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Learning latent characteristics of locations

using Location-based Social Networking Data

by

Thanh-Nam Doan

Abstract

This dissertation addresses the modeling of latent characteristics of locations

to describe the mobility of users of location-based social networking platforms.

With many users signing up location-based social networking platforms to

share their daily activities, these platforms become a gold mine for researchers

to study human visitation behavior and location characteristics. Modeling

such visitation behavior and location characteristics can benefit many use-

ful applications such as urban planning and location-aware recommender sys-

tems. In this dissertation, we focus on modeling two latent characteristics of

locations, namely area attraction and neighborhood competition effects using

location-based social network data. Our literature survey reveals that previous

researchers did not pay enough attention to area attraction and neighborhood

competition effects. Area attraction refers to the ability of an area with mul-

tiple venues to collectively attract check-ins from users, while neighborhood

competition represents the need for a venue to compete with its neighbors in

the same area for getting check-ins from users.

In this dissertation, we firstly gather the location-based social networking

data generated by Foursquare users from two big cities in Southeast Asia: Sin-

gapore and Jakarta. To generalize our findings, we also employ the Gowalla

data of users from New York City. We then embark on a data science study of

area attraction, neighborhood competition, and other user and location related

effects including spatial homophily, social homophily, distance effects. Since

the interaction between users and locations is a complex process involving mul-



tiple effects, we propose several novel models that incorporate latent location

and social factors in the generation of users’ visitation. These models utilize a

range of different techniques, including PageRank, Bayesian reasoning, matrix

factorization, and neural networks. Each model is evaluated through extensive

experiments and the results show that neighborhood competition and area at-

traction effects contribute to more accurate modeling and prediction of users’

visitation to locations.
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Chapter 1

Introduction

1.1 Motivation

The popularity of smartphones and wearable devices in recent years has pro-

pelled the growth of location based social networking (LBSN) sites where users

publish and share their visits (or check-ins) to different venues. For example,

Foursquare is used by 50 millions users each month and it covers more than

65 million venues around the world. These users have generated 8 billion

check-ins worldwide 1. The check-in feature does not exist on LBSN sites only.

Many major online social networking sites also adopt this feature to enrich

their social interaction. For instance, Facebook Places is a new feature which

allows Facebook users to share visited locations in their timelines. Similarly,

Twitter’s users can associate their tweets with geo-locations.

With so much of data generated by LBSN and social media users, they

provide unprecedented opportunities for researchers to study the visitation

patterns of users and interaction between users and locations. These data

also capture various effects of user visitation behavior which can be attributed

to several latent location and user factors. It is this kind of datasets cover-

ing granular level user and venue activity data that allow new models to be

developed and evaluated.

1https://foursquare.com/about - April 2017

1



CHAPTER 1. INTRODUCTION

The data observed at LBSN sites record several types of user behaviors as

shown in Table 1.1. The table shows that users are offered a wide range of

actions in LBSNs. Users can perform online check-ins on locations in LBSNs

when they visit them. The behavior of users making friends or following one

another is called social networking. Users can express their opinions by writing

reviews on venues or rating them. These are known as the reviewing and rating

behaviors respectively. Finally, LBSN sites support media sharing behaviors

as users upload photos or videos and share with friends. Some LBSN sites like

Foursquare create games when users visit locations multiple times (e.g. gaming

behavior). Since the activity of users in LBSNs is multi-modal, LBSN datasets

are a great resource for researchers to study behavior of users particularly their

interaction with locations.

Table 1.1: Common behaviors of users in LBSNs.

Behavior type Description

Checking in Users’ declaration of visits to locations
Social Networking Users’ connection with other users by following

and befriending them
Reviewing Users writing reviews on venues
Rating Users’ rating on venues
Media Sharing Uploading of photos/videos
Gaming Earning of badges/awards

Analyzing LBSN information not only gives us insights of user behavioral

patterns, but also reveals interesting characteristics of locations which benefit

several applications [94, 77, 18, 79, 81, 37, 16] such as urban planning, loca-

tion recommendation and customer relationship management. Urban planners

could identify popular areas or locations before building new roads or new sub-

way stations. Smartphone apps could recommend some restaurants or venues

around a user’s location by aggregating reviews from LBSNs. Business venue

owners can benefit by receiving feedback from their customers via LBSNs.

With LBSNs, the owners could monitor customer feedback in real time and

even engage them proactively.

2
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Although there are many research works [14, 4, 11] studying check-in behav-

iors of users in LBSNs, they focus on user behavior under the effects of spatial

homophily [35, 60], social homophily [51, 52] and distance effect [54, 14, 84].

Spatial homophily suggests that users(or venues) that are nearby one another

are likely to be similar in their check-in venues(or users); while social homophily

states that users and their friends share more common venue preference than

between the users and the other strangers. The general idea of distance ef-

fect is that users are likely to visit venues nearby their home locations rather

than venues farther away from their home locations. However, there are other

important effects which are not widely studied but have significant influence

on users’ visitation. Neighborhood competition effect is one of these effects.

Neighborhood competition assumes that each venue has to compete with its

neighbors in the same area for check-ins. In other words, neighborhood com-

petition of venues could be viewed as a race among nearby venues to attract

visitors. It is an important effect because user time and attention are limited

but inside one neighborhood, there are a lot of venues for users to perform

visitation. For this reason, users usually focus on the best venue to visit so

inside one cluster, venues must compete with surrounding others to gain the

attention of users. For example, shopping malls nearby each other are expected

to fight for their shares of customer visits.

Another effect which is not well studied in previous works is area attraction.

This effect is based on the principle of “The whole is greater than the sum of

its parts”. Area attraction suggests that the total number of visits to an area

is larger than the sum of visits each venue in the area can individually attract.

In other words, users visit a venue in an area not only because of this venue

alone but also the surrounding area that includes other neighboring venues.

For example, the McDonald branches in downtown area attract more users’

visitation than the ones in farther away areas despite their similar quality.

This suggests that downtown area is more attractive to users than the farther
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away ones. Previous works such as Karamshuk et. al. [40] measured the

attractiveness of an area by the number of visitation of users. However, using

check-in popularity is not an accurate method to capture area attraction effect.

For instance, one area has large number of check-ins but most of check-ins is

concentrated into one venue, and a few check-ins on other venues. We cannot

conclude that the area is attractive despite of its huge volume of visitations.

Modeling area attraction as well as measuring area attractiveness could help

business owners to understand the attraction of their business areas. Therefore,

these owners could develop suitable strategies to increase visits to their business

venues. For instance, the business owners in the same area may together

advertise to lure more customers. Another application is to aid urban planners

to decide which areas to redevelop so as to improve the spread of commercial

opportunities across a city.

1.2 Research Objectives

In this dissertation, we therefore aim to (i) use data science study to illustrate

the different effects (with special focus on neighborhood competition and area

attraction) of user behavior as they perform check-ins in LBSNs; (ii) iden-

tify and learn the latent factors relevant to these effects as we model the user

check-in behavior, and (iii) apply our proposed models to real datasets so as

to evaluate their performance. The first objective is covered by our empirical

research while the latter two objectives are achieved by research on model-

ing latent user and venue attributes that are related to these effects. In the

following, we cover the two topics in Sections 1.2.1 and 1.2.2.

1.2.1 Empirical Research

There are many empirical studies [51, 52, 14, 54] on LBSN data to study

the different behavioral effects on check-in activities. To conduct empirical
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research, we crawl the check-in data of specific cities since our research study

requires all public detailed data of users living in a city. However, to ensure the

robustness of our findings, we also use another dataset available to researchers

to verify our empirical findings.

Since the dissertation focuses on the two effects namely neighborhood com-

petition and area attraction, we would like to design empirical analyses to

illustrate these effects using LBSN datasets. There are several issues to ad-

dress prior the analyses. First of all, the two effects do not receive enough

attention from researchers, and there are no well established studies on them.

There is a lack of formal definitions and theories about them. Some previous

works [40, 59] used number of check-ins of locations and areas to represent

neighborhood competition and area attraction but as shown before, these two

effects cannot be modeled by popularity. As one of the first works, we need

to determine appropriate measures for showing the existence of these effects.

Secondly, check-ins made by users in LBSNs is a mixture of multiple effects

and the exact interaction among effects is still the open question. Hence, we

need to isolate neighborhood competition and area attraction from other effects

in our empirical analyses.

We also want to verify the earlier findings on other effects such as spatial

homophily or distance effect which involve home locations of users. Previously,

most works did not consider the use of actual user home location even when

it is an important component of these effects. Due to privacy concerns, many

users do not want to reveal their exact home locations. In the absence of actual

user home location, some previous works [54, 4] used high-level locations (e.g.

city level) as home locations of users and studied the effects at the coarse

granularity level. Others [51, 69, 14] resorted to estimating the home locations

of users. Specifically, Li et. al. [51] estimated home locations of users by

using recursive grid search method [13]. Qu et. al. [69] and Cho et. al. [14]

approximated home locations of users and then used them to study spatial
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homophily and distance effects as well as other features such as neighbors

of users. Coarse-grained home locations of users are not appropriate for our

empirical analysis of users within a city performing check-ins at the fine-grained

venue level. For this reason, we focus on analysis using the true home locations

of users. This marks the main difference between our works and other previous

ones analyzing spatial homophily and distance effects.

1.2.2 Modeling Latent Properties of Locations

We want to model the latent attributes relevant to neighborhood competition

and area attraction. We also aim to combine these latent attributes with those

relevant to distance effect and social/spatial homophily in the modeling of

check-in behavior of users. The first obstacle of this modeling research is a

lack of formal definitions of these effects. Thus, we need to define and for-

malize them clearly. Secondly, from the effects, we want to derive relevant

latent factors, determine their inter-relationships and incorporate them into

new models of check-in behavior. We need models that incorporate neighbor-

hood competition and area attraction effects as well as the more studied effects

such as distance effect. Furthermore, depending on the modeling approach,

i.e. Bayesian reasoning [54, 85], matrix factorization [27, 52, 53], different

model products can be developed. Finally, the research would not be com-

plete without evaluation. With an absence of ground truth data, we have to

consider task based evaluation, which involves a number of prediction tasks

including check-in prediction, home locations prediction and venue ranking.

Moreover, the evaluation has to cover the performance of the models under

different configuration settings.

Table 1.2 summarizes our proposed models and the set of effects consid-

ered by these models. First of all, we want to model neighborhood competi-

tion without using latent factors. We develop PageRank-based and Bayesian

models that incorporate the effect of neighborhood competition. Our proposed
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Table 1.2: The summary of technique and set of effects in each model.

Type of Model Chapter Model Effects

Models without 4 PageRank Neighborhood Competition
latent factors 5 Bayesian Reasoning - Neighborhood Competition

- Area Attraction
- Distance Effect

Models with 6 Bayesian Reasoning + - Neighborhood Competition
latent factors Matrix Factorization - Area Attraction

- Social Homophily
7 Matrix Factorization - Neighborhood Competition

- Spatial Homophily
- Social Homophily

8 Neural Network - Neighborhood Competition
- Area Attraction
- Social Homophily

Bayesian model is flexible enough to also include area attraction and distance

effect. Secondly, we study neighborhood competition considering latent factor.

Our first proposed latent factor model adopts matrix factorization to factorize

visitation of users to venues into user and venue latent factors. Our second

proposed latent factor model also adopts user and venue latent factors but it

considers the extrinsic factors of venues to enhance the model expressiveness.

The last model combines user and venue latent factors with user and venue

embedding vectors under the neural network framework to further improve the

prediction performance.

1.3 Contribution

Our contribution in this proposal could be summarized as follows:

Empirical Research:

� We have collected the Foursquare data in large scale via Twitter API.

Moreover, from the crawled data, we propose a method to identify the

exact home location of a subset of users. The home locations are venues

users tagged as homes and this venue level home location distinguishes

our work from other previous works which infer the approximate home

locations of users [14, 51, 69] or assume city level home locations [54, 4].
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� In our research on neighborhood competition, we conduct experiment

to illustrate the existence of neighborhood competition among venues.

This is one of the first studies on neighborhood competition. We pro-

pose grouping venues into areas as an appropriate way to measure the

neighborhood competitiveness of venues. To construct areas, we divide

an entire city into non-overlapping grid areas.

� Area attraction is another effect we formally define and study. In order

to reveal the attractiveness of areas, we examine the branches of fast

food chain within dense areas and sparse ones. Areas are constructed by

the same way as in the study of neighborhood competition and we then

measure the distance between users and fast food branches within areas.

From the result, we observe that dense areas attract users farther away

than sparse ones and it is a clear signal of area attraction. Therefore, the

finding clarifies the impact of area attraction effect to users’ visitation in

LBSNs.

� Using the exact home locations of users, we revisit other effects such as

social/spatial homophily and distance effect which have been conducted

in previous works. Therefore, we could verify the earlier findings at a

different granularity level.

To ensure the generalization of our analysis results, we apply the analysis

to public dataset to verify our finding. Since other analyses require home

location, the public dataset is employed on the research of social homophily

and neighborhood competition effects only.

Modeling Latent Properties of Locations:

We propose several models that utilize a wide range of techniques including

PageRank, Bayesian reasoning, matrix factorization, and neural network to

model the combination of effects in LBSNs. Since there are multiple effects

affecting check-in behavior of users, each model can handle a subset of effects.

8



CHAPTER 1. INTRODUCTION

� We start with PageRank to model neighborhood competition effect.

PageRank was originally designed to compute the importance of web-

sites based on directed links inside the pages [46]. To keep our model

simple, only neighborhood competition is considered in this case. We

formalize the competition of venues and their neighbors as a transition

graph. We then define a special PageRank model to score venues by their

global competitiveness. Our evaluation results empirically show that this

model produces competitiveness measures different from popularity mea-

sures.

� Next, we propose a Bayesian reasoning model called VAN to capture

the impact of a few effects including neighborhood competition, distance

effect and area attraction effects. It is one of the first work which models

the impact of neighborhood competition and area attraction on check-in

behavior. We show that VAN model is able to learn the home location

of users. VAN model also derives competitiveness of venues in LBSNs.

Last but not least, VAN model outperforms several baseline models in

check-in prediction task and home location prediction task.

� To avoid the home location assumption and to consider user preference in

venues, we develop a new model that improves over VAN by not requiring

user home locations to be known and by modeling user latent preference

using a matrix factorization modeling approach. Specifically, each user

or venue is represented by a latent feature vector and the check-in of a

user to a venue depends on three effects: preference matching of a user

and a venue, neighborhood competition and area attraction.

� In the next work, we model the effects of neighborhood competition, spa-

tial homophily and social homophily. We propose a new matrix factor-

ization based model named Extended Neighborhood Matrix Factoriza-

tion (EN MF). Besides the vector of intrinsic vector, each venue has the
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vector of extrinsic characteristic to model the competition with its neigh-

borhood to gain the attention of users. From our extensive experiments,

we observe that our model actually improves the performance of check-

in prediction task over baselines. Moreover, we also draw the conclusion

that neighborhood competition effect contributes more to the accuracy of

check-in prediction task than spatial homophily.

� To leverage on the predictive power of deep learning model approach [48,

30], we propose Preference And Context Embedding with Latent At-

tributes (PACELA) which is a neural framework for modeling check-in

behavior. Particularly, PACELA learns the embeddings space for the

user and venue data as well as the latent attributes of both users and

venues. We use a probabilistic matrix factorization-based technique to

infer user and venue latent attributes, considering the user visitation de-

cisions under the effect of area attraction, neighborhood competition, and

social homophily. PACELA also includes a deep learning neural network

to combine both embedding and latent features to predict if a user per-

forms check-in on a location. Our experiments on three different real

world datasets show that PACELA yields the best check-in prediction

accuracy against several baseline methods.

1.4 Dissertation Structure

The rest of this dissertation is divided as follows. Chapter 2 surveys previous

works which are related to my research. Chapter 3 introduces the datasets and

also their properties inside. Chapter 4 introduces a model to formalize the com-

petitiveness of venues by modifying PageRank model. Chapter 5 presents the

VAN model which captures the neighborhood competition, area attractiveness

and distance effect. The model is evaluated under three applications: home

location prediction, venues ranking and check-in prediction tasks. Chapter 6
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employs matrix factorization based model to improve the VAN model described

in Chapter 5. Chapter 7 presents another matrix factorization framework to

incorporate neighborhood competition, spatial homophily as well as social ho-

mophily. The next chapter 8 describes PACELA a neural framework to un-

derstand the check-in behavior of users in LBSNs. Lastly, Chapter 9 provides

the conclusion of the dissertation and the future direction research.
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Chapter 2

Related Works

In this chapter, we survey the works which study user check-in behavior under

a variety of behavioral effects as well as the associated models.

2.1 Modeling Latent Topics of Users and

Venues

Before the era of LBSNs, GPS data of human movement have been used by

researchers to study movement behaviors [96, 44, 61, 76, 45, 56, 92, 29]. GPS

data however do not reveal the venues users have visited. By capturing venue

information, LBSNs allow researchers to investigate venue properties and the

interaction between venues and users [58, 68, 89] thus leading to the develop-

ment of new models for check-in behavior. The visitation of users to venues

is an outcome of multiple effects to be introduced in Section 2.2. Three of

the simplest effects are user preference, venue preference and activity content

which only depend on the nature of users and venues respectively.

User topical preference: The topic preference of users in LBSNs refers

to the different tastes users have which guide them to visit some specific types

of locations. Scellato et. al. [74] assume that two users who make check-ins

into the same venues share common taste or preference. The likelihood of
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them contacting each other in the future is therefore higher than that between

two random users. The authors studied the above observation by extracting

some features such as the number and the fraction of common places between

two users. Bao et. al. [5] assumed that each user has different preference

for different types of locations. For example, food lovers are likely to focus

on restaurants while tourists will pay attention to sightseeing. Therefore, the

authors used data from LBSNs to infer the weight of each user to each type of

venues. In other words, the large value weight represents the high preference

of a particular user to a venue. Ye et. al. [88] predicted the next locations

of users by dividing the selection of users into two steps: (i) users select the

category of their next locations, (ii) then, they visit the locations based on

the estimated category distribution. The authors used Hidden Markov Model

(HMM) [2] to map the preferences of each user to categories and then his/her

venue choice to category.

Venue topics or types: The visitation of users to venues in LBSNs is

driven by not only user preference but also venue type. Different types of

venues attract different types of users. For this reason, Cranshaw et. al. [19]

used entropy to model the diversity of locations, and they further linked the

property to the social interaction at venues. Some previous works such as [12,

52, 51] considered venue preference as latent features so they apply matrix

factorization to user-venue check-in matrix to infer the venue preference. Hu

el. al. [34] adopted Latent Dirichlet Allocation (LDA) [8] to understand the

venue preference. Specifically, the authors considered each venue as a document

and the tags associated to a venue as its words. Then, they applied LDA to

understand the topic distribution of each venue. Li et. al. [55] conducted the

large scale analysis of venues in Foursquare to get the insight of popularity

and venues’ properties. One interesting finding from their work is that a venue

is likely to attract users if it has enough information (e.g. name, category)

available on LBSNs.
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Content-driven methods: As mentioned in Chapter 1, users can gen-

erate activity contents such as tips, ratings and photos for venues in LBSNs.

Although not all venues have contents from users, they still contribute an

important dimension to study venues since they express users’ opinion. For

example, a user could check-in to a venue but it does not mean he/she likes

this venue since his/her review is bad [15]. Yang et. al. [87] and Gao et. al. [27]

included the sentiment analysis to matrix factorization technique to strengthen

the performance of their model to predict check-ins between users and venues.

Hu et. al. [34] modified Latent Dirichlet Allocation (LDA) model [8] to han-

dle content of users for point-of-interest recommendation. Pontes et. al. [67]

explored tips, dones, and mayorships of Foursquare users. These features are

offered by Foursquare as the rewards for users if they share their visits fre-

quently enough. According to this paper, the activity of users is at the same

city-level with their home locations. Other papers [32, 1, 31, 39, 93, 17] pro-

posed probabilistic graphical models to incorporate the content of locations

with their regions. Their purposes are to model the human check-in behavior

as well as predicting users’ locations.

2.2 Taxonomy of Effects in Location-based So-

cial Networks

There are three effects of users’ visitation which are widely studied in LBSN:

spatial homophily, social homophily and distance effect. Moreover, we also

mention neighborhood competition and area attraction effects which are rarely

used in understanding users’ visitation. Table 2.1 classifies previous works by

the combinations of effects they consider in the model development. Partic-

ularly, each cell of Table 2.1 contains works which combine the effects in the

vertical and horizontal axis. Some works only use one effect so they are in cells

whose vertical axis is similar to horizontal axis. To the best of our knowledge,
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Table 2.1: Taxonomy of effects in Location based social networks.

Spatial Homophily Social Distance Effect Neighborhood
Venue Aspect User Aspect Homophily User Preference Venue Influence Competition

Hu et. al. [35]

Liu et. al. [60]

Le Falher et. al. [47]

Gao et. al. [28]

Li et. al. [51]

Backstrom et. al. [4]

Li et. al. [52]

Cheng et. al. [12]

Cho et. al. [14]

Noulas et. al. [63]

Ye et. al. [91]

Chang et. al. [11]

Ye et. al. [90]

Qu et. al. [69]

Tasse et. al. [78]

Li et. al. [54]

Huff [36]

Liu et. al. [59]

there are no previous works related to area attraction effects so Table 2.1 does

not contain any works for this effect.

2.2.1 Distance Effect

The traveling distances of users are limited and hence users tend to visit nearby

venues rather than farther ones. There are two factors inside this effect: User

Preference and Venue Influence. Formally, User Preference represents the

preferred distance between users and their check-in venues as well as their

preferred venue types. The latter, Venue Influence, models the selection of

users under the consequence of distance between users and venues and influence

of venues.

Chang et. al. [11] plotted the distribution of check-ins corresponding to

several factors like gender of users, temporal information of check-ins using

Facebook Places data. They derived multiple features from profile of users

(gender of users) or their friends (number of check-ins of friends) or place

latent topics using latent Dirichlet allocation(LDA) model [8]. The authors

then evaluated their proposed method based on linear regression to predict

the check-ins of users to venues. According to their result, distance between
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users and venues contributes significantly to the prediction.

Ye et. al. [90] showed that 87.7% of friends in their LBSN data share

nothing in common and concluded not all social connection contributes to

users’ check-in behavior. They also showed that if a user and his friends

live nearby, they are likely to share more commonly visited venues. Based on

these observations, they used linear regression to predict the check-ins between

users and venues based on the assumption that nearby friends will affect the

venue choices of users rather than faraway friends. Moreover, the power law

distribution is used to model the probability of users’ making check-ins to

venues according to the distance between them. Their experiment showed

that using spatio-social homophily could lead to accurate check-in prediction

between users and venues in LBSNs.

To study the distance effect, there are research works that recover users’

home locations from their check-ins. Tasse et. al. [78] performed clustering [25]

and recursive grid search [13] on a user’s tweets generated during the nights to

predict the home locations of users. To evaluate their home location prediction

methods, they conducted a small scale user study to obtain user locations and

their Foursquare check-ins.

In the work by Li et. al. [54] which modeled the influence of venues on

user check-ins, distance effect has been used to derive the degree of influence

of a venue has on users living at different distances away. Specifically, each

venue is associated with a Gaussian distribution whose mean is the venue’s

location and the variance represents its influence. The higher the variance,

the more attractive the venue is to the users but this attractiveness decreases

with increasing distance between users and the venue. For modeling the so-

cial/spatial homophily, they used the same assumption with Backstrom et.

al. [4] (i.e. users live near to their friends) but they generalized for directional

relationship in social networks. However, they also included the new assump-

tion that users in social network mention venues near to their home location.
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The more a user mentions a venue, the more likely this venue is close to the

home location of the user. Consequently, they associate each user in LBSN

to a Gaussian distribution whose mean is user’s location and variance is the

influence scope of the user. The higher the variance, the higher influence of

user is. From that model, they could infer the home location of users at city

level instead of precise location. The other applications of their model are that

they could rank venues and users based on the influence to other users inside

LBSNs.

Huff [36] used distance effect when he modeled the attractiveness of venues.

In his model, both a venue area size and travel distance made by its visitors

are the two main variables to derive the venue attraction. He assumed that the

size of a shopping mall represents its influence on users’ selection. His work has

some limitations: the size of shopping malls and distance between users and

shopping malls are not available in LBSN data. Qu et. al. [69] generalizes the

work of Huff [36] by using multiple clusters to model the movement of users.

Firstly, they replaced time driving distance by the actual distance between

users and venues. Moreover, it is the first work which applied Trade Area

Analysis (TAA) [36] to location data of users. Furthermore, they also measured

the users’ preference missing from the Huff’s model.

2.2.2 Social Homophily

Similar to other social networks, LBSNs allow users to have social connection

with others. In the context of LBSNs, social homophily refers to users who are

socially connected and are expected to visit similar venues.

