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Advanced Malware Detection for Android Platform
Ke Xu

Abstract

In the first quarter of 2018, 75.66% of smartphones sales were devices running An-

droid. Due to its popularity, cyber-criminals have increasingly targeted this ecosys-

tem. Malware running on Android severely violates end users security and privacy,

allowing many attacks such as defeating two factor authentication of mobile bank-

ing applications, capturing real-time voice calls and leaking sensitive information.

In this dissertation, I describe the pieces of work that I have done to effectively de-

tect malware on Android platform, i.e., ICC-based malware detection system (IC-

CDetector), multi-layer malware detection system (DeepRefiner), and self-evolving

and scalable malware detection system (DroidEvolver) for Android platform.

Most existing malware detection methods are designed based on the resources

required by malware. These methods capture the interactions between applications

and Android system, but ignore the communications among components within or

cross application boundaries. To address this challenge, we systemically analyze

ICC patterns of benign applications and malware, and propose a new malware detec-

tion system, ICCDetector, which detects malware based on not required resources,

but ICC patterns. Our experiments show that ICCDetector achieves an accuracy of

97.4%, roughly 10% higher than the baseline, with a lower false positive rate of

0.67%. In addition, the detected malware is further classified into five new malware

categories according to their ICC characteristics, which clarifies the relationship

between malware behaviors and ICC patterns.

As the complexities of mobile malicious behaviors vary significantly across mal-

ware, it is difficult to perform effective and efficient detection applying single clas-

sifier. In addition, both Android system and malware rapidly evolve over years. As

a consequence, it is also challenging to practically detect malware relying on la-



borious human feature engineering and complicated feature extraction process. In

this dissertation, we propose DeepRefiner, a novel detection system which identifies

malware both effectively and efficiently. DeepRefiner includes multiple detection

layers to distinguish malware complexities in the detection process, and performs

refined detection for stealthy and sophisticated malware according to comprehen-

sive bytecode semantics. We evaluate the detection performance of DeepRefiner

with 62,915 malware and 47,525 benign applications, showing that DeepRefiner

effectively detects malware with an accuracy of 97.74% with a false positive rate

of 2.54%. We compare DeepRefiner with a state-of-the-art single classifier-based

detection system, StormDroid, and ten widely used signature-based anti-virus scan-

ners. The experimental results show that DeepRefiner significantly outperforms

both StormDroid and anti-virus scanners.

Given the frequent changes in the Android framework and the continuous evo-

lution of malware, it is challenging to detect malware over time in a both effective

and scalable way. To address this challenge, we propose DroidEvolver, an An-

droid malware detection system that can automatically and continually update itself

during malware detection without any human involvement. While most existing

malware detection systems can be updated by retraining on new applications with

true labels, DroidEvolver requires neither retraining nor true labels to update itself,

mainly due to the insight that DroidEvolver makes necessary and lightweight up-

date using online learning techniques with evolving feature set and pseudo labels.

We evaluate the detection accuracy of DroidEvolver on a dataset of 33,294 benign

applications and 34,722 malicious applications developed over a period of six years.

Using applications dated in 2011 as the initial training set, DroidEvolver achieves

high detection accuracy (95.28%), which only declines by 1.68% on average per

year over the next five years. Compared with the state-of-the-art over-time malware

detection system MAMADROID, the accuracy and scalability of DroidEvolver is

consistenly and significantly higher than the baseline.
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Chapter 1

Introduction

1.1 Overview of Android Malware Detection

As one of the most popular platforms for mobile devices, Android provides a wealth

of functionalities to its users. Unfortunately, mobile devices running Android are

increasingly targeted by attackers and infected with malware. In contrast to other

platforms, Android allows for installing applications from unverified sources, such

as third-party markets, which makes bundling and distributing malware easy for

attackers. Malware running on Android severely violates end users security and pri-

vacy, allowing many attacks such as defeating two factor authentication of mobile

banking applications, capturing real-time voice calls and leaking sensitive informa-

tion. More importantly, malware evolves and distributes especially rapidly. Mobile

malware attacks increased more than three times between 2015 and 2016 [64]. Fur-

thermore, new techniques proposed in the academia have been quickly adopted by

malware authors [86]. As a consequence, malware detection methods are needed

for stopping the proliferation of malware in Android markets and mobile devices.

Detecting malware on mobile devices presents additional challenges compared

to desktop/laptop computers. The limited battery life of mobile devices makes it

infeasible to use traditional approaches requiring constant scanning and compli-

cated computation. Therefore, most mobile malware detection methods rely on

1



pre-defined features and build detection models to detect known malware or zero-

day malware from unknown applications. This strategy, however, has several draw-

backs.

First of all, most existing detection methods (e.g., Kirin [40] and Droid-

Mat [117]) are designed to detect malware according to required resources, such

as permission, API calls, and system calls. These methods, however, ignore the

communications among components [7] within or cross application boundaries. As

a consequence, these methods perform poorly when identifying many typical mal-

ware which requires few or no suspicious resources.

In addition, most malware detection methods rely on single classifiers to de-

tect as many malware as possible in one round. Although these methods achieve

acceptable detection performance, they require complicated and time-consuming

analysis of all applications without distinguishing application complexities in the

detection process. For example, even for applications that can easily classified,

DroidMiner [123] builds behavior graphs through relatively expensive analysis and

further mines modalities from call graphs. Furthermore, single-classifier based de-

tection systems may not provide reliable prediction results for certain highly sophis-

ticated applications at classification time [104].

Furthermore, the effectiveness and practicality of most learning-based malware

detection methods are constrained by laborious human feature engineering and com-

plicated feature extraction which are conducted in static analysis and/or dynamic

analysis such as those performed in Soot [107], FlowDroid [11], Epicc [82] and

TaintDroid [39]. As Android framework evolves over years, so do benign appli-

cations and malware. As a result, it becomes increasingly difficult for domain ex-

perts to identify the features for malware detection and assimilate the fast evolving

knowledge about Android system and malware detection. If the human engineered

features cannot catch up with the evolution of malware, malware detection methods

may be evaded.

Moreover, although bytecode semantics are useful for detecting stealthy and ad-

2



vanced malware, it is difficult to comprehensively capture bytecode semantics by

only looking at the presence or absence of certain API calls or permissions without

considering bytecode contexts as in most existing works (e.g., Drebin [10], Droid-

Mat [117] and StormDroid [26]). While some recent works (e.g., DroidMiner [123]

and DroidSIFT [127]) construct API call graphs to capture bytecode semantics at

application level, they fail to capture bytecode semantics at method level.

Last but not least, most learning-based detection systems that are built through

training on older malware often make poor and ambiguous decisions when faced

with modern malware (commonly known as concept drift). As a result, most ex-

isting detection systems (e.g., DroidAPIMiner [2], Drebin [10], and ICCDetec-

tor [120]) require periodically retrain the model. However, if the model is retrained

too frequently, there will be little novelty in the information obtained from new ap-

plications. On the other hand, the retraining process requires manual labeling of all

the processed applications, which is constrained by available resources.

In this dissertation, we systematically investigate malicious behaviors and pat-

terns from different perspectives and propose effective detection systems with the

assistance of state-of-the-art technologies. We first target on Inter-Component Com-

munication (ICC) patterns and design ICCDetector, which detects malware based

on not required resources but ICC patterns. Next, we propose DeepRefiner, a novel

system to detect malware both efficiently and effectively. DeepRefiner applies deep

neural networks to automatically learn detection features from applications and re-

moves complex feature extraction from the detection process. Last but not least,

we propose DroidEvolver to detect malware over time in a both effective and scal-

able way. With the ability of self-evolving, DroidEvolver automatically determine

when to update and how to update itself without expert’s instructions and without

requiring true labels of new applications. The details of these works are presented

as follows.

3



1.2 ICC-based Malware Detection System

In this dissertation, we first investigate in design a detection system to detect mal-

ware according to their ICC patterns. Instead of being independent to each other,

Android applications may communicate through the Inter-Component Communica-

tion (ICC) mechanism provided by Android, which is designed to reduce the devel-

opers’ burden and promote functionality reuse [7]. Although ICC facilitates inter-

application collaboration, it can be exploited by malware to obfuscate malicious

behaviors and bypass existing detection methods.

As a pioneer to address such challenge, we systemically analyze ICC patterns

of benign applications and malware, and propose ICCDetector to detect malware

according to their ICC patterns. The ICC patterns of an application represent how it

use the ICC mechanism, and can be extracted from applications’ APK files. ICCDe-

tector is trained with the ICC patterns extracted from known benign applications and

malware, and relies on single classifier to identify malware from unknown applica-

tions. The experimental results demonstrate the effectiveness of ICCDetector with

an accuracy of 97.4% and a false positive rate of 0.67%.

1.3 Multi-layer Malware Detection System

As malicious behaviors vary significantly across mobile malware, it is challenging

to detect malware both efficiently and effectively. Also due to the continuous evo-

lution of malicious behaviors, it is difficult to extract features by laborious human

feature engineering and keep up with the speed of malware evolution. To solve

these challenges, we propose DeepRefiner to identify malware both efficiently and

effectively. The novel technique enabling effectiveness is the semantic-based deep

learning. We use Long Short Term Memory on the semantic structure of Android

bytecode, avoiding missing the details of method-level bytecode semantics. To

achieve efficiency, we apply Multilayer Perceptron on the xml files based on the

4



finding that most malware can be efficiently identified using information only from

xml files.

We evaluate the detection performance of DeepRefiner with 62,915 malicious

applications and 47,525 benign applications, showing that DeepRefiner effectively

detects malware with an accuracy of 97.74% and a false positive rate of 2.54%.

We compare DeepRefiner with a state-of-the-art single classifier-based detection

system, StormDroid, and ten widely used signature-based anti-virus scanners. The

experimental results show that DeepRefiner significantly outperforms StormDroid

and anti-virus scanners. In addition, we evaluate the robustness of DeepRefiner

against typical obfuscation techniques and adversarial samples. The experimental

results demonstrate that DeepRefiner is robust in detecting obfuscated malicious

applications.

1.4 Self-evolving and Scalable Malware Detection

System

Given the frequent changes in the Android framework and the continuous evolu-

tion of malware, it becomes increasingly difficult to build detection systems that are

trained with older applications (both benign and malicious) and make outstanding

performance when faced with modern applications after operating for long peri-

ods of time. Rapid-aging detection system is a huge concern in both industry and

academia. As in research area, most existing detection systems need to periodically

retrain their detection models with labeled applications. However, the retraining

process is time-consuming and requires manual labeling of all the processed appli-

cations, which is constrained by available resources.

While facing these challenges, we propose a novel malware detection system for

Android that relies on the ability of self-evolving and real-time update to achieve

both effective and scalable detection over time. The proposed system, DroidE-
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volver, automatically and efficiently updates itself to adapt to new changes discov-

ered from both Android framework and new applications without requiring true

labels of applications.

We evaluate the detection performance of DroidEvolver with 34,722 benign ap-

plications and 33,294 malicious applications, which have fairly balanced ratio be-

tween benign applications and malicious applications from 2011 to 2016. We first

evaluate how well DroidEvolver performs by training and testing with applications

developed in same time period. As shown in the result, DroidEvolver’s accuracy

varies from 95.19% to 96.18% in different time periods. We then evaluate the over

time detection performance of DroidEvolver. When DroidEvolver is evaluated on

testing sets that are newer than training sets by one to five years, the average accu-

racy of DroidEvolver is 90.52%, 85.95%, 84.00%, 85.2% and 86.87%, respectively.

In addition, DroidEvolver declines by 1.68% in terms of detection accuracy per

year on average over five years. Finally, we evaluate the robustness of DroidE-

volver against typical obfuscation techniques, showing that DroidEvolver is robust

in detecting obfuscated malware.

1.5 Organization

The reminder of this dissertation is organized as follows: Chapter 2 is a litera-

ture review which examines closely related research. Chapter 3 presents details of

ICCDetector as a ICC-based malware detection syste. Chapter 4 describes Deep-

Refiner as a multi-layer malware detection system applying deep neural network.

Chapter 5 describes DroidEvolver as an effective and scalable detection system to

identify malware both effectively and scalably. Finally, Chapter 6 summarizes the

contributions of this dissertation and points the future direction.
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Chapter 2

Literature Review

In this chapter, we introduce related studies on detecting malware for Android plat-

form. We also present studies focusing on Android platform security defense in

Section 2.1 and application analysis techniques focusing on generating security

properties of Android applications in Section 2.2.

2.1 Android Platform Security Defense

The Android platform provides several security measures that harden the attacks

targeting Android, most notably the Android permission system. To perform cer-

tain tasks on the device, each application has to explicitly request permission from

user during the installation. However, many users tend to blindly grant permis-

sions to unknown applications. As a consequence, malware may conduct multiple

attacks (e.g., confused deputy attack and collusion attack) by manipulating other

applications and the Android system as observed by [34] [40] [43] [101]. Existing

studies have developed several security extensions to defend against specific types

of attacks.

Quire [36] designs a provenance system to prevent confused deputy attacks. As

a further extension of Quire, Bugiel et al. [18] propose a security framework with

pre-defined security policies to prevent both confused deputy attacks and collusion
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attacks. Saint [84], Porscha [83], and CRePE [28] achieve application isolation and

protection with the assistance of context-related policies and policy-oriented access

control mechanism. AppFence [59] retrofits the Android OS to impose privacy

controls on installed applications. SEAndroid [102] achieves flexible manadatory

access control to Android platform by enabling the effective use of SELinux [103]

and by developing a set of middleware extensions to the Android permission system.

Aurasium [121] protects the Android platform by repackaging applications to hook

system APIs and enforcing practical policies.

Checking at install time, Kirin [41] performs lightweight certification of appli-

cations by checking whether the permissions required by applications break certain

pre-defined security rules. Apex [81] allows users to selectively grant permissions

to applications as well as impose constraints on the usage of resources using a policy

enforcement framework.

Virtualization approaches have been used to enhance the security of Android

platform. AirBag [116] boosts defense capability against malware infection using

a lightweight OS-level virtualization approach. Paranoid Android [91] design a

scalable security architecture that is able to apply multiple security checks simul-

taneously in virtual environments. L4Android [70] encapsulates the original OS in

a virtual machine and ensures the isolation between the virtual machine and secure

applications. Cells [8] enables multiple virtual smartphones to run simultaneously

on the same physical device in a securely isolated manner.

2.2 Android Application Security Analysis

In this section, we present related studies that focus on analyzing the security mech-

anism of Android applications. Previous works in this direction have used both

static analysis and dynamic analysis. With the former, the application’s code is de-

compiled in order to extract features without actually running the application. The

latter involves real-time execution of the applications, typically in an emulator or
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protected environment.

2.2.1 Static Analysis

Felt et al. [43] analyze API calls to identify over-prvileged applications. CHEX [75]

automatically identifies component hijacking vulnerabilities from application by an-

alyzing data flows. FlowDroid [11] provides highly precise static taint analysis for

applications. It proposes a precise model of Android’s lifecycle which allows the

analysis to properly handle callbacks invoked by the Android framework. Droid-

Checker [24] uses inter-procedural Control Flow Graph (CFG) searching and static

taint checking to detect exploitable data paths in applications. Epicc [82] and Ic-

cTA [72] analyze properties of messages sent between components of applications

to detect privacy leakages. Klieber et al. [68] propose a taint analyzer by com-

bining FlowDroid and Epicc to analyze both inter-component and intra-component

dataflow. ScanDal [66] detects privacy leakages in applications.

Some static analysis works focus on detecting hidden activities by analyzing

triggers and behaviors of applications. AppIntent [124] identifies user-intended

sensitive data transmissions by analyzing a sequence of GUI manipulations cor-

responding to the data transmission. TriggerScope [45] introduces trigger analysis

to detect logic bombs in Android applications. Similarly, HSOMINER [86] en-

ables a large scale discovery of unknown hidden sensitive operations using machine

learning techniques. Both TriggerScope and HSOMINER analyze triggers and con-

ditions of potential harmful activities.

2.2.2 Dynamic Analysis

DroidScope [122] is a virtualization-based taint analysis system. It includes several

modules to perform dynamic taint analysis at different levels. TaintDroid [39] mon-

itors how third-party applications access or manipulate users’ personal data, aiming

to detect sensitive data leakages. Unfortunately, many data-flow analysis systems,
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such as DroidScope and TaintDroid, are designed for Dalvik environment. This

makes data-flow analysis of new applications and malware infeasible since Android

has replaced Dalvik environment with a new design known as Android Run Time

(ART) in Android 5.0. To better analyzing new applications and malware, Tain-

tArt [105] is proposed to dynamically track information flows on the Android OS

with ahead-of-time compilation strategy. Specially, TaintART is a multi-level in-

formation flow tracking system for the new Android system implementing Android

Run Time (ART).

There are several dynamic analysis systems aiming at understanding malicious

behaviors. DroidChameleon [94] demonstrates the vulnerabilities of existing anti-

malware tools against transformation attacks. Although transformation attacks

are simple in most cases, anti-malware tools/systems make little effort to provide

transformation-resilient detection. CopperDroid [106] provides an automatic VMI-

based dynamic analysis system to reconstruct the behaviors of Android malware.

AppsPlayground [93] integrates multiple components comprising different detec-

tion and automatic exploration techniques to provide dynamic security analysis.

2.2.3 Hybrid Analysis

Recently, more and more studies combine static analysis and dynamic analysis to-

gether as hybrid analysis to analyze Android applications. IntelliDroid [115] uses

static analysis to instruct dynamic analysis in order to trigger specific behaviors

during execution. Similar as IntelliDroid, DyTa [47] consists of a static phase and a

dynamic phase. The static phase detects potential defects with a static checker; the

dynamic phase generates test inputs through dynamic symbolic execution to confirm

these potent defects. AppAudit [118] relies on the synergy of static and dynamic

analysis to provide effective real-time application auditing, which helps to reveal

privacy leakages. In summary, hybrid analysis reduces the number of false posi-

tives compared to purely static analysis, and performs more efficiently compared to
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dynamic analysis.

2.3 Android Malware Detection

Over the past few years, Android malware detection has attracted extensive atten-

tions in both academia and industry.

A number of techniques use signatures for Android malware detection. Net-

workProfiler [33] generates network profiles for applications and extracts finger-

prints based on such traces, while Canfora et al. [21] obtain resource-based metrics

(i.e., CPU, memory, storage, and network) to distinguish malware activity from be-

nign one. It is challenging for these signature-based methods to effectively detect

zero-day malware or newly designed attacks.

Most recent malware detection systems are learning-based systems, which rely

on single classifier trained with human engineered features. A list of examples is

given below. MAMADROID [76] builds a behavioral from the sequence of ab-

stracted API calls performed by an application, and uses it to extract features and

perform classification. DroidMiner [123] extracts sensitive API call graphs as de-

tection features, while DroidAPIMiner [2] extracts relevant features at API level,

and builds a detection model using the generated feature set. Gascon et al. [46]

generate function call graphs for Android applications, and build a detection model

relying on embedded function call graphs. DroidMat [117], StormDroid [26] and

Drebin [10] use not only sensitive API calls but also other information extracted

from AndroidManifest.xml file as detection features and train single classifiers af-

terwards. ICCDetector [120] builds a malware classifier according to ICC-related

information included in applications. DRACO [13] and MARVIN [74] utilize static

analysis and dynamic analysis to extract features from pre-determined feature cat-

egories, and train a detection model afterwards. MASK [23] statically analyzes at-

tributes (including permssions, intent filters,and presence of native code) extracted

from applications, and trains a detection model for detecting malware. Finally,
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Crowdroid [20] relies on crowdsourcing to get system calls from real users, and

creates an anomaly model according to system call vector clusters.

A small portion of existing works integrate several classifiers to detect malware

in different manners. Smutz and Stavrou [104] apply an ensemble classifier consist-

ing of many basic classifiers. They perform a diversity analysis to detect unreliable

prediction results, and retrain their classifiers with unreliable observations so as to

improve classifier accuracy. Specially, the basic classifiers are independent to each

other in this work.

DroidSIFT [127] extracts weighted contextual API dependency graph and con-

structs feature sets accordingly. With graph-based feature vectors, DroidSIFT builds

two classifiers, while the first classifier discovers zero-day Android malware, and

the second classifier uncovers the corresponding family of detected malware.

RiskRanker [53] includes two risk analysis modules, while the first-order analy-

sis module sifts through untrusted applications and exposes risky applications, and

the second-order analysis module identifies applications with encrypted native code

and dynamic code loading. .

The increasing complexity of Android malware calls for new defensive tech-

niques that are harder to evade. To this end, some efforts are made to detect mobile

malware using deep neural networks. For example, DroidDetector [126] and Droid-

Sec [125] build Deep Belief Networks to detect Android malware relying on 192

human engineered features, including required permissions, sensitive API calls, and

some dynamic behaviors obtained from DroidBox [35]. Deep4maldroid [60] ex-

tracts Linux kernel system calls and constructs the weighted directed graphs which

are then used to train deep neural networks. Although these systems apply deep

neural networks, they still rely on features pre-determined by domain experts, such

as required permissions and sensitive API calls.

Towards automatically engineering features for malware detection, Feature-

Smith [131] mines the scientific literatures written in natural language to generate

features that are semantically related to malicious behaviors.
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Chapter 3

ICCDetector: ICC-Based Malware

Detection on Android

3.1 Introduction

Many existing malware detection methods are designed to detect malwares based

on required resources, such as permissions, suspicious API calls and system calls.

For example, Kirin [41] detects malwares by matching their required permissions

against pre-defined security rules. DroidMiner [123] and DroidAPIMiner [2] build

malware detection models based on API-related features. Most of these methods

treat the detected applications as standalone entities in Android platforms.

However, in order to bypass existing detection methods, malwares move to

another direction by conducting malicious operations without requiring suspicious

resources. As observed by [34,40,43,101], malwares may conduct multiple attacks

(e.g., Confused Deputy attacks and Collusion attacks) by manipulating other apps.

