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Online Learning with Nonlinear Models
Doyen SAHOO

Abstract

Recent years have witnessed the success of two broad categories of machine learn-

ing algorithms: (i) Online Learning; and (ii) Learning with nonlinear models. Typi-

cal machine learning algorithms assume that the entire data is available prior to the

training task. This is often not the case in the real world, where data often arrives

sequentially in a stream, or is too large to be stored in memory. To address these

challenges, Online Learning techniques evolved as a promising solution to having

highly scalable and efficient learning methodologies which could learn from data

arriving sequentially. Next, as the real world data exhibited complex nonlinear pat-

terns, it warranted the need for development of learning techniques that could search

complex hypotheses space. Among the most notable successful methods for learn-

ing nonlinear models are kernel methods and deep neural networks. While these

models enable searching complex hypothesis to learn models with a better perfor-

mance, they are mostly designed for the batch setting which affects their scalability,

and they also suffer from the difficulty in selecting the right hypothesis search space

(e.g. which kernel to use, what architecture of neural network to use, etc.). In this

dissertation we study the intersection of both these fields, and design novel algo-

rithms that combine the merits of both online learning and nonlinear models by

proposing methods that can learn nonlinear models in an online setting. Specifi-

cally, we investigate Online Learning Algorithms for Multiple Kernel Learning and

Deep Neural Networks.

Multiple Kernel Models represent a class of high capacity models which are

designed for learning highly nonlinear patterns, and also designed to handle multi-

modal data. Despite the promising ability, Multiple Kernel Learning is computa-

tionally very expensive, and it is a significantly challenging task to use such models



in the online setting. In this dissertation we propose novel Online Multiple Kernel

Algorithms, and make the following contributions:

• We propose Online Multiple Kernel Regression Algorithms, which learn a

kernel-based regressor in an online fashion, and dynamically explore a pool

of diverse kernels to enhance the model performance

• We propose Temporal Kernel Descriptors, i.e., we design new kernels to ef-

fectively capture temporal properties of the data, and demonstrate the appli-

cation of Online Multiple Kernel learning to applications which are sensitive

to time.

• We propose Cost-Sensitive Online Multiple Kernel Classification, to address

the challenges of learning online nonlinear models from imbalanced data

streams, and also demonstrate the application of the proposed methods to

online anomaly detection.

Learning with Deep Neural Networks (DNNs) has received increasing interest

in recent years due to the overwhelming success demonstrated in several applica-

tions. However, using DNNs in the online setting remains an open problem, as most

solutions are designed for the batch setting. In particular, choosing a right model

architecture for online learning is a challenging task (in addition to convergence

challenges such a vanishing gradient and diminishing feature reuse). To address

these limitations, we develop algorithms for Online Deep Learning:

• We develop a novel Hedge Backpropagation algorithm which evolves the

DNN from shallow to deep, thereby making DNNs online compatible. This

way they are able to enjoy the fast convergence of Online Learning, and the

power of representation of Deep Learning.
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Chapter 1

Introduction

In this chapter, we introduce the background, and motivate the need for online learn-

ing with nonlinear models. Then we present the formal problem setting and discuss

the main challenges. This is followed by briefly presenting the main contributions

of this dissertation.

1.1 Background

Recent years have witnessed tremendous applications of big data analytics. The

most critical challenges of big data analytics are categorized by the 3 Vs: Volume,

Velocity, and Variety (Veracity or uncertainty in the quality of data is another ma-

jor challenge, but it is not in the scope of this dissertation). Volume refers to the

huge amount of data that needs to be analysed drawing attention to the limitations

of models and machines that may not have the computational resources to process

such huge data. Velocity refers to the high speed at which new data is being gen-

erated, which highlights the necessity to have models that can quickly process the

new data and learn the relevant patterns. Variety refers to the format (unstructured,

multi-modal, heterogeneous) in which the data appears and the highly complex pat-

terns (nonlinear patterns) it may exhibit. These challenges have created a demand

for scalable machine learning algorithms that have the capacity to learn complex

1



patterns.

Traditionally, several challenges posed by volume and velocity of the data are

handled by Online Learning methods which represent a class of highly efficient

and scalable machine learning algorithms that learn from streaming data. The chal-

lenges posed by the variety and complexity of data are tackled through the usage

of nonlinear models, some of which are designed explicitly for multi-modal data

(e.g. multiple kernel learning) and others which aim to learn feature representation

(e.g. Deep Learning). In this dissertation, we investigate the intersection of Online

Learning and Nonlinear Models. Our goal is to design algorithms that perform On-

line Learning with Nonlinear models, in order to effectively address the challenges

of big data analytics. There have been many approaches to learn models in the on-

line setting through Online Learning, and also to learn nonlinear models through the

usage of kernel methods and deep neural networks. However, there have been lim-

ited contributions in literature on the intersection of both these approaches. While

individually each of them solve several challenges, both of them have several limi-

tations that restrict their usage in the real world setting. Here, we briefly highlight

the main merits and limitations of these two bodies of work.

1.1.1 Online Learning

Machine Learning techniques can be broadly categorized into batch learning and

online learning. Batch Learning refers to training a prediction model on the en-

tire training data, whereas online learning refers to training from instances of the

training data arriving in a sequential stream. Online Learning [105, 51] dates back

to the classical Perceptron[99]. There have been many follow up works in this

domain with many approaches gaining popularity in the last decade. These in-

clude Online Gradient Descent [134], Relaxed Online Maximum Margin Algorithm

(ROMMA) [73], Approximate Maximal Margin Algorithm (ALMA) [40], Margin

Infused Relaxed Algorithm (MIRA) [24], Passive Aggressive (PA) algorithms [21],
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Confidence Weighted Algorithms [33], etc.

Online Learning techniques have several advantages over batch learning meth-

ods. We discuss the main advantages below:

Merits of Online Learning

• Efficiency and Scalability: Due to the sequential nature of processing the

data, and continuously learning, Online Learning methods are very efficient

and can scale to extremely large datasets. Another major impact of the train-

ing procedure is that for any new data that is observed, the model can be up-

dated incrementally, and retraining on the entire new dataset can be avoided.

• Adaptation to Temporal Changes: Online Learning processes the data

streams one instance at a time. As a result, if the data exhibits certain temporal

patterns, the latest training updates to the model will allow adaptation to such

temporal patterns. This makes online learning methods a natural solution to

deal with concept drifting data.

• Theoretical Guarantees: Despite the efficiency, it is not surprising than

batch models would show a superior performance that online algorithms.

However, most online learning algorithms are designed such that they en-

joy a sublinear regret with respect to the best batch model. This means that

the performance of online learning algorithms is bounded in such a manner,

that they are not much worse than the corresponding batch models.

Limitations of Online Learning

Despite their speed and memory efficiency, Online Learning approaches suffer from

some critical drawbacks. We briefly discuss the main shortcomings below:

• Limited Capacity: Most online learning techniques are primarily designed

for learning linear models, which limits their application for real world set-

ting where the patterns to be learnt are significantly more challenging and

3



nonlinear. While there have been attempts at using online learning with ker-

nels to learn nonlinear models [61], these approaches are still limited in their

functional expressiveness, which hurts their ability to learn highly complex

patterns.

• Fixed Model Capacity: For most models used in the online setting, the

model capacity (or the hypothesis search space) is fixed prior to the learn-

ing task. For example, for online learning with kernels, the kernel to be used

must be specified before the training begins. Similarly, for using a deep neu-

ral networks for the online setting, the architecture of the network must be

fixed prior to learning. This can become problematic in a streaming setting

where it is almost impossible to guess which model capacity to use. This

problem is more severe in cases of concept drifting scenarios [39] or data that

exhibits temporal patterns, where different feature representations (through

different kernels or different neural networks) could be more appropriate.

Consequently, the fixed model capacity limits the potential of existing online

approaches from capturing richer information about the data.

• Nontrivial Adaptation to High Capacity Models: Another limitation of us-

ing higher capacity models in the online setting is that it is significantly chal-

lenging to design online learning algorithms that can effectively use these

high capacity models. In fact high capacity models such as multiple kernel

learning and deep neural networks face tremendous challenges while being

optimized in the batch setting itself. Using these models in the online setting

faces several problems from the perspective of algorithmic design, computa-

tional complexity, and other optimization challenges.

1.1.2 Nonlinear Models

Nonlinear models refer to class of high capacity models that are able to express rich

functions, and are thus very useful in learning highly complex nonlinear patterns
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exhibited in real world data. The nonlinearity is popularly achieved through the

usage of kernel methods [108, 103], or through the usage of Deep Neural Networks

[68]. We discuss the main advantages of nonlinear models over linear models below.

Merits of Nonlinear Models

• Higher Expressive Capacity: Real world data is filled with many complex

nonlinear functions of the input (e.g. Computer Vision Tasks, XOR Separa-

tion, etc.). Linear models simply do not have the ability to even represent

such complex functions. Consequently, nonlinear models that could learn

much more complex functions gained popularity, and demonstrated superior

performance in a variety of tasks. Most notably kernel methods [103] were

immensely successful in the last two decades, and in the last decade Deep

Neural Networks have demonstrated state of the art performances in several

applications [68]. Nonlinear models, with a higher expressive capacity, en-

able searching for a significantly more complex hypothesis space, which en-

ables superior performance on real world data.

• Representation Learning: Nonlinear models such as Multiple Kernel Learn-

ing and Deep Neural Networks are able to learn the important features of the

data on their own, and thus require limited human intervention to perform

feature engineering. This trait makes nonlinear models more appealing for

completely automated end to end learning.

• Ability to handle multi-modal data: Another common occurrence in real

world data is that the features are heterogeneous or multi-modal in nature.

Treating all the features alike can degrade the predictive power of the models.

Additionally, the target output may have linear dependence on one modality

and nonlinear dependence on another. Using nonlinear models appropriately

allows for handling of such scenarios.
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Limitations of Nonlinear Models

However, using nonlinear models have several shortcomings with regard to com-

putational complexity, especially when streaming data needs to be processed. We

highlight the main drawbacks below:

• Scalability: While nonlinear models are able to learn expressive functions,

they come coupled with several computational challenges, as they are mostly

designed for the batch setting. Nonlinear models usually require the estima-

tion of many more parameters than linear models, which means the learning

process requires significantly more computation, and also would often suffer

from slower convergence. In addition, training for most nonlinear models as-

sumes that the entire training data is made available prior to the training task.

Often, the data may be too large to be stored in memory, or may even arrive

in a streaming manner. These two challenges limit the scalability of typical

nonlinear models.

• Retraining Cost: Another severe issue with most existing batch nonlinear

models is that for any new training data that arrives, to retrain the model,

the entire optimization procedure must be repeated. This computational chal-

lenge prevents nonlinear models from being regularly updated.

• Inability to adapt to Temporal Patterns: Considering that in several real

world applications data arrives in a streaming manner, and has temporal prop-

erties, it is imperative to have models that can automatically adapt to such a

temporal nature. Capturing temporal properties, especially for newly arriving

data is very difficult to handle for nonlinear models.

In this dissertation, our aim is to investigate the intersection of the Online Learn-

ing and Nonlinear models, and design new learning algorithms that are able to

combine the merits of both these fields of work, and simultaneously address the

drawbacks of each. Next, we briefly discuss the merits and limitations of Online

6



Learning and Nonlinear models, and motivate the need for the contributions of this

dissertation.

1.1.3 Online Learning with Nonlinear Models

In order to effectively address the main challenges of big data analytics, we need

methods that can combine online learning and nonlinear models. Existing ap-

proaches approaches for online learning with nonlinear models are mostly through

the usage of kernel functions [61]. Enhanced models such as multiple kernel learn-

ing have also been developed for the online setting [58, 49]. These methods, how-

ever, do not extensively explore several aspects of Online Learning. In particular,

they are not designed for regression tasks, temporal patterns, or learning from im-

balanced data streams. Moreover, they do not comprehensively explore kernel com-

bination techniques that could improve the performance of Online Multiple Kernel

Learning. Another relatively less explored category of online learning with nonlin-

ear models is Online Learning with Deep Neural Networks. Deep Neural Networks

face several challenges which prevent their usage in the online setting. While there

have been heuristic attempts at using them in the online setting, these attempts rely

on mini-batch optimization making them unsuitable for streaming data. In the next

section we formally present the problem setting for Online Learning with nonlinear

models.

1.2 Problem Setting

Now we describe the main problem setting for Online Learning with Nonlinear

Models. Without loss of generality, consider a generic learning task, in which we

are given a sequence of training examples D = {(x1, y1), . . . , (xT , yT )}, where

xt ∈ Rd is a d-dimensional instance representing the features and yt ∈ |Y| =

{−1,+1} for binary classification, yt ∈ {0, 1}C for multi-class classification with

C classes, and yt ∈ R for regression tasks, is the target label assigned to xt. The
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goal of online learning with nonlinear models is to learn a function F : Rd → R|Y|,

which is a nonlinear function of the input x. The prediction is denoted by ŷt. The

performance of the learnt function is usually evaluated based on the cumulative

penalty suffered by the prediction model. This penalty can be the error rate in

classification prediction, or a squared loss for regression. To learn a prediction

function which that minimizes this penalty over T instances, a loss function (hinge-

loss, squared loss, cross-entropy, etc.) is often chosen for minimization. We denote

this loss function as L(F(x), y).

Traditional approaches (Linear SVMs, Logistic Regression, Linear Regression,

etc.) to learn such a prediction function are linear. This means that the prediction

function takes the following form: F(x) = w>x, where w ∈ Rd. However, linear

models are limited in their capacity to learn expressive functions. As a result, in this

dissertation, our aim is to learn nonlinear functions. Nonlinear functions that we

consider in this dissertation are kernel functions, multiple kernel functions and deep

neural networks. While linear models have only d parameters to be estimated for

the function F(x), nonlinear models usually have more parameters. For example, in

kernel methods, for a given kernel, the prediction function takes the form of a linear

combination of all the instances when projected into a high dimensional space by

the kernel - and the weight of each instance has to be estimated. Similarly, for deep

neural networks, the function F(x) is a set of stacked linear functions each followed

by a nonlinear activation function (e.g. sigmoid) - and the weight parameters of each

stack have to be estimated. We explain the details of the methods in a later section.

For online learning of the parameters of function F(x), the learning algorithm

follows a typical online setting, where instances xt, t = 1, . . . , T arrive sequentially,

and a prediction ŷt is made on each instance. This is followed by the environment

revealing the true target yt. Using this feedback, the parameters of the nonlinear

function F(x) are updated. This framework is outlined in Algorithm 1. Based on

specific challenges that are posed by the data and remain unaddressed by the existing

approaches for Online Learning with Nonlinear Models, our goal is to design new
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update strategies for the models.

Algorithm 1 Online Learning with Nonlinear Models
Initialization: Initialize F(x) with capacity to learn nonlinear models
for t = 1, 2, . . . , T do

Receive an instance: xt
Predict ŷt = Ft(xt)
Receive target value: yt
Update Ft+1(x)← UpdateStrategy(Ft(x))

end for

1.3 Contribution Summary

In this dissertation we aim to design novel methods for online learning with non-

linear models, addressing specific limitations of existing approaches for this task,

with special focus on temporal patterns exhibited by the data. Figure 1.1 shows

the taxonomy of the subfields of machine learning, where our primary contribu-

tions lie. Specifically, we focus on Online Multiple Kernel Learning and Online

Deep Learning. Existing Online MKL strategies are limited, and do not address

several concerns especially for temporal properties that may exist. We also develop

novel algorithms for Online Deep Learning which is an open problem, with no clear

solutions in literature. Below we highlight these limitations and discuss the main

contributions in this dissertation.

• Online Multiple Kernel Regression: We propose Online Multiple Kernel

Regression Algorithms, which learn a kernel-based regressor in an online

fashion, and dynamically explore a pool of diverse kernels to enhance the

model performance. This builds on the existing OMKL work which is primar-

ily designed for classification tasks [58, 49] or for structured prediction[81].

We extend the OMKL principles for regression tasks, and improve the kernel

combination methods over the previous work. We also propose and develope

kernel approximation strategies for large scale online multiple kernel regres-

sion. Further, we demonstrate its application to Time Series Modeling.
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Figure 1.1: Main Contributions of the Dissertation

Related Publications

– Doyen Sahoo, Steven C.H. Hoi, and Bin Li. Large-scale Online Multi-

ple Kernel Regression with Application to Time-Series Prediction. Un-

der review for ACM TKDD.

– Doyen Sahoo, Steven C.H. Hoi, and Bin Li. Online multiple kernel re-

gression.In 20th ACM SIGKDD international conference on Knowledge

discovery and data mining., 2014.

• Temporal Kernel Descriptors for Learning with Time-Sensitive Patterns:

Successful performance of kernel based methods depends on the choice of the

kernel. We consider scenarios where patterns are sensitive to time (or time-

stamps), and accordingly we propose Temporal Kernel Descriptors. These

kernel descriptors are able to automatically learn the association of time-

stamps at different resolutions (e.g. hourly, daily, etc.) with different data

modalities. This enables more effective capturing of the information, and

results in superior performance as compared to directly using traditional ker-

nels.
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Related Publications

– Doyen Sahoo, Abhishek Sharma, Steven C.H. Hoi, and Peilin Zhao.

Temporal Kernel Descriptors for Learning with Time-sensitive Patterns.

In SIAM International Conference on Data Mining (SDM),2016.

• Cost-Sensitive Online Multiple Kernel Classification: Often data streams

are can be highly imbalanced, which may make evaluation of algorithms on

common metrics such as accuracy unreliable. Consequently, for imbalanced

data streams, we consider evaluation over cost-sensitive metrics. We then pro-

pose Cost-Sensitive Online Multiple Kernel Classification and also demon-

strate the application of the proposed methods to online anomaly detection.

To achieve this we develop new cost-sensitive kernel learning approaches and

cost-sensitive kernel combination approaches.

Related Publications

– Doyen Sahoo, Peilin Zhao, and Steven C.H. Hoi. Cost-Sensitive On-

line Multiple Kernel Classification. In Asian Conference on Machine

Learning (ACML),2016.

• Online Deep Learning: Another dimension that we aim explore for Online

Learning with Nonlinear Models is Online Deep Learning. Deep Learning

has experienced tremendous success in the recent years in terms of perfor-

mance (and have shown superior performance compared to kernel based tech-

niques). However, it is mostly designed for the batch setting, and would sig-

nificantly benefit from having an online variant. We leverage on the shallow

to deep principle, according to which shallow networks converge faster than

deeper networks, and propose a novel Hedge Backpropagation algorithm to

learn Deep Neural Networks online.

Related Publications
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– Doyen Sahoo, Quang Pham, Steven C.H. Hoi, and Jing Lu. Online Deep

Learning: Learning Deep Neural Networks on the Fly. Under review for

AAAI 2018

1.4 Dissertation Structure

We first present the relevant literature for Online Learning with Nonlinear Models

in Chapter 2. Here we conduct brief surveys on the two main bodies of work (that

are relevant for this dissertation): Online Learning and Learning with Nonlinear

Models. We then survey the work at the intersection of these studies.

This is followed by our contributions: Online Multiple Kernel Regression in

Chapter 3, Temporal Kernel Descriptors for Learning with Time-Sensitive Patterns

in Chapter 4, and Cost-Sensitive Online Multiple Kernel Classification in Chapter

5. We then present Online Deep Learning in Chapter 6. We conclude with the

dissertation and offer directions for future research in Chapter 7.
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Chapter 2

Literature Review

2.1 Introduction

This chapter reviews the related work in literature. We mainly focus on the work

related to the two broad categories: Online Learning and Learning with Nonlinear

Models. We then discuss the work that lies at the intersection of these two fields,

and highlight the limitations of these efforts.

2.2 Online Learning

Online Learning refers to class of highly efficient and scalable algorithms that learn

from data streams by processing the data sequentially instance by instance [14, 105,

51]. Due to the nature of on-the-fly learning Online Learning has found tremendous

success in several applications [52], particularly to counter the big data challenges

of volume, velocity, and variety.

In this section, we will give a formal overview of Online Learning, followed by

discussing some applicatins where Online Learning has been found to be successful.

This if followed by presenting a brief overview of three categories of supervised

online learning: First-Order Online Learning, Second Order Online Learning, and

Online Learning with Expert Advice.
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2.2.1 Problem Setting and General Framework

Consider a generic supervised machine learning task (e.g. classification, regres-

sion). Given a sequence of training examples D = {(x1, y1), . . . , (xT , yT )}, where

xt ∈ Rd is a d-dimensional instance representing the features and yt ∈ |Y| =

{−1,+1} for binary classification, yt ∈ {0, 1}C for multi-class classification with

C classes, and yt ∈ R for regression tasks, is the target label assigned to xt. The

goal of online learning is to learn a function F : Rd → R|Y|. The prediction is

denoted by ŷt. The performance of the learnt function is usually evaluated based on

the cumulative penalty suffered by the prediction model. This penalty can be the

error rate in classification prediction, or a squared loss for regression. To learn a

prediction function which that minimizes this penalty over T instances, a loss func-

tion (hinge-loss, squared loss, cross-entropy, etc.) is often chosen for minimization.

We denote this loss function as L(F(x), y). The instances xt, t = 1, . . . , T arrive

sequentially, and a prediction ŷt is made on each instance. This is followed by the

environment revealing the true target yt. Using this feedback, the parameters of the

nonlinear function F(x) are updated. This framework is outlined in Algorithm 2.

Algorithm 2 Online Learning
Initialization: Initialize F(x)
for t = 1, 2, . . . , T do

Receive an instance: xt
Predict ŷt = Ft(xt)
Receive target value: yt
Update Ft+1(x)← UpdateStrategy(Ft(x))

end for

2.2.2 Applications of Online Learning

The specific problem setting of Online Learning is found in several applications

including Cyber Security, Finance, Recommendation Systems, etc. In particular

online learning algorithms aim to learn prediction models from large data streams.

For example, in Finance, a popular application is Online Portfolio Selection
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[71, 72]. Here, the function F to be learnt is the portfolio vector, i.e., to identify

how to distribute wealth in a set of assets with a specific objective (e.g. maximiz-

ing wealth). From the perspective of the online setting, in every time period (or

iteration), the environment reveals a returns vector (corresponding to instance x).

Based on the current portfolio vector, the algorithm realizes some profit or loss. Us-

ing this loss information, the algorithm updating the portfolio vector through some

strategy, thereby modifying the prediction function F. Similar settings are also ob-

served in time-series modeling or high frequency trading, where decisions are to be

made immediately based the streaming environmental factors. Another example is

in anomaly detection [128], where the activities are being monitored continuously.

In every time period, the the environment reveals some actvity recorded in the form

of a vector x. The prediction model decides whether this activity is an anomaly or

not using the prediction function F(x). Consequently, the model may recieve some

feedback (e.g. from a human user, or new statistics about the data distribution), ac-

cording to which the model would update its prediction function. While Algorithm

2 shows a specific example of supervised learning, in reality online learning may

also be unsupervised. Another very common application of Online Learning is in

Recommendation Systems [27], where the data in the form of user ratings arrive

sequentially and rapidly, and accordingly the recommendation system needs to be

modified. Moreover, user preferences could evolve over time, and thus the models

should be able to online adapt to such temporal patterns.

While the above example demonstrates application of online learning in a nat-

ural online setting, Online Learning is also popularly used for training models on

very large data, which can not be stored in memory, and models need to be updated

regularly. For example, a popular application is Malicious URL Detection [101].

Typically, labelled data is obtained in the form of blacklists, and prediction models

are trained. Twp specific challenges arise: (i) The amount of data can be too large

to be stored in memory to training a batch learning model; (ii) the model needs to

be updated when fresh data is available to keep the model updated. Using the la-
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belled data, one can train a prediction model in an online manner and not need the

resources to store the entire data in memory. Further, as fresh data is available, the

model can be updated using online update rules, instead of training the entire model

from scratch.

Based on the application, the learning process could be for various types of set-

tings (e.g. supervised [71], unsupervised[6], etc.) and could operate on different

varieties of data (time series [2], graphs [35, 82], ratings[27], etc.). While some

problems focus on specific prediction tasks [80], others aim to understand and sum-

marize statistical properties of the data [57, 44].

Next we review some of the important related topics in supervised online learn-

ing with respect to the main conributions in this dissertation. Online Learning (using

linear models) is traditionally categorized into First Order and Second Order Online

Learning, based on the type of information used by the Update Strategy. Here we

also discuss a third category Online Learning for Prediction with Expert Advice.

2.2.3 First Order Online Learning

First-order algorithms learn by updating the weight vector w for classification se-

quentially by utilizing only the first-order information with training data. We briefly

describe a few exemplar first-order online learning algorithms below.

Perceptron [99] is the earliest online learning algorithm. In each iteration, when-

ever a mistake is made by the prediction model, Perceptron makes an update as

follows:

wt+1 ← wt + ytxt

Online Gradient Descent (OGD) [134] updates the weight vector w by apply-

ing the (Stochastic) Gradient Descent principle only to a single training instance

arriving sequentially. Specifically, OGD makes an online update iteratively as:

wt+1 ← wt − η∇`(wt,xt; yt)
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where η is a step size parameter, and `(wt,xt; yt) is some predefined loss function,

e.g., Hinge-Loss, Negative Log-Likelihood, Squared Loss, etc.

Passive-Aggressive learning (PA) [21] is an online learning method that trades

off two concerns: (i) passiveness: to avoid the new model deviating too much from

the existing one, and (ii) aggressiveness: to update the model by correcting the

prediction mistake as much as possible. The optimization of PA learning can be

cast as follows:

wt+1 ← argmin
w

1

2
||wt −w||2 subject to yt(w · xt) ≥ 1

The closed-form solution to the above can be derived as the following update rule:

wt+1 ← wt + τtytxt

where τt = max
(1− yt(wt · xt)

||xt||2
, 0
)

The above model assumes a hard margin exists, that is, data can be linearly separa-

ble, which may not be always true, especially when data is noisy. To overcome this

limitation, soft-margin PA variants, such as PA-I and PA-II, are often commonly

used, which also have closed-form solutions [21].

There are many other first-order online algorithms in literature including Re-

laxed Online Maximum Margin Algorithm (ROMMA) [73], Approximate Maximal

Margin Algorithm (ALMA) [40], Margin Infused Relaxed Algorithm (MIRA) [24].

2.2.4 Second Order Online Learning

Unlike the first order online learning, second order online learning aims to boost

the learning efficacy by exploiting second-order information, e.g., the second order

statistics of underlying distributions. For example, they usually assume the weight

vector w follows a Gaussian distribution w ∼ N (µ,Σ) with mean vector µ ∈ Rd

and covariance matrix Σ ∈ Rd×d. This is particularly useful for high dimensional

17



sparse features (e.g. bag-of-words features). The second order information along

with the first helps in accelerating the convergence. Next we briefly describe some

popular second-order algorithms.

Confidence-Weighted learning (CW) [33] is similar to the PA learning algo-

rithms in terms of passiveness and aggressiveness tradeoff, except that CW exploits

the second-order information. In particular, CW learning maintains a different con-

fidence measure for each individual feature, such that weights of lower confidence

will be updated more aggressively than those of higher confidence. Specifically, by

modeling the weight vector as a Gaussian distribution, CW trades off between (i)

passiveness: to avoid the new distribution of the model from deviating too much

from the existing one; and (ii) aggressiveness: to update the model by not only

correcting the prediction mistake if any, but also improving the classification confi-

dence. More specifically, the CW learning can be cast into the following optimiza-

tion:

(µt+1,Σt+1)← argmin
µ,Σ

DKL(N (µ,Σ)||N (µt,Σt))

subject to yt(µ,xt) ≥ φ−1(η)
√

x>t Σxt

Like the PA algorithms, the closed-form solutions for the CW optimization can

be derived.