Besides modeling impact of the users’ friends to the check-in of users, Li

et. al. [52] considers the check-ins of two hop away friends to users’ check-ins.

The authors assumed that check-in between a user and a venue is influenced

under two factors (i) distance between a user and a venue, and (ii) the influence

of his/her friends and his/her friends of friends (two hop away friends). The
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former is modeled by power law distribution while the latter contains two

assumptions (i) distance between two users, and (ii) the impact of friends

and two hop away friends. The authors used power law distribution for the

first assumption and matrix factorization for the second one. Specifically,

they construct user-user matrix whose each cell Tij indicates the preference

propagated from user j to user i. The observed value of Tij represents the

frequency that user i repeats the check-ins of his friends j. Tij is computed by

the convex combination of direct influence of friend j to user i and influence

of friends of user j to user i.

Cheng et. al. [12] modeled social homophily using matrix factorization.

Their analysis showed that less than 10% of a user’s check-ins is visited by

his/her friends. Thus, the social relationship does not contribute much to

users’ visitation but this effect should not be excluded from the modeling users’

check-ins. Since a user and his/her friends share some common preference so

the latent vectors of a user and the ones of his/her friends should be similar.

Therefore, social homophily is incorporated as a regularization term of matrix

factorization technique. As users spend most of their time around multiple

activity centers such as work and home, the authors developed multiple matrix

factorization models combined with multiple regularization terms to capture

social homophily.

Cho et. al. [14] used social homophily as well as the periodic movement of

users to predict check-ins between users and venues. They proposed a model

which captures the two-state behavior of users. First of all, they inferred the

home location of each user using grid search [73]. They assumed the check-ins

follow power law distribution over the distance from his home to the visited

locations. The authors also illustrated the relation between users’ mobility and

their friendship. The final part of their empirical work showed the temporal

and geographic periodicity of users’ movement behavior. From the observation

that users perform a check-in in the home or work cluster depending on time of

18



CHAPTER 2. RELATED WORKS

the day, they proposed Periodic Mobility Model(PMM) and its variant Periodic

& Social Mobility Model(PSMM) which considers social network information.

Their models could predict the exact home and work locations of users but the

home is selected based on the time of check-ins inside the home cluster.

Similar to Cho et. al. [14], Noulas et. al. [63] also took advantage of social

homophily and distance effect from users to venues to model check-in behavior

of users in LBSNs. They evaluate their model by predicting the next check-

ins of users. Their methods are based on linear ridge regression [6] and M5

decision tree [70].

Ye et. al. [91] used data from Foursquare and Whrrl to study the visitation

of users to venues under the impact of social homophily, distance effect and

user preference. The authors argued that users and their friends have similar

behavior that leads to correlated check-in behaviors. To model the impact of

social homophily, they proposed two methods (i) social influence weight, and

(ii) random walk with restart (RWR) [80]. The social influence weight of a user

i and one of his friends v is formalized by the convex combination of (1) Jaccard

similarity score between friend set of i and v and (2) Jaccard similarity score

of check-in venues between i and v. In RWR, one constructs a graph where

each node is a user and each edge between node i and node v is weighted by

the similarity interaction of the two users. The stationary probability of node

i given a starting node k denotes the social influence weight of user k to user

i. The authors modeled distance effect as a power law distribution of distance

from users to check-in venues. They then combined all features together to

derive the probability of user i performing a check-in to venue j.

2.2.3 Spatial Homophily

Spatial homophily exists in two aspects: venue aspect and user aspect. In the

user aspect, users are likely to be similar to others living nearby. As users

and their neighbors share similar preference, they perform check-ins to similar
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venues. The venue aspect of spatial homophily says that venues that are near

one another share more common features (e.g. visitors, rating) rather than

between two venues that are far from each other.

Backstrom et. al. [4] studied spatial homophily in LBSNs using the Face-

book Places of US users with known home city of users and their social con-

nections. From this dataset, they showed that the probability of friendship

between two users follows the power law distribution. The authors combined

social and spatial homophily by assuming that users live near to their friends.

Therefore, they proposed a statistical model to make use the information of

home location of friends to infer home location of users.

Hu et. al. [35] considered venue aspect spatial homophily in their empirical

analysis research on Yelp data. They found that most venues have neigh-

bors with short distance; the average rating of a business is weakly positively

correlated with those of its neighbors; and this correlation is independent of

the categories of venues and their neighbors. Then, they proposed a matrix

factorization approach to predict the number of check-ins between users and

venues and developed four models each considering a different set of features:

neighborhood influence, review content, category influence and popularity and

geo-distance influence. Only the last model incorporates distance effect.

Le Falher et. al. [47] also considered venue aspect spatial homophily but

they generalized this idea for neighborhood in cities. Their experiment showed

that set of venues that are geographically close to each other could be grouped

as a neighborhood because of their feature similarity. They evaluated their

idea by finding the top-k similar neighborhoods in other cities given a neigh-

borhood in one city. They found that using Earth Mover’s Distance (EMD) [72]

outperformed other measures in searching similar neighborhoods.

Liu et. al. [60] included venue influence of distance effect in their study

of users’ check-ins. From Gowalla dataset, they found that (i) a venue and

its nearest neighbors tend to have more common users, and (ii) venues inside
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the same region attract users with similar preferences. Therefore, the authors

study the similarity between two venues at two different levels: instance- and

region- levels using matrix factorization. The former refers to the similar-

ity between venues and their neighbors while the latter studies the influence

of venues in the same region. In their experiment, they also use multiple

methods to construct regions and find out that no matter which method they

use, the incorporation of region-level similarity always outperforms baselines.

This result underscores the crucial impact of regional information in predicting

check-ins.

Gao et. al. [28] proposed the gSCorr model for check-in data by combining

social homophily with the user aspect of spatial homophily. This model assumes

that users’ check-in behavior is affected by distance between users and other

users; time of check-in and social influence. Specifically, they divided geo-

social correlations into four groups: local/distant friends, and local/distant

non-friends. They showed that there is a positive correlation between the

number of new check-ins and the percentage of new venues that have been

checked-in by users from each group. The authors also observed that neighbor

information of users improves the check-in prediction accuracy since users and

their neighbors share more common activities. The drawback of this work is

that it did not consider the competition of venues and also venues grouped

into areas.

Li et. al. [51] classified three types of friends: social friends, neighbor-

ing friends and location friends. The authors illustrated the impact of these

kinds of friends to check-in behavior of users. Based on the check-ins of these

types of friends, the authors select the potential candidate venues used matrix

factorization approach to predict the check-ins of users.
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2.2.4 Neighborhood Competition

Venues need to compete with their nearby ones in order to attract the visita-

tion of users. From our survey, neighborhood competition effect has not gained

much attention of researchers despite of its importance in modeling check-in

behavior. Liu et. al. [59] incorporated the competition effect by deriving the

popularity score of each venue which represents the competition of the venue

with its surrounding neighbors. The authors assumed that the probability of

observing check-ins between user i and venue j is proportional to the distance

between user i and venue j, popularity of venue j, and the interest of user

i to venue j. To explore the interest between users and venues, the authors

adopted Latent Dirichlet Allocation model [8] and Bayesian Non-negative Ma-

trix Factorization [75] to study the preferences of users and venues.
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Empirical Analysis

In this chapter, we conduct empirical analysis on LBSN datasets to study

various behavioral effects to check-in activities. We first describe the datasets,

and their construction. We then describe how the exact home locations of

users are obtained for the purpose of studying distance effect and user-aspect

spatial homophily. This is followed by analysis of different behavioral effects.

3.1 Dataset Statistics

To study behavioral effects on check-ins at the venue level, we need datasets

that cover all check-ins on all venues within a geographic region by a set of

users. We choose to analyze check-in data generated within one city to avoid

issues related to movement across cities. There are not many publicly available

datasets that meet these criteria. We therefore crawled a Foursquare dataset

that consists of 1.11 millions check-ins by Singapore users who publish their

check-ins in public Twitter stream between August 15, 2012 and June 3, 2013.

As shown in Table 3.1, this dataset (denoted as SG) consists of 55,891 users

and 75,346 venues. These users declare Singapore to be their profile location.

We also crawled another set of Foursquare data generated by Indonesian

users from July 2014 to May 2015 with 575,298 check-ins by 51,658 users on
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Table 3.1: Dataset Statistics

SG H SG JK H JK NYC

# users 55,891 856 14,974 455 7,092
# venues 75,346 12,020 38,183 4,380 21,287
# check-in’s 1.11M 63,777 119,618 9,557 138,067
# user-venue pairs 541,588 28,298 81,188 5,422 102,960
with > 0 check-ins
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Figure 3.1: Distribution of check-ins over venues and users in SG, JK and
NYC datasets.

216,847 venues 1. These users declare Jakarta in their profile location. We

further selected a subset of check-ins in Jakarta, the largest city in Indonesia.

The statistics of this dataset (denoted as JK) is shown in Table 3.1. In the

JK dataset, there are 119,618 check-ins performed by 14,974 users on 38,183

venues.

For more extensive evaluation, we also include the publicly available

Gowalla 2 dataset [14]. The dataset contains all check-ins from February 2009

to October 2010. Since we only focus on check-ins within a city, we select

check-ins of venues from New York City and denote them as NYC. As shown

in Table 3.1, despite of having smaller number of users and venues, NYC

still has more check-ins than JK. In other words, NYC is denser than JK.

1The dataset spans from 2 Aug 2011 to 13 May 2015 but there are only 99 check-ins
from 2 August 2011 to end of June 2014 so we filter out this period.

2Gowalla is the location-based social network launched from 2007. It was reported to
have 600,000 users on November 2010. After being acquired by Facebook on December 2011,
it was closed in the beginning of 2012.
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Moreover, NYC is also denser than SG.

Figure 3.1 provides the log scale of distribution of check-ins over users

and venues in SG, JK and NYC datasets. All distributions have long tails

which suggest that check-in distributions of users and venues are very skewed.

In other words, very few users make large number of check-ins and very few

venues receive large number of check-ins, but vast number of users perform

one check-in only and vast number of venues receive only one check-ins.

3.2 Home Location Detection

Home location could influence a user’s check-in behavior as part of several

behavioral effects including distance effect and spatial homophily. For example,

due to distance effect, people may prefer to visit supermarkets, attend schools

and patronize fitness facilities in the home neighborhoods. If user-aspect of

spatial homophily holds, users from the same neighborhood may be strongly

correlated in their check-in behaviors. Unfortunately, SG, JK and NYC

datasets do not provide information about the users’ home locations required

for analyzing the above behavioral effects.

In this research, we therefore select a subset of users whose home locations

can be clearly identified using both their check-ins and check-in messages. Since

we do not have additional information about venues (e.g. name of venues,

reviews of users) in NYC, we cannot find the home location of users of NYC.

The following are the detailed steps to identify the home locations of users in

SG and JK datasets:

� We selected a subset of venues under the “home (private)” category which

is in turn a sub-category of the “residence” category. This “home (pri-

vate)” category is usually assigned to venues of home locations. In SG,

there are 8,447 venues satisfying this criteria and 74,944 check-ins at

these venues by 5,199 users. For JK, there are 7,800 checkins by 1,483
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Table 3.2: Examples of “home” related key phrases to detect home locations
in SG and JK.

Dataset Keywords

SG “back home”, “home finally”, “home sweet home”, etc.
JK “Tidur dulu”(sleep first), “Rumah”(House), “Pondok”(cottage),

“sampai di rumah” (arrived to home), “bobo”(sleep), etc.

users at 1,985 venues. At this point, it is still unclear if these venues are

the home locations of these users.

� We further selected a subset of 3,276 users in SG and 891 users in JK

who have checked in at only one “home (private)” venue. This rules out

users who have multiple “home (private)” venues.

� We finally selected an even smaller set of users who also shouted some

home relevant messages during their check-ins to the only “home (pri-

vate)” venues. We use a set of “home” related key phrases to identify

such messages in SG and JK datasets. Table 3.2 shows some examples

of these key phrases in both datasets. As long as any of the key phrases

is found, the check-in venue is used as the home location.

We finally obtained a dataset which includes 856 users and their home

locations in SG. We call this dataset H SG. These users have 63,777 check-

ins on 12,020 venues as shown in Table 3.1. Note that this represents 1.5% of

all users and 5.7% of all check-ins in SG. As a user can have multiple check-ins

at the same venue, the number of unique user-venue pairs with non-zero check-

ins is 28,298. Similarly, we obtained dataset H JK for users in JK dataset.

This subset has 455 users with 4380 venues and 9557 unique check-ins between

them. These numbers correspond to 3% of users and 11.5% of venues in JK

dataset. Moreover, there are 5422 user-venue pairs which have at least one

check-ins between them.

Figure 3.2 shows the distributions of check-ins over users and venues in

two datasets H SG and H JK. It is observed that these distributions follow

power law distribution similar to datasets SG and JK. It suggests that our two
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Figure 3.2: Distribution of check-ins over users and venues in H SG and
H JK.

new datasets H SG and H JK still maintain the properties of their original

datasets i.e. SG and JK respectively.

Since we cannot identify the home location of users in NYC dataset, we

only use it in the analysis of social homphily and neighborhood competition

effects.

3.3 Distance Effect

Previous works have shown that distance has an effect on the likelihood of a

user visiting a venue [14, 22]. Some of these works studied the distance effect

at the city level as only the city-level profile locations are available for most

LBSN users [4, 54]. Others incorporated distance effect into their analysis or

modeling works using the predicted home locations of users instead of user-
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reported home locations [69, 14]. In the following, we conduct analysis using

the distance between check-ins and actual home venues in H SG and H JK

datasets. We want to examine the distance effect within a city, which has not

been studied earlier.

For each user, we bin her check-ins according to the distance from the

user’s home location. Every 1-km distance range is a bin and we compute the

probability of check-ins within each bin of a user by dividing the number check-

ins within the bin by the total number of check-ins of this user. The average

probability of check-ins of the distance bin is then the average of probabilities

over all users. The maximum distance from home location to venue is 36.7 km

in H SG or 31 km in H JK. As the large distance bins involve the check-ins of

very few users, we exclude bins with distance larger than 26 km. As shown in

Figure 3.3, the average probability of check-ins of distance bins further away

from home location is smaller than that of distance bins nearer from home

location. Hence, users are more likely to visit venues near their home locations

rather than further away ones. The finding is consistent with other previous

works [14, 54].
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Figure 3.3: Fraction of check-ins as a function of distance from home in H SG
and H JK datasets in log-scale. The base of log is 10.
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Table 3.3: Average Jaccard scores between user-friend pairs versus random
pairs of users across five datasets.

SG H SG JK H JK NYC
Users and their friends 0.01411 0.01818 0.00697 0.01812 0.01921
Random pairs of users 0.00448 0.00867 0.00097 0.00085 0.00211

3.4 Social Homophily

Social homophily is the tendency that users and their friends share more com-

mon check-in venues than that between users and other ones. We illustrate

the effect by calculating the average Jaccard similarity score of all pairs of

users and their friends. Then, we compute the same score for equal number

of random pairs of users. Specifically, each user u is represented by a set su

containing all venues that u has visited and the Jaccard similarity of u and u′

is J(u,u′) = ∣su ∩ su′ ∣
∣su ∪ su′ ∣

.

Table 3.3 shows that the average Jaccard scores between users and their

friends are significantly higher than that between random pairs of users. For

example, the Jaccard score between users and their friends is three times higher

than that of random user pairs in SG dataset. Moreover, the phenomenon is

consistent across all the five datasets. Therefore, we could conclude that in LB-

SNs, users share more check-in venues with their friends than with strangers.

3.5 Spatial Homophily

3.5.1 User Aspect Spatial Homophily

When two users’ home locations are near each other, there could be similarity

between their check-ins due to the similar daily patterns shared by people

living in the same neighborhood. This phenomenon is called the user aspect

of spatial homophily which has been studied in some previous works. For

instance, Li et. al. [51] combines this effect with social homophily to increase

the performance of point-of-interest recommendation task. To detect the home
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Figure 3.4: Relationship between Jaccard score and distance between every
users in H SG and H JK.

location of users, they discretized the world into 25 by 25km cells and use the

average position of check-ins in the most check-ins cells as home locations of

users.

In this analysis, we use only the H SG and H JK datasets which contain

user home location information. Figure 3.4 shows the average Jaccard similar-

ity of check-in venues between pairs of users with different inter-home distance

in both datasets. We first calculate the inter-home distance and Jaccard Sim-

ilarity of check-in venues of every pair of users in H SG. We then group pairs

of users into distance bin of 1 km. For example, the first bin contains all user

pairs whose distance is less than 1 km. The second bin contains user pairs

whose distance is greater than 1 km and less than 2 km. We exclude those

user pairs with distance larger than 26 km as they are few in number. We ap-

ply the same procedure to H JK. Figure 3.4 shows that the average Jaccard

Similarity decreases when the inter-home distance increases. Hence, neighbors

are more likely to share common venues.

3.5.2 Venue Aspect Spatial Homophily

Using H SG and H JK datasets again, we want to examine the spatial ho-

mophily between venues and their neighbors. We investigate the visitor overlap
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between a pair of venues over the distance between them to explore spatial ho-

mophily. We expect that the shorter the distance between two venues, the

higher the visitor overlap between them. It is the indicator for spatial ho-

mophily. Specifically, for each venue j, we define a vector vj of dimension size

equal to the number of users in the dataset. Each element of vj represents the

interaction between a corresponding user and venue j. We introduce two def-

initions of vj. The first definition assign the i-th element of vj to the number

of check-ins of user i performed at venue j. In other words, vj contains the

number of check-ins of every user to venue j. The second definition is that the

i-th element of vj is the distance from user i to venue j.

Before calculating the cosine similarity between every pair of venues, we

divide the distance of venue pairs into bins of 1km width. For example, the

i-th bin covers distance range between i − 1 and i km. We exclude all venue

pairs whose distance between them is greater than 31 km in both datasets due

to the sparsity of such venue pairs. The average cosine similarity of all venue

pairs whose distance within the bin is calculated and reported. The cosine

similarity of a venue pair (j, k) is calculated by the following formula

(vj ○ Ijk) ● (vk ○ Ijk)
∥vj ○ Ijk∥∥vk ○ Ijk∥

(3.1)

where ○ and ● are Hadamard and inner products of vectors respectively. Ijk

is the binary vector of dimension size equal to number of users. Its i-th element

equals to 1 if user i performs to both venues j and k; otherwise, the element

equals to 0. Since we have two version of vj, there are two corresponding cosine

similarities : distance cosine and check-in cosine.

Figure 3.5 depicts the cosine similarity of all venue pairs for different dis-

tance bins of H SG and H JK. We observe from both datasets that: (i) the

similarity between a pair of venues decreases if the distance between them

increases, (ii) the trends are consistent regarding datasets or types of cosine

similarity and (iii) despite of having the same trend, distance cosine and check-
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Figure 3.5: Spatial homophily through cosine similarity of all venue pairs over
their distance in H SG and H JK.

in cosine have different shapes. While the former is nearly linear, the latter

one follows a log-series distribution. In latter chapter, we will formalize spatial

homophily by the two types of similarities.

We also calculate the average Jaccard similarity of check-in users between

pairs of venues separated from each other with different distances in our four

datasets.

� Firstly, we calculate the distance and Jaccard similarity score of visited

users of every pair of venues in our four datasets: SG, H SG, JK and

H JK.

� Secondly, we group pairs of venues into distance bin of 1km and then

calculate the average Jaccard similarity score of every pairs of venues

inside each bin. We exclude the pairs whose distance is greater than

26km because the average Jaccard score of these pairs is equal to 0.

Figure 3.6 displays the average Jaccard similarity score of visited users

between every pairs of the four datasets in log scale. From the figure, we

observe that (i) all four datasets share the same trend, (ii) the average Jaccard

score decreases when the distance of venue pair increases, and (iii) the trend of

the four datasets follows power law distribution. Thus, Figure 3.6 suggests that
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venues and their nearby neighbors tend to share more common users rather

than venues that are far apart. In other words, spatial homophily exists among

venues.
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Figure 3.6: Relationship between average Jaccard score in log scale and dis-
tance between every pair of venues in SG, H SG, JK and H JK.

3.6 Area Attraction

Despite the distance effect, some venues may still attract check-ins from users

far away. Li et. al. [54] developed an influence scope model for measuring

the attractiveness of venues to their followers. In our research, instead of

examining attractiveness at the venue level, we model attractiveness at the area

level. There are three significant advantages of doing so. Firstly, it reduces the

number of parameters in modeling which in turn reduces the learning time.

Secondly, we address data sparsity issue at the venue level. Finally, we believe

that the area a venue belongs to has a major influence over its ability to attract

users. We are going to illustrate this by the following empirical analysis on

only H SG and H JK datasets.

We empirically select three well known fast food chains, i.e., McDonald,

KFC and Starbucks, with many branches. We expect branches of the same

chain to be very similar to one another by food variety, food quality, ambience

and service. Hence, at the venue level, we should not expect any difference
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among their abilities to attract users from other locations. We now divide the

city into non-overlapping square areas of width equals to 0.05 degree (the area

width is equivalent to about 5.55 km on the equator) and assign every venue

to exactly one area. Each area is assigned a center of the mass derived from

the locations of its venues. We call the top five areas with most number of

venues the dense areas while the areas from ranks 10 to 15 the sparse areas.

We exclude other lower ranked areas as they do not contain any of the three

fast food venues.

Table 3.4: The number of fast food stores in H SG and H JK datasets.

McDonald KFC Starbucks
H SG 108 89 95
H JK 37 101 94

For each fast food chain, we examine the distances between each dense

area (represented by its center of mass) and the home locations of users who

perform check-ins to its venues inside the area. We then generate a boxplot for

the user-area distance of all dense areas. We perform the same procedure for

sparse areas. Figure 3.7 shows that for each fast food chain, branches within

the dense areas attract users farther than branches in the sparse areas. This

suggests that the attractiveness of area plays an important role bringing far

away users to the venues in the area.

In Figure 3.7, there is an exception of McDonald chain in H JK dataset.

It could be explained that the number of stores of McDonald in H JK is three

times less than the one in H SG than Jakarta users have to travel further to

the McDonald outlets. The number of Starbuck and KFC outlets in H JK

and H SG are quite similar (Table 3.4).

Figure 3.8 shows the case study of two areas and the location of their

visitors. First of all, we divide a city into square areas and assign every venue

to exactly one area. In Figures 3.8a and 3.8b, we show two areas, a1 and a2,

covering the residential and downtown area respectively. Figure 3.8a shows
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Figure 3.7: Boxplot of distance from areas containing fast food chain to their
check-ins users in H SG and H JK.
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Figure 3.8: Heatmap of number of users who make check-ins to different areas
(blue square) in H SG over map of Singapore.

that the users checking into area a1 are largely from nearby areas. In contrast,

Figure 3.8b shows users checking into a2 can be from areas far away. This

illustrates that area a2 is more attractive than area a1. In sequential chapter,

we show that the attractive scores of areas are different so the potential to

attract users of areas is also divergent.

3.7 Neighborhood Competition

To show competition among venues within the same area, we adopt the method

originally proposed by Weng et al. [83] to study competition among memes in

social networks. We divide the check-in history into weeks. We then measure
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the following entropies for each week. During the measurement, some notations

and their meaning are listed in Table 3.5.

Table 3.5: Table of Notation in Neighborhood Competition.

Notation Meaning
cks(v, t) number of check-ins of venue v within week t
cks(u, t) number of check-ins of user u within week t
cks(u, v, t) number of check-ins between user u and venue v within week t
A set of all areas

� System entropy (Es): Es(t) = −∑
v

fv(t) log fv(t) where fv(t) is the

fraction of check-ins in week t performed on venue v, i.e., fv(t) =
#cks(v, t)
∑v #cks(v, t)

. The system entropy essentially measures the degree to

which the distribution of check-ins concentrates on a small fraction of

venues.

� Average area entropy (EA): We define the entropy of an area a within

week t to be Ea(t) = −∑
v∈a
fv,a(t) log fv,a(t) and fv,a(t) =

#cks(v, t)
∑v∈a #cks(v, t)

.

We then take the average of all area entropies, i.e., EA(t) =
1

∣A∣ ∑a∈A
Ea(t).

We divide the city into squares of 0.05 degree width. The construction

of areas is discussed further in Chapter 5. Similar to system entropy,

average area entropy captures the degree to which the distribution of

check-ins of an area concentrates on a small fraction of venues (in the

area).

� Average user entropy (EU): We next define the average user entropy

within week t as EU(t) = Avgu∈UEu(t) where entropy of user u is Eu(t) =

−∑
v

fu,v(t) log fu,v(t) and fu,v(t) =
#cks(u, v, t)
#cks(u, t)

. This entropy quantifies

the concentration of users’ attention on the venues they perform check-

ins on.

