APIs in

the framework as hidden APIs) so that developers have no concern in over-setting

maxSdkVersion. As a result, this scenario would not cause runtime method

availability errors. Therefore, we measure only the first scenario of compatibility

inconsistency that can cause runtime crashes in this chapter.

Side Effect II: Making Apps Vulnerable

The red part of Figure 5.1 shows the scenario in which inappropriate DSDK ver-

sions cause failure for the app to be patched. Suppose that an app calls an API

whose implementation is vulnerable at targetSDK, even when the app runs on an

updated Android system (with API level > targetSDK). In this case, Android still

exhibits the compatibility behaviors, i.e., the vulnerable implementation of the API

at targetSDK in this case.

Table 5.1: Vulnerable APIs or components on Android and their patched versions.

Vulnerable APIs/Components Patched SDKs (Android) Changed Behavior
file:// scheme in WebView targetSDK ≥ 16 (4.1+) Fix flawed same-origin policy [138]

Content Provider component targetSDK ≥ 17 (4.2+) Do not by default export [12]
addJavascriptInterface() targetSDK ≥ 17 (4.2+) Stop Java reflection for RCE [21]

PreferenceActivity class targetSDK ≥ 19 (4.4+)
Add isValidFragment() for apps

to prevent Fragment Hijacking [28]

javascript: in WebView targetSDK ≥ 19 (4.4+)
JavaScript URLs are executed in

a separate WebView context [110]
Context.bindService() targetSDK ≥ 21 (5.0+) Do not accept Implicit Intents [50]

Table 5.1 summarizes previously reported vulnerable APIs or components on

Android and their patched versions. In this chapter, we choose to particularly mea-

sure the vulnerable addJavascriptInterface() API for two reasons. First,

it has a clear API pattern for inconsistency measurement, while other cases in Ta-

ble 5.1 involve multiple component-level factors that could cause a vulnerability.

Second, the addJavascriptInterface() API gives rise to the most serious
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security issue [81]. By exploiting this API, attackers are able to inject malicious

code, which can cause remote code execution (e.g., stealing sensitive information

from a victim app or SD card). Google later fixed this weakness on Android 4.2

and above. However, if an app sets the targetSdkVersion to be lower than

17 and calls this API, the system will still render the vulnerable API behavior even

when running on Android 4.2+. Such vulnerable app examples are available at

https://sites.google.com/site/androidrce/.

5.3 Methodology

To understand how DSDK versions are used in the wild and the pervasiveness of the

two side effects in real apps, we propose an automatic approach for a systematic

measurement. In this section, we first present an overview of our methodology, and

then its two main analysis phases.

5.3.1 Overview

We design our approach with the objective of it being deployed by app markets

to timely notify developers the DSDK inconsistency in their apps. Figure 5.2 il-

lustrates its overall design, where the app analysis part is conducted in the online

phase. Since our app analysis requires the API-SDK mapping as an input (for cal-

culating API levels of all valid API calls in an app), we further conduct Android

API document analysis to build a mapping between each Android API and their

corresponding SDK versions (or API levels). As this step is performed only once,

we include it in the offline phase.

The major part of our approach is designed for the online vetting of apps. Specif-

ically, whenever developers upload a new or updated app to app markets, we first

unzip this app to obtain its bytecode DEX file(s). We then launch manifest anal-

ysis to robustly retrieve an app’s declared SDK versions. For bytecode analysis,

our novelty is to leverage the lightweight bytecode search in BackDroid, instead
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Figure 5.2: The overview of our methodology.

of heavyweight dataflow analysis, to extract valid API calls. Finally, we leverage

the API-SDK mapping to calculate the range of the corresponding API levels from

API calls, and compare them with the declared SDK versions. The output is the

(in)consistency results between declared SDK versions and API calls. It is worth

noting that multiple-apk analysis [143] is no longer needed in our online analysis,

because app markets control all versions of APKs and multiple-apk mechanism is

largely used for different hardware configuration [41].

5.3.2 Offline Phase: API Document Analysis

In this subsection, we present our offline phase in detail, including both methodol-

ogy and results of API document analysis.

Building the API-SDK mapping. There are two potential approaches for build-

ing the API-SDK mapping. One is to analyze Android API documents by pars-

ing a SDK document called api-versions.xml. A previous API study [109]

and our preliminary results reported in [143] leveraged this approach to obtain ini-

tial and added APIs, but they did not cover removed and deprecated APIs via the

api-versions.xml file they analyzed. They thus also needed to analyze the

HTML files in the api diff directory, which is, unfortunately, error-prone [143].
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Figure 5.3: Distribution of added Android APIs across different SDK versions.
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The other approach is to directly retrieve the API-SDK mapping from each SDK

jar file. However, different SDK releases under the same API level may have

some API differences, and there are over 600 releases3 for 28 API levels at the

time of our writing. As a result, conflicted API mappings could be recorded, e.g.,

marking the Gravity.getAbsoluteGravity API that was removed in SDK

version 16 and then added back in version 17 [100].

Fortunately, we find that the first approach provides an accurate mechanism to

cover all kinds of Android APIs. Specifically, the latest api-versions.xml

file released in Android 9 SDK records all added, removed, and deprecated APIs.

Therefore, we can simply parse this file to obtain an accurate API-SDK mapping.