Adaptive Regularization of Weights (AROW) is an enhanced variant of CW algo-

rithms which is designed for linearly non-separable data. Here the CW optimization

objective is modified into:

(µt+1,Σt+1)← argmin
µ,Σ

DKL(N (µ,Σ)||N (µt,Σt)) + λ1`(y1, µ · xt) + λ2x
>
t Σxt

Through this formulation, AROW acquires the two desirable properties of CW

learning (not to change to model too radically, and have a small loss on the last

instance processed), and in addition the third term of the formulation helps increase
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the confidence in the parameters as more examples are seen.

CW algorithms have seen additional enhancements in the form of Soft-

Confidence Weighted Learning [118]. Other second order online learning algo-

rithms include IELLIP [127] which assumes that the classifier w lies on an ellipsoid,

NAROW [90], and NHERD [23].

2.2.5 Online Learning with Expert Advice

Online prediction with expert advice deals with making a final prediction based on

the prediction made by a set of experts. Consider N experts. At each time step

t = 1, 2, . . . , T , the algorithm decides on a distribution pt over the experts, where

pt,i ≥ 0 is the weight allocated to expert i, and
∑N

i=1 pt,i = 1. Each expert i then

suffers some loss `t,i which determined by the environment (like the general online

learning setting). The loss suffered by the algorithm is then
∑N

i=1 pt,i`t,i = p>t `t,

i.e., the average loss of the experts with respect to the distribution chosen by the

algorithm. Without loss of generality, it is assumed that `t,i ∈ [0, 1].

In this section, we present an algorithm, called Hedge [37], for the online pre-

diction with expert advice. This algorithm is a direct generalization of Littlestone

and Warmuth’s weighted majority algorithm [75]. The algorithm maintains a non-

negative weight vector whose value at time t is denoted wt = (wt,1, . . . , wt,N). If it

is believed that one expert performs the best, it is better to assign it the most weight.

If no prior is known, it is better to set all the initial weights equally, i.e., w1,i = 1/N

for all i. The algorithm uses the normalized distribution to make prediction, i.e.,

pt =
wt∑N
i=1wt,i

After the loss `t is disclosed, the weight vector wt is updated using a multiplicative

rule

wt+1,i = wt,iβ
`t,i , β ∈ [0, 1]
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which implies that the weight of expert i will exponentially decrease with the loss

`t,i. This allows Hedge to track the performance of the best expert.

Besides Hedge, there are some other algorithms for online prediction with expert

advice under more challenging settings, including exponentially weighted average

forecaster (EWAF) and Greedy Forecaster (GF) [14]. The difference of EWAF from

Hedge is that, for Hedge the loss is the inner product between the distribution and

the loss suffered by each expert, while for EWAF, the loss is between the prediction

and the true label, which can be much more complex.

2.3 Learning with Nonlinear Models

In this section we briefly discuss the popular machine learning methods that have

been designed for learning nonlinear models. Specifically, we focus on learning

with kernel methods and learning with deep neural networks.

2.3.1 Learning with Kernels

The most popular usage of kernels has been through Support Vector Machines

(SVMs). Here, we start by introducing SVMs followed by how kernels are used

to increase the learning capacity of the models. To learn a classification model w,

we can solve a quadratic programming formulation as given below:

min
w

1

2
||w||22 + C

T∑
i=1

ξi

subject to yt(< w, φ(xi) > +b) ≥ 1− ξi

and ξi ≥ 0 ∀ t

w is the vector of coefficients to be learnt, C is regularization trade-off parame-

ter, ξ represents the slack variables, b is the bias term, and φ(x) represents the map-

ping of the instance x into a higher dimensional space known as the Reproducible
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Kernel Hilbert Space. To solve this optimization, we can use the Lagrangian dual

function, which gives us:

maximizeα
T∑
t=1

αt −
1

2

T∑
i=1

T∑
j=1

αiαjyiyj < φ(xi), φ(xj) >

subject to α ∈ R+,
T∑
i=1

αiyi = 0, C ≥ αi ≥ 0 ∀ i

The term < φ(xi), φ(xj) > is the dot product of a high dimensional feature

mapping of the instances xi and xj . This dot product is interpreted as the kernel

function κ(xi,xj) =< φ(xi), φ(xj) >. Upon solving the optimization, we get

w =
∑T

i=1 αiyiφ(xi), and thus the final discriminant function can be written as:

F(x) = wTφ(x) =
T∑
i=1

αiyi < φ(xi), φ(x) > =
T∑
i=1

αiyiκ(xi,x)

Due to the nature of the optimization, αi = 0 will hold for most of the in-

stances (usually), and the learnt model would be a linear combination of only a few

instances with αi 6= 0. These instances are the support vectors of the model.

Due to the high dimensional mapping, the kernels allow SVMs to learn linear

patterns in this new space, which corresponds to nonlinear pattern in the original

space. And due to the dual formulation, explicit high dimensional mapping need not

be performed, and only the dot product in this space needs to be computed, which

can be done by working in the original space. This is also known as the kernel

trick. The popular kernel types include the Linear Kernels, Polynomial Kernels and

Gaussian Kernels. However, the usage of kernels is non-trivial, as it requires a lot

of effort to decide which kernel to use (e.g. through extensive validation). Further,

different types of kernels may provide complementary information, which could

enhance the performance of the overall prediction model. Additionally, many of the

data sources are often heterogeneous or multi-modal in nature. Using a single kernel
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function across all modalities combined may lead to a poor feature representation.

Ideally, each modality should have its own kernel. To address these issues, Multiple

Kernel Learning evolved as a promising research direction.

Multiple Kernel Learning aims to use a given set of kernel functions, and learn

their optimal combination. There are many types of approaches to learn the combi-

nation of the kernel functions [43]. The fundamental idea is, that give a predefined

pool of M kernel functions κm, i = m, . . . ,M , we need to learn or estimate a super

kernel function κ∗ which is a combination of all the M kernel functions.

Here we briefly summarize the key ideas of the main categories of multiple

kernel learning as categorized by [43] based on the training method used.

Fixed Rules: combinations without parameters, e.g. summation and multipli-

cation of kernels [93, 7].

Heuristic Approaches: Give the kernels some weight based on their individual

performance [87, 29].

Optimization Approaches: This is one of the most extensively explored type of

learning the kernel combination. The idea is to incorporate the kernel combination

learning into the optimization objective. Two popular approaches in this category

include: Target Alignment and Structural Risk Minimization. Target Alignment

aims to learn a kernel combination such that the combined kernel function is as

close as possible to the ideal kernel function where κ(xi,xj) = 1 if yi = yj , and

0 otherwise [65, 20]. Structural Risk Minimization approaches solve an SVM like

objective function with additional parameters to learn a combination of the kernels

[65, 110, 95, 96, 124]. The aim is to simultaneously learn the weight vector and

the kernel combination. Based on the requirement, the kernel combination maybe

linear, convex or conic. It may also be nonlinear.

There are other approaches for learning the multiple kernel combination includ-

ing Bayesian Approaches [42, 19] and Boosting Approaches [10, 107, 122].

Despite the increased capacity of models offered by multiple kernels, their train-

ing and optimization is extremely expensive, both in terms of memory and compu-
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tation cost. This affects their usage in large scale datasets, or in a streaming data

setting.

2.3.2 Learning with Deep Neural Networks

In recent years, the success of Deep Neural Networks has surged. Here, we give a

basic overview of how Deep Neural Networks are able to help in learning nonlinear

patterns. The final prediction function of a Deep Neural Networks (DNN), is a set

of stacked linear transformations, each followed by a nonlinear activation. Given an

input x ∈ Rd, the prediction function of DNN with L hidden layers (h(1), . . . ,h(L))

is recursively given by:

F(x) = softmax(W (L+1)h(L)) where

h(l) = σ(W (l)h(l−1)) ∀l = 1, . . . , L

h(0) = x

where σ is an activation function, e.g., sigmoid, tanh, ReLU, etc. This equation

represents a feedforward step of a neural network. The hidden layers h(l) are the

feature representations learnt during the training procedure. To train a model with

such a configuration, we use the cross-entropy loss function denoted by L(F(x), y).

We aim to estimate the optimal model parameters Wi for i = 1, . . . (L + 1) by ap-

plying Online Gradient Descent (OGD) on this loss function. Following the online

learning setting, the update of the model in each iteration by OGD is given by:

W
(l)
t+1 ← W

(l)
t − η∇W

(l)
t
L(F(xt), yt) ∀l = 1, . . . , L+ 1

where η is the learning rate parameter. Using backpropagation, the chain rule of

differentiation is applied to compute the gradient of the loss with respect to W (l) for

l ≤ L. This is the process of Backpropagation.

Here we have given a fundamental overview of the working of Deep Neural
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Networks (which are popularly called Multi-Layer Perceptrons). There have been

several extensions and enhancements to the simple model, to show performance

improvement in several applications, such as Convolutional Neural Networks [63]

for computer vision tasks.

2.4 Online Learning with Nonlinear Models

2.4.1 Online Learning with Kernels

Online Learning with kernels was developed to help in online learning with non-

linear models [61]. Consider a typical online learning task. Given a sequence of

training examples D = {(x1, y1), . . . , (xT , yT )}, where xt ∈ Rd is a d-dimensional

instance representing the features and yt ∈ |Y| = {−1,+1} for binary classifi-

cation, yt ∈ {0, 1}C for multi-class classification with C classes, and yt ∈ R for

regression tasks, is the target label assigned to xt. On each iteration, the loss suf-

fered by the prediction model f(x) is denoted by `(f(x), y). The update rule takes

the following form while applying gradient descent.

ft+1(x) = ft(x)− η∇f`(ft, (xt, yt))

= ft(x) + ηytκ(xt,x)

Here η is the step size parameter. Note that if a non-zero loss is suffered, the

instance gets added to the model as a support vector with αt = ηtyt, and the predic-

tion vector w takes the form of a linear combination of the support vectors weighted

by αt.

As discussed in the previous section, the online learning with kernels has limi-

tations associated with the usage of a single kernel, and a multiple kernel learning

approach would be preferred because: (i) it is difficult to determine the choice of
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kernel; (ii) different kernels could provide complementary information (iii) they are

more suited for heterogeneous data. Consequently Online Multiple Kernel Learning

approaches were developed, with the aim of combining the merits of scalable learn-

ing through the usage of online learning, and the ability to learn high complexity

models through the usage of multiple kernels. Online MKL for structured prediction

was developed [81], but required multiple passes through the data, making them un-

suitable for the online setting. Other Online Multiple Kernel Learning approaches

were developed including OM2 [79], which used Follow the regularized leader and

subgradient methods to update the parameters of the objective function and Online

Multiple Kernel Learning [58, 49] which sequentially learned independent kernel

classifiers, and also used the Hedging [37] algorithm to learn the combination of the

independent kernels.

In this dissertation we focus on the limitations of Online Multiple Kernel Learn-

ing (inability to handle regression tasks, lack of suitability for time-series and tem-

poral patterns, lack of unsuitability for imbalanced data streams, etc. ), and propose

solutions to address these challenges.

2.4.2 Online Deep Learning

There is very limited, and almost no work towards addressing Online Deep Learning

in literature. In general, optimization of Deep Neural Networks is a very challeng-

ing task. There are many challenges that need to be addressed, which include (but

not limited to) vanishing gradient, diminishing feature reuse [112], presence of sad-

dle points (and local minima) [18, 28], immense number of parameters to be tuned,

internal covariate shift during training [56], difficulties in choosing a good regu-

larizer, choosing hyperparameters, etc. Despite many promising advances recently

[89, 56, 46, 112], etc., which are designed to address specific problems for optimiz-

ing deep neural networks, most of these existing approaches assume that the DNN

models are trained in a batch learning setting.
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The most common mode of optimizing DNNs is by gradient descent through

backpropagation. A simple solution to using DNNs in the online setting is to ap-

ply backpropagation in every online learning iteration. Unfortunately, using such

a model for an online learning (i.e. Online Backpropagation) task faces several is-

sues with convergence. Most notably: (i) For such models, a fixed depth of the

neural network has to be decided a priori, and this cannot be changed during the

training process. This is problematic, as determining the depth is a difficult task.

Moreover, in an online setting, different depths may be suitable for a different num-

ber of instances to be processed, e.g. because of convergence reasons, shallow

networks maybe preferred for small number of instances, and deeper networks for

large number of instances; (ii) vanishing gradient is well noted problem that slows

down learning. This is even more critical in an online setting, where the model

needs to make predictions and learn simultaneously; (iii) diminishing feature reuse,

according to which many useful features are lost in the feedforward stage of the

prediction. This again is very critical for online learning, where it is imperative to

quickly find the important features, so as to not suffer from poor performance for

the initial training instances.

There have been attempts at making deep learning models compatible with

online learning [132, 70]. However, they operate via a sliding window approach

where a (mini)batch training stage is always involved, making them unsuitable for

a streaming data setting.

2.5 Summary

In this chapter we presented a brief survey of the related studies for this disser-

tation. In particular, we first reviewed the literature in Online Learning. While

Online Learning has many branches, we focussed on First-order Online Learning,

Second-order Online Learning and Online Learning with Expert Advice. Then we

moved on to reviewing the literature in learning nonlinear models. We specifically
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discussed learning with kernels, multiple kernel learning and learning with deep

neural networks. This was followed by reviewing the work at the intersection of

these categories. We reviewed online learning with kernels, online multiple kernel

learning and online deep learning.
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Chapter 3

Online Multiple Kernel Regression

In this chapter we present our proposed Online Multiple Kernel Regression Algo-

rithms, which learn a kernel-based regressor in an online fashion, and dynamically

explore a pool of diverse kernels to avoid suffering from a single fixed poor kernel so

as to remedy the drawback of manual/heuristic kernel selection. We propose large-

scale OMKR algorithms which rely on kernel approximation techniques. We also

evaluate the kernel combinations at prediction level and the representation level. Fi-

nally, we also demonstrate its application to online learning for time-series models.

3.1 Introduction

Kernel methods have been extensively studied for regression tasks and found suc-

cesses in many real-world applications [109, 106]. In contrast to linear regression

methods, kernel-based regression methods are able to tackle challenging non-linear

regression tasks using the kernel trick that implicitly maps data from the original

space to a high or even infinite dimensional space by means of a kernel function.

Although a variety of kernel methods have been proposed for regression tasks [106],

most conventional kernel methods suffer from two major drawbacks. First of all,

they are often designed for solving regression tasks in a batch learning setting. This

often results in a high re-training cost when there is any new training data, making
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them poorly scalable in many real-world applications where data arrives sequen-

tially. Second, they usually assume that prior to the learning task, a fixed kernel

function is given either by manual selection or via cross validation. This could re-

sult in poor performance if the chosen kernel is inappropriate in a new environment,

which happens commonly for some real-world applications, such as time series

prediction where data observations can be non-stationary and the optimal kernel

function may change over time.

To overcome the above drawbacks, we propose a novel scheme of Online Multi-

ple Kernel Regression (OMKR), which sequentially learns a kernel-based regressor

with multiple kernels in an online fashion for regression tasks. On one hand, the

proposed OMKR technique, as an online learning method that often makes simple

incremental update for a new training data example, avoids the expensive re-training

cost of conventional batch kernel methods, and thus significantly improves the ef-

ficiency and scalability, especially when handling data stream applications. On the

other hand, OMKR explores a pool of multiple diverse kernels to remedy the draw-

back of using a single fixed kernel by existing kernel-based regression methods that

often suffer considerably when the single kernel is inappropriate. The proposed

OMKR problem is however very challenging since we not only need to sequentially

learn the optimal kernel-based regressor for each individual kernel in the pool, but

also need to simultaneously decide the best way of combining the multiple kernel

regressors on the fly at every learning round. We tackle the challenges by (i) ex-

ploring two online kernel regression algorithms, Widrow-Hoff learning [120] and

NORMA learning [61], for online regression tasks with each individual kernel; and

(ii) determining the best combination of the multiple kernel regressors by applying

two online learning techniques: Hedge algorithm [36] that can track the best ker-

nel regressor, and Online Gradient Descent(OGD)[134] that can find the optimal

linear combination. To validate the efficacy of the proposed method, we conduct

extensive experiments by evaluating the proposed algorithms on both real-world re-

gression and time series datasets, in which our empirical results show that OMKR
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outperforms conventional single kernel online regression approaches for most cases,

especially for time series prediction tasks.

Due to the curse of kernelization [78], methods that perform online learning

with kernels suffer from an unbounded number of support vectors. This problem

is more severe in the case of multiple kernels, especially if there are some poor

performing kernels. Further, existing work in Online Multiple Kernel Learning

attempts to combine predictive power of multiple kernels only at the prediction

level, and does not try to exploit multiple kernel combination at representation level.

To address these issues, we develop algorithms for large scale online multiple kernel

regression, which are based on kernel approximation techniques [121, 94]. We

demonstrate through extensive experiments the scalability of the proposed methods,

often coupled with improved performance. We also evaluate kernel combination

strategies, and empirically study the behavior of combining multiple kernels at a

prediction level and at the representation level.

We discuss a natural extension of the OMKR algorithms to the process of on-

line learning for time-series prediction. In particular we explore how OMKR can

automatically determine the appropriate window size to be considered for the learn-

ing procedure, and show how it can be applied for Autoregressive (AR), Autore-

gressive Moving Average (ARMA) and Autoregressive Integrated Moving Average

(ARIMA) time-series modeling. Further, we present how OMKR can also be useful

for online learning for nonlinear time-series prediction.

The rest of the chapter is organized as follows: In Section 3.2, we review the

related work, specifically focussing on contributions in literature in the domain of

online learning and multiple kernel learning. In Section 3.3, we present the main

framework for Online Multiple Kernel Regression. This is followed by the pre-

sentation OMKR algorithms for large scale learning in Section 3.4. We discuss

the application time-series prediction in Section 3.5. In Section 3.6 we present our

detailed experimental results, and finally conclude in Section 3.7.

30



3.2 Related Work

We review some of related work in online learning and kernel learning in the context

of OMKR.

3.2.1 Online Learning

Online learning refers to a class of scalable algorithms that learn sequentially from

streamlining data [105, 14, 51], and they have been extensively explored indifferent

contexts and applications [21, 125, 88]. The general problem setting is to receive

instances one at a time, make a prediction for each instance, and based on the feed-

back available, update the model. Many online algorithms are designed to learn

linear models [21]. A closely related area is online prediction with expert advice

[36, 75, 116], where predictions from multiple experts are weighted and update in

every online iteration. One of the most well-known algorithms is the Hedge Algo-

rithm [36], which was a direct generalization of Weighted Majority Algorithm [75].

Many online algorithms have been proposed for extending kernel methods in an

online setting, in which several techniques have have been proposed for online ker-

nel regression, such as Naive OnlineRreg Minimization Algorithm (NORMA) [61],

Online Passive Aggressive Regression [21], Sparse Implicit Online Learning with

Kernels (ILK and SILK) [104] and Primal Online Algorithm (PRIONA) [12]. While

these methods provide with promising directions, they suffer from problems of ker-

nel selection, and they are not able to utilize complementary information from mul-

tiple kernels. Another major problem with existing online kernel methods is the

curse of kernelization, where the number of support vectors is unbounded. In the

online setting, every instance that suffers a non zero loss becomes a support vector,

which results in updating the prediction function such that every new prediction re-

quires a kernel function computation with all the support vectors in memory. This is

even more problematic in the case of using multiple kernels, where the kernel func-

tion computation has to be done for all support vectors, and for all the kernels. To
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address the scalability concerns of kernel-based online learning, many studies focus

on the budget issue [22, 13]. These speed up the algorithms by bounding the number

of support vectors. Some well-known example algorithms include Forgetron [30],

Projectron [91], and the Bounded Online Gradient Descent (BOGD) [131]. Re-

cently, kernel approximation strategies have been proposed to address the scalability

concerns [78].

3.2.2 Kernel Learning

Kernel methods have gained popularity due to their ability to learn nonlinear pat-

terns in the data [103]. Several Kernel methods have been applied to regression

tasks [109]. Most kernel methods often assume that a predefined parametric kernel

is given a priori, where the parameters are chosen either manually or via cross val-

idation. Kernel learning aims to learn an effective kernel from data automatically.

Some studies have attempted to learn kernel functions or matrices from labeled and

unlabeled data. Examples include marginalized kernels [59], idealized kernel learn-

ing [64], graph-based spectral kernel learning [11, 50], and non-parametric kernel

learning [48, 133]. These methods often follow a batch (and transductive) learning

setting and thus are difficult to be applied in an online learning scenario.

Another prevalent kernel learning technique is Multiple Kernel Learning

(MKL) [65], which aims to find the optimal combination of multiple kernels. Un-

like most existing MKL techniques that are batch learning [65, 110, 43], our work

focuses on online regression tasks, and is related to existing online MKL studies that

focus on classification tasks [58, 49] and that addresses structured prediction [81].

Existing studies in Online Learning with Multiple Kernels have several limitations,

including computational problems arising from unbounded number of support vec-

tors, unsuitability to concept drift and time series applications. Further, the kernel

combination strategies are limited.
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3.3 Online Multiple Kernel Regression

3.3.1 Problem Setting

In this section, we present the proposed Online Multiple Kernel Regression

(OMKR) scheme. We will first motivate the problem by introducing the formulation

of batch Multiple Kernel Learning (MKL). We then present our OMKR framework,

the detailed algorithms for addressing different challenges, and finally theoretical

analysis of OMKR.

Consider a set of training examples {(xt, yt), t = 1, . . . , T} where xt ∈ Rd,

yt ∈ R and a collection of m kernel functions K = {κi : χ × χ → R, i =

1, . . . ,m}. Multiple Kernel Learning aims to learn a kernel-based prediction model

by identifying the best linear combination of the m kernels, that is, a weighted

combination θ = (θ1, . . . , θm). The learning task can be cast into the following

optimization [65]:

min
θ∈∆

min
f∈HK(θ)

1

2
|f |2HK(θ)

+ C
T∑
t=1

`(f(xt), yt) (3.1)

where ∆ = {θ ∈ Rm
+ |θT1m = 1}, K(θ)(·, ·) =

T∑
i=1

θiκi(·, ·) and `(f(xt), yt) is a

convex loss function.

The above convex optimization problem of regular batch MKL can be solved by

different schemes [110, 124, 43]. Despite being studied extensively, it remains very

challenging when solving the batch MKL for large-scale applications. Besides, sim-

ilar to most batch kernel methods, regular MKL has some drawbacks: (i) the trained

model, if it is not re-trained with new data, may work poorly for non-stationary data

in a new environment; but (ii) the re-training cost is extremely expensive for data

streams, making it non-scalable.
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3.3.2 OMKR Framework

To overcome the limitations of MKL for a regression task, we propose a new scheme

of Online Multiple Kernel Regression (OMKR) by applying the emerging online

multiple kernel learning principle [49] for tackling regression tasks, which attempts

to sequentially learn the online multiple-kernel regressor given a new data example

using a two-step updating scheme: (i) update the set of kernel-based regressors for

each individual kernel; and (ii) update the weights for combining the multiple kernel

regressors. In the following, we discuss the details of the proposed algorithms for

tackling online regression tasks at each of the two steps.

Learning Online Kernel-based Regressors

The goal of this task is to learn a regression function ft ∈ Hκ in an online setting,

where Hκ a reproducing kernel Hilbert space (RKHS) induced by a given specific

kernel κ ∈ K. We solve this task by exploring two online regression solutions:

Kernel Widrow-Hoff [120] and NORMA [61], which follows the same principle

of Online Gradient Descent (OGD) [134] for online convex optimization and but

optimizes two slightly different objective functions.

Kernel Widrow-Hoff Learning. Given a sequence of data instances

(xi, yi), i = 1, . . . , T , the goal of kernelized Widrow-Hoff learning is to minimize

the total cumulative loss over the whole regression task L defined as follows:

L = ΣT
t=1`(ft(xt), yt) , ΣT

t=1Lt(ft) (3.2)

where ft(xt) is the prediction made by a kernel regressor on the t-th instance,

`(ft(xt), yt) denoted by Lt(ft) for short, is a convex loss function. Following

OGD [134], we have the following online update rule given a data instance (xt, yt):

ft+1 ← ft − ηt∇Lt(ft) (3.3)
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where ηt > 0 is a learning rate parameter that can be either a small constant ηt = η

used in Widrow-Hoff [120] or a factor depending on t. When choosing the squared

loss for `:

`(ft(xt), yt) = (ft(xt)− yt)2,

we have the online updating rule expressed explicitly as

ft+1(·)← ft(·)− ηt(ft(xt)− yt)κ(xt, ·). (3.4)

NORMA. The above method has two potential drawbacks. First, it may lead

to overfitting when dealing with noisy data. Second, due to the use of squared

loss, almost every training instance will be added as support vectors (unless ft(xt)

is identical to yt), making the prediction function computationally intensive when

handling large-scale datasets. To overcome these drawbacks, we explore another

online regression scheme by following the idea of NORMA [61], which replaces

Lt(ft) by the following regularized loss:

Lt(ft) =
λ

2
||f ||2Hκ + `(ft(xt), yt) (3.5)

By the OGD principle, we have the online updating rule as:

ft+1 ← (1− ηtλ)ft − ηt∇`(ft(xt), yt) (3.6)

where ηt > 0 is the learning rate parameter. Instead of using the square loss, we

exploit the ε-insensitive loss function which is defined as

`(ft(xt), yt) = max (0, |yt − ft(xt)| − ε),
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where ε represents the width of the insensitivity zone. We can further modify the

loss function by making ε as a variable of the optimization:

`t(ft,xt) = max(0, |yt − ft(xt)| − εt) + νεt (3.7)

where ν > 0 is a parameter, and εt is a variable to be updated in online learning

process. Using the above loss function, we can derive the online updating rule for

NORMA:

ft+1 ←


(1− ηtλ)ft + ηt ∗ sgn(d)κ(xt, ·) if |d| > εt

(1− ηtλ)ft otherwise
(3.8)

εt+1 ←


εt + (1− ν)ηt if |d| > εt

εt − ηtν otherwise
(3.9)

where we denote d = yt − f(xt).

Remark. For both of the above methods, at the end of each online learning

round, we can express the prediction function of the regressor as a kernel expansion

[103]:

ft+1(x) = Σt
i=1αiκ(xi,x)

where the αi coefficients are computed based on the updating rules in (3.4) or (3.8).

When αi 6= 0, the i-th instance is often called as a Support Vector (SV). Thus, the

time complexity for prediction is linear with respect to the number of SV’s. When

using the squared loss, we will have αi 6= 0 for almost every instance, leading to

a large number of support vectors. By contrast, when using the ε-insensitive loss,

whenever the difference between the prediction on the i-th instance fi(xi) and yi is

small enough, i.e., within the ε tube, we have αi = 0, which thus generates a much

smaller SV size and significantly improves the prediction efficiency.
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Learning the Best Kernel Combination

The previous online kernel regression method allows us to learn a set of kernel

regressors f it ∈ Hκi , i = 1, . . . ,m with respect to the pool of multiple diverse

kernelsK. The idea of OMKR is to learn an effective regressor Ft(x) by combining

the set of multiple kernel regressors:

Ft(x) =
m∑
i=1

witf
i
t (x) (3.10)

where wit ∈ R denotes the combination weight for the i-th kernel regressor. The

remaining problem then is to determine the appropriate combination weights wt for

the set of kernels. We note that this is a very challenging task since we may not have

prior knowledge for empirical performance of each kernel, and the optimal combi-

nation weights may even change over time in the online learning process especially

when dealing with non-stationary data.

One naive solution is to simply adopt a uniform combination for all the kernels,

i.e., wit = 1/m, which does explore all the kernels, but often results in sub-optimal

performance, as observed in our empirical studies. In this section, we attempt to

learn the best kernel combination weights by exploring two different online learning

algorithms: the Hedge algorithm [36] and the OGD algorithm [134]. We will first

present each algorithm in detail and finally discuss their strengths and weaknesses

for different scenarios.

