
Singapore Management University Singapore Management University

Institutional Knowledge at Singapore Management University Institutional Knowledge at Singapore Management University

Dissertations and Theses Collection (Open
Access) Dissertations and Theses

11-2017

Scalable online kernel learning Scalable online kernel learning

Jing LU
Singapore Management University, jing.lu.2014@phdis.smu.edu.sg

Follow this and additional works at: https://ink.library.smu.edu.sg/etd_coll

 Part of the Databases and Information Systems Commons, and the Theory and Algorithms Commons

Citation Citation
LU, Jing. Scalable online kernel learning. (2017). 1-150.
Available at:Available at: https://ink.library.smu.edu.sg/etd_coll/142

This PhD Dissertation is brought to you for free and open access by the Dissertations and Theses at Institutional
Knowledge at Singapore Management University. It has been accepted for inclusion in Dissertations and Theses
Collection (Open Access) by an authorized administrator of Institutional Knowledge at Singapore Management
University. For more information, please email cherylds@smu.edu.sg.

https://ink.library.smu.edu.sg/
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd_coll
https://ink.library.smu.edu.sg/etd
https://ink.library.smu.edu.sg/etd_coll?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/145?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=ink.library.smu.edu.sg%2Fetd_coll%2F142&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:cherylds@smu.edu.sg

Scalable Online Kernel Learning

by
LU Jing

Submitted to School of Information Systems in partial fulfillment of the
requirements for the Degree of Doctor of Philosophy in Information Systems

Dissertation Committee:

Steven HOI (Supervisor / Chair)
Associate Professor of Information Systems
Singapore Management University

Jing JIANG
Associate Professor of Information Systems
Singapore Management University

David LO
Associate Professor of Information Systems
Singapore Management University

James KWOK
Professor
Department of Computer Science and Engineering
Hong Kong University of Science and Technology

Singapore Management University
2017

Copyright (2017) LU Jing

Scalable Online Kernel Learning
LU Jing

Abstract

One critical deficiency of traditional online kernel learning methods is their increas-

ing and unbounded number of support vectors (SV’s), making them inefficient and

non-scalable for large-scale applications. Recent studies on budget online learn-

ing have attempted to overcome this shortcoming by bounding the number of SV’s.

Despite being extensively studied, budget algorithms usually suffer from several

drawbacks.

First of all, although existing algorithms attempt to bound the number of SV’s at

each iteration, most of them fail to bound the number of SV’s for the final averaged

classifier, which is commonly used for online-to-batch conversion. To solve this

problem, we propose a novel bounded online kernel learning method, Sparse Pas-

sive Aggressive learning (SPA), which is able to yield a final output kernel-based

hypothesis with a bounded number of support vectors. The idea is to attain the

bounded number of SV’s using an efficient stochastic sampling strategy which sam-

ples an incoming training example as a new SV with a probability proportional to its

loss suffered. Since the SV’s are added wisely and no SV’s are removed during the

learning, the proposed SPA algorithm achieves a bounded final averaged classifier.

We theoretically prove that the proposed SPA algorithm achieves an optimal regret

bound in expectation, and empirically show that the new algorithm outperforms

various bounded kernel-based online learning algorithms.

Secondly, existing budget learning algorithms are either too simple to achieve

satisfactory approximation accuracy, or too computationally intensive to scale for

large datasets. To overcome this limitation and make online kernel learning effi-

cient and scalable, we explore two functional approximation based online kernel

machine learning algorithms, Fourier Online Gradient Descent (FOGD) and Nys-

tröm Online Gradient Descent (NOGD). The main idea is to adopt the two method-

s to approximate the kernel model with a linear classifier, so that the efficiency is

highly improved. The encouraging results of our experiments on large-scale dataset-

s validate the effectiveness and efficiency of the proposed algorithms, making them

potentially more practical than the family of existing budget online kernel learning

approaches

Thirdly, we also extend the proposed algorithms to solve the online multiple ker-

nel learning (OMKL) problem, in which the goal is to significantly reduce the learn-

ing complexity of Online Multiple Kernel Classification (OMKC) while achieving

satisfactory accuracy as compared with existing unbounded OMKC algorithms. We

theoretically prove that the proposed algorithms achieve an optimal regret bound,

and empirically show that the new algorithms outperform various bounded kernel-

based online learning algorithms.

In conclusion, this work presents several novel solutions for scaling up online k-

ernel learning algorithms for large scale applications. To facilitate other researchers,

we also provide an open source software tool-box that includes the implementation

of all proposed algorithms in this paper, as well as many state-of-the-art online ker-

nel learning algorithms.

Table of Contents

1 Introduction 1

1.1 Background and Motivation . 1

1.1.1 Batch Learning Vs Online Learning 1

1.1.2 Online Kernel Learning 3

1.1.3 Budget Online Learning 3

1.1.4 Online Multiple Kernel Learning 5

1.2 Methodology . 5

1.2.1 Online Sparse Passive Aggressive Learning with Kernels . . 5

1.2.2 Functional Approximation Based Online Kernel Learning . 6

1.2.3 Online Multiple Kernel Learning 6

1.3 Summary of Contributions . 7

1.4 Organization . 8

2 Literature Review 9

2.1 Online Learning . 10

2.1.1 Problem Formulation . 10

2.1.2 Online Learning Algorithms 11

2.2 Kernel Learning . 15

2.3 Online Kernel Learning . 17

2.3.1 Problem Formulation . 17

2.3.2 Online Kernel Learning Algorithm 18

2.3.3 The Curse of Kernelization 19

i

2.4 Budget Online Learning . 20

2.4.1 SV Removal . 20

2.4.2 SV Projection . 22

2.4.3 SV Merging . 23

2.4.4 Comparison of Budget Online Learning Algorithms 24

2.5 Online Multiple Kernel Learning 25

2.5.1 Problem Formulation . 25

2.5.2 OMKL Algorithms . 26

2.6 Summary . 28

3 Online Sparse Passive Aggressive Learning with Kernels 29

3.1 Introduction . 29

3.2 Related Work . 30

3.3 Sparse PA Learning with Kernels 31

3.3.1 Problem Setting and Preliminaries 31

3.3.2 Sparse Passive Aggressive Algorithm 32

3.3.3 Application to Binary Classification 34

3.4 Theoretical Analysis . 35

3.5 Experiments . 40

3.5.1 Experimental Testbed . 40

3.5.2 Compared Algorithms and Setup 40

3.5.3 Evaluation of Online Learning Performance 42

3.5.4 Parameter Sensitivity of α and β in SPA Evaluation 44

3.5.5 Evaluation of Output Classifiers on Test Data 46

3.5.6 Experiments on Various Budget Sizes 48

3.6 Discussion . 49

4 Online Kernel Learning by Functional Approximation Methods 50

4.1 Introduction . 50

4.2 Related Work . 52

ii

4.3 Binary Classification . 53

4.3.1 Problem Formulation . 53

4.3.2 Fourier Online Gradient Descent 55

4.3.3 Nyström Online Gradient Descent 58

4.3.4 Theoretical Analysis . 59

4.4 Multi-class Classification . 64

4.4.1 Problem Settings . 64

4.4.2 Multi-class Fourier Online Gradient Descent 66

4.4.3 Multi-class Nyström Online Gradient Descent 67

4.4.4 Theoretical Analysis . 69

4.5 Regression . 74

4.6 Experimental Results . 76

4.6.1 Experiment for Binary Classification Task in Batch Setting . 76

4.6.2 Experiments for Online Binary Classification Tasks 80

4.6.3 Experiments for Multi-class Classification Tasks 84

4.6.4 Experiments for Online Regression Tasks 93

4.6.5 Comparison with SPA algorithm 97

4.7 Comparison between FOGD and NOGD 100

4.8 Discussion . 102

5 Scalable Online Multiple Kernel Learning 103

5.1 Related Work . 104

5.2 The Proposed OMKL Algorithms 105

5.2.1 Problem Setting and Preliminaries 105

5.2.2 SPA for Online Multiple Kernel Learning 107

5.2.3 FOGD for Online Multiple Kernel Learning 111

5.2.4 NOGD for Online Multiple Kernel Learning 113

5.3 Experiments . 113

5.3.1 Experiments for SPA OMKL 113

iii

5.3.2 Experiments of Functional Approximation Algorithms for

OMKL . 123

5.4 Single Kernel vs Multiple Kernel 126

5.5 Discussion . 127

6 Conclusion and Future Work 128

6.1 Conclusion . 128

6.2 Future Work . 129

Appendix: The Open Source Tool-box 131

iv

List of Figures

1.1 The Dependence Structure of the Topics of this paper. 7

3.1 The Impact of α and β on #SV, Time Cost and Accuracy by the

Proposed SPA Algorithm on “a9a”. 45

3.2 Evaluation of different budget single kernel algorithms on a9a and

codrna data sets. The curves of online mistake rates vs time costs

were obtained by choosing varied budget values. 49

4.1 Convergence Evaluation of Multi-class Datasets: Mistake Rate, in

Experiments of Large Scale Online Kernel Learning by Functional

Approximation . 87

4.2 Convergence Evaluation of Multi-class Datasets: Time Cost in Ex-

periments of Large Scale Online Kernel Learning by Functional Ap-

proximation . 88

4.3 Performance Evaluation on Different Values of ρf and ρn in Exper-

iments of Large Scale Online Kernel Learning by Functional Ap-

proximation . 90

4.4 The Effect of Different Budget Sizes B in Experiments of Large

Scale Online Kernel Learning by Functional Approximation. 91

4.5 Evaluation of Online Average Squared Loss on the Regression Tasks

in Experiments of Large Scale Online Kernel Learning by Function-

al Approximation. 96

v

4.6 Evaluation of Online Average Time Cost on Online Regression Tasks

in Experiments of Large Scale Online Kernel Learning by Function-

al Approximation. 97

4.7 Comparison between SPA, FOGD, NOGD with various parameter

settings of B, D and β on a9a Dataset. 98

5.1 Evaluation of different Bounded OMKC algorithms on two large-

scale data sets. The curves of online mistake rates vs time costs

were obtained by choosing varied budget values. As bounded SD

algorithms have no significant advantages over Bounded DD (see

Table 5.3), we thus only include Bounded DD algorithms in these 2

figures to simplify the presentation. 122

5.2 Evaluation of different OMKL algorithms on two large-scale data

sets. The curves of online mistake rates vs time costs were obtained

by choosing varied budget values. We only include Bounded DD

algorithms in these 2 figures to simplify the presentation. 123

vi

List of Tables

2.1 Comparisons of different budget online kernel learning algorithms. . 23

3.1 Summary of Binary Classification Datasets Used in SPA Evaluation. 40

3.2 Evaluation of Online Kernel Classification on Six Datasets in SPA

Evaluation. Time in seconds . 43

3.3 Evaluation of Final Classifiers for Test Data in SPA Evaluation (Time

in Seconds) . 46

4.1 Details of Binary Classification Datasets in Experiments of Large

Scale Online Kernel Learning by Functional Approximation. 77

4.2 Performance Evaluation Results on Batch Binary Classification Tasks

in Experiments of Large Scale Online Kernel Learning by Function-

al Approximation, Accuracy in Percentage. 79

4.3 Details of Online Binary Classification Datasets in Experiments of

Large Scale Online Kernel Learning by Functional Approximation. . 81

4.4 Evaluation of Binary Classification Task in Experiments of Large

Scale Online Kernel Learning by Functional Approximation. Mis-

take Rate in Percentage . 83

4.5 Details of Multi-class Classification Datasets in Experiments of Large

Scale Online Kernel Learning by Functional Approximation. 85

4.6 Evaluation of Multi-class Classification Task in Experiments of Large

Scale Online Kernel Learning by Functional Approximation. Mis-

take in Percentage . 86

vii

4.7 Details of Regression Datasets in Experiments of Large Scale On-

line Kernel Learning by Functional Approximation. 94

4.8 Evaluation of Regression Task in Experiments of Large Scale On-

line Kernel Learning by Functional Approximation,Time in Sec-

onds. 95

5.1 Summary of binary classification datasets in the OMKC experiments. 115

5.2 Evaluation of Online Classification on Small-scale and Medium-scale Dataset-

s by comparing SPA with Unbounded OMKC algorithms (time in seconds). 119

5.3 Evaluation of OMKC using different budget learning algorithms (time in

sec.). 121

5.4 Evaluation of Online Classification on Small-scale and Medium-scale Dataset-

s (time in seconds). We report the number of SV’s for all budget algorithm-

s and the number of Fourier components for FOGD algorithms. 124

5.5 Evaluation of Online Classification on large-scale Datasets time in second-

s).We report the number of SV’s for all budget algorithms and the number

of Fourier components for FOGD algorithms. 125

5.6 Evaluation of Online Classification on large-scale Datasets (time in sec-

onds). All algorithms adopt the same number of SVs. B=1600, decreasing

factor γ = 0.999 . 127

viii

Acknowledgments

Firstly, I would like to express my sincere gratitude to my supervisor, Dr. Steven

HOI, for the continuous support of my Ph.D study and related research, for his pa-

tience, motivation, and immense knowledge. Over the past 5 years, he not only

inspires me by sharing his sharp insights for various problems, but also encour-

ages me by his passion and enthusiasm in pursuing great research. He is a perfect

supervisor not only for my research, but also for my life.

