
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

8-2018

Secure enforcement of isolation policy on multicore platforms Secure enforcement of isolation policy on multicore platforms

with virtualization techniques with virtualization techniques

Siqi ZHAO
Singapore Management University, siqi.zhao.2013@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Databases and Information Systems Commons

Citation Citation
ZHAO, Siqi. Secure enforcement of isolation policy on multicore platforms with virtualization techniques.
(2018).
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/184

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Secure Enforcement of Isolation Policy on Multicore
Platforms with Virtualization Techniques

SIQI ZHAO

SINGAPORE MANAGEMENT UNIVERSITY
2018

Secure Enforcement of Isolation Policy on Multicore
Platforms with Virtualization Techniques

by
Siqi Zhao

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Xuhua DING (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Debin GAO (Co-supervisor)
Associate Professor of Information Systems
Singapore Management University

Robert DENG Huijie
Professor of Information Systems
Singapore Management University

Jianying ZHOU
Professor of Cyber Security
Singapore University of Technology and Design

Singapore Management University
2018

Copyright (2018) Siqi Zhao

Secure Enforcement of Isolation Policy on Multicore
Platforms with Virtualization Techniques

Siqi Zhao

Abstract

A number of virtualization based systems have been proposed in the literature as

an effective measure against the adversaries with the kernel privilege. However,

under a systematic analysis, such systems exhibit vulnerabilities that can still be

exploited by such an attacker with the kernel privilege. The fundamental reason is

that there is an inherent incompatibility between the tamper-proof requirement and

the complete mediation requirement of the reference monitor model. The incom-

patibility manifests in the virtualization based systems in the form of a discrepancy

between the enforcement capability demanded by the high-level policy and the one

achievable through the system design approach mandated by the low-level hardware

enforcement mechanism.

The scenario is further complicated by an implicit assumption in existing works,

which is that the underlying platform is single-threaded. This assumption is becom-

ing increasingly distant from the real-world computing landscape where multi-core

machines have become ubiquitous. With the broken assumption, the adversarial

threads running on other cores gain capabilities that are not possible on uni-core

platforms and are possible to launch new attacks.

In this work, the existing systems are firstly examined in a systematic manner.

The consequences and implications of the aforementioned discrepancy are shown

by dissecting and examining existing systems’ high-level security goals and design

details of leveraging the hardware enforcement mechanism. Meanwhile, the issues

caused by concurrent execution on multicore platforms are presented. Two concrete

attacks are shown as the examples of the complications of the multicore scenario.

In light of the issues, Fully Isolated Micro-Computing Environment (FIMCE)

is proposed. FIMCE addresses the issues revealed in the analysis by managing in-

volvement of semantics from the kernel. It encloses a complete set of resources

needed by a program. FIMCE also features great flexibility and can be tailored to

various applications. Built on top of this environment, Immersive Execution Envi-

ronment (ImEE) is presented. ImEE is designed for efficient introspection through

consistent address space mappings. In the ImEE’s design, an isolated environment

is equipped with tweaked address mappings. It directly reuses the page tables of a

target VM and synchronizes the root of the page tables with the target VM. As a

result, the target VM cannot present fake address mappings to the introspection tool

to mislead the results.

Table of Contents

1 Introduction 1

1.1 Overview . 1

1.1.1 Adversaries with Kernel Privilege 2

1.1.2 Virtualization-based Systems 4

1.1.3 Issues and Research Objectives 5

1.2 Threat Model . 8

1.3 Security Policy Enforcement . 8

1.4 Enforcing Isolation Policy on Multicore Platforms 10

1.5 Consistent Virtual Machine Introspection 11

1.6 Background . 12

1.6.1 Address Translation in Virtualization 12

1.6.2 Memory Access in SMP Systems 14

1.7 Organization . 15

2 Related Work 16

2.1 Trusted Execution Environment 16

2.2 Kernel Integrity . 18

2.3 Mapping Redirection . 19

2.4 Event Trap . 19

2.5 Auxiliary Uses . 20

2.6 Virtual Machine Introspection . 20

2.6.1 In-VM Introspection . 21

i

2.6.2 Out-of-VM Introspection 21

2.7 Isolation With Other Techniques 22

3 An Analysis of Effectiveness of the Existing Virtualization-based Schemes 24

3.1 A Model of the Enforcement Systems 25

3.1.1 Conflict Between Tamper-Proof and Complete Mediation . . 27

3.1.2 The Inference Gap . 28

3.1.3 The Approximation Function 30

3.1.4 Example Use of Semantics Beyond the Trust Boundary . . . 32

3.2 Policy Formulation . 33

3.2.1 Process Subjects . 34

3.2.2 Memory Ranges . 35

3.2.3 Issues in SP3 . 36

3.2.4 Privilege Level Based Subjects 38

3.3 Utilization by Low-Level Mechanism 39

3.3.1 A General Approach . 39

3.3.2 Division into Binary Policy Sets 41

3.3.3 Detecting Subject Switches 43

3.3.4 Event Synthesis . 45

3.4 The Impact of Concurrency . 47

3.4.1 Race Conditions . 47

3.4.2 Permission Revocation . 48

3.4.3 TLB-Related Attacks . 49

3.4.4 Implications . 53

3.5 Discussions . 54

3.5.1 Memory Monitors . 54

3.5.2 Runtime Updates and Policy Coherence 56

3.5.3 Functionality . 56

3.5.4 Forced Serialization of Concurrent Accesses 57

ii

3.6 Possible Solutions . 58

3.6.1 Expanding the Trust Boundary 58

3.6.2 Self-Supplied Semantics 58

3.6.3 Hardware Assistance . 59

3.6.4 Restricting Untrusted Software 60

4 Enforcing Isolation with Fully Isolated Micro-Computing Environment

(FIMCE) 61

4.1 FIMCE Architecture . 62

4.2 The Lifecycle of FIMCE . 64

4.2.1 FIMCE Bootup . 65

4.2.2 Runtime . 67

4.2.3 Termination . 67

4.2.4 Comparisons to Memory Isolation Primitive 67

4.3 FIMCE and SGX . 68

4.3.1 Comparisons . 69

4.3.2 Integration with SGX . 71

4.4 Modularized Software Infrastructure 73

4.4.1 Pillars . 74

4.4.2 Pillar Verification and Linking 75

4.5 Applications of FIMCE . 77

4.5.1 Malleability . 77

4.5.2 Runtime Trust Anchor . 79

4.6 Evaluations . 80

4.6.1 Security Analysis . 80

4.6.2 Implementation . 83

4.6.3 Benchmarks . 85

4.6.4 Component Costs . 86

4.6.5 Application Evaluation . 87

iii

4.7 Discussion and Future Directions 91

5 Consistent Virtual Machine Introspection 93

5.1 The Inference Gap in Software-based Guest Access 93

5.2 Overview . 95

5.2.1 Basic Idea . 95

5.2.2 Challenges . 96

5.2.3 System Overview . 99

5.3 The Design Details . 100

5.3.1 ImEE Internals . 100

5.3.2 ImEE Agent . 102

5.3.3 Defeating Attacks via the Blind Spot 105

5.3.4 Operations of ImEE . 106

5.4 Implementation . 108

5.4.1 ImEE on KVM . 108

5.4.2 Specialized Agent . 109

5.4.3 Usability . 109

5.5 Evaluation . 111

5.5.1 ImEE Overhead . 111

5.5.2 Guest Access Speed . 114

5.5.3 Introspection Performance Comparison 115

5.5.4 Handling Multiple VMs 116

5.6 Discussions . 117

5.6.1 CPU State . 117

5.6.2 Integration with Existing VMI Tools 118

5.6.3 ImEE vs. In-VM Introspection 118

5.6.4 Paging Modes Compatibility 119

5.6.5 Architecture Compatibility 120

6 Conclusion 121

iv

List of Figures

1.1 The paradigm of memory access in an SMP setting. The first core

has TLB misses and accesses the memory via the guest page tables

and the EPTs, while the last core has TLB hits and accesses the

memory without consulting any page table. 14

3.1 The Enforcement System Model 26

3.2 An Example of the Enforcement System 32

3.3 The Effective Policy of Memory Ranges 35

3.4 The Access Control Design of SP3 37

3.5 The Effective Policy of Privilege Levels 38

3.6 The EPT Arrangement in SeCage 43

3.7 Illustration of the stifling attack bypassing the EPT’s access control

over the victim’s data. The attacker controls core1 and core2. 51

3.8 The enforcement system in the monitor scenario 55

4.1 Memory isolation for FIMCE without EPT 64

4.2 The comparison between the memory isolation primitive and FIMCE.

The gray regions denote resources controlled by the adversary and

the dotted regions denote isolated resources. 68

4.3 FIMCE based isolated I/O for SGX enclaves 71

4.4 SPECint rate 2006 results. The numbers are the percentage of the

score with FIMCE to the score without FIMCE. 86

v

4.5 Lmbench results. The numbers are the percentage of the score with

FIMCE to the score without FIMCE. 86

5.1 Illustration of the idea of direct usage of the target VM’s VA-to-

GPA mappings and splitting in GPA-to-HPA mappings. Note that

the shadow box is fully controlled by the target (i.e., the adversary). 96

5.2 Illustration of the blind spot comprising three virtual pages (in the

dark color). Target kernel objects in those pages cannot be intro-

spected since they are mapped to the local memory. 98

5.3 Overview of ImEE-based introspection. The box with dashed lines

illustrates the mixture of physical memory. The shadowed regions

belong to the target and are not trusted. 99

5.4 The solid arrows describe the translation for a VA within the ImEE,

while the dotted arrows describe the translation inside the target.

All target frames accessible to the ImEE agent are set as read-only

and non-executable in EPTT . 100

5.5 The Illustration of GPTL. All entries in the page table directory

point to the same page table page which has one PTE points to the

data frame and all other to the code frame. 101

5.6 The sketch of the ImEE agent’s pseudo code 104

5.7 LMBench: normalized result on context switch time. The higher

score means better performance. 112

5.8 LMBench: normalized result on other system aspects. The higher

score means better performance. 113

5.9 Bonnie++: normalized results on disk performance. The higher

score means better performance. 113

5.10 SPEC INT: normalized results on CPU performance. The higher

score means better performance. 114

vi

5.11 The frequency distribution of interval lengths between context switches

in three workloads: idle, video streaming and file downloading. The

x-axis is not displayed to the scale. 114

vii

List of Tables

4.1 User Space Library Interfaces and Macros 84

4.2 Kernel Build Time (in seconds) . 86

4.3 Netperf Bandwidth With And Without FIMCE Running (in Mbps) . 86

4.4 Single-threaded Postmark Performance with and without FIMCE

Running (in seconds) . 87

4.5 Loading Time for Pillars with Various Sizes 87

4.6 Modified Apache Performance, # of SSL Handshakes per Second . . 89

4.7 Overhead Of Other Protection Schemes (numbers are excerpted from

respective paper) . 89

4.8 TPM Performance (in seconds) . 90

5.1 Address notations. For instance, GP c is the guest physical address

of the ImEE code page in the local address space. 103

5.2 Three ImEE agents. The Type-3 agent uses 2 pointer deferences

while the Type-2 agent uses one. 109

5.3 Overhead comparison between ImEE and LibVMI. 112

5.4 Memory read performance comparison. 115

5.5 Kernel object introspection performance in kernel and ImEE (time

in µs). 115

5.6 Kernel object introspection performance by LibVMI (time in µs). . . 116

viii

Acknowledgments

I would like to thank my advisor and committee chair Xuhua Ding for his guidance

over the course of the program, for the intellectual challenges posed during the

discussion sessions and for the rigorous scrutinization over the entire course of the

work. These glimpses of the power of reasoning, and what it might achieve, are the

greatest lessons I have learned so far. I am also grateful to the other dissertation

committee members, Debin Gao, Robert Deng and Jianying Zhou, for their effort

and time on evaluation and guidance during the dissertation defense process.

ix

List of Publications

Conference Papers
S. Zhao and X. Ding. On the Effectiveness of Virtualization Based Memory Isolation

on Multicore Platforms. In Security and Privacy (EuroS&P), 2017 IEEE European
Symposium on, 546-560.

S. Zhao, X. Ding, W. Xu and D. Gu. Seeing Through The Same Lens: Introspect-
ing Guest Address Space At Native Speed. In 26th USENIX Security Symposium
(USENIX Security 17), 799-813

Journal Paper
S. Zhao and X Ding. FIMCE: A Fully Isolated Micro-Computing Environment for Mul-

ticore Systems. ACM Transactions on Privacy and Security (TOPS) 21 (3), Article
15 (May 2018)

x

Chapter 1

Introduction

1.1 Overview

The Operating System typically acts as the reference monitor [15] that enforces the

system-wide security policy on a computer system. For such a purpose, it is granted

with the highest privilege. However, complexity in modern OS weakens its own

integrity guarantees and leads to frequent security breaches. Once breached, the

attackers obtain the same privilege as the kernel, therefore, it is possible for them to

launch arbitrary software attacks and compromise the entire system. Such attackers

pose serious threats.

The virtualization based approach was proposed to defend against this kind of at-

tackers because it leverages a higher level of privilege than the kernel. A number of

such systems have been proposed in the literature. However, these systems exhibit

certain issues, drawbacks and even vulnerabilities upon close inspection. In this

section, the severity of the adversaries with the kernel privilege is firstly described

as the motivation for the rest of the work. A brief summary of the virtualization sys-

tems is given next, so as to lay down the context for the research questions pursued

in this work.

1

1.1.1 Adversaries with Kernel Privilege

The Operating System is the entity that manages the resources in a traditional com-

puter system. Conveniently, it also serves as the reference monitor that monitors the

accesses to the resources by individual subjects, and enforces any security policies.

The reference monitor concept mandates three requirements to be satisfied, namely,

tamper-proof, complete mediation and verifiability. In the traditional computer sys-

tems, the OS had long been regarded as trusted in the sense that it maintains its own

integrity, i.e. it satisfies the requirement of tamper-proof.

However, just as any software, the OS also contains vulnerabilities that can be

exploited. Such exploitation is serious since it can lead to violation of any security

policies. Once inside the OS, the attackers gain the privilege of the kernel and can

manipulate the system-wide policy enforcement. Therefore, arbitrary attacks can

be launched. An example class of attack is the so-called rootkits. The rootkits are

malicious code produced by the attackers and injected into the kernel space, such as

the adore-ng rootkit [1] which modifies the kernel function pointers. In this case,

because the system-wide policy enforcement has been manipulated by the attackers,

even detection of these attacks is challenging.

The problem of the adversaries with the kernel privilege is relevant because of

two factors. The first factor is that the interface to modern OSes is becoming in-

creasingly complex. Such a complex interface exposes an enormous attack surface.

The enormity is exhibited from two aspects. First, the system call interface is known

to be large and complex. For example, Linux contains over three hundred system

calls and there are more on Windows. Many system calls also contain complex se-

mantics such as ioctl whose behavior completely depends on the device that it is

interacting with. Second, besides the system calls, the applications can also inter-

act with the kernel via implicit interfaces such as the file systems, e.g. /proc and

/sys. These interfaces also do not have clearly defined semantics. Therefore, it

is hard to reason about the behaviors of the applications and enforce effective poli-

2

cies. In existing works, the complex interface frequently introduces challenges to

security designs that interpose on the system call interface such as Janus [45].

The second factor is that a modern OS consists of an enormous amount of code.

For example, the Linux kernel reached one million lines of code at version 2.1.63

[5]. Since then, the size of the kernel has undergone a steady increase. Version

4.15.9 has accumulated 20 million lines of code. The large amount of code results

in complex semantics that is reachable from the large attack surface. Therefore,

the likelihood of vulnerability is high and the modern OSes are routinely broken by

attackers.

In practice, the threat from a kernel level adversary is present in many scenarios.

One such scenario is when the kernel is owned by a party not necessarily trusted, e.g.

the manufacturers. In this case, there is no guarantee that the kernel will enforce any

security policy, including the basic isolation policy. In other scenarios, the kernel

may be compromised in various ways besides code injection. For example, data-

only attacks can leave the kernel data in an invalid state, leading to security policy

violations. As shown by the attacks that modify the identity in the cred structures,

it is possible to obtain root privilege.

Without modifications on the system architecture, certain integrity measurement

schemes alleviate this problem by measuring integrity at certain points during the

execution. For example, TPM-based integrity measurement [90] can be leveraged

to construct a chain of authenticated component loaded. However, this approach has

a great limitation because it only guarantees integrity during the load time. The ma-

licious behavior could be injected to the kernel after the measurement had finished.

An example is the Trusted Boot [11] which is a boot loader that utilizes the TPM to

perform measurement of the loaded OS image. However, integrity of the kernel at

runtime is not protected. Furthermore, integrity measurement is usually made over

code and static data, however, attacks can also be launched via modification on the

dynamic data. An example is the aforementioned adore-ng rootkit which modi-

fies dynamic function pointers in the file system layer. Integrity measurement does

3

not cover the dynamic data, therefore, it cannot prevent this kind of attacks. Other

integrity measurement schemes, such as PRIMA [54] and Linux Integrity Measure-

ment Architecture [79], measure applications. Since they assume a trusted kernel,

they cannot be applied, neither.

1.1.2 Virtualization-based Systems

The virtualization based approach is an effective means to defend against the adver-

saries with kernel privilege. This approach is architectural in that it de-privileges

the kernel so that it is no longer the entity with the highest privilege. In such sys-

tems, the OS is de-privileged to run in a domain or virtual machine (VM), which is

managed and regulated by a higher-level entity usually called the virtual machine

monitor (VMM) or the hypervisor. By the nature of the attacker with the kernel priv-

ilege, only the OS is vulnerable; the hypervisor is not affected. Therefore, policy

enforcement by the hypervisor is not affected by such powerful attackers.

From a system perspective, the virtualization based systems are reference mon-

itors implemented by hardware virtualization mechanism. Hardware virtualization

mechanism allows the reference monitor to interpose on the hardware-software in-

terface through which traditionally the kernel directly interacts with the hardware.

The interposition allows the hypervisor to distinguish individual accesses to hard-

ware resources, thereby provides an opportunity to enforce security policies.

In its basic form, such systems enforce a type of policy called domain isolation.

In domain isolation, the hypervisor distinguishes accesses to hardware resources by

domains. The untrusted OS runs in one of the domains while the trusted OS and

applications run in others. Domain isolation guarantees integrity and confidentiality

of the trusted domain, which enables the establishment of further security properties

of the system. Examples include Terra [46], Lares [73] and HookSafe [96]. The

main drawback of this design, however, is that the TCB includes the trusted OS,

which is still large.

4

Further systems push the enforcement granularity level towards the fine-grained

direction. They distinguish the accesses by more fine-grained entities such as pro-

cesses or even code segments. This approach eliminates the guest OS from the

TCB, because the logic in the kernel that manages the entities other than the ones

concerned is not needed. However, since hardware virtualization mechanism is not

aware of the concerned entities which are usually defined by the kernel, policy en-

forcement by the virtualization based systems needs to rely on the facilities of the

untrusted OS that define such concerned entities, such as dynamic memory alloca-

tion, file systems and the kernel’s page table. The consequence of the reliance is

that certain semantics from the untrusted kernel is involved in the policy enforce-

ment process, which creates issues. The issues of the involvement are elaborated in

Section 1.3. In the rest of the work, this approach is called the memory isolation

because the fine-grained entities are usually memory segments.

A number of existing works have utilized the hardware virtualization mecha-

nism for various security purposes. For the rootkit problem, for example, SecVisor

[80] ensures that only whitelisted code can execute with kernel privilege. Lares

[73] protects the integrity of hooks placed in the kernel. HookSafe [96] proposes a

lightweight approach to protect kernel function pointers by aggregating them.

The virtualization mechanism is also versatile so that it can be used for many

other security objectives when facing a malicious kernel, such as isolated execution

[46, 68, 51, 26, 29, 93, 86], memory compartmentalization [67], integrity measure-

ment [17], stealthy debugging [41, 37], enforcing execute-only permission [32, 97]

and virtual machine introspection [49, 24, 39, 42, 56]. Chapter 2 provides a list of

description of these systems.

1.1.3 Issues and Research Objectives

Effectiveness of Policy Enforcement The virtualization based systems are refer-

ence monitors implemented by hardware virtualization mechanism. Since hardware

5

virtualization mechanism mandates a special form of policy, the systems all need to

translate the elements of the high-level security policy into the special form, which

is expressed with the abstractions both within the virtualization context and ob-

servable at the hardware-software interface, e.g. memory pages and domains. For

example, TrustVisor enforces that only a sensitive module can access its own code

and data. It needs to translate “the sensitive module” into “a registered set of pages”.

The main issue is that the translation process involves semantics from the un-

trusted kernel, because the high-level entities are defined and managed by the un-

trusted kernel. However, most systems do not explicitly describe this translation

process. The extend to which such semantics is involved is not clear, neither the

consequences.

Because of involvement of the semantics from the kernel, effectiveness of pol-

icy enforcement can be affected by the subtlety in the translation process. The

subject and object identity are vulnerable to manipulation and can be inconsistent.

For example, when processes are identified by CR3 values, the processes can be

impersonated since the values are managed by the untrusted kernel. Also, the medi-

ation of the operations by the hypervisor can be incomplete. Therefore, it remains

an important research question: how effective can a system based on virtualization

techniques enforce the high-level policies?

Enforcing Isolation In order to enforce the high-level policies, the fundamental

guarantee the hypervisor needs to provide is isolation. Isolation concerns about the

identity of the entities in the high-level policies. It refers to the requirement that

there is no overlap between the low-level representations for any two high-level

policy entities. For example, no “sensitive modules” share a memory page. Here,

the issues of existing systems are two fold. First, as mentioned above, isolation is

enforced with semantics from the untrusted kernel. Second, when the first issue is

compounded with concurrent execution, the enforcement become ineffective.

In virtualization based systems, the specific translation that the hypervisor needs

to perform is from the high-level entities to the low-level domains defined by the

6

extra paging structures. Since the kernel firstly defines the high-level entities, the

kernel semantics which is the identities information recorded in the kernel page ta-

bles is needed to craft the low-level domains. During policy enforcement, because

the observed accesses through the hardware-software interface are influenced by the

address translation configurations, the kernel can still influence the policy enforce-

ment by manipulating the kernel semantics. Many systems noticed this issue and

performed checks on the kernel’s page table on various occasions. However, such

checks are ad-hoc and not systematic.

Furthermore, the fact that modern hardware platforms are multi-core compli-

cates the situation. Parallel execution on multi-core platforms allows the untrusted

domain and the trusted domain to run at the same time, which cannot occur on

single-threaded platforms assumed by previous works. The untrusted domain thus

can take advantage of any resources available to attack the trusted domain.

Therefore, whether existing approaches still guarantee isolation on a multi-core

platform requires a closer investigation. Due to the importance of isolation, we

pose the second research question. How to ensure secure isolation by virtualization

techniques on modern multi-core hardware systems?

Consistent Introspection An isolated trusted domain can serve as a suitable

standpoint for extending the trust beyond. One possibility is that it can be used to

scan the memory content inside other domains; a technique called Virtual Machine

Introspection (VMI). VMI is a prerequisite of many analyses that aim to detect ma-

licious activities, because it provides the raw data for the detection tools to analyze.

The VMI systems face a special form of the policy translation issue mentioned

above. Although they do not necessarily enforce any policy over the other domains,

they do need to translate the high-level objects typically in memory to raw bytes

observed by the hypervisor. More precisely, the VMI systems need to translate

the virtual addresses of the objects into the physical addresses so that it can read

the content out. Inevitably, the kernel’s page tables in the untrusted domain are

involved.

7

The previous VMI tools rely on software logic to walk the kernel’s page tables

during the translation process. However, the kernel can modify its own page tables

in arbitrary ways, which affects the memory layout of the untrusted domain. As

a consequence, the VMI tools do not have a consistent view of the virtual address

space. Any further analysis, therefore, leads to invalid results. This method is

also slow because the page table walks require a series of loads from the memory.

Therefore, the agility of introspection cannot match with the untrusted domain’s

operations on the address mappings. In the face of these issues, the last question is

thus: how to ensure consistency in memory introspection?

1.2 Threat Model

The adversary in consideration is one with the kernel privilege. For example, the ad-

versary may be the kernel infected by the rootkits. However, the means by which the

adversary obtains this privilege is irrelevant. With the kernel privilege, the adversary

can launch arbitrary software-based attacks, such as arbitrary memory accesses and

execution context manipulations. He is also capable of manipulating external de-

vices that he can access for his purposes. Meanwhile, it is assumed that the BIOS,

the firmware and the hardware components in the platform are not compromised

by the adversary and behave in compliance with the respective specifications. The

hypervisor’s code, data and control flow are trusted throughout the lifetime of the

platform. Side channel attacks are not considered, nor are denial-of-service attacks.

1.3 Security Policy Enforcement

As stated in Section 1.1.2, the virtualization based systems interpose on the

hardware-software interface in order to enforce a set of high-level security poli-

cies. Following the reference monitor concept [15], they need to satisfy three basic

requirements, namely, tamper-proof, complete mediation and verifiability. Among

8

these, the tamper-proof requirement is satisfied due to the higher privilege. Mean-

while, the requirement of verifiability typically requires formal verification of the

logic which is a separate field of study, therefore, it is out of the scope of this work.

The focus here is the interaction between the tamper-proof requirement and the

complete mediation requirement. Ideally, both requirements should be met to guar-

antee effectiveness of policy enforcement. The tamper-proof requirement is met by

adopting the virtualization mechanism; the higher privilege ensures integrity of the

hypervisor. However, this design approach introduces inevitable involvement of se-

mantics from the untrusted kernel. The involvement, if not treated with care, can

cause failure in meeting the complete mediation requirement.

Involvement of semantics from the untrusted kernel is inevitable due to the point

of interposition in the virtualization based systems. At the hardware-software inter-

face, only hardware related states are available, such as the physical addresses of the

memory accesses, the current value of the program counter or the root of the current

page tables. As a result, there exists a wide gap between this information and the

one needed to make useful inference at the level of the high-level policy, leading

to a discrepancy between the capability needed to enforce the high-level policy and

the one achievable by the naive use of virtualization mechanism. The gap is there-

after referred to as the inference gap. Bridging the inference gap requires semantics

from the untrusted kernel because the high-level entities are defined by the untrusted

kernel. Therefore, the specific strategy adopted by individual systems to leverage

such semantics to close the inference gap provides key insights into effectiveness

of policy enforcement. Chapter 3 examines involvement of such semantics in the

gap-bridging attempts.

Also addressed in Chapter 3 are the issues with respect to concurrency. Possi-

ble issues of existing schemes are discussed. In addition, two concrete attacks are

presented. The stifling attack allows the guest kernel to preserve stale access per-

missions for certain memory pages and prevent the hypervisor from revoking the

permissions. The VPID attack exploits a performance optimization feature also to

9

keep stale permissions. Chapter 3 provides detailed descriptions of these attacks.

1.4 Enforcing Isolation Policy on Multicore Plat-

forms

The aforementioned inference gap results in an incomplete isolation boundary when

enforcing the isolation policies on multi-core platforms. The reason is that kernel

semantics in the guest page tables is involved to translate the subjects and objects,

while the guest page tables are subject to manipulation by the guest kernel on a

multi-core platform. Therefore, an approach called full isolation which specifically

takes multi-core platforms into consideration is proposed.

The full isolation approach controls involvement of kernel semantics in the en-

forcement process of the isolation policy. It applies this principle in its isolation

of the memory of the sensitive program, of a physical processor core and of any

needed I/O devices. The isolated core, memory and devices form an isolated exe-

cution environment which is termed Fully Isolated Micro-Computing Environment

(FIMCE). Similar to existing works, the FIMCE leverages on the hardware virtu-

alization extension and uses the hypervisor’s control on the system resources to

achieve isolation.

Due to the full isolation approach, the isolation boundary is clearly defined. The

hardware resources are cleanly divided between the trusted and the untrusted, in-

cluding the core, the memory and any external devices. Because of the complete

control over involvement of semantics from the kernel, the inference gap is elimi-

nated. Plus, the concurrency issues are also eliminated by full isolation. The overall

benefit is that the malicious guest kernel cannot interfere with management of the

identities, neither can it disrupt the execution of the isolated environment.

Another advantage of FIMCE is that the configuration is rather nimble. The

hypervisor is free to tweak the hardware configuration of the FIMCE for innovative

10

use cases. Meanwhile, FIMCE provides a suite of useful libraries for the isolated

application, so that the application does not need to be self-contained. The libraries

are loaded on demand to minimize the amount of code inside the environment,

reducing the risk. To relieve the hypervisor from managing any file system, the

library loading process is delegated to the kernel. Thus, the hypervisor’s logic is

simplified, minimizing its code size. Although the kernel handles library loading,

the integrity of the libraries is verified after they are loaded. The linking between

the libraries and the application is also verified.

The recently emerged Software Guard Extension (SGX) to the x86 architecture

provides hardware based isolation to the applications. Although SGX offers strong

memory isolation guarantees, compared to the FIMCE it lacks full isolation and I/O

capabilities. A comparison between SGX and the FIMCE and a discussion about

possible ways to integrate both for stronger security guarantees are presented.