Hedge Algorithm: The Hedge algorithm is the most popular online algorithm

for solving the problem of decision-theoretic online learning or known as prediction

with expert advice [116, 14]. Specifically, by treating each online kernel regressor

as an expert, the Hedge algorithm aims to minimize the regret of the learner for

the regression task, which is the difference between the learner’s cumulative loss

and the cumulative loss of the best kernel regressor. In theory, Hedge can achieve

an optimal upper bound of regret O(T lnm) with T learning rounds and m kernel

regressor experts. It is thus an ideal online learning algorithm for tracking the best
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online kernel regressor especially when there is some kernel regressor significantly

dominates the rest.

Specifically, the Hedge algorithm runs in a fairly simple way. Consider the

OMKR problem, at the beginning, the combination weights wt are initialized as a

uniform distribution, i.e., wi1 = 1/m, i = 1, . . . ,m. At the end of each learning

round, according to the performance of the multiple kernel regressors, the weights

are updated by:

wit+1 = witβ
`it , i = 1, . . . ,m (3.11)

where β ∈ (0, 1) is a discounting (learning rate) parameter, and `it denotes the loss

suffered by the i-th kernel regressor at round t, i.e., `it = `(f it (xt), yt). Finally, we

normalize all wit+1’s to ensure the combination weights as a distribution.

We refer to the proposed OMKR algorithm that adopts the Hedge algorithm

as the Deterministic OMKR (Hedge) algorithm, as shown in Algorithm 9. In the

algorithm, we can update each kernel regressor f it+1 by adopting either the Widrow-

Hoff learning in (3.4) or NORMA in (3.8).

Algorithm 3 Deterministic OMKR (Hedge)
INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Discounting Parameter: β ∈ (0, 1)
- Step size parameter for each kernel: η
- Regression parameters: λ and ν for OMKR(NORMA)

Initialization: f1 = 0, w1 = 1
m
1

for t = 1,. . . ,T do
Receive instance: xt
Predict ŷt =

m∑
i=1

witf
i
t (xt)

Reveal true value yt
for i = 1,. . . ,m do

Set `it = `(f it (xt), yt);
Update f it+1 = Eq. (3.4) OR (3.8)
Update wit+1 = witβ

`∗it where `∗it = (f it (xt)− yt)2;
end for
Set wit+1 =

wit
Wt

where Wt =
m∑
i=1

wit, i = 1, . . . ,m

end for
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Although Hedge is ideal for tracking the best kernel regressor, it is not always

perfect for solving a practical OMKR problem since our goal is to learn the best

combination of multiple kernels. In the following, we present an online gradient

descent (OGD) based algorithm that attempts to learn the optimal linear combina-

tion of multiple kernel regressors.

OGD Algorithm: Our goal is to learn the optimal combination weight vector

wt ∈ Rm for combining the multiple kernel regressors. It can be cast into the

following online optimization

wt+1 ← arg min
w

`(w>ft(xt), yt) , (w>ft(xt)− yt)2 (3.12)

where ft(xt) is a vector representing the predictions made by all the kernel regres-

sors on instance xt, and ` is a loss function denoting the loss suffered by the OMKR.

We simply adopt the squared loss in our solution (though it may also include a reg-

ularizer). Following the OGD, we can derive the updating rule as follows:

wt+1 ← wt − ηw(ŷt − yt)ft(xt) (3.13)

where ηw is a learning rate parameter, and ŷt = w>ft(xt).

Using the above OGD algorithm for learning the optimal combination weights,

we propose another OMKR scheme, called Deterministic OMKR(OGD), as shown

in Algorithm 4. Like in OMKR(Hedge), we can also update each kernel regressor

by either Widrow-Hoff in (3.4) or NORMA in (3.8).

Remark. In online MKL work related to classification [58, 49], Hedge algo-

rithm was used to combine multiple predictions. In contrast, our proposed OGD

approach interprets the kernel predictions as new rich features which can be com-

bined linearly. In terms of update rules, Hedge makes multiplicative updates while

OGD makes additive updates. Further, for the combination weight vector wt, Hedge

always keep wt a distribution (wit ≥ 0 and
∑

iw
i
t = 1) while OGD is able to learn
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Algorithm 4 Deterministic OMKR (OGD)
INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Learning rate parameter: ηw
- Step size parameter for each kernel: η
- Regression parameters: λ and ν for OMKR(NORMA)

Initialization: f1 = 0, w1 = 0

for t = 1,. . . ,T do
Receive instance: xt
Predict ŷt =

m∑
i=1

witf
i
t (xt)

Reveal true value yt
for i = 1,. . . ,m do

Set `it = `(f it (xt), yt);
Update f it+1 = Eq. (3.4) OR (3.8)

end for
Update wt+1 = wt − ηw(ŷt − yt)ft(xt)

end for

any real-valued vector for wt. In general, both Hedge and OGD have their different

merits. Hedge is good at tracking the best kernel regressor, while OGD is good

at learning the optimal combination of multiple kernel regressors. However, OGD

often suffers from slow convergence rate. In practice, the empirical performance

of OMKR(Hedge) and OMKR(OGD) may vary a lot in different scenarios. Due to

the nature of multiplicative update of Hedge, it converges quickly, and in an online

setting, may tend to achieve better performance than OGD, if the dataset is small,

or if the pattern changes due to non-stationarity. We conduct more in-depth analysis

through our extensive experimental studies in Section 3.6.

3.3.3 Theoretical Analysis

Without loss of generality we assume that ∀ i, ∀ t, κi(xt · xt) ≤ 1, and

`t(f
i
t (xt), yt) ≤ 1.

Theorem 1. After receiving a sequence of T instances, the cumulative loss suffered
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by OMKR (Hedge) using the Widrow-Hoff Algorithm is bounded as

LOMKR ≤
ln( 1

β
)

1− β
min

1≤i≤m
F (κi, `,D) +

ln(m)

1− β
(3.14)

where

F (κi, `,D) = min
f∈Hκ

[
ΣT
t=1(f(xt)− yt)2

1− η
+
||f ||2

η

]
(3.15)

Here LOMKR is the total loss suffered at each prediction, and due to the convexity

of the loss function, we have

LOMKR = ΣT
t=1`(Σ

m
i=1w

i
tf
i
t (xt), yt) ≤ ΣT

t=1Σm
i=1w

i
t`(f

i
t (xt), yt)

and by choosing β =
√
T√

T+
√

lnm
, we get:

LOMKR ≤ (1 +

√
lnm

T
min

1≤i≤m
F (κi, `,D) + lnm+

√
T lnm)

where D is a sequence of instances.

Proof. The proof follows from combining the proof of Hedge Algorithm and the

Widrow-Hoff Regression. Let φit = ||f it − f ||22 for any f ∈ Hκi . Also, let ∆t denote

the change in f during each update, such that ∆t = η(ft(xt)− yt)κ(xt, ·). We also

define `t = ft(xt)− yt as the signed error suffered by ft, and `∗t = f(xt)− yt be the

signed error suffered by f .

φit+1 − φit = ||f it+1 − f ||22 − ||f it − f ||22

= ||∆t||22 − 2(f it − f) ·∆t

= η2`i2t κ(xt · xt)− 2η`tκ(xt, ·) · (f it − f)

≤ η2`i2t − 2η`2
t + 2η`t`

∗
t

= η2`i2t − 2η`i2t + 2η

[
(`it
√

1− η)(
`∗t√

1− η
)

]
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The inequality follows from the assumption κ(xt · xt) ≤ 1.

φit+1 − φit ≤ η2`i2t − 2η`i2t + η(1− η)`i2t +
η

1− η
`∗2t

= −η`i2t +
η

1− η
`∗2t

(3.16)

In the above equation we use the algebraic inequality ab ≤ (a2 + b2)/2. From this,

by assuming f1 = 0, and using a telescoping sum, it is very simple to prove that

LiWH ≤ min
f∈Hκ

[
ΣT
t=1(f(xt)− yt)2

1− η
+
||f ||2

η

]
(3.17)

where LiWH is the cumulative loss suffered by the regression function learnt by the

the Widrow-Hoff Algorithm in the RKHS by the ith kernel. As number of instances

T grows large, the average loss per instance

Plugging this result into the Hedge Algorithm gives us the bound. The choice

of β maybe overestimated because of the assumption that the loss suffered by the

algorithm is T .

Theorem 2. After receiving a sequence of T instances, the cumulative loss suffered

by OMKR (OGD) using the Widrow-Hoff Algorithm is bounded as

LOMKR ≤ min
1≤i≤m

F (κi, `,D) +
ηGT

2
+
C

2η
(3.18)

where G is constant that upper bounds the gradient of the loss function, and C is a

constant that upper bounds the distance between any two weight vectors w, and

F (κi, `,D) = min
f∈Hκ

[
ΣT
t=1(f(xt)− yt)2

1− η
+
||f ||2

η

]
(3.19)

By choosing η =
√

C
GT

, we get:

LOMKR ≤ min
1≤i≤m

F (κi, `,D) +
√
CGT
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where D is a sequence of instances.

Proof. The proof follows from combining the proof of Online Gradient Descent and

the Widrow-Hoff Regression. Online Gradient Descent provides a sublinear regret

with respect to the best linear combination of its input features, which in this case

is the output of individual kernel experts. If the loss of the optimal combination is

denoted by `(w∗), it follows the `(w) < `(w∗) ∀w.

We define the optimal kernel expert as w̃ which corresponds to a one-hot vector,

i.e., it is an indicator vector corresponding to the optimal expert. Since `(w̃) <

`(w∗), we get the result in the theorem.

Next we present the analysis of OMKR based on NORMA. The loss function of

NORMA in the tth iteration for the ith kernel is denoted as:

`t(f
i
t ) =

λ

2
||f ||2Hκ + max(0, |yt − ft(xt)| − εt) + νεt (3.20)

There are two sets of parameters to be updated: f and ε. The loss function is

convex in both these parameters. Since the update rule takes the form of Online

Gradient Descent [134], both f and ε are learnt via the same update rule. Thus we

incorporate ε into the prediction function f .

Lemma 1. After receiving a sequence of T instances, the cumulative loss suffered

by NORMA regression is bounded as

LNORMA ≤ min
f∈Hκ

T∑
t=1

(λ
2
||f ||2Hκ + max(0, |yt − ft(xt)| − εt) + νεt

)
+
√
C2G2T

(3.21)

where G2 is constant that upper bounds the gradient of the loss function, and C2 is

a constant that upper bounds the distance between any two weight vectors inHκi .
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Proof. Let φit = ||f it − f ||22 for any f ∈ Hκi .

φit+1 − φit = ||f it+1 − f ||22 − ||f it − f ||22

= ||f it − η∇`it(f it )||2 − ||f it − f ||22

= η2||∇`it(f it )||2 − 2η∇`it(f it )(f it − f)

Using a telescoping sum of all terms over time, we get:

φiT − φi0 = −2η
T∑
t=1

(f it − f)∇`it(f it ) + η2

T∑
t=1

||∇`it(f it )||2

≤ −2η
T∑
t=1

(f it − f)∇`it(f it ) + η2G2T

The last inequality holds due to the assumption that ||∇`it(f it )||2 < G2. Thus we

can get:

LNORMA ≤ Lf + ||f i0 − f ||2 − ||f iT − f ||2 + η2G2T

≤ Lf +
||f i0 − f ||2

2η
+
ηGT

2

≤ Lf +
ηGT

2
+
C2

2η

where LNORMA is the total loss suffered by NORMA algorithm, and Lf is the

cumulative loss suffered by any function f in Hκi. The last inequality holds due

to the assumption that ||f i0 − f ||2 ≤ C2. Setting η = C2

G2T
we get the result in the

lemma.

Theorem 3. After receiving a sequence of T instances, the cumulative loss suffered

by OMKR (Hedge) using the NORMA Algorithm is bounded as

LOMKR ≤
ln( 1

β
)

1− β
min

1≤i≤m
F (κi, `,D) +

ln(m)

1− β
(3.22)
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and by choosing β =
√
T√

T+
√

lnm
, we get:

LOMKR ≤ (1 +

√
lnm

T
min

1≤i≤m
F (κi, `,D) + lnm+

√
T lnm)

where D is a sequence of instances, and:

F (κi, `,D) = min
f∈Hκ

T∑
t=1

(λ
2
||f ||2Hκ + max(0, |yt − ft(xt)| − εt) + νεt

)
+
√
C2G2T

Proof. The proof follows from combining the results of Hedge and Lemma 1, in a

similar way as done in Theorem 1.

Theorem 4. After receiving a sequence of T instances, the cumulative loss suffered

by OMKR (OGD) using the Widrow-Hoff Algorithm is bounded as

LOMKR ≤ min
1≤i≤m

F (κi, `,D) +
ηGT

2
+
F

2η
(3.23)

where G is constant that upper bounds the gradient of the loss function, and C is a

constant that upper bounds the distance between any two weight vectors w, and

F (κi, `,D) = min
f∈Hκ

[
ΣT
t=1(f(xt)− yt)2

1− η
+
||f ||2

η

]
(3.24)

By choosing η =
√

F
GT

, we get:

LOMKR ≤ min
1≤i≤m

F (κi, `,D) +
√
FGT

where D is a sequence of instances and

F (κi, `,D) = min
f∈Hκ

T∑
t=1

(λ
2
||f ||2Hκ + max(0, |yt − ft(xt)| − εt) + νεt

)
+
√
C2G2T

Proof. The proof follows by combining the result of Lemma 1 and Online Gradient

Descent, in similar fashion as Theorem 2.
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3.3.4 Speed-ups by Reducing Number of Support Vectors

A major short coming of the above approach is the quadratic time-complexity in

running time of the algorithm, i.e., for a dataset with T instances, the running time

is in O(T 2). This is because of the curse of kernelization, where every new predic-

tion requires a kernel function computation with all the older support vectors in the

dataset (and when squared loss is used, all instances invariably become support vec-

tors). This can often be infeasible for large datasets, which restricts the ability to use

the above algorithms for online learning on large datasets. To speed this process up,

we propose faster approximation schemes. Specifically we propose (i) budgeting

strategies to limit the number of support vectors; and (ii) functional approxima-

tion schemes to approximate the kernel functions without explicitly computing the

kernel function with all the support vectors.

Even though a non-zero loss is suffered often, particularly when the squared

loss is used, many of these instances could potentially be noisy, or the loss suffered

would be so small that the α coefficient assigned to the support vector would be

insignificant, which would lead to an insignificant impact on the prediction function.

Moreover, as often observed in online learning applications, the data could exhibit

concept drift [39], in which case many of the old support vectors may actually harm

the prediction function performance, in addition to adding to the computational cost.

Further, not all kernels are good candidates for prediction, especially when their

weights are low. In addition, not all the historical instances are good candidates for

making the prediction, particularly in a non-stationary setting. With this motivation,

we propose stochastic update and budget online kernel learning strategies.

Stochastic Update for OMKR

An update to a kernel regressor involves adding a new support vector. If SVs are

not added to less important kernels, the time taken for prediction by these kernels

is significantly reduced. The intuition is if there is only one good kernel or a small
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subset of good performing kernels, it is only these should be given more data to learn

the function, and the poor kernels are still allowed to make predictions (but with

limited data), which takes much lesser computational time. We define a probability

sampling denoted by qit, which determines the probability of a kernel being selected

for updates.

qit =
|wit|

max1≤j≤m |wjt |
(3.25)

This indicates that higher the absolute weight, the higher is the probability, and

the best kernel has a probability of 1. When OMKR(Hedge) is used the weights

can never be negative. In case of OGD updates in weights, there is a theoretical

possibility for the weights to become negative, and hence we take absolute values

to compute qit, so as to account for weights having the maximum impact on the

prediction. To prevent kernels with low weights, that do not have a significant

impact to the prediction, from completely losing out, we introduce a smoothing

parameter δ ∈ (0, 1). The idea is to add a small component of uniform weights.

The new probability of a kernel being selected for update is denoted by:

pit = (1− δ)qit +
δ

m
(3.26)

Here δ is a small value. A similar idea was used in [4], to tradeoff between explo-

ration and exploitation. Using p we sample a subset of kernels based on Bernoulli

Sampling, i.e., mi
t = Bernoulli(pit). Only those kernels that are selected will be

chosen for an update. The steps are described in Algorithm 5.

Budget OMKR

As the number of support vectors grows in an unbounded manner, it significantly

increases the computational cost, particularly in the case of multiple kernels. There

have been several approaches in literature to address the issue of setting a budget in

the context of online learning with kernels (mostly for single kernel methods). A
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Algorithm 5 Stochastic OMKR scheme
INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Update Parameter: β ∈ (0, 1) if Hedge or ηw for OGD
- Smoothing Parameter: δ ∈ (0, 1)
- Step Size Parameter for each kernel: η
- Regression parameters:λ, ν for OMKR(NORMA) NORMA)

Initialization: f1 = 0, w1 = 1
m
1

for t = 1,. . . ,T do
Receive instance: xt
Predict ŷt based on Hedge or OGD combination
Reveal true value yt
qit =

|wit|
max

1≤j≤m
|wjt |

, i = 1, . . . ,m

pit = (1− δ)qit + δ
m
, i = 1, . . . ,m

Sample mi
t = BernoulliSampling(qit), i = 1, . . . ,m

for i = 1,. . . ,m do
Set `it = `(f it (xt), yt)
if mi

t == 1 then
Update f it+1 = Eq. (3.3) OR (3.6)

end if
end for
Update wt+1 based on Hedge or OGD

end for

budget τ is specified, and the number of support vectors is not allowed to exceed

this number. These are broadly classified into three categories: Removal, Projection

and Merging. Removal refers to replacing old support vectors with new ones when

the budget is exceeded, based on certain criteria. Projection

Often, a subset of instances can explain the data as well as the entire data. Fur-

ther, in a non-stationary time series setting, it is common to introduce a sliding

window so as to give importance to only the most recent instances. In our case,

we have a sliding window of the most recent support vectors that explain the data.

This is also particularly helpful in the case of NORMA, where in each iteration, the

old support vectors get reduced by a factor of (1 − ηλ) due to the regularization

term. As t grows, the α values of the old support vectors get reduced to almost

zero. Such support vectors can be ignored without any significant impact to the

prediction. Therefore, we propose a parameter τ which restricts the total number of
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support vectors that are allowed to be stored by each regressor. The older support

vectors are deleted.

3.4 Large-Scale Online Multiple Kernel Regression

via Functional Approximation

The proposed OMKR scheme follows the usage of traditional Online Learning with

kernels [61], and independently learns each kernel regressor for a pool of m differ-

ent kernel functions. These predictions are obtained in each online learning iteration

and their weighted combination gives us the final prediction. During the update, first

the weights of each kernel predictor updated by using the Hedge Algorithm [36],

and each kernel predictor is also updated. This scheme suffers from two drawbacks:

• They suffer from the curse of kernelization, which means that the number of

support vectors is unbounded. This adds a significant computational burden

for the algorithm. In particular poor performing kernels have a tendency to

acquire a lot of support vectors, thus taking up computational resources but

not contributing to the final prediction. While the budgeting techniques may

speed up the process, they can still be computationally expensive, as several

kernel function computations may still be required to get reasonable perfor-

mance. Moreover, budgeting techniques are heavily reliant on the selected

support vectors, which can be noisy or insufficient to make accurate predic-

tions.

• The design of the original batch Multiple Kernel Learning is such that it aims

to learn the optimal combination of kernel functions, in order to obtain a

single unified kernel function. This means that the kernel combination is at

a feature representation level, rather than at a prediction level. Unlike this,

OMKR simplifies the learning process to two steps where the diverse kernels

49



learn independently, and the combination of the kernels happens at a predic-

tion level. Currently there are no approaches in literature that perform Online

Multiple Kernel Leading by combining kernels at the representation level.

To address these issues, we propose to apply functional approximation tech-

niques to learn the kernel function [121, 94].

3.4.1 Functional Approximation for Kernels

The main idea is to construct a kernel induced feature representation z(x) ∈ RD,

where D is the new feature dimension, such that the dot product of instances in this

new feature space is able to approximate the kernel function:

κ(xi,xj) ≈ z(xi)
>z(xj) (3.27)

Following this approximation, the single kernel prediction function takes the

following form:

ft+1(x) = Σt
i=1αiκ(xi,x) ≈ Σt

i=1αiz(xi)
>z(x) = w>κ z(x) (3.28)

where wκ denotes the weight vector to be learnt in the new feature space which has

been induced by the kernel κ.

Applying online gradient descent [134], and performing online learning on this

new feature space allows us to perform online learning with a single kernel. To

extend this to the multiple kernel setting, we obtain m new feature representations

induced by different kernels:

zκi(x) for i = 1, . . . ,m (3.29)

and correspondingly, we need to estimate m different weight vectors wi for i =
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1, . . . ,m, in order to learn the prediction function:

f i(x) = w>κix (3.30)

Fourier Approximation

First, we consider a class of kernels called shift-invariant kernels. A shift invariant

kernel function is one whose result is a function of the distance between the two

input instances, i.e.

κ(x1,x2) = k(∆x) where

∆x = x1 − x2

Popular examples of such kernels include Gaussian Kernels, Laplacian Kernels,

Cauchy Kernels, etc. For this class of kernels, random Fourier Features can be

obtained to approximate the kernel function [94, 78]. Applying inverse Fourier

transform to a shift-invariant kernel function, we get:

κ(x1,x2) = k(x1 − x2) =

∫
p(u)eiu

>(x1−x2)du (3.31)

Here, p(u) is the probability density function, which is obtained from the

Fourier transform of k(∆x). Consider the Gaussian Kernel function κ(x1,x2) =

exp(− ||x1−x2||22
2σ2 ). The random Fourier component for this is u with the distribution

p(u) = N (0, σ2I). This kernel is continuous and positive definite, and applying

Bochner’s Theorem, the kernel function can be expressed as an expectation of the

random variable u [94] such that:

∫
p(u)eiu

>(x1−x2)du = Eu[eiu
>x1 · eiu>x2 ]

= Eu[cos(u>x1) cos(u>x2) + sin(u>x1) sin(u>x2)]

= Eu[[sin(u>x1), cos(u>x1)] · [sin(u>x2), cos(u>x2)]]
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From the above equation we can observe that the kernel function, can be represented

as a dot product of the instances in the new representation, in expectation, where the

new representation is:

z(x) = [sin(u>x), cos(u>x)]>

However, using only one Fourier component may lead to a large variance. To re-

duce the variance, we can sample more random Fourier components. Specifically,

we sample D random Fourier components u1, . . . ,uD and obtain the new feature

representation as:

z(x) = [sin(u>1 x), cos(u>1 x), . . . , sin(u>Dx), cos(u>Dx)]> (3.32)

Nyström Approximation

The random Fourier features have two limitations. First, they are designed for fixed

kernel functions, and are not data dependent, which may cause loss of useful infor-

mation which could be exploited. Second, they can be used for only shift-invariant

kernels, and not any generalized kernel function. In order to address these issues,

we can use the Nyström Method to perform Singular Value Decomposition (SVD)

on the kernel matrix, to obtain the approximate features.

For a dataset with T instances, consider the full kernel matrix denoted by K ∈

RT×T , with rank r. Applying SVD to this matrix gives us K = VDV>, where the

columns in V are orthogonal, and D is a diagonal matrix D = diag(σ1, . . . , σr)).

For k < r,Kk = Σk
i=1σiViV

>
i = VkDkV>k is the best rank-k approximation of

K. Given a large kernel matrix, K ∈ RT×T , Nyström method randomly samples a

small subset of B columns, where B � T , and constructs a new matrix C ∈ RT×B,

and using this derives a much smaller kernel matrix W ∈ RB×B. Thus the large

kernel matrix can be approximated as:

K̂ = CW+
kC

> ≈ K (3.33)
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where Wk is the best rank-k approximation ofW , and W+ is the pseudo inverse of

W.

Using this Nystöm approach we can obtain the feature representation z(x) in the

induced kernel space. Instead of considering all instances T as support vectors, we

consider a budget ofB, where we are given a maximum ofB support vectors, where

B � T . From equation (3.33), we can see that the kernel value of two instances xi

and xj can be approximated as:

κ̂(xi,xj) = (CiVkD
− 1

2
k )(CjVkD

− 1
2

k )>

= ([κ(x̂1,xi), . . . , κ(x̂B,xi)]VkD
− 1

2
k )([κ(x̂1,xj), . . . ,

. . . , κ(x̂B,xj)]VkD
− 1

2
k )>

Consequently, we can construct a new representation for instance x as:

z(x) = ([κ(x̂1,x), . . . , κ(x̂B,x)]VkD
− 1

2
k )>

3.4.2 OMKR (Hedge) via Functional Approximation

Next we briefly describe the OMKR learning strategies based on the new kernel

induced feature representation. We discuss the corresponding algorithm for kernel

combination using Hedge Algorithm [36]. Following the approach described in

Section 3.3, the OMKR process can be split into two steps: (i) Learning each kernel

regressors; and (ii) Learning the kernel combination.

Learning Online Kernel-based Regressors. In each online iteration, given an

instance x, first we obtain the new feature representation z(x). This can be ob-

tained using either the Fourier Approximation strategy or the Nyström Approxima-

tion strategy described in the previous section. For the Nyström approach, Online

Kernel Learning is performed in the usual manner, till B support vectors are ob-

tained. This is followed by using these B support vectors and applying the Nyström

method to obtain the representation z(x). Once the representation z(x) is obtained,
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the process of learning a single kernel regressor gets reduced to learning a linear

model via online learning. Like before, we adopt learning via Online Gradient De-

scent [134].

Consider a squared loss function

`(ft(xt), yt) = (ft(xt)− yt)2

where

f(x) = w>κ z(x)

Here wκ is the linear model to be learnt using the new kernel induced representation

z(x). Following, OGD [134], we get the following update rule:

wκt+1 ← wκt − ηt(ŷt − yt)ft(xt) (3.34)

where ηt is a learning rate parameter, and ŷt = w>κtft(xt). Using similar steps, we

can derive the update rule for NORMA [61] based learning, using an ε-insensitive

loss function.

Learning Online Kernel Combination The next step is to learn the optimal kernel

combination. The final prediction in each online learning iteration usingm different

diverse kernel functions is given by:

Ft(x) =
m∑
i=1

witf
i
t (x)

where f it (x) represents the output of the kernel function, where the representation

zi(x) is induced by kernel i. Applying Hedge [36], and following the update rule as

described in Section 3.3.2, we get:

wit+1 = witβ
`it , i = 1, . . . ,m

This entire scheme is outlined in Algorithm 7.
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Algorithm 6 OMKR(Hedge) via Functional Approximation
INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Update Parameter: β ∈ (0, 1) if Hedge
- Step Size Parameter for each kernel: η

Initialization: f1 = 0, w1 = 1
m
1

for t = 1,. . . ,T do
Receive instance: xt
Obtain new feature representation zi(xt) using Fourier or Nyström approach
∀i = 1, . . . ,m

Predict ŷt =
m∑
i=1

witf
i
t (xt) =

m∑
i=1

wit(w
>
κit
zi(xt))

Reveal true value yt
for i = 1,. . . ,m do

Set `it = `(f it (xt), yt)
Update wκit+1 ← wκit − ηt(ŷt − yt)ft(xt)
Update wit+1 = witβ

`∗it where `∗it = (f it (xt)− yt)2

end for
end for

3.4.3 OMKR (OGD) via Functional Approximation

For learning OMKR using functional approximation with OGD combination of

kernels, the learned model becomes fundamentally different to all the OMKR ap-

proaches described above. The above approaches split the multiple kernel learning

procedure into two steps: learning the kernel regressors independently, followed by

combining the multiple predictions using Hedging. However, following the princi-

ple of the original batch MKL optimization:

min
θ∈∆

min
f∈HK(θ)

1

2
|f |2HK(θ)

+ C
T∑
t=1

`(f(xt), yt) (3.35)

Here, we can see that the original intention is to learn the optimal kernel func-

tion, as a combination of multiple kernels. This means that the combination of

multiple kernels is to be at the representation level, and not the prediction level.

