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Chapter 1

Introduction

This chapter discusses the main problem and motivation of this dissertation.

It also discusses a quantification of various research issues directly related to

the dissertation. A summary of works done will also be presented along with

the structure of the dissertation.

1.1 Software Bugs & Motivations

1.1.1 Manual Bug Fixing & Its Cost

Software bugs are one of the primary challenges in software development, which

usually significantly diminish software quality. A software bug is a problem

causing a program to crash or produce invalid output. A bug can be an error,

mistake, defect or fault, which may cause deviation from expected results, an

explicit security vulnerability that may be maliciously exploited, or a service

failure of any kind [8].

Bug fixing is notoriously difficult, time-consuming, and requires much man-

ual efforts. U.S. National Institute of Standards and Technology reported that

software bugs were estimated to cost the U.S. economy more than 50 billions of

dollars annually [84]. Given short time to market, mature commercial software

systems are often delivered with both known and unknown bugs, despite the
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CHAPTER 1. INTRODUCTION

support of multiple developers and testers dedicated for such projects [55, 6].

Fixing bugs has become a dominant practical concern, given the prevalence

and cost of software bugs, much of which is often attributed to the fact that

state of the art in bug-fixing practice still relies on human to manually fix them.

To correctly fix a bug, human developers have to understand the intended

behaviors of the system implementation, and why the current implementation

does not follow the intended behaviors. Based on that understanding, human

developers have to figure out what changes to the program source code or

configuration will correct the buggy implementation. Often, those changes

(regarded as fix or patch) will be validated (e.g., through a code review) before

being committed or deployed to the users.

Manually fixing bugs is costly in terms of lost productivity and money to

pay developers to fix bugs [91], and this cost can increase by orders of magni-

tude as development progresses [93]. This, in fact, leaves many defects, includ-

ing security-critical defects, unaddressed for extensive periods [31]. Thus, there

is a dire need to develop automated solutions that help mitigate the onerous

burden on manual human bug fixing, by automatically and generically repair-

ing variety of bugs from large real-world software systems.

1.1.2 Automated Program Repair & Its Challenges

Previous subsection highlights the fact that bug fixing is time-consuming and

costly in practice, which rests entirely on manual human efforts. Thus, auto-

mated program repair (APR) techniques that can automatically repair software

bugs in the wild would be of tremendous value.

Overview of APR. Substantial recent works on APR have been proposed

to repair real-world software, making the once-futuristic idea of APR become

gradually materialized. These repair techniques generally fall into two cat-

egories: search-based methodology (e.g., GenProg [52], PAR [37], SPR [58],

Prophet [60]) and semantics-based methodology (e.g., SemFix [68], Nopol [96],

2



CHAPTER 1. INTRODUCTION

DirectFix [65], and Angelix [66]). Search-based repair techniques generate

a large pool of possible repair candidates, i.e., search space of repairs, and

then search for correct repair within that search space using an optimization

function. Meanwhile, semantics-based techniques leverage constraint solving

and program synthesis to generate repairs that satisfy semantics constraints

extracted via symbolic execution and provided test suites.

Challenges. Proposed repair techniques in both families, despite varying

in the ways they search for repairs, rely heavily on test cases to guide the

repair process and validate patches – a patch is deemed as correct if it passes

all tests used for repair (aka. repair test suite) [52]. While test cases are

commonly used in practice to guard against unexpected behavior of software,

they are known to be incomplete and often weak. Thus, machine-generated

patches, which pass all tests, may still be indeed judged incorrect. This is

often regarded as patch overfitting [81], in which machine-generated patches

overfit to the repair test suite, but do not necessarily generalize to other test

sets or desired behavior that developers would expect. It has been shown

that patches generated by GenProg and its early search-based counterparts

are often incorrect although they pass all tests [74], and that the degree to

which search-based APR techniques suffer from overfitting is high [81]. Patch

overfitting has thus progressively been a pressing concern in APR. To address

the overfitting problem, several challenges need to be overcome.

Challenge 1: Scalability and tractability. The ultimate practical goal of

APR is to cheaply scale to various large, realistic software systems, and yet,

to be able to produce correct repairs for those systems. However, tractability

often comes with the territory of being scalable. That is, it has been shown

that the search space for repairs generated by APR techniques is often huge,

in which plausible repairs – which pass all tests but are incorrect – are domi-

nant [59]. This poses significant challenges on finding correct patches among

the huge search space. Thus, to achieve its goal, APR techniques must be able

3



CHAPTER 1. INTRODUCTION

to efficiently and effectively manage as well as navigate the search space to find

correct patches.

Challenge 2: Expressive power. Current state-of-the-art APR techniques

still cannot correctly fix many bugs from various real-world software. For

example, GenProg generates patches for 55 bugs, out of which only fewer

than three patches are correct [74]. Yet, these bugs only come from a few

software systems. Thus, there is a need to enhance the expressive power of

APR to generate correct patches for many more bugs from variety of real-world

programs in practice.

Challenge 3: Patch validation. Overfitting is not only attributed to

the ways APR techniques manage and navigate the search space, but also

the methodologies used to validate automatically-generated patches. Early

methodology leverages only repair test suite for patch validation – a patch is

deemed correct if it passes the repair test suite, and incorrect otherwise. This

method, however, has recently been shown ineffective – majority of patches

that pass the repair test suite are indeed still judged incorrect [81, 59]. This

motivates new methodologies for patch validation, which rely on other crite-

ria rather than repair test suite alone. Recent works adopt the following two

methods separately:

• Automated annotation by independent test suite. Independent test

suites obtained via a automatic test case generation tool are used to deter-

mine correctness label of a patch – see for example [81, 49]. Following this

method, a patch is deemed as correct or generalizable if it passes both the

repair and independent test suites, and incorrect otherwise.

• Author annotation. Authors of APR techniques manually check correct-

ness labels of patches generated by their own and competing tools – see for

example [95, 56]. Following this method, a patch is deemed as correct if au-

thors perceive semantic equivalence between generated patches and original

developer patches.

4



CHAPTER 1. INTRODUCTION

While the former is incomplete, in the sense that it fails to prove that a patch

is actually correct, the latter is prone to author bias. In fact, these inherent

disadvantages of the methods have caused an on-going debate as to which

method is better for assessing the effectiveness of various APR techniques

being proposed recently. Unfortunately, there has been no extensive study that

objectively assesses the two patch validation methods and provides insights into

how the evaluation of APR’s effectiveness should be conducted in the future.

Put simply: patch overfitting has become an important challenge in APR.

To avoid overfitting, there is a dire need to both improve the APR techniques

themselves in the way they manage and navigate the search space, and provide

insightful guidelines on how the effectiveness of APR techniques should be

evaluated.

1.1.3 Works Completed

This dissertation tackles the challenges in the overfitting problem of APR in

various angles, seeking to provide insights and solutions that help push the

boundaries of both search- and semantics-based APR further. At the point this

dissertation is written, four pieces of work have been completed, of which there

have been published and the remaining work is under revision for submission.

The three published works improve both search- and semantics-based APR,

and empirically study the overfitting in APR. The latter work – under revision

– evaluates the reliability of methodologies used to validate machine-generated

patches.

In particular, we first propose HDRepair [50] – a search-based APR system

that leverages bug fixes submitted by developers in the history of many large,

real-world software to effectively and efficiently guide the bug fixing process.

Second, we show that semantics-based APR techniques, similar to its search-

based counterparts, also suffer from a high degree of overfitting [51]. We do

so by implementing a semantics-based APR framework on top of Angelix [66]

5



CHAPTER 1. INTRODUCTION

that enables many different synthesis engines to be used for synthesizing re-

pairs [49], and studying various characteristics of the synthesis engines in the

context of APR. Third, we propose S3 [46] – a scalable semantics-based repair

synthesis engine that is capable of synthesizing generalizable repairs, which

mimic repairs submitted by developers, by leveraging programming by exam-

ples methodology [27]. Last, we propose to empirically study the effectiveness

of popular methodologies used for assessing patch correctness, and provide

several insights and guidelines for how patches generated by future APR tech-

niques should be evaluated.

1.1.3.1 History Driven Program Repair

The first part of this dissertation presents and evaluates HDRepair [50], a

search-based APR framework that utilizes the wealth of bug fixes across projects

in their development history to effectively guide and drive a program repair

process. The main insight for the success of HDRepair is that recurring bug

fixes are common in real-world applications, and that previously-appearing fix

patterns can provide useful guidance to an APR technique.

Like several previous search-based APR methods, HDRepair makes use of

a stochastic search process to generate and then validate large numbers of

patches, seeking one that causes previously-failing tests to pass. In contrast

with previous search-based approaches, which by and large use input test cases

to assess intermediate patch suitability, HDRepair evaluates the fitness or suit-

ability of a candidate patch by assessing the degree to which it is similar to

prior bug-fixing patches, taken from a large repository of real patches. Lever-

aging history of bug fixes helps HDReppair in steering clear of patches that

overfit to test suite used for repair.

HDRepair displays the following properties:

1. Scalability: it cheaply scales to large, real-world Java programs.

2. High-quality repairs: it produces human competitive repairs by using

6



CHAPTER 1. INTRODUCTION

a knowledge base built from software development history as a way to

guide and assess patch quality.

3. Expressive power: it is able to fix various defects that appear in prac-

tice, significantly outperforming state of the art APR.

Extensive experiments on 90 real-world bugs from existing large software

systems have been performed to demonstrate the aforementioned properties

of HDRepair. This work has been accepted for publication in the proceed-

ings of 23rd International Conference on Software Analysis, Evolution, and

Reengineering (SANER) 2016, Research Track.

1.1.3.2 Overfitting in Semantics-based Program Repair

The second part of this dissertation presents an empirical study on the overfit-

ting problem in semantics-based APR. The degree to which a technique pro-

duces patches that overfit has been used post factum in recent studies to char-

acterize the limitations and tendencies of search-based APR techniques [81],

and to experimentally compare the quality of patches produced by novel search-

based APR methods [36]. There is no reason to believe that semantics-based

APR is immune to this problem. Unfortunately, there exists no such extensive

study in semantics-based APR to date. In this work, we attempt to address

this gap.

We comprehensively study overfitting in semantics-based APR. We perform

our study on Angelix, a recent state-of-the-art semantics-based APR tool [66],

as well as a number of syntax-guided synthesis techniques used for program

repair [49]. We evaluate the techniques on a subset of the IntroClass [53]

and Codeflaws benchmarks [82], two datasets well-suited for assessing repair

quality in APR research.

Overall, we show that overfitting does indeed occur with semantics-based

techniques. We characterize the relationship between various factors of inter-

est, such as test suite coverage and provenance, and resulting patch quality. We

7
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observe certain relationships that appear consistent with results observed for

heuristic techniques, as well as results that are different from those achieved

on them. These results complement the existing literature on overfitting in

search-based APR, completing the picture on overfitting in APR in general.

This is especially important to help future researchers of semantics-based APR

to overcome the limitations of test suite guidance. We argue especially (with

evidence) that semantics-based program repair should seek stronger or alter-

native program synthesis techniques to help mitigate overfitting. This work

has been accepted for publication at Empirical Software Engineering Journal

in November 2017, and for presentation at Journal First Track of International

Conference on Software Engineering (ICSE) 2018.

1.1.3.3 Syntax- and Semantic-Guided Repair Synthesis

The third part of this dissertation presents and evaluates S3 – a semantics-

based APR technique that is capable of synthesizing generalizable repairs [46].

As previous subsection highlighted, semantics-based APR, similar to its search-

based counterpart, is subject to a high degree of overfitting, motivating the

need of stronger repair synthesis system that can generalize beyond the incom-

plete specifications encoded via test cases.

S3 can generate high quality repairs which are competitive with human-

submitted ones. The novelty in S3 that allows it to tackle the search space to

create more general repairs is three-fold: (1) A systematic way to customize

and constrain the syntactic search space via a domain-specific language, (2) An

efficient enumeration-based search strategy over the constrained search space,

and (3) A number of ranking features to rank candidate solutions and prefer

those that are more likely to generalize. The ranking functions are guided by

the intuition that a correct patch is often syntactically and semantically prox-

imate to the original program, and thus measure such syntactic and semantic

distance between a candidate solution and the original buggy program.

8
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Experiment results on 52 bugs from small programs and 100 bugs from large

real-world programs show that S3 is scalable and able to generate generaliz-

able repairs. S3 ’s expressive power and the quality of the patches it generates

significantly outperform state-of-the-art baseline techniques (Angelix [66]; and

Enumerative [4], and CVC4 [77] two alternative syntax-guided synthesis ap-

proaches). This work has been accepted for publication in the proceedings of

the 11th Joint Meeting of the European Software Engineering Conference and

the ACM SIGSOFT Symposium on the Foundations of Software Engineering

(ESEC/FSE), 2017, Research Track.

1.1.3.4 Reliability of Patch Correctness Assessment

The fourth part of this dissertation presents an empirical study on reliability

of patch correctness assessment methods. Two methods are assessed in this

study, including: (1) Automated annotation, in which patches are automat-

ically labeled by using an independent test suite (ITS) – a patch is deemed

correct or generalizable if it passes the ITS, and incorrect otherwise, (2) Au-

thor annotation, in which authors of APR techniques annotate the correctness

labels of patches generated by their and competing tools by themselves.

While automated annotation fails to prove that a patch is actually correct,

author annotation is prone to subjectivity. Using either method, there could

be potentially wrong judgments on patch correctness, e.g., an overfitting patch

– a patch that passes all tests but does not generalize, may be unduly judged as

correct. These drawbacks, in fact, have caused an on-going debate on how the

effectiveness of an APR technique should be assessed. This has increasingly

become an especial concern given the abundance of APR techniques being

proposed recently.

To address this concern, we propose to assess reliability of author and au-

tomated annotations for patch correctness assessment. We do this by first

constructing a gold set of correctness labels for 189 randomly selected patches

9
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generated by 8 state-of-the-art APR techniques by means of a user study in-

volving 35 professional developers as independent annotators. By measuring

inter-rater agreement as a proxy for annotation quality – as commonly done

in the literature – we demonstrate that our gold set is on par with other high-

quality gold sets. Through an in-depth comparison of labels generated by

author and automated annotations and this gold set, we assess the reliabil-

ity of the popular patch assessment methodologies. We subsequently report

several findings and highlight their implications for future APR studies.

1.1.4 Structure of This Dissertation

Chapter 2 describes related work. Chapter 3 describes HDRepair – a search-

based history driven program repair framework. Chapter 4 describes the

overfitting problem in semantics-based program repair, followed by Chapter 5

which describes S3 – a semantics-based repair technique. Chapter 6 describes

our study on the reliability of patch validation methodologies. Chapter 7 con-

cludes the dissertation.
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Chapter 2

Related Work

In this section, we describe related work in automated program repair, includ-

ing repair techniques, datasets and empirical studies on program repair.

Program repair. Recent years have seen a proliferation in the develop-

ment of program repair techniques. Repair techniques can generally be divided

into two families: search-based vs semantics-based families. Search-based ap-

proaches generate a large number of repair candidates and employ search or

other heuristics identify correct repairs among them. Semantics-based ap-

proaches extract semantics constraints from test suites, and synthesize repairs

that satisfy the extracted constraints. GenProg [89, 52] is an early APR tool

that uses genetic programming as a search-based to search for a repair that

causes a program to pass all provided tests cases among a possibly huge pool of

repair candidates. AE [90] leverages an adaptive search approach to search for

similar syntactic repairs. [73] propose RSRepair, which uses a random search

approach to find repairs, and show that RSRepair is better than GenProg on a

subset of GenProg’s benchmark. Other recent techniques belong to the search-

based repair [58, 60, 50] use condition synthesis, and development history [37]

to guide the search for repair. Semantics-based repair approaches [38, 68]

typically use symbolic execution and program synthesis to extract semantic

constraints and synthesize repairs that satisfy the constraints; other work ex-

11



CHAPTER 2. RELATED WORK

ists at the intersection of the two families [36]. There further exists work that

is farther afield that uses abstract interpretation, unguided by test suites, but

requiring specially-written, well-specified code [57]. In a similar vein, for Java,

Nopol [96] translates the Object-oriented program repair problem into SMT

formulae and uses a constraint solver to synthesize repairs. Our recent work

JFIX translates and extends Angelix to work on Java programs, which we

adapt to study real-world bugs here [45].

Dataset. Researchers have created a number of benchmarks intended for re-

search and empirical studies in testing, fault localization, and program repair.

Defects4J [34] includes more than 300 real-world defects from five popular Java

programs. Defects4J is originally intended for to facilitate fault localization

research, but it is likely suitable for program repair research as well. The

ManyBugs and IntroClass benchmarks [53] provide collections of bugs for C

programs, including large real-world C programs, and small C programs as

students’ homework assignments. The two benchmarks serve different empir-

ical purposes, and are suitable for different types of studies. The IntroClass

benchmark contains several hundreds of small C programs, written by students

as homework assignments in a freshmen class. Although the IntroClass bench-

mark only contains small programs, its unique feature is that it includes the

two high-coverage test suites: black-box test suite generated by the course in-

structor, and white-box test suite generated by the automated test generation

tool KLEE [13]. This feature makes it suitable for assessing overfitting in auto-

mated program repair; one test suite can be used for repair, and the remaining

test suite can be used for assessing the quality of generated patches. Re-

cently, Codeflaws was proposed as another benchmark for assessing automatic

repair techniques following the spirit of the IntroClass benchmark. Codeflaws

contains 3,902 defects from 7,436 small programs from programming contests

hosted by Codeforces,1 each of which contains two independent test suites.
1http://codeforces.com/
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Empirical Studies on Program Repair. The rapid growth of program

repair techniques has motivated empirical studies that compare and reveal

strengths and weaknesses of different repair techniques. Qi et al. [74] intro-

duce the idea of a plausible versus correct patch, manually evaluating patches

produced by previous heuristic techniques to highlight the risks that test cases

pose when guiding repair search. Smith et al. [81], empirically and systemat-

ically study the overfitting issue for search-based repair techniques, including

GenProg and RSRepair. In this dissertation, our study complements this pre-

vious study, in that we investigate the overfitting issue in the semantics-based

repair family. [59] study the search space to find repair of the search-based

approaches, showing that the search space is often large and correct repair

sparsely occur within the search space. [49] empirically study the effectiveness

of many synthesis engines when employed for semantics-based program repair,

suggesting that many synthesis engines could be combined or used at the same

time to enhance the ability of semantics-based repair to generate correct re-

pairs. We leverage the technique from [49] to use multiple SyGuS engines in

the context of a semantics-based repair approach.

Overfitting or manual annotation are not the only measure by which patch

quality may be assessed. In proposing Angelix, [66] assess functionality dele-

tion as a proxy for quality. [54] evaluate generated patches in a case study

context, quantitatively assessing their impact in a closed-loop system for de-

tection and repair of security vulnerabilities. [37] assess relative acceptability

of patches generated by a novel technique via a human study. [26] conduct

a human study of patch maintainability, finding that generated patches can

often be as maintainable as human patches. While overfitting as measured by

high-quality test suites provide one signal about patch quality, human accept-

ability and real-world impact are also important considerations, if not more so,

and should also be considered in characterizing the pragmatic utility of novel

APR techniques.
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Chapter 3

History Driven Program Repair

One primary reason for overfitting is the reliance on test cases to guide the

bug fixing process. In this work, we propose to use bug fixes in development

history of many programs to guide and drive program repair, rather than

relying on test cases alone. The main intuition is that recurring bug fixes are

common in practice, and that previously-appearing fix patterns can provide

useful guidance to an APR technique.

3.1 Introduction

Bugs are prevalent in software development. Mature commercial software sys-

tems regularly ship with both known and unknown defects [55], despite the sup-

port of multiple developers and testers typically dedicated to such projects [6].

To maintain software quality, bug fixing is thus inevitable and crucial. Yet, bug

fixing is notoriously a difficult, time-consuming, and labor-intensive process,

dominating developer time [91] and the cost of software maintenance. Many

defects, including security-critical defects, remain unaddressed for extensive

periods [31], and the resulting impact on the global economy is measured in

the billions of dollars annually [84, 12]. There is a dire need to develop auto-

mated techniques to ease the difficulty and cost of bug fixing in practice.

To address the above-mentioned need, substantial recent work proposes
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CHAPTER 3. HISTORY DRIVEN PROGRAM REPAIR

techniques for Automated Program Repair (APR). These techniques seek to

automatically fix bugs by producing source-level patches. For example, Gen-

Prog [52] uses a Genetic Programming [40] heuristic to conduct a search for

a patch that causes the input program to pass all given test cases (includ-

ing at least one that initially failed, exposing the defect to be addressed).

Subsequently, Kim et al. extend the GP approach in Pattern-based Auto-

matic program Repair (PAR), which uses bug fix templates manually learned

from existing human-written patches [37] to guide the creation of the potential

patches. These techniques are instructive examples of generate-and-validate

and test-case-driven approaches to defect repair: They generate many candi-

date patches, and validate them against a set of test cases. The process is

repeated many times, with a fitness score computed for each candidate patch

based on the number of test cases that the associated modified program passes

or fails. This score guides subsequent iterations, and thus the way the tech-

niques traverse the search space of candidate repairs.

Despite the promise of existing APR techniques, current approaches are

limited in several key ways [74]. To truly improve the quality of real-world

software as well as the experience of modern software developers, an ideal tech-

nique must be both effective (i.e, able to fix many real bugs) as well as efficient

(i.e., able to do so in a short amount of time). Even merely plausible patches—

those that lead the buggy program to pass the provide test cases, but that are

not necessarily globally correct as judged by an informed programmer—may

take more than 10 hours to generate, and the resulting patches may still be

incorrect [37, 74]. Although the risk of low quality patches can be mitigated

by using more comprehensive test suites to guide the search process, even with

full-coverage test suites, existing test-guided techniques may be susceptible to

overfitting [81]. That is, produced patches may fail to functionally general-

ize beyond the test suite used to produce them. Although the current APR

state-of-research is still in its infancy, it is important to work towards both
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effectiveness and efficiency to allow APR to be ultimately adopted.

In this chapter, we propose a novel technique for history-based program

repair. Like several previous methods, our technique makes use of a stochastic

search process to generate and then validate large numbers of patches, seeking

one that causes previously-failing tests to pass. The most important feature

differentiating our new technique from the previous work is that it evaluates the

fitness or suitability of a candidate patch by assessing the degree to which it is

similar to prior bug-fixing patches, taken from a large repository of real patches.

This is in contrast with previous search-based approaches, which by and large

use input test cases to assess intermediate patch suitability. Our intuition is

that bug fixes are often similar in nature and past fixes can be a good guide for

future fixes. This has at least partially informed a number of previous studies

and approaches [10, 29, 37, 64]. The important novelty in our technique is that,

instead of simply using previous fixes to inform the construction of candidate

patches, we use fix history to help assess their potential quality, or fitness.

We expect that the history-driven approach mitigates the risk of overfitting

to the test suite, because it does not directly use the test suite score to guide

individual selection for later iterations. This increases the probability that the

resulting patches generalize to the desired program specification. Moreover,

using the history to guide the repair search can also imbue the APR process

with history-informed “common sense” to identify plausible but clearly—to

humans—nonsensical patches.

To illustrate, consider the buggy code snippet in Figure 3.1, taken from

Math version 85 in Defects4J benchmark [34]. This buggy snippet throws

a ConvergenceException when one of the test cases is executed. One low-

quality way to “fix” the problem that eliminates the symptom, and causes the

test case to trivially pass, simply deletes the throw statement. However, this

would be a nonsensical solution, and is not consistent with the patch the human

developer committed for the same defect. Unfortunately, prior generate-and-
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validate and test-case-driven APR techniques cannot identify such a solution

as nonsensical. In our history based approach, on the other hand, the fact

that such edits very rarely appear in the historical bug fix data means that it

receives a very low score in the search process. In this way, our technique is

more likely to avoid plausible but nonsensical patches.

//Human fix: fa * fb > 0.0
if (fa * fb >= 0.0 ) {

throw new ConvergenceException("...")
}

Figure 3.1: A bug in Math version 85

Our history-based APR technique works in three phases: (1) bug fix history

extraction (2) bug fix history mining and (3) bug fix generation. The first two

phases are conducted in advance of any particular bug-fixing effort. In the first

phase, our technique mines historical bug fixes from revision control systems of

hundreds of projects in GitHub. In the second phase, our technique identifies

a clean set of data, seeking to find frequently appearing or common bug fixes,

and infering a common representation to capture many similar such bug fixes.

Bug fixes are represented as change graphs, which have the benefit of being

generic and able to capture various kinds of changes along with their contexts.

These change graphs, along with their frequencies, are used as a knowledge

base for the third phase. In the third phase, our technique iteratively gener-

ates candidate patches, ranks them based on the frequency with which their

constituent edits appear in the knowledge base inferred in the second phase,

and returns a ranked list of plausible patches that pass all previously failed

test cases as recommendations to developers.

We have evaluated our solution on 90 real bugs from 5 Java programs.

We compare our technique against GenProg and PAR. GenProg is a pop-

ular generate-and-validate and test-case-driven APR technique that with a
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publicly available Java implementation.1 Similarly, PAR is a generate-and-

validate, test-case-driven technique developed for Java programs that explicitly

makes use of edit templates manually synthesized from edit histories. Both are

generic approaches that can, in theory, produce multi-line patches for bugs in

programs. Our experiments show that our approach can correctly fix 23 bugs

out of the 90 programs, while PAR and GenProg are only able to correctly

fix 4 and 1 bugs, respectively. Moreover, our approach on average only needs

20 minutes to fix the 23 bugs. The results demonstrate the effectiveness and

efficiency of our proposed approach.