Figures 3.9 and 3.10 show the three entropies over weeks in the five datasets.

The first observation is that both datasets show similar trends of the entropies.
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Figure 3.9: Weekly entropy in H SG and H JK datasets.
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Figure 3.10: Weekly entropy in SG, JK and NYC datasets.

Secondly, the average user entropy is much smaller than system entropy. It

clearly suggests that each user’s attention is limited to very small fraction of

venues in the entire city. Venues therefore have to compete to gain attraction

from users. Thirdly, we observed from Figures 3.9 and 3.10 that system entropy

is much larger than average area entropy across five datasets. This implies that

check-ins within an area concentrated on smaller fraction of venues than the

fraction of venues in the entire city receiving check-ins from the whole user

population.

The above empirical analysis concludes that venues compete more with

their nearby neighbors than those farther away. Thus, grouping venues into

areas and modeling competition among venues in each area is therefore an
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appropriate modeling approach.

3.8 Chapter Summary

In this chapter, we have conducted several empirical analysis on LBSN datasets

in order to inspect the movement behavior of users. Firstly, we described the

way of constructing our LBSN datasets. We later design empirical studies to

illustrate different effects on user visitation. Specially, we have showed that

neighborhood competition and area attraction are important effects which affect

the visitation of users. Therefore, the following chapters are devoted to propose

different models to study these two effects to understand the check-in behavior

of users in LBSNs.
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Chapter 4

PageRank-based Modeling of

Venue Competition

In this section, we will propose a novel framework to measure the competitive-

ness of venues in LBSNs. Unlike popularity, competitive venues are expected to

earn check-ins from their neighbors. For this reason, we construct the proxim-

ity graph of venues and turn visitation of users to venues into transition matrix

which is then used to compute competitiveness of venues as their PageRank

scores [64]. Moreover, we evaluate multiple configurations of our proposed

model to investigate its robustness [21].

4.1 Overview of Venue Competitiveness

Ranking

In this section, we describe some basic methods for ranking venues by com-

petitiveness. We also highlight the strengths and weaknesses of these methods

before presenting our proposed PageRank-based model.

� Popularity (e.g. Check-in count): This method ranks venues based on

their number of check-ins. The more check-ins the venue has, the higher

rank it has. Its advantage is that it is simple but it does not capture

39



CHAPTER 4. PAGERANK-BASED MODELING OF VENUE COMPETITION

the neighborhood competition of venues. For example, a venue va may

enjoy very high popularity but does not have a single neighboring venue

to compete with. On the other hand, another equally popular venue vb

at another location manages to compete with many neighboring venues

to win lion share of check-ins. In this case, it is reasonable to rate vb

more competitive than va.

� Venue Influence: Li et. al. [54] proposed a method called UDI to rank

venues based on the influence of venues to users. Specifically, the influ-

ence of a venue is high if it could attract users who live further away from

its location. In other words, UDI assumes that a venue’s competitive-

ness is the influence the venue has on its visitors who have to overcome

distance effect on their check-in behavior. Again, this method does not

involve any competition with the venue’s neighbors.

Due to the lack of research works on neighborhood competition, we propose

a PageRank-based model to derive a venue’s competitiveness by its potential

to win over its neighbors the visitation of users. The larger the venue compet-

itiveness of venue, the higher chance for it to win visitation of users. Finally,

we could use venue competitiveness to rank venues in LBSNs.

4.2 Proposed Venue Ranking Models

4.2.1 Overview of Ranking Framework

Before we present our proposed model, we first describe our overall framework

to rank business venues using check-in data. We make two important assump-

tions. The first assumption is that the venues to be ranked are of the same

type. Otherwise, it is not likely that the venues will compete with one another.

In this work, while we do not consider area attractiveness, we also assume that

competitions only occur between venues that are near each other.
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Our proposed venue ranking framework consists of the following major

steps:

� Step 1: Construction of venue adjacency graph: We first construct

an undirected graph G consisting of venues as vertices. Two venues i and

j are connected by an edge (i, j) if the distance between i and j is not

more than λ, a distance threshold.

� Step 2: Computation of venue competitive probability values:

Depending on the assumption used for modeling competitions among

venues in winning check-ins from users, different venue competitive prob-

ability definitions pji’s can be worked out for the edges in G. We will

elaborate these different definitions in Section 4.2.2.

� Step 3: Computation of venue ranks: In this step, we apply some

PageRank-style models on the venue competitive probability values. The

end results are venue ranks.

In the following, we shall elaborate the details of Steps 2 and 3.

4.2.2 Modeling Venue Competitive Probability

Given a venue adjacency graph with venues as nodes, we want to derive the

competitive probability from one node j to another node i based on how much

the venue value of j could be “distributed” (or lost) to i. Suppose i and j

are in competition of some candidate users, the more users visiting i would

suggest that the more j is losing the competition. Ideally, we would like to

know: (a) the set of users considering to visit venue j, and (b) the subset

of them actually visiting venue i instead. In most practical settings, we may

observe (b) but not (a) unless the users are explicitly required to state their

venue preferences. Without infringing the user private preferences, we would

like to infer (a) using already observed visit data. In the following, we present
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three approaches to derive competitive probability from one node to another

using different assumptions.

Equal probability (EPR) assumption. Suppose venue j has deg(j)

neighboring venues. Without referring to any observed visit data, we assume

that every neighboring venue of j will get equal share of visits. Let pji denote

the competitive probability from venue j to venue i. We define pEPR(j, i)

under the equal probability assumption as:

pEPR(j, i) =
1

deg(j)
(4.1)

Neighborhood check-in ratio (NCR) assumption. Suppose ni denote

the number of check-ins for any venue i. The neighborhood check-in ratio

assumption states that the set of potential visits to a venue j is the sum

of observed visits to j and its neighboring venues. Hence, under the NCR

assumption, the competitive probability from venue j to venue i is defined as:

pNCR(j, i) =
ni

∑j↔k nk + nj
(4.2)

where j ↔ k denotes that j is a neighbor of k. The denominator ∑
j↔k

nk +nj is

essentially the sum of all check-ins observed on j and its neighbors.

Neighborhood user ratio (NUR) assumption. Suppose mi denote

the number of users performing check-ins on any venue i. The neighborhood

user ratio assumption states that the set of potential users to a venue j is the

sum of observed users to j and its neighboring venues. Hence, under the NUR

assumption, the competitive probability from venue j to venue i is defined as:

pNUR(j, i) =
mi

∑j↔kmk +mj

(4.3)

Next, we will apply the above competitive probability definitions to a few

PageRank-style models that compute venue values.
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4.2.3 PageRank Model

PageRank [64] was originally designed to compute the importance of web pages

based on the directed links among the pages. The key idea of PageRank is

that an important page should be linked from other important pages.

In our context, we define the first PageRank-style model with the competi-

tive probabilities derived by the equal probability assumption. Let PREPR(i)

denote the value of venue i and is defined as:

PREPR(i) = (1 − α) ⋅ 1

N
+ α ⋅ ∑

j↔i
PREPR(j) ⋅ pEPR(j, i) (4.4)

where α is called damping factor to control the weight given to random

walk in the PageRank calculation. In our experiments, we set α = 0.85 by

default. N denotes the total number of venues.

Given that we have two other competitive probability definitions, namely

pNCR, and pNUR, the other two variants of PageRank Models can be derived,

i.e., PRNCR, and PRNUR respectively.

4.2.4 CompetitiveRank Model

Other than the definition of competitive probability, we also explore other

variants of PageRank style models by changing the random visits to any venues

in the adjacency graph. In the PRX models (where X denotes one of EPR,

NCR, and NUR), every venue is visited with an equal probably
1

N
. This

random visit scheme can be modified to create a hybrid PageRank-style model

incorporating the observed visit data.

The new PageRank style model, known as CompetitiveRank (CR), aims

to combine the earlier PageRank models and the observed check-in data. We

define the CompetitiveRank model in Equation 4.4.

CRX(i) = (1 − α) ⋅ ni

∑k nk
+ α ⋅ ∑

j↔i
CRX(j) ⋅ pX(j, i) (4.5)
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where X denotes one of EPR, NCR and NUR.

By varying the α parameter, we can moderate the effect of check-in ratio

ni

∑k nk
of venue i, relative to the random walk effect. When α = 0, CRX reduces

to check-in ratio.

4.3 Experiments on Real Datasets

In this section, we evaluate the proposed models using some real datasets col-

lected from Foursquare. Our experiments consist of three steps. First of all, we

will examine the correlations between models using Jaccard coefficient scores

and Spearman correlation scores. Secondly, we evaluate the characteristics of

the models by varying the distance parameter settings. Thirdly, we study a

few case examples to show the difference between check-in count and PageR-

ank style model. Finally, we evaluate the proposed models by comparing with

Foursquare scores and number of likes of users to show the effectiveness of our

methods.

4.3.1 Datasets

We collected Foursquare data during the period from 15 Aug 2012 to 3 June

2013 via Twitter. The data collected include check-ins of 55,891 Singapore

users who have their check-ins posted as public tweets in their Twitter time-

lines. There are more than 1.64 millions check-ins at locations under different

categories including building, food, and school. In our experiments, we only

extract venues that are restaurants and their check-ins. We assume that these

restaurants have to compete with other restaurants nearby. There are 121,439

check-ins at 7,290 restaurants in Singapore. For the ease of reading, we denote

this dataset as SGr. Figure 4.1 summarizes the statistics of the dataset.

To determine a suitable distance threshold λ for defining the neighborhood

of a restaurant, we plot the distribution of the distance between restaurants
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Table 4.1: SGr dataset statistics

# users # check-ins # restaurants # check-ins of restaurants
55,891 1.64 millions 7,290 121,439
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Figure 4.1: Proportion of restaurants with nearest neighbor distance < xmeters

and their nearest neighbors as shown in Figure 4.1. The figure shows that

less than 12% of the restaurants have their nearest neighbors more than 100

meters away. This is not a surprise given that the city of Singapore is densely

populated with food-related venues. We therefore set λ to be 100 meters to

construct the network of restaurants.
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rants.

Figure 4.2: Distribution of restaurants in SGr dataset.

Figure 4.2a shows the distribution of neighbor counts (degree distribution)

of this restaurant network. The distribution has the log shape with large

number of restaurants with a few neighbors and a few restaurants having large
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number (as many as 50+) of neighbors. Besides, there are 835 restaurants

which do not have any neighbors.

Figure 4.2b depicts the check-ins distribution of restaurant network. The

figure shows that many restaurants have very few check-ins while few have

many check-ins. The restaurants with the largest number of check-ins received

1,373 check-ins while 2,078 restaurants have only one check-in each.

We also apply our proposed models to two larger datasets: SG and JK

and compare the results on them with the ones of restaurant dataset. Both

SG and JK have been described in Chapter 3. The parameters of models are

similar to the ones of restaurant dataset. Particularly, λ = 100 meters and

α = 0.85.

4.3.2 Correlation Analysis

We have altogether six different PageRank style models for determining venue

values and they are based on different competitive probability definitions and

random visit options. The first part of the experiment thus seeks to deter-

mine how different they are when applied on our real dataset using correlation

analysis.

We evaluate the models’ correlation using (i) Jaccard Coefficient at Top-k

venues, and (ii) Spearman correlation coefficient. The Jaccard Coefficient of

two sets X and Y is defined by
∣X ∩ Y ∣
∣X ∪ Y ∣

. By considering the top k ranked

venues returned by each model, we derive the Jaccard Coefficient of the top

k ranked venues. Instead of using any k values, we consider k = 100,200, and

300 to focus on overlaps among top ranked venues.

For a set of N venues with venue i assigned with ranks xi and yi by models

A and B respectively, the Spearman correlation coefficient is defined as 1 −
6∑d2

i

N(N2 − 1)
where di = xi − yi. Venues with rank tie are assigned the average

rank position.

Table 4.2 shows the Jaccard Coefficients of different pairs of models for
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Table 4.2: Jaccard Coefficient@top k of SGr, SG and JK datasets. All models
have α = 0.85. All Jaccard coefficient scores greater than 75% are in bold text.
The unit in table is percentage.

PRNCR PRNUR CREPR CRNCR CRNUR

Top K 100 200 300 100 200 300 100 200 300 100 200 300 100 200 300

PREPR 0.5 5 6.2 1 4.4 5.8 0.0 3.1 4.3 0.0 1.5 3.3 0.0 1.8 2.9
PRNCR - - - 70.9 79.4 79.6 10.5 12.4 15.6 30.7 36 41.2 27.4 33 39

SGr PRNUR - - - - - - 8.7 13 14.9 23.5 35.1 39 21.2 35.6 39.5
CREPR - - - - - - - - - 39 37.9 39.8 39.8 37.9 40.2
CRNCR - - - - - - - - - - - - 81.8 85.2 89.9

PREPR 0.0 0.5 1.01 0.0 1.01 1.35 0.0 0.5 0.67 0.0 0.5 0.84 0.0 0.5 0.84
PRNCR - - - 78.5 61.9 63.1 39.9 33.8 34.2 53.8 55.6 53.8 52.6 50.4 46.3

SG PRNUR - - - - - - 40.8 30.7 32.2 53.8 50.3 47.7 57.4 51.5 47.7
CREPR - - - - - - - - - 65.3 48.7 51.1 58.7 48.2 49.6
CRNCR - - - - - - - - - - - - 77 82.7 80.2

PREPR 0.0 0.0 0.3 0.0 0.0 0.8 0.5 0.3 0.3 0.0 0.0 0.2 0.0 0.3 0.7
PRNCR - - - 72.4 63.3 58.3 25.0 21.2 23.0 48.1 49.8 54.2 46.0 45.5 46.7

JK PRNUR - - - - - - 23.5 19.0 17.6 41.8 40.4 42.5 50.4 50.4 55.0
CREPR - - - - - - - - - 46.0 40.8 40.2 42.9 35.6 33.0
CRNCR - - - - - - - - - - - - 63.9 62.6 61.7

different top k’s. Generally, PREPR model is most different from the other

models. CREPR is also different from other models but is more similar to

other CR models than PREPR and other PR models. The most similar model

pairs however go to the (PRNCR, PRNUR) and (CRNCR, CRNUR) pairs. These

two pairs of models enjoy more than 70% overlaps between their top k ranked

venue venues. The difference between PR and CR models can be explained by

the damping factor. In CR model, it is usually larger than PR’s one because

the number of venues is smaller than the number of check-ins.

Table 4.2 also shows the results for the two datasets SG and JK. From

the table, we can draw some observations. Firstly, the overlaps between two

pairs (PRNUR, PRNCR) and (CRNUR, CRNCR) are higher than other pairs

(e.g. (PREPR, PRNCR). This observation is clearer in SG dataset than in JK

since the Jaccard scores of the two pairs are greater than 60%. Secondly, the

Jaccard scores of SG and JK are quite consistent. For example, both datasets

see PREPR completely different from other models because of the low Jaccard

scores. Lastly, the result from Table 4.2 is consistent with the results using

SGr dataset.
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Table 4.3: Spearman correlation coefficient of SGr, SG and JK datasets.
Coefficients greater than 0.70 are boldfaced.

PRNCR PRNUR CREPR CRNCR CRNUR

PREPR 0.15 0.16 0.29 0.228 0.23
PRNCR - 0.96 -0.0069 0.73 0.667

SGr PRNUR - - -0.0096 0.692 0.68
CREPR - - - 0.581 0.62
CRNCR - - - - 0.974

PREPR 0.44 0.1 0.27 0.16 0.3
PRNCR - -0.12 0.44 -0.14 0.47

SG PRNUR - - 0.77 0.8 0.59
CREPR - - - 0.56 0.83
CRNCR - - - - 0.71

PREPR 0.48 0.23 0.44 0.31 0.44
PRNCR - -0.08 0.55 -0.04 0.67

JK PRNUR - - 0.7 0.83 0.48
CREPR - - - 0.58 0.85
CRNCR - - - - 0.61

Now, we evaluate the Spearman rank correlation of the full rank lists re-

turned by each pair of models as shown in Table 4.3. This allows us to answer

the question whether the models are similar for their full rank lists. For the

case of SGr dataset, Table 4.3 essentially confirms that (PRNCR,PRNUR) and

(CRNCR,CRNUR) model pairs are most similar. In fact, both model pairs en-

joy > 0.9 correlation coefficient values. The result is consistent with that of

Table 4.2. For the case of SG and JK, Table 4.3 for SGr with one exception.

The pair (PRNUR, PRNCR) produces two slightly opposite rankings since its

Spearman score is negative in both datasets and it is different from that of

SGr when the pair shows the strong correlation. Since the rankings of top-k

venues between them are very similar (see Table 4.2), it is clear that they

generate different rankings for lower venues.

4.3.3 Case Examples

In this section, we show two case examples to illustrate how our proposed

CRNUR model differs from check-in count when ranking the venues. We in-

clude case examples using the CRNUR model because it in general is similar

to other models across the three datasets. Specifically, the similarity score
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Table 4.4: Case Studies of Our Model in SGr dataset.

Venues Name
# Check-in’s CRNUR # Neighbors

Avg CRNUR Avg CRNUR Rank
(Rank) (Rank) of neighbors of neighbors

Case study 1

The Manhattan 139 0.0019 42 0.00025 2682.31 th

Fish Market (136th) (39th)
Case study 2

BALIthai 59 0.00071 55 - 2433.82 th

(494th) (298th)

Xin Wang 130 0.00068 10 - 3149.6th

Hong Kong Cafe (158th) (312th)

of CRNUR and CRNCR is relatively high compared with that of other model

pairs. Initially, we present two case studies of SGr dataset and then two other

cases in SG dataset. JK is not included in this analysis because of the lack of

language knowledge.

Case Study 1 of SGr. The first part of Table 4.4 shows the The Manhat-

tan Fish Market restaurant. The restaurant has about 139 check-ins, a high

number compared to other restaurants. Hence, it is ranked 136th according to

check-in count. By CRNUR model, however, The Manhattan Fish Market is

ranked much higher at 39th place. The result can be explained by the CRNUR

values of The Manhattan Fish Market ’s neighbors. According to the Table 4.4,

the average CRNUR of The Manhattan Fish Market ’s neighbors is high given

the average rank 2682.31 is higher than the middle rank of
7890

2
= 3945.

Case Study 2 of SGr. The second part of Table 4.4 shows two venues

BALIthai and Xin Wang Hong Kong Cafe that are ranked in different order by

check-in count and by CRNUR. By check-in count, BALIthai is ranked lower

than Xin Wang Hong Kong Cafe. By CRNUR, however, we have the reverse

rank order due to the higher average CRNUR rank of BALIthai ’s neighbors.

The better ranked neighbors suggest that BALIthai must be quite good so as to

win visits from these neighboring competing venues. Moreover, the Foursquare

score of BALIthai is 6.9 with 6 likes from users while Xin Wang Hong Kong

Cafe’s score is 5.71 with 4 likes. This fact gives us more confident about the

superior of CRNUR.
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Table 4.5: Case Studies of Our Model in SG dataset

Venues Name
# Check-in’s CRNUR # Neighbors

Avg CRNUR Avg CRNUR Rank
(Rank) (Rank) of neighbors of neighbors

Case study 1

Carot Cake @264 1 4.06 × 10−5 22 5.481 × 10−5 3018.54th

(60465th) (3670th)
Case study 2

Widevision Asia 140 3.3 × 10−5 7 - 7567 th

(1115th) (4455th)

Blk 310, 13 3.6 × 10−5 17 - 3252.15th

Woodlands St31 (30912th) (4043th)

Case Studies 1 of SG. As shown in Table 4.5, the venue named Carot

Cake @264 has only one check-ins from users and its rank is 60465 based on

number of check-ins. However, its rank using CRNUR is 3670, significantly

higher than the rank of number of check-ins. The reason can be explained

by the ranks of its neighbors. According to Table 4.5, the average rank of its

neighbors is 3018.54 which is higher than the average rank
75346

2
= 37673.

Case study 2 of SG Table 4.5 shows two different venues named Wide-

vision Asia and Blk 310, Woodlands St31 are ranked differently by check-in

count and CRNUR. According to check-in count, Widevision Asia has 10 times

more check-ins than Blk 310, Woodlands St31 but in CRNUR, the latter one

is ranked higher than the former one. The reason is that the neighbors of Blk

310, Woodlands St31 have average rank higher than that of Widevision Asia

so each winning of Blk 310, Woodlands St31 is more valuable than that of

Widevision Asia. Moreover, the number of neighbors of Blk 310, Woodlands

St31 is more than that of Widevision Asia so Blk 310, Woodlands St31 can

earn more score from each of its winning over the neighbors.

Although we only show CRNUR in the above examples, there are many

other similar case examples that we can extract from other PageRank models.

4.3.4 Evaluation with Foursquare Score Data.

Foursquare provides a score to each venue to reflect users’ opinions about the

venue by combining user’s response such number of check-ins, number of likes,
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Table 4.6: Top-k performance in SGr, SG and JK datasets.

k Check-in count PREPR PRNUR PRNCR CREPR CRNUR CRNCR

10 7.737 2.52 8.071 8.081 6.027 7.61 7.61
SGr 20 6.749 2.405 7.9325 7.9825 5.942 6.8895 7.1865

50 7.002 2.532 7.11 7.0862 6.2682 6.936 6.952

10 6.872 2.327 7.189 8.241 5.836 6.89 5.721
SG 20 6.432 2.781 7.625 7.715 5.421 6.021 4.9652

50 5.982 3.141 6.91 6.843 5.2 5.825 5.623

10 7.145 3.197 7.18 7.22 5.122 7.034 5.62
JK 20 7.218 3.451 7.5 7.369 5.817 7.341 5.41

50 7.155 3.048 7.19 7.412 5.821 7.16 5.1

Table 4.7: Spearman correlation of Foursquare score and all models in SGr,
SG and JK datasets.

Dataset Check-ins PREPR PRNUR PRNCR CREPR CRNUR CRNCR

count

SGr 0.0476 -0.0488 0.1148 0.1358 -0.07 0.027 0.0417
SG 0.1639 -0.1091 0.1646 0.1977 0.0348 0.1288 0.1568
JK 0.1356 -0.0911 0.1366 0.1782 0.0145 0.1134 0.1298

and tips. The Foursquare score is between 0 and 10. Thus, we could use the

Foursquare score to evaluate our models.

Table 4.6 shows the average Foursquare score of top k venues returned by

each model in the three datasets. PRNUR and PRNCR are the winners as they

have higher scores in three out of four cases. CRNUR performs worse than

PRNUR and PRNCR but its result is similar to the Check-in count.

Table 4.7 shows the Spearman correlation between the Foursquare scores

and ranking scores of restaurants returned by the proposed models. CREPR

and PREPR have negative correlation while PRNUR and PRNCR have strong

positive correlation with Foursquare scores. CRNUR and CRNCR have positive

correlation with Foursquare scores but the correlation is weak, in fact weaker

than Check-in count. The results from Table 4.6 and Table 4.7 are consistent

because both tables show the superior performance of PRNCR and PRNUR

over the other models. These above observations are consistent across the

three datasets.

Table 4.7 shows the Spearman correlation of Foursquare score and our

ranking models in SGr, SG and JK datasets. As shown in the table, the
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performance of all models are similar in the three datasets. Specifically, the

performance of PRNUR and PRNCR are better than check-in count model

since they are more similar to the ranking of Foursquare score. However, the

improvements of PRNUR over check-ins count model in SG and JK are less

than the one of PRNUR in SGr. The ranking of PREPR is negatively correlated

to the ranking of check-in count. Secondly, Table 4.7 shows the same trending

for the three datasets. The reason for the superiority of PRNUR and PRNCR is

that these models consider the visitation of users to venues under the influence

of venues nearby. This implicit property cannot be covered by check-in count

model. In other words, neighborhood competition is an important effect which

should be considered in modeling check-in behavior of users in LBSNs.
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Chapter 5

Modeling Neighborhood

Competition and Area

Attractiveness in Check-in

Behavior For Partially Known

User Home Locations.

In this chapter, we propose the Visitation by Attractiveness and Neighborhood

Competition (VAN) model for check-in behavior which incorporates area at-

tractiveness, neighborhood competition and distance effects. Here, the home

location information of users is assumed to be known. We further develop the

parameter learning approach for VAN model and discuss its implementation.

Our experiments using synthetic and real datasets show that VAN model

outperforms the baseline models for several tasks, including home location pre-

diction for users with unknown home locations, venue competitiveness ranking

and check-in prediction.
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Table 5.1: Table of Notations for V AN model.