While the above approaches offer an resembling effect to exploit the representation

powers of different kernels, they do not combine the kernels at a representation level

to learn the ideal kernel function.
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We propose OMKR (OGD) via a Functional Approximation, that enables learn-

ing the combination of multiple kernels at a representation level. First we obtain

the new feature representation for each instance x by applying the Fourier or the

Nyström approximation. Then we concatenate all these feature representations from

each kernel as:

Z(x) = [z1(x), . . . , zm(x)]> (3.36)

Z(x) represents the approximated feature representation induced by the kernel

function, which is a combination of multiple kernels. The aim now is to learn

appropriate weights for each of the features in this new representation. We do so

by applying Online Gradient Descent in the new feature representation to learn the

weight vector w, which has the same dimensionality as Z(x).

The multiple kernel prediction function is given by:

F (x) = w>Z(x) (3.37)

Using the squared loss function `(Ft(xt), yt) = (Ft(xt)− yt)2, by applying Online

Gradient Descent[134], we get the update rule as:

wt+1 ← wt − ηt(ŷt − yt)Ft(xt) (3.38)

Algorithm 7 OMKR(OGD) via Functional Approximation
INPUT:

- Kernels: κ(·, ·) : χ× χ→ i = 1, . . . ,m
- Update Parameter: η for OGD

Initialization: f1 = 0, w1 = 1
m
1

for t = 1,. . . ,T do
Receive instance: xt
Obtain new feature representation Z(x) = [z1(x), . . . , zm(x)]> using Fourier
or Nyström approach
Predict ŷt = Ft(xt) = w>t Z(xt)
Reveal true value yt
Update wt+1 ← wt − η(ŷt − yt)Ft(xt)

end for
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3.5 Application to Time-Series Prediction

OMKR can be applied a variety of online regression tasks, especially for mining

data streams. A natural application of OMKR is Time Series Prediction, which is

the task of predicting the future value based on given past values. Kernel methods

have been commonly used for solving such problems [115, 102]. For our prob-

lem setting, the aim is to perform online learning for time series prediction [2]. We

first introduce the popular time series prediction models: Autoregressive (AR) mod-

els and Autoregressive Moving Average models (ARMA). Then we present how to

apply the OMKR framework to online learn for time-series prediction. This is fol-

lowed by discussing the capturing of nonlinearity for time-series prediction through

kernelized models.

3.5.1 Time Series Models

Autoregressive(AR) model is used for a univariate time series where the value of

the series at a particular time is linearly dependent on its own previous values. An

AR(p) model denotes an autoregressive process of order p, i.e., yt is described by a

noisy linear combination of [yt−1yt−2 . . . yt−p]:

yt = c+ Σp
i=1ζiyt−i + εt (3.39)

where c is a constant, εt is white noise, and ζi. are the parameters describ-

ing the dependency. We denote by Y p
t−1 the set of p past values, i.e., Y p

t−1 =

{yt−1, yt−2, . . . , yt−p}, and thus the equation simplifies to:

yt = c+ ζpY p
t−1 + εt (3.40)

where ζp and Y p
t−1 are both p−dimensional vectors.

Using such a model for online learning faces two main challenges:

• In the real world setting, it is non trivial to determine the order p, as it is hard
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to determine how many past variables the target would be dependent on.

• If we arbitrarily chose a very large p and expected the model to automatically

learn 0 coefficients for very old values which the model deems to be irrelevant,

then the learning procedure could converge slowly, and give noisy results.

To address this issue, we consider a pool of k different values p. For example,

p ∈ {p1, p2, . . . pk}. Using these we construct a pool of kernels before applying

OMKR. This pool of kernels is given as:

K =
{
κ(Y p1

t , ·), . . . , κ(Y pk
t , ·)

}
(3.41)

Since we consider linear time series modeling, we consider only linear kernels,

i.e., κ(Y p
1 , Y

p
2 ) = (Y p

1
>Y p

2 ). These are effectively k different kernel functions for

the learning task, where each kernel function corresponds to a different order of the

AR time-series process. This can be directly plugged into the OMKR framework,

to perform Online Learning for Time-Series Prediction, which also allows us to

obtain sublinear regret with respect to the best performing order p. Apart from the

obvious benefit of not having to manually select the the order p, another advantage

is that if the order of the process p is very high, it can first be approximated by

a low order p in the initial few iterations, leading to faster convergence, followed

by slowly adapting to the higher order via hedging, which could give an improved

performance. Thus, this procedure can exploit the faster convergence due to fewer

parameters in the initial stages of online learning, and at the same time, it enjoys

improved performance in the long run, in case higher order processes describe the

time-series better.

We now discuss the extension of this to Autoregressive Moving Average(ARMA)

time-series modeling. ARMA model is more sophisticated, and involves a term for
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the moving average (MA) of the time series. The MA model is similar to AR model,

except that the linear dependence is not on the past values, but the past errors. An

MA(q) model is given by yt = µ+ Σq
i=1ξiεt−j + εt . Combining AR(p) and MA(q)

gives us an ARMA(p, q) process is given by:

yt = c+ Σp
i=1ζiyt−i + Σq

i=1ξiεt−j + εt (3.42)

Since the error terms are not directly observable for the MA component, making it

very difficult to estimate the model parameters in the online setting. To alleviate this

issue, [2] showed that an ARMA(p, q) model could be learned online by learning

an AR(m + p) model, where m was set as m = q. log1−ε

(
(TLMmax)

−1
)

. m

controls the level of approximation. Under certain assumptions (discussed in [2]),

Online Learning of an AR(m + p) model could achieve sublinear regret compared

to the best ARMA(p, q) model. Thus, applying OMKR, to Autoregressive models

can also obtain sublinear regret with respect to the best ARMA(p, q) model.

This approach can further be extended to Autoregressive Integrated Moving Av-

erage(ARIMA) time-series modeling. While ARMA is designed for stationary

settings, ARIMA is used for modeling nonstationary series. ARIMA does so by

finding patterns in the differentials of the time series. Consider for example the

first order differential ∇yt = yt − yt−1, and similarly, the second order differen-

tial as ∇2yt = ∇yt − ∇yt−1. If the sequence of the differentials ∇dyt satisfies

an ARMA(p, q) model, then the sequence yt satisfies and ARIMA(p, d, q) model.

Thus, an ARIMA(p, d, q) model takes the following form:

∇dyt = c+ Σp
i=1ζi∇dyt−i + Σq

i=1ξiεt−j + εt (3.43)

Following [76], the above model can also be learnt online using only the AR(p)

process, except the time-series here is the differentials. Like before, the optimal

value of p can automatically determined by learning this time-series online through

the OMKR framework.
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3.5.2 Online Nonlinear Time Series Prediction

An assumption made by time-series models is that the dependence on the historical

signals is linear. This assumption may not hold true, and motivates the need for

having nonlinear time series modeling. Consider the AR model described in Section

3.5, where:

yt = c+ ζpY p
t−1 + εt (3.44)

The above model assumes linear dependency on the previous p values. We use

kernels to explore nonlinear dependencies. The kernelized AR(p) model is given

by:

yt = c+ f(yt−1, yt−2, . . . , yt−p) + εt = c+ f(Y p
t−1) + εt

where f(Y p
t−1) ∈ Hκ is the prediction of the regression function using a kernel κ.

Next, we propose to construct a pool of multiple kernels for varying values of

parameter p ∈ [p1, p2, . . . , pk], and m kinds of diverse kernels for each p. This gives

us the following pool of mk kernel functions:

K =
{
κi(Y p1

t , ·), . . . , κi(Y pk
t , ·) for i = 1, . . . ,m.

}
(3.45)

The above can now be directly plugged into the OMKR framework for solving

time series prediction tasks. In comparison to existing kernel methods for time

series prediction, the proposed OMKR solution enjoys the important advantages of

avoiding tedious kernel selection and parameter selection and exploiting the power

of combining multiple kernels for more accurate prediction.
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3.6 Experiments

3.6.1 Evaluation of OMKR on stationary datasets and nonlinear

time-series

Datasets

We use five regular regression datasets and seven time series datasets. The data is

from different applications, with a wide range of data size and dimensionality. All

data attributes including the target were scaled to [0, 1]. The algorithms were run on

ten random permutations of the regular regression datasets to establish robustness.

Such permutations are not applicable in the case of time series. The details of the

datasets used can be seen in Table 3.1.

Table 3.1: List of Datasets
ID Name # Instances # Attributes

Regression Datasets
D1 Abalone 4177 8
D2 Parkinsons 5875 20
D3 Spacega 3107 6
D4 Cadata 20640 8
D5 Add10 9792 11

Time Series Datasets
D6 Laser 10073 20—10
D7 Physiological 17000 2
D8 Currency Exch. 1 3000 20—10
D9 Currency Exch. 2 3000 20—10

D10 Astrophysical 598 20—10

Datasets D1 and D2 were taken from the UCI repository1, D3-D4 from StatLib2,

D5 is a synthetic dataset obtained from Delve3. D6-D10 are datasets from the Santa

Fe Time Series Competition Data4. D6 is stationary, D7 is non-stationary, and un-

like other time series data, is not univariate, but is dependent on 2 attributes, D8 and

D9’s stationarity property is unknown, and D10 is characterized by noise. For uni-

1http://archive.ics.uci.edu/ml/
2http://lib.stat.cmu.edu/
3http://www.cs.toronto.edu/˜delve/data/datasets.html
4http://www-psych.stanford.edu/˜andreas/Time-Series/SantaFe.html
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variate time series data the attribute column having 20|10 indicates the choice of 2

kernelized AR(p) process with p = 10, 20 each having its own m kernel functions.

Kernels

We evaluate the performance of OMKR by using a pool of 24 predefined ker-

nels. These include 4 polynomial kernels κ(x, y) = (xTy)p of degree parameter

p = 1, 2, 3, 4, 13 RBF kernels (κ(x, y) = e(
−||x−y||2

2σ2
)) of kernel width parameter σ

in [2−6, 2−5, . . . , 26], 5 Cauchy kernels (κ(x, y) = 1

1+
||x−y||2
σ2

) with parameter σ in

[2−2, 2−1, . . . , 22], one sigmoid kernel(κ(x, y) = tanh(xy)) and a Chi-Square Ker-

nel (κ(x, y) = 1 − Σn
i=1

(xi−yi)2
1
2

(xi+yi)
). Since all our data is scaled to [0, 1], we clip the

kernel prediction to this range, i.e., ŷt = max(0,min(1, ŷt)).

Baselines and Experimental Setting

We compare the algorithms based on Mean Squared Error (MSE), time taken, and

the weight distribution. The algorithms compared are - (i) Regression(V): Best Ker-

nel by validation; (ii) Regression(H): Best Kernel in hindsight; (iii) Uniform OMKR:

Uniform weight distribution over kernels (to see if this can eliminate the impact of

a poor kernel choice); (iv) Deterministic OMKR (Hedge); and (v) Deterministic

OMKR (OGD). We then analyze the performance of efficiency enhancing variants

of OMKR and study the tradeoff between accuracy and efficiency.

All parameters for the regression tasks (if any), and the best kernel for Regres-

sion(V) were chosen by online validation technique. We performed a grid search

and evaluated the performance of the parameters on the of first 100 instances or

first 10% of the instances, whichever was lesser. The value of Hedge parameter β

was fixed to 0.5 in all cases, and the learning rate ηw was fixed to 0.025 for OGD

update of weights). We also conducted sensitivity analysis for the weight update

parameters. The learning rate η for each kernel regression was fixed at 0.1. Since

η is the same for both single kernel and multi kernel versions, its choice does not

affect the comparison between Single Kernel Regression and OMKR. For budget
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strategies, we fixed the budget size τ = 500 support vectors. In stochastic OMKR,

the smoothing parameter δ was set to 0.05 in all cases.

Results and Discussion

The detailed results of single kernel regression against OMKR can be seen in Table

3.2. Columns Reg(V) and Reg(H) represent single kernel regression by validation

and in hindsight. Columns Uniform, Hedge, OGD represent OMKR with uniform

weights, weight updated by Hedge, and weight updated by OGD respectively.

With almost no exception both our proposed methods OMKR (Hedge and OGD)

outperform Reg(V) very significantly, at times achieving as low as 1% of error of

Reg(V). We should note that in a real world setting, it is hard to choose a better

kernel for unseen data than by a validation method. Reg(H) is the best kernel in

hindsight, and is not known prior to running the experiments. Despite this, OMKR

algorithms significantly outperform Reg(H) in most cases. In cases, where it OMKR

does not beat Reg(H), their performance is very closely matched. Thus, without any

a priori knowledge, OMKR is able to outperform even the best kernel in hindsight.

This is because OMKR is able to identify a linear combination of kernels, which

provide complementary information to each other in order to give a weighted pre-

diction which beats any single best kernel. Uniform OMKR is affected by the usage

of certain poor kernels and its performance is very inconsistent across datasets. It

never beats OMKR(OGD), and beats OMKR(Hedge) in only one case (D1-Norma).

This however is probably an exception, in which the optimal linear combination is

close to a uniform distribution, because of which uniform weights are probably just

a lucky guess. The difference in performance by Reg(V) and Reg(H), and the poor

performance by Uniform(OMKR) highlight the difficulty of choosing the best ker-

nel function for a given task. In terms of efficiency, Deterministic OMKR takes

roughly m times the amount of time take by single kernel regression.

Hedge and OGD are suitable in different scenarios. Due to a multiplicative

update, Hedge converges very quickly, by identifying the single kernel that best
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Table 3.2: Single Kernel Regression vs Multiple Kernel Regression:
Each field is the ratio MSEalgorithm

MSEReg(V )
. Lower ratio implies lower MSE. Best ratios are in

bold. The results for the regression datasets are averaged over 10 different permutations.
The standard deviation is significantly lower in OMKR versions.

Widrow Hoff Norma
ID Reg(V) Reg(H) Uniform Hedge OGD Reg(V) Reg(H) Uniform Hedge OGD

Regression Datasets
D1 1.00 0.85 1.06 0.89 0.98 1.00 0.36 0.29 0.31 0.26
D2 1.00 0.39 0.79 0.39 0.45 1.00 0.40 0.49 0.40 0.39
D3 1.00 0.69 3.90 0.69 0.82 1.00 0.87 1.55 0.52 0.60
D4 1.00 0.79 1.13 0.79 0.85 1.00 0.77 0.93 0.74 0.67
D5 1.00 0.53 2.85 0.56 0.62 1.00 0.21 0.53 0.21 0.22

Time Series Datasets
D6 1.00 0.13 0.50 0.14 0.14 1.00 0.96 1.68 0.70 0.57
D7 1.00 0.96 1.61 0.93 0.37 1.00 0.98 0.69 0.23 0.15
D8 1.00 0.96 12.40 1.65 1.67 1.00 0.73 0.30 0.15 0.18
D9 1.00 0.01 0.07 0.01 0.01 1.00 0.79 0.65 0.18 0.17
D10 1.00 0.83 2.90 0.84 0.66 1.00 0.67 1.60 0.45 0.54

represents the data, which is often the case. However, since Hedge only offers a

linear combination of the best kernel(s), we expect the optimal linear combination

determined by OGD to outperform Hedge. This does not happen if the the data is

not large enough for OGD to converge to optimal linear combination, or the data

is non-stationary such that the appropriate kernel function changes too frequently

for OGD to be able to learn the optimal combination. We plot the cumulative mean

squared error against time for some representative datasets in Figures 3.1 and 3.2.

It can be seen, that in most cases, OMKR(Hedge) attains a very low MSE from the

beginning and does not improve much further, whereas, OMKR(OGD) starts with

a relatively higher MSE, but it is continuously improving its performance. Refer-

ring back to Table 3.2, it can be seen that in general that OMKR(OGD) has relative

advantage in larger datasets, and OMKR(Hedge) in smaller ones. Additionally, we

also look at the weight distribution attained by the algorithms, which is shown in

Figure 3.3. The weight distribution by OMKR(Hedge) concentrates largely on the

best kernel in hindsight, and otherwise has weights over certain reasonably good

performing kernels. Unlike OMKR(Hedge), OMKR(OGD) does not have a con-

centrated distribution of weights over few kernels.
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Figure 3.1: Cumulative Mean Squared Error with time (when Widrow-Hoff is used
for regression):

All results are displayed for data after the validation stage during which the
parameters were determined.
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Figure 3.2: Cumulative Mean Squared Error with time (when Norma is used for
regression):

All results are displayed for data after the validation stage during which the
parameters were determined.
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Figure 3.3: Weight distribution attained by all algorithms
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Table 3.3: OMKR (Hedge) vs Stochastic and Budget Strategies:
Here again, the results of regression datasets are averaged over 10 random permutations. All times are in seconds.

Widrow Hoff Norma
ID Determinisitc Stochastic Budget Det OMKR Stochastic Budget

MSE Time MSE Time MSE Time MSE Time MSE Time MSE TIME
Regression Datasets

D1 0.0075 348 0.0079 39 0.0096 74 0.0121 220 0.0113 45 0.0122 68
D2 0.0209 707 0.0488 32 0.0436 109 0.0451 537 0.0544 45 0.0467 102
D3 0.0028 193 0.0035 22 0.0058 54 0.0049 159 0.0050 37 0.0049 53
D4 0.0245 8496 0.0243 376 0.0354 385 0.0477 6397 0.0416 354 0.0413 388
D5 0.0054 1950 0.0096 64 0.0122 183 0.0108 1338 0.0151 112 0.0116 171

Time Series Datasets
D6 0.0022 4062 0.0034 146 0.0066 427 0.0058 2611 0.0034 182 0.0059 413
D7 0.0025 5728 0.0030 831 0.0088 312 0.0008 5101 0.0017 1118 0.0008 322
D8 0.0003 346 0.0002 15 0.0007 117 0.0005 274 0.0002 136 0.0005 111
D9 0.0009 352 0.0010 56 0.0011 118 0.0006 280 0.0010 119 0.0006 114

D10 0.0074 16 0.0086 3 0.0089 15 0.0047 12 0.0086 6 0.0047 12

Table 3.4: OMKR (OGD) vs Stochastic and Budget Strategies:
Here again, the results of regression datasets are averaged over 10 random permutations. All times are in seconds.

Widrow Hoff Norma
ID Determinisitc Stochastic Budget Det OMKR Stochastic Budget

MSE Time MSE Time MSE Time MSE Time MSE Time MSE TIME
Regression Datasets

D1 0.0082 348 0.0086 43 0.0097 76 0.0105 220 0.0095 48 0.0105 69
D2 0.0230 707 0.0488 35 0.0432 111 0.0442 537 0.0521 49 0.0466 105
D3 0.0034 193 0.0045 24 0.0043 55 0.0055 159 0.0044 40 0.0056 54
D4 0.0261 8496 0.0260 414 0.0311 393 0.0006 6397 0.0322 382 0.0363 396
D5 0.0060 1950 0.0109 70 0.0108 187 0.0115 1338 0.0115 121 0.0121 174

Time Series Datasets
D6 0.0021 4062 0.0039 160 0.0055 427 0.0048 2611 0.0048 200 0.0048 413
D7 0.0010 5728 0.0011 914 0.0023 318 0.0005 5101 0.0008 1230 0.0006 328
D8 0.0003 346 0.0002 17 0.0004 117 0.0006 274 0.0002 149 0.0006 111
D9 0.0004 352 0.0005 62 0.0005 118 0.0006 280 0.0004 130 0.0006 114

D10 0.0058 16 0.0113 3 0.0066 15 0.0056 12 0.0063 6 0.0056 12

Evaluation of efficiency enhancers

The MSE and the time taken by Deterministic, Stochastic and Budget OMKR are

detailed in Tables 3.3 and 3.4. Clearly the time taken by both stochastic and budget

techniques is significantly lower than Deterministic OMKR. Despite this, in most

cases, the efficiency enhancers give comparable MSEs with respect to Deterministic

OMKR. In many cases, particularly time series, the variants are able to outperform

the deterministic version. This shows their ability to retain important information

from the data, and adapt to changes in the pattern. Stochastic is faster than budget

in smaller datasets, but in larger datasets, the number of SVs in stochastic start

dominating even if only for a few kernels, and hence Budget is faster.
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Figure 3.4: Sensitivity of OMKR(Hedge) to discount rate parameterβ:
We vary β keeping the performance of all other algorithms fixed.

Sensitivity to weight update parameters β and ηw

OMKR(Hedge) is not very sensitive to the value of the discount rate parameter β.

There is a reasonably large range of values of β in which OMKR(Hedge)’s relative

performance to other algorithms remains the same. OMKR(OGD)’s sensitivity to

the learning rate ηw shows a tradeoff between large and small learning rates. This

behavior is typical of all gradient descent algorithms.

3.6.2 Evaluation of Large-Scale OMKR using Functional Ap-

proximation

In this section we evaluate the efficiency and efficacy of the proposed Large Scale

OMKR Methods. Apart from scalability concerns, we also look at the comparison
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Figure 3.5: Sensitivity of OMKR(OGD) to learning rate ηw:
We vary ηw keeping the performance of all other algorithms fixed.

between combination of kernels at the prediction level vs the feature representation

level (something that was non trivial to achieve in previous approaches).

Datasets

For these experiments we consider larger datasets, for which it would be impractical

to use deterministic OMKR strategies. This is because the runtime complexity of

Determinisitc stragies is in O(mT 2) for T instances with m kernel functions, and

this time cost can be very large. We consider 4 datasets, whose details can be seen

in Table 3.5. All of them were taken from the UCI repository5. Like before, the

datasets were preprocessed with the features and the target scaled to lie [0, 1]. L1 is

about predicting the volume of comments on Facebook. L2 is a similar task, where

the total number of comments on a blog in the next 24 hours is to be predicted. L3

is about predicting the year to which the sound belongs based on audio features, and

5http://archive.ics.uci.edu/ml/
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L4 is about predicting the buzz on Twitter.

Table 3.5: List of Datasets for Evaluation of Large-Scale OMKR
ID Name # Instances # Attributes
L1 Facebook Comments 40,949 53
L2 Blog 52,397 280
L3 Year MSD 515,345 90
L4 Twitter 583,250 77

Experimental Settings

For this set of experiments, we consider only 13 RBF kernels κ(x, y) = e(
−||x−y||2

2σ2
))

of kernel width parameter σ in [2−6, 2−5, . . . , 26]. As the datasets are sufficiently

large, it is infeasible to run OMKR(Deterministic) for these datasets. We evalu-

ate the performance of naive OMKR with Budget Strategies. We also evaluate the

performance of FOMKR and NOMKR with Hedge combination of kernels at the

prediction level, and also using OGD combination. In this scenario, we consider

the evaluation based on only the mean squared error. For the learning rate, we per-

formed experiments with η = 0.01 and η = 0.001 and reported the best performance

of each algorithm. For Budget OMKR, we set a budget of τ = 500. For Fourier

and Nyström Approximation based strategies, we set the parameters such that the

total dimensionality of the new instance obtained from each kernel is 40 features.

We further perform analysis of the sensitivity of the algorithm performance with the

chosen dimensionality.

Results and Discussion

The results of the analysis of Large Scale OMKR algorithms can be seen in Ta-

ble 3.6. In general we can see that the OMKR variants are significantly better at

approximating the kernel function than a naive budget approach. In all datasets,

the Approximate OMKR approaches are able to significantly outperform the bud-

get approach. Further, in general we are able to observe that Fourier Features are

able to give the best performance. This is a likely result of the fact that we have
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used RBF kernels for our experiments. It is possible that choosing a higher level

of approximation for Nyström features could possible give better results (and the

same would apply to Fourier Features). However, Nyström features are relatively

more computationally expensive. Having said that, we used RBF kernels only for

the purpose of fair comparison between the algorithms. Nyström approach enjoys

the ability to even use any arbitrary kernel function, and is not restricted to shift-

invariant kernels. Thus, with a better choice of kernels in the predefined pool of

kernels, Nyström approximation could potentially give better results.

Also, the approximation methods are much faster than the naive budget methods

for OMKR. In all cases for the large datasets, we can see that the OMKR approx-

imation techniques are much faster than the budget techniques. Fourier OMKR is

the fastest, followed by Nyström OMKR. This is because Fourier OMKR just in-

volves a simple projection for obtaining new features followed by another projection

to obtain the classifier. In general, the proposed approximation techniques offer a

promising direction to perform scalable online multiple kernel regression.

Table 3.6: Large Scale Online Multiple Kernel Regression:
The numbers represent the final cumulative error obtained by the algorithms. All results

are averaged over multiple permutations. The best performances are in bold.
Algorithm L1 Time (s) L2 Time (s)

OMKR (Budget) 7.300e-04±0.0e+00 533 5.258e-04±0.0e+00 1051
FOMKR (Hedge) 5.748e-04±3.0e-06 6.5 4.793e-04±9.8e-06 8
FOMKR (OGD) 5.742e-04±6.2e-06 6.5 5.037e-04±2.2e-06 8

NOMKR (Hedge) 6.389e-04±0.0e+00 24 5.310e-04±5.4e-19 401
NOMKR (OGD) 6.059e-04±4.6e-19 24 4.864e-04±7.7e-19 401

Algorithm L3 Time (s) L4 Time (s)
OMKR (Budget) 3.502e-02±0.0e+00 14097 5.574e-05±0.0e+00 6671
FOMKR (Hedge) 6.455e-03±6.0e-06 253 9.412e-06±1.7e-07 71
FOMKR (OGD) 6.600e-03±5.8e-06 253 9.413e-06±4.8e-07 71

NOMKR (Hedge) 1.149e-02±1.2e-17 894 2.093e-05±5.3e-20 1033
NOMKR (OGD) 1.016e-02±1.7e-18 894 1.365e-05±7.6e-19 1033

Feature Fusion vs Prediction Fusion

Here, we evaluate the performance of two-types of kernel combination approaches.

Using the functional approximation approach, we can combine the kernel predic-
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tions, or we can combine the approximate features obtained from each kernel, and

learn a single predictor. Additionally, the performance of both these types of al-

gorithms would depend on the level of approximation or the number of features

obtained from each approximation. We conduct experiments for varying levels of

approximation using Fourier and Nyström methods on both the smaller datasets

(D3, D5, D6 and D7) and the large scale datasets (L1, L2, L3 and L4). These anal-

yses can be visualized in Figure 3.6 for Fourier feature based OMKR, and in Figure

3.7 for Nyström method based OMKR.

For the case of Fourier features, we observe that it is in general a stiff compe-

tition between the prediction level combination (FOMKR(Hedge)) and the feature

level combination (FOMKR(OGD)). We do observe a trend that using more fea-

tures usually helps, but when it increases too much, the algorithms probably suffer

from convergence challenges and there is performance degradation. In most cases

we can see that for a fewer number of features, OGD combination gives a better per-

formance, and as the number of features increases, Hedge combination starts giving

improved performance. This is probably due to the fact that Hedge combination

uses multiplicative updates over predictors which have fewer number of features,

whereas OGD needs to operate on all features simultaneously, and thus starts facing

challenges in quick convergence in the online setting. Having said that, the per-

formances are quite similar, and largely depend on the dataset. Probably, for those

scenarios where a specific 1-2 kernels could be identified as the best representation

of the data, the performance of FOMKR(Hedge) would be better, and in the sce-

narios where all kernels are relatively weak representations, FOMKR(OGD) would

give a better performance.

For the case of Nyström features, we observe the OGD combination invariably

achieves better performance than Hedge combination. While this result is contrary

to the one seen in the case of Fourier features, this can be explained by the fact that

Nyström features in general obtained a worse performance than Fourier Features

while approximating RBF kernels. This leads to the realization that each individual
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kernel obtained from Nyström features contributes with relatively weak predictive

ability. Consequently, Hedging which tries to track the best predictor does a poor job

in comparison to OGD which tries to optimally ensemble a set a weak predictors.

This observation is consistent with ensemble approaches such as boosting. How-

ever, this does not necessarily imply that Nyström methods are inferior to Fourier

Features, as Nsytröm method can generalize to any type of kernel function, and

unlike Fourier Features is not restricted to shift-invariant kernels.