In fact, instead of being independent to each other, Android applications may

communicate through the Inter-Component Communication (ICC) mechanism pro-

vided by Android, which is designed to reduce the developers’ burden and promote

functionality reuse [27]. Although ICC facilitates inter-application collaboration,

it can be exploited by malwares to obfuscate malicious behaviors and bypass
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existing detection methods. For example, consider a malware (com.jx.theme)

which aims to install APK files during runtime. Instead of requiring the cor-

responding permission (android.permission.INSTALL PACKAGE),

which should not be used by third-party apps, and thus can be detected by

most existing detection methods, this malware generates an Explicit Intent,

sends it to Package: com.android.packageinstaller, Class:

com.android.packageinstaller.PackageInstallerActivity,

and manipulates the latter to install some APK files from SD cards. It is difficult

to detect such malwares from their required resources without inspecting the ICC

information involved.

As a pioneer to address such challenge, we systemically analyze ICC patterns

of benign apps and malwares, and propose ICCDetector, an effective and accu-

rate malware detection method, which detects malwares based on not their required

resources, but their ICC patterns. The ICC patterns of an app represent how it

use the ICC mechanism, and can be extracted from the app’s APK file. ICCDe-

tector is trained with the ICC patterns extracted from some benign apps and those

from certain malwares before it outputs a detection model. The detection model

is used to detect a malware based on its ICC patterns. By looking into the ICC

patterns, ICCDetector not only examines the communications between applications

and Android system, but also the interactions between applications. Because of this,

ICCDetector is especially useful for detecting those “advanced malwares” which in-

validate most existing malware detection methods by exploiting the ICC mechanism

instead of requiring suspicious resources.

We collect 5,264 recent malwares and 12,026 benign apps to evaluate the effec-

tiveness and accuracy of ICCDetector. For comparison, we choose a highly cited

malware detection method [90] as a benchmark, which detects malwares according

to their required permissions. With the same dataset, the evaluation result indi-

cates that ICCDetector achieves an accuracy of 97.4%, roughly 10% higher than

the benchmark. Furthermore, ICCDetector produces a false positive rate of 0.67%,
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which is only about one half of the benchmark. After manually analyzing false posi-

tives, we discover 43 new malwares from the benign dataset, and reduce the number

false positives to seven.

For detected malwares, ICCDetector further classifies them into five new mal-

ware categories according to their ICC patterns. The classification clarifies the re-

lationship between malware behaviors and ICC characteristics. In addition, we test

the runtime performance of ICCDetector, identify the performance bottleneck and

specify the directions for performance improvement.

The rest of the work is organized as follows. Section 3.2 describes ICC patterns

of apps. Section 3.3 details the system design of ICCDetector. Section 3.4 evalu-

ates ICCDetector in different aspects, including a comparison with a benchmark, a

analysis of detection performance, a classification of malwares, and runtime mea-

surement. Section 3.5 discusses some recent work on Android malware detection

and the limitations of ICCDetector. Section 3.6 summarizes the related work, and

Section 3.7 concludes the work.

3.2 ICC Patterns

In this section, we identify the ICC patterns of benign apps and malicious apps,

provide systemic analysis of ICC patterns, and clarify how ICC patterns can be

used to distinguish between benign apps and malicious apps.

3.2.1 App Components

An Android application consists of four types of components, Activity, Service,

Broadcast Receiver, and Content Provider. Activity provides a screen with which

users can interact in order to do something. All visible portions of applications

are Activities. Service can perform long-running operations in the background and

does not provide a user interface. Content Provider manages access to a structured

set of data. Broadcast Receiver receives information sent from multiple applica-
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tions. An application must declare the names of its Activity, Service and Content

Provider components in its manifest file. However, application developers are al-

lowed to register Broadcast Receiver at run time to listen for specific broadcasts

during a specified period of time. That is, applications can declare Broadcast

Receiver both in manifest file and in java code.

Number of Components. In reality, malwares tend to register more Broadcast Re-

ceivers and less Activities, Services and Content Providers than benign apps do. A

large number of Broadcast Receivers enables malwares to monitor system-events,

such as network connectivity changes and battery changes. Although some mal-

wares provide legitimate functionalities to end users, these functionalities are lim-

ited, which means the number of Activities, Services and Content Providers de-

clared by malwares are relatively small. For example, without declaring any Activ-

ity or Content Provider, a malware (com.android.update) registers only one

Service (com.android.update.Updater) to stealthily download and install

malicious APK files to its fetched devices.

Name of Components. Since code reuse is common in the development of

malwares, the malwares belonging to the same malware family tend to conduct

similar malicious behaviors and reuse some components. For example, four

malwares with different package names (BatteryUpgrade-Tap-To-Start,

Battery Upgrade--Tap to start, BatteryUpgrade-Tap-ToStar-

t-2, com.extend.battery) share some malicious components to

conduct similar attacks, such as com.extend.battery.Splash,

com.extend.battery.BatteryService and com.extend.battery-

BootReceiver.

Interestingly, we discover that malwares are more likely to register some

components with similar confusing names so as to fool end users around or

evade from detections. For example, com.gp.geekadoo is a malware which

pretends to be a card game application in markets, and is capable of gain-

ing super user privileges, rewriting system files, and connecting to a com-
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mand and control server. Specially, com.gp.geekadoo includes several

components with confusing names, such as com.google.update.Dialog,

com.google.update.UpdateService, and com.google.update.R-

eceiver. Without expert knowledge, end users might be confused by these

names, and treat this malware as an updated version of Android or a patch of

Google.

Moreover, in the Android system, when multiple Activities match a single Im-

plicit Intent, the user of the system will be prompted to choose which component

should receive and respond to the Intent [7]. With confusing names, the user may

be tricked to choose malicious applications.

3.2.2 Intents

In the ICC mechanism, Intents are used to link components, and can be sent between

Activities, Services, and Broadcast Receivers. The major functionality of Intents

is to start Activities, start and stop Services, and deliver broadcast information to

Broadcast Receivers.

Explicit Intents. Explicit Intents specify the components to start with by including

targeted package names and class names. Typically, Explicit Intents are used to con-

nect components within the same application and designed for internal application

communications [7].

However, malwares can abuse Explicit Intents by sending them to other appli-

cations (i.e., external components). For example, a benign application makes its

components exposed in order to receive system-generated Intents. In this case, a

malware can directly send Explicit Intents to these exposed components. Without

strict action check and appropriate permission protections, these benign components

will be directly launched and manipulated by malwares.

In order to avoid being detected by traditional malware detection approaches

which can capture suspicious permission usages and API calls, malwares find an ef-
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fective solution by including or dynamically installing additional APK files. These

newly installed APK files are responsible to conduct actual malicious actions. In

this case, the original malwares will not be detected since their malicious behaviors

cannot be captured by monitoring permissions and API calls. However, these mal-

wares may communicate with the dynamically installed malwares using Explicit

Intents, which can be inferred from their ICC patterns.

In addition, malwares tend to send more Explicit Intents to An-

droid system than benign applications do. In our experiments, we dis-

cover that many malwares send Explicit Intents to an Android compo-

nent, Package: com.android.packageinstaller, Class:

com.android.packageinstaller.PackageInstallerActivity,

which is responsible to install APK files saved on SD cards. However, none of the

12,026 popular benign applications which we collected from GooglePlay create

such Explicit Intents.

Implicit Intents. Unlike Explicit Intents, Implicit Intents do not name any spe-

cific components, but instead declare general actions to perform. When an appli-

cation creates an Implicit Intent, the Android system finds the appropriate com-

ponent to start by comparing the contents (i.e., action, category, and data) of the

Intent to the declared Intent Filters. If the Intent matches an Intent Filter, the

system starts that component and delivers it the Implicit Intent object. There is

a variety of system Intent actions and categories defined in the Intent class,

and applications can define their own actions using their package names as pre-

fixes. This results in two types of actions in Android: system action (pre-

fix: android.- or com.android.-) and user-defined action (prefix:

package name.-). In particular, it is unusual and suspicious for an application

generating Implicit Intent containing actions defined by other applications.

Different from the standard process, malwares may send malicious Implicit In-

tents to the exposed components of benign applications. These components are

exposed to receive system-generated Intents or internal Implicit Intents (which is
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not recommended by Android due to security consideration). Without necessary

action check or permission protections, the exposed components may be launched

and manipulated by malwares via Implicit Intents.

Benign App

(package name: com.example.benign)

Internal Intent i

(action: com.example.benign.MODIFY)

Android System

(match Implicit Intent with Intent Filter)

Component A

Exposed with Intent Filter

(action: com.example.benign.MODIFY)

Intent Spoofing Attack

Malicious Intent e

Benign App

(package name: com.example.benign)

Component A

Exposed with Intent Filter

(action: com.example.benign.MODIFY)

Malicious Intent e

Component B

Generate external Intent e

(action: com.example.benign.MODIFY)

Malicious App

(package name: com.example.malicious)

Android System

(match Implicit Intent with Intent Filter)

Figure 3.1: Example of Intent Spoofing Attack

For example, a malware may launch an Intent Spoofing attack [27] by misusing

Implicit Intents as shown in Figure 3.1. Component A is exposed to receive inter-

nal Intents and perform an action (com.example.benign.MODIFY). Misusing

the Implicit Intent mechanism, malicious Component B may trick Component

A to receive an external Intent (i.e., malicious Intent e) instead of the internal Intent

(i.e., benign Intent i), and perform com.example.benign.MODIFY accord-

ingly.

Although it is challenging for normal applications to get the knowledge of other

applications’ exposed components, it is relatively easy for well-prepared or colluded

malwares to attain the knowledge. Malware authors may analyze popular applica-

tions and exploit the ICC vulnerabilities in designing their malwares. Also, the same

malware authors may develop multiple malwares, which make use of each other’s

exposed components to perform Collusion attacks.

Although Android provides permission checks for sending out Implicit In-

tents with sensitive action strings (e.g., android.intent.action.CALL, and

android.intent.action.REBOOT) and recommends developers to protect

their exposed components (especially Services) with permissions, this is not an ef-

fective way to prevent Implicit Intents from being misused.

19



3.2.3 Intent Filters

Intent Filters are used to match with Implicit Intents in Android system. The use of

Intent Filters in malwares is very differently from their use in benign applications.

Component A Component B

Exposed with Intent Filter

(action: com.example.benign.MODIFY)

Generate internal Intent i to B

(action: com.example.benign.MODIFY)

Benign App

(package name: com.example.benign)

Intent i Intent i

Android System

(match Implicit Intent with Intent Filter)

Component A Component B

Exposed with Intent Filter

(action: com.example.benign.MODIFY)

Generate internal Intent i to B

(action: com.example.benign.MODIFY)

Benign App

(package name: com.example.benign)

Intent i

Android System

(match Implicit Intent with Intent Filter)

Component C

Exposed with malicious Intent Filter

(action: com.example.benign.MODIFY)

Malicious App

(package name: com.example.malicious)

Intercepting Intent i

Component Hijacking Attack

Figure 3.2: Example of Component Hijacking Attack

Intercepting Implicit Intents. Malwares may intercept Implicit Intents with In-

tent Filters in Component Hijacking attacks [27], where malicious components are

launched in place of the expected benign components. Malwares may also intercept

Implicit Intents to read the data included in the Intents, connect to certain appli-

cations, or even inject false information into the response returned. As illustrated

in Figure 3.2, malwares may register appropriate Intent Filters so as to intercept

external Intents generated by benign apps.

Intent Filters with Sensitive Actions. Compared with benign applications, mal-

wares especially care about the system-wide events (i.e., system broadcast in-

formation). Some of system broadcasts can only be sent by Android system,

but can be received by any components with appropriate Intent Filters. Mal-

wares tend to register more Intent Filters for broadcast information related to
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Table 3.1: Percentage of Benign Apps and Malicious Apps Registering Intent Filters
with Sensitive Actions

Sensitive Actions
Benign Malicious

(12,026) (5,264)

android.intent.action.BOOT COMPLETED 11.9% 60.1 %

android.intent.action.PACKAGE ADDED 3.2% 16.5%

android.intent.action.POWER CONNECTED 2.1% 5.5%

android.intent.action.SMS RECEIVED 1.6% 33.5%

android.intent.action.PHONE STATE 1.2% 10.4%

android.intent.action.SIG STR 0% 12.2%

phone states, such as android.intent.action.BOOT COMPLETED, and

android.intent.action.SMS RECEIVED. Some of the Intent Filters that

are often misused by malwares are given in Table 3.1, from which we observe that

the percentage of malwares registering such Intent Filters is significantly differ-

ent from the percentage of benign applications registering such Intent Filters. For

example, none of the benign application in the benign dataset (including 12,026 be-

nign applications) register Intent Filter to receive broadcast information related to

changes of signal strength (i.e., android.intent.action.SIG STR), while

12.2% of malwares intend to intercept such event.

Number of Intent Filters. Malwares may conduct Component Hijacking attacks by

exposing their malicious components with Intent Filters. Therefore, it is more likely

for malwares to register Intent Filters for their Activities and Services. In our ex-

periments, 29.32% of malwares declare Intent Filters for Services, while only 7.0%

of benign apps make Services exposed. Furthermore, it is common for malwares

to register more Intent Filters, which allows malwares to reliably launch malicious

components or payloads.

Registration Mode of Intent Filters. The Registration mode of Intent Filters can

serve as an indicator to differentiate between benign apps and malicious apps. The

registration of Intent Filters for Activities and Services must be recorded in the man-

ifest file, while the registration of Intent Filters for Broadcast Receivers is flexible,
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which can be static and dynamic. Android enforces dynamic registration of Intent

Filters to keep applications informed with system changes during runtime. How-

ever, the dynamic Intent Filters make it possible for malwares to capture specific

events in runtime and make necessary responses as required to perform malicious

operations.

In our experiments, it is extremely common that malwares dynam-

ically register Intent Filters to capture sensitive broadcasts, such as

android.intent.action.BOOT COMPLETED, android.intent.a-

ction.BATTERY CHANGED and android.intent.action.PACKAGE AD-

DED.

Table 3.2: ICC Patterns of Benign Apps and Malicious Apps

ICC Patterns Benign App Malicious App

Component Sufficient Activities, Services,
Providers, and few Receivers

Few Activities, Services, Providers,
and sufficient Receivers

Explicit
Intent

Send to internal components Send to internal components and
external components

Implicit
Intent

Send to internal components, and
external components with system
action

Send to internal components,
external components with system
action and user defined
action

Intent Filter Receive internal Implicit Intents,
and few system-wide broadcasts

Receive internal Implicit Intents,
various system-wide broadcasts and
external Implicit Intents

Table 3.2 summarizes the ICC patterns of benign apps and malicious apps. Be-

nign applications use the ICC mechanism mainly for linking internal components

and communicating with the Android system. However, malwares usually manip-

ulate the ICC mechanism for monitoring system events, and creating Intents and

Intent Filters to interact with external components.

3.3 System Design

ICCDetector consists of two phases, including Training Phase and Detection Phase

as shown in Figure 3.3. In the training phase, ICCDetector extracts ICC-related fea-
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tures by analyzing the ICC sources and sinks of certain benign apps and malwares,

and generates feature vector for every processed app. A classification method is

used to take its input from the generated feature vectors of benign apps and mal-

wares, and outputs a detection model. This detection model can be used to differ-

entiate between benign apps and malwares, and it is transmitted to the detection

phase. In the detection phase, ICCDetector generates a feature vector for each app

being detected and feeds the feature vector into the detection model, which outputs

whether the detected app is benign or malicious.

3.3.1 Training Phase

Feature Extraction. In the first step of the training phase, ICCDetector extracts

all of the ICC-related features from a given app. To achieve this, we develop a

tool named Parser on top of any ICC analysis tool which outputs all ICC sources

and sinks from the app’s APK file. Examples of such ICC analysis tools include

ComDroid [27], Amandroid [113] and EPICC [82]. We choose EPICC for Parser

in this work. Parser defines various categories of ICC-related features, and formats

of these features. Given an app’s APK file, Parser extracts the ICC-related features

for each category, and represents the extracted features in corresponding formats.

ICC-related features are defined in the following four categories:
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Components

Given an application, Parser extracts the names and types of its components.

For Broadcast Receivers, Parser also records the registration modes (i.e.,

static or dynamic). After that, Parser represents the ICC-related featuresin the

following format: component name(activity/service/provider),

component name(receiver static), component name(receiver

dynamic), num of activity/service/provider, num of rece-

iver(static), num of receiver(dynamic). For example, if an app d-

ynamically registers a BroadcastReceiver: com.bwx.bequick.rec-

eivers.AirplaneModeReceiver, then Parser extracts an ICC-related fea-

ture com.bwx.bequick.receivers.AirplaneModeReceiver(recei-

ver dynamic) from this app.

Explicit Intents

In this category, Parser records the total number of generated Explicit Intents

and the number of external Explicit Intents. As explained in Section 3.2, it is

important to check the Explicit Intents’ targets, including internal components

and external components. Parser labels an Explicit Intent as external if it

is sent to another app (i.e., the targeted package name is not included in the

sender’s APK file). The ICC-related features in this category are represented

as num of explicitintent, num of external explicitintent,

external package name(external explicitintent). For example,

the package name of an app is com.jx.theme, which sends out an Ex-

plicit Intent to package:com.android.packageinstaller, class:

com.android.packageinstaller.PackageInstallerActivity,

then Parser retrieves an ICC-related feature as com.android.packageinst-

aller(external explicitintent). Note that, Parser does not record

the package names of internal Explicit Intents. Since internal Explicit Intents
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are designed for intra-application communications, they are not very useful for

detecting malwares.

Implicit Intents

For each Implicit Intent of an app, Parser matches it with the Intent Filters re-

trieved from the same app following the process defined by Android. If a match

exists, Parser labels the Implicit Intent as internal, which is used to connect

components within the same app. Otherwise, Parser regards this Implicit Intent as

external, and checks its action field. If the action is defined by other apps (i.e.,

the action is user-defined and its prefix is different from the sender’s package

name), Parser labels it as external userdefined action; otherwise, Parser

labels it as external system action.

For each Implicit Intents, Parser retrieves its action string and identi-

fies the potential target, and outputs the following ICC-related features:

num of implicitintent, num of internal implicitintent,

num of external implicitintent(userdefined action), num

of external implicitintent(system action), action strin

g(nternal), action string(external userdefined action),

and action string(external system action). For instance, a

malware (package name: net.mujee.www) generates an Implicit Intent

with android.intent.action.DIAL. However, none of its Intent Fil-

ter is registered to receive this Intent. Parser retrieves an ICC-related feature

android.intent.action.DIAl(external system action) in this

case.

Intent Filters

Similar to Implicit Intents, Intent Filters are represented with the included action

strings. In addition, Parser records the types of components which Intent Filters are

registered for. Especially, if an Intent Filter is registered for a Broadcast Receiver,
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Parser checks whether the registration is dynamic or static. The ICC-related fea-

tures in this category include action string(for activity/service),

action string(for receiver static), action string(for re-

ceiver dynamic), num of intentfilter for activity/service,

num of intentfilter for receiver(static), num of intentf-

ilter for receiver(dynamic), and num of total intentfilter.

For example, given an application which dynamically reg-

isters two Intent Filters with the same action string

(android.provider.Telephony.SMS RECEIVED), Parser extracts an

ICC-related feature android.provider.Telephony.SMS RECEIVED(fo-

r receiver dynamic), and sets its corresponding value to two.

Table 3.3 summarizes the formats of ICC-related features. For all the ICC-

related features retrieved from benign apps and malwares by Parser, ICCDetector

stores them separately in the Attribute Database. In addition, ICCDetector stores

the output of Parser for each analyzed application, which includes the extracted

ICC-related features and the corresponding values.

Feature Vector Generation. In the training phase, ICCDetector leverages any two-

class classification method (e.g., SVM [19], Decision Tree [99] and Random For-

est [73]) to learn the ICC patterns from benign apps and malwares, respectively. In

particular, ICCDetector treats each of the extracted ICC-related features as a de-

tection feature. Therefore, the number of detection features is equal to the size of

Attribute Database. If the size of Attribute Database is X, ICCDetector defines an

X-dimensional vector space. For each app, ICCDetector constructs a feature vec-

tor by mapping its Parser output to the X-dimensional vector space as shown in

Figure 3.4.

Usually, a typical Android app generates roughly 100 none-zero ICC-related

features; therefore, its feature vector is sparse. ICCDetector represents the feature

vectors sparsely using hash tables [16]. In comparison, existing works [123] [10]

use Boolean expression to represent feature vectors, which indicates whether an
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Table 3.3: Summary of ICC-related Features

Feature Category Formats of ICC-related Features

Component

component name(activity/service/provider)

component name(receiver static)

component name(receiver dynamic)

num of activity/service/provider

num of receiver(static)

num of receiver(dynamic)

Explicit Intent

num of explicitintent

num of external explicitintent

external package name(external explicit)intent

Implicit Intent

num of implicitintent

num of internal implicitintent

num of external implicitintent(userdefined action)

num of external implicitintent(system action)

action string(internal)

action string(external system action)

action string(external userdefined action)

Intent Filter

num of intentfilter

num of intentfilter for activity/service

num of intentfilter for receiver(static)

action string(for receiver dynamic)

num of intentfilter for receiver(dynamic)

action string(for activity/service)

action string(for receiver static)

com.google.update.Dialog(activity)

com.google.update.UpdateService(service)

android.intent.action.DIAL(external_system_action)

android.intent.action.PACKAGE_ADDED(for_service)

...

:1

:1

:3

:2

...

com.adwo.adsdk.BrowserActivity(activity)

com.google.update.Dialog(activity)

...

com.google.update.UpdateService(service)

com.airpush.android.PushService(service)

...

android.intent.action.SENDTO(external_system_action)

android.intent.action.DIAL(external_system_action)

...

android.intent.action.PACKAGE_ADDED(for_service)

android.intent.action.SCREEN_ON(for_activity)

...

0

1

...

1

0

...

0

3

...

2

0

...

Parser Output Attribute Database Feature Vector

Figure 3.4: Process of Feature Vector Generation
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app includes a feature or not. Since ICCDetector records the exact value for each

ICC-related feature in generating feature vectors, ICCDetector has more accurate

information to differentiate between benign apps and malicious apps.

Learning. As described in Feature Extraction and Feature Vector Generation,

ICCDetector extracts ICC-related features as many as possible from given apps and

constructs feature vectors by mapping Parser out to the vector space. Some of these

extracted ICC-related features, however, are correlated to each other. Note that the

number of extracted ICC-related features decides the dimensionality of feature vec-

tors. If ICCDetector extracts too many ICC-related features in Feature Extraction,

it leads to high dimensional feature vectors in Feature Vector Generation, which

may contain a high degree of irrelevant and redundant information, and thus degrade

the performance of learning algorithms. As a preprocessing step to machine learn-

ing, feature selection is effective in reducing dimensionality, removing irrelevant

and redundant features, and mitigating overfitting. In this work, we apply a well-

known feature selection method, Correlation-based Feature Selection (CFS) [55], in

ICCDetector. CFS identifies and removes irrelevant and redundant features accord-

ing to the correlation between features. After the process, CFS keeps a subset of

original features, which are sufficient for the classification of Android applications.

