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Question Answering with Textual

Sequence Matching

Shuohang Wang

Abstract

Question answering (QA) is one of the most important applications in natural

language processing. With the explosive text data from the Internet, intelli-

gently getting answers of questions will help humans more efficiently collect

useful information. My research in this thesis mainly focuses on solving ques-

tion answering problem with textual sequence matching model which is to

build vectorized representations for pairs of text sequences to enable better

reasoning. And our thesis consists of three major parts.

In Part I, we propose two general models for building vectorized represen-

tations over a pair of sentences, which can be directly used to solve the tasks

of answer selection, natural language inference, etc.. In Chapter 3, we propose

a model named “match-LSTM”, which performs word-by-word matching fol-

lowed by a LSTM to place more emphasis on important word-level matching

representations. On the Stanford Natural Language Inference (SNLI) [7] cor-

pus, our model achieved the state of the art. Next in Chapter 4, we present

a general “compare-aggregate” framework that performs word-level matching

followed by aggregation using Convolutional Neural Networks. We focus on

exploring 6 different comparison functions we can use for word-level matching,

and find that some simple comparison functions based on element-wise oper-

ations work better than standard neural network and neural tensor network

based comparison.

In Part II, we make use of the sequence matching model to address the

task of machine reading comprehension, where the models need to answer the

question based on a specific passage. In Chapter 5, we explore the power of



word-level matching for better locating the answer span from the given passage

for each question in the task of machine reading comprehension. We propose

an end-to-end neural architecture for the task. The architecture is based on

match-LSTM and Pointer Net which constrains the output tokens coming from

the given passage. We further propose two ways of using Pointer Net for

our tasks. Our experiments show that both of our two models substantially

outperform the best result [61] using logistic regression and manually crafted

features. Besides, our boundary model also achieved the best performance on

the SQuAD [61] and MSMARCO [57] dataset. In Chapter 6, we will explore

another challenging task, multi-choice reading comprehension, where several

candidate answers are also given besides the question related passage. We

propose a new co-matching approach to this problem, which jointly models

whether a passage can match both a question and a candidate answer.

In Part III, we focus on solving the problem of open-domain question an-

swering, where no specific passage is given any more comparing to the reading

comprehension task. Our models for solving this problem still rely on the

textual sequence matching model to build ranking and reading comprehension

models. In Chapter 7, we present a novel open-domain QA system called Re-

inforced Ranker-Reader (R3), which jointly trains the Ranker along with an

answer-extraction Reader model, based on reinforcement learning. We report

extensive experimental results showing that our method significantly improves

on the state of the art for multiple open-domain QA datasets. As this work

can only make use of a single retrieved passage to answer the question, in

the next Chapter 8, we propose two models, strength-based re-ranking and

coverage-based re-ranking, which make use of multiple passages to generate

their answers. Our models have achieved state-of-the-art results on three public

open-domain QA datasets: Quasar-T [23], SearchQA [24] and the open-domain

version of TriviaQA [40], with about 8 percentage points of improvement over

the former two datasets.
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Chapter 1

Introduction

1.1 Overview

Question answering (QA) [62, 34, 61, 10, 40, 1, 5] is one of the most important

applications in natural language processing. The task is to build machines

that can answer questions expressed in human language using information and

knowledge found in sources such as a single article, a corpus of documents, a

knowledge base, or even an image or a video. Intelligently solving this prob-

lem can not only help humans obtain useful information from huge amount of

textual resources more efficiently, but also help develop intelligent machines

such as conversational agents. Question answering has drawn much attention

in recent years with the development of deep learning techniques. There’re

multiple QA tasks in different settings, such as answer selection (AS) [73],

machine reading comprehension (MRC) [61], knowledge base question answer-

ing (KBQA) [5], visual question answering (VQA) [1], open-domain question

answering (OQA) [10], etc.. All these tasks need to generate an answer for

a given question, while the differences lie in the different context information

given to answer the question. For example, the context information can be

several candidate answers in the AS task, a question-related passage in MRC

task, a knowledge base such as Freebase in the KBQA task, a question-related
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Task : I. Answer Selection task
Context: (a) Yes, it be possible have auto insurance without own a vehicle.

You will purchase what be call a name ...
(b)Insurance not be a tax or merely a legal obligation because auto
insurance follow a car...
(c) You shall have auto insurance any time you own a car ...

Question: Can I have auto insurance without a car?
Answer: (a)

Task : II. Machine Reading Comprehension task
Context: In 1870, Tesla moved to Karlovac, to attend school at the

Higher Real Gymnasium, where he was profoundly influenced
by a math teacher Martin Sekulić. The classes were held in Ger-
man, as it was a school within the Austro-Hungarian Military
Frontier. Tesla was able to perform integral calculus in his head,
which prompted his teachers to believe that he was cheating. He
finished a four-year term in three years, graduating in 1873.

Question: Why did Tesla go to Karlovac?
Answer: attend school at the Higher Real Gymnasium

Task : III. Open-domain Question Answering task
Context: whole Wikipedia or any Web page
Question: What is the largest island in the Philippines?
answer: Luzon

Table 1.1: Examples for three different question answering tasks.

figure in the VQA task, or any information from the webs in the OQA task.

The most challenging is arguably the the open-domain question answering task

where only a question is given and we can actually make use of any resource

to answer it. It’s likely the final goal of question answering systems, which can

answer anything using existing knowledge in the world. In this thesis, we will

mainly focus on three tasks, namely Answer Selection, Machine Reading Com-

prehension and Open-domain Question Answering, which rely only on context

information in raw text, as shown in Table 1.1.

In earlier days, people focused more on the task of answer selection, which

relies on a sequence matching model to identify which context sequence can

answer the question, as the first example shown in Table 1.1. Actually, there’re

also many other tasks relying on sequence matching model, such as paraphrase

identification, natural language inference, etc.. Some classical methods [82]
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train a matching model, like SVM, based on human crafted features, such as

Rouge scores, BLEU scores, etc., to identify how well the sequence pairs can

be matched. And the candidate sequence that can receive a higher matching

score with the question would be predicted as the answer. However, these

features, such as BLEU scores, are based on the exact N-gram match, and

lack deep semantics (e.g., they fail to recognize that “dog” and “animal” are

related.), lack consideration of context information (e.g. “dog” and hot “dog”

are different), lack the relations between the matched phrases (e.g. “dog” can

be entailed by “animal” and contradicted by “cat”). Later on, the sequences

are represented by vectorized representations through neural networks, and the

similarity between the representations is used to show how well the sequences

are matched. Although with the help of some general neural frameworks, such

as LSTM and CNN, the model achieved a good performance on answer selec-

tion tasks, the sequence level representations built by LSTM and CNN are still

not powerful enough to represent all the semantic meanings of a sequence. We

still need more interactive representations between sequences. In this thesis,

we will propose a new textual sequence matching framework, which will build

the phrase level matching representation between sequences through attention

mechanism, and the aggregation of all the phrase level matching represen-

tations will represent how well the sequences are matched. Our models are

designed to overcome the shortcomings of previous works as discussed above,

and the experiment results shown that our models can achieve state-of-the-art

performance on multiple answer selection tasks. Besides the answer selection

tasks, our sequence matching framework is also one of the key component in

the solutions to many other question answering tasks.

One of the most well-studied question answering tasks in recent years is ma-

chine reading comprehension. After I designed the aforementioned sequence

matching model, a natural question is whether this model can be applied to ma-

chine reading comprehension. Specifically, in machine reading comprehension,

3



question related passage is given as context, and we can answer the question

based on the information from the passage. The example in Table 1.1 is one

setting of machine reading comprehension where we can directly extract the

answer phrase from the context. Previous methods [61] on this task use human

crafted feature based methods. They first extract all the noun and verb phrases

from the passages by a parser, and then rank them with their corresponding

contextual features. However, human crafted features are always not powerful

enough to represent how the question and the context are matched in deep

semantics. In this thesis, we propose the first neural network structure which

can extract the answer in sequence for the question. Specifically, we first make

use of our previously proposed sequence matching model to build the matching

representation for every word in the passage, so that the matching representa-

tions can reflect how well the contextual information of the corresponding word

can match the question and also reflect the probability of the word to be the

answer. Then we further add a pointer [79] layer to point out the positions of

the words that can compose the answer based on the matching presentations.

According to the experiment result, our model can achieve a much better per-

formance than human crafted feature based methods. This kind of framework

has also been widely adopted in other models [66, 97, 10] for the machine

reading comprehension tasks, and also the tasks of open-domain QA.

Another well-studied question answering tasks that is more challenging

than machine reading comprehension is open-domain question answering, and

I further explore how my previous work can be applied in this problem setting.

In this setting, there’s no specific context given any more. We can get the

answer from any resource, while in this thesis, we mainly focus on making

use of the raw text from Wikipedia to extract the answer. Previous work [10]

on this task follows a pipeline work, “search and read”. Specifically, they

first make use of information retrieval (IR) models based on tf-idf values to

retrieve the question-related passages from Wikipedia, and then train a reading
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Figure 1.1: An overview of the frameworks for different question answering
tasks.

comprehension model on the retrieved passages through distant supervision.

However, the limitation of distant supervision is that the model will treat

all the passages that contain the answer as golden passages. For example,

the question can be “Where’s Singapore Management University?”, and one

IR retrieved passage can be “SMU is in Singapore”, while another passage

can be “Multiple universities are in Singapore”. Although the ground-truth

answer “Singapore” appears in both of the passages, the second passage is

not closely related to the question. And it shouldn’t be used to train our

reading comprehension model. In this way, we propose to use a neural ranker

to select the passages for training the reading comprehension model (reader),

and make use of reinforcement learning to jointly train ranker and reader. The

experiment results show the effectiveness of our model on several open-domain

QA datasets.

Although different QA tasks as discussed above will require some task-
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Figure 1.2: An overview of the major components in the thesis.

specific frameworks to solve the problem, they actually rely heavily on a good

textual sequence matching model. As shown in Figure 1.1, we have a compar-

ison of the frameworks to solve different tasks. The sequence matching model

is to build a matching representation between two sequences, as shown in Fig-

ure 1.1 (a). It can be directly applied to the answer selection task by matching

every candidate with the question and have a comparison of the matching re-

sults for ranking, as shown in Figure 1.1 (b). For the tasks of machine reading

comprehension and open-domain question answering, the sequence matching

model is always the bottom layer to build the matching representations be-

tween question and the passages, as shown in Figure 1.1 (c) and (d). The

differences lie on how the reasoning module is constructed to extract the an-

swer based on the matching representations.

Overall, this thesis consists of three parts, as shown in Figure 1.2: (I)

textual sequence matching model, and (II) the adaptation of the sequence

matching model to machine reading comprehension and (III) the adaptation

of the sequence matching model to open-domain question answering tasks. In

Part I, we propose two general sequence matching models to solve the answer
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selection and textual entailment tasks. In Part II, we propose two models to

solve two types of machine reading comprehension tasks (MRC): answer span

based and multi-choice based MRC. In Part III, we propose two models to

handle noise and diversity issues in the IR retrieved passages from the task of

open-domain question answering respectively.

1.2 Thesis Outline and Contributions

In Chapter 2, I will show the related works for the three major parts of this

thesis. And then I’ll introduce more details of our models in the following

chapters.

1.2.1 Textual Sequence Matching

In Chapter 3, I will first address the task of natural language inference, one

of key tasks for solving question answering. In this task, we need to identify

the relationship between a premise and a hypothesis. The relationship can

be “entailment”, “contradiction” or “neutral”. To solve this problem, models

with sequence matching are always applied. In previous work, LSTM based

siamese neural networks and LSTM with attention mechanism have been ex-

plored on this task. Unlike these models based on matching between the

sequence-level representations, we propose a model named match-LSTM [86]

which performs the matching in a word-by-word manner. In more details, we

will first use LSTM to pre-process both sequences. Then every hidden state of

these pre-processing LSTM will integrate not only the word information in the

corresponding position but also its context information. Next, we further use

these states to compute the attention weights. For each state in one sequence,

we compute an attention vector which is the weighted sum of all the hidden

states of the other sequence, and each pair of vectors (one hidden state and

its attention vector) can represent the matched word pairs. And they will be
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the inputs of another LSTM which aggregates all the matched word pairs in

order. The final state of this LSTM will be used for the final classification. By

making use of this model, we achieved state of the art performance on Stanford

Natural Language Inference [7] dataset at the time our paper was published..

In Chapter 4, we further explore a more general and efficient compare-

aggregate model [87] for sequence matching. For the compare-aggregate model,

we further research on the different word-level matching functions in the “com-

pare” part, which is to build the representation between each word in one

sequence and its corresponding attention vector, the weighted sum of all the

hidden states of the other sequence. We start from applying the most complex

function of Neural Tensor Networks to the simplest function of Euclidean Dis-

tance to make the word level comparison across sequences. Then we further

add a CNN layer to aggregate the comparison representations. To test the ef-

fectiveness of different comparison functions, we further explore our model on

another three answer selection datasets besides the natural language inference

dataset. According to the experiment results, we find that the element-wise

comparison function with the complexity in the middle works the best, and

achieved state of the art on four different datasets.

1.2.2 Machine Reading Comprehension

In Chapter 5, I will focus on the task of answer-span based reading comprehen-

sion, where a passage is given for each question and the ground-truth answer

can be extracted from the given passage. To get the answer positions in the

passage, we need to match the passage with question first to locate the poten-

tial sub-sequence that could match the question. Then, another reasoning layer

could be added to extract the exact answer span based on the previous match-

ing representations. Based on this process, our model [88] uses match-LSTM

to match the passage with the question, and further uses Pointer Network to
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find the answer. The pointer network is the reasoning module shown in Fig-

ure 1.1 (c), and it can point out which word in the given passage can be used

to compose the final answer. And we propose two ways to find the answer:

1) word-by-word pointing until the end, so that all the pointed words will

compose the answer sequence; 2) start and end positions pointing, and all the

words between the start and end positions will compose the answer sequence.

Based on the experiment results, we can clearly see that the second way for

answer extraction is much better and achieved state of the art on SQuAD [61]

and MSMARCO [57] datasets.

In Chapter 6, we try to solve another more challenging reading compre-

hension task, the English examination from middle/high school. A question

related passage is given for this task. Besides, several candidate answers are

also given, and we can select the answer from the candidates. That is the ma-

jor difference between previous answer span based reading comprehension and

this task. For our model, instead of building representation between two types

of sequence, either question matching passage (span-based reading compre-

hension) or question matching candidate (answer selection), we need to build

sequence matching representations for three types of sequences: passage, ques-

tion, candidate answers. As the passage is the key component to explain how

the ground-truth answer can entail the question, we propose a “co-matching”

based model to match the passage with question and candidate answers in

word-level at the same time, and make use of another hierarchical structure to

integrate the “co-matching” representation. And our model achieved state of

the art performance on the RACE dataset [46].

1.2.3 Open-Domain Question Answering

In Chapter 7, we present a novel open-domain QA system called Reinforced

Ranker-Reader (R3) consisting of a ranking model (ranker) and a reading com-
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prehension model (reader). Our model is to extract the answer from IR re-

trieved passages, but the problem is that we don’t know which passage can

entail/answer the question. Even thought some passages containing the ground

truth, they should not be used to train our reading comprehension model. In

this way, we propose to use a neural ranker to select the passage for training the

reader which can extract the exact answer phrase from the selected passage.

As the selecting action by ranker is non-differentiable, in order to jointly train

the ranker and reader, we make use of the method REINFORCE [96]. And

our experiments show that our Reinforced Ranker-Reader can outperform the

baseline which ensembles the ranker and reader trained separately under dis-

tance supervision. Moreover, our model achieved state-of-the-art performance

on three open-domain QA datasets.

In Chapter 8, by observing that some questions require a combination of

evidence from across different sources to answer correctly, we propose two

methods to address this issue. Suppose the passages that contain the same

candidate answer are strongly related, and our goal is to make use these pas-

sages for evidence aggregation to answer questions. The easiest way to get the

candidate answers is just using the Reinforced Ranker-Reader (R3) in chap-

ter 7, and we could re-rank these candidates by combining the evidence from

the passages containing the corresponding candidate answer. We propose two

methods, namely, strength-based re-ranking and coverage-based re-ranking, to

solve the problem. For strength-based re-ranking, the hypothesis is that the

more evidence that can support the candidate, the more likely it would be

the ground-truth answer. Here, we treat the passage as supporting evidence

for one candidate if the pre-trained model Reinforced Ranker-Reader (R3) can

generate the candidate. Then we can rank the candidates by either counting

the number of supporting evidence or accumulating the probabilities provided

by (R3). For the coverage-based re-ranking, we will concatenate all the pas-

sages containing one candidate answer together and treat it as a new sequence,
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so that the new sequence will contain all the evidence related to the candidate

answer. Then we will directly match the new sequence with the question to

check whether the aggregated evidence from different passages can entail the

question. The model here is to use textual sequence matching for ranking. Ac-

cording to our experiment results, both of our models can outperform previous

best results on three different open-domain QA datasets.

Overall, this thesis will cover my published papers as the first author as

follows:

• Learning Natural Language Inference with LSTM [86], In Proceedings of

the Conference on the North American Chapter of the Association for

Computational Linguistics (NAACL), 2016.

• A Compare-aggregate Model for Matching Text Sequences [87], In Pro-

ceedings of the International Conference on Learning Representations

(ICLR), 2017.

• Machine Comprehension Using Match-LSTM and Answer Pointer [88], In

Proceedings of the International Conference on Learning Representations

(ICLR), 2017.

• A Co-Matching Model for Multi-choice Reading Comprehension [89], In

Proceedings of the Conference on Association for Computational Linguis-

tics (ACL), 2018.

• R3: Reinforced Reader-Ranker for Open-Domain Question Answer-

ing [90], In Proceedings of AAAI Conference on Artificial Intelligence

(AAAI), 2018.

• Evidence Aggregation for Answer Re-Ranking in Open-Domain Ques-

tion Answering [91], In Proceedings of the International Conference on

Learning Representations (ICLR), 2018
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Chapter 2

Related work

In this chapter, I’ll discuss the related work on solving different question an-

swering tasks, especially machine reading comprehension and open-domain

question answering, with textual sequence matching models.

2.1 Textual Sequence Matching

Many answer selection tasks are based on the the textual sequence matching

model. We will review related works in three types of general structures for

matching sequences.

Siamense network: These kinds of models use the same structure, such as

RNN or CNN, to build the representations for the sequences separately. Then

cosine similarity [26, 99], element-wise operation [71, 55] or neural network-

based combination [7] are used for sequence matching.

Attentive network: Soft-attention mechanism [2, 49] has been widely

used for sequence matching in machine comprehension [34], text entailment [64]

and question answering [72]. Instead of using the final state of RNN to rep-

resent a sequence, these studies use weighted sum of all the states for the

sequence representation.

Compare-Aggregate network: This kind of framework is to perform
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the word level matching [88, 58, 33, 76, 83]. Our works are under this frame-

work. But our structures are different from previous models and our model

can be applied on different tasks. Besides, we analyzed different word-level

comparison functions separately.

2.2 Machine Reading Comprehension

Machine reading comprehension of text has gained much attention in recent

years, and increasingly researchers are building data-driven, end-to-end neural

network models for the task. We will first review the recently released datasets

and then some end-to-end models on this task.

2.2.1 Datasets

A number of datasets for studying machine reading comprehension were cre-

ated in Cloze style by removing a single token from a sentence in the original

corpus, and the task is to predict the missing word. For example, [34] created

questions in Cloze style from CNN and Daily Mail highlights. [36] created the

Children’s Book Test dataset, which is based on children’s stories. [19] released

two similar datasets in Chinese, the People Daily dataset and the Children’s

Fairy Tale dataset.

Instead of creating questions in Cloze style, a number of other datasets

rely on human annotators to create real questions. [62] created the well-known

MCTest dataset and [75] created the MovieQA dataset. In these datasets, can-

didate answers are provided for each question. Similar to these two datasets,

the SQuAD dataset [61] was also created by human annotators. Different from

the previous two, however, the SQuAD dataset does not provide candidate an-

swers, and thus all possible subsequences from the given passage have to be

considered as candidate answers.

Besides the datasets above, there are also a few other datasets created
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for machine comprehension, such as WikiReading dataset [35] and bAbI

dataset [94], but they are quite different from the datasets above in nature.

2.2.2 End-to-end Neural Network Models for Machine

Comprehension

There have been a number of studies proposing end-to-end neural network

models for machine comprehension. A common approach is to use recurrent

neural networks (RNNs) to process the given text and the question in order to

predict or generate the answers [34]. Attention mechanism is also widely used

on top of RNNs in order to match the question with the given passage [34, 9].

Given that answers often come from the given passage, Pointer Network has

been adopted in a few studies in order to copy tokens from the given passage as

answers [41, 78]. Compared with existing work, we use match-LSTM to match

a question and a given passage, and we use Pointer Network in a different way

such that we can generate answers that contain multiple tokens from the given

passage.

Memory Networks [95] have also been applied to machine comprehen-

sion [70, 44, 36], but its scalability when applied to a large dataset is still

an issue. In this thesis, we did not consider memory networks for the

SQuAD/MSMARCO datasets.