3.6.3 Evaluation of OMKR for Application to Time-Series Pre-

diction

In this section we evaluate the performance of OMKR when applied to time-series

prediction. Specifically we focus on the problem of identifying the optimal window

size of historical data while performing online learning for time-series prediction.

For experiments on Online Learning of non-linear time-series prediction, see Sec-

tion 3.6.1.

Datasets

We follow the experiments in [76], and consider 4 synthetic time series settings,

and one real world time-series data. After obtaining the sequence, the values are

normalized to lie between [0,1]. Consider an ARIMA model given as:

∇dyt = c+ Σp
i=1ζi∇dyt−i + Σq

i=1ξiεt−j + εt (3.46)

The first sequence is a stationary time-series, S1 is generated from an

ARIMA(p, d, q) model, with d = 1, ζ = [0.6,−0.5, 0.4,−0.4, 0.3] and ξ =

[0.3,−0.2]. The noise terms are uniformly distributed as N (0, 0.32). The second

sequence is a non-stationary time-series model generated by two sets of parame-

ters, with the first half generated by d = 1, ζ = [0.6,−0.5, 0.4,−0.4, 0.3] and ξ =

[0.3,−0.2] and the second half generated by d = 1, ζ = [−0.4,−0.5, 0.4, 0.4, 0.1]
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Figure 3.6: Performance of FOMKR(Hedge) and FOMKR(OGD) with varying
number of approximated features. The Fourier Dimensionality size refers to the
number of features obtained per kernels. The total number of features is m times
this number. For example, 40 features per kernel corresponds to 520 features for
FOMKR (where m = 13).
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Figure 3.7: Performance of NOMKR(Hedge) and NOMKR(OGD) with varying
number of approximated features. The Nystrom Dimensionality size refers to the
number of features obtained per kernels. The total number of features is m times
this number. For example, 40 features per kernel corresponds to 520 features for
NOMKR (where m = 13).
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and ξ = [0.3,−0.2]. For S2 the noise terms are distributed as Uni[= 0.5, 0.5]. Se-

quence S3 is a non-stationary time-series with ζ = [0.6,−0.5, 0.4,−0.4, 0.3] and

ξ = [0.3,−0.2], but with d = 1, 2, 3 for the first, second and third parts of the se-

quence respectively. S4 is generated by ARIMA model with ξ = [0.3,−0.2] and

ζ(t) = [−0.4, 0.5, 0.4, 0.4, 0.1]× ( t
104

) + [0.6,−0.5, 0.4,−0.4, 0.3]× (1− t
104

). Fi-

nally, we also use a real world time-series dataset S5, which is the daily index value

of the Dow Jones Industrial Average from 1885-1962. S1, S2, S3 and S4 comprise

10,000 instances each, while S5 has 35,000 instances.

Baselines and Experimental Setting

We evaluate the time-series for predicting both ARMA (where the next instance

in the time-series is to be predicted) and ARIMA (where the next differential in

the time-series is to be predicted) target values obtained from the 5 sequences. We

compare against varying window sizes from [10, 20, 30, 40, 50, 60, 70, 80, 400, 800].

These window sizes correspond to multiple kernels, and are used in the OMKR

framework, which is our proposed method. The algorithms are evaluated on the

basis of final mean squared error obtained after the entire online learning process is

over. The hedge discount rate parameter is set as β = 0.5 like in the experiments

before, and the learning rate for each window size is set as 0.01.

Results and Discussion

The results of application of OMKR to time-series prediction can be seen in Table

3.7 for ARMA and Table 3.8 for ARIMA. In most cases, the OMKR variant is able

to achieve the best result as compared to any other individual selection of window

size. In some cases such as in S1 and S3, even though the OMKR performance

is not the best by a significant margin, it is very close to the performance of the

best window size. These results demonstrate the ability of OMKR to automatically

identify the appropriate window size, and simultaneously leverage on complemen-

tary information from other window sizes to enhance the prediction performance
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while doing online learning for time-series prediction. It should further be noted

that the appropriate window size for the task is not known before hand.

Table 3.7: Application of OMKR to multiple window sizes as each kernel for online
learning for ARMA time-series prediction.

Algorithm S1 S2 S3 S4 S5
AR(10) by OGD 0.000650 0.000726 0.000371 0.000554 0.000161
AR(20) by OGD 0.000429 0.000524 0.000196 0.000294 0.000096
AR(30) by OGD 0.000360 0.000453 0.000138 0.000214 0.000072
AR(40) by OGD 0.000324 0.000406 0.000110 0.000177 0.000057
AR(50) by OGD 0.000300 0.000371 0.000094 0.000156 0.000048
AR(60) by OGD 0.000282 0.000344 0.000084 0.000143 0.000041
AR(70) by OGD 0.000269 0.000322 0.000078 0.000133 0.000036
AR(80) by OGD 0.000259 0.000306 0.000074 0.000125 0.000033
AR(400) by OGD 0.005593 0.010046 0.004760 0.000667 0.000184
AR(800) by OGD 0.059990 0.063424 0.027564 0.001335 0.015066
OMKR(Hedge) 0.000261 0.000298 0.000086 0.000111 0.000029

Table 3.8: Application of OMKR to multiple window sizes as each kernel for online
learning for ARIMA (d = 1) time-series prediction.

Algorithm S1 S2 S3 S4 S5
ARIMA(10) by OGD 0.018026 0.007869 0.000511 0.006375 0.000913
ARIMA(20) by OGD 0.017414 0.007317 0.000370 0.006301 0.000818
ARIMA(30) by OGD 0.017189 0.007135 0.000317 0.006277 0.000789
ARIMA(40) by OGD 0.017076 0.007060 0.000290 0.006250 0.000777
ARIMA(50) by OGD 0.016821 0.007050 0.000273 0.006225 0.000773
ARIMA(60) by OGD 0.016688 0.007059 0.000262 0.006198 0.000772
ARIMA(70) by OGD 0.016509 0.007076 0.000256 0.006189 0.000775
ARIMA(80) by OGD 0.016450 0.007119 0.000252 0.006148 0.000778
ARIMA(400) by OGD 0.018305 0.010037 0.002530 0.006092 0.001145
ARIMA(800) by OGD 0.089543 0.027797 0.009196 0.00790 0.002851

OMKR 0.016353 0.006764 0.000261 0.005968 0.000768

3.7 Conclusion

This work proposes a family of OMKR algorithms for kernel based regression using

a pool of predefined kernels. They overcome the challenges of existing work which

are largely designed for a batch setting and assume that the appropriate kernel func-

tion is known. OMKR sequentially learns the kernel based regressor in an online

and scalable fashion, and dynamically explores a pool of multiple diverse kernels
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to avoid problems of poor kernel choice by manual or heuristic selection. However,

due to the unbounded number of support vectors while learning the model online,

OMKR faces severe computational limitations. To address these issues we proposed

kernel approximation based strategies, and developed Fourier OMKR and Nyström

OMKR algorithms. These algorithms had the added advantage that a combination

of kernels at the representation level could also be learnt. Next, we demonstrated ap-

plication of OMKR to online learning for time-series prediction by showing how the

OMKR framework allowed to choose appropriate window-sizes while predicting

for ARMA and ARIMA models. We also discussed application to online learning

for nonlinear time-series prediction. We conducted extensive empirical evaluation

and demonstrated the ability of OMKR algorithms to automatically adapt to the best

kernel combination from the data during the online learning procedure.
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Chapter 4

Temporal Kernel Descriptors for

Time-Sensitive Patterns

Detecting temporal patterns is one of the most prevalent challenges while mining

data. Often, timestamps or information about when certain instances or events oc-

curred can provide us with critical information to recognize temporal patterns. Un-

fortunately, most existing techniques are not able to fully extract useful temporal

information based on the time (especially at different resolutions of time). They

miss out on 3 crucial factors: (i) they do not distinguish between timestamp fea-

tures (which have cyclical or periodic properties) and ordinary features; (ii) they

are not able to detect patterns exhibited at different resolutions of time (e.g. dif-

ferent patterns at the annual level, and at the monthly level); and (iii) they are not

able to relate different features (e.g. multimodal features) of instances with dif-

ferent temporal properties (e.g. while predicting stock prices, stock fundamentals

may have annual patterns, and at the same time factors like peer stock prices and

global markets may exhibit daily patterns). To solve these issues, in this chapter we

offer a novel multiple-kernel learning view and develop Temporal Kernel Descrip-

tors which utilize Kernel functions to comprehensively detect temporal patterns by

deriving relationship of instances with the time features.
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4.1 Introduction

Mining temporal patterns is one of the most prevalent problems in data mining, and

has immense applications and practical utility. Detecting how events are associated

or linked with timestamp features can greatly improve our predictive ability and

decision making. For example, estimating the weather conditions can help in agri-

culture, event planning etc.; estimating trends in demands for resources can help

in resource allocation (e.g. what time of the day would we have high demand for

car rentals, what would be the demand for resources in a super market at differ-

ent times); estimating stock prices can help us make better investment decisions.

It is therefore critical to have techniques that can comprehensively detect temporal

patterns from the data.

Several existing machine learning techniques consider timestamp features as or-

dinary features, and directly plug them into the learning method. Some alternate

techniques explicitly address the temporal nature of data (without timestamp us-

age), by weighting (e.g. exponential weighting) the instances based on recency in

the optimization formulation. These approaches suffer from three major drawbacks:

(i) they ignore the cyclical or periodic nature of timestamp features (e.g. hour fea-

ture repeats itself after every 24 iterations); (ii) they can not recognize temporal

patterns at different resolutions of time (e.g. distinction is required between pat-

terns observed at different days of the week, and different hours of the day); and

(iii) they do not associate different multi-modal features with different timestamp

resolutions (e.g. for stock price prediction, the fundamentals may exhibit monthly

patterns, whereas global markets and peer stocks may exhibit daily patterns). To

solve these problems, we develop novel multi-resolution kernel functions called

Temporal Kernel Descriptors which use kernels to describe the temporal patterns in

the data by appropriately linking events to timestamps at various resolutions of time.

We automatically learn the optimal kernel function that can appropriately measure

the temporal similarity between instances by formulating the problem as a Multiple
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Kernel Learning (MKL) optimization [5, 65, 110].

Figure 4.1: To estimate the bike demand, we aim to learn the association between
each multi-modal (heterogeneous) feature set with each resolution of time. The
prediction model then accepts an input and estimates the demand.

We motivate this problem further through a real world example of bike demand

prediction at a given time [34] (See Figure 4.1). The demand may be affected by the

hour of the day, or day of the week, or be a function of both in conjunction. Like-

wise, (multimodal) factors like weather, temperature, or if the day is a holiday (these

can be considered heterogeneous data sources) will also be responsible in varying

the bike demand. Additionally, these multi-modal factors will have a different effect

based on the timestamp (at different resolutions). We aim to design Temporal Kernel

Descriptors that can not only adapt according to periodic properties of timestamp

features at different resolutions, but also be able to find appropriate association of

different modalities (or heterogeneous features) with each of the timestamp reso-

lutions. First, we introduce temporal kernels which address the problem of time

features having a periodic nature. We then extend this to multi-resolution temporal

kernels to measure time similarity at different resolutions. Finally, we design tem-

poral kernel descriptors that associate various modalities to different resolutions of

time. We also devise a method to use these descriptors in absence of timestamps.

We formulate the optimization as a Multiple Kernel Learning problem, in order

to automatically learn the optimal temporal similarity between two instances. We

also empirically validate the superiority of using these kernel descriptors in detect-
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ing temporal similarity as compared to traditional state of the art linear and kernel

methods.

4.2 Related Work

There are two main categories of work related to chapter: Temporal Pattern Mining

and Multiple Kernel Learning. Temporal data mining has been studied extensively

in literature [3, 67, 86]. We restrict our discussion to kernel methods or timestamp

usage. Kernel methods, particularly support vector regression have found success

in several time-series applications including finance [113], electricity load forecast-

ing [60], credit rating [55], machine reliability forecasting [126], control systems

and signal processing [41] and online learning [97]. Most of these techniques pri-

marily focus directly using the traditional kernels, and applying them directly to

the features. Periodic kernel functions have also been used to address issues tem-

poral periodicity in time series [83, 84]. Additionally, some attempts have been

made to explicitly address the temporal issues by modifying the objective function

like exponential weighting [114], giving more importance to recent data. A simi-

lar approach is seen in several online learning methods, in which they adapt to the

changing pattern [26]. Another related work is the usage of autoregressive kernels

for time series prediction [25]. These methods address a slightly different problem

and do not exploit timestamp information to improve predictability. Some efforts

have been made to use tree-kernels for linking events to timestamps [85, 53], but

here the focus is primarily on natural language processing. None of these methods

consider the temporal patterns of multi-modal data at multiple resolutions of time.

Kernel methods are more effective than linear methods when learning a nonlin-

ear target hypothesis [103]. They are also used as notions of similarity. In practice

several types of kernel functions exist, with a variety of parameters. It is usually not

known before-hand which kernel would be suitable for the task. Further, often data

sources are heterogeneous, implying different kernels may be suited to different fea-
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tures (e.g. if an instance has features that may be numerical or strings). In addition,

the usage of a single kernel usually restricts the learning capacity by not leveraging

on information that could be gotten from more kernels. For a more comprehensive

review on Multiple Kernel Learning, see Chapter 2. Unfortunately, none of these

MKL techniques consider the usage of kernels to better describe the temporal nature

of the multi-modal data at multi-resolution timestamps.

4.3 Temporal Kernel Descriptors

4.3.1 Overview and Problem Setting

Consider a set of N instances xi, for i = 1, . . . , N , with each instance labeled with

a target value yi, where yi ∈ {1,−1} for classification or yi ∈ R for regression

tasks. Each instance comprises two sets of features: xTi , which is a timestamp, or

the time at which the event took place, e.g., xTi = {12thJan, 2015|10 : 28 : 31} (or

any other customized time feature designed by the user); and xFi are those standard

features in a typical learning setting that describe the instance.

Based on these two sets of features we aim to learn a kernel based prediction

model f(xi) which can optimally predict the target variable yi. A prediction on

instance xi with target yi suffers a loss which is denoted by `(f , (xi, yi)). Typically

this loss function is convex, and can be application dependent. For example, for

binary classification, it can be the hinge loss: `(f , (xi, yi)) = max(0, 1 − yif(xi));

and for regression it can be the squared loss: `(f , (xi, yi)) = 1
2
(f(xi)− yi)2.

Our goal is to learn a function that minimizes this loss over all the instances in

the dataset. This can be cast into the following (SVM-like) optimization problem:

min
f

1

2
||f ||2 + C

N∑
i=1

`(f , (xi, yi))

where the first term is the regularizer penalizing the complexity of the model,

and the C is the tradeoff parameter. In the following, we will describe the kernels
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used to learn this kernel-based prediction function.

4.3.2 Temporal Kernels

Kernels have found success in many algorithms and applications [108] owing to

their ability to detect nonlinear patterns. Kernels implicitly map the input space

into a high dimensional space (also called the Reproducing Kernel Hilbert Space

(RKHS)), and allow the algorithms to detect linear patterns in this new space. This

enables the algorithms to infer nonlinear patterns in the original space. What makes

kernels efficient and popular is the kernel trick, which allows us to skip the explicit

high dimensional mapping, and learn the prediction model in the RKHS while op-

erating in the original space. The kernel trick is used in Kernel Functions, which

compute the dot product between instances in a high dimensional space. Popu-

larly used kernel functions include: Polynomial Kernels κ(x1,x2) = (c + x>1 x2)d

(c and d are parameters), and Gaussian Kernels κ(x1,x2) = exp(− ||x1−x2||2
2σ2 ) (σ is

the bandwidth parameter). Since kernel functions essentially compute the dot prod-

uct between two instances, they are often viewed as similarity measures, i.e., the

kernel function on two instances returns the similarity between the two instances,

where different types of kernels (with different parameters) denote different notions

of similarity.

Using this similarity view of kernels, how should we compute similarity be-

tween two timestamps? Unfortunately traditional kernels e.g. linear kernel, or

(Euclidean) distance based kernels (e.g. Hat Kernel, Gaussian Kernel, etc.) give

poor quality similarity scores for time values owing to the cyclical nature of the

many time measures (e.g. hour value repeats itself after 24 iterations, seconds value

repeats itself after every 60 iterations). Intuitively we can comprehend that 2300

hours and 0100 hours occur at similar times of the day, but traditional kernels con-

sider these two times as very dissimilar due to the large Euclidean distance. To

address this problem, we design a temporal kernel which can account for the cycli-
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cal or periodic nature of timestamps. Let xt1 and xt2 be two time stamp instances

with a cycle length Ct (for hours Ct = 24). The temporal kernel similarity measure

based on the Gaussian kernel for the the two instances is given by:

κt(x
t
1,x

t
2) = exp−(min(|xt1 − xt2|, Ct − |xt1 − xt2|))2

2σ2

Here σ is the bandwidth parameter as used in the Gaussian Kernel. This new tempo-

ral kernel measures the Euclidean distance between two time values from the shorter

sides for the cycle, and thus gives a better similarity measure. We note that this is

similar, albeit a more simplified version of the Mackay Periodic kernel function. An

example of this is graphically illustrated in Figure 4.2.
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Figure 4.2: Temporal Kernel: The kernel similarity score for x = 10 and x = 23
for σ = 4. Here, x represents hours.

4.3.3 Multi-resolution Temporal Kernels

Having addressed the periodic nature of temporal patterns through temporal kernels,

we are still faced with the challenge of addressing time similarity measures when

multi-resolution timestamps are provided. For example, what would be the kernel

similarity between 09:05 a.m. and 11:35 a.m.? Should the similarity be high consid-

ering that the time stamps are only a few hours apart, or should the similarity score

be low as the minutes feature of the time stamps are far apart? A naive approach

would be to convert everything to a standardized unit of time (convert everything to

hours), and try to use the temporal kernels. However, temporal patterns at different

84



resolutions may get ignored. The data may exhibit patterns at different resolutions

of time - for example, there is a global pattern in every hour and a local pattern in

every minute ( within each hour). We want to be able to capture the global pattern

(changes in every hour), as well as the local pattern (changes at a minutes level).

To do this, we consider each of the specific time features as heterogeneous (or

multi-modal) and define the multi-resolution temporal kernel similarity between

two stamps as the positively weighted linear combination of kernel similarity of

each timestamp feature. Let xT1 and xT2 be two timestamp instances comprising

T > 1 features (i.e. xT1 = [x1
1, . . . , x

T
1 ]). The multi-resolution temporal kernel

similarity based on multiple kernels between the instances is given by:

κMulti−resolutionTemporalKernel(x
T
1 ,x

T
2 )

= α1κ1(xT1 ,x
T
2 ) + · · ·+ αTκT (xT1 ,x

T
2 )

=
T∑
t=1

αtκt(x
T
1 ,x

T
2 )

subject to αt ≥ 0

αt ≥ 0 ensures that the resultant kernel function is positive semi-definite keep-

ing the learnt kernel a valid Mercer Kernel. Each kernel function used in the above

equation has its own bandwidth parameter and cycle length (Ct), depending on the

application and the timestamp feature being used used from the instance xT .

4.3.4 Temporal Kernel Descriptors

Using appropriate temporal kernels, we now associate the timestamps to the hetero-

geneous feature sets. First we define feature level similarity between two instances.

Let xF1 and xF2 be two instances (without timestamp information) comprising F > 1

feature sets (i.e. xF1 = [x1
1, . . . , x

F
1 ], where every xf1 represents a multi-modal data

source, and it can have one or more features). The similarity between these two
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instances is given as a positively weighted linear combination of kernel similarity

scores of each feature set. It is denoted as κFeatureKernel and is given by:

κFeatureKernel(x
F
1 ,x

F
2 )

= β1κ1(xF1 ,x
F
2 ) + · · ·+ βFκF (xF1 ,x

F
2 )

=
F∑
f=1

βfκf (x
F
1 ,x

F
2 )

subject to βf ≥ 0

βt ≥ 0 ensures that the resultant kernel function is positive semi-definite keeping

the learnt kernel a valid Mercer Kernel. Each kernel function used can be of any

suitable type based on the application and the heterogeneous source. κf computes

the kernel similarity of instances based on the f th set of heterogeneous features.

Finally, we define Temporal Kernel Descriptors (TKD) which depict the in-

stance based similarity based on the time and feature similarity by linking simi-

larity scores of both the time features and multi-modal data features to obtain a

multi-resolution kernel similarity function. This similarity is the product of multi-

resolution temporal kernel similarity and the instance based feature similarity. It is

denoted by κTKD(x1,x2) for instances x1 = [xT1 ,x
F
1 ] and x2 = [xT2 ,x

F
2 ] :

κTKD(x1,x2) (4.1)

= κHTK(xT1 ,x
T
2 ) · κFK(xF1 ,x

F
2 )

=

( T∑
t=1

αtκt(x
T
1 ,x

T
2 )

)( F∑
f=1

βfκf (x
F
1 ,x

F
2 )

)

=
T∑
t=1

F∑
f=1

αtβf

(
κt(x

T
1 ,x

T
2 ) · κf (xF1 ,xF2 )

)

=
T∑
t=1

F∑
f=1

wtf

(
κt(x

T
1 ,x

T
2 ) · κf (xF1 ,xF2 )

)
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As can be seen, the TKD similarity is a linear combination of a set of different

kernel functions. Since αt ≥ 0 and βf ≥ 0, wtf = αt · βf ≥ 0. The final kernel

function is a conic combination of a product of kernel functions. Both kernel prod-

uct and conic combination preserve a positive semi-definite kernel, which means

the final kernel function is also positive semi-definite, and is a Mercer Kernel.

Each product of two kernel functions establishes a link or an association be-

tween a timestamp feature and each of the multi-modal data sources. This helps us

associate events for a specific set of multi-modal features with the time at which

they occurred and allows us to capture the temporal similarity in the data at various

resolutions of time for each modality. Our next step is to learn the optimal coeffi-

cients wtf for each of the multiple kernel functions, in order to derive the optimal

kernel function.

4.3.5 Optimization and Algorithms

We wish to minimize human intervention in determining the best kernel function,

and we want an optimization objective that can automatically find this best kernel

function. Our objective is to learn the optimal coefficients wtf such that the optimal

kernel function can minimize the loss over the entire data. Given T timestamp fea-

tures, and F instance features, we get a total of m = T ×F kernel functions, whose

weighted combination needs to be learnt. Following a structural risk minimiza-

tion principle, we can cast this problem into the following multiple kernel learning

(MKL) optimization:

min
w∈∆

min
f∈Hκ

1

2
||f ||2Hκ(w) + C

N∑
i=1

`(f , (xi, yi)) (4.2)

where ∆ = {w ∈ Rm
+ |
∑m

j=1wj = 1} and κ(w)(x1,x2) =∑T
t=1

∑F
f=1wtf

(
κt(x

T
1 ,x

T
2 ) · κf (xF1 ,xF2 )

)
. Further `(f , (xi, yi)) is a convex loss

function that can suitably chosen based on the task at hand. There are many tech-

niques to solve this optimization involving structural risk minimization with multi-
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ple kernels [110, 95, 124, 43].

Unfortunately, MKL optimization shown above is computationally very expen-

sive. In particular when data has a lot of instances, or the number of kernel func-

tions used is large, the training cost (and re-training cost) is very high. In fact, in

the scenario of multi-modal data with multi-resolutions of timestamps, the number

of kernels quickly expands as a product of the number of modalities and number

of timestamp resolutions. To alleviate this problem, Online MKL [58, 49, 100] has

evolved as a promising research direction, in which both the kernel predictions and

their optimal combination are learnt in an online or sequential fashion. In the fol-

lowing we briefly discuss this approach in order to learn a kernel-based prediction

function for time-sensitive patterns using Temporal Kernel Descriptors.

The idea of OMKL is to first define a pool of base kernels. For our task, the

predefined pool of base kernels are the m = T × F kernels. The entire learning

task is done in the online setting. This means that the instances arrive sequentially.

In every iteration, an instance xi is revealed to the model. The model makes a pre-

diction ŷi = Fi(xi) in each iteration. Subsequently, the environment reveals the

true value yi. As a result, the model suffers loss `(Fi, (xi, yi)). Finally, the model

updates itself based on this loss, with the objective to achieve the lowest possible

loss across all the instances. The main task is to decide how to do the update in such

a manner that we are not only learning the optimal prediction function, but also the

optimal combination of multiple kernels simultaneously. OMKL approaches this

problem with a two-step procedure in every iteration: (i) First each kernel predictor

is updated based on the loss it has individual suffered; and (ii) Second, the combi-

nation weights of the multiple kernel predictors is updated based on loss suffered

by not having the optimal combination.

Learning the Kernel Predictor: An online kernel model with the prediction func-

tion f(x) is updated by gradient descent [134, 61] with learning rate parameter η

when the model suffers loss. Such a prediction model is learnt for each of the

m = T × F kernels in the predefined pool. The loss for classification can be the
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hinge loss (`(f , (x, y)) = max(0, 1− y(f · x)) , and for regression, we consider the

squared loss (`(f , (x, y)) = (f · x− y)2). The update is made as follows:

fi+1(x) = fi(x)− η∇f`(fi, (xi, yi))

= fi(x) + ηyiκ
TKD(xi,x)(for classification)

OR

= fi(x)− ηyi(fi(xi)− yi)κTKD(xi,x)(for regression)

At the end of each online learning round, we can express the prediction function

as a kernel expansion [103]:

fi+1(x) = Σi
j=1λjκ

TKD(xj,x) (4.3)

where the λi coefficients are computed based on the update rule. If a non-zero

loss was suffered on the ith instance, then λi 6= 0 and the instance becomes a support

vector; and if no loss is suffered, the ith instance is not a support vector for which

λi = 0. As can be seen, the final prediction of a single kernel is linear combination

of kernel similarity of the instance to be predicted with all existing support vectors.

Learning the Multiple Kernel Combination: Having designed the methodology

to optimize each kernel predictor, all of them should be suitably combined to give

the final prediction. The final prediction is a weighted combination of the m =

T × F kernel predictors, given by:

ŷi = Fi(xi) =

∑m
k=1 w

k
i (f

k
i (xi))∑m

k=1w
k
i

(4.4)

To update combination of weights w = (w1, . . . , wm)>, where wi is set to 1/m

at the beginning of the learning task, we use the Hedge algorithm [37, 49]. At the
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end of each learning iteration, the weights are updated by:

wki+1 = wkβ`(f
k
i ;(xi,yi)) (4.5)

where β ∈ (0, 1) is the discount rate Hedge parameter, and `(fki ; (xi, yi)) ∈ (0, 1)

represents the loss suffered by the kernel predictor. At the time of prediction, the

weights are normalized to a distribution, ensuring that the weights of the prediction

sum up to 1. Similarly, other linear online learning methods could be adopted to

learn the optimal combination.

4.3.6 Discussion

In this part, we will briefly discuss some properties of OMKL with Temporal Kernel

Descriptors.

Theoretical Analysis: We derive a loss bound for OMKL with Temporal Kernel

Descriptors. We assume κ(x,x) ≤ 1 for all κ and x. We define the optimal objective

value for the kernel κk(·, ·) denoted by O(κk, `,D) with respect to the dataset D as

the regret of an online learning algorithm used for a single kernel predictive model.

Online gradient descent gives us the regret of the algorithm with respect to the best

linear predictor in the Reproducible Kernel Hilbert space induced by kernel κk.

Since Online Gradient Descent is a no regret algorithm, the regret tends to zero, as

the number of instances N goes to infinity.