Notations Meaning

U set of all users

V set of all venues

C set of all check-ins

wiv number of check-ins of user i to venue v

wv total number of check-ins of venue v

av area av containing venue v

s the width of area

σv competitiveness score of venue v

σav attractiveness of area av
N(v) set of neighboring venues of v

i→ av user i visiting area av

5.1 Proposed Model

Let U and V denote the set of users and venues in a city respectively. We

divide the city into mutually exclusive square areas of width s. We use av

to denote the area which contains v. More notations and their meanings are

shown in Table 5.1.

For each check-in between user and venue, the VAN model captures area

attraction, neighborhood competition and distance effects. The VAN model

adopts the following assumptions:

� Every user chooses an area to perform a check-in based on its attractive-

ness and the distance between the user and area.

� Every venue must compete against its neighboring venues in order to

gain any check-in.

We assign each venue v a competitiveness value σv to measure its ability

to compete with its neighbors. The value of σv is positive, and the larger the

σv the more competitive the venue v.

There are multiple ways to define the neighborhood N(v) of venue v but

it should cover v and also the area containing v.

Every check-in of user i to venue v follows a two-step process. Firstly, user

i must select the area av. Secondly, the venue v in area av must win over all
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other neighboring venues in N(v) to gain a check-in from user i.

� User i selects the area av under the effect of attractiveness of area av.

Moreover, if the distance between i and av increases, the probability of

user i chooses area av decreases. We model this by zero-mean Gaussian

distribution whose variance is σav . The Euclidean distance between user

i and av is the random variable which is generated from the distribution.

In other words, the home location of user i is generated from the Gaussian

distance whose mean is the location of area av and variance is σav .

� To model the winning of venue v over its neighbors, we need to model

the difference of competitiveness of v and that of one of its neighbors,

say v′ . We propose two options. The first option uses the cumula-

tive distribution function (CDF) of standard Gaussian distribution i.e.

CDF (σv − σv′ ; 0,1). The second option is Sigmoid function of σv − σv′ ,

i.e. S(σv − σv′) . Both functions return probability values because they

map differences between the competitiveness values of two venues into

the range [0,1]. If venue v is more competitive than its neighbor v′ i.e.

σv > σv′ , the two functions will return a higher probability of v winning

the check-in over v′ and vice versa.

Formally, we consider the probability of a check-in from user i to venue v,

piv, as follows:

piv = p(i→ av) ∏
v′∈N(v)

p(v > v′) (5.1)

Equation 5.1 says that piv depends on two components: p(i→ av) denoting

the probability of user i selecting area av and p(v > v′) denoting the probability

of venue v winning over its neighbors v′.

Let (xi, yi) and (xav , yav) denote the location of user i and center of area

av respectively. Formally, the probability p(i→ av) is defined by:
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Figure 5.1: Example of Check-in graph.
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2πσ2
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exp((xi − xav)2 + (yi − yav)2

−2σ2
av

)

(5.2)

We model the attractiveness of each area av by a bivariate Gaussian distri-

bution with center of area as the mean and covariance matrix representing the

attractiveness of av, i.e., σav . The larger Euclidean distance between user i and

center of area av, the smaller the p(i→ av). The covariance matrix is diagonal

and the diagonal elements share the same value σav because we assume that

the attractiveness of area av in x-axis is similar to that in y-axis.

Neighborhood competition is modeled by the probability p(v > v′) of venue

v winning a check-in over venue v′ which can be defined by either a Sigmoid

function or cumulative density function of standard Gaussian distribution. For-

mally,

p(v > v′) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

S(σv − σv′) if V ANSigmoid

CDF (σv − σv′ ; 0,1) if V ANCDF

(5.3)

Depending on the choice of the above definitions, we have two variants of

VAN models denoted by VANSigmoid and VANCDF .

Example: Figure 5.1 depicts two check-ins at venue v by user i i.e. wiv = 2.
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The neighbors of venue v, N(v), are venues within area (b, 3) (red box)

and its adjacent areas (i.e. boxes limited by green border). To perform a

check-in at venue v, user i has to select area (b, 3) (enclosed by red box)

considering the distance from his home location to the center of area (b, 3)

and the attractiveness of area (b, 3). Moreover, the venue v needs to win over

all of its neighbors in the adjacent areas (i.e. venues within the green box).

5.2 Inference

To learn the VAN model, we could use the standard technique Maximum Log-

likelihood Estimation(MLE) but there is no closed form solution to find the

global optima point. We instead propose a way to find local optimal points of

this model.

The log-likelihood of a set of check-ins C from users from U on venues from

V is then defined as:

L(C ∣{σv}v∈V ) = ∑
(i,v)∈C

wiv log piv

= ∑
(i,v)∈C

wiv log p(i→ av) +∑
v

wv ∑
v′∈N(v)

log p(v > v′)

= ∑
(i,v)∈C

wiv (−2 logσav −
1

2σ2
av

((xi − xav)2 + (yi − yav)2))

+∑
v

wv ∑
v′∈N(v)

log p(v > v′) + const

(5.4)

In Equation 5.4, wiv denotes the number of check-ins between user i and

venue v, and wv denotes the total number of check-ins on venue v.

Inference of user home locations: Taking derivative with respect to

the x -coordinate of user i and set it to 0 gives us:

∂L
∂xi

= ∑
v

wiv (−
1

2σ2
av

2(xi − xav)) = 0

xi =
∑v

wiv

σ2
av
xav

∑v
wiv

σ2
av

(5.5)
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Similarly, we obtain the update function for yi as:

yi =
∑v

wiv

σ2
av
yav

∑v
wiv

σ2
av

(5.6)

In Equations 5.5 and 5.6, we could not take xav and yav out of the sum

because av is the area associated with venue v.

Based on Equations 5.5 and 5.6, we derive some interesting observations

about the home location of user i.

� The home location of user i is the weighted average of centers of areas of

venues av checked in by i.

� The weight
wiv
σ2
av

associated to each area av has two components: wiv the

number of check-ins of user i to venue in the area and σav the attrac-

tiveness of the area. The former helps to predict the home location close

to the check-in area due to distance effect. However, area attractiveness

has an inverse effect on the importance of area. That is, more attractive

areas should contribute less to identifying the home location of user i.

� Suppose the maximum and minimum values of x-coordinate (i.e. lati-

tude) of city are xmax and xmin respectively i.e. ∀av ∶ xmin ≤ xav ≤ xmax,

we have ∀i ∈ U ∶ xmin ≤ xi ≤ xmax. Similarly, if ymax and ymin are maxi-

mum and minimum values of y-coordinate (i.e. longitude) of city respec-

tively, we have ∀i ∈ U ∶ ymin ≤ yi ≤ ymax. In other words, the weighted

average of centers of check-in areas ensures that the home location of

user i is within the city boundary.

Inference of competitiveness of venues: To maximize the log likeli-

hood L with the respect to σv and the constraint σv > 0, we add the regular-

ization term ∑
v∈V

logσv and use gradient descent to find the optimal values of

σv. The regularization term ∑
v∈V

logσv keeps all σv values positive because if

∃v ∈ V ∶ σv → 0, logσv and ∑
v∈V

logσv will become −∞.
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Formally, we have the optimization problem

{σ∗v}{v} = arg max
∀v∈V ∶σv

L({σv}v∈V ) + ∑
v∈V

logσv (5.7)

L({σv}v∈V ) denotes ∑
v∈V
L(σv). We then define the log-likelihood for the σv

of each venue v

L(σv)

= ∑
i∈U,
v′∈av

wiv′ log p(i→ av) + ∑
i∈U,

v′′∈N(v)∖av

wiv′′ log p(i→ av′′)

+wv ∑
v′∈N(v)

log p(v > v′) + ∑
v′∈N(v)

wv′ log p(v′ > v) + const

(5.8)

where av′′ is the area associated with neighbor v′′ of venue v. N(v) ∖ av is

the set of neighbors of venue v but not in area av. We explain each component

in Equation 5.8 as follows:

� The first component ∑
i∈U,
v′∈av

wiv′ log p(i→ av) indicates the number of times

user i checks into venues in area av (including venue v).

� The second component ∑
i∈U,

v′′∈N(v)∖av

wiv′′ log p(i→ av′′) represents the num-

ber of times user i checks into venues in the adjacent areas of area av.

� The third component wv ∑
v′∈N(v)

log p(v > v′) models the winning of venue

v over its neighbors.

� The fourth component ∑
v′∈N(v)

wv′ log p(v′ > v) models the losing of venue

v to its neighbors.

� Finally, const is the constant which is independent of σv and it will

disappear after taking derivative of log-likelihood with respect to σv.

There is no closed-form solution for the optimization problem in Equa-

tion 5.7. We therefore use gradient descent to find the local optimal solution.

Consequently, the derivative of log likelihood with respect to σv is:

59



CHAPTER 5. MODELING NEIGHBORHOOD COMPETITION AND AREA ATTRACTIVENESS IN

CHECK-IN BEHAVIOR FOR PARTIALLY KNOWN USER HOME LOCATIONS.

∂

∂σv
L(σv) =

∑
i∈U,
v′∈av

wiv′
∂ log p(i→ av)

∂σv
+ ∑

i∈U,
v′′∈N(v)∖av

wiv′′
∂ log p(i→ av′′)

∂σv

+wv ∑
v′∈N(v)

∂ log p(v > v′)
∂σv

+ ∑
v′∈N(v)

wv′
∂ log p(v′ > v)

∂σv

(5.9)

Before showing the derivative of each component in log likelihood, we show

the derivatives of CDF and Sigmoid functions.

∂

∂σv
log

σv−σn

∫
−∞

N(x; 0,1)dx = N(σv − σn; 0,1)
∫
σv−σn
−∞ N(x; 0,1)dx

(5.10)

∂

∂σv
logS(σv − σn) = 1 − S(σv − σn) (5.11)

We denote d2(i, av) = (xi − xav)2 + (yi − yav)2 and d2(i, av′′) = (xi − xav′′)
2 +

(yi − yav′′)
2 and the derivatives of two first components of L(σv) are

∂

∂σv
log p(i→ av) = −

2

σav

∂σav
∂σv

+ 1

σ3
av

∂σav
∂σv

d2(i, av)

= − 2

σ2
av

σv +
σv
σ4
av

d2(i, av)

∂

∂σv
log p(i→ av′′) = −

2

σav′′

∂σav′′
∂σv

+ 1

σ3
av′′

∂σav′′
∂σv

d2(i, av′′)

= − 2

σ2
av′′

σv +
σv
σ4
av′′

d2(i, av′′)

(5.12)

In the case of V ANCDF , from Equation 5.10, we have

∂

∂σv
log p(v > v′) = N(σv − σv′ ; 0,1)

∫
σv−σv′
∞ N(x; 0,1)dx

∂

∂σv
log p(v′ > v) = − N(σv′ − σv; 0,1)

∫
σv′−σv
∞ N(x; 0,1)dx

(5.13)

In the case of V ANSigmoid, from Equation 5.11, we have

∂

∂σv
log p(v > v′) = 1 − S(σv − σv′)

∂

∂σv
log p(v′ > v) = −(1 − S(σv′ − σv))

(5.14)
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During gradient descent, we also use back-tracking technique [10] to find

the best learning rate to fit our model.

5.3 Implementation Note

There are some implementation tricks for efficiently updating user locations

and competitiveness of venues in parameter learning.

� Update of user locations: Equations 5.5 and 5.6 update latitude and

longitude of user home locations respectively. These equations derive

home locations of a user from the center and attractiveness of areas where

the user performs check-ins, and the number of check-ins of the user to

the areas. We do not need information from the other users at all. Hence,

we could update the home locations of different users simultaneously.

� Update of competitiveness of venues: Since the number of venues in the

dataset is always large, the parameter learning of our model may incur

much running time. For this reason, to infer the competitiveness σv of

venue v, we assume that the competitiveness of other venues in V are

constant. Gradient descent will then be applied to search for the optimal

σv. In this way, we could parallelize the update of competitiveness of all

venues.

Algorithm 1 summarizes the parameter learning of VAN model. We split

users in U into two subsets Uk and Un, i.e. U = Uk⋃Un. Uk and Un denote the

subsets of users whose home locations are known and unknown respectively.

Convergence Analysis: Suppose we have an initial value of log likeli-

hood. After updating location of users in Un by Equations 5.5 and 5.6 (from

steps 5 to 7), the log likelihood will increase because it moves along the gradi-

ent direction of xi and yi ∀i ∈ Un. Gradient descent with backtracking updates

the competitiveness of σv (from steps 8 to 10). Thus, the log likelihood will

always converge to the stationary point.
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input : set of users Uk and their locations; set of venues V and their
locations; set of check-ins C; area size s

output: {σv}v∈V ; {(xi, yi)}i∈Un

1 for v ∈ V do
// initialize to positive value

2 σv = const;
3 end
4 while Log-likelihood is not convergent do
5 for i ∈ Un do in parallel
6 Update xi and yi by Equation 5.5 and Equation 5.6;
7 endfor
8 for v ∈ V do in parallel
9 Update σv by gradient descent with back-tracking ;

10 endfor
11 Calculate Log-likelihood by Equation 5.4;

12 end
Algorithm 1: Parameter Learning of VAN model

5.4 Evaluation using Synthetic Data

In this section, we will create a synthetic dataset to evaluate the performance of

the VAN models in: (i) recovering of venue competitiveness, and (ii) prediction

of user home locations. Moreover, the neighbors of a venue v, N(v), are

venues which are within area av and the areas adjacent to av denoted by

adj(av). That is, N(v) = {v′∣v′ ∈ adj(av)} ∪ {v′∣v′ ∈ av} ∖ {v}. We consider

the venues in adj(av) as neighbors because we want to include venues in these

nearby area as competitors of v.

5.4.1 Data Generation

The synthetic dataset is loosely constructed using the principles the VAN mod-

els are based on. We want to evaluate the robustness of the models and also

their accuracy in prediction tasks.

Based on the map of Singapore, we generate venues, users and check-ins

using a set of parameters listed in Table 5.2. To keep the dataset simple, every

user has the same number of check-ins nc which is one of the data generation

parameters.
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Table 5.2: Model Parameters of synthetic data.

Model Parameters Symbol

Number of users ni
Number of venues nv

Number of check-in per user nc
Size of area s

Variance ρ

The data generation process follows the steps below.

� Venues: We randomly select a location for each venue. For each venue

v, we generate its competitiveness σv following a Gaussian distribution

with mean at the center of the map and variance ρ. The larger the value

of ρ, the more concentration are the competitive venues at the center of

the map.

� Users: For each user i, we randomly select one venue as his/her home

location.

� For each pair of user i and venue v, we derive a pseudo-probability piv in

two steps. Firstly, i selects the area av with probability
∑v′∈av σv′

di,av
where

di,av is the distance between user i and area av. Secondly, among venues

in area av, user i chooses venue v with probability
σv

∑v′∈av σv′
. Formally,

piv =
∑v′∈av σv′

di,av

σv

∑v′∈av σv′
= σv
di,av

. The intuition behind is to create the ef-

fects of distance, area attractiveness and neighborhood competitiveness.

� Finally, the number of check-in niv between user i and venue v is gener-

ated by niv = nc ⋅
piv

∑v′ piv′
. Moreover, niv is rounded down if it is not an

integer.

5.4.2 Evaluation

Among the data generation parameters, we empirically fix ni = 50, nv = 500,

nc = 2000 and s = 0.1 geography degree (around 10 kilometers). We vary the ρ

parameter in our experiments below:
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� Competitiveness Prediction: In the first experiment, we hide the

competitiveness of all venues. We apply the VANSigmoid and VANCDF

models on the known users’ home locations, venue locations and check-

ins to recover the venues’ competitiveness.

We evaluate the accuracy of results by Pearson correlation between

the actual venue competitiveness and the learnt ones. We do not evalu-

ate using the actual competitiveness values as they depend on the initial

value assignment. As we evaluate the competitiveness ranking, we intro-

duce a baseline model CCount which ranks the venues by the number of

check-ins received from the users.

As shown in Table 5.3, the two variants of our model always outperform

the baseline. Moreover, as we increase ρ, the performances of all mod-

els drop. The reason is that larger ρ sees check-ins distributed equally

among the areas. This distribution is harder for any model to infer the

competitiveness ranking correctly. Between VANSigmoid and VANCDF

models, there is however no clear winner.

� Home Location Prediction: In the second experiment, we evaluate

the VANSigmoid and VANCDF models in home location prediction task.

In this task, we hide all home locations of users and use the models to

recover them. We use a few simple methods, namely, center of the mass

(COM) and most check-in venue (MCV) as baselines. We do not use

more complicated techniques [14] as these techniques require more input

parameters (i.e. time of check-ins) and are less general to compare with

our model.

The user home locations are updated by Equations 5.5 and 5.6 regardless

of Sigmoid or CDF function. The reason is that in this experiment, the

attractiveness of each area can be inferred by the competitiveness of the

venues inside, the number of check-ins and location of areas from the
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dataset.

The last three columns of Table 5.3 show the home location prediction

accuracy of our models and baselines. We measure the error distance

defined by the average distance from predicted home location to actual

home locations of users. From the result in Table 5.3, we conclude that

our model outperforms the two baselines, making 57.7% and 28.8% im-

provement over the COM and the MCV methods respectively.

Table 5.3: Result of synthetic data with different ρ of V AN model. The best
result is highlighted.

Pearson correlation Error distance(km)
ρ V ANSigmoid V ANCDF CCount V AN COM MCV

0.1 0.85 0.87 0.71 5.2 8.2 6.7
0.5 0.66 0.65 0.63 5.4 7.4 6.8
1.0 0.44 0.33 0.28 6.1 8.1 7.2

From the experiment results of V AN model in the above two tasks, we

conclude that V AN can recover the competitiveness of venues as well as the

users’ home locations. Moreover, V AN also achieves good result even if the

data generation process does not follow strictly to the model.

5.5 Evaluation using Real Data

We evaluate our proposed VAN models on real datasets in four separate tasks.

We first conduct experiments to evaluate the VAN models in home location

prediction task. We also evaluate the venue competitiveness learned by VAN

models using some case studies. Next, we conduct another experiment to

evaluate the VAN models in check-in prediction task. Lastly, we show the

robustness of models when area boundaries are modified.

Similar to the experiments in Section 5.4, the geography degree is chosen

as the unit of parameter s. Moreover, the definition of the neighbors of a

venue v, N(v), is adopted from Section 5.4.
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5.5.1 Home Location Prediction

Description: In this task, we aim to predict the home locations of users

using our VAN models and some baselines. Among the baseline methods for

comparison the is PMM model is the state-of-the-art home location prediction

method.

Setup: In total, we have the exact home locations of 856 users in H SG

dataset. However, there are 341 of them whose home locations cannot be

predicted by PMM model as these users have too few check-ins or too few

venues not giving PMM enough data to learn their home locations. Hence, we

will conduct the experiment on the remaining 515 users.

In the experiment, we separate 515 users into five folds each with 103 users.

For each run, we hide the home location of users in one fold and use all check-

in data from all five folds and home location of users from the remaining four

folds as input. Each model will then predict the home location of users in the

hidden fold.

For PMM, only the check-ins of users are used to predict their home loca-

tions. Hence, each time, we select one fold and predict home locations of users

in that fold by their check-in data.

Similar to H SG, there are 154 out of 455 users in H JK whose home

locations could be predicted by PMM. We therefore divide them into five folds

in the experiment.

Note that our model could perform over the entire dataset but to guarantee

fairness, we only conduct this experiment over the subset of users in which

PMM could predict in both datasets.

Baselines: We consider several baselines below in this home location pre-

diction task.

� Center of the mass (COM): This model returns the center of the mass

of all check-ins of a user as his/her home location. Formally, a user with

n check-ins at (xi, yi)’s has home location predicted at xc =
∑n
i=1 xi
n

and
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yc =
∑n
i=1 yi
n

.

� Most check-in venue (MCV): This model selects the most frequent

check-in venue of a user as his/her home location.

� Periodic Mixture Model (PMM): This model was proposed by Cho

et al. [14] and it groups check-ins of a user into two clusters named home

and work. The Home cluster represents non-working hours check-ins.

We return the center of home cluster as the predicted home location of

the user.

Performance Measure: We measure the distance between the predicted

home venue pi and the actual home location hi of user i. The overall per-

formance is thus defined by the average error distance (AED) between

all predicted home locations and actual home locations. Moreover, we define

another metric prec@k is ratio of users whose distance from their predicted

location to actual home is less than k.

errorm = ∑i∈U dist(pi, hi)
∣U ∣

;prec@k = ∣{i ∶ dist(pi, hi) < k}∣
∣U ∣

(5.15)

where dist(⋅, ⋅) returns the physical distance between two locations by haversine

formula. In our experiment, we choose k = 5km.

Result: Table 5.4 depicts the performance of baselines and our models

with different s parameter values in the two datasets H SG and H JK.

In the case of H SG dataset, our VANSigmoid and VANCDF models out-

perform PMM model by 12.34% and 13.16%, respectively. Compared with

other baselines, the VAN models yield accuracy with up to 28% improvement.

The superior performance of VAN models is not affected by the s parameter.

For H JK, we observe that the performance of our VAN models is affected

by the s parameter setting. The optimal s value is 0.025. Under this setting,

our VAN models outperform PMM and other baselines. The reason for the
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poorer performance in this dataset may be due to the sparsity of check-ins in

this dataset.

The poor performance of COM and MCV in both datasets compared

to V AN model comfirms the result of synthetic data. However, we do not

have the groundtruth of competitiveness of venues so we cannot compare like

synthetic data.

Table 5.4: Home prediction result of H SG and H JK. Metric of error in this
table is meter. prec@5km is surrounded by brackets. The best result of each
dataset is highlighted.

AED(prec@5km)
s H SG H JK

COM - 6570.3 (46.2%) 5564.4(43.4%)
MCV - 7117.7 (40.3%) 5547.2 (45.5%)
PMM - 6126.3(49.3%) 4823.2(60.8%)

V ANSigmoid

0.1 5561.8(50.7%) 5623.8(53.3%)
0.05 5046.4(59.8%) 5125.2(60.4%)
0.025 5475.2(56.7%) 4757.8(64.4%)

V ANCDF

0.1 5564.6(51.46%) 5331.1(56.1%)
0.05 5181.6(60.4%) 4866.1 (59.1%)
0.025 5213.8(56.9%) 4357.2(68.2%)

5.5.2 Venue Competitiveness Ranking

In this section, we will use the check-in data of 856 users including their home

locations and the locations of venues to infer the competitiveness of all venues

in H SG dataset. The venues ranking is ordered by decreasing competitiveness

values.

Table 5.5 shows the top 15 venues based on the competitiveness values

learned by VANCDF model with s = 0.1. Due to the lack of language knowl-

edge, we only conduct the evaluation with this configuration for H SG and

the result of H JK is not included.

Queenstown MRT Station receives 241 check-ins from six users but the

check-ins are not evenly distributed among them. Most of check-ins are from

one user. He is an active user who has 770 check-ins on 112 venues but 231 of
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Table 5.5: Top 15 venues of VANCDF for H SG with s = 0.1. The third
column is the competitiveness value of venues.

Rank Venue Name σv # of # of check-ins
users check-ins per user

1 Nex Serangoon 6.36 128 476 3.71
2 Cineleisure Orchard 6.28 148 397 2.68
3 ITE College Central 6.23 41 361 8.80
4 VivoCity 6.19 158 296 1.87
5 Ngee Ann Polytechnic 6.14 22 293 13.3
6 Bugis Junction 6.097 129 242 1.87
7 ION Orchard 6.096 135 271 2
8 Queenstown MRT Station 6.095 6 241 40.1
9 E!hub Downtown East 6.09 53 275 5.18
10 Singapore Changi Airport 6.06 139 258 1.85
11 Plaza Singapura 6.05 114 249 2.18
12 AMK Hub 6.04 92 242 2.63
13 Jurong Point 6.03 88 235 2.67
14 313@somerset 6.026 114 235 2.06
15 Causeway Point 6.026 80 240 3

his check-ins are on Queenstown MRT Station. Moreover, his home location

is also near to Queenstown MRT Station, i.e., 210 meters away. This is the

outlier case in our dataset. This case example shows a weakness of our model

which cannot handle the case of significant number of check-ins from one or

very few users.

To understand the high competitiveness rank of Ngee Ann Polytechnic and

ITE College Central, we take a look at their users who made check-ins to

these places. The result is not surprising. Most users of these places are

young people and students of these schools. Moreover, these people are living

around Singapore. Therefore, these schools gain more competitiveness from

the students who perform frequent check-ins.

For other cases in Table 5.5, they are crowded hubs of Singapore where

tourists and local people visit. For example, Singapore Changi Airport is an

international airport which sees more than 54 millions passenger movements

per year. All the others venues are popular shopping malls in Singapore.

To quantify the ranking performance, we compare our ranking with
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Table 5.6: The correlation of Foursquare score and VANCDF model and Cks
Model through Jaccard similarity score. The best performance is highlighted.