The contributions of our work are as follows:

1. We propose a generic and efficient history-based automatic program re-

pair technique that uses information stored in revision control systems of

hundreds of software systems to generate plausible and correct patches.

Our approach is generic since it can deal with bugs whose fixes involve

multi-line changes. It is efficient since it can complete on average within

less than 20 minutes.

2. We demonstrate that our approach is effective in fixing 23 bugs correctly,

dramatically outperforming the performance of the baseline solutions.

3. Our approach supports Java instead of C. Java is the most popular

programming language and its influence is growing over time.2 Prior

generate-and-validate and test-case-driven APR techniques mostly work

on C programs with a few exceptions (e.g., PAR). Unfortunately, the im-

plementation of PAR is not made publicly available. To facilitate repro-

ducible research, we made the implementation of our approach available

at https://github.com/xuanbachle/bugfixes

The structure of the remainder of this chapter is as follows. In Section 3.2,

we elaborate the three steps of our proposed approach. In Section 3.3, we
1https://libraries.io/github/SpoonLabs/astor
2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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present our experiment results which answer four research questions. We con-

clude in Section 3.4.

3.2 Proposed Approach

The overall goal of our approach is two-fold: to generate correct, high-quality

bug fixes; and to quickly present such fixes to developers. To achieve this goal,

we divide our framework into three main phases: (1) bug fix history extraction,

(2) bug fix history mining and (3) bug fix generation. The first phase extracts a

dataset of bug fixes made by human in the history from GitHub. This dataset

is input to the second phase, which converts the bug fixes to a graph-based

representation from which it automatically mines bug fix patterns. The mined

bug fix patterns are input to the last phase.

In the last phase, we use a modified stochastic search technique [28] to

evolve patches to a given buggy program, until we find a desired number of

solutions. To reduce the risks of either overly constraining the search space

or overfitting to the test suite, we use 12 existing mutation operators pre-

viously proposed in the mutation testing literature and used by prior repair

techniques [69, 52, 37]. The fitness of the generated fix candidates is deter-

mined by the frequency with which the changes included in a given patch occur

in the mined bug fix patterns produced by the second phase. Better fix can-

didates are thus those that frequently occur in the past fix patterns, and are

thus more likely to be chosen to be validated against failed test cases, i.e., the

test cases that reveal the bug in the original buggy program. Such selected

patches are also more likely to be further developed and evolved in subsequent

iterations. This fix candidate generation process is repeated until a desired

number of candidates that pass all the failed test cases is identified. At the

end of this phase, these candidates are presented to the developer as possible

fixes for the bug, ranked by the frequency with which their edits appear in the
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bug fix history. The developer can then investigate the suggested fixes to find

an actually correct fix.

In the next subsections, we describe each of the three phases of our frame-

work in more detail (Sections 3.2.1–3.2.3); Section 3.2.4 describes our mutation

operators.

3.2.1 Bug Fix History Extraction

In this phase, we collect human-made bug fixes from many open source projects

on Github. The primary purpose of this phase is to collect and collate commits

that are solely related to bug fix actions, excluding feature requests, refactor-

ing, and other non-repair types of edits.

To collect bug fix history data from GitHub, we follow the procedure de-

scribed by Ray et al. [76] to gather large, popular, and active open source

Java projects. In particular, we use Github Archive [1], a database that fre-

quently records public activities from GitHub, e.g., new commits, fork events,

etc, to select only projects with the above characteristics. The popularity of

a project is indicated by the number of stars associated with its repository,

which corresponds to the number of GitHub users that have expressed interest

in that project. In the interest of identifying only large, popular projects, we

filter out those with fewer than five stars and exclude projects with repositories

smaller than 100 Megabytes. Finally, we retain projects that are active as of

September, 2014. This still leaves us with thousands of projects.

For each of the retained projects, we iterate through its source control

history, seeking to collect commits that exclusively concern bug repair. This is

a difficult problem in repository mining [11]. We therefore seek a complete set

of bug-fixing commits using heuristics, though acknowledge that our approach

is best-effort. We deem a commit a bug fix if it simultaneously satisfies the

following conditions:

1. Its commit log contains the keywords such as fix, bug fix, while not con-
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taining keywords such as fix typo, fix build or non-fix.

2. It includes the submission of at least one test case in that commit. Al-

though the submitted test case does not necessarily mean the one that

induces the bug, the inclusion of test case in the commit further increases

the likelihood that the commit is a bug fix.

3. It involves changes on no more than two source code lines. The changed

lines are counted, excluding code comments.

This last requirement warrants additional explanation. Commits that sat-

isfy the first condition but involve many changed lines typically include changes

beyond the bug fix, addressing feature addition, refactoring, etc [30, 35]. Thus,

we filter out commits involving more than two changed lines. Ultimately, this

leaves us with 3000 bug fixes across 700+ large, popular and active open source

Java projects from GitHub.3

3.2.2 Bug Fix History Mining

In the second phase, we mine frequent bug fix patterns from the 3000 bug

fixes, that appear in more than 700 projects, collected by previous phase. We

first convert the collected bug fixes into a graph-based representation. We

then apply an existing graph mining technique to the dataset to mine closed

frequent patterns from the converted graphs.

Graph-based representation of bug fixes. Our goal in representing bug

fixes is to succinctly abstract similar bug fixes into a common, abstract rep-

resentation amenable to mining, which is especially challenging in the face of

naming differences. Different bug fixes may vary in terms of the naming scheme

in the underlying code, containing modifications to different variable names,

method names, etc. For example, Figure 3.2 shows two bug fixes that both

involve the change of method call parameter. Although there are differences in
3Dataset available: https://github.com/xuanbachle/bugfixes

21



CHAPTER 3. HISTORY DRIVEN PROGRAM REPAIR

the expressions (variables) that invoke the method calls, the method call names

and parameter names, conceptually, these bug fixes can easily be classified as

the same kind of bug fix, i.e., “method call parameter replacement.”

Our first step in storing a bug fixing change is to capture its effects at the

Abstract Syntax Tree (AST) level, which abstracts away many incidental syn-

tactic differences (e.g., whitespace, bracket placement) that obscure a patch’s

semantic effect. To this end, we use GumTree,4 an off-the-shelf, state-of-the-

art tree differencing tool that computes AST-level program modifications [24].

GumTree represents differences between two ASTs via a series of actions includ-

ing additions, deletions, updates or moves of individual tree nodes to transform

one AST to another. To do this, given a bug fix, we first identify the file modi-

fied by the bug fix, and then retrieve the versions of the file before and after the

modifications were made. Both versions of the modified file are then parsed

to ASTs, denoted as the “buggy AST” and “fixed AST,” respectively. We then

use GumTree to compute the actions needed to transform the buggy AST into

the fixed AST. For example, GumTree gives us the action needed to represent

the bug fix 1 in the Figure 3.2 as update from x1 to x2.

However, this raw information provided by GumTree is insufficiently ab-

stract on its own, since it is still specific to the variable names x1 and x2.

Additionally, the semantic context surrounding the action is unclear, that is,

whether the action applies to a method call, an assignment, etc. To remedy

this issue, we convert the series of actions produced by GumTree into a la-

belled directed graph that further abstracts over the edit actions, while being

able to capture surrounding semantics. In this directed graph representation,

an edge from a parent vertex to a child vertex is labelled by the kind of the

action made to the child vertex. The context of the action is then captured by

the parent vertex. To illustrate by example, Figure 3.3 depicts the graph that

represents the bug fix 1 in Figure 3.2. Similarly, this graph also represents the
4https://github.com/GumTreeDiff/gumtree
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change made in bug fix 2. Thus, by using this graph representation, we can

represent bug fixes in a common abstraction and capture contexts of the bug

fixes. This graph-based representation will then help us in using graph mining

techniques to mine frequent bug fix patterns.

//Bug fix 1: x1 replaced by x2, others remain the same
- obj1.doX(x, x1)
+ obj1.doX(x, x2)

//Bug fix 2: y1 replaced by y2, others remain the same
- obj2.doY(y, y1)
+ obj2.doY(y, y2)

Figure 3.2: Example of two bug fixes involving method call parameter replace-
ment.

Mining closed frequent bug fix patterns. Given the full set of bug fixes,

represented as graphs, we mine closed frequent patterns from the graphs. A

pattern is frequent if it often occurs in the database; we heuristically set this

count to at least two. A frequent pattern g is closed if there exists no proper

supergraph of g that has the same number of supergraphs, i.e., support, as g.

Thus, by definition, closed frequent patterns are the largest possible patterns

that frequently occur in the database. In our domain, our goal is to mine

the largest possible bug fix patterns to precisely capture behaviours of the

changes. We therefore employ an extension of gSpan,5 an implementation of a

state-of-the-art frequent graph miner [97] for this task. We consider a pattern

is frequent if it has support greater than or equal to two. We store information

about patterns, including each pattern’s vertices, edges, and supergraphs that

contain the pattern. The number of supergraphs of a pattern constitutes the

frequency of the pattern.
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Algorithm 1: Bug Fix Generation. The select procedure re-
turns one or more individuals from a population, either uniformly
or weighted by a provided function. applies and instant are de-
scribed in text. The tunable parameters are PopSize (population size),
M (desired solutions), E (number of seeded candidates to the initial
population), and L (number of locations considered in the mutation
step).

Input : BugProg : Buggy program
FaultLocs: Fault locations
NegTests: initially failing test cases
FixPar : mined edit frequency distribution
ops: possible operators
params: Tunable parameters PopSize, M , E, L

Output: A ranked list of possible solutions
1 helper fun editFreq(cand)
2 let N ← |cand|

3 return

N−1∑
i=0

FixPar(candi)

N

4 helper fun mutate(cand)
5 let locs ← select(FaultLocs, L)
6 let pool ← ∅
7 foreach f ∈ locs do
8 let opf ←

⋃
op∈applies(ops,loc)

instant(op, loc)

9 let cand’ ← cand + select(opf , 1)
10 pool ← pool ∪{ cand ’ }
11 end
12 return select(pool, 1, editFreq)
13 fun main
14 let Solutions ← ∅
15 let Pop ← {E empty patches}
16 while | Pop | < PopSize do
17 Pop ← Pop ∪ mutate([ ])
18 end
19 repeat
20 foreach c ∈ Pop do
21 if c /∈ Solutions then
22 if c passes NegTests then
23 Solutions ← Solutions ∪ c
24 else
25 c ← mutate(c)
26 end
27 end
28 end
29 until |Solutions| = M
30 return Solutions
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Figure 3.3: Graph-based representation of bug fixes in Figure 3.2

3.2.3 Bug Fix Generation

Overview. In this phase, we use a stochastic search approach loosely inspired

by genetic programming [40] to evolve a patch for a given buggy program. The

search objective is a patch that, when applied to the input program, addresses

the defect, as identified by a set of failing test cases. GP is the application of

genetic algorithms (GA) to problems involving tree-based solutions (programs,

typically; in our application, these are small edit programs applied to the orig-

inal buggy program). A GA is a population-based, iterative stochastic search

method inspired by biological evolution. Given a tree-based representation of

candidate solutions, GP uses computational analogues of biological mutation

and crossover to generate new candidate solutions, and evaluates solutions us-

ing a domain-specific objective, or fitness function. Potential solutions with

high fitness scores are more likely to be randomly retained into future itera-

tions both alone, modified slightly (via mutation), or, in some applications, in

combination with other solutions (via crossover).

In our approach, we represent a single candidate solution as a patch consist-

ing of a sequence of edits to be made to the buggy program; this representation

has been shown both efficient and effective in search-based program improve-

ment [52]. Given a population of candidate solutions, we then use a selection

process to create new candidates through mutation, and then to select mutated

candidates to subsequent generations for additional evolution. The selection

phase applies to the mutation step, in which a new edit is pseudo-randomly
5https://www.cs.ucsb.edu/ xyan/software/gSpan.htm
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constructed and then added to an existing (possibly-empty) candidate patch.

This selection is informed by the bug fix history database constructed as dis-

cussed in Section 3.2.2. Note that our algorithm does not perform crossover,

using only mutation to create new individuals; we leave the development of a

suitable crossover operator in our context to future work.

The details of this phase are further described in Algorithm 1. The primary

inputs to the algorithm are the buggy program, where the bug is indicated

by one or more failing test cases; a set of faulty locations, weighted by a

preexisting fault localization procedure; a distribution of edit frequencies mined

as discussed in the previous section, and a set of possible mutation operators.

We presently assume that the faulty methods are known in advance, as file- and

method-level localization represent an orthogonal problem; we then compute

the faulty lines in each prospective faulty method using existing statistical fault

localization techniques [3]. The stochastic algorithm includes several tunable

parameters, described in context.

Given those inputs, the algorithm works in multiple iterations. The first

iteration constructs an initial generation of PopSize candidate solutions by re-

peatedly constructing single-edit patches for the program (lines 16–18). Sub-

sequent generations are created by adding new mutations to retained solutions

in the current population. We describe mutation as it is used to create the ini-

tial population of single-edit patches; its application in subsequent iterations

follows naturally.

Mutation. The mutation procedure adds an edit to a (possibly-empty) can-

didate patch to create a new patch candidate. It is described from line 4 to

line 12 in Algorithm 1. At a high level, the mutation step creates a large

number of candidate edits, from which a single edit is ultimately propagated

into the candidate patch. First, the algorithm randomly selects a subset of L

fault locations to which mutations may be applied (line 5), weighted by the

score given by the statistical fault localization. We heuristically set L to 10 in
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our experiments, leaving a full parameter sweep to future work. Next, lines 7

to 10 generates a set of possible edits to select in this mutation step. This in-

volves first identifying which mutation operators can be applied to each of the

prospective faulty locations. For example, we should not use append to add

any statements after a return statement, because doing so results in a dead

code. This check is performed by the function applies on line 8. We reuse

existing mutation operators (see Section 3.2.4 for a complete list, and details

about their application), that have been proposed in prior mutation testing

and program repair studies, to provide a diverse set of bug fix edit candidates.

There are often several ways to instantiate a given operator. For example,

append requires the selection of fix code to append at a given location. The

instant function returns all possible instantiates of a given operator to the

provided location, also on line 8. We select one of these edits (line 9) and

create a new candidate by adding it to the current candidate.

This results in an intermediate pool of new pseudo-random patch candidates

(initialized on line 6, updated on line 10) from which a single candidate will be

retained. This retained candidate is thus the single result of the mutation step;

it is the result of adding a new random edit to the (possibly-empty) candidate

patch under mutation. To pseudo-randomly select an edit from this pool, we

weight each edit by the frequency with which it appears in the mined bug fix

patterns. This computation is performed in helper function editFreq, used in

selection on line 12. Note that since exact graph matching (isomorphism) is

notoriously difficult and expensive [86], we relax the conditions of matching fix

candidates against past fix patterns. We instead say a fix candidate matches a

fix pattern (graph) if the graph representing the candidate has more than half

of its labels of vertices and edges matched with the fix pattern’s vertices and

edges respectively.

The frequency formula at line 3 works as follows: Given a fix candidate

consisting of N edit operations, each edit operation contributes equally to the
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candidate’s frequency. That is, we break down the block of N edits into each

constitute edit and then fuse the frequency of each small edit together. The

intuition is that, due to the randomness of the mutation procedure, gener-

ated fix candidates may contain bug-fix irrelevant edit operations, e.g., field

or variable declarations. Ideally, these irrelevant edits should not affect the

score of fix candidates containing them, since such edits contribute nothing or

very little to the fixing effort. If we count the frequency of the fix candidate

consisting of these edit operations by the whole block of N combined edits, it

would make the fix candidate very rare when comparing the candidates against

the historical bug fix patterns, and reduce the likelihood that the fix candidate

will persist for future evolution. Our use of mean edit frequency mitigates the

effect of adding bug-fix irrelevant edit operations with respect to the viability

of the overall patch.

At line 12, we pseudo-randomly select one edit from the pool to add to

the current candidate solution. This selection is informed by the computed

frequency of a candidate patch that includes each edit in turn (the higher

the frequency score of the overall patch that includes it, the more likely it is

that the potential edit is selected from the pool). We use stochastic universal

sampling [9] for this task. This selected candidate is thus the return value of

the mutation procedure.

Main algorithm. Mutated candidates are created and processed by the main

algorithm, described from line 13 to line 30. Line 15 adds E number of empty

candidate patches to the initial population as seeds. We heuristically set E

to 3 in our algorithm. Lines 16–18 create an initial population with PopSize

candidate patches by repeatedly mutating the empty patch. We heuristically

set PopSize to 40 in our algorithm. Next, from line 20 to line 28, we validate

each candidate in the current population against the failed test cases. If a

candidate passes all the failed test cases, we add it to the set of possible

solutions (line 23). Otherwise, we mutate the candidate and carry the mutated
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Table 3.1: 12 mutation operators employed in our framework

Operator Action Description

GenProg Mutation Operators

Insert statement Insert a statement before or after a buggy statement
Replace statement Replace a statement with a buggy statement
Delete statement Delete a buggy statement

Mutation Testing Operators

Insert Type Cast Cast an object to a compatible type
Delete Type Cast Delete type cast used on an object
Change Type Cast Change type cast to another compatible type
Change Infix Expression Change primitive operator (arithmetic, relational, conditional, etc) in

an infix expression
Boolean Negation Negate a boolean expression.

PAR Mutation Operators

Replace Method Call pa-
rameter

Replace a parameter in a method call by another parameter with com-
patible types.

Replace Method Call
Name/Invoker

Replace the name of a method call, or a method-invoking expression, by
another method name or expression with compatible types.

Remove Condition Remove a boolean condition in an existing if condition
Add Condition Add a boolean condition to an existing if condition

candidate over the next iteration (line 25).

The process continues until a given number of fix candidates that pass

all the previously failed test cases is reached. This is indicated at line 29,

where the solutions’ size reaches M desired solutions. We heuristically set

M to 10 in our algorithm. Ultimately, these candidates are presented to the

developer as possible fixes to the buggy program, ranked by the frequency

of the underlying edits. The developer is then responsible for assessing the

correctness of the suggested fixes. For example, the developer can pick any

of the fixes appearing on top of the recommendation to validate the fixes by

running them against previously passed test cases, and see if the fixes are

actually semantically correct or not.

3.2.4 Mutation Operators

In this section, we describe the 12 mutation operators we employ to generate

fix candidates in our framework; these operators are listed in Table 3.1. These

operators have been used previously in mutation testing and well-known repair

techniques; we use them to simultaneously provide a broad array of potential

edit types, while mitigating the risk of overfitting the operators used in our
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experiments to the underlying dataset.

GenProg Mutation Operators. We employ the three mutation operators

from GenProg [52]. The delete operator deletes a given potentially-buggy state-

ment. The insert and replace operators work under the assumption that the

repair is a piece of code that can be found from somewhere else in the same

program. The insert operator inserts a randomly-selected statement before

or after a given buggy statement.The replace operator replaces a potentially-

buggy statement with another randomly-selected statement. For insert and

replace, the original GenProg algorithm randomly chooses a statement from

elsewhere in the same program, given certain semantic constraints (e.g., vari-

able scoping). However, given a time limit, a large program can enormously

reduce the possibility of selecting the correct statement.

We mitigate this problem in several ways. First, we reduce the scope of

source statement selection to the same file with the target buggy statement.

Previous studies have shown that this is adequate for many automated program

repair problems [10]. Second, we heuristically prioritize in-scope statements.

We view the problem of finding the source statement as two stages: First,

we find the clones of the piece of code (method) surrounding the target buggy

statement. Second, each of statements in the clones that have higher similarity

is given higher probability to be a source statement. For statements that are

not in any clones, we give them a default probability which is less than the

probabilities of any statements found in clones. To find clones, we employ

tree-based clone detection technique described by Jiang et al. in [33].

Mutation Testing Operators. We employ five mutation operators proposed

in mutation testing research [69, 70]. The first three concern type casting:

delete type cast, insert type cast, and change type cast. The latter two focus

on inserting or changing casts only to compatible types. The change infix

expression operator changes the operator used in a given infix expression. For

example, an infix expression like a ≥ b involves an arithmetic operator that
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can be randomly changed, such as to a > b, a < b or a ≤ b. An infix

expression a 6= b that involves relational operator can be changed to a == b.

An infix expression a && b that involves conditional operator can be changed

to a || b and vise versa. The boolean negation operator tries to negate a boolean

expression. For example, true can be negated to false, and isNegative(a) can

be negated to !isNegative(a).

PAR Mutation Operators. We employ four out of ten mutation operators

proposed by Kim et. al. [37], leaving the employment of the remaining six

operators as future work. These operators are applied to either method call

or if condition. The first operator replaces a method call parameter, while

the second operator replaces method call name, or the expression that invokes

the method call. The last two operators deal with condition expression of if

statement. An if condition expression containing more than two conditions

can apply the remove condition expression. For example, if(a || b){...}

can be changed to if(a){...} by removing condition b, which is randomly

chosen from the condition. The add condition expression tries to add a condi-

tion to an if condition. The condition to be added is chosen from a pool of

conditions collected from the same file with the faulty if statement. However,

this pool of collected conditions can be inappropriate to fix a given bug, since

they may reference out of scope variables.

To address this, our framework further cultivates the search space by in-

venting new conditions that have not appeared elsewhere in the same file. The

idea is that the missing condition may very likely involve one of the variables

used in the current if condition. Toward this end, we collect all variables

used in the if condition. We then collect all boolean usages that involve the

types of the collected variables from the same file. We then apply the usages

with the collected variable names, and add these usages to the pool possible

conditions that can be added to the current if condition.

31



CHAPTER 3. HISTORY DRIVEN PROGRAM REPAIR

3.3 Experiments & Analysis

In this section, we first describe our dataset (Section 3.3.1), followed by our

experimental settings (Section 3.3.2), research questions (Section 3.3.3), and

results (Section 3.3.4).

3.3.1 Dataset

We apply our approach to repair a subset of bugs from Defects4J [34], a large

collection of defects in Java program intended to support research in fault

localization and software quality. Defects4J has also been used in previous

study of several automated program repair (APR) tools [61]. The dataset

contains 357 real and reproducible bugs from 5 real-world open source Java

programs. In our experiments, we use 90 bugs from Defects4J.6 Table 3.2

depicts the number of bugs from each program in Defects4J and the number

of bugs from each program that are used in our experiments. We use only

these 90 bugs out of 357 bugs in Defects4J since we filtered out bugs that

are too difficult for current state-of-the-art repair techniques to fix. That is,

we first filter out bugs that involve more than six changed lines since they

are typically too difficult for current automated program repair techniques to

fix [74]. Second, we also filter out too difficult bugs considering the semantics

of the bugs, even though they involve changes that are syntactically fewer than

six lines. For example, one kind of difficult bugs could be adding a field in a

class and use that field for fixing bugs in methods. We hypothesize that an

effective and usable APR technique should be able to fix classes of bugs that

are easier to fix first before it can handle very difficult bugs. We thus prefer

this dataset, filtered according to rules suggested in previous empirical studies

to a completely manually-constructed dataset to mitigate to some degree the

threat over overfitting our technique to the bugs under repair [67]. We use the

fix template database constructed as described in Sections 3.2.1–3.2.2.
6The bugs are made available here: https://github.com/xuanbachle/bugfixes
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Table 3.2: Dataset Description. “#Bugs” denotes the total number of bugs in
the Defects4J dataset. “#Bugs Exp” denotes the number of filtered bugs we
used in our experiments.

Program #Bugs #Bugs Exp

JFreeChart 26 5
Closure Compiler 133 29
Commons Math 106 36
Joda-Time 27 2
Commons Lang 65 18

Total 357 90

3.3.2 Experiment Settings

We compare our approach against PAR [37] and GenProg [52]. Since PAR

is not publicly available, we re-implemented a prototype of PAR for this ex-

periment based on our framework. We also note that the original version of

GenProg works on C programs and thus we used a publicly available imple-

mentation of GenProg7 that works on Java program provided by Monperrus et

al. [61].

We assign one trial for each approach to run on each bug. Specifically,

each trial of our approach is assigned one 2.4 GHz Intel Core i5-2435M CPU

and 8GBs of memory. Each trial is terminated either after 90 minutes or 10

generations or if 10 possible solutions were found. The size for each population

is set to 40 for consistency with previous work [52, 37]. Since we consider

current automated program repair techniques as only recommendation systems

(since they cannot fix most of the bugs yet), an automated program repair

technique needs to be efficient enough (c.f., [48]). We thus set the timeout for

our experiment as 90 minutes for each trial. We note that since our approach,

PAR and GenProg are all stochastic, multiple trials are needed to properly

assess their performances [7].
7https://libraries.io/github/SpoonLabs/astor
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3.3.3 Research Questions

In our experiments, we seek to answer the following research questions:

RQ1 How many bugs can our technique fix, correctly, as compared to the

baselines?

We compare the effectiveness of our approach against PAR and GenProg in

terms of number of bugs that each approach can correctly fix. To do this, we

manually inspected generated patches to verify their correctness with respect

to the corresponding bugs. A patch is deemed a correct fix if it satisfies the

following conditions: (1) It results in a program that passes all test cases (both

passing and initially failing). (2) it follows the behavior of the corresponding

human-made fix. Checking the first condition is not difficult. However, the

second condition involves an intrinsic qualitative judgement and a deep under-

standing of the program in question. Thus, for the second condition, we only

consider fixes that are as close as possible to the human-made fixes. We leave

a comprehensive human study on bug fixes quality to future work.

