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Heat and observed economic activity

in the rich urban tropics

Heat and activity in the tropics

Eric Fesselmeyer1, Haoming Liu2, Alberto Salvo3,∗,

and Rhita P B Simorangkir4

Abstract: We use space-and-time resolved mobility data to assess how heat impacts Sin-
gapore, a rich city-state and arguably a harbinger of what is to come in the urbanizing
tropics. Singapore’s offices, factories, malls, buses, and trains are widely air conditioned, its
public schools less so. We document increased attendance and commuting to workplaces,
malls, and the more air-conditioned schools on hotter relative to cooler days, particularly
by low-income residents with limited use of adaptive technologies at home. Investment by
rich cities may attenuate heat’s pervasive negative consequences on productive outcomes,
yet this may worsen the climate emergency in the long run.
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1 Introduction

A growing economics literature documents adverse—and often sizeable—socioeconomic im-

pacts of heat across a range of contexts including health, labour, education, and local

economic output. Much of this literature examines US settings, extending over different

climate zones and sometimes going back several decades. Graff Zivin and Neidell (2014) find

that on days with a maximum temperature above 30 ◦C, US workers in occupations with

climate exposure report reduced time allocated to work by as much as 14%. Deryugina and

Hsiang (2014) find that each 1 ◦C increase in daily average temperature beyond 15 ◦C is

associated with a 1.5% decline in US annual county-level income. Park et al. (2020) find

that a 1 ◦F (0.6 ◦C) hotter US school year reduces PSAT test scores in the following year by

1%. Deschenes and Greenstone (2011) report that one additional day with a mean temper-

ature above 32 ◦C raises the US annual mortality rate by 0.11%. Mullins and White (2019)

estimate increases of 0.5% in mental-health emergency department visits and up to 0.8% in

suicide rates per 1 ◦F rise in mean temperature over the month.1

A small part of this economics literature considers and finds a moderating role for defen-

sive capital and other forms of adaptation (Heal and Park, 2016; Kahn, 2016).2 Park et al.

(2020) obtain school-level measures of air conditioning and find that such defensive invest-

ment offsets the effect of ambient heat. Moreover, heat disproportionately impacts minority

students who are less likely to have access to air conditioning at school or home, or who can

1Recent work includes labour/firm productivity and human capital in developing countries (Zhang et al.,
2018; Somanathan et al., 2021; Adhvaryu et al., 2020; Garg et al., 2020b; Graff Zivin et al., 2020; Heyes and
Saberian, 2022), as well as labour allocation in rural/farm settings (Jessoe et al., 2018; Garg et al., 2020a;
Colmer, 2021; Liu et al., 2023).

2Adaptation refers to measures taken to alleviate the detrimental effects of heat. We follow Barreca et al.
(2016) and attribute “adaptation” to the widespread use of air conditioning in Singapore. Graff Zivin et al.
(2018) include “avoidance behaviour, such as technological adoption, mobility, and cultural changes designed
to buffer against the effects of climate (and) limit exposure to temperature extremes” (p.79).
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draw on compensatory inputs (e.g., extra tutoring) when faced with lost learning. Barreca

et al. (2016) document a century-wide decline in the US temperature-mortality relationship,

with the attenuation after 1960 attributed to the diffusion of residential air conditioning.

Chen and Yang (2019) find that summer heat is more detrimental to industrial output in

China’s low-temperature regions relative to high-temperature regions, suggesting that the

latter regions have invested less in adaptation.

Other work finds limited historical adaptation. For example, in a cross-country study,

Burke et al. (2015) find that productivity peaks at an annual mean temperature of 13 ◦C,

declining strongly thereafter, and that “the relationship is globally generalizable [and] un-

changed since 1960” (p.235).3 Deschenes (2014) notes that “the available knowledge is

limited, in part due to the few real-world data sets on adaptive behaviours [to heat]” (p.606).

Dell et al. (2014) note: “Temperature shocks appear to have little effect in rich countries,

although estimates for rich countries are not statistically precise” (p.753). It is in the context

of this literature, and the environmental justice dimension that is developing within it, that

we wish to contribute.

This paper presents evidence for a rich nation in the tropics whereby heat does not

appear to induce significant economic losses. We consider a wide range of data and ask how

economic activity in Singapore today responds to typical fluctuations in heat. Despite its

tropical climate generally being warm and humid, heat does vary. Even after mild seasonality

is accounted for, some days are significantly hotter than others. In the context of urban

adaptation to a warming climate, how heat impacts this newly affluent city-nation matters

3Mullins and White (2019) “find no evidence of adaptation on any of the margins we analyse: the
estimates remain stable over time, air conditioning adoption levels, regions with hotter or colder average
climate conditions, and areas with higher or lower incomes.” Burke et al. (2018) report suicide rates rising
by 0.7% in US counties and 2.1% in Mexican municipalities per 1 ◦C increase in monthly temperature, with
the “effect similar in hotter versus cooler regions and has not diminished over time.”
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not only to its population of 6 million but arguably as one model for the fast urbanizing

tropics that are home to 4 billion people (State of the Tropics, 2020). The evidence we

present is consistent with significant adaptation. And even within rich Singapore, we find

heterogeneous effects based on income.

We obtain mainly high-frequency urban activity data including the number of people

visiting specific indoor and outdoor locations, based on “pinging” their mobile phones, and

the universe of bus and rail trips made on public transit, detailed by geocoded origin and

destination, that are linked to transit farecards with unique identifiers. Singapore is densely

populated and public transit is by far the most popular form of urban transport. Our main

measure of heat is the daily maximum heat index, which accounts for both temperature and

relative humidity (Anderson et al., 2013).

We find that on hotter relative to cooler days the occupancy of office buildings and malls

generally rises—and it does not drop at any time of the day. For example, a 1 ◦C rise in

the daily maximum heat index increases workday office occupancy by 0.4% (averaged over

all hours, and by more in the early morning) and mall occupancy by 0.6% (and by more

in the evening). We interpret the evidence as being consistent with ambient heat inducing

workers to be at the office, and leisure-seekers to visit the mall, because of the prevalence of

air conditioning.

The individual public-transit panel allows us to infer neighbourhood of residence and

associated income. We find that departures from industrial locations are higher on hotter

versus cooler days, particularly among workers who reside in low-income neighbourhoods.

Hotter weather appears to reduce absences of such workers, consistent with industrial and

office workplaces offering cooled shared spaces relative to their homes. We find that schools
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that offer more air-conditioned classrooms attract more student commuters as heat rises,

particularly low-income students. Homes are costly to cool, especially so over typically hot

tropical afternoons and for low-income apartment dwellers who are less willing or able to

afford purchasing and using cooling equipment at home (Salvo, 2018). This gradient in

income based on the origin of work and school trips is a novel result.

In sum, in the places and occupations that we look, including manufacturing and office

workers, school children, and shoppers/diners at malls, we do not find an adverse impact

of heat on economic activity. For a historical perspective, Lee Kuan Yew, founding Prime

Minister of Singapore from 1959 to 1990, famously singled out the air conditioner as the

most important invention of the 20th century. Lim Swee Say, the environment minister from

2001 to 2004, highlighted the role of defensive capital investment: “Air conditioning plays a

crucial role in our economy. Without it, many of our rank-and-file workers would probably

be sitting under coconut trees to escape from the heat and humidity, instead of working in

high-tech factories” (Arnold, 2002).

One interpretation of our findings is that as investment in adaptive technologies develops,

some of the pervasive negative consequences of heat on a variety of productive outcomes that

have been documented in the literature might be less severe for rich cities. At the same time,

while such technologies help address the short-run effects of climate change, growing demand

for fossil fuels to power them can make the climate emergency worse in the long run. We

caution that we examine ordinary dwellers going about their daily lives and do not focus

on extreme weather, such as heatwaves. The daily maximum heat in our samples varies

between 30 and 40 ◦C, a range to which OSHA (2016) assigns a “moderate” risk of heat-

related illness. We do not examine outdoor workers who are directly exposed to ambient
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heat and radiation (Obradovich et al., 2018; LoPalo, 2023). By activity at the workplace

or school, we mean mobility and do not imply output, as we do not measure productivity

directly. We thus measure work loss in the sense of work attendance—“labour supply” as in

Hanna and Oliva (2015). We caution further that we study how economic activity responds

to weather fluctuations given climate today and subject to existing technologies and current

relative prices, not to projected climate, technologies, and policies in 2050, let alone 2100

(Zhang et al., 2021).

2 Data and setting

Two main data sources. We use data on the flow of persons to assess how economic

activity in Singapore responds to hotter weather. A footfall dataset contains the number of

people visiting a location by hour, based on pinging the mobile phones of a major telecom-

munications firm’s subscribers (see details in the appendix). We acquired hourly footfall for

June to August of 2016 and 2017 in major agglomerations of activity, including office towers,

shopping malls, and public parks (Table A.1). Footfall tends to peak at noon at office towers

and at 18:00 at malls and public parks (Figure A.1).

A second dataset consists of public transit trips made in October to December of 2015

and 2016. Public bus and train (or a combination of both) jointly account for 64% of trips to

work and for 72% of trips to school, compared with cars (owned, private hailed, taxi) which

account for 27% and 19% of transport to work and school, respectively (DOS, 2019). The

wide adoption of farecards enables us to track most commuters’ movements as they tap in

and out on buses and in rail stations.
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We observe the departure and arrival times and stops for every trip charged to a farecard,

identified by a unique number, and its type, such as a concessionary student card. Workday

commuting peaks in the early morning and evening, reaching 0.5 million trips during the

hour starting at 18:00 (Figure A.2). We consider travel to various locations including a large

zone reserved for industrial use, the Central Business District, malls, and schools (Figure 1).

Malls are often near office towers and thus trips to such commercial areas at 8:00 are work

related (non-food shops tend to open after 10:00).

The geocoded individual commuter panel when combined with housing characteristics

enables us to analyse heterogeneity in the response to heat. In Singapore’s structured housing

market, dwelling type is informative of socioeconomic standing including access to home air

conditioning (DOS, 2014; Salvo, 2020). To illustrate, mean annual household income per

person varied widely in 2013, at $9,300/person for 1- to 2-room apartments, $20,900/person

for 3-room apartments, and $60,000/person for condominium apartments.4

We obtained the composition of dwelling types for each residential building in Singapore.

For each bus/rail stop in a residential neighbourhood, we infer the affluence of the population

it serves from the proportion of 1-3 room apartments among all dwellings in a given radius.

Based on the typical daily first-departure and last-arrival stops associated with each farecard,

we infer whether the cardholder lives in a low-income neighbourhood (Figure A.3).

In contrast with most workplaces and malls, schools are one of the last bastions in

Singapore without widespread indoor cooling. In 2022, we surveyed 1500 university un-

dergraduates on air conditioning use in their middle/high school classrooms years earlier,

4Air-conditioning penetration in 2013 ranged from 14% for 1-2 room apartments and 99% for condos,
and is growing at the low end, e.g., 25% of 1-2 room apartments had cooling by 2018 (DOS, 2019).
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overlapping with the commuter sample period. Because the typical survey respondent at-

tended a middle school followed by a different high school, we have multiple (and consistent)

responses for almost every school (∼200). The survey indicates that while most schools’

classrooms did not use air conditioning, some schools enjoyed almost fully air-conditioned

instruction (Figure A.3). We examine commuting on student cards to stops nearby schools

and how this commuting varies with the extent of space cooling on offer.

Ambient environment. Singapore’s tropical climate is warm and humid (Table A.1).

The high relative humidity affects human thermoregulation by inhibiting the body’s ability

to dissipate metabolic heat from the skin into the environment (Lim et al., 2008). Rather

than specify air temperature and relative humidity as separate key regressors of interest,

we focus our analysis on a heat index that combines the two variables (NWS, 1990, 2020).

We compute an hourly heat index series that takes the one-hour temperature and one-

hour relative humidity as its arguments; we then take the daily maximum realization of the

computed one-hour heat index. The daily maximum heat index varies between 30 and 40

◦C in our samples.

The heat index shows an amplification of temperatures (Buzan et al., 2014). A 6 ◦C

shift in the daily maximum temperature translates into a 10 ◦C shift in the daily maximum

heat; moreover, fixing the temperature, the heat varies (Figure A.4). Substantial variation

in daily maximum heat remains (8-10 ◦C) after we partial out year-month means to account

for mild tropical seasonality and year-to-year changes.
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3 Empirical models

Our footfall regression models, implemented by location type, take the general form

flth = Wthβ + αh + αt + αl + ϵlth, (1)

where footfall f (in log) at location l on date t and hour h is regressed on date(-hour) specific

weather and pollution covariates Wth (daily maximum heat, concurrent PM2.5, concurrent

rainfall, concurrent wind speed), hour fixed effects (FE) αh, day-type FE and year-month FE

αt, and location FE αl. Day-type FE consist of two separate sets of day-of-week dummies,

when schools are in session and during school vacations. β and α are parameter vectors. We

estimate models by OLS. Because the error ϵlth is potentially spatially correlated, we cluster

the standard errors at the date level.

For our key variable of interest, heat, we favour the daily maximum realization to proxy

for a day’s overall heat exposure, noting that days with high maxima tend to exhibit high

medians and hot mornings (Figures A.23 and A.25). The interpretation is that early in the

morning (or the night before), when one is making plans for the day, one already has a

sense of whether a given day is shaping up to be unseasonably hot or cool. We favour heat

entering linearly because we are inferring responses over variation that does not span too

wide a range.5

Because we observe a proxy for a commuter’s income group based on their residential

neighbourhood, our commuter regression models expand on the above, as follows

flthy = Wthβ +WthlowIncomeyβy + αy + αh + αt + αl + ϵlthy, (2)

5We drop the wind control from Wth when using an alternative heat definition that accounts for wind.
We include robustness tests where we specify concurrent heat, heat lagged by one hour, or the maximum
heat realization in the morning. We also include specifications with maximum heat in the preceding days.
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in which commuter flows (log of the count of arrivals or departures, or arrivals and departures

pooled together) f are aggregated to the location-date-hour-income group level, lowIncomey

is a dummy equal to 1 when the observation relates to commuting by residents of low-income

neighbourhoods, and we include interactions between this demographic characteristic and a

subset of environmental conditions (heat, PM2.5, and rainfall for added flexibility). A low-

income fixed effect enters via αy. βy is a parameter vector capturing a differential response

to environmental variation. Our findings are robust to dropping the income-PM2.5 and

income-rain interactions.

To specifically model daily commuting by students through stops serving middle/high

schools, we implement three variants of (2). The first variant follows (2) closely but col-

lapses the hourly student flows to the schoolday t (by school stop l and by income group

y) level. A second variant replaces the ambient environment-student income interactions

WtlowIncomey with ambient environment-school cooling interactions WtACl, and further

collapses the data across both income groups, specifically:

flt = Wtβ +WtAClβAC + αt + αl + ϵlth, (3)

Here the interactions are between stop-level school-weighted air conditioning and the same

environmental conditions (heat, PM2.5, and rainfall). Regressor ACl in levels is subsumed

in the location FE αl (and recall that we have an air-conditioning measure for most schools).

A third variant follows the first in keeping observations at the school stop-schoolday-income

group level, but now includes a set of triple ambient environment-student income-school

cooling interactions, WtlowIncomeyACl (besides all two-variable interactions).
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4 Results

Indoor work (and some leisure). Table 1 reports the impact of a day’s heat on overall

activity in offices and malls, measured by mobile-phone footfall across all times of the day,

and separately by workday and non-workday. A 1 ◦C rise in the daily maximum heat index

increases office workday, mall workday, and mall non-workday footfall by 0.4%, 0.5%, and

0.6%, respectively.6 We obtain an insignificant impact of heat on activity in offices on

non-workdays, for which average footfall is one-seventh that on workdays (not reported).

Panels a and b of Figure 2 show the impact of heat on office and mall footfall distributed

over a workday. The positive point estimates throughout underscore the aggregate results,

i.e., people are not merely shifting the timing of their activities within the day. Noting that

malls often locate by office towers and open to shoppers only late morning, early-morning

estimates are driven by work-related decisions, including whether and when to go to work.

A 1 ◦C rise in the daily maximum heat index increases morning office and mall footfall by

0.7% and 0.5%, respectively. We find that Singaporeans—at the currently observed heat

range—are more likely to go to their indoor workplaces in the early morning on hot days

relative to cooler days. Similarly, we find evidence against the hypothesis that offices are

less busy during the afternoon on hotter days. Instead, ambient heat may induce workers to

remain at the office, possibly because of the prevalence of space cooling.7

The bus/rail ridership data complement the footfall data, adding an income dimension.

The bottom panel of Table 2 shows that transit flows on workdays at the industrial zone

and at commercial areas by low-income residents grow 0.2-0.3% per +1 ◦C heat relative to

6We convert a table’s estimates in log points to percent impact. All figures show 95% confidence intervals
of percent changes.

7We also reject adverse impacts of heat on the duration a phone is at a location (Figure A.13).
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that of high-income residents. As with Table 1, the top panel shows the heat impact for

both income groups combined, when we omit the low-income × environment interactions

from model (2). Even though the commuter sample focuses on public transit and misses

private travel, the point estimate for both income groups in the industrial zone (+0.4%)

is comparable to Table 1’s work-related footfall estimates (which in turn miss the income

dimension). Importantly, we can reject adverse heat impacts.8

Again narrowing in on specific time intervals (and examining directional travel), panel

e of Figure 2 shows that the impact of heat on work-related commercial-area arrivals in

the early morning of workdays is similar to the impact on mall footfall, specifically +0.5%

per +1 ◦C for the high-income group—and larger for low-income residents (+0.8%; also see

Table A.5). Effects on early-evening industry departures are larger, with +1.3% for the

high-income group and +1.6% for the low-income group per +1 ◦C heat (Figure 2, panel d).

The evidence suggests that (i) hotter weather reduces work absences of those living in

low-income neighbourhoods, consistent with industrial and office workplaces offering cooled

spaces, and (ii) this “co-benefit” shrinks among high-income residents, possibly because they

are more able and willing to cool their homes. All work-related estimates on the low-income

× heat interaction in Tables 2, A.3 and A.5 are positive and similarly valued (again, at the

daily level or for specific peak hours of arrival and departure, respectively). Consistent with

the evidence above, Figure A.7 shows increased commuting to the Central Business District

on hotter workdays, particularly in the low-income group.

8Table A.3 examines arrivals and departures separately. Estimates are not the same across arrivals and
departures, though they are noisy. For high-income residents, the choice between taking public or private
transit as the weather warms may differ when leaving home for work versus returning home from work. The
morning peak for workplace arrivals exceeds the late-afternoon peak for workplace departures, consistent
with some people taking different travel modes within a day (Figures A.5 and A.6).
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Indoor leisure. When we consider commercial-area activity on workday evenings and

on non-workdays, the response to heat variation tends to grow. Plausibly, leisure-related

visitors have more freedom in deciding how to spend their time. For instance, a 1 ◦C rise

in the daily maximum heat index increases mall footfall at 20:00-22:59 by 1.1% both on

workdays and non-workdays (panel b of Figures 2 and A.8).9 Malls may be more attractive

on hot days because of the cooling attribute their services offer.