2.3 Open-domain Question Answering

Open domain question answering dates back to as early as [31] and was pop-

ularized with TREC-8 [80]. The task is to answer a question by exploiting

resources such as documents [80], webpages [45, 13] or structured knowledge

bases [5, 6, 103]. An early consensus since TREC-8 has produced an approach

with three major components: question analysis, document retrieval and rank-
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ing, and answer extraction. Although question analysis is relatively mature,

answer extraction and document ranking still represent significant challenges.

Very recently, IR plus machine reading comprehension (SR-QA) showed

promise for open-domain QA, especially after datasets created specifically for

the multiple-passage RC setting [57, 10, 40, 24, 23]. These datasets deal with

the end-to-end open-domain QA setting, where only question-answer pairs

provide supervision. Similarly to previous work on open-domain QA, existing

deep learning based solutions to the above datasets also rely on a document

retrieval module to retrieve a list of passages for RC models to extract answers.

Therefore, these approaches suffer from the limitation that the passage ranking

scores are determined by n-gram matching (with tf-idf weighting), which is not

ideal for QA.

Our ranker module in R3 could help to alleviate the above problem, and

RL is a natural fit to jointly train the ranker and reader since the passages do

not have ground-truth labels. Our work is related to the idea of soft or hard

attentions (usually with reinforcement learning) for hierarchical or coarse-to-

fine decision sequences making in NLP, where the attentions themselves are

latent variables. For example, [47] propose to first extract informative text

fragments then feed them to text classification and question retrieval models.

[15] and [16] proposed coarse-to-fine frameworks with an additional sentence

selection step before the original word-level prediction for text summarization

and reading comprehension, respectively. To the best of our knowledge, we are

the first apply this kind of framework to the open-domain question answering.

From the method-perspective, our work is most close to [16]’s work in

terms of the usage of REINFORCE. Our main aim is to deal with the lack

of annotation in the passage selection step, which is a necessary intermediate

step in open-domain QA. In comparison, [16] has as its main aim to speed up

the RC model in the single passage setting. From the motivation-perspective,

we are similar to [56]’s work. Both work aim to find passages easy and suitable
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for the QA or IE models to extract answers, in order to boost accuracy.
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Part I

General Textual Sequence

Matching Models
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Chapter 3

Learning Natural Language

Inference with Match-LSTM

In this chapter, I will introduce “match-LSTM”, which is based on sequence-

to-sequence word-level matching, for the task of natural language inference.

3.1 Introduction

Natural language inference (NLI) is the problem of determining whether from

a premise sentence P one can infer another hypothesis sentence H [50]. NLI

is a fundamentally important problem that has applications in many tasks

including question answering, semantic search and automatic text summariza-

tion. There has been much interest in NLI in the past decade, especially sur-

rounding the PASCAL Recognizing Textual Entailment (RTE) Challenge [20].

Existing solutions to NLI range from shallow approaches based on lexical sim-

ilarities [29] to advanced methods that consider syntax [53], perform explicit

sentence alignment [51] or use formal logic [17].

Recently, [7] released the Stanford Natural Language Inference (SNLI) cor-

pus for the purpose of encouraging more learning-centered approaches to NLI.

This corpus contains around 570K sentence pairs with three labels: entailment,
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contradiction and neutral. The size of the corpus makes it now feasible to train

deep neural network models, which typically require a large amount of training

data. [7] tested a straightforward architecture of deep neural networks for NLI.

In their architecture, the premise and the hypothesis are each represented by

a sentence embedding vector. The two vectors are then fed into a multi-layer

neural network to train a classifier. [7] achieved an accuracy of 77.6% when

long short-term memory (LSTM) networks were used to obtain the sentence

embeddings.

A more recent work by [65] improved the performance by applying a neu-

ral attention model. While their basic architecture is still based on sentence

embeddings for the premise and the hypothesis, a key difference is that the

embedding of the premise takes into consideration the alignment between the

premise and the hypothesis. This so-called attention-weighted representation

of the premise was shown to help push the accuracy to 83.5% on the SNLI

corpus.

A limitation of the aforementioned two models is that they reduce both

the premise and the hypothesis to a single embedding vector before matching

them; i.e., in the end, they use two embedding vectors to perform sentence-

level matching. However, not all word or phrase-level matching results are

equally important. For example, the matching between stop words in the two

sentences is not likely to contribute much to the final prediction. Also, for

a hypothesis to contradict a premise, a single word or phrase-level mismatch

(e.g., a mismatch of the subjects of the two sentences) may be sufficient and

other matching results are less important, but this intuition is hard to be

captured if we directly match two sentence embeddings.

In this chapter, we propose a new LSTM-based architecture for learning

natural language inference. Different from previous models, our prediction is

not based on whole sentence embeddings of the premise and the hypothesis.

Instead, we use an LSTM to perform word-by-word matching of the hypothesis
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with the premise. Our LSTM sequentially processes the hypothesis, and at

each position, it tries to match the current word in the hypothesis with an

attention-weighted representation of the premise. Matching results that are

critical for the final prediction will be “remembered” by the LSTM while less

important matching results will be “forgotten.” We refer to this architecture

a match-LSTM, or mLSTM for short.

Experiments show that our mLSTM model achieves an accuracy of 86.1%

on the SNLI corpus, outperforming the state of the art. Furthermore, through

further analyses of the learned parameters, we show that the mLSTM architec-

ture can indeed pick up the more important word-level matching results that

need to be remembered for the final prediction. In particular, we observe that

good word-level matching results are generally “forgotten” but important mis-

matches, which often indicate a contradiction or a neutral relationship, tend

to be “remembered.”

Our code is available online1.

3.2 Model

In this section, we first review the word-by-word attention model by [65], which

is their best performing model. Then we present our mLSTM architecture for

natural language inference.

3.2.1 Neural Attention Model

For the natural language inference task, we have two sentences Xs =

(xs
1,x

s
2, . . . ,x

s
M) and Xt = (xt

1,x
t
2, . . . ,x

t
N), where Xs is the premise and Xt

is the hypothesis. Here each x is an embedding vector of the corresponding

word. The goal is to predict a label y that indicates the relationship between

Xs and Xt. In this chapter, we assume y is one of entailment, contradiction

1https://github.com/shuohangwang/SeqMatchSeq
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and neutral.

[65] first used two LSTMs to process the premise and the hypothesis, re-

spectively, but initialized the second LSTM (for the hypothesis) with the last

cell state of the first LSTM (for the premise). Let us use hs
j and ht

k to denote

the resulting hidden states corresponding to xs
j and xt

k, respectively. The main

idea of the word-by-word attention model by [65] is to introduce a series of

attention-weighted combinations of the hidden states of the premise, where

each combination is for a particular word in the hypothesis. Let us use ak to

denote such an attention vector for word xt
k in the hypothesis. Specifically, ak

is defined as follows2:

ak =
M∑
j=1

αkjh
s
j , (3.1)

where αkj is an attention weight that encodes the degree to which xt
k in the

hypothesis is aligned with xs
j in the premise. The attention weight αkj is

generated in the following way:

αkj =
exp(ekj)∑
j′ exp(ekj′)

, (3.2)

where

ekj = we · tanh(Wshs
j + Wtht

k + Waha
k−1). (3.3)

Here · is the dot-product between two vectors, the vector we ∈ Rd and all

matrices W* ∈ Rd×d contain weights to be learned, and ha
k−1 is another hidden

state which we will explain below.

2We present the word-by-word attention model by [65] in a different way but the under-
lying model is the same. Our ha

k is their rt, our Hs (all of hs
j) is their Y, our ht

k is their
ht, and our αk is their αt. Our presentation is close to the one by [2], with our attention
vectors a corresponding to the context vectors c in their paper.
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The attention-weighted premise ak essentially tries to model the relevant

parts in the premise with respect to xt
k, i.e., the kth word in the hypothesis.

[65] further built an RNN model over {ak}Nk=1 by defining the following hidden

states:

ha
k = ak + tanh(Vaha

k−1), (3.4)

where Va ∈ Rd×d is a weight matrix to be learned. We can see that the last

ha
N aggregates all the previous ak and can be seen as an attention-weighted

representation of the whole premise. [65] then used this ha
N , which represents

the whole premise, together with ht
N , which can be approximately regarded as

an aggregated representation of the hypothesis3, to predict the label y.

3.2.2 Our Model

Although the neural attention model by [65] achieved better results than [7], we

see two limitations. First, the model still uses a single vector representation

of the premise, namely ha
N , to match the entire hypothesis. We speculate

that if we instead use each of the attention-weighted representations of the

premise for matching, i.e., use ak at position k to match the hidden state ht
k

of the hypothesis while we go through the hypothesis, we could achieve better

matching results. This can be done using an RNN which at each position takes

in both ak and ht
k as its input and determines how well the overall matching

of the two sentences is up to the current position. In the end the RNN will

produce a single vector representing the matching of the two entire sentences.

The second limitation is that the model by [65] does not explicitly allow

us to place more emphasis on the more important matching results between

3Strictly speaking, in the model by [65], ht
N encodes both the premise and the hypothesis

because the two sentences are chained. But ht
N places a higher emphasis on the hypothesis

given the nature of RNNs.
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Figure 3.1: The top figure depicts the model by Rocktäschel et al. (2016) and
the bottom figure depicts our model. Here Hs represents all the hidden states
hs
j. Note that in the top model each ha

k represents a weighted version of the
premise only, while in our model, each hm

k represents the matching between
the premise and the hypothesis up to position k.

the premise and the hypothesis and down-weight the less critical ones. For

example, matching of stop words is presumably less important than matching

of content words. Also, some matching results may be particularly critical for

making the final prediction and thus should be remembered. For example,

consider the premise “A dog jumping for a Frisbee in the snow.” and the

hypothesis “A cat washes his face and whiskers with his front paw.” When

we sequentially process the hypothesis, once we see that the subject of the

hypothesis cat does not match the subject of the premise dog, we have a high

probability to believe that there is a contradiction. So this mismatch should

be remembered.

Based on the two observations above, we propose to use an LSTM to se-

quentially match the two sentences. At each position the LSTM takes in both

ak and ht
k as its input. Figure 3.1 gives an overview of our model in contrast

to the model by [65].

Specifically, our model works as follows. First, similar to [65], we process

the premise and the hypothesis using two LSTMs, but we do not feed the last
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cell state of the premise to the LSTM of the hypothesis. This is because we

do not need the LSTM for the hypothesis to encode any knowledge about the

premise but we will match the premise with the hypothesis using the hidden

states of the two LSTMs. Again, we use hs
j and ht

k to represent these hidden

states.

Next, we generate the attention vectors ak similarly to Eqn (3.1). However,

Eqn (3.3) will be replaced by the following equation:

ekj = we · tanh(Wshs
j + Wtht

k + Wmhm
k−1). (3.5)

The only difference here is that we use a hidden state hm instead of ha, and

the way we define hm is very different from the definition of ha.

Our hm
k is the hidden state at position k generated from our mLSTM.

This LSTM models the matching between the premise and the hypothesis.

Important matching results will be “remembered” by the LSTM while non-

essential ones will be “forgotten.” We use the concatenation of ak, which is

the attention-weighted version of the premise for the kth word in the hypothesis,

and ht
k, the hidden state for the kth word itself, as input to the mLSTM.

Specifically, let us define

mk =

ak

ht
k

 . (3.6)

We then build the mLSTM as follows:
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imk = σ(Wmimk + Vmihm
k−1 + bmi),

fm
k = σ(Wmfmk + Vmfhm

k−1 + bmf),

om
k = σ(Wmomk + Vmohm

k−1 + bmo),

cm
k = fm

k � cm
k−1 + imk � tanh(Wmcmk + Vmchm

k−1

+bmc),

hm
k = om

k � tanh(cm
k ). (3.7)

With this mLSTM, finally we use only hm
N , the last hidden state, to predict

the label y.

3.2.3 Implementation Details

Besides the difference of the LSTM architecture, we also introduce a few other

changes from the model by [65]. First, we insert a special word NULL to the

premise, and we allow words in the hypothesis to be aligned with this NULL.

This is inspired by common practice in machine translation. Specifically, we

introduce a vector hs
0, which is fixed to be a vector of 0s of dimension d. This

hs
0 represents NULL and is used with other hs

j to derive the attention vectors

{ak}Nk=1.

Second, we use word embeddings trained from GloVe [59] instead of

word2vec vectors. The main reason is that GloVe covers more words in the

SNLI corpus than word2vec4.

Third, for words which do not have pre-trained word embeddings, we take

the average of the embeddings of all the words (in GloVe) surrounding the

unseen word within a window size of 9 (4 on the left and 4 on the right) as an

approximation of the embedding of this unseen word. Then we do not update

4The SNLI corpus contains 37K unique tokens. Around 12.1K of them cannot be found
in word2vec but only around 4.1K of them cannot be found in GloVe.
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Model d |θ|W+M |θ|M Train Dev Test

LSTM [[7]] 100 10M 221K 84.4 - 77.6
Classifier [[7]] - - - 99.7 - 78.2

LSTM shared [[65]] 159 3.9M 252K 84.4 83.0 81.4
Word-by-word attention [[65]] 100 3.9M 252K 85.3 83.7 83.5

Word-by-word attention (our implementation)150 340K 340K 85.5 83.3 82.6
mLSTM 150 544K 544K 91.0 86.2 85.7
mLSTM with bi-LSTM sentence modeling 150 1.4M 1.4M 91.3 86.6 86.0
mLSTM 300 1.9M 1.9M 92.0 86.986.1
mLSTM with word embedding 300 1.3M 1.3M 88.6 85.4 85.3

Table 3.1: Experiment results in terms of accuracy. d is the dimension of the
hidden states. |θ|W+M is the total number of parameters and |θ|M is the number
of parameters excluding the word embeddings. Note that the five models in
the last section were implemented by us while the other results were taken
directly from previous papers. Note also that for the five models in the last
section, we do not update word embeddings so |θ|W+M is the same as |θ|M.
The three columns on the right are the accuracies of the trained models on the
training data, the development data and the test data, respectively.

any word embedding when learning our model. Although this is a very crude

approximation, it reduces the number of parameters we need to update, and

as it turns out, we can still achieve better performance than [65].

3.3 Experiments

3.3.1 Experiment Settings

Data: We use the SNLI corpus to test the effectiveness of our model. The

original data set contains 570,152 sentence pairs, each labeled with one of

the following relationships: entailment, contradiction, neutral and –, where

– indicates a lack of consensus from the human annotators. We discard the

sentence pairs labeled with – and keep the remaining ones for our experiments.

In the end, we have 549,367 pairs for training, 9,842 pairs for development and

9,824 pairs for testing. This follows the same data partition used by [7] in

their experiments. We perform three-class classification and use accuracy as
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our evaluation metric.

Parameters: We use the Adam method [43] with hyperparameters β1 set to

0.9 and β2 set to 0.999 for optimization. The initial learning rate is set to be

0.001 with a decay ratio of 0.95 for each iteration. The batch size is set to be

30. We experiment with d = 150 and d = 300 where d is the dimension of all

the hidden states.

Methods for comparison: We mainly want to compare our model with the

word-by-word attention model by [65] because this model achieved the state-

of-the-art performance on the SNLI corpus. To ensure fair comparison, besides

comparing with the accuracy reported by [65], we also re-implemented their

model and report the performance of our implementation. We also consider a

few variations of our model. Specifically, the following models are implemented

and tested in our experiments:

• Word-by-word attention (d = 150): This is our implementation of the

word-by-word attention model by [65], where we set the dimension of the

hidden states to 150. The differences between our implementation and

the original implementation by [65] are the following: (1) We also add a

NULL token to the premise for matching. (2) We do not feed the last

cell state of the LSTM for the premise to the LSTM for the hypothesis,

to keep it consistent with the implementation of our model. (3) For word

representation, we also use the GloVe word embeddings and we do not

update the word embeddings. For unseen words, we adopt the same

strategy as described in Section 3.2.3.

• mLSTM (d = 150): This is our mLSTM model with d set to 150.

• mLSTM with bi-LSTM sentence modeling (d = 150): This is the same

as the model above except that when we derive the hidden states hs
j and

ht
k of the two sentences, we use bi-LSTMs [30] instead of LSTMs. We

implement this model to see whether bi-LSTMs allow us to better align

the sentences.
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ground truth
prediction N E C

N 2628 286 255
E 340 3005 159
C 250 77 2823

Table 3.2: The confusion matrix of the results by mLSTM with d = 300. N,
E and C correspond to neutral, entailment and contradiction, respectively.

ID sentence label

Premise A dog jumping for a Frisbee in the snow.

Example 1 An animal is outside in the cold weather,
playing with a plastic toy.

entailment

Hypothesis Example 2 A cat washed his face and whiskers with
his front paw.

contradiction

Example 3 A pet is enjoying a game of fetch with his
owner.

neutral

Table 3.3: Three examples of sentence pairs with different relationship labels.
The second hypothesis is a contradiction because it mentions a completely
different event. The third hypothesis is neutral to the premise because the
phrase “with his owner” cannot be inferred from the premise.

• mLSTM (d = 300): This is our mLSTM model with d set to 300.

• mLSTM with word embedding (d = 300): This is the same as the model

above except that we directly use the word embedding vectors xs
j and xt

k

instead of the hidden states hs
j and ht

k in our model. In this case, each

attention vector ak is a weighted sum of {xs
j}Mj=1. We experiment with

this setting because we hypothesize that the effectiveness of our model is

largely related to the mLSTM architecture rather than the use of LSTMs

to process the original sentences.

3.3.2 Main Results

Table 3.1 compares the performance of the various models we tested together

with some previously reported results.

We have the following observations: (1) First of all, we can see that when

we set d to 300, our model achieves an accuracy of 86.1% on the test data,

which to the best of our knowledge is the highest on this data set. (2) If we
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compare our mLSTM model with our implementation of the word-by-word

attention model by [65] under the same setting with d = 150, we can see that

our performance on the test data (85.7%) is higher than that of their model

(82.6%). We also tested statistical significance and found the improvement to

be statistically significant at the 0.001 level. (3) The performance of mLSTM

with bi-LSTM sentence modeling compared with the model with standard

LSTM sentence modeling when d is set to 150 shows that using bi-LSTM

to process the original sentences helps (86.0% vs. 85.7% on the test data),

but the difference is small and the complexity of bi-LSTM is much higher

than LSTM. Therefore when we increased d to 300 we did not experiment

with bi-LSTM sentence modeling. (4) Interestingly, when we experimented

with the mLSTM model using the pre-trained word embeddings instead of

LSTM-generated hidden states as initial representations of the premise and

the hypothesis, we were able to achieve an accuracy of 85.3% on the test data,

which is still better than previously reported state of the art. This suggests

that the mLSTM architecture coupled with the attention model works well,

regardless of whether or not we use LSTM to process the original sentences.

Because the NLI task is a three-way classification problem, to better un-

derstand the errors, we also show the confusion matrix of the results obtained

by our mLSTM model with d = 300 in Table 3.2. We can see that there is

more confusion between neutral and entailment and between neutral and con-

tradiction than between entailment and contradiction. This shows that neutral

is relatively hard to capture.

3.3.3 Further Analyses

To obtain a better understanding of how our proposed model actually performs

the matching between a premise and a hypothesis, we further conduct the fol-

lowing analyses. First, we look at the learned word-by-word alignment weights
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Figure 3.2: The alignment weights and the gate vectors of the three examples.

αkj to check whether the soft alignment makes sense. This is the same as what

was done by [65]. We then look at the values of the various gate vectors of the

mLSTM. By looking at these values, we aim to check (1) whether the model

is able to differentiate between more important and less important word-level

matching results, and (2) whether the model forgets certain matching results

and remembers certain other ones.

To conduct the analyses, we choose three examples and display the various

learned parameter values. These three sentence pairs share the same premise
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but have different hypotheses and different relationship labels. They are given

in Table 3.3. The values of the alignment weights and the gate vectors are

plotted in Figure 3.2.

Besides using the three examples, we will also give some overall statistics

of the parameter values to confirm our observations with the three examples.

Word Alignment

First, let us look at the top-most plots of Figure 3.2. These plots show the

alignment weights αkj between the hypothesis and the premise, where a darker

color corresponds to a larger value of αkj. Recall that αkj is the degree to which

the kth word in the hypothesis is aligned with the jth word in the premise. Also

recall that the weights αkj are configured such that for the same k all the αkj

add up to 1. This means the weights in the same row in these plots add up to

1. From the three plots we can see that the alignment weights generally make

sense. For example, in Example 1, “animal” is strongly aligned with “dog”

and “toy” aligned with “Frisbee.” The phrase “cold weather” is aligned with

“snow.” In Example 3, we also see that “pet” is strongly aligned with “dog”

and “game” aligned with “Frisbee.”

In Example 2, “cat” is strongly aligned with “dog” and “washes” is aligned

with “jumping.” It may appear that these matching results are wrong. How-

ever, “dog” is likely the best match for “cat” among all the words in the

premise, and as we will show later, this match between “cat” and “dog” is

actually a strong indication of a contradiction between the two sentences. The

same explanation applies to the match between “washes” and “jumping.”