Consequently, CFS effectively reduces the dimensionality of feature vectors.

Given the input of reduced-dimension feature vectors generated from benign

apps and malwares, respectively, ICCDetector applies any two-class classification

method and outputs a detection model, which separates the feature vectors from

benign and malicious. The detection model is then transmitted to detection phase.

3.3.2 Detection Phase

In the detection phase, ICCDetector extracts the ICC-related features from an app

being detected, generated its feature vector, and feeds the feature vector to the de-

tection model. The detection model decides whether the detected app is benign or
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malicious.

3.4 Evaluation

We evaluate the performance of ICCDetector in different aspects with real data,

including comparison with a benchmark, analysis of detection performance, classi-

fication of detected malwares, and runtime measurement.

3.4.1 Data Collection

We built an initial dataset of 14,264 benign apps by crawling GooglePlay from

July 2014 to August 2014. To exclude potential malicious apps from this initial

dataset, we sent each app to VirusTotal [110], which is an antivirus service with

fifty-four antivirus scanners. We labeled an app in the original dataset as benign

if and only if no antivirus scanner raises any alarm for the app. We also excluded

potential malicious apps such as adwares, and spywares from the initial dataset

so as to generate the benign dataset, which consists of 12,026 apps. An existing

malware dataset [10], which consists of 5,264 malwares is used as the ground truth

in our evaluation. The collected dataset includes 12,026 benign apps and 5,264

malicious apps, which is sufficient to evaluate ICCDetector. The reason is that

ICCDetector builds detection model applying SVM, which does not require large

number of training samples to fine-tune model parameters.

3.4.2 Feature Selection and Analysis

From 12,026 benign apps and 5,264 malwares, ICCDetector extracts 121,621 ICC-

related features in total. Since the extracted features contain redundant information

due to correlation between features, we apply CFS to identify and remove the re-

dundant features according to the correlation between features. After the process,

CFS chooses 5,000 ICC-related features, which are subsequently used for the clas-
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sification of malicious and benign applications.

A majority of the ICC-related features that are removed by CFS be-

longs to Component. When design names for components, app devel-

opers usually include package names in components names. For exam-

ple, an application with package name com.bwx.bequick includes

several components named as com.bwx.bequick.EulaActivity,

com.bwx.bequick.ShowSettingsActivity, and com.bwx.bequic-

k.MainSettingsActivity. Since it is common to include package names

in component names in mobile application development, our ICCDetector extracts

numerous unique ICC-related features from component names. We notice that

a majority of ICC-related features in this category only appear once in single

applications and are correlated to some other features. Consequently, CFS can

effectively reduce the dimensionality of feature vectors after removing these

redundant features.

While CFS filters out a majority of ICC-related features belonging to

Component, it keeps the features in this category that are useful for distin-

guishing malwares from benign apps. For example, CFS keeps an ICC-

related feature com.allen.txtxcb.Settings(activity), which

is extracted from an Activity named com.allen.txtxcb.Setting.

This Activity can only be found in a malware family called Droid-

KungFu, and is shared by the malwares in this family. Another example is

com.android.installer.full.AndroidInstaller2Activity(a-

ctivity), which is an ICC-related feature selected by

CFS. This feature, which is extracted from an Activity called

com.android.installer.full.AndroidInstaller2Activity,

is shared by several Russian malwares. These malwares pretend to be legitimate

package installers provided by Android, but are capable of manipulating SMS,

taking pictures, and directly installing arbitrary applications. This Activity has

a confusing name so as to fool end users and evade from detections, which is
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normal in malwares but rare in benign applications. It is thus helpful to keep these

ICC-related features for differentiating between malwares and benign applications.

We also analyze the selected ICC-related features belonging to other cate-

gories. In general, a majority of the selected features can be used to describe the

communications among components within or cross application boundaries. Due

to the differences between malicious ICC patterns and benign ICC patterns, these

selected features can be used to distinguish benign apps and malwares. For example,

android.intent.action.PACKAGE CHANGED(external system ac-

tion) is a selected ICC-related features extracted from an external Implicit In-

tents android.intent.action.PACKAGE CHANGED. This Implicit Intent is

widely used by malwares for monitoring system events that are related to package

and downloading additional APK files during runtime; however, it is barely

generated by benign applications. In the Training phase, our model learns from

the training dataset that this selected feature usually appears in malicious feature

vectors but rarely appears in benign feature vectors. In the Detection phase, all of

the selected ICC-related features are used to distinguish between malicious and

benign applications.

3.4.3 Experiment Result

We compare the detection performance of ICCDetector with a benchmark, which

is a highly cited Android malware detection method proposed in recent years [90],

using the same dataset. The benchmark is a typical Android malware detection

method, which detects malwares based on their required permissions and its accu-

racy is up to 88.2% using the dataset mentioned in Section 3.4.1.

In the experiments, ICCDetector leverages on a widely used two-class classi-

fication method, Support Vector Machine (SVM) [19], to train a detection model.

SVM is suitable for processing multidimensional data like the feature vectors and

capable of producing a model efficiently. Given the feature vectors of benign apps
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and malwares, SVM discovers the hyperplane to separate them with the maximum

margin, where the margin is the sum of (i) the minimum distance between the hy-

perplane and the boundary of benign feature vectors, and (ii) the minimum distance

between the hyperplane and the boundary of malicious feature vectors.

We conduct a series of experiments using ten-fold cross validation [69] to mea-

sure the performance of ICCDetector and the benchmark. In particular, we ran-

domly split the benign dataset and the malicious dataset into ten subsets, respec-

tively. The detection model is trained and tested in ten rounds. In each round, we

mix one benign subset and one malicious subset as the testing dataset (i.e., unknown

dataset), and the remaining subsets as the training dataset (i.e., known dataset). The

testing dataset is tested using the classifier trained on the training dataset. In each

round, there is no overlap between the testing dataset and the training dataset. Each

application of the whole dataset is classified once so the accuracy of cross validation

is the percentage of the applications that are correctly classified. We evaluate the

performance of ICCDetector using three metrics, True Positive Rate (TPR), False

Positive Rate (FPR), and Accuracy, where TPR is the percentage of malwares being

detected correctly, FPR is the percentage of benign apps being detected as mal-

wares, and Accuracy is the percentage of all apps being detected correctly in our

experiments.

Table 3.4: Experiment Result

Metrics True Positive Rate False Positive Rate Accuracy

ICCDetector 93.1% 0.67% 97.4%

Benchmark 65.0% 1.71% 88.2%

Table 3.4 shows the evaluation results of ICCDetector and the benchmark. The

accuracy of the benchmark is up to 88.2%, while ICCDetector achieves an accu-

racy of 97.4%, roughly 10% higher than the benchmark, with a lower false positive

rate of 0.67%, which is only a half of the benchmark. Through manually analyzing

detected false positives, we discover that only seven benign applications are falsely
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identified as malware. The true positive rate of ICCDetector is also considerably

better than the benchmark, roughly 30% higher than the benchmark. More impor-

tantly, ICCDetector discovers 1,708 more “advanced malwares” than the benchmark

(i.e. these malwares can only be detected by ICCDetector), while it misses 220 “ob-

vious malwares” which can be easily detected by the benchmark.

Table 3.5: Percentage of Benign Apps and Malicious Apps Requiring Sensitive
Permissions

Permission
Benign App Malicious App

(12,026) (5,264)

android.permission.INTERNET 92.5% 97.5%

android.permission.ACCESS NETWORK STATE 81.4% 67.4%

android.permission.ACCESS COARSE LOCATION 23.6% 32.9%

android.permission.CAMERA 14.2% 4.2%

android.permission.CALL PHONE 11.3% 13.4%

3.4.4 True Positive Analysis

Looking into the 1,708 “advanced malwares” which are correctly detected by IC-

CDetector but not by the benchmark, we discover that the differences between their

permission usage patterns and those of benign apps are not very significant. Ta-

ble 3.5 shows the percentage of benign apps and malwares which require some

sensitive permissions. Since the permission patterns are similar, it is difficult for the

benchmark to distinguish between benign apps and malwares.

In comparison, the ICC patterns can be used to distinguish benign apps and

malwares in such case. In general, benign apps mainly use ICC for internal com-

munications, in a sense that Intents and Intent Filters are mainly used to link the

components within the same apps. However, malwares tend to interact with exter-

nal components and monitor Android system via the ICC mechanism. For example,

benign apps barely register any Intent Filters for package-related information, while

the malwares usually register several such Intent Filters in order to properly down-
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load APK files at runtime.

One example of the “advanced malwares” is com.safesys.viruskiller,

which pretends to be antivirus app in markets. Without requiring any sen-

sitive permissions, com.safesys.viruskiller downloads APK files by

generating external Implicit Intents and monitoring the system events re-

lated to package, such as android.intent.action.PACKAGE ADDED

and android.intent.action.PACKAGE CHANGED. Another example is

com.accutracking, which is a malware intercepting private information and

accessing personal files. One characteristic of com.accutracking is its rich

variants. Although its variants are given different package names, they share the

same ICC-related features and same ICC patterns, which can be easily detected by

ICCDetector. These “advanced malwares” are still available in alternative markets,

such as kekaku [65], coolAPK [29], appchina [9], and amazon [5].

3.4.5 False Negative Analysis

ICCDetector misses 364 malwares, while 220 of them can be easily detected by the

benchmark. After manually checking how these malwares use ICC and permissions,

we discover that these malwares barely use ICC. Instead of stealthily conducting

malicious actions, these malwares attack in a straightforward way by simply requir-

ing a bunch of sensitive permissions, and sometimes even permissions not for use

by third-party apps. For example, with only four non-zero ICC-related features,

a malware requires three permissions android.permission.READ LOGS,

android.permission.INSTALL PACKAGES, and android.permissi-

on.MODIFY PHONE STATE, which should not be used by third-party apps. Since

benign apps merely require such system-level permissions, the benchmark can eas-

ily detect such malwares based on their required permissions.

It is obvious that ICCDetector and the benchmark are complementary. A hybrid

approach combining ICCDetector and the benchmark would produce better results.
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3.4.6 False Positive Analysis

In the experiment, ICCDetector labels 81 benign applications as malicious (i.e.,

false positives). After manually analyzing these false positives, we discover that 31

of them were mislabeled by VirusTotal before. Besides them, 43 of other false pos-

itives are manually identified as malicious because they are capable of conducting

malicious actions. In the end, the false positives of ICCDetector boil down to seven

benign applications falsely classified as malware. We classify the false positives

into three categories as follows:

Mislabeled by VirusTotal. In order to construct benign dataset, we excluded poten-

tial malwares by sending each app in the original dataset to VirusTotal, and labeled

an app as benign if and only if no antivirus scanner raises any alarm for the app.

However, the detection result of VirusTotal should be updated and corrected over

time. After resending the 81 false positives to VirusTotal, we discover that 31 ap-

plications, which had been labeled as benign when constructing benign dataset in

August 2014, received alarms from at least one antivirus scanners in May 2015. For

these 31 applications, the detection results of ICCDetector and those of the updated

version of VirusTotal are consistent.

Since VirusTotal has not released any technical details related to its up-

dating process, it remains unknown that how these 31 malwares bypassed

the scanning of VirusTotal in August 2014. Fortunately, these malwares

can be easily detected by ICCDetector according to their ICC patterns. For

example, com.tobyyaa.superbattery is an application which in-

cludes several malicious components, such as com.millenialmedia.-,

com.admob.-, com.flurry.- and com.appbrain.-. This appli-

cation is capable of manipulating SMS, and making phone calls by gen-

eratingsuspicious Intents such as android.intent.action.DIAL,

and android.intent.action.CALL, and certainIntent Filters

such as android.intent.action.NEW OUTGOING CALL, and
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android.provider.Telephony.SMS RECEIVED. These suspicious

ICC patterns can be captured by ICCDetector in malware detection.

New Identified Malwares. Not only can ICCDetector product consistent results

with the updated version of VirusTotal, but also can identify new malwares. Af-

ter manually analyzing the 81 false positives, 43 of them are identified as ma-

licious, which have not been identified by VirusTotal before. Most of these

newly identified malwares are capable of leaking private information, manipulat-

ing SMS, connecting to remote servers, and monitoring system state. For example,

com.tunewiki.lyricplayer.android.quicklaunch is a newly iden-

tified malware discovered in GooglePlay which is designed to make phone calls,

monitor and leak phone states and system settings. To achieve its goal, this applica-

tion generates an Intent android.intent.action.DIAL to make phone call,

and registers several Intent Filters to monitor any phone state and setting changes.

During the manual analysis, we discover that these newly identified

malwares not only manipulate the ICC mechanism, but also abuse sensi-

tive permissions. For instance, com.thukhakyaw.calllocator is a

newly identified malware which may make phone calls, send out SMS,

and modify system states. In particular, this malware requires sev-

eral permissions which are not allowed to use by any third-party ap-

plications, such as android.permission.MODIFY PHONE STATE and

android.permission.UPDATE DEVICE STATS. This discovery further

demonstrates the accuracy of ICCDetector.

Benign Applications. Among the 81 false positives, seven benign applications are

falsely identified as malware. After manually analyzing these benign applications,

we discover that they barely use any ICC mechanism, therefore it is difficult for

ICCDetector to correctly identify them.
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3.4.7 Classifications

The classifications of malwares in different malware families facilitate better un-

derstanding and analyzing of malwares [10, 123]. On the other hand, some of the

existing classifications have the following limitations:

• Some malware families are named by different mobile security software ven-

dors and researchers. The naming scheme is confusing and inconsistent. For

example, BaseBridge is also named as AdSMS, and LeNa is a variant of Droid-

KungFu [129].

• Some malwares belonging to different families have similar malicious be-

haviors. For example, the malwares in Lovetrap and NickyBot are similar in

terms of sending premium SMSes and starting malicious services right after

Android system boot-up.

• Some malware families contain too few samples. For example, FakeInstaller

contains about 1,000 malicious samples, while GGTracker, DroidCoupon and

GamblerSMS only have one malicious sample. More importantly, the ma-

jority of existing malware families (i.e., more than 200 malware families)

contain less than thirty samples per family.

Motivated to overcome such limitations, we propose five new malware cate-

gories based on ICC patterns and classify detected malwares into corresponding

categories. In order to conduct certain malicious operations, malwares need to use

the ICC mechanism accordingly. Therefore, these newly defined malware cate-

gories are closely related to malware behaviors.

Server Connector. Malwares in this category mainly conduct malicious actions

by connecting to command and control servers, dynamically downloading and

installing APK files, and executing remote commands. These malwares usually

register several Broadcast Receivers and Services to receive c2dm (Cloud to

Device Messaging [52]) related Intents and to execute received commands.
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Especially, in order to effectively download and install APK files from the

remote servers, these malwares leverage Intent Filters to monitor events related

to package, such as android.intent.action.PACKAGE CHANGED,

android.intent.action.PACKAGE ADDED, and android.intent.-

action.PACKAGE REMOVED. Several well-known malware fami-

lies, including DroidKungFu, DroidRooter, RootSmart and

ExploitLinuxLotor, belong to this category.

Telephony Abuser. This category includes malwares which conduct attacks

targeting at telephonic functionalities, such as making phone calls, blocking

incoming phone calls and SMSes, and sending SMSes to premium numbers.

To effectively manipulate telephonic functionalities, malwares need to gener-

ate corresponding Intents, such as android.intent.action.DIAL, and

register certain Intent Filters to intercept SMS-related information and new

outgoing calls, such as android.provider.telephony.SMS RECEIVED

andandroid.intent.action.NEW OUTGOING CALL. Malware families in

this category include Opfake, Dialer, MobileSpy, and etc.

System Monitor. Malwares in this category especially care about system-wide

broadcast information that is relevant to phone states and settings, such as battery

state, power state, and connectivity setting. From phone states and settings, these

malwares can infer whether a phone is in use or not, and pick the appropriate

time to perform malicious actions without user’s awareness. To achieve their

malicious objectives, these malwares tend to register several Intent Filters to cap-

ture broadcasts with special actions, such as android.settings.SIG STR,

android.net.conn.CONNECTIVITY CHANGE, android.intent.a-

ction.POWER CONNECTED and android.intent.action.PHONE STATE.

Moreover, some malwares in this category generate external Intents so as to change

phone states and settings.

Effective Launcher. This category contains malwares which leverage a special

system-wide Intent with action android.intent.action.BOOT COMPLET-
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ED to effectively launch their malicious Activities and Services when the Android

system completes its booting process. Moreover, some malwares in this category

can immediately bootstrap their Services before starting the host app’s primary Ac-

tivity by intercepting an Intent with action android.intent.action.MAIN.

Advertiser. Instead of including dangerous and sensitive Intent Filters or In-

tents, malwares in Advertiser usually include more than one advertisement li-

braries, which are mainly used by malwares. Such libraries include Airpush,

LeadBolt, Appenda and SendDroid.

Table 3.6 summarizes the categories we defined according to ICC characteris-

tics, which demonstrates similar malicious behaviors within each category. We also

looked into the 1,708 “advanced malwares” which can be detected by ICCDetector

but not the benchmark, and the 43 newly identified malwares detected from false

positives. We discovered that most of them belong to Server Connector, Tele-

phony Abuser and System Monitor, which are more dangerous than the other two

categories.

3.4.8 Runtime Measurement

We ran our experiments on a machine with 4 × 3.20GHz Intel-Core and 12 GB

of RAM, and measured the runtime of ICCDetector. In each of ten rounds in our

experiments, ICCDetector is trained with 15,561 applications (i.e., 90% of datasets),

and tested with a mix of 1,203 benign apps and 526 malwares. In the training phase,

an ICC analysis tool, EPICC, is used to analyze the APK file of each app, which

outputs all ICC sources and sinks. Our Parser is then used to extract all ICC-related

features, including their names and values. After processing all the apps in training

dataset, ICCDetector generates a feature vector for each processed app, and outputs

a SVM detection model. In the detection phase, each app is processed using APK

analysis, feature generation, and vector generation as in the training phase. The

detection model labels an app being detected as “benign” or “malicious”.
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Table 3.7: Time for Processing an App

Step APK Analysis Feature Extraction Vector Generation Model Detection

Average 36.00s 2.6× 10−3s 0.79s 1.2× 10−3s

Table 3.7 shows the average time for processing each app in our experiments.

The performance bottleneck is at the APK analysis. In the future, the performance

of ICCDetector would be improved with the development of more efficient ICC

analysis tools.

3.5 Discussions

Besides the benchmark, ICCDetector is also compared with some recent malware

detection methods, including Drebin [10], and DroidMiner [123]. Since the source

codes and datasets of Drebin and DroidMiner are not open to the public, we provide

our comparison qualitatively.

Drebin [10] is a lightweight malware detection method directly working on

smartphones. Due to the limited resources of mobile devices, Drebin conducts a

broad static analysis to gather many detection features, including permissions, APIs,

network addresses, app component names, and Intent Filters extracted from mani-

fest files. In comparison, ICCDetector extracts more ICC-related features, including

the number of Intents, the names and actions of each Intent, the potential internal

and external receivers of each Intent, and the Intent Filters extracted from bytecode.

Therefore, ICCDetector is more accurate in capturing ICC-related features and pat-

terns in malware detection.

On the other hand, DroidMiner [123] detects malwares based on not only the

frequency and names of sensitive APIs, but also the connections of multiple sensi-

tive APIs. Unlike ICCDetector, DroidMiner does not inspect any ICC-related func-

tions. Therefore, it is less effective to capture the communications and interactions

between components within or cross application boundaries.
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Limitations. Lacking dynamic inspection of malware behaviors, ICCDetector may

be bypassed by malwares using Java reflection and bytecode encryption [94]. This

encourages us to incorporate dynamic analysis in future versions of ICCDetector.

Another limitation of ICCDetector, which is due to the use of classification meth-

ods, is its vulnerability to mimicry and pollution attacks [108], where malwares

may include more benign features and poison the training dataset to lower their

suspicions.

3.6 Related Works

Mobile Malware Detection. Static malware detection methods analyze app codes

and manifest files without running the apps. For instance, Kirin [41] detects mal-

wares based on the permissions required by the Android apps which break certain

pre-defined security rules. Stowaway [42] detects overprivileges in Android apps by

mapping API calls to permissions. Peng et al. [90] proposed a malware detection

model based on app categories and declared permissions. RiskRanker [53] cap-

tures risky apps based on known malicious behaviors and existing vulnerabilities

in Android, and detects malwares from risky apps based on manual efforts. Droid-

Miner [123] and DroidAPIMiner [2] use sensitive API calls in detecting malwares,

while DroidMat [117] and Drebin [10] use not only sensitive API calls but also

other information extracted from manifest files as detection features. These previ-

ous works capture the communications between apps and Android system based on

the required resources of detected apps, while ICCDetector captures not only the

communications between apps and system, but also the interactions among apps

based on ICC-related features.

Another class of malware detection, including TaintDroid [39], Droid-

Scope [122], CrowDroid [20], Paranoid Android [91], and DroidRanger [130], em-

ploys dynamic analysis to detect malwares at runtime. These dynamic approaches

are complementary to the static analysis based approaches, including ICCDetector.
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ICC Analysis. Much work has been done on ICC analysis. For example,

ComDroid [27] investigates the attack surfaces related to ICC. CHEX [75] fo-

cuses on detecting Component Hijacking attacks by analyzing information flows.

AppSealer [128] generates vulnerability-related patches for preventing Component

Hijacking attacks. Epicc [82] is a static analysis tool for identify ICC precisely and

scalably. Amandroid [113] conducts static analysis for security vetting of Android

apps based on inter-component control and data flows. Pscout [12] produces a per-

mission specification, which is a set of mappings between API calls (including ICC

APIs) and permissions. These works focus on identifying ICC-related attack sur-

faces for Android apps, while ICCDetector focuses on detecting malwares based

on ICC-related features. The ICC analysis tools developed in these works can be

applied by ICCDetector in constructing its Parser.

