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Decoding of DBEC-TBED Reed-Solomon CodesDENG, Robert H. & COSTELLO, Daniel J. Jr.Published in IEEE Transactions on Computers, 1987 November, 36 (11), 1359-1363https://doi.org/10.1109/TC.1987.5009476Abstract: A problem in designing semiconductor memories is to provide some measure of error control without requiring excessive coding overhead or decoding time. In LSI and VLSI technology, memories are often organized on a multiple bit (or byte) per chip basis. For example, some 256K bit DRAM's are organized in 32K ?? 8 bit-bytes. Byte-oriented codes such as Reed-Solomon (RS) codes can provide efficient low overhead error control for such memories. However, the standard iterative algorithm for decoding RS codes is too slow for these applications. In this correspondence we present a special decoding technique for double-byte-error-correcting (DBEC), triple-byte-error-detecting (TBED) RS codes which is capable of high-speed operation. This technique is designed to find the error locations and the error values directly from the syndrome without having to use the iterative algorithm to find the error locator polynomial.Keywords: Byte error correction and detection, byte-organized memory systems, error control coding, Reed-Solomon codes, VLSI memory systems
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I. INTRODUCTION the code specified by (1) can be written as

Error control has long been used to improve the reliability of a2 (a 2)2
computer memory systems [1]. The most common approach has been 1I

2(-I )*2 (1,-2)n- I

to use a variation of the Hamming codes such as the single-error- 1 (
correcting and double-error-detecting (SEC-DED) binary codes first H=1 1 1 .. . (2)
introduced by Hsaio [21. These codes are particularly effective for L a (a2)2 ... ()n-
correcting and detecting errors in memories with a 1 bit per chip a (a2)2
organization. In these memories a single chip failure can affect at where n < 2m - I Because the code has d = 6, it is capable of
most one bit in a codeword. corre n t or fewe te cors asimineous cting

Large scale integration (LSI) and very large scale integration correctingany two orfewerbyteerrors and simultaneously detecting
(VLSI) memory systemiis offer significant advantages in size, speed, any combination of three byte errors [1.Let v = (va, v Vn-, ) be a code vector that is written intoand weight over earlier memory systems. These memories are Let r (r, rl, r,-) be the corresp wring ibly
normally packaged with a multiple bit (or byte) per chip organization. memory Let r (r0, r1, , r_ 1) be the corresponding (possibly
For example, some 256K bit dynamic random access memories noisy) vector that is read from memory. Because of possible chip
(DRAM's) are organized in 32K x 8 bit-bytes. In this case, a single failures, r may be different from v. The vector difference'
chip failure can affect several or all of the bits in a byte, thus eZ.
exceeding the error correcting and detecting capability of SEC-DED = r-v=r+V-=(eO, e, , en_ ), (3)
codes. where e, * 0 for ri * vi and e, = 0 for ri = vi, is called the error

Several papers have been written recently trying to extend the pattern
SEC-DED codes to include byte errors [3]-[9]. In this correspon- When r - v ± e is read, the decoder computes the syndrome
dence we investigate the use of Reed-Solomon (RS) codes for
correcting and detecting byte errors in computer memories. RS codes s= rHT= (v + e)HT= eHT= (5-2 S I ,So1, S2). (4)
are a class of nonbinary codes with symbols in the Galois field of 2m
elements (GF(2m)). These codes are maximum distance separable The syndrome corresponding to a single byte error is
(MDS), and thus can provide efficient low overhead error control for
byte-organized memories, since symbol error correction in GF(2m) is S-2 eia-2, (5.1)
equivalent to correcting an m-bit byte.

For computer memory applications, decoding must be fast and s I eia-, (5.2)
efficient. A typical RS decoding procedure is to first calculate the
error syndromes, then use the iterative algorithm [10] to form an =ei, (5.3)
error locator polynomial, and finally to search for the roots of the
error locator polynomial, find the error values, and make the actual sl = e1a', (5.4)
corrections. The calculation of the error locator polynomial is a major S2 ea2i (5.5)
step in decoding RS codes, and it remains a bottleneck for high-speed
decoding, since most errors are single errors and checking for where ei is the error value and i is the error location, 0 c i < n - 1
multiple errors is time consuming. High-speed decoding can be and the syndrome corresponding to a double byte error is
achieved by using the table-lookup method [1]. However, even for
moderate code lengths, the implementation of table-lookup decoding S-2 = eia-2+ ea-2i, (6.1)
is impractical, since either a large amount of storage or very complex
logical circuitry is needed. s- I =e1a'-i+eja-, (6.2)