Document analysis results. With the accurate API-SDK mapping, we are now

able to present a comprehensive evolution of Android APIs across different SDK

versions. Figure 5.3, 5.4, and 5.5 plot the distribution of added, removed, and dep-

recated Android APIs from API level 2 to the very recent API level 29, respectively.

Overall, we find that 26,466 (67.8%) out of a total of 39,034 Android APIs are

changed. This result shows that Android APIs evolve dramatically during the whole

evolution.

The biggest change in the Android API evolution is to add 23,542 APIs since

level 2, as shown in Figure 5.3. Specifically, Android 7.0 (API level 24) changed

most, with 3,627 new APIs introduced. Android 8.0 (API level 26) and Android

5.0 (API level 21) also introduce a significant number of new APIs, with 3,218 and

2,581 APIs added, respectively. Other versions of platforms with a large number of

added APIs are Android 3.0 (API level 11), Android 6.0 (API level 23), and Android

9.0 (API level 28). These new Android APIs bring a huge risk of compatibility

inconsistency, causing runtime crashes on lower versions of Android. In particular,

we notice that over half (13,306, 56.5%) of all added APIs are introduced since

Android 5.0, giving them a higher chance of causing compatibility inconsistency

3See tags in https://android.googlesource.com/platform/frameworks/
base.git/+refs.
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than the rest of APIs added.

In contrast, only 4,830 (18.2%) APIs involve the removal change (i.e., removed

or deprecated; some of them are also introduced after API level 2), with 3,671

APIs deprecated and 2,902 APIs finally removed. According to Figure 5.4 and 5.5,

the biggest removal happens in Android 5.1 and 6.0 (API level 22 and 23), with

1,359 APIs deprecated and 1,307 APIs removed afterwards. Moreover, Android

9.0 (API level 28) deprecates 507 APIs and its next version (API level 29) removes

504 of them, which suggests that Google plans to remove a large number of APIs

in the release of Android 9.0. Additionally, although Android 4.1 (API level 16)

deprecated 559 APIs, only 222 APIs were removed in the subsequent Android 4.2

and 4.3.

To sum up, 23,542 (60.3%) out of all the 39,034 Android APIs are introduced at

a SDK version other than the initial Android SDK version (i.e., API level 1), which

brings a high risk for developers to under-set the minSdkVersion attribute. On

the other hand, much fewer Android APIs, i.e., 7.4% of all APIs, are mapped to a

range of SDK versions that have an upper limit.

5.3.3 Online Phase: Android App Analysis

In this subsection, we present three major modules in the online analysis phase,

namely manifest analysis, bytecode search, and consistency comparison in Fig-

ure 5.2.

Retrieving DSDK Versions via Manifest Analysis

To robustly retrieve DSDK versions from all apps, we propose a new manifest anal-

ysis method that leverages aapt (Android Asset Packaging Tool) [2] to retrieve

DSDK directly from each app without extracting and decoding the manifest file.

This method is more robust than the traditional apktool-based manifest extrac-

tion [11] that requires to extract and decode the manifest into a plaintext file. Indeed,
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$ aapt dump badging example.apk 

package: name='com.example' versionCode='1' versionName='1.0'

sdkVersion:'8'

targetSdkVersion:'20'

maxSdkVersion:'22'

Figure 5.6: The aapt command for retrieving DSDK directly from an APK file.

our aapt-based approach can successfully analyze all 22,687 apps, whereas a pre-

vious work [144] showed that apktool failed six times in the analysis of just 1K

apps. Specifically, we utilize the dump baging command in aapt to extract the

DSDK versions, as shown in Figure 5.6. We can see that minSdkVersion is now

represented with the “sdkVersion” keyword, whereas targetSdkVersion and

maxSdkVersion still remain the same as in the manifest.

In the course of implementation and evaluation, we observed and handled two

kinds of special cases. First, some apps define minSdkVersion multiple times,

for which we only extract the first value. Second, we apply the default rules (see

Section 5.2.1) for apps without minSdkVersion and targetSdkVersion de-

fined. More specifically, we set the value of minSdkVersion to 1 if it is not

defined, and set the value of targetSdkVersion (if it is not defined) using the

minSdkVersion value.

Besides retrieving DSDK, our manifest analysis also parses all components reg-

istered in the manifest to generate a list of valid components and their root (Java)

class names. This information will be used in the app analysis module to exclude

uninvoked third-party libraries. Specifically, we execute the dump xmltree com-

mand in aapt to output all component information. In the process of parsing these

components, we also generate their root class names according to this rule: if the

component class does not overlap with the app package or <application> name

(i.e., this class could be from a third-party library), we record the entire class name

as the root class; otherwise, only the leading two or three name portions are treated

as the root class.
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Extracting Valid API Calls via Bytecode Search

The main module in our app analysis is to extract valid API calls. A valid API

call should not be guarded by the VERSION.SDK INT checking (a mechanism

developers can use to invoke an API only in certain Android platforms). It also

should not be in uninvoked third-party libraries that are essentially dead code. To

guarantee the scalability for online vetting, we propose a lightweight version of

BackDroid for app analysis, because existing Android dataflow analyses, notably

FlowDroid [69] and Amandroid [132], are expensive even when analyzing medium

apps, e.g., requiring ∼4 minutes for just an app of size 8MB [93].