Besides my advisor, I would like to thank the rest of my thesis committee: Prof.

Jiang Jing, Prof. David Lo, and Prof. James Kwok, for their insightful comments

and encouragement, but also for the questions which incented me to widen my

research from various perspectives.

My sincere thanks also goes to my collaborators: Peilin Zhao, Jialei Wang, Yue

Wu, Doyen Sahoo, Shuji Hao, Chenghao Liu. I feel deeply honored to cooperate

with them in my past research.

I am very grateful to Singapore Management University, where I have attended

interesting courses, obtained plenty research materials and enjoyed strong academic

atmosphere.

Finally, I thank my parents for their support and love that encourage me to pur-

sue my dreams.

ix

List of Publications

Jing Lu, Steven C.H. Hoi, Jialei Wang, Peilin Zhao, Zhi-yong Liu. Large Scale On-
line Kernel Learning. Journal of Machine Learning Research (JMLR), 17(47), 1-43.
2016. 1. Gold Prize of Best Student Paper Awards from PREMIA in Singapore, 2017

Jing Lu, Peilin Zhao, Steven C. H. Hoi. Online Sparse Passive Aggressive Learning
with Kernels. 2016 SIAM International Conference on Data Mining (SDM 2016),
May 5-7, 2016, Miami, Florida, USA.

Jing Lu, Doyen Sahoo, Peilin Zhao, Steven HOI. Sparse Passive Aggressive Learning
with Application to Bounded Online Multiple Kernel Learning. ACM Transactions
on Intelligent Systems and Technology (TIST), accepted.

Jing Lu, Peilin Zhao, Steven C. H. Hoi. Online Passive Aggressive Active Learning.
Machine Learning (MLJ), 2016.

Jing Lu, Peilin Zhao, Steven C.H. Hoi. Online Passive Aggressive Active Learning
and Its Applications. Journal of Machine Learning Research - Proceedings Track
(ACML2014), November 26-28, 2014, Nha Trang, Vietnam.

Jing Lu, Steven C.H. Hoi, Jialei Wang, Peilin Zhao. Second Order Online Collaborative
Filtering. Journal of Machine Learning Research - Proceedings Track (ACML2013),
Canberra, Australia, November 13-15, 2013.

Shuji Hao, Peilin Zhao, Jing Lu, Steven C.H. Hoi, Chunyan Miao, Chi Zhang. SOAL:
Second-order Online Active Learning. IEEE International Conference on Data Min-
ing (ICDM2016) Barcelona Dec 12-15, 2016

Shuji Hao, Jing Lu, Peilin Zhao, Steven C.H. Hoi. Chunyan Miao and Chi Zhang.
Second-order Online Active Learning and Its Applications. IEEE Transactions on
Knowledge and Data Engineering (TKDE), accepted

Wu Yue, Steven CH Hoi, Chenghao Liu, Jing Lu, Doyen Sahoo, and Nenghai Yu. ”SOL:
A Library for Scalable Online Learning Algorithms.” Neurocomputing 2017 Accept-
ed.

Under Review
Steven Hoi, Jing Lu, Doyen Sahoo, and Peilin Zhao, Online Learning: A Comprehen-

sive Survey.

x

Chapter 1

Introduction

In the introduction chapter, we first present a brief background introduction to On-

line Kernel Learning, including the problem setting, basic methodology and appli-

cations. Following, we discuss the main drawbacks of existing algorithms, which

motivate our research. Finally, we present the key ideas of our proposed algorithms

and summarize our contributions.

1.1 Background and Motivation

This section provides an easy start for the background and motivates our research.

1.1.1 Batch Learning Vs Online Learning

To warm up, we take the Malicious URL Detection, a well known binary classifica-

tion problem, as an example. The goal of this task is to acquire an accurate model

that can distinguish malicious URLs from benign ones.

Traditional batch/offline learning algorithms usually operate in two separated

stages. During the training stage, the algorithm is provided with a set of labeled

instances (xi, yi), where xi ∈ X is the feature vector extracted from the i-th URL

and yi is the class label. Based on the statistical properties of this training dataset,

the algorithm learns a model f : X → {Malicious, Benign} such that the model fits

1

the training instances properly. Then in the test stage, the model is used to predict

the class labels of another set of instances.

Despite being studied actively, these batch based algorithms usually suffer from

several critical drawbacks. First, most of the batch learning algorithms require that

the whole training set to be loaded into the memory for training, which is difficult in

real-world applications where data are often of high volume and high velocity. Sec-

ond, even if the memory cost was not important, searching for the optimal model for

large scale datasets is usually very time consuming. Third, each time new instances

are added to the training set, the model has to be retrained, which is expensive in

scenarios where new data are collected sequentially from time to time. Fourth, in

some real world applications, the data pattern might change frequently. As a result,

the model trained on old data may not be applicable to new data, which is termed as

the “concept drift” problem.

By contrast, online learning algorithms [28] overcome such drawbacks in that

the model can be updated instantly for any new data instances. Consider the Mali-

cious URL Detection problem again in online setting. At first we only have a weak

model f0, which might be from simple initialization. During each iteration t, the

model receives a new URL feature xt and tells whether it is malicious or benign

based on the current knowledge ft. After this prediction, the environment reveals

the true label. Depending on the difference between the prediction and the ground

truth, the learner will suffer a loss. This loss will be used to update the model ft to

a new and probably more accurate model ft+1.

Online learning techniques can be applied to many real-world applications, such

as online spam detection [41], online advertising, multimedia retrieval [74] and

computational finance [36]. Compared with batch learning algorithms, online algo-

rithms enjoy many advantages. First, since the instances are processed sequentially,

the memory cost for online learning is greatly reduced and there is no retraining

cost. Second, the simple update strategy in each iteration can avoid solving large-

scale optimization problems, which makes online learning more efficient and scal-

2

able for large-scale tasks. Third, online models are updated to follow the changing

data distributions and overcome the concept drift problem.

In conclusion, online learning is more efficient and scalable compared to batch

models, which makes it more suitable for the age of big data and real time applica-

tions. In this paper, we will focus on the study of online learning algorithms.

1.1.2 Online Kernel Learning

Different from linear models, which are restricted to making effective classification

if data are linearly separable, kernel learning [58] is a family of powerful algorithm-

s for learning nonlinear patterns. This is especially important for problems with

complicated decision boundary in relatively low dimensional space. When online

learning is combined with kernel learning, we are expecting to get a model that

enjoys the advantages of both. It should be able to learn a complicated non-linear

decision boundary on sequentially arriving data, with high scalability and efficiency

for large scale real time applications.

This combination, however, is nontrivial due to the challenge called “the curse

of kernelization”. An online kernel learning algorithm usually has to maintain a set

of support vectors in memory. During the online learning process, whenever a new

incoming training instance is misclassified, it typically will be added to the support

vector set, making the size of support vector set unbounded. This is not only a huge

burden for the prediction efficiency, but also a danger for memory overflow for a

large-scale online learning task.

In this paper, we will study online kernel learning. To make it scalable to large-

scale applications, we will address the above problem, the curse of kernelization.

1.1.3 Budget Online Learning

Budget online learning is a straight forward solution to address the critical challenge

of online kernel learning. The idea is to set a fixed budget size for the support vec-

3

tor set. Whenever the number of support vectors extends the budget size, a budget

maintenance step is conducted so that the number of support vectors remains the

same. For example, the algorithm may discard some support vectors randomly or

combine two support vectors [69]. Consequently, the prediction time cost for one

instance and the total memory cost remain bounded, making the algorithm relatively

scalable compared to non-budget online kernel learning algorithms. Despite exten-

sive studied, existing budget learning algorithms still suffer from sever limitations.

First, existing budget online kernel learning algorithms are not suitable for

online-to-batch conversion, a process that aims to convert online classifiers for batch

classification purposes [18, 15]. Specifically, one of the most commonly used ap-

proaches for online-to-batch conversion is to take the averaging classifier, that is

the mean of all the online classifiers at all online iterations, as the final classifier

for batch classification. Unfortunately, most existing budget online kernel learning

algorithms only guarantee that the support vector size at each online iteration is

bounded, but fail to yield a sparse averaging classifier after online-to-batch conver-

sion. Consequently, we would like to address this problem by proposing a novel

online kernel learning algorithm, whose support vector set of averaged classifier is

also bounded.

Second, some efficient algorithms which simply discard old support vectors and

add on new ones, are too simple to achieve satisfactory approximation accuracy.

While some other algorithms, for example these algorithms based on support vector

projection, are, despite more effective, too computationally intensive to run for large

datasets. This makes them harmful for the crucial merit of high efficiency of online

learning techniques for large-scale applications. So, there is a strong need to develop

novel online kernel learning algorithms that adopt totally different approaches from

budget learning for large scale applications.

4

1.1.4 Online Multiple Kernel Learning

Online multiple kernel learning (OMKL) [26, 43] is a technique that learns multiple

kernel classifiers and their linear combination weights in online learning process

simultaneously. This setting enables not only an automatic selection of kernel func-

tions on the fly but also the combination of information from different sources. Sim-

ilar to the online single kernel learning algorithms, traditional OMKL algorithms

are also not scalable to large scale applications due to the unbounded number of

support vectors. And this becomes even more challenging due to the large number

of kernel functions. Although one may apply an existing budget online algorithm

to bound each individual single-kernel classifier in OMKL with a uniform budget,

such a simple approach is not desirable since it treats all the kernels equally and

wastes resources in learning with poor kernels, which could result in a large total

budget due to many kernels (or equally very poor learning performance if the given

total budget is small). This motivates our study on scalable OMKL algorithms.

1.2 Methodology

In this section, we will provide a brief introduction to the main idea of our proposed

algorithms. The aim of this paper is to study Online Kernel Learning for large

scale applications. As discussed in the introduction section, existing solutions suffer

from three critical drawbacks and thus are not scalable. In the following, we will

introduce our approaches for addressing these three problems.

1.2.1 Online Sparse Passive Aggressive Learning with Kernels

To address the first problem, i.e. to make the online kernel learning algorithms

suitable for online-to-batch conversion, we propose a novel online sparse kernel

learning algorithm. In particular, we present a new method for bounded kernel-

based online learning method, named “Sparse Passive Aggressive” (SPA) learning,

5

which extends the online Passive Aggressive (PA) learning method [10] to ensure

the final output averaging classifier has the bounded number of support vectors in

online-to-batch conversion. Specifically, the basic idea of our method is to explore

a simple stochastic sampling rule, which assigns an incoming training example to

be a support vector with a higher probability when it suffers a higher loss.

1.2.2 Functional Approximation Based Online Kernel Learning

As discussed previously, the existing budget learning algorithms are either too sim-

ple to achieve satisfactory accuracy or too expensive in computational time cost. To

solve this problem, we adopt a completely different approach from budget learning,

the functional approximation methods.

In particular, the key idea of our framework is to explore functional approxima-

tion techniques to approximate a kernel by transforming data from the input space

to a new feature space, and then apply existing linear online learning algorithms

on the new feature space. This allows to inherit the power of kernel learning while

being able to take advantages of existing efficient linear online learning algorithms

for large-scale online learning tasks. Specifically, we propose two different new

algorithms: (i) Fourier Online Gradient Descent (FOGD) algorithm which adopt-

s the random Fourier features for approximating shift-invariant kernels and learns

the subsequent model by online gradient descent; and (ii) Nyström Online Gradient

Descent (NOGD) algorithm which employs the Nyström method for large kernel

matrix approximation followed by online gradient descent learning.

1.2.3 Online Multiple Kernel Learning

To make the OMKL scalable to large scale applications, we extend the above men-

tioned three algorithms to address the OMKL problem. In addition to bounding the

SV’s of each component classifier, we adopt the Hedge algorithm in the combina-

tion of multiple kernels. Specially, the combination weight of each classifier is set

6

according to its historical accuracy. As a results, the performance of the combined

multiple kernel classifier can track the best performing component classifier.

Figure 1.1: The Dependence Structure of the Topics of this paper.

1.3 Summary of Contributions

Firstly, to make online kernel learning applicable to online-to-batch conversion, we

propose “Sparse Passive Aggressive” (SPA) learning. We theoretically prove that

the propose algorithm not only bounds the number of support vectors in each it-

eration but also achieves an optimal regret bound in expectation. We conduct an

extensive set of empirical studies which show that the proposed algorithm outper-

forms a variety of bounded kernel-based online learning algorithms.

Secondly, to make online kernel learning efficient and scalable with reasonable

accuracy, we propose two novel functional approximation based algorithms, FOGD

and NOGD algorithms. We explore the applications of the proposed algorithms

for three different online learning tasks: binary classification, multi-class classifica-

tion and regression. We give theoretical analysis of our proposed algorithms, and

conduct an extensive set of empirical studies to examine their efficacy.

