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Proactive and Reactive Resource/Task Allocation for
Agent Teams in Uncertain Environments

Pritee Agrawal

Abstract

Synergistic interactions between task/resource allocation and multi-agent
coordinated planning/assignment exist in many problem domains such as trans-
portation and logistics, disaster rescue, security patrolling, sensor networks, power
distribution networks, etc. These domains often feature dynamic environments
where allocations of tasks/resources may have complex dependencies and agents
may leave the team due to unforeseen conditions (e.g., emergency, accident or
violation, damage to agent, reconfiguration of environment).

Existing research in exploiting these synergistic interactions between the two
problems of task/resource allocation and multi-agent coordinated planning/ assign-
ment have either only considered domains where tasks/resources are completely
independent of each other or have focussed on approaches with limited scalability.
In addition, task allocation has typically considered fixed number of agents and
in some instances, arrival of new agents on the team. However, there is little or
no literature that considers non-dedicated teams (agents leave the team midway
through the tasks being accomplished).

The overarching goal of this dissertation is to address the above mentioned
limitations by developing computationally efficient and scalable mechanisms for
solving task/resource constrained multi-agent planning/assignment with abilities
to handle dependencies between tasks/resources, non dedication in agent teams
and reconfiguration of the environment due to an external event. To that end,
we develop generic models to handle task/resource constrained multi-agent plan-
ning/assignment for dedicated and non-dedicated agent teams. Given these models,
we design scalable proactive and reactive algorithms that provide provable quality-
bounds. The proactive approaches mainly exploit decomposability to solve indepen-
dent agent planning/assignment problems and provide posterior quality guarantees
while the reactive approaches are highly efficient and provide very quick solutions
but without quality guarantees. Finally, we empirically show the high scalability and
better solution performance of our approaches in comparison with existing work on
the real-world and synthetic benchmarks from literature.
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Chapter 1

Introduction

The synergistic interactions between task/resource allocation and multi-agent co-
ordinated planning/assignment coexist in many real world environments ranging
from urban transportation and logistics, UAV (Unmanned aerial vehicles) task as-
signment, traffic patrolling and disaster rescue to distributed planning and resource
allocation, sensor networks and power distribution networks to name a few. In these
environments, the process of planning/assignment is often complicated by the pres-
ence of multiple interdependent objectives for agents, whose achievement requires
execution of action sequences which might have long-term, non-deterministic ef-
fects. Therefore, there exists a cyclic dependency between the task/resource al-
location and the agent planning problem since the agent’s value for a set of re-
sources/tasks is defined by the solution to the planning problem but the agent re-
quires information of the resources/tasks it will obtain to formulate it’s planning
problem. We refer to the agent teams dealing with the above mentioned cyclic de-
pendency as dedicated agent teams. Agents of such a team compulsorily stay in
the system until the end of the time horizon and execute the tasks assigned (or use
the resources allocated) to them by the central planner.

However, most of the above mentioned domains experience dynamic environ-
ments where some agents may not be fully dedicated to the tasks assigned by the
central planner and leave the system due to either a breakdown (e.g., in the case
of large warehouses, individual robots leave the system either to get charged or
because of malfunction) or to address a higher priority task (e.g., in case of traffic
patrolling problems, traffic police have to attend to incidents/accidents in addition to
patrolling roads). Due to the non-dedicated nature of the team members (as agents
can leave the team at any time), we refer to these teams as non-dedicated agent
teams.

In all the above mentioned problem domains, the teams of agents operate in
real world environments where uncertainty arises either due to transition uncer-
tainty in the planning problems of individual agents or due to agents leaving the
system or due to reconfiguration of the system after some event. Planning complex-
ity may grow exponentially with increasing agents, tasks/resources, etc. Existing
research has focussed on exact planning techniques that provide optimal solutions
but are not scalable to very large real world problems. Decomposition techniques
have been used to solve deterministic problems but not exploited extensively ei-
ther with stochastic planning where the number of resources consumed (or tasks

1
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completed) is not easy to compute due to transition uncertainty or with multi-agent
co-ordination problems. Furthermore, existing research in task allocation has only
considered fixed number of agents and in some instances arrival of new agents on
the team. However, there is little or no literature that considers situations where
agents are non-dedicated and leave the team after task allocation.

The focus of this dissertation is on providing generic models and scalable so-
lution approaches with improved solution quality that can be easily applied to
any problem domain involving task/resource allocation and multi-agent coordi-
nated planning/assignment. The fundamental insight of the solution approaches
in this work is that even though the interactions between task/resource alloca-
tion and the planning/assignment problem are synergistic, given the allocation of
tasks/resources, the agent planning/assignment problems can be solved indepen-
dent of each other. We exploit this key insight to solve the dedicated team problems
by allocating tasks/resources to agents in one shot after which reallocation is not al-
lowed during plan execution phase. However, in case of non-dedicated agent teams,
reallocation or rearrangement of tasks/resources may be allowed, but only when
there is a change in the system configuration (e.g., agents leave the team before
the end of planning horizon, change in network structure due to an event). We de-
scribe a formal framework for dedicated and non-dedicated agent teams, analyse
their properties, and develop computationally tractable solution algorithms in this
dissertation.

1.1 Contributions
The work presented in this dissertation was done in collaboration with several col-
leagues. In all cases, I contributed substantially to the research.

The main contribution of this dissertation is a class of efficient and scalable
solution approaches for the interdependent problems of task/resource allocation

2



and multi-agent coordinated planning/assignment for agent teams in uncertain
environments. The key result of this work involves recognizing the decomposable
structure in such problems, which is exploited to illustrate high scalability and
improved solution performance of our approaches on large real world and synthetic
benchmarks. In addition, we also exploit greedy approaches to provide quick
and efficient solutions. More specifically, the major contributions of the work
presented in this dissertation are depicted schematically in Figure 1.1. We classify
the Task/Resource allocation for agent teams into two major categories based on
the type of uncertainty handled by them.

(1) Task/Resource Constrained Multiagent Coordinated Planning : This class
of problems deals with task/resource based interactions between the planning agents
of a team. We handle uncertainty in these problems that arise either due to transition
uncertainty or due to agents leaving the system midway through the accomplishment
of tasks.

• Transition Uncertainty in Agent Teams (Dedicated Teams) : We clas-
sify agent teams dealing with only transition uncertainty as dedicated agent
teams. Several generic models including weakly coupled MDPs and resource-
parametrized MDPs have been proposed to represent the task/resource con-
strained multi-agent planning problems. However, these existing approaches
are not scalable to large scale problems and do not consider dependencies
between tasks/resources. Therefore, we propose a generic model for solv-
ing the task/resource constrained multi-agent coordinated planning problems
that can handle task dependencies along with independent tasks. Our greedy
based proactive solution approaches improve the scalability while providing
high quality solutions.

• Uncertainty due to Leaving Agents (Non-dedicated Teams) : We extend
the model for dedicated teams to represent the problems dealing with non-
dedicated agent teams that handle transition uncertainty and uncertainty due
to agents leaving the team midway before the tasks are accomplished. We
provide multiple proactive and reactive approaches to generate policies for
individual agents in the non-dedicated agent teams. For the centralized multi-
agent planning problems, our proactive approaches based on sample average
approximation and decomposition provide highly efficient offline one-stage
and two-stage policies for the agents while greedy reactive approach provides
instantaneous solutions when agents leave the team. In addition, for the de-
centralized multiagent planning problems, we exploit submodular rewards to
provide greedy approaches that handle non-dedicated agent teams and pro-
vide excellent performance, almost at par with the benchmark approaches.

(2) Task/Resource Constrained Multiagent Coordinated Assignment : This
class of problems deals with coordinated decision making by a team of agents along
with allocation of tasks/resources.

• Uncertainty due to Leaving Agents (Non-dedicated Teams) : We clas-
sify task/resource constrained multi-agent coordinated assignment problems
as non-dedicated agent teams due to the uncertainty introduced by the

3



agents leaving the system midway through the tasks. Existing research on
task/resource constrained multi-agent coordinated assignment have used Re-
source Constrained DCOP (RC-DCOP) (Matsui, Matsuo, Silaghi, Hirayama,
& Yokoo, 2008; Bowring, Tambe, & Yokoo, 2006; Kumar, Faltings, & Petcu,
2009) framework to handle resources for multiagent coordination problems.
However, they suffer from exponential memory requirement problems and
cannot scale up to large real world instances. Therefore, we provide a model
to exploit decomposability in structured networks by dividing a global net-
work into multiple small networks (each small network represents an agent).
In case of availability of a centralized planner, the centralized planner broad-
casts required information to different agents. However, in the absence of
centralized planner, we use a simple distributed approach that uses local mes-
sage passing for communication among different agents.

We briefly present the advancements obtained by our solution approaches.

• Decomposability: For all the problems mentioned in this thesis, agents are
either weakly coupled or fully decentralized, and hence decomposition is nat-
urally applicable. Therefore, we use Lagrangian dual decomposition (LDD)
to exploit decomposability, which provides the desirable anytime property
due to it’s iterative nature and posterior guarantees on solution quality. Us-
ing these quality bounds, our solution approaches could provide near-optimal
solutions on a number of large real-world and synthetic benchmarks.

• Scalability: Our approaches are able to generate solutions efficiently for
multi-agent problems with hundreds of agents and thousands of tasks. We
demonstrate superior performance to existing approaches, specifically on
large scale problems. For example, the scalability of decentralised power
network (discussed in details in chapter 7) improved by at least 30 fold
over previous best multi-agent approaches by exploiting near decomposabil-
ity amongst regions.

• Solution Performance: We obtain near optimal solutions in the real-world
and synthetic benchmarks with significant speed-ups for the problems dealing
with task/resource allocation and multiagent planning. In centralized settings,
the solution quality obtained by greedy approaches varies between 60-70% of
optimal while the solution quality of optimization approaches ranges between
70-90% of optimal. Furthermore, in decentralized settings, we were able to
obtain strong quality guarantees of approximately 85% or more of the opti-
mal, that is comparable to highly efficient centralized solver.

• Homogeneity: In many planning domains, agents are homogeneous, that is,
they are exactly of the same type with identical agent models for all alloca-
tions of resources/tasks. For example, various robots in disaster rescue are
mass produced with identical capabilities. Thus, we exploit homogeneity in
agent models by ensuring evaluation for one agent of each type, thereby im-
proving the scalability and decreasing the total runtime of our algorithms.

4



• Parallelism: Due to the exploitation of decomposability, parallel computa-
tion and communication among individual agent planning problems is easy.
Hence, instead of solving the individual MDP models sequentially, they can
be solved in parallel by each agent as they are independent of each other.
Parallel execution of individual agent planning problems provides quick so-
lutions by reducing the runtimes significantly due to the use of multiple pro-
cessors and cheap communication.

1.2 Overview of the Thesis
The rest of the thesis is organised as follows:

Chapter 2 provides background on motivating domains, existing models and
algorithms to solve the problem from literature.

Chapter 3 provides the models introduced by us to handle dedicated and non-
dedicated agent teams for task/resource constrained multi-agent coordinated
planning/assignment.

Chapter 4 deals with task/resource constrained multi-agent coordinated planning
for dedicated agent teams with an ability to handle transition uncertainty. This
chapter presents a generic model for task/resource constrained markov decision
problems (TasC MDPs) with an ability to handle task/resource dependencies. It
focusses on two proactive scalable greedy algorithms that provide high scalability
and solution performance on existing benchmark problems from literature.

Chapter 5 extends the generic model presented in Chapter 4 for a non-dedicated
team of agents with an ability to handle transition uncertainty and uncertainty due
to agents leaving the team. Proactive and reactive benchmarking heuristics have
been presented that bound the best performance achievable. This chapter provides
a reactive approach that provides instantaneous policies for agents whenever agents
leave the system and two proactive approaches that provide offline stage-based
closed loop policies for any sample of leaving agents.

Chapter 6 deals with task/resource constrained multi-agent coordinated de-
centralized planning for non-dedicated agent teams. We extend the concept of
non-dedication to transition independent Dec-MDP (Kumar, Varakantham, &
Kumar, 2017) by formulating ND-TI-Dec-MDP model for a team of independently
collaborating non-dedicated agents. We exploit joint submodular rewards for
decentralised non-dedicated agent teams and provide strong quality guarantees (a
priori, and posteriori guarantees). We extend the benchmark approaches introduced
in Chapter 5 by providing a lazy greedy extension for decentralized settings. This
chapter presents two greedy approaches (an offline one and an offline-online one)
that are able to deal with agents leaving the team in an effective and efficient way
by exploiting the submodularity property.
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Chapter 7 presents a general approach for task/resource constrained multi-agent
coordinated assignment for non-dedicated agent teams. This chapter presents a
decentralized solution approach for resource constrained multi-agent problems in
distributed network settings. In this chapter, this problem has been studied and
examined on one such domain of distributed network, power supply restoration
for smart grids which requires co-ordination of multiple operators managing
different regions of the network. A proactive dual decomposition based approx-
imate dynamic programming approach that uses local message passing between
communicating agents has been proposed to provide scalable solutions for large
real world and synthetic problem instances.

Chapter 8 presents related work for the dedicated teams and non dedicated teams
to solve the problem of task/resource allocation in uncertain environments.

Chapter 9 finally presents a conclusion with future directions.
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Chapter 2

Background

This chapter provides a brief background on the experimental domains, existing
models and the existing algorithms to solve these models.

2.1 Motivating Domains
In this section, we describe a few concrete problems where dedicated and non-
dedicated teams operate in uncertain environments.

2.1.1 Multi-agent Delivery Problem
A Multi-Agent Delivery Problem (MADP) (Dolgov & Durfee, 2006) deals with a
team of dedicated agents, each agent operating in a different map specific to the
agent and starting from a potentially different part of the map, need to deliver goods
to their respective delivery locations. Each delivery task requires a subset of re-
sources, and there are limited quantities of each type of resource. There are random
delivery locations on the grid, and each location has a set of deliveries that it accepts.
Each resource has some size requirements (capacity cost), and each delivery agent
has bounded space to hold the resources (limited capacity). The agents are allocated
resources by a centralized planner and the value of a resource depends on what other
resources the agent acquires and what other deliveries it can make. Given a bundle
of resources, a delivery agent can solve it’s planning problem independently to find
an optimal delivery plan.

Figure 2.1 shows an illustration of an example problem for one agent operating
in a grid world where 40% of the cells are untraversable (marked grey) and remain-
ing cells are traversable (marked white). The cell with the letter “S” is the starting
cell of the agent. 10% of the traversable cells are delivery locations marked with the
letter “T” placed randomly throughout the grid. Each delivery task requires a set of
(limited) resources, which are shown in numbers in the delivery location cells. Each
agent has following actions: movement in any of the four directions and execution
of any of the different delivery actions. The agents obtain a reward when they suc-
cessfully make a delivery. The goal is to find a division of the resources to agents
so that the overall reward is maximized.
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Figure 2.1: Example Delivery Problem for One Agent

2.1.2 Urban Consolidation Center
To reduce traffic and pollution due to large trucks delivering goods to distribution
centers from ports, many cities have started constructing Urban Consolidation Cen-
ters (UCCs) (Handoko, Nguyen, & Lau, 2014). Without a UCC, trucks from differ-
ent companies have to move in the same parts of the city to deliver goods. UCC is an
alliance concept for last mile deliveries where delivery orders of various participat-
ing companies are consolidated and sorted according to their destination addresses.
This results in cost savings and higher truck utilization as fewer trucks are required.
It is further assumed that the UCC operates its own vehicles to consolidate and de-
liver goods to the city centre by assigning a vehicle to every order for the last-mile
deliveries. These vehicle have specific capabilities that help them in delivery tasks.
Specifically, the tasks have difficulty levels associated with them ranging from low
and medium to high while the vehicles have capabilities defined to handle the levels
of tasks. Further, there can be temporal dependencies between tasks that may re-
quire the vehicles to complete some delivery task prior to another task due to time
window restrictions. There are limited number of agents (i.e., tens) but thousands
of tasks which increase the complexity of the problem.

We use a grid world environment similar to the MADP domain, but with the
difference that there can be multiple delivery tasks in a cell that do not require any
resources to be completed and may have dependencies between different delivery
tasks( e.g., task A must be completed before task B , task B and C must be assigned
to agent 1). Unlike the delivery problem, all agents operate on a single map where
the agents can stay in a cell to perform more than one tasks available in the cell.
Every task is independent of other tasks, irrespective of the cell it is present in. The
agents are penalized for late deliveries and rewarded for on-time deliveries. The goal
is to find the division of tasks to agents so that the overall reward is maximized.

The above discussed details of UCC domain reflect the presence of a dedicated
team of agents in uncertain environment where transitional uncertainty exists in the
domain due to movement of truck agents on roads. Further, this domain can be
extended to deal with non-dedicated teams where agents leave the team (either due
to personal emergency or road accidents) before completing their assigned tasks.
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2.1.3 Power Supply Restoration in Smart Grids
A power distribution system is a network of electric lines connected by switch-
ing devices (SDs), and fed by circuit breakers (CBs) (Bertoli, Cimatti, Slanley, &
Thiebaux, 2002). Both SDs and CBs have two device positions: closed, open. SDs
are analogous to sinks (transformer stations) which consume some power and for-
ward the rest on other lines if closed. Open SD stops power flow. Circuit breakers,
which are analogous to power sources with finite available power, feed the network
when closed. The positions of the devices are set such that the paths taken by the
power of each CB forms a tree called feeder tree, and no sink is powered by more
than one power line. In addition, Kirchhoff’s law (or flow conservation requires that
an edge must carry power for both, the directly connected sink and others which
may receive power indirectly through it ) must hold for all devices and the current
load for any line must not exceed its capacity.

Uncertainty arises in power distribution systems due to faults in the feeders
(power sources) which are responsible for supplying power. Further, faulty power
lines may also isolate a feeder from supplying power to the assigned region. We
consider the regions that were powered by these faulty feeders as agents leaving the
system. This enforces the reconfiguration of power network to restore supply to the
non-faulty areas of the regions with lost feeders. Therefore, restoration plans must
be built to isolate these faulty elements by prescribing to open the switching devices
surrounding them. It should be noted that we assume that faulty elements are iden-
tified in the network and isolated to prevent feeding power to a faulty line before
the task of power supply restoration (PSR) is done. PSR reconfigures the network
(sets positions of devices) such that power supply is restored to maximum possible
affected sinks after one or more power lines or sources become faulty. Every sink
is assigned a weight based on the priority (i.e., high priority is given to critical con-
sumers like hospitals) so as to resupply power to them as soon as possible. Hence,
power distribution networks deal with a non-dedicated team of feeder agents that
handle coordinated assignment of power supply.

2.1.4 Movement of Goods at Large Warehouses
Inspired by the warehouse mechanics of Kiva systems, targeted at pick-pack-and-
ship, large warehouses (e.g., Amazon, Walmart, etc.) employ several teams of
robots to accomplish tasks of pickup and delivery (Kucera, 2012; D’andrea, Mans-
field, Mountz, Polic, & Dingle, 2012). These robots are capable of lifting and carry-
ing shelving units from storage locations to stations where workers can pick items
off the shelves and put them into shipping cartons. A typical installation of such a
system in a large warehouse will involve hundreds of robots. Although the overall
system is cooperative, the Kiva robots handle their tasks independent of each other
to complete an order. The resources are limited which include space and elements
of the environment that are needed to accomplish the tasks. We are specifically in-
terested in cases where there is a malfunction of the robots. In such cases, tasks have
to be dynamically reallocated to the remaining robots so as to not effect efficiency
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(a) Map 1 (b) Map 2

Figure 2.2: Disaster Rescue Maps

of the overall process.

2.1.5 Disaster/Emergency Response
In disaster rescue problems (Nair, Varakantham, Tambe, & Yokoo, 2005; Varakan-
tham, young Kwak, Taylor, Marecki, Scerri, & Tambe, 2009), a team of heteroge-
neous robots have a goal of saving the victims trapped in a building with debris.
A building is modelled as a grid with narrow corridors connecting neighbouring
grid cells and debris in some grid cells. Narrow corridors allow for only one robot
to pass through; when multiple robots try to pass through, a collision (modelled
with negative rewards) occurs. In this problem, the resources are the rights to pass
through narrow corridors and the agents are the robots. In the two disaster rescue
maps shown in Figure 2.2, red icons represent victims (in the middle of Map 1 and
in the right-most column of Map 2), black icons represent robot rescuers (along the
perimeter of Map 1 and in the left-most column of Map 2), and the other icons rep-
resent narrow corridors. All the robot rescuers are identical in that they all have the
same transitional uncertainties and the same reward functions. All robots must rea-
son about uncertainty in their actual positions and slippages (action failures) when
moving to locations. The goal of the robots is to save as many victims as possible
within the time available.

Similarly, in emergency response problems (Saisubramanian, Varakantham, &
Lau, 2015), a team of emergency response vehicles have to attend to multiple in-
cidents. In these domains, there is uncertainty in transitions because of how the
disaster/emergency evolves. We are also interested in cases where members of the
team have to leave the current emergency and attend to other higher priority emer-
gencies.

2.1.6 Infrastructure Security
Recent research has introduced security games to model the problem of preventing
incidents from happening through patrols, checks and projecting presence where
a set of defenders coordinate to secure a set of targets against an observing ad-
versary. Specific instances of this problem that are of relevance to this work in-
clude the metro rail network problem (Shieh, Jiang, Yadav, Varakantham, & Tambe,
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2014; Varakantham, Lau, & Yuan, 2013), traffic patrolling (Brown, Saisubramanian,
Varakantham, & Tambe, 2014), airport security (Pita, Jain, Marecki, Ordóñez, Port-
way, Tambe, Western, Paruchuri, & Kraus, 2008) and coast guard protection (Shieh,
An, Yang, Tambe, Baldwin, DiRenzo, Maule, & Meyer, 2012; An, Pita, Shieh,
Tambe, Kiekintveld, & Marecki, 2011).

In the above mentioned prevention settings, the defender resources conduct pa-
trols to secure their targets (e.g., stations in metro rail domain, streets in traffic
domain, etc.) while the adversary conducts surveillance and may take an advantage
of the defender’s predictability to plan an attack or make violations. Furthermore,
teamwork among the defenders for patrolling related incidents is complicated due to
the requirement of coordination of their activities under transition uncertainty (e.g.,
delays may arise from unexpected situations leading to miscoordination, making
the defenders unable to act simultaneously). In addition to patrolling responsibili-
ties, defenders are also tasked with attending to other emergencies or violations that
are not in the purview of the patrolling problem. Due to this additional responsi-
bility, defenders can be forced to leave their assignment (patrols or check/screening
schedule) to attend to an accident or incident (e.g., incursion, smuggling, road ac-
cident) or some other higher priority task before the end of their patrolling horizon.
This provides the key reason for non-dedication of defenders which requires the
non-leaving defenders to fill in the gaps that are created due to leaving agents. Fur-
thermore, in many prevention settings, the effectiveness of patrols is submodular
in the number of agents patrolling a target (i.e., the incremental improvement in
effectiveness with an additional patrol team reduces with more agents). Providing
policies for individual defenders given this non-dedicated nature of team members
and the submodularity of rewards is an important problem of interest in this work.

2.1.7 Sensor Networks
Sensor networks (Nair et al., 2005; Kumar & Zilberstein, 2011) are useful for ob-
serving some spatial phenomenon (i.e., tracking of moving targets) where the cov-
erage scope of every sensor is limited to its sensing range. More specifically, in this
domain, the environment is modelled as a grid and the sensors are randomly placed
at junctions of cells where every sensor can track four target cells surrounding the
sensor. The reward function is submodular with n-ary interactions (any number of
sensors can track a target). Intuitively, adding a sensor helps more if fewer sensors
are tracking a target and helps less if the number of sensors is already high. This is
formally the diminishing returns property of submodularity.