3.7 Conclusion

ICCDetector detects malwares based on ICC-related features which capture the in-

teraction between components within or cross application boundaries. The per-

formance of ICCDetector is better than the benchmark in our experiments. The

malwares detected by ICCDetector are classified into five new malware categories

according to their ICC characteristics, which clarifies the relationship between mal-

ware behaviors and ICC patterns. Furthermore, after manually analyzing false pos-

itives, we discover 43 new malwares from the benign dataset. In the future, we plan

to apply ICCDetector to detect new malwares in various application markets. We

also plan to build a dataset which can be used to evaluate and compare different

malware detection methods on a common platform.
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Chapter 4

DeepRefiner: Multi-Layer Android

Malware Detection System Applying

Deep Neural Networks

4.1 Introduction

Android malware running on most mobile devices severely violates end users’ se-

curity and privacy. Most previous research in Android malware detection relies on

pre-defined features and single classification models. Some existing systems pro-

vide efficient detection according to the presence or absence of certain permissions

or components, but are less resilient towards obfuscation techniques. Other de-

tection systems perform effective detection by implementing semantic analysis of

Android bytecode. These approaches, however, require complicated feature extrac-

tion which are conducted in static analysis and/or dynamic analysis such as those

performed in Soot [107], FlowDroid [11], Epicc [82] and TaintDroid [39].

While facing the challenges, we found that xml files have enough features to

efficiently identify common malware [10] while using bytecode semantics improves

the robustness of detection systems [95]. In this work, we propose an efficient and

effective malware detection system, DeepRefiner, by applying deep neural networks
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to automatically extract features to detect malware on both xml files and bytecode.

In the first detection layer, DeepRefiner retrieves xml values by performing

lightweight preprocessing on xml files, which are included in apk files of Android

applications. The xml values provide detailed information about resources required

by Android applications. DeepRefiner applies Multilayer Perceptron (MLP) [58]

to detect malware based on xml values. The fully-connected structure of MLP is

particularly suitable for processing xml values that have no sequential information

among them. With the help of MLP, DeepRefiner effectively detects most malware

by looking into the resources required in xml files. For certain malware that Deep-

Refiner cannot provide reliable prediction results, DeepRefiner generates a tempo-

rary label uncertain, and feeds uncertain applications into the second detection

layer for a refined inspection and detection.

As shown in our experiments, with the dataset of 110,440 applications, includ-

ing 62,915 malicious applications and 47,525 benign applications, DeepRefiner pro-

vides reliable and efficient classification for more than 73% of applications after

processing each application for about 0.22s on average. Using the first layer only,

DeepRefiner achieves an accuracy of 98.32%, with a true positive rate of 98.33%

and a false positive rate of 1.70%, excluding the uncertain applications in the calcu-

lation.

In the second detection layer, DeepRefiner conducts effective detection for un-

certain applications according to bytecode semantics, which provide comprehensive

information about programming behaviors conducted by applications. Detecting

malware according to bytecode semantics has the following advantages. First of

all, bytecode semantics are different in malware and in benign applications. Mal-

ware and benign applications may use same bytecode in different context to achieve

different purposes [45]. The second benefit of using bytecode semantics is that

bytecode semantics are robust to typical existing obfuscation techniques. To by-

pass detection, malware often renames identifiers and reassembles multiple times

to re-arrange classes, methods and strings. However, such obfuscation techniques
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affect no bytecode semantics within methods. Another advantage is that many

bytecode sequences are shared across malware, since malware developers often

adopt malicious libraries from some open source platforms such as Github [49]

and PUDN [92].

Different from existing works (e.g., DroidMiner [123], MAMADROID [76]

and DroidSIFT [127]) which extract semantics from data flows and control flows,

DeepRefiner makes the effort to capture comprehensive bytecode semantics at

both method-level and application-level by performing the combination of a Byte-

code2Vec technique and a Long Short Term Memory neural network [56]. Using

the Bytecode2Vec technique, DeepRefiner captures method-level bytecode seman-

tics by representing each line of bytecode with a dense Bytecode Vector according

to its context (i.e., nearby bytecode in the same method). Two different lines of

bytecode with similar functionalities or contexts are represented with similar Byte-

code Vectors, and will be treated similarly during classification. Since typical ob-

fuscation techniques affect no bytecode semantics within methods, method-level

bytecode semantics encoded in Bytecode Vectors help DeepRefiner perform robust

detection. After the process of Bytecode2Vec, DeepRefiner represents each appli-

cation as a variable-length Bytecode Vector Sequence by combining all Bytecode

Vectors according to the original bytecode sequence in source code.

DeepRefiner further applies stacked LSTM hidden layers on top of variable-

length Bytecode Vector Sequence. During the process, LSTM hidden layers are

used to capture historical information about the Bytecode Vector Sequence and it-

eratively update it to learn the application-level bytecode semantics without losing

method-level bytecode semantics due to the special structure of LSTM called mem-

ory cell. With this novel combination, DeepRefiner successfully captures the trig-

gers of malicious behaviors even if they are separated far away from each other in

the source code as shown in our experimental results.

Applying both method-level and application-level bytecode semantics to detect

malware is proved to be highly effective in our experiments. For the 29,320 un-
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certain applications that cannot be reliably classified in the first detection layer,

DeepRefiner further refines the classification results according to their bytecode se-

mantics, and provides an accuracy of 96.14% and a false positive rate of 4.10%.

More importantly, with the help of bytecode semantics, DeepRefiner successfully

detects 10,991 malicious applications from 11,000 obfuscated malicious applica-

tions, which are generated by various obfuscation techniques.

Another problem we investigate regards to the practicality of malware detection.

The practicalities of most learning-based malware detection systems are constrained

by laborious human feature engineering and complicated feature extraction. As

Android framework evolves over years, so do benign applications and malware. As

a result, it becomes increasingly difficult for domain experts to identify the features

for malware detection and assimilate the fast evolving knowledge about Android

system and malware detection. For example, Android added more than 5,000 new

APIs from version 4.4 to 5.0 [7], and both benign applications and malware target at

Android versions with the updated APIs and features [105]. In response, extensive

domain knowledge and manual investigation are required for existing approaches to

update.

More importantly, malware evolves especially rapidly. Mobile malware attacks

increased more than three times between 2015 and 2016 [64]. New techniques pro-

posed in the academia have been quickly adopted by malware authors. For example,

anti-emulation techniques proposed in HITCON 2013 [1] were found in real-world

malware later [86]. If the human engineered features in malware detection can-

not catch up with the evolution of malware, malware detection may be evaded.

For example, DroidAPIMiner [2] has been proved less effective in detecting newly

identified malware based on frequently used API calls in [76]. Such rapid evolu-

tion results in increasing demands on highly automatic feature engineering and new

learning approaches to provide practical detection.

To show the advantage of practical detection provided by DeepRefiner, we re-

move expert’s domain knowledge and complicated human feature engineering from
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the whole process. Instead, DeepRefiner applies deep neural networks with multiple

hidden layers to perform automatic feature engineering on top of lightweight pre-

processing. In preprocessing, DeepRefiner retrieves xml values from xml files in the

first detection layer and captures bytecode semantics from disassembled classes.dex

file in the second detection layer. DeepRefiner then represents applications as vec-

tors, which are used as inputs for deep neural networks. The hidden layers in neural

networks automatically engineer detection features from input vectors through non-

linear transformation. The whole process of DeepRefiner is fully automated and is

proved to be highly efficient as shown in our experiments.

To show the advantage of the whole system, we evaluate the overall detection

performance of DeepRefiner and compare it with a state-of-the-art single classifier-

based detection method, StormDroid [26], as well as ten commercial anti-virus

scanners. DeepRefiner shows superior performances over StormDroid and all anti-

virus scanners. With the dataset of 62,915 malware and 47,525 benign applications,

DeepRefiner achieves an accuracy of 97.74% with a true positive rate of 97.96%

and a false positive rate of 2.54%, while StormDroid’s accuracy is 89.62% with a

true positive rate of 87.51% and a relatively high false positive rate of 7.59%. Most

signature-based anti-virus scanners’ detection rates are in the range between 70%

and 80%, which are significantly lower than DeepRefiner.

The robustness of DeepRefiner is evaluated from two perspectives. First of all,

we test DeepRefiner against typical existing obfuscation techniques [94], includ-

ing Repacking, Renaming Identifier and Data Encryption. For 11,000 obfuscated

malware generated by typical obfuscation techniques, DeepRefiner successfully de-

tects 99.92% of them. In addition, for adversarial crafting [89] [88] against neural

network-based malware detection systems, the defensive approaches proposed by

Grosse et al. [54] can be similarly applied to the first detection layer of DeepRefiner,

which also relies on xml files. For the second detection layer, we conduct prelimi-

nary research on the robustness of DeepRefiner following the three constrains that

are identified by Grosse et al. Our experimental results show that DeepRefiner is
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robust even after injecting 400% code into obfuscated malware.

The rest of the work is organized as follows. Section 4.2 presents the Deep-

Refiner system. Section 4.3 introduces the settings of experiments. Section 4.4

evaluates DeepRefiner in different aspects. Section 4.5 discusses the limitations.

Section 4.6 summarizes the related work, and Section 4.7 concludes the work.

4.2 The DeepRefiner System

Classification

XML Preprocessor

Benign App

Malicious App

XML Values

XML Files

...

String Name

Text

ID

Permission

Component

Intent Filter

Layout 

...

XML Vector Representation Identification and Classification

MLP

Input 

Layer

Hidden 

Layer

Softmax 

Layer

Dex Bytecode
Simplified Bytecode

Bytecode

Lookup

Table

         ...

(0.31, …, 0.63)

(0.25, …, 0.67)

(0.92, …, 0.27)

(0.52, … , 0.17)

(0.22, …, 0.88)

(0.66, … ,  0.11)

        ...

Bytecode Vector Sequence

LSTM

Input 

Layer
Hidden 

Layer
Softmax 

Layer

XML Vector

(0, 1, 1 , 0, 0, …, 1 ,1, 1)

Vector Space

Classification

Uncertain App

Unknown App

Benign App

Malicious App

Bytecode2Vec Bytecode Preprocessor

First Detection Layer

Second Detection Layer

Figure 4.1: Architecutre of DeepRefiner

4.2.1 Overview

As depicted in Figure 4.1, DeepRefiner consists of two detection layers to achieve

both efficient and effective detection. In the First Detection Layer, DeepRefiner

efficiently classifies a majority of malware from benign applications, and identifies

the applications that cannot be reliably classified based on the resources required in

their xml files. For applications that cannot be reliably classified, DeepRefiner gen-

erates a temporary label uncertain and further feeds them into the second detection

layer. In the Second Detection Layer, DeepRefiner performs refined inspection

and effectively detects malware from uncertain applications based on bytecode se-
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mantics at both method-level and application-level. In the rest of this section, we

discuss each detection layer in detail.

4.2.2 The First Detection Layer

In the first detection layer, DeepRefiner performs efficient process to distinguish

complexities of applications and classify a majority of malware from benign appli-

cations. The first detection layer consists of three phases, including XML Prepro-

cessor, XML Vector Representation, and Identification and Classification.

XML Files

Retrieved XML Values

 com.example.project

 android.permission.SEND_SMS

 com.example.project.SecretServic

e

 android.intent.action.DELETE

 wifi_connection

 The active connection is wifi.

 @+id/button

 wrap_content

 Hello, I am a Button

<manifest package="com.example.project">

<uses-permission android:name="android.permission.SEND_SMS" />

<service android:name="com.example.project.SecretService" /> 

</service>

<intent-filter>

<action android:name="android.intent.action.DELETE" />

</intent-filter>

</manifest>

<resources>

<string name="wifi_connection">The active connection is wifi. </string>

</resources>

<LinearLayout>

<Button android:id="@+id/button"

android:layout_width="wrap_content"

android:layout_height="wrap_content"

android:text="Hello, I am a Button" />

</LinearLayout>

Figure 4.2: Example of Input and Output of XML Preprocessor

XML Preprocessor

In XML Preprocessor, DeepRefiner decompiles apk files and performs

lightweight preprocessing to retrieve xml values from AndroidManifest.xml

and all xml files under /res/. As the example shown in Figure 4.2, from

<string name="wifi connection"> The active connection

is wifi</string>, XML Preprocessor retrieves two unique xml values

wifi connection (a string name) and The active connection is

wifi (a text shown to end users). The retrieved xml values provide detailed

information about the resources required and included in an application, and show

different patterns in benign applications and malware. For example, in GUI texts

shown to end users, benign applications usually include instructions to guide end

users performing application’s functionalities. However, malware often shows texts
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requiring users to input Credit Card numbers, download new services, or provide

login credentials. In addition, as shown in our experiments, some xml values are

shared among different malware. For example, Call Customer Service:

15210066773 is a text only observed in malware. This phone number pretends

to be a customer service number, while in fact it is used to conduct telephone fraud,

and is shared among many malware. Therefore, xml values are able to capture the

differences between malware and benign applications.

XML Vector Representation

Next, DeepRefiner represents each application as an XML Vector. To this end,

DeepRefiner builds an XML Database according to the unique xml values re-

trieved from training dataset. If the size of XML Database is X, DeepRefiner defines

an X-dimension vector space accordingly. For each application, DeepRefiner repre-

sents it as an XML Vector by mapping its retrieved xml values to the X-dimension

vector space, such that for each xml value the respective dimension is set to one and

all other dimensions are zeros.

Identification and Classification

In the last phase, DeepRefiner identifies uncertain applications from unknown ap-

plications, and classifies the rest of applications into malicious or benign according

to the input X-dimension XML Vectors.

Model Design. Before introducing the details of model architecture, we first present

the critical points of the model design. As illustrated in Figure 4.3, DeepRefiner

builds the first detection model composing of multiple hidden layers followed by a

Softmax layer. In order to precisely process XML Vectors and perform automatic

feature engineering, DeepRefiner applies Multilayer Perceptron (MLP) [58] with

multiple hidden layers as the deep neural network used in the first detection layer.

The fully-connected structure of MLP is particularly suitable for processing XML

Vectors that have no sequential information among them. In particular, the multiple
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Figure 4.3: Identification and Classification Phase in the First Detection Layer of
DeepRefiner

hidden layers of MLP are designed to perform automatic feature selection through

non-linear transformation [50]. After the process of MLP hidden layers, the result-

ing Hidden Vector, which encodes automatically engineered features, is passed to

a Softmax layer. The relationships among automatically engineered features are

detected and used for classification by the Softmax layer.

Model Architecture. The first detection model takes each XML Vector along with

an activation function as input. Due to the fully-connected structure of MLP, ev-

ery neuron (or, node) in previous layer connects with a certain weight and bias

to every neuron in the following layer. At the last MLP hidden layer, the input

X-dimension XML Vector is represented as an M-dimension Hidden Vector along

with calculated weights and biases, where M is the number of neurons in the

last MLP hidden layer. Given the generated M-dimension Hidden Vector of an ap-

plication as input, the Softmax layer adds up the calculated weights and biases

of this application, and normalizes the calculated results into predictive probabili-

ties, PMalicious and PBenign, by assigning a probability to each class (i.e., malicious or
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benign). In particular, the Softmax layer takes the option that has higher probability

as the classification result.

However, in the case that the input XML Vectors do not provide sufficient infor-

mation for classification, the Softmax layer might generate relatively low PMalicious

and PBenign, and outputs unreliable classification result. In order to provide reli-

able detection result, DeepRefiner adds a threshold on top of the Softmax layer and

introduces a temporary label called uncertain.The process is as follows:

Label =



Uncertain ifmax(PMalicious, PBenign) < threshold

Malicious elif(max(PMalicious, PBenign) ≥ threshold)

and(PMalicious > PBenign)

Benign else

The uncertain applications are the ones that DeepRefiner cannot reliably clas-

sify according to their xml values in the first detection layer, and thus require further

inspection from different perspectives. The threshold is set to 1.00 through most of

this work. Tuning of this threshold is discussed in Section 4.3. As shown in our

experiments, DeepRefiner at the first layer identifies a small portion (i.e., 26.5%) of

applications in the dataset as uncertain, and effectively classifies the rest of applica-

tions into malicious or benign with a high accuracy.

4.2.3 The Second Detection Layer

In the second detection layer, DeepRefiner performs refined classification for

uncertain applications identified in the first detection layer according to bytecode

semantics at both method-level and application-level. The second detection layer

also consists of three phases, including Bytecode Preprocessor, Bytecode2Vec and

Classification.
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Bytecode 

1 .class public Lcom/hello/Main; 

2 .super Landroid/app/Activity; 

3 .source “Main.java” 

4 .method public onCreate(Landroid/os/Bundle;)V 

5         .locals 1 

6         .parameter “saveInstanceState” 

7         invoke-super {p0,p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V 

8         const/high16 v0, xxx 

9         invoke-virtual {p0, v0}, Lcom/hello/Main;->setContentView(I)V 

10         return-void 

11 .end method 

Simplified Bytecode 

1 .class public Lcom/hello/Main; 

2 .super Landroid/app/Activity; 

3 .source “Main.java” 

4 .method public onCreate(Landroid/os/Bundle;)V 

5         .locals 1 

6         .parameter “saveInstanceState” 

7         invoke_ Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V 

8         const_xxx 

9         invoke_Lcom/hello/Main;->setContentView(I)V 

10         return 

11 .end method 

Figure 4.4: Example of Input and Output of Bytecode Preprocessor

Bytecode Preprocessor

In Bytecode Preprocessor, apk files are disassembled and dex bytecode is obtained

by directly decompiling classes.dex file using apktool [114]. Dex bytecode contains

more than 200 dex instructions, while a majority of dex instructions are similar with

little differences, such as number of bits reserved for operands and operand type in

operators. Although dex instructions provide detailed information to the mobile de-

vice, they significantly increase the complexities of bytecode analysis. Simplifying

dex instruction is widely used as a preprocessing step of bytecode analysis, such

as information flow tracking [105], dex bytecode symbolic execution [62], and call

graph generating [46]. As a result, DeepRefiner then performs lightweight prepro-

cessing by replacing the original dex instructions with fifteen instruction categories

as given in [46].

As shown in Figure 4.4, two similar dex instructions invoke-super

{p0,p1} and invoke-virtual {p0,v0} are replaced with the same dex in-

struction category invoke. In particular, DeepRefiner only simplifies bytecode

instructions without removing any other information, such as class names, super-

54



class names, implemented interfaces, fields, and methods.

Bytecode2Vec

Hidden Layer

Output Layer

V V V

...

C = Window Size

K = Bytecode Vector Size

V = Bytecode Vocabulary Size

Bi = ith bytecode in Bytecode Vocabulary

Bi,1 Bi,2
Bi,2C

WV× K
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Figure 4.5: Bytecode2Vec consists of three steps: (1)Bytecode Pairing; (2) Skip-
Gram Modeling; (3) Bytecode Vector Representation

In this phase, DeepRefiner represents each line of simplified bytecode with

a dense and real-valued Bytecode Vector, which captures bytecode semantics by

tracking its contexts within its method. For a target line of bytecode, its context is

the nearby bytecode within a chosen window size in the same method. As shown

in Figure 4.5, Bytecode2Vec consists of three steps, including Bytecode Pairing,

Skip-Gram Modeling, and Bytecode Vector Representation.

Bytecode Pairing. DeepRefiner firstly builds a Bytecode Vocabulary ac-

cording to unique bytecode obtained from known applications, and generates byte-

code pairs by pairing the target bytecode with its contexts. LetBi be the ith bytecode

in Bytecode Vocabulary, and C be the chosen window size. For the target bytecode

Bi, its context is the nearby bytecode {Bi,1, Bi,2, ..., Bi,2C} including C lines of byte-

code ahead and C lines of bytecode behind. Accordingly, DeepRefiner generates

2C bytecode pairs by pairing Bi with each bytecode in its context. Since some lines

of bytecode, such as class names, superclass names, and filed names, do not belong

to any method, DeepRefiner treats these bytecode as an individual method, and gen-

erates bytecode pairs accordingly. Note that, DeepRefiner chooses method as the
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granularity of generating bytecode pairs, since method-level bytecode semantics are

more resilient towards typical obfuscation techniques [61].

Skip-Gram Modeling. With the generated bytecode pairs, DeepRefiner then builds

a Skip-Gram neural network [78] by taking each bytecode pair as a training in-

stance. Bytecode in the training instance is one-hot encoded and represented as a

V-dimension vector with a value one at the index corresponding to the bytecode and

zeros in all other indexes, where V is the size of Bytecode Vocabulary. In particu-

lar, with Bi as input and its context {Bi,1, Bi,2, ..., Bi,2C} as output, the Skip-Gram

neural network projects input and output into an embedding space so as to learn the

appropriate representation for each bytecode as a dense vector.

After training the Skip-Gram neural network with bytecode pairs, DeepRefiner

obtains a V×K weight matrix W between the input layer and the hidden layer, where

V is Bytecode Vocabulary size and K is Bytecode Vector size set by DeepRefiner. In

particular, the weight matrix W contains the vector encodings (i.e., Bytecode Vec-

tors) of all bytecode in Bytecode Vocabulary as its rows. For example, Bytecode

Vector of Bi is the ith row in W. The weight matrix W is then applied as the Byte-

code Lookup Table to search for Bytecode Vector given a bytecode in the Bytecode

Vocabulary.

More importantly, the generated Bytecode Vectors encode method-level byte-

code semantics. If two different bytecode have similar contexts or perform

similar functionalities, they are represented by similar Bytecode Vectors and

should be treated similarly by the detection model, which is significantly differ-

ent from existing works. For example, malware often uses getDeviceId()

and getScriberId() in a sequence before sending out sensitive informa-

tion. As shown in our experiments, the similarity score between the Byte-

code Vectors of getDeviceId() and getScriberId() is 0.94, while

the similarity score between getDeviceId() and an irrelevant bytecode

WebChromeClient.onRequestFocus() is -0.24.

Bytecode Vector Representation. For each line of bytecode included in an appli-
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cation, DeepRefiner retrieves the corresponding row from Bytecode Lookup Table

as its Bytecode Vector, and represents each application as a variable-length Byte-

code Vector Sequence {BV1, BV2, ..., BVn} by combining the Bytecode Vectors ac-

cording to the original bytecode sequence in the source code, where BVi is a K-

dimension Bytecode Vector and n is the number of bytecode lines in source code.
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Figure 4.6: Classification Phase in the Second Detection Layer of DeepRefiner

Classification

In the last phase, DeepRefiner performs refined inspection on top of Bytecode Vec-

tor Sequences, and detects malware from uncertain applications.