Moreover, we operate on the original Android bytecode level without decom-

piling app bytecodes for minimizing false negatives. This is because the process

of transforming or decompiling Android app bytecode into an intermediate repre-

sentation (usually Java bytecode) is not fully accurate [113]. As a result, many

previous studies [149] [71] [108] [116] often failed to handle some apps, causing

false negatives in their analysis. In contrast, by directly analyzing app bytecodes,

we robustly process all 22,687 popular apps in our dataset. Specifically, we leverage

the dexdump tool [23] to translate compressed bytecodes into bytecode plaintexts

(similar to using objdump to generate assembly code texts), upon which we can

then launch bytecode search to extract valid API calls. Note that dexdump, as

an official Android SDK tool, is very robust, and it does not generate intermediate

representation. We also dump (multiple) app bytecodes into a (combined) plain-

text [142] to handle multidex [17], a special bytecode format often skipped by prior

works but indeed common in modern apps — 5,008 apps in our dataset split their

bytecodes into multiple files. Hence, we avoid another common source of false

negatives.

In the rest of this subsection, we first introduce the basic bytecode search mech-

anism before describing our bytecode search of VERSION.SDK INT checking and

vulnerable API calls in details. We then explain how we exclude uninvoked third-
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Figure 5.7: A high-level overview of our bytecode search mechanism.

party libraries during the search process.

The basic bytecode search mechanism. Figure 5.7 shows a high-level

overview of our bytecode search mechanism. The bytecode text outputted by

dexdump is a sequence of code statements, hierarchically organized by different

class and method bodies. In Figure 5.7, we show six method bodies (from method

A to method F), where their corresponding class bodies are omitted for simplicity.

As illustrated in the figure, our bytecode search scans these methods to locate in-

consistent API calls (e.g., call site i1 and i2 in method A and C, respectively) and

vulnerable API calls (e.g., call site v1 in method F). We can perform further search

to determine in which class an interested method is invoked, e.g., Figure 5.7 shows

that method F (containing vulnerable API call v1) is called by another method D.

Besides the method search, we can also launch if statement search to locate con-

ditional checking, e.g., statement c1 that surrounds call site i2 in method C.

Searching VERSION.SDK INT checking. As mentioned earlier in this sub-

section, developers can use if statements with VERSION.SDK INT checking to

invoke an API only in certain Android platforms, thus avoiding the inconsistency
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1 VpnService.Builder builder = new VpnService.Builder();
2 if (VERSION.SDK_INT >= VERSION_CODES.LOLLIPOP) {
3 builder.addDisallowedApplication(Constant.PkgName);
4 }

Listing 5.2: An example of VERSION.SDK INT checking.

problem. Listing 5.2 shows an example of VERSION.SDK INT checking, which

invokes the addDisallowedApplication() API (introduced since API level

21) only on Android 5.0 and above. To avoid such false positives, our approach

must handle the VERSION.SDK INT checking.

Our strategy is to make both API call and VERSION.SDK INT checking search

and see whether the two search results overlap in the same method. For example,

in Figure 5.7, our bytecode search locates both checking statement c1 and API call

i2 in method C. Since these two search results overlap and API call i2 is invoked

below checking statement c1, we are thus confident that this API call has been

guarded with a corresponding VERSION.SDK INT checking.

Searching vulnerable API calls. For a vulnerable API call, we further em-

ploy bytecode search to determine whether it is initialized by app’s own code or

library code. This is particularly important for the vulnerable API studied in this

chapter, namely addJavascriptInterface(), because a previous study has

shown that over 47% of top 40 ad libraries create their JavaScript interfaces [36].

Specifically, after locating vulnerable API call v1 in method F, we further search the

invocation(s) of method F to check its origin class.

Excluding uninvoked third-party libraries. An important issue during our

bytecode search is to exclude uninvoked third-party libraries. Previous works (e.g.,

Amandroid [132] and CiD [100]) use a pre-collected white list to skip third-party

libraries, but this approach also ignores valid library code. Differently, we consider

all components registered in the manifest, including those from third-party libraries.

As mentioned in Section 5.3.3, we generate root classes for all registered compo-

nents via manifest analysis. A class code that does not appear in any root class is
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thus from an uninvoked third-party library or dead code. But even for a valid third-

party library, only its registered components will be analyzed because not all code

in a library will be invoked by the main app.

Calculating API Levels and Comparing Their Consistency with DSDKs

With the extracted API calls, we use the API-SDK mapping to compute the range of

their corresponding API levels (i.e., from minLevel to maxLevel, as explained

in Section 5.2.2). The minLevel of an app is the maximum of all its valid API

calls’ corresponding minLevel values (i.e., all correspondingly added SDK ver-

sions), while the maxLevel of an app is the minimum of all valid API calls’ cor-

responding maxLevel values (i.e., all correspondingly removed SDK versions). If

an API is never removed, we set a large flag value (e.g., 100,000) to represent its

maxLevel value.

We then compare the extracted DSDK values with the calculated API levels to

obtain the following two kinds of inconsistency (as previously mentioned in Section

5.2.2):

• minSdkVersion < minLevel: the minSdkVersion is set too

low and the app would crash when it runs on platform versions between

minSdkVersion and minLevel.