With a certain probability, deployed sensors can fail either due to wear and tear
or due to unforeseen conditions. The goal is to maximize the area covered by the
functioning sensors even after some sensors are spoilt. Due to closeness in sensing
range, the neighbouring sensors can easily track the moving targets of the damaged
sensors in order to maximize the reward. Therefore, reconfiguration of sensor poli-
cies after one or more sensors get spoilt is of high importance. In addition, the
targets are assumed to move stochastically (according to some fixed distribution) in
the grid and follow a path of fixed length for movement.
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2.2 Background
In this section, we provide a background of the concepts that are fundamental for
the models developed in this thesis. A brief introduction to markov decision pro-
cesses (MDP) is provided in section 2.2.1 since we use MDPs to model transition
uncertainty in dedicated and non-dedicated agent teams in upcoming chapters. We
introduce the concepts of submodularity, matroids and submodular TI-Dec-MDP in
sections 2.2.2 and 2.2.3 as they form the basis for ND-TI-Dec-MDP model intro-
duced in chapter 6 to handle non-dedication in decentralized agent teams. Finally,
distributed constraint optimization (DCOP) in section 2.2.4 have been used for han-
dling structured resources in multiagent settings and provide a background for the
assignment model introduced in chapter 7.

2.2.1 Markov Decision Process
Markov Decision Process (Puterman, 1994) provides a mathematical framework
for modeling decision making in planning problems where the outcomes are partly
random and partly under the control of a decision maker.

Definition 1. A Markov Decision Problem (MDP) is defined by M =<
S,A, P,R,H, α > with state space S, action space A, time horizon H , transition
function P : S × A × S ×H → [0; 1] and reward function R : S × A ×H → R.
R is the set of real numbers. The distribution of initial states is α and α(s) denotes
the probability of starting in state s.

For a given time horizon H , the objective of the MDP is to find a policy π :
S × A × H → [0; 1] that maximizes the total expected reward within the time
horizon H:

max
∑
s0

α(s0) ·
H∑
t=0

P t(s, a|s0, π) ·Rt(s, a) (2.1)

The optimal policy for an MDP can be obtained by solving the following linear
program (Puterman, 1994):

max
H∑
t=0

xt(s, a) ·Rt(s, a) s.t.∑
a∈A

x0(s, a) = α(s) ∀s ∈ S (2.2)∑
a∈A

xt+1(s′, a) =
∑

s∈S,a∈A
xt(s, a) · P t(s, a, s′) ∀s′ ∈ S (2.3)

in which xt(s, a) is the occupancy variable used to specify the expected number of
times (s, a) visited at period t. Flow constraints (2.2), (2.3) enforce flow preserva-
tion, i.e., the total number of agents taking actions to move out of s′ is equal to the
total number of agents coming into s′. We can derive the policy π from solution of
above discussed MDP as follows:

πt(s, a) =
xt(s, a)∑
a∈A x

t(s, a)
(2.4)
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2.2.2 Monotone Submodularity and Matroids
We now describe submodular functions and matroids.

Definition 1. Given a finite set, Π, a submodular function is a set function, g :
2Π → R, where 2Π is the power set corresponding to Π. More importantly, ∀X, Y ⊆
Π with X ⊆ Y and for every i ∈ Π \ Y , we have:

g(X ∪ i)− g(X) ≥ g(Y ∪ i)− g(Y )

A submodular function g is monotone if g(Y ) ≥ g(X) for X ⊆ Y .

Monotone submodular functions are interesting because maximizing a submodular
function to pick a fixed number of elements (say k) from the finite set (Π) while
difficult can be approximated efficiently with a strong quality guarantee. Specifi-
cally, a greedy algorithm that incrementally generates the solution set by maximiz-
ing marginal utility provides solutions that are at least 63% (1 − 1

e
) of the optimal

solution.
If we have a submodular function under a specific constraint on the finite set

(Π) and the elements that are picked, the constraint is specified using a partition
matroid. In this dissertation, we are also interested in maximizing a submodular
function, however, under a specific constraint on the finite set (Π) and the elements
that are picked. Specifically, the constraint is specified using a partition matroid.
We provide the formal definitions below:

Definition 2. For a finite ground set, Π, let P be a non-empty collection of subsets
of Π. The system Γ = (Π,P) is a matroid if it satisfies the following two properties:

• The hereditary property: P1 ∈ P ∧ P2 ⊂ P1 =⇒ P2 ∈ P . In other words,
all the subsets of P1 must be in P .

• The exchange property: ∀P1,P2 ∈ P : |P1| < |P2| =⇒ ∃x ∈ P2 \P1;P1 ∪
x ∈ P .

We are specifically interested in a ground set that is partitioned as Π = Π1 ∪
Π2 ∪ . . . ∪ Πk. The family of subsets, P = {P ⊆ Π : ∀i, |P ∩ Πi| ≤ 1} forms a
matroid called a partition matroid. This family of subsets denotes that any solution
can include at most one element from each ground set partition where the ground
set partitions represent the policy space of each agent and exactly one policy must
be picked for each agent.

2.2.3 Submodular TI-Dec-MDP
Submodular Transition Independent Decentralized Markov Decision Process (TI-
Dec-MDP) model (Kumar et al., 2017) is characterized by the tuple:〈

Ag, S, A, {Pi}i∈Ag, R,H, α
〉

• Ag is the set of agents.
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• S is the factored joint state space. S = S1 × S2 . . . S|Ag|, where Si is the state
space corresponding to each individual agent i. We can also have a global unaf-
fected state feature, Su.
• A is the joint action space. A = ×i∈AgAi, where Ai is the action space corre-

sponding to each individual agent i.
• Pi is the individual agent transition function. Pi(s′i|ai, s′i) indicates the transition

probability of moving from si to s′i on taking action ai.
• R is the monotone submodular joint reward, with R(s, a) representing the re-

ward for taking joint action a in joint state s. In security domains (Shieh et al.,
2014), reward is both monotonically increasing and submodular. It is defined as
follows:

R(s, a) =
∑
b

yb · fb(σ(s, a, b)) (2.5)

yb indicates value of target b and hence is a non-negative number. fb(.) is a
monotone submodular function referred to as the effectiveness of patrolling a
target b. Effectiveness of patrols at a target b depends on the number of agents
patrolling the target. σ(s, a, b) counts the number of agents at target b if the
current joint state is s and joint action is a. The usual definition of f(.) for
effectiveness parameter ε (0 < ε ≤ 1) is as follows:

f(k) = 1− (1− ε)k.

• H is the time horizon.
• α is the starting state distribution.

The goal is to obtain a joint policy π∗ = 〈π∗1, π∗2, . . . , 〉 (with one policy, π∗i for
each agent i) that maximizes expected reward or value defined as follows:

V (π∗) =
∑
s

α(s) · V H(s, π∗) (2.6)

V t(s, π∗) = R
(
s,
〈
πt1(s1), . . . , πt|Ag|(s|Ag|)

〉 )
+∑

s′

[ ∏
i∈Ag

Pi

(
s′i|πti(si), si

)]
· V t−1(s′, π∗) (2.7)

2.2.4 Distributed Constraint Optimization (DCOP) & Resource
Constrained DCOP (RC-DCOP)

A distributed constraint optimization problem (DCOP) model (Modi, Shen, Tambe,
& Yokoo, 2005; Petcu & Faltings, 2005; Gershman, Meisels, & Zivan, 2009; Yeoh
& Yokoo, 2012) is represented as a tuple 〈X,D, F 〉 where X = {X1, ..., Xn} is
a set of variables, and D = {D1, ..., Dn} is a set of finite variable domains. F =
{f1, ..., fm} is a set of functions (also called constraints), where each fi is a function
with scope (Xi1 , ..., Xik). It is defined as fi : Di1 × ...×Dik → R, which denotes
the cost assigned to each possible combination of values of the involved variables.
In a DCOP, each variable and constraint is owned by an agent and the goal is to find
a solution that minimizes the sum of constraint costs.
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Variables: ∀s, σ ∈ S;∀a ∈ A;∀o ∈ O; ∀c ∈ C;∀m ∈M ;

Maximize:
∑
m

∑
s

∑
a

xm(s, a) · rm(s, a) (2.8)

Subject to:∑
a

xm(σ, a)− γ ·
∑
s

∑
a

xm(s, a) · pm(σ|s, a) = αm(σ), ∀σ,m (2.9)∑
o

κ(o, c) · δm(o) ≤ κ̂m(c), ∀c, ∀m (2.10)∑
m

δm(o) ≤ ρ̂(o), ∀o (2.11)

1

X

∑
a

ρm(a, o)
∑
s

xm(s, a) ≤ δm(o), ∀o,m (2.12)

xm(s, a) ≥ 0, δm(o) ∈ {0, 1} (2.13)

Table 2.1: Optimal MILP for Resource Parametrized MDP

Resource Constrained DCOP (RC-DCOP) (Matsui et al., 2008; Bowring et al.,
2006) adds support for resources in the form of constraints to the DCOP frame-
work explained above. The resource constraints are defined by a set of resources
R with every resource ra ∈ R having a capacity C(ra) : R → R. The set U
defines the set of requirements or the quantity of resources required by agents i.e.
ui(ra, di) : R × Di → R defines the amount of the resource ra required by agent
i under the assignment di. The global resource constraint requires that the capacity
of each resource must not be exceeded i.e. ∀r ∈ R,

∑
i ui(r, di) ≤ C(r) under

the assignment X . An important generalization implies that each resource require-
ment u may take any arity leading to n-ary constraints among agents, leading to the
increased complexity of solving an RC-DCOP compared to DCOP.

2.3 Existing Algorithms
This section presents the existing algorithms for solving multi-agent plan-
ning/assignment problems for dedicated and non-dedicated agent teams. We have
compared our solution approaches with these existing benchmarks in the experi-
mental sections of this document for performance comparison.

2.3.1 Resource Parameterized MDP
In the literature of multi-agent planning for dedicated agent teams, Dolgov and Dur-
fee (2006, 2004) introduced Resource Parameterized MDPs where the action set of
the MDP is paramaterized on the set of resources available to the agent. Every
individual agent solves an optimization problem to choose a subset of available
resources such that the best feasible policy under that bundle of resources yields
highest utility.
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Definition 2. The model for agent’s optimization problem is defined using the tuple
〈M, 〈S,A, pm, rm, αm, ρm, κ̂m〉 , O, C, κ, ρ̂〉.

• M is the set of agents.

• 〈S,A, pm, rm, αm, ρm, κ̂m〉 is the set of weakly coupled single agent MDPs.
- 〈S,A, pm, rm〉 are the sets of states, actions, transition and reward functions,
respectively for agent m.
- αm is the starting probability distribution for agent i.
- ρm : A × O → R{0,1} is a function that specifies the binary task/resource
requirements of all actions.
- κ̂m : C → R corresponds to the upper bound on the capacities (e.g., κ̂m(c)
gives the upper bound on capacity c ∈ C ) for agent m.

• O and C are the set of resources and capacities.

• κ : O × C represents the capacity cost of resources.

• ρ̂ : O → R specifies the upper bound on the amounts of shared resources.

Given the above model, the goal of resource parametrized MDP is allocation
of resources to agents in a way that maximizes the social welfare of the agents.
The resources in the model outlined above are non-consumable, i.e., actions require
resources but do not consume them during execution. The multi-agent problem of
selecting an optimal subset of resources that does not violate its capacity constraints
and provides optimal policies for agents can be formulated as a mixed integer linear
program (MILP) presented in table 2.1. The objective of the MILP is to maximize
the total expected reward over all agents where xm(s, a) is the occupation measure
of agent m for state action pair (s, a) and rm(s, a) is the reward for executing action
a in state s. Equation 2.9 ensures outgoing flow from a state σ by taking any action
is equal to the incoming flow into that state from other states. Equation 2.10 defines
the budget constraint for every agent where the cost κ(o, c) of obtaining a resource
should not exceed the budget κ̂m(c) for an agent. Equation 2.11 constrains the
number of allocated resources for any given type, o to be less than the capacity of
that resource ρ̂(o). A task can be executed only if there is a positive flow associated
with the right state and action. This is enforced in Equation 2.12.

2.3.2 Greedy & Lazy Greedy for TI-Dec-MDP
Kumar et al. (2017) provided a greedy algorithm and its lazy greedy extension for
TI-Dec-MDP. The greedy algorithm builds the solution set incrementally by adding
policy for a different agent at each iteration. The solution starts with an empty
set and computes policies for agents based on the marginal value of the policies in
the current solution set. At every iteration, the policy with highest marginal value
is added to the solution set. The highest marginal value policy is computed by
constructing and solving an MDP, given the solution set. This process continues for
|Ag| iterations, when every agent is assigned exactly one policy.

Further, the above greedy algorithm is replaced by an efficient lazy greedy
extension to improve the scalability of the algorithm with increasing agents.

16



The lazy greedy algorithm (Minoux, 1978) uses the submodularity property of
value/objective function which guarantees that the marginal gain for an agent is
always equal to or lower than the previous iteration. Therefore, the marginal gain
computation is reduced by maintaining a sorted order of marginal values at each
iteration. which is then computed according to the descending order in the next
iteration.

2.3.3 RC-DCOP with Structured Resource Constraints
Resource constrained DCOPs (RC-DCOPs) (Bowring et al., 2006; Matsui et al.,
2008) provide a general framework for coordinated decision making in distributed
networks by modelling resources through the use of virtual variables. However,
they cannot handle resources with additional structures associated with them in
distributed networks. Thus, to utilize the structure associated with such resources,
a dynamic programming optimization based approach or DPOP (explained in
details below) was proposed by (Kumar et al., 2009) but with changes to its second
phase (UTIL propagation phase) to handle the space of feeder trees. The approach
exploits acyclicity and the flow conservation property of distribution networks to
minimize the total cost of flow. The authors study the problem in the context of
power distribution networks where the solution to the power restoration problem
is represented as a collection of feeder trees. The feeder trees describe the power
path from each power source that must be acyclic. Every power line must respect
its capacity constraint. Finally, the best feeder tree configuration is searched in the
space of all possible feeder trees to provide an optimal solution.

Distributed Pseudo-tree Optimization Procedure (or DPOP): A DPOP (Petcu
& Faltings, 2005) is a complete, synchronous, inference-based algorithm that uses
a depth first search (or DFS) pseudo-tree ordering of the agents. It involves three
phases. In the first phase, the agents are ordered as a DFS pseudo-tree. In the second
phase, called the UTIL propagation phase, each agent, starting from the leaves of
the pseudo-tree, aggregates the costs in its subtree for each value combination of
variables in its separator. The aggregated costs are encoded in a UTIL message,
which is propagated from children to their parents, up to the root. In the third
phase, called the VALUE propagation phase, each agent, starting from the root
of the pseudo-tree, selects the optimal value for its variable. The optimal values
are calculated based on the UTIL messages received from the agents children and
the VALUE message received from its parent. The VALUE messages contain the
optimal values of the agents and are propagated from parents to their children, down
to the leaves of the pseudo-tree. A DPOP based algorithm is proposed but with
changes to its bottom up util propagation phase to handle the space of feeder trees.
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Chapter 3

Models

In this section, we introduce the models for dedicated and non-dedicated teams
to handle coordinated planning/assignment problem and introduce our terminology
and notation, that will be referenced in the upcoming chapters.

3.1 Planning Model for Dedicated Team: TasC-MDP
Task/Resource Constrained Markov Decision Process(TasC-MDP) presents a model
to represent problems with dedicated teams (handles transition uncertainty) oper-
ating in uncertain environments. Specifically, we build on the TasC-MDP model
introduced by Dolgov et al. (2006) and it is defined using the following tuple :〈

Ag,Γ, C, D, Z, 〈Mi〉i∈Ag , H
〉

• Ag is the set of agents.
• Γ is the set of the different types of tasks/resources.
• C =

⋃
τ∈Γ C(τ) corresponds to the set of all tasks/resources, where C(τ) is the

set of tasks/resources of type τ ; P(C) is the power set of C, that is, it is the set
of all possible task/resource allocations; |C(τ)| is the global capacity bound for
tasks/resources of type τ .
• D = {τi ≺ τj, τk ‖ τl, . . .} is the set of dependencies for tasks/resources. While

there are potentially other types of dependencies, we restrict ourselves to two
types of dependencies in this work. One type of dependencies are temporal and
a temporal dependency represented as τi ≺ τj , entails that a predecessor-task τi
should be executed before the successor-task τj . A second type of dependencies
constrains allocations and is represented as τi ‖ τj , indicating that both tasks τi
and τj should be allocated to same agent.
• Z is the finite set of capacities for an agent, where z ∈ Z represents a capacity

type (e.g., weight, money, etc.).
• Mi is the MDP model for agent i along with the task/resource associations of

actions. It is defined as the tuple 〈Si, Ai, Pi, Ri, ρi, qi, q̂i, α
0
i 〉.

- Si, Ai,Pi, Ri are the sets of states, actions, transition and reward functions,
respectively.
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- ρi : Ai × Γ → R{0,1} is a function that specifies the binary task/resource
requirements of all actions.
- qi : Γ×Z → R is a function that specifies the capacity costs of tasks/resources
(e.g., qi(τ, z) defines how much capacity z ∈ Z is required for task/resource
type τ ∈ Γ).
- q̂i : Γ→ R corresponds to the upper bound on the capacities (e.g., q̂i(z) gives
the upper bound on capacity z ∈ Z ) for agent i.
- α0

i is the starting probability distribution for agent i.
• H is the time horizon for the decision problem.

The goal is to compute a joint policy π∗ that has the highest expected reward
among all joint policies:

π∗ = argmax
π

∑
i

Vi(πi, α
0
i ) s.t.∑

i∈Ag
|δi(τ)| ≤ |C(τ)| ∀τ ∈ Γ (3.1)

f(πi, τ) ≤ δi(τ) ∀i ∈ Ag,∀τ ∈ Γ (3.2)

where πi is the individual policy of agent i in the joint policy π; δi is the
set of tasks/resources allocated to agent i with δi(τ) indicating the number of
tasks/resources of type τ ; and Vi(πi, α

0
i ) is the expected value for the individual

policy πi on model Mi. The task/resource-based interactions are explicitly mod-
elled in Constraint (3.1), which ensures that the number of resources used (or tasks
executed) is less than the capacity. The individual resource requirements or task
completions are modelled using Constraint (3.2). The function f is used to com-
pute the number of resources required or tasks completed of type τ by using a policy
πi for agent i.

3.2 Planning Model for Non-dedicated Team: ND-
TasC-MDP

We now present a model to represent problems with non-dedicated teams that han-
dles transition uncertainty and uncetainty due to agents leaving the team. Specifi-
cally, we build on the TasC-MDP model introduced in section 3.1. We refer to this
model as Non Dedicated TasC-MDP (ND-TasC-MDP) and is characterised by the
tuple: 〈

Ag,Γ, C, D, Z, 〈Mi〉i∈Ag , {∆i}i∈Ag, H
〉

The key distinction in ND-TasC-MDP with respect to TasC-MDP is the pres-
ence of a probability distribution for each agent, ∆i. It denotes the non-dedication
of each agent and is represented as a vector of probabilities for agent i leaving the
system at different times. Specifically, ∆t

i represents the probability of agent i leav-
ing the team at time t and

∑
t ∆t

i = 1. Further, with respect to task dependences D,
we focus on problems with no task dependencies for purposes of easy exposition.
However, all our approaches are easily extendable to cases with task dependencies.
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The goal is to compute a joint policy π∗ that has the highest expected reward among
all joint policies given that agents can leave the team according to probability dis-
tribution ∆:

π∗ = argmax
π

∑
i

Vi(πi, α
0
i ) s.t.∑

i∈Ag
|δi(τ)| ≤ |C(τ)| ∀τ ∈ Γ (3.3)

f(πi,∆i, τ) ≤ δi(τ) ∀i ∈ Ag,∀τ ∈ Γ (3.4)

where πi is the individual policy of agent i in the joint policy π, δi is the set of tasks
allocated to agent i with δi(τ) indicating the number of tasks of type τ . Vi(πi, α0

i ) is
the expected value for the individual policy, πi on model Mi. The task-based inter-
actions are explicitly modelled in Equation 3.3, which ensures that number of tasks
executed is less than the total number of tasks. The individual task accomplish-
ments are modelled using the constraints (3.4). The function f is used to compute
the number of tasks type τ completed by using a policy πi for agent i given the
non-dedication parameter, ∆.

3.3 Planning Model for Decentralized Non-dedicated
Team with Submodular Rewards: Submodular
ND-TI-Dec-MDP

We now provide an extension to the Submodular TI-Dec-MDP model (explained in
details in section 2.2.3) to consider non-dedicated teams. We refer to this model as
Non Dedicated TI-Dec-MDP and it is characterised by the following tuple:

〈Ag, {∆i}i∈Ag, S, A, {Pi}i∈Ag, R,H, α〉

The main change to the Submodular TI-Dec-MDP is ∆i. ∆i is the vector of
probabilities for agent i leaving the system at different times. Specifically, ∆t

i rep-
resents the probability of agent i leaving the team at time t and

∑
t ∆t

i = 1. We use
the global state Su to represent the dead state (i.e., the state that agents enter when
they move out of the system ). The individual agent transition function P t

i (s
′
i|si, ai)

is modified to P t
i (s
′
i|si, ai,∆i) and is described as following:

P t
i (s
′
i|si, ai,∆i) = P t

i (s
′
i|si, ai) · (1−∆t

i) (3.5)
P t
i (Su|si, ai,∆i) = ∆t

i (3.6)

If ∆t
i = 0, it implies that the agent transitions to the expected state according to

its transition probability P t
i (s
′
i|si, ai). Otherwise, if ∆t

i 6= 0, the transitions depend
on the agent’s probability of staying in the system (i.e., 1 − ∆t

i). Furthermore, an
agent transitions to the dead state from any other state with probability ∆t

i. Note
that once an agent transitions to the dead state Su, it stays there until the end of
horizon (i.e., P t

i (Su|Su, ai,∆i) = 1) irrespective of the action taken. The joint re-
ward function R(s, a) however remains unchanged since the computation of reward
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only requires the count of agents present in the joint state s. In addition, there is no
reward associated with agents present in Su and we simply have R(Su, a) = 0. The
goal of submodular ND-TI-Dec-MDP is to obtain a joint policy that maximizes the
expected reward or value V t(s, π) over all agents with an additional constraint that
the agents may leave the team. The joint policy π∗ is obtained as

π∗ = argmax
π

∑
s

V H(π, α(s),∆) (3.7)

and the expected value over all agents for the joint state s at timestep t is given as :

V t(s, π∗) = R
(
s,
〈
πt1(s1), . . . , πt|Ag|(s|Ag|)

〉
, Su

)
+∑

s′

[∏
i∈Ag

P t
i (s
′
i|si, ai,∆i)

]
· V t−1(s′, π∗) (3.8)

3.4 Assignment Model for Non-dedicated Team
In this section, we present a model to represent multi-agent coordinated assignment
problems dealing with non-dedicated teams in distributed networks. This model
handles uncertainty due to agents leaving the team and utilizes the additional struc-
ture associated with resources to exploit acyclicity and the flow conservation prop-
erty in these networks. We provide our model in the context of power distribution
networks, however, it is extendible to any distributed network dealing with flow of
commodity from source to sinks. We first describe the centralised power supply
restoration (PSR) problem (for more details of the domain, refer to section 2.1.3)
and then describe the multi-region decomposition that results in multi agent PSR.

We view a power distribution network as a graph G=(V =P∪ S, E). Vertices
represent power sources (CBs) pi ∈P and sinks (SDs) si ∈ S . Each power source
has a finite amount |pi| of power available. A sink si consumes |si| units of power.
A value vi, called sink weight, is also associated with a sink si to denote the relative
importance of the sink. Edges represent power lines connecting sinks and power
sources. Let L denote the power capacity of a line. For ease of exposition, we
assume it is the same for each line. There is a positive ε>0 line loss associated with
power flow across a line.

We now describe the multiagent PSR problem. Due to the presence of underly-
ing decomposition (due to de-regulation), we have a region-based decomposition
of the underlying graph G. The vertices of the network G are partitioned into R
regions: V = ∪r∈RV r. Let Er denote the edge set such that both its vertices lie in
the region r. Intuitively, each region r is managed by a different entity. Therefore,
each region r represents an agent in our multiagent PSR problem. The edges in set
E \∪r∈REr denote the cut edges that connect different regions. Power can flow
from one region to another region via these cut edges. Analogously, only agents
that share cut edges can communicate with each other along such edges, resulting
in a multiagent system representation of a power network.