1.5 Consistent Virtual Machine Introspection

The fully isolated environment can be applied for consistent and efficient Virtual

Machine Introspection (VMI). As introduced in Section 1.1.3, in a traditional out-

of-VM VMI system, the introspection program faces a special form of the inference

gap. The gap is between the memory view at the level of the concerned data ob-

jects in the target VM and the low-level memory view provided by virtualization

primitives. In a traditional VMI system, the gap is bridged by the replication of the

MMU logic of the target VM and the guest page tables. The replication is neces-

sary because the VMI tools need to translate the virtual addresses used in the target

VM to the physical addresses. However, the replication causes issues. It is not only

slow due to emulation of the hardware logic, but also not consistent due to repli-

cated page table data. It is thus possible for a malicious target VM to present a fake

memory view to the introspection tool, while use another for its own execution.

The Immersive Execution Environment (ImEE) addresses these issues. The

11

ImEE is a special execution environment based on the FIMCE with tweaked ad-

dress space mappings. The ImEE directly reuses the address space mappings of the

target VM by setting the CR3 register to be the same value as the one in the target

VM. During execution of the ImEE, the hypervisor also ensures that the CR3 value

is always synchronized with the value in the target VM. Therefore, this design en-

sures that the target VM cannot manipulate any address translations to hide memory

content, neither can it stealthily switch to another set of mappings.

Besides a consistent memory view, utilization of hardware virtualization mecha-

nism provides the ImEE a performance advantage, too. In the evaluations, the ImEE

shows a remarkable speedup compared to existing software-based tools. Serving as

a memory access engine, the ImEE can be integrated with existing VMI tools, pro-

viding immediate benefits.

1.6 Background

The following two pieces of background knowledge are necessary for the under-

standing of the rest of the content. First, the address translation process in a vir-

tualized platform is necessary, which is self-evident. The first subsection provides

a brief description of the process. For the full details, the readers are referred to

the Intel’s Software Developer Manual. The second subsection describes memory

access in a symmetric multiprocessing (SMP) system. This is necessary for the

understanding of the multi-core complications.

1.6.1 Address Translation in Virtualization

With hardware-assisted memory virtualization, address translation is divided into

two stages for any memory access inside the guest. In the first stage, the MMU

translates a virtual address (VA) into a Guest Physical Address (GPA) by walking

the guest page tables managed by the kernel. In the second stage, the MMU trans-

lates a GPA to a Host Physical Address (HPA) by traversing the EPTs managed by

12

the hypervisor. The roots of the guest page tables and the EPTs are stored in the

CR3 register and a control structure field called EPT Pointer, respectively. Dur-

ing address translation, the MMU raises an exception if the type of a memory access

conflicts with the permitted types specified in these page tables. There are multiple

sets of the page tables in either stages at runtime. Only one set in each stage is active

at any time. However, the MMU does not switch the sets automatically, instead, the

system software is designated with such a responsibility. The kernel is responsible

for switching the CR3 for any reason that it deems appropriate, and the hypervisor

is responsible for the EPT Pointer switching.

To reduce latency of address translation, Translation Lookaside Buffers (TLBs)

in each CPU core cache recently used translations and access permissions. The

MMU traverses the page tables only when the TLBs do not store a matching en-

try. However, unlike data and instruction caches, it is the software, instead of the

hardware, that maintains consistency between the TLBs and the page tables. The

operating system and the hypervisor are expected to invalidate the relevant TLB en-

tries after updating the page tables except a few special occasions such as reloading

the CR3 register.

The TLB entries can be tagged to improve efficiency. In case of a context switch,

all TLB entries need to be flushed because the cached entries may not match the ad-

dress mapping in the new address space. When context switch happens frequently,

such as when there are frequent hypercalls, the MMU needs to walk all the page

tables again after each switch, which can incur performance penalties. With hard-

ware virtualization, the number of the page tables to walk can be sixteen1, which

means sixteen consecutive loads from memory. To avoid such performance penal-

ties, the TLB entries are tagged with certain address space identifiers such as the

Virtual Processor ID on later x86 architecture. With a tagged TLB, a TLB entry is

considered a hit during translation only if its tag matches with the current address
1This assumes a 64-bit guest with 4KB pages, therefore, there are four levels of page table. To

reach the guest page table in every next level, EPT needs to be walked because guest page tables
store GPAs. Each EPT walk also traverses four levels of page tables, assuming 4KB pages.

13

space identifier.

1.6.2 Memory Access in SMP Systems

In an SMP setting, multiple cores access the shared physical memory independently

as shown in Figure 1.1. They may use different address mappings since address

translation is performed independently by each core’s MMU. The VA-to-GPA map-

pings on all cores are controlled by the guest kernel. Depending on the running

threads, the cores may or may not use the same set of page tables. The GPA-to-

HPA mappings are controlled by the hypervisor. In the most common design, all

cores of the same VM use the same set of EPTs since the GPA-to-HPA mappings

are for the entire virtual machine. In other words, the guest kernel’s scheduling, i.e.

the guest page table usage, is transparent to the hypervisor.

10

core1

TLB

EPT

kernel
space

hypervisor
space

core2

TLB

coren

TLB

host physical memory access

VA

GPA

HPA

Guest Page
Table

Guest Page
Table

Guest Page
Table

Figure 1.1: The paradigm of memory access in an SMP setting. The first core has
TLB misses and accesses the memory via the guest page tables and the EPTs, while
the last core has TLB hits and accesses the memory without consulting any page
table.

In the SMP setting, it is more complicated to maintain TLB consistency since

the threads on any core may modify the shared page tables while the TLBs are local

to each core. Typically, the thread that modifies the paging structures initiates a

sequence of operation called TLB shootdown whereby the thread on the initiating

core fires an Interprocessor Interrupt (IPI) to other cores. Upon the arrival of an IPI,

a handler is invoked to invalidate those stale TLB entries on the receiving core. On

x86 platforms, the Advanced Programmable Interrupt Controller (APIC) is respon-

sible for receiving and sending IPIs. Its proper behavior affects the success of TLB

14

shootdown, consequently TLB consistency.

1.7 Organization

The rest of this document is organized as follows: Chapter 2 reviews closely re-

lated literature. Chapter 3 investigates the issues encountered by existing virtual-

ization based systems, including two attacks on the multi-core platforms. Chapter 4

presents the design of FIMCE. Chapter 5 shows an application in the context of

VMI, i.e. the ImEE system and its details. Finally, Chapter 6 concludes this docu-

ment.

15

Chapter 2

Related Work

Virtualization techniques were shown to have application in security systems by

early works such as Terra [46] and Proxos [88]. These works utilize the virtualiza-

tion architecture in its crude form that one VM is assumed to be trusted while the

others are not. The security-critical software is subsequently run in the trusted VM.

Due to the isolation between VMs, the other untrusted part cannot tamper with the

code inside the trusted VM. Further works all are based on the isolation between

domains defined by the hypervisor, while they are geared towards different security

purposes.

2.1 Trusted Execution Environment

The goal of establishing a TEE is to protect confidentiality and integrity of a sen-

sitive task’s data and execution against attacks from the untrusted kernel. With the

blessing of the EPT, the hypervisor isolates a sensitive task’s code and data regions

so that the external software (including the kernel) does not have any access to

them. The rest of the section groups the literature of isolation-based TEE based on

the protected task’s scope.

Code Segment Isolation TrustVisor [68] proposes to protect a few memory

pages called a piece of application logic (PAL) and allows attestation. TrustPath

16

[104] and MiniBox [62] both build on top of TrustVisor. TrustPath builds a trusted

I/O path between a device and an application end point. MiniBox realizes a two-way

sandbox by running a Native Client [102] instance as a PAL. XMHF [93] aims for

providing a framework for building hypervisor based solutions and is formally veri-

fied. Later version of TrustVisor is re-implemented on top of XMHF. XMHF serves

as the foundation for two systems that performs I/O isolation [103, 105]. Driver-

guard [28] is another work on I/O isolation. CAFE [57] also built on XMHF to

provide runtime isolation of secret binaries. As a separate line of research, SeCage

[67] combines software analysis and hypervisor protection to automatically extract

compartments that are protected by the hypervisor at runtime. Fides [86] also pro-

tects modules that consist of a few pages. However, the modules are not completely

isolated, the code portion is readable while the secret portion is inaccessible. On

ARM platform, OSP [30] combines the virtualization extension and TrustZone to

offer flexible on-demand protection of a piece of code.

Isolation of a code segment using a separate address space has been demon-

strated in previous works such as Gateway [85]. Although the secure driver code is

isolated from the guest kernel using shadow page table, it can also be achieved by

using EPT.

Application Isolation InkTag [51] isolates the pages of an application and only

allows the guest OS to access the ciphertext. A feature of InkTag is that it allows

application to express intention to modify the address space so that the hypervisor

later can verify the changes performed by the guest OS, a mechanism called par-

averification. Based on InkTag, Sego [59] improves on verification of the system

services. On top of the isolated execution, AppSec [75] provides a trusted human

interface for the isolated application. AppShield [29] does not allow guest OS to ac-

cess the isolated pages, requiring extensive wrapping of system call interfaces. The

idea of isolating an entire application has been demonstrated earlier by Overshadow

[26] and SP3 [101], although they are not implemented using the EPT because it

was not available.

17

The difference in the scale of the protected memory results in different design

approaches. The systems that protect the entire address space typically need to

consider dynamic behavior of the region, i.e. newly mapped or unmapped regions.

Therefore, they need to track the changes on the address space. Both Inktag [51] and

AppShield [29] lock the page tables of the guest in order to perform such tracking.

The systems that protect only a few pages usually do not consider page swapping

by guest kernel. The protected pages are typically allocated by the kernel and are

assumed to be always present in memory.

2.2 Kernel Integrity

SecVisor [80] and HUKO [99] remove certain access according to the current code

occupying the CPU, in order to protect kernel integrity. While they both try to

protect the entire kernel space memory, SecVisor focuses on protecting the kernel

space as a whole from user space applications and untrusted extensions. HUKO

enforces a fine-grained access control model among kernel space subjects such as

kernel module and kernel code.

SecVisor [80] protects the integrity of the kernel code and uses a whitelist to

allow any listed kernel extension to be also integrity-protected. On the other hand,

HUKO [99] does consider dynamic kernel modules. For this purpose, it needs ker-

nel level semantics so it inserts a module into the protected kernel space in order to

track newly added or removed kernel space memory.

As a prerequisite to kernel integrity, SecVisor identifies the kernel by intercept-

ing all traps to kernel. To further harden the kernel, it ensures that the kernel always

starts to execute at predefined entry points.

Previous systems that ensure part or the whole of the kernel’s integrity before

the EPT include HIMA [17], NICKLE [76], HookSafe [96] and Lares [73]. HIMA

marks only measured memroy pages to be executable during runtime. NICKLE

separates the execute and other types of access to different copies of the kernel code

18

using page table mappings. HookSafe ensures that the gathered kernel hooks are

protected. Lares also protects the hooks placed inside the guest using page table

permission bits. All these goals can also be achieved using the EPT.

2.3 Mapping Redirection

Heisenbyte [89] separates read access and instruction fetch to a code page to sep-

arate copies prepared for each type of access. The separation is applied to any

code uniformly. The EPT is used to distinguish the memory accesses. This type of

systems does not consider the kernel as malicious. However, when these systems

are deployed to practical use, the consequences of a compromised kernel should be

considered. Other measure, such as kernel integrity should be coupled with these

systems to ensure the security of the system as a whole.

2.4 Event Trap

The EPT can be utilized as merely a means to intercept certain access to memory.

After interception, the access is allowed to continue as per normal. Graffiti [33]

tracks the rate of allocation in the address space of an application by tracking mod-

ifications on the page table. It uses the EPT to intercept writes to the page table.

SPIDER [37] and HyperDBG [41] use the EPT to detect execution of code and data

access to memory to implement stealth debugging facilities.

Before the EPT became available, trapping events in the guest had been achieve

via using shadow page tables. As demonstrated in Patagonix [65], the execution of

any binary code is detected by marking memory pages non-executable. The EPT

can also be used for this purpose.

19

2.5 Auxiliary Uses

The EPT can also be used to enforce access permissions that are not supported by

guest page table. For example, execute-only permission is not possible with guest

page table. Because once the P-bit is set, both read and execute permission are

granted, however, there is only the NX-bit that removes the execute permission. No

such bit that removes the read permission exists. Readactor [32] and NEAR [97]

leverage the EPT to enforce execute-only memory on the code pages of a protected

application to mitigate memory disclosure.

2.6 Virtual Machine Introspection

The fundamental problem of VMI is to acquire the kernel’s semantic by recon-

structing the kernel objects. Significant efforts have been spent on directly re-

covering the kernel’s data structures from the raw bytes. It can be based on ex-

pert knowledge (e.g., Memparser [22], GREPEXEC [23], Draugr [38], and others

[4, 7, 8, 9, 12, 13, 47, 74]) and automatic tools (e.g, SigGraph [63], KOP [25], and

MAS [35]). These studies usually involve a large amount of engineering work and

are useful for memory forensic analysis. Since they do not emphasize on live mem-

ory introspection, the security and effectiveness of accessing the guest’s live state

are not their main concerns. In general, they are orthogonal to our study.

A more sophisticated approach is to reuse the existing kernel to interpret and

construct the desired kernel objects from the memory of a live guest. Based on

whether the introspection uses the guest VM’s kernel or not, schemes using this

approach can be further divided into in-VM introspection and out-of-VM introspec-

tion.

20

2.6.1 In-VM Introspection

In general, in-VM introspection schemes aim to save the engineering efforts by

relying on the guest kernel’s capabilities. Process Implanting [49] loads a VMI

program such as strace and ltrace into the guest VM and executes it under the

camouflage of an existing process. SYRINGE [24] runs the VMI application in the

monitor VM and allows the introspection code to call the guest kernel functions

under a guest thread’s context. When the guest kernel is not trusted, the security

and effectiveness are totally broken, because it is straightforward for a rootkit to

evade or tamper with the introspection. Hence, these in-VM introspection schemes

are only useful to monitor the user space behavior in the guest VM. SIM [81] is an

in-VM monitoring scheme against rootkits. To run the monitoring code inside the

untrusted guest, it creates a SIM virtual address space isolated from the guest kernel.

Hooks are placed in the guest to intercept events. The address switches between the

kernel and the SIM code is guarded by dedicated gates.

2.6.2 Out-of-VM Introspection

The out-of-VM introspection code stays outside of the target guest. Therefore, it

is capable of introspecting the guest VM to detect kernel-level malicious activities

without directly facing the attack. Virtuoso [39] generates the introspection code by

training the monitor application in a trusted VM and reliably extracting the intro-

spection related instructions from the application. The execution trace is replayed in

a trusted VM when performing introspection, during which data accesses are redi-

rected to the guest VM’s memory. VMST [42] is another out-of-VM introspection

technique. It manages to reuse the kernel code by running the introspection applica-

tion in a monitor VM emulated by QEMU [21]. A taint analysis runs in the monitor

VM and relevant data accesses are redirected to the guest’s live memory. Hybrid-

bridge [78] is a hybrid approach which combines the strengths of both VMST and

Virtuoso. Similarly, the VMI application is running in the trusted monitor VM and

21

the OS code is reused. The kernel data accesses which are related to the monitoring

functionality are identified and redirected to the guest kernel memory when needed.

EXTERIOR [44] is another space traveling approach inspired by VMST, which sup-

ports not only guest VM introspection but also reconfiguration and recovery of the

guest VM.

Process Out-Grafting [84] relocates the monitored process from the guest VM to

the monitor VM. The monitor VM always forwards system calls to the guest. The

guest kernel handles it and returns the results to the monitored process. This ap-

proach requires the implicit assumption that the guest kernel is trusted. VMwatcher

[56] is a system that performs rootkit detection from outside of a VM by manually

reconstructing the semantic view.

TxIntro [66] is an out-of-VM and non-blocking approach designed for timely

introspection. It mainly focuses on retrofitting the hardware transactional memory

to avoid reading inconsistent kernel states. In its design, the VMI code runs on an

implanted core and can also access the guest memory at a native speed. Neverthe-

less, it lacks sufficient security concerns and does not provide the introspection code

a consistent memory view to that of the guest’s.

2.7 Isolation With Other Techniques

Flicker [69] makes use of trusted computing techniques to set up a secure exe-

cution environment at runtime. It explores AMD’s late launch technology which

incorporates the TPM-based DRTM. The late launch technique sets up a secure and

measured environment to protect a piece of code and data. The drawback is its high

latency due to the slow speed of the TPM chip. Moreover, the protected code cannot

interact with the rest of the platform.

The recently announced Intel Software Guard Extensions (SGX) [53] offers a

set of instructions for an application to set up an enclave to protect its sensitive

code and data. The hardware isolates the memory region and ensures that data in

22

the region can only be accessed by the code within. All other accesses are rejected

by the hardware. Nonetheless, it is not able to support secure I/O operations, e.g.,

taking a password input from the keyboard.

As shown in TZ-RKP [18], a security monitor that resides in the secure world

established by ARM TrustZone can protect the OS kernel in the normal world at

runtime. Virtual Ghost [34] uses a language-level virtual machine to prevent an un-

trusted OS from accessing an application’s sensitive memory regions. It requires

compiler support and source code instrumentation on the kernel code in order to

ensure control-flow integrity at runtime. PixelVault [92] creates an isolated execu-

tion environment on Graphics Processing Units (GPUs). Being an isolated device

from the CPU with its own memory, GPU provides a natural ground for building

an isolated execution environment. In the past, programming on GPU was difficult

because of its highly specialized hardware. However, modern GPUs are becom-

ing increasingly programmable so that executing code on GPU is easier. Nonethe-

less, this approach still requires significant development effort because there is little

support from current systems. SICE [19] isolates a program that ranges from an

instrumented application to a complete VM from the guest OS using System Man-

agement Mode (SMM). Compared to the micro-hypervisor approach, it features

a smaller TCB since the TCB only consists of the hardware, BIOS and the SMM

code. However, compared to virtualization, SMM is less standardized, which makes

it hard to apply SICE’s approach on certain platforms. For example, SICE’s multiple

processor support relies on hardware features only available on AMD processors.

23

Chapter 3

An Analysis of Effectiveness of the

Existing Virtualization-based

Schemes

As introduced in Chapter 1, to meet the tamper-proof requirement and the com-

plete mediation requirement, virtualization based systems resort to the higher privi-

lege level given by the hardware virtualization mechanism. Although this approach

guarantees integrity thus satisfies tamper-proof, the systems are confronted with the

inference gap which is caused by the system design approach dictated by the hard-

ware virtualization mechanism. Interposing over the hardware-software interface,

such systems are limited by the semantics available inside its trust boundary, i.e.

the hypervisor space. The limitation makes involvement of semantics from the un-

trusted kernel inevitable. In order to enforce the high-level policy, these systems

need to construct the view at the level of the high-level policy, however, they typ-

ically include kernel-defined entities. The construction occurs in a process called

policy translation, during which the high-level policy is converted to a form under-

stood by the hardware virtualization mechanism.

In this chapter, the policy translation process in various previous systems is

reviewed. And the involvement of semantics from untrusted kernel in the gap-

24

bridging process is analyzed. The purpose is to show how the effectiveness of the

enforcement is influenced. In doing so, firstly, a conceptual model that serves as the

foundation of the rest of the discussion in this chapter is described. Next, the details

of the policy enforcement process are examined. The virtualization based systems

are referred to as enforcement systems hereafter, because their purpose is to enforce

a set of high-level policy.

3.1 A Model of the Enforcement Systems

In this section, a model of the enforcement systems is described. The model pro-

vides a conceptual foundation for subsequent discussion of this chapter. It shows

the policy formulation process in the enforcement system. It emphasizes the trust

boundary and the involvement of semantics outside of the boundary during the pol-

icy formulation process.

The enforcement systems under consideration are designed to fulfill certain

high-level security goal by exercising the reference monitor model. The high-level

security goal is expressed in the form of a set of security policy, of which the en-

forcement realizes the security goal. For the actual enforcement, the enforcement

systems rely on certain low-level mechanism, such as the MMU, assumed to be

trusted. An illustration is shown in Figure 3.1. An example is a virtualization based

system for the purpose of isolation, which enforces a set of isolation policies. The

enforcement is achieved by configuring the MMU which is the low-level mecha-

nism.

The enforcement system resides in an environment in which there are two priv-

ilege levels, low privilege level denoted PL, and high privilege level denoted PH .

It is assumed that all entities in PH are trusted, while all entities in PL are not. In

practice, there usually exists more than one privilege level in a contemporary com-

puter system. All the privilege levels from low to high constitute an ordered set

L = L1, L2, ..., Ln. Our discussion considers the partition of the set L at various

25

Enforcement System
High Privilege

Low Privilege Subject

Policy

Object
Access

Mediate

Low-level
Mechanism

High-level
Policy

Trust Boundary

①

②

Figure 3.1: The Enforcement System Model

positions. All the privilege levels in the left set is denoted PL and only the lowest

privilege levels in the right set is denoted PH . The boundary between PL and PH is

call the trust boundary.

The model also shows the policy formulation process commonly observed in the

enforcement systems. Note the fact that the high-level policy is usually described

in natural language and involves terms that describe the user-facing entities of a

computer system. For example, a policy may be concerned about files, programs

or network connections. Furthermore, the fact that the enforcement systems are

programs themselves implies that the system designer needs to carefully convert

the policy to a form that can be understood by the systems, since programs do

not understand the language in which the high-level policies are specified. This

form understandable to programs is called effective policy thereafter. Lastly, the

reliance on the lower-level mechanism usually dictates a second conversion from

the effective policy to a form required by the low-level mechanism. This form is

called binary policy. The two stages of conversion are also illustrated as step 1 and

step 2 in Figure 3.1.

The point of mediation by the low-level mechanism on the accesses to objects

depend on the nature of the mechanism itself. Typically, the mediation occurs on

certain execution path that each access must undergo, so as to satisfy the complete

mediation requirement for the low-level mechanism itself. From an architectural

26

point of view, the mediation usually concentrates at the interfaces between layers,

because all accesses can be easily intercepted when they cross an interface. In the

case of virtualization, the hypervisor interposes over the hardware-software inter-

face which is traditionally used by the kernel to interact with the hardware. In past

systems, the mediation typically happens at the system call interface such as the

Janus [45] system. A common drawback of this type of mediation is that the in-

formation available at the interface is limited compared to that which is needed for

certain high-level policy. For example, the hypervisors are only able to obtain in-

formation about physical pages, domains and program counters etc., all of which

cannot be directly related to the high-level entities.

3.1.1 Conflict Between Tamper-Proof and Complete Mediation

There are two observations that can be made from the model. First, in order to

satisfy the tamper-proof requirement, the enforcement system is isolated from the

untrusted for its own integrity via the privilege separation mechanism. Second, the

isolated states do not provide necessary semantics for decision-making at the level

of the high-level policy.

Due to the limited scope, the enforcement system is obliged to associate the

isolated states to the high-level entities. Note that the association usually involves

semantic information, not necessarily data, beyond the trusted boundary. Such se-

mantic information is defined by the software outside of the trust boundary. How-

ever, the enforcement system cannot directly execute untrusted code. Rather, it

needs to replicate the semantics-defining logic inside its trust boundary and then

acquire the needed semantics using the replicated logic. The consequence of the

extra acquisition step is that, the semantics acquired by they enforcement systems

is not always accurate. Such inaccurate semantic information relied upon by the en-

forcement systems presents an approximated view of the rest of the system, which

affects the completeness of mediation.

27

In essence, the enforcement systems face a dilemma. For its own tamper-proof,

only isolated states are used which provide limited semantics. However, for com-

plete mediation, all semantics that are relevant should be used. It is, therefore,

possible that the scope required by tamper-proof mismatch with the scope required

by complete mediation. This situation leads to compromises in design that result in

sacrifice in either requirement. For example, the Chrome browser adopts a process-

based isolation design, and each browser tab is isolated using one process. The

security monitor of Chrome checks the origins of the accesses made by the scripts

on a web page to enforce the Same Origin Policy. To perform the checks, rich se-

mantics of the web page and scripts is required. The security monitor resides in the

same process as the scripts so that acquisition of the semantics is straightforward.

However, this design gives up on the tamper-proof, leading to vulnerabilities that

bypasses the checks [55].

On the other hand, many systems choose to ensure tamper-proof first. Conse-

quently, they are limited in the scope of semantics and must approximate by acquir-

ing the semantics outside of the trust boundary. In other words, they need to cross

the inference gap. It is shown in the subsequent sections that when this approxima-

tion is inaccurate, the complete mediation requirement is compromised.

CAVEAT The discussion here is different from the semantic gap problem dis-

cussed in previous works such as VMST [42] and Virtuoso [39], although they

appear to both be related to semantics. The semantic gap refers to the challenges in

interpreting the meaning of a chunk of bytes. The problem here is about the con-

sequence of the involvement of the semantics outside of the trust boundary in the

policy enforcement process.

3.1.2 The Inference Gap

The inference gap refers to the gap between the semantics provided within the trust

boundary and necessary semantics needed to enforce the high-level policy. The

28

gap exists when the trust boundary does not encompass all the semantics needed to

construct the semantic universe defined by the high-level policy. Because of the fact

that the enforcement systems all interpose on the hardware-software interface, the

semantics in the trust boundary is limited. Therefore, the gap exists and semantics

outside of the trust boundary is involved in policy enforcement. Consequently, the

enforcement is not accurate because of the untrusted party’s manipulation of the

semantics. This is a challenging problem and exposes unexpected attack vectors to

the untrusted party.

In the enforcement systems, both stages of the policy formulation process cross

the inference gap. First, in order to formulate the effective policy, the enforce-

ment systems choose a set of trusted states inside the trust boundary to represent

instances of the entities in the high-level policy. The inference gap is crossed in the

sense that the trusted states are associated with the high-level entities by using the

identity-defining semantics beyond the trust boundary. Secondly, to formulate the

binary policy, low-level states and events observable by the low-level enforcement

mechanism are associated with the entities and operations defined in the high-level

policy.

For example, a hypervisor can securely utilize the architectural states and the

physical states of the guest VMs, i.e. register states and physical memory. These

states are considered to be inside its trust boundary. Now consider a case where a

policy concerns about user input data is desired. To enforce this policy using a hy-

pervisor, the hypervisor needs to deduce the physical address of the input data from

the guest’s address mappings. However, the guest’s address mappings are the se-

mantics outside of the trust boundary of the hypervisor. The hypervisor crosses the

inference gap in the sense that it uses this mapping to associate physical addresses

to the high-level entity which is the input buffer.

29

3.1.3 The Approximation Function

Crossing the inference gap needs to define relations to bind the states inside the trust

boundary to the intended entity at the high-level. A set of such relation is called

an approximation function. The approximation function is where the fundamental

conflict between tamper-proof and complete mediation manifests. Therefore, it is

given an abstract treatment first and discuss the concrete conflicts afterwards.

Informally, an approximation function Fapprox : S ! E maps from the states in

the trust boundary S to the intended entities E. For example, an enforcement system

based on the kernel contains the states that correspond to the OS abstractions, such

as files and processes etc., inside the trust boundary.

The construction of the approximation function is crucial to ensure that the view

at the level of the high-level policy is accurate. The basic requirement is that the

relations need to be stable in the sense that they cannot be manipulated illegally.

However, when the semantics inside the trust boundary is limited due to ensuring

tamper-proof, the involvement of the semantics outside of the trust boundary is

unavoidable. Such semantics leads to instability in the relations, presenting the

enforcement system an inaccurate view. As a result, the policy enforcement may be

carried out against the incorrect subjects or objects, or is not invoked when intended.

In other words, the complete mediation requirement is undermined.

Involvement of Semantics Beyond the Trust Boundary

The approximation function needs to be defined during both the policy formulation

stages, because the inference gap is crossed in both stages. In the first stage, the

relations about subjects and objects are defined. For example, the virtual addresses

of the objects may be recorded. In the second stage, depending on the low-level

enforcement mechanism, more relations may be needed and existing relations may

be updated. For example, the virtual addresses are replaced by their physical ad-

dresses. More importantly, the point of mediation is also defined at this stage. In

30

other words, the low-level events that correspond to the operations in the high-level

policy need to be identified and intercepted. Conceptually, the approximation func-

tion also includes relations that map low-level events to high-level operations.

In many cases, there may be no apparent relation between the low-level event

and high-level operations, because the events in the low-level mechanism are con-

cerned about operations that are more primitive than the ones in the high-level pol-

icy. In this case, the events that high-level operations occur need to be synthesized.

The synthesis may be extremely challenging due to the inherent ambiguity of the

high-level events. For example, ’reading a file’ is inherently ambiguous and ex-

tremely difficult to define accurately using low-level primitives. There are at least

three ways. It may be defined to be the execution of relevant code that handles files,

or accessing in-memory file content by the processor, or issuing I/O commands to

the external storage devices. Nevertheless, certain semantics outside of the trust

boundary is needed to synthesize these events.