Model Design. DeepRefiner builds the second detection model composing of mul-

tiple stacked LSTM hidden layers followed by a Max pooling layer and a Softmax

layer as illustrated in Figure 4.6. For modelling variable-length Bytecode Vector Se-

quence with sequential information, DeepRefiner chooses Long Short Term Mem-

ory [56] over traditional Recurrent Neural Networks (RNN) since LSTM mitigates

the gradient vanish problem of RNN. In particular, LSTM introduces a new struc-

ture called memory cell. A memory cell is composed of four main elements: an

input gate, a neuron with a self-recurrent connection, a forget gate and an output
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gate. The gates allow the memory cell to store and access information over long

periods of time without the loss of short time memory. This structure is especially

effective in capturing application-level bytecode semantics without losing method-

level semantics. Similar as in the first detection layer, automatic feature engineering

is conducted by multiple LSTM hidden layers. Specially, DeepRefiner includes a

Max pooling layer between the last hidden layer and the Softmax layer. Using Max

pooling allows an input Bytecode Vector Sequence with arbitrary length to be rep-

resented by a fix-length hidden vector. Max pooling also helps the Softmax layer to

focus on certain bytecode combinations that are most relevant to the final classifi-

cation task.

Input Layer. As described in Section 4.2.3, each uncertain application is repre-

sented by a Bytecode Vector Sequence {BV1, BV2, ..., BVn}, where n is the se-

quence length. Since the length of Bytecode Vector Sequence are variable in dif-

ferent applications, the second detection model firstly pads short Bytecode Vector

Sequences with several K-dimension Bytecode Vector of zeros in the input layer to

reach the longest length. As a result, the input of detection model is a Bytecode

Vector Sequence {BV1, BV2, ..., BVL}, where L is the length of longest Bytecode

Vector Sequence in the dataset.

Stacked LSTM Hidden Layers. LSTM hidden layers in the second detection

layer are connected and process the input sequence in forward direction. Dur-

ing the process, each LSTM hidden layer produces a Hidden Vector Sequence

{HV1, HV2, ..., HVL}, where HVi is an H-dimension hidden vector and H is the

hidden size of current hidden layer. The output of the previous LSTM hidden layer

is taken by the following LSTM hidden layer as input. Stacked LSTM hidden lay-

ers are used to build up historical information about the input Bytecode Vector Se-

quence, and iteratively update it to learn the bytecode semantics at application-level.

Finally, the Hidden Vector Sequence produced by the last LSTM hidden layer is fed

into Max pooling.

Max Pooling and Softmax Layer. From the input Hidden Vector Sequence, Max
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pooling extracts maximum values and generates an H-dimension vector as the final

hidden representation for the input Bytecode Vector Sequence. At the end of the

detection model, the Softmax layer is used to perform the classification task on

the hidden representation, and outputs predictive probabilities for each uncertain

application based on calculated weights and biases.

As shown in our experiments, with Bytecode Vector and LSTM precisely cap-

turing bytecode semantics at different level, DeepRefiner understands the bytecode

semantics of uncertain applications in a more comprehensive manner. As a result,

DeepRefiner then produces accurate prediction results for uncertain applications,

which are challenging for DeepRefiner to classify correctly in the first detection

layer.

4.3 Experiments

DeepRefiner’s detection performance is empirically evaluated with a series of

experiments. We describe experimental settings in this section and report the eval-

uation results along with detailed analysis in Section 4.4.

4.3.1 Data Collection

We built an initial benign dataset by crawling GooglePlay from March 2016 to May

2016. To exclude potential malware from this initial dataset, we sent each applica-

tion to VirusTotal [111], which is an antivirus service with over fifty antivirus scan-

ners. We discard applications from the original benign dataset if any anti-virus scan-

ner raises alarm for it so as to generate the benign dataset, which consists of 47,525

benign applications. The malicious applications came from VirusShare [109] and

MassVet [25]. Duplicated applications were removed if they share the same SHA-

256 hash values. The final malicious dataset includes 38,074 malware before 2015

and 24,841 malware from 2015 to 2016. Same datasets are used to evaluate Deep-
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Refiner, StormDroid, and anti-virus scanners in the experiments. DeepRefiner is

evaluated with a relatively large dataset since DeepRefiner requires a large number

of training applications in order to fine-tune parameters in the deep neural networks

and generate mature detection models to effectively detect malware from testing

applications.

4.3.2 Measurements and Metrics

We conduct a series of experiments using ten-fold cross validation to

measure the performance of DeepRefiner. The dataset including 110,440 applica-

tions is shuffled and randomly divided into ten equal-size subsets. Since hyperpa-

rameters (e.g., learning rate, batch size and hidden size) have significant influences

on deep neural networks’ performance, it is inappropriate using one testing dataset

for both hyperparameter selection and evaluation. This is because the trained neu-

ral network could be over-fitted and might perform poorly on other new datasets

besides certain testing dataset. Simply choosing nine subsets for training and the

remaining subset for testing is not applicable in our experiments.

To prevent over-fitting and provide fair experimental environment, DeepRefiner

is trained and tested in ten rounds. In each round, we choose eight subsets as training

set, one subset as validation set, and the remaining subset as testing set. Validation

set is used to select hyperparameters for deep neural network. After that, a detec-

tion model is trained with the training set and the selected hyperparameters. Testing

set is then used to evaluate the detection performance of the detection model. Espe-

cially, since DeepRefiner includes two detection models and performs refined detec-

tion in a pipeline process, most applications in testing set will be reliably classified

by the first detection model, and only a small portion applications will be identified

as uncertain and go through the second detection model. As a result, the first detec-

tion layer is evaluated with the original testing set, while the second detection model

is evaluated using the uncertain applications identified from the original testing set.
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We repeat the process ten times and get detection result for every application in our

dataset.

We evaluate the performance of DeepRefiner using three metrics, True Positive

Rate (TPR), False Positive Rate (FPR), and Accuracy, where TPR is the percentage

of malware being detected correctly, FPR is the percentage of benign applications

being detected as malware, and Accuracy is the percentage of all applications being

classified correctly in our experiments.

4.3.3 Parameter Tuning

We now present the tuning process of parameters which have influences on the

performance of DeepRefiner.
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Figure 4.7: Distribution of Uncertain Applications over Different Uncertain Thresh-
old Value

Threshold Tuning

For most of our experiments, we choose the threshold value in such a way that

the first detection layer identifies as many uncertain applications as possible. As

a result, the threshold is set to 1.00. For DeepRefiner users who wish to have a

lower amount of uncertain applications may choose a lower threshold at the range

of [0.50, 1.00].
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In Figure 4.7, we present the distribution of uncertain applications under differ-

ent threshold values. The number of uncertain applications is stable when threshold

is changed from 0.60 to 1.00, and reaches the maximum value when threshold is

set to 1.00. Since the largest value of PMalicious and PBenign must be in the range of

(0.50, 1.00], the first detection layer identifies zero uncertain application when the

threshold is set to 0.50. In this case, DeepRefiner relies on only the first detection

layer to generate final detection results for all unknown applications.

Surprisingly, for each threshold value, the first detection layer identifies more

benign applications as uncertain than malicious applications, even though the

dataset contains more malicious applications than benign applications. One reason

is that xml patterns of benign applications are not straightforward compared with

xml patterns contained in malware. Benign applications tend to require more and

more xml resources commonly used by malware, but also include unique benign

elements. As a result, the first detection layer is confused by benign applications’

behaviors only according to their xml values. The effects of different threshold

values are analyzed in details in Section 4.4.

Hyperparameter Tuning

In the first detection layer and the second detection layer, weights and biases

of MLP and LSTM are initialized and optimized end-to-end with Stochastic Gradi-

ent Decent [17] and backpropagation [98] with shuffled mini-batches in the training

phase, and used for detection afterwards. The learning rate of each parameter is au-

tomatically scheduled by Adam method [67], with the initial learning rate of 0.001

and a decay ratio of 0.95 for each iteration. The remaining hyper-parameters, such

as number of hidden layers, mini-batch size, hidden size, Bytecode Vector size, are

fine-tuned and set empirically with the ideal values by evaluating with the validation

set.

According to the resulting values, the detection model in the first detection layer

is set to include three MLP hidden layers with 3,000 neurons in each hidden layer,
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while the second detection model is set to contain three stacked LSTM hidden layers

with 20 as the hidden size for each hidden layer. For both MLP and LSTM, the

mini-batch size is set to 100.

For Bytecode2Vec in the second detection layer, the Bytecode Vector size and

window size are set in such a way to strike a balance between efficiency and ef-

fectiveness. Although larger Bytecode Vector size and window size allow Byte-

code Vector to include more comprehensive method-level bytecode semantics, they

also significantly increase the computing complexities of Skip-Gram modeling and

detection model training. Due to such consideration and experimental evaluation,

Bytecode Vector size is set to ten and window size is set to five in our experiments.

The weights in Skip-Gram model are also initialized randomly at first and up-

dated by backpropagation in the training phase.

4.4 Evaluation

In this section, we present evaluation results along with detailed analysis of

DeepRefiner’s detection performance in each detection layer, robustness evaluation

against obfuscation techniques, and runtime performance.

4.4.1 Evaluation of the First Detection Layer

In the first detection layer, from the dataset of 110,440 applications, DeepRefiner

identifies about one fourth of applications as uncertain, including 16,644 uncer-

tain benign applications and 12,676 uncertain malicious applications. For the rest

81,120 applications, including 30,881 benign applications and 50,239 malicious ap-

plications, DeepRefiner achieves an accuracy of 98.32%, with a true positive rate of

98.33% and a false positive rate of 1.70%.
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False Positives

From 30,881 benign applications, DeepRefiner classifies 1.70% of them as mali-

cious. In particular, 75% of these false positives include less than 25 non-zero

values in their XML Vectors. Although these false positives are not identified as un-

certain, they still do not provide sufficient information to DeepRefiner. In addition,

these false positives include xml values that are usually observed in malware. For

example, more than 10% of false positives require permissions to read phone state,

access user location, write to external storage, and change phone settings. Some

false positives even require signature-level permissions or permissions not for use

by third-party applications. Similar as malware, some false positives also require

end users to input phone numbers and Credit Card number into text filed, and show

payment-related text to users. The xml patterns in these false positives are very

similar as malware, which is difficult for DeepRefiner to correctly classify them.

False Negatives

In the first detection layer, DeepRefiner generates prediction labels for 50,239 ma-

licious applications, while mistakenly labels 838 of them. After resending the 838

false negatives to VirusTotal, we discover that 6% of false negatives only receive

alarms from one anti-virus scanner. 63% of false negatives generated in the first

layer are adware, which are repackaged to include a bunch of advertisement li-

braries. The xml values of adware do not show significant differences from benign

applications’ xml values. For the rest of false negatives, we discover that most of

their XML Vector include insufficient information for DeepRefiner to provide cor-

rect detection.

Evaluation under Different Thresholds

We also evaluate the detection performance of the first detection layer under dif-

ferent threshold values and present the evaluation results in Table 4.1. When the
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threshold is set to 0.60, the first detection layer already achieves an accuracy of

97.51% and a false positive rate of 1.74%. The accuracy slightly increases from

97.51% to 98.32% when the threshold changes from 0.60 to 1.00. As shown in our

experiments, higher threshold may induce more uncertain applications, which helps

to filter out unreliable classification and results in better detection performances in

the first detection layer.

Table 4.1: Performance of The First Detection Layer under Different Threshold
Values

Threshold

Performance of The Number of

First Detection Layer Uncertain

Accuracy TPR FPR Applications

0.50 87.30% 86.91% 12.17% 0

0.55 92.80% 89.35% 2.36% 14745

0.60 97.51% 97.03% 1.74% 26351

0.65 98.14% 98.10% 1.79% 27925

0.70 98.15% 98.11% 1.79% 27948

0.75 98.15% 98.12% 1.79% 27960

0.80 98.16% 98.14% 1.79% 28014

0.85 98.17% 98.15% 1.79% 28063

0.90 98.19% 98.16% 1.78% 28131

0.95 98.21% 98.19% 1.76% 28278

1.00 98.32% 98.33% 1.70% 29320

The experimental results also show that the first detection layer alone (when

threshold is set to 0.50) produces reasonable yet not outstanding detection perfor-

mances, which demonstrates the necessities of introducing uncertain applications

and detecting malware according to comprehensive bytecode semantics as in the

second detection layer.

Case Studies of Identified Uncertain Applications

Since it is difficult to manually analyse all uncertain applications, we randomly

choose one round classification results obtained from the ten-fold cross validation
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to perform detailed analysis. In the chosen round, DeepRefiner identifies 3,116

uncertain applications, including 1,547 uncertain benign applications and 1,569 un-

certain malware.

Looking into these uncertain applications, we discover that information included

in their XML Vectors are insufficient for the first detection model to precisely cap-

ture their behaviors and perform reliable classifications. Specifically, after mapping

to the XML Vector space, 52% of the uncertain applications have less than 50 non-

zero values in their XML Vectors, while 27% of them have less than 10 non-zero

values.

In addition, we find that the differences between XML Vectors of uncer-

tain benign applications and uncertain malware are not significant. We anal-

yse the top 50 xml values included in uncertain benign applications and un-

certain malware, and discover that 44 of these popular xml values are shared

among uncertain applications. These shared xml values not only include sen-

sitive permissions such as android.permission.WRITE SETTINGS and

android.permission.MOUNT UNMOUNT FILESYSTEM , but also include

strings such as Cancel, Number and Settings.

Identifying some applications as uncertain does not mean that DeepRefiner can-

not provide accurate prediction results for them in the first detection layer. Actu-

ally, from the 3,116 uncertain applications, DeepRefiner correctly detects all of the

uncertain malware and several uncertain benign applications. Although these clas-

sification results are correct, we do not include them into the final prediction results

since the corresponding predictive probabilities are below the chosen threshold.

4.4.2 Evaluation of the Second Detection Layer

In the second detection layer, for 29,320 uncertain applications, DeepRefiner cor-

rectly classifies 96.14% of them, with a true positive rate of 96.47%.
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False Positives

From 16,644 uncertain benign applications, DeepRefiner mistakenly pre-

dicts 683 of them as malware. Most false positives include bytecode

to perform sensitive behaviors, such as reading SMS, making phone

calls or recording audio. In particular, a calender application fre-

quently records user’s location, reads user’s sensitive information and en-

crypts these information using TelephonyManager.getDeviceId(),

TelephonyManager.getScriberId(), and Cipher.getInstance()

in a sequence. This bytecode sequence is usually observed in malware, and thus

leading DeepRefiner labels this application as malicious. Furthermore, these false

positives also include advertisement libraries that are widely used in malware,

such as AdMob, InMobi, StartApp. These libraries usually require sensitive

permissions and leak user’s personal information such as device IDs, contacts and

location [132].

False Negatives

We also check the 448 malware missed by DeepRefiner in the second detection

layer. One half of these false negatives are adware and do not perform obviously

malicious behaviors, while the rest of false negatives perform malicious behaviors

regarding SMS and phone calls, such as blocking SMS from a specific phone num-

ber and placing calls to premium services.

In conclusion, DeepRefiner’s false positives are mainly benign applications that

behave similar as malware, while false negatives are malware that do not perform

clearly malicious behaviors.

4.4.3 Overall Evaluation

We evaluate the overall detection performance of DeepRefiner and compare it
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with a state-of-the-art research work StormDroid [26] and ten commercial anti-

virus scanners. We note that our dataset is significantly unbalanced along the time

line, with benign applications crawled from March 2016 to May 2016 and mal-

ware mainly downloaded before 2015. This unbalanced dataset poses challenges

to the malware detection systems which need to catch up with the rapid evolution

of both Android framework and malware. As shown in the experiments, DeepRe-

finer achieves reasonably superior performances when compared with the baseline

method and anti-virus scanners.

Table 4.2: Detection Performance of DeepRefiner and StormDroid

DeepRefiner
The First The Second

StormDroid
Detection Layer Detection Layer

Accuracy 97.74% 98.32% 96.14% 89.62%

TPR 97.96% 98.33% 96.47% 87.51%

FPR 2.54% 1.70% 4.10% 7.59 %

Comparison with StormDroid

We first compare the detection performance of DeepRefiner with StormDroid,

which detects malware using a fine-tuned SVM model trained with sensitive permis-

sions and sensitive API calls according to a pre-determined feature set. As shown in

Table 4.2, DeepRefiner achieves an accuracy of 97.74%, roughly 10% higher than

StormDroid, with a lower false postive rate. The superior performance of DeepRe-

finer results from automatic feature engineering and the collaboration of multiple

detection layers to capture malicious behaviors from different perspectives.

Since both StormDroid and the first detection layer of DeepRefiner retrieve per-

missions during detection, we also compare their detection performance. As shown

in Table 4.1, the first detection layer is used to classify all unknown application

when the threshold is set to 0.50. Evaluated with the same dataset, the first detec-

tion layer produces reasonable detection performances with an accuracy of 87.30%

and a true positive rate of 86.91%. By only looking into xml files, the first detection
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layer achieves comparable detection performances with StormDroid, which extracts

carefully-selected features from permissions and sensitive APIs that are commonly

used by malware. These carefully-selected features benefit StormDroid in such a

way that StormDroid does not need to process raw data with a lot of noises as the

first detection layer does.

More importantly, conducting detection according to xml files not only helps the

first detection layer achieve comparable performance, but also speeds up the detec-

tion process. For an unknown application, StormDroid takes on average 1.2s [26] to

generate detection result, while the first detection layer only requires less than 0.22s

as shown in Section 4.4.5.

Comparison with Anti-virus Scanners

We also compare DeepRefiner against ten widely-used anti-virus scanners using the

same malicious dataset. The detection performance of each scanner is crawled from

the VirusTotal service [111].

DeepRefiner AVG F-Secure BitDefender McAfee Kaspersky Avast Qihoo-360 Symantec Microsoft Panda
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Figure 4.8: Detection Rate of DeepRefiner and Ten Anti-Virus Scanners

As shown in Figure 4.8, the detection rate (i.e., TPR) of anti-virus scanners

varies considerably. While the best scanner detect 91.4% of malware, some other

scanners discover less than 5% of malware. DeepRefiner provides a detection rate of

97.96% and outperforms all ten anti-virus scanners. By relying on human-crafted

signatures from known malware, these anti-virus scanners have limitations of de-
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tecting zero-day malware and perform less effective if extracted signatures cannot

catch up with the rapid evolution of malware. Different from human crafted sig-

natures, detection features in DeepRefiner are automatically generated according to

required xml resources and bytecode semantics included in applications, which are

proved to be effective than human engineered signatures.

4.4.4 Robustness

In this section, we first test the robustness of DeepRefiner against typical exist-

ing obfuscation techniques and show how resilient DeepRefiner is against various

obfuscation techniques. In addition, as a malware detection system applying deep

neural networks, we also test the robustness of DeepRefiner against adversarial sam-

pling.

Against Typical Obfuscation Techniques

Obfuscated malware poses challenges to malware detection systems. Malware de-

velopers apply obfuscation techniques to manipulate detection systems and evade

from detection by transforming malware in different forms but still with the same

behavior. For ease of use and without requiring comprehensive domain knowl-

edge about malware detection and Android system, most malware developers apply

typical obfuscation techniques which can be easily performed, such as Repacking,

Identifier Renaming and Data Encryption.

We apply DroidChameleon [94], a framework implementing eleven typical ob-

fuscation techniques, to 1,000 malicious applications randomly selected from our

malicious dataset. DroidChameleon generates 11,000 obfuscated malicious applica-

tions, which are then used as a new testing set to evaluate the robustness of DeepRe-

finer. Since DroidChameleon obfuscates malware by modifying bytecode without

changing meta-data stored in xml files, we evaluate the robustness of DeepRefiner
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with its second detection layer only.

Table 4.3: Detection Performance of DeepRefiner against Various Common Obfus-
cation Techniques

Obfuscation Techniques
DeepRefiner Performance

TPR FPR

Disassembling and Reassembling X 100% 0%

Class Renaming X 100% 0%

Method Renaming X 100% 0%

Field Renaming X 100% 0%

String Encryption X 100% 0%

Array Encryption X 100% 0%

Call Indirection 99.1% 0.9%

Code Reordering X 100% 0%

Junk Code Insertion X 100% 0%

Instruction Insertion X 100% 0%

Debug Information Removing X 100% 0%

Overall 99.92% 0.08%

As shown in Table 4.3, for ten out of eleven obfuscation techniques, DeepRe-

finer detects all 10,000 obfuscated malicious applications. For the 1,000 obfuscated

malicious applications generated by Call Indirection, DeepRefiner successfully de-

tects 99.1% of them, while misclassifies nine obfuscated malicious applications as

benign.

Since DeepRefiner does not detect malware according to the presence or ab-

sence of certain strings, APIs or methods, it is not vulnerable to the obfuscation

techniques such as Class Renaming, Field Renaming, Method Renaming, String

Encryption and Array Encryption. Interestingly, although DeepRefiner is based on

bytecode semantics observed from bytecode sequence, applying obfuscation tech-

niques, such as Disassembling and Reassembling, Code Reordering, and Junk Code

Insertion, to change bytecode sequence and/or insert bytecode sequences does not

affect DeepRefiner’s detection. The reason is that DeepRefiner detects malware ac-

cording to bytecode semantics at both method-level and application-level. For ex-

ample, Disassembling and Reassembling rearranges the classes order and methods
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order within the whole application without changing code order within methods. In

this case, DeepRefiner still can successfully detect obfuscated malware according

to stable method-level bytecode semantics.

Another interesting finding is that although both Call Indirection and Junk Code

Insertion introduce new pieces of code into obfuscated malware, DeepRefiner suc-

cessfully detects all obfuscated malware generated by Junk Code Insertion, while

misses nine obfuscated malicious samples generated by Call Indirection. After

manually checking these obfuscated malware, we find that the new bytecode seg-

ments inserted by Junk Code Insertion include goto, const/16, nop and

add-int. These bytecode segments are not closely related to malicious behaviors

and have no effect on bytecode semantics [95]. On the other hand, Call Indirection

introduces previously non-existing methods to break down original methods, which

might affect method-level bytecode semantics.