Non-workday leisure-related public transit by low-income residents grows 0.7% per +1

◦C heat relative to that in the high-income group (Table 2). For non-workdays, the impact

of heat on public-transit ridership is insignificant across both income groups yet negative

for high-income residents. One interpretation is that on hot weekends and public holidays,

high-income shoppers/diners may be increasingly likely to travel on private transit, which

only our footfall measure of Table 1 captures, i.e., all mall goers irrespective of their travel

mode being bus, train, car, walking, etc.10

The results suggest that people are more likely to visit malls when it is hot, particularly

those on relatively low incomes. The difference between the responses of residents of low-

and high-income neighbourhoods suggests that whereas high-income people additionally seek

relief from heat by staying in air-conditioned homes or going to malls by car, low-income

people may avoid heat exposure by riding public transit to publicly available air-conditioned

spaces. Singapore’s malls are air conditioned, as are its buses and trains. Of the 26 national

libraries, which are popular with seniors, 20 are housed inside malls, and another 3 building-

sized libraries are adjacent to malls. Recall that ranking neighbourhoods by increasing share

of 1-3 room dwellings, low-income status is interpreted as a commuter’s neighbourhood being

9Recall the 0.6% increase, over all times of the day, on mall non-workday footfall per +1 ◦C (Table 1).
10Table A.5 shows an insignificant impact on high-income resident flows on workday evenings.
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in the upper quartile with most 1-3 room apartments (which have the lowest access to air

conditioning). Even those lower-income households with access to an air conditioner at home

may prefer not to use it in order to save on electricity bills.11

School attendance. We use concessionary student cardholders commuting on school-

days to and from stops nearby schools to proxy for student attendance. The top panel of

Table 3 shows model (2) estimates specific to student flows through school stops (summed

within schoolday). In this first variant, there is no significant differential response to heat

according to income group—and again we reject adverse effects. A possible explanation is

that, unlike indoor workplaces and malls, Singapore’s schools still offer limited cooling.12

When we estimate model (3)—the second variant, in the middle panel—we do find a

differential response based on classroom cooling. Absent classroom climate control, heat

does not impact attendance, yet as space cooling shifts from 0 to 1 (fully air-conditioned

instruction), middle/high schoolers are more likely to attend school. A 1 ◦C rise in the daily

maximum heat index increases student commuting by 2.6% when classrooms offer a cooling

co-benefit. One possible reason is that staying home on a hot day, with parents unable or

unwilling to run an air conditioner throughout school hours, becomes less attractive.

The bottom panel of Table 3 suggests that this mechanism is particularly strong for low-

income students who are offered air-conditioned classrooms. This third variant complements

the second in suggesting that schools offering a cooling co-benefit are differentially attractive

on hotter vs. cooler days among students who reside in low-income neighbourhoods.

11Electricity accounts for 3.2% of expenditure among households in the bottom quintile of Singapore’s
income distribution compared with 1.8% for those in the top quintile (Salvo, 2018). Salvo (2018) finds that
the electricity demand response to heat grows with income and air-conditioner adoption.

12Table A.4 replicates Table 3 but examines arrivals and departures separately.



Heat and activity in the tropics 15

Urban parks. Recent economics research studies the value of urban parks and forests,

including potential cooling properties of urban trees (Panduro et al., 2018; Tan, 2022; Han

et al., 2022). We note briefly that we find evidence consistent with this literature (and

provide details in the appendix). Table 1 shows that visits to public parks grow by 0.6% on

workdays and by 0.9% on non-workdays per 1 ◦C rise in heat. Narrowing in on specific time

intervals, a 1 ◦C rise in the daily maximum heat index increases public-park footfall by 0.8%

at 17:00-19:59 and 1.2% at 20:00-22:59 on workdays, and by 1.2% at 17:00-19:59 and 1.6%

at 20:00-22:59 on non-workdays (Figure A.11).13

5 Discussion

We discuss the implications and limitations of our study. A growing literature in economics

examines historical weather fluctuations and finds that ambient heat can have large adverse

effects on public health and other socioeconomic outcomes. This literature looks for evi-

dence of adaptation, which IPCC (2007) defines—and Barreca et al. (2016) reproduces—as

“adjustment in natural or human systems in response to actual or expected climatic stimuli

or their effects, which moderates harm or exploits beneficial opportunities” (p.6). Some

of the economics research finds substantial harm to human systems from heat fluctuations

under the actual climate, even for people working in climate-controlled environments. The

takeaway from those studies is that ambient heat has pervasive effects and that adaptation

opportunities are limited.

13The appendix provides further evidence from student-level panels on attendance and test scores at a
large school with extensive climate control, large-scale household travel surveys, retail sales quantity indices,
and morbidity and mortality statistics. Each additional dataset spans multiple years.
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In addition to the studies cited in the introduction, consider the two leading heat impact

studies of work environments. In a setting where “protection from heat is limited to the use

of windows and some fans” (p.1803), Somanathan et al. (2021) find a 3% drop in a Gujarati

cloth weaver’s output for a 1 ◦C rise in daily maximum temperature. In a very different

workplace characterized by “close to full application of the most obvious technological solu-

tion to mitigate temperature effects” (p.239), Heyes and Saberian (2019) report a 1.2% drop

in the likelihood that a US immigration judge’s decision is favourable to an applicant for a

1 ◦C rise in daily mean temperature.14

Against this backdrop, we view our in-depth study of how heat impacts Singapore as

making a contribution. The urban tropics, and that in equatorial Asia in particular, are

vast, densely populated, and fast growing—and remain relatively under-studied. Singapore

seeks to remain a high-value manufacturing hub, not just a services economy. We examine

high-frequency variation in heat, with the daily maximum varying by as much as 10 ◦C within

month of sample. Following decades of economic expansion, Singapore’s offices, factories,

malls, buses, and trains are air conditioned, its public schools much less so. While rich on

average, Singapore’s population includes households on lower incomes with poor access and

limited use of residential air conditioning, allowing us to investigate unequal responses to

heat.

In the urban—and mainly indoor—workplace, commercial, educational, and transit

spaces where we look, we do not detect a fall in activity on hotter relative to cooler days.

14Barreca et al. write “these adjustments can take the form of alterations in the uses of existing tech-
nologies or the invention of new technologies” (p.106) and describe the state of knowledge about adaptation
as poor. Heyes and Saberian write of their takeaway: “The decision-makers that we observe work indoors
and protected in their workplace by climate-control at a level typical of good-quality US Federal government
buildings in the twenty-first century... With regard to biological adaptation to prevailing conditions, judges
move around very little—they are largely attached to a single court location” (p.239, original emphasis).
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To the contrary, we estimate that heat leads to increases in footfall at, and commuting to,

offices, industry, malls, and the more air-conditioned among schools. Our interpretation is

that cooling from the ambient heat is bundled in the services that these destinations offer

to workers, shoppers, diners, and students. We find that cooling co-benefits are particularly

attractive to low-income residents with limited access or use of adaptive technology at home.

We emphasize that by activity we mean mobility. Even if workers are at the workplace

more, we do not observe if their output is affected—we leave on-the-job productivity to

subsequent research.15 We further caution that we do not study work hours or on-the-job

productivity in occupations with high climate exposure and limited on-the-job access to

defensive capital such as construction and landscaping. We also note that our analysis does

not suggest there are positive effects of heat on overall welfare even in Singapore; although

employers and retailers may value workers and shoppers showing up, there may be costs to

not being at home, for example, older relatives not being looked after.

Applied to Singapore’s 3.2 million services and manufacturing workers at work for 45

hours per week (MOM, 2017), impacts on the order of -1 to -3% as reported by the studies

above in differing work environments translate loosely into a loss of 1.4 to 4.2 million weekly

workplace hours for every unseasonable +1 ◦C variation in ambient heat that week. It is

against this benchmark that we compare our results of a zero—positive even—impact on

Singapore’s predominantly indoor economic activity. Taking our +0.4% estimate of office

footfall (Table 1, column 1) to fix ideas, we instead obtain a gain of 0.6 million weekly

workplace hours per +1 ◦C rise in heat.

15Where we do have some measure of “productivity,” specifically on test scores and retail sales, we do not
detect adverse impacts from heat (Tables A.14 and A.16).
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Taking our +0.6% estimate of mall footfall (Table 1, column 3—non-workdays to focus

on non-work related visits), and applying this to 1.6 million mall visitors per day across all of

Singapore’s malls,16 we estimate a positive variation of 9400 visitors daily for every 1 ◦C rise

in the daily maximum heat index. Stretching this back-of-the-envelope to the 10 ◦C range

of variation that we observe within month of sample, we obtain a difference of +94,000 mall

goers on the hottest vs. the coolest of Singapore’s days.

We noted earlier that recent studies document adverse and often sizeable impacts of

ambient heat on morbidity and mortality. For example, White (2017) reports that a day

over 80 ◦F (27 ◦C) is associated with a same-day 3.5% increase in emergency department

visits in California, and significant heat impacts are found using US Medicare and German

health data (Heutel et al., 2021; Karlsson and Ziebarth, 2018). Motivated by these studies,

we examined publicly available morbidity and mortality data for Singapore.

While our health data are not rich as in the cited health studies, the evidence we present in

Tables A.17 and A.18 suggests that heat is not a significant cause of morbidity and mortality

in Singapore—insofar as the current climate is concerned. We view this supplementary

public health analysis as supportive of our main findings on heat-coping behaviours, and

is consistent with adaptation inferred in some studies (Barreca et al., 2016; Heutel et al.,

2021). The non-negative impacts that we find for a rich city-state acclimatized/adjusted to

its tropical climate may offer a hopeful message on urban adaptation to a hot climate (C40,

2023).

16Table A.3 shows a sample mean of 460 public-transit arrivals/hour/income group/commercial area (on
non-workdays, but workdays are similar). Multiplying by 13 hours (10:00-22:59) × 2 (income groups) × 80
commercial areas, and dividing by 0.6 (in the Household Travel Survey 40% of visitors walk or ride a car to
the mall), yields 1.6 million visitors (ignoring people who arrive multiple times on a day).
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We offer a back-of-the-envelope in the appendix which assumes that health damage from

heat fluctuations in Jakarta can be moderated to levels observed in Singapore by increasing

access to space cooling. Indonesia’s capital city, with a population of 10 million, lies 900

km southeast of Singapore and has a similar climate, yet an income per capita one-seventh

that in Singapore and low penetrations of air conditioning in residences, workplaces, malls,

and community centres (Pavanello et al., 2021; Savills Research, 2021). Only to provide an

indication of costs relative to the benefits under simple, plausible assumptions, we focus on

mortality among the elderly and assume that widespread provision of spaced-cooled commu-

nity centres reduces heat-induced deaths in Jakarta to rates comparable to Singapore, for

which we were not able to reject zero. We find that heat damage of $0.20 to $1.4 billion per

year can be reduced through defensive investments of $0.25 billion per year.

We conclude with another word of caution. Space cooling and moving life indoors comes

at considerable private and external costs. Our objective has been to investigate, from

revealed behaviour, how a rich nation in the tropics has thus far adjusted to its current

climate. Yet the climate is changing. In the four decades to 2014, the annual numbers of

“warm days” and “warm nights” in Singapore have grown by 50 days and 72 nights, with an

annual mean temperature increase of 1.1 ◦C over the period (NCCS, 2015). Our objective has

not been to speculate on the costs of further adaptation to future global warming (Sherwood

and Huber, 2010).
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Table 1: The impact of heat on footfall over all time intervals

Offices Malls Public parks

Workdays Workdays Non-workdays Workdays Non-workdays
7:00-19:59 7:00-22:59 7:00-22:59 7:00-22:59 7:00-22:59

Log hourly footfall (1) (2) (3) (4) (5)

Daily max. heat index (1 ◦C) 0.0039** 0.0052** 0.0063** 0.0056** 0.0085*
(0.0018) (0.0022) (0.0032) (0.0029) (0.0048)

Number of observations 4992 10,240 4480 4096 1792
Number of regressors 32 37 29 34 26
R-squared 0.9519 0.9346 0.9497 0.8702 0.9203
Mean of dep. var. levels (1000s) 1.1700 1.7621 2.3154 8.7401 9.6649

Notes: This table shows results for 5 OLS regressions, per model (1). An observation is a location-date-
hour triple on either workdays or non-workdays, as indicated, during all time intervals. Non-workdays are
Saturdays, Sundays, and public holidays; workdays are all other days. The dependent variable is the log
hourly footfall at an office tower (3 locations), a shopping mall (5 locations), or a public park (2 locations).
See the appendix for estimates on other environmental conditions and for results at pay-for-entry parks. All
regressions control for concurrent PM2.5, rainfall, wind speed, hour-of-day fixed effects (FE), day-type FE;
year-month FE, and location FE. Standard errors, in parentheses, are clustered by date. ∗∗∗Significant at
1%, ∗∗at 5%, ∗at 10%.
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Table 2: The income-resolved impact of heat on commuter activity over all time intervals

Industrial zone Commercial areas

Workdays Workdays Non-workdays
6:00-22:59 7:00-22:59 10:00-22:59

Log hourly public transit flows (1) (2) (3)

Effects across both income groups

Daily max. heat index (1 ◦C) 0.0037 0.0016* -0.0028
(0.0027) (0.0009) (0.0027)

Number of regressors 35 113 102

Effects by income group

Daily max. heat index (1 ◦C) 0.0028 0.0003 -0.0065**
(0.0029) (0.0010) (0.0029)

Low-income group × max. heat 0.0018** 0.0026*** 0.0073***
(0.0008) (0.0009) (0.0019)

Overall heat on low-income 0.0046* 0.0029*** 0.0009
(0.0026) (0.0010) 0.0028

Number of regressors 38 116 105
R-squared 0.9894 0.9333 0.9434

Number of observations 4352 326,979 116,336
Mean of dep. var. levels (1000s) 1.2635 0.8986 0.9438

Notes: The bottom panel shows results for 3 OLS regressions, per model (2), and the top panel implements
these same regressions when we omit the low-income × environment interactions from the model. An
observation is a date-hour-income group triple in column 1 or a location-date-hour-income group tuple in
columns 2-3, on either workdays or non-workdays, as indicated, during all time intervals. The dependent
variable is the log hourly sum of bus/rail arrivals and departures in the industrial zone (a single aggregated
location) or in a commercial area (80 mall/office locations). All regressions control for concurrent PM2.5,
rainfall, wind speed, hour-of-day FE, day-type FE, year-month FE, and a low-income-group dummy. The
bottom panel includes income-PM2.5 and income-rain interactions. Columns 2-3 further include location
FE. Results are similar in the top panel if we collapse the data across both income groups. Given relatively
modest commuting at selected times, we specify the average hourly public transit flows within quarter-of-
sample as regression weights (specific to the location type and workdays/non-workdays). Standard errors,
in parentheses, are clustered by date. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table 3: Heat, student income, school cooling, and attendance

Log daily public transit flows by Sum of arrivals and departures Sum of arrivals and departures+1
students at stops nearby schools (1) (2)

By student income group

Daily max. heat index (1 ◦C) 0.0081 0.0046
(0.0079) (0.0070)

Low-income group × max. heat -0.0013 0.0041
(0.0026) (0.0035)

Overall heat on low-income 0.0068 0.0087
(0.0087) (0.0078)

No. of obs. (stop-schoolday-income) 168,647 185,422
Mean of dependent var. in levels 81.1465 74.8052

By school cooling

Daily max. heat index (1 ◦C) -0.0002 -0.0003
(0.0117) (0.0111)

School cooling × max. heat 0.0258** 0.0256*
(0.0129) (0.0137)

Overall heat with full cooling 0.0256** 0.0253**
(0.0100) (0.0103)

No. of observations (stop-schoolday) 76,214 79,301
Mean of dependent var. in levels 157.7588 151.6176

By student income and school cooling

Daily max. heat index (1 ◦C) 0.0035 0.0019
(0.0117) (0.0110)

Low-income group × max. heat -0.0042* -0.0015
(0.0022) (0.0027)

School cooling × max. heat 0.0147 0.0133
(0.0126) (0.0126)

Low-income group × cooling × heat 0.0091*** 0.0116***
(0.0005) (0.0005)

No. of obs. (stop-schoolday-income) 145,653 158,602
Mean of dependent var. in levels 82.5484 76.8088

Notes: This table shows results for 6 OLS regressions across three panels. An observation is a school stop-
schoolday-income group triple in the top and bottom panels, per model (2) summed over hours within a
schoolday, or a school stop-schoolday pair in the middle panel, per model (3). Across estimation samples,
the stops serve 170-200 schools (cooling is missing for a minority of schools). The dependent variable is the
log daily sum of arrivals and departures by students; in column 2, we add 1 before taking logs to account
for a minority (∼5%) of zero-valued observations. All regressions control for concurrent PM2.5, rainfall,
and wind speed, day-type FE, year-month FE, and school-stop FE. In the middle and bottom panels, the
school-weighted stop-level cooling measure is expressed as a proportion; it is subsumed in the school stop FE.
The top and bottom panels include income-PM2.5 and income-rain interactions. The middle and bottom
panels include cooling-PM2.5 and cooling-rain interactions. From top to bottom panels, there are 17, 16,
and 23 regressors (excluding 1100-1300 school stop FE). Standard errors, in parentheses, are clustered by
date (two-way clusters by date and by school stop yield similar standard errors). ∗∗∗Significant at 1%, ∗∗at
5%, ∗at 10%.
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(a) Bus and rail stops (b) Residential buildings

(c) Industrial areas (blue) and the CBD (yellow) (d) Malls (light blue), schools (red), and parks (green)

Figure 1: Maps showing (a) bus and rail stops, (b) residential buildings, (c) industrial areas
and the Central Business District, and (d) malls, schools, and parks. Residences exclude
dormitories that typically house low-income foreign workers; such purpose-built dormitories
locate by industry or such workers ride employer-provided private transportation, rather than
public transit, to work. We focus on middle/high schools because most children at this age
ride public transit to school. Most stops that serve public parks also serve residences, which
is why we do not use the commuter data to examine visits to public parks. Similarly, our
analysis of industry commuting focuses on the nation’s core industrial zone in the southwest,
as this is not conflated by proximity to residences.
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Response to heat in offices: Workdays

(a) Office towers, footfall, workdays
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Response to heat in malls: Workdays

(b) Malls, footfall, workdays
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Response of industrial-zone arrivals to heat, by income group

(c) Industry, bus/rail arrivals, workdays 6:00-9:59
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Response of industrial-zone departures to heat, by income group

(d) Industry, bus/rail depart., workdays 17:00-19:59
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Response of shopping-area arrivals to heat, by income group

(e) Commercial, bus/rail arrivals, workdays 7:00-10:59
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Response of shopping-area departures to heat, by income group

(f) Commercial, bus/rail depart., workdays 17:00 to 22:59

Figure 2: The impact of heat on workday indoor activities—and public transit to these
activities—for different time intervals. Source: Regression specifications similar to those
reported in Tables 1 and 2 (with narrower time intervals). The plots show 95% confidence
intervals (CI) on the coefficient on the daily maximum heat index, βheat (and, for panels
c-f, on the sum of this coefficient and the interaction coefficient, βheat + βheat,lowIncome),
converted from log points to a percent change.
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Online Appendix

A Further details on data including sources

Footfall data locations and relevance. Based on the mobility of their subscribers, mobile
phone company Starhub provided us with hourly footfall and bihourly (median) dwell time
for 12 major agglomerations of activity (Figures A.1 and A.12). The three office towers are
Capital Tower, Millenia Tower, and Republic Plaza. The five malls are AMK Hub, City
Square Mall, IMM, Ngee Ann City, and VivoCity. The two open-access public parks are
Botanic Gardens and East Coast Park. The two pay-for-entry commercial parks are Jurong
Bird Park and Singapore Zoo.

StarHub claims to be able to separately count subscribers pinged at malls from those
visiting neighbouring office towers. For example, malls Ngee Ann City and VivoCity have
office towers nearby. In the data, footfall for Ngee Ann City and VivoCity refers to traffic
at the malls. Similarly, office towers Capital Tower and Millenia Tower have malls nearby
and footfall for Capital Tower and Millenia Tower in the data refers to people at the office
complexes. StarHub’s footfall product has commercial value, for example, to mall managers
negotiating rental with tenants.