Implications

The consequence of using semantics beyond the boundary in the approximation

function depends on the type of relation that uses the semantics. If the relations

are defined in the first conversion stage, such semantics results in invalid identity of

either the subject or object, leading to confusion of the identities. If the relations are

defined in the second stage, besides the identity issue, certain events may be missed.

Both consequences tamper the complete mediation requirement.

In the input buffer example in Section 3.1.2, the approximation function involves

the mappings inside the guest page table, which is controlled by the untrusted ker-

nel. Since the kernel still controls the guest page tables, the mediation by the en-

forcement systems may be incomplete. A more in-depth analysis of this scenario is

given in Section 3.2.2.

In many systems, attempts are made to either verify the semantics each time

it is used or to control the source of it. However, whether such hardening does

31

Code 1 Data 1 Data 2

Process 1 X RW -

Process 2 - - R

0x1000 0x2000 0x3000

0xA000 X RW -

0xC000 - - R

PA Perm

0xA1000 X

0xA2000 RW

0xA3000 -

Process 1

CR3: 0xA000

Code 1: 0x1000

Data 1: 0x2000

Process 2

CR3: 0xC000

Code 2: 0xD000

Data 2: 0x3000

PA Perm

0xA1000 -

……

Kernel

EPTs (Binary Policy)Effective Policy
High-level Policy

Hypervisor

SystemConcept

Figure 3.2: An Example of the Enforcement System

provide the required stability guarantee has not been systematically discussed. The

effectiveness usually depending on specific implementation details.

3.1.4 Example Use of Semantics Beyond the Trust Boundary

Let us focus on the conversion stages and use a more comprehensive example to il-

lustrate the details. The place of involvement of semantics beyond the trust bound-

ary is highlighted while the specific issues caused is delayed to later part of the

chapter.

The example is shown in Figure 3.2. The high-level policy is concerned about

restricting the access by two processes to three objects. The policy is an isolation

policy and the access matrix shows the authorization of each process’s access to

each object. Suppose this policy is to be enforced by a hypervisor based enforce-

ment system. The policy needs to undergo two conversions. The first conversion

converts it to the effective policy and the second to the binary policy. In the effective

policy, the rows and columns in the original matrix are replaced by the states in the

trust boundary of the hypervisor. Specifically, the processes are replaced by their

respective CR3 values. The objects are replaced by their virtual addresses (VAs)

passed to the hypervisor in general purpose registers. The corresponding permis-

32

sions are kept intact. The second conversion breaks each row of the effective policy

to a set of EPT as required by the MMU. The VAs are converted to the correspond-

ing physical addresses (PAs). The EPTs are the binary policy here.

The hypervisor’s trust boundary stops short at the boundary between kernel and

hypervisor, since the kernel is assumed to be untrusted. However, both conversion

stages require certain semantics from the kernel. In the first stage, the example

system chooses the CR3 register value to represent the process, since normally each

process is designated with its own address space. Therefore, the subjects in the

rows are replaced by their respective CR3 values. Note that the relation between a

particular CR3 value and a process is kernel semantics. Directly using the CR3 value

essentially involves semantics beyond the trust boundary and can be potentially

problematic. Similarly, the objects are replaced by the VAs. The relation between

the VAs and the objects is also semantics under the control of the kernel.

In the second stage, the VA of each object are converted to PA to fill the first

column in the EPTs. Because the memory allocation is done by the kernel, this

conversion requires kernel’s page table. Besides, because in this example, one set

of EPT is only applicable for one process, the hypervisor needs to switch the ac-

tive EPTs whenever the process on the CPU switches. In order to track the process

switch, the hypervisor needs to interpose on the context switch events in the kernel,

which is also kernel semantics. In this example, the permission in the EPT is suffi-

cient to support the operations in the high-level policy, therefore, no event synthesis

is needed.

3.2 Policy Formulation

In this section, the issues caused by the involvement of semantics beyond the trust

boundary in the first conversion stage are presented. As discussed in Section 3.1.1,

the enforcement systems ensure tamper-proof thus face limited scope of seman-

tics. This limitation manifests in this stage in the sense that the semantics about

33

the identity of the subjects and objects is missing within the trust boundary, thus

must come from the outside of the trust boundary. Subsequently, the main issue

is the confusion of identity of either the subjects or the objects, which causes the

enforcement systems to not mediate when they should. Therefore, the complete

mediation requirement of the reference monitor is undermined. Three cases are

presented depending on the type of subjects and objects, namely, process subjects,

memory ranges and privilege levels.

3.2.1 Process Subjects

Some virtualization based systems proposed in the literature such as InkTag [51],

Fides [86] and AppShield [29] isolate an entire process from an untrusted guest

OS. The high-level policy in their concern is about individual processes. However,

the virtualization based systems do not manage processes themselves, in order to

keep the hypervisor logic simple and the TCB small. The typical approach is to

piggy-back on the process management done by the guest OS and to override the

guest OS’s access to the resources allocated for the processes. Unfortunately, the

hypervisor needs the identifying semantics during the piggy-backing. The identify-

ing semantics reused by most virtualization based systems is the one-to-one relation

between address space and process, which is defined by the guest OS. The address

spaces can be identified via values in the CR3 register which the hypervisor can

easily monitor, therefore, many schemes, e.g. [51, 29] use the CR3 register content

to identify the process subject. It follows that in the effective policy, typically the

value of the CR3 register is chosen as the approximation of the processes. Thus, the

approximation function contains mappings from the CR3 values to the processes.

This scenario is the example shown in Figure 3.2.

In the example in Figure 3.2, the CR3 used for process 1 stores 0xA000 when

there is no attack. It follows that the hypervisor replicates a copy of the value

0xA000 and defines a relation in the approximation function from this value to

34

process 1.

Since the relation between address space and process is semantics defined by

the untrusted guest OS, binding CR3 content to process is not secure. In the above

example, because the kernel manages the processes, it can load 0xA000 to CR3 for

process 2. The page at 0xA000 can also be modified so that the imposter process

can run its own code. When process 2 runs, the hypervisor mistaken it to be process

1, therefore, access to Code 1 and Data 1 is granted whereas according to the policy,

it should not.

A variation is the case when the subjects are threads. Similarly, thread identifiers

cause the same issue. Since threads of the same process share the same CR3, thread

identification in the literature (e.g., AppShield [29]) relies on both CR3 content and

the kernel stack location as the identifier. Similar to the CR3 falsifying, the kernel

can also swap kernel stack locations and contents between the threads.

3.2.2 Memory Ranges

The second case concerns about memory ranges. The memory range is a form both

the subjects and objects can take. For example, the policy subject are modules in a

program such as TrustVisor [68] and SeCage [67]. Also, almost any objects in the

high-level policy are memory ranges. An effective policy after conversion is shown

in Figure 3.3

0x1000 – 0x2000 0x3000 0x4000

0xA000 – 0x1A000 X RW -

0xC0000 – 0xCE000 - - R

Figure 3.3: The Effective Policy of Memory Ranges

Without loss of generality, let us suppose that subject 1 is between 0xA000 and

0x1A000 in its address space. Subject 2 resides in 0xC0000 and 0xCE000. The

permission assignment is as shown in the figure. This arrangement is in accordance

35

with existing systems (e.g., TrustVisor [68], SeCage [67] and Fides [86]) that use

the instruction pointer stored in EIP to identify a memory range subject X . CR3 is

also used jointly for identification when X is in userland. When a memory range is

an object, the virtual address that is used to access the object is used to identify the

object.

The issue is that the mappings in the guest page table are included in the approx-

imation function. Since the boundaries of the memory range subjects and objects

are delineated using virtual addresses, the approximation function now contains

relation that maps certain virtual addresses to the high-level subjects and objects.

However, the virtual addresses are designated by the untrusted kernel. So it is free

to map the same object or subject at any virtual address range. As a result, the sta-

bility of the approximation function cannot be guaranteed. For example, suppose

the kernel swaps the mappings of page 0x3000 and 0x4000. Subject 1’s access to

0x3000 will be allowed. However, the high-level object behind this address should

not be accessed by subject 1.

Some systems [68, 86, 67] are aware of this issue and implement certain runtime

measures such as checking the page table or providing its own set of guest page

table. The runtime measures are not satisfactory to maintain the approximation

function. First, it is costly for the hypervisor to traverse the guest page table, while

the concerned thread is hanging. Second, guest page table traversing is subject to

race condition attacks from the kernel, since the adversary may run on another CPU

core. More details about the race condition are discussed in Section 3.4.1. Although

the hypervisor can quiesce other cores as described in XMHF [93], it incurs a non-

negligible performance toll.

3.2.3 Issues in SP3

Given the approaches to represent the above two kinds of subjects, it is appropri-

ate to review a system that depends on both methods to control access to memory,

36

which is the SP3 [101] system. This design causes identity issues. Note that SP3

is implemented on a para-virtualized platform, thus it involves some design that re-

quires hardware modification if implemented on a hardware-assisted virtualization

platform. Still, the discussion here focuses on the access control design, indepen-

dent from the implementation.

SP3 is a virtualization based system that aims to protect confidentiality of mem-

ory of application processes. Each process is assigned a SP3 domain with an iden-

tifier sid. Each virtual memory page of the process is assigned an identifier that

corresponds to a key. The hypervisor maintains an access matrix whose rows are

the domains and the columns are the key identifiers. If a domain s is assigned ac-

cess to a page p, the matrix records the authorization at (s,Kp) where Kp is the key

identifier attached to the page p. The relevant design is shown in Figure 3.4.

kid1 kid2

sid1 Y

sid2 Y

Vaddr1 kid1

Vaddr2 kid1

Page TableAccess Matrix

Figure 3.4: The Access Control Design of SP3

The original SP3 design is not explicitly aimed at enforcing a higher-level secu-

rity policy. Rather, it provides the mechanisms needed for potential security appli-

cations.

Suppose the mechanisms are used to enforce policy at the process level. In

this scenario, there are issues with both subject identity and object identity in this

design. The subjects are tracked by the hypervisor. Each domain is associated

with a secured context saved on one of the kernel stacks which contains the domain

identifier. During context switches, the hypervisor obtains the domain identifier of

the next domain from the exception frame saved during the previous exception on

37

the kernel stack for that process. This approach is similar to the thread identification

above using kernel stack. Therefore, the kernel can supply another kernel stack

frame during context switch in order to fake to the domain identity.

The objects are essentially memory ranges grouped by key identifiers attached

to the Page Table Entries (PTEs). It is not clear from the original design that whether

the key identifiers in the PTEs are directly writable to the kernel, but still, they are

readable. If they are writable, the kernel is free to modify the key identifier in the

PTE of a virtual page to the key identifier of another process, so that the hypervisor

decrypts the memory content when accessing any page accessible via this PTE. If

they are not, the kernel can still modify the higher-level paging structure to replace

the entire mapping in that range with another domain’s leaf page table. Since page

table sharing is allowed, it is difficult for the hypervisor to verify the intention of this

modification. Still, the hypervisor will decrypt the pages because the key identifiers

in the leaf page table matches the the ones in the access matrix.

3.2.4 Privilege Level Based Subjects

A special case in tracking the subjects is to track kernel / user switches. Most

modern OS places the kernel in the same address space as the user applications

and leverages on the Current Privilege Level (CPL) feature of the hardware to iso-

late them. Therefore, tracking kernel / user switches is equivalent to tracking CPL

switches. This type of subjects is usually seen in the systems that enforces kernel

integrity, such as SecVisor [80]. An example effective policy is shown in Figure 3.5.

0x1000 – 0x2000 0x3000 0x4000

CPL = 0 X RW -

CPL = 3 - - R

Figure 3.5: The Effective Policy of Privilege Levels

In this case, the approximation function maps CPL 0 to kernel and CPL 3

38

to others. The mapping itself is secure, because CPL is a hardware feature and

cannot be forged by software. However, the effectiveness of this kind of system

does not solely depend on CPL. The reason is that using CPL implies that any

code, regardless of its origin, running with CPL 0 is regarded as the kernel. This

implication leads to two consequences. First, to prevent return-to-user attacks, the

enforcement system needs to distinguish kernel memory and user memory in the

same address space, in order to prevent execution of code in user memory while

CPL is 0. This reduces the issue to the above memory range case and the same

issue applies. Second, to prevent illegal injection of code into kernel memory via

open interfaces such as kernel modules, such software level semantics needs to be

included as well. In Section 3.3.4, it is shown that software level semantics also

poses a challenge.

The recent speculative execution attacks, e.g. Meltdown [64] and Spectre [58],

drive Linux to turn to separate address spaces for kernel and user spaces [3]. In this

design, the kernel / user switch is equivalent to the address space switch above in

Section 3.2.1.

3.3 Utilization by Low-Level Mechanism

The enforcement systems rely on certain low-level mechanism which is the MMU

Therefore, in the second policy conversion stage described in Section 3.1, the effec-

tive policy is converted to a form necessitated by the low-level enforcement mecha-

nism, called binary policy. The format of binary policy is dictated by the low-level

mechanism. Our discussion in this section mainly uses the virtualization based sys-

tems as examples.

3.3.1 A General Approach

The low-level mechanism typically provide less than required number of subjects,

and can only enforce a subset of the high-level policy at any time. For example,

39

the MMU essentially provides only one subject which is the hardware thread on the

CPU and the active policy enforced is the current address space mappings in the

page table. For enforcement of the full set of the policy, the high-level subjects are

dynamically bound to the low-level subjects. Accompanying the subject switches,

the active policy is dynamically switched as well. In the MMU case, the hardware

thread acts on behalf of one high-level subject at any time. And when the subject

switches, the page table also needs to be switched.

The implication is that it is required to divide up the access permissions assigned

for the various high-level subjects into sets. Each set is essentially a bag of tickets

for accesses to the objects allowed for a particular subject. In the MMU case, any

virtual address is a ticket, the corresponding physical address and the permission

assigned in the PTE control which object a subject can access with that ticket and

with what permission.

The general approach is, therefore, as follows. Ideally, the binary policy should

consist of sets with exactly the tickets allowed for a subject. By switching the active

bag of tickets along with the change of dynamic binding between the high-level

subjects and low-level subjects, the high-level policy is enforced and the complete

mediation requirement is satisfied.

The challenges posed by this approach are as following. Firstly, the division

of the access permissions requires semantics defined by the untrusted software, be-

cause the set of objects accessible to a subject is defined by the untrusted software.

At least, the subject needs to access itself as an object. Therefore, correct division of

permissions is a challenge. Note that because of this involvement, the binary policy

is also an approximation of the high-level policy.

Secondly, tracking the high-level subject switches also involves semantics out-

side of the trust boundary. Such tracking is not always straightforward because there

may be no low-level event that corresponds to the high-level semantics of subject

switch.

Thirdly, in order to mediate all the operations defined in the high-level policy,

40

the low-level events that correspond to the operations need to be identified and in-

tercepted. In other words, the high-level operations need to be synthesized. Because

not all low-level events are relevant, policy mediation requires semantics of the un-

trusted software to filter the irrelevant ones. As a result, mediating the high-level

events at the low-level is a challenge.

The impact of these challenges is presented in the rest of the section.

3.3.2 Division into Binary Policy Sets

In virtualization based systems, the binary policy is the paging structures needed by

the MMU. In order to divide up the effective policy to sets of paging structures, the

hypervisor needs to establish a number of relations between the virtual addresses

in the effective policy and the physical addresses that points to the objects. Once

established, the objects accessible to a subject are added to its bag.

In hardware-assisted virtualization, there are two stages in MMU’s address

translation. The VA to guest physical address (GPA) translation is the first, and

the GPA to PA translation is the second. During the policy division, an important

task that the hypervisor needs to perform is to find the GPAs so that the correct EPT

entry can be located to fill the permissions. In order to acquire the GPAs, the guest

page tables need to be traversed. However, the guest page tables are outside of the

trust boundary, therefore, semantics outside of the trust boundary is used.

In fact, the division of the effective policy into bags of tickets can be imple-

mented at either stage. In other words, the inclusion of the objects accessible into

a subject’s binary policy set can be achieved by configuring either the guest page

table or the EPT. This option drives two different types of design. In the first type,

the subjects are still distinguished and restricted by the guest page table. It implies

that the EPT is shared among all the subjects and contains a union of all the objects

and permissions assigned to all the subjects. In this design, one bag corresponds to

one set of guest page table. InkTag [51], SeCage [67] and Fides [86] are example

41

systems that adopt this design. The second design is that the subjects are restricted

using individual EPT sets. The guest page tables are typically directly reused. In

this design, one bag corresponds to one set of EPT. TrustVisor [68] and AppShield

[29] are both systems that adopt this design.

Nevertheless, both types involve the semantics outside the trust boundary which

is the mappings in the guest page table, although the specific consequence depends

on the way that such semantics is utilized. The consequences are below.

Shared EPT The systems that follow this design can be further divided into

two subtypes. The first subtype directly reuses the guest page tables, as shown by

SeCage [67]. The second subtype constructs a separate set of guest page table that

contains replicated and verified mappings from the set of guest page table provided

by the untrusted kernel. This type is represented by InkTag [51] and Fides [86].

The first subtype is not secure because of the race condition attacks described

in Section 3.4.1. The consequence is that, the attempted to check the mappings

in the guest page table can be defeated. The guest OS can inject or modify the

mapping by modifying the guest page tables. Such modification alters the mapping

of a virtual address to another physical address, thereby destroy the stability of the

approximation function.

The second subtype replicates the mappings in the guest page table and verifies

them, before writing the mappings into the guest page tables constructed by the

hypervisor. The latter guest page tables are always used when the intended subject

is executing. They also remain unchanged unless requested by the protected subject.

Therefore, the above issues do not affect them. However, existing schemes are still

vulnerable to the attacks related to permission revocation discussed in Section 3.4.2.

The consequence is that the guest page tables provided by the hypervisor can still

be modified.

Exclusive EPT This approach ensures that there exists only active mapping for

one subject in each EPT set. However, there is still the issue of directly reusing the

guest page table. The similar issues to the first subtype above apply.

42

Attacking Inaccurate Conversion

It should be noted that during the second conversion stage, the EPT arrangement

needs to exactly follow the intended policy. If the subjects are intended to be sep-

arated from each other, the EPT sets are not allowed to contain mappings to the

same physical memory. Unfortunately, SeCage [67] places EPT mappings to the

shared data segment of the application in the EPT for the secret compartments and

the untrusted compartment. In other words, the application semantics outside of the

trust domain requires access to the data segment and this need is accommodated by

the EPT. The design is shown in Figure 3.6.

Data Mapping

Secret Mapping

Untrusted Compartment Secure Compartment

Figure 3.6: The EPT Arrangement in SeCage

This shared region between the secret compartment and untrusted compartment

become a potential ground for leaking secrets in the secret compartment. The at-

tacker can attempt to induce the code in the secret compartment to read the secret

and write to the shared memory which is readable by the untrusted compartment.

3.3.3 Detecting Subject Switches

The second challenge in Section 3.3.1 concerns switching active policy along with

the subject switches on the CPU. The subject switches are also semantics beyond

the trust boundary. The enforcement systems need to monitor every switch, and

follow up with policy switches, which requires the enforcement systems to obtain

43

semantics outside of the trust boundary. If certain switch is missed, the applied

policy may be wrong, thereby undermining complete mediation.

Depending on the type of subjects that needs to be tracked, the amount of se-

mantics involves also differs. For process subjects, it is straightforward to track the

switches, because it is a straightforward for a hypervisor to track CR3 switches.

However, for other types of subjects, more semantics is involved and there are po-

tentially more issues.

Subject Switch within an Address Space

Certain virtualization based systems enforce policies that concern about finer-

grained entities than an entire address space. Assume the entity of concern is a

consecutive range R in the address space. Different policies are applied to R and

other parts of the address space. Therefore, it is necessary to detect when the ex-

ecution switches between R and the rest. Take the policy in Section 3.2.2 as an

example, R may be between 0xA000 and 0x1A000.

It is challenging to detect such switches because they do not necessarily in-

cur any events defined in the hypervisor’s trust boundary. In essence, this type of

switches are control flow transfers which are not within the original design consid-

erations of the hypervisor. Nevertheless, there are two workarounds proposed in the

literature.

In the first method, the hypervisor disables the execution permission of all mem-

ory pages, except those for R. As a result, whenever the execution leaves R, an

access violation is reported by the MMU and the control then traps to the hypervi-

sor. However, this method have a hidden issue. Before the hypervisor applies the

binary policy sets, the hypervisor has to know exactly the boundary of R, which

requires the semantics in the guest page tables. Therefore, this method depends on

the correct construction of the binary policy sets which is discussed in Section 3.3.2.

The second method is to arrange the subjects to actively signal the switches. As

used in SeCage [67], the entry and exit of R are instrumented with code that invokes

44

the VMFUNC instruction to switch the underlying EPT.

Attacking Un-mediated Subject Switch However, this method is not secure

because the subject switches completely evade the mediation of the hypervisor. As

a result, there is no guarantee that the hypervisor enforces complete isolation among

the subjects. In other words, certain state switches are left to the protected applica-

tion itself. Amongst the states, the secure stack used by the secret compartment is

of particular concern. In SeCage’s design, the trampoline and springboard are code

fragments used to perform the state switches between the secure compartments and

the untrusted compartments. The fragments contain instructions that replace the

stack according to the direction of the switch. A malicious kernel can intercept the

instructions and emulate them, e.g. by using break points. During the emulation,

a wrong stack pointer is moved to ESP, so that the secure compartment uses the

kernel supplied stack. The kernel then skips the emulated instruction on return. The

execution continues to the secure compartment and the secure compartment uses

the insecure stack.

3.3.4 Event Synthesis

Since the binary policy needs to faithfully enforce the high-level policy, all the op-

erations performed on the objects need to be intercepted. As introduced in Sec-

tion 3.3.1, the approach is to capture the low-level events that could be an indication

of the high-level operations and filter the irrelevant ones. In essence, the enforce-

ment system needs to construct a set SE which consists of pairs (e, v), in which e

refers to a particular low-level event, while v is a combination of the trusted states.

The element in SE are chosen so that when a low-level event e occurs, if the trusted

states match the value v, a high-level event is uniquely identified. SE is included in

the approximation function.

The main issue is that e may not even be triggered when certain high-level op-

eration occurs. Plus, in order to specify v, the enforcement systems need to reuse

45

the semantics outside of the trust boundary to interpret the states also outside of the

trust boundary. The interpretation may be misled because the untrusted software

manipulated the states.

High-Level Software Events

The most prominent example is the software level event: dynamic allocation of

memory. This type of events are of interest, because they can imply policy updates

when the newly created object is of security concern. The typical approach to ac-

quire the software level semantics is to insert an agent into the software. The agent

hooks the concerned code that “handles” the event to intercept the invocation. Then

it explicitly calls the enforcement system to inform the captured event. For integrity,

the memory page where the hooks reside are set as read-only.

With this approach, much software semantics outside of the trust boundary is

included in the approximation function. Examples include but not limited to the

virtual memory layout, the one-to-one relation from the invocation of certain code

to the concerned event, the parameters and the stack layout etc. Any manipulation

in these leads to incorrect approximation of the software events, thus undermines

the complete mediation requirement.

Hook Bypassing Without eliciting too much software level details, here

presents an issue with the hooking technique. Although the hooks are set as read-

only, there is still no guarantee that all invocation of the hooked function is inter-

cepted. The reason is that the invocation is made via virtual address but the read-

only permission must be set on GPA. A malicious kernel can simply copy the page

that contain the hooks, and maps the virtual address to the copy. The hooks are

never triggered while the hooked application runs normally.

To defend against this kind of attack, the guest page tables need to be monitored

and tracked. However, as discussed in Section 3.4.1, checking the guest page table

faces the race condition issue and is not always secure.

The above approach is adopted by systems such as HUKO [99] which enforce

46

a mandatory access control model. In order to label all objects, it is necessary for

these systems to track all allocations and deallocations in the kernel space. HUKO

inserts a protected and trusted component into the kernel itself to intercept the al-

location and deallocation events and notify the hypervisor. Other systems that per-

forms stealthy debugging [37, 41] also potentially face this issue when the kernel

is malicious, although in their original design, they do not explicitly consider the

kernel to be malicious.

3.4 The Impact of Concurrency

3.4.1 Race Conditions

Concurrent access by multiple cores could lead to race conditions. They pose a

threat because the semantics could be manipulated unexpectedly. In a multicore

setting, walking the guest page table at runtime is not secure because it is subjects

to race condition attacks. On a single core system, the guest OS is paused when the

CPU traps to the hypervisor so the problem does not exist. However, on a multicore

system, when one core traps to the hypervisor or execute the isolated code, the guest

OS on other cores are still running. So there is ample opportunity for the guest OS to

manipulate the guest page table when the hypervisor is walking it or when isolated

code is using it for translation.

Specifically, the effective policies enforced by the hypervisor use virtual ad-

dresses (VA), because user space programs in general are not aware of any physical

addresses. In the second policy conversion stage, the hypervisor faces the chal-

lenging problem which is to find out the corresponding GPA so that the right EPT

entry can be updated accordingly. In order to do so, the hypervisor needs to traverse

the guest page tables of the virtual addresses at runtime in order to find the GPA.

Software page table traversing cannot be done instantaneously. During its traversal,

the kernel can modify the page table entries and feed the hypervisor with a wrong

47

mapping.

Consider that the hypervisor attempts to lock the guest page table as an example.

Walking page table is a rather lengthy operation because it involves a number of

memory loads and stores. Thus, the guest OS running on another core has a non-

negligible time window to change one of the leaf page tables after it is verified. In

order to do so, the guest simply needs to write a few bytes into the higher-level page.

The result is that the hypervisor ends up protecting the wrong physical page, while

another page is actually used to perform VA-to-GPA mapping.

3.4.2 Permission Revocation

Even if the binary policy are correctly constructed, there is still a need to perform

revocation once the active policies are switched or when policy update happens.

The revocation needs to be complete in that any component that could hold a copy

of the permission needs to be considered, including any buffers system-wide.

In virtualization based systems, the address translation is part of the binary pol-

icy. Meanwhile, recently used address translations together with the permissions

are cached in modern CPU’s Translation Lookaside Buffer (TLB). The caching re-

sults in implicit replication of the binary policy. Such replication causes undesired

consequences when a multicore platform is considered.

Unlike data cache and instruction cache, the consistency between the TLB and

the page tables in the main memory is maintained by the software, instead of the

hardware. Therefore, when an address mapping is updated, the software needs to

explicitly invalidate corresponding TLB entry.

Moreover, the hardware does not enforce coherence among the TLBs on differ-

ent cores. All such operations need to be explicitly carried out by software as well.

When more than one core access an address space, the core that changes the map-

ping is supposed to perform TLB shootdown to invalidate any existing entries on

other cores. Typically, it is achieved by using the Interprocessor Interrupts (IPIs).

48

Specifically, the initiating core fires an IPI to each core that needs to invalidate its

TLBs. On modern x86 platforms, the Advanced Programmable Interrupt Controller

(APIC) interfaces with the bus for receiving and sending IPIs. The IPI is received by

the other cores and treated exactly the same way as an external interrupt. A handler

is invoked and the specified TLB entry is invalidated. In this way, the consistent

view of the address space is maintained across all CPU cores.

3.4.3 TLB-Related Attacks

There are two attacks that can be launched on a multicore platform by exploiting

the TLB. The first is the stifling attack that actively abuses the TLB and IPI across

CPUs. The second exploits a hardware performance feature called Virtual Processor

ID (VPID) to keep stale entries. The attacks are performed on two open-source

micro-hypervisors, BitVisor [82] and XMHF [93], running on a PC with multiple

cores.

In the attacks, consider a typical isolation scenario where the hypervisor receives

the request from a security sensitive application at runtime, and then sets the read-

only permission in the EPT entry for the application’s code page. The objective

of the attacks is for the malicious OS to successfully modify the protected page

without the write permission on the EPT entry. The general idea behind the attacks

is to use a stale TLB entry so that the core continue to use the write permission

granted before the EPT update.

The Stifling Attack

The stifling attack prevents the CPU core controlled by the malicious thread from

responding to the hypervisor’s TLB shootdown, so that its stale TLB entry is not in-

validated. Note that trapping to the hypervisor cannot be denied by setting the inter-

rupt masking bit (namely EFLAGS.IF), because the hardware ignores it whenever

the External-interrupt Exiting bit in the Virtual Machine Control Structure (VMCS)

49

is set.

The attack exploits a hardware design feature to block all maskable external

interrupts, including the IPI used for TLB shootdown. According to the hard-

ware specification, the IPI handler is expected to perform a write to the End Of

Interrupt (EOI) register in the local APIC before executing an iret instruc-

tion. The EOI write operation signals the end of the current interrupt handling and

allows the local APIC to deliver the next IPI message (if any) to the core. If no such

write is performed, the local APIC withholds subsequent IPIs and never delivers

them. The guest can access the physical APIC because in hypervisors for memory

isolation, the APIC is typically not virtualized in order to minimize the TCB.