Metric VAN Cks Model
Jaccard@20 5.21% 3.15%
Jaccard@50 6.41% 4.64%
Jaccard@100 8.89% 6.82%

Foursquare score which is the aggregate score from the feedbacks of users.

The baseline is number of check-ins denoted as Cks Model. In Cks Model, the

more check-ins the venue has, the higher rank it is. The metric is Jaccard@k.

Particularly, we select the top-k venues by each ranking and compute the Jac-

card score with top-k venues returned by Foursquare scores. The higher the

value, the better the model. Table 5.6 shows the performance of VAN model

and Cks Model. Across different values of k, the performance of VAN model is

better than Cks Model since it is closer to the ranking of the feedback of users

represented by Foursquare score.

5.5.3 Check-in Prediction Task

In this part, we will present the result of check-in prediction task. This task

predicts check-ins between users and venues.

Setup: We sort check-ins in the H SG and H JK datasets by time and

then divide each dataset into 10 folds. For each iteration, we hide one fold as

test set and use the remaining nine folds as training set.

Baselines: In order to compare the performance of our model, we use

some baselines below

� Probabilistic Matrix Factorization PMF : It was proposed by Mnih et.

al. [62] and was widely adopted to many research areas including check-

in prediction. Its idea is to factorize check-in matrix of users and venues

into user-feature and venue-feature matrix alone. The parameter for this

method is K the number of features for user-matrix and venue-matrix so

we use the default value K = 10.
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� Multi-center Gaussian Model MGM : Cheng et. al. [12] proposed a check-

in prediction method based on multiple Gaussian distributions. Its main

idea is to construct the centers of activity of users and each center is

represented by a Gaussian distribution. Thus, its idea of areas is similar

to our model but in our case, we pre-define areas for all venues while

MGM automatically detects areas for each user. To detect the clusters

for MGM, we apply the non-parametric method from Blei et. al. [7]

which brings us fast speed via variational inference and the number of

clusters automatically. For α parameter of MGM, we use the default

value α = 0.2 to run experiment.

� Fusion Framework PMF-MGM : It is the combination between matrix

factorization and MGM [12]. Cheng et. al. reported that fusion frame-

work outperforms PMF and MGM models. Thus, we use PMF with

MGM as its component to predict the check-in of users.

� Matrix Factorization with Neighborhood Influence N-MF : Hu. et.

al. [35] studied the intrinsic and extrinsic characteristics of geographical

neighbors upon the matrix factorization framework. We use the default

number of latent features K = 20 and two venues are neighbor if their

distance is less then a predefined threshold d. In our experiment, we

examine 100 meter and 200 meter as the value of d.

� Exposure Matrix Factorization with locations as exposure covariates

Expo-MF : The model of Liang et. al. [57] is the state-of-the-art variance

of matrix factorization to investigate user exposure1. It can incorporate

the location of venues in order to increase the performance. Similar to

their experiment, we apply K-Means to cluster venues, the location vec-

tor of each venue is its probability to each cluster. We use the default

number of latent features K = 100 and it is also equal to the number of

1https://github.com/dawenl/expo-mf
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clusters in K-Means.

Performance Measure: After training, for each user, we select the top k

venues predicted by each method and compare against all the venues checked

in by the users in the test data. Note that the user may have more or less than

k check in venues in the test data. We use recall@k and precision@k as the

metric to compare the performance of our model and the baselines. Finally,

we report the average values of each metric for all folds.

recall@k = 1

∣U ∣ ∑u∈U
∣L(u, k) ∩ Lt(u)∣

∣Lt(u)∣

precision@k = 1

∣U ∣ ∑u∈U
∣L(u, k) ∩ Lt(u)∣

k

(5.16)

where L(u, k) is the top k venues of each user u of each predictive method;

Lt(u) represents set of venues of user u in test set and ∣ ⋅ ∣ returns the number

of elements of set.

Results: The result of check-in prediction task for two datasets H SG and

H JK are shown in Table 5.7 . In our experiment, our model with Sigmoid or

CDF function always outperforms all baselines in both datasets. For instance,

in H SG, our model could reach up to three times better than PMF and 10

times better than MGM . Overall, in both datasets, if we reduce the size of

area, the performance of V AN model decreases. Specifically, the performance

of size of 0.05 is usually better than the one of size of 0.025 but less accuracy

than size of 0.1. Additionally, the result of V ANCDF is usually better than

the performance of V ANSigmoid. Between two baselines, MGM has better

performance than PMF in H JK dataset but in H SG, the result of MGM

does not overcome the one of PMF. PMF-MGM is the hybrid of MGM and

PMF so its performance is in the middle of both models.
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5.5.4 Area Boundary Shift

In this section, we examine the robustness of our model by shifting the area

without changing the area size. Specifically, we shift the area and measure the

check-in prediction performance of our model.

Setup: Since we evaluate by check-in prediction task, we reuse the setup

and performance metrics (i.e. recall@k and precision@k) from the previous

tasks. Recall that we create areas by dividing the city into grid cells of equal

width. The boundaries of areas are defined by the vertical and horizontal

lines sharing the same longitudes and latitudes, respectively. As the choice of

these boundary lines can change, we would like to know if shifting the grid

cells could affect the check-in prediction performance of our model. We choose

V ANCDF to be examined in this experiment since it has the best check-in

performance (see Table 5.7). We use V ANx and V ANy to denote our model

if grid cells shift 0.05 degree on latitude and longitude respectively. Finally,

we denote V ANxy is the model if the shifting is 0.05 on both latitude and

longitude simultaneously. Since the move is one half of the area width, a shift

in either direction leads to the same form of grid cell generation.

V ANCDF V ANx V ANy V ANxy
4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

%

H SG

V ANCDF V ANx V ANy V ANxy
0.375

0.380

0.385

0.390

0.395

0.400

0.405
H JK

precision@20 recall@20

Figure 5.2: precision@20 and recall@20 in H SG and H JK of V ANCDF

with s = 0.1 under different ways of constructing areas.

Result: Figure 5.2 shows the performance of V ANCDF with s = 0.1 un-

der different ways of constructing areas. From the figure, we firstly observe

that despite of shifting the grid, the performance of V AN is stable under pre-
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cision and recall metric since the difference of our original construction and

the shifting ones are under 5%. Specifically, the maximum difference between

V ANCDF and its shifting variant models is 1.42% under precision@20 met-

ric and 4.55% under recall@20 metric in H SG dataset. Secondly, in both

datasets, the performance differences among various models are less than 5%.

From these observations above, we can conclude that V AN model is robust

under area shifting.
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Chapter 6

Modeling Neighborhood

Competition and Area

Attraction with Latent Features

So far, we have modeled neighborhood competition and area attraction using

a Bayesian approach. The VAN models developed in this approach have not

considered user preference and venue topics which are latent. As VAN models

also assume the availability of user home location information, they cannot

be applied in application scenarios that do not have such information. In this

chapter, we therefore develop an improved model by (1) discarding the user

home location assumption and dropping distance effect from model design; and

(2) incorporating the user and venue latent factors to enhance the modeling of

neighborhood competition.

6.1 Proposed Model

In this section, we propose a model called Visitation by Attractiveness and

Neighborhood competition Factorization (VANF). The VANF model is an ex-

tension of standard non-negative matrix factorization to model check-in behav-

ior incorporating area attraction, and neighborhood competition. The VANF
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Table 6.1: Table of Notations.

Notations Meaning

U , V , C set of all users, venues and check-ins
Ui latent feature vector of user i
Vv latent feature vector of venue v
wiv number of check-in of user i to venue v
wv total number of check-in of venue v
av area av containing venue v
s the width of area
N(v) set of neighbor venues of v
La(⋅) Logistic function with steepness a
p(i→ av) probability of user i visiting area av
λu, λv, λf regularization of user, venue vectors and friendship

also incorporates social homophily effect when users are connected with one

another. In Section 6.1.1, we will first define the important concepts in the

VANF model and its model assumptions. We then introduce the model for-

mally in Section 6.1.2. The learning of VANF model parameters is given in

Section 6.1.3.

6.1.1 Model Description

In the VANF model, we model each user i or venue v as a vector of latent

features Ui and Vv respectively. When user i and venue v have preferences

on similar latent features, UT
i Vv returns a large value implying that user i is

likely to perform check-in on venue v. We also use wiv to denote the number of

check-ins by user i on venue v. Readers can refer to Table 6.1 for the notations

used in the VANF model.

To model area attraction, we again divide the city into mutually exclusive

square grid cells of width s. We use av to denote the square or area which

contains v. The VANF model makes the following assumptions for each check-

in between a user and a venue:

� First of all, every user chooses an area to perform a check-in based on a

combination of area attractiveness and the user’s preference on the area.

Area attractiveness is a quantitative measure defined to capture how well
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Figure 6.1: Logistic function f(x) = 1

1 + exp(−a ⋅ x)
with different values of

steepness a.

the area can attract users based on the venues within the area.

� Secondly, every venue inside an area must compete against its neighbor-

ing venues in order to gain a check-in from the user.

The neighbors of a venue v, denoted as N(v), are venues within av and

the areas adjacent to av are denoted by Adj(av). That is, N(v) = {v′∣v′ ∈

Adj(av)} ∪ {v′∣v′ ∈ av} ∖ {v}. We consider the venues in Adj(av) as neighbors

because we want to include venues in these nearby areas as competitors of v

even when v is near the border of av.

For a user i, the attractiveness σiav of area av is defined by the summation

of the interaction between the user preference Ui and each latent features Vv′

of venue v′ inside an area av. That is, σiav = ∑
v′∈av

UT
i Vv′ . It means that the

venues inside the area collectively attract a check-in from user i.

Every check-in of user i to venue v follows a two-step process. Firstly, user

i must select the area av. Secondly, the venue v in area av must win over all

other neighboring venues in N(v) to gain a check-in from user i.

� User i selects the area av under the effect of attractiveness σiav of area

av. We represent this by assigning a probability which is proportion to

σiav .
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Figure 6.2: Example of Check-in graph.

� To model the winning of venue v over its neighbors, we need to employ

the preference of user i to determine if the check-in is performed or

not. We assume that if the latent similarity between user i and venue

v is higher than the one between user i and the neighbors v′ of v, the

probability that i visits v (denoted as pi(v > v′)) is higher than the

one between i and v′ . We therefore map the value of UT
i Vv − UT

i Vv′ to

interval [0, 1] so as to model pi(v > v′). When pi(v > v′) > pi(v′ > v), user

i is likely to make check-in on v rather than v′. We define pi(v > v′) =

La(UT
i Vv − UT

i Vv′) = 1

1 + exp(−a(UT
i Vv −UT

i Vv′))
where La is a logistic

function [38] with steepness parameter a. Logistic function is a function

family which Sigmoid function belongs to. Sigmoid function is a logistic

function with a = 1. When a goes to infinity, logistic function turns into

an indicator function. Figure 6.1 shows logistic function with different

values of steepness.

Example: Figure 6.2 depicts two check-ins at venue v by user i, i.e. wiv = 2.

To perform each check-in at venue v, user i has to select area (b,3) (enclosed

by a red box) considering the similarity between the preference of user i and

the venues within the area. Moreover, venue v needs to win over all of its

neighbors in the adjacent areas enclosed by the square box in green.
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6.1.2 Model Formalization

We now formally define the VANF model. In the VANF model, the probability

piv of a check-in from user i to venue v is defined by the following formula:

piv = p(i→ av) ∏
v′′∈N(v)

pi(v > v′′) (6.1)

Equation 6.1 says that piv consists of two components: p(i→ av) denoting

the probability of user i selecting area av and pi(v > v′′) representing the

probability that user i prefers to perform check-in on venue v over its neighbor

v′′.

Recall that Ui and Vv denote the latent feature vectors of user i and venue

v respectively. We thus define p(i→ av) as

p(i→ av) = ∑
v′∈av

p(v′∣i) = σiav = ∑
v′∈av

UT
i Vv′ (6.2)

The second component of Equation 6.1 is defined as:

pi(v > v′′) = La(UT
i Vv −UT

i Vv′′) (6.3)

By substituting the components in Equation 6.1, we have:

piv = ( ∑
v′∈av

p(v′∣i)) ∏
v′′∈Nv

pi(v > v′′)

= ( ∑
v′∈av

UT
i Vv′) ∏

v′′∈Nv

La(UT
i Vv −UT

i Vv′′)

log piv = log ∑
v′∈av

UT
i Vv′ + ∑

v′′∈Nv

logLa(UT
i Vv −UT

i Vv′′)

(6.4)

Next, we define the log-likelihood L(C) of a set of check-ins C from users

of U on venues of V has the following form:

L(C) = ∑
(i,v)∈C

wiv log piv = L1(C) +L2(C) (6.5)

where
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L1(C) = ∑
(i,v)∈C

wiv log( ∑
v′∈av

UT
i Vv′)

L2(C) = ∑
(i,v)∈C

wiv ∑
v′′∈Nv

logLa(UT
i Vv −UT

i Vv′′)
(6.6)

To learn the latent features and other variables of users and venues in VANF

model, we maximize the log-likelihood defined in Equation 6.5. Formally, we

have the optimization problem defined below:

{U∗
i , V

∗
v }i∈U,v∈V = arg max

i∈U,v∈V
(L(C) − λ(C)) (6.7)

where λ(C) is the regularization term that prevents overfitting [26]. In our

model, we use L-2 norm for λ(C) since it can be solved easily [26] and it is

widely applied in matrix factorization method [43, 49, 62]. Formally, λ(C) is

defined as

λ(C) = λu∑
i

∥Ui∥2
2 + λv∑

v

∥Vv∥2
2 (6.8)

where λu and λv are the regularization parameters for the latent features

of users and venues respectively.

Incorporating Social Homophily: Similar to [12], we model social ho-

mophily by adding a social regularizer λf ∑
(i,i′)∈F

∥Ui −Ui′∥2 to Equation 6.7. In

other words, if two users i and i′ have social connection between them, their

latent feature vectors Ui and Ui′ are expected to be similar. λf is the parameter

to control the importance of social homophily effect. Formally, we have a new

objective function

{U∗
i , V

∗
v }i∈U,v∈V = arg max

i∈U,v∈V
(L(C) −Λ(C)) (6.9)

where

Λ(C) = λ(C) + λf ∑
(i,i′)∈F

∥Ui −Ui′∥2 (6.10)
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6.1.3 Model Inference

To solve the optimization problem in Equations 6.7 and 6.9, we use Stochastic

Gradient Descent (SGD) [10]. SGD is a widely used technique to learn latent

features in matrix factorization-based framework [35, 60, 43]

In SGD, we first derive the derivative of the objective function with respect

to each variable. Each step of SGD only considers one user-venue pair (i, v).

We firstly select one user-venue pair randomly and take the derivative of

user feature vector Ui of the regularization

∂Λ((i, v))
∂Ui

= 2λuUi + 2λf ∑
(i,i′)∈F

(Ui −Ui′) (6.11)

∂L1((i, v))
∂Ui

= wiv
1

∑v′∈av U
T
i Vv′

∑
v′∈av

∂UT
i Vv′

∂Ui

= wiv
1

∑v′∈av U
T
i Vv′

∑
v′∈av

Vv′

(6.12)

∂L2((i, v))
∂Ui

= wiv ∑
v′′∈Nv

1

La(UT
i Vv −UT

i Vv′′)
∂La(UT

i Vv −UT
i Vv′′)

∂Ui
(6.13)

To simplify the formula, we introduce di,v,v′′ = UT
i Vv − UT

i Vv′′ . Recall that

La(di,v,v′′) is Logistic function of di,v,v′′ with steepness a i.e. La(di,v,v′′) =
1

1 + exp(−a di,v,v′′)
. Hence, we have the derivative of La(di,v,v′′) respected to

Ui:

∂La(di,v,v′′)
∂Ui

= a

(1 + exp(−a di,v,v′′))2
exp(−a di,v,v′′)(Vv − Vv′′) (6.14)

Secondly, we take the derivative of Vv. The derivative of regularization is

∂Λ((i, v))
∂Vv

= 2λvVv (6.15)
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The derivative of each component of the log-likelihood regarding Vv is

∂L1(i, v)
∂Vv

= wiv
1

∑v′∈av U
T
i Vv′

Ui + ∑
v∗∈av

wiv∗
1

∑v′∈av U
T
i Vv′

Ui

∂L2(i, v)
∂Vv

= wiv ∑
v′′∈Nv

1

La(di,v,v′′)
∂La(di,v,v′′)

∂Vv

(6.16)

Therefore, we have the derivative of La(di,v,v′′) respected to Vv as follow:

∂La(di,v,v′′)
∂Vv

= a

(1 + exp(−a di,v,v′′))2
exp(−a di,v,v′′)Ui (6.17)

The second step of SGD is to update latent feature vectors of users and

venues

Ui ← Ui − α(∂L(i, v)
∂Ui

− ∂Λ(i, v)
∂Ui

)

Vv ← Vv − α(∂L(i, v)
∂Vv

− ∂Λ(i, v)
∂Vv

)
(6.18)

where α is the learning step parameter of SGD.

Then, we repeat to the first step until the objective function gets conver-

gence.

6.2 Experiments and Results

In the absence of ground truth data, our proposed model VANF will be eval-

uated via check-in prediction task which predicts the number of check-ins for

user-venue pairs. We compare the check-in prediction accuracy of our model

with other baselines. We will also study the effects of model parameter settings

on the model performance. These parameters include the steepness of Logistic

function, area width and regularization. The variant of VANF model with

social homophily denoted as V ANFs is also evaluated in the next experiment.

Finally, we conduct experiment to evaluate the effectiveness of VANF model

in venue ranking against the Foursquare venue scores. We also present some

latent features of venues learned by VANF.
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6.2.1 Experiment Setup

We divide check-in data into training and test sets. We sort check-ins in the

SG, JK and NYC datasets by their created time and then divide each dataset

into five folds. For each run of experiment, we hide one fold as test set and use

the remaining four ones as training set. Particularly, for each run, we use four

folds for learning model parameters, and then these learned values are used to

predict the number of check-ins between users and venues in the hidden fold.

Performance Measures: We use two sets of metrics to measure the

performance of our models as well as the baselines. The first set consists of

recall@k and nDCG@k which focus more on top ranked results returned by

each model. The second set includes average precision (AP ) and area under

the curve (AUC) which measure the overall performance.

After training, for each user, we rank all venues according to their predic-

tion scores returned by each model. The venues visited by the same user in the

test data are the ground truth. We then compute the different performance

measures based on the predicted venue ranking. The performance measures

are averaged over all users. We finally derive the mean of the average perfor-

mance measures over all the folds. We do not use precision@k because we

cannot distinguish between a user disliking a venue and a user not knowing

the venue [82].

The formula of recall@k and nDCG@k are presented below:

recall@k = 1

∣U ∣ ∑u∈U
∣L(u, k) ∩ Ltest(u)∣

∣Ltest(u)∣

nDCG@k = 1

∣U ∣ ∑u∈U
DCG@ku
IDCG@ku

(6.19)

where L(u, k) is the top k venues of each user u returned by the model; Ltest(u)

represents the set of venues of user u in test set. Function ∣ ⋅ ∣ returns the set

cardinality.
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DCG@ku =
∣L(u,k)∣

∑
i=1

2relui − 1

log2(i + 1)

IDCG@ku =
∣Ltest(u)∣

∑
i=1

2relui − 1

log2(i + 1)

(6.20)

To measure DCG@k, we first select the top k venues of each user returned by

each method. relui is the relevance score of the i-th rank venue of user u. In

our experiment, relui = 1 if i ∈ Ltest(u); otherwise, relui = 0. The nDCG@ku

is DCG@ku normalized by the DCG@ku of the ideal ranking IDCG@ku of

top-k venues for user u.

The formal definitions of AUC and AP are described below:

AUC = 1

∣U ∣ ∑u∈U
1

∣E(u)∣ ∑
(v,v′)∈E(u)

δ(puv > puv′)

AP = 1

∣U ∣ ∑u∈U
∑
n

(Ru
n −Ru

n−1)P u
n

(6.21)

where E(u) = {(v, v′)∣v ∈ Ltest(u)∧v′ ∉ (Ltest(u)∪Ltrain(u))} and Ltrain(u)

represents the set of venues of user u in training set. In other words, E(u) is

the set of venue pairs with the 1st venue element in the test set of user u but

the second value element without having any implicit feedbacks from user u.

Function δ(⋅) is the indicator function that returns 1 if the boolean expression

inside is true and 0 otherwise.

AP is average precision metric which summarizes the plot as the weighted

mean of precision achieved at each threshold with the increase in recall from

the previous threshold used as the weight. In the formula of AP , P u
n and Ru

n

are the precision and recall at the n-th threshold of user u.

Default Parameter Setting: For all experiments, we set the number of

latent features to 10. The width of area is s = 0.01 geographical degree. The

default steepness of Logistic function is a = 2.0 since it yields us the best pre-

diction performance for the V ANF model (See more details in Sections 6.2.4

and 6.2.6). For regularization, we use the default λu = λv = 0.01 because it

does not bias toward users nor venues. In most of the experiments, we use
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Table 6.2: Check-in Prediction Results: We boldface the best results for each
performance measure. a = 2.0, s = 0.01, f = 10, λu = λv = 0.01 and λf = 0.01
for V ANFs. The symbol ∗ indicates that V ANFs method performs signif-
icantly better than V ANF while � indicates V ANF or V ANFs performing
significantly better than the best baseline.

Metrics V ANF V ANFs PMF MGM PMF-MGM N-MF Expo-MF SBPR
100m 200m

SG
recall@20 7.06% � 7.71% ∗� 1.93% 1.3% 2.21% 0.93% 0.9% 6.5% 1.17%
recall@50 10.84%� 11.24%∗� 2.6 % 2.17% 3.12% 1.3% 1.26% 7.8% 1.95%
recall@100 14.46%� 15.26%∗� 3.42% 3.22% 3.92% 1.61% 1.6% 9.12% 2.4%
nDCG@20 9.21% � 9.5% ∗� 5.21% 4.92% 5.08% 1.94% 1.4% 8.69% 3.21%
nDCG@50 6.9% � 7.32% ∗� 4.43% 4.05% 4.55% 1.67% 1.07% 6.12% 2.54%
nDCG@100 6.08% � 6.85% ∗� 4.13% 3.83% 4.16% 1.11% 0.94% 5.72% 2.03%

AP 70.21%� 72.11%∗� 61.17% 59.73% 61.81% 54.65% 53.91% 68.11% 53.17%
AUC 74.18%� 75.05%∗� 60.73% 58.14% 61.9% 55.59% 54.09% 72.08% 51.25%

JK
recall@20 3.63%� 4.03% ∗� 2.5% 0.15% 2.8% 0.17% 0.175% 2.7% 0.75%
recall@50 6.5%� 7.3% ∗� 3.86% 0.23% 3.51% 0.67% 0.8% 4.81% 1.01%
recall@100 8.75%� 9.87% ∗� 5.81% 0.31% 5.9% 1.8% 1.95% 6.01% 1.78%
nDCG@20 5.2%� 5.95% ∗� 2.61% 1.07% 2.71% 1.2% 1.25% 4.87% 1.63%
nDCG@50 4.74%� 5.02% ∗� 2.09% 0.92% 2.44% 0.94% 0.95% 4.05% 1.13%
nDCG@100 4.09% � 4.63% ∗� 1.84% 0.79% 1.98% 0.84% 0.86% 3.82% 0.92%

AP 68.28%� 69.78%∗� 58.28% 54.28% 59.79% 53.25% 54.39% 62.02% 55.77%
AUC 75.41%� 76.35%∗� 61.51% 58.12% 52.13% 49.23% 47.42% 74.08% 56.36%

NYC
recall@20 4.39% 4.53% ∗ 3.2% 1.47% 3.51% 2.07% 2.51% 4.78% 2.72%
recall@50 5.52% � 5.88% ∗� 4.84% 2.89% 4.94% 3.64% 4.21% 5.28% 4.28%
recall@100 7.58% � 8.17% ∗� 6.26% 3.4 % 6.93% 4.29% 4.95% 6.91% 4.89%
nDCG@20 6.72% � 6.89% ∗� 3.15% 2.73% 3.75% 2.83% 2.89% 5.92% 2.8%
nDCG@50 5.27% � 6.06% ∗� 2.43% 2.18% 2.58% 2.34% 2.44% 5.01% 2.03%
nDCG@100 4.76% � 4.9% ∗� 1.85% 1.34% 1.92% 1.95% 2.05% 4.52% 1.85%

AP 69.54%� 69.71%∗� 61.45% 58.73% 62.12% 59.51% 59.91% 65.29% 60.24%
AUC 74.15%� 75.92%∗� 62.38% 58.14% 63.49% 59.66% 60.15% 73.4% 61.52%

λf = 0 since the performance with and without social homophily of V ANF

model show the same trends. The learning rate of SGD algorithm is kept at

10−6.