We also observe that some words are aligned with the NULL token we

inserted. For example, the word “is” in the hypothesis in Example 1 does not

correspond to any word in the premise and is therefore aligned with NULL.

The words “face” and “whiskers” in Example 2 and “owner” in Example 3 are
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also aligned with NULL. Intuitively, if some important content words in the

hypothesis are aligned with NULL, it is more likely that the relationship label

is either contradiction or neutral.

Values of Gate Vectors

Next, let us look at the values of the learned gate vectors of our mLSTM for

the three examples. We show these values under the setting where d is set to

150. Each row of these plots corresponds to one of the 150 dimensions. Again,

a darker color indicates a higher value.

An input gate controls whether the input at the current position should be

used in deriving the final hidden state of the current position. From the three

plots of the input gates, we can observe that generally for stop words such

as prepositions and articles the input gates have lower values, suggesting that

the matching of these words is less important. On the other hand, content

words such as nouns and verbs tend to have higher values of the input gates,

which also makes sense because these words are generally more important for

determining the final relationship label.

To further verify the observation above, we compute the average input gate

values for stop words and the other content words. We find that the former has

an average value of 0.287 with a standard deviation of 0.084 while the latter

has an average value of 0.347 with a standard deviation of 0.116. This shows

that indeed generally stop words have lower input gate values. Interestingly,

we also find that some stop words may have higher input gate values if they

are critical for the classification task. For example, the negation word “not”

has an average input gate value of 0.444 with a standard deviation of 0.104.

Overall, the values of the input gates confirm that the mLSTM helps differ-

entiate the more important word-level matching results from the less important

ones.
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Next, let us look at the forget gates. Recall that a forget gate controls

the importance of the previous cell state in deriving the final hidden state of

the current position. Higher values of a forget gate indicate that we need to

remember the previous cell state and pass it on whereas lower values indicate

that we should probably forget the previous cell. From the three plots of the

forget gates, we can see that overall the colors are the lightest for Example 1,

which is an entailment. This suggests that when the hypothesis is an entailment

of the premise, the mLSTM tends to forget the previous matching results. On

the other hand, for Example 2 and Example 3, which are contradiction and

neutral, we see generally darker colors. In particular, in Example 2, we can

see that the colors are consistently dark starting from the word “his” in the

hypothesis until the end. We believe the explanation is that after the mLSTM

processes the first three words of the hypothesis, “A cat washes,” it sees that

the matching between “cat” and “dog” and between “washes” and “jumping”

is a strong indication of a contradiction, and therefore these matching results

need to be remembered until the end of the mLSTM for the final prediction.

We have also checked the forget gates of the other sentence pairs in the test

data by computing the average forget gate values and the standard deviations

for entailment, neutral and contradiction, respectively. We find that the values

are 0.446±0.123, 0.507±0.148 and 0.536±0.170, respectively. For contradiction

and neutral, the forget gates start to have higher values from certain positions

of the hypotheses.

Based on the observations above, we hypothesize that the way the mLSTM

works is as follows. It remembers important mismatches, which are useful

for predicting the contradiction or the neutral relationship, and forgets good

matching results. At the end of the mLSTM, if no important mismatch is

remembered, the final classifier will likely predict entailment by default. Oth-

erwise, depending on the kind of mismatch remembered, the classifier will

predict either contradiction or neutral.
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For the output gates, we are not able to draw any important conclusion

except that the output gates seem to be positively correlated with the input

gates but they tend to be darker than the input gates.

3.4 Conclusions

In this chapter, we proposed a special LSTM architecture for the task of nat-

ural language inference. Based on a recent work by [65], we first used neural

attention models to derive attention-weighted vector representations of the

premise. We then designed a match-LSTM that processes the hypothesis word

by word while trying to match the hypothesis with the premise. The last hid-

den state of this mLSTM can be used for predicting the relationship between

the premise and the hypothesis. Experiments on the SNLI corpus showed that

the mLSTM model outperformed the state-of-the-art performance reported

so far on this data set. Moreover, closer analyses on the gate vectors revealed

that our mLSTM indeed remembers and passes on important matching results,

which are typically mismatches that indicate a contradiction or a neutral re-

lationship between the premise and the hypothesis.

With the large number of parameters to learn, an inevitable limitation of

our model is that a large training data set is needed to learn good model

parameters. Indeed some preliminary experiments applying our mLSTM to

the SICK corpus [52], a smaller textual entailment benchmark data set, did

not give very good results. We believe that this is because our model learns

everything from scratch except using the pre-trained word embeddings. A

future direction would be to incorporate other resources such as the paraphrase

database [28] into the learning process.
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Chapter 4

A Compare-Aggregate Model

for Textual Sequence Matching

In this chapter, I will introduce a more general sequence matching model and

will focus on exploring a better way to build word-level matching representa-

tions.

4.1 Introduction

Many natural language processing problems involve matching two or more se-

quences to make a decision. For example, in textual entailment, one needs

to determine whether a hypothesis sentence can be inferred from a premise

sentence [7]. In machine comprehension, given a passage, a question needs to

be matched against it in order to find the correct answer [62, 75]. Table 4.1

gives two example sequence matching problems. In the first example, a pas-

sage, a question and four candidate answers are given. We can see that to get

the correct answer, we need to match the question against the passage and

identify the last sentence to be the answer-bearing sentence. In the second

example, given a question and a set of candidate answers, we need to find the

answer that best matches the question. Because of the fundamental impor-
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Plot: ... Aragorn is crowned King of Gon-
dor and taking Arwen as his queen before
all present at his coronation bowing be-
fore Frodo and the other Hobbits . The
Hobbits return to the Shire where Sam
marries Rosie Cotton . ...

Qustion: Where does Sam marry Rosie?

Candidate answers: 0) Grey Havens.
1) Gondor. 2) The Shire. 3) Erebor
4) Mordor.

Question: can i have auto insur-
ance without a car

Ground-truth answer: yes, it be
possible have auto insurance with-
out own a vehicle. you will purchase
what be call a name ...

Another candidate answer: in-
surance not be a tax or merely a
legal obligation because auto insur-
ance follow a car...

Table 4.1: The example on the left is a machine comprehension problem from
MovieQA, where the correct answer here is The Shire. The example on the
right is an answer selection problem from InsuranceQA.

tance of comparing two sequences of text to judge their semantic similarity

or relatedness, sequence matching has been well studied in natural language

processing.

With recent advances of neural network models in natural language process-

ing, a standard practice for sequence modeling now is to encode a sequence of

text as an embedding vector using models such as RNN and CNN. To match

two sequences, a straightforward approach is to encode each sequence as a

vector and then to combine the two vectors to make a decision [7, 26]. How-

ever, it has been found that using a single vector to encode an entire sequence

is not sufficient to capture all the important information from the sequence,

and therefore advanced techniques such as attention mechanisms and memory

networks have been applied to sequence matching problems [34, 36, 64].

A common trait of a number of these recent studies on sequence matching

problems is the use of a “compare-aggregate” framework [86, 33, 58]. In such a

framework, comparison of two sequences is not done by comparing two vectors

each representing an entire sequence. Instead, these models first compare

vector representations of smaller units such as words from these sequences

and then aggregate these comparison results to make the final decision. For

example, the match-LSTM model proposed by [86] for textual entailment first
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compares each word in the hypothesis with an attention-weighted version of

the premise. The comparison results are then aggregated through an LSTM.

[33] proposed a pairwise word interaction model that first takes each pair of

words from two sequences and applies a comparison unit on the two words. It

then combines the results of these word interactions using a similarity focus

layer followed by a multi-layer CNN. [58] proposed a decomposable attention

model for textual entailment, in which words from each sequence are compared

with an attention-weighted version of the other sequence to produce a series of

comparison vectors. The comparison vectors are then aggregated and fed into

a feed forward network for final classification.

Although these studies have shown the effectiveness of such a “compare-

aggregate” framework for sequence matching, there are at least two limitations

with these previous studies: (1) Each of the models proposed in these studies is

tested on one or two tasks only, but we hypothesize that this general framework

is effective on many sequence matching problems. There has not been any

study that empirically verifies this. (2) More importantly, these studies did

not pay much attention to the comparison function that is used to compare two

small textual units. Usually a standard feedforward network is used [38, 86] to

combine two vectors representing two units that need to be compared, e.g., two

words. However, based on the nature of these sequence matching problems,

we essentially need to measure how semantically similar the two sequences

are. Presumably, this property of these sequence matching problems should

guide us in choosing more appropriate comparison functions. Indeed [33] used

cosine similarity, Euclidean distance and dot product to define the comparison

function, which seem to be better justifiable. But they did not systematically

evaluate these similarity or distance functions or compare them with a standard

feedforward network.

In this chapter, we argue that the general “compare-aggregate” framework

is effective for a wide range of sequence matching problems. We present a
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model that follows this general framework and test it on four different datasets,

namely, MovieQA, InsuranceQA, WikiQA and SNLI. The first three datasets

are for Question Answering, but the setups of the tasks are quite different.

The last dataset is for textual entailment. More importantly, we systemati-

cally present and test six different comparison functions. We find that overall

a comparison function based on element-wise subtraction and multiplication

works the best on the four datasets.

The contributions of this work are twofold: (1) Using four different datasets,

we show that our model following the “compare-aggregate” framework is

very effective when compared with the state-of-the-art performance on these

datasets. (2) We conduct systematic evaluation of different comparison func-

tions and show that a comparison function based on element-wise operations,

which is not widely used for word-level matching, works the best across the

different datasets. We believe that these findings will be useful for future re-

search on sequence matching problems. We have also made our code available

online.1

4.2 Method

In this section, we propose a general model following the “compare-aggregate”

framework for matching two sequences. This general model can be applied to

different tasks. We focus our discussion on six different comparison functions

that can be plugged into this general “compare-aggregate” model. In par-

ticular, we hypothesize that two comparison functions based on element-wise

operations, Sub and Mult, are good middle ground between highly flexible

functions using standard neural network models and highly restrictive func-

tions based on cosine similarity and/or Euclidean distance. As we will show

in the experiment section, these comparison functions based on element-wise

1https://github.com/shuohangwang/SeqMatchSeq
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Figure 4.1: The left hand side is an overview of the model. The right hand side
shows the details about the different comparison functions. The rectangles in
dark represent parameters to be learned. × represents matrix multiplication.

operations can indeed perform very well on a number of sequence matching

problems.

4.2.1 Problem Definition and Model Overview

The general setup of the sequence matching problem we consider is the follow-

ing. We assume there are two sequences to be matched. We use two matrices

Q ∈ Rd×Q and A ∈ Rd×A to represent the word embeddings of the two se-

quences, where Q and A are the lengths of the two sequences, respectively, and

d is the dimensionality of the word embeddings. In other words, each column

vector of Q or A is an embedding vector representing a single word. Given

a pair of Q and A, the goal is to predict a label y. For example, in textual

entailment, Q may represent a premise and A a hypothesis, and y indicates

whether Q entails A or contradicts A. In question answering, Q may be a

question and A a candidate answer, and y indicates whether A is the correct

answer to Q.

We treat the problem as a supervised learning task. We assume that a set
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of training examples in the form of (Q,A, y) is given and we aim to learn a

model that maps any pair of (Q,A) to a y.

An overview of our model is shown in Figure 4.1. The model can be divided

into the following four layers:

1. Preprocessing: We use a preprocessing layer (not shown in the figure)

to process Q and A to obtain two new matrices Q ∈ Rl×Q and A ∈ Rl×A.

The purpose here is to use some gate values to control the importance

of different words in making the predictions on the sequence pair. For

example, qi ∈ Rl, which is the ith column vector of Q, encodes the ith

word in Q.

2. Attention: We apply a standard attention mechanism on Q and A to

obtain attention weights over the column vectors in Q for each column

vector in A. With these attention weights, for each column vector aj in

A, we obtain a corresponding vector hj, which is an attention-weighted

sum of the column vectors of Q.

3. Comparison: We use a comparison function f to combine each pair of

aj and hj into a vector tj.

4. Aggregation: We use a CNN layer to aggregate the sequence of vectors

tj for the final classification.

Although this model follows more or less the same framework as the model

proposed by [58], our work has some notable differences. First, we will pay

much attention to the comparison function f and compare a number of options,

including some uncommon ones based on element-wise operations. Second, we

apply our model to four different datasets representing four different tasks to

evaluate its general effectiveness for sequence matching problems. There are

also some other differences from the work by [58]. For example, we use a CNN
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layer instead of summation and concatenation for aggregation. Our attention

mechanism is one-directional instead of two-directional.

In the rest of this section we will present the model in detail. We will focus

mostly on the comparison functions we consider.

4.2.2 Preprocessing and Attention

Inspired by the use of gates in LSTM and GRU, we preprocess Q and A with

the following formulas:

Q = σ(WiQ + bi ⊗ eQ)� tanh(WuQ + bu ⊗ eQ),

A = σ(WiA + bi ⊗ eA)� tanh(WuA + bu ⊗ eA), (4.1)

where � is element-wise multiplication, and Wi,Wu ∈ Rl×d and bi,bu ∈ Rl

are parameters to be learned. The outer product (· ⊗ eX) produces a matrix

or row vector by repeating the vector or scalar on the left for X times. Here

σ(WiQ + bi ⊗ eQ) and σ(WiA + bi ⊗ eA) act as gate values to control the

degree to which the original values of Q and A are preserved in Q and A. For

example, for stop words, their gate values would likely be low for tasks where

stop words make little difference to the final predictions.

In this preprocessing step, the word order does not matter. Although a

better way would be to use RNN such as LSTM and GRU to chain up the

words such that we can capture some contextual information, this could be

computationally expensive for long sequences. In our experiments, we only

incorporated LSTM into the formulas above for the SNLI task.

The general attention [49] layer is built on top of the resulting Q and A as

follows:

G = softmax
(
(WgQ + bg ⊗ eQ)TA

)
,

H = QG, (4.2)
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where Wg ∈ Rl×l and bg ∈ Rl are parameters to be learned, G ∈ RQ×A is

the attention weight matrix, and H ∈ Rl×A are the attention-weighted vectors.

Specifically, hj, which is the jth column vector of H, is a weighted sum of the

column vectors of Q and represents the part of Q that best matches the jth

word in A. Next we will combine hj and aj using a comparison function.

4.2.3 Comparison

The goal of the comparison layer is to match each aj, which represents the jth

word and its context in A, with hj, which represents a weighted version of Q

that best matches aj. Let f denote a comparison function that transforms aj

and hj into a vector tj to represent the comparison result.

A natural choice of f is a standard neural network layer that consists

of a linear transformation followed by a non-linear activation function. For

example, we can consider the following choice:

NeuralNet (NN): tj = f(aj,hj) = ReLU(W

aj

hj

+ b), (4.3)

where matrix W ∈ Rl×2l and vector b ∈ Rl are parameters to be learned.

Alternatively, another natural choice is a neural tensor network [68] as

follows:

NeuralTensorNet (NTN):tj = f(aj,hj) = ReLU(aT
j T[1...l]hj + b), (4.4)

where tensor T[1...l] ∈ Rl×l×l and vector b ∈ Rl are parameters to be learned.

However, we note that for many sequence matching problems, we intend

to measure the semantic similarity or relatedness of the two sequences. So at

the word level, we also intend to check how similar or related aj is to hj. For

this reason, a more natural choice used in some previous work [] is Euclidean
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distance or cosine similarity between aj and hj. We therefore consider the

following definition of f :

Euclidean+Cosine (EucCos): tj = f(aj,hj) =

‖aj − hj‖2

cos(aj,hj)

 .(4.5)

Note that with EucCos, the resulting vector tj is only a 2-dimensional

vector. Although EucCos is a well-justified comparison function, we suspect

that it may lose some useful information from the original vectors aj and hj.

On the other hand, NN and NTN are too general and thus do not capture

the intuition that we care mostly about the similarity between aj and hj.

To use something that is a good compromise between the two extreme

cases, we consider the following two new comparison functions, which operate

on the two vectors in an element-wise manner. These functions have been used

previously by [55].

Subtraction (Sub): tj = f(aj,hj) = (aj − hj)� (aj − hj),(4.6)

Multiplication (Mult): tj = f(aj,hj) = aj � hj. (4.7)

Note that the operator � is element-wise multiplication. For both comparison

functions, the resulting vector tj has the same dimensionality as aj and hj.

We can see that Sub is closely related to Euclidean distance in that Eu-

clidean distance is the sum of all the entries of the vector tj produced by Sub.

But by not summing up these entries, Sub preserves some information about

the different dimensions of the original two vectors. Similarly, Mult is closely

related to cosine similarity but preserves some information about the original

two vectors.

Finally, we consider combining Sub and Mult followed by an NN layer as
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follows:

SubMult+NN:tj = f(aj,hj) = ReLU(W

(aj − hj)� (aj − hj)

aj � hj

+ b).(4.8)

In summary, we consider six different comparison functions: NN, NTN,

EucCos, Sub, Mult and SubMult+NN. Among these functions, the last

three (Sub, Mult and SubMult+NN) have not been widely used in previous

work for word-level matching.

4.2.4 Aggregation

After we apply the comparison function to each pair of aj and hj to obtain a se-

ries of vectors tj, finally we aggregate these vectors using a one-layer CNN [42]:

r = MaxPooling (CNN ([t1, . . . , tA])) . (4.9)

r ∈ Rnl is then used for the final classification, where n is the number of

windows in CNN.

4.3 Experiments

MovieQA InsuranceQA WikiQA SNLI
train dev test train dev test train dev test train dev test

#Q 9848 1958 3138 13K 1K 1.8K*2 873 126 243 549K 9842 9824
#C 5 5 5 50 500 500 10 9 10 - - -

#w in P 873 866 914 - - - - - - - - -
#w in Q 10.6 10.6 10.8 7.2 7.2 7.2 6.5 6.5 6.4 14 15.2 15.2
#w in A 5.9 5.6 5.5 92.1 92.1 92.1 25.5 24.7 25.1 8.3 8.4 8.3

Table 4.2: The statistics of different datasets. Q:question/hypothesis,
C:candidate answers for each question, A:answer/hypothesis, P:plot, w:word
(average).

In this section, we evaluate our model on four different datasets representing

different tasks. The first three datasets are question answering tasks while
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Models
MovieQA InsuranceQA WikiQA SNLI

dev test dev test1 test2 MAP MRR train test

Cosine Word2Vec 46.4 45.63 - - - - - - -
Cosine TFIDF 47.6 47.36 - - - - - - -
SSCB TFIDF 48.5 - - - - - - - -
IR model - - 52.7 55.1 50.8 - - - -
CNN with GESD - - 65.4 65.3 61.0 - - - -
Attentive LSTM - - 68.9 69.0 64.8 - - - -
IARNN-Occam - - 69.1 68.9 65.1 0.7341 0.7418 - -
IARNN-Gate - - 70.0 70.1 62.8 0.7258 0.7394 - -
CNN-Cnt - - - - - 0.6520 0.6652 - -
ABCNN - - - - - 0.6921 0.7108 - -
CubeCNN - - - - - 0.7090 0.7234 - -
W-by-W Attention - - - - - - - 85.3 83.5
match-LSTM - - - - - - - 92.0 86.1
LSTMN - - - - - - - 88.5 86.3
Decomp Attention - - - - - - - 90.5 86.8
EBIM+TreeLSTM - - - - - - - 93.0 88.3

NN 31.6 - 76.8 74.9 72.4 0.7102 0.7224 89.3 86.3
NTN 31.6 - 75.6 75.0 72.5 0.7349 0.7456 91.6 86.3
EucCos 71.9 - 70.6 70.2 67.9 0.6740 0.6882 87.1 84.0
Sub 64.9 - 70.0 71.3 68.2 0.7019 0.7151 89.8 86.8
Mult 66.4 - 76.0 75.2 73.4 0.7433 0.7545 89.7 85.8
SubMult+NN 72.1 72.9 77.0 75.6 72.3 0.7332 0.7477 89.4 86.8

Table 4.3: Experiment Results

the last one is on textual entailment. The statistics of the four datasets are

shown in Table 4.2. We will fist introduce the task settings and the way we

customize the “compare-aggregate” structure to each task. Then we will show

the baselines for the different datasets. Finally, we discuss the experiment

results shown in Table 4.3 and the ablation study shown in Table 4.4.

4.3.1 Task-specific Model Structures

In all these tasks, we use matrix Q ∈ Rd×Q to represent the question or premise

and matrix Ak ∈ Rd×Ak (k ∈ [1, K]) to represent the kth answer or the hy-

pothesis. For the machine comprehension task MovieQA [75], there is also a

matrix P ∈ Rd×P that represents the plot of a movie. Here Q is the length of

the question or premise, Ak the length of the kth answer, and P the length of
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Models
MovieQA InsuranceQA WikiQA SNLI
dev test dev test1 test2 MAP MRR train test

SubMult+NN (no preprocess) 72.0 - 72.8 73.8 70.7 0.6996 0.7156 89.6 82.8
SubMult+NN (no attention) 60.4 - 69.4 70.4 67.8 0.7164 0.7238 89.0 84.4

Table 4.4: Ablation Experiment Results. “no preprocess”: remove the prepro-
cessing layer by directly using word embeddings Q and A to replace Q and A
in Eqn. 4.1; “no attention”: remove the attention layer by using mean pooling
of Q to replace all the vectors of H in Eqn. 5.2.

the plot.