Thirdly, we extend the three proposed online kernel learning algorithms to

OMKL cases. We make each of the component classifiers scalable and efficient

7

and learns the optimal combination weights of these classifiers. Theoretical analy-

sis and empirical results are also provided.

1.4 Organization

The reminder of this dissertation is organized as follows: Chapter 2 is a literature

review which examines closely related research including online learning, kernel

learning, online kernel learning, budget online learning and online multiple kernel

learning. Chapter 3 studies a sparse kernel learning algorithm that is applicable to

online-to-batch conversion. Chapter 4 proposes two novel online kernel learning

algorithms that are based on functional approximation methods and are scalable to

large scale applications. Chapter 5 introduces the extension of the three algorithms

to multiple kernel learning. Finally, Chapter 6 concludes this dissertation and dis-

cusses the future work.

Figure 1.1 describes the dependence structure of the topics of this thesis. Specif-

ically, we highlight our main contributions in Section 3, 4 and 5.

8

Chapter 2

Literature Review

In this chapter, we will provide a comprehensive literature review on the most close-

ly related works to the topic Large Scale Online Kernel Learning. Including:

• Online Learning, an important family of scalable machine learning algorithm-

s which are devised to learn in a sequential manner.

• Kernel Learning, a family of machine learning algorithms that is able to learn

complicated nonlinear patterns.

• Online Kernel Learning, which combines the advantages of the two above

and can learn nonlinear patterns from sequential data. We will also discuss

“the curse of kernelization”, the key drawbacks of online kernel learning al-

gorithms that limits its applications in large scale learning tasks.

• Budget Online Learning. Through different budget maintenance strategies,

budget learning algorithms bound the number of support vectors and can

achieve relatively high efficiency compared to non-budget online kernel learn-

ing algorithms.

• Online Multiple Kernel Learning. OMKL is a more challenging task com-

pared to the single kernel learning, in which an algorithm learns all compo-

nent classifiers and their combination weights simultaneously.

9

2.1 Online Learning

In traditional offline / batch machine learning methods, a prediction model is typi-

cally learnt from a collection of training data in a batch fashion, whose performance

would be tested later on a test dataset. These batch algorithms usually suffer from

several drawbacks: (1) the burdensome or sometimes unrealistic requirement that

the entire training dataset should be available before the training; (2) low efficiency

in both time and space costs; (3) poor scalability for large scale applications and (4)

the high re-training cost when new training data arrive frequently.

Online learning algorithms overcome such drawbacks by updating the model

instantly whenever new data instances arrive. As a result, online algorithms are

efficient and scalable to large scale applications especially when the data arrive

sequentially.

Algorithm 1 The Online Binary Classification Procedure.
Initialize the prediction function as w1;

for t = 1, 2, . . . , T do

Receive instance: xt ∈ Rd;

Predict ŷt = sign(w>t xt) as the label of xt;

Receive correct label: yt ∈ {−1,+1};

Suffer loss: `t(wt), which depends on the difference between w>t xt and yt;

Update the prediction function wt to wt+1;

end for

2.1.1 Problem Formulation

Without loss of generality, we first present the formulation of linear binary online

classification, which is a classical online learning formulation. Consider a sequence

of instances, {(x1, y1), . . . , (xT , yT)}, where t ∈ {1, ..., T} is the time index, xt ∈

Rd is the feature vector of the instance we receive at time t, and yt ∈ {+1,−1} is

the true class label of xt.

10

The online binary classification takes place sequentially. On the t-th round, an

instance xt is received by the learner, which then employs a binary classifier wt

to make prediction, ŷt = sign(w>t xt). The real value ft(xt) = w>t xt is called

prediction score whose absolute value indicates the confidence of the prediction.

After making the prediction, the learner receives the true class label yt and thus can

measure the suffered loss, hinge loss for example, `t(wt) = max
(
0, 1− ytw>t xt

)
.

Whenever the loss is nonzero, the learner updates the prediction model from wt to

wt+1 by some strategy on the training example (xt, yt). The procedure of Online

Binary Classification is summarized in Algorithm 1.

By running an online learner over T rounds, the regret is defined as

RT =
T∑
t=1

`t(wt)−min
w

T∑
t=1

`t(w) (2.1)

where the first term is the accumulated loss suffered by an online learning algorithm

over T rounds and the second term is the accumulated loss suffered by the optimal

classifier assuming that we had foresight in all the training instances. The goal of

online learning is to minimize the regret in the long run.

2.1.2 Online Learning Algorithms

In the following, we will review some classical online learning algorithms.

Perceptron

As the classical and the oldest algorithm for online learning, for an online binary

classification task, Perceptron [49] runs as follows:

11

Algorithm 2 Perceptron
Initialize the prediction function as w1;

for t = 1, 2, . . . , T do

Receive instance: xt ∈ Rd;

Predict ŷt = sign(w>t xt) as the label of xt;

Receive correct label: yt ∈ {−1,+1};

if ŷt 6= yt then

Update wt+1 ← wt + ytxt;

end if

end for

The update rule is simply adding or subtracting the current instance from the

model. In theory, by assuming the data is separable with some margin, the Per-

ceptron algorithm makes at most
(
R
γ

)2 mistakes, where the margin γ is defined as

γ = mint∈[T] |xt ·w∗|, w∗ is the optimal classifier and R is a constant such that

∀t ∈ [T], ‖xt‖ ≤ R. The larger the margin γ is, the tighter the mistake bound will

be.

Online Gradient Descent

The Online Gradient Descent algorithm (OGD) [83] runs as follows:

Algorithm 3 Online Gradient Descent algorithm (OGD)
Initialize the prediction function as w1;

for t = 1, 2, . . . , T do

Receive instance: xt ∈ Rd;

Predict ŷt = sign(w>t xt) as the label of xt;

Receive correct label: yt ∈ {−1,+1};

Loss is `t(wt) = max
(
0, 1− ytw>t xt

)
;

The algorithm updates the model by wt+1 = Π§(wt − ηt∇`t(wt))

end for

12

At every iteration, the algorithm takes a step from the current model, in the

direction of the gradient of the current loss function. The algorithm then makes a

projection of the model onto the feasible domain, i.e., Π§(u) = arg minw∈§ ‖w−u‖.

OGD is simple and easy to implement. In theory [83], a simple OGD algorithm

achieves sublinear regret O(
√
T) for an arbitrary sequence of T convex cost func-

tions (of bounded gradients), with respect to the best single decision in hindsight.

Under a strong assumption of strictly convex cost functions (with bounded first and

second derivatives), OGD can yield logarithmic regret O(log T) [25].

Online Passive Aggressive

The Online Passive Aggressive algorithm (PA) is a popular family of first-order

online learning algorithms which generally follows the principle of margin-based

learning [10]. Specifically, given an instance xt at round t, PA formulates the up-

dating optimization as follows:

wt+1 = arg min
w∈Rd

1

2
||w −wt||2 s.t. `t(w) = 0 (2.2)

where `t(w) = max(0, 1 − ytw · xt) is the hinge loss. PA ensures the updated

classifier wt+1 should stay close to the previous classifier (“passiveness”) and every

incoming instance should be classified by the updated classifier correctly (“aggres-

siveness”). The regular PA algorithm assumes training data is always separable,

which may not be true for noisy training data from real-world applications. To

overcome the above limitation, two variants of PA relaxes the assumption as fol-

lows:

PA− I : wt+1 = arg min
w∈Rd

1

2
||w −wt||2 + Cξ

s.t.`t(w) ≤ ξ and ξ ≥ 0

PA− II : wt+1 = arg min
w∈Rd

1

2
||w −wt||2 + Cξ2 s.t.`t(w) ≤ ξ

(2.3)

13

where C is a positive parameter to balance the tradeoff between “passiveness” (first

regularization term) and “aggressiveness” (second slack-variable term).

It is important to note a major difference between PA and Perceptron algorithms.

Perceptron makes an update only when there is a classification mistake. However,

PA algorithms aggressively make an update whenever the loss is nonzero (even if

the classification is correct). As a result, PA algorithms often outperform Perceptron

significantly.

Others

There are many other online learning algorithms that proven successful in literature,

mainly categorized into two major types: first-order online learning and second-

order online learning algorithms.

First order online learning algorithms usually learns a simple model of linear

weight vector wt, and thus are efficient in both prediction and update step. Apart

from the Perceptron, OGD and PA algorithms we introduced, there are also some

others, such as Approximate Large Margin Algorithms (ALMA) [23] which is a

large margin variant of the p-norm Perceptron algorithm and the Relaxed Online

Maximum Margin Algorithm (ROMMA) [39]. Many of these algorithms often fol-

low the principle of large margin learning. The metaGrad algorithm [63] tries to

adapt the learning rate automatically for faster convergence.

Unlike the first-order online learning algorithms which only exploit the first or-

der derivative information of the gradient for the online optimization tasks, second-

order online learning algorithms exploit both first-order and second-order informa-

tion. Consequently, second-order online learning algorithms often fall short in high-

er computational complexity while their convergence rate usually outperforms that

of first order algorithms. Representative works include the Second Order Percep-

tron (SOP) [4], Confidence Weighted Learning (CW) [18], Adaptive Regularization

of Weight Vectors (AROW) [12] ,Soft Confidence weighted Learning (SCW) [67]

and Ada-Gradient [20].

14

2.2 Kernel Learning

In the previous section, algorithms learn a linear predictor sign(w>x). Obvious-

ly, this predictor can only make accurate prediction under the assumption that the

instances are linear separable. In practice, however, the data may probability con-

tain complicated pattern and be linear inseparable in most of the cases. A straight

forward way to solve this problem is to map the data to another high dimensional

(possibly infinite dimensional) space using a mapping function φ(·), so that the new

training instances φ(xt) are linearly separable in the new space.

Consider a linear classification algorithm whose weight function w is the

weighted sum of all training instances, i.e. w =
∑

i αiφ(xi), which is a common

setting in many machine learning algorithms both batch setting (the Support Vector

Machine, SVM [64] for example) and online setting (Perceptron, OGD and PA ect).

The prediction score is

f(x) = w>x =
∑
i

αiφ(xi)
>φ(x)

Obviously, the prediction score only depends on the data through the inner product

inH space. If we define a kernel function κ(·, ·) such that κ(xi,xj) = φ(xi)
>φ(xj),

then we can avoid computing the expensive feature mapping and inner product ex-

plicitly. This is very beneficial when the feature mapping is complicated or even

to an infinite dimensional space. Here are two examples of the most widely used

kernels, the Gaussian kernel, κ(xi,xj) = exp(
−||xi−xj ||2

2δ
) and Polynomial Kernel

κ(xi,xj) = (x>i xj + 1)d. We recommend the reader to read a good book [58] for

the detailed concepts and methodologies of kernel learning.

We refer to the output f of the learning algorithm as a hypothesis and denote

the set of all possible hypotheses by H = {f |f : Rd → R}. Further, we consider

H a Reproducing Kernel Hilbert Space (RKHS) endowed with a kernel function

κ(·, ·) : Rd × Rd → R [64] implementing the inner product〈·, ·〉 such that: 1) κ has

the reproducing property 〈f, κ(x, ·)〉 = f(x) for x ∈ Rd; 2) H is the closure of the

15

span of all κ(x, ·) with x ∈ Rd, that is, κ(x, ·) ∈ H ∀x ∈ X . The inner product

〈·, ·〉 induces a norm on f ∈ H in the usual way: ‖f‖H := 〈f, f〉 12 . To make it clear,

we denote by Hκ an RKHS with explicit dependence on kernel κ. Throughout the

analysis, we assume κ(x,x) ≤ X2, ∀x ∈ Rd.

It then seems trivial to generalize the linear algorithms to the nonlinear case by

simply replacing all inner products with kernel functions. So the prediction score is

f(x) = w>x =
∑
i

αiφ(xi)
>φ(x) =

∑
i

αiκ(xi,x)

where the xi’s are instances used in training. If the weight αi 6= 0, we cal-

l the instance xi a Support Vector (SV). Thus, we rewrite the previous classifier

as f(x) =
∑

i∈SV αiκ(xi,x), where SV is the set of SV’s and i is its index. We use

the notation |SV| to denote the SV set size.

This generalization, however, is non-trivial because of the extremely high time

cost of kernel calculations compared to a single inner product calculation . For batch

training, an algorithm needs to calculate a kernel matrix K ∈ RN×N , where Ki,j =

κ(xi,xj) and N is the number of training instances. The time complexity of this

step is O(N2). And the time complexity for each prediction is nearly O(N) if most

of the weights αi are non-zero. This makes kernel learning algorithms unscalable

to large scale application (with large N value).

Here comes the key question of designing kernel learning algorithms, i.e. how

to make the kernel algorithms efficient and scalable? In literature, many algorithm-

s attempt to address this problem in batch setting, including LLSVM [78] which

approximates the kernel matrix by a low rank matrix to speed up the kernel SVM

training, the Random Fourier Features algorithm [47] that approximates the kernel

function by the inner product of two random Fourier feature vectors, Core Vector

Machine (CVM) [62] which also reduces the time complexity by reasonable approx-

imation of the original kernel SVM problem, etc. There are also lots of outstanding

kernel learning algorithms in online setting, which will be introduced in the later

16

section.