Relay Nodes: Our approach to solve the multiagent PSR via message-passing along
the cut edges is to view each network region as a separate sub-network per agent.
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Figure 3.1: Multi-region decomposition of a power network using colored relay
nodes on the right

Intuitively, cut edges are the complicating edges that connect two different regions.
It is not clear whose agent’s sub-network they belong to. To make separation among
regions clear and exploitable by optimization algorithms later, we introduce the no-
tion of relay nodes. A pair of relay nodes are defined for each cut edge (ur, vr

′
)

connecting regions r and r′. One relay node cr belongs to the region r and the
second relay node cr′ belongs to region r′. We then remove the cut edge (ur, vr

′
)

from the graph G, and create two new relay edges (ur, cr) and (cr
′
, vr

′
). Figure 3.1

describes such a process of decomposing the original network G into multiple in-
dependent networks Gr, one for each region r ∈ R. Relay nodes can consume any
amount of power that comes in, and also act as power source with infinite supply.
Even though we have partitioned the original network G into independent regions,
flow conservation constraints for relay nodes still logically connect the whole net-
work together. Intuitively, the total incoming power for a relay node cr in region r
must be equal to the total outgoing power for its paired relay node cr′ in region r′.
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Chapter 4

Task/Resource Constrained Planning
for Dedicated Agent Teams

In delivery of services or goods (Dantzig & Ramser, 1959; Dolgov & Durfee, 2006),
tasks have to be allocated to individual vehicles based on uncertain travel times to
delivery locations. Also, in disaster rescue scenarios (Velagapudi, Varakantham,
Scerri, & Sycara, 2011; Varakantham et al., 2009), victims have to be allocated to
robots while considering the uncertainty in travelling through disaster prone areas.
Furthermore, in large warehouses (Hazard, Wurman, & D’Andrea, 2006) of online
portals such as Amazon, movement of automated robots fetching goods based on
online orders (uncertainty) have to be coordinated in the usage of pathways (re-
sources). These domains have the following common characteristics: (a) Multiple
agents (e.g., ambulances/fire trucks) coordinate plans to achieve a goal or to op-
timize a certain criterion (e.g., save victims); (b) There is transition uncertainty in
planning problems of individual agents, either due to travelling on roads (due to traf-
fic) or uncertain demand (online orders) or physical constraints (e.g., robots); and
(c) Actions of agents either require the availability of resources (roads, paths, tools,
etc.) or completion of tasks allocated (target surveillance, delivery of items, etc.).
Furthermore, there is usually a hard constraint on the number of tasks/resources
available and this causes agent plans to be dependent on each other.

We can view these domains as having a synergistic combination of two interde-
pendent challenges, namely task/resource 1 allocation and planning under transition
uncertainty for multiple agents. While the task allocation determines the plans for
the individual agents, the feedback from the plans can help improve the allocation
(as not all allocated tasks/resources can be executed/utilized due to uncertainty). We
refer to these problems as Task/Resource Constrained Markov Decision Problems
(TasC-MDPs) and we are specifically focussed on cooperative TasC-MDPs. The
main assumptions of a TasC-MDP problem include the following.

• Dedication: The agents of the team are fully dedicated and donot leave the
team before the end of planning horizon.

• Weak coupling: The agents are weakly-coupled (Meuleau, Hauskrecht, Kim,
Peshkin, Kaelbling, Dean, & Boutilier, 1998), i.e., they only interact through

1Examples of resources would be roads/paths or tools and examples of tasks would be target
surveillance, delivery of items
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Algorithm 1 GAPS(TasC −MDP )

1: δ̃ ← C
2: F ← ∅
3: repeat
4: for all i ∈ Ag \ F do
5: π∗i ← maxπi Vi(πi, α

0
i ) s.t. f(πi) ≤ δ̃

6: 〈i∗, Vi∗〉 ← maxi∈Ag\F Vi(π∗i , α
0
i )f(πi) ≤ δ̃

7: δi∗ ← GETCONSUMEDRESOURCE(π∗i∗)
8: δ̃ ← δ̃ \ δi∗
9: F ← F ∪ {i∗}

10: until δ̃ = ∅ OR Vi∗ = 0
11: return π∗ ← {π∗i }i∈Ag

the shared tasks/resources, and once the tasks/resources are allocated, the
agents’ transitions and rewards are independent.

• Initial central control over tasks/resources: At the beginning of the
task/resource allocation phase, the tasks/resources are controlled by a single
authority and distributed once before the agents start executing their MDPs.
There is no reallocation of tasks/resources during the MDP phase.

• Task/Resource dependencies: The tasks/resources can either be independent
or have dependencies amongst themselves. In problems with task/resource
dependencies, there can be dependencies such as “if task A is assigned to
an agent, task B should also be assigned to the same agent” or “task A
has to be done before task B”. In task/resource-independent problems, all
tasks/resources are independently available.

We make the following key contributions to solve TasC-MDPs in this chapter.
First, we provide a generic model for TasC-MDPs with an ability to handle task
dependencies, specifically temporal task dependencies and task allocation depen-
dencies for agents. Second, we provide a greedy approach referred to as GAPS to
greedily allocate tasks/resources to agents based on their marginal value contribu-
tion. Third, we provide a unique method of employing GAPS in the context of dual
decomposition to improve scalability and provide quality bounds. Finally, on two
benchmark problems from the literature, we show that our approach based on dual
decomposition provides a good trade-off between the GAPS approach and optimal
MILP.

4.1 GAPS Algorithm
We now introduce the Greedy Agent-based Prioritized Shaping (GAPS) algo-

rithm to solve TasC-MDPs. GAPS greedily allocates resources to the agent that
yields the highest increase in expected value. Initially, it computes individual best
policy for all agents given all the resources. Once the agent with the highest value is
identified, excess resources that were not utilized are determined. It fixes the policy
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for the highest-value agent and repeats the process with the excess resources for the
remaining agents until there are no more resources available or the value of adding
an agent is 0.

Algorithm 1 shows the pseudocode. The algorithm uses δ̃ to represent the set of
unallocated resources and F to represent the set of agents with allocated resources.
They are initialized to the set of all resources C (line 1) and the empty set (line 2),
respectively. GAPS then iterates over the set of agents without allocated resources
(line 4), and for each agent i in this set, it solves the individual agent model assum-
ing that the agent is allocated all remaining unallocated resources δ̃ (line 5). Among
these agents, GAPS chooses the agent with the largest expected reward (line 6), re-
moves the resources that it consumed from the set of available resources (lines 7-8)
and adds that agent to the set of agents with allocated resources (line 9). GAPS
repeats this process until there are no more unallocated resources or the unallocated
resources are not useful to any agent (lines 3 and 10) and returns the joint policy of
all agents before terminating (line 11).

GAPS is an easily parallelizable algorithm. Instead of iterating through the
agents and solving the individual MDP models sequentially (lines 4-5), they can be
solved in parallel by each agent as they are independent of each other. Once the
individual MDP models are solved, they will then need to communicate with each
other to identify the agent with the largest expected reward and the resources that
it consumed (or tasks completed) (lines 6-8) in each iteration. By employing this
model of parallel computation and communication, GAPS can be made even more
scalable when there are multiple processors and cheap communication.

In each iteration, GAPS computes policies for all the remaining agents. Thus,
the runtime complexity of GAPS is O(|Ag|2× Complexity of solving an MDP).
However, in many planning problems like disaster rescue,2 if the number of agent
types (sets of homogeneous agents) is k (≤ Ag), then the number of policy compu-
tations is at most k and hence the runtime complexity is O(k · |Ag|× Complexity
of solving an MDP), which is linear in the number of agents. Thus, we exploit the
property of homogeneous agents to improve the scalability of GAPS.

4.2 Greedy-Based Dual Decomposition
While GAPS is highly efficient, it provides no guarantee on the solution quality.
We thus describe an optimization-based approach that provides posteriori guaran-
tees on solution quality. We first provide a Mixed Integer Linear Program (MILP)
formulation to solve TasC-MDPs that extends the formulation by Dolgov and Dur-
fee (Dolgov & Durfee, 2006). Table 4.1 shows the MILP, where variable xti(s, a)
denotes the occupation-measure of agent i for state action pair (s, a). The binary
decision variable δi(τ) denotes the allocation of a resource of type τ to agent i. The
objective is to maximize the sum of expected rewards over all agents, while ensuring
that their policies (individually and jointly) satisfy the following constraints:
• FLOW CONSERVATION: Constraints (4.2) and (4.3) enforce that the total ex-

pected number of times state σi is exited (LHS of the constraints) equals the

2In disaster rescue, while all the robots have the same model, we can assume only those agents
starting from same state and having to rescue a victim from the same cell as homogeneous agents.
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Variables: ∀si, σi ∈ Si;∀ai ∈ Ai; ∀τ ∈ Γ;∀i ∈ Ag; ∀t ∈ H
Minimize: −

∑
i

∑
t

∑
si

∑
ai

xti(si, ai) ·Rt
i(si, ai) (4.1)

Subject to:∑
ai

xt+1
i (σi, ai) =

∑
si

∑
ai

xti(si, ai) · P t
i (si, ai, σi), ∀σi, t, i (4.2)∑

ai

x0
i (si, ai) = αi(si), ∀si, i (4.3)∑

τ

∑
t

qi(τ, z) · δti(τ) ≤ q̂i(z), ∀z, ∀i (4.4)∑
t,i

δti(τ) ≤ C(τ), ∀τ (4.5)

1

X

∑
ai

ρi(ai, τ)
∑
si

xti(si, ai) ≤ δti(τ), ∀τ, t, i (4.6)

δt+1
i (τk)−

∑
t′≤t

δt
′

i (τj) ≤ 0, ∀(τj ≺ τk) ∈ D, t < H, i (4.7)∑
t

δti(τj) =
∑
t

δti(τk), ∀(τj ‖ τk) ∈ D, t (4.8)

δti(τ) ≤M · ρi(ai, τ) · xti(si, ai), ∀τ ∈ D, si, t, i (4.9)
xti(si, ai) ≥ 0, δit(τ) ∈ {0, 1} (4.10)

Table 4.1: Optimal MILP for TasC MDPs
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expected number of times state σi is entered (RHS of the constraints).
• INDIVIDUAL CAPACITY LIMITS: Constraint (4.4) is a capacity bound constraint

for an agent on all capacity types z ∈ Z. The total cost for obtaining all shared
resources τ ∈ Γ must be less than the capacity bound of agent q̂i(z). For simpli-
fication, we use |Z| = 1 and q(τ, z) = 1 throughout the chapter (i.e., the number
of resources obtainable by an agent cannot exceed its capacity).
• GLOBAL CAPACITY LIMITS: Constraint (4.5) prevents violation of global ca-

pacity limitations for all resource types (i.e., total resources assigned over all
agents i ∈ Ag for a given type τ should not exceed the available resources of
that type C(τ)).
• RESOURCE REQUIREMENTS OF POLICY: Constraint (4.6) computes the re-

source requirement of each type τ for a policy at each time step t. Intuitively, this
constraint ensures that if occupation measure xti(si, ai) for (si, ai) is a positive
number and resource τ is required for executing action ai (i.e., ρi(ai, τ) = 1),
then 1 unit of resource type τ is required. Here, X is a normalization constant
(calculated offline) that represents the maximum value of flow for an agent:
X ≥ maxτ,i

∑
ai
ρi(a, τ)

∑
si

∑
t x

t
i(si, ai).

• TASK DEPENDENCIES: Constraints (4.7) to (4.9) represent the resource de-
pendencies. Constraint (4.7) represents the temporal resource dependencies
(τj ≺ τk) and Constraint (4.8) represents the allocation constraining dependen-
cies (τj ‖ τk) for every agent i. Constraint (4.9) is helping constraints ensure
that any resource τ is executed in state si by enforcing the occupation measure
xti(si, ai) for (si, ai) to be a positive number and resource τ is required for exe-
cuting action ai (i.e., ρi(ai, τ) = 1). M is a large positive number. It should be
noted that for independent resources, D = ∅.
Note that the MILP in Table 4.1 is an optimal MILP as it provides an exact solu-

tion. Unfortunately, given the increase in the number of binary integer variables and
the constraints that contain them, this optimal MILP is not scalable with increas-
ing problem complexity (increasing agents, tasks/resources, states, etc.). There-
fore, we propose the use of Lagrangian dual decomposition (LDD) (Bertsekas,
1999) along with GAPS (referred as LDD+GAPS) to efficiently solve TasC-MDPs.
LDD+GAPS is an iterative method that contains two stages at each iteration. In the
first stage, we relax the global capacity constraint (Constraint (4.5)) to obtain a dual
problem that can be solved independently for each agent. Each individual agent
solves an unconstrained MDP (with dual variables in its objective) to get the best
possible reward value and resource allocation. However, the relaxation can, in many
cases, lead to violation of the global capacity constraint. Therefore, in the second
stage (discussed in detail in Section 4.2.2), we use GAPS to extract a feasible primal
solution from the dual solution.

4.2.1 Maximizing the Lagrangian Dual
We relax or dualize coupling Constraint (4.5) for all resource types to yield a sig-
nificantly easier dual problem. For each resource type, we create dual variables λτ ,
∀τ ∈ Γ, that represent the price of violating the global capacity constraint. Over the
iterations, our approach will try to find the ‘right’ penalty in order to minimize the
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number of violations.
The Lagrangian dual L({V i},λ) corresponding to a relaxation of Con-

straint (4.5) is defined as follows:

L({V i},λ) =
∑
i

−Vi(πi, α0
i ) +

∑
τ

λτ

(∑
i,t

δti(τ)− C(τ)

)
(4.11)

Vi(πi, α
0
i ) represents the single agent contribution

∑
t

∑
s

∑
a x

t
i(s, a) ·Rt

i(s, a) in
the Optimal MILP. On rearranging the above equation, the separable structure of
Lagrangian over the agents can be obtained as:

∑
i

min
xi,δi

[
−Vi(πi, α0

i ) +
∑
τ

λτ
∑
t

δti(τ)

]
−
∑
τ

λτ · C(τ) (4.12)

For a given λ, we note that the extra term
∑

τ λτ · C(τ) is a constant that can be
accounted for later in the master problem. Thus, given a λ, the above Lagrangian
dual L({V i},λ) can be minimized for each agent separately as the objective and
constraints are clearly delineated.

We now address the master problem of maximizing the Lagrangian lower bound
over the price variables λ, which can be solved by using projected sub-gradient
ascent (Bertsekas, 1999). The sub-gradient w.r.t. a variable λτ is essentially the
quantity in parentheses in Eq. (4.11), which is used to update the price variables for
the next iteration n+ 1 as follows:

λn+1
τ =λnτ + γn+1

∑
i,t

δt,ni (τ)− C(τ)

 ,∀τ ∈ Γ (4.13)

where δt,ni (τ) represents the solution values obtained by solving the slave planning
problem for agent i at iteration n:

min
x
−
∑
t

∑
s

∑
a

xti(s, a) ·Rt
i(s, a) +

∑
τ

λτ
∑
t

δti(τ)

s.t. Constraints (4.2)− (4.4) ∧ (4.6)− (4.10)

and γn+1 is the step parameter for iteration n + 1 that is set based on the values
computed in iteration n as below:

γn+1 =
Primaln −Dualn

||∇qn||2
(4.14)

where the dual value Dualn can be easily obtained from Eq. (4.12) and the primal
value Primaln is obtained as discussed in the next section. ∇qn denotes the total
sub-gradient of the dual function.
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4.2.2 Extraction of Feasible Primal Solution
The dual solution obtained in the first stage may not be a feasible primal solution.
Therefore, we use the GAPS algorithm to obtain a feasible primal solution from the
dual solution. This primal solution is crucial to set the step parameter γ that helps
improve the convergence rate of LDD+GAPS, and imparts the desirable anytime
property to our approach.

The input to the GAPS algorithm is the resource requirement {δit(τ), ∀τ} and
the dual values {Vi(πi, α0

i )} for every agent i ∈ Ag. Among these agents, GAPS
chooses the agent with highest expected reward (line 6), removes the resources used
by the agent, i.e.,

∑
t δ

i
t(k),∀k (line 8) and adds the agent into the set of agents with

allocated resources (line 9). Notice that all agents in stage 1 solve unconstrained
MDP models that would violate the global capacity for each resource type. GAPS
resolves this issue by ignoring the requests that cannot be served. Thus, the agent i∗

obtains its new resource allocation that is globally feasible and solves the individual
agent model with that allocation to obtain a solution to its planning problem. This
process is repeated by GAPS until all resources are allocated or the unallocated
resources are of no use (lines 3 and 10) before returning the joint policy and joint
reward of all agents and terminating. The joint reward of all agents gives the total
primal value.

Finally, based on the current primal and dual values, we provide the error in
solution quality obtained by Lagrangian dual decomposition to provide posteriori
quality guarantees. We use these guarantees in our experiments to make solution
quality comparisons.

4.3 Experiments
In this section, we empirically evaluate3 our GAPS and LDD+GAPS algorithms on
two benchmark problems from the literature. The first domain is Multi-Agent De-
livery Problems (MADPs) that have transitional uncertainty but without resource
dependencies (Dolgov & Durfee, 2006). The second domain is Urban Consolida-
tion Center (UCC) problems that deal with allocation of tasks and has transitional
uncertainty along with task dependencies (Handoko et al., 2014; Wang, Handoko,
& Lau, 2014). We compare both our approaches with an optimal MILP by Dol-
gov and Durfee (Dolgov & Durfee, 2006) (referred to as Optimal MILP), solved
using CPLEX, which is a state-of-the-art algorithm for multi-agent coordination.
We evaluate the performance and scalability of our approaches in reference to the
optimal MILP in MADP and UCC domains.

Experimental results are averaged over 15 randomly generated grid maps that
randomly place the delivery locations and walls. For runtime comparisons, apart
from providing standard runtime for GAPS and LDD+GAPS, we also provide
the parallel runtimes for our approaches since they have components that can
be run in parallel. We compute the parallel runtime (denoted by GAPS(P) and
LDD+GAPS(P)) by considering the maximum time taken by any agent when the
agents are solved in parallel. A time cut-off limit of two hours was used for Op-

3All our optimization problems are run on CPLEX v12.5.
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Figure 4.1: Runtime Comparison w.r.t. (a) Agents |Ag|; (b) Resources C(τ); (c)
Grid-size m×m; and (d) Horizon H for MADPs

timal MILP in cases where CPLEX was unable to terminate and provide a solu-
tion. Further, for quality comparison, we compare the percentage of optimality
for the three approaches (Optimal MILP, GAPS, and LDD+GAPS). For Optimal
MILP, the percentage of optimality is computed using the optimality gap at cut-
off time (provided by CPLEX). For GAPS, it is Dual∗ and, for LDD+GAPS, it is
Primal∗ · 100/Dual∗, where Primal∗ and Dual∗ are the Lagrangian primal and
dual values.

4.3.1 Multi-Agent Delivery Problems (MADP)
We conduct experiments on Multi-Agent Delivery Problem (MADP) (refer sec-
tion 2.1.1 for more details of domain) using the exact same domain representation
as (Dolgov & Durfee, 2006). In our experiments, we use 10 resource types
|Γ|, where total resources C(τ) for each resource type τ ∈ Γ is bounded by a
randomly generated number between 1 and a maximum resource limit max given
as C(τ) = r(max). Each agent i has a fixed limited budget q̂i of 6 resources to
perform its tasks.

Solution Runtime: Figure 4.1 shows the runtime comparison of the three algo-
rithms with increasing agents |Ag|, resources |Γ|, grid-size m, and horizon H . The
most significant result is that GAPS and GAPS(P) obtained results in less than a
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Figure 4.2: Error in Runtime for Optimal MILP and LDD+GAPS with varying (a)
Agents |Ag|; (b) Resources C(τ); (c) Grid-size m; and (d) Horizon H for MADPs

minute for all cases while LDD+GAPS(P) obtained solutions in 2 to 4 minutes. One
important observation is that the runtime for Optimal MILP scales exponentially (in
cases where it could not finish or provide a feasible solution, it was stopped at the
time-limit) with increasing agents, grid-size, and horizon, and decreasing resources.
Optimal MILP could not scale beyond 70 agents (and 5 resources) in Figure 4.1(a)
but by increasing the number of resources beyond 12 for 70 agents in Figure 4.1(b),
the problem was less constrained and easier for Optimal MILP to solve. Further,
by increasing the grid-size and horizon, we observed that Optimal MILP could not
scale beyond horizon of 5 on a 6 × 6 grid. Overall, with respect to runtime, GAPS
provides the best performance, but LDD+GAPS(P) was not far behind and both our
approaches clearly outperformed (as expected) Optimal MILP.

Figure 4.2 shows the sequential runtimes along with the standard deviation
for Optimal MILP and LDD+GAPS, having the same settings as Figure 4.1. In
Figure 4.2(a), the amount of variation for 60 agents in Optimal MILP is highest
because some of the randomly generated problem instances were difficult to solve
while others could be solved quickly to optimality. For other problem instances
with either less than or greater than 60 agents, the variability was quite less since
all random instances for a particular problem setting were either solvable within
the cut-off limits or all of them were difficult to solve. Similarly, in Figure 4.2(b)
the variation for C(τ) = 12 was high because only few problem instances could
be solved to optimality. For LDD+GAPS, the variability increased with increasing
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Figure 4.3: Quality Comparison w.r.t. (a) Agents |Ag|; (b) Resources C(τ); (c)
Grid-size m×m; and (d) Horizon H for MADPs

agents, grids and horizon while a steady runtime was observed for different values
of resources.

Solution Quality: Figure 4.3 shows the quality comparison for the three ap-
proaches where we observe that GAPS provides solutions with at least 70% of the
optimal quality while LDD+GAPS performs gracefully by providing at least 98%
of optimality. Optimal MILP provided 100% optimal solutions for instances with
up to 50 agents, resources greater than 12, grid sizes of up to 6× 6, and horizon of
6, after which the solution quality degraded significantly. In addition, Figure 4.4
highlights the anytime performance of LDD+GAPS4 where we plot the primal
and dual values for different values of agents and the results clearly show that our
approach is able to provide good primal solutions even in early iterations. Based
on the above observations, we conclude that LDD+GAPS provides an excellent
tradeoff between GAPS, which finds decent solutions but very quickly, and the
MILP, which finds optimal solutions but is computationally expensive.

Scalability: To further experiment with scalability, we performed experiments with
up to 600 agents on a grid with size m = 10 × 10, horizon H = 10 and with
resourcesC(τ) = 10% of |Ag|,∀τ ∈ Γ. Figure 4.5 provides the runtime and quality

4We interpret the problem as a maximization problem with dual solution providing an upper
bound
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Figure 4.4: Comparison of Duality Gap in LDD+GAPS with Varying Agents
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Figure 4.5: Scalability Test:m=10, H=10, C(τ)=r(Ag/10)

comparisons for our approaches on large problems. Figure 4.5(a) shows the runtime
comparison where the runtimes of GAPS and LDD+GAPS increase exponentially
with increasing agents. However, the parallel runtime for both approaches (i.e.,
GAPS(P) and LDD+GAPS(P)) still remains unaffected. Figure 4.5(b) shows the
quality comparison where LDD+GAPS provided at least 96% of optimality while
GAPS could only provide 70% of optimality.

4.3.2 Urban Consolidation Center Problems (UCC)
For UCC Problems (refer section 2.1.2 for more details), we use a grid world
environment similar to the MADP domain, but with the difference that there can be
multiple delivery tasks in a cell that do not require any resources to be completed
and may have task dependencies. For ease of exposition, the task capacity over all
agents is set to 50% of the available tasks with equal capacity for every agent. Each
task in a cell represents a different task-type. Thus, the number of actions a depend
on the number of tasks τ ∈ Γ present in every state (or cell).