For the SNLI [7] dataset, the task is text entailment, which identifies the

relationship (entailment, contradiction or neutral) between a premise sentence

and a hypothesis sentence. Here K = 1, and there are exactly two sequences

to match. The actual model structure is what we have described before.

For the InsuranceQA [26] dataset, the task is an answer selection task

which needs to select the correct answer for a question from a candidate pool.

For the WikiQA [99] datasets, we need to rank the candidate answers ac-

cording to a question. For both tasks, there are K candidate answers for each

question. Let us use rk to represent the resulting vector produced by Eqn. 4.9

for the kth answer. In order to select one of the K answers, we first define

R = [r1, r2, . . . , rK ]. We then compute the probability of the kth answer to be

the correct one as follows:

p(k|R) = softmax(wT tanh(WsR + bs ⊗ eK) + b⊗ eK), (4.10)

where Ws ∈ Rl×nl, w ∈ Rl, bs ∈ Rl, b ∈ R are parameters to be learned.

For the machine comprehension task MovieQA, each question is related to

Plot Synopses written by fans after watching the movie and each question has

five candidate answers. So for each candidate answer there are three sequences

to be matched: the plot P, the question Q and the answer Ak. For each k, we

first match Q and P and refer to the matching result at position j as tq
j , as
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generated by one of the comparison functions f . Similarly, we also match Ak

with P and refer to the matching result at position j as ta
k,j. We then define

tk,j =

 tq
j

ta
k,j

 ,
and

rk = CNN([tk,1, . . . , tk,P ]).

To select an answer from the K candidate answers, again we use Eqn. 4.10 to

compute the probabilities.

The implementation details of the modes are as follows. The word embed-

dings are initialized from GloVe [59]. During training, they are not updated.

The word embeddings not found in GloVe are initialized with zero.

The dimensionality l of the hidden layers is set to be 150. We use

ADAMAX [43] with the coefficients β1 = 0.9 and β2 = 0.999 to optimize

the model. We do not use L2-regularization. The main parameter we tuned is

the dropout on the embedding layer. For WikiQA, which is a relatively small

dataset, we also tune the learning rate and the batch size. For the others, we

set the batch size to be 30 and the learning rate 0.002.

4.3.2 Baselines

Here, we will introduce the baselines for each dataset. We did not re-implement

these models but simply took the reported performance for the purpose of

comparison.

SNLI: • W-by-W Attention: The model by [64], who first introduced

attention mechanism into text entailment. • match-LSTM: The model

by [86], which concatenates the matched words as the inputs of an LSTM.
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• LSTMN: Long short-term memory-networks proposed by [14]. • De-

comp Attention: Another “compare-aggregate” model proposed by [58].

• EBIM+TreeLSTM: The state-of-the-art model proposed by [11] on the

SNLI dataset.

InsuranceQA: • IR model: This model by [4] learns the concept in-

formation to help rank the candidates. • CNN with GESD: This model by

[26] uses Euclidean distance and dot product between sequence representations

built through convolutional neural networks to select the answer. • Attentive

LSTM: [72] used soft-attention mechanism to select the most important infor-

mation from the candidates according to the representation of the questions.

• IARNN-Occam: This model by [84] adds regularization on the attention

weights. • IARNN-Gate: This model by [84] uses the representation of the

question to build the GRU gates for each candidate answer.

WikiQA: • IARNN-Occam and IARNN-Gate as introduced before. •

CNN-Cnt: This model by [99] combines sentence representations built by

a convolutional neural network with logistic regression. • ABCNN: This

model is Attention-Based Convolutional Neural Network proposed by [102]. •

CubeCNN proposed by [33] builds a CNN on all pairs of word similarity.

MovieQA: All the baselines we consider come from [75]’s work: • Cosine

Word2Vec: A sliding window is used to select the answer according to the

similarities computed through Word2Vec between the sentences in plot and

the question/answer. • Cosine TFIDF: This model is similar to the previous

method but uses bag-of-word with tf-idf scores to compute similarity. • SSCB

TFIDF: Instead of using the sliding window method, a convolutional neural

network is built on the sentence level similarities.
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4.3.3 Analysis of Results

We use accuracy as the evaluation metric for the datasets MovieQA, Insur-

anceQA and SNLI, as there is only one correct answer or one label for each

instance. For WikiQA, there may be multiple correct answers, so evaluation

metrics we use are Mean Average Precision (MAP) and Mean Reciprocal Rank

(MRR).

We observe the following from the results. (1) Overall, we can find that

our general “compare-aggregate” structure achieves the best performance on

MovieQA, InsuranceQA, WikiQA datasets and very competitive perfor-

mance on the SNLI dataset. Especially for the InsuranceQA dataset, with

any comparison function we use, our model can outperform all the previous

models. (2) The comparison method SubMult+NN is the best in general.

(3) Some simple comparison functions can achieve better performance than the

neural networks or neural tensor network comparison functions. For example,

the simplest comparison function EucCos achieves nearly the best perfor-

mance in the MovieQA dataset, and the element-wise comparison functions,

which do not need parameters can achieve the best performance on the Wik-

iQA dataset. (4) We find the preprocessing layer and the attention layer for

word selection to be important in the “compare-aggregate” structure through

the experiments of removing these two layers separately. We also see that for

sequence matching with big difference in length, such as the MovieQA and

InsuranceQA tasks, the attention layer plays a more important role. For

sequence matching with smaller difference in length, such as the WikiQA and

SNLI tasks, the pre-processing layer plays a more important role. (5) For

the MovieQA, InsuranceQA and WikiQA tasks, our preprocessing layer is

order-insensitive so that it will not take the context information into consider-

ation during the comparison, but our model can still outperform the previous

work with order-sensitive preprocessing layer. With this finding, we believe
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the word-by-word comparison part plays a very important role in these tasks.

We will further explore the preprocessing layer in the future.

4.3.4 Further Analyses

Figure 4.2: An visualization of the largest value of each dimension in the
convolutional layer of CNN. The top figure is an example from the dataset
MovieQA with CNN window size 5. The bottom figure is an example from
the dataset InsuranceQA with CNN window size 3. Due to the sparsity
of the representation, we show only the dimensions with larger values. The
dimensionality of the raw representations is 150.

To further explain how our model works, we visualize the max values in

each dimension of the convolutional layer. We use two examples shown in

Table 4.1 from MovieQA and InsuranceQA datasets respectively. In the top

of Figure 4.2, we can see that the plot words that also appear in either the

question or the answer will draw more attention by the CNN. We hypothesize

that if the nearby words in the plot can match both the words in question

and the words in one answer, then this answer is more likely to be the correct

50



one. Similarly, the bottom one of Figure 4.2 also shows that the CNN will

focus more on the matched word representations. If the words in one answer

continuously match the words in the question, this answer is more likely to be

the correct one.

4.4 Conclusions

In this chapter, we systematically analyzed the effectiveness of a “compare-

aggregate” model on four different datasets representing different tasks. More-

over, we compared and tested different kinds of word-level comparison func-

tions and found that some element-wise comparison functions can outperform

the others. According to our experiment results, many different tasks can share

the same “compare-aggregate” structure. In the future work, we would like to

test its effectiveness on multi-task learning.
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Part II

Machine Reading

Comprehension with Textual

Sequence Matching
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Chapter 5

Machine Comprehension Using

Match-LSTM and Answer

Pointer

In this chapter, we will introduce our model for addressing task of machine

reading comprehension, and will also show the effectiveness of textual sequence

matching in the whole structure.

5.1 Introduction

Machine comprehension of text is one of the ultimate goals of natural language

processing. While the ability of a machine to understand text can be assessed

in many different ways, in recent years, several benchmark datasets have been

created to focus on answering questions as a way to evaluate machine com-

prehension [62, 34, 36, 94, 61, 57]. In this setup, typically the machine is first

presented with a piece of text such as a news article or a story. The machine

is then expected to answer one or multiple questions related to the text.

In most of the benchmark datasets, a question can be treated as a multiple

choice question, whose correct answer is to be chosen from a set of provided
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In 1870, Tesla moved to Karlovac, to attend school at the Higher Real
Gymnasium, where he was profoundly influenced by a math teacher Martin
Sekulić. The classes were held in German, as it was a school within the Austro-
Hungarian Military Frontier. Tesla was able to perform integral calculus in his
head, which prompted his teachers to believe that he was cheating. He finished
a four-year term in three years, graduating in 1873.

1. In what language were the classes given? German
2. Who was Tesla’s main influence in Karlovac? Martin Sekulić
3. Why did Tesla go to Karlovac? attend school at the Higher

Real Gymnasium

Table 5.1: A paragraph from Wikipedia and three associated questions to-
gether with their answers, taken from the SQuAD dataset. The tokens in
bold in the paragraph are our predicted answers while the texts next to the
questions are the ground truth answers.

candidate answers [62, 36]. Presumably, questions with more given candi-

date answers are more challenging. The Stanford Question Answering Dataset

(SQuAD) introduced recently by [61] contains such more challenging ques-

tions whose correct answers can be any sequence of tokens from the given text.

Moreover, unlike some other datasets whose questions and answers were cre-

ated automatically in Cloze style [34, 36], the questions and answers in SQuAD

were created by humans through crowdsourcing, which makes the dataset more

realistic. Another real dataset, the Human-Generated MAchine Reading COm-

prehension dataset (MSMARCO) [57], provided a query together with several

related documents collected from Bing Index. The answer to the query is

generated by human and the answer words can not only come from the given

text.

Given these advantages of the SQuAD and MSMARCO datasets, in this

chapter, we focus on these new datasets to study machine comprehension of

text. A sample piece of text and three of its associated questions from SQuAD

are shown in Table 5.1. Traditional solutions to this kind of question an-

swering tasks rely on NLP pipelines that involve multiple steps of linguistic

analyses and feature engineering, including syntactic parsing, named entity

recognition, question classification, semantic parsing, etc. Recently, with the
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advances of applying neural network models in NLP, there has been much

interest in building end-to-end neural architectures for various NLP tasks, in-

cluding several pieces of work on machine comprehension [34, 36, 101, 41, 19].

However, given the properties of previous machine comprehension datasets,

existing end-to-end neural architectures for the task either rely on the candi-

date answers [36, 101] or assume that the answer is a single token [34, 41, 19],

which make these methods unsuitable for the SQuAD/MSMARCO dataset.

In this chapter, we propose a new end-to-end neural architecture to address

the machine comprehension problem as defined in the SQuAD/MSMARCO

dataset. And for the MSMARCO dataset, we will only make use of the words

in the given text to generate the answer.

Specifically, observing that in the SQuAD/MSMARCO dataset many ques-

tions could be entailed from some sentences in the original text, we adopt a

match-LSTM model that we developed earlier for textual entailment [86] as

one layer of our model. We build a bi-directional match-LSTM on the given

passage with attentions on the question for each word so that each position in

the paragraph will have a hidden representation reflecting its relation to the

question. Then we further adopt the Pointer Net (Ptr-Net) model developed

by [79] to select the words in these positions based on the hidden represen-

tations built by match-LSTM as an answer. We propose two ways to apply

the Ptr-Net model for our task: a sequence model which selects the answer

word by word, and a boundary model which only selects the start and end

points of the answer span. Experiments on the SQuAD dataset show that our

two models both outperform the best performance reported by [61]. Moreover,

using an ensemble of several of our models, we can achieve very competitive

performance on SQuAD. For the MSMARCO dataset, a real query based prob-

lem, our boundary model outperforms our sequence model with a big margin.

It also outperforms the golden passage baseline.

Our contributions can be summarized as follows: (1) We propose two new
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end-to-end neural network models for machine comprehension, which com-

bine match-LSTM and Ptr-Net to handle the special properties of the SQuAD

dataset. To the best of our knowledge, we are the first to propose the bound-

ary model which is more suitable to the SQuAD/MSMARCO tasks. And

we are the first to integrate the attention-based word pair matching into ma-

chine comprehension tasks. (2) We have achieved the performance of an exact

match score of 71.3% and an F1 score of 80.8% on the unseen SQuAD test

dataset, which is much better than the feature-engineered solution [61]. Our

performance is also close to the state of the art on SQuAD, which is 74.8%

in terms of exact match and 82.2% in terms of F1 collected from the SQuAD

Leaderboard 1. Besides, our boundary model achieves the state-of-art perfor-

mance on the MSMARCO dataset with BLEU-1/2/3/4 40.7/33.9/30.6/28.7

and Rouge-L 37.3 2. (3) Our further visualization of the models reveals some

useful insights of the attention mechanism for reasoning the questions. And

we also show that the boundary model can overcome the early stop predic-

tion problem in the sequence model. Besides, we also made our code available

online 3.

5.2 Method

In this section, we first briefly review match-LSTM and Pointer Net. These

two pieces of existing work lay the foundation of our method. We then present

our end-to-end neural architecture for machine comprehension.

5.2.1 Match-LSTM

In a recent work on learning natural language inference, we proposed a match-

LSTM model for predicting textual entailment [86]. In textual entailment, two

1https://rajpurkar.github.io/SQuAD-explorer/
2http://www.msmarco.org/leaders.aspx
3 https://github.com/shuohangwang/SeqMatchSeq
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sentences are given where one is a premise and the other is a hypothesis. To

predict whether the premise entails the hypothesis, the match-LSTM model

goes through the tokens of the hypothesis sequentially. At each position of

the hypothesis, attention mechanism is used to obtain a weighted vector rep-

resentation of the premise. This weighted premise is then to be combined with

a vector representation of the current token of the hypothesis and fed into

an LSTM, which we call the match-LSTM. The match-LSTM essentially se-

quentially aggregates the matching of the attention-weighted premise to each

token of the hypothesis and uses the aggregated matching result to make a

final prediction.

5.2.2 Pointer Net

[79] proposed a Pointer Network (Ptr-Net) model to solve a special kind of

problems where we want to generate an output sequence whose tokens must

come from the input sequence. Instead of picking an output token from a fixed

vocabulary, Ptr-Net uses attention mechanism as a pointer to select a position

from the input sequence as an output symbol. The pointer mechanism has

inspired some recent work on language processing [32, 41]. Here we adopt

Ptr-Net in order to construct answers using tokens from the input text.

5.2.3 Our Method

Formally, the problem we are trying to solve can be formulated as follows. We

are given a piece of text, which we refer to as a passage, and a question related

to the passage. The passage is represented by matrix P ∈ Rd×P , where P is

the length (number of tokens) of the passage and d is the dimensionality of

word embeddings. Similarly, the question is represented by matrix Q ∈ Rd×Q

where Q is the length of the question. Our goal is to identify a subsequence

from the passage as the answer to the question.
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Figure 5.1: An overview of our two models. Both models consist of an LSTM
preprocessing layer, a match-LSTM layer and an Answer Pointer layer. For
each match-LSTM in a particular direction, h̄q

i , which is defined as Hqαᵀ
i , is

computed using the α in the corresponding direction, as described in Eqn. (5.2)

As pointed out earlier, since the output tokens are from the input, we

would like to adopt the Pointer Net for this problem. A straightforward way

of applying Ptr-Net here is to treat an answer as a sequence of tokens from

the input passage but ignore the fact that these tokens are consecutive in the

original passage, because Ptr-Net does not make the consecutivity assumption.

Specifically, we represent the answer as a sequence of integers a = (a1, a2, . . .),

where each ai is an integer between 1 and P , indicating a certain position in

the passage.

Alternatively, if we want to ensure consecutivity, that is, if we want to

ensure that we indeed select a subsequence from the passage as an answer, we

can use the Ptr-Net to predict only the start and the end of an answer. In

this case, the Ptr-Net only needs to select two tokens from the input passage,

and all the tokens between these two tokens in the passage are treated as

the answer. Specifically, we can represent the answer to be predicted as two

integers a = (as, ae), where as an ae are integers between 1 and P .

We refer to the first setting above as a sequence model and the second
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setting above as a boundary model. For either model, we assume that a set of

training examples in the form of triplets {(Pn,Qn, an)}Nn=1 are given.

An overview of the two neural network models are shown in Figure 5.1.

Both models consist of three layers: (1) An LSTM preprocessing layer that

preprocesses the passage and the question using LSTMs. (2) A match-LSTM

layer that tries to match the passage against the question. (3) An Answer

Pointer (Ans-Ptr) layer that uses Ptr-Net to select a set of tokens from the

passage as the answer. The difference between the two models only lies in the

third layer.

LSTM Preprocessing Layer

The purpose for the LSTM preprocessing layer is to incorporate contextual

information into the representation of each token in the passage and the ques-

tion. We use a standard one-directional LSTM [37] to process the passage 4

and the question separately, as shown below:

Hp =
−−−−→
LSTM(P), Hq =

−−−−→
LSTM(Q). (5.1)

The resulting matrices Hp ∈ Rl×P and Hq ∈ Rl×Q are hidden representations

of the passage and the question, where l is the dimensionality of the hidden

vectors. In other words, the ith column vector hp
i (or hq

i ) in Hp (or Hq)

represents the ith token in the passage (or the question) together with some

contextual information from the left.

Match-LSTM Layer

We apply the match-LSTM model [86] proposed for textual entailment to

our machine comprehension problem by treating the question as a premise and

the passage as a hypothesis. The match-LSTM sequentially goes through the

passage. At position i of the passage, it first uses the standard word-by-word

4For the MSMARCO dataset, P is actually consisted of several unrelated documents.
The previous state of pre-processing LSTM and match-LSTM to compute the first state of
each document is set to zero.
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attention mechanism to obtain attention weight vector −→α i ∈ R1×Q as follows:

−→
Gi = tanh(WqHq + (Wphp

i + Wr−→h r
i−1 + bp)⊗ eQ),

−→α i = softmax(wᵀ−→Gi + b⊗ eQ), (5.2)

where Wq,Wp,Wr ∈ Rl×l, bp,w ∈ Rl×1 and b ∈ R are parameters to be

learned,
−→
Gi ∈ Rl×Q is the intermediate result,

−→
h r
i−1 ∈ Rl×1 is the hidden

vector of the one-directional match-LSTM (to be explained below) at position

i − 1, and the outer product (· ⊗ eQ) produces a matrix or row vector by

repeating the vector or scalar on the left for Q times.

Essentially, the resulting attention weight −→α i,j above indicates the degree

of matching between the ith token in the passage with the jth token in the

question. Next, we use the attention weight vector −→α i to obtain a weighted

version of the question and combine it with the current token of the passage

to form a vector −→z i:

−→z i =

 hp
i

Hq−→α ᵀ
i

 , (5.3)

where Hq ∈ Rl×Q, −→α i ∈ R1×Q and hp
i ∈ Rl×1. This vector −→z i is fed into a

standard one-directional LSTM to form our so-called match-LSTM:

−→
h r
i =

−−−−→
LSTM(−→z i,

−→
h r
i−1), (5.4)

where
−→
h r
i ∈ Rl×1.

We further build a similar match-LSTM in the reverse direction. The

purpose is to obtain a representation that encodes the contexts from both

directions for each token in the passage.

Let
−→
Hr ∈ Rl×P represent the hidden states [

−→
h r

1,
−→
h r

2, . . . ,
−→
h r
P ] and

←−
Hr ∈
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Rl×P represent [
←−
h r

1,
←−
h r

2, . . . ,
←−
h r
P ], the hidden states of match-LSTM in the

reverse direction. We define Hr ∈ R2l×P as the concatenation of the two:

Hr =

−→Hr

←−
Hr

 . (5.5)

Answer Pointer Layer

The top layer, the Answer Pointer (Ans-Ptr) layer, is motivated by the

Pointer Net introduced by [79]. This layer uses the sequence Hr as input.

Recall that we have two different models: The sequence model produces a

sequence of answer tokens but these tokens may not be consecutive in the

original passage. The boundary model produces only the start token and the

end token of the answer, and then all the tokens between these two in the

original passage are considered to be the answer. We now explain the two

models separately.

The Sequence Model: Recall that in the sequence model, the answer is

represented by a sequence of integers a = (a1, a2, . . .) indicating the positions

of the selected tokens in the original passage. The Ans-Ptr layer models the

generation of these integers in a sequential manner. Because the length of an

answer is not fixed, in order to stop generating answer tokens at certain point,

we allow each ak to take up an integer value between 1 and P + 1, where P + 1

is a special value indicating the end of the answer. Once ak is set to be P + 1,

the generation of the answer stops.