2.3 Online Kernel Learning

In the previous section, we introduced kernel learning, which is a powerful tool for

nonlinear learning, and online learning, which is efficient and scalable to large scale

sequential learning. Now combining the advantages of the two, we discuss the topic

Online Learning Learning.

2.3.1 Problem Formulation

Without loss of generality, we will adopt online binary classification setting and

reuse the previous notations for this section.

The goal of Online Kernel Learning is to learn a nonlinear classifier f : Rd → R

from a sequence of labeled instances (xt, yt), t = 1, ..., T and build the classification

rule as: ŷt = sign(f(xt)). We measure the classification confidence of certain

instance xt by |f(xt)|. Similarly to the linear case, for an online classification task,

one can define the hinge loss function `(·) for the t-th instance using the classifier

at the t-th iteration:

`((xt, yt); ft) = max(0, 1− ytft(xt))

After T iterations, an online kernel learner aims to achieve the lowest regret RT :

RT =
T∑
t=1

`t(ft)−
T∑
t=1

`t(f
∗),

where `t(·) is the loss for the classification of instance (xt, yt), which is short for

`((xt, yt); ·), f ∗ is the optimal fixed solution assuming we had foresight for all the

instances, i.e. f ∗ = argminf
∑T

t=1 `t(f)

17

2.3.2 Online Kernel Learning Algorithm

In literature, different online kernel methods have been proposed.

Kernelized Perceptron

The Kernelized Perceptron algorithm [22] runs as follows:

Algorithm 4 Kernelized Perceptron
INIT: f0 = 0;

for t = 1, 2, . . . , T do

Receive instance: xt ∈ Rd;

Predict ŷt = sign(ft(xt));

Receive correct label: yt ∈ {−1,+1};

if ŷt 6= yt then

SV t+1 = SV t ∪ (xt, yt), ft+1 = ft + ytκ(xt, ·);

end if

end for

The algorithm works similarly to the linear Perceptron algorithm, except that

the inner product in the linear classifier, i.e., ft(xt) =
∑

i αix
>
i xt, is replaced by a

kernel function in the kernel Percetron.

Kernelized OGD The OGD algorithm can be extended with kernels [34]:

Algorithm 5 Kernelized OGD
INIT: f0 = 0;

for t = 1, 2, . . . , T do

Receive instance: xt ∈ Rd and predict ŷt = sign(ft(xt));

Receive correct label: yt ∈ {−1,+1};

if `t(ft) > 0 then

SV t+1 = SV t ∪ (xt, yt), ft+1 = ft − ηt∇`t(ft(xt)) = ft − ηt`′tκ(xt, ·);

end if

end for

18

where ηt > 0 is the learning rate parameter, and `′t is the derivative of loss

function with respect to the classification score ft(xt).

Others

The kernel trick implies that the inner product between any two instances can be re-

placed by a kernel function, i.e., κ(xi,xj) = φ(xi)
>φ(xj),∀i, j, where φ(xt) ∈ RD

denotes the feature mapping from the original space to a new D-dimensional space

which can be infinite. Using the kernel trick, many existing linear online learning

algorithms can be easily extended to the kernelized variants, such as the kernelized

Perceptron and kernelized OGD as well as the kernel PA variants [10]. However,

some algorithms that use complex update rules are non-trivial to be converted in-

to kernelized versions, such as the Confidence Weighted algorithms [18]. Finally,

some online kernel learning methods also attempt to make more effective updates

at each iteration. For example, the Double Updating Online Learning (DUOL) [81]

improves the efficacy of traditional online kernel learning methods by not only up-

dating the weight of the newly added SV, but also the weight for one existing SV.

2.3.3 The Curse of Kernelization

The key advantage of online kernel learning is the ability of solving linearly non-

separable tasks. Despite enjoying better performance over linear models, online

kernel learning falls short in a critical drawback, that is, the growing unbounded

number of support vectors — a challenge termed as “Curse of Kernelization” [69].

During the online learning process, whenever a new prediction error appears, a

new SV is added to the classifier. Note that the time complexity of the prediction

step is proportionate to the SV set size, O(|SV|). Usually, the time complexity of

the whole learning process is O(T 2), which is unrealistic for large scale problems.

Apart from the efficiency issue, the continually growing of SV is also a huge burden

for the memory cost.

19

2.4 Budget Online Learning

Budget Online Learning is designed to address the key challenge of online kernel

learning, i.e. the unbounded number of SV’s. In literature, a family of algorithms,

termed “budget online kernel learning”, have been proposed to bound the number

of SV’s with a fixed budget B = |SV| using diverse budget maintenance strategies

whenever the budget overflows. Most existing budget online kernel learning meth-

ods maintain the budget by three strategies: (i) SV Removal, (ii) SV Projection, and

(iii) SV Merging.

2.4.1 SV Removal

This strategy maintains the budget by a simple and efficient way: 1) update the

classifier by adding a new SV whenever necessary (depending on the prediction

mistake/loss); 2) if the SV size exceeds the budget, discard one existing SV and

update the classifier accordingly. The detailed framework is summarized as follows:

Algorithm 6 SV Removal
INIT: f0 = 0;

for t = 1, 2, . . . , T do

Receive instance: xt ∈ Rd and predict ŷt = sign(ft(xt));

Receive correct label: yt ∈ {−1,+1};

if Update is needed then

Update the classifier from ft to ft+ 1
2
and SV t+ 1

2
= SV t ∪ (xt, yt)

end if

if |SV t+ 1
2
| > B then

Discard one existing SV (xdel, ydel),

Update the classifier from ft+ 1
2

to ft+1 and SV t+1 = SV t+ 1
2
− (xdel, ydel)

end if

end for

The above framework has two critical steps: (i) how to update the classifier

20

and (ii) how to choose one existing SV for removal. The first step depends on

which online learning method is used. Fore example, the update is based on the

Perceptron algorithm in RBP [3], Forgetron [16], and Budget Perceptron [11], the

OGD algorithm is adopted as the update step for BOGD [82] and BSGD+ removal

[69], while PA is used for performing update in BPA-S [71].

The second step of SV removal, is to decide which existing SV (xdel, yt) to

remove in order to minimize the harm to the resulting classifier. One simple way

is to randomly discard one existing SV uniformly with probability 1
B

, as adopted

by RBP [3] and BOGD [82]. Besides, instead of choosing randomly, another way

as used in “Forgetron” [16] is to discard the oldest SV by assuming that an older

SV is less representative for the distribution of fresh training data streams. Despite

enjoying the merits of simplicity and high efficiency, these methods are often too

simple to achieve satisfactory learning accuracy results.

To optimize the performance, some approaches have tried to perform exhaustive

search in deciding the best SV for removal. For instance, the Budget Perceptron

algorithm [11] searches for one SV that is classified with high confidence by the

classifier:

ydel(ft+ 1
2
(xdel)− αdelκ(xdel,xdel)) > β

where β > 0 is a fixed tolerance parameter. BPA-S shares the similar idea of ex-

haustive search. For every r ∈ [B], a candidate classifier f r = ft+ 1
2
− αrκ(xr, ·) is

generated by discarding the r-th SV from ft+ 1
2
. By comparing theB candidate clas-

sifiers, the algorithm selects the one that minimizes the current objective function

of PA:

ft+1 = argmin
r∈[B]

1

2
||f r − ft||2H + C`t(f

r)

where C > 0 is the regularization parameter of PA that balances aggressiveness and

passiveness.

Comparing the principles of different SV removal strategies, we found that a

simple rule may not always generate satisfactory accuracy, while an exhaustive

21

search often incurs non-trivial computational overhead, which again may limit the

application to large-scale problems. When deploying a solution in practice, one

would need to balance the trade-off between effectiveness and efficiency.

2.4.2 SV Projection

This strategy first appeared in [45] where two new algorithms, Projectron and Pro-

jectron++, were proposed, which significantly outperform the previous SV removal

based algorithms such RBP and Forgetron. The SV projection method works as

follows:

(1) update classifier ft to ft+ 1
2

with a new SV added (if necessary), which is similar

to the steps discussed in the SV removal section.

(2) choose a SV (xdel, ydel) to remove.

(3) choose the a subset of SV as the projection base, which will be denoted by P .

(4) use a linear combination of kernels in P to approximate the removed SV. The

procedure of finding the optimal linear combination can be formulated as a convex

optimization of minimizing the projection error:

β = argmin
β∈R|P|

Eproj = argmin
β∈R|P|

||αdelκ(xdel, ·)−
∑
i∈P

βiκ(xi, ·)||2H

(5) combines this linear combination with the original classifier:

ft+1 = ft+ 1
2
− αdelκ(xdel, ·) +

∑
i∈P

βiκ(xi, ·)

There are several algorithms adopting the projection strategy, for example Pro-

jectron, Projectron++, BPA-P, BPA-NN [71] and BSGD+Project [69]. These meth-

ods differ in a few aspects. First, the update rules are based on different online

learning algorithms. Generally speaking, PA based and OGD based trend to out-

perform Perceptron based algorithms because of their effective update. Second,

22

the choice of discarded SV is different. Since projection itself is relative slow, ex-

haustive search based algorithms (BPA-NN, BPA-P) are extremely time consuming.

Thus algorithms with simple selecting rules are prefered (Projectron, Projectron++,

BSGD+Project). Third, the choice of projection base set P is different. In Projec-

tron, Projectron++ BPA-P and BSGD+Project, the discarded SV is projected onto

the whole SV set, i.e. P = SV . While in BPA-NN, P is only a small subset of SV ,

made up of the nearest neighbors of the discarded SV (xdel, yt). In general, a larger

projection base set implies a more complicated optimization problem and thus more

time costs. The research direction of SV projection based budget learning is to find

a proper way of selecting P so that the algorithm achieves the minimized projection

error with a relative small projection base set.

Table 2.1: Comparisons of different budget online kernel learning algorithms.
Algorithms Update Strategy Budget Strategy Time Space
Stoptron [45] Perceptron Stop O(1) O(B)
Budget Perceptron [11] Perceptron Removal O(B2) O(B)
RBP [3] Perceptron Removal O(B) O(B)
Forgetron[16] Perceptron Removal O(B) O(B)
BOGD[82] OGD Removal O(B) O(B)
BPA-S [71] PA Removal O(B) O(B)
BSGD+removal [69] OGD Removal O(B) O(B)
Projectron [45] Perceptron Projection O(B2) O(B2)
Projectron++ [45] Perceptron Projection O(B2) O(B2)
BPA-P [71] PA Projection O(B3) O(B2)
BPA-NN [71] PA Projection O(B) O(B)
BSGD+projection [69] OGD Projection O(B2) O(B2)
BSGD+merging [69] OGD Merging O(B) O(B)

2.4.3 SV Merging

In [69], a SV merging method BSGD+Merge was proposed that attempts to replace

the sum of two SV’s αmκ(xm, ·) + αnκ(xn, ·) by a newly created support vector

αzκ(z, ·), where αm, αn and αz are the corresponding coefficients of xm, xn and z.

Following the previous discussion, the goal of online budget learning through SV

23

merging strategy is to find the optimal αz ∈ R and z ∈ Rd that minimizes the gap

between ft+1 and ft+ 1
2
.

As it is relatively complicated to optimize the two terms simultaneously, this op-

timization is divided into two steps. First, assuming the coefficient of z is αm +αn,

this algorithm tries to create the optimal support vector that minimizes the merging

error. The first optimization is

min
z
||(αm + αn)κ(z, ·)− (αmκ(xm, ·) + αnκ(xn, ·))||

The solution is z = hxm + (1 − h)xn, where 0 < h < 1 is a real number that can

be found by a line search method. This solution indicates that the optimal created

SV lies on the line connecting xm and xn. After obtaining the optimal created SV

z, the next is to find the optimal coefficient αz, which can be formulated as

min
αz
||(αzκ(z, ·)− (αmκ(xm, ·) + αnκ(xn, ·))||.

The solution becomes αz = αmκ(xm, z) + αnκ(xn, z). The remaining is how to

select the two SV’s xm and xn for merging. The ideal solution is to find the pair

with the minimal merging error through an exhaustive search, which however often

requires O(B2) time complexity. How to perform exhaustive search efficiently SV

merging remains an open challenge.

2.4.4 Comparison of Budget Online Learning Algorithms

Among the various algorithms of budget online kernel learning using the idea of

budget maintenance, the key differences are the updating rules and budget main-

tenance strategies. Table 2.1 gives a summary of different algorithms and their

properties.

24

2.5 Online Multiple Kernel Learning

Multiple Kernel Learning (MKL) [35, 2] aims to find the optimal (linear) combi-

nation of a pool of predefined kernel functions in learning kernel-based predictive

models. In comparison to single kernel learning, MKL can not only avoid heuristic

manual selection of best kernels, but also achieve better performance by combining

multiple kernels, particularly for learning from data with heterogeneous representa-

tions.