Solution Quality and Runtime: Figures 4.6 and 4.7 show the runtime and quality
comparison between GAPS and LDD+GAPS for UCC with task dependencies. We
do not compare with Optimal MILP as it was not scalable beyond 600 tasks and
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Figure 4.6: Varying Agents in UCCs with Task Dependencies
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Figure 4.7: Varying Tasks in UCCs with Task Dependencies

20 agents where it could solve only 30% of the random grid sets. The runtime
for LDD+GAPS and LDD+GAPS(P) is approximately 5 hours and 2 hours,
respectively, while for GAPS and GAPS(P), it is still between 5 to 30 minutes and
2 to 6 minutes, respectively. However, the solution quality obtained by GAPS is
between 60-70% of optimality while the solution quality of LDD+GAPS ranges
between 70-90% of optimality with at least 10% more optimal than GAPS. Thus,
even in these domains, LDD+GAPS provides the best performance with GAPS
providing a good alternative in comparison to Optimal MILP.

With the above experimental observations in the MADP and UCC domains,
we conclude that the performance of our optimization based decomposition ap-
proach, LDD+GAPS is not affected with increasing/decreasing capacity of each
task/resource type (C(τ)). However, with increasing count of agents (|Ag|) or
task/resource types (|Γ|) after a certain extent, the complexity of TasC-MDP in-
creases, making it difficult to solve the problem optimally and quickly. Hence, scal-
ability of LDD+GAPS degrades with increasing agents and/or task/resource types,
although gracefully. Similarly, for our greedy heuristic, GAPS, the solution qual-
ity is affected with increasing agents/resource types, but it still provides very quick
solutions.
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4.4 Summary
Motivated by stochastic planning problems in delivery of goods and services; disas-
ter rescue; and large warehouses, we have introduced a generic model called TasC-
MDP for cooperative task/resource constrained multi-agent planning problems.
This model not only captures independent tasks and resources, but also temporal
and allocation constraining dependencies between tasks and resources. We first pro-
vided an approach called GAPS that incrementally allocates resources in a greedy
manner and then developed an optimization based approach called LDD+GAPS that
exploits the decomposable structure in TasC-MDPs and uses GAPS as a subroutine.
Our extensive experiments on benchmark problems demonstrate that LDD+GAPS
is very scalable and provides highly optimal solutions (within 5% of optimal) even
in very large problems.
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Chapter 5

Task/Resource Constrained Planning
for Non-dedicated Agent Teams

Domains such as disaster rescue, security patrolling, warehouse management, etc.
often feature dynamic environments where allocations of tasks to agents become
ineffective due to unforeseen conditions that may require agents to leave the team
after task allocation. In these domains, a team of agents coordinate plans to achieve
a goal while there is transition uncertainty in planning problems of individual agents
and the individual agents have a chance of leaving the team at any time step due to
either a breakdown (e.g., in the case of large warehouses, individual robots leave
the system either to get charged or because of malfunction) or to address a higher
priority task (e.g., in case of traffic patrolling problems, traffic police have to attend
to incidents/accidents in addition to patrolling roads).

We are interested in application problems with above mentioned characteris-
tics. Due to the non-dedicated nature of the team members (as agents can leave the
team at any time) in the above mentioned application problems, we refer to these
agent teams as non-dedicated agent teams. These non-dedicated agent teams differ
from the dedicated agent teams due to the requirement of reconfiguration of the sys-
tem (i.e., reallocation of tasks/resources to the remaining team members) whenever
agents leave the team. Furthermore, there is a need of a central planner throughout
the horizon to monitor/control any changes in the state of the system (i.e., agents
leaving the team). The agents, however, are still weakly coupled and execute their
MDPs independent of each other after allocation (or reallocation) of tasks.

In this chapter, we first provide a general model for the study of non-dedicated
agent teams that operate in uncertain environments. We then provide multiple
proactive and reactive approaches to generate policies for individual agents in non-
dedicated agent teams. One of our main contributions is a proactive approach that
relies on sampling and decomposition to efficiently generate policies for individual
agents while considering agent exits from the team. Another major contribution
involves the formulation of a two stage approach where the state of the team at the
end of first stage is input for the second stage to provide a two stage policy for
the agents. Finally, we provide an exhaustive evaluation on the performance of our
proactive and reactive approaches on benchmark problems.
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5.1 Optimization Formulation for a Dedicated Team
For the case where no agent leaves the system (represented as ∆H

i = 1 for all agents),
previous work (Dolgov & Durfee, 2006) and our work in chapter 4 has provided
mixed integer formulations to address different types of resource and task interac-
tions. We refer to the mixed integer linear program (MILP) in table 4.1 for the
representation of a dedicated agent team. For ease of exposition, in this chapter, we
do not focus on task dependencies and consider independent tasks, D = ∅.

5.2 Approaches
In non dedicated teams, the remaining team members must coordinate over the tasks
being left by the agents leaving the team. As indicated earlier, the objective is
to maximize the expected utility of a non-dedicated team of co-operative agents
performing a set of tasks assigned to them. We provide both reactive (online)
and proactive (offline) approaches to facilitate coordination among the remaining
agents. In addition, we also provide heuristics that benchmark the performance of
our approaches.

5.2.1 Benchmarking Heuristics
We first outline two benchmarking heuristics that will be employed to benchmark
the performance of our approaches introduced in later sections.

Ignore the leaving agent, ILA: In this heuristic, we solve the MILP of Table 4.1
and obtain solution assuming agents will not leave the system. When some agents
leave the system, other agents ignore their departure and execute the policies
computed by solving the MILP. This provides a good lower bound on solution
quality that has to be achieved by any new proposed approach.

Online Revamp, O-Rev : In this heuristic, the agents execute their policies ob-
tained by solving the MILP of Table 4.1 until one or more agents leave the system.
At the decision epoch twhere at least one of the agents leaves, the problem is solved
again for the remaining agents and time steps. The information of leaving agents
and the starting probability distribution over states for agents at the leaving time
is input to the MILP. The new policy obtained from re-solving is executed by the
agents until there is a change in the system (i.e., some agent leaves the system).
Even though this approach is not feasible for online decision making (due to the
computational complexity of solving the MILP), this revamp approach provides a
good upper bound on the desired performance for our proposed approaches.

5.2.2 Proactive Expected Flow Optimization
Expected flow optimization (EFO) is a proactive approach that given the probabil-
ity distribution for agents leaving the system, i.e., ∆, we update the formulation of
Table 4.1. Specifically, we replace the actual flow with expected flow given ”prob-
ability of staying back” in the flow preservation constraint of Equation 4.2. That is
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Algorithm 2 REACTIVE TASK ASSIGNMENT( F, δ̃, t)
1: repeat
2: 〈i∗, Vi∗〉 ← maxi∈Ag\F Vi(π∗i , α

t
i, δi ∪ δ̃)

3: δ+
i∗ ← GETNEWLYALLOCATEDTASKS(πi∗ , δi)

4: δ−i∗ ← GETDISCARDEDTASKS(πi∗ , δi)
5: δ̃ ← (δ̃ \ δ+

i∗) ∪ δ−i∗
6: F ← F ∪ {i∗}
7: until δ̃ = ∅ OR Vi∗ = 0

to say, ∑
ai

xt+1
i (σi, ai) =

∑
si

∑
ai

xti(si, ai) · P t
i (si, ai, σi) · (1−∆t

i)

All other constraints in the optimization problem of Table 4.1 remain exactly the
same. As will be noted in our experiments, such an approach though easy to imple-
ment performs poorly in comparison with other approaches.

5.2.3 Reactive Assignment of Tasks
We now describe Reactive Assignment of Tasks (ReacT) that performs reactive up-
dates to the current solution as agents leave the system. Initially, we start with
the joint policy obtained by solving the MILP of Table 4.1. When one or more
agents leave the team, the tasks of leaving agents must be assigned to the remaining
agents in the system. In this approach, each remaining agent evaluates the value
of changing the current allocation (i.e., taking on some of the newly available tasks
and discarding some of the currently assigned tasks) given the newly available tasks.
The agent which obtains the highest value by changing its allocation is first assigned
tasks from the newly available list and tasks discarded by that agent are added to
the newly available task list. This process is repeated with the remaining agents
who evaluate the value of changing their current allocation until the new task list
is exhausted or all agents have changed their allocation once. Evaluating value of
taking on additional tasks at the cost of discarding some of the current tasks is per-
formed by solving an MDP over the remaining horizon. The starting distribution
of the agents are updated to consider the distribution of states at the current time
step. Algorithm 2 provides the pseudocode for ReacT where inputs to the algorithm
are the set of agents leaving the system, F , the newly available tasks, δ̃ and the
current time step, t. The algorithm finds the agent with largest expected reward(line
2) where each of the remaining agents are allowed to consider all tasks from the
list δ̃ ∪ δi. The newly available tasks assigned to the agent with highest reward are
determined in line 3 and the discarded tasks are determined in line 4. The list of
newly available tasks δ̃ is then updated to remove the assigned tasks and add the
tasks discarded by agent i∗ on line 5. F is updated to include i∗. This process is
continued until either of the termination conditions are met.
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Variables: ∀si, σi ∈ Si; ∀ai ∈ Ai;∀τ ∈ Γ;∀i ∈ Ag;∀t ∈ ξk(i)

Minimize: − 1

K

∑
k

∑
i,si,ai,t

xt,ki (si, ai) ·Rt,k
i (si, ai) (5.1)

Subject to:∑
ai

xt+1,k
i (σi, ai) =

∑
si

∑
ai

xt,ki (si, ai) · P t,k
i (si, ai, σi), ∀σi, t, i, k (5.2)∑

ai

x0,k
i (si, ai) = αi(si), ∀si, i, k (5.3)∑

t,i

δt,ki (τ) ≤ C(τ), ∀τ, k (5.4)

1

X

∑
ai

ρi(ai, τ)
∑
si

xt,ki (si, ai) ≤ δt,ki (τ), ∀τ, t, i, k (5.5)

xt,ki (si, ai) ≥ 0, δt,ki (τ) ∈ {0, 1} (5.6)

Table 5.1: Optimal MILP for Non Dedicated Team

5.2.4 Proactive Planning through SAA+LR
We now describe a sample average approximation based Lagrangian relaxation
(SAA+LR) approach that computes a policy for each of the agents for multiple
scenarios of agent availability over the entire time horizon. Since it is impossible
to consider all the samples of agent availability on larger problems, this is primarily
an approximate approach that optimizes the expected value given the probability
distributions of agents leaving.

A sample of agent availability is generated by sampling from a biased coin with
probability pi independently for every agent i. At every time step t, the coin is tossed
to decide if the agent i either leaves or stays in the team depending on the value of
associated probability in ∆i. Therefore, in every sample of agent availability ξk, we
know the availability horizon ξk(i) of every agent i. The MILP in table 5.1(referred
to as OPT-ND-TasC) provides an optimal offline solution for the optimization prob-
lem of a non dedicated team over K samples with a different solution (allocation of
tasks and policy) for each sample.

For transition function, we have P t,k
i instead of just Pi. Similarly, for reward,

Rt,k
i instead of Ri. They are defined as:

Rt,k
i (si, ai) =

{
Ri(si, ai) if ξk(i) > t

0 otherwise

P t,k
i (si, ai, σi) =

{
Pi(si, ai, σi) if ξk(i) > t− 1

0 otherwise

Intuitively, these indicate that once the agent leaves the system (at ξk(i)) reward
and transitions are set to 0. To ensure conciseness in expressions, we will use the
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following short form for the objective employed in Table 5.1:

K∑
k=1

fk(xk) =
∑
k

∑
i,si,ai,t

xt,ki (si, ai) ·Rt,k
i (si, ai)

The MILP for non dedicated team(OPT-ND-TasC) is separable over the number
of samples. However, it can provide a usable solution only if the agent availability
sample is known beforehand. But due to the dynamic nature of the problem, agent
availability information is not available offline. Therefore, we modify the optimiza-
tion problem in table 5.1 to provide an offline allocation of tasks that works well
across all K samples using global task allocation variables, d :

δt,ki (τ) = dti(τ), ∀τ, t, i, k (5.7)

That is to say, task allocations for all samples should agree on the same solution.
This constraint links the optimization of allocations across all samples. Lagrangian
dual for the optimization problem of Table 5.1 while considering the common allo-
cation constraint of Equation 5.7 is given by:

L(x, δ,d) =
−1

K

K∑
k=1

fk(xk) +
∑
τ,t,i,k

λt,ki (τ)
(
dti(τ)− δt,ki (τ)

)
=
−1

K

K∑
k=1

(
fk(xk) +

∑
τ,t,i

λt,ki (τ) · δt,ki (τ)
)

+
∑
τ,t,i,k

λt,ki (τ) · dti(τ) (5.8)

where λ is the dual vector associated with constraints in Equation 5.7. A solution
with respect to a given vector λ is given by G(λ) = minx,δ L(x, δ,d). The variable
dti(τ) is unconstrained, which may lead to an unbounded dual. Therefore, to avoid
unboundedness, the price variables must satisfy the following constraints:

Λt
i(τ) = {λt,ki (τ)|

∑
k

λt,ki (τ) = 0} (5.9)

λt,ki (τ) ∈ Λt
i(τ), ∀τ, t, i

The above condition further simplifies the dual G(λ), as the last term in Equa-
tion 5.8 vanishes leading to the below dual which is separable over K samples:

G(λ) =
∑
k

min
x,δ

(
fk(xk) +

∑
τ,t,i

λt,ki (τ) · δt,ki (τ)
)

(5.10)

Maximizing the Dual Function

We now address the master problem of maximizing the Lagrangian lower bound
over the price variables λ, which can be solved by using projected sub-gradient
ascent(Bertsekas, 1999). The gradient w.r.t. a variable λki (τ) is given by

∇G
(
λt,ki (τ)

)
= δt,ki (τ) (5.11)
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where δt,ki (τ) denotes the solution of inner minimization problem of Eq.(5.10) for
sample k which is used to update the price variables as follows:

λt,ki,n∗(τ) = λt,ki,n(τ) + γn∗

[
δt,ki,n(τ)−

∑K
k′=1 δ

t,k′

i,n (τ)

K

]
,∀τ, t, i, k (5.12)

Here, n and n∗ represent the current and next iteration, respectively. The second
term is the projection into the feasible that ensures that

∑
k λ

t,k
i (τ) = 0 as indicated

in Eq.(5.9).

Extraction of Feasible Primal Solution

The dual solution obtained by solving the individual samples may be inconsistent
due to violation of the common allocation constraint of Eq.(5.7) among different
copies of the task allocation variable δ, resulting in δt,ki (τ) 6= δt,k

′

i (τ) for any two
samples k and k′. To obtain a consistent task allocation to agents over K samples,
we find the best-agent i∗ for every task τ ∈ Γ. The best-agent is nominated by
choosing the agent with highest number of assignments of task τ over all samples.
We obtain the best-agent for all tasks and formulate a reduced version of the OPT-
ND-TasC MILP (table 5.1) by using the unique task allocation obtained over all
samples. This reduced MILP is easy to solve and provides a consistent policy as-
signment for every agent of the non dedicated team irrespective of the sample. The
solution obtained is the primal solution Primaln which is employed in the update
of the step parameter γn∗ = Primaln−Dualn

||∇gk||2 in Eq.(5.12) where Dualn is the dual
value for iteration n.

5.2.5 Two Stage MILP for Non-Dedicated Team
The SAA+LR computes one allocation of tasks for the entire duration. In this sec-
tion, we extend the underlying MILP formulation of SAA+LR to compute an initial
allocation and then change the allocation once before the time horizon based on the
current state of the system (agents available). Since, we consider the state before
changing the allocation, this formulation improves team utility when compared to
a single stage allocation. It should be noted that the dual decomposition approach
described in the previous section is also directly applicable for this extended formu-
lation. Due to the similarity, we do not describe the dual decomposition approach
here and furthermore, we refer to two-stage MILP and Lagrangian relaxation of
two-stage MILP synonymously.

State of the system (of relevance to task allocation) is the set of agents leaving
the system. In this extended MILP, we compute an initial allocation and then at an
observation time, t′ compute a new allocation based on the observation, o ∈ O of
the state of the system. The samples of agent availability < ξ1, ξ2, ..., ξk > provide
the set of possible observations at t′ that marks the beginning of second stage. An
observation belief < b1, b2, ..., bk > is maintained over the sample set ξ for every
observation o at the observation time t′. It must be noted that any sample ξk, k ∈ K
will have a non-zero belief for at most one observation and zero for the remaining
set of observations. This reduces the number of samples to be solved at observation
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Figure 5.1: Quality Comparison w.r.t. (a) Agents and (b) Grid-size

level, thereby, reducing the complexity of the problem at second stage to solving
maximum K samples instead of K × |O|.

The objective is to maximize the total value over all samples ξ where the first
and second term denote the objectives for the two stages, respectively. The variables
xt,ki,1(si, ai) and xt,ki,2(si, ai, o) denote the visitation frequency for agent i at time t for
sample k with observation o in stages 1 and 2 respectively. dti,n and yti,n represent
the common task allocation and policy assignment variables for the two stages n ∈
{1, 2} over all samples.

The constraints 5.15 to 5.19 are the constraints for stage 1 where equations 5.15
and 5.16 are the flow constraints and equation 5.17 is the task assignment/execution
constraint. The equations 5.18 and 5.19 are required to provide a unique policy and
task allocation over all samples in the first stage. Similarly, constraints 5.20 to 5.24
are the second stage constraints. For every observation o ∈ O, equations 5.21
and 5.20 are the flow constraints. The initial flow for every observation in the second
stage at t′ + 1 is the outflow from the last time-step t′ of the first stage as shown
in 5.20. Equation 5.22 provides the task assignment constraint. Equations 5.23
and 5.24 provide a unique policy and unique task allocation over all samples for an
observation. For every sample, the task assignment constraint 5.14 ensures that a
task can be done only in either of the stages.

5.3 Experiments
We evaluate1 the performance of our reactive and proactive approaches. While
there are no benchmark problems to study performance of non-dedicated teams,
we rely on the benchmark problems available for multi-agent coordination in un-
certain domains and augment them with probability distributions that represent the
non-dedicative nature of agents.

1All our optimization problems are run on CPLEX v12.5
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Variables: xt,ki,n ≥ 0, δt,ki,n ∈ {0, 1}, dti,n ∈ {0, 1}, yti,n ≥ 0, n ∈ {1, 2}

Minimize: − 1

K

∑
k,i,si,ai

(∑
t≤t′

xt,ki,1(si, ai) ·Rt,k
i,1(si, ai)+∑

o

∑
t>t′

xt,ki,2(si, ai, o) ·Rt,k
i,2(si, ai)

)
(5.13)

Subject to:∑
i

(∑
t≤t′

δt,ki,1 (τ) +
∑
o

∑
t>t′

δt,ki,2 (τ, o)

)
≤ C(τ), ∀τ, k (5.14)

∀t ≤ t′, i,k :∑
ai

x0,k
i,1 (si, ai) = αi,1(si),∀si (5.15)∑

ai

xt+1,k
i,1 (σi, ai) =

∑
si,ai

xt,ki,1(si, ai) · P t,k
i (si, ai, σi),∀σi (5.16)

1

X

∑
ai

ρi(ai, τ)
∑
si

xt,ki,1(si, ai) ≤ δt,ki,1 (τ),∀τ (5.17)∑
a

xt,ki,1(si, ai) =
∑
a

yti,1(si, ai),∀si (5.18)

δt,ki,1 (τ) = dti,1(τ), ∀τ (5.19)

∀si, i,o,k :∑
ai

xt
′+1,k
i,2 (si, ai, o) =

∑
si,ai

xt
′,k
i,1 (si, ai) · P t,k

i (si, ai, σi) (5.20)

∀t > t′, i,o,k :∑
ai

xt+1,k
i,2 (σi, ai, o) =

∑
si,ai

xt,ki,2(si, ai, o) · P t,k
i (si, ai, σi),∀σi (5.21)

1

X

∑
ai

ρi(ai, τ)
∑
si

xt,ki,2(si, ai, o) ≤ δt,ki,2 (τ, o),∀τ (5.22)∑
a

xt,ki,2(si, ai, o) =
∑
a

yti,2(si, ai, o),∀si (5.23)

δt,ki,2 (τ, o) = dti,2(τ, o),∀τ (5.24)

Table 5.2: Two-Stage MILP for Non Dedicated Team
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Figure 5.2: Quality Comparison w.r.t. Samples: m = 5, |Ag| = 8, H = 10, C(τ) = 20

5.3.1 Experimental Setup
We employ a generic setting that can be easily adapted to the domains described
in introduction. Specifically, we employ the Urban Consolidation Center problems
that deal with allocation of tasks and have to consider transitional uncertainty (Han-
doko et al., 2014). We evaluate the performance of all the approaches on various
metrics: (a) solution quality; (b) runtime; (c) quality of bounds provided by dual so-
lution; and (d) percentage of optimality with increasing training samples and vary-
ing observation time.

Experimental results are averaged over 15 randomly generated grid maps
that randomly place the delivery locations (tasks) and walls. Grids are described
using a single parameter m that represents number of rows and columns (i.e.,
m x m grid). The actions are classified into movement actions (stay, left, right,
up and down) and task actions. Rewards are generated only for task actions
using a pseudo-random function dependent on the task location and task id. We
generate the agent availability samples from a probability distribution ∆i for every
agent. For comparison of all the approaches, we generate 1500 samples of agent
availability, and divide it into training set of 1000 samples and a testing set of 500
samples. To obtain a fair comparison over all online and offline approaches, we
compare the solution quality and runtime on the same test set. We simulate the
policies obtained by different approaches on the test set.

We compare the following approaches in this section:
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• Ignore the leaving agent, ILA - Section 5.2.1.
• Online revamp, O-Rev - Section 5.2.1.
• Expected Flow Optimization, EFO - Section 5.2.2.
• Reactive assignment of tasks (ReacT) - Section 5.2.3.
• Sample Average Approximation based Lagrangian Relaxation (SAA+LR) - Sec-

tion 5.2.4. Due to repetition in samples, we find the frequency of each generated
sample in the training set and assign frequency-specific weights to each training
sample and choose 10 best samples for calculating joint policy with SAA+LR.
The number of training samples is fixed to 10 best samples unless mentioned
specifically.
• OPT-ND-TasC - This corresponds to solving all the test samples offline. This is

not really an approach that can be employed, but serves as a benchmark on the
best possible performance achievable.
• Two Stage MILP for Non-Dedicated Team (MILP-2S) - Section 5.2.5. The

training set obtained similar to SAA+LR is used to find the set of possible ob-
servations O beforehand for the second stage in MILP-2S. For any observation
outside O in the testing set, we employ ReacT to obtain the solution of second
stage for the samples. The observation time is fixed to t′ = 6 for a horizon
H = 10 unless specifically mentioned.

5.3.2 Results
Solution Quality: Figure 5.1 compares the solution quality for all the approaches
discussed in section 6.2. We compare the average team utility in Figure 5.1(a) as
number of agents |Ag| is increased. Specifically, we consider grids with m = 5,
tasks C(τ) = 20 and horizon H = 10. Similarly, in figure 5.1(b), we compare for
different grid-size m for a fixed number of agents |Ag| = 6, tasks C(τ) = 20 and
horizon H = 10. Here are the key observations:
• EFO provides low team utility solutions. In the best case, EFO performs similar

to ReacT but in the worst case, the performance is even lower than ILA.
• Since ILA ignores the leaving agents which impacts the scope of improvement

in the rewards, ReacT performs better. Moreover, ReacT allocates high valued
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tasks of leaving agents to improve its utility.
• SAA+LR typically provides better performance than ReacT, but in some cases

(e.g., 6 agents in figure 5.1(a)), ReacT performs slightly better. O-Rev provides
better utility than ReacT, ILA and SAA+LR but requires a lot of ”online” cycles
to solve the MILP at every stage of leaving agents.
• Finally, we observe that OPT-ND-TasC provides the best utility but it requires

the knowledge of samples before-hand. MILP-2S provides comparable or better
performance than O-Rev. O-Rev does not provide the optimal solution, because
it does not reason about future scenarios of agents leaving while planning
at a time step. Overall, amongst all the relevant and reasonable approaches,
MILP-2S provides the best performance with respect to solution quality.