6.2.2 Check-in Prediction

In this section, we compare the performance of our V ANF model and its

extension V ANFs with social homophily with several baseline models. These

baseline models are also based on matrix factorization framework and they

include:

� Probabilistic Matrix Factorization PMF [62]: PMF factorizes check-in

matrix into user-latent factor and venue-latent factor matrix alone. We

use the number of latent factors K = 10. We use the implementation
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provided by the authors1.

� Multi-center Gaussian Model MGM [12]: MGM uses multiple Gaus-

sian distributions to model the activity centers of users. For each user,

we automatically detect the clusters of check-ins by applying the non-

parametric method from Blei et. al. [7]. We use the MGM implementa-

tion from Scikit-learn [65]. Each cluster is assigned as an activity center

of a user. The α parameter of MGM which controls the weight of high

frequent check-ins venues is set to default value α = 0.2.

� Fusion Framework PMF-MGM [12]: PMF-MGM combines matrix fac-

torization and MGM. It is reported to outperform PMF and MGM mod-

els. The probability of a user visiting a venue is determined by fusing the

user’s preference on that venue (returned by PMF ) and the probability

of if he/she will visit that place (returned by MGM ).

� Matrix Factorization with Neighborhood Influence N-MF [35]: N-MF

explores the characteristics of geographical neighbors based on the matrix

factorization framework. The authors focused on studying the spatial

homophily. We use the number of latent features K = 10 and two venues

are neighbors if their distance is less then a predefined threshold d. In

our experiment, we set d to be 100 meters and 200 meters.

� Exposure Matrix Factorization Expo-MF [57]: Expo-MF incorporates

the location of venues and user exposure into the modeling of check-

ins behavior of users. Similar to their experiment conducted in [57], we

apply K-Means to cluster venues, the location vector of each venue is its

probability to each cluster. We use K = 10 for both the number of latent

factors and the number of clusters in K-Means2.

� Social Bayesian Personalized Rankings SBPR [95]: SBPR assumes that

1https://www.cs.cmu.edu/rsalakhu/software.html
2https://github.com/dawenl/expo-mf
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users tend to assign higher ranks to items that their friends prefer. In our

experiment, we adopt the default parameters represented in the original

paper. Specifically, the number of latent feature is set to 10 and the

regularization parameters of users, venues and bias are 0.015, 0.025 and

0.01 respectively.

Parameter Setting: For our experiment, we adopt a default parameter

setting. The number of latent factors is 10 by default to compare fairly with

the baselines i.e. f = 10. The steepness of logistic function is a = 2.0, the width

of area is s = 0.01. For regularization, we use λu = λv = 0.01. We also test the

performance of the extension V ANFs with social homophily. In V ANFs, the

regularization of social homophily is λf = 0.01.

Result: Table 6.2 shows the performance of our V ANF model and the

baselines under different metrics. Recall that the larger the value of each

metric, the better the model. Therefore, the most important observation which

we could draw from the table is that our model with default parameter setting

outperforms all the baselines in general. In SG, JK and NYC datasets,

the performance of our methods is always better than the baselines but the

performance gap between V ANF and the baselines in SG dataset is larger

than that in JK and NYC datasets. The reason is that the data of JK

and NYC are sparser than the one of SG dataset. Among the baselines,

PMF-MGM and Expo-MF perform better than other baselines. It happens

due to the fact that these baselines cluster venues into different groups so

that they could create some area attraction effects. V ANF model takes one

step further by incorporating the neighborhood competition effect. From the

results, we conclude that the impact of neighborhood competition is crucial in

understanding the visitation of users in LBSNs.

From Table 6.2, we observe that using social homophily actually improves

the performance of our model since the performance of V ANFs is better than

that of V ANF in the SG, JK and NYC datasets. The second observation
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is that the improvement with social homophily is more significant in JK and

NYC dataset than in SG dataset. For example, in SG dataset, social ho-

mophily helps us enhance 6.13% on average. The improvement in JK dataset

is 12.03%. The reason could be that JK and NYC is sparser than SG so

the additional information including to JK or NYC improve accuracy more

significantly than the denser one (i.e. SG dataset).

The performance of SBPR depends heavily on the social networks of users.

It is therefore not a surprise that its performance in the three datasets is not

better than Expo-MF which focuses more on location of venues. Specifically,

among the three datasets, NYC has the highest ratio of social connections

and total pairs of users (0.004%) but this ratio mentioned in the original pa-

per [95] is at least two times larger (0.01%). The reason could be that users in

LBSN networks focus more on spreading their visitation than building social

connection.

Significance Test: We further apply the hypothesis testing to examine if

the improvement of our model is actually significant over the baselines. Since

we have many baselines, we only compare the performance of V ANF and

V ANFs with the best baseline (i.e. Expo-MF). In this case, the null hypoth-

esis is that the performances of our models (i.e. V ANF and V ANFs) and

the baseline are not different while alternative hypothesis is that our models

are significantly better than the baseline. To verify the hypothesises, we apply

pair t-test [33] to compare the result of each metrics of V ANF and V ANFs

to the selected baseline. From the result in Table 6.2, we show that V ANF

and V ANFs are significantly better than the best baseline (i.e. Expo-MF) in

most of the cases. For recall@20 in NYC dataset, the significance test fails

to verify Expo-MF is better than V ANF and V ANFs models. Particularly,

the p-value of the test is 0.07 so the superior performance of Expo-MF is not

significantly better than V ANF and V ANFs models. Moreover, we also apply

the above significance test to illustrate if social homophily actually improves
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the performance of V ANF and V ANFs models. Particularly, the null hypoth-

esis is that the performance of both V AN and V ANs models are not different

while the alternative hypothesis is that V ANs is significantly better than V AN

model. As shown in Table 6.2, using social homophily helps us improve the

performance of V AN model significantly.

6.2.3 Check-in Prediction for Cold Start Users

In this section, we evaluate V ANF and V ANFs for cold start users who do

not have many check-in records in our datasets.

Setup: In this experiment, we keep the same test set but in the training

set, we define a user to be a cold start user if he/she has no more than 5

check-ins. The remaining users are removed from the training sets.

Parameter Settings: In this experiment, we keep the default parameter

setting of V ANF and V ANFs as described in Section 6.2.1. For the baselines,

we use the parameter as described in the previous experiment.

Result: Table 6.3 shows the performance of our models and the baselines.

In most of the cases, the performances of V ANF and V ANFs are better than

the performances of the baselines. We have one exception of AUC in JK

dataset when Expo-MF outperforms V ANF model by a small margin. In this

experiment, we also observe that Expo-MF is the best among the baseline

models. For this reason, we apply the significance test between our models

(i.e. V ANF and V ANFs) and Expo-MF to check if our models are signifi-

cantly better than the best baseline. Moreover, we also test the significance of

improvement of adding social homophily by comparing V ANF and V ANFs.

From the result shown in Figure 6.3, we find that V ANF and V ANFs are sig-

nificantly better than Expo-MF. Moreover, adding social homophily actually

improves the performance of model. For the exception of AUC for JK, we also

apply the statistical test but could not find Expo-MF perform significantly

better than V ANF and V ANFs.

90



CHAPTER 6. MODELING NEIGHBORHOOD COMPETITION AND AREA ATTRACTION WITH

LATENT FEATURES

Table 6.3: Check-in Prediction Task (Cold start Users). We boldface the best
result for each performance measures. The parameters a = 2.0, s = 0.01, f = 10,
λu = λv = 0.01 and λf = 0.01 for V ANFs. The symbol ∗ indicates that V ANFs
performs significantly better than V ANF while � indicates the superiority of
V ANF or V ANFs over the best baseline according to significance testing.

Metrics V ANF V ANFs PMF MGM PMF-MGM N-MF Expo-MF SBPR
100m 200m

SG
recall@20 7.09% � 7.92% ∗� 1.05% 0.91% 1.58% 0.5 % 0.51% 4.2% 1.55%
recall@50 8.81 %� 9.06% ∗� 1.46% 1.13 % 1.91% 0.55% 0.62% 5.9% 2.17%
recall@100 8.94%� 9.65 %∗� 2.9 % 1.87 % 2.95% 0.71% 0.75% 6.75% 4.87%
nDCG@20 7.13% � 8.9% ∗� 2.21% 1.57% 2.35% 0.98% 1.1 % 5.87% 1.82%
nDCG@50 6.44% � 7.32% ∗� 1.84% 1.06% 1.95% 0.52% 0.78% 4.19% 1.13%
nDCG@100 5.08% � 6.13% ∗� 0.86% 0.45% 1.07% 0.5 % 0.56% 3.39% 0.87%

AP 65.91%� 67.41%∗� 55.18% 53.12% 58.58% 50.75% 52.37% 61.78% 57.29%
AUC 67.18%� 69.79%∗� 52.18% 51.14% 53.09% 51.45% 53.91% 63.46% 58.45%

JK
recall@20 3.52% � 4.18% ∗� 1.03% 0.93% 1.34% 0.67% 0.72% 2.86% 1.37%
recall@50 4.45% � 5.73% ∗� 1.27% 1.02% 1.96% 0.93% 0.98% 3.42% 2.31
recall@100 4.96% � 6.54% ∗� 1.88% 1.25% 2.37% 1.71% 1.83% 4.04% 3.28%
nDCG@20 4.06% � 4.67% ∗� 1.02% 0.98% 1.24% 0.82% 0.93% 3.67% 1.31%
nDCG@50 3.63% � 3.88% ∗� 0.95% 0.74% 1.03% 0.71% 0.81% 2.54% 1.03%
nDCG@100 3.16% � 3.25% ∗� 0.88% 0.58% 0.91% 0.68% 0.7% 2.01% 0.92%

AP 62.25%� 64.51%∗� 53.17% 52.18% 53.58% 52.25% 52.94% 60.71% 55.48%
AUC 61.87% 64.35%∗ 51.28% 52.72% 53.39% 51.92% 51.46% 62.04% 56.84%

NYC
recall@20 3.89%� 4.15%∗� 1.32% 1.05% 1.48% 1.06% 1.2 % 2.51% 2.77%
recall@50 4.55%� 4.78%∗� 1.59% 1.3 % 1.68% 1.4 % 1.77% 3.17% 3.71%
recall@100 5.61%� 5.83%∗� 1.84% 1.42% 1.91% 1.74% 1.89% 4.54% 4.53%
nDCG@20 3.66%� 3.78%∗� 1.2 % 1.01% 1.57% 1.2 % 1.24% 2.62% 2.83%
nDCG@50 2.85%� 3.04%∗� 1.05% 0.96% 1.09% 1.1 % 1.12% 2.00% 2.32%
nDCG@100 2.15%� 2.58%∗� 0.92% 0.83% 0.98% 0.99% 1.09% 1.87% 2.01%

AP 55.21%� 58.91%∗� 51.15% 49.77% 51.72% 50.17% 50.23% 52.43% 53.67%
AUC 52.12%� 54.76%∗� 50.14% 48.66% 50.21% 50.25% 50.3 % 51.11% 51.21%

From Tables 6.3 and 6.2, our models and the baselines perform worse for

cold-start users than for normal users so we can conclude that cold-start users

are hard to predict. The reason is that the data of cold-start users is much

sparser than normal ones so we do not have much data for the learning part.

The prediction performance of our model for cold-start users is better than the

baselines in general.

As V ANF and V ANFs are very similar and share similar performance

trend, we will study the impact of parameter settings to V ANF model only

in the following subsections. V ANF is a simpler model with less parameters

so it is easier for parameter tuning.
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6.2.4 Tuning The Steepness Parameter

In this section, we seek to understand the role of steepness of Logistic function

in modeling check-ins and its use in check-in prediction task. We try out

different steepness values and observe its impact to our model performance.

In this set of experiments, we only involve VANF model.

0

5

10

%

SG

0

3

5

7
JK

1

3

5

7
NYC

1 2 3 4
steepness

62

69

76

%

1 2 3 4
steepness

60

69

78

1 2 3 4
steepness

62

69

76

recall@20 nDCG@20 AP AUC

Figure 6.3: Performance of check-in prediction task of VANF model in SG,
JK and NYC datasets with different values of steepness.

Parameter Setting: In this experiment, we vary the steepness variable

a from 1.0 to 4.0 with a step size of 0.1 while keeping default values for the

remaining parameters.

Result: Figure 6.3 shows the performance of VANF model with different

steepness values. The best performance occurs when the value of steepness

a = 2.0 for the SG and a = 3.0 for both JK, NYC datasets. Since a = 2.0 yields

reasonably good results for all the three datasets, using this setting as default

is reasonable. We also observe that the performance of VANF model degrades

with larger a settings. The reason is that larger steepness values make Logistic

function behaves like an indicator function which no longer nicely models the

probability of competition among venues.
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6.2.5 Tuning The Regularization Parameters

In this section, we try to figure out the impact of regularization parameters

in modeling movement of users through check-in prediction task. To achieve

the goal, we try out different values of regularization parameters. In this set

of experiments, we only involve VANF model.

Parameter Setting: In this experiment, we keep the value of λu equal to

that of λv since we do not want to bias to user or venue features. Recall that

λu and λv are regularization parameters for the latent features of users and

venues respectively. Then, we tune the values of them within the range 0 and

1 while keeping default values for the remaining parameters.
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Figure 6.4: Performance of check-in prediction task of VANF model in SG,
JK and NYC datasets with different value of regularization parameter.

Result: Figure 6.4 shows the performance of V ANF model for the three

datasets SG, JK and NYC with different metrics. From the figure, we observe

that without regularization (i.e. λu = λv = 0), the performance of V ANF does

not perform well while increasing the value of regularization parameter also

harms our model. From the figure, we can observe that selecting λu = λv = 0.01

yields good check-in prediction results for all the three datasets. This result

suggests that our default parameter setting is reasonable.
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6.2.6 Choice of Area Width

In the earlier experiments, we have adopted a fixed area width setting, i.e.

s = 0.01. To understand how this setting affect the performance of VANF

model, we now vary s between 0.02 to 0.002 while keeping default settings for

the remaining parameters.
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Figure 6.5: Performance of check-in prediction task of VANF model in SG,
JK and NYC datasets with different value of area width.

Result: Figure 6.5 shows very similar performance for SG, JK and NYC

datasets. V ANF model shows poorer results across different performance

measures when s = 0.02 but peaks at s = 0.01 for the three datasets. Beyond

s = 0.01, the performance decreases. From the result, we conclude that using

s = 0.01 yields the best performance. In fact, when s is very small, each

area may contain zero or one venue. Hence, the effect of area attraction is

eliminated making the prediction less accurate.

6.2.7 Area Boundary Shift

In this section, we verify the robustness of our model as we shift the area

boundary without changing the area size.

Parameter Setting: Recall that we create areas by dividing the city into
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grid cells of equal width. The boundaries of areas are defined by vertical and

horizontal lines sharing the same longitudes and latitudes respectively. Since

the choice of these boundary lines can change, we would like to know if shifting

the grid cells could affect the performance of VANF model. We use V ANFx

and V ANFy to denote our model if grid cells shift 0.005 degree along latitude

and longitude axes respectively. Finally, V ANFxy is the model that shifts

0.005 degree on both latitude and longitude directions. Since the move is one

half of the area width, a shift in either direction will lead to the same outcome.
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Figure 6.6: Performance of check-in prediction task of VANF model with dif-
ferent way of constructing areas in SG, JK and NYC datasets.

Result: Figure 6.6 shows the prediction result of our models using three

area boundary shift settings for SG, JK and NYC datasets. From the result,

we observe that the performance difference of V ANFx and V ANFy is less than

5% compared to the one of the original V ANF model. The performance dif-

ference between V ANFxy and V ANF model is 4.6%. Therefore, we conclude

that V ANF model is robust against different ways of area construction.

6.2.8 Venue Ranking

Other than evaluating models in check-in prediction task, we now compare

the ranking of venues derived from the V ANF model with some known user
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Table 6.4: Top 10 venues given by VANF model in SG dataset when a = 2.0,
s = 0.01, λu = λv = 0.01, λf = 0 and the number of latent feature is 10.

Rank Venue Name # Check-in # check-in Foursquare scorev
users score

1 Changi International Airport 10385 5990 9.0 185.01
2 Nex 4899 1716 6.8 113.08
3 VivoCity 5456 2901 8.9 108.05
4 Jurong Point 3814 1272 7.4 98.5
5 AMK Hub 2866 1065 6.7 78.71
6 Universal Studios Singapore 3015 2415 9.3 72.23
7 ITE College East 3065 363 - 67.78
8 Compass Point 2877 706 6.1 62.72
9 Woodlands Checkpoint (Causeway) 3152 1562 - 62.54
10 Cineleisure Orchard 6470 2328 7.8 62.23

provided venue ranking. The purpose is to find out how well V ANF model

could generate venue ranking similar to user generated venue ranking. We

also compare the ranking similarity with that between other baseline models

and user generated venue ranking. In this section, the user generated venue

ranking comes from Foursquare score. It is a venue specific score derived by

aggregating user feedback (e.g. number of likes, dislikes and tips) to the venue.

Parameter Setting: We use the default parameter setting to evaluate

V ANF in this experiment. Due to our lack of knowledge about local language

in JK dataset and identifiable information (i.e. the names of venues) regarding

check-ins in NYC dataset, we only apply this task to the SG dataset.

Result: In the case of V ANF model, we compute the score of a venue

v: scorev = ∑
i

piv. Recall that piv is the probability of user i interested in

venue v; hence, taking the sum over all users captures the overall interest on

venue v. We then rank venues by their scorev’s. Table 6.4 depicts the top 10

venues that returned by VANF model. The topmost ranked venue is Changi

International Airport which is a world’s best airport with more than 50 million

passengers per year3. The remaining top venues are prominent shopping malls

(e.g. Nex, VivoCity, Jurong Point, AMK Hub and Compass Point), theme

parks (e.g. Universal Studios Singapore), immigration checkpoint (e.g. Wood-

lands Checkpoint) and large education institution (e.g. ITE College East).

Ideally, we want the VANF model ranking of venues to be compared against

3http://www.changiairport.com/content/cag/en/aboutus.html?tab=2017
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the Foursquare score4. However, not all venues in SG dataset have Foursquare

scores. For example, Woodlands Checkpoint and ITE College East venues do

not have Foursquare score (see Table 6.4). For this reason, we select only

venues whose Foursquare scores are available and calculate the Pearson cor-

relation with V ANF ’s venue ranking. The Pearson correlation score of 0.13

suggests that V ANF has positive correlation with Foursquare score. In other

words, we can conclude that our ranking is reasonable. To quantify our rank-

ing further, we also calculate the Pearson correlation between other models

(PMF and N-MF) and Foursquare score. For PMF, the score of each venue

j is scorePMF
j = ∑

i

UiVj and for N-MF, scoreN−MF
j = ∑

i

R̂ij where R̂ij is the

predicted check-ins between user i and venue j by N-MF. As shown in Ta-

ble 6.5, the venue ranking from V ANF model has the highest Pearson cor-

relation suggesting that it performs better than other baselines by correla-

tion with Foursquare score. Table 6.5 depicts the Jaccard similarity score

between top-k ranked venues by Foursquare score and those returned by each

model. The higher the value of Jaccard@k, the more similar the model is to

Foursquare score. Specifically, suppose skFS is the set containing top-k venues

by Foursquare score and skx is the set of top-k venues by model x. The Jaccard

similarity score between them is Jaccard@k =
∣skFS ∩ skx∣
∣skFS ∪ skx∣

. In our experiment,

we choose 20, 50 and 100 as the value of k. From Table 6.5, we observe that the

Jaccard similarity score between VANF model and top venues of Foursquare

score is higher than other baselines. Hence, we conclude that V ANF model

performs better than other baselines in order to rank venues.

6.2.9 Empirical Findings and Case Studies

Finally, in this section, we present several empirical case examples to illustrate

the characteristics of the VANF model using the SG dataset. For simplicity,

we use the default parameter settings to train the V ANF model. In the first

4https://support.foursquare.com/hc/en-us/articles/201109274-Place-ratings
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Table 6.5: Pearson Correlation and Top-k Jaccard Coefficient with Foursquare
Venue Score Ranking. The best performing results are boldfaced.

Metric VANF PMF N-MF
100m 200m

Jaccard@20 8.1% 2.6% 2.6% 2.6%
Jaccard@50 11.1% 2.1% 5.3% 7.5%
Jaccard@100 14.2% 5.3% 9.3% 8.1%

Pearson correlation 0.13 0.07 0.10 0.11

study, we examine the latent factors learned by the VANF model. Each latent

factor is represented by the most representative venues. In the second study, we

examine the attractiveness of areas derived by the VANF model and compare

this with some simple approaches. The final study focuses on showing the

competition among venues within each area to win check-ins from users.

Latent Factors: In the first study, we show the latent factors of the

learned VANF model and their most representative venues in Table 6.6. The

most representative venues of a latent factor are those venues v with largest

Vv[t] values where Vv is the latent feature vector of venue v and t is the

index corresponding to the latent factor. Our findings found several latent

factors related to specific location regions or groups of similar type venues.

For example, the latent factors 3, 4, 7 and 8 are related to specific location

regions. Particularly, latent factor 3 is represented by venues in the east of the

city. Latent factors 4 and 7 cover the Orchard and City Hall shopping area

respectively. Latent factor 8 is represented by subway stations. Several latent

factors are related to different venue types. For example, latent factors 1, 2

and 5 are mainly shopping venues, hotels and night clubs respectively. Latent

factor 10 are venues frequently visited by youths. The remaining latent factors

6 and 9 are unfortunately too noisy for interpretation. On the whole, these

latent factors appear to carry reasonable meaning reflecting the different types

of venues that users may be interested to visit.

Area Attraction: In the second study, we plot the area attractiveness val-

ues derived by the VANF model in Figure 6.7a. The attractiveness of an area is
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(a) Area attractiveness.

(b) Area attractiveness vs check-
in count.

(c) Area attractiveness vs user
count.

Figure 6.7: Heat map of area attractiveness returned by VANF model and its
comparison with check-in count and user count using SG dataset.

derived by aggregating the preference of all users to this area i.e. σav = ∑
i∈U
σiav .

The larger the attractiveness value, the darker the area is shaded. Figure 6.7a

shows that the high attractive areas are distributed in the downtown area

located in the central south of the Singapore island. We now contrast area

attractiveness values with area-specific check-in counts and user counts in Fig-

ures 6.7b and 6.7c respectively. In these two figures, we normalize the attrac-

tiveness of each area by the maximum attractiveness of all areas. We also

apply the similar procedure to normalize the check-in count and user count of

each area. We then compute the difference between normalized attractiveness

and normalized check-in count (or normalized user count) and assign shade

intensity accordingly as shown in Figures 6.7b and 6.7c respectively. The two

figures show that area attractiveness is very different from check-in count and

user count in one specific area in the East of Singapore (indicated by dark
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Table 6.6: Top 10 venues of each topic given by VANF model in SG dataset
with a = 2.0, s = 0.01, and f = 10.

Topic 1 Topic 2 Topic 3 Topic 4
Shopping Malls Hotels East of Singapore Orchard area

Marina Bay Financial Centre The Fullerton Hotel Temasek Polytechnic (TP) Takashimaya S.C.
Plaza Singapura Swissôtel The Stamford Changi City Point 313@Somerset

The Shoppes At Marina Bay Sands National Library Building Pub Glassy ION Orchard
The Cathay Concorde Hotel Tampines Bus Interchange The Paragon

Velocity Bugis MRT Interchange Nex Mandarin Orchard
Chinatown Point Grand Hyatt St. Gabriel’s Secondary School Chambre de Louie
Great World City Wisma Atria Geylang West Community Club H&M

The Central Clarke Quay Bugis Street Ippudo
United Square Strand Hotel Blk 71 Bedok South Road Spize River Valley
Liang Court Citylink Mall Liang Court Ngee Ann City

Topic 5 Topic 6 Topic 7 Topic 8
Night clubs Unknown City Hall area Locations around

subway stations
Club V5 313@Somerset Nanyang Academy of Fine Arts Marina Square
Helipad Marina Bay Sands Casino Marina Square 313@Somerset

Zouk Kaplan City Campus Bugis Junction Cineleisure Orchard
Club Nexus Cineleisure Orchard City Hall MRT Station Golden Village

Cathay Cineplex Funan DigitaLife Mall Golden Village Bugis+
Strictly Pancakes Novena MRT Station Sin Thai Hin Building Blk 639 Rowell Road

Liang Court Starbucks Raffles City Shopping Centre Far East Plaza
Playhouse Clarke Quay MINK Plaza Singapura

ZIRCA Mega Club Zouk Hotel Ibis FairPrice Finest
Alfresco Gusto Italian Bistro Marina Mandarin Lau Pa Sat Festival Market City Hall MRT Inter

Topic 9 Topic 10
Unknown Youth-related Venues

ION Orchard Stereo Music Store
Raffles City Shopping Centre Filmgarde Cineplex
Tanjong Pagar MRT Station Starbucks

Funan DigitaLife Mall Volcano Cybercafe
Orchard Central Bon Riche @ North Br

Fitness First Orchard MRT Station
Cold Stone Creamery Plaza Singapura

Planet Paradise Thai Disco Fitness First
Paris Baguette Café *SCAPE Flea Market

Esplanade - Theatres On The Bay Rebel Boutique Club

shaded area in the figures). This area covers Changi airport which is not as-

signed very high attractiveness value but is known to be highly popular among

the tourists and locals. This is a reasonable outcome since most users do not

really like the airport and its neighboring venues (they are more likely to visit

the airport for the purpose of making overseas trips.), unlike venues in the

downtown areas.
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Figure 6.8: The correlation of venues with different number of check-ins and
the interest of users in their most attractive areas using SG.
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Neighborhood Competition: To show neighborhood competition

within an area, this study looks into users selecting the interesting venues

in the area to perform check-ins and thus creating competition among the

venues. We simplify this analysis by focusing on the most favorite area of each

user. The same analysis can also be applied to the less favorite areas.