StarHub’s subscribers accounted for one-third of the mobile phone market (StarHub,
2017). By 2016-17, Singapore already had a very high mobile phone penetration rate (IMD,
2020).

Individual-level commuter panel. In 2015-16, rides on public transit were overwhelm-
ingly paid via farecards. The so-called EZ-Link card’s popularity was due to its convenience
and lower cost. To illustrate, a 5-km trip in 2020 cost an adult $0.83 via EZ-Link and $1.41
if paid by cash. No change was given on buses, so cash-paying riders paid more than the
required fares if they did not carry the exact amount. Tap in-tap out with bank/credit cards
was introduced only in 2019 (Awang, 2019).

We have travel information from 7.2 (resp., 7.3) million cards used in 2015 (resp., 2016).
The number of cards exceeds Singapore’s population of 5.6 million (DOS, 2017).17 The
difference is likely due to tourists who purchased EZ-Link cards during their visits. We note
that 4.1 million cards were used in both year-on-year quarters, suggesting that most trips
were made by residents who held on to their cards over extended periods.

Combining trip segments into trips. The trip segments reported in the commuter
data need to be collapsed into trips, which is our focus. For example, if a person departs at
stop A, transfers at stop B, and arrives at stop C, then there would be two observations in
the raw data, one for each of the two segments, A to B and B to C, spaced within minutes
of each other. To combine segments into trips, we assume that if the departure time of a
segment is within 15 minutes of the arrival time of the previous segment, then the segments
are part of the same trip (A to C in the example).

17This population comprises 3.4, 0.5, and 1.6 million citizens, permanent residents, and temporary
residents (foreign workers of varying skill levels and students on longer-term visas), respectively.
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Distribution of dwelling type by building. Singapore’s income-segmented housing
market consists of two broad types of dwellings, specifically apartments developed by a gov-
ernment agency and condominium apartments (“condos”) and houses developed by private
companies. Subsidies are offered on publicly developed apartments whereas condos are per-
ceived as more premium, offering shared amenities such as a swimming pool. Like condos,
land scarcity makes houses more expensive.

Building-level data come from the Housing and Development Board (apartment quan-
tity and type), the Urban Redevelopment Authority (condos/houses), and the Singapore
Land Authority (coordinates). For example, one residential building tower, identified by
its unique postal code 180009 (and geographic coordinates), consists of 299 dwellings, 264
(88%) of which are 1-3 room apartments and the remainder are 4-room apartments. A sec-
ond (higher-end) building, with postal code 109025, consists of 110 dwellings, all of which are
condos. Across all residential buildings, dwellings total 1.4 million, distributed as 1.1 million
apartments (across different sizes), 300,000 condos, and 75,000 houses. For perspective, 1-3
room apartments have floor space of 36-69 square meters.

Assigning commuters to income groups. For each of 4200 bus/rail stops situated
within 400 meters of a residential building, we compute a weighted share of 1-3 room apart-
ments among all dwellings in the 400-meter radius from the stop. We take as weights the
inverse of the stop’s distance to each residential building’s street entrance (the closer a
building is to a stop, the more likely a resident will use this stop vs. another stop). Con-
tinuing the above example, suppose that a stop is (i) 100 meters from building 180009 with
its 299 dwellings, 264 of which are 1-3 room apartments, and (ii) 200 meters from build-
ing 109025 with its 110 condos. The 1-3 room apartment share is then 0.75, computed as
264 × 100−1/(299 × 100−1 + 110 × 200−1)), and reflecting that this stop serves a relatively
low-income residential population. This procedure yields a measure of the low-income share
of the residential population served by each stop.

We now map cardholders to residential locations—and the socioeconomic distribution—
and their trips to work, shopping, and school locations. We focus on a sample of residents
who are active during daytime, adopting the following sampling procedure separately by
quarter. For each date that a card is used, we save the card-date’s “first departure” stop
and “last arrival” stop subject to the restriction that either stop is within 400 meters of a
residential building.18 We then take the card’s modal (i.e., most common) first-departure
stop and modal last-arrival stop over travel dates in the quarter. To include the card by
quarter in the sample of trips, we require (i) that either the modal first-departure stop or
modal last-arrival stop are residential and one stop is within 600 meters of the other, and
(ii) that the cardholder first departs from the modal first-departure stop (or any stop within
600 meters of this stop) at least eight times during the quarter. Table A.2 reports on a trip
sample based on 3.2 million cards in 2015 and 2016 alike (and variants).

For each sampled card-quarter, we take the average low-income share of the residential
population across the two “home” stops (modal first-departure and modal last-arrival stops).
A “low-income residential neighbourhood” dummy takes the value 1 in the card-quarter if

18It is likely that the cardholder is departing from home earlier in the day and/or returning home later in
the day. A first-departure stop and last-arrival stop (within date) both in an industrial area, e.g., a worker
on a night shift, is not a focus of this sampling procedure. Because they tend not take public transit to
work, low-income foreign workers housed in dormitories located nearby industry (rather than in residential
buildings) are also not targeted by this procedure.
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the low-income share lies in the upper quartile of the distribution over card-quarters in the
sample and 0 otherwise. Figure A.3(a) shows the distribution of the low-income share; the
75th percentile is a low-income share of 0.40, interpreted as 1-3 room apartments accounting
for 40% of the dwellings served by a card-quarter’s home stops. For example, for a given
card-quarter the two home stops are the stop in the above example, with a low-income share
of 0.75, and another stop with a low-income share of 0.55, yielding an average of 0.65. This
low-income share exceeds the 75th percentile (0.40) and so the low-income neighbourhood
dummy is valued at 1 for all trips observed for that card-quarter.

Physical footprints of industry, malls, schools, and parks. The industrial zone
was set aside in Singapore’s 1980 Master Plan. None of the 430 stops located in the industrial
zone (Figure 1(c)) are within 400 meters of a residential building or a mall.

We extract each mall’s property line from openstreetmap.com. The 200-meter bound-
aries from the property lines often overlap across neighbouring malls (Figure 1(d)). After
consolidating adjacent malls, we have 80 consolidated commercial areas and 680 stops within
200 meters of a commercial area.

Figure 1(d) also shows the locations of 200 middle/high schools, served by 1300 stops.
As weights to average our surveyed school-specific space-cooling measure to the school-stop
level (a stop may serve more than one school), we obtain school-level site areas from OneMap
(and, where missing, URA Space).19

Singapore cultivates a “garden in a city” image, with about half of its land area covered
by managed vegetation and young secondary forest, despite its high population density (Yee
et al., 2011; Tan et al., 2013). Figure 1(d) further shows the location of public parks and
commercial parks. We do not use the commuter data to study visits to public parks because
91% of the 383 stops that serve a public park also serve neighbouring residences.

Travel patterns by location type and income group. Figure A.5(a) to (d) (resp.,
(e) to (h)) plot the mean hourly industrial-zone (resp., mall) arrivals and departures, sep-
arately by income group. One-quarter of trips to and from industry pertain to low-income
neighbourhood residents. For both income groups alike, arrivals and departures peak at 7:00
and 17:00, respectively, according with the notion that most of the industrial zone’s travel
is work related. Mall arrivals peak at 8:00, driven by workers at adjacent office towers, and
again at 18:00, driven by leisure-seekers. Departures peak at 18:00, with volume one-third
larger than the 18:00 arrival volume. This may be due to afternoon shoppers joining work-
ers from adjacent offices in their journey home. Manufacturing workers start their workday
earlier than workers in these commercial centres (and the general population of riders, in
Figure A.2). To complement the office footfall analysis, Figure A.6 shows public transit to
the Central Business District, with workday arrivals and departures peaking at 8:00 and
18:00, respectively.

Students commuting to schools. We restrict commuting to student cardholders
through stops located within 400 meters of a school gate—and which are not home stops,
i.e., the student is not commuting home. Besides focusing on student farecards, we fo-
cus on middle/high schools because the majority of their students ride public transit to
school. Specifically, the 2012/13 Household Travel Survey (see below) indicates that 60% of

19When the reported site area combines a secondary school and a junior college that are co-located
(see below), we distribute the site area among the co-located schools according to the number of years of
instruction each offers, e.g., the secondary school’s 4 years (67%) and the junior college’s 2 years (33%).
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secondary-school and 85% of junior-college students ride public transit to school. Thus, our
commuter data captures most of these students’ school travel. In contrast, in the younger
age group one-half of students walk to a local primary school. For this reason, we did not
examine commuting to primary school.

Middle/high school include (i) secondary schools, (ii) junior colleges, attended during
the last two years of high school, (iii) “Millenia/Polytechnic Institutes,” an alternative to
junior colleges lasting three years for students considering a more technical vocation even
if they subsequently stream into university, and (iv) “international schools,” referring to a
minority of schools that are private and are not run by the Ministry of Education. Examples
for schools in groups (i) to (iv) are Xinmin Secondary School, Tampines Meridian Junior
College, Ngee Ann Polytechnic, and Global Indian International School.

We identified 1416 bus/rail stops that serve 202 middle/high schools (establishments)—
label these “school stops.” To define a schoolday, we note that government-funded schools
(which constitute the majority) follow a common holiday calendar, whereas private schools
each choose a different calendar from that adopted by the public school system. Because
the spatial unit in our regression analysis is a school stop, we drop the few school stops (75)
that are situated nearby both a public and a private school(s), as we would otherwise have
to contend with “partial” schooldays, e.g., days on which we would observe partial traffic
to an open public school but not to its neighbouring private school on holiday. Our sample
then comprises 1341 school stops serving 196 schools on 128 schooldays (1284 school stops
remain when we restrict to stops through which we observe at least one student commuter
over the entire sample period, suggesting the stop was active).

Air conditioning in schools. The National University of Singapore (NUS) admits
students from across the city-state. In 2022, we surveyed 1508 NUS undergraduate students
who were in middle/high school in 2014-2018, around the time of our commuter sample
(men do 2-year national service before university). Through faculty listservs (e.g., Faculty
of Engineering), we invited undergraduate students from across the university to complete
the survey, and offered a “Lucky Draw” to boost participation. We implemented a short
survey on Qualtrics to collect data on the experienced use (rather than installation) of air
conditioning in the “classrooms in which instruction took place.” The typical respondent
provided two measures, between 0 and 100%, one for their middle school and another for
their high school. We also collected air conditioner prevalence for private schools, from which
NUS also admits. In all, we collected 2900 responses across 180 schools. We will publish the
survey instrument and data collected.

We explain by way of example how we aggregate the surveyed school-level air conditioning
usage to each school stop, specifying as weights the size of the schools that each stop serves
(if the stop serves more than one school, and about half do). Say a stop serves (1) one small
school, size 1, with 70% cooling according to the actual experience of its recent alumni, and
(2) another large school, size 2, with 50% cooling. We then calculate the contemporaneous
air conditioning measure for that school stop as (0.7 × 1 + 0.5 × 2)/(1 + 2) = 0.56. In the
example, the weighting reflects the fact that the larger, less space-cooled school (2) accounts
for more students flowing through the stop than the small, more-cooled school (1): 56% of
the classroom instruction experienced by the stop’s student users had space cooling around
the time of our commuter data (2015-2016). To weigh across schools sharing a stop, we
use the land area occupied by each school’s buildings (because we were not able to obtain
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student enrolment by school). The number of survey responses offers an alternative proxy
for school size.

Why are schools among the last indoor environments without widespread space cooling?
Prime Minister (and parent) Goh Chok Tong voiced a common belief among parents that
if their children study in harsher conditions they will grow more resilient. In a speech
in 2002, he asked whether Singaporean children had “too comfortable a life” partially
due to widespread air conditioning—“(they) sleep in air-conditioned rooms...travel in...air-
conditioned buses and MRT”—and whether this would hinder their ability to “take hardship,
accept setbacks, and pull themselves up after a fall” (MOI, 2002).

Ambient environment. We obtained one-hour ambient air temperature, relative hu-
midity, rainfall, and wind speed measurements recorded at consistently operating weather
stations maintained or compiled by the National Environmental Agency (NEA), the NUS
Department of Geography, and the Iowa State University Environmental Mesonet. The
NEA also reports one-hour ambient PM2.5 concentrations (particulate matter up to 2.5 µm
in diameter), for each of five areas of Singapore. Publicly available one-hour PM2.5 data are
averages across monitoring stations within each of the five areas.

We average one-hour readings across weather stations (or PM2.5 areas) for (i) tempera-
ture: Jun-Aug 2016 & 2017 with 11 stations, Oct-Dec 2015 with 4 stations, Oct-Dec 2016
with 20 stations; (ii) rainfall: Jun-Aug 2016 & 2017 with 13 stations, Oct-Dec 2015 & 2016
with 10 stations; (iii) relative humidity and wind speed: 4 stations; and (iv) PM2.5: 5 areas
of Singapore.

By taking the mean across weather stations’ one-hour readings, we average out the id-
iosyncrasies associated with each station’s microenvironment (e.g., a station in the built-up
urban area yet atop a high-rise building), and because people are mobile. Our source of
environmental variation is thus temporal.

Figure 3 in Anderson et al. (2013) describes the algorithm that combines the one-hour
mean air temperature and one-hour relative humidity readings into a one-hour heat index.
This heat index is adopted by the US National Weather Service (NWS, 1990, 2020). OSHA
(2016) assigns a “moderate” risk of heat-related illness when the heat index is in the 91-103
◦F range and notes that the risk is higher “before workers have had a chance to adapt to
warm weather.”

Singapore’s tropical climate exhibits mild seasonality. For example, the daily maximum
heat index in the summer June-August footfall sample is only 0.5 ◦C higher than in the
October-December commuter sample.

Our analysis controls for air quality particularly in view of a severe pollution episode
during the commuter sample month of October 2015, which was caused by land fires in
neighbouring countries upwind (Koplitz et al., 2016; Rosales-Rueda and Triyana, 2019; Salvo,
2018, 2020). Despite the poor air, workplaces and schools did not close (MOM, 2015).

Urban heat island and built-up areas vs. parks. Roth (2007) asserts that “vegeta-
tion (can) be an effective means to reduce heat storage uptake during daytime and hence has
the potential to effectively mitigate the nocturnal heat island” (p.1859). Using our data to
illustrate urbanisation’s very local effect, July-August one-hour air temperatures20 recorded

20Singapore’s climate is mildly warmer, drier, and less windy during the southwest monsoon from June
to September relative to the northeast monsoon from December to early March. Roth (2007) notes that the
urban heat island in the tropics is more intense in the dry season.
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at the Tai Seng weather station near the built-up Central Business District exceed that at
the Choa Chu Kang South station in the less developed Kranji reservoir area by 0.84 ◦C on
average. The temperature difference grows during the night, as the built-up Tai Seng (the
“urban island”) releases heat stored during the day, recording 1.42 ◦C higher on average that
Choa Chu Kang South at 5:00.

The urban climate literature provides support for an amenity value of urban parks. In a
meta-analysis of 16 studies on urban parks and green areas across different climates, Bowler
et al. (2010) find a cooling effect during the day of about 1 ◦C relative to non-green sites, with
the cooling differential increasing at night. Han et al. (2022) et al. find “large, mitigating
effects of urban forestry on urban heat and substantial energy savings.”

Arnberger et al. (2017) use stated-behaviour experiments to document visits to urban
parks as a heat-coping strategy among the elderly living in heat islands of Vienna. They
conjecture that “having small apartments may be an added reason to decide to go out”
(p.110).

The Viennese apartment setting resembles housing in land-scarce Singapore, where apart-
ments account for 95% of dwellings. Surveying 1600 visitors of all ages in Singapore’s Botanic
Gardens, Chow et al. (2016) find that “despite the discomfort sensations and preferences, a
large majority of survey respondents felt comfortable/very comfortable at all sites in both
monsoon periods” (p.74).

In a review of the urban heat exposure literature, focusing on physiology and building
technology, Nazarian and Lee (2020) write: “Little is known about the real-time thermal
discomfort and strain people experience as they go about their daily lives” (p.2).

Other economic data.

Student-level daily attendance and annual test scores at a private school.
United World College of Southeast Asia (UWCSEA) is a large private school that caters
mainly to families who are in Singapore over the long term and across a wide array of
nationalities including Singaporeans. Enrolment is about 6000 per year, across two campuses,
Dover and East, both offering K2 to Grade 12.

In December 2016, we obtained daily individual-level attendance for all schooldays be-
tween August 2011 and November 2016 for the East campus and August 2012 to November
2016 for the Dover campus. In all, our sample comprises 3.9 million student-schoolday obser-
vations, with 9067 students enrolled at some point over 947 schooldays. We further observe
a student’s age, campus of study, number of siblings enrolled at the school, and the date on
which the student first enrolled in the school.

Whereas our regression specification includes student FE (see empirical model (4) below),
some students switched campus or their number of siblings varied during their enrolment at
the school, so we control for these individual time-varying potential shocks to attendance.
We combine the attendance records with daily environmental conditions. We also control
for schooldays shortly before and after holidays because, for example, international families
may travel early out of the country during the last days of term.

Our second UWCSEA panel dataset, obtained in 2022, includes performance in standard-
ized age-specific tests taken annually by students in Grades 3 to 10 in the years 2015 to 2020.
On varying schooldays in January or February, the school administered four International
Schools Assessment (ISA) tests in (i) mathematical literacy, (ii) narrative/reflective writing,
(iii) reading, and (iv) exposition/argument writing as part of the school curriculum. The



Heat and activity in the tropics A.7

ISA is designed by the Australian Council for Educational Research and follows the OECD’s
Programme for International Student Assessment (PISA). Tests (i) and (ii) were taken on a
first day of testing and tests (iii) and (iv) were taken on a second day of testing, subsequent
to (and often the day after) the first day of testing. Instead of the student’s age, here we
observe the student’s grade, i.e., Grade 3 to 10. We also observe the student’s campus of
study.

Tests were administered on different dates across the Dover and East campuses, thus
generating some variation in environmental conditions—6 years × 2 campuses/year × 2
testing dates/campus/year = 24 testing dates in all. This limited variation contrasts with
the preceding school attendance sample with up to 947 schooldays in all. Within a campus
and year, there is no variation in testing dates across grades. For example, in 2017, 1900
students in Grades 3-10 in the Dover campus took tests (i) and (ii) on February 13 and
tests (iii) and (iv) on February 14; that same year, 1500 students in Grades 3-10 in the East
campus took tests (i) and (ii) on February 21 and tests (iii) and (iv) on February 22. In the
sample, domain-specific tests have mean scores of (i) 545 in mathematical literacy (across
14,896 maths tests taken over the years by 6004 students), (ii) 532 in narrative/reflective
writing, (iii) 507 in reading, and (iv) 557 in exposition/argument writing.

Large-scale Household Travel Surveys. The Land Transport Authority (LTA) “con-
ducts a large-scale island-wide travel survey... every four to five years... across all residential
areas... cover(ing) how respondents go to work, send their children to school, and which
shopping centres they frequent... (and) which transport modes are used” (LTA, 2022). The
focus is on the busier workdays, outside weekends and public holidays.