• targetSdkVersion < maxLevel: the targetSdkVersion is set

too low and the app could be updated to the version of maxLevel. If the

maxLevel is infinite, the targetSdkVersion could be adjusted to the

latest Android version.

5.4 Evaluation

Our evaluation aims to answer the following four research questions:

RQ1 What are the current DSDK characteristics in popular real-world apps?
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RQ2 How pervasive is the compatibility-related inconsistency in real-world apps?

RQ3 How pervasive is the security-related inconsistency is in real-world apps?

RQ4 How scalable is our inconsistency detection approach?

We choose popular real-world apps, instead of randomly selected apps or open-

source apps, for evaluation, because they are most likely installed by regular users.

Hence, the obtained measurement results can reflect the DSDK practice in the wild.

In this section, we first describe how we collect such a large dataset in Section 5.4.1.

Based on this dataset, we then answer the four research questions from Section 5.4.2

to 5.4.5.

5.4.1 Dataset

We collect popular apps on Google Play via the AndroZoo repository [65], which

contains a total of 3,699,731 unique4 Google Play apps at the time of our crawl-

ing on 11 November 2018. However, AndroZoo does not provide the app in-

stall information, which is required to determine the popularity of each app. To

quickly locate popular apps, we leverage the top app lists available at https:

//www.androidrank.org. Specifically, we crawled top 1,000 app in each

Google Play category (49 categories in total, including 17 different game sub-

categories), and recorded the package names of apps with over one million installs.

This allows us to obtain a list of 25,144 popular apps, 22,687 (the rest are either

paid apps or not indexed by AndroZoo) of which are available on AndroZoo. We

thus downloaded these 22,687 apps as our dataset.

To understand these popular apps’ distribution across different app categories,

we plot a bar chart in Figure 5.8 that covers all 32 non-game app categories. Addi-

tionally, 17 game sub-categories contribute to a total of 10,695 popular apps, which

indicates that game apps are commonly installed by real-world Android users. Ac-

4An app is unique if its package name, instead of SHA1/256, is different from other apps.
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Figure 5.8: The distribution of popular apps across different categories.

cording to Figure 5.8, app categories like “Personalization”, “Tools”, “Photogra-

phy”, “Entertainment”, and “Music” also produce a large number of popular apps,

almost 1K popular apps per category. We notice that daily-used categories, such as

“Communication” and “Social”, however, do not generate an equivalent number of

popular apps, with only 600 to 700 popular apps. This is because in these categories,

several very popular apps, e.g., WeChat and Facebook, dominate a large portion of

the market share. Lastly, it is also reasonable for some unpopular categories, such

as “Medical” and “Libraries & Demo”, to have a limited number of popular apps.

It is also important to measure the distribution of app size in our dataset. Fig-

ure 5.9 plots the CDF (cumulative distribution function) of the APK file size of each

app in our dataset. We can see that over 40% apps have a size larger than 20MB, and

over 20% apps are even larger than 40MB each. This indicates that a significant por-

tion of modern apps are no longer in small size. Indeed, the average app size in our

dataset is 25MB, much larger than the size of apps used in several prior dataflow

analysis studies (e.g., apps below 5MB were evaluated in AppContext [149], and

the maximum app size in IctApiFinder [93] is 8MB). Therefore, scalability is a key

design objective for our approach, and we will evaluate it extensively in Section

5.4.5.
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Figure 5.9: CDF plot of the APK file size of each app in our dataset.

5.4.2 RQ1: Characteristics of Declared SDK Versions in the

Wild

In this section, we report a total of four findings regarding RQ1. We also compare

these new findings with our previous results in [143], which measured a dataset of

22.7K apps crawled in 2015.

Finding 1-1: Nearly all apps define the minSdkVersion attribute, but there

are still 4.76% apps not claiming the targetSdkVersion attribute, although

this percentage has significantly dropped compared to our prior analysis in 2015.

Table 5.2 shows the number and percentage of non-defined DSDK attributes in our

dataset. We can see that nearly all apps have defined the minSdkVersion at-

tribute while nearly no apps define the maxSdkVersion attribute. This result

is good because, as we described in Section 5.2.1, defining minSdkVersion

is necessary while maxSdkVersion is not. However, we also notice that there

are still 1,079 (4.76%) apps not claiming the targetSdkVersion attribute,

which causes their targetSdkVersion values be set to the corresponding

minSdkVersion values by default.

Fortunately, the percentage of non-defined targetSdkVersion has sig-

nificantly dropped compared to our prior analysis in 2015, from 16.54% to

4.76%. One important factor is the popularity of Android Studio in recent years,
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Table 5.2: The number and percentage of non-defined DSDK attributes in our
dataset.

# Non-defined % Non-defined
minSdkVersion 5 0.02%

targetSdkVersion 1,079 4.76%
maxSdkVersion 22,623 99.72%

which has become the de-facto IDE (integrated development environment) for An-

droid app development. Since Android Studio by default sets and enforces the

minSdkVersion and targetSdkVersion attributes, the percentage of non-

defined targetSdkVersion naturally drops and we expect that this percentage

will further decrease with more apps getting updated.

Finding 1-2: Some targetSdkVersion attributes are set to outlier values.