As depicted in Figure 3.7, suppose that the victim application occupies corev

while two malicious kernel threads occupy core1 and core2. The attack steps are

described below.

1. At corev: The victim application starts to run and writes data into a memory

buffer.

2. At core1: The malicious kernel maps the guest physical address of the buffer

into its own address space by changing its guest page table. It reads the buffer

so that the corresponding EPT entry is loaded in the TLB of core1. It also

disables interrupt and preemption so that it is not scheduled off from core1 in

order to avoid any TLB invalidation due to events within the guest.

3. At core2: Another thread of the malicious kernel sends an IPI to core1 by

using a legitimate IPI vector for OS synchronization.

4. At core1: The malicious IPI handler returns without writing to the EOI reg-

ister of the local APIC. As a result, subsequent IPIs are never accepted by

core1.

5. At corev: The victim issues a hypercall for memory protection. The hypervi-

sor updates the EPT for all other cores to disallow accesses. It broadcasts an

50

IPI to trigger VM exit on other cores.

6. At core1: The IPI from corev is not delivered to core1. The kernel thread

can continue to read/write the isolated data buffer without trigger any EPT

violation, because the core’s MMU uses the EPT entry in the TLB which has

the stale permissions assigned prior to the hypercall.

7

data

victim

RW

RW

NA

TLB

EPTEPT

core1 core2

physical memory

RW

access
violation

attack

malicious kernel others
corev

Figure 3.7: Illustration of the stifling attack bypassing the EPT’s access control over
the victim’s data. The attacker controls core1 and core2.

The attack is implemented on BitVisor [82] with necessary changes including

new code to change EPT permission bits for isolation and an interrupt handler for

TLB shootdown. The experiment shows that the kernel successfully writes to the

protected buffer, even though the access permission in the corresponding EPT entry

has been changed into read-only.

One possible countermeasure to the stifling attack is to virtualize local APICs so

that the hypervisor intercepts the external interrupts and enforces EOI writes. How-

ever, this approach not only increases the hypervisor’s code size and complexity,

but also has performance tolls as it is recommended to remove the hypervisor from

the code path handling interrupts for better efficiency [48, 91].

An alternative is to resort to non-maskable interrupts (NMIs) instead of IPIs.

NMIs are delivered immediately by the local APIC to the CPU core as they are

usually sent by hardware such as watchdogs to indicate critical hardware failure

which needs immediate attention. However, it is strongly discouraged to use soft-

ware to generate NMIs because of its complex handling. Moreover, it requires a

high level of expertise to implement a proper NMI handler [77] because it needs to

51

deal with recursive execution. Briefly speaking, once an NMI is delivered to a core,

subsequent NMIs are blocked until the core executes iret. If the NMI handler

causes any exception, the exception handler’s iret immediately allows the next

NMI to be delivered while the present one is still in processing. From the system

perspective, it is risky to use the hypervisor to issue and handle NMIs.

Virtual Processor ID (VPID) Attack

XMHF [93] is an open-source micro-hypervisor on x86 platforms that explicitly

takes the multicore setting into its design consideration. To deal with concurrency

in the hypervisor space, XMHF enforces a single threaded execution model for

the hypervisor. When one core is trapped to the hypervisor space, it “quiesces

all other cores” by broadcasting a Non-maskable Interrupt (NMI) which triggers a

VM exit and effectively pauses the execution of all other threads across the system.

Therefore, it is not subject to the stifling attack. Nevertheless, it still has another

TLB-related vulnerability.

Recent generations of x86 processors introduce a feature called Virtual Proces-

sor ID (VPID) to avoid unnecessary TLB invalidation induced by VM exit events.

Identifiers are assigned to address spaces of each virtual CPU and of the hypervisor

and tagged to their TLB entries. When a TLB entry is used during translation, it is

considered a hit only when its VPID tag matches the VPID of the present address

space. With this extra checking, the hardware does not need to invalidate all TLB

entries during VM exit.

Although improving the performance, this technology has an unexpected secu-

rity side effect. Since not all TLB entries are evicted by the hardware during a VM

exit, the stale entries of the guest must be explicitly invalidated by the hypervisor.

However, the XMHF hypervisor neglects this issue. It assigns VPID 0 to the hy-

pervisor and VPID 1 to the guest. Unfortunately, there is no explicit invalidation of

TLB entries tagged with VPID 1 when handling the quiesce-NMI. With this loop-

hole, the following attack can be launched by the guest OS to write the page set as

52

read-only by the EPTs. The system setting is the same as the stifling attack shown

in Figure 3.7.

1. At corev: The victim application starts execution. It allocates a page and

requests memory isolation.

2. At core1: The malicious kernel running on core1 maps the buffer into its own

space, reads it once so that a TLB entry is loaded by the MMU. It disables

interrupt and preemption so that the TLB entry is not evicted by events in the

guest.

3. At corev: The victim application performs a hypercall to the XMHF hypervi-

sor. The hypervisor issues an NMI to trap other cores and sets the read-only

permission bit in the relevant EPT entry after CPU quiesce.

4. At corev: The execution returns to the victim application.

5. At core1: The guest OS resumes its execution. Due to incomplete TLB inval-

idation, the stale entry is not removed. The guest OS continues to read and

write the page, regardless of the permission in the current EPT.

The implementation involves a hypervisor application, or hypapp in XMHF’s

terminology, based on XMHF APIs. The hypapp takes an address of a physical

page as input and sets its access permission in EPTs as read-only. The hypapp is

invoked via a hypercall from an application bound to a core. The kernel runs a

malicious thread on another core to continuously access the page. It is observed

that the malicious thread keeps a stale TLB entry and successfully writes the target

page without triggering EPT violation.

3.4.4 Implications

The revocation issue impacts all systems that reuse memory pages previously used

by the untrusted guest. If the memory pages contain sensitive data itself such as

53

[68, 67, 29, 86], the guest can directly access the data with stale permission. If the

memory pages with data are encrypted as in InkTag [51], the guest kernel can still

manipulate the guest page tables used by isolated execution, i.e. the hypervisor page

table in InkTag’s term. These page tables are allocated by the kernel and handed

over to the hypervisor, therefore, permission revocation is needed. Even though

InkTag verifies the guest page tables and do not directly reuse them, its security is

still undermined.

3.5 Discussions

In this section, a few related issues about the mismatch in scope of semantics and

policy enforcement are discussed.

3.5.1 Memory Monitors

The discussion in previous sections can be applied to monitor systems and virtual

machine introspection (VMI) systems. Copilot [71], KI-Mon [60] and Vigilare [70]

are example systems that utilize a separate hardware component for monitoring pur-

poses. Such hardware-based monitors are proposed to monitor kernel code integrity,

static data integrity and kernel objects. The VMI systems [84, 81, 24, 49, 42, 50]

leverage the hypervisor’s support to introspect the memory states of virtual ma-

chines.

These systems do not necessarily enforce any policy regarding the subjects such

as processes. However, they are concerned about the objects. Also, all the systems

are isolated for the tamper-proof requirement. Therefore, the possible mismatch be-

tween the semantics within the trust boundary and the semantics needed to monitor

the objects still exists. Thus, the discussion about involvement of semantics outside

of the trust boundary in the approximation function, and the effect on object identity

and events is still applicable.

54

Monitor System
High Privilege

Low Privilege

Object
list

Object

Monitor

Low-level
Mechanism

High-level
Object List

Trust Boundary

①

②

Figure 3.8: The enforcement system in the monitor scenario

Figure 3.8 presents a conceptual illustration of the monitor systems. The high-

level object list undergoes two stages of conversion, marked as arrow 1 and arrow

2 in the figure. In the first stage, the high-level objects are converted to their corre-

sponding addresses at runtime, i.e. virtual addresses. In the second stage, the virtual

addresses are further converted to physical addresses so that the low-level mecha-

nism can directly monitor. The low-level mechanism differs depending on the spe-

cific system. The hardware-based monitors use Direct Memory Access (DMA) or

bus sniffing, while the VMI systems rely on the MMU.

There are two major issues in these systems. First, the semantics in the kernel

page table plays an important role. Second, the isolation in these systems removes

the possibility to interpose on important events in the CPU. Therefore, these systems

may not be able to respond to state changes and miss the monitor target.

Kernel Page Table Since the kernel under monitor still controls the full set of

page table, the monitors may be presented a completely false view of the entities

that it is monitoring. The existing approach is to assume certain virtual memory

layout that is normally followed by the kernel under monitor. This approach in

essence does not attempt to verify the use of the semantics beyond the trust bound-

ary. Worse, the page table can even be modified by legitimate means. For example,

the kfork() system call is a legitimate way provided by Linux kernel to load a

new kernel image. Afterwards, the system soft-reboots to run using the new image,

55

while leaving the old kernel image intact in physical memory. Once executed, the

monitors, which still read the old image, will be unaware of the new kernel.

CPU States The memory monitors are not designed with the capability of track-

ing activities on the CPU. Especially so are the hardware monitors, because they are

separated from the CPU. A malicious kernel may modify the CPU states to violate

fundamental assumptions and mislead the monitoring, e.g. by modifying the paging

mode or even turning on virtualization.

3.5.2 Runtime Updates and Policy Coherence

Since multiple binary policy sets may contain access permissions to the same object,

the enforcement systems need to ensure that the binary policy sets are coherent, i.e.

in accordance with the high-level policy and do not conflict with each other. For

example, if the policy states that only subject X has access to a certain page P ,

only the EPT for X should allow access to page P ; all other EPTs should deny

such access. Otherwise, there may be contradicting rules in different policies which

confuse the hypervisor during enforcement.

However, since the access permissions are scattered in the binary policy sets,

the enforcement systems usually face a daunting task of enumerate all of the sets to

ensure coherence. Beside the obvious performance implications, the ambiguity in

the policy may also hamper effective verification.

3.5.3 Functionality

An ideal enforcement system maintains full compatibility with existing functionali-

ties, which requires them to understand the rich semantics in the untrusted software.

One of the functionality often left unaddressed is swapping. An important aspect

of virtual memory is that the backing page for a virtual page can be freely swapped

out and in by the guest OS. Therefore, the guest OS do have legitimately reasons

to access the data. Except InkTag [51], existing systems do not describe explicitly

56

how their policy enforcement can cooperate with swapping.

Swapping is an interesting issue because it provides the guest OS a chance to

freely modify both the content in a swapped page and the mappings defined in the

guest page table when a page is swapped in. Integrity protection on the page content

is not enough, and the guest OS must also be checked so that it places a page at

its original location. The paraverification-style of verification does not apply here

because there is no application to specify the intention; swapping is purely initiated

by the kernel. It suggests certain deep interaction is needed between the hypervisor

and the guest OS and this remains an open question.

3.5.4 Forced Serialization of Concurrent Accesses

The compatibility with swapping introduces another unexpected effect. The feature

of InkTag’s approach is that it allows read access to all the physical page via both

EPTs. In other words, instead of denying access via the untrusted EPT, it separates

the physical memory into two mutually exclusive sets which are both readable: a

trusted set and an untrusted set. The content of a page is encrypted when it is

mapped in the untrusted set, and decrypted in the trusted set. The hypervisor en-

crypts and decrypts the page content when switching the set that a page is mapped

in. The switch is triggered by guest access. When the page is not mapped in the set

that the guest attempts to access, the EPT page fault is handled by the hypervisor

and the page’s set is switched.

This approach is effective on unicore platforms, however, it cannot be scaled

to multicore platforms. Because the sets are exclusive, there cannot be concur-

rent accesses from more than one core via different EPTs. The hypervisor needs

to serialize such accesses and the cores need to wait until the other cores finish.

Therefore, this approach introduces significant overhead and is not scalable. The

hypervisor can optimize and keep two read-only copies of the same page so that

read access can happen concurrently. However, writes from the trusted view still

57

have to be intercepted and synchronized by the hypervisor, which requires the hy-

pervisor to decrypt the page first, perform the synchronization and encrypt the page

again. These operations are still not efficient.

3.6 Possible Solutions

The root cause of the aforementioned issues is the mismatch between the semantic

information available within the trust boundary and beyond. The solutions should

address this root cause. The following discusses a few possible directions.

3.6.1 Expanding the Trust Boundary

The traditional reference monitor inside the OS kernel such as SELinux [83] does

not suffer from the problem because the trust boundary, i.e. the user/kernel bound-

ary, encompasses all needed semantics. Therefore, there is no mismatch in semantic

scope. However, expanding the trust boundary to the user/kernel boundary faces the

drawback that the kernel contains a huge TCB.

The TCB issue can be potentially remedied by privilege separation. The extreme

form of privilege separation is to resort to a microkernel. However, this approach

likely encounters practical barriers of converting existing infrastructure to another.

Nested Kernel [36] attempts to strike a balance without drastically modifying the

architecture, however, its design only includes page tables inside the trust boundary.

Other kernel semantics is not covered.

3.6.2 Self-Supplied Semantics

It is also possible for the enforcement systems to resort to alternative designs. The

pursuit for small TCB drives the design in many systems towards the direction that

still leaves all resource management to the untrusted kernel. The enforcement sys-

tems only try to deprive the kernel access to resources that previously belong to it.

58

Therefore, the enforcement systems all need to understand the internal working of

the untrusted kernel, thus the semantics causes issue.

In an alternative design, the enforcement systems can perform some light-weight

resource management. The untrusted guest software is only utilized as a library and

only handles tokens to the real resources. The semantics is still controlled by the

enforcement systems, with the benefits of rich functionality from existing software.

SecPod [98] hints on this approach in that the hypervisor manages the entire

paging structures including the guest page tables. The kernel’s computation about

address mapping is recorded in shadow page tables never used for policy enforce-

ment. Therefore, the VA to GPA mapping is controlled. However, the control does

not extend beyond the mappings in SecPod’s design. The design presented in the

next Chapter, FIMCE, also falls into this category.

3.6.3 Hardware Assistance

Another option is to seek assistance from hardware. If the scope of semantics in

the hardware is aligned with the high-level policy, the burden on the enforcement

system is minimized. Thus, the issues incurred by the misalignment can be greatly

alleviated.

An example can be seen in the design of SGX. Although the address space lay-

out is designated to the untrusted kernel, the hardware records VA to PA mappings

when the enclaves are constructed. On every subsequent memory access, the hard-

ware compares the VA and the PA used by the access and the recorded version. The

access is only allowed if there is a match. SGX hardware understands the semantics

about the virtual address space, therefore, it can perform the checks in hardware.

The drawback of this approach is also obvious, though. Since hardware modifica-

tion is needed, legacy platform cannot benefit from the new design.

59

3.6.4 Restricting Untrusted Software

Lastly, it is an option to impose restrictions on the untrusted software so that the

semantics outside of the trust boundary can only behave in expected ways.

The paraverification idea in the design of InkTag offers certain insight into a

software-only approach to restricting the untrusted software. The kernel’s modifi-

cation on the address space of the isolated application must be coupled by a token

supplied by the initiating application. The hypervisor verifies the intention repre-

sented by the token and the action performed by the kernel. If they match, the

modification is allowed. However, this design needs to be specially adapted for

individual types of semantics. For example, special design may be needed for op-

erations on files. It remains an open challenge to design a generic and practical

verification mechanism in software.

60

Chapter 4

Enforcing Isolation with Fully

Isolated Micro-Computing

Environment (FIMCE)

In this chapter, a new isolation paradigm is proposed to enclose an entire com-

puting environment including the CPU core, the memory region, and (optionally)

the needed peripheral device(s). The new system is named as fully isolated micro-

computing environment or FIMCE. It avoids all aforementioned security pitfalls of

virtualization-based memory isolation, constructs a secure isolated execution envi-

ronment with less than 1% of overhead. The principle of FIMCE is to control the in-

volvement of the kernel semantics in the isolation policy enforcement. Meanwhile,

FIMCE performs minimum resource management so that necessary semantics is

provided by itself.

The Software Guard Extension (SGX) to the x86 architecture is a hardware

based isolated environment and offers strong isolation guarantees. SGX allows ap-

plications to create so-called enclaves as an isolated environment within its address

space. Once created, only code inside an enclave is able to access memory assigned

to the enclave. All other accesses are not allowed, including SMM. While the iso-

lation guarantee of SGX is strong, certain capability is still not included such as the

61

ability to perform I/O. In this chapter, a comparison of FIMCE and SGX is given

and potential ways to integrate both for strong security guarantees are discussed.

4.1 FIMCE Architecture

In a nutshell, a FIMCE is an isolated computing environment dynamically set up by

the hypervisor to protect a security task. The hypervisor enforces the isolation be-

tween the guest and a FIMCE by using virtualization techniques. A FIMCE consists

of the minimal hardware and software satisfying the task’s execution needs. Its de-

fault hardware consists of a vCPU core, a segment of main memory and a Trusted

Platform Module (TPM) chip. If requested, peripheral devices (e.g., a keyboard)

can be assigned to a FIMCE as well. These hardware resources are exclusively used

by the task when it is running inside its FIMCE.

The code running inside a FIMCE consists of a piece of housekeeping code

called the FIMCE manager and the software components that comprise a set of

pillars, as well as the security task itself. A pillar is in essence a self-contained

library the security task’s execution depends on. For instance, a TPM pillar provides

the TPM support to the task. A FIMCE hosts a single thread of execution starting

from the entry of the FIMCE manager. All code in a FIMCE runs in Ring 0 and calls

each other via function calls. Hence, there is no context switches within a FIMCE.

Core Isolation The vCPU core used by the protected task is isolated from the

untrusted OS for two reasons. Firstly, it prevents the hypervisor from understanding

the kernel’s scheduling semantics which causes a series of issues as discussed in

the previous chapter. Secondly, it prevents untrusted OS from interfering with the

FIMCE by using the inter-core communication mechanisms such as INIT signals.

In modern systems, such signals can be triggered via programming the APIC. Note

that core isolation does not mean that a physical CPU core is permanently dedicated

to a protected task. In fact, the task can migrate from one core to another. However,

while it is running, it exclusively occupies the vCPU and does not share it with other

62

threads, until it voluntarily yields the control or is terminated by the hypervisor.

In addition, the hypervisor sets up the virtual core of the isolated environment

such that external interrupts, NMI, INIT signal and SIPI are all trapped to the hy-

pervisor. By default, INIT and SIPI automatically trigger VM exit. To intercept

NMI, the hypervisor sets the NMI exiting bit in the pin-based VM-Execution con-

trol bitmap of the VMCS structure. To handle external interrupts including possible

IPIs, empty interrupt handlers are installed by the hypervisor inside the FIMCE,

while the security task may choose to replace them with its own handlers to manage

peripheral devices.

Memory Isolation Memory isolation is still indispensable in FIMCE design.

FIMCE guarantees that the entire address translation process is out of the guest

kernel’s reach. All data structures used in the translation process such as the guest

page table and the Global Descriptor Table (GDT) are separated from the kernel.

Moreover, the physical memory pages used by a FIMCE are allocated from a pool

of pages priorly reserved by the hypervisor. Using reserved memory pages controls

the involvement of kernel semantics about the relation between identity and memory

pages. It deprives the kernel of the chance to influence the mappings used inside

the FIMCE. Therefore, the issues about the involvement of kernel semantics about

object identities are avoided.

Different from conventional virtual machines, it is not necessary to turn on mem-

ory virtualization for the FIMCE. Without any EPT, the FIMCE’s MMU uses the

page table to translate a virtual address directly to a physical address. The main

benefits of the setting are to save the hypervisor’s workload of managing EPTs and

to speed up FIMCE’s memory access. Figure 4.1 explains the memory setting for a

FIMCE.

When launching a FIMCE, the hypervisor sets up the page table according to

the parameters that describe the virtual address space. To prevent the code in the

FIMCE from accidentally or maliciously accessing pages outside of the isolated re-

gion, the hypervisor does not allow it to update the page table. In other words, the

63

physical
memory Guest Hypervisor

virtual addr

FIMCE

FIMCE page table

virtual addr
guest page table

guest phy addr
extended page table

FIMCE
page table

Figure 4.1: Memory isolation for FIMCE without EPT

address mapping is fixed. For this purpose, the page table does not have mappings

to its own physical pages and updates to the CR3 register and other control registers

are trapped to the hypervisor. (Note that different paging modes make different in-

terpretation of the same paging structure, which may introduce loopholes that allow

the FIMCE code to breach memory isolation.) Lastly, the hypervisor configures

Input-Output Memory Management Unit (IOMMU) page tables to prevent illegal

DMA accesses.

I/O Device Isolation FIMCE utilizes DMA remapping and interrupt remapping

supported by hardware based I/O virtualization, together with VMCS configuration

and EPTs to ensure that the FIMCE has exclusive accesses to peripheral devices

assigned to it. Firstly, any I/O command issued from the guest to the FIMCE device

should be blocked. For port I/O devices, the hypervisor sets the corresponding bits

in the guest’s I/O bitmap. For Memory Mapped I/O (MMIO) devices, the hypervisor

configures the guest’s EPTs to intercept accesses to the MMIO region of the device.

Secondly, interrupts and data produced by a FIMCE device are only bound to the

FIMCE core. For this purpose, the hypervisor configures the translation tables used

by DMA and interrupt remapping. The former redirects DMA accesses from the

device to the memory region inside the FIMCE and the latter ensures that interrupts

from the device are delivered to the FIMCE core rather than other cores of the guest.

4.2 The Lifecycle of FIMCE

When the platform is powered on, its DRTM is invoked to load and measure the hy-

pervisor which in turn launches the guest OS. A FIMCE is launched only when the

64

hypervisor receives a hypercall to protect a security task. After the task finishes its

job, it issues another hypercall within the FIMCE to request FIMCE shutdown. The

following describes the main procedures the hypervisor performs during FIMCE

launch, runtime and termination.

4.2.1 FIMCE Bootup

The hypervisor’s main tasks here are to allocate the needed hardware resources and

to set up the environment for the security task.

Hardware resource allocation The default FIMCE hardware resources com-

prise a CPU core, a set of physical memory pages, and the TPM chip. To make

a graceful core ownership handover from the guest to the FIMCE, the guest OS’s

CPU hot-plug facility is utilized to remove a physical core from the guest. To un-

plug a core, the kernel migrates all processes, kernel threads and IRQ handlers to

other cores and only leaves on the core the idle task which puts the CPU to sus-

pension. The kernel also configures the unplugged core’s local APIC so that local

interrupts are masked. Note that the guest OS cannot prevent the hypervisor from

gaining control of a core after a hypercall. After removal, the (benign) kernel will

not attempt to use the unplugged core any longer. The hypervisor then allocates a

new VMCS for the logical core of the FIMCE and initializes the VMCS control bits

such that core isolation takes effect once the FIMCE starts execution.

The physical memory used by the FIMCE is allocated by the hypervisor from

a reserved memory frame pool so that they are not accessible from the guest. Note

that the dynamic memory allocation approach adopted by existing systems is not

secure due to the stifling attack. Suppose one page is allocated inside the guest

and later isolated for use by FIMCE, in order to isolate the page, any existing TLB

entry for that page needs to be invalidated. However, due to the stifling attack, such

invalidation is not always possible.

To setup for the FIMCE’s access to the TPM chip, the hypervisor blocks other

65

cores’ access to the TPM’s MMIO registers by configuring the EPT. The FIMCE

may also contain peripheral devices. If the security task requires accesses to a pe-

ripheral device, the hypervisor leverages the IOMMU’s capability to redirect DMA

accesses and interrupts to ensure the FIMCE’s exclusive ownership. The hypervisor

also configures the I/O bitmap in the guest’s VMCS to intercept any guest access

to the device through Port I/O, and configures the EPT for accesses to the MMIO

regions. The hard disk is not considered in the design because disk data can easily

be protected by cryptographic means.

Environment Initialization After all hardware resources are allocated, the hy-

pervisor sets up the FIMCE environment for the task’s code to run inside. Firstly,

the hypervisor initializes a minimum set of data structures required by the hardware

architecture. These include a Global Descriptor Table (GDT) with a code segment

descriptor, a data segment descriptor and a task-state segment (TSS) descriptor. The

design uses simple flat descriptors for both code and data segments. The descrip-

tors are configured with a Descriptor Privilege Level (DPL) of 0, which means that

all FIMCE code runs with Ring 0 privilege. There is no adverse consequence to

elevate the FIMCE code’s privilege, because it cannot access the guest or the hy-

pervisor space due to full isolation. It cannot attack other FIMCE instances neither,

because each FIMCE instance is independent of each other and is launched with a

clean state.

An Interrupt Descriptor Table (IDT) is also initialized with entries pointing to

empty interrupt handlers. With the IDT, proper interrupt handlers can be installed

if the security task requests I/O support. In addition, the hypervisor sets up the

page table for the FIMCE. The hypervisor also flushes the FIMCE core’s TLB to

invalidate all existing entries. Lastly, it properly fills in the VMCS fields to complete

environment initialization.

Code Loading The hypervisor first loads the FIMCE manager code into the

FIMCE memory. The FIMCE manager is the hypervisor’s delegate for housekeep-

ing purposes, e.g., setting up the software infrastructure. The hypervisor then loads

66

the security task. Based on the parameters in the FIMCE starting hypercall, the

hypervisor may also load pillars. More details about the pillars and the FIMCE

manager are presented in Section 4.4.

At the end of the boot-up, the hypervisor prepares the security task’s execution.

If there are input parameters, it marshals them onto the FIMCE’s stack and sets

up the new secure stack pointer. Finally, the hypervisor passes the control to the

FIMCE manager which starts execution within the isolated environment.

4.2.2 Runtime

Once the FIMCE manager takes control, the FIMCE is in the running state. It

can only be interrupted by hardware events, software exceptions and non-maskable

interrupts. All software exceptions and critical hardware interrupts are considered as

system failure and trigger the hypervisor to terminate the FIMCE. Other interrupts

are handled by the empty handlers by default which simply return, unless their

corresponding handlers are installed during FIMCE launching (as part of a pillar).

4.2.3 Termination

A FIMCE can be shutdown due to the security task’s termination hypercall or due to

the system failure interrupts. To turn off a FIMCE, the hypervisor zeros its registers,

memory partition and invalidates the TLBs. It then switches the current VMCS to

the one used for the guest OS, re-enables the EPT on the current core. It undoes any

device assignment and returns them to the OS. Lastly it notifies the OS that the core

is returned.

4.2.4 Comparisons to Memory Isolation Primitive

Figure 4.2 depicts the architectural difference between the memory isolation primi-

tive used in existing schemes and the full isolation of FIMCE. The main distinction

is the boundary between the trusted and the untrusted.

67

10

Task
untrusted
OS

memory

CPU

software

Untrusted domain µ-ICE

Task

untrusted
OS

CPU

software

memory

(a) Memory isola-
tion primtive

10

Task
untrusted
OS

memory

CPU

software

Untrusted domain FIMCE

Task

untrusted
OS

CPU

software

memory

(b) Full isolation of
FIMCE

Figure 4.2: The comparison between the memory isolation primitive and FIMCE.
The gray regions denote resources controlled by the adversary and the dotted regions
denote isolated resources.

As compared with domain isolation [46] and memory isolation, FIMCE pos-

sesses their virtues without their drawbacks. It has the well-defined isolation bound-

ary between the trusted and the untrusted, as in domain isolation. Nonetheless, it

does not have a large Trusted Computing Base (TCB) as in Terra [46]. FIMCE also

achieves page-level granularity as in a memory isolation scheme, e.g., TrustVisor

[68]. It reuses the existing OS facility to load the security task, i.e. reading the

binary from disk and constructing the virtual address space. However, once the

security task is loaded, the guest OS is completely deprived of the capability to in-

terfere with its execution. In contrast, existing memory isolation schemes still allow

the guest OS to do so. For example, the guest OS can extract sensitive information

via page swapping, as demonstrated in [100]. Furthermore, on a multicore system,

the guest OS’s task scheduling makes it difficult for the hypervisor to track and en-

force access control policies as shown in Chapter 3. The design of FIMCE also

avoids the address space layout verification used in TrustVisor [68] and InkTag [51]

which is vulnerable to race condition attacks.

4.3 FIMCE and SGX

Although virtualization-based memory isolation systems suffer from the aforemen-

tioned security pitfalls, hardware-based techniques do not. Intel SGX provides a

hardware-based isolation environment for user-space programs. However, it re-

68

mains as a challenging problem to use memory isolation techniques alone to protect

sensitive I/O tasks, e.g., reading a password from the keyboard. Existing systems

like Haven [20] rely on cryptographic techniques with a high performance toll. In

the following, SGX and FIMCE are compared from various aspects and then ex-

plore potential integration.

4.3.1 Comparisons

FIMCE and SGX are designed with different goals. SGX offers the memory iso-

lation service for applications to protect their sensitive data. Nonetheless, it still

requires the OS to manage platform resources, including the enclaves and the as-

sociated Enclave Page Cache (EPC) pages. FIMCE is geared to isolate a complete

computing environment and therefore covers all hardware and software resources

needed by the protected task. The wider coverage allows FIMCE to offer unique

advantages over SGX in several aspects.