In order to generate the kth answer token indicated by ak, first, the attention

mechanism is used again to obtain an attention weight vector βk ∈ R1×(P+1),

where βk,j (1 ≤ j ≤ P + 1) is the probability of selecting the jth token from

the passage as the kth token in the answer, and βk,(P+1) is the probability of
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stopping the answer generation at position k. βk is modeled as follows:

Fk = tanh(VH̃r + (Waha
k−1 + ba)⊗ e(P+1)), (5.6)

βk = softmax(vᵀFk + c⊗ e(P+1)), (5.7)

where H̃r ∈ R2l×(P+1) is the concatenation of Hr with a zero vector, defined as

H̃r = [Hr; 0], V ∈ Rl×2l,Wa ∈ Rl×l, ba,v ∈ Rl×1 and c ∈ R are parameters

to be learned, Fk ∈ Rl×(P+1) is the intermediate result, (· ⊗ e(P+1)) follows the

same definition as before, and ha
k−1 ∈ Rl×1 is the hidden vector at position

k − 1 of an answer LSTM as defined below:

ha
k =
−−−−→
LSTM(H̃rβᵀ

k ,h
a
k−1). (5.8)

We can then model the probability of generating the answer sequence as

p(a|Hr) =
∏
k

p(ak|a1, a2, . . . , ak−1,H
r), (5.9)

and

p(ak = j|a1, a2, . . . , ak−1,H
r) = βk,j. (5.10)

To train the model, we minimize the following loss function based on the

training examples:

−
N∑
n=1

log p(an|Pn,Qn). (5.11)

The Boundary Model: The boundary model works in a way very similar

to the sequence model above, except that instead of predicting a sequence of

indices a1, a2, . . ., we only need to predict two indices as and ae. So the main

difference from the sequence model above is that in the boundary model we
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do not need to add the zero padding to Hr, and the probability of generating

an answer is simply modeled as

p(a|Hr) = p(as|Hr)p(ae|as,H
r). (5.12)

As this boundary model could point to a span covering too many tokens

without any restriction, we try to manually limit the length of the predicted

span and then search the span with the highest probability computed by p(as)×

p(ae|as) as the answer.

5.3 Experiments

In this section, we present our experiment results and perform some analyses

to better understand how our models works.

5.3.1 Data

We use the Stanford Question Answering Dataset (SQuAD) v1.1 and the

human-generated Microsoft MAchine Reading COmprehension (MSMARCO)

dataset v1.1 to conduct our experiments.

Passages in SQuAD come from 536 articles in Wikipedia covering a wide

range of topics. Each passage is a single paragraph from a Wikipedia article,

and each passage has around 5 questions associated with it. In total, there are

23,215 passages and 107,785 questions. The data has been split into a train-

ing set (with 87,599 question-answer pairs), a development set (with 10,570

question-answer pairs) and a hidden test set.

For the MSMARCO dataset, the questions are user queries issued to the

Bing search engine, the context passages are real Web documents and the

answers are human-generated. We select the span that has the highest F1

score with the gold standard answer for training and only predict the span in
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the passages during evaluation. The data has been split into a training set

(82326 pairs), a development set (10047 pairs) and a test set (9650 pairs).

5.3.2 Experiment Settings

We first tokenize all the passages, questions and answers. We use word em-

beddings from GloVe [59] to initialize the model. Words not found in GloVe

are initialized as zero vectors. The word embeddings are not updated during

the training of the model.

The dimensionality l of the hidden layers is set to be 150. We use ADAMAX

[43] with the coefficients β1 = 0.9 and β2 = 0.999 to optimize the model. Each

update is computed through a minibatch of 30 instances. We do not use L2-

regularization.

For the SQuAD dataset, the performance is measured by two metrics: per-

centage of exact match with the ground truth answers and word-level F1 score

when comparing the tokens in the predicted answers with the tokens in the

ground truth answers. Note that in the development set and the test set each

question has around three ground truth answers. F1 scores with the best

matching answers are used to compute the average F1 score. For the MS-

MARCO dataset, the metrics in the official tool of MSMARCO evaluation are

BLEU-1/2/3/4 and Rouge-L, which are widely used in many domains.

5.3.3 Results

The SQuAD and MSMARCO results of our models as well as the results of

the baselines [61, 104] are shown in Table 5.2. For the “LSTM with Ans-Ptr”

models, they are the experiments with the ablation of attention mechanism in

match-LSTM. Specifically, we use the final representation of the question to

replace the weighted sum of the question representations. For the MSMARCO

dataset, as the context for each question is consisted of around 10 documents,
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SQuAD MSMARCO
Exact Match F1 BLEU1/2/3/4 / Rouge-L
Dev Test Dev Test Dev & Test

Human 80.3 77.0 90.5 86.8 - & 46/-/-/- / 47
Golden Passage - - - - 19.6/18.8/18.1/17.5/32.3 & -
LR [61] 40.0 40.4 51.0 51.0 -
DCR [104] 62.5 62.5 71.2 71.0 -

LSTM with Ans-Ptr (Sequence) 37.7 - 48.5 - 10.3/7.2 /5.6 /4.6 /21.6 & -
LSTM with Ans-Ptr (Boundary) 45.2 - 55.3 - 32.0/25.3/22.2/20.4/32.3 & -
mLSTM with Ans-Ptr (Sequence) 54.4 - 68.2 - 12.5/9.2 /7.5 /6.5 /22.5 & -
mLSTM with Ans-Ptr (Boundary) 63.0 - 72.7 - 32.9/26.4/23.2/21.6/33.8 & -
Our best boundary model 67.0 66.9 77.2 77.1 40.1/33.3/30.1/28.2/37.2 &

40.7/33.9/30.6/28.7/37.3

mLSTM with Ans-Ptr (Boundary+en) 67.6 67.9 76.8 77.0 -
Our best boundary model (en) 71.3 72.6 80.0 80.8 -

Table 5.2: Experiment Results on SQuAD and MSMARCO datasets. Here
“LSTM with Ans-Ptr” removes the attention mechanism in match-LSTM (mL-
STM) by using the final state of the LSTM for the question to replace the
weighted sum of all the states. Our best boundary model is the further tuned
model and its ablation study is shown in Table 5.4. “en” refers to ensemble
method.

the “Golden Passage” is to directly use the human labeled document which

could answer the question as the prediction.

From the results in Table 5.2, we can see that the boundary model could

clearly outperform the sequence model in a big margin on both datasets. We

hypothesis that the sequence model is more likely to stop word generation ear-

lier, and the boundary model can somehow overcome this problem. We have

a statistical analysis on the answers generated by our sequence and boundary

models shown in Table 5.3. We can see that the length of the answers gener-

ated by the sequence model is much shorter than the ground truth. Especially

for the MSMARCO task where the answers are usually much longer, the se-

quence model could only generate 7 words on average, while the ground truth

answers are 16 on average and the boundary model could generate nearly the

same number of words with the ground truth. Several answers generated by

our models are shown in Appendix A. From Table 5.2, we can also see that

the performance gets poorer by removing the attention mechanism in match-
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SQuAD MSMARCO
#w in A/Q/P #w in A/Q/P

raw 3.1/11/141 16.3 / 6 / 667
seq 2.4/-/- 6.7 / - / -
bou 3.0/-/- 15.7 / - / -

Table 5.3: Statistical anal-
ysis on the development
datasets. #w: number of
words on average; P: pas-
sage; Q: question; A: answer;
raw: raw data from the de-
velopment dataset; seq/bou:
the answers generated by the
sequence/boundary models
with match-LSTM.

SQuAD MSMARCO
EM & F1 BLEU1/2/3/4 & Rouge-L

Best model 67.0 & 77.2 40.1/33.3/30.1/28.2 & 37.2
-bi-Ans-Ptr 66.5 & 76.8 39.9/32.8/29.6/27.9 & 36.7
-deep 65.9 & 75.8 39.6/32.6/29.4/27.4 & 35.9
-elem 65.2 & 75.4 38.1/31.4/28.3/26.5 & 35.5
-pre-LSTM 64.0 & 72.9 39.6/32.8/29.8/27.7 & 36.3

Table 5.4: Ablation study for our best bound-
ary model on the development datasets. Our
best model is a further tuned boundary
model by considering “bi-Ans-Ptr” which adds
bi-directional answer pointer, “deep” which
adds another two-layer bi-directional LSTMs
between the match-LSTM and the Answer
Pointer layers, and “elem” which adds element-
wise comparison ,(hp

i −Hqαᵀ
i ) and (hp

i �Hqαᵀ
i ),

into Eqn 5.3. “-pre-LSTM” refers to removing
the pre-processing layer.

LSTM, while for the MSMARCO dataset, the attention mechanism effects

less, with no more than 2 percent reduction in BLEU and Rouge-L scores by

attention mechanism ablation.

Based on the effectiveness of boundary pointer and match-LSTM, we con-

duct further exploration of the boundary model by adding element-wise com-

parison (hp
i−Hqαᵀ

i ) and (hp
i�Hqαᵀ

i ) into Eqn 5.3 in match-LSTM layer, adding

2 more bi-directional LSTM layers between match-LSTM and Ans-Ptr layers,

and adding bi-directional Ans-Ptr. We show the ablation study of this further

tuned model in Table 5.4. We can see that adding element-wise matching could

make the biggest improvement for our boundary model. We also try to remove

the phrase-level representation by removing the pre-process LSTM and using

the word-level representations as the inputs of match-LSTM. Interestingly, we

find the phrase-level representation effects little on the MSMARCO task.

Overall, we can see that both of our match-LSTM models have clearly

outperformed the logistic regression model by [61], which relies on carefully

designed features. The improvement of our models over the logistic regression

model shows that our end-to-end neural network models without much feature
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engineering are very effective on these tasks and datasets. Our boundary model

also outperformed the DCR model [104], which maximizes the probability of

the gold standard span from all the candidate spans through a neural network

structure.

5.3.4 Further Analyses

Figure 5.2: Performance breakdown by answer lengths and question types on
SQuAD development dataset. Top: Plot (1) shows the performance of our
two models (where s refers to the sequence model , b refers to the boundary
model, and e refers to the ensemble boundary model) over answers with dif-
ferent lengths. Plot (2) shows the numbers of answers with different lengths.
Bottom: Plot (3) shows the performance our the two models on different types
of questions. Plot (4) shows the numbers of different types of questions.

To better understand the strengths and weaknesses of our models, we per-

form some further analyses of the results below.

First, we suspect that longer answers are harder to predict. To verify this

hypothesis, we analysed the performance in terms of both exact match and

F1 score with respect to the answer length on the development set, as shown

in Figure 5.2. For example, for questions whose answers contain more than

9 tokens, the F1 score of the boundary model drops to around 55% and the
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Figure 5.3: Visualization of the attention weights α for four questions. The first
three questions share the same paragraph. The title is the answer predicted
by our model.

exact match score drops to only around 30%, compared to the F1 score and

exact match score of close to 72% and 67%, respectively, for questions with

single-token answers. And that supports our hypothesis.

Next, we analyze the performance of our models on different groups of ques-

tions, as shown in Figure 5.2. We use a crude way to split the questions into

different groups based on a set of question words we have defined, including

“what,” “how,” “who,” “when,” “which,” “where,” and “why.” These different

question words roughly refer to questions with different types of answers. For

example, “when” questions look for temporal expressions as answers, whereas
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“where” questions look for locations as answers. According to the performance

on the development dataset, our models work the best for “when” questions.

This may be because in this dataset temporal expressions are relatively easier

to recognize. Other groups of questions whose answers are noun phrases, such

as “what” questions, “which” questions and “where” questions, also get rela-

tively better results. On the other hand, “why” questions are the hardest to

answer. This is not surprising because the answers to “why” questions can be

very diverse, and they are not restricted to any certain type of phrases.

Finally, we would like to check whether the attention mechanism used in

the match-LSTM layer is effective in helping the model locate the answer.

We show the attention weights α in Figure 5.3. In the figure the darker the

color is the higher the weight is. We can see that some words have been well

aligned based on the attention weights. For example, the word “German” in

the passage is aligned well to the word “language” in the first question, and

the model successfully predicts “German” as the answer to the question. For

the question word “who” in the second question, the word “teacher” actually

receives relatively higher attention weight, and the model has predicted the

phrase “Martin Sekulic” after that as the answer, which is correct. For the

third question that starts with “why”, the attention weights are more evenly

distributed and it is not clear which words have been aligned to “why”. For

the last question, we can see that the word knowledge needed for generating

the answer can also be detected by match-LSTM. For example, the words

“European”, “Parliament”, “Council”, “European” and “Union” have higher

attention weights on “governing” in the question. Even though our models can

solve this type of questions, they are still not able to solve the questions that

need multi-sentences reasoning. More answers generated by our models for the

questions related to different kinds of reasoning are shown in Appendix B.
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5.4 Conclusions

In this chapter, We developed two models for the machine comprehension

problem defined in the Stanford Question Answering (SQuAD) and A Human-

Generated MAchine Reading COmprehension (MSMARCO) datasets, both

making use of match-LSTM and Pointer Network. Experiments on the SQuAD

and MSMARCO datasets showed that our second model, the boundary model,

could achieve a performance close to the state-of-the-art performance on the

SQuAD dataset and achieved the state-of-the-art on the MSMARCO dataset.

We also show the boundary model could overcome the early stop prediction

problem of the sequence model.

In the future, we plan to look further into the different types of questions

and focus on those questions which currently have low performance, such as

the “why’ questions and multi-sentences related questions. We also plan to test

how our models could be applied to other machine comprehension datasets.
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Chapter 6

Multi-choice Reading

Comprehension Using A

Co-Matching Model

In this chapter, we will show how to make use of sequence matching model

to solve the problem of Multi-choice Reading Comprehension, where question

related passage and several candidate answers are given for each question,

rather than extracting an answer span from the passage as previous chapter.

6.1 Introduction

Enabling machines to understand natural language text is arguably the ul-

timate goal of natural language processing, and the task of machine reading

comprehension is an intermediate step towards this ultimate goal [62, 34, 36,

61, 57]. Recently, [46] released a new multi-choice machine comprehension

dataset called RACE that was extracted from middle and high school English

examinations in China. Figure 6.1 shows an example passage and two related

questions from RACE. The key difference between RACE and previously re-

leased machine comprehension datasets (e.g., the CNN/Daily Mail dataset [34]
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and SQuAD [61]) is that the answers in RACE often cannot be directly ex-

tracted from the given passages, as illustrated by the two example questions

(Q1 & Q2) in Figure 6.1. Thus, answering these questions is more challenging

and requires more inferences.

Previous approaches to machine comprehension are usually based on pair-

wise sequence matching, where either the passage is matched against the se-

quence that concatenates both the question and a candidate answer [102], or

the passage is matched against the question alone followed by a second step

of selecting an answer using the matching result of the first step [46, 105].

However, these approaches may not be suitable for multi-choice reading com-

prehension since questions and answers are often equally important. Matching

the passage only against the question may not be meaningful and may lead

to loss of information from the original passage, as we can see from the first

example question in Figure 6.1. On the other hand, concatenating the question

and the answer into a single sequence for matching may not work, either, due

to the loss of interaction information between a question and an answer. As

illustrated by Q2 in Figure 6.1, the model may need to recognize what “he”

and “it” in candidate answer (c) refer to in the question, in order to select (c)

as the correct answer. This observation of the RACE dataset shows that we

face a new challenge of matching sequence triplets (i.e., passage, question and

answer) instead of pairwise matching.

In this chapter, we propose a new model to match a question-answer pair

to a given passage. Our co-matching approach explicitly treats the ques-

tion and the candidate answer as two sequences and jointly matches them

to the given passage. Specifically, for each position in the passage, we com-

pute two attention-weighted vectors, where one is from the question and the

other from the candidate answer. Then, two matching representations are

constructed: the first one matches the passage with the question while the

second one matches the passage with the candidate answer. These two newly

72



Passage: My father wasn’t a king, he was a taxi driver, but I am a prince-
Prince Renato II, of the country Pontinha , an island fort on Funchal
harbour. In 1903, the king of Portugal sold the land to a wealthy British
family, the Blandys, who make Madeira wine. Fourteen years ago the
family decided to sell it for just EUR25,000, but nobody wanted to buy it
either. I met Blandy at a party and he asked if I’d like to buy the island.
Of course I said yes, but I had no money-I was just an art teacher. I
tried to find some business partners, who all thought I was crazy. So I
sold some of my possessions, put my savings together and bought it. Of
course, my family and my friends-all thought I was mad ... If l want to
have a national flag, it could be blue today, red tomorrow. ... My family
sometimes drops by, and other people come every day because the country
is free for tourists to visit ...

Q1: Which statement of the follow-
ing is true?

Q2: How did the author get the is-
land?

a. The author made his living by
driving.

a. It was a present from Blandy.

b. The author’s wife supported to
buy the island.

b. The king sold it to him.

c. Blue and red are the main colors
of his national flag.

c. He bought it from Blandy.

d. People can travel around the
island free of charge.

d. He inherited from his father.

Table 6.1: An example passage and two related multi-choice questions. The
ground-truth answers are in bold.

constructed matching representations together form a co-matching state. In-

tuitively, it encodes the locational information of the question and the candi-

date answer matched to a specific context of the passage. Finally, we apply

a hierarchical LSTM [74] over the sequence of co-matching states at differ-

ent positions of the passage. Information is aggregated from word-level to

sentence-level and then from sentence-level to document-level. In this way,

our model can better deal with the questions that require evidence scattered

in different sentences in the passage. Our model improves the state-of-the-art

model by 3 percentage on the RACE dataset. Our code will be released under

https://github.com/shuohangwang/comatch.
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Figure 6.1: An overview of the model that builds a matching representation
for a triplet {P,Q,A} (i.e., passage, question and candidate answer).

6.2 Model

For the task of multi-choice reading comprehension, the machine is given a

passage, a question and a set of candidate answers. The goal is to select

the correct answer from the candidates. Let us use P ∈ Rd×P , Q ∈ Rd×Q

and A ∈ Rd×A to represent the passage, the question and a candidate answer,

respectively, where each word in each sequence is represented by an embedding

vector. d is the dimensionality of the embeddings, and P , Q, and A are the

lengths of these sequences.

Overall our model works as follows. For each candidate answer, our model

constructs a vector that represents the matching of P with both Q and A. The

vectors of all candidate answers are then used for answer selection. Because

we simultaneously match P with Q and A, we call this a co-matching model.

In Section 6.2.1 we introduce the word-level co-matching mechanism. Then in

Section 6.2.2 we introduce a hierarchical aggregation process. Finally in Sec-

tion 6.2.3 we present the objective function. An overview of our co-matching
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model is shown in Figure 6.1.

6.2.1 Co-matching

The co-matching part of our model aims to match the passage with the ques-

tion and the candidate answer at the word-level. Inspired by some previous

work [86, 77], we first use bi-directional LSTMs [37] to pre-process the se-

quences as follows:

Hp = Bi-LSTM(P),Hq = Bi-LSTM(Q),

Ha = Bi-LSTM(A), (6.1)

where Hp ∈ Rl×P , Hq ∈ Rl×Q and Ha ∈ Rl×A are the sequences of hid-

den states generated by the bi-directional LSTMs. We then make use of the

attention mechanism to match each state in the passage to an aggregated rep-

resentation of the question and the candidate answer. The attention vectors

are computed as follows:

Gq = SoftMax
(
(WgHq + bg ⊗ eQ)THp

)
,

Ga = SoftMax
(
(WgHa + bg ⊗ eQ)THp

)
,

H
q

= HqGq,

H
a

= HaGa, (6.2)

where Wg ∈ Rl×l and bg ∈ Rl are the parameters to learn. eQ ∈ RQ is a vector

of all 1s and it is used to repeat the bias vector into the matrix. Gq ∈ RQ×P and

Ga ∈ RA×P are the attention weights assigned to the different hidden states

in the question and the candidate answer sequences, respectively. H
q ∈ Rl×P

is the weighted sum of all the question hidden states and it represents how the

question can be aligned to each hidden state in the passage. So is H
a ∈ Rl×P .

Finally we can co-match the passage states with the question and the candidate
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answer as follows:

Mq = ReLU

Wm

H
q 	Hp

H
q ⊗Hp

+ bm

 ,

Ma = ReLU

Wm

H
a 	Hp

H
a ⊗Hp

+ bm

 ,

C =

Mq

Ma

 , (6.3)

where Wg ∈ Rl×2l and bg ∈ Rl are the parameters to learn.

·
·

 is the column-

wise concatenation of two matrices, and · 	 · and · ⊗ · are the element-wise

subtraction and multiplication between two matrices, which are used to build

better matching representations [71, 87]. Mq ∈ Rl×P represents the matching

between the hidden states of the passage and the corresponding attention-

weighted representations of the question. Similarly, we match the passage with

the candidate answer and represent the matching results using Ma ∈ Rl×P .

Finally C ∈ R2l×P is the concatenation of Mq ∈ Rl×P and Ma ∈ Rl×P and

represents how each passage state can be matched with the question and the

candidate answer. We refer to c ∈ R2l, which is a single column of C, as a

co-matching state that concurrently matches a passage state with both the

question and the candidate answer.

6.2.2 Hierarchical Aggregation

In order to capture the sentence structure of the passage, we further modify

the model presented earlier and build a hierarchical LSTM [74] on top of the

co-matching states. Specifically, we first split the passage into sentences and

we use P1,P2, . . . ,PN to represent these sentences, where N is the number

of sentences in the passage. For each triplet {Pn,Q,A}, n ∈ [1, N ], we can
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get the co-matching states Cn through Eqn. (6.1-6.3). Then we build a bi-

directional LSTM followed by max pooling on top of the co-matching states of

each sentence as follows:

hs
n = MaxPooling (Bi-LSTM (Cn)) , (6.4)

where the function MaxPooling(·) is the row-wise max pooling operation. hs
n ∈

Rl, n ∈ [1, N ] is the sentence-level aggregation of the co-matching states. All

these representations will be further integrated by another Bi-LSTM to get the

final triplet matching representation.