2.5.1 Problem Formulation

Training a multiple kernel SVM classifier f(x) can be formulated as the following

optimization problem,

min
f∈Hκ

P (f) = R(f) +
1

T

T∑
t=1

`t(f),

where R is a regularization function used to control model complexity and Hκ is a

Reproducing Kernel Hibert Space endowed with a kernel function κ(·, ·). Different

from the single kernel learning problem, in the OMKL problem, the kernel function

is usually defined as a linear combination of m kernels K = {κi : Rd × Rd →

R, i = 1, . . . ,m}, whose weights are denoted by θ = (θ1, . . . , θm) and lie in a

simplex, ∆ = {θ ∈ Rm
+ |θT1m = 1}. Consequently, the kernel function can be

denoted as

κ(θ)(·, ·) =
m∑
i=1

θiκi(·, ·)

Although batch MKL methods have been extensively studied recently [59, 24, 65,

1, 48], unfortunately, the generalization from batch MKL to its online counterpart is

far from straightforward. First of all, different from batch MKL that can in principle

be solved via cross-validation, online learning with multiple kernels has no foresight

on the best kernel function before data arrival but needs to learn kernel classifiers

25

and their combination weights simultaneously from sequential data. Second, online

learning with multiple kernels suffers more from the curse of kernelization because

more kernel classifiers getting updated would result in even greater complexity and

higher computation cost.

2.5.2 OMKL Algorithms

In literature, existing OMKL algorithms usually adopt one of the two following

strategies. The first method is to learn the weights using the Hedge algorithm. Spe-

cially, the weight of each kernel is reduced by some factor whenever this single k-

ernel component classifier makes a mistake [32, 26, 53, 73]. Consequently, kernels

with higher historical accuracy are assigned with larger weight values. The second

method is to add a group sparsity regularizer to the loss function [40, 42, 43, 44].

This then results in a group sparse kernel classifier, where a subset of kernels are as-

signed with zero weight. These algorithms are efficient since only effective kernels

are selected.

Group Sparsity Strategies

To perform efficient kernel selection in the learning process, in literature, many

works formulate the above multiple kernel learning problem as an optimization

problem with a group sparsity regularizer [2, 42, 59], i.e.

min
f1∈κ1,...,fi∈κi,..,fm∈κm

λ

2
(
m∑
i=1

‖fi‖Hki)
2 +

1

T

T∑
t=1

`t(
m∑
i=1

fi),

where the first term is the squared L2,1 norm regularizer and the second term is the

averaged loss of the classifier f =
∑m

i=1 fi which is the sum of all classifiers in the

m kernel spaces. A state-of-the-art work, the Online Proximal MKL algorithm [42],

attempts to solve this problem in an online mode. However, like many non-budget

kernel learning algorithms, the number of support vectors is not bounded, which

limits its application to large scale problems.

26

Hedge Strategy

The Hedge algorithms have been widely used in learning the combination weights

in ensemble models. In a Hedge based OMKL algorithm [26], the weights are ini-

tialized to be θi = 1/m for all classifiers. When fi makes a mistake, its weight will

be reduced by a constant factor θi,t+1 = θi,tγ. As the result, the OMKL algorith-

m always follows the best kernel functions and is proven to be able to achieve an

optimal mistake bound.

To further reduce the number of support vectors, some existing works also adopt

a stochastic update strategy and the probability of updating fi is

pit = (1− δ) θi,t
maxj θj,t

+ δ

where δ > 0 is a parameter that controls the trade-off between exploration and

exploitation. Obviously, better kernels with higher combination weights get larger

chance to be updated. Consequently, we may avoid wasting SV’s on worse kernels.

This stochastic updating strategy can alleviate the problem of unbounded number

of SV’s, but there are still some open problems.

First, the update probability only depends on the historical performance of the

classifier, which is far from optimal. Since different instances have difference im-

portance level, it is nature to relate the probability of update with the prediction

confidence of a certain instance. Second, this stochastic update strategy might be

mislead by the instances in the first a few rounds. Consider the case where the best

component classifier fi did not perform well in the first a few rounds. fi will get

less chance to be updated and thus get fewer SV’s, which in turn results in bad per-

formance in later rounds. Consequently, the algorithm may be mislead by the first a

few instances and fail to catch the best kernel during the whole learning process.

In summary, although existing stochastic OMKL algorithms can reduce the

number of SV’s, it is still not enough for a powerful OMKL algorithm in large

scale applications.

27

2.6 Summary

In this chapter, we first introduced the main idea of Online Learning. Online Learn-

ing algorithms process data sequentially and thus are more suitable for large scale

and stream datasets compared to traditional batch learning algorithms. We discussed

some of the most representative works in online learning field.

Secondly, a brief introduction of kernel learning was provided. Kernel Learning

is a powerful tool to address the linear inseparable problem. By adopting the kernel

functions, we can easily get the inner product in the mapped space without explicitly

calculation of the feature mapping and product.

Thirdly, by combining the background knowledge of the above two sections, we

introduced the Online Kernel Learning algorithms. They enjoy the advantages of

both and are suitable for handling sequentially data with nonlinear patterns. How-

ever, the unbounded number of SV’s limit its application to large scale datasets.

Fourthly, we discussed many existing budget learning algorithms, which aim to

address the unbounded number of SV’s problem. This discussion of budget algo-

rithms provides a clear answer to the following questions. To make online kernel

learning algorithm scalable to large scale applications, what are the state-of-the-

art existing algorithms? What are their pros and cons? What are we expecting to

achieve when designing a novel large scale online kernel learning algorithm?

Finally, we reviewed the related works for online multiple kernel learning, which

motivate our proposed algorithms and will be used as compared algorithms in our

experiments.

28

Chapter 3

Online Sparse Passive Aggressive

Learning with Kernels

3.1 Introduction

Due to the curse of kernelization, a major limitation of many kernel-based online

learning techniques is that the number of support vectors is unbounded and poten-

tially large for large-scale applications. This has raised a huge challenge for ap-

plying them in practical applications since computational complexity (of both time

and space) for a kernel-based online learning algorithm is often proportional to the

support vector size. Recent years have witnessed a variety of emerging studies for

bounded kernel-based online learning. Examples include RBP [3], Forgetron [17],

Projectron [45], Budget Passive Aggressive learning [71], BOGD [82, 69], among

others.

Although bounded kernel-based online learning has been actively studied, most

existing algorithms suffer from a key drawback when applying them in online-to-

batch conversion, a process that aims to convert online classifiers for batch classi-

fication purposes [18, 15]. Specifically, one of most commonly used approaches in

online-to-batch conversion is to take the averaging classifier, that is the mean of all

the online classifiers at all online iterations, as the final classifier for batch classifi-

29

cation. This simple technique is not only computationally efficient, but also enjoys

theoretical superiority in generalization performance compared to the classifier ob-

tained in the last online iteration [57]. Unfortunately, most existing budget online

kernel learning algorithms only guarantee that the support vector size at each online

iteration is bounded, but fail to yield a sparse averaging classifier in online-to-batch

conversion.

In this section, we present a new method for bounded kernel-based online learn-

ing method, named “Sparse Passive Aggressive” (SPA) learning, which extends the

online Passive Aggressive (PA) learning method [10] to ensure the final output aver-

aging classifier has the bounded number of support vectors in online-to-batch con-

version. Specifically, the basic idea of our method is to explore a simple stochastic

sampling rule, which assigns an incoming training example to be a support vector

with a higher probability when it suffers a higher loss.

The rest of this section is organized as follows. Subsection 2 formally formulates

the problem and then presents the proposed SPA algorithm. Subsection 3 gives

theoretical analysis. Subsection 4 presents our experimental studies and empirical

observations, and finally Subsection 5 concludes this section.

3.2 Related Work

Our work is closely related to Online Learning, Online Kernel Learning and Bud-

get Learning algorithms. We have made a comprehensive survey in the previous

sections.

In addition, our focus is on the sparse solution of kernel learning. Which is

also related to two sparse kernel methods for online logistic regression [79, 80].

The main limitation of the existing work is that they only considered the problem

settings with several smooth loss functions. This is a relatively strict setting since

there are lots of situations (eg. SVM) where nonsmooth loss functions , hinge loss

for example, are adopted. Our paper studied the nonsmooth loss setting where the

30

loss function is not limited by assumptions in [80]. The second improvement of

our paper compared to the previous work is the better theoretical analysis, which

follows the standard analysis of online learning and thus is simpler and easier to

follow. Our analysis also suggests an approach to fix a subtle mistake in the proof

of bound in [79].

3.3 Sparse PA Learning with Kernels

In this section, we first formulate the problem setting for online learning with ker-

nels, then review online Passive Aggressive (PA) algorithm [10], and finally present

the details of the proposed Sparse PA learning with kernels (SPA) algorithm.

3.3.1 Problem Setting and Preliminaries

We consider the problem of online learning by following online convex optimization

settings. Our goal is to learn a function f : Rd → R from a sequence of training

examples {(x1, y1), . . . , (xT , yT)}, where instance xt ∈ Rd and class label yt ∈ Y .

We refer to the output f of the learning algorithm as a hypothesis and denote the

set of all possible hypotheses by H = {f |f : Rd → R}. We will use `(f ; (x, y)) :

H × (Rd × Y) → R as the loss function that penalizes the deviation of estimating

f(x) from observed labels y.

Passive Aggressive (PA) algorithms [10] are a family of margin based online

learning algorithms, which can achieve a bound on the cumulative loss comparable

with the smallest loss that can be attained by any fixed hypothesis.

Specifically, consider a classification problem, an online PA algorithm sequen-

tially updates the online classifier. At the t-step, the online hypothesis will be up-

dated by the following strategy

ft+1 = arg min
f∈Hκ

1

2
‖f − ft‖2

Hκ + η`(f ; (xt, yt))

31

where η > 0. This optimization involves two objectives: the first is to keep the new

function close to the old one, while the second is to minimize the loss of the new

function on the current example. To simplify the discussion, we denote `t(f) =

`(f ; (xt, yt)) throughout the section.

3.3.2 Sparse Passive Aggressive Algorithm

Similar to conventional kernel-based online learning methods, the critical limitation

of PA is that it does not bound the number of support vectors, making it very expen-

sive in both computational time and memory cost for large-scale applications. Some

existing work has attempted to propose budget PA [71] for learning a bounded ker-

nel classifier at each step using some budget maintenance strategy (e.g., discarding

an old SV and replacing it by a new one). Although the kernel classifier is bound-

ed at each step, their approach cannot bound the number of support vectors for the

average of classifiers over all learning iterations. This drawback of the existing bud-

geted kernel algorithms limits their application to online-to-batch conversion tasks

where the output final classifier is typically obtained by averaging classifiers at ev-

ery learning steps. Furthermore, even in pure online setting, the prediction of the

new coming instance xt using 1
t

∑t
i=1 fi often outperforms the result using a sin-

gle classifier ft. In the proposed algorithm in this section, we aim to overcome the

above limitation by proposing a novel Sparse Passive Aggressive (SPA) learning

algorithm for learning a sparse kernel classifier which guarantees not only the ratio

of support vectors to total received examples is always bounded in expectation, but

also the support vector size of the final average classifier is bounded.

Unlike the conventional budget maintenance idea, we propose a stochastic sup-

port vector sampling strategy which sequentially constructs the set of support vec-

tors by sampling from the sequence of instances in which an instance added into the

support vector set will never be discarded. This ensures that the support vector set of

any intermediate classifier is always a subset of the final average classifier. The rest

32

challenge then is how to design an appropriate sampling strategy so that we ensure

that the support vector size of kernel classifiers is always bounded while maximiz-

ing the learning accuracy of the classifier. To tackle this challenge, we propose a

simple yet effective sampling rule which decides if an incoming instance should be

a support vector by performing a Bernoulli trial as follows:

Pr(Zt = 1) = ρt, ρt =
min(α, `t(ft))

β

where Zt ∈ {0, 1} is a random variable such that Zt = 1 indicates a new support

vector should be added to update the classifier at the t-th step, and β ≥ α > 0 are

parameters to adjust the ratio of support vectors with some given budget. The above

sampling rule has two key concerns:

(i) The probability of making the t-th step update is always less than α/β, which

avoids assigning too high probability on a noisy instance.

(ii) An example suffering higher loss has a higher probability of being assigned

to the support vector set.

In the above, the first is to guarantee that the ratio of support vectors to total re-

ceived instances is always bounded in expectation, and the second is to maximize

the learning accuracy by adding informative support vectors or equivalently avoid

making unnecessary updates. For example, for the extreme case of `t(ft) = 0, we

always have Pr(Zt = 1) = 0, which means we never makes an update if an instance

does not suffer loss. Different from the existing work where the sampling probabil-

ity is related to the derivative of classification loss, our probability is directly based

on the scale of hinge loss.