Memory Isolation SGX and FIMCE provide different strengths of memory iso-

lation. SGX’s isolation is tightly integrated with hardware. The TCB only consists

of the underlying hardware which is the SGX-enabled CPU and the firmware. The

system software is considered as untrusted in SGX’s model. The EPC-related mem-

ory access check is performed after address translation and before physical memory

access [31]. When the processor is not in enclave mode, no system software, in-

cluding the System Management Mode (SMM) code, can access the content inside

an enclave. Data is also encrypted by the hardware when a cache line is evicted to

EPC pages. It is hence secure against bus snooping attacks. FIMCE isolation lever-

ages hardware-assisted virtualization techniques. Besides the underlying hardware

and firmware, the TCB of FIMCE also encloses the micro-hypervisor which has

several thousands SLOC. No encryption is applied when the isolated code writes

to the FIMCE memory. Therefore, FIMCE is strictly weaker than SGX in terms of

blocking illicit memory accesses.

69

When the code inside the SGX enclave accesses non-EPC pages, SGX provides

no security assurance at all. The malicious OS may proactively present a faked

memory view to the enclave by using manipulated page tables. In contrast, the code

inside the FIMCE accesses all memory pages without obstruction from the OS as

the paging structures in use are entirely beyond the OS’s control. FIMCE offers

stronger security from this perspective.

Autonomous Execution SGX and FIMCE give different treatments of CPU

scheduling of the isolated program. SGX leaves thread scheduling inside the en-

clave to the OS. This design decision allows for the page fault attack [100] wherein

the guest OS interrupts the enclave execution and exfiltrates sensitive data.

FIMCE isolates a physical core and exposes a smaller attack surface to the OS.

The guest OS cannot influence the execution of the FIMCE thread. All exceptions,

including page fault, inside the FIMCE are handled internally. It is hence a highly

autonomous system with no runtime dependency on the OS.

I/O Capability SGX does not support I/O operations. Therefore, secure data

exchange between an enclave and the outside world becomes a challenging task.

As shown by Haven [20] and SCONE [16], a middle layer between the isolated ap-

plication and the OS is introduced to ensure data confidentiality and authenticity via

cryptographic means. This approach entails significant performance overhead, due

to the costly context switches to/from the enclave as well as the cryptographic op-

erations. According to SCONE [16], the I/O intensive benchmarks such as Apache

and Redis suffer 21% and 31% performance loss, respectively. Similar results are

also reported in Haven.

FIMCE provides inherent I/O support for the isolated tasks. I/O device isolation

guarantees exclusive accesses to peripheral devices. Although whitelisted device

drivers are still needed, the OS layer abstraction such as sockets or filesystems could

be simplified. Furthermore, since the device is isolated and accessed exclusively,

cryptographic protection is no longer needed. Note that context switch costs are

also saved as no context switch is required inside the FIMCE.

70

Verifiable Launch SGX and FIMCE also differ in controlling the launch of

the isolated environment. Although SGX supports attestation, it does not enforce

policies for enclave launch. The permission to launch an enclave is decided by the

untrusted OS. In FIMCE’s design, the trusted hypervisor can verify the environment

to be launched against the security policies (if any). For instance, the platform

administrator may supply a signed whitelist to the hypervisor to specify permissible

tasks.

4.3.2 Integration with SGX

SGX and FIMCE are not mutually exclusive to each other. It is possible to integrate

both so that one’s strength complements the other’s weakness. In the following,

possible ways to combine them are presented.

Untrusted OSFIMCE

Cores

EnclaveTask

Shared Buffer

(a) FIMCE and SGX
enclave side-by-side

Untrusted OSFIMCE

Cores

Enclave

Devices

(b) SGX enclave in-
side FIMCE

Untrusted OS

Enclave

FIMCE

I/O
Thread

Other
Threads

Shared BufferDevices
Cores

(c) Multithreaded
SGX enclave, one
thread inside I/O
capable FIMCE

Figure 4.3: FIMCE based isolated I/O for SGX enclaves

Share Memory Between Enclave and FIMCE A naive integration is to run

the SGX enclave and the FIMCE side-by-side (as in Figure 4.3(a)) with a shared

memory buffer used for intercommunication. Unfortunately, it is hard to secure

FIMCE-enclave data exchange in this fashion.

The shared buffer has to be on a non-EPC page. Otherwise, the task isolated

by the FIMCE cannot access it even with the hypervisor’s assistance. Since the

shared buffer is outside of the enclave, SGX provides no assurance on the security

of accessing them. Although the hypervisor is trusted under the FIMCE model,

71

protecting the shared buffer using virtualization faces the same issues elaborated in

Chapter 3. Hence, it is not a promising approach to integrate SGX and FIMCE as

two separated environments in parallel.

Enclave Inside FIMCE Since loading a FIMCE within an enclave is infea-

sible, the next plausible approach is to launch an enclave inside a FIMCE (as in

Figure 4.3(b)). The security benefits of the combination are twofold. As compared

to SGX isolation alone, the adversary has no more control over the FIMCE/enclave

core. Hence, the composite isolation eliminates those SGX side-channel attacks

that require interleaved executions on the core. As compared to FIMCE isolation,

the composite isolation is not subject to bus snooping attacks by virtue of SGX

protection.

To support SGX enclaves inside the FIMCE, the hypervisor priorly reserves a

pool of EPC pages for FIMCE usage. This can be achieved by using normal EPT

mappings during boot up, as already implemented in KVM 1. Running with Ring

0 privilege, the FIMCE manager takes up the kernel’s responsibility to set up and

manage the enclave.

Specifically, the FIMCE environment is created and launched as described be-

fore, except that the protected task and pillars are loaded with Ring 3 privilege. To

create the enclave, the FIMCE manager executes SGX special instructions such as

EINIT. It then assigns EPC pages from the reserved pool to the enclave, and issues

EADD to add those needed FIMCE pages. After setting up the enclave, the manager

passes the control to the protected task which then issues EENTER to enter into the

enclave.

Multithreaded I/O A direct benefit of the design in Figure 4.3(b) is that the

code in the enclave can securely interact with I/O devices via the FIMCE environ-

ment. The design can be further extended to support multithreaded I/O operations

as depicted in Figure 4.3(c).

The idea is to leverage SGX multithread support. The main thread protected
1KVM patch note at https://www.spinics.net/lists/kvm/msg149534.html

72

by SGX spawns one special thread dedicated for I/O operations. After the enclave

is created, the hypervisor migrates the I/O thread into the FIMCE following the

design in Figure 4.3(b). The FIMCE manager runs the EENTER instruction with

the supplied Thread Control Structure (TCS) that uniquely identifies the I/O thread.

Hence, the thread running on the FIMCE core and the main thread on the original

SGX core belong to the same enclave. The threads intercommunicate through a

shared buffer on the allocated EPC pages. The hardware ensures that only those

threads belong to the same enclave can access the buffer.

When the main thread needs to access the device, it places a request in the

shared buffer. The request is served by the I/O thread inside the FIMCE whereby the

FIMCE’s device pillars which then perform the desired I/O operations. Similarly,

incoming I/O data can be securely forwarded back to the main thread.

The OS may create a fake FIMCE environment when the I/O thread’s enclave is

created. To detect the attack, the main thread inside the enclave can request the I/O

thread to perform an attestation about the underlying environment. Note that after

the I/O thread is migrated into the FIMCE, it is no longer under the OS scheduling.

4.4 Modularized Software Infrastructure

It is widely recognized that existing schemes require the protected task to be self-

contained, such as in TrustVisor [68] . In contrast, FIMCE has the inborn support

for dynamically setting up the software infrastructure e.g., libraries, drivers and

interrupt handlers, to cater to the task’s needs. It’s better to use a structured way to

construct the FIMCE software infrastructure. Based on their functionalities, a set

of software modules called pillars are stored in the disk in the form of Executable

and Linkable Format (ELF) files. A pillar is a self-contained shared library for a

particular purpose. For instance, a TPM pillar consists of all functions needed to

operate the TPM chip. Based on the protected task’s demand, the guest OS loads

the needed pillar files from the disk to the memory. Then, the hypervisor relocates

73

them into the FIMCE after integrity checking. The main challenges here are how

to ensure the integrity of pillar and how to check correctness of linking without

significantly increasing the hypervisor’s code size.

4.4.1 Pillars

Pillars provide services that are otherwise not easily available to the security task

due to the absence of OS in the FIMCE. Each pillar is assigned with a globally

unique 32-bit pillar identifier (PLID). Each function that a pillar exports is assigned

with a locally unique 32-bit interface identifier (IID). Therefore, a (PLID, IID) pair

uniquely identify a function in the whole system.

Pillars resemble legacy shared libraries to a large extent. They are compiled as

position-independent code because the actual position of a pillar in memory is not

determined until it is loaded. They reside in disks as files in the ELF format (for

Linux). A pillar differs from a shared library in two aspects. Firstly, a pillar must be

self-contained. The code of a pillar function does not depend on any code outside

of the pillar. Secondly, the ELF format of a pillar has a new section called pillar

descriptor (.p desc) which contains the pillar’s PLID, the description of exposed

interfaces, and a signature from a Trusted Third Party (TTP).

Pillar Signing The signature included in a pillars’ binary image can be provided

by a third party who provides the signing service. The service provider computes

the signature for binaries submitted to it for signing and embed the signature in the

aforementioned section in the returned binaries. The service provider also makes

available any public keys that are needed to verify the signatures. The system ad-

ministrators configure the system so that the keys are loaded into the hypervisor,

which can be done by directly embedding the key into the binary image of the hy-

pervisor. This way allows the boot time integrity of the keys to be verified by TPM

as part of the hypervisor image. Therefore, at runtime the hypervisor can verify the

signatures in the pillars.

74

Pillar Loading To reduce the hypervisor’s workload, the application hosting the

security task requests the guest kernel to load the needed pillars into the guest mem-

ory as regular shared libraries. When the application issues a hypercall to request

FIMCE protection for its security task, the parameters passed to the hypervisor in-

clude the needed pillars’ PLIDs and their memory layouts. Given the PLID, the

hypervisor locates the corresponding pillar in the guest memory, copies it into the

FIMCE memory and maps the pillar pages at the same virtual addresses as in the

guest. By relying on the guest to manage the pillars in the memory, the hypervisor

does not need to support filesystems or disk operations.

4.4.2 Pillar Verification and Linking

Once the needed pillars and the security task are loaded into the FIMCE, the hy-

pervisor passes the control of the core to the FIMCE manager code. If the manager

code verifies pillar integrity successfully, it links the security task to the pillars and

passes the control to the entry point of the security task.

Pillar verification

Integrity verification is not as straightforward as it seems because it is infeasible

to verify the pillar as one whole chunk. The shared library loading procedure may

zero some sections and the kernel also performs dynamic linking and running of the

library initialization code as well. These operations result in discrepancies between

the pillar’s memory image and its file in the disk.

Nonetheless, shared libraries are compiled into position independent code that is

expected to remain unaltered throughout the loading process. Therefore, the authen-

tication tag of a pillar is a TTP signature protecting the following invariant sections:

code sections, data sections, library initialization sections, finish sections, the pillar

descriptor section and the section header table of the pillar ELF file. If the verifi-

cation fails, the manager issues a hypercall to terminate the FIMCE and an error is

75

returned to the application.

Global symbol references within a pillar are also subject to attacks by the guest

kernel. Such references are completed with the assistance of the Procedure Linkage

Table (PLT) and the Global Offset Table (GOT) inside the module itself. The entries

are typically filled by the loader in the guest. In order to thwart possible attacks, the

dynamic symbol table, relocation entries and the string table of the pillar are also

signed by the TTP. During loading, the dynamic loader are explicitly requested to

resolve all symbols, so that all GOT entries are filled. After the pillar is loaded

into the FIMCE, these values are then verified by the FIMCE manager against the

corresponding relocation entry to ensure that they refer to the correct locations.

Dynamic Linking

Although the kernel has the capability of linking pillars with the security task,

FIMCE can hardly benefit from the kernel’s assistance because of potential attacks.

A function call to another object file is normally compiled to a call to an entry in the

PLT in the originating object file. Because the hypervisor lacks sufficient semantics

to determine which entries in the PLT are genuine ones used by the security task, it

is costly for the hypervisor to bridge the gap.

FIMCE devise a novel lightweight scheme to link the security task with pillar

functions at runtime within the FIMCE. The idea is to introduce a resolver function

and a jump table as part of the FIMCE manager. Both are placed at fixed locations in

the FIMCE address space by the hypervisor during FIMCE setup. After verifying

all pillars loaded in the FIMCE, the manager parses their descriptor sections and

fills the jump table with entries corresponding to each available interface. A jump

table is in essence a sorted array of (PLID, IID, entry-address).

A function call from the security task to a pillar function is replaced by a call

via a function pointer which takes the original input parameters as well as a pair of

(PLID,IID) with a parameter counter. At runtime, the function pointer is assigned

with the resolver function’s address. After being called, the resolver rearranges the

76

stack according to the parameter counter, looks up the jump table to find the entry

address of the callee function, restores the stack frame used before the call and

uses an unconditional jump to redirect execution to the entry. The callee function

executes as if it were called directly by the security task, and returns to the security

task after execution.

4.5 Applications of FIMCE

Besides isolation, FIMCE can be applied to other types of applications. In the

following, two new types of applications are presented. The first application taps

into FIMCE malleability to protect a program’s long term secret. The second one

establishes a runtime trust anchor by exploring the parallelism between a FIMCE

and the guest kernel.

4.5.1 Malleability

The FIMCE environment can be configured in a non-standard fashion because its

hardware setting is prepared by the hypervisor for the isolated task’s exclusively

use. For instance, the hypervisor can twist the CPU registers and even the TPM

configuration.

To demonstrate the benefit of malleability, let us consider the challenge of en-

suring that an application P ’s long term secret k can only be accessed in its isolated

environment. Suppose that k has been initially encrypted with the binding to the

isolated environment. The difficulty lies in how to authenticate the thread that re-

quests to enter into the isolated environment. Note TPM’s sealed storage alone

cannot directly solve this problem. Sealed storage is a mechanism to bind a secret

to a set of Platform Configuration Registers (PCRs) on the TPM chip. Since most

PCRs can be extended by software, the PCR values are dependent on the software

that extends them. Therefore, without a proper access control on the PCRs, PCR

values do not truly reflect the environment states. Under the adversary model, the

77

default locality-based access control is not adequate.

Since the application cannot hide any secret in the unprotected memory against

the OS, both have the equal knowledge and capability in terms of presenting the au-

thentication information to the hardware. One may suggest leveraging the hypervi-

sor to perform authentication as shown in [68]. However, as analyzed in Chapter 3,

it is challenging for the hypervisor to securely authenticate the application without

sufficient knowledge about the kernel level semantics.

With a malleable environment, FIMCE offers an elegant solution. The hyper-

visor uses the TPM Locality 2 and assigns the OS with Locality 0 and the code

inside a FIMCE with Locality 1. During boot up, the DRTM extends PCR17 and

PCR18 with the hypervisor and other loaded modules. When a FIMCE is launched,

the hypervisor resets PCR20 and extends PCR20 with all code and data loaded in

the FIMCE. The protected code in turn extends it with all relevant data, and seals

the secret k with PCR17, PCR18 and PCR20. Once the seal operation is done,

it extends PCR20 with an arbitrary binary string to obliterate PCR20 content and

relinquishes its Locality-1 access so that the OS is free to use the TPM. The same

steps are performed in order to unseal k.

Note that PCR17 and PCR18 are in Locality 4 and 3 respectively. The hardware

ensures that they cannot be reset by any software. During the boot up, the DRTM

extends these two registers with the loaded modules. Their correct content implies

the loading time integrity of the hypervisor. Since the OS is in Locality 0, it does

not have the privilege to extend or reset PCR20, even though it can prepare the same

input used by the hypervisor and application P . Other (malicious) applications in

their own FIMCEs cannot impersonate P either. PCR20 stores the birthmark of

a FIMCE instance because the code in a FIMCE cannot reset PCR20. Therefore,

other applications cannot remove their own birthmarks to produce the same digest

as P does.

The advantage of the method is that the hypervisor does not hold any secret and

is oblivious to the application’s logic and semantics. Besides the stronger security

78

bolstered by the hardware, it has a small TCB and supports process migration.

4.5.2 Runtime Trust Anchor

Another noticeable strength of FIMCE is its ability to provide an isolated environ-

ment that securely runs in parallel with the untrusted OS yet without suffering from

the semantic gap. The environment can host a trust anchor to tackle runtime security

issues such as monitoring and policy enforcement. To show the benefit of a runtime

trust anchor, two systems are sketched below.

The first system is to prevent sensitive disk files from being modified or

deleted by the untrusted OS. This problem has been studied by Lockdown [94] and

Guardian [27]. Lockdown suffers from performance loss as every disk I/O operation

entails a VM exit (if not optimized) while the approach used in Guardian cannot be

applied for arbitrary files chosen by applications. In the FIMCE approach, a FIMCE

is used as the disk I/O checkpoint. The hypervisor isolates the disk to the FIMCE.

A disk I/O filter is loaded in the FIMCE. It continuously reads from a share buffer

the disk-related Direct Memory Access (DMA) requests placed by the OS. If the

request is compliant with the security policy, the filter forwards it to the disk con-

troller. Otherwise, it drops the request. All disk interrupts are channeled to the OS

so that the filter is not necessarily involved in handling them. In this design, the

filter is isolated from the guest and the DMA requests are always checked without

the cost for VM exit and entry.

The second system is about the runtime attestation of the OS behavior. Most

existing remote attestation schemes [79, 54, 68] focus on loading time integrity

check. It is challenging to realize runtime attestation because it requires the attes-

tation agent to run securely inside the attesting platform managed by an untrusted

OS. With FIMCE protection, the agent runs like an isolated kernel thread side-by-

side with the OS. The attestation agent can read the kernel objects without facing

the challenging semantic gap problem [87, 40, 52, 43]. To support kernel memory

79

read, the entire kernel page table is copied into the FIMCE. The hypervisor properly

configures the EPTs such that only the agent code pages are executable in order to

prevent untrusted kernel code from executing inside the FIMCE.

It is difficult, if not impossible, to solve the attestation problem using the existing

memory isolation primitive. If the untrusted guest OS still manages the CPU cores,

it can schedule off the attestation agent from the CPU before its attacks and resumes

it afterwards. Hence, the attestation does not reflect the genuine state of the kernel.

4.6 Evaluations

4.6.1 Security Analysis

It remains as an open problem to formally prove the security of a system design

(not implementation). Therefore, the security analysis below is informal. First, the

multicore complications plaguing memory isolation systems are not applicable to

the FIMCE design. Then, FIMCE’s security is evaluated based on its attack surface

and TCB size.

Complication Free Recall that Chapter 3 has enumerated a number of security

complications on the multicore platforms. Since the FIMCE is a fully isolated en-

vironment, its design does not face these complications. The semantics from the

untrusted kernel is controlled and does not affect the enforcement of the isolation

policy.

• The EPT management of FIMCE is rather simple. The EPTs used for the

OS (and the applications) are not affected by FIMCE. Since the trusted and

untrusted execution flows do not interleave with each other on any CPU core,

the hypervisor does not need to trace the executions in order to switch EPTs.

In addition, the attacks in Section 3.4.3 that exploit stale TLB entries are

infeasible. The physical memory of the FIMCE is never accessed by threads

outside of the environment. Moreover, when a FIMCE is terminated, the TLB

80

entries in the core are all flushed out. Hence, there is no stale TLB entry in

the system.

• FIMCE does not suffer from the issue of guest page table checking. The

execution inside the FIMCE has no dependence on data controlled by the

guest OS including the page tables, which makes Iago-like attacks impossible.

It is also clear that the full isolation is not subject to the race condition attack

described in Section 3.4.

• Existing schemes need to bind subjects and objects to certain states to choose

the proper EPT setting. This challenging problem does not exist in the FIMCE

scheme. The isolated task is bound to the FIMCE created for it through

its whole lifetime. It exclusively accesses the memory. The task may con-

tinue the execution without being preempted by other threads under the OS’s

control. In case that it relinquishes the CPU, its FIMCE hibernates without

changing ownership. In other words, all memory states and the CPU context

are saved. The CPU states are cleaned up before the OS takes control. When

needed, the FIMCE is re-activated from the saved state. Therefore, subject

identification is not needed.

• The issue of translating events do not exist in FIMCE. Because the opera-

tion of FIMCE is independent from the guest OS. The only events that the

hypervisor needs to intervene are the hypercalls from the protected applica-

tion. These events are well-defined. During the operation of the FIMCE, the

hypervisor also does not intervene.

• The enforcement granularity issue does not exist in FIMCE. Although FIMCE

still relies on page tables, the memory pages used by a FIMCE are not shared

with the kernel. Therefore, there is no page that contains data that needs to be

accessed by different privileges.

Reduced Attack Surface The malicious kernel in memory isolation systems

81

enjoys a large attack surface, as it has the full control over the CPU cores and the

VA-to-GPA mapping, which leads to various attacks and design complications de-

scribed in Chapter 3. In contrast, the attack surface exposed by FIMCE is reduced.

Owing to the full isolation approach, the FIMCE’s hardware and software are

beyond the kernel’s access, interference and manipulation. The kernel cannot access

the FIMCE core’s registers, L1 and L2 caches. L3 cache is not effectively accessible

either because the FIMCE’s host physical address region is never mapped to the

guest. Although the kernel may use IPI or NMI to interrupt the FIMCE, the worst

consequence is equivalent to a DoS attack. Since the isolated code handles the

interrupts by itself, an IPI or NMI only results in a detour of the control flow. Note

that there is no context switch inside the FIMCE.

Another attack vector widely considered in the literature is the interaction be-

tween the hypervisor and the kernel. The FIMCE hypervisor only exports two hy-

percalls, for setting up and terminating the FIMCE respectively. Moreover, the hy-

pervisor does not interpose on either the guest execution or the FIMCE execution.

The FIMCE may exchange data with threads in the outside environment. In

that case, the malicious kernel may poison the input data to the isolated task. It is

acknowledged that the protected code is subject to such attacks if no proper input

checking is in place. However, it is out of scope of the FIMCE work to sanitize the

inputs.

Strength of Full Isolation The FIMCE isolation is enforced by the hardware.

The memory used by the FIMCE is from a reserved physical memory region which

is never mapped to the guest by the EPT and the IOMMU page table. Both segmen-

tation and paging of the FIMCE memory are constructed by the hypervisor. It is

thus obvious that the attacks in Section 3.4.3 do not work against the FIMCE. The

guest kernel cannot make modifications to either segmentation- or paging-related

data structures to tamper with the address space.

Security of Foreign Code in FIMCE In addition to the security task, the

FIMCE hosts the needed pillars and the FIMCE manager. It is crucial to ensure

82

the integrity of their code and the linking process. The FIMCE manager’s code is

copied from the hypervisor space. Therefore, its integrity is ensured as long as the

hypervisor is trusted.

During FIMCE launching, the integrity of the loaded pillars’ code images (in-

cluding the relocation sections) are verified by the FIMCE manager in order to

prevent the kernel from poisoning them. To ensure linking integrity, the jump ta-

ble is constructed using the verified pillar description sections. Addresses in the

GOT entries used for symbol references within a pillar are also checked by the

FIMCE manager to match the corresponding addresses computed from the pillar’s

relocation-related sections.

Small TCB Size The hypervisor is the only trusted code in the system. With a

simple logic, the FIMCE hypervisor has a tiny code base with around six thousand

lines of source code for runtime execution. It is easy to manage concurrency in

the hypervisor space. Because only the setup and teardown code possibly execute

concurrently on different cores, they can be synchronized with simple spinlocks.

Note that each FIMCE instance does not have overlapping regions, which also help

simplify concurrency handling.

4.6.2 Implementation

A prototype of FIMCE has been implemented on a desktop computer with an Intel

Core i7 2600 quad-core processor running at 3.4 GHz, Q67 chipset, 4GB of DDR3

RAM and a TPM chip. The platform runs an Ubuntu 12.04 guest with the stock

kernel version 3.2.0-84-generic. The FIMCE hypervisor consists of around 6000

source line of code (SLOC). It exports two hypercalls, i.e., FIMCE start() and

FIMCE term(), for starting and terminating a FIMCE, respectively. The TCB of

FIMCE only consists of the TXT bootloader, the hypervisor and any hardware and

firmware required by DRTM. Intel’s open source TXT bootloader tboot2 is slightly
2http://sourceforge.net/projects/tboot/

83

modified to load the FIMCE hypervisor. The modification is to make the bootloader

jump to the FIMCE hypervisor’s entry at the end of the boot up sequence. During

hypervisor initialization, a set of EPT entries are initialized such that a chunk of

physical memory is reserved for exclusive use by the hypervisor. During the OS

kernel initialization, all cores are set to use the same set of EPTs, ensuring a uniform

view of the memory.

To showcase the applications of FIMCE, three pillars are also developed: a 7KB

serial port driver pillar that supports keyboard I/O, a comprehensive crypto pillar of

451KB size based on the mbed TLS library 3, a TPM driver pillar of 20KB size.

The implementation also encloses a FIMCE management code of 413 SLOC which

verifies and links pillars in use.

Programming Interface As shown in Table 4.1, the user space FIMCE library

provides two interfaces and three macros. The two interface functions are used

to start and stop the FIMCE, respectively. They are in essence wrappers of the

hypercalls to pass parameters to the hypervisor. The first two macros are for the

application developer to specify the function to be protected, as well as the ELF file

names of pillars to be loaded. The third macro converts a normal C function call

into a pillar function call. (Note that the dynamic linking mechanism in a FIMCE is

different from in the OS.)

Table 4.1: User Space Library Interfaces and Macros
Interface Description
start FIMCE () Call to start FIMCE
stop FIMCE () Call to stop FIMCE
Macros

FIMCE SECURITY TASK () Specify function that is the security task
FIMCE LOAD PILLAR () Specify the file name of the pillar
CALL PIL () Call a pillar function in a security task

Internals of start FIMCE() This user space function runs in two steps in the

guest domain. Firstly, it helps to load all data and code needed by the hypervisor

into the main memory. It finds the address of FIMCE PAYLOAD from the symbol

table and the locations of needed pillars, including the base addresses and lengths
3https://tls.mbed.org/

84

of all segments with assistance of the dynamic loader. To ensure that the contents

are indeed loaded into memory, it reads all pages of the pillars.

The second step is to gracefully take one CPU core offline from the guest so that

the (honest) kernel does not attempt to use the core dedicated for the FIMCE. For

this purpose, the function reads the file /proc/cpuinfo and gets the physical

APIC ID of a randomly chosen CPU core. It then writes a ‘0’ to the corresponding

control file named as online. In the end, it issues a hypercall to pass to the hypervisor

the physical APIC ID, all offsets and lengths of the security task and its pillars.

The issuance of the hypercall traps the present core running start FIMCE to

the hypervisor, not the offline core chosen for the FIMCE. Therefore, the hypervisor

initializes necessary data structures for the FIMCE and needs to take control of the

FIMCE core. To achieve this, it sends an INIT signal to the offline core identified

by the physical APIC ID and returns from the hypercall so that the present core is

returned to the guest OS. The INIT signal is intercepted by the hypervisor on the

FIMCE core. The hypervisor then loads the prepared VMCS and performs a VM

entry to start the FIMCE.

4.6.3 Benchmarks

Since a FIMCE occupies a CPU core exclusively, the OS has less computation

power at its disposal while the FIMCE is running. In order to understand the over-

all impact of a running FIMCE on the platform, a suite of benchmarks including

multithreaded SPECint rate 2006 and kernel-build as well as single threaded lm-

bench, postmark and netperf are run. They are first run on top of the OS without

any FIMCE running and then repeated with an infinite loop as the security task in

the FIMCE.

For the multithreaded SPECint rate 2006, the concurrency level is set to four.

Figure 4.4 shows that it has 15% percent performance drop on average due to the

presence of FIMCE. In the kernel-build experiment, the Linux kernel v2.6 is com-

85

piled using the default configuration with four-level concurrency. The results are

reported in Table 4.2. The two sets of experiments indicate that the relative per-

formance loss grows with the degree of concurrency, mainly due to more frequent

context switches. Nonetheless, the loss is bounded by the inverse of the number of

physical cores in the platform (namely 25% in the setting).

!!"#
$%"# $&"# '&&"# (!"#

!)"# ('"# ()"# (*"# (*"# (("# (+"#

Figure 4.4: SPECint rate 2006 results.
The numbers are the percentage of the
score with FIMCE to the score without
FIMCE.

!""#$!""#$!""#$!"!#$!""#$
!"%#$

!""#$
%&#$

!"&#$

'()*+,$ -+.$
/+01$

-+.$
234,+$

5)(67$ --89$
3+01$

),:;<$ =>??$ +:+)$ 6@A0>?,$

Figure 4.5: Lmbench results. The num-
bers are the percentage of the score with
FIMCE to the score without FIMCE.

To verify the estimation that FIMCE does not incur much performance cost

for single-threaded applications, Lmbench, Netperf and Postmark are run with and

without FIMCE. Figure 4.5 shows that most tasks of Lmbench are not affected by

FIMCE, except that one task has 8% performance drop. Similar results are also

found for Netperf as in Table 4.3 and Postmark as in Table 4.4.