More importantly, unlike other obfuscation resilient detection systems which

require complicated feature extraction process to generate data dependence graphs

and information flows, DeepRefiner relies on lightweight process and automatic

feature engineering. The evaluation results also demonstrate the importance of ap-

plying both application-level and method-level bytecode semantics to detect obfus-

cated malware.

Against Adversarial Sampling

As shown in recent research works, deep neural networks are vulnerable to adversar-

ially crafted samples, which may fool deep neural networks to generate adversary-

desired misclassifications [88] [54] [89]. Different from crafting adversarial sam-

ples against image classification systems which are represented on a continuous

scale of real numbers, Grosse et al. [54] study the specialises of performing adver-

sarial crafting attacks on neural networks for malware detection, which is challeng-

ing due to the constraint of preserving the functionalities of adversarially crafted

applications. They propose additional constraints that appear in malware detection:
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(1) Individual features must be fully added or removed without gradually changes.

(2) The utility of the modified application must be preserved. (3) Only a restricted

amount of features should be added.

Following the constraints, Grosse et al. study the robustness of a typical deep

neural network for malware detection which is designed by them, where adversaries

craft adversarial samples by adding features (including hardware components, per-

missions, components, and intents), to AndroidManifest.xml file. In particular, they

study the effectiveness of three defensive approaches, including (1) feature reduc-

tion, (2) distillation, and (3) re-training with adversarially crafted samples. Their

defensive approaches can be similarly applied to the first detection layer of Deep-

Refiner, which relies on AndroidManifest.file and other xml files for malware de-

tection.

For the second detection layer, we conduct preliminary research on the robust-

ness of DeepRefiner following the three constraints of crafting adversarial samples

given by Grosse et al. After adding a restricted amount of junk code into malware

without changing its functionalities, our experimental results show that DeepRefiner

accurately detects modified malicious applications which are added with 400% of

junk code. We plan to conduct in-depth study on other approaches to craft adver-

sarial samples targeted on the second detection layer of DeepRefiner in the near

future.

4.4.5 Runtime Evaluation

As the above evaluation has shown the effectiveness of DeepRefiner, we now

evaluate the computational overhead incurred by each phase of DeepRefiner. We

run the experiments for preprocessing and vector representation on a desktop with

4×3.2GHz Intel-Core and 12 GB of RAM, and conduct the experiments for classi-

fication on a desktop with 16GB GPU.

73



On the large dataset, training the detection models takes about ten minutes

and one hour for the first detection layer and the second detection layer, respec-

tively. Although applying deep learning algorithms to train detection models is

time-consuming than applying traditional machine learning algorithms (such as

SVM and Decision Trees), the trained detection model is capable of performing

automatic feature engineering and has outstanding performances of processing raw

data with a lot of noises (as shown in Section 4.4.3). In other words, existing de-

tection systems using traditional machine learning algorithms are faster in training

models than DeepRefiner, but spend more time to extract useful features from each

application during training phase and detection phase.

Table 4.4: Average Time for Processing an Application to Generate Detection Re-
sult

The First Detection Layer

XML XML Vector Identification &
Overall

Preprocessor Representation Classification

0.17s 0.05s 2× 10−5s 0.22s

The Second Detection Layer

Bytecode
Bytecode2Vec Classification Overall

Preprocessor

2.09s 0.33s 1.64× 10−4 2.42s

Table 4.4 shows the average time of processing an unknown application to gen-

erate detection result in our experiments. The performance bottleneck is at the Byte-

code Preprocessor. Although the process of Bytecode Preprocessor is lightweight,

it takes more time than other phases since there are too many lines of bytecode in

apk files.

Overall, for an unknown application, DeepRefiner takes on average 0.22s to fin-

ish the entire process in the first detection layer to identify uncertain applications

and generate final detection results for most of unknown applications (about 74%).

For the identified uncertain applications, DeepRefiner takes on average 2.42s to gen-

erate the final classification results according to both method-level and application-
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level bytecode semantics. Although DeepRefienr spends more time in the second

layer, its detection is much faster than some detection methods [120] [76], which

take about 30s to process an unknown application by applying complicated feature

extraction process.

In conclusion, by distinguishing the complexities of applications and applying

automatic feature engineering, DeepRefiner takes on average 0.22s to provide re-

liable detection results for most of unknown applications, while spends 2.64s to

accurately detect malware from uncertain applications.

4.5 Limitations

As a detection system applying static analysis, DeepRefiner suffers from

the inherent limitations from static analysis and might fail to detect malicious

behaviors which are loaded and executed at runtime. Although DeepRefiner

could capture triggers about such behaviors when java.lang.reflect and

DexClassLoader are used in bytecode, this limitation encourages us to incorpo-

rate dynamic analysis as new detection layers in future versions of DeepRefiner.

DeepRefiner may make ambiguous predictions after operating for a period of

time unless it is updated with new labeled applications. A promising direction in

this area is to applying online learning techniques to speed up the update process [6].

Another limitation is inherited from automatic feature engineering. Although

automatic feature engineering does not rely on expert domain knowledge and com-

plicated feature extraction, it generates detection features that are not straightfor-

ward for human to understand. We plan to understand generated detection fea-

tures and make classification decisions interpretable by visualizing deep neural net-

works [134].
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4.6 Related Work

Over the past few years, Android malware detection has attracted extensive at-

tentions in both academia and industry. In this section, we mainly review learning-

based mobile malware detection systems which are more relevant to DeepRefiner.

A small portion of existing works integrate several classifiers to detect malware

in different manners compared with DeepRefiner. Smutz and Stavrou [104] apply

an ensemble classifier consisting of many basic classifiers. They perform a diver-

sity analysis to detect unreliable prediction results, and retrain their classifiers with

unreliable observations so as to improve classifier accuracy. The basic classifiers

are independent to each other, while the two detection layers in DeepRefiner are

complementary. For unreliable observations captured in the first detection layer,

DeepRefiner feeds them into the second detection layer for further inspection.

DroidSIFT [127] extracts weighted contextual API dependency graph and con-

structs feature sets accordingly. With graph-based feature vectors, DroidSIFT builds

two classifiers, while the first classifier discovers zero-day Android malware, and

the second classifier uncovers the family of detected malware. Unlike DroidSIFT,

the second detection layer in DeepRefiner is used to perform refined detection over

uncertain applications, instead of identifying malware families.

RiskRanker [53] includes two risk analysis modules, while the first-order analy-

sis module sifts through untrusted applications and exposes risky applications, and

the second-order analysis module identifies applications with encrypted native code

and dynamic code loading. RiskRanker detects malware according to certain be-

haviors, while DeepRefiner is a learning-based detection system without human

engineered features.

Different from DeepRefiner, most learning-based mobile malware detection sys-

tems rely on single classifier trained with human engineered features. A list of ex-

amples is given below. MAMADROID [76] builds a behavioral model from the
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sequence of abstracted API calls performed by an application, and uses it to extract

features and perform classification. DroidMiner [123] extracts sensitive API call

graphs as detection features, while DroidAPIMiner [2] extracts relevant features

at API level, and builds a detection model using the generated feature set. Gas-

con et al. [46] generate function call graphs for Android applications, and build a

detection model relying on embedded function call graphs. DroidMat [117], Storm-

Droid [26] and Drebin [10] use not only sensitive API calls but also other informa-

tion extracted from AndroidManifest.xml file as detection features and train single

classifiers afterwards. ICCDetector [120] builds a malware classifier according to

ICC-related information included in applications. DRACO [13] and MARVIN [74]

utilize static analysis and dynamic analysis to extract features from pre-determined

feature categories, and train a detection model afterwards. MASK [23] statically

analyzes attributes (including permssions, intent filters,and presence of native code)

extracted from applications, and trains a detection model for detecting malware. Fi-

nally, Crowdroid [20] relies on crowdsourcing to get system calls from real users,

and creates an anomaly model according to system call vector clusters.

The increasing complexity of Android malware calls for new defensive tech-

niques that are harder to evade. To this end, some efforts are made to detect mobile

malware using deep neural networks. For example, DroidDetector [126] and Droid-

Sec [125] build Deep Belief Networks to detect Android malware relying on 192

human engineered features, including required permissions, sensitive API calls, and

some dynamic behaviors obtained from DroidBox [35]. Deep4maldroid [60] ex-

tracts Linux kernel system calls and constructs the weighted directed graphs which

are then used to train deep neural networks. Mclaughlin et al. [77] produce a deep

neural network-based detection system only according to 218 dex instructions of

applications. Although these systems apply deep neural networks, they still rely

on features pre-determined by domain experts, such as required permissions and

sensitive API calls. Different from these existing works, DeepRefiner combines

several detection models in a complementary way and relies on automatic feature
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engineering without domain knowledge about malware detection. Furthermore, in-

stead of using one-hot or boolean vector representations, DeepRefiner represents

applications with dense Bytecode Vector Sequences in the second layer.

Towards automatically engineering features for malware detection, Feature-

Smith [131] mines the scientific literatures written in natural language to generate

features that are semantically related to malicious behaviors, while DeepRefiner

learns detection features from xml files in the first layer and dex bytecode in the

second layer.

Some recent works study the robustness of deep neural networks against ad-

versarial crafting. Papernot et al. [88] formalize the space of adversaries against

deep neural networks and introduce a class of algorithms to craft adversarial sam-

ples. In an application to computer vision, they show that the proposed algorithms

can produce adversarial samples and bypass deep neural networks. As a defen-

sive mechanism, Papernot et al. [89] introduce defensive distillation to reduce the

effectiveness of adversarial samples on deep neural networks. Grosse et al. [54]

investigate adversarial crafting attacks to Android malware detection, and propose

defensive mechanisms to thwart the attacks.

Enormous signature-based detection methods have been proposed in the litera-

ture for detecting malicious mobile applications. For example, Kirin [41] detects

malware based on required permissions which break certain pre-defined security

rules. Since they are not closely related to this work, we refer readers to a survey [3]

for more details.

4.7 Conclusions

This work presented DeepRefiner, an Android malware detection system com-

bining multiple detection layers in complementary way to provide refined detec-

tion. To catch up with the rapid evolution of both Android system and malware,
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DeepRefiner removes laborious human feature engineering and complicated feature

extraction from the process. It applies two different detection layers, where the

first detection layer achieves efficient detection according to xml files and the sec-

ond detection layer performs effective and robust detection based on comprehensive

bytecode semantics at different scales. The robustness of DeepRefiner against typi-

cal obfuscation techniques and adversarial samples is evaluated and demonstrated in

our experiments. In the future, we plan to apply DeepRefiner to detect new malware

in various application markets and include more detection layers, such as dynamic

analysis layer, to better capture and understand malware behaviors.
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Chapter 5

DroidEvolver: Self-Evolving and

Scalable Malware Detection System

5.1 Introduction

Android malware running on most mobile devices severely violates end users’ secu-

rity and privacy. As Android framework evolves over years, so do benign applica-

tions and malware. Both benign applications and malware target at newer Android

versions with the updated APIs and features [105]. As a result, it becomes increas-

ingly difficult to build detection systems that are trained with older applications

(both benign and malicious) and make outstanding performance when faced with

modern applications after operating for long periods of time.

Rapid-aging detection system is a huge concern in both industry and research

area. As shown by Baidu in BlackHat 2016 [71], the recall rate of their detection

model trained on January 2016 drops by 7.6% in only six months. Without the

ability of self-learning, Baidu’s detection model requires continuous retraining with

labeled applications. As in research area, most existing detection systems need to

periodically retrain their detection models with labeled applications.

These solutions, however, face several challenges. First of all, it is difficult to

manually decide when to retrain detection models. If the model is retrained too
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frequently, there will be little novelty in the information obtained to enrich the de-

tection model; otherwise, the detection model cannot capture some emerging threats

in a timely way. In addition, the retraining process requires manual labeling of all

the processed applications, which is constrained by available resources. Requiring

manual labeling also induces to a loose retraining frequency [100], which results

in periods of time where the model cannot be trusted and might be bypassed by

malware. Last but not least, the retraining process is performed by cumulating orig-

inal training dataset with newly labeled applications. Consequently, the retraining

process is expensive and unscalable, especially in the scenario where the number of

new applications grows rapidly from time to time.

While facing the challenges, we propose a novel malware detection system for

Android that relies on the ability of self-evolving and real-time update to achieve

both effective and scalable detection over time. The proposed system, DroidE-

volver, automatically and efficiently updates itself to adapt to new changes discov-

ered from both Android framework and applications without requiring true labels

of applications.

DroidEvolver maintains a model pool, which includes several detection models

trained with different learning algorithms, to detect malware based on API calls.

The intuition is that different detection models are less likely to be outdated at the

same time even they are initialized with same training dataset.

Upon processing every new application, DroidEvolver generates a Juvenilizing

Indicator. The indicator is generated by calculating the distances between the new

application and other processed applications after mapping them into the feature

space corresponding to each detection model according to extracted API calls. The

distance represents the similarity between the new application and other processed

applications. A small Juvenilizing Indicator value indicates that this new applica-

tion has few common features with processed applications and will be identified as

drifting application.

The model processing drifting application is identified as aging model. Both
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feature set and model structure of aging model have limitations of representing the

identified drifting application. As a result, the identification of drifting applications

and aging models indicates that these aging models might generate ambiguous pre-

dictions and need to be updated by learning from drifting applications. The intuition

is that drifting applications usually include API changes, which reflect application

evolvement and Android evolvement.

Furthermore, instead of requiring true labels of applications, DroidEvolver uses

pseudo labels generated by the model pool along with the corresponding drifting

applications to update aging models in order to improve predictions in the future.

Specially, when aging models are identified from the model pool, these aging mod-

els are not allowed to perform classification for application. The model pool then

generates the final detection results through weighted voting by young models. For

drifting applications, the detection results then used as pseudo label for aging model

update. If no aging model is identified, all models contribute to the final detection

result without further update.

To achieve effective and scalable detection over time, the aging model needs to

automatically and quickly adapt to new changes in drifting applications. To this

end, all detection models included in the model pool are initialized and updated

with online learning algorithms, which perform incremental training over streaming

data in a sequential manner. In contrast to batch learning algorithms (e.g., SVM,

Decision Trees), online learning algorithms are not only more efficient and scalable,

but also able to avoid expensive retraining cost when handling new labeled data.

Furthermore, with the ability of learning from drifting applications, DroidEvolver

fine-tunes itself during detection and automatically adapts to new changes over time.

To provide detailed evaluation, we carefully build a dataset, including 34,722

malicious applications and 33,294 benign applications, which has fairly balanced

ratio between malicious applications and benign applications from 2011 to 2016.

To show the advantage of the whole system, we evaluate the detection perfor-

mance of DroidEvolver and compare it with a state-of-the-art detection system MA-
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MADROID [76]. MAMADROID builds a behavioral model by abstracting API

calls to their packages or families in order to maintain resilience to API changes.

Although MAMADROID makes efforts to achieve detection over time, it requires

Markov chain modeling and complicated feature extraction which is conducted in

static analysis such as those performed in Soot [107] and FlowDroid [11]. Further-

more, expensive retraining with manually labeled applications is also required to

update MAMADROID in order to detect new malware.

The comparison is evaluated from two perspectives. First of all, we test the

ability of detecting unknown malware from applications which are published in the

same year (i.e., when DroidEvolver and MAMADROID are trained and tested with

applications from same year). The detection accuracies of DroidEvolver are in the

range between 95.19% and 96.18% from 2011 to 2016, while MAMADROID’s

accuracies are in the range between 80.04% and 85.49%. More importantly, we

evaluate the ability of performing effective detection over the years (i.e., when

DroidEvover and MAMADROID are trained with older applications and tested with

newer ones). As shown in the experimental results, the accuracy of DroidEvolver

drops from 95.28% to 86.87% over five years (i.e., trained with applications from

2011 and tested with applications from 2016), while the accuracy of MAMADROID

drops from 80.04% to 58.03% over these years. The experimental results demon-

strate that DroidEvolver significantly outperforms MAMADROID without compli-

cated process.

DroidEvolver is not only effective, but also scalable in both training and detec-

tion. The training time required by DroidEvolver linearly varies from 3 seconds to

27 second when dataset size increases from 10,000 to 50,000. Under the same ex-

perimental setting, MAMADROID requires 26 seconds and 1,207 seconds to finish

training on 10,000 and 50,000 applications, respectively. Furthermore, DroidE-

volver takes on average 1.37 seconds to process an unknown application to generate

classification results and update itself if certain standards are satisfied, while MA-

MADROID requires 39.15 seconds to classify an unknown application.
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5.2 Overview of DroidEvolver

As depicted in Figure 5.1, DroidEvolver consists of two phases to achieve de-

tection over time. In the Initialization Phase, DroidEvolver extracts features from

applications with true labels (i.e., benign or malicious) to initialize the feature set

and the model pool. Specially, the model pool is initialized by learning from these

labeled applications using several online learning algorithms. Each online learn-

ing algorithm is applied to initialize one detection model. Both Feature Set and

model pool are transmitted to the next phase for classification and evolvement. In

the Detection Phase, DroidEvolver generates a Feature Vector for each unknown

application being detected, and feeds the Feature Vector into the model pool, which

outputs whether the detected application is benign or malicious. For applications

and models that satisfy update policy, DroidEvolver automatically updates models

and corresponding feature sets without requiring true labels of applications, and

applies the updated model pool and feature sets to perform classification for new

applications.
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Figure 5.1: Overview of DroidEvolver System
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5.3 Initialization Phase: Initialize with Labeled Ap-

plications

In the Initialization Phase, DroidEvolver initializes feature set and model pool

using training dataset. The Initialization Phase consists of four modules, including

Preprocessor, Feature Extraction, Vector Generation, and model pool Construction.

5.3.1 Preprocessor

In Preprocessor, DroidEvolver applies apktool [114] to decompile apk files of appli-

cation and obtain disassembled dex bytecode. Bytecode provides information about

API calls and data used in an application.

5.3.2 Feature Extraction

Disassembled Bytecode 

1 .class public Lcom/hello/Main; 

2 .super Landroid/app/Activity; 

3 .source “Main.java” 

4 .method public onCreate(Landroid/os/Bundle;)V 

5         .locals 1 

6         .parameter “saveInstanceState” 

7         invoke-super {p0,p1}, Landroid/app/Activity;->onCreate(Landroid/os/Bundle;)V 

8         const/high16 v0, xxx 

9         invoke-virtual {p0, v0}, Lcom/hello/Main;->setContentView(I)V 

10         return-void 

11 .end method 

Extracted Feature 

android.app.Activity: onCreate() 

Figure 5.2: Example of Input and Output of Feature Extraction

In Feature Extraction, DroidEvolver performs lightweight process to extract raw

Android API calls from disassembled bytecode. Specifically, for every application

includes API call from Android families, the included API call will be extracted

by DroidEvolver and treated as a detection feature. As the example shown in Fig-

ure 5.2, from a piece of disassembled bytecode, DroidEvolver extracts one unique

feature android.app.Activity: onCreate().
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DroidEvolver extracts Android API calls as detection features for the follow-

ing reasons. First of all, Android API calls allow application to access system

resources and provide valuable information about application behaviors. In ad-

dition, although Android API packages and classes change frequently in differ-

ent Android versions, API families are consistent. For example, at API level 1

(Android version 1.0 released in October 2008), Android includes 96 packages.

The package number increases to 196 at API level 27 (Android version 8.1 re-

leased in November 2017). However, in different Android versions, API package

and class changes do not affect API families, which include android, java,

javax, junit, apache, json, dom, xml corresponding to android.*,

java.*, javax.*, org.apache.*, org.json.*, org.w3c.dom.* and org.xml.* packages.

Extracting features according to family list instead of existing package list helps

DroidEvolver quickly adapt system changes. Last but not least, the feature extrac-

tion process is lightweight and efficient without requiring complicated static analy-

sis and/or dynamic analysis such as those performed in Soot [107], FlowDroid [11],

Epicc [82] and TaintDroid [39].

For all features extracted from training applications (including both benign and

malicious applications), DroidEvolver stores them in the initial feature set. Spe-

cially, although the feature set is fixed in the Initialization Phase and is shared by all

detection models in model pool, it will be automatically and separately updated to

include new features extracted from unknown applications for each detection model

during detection. As a result, the feature set is not fixed and the size of feature set

is not bounded in the Detection Phase.

5.3.3 Vector Generation

Next, DroidEvolver represents each application in training dataset as a feature vec-

tor. To this end, DroidEvolver defines a vector space according to the initial feature

set. If the size of initial feature set is X , DroidEvolver defines an X−dimension
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vector space accordingly. For each training application, DroidEvolver represents it

with a feature vector by mapping its extracted features to the X−dimension vector

space, such that for each feature the respective dimension is set to one and all other

dimensions are zeros.

5.3.4 Model Pool Construction

In this module, DroidEvolver initializes a model pool by learning from the feature

vectors of labeled applications applying several different online learning algorithms.

DroidEvolver utilizes the model pool instead of a single detection model for the

following reasons. First of all, a single detection model may not be able to provide

accurate responses for some observations due to its limited capability [104]. The

model pool discards single classifier’s bias and generates trustworthy predictions.

In addition, unlike traditional online learning models which require true labels of

applications for further update, DroidEvolver relies on the pseudo labels generated

by the model pool for self-evolve. The model pool contains several detection models

initialzed with different online learning algorithms to generate reliable pseudo labels

and direct DroidEvolver to evolve towards the right direction.

Online Learning Algorithms

Online learning algorithms operate sequentially to process one sample at a time.

The standard process of applying online learning for binary linear classifications is

described as following. Consider {(xt, yt)|t ∈ [1, T ]} be a sequence of training data

example, where xt ∈ Rd is a d-dimension vector and yt ∈ {+1,−1}. At each time

step t, the algorithm receives an incoming sample xt and then predicts its class label

ŷt:

ŷt = sgn(w.xt)

Afterwards, the true label yt is revealed and the learning algorithm suffers a loss
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lt(yt, ŷt). The hinge loss and logistic loss are commonly used for binary classifica-

tion:

lt(yt, ŷt) =

 max(0, 1− yt · ŷt) HingeLoss

log(1 + e−yt·ŷt) LogisticLoss

At the end of each learning step, the online learning algorithm decides when and

how to update the model. The update function is often dependent on gradient of the

weight vector w with respect to loss.