On processing a sequence of N instances, the cumulative loss suffered by the

OMKL using temporal kernel descriptors, where each kernel predictor is updated

by online gradient descent is bounded as

LTKD ≤
ln( 1

β
)

1− β
min

1≤k≤m
O(κk, `,D) +

lnm

1− β

LTKD denotes the cumulative loss suffered by the algorithm. By setting β =
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√
N√

N+
√

lnm
, we get:

LTKD ≤
(

1 +

√
lnm

N
min

1≤k≤m
O(κk, `,D) + lnm +

√
N lnm

)

Proof. The proof combines the Zinkevich theorem [134] and the bound for Hedge

Algorithm [37]. The Zinkevich algorithm gives us a no regret algorithm for a par-

ticular Reproducible Kernel Hilbert Space induced by a particular kernel. Using a

set of m kernels, and updating their weight distribution via the Hedge algorithm,

we can directly plug the regret into the loss bound of Hedge algorithm as shown in

Equation (4.6). Then, optimally choosing a value for discount rate parameter β we

get the result in the lemma. This tells us that OMKL using temporal kernel descrip-

tors in the worst case scenario will converge in performance to the most informative

(or the best) kernel descriptor (though in practice, using complimentary information

from different kernels is likely to enhance the performance).

Time Complexity: In the worst case scenario, when all instances become support

vectors for a single kernel, the computational complexity of each iteration for each

kernel is in O(N). Repeating this for N iterations the time complexity is in O(N ∗

N) = O(N2). Further, these operations have to be performed for all m = T × F

kernels, which means the time complexity of running OMKL is in O(mN2). An

unbounded number of support vectors can make the algorithm less practical, despite

a polynomial running time. Several techniques in literature have been proposed to

address this issue based on budget approximations [13, 30, 91]. These techniques

require a prespecified budget B, which is the maximum number of support vectors

a kernel prediction model can store. This budget reduces time complexity of a

single kernel predictor on the entire data from O(N2) to O(NB), and consequently

reduces time complexity of OMKL to O(mNB). This is linear in the number of

instances N , and hence scales well with large number of instances (as compared to

batch MKL methods).
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Usage in absence of timestamps: The key to detecting temporal patterns through

temporal kernel descriptors lies in having suitable temporal kernels. The temporal

kernel descriptors that we have presented are primarily designed for settings where

timestamps are available. However, many applications, despite having a temporal

nature, may not have timestamps. A new challenge surfaces - how to use tem-

poral kernels in such scenarios? To address this issue we propose user-defined

timestamps, which are parameterized by cycle length Ct. We assume that the data

instances arrive sequentially, and in a chronological order (i.e. the instances that

occurred first, arrive first). The user can specify temporal cycles as:

CT = (C1, C2, . . . , CT )>

Using these cycle length values, we can design appropriate temporal kernel de-

scriptors. The parameters CT can be determined through some simple validation

technique to determine appropriate cycle lengths.

4.4 Experiments

4.4.1 Experimental Setting

Baselines

We perform our analysis for regression tasks, by choosing a squared loss function.

In principle, this can be trivially extended to classification tasks as well. We com-

pare the performance of traditional kernels against the proposed Temporal Kernel

Descriptors.

Traditional Kernels: First set is the baselines, which comprise traditional usage

of kernel methods. These include simple online Linear (linear kernel) regression

based on gradient descent [134]. We also perform online regression using a vari-

ety of kernel functions. We define diverse set of 10 kernels which include three
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polynomial kernels κ(x, y) = (xTy)p of degree parameter p = 1, 2, 3, 4, five RBF

kernels (κ(x, y) = e(
−||x−y||2

2σ2
)) of kernel width parameter σ = 2−2, 2−1, 20, 21, 22,

and a sigmoid kernel(κ(x, y) = tanh(xy)). The algorithm Best Kernel(Val) de-

notes the performance of single kernel online regression, where the choice of kernel

has been determined by validating all kernels on first 10% of the instances. Best

Kernel follows the same principle, but denotes the best kernel choice determined

in hindsight (hence usually not realistically attainable). The final algorithm in this

set is Online Multiple Kernel Regression (OMKR) [100], which tries to learn the

optimal combination of multiple kernels (all 10 kernels in this case) to make the

optimal prediction. Temporal Kernel Descriptors: The next set of 3 algorithms

make use of temporal kernel descriptors. (Temporal+Feature) Kernels essentially

uses multi-resolution temporal kernels and regular feature kernels as multi-modal

kernel functions (and does not multiply or link the temporal properties to each

multi-modal feature like in Equation (4.1)). This algorithm aims to see the direct

advantage of using multi-resolution temporal kernels over existing methods. Like in

our proposed method, these kernels are also combined using the Hedge algorithm.

The next two algorithms are based on temporal kernel descriptors, i.e., to evaluate

the advantage of associating different multi-modalities with different time features,

and finding temporal patterns among those (by multiplying temporal kernels with

feature kernels like in Equation (4.1)). The first is TKD(Uniform) where all the

kernel descriptors are equally weighted, and the second algorithm is TKD(Hedge)

(our proposed method), where the weights of the kernel descriptors are learnt using

Hedge Algorithm (as outlined in the previous section). We also compared variants

of TKD(Hedge) with the usage of linear indicator kernels instead of the proposed

temporal kernels to directly show the advantage of the nonlinearity offered by the

temproal kernel. The first variant is TKD(Indicator), where each time feature is

represented as a one-hot vector, and using this we compute a linear kernel, and in-

corporate into the TKD framework. Similarly, we consider another variant TKD

(Neighbour), where each time feature is represented as an indicator vector, with
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the time value, and its immediate neighbour being 1s, and other elements as 0s.

Again, the linear kernel is used, and this kernel is incorporated into the TKD frame-

work. For all gradient descent algorithms, we set the learning rate η = 0.1, and for

Hedge, we set the discount rate parameter β = 0.5. We also set a budget for online

kernel methods B = 1000 support vectors. These parameters are common to all

algorithms, and hence changes in them would not significantly affect our results of

comparison between temporal kernels and traditional kernel methods.

Data

We perform our experiments on 2 datasets, that are applications in which time-stamp

data is available. First, is the Bike Demand dataset obtained from UCI repository.

The goal is the predict the bike demand based on factors such as weather, humidity,

whether a holiday, etc. We use the Day of the Week (Cycle = 7), and Hour of the

day (Cycle = 24), as the multi-resolution temporal kernels. Second, is the Twitter

Traffic dataset, which we have collected ourselves. The aim is to predict the number

of tweets in a specific hour. The entire dataset was processed after analyzing over 68

million tweets from June, 2012 to May, 2013. All tweets are from micrologies who

identified themselves as software developers. Again Day of the Week and Hour of

the day were used for computing temporal kernels. We also evaluated our method on

univariate time series data obtained from Santa Fe Time Series Competition. Here,

timestamps are absent, and we arbitrarily designed our own temporal kernels for the

task. The two datasets are Astrophysical Data, and a Synthetic dataset. For both

of them, the past 20 values were considered as the input features to predict the next

value. In our experiments, we scaled all features (including the target) to lie in [0, 1].

For all our datasets, we use 2 resolutions of timestamps, and 2 multi-modal data

sources based on the type of features available. We also use an additional modality

of features to obtain a trivial kernel function that always evaluate to 1. When this is

multiplied by a multi-resolution temporal kernel, it gives us the ability to use pure

temporal kernels in our final model as well. The parameter cycle length CT , and the
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bandwidth parameter σ for each kernel was set via a grid search on validation data.

The other relevant details of the datasets can be seen in Table 6.1 (here the instance

features are combined number of features from multi-modal sources).

Table 4.1: Datasets used in experiments
Dataset Instances Features Timestamp Features

Bike 10884 13 Hour, Day of Week
Twitter 7296 12 Hour, Day of Week

Astrophysical 598 20 User Defined
Synthetic 50000 20 User Defined

Table 4.2: Final Mean Squared Error of algorithms on datasets with time-stampsand
on time-series datasets

The first 4 are based on traditional kernels. The last 3 algorithms are based on Temporal
Kernels. The best performance is in bold.

Time-stamp Applications Time Series
Algorithms Bike Demand Twitter Astrophysical Synthetic

Linear 0.1925 0.2591 0.0088 0.0111
Best Kernel (Val) 0.0379 0.0242 0.0088 0.0111

Best Kernel 0.0379 0.0242 0.0088 0.0091
OMKR 0.0380 0.0244 0.0080 0.0090

(Temporal+Feature)Kernels 0.0214 0.0048 0.0077 0.0081
TKD(Uniform) 0.0420 0.0089 0.0101 0.0176
TKD(Indicator) 0.0242 0.0048 0.1265 0.0390.

TKD(Neighbour) 0.0258 0.0048 .0503 0.0534
TKD(Hedge) 0.0209 0.0046 0.0071 0.0085

4.4.2 Results and Discussion

The final mean squared error achieved by the algorithms on the datasets are shown in

Table 4.2, and the performance of the algorithms as the number of instance increases

in an online learning setting can be visualized in Figure 4.3. It can be seen that the

algorithms using temporal kernels achieve a significantly lower mean squared error

than the algorithms that use traditional kernels. This impact is particularly much

more significant in Applications with Time-stamps, where the MSE achieved by

our proposed method is almost 50% of traditional kernels for Bike Demand, and for

Twitter Traffic Prediction, the MSE is lower than 20% of the best of the traditional
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Figure 4.3: Mean Squared Error suffered by the algorithms as the number of in-
stances (T) increases. For (a) and (b), the performance of Linear Kernel Regression
is extremely poor, and is out of scale.
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(a) Bike Demand
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(b) Twitter Traffic
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(c) Astrophysical (Santa Fe)
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(d) Synthetic (Santa Fe)

kernel methods. This indicates that the patterns are indeed time-sensitive, and vali-

dates the usage of Temporal Kernel Descriptors. TKD(Uniform) struggles to given

a good performance, indicating, that a trivial combination of multiple kernels may

give unstable results. Hence, it is important to learn the optimal kernel combination

like we have proposed for TKD(Hedge).

The other observation is that the usage of temporal kernels itself significantly

enhances the pattern recognition power as can be seen in performance of (Tem-

poral+Feature) Kernels. Furthermore, using TKD(Indicator) and TKD(Neighbour)

also give a good performance compared to other baselines, but they are not as good

as using the proposed nonlinear temporal kernel. This validates the power of using

multi-resolution temporal kernels to measure timestamp similarity over the usage

of timestamps as ordinary features with traditional kernels. Further, this perfor-

mance is improved by using the temporal kernel descriptors in most cases. This
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validates the motivation to associate various modalities of data with multiple reso-

lutions of time, thus giving superior performance. On the whole, it is very evident

that the usage of our proposed temporal kernels and temporal kernel descriptors are

significantly able to boost the performance of kernel algorithms to detect temporal

patterns.

4.5 Conclusion

We propose temporal kernel descriptors, which overcome the existing limitations

of kernel methods in finding temporal patterns by appropriately associating multi-

resolution timestamps to multi-modal instance features and obtain the optimal tem-

poral similarity between instances. Temporal kernels are devised which account for

periodicity of time features. These are extended to multi-resolution temporal ker-

nels, which measure time similarity at different resolutions. Finally, temporal ker-

nel descriptors are developed, which find the optimal association of a multi-modal

features with the different resolutions of time. The goal is to automatically learn

the optimal combination of multiple kernel similarity scores. This is formulated as

a Multiple Kernel Learning problem. We solve the optimization using an online

learning approach. Empirically, our kernel descriptors significantly outperform tra-

ditional kernel methods due to their ability to obtain the right feature representation

for the time-sensitive patterns, thus offering a novel multi-kernel view to detecting

temporal patterns in the data.
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Chapter 5

Cost-Sensitive Online Multiple

Kernel Classification

In this chapter, we investigate supervised machine learning techniques for mining

data streams with application to online anomaly detection. Unlike conventional

machine learning tasks, machine learning from data streams for online anomaly de-

tection has several challenges: (i) data arriving sequentially and increasing rapidly,

(ii) highly class-imbalanced distributions; and (iii) complex anomaly patterns that

could evolve dynamically. To tackle these challenges, we propose a novel Cost-

Sensitive Online Multiple Kernel Classification (CSOMKC) scheme for compre-

hensively mining data streams and demonstrate its application to online anomaly

detection. Specifically, CSOMKC learns a kernel-based cost-sensitive prediction

model for imbalanced data streams in a sequential or online learning fashion, in

which a pool of multiple diverse kernels is dynamically explored.

5.1 Introduction

With an increasing interest in mining large data streams, there is a need to design

scalable and effective learning algorithms that can comprehensively address emerg-

ing big data analytics challenges. In this chapter we focus our attention on super-
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vised learning for data streams with imbalanced labels with application to anomaly

detection. Real world examples include intrusion detection [98], anomaly detection

in video surveillance [123], fraud detection in markets [32], and many others [15].

Despite extensive studies this remains a challenging problem due to a number of

issues including: (i) high complexity (nonlinearity) of the (anomaly) patterns; (ii)

high class-imbalanced distributions where the number of anomaly examples could

be significantly less than normal ones; (iii) high variety of patterns dynamically

changing due to a variety of anomaly behaviors, and high variety of data to be pro-

cessed (heterogeneous data sources, multi-modal data etc.); (iv) high volume and

velocity of sequentially arriving data; and (v) pattern evolution or concept drifts.

Most existing strategies only partly address the challenges posed by imbalanced

data streams, and as a result the current state of the art is not able to provide a com-

prehensive solution to mining imbalanced data streams or for anomaly detection.

We design Cost-Sensitive Online Multiple Kernel Classification (CSOMKC) algo-

rithms, which provide a novel method to address all the above challenges of cost-

sensitive online classification (and online anomaly detection) from big data streams,

including (i) highly complex patterns via kernel methods; (ii) high class imbalance

via cost-sensitive learning; (iii) high variety and data heterogeneity via multiple ker-

nel learning; (iv) high volume and velocity via online learning algorithms; as well

as (v) dealing with the concept drifting via online multi-kernel learning. Designing

such a technique is a significantly challenging, and would have several applications.

To the best of our knowledge, this is the first learning method that can simultane-

ously address all these issues in a simple, efficient, scalable yet effective framework.

Traditional classification algorithms aim to maximize accuracy. However, if the

data exhibits imbalanced label distribution, accuracy becomes a poor measure of

performance. As a result, we consider alternate metrics sum (weighted combina-

tion of specificity and sensitivity) and cost (weighted cost of misclassification of

positive and negative instances) for evaluation of algorithms on imbalanced data

streams. We develop a cost-sensitive multiple kernel formulation for the problem
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to be solved based on maximizing sum or minimizing cost and then design an on-

line solution. We split the learning procedure in each online learning iteration -

by first updating the kernel based prediction function for each of the kernels in the

predefined pool (each kernel can be a different function, or different modality of

data source), followed by dynamically exploring the multiple kernels, and updat-

ing the kernel combination. Both are done in an online manner, thus dealing with

scalability concerns and concept drift. In addition, both the updates account for

the cost-sensitive nature of the data streams. Further, we derive theoretical guar-

antees, and obtain the lower bound and upper bound of sum and cost respectively,

obtained by our algorithms. We conduct extensive empirical analysis and show how

our proposed methods outperform other state of the art cost-sensitive algorithms.

5.2 Related Work

Our work is primarily related to online learning and cost-sensitive learning and

their intersecting studies. Online Learning refers to a family of scalable learning

methods that incrementally update the model from a stream of data [14, 51]. See

Chapter 2 for a comprehensive review. Most of these methods do not consider im-

balanced data distribution and hence are not suitable for imbalanced data streams

or online anomaly detection. The most closely related work is the class of cost-

sensitive online learning methods that directly try to optimize over a cost-sensitive

metric. These include PAUM [74] which is a Perceptron based algorithm for un-

even margins, cost-sensitive variant of Passive-Aggressive algorithms CPAPB [21];

and CSOC - cost-sensitive online classification [117]. There also have been some

efforts in attempting to maximize the Area Under the Curve in an online manner

[130, 31]. Yet, none of these methods explore how to address the complexity of

data through other methods (e.g. kernels or multi-kernel solutions), thus limiting

their applicability in real world settings. Kernel methods have shown tremendous

success in detecting complex nonlinear patterns owing to their ability to induce a
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high-dimensional reproducible kernel Hilbert space, and learning linear patterns in

this space [103]. See Chapter 2 for a comprehensive review. Online Learning with

Kernels [61] and Online Multiple Kernel Learning [58, 81, 49]have also been pro-

posed to address scalability, but they do not generalize well with imbalanced data

streams.

5.3 Cost-Sensitive Online Multiple Kernel Classifica-

tion

5.3.1 Problem Setting

Consider a binary classification task. Here, our goal is to learn a function f : Rd →

R based on a sequence of training examples D = {(x1, y1), . . . , (xT , yT )}, where

xt ∈ Rd is a d-dimensional instance representing the features and yt ∈ |Y| =

{−1,+1} is the class label assigned to xt. We use ŷ = sign(f(x)) to predict the

class assignment for any x, and the magnitude of f(x) to measure the classification

confidence. Performances of the learnt functions are usually evaluated based on

accuracy A:

A =

∑T
t=1 I(ŷt=yt)

T

Here I is the indicator function resulting in 1 if the condition is true, and 0 oth-

erwise. Unfortunately, many real world datasets present imbalanced labels. For a

dataset with 99% labels as −1, a model that classifies all instances as −1 has an

accuracy of 99%, which prima facie seems good, but it is obviously not a good

performance. Clearly, Accuracy is not a good performance indicator for (imbal-

anced) classification. Accordingly, for imbalanced labels, we evaluate algorithms

on cost-sensitive measures: sum and cost.

Sum is the weighted sum of sensitivity and specificity of the algorithm. Let

Tp = {t |yt = +1} and Tn = {t |yt = −1} denote the set of positive and negative
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instances respectively. M = {t |yt 6= ŷt} is the set of indexes that correspond to

a mistake. Similarly, we haveMp = {t |yt 6= ŷt; yt = +1}, andMn = {t |yt 6=

ŷt; yt = −1} for mistakes on positive and negative instances. Lastly, |S| denotes the

number of instances in any set S. Sensitivity (Se) and Specificity (Sp) are defined as:

Se = |Tp|−|Mp|
|Tp| and Sp = |Tn|−|Mn|

|Tn| . The weighted sum parameterized by α ∈ [0, 1]

is given as:

sum = α(Se) + (1− α)(Sp)

For α = 0.5, sum is reduced to balanced accuracy.

Cost is the weighted sum of mistakes on positive and negative instances, and is

parameterized by c ∈ [0, 1]:

cost = c(|Mp|) + (1− c)(|Mn|)

Here, the aim is to tradeoff the cost of wrongly classifying a positive instance against

the cost of wrongly classifying a negative instance using tradeoff parameter c.

Our objective is to either maximize sum or minimize cost. We transform both

to the following objective:

min
f

∑
yt=+1

ρIŷt 6=yt +
∑
yt=−1

Iŷt 6=yt (5.1)

5.3.2 Cost-Sensitive Multiple Kernel Classification

Data streams may exhibit complex nonlinear patterns. Kernels have evolved as pop-

ular tools to detect nonlinearity by mapping a low dimensional feature space to a

high dimensional space. We aim to learn a kernel-based prediction function to op-

timize the cost-sensitive measure in Eq. (5.1), in order to detect nonlinear patterns.

We propose to use Multiple Kernel Learning (MKL) so that: (i) prior knowledge

of appropriate kernel is not required; (ii) model’s learning capacity increases when

multiple kernels complement each other; and (iii) heterogeneous data sources can
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be combined into one prediction model (e.g. using different kernels for numeric and

text data, or different kernels for different modalities of data). This way we are able

to learn a powerful model which can detect complex nonlinear patterns and handle

a variety of data.

To do this, we first define a loss function as the convex surrogate of the indicator

function (which is not convex and has been used in Eq. (5.1)), and we get:

`ρ(f, (x, y)) = (ρIy=1 + Iy=−1) ∗max(0, 1− y(f · x)) (5.2)

Using this loss function, Eq. (5.1) can be cast into the following regularized

optimization (C is the regularization tradeoff parameter):

min
f

1

2
‖f‖2 + C

T∑
t=1

`ρ(f, (x, y)) (5.3)

Our goal is to solve this using MKL. Consider a collection of m different pre-

defined kernel functions K = {κi : Rd × Rd → R, i = 1, . . . ,m}. MKL aims to

learn a kernel-based prediction model by identifying the best convex combination

of the m kernels, that is, a weighted combination θ = (θ1, . . . , θm). The proposed

cost-sensitive multiple kernel machine can be cast into the following optimization:

min
θ∈∆

min
f∈HK(θ)

1

2
‖f‖2

HK(θ)
+ C

T∑
t=1

`ρ(f, (xt, yt)) (5.4)

where ∆ = {θ ∈ Rm
+ |θT1m = 1}, K(θ)(·, ·) =

T∑
i=1

θiκi(·, ·); HK(θ) is the Re-

producible Kernel Hilbert Space induced by the multiple kernel combination; and

`ρ(f, (xi, yi)) is a convex loss function as defined in Eq. (5.2). The optimization

can be solved by adapting existing techniques (see section on Related Work). How-

ever, it is computationally challenging and not suitable for large data streams, and

data with temporal properties. Most of the techniques suffer from extremely high

retraining cost and expensive memory requirements. To tackle this challenge, we
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propose online learning based CSOMKC algorithms.

5.3.3 CSOMKC Algorithms

We design Cost-Sensitive Online Multiple Kernel Classification (CSOMKC), which

learns the model in an online learning (hence scalable and adaptive to temporal pat-

terns) setting. Instances are sequentially processed, and in each iteration we aim to

update the kernel prediction model and the kernel combination. Doing both simul-

taneously in an online manner is significantly challenging, and due to imbalanced

data, traditional methods can not be directly applied. We update the model via a

2-step approach: updating each kernel predictor, and updating the kernel combina-

tion.

Cost-Sensitive online kernel classification

We first develop a single-kernel cost-sensitive online kernel classification method.

In every iteration of the online learning procedure, a kernel classifier with the pre-

diction function f(x) is updated by gradient descent [61, 117] when the classifier

suffers a nonzero loss. Using the cost-sensitive loss from Eq. (5.2) we can obtain

the cost-sensitive gradient descent update by taking the derivative. The update rule

for each individual kernel-based model is given by:

ft+1(x) = ft(x)− η∇f`
ρ
t (ft, (xt, yt))

= ft(x) + ηρtytκ(xt,x)

where ρt manages the cost-sensitivity, by setting ρt = I(yt=+1) + ρI(yt=−1), and η is

the learning rate parameter. At the end of each online learning round, we can express

the prediction function as a kernel expansion [103] ft+1(x) = Σt
i=1λiκ(xi,x) where

the λi coefficients are computed based on the update rule. For non-zero loss on the

ith instance, λi 6= 0 (the instance becomes a support vector) otherwise λi = 0.
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Online multi-kernel combination learning

All i = 1, . . . ,m kernel predictions (denoted by f it ) are combined to make a final

weighted prediction on each iteration:

ŷt = sign
( m∑
i=1

wit
(
f it (xt)

))

We propose two new cost-sensitive weight combination learning schemes: 1)

Based on Exponentiated Gradient; and 2) Based on Online Gradient Descent.

EG Combination: We aim to learn the optimal cost-sensitive convex combina-

tion of weights w = (w1, . . . , wm)>, where wi is set to 1/m at the beginning of

the learning task. In our approach, we modify and adapt the EG algorithm [62] to

update the cost-sensitive weights. We define

ft(xt) = (f 1
t (xt), . . . , f

m
t (xt))

>, (5.5)

and formulate the rule of updating w as follows:

wt+1 = arg min
w∈∆

DKL(w‖wt) + ηeg`
ρ(w, (ft(xt), yt)), (5.6)

This optimization trades off two major concerns: (i) minimizing weight distri-

bution between new weights and old weights (measured by KL-divergence); and (ii)

new weights should suffer a small loss on the instance in the current iteration. The

trade-off parameter is ηeg > 0. To obtain a closed-form solution for the above opti-

mization, we approximate the loss function by using its first-order Taylor expansion

at wt, and we get:

wt+1 = arg min
w∈∆

DKL(w‖wt) + ηeg`
ρ(wt, (ft(xt), yt))

+ ηeg∂w`
ρ(wt, (ft(xt), yt)) · (w −wt)

(5.7)
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For this problem, we can derive a closed-form solution as:

wt+1 =
wt � exp(−ηeg∇w`

ρ(wt; (ft(xt), yt))

‖wt � exp(−ηeg∇w`ρ(wt; (ft(xt), yt))‖1

, (5.8)

where � is element-wise product. It is easy to check that ∇w`
ρ(wt; (ft(xt), yt)) =

−ρtytft(xt) when `ρ(w; (f(x), y)) > 0, and 0 otherwise, where ρt is set in the

same manner as for learning a single kernel predictor. We refer to this approach as

CSOMKC(EG).

OGD combination: Since CSOMKC(EG) learns a convex combination, we aim

to increase the generality by learning the optimal cost-sensitive linear combination

of multiple kernel predictors. Similar with the EG update (5.7), this can be cast into

the following optimization:

wt+1 = arg min
w

1

2
‖w −wt‖2

2 + ηogd`
ρ(w, (ft(xt), yt))

where ft(xt) is the vector representing the predictions made by each individual ker-

nel classifier. After replacing the loss function with its first order Taylor expansion,

the update rule based on Online Gradient Descent can be derived as [134, 117]:

wt+1 = wt − ηogd∇w`
ρ(wt, (ft(xt), yt)),

where the weights are updated only when the combined prediction suffers a loss,

i.e., `ρ(wt, (ft(xt), yt)) > 0; ηogd represents the learning rate for the weight update

of the combination; and ρt regulates the update to account for cost-sensitivity. This

approach referred to as CSOMKC(OGD).

Both approaches are similar in the problem being addressed. However, EG uses

multiplicative updates, whereas OGD uses additive updates. As a result, while EG

may converge to a solution faster, in the long run OGD will outperform it. Both the

approaches are outlined in Algorithm 8.
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Algorithm 8 Cost-Sensitive Online Multiple Kernel Classification
INPUTS: Kernels: ki(·, ·) : X × X → R, i = 1, . . . ,m; Learning rates: η >
0, ηeg > 0; Cost Sensitive Parameter: ρ > 0
Initialization: f1 = 0,w1 = 1

m
1

for t = 1, 2, . . . do
Receive an instance: xt
Predict ŷt = sign

(
wt · ft(xt)

)
Receive the class label: yt
Set ρt = ρ ∗ I(yt = 1) + I(yt = −1)
for i = 1, 2, . . . ,m do

Set `ρ(f it ; (xt, yt)) = ρt max(0, 1− ytf it (xt))
if `ρ(f it ; (xt, yt)) > 0 then

Update f it+1(x) = f it (x) + ηiρtytκi(xt,x)
end if

end for
Set `ρ(wt; (ft(xt), yt)) = ρt max(0, 1− ytwt · ft(xt))
if `ρ(wt; (ft(xt), yt)) > 0 then

Update wt+1 = wt�exp(ηegρtytft(xt))

‖wt�exp(ηegρtytft(xt))‖1 for update by EG OR
Update wt+1 = wt − ηogd∇w`

ρ(wt, (ft(xt), yt)) for update by OGD
end if

end for

5.3.4 Theoretical Analysis

In this section, we present the theoretical properties of the algorithm

CSOMKC(EG). We derive the loss bound for Algorithm 8 when the kernel combi-

nation is learnt by EG algorithm. We assume κ(x,x) ≤ 1 for all κ and x. We define

the optimal regularized objective value for the kernel κi(·, ·) denoted byO(κi, `
ρ,D)

with respect to the dataset D as:

min
fi∈Hκi

(
T∑
t=1

`ρ(fi, (xt, yt)) + ‖fi‖Hκi
√
ρ2Lpi + Lni

)

where Lpi =
∑

yt=1 I(ytfi(xt) ≤ 1), Lni =
∑

yt=−1 I(ytfi(xt) ≤ 1).

Lemma 2. Assume ‖ft(xt)‖∞ ≤ R, and the CSOMKC(EG) algorithm is

run with learning rate ηeg =
√

2 lnm
R2T

on a sequence of examples D =

{(x1, y1), . . . , (xT , yT )}. Then for any combination of function ft =
∑m

i=1w
if it ,

107



w ∈ ∆ we have

T∑
t=1

`ρ(wt, (f(xt), yt)) ≤
T∑
t=1

`ρ(ft, (xt, yt)) +R

√
T lnm

2
.