RQ2 Which bugs can the approaches fix in common? Which bugs can only

be repaired by one of the approaches?

To gain insight into the process and limitations of the different approaches,

we identify the defects for which our approach, PAR and GenProg all generate

correct fixes. We describe case studies that illustrate potential reasons why

some bugs can be fixed by one approach but not others.

RQ3 How long does it take to produce correct fixes?

In this research question, we investigate the average amount of time for

each approach to run on the bugs that they can correctly fix. An approach

is deemed efficient if it needs a reasonable computation time to find correct

fixes. We consider current automated program repair techniques as recom-

mendation systems, and a recommender that takes several hours to produce

recommendations is ineffective.

RQ4 What are the rankings of the correct fixes among the solutions that our
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approach presents to the developer?

Our approach generates a ranked list of possible solutions to a given bug.

The higher a correct fix is ranked, the better, requiring less effort from the

developer to try the solutions one by one from the top to the bottom. Thus,

in this research question, we investigate the ranking of the correct fixes among

the possible solutions that our approach presents to the developer.

We report on two types of ranking. First, we present the ranking in the

order that fixes are generated temporally. If effective, this ranking is helpful

in case the developer is rushing to clear the bug, since he or she can just try

whatever suggestions appear earlier instead of waiting for the whole process to

complete. Second, we assess a ranking based on the frequency with which fix

edits appear in the historical data.

3.3.4 Results

RQ1: Number of Bugs Correctly Fixed. Table 3.3 depicts the number

of bugs for which each approach can generate correct fixes. In total, out of

the 90 bugs, our approach generates correct fixes for 23 bugs; PAR can only

correctly fix 4 bugs; GenProg generates only one correct fix. For the 23 bugs

fixed by our approach, 11 (out of 12) mutation operators help fix these bugs.

Each of these 11 operators helps fix no more than 5 bugs in the 23 bugs. Thus,

it is not the case that the use of only a few operators can help fix all of the 23

bugs fixed by our approach. This supports our belief that while our approach

is more effective than the baselines, its effectiveness is less likely to be biased

by the experimental dataset.

Although the results for the previous techniques are somewhat worse than

expected, we note that our timeout is set at 90 minutes and that we run only

one trial on each bug. In previous experiments, GenProg and PAR set time outs

at 12 hours, and run 10 trials in parallel for each bug [52, 37]. We can expect

greater success if we increase the number of trials. However, our results are
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Table 3.3: Effectiveness of our approach, PAR and GenProg in terms of number
of defects repaired from each program. Our approach (named HDRepair)
generates correct patches for 23 out of 90 bugs. Overall, 13 out of the 23 bugs
fixed by HDRepair have correct patches ranked number 1, correct patches for
the other 10 are ranked from 3 to 7 out of 10 solutions output by HDRepair
per bug.

Program Our Approach PAR GenProg

JFreeChart 2/5 -/5 -/5
Closure Compiler 7/29 1/29 -/29
Commons Math 6/36 2/36 -/36
Joda-Time 1/2 -/2 -/2
Commons Lang 7/18 1/18 1/18

Total 23/90 4/90 1/90

  
 
 
 

18 bugs 
 
    

 
 
 
 
 
 

 4 bugs 
PAR 

 1 bugs 
GenProg 

Our Approach 

Figure 3.4: Common Bugs Fixed by Program Repair Techniques

consistent with a recent study, demonstrating that GenProg produces correct

patches for 4 of 357 bugs in Defects4J with a 2 hour timeout and single trial

per bug [61]. Although our results for GenProg can be substituted by that

of [61], we reproduced GenProg experiment in our study to assure that all

repair tools are given the same resources, e.g., computer RAM and CPU. In

sum, the results show that our approach substantially outperforms PAR and

GenProg in terms of number of bugs correctly fixed.

RQ2: Case Studies. Figure 3.4 shows that the bugs that PAR and GenProg

correctly fix are a subset of those that our approach correctly fixes. There are

18 bugs that our approach can fix that PAR and GenProg do not. We present

observations on this in the form of illustrative case studies.

Lack of Mutation Operators. In many cases, PAR’s mutation opera-
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tors/templates are inadequate for fixing these bugs in the same way that the

developer did. For example, consider the human-produced fix for Commons

Math Version 5:

if(real == 0.0 && imaginary == 0.0){

- return NaN;

+ return INF;

}

Here, the human replaced one return statement with another. PAR has no

mutation operator for this, while our approach has the replace statement opera-

tor adopted from GenProg, which helped generate this fix. Note that GenProg

timed out on this bug, and thus did not fix the bug in our experiments.

Timeout. Even when the previous techniques possess the necessary mutation

operators to potentially fix the bugs in the same way the developers did, in

several cases they timed out before finding the fixes. For example, consider

the developer-produced fix for Closure Compiler version 14:

for(Node finallyNode : cfa.finallyMap.get(parent)){

- cfa.createEdge(fromNode, Branch.UNCOND, finallyNode)

+ cfa.createEdge(fromNode, Branch.ON_EX, finallyNode);

}

The developer replaced the method call parameter Branch.UNCOND with an-

other parameter, Branch.ON_EX. PAR includes potentially appropriate tem-

plates, such as change method call name or replace parameter for method call.

There are thus many possibilities for PAR to generate fix candidates for this

buggy statement. However, even if PAR can generate the correct fix candidate

among the pool of possible fix candidates, the correct fix candidate was not

evaluated, as PAR timed out while evaluating other, incorrect candidates. We

leave a more extensive study with longer timeouts and more random trials to

future work.
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Plausible vs Correct Fixes. Automated program repair techniques can gen-

erate both plausible and correct patches. A plausible patch leads the patched

program to pass all test cases, but does not necessarily correspond to a true fix,

consistent with the underlying specification and developer intent. A correct

fix, on the other hand, is the one that correctly fixes the semantics of the buggy

program. For example, consider the following code, including a plausible patch

generated by GenProg for Math version 85:

//Fix by human and our approach: change condition to fa * fb > 0.0

if (fa * fb >= 0.0) {

//Plausible fix by GenProg

- throw new ConvergenceException("...")

}

GenProg’s plausible patch simple deletes the throw statement. This fix makes

the program pass all the given test cases, at least in part because the test

cases do not truly check the underlying behavior. However, as compared to

the human fix for the same bug, this fix is unlikely to correspond to developer

intent or the underlying program specification. Additionally, the deletion of

throw statements rarely happens in historical practice. A more correct fix for

this bug changes the arithmetic operator so that the exception is thrown in a

correct manner that indeed satisfies the desired behaviour of the program; this

is shown in the comment in the snippet, above the if condition.

In our approach, the delete statement mutation operator adopted from

GenProg and the change infix (arithmetic) expression operator adopted from

mutation testing both lead to the generation of a plausible patch: one similar

to GenProg’s, and the other similar to the human fix. However, partially due

to the guidance provided by historical bug fixes, we avoid the plausible but

incorrect patch and correctly choose the correct patch since the historical bug

fix patterns suggest that changing an arithmetic happens more frequently in

bug fixing practice. We also note that PAR does not generate any patch for
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this bug. Although PAR has the expression replacer operator which replace

an if condition with another condition collected from the same scope, this

operator does not help PAR generate patches for this bug since there is no

correct condition appearing elsewhere in the same scope (same file).

Unfixed bugs in common. We observe that a common reason for why

our approach, PAR and GenProg cannot fix bugs is a lack of ingredients that

help synthesize the fix. For example, consider the human repair for Closure

Compiler version 42:

+ if(loopNode.isForEach()){

+ errorReporter.error("unsupported...", sourceName,

loopNode.getLineno(),"", 0);

+ return newNode(...);

}

The developer added an entire if statement to fix the bug. At first sight,

the bug may be fixable by the program repair techniques in the same way as

the developer did, if the same if statement appears elsewhere in the search

space. However, it is indeed not the case. Thus, the three approaches failed

to generate fixes for this bug.

RQ3: Average Amount of Time to Correct Fixes. In this research

question, we report the average amount of time that our approach, GenProg,

and PAR need in order to generate the correct fixes. GenProg requires less

than 10 minutes to produce the fix for the one bug that it can correctly fix.

PAR requires on average 10 minutes to generate correct fixes for the 4 bugs that

it successfully fixes. Our approach needs on average 20 minutes to generate

correct fixes for each of the 23 bugs.

This indicates that PAR and GenProg are still efficient and effective for a

certain class of bugs. For example, bugs that have a small search space to be

traversed to find correct fixes could be quickly fixed by PAR or GenProg. Our

approach, on the other hand, is resilient to many classes of bugs with the help
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of both the mutation operators and the guidance of historical bug fix data.

Note, however, that although our technique takes longer than the baselines,

20 minutes is still well within the range of a suitably efficient technique. Also,

the average time is computed over the time needed by our approach to fix the

more difficult bugs that cannot be fixed by PAR and GenProg even within 90

minutes (timeout cases). The key to good efficiency of our approach is that

we generate a diverse set of possible fix candidates, and then use historical

data to help pick the likely good fix candidates and test them against only

the failed test cases, which originally make the buggy program fail. Thus, we

do not waste too much time on evaluating nonsensical candidates. However,

we do depend on the developer to assess the final patches for suitability with

respect to the initially passing test cases.

RQ4: Rankings of Correct Fixes among Recommended Solutions. In

this research question, we report the rankings of the correct fixes among the

possible solutions that our approach presents to the developer. Recall that for

each bug, we attempt to generate 10 possible solutions. We investigate two

criteria for ranking possible solutions: time in which the fixes are produced,

and edit frequency in the historical database.

Using time, the correct fixes are ranked number one for 13 out of the 23

bugs that we can produce correct fixes. We note that there are 6 bugs that

we can only generate one solution for each bug and this solution is indeed the

correct fix of the bug. For the remaining 10 bugs, each bug has correct fix

ranked from 3 to 7 among the 10 possible solutions presented to the developer.

Using frequency, there are 11 bugs that have correct fixes ranked number

one. The remaining 12 bugs have correct fixes ranked from 2 to 10, among

the 10 possible solutions presented to the developer. Overall, these results

suggest that ranking the correct fixes among possible solutions by either time

or frequency is acceptable.

To further assure the correctness of patches generated by HDRepair, we
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use an automated test case generation tool namely DiffTGen [94] to obtain

more test cases in addition to the repair test suite. The generated test cases

are then used to assess patch correctness: if a test case is found to reveal

behavioral differences between the programs patched by HDRepair and by

human (groundtruth), then the patch by HDRepair is identified as incorrect.

We experimented with all HDRepair -generated patches that are ranked first

(by time) among the 10 solutions for each bug. The results show that DiffTGen

identifies three incorrect patches. Note that the correct patches generated by

HDRepair for the three incorrect patches are ranked from 3 to 7 among the 10

possible solutions output by HDRepair per bug .

3.4 Conclusions

Existing automated program repair (APR) techniques often unsuccessfully re-

turn correct patches despite running for a long period of time (e.g., more than

10 hours). In this work, we propose a generic and efficient APR technique

that leverages information from historical bug fixes. Our solution takes as in-

put a large set of repositories of software projects to create a knowledge base

which is then leveraged to generate a ranked list of plausible bug fix patches

given a buggy program and a set of test cases. It works on three phases: bug

fix history extraction, bug fix history mining, and bug fix generation. We

have evaluated the effectiveness of our proposed approach on a dataset of 90

bugs from five Java programs, and compared its effectiveness against two other

generic generate-and-validate and test-case-driven APR techniques that work

on Java programs. Our experiment results highlight that our approach can

fix 23 bugs correctly, which are many more than the bugs that can be fixed

by GenProg and PAR. On average, our solution can fix the 23 bugs within 20

minutes. These highlight the superior performance of our proposed approach

in terms of effectiveness and efficiency as compared to existing generic APR
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solutions that can fix multi-line bugs in Java programs.

In the future, we plan to improve the effectiveness and efficiency of our

solution further. We plan to do so by designing better ways to traverse the

search space of potential patches. We also plan to incorporate data from not

only 3,000 bug fixes but even a larger number taken from even many more

programs.
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Overfitting in Semantics-based

Repair

Search-based APR has been shown to be subject to overfitting, at various de-

grees [81]. Unfortunately, there exists no comprehensive study in the literature

on the overfitting issue in semantics-based APR. In this work, we address this

gap by studying various semantics-based APR techniques, complementing pre-

vious studies of the overfitting problem in search-based APR. We perform our

study using IntroClass and Codeflaws benchmarks, two datasets well-suited

for assessing repair quality, to systematically characterize and understand the

nature of overfitting in semantics-based APR. We find that similar to search-

based APR, overfitting also occurs in semantics-based APR in various different

ways.

4.1 Introduction

Automated program repair (APR) addresses an important challenge in soft-

ware engineering. Its primary goal is to repair buggy software to reduce the

human labor required to manually fix bugs [84]. Recent advances in APR

have brought this once-futuristic idea closer to reality, repairing many real-

world software bugs [66, 52, 60, 37, 96, 48, 47, 46]. Such techniques can be
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broadly classified into two families, semantics-based vs. search-based, differ-

entiated by the underlying approach, and with commensurate strengths and

weaknesses. Semantics-based APR typically leverages symbolic execution and

test suites to extract semantic constraints, or specifications, for the behavior

under repair. It then uses program synthesis to generate repairs that satisfy

those extracted specifications. Early semantics-based APR techniques used

template-based synthesis [38, 39]. Subsequent approaches use a customized

component-based synthesis [68, 96], which has since been scaled to large sys-

tems [66]. By contrast, search-based APR generates populations of possible

repair candidates by heuristically modifying program Abstract Syntax Trees

(AST)s, often using optimization strategies like genetic programming or other

heuristics to construct good patches [89, 90, 52, 50, 73, 60].

Both search-based and semantics-based APR techniques have been demon-

strated to scale to real-world programs. However, the quality of patches gen-

erated by these is not always assured. Techniques in both families share a

common underlying assumption that generated patches are considered correct

if they lead the program under repair pass all provided test cases. This raises

a pressing concern about true correctness: an automatically-generated repair

may not generalize beyond the test cases used to construct it. That is, it may

be plausible but not fully correct [74]. This problem has been described as

overfitting [81] to the provided test suites. This is an especial concern given

that test suites are known to be incomplete in practice [84]. As yet, there is no

way to know a priori whether and to what degree a produced patch overfits.

However, the degree to which a technique produces patches that overfit has

been used post facto to characterize the limitations and tendencies of search-

based techniques [81], and to experimentally compare the quality of patches

produced by novel APR methods [36].

There is no reason to believe that semantics-based APR is immune to this

problem. Semantics-based approaches extract behavioral specifications from
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the same partial test suites that guide search-based approaches, and thus the

resulting specifications that guide repair synthesis are themselves also partial.

However, although recent work has assessed proxy measures of patch quality

(like functionality deletion) [66], to the best of our knowledge, there exists

no comprehensive, empirical characterization of the overfitting problem for

semantics-based APR in the literature.

We address this gap. In this article, we comprehensively study overfitting

in semantics-based APR. We perform our study on Angelix, a recent state-of-

the-art semantics-based APR tool [66], as well as a number of syntax-guided

synthesis techniques used for program repair [49]. We evaluate the techniques

on a subset of the IntroClass [53] and Codeflaws benchmarks [82], two datasets

well-suited for assessing repair quality in APR research. Both consist of many

small defective programs, each of which is associated with two independent test

suites. The multiple test suites renders these benchmarks uniquely beneficial

for assessing patch overfitting in APR. One test suite can be used to guide the

repair, and the other is used to assess the degree to which the produced repair

generalizes. This allows for controlled experimentation relating various test

suite and program properties to repairability and generated patch question.

In particular, IntroClass consists of student-written submissions for intro-

ductory programming assignments in the C programming language. Each as-

signment is associated with two independent, high-quality test suites: a black-

box test suite generated by the course instructor, and a white-box test suite

generated by automated test case generation tool KLEE [13] that achieves full

branch coverage over a known-good solution. IntroClass has been previously

used to characterize overfitting in search-based repair [81]. The Codeflaws

benchmark consists of programs from the Codeforces1 programming contest.

Each program is also accompanied by two set of test suites: one for the pro-

grammers/users to validate their implementations, and the other for the con-
1http://codeforces.com/
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test committee to validate the users’ implementations.

Overall, we show that overfitting does indeed occur with semantics-based

techniques. We characterize the relationship between various factors of inter-

est, such as test suite coverage and provenance, and resulting patch quality. We

observe certain relationships that appear consistent with results observed for

search-based techniques, as well as results that stand counter to those achieved

on them, e.g., using whitebox tests as training tests reduces the overfitting

rate of semantics-based repair, while increases the overfitting rate of search-

based repair.2 These results complement the existing literature on overfitting

in search-based APR, completing the picture on overfitting in APR in gen-

eral. This is especially important to help future researchers of semantics-based

APR to overcome the limitations of test suite guidance. We argue especially

(with evidence) that semantics-based program repair should seek stronger or

alternative program synthesis techniques to help mitigate overfitting.

Our contributions are as follows:

• We perform the first study on overfitting in semantics-based program

repair. We show that semantics-based APR can generate high-quality

repairs, but can also produce patches that overfit.

• We assess relationships between test suite size and provenance, number

of failing tests, and semantics-specific tool settings and overfitting. We

find, in some cases, results consistent with those found for search-based

approaches. In other cases, we find results that are interestingly incon-

sistent.

• We substantiate that using multiple synthesis engines could be one pos-

sible approach to increase the effectiveness of semantics-based APR, e.g.,

generate correct patches for a larger number of bugs. This extends Early

Results findings from [49].

• We present several examples of overfitting patches produced by semantics-
2Please refer to research questions 3 and 4 for more details.

46



CHAPTER 4. OVERFITTING IN SEMANTICS-BASED REPAIR

based APR techniques, with implications and observations for how to

improve them. For example, we observe that one possible source for

overfitting in semantics-based APR could be due to the “conservative-

ness” of the underlying synthesis engine, that returns the first solution

found (without consideration of alternatives).

The remainder of this chapter proceeds as follows. Section 4.2 describes

background on semantics-based program repair. Section 4.3.1 explains the data

we use in our experiments; the remainder of Section 4.3 presents experimental

results, and insights behind them. We conclude and summarize in Section 4.4.

4.2 Semantics-based Program Repair

We focus on understanding and characterizing overfitting behavior in semantics-

based automated program repair (APR). Semantics-based APR has recently

been shown by [66] to scale to the large programs previously targeted by search-

based APR techniques [52, 60]. This advance is instantiated in Angelix, the

most recent, state-of-the-art semantics-based APR approach in the literature.

Angelix follows a now-standard model for test-case-driven APR, taking as

input a program and a set of test cases, at least one of which is failing. The

goal is to produce a small set of changes to the input program that corrects

the failing test case while preserving the other correct behavior. At a high

level, the technique identifies possibly-defective expressions, extracts value-

based specifications of correct behavior for those expressions from test case

executions, and uses those extracted specifications to synthesize new, ideally

corrected expressions. More specifically, Angelix first uses existing fault local-

ization approaches, like Ochiai [3] to identify likely-buggy expressions. It then

uses a selective symbolic execution procedure in conjunction with provided test

suites to infer correctness constraints, i.e., specifications.

We now provide detailed background on Angelix’s mechanics. We first de-
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tail the two core components of Angelix: specification inference (Section 4.2.1)

and program synthesis (Section 4.2.2). We explain various tunable options that

Angelix provides to deal with different classes of bugs (Section 4.2.3). We then

provide background on the variants of semantics-based APR we also investi-

gate our experiments: SemFix (Section 4.2.4), and Syntax-Guided Synthesis

(SyGuS) as applied to semantics-based APR (Section 4.2.5).

4.2.1 Specification Inference via Selective Symbolic Ex-

ecution

Angelix relies on the fact that many defects can be repaired with only a few

edits [63], and thus focuses on modifying a small number of likely-buggy ex-

pressions for any particular bug. Given a small number of potentially-buggy

expressions identified by a fault localization procedure, Angelix performs a se-

lective symbolic execution by installing symbolic variables αi at each chosen

expression i.3 It concretely executes the program on a test case to the point

that the symbolic variables begin to influence execution, and then switches

to symbolic execution to collect constraints over αi. The goal is to infer con-

straints that describe solutions for those expressions that could lead all test

cases to pass.

These value-based specifications take the form of a precondition on the val-

ues of variables before a buggy expression is executed, and then a postcondition

on the values of αi. The precondition is extracted using forward analysis on

the test inputs to the point of the chosen buggy expression; The postcondition

is extracted via backward analysis from the desired test output by solving the

model: PC ∧ Oa == Oe. PC denotes the path condition collected via sym-

bolic execution, Oa denotes the actual execution output, and Oe denotes the

expected output. The problem of program repair now reduces to a synthesis
3Angelix can target multiple expressions at once; we explain the process with respect to

a single buggy expression for clarity, but the technique generalizes naturally.
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problem: Given a precondition, Angelix seeks to synthesize an expression that

satisfies the postcondition (described in Section 4.2.2)

Angelix infers specifications for a buggy location using a given number of

test cases, and validates synthesized expressions with respect to the entire

test suite. Angelix chooses the initial test set for the specification inference

based on coverage, selecting tests that provide the highest coverage over the

suspicious expressions under consideration. If any tests fail over the course of

validation process, the failing test is incrementally added to the test set used

to infer specifications for subsequent repair efforts, and the inference process

moves to the next potentially-buggy location. This process is repeated until a

repair that leads the program to pass all tests is found. We further discuss the

number of tests used for specification inference in Section 4.2.3.

4.2.2 Repair Synthesis via Partial MaxSMT Solving

Angelix adapts component-based repair synthesis [32] to synthesize a repair

conforming to the value-based specifications extracted by the specification in-

ference step. It solves the synthesis constraints with Partial Maximum Satis-

fiability Modulo Theories (Partial MaxSMT) [65] to heuristically ensure that

the generated repair is minimally different from the original program.

Component-based synthesis. The synthesis problem is to arrange and

connect a given set of components into an expression that satisfies the pro-

vided constraints over inputs and outputs. We illustrate via example: Assume

the available components are variables x and y, and binary operator “−” (sub-

traction). Further assume input constraints of x == 1 and y == 2, and an

output constraint of f(x, y) == 1. f(x, y) is the function over x and y to be

synthesized. The component-based synthesis problem is to arrange x, y, and

“−” (the components) such that the output constraint is satisfied with respect

to the input constraints. For our example, one such solution for f(x, y) is y−x;
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Another is simply x, noting that the synthesized expression need not include

all available components. The synthesis approach encodes the constraints and

available components in such a way that, if available, a satisfying SMT model is

trivially translatable into a synthesized expression, that synthesized expression

is well-formed, and it provably satisfies the input-output constraints

Partial MaxSMT for minimal repair. Angelix seeks to produce repairs

that are small with respect to the original buggy expressions. Finding a min-

imal repair can be cast as an optimization problem, which Angelix addresses

by leveraging Partial MaxSMT [65]. Partial MaxSMT can solve a set of hard

clauses, which must be satisfied, along with as many soft clauses as possible.

In this domain, the hard clauses encode the input-output and program well-

formedness constraints, and the soft clauses encode structural constraints that

maximally preserve the structure of the original expressions. Consider the two

possible solutions to our running example: f(x, y) = y − x, or f(x, y) = x. If

the original buggy expression is x− y, synthesis using Partial MaxSMT might

produce f(x, y) = y − x as a desired solution, because it maximally preserves

the structure of the original expression by maintaining the “−” operator.

4.2.3 Tunable Parameters in Angelix

We investigate several of Angelix’s tunable parameters in our experiments. We

describe defaults here, and relevant variances in Section 4.3.

Suspicious location group size. Angelix divides multiple suspicious loca-

tions into groups, each consisting of one or more locations. Angelix generates

a repaired expression for each potentially-buggy expression in a group. Dur-

ing specification inference, Angelix installs symbolic variables for locations in

each group, supporting inference and repair synthesis on multiple locations.

Given a group size N , Angelix can generate repairs that touch no more than

N locations. For example, if N = 2 (the default setting), Angelix can generate
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a repair that modifies either one or two expressions. Angelix groups buggy

expressions by either suspiciousness score, or proximity/location. By default,

Angelix groups by location.

Number of tests used for specification inference. The number of tests

used to infer (value-based) specifications is important for performance and

generated patch quality. Too many tests may overwhelm the inference and

synthesis engines; too few may lead to the inference of weak or inadequate

specifications expressed in terms of input-output examples, which may sub-

sequently render the synthesis engine to generate poor solutions that do not

generalize. As described above, Angelix increases the size of the test suite

incrementally as needed. By default, two tests are used to start, at least one

of which must be failing.

Synthesis level. The selection of which components to use as ingredient

components for synthesis is critical. Too few components overconstrains the

search and reduces Angelix’s expressive power; too many can overwhelm the

synthesis engine by producing an overly large search space. Angelix tackles

this problem by defining synthesis levels, where each level includes a particu-

lar set of permitted ingredient components. For a given repair problem, the

synthesis engine searches for solutions at each synthesis level, starting with

the most restrictive and increasing the size of the search space with addi-

tional components until either a repair is found or the search is exhausted.