We find that a total of 45 apps in our dataset declare their targetSdkVersion

attributes as outlier values, a finding close to that in our prior analysis in 2015 when

we encountered 55 such cases. There are two classes of outlier values. The first

is that targetSdkVersion is set to an API level not in the range of released

SDKs. At the time of our analysis, the valid API levels are from 1 to 28 (An-

droid 9.0). However, 12 apps set their targetSdkVersion to larger than 28,

namely 29, 30, and 31. In our prior analysis, we are surprised by one app with its

targetSdkVersion value set to 10000. This is probably because their develop-

ers want to always target at the latest Android SDK.

The other class of outliers is that the targetSdkVersion value is set to a

value lower than the minSdkVersion value. Normally, targetSdkVersion

should be greater than or equal to minSdkVersion, but 33 apps have neg-

ative targetSdkVersion − minSdkVersion values. This number is al-

most the same as that in our prior analysis in 2015 (34 apps at that time). In

particular, there was one app (com.leftover.CoinDozer) which defines its

targetSdkVersion as 0, although its minSdkVersion value is 8. We be-

lieve that this class of outliers is due to developers’ mistakes in declaring DSDK
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Figure 5.10: The distribution of minSdkVersion.

attributes.

Finding 1-3: The minimal platform version most apps support is Android 4.1,

whereas the most targeted platform version is Android 8.0. This has dramati-

cally evolved since our last analysis in 2015. We first study the distribution of

minSdkVersion. According to Figure 5.10, the majority (89%) of apps have

minSdkVersion lower than or equal to level 16 (Android 4.1), which means that

they can run on nearly all (99.5%) Android devices in the market nowadays [67].

Specifically, the minimal platform version most apps support is Android 4.1 (level

16), while that in our last analysis in 2015 was only Android 2.3 (level 9). However,

Android 2.3 still ranks in the second place, with 3,614 apps’ minSdkVersion tar-

geted at. Besides Android 4.1 and 2.3, two Android 4.0.x (level 14 and 15) platform

versions are also commonly defined as apps’ minSdkVersion.

On the other hand, Figure 5.11 plots the distribution of targetSdkVersion.

We can see that 80% apps set their targetSdkVersion values to larger than

or equal to level 19 (Android 4.4). In particular, the two most targeted platform

versions are the most recent Android 8.0 (level 26) and 8.1 (level 27), while those

in our last analysis in 2015 were Android 4.4 and 5.0. This suggests that modern

apps keep better pace with the evolution of the Android operating system. Besides

Android 8, Android 6.0 (level 23) and 4.4 (level 19) still hold a significant portion
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Figure 5.11: The distribution of targetSdkVersion.

of apps with the corresponding targetSdkVersion setting. Moreover, Android

7.0.x (level 24 and 25) and Android 5.0.x (level 21 and 22) also attract considerable

apps being targeted at.

Finding 1-4: The median version difference between targetSdkVersion

and minSdkVersion is 9, while that of our last analysis was 8. This 11% in-

crease indicates that Android apps nowadays need to support more Android plat-

forms. We define a new metric called lagSdkVersion to measure the version

difference between targetSdkVersion and minSdkVersion, as shown in

Equation 5.1.

lagSdkVersion = targetSdkVersion− minSdkVersion (5.1)

After removing the negative lagSdkVersion values (i.e., outliers mentioned in

Finding 1-2), we draw the CDF plot of lagSdkVersion in Figure 5.12. It indi-

cates that Android apps nowadays need to support more Android platforms. This

conclusion can be further supported through measuring the percentage of apps that

have a lagSdkVersion value greater than 12. Compared to our prior analysis,

this percentage has increased from 5% to 20%, which clearly shows that more and

more apps nowadays support a wide range of Android platforms. On the other

hand, the percentage of apps that have the same value for targetSdkVersion
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Figure 5.12: CDF plot of lagSdkVersion.

and minSdkVersion has also dropped from 20% in 2015 to 6.4% in 2018.

5.4.3 RQ2: Inconsistency Results with Compatibility Effect

In this section, we report three important findings regarding RQ2. Besides present-

ing compatibility results as the major finding, we also summarize the reduced false

positives by our bytecode search as compared to the prior conference version, and

show in detail the newly added API classes are common sources of compatibility

inconsistency.

Finding 2-1: Around 50% apps under-set the minSdkVersion value, caus-

ing them could crash when running on lower versions of Android platforms. For-

tunately, only 11.3% apps could crash on Android 6.0 and above. As explained in

Section 5.3.3, the compatibility inconsistency happens if minSdkVersion is less

than minLevel. In our experiments, we therefore count the number of API calls

that have higher API level than minSdkVersion in each app, and denote it by

minOverNum. The higher value an app’s minOverNum is, the more likely that

this app has the compatibility inconsistency.

Figure 5.13 shows the CDF plot of minOverNum in each app. We find that

14,363 (63.3%) apps have at least one API call that has higher API level than the

corresponding minSdkVersion. To further increase the confidence of our anal-
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Figure 5.13: CDF plot of minOverNum in each app.
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Figure 5.14: Bar chart of the number of apps in each minLevel.

ysis, we count that 8,019 (35.4%) apps invoke over five different API calls with

higher API levels than corresponding minSdkVersion. Therefore, we estimate

that around 50% apps could crash when running on lower versions of Android plat-

forms because they under-set the minSdkVersion value. Fortunately, we find

that the number of inconsistency warnings per app reported by our bytecode search

is well manageable for developers — 77.8% of the 14,363 apps have fewer than 10

different inconsistent API calls. It is thus not difficult for developers to perform a

one-time manual check.