Solution Runtime: With respect to runtime, there are offline and online runtimes.
Since EFO, ILA, SAA+LR and MILP-2S are offline approaches, online runtime
is minimal (milliseconds). ReacT is an online approach and takes less than 30
seconds to generate a new allocation. O-Rev is an online approach but takes a
long time (10-30 minutes) to generate results and hence is not applicable. For all
approaches, we provide a maximum of three hours for training.

Quality of Bounds: Figure 5.2 shows the convergence graph for the training
samples of SAA+LR where the primal and dual evolve with increasing iterations
and the number of training samples. A key observation is that SAA+LR provides
near optimal solution very early and converges quickly even with increasing
samples. The solution quality of the primal (calculated as Primal∗100/Dual) is
atleast 90% of the optimal.

Optimality Comparison: Figure 5.3 compares the optimality of solution for any
approach (computed as U(approach)∗100/U(OPT-ND-TasC) where U(approach)
represents the utility obtained using specified approach) on the test set. Figure 5.3(a)
shows the comparison of MILP-2S, SAA+LR and O-Rev with increasing training
samples for MILP-2S and SAA+LR. Notice that O-Rev requires no training being
online and it’s performance remains unchanged. We observe that the percentage
of optimality improves to a certain extent with increasing training samples for both
MILP-2S and SAA+LR after which the optimality may not improve significantly
and approximately remains constant with increasing samples. This is because for
higher sample sizes (ordered in decreasing frequency weights), few samples with
lower weights would be given preference in training which may not even occur in
the test set at all, thereby reducing the performance. Similarly, in figure 5.3(b), we
vary the observation time for MILP-2S from t′ = 3 to t′ = 8 for a horizon H = 10
in training to obtain a two stage offline policy for every observation time t′. We
simulate each of the policies on same test set and observe that MILP-2S performs
approximately as good as O-Rev (benchmark heuristic not dependent on observa-
tion time) with different observation times, but performs extremely well towards the
centre.
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5.4 Summary
In this chapter, we addressed the problem of task allocation for a team of non ded-
icated agents operating in uncertain environments. The provided model is generic
enough to be applied to different domains involving task allocation problem. Our
proactive approaches provide efficient one stage and 2 stage strategies that work
well across different feasible scenarios of agents leaving the team. Our extensive
experiments on benchmark problems demonstrate that MILP-2S provides best per-
formance, even for large problems.
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Chapter 6

Decentralized Planning for
Non-dedicated Agent Teams with
Submodular Rewards

Decentralized planning under uncertainty for non-dedicated agent teams is impor-
tant in a wide variety of problems such as disaster rescue, security patrolling, sensor
networks, etc., where individual agents work in a decentralized, yet co-operative
manner and are tied together through a global reward function. In problem domains
associated with safety and security, recent research (Brown et al., 2014; Shieh et al.,
2014; Varakantham et al., 2013) has considered patrolling problems where a team
of defenders coordinate to secure a set of targets against an observing adversary. In
target tracking by a team of sensors (Nair et al., 2005; Kumar & Zilberstein, 2011;
Chapman & Varakantham, 2014), the sensors are used to monitor some spatial phe-
nomenon. Also, in disaster rescue scenarios (Varakantham, Adulyasak, & Jaillet,
2014; Velagapudi et al., 2011; Varakantham et al., 2009), victims have to be allo-
cated to robots while considering the uncertainty in travelling through disaster prone
areas. Furthermore, in large warehouses (Hazard et al., 2006; Wurman, D’Andrea,
& Mountz, 2007) of online portals such as Amazon, movement of automated robots
fetching goods based on online orders (uncertainty) have to be coordinated in the
usage of pathways (resources). These domains have the following common char-
acteristics: (a) A team of agents (sensors, ambulances, fire-trucks, etc.) coordinate
plans to achieve a goal; (b) There is transition uncertainty in planning problems of
individual agents, either due to travelling on roads (due to traffic) or due to physical
constraints (sensors, robots, etc.) (c) The agent team is a non-dedicated agent team.
For example, in the case of patrolling, (e.g., coast guard boats, traffic police) can be
forced to leave their assignment to attend to an accident or incident (e.g., incursion,
smuggling, road accident); and most importantly (d) The agents are independent
and collaborate through a global reward (save victims, prevent attacks, etc.) defined
as a submodular function. Furthermore, a partially centralized control over agents
is required due to reallocation of tasks, and therefore, change in agent polices of the
remaining agents after few agents have left (i.e., whenever the system configuration
changes).

In this chapter, we are interested in application problems with above mentioned
characteristics. To that end, we provide a general model to represent the class of
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problems consisting of independently collaborating non-dedicated agents. A key
contribution of our work lies in establishing connections between non-dedicated
agent teams and submodularity. We show that with monotone submodular reward
functions subject to the matroid constraint, greedy solutions computed at every deci-
sion epoch are still submodular with fewer number of agents and provide an a priori
guarantee of at least 50% from the optimal and much better posterior guarantees.
Another main contribution includes our two greedy approaches to efficiently deal
with agent exits before the end of horizon. In our first approach, we exploit lazy
greedy to obtain a unique offline policy for every agent irrespective of the agent
exits from the team. The second approach is an offline-online approach where the
offline phase creates a fixed number of joint policies to be used in the online phase.
Finally, our experiments demonstrate the improved performance of our approaches
on benchmark problems from literature.

6.1 Submodular ND-TI-Dec-MDP
The model for Submodular ND-TI-Dec-MDP is explained in details in chapter 3,
section 3.3. In this section, we describe the important properties of ND-TI-Dec-
MDPs with a joint reward function that is monotonically increasing and submodular.
Let us first consider the case of a dedicated team where no agent leaves the system
(represented as ∆H

i = 1 for all agents). In this case, the state of the system is fixed
(i.e., no agents leaving) and already known to the decision maker, and hence, the
policy of every agent can be determined in advance. However, in a non-dedicated
agent team, agents may leave the team midway requiring reconfiguration of the
remaining agent policies. The timestep at which an agent leaves the team is referred
to as observation timestep, t′ and the set of agents leaving the system at t′ represent
the observation ψ. All the agents that have left until t′ constitute the observation
set ψt′ . The joint policy for a ND-TI-Dec-MDP is a concatenated policy which is
formally defined for one observation timestep as following.

Definition 3. Policy Concatenation: Let πψ0 be the joint policy over all agents until
the first observation at time t′ and πψt′

be the joint policy with observation set ψt′ .
The concatenated policy π̂ is represented as:

π̂ = [πψ0 ]
t<t′

t=0 +
[
πψt′

]t=H
t=t′

Proposition 1. (Kumar et al., 2017): For a TI-Dec-MDP, V H(s, π) is monotonically
increasing and submodular if the joint reward, R is monotonically increasing and
submodular.

At t = 0, ND-TI-Dec-MDP is similar to TI-Dec-MDP and is solved for |Ag|
agents and H timesteps. The value function, V H(s, π) is a monotone and submodu-
lar being the case of dedicated agent team. Similarly, for every observation timestep
t′, ND-TI-Dec-MDP is solved as a new TI-Dec-MDP problem with Ag \ψt′ agents
andH−t′ timesteps where ψt′ represents the set of agents that have left until t′. The
value function, V H−t′(s, π) at t′ is also monotonically increasing and submodular.
Hence, for a single observation ψt′ , the joint policy comprises of two components
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(as per definition 3) where the second component is guaranteed to be submodular
but not the first component. This is because submodularity of the value function
V H(π) holds for [t]H0 but for ND-TI-Dec-MDP, we consider only timesteps [t]t

′

0 for
the first component. Hence, the value function V H(π̂) for ND-TI-Dec-MDP is not
guaranteed to be submodular for π̂, however, it is submodular for every TI-Dec-
MDP sub-problem.

The goal in ND-TI-Dec-MDPs is to maximize the expected value by obtaining
a correct joint policy (i.e., exactly one policy per agent). Formally, the goal is
to maximize V H(π) for every individual TI-Dec-MDP problem given the partition
matroid Γ = (Π, I) where I = {X ⊆ Π : |X ∩ Πi| = 1}. Intuitively, the partition
matroid enforces that we can only have one policy for each agent.

Proposition 2. (Fisher, Nemhauser, & Wolsey, 1978): Greedy algorithm for maxi-
mizing a monotone submodular function subject to a partition matroid yields solu-
tions that are at least 50% of the optimal solution.

For a non-dedicated agent team, the a priori bounds for every TI-Dec-MDP
sub-problem at any t′ is guaranteed to be at least 50% of optimal in the worst case.
However, these bounds are quite loose since the solution provided by greedy is much
better in most cases. Therefore, we compute online bounds by adding the marginal
value of the best policy for every agent in the solution set to provide a tighter up-
per bound on the optimum. The online bound for a monotonically increasing and
submodular value function is represented as below:

Proposition 3. (Kumar et al., 2017): For any joint policy, π:

V (π∗) ≤ V (π) +
∑
i∈Ag

δi(π)

where δi(π) = maxπi∈Πi V (π ∪ πi)− V (π)

Here, π∗ is the optimal joint policy with optimal individual policies for every
agent. For any joint policy π, we get an upper bound on the value of the optimal
policy by adding the individual policies, πi that yield best marginal values for each
agent. In the context of ND-TI-Dec-MDP, at every observation timestep t′, we
solve a new TI-Dec-MDP problem withAg \ψt′ agents and H− t′ timesteps where
any policy πψt′

provides an upper bound on the optimal policy π∗ψt′
. However, any

concatenated policy π̂ is not guaranteed to provide an upper bound on the optimal
concatenated policy π̂∗ since submodularity may not hold for πψ0 . We still compute
the online bound for the concatenated policy as following.

V (π̂∗) ≤

V (πψ0) +
∑
i∈Ag

δi(πψ0)

t<t′
t=0

+

V (πψt′ ) +
∑

i∈Ag\ψt′

δi(πψt′ )

t=H
t=t′

(6.1)

where δi(πψt) = max
πi∈Πi

V (πψt ∪ πi)− V (πψt), t ∈ {0, t′}

The expression in the first square bracket bounds the value of the optimal concate-
nated policy V H(π̂∗) from t = 0 to t ≤ t′ for the policy πψ0 (however, it is not a
guaranteed online bound), while the second expression provides a guaranteed online
bound on the value of the optimal concatenated policy from t ≥ t′ to t = H . For our
experiments, we compute online bounds for ND-TI-Dec-MDP using Equation 6.1.
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Algorithm 3 ND-GREEDY( Ag, S, A, P,R,H − t′, α, ψ)

1: Z ← ∅
2: π∗i ← ∅,∀i ∈ Ag \ ψ
3: repeat
4: for all i ∈ Ag \ {ψ ∪ Z} do
5: π∗i ← maxπi Vi(πi, α

t′
i |π∗Z)

6: 〈i∗, Vi∗〉 ← maxi∈Ag\Z Vi(π∗i , α
t′
i |π∗Z)

7: Z ← Z ∪ {i∗}
8: until Ag \ {ψ ∪ Z} = ∅
9: return π∗ ← {π∗i }i∈Ag\ψ

6.2 Approaches
In non dedicated teams, the remaining team members must coordinate to deal with
agents leaving the team. As indicated earlier, the objective is to maximize the ex-
pected utility of a non-dedicated team of co-operative and decentralized agents per-
forming a collective task assigned to them. We provide an offline and an offline-
online approach for solving the decentralized planning problem for a non-dedicated
agent team. Due to the inability of Mixed integer linear program (MILP) in com-
puting the joint reward and joint policy for decentralized settings, we provide a lazy
greedy extension for benchmark heuristics for non-dedicated agent teams provided
in section 5.2 to provide good bounds on the solution quality of ND-TI-Dec-MDPs.

6.2.1 Lazy Greedy
For dedicated agent teams, greedy has been well explored in the context of Dec-

MDPs (Shieh et al., 2014; Agrawal, Varakantham, & Yeoh, 2016; Kumar et al.,
2017) while for non-dedicated agent teams, it has been explored only in centralized
settings (Agrawal & Varakantham, 2017). Therefore, we extend the previous work
by (Kumar et al., 2017) to provide a lazy greedy extension for non-dedicated teams
in decentralized settings. Algorithm 3 provides the pseudocode for a non-dedicated
greedy algorithm that is solved at every observation timestep, t′ where |ψt′ | agents
leave the team andH−t′ timesteps are remaining. The algorithm is initially invoked
at the starting timestep (i.e., t = t′ = 0 and ψt′=0 = ∅) after which it is invoked only
for timesteps where ψt′ 6= ∅. It must be noted that at the starting timestep (i.e., t=0),
ND-Greedy is exactly similar to the Greedy algorithm for dedicated team (Kumar
et al., 2017) since ψt′=0 = ∅ as all agents are available. ND-Greedy builds the solu-
tion set by incrementally adding a policy for every agent that has not been assigned
a policy. Initially, we start with an empty solution set Z (line 1). At every iteration,
for each agent in the set of remaining agents, Ag \ ψt′ that has not been assigned
a policy (line 4), we compute a policy with the highest marginal value given the
current solution set (line 5) by constructing and solving an MDP (similar to the TI-
Dec-MDP. Among those highest marginal value policies, we choose the one with
the highest value and add it to the solution set (lines 6-7). This process is repeated
until allAg \ψt′ agents have been assigned a policy to collectively provide the joint
policy π∗ (Every agent is assigned exactly one policy with the help of partition ma-
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troid constraint). Finally, the agents in Z are present in decreasing order of their
marginal values. We refer this solution set Z as selection order of the agents.

ND-Greedy evaluates the marginal value for all the agents at every iteration,
thereby affecting the scalability of the algorithm with increasing agents. Interest-
ingly, submodularity of the value function V H() can be exploited to implement
an accelerated version of classical greedy algorithm, otherwise known as Lazy
Greedy (Minoux, 1978). Instead of computing the marginal gain for all agents, lazy
greedy allows a lazy evaluation of marginal benefits by storing the upper bounds
µ(i) on the marginal gain for all agents i ∈ Ag sorted in descending order. This
reduces the marginal gain computation as the submodularity of value/objective
function guarantees that the marginal gain for an agent is always equal to or
lower than the previous iteration. Intuitively, for each iteration, lazy greedy
evaluates the agent on the top of the list, say i, and updates its upper bound, µ(i).
If µ(i) ≥ µ(i′), ∀i′ 6= i, submodularity guarantees that agent i has the highest
marginal gain. Therefore, lazy greedy leads to significant reduction in running
times compared to the classical greedy.

Why is the new policy recomputation needed: The recomputation of the new
joint policy over all agents is necessary at every observation timestep t′ because
the contribution of rewards by agents at every timestep may vary. This means that
an agent may have higher rewards at earlier timesteps compared to later timesteps.
In security games, if the agents continue with their initial policies, the coverage
of important targets may be missed, making the system vulnerable to attacks. This
creates an urgency for recomputation of the policy of agents. Therefore, lazy greedy
is used to get a new selection order for agents by considering the reward contribution
from the current timestep to the end of planning horizon.

For example, let [A2(555), A3(545), A1(500), A4(490)] be the selection order of
agents at t = 0 with their reward values specified alongside. Let a1 leave the system
at t = 1. The total value for agents at t = 1 could be [A2(500), A3(505), A4(490)]
on recomputation of reward for the remaining agents which creates a change in order
of selection of agents. This change in order of selection is because the contribution
at t = 0 dominated the contribution over remaining timesteps for agents A2 and A3.
Hence, the change in order contributes to the change in marginal gain, and therefore,
agents must rearrange their policies to adapt to the change in system.

6.2.2 Benchmarking Heuristics
The existing benchmark heuristics for non dedicated agent teams in Chapter 5 are
centralized approaches and incapable of computing joint policy and joint reward
for the agent team. Hence, we provide a lazy greedy extension for the existing
benchmarks to be able to solve ND-TI-Dec-MDPs and provide bounds on the
solution quality.

Ignore the leaving agent, Dec-ILA: We start with our lazy greedy solution for
dedicated team. Whenever agents leave the team, remaining agents still continue
with their existing policies, but since the reward for the system is a joint reward
over agents, we recompute the joint reward for the remaining agents. This provides
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a good lower bound on solution quality that has to be achieved. For example, in
security games domain, ignoring the targets covered by leaving defender agent
is not the best choice since the leaving agent may be protecting a target of high
importance. Hence, it is important for the remaining agents to modify their policies
to provide an improved coverage to the targets that would become vulnerable to
attacks. Similarly, in sensor domain, if a sensor is spoilt, the sensors in the vicinity
should be be able to change their policy and sense the target locations assigned to
the damaged sensor for better observation of any spatial phenomenon.

Offline Optimal, Dec-OPT: This heuristic assumes that the sample information
(details of agents leaving the system) is received beforehand. A mixed integer
program provides an optimal solution, but is not a suitable approach for finding the
joint policy and the joint reward computation for a decentralized team of hetero-
geneous agents. Hence, we use lazy greedy for finding the agent policies where
the agents are selected sequentially in the decreasing order of their values. Since
the agents leaving the system have a shorter timespan compared to non-leaving
agents, the marginal gain for such agents will be lowest. Hence, non-leaving agents
are provided least preference in the selection process by greedy. Although not
an exactly optimal approach, this heuristic provides a good upper bound on the
solution quality.

Online Revamp, Dec-O-Rev: Similar to Dec-ILA, for this heuristic, we start with
the initial lazy greedy solution until one or more agents leave the system. At the ob-
servation timestep t′, the problem is solved again for the remaining agents Ag \ ψt′
and remaining timesteps H − t′. The starting distribution of the remaining agents
is recomputed at t′ and is input to the lazy greedy algorithm along with the in-
formation of leaving agents, ψt′ . The new joint policy obtained for the remaining
agents is executed by the agent team until there is a change in the system (i.e., an
agent leaves the system). Dec-O-Rev provides a good upper bound on the desired
performance for our proposed approaches but suffers from some limitations. Al-
though the running time reduction due to lazy greedy is significant compared to
classical greedy, the total number of function evaluations with lazy greedy cannot
be predicted beforehand to provide the exact running cost. This makes the complete
recomputation of selection order at observation timesteps time consuming and diffi-
cult to be evaluated on the fly. Secondly, if there is a requirement of recomputation
at every timestep t, revamp would become infeasible since at least Ag \ ψt rounds
of sequential computation for agents will be required.

6.2.3 Offline-Greedy Approach
Offline-Greedy is a sampling-based approach that computes an offline selection

order, O and a single joint policy π∗ over multiple scenarios of agent availability.
Since it is impossible to consider all the samples of agent availability on larger
problems, we choose a smaller training set for the joint policy computation. The
sample set is represented as ξ and has |K| samples. Due to repetition of samples,
we assign frequency-specific weights W k,∀k ∈ K and select 20 best samples in
decreasing order of weights. Every sample of agent availability, ξk is generated by
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Algorithm 4 OFFLINE-GREEDY (ξ,Ag,W )

1: Z ← ∅, O ← ∅
2: Vi ← 0,∀i ∈ Ag
3: for all ξk ∈ ξ do
4: V k ← Dec-OPT(Ag, S, A, P,R,H, α, ξk)
5: Vi ← Vi +W k · V k

i

6: for all i ∈ Ag do
7: Vi∗ ← maxi∈Ag\O Vi
8: O ← O ∪ i∗
9: for all o ∈ O do

10: 〈π∗o , V ∗o 〉 ← Vo(π
∗
o , α

0
o|π∗Z)

11: Z ← Z ∪ {o}
12: π∗ ← {π∗o}o∈O
13: return 〈π∗, O〉

sampling from a biased coin with probability pi independently for every agent i.
At every timestep t, the coin is tossed to decide whether agent i leaves or stays in
the team depending on the value of associated probability in ∆i. Hence, for every
sample ξk, we know the available horizon ξk(i) for every agent i.

Algorithm 4 provides the pseudocode for Offline-Greedy with the training set ξ,
the agent set Ag and the vector of frequency weights over all samples W as inputs.
The agent selection set, Z and the selection order O are initialized as empty sets
and the total value of every agent over all samples Vi is set to 0 (line 1-2). For
every sample ξk in the training set, the available horizon of every agent is already
known, and therefore, we use Dec-OPT heuristic to obtain the total value, V k for
every ξk ∈ ξ (line 4). The total value for every agent Vi is computed as the weighted
sum of values over the sample set (i.e., W k · V k

i ) (line 5). The selection order O is
computed by sorting the agents in decreasing order of their values Vi (line 6-9) such
that the agents with higher probability of staying in the system are added before the
agents with higher probability of leaving. For all the agents in the selection order,
highest marginal value policy for an agent given the current solution set (line 10)
is computed by constructing and solving an MDP (similar to TI-Dec-MDP) and the
computed agent is then added to the solution set (line 11). Finally, we return the
best selection order O and the offline joint policy π∗ over all agents and all training
samples.

For every test sample, the agents are assigned their individual policies from
the offline joint policy π∗. However, irrespective of the observations obtained at
different observation timesteps, the agents continue with their pre-assigned policies
while the joint reward is recomputed for the remaining agents. This approach saves
the online recomputation of policy at observation timesteps but with a compromise
in the solution quality.

6.2.4 Offline-Online Approach
In this section, we present our Offline-Online algorithm which is a randomized

greedy algorithm with an offline and an online phase. The offline phase focuses on
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Algorithm 5 OFFLINE-ONLINE (Ag,N )
1: for all n ∈ N do
2: Z ← ∅
3: πni ← ∅,∀i ∈ Ag
4: repeat
5: ri ← Random(Ag \ Z)
6: πnri ← V n

ri
(πri , α

0
ri
|πnZ)

7: Z ← Z ∪ {ri}
8: until Ag \ Z = ∅
9: πn ← {πni }i∈Ag

10: Π← Π ∪ {πn}
11: return Π

the generation of multiple agent(s) selection orders to handle the different possibili-
ties of scenarios, while the online phase focuses on choosing the best selection order
for remaining agents depending on the current observation (availability of agents).
We note that having multiple selection orders is better than having one fixed selec-
tion order for all scenarios (as present in Offline-Greedy) because the total value
of a selection order can change at different observation timesteps due to the dom-
inance of rewards in previous timesteps (explained in details in section 6.2.1). We
generate a fixed number of selection orders for the agent set since the total number
of orderings possible with |Ag| agents is |Ag|! orders which is difficult to maintain
with increasing agents. At every decision stage, we choose the best/closest selection
order such that the position of the leaving agent is towards the end of the selection
order, thereby, avoiding the recomputations. The time complexity of the offline
phase is linear in the number of agents (or O(|Ag|)) while it takes constant time for
the online phase. The main difference with respect to lazy greedy (used in all the
above approaches) is that instead of choosing the agent with highest marginal gain
at every iteration, we randomly pick an agent and add it to the selection set. How-
ever, due to the joint reward computation and the presence of submodular rewards,
the total utility always improves with addition of agents iteratively.

Algorithm 5 shows the offline phase of Offline-Online algorithm where the in-
put to the algorithm is the agent count |Ag|, and the number of selection orders to
be generated (N). For computing every order n, we start with an empty agent se-
lection set Z and add one agent at a time by randomly selecting agents from the
set of remaining agents Ag \ Z. The policy and value of every agent is obtained
by solving an MDP and is stored in πn. Finally, we return Π that represents the
set of policies for all the N selection orders. The online phase of our algorithm
does not require any computation and only reacts to a situation by choosing the
best order from the set of offline orders for the remaining agents and providing a
new policy for every agent from the observation timestep t′ until the end of horizon.
The selection criteria for choosing the best order for the defender team whenever
any agent leaves the team depends on the number of exact matching and closest
matching selection orders. For example, let us assume that there are 4 agents in
the system {a1, a2, a3, a4} and the available set of selection order contains three or-
ders, O1 = {3, 2, 1, 4}, O2 = {4, 2, 3, 1} and O3 = {3, 2, 4, 1} with total utility of
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{200, 150, 100} for the orders respectively. Let us consider two case studies:
• Agent a1 leaves the system: In this case, O2 and O3 are the best suitable

orders since they require no re-evaluation but the order with highest utility is
given preference and hence, O2 is chosen.