By default, Angelix’s synthesis levels include alternatives, integer-constants,

and boolean-constants levels. The alternatives synthesis level allows Angelix’s

synthesis engine to use additional components similar to existing code, e.g.,

“≤” is an alternative component for the component “<”. The integer-constants

and boolean-constants levels enable additional integer and boolean constants

available to the synthesis engine, respectively.
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Defect Classes. Angelix can handle four classes of bugs, related to, respec-

tively, assignments, if-conditions, loop-conditions, and guards. The “assign-

ments” defect class considers defective right-hand-sides in assignments. “if-

conditions” and “loop-conditions” considers buggy expressions in conditional

statements. The “guards” defect class considers the addition of synthesized

guards around buggy statements. For example, Angelix might synthesize a

guard if(x > 0) to surround a buggy statement x = y + 1, producing if(x >

0) {x = y + 1}. The more defect classes considered, the more complicated

the search space, especially given the “guard” class (which can manipulate ar-

bitrary statements). By default, Angelix considers assignments, if-conditions,

and loop-conditions.

4.2.4 SemFix: Program Repair via Semantic Analysis

SemFix, a predecessor of Angelix, is a synergy of fault localization, symbolic

execution, and program synthesis. The primary differences between SemFix

and Angelix are: (1) SemFix’s specification inference engine works on only a

single buggy location (Angelix can operate over multiple buggy locations at

once), (2) SemFix defines the specification as a disjunction of inferred path

conditions. Angelix instead extracts sequences of angelic values that allow the

set of tests to pass from each path, and uses them to construct a so-called

“angelic forest.” As a result, the size of Angelix specification is independent of

the size of the program (depending only on the number of symbolic variables).

This makes Angelix more scalable than SemFix, and (3) SemFix does not

attempt to minimize the syntactic distance between a solution and the original

buggy expression using Partial MaxSMT. These differences are particularly

important for scalability (Angelix can repair bugs in larger programs than can

SemFix), and patch quality, which this article explores in detail.
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4.2.5 Syntax-Guided Synthesis for Semantics-Based Pro-

gram Repair

Other synthesis approaches are also applicable to semantics-based program

repair, with possible implications for repair performance [49]. We systemati-

cally evaluate these implications for repair quality, and thus now describe the

Syntax-Guided Synthesis (SyGuS) [4] techniques we use in our experiments.

Given a specification of desired behavior, a SyGuS engine uses a restricted

grammar to describe (and thus constrain) the syntactic space of possible im-

plementations. Different SyGuS engines vary in the search strategies used to

generate solutions that satisfy the specification and conform to the grammar.

We investigate two such techniques:

• The Enumerative strategy [4] generates candidate expressions in increas-

ing size, and leverages specifications and a Satisfiability Modulo Theory

(SMT) solver to prune the search space of possible candidates. Since

repeatedly querying an SMT solver regarding the validity of a solution

with respect to a specification (the validity query) is expensive, it uses

counter-examples to improve performance. That is, whenever a solu-

tion failed to meet the specification, a counter-example is generated and

added to the next validity query.

• CVC4 is the first SyGus synthesizer [78] implemented inside an SMT

solver, via a slight modification of the solver’s background theory. To syn-

thesize an implementation that satisfies all possible inputs, it translates

the challenging problem of solving universal quantifier over all inputs into

showing the unsatisfiability of the negation of the given specification. It

synthesizes a solution based on the unsatisfiability proof.

Recent SyGuS competitions suggest that the CVC4 and enumerative en-

gines are the among the best, evaluated on SyGuS-specialized benchmarks.4

4http://www.sygus.org/
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We follow the approach described in previous work [49] to integrate the

Enumerative and CVC4 synthesizers into Angelix. At a high level, Angelix

infers value-based specifications as usual, and we automatically translate those

specifications into a suitable SyGuS format, with optimizations to constrain

the repair minimality. Different SyGuS engines can then be run on the same

generated SyGuS script to synthesize a repair conforming to the inferred speci-

fications, allowing for a controlled comparison of different synthesis approaches

in the context of a semantics-based repair technique.

4.3 Empirical Evaluation

The primary purpose of our experiments is to systematically investigate and

characterize overfitting in semantics-based APR. To this end, we use bench-

marks that provide many buggy programs along with two independent test

suites. For each run of each repair technique on a given buggy program, we

use one set of provided test cases (the training tests) to generate a repair, and

the other (the held-out tests) to assess the quality of the generated repair. If

a repair does not pass the held-out tests, we say it is an overfitting repair that

is not fully general; this is a proxy measure for repair quality (or lack thereof).

Otherwise, we call it a non-overfitting or general repair.5

We describe our experimental dataset in Section 4.3.1. We then begin by

assessing baseline patching and overfitting behavior generally (Section 4.3.2).

We then evaluate relationships between overfitting and characteristics of input

test suites and input programs (Section 4.3.3), as well as tunable tool param-

eters (Section 4.3.4). Finally, we present and discuss several informative test

cases from the considered dataset (Section 4.3.5) and a qualitative case study

on real-world bugs (Section 4.3.6).
5We use the words “repair” and “patch” interchangeably.
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4.3.1 Experimental data

We obtained Angelix from https://github.com/mechtaev/angelix/, using

the version evaluated in [66]. We set all tunable parameters to their defaults

(Section 4.2.3) unless otherwise noted.

We conduct the majority of our experiments on buggy programs from a sub-

set of the IntroClass benchmark [53], and the Codeflaws benchmark [82].6 Both

benchmarks consist of small programs, but are particularly suitable benchmark

for assessing repair quality via overfitting, because they each provide two test

suites for each buggy program. One set can be used to guide the repair, while

the second set is used to assess the degree to which it generalizes.

IntroClass: IntroClass consists of several hundred buggy versions of six dif-

ferent programs, written by students as homework assignments in a freshmen

programming class. Each assignment is associated with two independent high-

coverage test suites: a black-box test suite written by the course instructor,

and a white-box test suite generated by the automated test generation tool

KLEE [13] on a reference solution. We filtered IntroClass to retain only tex-

tually unique programs. We then further filter to retain those programs with

outputs of type boolean, integer, or character because Angelix’s inference en-

gine does not fully support output of other types such as String or float due to

the limited capability of constraint solving technique used in Angelix’s under-

lying symbolic execution engine. This leaves us with 315 program versions in

the dataset, shown in column “Total” in Table 4.1(a) (grouped by assignment

type).

Codeflaws: The Codeflaws benchmark contains 3,902 defects collected from the

Codeforces programming contest,7 categorized by bug types [82]. Since running

all bugs is computationally expensive, we select for our experiments 665 bugs

belonging to different bug categories. The selected bugs are from the “replace
6We discuss the real-world bugs we describe qualitatively in Section 4.3.6.
7http://codeforces.com/
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1 // An example of ORRN defect type
2 -if(a > b)
3 +if(a >= b)
4
5 // An example of OLLN defect type
6 -if(a || b)
7 +if(a && b)
8
9 // An example of OILN defect type

10 -if(a)
11 +if(a || b)

Figure 4.1: Examples of defect types from the Codeflaws dataset used in our
experiments.

relational operator” bug category (ORRN ), and the “replace logical operator”

(OLLN ) and “tighten or loosen condition” (OILN ) categories. Examples of

the selected defect types are shown in Figure 4.1. These three selected defect

categories are best suited to repair via semantics-based techniques (note that

the majority of bugs fixed by Angelix in [66] belongs to the “if-condition” defect

type).

Similar to IntroClass, each program in Codeflaws is accompanied by two

test suites: one suite is available to the contest’s users to assess their imple-

mentation, and the other is only available to the contest’s committee to assess

the implementations submitted by users.

4.3.2 Baseline patching and overfitting

Our first three research questions (1) establish baseline patch generation re-

sults, (2) evaluate whether there exists an apparent relationship between the

number of tests a program fails and repair success, and (3) assess the degree

to which the semantics-based techniques under consideration produce patches

that overfit to a training test suite.

Research Question 1: How often do Angelix (including various synthesis

engines) and SemFix generate patches that lead the buggy programs to pass

all training test cases?
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IntroClass: In these initial experiments, we use the black-box tests as training

tests, and the white-box tests as held-out tests. Of the 315 program versions,

225 programs that have at least one failing black-box test case. The center

portion of Table 4.1(a) shows results (we discuss white-box results in Research

Question 6), in terms of the number of patches generated by Angelix, CVC4,

Enumerative, and SemFix using black-box tests for training. In total, An-

gelix generates patches for 81 out of 225 versions (36%). Note that Angelix

generated no patches for the syllables and checksum programs; our manual

investigation suggests that this is primarily due to imprecision in the built-in

fault localization module. Beyond this, success rate varies by assignment type.

Angelix has the most patch generation success (70.4%) for programs written

for the median problem. The overall results indicate that Angelix generates

patches frequently enough for us to proceed to subsequent research questions.

Angelix incorporating the CVC4 and Enumerative SyGuS engines gener-

ated patches for 71 and 59 versions, respectively, a lower patch generation suc-

Table 4.1: Baseline repair results on IntroClass and Codeflaws.

(a) Baseline repair results on IntroClass. Total benchmark program versions considered (To-
tal), baseline repair results for programs that fail at least one black-box test (Black-box,
center columns), and those that fail at least one white-box test (White-box, last columns).
The sets of programs that fail at least one test from each set are not disjoint.

Black-box bugs White-box bugs
Subject Total # Angelix CVC4 Enum SemFix # Angelix CVC4 Enum SemFix

smallest 67 56 37 39 29 45 41 37 37 36 37
median 61 54 38 28 27 44 45 35 36 23 38
digits 108 57 6 4 3 10 90 5 2 2 8
syllables 48 39 0 0 0 0 42 0 0 0 0
checksum 31 19 0 0 0 0 31 0 0 0 0

total 315 225 81 71 59 99 249 77 75 61 83

(b) Baseline repair results on Codeflaws. The tests
available to the users serve as training tests; the
contest committee tests serve as held-out tests.

Subject Total Angelix CVC4 Enum SemFix

CodeFlaws 651 81 91 92 56
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Table 4.2: Baseline overfitting results on IntroClass (top) and Codeflaws (bot-
tom). In both tables, A / B denotes A overfitting patches out of B total
patches generated.

(a) IntroClass overfitting rates for each APR approach, using black box (center columns) and
white box (right-most columns) as training tests. We omit syllables and checksum, for which
no patches were generated.

Black box White box
Subject Angelix CVC4 Enum SemFix Angelix CVC4 Enum SemFix

smallest 27 / 37 33 / 39 24 / 29 36 / 45 31 / 37 33 / 37 33 / 36 33 / 37
median 29 / 38 21/ 28 21 / 27 40 / 44 25 / 35 36 / 36 23 / 23 38 / 38
digits 5 / 6 3 / 4 3 / 3 10 / 10 0 / 5 2 / 2 2 / 2 2 / 8

Overfitting 75% 80% 81% 90% 72.7% 95% 93.5% 87%

(b) Codeflaws overfitting rates for each APR ap-
proach.

Angelix CVC4 Enum SemFix
44 / 81 76 / 91 80 / 92 38 / 56

Overfitting 54% 83.5% 87% 68%

cess rate comparatively (31.6% for CVC4, and 26.2% for Enumerative). Sem-

Fix, on the other hand, generates patches for 99 versions with slightly higher

patch generation rate (44%). Despite the lower patch generation rates, CVC4

and Enumerative do generate patches for programs for which Angelix cannot.

This raises an interesting question regarding whether it might it be beneficial

to use multiple synthesis techniques to increase the effectiveness of semantics-

based APR. In subsequent research questions, we investigate whether Angelix,

CVC4, Enumerative, and SemFix do indeed generate non-overfitting patches

for distinct program versions.

Codeflaws: For Codeflaws, we use the tests available to users as training tests,

and the tests that are only available to the contest’s committee as held-out

tests. Table 4.1(b) shows results. Angelix, CVC4, Enumerative and SemFix

succeed in generating patches for 12.5%, 14%, 14%, and 9% of the buggy

programs, respectively. Although this is a much lower patch generation rate

as compared to the IntroClass results, the number of generated patches is

adequate to allow us to proceed to subsequent research questions.
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Research Question 2: How often do the produced patches overfit to the

training tests, when evaluated against the held-out tests?

In this question, we evaluate whether the generated patches generalize,

indicating that they are more likely to be correct with respect to the program

specification. An ideal program repair technique would often generate general

patches, and produce overfitting patches infrequently. We test all patches

produced for Research Question 1 against the held-out to measure rate.

Results. Table 4.2(a) and Table 4.2(b) show the number of patches produced

for each subject program that fail at least one held-out test for the Intro-

Class and Codeflaws datasets, respectively. On IntroClass, 61 of the 81 (75%)

Angelix-produced patches overfit to the training tests, while 80%, 81%, and

90% of the CVC4-, Enumerative-, and SemFix-produced patches do, respec-

tively. On Codeflaws, 44 of the 81 (54%) Angelix-produced patches overfit,

while 83.5%, 87%, and 68% of patches generated by CVC4, Enumerative, and

SemFix do, respectively. This suggests that, although semantics-based repair

has been shown to produce high-quality repairs on a number of subjects, over-

fitting to the training tests is still a concern. We present case studies to help

characterize the nature of overfitting in semantics-based APR in Section 4.3.5.

One possible reason that CVC4 and Enumerative underperform Angelix’s

default synthesis engine is that the SyGuS techniques do not take into account

the original buggy expressions. We observed that the resulting patches can be

very different from the originals they replace, which can impact performance

arbitrarily. However, the CVC4 and Enumerative techniques do generate non-

overfitting patches for programs that default Angelix cannot produce non-

overfitting patches, as shown in Figure 4.2(a) and Figure 4.2(b). Similarly,

SemFix, CVC4, and Enumerative also have non-overlapping non-overfitting

patches (results omitted). This phenomenon also happens between Angelix and

SemFix. This suggests that using multiple synthesis engines to complement

one another may increase the effectiveness of semantics-based APR.
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(a) Non-overfitting patches generated by
Angelix, CVC4, and Enumerative on In-
troClass.

(b) Non-overfitting patches generated by
Angelix, CVC4, and Enumerative on
Codeflaws.

Figure 4.2: Non-overfitting patches by Angelix, CVC4, and Enumerative on
IntroClass and Codeflaws benchmarks.

4.3.3 Training test suite features

Our next three research questions look at the relationship between features of

the training test suite and produced patch quality, looking specifically at (4)

test suite size, (5) number of failing tests, and (6) test suite provenance.

Research Question 3: Is the training test suite’s size related to patch over-

fitting?

To answer this question, we vary the training test suite size and observe the

resulting overfitting rate. To achieve this, we randomly sample the black-box

test suite (for the IntroClass dataset) and user’s test suite (for the Codeflaws

dataset) to obtain 25%, 50% and 75% of the suite as training tests, and use

the resulting tests to guide repair. We vary the number of training tests, but

keep the pass-fail ratio of tests in each version consistent. We repeat this

experiment five times and aggregate the results for each repair technique. We

also measure code coverage corresponding to the training test suites at various

sizes as shown in Table 4.4. From the table, we can observe that the increase

in test suite’s size brings about higher code coverage.

Results. Tables 4.3(a) and 4.3(b) show results on the IntroClass and Codeflaws
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Table 4.3: Overfitting rate of Angelix, CVC4, Enumerative, and SemFix when
varying the number of tests used for training on IntroClass (top) and Codeflaws
(bottom). ORate stands for overfitting rate.

(a) Overfitting by number of tests used, IntroClass.

Angelix CVC4 Enum SemFix
Subject 25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%

smallest 29/38 25/34 20/29 28/36 22/32 17/27 26/35 23/33 19/28 32/41 36/45 36/45
median 35/40 29/34 25/30 33/39 26/32 26/30 33/38 27/32 25/30 36/43 40/45 41/46
digits 8/8 6/6 7/7 8/8 6/6 6/6 8/8 6/6 6/6 9/9 12/12 12/12

ORate 84% 94% 78% 83% 77% 78% 83% 79% 78% 83% 86% 87.4%

(b) Overfitting by number of tests used, Codeflaws.

Angelix CVC4 Enum SemFix
25% 50% 75% 25% 50% 75% 25% 50% 75% 25% 50% 75%
87/99 78/95 58/73 86/90 85/94 104/111 73/78 77/88 112/120 89/97 77/85 57/64
88% 82% 79.5% 96% 90.4% 94% 93.6% 87.5% 93% 92% 90.6% 86.4%

Table 4.4: Code coverage corresponding to training test suite’s sizes of 25%,
50%, and 75% of original blackbox tests.

Code Coverage
Subject 25% 50% 75%

smallest 77.5% 80% 84%
median 73% 79% 82%
digits 73% 76% 77%
Codeflaws 79% 84% 85%

benchmarks, respectively. Interestingly, the overfitting rate fluctuation is very

small. Table 4.3(a), shows that on IntroClass, using 25%, 50%, and 75% of

black-box tests as training tests, Angelix has an overfitting rate of 84%, 94%,

and 78%, respectively. This highlights an interesting trend: When training

suite size increases, Angelix appears to generate fewer patches, but without a

major change in overfitting rate. For example, considering smallest programs,

Angelix generates 29, 25, and 20 non-overfitting patches when 25%, 50%, and

75% of black-box tests are used, respectively. We conclude that that it may

be slightly more difficult to generate patches in response to higher-coverage

test suites. However, as test suite coverage increases, overfitting rate does not

appear to substantially decrease. Similar trends appear to apply to CVC4,
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Enumerative, and SemFix.

Table 4.3(b) shows the results on the Codeflaws benchmark. We can see

that Angelix and SemFix follow the same trend as described above on the

results on the IntroClass dataset. CVC4 and Enum, however, depict an oppo-

site trend in terms of patch generation rate, wherein the number of generated

patches increases with training test suite size.

These results are particularly interesting when contrasted with prior results

characterizing overfitting for search-based repair [81]. [81] found that lower-

coverage test suites posed a risk for search-based repair, leading to patches

that were less likely to generalize. By contrast, our results for semantics-

based repair do not show this relationship; test suite coverage overall may not

influence the quality of semantics-based patches to the same degree they do in

search-based techniques. As a result, semantics-based approaches may be safer

to use than search-based techniques when only lower-coverage or lower-quality

test suites are available.

Note that these semantics-based APR techniques generate repairs eagerly.

That is, they generate one plausible repair at a time, and if that repair leads

the program to pass all tests, it is returned without considering other candi-

dates. Since there can exist many plausible patches that pass all tests, but are

not necessarily correct (this has been empirically characterized for search-based

techniques [59]), a potentially fruitful future direction for semantics-based APR

may be to lazily generate a number of candidates using the synthesis strategy,

and then employ an appropriate ranking function to heuristically rank candi-

dates according to predicted correctness, combining various elements of both

search-based and semantics-based approaches.

Research Question 4: How is the training test suite’s provenance (automat-

ically generated vs. human-written) related to patch overfitting?

Automatic test generation may provide a mechanism for augmenting inad-

equate test suites for the purposes of program repair. However, previous work
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assessing overfitting for search-based repair found that patch quality varied

based on the origin (or provenance) of the training test suite on the IntroClass

dataset. That is, the human and instructor-provided black box tests led APR

techniques to produce higher-quality repairs, i.e., the ones that pass more held-

out tests, than the automatically generated tests (generated by KLEE) [81].

We assess the same concern for semantic-based APR by comparing the qual-

ity of patches generated using the white-box (KLEE-generated) tests to those

of the black-box (human-generated) tests from the IntroClass dataset. We

only use IntroClass for this question since its held-out tests are automatically

generated; the provenance of the held-out tests in Codeflaws is unspecified [82].

Results. The right-hand-side of Table 4.1(a) shows baseline patch results using

the white-box tests for training; the right-hand side of Table 4.2(a) shows

how many of those patches overfit. Angelix generates patches for 77 buggy

programs using these test suites, including 37, 35, and 5 versions for subjects

smallest, median, and digits, respectively. Of those, 31, 25, and 5 patches fail

to generalize, respectively. Overall, when using white-box tests as training

tests, Angelix generates patches with an overfitting rate of 72.7% on average.

This is very slightly lower as compared to the rate for the black-box tests, seen

in Research Question 3 (75% versus 72.7%).

This result on semantics-based repair is particularly interesting as com-

pared to that of the search-based repair case [81]. Smith et al. [81] found

that overfitting in search-based repair is worse when using whitebox tests for

training. These results suggest that although automated test generation may

not help with search-based repair, it could be particularly useful in helping

semantics-based repair, i.e., Angelix to mitigate the risk of overfitting. As

above, lower-quality test suites may pose a smaller risk to the output quality

of this technique type.

By contrast, the performance of CVC4 and Enumerative suffers when using

the white-box as compared to the black-box tests. CVC4 and Enumerative
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can only generate non-overfitting patches for 4 and 3 versions of smallest,

respectively. This indicates a very high overfitting rate (around 95%). The

performance of SemFix is almost the same when either using black-box or

white-box tests as training tests (overfitting rate of around 87%). Recall that

our experiments use one set of test for training, e.g., whitebox tests, and the

other for testing, e.g., blackbox tests. Thus, one possible reason for worse

performance of CVC4 and Enumerative when training using whitebox tests

as compared to blackbox tests could be that the blackbox tests are possibly

more comprehensive than whitebox tests. This implies that when testing using

backbox tests, plausible repairs – which pass a certain set of tests but do not

generalize to other test set – could be more easily detected as compared to

testing using whitebox tests.

The differences between the results on Angelix versus that of other syn-

thesis engines, i.e., CVC4, Enumerative, and SemFix could be due to both

the nature of the underlying synthesis techniques and the datasets used for

experiments. Angelix’s synthesis engine attempts to generate minimal repair,

which renders the fixed program to be minimally syntactically different from

the original buggy one, by using MaxSMT. Other techniques including CVC4,

Enumerative, and SemFix do not constrain the relationship between the re-

paired program and the original buggy one, and thus may generate patches

involving larger changes that make the repaired program very different from

the original buggy one. In fact, datasets used for our experiments require small

changes to fix bugs. Thus, Angelix-generated (minimal) patches may be more

likely to be correct, while patches requiring larger changes generated by other

techniques may be more likely plausible – which can pass certain set of tests

but do not generalize. Overall, there remains a need to improve automated

test generations before it can be used across the board for automatic repair,

and to understand the source of this quality discrepancy.
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Table 4.5: Overfitting rate when using all training tests for specification infer-
ence for IntroClass (top; we omit syllables and checksum, for which no patches
were generated) and Codeflaws (bottom).

(a) Overfitting on IntroClass

Subject Angelix CVC4 Enum SemFix

smallest 10 / 20 27 / 39 27 / 39 12 / 19
median 18 / 22 13/ 20 24 / 32 18 / 23
digits 5 / 5 3 / 3 3 / 3 5 / 5

Overfitting 70.2% 69.4% 73% 74.5%

(b) Overfitting on Codeflaws

Angelix CVC4 Enum SemFix
102 / 126 102 / 108 79 / 84 100 / 112

Overfitting 81% 95% 94% 89.3%

4.3.4 Tunable technique parameters

Our next two research questions concern the relationship between patch genera-

tion success and quality and (7) number of tests used for specification inference

and (8) the Angelix group size feature.

Research Question 5: What is the relationship between the number of tests

used for specification inference and patch generation success and patch quality?

Theoretically, the more tests used for specification inference, the more com-

prehensive the inferred specifications, which may help synthesis avoid spurious

solutions.8 Thus, we investigate the relationship between the number of con-

sidered tests and patch generation and quality for all considered techniques.

IntroClass results. We use black-box tests as training tests, and white-box

tests as held-out tests to answer this question, and instruct the inference en-

gine to use all available tests for specification inference. The top of Table 4.5

shows results. Angelix generates 47 patches, of which 33 do not fully gener-

alize, indicating an overfitting rate of 70.2% on average. As compared to the

results from Research Question 3, in which we use Angelix’s default setting
8Recall the explanation in Section 4.2.3 on the number of tests used for specification

inference.
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(starting with two tests), the overfitting rate is slightly reduced (from 75%

to 70.2%). CVC4 and Enumerative generate patches with overfitting rate of

69.4% (43 incorrect patches over 62 generated patches), and 73% (54 incorrect

patches over 74 generated patches), on average, respectively. The effect on

overfitting rate is more dramatic for these approaches. CVC4’s overfitting rate

decreases, from 80.3% to 69.4%. Similarly, SemFix’s overfitting rate decreases

from 90% to 74%: it generates 35 incorrect patches over 47 generated patches.

Overall, these results suggest that using more tests for specification inference

helps semantics-based program repair to mitigate overfitting, supporting our

hypothesis.

Codeflaws results. We use tests that are available to users as training tests, and

tests that are available only to the contest’s committee as held-out tests. The

last row of Table 4.5 shows results. Angelix generates 126 patches, of which

102 do not generalize, indicating an overfitting rate of 81%. Compared to the

results shown in Table 4.2(b) in research question 3, which uses two tests for

specification inference, Angelix generates more patches (increased from 81 to

126 patches) but escalates the overfitting rate (from 54% to 81%). The similar

trend can be seen for CVC4, Enumerative, and SemFix. This results actually

contradict our hypothesis.

We believe that this fact could be due to a combination of several reasons.

When using all repair (training) tests for inference task, once a solution is

synthesized consistent with the specifications, it satisfies the whole repair test

suite and thus regarded as a patch. Therefore, if the repair test suite is weak

enough to allow such a situation, it results in an increase in patch generation

rate. However, the in-comprehensiveness of the repair test suite also brings

about a reasonably high probability of the overfitting rate since the generated

patches may not generalize. In fact, the size of repair test suite in the Codeflaws

benchmark is quite small (only 3 tests on average), while the held-out test

suite’s size is much larger (40 tests on average) [82].
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Table 4.6: The overfitting rate of Angelix, CVC4, Enumerative, and SemFix in
subject programs from IntroClass (omitting syllables and checksum, for which
no patches were generated) and Codeflaws, when group size is set to three and
four, respectively.