We use the individual-level one-day travel diaries collected in the 2012/13 and 2016/17
waves, spanning June 25, 2012 to May 30, 2013 and August 19, 2016 to June 20, 2017,
with 23,861 and 40,303 respondent-date observations, respectively. For the 2016/17 wave,
the LTA introduced a new phone-based app for respondents to record—beyond a first day—
their travel patterns for up to seven days. Judging from the data, participation in the
2016/17 multiday extension was partial and so we focus on the one-day travel diary—just
like in the 2012/13 data.21

Similar to our analysis of the commuter sample, we drop 5073 respondent-dates whose
first trip on the day does not start from their home, for example, a respondent works night
shifts and is not active during daytime. We declare that we did not analyse that subsample
so our decision to exclude it does not select on whatever travel patterns its subpopulation
displays.

Our final sample consists of 59,091 respondent-dates (a single workday per respondent),
137,144 respondent-trips, and 415 workdays over the two collection years combined. We
observe all trips, if any, that a respondent makes in a day, including trip-level start and
end times and locations, travel modes, and main purpose, e.g., work, shopping, education.
Because we observe travel modes other than public transit, including car/taxi and walk-
ing/cycling, and the purpose of travel, these data complement the commuter sample. Thus
we observe where and how respondents travel, and how long they stay in their destination.

We focus on two types of activity (i) work and (ii) shopping/dining, which we label
shopping hereafter. Few trips are recorded to neighbourhood parks including green spaces in

212016/17 respondents with T > 1 might select on individual characteristics such as being more digitally
savvy, more organized, or less busy. So we use single (the first) one-day entries for all respondents.
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one’s township, perhaps because respondents do not perceive these very local trips as travel
away from home. As such, very local trips on foot may be understated. Results based on
time away from home should be interpreted with this caveat in mind.

The 2012/13 (but not 2016/17) dataset further reports the postal code of each trip’s desti-
nation. This identifies the exact building. There are 4288 work destinations and 868 shopping
destinations across 11,650 and 4055 work and shopping trips. We downloaded postal-code
lists of major (i) office towers from officefinder.com.sg and (ii) malls from Wikipedia and
imputed full air conditioning for these destinations. These major locations comprise 326 and
170 work and shopping destinations (8% and 20% of the work and shopping destinations in
the data) and 2816 work and 1789 shopping trips (25% and 44% of the work and shopping
trips in the data).

We shared the remaining list of building-level destinations (e.g., postal code 529203 work,
postal code 079011 shopping) with a team of research assistants—all three knowledgeable
of Singapore. The assistants were tasked with assessing a probability that each building
offered space cooling to its work occupants and, separately where applicable, to its shopping
visitors. A key online tool the assistants used was Google Street View. From building
pictures they recorded any evidence of space cooling, such as visible air-conditioning parts
(e.g., condensers, window units, chillers), window types (closed or some open), and so on.

The assistants were able to assess probabilities for the vast majority of destinations. A
minority of destinations could not be located in the online maps, e.g., a building had been
demolished since 2012 or the postal code contained a typo. Research assistants were not given
the travel dates nor ambient environmental conditions associated with trips to destination
buildings they were investigating.

From the Household Travel Surveys, we also learn that workers travel on average for 2.5
hours per workday, of which 1.5 hours are inside air-conditioned cabins (in-vehicle time is
recorded). Singapore’s modern transit system may differ in this sense from that in other rich
urban areas such as London’s Underground (Ampofo et al., 2004). Beyond in-vehicle time,
on opening Singapore’s first air-conditioned bus interchange in 2002, minister Yeo Cheow
Tong stated that it would “enable passengers to move smoothly from their buses or MRT
(rail) to the HDB (housing) Centre or the shops in the surrounding area” (MOT, 2002).

Retail activity. We examine whether heat affects economic behavior using the Sin-
gapore Department of Statistics’ monthly volume indices for 18 retail sectors. Six sectors
relate more directly to food and beverage (F&B): (1) Supermarkets; (2) Food and Alcohol;
(3) Restaurants; (4) Fast Food Outlets; (5) Cafes, Food Courts, Pubs and Other Eating
Places; and (6) Food Caterers. Whereas the first two of these F&B sectors sell to shoppers
for subsequent preparation and consumption,22 the other four F&B sectors are eateries tar-
geting diners, i.e., “services that refer to the sales of prepared food and drinks for in-premises
consumption or on a take-away basis.” Unfortunately, these data exclude hawker centres
(personal correspondence with SingStat), a popular type of food court, which, like schools,
remain one of the last bastions in Singapore without widespread space cooling.

Singaporeans often eat meals outside the home. A Health Promotion Board survey in
2010 found that nearly 35% of dinners were eaten at dining venues (restaurants, food courts,

22The Department of Statistics defines Food and Alcohol as “referring to retail stores which sell food &
beverages that are generally not meant for immediate consumption within their premises.”
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etc.) and that over 45% of the resident population dines outside the home at least six times
a week (HPB, 2013).

The other 12 retail sectors are less directly related to F&B: (7) Department Stores;
(8) Mini-Marts and Convenience Stores; (9) Motor Vehicles; (10) Petrol Service Stations;
(11) Cosmetics, Toiletries and Medical Goods; (12) Wearing Apparel and Footwear; (13)
Furniture and Household Equipment; (14) Recreational Goods; (15) Watches and Jewellery;
(16) Computer and Telecommunications Equipment; (17) Optical Goods and Books; and
(18) Others.

The sample period—for which 16 retail sectors have complete series—is January 1997
to December 2020, with 288 monthly observations in each series. Two sectors have series
starting later in the sample period, Department Stores, with 156 observations, and Food
Caterers, with 192 observations. The retail sales panel thus consists of 16×288+156+192 =
4956 sector-month observations. Our regression specification includes the one-month means
of (i) the daily maximum heat index, (ii) rainfall (total each hour), (iii) wind speed (one-hour
means), and (iv) the daily pollution index (24-hour conditions reported at 16:00 daily).

We control for pollution using the NEA’s Pollution Standards Index because PM2.5
records begin only in 2009. PM2.5 was included in the pollution index only in April 2014.
Because PM2.5 is the key determinant of Singapore’s pollution index (Salvo, 2018), we
include the pollution index as two separate series, one series for months prior to April 2014
(and zero-valued thereafter) and another series for months staring in April 2014 (and zero-
valued before the major change in the index’s composition). Indeed, the pollution index
exhibits a jump in April 2014, when PM2.5 was included in its formula.

B Further analysis of economic activity

B.1 Further analysis of the two main datasets

Sensitivity analysis of the main findings. Table A.8 reports on a nonlinear specifica-
tion, finding evidence of convexity in the heat-footfall relationship. Table A.9 considers a
lagged structure. We do not find evidence of “harvesting,” i.e., a hot day does not bring
forward activity that would have happened the next day anyway. Instead, effects appear
to accumulate (because heat is serially correlated, the table also reports overall cumulative
effects).

On 4% of days in the footfall and commuter samples, calculation of the heat index yields
a maximal daily value before 6:00, due in part to relative humidity that tends to be high
during the night-time compared with daytime hours. Figure A.14 shows estimates when we
specify as our key regressor the “daytime” maximum heat index, with daytime hours defined
between 6:00 and 22:00, rather than taking the maximum heat index over the 24 hours in a
day.

Figures A.15 to A.17 report on regressions that specify alternative measures of ther-
mal discomfort to the US National Weather Service heat index: (i) apparent temperature
(Steadman, 1994; ABM, 2010), which considers wind speed in its definition on top of air tem-
perature and relative humidity; (ii) the Humidex index (Masterson and Richardson, 1979;
Buzan et al., 2014); and (iii) the temperature-humidity discomfort index (Chow et al., 2016).
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The figures provide more details on the alternative measures of heat stress and compare their
realizations with that of the heat index we adopt in our main specification.

Figures A.18 to A.22 provide further sensitivity analysis to dropping controls in the
regression specification (PM2.5, rainfall, wind speed); dropping from the estimation sample
the one-quarter of dates with more rainy afternoons; specifying less granular month-of-year
fixed effects and year fixed effects instead of year-by-month (month-of-sample) fixed effects
as in our main specification; and taking hourly footfall instead of log hourly footfall as the
dependent variable.

As further alternatives to the daily maximum heat index, Figures A.23 and A.24 show
results when we specify the concurrent one-hour heat index or the heat index lagged by one
hour, respectively. Figure A.25 shows estimates when we specify as our key regressor the
“morning maximum” heat index, with morning hours defined between 0:00 and 10:00.

The results reported in Figures A.26 to A.28 are based on alternative resident commuter
samples from the baseline requirement that a “cardholder first departs from the modal first-
departure stop (or any stop within 600 meters of this stop) at least eight times during the
quarter” (Table A.2).

Footfall at two large public parks. Tables 1 and A.7 and Figure A.11 show increased
footfall at large outdoor public parks on hotter days, particularly outside of the typical
daytime work (or school) shift particularly, in the late afternoon and early evening. Positive
estimates through the day suggest results are not limited to people switching from the hotter
to the relatively cooler hours of the day.

We interpret the finding as indicating that on hotter days open-access urban parks such
as the Botanic Gardens and East Coast Park are increasingly attractive destinations on the
basis of environmental amenities they offer, such as vegetation canopy and less heat-storing
concrete.

We apply our +0.6% and +0.9% estimates of park footfall on workdays and non-workdays
(Table 1, columns 4 and 5) to annual visitorship of 7 and 4 million at East Coast Park and
Botanic Gardens (NPB, 2022), using our footfall sample to distribute this visitor density
over workdays and non-workdays. Every unseasonable +1 ◦C attracts +1400 visitors to
these two parks per week (five workdays and two non-workdays).

This calculation is conservative in that it ignores the many other parks including smaller
neighbourhood ones (Yu and Hien, 2006) and areas of managed vegetation. Assuming each
of 5.6 million residents visits an urban green space once every fortnight (no official data are
available), every unseasonable +1 ◦C week attracts +10,000 visitors.

Commercial-park activity in the two main datasets. Figure A.11 and Table A.7
show no significant impact of heat on footfall in commercial parks—Jurong Bird Park and
the Singapore Zoo. Similarly, Table A.10 shows statistically insignificant estimates of heat
on public transit to and from these commercial parks.

It may be that the composition of visitors differs between these pay-for-entry parks and
the public parks, e.g., the former has a larger share of tourists (MTI, 2019) (captured by
footfall if they carry StarHub phone cards), or that visitors’ flexibility to reschedule varies. If
anything, it would appear from the point estimates for the different time intervals shown in
Figure A.11 that commercial-parks visitors may shift their visits to earlier in the day to avoid
the afternoon heat, though estimates are not significantly different from zero. Moreover, both
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commercial parks close to visitors at 18:00 (Figure A.1(d)), recalling that the heat-induced
increase in public-park attendance is largest in the evening (Figure A.11).

Foreign worker visits to public parks in the commuter sample. We find some
evidence that commuting between stops serving low-income foreign worker dormitories and
Jurong Central Park increases on hotter days (Figure A.30). This public park is relatively
close to some of the larger dormitories and workers are known to congregate there on their
days off.

Overall public transit (including non-residents). We analyse public transit rider-
ship aggregated to the citywide level, irrespective of the nature of travel, e.g., a resident’s
work or recreation, a tourist’s activity. The evidence presented in Figure A.9 suggests that
heat induces a reallocation of travel within the workday, away from the early afternoon and
toward the typically cooler morning and evening. Given our finding that heat increases foot-
fall in indoor spaces and outdoor public parks, the evidence is also consistent with increased
travel by car/taxi.

Rain and daily activity. We briefly discuss estimates on rain. We estimate some
significantly negative effects of rain on footfall in parks, particularly on non-workdays. Rain
does not impact footfall in offices and malls. We estimate significantly negative effects of rain
on public transit in the industrial zone and in commercial areas, perhaps because of substitu-
tion to car travel, including taxi and ride-hailing. However, this adverse effect of rain tends
to shrink toward zero for low-income groups, with low-income commuters seeming to man-
age despite the rain. We do not obtain significant impacts of rain on student attendance at
schools. We interpret the evidence as consistent with tropical—and thus showery—Singapore
having covered its main footpaths, e.g., linking bus/rail stops to commercial and residential
buildings, to attract commuters to public transit. This provides further evidence of adapta-
tion to the current climate, and note that Singapore’s climate going forward is forecast to
become wetter (NCCS, 2022).

B.2 Individual-level panel models

We estimate individual FE models of school attendance and test scores at a large private
school:

fit = Wtβ +Xitγ + αi + αt + ϵit, (4)

where fit denotes the particular outcome for student i on date t (attendance or test score),
Xit are time-varying individual characteristics (e.g., student age bins one-year wide) with
associated parameter vector γ, and αi are individual FE.

We also implement individual FE regressions to examine time at a location or away from
home. Here, individual i is a cardholder. Tables A.11 and A.12 examine individual-level
panels that are conditional on commuters taking public transit to and from workplaces or
malls, or to leave and return home. A 1 ◦C rise in the daily maximum heat index is associated
with increased daily durations at the industrial zone, at the Central Business District, or
away from home of 0.3%, 0.6%, and 0.3%, respectively.

Table A.15 below, based instead on Household Travel Surveys that include travel on all
modes, confirms that on hotter days, people are more likely to go out and to a commercial
area, significantly so among low-income groups.
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B.3 Attendance and test scores at a large private school

We examine individual-level daily attendance records between 2012 and 2016 at UWCSEA.
With climate control across its buildings, this school provides a high-adaptation benchmark
and in this sense complements the main analysis. Figure A.31 shows the heat-attendance re-
lationship in the raw data. Table A.13 shows that heat has a precisely estimated zero impact
on student attendance at this school. In column 3, a 1 ◦C rise in the daily maximum heat
index has a 0.00 effect (s.e. 0.03) on student attendance. With sample mean attendance of
95.64 every 100 schooldays, this is a 0.00/95.64 impact. Including environmental conditions
over the preceding three calendar days does not change the result. We note that for this
school, heat does not raise attendance, as we estimated to be the case for air-conditioned
establishments in Singapore’s wider population of schools. This may partly be due to the
school’s ample resources, including resourceful parents who may be more willing to run the
air conditioner at home if the child is absent on hot days (Liu and Salvo, 2018).

We now turn to standardized test scores between 2015 and 2020 at the same school—a
second individual-level panel with only 24 schooldays of testing (and environmental variation)
compared with 947 schooldays of attendance in the first panel. In our preferred specification,
where besides year FE we include time trends that vary across test-takers in Grades 3-10,
heat has no significant effect on test outcomes (Table A.14, column 4).23 Our results differ
from Graff Zivin et al. (2018) who find that ambient temperatures starting at 26 ◦C (79 ◦F)
impair child performance—in a setting with less adaptation than ours.

B.4 Large-scale household travel surveys

Figure A.32 is based on 24,000 one-day travel diaries spanning workdays from June 2012
to May 2013 from the Household Travel Survey. That year, the LTA collected the postal
code for each trip’s destination. The purpose of each trip was also recorded. Recall that
this enabled our research assistants to assess a probability that each destination-building
offered air conditioning to its users. The assessed probability can be interpreted as the share
of space in the building with cooling, separately for workers and for shoppers. Overall, air-
conditioned destinations are prevalent in the samples, with 75% of work trips and 59% of
shopping trips destined for buildings that have at least an 80% space-cooling share.

We then split the sample of trips into those occurring on days with above- vs. below-
median heat. We alternatively consider the median of (i) the daily maximum heat index
over days in 2012/13 or (ii) the deseasoned daily maximum heat index. The plots show
that, relative to cooler days, the distribution of trips over the destination building cooling
share significantly shifts to the right on hotter days.24 Specifically, buildings with at least
an 80% cooling share account for 60% of shopping destinations on days with above-median
heat compared with 53% of shopping Similarly, the distribution of work destinations shifts
in the direction of more space cooling on hotter vs. cooler days. Because most workplaces
are fixed, we interpret the evidence as consistent with hotter days being associated with

23Linear time trends account for any grade-specific inflation in test scores, e.g., Grade 3 tests becoming
“easier” over time. The year FE imply that identifying variation is across testing dates within a year. We
reject adverse effects of magnitude greater than (0.73− 1.96× 1.58)/1070 = −0.2% of the mean score.

24In terms of travel mode, shopping trips to less cooled buildings have a greater share of walking/cycling,
those to more cooled buildings have a greater share of motorized travel. Plausibly, heat induces a shift in
the composition of retail sales, away from local shops/eateries (“mom and pops”) towards malls.



Heat and activity in the tropics A.13

greater attendance among workers with space-cooled workplaces relative to workers without
air conditioning.

Table A.15 uses the combined sample of respondent-dates in the 2012/13 and 2016/17
Household Travel Survey to examine the impact of a day’s heat on the likelihood that
a respondent that day (i) leaves home, goes to work (if a worker), goes to a shopping
destination, and (ii) travels in a mode not covered in our commuter sample, i.e., car/taxi,
walk/cycle. We also examine (iii) the time associated with these activities.

The evidence is consistent with that in the footfall and commuter samples. Compared
with cooler weather, on unseasonably hot days people are more likely to go out and end
up in a shopping area, significantly so among low-income respondents—see the note on
the joint significance of βheat + βheat,lowIncome in the table’s caption.25 Relative to cooler
days, low-income respondents on hotter days tend to spend more time away from home and
more time on shopping/dining trips. Estimates of a day’s heat on the likelihood of workers
going to work and the time spent working are insignificant in this sample, possibly because
respondents include workers with less cooling in the workplace (recall Figure A.32).

B.5 Retail activity

Table A.16 shows economically and statistically insignificant effects of heat in a monthly
panel of sales quantity indices for 18 retail sectors (1997-2020). This non-significance result
is robust to restricting the sample to the six F&B sectors and examining for heterogeneous
effects according to the type of F&B sector, specifically eateries (sales of prepared food for
immediate consumption as in restaurants) vs. non-eateries (supermarkets’ sales of food typ-
ically for subsequent preparation). We do not detect differences in retail activity—including
food retail—in unseasonably hotter vs. cooler months.

B.6 Back-of-the-envelope of expanded space cooling in tropical
Jakarta

We were not able to find studies of the relationship between heat and mortality for the rapidly
developing megacity of Jakarta, or even for Indonesia. So we take estimated heat-related
excess mortality in Southeast Asia for the “current” period of 2010-2019 from Gasparrini
et al. (2017), specifically a 95% CI of 0.5 to 3.6%.26 Applying this 95% CI of heat-related
excess mortality to Jakarta’s entire population of 10.2 million, of which 66,800 die each
year (WHO, 2023), yields 330 to 2400 heat deaths annually. Here we focus on Jakarta’s
elderly subpopulation (persons aged 65 and above) of 380,000, of which 26,400 die each
year (WHO, 2023). We were not able to find age-specific heat-related excess mortality, so
we conservatively take that for the overall population. This yields 130 to 950 heat-induced
deaths among the elderly each year.

To value the health damage from heat exposure in Jakarta, we follow Viscusi and Mas-
terman (2017) and adjust a measure of the value of a statistical life (VSL) for the US to that

25Similar to the commuter sample, low-income status is 1 if more than 40% of dwellings in the respondent’s
residential building, which we observe, are 1-3 room apartments, and 0 otherwise.

26See their Table S1 showing Southeast Asia as the region with the highest heat-related excess mortality
among nine regions of the world—both due to climate and to human development conditions.
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in low-income Jakarta based on relative incomes:

V SLJakarta = V SLUS ×
(
YJakarta

YUS

)
. (5)

Viscusi and Masterman use V SLUS = $9.6 million and YUS = $56, 620 (2015 GNI per
capita), which along with YJakarta = $8975 (2019 GDP per capita at market exchange rates,
per Statistics Indonesia (2023)), yields V SLJakarta = $1.5 million. If we do not adjust the
VSL according to age, the value of preventing heat-induced elderly mortality in Jakarta is
$0.20 to $1.4 billion each year. Aldy and Viscusi (2007) discuss why VSL may differ with
age (e.g., lower life expectancy, higher incomes) and we note that a “senior discount,” while
controversial, may be about 20 to 37% (i.e., one-fifth to almost two-fifths less).