DroidEvolver applies LIBOL [57], a library for online learning algorithms,

which implements both first order learning [96] [30] and second order learn-

ing [37] [112] as shown in Table 5.1. Specifically, first order learning only ex-

ploits the first order information (i.e., mean of weight vector) and adopts the same

learning rate for all features, while second order learning aims to dynamically incor-

porate knowledge of observed data in earlies iteration to perform more informative

gradient-based learning.

Model Pool Initialization

Given the feature vectors generated from labeled applications (both benign and

malicious applications) as input, DroidEvolver applies online learning algorithms

mentioned above and outputs the initial model pool. These initialized detec-

tion models are linear classifiers which fit linear decision boundary (i.e., hyper-

plane) between benign applications and malware. Every model is a weight vector,

w = [w1, w2, ..., wd] , which indicates the weight (i.e., relative importance) of each

of the features used to generate prediction labels. The initial model pool is then

transmitted to the Detection Phase for classification and evolvement.
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Table 5.1: Online Learning Algorithms

First Order Learning

Perceptron [96] Update whenever a mistake is made
by the model in each iteration

OGD [133] Update the weight vector by apply-
ing the Gradient Descent principle

PA [30] Update the model by correcting
the prediction mistake and avoid
the new model deviating too much
from the existing one

ALMA [48] A large margin variant of the Per-
ceptron algorithm

RDA [119] Exploit the regularization structure
more effectively in a stochastic on-
line setting

Second Order Learning

SOP [22] Perform prediction using the cur-
rent instance in the correlation ma-
trix

CW [37] Exploit confidence of weights when
making updates in online learning
processes

ECCW [31] A variant of CW by solving CW’s
constraint

AROW [32] Perform adaptive regularization of
the prediction function upon seeing
each new instance and perform es-
pecially well in the presence of la-
bel noise

Ada-FOBOS [38] Incorporate knowledge of the ge-
ometry of the data observed in ear-
lies iterations to perform more in-
formative gradient-based learning

Ada-RDA [38] Modify the proximal function adap-
tively at each iteration
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5.4 Detection Phase: Classify and Learn from Un-

known Applications

In the Detection Phase, DroidEvolver performs classification for unknown ap-

plications and automatically updates itself to adapt to new features discovered from

unknown applications. The Detection Phase consists of four modules, including

Preprocessor, Feature Extraction, Vector Generation, and Classification and Evolve-

ment. Since the process of the first three modules follows the same steps described

in Section 5.3, this section focuses on the last module Classification and Evolve-

ment, which includes Drifting Application Identification, Classification and Pseudo

Label Generation, and System Update.

5.4.1 Drifting Application Identification: When to Evolve

Models that are built through training on older applications often make poor and

ambiguous decisions when faced with modern applications (i.e., applications with

new features). This phenomenon commonly known as concept drift. In order to

achieve effective detection over time, it is important to identify which application is

“modern” application and when the model shows signs of cannot handling “mod-

ern” application. In this work, DroidEvolver identifies applications that are different

from older applications as drifting applications. Furthermore, DroidEvolver iden-

tifies the model shows signs of failing to represent drifting applications as aging

model. The identification of drifting applications and aging models indicates up-

date is required to maintain effectiveness of the detection system.

DroidEvolver firstly measures the difference between a new application and a

group of processed applications with same prediction label (i.e., benign or mali-

cious) using an indicator. This indicator is called Juvenilizing Indicator (JI) in this

work. Let Xi be the Feature Vector of ith unknown application Ai given to DroidE-
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volver, Mj be the jth detection model in current model pool and Wj be the weight

matrix of Mj , the detailed operations of generating ξij for each Xi and Mj are as

follows:

App Buffer Construction

Since JI value calculation involves the comparison of unknown application and

other processed applications, and DroidEvolver is designed to handle large scale

of applications, it is expensive to generate JI value by comparing unknown appli-

cation with every processed application. As a result, DroidEvolver constructs an

App Buffer to store a subset of processed applications in order to not only speed up

the process, but also to be timely and relevant up to date. When App Buffer does

not exist at the beginning during detection (which means Xi is the first unknown

Feature Vector given to Mj), DroidEvolver initializes an App Buffer of size k,

B = {B1, B2, ..., Bk}, by randomly selects k Feature Vectors from training dataset.

To keep the existing App Buffer up-to-date, DroidEvolver randomly replaces one

Feature Vector in App Buffer each time when given a new unknown Feature Vector

Xi to maintain a functional App Buffer B = {Xi−1, B2, ..., Xi, ..., Bk}.

Distance Calculation

As illustrated in Section 5.3.4, Mj performs classification by computing a hyper-

plane represented by Wj . DroidEvolver calculates the distance from each object of

App Buffer to the hyperplane by Bt ×Wj , where Bt ∈ B. DroidEvolver then gen-

erates a Distance Set D = {DXi−1
, DB2, ..., DXi

, DBk}. Specially, Mj will predicts

applications as malicious if the distance is larger than zero and predicts the ones as

benign if the distance is less than zero.

JI Value Generation

It is inappropriate to compare new unknown application with processed applica-

tions without considering classes (i.e., malicious or benign). Due to the different
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functionalities performed by malware and benign applications, new malicious ap-

plication might be similar with known malicious applications while significantly

different from known benign applications. By taking prediction class into consider-

ation, the computation of ξij for Xi by Mj is shown in Equation (1). Here σ is an

indicator function, where σ(true) equals 1 and σ(false) equals 0.

ξij =



∑
Bt∈B

σ(xi×wj≥Bt×wj)∑
Bt∈B

σ(Bt×wj≥0)
if xi × wj ≥ 0

∑
Bt∈B

σ(xi×wj<Bt×wj)∑
Bt∈B

σ(Bt×wj<0)
else

(5.1)

For each unknown application Ai, DroidEvolver calculates the JI value cor-

responding to every model in the model pool and generates a JI Value Set

{ξi1, ξi2, ..., ξim} by following the operations described above.

It should be noted that the JI value is generated by calculating the distance of

a application from the model hyperplane since the models in the model pool per-

form classification based on a hyperplane. For other classification algorithms, the

calculation of JI might be different in order to adjust to the classification algorithms.

An unknown application is different from other processed applications if it is

too close or too far away from the hyperplane. The difference induces JI values

which are too large or too small (i.e., outliers). As a result, DroidEvolver employs

two thresholds, τ0 and τ1, to identify abnormal JI value. In this work, if a JI value

is in range of [τ0, τ1], the value is identified as valid; otherwise, it is identified as

invalid. The threshold values are chosen during Initialization Phase by computing

on the training dataset and are enforced on identification in Detection Phase.

For a new application Ai, it is identified as drifting application if its JI value

set {ξi1, ξi2, ..., ξim} includes invalid value. Certain model that corresponds to the

invalid JI value is identified as aging model accordingly.
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5.4.2 Unknown Application Classification & Pseudo Label Gen-

eration: What to Evolve With

For each new unknown application, the classification result is generated by detec-

tion models included in the model pool through weighted voting. Specially, if the

unknown application has been identified as drifting application in the first step, its

classification is performed by excluding aging models. The reason is that aging

models are the ones that cannot represent the drifting application and may make un-

reliable prediction results. Furthermore, the prediction label of drifting application

is also used as pseudo label for update. In the case that all models are identified

as aging models, DroidEvolver produces a prediction label for drifting application

through weighted voting of all aging models and skips the update step.

5.4.3 Aging Model Juvenilization: How to Evolve

The identification of drifting applications and aging models indicates that aging

models should be juvenilized for the following reasons. First of all, the differences

between drifting application and known applications may be caused by new features

or new patterns included in drifting application. It is thus important to include these

new features in order to keep the whole system up-to-date. In addition, the detection

capabilities of aging models are constrained by their “aging” feature set and model

structure. Aging models need update to keep functional in the future.

For each identified drifting application, DroidEvolver updates the identified ag-

ing model separately.

Feature Set

DroidEvolver automatically updates the current feature set of each aging model by

including new features extracted from drifting applications. These new features

usually indicates the trend of application evolvement and Android system evolve-

ment.

93



Model Structure

DroidEvolver then updates the model structure of each aging model using drifting

application and corresponding pseudo label as a new training sample. As described

in Section 5.3.4, after aging model generating prediction label ŷt for drifting appli-

cation xt, the pseudo label ytp is revealed and the classifier suffers a loss lt(ytp , ŷt).

At the end of update process, the online learning algorithm (which is used to ini-

tialize the aging model) decides when and how to update the aging model in order

to improve prediction in the future. By learning from drifting application, DroidE-

volver adjusts the model structure of aging model to adapt to new patterns observed

from drifting application.

The dynamic updating manner of both feature set and model structure helps

DroidEvolver rapidly capture changes in both applications and Android system.

With the ability of adapting itself to new changes and trends, DroidEvolver achieves

detection overtime.

5.5 Experimental Settings and Parameter Tunning

DroidEvolver’s detection performance is empirically evaluated with a series of

experiments. We describe experimental settings in this section and report the eval-

uation results along with detailed analysis in Section 5.6.

5.5.1 Data Collection

We built an initial benign dataset and malicious dataset by crawling applications

from an open Android application collection project [4]. To exclude potential mal-

ware from initial benign dataset, we sent each application to VirusTotal, which is an

antivirus service with over sixty antivirus scanners. We discard applications from

the initial benign dataset if any anti-virus scanner raises alarm for it so as to gen-
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erate the benign dataset, which consists of 33,294 benign applications in total. In

addition, each application in initial malicious dataset was also sent to VirusTotal

and was excluded from the dataset if it received alarms from less than 15 anti-virus

scanners out of 63 scanners in VirusTotal. The way we clean up our dataset is con-

sistent with previous research on malware detection. According to Roy et al. [97],

malicious samples that only receive one alarm from VirusTotal will be considered

as “low quality” and those receive more than 10 alarms out of 54 scanners will be

considered as “high quality”.

More importantly, the built dataset was carefully collected to cover different

date (from 2011 to 2016) in order to fairly evaluate DroidEvolver’s detection per-

formance over time (i.e., DroidEvolver should be trained with old applications and

be evaluated with new applications). The date of each application is determined by

the date of packaging APK file, which is included in the dex file of APK file [85].

The dataset distribution over different years is described in Table 5.2.

Table 5.2: Data Distribution over Different Years

Year 2011 2012 2013 2014 2015 2016 Total

Benign 4,414 5,789 5,784 5,793 5,750 5,764 33,294

Malicious 6,063 5,777 5,685 5,760 5,657 5,780 34,722

Total 10,477 11,566 11,469 11,553 11,407 11,544 68,016

5.5.2 Metrics and Measurements

We evaluate the performance of DroidEvolver using three metrics, True Positive

Rate (TPR), False Positive Rate (FPR) and Accuracy, where TPR is the percentage

of malware being detected correctly, FPR is the percentage of benign applications

being detected as malware, and Accuracy is the percentage of all applications being

classified correctly in our experiments. We conduct a series of experiments to mea-

sure the performance of DroidEvolver from two perspectives, including detection

in same time period and detection over time.
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Performance in Same Time Period

Since parameters have significant influences on DroidEvolver’s performance, it is

inapproapriate using one testing dataset for both parameter selection and evluation.

This is because the trained model could be overfitted and might perform poorly

on other new datasets besides certain testing dataset. Simply using ten-fold cross

validation is not applicable in our experiments.

To prevent over-fitting and provide fair experimental setting, we follow the stan-

dard dataset division process when parameter tunning is involved in training. The

dataset developed in the same period (i.e., 2011, 2011-2012, 2011-2013, 2011-

2014, 2011-2015) is shuffled and divided into five equal-size subsets. We randomly

choose three subsets as training set, one subset as validation set, and the remain-

ing subset as testing set. Validation set is used for parameter selection. For each

time period, certain parameter values are selected when DroidEvolver initialized

with the training set achieves best performance on the validation set. After that,

DroidEvolver is initialized with the training set and applies the selected parameters

for detection. The testing set is then used to evaluate the detection performance of

DroidEvolver.

Performance over Time

DroidEvolver’s detection performance over time is evaluated in a series of experi-

ments in which the model pool is initialized with the training set and the selected

parameters in one time period and tested with all applications developed in later

time periods.

5.5.3 Parameter Tunning

We now present the tunning process of parameters which have influences on the

performance of DroidEvolver. It should be demonstrated that all parameter values

are chosen during Initialization Phase by computing on the training set and the
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Figure 5.3: The Effects of Threshold Values on Detection Accuracy and Identified
Drifting Applications

validation set, and are enforced in Detection Phase. Since DroidEvolver has several

training sets for different time periods, the parameter values corresponding to each

training set are selected separately by DroidEvolver in Initialization Phase. In this

section, we choose the experimental setting in which applications developed in 2011

are treated as the training set and the validation set to explain the parameter tunning

process.

Threshold Tunning

Thresholds, τ0 and τ1, are critical to identify drifting applications and aging mod-

els, and thus have significant influences on the detection performance of DroidE-

volver. In our experiments, the threshold values are set empirically in such a way

that DroidEvolver initialized with training set achieves maximize detection accu-

racy on validation set.

In Figure 5.3a, we present the detection accuracy of DroidEvolver under differ-

ent threshold settings, where 0 ≤ τ0 < τ1 ≤ 1. The detection accuracy is stable

when τ0 changes from 0.1 to 0.3, and τ1 changes from 0.6 to 0.8. The detection

accuracy reaches its maximum value 96.1% when τ0 = 0.3 and τ1 = 0.7.

To better understand the effects of thresholds on detection performance, we also
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present the number of identified drifting applications under different threshold set-

tings in Figure 5.3b. Small difference between τ0 and τ1 induces to a small portion

of applications from the validation set being identified as drifting applications. As

a result, detection models from the model pool keep a slow update speed and may

generate unreliable classification results for unknown applications. As shown in

Figure 5.3, DroidEvolver achieves high detection accuracy when a large number of

drifting applications are identified.

Learning from drifting applications helps DroidEvolver capture new features

and new trends caused by application and Android system update. In addition,

updating aging models online from pseudo labels that are generated by weighted

voting help DroidEvolver adapt to the captured new features and new trends. As a

result, DroidEvolver achieves high accuracy and high scalability in malware detec-

tion over time.
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Figure 5.4: Detection Accuracy and Evolving Duration of DroidEvolver under Dif-
ferent Buffer Size Settings

App Buffer B is introduced to avoid comparing each unknown application with

all processed applications. The size of App Buffer has influences on identification

of drifting applications and aging models, and the time required to classify appli-

cations included in the validation set. In Figure 5.4, we present detection accuracy
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and process time of DroidEvolver under different buffer size settings for a same

testing set. With the threshold values set to [0.3, 0.7], the detection accuracy of

DroidEvolver slightly varies from 95.5% to 96.2% when the buffer size increases

from 10 to 10,000. As shown in the experimental results, the effects of buffer size

on detection accuracy is not as significant as threshold values.

Nevertheless, since it is efficient for DroidEvolver to learn from drifting appli-

cations and update drifting models accordingly, the runtime performance bottleneck

in Classification and Evolvement is at the calculation of ξ, which is mainly deter-

mined by buffer size. As shown in the our results, the time required to classify 2,000

unknown applications in Classification and Evolvement rapidly increases from 200

seconds to 4,759 seconds when buffer size varies from 10 to 10,000.

To maintain efficiency and effectiveness at the same time, DroidEvolver selects

the buffer size that results in highest detection accuracy with relatively low process

time. In this setting, the buffer size is set to 500.

5.6 Evaluation and Analysis

In this section, we evaluate the performance of DroidEvolver with detailed anal-

ysis using the dataset summarized in Table 5.2.

5.6.1 Detection in Same Time Period

We first evaluate the detection performance of DroidEvolver and compare it with a

state-of-the-art research work MAMADROID [76], which is resilient to the changes

of Android framework and maintains effective after running for a long period of

time. In MAMADROID, it first extracts API call sequences from the call graphs

built by Soot and FlowDroid for each application, and abstracts APIs in each API se-

quence to their corresponding packages. Next, MAMADROID uses Markov chains

to model application behaviors by evaluating every transition between API calls,
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and uses the probabilities of transitioning from one abstracted API call to another

in the Markov chain as the feature vector. After that, MAMADROID builds a de-

tection model using two-class classification algorithms (e.g., SVM, Decision Trees

and Random Forest) along with the feature vectors obtained from training set. By

abstracting API calls to their packages or families, MAMADROID maintains re-

silient to API changes and detects malware with high accuracy. In this work, we

re-implement MAMADROID using its source code and evaluate both DroidEvolver

and MAMADROID from different perspectives using the same dataset.

Table 5.3: Performance of DroidEvolver and MAMADROID in Same Time Period

[ACC, TPR, FPR]%

Year (App #) 2011 (10,477) 2011-2012 (22,043) 2011-2013 (33,512)

DroidEvolver 95.28 91.51 1.98 96.18 94.72 2.57 96.06 96.10 3.98

MAMADROID 80.04 78.41 18.82 81.45 80.10 18.34 83.21 83.41 16.94

Year (App #) 2011-2014 (45,065) 2011-2015 (56,472) 2011-2016 (68,016)

DroidEvolver 96.09 95.16 3.05 95.69 95.46 4.09 95.19 94.61 4.27

MAMADROID 84.53 84.41 15.36 85.49 86.07 15.02 85.39 84.51 13.78

We start our evaluation by measuring how well DroidEvolver and MA-

MADROID detect malware by training and testing using applications that are de-

veloped in the same time period. As shown in Table 5.3, DroidEvolver signifi-

cantly outperforms MAMADROID by achieving on average 14.88% higher accu-

racy, 14.13% higher true positive rate, and 15.66% lower false positive rate.

In addition, MAMADROID’s accuracy improves from 80.04% to 85.39% when

the dataset increases from 10,477 to 68,016, while the performance of DroidE-

volver is stable over different datasets. One reason is that larger dataset help MA-

MADROID correctly capture the probabilities of transitioning from one abstracted

API call to another in the Markov chain while building the feature vectors for clas-

sification. The feature vectors with higher qualities result in better detection perfor-

mance of MAMADROID. However, DroidEvolver does not rely on large scale of

training dataset to build mature detection model and perform effective detection.
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Figure 5.5: Yearly Performances of DroidEvolver and MAMADROID

5.6.2 Detection over Time

We then evaluate the performance of DroidEvolver and MAMADROID when they

are trained with applications developed in one time period and tested with other

applications developed in later time periods.

Coarse Granularity

The performance of DroidEvolver and MAMADROID are evaluated on yearly ba-

sis. As shown in Figure 5.5, the detection performance of DroidEvolver is signifi-

cantly and consistently better than MAMADROID in all experiments.

When DroidEvolver is evaluated on testing sets that are newer than training sets

by one to five years, the average accuracy of DroidEvolver is 90.52%, 85.95%,

84.00%, 85.2% and 86.87%, respectively. In comparison, the average accuracy of

MAMADROID in the corresponding cases is 80.63%, 76.48%, 71.80%, 65.18%

and 58.03%, respectively. The detection accuracy of DroidEvolver is higher than

MAMADROID by 16.08% on average when they are evaluated with same datasets.

In addition, DroidEvolver declines by 1.68% in terms of detection accuracy per

year on average over five years, while MAMADROID declines by 4.40% in the

same case.

More importantly, after running for one or two years, the detection accuracy of

DroidEvolver is stable and even increases instead of declining. The reason is that

DroidEvolver automatically learns from newer applications to update the feature
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Figure 5.6: Detection Performance of DroidEvolver and MAMADROID with Dif-
ferent Granularity

sets and model structures of aging models and keeps the whole system effective.

DroidEvolver not only applies unknown applications as testing sets, but also uses

some of them (i.e., drifting applications identified from unknown applications) as

new training samples without true labels. By using the prediction labels of drifting

applications as pseudo labels, DroidEvolver has more and more training samples to

fine-tune its detection models while performing detection at the same time. In other

words, unlike traditional learning-based detection systems, DroidEvover does not

rely on large training set to build mature detection models in training phase. As a

result, even though the detection models of DroidEvolver are initiliazed with small

dataset (e.g., in Figure 5.5a detection models are initialized with 6,286 applications

developed in 2011)), DroidEvolver keeps updating its detection models to capture

the new trends in applications and Android framework, and performs effective de-

tection by itself.

Fine Granularity

Both DroidEvolver and MAMADROID are then evaluated every three months after

being trained with applications developed in 2011. We focus on this challenging

case in which the “oldest applications” (i.e., applications developed in 2011) in the

whole dataset are used for training.
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Figure 5.7: The Real Number of Features Extracted from Applications and The
Number of Feature Automatically Learned by Detection Models

Figure 5.6a shows that DroidEvolver significantly outperforms MAMADROID

in all quarters. The ups and downs are mainly caused by fluctuation in small sample

space. As shown in Figure 5.6b, since the trends in coarse granularity and fine

granularity are similar, we only show the yearly results (i.e., coarse granularity) in

the rest of work.

5.6.3 Feature Evolvement

A major advantage of DroidEvolver is that its feature set is not bounded as it dy-

namically includes new features from unknown applications during detection. This

advantage helps DroidEvolver keep evolving with application and Android system

evolvement. As shown in Figure 5.7, the number of extracted features from applica-

tions increases rapidly from 14,327 to 52,001 in six years. We then randomly select

five detection models from the model pool. These models are trained with 2011 ap-

plications and tested with unknown applications collected from 2012 to 2016. We

now present the feature set size for each model in different years.
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Although detection models are trained and tested with same dataset, their fea-

ture set sizes are different. The main reason is that DroidEvolver identifies aging

model and updates aging model’s feature set and model structure individually in

Detection Phase. Another reason is that different detection models with different

model structures are less likely to show signs of aging at the same time for same

applications.

The size of feature set expanding over time demonstrates that DroidEvolver is

capable of updating its models and feature sets to catch up the rapid evolution of

applications and Android framework.

5.6.4 Importance of Drifting Application Identification

We now analyse the JI value distribution of unknown applications to demonstrate

the importance of identifying drifting application and aging model before perform-

ing classification. In the experiment, we use the training set developed in 2011 as

training set, applications developed in 2012 as testing set, and [0.3, 0.7] selected by

the validation set of 2011 as threshold values. Since it is difficult to analyse JI value

distribution corresponding to all detection models included in the model pool, we

randomly choose one detection model as the example to perform detailed analysis.