(a) Overfitting on IntroClass

Size 3 Size 4
Subject Angelix CVC4 Enum Angelix CVC4 Enum

smallest 8 / 20 10 / 19 10 / 20 12 / 18 10 / 19 11 / 21
median 18 / 24 17/ 23 18 / 23 17 / 23 17 / 23 19 / 25
digits 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5 5 / 5

Overfitting 63.3% 68% 69% 74% 68% 68.6%

(b) Overfitting on Codeflaws

Size 3 Size 4
Angelix CVC4 Enum Angelix CVC4 Enum
75 / 87 84 / 86 57 / 60 89 / 108 43 / 44 48 / 49

Overfitting 86.2% 98% 95% 82.4% 98% 98%

Research Question 6: How does the number of fault locations grouped

together affect patch generation rate and overfitting?

The second tunable feature we study is the effect of grouping faulty lo-

cations. The larger the group, the expressions considered for repair at once.

We observe the behaviors of different repair techniques when the group size is

set to 3 and 4, respectively. We note that SemFix is left out in this research

question since it is not able to fix multi-line bugs [68].

Results. Table 4.6 shows the results on both IntroClass and Codeflaws bench-

marks. Overall, the number of generated patches and the overfitting rate when

group size varies only slightly between the group sizes. On IntroClass, Angelix

generates 49 and 46 patches, with overfitting rates of 67% and 74%, when group

size is set to 3 and 4, respectively. As compared to research question 3, which

uses default group size of two, the number of generated patches substantially

decreases, e.g., from 81 to 49 and 46 for Angelix. CVC4 and Enumerative show

a similar trend. We hypothesize that increasing the number of likely-buggy lo-

cations being fixed proportionally enlarges the search space, and subsequently
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makes it harder to generate patches.

The same trend generally holds on the Codeflaws dataset, with an interest-

ing exception for Angelix. Angelix generates more patches (87 vs 108), while

reducing the overfitting rate slightly (86% vs 82%) when group size is var-

ied from 3 to 4. This shows that Angelix’s ability in fixing multi-line bugs is

potentially helpful in this case.

4.3.5 Examples from the IntroClass dataset

We now present and discuss several examples that may provide deeper insights

into the overfitting issue for semantics-based APR.

1 void median(int n1, n2, n3) {
2 int small;
3 if (n1 < n2){
4 small = n1;
5 if (small > n3)
6 printf("%d\n", ANGELIX_OUTPUT(int, n1, "stdout"));
7 else if (n3 > n2)
8 printf("%d\n", ANGELIX_OUTPUT(int, n2, "stdout"));
9 else

10 printf("%d\n", ANGELIX_OUTPUT(int, n3, "stdout"));
11 } else {
12 small = n2;
13 if (small > n3)
14 printf("%d\n", ANGELIX_OUTPUT(int, n2, "stdout"));
15 else if ( n3 > n1 )
16 printf("%d\n", ANGELIX_OUTPUT(int, n3, "stdout"));
17 else
18 printf("%d\n", ANGELIX_OUTPUT(int, n1, "stdout"));
19 }
20 }

Figure 4.3: Example of a buggy median program (simplified slightly for presen-
tation). The buggy line is shaded in blue at line 15. The ANGELIX_OUTPUT
macro is explicitly required Angelix instrumentation; it indicates output vari-
ables to Angelix.

Figure 4.3 shows an example of a buggy median program. The goal of a

median program is to identify the median value between three integer inputs.

The buggy line in our example is colored blue, at line 15. We now consider

Angelix-generated patches for this example program using 25% and 50% of
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11 else {
12 small = n2;
13 if ( small > n3 )
14 printf("%d\n", ANGELIX_OUTPUT(int, n2, "stdout"));
15 else if ( n1 > n1 )
16 printf("%d\n", ANGELIX_OUTPUT(int, n3, "stdout"));

(a) Patch created using 25% of black-box tests, changing lines 17
and 19 of the original program, shaded in red.

11 else {
12 small = n2;
13 if ( small > n3 )
14 printf("%d\n", ANGELIX_OUTPUT(int, n2, "stdout"));
15 else if ( n1 > n3 )
16 printf("%d\n", ANGELIX_OUTPUT(int, n3, "stdout"));

(b) Patch created using 50% of the black-box tests, changing lines
17 and 19 of the original program, shaded in red.

Figure 4.4: Patches generated by Angelix for the program in Figure 4.3 using
25% of the black-box tests (top) and 50% of the black-box tests (bottom) as
training tests. Line numbers are aligned with those in Figure 4.3.

the black-box tests for training. Figure 4.4(a) shows the Angelix patch for the

program in Figure 4.3 using 25% of black-box tests for training. The patch

considers the expressions at lines 13 and 15, respectively, for repair (colored

red). Line 13 remains unchanged, while the true buggy condition at line 15 is

changed. This patch overfits, such that the resulting program does not pass

all held-out tests (such as the test {n1 = 8, n2 = 2, n3 = 6}).

Test ID n1 n2 n3 Expected State

#3 6 2 8 (L13 → false) ∧ (L15 → false)
#5 8 2 6 (L13 → false) ∧ (L15 → true)

Figure 4.5: Specifications inferred by Angelix for the example in Figure 4.3
using 50% of black-box tests for training. (The first row shows the specification
inferred using only 25% of the tests for training). The first column shows the
test id. The next three columns show values of n1, n2, and n3, respectively.
The last column shows the expected states at different lines given the input
values. For example, (L13 → false) ∧ (L15 → false) in test id #3, means the
expected state of the if-conditions at lines 13 and 15 are both false.

To better understand this issue, consider the specification inferred by An-

gelix that lead to this erroneous patch. The first line of Figure 4.5 shows the

specification that lead to this patch, produced on a test with input values of n1
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1 if (num1 > num2) {...}
2 else {
3 big = num2;
4 - small = num2;
5 + small = 6; // by Angelix
6 + small = num1 // by SyGuS

Figure 4.6: Patches generated by Angelix’s synthesis engine, and SyGuS en-
gines for a median program.

= 6, n2 = 2, and n3 = 8. This specification indicates that this test would pass

if the states of the if-conditions at lines 13 and 15 are both false, which the

patch in Figure 4.4(a) satisfies. This shows the danger of weak specifications.

Returning to the example program (Figure 4.3), consider adding an ad-

ditional test, with associated inferred specification, shown in the second line

of Figure 4.5. Adding this test to the training set leads Angelix to find the

patch shown in Figure 4.4(b), which is generally correct in the way it changes

the logic of the if-condition at line 15. In this case, increasing the number of

training tests (from 25% to 50% of black-box tests) provided a huge benefit:

This patch fully generalizes to the held-out tests, and it better matches our

intuition. One conclusion is that additional tests can help guide synthesis to a

better repair, which is especially satisfying in this case, where only two total

are required.

Figure 4.6 shows patches generated by Angelix’s synthesis engine and Sy-

GuS engines for another median program. Angelix’s patch replaces line 4 with

line 5; the SyGuS engines (including CVC4 and Enumerative) replace line 4

with line 6. Angelix’s generated patch is incorrect; the SyGuS- generated patch

is correct. Angelix’s synthesis engine does not force generalization, where a

generalized solution involves as few constants as possible [27]. SyGuS engines,

on the other hand, are more flexible in forcing generalization by simply em-

phasizing permitted constants after variables in its grammar. This suggests

a straightforward strategy to improve the generality of patches produced by

such techniques.

Figure 4.7 shows an example of an overfitting patch for the smallest subject

70



CHAPTER 4. OVERFITTING IN SEMANTICS-BASED REPAIR

1 ...
2 - if((a < b) && (a < c) && (a < d))
3 + if(((a < d) && (a < d)))
4 printf("%d\n",ANGELIX_OUTPUT(int,(int) a, "stdout"));
5 - else if ((b < a) && (b < c) && (b < d))
6 + else if ((((b < a) && (b < c)) && (b < d)))
7 printf("%d\n",ANGELIX_OUTPUT(int,(int) b, "stdout"));
8 else if ((c < a) && (c < b) && (c < d))
9 printf("%d\n",ANGELIX_OUTPUT(int,(int) c, "stdout"));

10 }

Figure 4.7: Example of an overfitting patch for the smallest subject program,
generated by Angelix when using all black-box tests as training tests.

program, generated by Angelix when using all black-box tests as training tests.

The goal of the smallest program is to return the smallest of three integer

numbers. The patch generated by Angelix replaces line 2 with line 3, loosening

the if-condition. As with our prior example, this patch clearly overfits to a

particular set of tests. This example demonstrates that overfitting can occur

even when a full set of black-box tests is used.

This bug would likely benefit from multi-location patch that adds equality

signs to each of the conditions in lines 2, 5 and 8. Yet, Angelix’s ability to gener-

ate multi-location patch does not help in this case. Angelix’s ad-hoc approach

to deciding how many buggy locations to consider, and how to group them,

could be improved with stronger heuristics, more accurate fault localization,

or more precise dataflow information to better group the three implicated con-

ditions. Generally, however, these results call for the development of stronger

or alternative synthesis engines that are more resilient to overfitting.

4.3.6 Qualitative study on real-world bugs

Our results in preceding sections describe program repair as applied to small

programs with two independent test suites. We now present qualitative results

assessing the performance of different synthesis engines on defects in large,

real-world programs. Automatically generating independent full-coverage test

suites on real-world programs is prohibitive. As such, we employ a stricter
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proxy to assess the correctness of machine-generated patches: A machine-

generated patch is considered correct if it is equivalent to the patch submitted

by developers. Two patches are considered equivalent if: (1) they are syntac-

tically identical, or (2) one patch can be transformed into the other via basic

syntactic transformation rules. For example, a || b and b || a are consid-

ered equivalent if no observable side effects occur when evaluating either a or b,

e.g., exceptions thrown, modifications to global variables, etc. We choose syn-

tactic transformations as the proxy for correctness validation because checking

for semantic equivalence is a hard problem, and undecidable in general. A

semantic equivalence check may involve deep human reasoning, which may be

subjective. We thus use syntactic equivalence to ease the validation process

and avoid subjectivity, although it may be overly strict in certain cases.

To ease this manual process, we require a transparent baseline, in that the

developer-submitted patches (ground truth) must be sufficiently concise and

transparent to support a manual patch-equivalence check. Unfortunately, ex-

isting benchmarks (such as ManyBugs [53]) often include changes of multiple

lines, complicating manual correctness assessment. To this end, we reuse a

benchmark consisting of nine real-world bugs in large programs (such as the

Common Maths library, consisting of 175 kLOC), and tool named JFIX, from

our work in [45]. JFIX adapts the Angelix specification inference engine to

Java programs [45], and uses the synthesis engine of Angelix, CVC4, and Enu-

merative to synthesize repairs conforming to the inferred specifications. We

omit SemFix, because it generally does not scale to these programs [68].

Table 4.7 shows results. Note that this study extends our previous work [45]

by further studying the effect of a majority voting scheme. That is, we check

whether we can choose a correct patch from a set of patches suggested by the

synthesis engine by employing majority voting (i.e., patches that are generated

by most of the synthesis engines are chosen). Machine-generated patches that

are equivalent to patches submitted by developers are indicated by “"”, and
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“7” indicates otherwise in Table 4.7.

As Table 4.7 shows, Angelix, Enumerative and CVC4 can complement one

another. There are no bugs for which all three techniques produce equiva-

lent patches, but for all bugs, at least one technique does succeed. For ex-

ample, there are three bugs for which Enumerative and CVC4 can generate

patches equivalent to their developer counterparts, where Angelix does not.

This shows that the nature of each repair technique may lead to different kind

of patches, suggesting that employing an agreement (majority voting) on gen-

erated solutions between different synthesis engines may increase confidence

when choosing a correct patches. The high level idea is that the more differ-

ent synthesis engines agree on a solution, the higher the confidence that the

solution is correct. For example, CVC4 and Enumerative generate the same

(correct) solutions for SFM and EWS, while Angelix generates a different so-

lution. We note that this majority voting method can still lead to incorrect

patches. For example, Angelix generates a correct patch for Qabel, but CVC4

and Enumerative both generate the same incorrect patch. Thus, if majority

voting is employed, it leads to an incorrect patch in this case. However, as the

overall results indicate, the majority voting method is more effective than any

individual technique in identifying correct patches.
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Table 4.7: Real bugs collected from real-world software. Column “Rev” shows
the revisions that fix the bugs. Column “Type” shows the bug types: “I”
denotes method call, “II” denotes arithmetic. Column “Time” indicates the
time required (in seconds) to generate the repair (“NA” denotes not available).
Column “Dev” indicates whether a generated repair is equivalent to the repair
submitted by developers. The “"” denotes equivalent, and the “7” denotes
otherwise. The “Majority Voting” column shows the result of using majority
voting method to choose correct patches.

Project Rev Type Angelix Enum CVC4 Majority Voting
Time Dev Time Dev Time Dev

Math
09fe II 23s " 26s " 36s " "

ed5a I & II 168s " NA 7 NA 7 "

Jflex 2e82 II NA 7 70s " 72s " "

Fyodor 2e82 II 20s " 19s " 31s " "

SFM 5494 II 12s 7 10s " 13s " "

EWS 299a I NA 7 14s " 258s " "

Orientdb b33c II 20s " 22s " NA 7 "

Qabel 299c II 37s " 22s 7 23s 7 7

Kraken 8b0f II 12s " 13s 7 15s 7 7

4.4 Conclusions

In this work, we perform the first study on overfitting issue in semantics-

based APR. We show that semantics-based APR techniques do indeed produce

patches that overfit. We further study the nature behind the overfitting in

semantics-based APR by assessing the relationships between test suite coverage

and provenance, number of failing tests, and semantics-specific tool settings

and overfitting. Particularly, we find that in some cases results are consistent

with those found for search-based approaches, while in other cases results are

interestingly inconsistent, e.g., using whitebox tests as training tests reduces

the overfitting rate of semantics-based repair, while increases the overfitting

rate of search-based repair. We also present several case studies of overfitting

patches produced by semantics-based APR techniques, with implications and
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observations for how to improve them. For example, we observe that one

possible source for overfitting in semantics-based APR could be due to the

“conservativeness” of the underlying synthesis engine, that returns the first

solution found (without consideration of alternatives). That is, each synthesis

engine used in our experiments returns only one solution (repair) once it is

found. However, the solution returned may just be a plausible one, which

is not the correct repair. To obtain the correct repair, one may need to go

through all solutions that possibly occur in the search space and rank them by

the likelihood of being correct to find the best one. Also, to mitigate overfitting

in semantics-based APR, we substantiate that using multiple synthesis engines

could be one possible approach, as mentioned in [44]. We also plan to develop

a specification inference technique, e.g., specification mining techniques such

as SpecForce [43], that can infer a stronger specifications to help better capture

the semantics of the program under repair. Another future direction is to use

machine learning techniques to automatically classify defect types, e.g., [85],

which could help deal with each bug type more effectively.
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Chapter 5

Syntax- and Semantic-Guided

Repair Synthesis

Previous chapter highlighted that semantics-based APR is no exception at all

to the overfitting issue, often due to inferior synthesis techniques that do not

cope well with the weak specifications extracted via test cases. This motivates

the need of stronger synthesis techniques that can overcome the overfitting

problem. This chapter presents S3 – a scalable semantics-based APR technique

that is capable of synthesizing generalizable repairs. The main novelty of S3

is three-fold: (1) a systematic way to constrain the syntactic search space via

a domain specific language, (2) an efficient enumeration search strategy, (3) a

number ranking features to effectively rank solutions based on the likelihood

of being correct.

5.1 Introduction

Bug fixing is notoriously difficult, time-consuming, and costly [84, 12]. Hence,

automating bug repair, to reduce the onerous burden of this task, would be of

tremendous value. Automatic program repair has been gaining ground, with

substantial recent work devoted to the problem [65, 66, 95, 58, 60, 96, 52,

37, 48, 47, 45, 14], inspiring hope of future practical adoption. One notable
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line of work in this domain is known as semantics-based program repair, most

recently embodied in Angelix [66]. This class of techniques uses semantic

analysis (typically dynamic symbolic execution) and a set of test cases to infer

behavioral specifications of the buggy code, and then program synthesis to

construct repairs that conform to those specifications. Such approaches have

recently been shown to scale to bugs in large, real-world software [66].

Although scalability has been well-addressed, one pressing concern in pro-

gram repair is patch quality, sometimes quantified in terms of patch overfitting

or generalizability [81]. Generated repairs can sometimes overfit to the tests

used for repair, and fail to generalize to a different set of tests. This may be

caused by weak or incomplete tests, or even simply the nature of the repair

technique [81, 36]. Various repair approaches have been shown to suffer from

overfitting, including GenProg [52], RSRepair [73] and SPR [58]. Semantics-

based approaches like Angelix [66], are no exception to this issue, as partially

shown in recent studies [49]. Overfitting, and patch quality generally, remains

a challenging problem in the program repair field.

One reason for patch overfitting is that the repair search space is often

sparse, containing many plausible solutions that can lead the buggy program

to pass a given test suite, but that may still be judged incorrect [59]. One way

to tackle overfitting is thus to constrain the search space to patches that are

more likely to generalize. Other strategies for increasing the quality of output

patches include higher-granularity mutation operators [36], anti-patterns [83],

history-based patterns [50], feedback from execution traces [21], or document

analysis [95]. Angelix [66] eagerly preserves the original syntactic structure

of the buggy program via PartialMaxSMT-based constraint solving [65] and

component-based synthesis [32]. However, such enforcement alone may not

be enough [21]. Furthermore, incorporating other strategies or criteria into

a constraint-based synthesis approach is non-obvious, since doing so typically

requires novel, and often complicated constraint encodings (this problem has
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been pointed out by others, see, e.g., Chapter 7 of [27] or Section 2 of [83]).

This motivates the design of a new repair synthesis technique that can con-

solidate various restrictions or patch generation criteria, enabling an efficient

search over a constrained space for potentially higher-quality patches.

We present S3 (Syntax- and Semantic-Guided Repair Synthesis), a new,

scalable repair synthesis system. S3 addresses the challenge of synthesizing

generalizable patches via our novel design of three main components: (1)

An underlying domain-specific language (DSL) that can systematically cus-

tomize and constrain the syntactic search space for repairs, (2) An efficient

enumeration-based search strategy over the restricted search space defined by

the DSL to find solutions that satisfy correctness specifications, e.g., as induced

by test suites, and (3) Ranking functions that serve as additional criteria aside

from the provided specifications to rank candidate solutions, to prefer those

that are more likely to generalize. Our ranking functions are guided by the

intuition that a correct patch is often syntactically and semantically proximate

to the original program, and thus measure such syntactic and semantic dis-

tance between a candidate solution and the original buggy program. Unlike

other constraint-based repair synthesis techniques, our framework is highly cus-

tomizable by design, enabling the easy inclusion of new ranking features— its

design is inspired by the programming-by-examples (PBE) synthesis method-

ology [27].

Given a buggy program to repair and a set of test cases (passing and failing),

S3 works in two main phases. The first phase automatically localizes a repair

to one or more target repair expressions (e.g., branch condition, assignment

right-hand-side, etc.). S3 runs dynamic symbolic execution on the test cases to

collect failure-free execution paths through the implicated expressions. It then

solves the collected path constraints to generate concrete expression values

that will allow the tests to pass. These specifications, expressed as input- and

desired-output examples, are input to the synthesis phase. The synthesis phase
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first constrains the syntactic search space of solutions via a DSL that we extend

from SYNTH-LIB [4]. Our extension allows it to specify a starting sketch, or

an expression that gives S3 clues about what possible solutions might look

like. Here, the sketch is the original buggy expression under repair. Next,

S3 forms a solution search space of expressions of the same size as the sketch.

Finally, it ranks candidate solutions via a number of features that approximate

the syntactic and semantic distance to the specified sketch. If S3 cannot find

any solution of the same size as the sketch, it investigates expressions that are

incrementally smaller or larger than the sketch, and repeats the process.

We evaluate S3 by comparing its expressive power and the quality of the

patches it generates to state-of-the-art baseline techniques (Angelix [66]; and

Enumerative [4], and CVC4 [77] two alternative syntax-guided synthesis ap-

proaches), on two datasets. The first dataset includes 52 bugs in small pro-

grams, a subset of the IntroClass benchmark [53] translated to Java [22].1

The IntroClass dataset contains only small programs, but provides two high-

coverage test suites for each, allowing an independent assessment of repair

quality. The second dataset includes 100 large real-world Java bugs that we

collected from GitHub. We focus on Java, and build a new dataset of real-world

Java bugs, for several reasons. First, Java is the most popular and widely-used

programming language, and its influence is growing rapidly.2 Second, a real-

istic, real-world dataset with transparent ground truth—fixes submitted by

developers—can simplify the critical process of assessing the correctness of

fixes generated by program repair tools in the absence of two independent,

high-quality test suites. Existing benchmarks often include bug fixes with

many changed lines, which can include tangled changes such as new features

or code refactoring [30]; even curated datasets such as Defects4J [34] contain

many changes involving a large number of lines. This complicates evaluation of
1We use the subset of IntroClass to which our repair tools can apply, given their appli-

cability to strictly integer and boolean domains.
2http://www.tiobe.com/index.php/content/paperinfo/tpci/index.html
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generated patch correctness. Our dataset is restricted to bugs whose fixes in-

volve fewer than five lines of code, alleviating the risk of tangled code changes.

As many current state-of-the-art repair tools target bugs that require only a

small number of changed lines [65, 66, 60], our dataset is sufficient for assessing

current research.

We assess the quality and correctness of generated repairs in several ways.

For the IntroClass bugs, we assess correctness on independent, held-out test

suites (those provided with the benchmark, as well as additional tests we gen-

erate), separate from those used to guide the repair. We use the developer-

provided patches as ground truth for the 100 real-world bugs. For these bugs,

we consider a generated patch correct if it is either (1) syntactically identi-

cal to the developer-provided patch, or (2) semantically equivalent via some

(basic) transformations. On both datasets, S3 substantially outperforms the

baselines. S3 generates correct patches for 22 of 52 bugs from the first dataset;

Angelix, Enumerative, and CVC4 can generate correct patches for 7, 1, and

1 bug(s), respectively. On the large real-world dataset, S3 generates correct

patches for 20 out of 100 bugs, while Angelix, Enumerative, and CVC4 can

only generate correct patches for 6, 6, and 5 bugs, respectively.

In summary, our novel contributions include:

• We present S3, a scalable repair synthesis engine that is geared towards

synthesizing generalizable repairs.

• We propose a novel combination of syntax- and semantic-guided ranking

features to effectively synthesize high-quality repairs. New features along

these lines can be straightforwardly integrated into S3, by design.

• We present a large scale empirical study on the effectiveness of different

synthesis techniques in semantics-based program repair context. S3 sub-

stantially outperforms the baselines in terms of generated repair quality.

• We present a dataset consisting of several bugs from large real-world software
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with transparent ground truth, which can enable confident evaluation of

machine-generated patch correctness.

• We release source code for S3 and the aforementioned dataset, along with

all results, in support of open science.3

The rest of the chapter is structured as follows. Section 5.2 describes a mo-

tivating example, followed by Section 5.3 explaining our approach. Section 5.4

describes our experiments, results, and observations. Section 5.5 concludes.

5.2 Motivating Example

We begin by motivating our approach and illustrating its underlying insight by

way of example. Figure 5.1 shows changes made to address a bug in the Closure

compiler at revision 1e070472. The bug lies in the if-condition expression

at lines 3–4; the developer-submitted fix is depicted at lines 5–6. This bug

can be repaired by simply changing charno < sourceExcerpt.length() to charno

<= sourceExcerpt.length(), while the rest of the condition expression remains

unchanged.

1 if (sourceExcerpt != null) {
2 ...
3 -if (excerpt.equals(LINE) && 0 <= charno
4 - && charno < sourceExcerpt.length()) {
5 +if (excerpt.equals(LINE) && 0 <= charno
6 + && charno <= sourceExcerpt.length()) {
7 ...
8 }

Figure 5.1: A bug in Closure compiler, revision 1e070472. The bug is at lines
3–4. The developer fix is shown on lines 5–6; it turns a < to a <= in the second
line of the if condition.

Figure 5.2 shows example input and desired-output examples extracted for

this bug at the buggy if-condition on two failing test cases. For each test

run, the input includes runtime values of variables and method calls at the
3https://xuanbachle.github.io/semanticsrepair/
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buggy lines, while the output is the value of the branch condition for the

buggy lines that would cause the test to pass. For example, for test 1, the

input includes runtime values for method calls excerpt.equals(LINE) and the

variable charno. The desired output of the branch condition is true. These

input-output examples constitute incomplete specifications for each buggy line

considered in the program; although they are incomplete, they are scalably

and automatically derivable from provided test cases.

Input Desired
(M1) (M2)

Test charno excerpt.equals(LINE) sourceExcerpt.length() Output

A 7 true 7 true

B 10 true 10 true

Figure 5.2: Input-output examples for both variables and conditions, extracted
for the Closure compiler bug described in Figure 5.1. We use M1 and M2 to
refer to the conditions in columns 3–4 in subsequent exposition. The last
column represents the desired output of the overall branch decision.