Only to fix ideas, we weigh the above benefit calculation against the cost of technologies
that would move developing Jakarta’s heat-induced health damage to that inflicted on rich
Singapore, for which we are not able to reject zero (Tables A.17 and A.18). We crudely
assume that adaptation takes the form of providing space-cooled centres to host vulnerable
seniors, which we take to be the number of elderly Jakartans times the fraction without air
conditioning at home: 380, 000 × (1 − 0.3) = 266, 000. Importantly, our cost calculation
focused on heat shelters (Friedman, 2022; Meko and Grullon Paz, 2022) ignores the many
human systems such as education and medical services that accompany investments in built
infrastructure and evolve as a city grows richer.

There are no guidelines for occupancy density of cooling space that we are aware of.
Instead, we follow recommendations in Section 502 of the International Code Council’s Stan-
dard for the Design and Construction of Storm Shelters (ICC, 2020), specifically a minimum
of 5 square feet (sq ft) per person for tornado community storm shelters and 20 sq ft per
person for hurricane community storm shelters. The difference in recommendations is due
to the difference in expected shelter duration: 2 hours for a tornado and 24 hours for a
hurricane.

Since cooling centres typically operate only during the day, we lean towards the tornado
recommendation and use 10 sq ft (0.93 square meter) per person, which results in a required
space of 266, 000 × 0.93 = 247, 000 sqm. The average rental rate of mall space in Jakarta,
inclusive of electricity and air conditioning, at the end of 2019 was $694 per sqm per year
(Cushman and Wakefield, 2019). The annual cost of renting 247,000 sqm inclusive of energy
consumption is $0.17 billion. Assuming one care staff per 30 elderly visitors, each care staff
valued at the median annual salary for nurses in Jakarta of $7000, adds a wage bill of $0.06
billion. Assuming the year-round operation of these cooling centres (270 kWh per sqm per
year, per JICA (2009)), adding the climate damage from coal-fired electricity (0.96 kg of
CO2 per kWh) valued at a social cost of carbon dioxide of $185 per ton of CO2 (Rennert
et al., 2022) takes the annual cost of abating heat-induced deaths to $0.25 billion.
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Table A.1: Summary statistics in the footfall and commuter samples (including school AC)

No. obs. Mean Std. dev. Min. Max.

June to August of 2016 and 2017

Heat index, daily maximum (◦C) 3128 35.81 1.83 30.68 39.70
Air temperature, daily maximum (◦C) 3128 30.80 1.22 27.27 33.12
Air temperature, one-hour mean (◦C) 3122 29.06 1.71 23.59 33.12
Relative humidity, one-hour mean (%) 3128 73.80 9.45 45.52 98.82
PM2.5, one-hour mean (µg/m3) 3128 14.32 8.88 2.80 172.60
Rainfall, one-hour sum (mm) 3128 0.25 1.22 0.00 17.93
Wind speed, one-hour mean (m/s) 3128 2.60 1.17 0.18 6.40
Footfall in office towers (three locations) 6144 994.99 560.70 44 2210
Footfall in shopping malls (five) 14,720 1930.52 1531.19 30 10,534
Footfall in public parks (two) 5888 9021.53 3373.83 2170 24,035
Footfall in commercial parks (two) 3680 494.26 277.72 30 1900
Median dwell time (minutes, 12 locations) 15,032 116.69 144.62 10 667

October to December of 2015 and 2016

Heat index, daily maximum (◦C) 3128 35.34 1.67 29.51 39.22
Air temperature, daily maximum (◦C) 3128 31.03 1.30 26.67 33.22
Air temperature, one-hour mean (◦C) 3128 28.57 2.01 22.83 33.22
Relative humidity, one-hour mean (%) 3128 74.19 11.45 42.75 98.90
PM2.5, one-hour mean (µg/m3) 3128 23.03 26.74 2.60 210.20
Rainfall, one-hour sum (mm) 3128 0.34 1.45 0.00 22.90
Wind speed, one-hour mean (m/s) 3128 2.38 1.13 0.07 7.17
Arrivals to the industrial zone 4352 680.45 1389.41 5 6810
Departures from the industrial zone 4352 583.10 858.32 6 4495
Arrivals at commercial areas (80 locations) 471,040 446.32 1530.41 0 36,541
Departures from commercial areas 471,040 434.35 1559.38 0 36,154
Student arrivals at school stops (1284) 236,256 54.28 143.31 0 4098
Student departures from school stops 236,256 53.67 139.48 0 3587
Air conditioning in classrooms (%) 2932 49.14 35.88 0 100

Notes: The sample periods are June to August of 2016 and 2017 (footfall sample, at the top) and October
to December of 2015 and 2016 (commuter sample, at the bottom). An observation is a (i) date-hour pair for
environmental variables, (ii) location-date-hour triple for footfall (...-bihour for dwell time), (iii) date-hour-income
group triple for industrial-zone arrivals/departures, (iv) location-date-hour-income group tuple for commercial-area
arrivals/departures, (v) school stop-schoolday pair for student arrivals/departures, or (vi) survey respondent-
school for air conditioning prevalence. Environmental statistics are for 6:00-22:59 on all days (except for the
daily maximum heat index and air temperature in which the maximum is taken over the 24 hours in a day).
Footfall/commuter statistics for (i) office towers are for 7:00-22:59 on workdays, (ii) the industrial zone are for
6:00-22:59 on workdays, (iii) commercial parks are for 9:00-18:59 on all days, and (iv) public parks and shopping
locations are for 7:00-22:59 on all days. Commuting is observed for the southwest industrial zone, each of 80
consolidated commercial areas, and 1284 school stops. Sources: NEA (temperature in 2016 & 2017, rainfall,
PM2.5), NUS Geography & Iowa State University Environmental Mesonet (temperature in 2015, relative humidity,
wind speed), StarHub (footfall), LTA (commuter flows), NUS student survey (air conditioning in schools).
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Table A.2: Second main dataset: Preparing the sample of trips by resident commuters who
are active during daytime hours

Cards in 2015 Cards in 2016

Cards in the raw data 7,216,805 7,336,058

Drop card(-quarter)s:
(a) only w/ days w/ non-residential first-departure & last-arrival stops -49,970 -56,552
(b) w/ non-residential modal first-departure stop & modal last-arrival stop -122,142 -129,341
(c) w/ modal first-departure stop and modal last-arrival stop not nearby (600m) -2,413,021 -2,469,937
(d) w/ < 8 first departures from the modal first-departure stop (or nearby stops) -1,408,070 -1,446,316

Cards in the sample of trips (baseline analysis) 3,223,602 3,233,912
75th percentile of the low-income share over 6,457,514 card-quarters: 0.401

Sensitivity analysis 1

Drop card(-quarter)s:
(d-1) w/ < 6 first departures from the modal first-departure stop (or nearby stops) -1,134,566 -1,171,021

Cards in the sample of trips (sensitivity analysis 1) 3,497,106 3,509,207
75th percentile of the low-income share over 7,006,313 card-quarters: 0.399

Sensitivity analysis 2

Drop card(-quarter)s:
(d-2) w/ < 10 first departures from the modal first-departure stop (or nearby stops) -1,625,830 -1,662,655

Cards in the sample of trips (sensitivity analysis 2) 3,005,842 3,017,573
75th percentile of the low-income share over 6,023,415 card-quarters: 0.403

Sensitivity analysis 3

Drop card(-quarter)s:
(d-3) w/ < 8 last arrivals at the modal last-arrival stop (or nearby stops) -1,409,115 -1,447,384

Cards in the sample of trips (sensitivity analysis 3) 3,222,557 3,232,844
75th percentile of the low-income share over 6,455,401 card-quarters: 0.401

Notes:The raw data comprise the trip segments of all individual bus and rail trips made throughout Singapore
in two quarters, October-December 2015 and October-December 2016, that were paid with an EZ-Link card,
Singapore’s public transit farecard. As explained in the text, we collapse trip segments into trips (see Figure
A.2 summarizing all trips in the raw data). Each card has its unique identifier; we observe trips in both
year-on-year quarters for 4,059,426 cards. We conduct the sampling procedure separately by quarter. To
map trips in the commuter data to the industrial zone, commercial areas, and the Central Business District,
by income group, we focus on a sample of residents who are active during daytime, typically departing
from home prior to returning home within a day, i.e., the card-quarter’s modal first-departure-in-day stop
and modal last-arrival-in-day stop are in a same residential area. This residential area allows us to assign
a (likely) income group to each card-quarter, based on the neighbourhood’s composition of dwelling types
(share of 1-3 room apartments among all dwellings in proximity to a card-quarter’s home stops). In three
robustness tests (Figures A.26 to A.28), we vary the commuting frequency threshold (d) from the baseline
“cardholder first departs from the modal first-departure stop (or any stop within 600 meters of this stop) at
least eight times during the quarter”.
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Table A.3: The impact of heat on public-transit arrivals or departures over all time intervals

Industrial zone Commercial areas Commercial areas
Workdays 6:00-22:59 Workdays 7:00-22:59 Non-workdays 10:00-22:59

Arrivals Departures Arrivals Departures Arrivals Departures
Log hourly arrivals or departures (1) (2) (3) (4) (5) (6)

Effects across both income groups

Daily max. heat index (1 ◦C) 0.0017 0.0067** 0.0010 0.0025*** -0.0030 -0.0032
(0.0026) (0.0034) (0.0011) (0.0009) (0.0026) (0.0030)

Number of regressors 35 35 113 113 102 102

Effects by income group

Daily max. heat index (1 ◦C) 0.0006 0.0057* -0.0002 0.0012 -0.0063** -0.0069**
(0.0028) (0.0035) (0.0011) (0.0011) (0.0029) (0.0032)

Low-income group × max. heat 0.0023*** 0.0019** 0.0024** 0.0025*** 0.0066*** 0.0075***
(0.0008) (0.0009) (0.0011) (0.0009) (0.0022) (0.0016)

Overall heat on low-income 0.0028 0.0077** 0.0022* 0.0037*** 0.0003 0.0006
(0.0025) (0.0033) (0.0013) (0.0010) (0.0027) (0.0031)

Number of regressors 38 38 116 116 105 105
R-squared 0.9934 0.9877 0.9032 0.9266 0.9302 0.9309

Number of observations 4352 4352 324,786 324,511 115,525 115,933
Mean of dep. var. levels (1000s) 0.6804 0.5831 0.4579 0.4472 0.4569 0.4918

Notes: This table shows results for 12 OLS regressions across two panels. It follows Table 2 exactly except
that the dependent variable is the log hourly number of arrivals or departures, and not the sum of arrivals and
departures. An observation is a date-hour-income group triple in columns 1-2 or a location-date-hour-income
group tuple in columns 3-6. All regressions control for concurrent PM2.5, rainfall, wind speed, hour-of-day
FE, day-type FE, year-month FE, and a low-income-group dummy. Columns 3-6 further include location
FE. Results are similar in the top panel if we collapse the data across both income groups. Given relatively
modest commuting at selected times, we specify the average hourly arrivals or departures within quarter-of-
sample as regression weights (specific to the location type and workdays/non-workdays). Standard errors,
in parentheses, are clustered by date. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.4: Heat, student income, school cooling, and attendance, by arrivals or departures

Student arrivals Student departures

Log daily student arrivals or Arrivals Arrivals+1 Depart Depart+1
departures at stops nearby schools (1) (2) (3) (4)

By student income group

Daily max. heat index (1 ◦C) 0.0063 0.0040 0.0052 0.0016
(0.0071) (0.0063) (0.0078) (0.0067)

Low-income group × max. heat 0.0038 0.0055 -0.0006 0.0045
(0.0025) (0.0045) (0.0036) (0.0044)

Overall heat on low-income 0.0101 0.0095 0.0047 0.0062
(0.0073) (0.0067) (0.0088) (0.0076)

No. of obs. (stop-schoolday-income) 157,718 185,422 156,393 185,422
Mean of dependent var. in levels 43.2584 37.7951 43.8798 38.0101

By school cooling

Daily max. heat index (1 ◦C) 0.0010 0.0011 -0.0002 -0.0023
(0.0109) (0.0101) (0.0119) (0.0112)

School cooling × max. heat 0.0268** 0.0247* 0.0177 0.0223*
(0.0124) (0.0129) (0.0119) (0.0126)

Overall heat with full cooling 0.0278*** 0.0258*** 0.0175* 0.0200**
(0.0096) (0.0095) (0.0091) (0.0092)

No. of obs. (stop-schoolday) 75,043 79,301 74,299 79,301
Mean of dependent var. in levels 79.4985 75.2299 81.5305 76.3879

By student income and school cooling

Daily max. heat index (1 ◦C) 0.0017 0.0025 0.0027 0.0007
(0.0105) (0.0098) (0.0112) (0.0104)

Low-income group × max. heat 0.0003 -0.0009 -0.0033 -0.0021
(0.0025) (0.0034) (0.0035) (0.0031)

School cooling × max. heat 0.0165 0.0122 0.0094 0.0088
(0.0112) (0.0110) (0.0110) (0.0107)

Low-income group × cooling × heat 0.0086*** 0.0123*** 0.0066*** 0.0112***
(0.0006) (0.0005) (0.0005) (0.0005)

No. of obs. (stop-schoolday-income) 136,985 158,602 135,942 158,602
Mean of dependent var. in levels 43.5508 38.6149 44.5604 39.1938

Notes: This table shows results for 12 OLS regressions across three panels. It follows Table 3 exactly except
that the dependent variable is the log daily number of student arrivals or departures, and not the sum of
arrivals and departures. In columns 2 and 4, we add 1 before taking logs to account for a minority (∼5%) of
zero-valued observations. Standard errors, in parentheses, are clustered by date (two-way clusters by date
and by school stop yield similar standard errors). ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.5: Heat and indoor activity on workdays, by time interval

Work Work/leisure Leisure

Log hourly footfall

Offices Malls Offices Malls Malls
7:00-9:59 7:00-9:59 17:00-19:59 17:00-19:59 20:00-22:59

(1) (2) (3) (4) (5)

Daily max. heat index (1 ◦C) 0.0071*** 0.0050** 0.0049** 0.0053** 0.0108***
(0.0022) (0.0020) (0.0022) (0.0022) (0.0042)

PM2.5 (10 µg/m3) -0.0013 0.0040 0.0016 -0.0007 0.0068
(0.0046) (0.0054) (0.0043) (0.0057) (0.0065)

Rainfall (1 mm) -0.0012 -0.0020 -0.0022 -0.0028 0.0010
(0.0038) (0.0017) (0.0041) (0.0026) (0.0113)

Number of observations 1152 1920 1152 1920 1920
Number of regressors 22 24 22 24 24
R-squared 0.9716 0.8640 0.8709 0.9267 0.9372
Mean of dep. var. in levels (1000s) 0.6965 0.4579 1.0155 2.5225 1.6283

Log hourly public transit

Industrial Commercial Industrial Commercial Commercial
zone area zone area area

Arrivals Arrivals Departures Departures Departures
6:00-9:59 7:00-10:59 17:00-19:59 17:00-19:59 20:00-22:59

(6) (7) (8) (9) (10)

Daily max. heat index (1 ◦C) -0.0012 0.0049** 0.0134* 0.0051 0.0011
(0.0035) (0.0023) (0.0077) (0.0037) (0.0017)

Low-income group × max. heat 0.0027*** 0.0028* 0.0024* 0.0020 0.0024**
(0.0010) (0.0014) (0.0014) (0.0013) (0.0012)

PM2.5 (10 µg/m3) -0.0165 -0.0060 -0.0032 -0.0017 -0.0020**
(0.0109) (0.0040) (0.0021) (0.0012) (0.0009)

Low-income group × PM2.5 0.0021*** 0.0001 0.0008 0.0008 0.0003
(0.0007) (0.0013) (0.0006) (0.0011) (0.0011)

Rainfall (1 mm) -0.0076*** -0.0034 -0.0075*** -0.0048*** -0.0067***
(0.0022) (0.0022) (0.0027) (0.0014) (0.0021)

Low-income group × rainfall 0.0070*** 0.0038** -0.0012* 0.0019 -0.0048
(0.0020) (0.0017) (0.0007) (0.0022) (0.0041)

Number of observations 1024 81,544 768 61,277 61,074
Number of regressors 25 104 24 103 103
R-squared 0.9819 0.9293 0.9823 0.9561 0.9484
Mean of dep. var. in levels (1000s) 2.5255 0.6331 1.9405 0.8641 0.5665

Notes: This table shows results for 10 OLS regressions. An observation is a location-date-hour triple in
columns 1-5, a date-hour-income group triple in columns 6 and 8, or a location-date-hour-income group
tuple in columns 7 and 9-10, on workdays during the indicated time interval. In columns 1-5, the dependent
variable is the log hourly footfall at an office tower (3 locations) or a mall (5 locations). In columns 6-10, the
dependent variable is the log hourly number of bus/rail arrivals or departures in the industrial zone (a single
aggregated location) or in a commercial area (80 locations). All regressions control for concurrent wind speed,
hour-of-day FE, day-type FE, and year-month FE. As day-type FE, separate indicators denote: Monday,
..., Friday when the public school system is in session; Monday, ..., Friday during vacations; Saturday; and
Sunday/public holiday. We further include location FE in columns 1-5, 7, and 9-10, and a low-income-
group dummy in columns 6-10. The joint impact of heat and its interaction with the low-income dummy is
significant at the 1% level in column 7, at 5% in columns 8 and 10, at 10% in column 9, and not significant
in column 6. Standard errors, in parentheses, are clustered by date. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.6: Heat and indoor activity on non-workdays, by time interval

10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
Log hourly footfall in malls (1) (2) (3) (4)

Daily max. heat index (1 ◦C) 0.0051 0.0047 0.0066** 0.0104**
(0.0038) (0.0034) (0.0030) (0.0045)

PM2.5 (10 µg/m3) 0.0046 -0.0046 -0.0079 -0.0001
(0.0043) (0.0091) (0.0078) (0.0072)

Number of observations 840 1120 840 840
Number of regressors 16 17 16 15
R-squared 0.9492 0.9452 0.9348 0.9203
Mean of dep. var. in levels (1000s) 1.9347 3.3752 3.4573 2.0798

Arrivals Arrivals Departures Departures
10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59

Log hourly public transit in commercial areas (5) (6) (7) (8)

Daily max. heat index (1 ◦C) -0.0023 -0.0069** -0.0095** -0.0059*
(0.0038) (0.0030) (0.0045) (0.0035)

Low-income group × max. heat 0.0072** 0.0064*** 0.0065*** 0.0072***
(0.0032) (0.0022) (0.0021) (0.0025)

PM2.5 (10 µg/m3) -0.0016 -0.0010 -0.0018 0.0007
(0.0023) (0.0012) (0.0022) (0.0029)

Low-income group × PM2.5 -0.0000 -0.0028*** -0.0023** 0.0012
(0.0011) (0.0008) (0.0009) (0.0019)

Rainfall (1 mm) -0.0125 -0.0065*** -0.0087*** 0.0218
(0.0097) (0.0014) (0.0018) (0.0137)

Low-income group × rainfall -0.0020 0.0018 0.0041*** -0.0041
(0.0073) (0.0020) (0.0006) (0.0155)

Number of observations 26,778 35,675 26,795 26,728
Number of regressors 95 96 95 95
R-squared 0.9389 0.9454 0.9491 0.9465
Mean of dep. var. in levels (1000s) 0.5451 0.5489 0.6113 0.5495