4.6.4 Component Costs

The major overhead of FIMCE is in its launching phase. The security task’s exe-

cution inside the FIMCE does not involve the hypervisor and thus incurs no cost

as compared to its normal execution. The launching cost consists of three parts: a

hypercall (a VM exit and a VM entry), FIMCE setup including resource allocation

and environment setup, and code loading.

Table 4.2: Kernel Build Time (in
seconds)

Concurrency level 4 6 8 12
W/O FIMCE 783 708 640 643
With FIMCE 900 828 797 803
Performance Loss (%) 15 17 24 24

Table 4.3: Netperf Bandwidth With And
Without FIMCE Running (in Mbps)

TCP Stream UDP Stream
W/O FIMCE 93.92 95.99
With FIMCE 93.95 95.95
Performance Loss (%) 0.03 0

86

Table 4.4: Single-threaded Post-
mark Performance with and without
FIMCE Running (in seconds)

W/O FIMCE 327
With FIMCE 330
Performance Loss (%) 1

Table 4.5: Loading Time for Pillars
with Various Sizes

Size (KB) 7 11 15 19 23 27 31 35
Time (µs) 56 58 61 63 63 65 66 68

On average, a null hypercall on the experiment platform takes 0.31 millisec-

ond. FIMCE setup takes about 47.33 milliseconds which is the interval between the

FIMCE start hypercall to the INIT signal prior to the start of FIMCE execution.

The code loading time depends on the total binary size of the loaded pillars and the

security task. Table 4.5 shows the time needed to copy a chunk of bytes from the

guest to the FIMCE, including preparing the mapping and memory read/write. On

the experiment platform, every 4KB memory read and write cost about 2µs.

Pillar loading also involves integrity verification. The measurement shows that

it takes about 40.3 microseconds to verify one RSA signature inside the FIMCE.

Therefore, the total cost of launching the FIMCE (mostly depending on the number

of public key signatures to verify) is in the range of 100 milliseconds to a few

seconds. There are several ways to save this one-time cost. For instance, a pillar’s

integrity can be protected by using HMAC whose verification is several orders of

magnitude faster than signature verification. Another is for the hypervisor to cache

some frequently used pillars which are used without integrity check during FIMCE

launching.

4.6.5 Application Evaluation

Four use cases are implemented to demonstrate the power of FIMCE. The use cases

include password based decryption, an Apache server performing online RSA de-

cryption, long term secret protection and runtime kernel state attestation.

Password based decryption It is challenging to protect tasks with I/O opera-

tions using memory isolation, mainly because I/O operations are normally in the

kernel which has a large and dispersed code base and are interactive with devices.

87

Driverguard [28] relies on manual driver code instrumentation, which is tedious and

error-prone. TrustPath [104] relocates the entire driver into the isolated user space,

which not only requires significant changes in the user space code, but also burdens

the hypervisor with complex functions. As a result, there are a lot of hypercalls

when issuing I/O commands and handling interrupts, which incurs a heavy perfor-

mance loss because of frequent expensive VM exits.

FIMCE offers a more efficient solution. The code running inside the FIMCE is

in Ring 0 and is capable of handling interrupts. Furthermore, with hardware virtu-

alization, the hypervisor can channel the peripheral device interrupts to the FIMCE

core for the isolated task to process. Therefore, a device’s I/O can be conveniently

supported as long as its driver pillar is loaded into the FIMCE.

A program is implemented that reads the user’s password inputs from the key-

board, converts it to the decryption key and then performs an AES decryption. When

the FIMCE is launched to protect this program, the hypervisor isolates the keyboard

by intercepting the guest’s port I/O accesses. A serial port pillar and the crypto pil-

lar are loaded into the FIMCE. The program is run with FIMCE protection for 100

times. In average, it takes 0.94 milliseconds to decrypt the ciphertext of 1kilobytes,

which is only 5.2% slower than in the guest.

Apache Server In this case study, FIMCE is utilized to harden an SSL web

server by isolating its RSA decryption of Secure Sockets Layer (SSL) handshakes.

As noted previously, existing systems [68, 26] on Apache protection is not secure

under the multicore setting. Moreover, since the isolated code runs in the same

thread as its caller, it incurs frequent VM exits and VM entries as the control flow

enters and leaves the isolated environment. FIMCE does not incur context switches

at runtime because the isolated task in a FIMCE runs as a separated thread in parallel

with others.

In the experiment, the Apache source code is customized such that its SSL hand-

shake decryption function is protected by a FIMCE. Apache runs in prefork mode

with eight worker processes. Each worker process forwards incoming requests to

88

the decryption function inside the FIMCE and subsequently fetches the decrypted

master secrets.

The server is connected to a LAN and ApacheBench is run with different con-

currency levels. The Apache server hosts an HTML page of 500KB. This setting is

compared with the same experiment without using FIMCE protection whereby all

worker processes are able to perform the decryption concurrently. The results are

shown in Table 4.6.

Table 4.6: Modified Apache Performance, # of SSL Handshakes per Second
Concurrency Level 1 2 4 32 128 256
W/O FIMCE 7.39 13.96 20.21 26.95 27.88 29.69
With FIMCE 7.31 14.04 20.09 20.21 21.09 22.23
Overhead (%) 1 0 0.5 25.0 24.4 25

It is evident that at low concurrency level of up to four, the FIMCE-enabled

Apache server performs almost equally well as the native multithreaded Apache. It

outperforms existing schemes listed in Table 4.7 due to the fact that FIMCE does

not involve costly context switches. However, its performance drops as the concur-

rency level increases, but is bounded by 25%. This is because the single-threaded

FIMCE cannot match the performance of a multithreaded Apache which can use all

four cores to perform concurrent decryption. The performances of TrustVisor [68],

InkTag [51] and Overshadow [26] are not affected by concurrency, albeit they are

not secure in a multicore system.

Table 4.7: Overhead Of Other Protection Schemes (numbers are excerpted from
respective paper)

Schemes Overhead
TrustVisor [68] 9.7% to 11.9% depending on concurrent transaction
InkTag [51] 2% in throughput, 100 concurrent request
Overshadow [26] 20% to 50% on a 1Gbps link, 50 concurrent request

However, the design of FIMCE can certainly be extended to support concurrent

FIMCE instances, at the expense of more cores dedicated for security. Also, in real

world web transactions, the time spent for RSA decryption accounts for a much

smaller portion of the entire transactions as compared to in the benchmark testing,

because of (1) longer network delays in the Internet; (2) more SSL sessions using

89

the same master key decrypted from one SSL handshake; (3) more time needed to

generate or locate the need web pages. Therefore, the performance loss of using

FIMCE for a real web server does not appear as discouraging as in the experiments.

Long Term Secret Protection The malleability of FIMCE architecture is

demonstrated via the long term secret protection application. A program is im-

plemented to bind a long term secret to the FIMCE instance. The program and the

TPM pillar are loaded into the FIMCE. During FIMCE launching, the hypervisor

extends PCR 20 which bear the birthmark of this FIMCE instance. The program

seals and unseals a long term secret to PCR17, PCR18 and PCR20. the time taken

by the TPM seal and unseal operations inside the FIMCE is measured and compared

with the baseline experiment wherein the TPM pillar runs as a kernel module. The

results of protecting a 20-byte long secret are shown Table 4.8.

Table 4.8: TPM Performance (in seconds)
TPM Seal TPM Unseal

Guest 0.54 0.96
FIMCE 0.41 0.94

FIMCE shows slight speed up compared to the performance inside the guest.

One of the contributing factors is that there is more kernel code involved when

running the TPM operations inside the guest. CPU scheduling is another possible

factor affecting the performance because the entire operation is rather lengthy. In

contrast, due to the simple structure, FIMCE does not have such overhead.

Compared with existing approaches that virtualize the TPM using software such

as [68], the FIMCE approach places the trust directly on the hardware TPM chip. In

contrast, virtualizing TPM requires the code that virtualizes the TPM to be included

in the trust chain. The architecture of FIMCE allows us to multiplex accesses to the

TPM chip with a smaller attack surface and the smaller TCB.

Runtime Kernel Introspection with Attestation A program for kernel intro-

spection is implemented in this case. Running as a kernel thread isolated in the

FIMCE, the program reads the mm struct member of the init task structure

used by the guest kernel. It takes about 3.04 µs to read a kernel object which is

90

comparable with the time (around 3.11 µs) needed by the kernel itself. This in-

trospection system is more efficient than existing schemes like [43] because it runs

natively on the hardware in the same fashion as running inside the kernel. According

to the experiment, the speed of native instruction execution with MMU translating a

virtual address is about 300 times faster than using software to walk the page table.

This prototype is further extended to be the ImEE system in Chapter 5.

The introspection results can be attested by the FIMCE system to a remote ver-

ifier. As there is a chain of trust established during FIMCE launching, it is conve-

nient to use the code inside the FIMCE to do runtime attestation. The root of the

trust chain is Intel’s TXT facility. When the hypervisor is loaded, the hardware mea-

sures its integrity before launching. The hypervisor then measures all code during

FIMCE launching. At runtime, the code inside the FIMCE measures the kernel’s

states. The measurements are stored in various PCRs depending on the assigned lo-

calities. Note that one of the challenges of existing TPM-based attestation schemes

is to have a reliable attestation agent which (ideally) is immune from attacks of

the attested objects, and at the same time, nimble enough to dynamically perform

measurements whenever needed. FIMCE exactly offers such a solution.

In this implementation, the introspection code inside the FIMCE uses the crypto

pillar to sign the introspection results with a TPM quote for PCR 17, 18 and 20

which vouches for the FIMCE environment. The entire process runs in parallel

with the guest OS. It takes 3.47 seconds in average to perform the entire procedure,

including the time for TPM quote operation.

4.7 Discussion and Future Directions

With the core number steadily increasing, the seemingly significant 25imposed by

the FIMCE architecture is likely to wane. For example, some of the latest generation

desktop CPU at the time of writing has already been equipped with eight cores,

thereby reducing the performance drop to be bounded by 12.5to continue to grow

91

in the future, which makes the FIMCE architecture increasingly relevant.

To minimize the performance impact, the FIMCE environment can safely sleep

when not needed. The isolation on the physical core can be temporarily torn down

while the one on the memory and devices is still in effect. The core is then returned

to the guest OS for its own purpose. This kind of temporary switch of the identity

binding between the hardware thread and the high-level entities does not undermine

security because the isolation policy about the resources, i.e. time slices, memory

and devices, is clearcut due to the full isolation approach.

Since the switching between a non-FIMCE environment and FIMCE on a phys-

ical core still imposes some overhead, it remains open to evaluate such overhead

and design a secure and efficient on-demand activation scheme of the FIMCE en-

vironment. It is likely that such a scheme would employ certain batch processing

technique to amortize the cost over a number of service requests, while minimiz-

ing the observed delay by the applications that request for the service. The scheme

should also take into account the fact that in the on-demand design, the scheduling

policy is left to the untrusted guest kernel to enforce, therefore, it may simply deny

FIMCE’s execution by permanently holding on to the cores.

Lastly, it remains open to evaluate the applicability of FIMCE on other archi-

tectures such as ARM platforms equipped with virtualization features. ARM pro-

cessors are also equipped with more and more cores, which makes them a suitable

ground for the FIMCE approach.

92

Chapter 5

Consistent Virtual Machine

Introspection

The Immersive Execution Environment (ImEE) is presented in this chapter. The

ImEE builds on top of the fully isolated environment, while incorporating special

configurations for a consistent memory view with the target VM. ImEE directly

reuses the kernel semantics in the kernel page tables for consistent introspection of

any high-level objects. In this chapter, firstly, the inadequacy of existing software-

based approach is discussed to motivate the design. Next, the details of ImEE are

present in the following sections.

5.1 The Inference Gap in Software-based Guest Ac-

cess

It is a common practice in the VMI literature to use software to emulate virtual

address translation before accessing a target guest VM. This approach to bridge the

inference gap results in an inconsistent memory between the introspection tool and

the guest VM.

In the software-based approach, the target memory is mapped to the monitor

VM as a set of read-only pages. In the most general case, given a virtual address X ,

93

the introspection code walks through all levels of the paging structures, including

the EPTs in the memory to find out the corresponding HPA. It then maps the HPA

to its own virtual address space before finally reads it. Obviously, such a procedure

incurs a much longer latency than the native access to X in the guest.

To assess how slow the software-based guest access is relative to the native

access, a “cat-and-mouse” experiment is run. The introspection program based-

on LibVMI [72], a cross-platform VMI framework, keeps reading a guest process’s

task->cred pointer, while a guest kernel thread periodically modifies the pointer

and waits for 20,000 CPU cycles before restoring its value. The page-level data

cache of LibVMI is disabled to ensure the freshness of every read whereas the

translation caches are on since no address mapping is modified. The experiment

was run for eight times, each lasting 10 seconds. In average, the modification was

only spotted after being repeated 60 rounds. In one of the eight times, no modi-

fication was caught. The experiment result demonstrates that introspection at low

speed cannot catch up with the fast-running attacker. It is ill-suited for scenarios

demanding quick responses such as live forensics and real-time I/O monitoring.

The slow speed also affects the mapping consistency as the guest malware in the

kernel may make transient changes to the page tables, rather than the data. Since

walking the paging structures appears instant to the malware using the MMU, but

not to the introspection software, the malware’s attack on the page tables causes the

VMI tool to use inconsistent information obtained from the paging structures.

Caching techniques have been used in order to reduce the latency of guest ac-

cesses. For instance, LibVMI introduces three types of caches: the page-level data

cache, the VA-to-HPA translation cache and the pid to CR3 cache. While pro-

moting the performance, using the caches is detrimental to effective introspection.

Since the guest continuously runs during the introspection, any cached mapping or

data is not guaranteed to be consistent with the one in the memory. Moreover, it

is difficult for the software-based approach with caches to catch up with the pace

of CR3 updates in the guest. Since the guest kernel is untrusted, the introspection

94

cannot presume that all guest threads share the same kernel address space. CR3

synchronization with the guest may lead to cache thrashing which backfires on the

introspection performance.

Besides the security related limitations described above, the software method

has performance-related drawbacks. It usually has a bulky code base since it has

to fully emulate the MMU’s behavior, such as supporting 32-bit and 64-bit paging

structures as well as different modes and page sizes. Its operation leaves a large

memory footprint because of the intensive reliance on data and translation caches.

It also suffers from slow-start due to the complex setup. For instance, the LibVMI

initialization costs 100 milliseconds according to the measurement. To change the

introspection target from one VM to another requires a new setup. With these per-

formance pitfalls, the software-based method is not the best choice for introspection

in data centers where the VMI tools may need to scan a large crowd of virtual ma-

chines.

5.2 Overview

5.2.1 Basic Idea

The basic idea behind the special computing environment called Immersive Exe-

cution Environment (ImEE) is to construct a twisted address mapping setting (as

in Figure 5.1). The ImEE’s CR3 is synchronized with the target VM’s active CR3

so that its MMU directly uses the target’s VA-to-GPA mappings. Its GPA-to-HPA

mappings are split into two. The GPAs for the intended introspection are translated

with the same mappings as in the target VM; the GPAs for the local usage (indicated

by the dotted box in Figure 5.1) are mapped to the local physical pages via sepa-

rated GPA-to-HPA mappings. With this setting, memory accesses are automatically

directed by the MMU into the target and the local memory regions according to the

paging structures.

95

6

HPA
(local memory)

HPA
(target memory)

VA-to-GPA
mappings

GPA-to-HPA
mappings (for
local)

GPA-to-HPA
mappings (for
target)

GPA for local

VA for local

GPA for target

VA for introspection

controlled by
the target kernel

Figure 5.1: Illustration of the idea of direct usage of the target VM’s VA-to-GPA
mappings and splitting in GPA-to-HPA mappings. Note that the shadow box is fully
controlled by the target (i.e., the adversary).

The paging structure setup in the ImEE ensures mapping consistency with the

target VM. Firstly, the ImEE’s VA-to-GPA mappings remain the same as the tar-

get’s, because its CR3 and the target CR3 always point to the same location. Any

mapping modification in the target also takes effect in the ImEE simultaneously.

Secondly, the hypervisor ensures that the ImEE GPAs intended for introspection are

mapped in the same way as within the target. Hence, any VA for introspection is

translated consistently with the target. Note that the VA is accessed at native speed

because the MMU performs the address translation.

5.2.2 Challenges

Suppose that the ImEE has been set up following the idea above with an introspec-

tion agent running inside and accessing the target memory. The following design

challenges need to be addressed in order to achieve a successful introspection.

Functionality Challenge The ImEE agent’s virtual address space comprises

the executable code, data buffers to read and write, and the target kernel’s address

space. Since the agent code and data are logically different from the target kernel,

96

there needs to be a way to properly split the GPA domain so that VAs for the local

uses are not mapped to the target and VAs for introspection are not mapped to the

agent memory.

This challenge to divide the GPA domain is further complicated by two issues.

Firstly, the virtual address space layout of the target is not priorly known, because it

is entirely dependent on the current thread in the target. Therefore, it is a challenge

to device a universal mechanism to load the ImEE agent regardless the target’s ad-

dress space layout. Secondly, read/write operations on the local memory and on the

target memory are not distinguishable to the hardware. Therefore, it is difficult to

separate access to local pages and target pages. For example, it is difficult to detect

whether a VA for introspection is wrongly mapped to the local data (which could be

induced by the target kernel inadvertently or willfully) because it does not violate

the access permissions on the page table.

Security Challenge The ImEE is not fully isolated from the adversary. The

target VM’s kernel has the full control of the VA-to-GPA mappings which affect the

resulting HPA. Hence, the adversary can manipulate the ImEE agent’s control flow

and data flow by modifying the mappings at runtime. Although access permissions

can be enforced via the GPA-to-HPA translation, the adversary can still redirect the

memory reference at one page to another with the same permissions.

A more subtle, yet important issue, is the introspection blind spot, namely the

set of virtual addresses in the target which are not reachable by the ImEE agent.

As shown in Figure 5.2, a VA for introspection is in the blind spot if and only if

it is mapped to the GPA for local use. This is because the full address translation

ends up with a local page, instead of the target VM’s page. The malicious target

can turn its pages into the blind spot by manipulating its guest page table. The

blind spot issue has two implications. First, detecting its existence efficiently is

challenging. Note that it is time-consuming to find out all VAs in the blind spot,

because the guest page tables have to be traversed to obtain the GPA corresponding

to a suspicious VA. Second, the attacker can manipulate VA to GPA mappings in an

97

attempt to disrupt the execution of the ImEE agent. By manipulating the mappings,

the attacker tries to cause invalid code to be executed inside the environment, or

cause the introspection to read arbitrary data.

7

HPA
(local memory)

HPA
(target memory)

VA-to-GPA
mappings

GPA-to-HPA
mappings (for
local)

GPA-to-HPA
mappings (for
target)

GPA for local GPA for target

controlled by
the target kernel

Virtual Address Space

Figure 5.2: Illustration of the blind spot comprising three virtual pages (in the dark
color). Target kernel objects in those pages cannot be introspected since they are
mapped to the local memory.

Performance Challenge Although the ImEE agent accesses the target memory

at native speed, the goal is to minimize the time for setting it up in order to maximize

its capability of quickly responding to real-time events and/or adapting to a new in-

trospection target (e.g., another thread in the target VM or even another target VM).

The challenge is how to load the agent into the virtual address space currently de-

fined by the target thread and to prepare the corresponding GPA-to-HPA mappings.

Searching in the virtual address space is not an option since it is time-consuming to

walk the target VM’s paging structures. In addition, it is also desirable to minimize

the hypervisor’s runtime involvement, because the incurred VM exit and VM entry

events cost non-negligible CPU time.

Besides the above three major challenges, there are other minor issues related to

the runtime event handling, such as page faults and the target VM’s EPT updates.

The requirement of Out-of-VM introspection is to minimize intrusive effects on the

98

target. For example, the hypervisor is refrained from modifying the target VM’s

guest page tables because it leads to execution exceptions in the target. Therefore,

the minor issues also need careful treatment.

5.2.3 System Overview

The ImEE is in essence a special virtual machine which is created and terminated

by the hypervisor based on the VMI application’s request. Like a normal VM,

the ImEE hardware consists of a vCPU core and a segment of physical memory,

both (de)allocated by the hypervisor when needed. No I/O device is attached to the

ImEE. The ImEE does not have an OS and the only software running in it is the

ImEE agent which reads the target memory. Figure 5.3 depicts an overview of the

whole system.

1

memory
CPU

Monitor ImEE Target

ImEE
agent

VMI App
kernel
space

user
space

OS
hypervisor

OS

Figure 5.3: Overview of ImEE-based introspection. The box with dashed lines
illustrates the mixture of physical memory. The shadowed regions belong to the
target and are not trusted.

The VMI application can launch the ImEE, put it into sleep, and terminate it.

Like a regular VM, the ImEE can also migrate from one core to another. While the

ImEE is active, it runs in sessions which is defined as the tenure of its CR3 content.

To kick off a session, the hypervisor either induces a VM exit or intercepting CR3

changes in the target.

99

5.3 The Design Details

In this section, first, the internals of the ImEE is presented with the focus on the

paging structures, and then the ImEE agent is explained. The design choices for per-

formance are shown where appropriate. Lastly, the lifecycle of ImEE is described,

focusing on the runtime issues such as transitions between sessions.

The approach is to carefully concert system design, e.g., setting the ImEE’s

EPTs and software design (i.e. crafting the agent) so that the ImEE agent execution

straddles between two virtual address spaces: one for the local usage and the other

for accessing the target VM.

5.3.1 ImEE Internals

The ImEE requires a vCPU core which can be migrated from one core to another.

It also comprises one executable code frame and one read/writable data frame. The

former stores the agent code while the latter stores the agent’s input and output data.

To differentiate them from the target VM’s physical memory, they are referred to as

the ImEE frames.

3

 CR3

Target frames

RO
NX

GPT GPTL

data code

EPT EPTT EPTC EPTL

 CR3 CR3

Target
address
space

Local
address
space

Target VM ImEE

 memory memory

Figure 5.4: The solid arrows describe the translation for a VA within the ImEE,
while the dotted arrows describe the translation inside the target. All target frames
accessible to the ImEE agent are set as read-only and non-executable in EPTT .

According to the CR3 content, the agent runs either in the local address space

100

or the target address space, as depicted in Figure 5.4. When in the local address

space, the agent interacts with the VMI application. While it runs in the target

address space, it reads the target memory. The code frame is mapped into both

spaces while the data frame is mapped in the local address space only.

Local Address Space The paging structures used in the local address space

comprise GPTL and EPTL, which map the entire space to the ImEE frames. GPTL

only consists of two pages as shown in Figure 5.5. The global flag on the GPTL is

set so that the local address space mappings in the TLB are not flushed out during

CR3 update. Specifically, only one virtual page is mapped to the data frame while

all others are mapped to the code frame. With this setup, the agent code can execute

from all but one page. Moreover, the GPAs of the ImEE frames are not within the

GPA range the target VM uses, which avoids conflict mappings used in the target

address space.

GPTL

GPA space

RW
RX

RX

datacode

RX

Figure 5.5: The Illustration of GPTL. All entries in the page table directory point to
the same page table page which has one PTE points to the data frame and all other
to the code frame.

Target Address Space The target address space implements the idea in Fig-

ure 5.1. To run the agent in this space, the ImEE CR3 register is synchronized

with the target CR3, so that they use the same guest page tables. The GPA-to-HPA

mappings used in this space are governed by EPTT and EPTC .

All GPAs are mapped to the target frames by EPTT , except that one page is

redirected by EPTC to the ImEE code frame. Specifically, EPTT is populated with

the GPA-to-HPA mappings from the target VM’s EPT, except that all target frames

101

are guarded by read-only and non-executable permissions. This stops the agent from

modifying the target memory for the sake of non-intrusiveness. It also prevents the

adversary from injecting code, because the adversary can place arbitrary binaries to

those frames. The permission of the mapping defined by EPTC is set as executable-

only. Namely, it cannot be read or written from the target address space.

Note that the ImEE data frame is not mapped in the target address space for two

reasons. Firstly, it minimizes the number of GPA pages redirected from the target to

the ImEE, and therefore reduces the potential blind spot. Secondly, all memory read

accesses performed in the target address space are bounded to the target. Therefore,

it is feasible to configure the hardware to regulate memory accesses so that any

manipulation on the target GPT that attempts to redirect the introspection access to

the ImEE memory is caught by a page fault exception.

CAVEAT. Address switches inside the ImEE does not cause any changes on the

EPT level. The GPA-to-HPA mappings used in one address space are cached in

the ImEE TLBs and are not automatically invalidated during switches. Note that

EPTL, EPTC and EPTT do not have conflict mappings because they map different

GPA ranges. The two address spaces are assigned with different Process-Context

Identifier (PCID) to avoid undesired TLB invalidation on address space switch.

5.3.2 ImEE Agent

The ImEE agent is the only piece of code running inside the ImEE, without the OS

or other programs. It is granted with Ring 0 privilege so that it has the privilege

to read the target kernel memory and to manage its own system settings, such as

updating the CR3 register. It is self-contained without external dependency and

does not incur address space layout changes at runtime in the sense that all the

needed memory resources are priorly defined and allocated.

The description below involves many addresses. Table 5.1 defines the notations.

Overview The main logic of the agent is as follows. Initially, the agent runs in

102

VA GPA
ImEE data Pd GPd

ImEE code (local addr. space) Pc GPc

ImEE code (target addr. space) Pc GP

0
c

Target page Pt GPt

Table 5.1: Address notations. For instance, GP c is the guest physical address of
the ImEE code page in the local address space.

the local address space and reads an introspection request from the data frame. Then

it switches to the target address space and reads the targeted memory data from the

target memory into the registers. Finally, it switches back to the local address space,

dumps the fetched data to the data page and fetches the next request.

The Agent Figure 5.6 presents the pseudo code of the agent. The agent has only

one code page and one data page. Since the data frame is out of the target address

space, all needed introspection parameters (e.g., the destination VA and the number

of bytes to read) are loaded into the general-purpose registers (Line 6). For the same

reason, the agent loads the target memory data into the ImEE floating-point registers

as a cache (Line 12), before switching to the local address space to write to the data

frame (Line 17).

The agent is loaded at Pc in the local address space by the hypervisor. Pc is

chosen by the hypervisor such that it is an executable page according to the target’s

guest page table. Because GPTL maps the entire VA range (except one page) to the

code frame, there is an overwhelming probability that Pc is also an executable page

in the local address space1. Therefore, the agent can execute in the two address

spaces back and forth which explain Line 12 and 17 can run successfully without

relocation.

Impact of TLB No matter whether there is an attack or not, TLB retention has

no adverse effect on the introspection. Suppose that the mappings in the local ad-

dress space are cached in the TLB. When the agent runs in the target address space,

the only VAs involved are for the instructions (Pc) and the target addresses (Pt). For
1In case Pc is not executable under GPTL, the hypervisor only needs to adjust the corresponding

PTE.

103

1: while TRUE do
2: /* local address space: Read the request */
3: repeat
4: poll the interface lock;
5: until the lock is off
6: Read the request from the data frame to general-purpose registers;
7:
8: /* switch to target address space */
9: Load the target CR3 provided by the hypervisor;

10:
11: /* target access */
12: Move n bytes from the target address x to floating-point registers;
13:
14: /*switch to local address space */
15: Load CR3 with GPTL;
16: /* output to data frame */
17: Move data from the floating-point registers to the ImEE data page;
18: if requested service not completed then
19: goto Line 9;
20: end if
21: Set interface lock;
22: end while

Figure 5.6: The sketch of the ImEE agent’s pseudo code

VAs in Pc, the cached mapping remains valid because the address mappings are not

changed. There are two exclusive cases for Pt. If Pt 6= Pd, the translation does not

hit any TLB entry because it is never used in the local address space. Otherwise,

the TLB entry for Pd is still considered as a miss because of different PCIDs. The

same reasoning also applies to the cached mappings in the target address space.

Note that the adversary gains no advantage from a TLB hit on a cached local

address space translation. Since EPTL is available in the target address space, the

adversary can manipulate its own page tables to achieve the same outcome as a TLB

hit. It can use arbitrary GPA in its page tables.

104

5.3.3 Defeating Attacks via the Blind Spot

The introspection security demands the agent execution to have both control flow

integrity and data flow integrity. Data confidentiality is also required since the leak-

age of the introspection targets can help the adversary evade introspection. The EPT

settings of the ImEE and of the target ensure that the adversary can only launch side-

channel attacks, which is beyond the scope of the study.

The only attack vectors exposed by the ImEE to the adversary are the shared

GPT and the target physical memory which are fully controlled by the adversary.

The adversary can manipulate the VA-to-GPA mappings for Pc and Pt. Depend-

ing on the specific manipulation, either such attempts can be detected by the EPT

violation triggered, or the attack does not adversely affect the introspection.