Hs = [hs1; hs2; . . . ; hsN ],

ht = MaxPooling (Bi-LSTM (Hs)) , (6.5)

where Hs ∈ Rl×N is the concatenation of all the sentence-level representations

and it is the input of a higher level LSTM. ht ∈ Rl is the final output of the

matching between the sequences of the passage, the question and the candidate

answer.

6.2.3 Objective function

For each candidate answer Ai, we can build its matching representation hti ∈ Rl

with the question and the passage through Eqn. (6.5). Our loss function is

computed as follows:

L(Ai|P,Q) = − log
exp(wThti)∑4
j=1 exp(wThtj)

, (6.6)

where w ∈ Rl is a parameter to learn.
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RACE-M RACE-H RACE

Random 24.6 25.0 24.9
Sliding Window 37.3 30.4 32.2
Stanford AR 44.2 43.0 43.3
GA 43.7 44.2 44.1
ElimiNet - - 44.7
HAF 45.3 47.9 47.2
MUSIC 51.5 45.7 47.4

Hier-Co-Matching 55.8∗ 48.2∗ 50.4∗

- Hier-Aggregation 54.2 46.2 48.5
- Co-Matching 50.7 45.6 46.4

Turkers 85.1 69.4 73.3
Ceiling 95.4 94.2 94.5

Table 6.2: Experiment Results. ∗ means it’s significant to the models ablating
either the hierarchical aggregation or co-matching state.

6.3 Experiment

To evaluate the effectiveness of our hierarchical co-matching model, we use the

RACE dataset [46], which consists of two subsets: RACE-M comes from mid-

dle school examinations while RACE-H comes from high school examinations.

RACE is the combination of the two.

We compare our model with a number of baseline models. We also compare

with two variants of our model for an ablation study.

Comparison with Baselines We compare our model with the following

baselines:

• Sliding Window based method [62] computes the matching score based

on the sum of the tf-idf values of the matched words between the question-

answer pair and each sub-passage with a fixed a window size.

• Stanford Attentive Reader (AR) [9] first builds a question-related

passage representation through attention mechanism and then compares it

with each candidate answer representation to get the answer probabilities.

• GA [22] uses gated attention mechanism with multiple hops to extract

the question-related information of the passage and compares it with candidate
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answers.

• ElimiNet [69] tries to first eliminate the most irrelevant choices and then

select the best answer.

• HAF [105] considers not only the matching between the three sequences,

namely, passage, question and candidate answer, but also the matching be-

tween the candidate answers.

• MUSIC [98] integrates different sequence matching strategies into the

model and also adds a unit of multi-step reasoning for selecting the answer.

Besides, we also report the following two results as reference points: Turk-

ers is the performance of Amazon Turkers on a randomly sampled subset of

the RACE test set. Ceiling is the percentage of the unambiguous questions

with a correct answer in a subset of the test set.

The performance of our model together with the baselines are shown in Ta-

ble 6.2. We can see that our proposed complete model, Hier-Co-Matching,

achieved the best performance among all the public results. Still, there is

a huge gap between the best machine reading performance and the human

performance, showing the great potential for further research.

Ablation Study Moreover, we conduct an ablation study of our model ar-

chitecture. In this study, we are mainly interested in the contribution of each

component introduced in this work to our final results. We studied two key

factors: (1) the co-matching module and (2) the hierarchical aggregation ap-

proach. We observed a 4 percentage performance decrease by replacing the

co-matching module with a single matching state (i.e., only Ma in Eqn (5.3))

by directly concatenating the question with each candidate answer [102]. We

also observe about 2 percentage decrease when we treat the passage as a plain

sequence, and run a two-layer LSTM (to ensure the numbers of parameters are

comparable) over the whole passage instead of the hierarchical LSTM.
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Question Type Analysis We also conducted an analysis on what types

of questions our model can handle better. We find that our model obtains

similar performance on the “wh” questions such as “why,” “what,” “when” and

“where” questions, on which the performance is usually around 50%. We also

check statement-justification questions with the keyword “true” (e.g., “Which

of the following statements is true”), negation questions with the keyword

“not” (e.g., “which of the following is not true”), and summarization questions

with the keyword “title” (e.g., “what is the best title for the passage?”), and

their performance is 51%, 52% and 48%, respectively. We can see that the

performance of our model on different types of questions in the RACE dataset

is quite similar. However, our model is only based on word-level matching

and may not have the ability of reasoning. In order to answer questions that

require summarization, inference or reasoning, we still need to further explore

the dataset and improve the model. Finally, we further compared our model to

the baseline, which concatenates the question with each candidate answer, and

our model can achieve better performance on different types of questions. For

example, on the subset of the questions with pronouns, our model can achieve

better accuracy of 49.8% than 47.9%. Similarly, on statement-justification

questions with the keyword “true”, our model could achieve better accuracy

of 51% than 47%.

6.4 Conclusions

In this chapter, we proposed a co-matching model for multi-choice reading com-

prehension. The model consists of a co-matching component and a hierarchical

aggregation component. We showed that our model could achieve state-of-the-

art performance on the RACE dataset. In the future, we will adapt the idea

of co-matching and hierarchical aggregation to the standard open-domain QA

setting for answer candidate reranking [91]. We will also further study how to
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explicitly model inference and reasoning on the RACE dataset.
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Open-domain Question
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Chapter 7

R3: Reinforced Ranker-Reader

for Open-Domain Question

Answering

From this chapter, we will go into another question answering task: open-

domain QA, where the passages are not pre-selected any more and needs in-

formation retrieval model to first search some passages for answer extraction.

As the answer extraction part is still related to the model for reading com-

prehension task, our models for open-domain QA also rely on the sequence

matching model.

7.1 Introduction

Open-domain question answering (QA) is a key challenge in natural language

processing. A successful open-domain QA system must be able to effectively

retrieve and comprehend one or more knowledge sources to infer a correct

answer. Knowledge sources can be knowledge bases [5, 103] or structured or

unstructured text passages [27, 3].

Recent deep learning-based research has focused on open-domain QA
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Q: What is the largest island in the Philip-
pines?

A: Luzon
P1 Mindanao is the second largest and easternmost island in the Philippines.
P2 As an island, Luzon is the Philippine’s largest at 104,688 square kilometers,

and is also the world’s 17th largest island.
P3 Manila, located on east central Luzon Island, is the national capital and

largest city.

Table 7.1: An open-domain QA training example. Q: question, A: answer, P:
passages retrieved by an IR model and ordered by IR score.

based on large text corpora such as Wikipedia, applying information retrieval

(IR) to select passages and reading comprehension (RC) to extract answer

phrases [10, 23]. These methods, which we call Search-and-Reading QA (SR-

QA), are simple yet powerful for open-domain QA. Dividing the pipeline into

IR and RC stages leverages an enormous body of research in both IR and RC,

including recent successes in RC via neural network techniques [88, 93, 97, 92].

The main difference between training SR-QA and standard RC models is

in the passages used for training. In standard RC model training, passages are

manually selected to guarantee that ground-truth answers are contained and

annotated within the passage [61].1 By contrast, in SR-QA approaches [10, 23],

the model is given only QA-pairs and uses an IR component to retrieve passages

similar to the question from a large corpus. Depending on the quality of the IR

component, retrieved passages may not contain or entail the correct answer,

making RC training more difficult. Table 1 shows an example which illustrates

the difficulty. This ordering was produced by an off-the-shelf IR engine using

the BM25 algorithm. The correct answer is contained in passage P2. The

top passage (P1), despite being ranked highest by the IR engine, is ineffective

for answering the question, since it fails to capture the semantic distinction

between “largest” and “second largest”. Passage P3 contains the answer text

(“Luzon”) but does not semantically entail the correct answer (“Luzon is the

1This forms a closed-domain QA by our adopted definition where the domain consists of
the given passage only.
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largest island in the Philippines”). Training on passages such as P1 and P3

can degrade performance of the RC component.2

In this chapter we propose a new approach which explicitly separates the

tasks of predicting the likelihood that a passage provides the answer, and

reading those passages to extract correct answers. Specifically we propose an

end-to-end framework consisting of two components: a Ranker and a Reader

(i.e. RC model). The Ranker selects the passage most likely to entail the

answer and passes it to the Reader, which reads and extracts from that passage.

The Reader is trained using SGD/backprop to maximize the likelihood of the

span containing the correct answer (if one exists). The Ranker is trained using

REINFORCE [96] with a reward determined by how well the Reader extracts

answers from the top-ranked passages. This optimizes the Ranker with an

objective determined by end-performance on answer prediction, which provides

a strong signal to distinguish passages lexically similar to but semantically

different from the question.

We discuss the Ranker-Reader model in detail below but briefly, the Ranker

and Reader are implemented as variants of Match-LSTM models [86]. These

models were originally designed for solving the text entailment problem. For

this task, different non-linear layers are added for selecting the passages or

predicting the start and end positions of the answer in the passage.

We evaluate our model on five different datasets and achieve state-of-the-

art results on four of the them. Our results also show the merits of employing

a separate REINFORCE-trained ranking component over several challenging

fully supervised baselines.

2Passage ranking models for non-factoid QA [85, 99] are able to learn to rank these
passages; but these models are trained using human annotated answer labels, which are not
available here.
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7.2 Framework

Problem Definition We assume that we have available a factoid question

q to be answered and a set of passages which may contain the ground-truth

answer ag. Those passages3 are the top N retrieved from a corpus by an IR

model supplied with the question, for N a hyper-parameter. During training

we are given only the (q, ag) pairs, together with an IR model with index

built on an open-domain corpus.

Framework Overview An overview of the Ranker-Reader model is shown

in Figure 7.1. It shows two key components: a Ranker, which selects passages

from which an answer can be extracted, and a Reader which extracts answers

from supplied passages. Both the Ranker and Reader compare the question

to each of the passages to generate passage representations based on how well

they match the question. The Ranker uses these “matched” representations to

select a single passage which is most likely to contain the answer. The selected

passage is then processed by the Reader to extract an answer sequence. We

train the reader using SGD/backprop and produce a reward to train the Ranker

via REINFORCE.

7.3 R3: Reinforced Ranker-Reader

In this section, we first review the Match-LSTM [86] which provides input for

both the Reader and Ranker. We then detail the Reader and Ranker compo-

nents, and the procedure for joint training, including the objective function

used for RL training.

3In this chapter we use sentence-level index thus each passage is an individual sentence.
See the experimental setting.
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Figure 7.1: Overview of training our model, comprising a Ranker and a Reader
based on Match-LSTM as shown on the right side. The Ranker selects a
passage τ and the Reader predicts the start and end positions of the answer in
τ . The reward for the Ranker depends on similarity of the extracted answer
with the ground-truth answer ag. To accelerate Reader convergence, we also
sample several negative passages without ground-truth answer.

Passage Representation Using Match-LSTM To effectively rank and

read passages they must be matched to the question. This comparison is

performed with a Match-LSTM, a state-of-the-art model for text entailment,

shown on the right in Figure 7.1. Match-LSTMs use an attention mechanism to

compute word similarities between the passage and question sequences. These

are first encoded as matrices Q and P, respectively, by a Bidirectional LSTM

(BiLSTM) with hidden dimension l. With Q words in question Q and P words

in passage P we can write:

Hp = BiLSTM(P), Hq = BiLSTM(Q), (7.1)

where Hp ∈ Rl×P and Hq ∈ Rl×Q are the hidden states for the passage and

the question. In order to improve computational efficiency without degrading

performance, we simplify the attention mechanism of the original Match-LSTM

by computing the attention weights G as follows:

G = SoftMax
(
(WgHq + bg ⊗ eQ)THp

)
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where Wg ∈ Rl×l and bg ∈ Rl are the learnable parameters. The outer product

(· ⊗ eQ) repeats the column vector bg Q times to form an l × l matrix. The

i-th column of G ∈ RQ×P represents the normalized attention weights over all

the question words for the i-th word in passage.

We can use this attention matrix G to form representations of the question

for each word in passage:

H
q

= HqG (7.2)

Next, we produce the word matching representations M ∈ R2l×P using Hp

and H
q

as follows:

M = ReLU


Wm



Hp

H
q

Hp
⊙

H
q

Hp −H
q




, (7.3)

where Wm ∈ R2l×4l are learnable parameters;

·
·

 is the column concatenation

of matrices; Element-wise operations (·
⊙
·) and (·−·) are also used to represent

word-level matching [87, 12].

Finally, we aggregate the word matching representations through another

bi-directional LSTM:

Hm = BiLSTM(M), (7.4)

where Hm ∈ Rl×P is the sequence matching representation between a passage

and a question.

To produce the input for the Ranker and Reader described next, we apply
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Match-LSTMs to the question and each of the passages. To reduce model

complexity, the Ranker and Reader share the same M but have separate pa-

rameters for the aggregation stage shown in Eqn.(7.4), resulting different Hm,

denoted as HRank and HRead respectively.

Ranker Our Ranker selects passages for reading by the Reader. We train

the Ranker using reinforcement learning, to output a policy or probability

distribution over passages. First, we create a fixed-size vector representation

for each passage from the matching representations HRank
i , i ∈ [1, N ], using

a standard max pooling operation. The result ui is a representation of the

i-th passage. We then concatenate the individual passage representations and

apply a non-linear transformation followed by a normalization to compute the

passage probabilities γ. Specifically:

ui = MaxPooling(HRank
i ),

C = Tanh (Wc[u1; u2; ...; uN ] + bc ⊗ eN) ,

γ = Softmax(wcC), (7.5)

where Wc ∈ Rl×l and bc,wc ∈ Rl are the parameters to optimize; ui ∈ Rl

represents how the i-th passage matches the question; C ∈ Rl×N is a non-

linear transformation of passage representations; and γ ∈ RN is a vector of the

predicted probabilities that each passage entails the answer.

The action policy is then defined as follows:

π(τ |q; θr) = γτ (7.6)

where γτ is the probability of selecting passage τ , computed in Eqn.(7.5); θr

represents parameters to learn. In the rest of the chapter we denote the policy

π(τ |q) = π(τ |q; θr) for simplicity. In this way, the action is to sample a passage

according to its policy π(τ |q) as the input of Reader.
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Reader Our Reader extracts an answer span from the passage τ selected by

the Ranker. As in previous work [88, 97, 66, 92], the Reader is used to predict

the start and end positions of the answer phrase in the passage.

First we process the output of Match-LSTMs on all the passages to produce

the probability of the start position of the answer span βs:

Fs = Tanh
(
Ws[HRead

τ ; HRead
neg1

; ...; HRead
negn

] + bs ⊗ eV

)
,

βs = Softmax (wsFs) , (7.7)

where negn is the id of a sampled passage not containing ground-truth answer

during training; V is the total number of words in these passages; eV is thus

a V -dimension vector with ones; [·; ·] is the column concatenation operation;

Ws ∈ Rl×l and bs,ws ∈ Rl are the parameters to optimize; βs ∈ RV is the

probability of the start point of the span.

We similarly compute the probability of the ending position, βe ∈ RV , using

separate parameters We,be and we. The loss function can then be expressed

as follows:

L(ag|τ,q) = −log(βs
asτ

)− log(βe
aeτ

), (7.8)

where ag is the ground-truth answer; τ is sampled according to Eqn.(7.6), and

during training, we keep sampling until passage τ contains ag; βs
asτ

and βe
aeτ

represent the probability of the start and end positions of ag in passage τ .

Training We adopt joint training of Ranker and Reader as shown in Al-

gorithm 1. Since the Ranker makes a hard selection of the passage, it is

trained using the REINFORCE algorithm. The Reader is trained using stan-

dard SGD/backprop.

Our training objective is to minimize the following loss function

4Baseline method SR2, described in Experimental Settings.
5For computational efficency, we sample 10 passages during training, and make sure there

are at least 2 negative passages and as many positive passages as possible.
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Algorithm 1: Reinforced Ranker-Reader (R3)

1: Input: ag, q, passages from IR
2: Output: Θ
3: Initialize: Θ← pre-trained Θ with a baseline method4

4: for each q in dataset do
5: For question q, sample K passages from the top N passages retrieved

by IR model for training. 5

6: Randomly sample a positive passage τ ∼ π(τ |q)
7: Extract the answer arc through RC model
8: Get reward r according to R(ag, arc|τ).
9: Updating Ranker (ranking model) through policy gradient
r ∂
∂Θ

log(π(τ |q))
10: Updating Reader (RC model) through supervised gradient ∂

∂Θ
L(ag|τ,q)

11: end for

J(Θ) = −Eτ∼π(τ |q) [L(ag|τ,q)] , (7.9)

where L is the loss of the Reader defined in Eqn. (7.8); π(τ |q) is the action

policy defined in Eqn.(7.6); and Θ are parameters to be learned. During train-

ing, action sampling is limited solely to passages containing the ground-truth

answer, to guarantee Reader updating (line 10 in Algorithm 1) based on the

sampled passages with supervised gradients. The gradient of J(Θ) with respect

to Θ is:

∇ΘJ(Θ) = −∇Θ

∑
τ

π(τ |q)L(ag|τ,q)

= −
∑
τ

(L(ag|τ,q)∇Θπ(τ |q) + π(τ |q)∇ΘL(ag|τ,q))

= −Eτ∼π(τ |q) [L(ag|τ,q)∇Θ log(π(τ |q))

+ ∇ΘL(ag|τ,q)]

≈ −Eτ∼π(τ |q) [R(ag,arc|τ)∇Θ log(π(τ |q))

+ ∇ΘL(ag|τ,q)]

(7.10)

So in training, we first sample a passage τ according to the policy π(τ |q).

Then the Reader updates its parameters given the passage τ using standard

Backprop and the ranker updates its parameters via policy gradient using
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L(a|τ,q) as rewards. However, L(a|τ,q) is not bounded and introduces a

large variance in gradients (similar to what was reported in [54]). To address

this, we replace L(a|τ,q) with a bounded reward R(ag, arc|τ), which captures

how well the answer extracted by the Reader matches the ground-truth answer.

Specifically:

R(ag,arc|τ) =


2, if ag == arc

f1(ag,arc), else if ag ∩ arc! = ø

−1, else

(7.11)

where ag is the ground-truth answer; arc is the answer extracted by Reader;

f1(·, ·) ∈ [0, 1] computes word-level F1 score between two sequences. F1 is

used as reward when ag and arc share some words but do not exactly match.

We give a larger reward of 2 for exact match, and -1 reward for no overlap.

Prediction During testing, we combine the Ranker and Reader for answer

extraction as follows:

Pr(a, τ) = Pr(a|τ) Pr(τ) = e−L(a|τ,q)π(τ |q), (7.12)

where Pr(a, τ) is the probability of extracting the answer a from passage τ .

We select the answer with the largest Pr(a, τ) as the final prediction.

7.4 Experimental Settings

To evaluate our model we have chosen five challenging datasets under the

open-domain QA setting and three public baseline models.

7.4.1 Datasets

We experiment with five different datasets whose statistics are shown in Ta-

ble 7.2.
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Quasar-T is a dataset for SR-QA, with question-answer pairs from various

internet sources. Each question is compared to 100 sentence-level candidate

passages, retrieved by their IR model from the ClueWeb09 data source, to

extract the answer.

The other four datasets we consider are: SQuAD, the Stanford QA

dataset, from which we take only the question-answer pairs and discard the pas-

sages to form an open-domain QA setting (denoted as SQuADOPEN); Wiki-

Movies which contains movie-related questions from the OMDb and Movie-

Lens databases and where the questions can be answered using Wikipedia

pages; CuratedTREC, based on TREC [81] and designed for open-domain

QA; and WebQuestion which is designed for knowledge-base QA with an-

swers restricted to Freebase entities. For these four datasets under the open-

domain QA setting, no candidate passages are provided so we build a similar

sentence-level Search Index based on English Wikipedia, following [10]’s work.

To provide a small yet sufficient search space for our model, we employ a tradi-

tional IR method to retrieve relevant passages from the whole of Wikipedia. We

use the 2016-12-21 dump of English Wikipedia as our sole knowledge source,

and build an inverted index with Lucene6. We then take each input question as

a query to search for top-200 articles, rank them with BM25, and split them

into sentences. The sentences are then ranked by TF-IDF and the top-200

sentences for each question retained.

7.4.2 Baselines

We consider three public baseline models7: GA [22, 23], a gated-attention

reader for text comprehension; BiDAF [66], a reader with bidirectional atten-

tion flow for machine comprehension; and DrQA [10], a document reader for

question answering. We also compare our model R3 with two internal baselines:

6https://lucene.apache.org/
7We only compare to the results from the public papers.
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#q(train) #q(test) #p(train) #p(test)

Quasar-T 28496 3000 14.8 / 100 1.9 / 50
SQuADOPEN 82271 10570 35.1 / 200 2.3 / 50
WikiMovies 93935 9,952 68.5 / 200 1.8 / 50
CuratedTREC 1204 694 14.6 / 200 4.8 / 50
WebQuestion 3272 2,032 57.2 / 200 4.1 / 50

Table 7.2: Statistics of the datasets. #q represents the number of questions.
For the training dataset, we ignore the questions without any answer in all
the retrieved passages. In the special case that there’s only one answer for
the question, during training, we combine the question with the answer as the
query to improve IR recall. Otherwise we use only the question. #p represents
the number of passages and 14.8 / 100 means there are 14.8 passages containing
the answer on average out of the 100 passages. We use top50 passages retrieved
by the IR model for testing.