After obtaining the random variable Zt, we will need to develop an effective

strategy for updating the classifier. Following the PA learning principle, we propose

the following updating method:

ft+1 = arg min
f∈Hκ

Pt(f) :=
1

2
‖f − ft‖2

Hκ +
Zt
ρt
η`t(f) (3.1)

33

Note when ρt = 0, then Zt = 0 and we set Zt/ρt = 0. We adopt the above update

because its objective is an unbiased estimate of that of PA update, that is,

E(Pt(f)) =
1

2
‖f − ft‖2

Hκ + η`t(f)

Passive Aggressive based algorithms enjoy lots of advantages compared to gradi-

ent based ones. For instance, PA updating strategy is more effective because of

the adaptive step size. And PA is less sensitive to the variance of parameter set-

ting. Finally, we summarize the proposed Sparse Passive Aggressive algorithm in

Algorithm 14.

Algorithm 7 Sparse PA learning with kernels (SPA)
Input: aggressiveness parameter η > 0, and parameters β ≥ α > 0
Initialize: f1(x) = 0
for t = 1, 2, . . . , T do

Receive example: (xt, yt)
Suffer loss: `t(ft) = `(ft; (xt, yt))

Compute ρt = min(α,`t(ft))
β

Sample a Bernoulli random variable Zt ∈ {0, 1} by: Pr(Zt = 1) = ρt
Update the classifier:
ft+1 = arg minf∈Hκ

1
2
‖f − ft‖2

Hκ + Zt
ρt
η`t(f)

end for
Output:f̄T (x) = 1

T

∑T
t=1 ft(x)

3.3.3 Application to Binary Classification

The proposed SPA method is a generic online learning framework that can be ap-

plied to various online learning tasks. Examples include online classification, re-

gression, and uniclass prediction tasks. Without loss of generality, we focus on the

discussion on the application of the proposed algorithm for online binary classifica-

tion task.

Specifically, we consider an online classification task with label set Y =

{−1,+1}, and adopt the widely used hinge loss function:

`(f ; (x, y)) = [1− yf(x)]+

34

where [z]+ = max(0, z). The hinge loss function is κ(x,x)-Lipschitz with respect

to f :

|`(f ; (x, y))− `(g; (x, y))| = |[1− yf(x)]+ − [1− yg(x)]+|

≤ |yf(x)− yg(x)| ≤
√
κ(x,x)‖f − g‖Hκ ,

where we used the fact [1−z]+ is 1-Lipschitz with respect to z. This further implies

the corresponding `t(f)s are X-Lipschitz, since κ(xt,xt) ≤ X2. This fact will be

used in the theoretical analysis in the next section.

After choosing the hinge loss, the rest is how to solve the optimization (3.1).

Fortunately, we can derive a closed-form solution, as shown in the following propo-

sition.

Proposition 1. When `t(f) = [1 − ytf(xt)]+, the optimization (3.1) enjoys the

following closed-form solution

ft+1(·) = ft(·) + τtytκ(xt, ·), τt = min(
ηZt
ρt
,
`t(ft)

κ(xt,xt)
)

This proposition is easy to prove, so we omit its proof.

3.4 Theoretical Analysis

SPA algorithm will be analyzed for binary classification case. To facilitate the dis-

cussion, we denote

f∗ = arg min
f

T∑
t=1

`t(f)

The following theorem analyzes the regret of SPA, i.e.,
∑T

t=1 `t(ft)−
∑T

t=1 `t(f∗),

which is a main performance measure of online algorithms.

Theorem 1. Let (x1, y1), . . . , (xT , yT) be a sequence of examples where xt ∈ Rd,

yt ∈ Y = {−1,+1} for all t. If we assume κ(x,x) = 1 and the hinge loss function

35

`t(·) is 1-Lipschitz, then for any β ≥ α > 0, and η > 0, the proposed SPA algorithm

satisfies the following inequality

E[
T∑
t=1

(`t(ft)− `t(f∗))] <
1

2η
‖f∗‖2Hκ +

ηβ

min(α,
√
βη)

T

where η is the aggressiveness parameter. When setting η = ‖f∗‖Hκ
√

α
2βT and α3 ≤

β
2T ‖f∗‖

2
Hκ , we will have

E[
T∑
t=1

(`t(ft)− `t(f∗))] < ‖f∗‖Hκ
√
2βT/α

Proof. Firstly, the Pt(f) defined in the equality

ft+1 = min
f∈Hκ

Pt(f) :=
1

2
‖f − ft‖2

Hκ +
Zt
ρt
η`t(f)

is 1-strongly convex. Further, ft+1 is the optimal solution of minf Pt(f), we thus

have the following inequality according the definition of strongly convex

1

2
‖f − ft‖2

Hκ +
1

ρt
Ztη`t(f)

≥ 1

2
‖ft+1 − ft‖2

Hκ +
1

ρt
Ztη`t(ft+1) +

1

2
‖f − ft+1‖2

Hκ

where the inequality used ∇Pt(ft+1) = 0. After rearranging the above inequality,

we get

1

ρt
Ztη`t(ft+1)− 1

ρt
Ztη`t(f)

≤ 1

2
‖f − ft‖2

Hκ −
1

2
‖f − ft+1‖2

Hκ −
1

2
‖ft+1 − ft‖2

Hκ

Secondly, since `t(f) is 1-Lipshitz with respect to f

`t(ft)− `t(ft+1) ≤ ‖ft − ft+1‖Hκ .

Combining the above two inequalities, we get

1

ρt
Ztη[`t(ft)− `t(f)]

≤1

2
‖f − ft‖2

Hκ −
1

2
‖f − ft+1‖2

Hκ −
1

2
‖ft+1 − ft‖2

Hκ +
1

ρt
Ztη‖ft − ft+1‖Hκ

36

Summing the above inequalities over all t leads to

T∑
t=1

1

ρt
Ztη [`t(ft)− `t(f)] ≤ 1

2
‖f − f1‖2

Hκ (3.2)

+
T∑
t=1

[
−1

2
‖ft+1 − ft‖2

Hκ +
1

ρt
Ztη‖ft − ft+1‖Hκ

]
We now take expectation on the left side. Note, by definition of the algorithm,

EtZt = ρt, where we used Et to indicate conditional expectation give all the random

variables Z1, . . . , Zt−1. Assuming ρt > 0, we have

E
[1

ρt
Ztη [`t(ft)− `t(f)]

]
= E

[1

ρt
EtZtη [`t(ft)− `t(f)]

]
= ηE [`t(ft)− `t(f)] (3.3)

Note that in some iterations, ρt = 0, in that case, we have `t(ft) = 0, thus:

η[`t(ft)− `t(f)] ≤ 0 (3.4)

As mentioned before, ρt = 0 indicates Zt = 0 and Zt/ρt = 0, we get

1

ρt
Ztη[`t(ft)− `t(f)] = 0 (3.5)

Combining (3.3), (3.4) and (3.5) and summarizing over all t leads to

ηE
T∑
t=1

[`t(ft)− `t(f)] ≤ E
T∑
t=1

1

ρt
Ztη [`t(ft)− `t(f)]

We now take expectation on the right side of (3.2)

E
[
1

2
‖f − f1‖2Hκ

]
+ E

[
T∑
t=1

[
−1

2
‖ft+1 − ft‖2Hκ +

1

ρt
Ztη‖ft − ft+1‖Hκ

]]

≤ 1

2
‖f‖2Hκ +

T∑
t=1

E
[
−1

2
τ2
t +

1

ρt
Ztητt

]
Given all the random variables Z1, . . . , Zt−1, we now calculate the conditional ex-

pectation of the variable Mt = −1
2
τ 2
t + 1

ρt
Ztητt: In probability ρt, Zt = 1 and

τt = τ ′t = min(η
ρt
, `t(ft)). We have Mt (Zt=1) = −1

2
τ ′2t + 1

ρt
ητ ′t . And in probability

1 − ρt, Zt = 0 and τt = 0. We have Mt (Zt=0) = 0. Considering the two cases, the

37

conditional expectation is:

Et[Mt] = ρtMt (Zt=1) + (1− ρt)Mt (Zt=0) = ρt

[
−1

2
τ ′2t +

1

ρt
ητ ′t

]
< ητ ′t

In the case when α ≤ `t and ρt = α
β

, τ ′t = min(ηβ
α
, `t(ft)) ≤ ηβ

α
, thus ητ ′t ≤

η2β
α

.

And in the case α > `t and ρt = `t
β

, τ ′t = min(ηβ
`t(ft)

, `t(ft)) ≤
√
ηβ. Thus,

ητ ′t ≤
η2β√
βη

.

Considering both of the cases leads to

Et[Mt] <
η2β

min(α,
√
βη)

Summing the above inequality over all t and combining with (3.6), we get

ηE
T∑
t=1

[`t(ft)− `t(f)] <
1

2
‖f‖2

Hκ +
η2β

min(α,
√
βη)

T

Setting f = f∗, and multiplying the above inequality with 1/η will conclude the

theorem.

Remark 1. The theorem indicates that the expected regret of the proposed SPA

algorithm can be bounded by ‖f∗‖Hκ
√

2βT/α in expectation. In practice, β/α is

usually a small constance. Thus, we can conclude that the proposed algorithm can

achieve a strong regret bound in expectation.

Remark 2. The expected regret has a close relationship with the two parameters

α and β. As indicated above, to avoid assigning too high probability on a noisy

instance, the parameter α can not be too large. Assuming α ≤
√
βη (which is ac-

cessible in the practical parameter setting), the expected regret bound is proportion

to the ratio β/α. This consists with the intuition that larger chances of adding SVs

leads to smaller loss. Further more, for α >
√
βη, the expected regret bound is less

tight than the above case, which consists with the analysis before that too large α

involves large number of noisy instances and might be harmful.

Next, we would give a bound on the number of support vectors of the final

classifier f̄T in expectation. Since we never delete an existing support vector, it

should be the same with the number of support vectors of the final intermediate

38

classifier fT , which equals to the random number
∑T

t=1 Zt.

Theorem 2. Let (x1, y1), . . . , (xT , yT) be a sequence of examples where xt ∈ Rd,

yt ∈ Y = {−1,+1} for all t. If we assume κ(x,x) = 1 and the hinge loss function

`t(·) is 1-Lipschitz, then for any β ≥ α > 0, and η > 0, the proposed SPA algorithm

satisfies the following inequality

E[
T∑
t=1

Zt]≤ min

{
α

β
T,

1

β
[

T∑
t=1

`t(f∗) +
1

2η
‖f∗‖2Hκ +

ηβ

min(α,
√
βη)

T]

}

Especially, when η = ‖f∗‖Hκ
√

α
2βT

and α3 ≤ β
2T
‖f∗‖2

Hκ , we have

E[
T∑
t=1

Zt] ≤ min

{
α

β
T,

1

β
[

T∑
t=1

`t(f∗) + ‖f∗‖Hκ
√
2βT/α]

}

Proof. Since Et[Zt] = ρt, where Et is the conditional expectation, we have

E[
T∑
t=1

Zt] = E[
T∑
t=1

EtZt] = E[
T∑
t=1

ρt] =

E[
T∑
t=1

min(
α

β
,
`t(ft)

β
)] ≤ min(

α

β
T,

1

β
E

T∑
t=1

`t(ft)) ≤

min

{
α

β
T,

1

β
[
T∑
t=1

`t(f∗) +
1

2η
‖f∗‖2

Hκ +
ηβ

min(α,
√
βη)

T]

}
which concludes the first part of the theorem. The second part of the theorem is

trivial to be derived.

Remark. First, this theorem indicates the expected number of support vectors

is less than αT/β. Thus, by setting β ≥ αT/n (1 < n ≤ T), we guarantee

that the expected number of support vectors of the final classifier is bounded by a

budget n. Second, this theorem also implies that, by setting β ≥ [
∑T

t=1 `t(f∗) +

‖f∗‖Hκ
√

2βT/α]/n (1 < n ≤ T), the expected number of support vectors is always

less than n, no matter how is the value of α.

39

3.5 Experiments

In this section, we conduct extensive experiments to evaluate the empirical perfor-

mance of the proposed SPA algorithm for online binary classification tasks.

3.5.1 Experimental Testbed

Table 5.1 summarizes details of some binary classification datasets in our experi-

ments. The first five can be downloaded from LIBSVM1or KDDCUP competition

site 2. The original SUSY dataset contains 5,000,000 instances, we randomly sam-

pled a subset.

Table 3.1: Summary of Binary Classification Datasets Used in SPA Evaluation.

DATA SET # INSTANCES #FEATURES

KDD08 102,294 117
A9A 48,842 123
W7A 49,749 300
CODRNA 59,535 8
COVTYPE 581,012 54
SUSY 1,000,000 18

3.5.2 Compared Algorithms and Setup

We evaluate the proposed SPA algorithm by comparing with many state-of-the-art

online kernel learning algorithms. First, we implement the following non-budget

kernel learning algorithms as a yardstick for evaluation:

• “Perceptron”: the kernelized Perceptron [22];

• “OGD”: the kernelized OGD algorithm [33];

• “PA-I”: the kernelized passive aggressive algorithm with soft margin [10].