Detecting Blind Spot The attacks on Pc is defeated by the fact that the code

frame is the only executable frame inside the ImEE. Hence, the attack on Pc’s map-

ping, i.e. mapping Pc to a page in GPt, is doomed to trigger an EPT violation

exception. Similarly, mapping Pt to GP

0
c also triggers EPT violations because the

read is on an execute-only page.

Defeating Mapping Attacks The attack attempts that manipulate the mappings

of Pt do not adversely affect the introspection. Specifically, there are three cases for

the GPt whose virtual page Pt is mapped to by the adversary.

• GPt = GP

0
c. Nonetheless, the EPTC maps the agent code frame non-

readable. Therefore, an EPT violation exception is thrown. The hypervisor

can find out the faulting VA and reports to the VMI tool. The hypervisor can

also reload the agent into a new executable page to introspect the faulting

page. This is the same case as in detecting blind spot described above.

• GPt 6= GP

0
c, and GPt is within the pre-assigned GPA range for the target VM.

In this case, the ImEE’s MMU walks the target VM’s GPT and fetches the data

in the same way as in the target VM. In other words, the mapping consistency

between the ImEE and the target VM is still guaranteed. Although the agent

105

may read invalid data, its execution is not affected by such mappings. The

attack has no harm to the execution as it is equivalent to feeding poisonous

contents to the VMI application, in the hope to exploit a programming vul-

nerability. This is the inevitable risk faced by any memory introspection and

can be coped with software security countermeasures.

• GPt is mapped out of the pre-assigned GPA range for the target. If GPt =

GPd or GPt = GPc, the attack causes the agent to read from the ImEE frames;

otherwise it causes an EPT page fault as the needed mapping is absent. This

case is not considered as a blind-spot problem, because the target VM’s EPT

does not have the mapping for GPt. Hence, the target VM’s kernel, including

the adversary, is not able to access this page. This attack does not give the

adversary any advantage over mapping Pt to an in-range GPA whose physical

frame stores the same contents prepared by the adversary. (Note that ImEE

do not assume or rely on the secrecy of the introspection code.)

5.3.4 Operations of ImEE

Initialization To start the introspection, the hypervisor loads the needed agent code

and data into the memory. It initializes EPTT as a copy of the entire EPT used

for the target, and allocates a vCPU core for the ImEE. The ImEE CR3 is initially

loaded with the address of GPTL. target’s page table directory address.

In case the target’s EPT occupies too many pages, the hypervisor copies them

in an on-demand fashion. In other words, when the agent’s target memory access

encounters a missing GPA-to-HPA mapping, the hypervisor then copies the EPT

page from the target’s EPT. Note that it does not weaken security or effectiveness,

because the EPTs are managed by the hypervisor only.

Activation Based on the VMI application’s request, the hypervisor launches the

ImEE wherein the agent runs in the local address space with an arbitrarily chosen

virtual address. The start of a session is marked by the target VM’s CR3 capture.

106

If it is the first session, the hypervisor may send out an Inter-Processor Interrupt

(IPI) to the target VM, or induce an EPT violation to the target, or passively wait

for a natural VM-exit (which is more stealthy). After trapping the core, the hypervi-

sor configures the target’s Virtual Machine Control Structure (VMCS) to intercept

CR3 updates on it. Namely, the execution of CR3 loading instruction(s) on the cap-

tured vCPU triggers a VM exit. Note that the target’s other vCPUs (if any) are not

affected.

Agent Reloading Once the target CR3 value is switched, the hypervisor sends

an IPI to the ImEE CPU to cause it to trap to the hypervisor. The hypervisor then

reloads the agent. If the agent is currently running in the target address space, its

CR3 in the VMCS is immediately replaced. The hypervisor then extracts the page

frame number from the target’s Instruction Pointer (IP). It replaces the page frame

number in the ImEE IP with the one in the target IP without changing the offset.

Since the agent code lies within one page, preserving the offset allows it to smoothly

continue the interrupted execution.

If the agent is in the local address space, the CR3 for the new target address space

is saved in a register. The crux of the session transition is to minimize the hypervisor

execution time as it hinders the ImEE’s performance by holding the core.

ImEE use a lazy-allocation method to find GP

0
c for the purpose of setting up

EPTC . When the agent resumes execution, an EPT violation is triggered because the

corresponding physical page is mapped as read-only in EPTT . From the exception,

the hypervisor reads the faulting GPA, changes the corresponding EPT permissions,

and restores the previous one to read-only. The newly modified EPTT entry becomes

the new EPTC . Since the lazy method uses the MMU to find GP

0
c, it saves the CPU

time for walking the page table.

Page Fault Handling Although it is rare for kernel introspection, it is possible

to encounter a page fault due to absent pages in the target VM. One possible reason

is that the malware inside the target attempts to evade introspection by swapping

out page content to disk. In this case, since the mapping inside ImEE is consistent

107

with the one in the target VM, introspection on the swapped-out page results in a

page fault inside ImEE. This behavior is the expected consequence of maintaining

mapping consistency between ImEE and the target. The effectiveness of ImEE’s

introspection is not undermined because once the swapped-out page is swapped in,

it is visible to ImEE immediately.

For the sake of resilience, ImEE installs a page fault handler inside the ImEE.

Since the agent resides in Ring 0, the exceptions do not cause any context switch.

Out of the consideration of transparency and stealthiness, the ImEE’s page fault

handler does not attempt to resolve the cause. Instead, it simply runs dozens of

NOP instructions and retries the read. If the rounds of failure exceed the predefined

threshold, it aborts the execution.

5.4 Implementation

In this section, the details of ImEE prototype implementation is presented. The

prototype is based on KVM. The introspection tools implemented on top of the

prototype are also described.

5.4.1 ImEE on KVM

A prototype of the ImEE and its agent are implemented on Ubuntu 12.04 with Linux

kernel 3.2.79. The implementation adds around 1400 SLOC to the Linux KVM

module. The main changes on the KVM module include two new ioctl call

handlers as the interface for the VMI application to request the ImEE setup and

execution. The new handlers leverage existing KVM utility in the kernel to setup

the ImEE as a special VM.

The KVM’s handling of VM-exit events is customized in order to achieve better

performance. Those events intended for the ImEE introspection are redirected to

the new handler dedicated for the ImEE. Therefore, the long execution path of the

KVM’s event handling routines is bypassed.

108

5.4.2 Specialized Agent

According to the commonly seen memory reading patterns, three types of ImEE

agents are implemented as listed in Table 5.2. The Type-1 agent performs a block

read, i.e., to read a contiguous memory block at the base address. The Type-2 agent

performs a traversal read, i.e., to read the specified member(s) of a list of structured

objects chained together through a pointer defined in the structure. The Type-3

agent reads the memory in the same way as the Type-2, except that the extracted

member is a pointer and a dereference is performed to read another structure. Note

that the Type-2 and 3 agents are particularly useful for traversing the kernel objects.

Type Mode of read # of Instructions
1 Block-read 38
2 Traversal-read 22
3 Traversal-read-dereference 40

Table 5.2: Three ImEE agents. The Type-3 agent uses 2 pointer deferences while
the Type-2 agent uses one.

The interface between the VMI application and the ImEE agent are two fixed-

size buffers residing on the agent’s data frame and being mapped into the VMI

application’s space. One buffer is for the request to the agent and the other stores

the reply from the agent. Both buffers are guarded by one spin-lock to resolve the

read-write conflict from both sides. When the ImEE session starts, the agent polls

the buffer and serves the request. The VMI application ensures that the reply buffer

is not overflowed. The polling based approach is faster than using interrupts as it

does not induce any VM-exit/entry.

5.4.3 Usability

The simple interface of ImEE allows easy development of introspection tools. For

common introspection tasks that focus on kernel data structures, the development

requires a selection of the agent type, and a set of memory reading parameters in-

cluding the starting virtual address, the number of bytes to read, and the offset(s)

109

used for traversal. Based on this method, four user space VMI programs are de-

veloped. They collect different critical kernel objects and have distinct memory

reading behaviors. The objectives and logics of the four programs are explained

below.

• syscalldmp It dumps totally 351 entries of the guest’s system call table

pointed to by sys call table. A continuous block of 1404 bytes from

the guest is returned to the program.

• pidlist It lists all process identifiers in the guest. It traverses the

task struct list pointed to by the kernel symbol init task, and records

the PID value of every visited structure in the list. In total, 4 bytes are re-

turned while 8 bytes are read from the guest for each task.

• pslist It lists all tasks’ identifiers and task names stored in task struct.

A task’s name is stored in the member comm with a fixed size of 16 bytes.

Hence, 24 bytes are returned for each task node.

• credlist It lists all tasks’ credential structures referenced by the

task struct’s cred pointer. In total, 116 bytes including the credential

structure to the application for each task node are read. Hence, it takes more

time than pidlist and pslist.

Because of their different memory access patterns, they run with different types

of agents. The syscalldmp tool runs with Type-1 agent to perform block-reads. The

pidlist and pslist programs work with Type-2 agent and the credlist program works

with Type-3 agent. These tools are linked with a small wrapper code to interact with

the ImEE-enabled KVM module via the customized ioctl handler.

110

5.5 Evaluation

The prototype is evaluated from four aspects with LibVMI as the baseline. Lib-

VMI [72] is a cross-platform introspection library which a variety of tools depend

on. LibVMI is the only open-source tool that provides a comprehensive set of API

for reading the memory of a VM. In particular, it provides the capability to handle

translation from VA to GPA. Therefore, LibVMI plays the role of a building block

for live memory access in tools such as Drakvuf [61] and Volatility [95]. The eval-

uation consists of four parts. Firstly, the overhead of ImEE is evaluated, in terms

of component costs and the impact on the target VM due to CR3-update intercep-

tion. Secondly, the ImEE’s throughput in reading the target memory is measured.

Thirdly, the introspection performance of the tools is compared with two function-

ally equivalent ones implemented with the LibVMI and in the kernel. Lastly, ImEE

is compared with LibVMI in a setting with multiple guest VMs.

The hardware platform used to evaluate the implementation is a Dell OptiPlex

990 desktop computer with an Intel Core i7-2600 3.4GHz processor (supporting

VT-x) and 4GB DRAM. The target VM in the experiments is a normal KVM in-

stance with 1GB of RAM and 1 vCPU.

5.5.1 ImEE Overhead

Table 5.3 summarizes the overheads of the ImEE. It takes a one-time cost of 97

µs to prepare the ImEE environment where the main tasks are to make a copy of

the target guest EPT as EPTT , to set up GPTL and EPTL, and to allocate and setup

the ImEE vCPU context. The ImEE activation requires about 3.2 µs, and the agent

loading/reloading time is around 6.5 µs. The difference is mainly due to handling

of the incoming IPI by host kernel on the ImEE core in the agent reloading case. In

comparison, it takes about 100 milliseconds to initialize the LibVMI setting, which

is around 1,000 times slower than the ImEE setup.

Guest CR3 Update Interception To maintain CR3 consistency with the target

111

Overhead ImEE LibVMI
Launch time 97 µs 100 ms
Activation time 3.2 µs -
Agent reloading
time

6.5 µs -

Table 5.3: Overhead comparison between ImEE and LibVMI.

during a session, the hypervisor intercepts the CR3 updates. To evaluate its per-

formance impact on the target, the entailed time cost is measured and run several

benchmarks to assess the VM’s performance.

The cost due to interception mainly consists of VM-exit, sending an IPI, record-

ing VMCS data, and VM-entry. In total, it takes about 2000 CPU cycles which

amounts 0.58 µs in the experiment platform. Three performance benchmarks are

run: LMbench [6] for system performance, Bonnie++ [2] for disk performance and

SPECint 2006 [10] for CPU performance while context switches during their exe-

cutions are intercepted by the hypervisor. Figure 5.7 reports the LMbench score for

context switch time where the performance drops about 50%.

0.5$

1$

2p
/0K
$

2p
/16
K$

2p
/64
K$

8p
/16
K$

8p
/64
K$

16
p/1
6K
$

16
p/6
4K
$

Score& W/O$Intercep5on$ W/$Intercep5on$

Figure 5.7: LMBench: normalized result on context switch time. The higher score
means better performance.

Nonetheless, the interception does not seem to incur noticeable impact to other

benchmark results such as disk I/O and network I/O, as shown in Figure 5.8, 5.9 and

5.10. This effect can be attributed to the relatively fewer number of context switches

involved during the macro-benchmark runs, because the benchmark processes fully

occupy the CPU time slot. It is typical for a Linux process to have between 1ms to

10 ms time-slot before being scheduled off from the CPU.

To understand the impact of CR3 interception in real-life scenarios, three dif-

112

0"
0.2"
0.4"
0.6"
0.8"
1"

1.2"

file"latency" local"comm"
latency"

local"comm"
bandwidth"

proc"latency"

Score& W/O"Intercep>on" W/"Intercep>on"

Figure 5.8: LMBench: normalized result on other system aspects. The higher score
means better performance.

0"

0.5"

1"

char*write" blk*write" rewrite" char*read" blk*read"

Score& W/O"Intercep9on" W/"Intercep9on"

Figure 5.9: Bonnie++: normalized results on disk performance. The higher score
means better performance.

ferent workloads are tested on the target VM: idle, online video streaming and file

downloading. Neither test shows noticeable performance drop. When the target is

under interception, the video is rendered smoothly without noticeable jitters and the

file downloading still saturates the network bandwidth.

In the experiments, the introspection encounters few context switches in the

target VM. To understand this phenomenon, experiments are run to measure the in-

tervals between context switches. Figure 5.11 shows the distribution of their lengths

under different workloads. The analysis shows that the context switch is expected to

occur after around 40 µs, which could be used as a guideline for the VMI applica-

tion to determine the duration of a session. Note that an encounter with the context

switch costs about 6.5 µs for the introspection and 0.58 µs for the target VM.

Lastly, the ImEE has a small memory footprint of a few hundred KB on the

host OS. LibVMI has a large memory footprint as it uses up to 14MB to perform a

system call table dump.

113

0"

0.5"

1"

pe
rlb

en
ch
"

bz
ip
2"

gc
c"

m
cf
"

go
bm

k"

hm
m
er
"

sje
ng
"

lib
qu

an
tu
m
"

h2
64
re
f"

om
ne

tp
p"

as
ta
r"

xa
la
nc
bm

k"

Score& W/O"IntercepCon" W/"IntercepCon"

Figure 5.10: SPEC INT: normalized results on CPU performance. The higher score
means better performance.

0

10

20

30

40

50

60

0.0 31.0 60.0 91.0 121.0 152.0 182.0 213.0 244.0 274.0

Feq(%)

Intervals	(in	microseconds)

downloading

Video-streaming

Idle

40 us

Figure 5.11: The frequency distribution of interval lengths between context switches
in three workloads: idle, video streaming and file downloading. The x-axis is not
displayed to the scale.

5.5.2 Guest Access Speed

The turnaround time for accessing the VM refers to the interval between sending

a request and the arrival of the reply. It consists of the time spent for checking the

shared buffers and the agent’s execution time. To assess the efficiency of the ImEE’s

interface with the VMI application, the turnaround time is measured with the ImEE

agent performing no task but returning immediately. The result is approximately

265 CPU cycles (or 77 ns).

To evaluate the memory-reading performance of the ImEE, experiments are run

to evaluate the turnaround time with normal read requests. Table 5.4 below reports

the turnaround time in comparison with LibVMI for the same workload. To make

a fair comparison, LibVMI’s translation cache is turned on whereas the page-level

data cache is turned off.

114

of Bytes ImEE (µs) LibVMI (µs)
4 0.353 18.4
64 0.358 18.5
128 0.389 18.4
512 1.643 18.9
1024 1.715 38.1

Table 5.4: Memory read performance comparison.

ImEE is also tested with the experiment described in Section 5.1. The experi-

ment shows that the modification on the cred address is caught immediately when

the malware makes the first attack. Note that with the ImEE support, it takes less

than 1200 CPU cycles for the VMI application to get a DWORD from the guest,

in contrast to more than 60,000 cycles using LibVMI. The maximum introspection

frequency of ImEE based introspection is 2.83 MHz while an introspection using

LibVMI in the experiment setting can only achieve 54 KHz in maximum.

5.5.3 Introspection Performance Comparison

The introspection tools (syscalldump, pidlist, pslit and credlist) are run in three

settings: within the kernel, with ImEE, and with LibVMI. Since this set of tests

concerns with real-life scenarios, LibVMI is tested on both KVM and Xen for com-

pleteness. For each of the scenario, the turnaround time of introspection is mea-

sured. The time for the processing of the semantics and the time for setting up

the ImEE/LibVMI are not included in the measurement. Table 5.5 and Table 5.6

summarize the results.

Tools Kernel module ImEE
time mode

syscalldmp 0.2 2.9 block
pidlist 10 31.6 traversal
pslist 10.4 38.6 traversal

credlist 25.3 25.6 hybrid

Table 5.5: Kernel object introspection performance in kernel and ImEE (time in µs).

The experiments show that the ImEE-based introspection has a comparable per-

115

Tools LibVMI(KVM / Xen)
without any cache without page cache with all cache

syscalldmp 28.2 / 43 18.7 / 47 2 / 54
pidlist 5,887 / 2,180 2,864 / 2,041 1,568 / 490
pslist 8,319 / 1477 2,695 / 1,442 1,672 / 542

credlist 8,234 / 2,274 7,150 / 2,153 2,215 / 757

Table 5.6: Kernel object introspection performance by LibVMI (time in µs).

formance to running inside the kernel. It has a superior performance advantage over

LibVMI for traversing the kernel object lists. On KVM, The LibVMI based intro-

spection is around 50 times slower than the ImEE with all caches and 300 times

slower without cache. On Xen, LibVMI is around 15 times and 70 times slower,

respectively. Since the traversal only returns a few bytes from different pages, Lib-

VMI’s optimization in bulk data transferring does not result in performance gain.

5.5.4 Handling Multiple VMs

In a data center setting, a large number of VMs are hosted on the same physical

server. Therefore, for a VMI solution to be effective in such a setting, the capa-

bility to handle multiple VM is important. Besides raw introspection speed, two

additional capabilities are important for a VMI solution. Firstly, the VMI solution

should respond quickly to requests to introspect VMs encountered for the first time.

Secondly, it should also maintain swift response for introspection requests on VMs

already launched.

The time taken for LibVMI and ImEE to perform a syscall table dump by the

tools is measured in two scenarios. Four VMs are launched on the experiment

platform. Firstly, the time taken for each solution to introspect four VMs once for

each in a sequence is measured. It takes 561 ms for LibVMI and 377 µs for ImEE,

respectively. In this case, LibVMI is about 1,400 times slower than ImEE. The

performance of LibVMI is mainly due to the initialization needed for each newly

encountered VM.

Secondly, the time taken for each solution for switching the introspection tar-

116

get among the four VMs that are already scanned is measured. The switching re-

quires resetting certain data between consecutive scans. For this purpose, LibVMI

is slightly modified to allow us to update the CR3 value in the introspection context

of a VM with a new one. The experiment shows that it takes 19 ms for LibVMI to

perform such work while 4.4 µs for ImEE. ImEE shows around 4,300 times speed

up. The reason is that LibVMI’s software-based approach needs to reset a number

of memory states. In contrast, ImEE only needs to fetch the current CR3 on the

target VM’s vCPU and replace the ImEE CR3, IP and the EPT root pointer of the

ImEE vCPU.

5.6 Discussions

5.6.1 CPU State

In-memory paging structure is only one of the factors that determines the final out-

come of the translation of a virtual address. In fact, the final outcome is determined

by both in-memory state and in-CPU states. The affecting in-CPU states include

control registers and buffers such as the TLB. For example, the TLB can be inten-

tionally made out-of-sync with paging structures in memory, therefore causes the

introspection code to use a different mapping from the one currently used by the

target. An ideal introspection solution should take into consideration both sets of

states because they collectively represent the current address translation.

However, for out-of-VM live introspection, it is required that it runs on a core

that is independent of the target VM. This limits the introspection’s capability to

utilize such in-CPU states because there is no mechanism to fetch in-CPU states

from another CPU. One possible solution is to preempt the vCPU of the target on a

physical core by a more privileged entity such as the hypervisor, trying to preserve

as many in-CPU states as possible, including buffers and caches. However, the be-

havior of the buffers and caches when across VM transition is not fixed. Therefore,

117

without hardware assistance, attempts to implement an ideal solution is likely met

with hardware-specific tweaks and hacks, making it very difficult.

5.6.2 Integration with Existing VMI Tools

The ImEE serves as the guest access engine for the VMI applications without in-

volving kernel semantics. It is not challenging to retrofit exiting VMI tools that

focus on high-level semantics to benefit from the ImEE’s performance and security.

Using VMST [42] as an example, we show how to combine a VMI application with

the ImEE. When an introspection instruction is executed in VMST, the XED library

[14] decides whether a data access should be redirected to the guest VM or not. If

so, the code fetches the data from the guest memory by traversing the guest VM’s

page table in the same way as LibVMI. It is easy to integrate VMST with the ImEE.

When a read redirection is generated by the XED library, the code simply issues a

memory read request to the ImEE and waits for the reply. With the support from the

ImEE, shadow TLB and shadow CR3 proposed in VMST are no longer needed.

5.6.3 ImEE vs. In-VM Introspection

Strictly speaking, the ImEE and in-VM introspection systems are not comparable,

as they are geared for different purposes. The ImEE is for effective target VM access

while in-VM systems are designed for reusing the OS’s capability [49, 24] or for

monitoring events in the guest [81]. Since Process-Implant [49] and SYRINGE

[24] rely on a trusted guest kernel, the ImEE is compared with SIM [81] from the

perspective of accessing the target VM memory.

Security Address space isolation in SIM prevents the target VM kernel from

tampering with SIM data and code. In a multi-core VM, it does not prevent the

target VM kernel from interrupting SIM code execution by using non-maskable

interrupts. By knocking down the SIM thread from its CPU core, the rootkit can

safely erase the attack traces without being caught. In comparison, the entire ImEE

118

environment is separated from the target VM. It is much more challenging (if not

feasible) for the target VM kernel to disrupt the ImEE agent’s execution. Note that

the manipulation on the page tables backfires on the adversary since they are shared

between the adversary and the target.

Effectiveness SIM does not enforce consistent address mappings. The SIM

code and the target VM threads are in separated address spaces, namely using sep-

arated page tables. The SIM hypervisor does not update the SIM page tables ac-

cording to the updates in the kernel. In comparison, any update on the target VM

page table takes immediate effect on the ImEE and CR3 consistency is ensured by

the hypervisor.

Performance and Usability Both SIM and ImEE make native speed accesses

to the memory without emulating the MMU. ImEE uses EPT and does not require

any modification on the target VM, while SIM relies on the shadow page tables and

makes non-negligible changes on the target VM.

5.6.4 Paging Modes Compatibility

The design of ImEE is by nature compatible with various paging modes such as

Physical Address Extension mode (PAE mode) and 64-bit paging. It only requires

setting of two additional bits in the control registers, namely PAE bit in CR4 register

and LME bit in EFER register so that the ImEE core runs in the needed paging mode.

To prevent the adversary from changing the paging mode, the hypervisor trap access

to the above registers. To introspect a 64-bit VM, the agent needs to be compiled

into 64-bit code as well. In fact, the ImEE performs better on a 64-bit platform,

because there are more general purpose registers available, reducing the number of

address space switches, and the PCID can be used to prevent the needed TLB entries

from being flushed.

119

5.6.5 Architecture Compatibility

The ImEE’s design is also compatible to other multi-core architectures such as

ARM, on the condition that the hardware supports MMU virtualization. Like the

x86 platform, ARM multi-core processors also feature a per-core MMU, thus each

core’s translation can be performed independently. As a result, a core can be set up

to use the translation used by the other, by setting it to use the same root of paging

structures. Moreover, by using TTBR0 and TTBR1, the hypervisor can easily

separate the virtual address ranges used for the target accessing and for the local

usage. It simplifies the design as both can use separated page tables. The ARM

processor also grants the software more control over the TLB entries. Thus, the

needed TLB entries can be locked by the agent. Therefore, it is expected to have

better performance than the current design.

120

Chapter 6

Conclusion

The discussion in this dissertation is concerned with an adversary with the kernel

privilege. The adversary may gain such privilege via infecting the system with

rootkits, or by modifying the underlying OS behavior with launching attacks. Due

to the high privilege, the adversary can cause serious consequences by performing

arbitrary attacks. It may access encryption keys in the process memory, read files

which only legitimate users can access, or even manipulate the devices directly. In

a traditional system architecture, it is extremely challenging to defend against such

an adversary.

By introducing an additional layer below the OS in the traditional system archi-

tecture, virtualization techniques turn out to be an effective way to defend against

the adversaries with kernel privilege. In the virtualization architecture, the OS is no

longer assigned the highest privilege. Instead, the hypervisor assumes it. The OS is

in turn, deprivileged to run in a domain which is managed by the hypervisor. In this

architecture, even if the adversary obtains the kernel privilege, it is still confined

and restricted by the hypervisor. Therefore, the attacker’s damage is contained.

A number of systems have been proposed based on this architecture. Some

systems directly utilize the virtualization architecture and run different applications

in different domains according to their trustworthiness. The trusted application runs

in the trusted domain, while the untrusted in the untrusted domain. Therefore, even

121

if the untrusted domain is attacked, the trusted domain is still not affected because

they are isolated. This approach, termed domain isolation, still requires the trusted

domain to have a complete OS which is included in its TCB. Therefore, the TCB of

this design is still large.

Later systems attempted to reduce this TCB by reusing certain facilities in the

untrusted domain such as dynamic memory allocation and file systems. However,

this design blurs the isolation boundary between the trusted domain and untrusted

and leads to potential issues. The most prominent issue is the reuse of guest page

tables. The guest page tables define the VA-to-GPA mappings, therefore, the address

space of the trusted domain is still, in part, controlled by the untrusted domain.

Existing systems realized this issue and all perform certain kind of checks on the

guest page tables to ensure that the mappings in the guest page table do not violate

the desired policy.

However, such checks are usually ad-hoc and not systematic. There is no clear

assumptions stated about the capabilities of the attacker. Therefore, when faced

with attacker with new capabilities, such checks quickly fail. As exemplified by

the multicore platform attacks, i.e. the stifling attack and the VPID attack, the

concurrent execution of the guest kernel allows modification of the guest page table

either during the check or after the check by introducing race conditions. Therefore,

the effectiveness of the systems requires re-investigation.

In the re-investigation, the analysis is based on a common pattern of the con-

struction of these systems. These systems all need to translate a set of high-level

policies into a form that can be expressed with abstractions in the virtualization con-

text. Three elements in the policies need to be translated, namely, subjects, objects

and operations. Plus, due to the idiosyncrasies of the virtualization mechanism, ad-

ditional runtime considerations also need to be included. The analysis identified

issues with the management of the identities of the subjects and objects as well as

a few runtime enforcement issues. All these issues affect the effectiveness of the

policy enforcement. In addition, two attacks are presented that shows that the ker-

122

nel level adversary can leverage hardware features and concurrent execution to keep

stale permission, so that it can break the isolation boundary setup by the hypervisors

which does not consider multicore platforms.

The FIMCE system is designed to address the issues uncovered during the anal-

ysis. FIMCE is a fully isolated and flexible environment that completely isolates

the malicious kernel from sensitive applications. The memory, CPU states and any

devices are all isolated with a carefully delineated boundary. In FIMCE, the iden-

tity issues do not exist because the FIMCE instances are directly managed by the

hypervisor. The issues caused by concurrent execution does not exist because of the

complete isolation boundary. On top of its security, FIMCE is also a flexible and

nimble architecture that can be tailored for various use cases. Meanwhile, FIMCE

comes with minimum interference with the execution of both the isolated applica-

tion and the guest VM, thereby minimizing performance overheads.

Lastly, it is shown that the FIMCE environment can be applied in the context of

VMI and the ImEE system is presented. The ImEE introspection system builds on

top of the idea of FIMCE and tweaks its address mappings. The ImEE environment

is configured with the same page tables used by the target VM under introspection.

Therefore, it has a consistent address mapping with the guest. The guest’s modifi-

cation on the page table will take effect immediately inside ImEE as well, therefore,

it cannot make transient changes and try to hide the presence of malicious behavior.

With the help of hardware, ImEE runs with a remarkable performance boost while

still keeping the consistent address mappings.

The systems presented in this document can be extended along a few directions.

The integration between FIMCE and SGX can be explored to achieve strong isola-

tion with secure I/O. The ImEE can be integrated with existing tools for improved

security and performance. The designs presented can also be applied in other ar-

chitectures such as ARM, which forms the cornerstone of the mobile computing

world.