Figure 5.8 shows a box and whisker plot for malicious applications and benign

applications. The box extends from the lower to upper quartile values of the JI

values, with a solid triangle at the mean and a line at the median. The whiskers

extend from the box to show the 5th and the 95th percentiles of the JI values.

Two grey baselines mark the τ0 and τ1, and each red filter point denotes a drifting

application.

Figure 5.8a and Figure 5.8b show the JI value distribution of true malicious ap-

plication and true benign applications, respectively. Most correct predictions (first

column of Figure 5.8a and Fig 5.8b) are associated with valid JI values, while incor-

rect ones (second column of Figure 5.8a and Figure 5.8b) are associated with invalid
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Figure 5.8: JI Distribution for One Detection Model

JI values. This indicates that detection model is able to make reliable classification

when unknown application is similar as the applications has been processed. For

the unknown applications that are very different from processed applications, it is

highly possible that detection model will generate incorrect prediction. In other

words, aging model is likely to misclassify drifting applications.

As a result, by identifying drifting applications and aging models, and excluding

aging models from voting for final prediction label, DroidEvolver reaches its max-

imum ability of generating correct prediction labels. Furthermore, the identified

drifting applications and generated reliable pseudo labels help DroidEvolver deter-

mine when to evolve and keep DroidEvolver evolving toward the right direction.

5.6.5 False Positives and False Negatives

Machine learning based malware detection solutions are usually black-box methods

as they do not explain why a particular sample is classified as malicious or benign.

In DroidEvolver, we address this shortcoming as follows: in addition to detection,

DroidEvolver reports significant features (i.e., API calls) of an application that con-

tribute to classification. In most cases, these significant features reveal the appli-
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cation’s characteristics related to malicious or benign behaviors. In addition, every

feature is associated with a value (known as weight) calculated by classification al-

gorithm. According to processed applications and associated labels (both true labels

and pseudo labels), the detection model gives positive values to malicious-relevant

features and negative values to benign-relevant features.

The chosen experiment has the same settings as described in Section 5.6.4. With

the system initialized by the training set developed in 2011, DroidEvolver achieves

an accuracy of 90.99% when detecting malware from 11,566 applications developed

in 2012, with a true positive rate of 87.52% and a false positive rate of 5.54%. Since

the system is firstly initialized with a small dataset of 6,705 applications in total, the

detection models are weak at the beginning of detection and produces reasonable

detection performance.
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Figure 5.9: Feature Distribution of True Positives, False Negatives, True Negatives
and False Positives

Feature Distribution

We first analyse the feature distribution of true positives, false negatives, true neg-

atives and false positives. Fig 5.9 shows a box and whisker plot for 16 randomly

selected applications. The box extends from the lower to upper quartile values of

the feature weights. A grey baseline marks the zero value, each red filter point de-
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Table 5.4: Analysis of Malicious Features Identified from False Positives

(a) Percentage of Malicious Features in All Included Features

Malicious Feature% (40,45] (45,50) (50,55) (55,60) (60,65) (65,70) (70,75)

Percentage of FP 3.45% 55.17% 34.48% 3.45% 0% 0% 3.45%

(b) Percentage of Malicious Features in Top 100 Informative Features

Malicious Feature% (50,60) (60,70) (70,80) (80,90) (90,100)

Percentage of FP 38.60% 38.60% 21.05% 1.75% 0%

notes a malicious-relevant feature and each green point denotes a benign-relevant

feature.

The comparison of Figure 5.9a and Figure 5.9b indicates that DroidEvolver mis-

classifies malicious application with many features that are closely-related to benign

behaviors. Similarly, the benign applications with many malicious-relevant features

will be wrongly labeled as malicious as shown in Figure 5.9c and Figure 5.9d. More

importantly, the feature distribution of false positives is more similar as true posi-

tives, rather than true negatives.

False Positives

From 5,789 benign application, DroidEvolver mistakenly predicts 321 of them as

malicious. As shown in Table 5.4a, all of these false positives include more than

40% of malicious-relevant features among the total features extracted from their

apk files. Although the true label of these false positives is benign, 41.38% of them

include more malicious-relevant features than benign ones. In addition, we analyse

the top 100 informative features that contribute to the classification. As shown in

Table 5.4b, these false positives not only include more malicious-relevant features,

they also include the ones that can determine the classification result of detection

model. In conclusion, DroidEvolver’s false positives are mainly benign applications

that behave similar as malware.
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Table 5.5: Analysis of Benign Features Identified from False Negatives

(a) Percentage of Benign Features in All Included Features

Benign Feature% (40,45] (45,50) (50,55) (55,60) (60,65) (65,70) (70,75)

Percentage of FN 0% 0% 58.21% 34.33% 4.48% 0% 2.99%

(b) Percentage of Benign Features in Top 100 Informative Features

Benign Feature% (50,60) (60,70) (70,80) (80,90) (90,100)

Percentage of FN 59.70% 34.33% 2.99% 2.99% 0%

False Negatives

DroidEvolver generates prediction labels for 5,777 malicious applications, while

mistakenly labels 721 of them as benign. As shown in Table 5.5a, all of these

false negatives include more malicious-relevant features than benign-relevant ones.

3.45% of them even include more than 70% malicious-relevant features. After

analysing the top 100 most informative features than contribute to the classifica-

tion result, all of these false negatives contains more malicious features in their top

100 features. Since the included features of false negatives are similar as the ones

in true benign applications, it is difficult for DroidEvolver to correctly classify these

false negatives by only looking to into their API usage.

5.6.6 Runtime Evaluation

As the above evaluation has shown the effectiveness of DroidEvolver, we now eval-

uate the computational overhead incurred by each module of Detection Phase in

DroidEvolver. We run our experiments on a machine with 4×3.2 GHZ Intel-Core

and 12 GB of RAM.

Runtime Performance of DroidEvolver

Table 5.6a shows the average time of processing an unknown application to gener-

ate detection result by DroidEvolver. The performance bottleneck is at the Prepro-

cessor, which decompiles apk files of applications to get decompiled bytecode. It
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Table 5.6: Average Time for Processing An Unknown Application to Generate De-
tection Result

(a) Runtime Evaluation of DroidEvolver

DroidEvolver
Preprocessor

Feature Vector Classification&
Overall

Extraction Generation Evolvement

1.1s 0.17s 0.05s 0.05s 1.37s

(b) Runtime Evaluation of MAMADROID

MAMADROID

Call Sequence Feature Vector
Classification Overall

Abstraction Extraction

37.29s 0.43s 0.0036s 39.15s

should be demonstrated that DroidEvolver takes only 0.05s on average to complete

the complicated process in Classification and Evolvement, including Identification,

Classification and Update. By using API calls that can be easily extracted as de-

tection features and applying online learning algorithms to quickly update detection

models, DroidEvolver takes on average 1.37s to accurately detect malware from un-

known applications. As a result, DroidEvolver is suitable for large scale malware

detection.

Runtime Performance of MAMADROID

We also evaluate the runtime performance of MAMADROID with same experi-

mental settings. As shown in Table 5.6b, its first step, i.e., abstracting call graphs

using Soot and FlowDroid and abstracting API calls to corresponding packages,

takes 37.29s per application. In the second step of building the Markov chain model

and constructing feature vectors, MAMADROID takes on average 0.43s. Finally,

it takes on average 0.0036s to classify one feature vector into benign or malicious.

In total, MAMAROID requires 39.15s to classify an unknown application, which is

significantly slower than DroidEvolver.
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Discussion

As shown in Table 5.6, DroidEvolver is significantly faster than MAMADROID

in all modules except in Classification and Evolvement. Although classifying the

feature vector of unknown application and updating aging model (i.e., 3.22× 10−3s

on average) are lightweight, it is time-consuming to identify drifting application

and aging model. Although DroidEvolver leverages App Buffer to strike a balance

between effectiveness and efficiency, it still takes more time than other steps to

calculate JI value for each unknown application, which requires comparison with

all applications included in the App Buffer.

5.6.7 Scalability Evaluation

We now evaluate the scalability of DroidEvolver in both Initialization Phase and

Detection Phase.

As shown in Figure 5.10, initializing the detection model pool with 10,000 appli-

cations takes about 3 seconds. The time required for initialization slightly increases

from 3 seconds to 27 second when training size enlarges from 10,000 to 50,000. As

a result, the process performed in Initialization Phase is efficient. In comparison,

the time required by MAMADROID to train detection model significantly increases

from 26 seconds to 1207 seconds under the same experimental settings. In addition,

as evaluated in Section 5.6.6, it takes on average 1.37 second for DroidEvolver to

process an unknown application from decompiling to classification.

In conclusion, our experiments show that DroidEvolver is efficient in both

phases and is scalable enough to be deployed. The scalability is achieved by the

following characteristics. First of all, DroidEvolver leverages online learning algo-

rithms [57] which update the aging model instantly whenever drifting application is

identified instead of learning from a collection of instances in a batch fashion. The

simple update strategy of online learning algorithms avoids solving large-scale opti-

mization problems, which makes DroidEvolver efficient and scalable to process ap-
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plications which arrive sequentially. Moreover, since the applications are processed

sequentially, the memory cost for online learning is greatly reduced and there is no

retraining required. In addition, DroidEvolver applies extracted API calls as detec-

tion features, which can be easily retrieved from decompiled code without compli-

cated process, such as those performed in Soot [107], FlowDroid [11], EPICC [41],

and TaitDroid [39]. Last but not least, DroidEvolver applies App Buffer to speed up

the process of calculating JI values without declining detection performance.
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Figure 5.10: Scalability Evaluation of DroidEvolver and MAMADROID

5.6.8 Robustness Evaluation Against Typical Obfuscation Tech-

niques

Obfuscated malware poses challenges to malware detection systems. Malware de-

velopers apply obfuscation techniques to manipulate detection systems and evade

from detection by transforming malware in different forms but still with the same

malicious behavior. For ease of use and without requiring comprehensive domain

knowledge about malware detection and Android system, most malware developers

apply typical obfuscation techniques that can be easily performed. As observed in

[95], common malware transformation techniques (e.g., repackging, changing field

names, and changing control-flow logic) could evade many existing commercial

anti-malware tools.

However, DroidEvolver is resilient to these common evasion techniques. First
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of all, DroidEvolver does not rely on specific signing signatures or method names to

detect malware. The simple program transformation techniques, such as resigning,

repackaging and changing names, will not affect the detection model of DroidE-

volver which is built according to system API calls. Another type of evasion tech-

nique is to insert junk code segments into source code. The newly inserted junk

code segments include goto, const/16, not and add-int, which are not

closely related to malicious behaviors. Furthermore, these junk code segments will

not be extracted by DroidEvolver and therefore cannot affect the detection perfor-

mance of DroidEvolver. In addition, other common obfuscation techniques that are

designed to change control-flow logic also cannot evade from DroidEvolver since

DroidEvolver does not rely on control-flow logic for detection.

To demonstrate the robustness of DroidEvolver, we apply Droid-

Chameleon [95], a framework implementing eleven typical obfuscation techniques,

to 100 malicious applications randomly selected from the malicious dataset devel-

oped in 2012. DroidChameleon generates 1,100 obfuscated malicious applications,

which are then used as a new testing set to evaluate the robustness of DroidEvolver.

To conduct fair evaluation, the model pool of DroidEvolver in this experiment is

initialized with applications developed in 2011. As shown in the experimental re-

sults, DroidEvolver successfully detects 96% of obfuscated malicious applications.

For every obfuscation technique, DroidEvolver misses four obfuscated malicious

applications. After manually checking these obfuscated malware, we find that

they are all the transformations of four malicious applications. Another interesting

finding is that DroidEvolver cannot correctly classify these four malware even

without obfuscation.

In summary, DroidEvolver is robust against common obfuscation techniques.

More importantly, unlike other obfuscation resilient detection systems which re-

quire expensive process to generate data dependence graphs and information flows,

DroidEvolver does not rely on complicated feature engineering.
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5.7 Discussions

5.7.1 Limitations

As a detection system applying static analysis, DroidEvolver suffers from the in-

herent limitations from static analysis and might fail to detect malicious behaviors

which are loaded and executed at runtime. Although DroidEvolver can capture

triggers about such behaviors when java.lang.refect is used in source code,

this limitation encourages us to integrate dynamic analysis to build the model pool

in future versions of DroidEvolver.

5.7.2 Evasion

Next, we discuss possible evasion techniques and how they can be addressed. One

straightforward evasion approach is that malware developers might attempt to con-

fuse DroidEvolver and evade detection by naming their self-defined API calls in

such a way to make them look similar as system API calls. Since DroidEvolver

automatically makes necessary update to its feature sets without any human instruc-

tions, such attacks can not be prevent by manually whitelisting the list of legitimate

system APIs. However, it is challenging to successfully perform such attacks to

evade DroidEvolver, which applies model pool to general final prediction result and

is capable of self-evolving.

First of all, if the carefully crafted malware only includes limited number of

self-defined “system” API calls, it is difficult to successfully fool all of the detec-

tion models in the model pool and induce them to generate wrong prediction. In

addition, if the crafted malware includes many self-defined “system” API call, it

is highly possible that this malware will be identified as drifting application. As a

result, the detection model that the malware plans to manipulate will be identified as

aging model and cannot vote to the final prediction result. Therefore, DroidEvolver
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can still generate correct classification label. Furthermore, given the correct classi-

fication label as the pseudo label (i.e., malicious) of the crafted malware, DroidE-

volver automatically includes these self-defined “system” API calls into the feature

sets of aging models and marks these new features as malicious (will be reflected in

feature weight). Although the crafted malware might successfully induce DroidE-

volver to adopt self-defined “system” API calls, this will not affect the detection of

DroidEvolver and help DroidEvolver detect similar malware.

An attacker could also try to carefully craft malicious applications [54] to mis-

lead detection models. These malicious applications are derived from regular ap-

plications by minor yet carefully selected perturbations [88] [51] that induce mod-

els into adversary-desired misclassifications, which is known as adversarial sam-

ple crafting. The success of adversarial sample crafting requires the knowledge

of trained detection models before attack, which is challenging in our case since

DroidEvolver’s detection models are not consistent and change a lot during detec-

tion.

5.8 Related Work

Over the past few years, Android malware detection has attracted extensive at-

tentions in both academia and industry. In this section, we mainly review learning-

based mobile malware detection detection systems which are more relevant to

DroidEvolver.

Detection Over Time. A small potion of existing works focus on detection over

time in different manners compared with DroidEvolver. MAMADROID [76] builds

a behavioral model, in the form of a Markov chain, from the sequence of abstracted

API calls performed by an application, and uses it to extract features and perform

classification. Although MAMADROID maintains resilience to API changes by

abstracting API calls to their packages and families, expensive retraining and ex-
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perts’ involvement are required to keep the whole system effective, while DroidE-

volver automatically updates itself to achieve both efficient and effective detection

over long time periods. On the other hand, Transcend [63] proposes a framework to

identify aging classification models during deployment before the detection model’s

performance starts to degrade. Unlike DroidEvolver which proposes a comprehen-

sive framework from drifting application identification to system evolvement with-

out true labels, Transcend mainly focuses the statistical metrics to identify concept

drift.

Online Learning in Malware Detection. In order to adapt to the evolution of mal-

ware over time, some efforts are made to detect malware applying online learning.

DroidOL [80] and CASANDRA [79] capture security-related behaviors from appli-

cations’ dependency graphs and classify applications using detection models built

by online learning algorithms. Both DroidOL and CASANDRA retrain the detec-

tion model upon receiving each labeled application and make prediction of a new

application using the updated model. The retraining process requires every new

application being manually labeled, which is constrained by available resources.

The fundamental difference between DroidEvolver and these online learning-based

detection systems is that DroidEvolver does not rely on true labels of unknown ap-

plications to adjust and update its detection models.

Other Malware Detection Methods. Different from DroidEvolver, most learning-

based mobile malware detection systems rely on frequent retraining with the cu-

mulative dataset of both old labeled dataset and new labeled dataset to maintain

effective after running for a period of time. A list of examples is given below.

DroidSIFT [127] extracts weighted contextual API dependency graph and con-

structs feature sets accordingly. With graph-based feature vectors, DroidSIFT builds

two classifiers, while the first classifier discovers zero-day Android malware, and

the second classifier uncovers the family of detected malware. RiskRanker [53] in-

cludes two risk analysis modules, while the first-order analysis module sifts through

untrusted applications and exposes risky applications, and the second-order analy-
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sis module identifies applications with encrypted native code and dynamic code

loading. DroidMiner [123] extracts sensitive API call graphs as detection features,

while DroidAPIMiner [2] extracts relevant features at API level, and builds a detec-

tion model using the generated feature set. Gascon et al. [46] generate function call

graphs for Android applications, and build a detection model relying on embedded

function call graphs. DroidMat [117], StormDroid [26] and Drebin [10] use not

only sensitive API calls but also other information extracted from AndroidMani-

fest.xml file as detection features and train single classifiers afterwards. ICCDetec-

tor [120] builds a malware classifier according to ICC-related information included

in applications. DRACO [13] and MARVIN [74] utilize static analysis and dy-

namic analysis to extract features from pre-determined feature categories, and train

a detection model afterwards. MASK [23] statically analyzes attributes (including

permssions, intent filters,and presence of native code) extracted from applications,

and trains a detection model for detecting malware. Finally, Crowdroid [20] relies

on crowdsourcing to get system calls from real users, and creates an anomaly model

according to system call vector clusters.

The increasing complexity of Android malware calls for new defensive tech-

niques that are harder to evade. To this end, some efforts are made to detect mobile

malware using deep neural networks. For example, DroidDetector [126] and Droid-

Sec [125] build Deep Belief Networks to detect Android malware relying on 192

human engineered features, including required permissions, sensitive API calls, and

some dynamic behaviors obtained from DroidBox [35]. Deep4maldroid [60] ex-

tracts Linux kernel system calls and constructs the weighted directed graphs which

are then used to train deep neural networks. Mclaughlin et al. [77] produce a deep

neural network-based detection system only according to 218 dex instructions of

applications. Towards automatically engineering features for malware detection,

FeatureSmith [131] mines the scientific literatures written in natural language to

generate features that are semantically related to malicious behaviors.

There are enormous signature-based mobile detection methods. For example,
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Kirin [41] detects malware based on required permissions which break certain pre-

defined security rules. Since they are not closely related to this work, we refer

readers to a survey [3] for more details.

5.9 Conclusions

This work presented DroidEvolver, an Android malware detection system auto-

matically updating itself to catch up with the rapid evolution of both Android system

and malware, and achieve both scalable and effective detection over time. Instead

of relying on immutable trained detection model and fixed feature sets, DroidE-

volver makes necessary update to both detection models and feature sets in order to

quickly adapt to new trends identified from unknown applications. The update pro-

cess is scalable by applying online learning algorithms to adjust current detection

models with the reliable pseudo label generated by the model pool. The detection

performances of DroidEvolver in different setting are proved to be effective. In ad-

dition, the scalability and robustness of DroidEvolver against typical obfuscation

techniques are evaluated and demonstrated in our experiments.
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Chapter 6

Conclusion and Future Work

6.1 Summary of Contributions

This dissertation makes contributions on automatically detecting malware for An-

droid platform and comprehensively analyzing malicious behaviors and malicious

patterns.

In the first work presented in Chapter 3, we systemically analyze ICC patterns

of benign applications and malware, and propose a new malware detection sys-

tem, ICCDetector, which detects malware based on not required resources, but ICC

patterns. ICCDetector outputs a detection model after training with a set of be-

nign applications and a set of malware, and employs the trained model for malware

detection. ICCDetector significantly outperforms the benchmark as shown in the

experiments. In addition, the detected malware are further classified into five new

malware categories according to their ICC characteristics, which clarifies the rela-

tionship between malware behaviors and ICC patterns.

In the second work presented in Chapter 4, we propose DeepRefiner, an An-

droid malware detection system combining multiple detection layers in comple-

mentary way to provide refined detection. To catch up with the rapid evolution of

both Android system and malware, DeepRefiner removes laborious human feature

engineering and complicated feature extraction from the process. It applies two dif-
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ferent detection layers, where the first detection layer achieves efficient detection

according to xml files and the second detection layer performs effective and robust

detection based on comprehensive bytecode semantics at different scales. We com-

pare DeepRefiner with a state-of-the-art single classifier-based detection system,

StormDroid, and ten widely used signature-based anti-virus scanners. The exper-

imental results show that DeepRefiner significantly outperforms both StormDroid

and anti-virus scanners. The robustness of DeepRefiner against typical obfuscation

techniques and adversarial samples is evaluated and demonstrated in our experi-

ments.

In the third work presented in Chapter 5, we propose DroidEvolver, an Android

malware detection system automatically updating itself to catch up with the rapid

evolution of both Android framework and malware, and achieve scalable and effec-

tive detection over time. Instead of relying on immutable trained detection model

and fixed feature sets, DroidEvolver makes necessary update to both detection mod-

els and feature sets in order to quickly adapt to new trends identified from unknown

applications. The update process is scalable by applying online learning algorithms

to adjust current detection model structures with the reliable pseudo label generated

by the model pool. The detection performances of DroidEvolver in different settings

are proved to be effective. In addition, the scalability and robustness of DroidE-

volver against typical obfuscation techniques are evaluated and demonstrated in our

experiments.

6.2 Future Direction

One of the main weaknesses of detection systems that employ machine learning

techniques in adversarial environments is their susceptibility to evasion attacks.

Most evasion attacks (e.g., [88] [87] [14] [15] [44]) take advantage of knowledge of

how the detection models of detection systems operate to evade detection passively

or actively.
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Although it is difficult to completely protect detection systems against evasion

attacks, we can still mitigate the effects of evasion attacks. Since the success of

most evasion attacks require the knowledge of trained detection models, we can

protect detection systems against these attacks by changing both model structures

and feature sets applying online learning techniques and deep learning techniques

during detection. With the ability of automatic feature engineering performed by

deep learning and the ability of real-time update performed by online learning, it is

challenging for attackers to get useful information about the detection models.

Another weakness of learning-based detection system is that their detection fea-

tures and detection performance are not straightforward for human to understand

(especially for detection systems applying deep learning techniques). As a result,

most learning-based systems are used as black-box methods without explaining why

a particular sample is classified as malicious or benign. We plan to make classifica-

tion decisions interpretable by visualizing detection process and analyzing signifi-

cant features that contribute to the classification. Furthermore, by better understand-

ing the detection process, we can make detection systems more difficult to evade for

malware.
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