Given these specifications (examples), the space of possible satisfying solu-

tions is large, and contains many undesirable options, such as excerpt.equals(LINE),

excerpt.equals(LINE)|| 0 < charno, both of which, among others, would lead to

the desired outputs on the considered expressions. Such solutions, if returned

by a repair synthesis engine, create low-quality, overfitting repairs that lead the

program to pass all provided tests but are not correct. In fact, Angelix [66]

generates an overfitting repair for this bug, substituting 0 < charno for the

entire if-condition expression on lines 3–4 (Section 5.4 provides details on our

straightforward port of Angelix to Java). This repair is quite different from the

original expression both syntactically (despite Angelix’s use of constraints to

enforce minimal syntactic differences from an original expression) and seman-

tically. The generated condition is indifferent to values of excerpt.equals(LINE)

and sourceExcerpt.length(), substantially weakening the branch condition with

respect to the original buggy version.
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These observations inform insights that can be used to filter trivial solu-

tions. In this case, the correct solution is syntactically and semantically close

to the original buggy expression. Fusing syntactic and semantic measures of

proximity can help rank the solution space to favor those that are more likely

to be correct. Our approach, S3, estimates these distances in several ways

to constrain the syntactic solution synthesis space, increasing the likelihood

or producing a generalizable patch (see Section 5.3.2.3). For the example in

Figure 5.1, S3 synthesizes a patch that is identical to the one submitted by

the developer.

5.3 Methodology

S3 works in two main phases. Given a buggy program and a set of test cases,

the first phase (Section 5.3.1) localizes potentially buggy program locations

and, for each buggy location, extracts input and desired output examples that

describe passing behavior. The extracted examples are input to the second

phase (Section 5.3.2), which synthesizes repairs that satisfy and also generalize

beyond the provided examples.

5.3.1 Automatic Example Extraction

S3 first uses fault localization to identify likely-buggy expressions or statements

in the buggy program. S3 runs the test cases and uses Ochiai [3] to calculate

suspiciousness scores that indicate how likely a given expression or a statement

is to be buggy. S3 iterates through each identified buggy location (or group of

locations in the case of multi-location repair), to extract input-output examples

via a selective, dynamic symbolic execution [15].4 For each buggy location, S3

inserts a symbolic variable to represent/replace the expression at the selected

location. It then invokes test cases on the instrumented programs to collect
4For simplicity, we describe the process with respect to a single location; it extends

naturally, by installing symbolic variables at multiple locations at once.
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path conditions that do not lead to runtime errors such as assertion errors,

array index out of bound errors, etc. Solving these failure-free execution paths

returns concrete values of symbolic variables that then can serve as input-

output examples. We implement selective symbolic execution procedure on

top of Symbolic PathFinder (SPF) [72].

For example, consider the buggy code snippet in Figure 5.1. S3 identifies

that the if-condition at lines 3-4 may be buggy. S3 then replaces the buggy

if-condition with a symbolic variable α, making the if-condition becomes “if(

α)”. S3 runs dynamic symbolic execution on the instrumented program using

the provided test cases to collect failure-free execution paths, runtime variable

values, and method calls involved in the buggy location. Solving the collected

path conditions returns the values in the output column of Figure 5.2, corre-

sponding to desired values of the symbolic variable α.

Although this phase shares the same spirit as the specification inference

step in Angelix [66], there are key differences. Angelix infers specifications by

solving models of the form pc∧Oa = Oe, where pc is a path condition produced

by symbolic execution of a test, Oa is the actual output, and Oe is the expected

output that is typically manually provided by a user.5 The models capture the

idea that if the expected output matches the actual concrete test output, the

corresponding path condition is a test-passing path. Solving all test-passing

paths returns specifications that lead all tests to pass. This process, however,

can be tedious and error-prone, since it usually requires users to instrument

output variables manually. For instance, if the output is a large array of many

elements, users must give all expected outputs for all the elements of the array.

S3 extracts examples in an automated manner by building on SPF [72]

automatic JUnit-test interpretation abilities. For a location i, S3 extracts

examples by solving models of the form pc ∧ no errors. pc is the path condition:∧i
j=1 pcj. The “no errors” notation means that the conditions describe paths

5We refer readers to the Angelix manual: https://github.com/mechtaev/angelix/
blob/master/doc/Tutorial.md
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that are guaranteed to not yield assertion errors (as described above). If the

path condition pc yields an assertion error, S3 automatically discards that

path. In another case, if an array-out-of-bound error happens, S3 pops the

latest pci leading to the error, keeping previous ones:
∧i−1

j=1 pcj. This frees

S3 users from manual effort, while guaranteeing that the examples are still

failure-free.

5.3.2 Repair Synthesis from Examples

Examples extracted in the previous phase are input as correctness specifica-

tions to the repair synthesizer. The goal of the synthesizer is to inductively

construct a solution that satisfies and also generalizes beyond the provided

specifications. This synthesis procedure is composed of three main parts: (1)

a domain-specific language (DSL), (2) a search procedure, and (3) ranking fea-

tures. We begin with an overview, and detail each component subsequently.

We start with a DSL (extended from SYNTH-LIB [4]) over the integer

and boolean domains. Given a background theory T permitted by the DSL,

let u be the original buggy expression, φ a formula over the vocabulary of T

representing the correctness specifications (input-output examples), and L a

set of expressions over the vocabulary of T of the same type as u. A candidate

fix is an expression e ∈ L such that φ[u/e] is valid modulo T .

Our algorithm then systematically enumerates all candidate fix expressions,

considering them in ranked order. The ranking is performed by a set of N

ranking functions ri(1 ≤ i ≤ N), each of which measures the distance between

two expressions e1 and e2 of the same type. These ranking features estimate

the syntactic and semantic distance between a candidate fix and the original

buggy expression. The intuition is that expressions that are closer to the buggy

program are more likely to constitute high-quality repairs.

Note, however, that the size of L (the search space) is often too large to be

truly exhaustively enumerated. For practical purposes, we greedily favor can-
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IntExpr ::= N | V ar | IntExpr BinOp IntExpr

BoolExpr ::= IntExpr RelOp IntExpr | BoolExpr LogOp BoolExpr

| true | false | V ar | ¬BoolExpr

RelOp ::= > | < | ≤ | ≥ | =

LogOp ::= ∧ | ∨ | = BinOp ::= + | −

Figure 5.3: Simplified SYNTH-LIB grammar used in S3.

didate expressions of similar size and syntax to the original buggy expression.

As described in Section 5.3.2.2, we systematically partition the search space,

enabling different heuristics to be built without difficulty.

Algorithm 2 presents pseudocode for S3. At a high level, the search pro-

cedure enumerates all expressions in the grammar at a certain expression-size

range (Line 4). S3 finds all candidate enumerated expressions that are con-

sistent with the specifications (Line 7). Each candidate is assigned a ranking

score by calculating the distance between it and the original buggy expression

(Lines 8); candidates are sorted by score (Line 12). The process returns the

solution in L with the smallest distance, if L 6= ∅ (Line 14). Otherwise, it

continues until all expression size ranges have been exhausted (Line 3). S3

starts enumerating at the size of the original buggy expression (Line 2), and

modifies the size range accordingly up to a bound b (Line 3). The original

buggy expression and its size are made available to the synthesis procedure

through our “sketch” extension to the SYNTH-LIB syntax (Section 5.3.2.1).

We next explain the DSL in detail (Section 5.3.2.1), the enumeration-based

search procedure (Section 5.3.2.2), and the ranking features that we propose

for the program repair domain (Section 5.3.2.3).

5.3.2.1 Domain-Specific Language via SYNTH-LIB

We extend SYNTH-LIB [4] to systematically constrain S3 ’s search space. We

choose SYNTH-LIB for three reasons:

(1) Balanced Expressivity. SYNTH-LIB is adequately expressive for var-

ious tasks in the program repair domain, while still sufficiently restrictive to
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Algorithm 2: Enumeration-based synthesis procedure
Input :

u . Original buggy expression
φ . Correctness specifications
G . SYNTH-LIB grammar (extended)
R . Set of ranking features
b . Synthesis bound

1 Synthesis u, φ,G,R, b
2 let i← size of u
3 for k ← 0 to b do
4 let A←{e in grammar G | e of size from i− k to i+ k }
5 let L←{}
6 forall e ∈ A do
7 if φ[e/u] is valid then
8 let e.score←

∑
ri∈R

ri(e, u)

9 let L←L ∪ e
10 end
11 end
12 sort(L) . by ascending order of score
13 if L is not empty then
14 return L.head . solution found
15 end
16 end
17 return FAIL

allow an efficient search procedure. Figure 5.3 describes a simplified gram-

mar for SYNTH-LIB. Note that it allows the definition of integer expressions

(IntExpr), including integer constants (N ), integer variables, and binary rela-

tions. Boolean expressions are defined similarly. Although simple, this gram-

mar is sufficiently expressive for repairs over integers in booleans, including

linear computations and logical relationships.

(2) Availability. SYNTH-LIB is not esoteric, but instead, broadly avail-

able to various tools for Syntax-Guided Synthesis (SyGuS) [4]. This allows

for easy comparisons between tools, and indeed we use SYNTH-LIB to com-

pare S3 with two other state-of-the-art SyGuS solvers (Enumerative [4] and

CVC4 [77]). We believe that an abundance of synthesis techniques will bene-

fit the program repair domain, given the rapid growth of the SyGuS research

community, along with publicly available implementations [4, 77, 5].
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(3) Cost Metrics. SYNTH-LIB allows for definition of cost metrics like

expression size; this is useful for calculating ranking features. We further

extended SYNTH-LIB to allow the specification of a starting sketch, which

gives clues on where the enumeration procedure should start. In our case,

the starting sketch is the original buggy expression, capturing our idea that

the correct fix is more likely to be syntactically and semantically close to the

original code. The sketch allows ranking features to measure the distance

between candidate solutions and the original expression(s).

We illustrate with a SYNTH-LIB script for the example in Figure 5.1; Fig-

ure 5.4 shows the corresponding SYNTH-LIB script. In Figure 5.4, the first

line sets the background theory of the language to Linear Integer Arithmetic

(LIA). The function being synthesized f is of type int→int→bool→bool,

(keyword synth-fun). The permitted solution space for the function f is de-

scribed in its body, which allows expressions of type boolean. Each boolean

expression can then be formed by logical relationships between any two inte-

ger or boolean expressions, via relational or logical operators. Expressions can

also be variables; M1 in this case is a boolean expression. The allowed inte-

ger expression in the grammar is defined via IntExpr, which includes integer

variables such as charno and M2, and constants such as 0.

We next define the constraints consisting of input-output examples and

the starting sketch. Each constraint is defined by the keyword constraint.

In our example, the first constraint says that if the value of M2 is 7, the

value of M1 is true, and the value of charno is 7, the expected output of

the function f over charno, M2, and M1 is true. The second constraint can

be interpreted similarly. These constraints corresponding to the extracted

input-output examples described in Figure 5.2. A sketch, the starting-point

expression, is defined by the keyword sketch. Here, the sketch is the original

buggy expression u. Finally, the keyword check-synth instructs a synthesizer

to start the synthesis process.
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1 ( set−logic LIA)
2 (synth−fun f ((charno Int) (M2 Int) (M1 Bool)) Bool
3 ((Start Bool (
4 (≤ IntExpr IntExpr) (< IntExpr IntExpr)
5 (or Start Start) (and Start Start)
6 M1 ))
7 (IntExpr Int (
8 charno M2 0
9 ))))

10 (declare−var charno Int)
11 (declare−var M2 Int)
12 (declare−var M1 Bool)
13 ( constraint (⇒ (and (= M2 7) (and (= M1 true) (= charno 7)))
14 (= (f charno M2 M1) true)))
15 ( constraint (⇒ (and (= M2 10) (and (= M1 true) (= charno 10)))
16 (= (f charno M2 M1) true)))
17 (sketch u ((charno Int) (M2 Int) (M1 Bool)) Bool
18 (and (and M1 (≤ 0 charno)) (< charno M2)))
19 (check−synth)

Figure 5.4: SYNTH-LIB script generated by S3 for the example in Figure 5.1,
derived using the “Alternatives” layer described in Figure 5.5. M1 stands for
excerpt.equals(LINE), and M2 stands for sourceExcerpt.length().

5.3.2.2 Enumeration-based Synthesis.

S3 automatically generates a SYNTH-LIB script for each location under re-

pair, and then uses an enumerative search to synthesize generalizable repair

expressions conforming to the generated script. We note that multi-location

repair can be achieved by generating the grammar for multiple functions si-

multaneously; we describe the process with respect to a single function for

simplicity. We first explain how the SYNTH-LIB script is generated, and then

the search procedure.

We divide the search space into multiple layers, each of which allows differ-

ent components or operators, to appear in the SYNTH-LIB grammar script.

If S3’s search procedure cannot find a solution at a lower layer, it advances to

the next. This approach tractably constrains the synthesis search space [68].

Figure 5.5 shows the six layers. The first layer allows alternatives of operators

existing in the original buggy expression. For example, a pair {“&&”, “||”}

means that the operators in the pair are alternatives of one another. If the

search procedure cannot find any solution, the grammar then cumulatively al-

lows additional variables that do not exist in the original buggy expression,
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Alternatives 
{< , ≤}, {> , ≥}, {= , !=}, {+ , -}, {&& ,||} 

Basic equalities 
{= , !=} 

Basic inequalities 
{< , ≤ , > , ≥} 

Basic arithmetic 
{+ , -} 

Basic logic 
{&& ,||} 
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Figure 5.5: Search space layers specifiable in the grammar.

denoted by the “Variables” component in the Figure 5.5. At the second layer,

the grammar allows basic-inequalities operators (= and !=), in addition to op-

erators in the original expression. Again, if this search fails, it cumulatively

allows for additional Variables. Subsequent layers can be interpreted similarly.

We note that at the last (sixth) layer, the grammar allows all components, in-

cluding integer constants appearing in the input-output examples. The reason

integer constants are considered last is that such constants may unduly allow

trivial solutions; this choice is influenced by previous studies [27, 49].

The design of separate sub-search-spaces systematically allows us to either

prioritize which space to explore first, or unify the spaces freely. We heuris-

tically prioritize the search space by automatically analyzing the surrounding

context of the original buggy statement, such as the method declaration that

contains the buggy statement. Particularly, S3 automatically looks for expres-

sions in the surrounding context that use the same variables appearing in the

buggy statement, and analyzes the components used in those expressions. This

gives S3 clues on which search space to start from. If the prioritized search

space does not help find solutions, S3 searches in the unified search space (the

sixth layer). If S3 cannot find context to help prioritize the space, it follows
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the procedure described previously, starting from the first layer.

5.3.2.3 Ranking Features

Often, bug fixes (patches) can be quantified via the syntactic and/or semantic

distances between the repaired and buggy programs. It has been proven that

patches requiring minimal distances of both kinds are more likely correct [21].

Employing this insight, we thus propose features that measure the syntactic

and semantic distance between a candidate solution and the original buggy

code. The final ranking score of a candidate solution is the sum of individual

feature scores. S3 allows new features to be incorporated without difficulty; by

contrast, constraint-based synthesis approaches (e.g. [66, 65]) typically require

non-obvious Satisfiable Modulo Theory (SMT) encodings for new features [83].

Syntactic Features. Syntactic features look at differences between candi-

date solutions and the original buggy expression at the Abstract Syntax Tree

(AST) level. We do this in three ways:

• AST differencing. We use GumTree [24] to compare ASTs. GumTree

produces transformations between ASTs in the form of actions on AST

nodes such as insert, delete, update, or move. We measure the number

of actions needed to transform the original buggy AST to the candidate

solution AST. This feature can be easily calculated by directly applying

GumTree on the ASTs produced by parsing the SYNTH-LIB grammar

script.

• Cosine similarity. An AST can also be represented as a vector of node

occurrence counts [33]. The occurrence of each node type (e.g., integer

variables or constants, or a binary operation) in an AST, represent a vector

of the AST. The similarity of two ASTs can then be represented by the

cosine similarity of their representative vectors, denoted as cosine_score.

We then define the distance from the solution’s AST to the original AST as:

1−cosine_score (cosine_score of 1 denotes that two vectors are identical).
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A SYNTH-LIB grammar explicitly enables type checking, meaning this

feature is easy to calculate via an AST traversal to collect type information.

• Locality of variables and constants. Variables and constants are the

primary ingredients of expressions. Thus, in addition to capturing abstract

changes on the AST, we capture lower-level differences via the locations

of variables and constants in expressions. We compute the Hamming dis-

tance between two vectors representing locations of variables and constants

in each expression.6 For example, consider a ∧ (b < 1) as the original ex-

pression, a ∧ (b ≤ 1) as the first solution, and (b ≤ 1) ∧ a as the second

solution. The hamming distance from the original expression for the first

and second solutions are 0 and 3 respectively. Although both solutions are

semantically equivalent, we may want to prefer the first in the interest of

change minimality.

Semantic Features. Semantic features look at either the difference between

a solution Si and the original expression u, or the semantic quality of Si itself.

We propose three semantic features:

• Model counting. Model counting (c.f. [88]) is often used to count the

number of models satisfying a particular formula. We use this feature to

measure the level of “disagreement” between any two boolean expressions.

That is, we say that a solution Si and the original expression u disagree

with each other if the formula (Si ∧ ¬u) ∨ (¬Si ∧ u) is valid, meaning that

Si and u cannot be both valid at the same time. We then define the level

of disagreement between Si and u by the number of models that satisfy

the formula, which accounts for the semantic distance between them. As a

simple example, assume that we have: a < 10 as the original expression u,

a ≤ 13 as a solution S1, and a ≤ 15 as a solution S2. The semantic distance

via model counting between these solutions and u is 4 and 6, respectively.

This simple example generalizes naturally to the typical off-by-one bug in
6https://en.wikipedia.org/wiki/Hamming_distance
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Figure 5.1.

• Output coverage. This feature looks at how much a solution covers the

set of outputs in the set of input-output examples. For instance, assume

input-output examples (constraints) for two tests T1 and T2, on an input i,

and an output o:

T1: i = 5→ o = 5

T2: (i = 6→ o = 5) ∨ (i = 6→ o = 6)

A trivial solution for this example is simply the constant 5; Another solution

is the expression i. The first solution overfits to only one output despite

the presence of three examples that have two distinct outputs. The second

solution covers all output scenarios in the provided examples, making it

intuitively less overfitting as compared to the first. A solution Si receives

a Ocov
i score of Nc/No, where No is the number of output scenarios in the

provided input-output examples, and Nc is the number of output scenarios

that the solution Si covers. The feature score of a solution Si is defined as

1−Ocov
i . The higher Ocov

i , the better the solution Si.

• Anti-patterns. This feature aims to heuristically prevent synthesis from

generating trivial solutions. Particularly, these patterns are anti-duplicate

and -constant expressions, e.g., a < a, 0 6= 1, etc. Expressions containing

these patterns typically evaluate to a constant true or false , and are thus

likely to overfit. We filter out these expressions during the synthesis process.

Again, this can be easily done by traversing the AST produced by the

SYNTH-LIB grammar. The utility of anti-patterns has been explored for

search-based program repair [83], but not for semantics-based counterparts,

partially because it is difficult to integrate additional such measures directly

in the constraint-based synthesis approach [83].
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5.4 Evaluation

This section describes our comparison between S3 and state-of-the-art semantics-

based program repair techniques. We describe experimental setup and research

questions in Section 5.4.1; answer those research questions in Sections 5.4.2–

5.4.3; and present discussion, limitations, and threats in Section 5.4.4.

5.4.1 Experimental setup

We ran all experiments on a Intel Corei5 machine with 4 cores and 8GB of

RAM.

Baseline approaches and settings We compare S3 to Angelix [66], Enu-

merative [4], and CVC4 [77]. Angelix offers its specification inference engine

and synthesis engine in separate code packages. Although the specification

inference engines behind Angelix and S3 work on C and Java programs, re-

spectively, Angelix’s synthesis engine takes as input example-based specifica-

tions like the synthesis engine of S3. Thus, to enable comparisons between

S3 and Angelix, we instruct S3’s inference engine to generate the same type

of specifications that Angelix’s synthesis engine uses, and instruct both S3’s

and Angelix’s synthesis engines to synthesize the repair based on the same

provided specifications. Enumerative [4] and CVC4 [77] are state-of-the-art

Syntax-Guided Synthesis (SyGuS) engines which both take input in the form

of SYNTH-LIB scripts, like S3.7 This allows straightforward comparison be-

tween the tools.

For single-line patches, we run a repair synthesis tool on each buggy location

of each program in parallel, and stop once a repair is found. The timeout

for synthesis task is set to three minutes each. For multi-line-patches, we

implement the approach described bellow.
7We refer interested readers to [2] and http://www.sygus.org/ for a full comparison

between SyGuS engines
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Angelix tackles patches involving multiple lines [66] by grouping multiple

buggy locations, and synthesizing repairs for several locations at once. Angelix

clusters buggy locations into groups of a user-specified size by either locality

or suspiciousness score produced by fault localization. We reimplemented this

feature, following Angelix’s source code.8 Angelix’s synthesis engine are run

on these specifications.

We implemented our own strategy to tackle multi-line patches for S3, Enu-

merative, and CVC4. Each buggy location is repaired separately, after which

patches for certain locations are grouped. Given a test suite T , and patches

{Pi} generated by a repair synthesis tool for location i. Assuming each patch

p ∈ Pi leads the program to pass a set of tests Ti ⊂ T , we iterate through all

patches and combine those that have ∪Ti = T . The intuition is that combining

these patches may render the whole test suite T to pass, which we then verify

dynamically.

Datasets We consider two datasets of buggy programs:

• Small programs associated with high coverage test suites. We

experiment with 52 Java bugs in the smallest subject programs of the

IntroClass program repair benchmark [53] translated to Java [22]. The

programs are student-written homework assignment from an introductory

programming class; the goal of the programs is to find the smallest number

between four integer numbers. Although the programs are small, they

feature possibly complicated fixes involving changes in multiple if-then-else

structures. We include only syntactically distinct programs. We focus on

smallest because it only includes integer- and boolean-related fixes. Neither

Angelix nor our framework can yet handle, e.g., floating point numbers or

strings, primarily due to the limited capability of the constraint solving

techniques used in symbolic execution.
8https://github.com/mechtaev/angelix. The implementation for this feature in An-

gelix’s source is approximately 70 lines of Python code.
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A key benefit of focusing on these small programs is that the problems in

IntroClass are associated with two independent, high-quality test suites.

We use one test suite to guide the search for a repair and the other to

assess produced patch quality. We further augment the dataset by using

Symbolic PathFinder [72] to generate additional tests. We do this by man-

ually adding correctness specifications such as logical assertions, on the

buggy programs, and use SPF to generate test inputs that expose bugs,

e.g., assertion violations. This results in 16 additional tests.

• Large real-world programs. Our second dataset consists of 100 large

real-world Java bugs from 62 subject programs, featuring ground truth

bug fixes submitted by developers. Our dataset only includes bugs with

patches that change fewer than five lines of code. This simplifies quality

and correctness assessment of machine-generated patches, which is espe-

cially important because real-world test cases can be incomplete or weak

specifications of desired behavior [75, 81].

We build our dataset upon a previously-proposed bug fix history dataset [50],

which originally consists of around 3000 likely bug-fixing commits of fewer

than five lines of code collected from GitHub. To further ensure that the

collected commits are actually bug fixes, we randomly sampled 500 com-

mits, and manually checked them to ensure that the commits compile and

that the program test cases expose bugs pre-commit (as compared to post-

commit test behavior). We treat tests that fail in the before-patched version

but pass in the patched version as the failing tests addressed by the bug

fixing commit. Since this process is time consuming, we stopped once we

found 100 bugs from 62 programs. Table 5.1 shows the top five largest pro-

grams for which S3 can correctly patch bugs. “KLoc” depicts the number

of lines of Java code in each project.
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Table 5.1: Top 5 largest programs that S3 can correctly patch. Math refers to
the Apache Commons Math library

Closure OrientDB Math Molgenis Heritrix

KLoc 237 203 175 54 48

Research questions and metrics. Our core metric is the number of buggy

programs that a tool correctly patches. Fully assessing repair quality and cor-

rectness is an open problem in program repair research, and thus we approxi-

mate in several ways. For the IntroClass bugs, we designate a patch correct if

it passes all held-out test cases, described above. We divide the SPF-generated

tests randomly, using half to augment the tests used to repair and the other

half to augment the held-out tests. For the real-world bugs, a patch is deemed

correct if it is syntactically identical to the developer-produced patch. We

also manually inspect all the results (produced by all repair tools) as a sanity

check. In our inspection, if it is possible for a machine-generated patch to be

converted into the corresponding developer’s patch via basic transformations,

we also consider it as correct. These patches are the minority in our evaluation;

we separate these in our results and present the patches in prose. We report

overfitting rate, or the percentage of produced patches that are incorrect, for

each tool (lower is better); and expressive power in terms of the unique buggy

programs each tool correctly patches. Our two research questions are then

divided by dataset:

RQ1. How does each tool perform on the dataset of small programs associated

with high coverage test cases, in terms of correct patches generated, overfitting

rate, and expressive power?

RQ2. How does each tool perform on the dataset of real-world programs, in

terms of correct patches generated, overfitting rate, and expressive power?
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Table 5.2: Repair tool performance on 52 IntroClass bugs.