In this correspondence we investigate a special high-speed decod-
ing technique for double-byte-error-correcting (DBEC), triple-byte- so = ei+ ej, (6.3)
error-detecting (TBED) RS codes. This technique is designed to
locate and correct the errors directly without having to find the error s, = ea' + eja1, (6.4)
locator polynomial. The occurrences of errors are determined by
directly testing the weight of the syndrome, denoted by w(s). In S2 = ea2'+ e2eja (6.5)
decoding the DBEC-TBED RS code with five parity symbols, if w(s)
= 1 or 2, we show that the number of byte errors E ) 3. If w(s) = 3 where 0 < i . j . a - 1.
or 4, a simple test is required to determine if E = 2 or ) 3. If w(s) Before proceeding, we need to prove some properties of the d,in =
- 5, the decoder quickly determines if E = 1, 2, or 3. Thus, 6 RS code which will be used later.
decoding can be carried out in parallel, which in effect increases the Property 1: Let Sd = (s-2, S-151, 5,, S2) ' be the syndrome
decoding speed. Double byte error correction is done by forming a corresponding to a double byte error. Let N denote the number of
quadratic equation x2 + x + K = 0, the solution of which gives the zero elements in Sd. Then N c 2, and equality holds in only two
two byte error locations. The constant K can be determined directly cases:
from the syndrome. In this equation, only K contains information
about the error locations. If a short table is used, with two error 1) S i=S2=0;
locations corresponding to each value of K, the decoding speed can
be made even higher. 2) SK=s-2=0

Proof: See Appendix A.
II. DECODiNG OF A drlni= 6 DBEC-TBED CODE Property 2: Let Sd = (s_2, s_-i, 5o Si, 52)T Then

The din.] - 6 RS Code and its Properties

The generator polynomial for the dmi = 6 RS code is given by 52S-2+5 *0,
S,S_2+S- iSo*0,

2

g() (X±a'), (1) 5051 +S2S-1*O,
1= -2

for all double byte errors.
where ae is a primitive element of GF(2 i). The parity-check matrix of Addition and subtraction are equivalent over GF(2m).
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Proof: This can be obtained directly from (6.1)-(6.5). The formula for the roots of the quadratic equation is (- b +
- 4c)/2. Unfortunately, for finite fields of characteristic two,Decoding Using the Quadratic Equation this formula is not applicable because the denominator is zero.

We now show that the well-known quadratic equation over GF(21) However, there are several known approaches to solving this
can be used to decode the dmin = 6 RS code. If ac is a primitive equation [10]-[13]. The method given in [12] is probably the best
element of GF(2'"), then a-i' + ca-1 0, 0 < i < j < 2'n - 2. approach, and we summarize it in Appendix B.
From (6.1) and (6.3) we have

Decoding the DBEC-TBED Code
[ 11o Suppose that a single-byte error with error value ei at location i

det [ cc-2j 5 +5 2j occurs. From (5.1)-(5.5) we see that

=z- 1l 1 -(a-i+ a-)2 Si*0, for i= -2, -1, 0, 1, 2, (15.1)
det - -2i 2j

La i and

From (6.2) and (6.3) we have
1 0=--1=cc ~~~~(15.2)11 S-2 S-i S SI

det
_s-1l cx

Il+sOoai Note that (15.2) is equivalent to -yl = 73 =74 =0. That is,
ei = _ -= a - E+~ .e -i whenever a single-byte error occurs, si 0

O for i - -2, - 1, 0, 1, 2,
det li 1] and yl = 'Y3 = y4 = 0. From (5.3) and (5.4) we havedet

Therefore, i - (16.1)

SI+S0cc1 S-_ 2±+Soa-2i ei=so, (16.2)
(X-i+cc (ac-'± cc-')2

where i gives the error location and ei is the error value of a single
After multiplying both sides by (oa-i + a-)2 * 0 and simplifying, byte error.
the above equation becomes If a double-byte error occurs, from property 2 and (9.2)-(9.4) we

know that Y2 * 0, y3 * 0, and Y4 # 0. Therefore, b and c in (10.1)
s_l(ac'+ajc)+s-2aic'j+sO=O. (7) and (10.2) exist. Hence, (11) has two roots, cci and cci. In other

words, whenever a double byte error occurs, its error locations can
In the same way, from (6.3)-(6.5), we obtain be found by solving the decoding equation.

Since cxi + cci * 0, for 0 . i < j c 2"' - 2, when ac is a
1(0X'±+ccJ)+SOc' + 52=0O (8) primitive element of GF(2"), (6.3) and (6.4) imply that

Now define

1Y2 _ S2+S_+S0, (9-1) ei= [ ] cc'+cc (17.1)

2 - 525_2+S~eO, (9.3) LCE ccj1
'Y3 _SIS-2+S-ISO, (9. 3)

and
Y4 _ SOSI+S2S-1 (9.4) ej=so+ei, (17.2)

Solving (7) and (8) for cca + cc1 and ccxcc1, we obtain where ei and ej are the error values at locations i and j of the double
byte error.

b A i ±+ oj _'Y2 (10 1) Let ss denote the syndrome corresponding to a single byte error and
' S, denote the syndrome corresponding to a triple byte error. Then [1]

Ss#Sd#StI (18)
C t aci+ cc=j(10.2)