Notes: This table shows results for 8 OLS regressions. An observation is a location-date-hour triple in
columns 1-4 and a location-date-hour-income group tuple in columns 5-8, on weekends and public holidays
during the indicated time interval. In columns 1-4, the dependent variable is the log hourly footfall at a
mall (5 locations). In columns 5-8, the dependent variable is the log hourly number of bus/rail arrivals or
departures in a commercial area (80 locations). All regressions control for concurrent wind speed, hour-of-
day FE, day-type FE, year-month FE, and location FE. We further include a low-income-group dummy in
columns 5-8. Standard errors, in parentheses, are clustered by date. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.7: Heat and outdoor activity on workdays and non-workdays, by time interval

Public parks Commercial parks

7:00-9:59 17:00-19:59 20:00-22:59 9:00-12:59 13:00-18:59

Log hourly footfall, workdays (1) (2) (3) (4) (5)

Daily max. heat index (1 ◦C) 0.0058** 0.0081*** 0.0119*** 0.0063 -0.0008
(0.0026) (0.0030) (0.0029) (0.0045) (0.0041)

PM2.5 (10 µg/m3) 0.0122* -0.0010 0.0045 0.0022 -0.0066*
(0.0069) (0.0080) (0.0080) (0.0061) (0.0040)

Rainfall (1 mm) -0.0016 -0.0018 0.0059 -0.0006 -0.0041**
(0.0023) (0.0031) (0.0064) (0.0017) (0.0020)

Number of observations 768 768 768 1024 1536
Number of regressors 21 21 21 22 24
R-squared 0.9000 0.9152 0.9642 0.7449 0.8784
Mean of dep. var. in levels (1000s) 6.8969 9.6591 7.2087 0.4493 0.4602

Log hourly footfall, non-workdays (6) (7) (8) (9) (10)

Daily max. heat index (1 ◦C) 0.0077 0.0116** 0.0157*** 0.0039 -0.0085
(0.0049) (0.0057) (0.0054) (0.0083) (0.0070)

PM2.5 (10 µg/m3) 0.0029 -0.0319** -0.0246** -0.0115 -0.0208
(0.0086) (0.0130) (0.0102) (0.0146) (0.0256)

Rainfall (1 mm) -0.0031 -0.0167* -0.0109 -0.0037 -0.0159**
(0.0064) (0.0088) (0.0111) (0.0106) (0.0068)

Number of observations 336 336 336 448 672
Number of regressors 13 13 13 14 16
R-squared 0.9175 0.9337 0.9579 0.8585 0.9551
Mean of dep. var. in levels (1000s) 5.9010 11.9646 8.4200 0.5510 0.6027

Log hourly footfall, all days (11) (12) (13) (14) (15)

Daily max. heat index (1 ◦C) 0.0067*** 0.0095*** 0.0132*** 0.0055 -0.0036
(0.0025) (0.0027) (0.0026) (0.0041) (0.0035)

PM2.5 (10 µg/m3) 0.0111* -0.0072 -0.0033 0.0001 -0.0092
(0.0059) (0.0069) (0.0059) (0.0051) (0.0062)

Rainfall (1 mm) -0.0036 -0.0087*** 0.0024 -0.0006 -0.0066***
(0.0030) (0.0034) (0.0066) (0.0020) (0.0024)

Number of observations 1104 1104 1104 1472 2208
Number of regressors 23 23 23 24 26
R-squared 0.8802 0.9015 0.9531 0.5758 0.7941
Mean of dep. var. in levels (1000s) 6.5938 10.3608 7.5774 0.4803 0.5036

Notes:This table shows results for 15 OLS regressions. An observation is a park-date-hour triple, on workdays
(columns 1-5), non-workdays (columns 6-10), or in a pooled sample of workdays and non-workdays (columns
11-15), during the indicated time interval. The dependent variable is the log hourly footfall at a park (2
public parks in the first three columns or 2 commercial parks in the last two columns). All regressions control
for concurrent wind speed, hour-of-day FE, day-type FE, year-month FE, and location FE. Standard errors,
in parentheses, are clustered by date. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.8: Heat and footfall over all time intervals: A nonlinear heat specification

Offices Malls Public parks Commercial parks

Workdays Workdays Non-workdays Workdays Non-workdays Workdays Non-workdays
7:00-19:59 7:00-22:59 7:00-22:59 7:00-22:59 7:00-22:59 7:00-18:59 7:00-18:59

Log hourly footfall (1) (2) (3) (4) (5) (6) (7)

Daily max. heat index ∈ [34.5,37.5) -0.0017 0.0113 0.0006 0.0059 -0.0006 0.0010 0.0050
◦C (sample density: 64%) (0.0076) (0.0097) (0.0187) (0.0111) (0.0305) (0.0163) (0.0275)

Daily max. heat index ≥ 37.5 ◦C 0.0276*** 0.0266** 0.0669** 0.0142 0.0928** -0.0067 0.0453
(sample density: 16%) (0.0095) (0.0126) (0.0267) (0.0156) (0.0365) (0.0196) (0.0377)

PM2.5 (10 µg/m3) -0.0001 -0.0004 0.0006 -0.0003 -0.0179** 0.0004 -0.0137
(0.0018) (0.0030) (0.0055) (0.0039) (0.0072) (0.0059) (0.0157)

Rainfall (1 mm) 0.0008 -0.0001 0.0048 -0.0012 -0.0050** -0.0039** -0.0134**
(0.0008) (0.0014) (0.0043) (0.0013) (0.0025) (0.0018) (0.0057)

Number of observations 4992 10,240 4480 4096 1792 3072 1344
Number of regressors 33 38 30 35 27 31 23
R-squared 0.9520 0.9346 0.9501 0.8696 0.9245 0.7459 0.8088
Mean of dep. var. levels (1000s) 1.1700 1.7621 2.3154 8.7401 9.6649 0.4045 0.5018

Notes: This table shows results for 7 OLS regressions. It follows Table 1 exactly except that it replaces the
linear daily maximum heat variable with three daily maximum heat bins of width as indicated; the reference
bin is daily max. heat index ≤ 34.5 ◦C, with sample density of 20%. Standard errors, in parentheses, are
clustered by date. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.9: Heat and footfall over all time intervals: A lagged-heat specification

Offices Malls Public parks

Workdays Workdays Non-workdays Workdays Non-workdays
Log hourly footfall 7:00-19:59 7:00-22:59 7:00-22:59 7:00-22:59 7:00-22:59

Concurrent and prior day’s heat (1) (2) (3) (4) (5)

Daily max. heat index (1 ◦C) 0.0035* 0.0039* 0.0045* 0.0046 0.0078
(0.0019) (0.0022) (0.0026) (0.0030) (0.0047)

One-day lagged heat index (1 ◦C) 0.0023 0.0038 0.0037 0.0046 0.0014
(0.0019) (0.0023) (0.0028) (0.0030) (0.0050)

Overall heat today and yesterday 0.0058*** 0.0077** 0.0082** 0.0091** 0.0092
(0.0021) (0.0030) (0.0039) (0.0037) (0.0060)

PM2.5 (10 µg/m3) 0.0001 -0.0010 -0.0003 -0.0006 -0.0200**
(0.0019) (0.0029) (0.0060) (0.0035) (0.0077)

Rainfall (1 mm) 0.0007 -0.0002 0.0041 -0.0009 -0.0061**
(0.0009) (0.0014) (0.0043) (0.0013) (0.0029)

Number of observations 4914 10,080 4480 4032 1792
Number of regressors 33 38 30 35 27
R-squared 0.9517 0.9346 0.9498 0.8702 0.9204
Mean of dep. var. levels (1000s) 1.1692 1.7623 2.3154 8.7441 9.6649

Concurrent and prior two days’ heat (6) (7) (8) (9) (10)

Daily max. heat index (1 ◦C) 0.0027 0.0037* 0.0044 0.0035 0.0068
(0.0019) (0.0022) (0.0027) (0.0029) (0.0048)

One-day lagged heat index (1 ◦C) 0.0014 0.0030 0.0036 0.0036 0.0002
(0.0020) (0.0023) (0.0027) (0.0032) (0.0050)

Two-day lagged heat index (1 ◦C) 0.0039** 0.0024 0.0003 0.0052* 0.0038
(0.0016) (0.0026) (0.0026) (0.0031) (0.0054)

Overall heat today and past two days 0.0080*** 0.0091*** 0.0083* 0.0123*** 0.0108*
(0.0023) (0.0037) (0.0043) (0.0043) (0.0064)

PM2.5 (10 µg/m3) 0.0005 -0.0010 -0.0002 -0.0001 -0.0195**
(0.0018) (0.0030) (0.0061) (0.0035) (0.0082)

Rainfall (1 mm) 0.0014 0.0001 0.0041 -0.0001 -0.0060**
(0.0009) (0.0015) (0.0043) (0.0013) (0.0028)

Number of observations 4836 9920 4480 3968 1792
Number of regressors 34 39 31 36 28
R-squared 0.9518 0.9345 0.9498 0.8704 0.9205
Mean of dep. var. levels (1000s) 1.1687 1.7604 2.3154 8.7417 9.6649

Notes: This table shows results for 10 OLS regressions. It follows Table 1 exactly except that it includes the
daily maximum heat index on the previous day in columns 1-5 and the daily maximum heat index on the
previous two days in columns 6-10. We also report overall cumulative effects, given serial correlation in heat:
the pairwise correlation coefficient between the daily maximum heat index and the daily maximum heat
index lagged one day (resp., two days) is 0.42 (resp., 0.37). Standard errors, in parentheses, are clustered by
date. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.10: Heat and commuter traffic at bus stops serving commercial parks (all days)

5 bus stops 3 bus stops (excl. more industrial)

Arrivals at Departures from Arrivals at Departures from
commercial commercial commercial commercial
park stops park stops park stops park stops
9:00-12:59 14:00-19:59 9:00-12:59 14:00-19:59

Log hourly bus arrivals or departures (1) (2) (3) (4)

Daily max. heat index (1 ◦C) -0.0091 -0.0050 -0.0079 -0.0034
(0.0098) (0.0066) (0.0104) (0.0073)

Low-income group × max. heat -0.0075 -0.0058 -0.0040 -0.0081
(0.0088) (0.0050) (0.0091) (0.0064)

PM2.5 (10 µg/m3) -0.0063 -0.0014 -0.0054 0.0007
(0.0076) (0.0042) (0.0076) (0.0044)

Low-income group × PM2.5 0.0046 -0.0006 0.0001 -0.0028
(0.0067) (0.0033) (0.0070) (0.0032)

Rainfall (1 mm) -0.0300*** 0.0017 -0.0293*** 0.0052
(0.0085) (0.0063) (0.0083) (0.0060)

Low-income group × rainfall -0.0330* -0.0041 -0.0267* -0.0072
(0.0171) (0.0049) (0.0156) (0.0051)

Number of observations 2924 4416 2914 4401
Number of regressors 28 30 28 30
R-squared 0.7895 0.7873 0.8059 0.8001
Mean of dep. var. in levels (1000s) 0.0380 0.0428 0.0374 0.0395

Notes: This table shows results for 4 OLS regressions. An observation is a location-date-hour-income group
tuple, including workdays and non-workdays, during the indicated time interval (based on Figure A.10).
The dependent variable is the log hourly number of arrivals at or departures from bus stops serving two
commercial-park locations: the Jurong Bird Park, comprising up to four stops (stops 21301, 21309, 22011,
22019), and the Singapore Zoo, comprising one stop (48131 at the Zoo gate). Columns 1-2 consider all four
stops by the Bird Park, whereas columns 3-4 exclude the two more industrial stops, 21301 and 21309, on the
transversal Jurong Pier Road that runs along the Park’s east side and likely serve industrial workers too. All
regressions control for concurrent wind speed, hour-of-day FE, day-type FE, year-month FE, location FE,
and a low-income-group dummy. Standard errors, in parentheses, are clustered by date. ∗∗∗Significant at
1%, ∗∗at 5%, ∗at 10%.
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Table A.11: Heat and duration in the industrial zone and in the Central Business District

Duration observed conditional on public transit to and from the...
...Industrial zone ...Central Business District

Minutes Log(Minutes) Minutes Log(Minutes)

Workday Workday Workday Non-workday Workday Non-workday
(1) (2) (3) (4) (5) (6)

Daily max. heat index 1.6922* 0.0034* 2.2530** 0.5866 0.0055** 0.0028
(1 ◦C) (0.8727) (0.0019) (1.1357) (0.5054) (0.0026) (0.0021)

Low-income group -0.0135 0.0003 0.0798*** -0.0093 0.0002** -0.0000
× max. heat (0.0791) (0.0003) (0.0284) (0.0352) (0.0001) (0.0001)

Daily mean PM2.5 -0.2886 -0.0007 -0.4705* 0.0168 -0.0010 0.0007
(10 µg/m3) (0.2441) (0.0006) (0.2803) (0.2018) (0.0007) (0.0008)

Low-income group -0.1533 -0.0006 -0.1532** 0.1993*** -0.0006*** 0.0005
× PM2.5 (0.1287) (0.0004) (0.0753) (0.0680) (0.0002) (0.0004)

Daily mean rainfall -1.5318 -0.0031 -3.3131 0.0481 -0.0075 -0.0032
(1 mm/h) (1.5234) (0.0034) (2.4206) (2.2961) (0.0059) (0.0095)

Low-income group 0.4363 0.0013 0.7544 0.0428 0.0014 0.0027
× rainfall (0.4039) (0.0011) (0.4771) (0.5119) (0.0013) (0.0024)

Number of obs. 1,785,153 1,785,153 21,971,208 5,966,222 21,971,208 5,966,222
No. of regr. (excl. FE) 20 20 20 12 20 12
Cardholder FE Yes Yes Yes Yes Yes Yes

(86,822) (86,822) (1,687,189) (1,066,545) (1,687,189) (1,066,545)
Mean of dep. var. (levels) 561.1630 561.1630 443.5021 285.4774 443.5021 285.4774

Notes: This table shows results for 6 fixed effects regressions. An observation is a cardholder-date, on
workdays or non-workdays as indicated. The dependent variable is the time elapsed (or the log of the time
elapsed) between a cardholder’s arrival at the indicated location—industrial zone or Central Business District
(CBD)—and their departure from the same location later on the same day. While this duration measure is
at the individual rather than aggregate level, a limitation is that it is observed conditional on the cardholder
riding public transit to and from the location, that is, for both legs of the journey. As such, it ignores the
positive extensive margin of heat (Table 2 and Figure A.7). All regressions control for daily mean wind
speed, day-type FE, and year-month FE. The low-income-group dummy is subsumed in the individual FE.
Standard errors, in parentheses, are two-way clustered by cardholder and by date. ∗∗∗Significant at 1%, ∗∗at
5%, ∗at 10%.
A workday sample mean of 561 minutes (9.4 hours daily) in the industrial zone is (i) comparable to “average
weekly paid hours worked per employee” reported for 2016 by MOM (2017) of 48.9 hours for manufacturing
(9.8 hours daily) and (ii) somewhat higher than the mean time at work of 444/0.868 = 512 minutes (8.5
hours daily) among workers who went to work on workdays in the Household Travel Survey (Table A.15).
A workday sample mean of 444 minutes (7.4 hours daily) in the CBD is somewhat lower than the average
weekly paid hours worked per employee reported by MOM (2017) of 41.1 hours for financial & insurance
services (8.2 hours daily). This is consistent with some commuters to the CBD being visitors to the downtown
attractions or for business meetings in the CBD, rather than CBD workers.
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Table A.13: Heat and school attendance at a large private school

Student attendance: Outcome Control Control Control Control Flexible
is 100 if the enrolled student is PM2.5 (Aug rain and mean Wt−1 morning max. heat
present on the school day, and 2012 on) wind to Wt−3 rain bins
0 otherwise (1) (2) (3) (4) (5) (6)

Daily max. heat index (1 ◦C) 0.01 0.01 0.00 0.00 0.00
(sample range: 26.0 to 38.5 ◦C) (0.02) (0.03) (0.03) (0.02) (0.03)

Daily max. heat index: Mean 0.04
past 3 calendar days (1 ◦C) (0.04)

Daily max. heat index ∈ [31.5,33.5) -0.13
◦C (sample density: 33%) (0.11)

Daily max. heat index ∈ [33.5,35.5) -0.14
◦C (sample density: 46%) (0.13)

Daily max. heat index ≥ 35.5 ◦C -0.04
(sample density: 12%) (0.17)

Daily mean PM2.5 (10 µg/m3) -0.06** -0.05* -0.05 -0.05* -0.05*
(sample range: 6 to 157 µg/m3) (0.03) (0.03) (0.04) (0.03) (0.03)

PM2.5: Mean past 3 calendar -0.01
days (10 µg/m3) (0.05)

Daily mean rainfall (1 mm/h) -0.02 -0.02 -0.03
(sample range: 0 to 4.9 mm/h) (0.04) (0.04) (0.04)

Rainfall: Mean past 3 calendar 0.07
days (1 mm/h) (0.08)

Morning rain, 6:00-8:00 (1 mm/h) -0.04***
(sample range: 0 to 25.5 mm/h) (0.01)

Wind speed Yes Yes Yes Yes
Wind speed: Mean past 3 days Yes
Number of observations 3,857,189 3,590,288 3,590,288 3,585,629 3,590,288 3,590,288
No. of regressors (excl. FE) 103 93 95 99 95 97
Student FE Yes (9067) Yes (8913) Yes (8913) Yes (8913) Yes (8913) Yes (8913)
Mean of dependent variable 95.68 95.64 95.64 95.64 95.64 95.64

Notes: This table shows results for 6 fixed effects regressions. An observation is an enrolled student-schoolday
in the period August 2011 to November 2016 for the East campus and August 2012 to November 2016 for
the Dover campus. The dependent variable is 100 (%) if the student is present on the schoolday and 0
otherwise. There are 947 schooldays in the sample. Besides student FE, all specifications include day-type
FE (day-of-week dummies, dummies for different days surrounding vacations, breaks and public holidays),
year-month FE, student age bins (one-year wide), a campus dummy (may vary within student), dummies for
the number of siblings enrolled at the school (may vary within student), and an indicator for the student’s
first year of enrolment (which may coincide with the student’s first year in Singapore). Column 2 adds a
control for daily mean PM2.5, which is missing prior to August 2012. Column 3 adds controls for daily mean
rainfall and wind speed. Column 4 adds controls for the means over the three preceding calendar days of
daily maximum heat, daily mean PM2.5, daily mean rainfall, and daily mean wind speed. Because classes
at this school all start at 8:00, column 5 replaces daily mean rainfall with morning mean rainfall (6:00 to
8:00). Column 6 repeats the specification of column 3 but replaces the linear daily maximum heat variable
with three daily maximum heat bins of width as indicated; the reference bin is daily max. heat index ≤ 31.5
◦C, with sample density of 10%. Standard errors, in parentheses, are clustered by date (two-way clusters by
date and by student yield very similar standard errors). ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.14: Heat and student test scores at a large private school

Standardized score on the day’s test (1) (2) (3) (4) (5)

Daily max. heat index (1 ◦C) 4.90*** 3.09* 3.03* 0.73 4.22***
(sample range: 31.9 to 38.3 ◦C) (1.66) (1.66) (1.77) (1.58) (1.07)

PM2.5 (10 µg/m3) 8.07 10.77* 8.67
(sample range: 10.1 to 24.7 µg/m3) (9.98) (6.15) (5.75)

Daily mean rainfall (1 mm/h) -0.25 5.25 -0.18
(sample range: 0 to 1.7 mm/h) (2.90) (3.73) (2.65)