• Agent a3 leaves the system: In this case, none of the matches are exact and
therefore, we find the closest match. We choose O2 to assign policies to the
remaining agents since it requires minimal updates to agent policies. At the ob-
servation timestep, the previous policy of a1 is replaced by the existing policy
of a3, but after considering the change in state distribution of the agents since
a1 and a3 are not guaranteed to be in the same state at the considered timestep.
However, due to the replacement of agent policies, a1 would now become the
third agent in the system, assuming the presence of two agents. Policy recompu-
tation is not required because the offline joint policy (of every selection order)
computes the V t(s, π) values for all states at all intermediate timesteps (i.e.,
joint value after selection of every agent in the selection order). Furthermore,
no reward recomputation is required since the joint reward considers only the
count of agents (and not the identity of agents) at any state due to the monotone
submodular reward structure for the joint reward.

In this manner, the online phase improves the value of solution roughly the same as
Dec-O-Rev, but very quickly.

6.3 Experiments
We evaluate1 the performance of our greedy approaches and compare them with
the benchmark approaches for non dedicated teams introduced in section 5.2 for
the security games domain provided by Shieh et al. (2014) and the sensor network
domain provided by Kumar et al. (2017) in decentralized settings. We implement
the benchmark approaches mentioned in the section 6.2 to provide a comparative
study of the results and evaluate the performance of all the approaches on various
metrics: (a) solution quality; (b) runtime; (c) quality of online bounds. We gen-
erate 1500 samples of agent availability (defenders in security domain and sensors
in sensor domain) and divide it into training and testing sets of 1000 and 500 sam-
ples, respectively. To obtain a fair comparison over all approaches, we compare the
solution quality and runtime on the same test set.

6.3.1 Security Games Domain
The security games domain is explained in details in section 2.1.6. We perform
experiments on the metro rail network with a set of targets (train stations) defended
by a team of decentralized (yet cooperative) defenders in the presence of transition
uncertainty. The metro graphs were formed by connecting stations together in lines
of length 5 and then randomly adding |b|/2 edges between targets, to resemble train
systems in the real world with complex loops. The reward is a joint reward which

1All our optimization problems are run on CPLEX v12.7
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Figure 6.1: Quality Comparison w.r.t. (a) Agents and (b) Targets

(a) H = 10, ε = 0.5 (b) H = 10, ε = 0.7 (c) H = 10, ε = 0.9

Figure 6.2: Comparison of Online Bound w.r.t. Effectiveness

is a function of the number of active defenders and the targets for a joint state s.
We describe the submodularity of reward function in section 2.2.3. The test results
were averaged over 15 randomly generated metro-based graph networks and the
rewards were generated randomly in the range of [0,100]. We run the scenarios
with a probability delay of .2 and a maximum of 5 agents (varies from 10% to 25%
across scenarios) with an ability to leave the system, defined by probability vector
∆. The defender agents are homogeneous (due to same reward and transition
function) but differ from each other in their starting states (generated randomly for
every agent) and their capability to leave the system.

Solution Quality: We compare different approaches with respect to average team
utility in Figure 5.1(a) as the number of defenders |Ag| is increased. Specifically,
we consider a metro network with targets b = 40, horizon H = 20 and the
effectiveness ε = 0.7 for every defender resource. Similarly, in Figure 5.1(b), we
compare different targets (i.e. stations), b for a fixed number of agents |Ag| = 20,
horizon H = 10 and effectiveness ε = 0.7. The key observations are summarized
as following:

(1) The average team utility increases as the number of defender agents increase
for a fixed number of targets and planning horizon due to the submodular reward
structure. Similarly, the team utility increases with increasing targets due to
increased number of choices for obtaining better rewards.
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(2) Dec-ILA provides low team utility solutions since the remaining agents
continue with existing policies even after agents leave. This impacts the scope of
improvement in rewards and is a cause of serious concern in security domain since
it allows easy access to an adversary to plan an attack in unprotected areas.

(3) Offline-Greedy provides similar or better solutions than Dec-ILA. An important
observation from the training data is that the agents with higher probability of
staying in the system are added before the agents with high leaving probability
in the selection set. Further, we see that with fewer agents, targets and smaller
planning horizon, Offline-Greedy performs almost at par with Dec-O-Rev as agent
exits are given due importance during the offline policy design but the performance
degrades quickly with increasing count of agents and the planning horizon. In the
worst case, the performance was seen to be even lower than Dec-ILA.

(4) Offline-Online provides a steady performance almost at par with the upper
bound benchmarks (O-Rev and Offline optimal) even with increasing problem
sizes. Due to the random selection of agents at different observation times and
the presence of submodular reward function, in the best case, Offline-Online
could provide better team utility than Dec-O-Rev. However, on an average,
Offline-Online achieves solution quality close to O-Rev in almost all cases.

(5) Offline optimal provides a good upper bound but is not always guaranteed
to provide better utility compared to revamp due to the dominance of rewards in
earlier timesteps explained in the section 6.2.1. However, on an average, Offline
optimal provides almost similar or slightly better solution quality compared to
Dec-O-Rev even after having the knowledge of samples before-hand.

Solution Runtime: With respect to runtime, we compare only online runtime
since the offline runtimes do not matter. Due to decentralized planning of agents,
individual agent planning time varies from 100 ms to 5000 ms from the smallest
problem instance (20 targets and 10 timesteps) to the largest instance (40 targets
and 20 timesteps). For Dec-O-Rev, due to the use of lazy greedy approach at
every timestep of revamp, the revamp time varies from 15 seconds to 1700 seconds
depending on the number of defenders and the problem size per defender. Further,
there can be multiple revamps for one planning scenario making Dec-O-Rev
infeasible for providing new policies quickly. However, our Offline-Online
approach uses a proactive offline planning which reduces the online execution
time to milliseconds, even in the worst case (although it requires offline training
time). Similarly for Dec-ILA, offline-optimal and offline-greedy, online runtime is
minimal.

Online Bound Comparison: For the online bound comparisons, we use a con-
sistent reward structure for every randomly generated metro network. For every
metro network, we generate various scenarios of agents availabilities for different
number of defenders and varying effectiveness of defenders. We compute online
bound for every scenario of non-dedicated agent teams using Equation 6.1 and av-
erage the online bounds over all test samples and all randomly generated graphs and
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Grid-Size Sensors,Targets
Global States

ε
.3 .5 .7

2× 2 4, 1, 4 57.3 63 68.8
3× 3 4, 2, 6*6 57.9 62.9 67.4
5× 5 5, 1, 10 58.3 64.5 71.5
5× 5 5, 2, 6*6 58.6 65 71.5
10× 5 6, 3, 14*10*10 57.4 61.2 64.2
10× 5 6, 4, 5*5*5*5 57.3 61.6 63.7
10× 5 6, 5, 6*5*5*5*5 55.7 61.3 65.3
10× 5 10, 3, 14*10*10 58.5 63.5 69
10× 5 10, 4, 5*5*5*5 55.5 58.5 61.7
10× 5 10, 5, 6*5*5*5*5 55.9 61.5 67.7
10× 10 10, 4, 6*5*5*5 58.7 64.5 71.2
10× 10 15, 4, 6*5*5*5 58.5 63.8 72.2
10× 10 20, 4, 6*5*5*5 58.9 65.5 72.7
10× 10 10, 5, 5*5*5*5*5 55.5 61.2 67.3

Table 6.1: Online Bound Comparison for Sensor Domain

infer that the online guarantees are significantly better than the a priori guarantees
(of 50% from optimal), with the best case of atleast 90% from optimal for varying
effectiveness.

Figure 6.2 compares the online (or posterior) guarantees obtained for the so-
lutions generated by O-Rev for different values of agents, targets and ε. It shows
that the online guarantees improve with increasing agents and decreasing targets
over varying effectiveness with highest guarantee being reported for 10 targets and
40 agents. Further, with increasing effectiveness of agents, the optimality increases
with highest guarantees (up to 99%) observed for ε = 0.9. To avoid clutter, we do
not plot the online guarantees provided by policies generated using Offline-Online
in the same graph. However, Offline-Online fared slightly lower than Dec-O-Rev in
terms of guarantees and provided a guarantee that was 0.7% lower than Dec-O-Rev
in the best case, while in the worst case, it was 2 % lower than Dec-O-Rev.

6.3.2 Sensor Network Domain
For the sensor network domain, we model the environment as a grid world and use
similar settings as (Kumar et al., 2017).

Online Bound Comparison: Table 6.1 shows the online guarantees obtained for
Offline-Online by varying the grid-size, number of sensors and their effectiveness,
number of targets and the number of global states. We vary the effectiveness
parameter from 0.3 to 0.7 and observe that the online bounds vary from 55% to
73% for Offline-Online, while the guarantees provided by Dec-O-Rev was seen
to be 4% and 1.8% better than offline-online in the worst case and best case
respectively. An important observation is that with increasing targets, the number
of global states increases exponentially, leading to memory issues. We note that
5 targets for a 10 × 10 grid with every target having a path-length of 5 was very
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difficult instance to solve with 55 or 3125 global states. However, increasing the
number of sensors with a fixed number of targets was comparatively easier to solve
since every sensor agent problem was solved independent of other agents due to the
decentralized settings.

Solution Runtime: With respect to runtime, the time taken by any sensor agent
for individual planning varies from few milliseconds to 10 seconds with increasing
number of targets and the global states. Due to lazy greedy evaluations for Dec-
O-Rev, every revamp may take time ranging from less than a minute to 40 minutes
depending on the complexity of the problem being solved. This makes Dec-O-
Rev infeasible to use in online settings. Further, there can be multiple revamps for
every scenario to make the situation worse. Similar to the security domain, the per-
formance of Offline-Greedy is very similar to Dec-ILA while Dec-OPT provides
results similar to Dec-O-Rev. More interestingly, our Offline-Online approach con-
tinues to perform gracefully with increasing number of sensors, targets and the grid
size and takes minimal time (in milliseconds) even for the largest problem, mak-
ing it the best choice considering the trade-off of running time and compromise of
quality.

6.4 Summary
In this chapter, we focussed on cooperative decentralized stochastic planning for
non-dedicated agent teams. We provided a general model for decentralized non
dedicated agent teams. Our offline greedy based approach provided good results
in small instances while our Offline-Online approach provided the best results even
in large instances in an effective manner. Finally, our extensive experiments on
benchmark problems demonstrate that our Offline-Online approach provides the
best solutions that are on par with benchmarks that provide an upper bound on the
performance while taking negligible online runtime making it effective even for
taking decisions at every step.
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Chapter 7

Task/Resource Constrained
Assignment for Non-dedicated Agent
Teams

In many large scale multiagent distribution network based applications such as
power distribution networks (Kumar et al., 2009), distributed meeting schedul-
ing (Maheswaran, Tambe, Bowring, Pearce, & Varakantham, 2004), distributed
planning and resource allocation, target tracking in sensor networks (Modi et al.,
2005), multiple agents coordinate to optimize a single objective function. In these
problems, agents consume resources which have limited capacity that must not be
violated. For example, in the distributed meeting scheduling problem, agents may
have a travel budget which can not be exceeded and the meeting rooms may have a
limited capacity on the number of attendees. Similarly, the important complexity in
modeling power networks are the resource constraints (capacity of edges). Further-
more, agents may leave the system midway through the tasks which may require
reconfiguration of the system. For example, power distribution networks require
local co-ordination among energized regions to reconfigure the network after some
regions are de-energized due to faults in power sources or power lines. Similarly,
due to fault in some resources or unexpectedly higher number of attendees in a
meeting, meeting scheduler may need rescheduling of the facilities.

In this chapter, we address the important problem of multiagent coordinated as-
signment along with task/resource allocation and examine the domain of power dis-
tribution networks. In this domain, we limit the scope of our study to the problem
of power supply restoration (PSR) (refer section 2.1.3 for more details of the do-
main), where a power grid has to be reconfigured after multiple line failures subject
to constraints such as acyclic power flow and line capacities (Thiebaux & Cordier,
2001; Bertoli et al., 2002; Thiébaux, Coffrin, Hijazi, & Slaney, 2013). In particular,
we focus on the multiagent PSR problem where different sub-regions of the grid
are controlled by different agents (Kumar et al., 2009). The power supply needs to
be restored to de-energized areas by local coordination among agents without the
oversight of a central authority. Such multiagent PSR problems have been previ-
ously addressed using the framework of distributed constraint optimization (Kumar
et al., 2009; Matsui & Matsuo, 2012). However, the scalability of such previous
approaches is limited due to the NP-Hard (Hadžic, Wasowski, & Andersen, 2007)
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complexity of solving PSR problems.
The main contribution in this chapter is the development of a decentralised La-

grangian Relaxation mechanism to solve the PSR problem. A key component that
enables decentralisation of LR is the extraction of optimal feasible PSR solution at
each iteration of LR in a decentralised manner. Extracting optimal feasible PSR
solution even for a tree-structured network is NP-Hard. Fortunately, it is an easy
NP-Hard problem and we develop a decentralized fully polynomial time approxi-
mation scheme (FPTAS) to find a near-optimal feasible PSR solution by exploiting
its connections with the knapsack problem. Our decentralised LR mechanism has
multiple necessary and important properties, especially in the context of solving the
multi agent PSR problem:
• We only use local message-passing among agents (each representing a different

region) to extract near-optimal feasible PSR solution, thereby enabling decen-
tralised control.
• We are able to provide provable guarantees on solution quality.
• Due to iterative nature of LR, our approach has the desirable anytime property.
• Our approach is significantly more scalable than previous multi-agent ap-

proaches and can solve existing real-world benchmarks near optimally with sig-
nificant speedups and with significantly low message-passing overhead.
We test our decentralised LR approach on real world and large synthetic bench-

marks (Hadžic et al., 2007; Kumar et al., 2009) and were able to show that our
approach is significantly more scalable than previous multi-agent approaches while
obtaining near optimal solutions. To show that our approach is competitive with
centralized solvers, we also compare it against a highly efficient centralized math
programming solver CPLEX. We show that our approach can achieve near optimal
solutions, close to 90% optimality, within comparable runtimes as CPLEX.

In the next section, we provide a mixed-integer linear program (MILP) to solve
PSR for a network decomposed into multiple regions using relay nodes. Naturally,
this approach is not a decentralized approach. However, using the technique of
Lagrangian relaxation (LR) (Bertsekas, 1999), we relax the flow conservation con-
straints for relay nodes. We then show that the resulting dual problem can solved in-
dependently for each region r via local message-passing along the cut edges. Thus,
introducing the idea of relay nodes in a global network divided into multiple regions
leads to a decentralized algorithm within the LR framework.

7.1 Dual Decomposition for Multiagent PSR
We first develop a MILP to solve the PSR problem for the decomposed global net-
work. We then show how to relax the complicating constraints within this MILP
such that the resulting dual problem can be solved in a decentralized manner. Be-
fore we introduce the MILP, we provide the notation employed in Table 7.1. Let Cr
denote the set of all relay nodes and Er denote the set of all relay edges belonging to
a region r. Each region r is then described using the graph Gr =(V r∪Cr, Er∪Er).
The node set V r consists of sink set Sr and power source set Pr for the region r.

Table 7.2 shows the math program for finding the optimal solution to the PSR
problem. The objective of this program is to maximize the total weight of nodes that
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Variable Definition
xri xri = 1 indicates that sink si in region r

consumes |si| units of power
xrij xrij = 1 indicates that power flows from node i

to j in region r
drij Power flow between nodes i and j in region r
Sr Set of sinks in region r
Pr Set of power sources in region r
Cr Set of relay nodes in region r
Er Set of relay edges in region r
δrij Intermediate variable employed to linearize xrij · drij

Table 7.1: Notation

are supplied power. Binary decision variables xi are created for each sink and relay
node for each region (superscripts denote region). If xi = 1, then sink si consumes
|si| units of power. Binary variables xij are created for each edge in the network for
a region r. If xij = 1, it means that power flows from node i to j. The continuous
variable dij denotes the amount of power flow along the directed edge (i, j). The
constraints in table 7.2 denote the following:
• Constraint 7.2 denotes that a sink is always switched off if there is no incoming

power flow, otherwise, it can be switched on.
• Constraint 7.3 denotes that a sink can receive power from at most one of its

neighbors. This is also a necessary constraint for PSR. This also helps maintain
the acyclicity of power flow.
• Constraint 7.4 is the capacity constraint for a line.
• Constraint 7.5 denotes flow conservation for sink nodes. For every sink sj , total

power inflow must be equal to the sum of power consumed by it, the line loss ε
for incoming power, and the total power forwarded to other nodes.
• Constraint 7.6 denotes flow conservation for relay nodes. As relay nodes are

created in pairs, we use the terminology that for every relay node c ∈ Cr in
region r, its pair is denoted as c′ ∈ Cr′ in region r′1This flow constraint denotes
that the total incoming power into relay node c in region r should be equal to
the total outgoing power from c′ in region r′.
• Constraint 7.7 is the capacity constraint for all the power sources across all

regions pi∈P .The total outgoing power from a power source should not exceed
the power available to it.
Notice that the math program in table 7.2 is nonlinear due to quadratic terms,

such as xrij ·drij in constraints. However, this constraint can be linearized as the vari-
ables xrij are binary and the power flow drij is bounded. To linearize such quadratic
terms, we replace xrij ·drij by a new variable δrij . The constraints (7.5), (7.6) and (7.7)
in the previous formulation are thus replaced with following constraints (7.9), (7.10)
and (7.11). To complete the linearization, we also add a new constraint (7.12). The

1For ease of exposition, for every region r, we assume that there is at most one connecting region
r′. In general, there can be multiple regions r′ that share a cut edge with r and we can use multiple
flow conservation constraints (7.6) to represent such connectivity.
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Variables: xri ∀sri ∈Sr∪Cr;xrij, drij ∀(i, j)∈Er∪Er ∀r ∈ R
Minimize: −

∑
r∈R

∑
i∈Sr

xri · vri (7.1)

Subject to:

xrj ≤
∑

i∈V r∪Cr
xrij ,∀j ∈ Sr∪Cr,∀r (7.2)∑

i∈V r∪Cr
xrij ≤ 1 ,∀j ∈ Sr∪Cr,∀r (7.3)

drij ≤ L ∀(i, j)∈Er∪Er,∀r (7.4)∑
i∈V r∪Cr

(drij − ε) · xrij =
∑

l∈Sr∪Cr
drjl · xrjl + xrj · |srj |,∀j ∈ Sr,∀r (7.5)∑

i∈V r

(dric − ε) · xric =
∑

j∈Sr′∪Cr′
dr
′

c′j · xr
′

c′j,∀c ∈ Cr,∀r (7.6)∑
j∈Sr∪Cr

drpj · xrpj ≤ |p| ,∀p ∈ Pr,∀r (7.7)

drij ≥ 0 , xrij ∈ {0, 1} , xri ∈ {0, 1} (7.8)

Table 7.2: Nonlinear Mathematical Program for PSR

constant M is a large number. Such constraints are also known as ‘big M’ con-
straints in the OR literature.

∑
i∈V r∪Cr

δrij − ε · xrij =
∑

l∈Sr∪Cr
δrjl + xrj · |srj |,∀j ∈ Sr,∀r (7.9)∑

i∈V r

δric − ε · xric =
∑

j∈Sr′∪Cr′
δr
′

c′j,∀c ∈ Cr,∀r (7.10)

∑
j∈Sr∪Cr

δrpj ≤ |p| ,∀p ∈ Pr,∀r (7.11)

δrij


≤ drij, ∀(i, j)∈Er∪Er,∀r
≤M · xrij ∀(i, j)∈Er∪Er,∀r
≥ drij + (xrij − 1) ·M, ∀(i, j)∈Er∪Er,∀r

(7.12)

We refer to the program of table 7.2 with the above linearized constraints as the
global MILP for PSR.

Model Extensions The basic model we presented in table 7.2 can be extended in
multiple ways to account for varying preferences of power grid operators. For ex-
ample, one can include linear terms in the objective function that penalize switching
of devices from their previous positions to minimize the number of device switch-
ing operations in the network. We used a simple approximation of the line loss. In
networks, where accurate modeling of line loss is required, a linear approximation
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of the line loss can be added to flow equations (Coffrin, Van Hentenryck, & Bent,
2011; Thiébaux et al., 2013).

7.1.1 Relaxing Flow Conservation For Relay Nodes
Notice that every constraint and variable in the global MIP is separable for each re-
gion r, except for the flow conservation constraint for relay nodes (7.10). Therefore,
if we are able to principally relax this constraint, then our global MIP would decom-
pose into independent parts, one per region, which can be solved independently of
each other. This is indeed achievable by using the technique of Lagrangian relax-
ation (LR) or dual decomposition (Bertsekas, 1999).

We first provide a brief overview of the LR approach, more details can be found
in (Bertsekas, 1999, Chapter 6). Consider the optimization problem:

min f(x)

s.t x ∈ X, gj(x) ≤ 0, j = 1, . . . , p

The dual function q(·) and the Lagrangian L(·) of the above problem after dualizing
all the constraints g are given as:

q(µ) = inf
x∈X

L(x, µ) = inf
x∈X

{
f(x) + µ · g(x)

}
(7.13)

The dual solution q(µ) is a lower bound of optimal f ?(x) for every value of dual
variables µ. The advantage while working with the dual formulation of the original
problem is that the structure of the dual is often much simpler leading to compu-
tational gains. Furthermore, the dual solution also provides a lower bound on the
original problem. In addition, the dual optimization problem, maxµ:q(µ)>−∞ q(µ),
is always concave, and can be solved optimally using the projected subgradient
method even in the case of non-differentiable objective function (Bertsekas, 1999).

We therefore relax or dualize the complicating flow conservation con-
straint (7.10) for all the relay nodes in each region. For each complicating con-
straint, we create a dual variable λrc ∀c ∈ Cr, ∀r. This dual variable can be thought
of as the cost of violating the flow conservation constraint. The dual decomposition
technique will try to find the ‘right’ cost such that violations of the dualized con-
straints are minimal. The Lagrangian function, L({xr, δr,dr},λ), (ignoring the
line loss ε for ease of exposition) is given as:

∑
r∈R,i∈Sr

−xrivri +
∑

r∈R,c∈Cr
λrc

(∑
j

δr
′

c
′
j
−
∑
i

δric

)
(7.14)

Upon rearranging the terms to highlight the separable structure of Lagrangian fur-
ther, we simplify the above to get:

∑
r∈R

{∑
i∈Sr
−xrivri +

∑
c∈Cr

(∑
j

δrcj · λr
′

c
′ −
∑
i

δric · λrc

)}
(7.15)
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Notice that in the above equation, nodes c and c′ are paired relay nodes in region r
and r′. Using the above equation, we get our dual q(λ) as below:

∑
r∈R

min
xr,δr,dr

{∑
i∈Sr
−xrivri +

∑
c∈Cr

(∑
j

δrcj · λr
′

c′
−
∑
i

δric · λrc

)}
(7.16)

Notice that the above dual function can be evaluated by solving the inner optimiza-
tion problem independently for each region r controlled by the corresponding agent.
Thus, evaluating the dual is substantially simplified, and follows the region-based
decomposition of the global network G.

Practical Considerations The performance of the LR approach w.r.t. the solution
quality is affected by the number of constraints that are being relaxed or dualized.
In general, the optimal dual solution q? may not be equal to the optimal primal
solution p?. The gap between these solutions (p? − q?), also called the duality
gap, can increase with higher number of relaxed constraints. Nonetheless, we show
empirically that for several large instances, the LR approach is able to provide good
solution quality despite large number of dualized constraints. The degradation in
the performance of LR with increasing number of relaxed constraints is graceful.

7.1.2 Maximizing the Dual Function
As the dual function is a lower bound on the optimal primal optimal solution for
every value of λ, we now address the problem of optimizing dual: maxλ q(λ).
We maximize the dual iteratively by using the projected sub-gradient ascent tech-
nique (Bertsekas, 1999). Using the sub-gradient information, the updated value of
the dual variable λr?c for the next iteration is:

λr?c =λrc + α

 ∑
j∈Sr′∪Cr′

δ̄r
′

c′j −
∑
i∈V r

δ̄ric

∀c ∈ Cr,∀r (7.17)

where δ̄r′c′j and δ̄ric are the variable values obtained while solving the corresponding
minimization problem in (7.16) for regions r′ and r respectively; c and c′ are paired
relay nodes in regions r and r′. The parameter α is the step parameter. Notice that
such an update of dual variables requires exchange of variable values only across
the cut edges of the global network among neighboring agents. Thus, this step can
be carried out in a distributed fashion.