Angelix

S3 Enum CVC4 1 2 3 4

Produced 22 13 13 17 18 17 20
Pass all 22 1 1 3 7 4 4held-out tests
% Overfit 0% 92% 92% 82% 61% 76% 80%

1 if ((a < b) && (a < c) && (a < d)) {
2 // By S3: ((a <= b) && (a <= c) && (a < d))
3 // By Angelix: (a <= c) && (a < d)
4 System.out.println(a);
5 } else if ((b < a) && (b < c) && (b < d)) {
6 // By S3: (b <= a) && (b <= c) && (b < d)
7 // By Angelix: no change
8 System.out.println(b);
9 } else if ((c < a) && (c < b) && (c < d)) {

10 // By S3: (c <= a) && (c <= b) && (c < d)
11 // By Angelix: (c < d)
12 System.out.println(c);
13 } else {
14 System.out.println(d);
15 }

Figure 5.6: A bug in a smallest program correctly fixed exclusively by S3. We
show the patches from S3 and Angelix.

5.4.2 Performance on IntroClass

Table 5.2 shows the results of each repair synthesis tool on 52 bugs from the

IntroClass dataset. The “Produced” column shows the total number of patches

that each tool generated that pass the provided test cases, while the “Pass held-

out tests” shows the number of produced patches that generalize to pass all

held-out evaluation tests (and that we thus consider correct). “% Overfit”

shows the percentage of produced patches that do not generalize to the held-

out tests (lower is better). Note that Angelix’s multi-line patch facility is

driven by two parameters: number of buggy locations in a group (1–4), and the

criterion used to group them (either by locality or suspiciousness score). These

results are based on score-based grouping, which uniformly outperformed the

alternative in our experiments (results not shown). When the group size is

set to 1, we allow Angelix to try our own multi-line patch strategy, in case

single-line repair is unsuccessful.

Table 5.2 shows that S3 substantially outperforms the baselines, generating
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significantly more patches, all of which generalize to the held out test cases.

The degree to which Angelix patches overfit varied by lines considered, ranging

from a minimum of 61% to a maximum of 82%. Enumerative and CVC4

perform comparably, with a very high percentage of overfitting patches. S3

generates correct patches for all the bugs for which Angelix, Enumerative, and

CVC4 can fix. S3 also generated almost exclusively multi-line patches (with

one exception).

We speculate that the underlying synthesis techniques are the primary

source of the baselines’ weak performance. Enumerative enumerates expres-

sions in increasing size, while CVC4 uses unsatisfiability (unsat) cores to syn-

thesize solutions; neither rank candidate solutions, but instead conservatively

return the first satisfying solution identified. Angelix encodes a simple patch

minimality preference criteria in constraints suitable for PartialMax SMT.

However, in these experiments, we observed that Angelix frequently generated

patches that are quite different from the original buggy expressions (typically

much smaller in size). These results and observations suggest that S3’s combi-

nation of a customizable search space, an appropriately-managed expression-

size-wise search strategy, and numerous ranking functions, all contribute to its

successful generation of generalizable patches.

Figure 5.6 shows an example of a bug that S3 patches correctly but to which

the baselines overfit. For brevity, we only show patches from S3 and Angelix.

This code snippet requires a multi-line patch to multiple if-conditions. We show

the replacement if-expressions from S3 and Angelix in the code comments.

From the first if-condition, the Angelix fix is already incorrect, as it fails to

capture the necessary relationship between variables a and b. The condition

from S3 shares the structure of the original buggy expression, capturing the

relationships between all variables. Producing this patch is likely assisted by

S3’s expression-size-wise enumerative search, which starts from the size of the

original buggy expressions.
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Table 5.3: Repair tool performance on 100 real-world bugs.

S3 S3syn S3sem Enum CVC4 Angelix

Produced 20 15 12 13 12 13
Syntax match 16 11 7 5 4 4
Manual 4 1 4 1 1 2
Overfit, Syn 20% 27% 42% 62% 67% 69%
Overfit, Both 0% 20% 8% 54% 58% 54%

1 ...First bug...
2 - if (Character.isDigit(next)// Buggy if-condition
3 + if (Character.isDigit(next) || next == ’.’) // fix by developer
4 + if ((46 == next) || Character.isDigit(next)) // fix by S3
5
6 ...Second bug...
7 - return (csvBuffer.getMark() >= (bufferIndex - 1))// fix buggy expression
8 + return (bufferIndex) < (csvBuffer.getMark() + 1)// fix by developer
9 + return (csvBuffer.getMark() > (bufferIndex - 1))// fix by S3

10
11 ...Third bug...
12 - while (newLength > offset)// fix buggy expression
13 + while (newLength < offset)// fix by developer
14 + while (offset > newLength)// fix by S3
15
16 ...Fourth bug...
17 if(this.runningState != STATE_RUNNING && this.runningState != STATE_SUSPENDED) {
18 throw new IllegalStateException("...");
19 }
20 - stopTime = System.currentTimeMillis();
21 + if(this.runningState == STATE_RUNNING) { // fix by developer
22 + if(this.runningState != STATE_SUSPENDED) // fix by S3
23 + stopTime = System.currentTimeMillis();
24 + }

Figure 5.7: Bugs for which S3 generates patches that are not syntactically
identical but semantically equivalent to the developer fixes.

5.4.3 Performance on real-world programs

Table 5.3 shows the results of applying each considered repair tool on 100 real-

world bugs from our second dataset. The first row shows the total number

of bugs for which each tool generated a patch. Because we lack second inde-

pendent test suites for these programs, we use a direct syntactic match to the

developer patch to define correctness (row “Syntax match”). We additionally

found, via manual inspection, a small number of additional patches that ap-

pear semantically identical to the developer patches; we describe these patches

for S3 below. The last two rows show the percentage of produced patches

that fail to generalize to capture the developer-written patch, as judged via

strict syntactic match (“Overfit, Syn”) or via both syntactic match and manual
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inspection (“Overfit, Both”).

S3 again substantially outperforms the baseline techniques, generating cor-

rect patches for many more programs. Only 4 of the 20 S3 patches fail to

strictly syntactically match the developer fixes. Although manual author in-

spection, is an inadequate mechanism for rigorously assessing patch quality,

simple syntactic transformation rules can convert these patches to their devel-

oper equivalents; we separate these out in Figure 5.7.

In terms of overfitting, only 20% of S3’s patches fail to generalize when

judged by perfect syntactic fidelity; when manual inspection is considered,

none of the patches overfit. For Angelix, Enumerative, and CVC4, 54%, 58%,

and 54% of the produced patches overfit, respectively.

In these experiments, we also evaluate the relative contribution of S3’s

syntactic versus semantic feature sets for ranking—S3syn and S3sem in the

table, respectively. When only either syntactic or semantic features are used

to rank the solution space, the performances of S3 varies. S3syn and S3sem

generate fewer correct patches, with slightly higher overfitting rates, suggesting

that both kinds of features are beneficial for S3’s performance. We additionally

experimented with individual ranking feature of S3 as shown in Table 5.4.

From the table, we can see that Cosine similarity and Locality of variables and

constants are the most effective features, wherein each feature alone can fix 9

bugs. Model counting alone can fix 7 bugs, making it the least effective among

the features.

Table 5.4: Effectiveness of individual ranking feature

Feature #Bugs Fixed

Cosine Similarity 9
Anti-patterns 8
AST Differencing 8
Model Counting 7
Locality of variables and constants 9
Output Coverage 8
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All programs that are correctly fixed by other tools are also fixed by S3.

We note that the number of correctly-fixed bugs by the three baselines can be

increased (to 9 bugs) if we combine all bugs correctly repaired by them. This

combination is, however, still inferior to S3’s performance.

The first bug in Figure 5.7 is an example of a bug that S3 fixes correctly,

while the others do not. Enumerative and CVC4 generate the same fix with

each other, that does not ultimately pass all tests (both synthesize (0 == 0)

to replace the if condition); Angelix generates no fix for this bug. S3’s fix

is not syntactically identical but it is semantically equivalent to the devel-

oper’s fix. This can be demonstrating by transforming S3’s patch using basic

transformation rules, e.g., swapping both left and right hand sides of the “||”

operator, and converting the integer 46 to the character “.”. The fix generated

by Enumerative and CVC4, on the other hand, cannot be transformed to the

developer’s fix. We note that the incorrect fix generated by Enumerative and

CVC4 is largely destructive, since it converts the branch condition to always

evaluate to true. This kind of destructive fix can be prevented in S3 via the

anti-patterns feature, as described in Section 5.3.2.3. In general, S3 generates

more correct patches than the other approaches, judged via both syntactic

fidelity to the developer fix and via fidelity with respect to basic syntactic

transformations.

5.4.4 Discussion and Limitations

Semantics-based repair in general exclusively modifies expressions in conditions

or on the right-hand side of assignments. Additionally, such techniques can

only synthesize or reason about replacement code including boolean or integer

types. Our experience suggests that these limitations are the primary reasons

for unrepaired bugs in our experiments. Some bugs require large changes to

semantic or control-flow structure (e.g., a change from if(...){A};if(...){B} to

if(...){A} else if(...){B}), the insertion of new statements, or manipulation of
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variables of types that existing constraint solving technology cannot handle.

Resolving these challenges remains future work, and can progress apace with

progress in the synthesis domain. However, it is noteworthy that semantics-

based repair techniques are reasonably expressive despite these limitations.

5.5 Conclusions

We proposed S3, a new repair synthesis system that is able to generate high-

quality, general patches for bugs in real programs. S3 consists of two main

phases, which serve to: (1) Automatically extract examples that serve as a

specification of correct behavior, using dynamic symbolic execution on pro-

vided test cases, and (2) Use a synthesis procedure inspired by the programming-

by-examples methodology to synthesize general patches. The efficiency and

effectiveness of the synthesis procedure is enabled by our novel designs of

three main parts, including a domain-specific language, which we extend from

SYNTH-LIB [4]; an expression-size-wise enumerative search; and syntax- and

semantic-guided ranking features that help rank the highest quality solutions

highest in the solution space. Our results showed that S3 generates many more

high-quality bug fixes than even the best performing baseline from prior work.

Beyond these results, our approach opens a number of opportunities for

future repair synthesis techniques. The specifications, in the form of input-

output examples, can be strengthened with specifications inferred by speci-

fication mining and other inference techniques [23, 43], possibly enabling in-

tegration of inductive and deductive synthesis for a more expressive overall

system. Our dataset can also be extended, and used to evaluate many more

repair systems. We plan to extend the SYNTH-LIB grammar to represent

more tasks in the program repair domain, e.g., nonlinear computations on

the integer domain. Finally, machine learning might be useful in automati-

cally classifying bug types [85], to more effectively deal with different kinds of

defects automatically.
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Chapter 6

Reliability of Patch Correctness

Assessment

The overfitting problem in APR is not only attributed to the way APR tech-

niques generate and navigate the search space for repairs, but also the way

generated patches are validated. In this chapter, we propose to assess the re-

liability of popular patch validation methodologies in the literature, namely

automated annotation – in which an independent test suite is used to vali-

date patches, and author annotation – in which authors of APR techniques

validate patches generated by their and competing tools by themselves. We

do this by first constructing a gold set of correctness labels for 189 randomly

selected patches generated by 8 state-of-the-art APR techniques by means of a

user study involving 35 professional developers as independent annotators. By

measuring inter-rater agreement as a proxy for annotation quality – as com-

monly done in the literature – we demonstrate that our gold set is on par with

other high-quality gold sets. Through an in-depth comparison of labels gen-

erated by author and annotated annotations and this gold set, we assess the

reliability of the popular patch assessment methodologies. We subsequently

report several findings and highlight their implications for future APR studies.
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6.1 Introduction

Bug fixing is notoriously difficult, time-consuming, and costly [84, 12]. Hence,

effective automatic program repair (APR) techniques that can help reduce

the onerous burden of this task, is of tremendous value. Interest in APR

has intensified as demonstrated by substantial recent work devoted to the

area [65, 66, 95, 58, 60, 96, 52, 37, 48, 47, 45, 14], bringing the futuristic idea

of APR closer to reality. APR can be generally divided into two main families

including heuristics- vs semantics-based approaches, classified by the way they

generate and traverse the search space for repairs.

Traditionally, test cases are used as the primary criteria for correctness

judgment of machine-generated patches – a patch is deemed as correct if it

passes all tests used for repair [52]. This assessment methodology, however,

has been shown to be ineffective as there could be multiple patches passing

all tests but are still indeed incorrect [74, 59]. Although the search space of

ASR varies depending on the nature of underlying techniques, it is often huge

and contains many plausible repairs, which unduly pass all tests but fail to

generalize to the expected behaviours. This problem, which is often referred

to as patch overfitting [81], motivates the need of new methodologies to assess

patch correctness. The new methodologies need to rely on additional criteria

instead of using the test suite used for generating repair candidates (aka. repair

test suite) alone.

To address this pressing concern, most recent works have been following

two methods for patch correctness assessment separately:

• Automated annotation by independent test suite. Independent test

suites obtained via an automatic test case generation tool are used to deter-

mine correctness label of a patch – see for example [81, 49]. Following this

method, a patch is deemed as correct or generalizable if it passes both the

repair and independent test suites, and incorrect otherwise.
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• Author annotation. Authors of ASR techniques manually check correct-

ness labels of patches generated by their own and competing tools – see for

example [95, 56]. Following this method, a patch is deemed as correct if au-

thors perceive semantic equivalence between generated patches and original

developer patches.

While the former is incomplete, in the sense that it fails to prove that a patch

is actually correct, the latter is prone to author bias. In fact, these inherent

disadvantages of the methods have caused an on-going debate as to which

method is better for assessing the effectiveness of various APR techniques

being proposed recently. Unfortunately, there has been no extensive study that

objectively assesses the two patch validation methods and provides insights into

how the evaluation of APR’s effectiveness should be conducted in the future.

This study is conducted to address this gap in research. We start by creat-

ing a gold set of correctness labels for a collection of APR generated patches,

and subsequently use it to assess reliability of labels created through author

and automated annotations. We study a total of 189 patches generated by

8 popular APR techniques (ACS [95], Kali [74], GenProg [95], Nopol [96],

S3 [46], Angelix [66], and Enumerative and CVC4 embedded in JFix [45]).

These patches are for buggy versions of 13 real-world projects, of which six

projects are from Defects4J [34] (Math, Lang, Chart, Closure, Mockito, and

Time) and seven projects are from S3’s dataset [46] (JFlex, Fyodor, Natty,

Molgenis, RTree, SimpleFlatMapper, GraphHoper). To determine correctness

of each patch, we follow best practice by involving multiple independent anno-

tators in a user study. Our user study involves 35 professional developers; each

APR-generated patch is labeled by five developers by comparing the patch with

its corresponding ground truth patch created by the original developer(s) who

fixed the bug. By analyzing the created gold set and comparing it with labels

generated by three groups of APR tool authors [62, 56, 46] and two automatic

test case generation tools such as DiffTGen [94] and Randoop [71], we seek
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to answer three research questions:

RQ1 Can independent annotators agree on patch correctness?

RQ2 How reliable are patch correctness labels generated by author annotation?

RQ3 How reliable are patch correctness labels inferred through automatically

generated independent test suite?

In RQ1, by measuring inter-rater agreement as a proxy of annotation quality

– as commonly done in the literature [16, 19] – we demonstrate that our gold

set is on par with other high-quality gold sets. In the subsequent two RQs,

we investigate the strengths and deficiencies of author and automated patch

correctness annotation.

We summarize our contributions below:

• We are the first to investigate the reliability of author and automated anno-

tation for assessing patch correctness. To perform such assessment, we have

created a gold set of labelled patches created by a user study involving 35

professional developers. By means with this gold set, we highlight strengths

and deficiencies of popular assessment methods employed by existing APR

studies.

• Based on implications of our findings, we provide several recommendations

for future APR studies to better deal with patch correctness validation.

Especially, we find that automated annotation, despite being less effective as

compared to author annotation, can be used to augment author annotation

and reduce the cost of manual patch correctness assessment.

The rest of the chapter is organized as follows. We describe details of

our user study to collect gold set of patch correctness labels in Section 6.2.

Subsequently, we answer RQ1, RQ2, and RQ3 to assess the quality of our gold

set, author annotation, and automated annotation in Section 6.3, 6.4, and 6.5
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respectively. Section 6.6 discusses implications of our findings, our post-study

survey, and threats to validity. We conclude and briefly describe future work

in Section 6.7.

6.2 User Study

We conducted a user study with 35 professional developers to collect correct-

ness labels of patches. In this study, every developer is required to complete

several tasks by judging whether patches generated by APR tools are seman-

tically equivalent to ground truth human patches.

Patch Dataset. Since the eventual goal of our study is to assess reliability of

author and automated annotations, we need a set of patches that have been

labeled before by APR tool authors and can be used as input to automated test

case generation tools designed for program repair. We find the sets of patches

recently released by Liu et al. [56], Martinez et al. [62], and Le et al. [46] to be

suitable. Liu et al. and Martinez et al. label a set of 210 patches generated by

APR tools designed by their research groups (i.e., ACS [95], and Nopol [96])

and their competitors (i.e., GenProg [52], Kali [74]). Le et al. label a set of

79 patches generated by their APR tool (i.e., S3 [46]) and their competitors

(i.e., Angelix [66], and Enumerative and CVC4 embedded in JFix [45]). The

authors label these patches by manually comparing them with ground truth

patches obtained from version control systems of the corresponding buggy sub-

ject programs.1 These patches can be used as input to DiffTGen, which is a

state-of-the-art test generation tool specifically designed to evaluate patch cor-

rectness [94], and Randoop – a popular general purpose test case generation

tool [71].

Due to resource constraint, i.e., only 35 professional developers agree to

spend an hour of their time in this user study, we cut down the dataset to
1Since authors of [56] and [95] overlap, we can use the labels to evaluate reliability of

author labelling.
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Table 6.1: Selected Patches and their Author Label

GenProg Kali Nopol ACS S3 Angelix Enum CVC4
Incorrect 14 14 84 4 0 7 6 6
Correct 4 1 6 14 10 2 4 4
Unknown 2 2 5 0 0 0 0 0
Total 20 17 95 18 10 9 10 10

189 patches by randomly selecting these patches from their original datasets.

Details of the dataset of 189 patches are shown in Table 6.1.

Task Design. At the start of the experiment, every participant is required to

read a tutorial that briefly explains automated program repair and what they

need to do to complete the tasks. Afterwards, they can complete the tasks

one-by-one through a web interface.

Figure 6.2 shows the screenshot of an example task that we give to our

user study participants through a web interface. For each task, we provide a

ground truth patch taken from the version control system of the corresponding

buggy subject program, along with a patch that is generated by an automated

program repair tool. We also provide additional resources including full source

code files that are repaired by the patch, link to the GitHub repository of the

project, outputs of failing test cases2, and source code of the failing test cases.

Based on this information, participants are asked to evaluate the correctness

of the patch by answering the question: Is the generated patch semantically

equivalent to the correct patch? To answer this question, participants can

choose one of the following options: “Yes”, “No” or “I don’t know”. Finally, if

they wish to, they can provide some reasons that explain their decision. Our

web interface will record participants’ answers and the amount of time they

need to complete each task.

Participants and Task Assignment. Thirty three of the 35 professional

developers participating in this study work for two large software development

companies (named Company C1 and C2), while another two work as engineers
2These information is generated using Defects4J [34] info command.
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Figure 6.1: Distribution of participant work experience

for an educational institution. Company C1 currently has more than 500 em-

ployees and Company C2 has more than 2000 employees. Both companies have

a large number of active projects that expose developers to various business

knowledge and software engineering techniques. All the 35 developers work for

projects that use Java as the main programming language.

Figure 6.1 shows the distribution of years of work experience of our partici-

pants. The average number of years of work experience that these participants

have is 3.5. Two developers from the educational institution are very senior,

who have worked for 5.5 and 10 years, respectively. The most experienced de-

veloper from industry has worked for seven years, while some has only worked

for one year. Based on their working experience, we group participants into

two groups: junior and senior. There are 20 junior developers and 15 senior

developers, respectively.

We divided the 35 participants into seven groups. The ratio of junior and

senior developers for each group was kept approximately the same. Each patch

generated by program repair tools is labeled by five participants. Participants

in the same group receive the same set of patches to label.

6.3 Assessing Independent Annotators’ Labels

Our user study presented in Section 6.2 was conducted to build a set of gold

standard labels for machine-generated patches, which can reliably be used to

assess reliability of author and automated annotations. Before using the labels

produced by our user study, we need to first ascertain their quality. Agreement
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Figure 6.2: A sample task viewed through our web interface. (1) and (2) are
the correct patch and the patch generated by an ASR tool; (3) and (4) are
the links to source code files that contain the patches; (5) is the link to the
corresponding project’s GitHub repository; (6) and (7) are the output of the
failed test cases and their source files; (8) is the question we asked a participant
to answer.

among annotators is often used as a measure of quality [16, 20, 79]. Thus, in

this section, we investigate the degree to which the annotators agree with

one another. This answers RQ1: Can independent annotators agree on patch

correctness?

Methodology. To answer RQ1, we first compute some simple statistics high-

lighting the number of agreements and disagreements among annotators. We

then calculate several well-accepted measures of inter-rater reliability. Finally,

we perform some sanity checks to substantiate whether or not annotators are

arbitrary in making their decisions.

Results. To recap, our annotators are 35 professional developers who are

tasked to annotate 189 machine-generated patches. Each patch is annotated

by five professional developers; each provides either one of the following labels:

incorrect, correct, or unknown. Table 6.2 summarizes the number of agree-

ments and disagreements among annotators. The number of patches in which

all developers agree on each patch’s label is 118 (62.4% of all patches); of which
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Table 6.2: Results of participant annotations. First column indicates the num-
ber of patches that every developer agrees on the label of each patch as correct
or incorrect. Second column indicates the number of patches, wherein each
patch has least one developer labeling it as unknown and the remaining devel-
opers agrees on the label of the patch. Last column indicates the number of
patches that the label of each patch can be determined by a majority voting
among developers’ labels.

All Agree All Agree - Unk Majority Agree

Incorrect 95 132 152
Correct 23 23 35

Total 118 155 187

95 patches are labeled as incorrect and 23 patches are labeled as correct. More-

over, ignoring unknown labels, the number of patches for which the remaining

annotators fully agree on their labels is 155 (82.0% of all patches). Out of

these, the numbers of patches that are labeled as incorrect and correct are 132

and 23, respectively. Lastly, for 187 out of 189 patches (98.9% of all patches),

there is a majority decision (i.e., most annotators agree on one label). Out of

these, 152 and 35 patches are identified as incorrect and correct, respectively.

We also compute several inter-rater reliability scores: mean pairwise Co-

hen’s kappa [16, 18] and Krippendorff’s alpha [41]. Using the earlier test we

consider three different ratings (i.e., correct, incorrect, and unknown), while the

latter test allows us to ignore unknown ratings3. Inter-rater reliability scores

measure how much homogeneity, or consensus, there is between raters/label-

ers. The importance of rater reliability hinges on the fact that it represents the

extent to which the data collected in the study are correct representations of

the variables being measured. A low inter-rater reliability suggests that either

the rating scale used in the study is defective or raters need to be retrained

for the rating task or the task is highly subjective. The higher the inter-rater

reliability the more reliable the data is.

Table 6.3 shows details of interpretations of reliability score values by Lan-

dis and Koch [42]. It is worth noting that there is another interpretation of
3Krippendorff’s alpha allows us to have different number of ratings for each data point.
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Table 6.3: Interpretation of Inter-Rater Reliability Scores by Landis and
Koch [42].

Score Range Interpretation
< 0 poor agreement
[0.01, 0.20] slight agreement
[0.21, 0.40] fair agreement
[0.41, 0.60] moderate agreement
[0.61, 0.80] substantial agreement
[0.81, 1.00] almost perfect agreement
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Figure 6.3: Time taken by annotators to decide whether a patch’s label is
either known (confirmed as correct or incorrect) or unknown.

kappa value by Manning et al. [16], which indicates that a kappa value falling

between 0.67 and 0.8 demonstrates a fair agreement between raters – the sec-

ond highest level of agreement by their interpretation. It has been shown that

this fair level of inter-rater agreement normally happens in popular datasets

such as those used for TREC evaluations4 and medical IR collections [16].

The computed mean pairwise Cohen’s kappa and Krippendorff’s alpha

for our data are 0.691 and 0.734 respectively, which highlight a substan-

tial agreement among participants and satisfies the standard normally

met by quality benchmark datasets.

To further validate the annotations, we perform two sanity checks to sub-

stantiate whether or not annotators are arbitrary in their decisions:

• First, we expect conscientious annotators to spend more time inspecting

patches that are eventually labeled as unknown than other patches. An-
4Text REtrieval Conference (TREC), which is championed by US National Institute of

Standards and Technology (NIST) since 1992, provides benchmark datasets for various text
retrieval tasks – see http://trec.nist.gov/data.html.
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Figure 6.4: Time taken by annotators to decide a patch’s label for full-
agreement and disagreement cases.

notators who label patches as unknown without thinking much would be

likely making arbitrary decisions. Figure 6.3 depicts a box plot showing the

time participants took on patches that are labeled as unknown and other

patches. It can be seen that participants took more time on the earlier set of

patches. Wilcoxon signed-rank test returns a p-value that is less than 0.005,

indicating a statistically significant difference. Moreover, the Cliff’s delta5,

which is a non-parametric effect size measure, is 0.469 (medium).

• Second, we expect conscientious annotators to spend more time inspecting

difficult patches than easy ones. We consider disagreement among annota-

tors as proxy for patch difficulty. We compare the time taken by partici-

pants in identifying patches for which there is complete agreement to those

for which disagreement exists. Figure 6.4 shows a box plot which shows that

participants spend more time on disagreement cases. Wilcoxon signed-rank

test returns a p-value that is less than 0.05, indicating statistically significant

difference. Moreover, the Cliff’s delta is 0.178 (small).