123

Acronyms

API: Application Programming Interface

APIC: Advanced Programmable Interrupt Controller

BIOS: Basic Input/Output System

CPU: Memory Management Unit

CPL: Current Privilege Level

DMA: Direct Memory Access

DPL: Descriptor Privilege Level

DRTM: Dynamic Root of Trust for Measurement

ELF: Executable and Linkable Format

EOI: End Of Interrupt

EPC: Enclave Page Cache

EPT: Extended Page Table

FIMCE: Fully Isolated Micro-Computing Environment

GDT: Global Descriptor Table

GOT: Global Offset Table

GPA: Guest Physical Address

GPT: Guest Page Table

GPU: Graphics Processing Unit

HPA: Host Physical Address

HTML: Hyper Text Markup Language

IDT: Interrupt Descriptor Table

IID: Interface Identifier

ImEE: Immersive Execution Environment

124

IOMMU: Input-Output Memory Management Unit

IP: Instruction Pointer

IPI: Interprocessor Interrupt

IRQ: Interrupt Request

KVM: Kernel Virtual Machine

LAN: Local Area Network

MMIO: Memory Mapped I/O

MMU: Memory Management Unit

NMI: Non-Maskable Interrupt

OS: Operating System

PA: Physical Address

PAE: Physical Address Extension

PAL: Piece of Application Logic

PCID: Process-Context Identifier

PCR: Platform Configuration Register

PLID: Pillar Identifier

PLT: Procedure Linkage Table

PTE: Page Table Entry

SLOC: Source Line of Code

SGX: Software Guard Extension

SMM: System Management Mode

SMP: Symmetric Multiprocessing

SSL: Secure Sockets Layer

TCB: Trusted Computing Base

TCS: Thread Control Structure

TEE: Trusted Execution Environment

TLB: Translation Lookaside Buffer

TPM: Trusted Platform Module

TSS: Task-State Segment

TTP: Trusted Third Party

VA: Virtual Address

125

VM: Virtual Machine

VMCS: Virtual Machine Control Structure

VMM: Virtual Machine Monitor

VMI: Virtual Machine Introspection

VPID: Virtual Processor Identifier

126

Bibliography

[1] adore-ng. Online at https://github.com/trimpsyw/adore-ng.

[2] Bonnie++. http://www.coker.com.au/bonnie++/.

[3] The current state of kernel page-table isolation. https://lwn.net/
Articles/741878/. Accessed: 2018-05-08.

[4] Idetect. Online at http://forensic.seccure.net/.

[5] Lines of code of the linux kernel versions. https://www.linuxcounter.
net/statistics/kernel.

[6] Lmbench - tools for performance analysis. http://www.bitmover.com/
lmbench/.

[7] Lsproc. Online at http://windowsir.blogspot.com/2006/04/
lsproc-released.html.

[8] PROCENUM. Online at http://forensic.seccure.net/.

[9] Red Hat Crash Utility. Online at http://people.redhat.com/anderson/.

[10] Standard performance evaluation corporation. https://www.spec.org/
cpu2006/.

[11] Trusted boot, tcg group. http://tboot.sourceforge.net/.

[12] Volatilitux. Online at https://code.google.com/p/volatilitux/.

[13] Windows Memory Forensic Toolkit. Online at http://forensic.seccure.
net/.

[14] XED: x86 encoder decoder. http://www.pintool.org/docs/24110/
Xed/html/.

[15] J. P. Anderson. Computer security technology planning study. volume 2. Technical
report, Anderson (James P) and Co Fort Washington PA, 1972.

[16] S. Arnautov, B. Trach, F. Gregor, T. Knauth, A. Martin, C. Priebe, J. Lind,
D. Muthukumaran, D. O’Keeffe, M. Stillwell, et al. Scone: Secure linux contain-
ers with intel sgx. In Proceedings of the 13rd USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 689–703, 2016.

[17] A. M. Azab, P. Ning, E. C. Sezer, and X. Zhang. HIMA: A hypervisor-based integrity
measurement agent. In Proceedings of the 2009 Annual Computer Security Applica-
tions Conference, ACSAC ’09, pages 461–470, Washington, DC, USA, 2009. IEEE
Computer Society.

127

https://github.com/trimpsyw/adore-ng
http://www.coker.com.au/bonnie++/
https://lwn.net/Articles/741878/
https://lwn.net/Articles/741878/
http://forensic.seccure.net/
https://www.linuxcounter.net/statistics/kernel
https://www.linuxcounter.net/statistics/kernel
http://www.bitmover.com/lmbench/
http://www.bitmover.com/lmbench/
http://windowsir.blogspot.com/2006/04/lsproc-released.html
http://windowsir.blogspot.com/2006/04/lsproc-released.html
http://forensic.seccure.net/
http://people.redhat.com/anderson/
https://www.spec.org/cpu2006/
https://www.spec.org/cpu2006/
http://tboot.sourceforge.net/
https://code.google.com/p/volatilitux/
http://forensic.seccure.net/
http://forensic.seccure.net/
http://www.pintool.org/docs/24110/Xed/html/.
http://www.pintool.org/docs/24110/Xed/html/.

[18] A. M. Azab, P. Ning, J. Shah, Q. Chen, R. Bhutkar, G. Ganesh, J. Ma, and W. Shen.
Hypervision across worlds: Real-time kernel protection from the arm trustzone se-
cure world. In Proceedings of the 2014 ACM SIGSAC Conference on Computer and
Communications Security, pages 90–102. ACM, 2014.

[19] A. M. Azab, P. Ning, and X. Zhang. Sice: a hardware-level strongly isolated com-
puting environment for x86 multi-core platforms. In Proceedings of the 18th ACM
conference on Computer and Communications Security, pages 375–388. ACM, 2011.

[20] A. Baumann, M. Peinado, and G. Hunt. Shielding applications from an untrusted
cloud with haven. ACM Transactions on Computer Systems (TOCS), 33(3):8, 2015.

[21] F. Bellard. Qemu, a fast and portable dynamic translator. In Proceedings of USENIX
Annual Technical Conference, (FREENIX Track), pages 41–46, 2005.

[22] C. Betz. Memparser. 2005, http://www. dfrws. org/2005/challenge/memparser. shtml,
2005.

[23] C. Bugcheck. Grepexec: Grepping executive objects from pool memory. In Report
from the Digital Forensic Research Workshop (DFRWS), 2006.

[24] M. Carbone, M. Conover, B. Montague, and W. Lee. Secure and robust monitoring
of virtual machines through guest-assisted introspection. In Research in Attacks,
Intrusions, and Defenses, pages 22–41. Springer, 2012.

[25] M. Carbone, W. Cui, L. Lu, W. Lee, M. Peinado, and X. Jiang. Mapping kernel
objects to enable systematic integrity checking. In Proceedings of the 16th ACM
conference on Computer and communications security, pages 555–565. ACM, 2009.

[26] X. Chen, T. Garfinkel, E. C. Lewis, P. Subrahmanyam, C. A. Waldspurger, D. Boneh,
J. Dwoskin, and D. R. K. Ports. Overshadow: A virtualization-based approach to
retrofitting protection in commodity operating systems. In Proceedings of the 13th
International Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS), 2008.

[27] Y. Cheng and X. Ding. Guardian: Hypervisor as security foothold for personal com-
puters. In International Conference on Trust and Trustworthy Computing, pages
19–36. Springer, 2013.

[28] Y. Cheng, X. Ding, and R. H. Deng. Driverguard: a fine-grained protection on I/O
flows. In Proceedings of the 16th European Symposium on Research in Computer
Security (ESORICS), 2011.

[29] Y. Cheng, X. Ding, and R. H. Deng. Efficient virtualization-based application protec-
tion against untrusted operating system. In Proceedings of the 10th ACM Symposium
on Information, Computer and Communications Security (ASIACCS), 2015.

[30] Y. Cho, J. Shin, D. Kwon, M. Ham, Y. Kim, and Y. Paek. Hardware-assisted on-
demand hypervisor activation for efficient security critical code execution on mobile
devices. In 2016 USENIX Annual Technical Conference (USENIX ATC 16), pages
565–578, Denver, CO, June 2016. USENIX Association.

[31] V. Costan and S. Devadas. Intel sgx explained. IACR Cryptology ePrint Archive,
2016:86, 2016.

128

[32] S. Crane, C. Liebchen, A. Homescu, L. Davi, P. Larsen, A.-R. Sadeghi, S. Brun-
thaler, and M. Franz. Readactor: Practical code randomization resilient to memory
disclosure. In Security and Privacy (SP), 2015 IEEE Symposium on, pages 763–780.
IEEE, 2015.

[33] S. Cristalli, M. Pagnozzi, M. Graziano, A. Lanzi, and D. Balzarotti. Micro-
virtualization memory tracing to detect and prevent spraying attacks. In 25th USENIX
Security Symposium (USENIX Security 16), pages 431–446. USENIX Association.

[34] J. Criswell, N. Dautenhahn, and V. Adve. Virtual ghost: Protecting applications
from hostile operating systems. In Proceedings of the 19th International Confer-
ence on Architectural Support for Programming Languages and Operating Systems
(ASPLOS), pages 81–96, 2014.

[35] W. Cui, M. Peinado, Z. Xu, and E. Chan. Tracking rootkit footprints with a practical
memory analysis system. In USENIX Security Symposium, pages 601–615, 2012.

[36] N. Dautenhahn, T. Kasampalis, W. Dietz, J. Criswell, and V. Adve. Nested kernel: An
operating system architecture for intra-kernel privilege separation. In ACM SIGPLAN
Notices, volume 50, pages 191–206. ACM, 2015.

[37] Z. Deng, X. Zhang, and D. Xu. Spider: Stealthy binary program instrumentation and
debugging via hardware virtualization. In Proceedings of the 29th Annual Computer
Security Applications Conference, pages 289–298. ACM, 2013.

[38] A. Desnos. Draugr-live memory forensics on linux.
https://code.google.com/archive/p/draugr/.

[39] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing the
semantic gap in virtual machine introspection. In Proceedings of the IEEE Sympo-
sium on Security and Privacy, pages 297–312, Washington, DC, USA, 2011. IEEE
Computer Society.

[40] B. Dolan-Gavitt, T. Leek, M. Zhivich, J. Giffin, and W. Lee. Virtuoso: Narrowing
the semantic gap in virtual machine introspection. In Security and Privacy (S&P),
2011 IEEE Symposium on, pages 297–312. IEEE, 2011.

[41] A. Fattori, R. Paleari, L. Martignoni, and M. Monga. Dynamic and transparent analy-
sis of commodity production systems. In Proceedings of the IEEE/ACM international
conference on Automated software engineering, pages 417–426. ACM, 2010.

[42] Y. Fu and Z. Lin. Space traveling across VM: Automatically bridging the semantic
gap in virtual machine introspection via online kernel data redirection. In Security
and Privacy (SP), 2012 IEEE Symposium on, pages 586–600. IEEE, 2012.

[43] Y. Fu and Z. Lin. Space traveling across vm: Automatically bridging the semantic
gap in virtual machine introspection via online kernel data redirection. In Security
and Privacy (S&P), 2012 IEEE Symposium on, pages 586–600. IEEE, 2012.

[44] Y. Fu and Z. Lin. Exterior: Using a dual-VM based external shell for guest-OS
introspection, configuration, and recovery. ACM SIGPLAN Notices, 48(7):97–110,
2013.

[45] T. Garfinkel et al. Traps and pitfalls: Practical problems in system call interposition
based security tools. In NDSS, volume 3, pages 163–176, 2003.

129

[46] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: a virtual
machine-based platform for trusted computing. In Proceedings of the 9th ACM Sym-
posium on Operating Systems Principles (SOSP), 2003.

[47] G. M. Garner Jr. Kntlist. 2005, http://www. dfrws. org/2005/challenge/kntlist. shtml,
2005.

[48] A. Gordon, N. Amit, N. Har’El, M. Ben-Yehuda, A. Landau, A. Schuster, and
D. Tsafrir. Eli: Bare-metal performance for i/o virtualization. In Proceedings of
the 17th International Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS), 2012.

[49] Z. Gu, Z. Deng, D. Xu, and X. Jiang. Process implanting: A new active introspection
framework for virtualization. In Reliable Distributed Systems (SRDS), 2011 30th
IEEE Symposium on, pages 147–156. IEEE, 2011.

[50] J. Hizver and T.-c. Chiueh. Real-time deep virtual machine introspection and its
applications. In ACM SIGPLAN Notices, volume 49, pages 3–14. ACM, 2014.

[51] O. S. Hofmann, S. Kim, A. M. Dunn, M. Z. Lee, and E. Witchel. Inktag: secure ap-
plications on an untrusted operating system. In Proceedings of the 18th International
Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), 2013.

[52] H. Inoue, F. Adelstein, M. Donovan, and S. Brueckner. Automatically bridging the
semantic gap using c interpreter. In Proc. of the 2011 Annual Symposium on Infor-
mation Assurance, pages 51–58, 2011.

[53] Intel Corporation. Innovative instructions and software model for isolated
execution. http://privatecore.com/wp-content/uploads/2013/06/HASP-instruction-
presentation-release.pdf, 2013.

[54] T. Jaeger, R. Sailer, and U. Shankar. Prima: policy-reduced integrity measurement ar-
chitecture. In Proceedings of the eleventh ACM symposium on Access control models
and technologies, pages 19–28. ACM, 2006.

[55] Y. Jia, Z. L. Chua, H. Hu, S. Chen, P. Saxena, and Z. Liang. The web/local boundary
is fuzzy: A security study of chrome’s process-based sandboxing. In Proceedings
of the 2016 ACM SIGSAC Conference on Computer and Communications Security,
pages 791–804. ACM, 2016.

[56] X. Jiang, X. Wang, and D. Xu. Stealthy malware detection through vmm-based
”out-of-the-box” semantic view reconstruction. In Proceedings of the 14th ACM
conference on Computer and communications security, CCS ’07, pages 128–138,
New York, NY, USA, 2007. ACM.

[57] C. H. Kim, S. Park, J. Rhee, J.-J. Won, T. Han, and D. Xu. Cafe: A virtualization-
based approach to protecting sensitive cloud application logic confidentiality. In
Proceedings of the 10th ACM Symposium on Information, Computer and Communi-
cations Security, pages 651–656. ACM, 2015.

[58] P. Kocher, D. Genkin, D. Gruss, W. Haas, M. Hamburg, M. Lipp, S. Mangard,
T. Prescher, M. Schwarz, and Y. Yarom. Spectre attacks: Exploiting speculative
execution. arXiv preprint arXiv:1801.01203, 2018.

130

[59] Y. Kwon, A. M. Dunn, M. Z. Lee, O. S. Hofmann, Y. Xu, and E. Witchel. Sego:
Pervasive trusted metadata for efficiently verified untrusted system services. In ACM
SIGPLAN Notices, volume 51, pages 277–290. ACM, 2016.

[60] H. Lee, H. Moon, D. Jang, K. Kim, J. Lee, Y. Paek, and B. B. Kang. Ki-mon: A
hardware-assisted event-triggered monitoring platform for mutable kernel object. In
USENIX Security Symposium, pages 511–526, 2013.

[61] T. K. Lengyel, S. Maresca, B. D. Payne, G. D. Webster, S. Vogl, and A. Kiayias.
Scalability, fidelity and stealth in the drakvuf dynamic malware analysis system. In
Proceedings of the 30th Annual Computer Security Applications Conference, pages
386–395. ACM, 2014.

[62] Y. Li, J. McCune, J. Newsome, A. Perrig, B. Baker, and W. Drewry. Minibox: A two-
way sandbox for x86 native code. In 2014 USENIX Annual Technical Conference
(USENIX ATC 14), 2014.

[63] Z. Lin, J. Rhee, X. Zhang, D. Xu, and X. Jiang. Siggraph: Brute force scanning of
kernel data structure instances using graph-based signatures. In NDSS, 2011.

[64] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, S. Mangard, P. Kocher,
D. Genkin, Y. Yarom, and M. Hamburg. Meltdown. arXiv preprint
arXiv:1801.01207, 2018.

[65] L. Litty, H. A. Lagar-Cavilla, and D. Lie. Hypervisor support for identifying covertly
executing binaries. In USENIX Security Symposium, pages 243–258, 2008.

[66] Y. Liu, Y. Xia, H. Guan, B. Zang, and H. Chen. Concurrent and consistent virtual
machine introspection with hardware transactional memory. In Proceedings of the
20th IEEE International Symposium on High Performance Computer Architecture
(HPCA), pages 416–427. IEEE, 2014.

[67] Y. Liu, T. Zhou, K. Chen, H. Chen, and Y. Xia. Thwarting memory disclosure with ef-
ficient hypervisor-enforced intra-domain isolation. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 1607–1619.
ACM, 2015.

[68] J. M. McCune, Y. Li, N. Qu, Z. Zhou, A. Datta, V. Gligor, and A. Perrig. Trustvisor:
Efficient tcb reduction and attestation. In Security and Privacy (S&P), 2010 IEEE
Symposium on, pages 143–158. IEEE, 2010.

[69] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and H. Isozaki. Flicker: An ex-
ecution infrastructure for TCB minimization. In Proceedings of the ACM European
Conference in Computer Systems (EuroSys), Apr. 2008.

[70] H. Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang. Vigilare: Toward
snoop-based kernel integrity monitor. In Proceedings of the 2012 ACM Conference
on Computer and Communications Security, CCS ’12, pages 28–37, New York, NY,
USA, 2012. ACM.

[71] J. M. N. L. Petroni, T. Fraser and W. A. Arbaugh. Copilot—a coprocessor-based
kernel runtime integrity monitor. In USENIX Security Symposium, pages 179–194,
Aug. 2004.

131

[72] B. D. Payne. Simplifying virtual machine introspection using LibVMI. Technical
Report SAND2012-7818, Sandia National Laboratories, 2012.

[73] B. D. Payne, M. Carbone, M. Sharif, and W. Lee. Lares: An architecture for secure
active monitoring using virtualization. In Security and Privacy (S&P), 2008 IEEE
Symposium on, 2008.

[74] N. L. Petroni, A. Walters, T. Fraser, and W. A. Arbaugh. Fatkit: A framework for the
extraction and analysis of digital forensic data from volatile system memory. Digital
Investigation, 3(4):197–210, 2006.

[75] J. Ren, Y. Qi, Y. Dai, X. Wang, and Y. Shi. Appsec: A safe execution environment
for security sensitive applications. In ACM SIGPLAN Notices, volume 50, pages
187–199. ACM, 2015.

[76] R. Riley, X. Jiang, and D. Xu. Guest-transparent prevention of kernel rootkits with
vmm-based memory shadowing. In Proceedings of the 11th international symposium
on Recent Advances in Intrusion Detection, RAID ’08, pages 1–20, Berlin, Heidel-
berg, 2008. Springer-Verlag.

[77] S. Rostedt. The x86 NMI iret problem. https://lwn.net/Articles/484932/. Accessed:
2015-11-10.

[78] A. Saberi, Y. Fu, and Z. Lin. Hybrid-bridge: Efficiently bridging the semantic gap in
virtual machine introspection via decoupled execution and training memoization. In
Proceedings of the 21st Annual Network and Distributed System Security Symposium
(NDSS), San Diego, CA, 2014.

[79] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of a
TCG-based integrity measurement architecture. In Proceedings of the 13th confer-
ence on USENIX Security Symposium, pages 16–16, 2004.

[80] A. Seshadri, M. Luk, N. Qu, and A. Perrig. Secvisor: a tiny hypervisor to provide
lifetime kernel code integrity for commodity OSes. In Proceedings of the 21st ACM
Symposium on Operating Systems Principles (SOSP), 2007.

[81] M. I. Sharif, W. Lee, W. Cui, and A. Lanzi. Secure in-VM monitoring using hard-
ware virtualization. In Proceedings of the 16th ACM conference on Computer and
communications security, pages 477–487. ACM, 2009.

[82] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa, T. Horie, M. Hi-
rano, K. Kourai, Y. Oyama, E. Kawai, K. Kono, S. Chiba, Y. Shinjo, and K. Kato.
Bitvisor: a thin hypervisor for enforcing I/O device security. In Proceedings of the
5th ACM SIGPLAN/SIGOPS International Conference on Virtual Execution Envi-
ronments (VEE), 2009.

[83] S. Smalley, C. Vance, and W. Salamon. Implementing selinux as a linux security
module. NAI Labs Report, 1(43):139, 2001.

[84] D. Srinivasan, Z. Wang, X. Jiang, and D. Xu. Process out-grafting: an efficient out-
of-VM approach for fine-grained process execution monitoring. In Proceedings of
the 18th ACM conference on Computer and communications security, pages 363–
374. ACM, 2011.

132

[85] A. Srivastava and J. T. Giffin. Efficient monitoring of untrusted kernel-mode execu-
tion. In NDSS. The Internet Society, 2011.

[86] R. Strackx and F. Piessens. Fides: Selectively hardening software application compo-
nents against kernel-level or process-level malware. In Proceedings of the 2012 ACM
conference on Computer and communications security, pages 2–13. ACM, 2012.

[87] S. Suneja, C. Isci, E. de Lara, and V. Bala. Exploring vm introspection: Techniques
and trade-offs. In Proceedings of the 11th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), pages 133–146. ACM, 2015.

[88] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: making trust between applica-
tions and operating systems configurable. In Proceedings of the 3rd USENIX Sym-
posium on Operating Systems Design and Implementation (OSDI), 2006.

[89] A. Tang, S. Sethumadhavan, and S. Stolfo. Heisenbyte: Thwarting memory dis-
closure attacks using destructive code reads. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 256–267.
ACM, 2015.

[90] Trusted Computing Group. TPM main specification. Main Specification Version 1.2
rev. 85, Feb. 2005.

[91] C.-C. Tu, M. Ferdman, C.-t. Lee, and T.-c. Chiueh. A comprehensive implementa-
tion and evaluation of direct interrupt delivery. In Proceedings of the 11th ACM SIG-
PLAN/SIGOPS International Conference on Virtual Execution Environments (VEE),
2015.

[92] G. Vasiliadis, E. Athanasopoulos, M. Polychronakis, and S. Ioannidis. Pixelvault:
Using gpus for securing cryptographic operations. In Proceedings of the 2014 ACM
SIGSAC Conference on Computer and Communications Security, pages 1131–1142.
ACM, 2014.

[93] A. Vasudevan, S. Chaki, L. Jia, J. McCune, J. Newsome, and A. Datta. Design,
implementation and verification of an extensible and modular hypervisor framework.
In Security and Privacy (S&P), 2014 IEEE Symposium on, 2014.

[94] A. Vasudevan, B. Parno, N. Qu, V. D. Gligor, and A. Perrig. Lockdown: A safe and
practical environment for security applications. CMU-CyLab-09-011, 14, 2009.

[95] A. Walters. The volatility framework: Volatile memory artifact extraction utility
framework, 2007.

[96] Z. Wang, X. Jiang, W. Cui, and P. Ning. Countering kernel rootkits with lightweight
hook protection. In Proceedings of the 16th ACM Conference on Computer and
Communications Security, CCS ’09, pages 545–554, New York, NY, USA, 2009.
ACM.

[97] J. Werner, G. Baltas, R. Dallara, N. Otterness, K. Z. Snow, F. Monrose, and M. Poly-
chronakis. No-execute-after-read: Preventing code disclosure in commodity soft-
ware. In Proceedings of the 11th ACM on Asia Conference on Computer and Com-
munications Security, pages 35–46. ACM, 2016.

133

[98] Z. W. Y. Q. Y. Z. Xiaoguang Wang, Yue Chen. Secpod: a framework for
virtualization-based security systems. In 2015 USENIX Annual Technical Confer-
ence (USENIX ATC 15), pages 347–360, Santa Clara, CA, July 2015. USENIX As-
sociation.

[99] X. Xiong, D. Tian, P. Liu, et al. Practical protection of kernel integrity for commodity
os from untrusted extensions. In NDSS, volume 11, 2011.

[100] Y. Xu, W. Cui, and M. Peinado. Controlled-channel attacks: Deterministic side
channels for untrusted operating systems. In Security and Privacy (S&P), 2015 IEEE
Symposium on, pages 640–656. IEEE, 2015.

[101] J. Yang and K. G. Shin. Using hypervisor to provide data secrecy for user applications
on a per-page basis. In Proceedings of the 4th ACM SIGPLAN/SIGOPS International
Conference on Virtual Execution Environments (VEE), 2008.

[102] B. Yee, D. Sehr, G. Dardyk, J. B. Chen, R. Muth, T. Ormandy, S. Okasaka, N. Narula,
and N. Fullagar. Native client: A sandbox for portable, untrusted x86 native code. In
Security and Privacy, 2009 30th IEEE Symposium on, pages 79–93. IEEE, 2009.

[103] M. Yu, V. D. Gligor, and Z. Zhou. Trusted display on untrusted commodity platforms.
In Proceedings of the 22nd ACM SIGSAC Conference on Computer and Communi-
cations Security, pages 989–1003. ACM, 2015.

[104] Z. Zhou, V. D. Gligor, J. Newsome, and J. M. McCune. Building verifiable trusted
path on commodity x86 computers. In Security and Privacy (S&P), 2012 IEEE
Symposium on, S&P, May 2012.

[105] Z. Zhou, M. Yu, and V. D. Gligor. Dancing with giants: Wimpy kernels for on-
demand isolated i/o. In Security and Privacy (S&P), 2014 IEEE Symposium on,
pages 308–323. IEEE, 2014.

134

	Secure enforcement of isolation policy on multicore platforms with virtualization techniques
	Citation

	1 Introduction
	1.1 Overview
	1.1.1 Adversaries with Kernel Privilege
	1.1.2 Virtualization-based Systems
	1.1.3 Issues and Research Objectives

	1.2 Threat Model
	1.3 Security Policy Enforcement
	1.4 Enforcing Isolation Policy on Multicore Platforms
	1.5 Consistent Virtual Machine Introspection
	1.6 Background
	1.6.1 Address Translation in Virtualization
	1.6.2 Memory Access in SMP Systems

	1.7 Organization

	2 Related Work
	2.1 Trusted Execution Environment
	2.2 Kernel Integrity
	2.3 Mapping Redirection
	2.4 Event Trap
	2.5 Auxiliary Uses
	2.6 Virtual Machine Introspection
	2.6.1 In-VM Introspection
	2.6.2 Out-of-VM Introspection

	2.7 Isolation With Other Techniques

	3 An Analysis of Effectiveness of the Existing Virtualization-based Schemes
	3.1 A Model of the Enforcement Systems
	3.1.1 Conflict Between Tamper-Proof and Complete Mediation
	3.1.2 The Inference Gap
	3.1.3 The Approximation Function
	3.1.4 Example Use of Semantics Beyond the Trust Boundary

	3.2 Policy Formulation
	3.2.1 Process Subjects
	3.2.2 Memory Ranges
	3.2.3 Issues in SP3
	3.2.4 Privilege Level Based Subjects

	3.3 Utilization by Low-Level Mechanism
	3.3.1 A General Approach
	3.3.2 Division into Binary Policy Sets
	3.3.3 Detecting Subject Switches
	3.3.4 Event Synthesis

	3.4 The Impact of Concurrency
	3.4.1 Race Conditions
	3.4.2 Permission Revocation
	3.4.3 TLB-Related Attacks
	3.4.4 Implications

	3.5 Discussions
	3.5.1 Memory Monitors
	3.5.2 Runtime Updates and Policy Coherence
	3.5.3 Functionality
	3.5.4 Forced Serialization of Concurrent Accesses

	3.6 Possible Solutions
	3.6.1 Expanding the Trust Boundary
	3.6.2 Self-Supplied Semantics
	3.6.3 Hardware Assistance
	3.6.4 Restricting Untrusted Software

	4 Enforcing Isolation with Fully Isolated Micro-Computing Environment (FIMCE)
	4.1 FIMCE Architecture
	4.2 The Lifecycle of FIMCE
	4.2.1 FIMCE Bootup
	4.2.2 Runtime
	4.2.3 Termination
	4.2.4 Comparisons to Memory Isolation Primitive

	4.3 FIMCE and SGX
	4.3.1 Comparisons
	4.3.2 Integration with SGX

	4.4 Modularized Software Infrastructure
	4.4.1 Pillars
	4.4.2 Pillar Verification and Linking

	4.5 Applications of FIMCE
	4.5.1 Malleability
	4.5.2 Runtime Trust Anchor

	4.6 Evaluations
	4.6.1 Security Analysis
	4.6.2 Implementation
	4.6.3 Benchmarks
	4.6.4 Component Costs
	4.6.5 Application Evaluation

	4.7 Discussion and Future Directions

	5 Consistent Virtual Machine Introspection
	5.1 The Inference Gap in Software-based Guest Access
	5.2 Overview
	5.2.1 Basic Idea
	5.2.2 Challenges
	5.2.3 System Overview

	5.3 The Design Details
	5.3.1 ImEE Internals
	5.3.2 ImEE Agent
	5.3.3 Defeating Attacks via the Blind Spot
	5.3.4 Operations of ImEE

	5.4 Implementation
	5.4.1 ImEE on KVM
	5.4.2 Specialized Agent
	5.4.3 Usability

	5.5 Evaluation
	5.5.1 ImEE Overhead
	5.5.2 Guest Access Speed
	5.5.3 Introspection Performance Comparison
	5.5.4 Handling Multiple VMs

	5.6 Discussions
	5.6.1 CPU State
	5.6.2 Integration with Existing VMI Tools
	5.6.3 ImEE vs. In-VM Introspection
	5.6.4 Paging Modes Compatibility
	5.6.5 Architecture Compatibility

	6 Conclusion