Moreover, we have

ρ|Mp|+ |Mn| ≤ min
1≤i≤m

O(κi, `
ρ,D) +R

√
T lnm

2
.

Proof. The idea of this proof follows the principle of similar proof in [14]. We

denote lt(wt) = `ρ(wt, (f(xt), yt)). Then, by convexity of lt, we get

lt(wt)− lt(w) ≤ −(w −wt) · ∇lt(wt). (5.9)

−(w −wt) · z

= −w · z + wt · z− ln(
m∑
i=1

wite
vi) + ln(

m∑
i=1

wite
vi)

= −w · z− ln(
m∑
i=1

wite
−zi) + ln(

m∑
i=1

wite
vi)

=
m∑
j=1

wj ln e−zj − ln(
m∑
i=1

wite
−zi) + ln(

m∑
i=1

wite
vi)

=
m∑
j=1

wj ln(
1

wjt

wjt e
−zj∑m

i=1w
i
te
−zi

) + ln(
m∑
i=1

wite
vi)

=
m∑
j=1

wj ln
wjt+1

wjt
+ ln(

m∑
i=1

wite
vi)

= DKL(w‖wt)−DKL(w‖wt+1) + ln(
m∑
i=1

wite
vi).

Plugging the above equality into the inequality (5.9) and summing over t, we get

T∑
t=1

[lt(wt)− lt(w)] ≤ 1

ηeg
[DKL(w‖w1) +

T∑
t=1

ln(
m∑
i=1

wite
vi)],

by omitting −DKL(w‖wT+1). To bound the right hand side of the inequality, note

that DKL(w‖w1) ≤ lnm, since w1 = (1/m, . . . , 1/m). We need bound the second

term in the right hand side. Since ‖ft(xt)‖∞ ≤ R, then |zi| ≤ ηegR, and applying
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Hoeffding’s inequality:

ln(
m∑
i=1

wite
vi) ≤ η2

egR
2/2.

As a result, we get the following inequality,

T∑
t=1

[lt(wt)− lt(w)] ≤ lnm

ηeg
+
ηegR

2T

2
= R

√
T lnm

2
.

Re-arranging this concludes the first part of the theorem. If we set wi = 1 and

wj = 0, for j 6= i, using `ρ(wt, (ft(xt), yt)) ≥ ρt when prediction is wrong, and

combining with Lemma 1 of the paper [117], the above inequality will derive the

second part.

Using this result, we now bound the sum incurred by CSOMKC.

Theorem 1. After receiving a sequence of T training examples D = {(xt, yt), t =

1, . . . , T}, the weighted sum = α(Se) + (1 − α)(Sp) achieved by Algorithm 8

for kernel combination update by EG, with ηi = ‖fi‖Hκi/
√
ρ2Mp

i +Mn
i and ρ =

αTn
(1−α)Tp

, is bounded as:

sum ≥ (1− α)

Tn

[
min

1≤i≤m
O(κi, `

ρ,D) +R

√
T lnm

2

]
.

Proof. We know that sum = 1− 1−α
|Tn|

[
α|Tn|

(1−α)|Tp| |Mp|+ |Mn|
]
. Using ρ = α|Tn|

(1−α)|Tp| ,

and combining the above with Lemma 1 gives us the desired result.

We now derive a bound for the cost suffered, which unlike sum does not require

the estimates of ratio Tn
Tp

(which may be unknown in advance). We set ρ = 1−c
c

,

where c ∈ (0, 1).

Theorem 2. After receiving a sequence of T training examples D = {(xt, yt), t =

1, . . . , T}, the weighted cost = c(|Mp|)+(1−c)(|Mn|) suffered by Algorithm 8 for

kernel combination update by EG, with ηi = ‖fi‖Hκi/
√
ρ2Mp

i +Mn
i and ρ = c

1−c ,
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is bounded as:

cost ≤ (1− c)

[
min

1≤i≤m
O(κi, `

ρ,D) +R

√
T lnm

2

]
.

Proof. From the definition of cost, we know that cost = (1−c)( c
1−c |Mp|+|Mn|) =

(1− c)(ρ|Mp|+ |Mn|). Combining this with Lemma 1 proves this theorem.

Time Complexity: Traditional linear online algorithms execute in O(T ) where

T is the number of instances. For an online kernel algorithm, in the worst case sce-

nario, where every instance becomes a support vector, the algorithm would run in

O(T 2). However, applying budget techniques like the Randomized Budget Percep-

tron [13] reduces the running time to O(BT ) where B is the user-specified budget,

and B << T . The multiple kernel variants with m kernels require time complexity

of running m online kernel algorithms. Therefore, the time to run CSOMKC is in

O(mBT ), i.e., the time complexity with budget approximations is linear in number

of instances.

5.4 Experiments

We now present comprehensive empirical analysis of our proposed scheme, where

we have evaluated algorithms’ performance on imbalanced datasets, and anomaly

detection tasks.

5.4.1 Datasets

We use a wide variety of datasets, across a wide spectrum of applications and vary-

ing number of instances, features, and imbalance ratios. All the datasets are publicly

available and were retrieved from UCI repository, LIBSVM, and KDD Cup 2008.

The datasets can be categorized into 6 regular imbalanced datasets, and 2 anomaly

detection datasets. Among the imbalanced datasets we have: Spam and Webspam

datasets which are self explanatory; Cod-rna is a bioinformatics dataset; Twitter
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dataset is about detecting buzz in social media, and is temporal in nature; Internet

Ads is about predicting whether images in a given URL are ads or not; and Page-

blocks attempts to classify page blocks into text or not. The anomaly detection

datasets are KDD08 (from KDD Cup 2008 dataset on breast cancer); and Malware

dataset built from Android Malware Genome Project which is about classifying

apps as malware or not. The other details are given in Table 5.1.

Table 5.1: Details of the datasets used
Data ID Name of Dataset Instances Features Tn : Tp

Regular Imbalanced Datasets
D1 Spam 4601 57 1.53
D2 Webspam 350000 254 1.54
D3 Cod-rna 59535 8 2.00
D4 Twitter 140707 77 4.07
D5 Internet Ads 3279 1556 6.14
D6 Page-blocks 21888 10 8.79

Highly Imbalanced Anomaly Detection Datasets
D7 KDD08 102294 117 163.20
D8 Malware 208243 122 549.91

5.4.2 Kernels

Different kernels are suitable for different types of data. For example polynomial

kernels which implicitly construct new polynomial features are more suited for

NLP(among other tasks). Gaussian kernels have been the most widely used ker-

nels for a variety of tasks. Additionally, depending on the data distribution, appro-

priate parameters need to be set, which is often done by validation techniques. To

automatically select from a rich pool of kernels, we predefine a diverse set of 10 ker-

nels which include three polynomial kernels κ(x, y) = (xTy)p of degree parameter

p = 1, 2, 3, 4, five RBF kernels (κ(x, y) = e(
−||x−y||2

2σ2
)) of kernel width parameter

σ = 2−2, 2−1, 20, 21, 22, and a sigmoid kernel(κ(x, y) = tanh(xy)).
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5.4.3 Algorithms Compared

Online Learning with Kernels suffers from an unbounded growth of support vectors.

For large data, even with a good classifier, the number of support vectors keeps

growing linearly. To make the computation realistically possible, a budget on the

number of support vectors is required. We set a budget of 2000 support vectors per

kernel classifier for all datasets with number of instances greater than 50, 0000, and

apply the Randomized Budget Perceptron [13] by randomly discarding a support

vector when the budget constraint is violated, and hence approximating the kernel

predictions. This approximation is done for all algorithms that make kernel based

predictions. In our experiments, OMKCSC-EG and OMKCSC-OGD are compared

the following algorithms:

Linear Algorithms: We compare with the following linear algorithms:

1. Simple Linear Online Gradient Descent [134]

2. PAUM [74] Perceptron based method for uneven margins

3. CPAPB [21] which is a cost-sensitive variant of the popular online Passive

Aggressive algorithms and

4. CSOL [117] that directly optimizes cost-sensitive measures.

Kernel Algorithms: We compare with the following online kernel methods:

1. Best Single Cost-Sensitive Kernel (CSC Kernel) determined by validation

over first few samples of the data

2. Online Multiple Kernel Classification with hedge combination OMKC(H)

[49]

3. OMKC with linear combination OMKC(OGD) [100]

4. Finally, we also compare with OMKCSC(U), where a uniform combination

of the multiple cost-sensitive kernel predictors is used, i.e., our strategies of

combining multiple kernels via EG or OGD are ignored.
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All algorithms are evaluated on the basis of sum with α = 0.5 ( which is essen-

tially the balanced accuracy); and cost with c = 0.95. For a comprehensive study,

we also evaluate the results of sensitivity and specificity of each algorithm.

5.4.4 Parameters

There are 5 parameters required to be selected: Learning rate η for each kernel,

cost-sensitive parameter ρ, and the combination learning rate for EG ηeg and for

OGD ηogd. For a fair comparison with OMKC, we set η = 1 for all algorithms.

We set the combination parameters ηeg = 0.1, and ηogd = 0.1 for all cases, and

also perform sensitivity analysis for them. The cost-sensitive parameter ρ is set

according to the objective being optimized. While trying to maximize sum, we set

α = 0.5, and accordingly ρ is set as ρ = (1−α)Tp
αTn

. While trying to minimize the cost,

we set c = 0.95, and accordingly ρ is set as ρ = 1−c
c

.

5.4.5 Results and Discussion

All results are reported as the average over multiple permutations, except the Twitter

dataset which is temporal in nature (random permutations are meaningless). The

details are in Table 5.2. Further, the sum and cost of all algorithms, as the number

of instances grows can be visualized in Figure 5.1.

From Table 5.2, we see that our proposed CSOMKC(EG) and CSOMKC(OGD)

almost always secure the highest sum (balanced accuracy), and the lowest cost.

For sum, which in our case is a measure of balanced accuracy, CSOMKC(EG)

and CSOMKC(OGD) get superior performances in all datasets with the exception

CSOMKC(EG) in InternetAds. For the anomaly detection datasets, the proposed

algorithms achieve excellent results, beating the benchmarks by a significant mar-

gin. In cost performance, with the exception of CSOMKC(EG) in InternetAds, we

get a significant outperformance of the proposed techniques in all cases. However,

for all other cases, the performance is phenomenal. InternetAds has a very high di-
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mensionality, and with the usage of multiple kernels, suffers from a relatively slow

convergence for a small number of instances. An interesting insight can be drawn

from 5.1. Our proposed scheme usually picks up the best pattern, and achieves supe-

rior performance right from the very beginning. It is also worth noting that in some

cases, single kernels give a good performance on the first few samples of the data,

but eventually are not able to match OMKCSC algorithms. This demonstrates diffi-

culty in kernel selection by validation, and hence it is imperative to have a dynamic

technique that can automatically choose a combination of multiple kernels.

Linear vs Kernel Methods: The empirical results show that the introduction of

kernels (and subsequently multiple kernels) have significantly increased the learning

capacity of our models. In many cases, the balanced accuracy has improved by over

5% by using kernel methods as compared to the state of the art linear models. In the

optimization of cost, have caused a great reduction of the cost e.g. in the Malware

dataset, the cost suffered by kernel methods is a mere 7% of the cost suffered by the

best linear methods.

Comparisons between kernel methods: Among the kernel methods our pro-

posed techniques out performed the others, due to their ability to learn multiple

cost-sensitive kernel prediction models, followed by their cost-sensitive combina-

tion. Firstly, it should be noted that the addition of multiple kernels has in fact

helped increase the predictive power of the model as compared to one single kernel.

However, this raises a further question: which of the algorithms CSOMKC(EG) and

CSOMKC(OGD) is more suitable? CSOMKC(EG) has a a more limited predictive

power as it learns only a convex combination of multiple kernels (as compared

to CSOMKC(OGD). Further, if the data is described by a single kernel function,

CSOMKC(EG) is able to quickly converge to that kernel predictor via multiplicative

updates; but if the optimal prediction depends on a combination of several kernel

functions, CSOMKC(OGD) slowly approaches the best solution, and will probably

outperform CSOMKC(EG) in the long run. It should be noted that the results are

very robust, as indicated by a very small standard deviation in most cases. In fact,
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in several cases, due to the low standard deviation, upon rounding up, it is reported

as 0.

0 1000 2000 3000 4000 5000
0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M

 

 

Linear
CPA

PB

PAUM
CSOL
Single Kernel
OMKC(H)
OMKC(OGD)
OMKCSC(U)
OMKCSC(EG)
OMKCSC(OGD)

(a) SUM (Spam)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M
(b) SUM (Webspam)

0 1 2 3 4 5 6

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M

(c) SUM (COD-RNA)

0 5 10 15

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M

(d) SUM (Twitter)

0 500 1000 1500 2000 2500 3000 3500
0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M

(e) SUM (InternetAds)

0 0.5 1 1.5 2 2.5

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M

(f) SUM (Page-blocks)

0 2 4 6 8 10 12

x 10
4

0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M
(g) SUM (KDD08)

0 0.5 1 1.5 2 2.5

x 10
5

0.4

0.5

0.6

0.7

0.8

0.9

1

T

S
U

M

(h) SUM (Malware)

0 1000 2000 3000 4000 5000
0

50

100

150

200

250

300

350

400

T

C
O

S
T

 

 
Linear
CPA

PB

PAUM
CSOL
Single Kernel
OMKC(H)
OMKC(OGD)
OMKCSC(U)
OMKCSC(EG)
OMKCSC(OGD)

(i) COST (Spam)

0 0.5 1 1.5 2 2.5 3 3.5

x 10
5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

T

C
O

S
T

(j) COST (Webspam)

0 1 2 3 4 5 6

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T

C
O

S
T

(k) COST (COD-RNA)

0 5 10 15

x 10
4

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

T
C

O
S

T

(l) COST (Twitter)

0 500 1000 1500 2000 2500 3000 3500
0

5

10

15

20

25

T

C
O

S
T

(m) COST (Interne-
tAds)

0 0.5 1 1.5 2 2.5

x 10
4

0

200

400

600

800

1000

1200

T

C
O

S
T

(n) COST (Page-
blocks)

0 2 4 6 8 10 12

x 10
4

0

100

200

300

400

500

600

700

T

C
O

S
T

(o) COST (KDD08)

0 0.5 1 1.5 2 2.5

x 10
5

0

200

400

600

800

1000

1200

1400

1600

1800

2000

T

C
O

S
T

(p) COST (Malware)

Figure 5.1: Cost of different algorithms as the number of instances increases

Sensitivity to learning rate parameters: We also analyzed the sensitivity of

CSOMKC(EG) and CSOMKC(OGD) to their learning rates ηeg and ηogd respec-

tively. A sample of this analysis on the KDD08 dataset can be seen in Figure 5.2.

As expected, both converge to the performance of OMKCSC(U) when the learn-

ing rates are set to 0. For a wide variety of other learning rates, CSOMKC(EG)

and CSOMKC(OGD) substantially outperform OMKCSC(U) which for the KDD08

dataset is the next best performer. CSOMKC(EG) is more robust to the parameter
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choice and gives consistent results across a wide range, whereas CSOMKC(OGD)

gives a good performance for small values of ηogd, and when the learning rate is very

large, its performance degrades. In our experiments, we had set ηogd = 0.1 which is

a conservative choice. A carefully chosen learning rate would further enhance the

performance of CSOMKC(OGD).
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Figure 5.2: Parameter Sensitivity Analysis

5.5 Conclusion

In this chapter, we motivated the need for scalable techniques that can learn com-

plex nonlinear patterns in imbalanced data and proposed a novel scheme of Cost-

Sensitive Online Multiple Kernel Classification, which dynamically explores a di-

verse set of predefined kernel functions, and simultaneously learns both the kernel

predictions and their optimal combinations. Both the kernel predictors and their

combinations are learnt in a cost-sensitive manner. The kernel predictors are learnt

by gradient descent, and for the kernel combinations, we demonstrated two ap-

proaches - first by exponentiated gradient, and second by online gradient descent.

We discussed the application of the proposed techniques to online anomaly detec-

tion. We derived theoretical properties of the algorithms and have conducted ex-

tensive empirical analysis on imbalanced datasets and anomaly detection datasets.

Our proposed techniques significantly outperformed several state of the art methods

designed for cost-sensitive classification.
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Table 5.2: Evaluation of all the algorithms on all datasets based on the sum and cost.

SUM performance of algorithms
Spam Webspam Cod-rna Twitter

Linear 0.879± 0.002 0.903± 0.000 0.835± 0.003 0.904± 0.000
CPAPB 0.809± 0.002 0.853± 0.000 0.801± 0.000 0.901± 0.000
PAUM 0.883± 0.002 0.902± 0.000 0.836± 0.002 0.904± 0.000
CSOL 0.870± 0.003 0.905± 0.000 0.854± 0.001 0.915± 0.000

CSC Kernel 0.846± 0.083 0.945 ± 0.001 0.910± 0.003 0.882± 0.000
OMKC(H) 0.866± 0.002 0.934± 0.000 0.885± 0.001 0.913± 0.000

OMKC(OGD) 0.825± 0.008 0.900± 0.000 0.863± 0.002 0.889± 0.000
CSOMKC(U) 0.850± 0.005 0.899± 0.000 0.874± 0.000 0.915± 0.000

CSOMKC(EG) 0.902 ± 0.004 0.945 ± 0.001 0.912 ± 0.000 0.935 ± 0.000
CSOMKC(OGD) 0.896 ± 0.005 0.944 ± 0.001 0.914 ± 0.001 0.932 ± 0.000

Internet-Ads Page-Blocks KDD08 Malware
Linear 0.970± 0.001 0.743± 0.003 0.564± 0.003 0.466± 0.007

CPAPB 0.971± 0.000 0.747± 0.003 0.625± 0.001 0.524± 0.005
PAUM 0.974± 0.002 0.780± 0.000 0.558± 0.006 0.472± 0.005
CSOL 0.976± 0.002 0.819± 0.001 0.684± 0.006 0.804± 0.001

CSC Kernel 0.967± 0.096 0.904± 0.014 0.649± 0.083 0.688± 0.000
OMKC(H) 0.972± 0.002 0.845± 0.002 0.612± 0.007 0.814± 0.000

OMKC(OGD) 0.975± 0.001 0.793± 0.001 0.616± 0.010 0.781± 0.003
CSOMKC(U) 0.979± 0.000 0.859± 0.002 0.696± 0.008 0.771± 0.004

CSOMKC(EG) 0.976± 0.000 0.913 ± 0.000 0.748 ± 0.001 0.836 ± 0.018
CSOMKC(OGD) 0.985 ± 0.002 0.912 ± 0.001 0.733± 0.007 0.84 ± 0.007

COST performance of algorithms
Spam Webspam Cod-rna Twitter

Linear 205.2± 11.172 17233.975± 88.282 4560.625± 86.373 4275.9± 0.000
CPAPB 367.625± 4.914 18856.15± 81.388 4002.85± 31.466 4112.05± 0.000
PAUM 113.175± 2.369 12611.25± 57.134 3669.075± 55.402 4177.05± 0.000
CSOL 109.35± 3.041 5601.2± 29.628 1349.675± 3.147 2449± 0.000

CSC Kernel 114.05± 1.131 9055.8± 3.041 2489.375± 63.534 3690± 0.000
OMKC(H) 282.725± 5.409 11183.925± 8.309 3055.125± 15.167 3872.65± 0.000

OMKC(OGD) 351.25± 17.607 16265.4± 7.637 3391.325± 71.17 4883.6± 0.000
CSOMKC(U) 116.45± 1.131 7805.025± 36.946 1950.975± 4.066 2889.25± 0.000

CSOMKC(EG) 95.725 ± 3.359 4407.325 ± 29.097 1157.225± 0.530 2141 ± 0.000
CSOMKC(OGD) 95.975 ± 4.207 4412.903 ± 30.618 1141.525 ± 0.813 2210.7± 0.000

Internet-ads Page-blocks KDD08 Malware
Linear 15.275± 0.672 1069.425± 12.127 535.9± 3.323 1973.6± 4.596

CPAPB 13.45± 0.849 940.525± 5.48 528.975± 6.116 1977.8± 6.223
PAUM 11.875± 1.591 848.525± 22.451 550.175± 5.551 1970.95± 5.091
CSOL 10.9± 1.344 645.85± 6.435 674.975± 11.208 1924.85± 4.525

CSC Kernel 14.125± 2.934 445.35± 260.569 607.175± 165.852 208.525± 3.076
OMKC(H) 22.075± 1.52 623.4± 9.546 480.575± 8.945 141.925± 0.247

OMKC(OGD) 18.85± 0.778 819.575± 5.48 483.775± 12.763 169.1± 2.546
CSOMKC(U) 7.75± 1.344 425.425± 11.49 444.05± 6.223 1725.525± 2.157

CSOMKC(EG) 12.5± 1.414 262.15 ± 0.919 419.6 ± 15.556 136.675± 4.137
CSOMKC(OGD) 6.000 ± 1.909 266.4± 2.192 421.625 ± 9.016 129.3 ± 4.313
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Chapter 6

Online Deep Learning

Deep Neural Networks (DNNs) are typically trained by backpropagation in a batch

learning setting, which requires the entire training data to be made available prior

to the learning task. This is not scalable for many real-world scenarios where new

data arrives sequentially in a stream form. We aim to address an open challenge

of “Online Deep Learning” (ODL) for learning DNNs on the fly in an online set-

ting. Unlike traditional online learning that often optimizes some convex objective

function with respect to a shallow model (e.g., a linear/kernel-based hypothesis),

ODL is significantly more challenging since the optimization of the DNN objective

function is non-convex, and regular backpropagation does not work well in practice,

especially for online learning settings. In this chapter, we present a new online deep

learning framework that attempts to tackle the challenges by learning DNN mod-

els of adaptive depth from a sequence of training data in an online learning setting.

In particular, we propose a novel Hedge Backpropagation (HBP) method for online

updating the parameters of DNN effectively, and validate the efficacy of our method

on large-scale data sets, including both stationary and concept drifting scenarios.
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6.1 Introduction

Recent years have witnessed tremendous success of deep learning techniques in

a wide range of applications [68, 8, 9, 63, 46]. Learning Deep Neural Networks

(DNN) faces many challenges, including (but not limited to) vanishing gradient, di-

minishing feature reuse [112], saddle points (and local minima) [18, 28], immense

number of parameters to be tuned, internal covariate shift during training [56], diffi-

culties in choosing a good regularizer, choosing hyperparameters, etc. Despite many

promising advances [89, 56, 46, 112], etc., which are designed to address specific

problems for optimizing deep neural networks, most of these existing approaches

assume that the DNN models are trained in a batch learning setting which requires

the entire training data set to be made available prior to the learning task. This is not

possible for many real world tasks where data arrives sequentially in a stream, and

may be too large to be stored in memory. Moreover, the data may exhibit concept

drift [39]. Thus, a more desired option is to learn the models in an online setting.

Unlike batch learning, online learning [134, 14] represents a class of learning

algorithms that learn to optimize predictive models over a stream of data instances in

a sequential manner. The nature of on-the-fly learning makes online learning highly

scalable and memory efficient. However, most existing online learning algorithms

are designed to learn shallow models (e.g., linear or kernel methods [99, 134, 21,

61, 49]) with online convex optimization, which cannot learn complex nonlinear

functions in complicated application scenarios.

In this work, we attempt to bridge the gap between deep learning and online

learning by addressing the open problem of “Online Deep Learning” (ODL) —

how to learn Deep Neural Networks (DNNs) from data streams in an online set-

ting. A possible way to do ODL is to put the process of training DNNs online by

directly applying a standard Backpropagation training on only a single instance at

each online round. Such an approach is simple but falls short due to some critical

limitations in practice. One key challenge is how to choose a proper model capacity
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(e.g., depth of the network) before starting to learn the DNN online. If the model

is too complex (e.g., very deep networks), the learning process will converge too

slowly (vanishing gradient and diminishing feature reuse), thus losing the desired

property of online learning. On the other extreme, if the model is too simple, the

learning capacity will be too restricted, and without the power of depth, it would be

difficult to learn complex patterns. In batch learning literature, a common way to

address this issue is to do model selection on validation data. Unfortunately, it is

not realistic to have validation data in online settings, and is thus infeasible to apply

traditional model selection in online learning scenarios. In this work, we present a

novel framework for online deep learning, which is able to learn DNN models from

data streams sequentially, and more importantly, is able to adapt its model capac-

ity from simple to complex over time, nicely combining the merits of both online

learning and deep learning.

We aim to devise an online learning algorithm that is able to start with a shal-

low network that enjoys fast convergence; then gradually switch to a deeper model

(meanwhile sharing certain knowledge with the shallow ones) automatically when

more data has been received to learn more complex hypotheses, and effectively im-

prove online predictive performance by adapting the capacity of DNNs. To achieve

this, we first amend the existing DNN architecture by attaching every hidden layer

representation to an output classifier. Then, instead of using a standard Backprop-

agation, we propose a novel Hedge Backpropagation method, which evaluates the

online performance of every output classifier at each online round, and extends the

Backpropagation algorithm to train the DNNs online by exploiting the classifiers

of different depths with the Hedge algorithm [37]. This allows us to train DNN

of adaptive capacity meanwhile enabling knowledge sharing between shallow and

deep networks.
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6.2 Related Work

6.2.1 Online Learning

Online Learning represents a family of scalable and efficient algorithms that learn

to update models from data streams sequentially [14, 105, 51]. Many techniques

are based on maximum-margin classification, starting from Perceptron [99] to On-

line Gradient Descent [134], Passive Aggressive (PA) algorithms [21], Confidence-

Weighted (CW) Algorithms, [33] etc. These are primarily designed to learn linear

models. Online Learning with kernels [61] offered a solution for online learning

with nonlinear models. These methods received substantial interest from the com-

munity, and models of higher capacity such as Online Multiple Kernel Learning

were developed [58, 49, 100]. While these models learn nonlinearity, they are still

shallow models. Moreover, deciding the number and type of kernels is non-trivial;

and these methods are not explicitly designed to learn a feature representation.

Online Learning can be directly applied to DNNs (”online backpropagation”)

but they suffer from convergence issues, such as vanishing gradient and diminish-

ing feature reuse. Moreover, the optimal depth to be used for the network is usually

unknown, and cannot be validated easily in the online setting. Further, networks of

different depth would be suitable for different number of instances to be processed,

e.g., for small number of instances - a quick convergence would be of high priority,

and thus shallow networks would be preferred, whereas, for a large number of in-

stances, the long run performance would be enhanced by using a deeper network.

There have been attempts at making deep learning compatible with online learning

[132, 70]. However, they operate via a sliding window approach with a (mini)batch

training stage, making them unsuitable for a streaming data setting.
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6.2.2 Deep Learning

Due to the difficulty in training deep networks, there has been a large body of

emerging works adopting the principle of ”shallow to deep”. This is similar to

the principle we adopt in our work. This approach exploits the intuition that shal-

low models converge faster than deeper models, and this idea has been executed in

several ways. Some approaches do this explicitly by Growing of Networks via the

function preservation principle [16, 119], where the (student) network of higher ca-

pacity is guaranteed to be at least as good as the shallower (teacher) network. Other

approaches perform this more implicitly by modifying the network architecture and

objective functions to enable the network to allow the input to flow through the net-

work, and slowly adapt to deep representation learning, e.g., Highway Nets[112],

Residual Nets[46], Stochastic Depth Networks [54] and Fractal Nets [66].