'Y3 Based on (18) and properties 1 and 2, we see that if more than two
for 'Y3 0. Therefore, ac' and ac are the roots of elements of the syndrome s = (s_ 2, S_ I, So,52) T equal zero, but at

least one of them does not equal zero, or if 2, 3, and y4 are all not
y2+by+c=0. (11) equal to zero, but at least one of them does equal zero, or if the

decoding equation (11) does not have roots in GF(2"'), then at least
This is the well-known quadratic equation over GF(2"). We will see three byte errors have occurred.
later that it plays an important role in decoding. Therefore, we call it
the decoding equation. Equation (11) can be rewritten as Decoding Scheme for the DBED-TBED RS Code (see Fig. 1)

K-0 12 ~~~~~~~Readr, and calculate the syndrome ST = rflf = (S-2, i-i, si,
+x+±xK- (12) s2) Let w(y') and w(>y") denote the Hamming weights of'y' _ (^YI,

byletngy, y4) and '" L (Y2. }3, 7y4), respectively.by lettlng 1~~~~~~~~~~~~)If w(s) = 0, no errors are detected. If w(s) = 1 or 2, £ > 3

y=xb, (13) errors are detected. If w(s) = 3 or 4, £ 2 2, and decoding proceeds
in step 3). If w(s) = 5, F 2 1, and decoding proceeds in step 2).

where 2) Compute 'y. If w(Ty') = 0, F = 1, and calculating cc' = /o
gives the error location i. Set the error value e, = sO If w(y') * 0, £

K - c/b2. (14) . 2 errors are detected, and decoding proceeds in step 3).
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S_ 2 S-1, S0, Si) S2

NoError w~N T(K)=Dompue= y:t~~~~~2

1 -0
E > 3 Compute Y"r

Fig. 1. DBEC-TBED decoder error location calculator.

DetectinDecoded Data
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3 ComputeSyyIf w(y") =3,computeKandr T2(K) Ift T|(K) APPENDX A
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detected.~~ ~ ~ ~ ~ ~ ~~~~~Cmpt T K

Fig.F.2lockdiagram of tDBEC-TBED decoder.e (c cc

3) ComputeSy" IIf CONCLUSIONS 2) (3,, computeKa,d ( ,IfDcodedA DItA
We have preseantd eew deoding techique fort doube-byt- r

errorbl-coteerrecting (DBEC), tri te-error-dee (locationsg (aT d R se t .ctre o hes syndoe Ft weshowythatif SD = 0, then 0, k te-2,pt1,r1,h2

locator poisablynom ia. aHence, hgh-peedDBECoBing Bcaone diachieve D BE-T i eoder.

main these codeswellsutedforederrorin corectiniu and detbebtioen-sl [1 ['1 [.

bye-corganieomnp terpmemory sytems suchasd LSSand VLSI [airske x +en

andEdoe not anvolve mustin solei1)teratindagrthe rotsfiandthe erro -upsSk=Ofrsm2i.Frm(.)(.) ehv

lchtorps. ynomial. of high-speed LasilJ be be achieved,

byeogaieComputeresu s)(i+a'andlstejms sc as SI, andcorrec ask LO2j i1i 2cEi] e Ok

Code efficiency is high since only five parity symbols are used in whereea( 0, ej * 0, and k = -2, -1, 1, 2. But (1, 1) and (cxki,
the code. In addition, the basic code length n can be selected to match cxki) are linearly independent, and this implies that the above equation
the organization of the memory (as long as n _ 2m - 1) without is impossible. Hence, Sk .0O, k = -2, -1, 1, 2.
changing the decoding method. However, efficiency is maximized Next we show that ifrs = 0 (or S2 = 0), then Sk * 0, k = -2,
when n = a 1 is chosen. 0, l,and 2 (or s l) can be either zero or nonzero. It is easy to show
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that Sk t 0, k = - 2, 0, 1, in the same way as above. Because (c - i, For T4(K) 0, select an element 1 of GF(2m) such that T2(0) = 1,
ce j) and (ct2i, a 2J) are linearly dependent for some i and j, there compute K1 =1 + 12, and solve Z2 + z + K1 + K = 0 using (B.5)
exists 013 * 0, 12 * 0, 01, /2 E GF(2m), and some i < j, such that with K replaced by K1 + K. Then xl = ,3 + zj is a solution of (12),

where z1 is obtained from (B.5). For m = 4, 8, 12, (B.5) reduces to
[0 a]i [_j t ] [ ]the following forms:

0 a L a ~~~~~~~~~m=4,x1=K8±K'2;
Let e' - g1 and ej = 32. From (6.2) and (6.5) we see that the above m=8, xl =K" + K66 129 132.
equation becomnes+K K

Fct'l [-'r-i 1 r a j1 m=12, xl=K2048(1±K64+K256+K'024)
[s2 = [0] ei [ +2iJ ±e 2L 2i K129+K258+K513+K 126+ K516+ K132

Therefore, s-i = s2 = 0 for some i and J. ACKNOWLEDGMENT
By exactly the same argument as above, we can prove that if s, (or We would like to thank one of the reviewers for pointing out that

S-2) = 0, then Sk * 0, k = - 1, 0, 2, and 5-2 (or s ) can be either similar ideas have been described in U.S. Patents 4 030 067 [14] and
zero or nonzero. This completes the proof that N c 2. Q.E.D. 4 099 160 [15].
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