Single Reader (SR) This model is trained in the same way as [10] and [23].

We find all the answer spans that exactly match the ground-truth answers

from the retrieved passages and train the Reader using the objective of

Eqn.(7.8). Here τ is randomly sampled from [1, N ] instead of using Eqn.(7.6).

Simple Ranker-Reader (SR2) This Ranker-Reader model is trained by

combining the two different objective functions for the Single Reader and the

Ranker models together. In order to train the Ranker, we treat all the passages

that contain the ground-truth answer as positive cases and use the following

for the Ranker loss:

N∑
n=1

yn (log(yn)− log(γn)) , (7.13)

which is the KL divergence between γ computed through Eqn.(7.5) and a

probability vector y, where yi = 1/Np when the passage i contains the ground-

truth answer, and yi = 0/Np otherwise. Np is the total number of passages

which contain the ground-truth answer in the top-N passage list.
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Quasar-T SQuADOPEN WikiMovies CuratedTREC WebQtn
EM F1 EM F1 EM F1 EM F1 EM F1

GA [22] 26.4 26.4 - - - - - - - -
BiDAF [66] 25.9 28.5 - - - - - - - -
DrQA [10] - - 28.4 - 34.3 - 25.7 - 19.5 -

SR 31.5.2 38.5.2 26.9.2 35.4.2 37.7.1 38.8.1 27.4.4 33.6.6 15.2.3 22.0.2

SR2 31.9.2 38.8.2 27.2.2 35.8.2 38.1.1 33.4.6 27.7 .5 39.3.1 15.6.4 22.5.3

R3 34.2.3 40.9.3 29.1.2 37.5.2 38.8.1 39.9.1 28.4.6 34.3.6 17.1.3 24.6.3

DrQA-MTL - - 29.8 - 36.5 - 25.4 - 20.7 -
YodaQA - - - - - - 31.3 - 39.8 -

Table 7.3: Open-domain question answering results. SR: Single Reader; SR2:
Simple Ranker-Reader; R3: Reinforced Ranker-Reader; WebQtn: WebQues-
tions. The results show the average of 5 runs, with standard error in the super-
script. The CuratedTREC and WebQuestions models are initialized by train-
ing on SQuADOPEN first. On the bottom, YodaQA [3] and DrQA-MTL [10]
use additional resources (usage of KB for the former, and multiple training
datasets for the latter), so are not a true apple-to-apple comparison to the
other methods. EM: Exact Match.

7.4.3 Implementation Details

In order to increase the likelihood that question-related context will be con-

tained in the retrieved passages for the training dataset, if the answer is unique,

we combine the question with the answer to form the query for information

retrieval. For the testing dataset, we use only the question as a query and

collect the top 50 passages for answer extraction.

During training, our R3 model is first initialized by pre-training the model

using the Simple Ranker-Reader (R2), to encourage convergence. As discussed

earlier, the pre-processing and matching layers, Eqn.(7.1-7.3), are shared by

both Ranker and Reader. The number of LSTM layers in Eqn.(7.4) is set to 3

for the Reader and 1 for the Ranker.

Our model is optimized using Adamax [43]. We use fixed GloVe [59] word

embeddings. We set l to 300, batch size to 30, learning rate to 0.002 and tune

the dropout probability.
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7.5 Results and Analysis

In this section, we will show the performance of different models on five QA

datasets and offer further analysis.

7.5.1 Overall Results

Our results are shown in Table 7.3. We use F1 score and Exact Match (EM)

evaluation metrics8. We first observe that on Quasar-T, the Single Reader can

exceed state-of-the-art performance. Moreover, unlike DrQA, our models are

all trained using distant supervision and, without pre-training on the original

SQuAD dataset9, our Single Reader model still achieves better performance

on the WikiMovie and CuratedTREC datasets.

Next we observe that the Reinforced Ranker-Reader (R3) achieves the best

performance on the Quasar-T, WikiMovies, and CuratedTREC datests and

achieves significantly better performance than our internal baseline model Sim-

ple Ranker-Reader (SR2) on all datasets except CuratedTREC. These results

demonstrate the effectiveness of using RL to jointly train the Ranker and

Reader both as compared to competing approaches and the non-RL Ranker-

Reader baseline.

7.5.2 Further Analysis

In this subsection, we first present an analysis of the improvement of both

Ranker and Reader trained with our method, and then discuss ideas for

further improvement.

Quantitative Analysis First, we examine whether our RL approach could

8Evaluation tooling is from SQuAD [61].
9The performance of our Single Reader model on the original SQuAD dev set is F1 77.0,

EM 67.6 which is close to the BiDAF model, F1 77.3, EM 67.7 and DrQA model, F1 78.8,
EM 69.5.
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F1 EM

Single Reader (SR) 38.3 31.4
SR + Ranker (from SR2) 38.9 31.8
SR + Ranker (from R3) 40.0 33.1

SR2 38.7 31.9
R3 40.8 34.1

Table 7.4: Effects of rankers from SR2 and R3 (on Quasar-T test dataset).
Here we use the same single reader model (SR) as the reader, combined with
two different rankers. The performance of the two runs of SR2 and R3 (that
provide the rankers) is listed at bottom.

TOP-k F1 EM

Single Reader (SR) 1 38.3 31.4
Single Reader (SR) 3 51.7 43.7
Single Reader (SR) 5 58.7 49.2
SR + Ranker (from R3) 1 40.0 33.1

Table 7.5: Potential improvement on QA performance by improving the ranker.
The performance is based on the Quasar-T test dataset. The TOP-3/5 per-
formance is used to evaluate the further potential improvement by improving
rankers (see the “Potential Improvement” section).

help the Ranker overcome the absence of any ground-truth ranking score. To

control everything but the change in Ranker, we conduct two experiments

combining the same Single Reader with two different Rankers trained from

SR2 and R3, respectively. Table 7.4 shows the results on the Quasar-T test

dataset. Note that the Single Reader combined with the Ranker trained from

R3 model achieves an EM 1.3 higher performance than combined with the

Ranker from SR2 which treats all passages containing ground-truth answer as

positive cases. That means our proposed Ranker is better than the Ranker

normally trained in the distant supervision setting.

We also find that the performance of R3 can still achieve an EM 1.0 higher

than the Single Reader combined with the Ranker from R3 through Table 7.4.

In this setting, the Ranker is the same, while the Reader is trained differently.

We infer from this that our proposed methods R3 can not only improve the

Ranker but also the Reader.
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Q Apart from man what is New Zealand ’s only native mammals
A bats

Reinforced Ranker-Reader (R3) Simple Ranker-Reader (SR2)
P1 New Zealand has no native land

mammals apart from some rare
bats .

New Zealand ’s native species were
sitting ducks !

P2 New Zealand ’s native species were
sitting ducks !

1080 is a commonly used pesticide
since it is very effective on mammals
and New Zealand has no native land
mammals apart from two species of
bat .

P3 -LSB- edit -RSB- Fauna Bats were
the only mammals of New Zealand
until the arrival of humans .

Previously it had been thought that
bats were the only terrestrial mam-
mals native to New Zealand .

Table 7.6: An example of the answers extracted by the R3 and SR2 methods,
given the question. The words in bold are the extracted answers. The passages
are ranked by the highest score (Ranker+Reader) of the answer span in each
passage.

TOP-1 TOP-3 TOP-5

IR 19.7 36.3 44.3
Ranker from SR2 28.8 46.4 54.9
Ranker from R3 40.3 51.3 54.5

Table 7.7: The performance of Rankers (recall of the top-k ranked passages)
on the Quasar-T test dataset. This evaluation is simply based on whether the
ground-truth appears in the TOP-N passages. IR directly uses the ranking
score from raw dataset.

Potential Improvement We offer a statistical analysis to approximate the

upper bound achievable by only improving the ranking models. This is evalu-

ated by computing the QA performance with the best passage among the top-k

ranked passages. Specifically, for each question, we extract one answer from

each of the top-50 passages retrieved from the IR system, and take the top-k

answers with the highest scores according to Eqn.(7.12) from these. Based on

the k answer candidates, we compute the TOP-k F1/EM by evaluating on

the answer with highest F1/EM score for each question. This is equivalent

to having an oracle ranker that assigns a +∞ score to the passage (from the
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passages providing top-k candidates) yielding the best answer candidate.

Table 7.5 shows a clear gap between TOP-3/5 and TOP-1 QA perfor-

mances (over 12-20%). According to our evaluation approach of TOP-k

F1/EM and since the same SR model is used, this gap is solely due to the

oracle ranker. Although our model is far from the oracle performance, it still

provides a useful upper bound for improvement.

Ranker Performance Analysis Next we show the intermediate perfor-

mance of our method on the ranking step. Since we do not have the ground-

truth for the ranking task, we evaluate on pseudo labels: a passage is consid-

ered positive if it contains the ground-truth answer. Then a ranker’s top-k

output is considered accurate if any of the k passages contain the answer (i.e.

top-k recall). Note that this way of evaluation on top-1 is consistent with the

training objective of the ranker in SR2.

From the results in Table 7.7, the Ranker from R3 performs significantly

better than the one from SR2 on top-1 and top-3 performance, despite the

fact that it is not directly trained to optimize this pseudo accuracy. Given

the evaluation bias that favors the SR2, this indicates that our R3 model could

make Ranker training easier, compared to training on the objective in Eqn.7.13

with pseudo labels.

Starting from top-5, the Ranker from R3 gives slightly lower recall. This is

because the two Rankers have a similar ability to rank the potentially useful

passages in the top-5, but the evaluation bias benefits the SR2 Ranker. Overall,

our R3 could successfully rank the potentially more useful passages to the

highest positions (top 1-3), improving the overall QA performance.

An example in Table 7.6 illustrates the importance of ranking. The passages

on the left are from the R3 Ranker and the ones on the right from the SR2

Ranker. If SR2 ranked P2 or P3 higher, it could also have extracted the right

answer. In general, if passages that can entail the answer are ranked more
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accurately, both models could be improved.

7.6 Conclusion

We have proposed and evaluated R3, a new open-domain QA framework which

combines IR with a deep learning based Ranker and Reader. First the IR model

retrieves the top-N passages conditioned on the question. Then the Ranker and

Reader are trained jointly using reinforcement learning to directly optimize the

expectation of extracting the ground-truth answer from the retrieved passages.

Our framework achieves the best performance on several QA datasets.
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Chapter 8

Evidence Aggregation for

Answer Re-Ranking in

Open-Domain Question

Answering

For the model in the previous chapter, it can only make use a single passage

for answer extraction. In this chapter, we will combine the evidence across dif-

ferent passages to answer the question. Our model will further make use of the

combined evidence to re-rank the candidates generated by Reinforced Ranker-

Reader. And the textual sequence matching model is the key component of

our re-ranker.

8.1 Introduction

Open-domain question answering (QA) aims to answer questions from a broad

range of domains by effectively marshalling evidence from large open-domain

knowledge sources. Such resources can be Wikipedia [10], the whole web [27],

structured knowledge bases [5, 103] or combinations of the above [3]. Recent
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work on open-domain QA has focused on using unstructured text retrieved

from the web to build machine comprehension models [10, 23, 90]. These stud-

ies adopt a two-step process: an information retrieval (IR) model to coarsely

select passages relevant to a question, followed by a reading comprehension

(RC) model [88, 66, 10] to infer an answer from the passages. These studies

have made progress in bringing together evidence from large data sources, but

they predict an answer to the question with only a single retrieved passage at

a time. However, answer accuracy can often be improved by using multiple

passages. In some cases, the answer can only be determined by combining

multiple passages.

In this chapter, we propose a method to improve open-domain QA by

explicitly aggregating evidence from across multiple passages. Our method is

inspired by two notable observations from previous open-domain QA results

analysis:

• First, compared with incorrect answers, the correct answer is often sug-

gested by more passages repeatedly. For example, in Figure 8.1(a), the

correct answer “danny boy” has more passages providing evidence relevant

to the question compared to the incorrect one. This observation can be seen

as multiple passages collaboratively enhancing the evidence for the correct

answer.

• Second, sometimes the question covers multiple answer aspects, which

spreads over multiple passages. In order to infer the correct answer, one

has to find ways to aggregate those multiple passages in an effective yet

sensible way to try to cover all aspects. In Figure 8.1(b), for example, the

correct answer “Galileo Galilei” at the bottom has passages P1, “Galileo was

a physicist ...” and P2, “Galileo discovered the first 4 moons of Jupiter”,

mentioning two pieces of evidence to match the question. In this case,

the aggregation of these two pieces of evidence can help entail the ground-
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Question1: What is the more popular name for the 
londonderry air？

A1: tune from county
P1: the best known title for this melody is londonderry air -
lrb- sometimes also called the tune from county derry -rrb- .

A2: danny boy

P1: londonderry air words : this melody is more commonly 
known with the words `` danny boy ''

P2: londonderry air danny boy music ftse london i love you .

P3: danny boy limavady is most famous for the tune 
londonderry air collected by jane ross in the mid-19th century 
from a local fiddle player .

P4: it was here that jane ross noted down the famous 
londonderry air -lrb- ` danny boy ' -rrb- from a passing fiddler .

Question2: Which physicist , mathematician and astronomer 
discovered the first 4 moons of Jupiter 

P1: Sir Isaac Newton was an English physicist , mathematician , 
astronomer , natural philosopher , alchemist and theologian …
P2: Sir Isaac Newton was an English mathematician, astronomer, and 
physicist who is widely recognized as one of the most influential 
scientists …

A1: Isaac Newton

Question2: Which physicist , mathematician and astronomer 
discovered the first 4 moons of Jupiter 

P1: Galileo Galilei was an Italian physicist , mathematician , 
astronomer , and philosopher who played a major role in the Scientific 
Revolution .
P2: Galileo Galilei is credited with discovering the first four moons 
of Jupiter .

A2: Galileo Galilei

(a) (b)

Figure 8.1: Two examples of questions and candidate answers. (a) A question
benefiting from the repetition of evidence. Correct answer A2 has multiple passages
that could support A2 as answer. The wrong answer A1 has only a single supporting
passage. (b) A question benefiting from the union of multiple pieces of evidence to
support the answer. The correct answer A2 has evidence passages that can match
both the first half and the second half of the question. The wrong answer A1 has
evidence passages covering only the first half.

truth answer “Galileo Galilei”. In comparison, the incorrect answer “Isaac

Newton” has passages providing partial evidence on only “physicist, math-

ematician and astronomer”. This observation illustrates the way in which

multiple passages may provide complementary evidence to better infer

the correct answer to a question.

To provide more accurate answers for open-domain QA, we hope to make

better use of multiple passages for the same question by aggregating both

the strengthened and the complementary evidence from all the passages. We

formulate the above evidence aggregation as an answer re-ranking problem.

Re-ranking has been commonly used in NLP problems, such as in parsing and

translation, in order to make use of high-order or global features that are too

expensive for decoding algorithms [18, 67, 39, 25]. Here we apply the idea of

re-ranking; for each answer candidate, we efficiently incorporate global infor-

mation from multiple pieces of textual evidence without significantly increasing

the complexity of the prediction of the RC model. Specifically, we first collect

the top-K candidate answers based on their probabilities computed by a stan-
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dard RC/QA system, and then we use two proposed re-rankers to re-score the

answer candidates by aggregating each candidate’s evidence in different ways.

The re-rankers are:

• A strength-based re-ranker , which ranks the answer candidates accord-

ing to how often their evidence occurs in different passages. The re-ranker

is based on the first observation if an answer candidate has multiple pieces

of evidence, and each passage containing some evidence tends to predict the

answer with a relatively high score (although it may not be the top score),

then the candidate is more likely to be correct. The passage count of each

candidate, and the aggregated probabilities for the candidate, reflect how

strong its evidence is, and thus in turn suggest how likely the candidate is

the corrected answer.

• A coverage-based re-ranker , which aims to rank an answer candidate

higher if the union of all its contexts in different passages could cover more

aspects included in the question. To achieve this, for each answer we con-

catenate all the passages that contain the answer together. The result is a

new context that aggregates all the evidence necessary to entail the answer

for the question. We then treat the new context as one sequence to represent

the answer, and build an attention-based match-LSTM model [88] between

the sequence and the question to measure how well the new aggregated

context could entail the question.

Overall, our contributions are as follows: 1) We propose a re-ranking-based

framework to make use of the evidence from multiple passages in open-domain

QA, and two re-rankers, namely, a strength-based re-ranker and a coverage-

based re-ranker, to perform evidence aggregation in existing open-domain QA

datasets. We find the second re-ranker performs better than the first one on two

of the three public datasets. 2) Our proposed approach leads to the state-of-

the-art results on three different datasets (Quasar-T [23], SearchQA [24] and
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TriviaQA [40]) and outperforms previous state of the art by large margins.

In particular, we achieved up to 8% improvement on F1 on both Quasar-T and

SearchQA compared to the previous best results.

8.2 Method

Given a question q, we are trying to find the correct answer ag to q using

information retrieved from the web. Our method proceeds in two phases. First,

we run an IR model (with the help of a search engine such as google or bing)

to find the top-N web passages p1, p2, . . . , pN most related to the question.

Then a reading comprehension (RC) model is used to extract the answer from

these passages. This setting is different from standard reading comprehension

tasks (e.g. [61]), where a single fixed passage is given, from which the answer is

to be extracted. When developing a reading comprehension system, we can use

the specific positions of the answer sequence in the given passage for training.

By contrast, in the open-domain setting, the RC models are usually trained

under distant supervision [10, 23, 40]. Specifically, since the training data does

not have labels indicating the positions of the answer spans in the passages,

during the training stage, the RC model will match all passages that contain

the ground-truth answer with the question one by one. In this chapter we

apply an existing RC model called R3 [90] to extract these candidate answers.

After the candidate answers are extracted, we aggregate evidence from

multiple passages by re-ranking the answer candidates. Given a question q,

suppose we have a baseline open-domain QA system that can generate the

top-K answer candidates a1, . . . , aK , each being a text span in some passage

pi. The goal of the re-ranker is to rank this list of candidates so that the top-

ranked candidates are more likely to be the correct answer ag. With access

to these additional features, the re-ranking step has the potential to prioritize

answers not easily discoverable by the base system alone. We investigate two
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Figure 8.2: An overview of the full re-ranker. It consists of strength-based and
coverage-based re-ranking.

re-ranking strategies based on evidence strength and evidence coverage. An

overview of our method is shown in Figure 8.2.

8.2.1 Evidence Aggregation for Strength-based Re-

ranker

In open-domain QA, unlike the standard RC setting, we have more passages

retrieved by the IR model and the ground-truth answer may appear in different

passages, which means different answer spans may correspond to the same

answer. To exploit this property, we provide two features to further re-rank

the top-K answers generated by the RC model.

Measuring Strength by Count This method is based on the hypothesis

that the more passages that entail a particular answer, the stronger the evi-

dence for that answer and the higher it should be ranked. To implement this

we count the number of occurrences of each answer in the top-K answer spans

generated by the baseline QA model and return the answer with the highest
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count.

Measuring Strength by Probability Since we can get the probability of

each answer span in a passage based on the RC model, we can also sum up

the probabilities of the answer spans that are referring to the same answer. In

this method, the answer with the highest probability is the final prediction 1.

In the re-ranking scenario, it is not necessary to exhaustively consider all the

probabilities of all the spans in the passages, as there may be a large number

of different answer spans and most of them are irrelevant to the ground-truth

answer.

Remark: Note that neither of the above methods require any training. Both

just take the candidate predictions from the baseline QA system and perform

counting or probability calculations. At test time, the time complexity of

strength-based re-ranking is negligible.

8.2.2 Evidence Aggregation for Coverage-based Re-

ranker

Consider Figure 8.1 where the two answer candidates both have evidence

matching the first half of the question. Note that only the correct answer

has evidence that could also match the second half. In this case, the strength-

based re-ranker will treat both answer candidates the same due to the equal

amount of supporting evidence, while the second answer has complementary

evidence satisfying all aspects of the question. To handle this case, we propose

a coverage-based re-ranker that ranks the answer candidates according to how

well the union of their evidence from different passages covers the question.

In order to take the union of evidence into consideration, we first concate-

nate the passages containing the answer into a single “pseudo passage” then

1This is an extension of the Attention Sum method in [41] from single-token answers to
phrase answers.
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measure how well this passage entails the answer for the question. As in the

examples shown in Figure 8.1(b), we hope the textual entailment model will

reflect (i) how each aspect of the question is matched by the union of multiple

passages; and (ii) whether all the aspects of the question can be matched by the

union of multiple passages. In our implementation an “aspect” of the question

is a hidden state of a bi-directional LSTM [37]. The match-LSTM [86] model

is one way to achieve the above effect in entailment. Therefore we build our

coverage-based re-ranker on top of the concatenated pseudo passages using the

match-LSTM. The detailed method is described below.