For a given user i, we divide the venues in his most favorite area into

different bins according to the popularity of these venues. The popularity bins

cover 1, 2, 3, 4, 5 and above 5 check-ins from all users respectively. Within

each bin, user i may perform check-ins on only a subset of venues from the bin.

We want to show that the venues gaining the check-ins are more likely the ones

winning the interest of user i. In Figure 6.8, we thus show the average user

interest on these two subsets of venues for each bin of venues sharing the same

popularity. The average interest of users on their visited (or unvisited) venues

for each bin is computed as
1

∣U ∣ ∑i∈U
1

∣binik∣
∑

v∈bini
k

UT
i Vv where U is the set of users

and binik is the set of venues with k check-ins such that user i has visited (or

not visited) these venues. As shown in the figure, venues which interest users

are more likely to be visited than the ones users are not interested given the

same popularity.
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Modeling Neighborhood

Competition with Spatial

Homophily in Check-in

Behavior

Neighborhood competition and venue-aspect spatial homophily effects together

create the geographical neighborhood influence of venues to the check-in be-

havior of users. In this chapter, we capture them both under the matrix

factorization-based method to understand their impact. We first give the brief

overview of matrix factorization. We then introduce our proposed models

that incorporate venue aspect spatial homophily and neighborhood competi-

tion effects as well as social homophily. We use term spatial homophily to

refer to venue aspect spatial homophily henceforth. The next section sketches

the method to learn parameters of the proposed model. Finally, we conduct

some experiments on check-in prediction task to prove the superiority of our

model [24].
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7.1 Preliminaries

Our proposed model is built upon matrix factorization technique [43]. In

matrix factorization, the check-in count matrix is factorized into user-specific

matrix and venue-specific matrix. Formally, we assume that R ∈ Rm×n is the

check-in count matrix where Rij is the number of check-ins user i performs

on venue j. Rij is undefined when user i does not perform any check-ins on

venue j. m and n are the number of users and number of venues respectively.

We then factorize R into two matrices U ∈ Rf×m and V ∈ Rf×n which satisfy

R ≈ UTV . Therefore, the predicted number of check-ins between any pair of

user i and venue j is

R̂ij = UT
i Vj (7.1)

where Vj represents the latent features or intrinsic characteristics of venue j

such as quality, location of venue j while Ui is the vector of user i’s preferences

over these latent features. More notations and their meanings are shown in

Table 7.1.

Nevertheless, users have some biases when performing check-ins to venues.

Some users are eager to perform check-ins generating many check-ins at each

visited venue while others are selective generating zero or very few check-ins.

Similarly, venues also have some degree of biases because of their locations

or amounts of advertisement. Hence, we represent these biases as bi and bj

which are incorporated into the model together with a global bias µ as shown

below [42]:

R̂ij = µ + bi + bj +UT
i Vj (7.2)

Learning the latent parameters is an optimization problem as follow:
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min
U∗,V∗,b∗

∑
(i,j)∈K

(Rij − R̂ij)2 + λ1(∥Ui∥2 + ∥Vj∥2) + λ2(b2
i + b2

j)

where λ1 and λ2 are regularization parameters to avoid overfitting. To learn

the parameters, stochastic gradient descent (SGD) [10] is usually adopted.

Geographical Neighborhood Matrix Factorization (N-MF). Hu et.

al [35] incorporated geographical neighborhood influence defined by the aver-

age of extrinsic characteristics of neighbors. Formally, Equation 7.2 becomes

R̂ij = µ + bi + bj +UT
i (Vj +

β

∣Nj ∣
∑
k∈Nj

Qk) (7.3)

where Nj denotes the neighbors of venue j, and Qk is the extrinsic character-

istics of neighbor k. In this model, also known as Geographical Neighborhood

Matrix Factorization (N-MF), the extrinsic characteristics Qk of a venue k

share the same dimension as its intrinsic characteristics Vk but the former is

meant for characteristics noticeable by visitors. In this paper, we extend N-MF

further to incorporate neighborhood competition.

7.2 Extended Neighborhood Matrix Factor-

ization

In Section 3.5.2, we show that the check-ins of each venue are affected by spatial

homophily and neighborhood competition effects. Hence, we propose Extended

Neighborhood Matrix Factorization (EN MF) model to include the two effects

to check-in behavior. We extend Equation 7.3 as follow:

R̂ij = µ + bi + bj +UT
i Vj +

β

∣Nj ∣
∑
k∈Nj

GijkU
T
i Qk (7.4)

In EN MF, we assume that the size of Nj is identical for any venue j.

In Equation 7.4, Qk denotes the extrinsic characteristics of venue k which is

104



CHAPTER 7. MODELING NEIGHBORHOOD COMPETITION WITH SPATIAL HOMOPHILY IN

CHECK-IN BEHAVIOR

Table 7.1: Table of Notations.

Notation Meaning
Nj set of neighbors of venue j
K set of user-venue pairs with known check-ins
F set of user-friend pairs

Rij, R̂ij Observed and predicted numbers of check-ins of user i to
venue j, respectively

µ Mean of all known Rij check-ins
bi, bj Biases of user i and venue j respectively
Ui Latent vector of user i
Vj/Qj Intrinsic/Extrinsic characteristic vector of venue j
β Parameter to control the effect of neighborhood venues
α Relative weight between spatial homophily and neighborhood

competition

a neighbor of venue j and its product with Ui contributes to the number of

check-ins between user i and venue j. First of all, we need to explain that Qj

has the same number of latent dimensions as Vj. Each Qjt element captures

the ability of a venue j to bring check-ins from users interested in t-th latent

factor to its neighbors. Gijk denotes the neighborhood influence weight which

is defined to be a combination of venue j winning over the neighboring venue

k (neighborhood competition), and similarity with the neighboring venue k

(spatial homophily) as user i chooses venue j over its neighbor k for check-ins.

Formally, Gijk is:

Gijk = ασ(UT
i Qj > UT

i Qk) + (1 − α)sim(j, k) (7.5)

The two parameters β (β > 0) and α (α ∈ [0,1]) in Equations 7.4 and 7.5

are:

� β controls the geographical neighborhood influence of neighboring

venues.

� α is the tradeoff between spatial homophily and neighborhood competi-

tion.

sim(j, k) in Equation 7.5 measures the effect of spatial homophily of the

neighbor k of venue j to the selection of venue j by users. By including

105



CHAPTER 7. MODELING NEIGHBORHOOD COMPETITION WITH SPATIAL HOMOPHILY IN

CHECK-IN BEHAVIOR

sim(j, k), our model covers the spatial homophily effect among venues. We

explore sim(j, k) function further by considering these following options to

capture our observations in Section 3.5.2:

� Check-in cosine similarity: Cosine similarity between check-in counts of

users of two venues j and k.

� Distance cosine similarity: Cosine similarity of distance of common users

between venue j and venue k.

σ(UT
i Qj > UT

i Qk) in Equation 7.5 captures the competition between venue

j and its neighbor k. The intuition behind is that from the perspective of user

i, the extrinsic characteristics of venue j are ranked higher than those of its

neighbor k. User i therefore selects venue j to visit instead of its neighbor

k. In other words, user i prefers venue j over k by comparing the extrinsic

characteristics of j and k. Function σ returns the probability that user i is

more attracted to venue j than k. In this work, we consider two options for

function σ:

� Sigmoid function: We adopt this option from the study of personal

ranking using matrix factorization [71]. Formally, σ(UT
i Qj > UT

i Qk) =
1

1 + exp(−(UT
i Qj −UT

i Qk))

� Cumulative density function of standard normal distribution (CDF):

Similar to Sigmoid function, we use CDF to map the value of UT
i Qj −

UT
i Qk into the range [0,1].

Finally, our task is to learn the parameters U∗, V∗, Q∗ and b∗ through solv-

ing the following optimization problem by using gradient descent method [10]:

min
U∗,V∗,Q∗,b∗

∑
(i,j)∈K

(Rij − R̂ij)2 + λ1(∥Ui∥2 + ∥Vj∥2) + λ2(b2
i + b2

j) + λ3∥Qj∥2 (7.6)
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Note: The special thing is that our model is the generalization of N-MF

model proposed by Hu et. al. [35]. Specifically, if we set α = 0 and the

sim(j, k) = 1 for all venues j, k, then our model reduces to N-MF model (see

Equation 7.3).

Extension incorporating social homophily(FEN MF ): Similar

to [12], we model social homophily by adding a social regularizer λf ∑
(i,i′)∈F

∥Ui−

Ui′∥2 to Equation 7.6. It says that if two users i and i′ have social connection,

their latent features Ui and Ui′ tend to have similar values and λf is the pa-

rameter to control the impact of social homophily.

7.2.1 Parameter Learning

To learn the parameters of EN MF , we apply SGD framework for matrix

factorization [42]. The core component of the framework is the gradient of

parameters that we want to learn. To ease reading, we use L to denote the

half of function that we want to optimize in Equation 7.6 and eij = R̂ij −Rij

so the derivatives of L with respect to the parameters are

∂L
∂bi

= ∑
(i,j)∈K

eij + biλ2;
∂L
∂bj

= ∑
(i,j)∈K

eij + bjλ2

∂L
∂Vjt

= ∑
(i,j)∈K

eijUit + λ1Vjt

(7.7)

∂L
∂Uit

= ∑
(i,j)∈K

eij[
β

∣Nj ∣
∑
k∈Nj

(αUT
i Qk

∂

∂Uit
σ(UT

i Qj > UT
i Qk)

+GijkQkt) + Vjt] + λ1Uit

(7.8)

∂L
∂Qkt

= ∑
(i,j)∈K

eij
β

∣Nj ∣
∑
k∈Nj

(αUT
i Qk

∂

∂Qkt

σ(UT
i Qj > UT

i Qk)

+GijkUit) + λ3Qkt

(7.9)
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If neighborhood competition is modeled by Sigmoid function, we have

∂

∂Uit
σ(UT

i Qj > UT
i Qk)

= (−σ(UT
i Qj > UT

i Qk) + σ(UT
i Qj > UT

i Qk)2) [Qjt −Qkt]
∂

∂Qkt

σ(UT
i Qj > UT

i Qk)

= (σ(UT
i Qj > UT

i Qk) − σ(UT
i Qj > UT

i Qk)2)Uit

(7.10)

In the case of modeling neighborhood competition by CDF, we have the

corresponding derivatives as follow

∂

∂Uit
σ(UT

i Qj > UT
i Qk) =N(UT

i Qj −UT
i Qk; 0,1)(Qjt −Qkt)

∂

∂Qkt

σ(UT
i Qj > UT

i Qk) = −N(UT
i Qj −UT

i Qk; 0,1)Uit
(7.11)

where N(●; 0,1) represents the probability density function of standard normal

distribution.

Parameter Learning for extension incorporating social ho-

mophily(FEN MF ): In this extension, we add the gradient of social regu-

larizer λf ∑
(i,i′)∈F

(Uit −Ui′t) when we compute the gradient of user i (e.g.
∂L
∂Uit

).

Specifically, we have

∂L
∂Uit

= ∑
(i,j)∈K

eij[
β

∣Nj ∣
∑
k∈Nj

(αUT
i Qk

∂

∂Uit
σ(UT

i Qj > UT
i Qk)

+GijkQkt) + Vjt] + λ1Uit + λf ∑
(i,i′)∈F

(Uit −Ui′t)
(7.12)

7.3 Experiments

In this section, we describe our experiments on Foursquare datasets to evaluate

our proposed model against other baselines. Moreover, some intensive experi-

ments are also conducted to ensure the robustness of our models in LBSN.
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7.3.1 Experimental Setting

In this experiment, we evaluate the performance of our model using check-in

prediction task.

Setup: We sort the check-ins of the H SG and H JK datasets in chrono-

logical order and divide each dataset into ten folds. For each run of experiment,

we hide one fold as test set and use the remaining nine folds as training set.

We order check-ins of the SG, JK and NYC chronologically, and then

divide the data into two parts: the first 80% is for training and the remaining

20% is for testing. There are no home location for all users in these datasets so

to apply the distance cosine similarity, we approximate the home locations of

users by deriving the centers of the mass from all check-in venues of the users.

Evaluation metric: We adopt two popular error metrics, Mean Absolute

Error (MAE) and Root Mean Square Error (RMSE). The smaller the value of

MAE and RMSE, the more accurate the model is. In general, RMSE penalizes

more on the large errors and less on smaller ones than MAE. Suppose T is the

test set containing user-venue check-in pairs (i, j)’s, the two metrics are:

MAE = 1

∣T ∣ ∑(i,j)∈T
∣Rij − R̂ij ∣

RMSE =
¿
ÁÁÀ 1

∣T ∣ ∑(i,j)∈T
(Rij − R̂ij)2

(7.13)

We report the average MAE and RMSE of all ten folds. For the ease

of reading, we use MAE and RMSE to refer to average MAE and average

RMSE respectively henceforth.

Proposed Models: Our proposed models to be evaluated are:

� EN MFDS
Sigmoid: In this model, distance cosine similarity is used for spa-

tial homophily and the Sigmoid function is adopted for neighborhood

competition.

� EN MFCS
Sigmoid: This model uses check-in cosine similarity for spatial

homophily and Sigmoid function for neighborhood competition.
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� EN MFDS
CDF : In this model, distance cosine similarity is adopted for

spatial homophily and CDF is to model neighborhood competition effect.

� EN MFCS
CDF : This model uses check-in cosine similarity and CDF to

model spatial homophily and neighborhood competition respectively.

FEN MFDS
Sigmoid, FEN MFCS

Sigmoid, FEN MFDS
CDF and FEN MFCS

CDF

are the extension of EN MFDS
Sigmoid, EN MFCS

Sigmoid, EN MFDS
CDF and

EN MFCS
CDF respectively by adding social homophily.

Baselines: The baseline models are described below:

� User Mean: To predict the number of check-ins between a user and a

venue, it outputs the average number of check-ins of this user performs

to a venue.

� Bias Matrix Factorization (B-MF): This matrix factorization model was

proposed by Koren [42]. In this model, the biases of users and venues

are considered and it is briefly mentioned in Section 7.1.

� Neighborhood influence Matrix Factorization (N-MF): Hu et. al. [35]

proposed a model to incorporate only the effect of spatial homophily. It

is the special case of our model (see Section 7.2).

Parameter Setting: We adopt a parameter setting similar to that of [35]

for EN MF, FEN MF models and N-MF since it provides overall good perfor-

mance for the baselines. That is, the number of latent factors is f = 20, and

neighborhood importance is β = 0.8. The regularization parameters: λ1 = 0.8,

λ2 = 0.4, λ3 = 0.6 and λf = 0.01. The learning rate of SGD γ is assigned

to 0.00001. Besides the above parameters, we also set α = 0.5 to give equal

weights to both: spatial homophily and neighborhood competition effects. For

EN MF, FEN MF and N-MF, we consider the top 10 nearest venues as neigh-

bors of a venue since it generates a good result across multiple variants (more

details in later sections).
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Table 7.2: Performance of check-in prediction task. The best results are high-
lighted.

H SG H JK SG JK NYC
Method MAE RMSE MAE RMSE MAE RMSE MAE RMSE MAE RMSE
User Mean 1.9621 17.2189 1.7530 12.7721 1.642 12.1344 1.0923 13.2112 1.232 11.389
B-MF 1.8122 15.2199 1.6892 11.2758 1.4812 11.4354 0.9873 12.8085 1.092 10.891
N-MF 1.7522 14.7212 1.4016 9.4293 1.4033 11.4266 0.9784 12.7491 0.992 10.003

EN MFDS
Sigmoid 1.6974 14.3460 1.2475 9.2948 1.39 11.4156 0.9638 12.7005 0.979 9.821

EN MFCS
Sigmoid 1.6975 14.3424 1.2471 9.2942 1.3872 11.4150 0.9624 12.7057 0.971 9.754

EN MFDS
CDF 1.6965 14.3463 1.2475 9.2936 1.3899 11.4148 0.9635 12.7058 0.98 9.892

EN MFCS
CDF 1.6964 14.3421 1.2469 9.2946 1.3873 11.4177 0.9628 12.7095 0.972 9.786

FEN MFDS
Sigmoid 1.6957 14.3451 1.21795 8.2367 1.3890 11.4135 0.9633 12.6996 0.9612 9.79

FEN MFCS
Sigmoid 1.6942 14.342 1.2172 8.3744 1.3872 11.4147 0.9624 12.6953 0.9641 9.809

FEN MFDS
CDF 1.6959 14.346 1.2175 8.2832 1.3890 11.4133 0.9632 12.6970 0.9617 9.701

FEN MFCS
CDF 1.6941 14.3417 1.2164 8.2789 1.3871 11.4150 0.9625 12.6992 0.9604 9.68

7.3.2 Experiment Results

We conduct the experiment to compare the performance of our proposed

EN MF and FEN MF with several baselines. We then evaluate the im-

pact of neighborhood size to the prediction accuracy of EN MF. Next, we also

tune parameter α to measure the contribution of neighborhood competition and

spatial homophily to the prediction accuracy of EN MF. We do not report the

performance of FEN MF on the last two experiments since its behavior is

similar to EN MF .

7.3.2.1 Check-in Prediction Task.

The performance of all the four variants of EN MF and FEN MF as well

as the baselines on the four datasets SG, H SG, JK, H JK and NYC are

listed in Table 7.2.

Firstly, all four variants of EN MF and FEN MF perform better than

the baselines. Specifically, FEN MF could improve up to 13.49% in MAE

and 16.8% in RMSE compared to the baselines. It suggests that incorporating

spatial homophily and neighborhood competition as well as social homophily

effectively reduce prediction errors. The performance is superior than baseline

models that do not consider any effects (i.e. User Mean, B-MF ) or the one

(i.e. N-MF ) that incorporates only the spatial homophily effect. We further

apply hypothesis testing to examine if our improvements are significantly bet-
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ter than the baselines. Specifically, the null hypothesis is the performance of

our methods and the baselines are not different while the alternative hypothe-

sis is our methods are significantly better than the baselines. To achieve the

goal, we apply the paired t-tests [33] to compare each variant of EN MF and

FEN MF to N-MF. The population size in our tests is 10 (the number of

folds in our experiment). Since the p-values of all tests are less than 0.05, we

conclude that EN MF and FEN MF are significantly better than the base-

lines. Next, we also perform significant test to compare between each variant

of EN MF and the corresponding variant of FEN MF . From the result of

the test, we found that FEN MF model variants significantly improve those

of EN MF .

Secondly, Table 7.2 shows that FEN MFCS
CDF has the best overall perfor-

mance on the H SG and H JK datasets. Recall that it uses check-in cosine

similarity and CDF to model the effects of spatial homophily and neighbor-

hood competition respectively. This model produces the lowest prediction er-

rors in both datasets except the case of RMSE in H JK. Hence, using CDF is

more appropriate for modeling neighborhood competition than Sigmoid func-

tion. Similarly, characterizing spatial homophily by check-in cosine similarity

is more accurate than using distance cosine similarity. For the large datasets

SG and JK, it is hard to find the best model.

Thirdly, the MAE and RMSE errors in Table 7.2 are higher than those

reported by Hu et. al. [35] since they used Yelp dataset to evaluate predic-

tion performance of N-MF. Specifically, N-MF predicts the ratings of users to

venues and the ratings can obtain a discrete value from 1 to 5. In contrast, we

apply N-MF and our models to predict the number of check-ins between users

and venues and such number can be much larger than 5. Hence, the figures

reported in Table 7.2 are significantly higher than the ones showed in [35].

Next, Table 7.2 shows that EN MF performs better than N-MF by incor-

porating additional neighborhood effects. User Mean method does not cover
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Figure 7.1: Performance of variants of EN MF with different numbers of
neighbors in H SG and H JK.
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Figure 7.2: Performance of variants of EN MF with different numbers of
neighbors in SG, JK and NYC.

any information of venues so its results are not better than that of B-MF which

includes the interaction between users and venues. However, N-MF outper-

forms B-MF because it considers spatial homophily.

Lastly, social homophily can improve the prediction performance and this

phenomenon happens across all variants. However, the improvement of us-

ing social homophily is small, consistent with the result reported in previous

works [12].

7.3.2.2 Choice of Neighborhood Size.

In our models, the neighbors of a venue are the top-n nearest neighbors of

this venue. To measure the impact of n, we vary n to quantify the impor-
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tance of neighborhood size to the prediction errors of all variants of EN MF .

Figure 7.1 depicts the finding in both H SG and H JK datasets. For other

parameters of EN MF, we use their default values. There are three useful

observations from Figure 7.1.

First of all, in H SG, the prediction errors of all variants of EN MF

are more stable than the ones of H JK dataset and it is hard to observe

the trending of our error metrics when n is varied for the dataset H SG.

Secondly, we can group the variants into two groups: check-in and distance

cosine similarity groups since the first one usually has lower prediction errors

than the other. This result is consistent on both the two datasets and both

error metrics except in the case of RMSE in H JK. It suggests that we should

use check-in cosine similarity to model the spatial homophily of two venues

to achieve smaller prediction errors. Thirdly, from H JK dataset, we observe

that three out of four variants of EN MF achieve the lowest RMSE value at

when number of neighbors of a venue is 5 while only EN MFCS
CDF obtains the

lowest MAE at n = 5.

The reason behind the differences between H SG and H JK is the sparsity

of H JK. From Table 3.1, the number of venues of H JK is one third of

that of H SG. Therefore, increasing the number of neighbors of a venue j is

equal to the fact of considering more further away venues as neighbors of j.

Consequently, it reduces the accuracy of EN MF .

Hence, we could conclude that in datasets whose venues are dense (e.g.

H SG), the number of neighbors in our model does not affect the prediction

performance as much as datasets whose venues are sparse (e.g. H JK).

Figure 7.2 illustrates the performance of variants of EN MF with different

of neighbors on SG, JK and NYC datasets. The figure also shows the same

trend as the performance of H SG and H JK so the observations above are

still applied to the full datasets.
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Figure 7.3: Prediction errors of variants of EN MF with different values of α
in H SG and H JK.
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Figure 7.4: Prediction errors of variants of EN MF with different values of α
in SG, JK and NYC datasets.

7.3.2.3 Spatial Homophily vs Neighborhood Competition.

The role of α in Equation 7.4 is to control the impact of two effects: spatial

homophily and neighborhood competition. Specifically, if α → 0, the effect of

neighborhood competition is eliminated in EN MF model. Otherwise (i.e.

α → 1), the effect of spatial homophily is left out in EN MF .

In this section, we want to quantify the influence of both effects. For that

reason, we vary the value of α from 0.1 to 0.9 with step 0.1 and measure

the prediction errors of EN MF and its variants. We use the default values

for other parameters during the experiment. As shown in Figure 7.3, the

prediction errors of all versions of EN MF in H SG and H JK reduce when

we increase α. The exceptions are the cases of EN MFDS
Sigmoid and EN MFDS

CDF
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on H SG dataset. For example, the MAE and RMSE of these two models

increase when α changes from 0.5 to 0.6 but these errors drop when α increases

to 0.7. However, the errors of EN MFDS
Sigmoid and EN MFDS

CDF decrease when

we increase the value of α. Hence, in general, we could conclude that spatial

homophily effect contributes less to the accuracy of check-in prediction than

neighborhood competition. Despite this findings, the contribution of spatial

homophily is not negligible because the worst performing in both datasets still

perform better than the baselines. The other observation from Figure 7.3 is

that we cannot conclude which model has the best performance since there are

no clear winner among them. We repeat the same experiment in SG, JK and

NYC datasets to check the robustness of all versions of EN MF model. As

shown in Figure 7.4, the finding is still consistent in the large datasets.
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Chapter 8

PACELA: A Neural Framework

for Check-in Behavior using

Both Observed and Latent

Attributes of Users and Venues

The recent breakthroughs in deep learning have brought about a plethora of

new unsupervised and supervised learning techniques [30]. These techniques,

despite their higher computation costs, are shown to yield high accuracy in

prediction tasks. Given the check-in prediction challenges, it is therefore in-

teresting to explore a deep learning or neural framework to generate better

prediction results at the same time incorporating both embedding and the la-

tent attribute features behind the various factors relevant to check-in behavior.