Further, we compare our SPA algorithm with a variety of budget online kernel learn-

ing algorithms:
1http://www.csie.ntu.edu.tw/ cjlin/libsvmtools/datasets/
2http://www.sigkdd.org/kddcup/

40

• “RBP”: the Randomized Budget Perceptron by random removal [3];

• “Forgetron”: the Forgetron by discarding oldest support vectors [17];

• “Projectron”: the Projectron algorithm using the projection strategy [45];

• “Projectron++”: the aggressive version of Projectron algorithm [45];

• “BPA-S”: the Budget Passive-Aggressive algorithm [71], we only adopt the

BPA-Simple algorithm since the other two variants are too computational ex-

pensive to scale to large datasets;

• “BOGD”: the Bounded Online Gradient Descent algorithm [82, 69];

• “OSKL”:the Online Sparse Kernel Learning algorithm [80].

To make a fair comparison, we adopt the same experimental setup for all the al-

gorithms. We use the hinge loss for gradient-based algorithms (OGD and BOGD).

For all the algorithms, we adopt a gaussian kernel exp(−γ||x1 − x2||2) with param-

eter γ set to 0.4 for all the datasets. The learning rate parameter η for OGD, BOGD,

OSKL and SPA is automatically chosen by searching from {103, ..., 10−3} based on

a random permutation of each dataset. We adopt the PA-I algorithm for comparison

since it was proved to be robust to noise and achieved better performance than PA

without soft margin. The soft margin parameter C is optimized by searching from

range {0.25, 0.5, 1, 2}. In the proposed algorithm, the parameter α = 1 for all

datasets. We choose a proper β parameter so that the resulting support vector size

is roughly a proper fraction of that of the non-budget OGD algorithm (specifically,

we set β = 20 for three small datasets, and β = 200 for three large datasets). Note

that the OSKL algorithm also adopts a stochastic approach to sample the support

vectors, which indicates that there is no ideal method for setting the same num-

ber of support vectors and thus absolutely fair comparison between OSKL and our

proposed algorithm. We tune the sampling probability parameter G in the OSKL

algorithm so that the averaged number of support vectors is close to that of the pro-

posed algorithm. Finally, to ensure that all budget algorithms adopt the same budget

41

size, we choose the budget size B of all the other compared algorithms according to

the average number of support vectors generated by the proposed SPA algorithm.

For each dataset, all the experiments were repeated 20 times on different ran-

dom permutations of instances in the dataset and all the results were obtained by

averaging over these 20 runs. For performance metrics, we evaluate the online clas-

sification performance by mistake rates and running time. Finally, all the algorithms

were implemented in C++, and all experiments were conducted in a Windows ma-

chine with 3.2 GHz CPU.

3.5.3 Evaluation of Online Learning Performance

The first experiment is to evaluate the performance of kernel-based online learning

algorithms for online classification tasks. Table 5.2 shows the experimental results.

To demonstrate the superiority of averaging classifier in pure online setting, the

reported accuracy of the proposed SPA algorithm and OSKL is obtained by the

averaged classifier 1
t

∑t
i=1 fi. We can draw some observations as follows.

We first examine the time cost comparisons. First of all, all the budget algo-

rithms are significantly more efficient than the non-budget algorithms (Perceptron,

OGD, and PA-I) for most cases, especially on large-scale datasets. This validates

the importance of studying bounded kernel-based online learning algorithms. Sec-

ond, by comparing different budget algorithms, Projectron++ is the least efficient

due to its expensive projection strategy, and the proposed SPA algorithm is the most

efficient. The other budget algorithms (RBP, Forgetron, BPAS, BOGD) are in gen-

eral quite efficient as they all are based on simple SV removal strategy for budget

maintenance. The reason that our SPA algorithm is even more efficient than these

algorithms is because our algorithm adds the support vectors incrementally while

the other algorithms perform the budget maintenance only when the support vec-

tor size reaches the budget. This encouraging result validates the high efficiency

advantage of our stochastic support vector sampling strategy.

42

Table 3.2: Evaluation of Online Kernel Classification on Six Datasets in SPA Eval-
uation. Time in seconds

KDD08, β = 20 a9a, β = 20

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
Perceptron 99.04±0.01 11.58 0.9k 79.40± 0.11 19.93 9.9k
OGD 99.44±0.01 14.54 1.2k 83.41 ± 0.05 54.20 23.5k
PA-I 99.45±0.01 39.53 3.2k 84.07±0.08 57.91 22.8k
RBP 98.96±0.03 3.24 149 78.83±0.38 5.34 1,350
Forgetron 98.93±0.03 3.28 149 78.08±0.22 6.45 1,350
Projectron 99.02±0.01 4.19 149 79.25±0.13 32.47 1,350
Projcetron++ 99.32±0.01 4.86 149 79.35±0.13 150.63 1,350
BPAS 99.41±0.01 3.93 149 80.44±0.14 7.75 1,350
BOGD 99.39±0.01 3.40 149 80.97±0.04 6.17 1,350
OSKL 99.41±0.01 2.63 149 82.01±0.32 4.08 1,344
SPA 99.41±0.01 2.60 149 82.04± 0.25 3.84 1,350

w7a, β = 200 codrna, β = 20

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
Perceptron 97.64 ±0.04 2.50 1.1k 90.79 ±0.09 6.21 5.4k
OGD 98.06±0.02 38.16 10.1k 93.31±0.05 10.41 8.8k
PA-I 98.16±0.02 63.47 19.6k 93.65±0.05 15.82 12.4k
RBP 96.78±0.16 0.68 175 86.59±0.22 1.68 822
Forgetron 96.36±0.06 0.72 175 86.62±0.15 1.91 822
Projectron 95.19±0.39 0.87 175 83.35±0.23 19.38 822
Projcetron++ 95.90±0.38 3.01 175 84.71±0.19 32.99 822
BPAS 96.83±0.23 1.77 175 91.23±0.05 2.21 822
BOGD 96.75±0.03 1.05 175 85.62±0.06 1.92 822
OSKL 96.98±0.43 0.71 177 92.07±0.37 1.37 825
SPA 97.05±0.13 0.56 175 91.59±0.35 1.31 822

covtype, β = 200 SUSY, β = 200

Algorithm Accuracy (%) Time #SVs Accuracy (%) Time #SVs
Perceptron 73.08±0.03 2861 156.0k 71.69±0.04 7298 283.2k
OGD 78.34±0.03 5113 296.7k 78.97±0.01 13648 491.7k
PA-I 78.18±0.05 4402 298.2k 78.96± 0.01 14715 507.2k
RBP 65.63±0.23 50.27 1,510 66.44±0.26 96.7 1933
Forgetron 65.33±0.22 67.60 1,510 66.31±0.33 131.5 1933
Projectron 57.82±6.09 316.05 1,510 54.46±0.10 4523.0 1933
Projcetron++ 59.33±5.85 470.35 1,510 60.01±1.62 3738.6 1933
BPAS 72.37±0.13 73.48 1,510 74.85±0.07 157.4 1933
BOGD 68.75±0.03 54.44 1,510 68.75±0.03 105.0 1933
OSKL 72.11±0.67 29.77 1,508 73.57± 0.47 74.3 1957
SPA 71.34±0.59 27.53 1,510 80.04± 0.34 49.2 1933

43

We then compare online classification accuracy of different algorithms. First,

the non-budget algorithms have better accuracy than their budget variants. This is

not surprising as the non-budget algorithms use a larger SV size. Second, com-

paring different budget algorithms, we found that PA and OGD based algorithms

(BPAS, BOGD, and SPA) generally outperform Perceptron-based algorithms (RBP,

Forgetron, Projectron, and Projectron++). Finally, our SPA algorithm achieves the

best accuracy among all the budget algorithms most of the cases and is compara-

ble to the OSKL algorithm. These results again validate the effectiveness of the

proposed budget learning strategy.

3.5.4 Parameter Sensitivity of α and β in SPA Evaluation

The proposed SPA algorithm has two critical parameters α and β which could con-

siderably affect the accuracy, support vector size and time cost. Our second ex-

periment is to examine how different parameters of α and β affect the learning

performance so as to give insights for how to choose them in practice. Figure 3.1

evaluates the performance (support vector size, time and accuracy) of the SPA al-

gorithm on the “a9a” dataset with varied α values ranging from 0.1 to 3, and varied

β in the range of {2.5, 5, 10, 20, 40}. Several observations can be drawn from the

experimental results.

First of all, when β is fixed, increasing α generally results in (i) larger support

vector size, (ii) higher time cost, but (iii) better classification accuracy, especially

when α is small. However, when α is large enough (e.g., α > 1.5), increasing α

has very minor impact to the performance. This is because the number of instances

whose hinge loss above α is relatively small. We also note that the accuracy de-

creases slightly when α is too large, e.g., α >= 3. This might be because some

(potentially noisy) instances with large loss are given a high chance of being as-

signed as SVs, which may harm the classifier due to noise. Thus, on this dataset

(“a9a”), it is easy to find a good α in the range of [1,2].

44

0 0.5 1 1.5 2 2.5 3
0

1000

2000

3000

4000

5000

6000

7000

8000

9000

α

#S
V

β=2.5
β=5
β=10
β=20
β=40

0 0.5 1 1.5 2 2.5 3
0

5

10

15

20

25

α

T
im

e
(s

)

β=2.5
β=5
β=10
β=20
β=40

(a) Number of support vectors (b) Time Cost (seconds)

0 0.5 1 1.5 2 2.5 3
77

78

79

80

81

82

83

84

α

A
cc

ur
ac

y
(%

)

β=2.5

β=5

β=10

β=20

β=40

(c) Accuracy (%)

Figure 3.1: The Impact of α and β on #SV, Time Cost and Accuracy by the Proposed
SPA Algorithm on “a9a”.

45

Second, when α is fixed, increasing β will result in (i) smaller support vector

size, (ii) smaller time cost, but (iii) worse classification accuracy. On one hand, β

cannot be too small as it will lead to too many support vectors and thus suffer very

high time cost. On the other than, β cannot be too large as it will considerably

decrease the classification accuracy. We shall choose β that yields a sufficiently

accurate classifier while minimizing the support vector size and training time cost.

For example, for this particular dataset, choosing β in the range of [5,10] achieves

a good trade-off between accuracy and efficiency/sparsity.

3.5.5 Evaluation of Output Classifiers on Test Data

Table 3.3: Evaluation of Final Classifiers for Test Data in SPA Evaluation (Time in
Seconds) .

a9a codrna
Algorithm Acc. (%) Time #SV Acc. (%) Time #SV
LIBSVM 85.04 97.8 11.5k 96.67 80.2 8.0k
Pegasos 84.66±0.21 15.8 11.0k 95.63±0.43 14.9 12.2k
BOGD 82.49±1.22 5.85 2,079 92.10±1.32 5.34 2,386
BPAS 82.11±0.83 7.59 2,079 93.12±2.01 6.98 2,386
OSKL-last 80.17±3.91 3.19 2,073 94.15±1.66 3.42 2,410
OSKL-avg 84.91±0.13 3.19 2,073 95.67±0.13 3.42 2,410
SPA-last 82.97±2.59 3.16 2,079 91.23±3.40 3.03 2,386
SPA-avg 84.88±0.10 3.16 2,079 96.05±0.09 3.03 2,386

KDD08 w7a
Algorithm Acc. (%) Time #SV Acc. (%) Time #SV
LIBSVM 99.39 577.3 14.6k 98.31 92.61 8.0k
Pegasos 99.50±0.01 976.8 81.8k 97.56±0.01 29.21 24.7k
BOGD 99.37±0.01 31.84 1,760 97.05±0.01 8.33 3,710
BPAS 99.22±0.29 37.48 1,760 97.75±0.40 13.95 3,710
OSKL-last 99.20±0.01 22.79 1,752 97.92±0.20 5.08 3,726
OSKL-avg 99.20±0.01 22.79 1,752 97.94±0.07 5.08 3,726
SPA-last 99.41±0.07 19.42 1,760 97.49±2.05 5.04 3,710
SPA-avg 99.46±0.01 19.42 1,760 97.97±0.04 5.04 3,710

A key advantage of SPA is that it assures the final output averaged classifier

is sparse, which is very important when applying the output classifier in real ap-

plications. This experiment thus is to examine if the final output classifier of SPA

is effective for batch classification. We evaluate two SPA classifiers: “SPA-last”

that simply outputs the classifier at the last iteration as the final classifier fT , and

46

“SPA-avg” that outputs the average of classifiers at every iteration, 1
T

∑T
t=1 ft.

We compare our algorithms with two state-of-the-art batch algorithms for SVM

classifications: (1) LIBSVM: a widely used and the most accurate solution of kernel

SVM for batch classification [5]; (2) Pegasos3[56]: an efficient stochastic gradien-

t descent solver for SVM, for which we adapt it for kernel learning. Moreover,

we compare our solutions with the output classifiers by two bounded kernel-based

online online algorithms: BOGD and BPAS, as they achieve the best among all

the existing algorithms in previous experiments. For these two algorithms, as their

average classifier is not sparse, we compare with their last classifiers.

To enable fair comparisons, all the algorithms follow the same setup for batch

classification. We conduct the experiments on 4 medium-scale datasets as used in

previous online experiments: “a9a”, “codrna”, “w7a” and “KDDCUP08” (the other

two large datasets were excluded due to too long training time by LIBSVM). We

use the original splits of training and test sets on the LIBSVM website. We adopt

the same Gaussian kernel with the same kernel parameter γ for all the algorithms.