The step size α is crucial to fast and accurate convergence of the LR approach.
There are a number of recommendations for setting the step size in sub-gradient
method. We use the following rule which has theoretical justifications in (Bertsekas,
1999). The step size αi+1 for the iteration i+ 1 is set based on quantities computed
in iteration i as follows:

αi+1 =
Primali −Duali

||∇qi||2
(7.18)
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where Primali denotes the primal solution quality (or the solution quality corre-
sponding to a feasible solution satisfying all the power network constraints) and
Duali denotes the dual value q(λi) for the current iteration i, and ∇qi denotes the
sub-gradient of the dual function q. The sub-gradient w.r.t. a variable λrc is essen-
tially the quantity in square brackets in Eq. (7.17). Each quantity in Eq. (7.18) is
readily available except the primal solution corresponding to the current iteration’s
dual solution. Therefore, we need to extract a good primal solution at each iteration,
which also the imparts the desirable anytime property to the LR approach. Thus, at
each iteration, our approach provides a feasible reconfiguration plan corresponding
to the primal solution and the quality bounds using the dual solution q(λ).

7.1.3 Extraction of Feasible Primal Solution
At each iteration of our LR approach, we need to extract a good quality feasible
primal solution that satisfies all power network constraints from the current dual
solution. It is challenging to extract a feasible solution from the dual solution as
flow conservation will be violated for relay nodes. Our strategy is to first extract
one feeder tree for each power source in the global network. This can be done in
a distributed manner by locally inspecting the direction and amount of power flow
(xij , δij) for relay edges within each region. Once we have such feeder trees ex-
tracted from the current dual solution with a power source as root node, we attempt
to determine which nodes should be switched on or off such that total sink weight
of switched on nodes is maximized. Unfortunately, we show below that even this
problem is challenging.

Proposition 4. Solving optimally the PSR problem is NP-Hard even for tree-
structured power networks.

Proof. We reduce the well known 0/1 knapsack problem to a tree-structured power
network. Consider a generic 0/1 knapsack problem with a set ofm items, and twom
tuples of positive integers, corresponding to values: 〈v1, v2, · · · , vm〉, and weights
of items: 〈w1, w2, · · · , wm〉. The goal is to identify the set of items whose total
weight is less than the given capacity W and it yields the highest value.

For this 0/1 knapsack problem, we have an equivalent PSR problem with graph
G = (P ∪ S, E) where.
• P = {p1}, where p1 has a finite supply W .
• S = {s1, s2, · · · , sm}, where si consumes wi units of power and has a sink

weight of vi.
• E = {(p1, s1), (s1, s2), (s2, s3), · · · , (sm−1, sm)} denotes a chain network

We set the line capacity of each edge asW . Clearly, the above reduction is a polyno-
mial time. We have the following correspondence between the optimal PSR solution
for this chain and the knapsack. If sink si consumes power (i.e., xi = 1), then the
item i is included in the knapsack, otherwise not. Given that line and power source
capacity is W , total switched-on sink consumption will always be less than W . As
we maximize

∑
i xivi for the power network, this implies finding the best set of

items to be included in the knapsack. One can show that such an optimal PSR so-
lution is also optimal for knapsack, and vice-versa. Thus, PSR problem is NP-Hard
even for tree-structured networks.
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Despite the above negative result, we exploit the fact that the knapsack problem
is an easy NP-Hard problem and admits a fully polynomial time approximation
scheme (FPTAS). Thus, our approach is to derive an FPTAS for optimal PSR in
a tree-structured problem. Furthermore, we also show that such a scheme can be
implemented using message-passing along the edges of the power network making
all the steps of our approach—evaluating the dual, iteratively maximizing the dual
and extracting a feasible solution—distributed in nature.

Feeder Tree Extraction

We provide a sketch of the procedure to extract feeder trees from the current dual
solution. The first step for extracting a feeder tree is to determine the direction of
power flow for the cut edges. Notice that for every edge (i, j) for any region that is
not a cut edge, the binary variable xij denotes the power flow direction. However,
while decomposing a power network into regions, a cut edge (u, v) that connects
two different regions r and r′ is being decomposed into two relay edges (u, c) in
region r and (c′, v) in region r′.

We now outline a simple procedure that determines the power flow direction
for a cut edge (u, v) based on inspecting the dual solution (the δ variable) for the
relay edges. Figure 7.1 visually shows this procedure. Based on the dual solution
for the relay edges (u, c) and (c′, v), there are three cases possible. In the first
case, positive power flows from node u to node c, and from node c′ to node v.
In this case, we make the direction of flow from the node u to node v for the cut
edge. Notice that we are only inspecting the direction of power flow. The amount
of power may be inconsistent in the dual solution. For e.g., one relay node may
assume that it is forwarding 10 units of power to its paired node, and its paired node
may assume that it is receiving 20 units, leading to violation of flow conservation
constraints. Correcting such flow conservation violation is exactly the main task for
primal extraction.

For the other two cases (case 2 and case 3 in Figure 7.1), there is no flow across
the cut edge and its corresponding devices are set to the open position. Once we
have determined the direction of power flow for each edge in the global power
network, the only remaining task is to extract a feeder tree corresponding to each
power source. This can be done easily as the direction of power flow provides the
parent-child relationship required for the tree construction. Furthermore, given the
constraint that a node cannot receive power from multiple incoming edges, there
are going to be no cycles while extracting such trees. Notice also that we discard
any tree and its corresponding nodes where a relay node is the root. For e.g., case
3 in figure 7.1 denotes one such setting. Once we have such trees extracted, we
develop a tree-based dynamic programming algorithm that determines which sinks
are switched on and off to maximize the sink weight for each feeder tree.

Tree Based Dynamic Programming (TBDP)

Our scheme, called TBDP, provides an FPTAS for a tree-structured PSR. It follows
the high level architecture of (Wu, Sheldon, & Zilberstein, 2014) for stochastic
network design in ecology. Our approach is different on multiple fronts due to
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Case 1: u vc c′

Case 2: u vc c′

u v
Cut edge

Case 3: u vc c′

u v
Cut edge

u v
Cut edge

Figure 7.1: Determining power flow for the cut edge (u, v) from the dual solution for relay
edges (u, c) in region r and (c′, v) in paired region r′. Arrows denote power flow direction.
A dotted line denotes no power flow with corresponding devices being open.

different recurrence relationships than (Wu et al., 2014), which are essential for
deriving the FPTAS for PSR.

We are given a tree A = (V,E). The root of this tree is a power source P with
maximum supply p. We denote other nodes (total of m) using i and js. Their sink
consumption is si, value is vi. The capacity of each line is L. We denote using π
the policy that specifies which node should be switched on and thus, consume some
power, and forward the rest downstream. If a node is switched off, it does not con-
sume any power and forwards all power to its children. The binary decision variable
is π(i) indicating whether a sink node is on or off. The total power consumed by
the entire subtree rooted at (and including) node i be t(i) =

∑
j∈Ti π(j)sj . For a

given policy π, the optimization problem to solve is:

max
π

∑
i

π(i)vi s.t. (7.19)

t(i) ≤ L ∀i ∈ V, t(P ) ≤ p (7.20)

Let zi(π) denote the total utility of the subtree Ti:

zi(π) =
∑
j∈Ti

π(j)vj

We first highlight a simple, yet important recurrence relation for quantities z(·) that
forms the basis of the FPTAS for PSR:

zi(π) = π(i)vi +
∑
j∈Ch(i)

zj(π), ∀i (7.21)

where Ch(i) is the set of children of i. Another key recurrence relationship is for
the minimum power supply Ci(z) needed to produce a utility of exactly z from the
subtree Ti rooted at node i. Without loss of generality, we assume that each node
has at most two children, otherwise, any tree with more than 2 children per node can
be reconfigured to a two-children tree by creating dummy nodes as in (Wu et al.,
2014).
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Ci(z) = min
π(i)∈{0,1}

Ci,π(i)(z) (7.22)

Ci,π(i)(z) = min
0≤d≤z′i

π(i)si + Cj(d) + Ck(z
′
i − d) (7.23)

where z′i = z − π(i)vi encodes the total value that the two children j and k are
required to contribute in order to get a value z for the parent node i. The expression
in (7.23) simplifies to Ci,π(i)(z) = π(i)si+Cj(z

′
i) when node i has only one child j.

Similarly, for the base case when i is a leaf node, Ci,π(i)(z) = π(i)si if π(i)si = z,
and Ci,π(i)(z)=+∞, otherwise.

The recurrence relationships (7.21) and (7.23) for the PSR problem form the
basis of key differences in our work from that of (Wu et al., 2014). The above
recurrences can provide a pseudo-polynomial time dynamic programming approach
for optimal PSR similar to the knapsack problem. However, to develop an FPTAS,
we need to discretize all the possible achievable utilities z(π). We write a discretized
version of Eq. (7.21) as:

ẑi(π) = Ki

⌊π(i)vi +
∑

j∈Ch(i) ẑj(π)

Ki

⌋
∀i (7.24)

where Ki is a constant provided as input. Using theoretical analysis similar
to (Wu et al., 2014), we can show that Ki = K = 0.5 · β · (minj∈V vj) provides an
FPTAS, where β is an input parameter that determines the optimally guarantee for
the FPTAS. Once we have discretized the set of all possible utility values using con-
stant K, all that is remaining is to perform a bottom-up dynamic programming to
solve the problem (7.22) for each node in the feeder tree, and a final policy deter-
mining top-down phase on the feeder tree. These computations can be performed by
using message-passing and is again distributed. We omit the details of such bottom-
up and top down pass of TBDP as it is similar to (Wu et al., 2014). While doing
the bottom-up pass, we make sure that if Ci(z)>L, then we make it infeasible as
Ci(z)=∞ to respect line capacity constraint. Once theC(z) values are computed at
the root node, we choose the highest utility z such that C(z)≤p, the power capacity
of the source. Using similar theoretical analysis provided in (Wu et al., 2014), our
approach can provably provide a solution within β fraction of the optimal with a
worst-case runtime guarantee of O(m2/β2) given m nodes in the tree. In practice,
TBDP was much faster than the worst-case time.

7.1.4 D2ADP Approach
D2ADP or dual decomposition based approximate dynamic programming uses
lagrangian dual decomposition along with dynamic programming in a decentral-
ized manner. The algorithm has four major phases. The first phase involves the
SolveRegion() function that computes dual solution over all regions by solving
each region independently as seen in Eq. (7.16). The second phase involves the
FeederTreeExtract() function that extracts the feeder trees A to determine the
parent-child relationship between relay node pairs. We extract one feeder tree for
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every power source, regardless of the regions, as described in the subsection 7.1.3.
All trees are disjoint (at most one incoming power line for a node) and may contain
nodes from different regions (via exchange of messages for relay node pairs). The
third phase employs the TBDP() function to compute primal solution Tr,p for every
feeder tree using a bottom up followed by a top down message passing scheme.
The bottom up message passing stage finds the best solution where every node
sends its reward information to it’s parent node. The top down stage of TBDP is
responsible for assignment of resources where every power source chooses the best
assignment configuration for all nodes that passes down the tree. Finally, the price
update phase updates the price variables, λ using the price update rule Eq. (7.17).
This process is repeated for every iteration it until convergence, which occurs when
the duality gap is less than a very small number, ε or when a specified number of
iterations is reached.

Algorithm 6 D2ADP ALGORITHM

Initialization : λ0 ← 0; it← 0
repeat
Dr,xr, δr ← SolveRegion(λit,r, Region r), ∀r ∈ R
Ar,p ← FeederTreeExtract(xr, δr), ∀p ∈ Pr,∀r
Tr,p ← TBDP (Ar,p),∀p ∈ Pr,∀r
λr,?c = λrc + α

[∑
j δ̄

r′

c′j −
∑

i δ̄
r
ic

]
,∀c ∈ Cr,∀r

it← it+ 1
until Convergence
return P, x, δ

Space Complexity Analysis We provide the space complexity for D2ADP since
exchange of messages requires storage space. We show that the space requirement
of D2ADP is very small, even in the worst case where the count and size of messages
exchanged increase proportionally with the increase in number of cut edges and total
nodes respectively.

Proposition 5. Total number of messages exchanged over cut edges isO(Ec), where
Ec is total number of cut edges.

Proof. All inter-region message exchanges take place only over cut edges. Every
relay node obtained from cut edges requires O(1) message exchange for dual vari-
ables, O(1) for determining parent-child relationship in feeder tree and O(2) for
top-down/bottom-up messages over feeder tree. Hence, total messages exchanged
is O(Ec).

Proposition 6. The maximum size of message exchanged over cut edges isO(N/β),
where N denotes total number of nodes and β is the FPTAS parameter.

Proof. The maximum size of any message in D2ADP is dominated by dynamic pro-
gramming for primal extraction which requires top-down and bottom-up message
exchanges for feeder trees. Let us consider the worst case where every node is a re-
gion and a single power source with infinite power is available. Let the power lines
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have infinite line capacity. Here, all nodes will be the part of a single feeder tree
where the discretized utilities for root node can be obtained as {0Ki, 1Ki, ..., liKi}
from Eq. (7.24). li provides the upper bound for message size and it is an integer
value given by

⌈
zi(π)
Ki

⌉
. We further assume that m ≤ vj ≤M, ∀j ∈ Ti where m and

M are universal constants. Then, li =
⌈
zi(π)
Ki

⌉
≤
⌈
NM
Ki

⌉
= O

(
N
β

)
by using the fact

that Ki = M · β

7.2 Experiments
In this section, we perform experiments2 to compare D2ADP with the dynamic
programming based decentralized approach for power supply restoration in the
literature (Kumar et al., 2009), referred to as PSR-DPOP or DPOP for short. We
also compare against the centralized global MILP solved using CPLEX. Our goal
in these experiments is the following. We demonstrate that our approach, despite
being approximate in nature, can provide provably near-optimal solutions for a
range of problems. We also show the scalability of our approach on large synthetic
benchmarks while providing good quality guarantees, close to 90% optimality. We
further highlight the anytime nature of our approach to provide good solutions
quickly.

Real World Benchmarks: We test on real world benchmarks representing real
world configurations of NESA, a power distribution company in Denmark (Hadžic
et al., 2007; Kumar et al., 2009). We specifically take the two largest configurations
and decompose them into multiple regions. The smaller of the two, ‘Large’ network,
has 56 sinks, 66 lines and 2 power sources. We decompose this network into 7, 10
and 15 underlying regions to test the scalability of our approach with increasing
regions. The PSR-DPOP approach of (Kumar et al., 2009) cannot exploit the region
based decomposition of the power network, and considers each node in the network
to be controlled by a different agent. Therefore, for fair comparisons against PSR-
DPOP, we also show results on the ‘Large’ benchmark with 56 regions (denoted as
‘Large(56R)’). The largest instance ‘Complex’ has 119 sinks, 146 lines and 3 power
sources. We consider 10, 15 and 20 regions for this case along with the extreme case
in which every network node is a separate agent. We run our approach, D2ADP for
100 iterations. The PSR-DPOP is not an anytime approach, so we run it with the
maximum memory limited to 4GB.

Table 7.3 provides the comparisons against PSR-DPOP on real world configu-
rations, with respect to runtime, space requirements (total and maximum message
size), and solution quality. PSR-DPOP was able to terminate and provide a solu-
tion only on the ‘Large’ configuration. As PSR-DPOP is agnostic to region based
decomposition of the network, the results for PSR-DPOP are exactly the same for
varying number of regions. As PSR-DPOP is an optimal approach, it provided the
optimal solution upon termination for ‘Large(56R)’. We can clearly see that our

2All our experiments were performed on a 3.2GHz CPU with 4GB RAM. All our optimization
problems are run on CPLEX v12.5

72



Configuration Algorithm Time(s) Total(Kb) Max(Kb) Optimality
Large(56R) DPOP 54.5 36000.0 3900.0 100%
Large(7R) D2ADP 8.7 119.7 0.3 97.3%
Large(10R) D2ADP 6.0 149.4 0.3 92.9%
Large(15R) D2ADP 8.6 178.3 0.2 89.1%
Large(56R) D2ADP 17.8 639.7 0.3 87.8%
Complex(119R) DPOP – – – –
Complex(10R) D2ADP 15.0 219.5 0.5 91.7%
Complex(15R) D2ADP 14.8 239.3 0.4 88.4%
Complex(20R) D2ADP 15.5 272.9 0.4 78.3%
Complex(119R) D2ADP 41.0 1086.3 0.5 70.1%

Table 7.3: Real World Configurations. The quantities in (·) denote total number of regions
for the instance. ‘Total’ denotes the total size of all the messages exchanged, ‘Max’ denotes
the maximum message size between any two agents.

approach provides provably near-optimal solutions without the large message over-
head of the PSR-DPOP approach. The total message size and the maximum size is
significantly smaller for D2ADP.

For the largest ‘Complex’ instance, PSR-DPOP was unable to provide any
solution as its memory requirements are exponential in the tree-width of the
underlying network, which was about 40 for the ‘Complex’ instance. In contrast,
our approach scales well for this largest instance with varying number of regions.
As highlighted earlier, the performance of the LR approach is adversely affected by
the increasing number of regions in the network as this causes several constraints
to be relaxed. Nonetheless, D2ADP’s performance w.r.t. solution quality varied
gracefully while increasing the number of regions from 10 to 119. Notice that the
instance ‘Complex(119R)’ represents the worst possible scenario for our approach
as each network node is an agent, thereby relaxing the flow conservation constraint
for each edge. Despite this, our approach is able to get a solution provably within
70% of the optimal. We expect that in real networks, such an extreme case is
unlikely to occur as each region in a power network is typically composed of
multiple nodes.

Large Synthetic Benchmarks: To further experiment with the scalability, we cre-
ated synthetic configurations based on the ‘Complex’ real-world configuration. We
refer to them as ‘L-Complex(<Number of regions>R)’. For example, a L-Complex
(2R) configuration refers to two layers of the complex configuration connected
through multiple randomly selected nodes. Each layer forms a region controlled
by an agent. The network within each layer is the same as ‘Complex’. Layers are
arranged in a 3D fashion with each layer connected via inter-layer edges to the layer
above and below. Agents can only communicate via inter-layer edges. The number
of inter-layer edges was about 10% of total edges (=14) in the ‘Complex’ network.
Such a layered model of construction helps conserve the network structure of real
power networks while increasing the scale with increasing number of layers. We
consider instances with up to 30 layers. We consider each region to be one layer
in the synthetic configurations. For instance, we use L-Complex (10R) to mean 10
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Configuration Algorithm Time(s) Total(Kb) Max(Kb) Optimality
L-Complex(1R) DPOP – – – –
L-Complex(10R) D2ADP 247.2 910.7 5.4 88.0%
L-Complex(15R) D2ADP 389.4 1579.8 6.1 89.0%
L-Complex(20R) D2ADP 516.6 2231.1 7.0 86.7%
L-Complex(25R) D2ADP 540.0 2823.1 7.4 86.5%
L-Complex(30R) D2ADP 786.0 16858.9 8.9 86.4%

Table 7.4: Solution quality, runtime and message size results for synthetic configurations

layered ‘Complex’ configuration with 10 regions or 10 agents.
We have generated 10 random instances, where sink-weights are varied, for the

synthetic configurations to ensure there is no specific dependence on sink weights.
The capacity of power sources was set such that it was necessary for power to
flow from one layer to another; one layer was severely deficient in total power,
another had excess power. Table 7.4 shows the results on such synthetic instances.
Even on such large and intricate instances, our decentralized approach is able to
get good solution quality. Furthermore, the size of each individual message in our
approach increases quite moderately w.r.t. increasing number of regions. This is
because the messages only contain local information about the dual variables and
the sub-gradient information for each cut edge. Thus, our approach scales well with
the network size and is able to provide good quality solutions with limited message
passing overhead.

Anytime Performance: We next show solution quality results obtained using
D2ADP on the ‘Large’ and ‘Complex’ configurations for different regions for each
iteration. We show primal and dual values for each instance with increasing itera-
tions. Figure 7.2(a) provides the results on the ‘Large’ configuration. ‘7r-p’ refers
to the primal solution with 7 regions, ‘7r-d’ refers to the dual solution with 7 re-
gions, ‘15r-p’ is primal for 15 regions and so on. We interpret the problem as a
maximization problem with dual always providing an upper bound. We can clearly
see from these results that our approach is able to provide good primal solutions
even in early iterations. Figure 7.2(b) provides the results on the ‘Complex’ config-
uration with 10, 15 and 20 regions. Again, we get good solution quality for 10 and
15 regions. As the number of regions increased to 20, our approach had to relax and
dualize many constraints. That resulted in performance hit. We do note that with
20 regions, each region has about 6 nodes which is very harsh partitioning of the
network. Still our approach provided a decent solution quality.

The results for different L-Complex instances and configurations are presented
in Figures 7.2(c) and 7.2(d). 10r-p in this graph refers to the primal quality for a 10
layered L-Complex configuration with 10 regions. We observe that as number of
layers are increased, the duality gap increases. However, even on multiple instances
of different L-Complex configurations, we obtain strong quality guarantees of
around 85% or more of the optimal as shown in Figures 7.2(c) and 7.2(d).

Comparison with Centralized Solver: As shown in table 7.4, existing de-
centralised algorithms are unable to scale to L-Complex instances. Hence, we
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Figure 7.2: Duality gap for real datasets (figures a & b) & synthetic datasets (fig-
ures c & d) with varying regions:#r-p denotes #regions-primal & #r-d denotes
#regions-dual. All values are normalzied to 1

benchmark the run-time performance of D2ADP with the Global MILP (GMILP)
of Table 7.2. This is not a fair comparison for our decentralized approach D2ADP
which solves the PSR problem using message passing, whereas the centralized
solver has complete knowledge of the problem. Nonetheless, these results shed
light on the effectiveness of our approach. Figure 7.3 provides the time taken by
D2ADP and GMILP for a given quality bound for different multilayered networks.
We experiment with 10 random settings of sink-weights and compare the time
taken for an average of result. Despite being a decentralized approach, D2ADP
runtime is highly competitive with respect to GMILP for a 85% quality bound.
The best solution quality achieved (in percentage of optimal) for the respective
L-Complex configuration by D2ADP is mentioned on top of bars in figure 7.3(b).
We show in figure 7.3(b) the time required by the GMILP solver (CPLEX) to
achieve the same quality bound as provided by D2ADP. This table further highlights
that our approach is highly competitive to a strong centralized baseline. Thus, our
key message from these results is that our approach can provide similar quality
guarantees as a highly efficient centralized solver in a decentralized setting. In
contrast, MILP solvers such as CPLEX are unable to work in a decentralized setting.

Primal Extraction: Finally, we experiment with different values of constant K to
obtain the right setting for TBDP. A key practical issue with choosing K according
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Figure 7.4: Time and Quality Variation w.r.t.K

to the formula 0.5β ·(minj vj) for a feeder tree is that such a value ofK that provides
the theoretical guarantee for the FPTAS may be small, and unnecessarily lead to
large running time for primal extraction. As also highlighted in (Wu et al., 2014),
larger values of K can provide similar empirical performance. Notice that in our
case, the dual solution provides the upper bound, which is not affected by the primal
extraction part. The theoretical guarantee for primal extraction does not affect the
overall optimality gap for our approach.

We experiment on K values as small as .01 and as large as 1. Figure 7.4(a)
provides the time taken and Figure 7.4(b) provides the solution quality obtained for
different values of K on 3 different problem instances. We can see that for smaller
value of K, runtime is significantly higher than for the larger K values. However,
figure 7.4(b) shows that the solution quality remains almost the same for different
K values. Therefore, we chose K = 0.4 that provided the right tradeoff between
time taken and optimality.