Year FE Yes Yes Yes
Grade-specific linear time trends Yes Yes
Number of observations 29,544 29,544 29,544 29,544 29,544
No. of regressors (excl. FE) 10 15 18 26 21
Student FE Yes (6004) Yes (6004) Yes (6004) Yes (6004) Yes (6004)
Mean of dependent variable 1070.41 1070.41 1070.41 1070.41 1070.41

Notes: This table shows results for 5 fixed effects regressions. An observation is a student-date for which an
International Schools Assessment (ISA) test was administered between 2015 and 2020, specifically, two dates
per campus (Dover and East) for each of the six years, and thus 2 × 2 × 6 = 24 testing dates in all—and
always in January or February, thus fixing seasonality. The dependent variable is a student’s test score on
a date, i.e., the sum of maths and narrative writing scores on a first day of testing or the sum of reading
and exposition writing scores on a second day of testing. Besides student FE, all specifications include a
day-type dummy (maths and narrative writing tested on a first day vs. reading/exposition writing tested on
a second day), a campus dummy, and grade FE (Grades 3 to 10). Column 2 adds year FE. Column 3 adds
controls for daily mean PM2.5, rainfall, and wind speed. Column 4 adds grade-specific linear time trends
to account for, e.g., any grade-specific inflation in test scores. Standard errors, in parentheses, are clustered
by date (two-way clusters by date and by student yield very similar standard errors). ∗∗∗Significant at 1%,
∗∗at 5%, ∗at 10%.
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Table A.16: The impact of heat on retail sales volume

All 18 sectors 6 Food & Beverage sectors

including F&B No heterogeneity With heterogeneity
Log of the monthly sectoral index (1) (2) (3)

One-month mean of daily max. heat -0.0008 0.0016 -0.0104
index (1 ◦C) (0.0017) (0.0025) (0.0147)

Eateries dummy × max. heat 0.0188
(0.0188)

One-month mean of pollution index × Pre April 0.0002 0.0002 -0.0050
2014 dummy (range 24 to 84 points) (0.0002) (0.004) (0.0034)

Eateries dummy × pollution index 0.0082*
pre April 2014 (0.0049)

One-month mean of pollution index × Post April 0.0003 0.0003** -0.0025**
2014 dummy (range 37 to 113 points) (0.0002) (0.0002) (0.0010)

Eateries dummy × pollution index 0.0042***
post April 2014 (0.0006)

One-month mean of rainfall (1 mm/h) -0.0707*** 0.0031 -0.0209
(0.0219) (0.0334) (0.0408)

Eateries dummy × rainfall 0.0385
(0.0276)

Number of observations 4956 1632 1632
Number of regressors (excl. sector FE) 39 39 43
Sector FE Yes (18) Yes (6) Yes (6)

Notes:This table shows results for 3 OLS regressions. An observation is a retail sector-month. The dependent
variable is the log of the monthly index (2014 = 100, by sector) of chained volume for the sample period
January 1997 to December 2020. See the Appendix for a list of the 18 retail sectors; two sectors (Department
Stores and Food Caterers) have partial availability. All regressions control for one-month mean of wind speed,
month FE, and year FE. We control for pollution using the NEA’s Pollution Standards Index because PM2.5
records begin only in 2009. As explained in the Appendix, our pollution covariates (the pollution index
interacted with a pre-April 2014 dummy and the pollution index interacted with a post-April 2014 dummy)
account for a major change in the pollution index’s composition on April 1, 2014. Column 1 includes all
18 retail sectors. Columns 2-3 restrict the estimation sample to the 6 Food & Beverage (F&B) sectors. In
column 3, we include interact a subset of environmental conditions (heat, pollution, rainfall) and a dummy
equal to 1 for the F&B sectors comprising eateries (services that refer to the sales of prepared food and drinks
for in-premises consumption, e.g., Restaurants) and 0 for the non-eateries sectors (retail stores not meant
for immediate consumption within their premises, e.g., Supermarkets). The eateries dummy is subsumed in
the sector FE. Robust standard errors are in parentheses. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.17: The impact of heat on health polyclinic visits and disease incidence

Panel 1(a): Weekly polyclinic visits (in log.) with concurrent heat and PM2.5

Upper respiratory Sum of
infection Diarrhoea Conjunctivitis Chickenpox 4 categories

1-week mean of daily max. heat index (1 ◦C) -0.010*** 0.002 -0.010** -0.019** -0.008***
(0.004) (0.003) (0.005) (0.008) (0.003)

1-week mean of PM2.5 (10 µg/m3) 0.010*** -0.021*** 0.018*** 0.000 0.006**
(0.003) (0.002) (0.004) (0.006) (0.003)

Observations 383 383 383 383 383
R-squared 0.676 0.841 0.416 0.478 0.718
Number of regressors 25 25 25 25 25
Mean dep. var. in levels (visits/week) 19,381.81 3633.43 621.67 100.38 23,737.29

Panel 1(b): Weekly polyclinic visits (in log.) with concurrent heat and PM2.5, and their lags

Upper respiratory Sum of
infection Diarrhoea Conjunctivitis Chickenpox 4 categories

Sum of concurrent 1-week mean of daily max. -0.020*** 0.004 -0.019*** -0.027*** -0.016***
heat index (1 ◦C) and 1-week lag (0.005) (0.003) (0.006) (0.010) (0.004)

Sum of concurrent 1-week mean of 0.010** -0.025*** 0.018*** -0.003 0.005
PM2.5 (10 µg/m3) and 1-week lag (0.004) (0.003) (0.005) (0.007) (0.004)

Observations 382 382 382 382 382
R-squared 0.690 0.844 0.425 0.485 0.730

Panel 2(a): Weekly incidence (in log.) with concurrent heat and PM2.5

Hand-foot-and- Sum of all 21
mouth disease Dengue Salmonella diseases reported

1-week mean of daily max. heat index (1 ◦C) 0.003 0.067*** 0.031*** 0.017
(0.013) (0.020) (0.010) (0.012)

1-week mean of PM2.5 (10 µg/m3) -0.028** 0.042*** -0.003 -0.000
(0.012) (0.009) (0.007) (0.007)

Observations 383 383 379 383
R-squared 0.886 0.807 0.213 0.709
Number of regressors 25 25 25 25
Mean dep. var. in levels (cases/week) 546.78 230.87 36.78 836.16

Panel 2(b): Weekly incidence (in log.) with concurrent heat and PM2.5, and their lags

Hand-foot-and Sum of all 21
mouth disease Dengue Salmonella diseases reported

Sum of concurrent 1-week mean of daily max. 0.002 0.114*** 0.049*** 0.026*
heat index (1 ◦C) and 1-week lag (0.015) (0.024) (0.015) (0.014)

Sum of concurrent 1-week mean of -0.043*** 0.045*** -0.006 -0.004
PM2.5 (10 µg/m3) and 1-week lag (0.010) (0.010) (0.010) (0.008)

Observations 382 382 378 382
R-squared 0.888 0.815 0.221 0.710

Notes: This table shows results for 18 OLS regressions. An observation is an epidemiological week, starting
on a Sunday and ending the subsequent Saturday. The sample period spans (the week ending) September
1, 2012 to December 28, 2019 (constrained by PM2.5 availability). In panel 1, the dependent variable is
log weekly polyclinic visits by disease type or their sum (only four categories are reported). In panel 2, the
dependent variable is log weekly incidence by disease type (among the three more prevalent) or the sum
of all 21 continuously reported diseases. In each panel, the first set of regressions (a) includes concurrent
heat and PM2.5 whereas the second set of regressions (b) additionally includes one-week heat and PM2.5
lags (and we report the sum of the coefficient estimates of the variable and its lag). The key regressor of
interest, one-week mean of the daily maximum heat index, exhibits a range of 30.4 to 40.6 ◦C. All regressions
control for concurrent wind speed, share of day type (Sundays/public holidays, school vacations), month FE
(based on the last day of the week), and year FE. The data are from Singapore’s Ministry of Health. Robust
standard errors are in parentheses. ∗∗∗Significant at 1%, ∗∗at 5%, ∗at 10%.
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Table A.18: The impact of heat on all-cause mortality and infant mortality

Log deaths Log infant deaths

1-month mean of daily max. heat index (1 ◦C) 0.011 0.003
(0.008) (0.091)

1-month mean of PM2.5 (10 µg/m3) 0.002 0.024
(0.005) (0.056)

1-month rainfall (mm) 0.002 -0.013
(0.003) (0.031)

Observations 88 88
R-squared 0.770 0.268
Number of regressors 25 25
Mean of dep. var. in levels (deaths/month) 1680.78 7.47

Notes: This table shows results for 2 OLS regressions. An observation is a calendar month. The sample
period spans September 2012 to December 2019 (constrained by PM2.5 availability). The dependent variable
is log monthly deaths or log monthly infant deaths. The key regressor of interest, one-month mean of the
daily maximum heat index, exhibits a range of 32.1 to 39.7 ◦C. Regressions control for concurrent rainfall
and wind speed, share of day type (Sundays/public holidays, school vacations), month FE, and year FE.
The data are from Singapore’s Registry of Births and Deaths. Robust standard errors are in parentheses.
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Figure A.1: Footfall’s diurnal cycle, by location type. We generate separate time series
by summing footfall within location type, i.e., (a) across three office towers, (b) across five
malls, (c) across two public parks, and (d) across two commercial parks. An observation in
these time series is a date-hour (within location type). Taking each time series, we regress
footfall on hour fixed effects (FE), day-type FE, and year-month FE, and plot 95% CI for
the hour-by-hour predictions (holding other covariates at their observed values). The office
tower footfall regression restricts the sample to workdays. The sample period is June to
August of 2016 and 2017.
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(d) All departures, non-workdays

Figure A.2: Bus/rail arrivals at any destination point and departures from any origin point
on public transit, separately for workdays and non-workdays. Here we do not restrict trips
to cardholders with a likely residential location but consider all travel linked to a transit
farecard (see Table A.2 describing the raw data with 7.2 million cards used in 2015 and
7.3 million in 2016). This includes trips by tourists who purchased transit farecards during
their visits. We generate separate time series by summing arrivals or departures across
Singapore within date-hour (by workdays vs. non-workdays). Taking each time series, we
regress the number of riders on hour FE, day-type FE, and year-month FE, and plot 95%
CI for the hour-by-hour predictions. Day-type FE indicate that there is more commuting on
Friday than on Monday, on Saturday than on Sunday/public holiday, and when schools are
in session than when schools are on vacation.
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Figure A.3: Heterogeneity measures used to analyse the commuter data. (a) Distribution
of the low-income share across resident commuters who are active during daytime hours
(1=all dwellings in the neighbourhood are 1-3 room apartments). An observation is a card-
quarter pair (Table A.2 reporting 3.2 million cards in Oct-Dec 2015 and 3.2 million cards
in Oct-Dec 2016). The sampling procedure finds each card’s (1) modal first-departure stop
and (2) modal last-arrival stop over travel dates in the quarter, each stop described by the
low-income share of the residential population it serves. A card-quarter’s low-income share
is then the average low-income share for these two “home” stops. The 75th percentile across
card-quarters in the sample is 0.40, marked in the figure. We assign the one-quarter of
card-quarters on the right-hand side of the vertical line to the low-income group. Table A.2
shows that this 75th percentile is not sensitive to how we define resident commuters. (b,c)
Distribution of air conditioning in “classrooms in which instruction took place” across (b)
176 middle/high schools (1=fully air conditioned, median over multiple survey responses for
the same school) and (c) 1163 bus/rail stops that serve these schools (1=all schools served by
the stop are fully air conditioned). The distribution across stops (and regression estimates)
are similar if instead of land area we use the number of survey responses as school weights.
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(e) Humidity: Jun-Aug, 2016 & 2017
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(f) PM2.5: Jun-Aug, 2016 & 2017
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Figure A.4: Environmental conditions in our commuter (first row) and footfall (second row)
samples: (a) and (d) show one-hour air temperature (◦C), (b) and (e) one-hour relative
humidity (%), (c) and (f) one-hour PM2.5 (µg/m3). An observation in (a) to (f) is a date-
hour pair in the indicated sample restricted to hours of most economic activity (6:00-22:59).
An observation in (g) to (i) is a date in our two samples. From the one-hour temperature
and one-hour relative humidity we compute the one-hour heat index and, in (g), show the
daily maximum heat index (◦C, maximum taken over the 24 hours within a date). Daily
maximum heat index residuals in (h) partial out year-month means to account for the mild
seasonality observed in the tropics and year-to-year variation; substantial variation in the
daily maximum heat remains. (i) compares the daily maximum heat index (◦C) to the daily
maximum temperature (◦C, maximum taken over the 24 hours within a date); the latter
does not account for humid conditions.
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(g) Shopping departures, high income
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(h) Shopping departures, low income

Figure A.5: Bus/rail arrivals to and departures from: (a) to (d) the industrial zone, and (e)
to (h) 80 consolidated commercial areas across Singapore and their adjacent office towers,
by income group (in the resident trip sample). We generate separate time series by summing
arrivals or departures within location type, i.e., industrial zone or across commercial areas
(and income group). An observation in these time series is a date-hour (within location type
and income group). Taking each time series, we regress the number of commuters on hour
FE, day-type FE, and year-month FE, and plot 95% CI for the hour-by-hour predictions.
The industry commuter regressions restrict the sample to workdays.
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(d) CBD departures, low income

Figure A.6: Bus/rail arrivals to and departures from the Central Business District (CBD) on
workdays, by income group (in the resident trip sample; less than 1% of card-quarters reside
in the CDB and here we drop these trips). We generate separate time series by summing
arrivals or departures across the 76 bus stops and 9 rail stations in the “downtown core”
area. An observation in these time series is a date-hour (within income group). Taking each
time series, we regress the number of commuters on hour FE, day-type FE, and year-month
FE, and plot 95% CI for the hour-by-hour predictions.
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Response of business district arrivals to heat, by income group

(a) CBD, bus/rail arrivals, workdays 7:00-9:59
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Response of business district departures to heat, by income group

(b) CBD, bus/rail depart., workdays 17:00-19:59

Figure A.7: The impact of heat on public transit to and from the Central Business District
(CBD) on workdays. Panel a shows impacts, by income group, on arrivals during the morning
peak, i.e., the 7:00-9:59 time interval. Panel b shows impacts on departures during the
evening peak, i.e., the 17:00-19:59 time interval. Source: Regression specifications similar
to those reported in Table 2, in which the dependent variable is the log hourly number of
bus/rail arrivals or departures in the “downtown core” area, and an observation is a date-
hour-income group on workdays during the indicated time interval. The plots show 95% CI
on the coefficient on the daily maximum heat index, βheat, and on the sum of this coefficient
and the interaction coefficient, βheat+βheat,lowIncome, converted from log points to a percent
change.
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Response to heat in malls: Non-workdays

(a) Malls, footfall, non-workdays
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Low vs. high income diff. response of shopping-area arrivals to heat

(b) Commercial areas, bus/rail arrivals, non-workdays
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Low vs. high income diff. response of shopping-area departures to heat

(c) Commercial areas, bus/rail departures, non-workdays

Figure A.8: The impact of heat on indoor activities—and public transit to these activities—
during weekends and public holidays, for different time intervals. Source: Regression
specifications reported in Table A.6. The plots show 95% CI, converted from log points
to a percent change. Panels b and c show the differential public transport demand response
to heat by low-income neighbourhood residents relative to the high-income group, i.e., 95%
CI on the coefficient βheat,lowIncome as reported in Table A.6 (converted to a percent change).
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(a) All areas, bus/rail arrivals, workdays
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Response of all-origin departures to heat

(b) All areas, bus/rail departures, workdays
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Response of all-destination arrivals to heat

(c) All areas, bus/rail arrivals, non-workdays

-2
-1

0
1

2
%

 c
ha

ng
e 

in
 d

ep
ar

tu
re

s 
du

e 
to

 a
 1

 °C
 in

cr
ea

se

6:00-9:59 10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
 

Response of all-origin departures to heat

(d) All areas, bus/rail departures, non-workdays

Figure A.9: The impact of heat on public transit ridership at the citywide level, for different
time intervals. The top panels show estimates based on workday observations and the bottom
panels show non-workdays. Source: Regression specifications similar to those reported in
Table 2 implemented on date-hour level time series of arrivals aggregated over all destination
points (left panels) or departures aggregated over all origin points (right panels). Here we
do not restrict trips to cardholders with a likely residential location but consider all travel
linked to a transit farecard (see Table A.2 describing the raw data with 7.2 million cards
used in 2015 and 7.3 million in 2016). This includes trips by tourists who purchased transit
farecards during their visits. See Figure A.2 summarizing all trips in the raw data. The
plots show 95% CI on the coefficient on the daily maximum heat index, converted from log
points to a percent change.
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(b) Commercial-park arrivals, low income
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(c) Commercial-park departures, high income
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(d) Commercial-park departures, low income

Figure A.10: Arrivals to and departures from bus stops serving commercial parks, by income
group (in the resident trip sample). We generate separate time series by summing arrivals or
departures across five stops serving the Jurong Bird Park (and surrounding industry) and the
Singapore Zoo (in an isolated area). An observation in these time series is a date-hour (within
income group). Taking each time series, we regress the number of commuters on hour FE,
day-type FE, and year-month FE, and plot 95% CI for the hour-by-hour predictions. Neither
location was served by rail. Compared with open-access public parks, these commercial
venues are expensive to visit and attract a large share of tourists who often arrive by private
tour bus or taxi (not observed in the commuter data). In panels a and b, arrivals before 9:00
are concentrated in the two more industrial bus stops nearby the Bird Park; arrivals peak at
10:00 in a subsample that excludes these two stops (21301 and 21309). The slight increase
in arrivals around 17:00 is likely due to the Night Safari, a relatively small operation that is
adjacent to the Singapore Zoo.