However, they are all designed to optimize the loss function based on the output

obtained from the deepest layer. Despite the improved batch convergence, they can-

not yield good online performances (particularly for the instances observed in early

part of the stream), as the inference made by the deepest layer requires substantial

time for convergence. For the online setting, such existing deep learning techniques

could be trivially beaten by a very shallow network. Deeply Supervised Nets [69],

shares a similar architecture as ours, which uses companion objectives at every layer

to address vanishing gradient and to learn more discriminative features at shallow

layers. However, the weights of companions are set heuristically, where the pri-

mary goal is to optimize the classification performance based on features learnt by

the deepest hidden layer, making it suitable only for batch settings, which suffers

from the same drawbacks as others.

Recent years have also witnessed efforts in learning the architecture of the neu-

ral networks [111, 1], which incorporate architecture hyperparameters into the op-

timization objective. Starting from an overcomplete network, they use regularizers

that help in eliminating neurons from the network. For example, [1] use a group
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sparsity regularization to reduce the width of the network. [135] use reinforcement

learning to search for the optimal architecture. Our proposed technique is related to

these in the sense the we are adapting the depth of the network during the learning

phase, making the network learn the appropriate capacity as and when it observes

more data. Unlike other model selection techniques, our method is designed to

operate in a pure online learning setting.

6.3 Online Deep Learning

6.3.1 Problem Setting

Without loss of generality, consider an online classification task. The goal of online

deep learning is to learn a function F : Rd → RC based on a sequence of training

examples D = {(x1, y1), . . . , (xT , yT )}, that arrive sequentially, where xt ∈ Rd

is a d-dimensional instance representing the features and yt ∈ {0, 1}C is the class

label assigned to xt and C is the number of classes. The prediction is denoted by

ŷt, and the performance of the learnt functions are usually evaluated based on the

cumulative prediction error: εT = 1
T

∑T
t=1 I(ŷt 6=yt), where I is the indicator function

resulting in 1 if the condition is true, and 0 otherwise. To minimize the classification

error over the sequence of T instances, a loss function (e.g., squared loss, cross-

entropy, etc.) is often chosen for minimization. In every online iteration, when an

instance xt is observed, and the model makes a prediction, the environment then

reveals the ground truth of the class label, and finally the learner makes an update

to the model (e.g., using online gradient descent).

6.3.2 Backpropagation

For typical online learning algorithms, the prediction function F is either a linear

or kernel-based model. In the case of Deep Neural Networks (DNN), it is a set of

stacked linear transformations, each followed by a nonlinear activation. Given an

123



input x ∈ Rd, the prediction function of DNN with L hidden layers (h(1), . . . ,h(L))

is recursively given by:

F(x) = softmax(W (L+1)h(L)) where

h(l) = σ(W (l)h(l−1)) ∀l = 1, . . . , L

h(0) = x

where σ is an activation function, e.g., sigmoid, tanh, ReLU, etc. This equation

represents a feedforward step of a neural network. The hidden layers h(l) are the

feature representations learnt during the training procedure. To train a model with

such a configuration, we use the cross-entropy loss function denoted by L(F(x), y).

We aim to estimate the optimal model parameters Wi for i = 1, . . . (L + 1) by ap-

plying Online Gradient Descent (OGD) on this loss function. Following the online

learning setting, the update of the model in each iteration by OGD is given by:

W
(l)
t+1 ← W

(l)
t − η∇W

(l)
t
L(F(xt), yt) ∀l = 1, . . . , L+ 1

where η is the learning rate. Using backpropagation, the chain rule of differentiation

is applied to compute the gradient of the loss with respect to W (l) for l ≤ L. This is

Online Backpropagation.

Unfortunately, using such a model for an online learning (i.e. Online Back-

propagation) task faces several issues with convergence. Most notably: (i) For such

models, a fixed depth of the neural network has to be decided a priori, and this

cannot be changed during the training process. This is problematic, as determining

the depth is a difficult task. Moreover, in an online setting, different depths may be

suitable for a different number of instances to be processed, e.g. because of con-

vergence reasons, shallow networks maybe preferred for small number of instances,

and deeper networks for large number of instances. Our aim is to exploit the fast

convergence of shallow networks at the initial stages, and the power of deep rep-

resentation at a later stage; (ii) vanishing gradient is well noted problem that slows
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down learning. This is even more critical in an online setting, where the model

needs to make predictions and learn simultaneously; (iii) diminishing feature reuse,

according to which many useful features are lost in the feedforward stage of the

prediction. This again is very critical for online learning, where it is imperative to

quickly find the important features, so as to not suffer from poor performance for

the initial training instances.

To address these issues, we design a novel training scheme for Online Deep

Learning through a Hedging strategy for Deep Neural Networks: Hedge Backprop-

agation (HBP).

𝒉𝟎 𝒉𝟏 𝒉𝟐 𝒉𝑳

𝑭𝒕
t

𝒇𝟏 𝒇𝟐 𝒇𝑳

𝒚𝑡

𝒇𝟎

hedge
𝜶(𝟎) 𝜶(𝟏) 𝜶(𝟐) 𝜶(𝑳)

𝒚𝑡𝒚𝑡𝒚𝑡

𝒙𝒕

hedge hedgehedge

Figure 6.1: Illustration of the proposed Online Deep Learning framework using
Hedge Backpropagation (HBP). The blue lines represent feedforward flow for com-
puting hidden layer features. The orange lines indicate softmax output followed
by the hedging combination at prediction time. The green lines indicate the online
updating flows with the hedge backpropagation approach.

6.3.3 Hedge Backpropagation (HBP)

Figure 6.1 gives an overview of the proposed online deep learning framework,

which illustrates the feedforward and backprop flows for a Hedged Deep Neural

Network using the proposed Hedge Backpropagation.

Consider a deep neural network with L hidden layers (i.e. the maximum capac-
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ity of the network that can be learnt is one with L hidden layers), the prediction

function for the proposed Hedged Deep Neural Network is given by:

F(x) =
L∑
l=0

α(l)f (l) where (6.1)

f (l) = softmax(h(l)Θ(l)), ∀l = 0, . . . , L

h(l) = σ(W (l)h(l−1)), ∀l = 1, . . . , L

h(0) = x

Here we have designed a new architecture, and introduced two sets of new param-

eters Θ(l) (parameters for f (l)) and α, that have to be learnt. Unlike the original

network, in which the final prediction is given by a classifier using the feature rep-

resentation h(L), here the prediction is weighted combination of classifiers learnt

using the feature representations from h(0), . . . ,h(L). Each of these classifiers f (l)

is parameterized by Θ(l). Note that there are a total of L + 1 classifiers. The fi-

nal prediction of this model is a weighted combination of the predictions of all

these classifiers, where the weight of each classifier is denoted by α(l), and the loss

suffered by the model is L(F(x), y) =
∑L

l=0 α
(l)L(f (l)(x), y). During the online

learning procedure, we need to learn α(l), Θ(l) and W (l).

We propose to learn α(l) using the Hedge Algorithm [37]. At the first iteration,

all the weights α are uniformly distributed, i.e., α(l) = 1
L+1

, l = 0, . . . , L. At every

iteration, the classifier f (l) makes a prediction ŷt(l). When the ground truth is re-

vealed, the classifier’s weight is updated based on the loss suffered by the classifier.

This is given by:

α
(l)
t+1 ← α

(l)
t β

L(f (l)(x),y)

where β ∈ (0, 1) is the discount rate parameter, and L(f (l)(x), y) ∈ (0, 1) [37].

Thus, a classifier’s weight is discounted by a factor of βL(f (l)(x),y) in every iteration.

At the end of every round, the weights α are normalized such that
∑

l α
(l)
t = 1.
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Learning the parameters Θ(l) for all the classifiers can be done via online gradi-

ent descent [134], where the input to the lth classifier is h(l). This is similar to the

update of the weights of the output layer in the original feedforward networks. This

update is given by:

Θ
(l)
t+1 ← Θ

(l)
t − η∇Θ

(l)
t
L(F(xt, yt)) = Θ

(l)
t − ηα(l)∇

Θ
(l)
t
L(f (l), yt)

Updating the feature representation parameters W (l) is more tricky. Un-

like the original backpropagation scheme, where the error derivatives are back-

propagated from the output layer, here, the error derivatives are backpropagated

from every classifier f (l). Thus, using the adaptive loss function L(F(x), y) =∑L
l=0 α

(l)L(f (l)(x), y) and applying OGD rule, the update rule for W (l) is given

by:

W
(l)
t+1 ← W

(l)
t − η

L∑
j=l

α(j)∇W (l)L(f (j), yt)

where ∇W (l)L(f (j), yt) is computed via backpropagation from error derivatives of

f (j). Note that the summation (in the gradient term) starts at j = l because the

shallower classifiers do not depend on W (l) for making predictions. In effect, we

are computing the gradient of the final prediction with respect to the backpropagated

derivatives of a predictor at every depth weighted by α(l) (which is an indicator of

the performance of the classifier). Hedge enjoys a regret of RT ≤
√
T lnN , where

N is the number of experts [38], which in our case is the depth of the network. This

gives an effective model selection approach to adapt to the optimal network depth,

automatically during online learning.

Based on the intuition that shallower models tend to converge faster than deeper

models [16, 66, 45], using the hedging strategy would lower the α weights of the

deeper classifiers to a very small value (due to poor initial performance as compared

to shallower classifiers), which would consequently affect the update in Eq. (6.3.3),
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and result in deeper classifiers having very slow learning. To alleviate this, we

introduce a smoothing parameter s ∈ (0, 1) which is used to set a minimum weight

for each classifier. After the weight update of the classifiers in each iteration, the

weights are set as: α(l) ← max
(
α(l), s

L

)
This maintains a minimum weight for a

classifier of every depth and helps us achieve a tradeoff between exploration and

exploitation. s encourages all classifiers at every depth to have an impact on the

backprop update (allowing exploring high capacity deep classifiers, and enabling

deep classifiers to perform as good as shallower classifiers), and simultaneously,

hedging the model exploits the best performing classifier. Similar strategies have

been used in Multi-arm bandit setting, and online learning with expert advice to

trade off exploration and exploitation [4, 49].

The entire algorithm of Online Deep Learning using Hedge Backpropagation is

outlined below.

Algorithm 9 Online Deep Learning (ODL) using HBP
INPUTS: Discounting Parameter: β ∈ (0, 1);
Learning rate Parameter: η; Smoothing Parameter: s
Initialize: F(x) = DNN with L hidden layers and L + 1 classifiers f (l),∀l =
0, . . . , L; α(l) = 1

L+1
,∀l = 0, . . . , L

for t = 1,. . . ,T do
Receive instance: xt
Predict ŷt = Ft(xt) =

∑L
l=0 α

(l)
t f

(l)
t as per Eq. (6.1)

Reveal true value yt
Set L(l)

t = L(f
(l)
t (xt), yt),∀l, . . . , L;

Update Θ
(l)
t+1,∀l = 0, . . . , L as per Eq. (6.3.3);

Update W (l)
t+1, ∀l = 1, . . . , L as per Eq. (6.3.3);

Update α(l)
t+1 = α

(l)
t β

L(l)t ,∀l = 0, . . . , L;
Smoothing α(l)

t+1 = max(α
(l)
t+1,

s
L

),∀l = 0, . . . , L ;

Normalize α(l)
t+1 =

α
(l)
t+1

Zt
where Zt =

L∑
l=0

α
(l)
t+1

end for

6.3.4 Discussion

HBP has the following properties: (i) it identifies a neural network of an appropri-

ate depth based on the performance of the classifier at that depth. This is a form
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of Online Learning with Expert Advice,[14], where the experts are DNNs of vary-

ing depth, making the DNN robust to depth. (ii) it offers a good initialization for

deeper networks, which are encouraged to match the performance of shallower net-

works (if unable to beat them). This facilitates knowledge transfer from shallow to

deeper networks ([16, 119]), thus simulating student-teacher learning; (iii) it makes

the learning robust to vanishing gradient and diminishing feature reuse by using a

multi-depth architecture where gradients are backpropagated from shallower classi-

fiers, and the low level features are used for the final prediction (by hedge weighted

prediction); (iv) it can be viewed as an ensemble of multi-depth networks which

are competing and collaborating to improve the final prediction performance. The

competition is induced by Hedging , whereas the collaboration is induced by shar-

ing feature representations; (v) This allows our algorithms to continuously learn

and adapt as and when it sees more data, enabling a form of life-long learning [70];

and (vi) In concept drifting scenarios [39], traditional online backpropagation would

suffer from slow convergence for deep networks (when the concepts would change),

whereas, HBP is able to adapt quickly due to hedging. (vii) Our work is also similar

to LSTMs [47] in appearance of the learning architecture, however, LSTMs aim to

backpropagate through time, while our method backpropagates through depth. This

way HBP learns the appropriate depth capacity.

6.4 Experiments

6.4.1 Datasets

Table 6.1: Datasets
Data #Features #Instances Type

Higgs 28 5m Stationary
Susy 18 5m Stationary

i-mnist 784 5m Stationary
Syn8 50 5m Stationary
CD1 50 4.5m Concept Drift
CD2 50 4.5m Concept Drift
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We consider several large scale datasets. Higgs and Susy are Physics datasets

from UCI repository. For Higgs, we sampled 5 million instances for our analysis.

We generated 5 million instances from Infinite MNIST generator [77]. We also

evaluated on 3 synthetic datasets. The first (Syn8) is generated from a randomly

initialized DNN comprising 8-hidden layers (of width 100 each). The other two are

concept drift datasets CD1 and CD2. In CD1, 2 concepts (C1 and C2), appear in the

form C1-C2-C1, with each segment comprising a third of the data stream. Both C1

and C2 were generated from a 8-hidden layer network. CD2 has 3 concepts with

C1-C2-C3, where C1 and C3 are generated from a 8-hidden layer network, and C2

from a shallower 6-hidden layer network. Other details are summarized in Table

6.1.

6.4.2 Performance Variation with Depth: Limitations of tradi-

tional Online BP

First we demonstrate the difficulty of DNN model selection in the online setting.

We compare the error rate of DNNs of varying depth, in different segments of the

data. All models were trained online, and we evaluate their performance in different

windows (or stages) of the learning process. See Table 6.2. In the first 0.5% of the

data, the shallowest network obtains the best performance indicating faster conver-

gence - which would indicate that we should use the shallow network for the task.

In the segment from [10-15]%, a 4-layer DNN seems to have the best performance

in most cases. And in the segment from [60-80]% of the data, an 8-layer network

gives a better performance. This indicates that deeper networks took a longer time

to converge, but at a later stage gave a better performance. Looking at the final er-

ror, it does not give us conclusive evidence of what depth of network would be the

most suitable. Furthermore, if the datastream had more instances, a deeper network

may have given an overall better performance. This demonstrates the difficulty in

model selection for learning DNNs online, where typical validation techniques are
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ineffective. Ideally we want to exploit the convergence of the shallow DNNs in the

beginning and the power of deeper representations later.

Table 6.2: Online error rate of DNNs of varying Depth. All models were trained
online t = 1, . . . , T . We evaluate the performance in different segments of the data.
L is the number of layers in the DNN.

Final Error [0-0.5]% Error [10-15]% Error [60-80]% Error
L Higgs Susy Syn8 Higgs Susy Syn8 Higgs Susy Syn8 Higgs Susy Syn8
3 0.272 0.201 0.3936 0.358 0.215 0.426 0.279 0.202 0.400 0.266 0.200 0.390
4 0.268 0.201 0.392 0.372 0.219 0.433 0.277 0.203 0.398 0.261 0.200 0.387
8 0.268 0.201 0.3936 0.380 0.221 0.452 0.279 0.203 0.401 0.261 0.199 0.388
16 0.273 0.203 0.402 0.455 0.231 0.472 0.283 0.205 0.412 0.264 0.202 0.392

6.4.3 Baselines

We aim to learn a 20 layer DNN in the online setting, with 100 units in each hid-

den layer. As baselines, we learn the 20 layer network online using OGD (On-

line Backpropagation), OGD Momentum, OGD Nesterov, and Highway Networks.

Since a 20 layer network would be very difficult to learn in the online setting, we

also compare the performance of shallower networks — DNNs with fewer layers

(2,3,4,8,16), trained using Online BP. We used ReLU Activation, and a fixed learn-

ing rate of 0.01 (chosen, as it gave the best final error rate for all DNN-based base-

lines). For momentum techniques, a fixed learning rate of 0.001 was used, and we

finetuned the momentum parameter to obtain the best performance for the baselines.

For HBP, we attached a classifier to each of the 19 hidden layers (and not directly to

the input). This gave 19 classifiers each with depth from 2, . . . , 20. We set β = 0.99

and the smoothing parameter s = 0.2. Implementation was in Keras [17]. We also

compared with representative state of the art linear (OGD, Adaptive Regularization

of Weights (AROW), Soft-Confidence Weighted Learning (SCW) [51]) and kernel

(Fourier Online Gradient Descent (FOGD) and Nystrom Online Gradient Descent

(NOGD)[78]) online learning algorithms.
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6.4.4 Evaluation of Online Deep Learning Algorithms

The final cumulative error obtained by all the baselines and the proposed HBP tech-

nique can be seen in Table 6.3. First, traditional online learning algorithms (linear

and kernel) have relatively poor performance on complex datasets. Next, in learning

with a 20-layer network, the convergence is slow, resulting in poor overall perfor-

mance. While second order methods utilizing momentum and highway networks

are able to offer some advantage over simple Online Gradient Descent, they can be

easily beaten by a relatively shallower networks in the online setting. We observed

before that relatively shallower networks could give a competitive performance in

the online setting, but lacked the ability to exploit the power of depth at a later stage.

In contrast, HBP enjoyed the best of both worlds, by allowing for faster convergence

initially, and making use of the power of depth at a later stage. This way HBP was

able to do automatic model selection online, enjoying merits of both shallow and

deep networks, and this resulted in HBP outperforming all the DNNs of different

depths, in terms of online performance. It should be noted that the optimal depth

for DNN is not known before the learning process, and even then HBP outperforms

all DNNs at any depth.

In Figure 6.2, we can see the convergence behavior of all the algorithms on the

stationary as well as concept drift datasets. In the stationary datasets, HBP shows

consistent outperformance over all the baselines. The only exception is in the very

initial stages of the online learning phase, where shallower baselines are able to

outperform HBP. This is not a surprising result, as HBP has many more parameters

to learn. However, HBP is able to quickly outperform the shallow networks. The

performance of HBP in concept drifting scenarios demonstrates its ability to adapt to

the change fairly quickly, enabling usage of DNNs in the concept drifting scenarios.

Looking at the performance of simple 20-layer (and 16-layer) networks on concept

drifting data, we can see that utilizing deep representation for such scenarios can be

difficult.
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Table 6.3: Final Online Cumulative Error Rate obtained by the algorithms. L repre-
sents the number of Layers. Best performance is in bold.

Model Method L Higgs Susy i-mnist Syn8 CD1 CD2

Linear
OGD 1 0.3620 0.2160 0.1230 0.4070 0.4360 0.4270

AROW 1 0.3630 0.2160 0.1250 0.4050 0.4340 0.4250
SCW 1 0.3530 0.2140 0.1230 0.4050 0.4340 0.4250

Kernel FOGD 2 0.2973 0.2021 0.0495 0.3962 0.4329 0.4193
NOGD 2 0.3488 0.2045 0.1045 0.4146 0.4455 0.4356

DNNs

OGD (Online BP) 2 0.2938 0.2028 0.0199 0.3976 0.4146 0.3797
OGD (Online BP) 3 0.2724 0.2016 0.0190 0.3936 0.4115 0.3772
OGD (Online BP) 4 0.2688 0.2014 0.0196 0.3920 0.4110 0.3766
OGD (Online BP) 8 0.2682 0.2016 0.0219 0.3936 0.4145 0.3829
OGD (Online BP) 16 0.2731 0.2037 0.0232 0.4025 0.4204 0.3939
OGD (Online BP) 20 0.2868 0.2064 0.0274 0.4472 0.4928 0.4925
OGD+Momentum 20 0.2711 0.2012 0.0310 0.4062 0.4312 0.3897

OGD+Nesterov 20 0.2711 0.2076 0.0247 0.3942 0.4191 0.3917
Highway 20 0.2736 0.2019 0.0241 0.4313 0.4928 0.4925
Hedge BP 20 0.2615 0.2003 0.0156 0.3896 0.4079 0.3739
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Figure 6.2: Convergence behavior of DNNs in Online Setting on stationary and
concept drifting data.
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6.4.5 Weight Distribution for Depth Adaptation

In this section we look at the weight distribution learnt by HBP over time. We anal-

yse the mean weight distribution in different segments of the Online Learning phase

in Figure 6.3. In the initial phase (first 0.5%), the maximum weight has gone to the

shallowest classifier (with just one hidden layer). In the second phase (10-15%),

slightly deeper classifiers (classifiers with 4-5 layers) have picked up some weight,

and in the third segment (60-80%), even deeper classifiers have gotten more weight

(classifiers with 5-7 layers). The shallow and the very deep classifiers receive little

weight in the last segment showing HBPs ability to perform model selection. Few

classifiers having similar depth indicates that the intermediate features learnt are

themselves of discriminatory nature, which are being used by the deeper classifiers

to potentially learn better features.
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Figure 6.3: Evolution of weight distribution of the classifiers over time using HBP
on HIGGS dataset.

6.4.6 Performance with Depth Adaptation

Here we evaluate the performance of HBP in different segments of the data to see

how the proposed HBP algorithm performed as compared to the DNNs of different

depth in different segments of the data. In Figure 6.4, we can see, HBP matches (and

even beats) the performance of the best depth network in both the beginning and at a

later stage of the training phase. This shows its ability to exploit faster convergence

of shallow networks in the beginning, and power of deep representation towards the

end. Not only is it able to do automatic model selection, but also it is able to offer
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Figure 6.4: Error Rate in different segments of the Data. Red represents HBP using
a 20-layer network. Blue are OGD using DNN with layers = 2,3,4,8, 16 and 20.

a good initialization for the deeper representation, so that the depth of the network

can be exploited sooner, thus beating a DNN of every depth.

6.4.7 Depth Robustness

Table 6.4: Robustness of HBP to depth of the base network compared to traditional
DNN

Depth 12 16 20 30
Online BP 0.2692 0.2731 0.2868 0.4770

HBP 0.2609 0.2613 0.2615 0.2620

We evaluate the performance of HBP with varying DNN depth. We consider a

12, 16, 20, and a 30-layer HBP based DNN and compare their performance on Higgs

against simple Online BP. See Table 6.4: in which we see that the performance

variation with depth does not significantly alter HBPs performance, while for simple

Online BP, significant increase in depth hurts the learning process.

6.5 Conclusion

We identified several issues which prevented existing DNNs from being used in an

online setting, which meant that they could not be used for streaming data, and nec-

essarily required storage of the entire data in memory. These issues primarily arose
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from difficulty in model selection (an appropriate depth DNN), and convergence

difficulties from vanishing gradient and diminishing feature reuse. We used the

”shallow to deep” principle, and designed an algorithm for Online Deep Learning:

Hedge Backpropagation, which enabled the usage of Deep Neural Networks in an

online setting. The proposed scheme used a hedging strategy to make predictions

with multiple outputs from different hidden layers of the network, and the backprop-

agation algorithm was modified to allow for knowledge sharing among the deeper

and shallower networks. We validated the performance improvements offered by

the proposed algorithms through experiments on large datasets.
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Chapter 7

Conclusions and Future Work

7.1 Summary of Contributions

In this dissertation we proposed novel algorithms for Online Learning with Non-

linear models. Specifically we identified limitations of existing works in Online

Multiple Kernel Learning, and proposed novel algorithms to address those issues.

We also identified limitations of existing works that prevented usage of DNNs in

the online setting, and developed novel Online Deep Learning algorithms:

We made the following contributions in the field of Online Multiple Kernel

Learning:

• Online Multiple Kernel Regression: We propose Online Multiple Kernel

Regression Algorithms, which learn a kernel-based regressor in an online

fashion, and dynamically explore a pool of diverse kernels to enhance the

model performance. This builds on the existing OMKL work which is primar-

ily designed for classification tasks [58, 49] or for structured prediction[81].

We extend the OMKL principles for regression tasks, and improve the ker-

nel combination methods over the previous work. We also demonstrate the

application to Auto-Regressive Time Series Modeling.

• Temporal Kernel Descriptors for Learning with Time-Sensitive Patterns:
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Successful performance of kernel based methods depends on the choice of the

kernel. We consider scenarios where patterns are sensitive to time (or time-

stamps), and accordingly we propose Temporal Kernel Descriptors. These

kernel descriptors are able to automatically learn the association of time-

stamps at different resolutions (e.g. hourly, daily, etc.) with different data

modalities. This enables more effective capturing of the information, and

results in superior performance as compared to directly using traditional ker-

nels.

• Cost-Sensitive Online Multiple Kernel Classification: Often data streams

are can be highly imbalanced, which may make evaluation of algorithms on

common metrics such as accuracy unreliable. Consequently, for imbalanced

data streams, we consider evaluation over cost-sensitive metrics. We then pro-

pose Cost-Sensitive Online Multiple Kernel Classification and also demon-

strate the application of the proposed methods to online anomaly detection.

To achieve this we develop new cost-sensitive kernel learning approaches and

cost-sensitive kernel combination approaches.

We also developed a novel approach for learning Deep Neural Networks on the

fly - Online Deep Learning:

• Online Deep Learning: We highlighted the limitation of existing approaches

which made it very difficult to use Deep Neural Networks online. We lever-

aged on the ”shallow to deep principle”, according to which shallow networks

converge faster than deeper networks, and proposed a novel Hedge Backprop-

agation algorithm to learn Deep Neural Networks online. Hedge Backpropa-

gation attached a classifier to each hidden layer, and in every online iteration

evaluated the performance of the algorithms using Hedge Algorithm, and ap-

propriately amended the overproportioned algorithm to enable faster learning.
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7.2 Future Directions

In this dissertation, while we have addressed several challenges faced while online

learning of nonlinear models using multiple kernels (in particular we tackled re-

gression problems, challenges associated with temporal properties of the data, and

streams with imbalanced data streams). However multiple kernel learning models

have some restrictions with regard to learning nonlinear models. Most notably they

have limited capacity models as compared to Deep Neural Networks (kernel meth-

ods are effectively 2-layer Deep Neural Networks). Consequently we developed on-

line learning algorithms for deep neural networks (Online Deep Learning). While

Online Deep Learning clearly has the capacity to learn more complex functions than

multiple kernel learning, it still suffers from convergence challenges, and does not

have rigorous theoretical guarantees to an optimum. There are several directions

to improve Online Learning with nonlinear models, particularly in the domain of

Online Deep Learning. Next we briefly discuss two main directions:

Advanced Online Deep Learning: There have been very limited efforts in the

field of Online Deep learning. Ours is among the first such efforts. There is tremen-

dous scope to further improve the algorithms, particularly from 2 angles: (i) Usage

of second order information; and (ii) Improved computation speed. For the first di-

rection, using second order information such as momentum to improve convergence

can possibly improve convergence speed. However, for Hedge Backpropagation,

applying momentum techniques may be non trivial, since the objective function is

not fixed, and adapts at every online iteration. Another weakness of the current

method is the possibly unnecessary computations performed for the deeper layers,

which do not really impact the prediction performance of the network. A more ideal

approach would be to grown the network layer by layer during the online learning

phase, so that unnecessary computation of the deeper layers can be avoided.

Online Transfer Learning: Transfer learning deals with learning a model in

one domain and transferring the knowledge from the learnt domain to a new do-
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main where we usually do not have sufficient labeled examples to train a model

from scratch [92]. Further, Deep Learning Models when trained on large datasets

are known to produce hidden layer features, that have varying degrees of transfer-

ability to other applications [129]. Unfortunately, deciding which layer’s features

are the ideal features to use in a new application (or how much of the network to

freeze during training in a new domain) is an unaddressed problem. We believe

a more principled approach to select the best performing hidden layer features for

transfer learning can significantly help improve both transfer learning and online

transfer learning. In particular, a Hedge Backpropagation inspired approach can

allow us to directly evaluate the performance of the different layers, enabling auto-

matic selection of transferable features.
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