Fortunately, apps with compatibility inconsistency issues could crash only on

certain Android platforms. More specifically, they could crash only on versions

of platforms between minSdkVersion and minLevel, as illustrated earlier in
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Section 5.2.2. Therefore, it is necessary to study on which Android platforms those

buggy apps could crash, because nowadays some lower versions of Android hold a

limited market share, e.g., only 11% for Android below 5.0 [67]. As a result, even if

some apps are buggy with compatibility inconsistency, they cannot trigger the crash

on user phones equipped with recent versions of Android.

Since minLevel is the indicator for maximum versions of Android platforms

a buggy app could crash on, we plot a bar chart of minLevel in Figure 5.14 for

14,363 app that are detected with compatibility inconsistency. We can see that only

2,566 (11.3% of 22,687) apps could crash on Android 6.0 and above (via counting

apps with minLevel larger than 23). In other words, the majority (11,797 out of

14,363) of buggy apps cannot exhibit their incompatibility bugs on Android devices

that are with over 70% market share in January 2019. Furthermore, 8,990 out of

14,363 apps could crash only on Android below 5.0, which significantly limits the

consequences of their incompatibility issues.

Finding 2-2: We find that by employing bytecode search for SDK INT check-

ing, our approach can reduce 17.3% false positives of compatibility inconsistency

results. As mentioned in Section 5.3.3, a false positive of compatibility inconsis-

tency could appear if an API call guarded with SDK INT checking is not detected.

Here we measure the number of such false positives that could be excluded by the

bytecode search. We find that our search of SDK INT checking avoids 3,003 apps

from being mistakenly marked with compatibility inconsistency. Since there are

14,363 apps (i.e., true positives) that could crash when running on lower versions of

Android platforms, the percentage of reduced false positives due to bytecode search

is 17.3%.

Finding 2-3: A detailed analysis of Android APIs that incur compatibility incon-

sistency reveals that some API classes, such as view, webkit, and system manager

related classes, are commonly misused. We further try to understand the common

sources of compatibility inconsistency by analyzing the newly added Android APIs

that incur compatibility inconsistency in our dataset. We find that 6,454 (27.4% of
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Figure 5.15: Bar chart of the top 20 Android API classes (with “android.” prefix
omitted) that incur compatibility inconsistency in our dataset.

all 23,542) newly added APIs from 1,138 unique classes cause compatibility incon-

sistency in at least one app in our dataset. In particular, 232 (20.4%) API classes

affect more than 100 different apps each, making them the common sources of com-

patibility inconsistency. Fortunately, half of API classes only affect fewer than 10

apps each, which suggests that only some portions of API classes are prone to mis-

uses.

We thus take a closer look at the top 20 Android API classes that cause

compatibility inconsistency. As shown in Figure 5.15, all of these classes af-

fect over 1K apps each. In particular, the JobService class that was intro-

duced in Android 5.0 (level 21) alone could cause compatibility inconsistency in

around 5K apps. Other commonly misused API classes include those related to

view (e.g., the View, Activity, Context, and Fragment classes), webkit

(e.g., the WebSettings and WebView classes), and system manager (e.g., the

AppOpsManager and UserManager classes). These classes nearly occupy all

the top 20 misused ones.

5.4.4 RQ3: Inconsistency Results with Security Effect

In this subsection, we present a total of three findings regarding RQ3.
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Table 5.3: The top five library classes that introduce
addJavascriptInterface() API call in vulnerable apps and the num-
ber of apps affected.

Library Class # Vulnerable Apps
Lcom/flurry/android/CatalogActivity; 41

Lcom/openfeint/internal/ui/NativeBrowser; 30
Lcom/doodlemobile/gamecenter/moregames/MoreGamesActivity; 19

Lcom/gau/go/launcherex/theme/classic/FullScreenAdWebPage; 17
Lcom/amazon/ags/html5/overlay/GameCircleUserInterface; 13

Finding 3-1: Around 2% apps still set an outdated targetSdkVersion

attribute when a common WebView API is vulnerable, making them ex-

ploitable by remote code execution. As explained in Section 5.2.2,

we measure inconsistency results with the security effect by analyzing

each app’s addJavascriptInterface() API call and the declared

targetSdkVersion attribute. In our dataset, we first find that 2,791 apps in-

voke the addJavascriptInterface() API, which suggests that calling this

WebView API is necessary in many apps. However, 484 of them, i.e., 2.1% of the

entire dataset of 22,687 apps, still set an outdated targetSdkVersion attribute

below level 17, making them not only exploitable on Android below 4.2 but also

vulnerable on higher versions of Android platforms. This could be avoided if their

targetSdkVersion values are updated.