7.3 Summary
In this chapter, we addressed the problem of power grid reconfiguration after mul-
tiple line failures. We presented a number of advances for the multiagent version
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of the PSR problem. We developed a novel and iterative dual decomposition based
approach that effectively utilized the underlying multi-region structure of the power
grid. We also addressed the challenging problem of extracting a feasible solution
providing anytime nature to our approach by developing a provable approximation
technique. Our approach only requires local message-passing among different grid
regions, resulting in a distributed approach. Using the quality bounds provided by
our approach, we showed that it can achieve near-optimal solutions on a number of
large real-world and synthetic benchmarks. Our approach is faster and significantly
more scalable than the previous best multiagent approach for the PSR problem. We
also showed empirically that our approach was highly competitive both in runtime
and solution quality against a strong centralized baseline CPLEX, while retaining
all the benefits of a decentralized approach.
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Chapter 8

Related Work

8.1 Related Work for TasC-MDP
Task/resource constrained stochastic planning problems can be either competitive
or cooperative. In competitive problems, agents, or subgroups of agents, are selfish
and hence optimize their own objectives. The solution concept is usually to find
an equilibrium solution given all possible resource allocations. These problems can
be solved using game-theoretic methods (Korzhyk, Yin, Kiekintveld, Conitzer, &
Tambe, 2011; Yin & Tambe, 2012) and market-based methods like auctions (Well-
man, Walsh, Wurman, & MacKie-Mason, 2001). In cooperative problems, all
agents are part of a team and they coordinate to find a resource/task allocation and a
joint plan that results in the maximum utility for a central authority. We are specifi-
cally focussed on cooperative problems.

Researchers have modelled TasC-MDP problems in a variety of ways including
cooperative auctions (Koenig, Keskinocak, & Tovey, 2010), resource-constrained
MDPs (Dolgov & Durfee, 2006; Guestrin & Gordon, 2002), decentralized MDPs
(Dec-MDPs) (Bernstein, Givan, Immerman, & Zilberstein, 2002), and Dec-MDP
variants that exploit the sparsity of agent interactions (Nair et al., 2005; Kumar &
Zilberstein, 2009a; Velagapudi et al., 2011; Varakantham et al., 2014; Witwicki &
Durfee, 2011). While Dec-MDPs are a rich model, they do not represent tasks ex-
plicitly and, because of this, all agents would be represented as being dependent on
each other. This significantly impacts the scalability of solution approaches. The
most relevant models for this work are the resource-parametrized MDPs (Dolgov &
Durfee, 2006; Wu & Durfee, 2010) and weakly-coupled MDPs (Guestrin & Gor-
don, 2002; Gocgun & Ghate, 2012). While these works are relevant, they are not
scalable (i.e., to tens/hundreds of agents and hundreds of tasks/resources) and do not
consider dependencies between tasks/resources. The following aspects differentiate
our work from existing work in this thread: (i) We consider problems where there
exist dependencies (temporal and allocation constraining) between tasks/resources.
(ii) Our unique mechanism of employing a greedy heuristic method in the context
of dual decomposition for improved scalability and quality bounds.

Another thread of existing research considers deterministic routing for multi-
ple agents (Christofides, Mingozzi, & Toth, 1981; Campbell, Clarke, Kleywegt, &
Savelsbergh, 1998), where the routing problems for individual agents are dependent
on the tasks/resources allocated to them. Owing to the intrinsic difficulty of this
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problem class and to deal with practical size problems, decomposition techniques
such as Column Generation (CG) (Desrochers, Desrosiers, & Solomon, 1992), La-
grangian Relaxation (LR) (Kohl & Madsen, 1997; Chien, Balakrishnan, & Wong,
1989) and Benders Decomposition (Federgruen & Zipkin, 1984) have been used to
improve scalability. The key difference and enhancement over this line of existing
work is due to consideration of transition uncertainty. Unlike deterministic routing
problems, in an MDP, the number of resources consumed or tasks completed is not
easy to compute due to the transition uncertainty.

8.2 Related Work for ND-TasC-MDP
The notion of non-dedicated teams was introduced and studied extensively in the
context of Belief Desire Intention (BDI) frameworks (Cohen & Levesque, 1991;
Grosz & Kraus, 1996; Tambe, 1997) for multi-agent planning. However, these
works relied on existence of plan libraries and considered primarily deterministic
outcomes to actions. However, we consider domains dealing with probabilistic out-
comes to actions and automatic generation of plans for agents.

Another closely related thread of research is on adhoc teams (Barrett, Rosen-
feld, Kraus, & Stone, 2017), where the focus is on a newly added team member
that cooperates with team-mates coming from a variety of sources without directly
altering the behaviour of team mates. We focus on non-dedicated teams where the
configuration of the team is altered to accommodate the leaving of a team member.
More recently, Shieh et al. (2014) re-introduced the notion of non-dedicated teams
in the context of defender teams patrolling against an observing adversary. While
Shieh et al.’s work considered non-deterministic outcomes to actions, they provide
an exhaustive offline approach that is not scalable.

8.3 Related Work for ND-TI-Dec-MDP
Decentralized stochastic planning for a team of agents is required in a wide variety
of problems such as target tracking by a team of sensors (Nair et al., 2005; Ku-
mar & Zilberstein, 2011), securing targets from unknown attackers using a team of
defenders (Shieh et al., 2014), rescuing of victims by a team of robots during dis-
aster (Melo & Veloso, 2011; Varakantham et al., 2009) and analysing underwater
samples using a team of underwater vehicles (Yin & Tambe, 2011). Existing litera-
ture has focussed on Decentralized Markov Decision Processes (Dec-MDPs) which
precludes solving problems with more agents. While approximate approaches have
been proposed to solve multiple agent problems (Kumar & Zilberstein, 2011; Ve-
lagapudi et al., 2011; Varakantham et al., 2009), there is little or no research in
approximation methods that provide strong guarantees on solution quality in such
decentralized settings.

Non-dedication in agent teams has been explored by (Agrawal & Varakan-
tham, 2017) for centralized planning. Further, (Shieh et al., 2014) considered non-
dedicated teams in decentralized settings, but they provide exhaustive offline ap-
proach that is not scalable. Our contributions differ from this line of work in pro-
viding quick solutions for decentralized planning such that remaining agents can
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reconfigure their policies to attend to tasks of leaving agents.
Existing literature has considered submodularity in the context of sequential de-

cision making for multi-agent problems. Kumar et al. (2009b) introduced the idea
of partition matroid based planning in the context of Multi-agent MDPs (MMDPs)
and considered submodular rewards across time steps for MMDPs in weather track-
ing satellites. Detecting storms early is of key interest and this reward function
for detecting storms is submodular over time steps. Satsangi et al. (2015) consid-
ered submodularity in multi-agent sensor selection problem modelled as a POMDP
with submodular belief based reward function. Above mentioned works focus on
centralized planning model while decentralized multiagent sequential planning has
been exploited by Kumar et al. (2017). Our contributions differ from this line of
work in considering non dedicated agent teams with multiple agent exits from the
team while still considering joint submodular reward functions for decentralized
cooperative multiagent sequential planning.

Another closely related thread of research is on adaptive submodular-
ity (Golovin & Krause, 2011), where a sequence of decisions are taken by account-
ing for the observations of past decisions. Our work differs from this thread in the
sense that the problem of non-dedicated teams is a multi-stage submodular problem,
where at every stage of decision (i.e., when agents leave the team), the current state
of system serves as the observation for a new problem with reduced count of agents
and horizon to provide a new joint policy for the remaining agents in the system.

8.4 Related Work for PSR
Due to increased world-wide incentive for cleaner electricity generation (Miller,
Ramchurn, & Rogers, 2012; Ramchurn, Vytelingum, Rogers, & Jennings, 2012;
Kok, Scheepers, & Kamphuis, 2010), next generation of smart grids would feature
co-generation from intermittent renewable power sources. In addition, the dereg-
ulation of power markets has enabled the presence of multiple operators (Griffin
& Puller, 2005; Kumar et al., 2009), which marks a shift away from highly reg-
ulated monopolies of power grids. Such heterogeneous structure of future smart
grids where multiple operators control different sub-regions of the grid presents a
unique opportunity for agent-based decentralized control of smart grids. Decentral-
ized control of power grids entails high operational readiness, increased robustness
and faster response time after disasters. In fact, the importance of such decentralised
control has been already recognized in power systems and multiagent systems com-
munity (Nagata & Sasaki, 2002; Kumar et al., 2009; Miller et al., 2012; Matsui &
Matsuo, 2012).

We use the framework of Lagrangian relaxation or dual decomposition (Bert-
sekas, 1999), to solve the multiagent PSR problem. Lagrangian relaxation (LR)
has a rich history in power networks community (Kim & Baldick, 1997, 2000; No-
gales, Prieto, & Conejo, 2003). These previous approaches use the LR approach to
solve the problem of optimal power flow (OPF), also known as the optimal dispatch
problem. Our application of LR to the PSR problem is significantly different than
OPF, as power restoration is a discrete optimization problem where we are chang-
ing the underlying structure of active power lines in the network. The OPF problem
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is concerned with deciding how much power each generation unit in the grid must
generate to ensure that all the demand is satisfied (Nogales et al., 2003). Thus, OPF
problem is a continuous, albeit, non-convex problem. Such discrete versus contin-
uous nature between PSR and OPF also gets magnified when we develop strategies
to extract a feasible PSR solution during each iteration of LR.

Our decentralised LR approach for the multi agent PSR problem bears some
similarity to distributed constraint optimization (DCOP) (Modi et al., 2005; Petcu
& Faltings, 2005; Gershman et al., 2009; Yeoh & Yokoo, 2012) approaches that par-
tially centralize the optimization problem, such as the asynchronous partial overlay
(APO) algorithm (Mailler & Lesser, 2004, 2006). A key difference in our work
is that the sub-regions of a power network remain fixed with the LR approach
not requiring any additional centralization, whereas the APO approach dynami-
cally changes the (partial) centralization while solving the underlying DCOP prob-
lem. Another LR based DCOP approach, decomposition with quadratic encoding
to decentralize (DeQED) (Hatano & Hirayama, 2013) is based on the divide-and-
coordinate (DaC) framework and it differs from our work in using quadratic encod-
ing to solve their problem where an inter-agent cost function is encoded into the
quadratic programming problem while we formulate our problem as a MILP. Fur-
thermore, as highlighted in (Kumar et al., 2009), a straightforward conversion of
the PSR problem to a DCOP presents several challenges. For example, the result-
ing DCOP has high arity constraints to represent the flow conservation and the line
capacity requirement of the PSR problem. In addition, the discretization of the line
capacity is also required to allow standard DCOP approaches to solve PSR prob-
lems. In contrast, the LR technique we develop does not require any discretization,
and results in a simple distributed approach that works by passing messages among
different connected sub-regions of the smart grid.
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Chapter 9

Conclusions

This thesis presents techniques for the problem of resource/task allocation for mul-
tiagent systems operating in real world uncertain environments where the plan-
ning/assignment problem of individual agents is dependent on the allocation of
resources/tasks. In addition, the task/resource allocation to the individual agents
is further complicated by the non-dedication of agents that arises due to unfore-
seen conditions (e.g., high priority task, emergency/incident or damage to an agent)
which may force the team members to leave their tasks before the end of planning
horizon. While Markov Decision Processes and Distributed MDPs have been used
to address uncertainties in real-world domains, they are not scalable with increas-
ing agents and resources/tasks. Further, there is little or no literature that considers
situations where agents leave the team after task allocation. Towards addressing
the above mentioned challenges, the main contributions of this dissertation can be
summarised as mentioned below.

• For a dedicated agent team, we handled the interdependent problems of task/
resource allocation and multiagent planning by providing a generic TasC-
MDP framework with an ability to handle task dependencies for agents. We
provided a highly efficient and scalable greedy approach, GAPS that provided
best runtime performance (i.e., less than 5 minutes for upto 600 agents) but
without quality guarantees. We also provided an optimization based approach
called LDD+GAPS that exploited the decomposable structure in TasC-MDPs
and provided a good trade-off between GAPS and the optimal MILP by pro-
viding solutions with quality guarantees within 5% of optimal even in very
large problems.

• For the case of non-dedicated agent team, we extended the TasC-MDP model
to provide ND-TasC-MDP that is capable of handling transition uncertainty
and uncetainty due to agents leaving the team. We provided multiple proac-
tive and reactive approaches to facilitate coordination among the remaining
team members over the tasks left undone by agents leaving the team. We also
developed heuristics that benchmark the performance of our approaches by
providing good upper and lower bounds on the solution quality. We provided
an online approach, ReacT that performed reactive updates on the current so-
lution to generate a new allocation in less than a minute. Our proactive sam-
ple average approximation based Lagrangian relaxation approach, SAA+LR
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computed a unique policy for agents irrespective of the agent exits from the
team. In addition, our two stage MILP (MILP-2S) provided the flexibility
of a two stage policy that further improved the team utility compared to a
single stage allocation and the performance was almost at par with the bench-
mark heuristics that provided upper bound. Our extensive experiments on
benchmark problems demonstrated that by reconfiguration of the system (re-
arrangement of the left over tasks/resources to remaining agents) after one
or more agents have left is crucial in order to respond immediately and effi-
ciently in critical situations to avoid mishaps.

• We extended the concept of non-dedication to transition independent Dec-
MDP (TI-Dec-MDP) by formulating the ND-TI-Dec-MDP model for a team
of independently collaborating non-dedicated agents. We established connec-
tions between submodularity and non-dedicated agent teams in decentralized
settings by showing that with monotone submodular reward functions, greedy
solution provides an a priori guarantee of at least 50% from optimal. We also
exploited online bounds to compute the posteriori guarantees and conclude
that the online guarantees improve with increasing agents and decreasing tar-
gets with the best case of atleast 90% from optimal for varying effectiveness.
For the solution quality comparison in decentralized settings, we extended
the benchmark approaches from ND-TasC-MDP with the help of lazy greedy.
Our offline-greedy and the offline-online greedy approaches provided compa-
rable solutions with respect to the benchmark approaches on multiple bench-
mark problems dealing with cooperative decentralized non-dedicated agent
teams.

• For problems dealing with task/resource constrained assignment, we studied
multiagent coordinated assignment along with resource allocation in large
distribution networks. In particular, we examined the power supply restora-
tion (PSR) problem and proposed a dual decomposition based approximate
dynamic programming approach (D2ADP) that provided quick and efficient
reconfiguration of the network in a decentralized manner. For the primal
extraction from the dual solution, we developed a decentralized fully poly-
nomial time approximation scheme (FPTAS) to find a near-optimal feasible
PSR solution by exploiting its connections with the knapsack problem. Our
approach, D2ADP significantly improved the scalability and solved existing
real-world and synthetic benchmarks near optimally with significant speedups
and with a very low message-passing overhead.

In this thesis, we provided general models that broadly fit various problem do-
mains. However, every problem domain may have specific environment settings
that differ from other domains. For example, agents leaving the team midway be-
fore the end of horizon is of more relevance to infrastructure security domain where
patrolling officers are required to leave their patrolling tasks (no physical item in-
volved) midway to attend to accidents/incidents compared to an urban consolida-
tion center where every vehicle agent is dedicated, and allocated a fixed set of tasks
before it leaves the center. It involves physical items to be delivered to city cen-
ter and agents are assigned tasks in specific locations, and therefore, if an agent
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leaves midway either due to breakdown/accident, etc., it is very difficult for re-
maining agents to complete the tasks of leaving agent since the vehicles may have
space/time/location constraints. Further, there may be a penalty for late deliveries
and a central planner may not be available after the initial task allocation. There-
fore, the relevance of a particular model may be limited (but still applicable) to be
applied to all the problem domains discussed in this thesis. Similarly, the prob-
lem of power supply restoration (PSR) has specific requirements such as network
structure, inter-agent communication, etc. which mandates the requirement of a dif-
ferent approach to solve the non-dedication problem in PSR and distributed network
problems. Therefore, we use different kinds of problems for different models and
solution approaches.

9.1 Future Directions
This thesis explores new directions for multiagent teams operating in uncertain en-
vironments, that need further examination and analysis. Below, we briefly outline
some of the questions that remain open in the area explored by this dissertation and
provide the possible directions of future work.

• The decision version of a TasC-MDP problem is NP-complete since it is an
extended version of the resource-constrained MDP (shown as NP-complete
by Dolgov and Durfee (2006)). These problems remain NP-complete with
just the presence of global constraint on the number of shared resources,
which can be shown with a straightforward reduction from KNAPSACK.
Even though the decision problem of knapsack is NP-complete and the op-
timization problem is NP-hard, it admits a fully polynomial time approxima-
tion scheme (FPTAS). For a TasC-MDP, every single agent sub-problem can
be solved independently to compute the resource requirements of every agent.
Hence, it should be possible to develop a FPTAS (similar to the PSR problem
in chapter 7) to find a feasible and near-optimal solution for TasC-MDP by
exploiting its connections with the knapsack problem. However, the recur-
rence relations to obtain the total reward over all agents and the discretization
of rewards to obtain FPTAS are still challenging.

• For the dedicated and non-dedicated agent teams, we have used MDPs with
discrete and finite state and action spaces for modelling the task/resource con-
strained multiagent coordinated planning problems. In many realistic cases
(e.g., UAV assignment problems), however, the continuous model parameters
such as continuous states and action spaces are available to the agents. Exist-
ing literature on MDPs has exploited continuous state and action spaces for
factored MDPs and constrained MDPs, but not for task/resource constrained
multiagent coordinated planning. Function approximation techniques have
also been widely used to solve continuous MDPs quickly and efficiently. The
MDP-based task/resource allocation models and the approaches presented
in this thesis appear compatible and complementary for solving continuous
MDPs and hence, extending our MDP-based task/resource allocation mecha-
nisms to continuous MDPs appears to be a promising direction.
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• For non-dedicated teams, our proposed heuristic approaches only consider
agents leaving the system, and do not account for the situations where a leav-
ing agent returns back to the system or there exists some probability of ad-
ditional forces entering the system. The addition of agents to the system is
equally interesting and appears to be a viable and fruitful future direction.
Our broad framework for non dedicated agents with two stage observations
can still be useful in sampling of incoming/outgoing agents. Furthermore, the
two-stage MILP approach can be extended to multi-stage MILP to provide an
online and robust solution approach, considering the unpredictability in the
number of available agents.

• For the task/resource constrained multiagent coordinated assignment prob-
lems, we addressed only the resource assignment problem for power supply
restoration in power distribution networks. MDPs and distributed MDPs can
be useful in extending these problems to consider stochasticity in the dis-
tributed power generation. In addition, parallel fault restoration can be studied
and validated considering the availability of a mixture of different renewable
distributed generations (e.g., solar photovoltaics, wind turbines) as well as
onsite diesel generators.

To conclude, this thesis has provided general models and scalable solution ap-
proaches for solving different integrated problems of task/resource allocation and
multiagent planning/assignment. We exploited the decomposable structure in these
problems to significantly lower their computational complexity. We further pro-
vided algorithmic advances in non-dedicated agent teams dealing with these in-
tegrated problems which demonstrate that the reconfiguration of any system after
some team members have left is crucial to avoid any mishappenings. Finally, we
believe that the advancements developed in this dissertation significantly further the
applicability and general usefulness of both task/resource allocation and multiagent
planning/assignment in practical settings.

85



Bibliography

Agrawal, P., & Varakantham, P. (2017). Proactive and reactive coordination of non-
dedicated agent teams operating in uncertain environments. In Proceedings
of the Twenty-Sixth International Joint Conference on Artificial Intelligence,
IJCAI-17, pp. 28–34.

Agrawal, P., Varakantham, P., & Yeoh, W. (2016). Scalable greedy algorithms for
task/resource constrained multi-agent stochastic planning. In IJCAI’16.

An, B., Pita, J., Shieh, E., Tambe, M., Kiekintveld, C., & Marecki, J. (2011). Guards
and protect: Next generation applications of security games. ACM SIGecom
Exchanges, 10(1), 31–34.

Barrett, S., Rosenfeld, A., Kraus, S., & Stone, P. (2017). Making friends on the fly:
Cooperating with new teammates. Artificial Intelligence, 242, 132–171.

Bernstein, D., Givan, R., Immerman, N., & Zilberstein, S. (2002). The complex-
ity of decentralized control of Markov decision processes. Mathematics of
Operations Research, 27(4), 819–840.

Bertoli, P., Cimatti, A., Slanley, J., & Thiebaux, S. (2002). Solving power supply
restoration problems with planning via symbolic model checking. In Euro-
pean Conference on Artificial Intelligence, pp. 576–580, Lyon, France.

Bertsekas, D. P. (1999). Nonlinear Programming (2nd edition). Athena Scientific.

Bowring, E., Tambe, M., & Yokoo, M. (2006). Multiply-constrained distributed
constraint optimization. In International Conference on Autonomous Agents
and Multiagent Systems, pp. 1413–1420.

Brown, M., Saisubramanian, S., Varakantham, P., & Tambe, M. (2014). STREETS:
game-theoretic traffic patrolling with exploration and exploitation. In Pro-
ceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, pp.
2966–2971.

Campbell, A., Clarke, L., Kleywegt, A., & Savelsbergh, M. (1998). The inventory
routing problem. In Fleet management and logistics, pp. 95–113. Springer.

Chapman, A. C., & Varakantham, P. (2014). Marginal contribution stochastic games
for dynamic resource allocation. In International Conference on Principles
and Practice of Multi-Agent Systems, pp. 333–340. Springer.

Chien, T. W., Balakrishnan, A., & Wong, R. T. (1989). An integrated inventory
allocation and vehicle routing problem. Transportation Science, 23(2), 67–
76.

86



Christofides, N., Mingozzi, A., & Toth, P. (1981). Exact algorithms for the vehicle
routing problem, based on spanning tree and shortest path relaxations. Math-
ematical programming, 20(1), 255–282.

Coffrin, C., Van Hentenryck, P., & Bent, R. (2011). Approximating line losses and
apparent power in ac power flow linearizations. In IEEE Power and Energy
Society General Meeting, pp. 1–8.

Cohen, P. R., & Levesque, H. J. (1991). Teamwork. Nous, 25(4), 487–512.

D’andrea, R., Mansfield, P. K., Mountz, M. C., Polic, D., & Dingle, P. R. (2012).
Method and system for transporting inventory items.. US Patent 8,170,711.

Dantzig, B., & Ramser, J. H. (1959). The truck dispatching problem. Management
Science, 6, 80–91.

Desrochers, M., Desrosiers, J., & Solomon, M. (1992). A new optimization algo-
rithm for the vehicle routing problem with time windows. Operations re-
search, 40(2), 342–354.

Dolgov, D., & Durfee, E. (2004). Optimal resource allocation and policy formu-
lation in loosely-coupled Markov decision processes. In Proceedings of the
International Conference on Planning and Scheduling (ICAPS), pp. 315–324.

Dolgov, D., & Durfee, E. (2006). Resource allocation among agents with MDP-
induced preferences. Journal of Artificial Intelligence Research, 27, 505–549.

Federgruen, A., & Zipkin, P. (1984). A combined vehicle routing and inventory
allocation problem. Operations Research, 32(5), 1019–1037.

Fisher, M. L., Nemhauser, G. L., & Wolsey, L. A. (1978). An analysis of approx-
imations for maximizing submodular set functions- ii. In Polyhedral combi-
natorics, pp. 73–87. Springer.

Gershman, A., Meisels, A., & Zivan, R. (2009). Asynchronous forward bounding
for distributed cops. Journal of Artificial Intelligence Research, 34, 61–88.

Gocgun, Y., & Ghate, A. (2012). Lagrangian relaxation and constraint generation
for allocation and advanced scheduling. Computers and Operations Research,
39(10), 2323–2336.

Golovin, D., & Krause, A. (2011). Adaptive submodularity: Theory and appli-
cations in active learning and stochastic optimization. Journal of Artificial
Intelligence Research, 42, 427–486.

Griffin, J., & Puller, S. (2005). Electricity deregulation: choices and challenges.
University of Chicago Press, Chicago.

Grosz, B. J., & Kraus, S. (1996). Collaborative plans for complex group action.
Artificial Intelligence, 86(2), 269–357.

Guestrin, C., & Gordon, G. (2002). Distributed planning in hierarchical factored
MDPs. In Proceedings of the Conference on Uncertainty in Artificial Intelli-
gence (UAI), pp. 197–206.
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