The above results substantiate the quality of our dataset. In the subsequent

sections, which answer RQ2 and RQ3, we use two versions of our dataset ALL-

AGREE (see “All Agree” column in Table 6.2) and MAJORITY-AGREE (see

“Majority Agree” column in Table 6.2), to assess the reliability of author and

automated annotations.
5Cliff defines a delta of less than 0.147, between 0.147 to 0.33, between 0.33 and 0.474,

and above 0.474 as negligible, small, medium, and large effect size, respectively [17].
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Table 6.4: Results of labels by authors compared to independent annotators.

Indep Annotators-Authors All Agree Majority Agree

Same Incorrect-Incorrect 82 133
Correct-Correct 23 33

Different
Incorrect-Correct 6 10
Correct-Incorrect 0 2
Incorrect-Unknown 7 9
Correct-Unknown 0 0

Total 118 187

6.4 Assessing Author Annotation

A number of studies proposing automated repair approaches evaluate the pro-

posed approaches through manual annotation performed by authors [56, 95,

50]. Author subjectivity may cause bias which can be a threat to the internal

validity of the study. Author bias has been actively discussed especially in the

medical domain, e.g., [87]. Unfortunately so far, there has been no study that

investigates presence or absence of bias in author annotation and its impact

to the validity of the labels in automated program repair. This section de-

scribes our effort to fill this need by answering RQ2: How reliable is author

annotation?

Methodology. Recall that our user study makes use of patches released

by three research groups, including Liu et al. [56], Martinez et al. [62], and

Le et al. [46] who created program repair tools namely ACS, Nopol, and S3,

respectively. Authors of each tool manually labeled the patches generated by

their tool and its competing approaches by themselves. To answer RQ2, we

compare labels produced by the three research groups with those produced by

our independent annotators whose quality we have validated in Section 6.3.

We consider the ALL-AGREE and MAJORITY-AGREE datasets mentioned

in Section 6.3.

Results. Table 6.4 shows the detailed results on the comparisons between

authors’ labels and independent annotators’ labels. We found that for ALL-

AGREE dataset, authors’ labels match with independent annotators’ labels
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1 @@ -115,9 +115,7 @@ public class StopWatch {
2 public void stop() {
3 if(this.runningState != STATE_RUNNING && this.runningState != STATE_SUSPENDED) {
4 throw new IllegalStateException("...");
5 }
6 + if(this.runningState == STATE_RUNNING)// Developer patch
7 + if(-1 == stopTime)// Generated patch
8 stopTime = System.currentTimeMillis();
9 this.runningState = STATE_STOPPED;

10 }

Figure 6.5: An example of a patch that has mismatched labels. Liu et al.
identified the patch (shown at line 7) as correct, while independent annotators
identified this patch as incorrect. The ground truth (developer) patch is shown
at line 6.

(Same) for 105 out of 118 patches (89.0%). There are 13 patches for which

authors’ labels mismatch those by independent annotators (Different). Among

these patches, 6 are identified by independent annotators as incorrect, but

identified by authors as correct (Incorrect-Correct). For the other 7 patches,

authors’ labels are unknown while independent annotators’ labels are incorrect

(Incorrect-Unknown). For the MAJORITY-AGREE dataset, 88.8% of the

labels match. There are 21 mismatches; 10 belong to Incorrect-Correct cases, 2

to Correct-Incorrect cases, and 9 to Incorrect-Unknown cases. Figure 6.5 shows

an example patch generated by Nopol [96] that has mismatched labels. It is

labeled as correct by Martinez et al. and incorrect by independent annotators.

We also compute inter-rater reliability of authors’ labels and labels in

ALL-AGREE and MAJORITY-AGREE datasets. The Cohen’s kappa values

are 0.719 and 0.697 considering the ALL-AGREE and MAJORITY-AGREE

datasets, respectively6. Comparing these scores with Landis and Koch’s inter-

pretation in Table 6.3, there is substantial agreement.

A majority (88.8-89.0%) of patch correctness labels produced by author

annotation match those produced by independent annotators. Inter-

rater reliability scores indicate a substantial agreement between author

and independent annotator labels.

To better characterize cases where author and independent annotator la-
6The Krippendorf’s alpha values are 0.717 and 0.695
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Figure 6.6: Participant completion time for patches for which author and
independent annotator labels match (Same) and those whose labels mismatch
(Different)
bels match (Same) and those where they do not match (Different), we inves-

tigate the time that participants of our user study took to label the two sets

of patches. Since the number of mismatches is smaller in the ALL-AGREE

dataset, we focus on comparing labels in MAJORITY-AGREE dataset. Fig-

ure 6.6 depicts a box plot showing the distribution of completion time cor-

responding to the two sets of patches. According to the figure, patches with

matching labels took participants a shorter period of time to label comparing

to those whose labels mismatched. Wilcoxon signed-rank test returns a p-value

that is less than 0.05, indicating statistically significant difference. The Cliff’s

delta is equal to 0.278 (small). Since task completion time can be used as a

proxy for measuring task difficulty or lack thereof [92], we consider participants

completion time as a proxy of difficulty in assessing patch correctness. The re-

sult suggests that disagreements between authors and independent annotators

happen for more difficult cases.

6.5 Assessing Automated Annotation

In this research question, we investigate the reliability of the use of automat-

ically generated independent test suite (ITS) in annotating patch labels. ITS

has been used as an objective proxy to measure patch correctness – a patch is

deemed as incorrect if it does not pass the ITS, and as correct or generalizable

otherwise [81, 49]. It is unequivocal that incorrect patches determined by ITS
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are indeed incorrect. However, it is unclear if ITS can detect a large proportion

of incorrect patches. Moreover, the extent to whether correct (generalizable)

patches determined by ITS are indeed correct remain questionable. Thus, to

assess the usefulness of ITS, we investigate the answer to RQ3: How reliable

is automatically generated ITS in determining patch correctness?

Methodology: We employ the recently proposed test case generation tool

DiffTGen by Xin et. al [94] and Randoop [71] to generate ITS. To generate

ITS using DiffTGen and Randoop, the human-patched program is used as

ground truth. For DiffTGen, we run using its best configuration reported

in [94], allowing it to invoke Evosuite [25] in 30 trials with the search time

of each trial limited to 60 seconds. A machine-generated patch is identified as

incorrect if there is a test in the DiffTGen-generated ITS that witnesses the

output differences between the machine and human patches. For Randoop,

we run it on the ground truth program with 30 different seeds with each run

limited to 5 minutes. A machine-generated patch is identified as incorrect if

there is at least one test case in the Randoop-generated ITS that exhibits

different test results in machine-patched and human-patched (ground truth)

programs, e.g., it fails on the machine-patched program but passes on the

ground truth program, or otherwise. By this way, we allow both tools to

generate multiple test suites. It is, however, worth noting that DiffTGen

and Randoop are incomplete in the sense that they do not guarantee to

always generate the test cases that witness incorrect patches.

We use test cases generated by the tools to automatically annotate the

189 patches and compare the generated labels to those in ALL-AGREE and

MAJORITY-AGREE datasets which are created by our user study.

Results: Out of the 189 patches in our study, DiffTGen generates test

cases that witness 27 incorrect (overfitting) patches. Details of these patches

are shown in Table 6.6. The ALL-AGREE ground truth identifies 17 of these

27 patches as incorrect (the other 10 patches lie outside of the ALL-AGREE
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Table 6.5: Kappa values when using DiffTGen, Randoop, and their com-
bination to label patches in ALL-AGREE and MAJORITY-AGREE datasets.

All Agree Majority Agree
DiffT Rand Comb DiffT Rand Comb

Cohen’s Kappa 0.078 0.073 0.158 0.075 0.072 0.146
Kripp’s Alpha -0.32 -0.3 -0.057 -0.336 -0.313 -0.097

dataset), while the MAJORITY-AGREE dataset identifies all of them as incor-

rect. Unfortunately, most of the patches labelled as incorrect in ALL-AGREE

(65 patches) and MAJORITY-AGREE (121 patches) datasets failed to be

detected as such by ITS generated by DiffTGen. Randoop performs sim-

ilarly as compared to DiffTGen. It identifies 31 patches as incorrect, all

of which are also identified as incorrect in the MAJORITY-AGREE dataset.

Note that, DiffTGen and Randoop when combined can identify totally 51

unique patches as incorrect.

In their studies, Smith et al. [81] and Le et al. [81] assume a patch is incor-

rect if it does not pass an ITS, and correct or generalizable otherwise. Using

the same assumption to generate correctness labels, we can compute inter-rater

reliability between labels automatically annotated by running ITS generated

by DiffTGen and Randoop and labels in ALL-AGREE and MAJORITY-

AGREE datasets. As readers may have expected, the kappa values are very

low as shown in Table 6.5, e.g., Cohen’s kappa values when using DiffT-

Gen-generated ITS for ALL-AGREE and MAJORITY-AGREE are 0.078 and

0.075, repsectively.7

Independent test suite generated by DiffTGen and Randoop can only

label fewer than a fifth of incorrect patches as such in ALL-AGREE and

MAJORITY-AGREE datasets.

We now compare author labels discussed in Section 6.4 with ITS labels. Ta-

ble 6.6 shows the author labels of the 27 and 31 patches identified as incorrect

by DiffTGen and Randoop, respectively. For these patches, the majority of
7The corresponding Krippendorff’s alpha values are -0.32 and -0.336
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the labels by authors and DiffTGen match. However, there are three special

patches identified as incorrect by DiffTGen, including Math_80 generated

by Kali, Chart_3 generated by GenProg, and Math_80_2015 generated by

Nopol, while author labels are “Unknown”. One special patch identified as in-

correct by Randoop (Math_73 generated by GenProg), is labelled as correct

by authors.
Table 6.6: Labels by Independent annotators (“Annot” column) and authors
(“Authors” column) of patches identified by independent test suite (ITS) gen-
erated by DiffTGen or Randoop as incorrect .

DiffTGen Randoop Annot Authors

Kali

Time_4 Incorrect Incorrect Incorrect Incorrect
Math_32 Incorrect Incorrect Incorrect
Math_2 Incorrect Incorrect Incorrect
Math_80 Incorrect Incorrect Unknown
Math_95 Incorrect Incorrect Incorrect Incorrect
Math_40 Incorrect Incorrect Incorrect
Chart_13 Incorrect Incorrect Incorrect
Chart_26 Incorrect Incorrect Incorrect
Chart_15 Incorrect Incorrect Incorrect Incorrect
Chart_5 Incorrect Incorrect Incorrect Incorrect

GenProg

Math_2 Incorrect Incorrect Incorrect
Math_8 Incorrect Incorrect Incorrect
Math_80 Incorrect Incorrect Incorrect
Math_81 Incorrect Incorrect Incorrect
Math_95 Incorrect Incorrect Incorrect Incorrect
Math_40 Incorrect Incorrect Incorrect
Math_73 Incorrect Incorrect Correct
Chart_1 Incorrect Incorrect Incorrect
Chart_3 Incorrect Incorrect Unknown
Chart_5 Incorrect Incorrect Incorrect Incorrect
Chart_15 Incorrect Incorrect Incorrect Incorrect

Nopol

Math_33 Incorrect Incorrect Incorrect
Math_73_2017 Incorrect Incorrect Incorrect
Math_80_2017 Incorrect Incorrect Incorrect
Math_80_2015 Incorrect Incorrect Unknown
Math_97 Incorrect Incorrect Incorrect
Math_105 Incorrect Incorrect Incorrect
Time_16 Incorrect Incorrect Incorrect
Time_18 Incorrect Incorrect Incorrect
Chart_13_2017 Incorrect Incorrect Incorrect
Chart_13_2015 Incorrect Incorrect Incorrect
Chart_21_2017 Incorrect Incorrect Incorrect
Chart_21_2015 Incorrect Incorrect Incorrect
Closure_7 Incorrect Incorrect Incorrect
Closure_12 Incorrect Incorrect Incorrect
Closure_14 Incorrect Incorrect Incorrect
Closure_20 Incorrect Incorrect Incorrect
Closure_30 Incorrect Incorrect Incorrect
Closure_33 Incorrect Incorrect Incorrect
Closure_76 Incorrect Incorrect Incorrect
Closure_111 Incorrect Incorrect Incorrect
Closure_115 Incorrect Incorrect Incorrect
Closure_116 Incorrect Incorrect Incorrect
Closure_120 Incorrect Incorrect Incorrect
Closure_124 Incorrect Incorrect Incorrect
Closure_130 Incorrect Incorrect Incorrect
Closure_121 Incorrect Incorrect Incorrect
Mockito_38 Incorrect Incorrect Incorrect

Angelix Lang_30 Incorrect Incorrect Incorrect

CVC4 Lang_30 Incorrect Incorrect Incorrect

Enum Lang_30 Incorrect Incorrect Incorrect
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Figure 6.7: Participant completion time for the 51 unique patches labelled by
DiffTGen’s and Randoop’s ITSs as incorrect versus that for other patches.

Finally, we want to investigate the difficulty of judging correctness of patches

that DiffTGen and Randoop generated ITSs label as incorrect. To do so, we

compare participant completion time for the set of 51 unique patches and the

set of other patches. Figure 6.7 shows time spent by participants labelling these

two sets of patches. We find that they are more or less the same. Wilcoxon

signed-rank test confirms that the difference is not statistically significant.

Thus, patches that ITS successfully label as incorrect are not necessarily the

ones that participants require more time to manually label.

6.6 Discussion

In this section, we first provide implications of our findings. We then discuss

our post-study survey, in which we asked a number of independent annotators

for rationales behind their patch correctness judgements.

6.6.1 Implications

To recap, we have gained insights into the reliability of patch correctness as-

sessment by authors and by automatically generated independent test suite

(ITS); each of them has their own advantages and disadvantages. Based on

these insights, we provide several implications as follows.
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Authors’ evaluation of patch correctness should be made publicly avail-

able to the community.

Liu et al., Martinez et al., and Le et al. released their patch correctness

labels publicly [56, 62, 46], which we are grateful for. We believe that consider-

able effort has been made by authors to ensure the quality of the labels. Still,

we notice that for slightly more than 10% of the patches, authors’ labels are

different from the ones produced by multiple independent annotators. Thus,

we encourage future APR paper authors to release their datasets for public

inspection. The public (including independent annotators) can then provide

inputs on the labels and possibly update labels that may have been incorrectly

assigned. Our findings here (e.g., author annotations are fairly reliable) may

not generalize to patches labelled by authors which have not been released

publicly. It is possible that the quality of correctness labels for those patches

(which are not made publicly available) to be lower. Also, as criticized by

Monperrus et al. [67], the conclusiveness of the evaluation of techniques that

keep patches and their correctness labels private is questionable.

Collaborative effort is needed to distribute the expensive cost of APR

evaluation.

In this study, we have evaluated correctness of 189 automatically generated

patches by involving independent annotators. We have shown that the quality

of the resultant labels (measured using inter-rater reliability) are on par with

high-quality text retrieval benchmarks [16]. Unfortunately, evaluation using

independent annotators is expensive. To evaluate 189 patches, we need to get

35 professional developers; Each agrees to spend up to an hour of their time.

This process may not be scalable especially considering the large number of

new APR techniques that are released in the literature year by year. Thus,

there is a need for a more collaborative effort to distribute the cost of APR

evaluation. One possibility is to organize a competition involving impartial
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double r = correlationMatrix.getEntry(i, j);3

} else {2

+               out[i][j] = 2 * tDistribution.cumulativeProbability(-t);5

- out[i][j] = 2 * (1 - tDistribution.cumulativeProbability(t));

}7

@@ -168,7 +168,7 @@ public class PearsonsCorrelation {1

double t = Math.abs(r * Math.sqrt((nObs - 2)/(1 - r * r)));4

6

double corr = correlation(matrix.getColumn(i), matrix.getColumn(j));3

for (int j = 0; j < i; j++) {2

+             if(1 - nVars < -1)5

outMatrix.setEntry(j, i, corr);

}7

@@ -190,6 +190,7 @@1

outMatrix.setEntry(i, j, corr);4

6

(a) Human Patch

(b) Generated Patch

Figure 6.8: A machine-generated patch labeled by ITS as incorrect but labeled
by author annotation as unknown.

industrial data owners (e.g., software development houses willing to share some

of their closed bugs) who are willing to judge correctness of generated patches.

Similar competitions with industrial data owners have been held to advance

various fields such as forecasting8 and fraud detection9.

Independent test suite (ITS) alone should not be used to evaluate the

effectiveness of APR.

Independent test suites (ITSs) generated by DiffTGen [94] and Ran-

doop [71] have been shown to be ineffective in annotating correctness labels

for patches (see Section 6.5). Only fewer than a fifth of the incorrect patches

are identified as such by ITSs generated by DiffTGen and Randoop. Based

on effectiveness of state-of-the-art test generation tool for automatic repair

that we assessed in this study, we believe that ITS alone should not be used

for fully automated patch labeling. The subject of ITS generation for program

repair is new though and we encourage future studies to improve the qual-

ity of automatic test generation tools so that more incorrect patches can be

detected. That being said, automated patch annotation may not be a silver

bullet; the general problem of patch correctness assessment (judging the equiv-
8http://www.cikm2017.org/CIKM_AnalytiCup_task1.html
9http://research.larc.smu.edu.sg/fdma2012/
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alence of developer patch and automatically generated patch) is a variant of

program equivalence problem which has been proven to be undecidable with

no algorithmic solution [80].

Independent test suite, despite being less effective, can be used to aug-

ment author annotation.

It has been shown in Section 6.5 that ITS generated by DiffTGen and

Randoop identified four patches as incorrect whereas the labels generated

by author annotation are unknown and correct. An example of such patch is

shown in Figure 6.8. From the figure, we can notice that it is hard to judge

whether the patch is correct or incorrect. From this finding, we believe that

ITS, despite being less effective than author annotation in identifying correct

patches, can be used to augment author annotation by helping to resolve at

least some of the ambiguous cases. Authors can possibly run DiffTGen and

Randoop to identify clear cases of incorrect patches; the remaining cases can

then be manually judged. The use of both author and automated annota-

tion via ITS generation can more closely approximate multiple independent

annotators’ labels while requiring less cost.

6.6.2 Post-Study Survey

We conducted a post-study survey to investigate why a developer chooses a

different answer from the majority. Among the 189 patches, there are several

patches where the majority, but not all participants, agree on patch correctness.

Among participants annotating these patches, we selected 11 who answered

differently from the majority and emailed them to get deeper insights into

their judgments. In our email, we provided a link to the same web interface

used in our user study to allow participants to revisit their decision for the

patch in question. Notice that we did not inform the participants that their

answers were different from the majority. We received replies from 8 out of
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the 11 participants (72.7% response rate).

We found that 5 out of 8 developers changed their correctness labels after

they looked into the patch again; their revised labels thus became consistent

with the labels that the majority agree. The remaining three kept their correct-

ness labels; two judged two different patches as incorrect (while the majority

labels are correct) while another judged a patch as correct (while the majority

label is incorrect). These participants kept their decision for different reasons;

one was unsure of a complex expression involved in the patch, another high-

lighted a minor difference that may be considered ignorable by others, and

the other participant viewed the generated and ground truth patch to have

similar intentions. An excerpt of the patch in question for the last mentioned

participant is shown in Figure 6.9.

+                    return escapeJavaStyleString(str, false, false);3

public static String escapeJava(String str) {2

}5

……

8

break;9

10

+                                    if (escapeForwardSlash) {11

out.write('\\');12

+ }13

out.write('/');14

break;15

default;16

@@ -242,9 +241,7 @@ public class StringEscapeUtils {7

@@ -83,7 +83,7 @@ public class StringEscapeUtils {1

- return escapeJavaStyleString(str, false);

out.write('\\');

case '/' :

4

6

out.write('\\');3

out.write('\\');8

case ‘\\' :2

+                                    if(escapeSingleQuote)5

break;6

case '/' :7

@@ -239,6 +239,7 @@1

out.write('\\');4

(a) Human Patch

(b) Generated Patch

Figure 6.9: An example of a patch in post-study
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6.7 Conclusion and Future Work

In this chapter, to assess reliability of existing patch correctness assessment

methods, we conducted a user study with 35 professional developers to con-

struct a gold set of correctness labels for 189 patches generated by different

APR techniques. By measuring inter-rater agreement (which was found to be

substantial and on par with other high-quality benchmarks), we validated the

quality of annotation labels in our gold set. We then compare our gold set

with labels produced by authors (i.e., Liu et al. [56], Martinez et al. [62], and

Le et al. [46]) and independent test suites generated by DiffTGen [94] and

Randoop [71], and report their strengths and deficiencies. In particular, we

find that a majority (88.8-89.0%) of patch correctness labels generated by au-

thors match those produced by independent annotators. On the other hand,

only fewer than a fifth of incorrect patches can be labelled by independent test

suites (ITSs) generated by DiffTGen and Randoop as such. DiffTGen

and Randoop can however generate ITSs that can uncover multiple incor-

rect patches that are labeled as “unknown” or “correct” by authors. Based on

our findings, we recommend that APR authors release their patch correctness

labels for public inspection. We also encourage more collaborative effort to

distribute the expensive cost of APR evaluation especially through user stud-

ies like ours. We also stressed that ITS alone should not be used to fully judge

patch correctness labels; still, they can be used in conjunction with author an-

notation to help the latter produce labels that can more closely approximate

independent annotators’ labels.

In the future, we plan to expand our gold set by recruiting more profes-

sional developers and collecting more patches generated by additional APR

techniques through a large-scale collaborative effort among APR researchers.

We also plan to explore the possibility of organizing competitions with indus-

trial data owners (e.g., with our two industrial partners whose developers have

participated in this study) for further APR research.
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Dissertation’s Conclusion &

Future Plans

Motivation of this dissertation: Bug fixing is time-consuming and costly.

Hence, automated program repair (APR) techniques that can relieve the bur-

den on human developers in bug fixing would be of tremendous value. Substan-

tial recent works have been proposed to automatically repair variety of bugs

in many real-world large software, gradually materializing the futuristic idea

of APR. These APR techniques, despite varying in the ways they search for

repairs, commonly rely on test cases to guide the repair process and validate

machine-generated patches. The reliance on test cases is, in fact, problematic

to research in APR since test cases are known to be incomplete, in a sense

that they often insufficiently encode desired behaviors of software. This could

lead APR techniques to generate patches that overfit to the test cases used

for repair, but do not necessarily generalize to expected behavior that devel-

opers would expect. To overcome the mentioned problem – often regarded as

patch overfitting, APR techniques must address the followings: (1) maintain-

ing both scalability and tractability, in which APR techniques must cheaply

scale to large, real-world programs, while being able to tackle the large search

space for repairs for those programs to find correct repairs, (2) enhancing ex-
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pressive power to correctly fix many more real bugs from diverse real-world

programs (3) methodologies to validate machine-generated patches.

Accomplishment of this dissertation: This dissertation tackles the above

challenges posed by the overfitting problem by (1) proposing new search- and

semantics-based APR techniques that are capable of generating generalizable

repairs, (2) empirically studying the overfitting issue in semantics-based APR,

complementing existing study on the search-based counterparts, and (3) em-

pirically evaluating the reliability of patch validation methodologies, providing

insightful guidelines on how machine-generated patches should be evaluated. In

particular, we proposed HDRepair – a search-based APR technique that lever-

ages the development history of many software to guide and drive the repair

process. We empirically study various characteristics of different semantics-

based APR techniques, showing that APR techniques are indeed subject to

overfitting at various degrees. We subsequently proposed S3 – a semantics-

based APR technique that systematically constrains the syntactic search space

for repairs and effectively ranks solutions to find correct repairs. Finally, we

study the reliability of existing popular patch validation methodologies, and

provide several guidelines and insights on how APR-generated patches should

be evaluated.

Threats to validity: This dissertation used a few benchmarks to perform

evaluations of program repair tools, including IntroClass [53], Defects4J [34],

and S3’s dataset [46]. These benchmarks contain either small programs (Intro-

Class), or small number of real bugs (fewer than 200 bugs). This poses threats

to the generalizability of findings reported in this dissertation.

Future work: There are several future directions for this dissertation, includ-

ing (1) more detailed study on characterizing overfitting behaviors of semantics-

based repair, (2) consideration of developer intentions via partial specifications,

and (3) creation of datasets that better benefit the APR community. First, a

further study on why whitebox tests are worse/better than blackbox tests in
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helping APR mitigate overfitting would be useful. It would help characterize

which tests are more important for APR, suggesting potentially better ways for

APR to traverse the search space when using tests, e.g., a patch passing more

tests that are important could be more likely to be correct. Second, devel-

opers often express their intentions via partial specifications, e.g., assertions.

A repair technique that takes these intentions into consideration to generate

generalizable repairs could be of tremendous value. Third, datasets specialized

for APR are needed for better assessment of APR techniques. For example, a

dataset with a large number of bugs (e.g., thousands of bugs), covering various

bug patterns that happen in practice would help systematically characterize

strengths and weaknesses of different APR techniques.

Other future directions include a plan to improve both search- and semantics-

based APR further to better tackle the overfitting problem. It would also be

interesting to find ways to leverage the best of both APR families, e.g., merging

search- and semantics-based APR to be more expressive. Also, applications of

modern machine learning techniques into APR to leverage the large amount of

historical data existing in public code repositories would also be interesting.
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