Finding 3-2: Our bytecode search of addJavascriptInterface()

invocation helps reduce 12.2% false positives. Recall from Section 5.3.3 that we

perform bytecode search to check whether an addJavascriptInterface()

API call is invoked by a valid class. We find that without such

checking, 551 apps can be detected with vulnerable combination of

addJavascriptInterface() and targetSdkVersion. In other

words, our search of addJavascriptInterface() invocation avoids 67 (551

- 484) apps from being mistakenly marked with security inconsistency. Hence, we

conclude that our bytecode search reduces 12.2% false positives in the context of

addJavascriptInterface().
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Finding 3-3: Around a half of the vulnerable apps invoke

addJavascriptInterface() because of their embedded third-

party libraries. Our approach can also determine whether the

addJavascriptInterface() API is invoked by app’s own code or

embedded by a third-party library. It turns out that 214 (44.2%) of 484 vulnerable

apps invoke addJavascriptInterface() because of their embedded third-

party libraries. In particular, five libraries affect at least 10 vulnerable apps each.

Table 5.3 lists their class names and the number of apps affected. We can see that

the popular Yahoo Flurry SDK [32] and OpenFeint Game SDK [45] cause some

apps with outdated targetSdkVersion to become vulnerable.

This finding gives two implications. First, developers must check whether a

third-party library invokes some vulnerable APIs before embedding it into apps.

Second, library producers also need to ensure certain dangerous APIs are invoked

only in safe versions of Android platforms, because a library can be used in any app

with all kinds of targetSdkVersion values.

5.4.5 RQ4: Performance Metrics of Our Approach

In this section, we evaluate performance metrics of our approach, a lightweight

version of BackDroid, to answer RQ4.

Finding 4-1: Our approach achieves good scalability with an average time

of 5.39s and the analysis time of 90% apps in less than 10 seconds. This makes

our approach suitable for online vetting. In Figure 5.16, we present CDF plot of

the amount of time required for our approach to analyze each app. We can see that

more than 50% apps can be analyzed in less than five seconds each, with the median

time of 4.75s. The average analysis time of all the 22,687 apps is only 5.39s. These

results indicate that our approach achieves good scalability, therefore suitable for

online vetting. Therefore, app markets can deploy our approach to timely notify

developers the DSDK inconsistency in their apps.
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Figure 5.16: CDF plot of the amount of time required for our lightweight BackDroid
to analyze each app.

In contrast, dataflow-based approaches [100] [93] suffer from the scalability

problem. Specifically, CiD [100] failed to analyze 387 apps (out of a dataset

of 2,000 apps) due to timeouts and bugs. This 19.4% timeout or failure rate

makes it infeasible for online vetting, let alone performance statistics were also

not clear for those successfully analyzed. On the other hand, IctApiFinder [93]

takes 3 minutes and 45 seconds to analyze only an app of 8MB (the app is

available via historical versions on https://f-droid.org/en/packages/

com.nextcloud.client/), a size much smaller than the average size (25MB)

of our dataset. This suggests that IctApiFinder is impractical to perform online vet-

ting of a modern app dataset from Google Play (all apps evaluated by IctApiFinder

were open-source apps from the F-Droid website).

Finding 4-2: A further correlation analysis between analysis time and app size

shows that the performance of our approach is approximately in a linear relation-

ship with DEX file size of the app. We further statistically demonstrate that the

performance of our approach is always under control regardless of the app size.

This can be evaluated by performing a correlation analysis between analysis time

and app size. In Figure 5.17, we draw a scatter plot of the relationship between

analysis time and the size of DEX file of the app (APK file contains both bytecode
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Figure 5.17: Scatter plot of the relationship between analysis time and DEX size.

and resource files while DEX file is only for bytecode). According to this figure, the

analysis time and DEX file size are approximately in a linear relationship at the rate

of around 30 seconds for a 40MB DEX file (note that we count the file size of multi-

ple DEX files if any). There are some outliers of small apps with more analysis time

(e.g., five apps under 20MB exceeding 30s), which is largely because these apps in-

volve much more vulnerable API calls to search. On the other hand, the outliers of

large apps with less analysis time is due to unused third-party libraries embedded.

Overall, the linear relationship between analysis time and app size indicates that our

approach can achieve good performance even with large apps.

5.5 Threats To Validity

In this section, we discuss some threats to the validity of our study.

First, same as typical Android static analysis, our approach does not handle Java

reflection, dynamic code loading, native code, and complicated code obfuscation.

However, some apps may employ these mechanisms to access certain Android APIs.

If a such API call has inconsistency issues, a false negative would appear. Since

these code protection mechanisms are usually used in malware, our statistical results

of popular apps will be less affected and we will consider these mechanisms to our

114



future work.

Second, although our bytecode search in Section 5.3.3 has minimized false posi-

tives caused by VERSION.SDK INT checking and uninvoked third-party libraries,

it is theoretically less accurate than dataflow-based approaches. Therefore, in our

deployment model, developers are required to manually check and correct inconsis-

tency reported by our approach. Fortunately, as evidenced in Section 5.4.3, around

80% apps are reported with fewer than 10 inconsistent API calls each, which is well

manageable for developers to perform a one-time manual check.

Third, the consistency detection in this chapter focuses on changed APIs, but

there are also added and removed Java/Android fields during the SDK evolu-

tion. To build the mapping between fields and SDK versions, we found that we

can leverage the same document analysis method in Section 5.3.2, because the

api-versions.xml file also records added, removed, and deprecated

fields in all Android classes. By inputting this mapping to our app analysis, we

can extend our consistency detection to evolved Android fields as well in our future

work.