Passage Aggregation We consider the top-K answers, a1, . . . , aK , provided

by the baseline QA system. For each answer ak, k ∈ [1, K], we concatenate

all the passages that contain ak, {pn|ak ∈ pn, n ∈ [1, N ]}, to form the union

passage p̂k. Our further model is to identify which union passage, e.g., p̂k,

could better entail its answer, e.g., ak, for the question.

Measuring Aspect(Word)-Level Matching As discussed earlier, the first

mission of the coverage-based re-ranker is to measure how each aspect of the

question is matched by the union of multiple passages. We achieve this with

word-by-word attention followed by a comparison module.

First, we write the answer candidate a, question q and the union passage

p̂ of a as matrices A,Q, P̂, with each column being the embedding of a word

in the sequence. We then feed them to the bi-directional LSTM as follows:

Ha = BiLSTM(A), Hq = BiLSTM(Q), Hp = BiLSTM(P̂), (8.1)

where Ha ∈ Rl×A , Hq ∈ Rl×Q and Hp ∈ Rl×P are the hidden states for

the answer candidate, question and passage respectively; l is the dimension

of the hidden states, and A, Q and P are the length of the three sequences,

respectively.
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Next, we enhance the question representation Hq with Ha:

Haq = [Ha; Hq], (8.2)

where [·; ·] is the concatenation of two matrices in row and Haq ∈ Rl×(A+Q). As

most of the answer candidates do not appear in the question, this is for better

matching with the passage and finding more answer-related information from

the passage.2 Now we can view each aspect of the question as a column vector

(i.e. a hidden state at each word position in the answer-question concatena-

tion) in the enhanced question representation Haq. Then the task becomes to

measure how well each column vector can be matched by the union passage;

and we achieve this by computing the attention vector [58] for each hidden

state of sequences a and q as follows:

α = SoftMax
(
(Hp)THaq

)
, H

aq
= Hpα, (8.3)

where α ∈ RP×(A+Q) is the attention weight matrix which is normalized in

column through softmax. H
aq ∈ Rl×(A+Q) are the attention vectors for each

word of the answer and the question by weighted summing all the hidden states

of the passage p̂. Now in order to see whether the aspects in the question can

be matched by the union passage, we use the following matching function:

M = ReLU


Wm



Haq
⊙

H
aq

Haq −H
aq

Haq

H
aq


+ bm ⊗ e(A+Q)


, (8.4)

2Besides concatenating Hq with Ha, there are other ways to make the matching process
be aware of an answer’s positions in the passage, e.g. replacing the answer spans in the
passage to a special token like in [100]. We tried this approach, which gives similar but no
better results, so we keep the concatenation in this chapter. We leave the study of the better
usage of answer position information for future work.
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where · ⊗ e(A+Q) is to repeat the vector (or scalar) on the left A + Q times;

(·
⊙
·) and (·−·) are the element-wise operations for checking whether the word

in the answer and question can be matched by the evidence in the passage.

We also concatenate these matching representations with the hidden state

representations Haq and H
aq

, so that the lexical matching representations are

also integrated into the the final aspect-level matching representations3 M ∈

R2l×(A+Q), which is computed through the non-linear transformation on four

different representations with parameters Wm ∈ R2l×4l and bm ∈ Rl.

Measuring the Entire Question Matching Next, in order to measure

how the entire question is matched by the union passage p̂ by taking into con-

sideration of the matching result at each aspect, we add another bi-directional

LSTM on top of it to aggregate the aspect-level matching information 4:

Hm = BiLSTM(M), hs = MaxPooling(Hm), (8.5)

where Hm ∈ Rl×(A+Q) is to denote all the hidden states and hs ∈ Rl, the

max of pooling of each dimension of Hm, is the entire matching representation

which reflects how well the evidences in questions could be matched by the

union passage.

Re-ranking Objective Function Our re-ranking is based on the entire

matching representation. For each candidate answer ak, k ∈ [1, K], we can get

a matching representation hs
k between the answer ak, question q and the union

passage p̂k through Eqn. (8.1-8.5). Then we transform all representations into

3Concatenating Haq and H
aq

could help the question-level matching (see Eq. 8.4 in the
next paragraph) by allowing the BiLSTM learn to distinguish the effects of the element-wise
comparison vectors with the original lexical information. If we only use the element-wise
comparison vectors, the model may not be able to know what the matched words/contexts
are.

4Note that we use LSTM here to capture the conjunction information (the dependency)
among aspects, i.e. how all the aspects are jointly matched. In comparison simple pooling
methods will treat the aspects independently. Low-rank tensor inspired neural architectures
(e.g., [48]) could be another choice and we will investigate them in future work.
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scalar values followed by a normalization process for ranking:

R = Tanh (Wr[hs
1; hs

2; ...; hs
K ] + br ⊗ eK) , o = Softmax(woR + bo ⊗ eK),

(8.6)

where we concatenate the match representations for each answer in row

through [·; ·], and do a non-linear transformation by parameters Wr ∈ Rl×l

and br ∈ Rl to get hidden representation R ∈ Rl×K . Finally, we map the

transformed matching representations into scalar values through parameters

wo ∈ Rl and wo ∈ R. o ∈ RK is the normalized probability for the candidate

answers to be ground-truth. Due to the aliases of the ground-truth answer,

there may be multiple answers in the candidates are ground-truth, we use KL

distance as our objective function:

K∑
k=1

yk (log(yk)− log(ok)) , (8.7)

where yk indicates whether ak the ground-truth answer or not and is normalized

by
∑K

k=1 yk and ok is the ranking output of our model for ak.

8.2.3 Combination of Different Types of Aggregations

Although the coverage-based re-ranker tries to deal with more difficult cases

compared to the strength-based re-ranker, the strength-based re-ranker works

on more common cases according to the distributions of most open-domain

QA datasets. We can try to get the best of both worlds by combining the two

approaches. The full re-ranker is a weighted combination of the outputs of

the above different re-rankers without further training. Specifically, we first use

softmax to re-normalize the top-5 answer scores provided by the two strength-

based rankers and the one coverage-based re-ranker; we then weighted sum up

the scores for the same answer and select the answer with the largest score as
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the final prediction.

8.3 Experimental Settings

We conduct experiments on three publicly available open-domain QA datasets,

namely, Quasar-T [23], SearchQA [24] and TriviaQA [40]. These datasets

contain passages retrieved for all questions using a search engine such as Google

or Bing. We do not retrieve more passages but use the provided passages only.

8.3.1 Datasets

The statistics of the three datasets are shown in Table 8.1.

Quasar-T 5 [23] is based on a trivia question set. The data set makes use

of the “Lucene index” on the ClueWeb09 corpus. For each question, 100 unique

sentence-level passages were collected. The human performance is evaluated in

an open-book setting, i.e., the human subjects had access to the same passages

retrieved by the IR model and tried to find the answers from the passages.

SearchQA 6 [24] is based on Jeopardy! questions and uses Google to

collect about 50 web page snippets as passages for each question. The human

performance is evaluated in a similar way to the Quasar-T dataset.

TriviaQA (Open-Domain Setting) 7 [40] collected trivia questions com-

ing from 14 trivia and quiz-league websites, and makes use of the Bing Web

search API to collect the top 50 webpages most related to the questions. We

focus on the open domain setting (the unfiltered passage set) of the dataset 8

and our model uses all the information retrieved by the IR model.

5https://github.com/bdhingra/quasar
6https://github.com/nyu-dl/SearchQA
7http://nlp.cs.washington.edu/triviaqa/data/triviaqa-unfiltered.tar.gz
8Despite the open-domain QA data provided, the leaderboard of TriviaQA focuses on

evaluation of RC models over filtered passages that is guaranteed to contain the correct
answers (i.e. more like closed-domain setting). The evaluation is also passage-wise, different
from the open-domain QA setting.
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#q(train) #q(dev) #q(test) #p #p(truth) #p(aggregated)

Quasar-T 28,496 3,000 3,000 100 14.8 5.2
SearchQA 99,811 13,893 27,247 50 16.5 5.4
TriviaQA 66,828 11,313 10,832 100 16.0 5.6

Table 8.1: Statistics of the datasets. #q represents the number of ques-
tions for training (not counting the questions that don’t have ground-truth
answer in the corresponding passages for training set), development, and test-
ing datasets. #p is the number of passages for each question. For TriviaQA, we
split the raw documents into sentence level passages and select the top 100 pas-
sages based on the its overlaps with the corresponding question. #p(golden)
means the number of passages that contain the ground-truth answer in aver-
age. #p(aggregated) is the number of passages we aggregated in average for
top 10 candidate answers provided by RC model.

8.3.2 Baselines

Our baseline models 9 include the following: GA [22, 23], a reading comprehen-

sion model with gated-attention; BiDAF [66], a RC model with bidirectional

attention flow; AQA [8], a reinforced system learning to aggregate the answers

generated by the re-written questions; R3 [90], a reinforced model making use

of a ranker for selecting passages to train the RC model. As R3 is the first

step of our system for generating candidate answers, the improvement of our

re-ranking methods can be directly compared to this baseline.

TriviaQA does not provide the leaderboard under the open-domain setting.

As a result, there is no public baselines in this setting and we only compare

with the R3 baseline.10

9 Most of the results of different models come from the public paper. While we re-run
model R3 [90] based on the authors’ source code and extend the model to the datasets of
SearchQA and TriviaQA datasets.

10To demonstrate that R3 serves as a strong baseline on the TriviaQA data, we generate
the R3 results following the leaderboard setting. The results showed that R3 achieved F1
56.0, EM 50.9 on Wiki domain and F1 68.5, EM 63.0 on Web domain, which is competitive
to the state-of-the-arts. This confirms that R3 is a competitive baseline when extending the
TriviaQA questions to open-domain setting.
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8.3.3 Implementation Details

We first use a pre-trained R3 model [90], which gets the state-of-the-art per-

formance on the three public datasets we consider, to generate the top 50

candidate spans for the training, development and test datasets, and we use

them for further ranking. During training, if the ground-truth answer does

not appear in the answer candidates, we will manually add it into the answer

candidate list.

For the coverage-based re-ranker, we use Adam [43] to optimize the model.

Word embeddings are initialized by GloVe [59] and are not updated during

training. We set all the words beyond Glove as zero vectors. We set l to 300,

batch size to 30, learning rate to 0.002. We tune the dropout probability from

0 to 0.5 and the number of candidate answers for re-ranking (K) in [3, 5, 10] 11.

8.4 Results and Analysis

In this section, we present results and analysis of our different re-ranking meth-

ods on the three different public datasets.

8.4.1 Overall Results

The performance of our models is shown in Table 8.2. We use F1 score and

Exact Match (EM) as our evaluation metrics 12. From the results, we can

clearly see that the full re-ranker, the combination of different re-rankers,

significantly outperforms the previous best performance by a large margin,

especially on Quasar-T and SearchQA. Moreover, our model is much better

than the human performance on the SearchQA dataset. In addition, we see

that our coverage-based re-ranker achieves consistently good performance on

the three datasets, even though its performance is marginally lower than the

11Our code will be released under https://github.com/shuohangwang/mprc.
12Our evaluation is based on the tool from SQuAD [61].
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Quasar-T SearchQA TriviaQA
EM F1 EM F1 EM F1

GA [22] 26.4 26.4 - - - -
BiDAF [66] 25.9 28.5 28.6 34.6 - -
AQA [8] - - 40.5 47.4 - -
R3 [90] 35.3 41.7 49.0 55.3 47.3 53.7

Baseline Re-Ranker (BM25) 33.6 45.2 51.9 60.7 44.6 55.7

Our Full Re-Ranker 42.3 49.6 57.0 63.2 50.6 57.3
Strength-Based Re-Ranker (Probability) 36.1 42.4 50.4 56.5 49.2 55.1
Strength-Based Re-Ranker (Counting) 37.1 46.7 54.2 61.6 46.1 55.8
Coverage-Based Re-Ranker 40.6 49.1 54.1 61.4 50.0 57.0

Human Performance 51.5 60.6 43.9 - - -

Table 8.2: Experiment results on three open-domain QA test datasets: Quasar-
T, SearchQA and TriviaQA (open-domain setting). EM: Exact Match. Full
Re-ranker is the combination of three different re-rankers.

strength-based re-ranker on the SearchQA dataset.

8.4.2 Analysis

In this section, we analyze the benefits of our re-ranking models.

BM25 as an alternative coverage-based re-ranker We use the classical

BM25 retrieval model [63] to re-rank the aggregated passages the same way

as the coverage-based re-ranker, where the IDF values are first computed from

the raw passages before aggregation. From the results in Table 8.2, we see

that the BM25-based re-ranker improves the F1 scores compared with the R3

model, but it is still lower than our coverage-based re-ranker with neural net-

work models. Moreover, with respect to EM scores, the BM25-based re-ranker

sometimes gives lower performance. We hypothesize that there are two reasons

behind the relatively poor performance of BM25. First, because BM25 relies

on a bag-of-words representation, context information is not taken into consid-

eration and it cannot model the phrase similarities. Second, shorter answers

tend to be preferred by BM25. For example, in our method of constructing

pseudo-passages, when an answer sequence A is a subsequence of another an-
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Figure 8.3: Performance decomposition according to the length of answers and
the question types.

swer sequence B, the pseudo passage of A is always a superset of the pseudo

passage of B that could better cover the question. Therefore the F1 score

could be improved but the EM score sometimes becomes worse.

Re-ranking performance versus answer lengths and question types

Figure 8.3 decomposes the performance according to the length of the ground

truth answers and the types of questions on TriviaQA and Quasar-T. We do not

include the analysis on SearchQA because, for the Jeopardy! style questions,

it is more difficult to distinguish the questions types, and the range of answer

lengths is narrower.

Our results show that the coverage-based re-ranker outperforms the base-

line in different lengths of answers and different types of questions. The

strength-based re-ranker (counting) also gives improvement but is less sta-

ble across different datasets, while the strength-based re-ranker (probability)

tends to have results and trends that are close to the baseline curves, which is

probably because the method is dominated by the probabilities predicted by
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Quasar-T SearchQA TriviaQA (open)
Top-K EM F1 EM F1 EM F1

1 35.1 41.6 51.2 57.3 47.6 53.5
3 46.2 53.5 63.9 68.9 54.1 60.4
5 51.0 58.9 69.1 73.9 58.0 64.5
10 56.1 64.8 75.5 79.6 62.1 69.0

Table 8.3: The upper bound (recall) of the Top-K answer candidates generated
by the baseline R3 system (on dev set), which indicates the potential of the
coverage-based re-ranker.

the baseline.

The coverage-based re-ranker and the strength-based re-ranker (counting)

have similar trends on most of the question types. The only exception is

that the strength-based re-ranker performs significantly worse compared to

the coverage-based re-ranker on the “why” questions. This is possibly because

those questions usually have non-factoid answers, which are less likely to have

exactly the same text spans predicted on different passages by the baseline.

Potential improvement of re-rankers Table 8.3 shows the percentage of

times the correct answer is included in the top-K answer predictions of the

baseline R3 method. More concretely, the scores are computed by selecting

the answer from the top-K predictions with the best EM/F1 score. Therefore

the final top-K EM and F1 can be viewed as the recall or an upper bound of

the top-K predictions. From the results, we can see that although the top-1

prediction of R3 is not very accurate, there is high probability that a top-K

list with small K could cover the correct answer. This explains why our re-

ranking approach achieves large improvement. Also by comparing the upper

bound performance of top-5 and our re-ranking performance in Table 8.2, we

can see there is still a clear gap of about 10% on both datasets and on both F1

and EM, showing the great potential improvement for the re-ranking model in

future work.
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Re-Ranker Results Upper Bound
Candidate Set EM F1 EM F1

top-3 40.5 47.8 46.2 53.5
top-5 41.8 50.1 51.0 58.9
top-10 41.3 50.8 56.1 64.8

Table 8.4: Results of running coverage-based re-ranker on different number of
the top-K answer candidates on Quasar-T (dev set).

Effect of the selection of K for the coverage-based re-ranker As

shown in Table 8.3, as K ranges from 1 to 10, the recall of top-K predictions

from the baseline R3 system increases significantly. Ideally, if we use a larger

K, then the candidate lists will be more likely to contain good answers. At

the same time, the lists to be ranked are longer thus the re-ranking problem is

harder. Therefore, there is a trade-off between the coverage of rank lists and

the difficulty of re-ranking; and selecting an appropriate K becomes impor-

tant. Table 8.4 shows the effects of K on the performance of coverage-based

re-ranker. We train and test the coverage-based re-ranker on the top-K pre-

dictions from the baseline, where K ∈ {3, 5, 10}. The upper bound results

are the same ones from Table 8.3. The results show that when K is small,

like K=3, the performance is not very good due to the low coverage (thus low

upper bound) of the candidate list. With the increase of K, the performance

becomes better, but the top-5 and top-10 results are on par with each other.

This is because the higher upper bound of top-10 results counteracts the harder

problem of re-ranking longer lists. Since there is no significant advantage of

the usage of K=10 while the computation cost is higher, we report all testing

results with K=5.

Effect of the selection of K for the strength-based re-ranker Sim-

ilar to Table 8.4, we conduct experiments to show the effects of K on the

performance of the strength-based re-ranker. We run the strength-based re-

ranker (counting) on the top-K predictions from the baseline, where K ∈
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Re-Ranker Results Upper Bound
Candidate Set EM F1 EM F1

top-10 37.9 46.1 56.1 64.8
top-50 37.8 47.8 64.1 74.1
top-100 36.4 47.3 66.5 77.1
top-200 33.7 45.8 68.7 79.5

Table 8.5: Results of running strength-based re-ranker (counting) on different
number of top-K answer candidates on Quasar-T (dev set).

{10, 50, 100, 200}. We also evaluate the upper bound results for these Ks.

Note that the strength-based re-ranker is very fast and the different values of

K do not affect the computation speed significantly compared to the other QA

components.

The results are shown in Table 8.5, where we achieve the best results when

K=50. The performance drops significantly when K increases to 200. This

is because the ratio of incorrect answers increases notably, making incorrect

answers also likely to have high counts. When K is smaller, such incorrect

answers appear less because statistically they have lower prediction scores.

We report all testing results with K=50.

Examples Table 8.6 shows an example from Quasar-T where the re-ranker

successfully corrected the wrong answer predicted by the baseline. This is a

case where the coverage-based re-ranker helped: the correct answer “Sesame

Street” has evidence from different passages that covers the aspects “Emmy

Award” and “children ’s television shows”. Although it still does not fully

match all the facts in the question, it still helps to rank the correct answer

higher than the top-1 prediction “Great Dane” from the R3 baseline, which

only has evidence covering “TV ” and “1969 ” in the question.
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Q: Which children ’s TV programme , which first appeared in November
1969 , has won a record 122 Emmy Awards in all categories ?

A1: Great Dane A2: Sesame Street
P1 The world ’s most famous Great

Dane first appeared on television
screens on Sept. 13 , 1969 .

P1: In its long history , Sesame Street
has received more Emmy Awards
than any other program , ...

P2 premiered on broadcast televi-
sion ( CBS ) Saturday morning
, Sept. 13 , 1969 , ... yet beloved
great Dane .

P2: Sesame Street ... is recognized
as a pioneer of the contemporary
standard which combines educa-
tion and entertainment in chil-
dren ’s television shows .

Table 8.6: An example from Quasar-T dataset. The ground-truth answer is
”Sesame Street”. Q: question, A: answer, P: passages containing corresponding
answer.

8.5 Conclusions

We have observed that open-domain QA can be improved by explicitly combin-

ing evidence from multiple retrieved passages. We experimented with two types

of re-rankers, one for the case where evidence is consistent and another when

evidence is complementary. Both re-rankers helped to significantly improve our

results individually, and even more together. Our results considerably advance

the state-of-the-art on three open-domain QA datasets.

Although our proposed methods achieved some successes in modeling the

union or co-occurrence of multiple passages, there are still much harder prob-

lems in open-domain QA that require reasoning and commonsense inference

abilities. In future work, we will explore the above directions, and we believe

that our proposed approach could be potentially generalized to these more

difficult multi-passage reasoning scenarios.
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Chapter 9

Conclusion

In conclusion, this thesis consists of three major parts: (I). General textual

sequence matching models; and their applications to (II). machine reading

comprehension and (III). open-domain question answering. By integrating our

sequence matching model to question answering systems, we achieved state-

of-the-art performance on a number of benchmark QA datasets: SQuAD, MS-

MARCO, RACE, SearchQA, Qusar, TriviaQA, InsuranceQA, WikiQA etc..

And we can also see that sequence matching model plays a key role to solve

the QA tasks. However, even though most of the question answering can be

converted to a sequence matching problem, the model still couldn’t understand

the language.

In the future work, I would like to focus more on integrating more general

knowledge into the model. The simplest way can be just integrating the human

crafted knowledge base, such as WordNet etc., but I still believe we can’t

label all the knowledge by ourselves. We need some unsupervised methods to

help us extract it automatically. The success of ELMo [60] and BERT [21] is

one way to address this issue. I’ll also have some further exploration in this

area. Another direction that might be also important for question answering

is the reasoning component. For now, most of the models are usually based

on the matching model and the attention mechanism, but not be able to do
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complicated reasoning. In my future work, I would also like to have some

further exploration on the memory/cache based model to enhance the ability

of machine reasoning.
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