Heat and activity in the tropics A.43

-.5
0

.5
1

1.
5

2
%

 c
ha

ng
e 

in
 fo

ot
fa

ll 
du

e 
to

 a
 1

 °C
 in

cr
ea

se

7:00-9:59 10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
 

Response to heat in public parks: Workdays

(a) Public parks, footfall, workdays
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Response to heat in commercial parks: Workdays

(b) Commercial parks, footfall, workdays
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Response to heat in public parks: Non-workdays

(c) Public parks, footfall, non-workdays
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Response to heat in commercial parks: Non-workdays

(d) Commercial parks, footfall, non-workdays
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Response to heat in public parks: All days

(e) Public parks, footfall, all days
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Response to heat in commercial parks: All days

(f) Commercial parks, footfall, all days

Figure A.11: The impact of heat on outdoor leisure-related activities, for different time
intervals. The top panels show estimates based on workday observations, middle panels
show non-workdays, and the bottom panels are based on a pooled sample of workdays and
non-workdays. The Jurong Bird Park and the Singapore Zoo close in the evening so the
right panels use a sample with hourly observations no later than 19:00. Source: Regression
specifications similar to those reported in Table 1 (with narrower time intervals). The plots
show 95% CI, converted from log points to a percent change.
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(a) Office towers, median dwell time
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(b) Malls, median dwell time
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(c) Public parks, median dwell time

Figure A.12: Dwell time’s diurnal cycle, by location type. The dwell time complements the
footfall measure described in Figure A.1. It captures the length of time, in minutes, that a
phone remains in a location, pinging a triangulation of cell phone towers. The initial ping
determines the bihourly interval in which it contributes to the data. Pinged phones with
dwell time less than 5 minutes are excluded, as these may reflect passing foot traffic. For
each location, date, bihour triple (e.g., City Square Mall, 6/1/2016, 18:00-19:59), we observe
the 10th, 25th, 50th, 75th, and 90th percentiles of the distribution of dwell time for phones
first pinged at the location-date-bihour. We generate separate time series by taking the
mean across locations of the median dwell time for each date-bihour pair. An observation in
these time series is a date-bihour (within location type). Taking each time series, we regress
(the mean of the median) dwell time on bihour FE, day-type FE, and year-month FE, and
plot 95% CI for the bihour-by-bihour predictions (holding other covariates at their observed
values). The office tower dwell time regression restricts the sample to workdays. The sample
period is June to August of 2016 and 2017.
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Response to heat in offices: Workdays

(a) Office towers, dwell time, workdays
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Response to heat in malls: Workdays

(b) Malls, dwell time, workdays
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(c) Malls, dwell time, non-workdays
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(d) Public parks, dwell time, all days

Figure A.13: The impact of heat on dwell time in offices, malls, and parks, as described in
Figure A.12, for different time intervals at which persons carrying phones enter a location.
Source: Regression specifications similar to those reported in Table 1 except that the depen-
dent variable is the log of median dwell time and an observation is a location-date-bihour
triple (with the estimation sample based on narrower time intervals, as indicated). The plots
show 95% CI on the coefficient on the daily maximum heat index, converted from log points
to a percent change. We verified that results based on the 25th or 75th, rather than 50th,
percentile of the dwell time distribution are similar.
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(c) Malls, footfall, non-workdays
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(d) Public parks, footfall, all days
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(e) Daytime max vs. daily 24-hour max heat

Figure A.14: Sensitivity analysis: Thermal discomfort. Instead of the maximum heat index
over the 24 hours in a day, we specify the “daytime” maximum heat index, with daytime
hours defined between 6:00 and 22:00. In Singapore, relative humidity rises over the afternoon
and night and falls during the morning (sample means are 86% at 6:00 and 66% at 14:00).
Due to the high humidity after midnight, for 4% of days the heat index is maximal before
6:00 (otherwise heat usually peaks between 12:00 and 15:00). Compare panels a and b to
Figure 2(a,b). Compare panel c to Figure A.8(a). Compare panel d to Figure A.11(e). The
plots show 95% CI on the coefficient on the daytime maximum heat index, converted from
log points to a percent change. The bottom panel plots the daytime (6:00-22:00) maximum
heat index (this sensitivity analysis) against the 24-hour daily maximum heat index (main
specification) for days in our sample.



Heat and activity in the tropics A.47

-1
0

1
2

3
%

 c
ha

ng
e 

in
 fo

ot
fa

ll 
du

e 
to

 a
 1

 °C
 in

cr
ea

se

7:00-9:59 10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
 

Response to heat in offices: Workdays
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(b) Malls, footfall, workdays
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(c) Malls, footfall, non-workdays
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(d) Public parks, footfall, all days
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(e) Apparent temperature vs. heat index

Figure A.15: Sensitivity analysis: Thermal discomfort. Instead of the daily maximum heat
index, we specify the daily maximum “apparent temperature.” Apparent temperature in-
creases in temperature and relative humidity and decreases in wind speed (Steadman, 1994;
ABM, 2010). In Singapore, wind tends to be higher in the afternoon relative to the morning
and night. We compute the one-hour apparent temperature from one-hour air temperature,
relative humidity, and wind speed, and take the maximum apparent temperature value over
the 24 hours of each day. Compare panels a and b to Figure 2(a,b). Compare panel c to
Figure A.8(a). Compare panel d to Figure A.11(e). The plots show 95% CI on the coefficient
on the daily maximum apparent temperature, converted from log points to a percent change.
We control for wind speed in the footfall regression equation but findings are similar if we
drop this regressor. The bottom panel plots the daily maximum apparent temperature (this
sensitivity analysis) against the daily maximum heat index (main specification) for days in
our sample.
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(b) Malls, footfall, workdays

0
1

2
3

%
 c

ha
ng

e 
in

 fo
ot

fa
ll 

du
e 

to
 a

 1
 °C

 in
cr

ea
se

10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
 

Response to heat in malls: Non-workdays

(c) Malls, footfall, non-workdays
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(d) Public parks, footfall, all days
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(e) Humidex index vs. heat index

Figure A.16: Sensitivity analysis: Thermal discomfort. Instead of the daily maximum heat
index, we specify the daily maximum “Humidex” index. Like the heat index, Humidex is
a function of temperature and relative humidity (Masterson and Richardson, 1979; Buzan
et al., 2014). We compute the one-hour Humidex from one-hour air temperature and relative
humidity, and take the maximum humidex value over the 24 hours of each day. Compare
panels a and b to Figure 2(a,b). Compare panel c to Figure A.8(a). Compare panel d to
Figure A.11(e). The plots show 95% CI on the coefficient on the daily maximum Humidex,
converted from log points to a percent change. The bottom panel plots the daily maximum
Humidex (this sensitivity analysis) against the daily maximum heat index (main specifica-
tion) for days in our sample.
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(b) Malls, footfall, workdays
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(c) Malls, footfall, non-workdays
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(d) Public parks, footfall, all days
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(e) Temp.-humidity index (THI) vs. heat index

Figure A.17: Sensitivity analysis: Thermal discomfort. Instead of the daily maximum heat
index, we specify the daily maximum “temperature-humidity discomfort index” (THI) (Chow
et al., 2016). We compute the one-hour THI from one-hour air temperature and relative
humidity, and take the maximum THI value over the 24 hours of each day. Compare panels
a and b to Figure 2(a,b). Compare panel c to Figure A.8(a). Compare panel d to Figure
A.11(e). The plots show 95% CI on the coefficient on the daily maximum THI, converted
from log points to a percent change. The bottom panel plots the daily maximum THI (this
sensitivity analysis) against the daily maximum heat index (main specification) for days in
our sample.
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Response to heat in public parks: All days

(d) Public parks, footfall, all days

Figure A.18: Sensitivity analysis: Air quality control. We drop concurrent PM2.5 as a
covariate in the regression specification. Compare panels a and b to Figure 2(a,b). Compare
panel c to Figure A.8(a). Compare panel d to Figure A.11(e). The plots show 95% CI on the
coefficient on the daily maximum heat index, converted from log points to a percent change.
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(a) Office towers, footfall, workdays

-.5
0

.5
1

1.
5

%
 c

ha
ng

e 
in

 fo
ot

fa
ll 

du
e 

to
 a

 1
 °C

 in
cr

ea
se

7:00-9:59 10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
 

Response to heat in malls: Workdays
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Response to heat in public parks: All days

(d) Public parks, footfall, all days

Figure A.19: Sensitivity analysis: Weather controls. We drop concurrent rainfall and wind
speed as covariates in the regression specification. Compare panels a and b to Figure 2(a,b).
Compare panel c to Figure A.8(a). Compare panel d to Figure A.11(e). The plots show
95% CI on the coefficient on the daily maximum heat index, converted from log points to a
percent change.
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Response to heat in public parks: All days

(d) Public parks, footfall, all days

Figure A.20: Sensitivity analysis: Rainy afternoons. We drop from the estimation sample the
one-quarter of dates with more rainy afternoons, defined as mean afternoon (12:00 to 16:00)
rainfall of at least 0.35 mm/h (the 75th percentile of mean afternoon rainfall over all days
in the sample). The objective is to check whether days with rainy afternoons are directly
influencing our findings, e.g., if a rainy afternoon lowers a day’s maximum heat and this
directly keeps people at home instead of going to the mall or the park in the evening. (We
still control for concurrent rainfall in the regression specification.) Compare panels a and b
to Figure 2(a,b). Compare panel c to Figure A.8(a). Compare panel d to Figure A.11(e).
The plots show 95% CI on the coefficient on the daily maximum heat index, converted from
log points to a percent change.
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Response to heat in public parks: All days

(d) Public parks, footfall, all days

Figure A.21: Sensitivity analysis: Seasonality control. Instead of year-month (month-of-
sample) fixed effects (FE), we specify month FE and year FE in the regression specification.
Compare panels a and b to Figure 2(a,b). Compare panel c to Figure A.8(a). Compare
panel d to Figure A.11(e). The plots show 95% CI on the coefficient on the daily maximum
heat index, converted from log points to a percent change.
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(c) Malls, footfall, non-workdays
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Response to heat in public parks: All days

(d) Public parks, footfall, all days

Figure A.22: Sensitivity analysis: Functional form for activity. Instead of log hourly footfall,
we specify the dependent variable as hourly footfall in the regression specification. Compare
panels a and b to Figure 2(a,b). Compare panel c to Figure A.8(a). Compare panel d to
Figure A.11(e). The plots show 95% CI on the coefficient on the daily maximum heat index,
in persons/hour/location per +1 ◦C.
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(c) Malls, footfall, non-workdays
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(d) Public parks, footfall, all days

26
28

30
32

34
36

38
D

ai
ly

 m
ed

ia
n 

he
at

 in
de

x 
(o C

)

28 30 32 34 36 38 40
Daily maximum heat index (oC)

(e) Daily median vs. maximum heat index

Figure A.23: Sensitivity analysis: Instead of the daily maximum heat index, we specify
the concurrent one-hour heat index. Compare panels a and b to Figure 2(a,b). Compare
panel c to Figure A.8(a). Compare panel d to Figure A.11(e). The plots show 95% CI on
the coefficient on the one-hour heat index, converted from log points to a percent change.
The bottom panel plots a day’s median heat index against its maximum heat index, both
measures taken over 24 one-hour realizations in a day. For days in our sample, the pairwise
correlation coefficient of the two measures is 0.61. There is little density at low realizations of
the median and high realizations of the maximum, in the bottom right corner of the scatter.
Most of the density lies along a positive gradient that is downward shifted from the diagonal.
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Response to heat in malls: Workdays

(b) Malls, footfall, workdays
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Response to heat in malls: Non-workdays

(c) Malls, footfall, non-workdays
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Response to heat in public parks: All days

(d) Public parks, footfall, all days

Figure A.24: Sensitivity analysis: Instead of the daily maximum heat index, we specify the
one-hour heat index lagged by 1 hour, e.g., heat during the hour starting at 7:00 to explain
footfall over the hour starting at 8:00. We also specify one-hour lags for the PM2.5, rainfall,
and wind speed controls. Compare panels a and b to Figure 2(a,b). Compare panel c to
Figure A.8(a). Compare panel d to Figure A.11(e). The plots show 95% CI on the coefficient
on the prior hour’s heat index, converted from log points to a percent change.
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Response to heat in offices: Workdays

(a) Office towers, footfall, workdays
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Response to heat in malls: Workdays

(b) Malls, footfall, workdays
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Response to heat in malls: Non-workdays

(c) Malls, footfall, non-workdays
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Response to heat in public parks: All days

(d) Public parks, footfall, all days
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(e) Morning max vs. 24-hour max heat index

Figure A.25: Sensitivity analysis: Instead of the maximum heat index over the 24 hours in
a day, we specify the “morning maximum” heat index, defining morning as 0:00 to 10:00.
Compare panels a and b to Figure 2(a,b). Compare panel c to Figure A.8(a). Compare
panel d to Figure A.11(e). The plots show 95% CI on the coefficient on the early-morning
maximum heat index, converted from log points to a percent change. The bottom panel plots
this early-morning maximum against the 24-hour maximum heat index (main specification)
for days in our sample. For days in our sample, the pairwise correlation coefficient of the two
measures is 0.77. There is little density at low realizations of the early-morning maximum
and high realizations of the 24-hour maximum, in the bottom right corner of the scatter.
Most of the density lies along a positive gradient that is downward shifted from the diagonal.
Days with high heat peaks tend to exhibit hot mornings, i.e., hot mornings signal hot days.
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Response of industrial-zone arrivals to heat, by income group

(a) Industry, bus/rail arrivals, workdays 6:00-9:59
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Response of industrial-zone departures to heat, by income group

(b) Industry, bus/rail depart., workdays 17:00-19:59
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Response of shopping-area arrivals to heat, by income group

(c) Shopping, bus/rail arrivals, workdays 7:00-10:59
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Response of shopping-area departures to heat, by income group

(d) Shopping, bus/rail depart., workdays 17:00 to 22:59
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Low vs. high income diff. response of shopping-area arrivals to heat

(e) Shopping, bus/rail arrivals, non-workdays
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Low vs. high income diff. response of shopping-area departures to heat

(f) Shopping, bus/rail departures, non-workdays

Figure A.26: Sensitivity analysis: Varying the sample of trips by residents who are active
during daytime hours. Here we define a resident commuter as a “cardholder who first departs
from the modal first-departure stop (or any stop within 600 meters of this stop) at least six
times during the quarter”—rather than eight times. See sensitivity analysis 1 in Table A.2
(3.5m cards in 2015 and 2016 alike). Compare panels a to d to Figure 2(c-f). Compare
panels e and f to Figure A.8(b,c). The plots show 95% CI.
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Response of industrial-zone arrivals to heat, by income group

(a) Industry, bus/rail arrivals, workdays 6:00-9:59
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Response of industrial-zone departures to heat, by income group

(b) Industry, bus/rail depart., workdays 17:00-19:59
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Response of shopping-area arrivals to heat, by income group

(c) Shopping, bus/rail arrivals, workdays 7:00-10:59
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Response of shopping-area departures to heat, by income group

(d) Shopping, bus/rail depart., workdays 17:00 to 22:59
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Low vs. high income diff. response of shopping-area arrivals to heat

(e) Shopping, bus/rail arrivals, non-workdays
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Low vs. high income diff. response of shopping-area departures to heat

(f) Shopping, bus/rail departures, non-workdays

Figure A.27: Sensitivity analysis: Varying the sample of trips by residents who are active
during daytime hours. Here we define a resident commuter as a “cardholder who first departs
from the modal first-departure stop (or any stop within 600 meters of this stop) at least 10
times during the quarter”—rather than eight times. See sensitivity analysis 2 in Table A.2
(3.0m cards in 2015 and 2016 alike). Compare panels a to d to Figure 2(c-f). Compare
panels e and f to Figure A.8(b,c). The plots show 95% CI.
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Response of industrial-zone arrivals to heat, by income group

(a) Industry, bus/rail arrivals, workdays 6:00-9:59
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Response of industrial-zone departures to heat, by income group

(b) Industry, bus/rail depart., workdays 17:00-19:59
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Response of shopping-area arrivals to heat, by income group

(c) Shopping, bus/rail arrivals, workdays 7:00-10:59
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Response of shopping-area departures to heat, by income group

(d) Shopping, bus/rail depart., workdays 17:00 to 22:59
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Low vs. high income diff. response of shopping-area arrivals to heat

(e) Shopping, bus/rail arrivals, non-workdays
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Low vs. high income diff. response of shopping-area departures to heat

(f) Shopping, bus/rail departures, non-workdays

Figure A.28: Sensitivity analysis: Varying the sample of trips by residents who are active
during daytime hours. Here we define a resident commuter as a cardholder who last arrives at
the modal last-arrival stop—rather than first departs from the modal first-departure stop—
(or any stop within 600 meters of this stop) at least eight times during the quarter. See
sensitivity analysis 3 in Table A.2 (3.2m cards in 2015 and 2016 alike). Compare panels a
to d to Figure 2(c-f) Compare panels e and f to Figure A.8(b,c). The plots show 95% CI.
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(a) Dorm stop departures
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(b) Dorm stop arrivals
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(c) Dorm stop departures to commercial areas
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(d) Dorm stop arrivals from commercial areas
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(e) Dorm stop departures to Jurong Central Park
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(f) Dorm stop arrivals from Jurong Central Park

Figure A.29: Departures from and arrivals at bus stops serving foreign worker dormitories.
Here we pool the sample across all days because low-income foreign workers do not follow the
typical weekly business calendar. We generate separate time series by summing arrivals or
departures over 153 bus stops located within 600 meters of a dorm (and not nearby residential
buildings or malls). No dorm was served by rail. The top panels consider departures from
dorms to any destination point (resp., arrivals at dorms from any origin point) on public
transit. The middle panels restrict departures from dorms to (resp., arrivals at dorms from)
commercial areas. The bottom panels restrict departures from dorms to (resp., arrivals at
dorms from) Jurong Central Park—a public park that is popular among foreign workers.
Taking each time series, we regress the number of riders on hour FE, day-type FE, and
year-month FE, and plot 95% CI for the hour-by-hour predictions.



A.62 The Economic Journal

-2
-1

0
1

%
 c

ha
ng

e 
in

 d
ep

ar
tu

re
s 

du
e 

to
 a

 1
 °C

 in
cr

ea
se

6:00-9:59 10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
 

Response of dormitory-stop departures to heat

(a) Dorm stop departures
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Response of dormitory-stop arrivals to heat

(b) Dorm stop arrivals
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Response of dormitory-stop departures to heat

(c) Dorm stop departures to commercial areas

-1
0

1
2

%
 c

ha
ng

e 
in

 a
rri

va
ls

 d
ue

 to
 a

 1
 °C

 in
cr

ea
se

6:00-9:59 10:00-12:59 13:00-16:59 17:00-19:59 20:00-22:59
 

Response of dormitory-stop arrivals to heat

(d) Dorm stop arrivals from commercial areas
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Response of dormitory-stop departures to heat

(e) Dorm stop departures to Jurong Central Park
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Response of dormitory-stop arrivals to heat

(f) Dorm stop arrivals from Jurong Central Park

Figure A.30: The impact of heat on departures from and arrivals at bus stops serving foreign
worker dormitories, for different time intervals (Figure A.29 summarizes these trips). Source:
Regression specifications similar to those reported in Table 2 implemented on date-hour level
time series of log hourly number of departures (left panels) or log hourly number of arrivals
(right panels) aggregated over 153 bus stops located within 600 meters of a dorm. The plots
show 95% CI on the coefficient on the daily maximum heat index, converted from log points
to a percent change.
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(a) Deseasoned heat
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(b) Deseasoned heat net of year means

Figure A.31: The ambient heat-student attendance relationship at a large private school
with extensive climate control. We take the daily maximum heat index recorded for each
of the 947 schooldays in the 2011-2016 UWCSEA student-level daily attendance panel and
partial out (top panel) month fixed effects or (bottom panel) year-month fixed effects to
account for mild tropical seasonality and year-to-year changes. We then take percentiles
of the distribution of heat residuals and plot the mean attendance rate (%) across enrolled
students and schooldays in each percentile bin. In each panel, we fit a kernel-weighted local
polynomial smoothing curve.
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(b) Work on days above vs. below median deseasoned heat
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(c) Shopping on days above vs. below median heat
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(d) Shopping on days above vs. below median deseasoned heat

Figure A.32: Distribution of (a,b) 11,164 work trips and (c,d) 3955 shopping trips over the
destination building’s cooling share, in the 2012/13 Household Travel Survey. An observation
is a respondent-trip on workdays between June 25, 2012 and May 30, 2013. Our research
assistants—who were not given access to travel dates—were able to assess a space-cooling
share for 3871 work destinations and 822 shopping destinations, accounting for 90% and
95% of total work and shopping destinations in the raw data. In the left panels, we split the
“trip over destination’s cooling share” distributions according to whether the trip happened
on days with above vs. below median heat (the median applied in-sample, i.e., to the vector
of daily maximum heat index realizations between June 2012 and May 2013). In the right
panels, we split the distributions according to whether the trip happened on days with above
vs. below median heat after removing month means from the daily maximum heat index
realizations. Kolmogorov-Smirnov tests of equality (above- vs. below-median heat) reject at
the 1% level of significance in panels a, c, and d and has p-value 0.13 for b, maybe because
work attendance responds less to heat within month than across months, e.g., workers in
less air-conditioned workplaces choose holidays in July.
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