5.6 Summary

In this chapter, we conducted a systematic study of declared SDK versions in An-

droid apps, a modern software mechanism that has received little attention. We

measured the current practice of declared SDK versions or DSDK versions in a large

set of 22,687 modern apps, and the inconsistency between DSDK versions and their

host apps’ API calls. To facilitate the analysis that can be readily deployed by app

markets for online vetting, we proposed a robust and scalable approach that oper-

ates on the Android bytecode level and employs the lightweight bytecode search

in BackDroid for app analysis. We have obtained some interesting new findings,

including (i) 4.76% apps do not claim the targeted DSDK versions, although this

percentage has significantly dropped over recent three years, (ii) around 50% apps
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under-set the minimum DSDK versions and could incur runtime crashes, but fortu-

nately, only 11.3% apps could crash on Android 6.0 and above, and (iii) around 2%

apps, due to under-claiming the targeted DSDK versions, are potentially exploitable

by remote code execution, and a half of them invoke the vulnerable API via embed-

ded third-party libraries.
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Chapter 6

Conclusion and Future Work

6.1 Concluding Remarks

In this dissertation, we made a first attempt to explore a novel on-demand Android

static analysis that does not generate a whole-app call graph but creatively leverages

bytecode search to guide inter-procedural analysis on the fly or just in time. We

developed such on-the-fly static analysis into a novel tool, called BackDroid, for ef-

ficient and effective targeted security vetting of Android apps. Notably, BackDroid

employed a novel backward search technique to search over Java polymorphism,

threads, implicit callback flows, and Android inter-component communication. We

further explored how the core technique of on-the-fly static analysis in BackDroid

can enable different vulnerability studies and their corresponding new findings. To

this end, we performed three representative vulnerability studies as follows:

• First, we applied BackDroid to detect crypto and SSL/TLS misconfigurations

in modern Android apps. We also used this study as an evaluation of Back-

Droid and compared it with the state-of-the-art Amandroid tool. The results

showed that BackDroid achieved a much better performance than Amandroid,

around ten times faster on average, and at the same time, maintained similar

detection effectiveness as Amandroid for the apps detected by Amandroid.

Moreover, BackDroid discovered 18 additional vulnerable apps (out of the
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144 apps with the targeted sink APIs) that were missed by Amandroid.

• Second, we explored how BackDroid can facilitate a systematic security study

of open ports in Android apps. To this end, we first discovered open-port apps

using crowdsourcing, and then enhanced BackDroid to identify insecure open

ports and open-port SDKs in the discovered open-port apps. Specifically, the

crowdsourcing allowed us to observe the actual execution of open ports in 925

popular apps and 725 built-in system apps, and the enhanced BackDroid diag-

nosed that 61.8% of the open-port apps are solely due to embedded SDKs and

20.7% suffer from insecure API usages. We further performed three security

assessments to reveal five vulnerability patterns in open ports of popular apps,

to measure the feasibility of remote open-port attacks, and to demonstrate the

effectiveness of denial-of-service attacks against mobile open ports.

• Third, we customized a lightweight version of BackDroid that operated on the

original bytecode level and leveraged lightweight bytecode search to measure

the inconsistency between declared SDK versions and their API calls in mod-

ern Android apps. By focusing on the control-flow information of searched

sink APIs, our lightweight BackDroid preserved a scalability suitable for on-

line vetting. We then employed this custom BackDroid to analyze the SDK-

API inconsistency for 22,687 modern popular apps, and found that (i) ∼50%

apps under-set the minimum DSDK versions and could incur runtime crashes,

but fortunately, only 11.3% apps could crash on Android 6.0 and above; and

(ii)∼2% apps, due to under-claiming the targeted DSDK versions, are poten-

tially exploitable by remote code execution.

To conclude, this dissertation made this core contribution: On-the-fly Android

static analysis guided by bytecode search can efficiently and effectively analyze the

security of modern apps. It enables us to perform vulnerability studies with differ-

ent kinds of sink analysis requirements, and to obtain new findings on crypto and

SSL/TLS misconfigurations, insecure open ports, and SDK-API inconsistency.
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6.2 Future Research Directions

Given this dissertation, it will be interesting and valuable to further work on the

following three major research directions:

1. Searching over Java reflection and native code. As discussed in Section 3.5,

BackDroid currently does not handle Java reflection and native code. Al-

though it is possible to integrate existing dedicated works (e.g., DroidRA [99]

and JN-SAF [131]) into BackDroid, a desirable and long-term approach is to

propose new backtracking capability that can be still performed in an on-the-

fly manner.

2. Hybrid analysis with both static and dynamic techniques. BackDroid also

does not support dynamically loaded and packed code, a common limitation

in typical Android static analysis. Addressing them will need the support of

dynamic analysis. In Chapter 4, we have shown that by combining BackDroid

and crowdsourcing-based dynamic analysis, we can build an effective open-

port analysis pipeline. It will be interesting to see more hybrid analysis using

both static and dynamic techniques.

3. Exploring more applications of BackDroid. To realize the full potentials of

BackDroid, we will open source BackDroid to the community and add more

analysis capabilities together with them. Such a diverse BackDroid platform

can help explore more security problems, e.g., not only limited to vulnera-

bility discovery but also for malware analysis. Moreover, researchers in the

software engineering community can also develop their custom tools on top

of BackDroid, as we have demonstrated in Chapter 5.
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