Hence, in this chapter, we propose a neural framework that could integrate the

latent attributes of users and venues to model the check-in behavior of users

in LBSNs.
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8.1 Proposed Model

8.1.1 Model Description

In this section, we propose a framework called Preference And Context Em-

beddings with Latent Attributes (PACELA).

The input of PACELA framework consists of: (a) users and their social

connections; (b) venues with locations; and (c) check-ins performed by users

on venues. We use N and M to denote the total number of users and venues

respectively. In this paper, we define the context of a user i to be the set of

users who have social connections with user i which is denoted by ui. We also

define the context of a venue j to the set of venues that are nearby, as denoted

by vj. The set of all check-ins is denoted by C and each check-in is a tuple

{(ui, vj)} representing user i has performed a check-in on venue j. From C,

we can define a check-in variable yij such that yij = 1 if (ui, vj) ∈ C, and yij = 0

otherwise.

As shown in Figure 8.1, this framework consists of four components, namely,

the two network embedding components for learning user context and venue

context, a latent attribute modeling component for learning user and venue

attributes, and a neural network component for predicting check-ins between

users and venues. By instantiating these components with an appropriate

model, we can realize different models for check-in behavior.

The network embedding component for user context essentially takes the

user social network data and learns an embedding space. Users will be mapped

into this embedding space such that users with similar context will be close

to one another in this space. Similarly, the network embedding component for

venue context learns an embedding space using the venue proximity network.

This way, venues with similar spatial neighbors will be close to one another in

the embedding space.

The latent attribute modeling component takes all check-in history data of
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Figure 8.1: Neural Architecture of PACELA model.

users as well as the users’ social networks and venues’ proximity networks to

learn the latent attributes of users and venues respectively.

Finally, we have the neural network component that merges all user and

venue latent attributes together to predict check-ins, user context and venue

context at the same time learning for each user and venue, a user embedding

vector and venue embedding vector respectively. The prediction of check-ins

utilizes a multi-layer perceptron network, while the predictions of user and

venue context embedding utilize a single layer neural network. Particularly,

we use concatenation to merge user and venue latent attributes. The reason of

using concatenation over element-wise operator is that (i) vector concatenation

is able to model non-linear interactions between users and venues, and (ii)

vector concatenation does not require both vectors to be in the same space.

In the following, we will introduce a specific model instantiation using the
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framework.

8.1.2 Model Formalization

Network Embedding Components. We use DeepWalk, a well known net-

work embedding model, to learn the embeddings of user context and venue

context [66]. DeepWalk uses random walk to establish the local information

of each node in the network and learns the distributed representation vector

of the node. In this paper, users form a social network and venues form a

venue proximity network. We set the dimension of embedding vector of a user

or venue to 64 by default. The embedding vectors of all users can then be

represented by a N × 64 matrix Xu. To retrieve the embedding vector of user

i, we can compute XT
u ui where ui is represented as a one-hot vector. Similarly,

for venue, we can define another embedding matrix Xv whose size is M × 64

and retrieve the embedding vector of venue j by XT
v vj. For the ease of reading,

we denote the representative vectors of context of user i and venue j as ui and

vj respectively.

Latent Attribute Modeling Component. The goal of this component

is to extract the latent attributes of users and venues. In this dissertation, we

have chosen to extract or derive the user and venue latent attributes which

are relevant to area attraction, neighborhood competition and social homophily.

Then, the learned latent attributes are combined together for learning under

the neural network component. In particular, we have chosen to use the matrix

factorization model VANF proposed in Chapter 6 for deriving these latent

attributes. The inputs of VANF include the social network of users, check-

in history of users and venue proximity network. From these inputs, we use

matrix factorization-based method to derive user and venue attributes. We

denote the latent attributes of user i and venue j as u′i and v′j respectively.

Neural Network Component. We use a single layer neural network in

PACELA to return predictions of user context of user i, and another similar
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neural network for venue context of venue j. A multi-layer neural network is

used to predict check-in of i on j. The predicted variables are denoted as ûi,

v̂j, and ŷij respectively.

These predictions are generated by the softmax layer of the three neural

networks. We first describe the prediction of check-in variable yij using a

multi-layer neural network H.

ŷij = h(ET
u ui,E

T
v vj ∣Θe,Θh, u

′
i, v

′
j) (8.1)

where Θe denotes the parameters of the embedding layer while Θh represents

the parameter of preference prediction layer. Moreover, u′i and v′j are the

vectors of latent attributes of user i and venue j respectively.

As shown in Figure 8.1, H has Q layers. The input layer consists of the

embedding vectors of user i and venue j and their latent attributes u′i and v′j.

Hence, we denote the input layer by xij = [ET
u ui;u

′
i;E

T
v vj; v

′
j].

xij is then fed into the first hidden layer of H which has full connectivity

between input layer and the first hidden layer, as well as full connectivity

between two hidden layers. The q-th hidden layer of H denoted as hq is defined

as a non-linear function of its previous hidden layer hq−1. Formally, we have:

hq(x) = ReLU(W qhq−1(x) + bq) (8.2)

where W q and bq are the parameters of the q-th layer of H. h0(xij) = xij =

[ET
u ui;u

′
i;E

T
v vj; v

′
j]. We choose the rectified linear unit ReLU(x) =max(0, x)

as the non-linear function.

After Q layer of computation, the prediction of check-in variable, ŷij, can

be expressed as:

ŷij = hpred(hQ(⋅ ⋅ ⋅h1(h0([ET
u ui;u

′
i;E

T
v uj; v

′
j])) ⋅ ⋅⋅))

= hpred(HQ([ET
u ui;u

′
i;E

T
v vj; v

′
j]))

(8.3)
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where hpred is a softmax involving logistic regression with Sigmoid function. It

turns the output of HQ([ET
u ui;u

′
i;E

T
v vj; v

′
j]) from a vector form to a prediction

value between 0 and 1. In other words, we have the formula:

ŷij = S(HQ([ET
u ui;u

′
i;E

T
v vj; v

′
j])Twy) (8.4)

where the Sigmoid function is defined as S(x) = 1/(1 + e−x) and wy is the

parameter vector of the softmax layer.

The multi-layer neural network has two configuration parameters, Q (num-

ber of hidden layers) and R (capacity). The capacity R is the size of the last

hidden layer Q, i.e., hQ. The size of each hidden layer (except the last one) is

assigned to be twice the size of the next hidden layer. Hence, for a multi-layer

neural network with Q = 4 and R = 2, the size of layer q of the network is hq =

RQ−q+1. Recall the h0 refers to the input layer and its size is determined by

the embedding vectors and latent attributes.

A single layer perceptron network is used to predict the context of user i.

Again, we concatenate the embedding vector of user i with his latent attribute

vector u′i. Formally, the context prediction vector of user i is generated by

ûi = S([ET
u ui;u

′
i]∣φui) = S([ET

u ui;u
′
i]Tφui) (8.5)

where S(⋅) is the sigmoid function that applies to each element of the given

vector and φui is the parameter of the densely connected neural network for

user i. Recall that ET
u ui is the embedding vector of user ui.

Similarly, we also a single layer perceptron to predict the context of venue

j as follows.

v̂j = S([ET
v vj; v

′
j]∣ψvj) = S([ET

v vj; v
′
j]Tψvj) (8.6)

where ψvj is the network parameter of venue j.

Loss functions (Neural Network). The above three neural networks

are jointly trained by optimizing the sum of three loss functions as follows
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J = JY + λ1JCU
+ λ2JCV

(8.7)

where JY denotes the loss of predicting check-in between users and venues,

while JCU
and JCV

denote the losses of user and venue context predictions

respectively. The two values λ1 and λ2 are the regularization to control the

trade-off among the three losses.

Specifically, JY is the log-loss function which is a special case of cross

entropy for softmax input. Formally, it is defined by:

JY = log p(L∣Θe,Θh)

= − ∑
(ui,vj)∈L+

log ŷij − ∑
(ui,vj)∈L−

log(1 − ŷij)

= − ∑
(ui,vj)∈L

yij log ŷij + (1 − yij) log(1 − ŷij)

(8.8)

In the above equation, L represents the collection of labeled check-in pairs

of users and venues. L consists of two subsets L+ (L+ ⊆ C) and L− (L−∩C = ∅)

corresponding to positive and negative labeled pairs respectively. Θe and Θh

are the parameters used to predict the preference of users and venues. yij and

ŷij are the actual and prediction of preference of user i and venue j.

The loss functions of user context prediction and venue context prediction,

JCU
and JCV

are defined by mean square errors:

JCU
= ∑

ui

MSE(ûi,ui) = ∑
ui

∥ûi − ui∥2 (8.9)

where ûi is the predicted context vector of user i and ui is the actual context

vector of user i. We would like to minimize the difference between the two

vectors.

JCV
= ∑

vj

MSE(v̂j,vj) = ∑
vj

∥v̂j − vj∥2
(8.10)

where v̂j is the predicted context vector of venue j and vj is the actual context
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vector of venue j.

Model Learning. To learn the parameters Θe and Θh of the neural net-

work component, we use the optimization technique SGD (stochastic gradient

descent) with mini-batch ADAM [41]. The algorithm is the iterative process

containing two steps. First of all, we sample the batch of labeled pairs of users

and venues from L. Secondly, we optimize the loss functions JY , JCU
and JCV

.

We repeat the steps until the loss function converges.

8.2 Experiment

In this section, we describe our experiments on three real world datasets to

evaluate our proposed model against relevant baselines. Furthermore, other

intensive experiments are also conducted to illustrate the robustness of our

model.

8.2.1 Check-in Prediction Task

In this experiment, we evaluate the performance of our model in check-in

prediction task. We use three datasets SG, JK and NYC. For each dataset,

we sort the check-ins by created time and divide them into the training and

testing sets. For the purpose of check-in prediction, we consider the first check-

in a user performs on a venue and ignore the subsequent the same user checks

into the same venue. The user-venue pairs of these check-ins form the positive

data instances. The first 80% of these check-ins forms the training set and

the latter 20% forms the testing. We then need to select user-venue pairs for

the negative data instances. To keep the positive and negative data instances

balanced, we randomly select equal number of user-venue pairs without any

check-ins as the negative data instances.

To infer the vector of user/venue context, we apply DeepWalk [66]. The

dimension of embedding space of user and venue is 64 (the default setting).
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The context graph of users is the social network among them. Specifically, user

a connects to user b if a follows b in three datasets. To construct the graph

of venues, we assume that venue a and venue b are connected if the physical

distance between them is not larger than 100 meter.

Accuracy Measures. To measure the accuracy of prediction results, we

use accuracy and F1-score defined by:

Accuracy = Number of Test Instances with Correct Predictions

Number of Test Instances

F1 = 2 × Precision ⋅Recall
Precision +Recall

where

Precision = Number of Correctly Predicted Check-In Test Instances

Number of Predicted Check-In Test Instances

Recall = Number of Correctly Predicted Check-In Test Instances

Number of Check-In Test Instances

Methods. We evaluate two variants of PACELA method. Other than the

full method PACELA, we introduce a variant method PACELAv that includes

only the latent attributes of venues only. We also include the following baseline

methods:

� VAN: It is the first model studied neighborhood competition and area

attraction [23]. In this model, we use CDF function to model the com-

petition among venues in one area and the size of area is 0.1 degree. The

parameters are selected since they generated the best prediction perfor-

mance [23]. The home location of users are required as input for this

model so we estimate the home location of each user by his/her center

of the mass of check-ined locations.

� VANF: It is the matrix factorization model to derive the latent attributes

of users and venues described in Chapter 6. To use VANF for check-in
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Table 8.1: Check-in prediction performance of PACELA and baselines. We
boldface the best performance in each dataset.

Accuracy F1 score
SG JK NYC SG JK NYC

V AN 60.74% 59.93% 55.8% 58.59% 56.66% 58.51%
VANF 75.92% 67.92% 62.12% 68.27% 57.25% 62.45%
PACE 79.3% 66.28% 62.32% 70.84% 57.7% 65.7%

PACELAv 80.1% 70.53% 62% 71.91% 60.49% 66.55%
PACELA 82.3% 72.81% 64.59% 73.7% 61.93% 67.92%

prediction, we learn the matrices U and V from the training data. Unlike

the training check-in data used in PACELA, PACELAv and PACE, we

train VANF to learn the actual check-in counts by users on venues. We

then use UT
i Vj to predict for a user-venue pair (i, j). We predict a check-

in for the pair if UT
i Vj ≥ TH where TH is a threshold that has been set

to 1, as it is the natural threshold to separate the positive from negative

instances in our training data. The latent dimension size is set to 10.

� PACE: PACE method has been proposed in [86] to predict POI visi-

tations. The method learns embedding vectors of users and venues to

predict user context, venue context and check-in data in a neural net-

work framework. PACE however does not consider latent attributes of

users and venues. As PACELA can be seen as an extension of PACE,

we include it for comparison. The multi-layer neural network model of

PACE requires two configuration parameters, R capacity and Q number

of hidden layers.

Parameter Settings: The default configuration parameters of PACE,

PACELAv, and PACELA are capacity R and number of hidden layers Q with

default values 4 and 4 respectively. We keep the size of user/venue embedding

vector size to 10. The number of latent feature of users and venues in latent

attribute modeling is set to 10. For VANF, we set the area size to 0.01, and

λu = λv = λf = 0.01 since this setting gives the best performance when we use

the VANF for check-in prediction task. In model training, we set the batch
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size as 1024, and learning rate as 0.0001.

Results. Table 8.1 provides the accuracy and F1-score of different meth-

ods. From the table, we observe that PACELA method outperforms all other

methods across the three datasets. For instance, in the SG dataset, PACELA

has improved 3.7% in accuracy and 4% in F1-score compared with PACE,

a state-of-the-art method. We also observe the inclusion of venue latent fea-

tures also enhances the accuracy of PACE. The PACELAv method using latent

venue features outperforms PACE. This results show that the full PACELA

method benefits from latent features from both users and venues.

8.2.2 Parameter Study Experiment
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Figure 8.2: The prediction performance of PACELA with different values of
capacity and number of hidden layers in SG, JK and NYC datasets.

We next evaluate the impact of two configuration parameters R and Q to

PACELA method. Recall that R is the capacity which is the length of last

output layer of the network whileQ is the number of hidden layers. Figures 8.2a
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Figure 8.3: The prediction loss of training process in SG, JK and NYC
datasets.

and 8.2b show the accuracy and F1-score of PACELA method respectively for

different R and Q settings and for the three datasets SG, JK and NYC. In

the experiment, we vary R between 1 to 4, and Q between 4 to 32, We seek to

determine the performance impact of parameter settings to the methods. The

remaining parameters are assigned their default values.

First of all, we observe that higher accuracy can be achieved by PACELA

with larger Q values. The improvement however reduces as Q increases to 32.

Setting the capacity R higher is also shown to improve accuracy and F1 scores.

This can be due to the use of larger neural networks for prediction.

8.2.3 Effectiveness of Latent Attributes of Users and

Venues

To gain a deeper understanding of the contribution of user and venue latent

attributes, we compare the prediction loss of PACE and PACELA methods

through epochs. The faster the convergence of prediction loss, the better the

method is.

Experiment Setup. The parameters are set to default values as mention

in Section 8.2.1. The number of epochs in this experiment is 100. The three

methods that we include in this experiment study are PACE, PACELAv and

PACELA methods.
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Experiment Results. Figure 8.3 shows the results of the experiment on

SG, JK and NYC datasets. As shown in the figure, we observe that.

� When the number of epochs increases, the prediction loss generally de-

creases. After a certain threshold, the losses become stable and converge

to a fixed point.

� The three methods converge to the same stable point in the three

datasets. The difference is that the converged values of SG and NYC

datasets are lower than that of JK dataset. It could be explained by

the fact that JK is sparser than SG and NYC. Our PACELA model

requires larger amount of data to achieve the better training loss.

� Finally, the PACELA method extended from PACE by latent attributes

of users and venues converges faster than the original model. For in-

stance, at the epoch 10, PACELA method reaches the stable point in

the SG dataset. The phenomenon clearly happens in the three datasets.

It is a clear suggestion that the latent features are useful to enhance the

performance of PACELA method.

8.2.4 Tuning Regularization

In this experiment, we tune the values of λ1 and λ2 in Equation 8.7 to further

understand the importance weights of user and venue context to the PACELA

model. Recall that λ1 and λ2 control the contribution of user context and

venue context respectively to the objective function. Setting λ1 or λ2 to 0

means that the contribution of user context or venue context is omitted from

PACELA method, while increasing λ1 or λ2 give higher weights to user or

venue context in the PACELA model, respectively.

Setup: We first set λ1 = 1 and vary λ2 from 0 to 5 with step size as

0.5 to evaluate the accuracy of check-in prediction for the PACELA method.

Secondly, we repeat the experiment with λ2 is set to 1 and λ1 varied between
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Figure 8.4: The prediction performance of PACELA under different values of
λ1 and λ2 in SG, JK and NYC datasets.

0 and 5 with step size 0.5. For other parameters, default values are used (see

Section 8.2.1).

Result: Figures 8.4a and 8.4b illustrate the performance of the PACELA

method. Our findings include:

� Using user context or venue context improves the accuracy of PACELA.

Nevertheless, if we increase the weight of the context too much, it could

harm the prediction accuracy. From both figures, we observe that if

λ1 = 0 or λ2 = 0, PACELA yields its lowest accuracy performance. Pos-

itive λ1 or λ2 values give us prediction accuracy but the improvement

declines as these parameters increase. For instance, increasing λ2 from

0 to 3 improves the accuracy and F1-score of PACELA in NYC dataset,

but when λ2 is greater than 3, the prediction accuracy of PACELA de-

teriorates.
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� Venue context helps to improve PACELA more than user context. Specif-

ically, from the two figures, we observe that the peak performance of

PACELA occurs when λ2 ∈ [2,3] but λ1 ∈ [1,2]. The reason for the

phenomenon is that we have more information about venues than about

users. For example, the number of venues is three times larger than that

of users in the NYC dataset.
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Chapter 9

Conclusion and Future Works

In this chapter, we firstly provide a conclusion for the dissertation. Specifi-

cally, we give an overview of our contributions and discuss what we have done

through these models. Then, the later part of this chapter proposes some

directions for our future research.

9.1 Conclusion

Location-based social networks provide a rich datasets of user movement be-

haviors. In addition to the historical movement of users, they also contain

many valuable information such as the feedbacks of users to venues, the so-

cial activity among friends. For this reason, they offer both new research

opportunities and challenges for understanding the movement behaviors of

users. Motivated by many important applications, our research develop multi-

ple models to capture various effects to model the check-in behavior of users in

LBSNs. Our work consists of two parts: (i) modeling various effects without

the preference matching between users and venues (ii) modeling various effects

considering the preference of users and venues.

The first part includes Chapters 4 and 5. In this part, we consider the

neighborhood competition among venues in LBSN.

In Chapter 4, we propose ranking methods using data from location-based
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social media. The breakthrough here is to turn check-ins, a kind of visitation

data, into competitions between venues and their neighbors. Such an approach

is non-intrusive and incurs low overheads [3]. By defining different competitive

probability options among venues, and options for combining with check-in

ratios, we obtain different PageRank style models. These models have been

evaluated on real datasets from Foursquare to determine their differences. We

found models based on the competitive probability options behave in very

similar way. We have also qualitatively analyzed the results by looking at

some interesting cases studies and verify the correctness of our models via the

“ground truth” (e.g. Foursquare score). Since it is hard to extend PageRank-

based model to capture more effects of check-in behavior of users, there is a

need for a more flexible model to handle more effects.

In Chapter 5, we propose the probabilistic VAN model to consider the

two factors: neighborhood competition of venues, and area attractiveness in

modeling user visitation data. By dividing venues into areas, we could reduce

computational cost during learning and inferring processes. Moreover, our

learning method is easy to parallelize in order to keep a manageable training

time. Finally, the performance of our model is evaluated in three tasks (i.e.

home location prediction, venue ranking, and check-in prediction) and its result

outperforms the baselines.

The second part includes Chapters 6, 7 and 8. In this part, we model the

preference between users and venues by employing matrix factorization based

method.

In Chapter 6, we propose a model and its variant that incorporate area

attraction, neighborhood competition and social homophily factors. It is en-

hanced version of VAN model in Chapter 5 since it does not require the exact

home location of users and also considers the similarity between the users’

preference and the latent characteristics of venues. We evaluate our model

in check-in prediction task and show that the proposed model yields better
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performance than baselines. Moreover, we also study the performance of our

model via different parameter settings to ensure the robustness of our model.

Venue-aspect spatial homophily effect is another factor of neighborhood to af-

fect the check-in behavior. However, it is not studied in this model so we need

to consider these two features of geographical influence of venues to understand

the check-in behavior of users in LBSNs.

In Chapter 7, we model the geographical neighborhood influence of venues

to users’ check-in behavior by considering spatial homophily and neighbor-

hood competition effects. We proposed the matrix factorization based model

to capture the geographical neighborhood influence of venues as well as so-

cial homophily effect. In addition to the vector of the intrinsic characteristic,

each venue has one more latent feature vector to represent the extrinsic char-

acteristics. The additional vector characterizes the outlooks for each venue.

Considering different options to characterize these effects give us the best set-

ting to model such behavior. Moreover, we find out that spatial homophily

is not as important as neighborhood competition on predicting the check-in

behavior. Finally, social homophily helps our model to improve the accuracy

of check-in prediction task.

In Chapter 8, we propose a neural framework named PACELA which em-

beds the latent attributes of venues and users to improve the preference pre-

diction of users to venues in LBSNs. The user and venue latent attributes are

learned by models that exploit behavioral effects in check-ins including those

proposed in this dissertation. The framework provides a flexible approach to

combine different latent attributes, embeddings of users and venues to predict

check-in behaviors.

To summarize, our main contributions in this dissertation are in illustrat-

ing the two effects named neighborhood competition and area attraction and

propose several models to study these two effects in order to study the check-

in behavior of users in LBSN. Our works can benefit government agencies by
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pointing out popular areas so that new roads or subway stations could be built.

Moreover, some companies can use our models to find the best place to open

their new stores.

9.2 Future Works

To conclude this dissertation, we sketch below some potential directions for

future research that can further elaborate our current works.

First, temporal information is an important information to understand the

movement of users in LBSNs. For example, people usually travel from home

to workspace around 9AM during the weekdays and traverse the opposite way

after work hours. Previous works [14, 67, 63] have considered temporal patterns

in the modeling of users’ check-in behavior. We could therefore extend our

proposed models to include temporal patterns. Conceivably, such extended

models should be able to predict check-in behavior more accurately.

Secondly, our work assumes that the attractiveness of each area as well

as the competitiveness of each venue do not change over time. However, this

assumption is overly strict and it needs to be relaxed in order to have a more

adaptive model. For example, the service of a particular hotel may be good on

the dates without so many customers but it could be worse if the number of

customers suddenly increases (e.g. weekends, public holidays). To solve this

issue, we require a method that could measure the attractiveness of areas and

competitiveness of venues incrementally. The possible technique to handle is

online learning [9]. Online learning treats the check-ins of users in LBSNs as a

sequential stream and incrementally update the area attractiveness and venue

competitiveness. It provides us an incremental measurement of the two scores

and also improves the learning time due to the usage of the new coming data.

Hence, integrating online learning to modeling the mobility of users in LBSNs

brings us many advantages.
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Thirdly, area attraction and neighborhood competition are modeled dif-

ferently in Chapters 5 and 6. Hence, we could treat them similarly but at

different levels. In other words, a particular area also competes with others

to gain the visitation of users and there is a second competition among its

venues to finally attract users. The idea has been used to explain the innova-

tion divergence of different countries [20]. Hence, we intend to propose another

model to study neighborhood competition and area attraction under the above

assumption. It provides us a chance to research area attraction as a special

case of competition.

Finally, with the emergence of multiple social network, users do not restrict

themselves to one specific platform. They can use multiple social media plat-

forms for posting and for social activities. Thus, using activities of users across

social media platforms can enhance our understanding of users’ mobility [50].

For example, if a particular user posts many articles related to food in Twitter,

he/she is likely a food lovers. Then, the probability of this kind of users makes

check-ins to food-related venues is higher than the one of him/her going to

other places. Therefore, enriching our model with external knowledge of users

from other social media platforms is also a promising direction.
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