We perform cross validation on the training set to search for the best parameters of

different algorithms. In particular, we search for the best kernel parameter γ in the

range of {25, 24, . . . , 2−5}, the parameter C of SVM in the range of {25, ...2−5},

both the regularization parameter λ in Pegasos and BOGD and the learning rate pa-

rameter η in BOGD and SPA in the range of {103, 102, . . . , 10−3}. For the proposed

SPA-last and SPA-avg, we set α = 1 and β = 5 for all the datasets.

Table 4.8 shows the results, where we only report the test set accuracy and train-

ing time (we exclude the test time as it is proportional to SV sizes). We can draw

some observations. First of all, in terms of training time, the budget algorithms run

much faster than LIBSVM and Pegasos, in which our SPA algorithm achieves the

lowest training time among all. Specifically, compared to batch algorithms, SPA

achieves the speedup of training time for about 20 to 30 times over LIBSVM, and

about 5 times over Pegasos.

3http://www.cs.huji.ac.il/ shais/code/

47

Second, by examining the test set accuracy, we found that LIBSVM always

achieves the best. The proposed SPA-avg algorithm achieves the best accuracy

among all the budget algorithms, which is slightly lower but fairly comparable to

LIBSVM, and even beats the accuracy of Pegasos that has almost 4 times more SVs

than our SPA algorithm. This promising result validates the efficacy of our SPA

algorithm for producing sparse and effective average classifier.

Third, we notice that BOGD, BPAS and SPA-last achieve similar test set accu-

racy, but their standard deviations are in general much larger than that of SPA-avg

for most cases. This shows that employing the averaged classifier with SPA for test

data classification leads to more accurate and more stable performance than many

budget learning algorithms that output the last classifier, which again validates the

advantage of our technique.

3.5.6 Experiments on Various Budget Sizes

In the previous experiments we compared many state-of-the-art online budget learn-

ing algorithms under fixed budget size. To be more convincing, in this subsection,

we show the “time vs accuracy” of all compared algorithms under varied SV size

setting in Figure 3.2.

The train and test splitting and parameter setting are identical to that used in

Table 3.3, except the β and B. We adopt various β and B values to show the

different performance of all algorithms under various SV’s set size. Finally, we plot

the accuracy on the same time axis for fair comparison. Several observation can be

drawn as follows:

First, for all algorithms, more support vectors (larger B, smaller β) result in

higher accuracy. Consequently, it is important for the learner to choose a proper

trade-off between efficiency and accuracy. Second, when comparing the “averaged

classifiers” (SPA-ave and OSKL-ave) and their corresponding “last classifiers”, we

find that the averaged classifiers always achieve higher accuracy which validates our

48

main motivation. Third, by comparing the accuracy between different algorithms,

we find our proposed algorithm, SPA-ave gets better accuracy than most of the com-

pared algorithms and sometimes comparable to that of OSKL. These observations

consist with that in Table 3.3.

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
76

77

78

79

80

81

82

83

84

85

Time Cost

A
cc

ur
ac

y

BOGD
BPAs
OSKL−last
OSKL−ave
SPA−last
SPA−ave

0 1 2 3 4 5
76

78

80

82

84

86

88

90

92

94

96

Time Cost

A
cc

ur
ac

y

BOGD
BPAs
OSKL−last
OSKL−ave
SPA−last
SPA−ave

(a) a9a (b) codrna

Figure 3.2: Evaluation of different budget single kernel algorithms on a9a and co-
drna data sets. The curves of online mistake rates vs time costs were obtained by
choosing varied budget values.

3.6 Discussion

To overcome the curse of kernelization in large-scale kernel methods, this section

proposed a novel framework of Sparse Passive Aggressive algorithm for bounded

kernel-based online learning. In contrast to traditional budget kernel algorithms that

only bound the number of support vectors at each iteration, our algorithm can out-

put a sparse final averaged classifier with bounded support vector size, making it

not only suitable for online learning tasks but also applicable to batch classifica-

tion tasks. The experimental results from both online and batch classification tasks

showed that the proposed method achieved a significant speedup over LIBSVM and

yielded sparse and more accurate classifiers than existing online kernel methods,

validating the efficacy, efficiency and scalability of the proposed technique.

49

Chapter 4

Online Kernel Learning by

Functional Approximation Methods

4.1 Introduction

In this section, we first present an online learning methodology to tackle online

binary classification tasks and then extend the technique to solve the tasks of online

multi-class classification and online regression in the following sections.

Recently, a wide variety of online learning algorithms have been proposed to

tackle online classification tasks. One popular family of online learning algorithm-

s, which are referred to as the “linear online learning” [49, 10, 19], learn a linear

predictive model on the input feature space. The key limitation of these algorithms

lies in that the linear model sometimes is restricted to make effective classification

only if training data are linearly separable in the input feature space, which is not a

common scenario for many real-world classification tasks especially when dealing

with noisy training data in relatively low dimensional space. This has motivated

the studies of “kernel based online learning” or referred to as “online kernel learn-

ing” [33, 22], which aims to learn kernel-based predictive models for resolving the

challenging tasks of classifying instances that are non-separable in the input space.

One key challenge of conventional online kernel learning methods is the un-

50

bounded number of SV’s. To address this challenge, a promising research direction

is to explore “budget online kernel learning” [11], as introduced in section 2.4. De-

spite being studied actively, the existing budget online kernel methods have some

limitations. Some efficient algorithms are too simple to achieve satisfactory approx-

imation accuracy; some other algorithms are, despite more effective, too computa-

tionally intensive to run for large datasets, making them harm the crucial merit of

high efficiency of online learning techniques for large-scale applications.

Unlike the existing budget online kernel learning methods, in this section, we

present a novel framework of large scale online kernel learning by exploring a com-

pletely different strategy. In particular, the key idea of our framework is to explore

functional approximation techniques to approximate a kernel by transforming data

from the input space to a new feature space, and then apply existing linear online

learning algorithms on the new feature space. This allows to inherit the power of

kernel learning while being able to take advantages of existing efficient linear online

learning algorithms for large-scale online learning tasks. Specifically, we propose

two different new algorithms: (i) Fourier Online Gradient Descent (FOGD) algo-

rithm which adopts the random Fourier features for approximating shift-invariant k-

ernels and learns the subsequent model by online gradient descent; and (ii) Nyström

Online Gradient Descent (NOGD) algorithm which employs the Nyström method

for large kernel matrix approximation followed by online gradient descent learning.

The rest of the section is organized as follows. Subsection 2 reviews the back-

ground and related work. Subsection 3 proposes the FOGD and NOGD algorithms

for binary classification task and Subsection 4 analyze their theoretical properties.

Subsection 5 and Subsection 6 further extends the two techniques for tackling on-

line multi-class classification and online regression tasks, respectively. Subsection

7 presents our experimental results for three different tasks and Subsection 8 con-

cludes our work.

51

4.2 Related Work

Our work is related to two major categories of machine learning research work:

online learning and kernel methods. Below we briefly review some representative

related work in each category.

First of all, our work is closely related to online learning methods for classifi-

cation [49, 22, 10, 81, 68, 30], particularly for budget online kernel learning where

various algorithms have been proposed to address the critical drawback of unbound-

ed SV size and computational cost in online kernel learning. Most existing budget

online kernel learning algorithms attempt to achieve a bounded number of SV’s

through the following major ways:

• SV Removal. They discard a SV when the number of SV’s reaches the budget.

Some well-known examples include RBP [3], Forgetron [16], BOGD and

BPA-S [71].

• SV Projection. By projecting the discarded SV’s onto the remaining ones,

these algorithms attempt to bound the SV size while reducing the loss due

to budget maintenance. Examples include Projectron [45], BPA-P, and BPA-

NN [71]. Despite achieving better accuracy, they often suffer extremely high

computational costs.

• SV Merging. These methods attempt to maintain the budget by merging t-

wo existing SV’s into a new one, such as the Twin Support Vector Machine

(TVM) algorithm [70]. The similar idea of SV merging was also explored to

bound the number of SV’s in BSGD-M algorithm in [69].

In contrast to the above approaches, our work explores a completely differen-

t approach, i.e., kernel functional approximation techniques, for resolving budget

online kernel learning tasks.

Moreover, our work is also related to kernel methods for classification tasks

[27, 29], especially for some studies on large-scale kernel methods [72, 47].

52

Our approach shares the similar idea with the Low-rank Linearization SVM

(LLSVM) [78], where the non-linear SVM is transformed into a linear problem

via kernel approximation methods. Unlike their approach, we employ the tech-

nique of random Fourier features [47], which have been successfully explored for

speeding up batch kernelized SVMs [78] and kernel-based clustering [7, 8] tasks.

Besides, another kernel approximation technique used in our approach is the well-

known Nyström method [72, 38], which has been widely applied in machine learn-

ing tasks, including Gaussian Processes [72], Kernelized SVMs [78], Kernel PCA,

Spectral Clustering [77], and manifold learning [61]. Although these techniques

have been applied for batch machine learning tasks, to the best of our knowledge,

they have been seldom explored for online kernel learning tasks as studied in this

section. Finally, we note that the short version of this work had been published in IJ-

CAI2013 [66]. This version has made significant extension by including substantial

amount of new contents and more extensive empirical studies.

4.3 Binary Classification

In this section, we introduce the problem formulation of online kernel binary clas-

sification and the detailed steps of our proposed algorithms.

4.3.1 Problem Formulation

We consider the problem of online learning for binary classification by following

online convex optimization settings. Our goal is to learn a function f : Rd →

R from a sequence of training examples {(x1, y1), . . . , (xT , yT)}, where instance

xt ∈ Rd and class label yt ∈ Y = {+1,−1}. We refer to the output f of the

learning algorithm as a hypothesis and denote the set of all possible hypotheses by

H = {f |f : Rd → R}. We will use `(f(x); y) : R2 → R as the loss function that

penalizes the deviation of estimating f(x) from observed labels y.

53

Training an SVM classifier f(x) can be formulated as the following optimiza-

tion problem

min
f∈Hκ

P (f) =
λ

2
‖f‖2

H +
1

T

T∑
t=1

`(f(xt); yt),

where λ > 0 is a regularization parameter used to control model complexity. While

in an pure online setting, the regularized loss in the t-th iteration is

Lt(f) =
λ

2
‖f‖2

H + `(f(xt); yt).

The goal of an online learning algorithm is to find a sequence of functions ft, t ∈ [T]

that achieve the minimum Regret along the whole learning process. The regret is

defined as,

Regret =
T∑
t=1

Lt(ft)−
T∑
t=1

Lt(f ∗),

where f ∗ = arg minf
∑T

t=1 Lt(f) is the optimal classifier assuming that we had

foresight in all the training instances. In a typical online budgeted kernel learning

algorithm, the algorithm learns the kernel-based predictive model f(x) for classify-

ing a new instance x ∈ Rd as follows:

f(x) =
B∑
i=1

αiκ(xi,x),

where B is the number of Support Vectors (SV’s), αi denotes the coefficient of the

i-th SV, and κ(·, ·) denotes the kernel function. The existing budget online kernel

classification approach aims to bound the number of SV’s by a budget constant B

using different budget maintenance strategies. Unlike the existing budget online

kernel learning methods using the budget maintenance strategies, we propose to

tackle the challenge by exploring a completely different strategy, i.e., the kernel

functional approximation approach that construct a kernel-induced new representa-

tion z(x) ∈ RD such that the inner product of instances in the new space is able to

54

approximate the kernel function:

κ(xi,xj) ≈ z(xi)
>z(xj).

By the above approximation, the predictive model can be rewritten:

f(x) =
B∑
i=1

αiκ(xi,x) ≈
B∑
i=1

αiz(xi)
>z(x) = w>z(x),

where w =
∑B

i=1 αiz(xi) denotes the weight vector to be learned in the new feature

space. As a consequence, solving the regular online kernel classification task can

be turned into a problem of an linear online classification task on the new feature

space derived from the kernel approximation. In the following, we will present

two online kernel learning algorithms for classification by applying two different

kernel approximation methods: (i) Fourier Online Gradient Descent (FOGD) and

(ii) Nyström Online Gradient Descent (NOGD) methods.

4.3.2 Fourier Online Gradient Descent

Random Fourier features can be used in shift-invariant kernels [47]. A shift-

invariant kernel is the kernel that can be written as κ(x1,x2) = k(∆x), where k is

some function and ∆x = x1 − x2 is the shift between the two instances. Examples

of shift-invariant kernels include some widely used kernels, such as Gaussian and

Laplace kernels. By performing an inverse Fourier transform of the shift-invariant

kernel function, one can obtain:

κ(x1,x2) = k(x1 − x2) =

∫
p(u)eiu

>(x1−x2)du, (4.1)

where p(u) is a proper probability density function calculated from the Fourier

transform of function k(∆x),

p(u) = (
1

2π
)d
∫
e−iu

>(∆x)k(∆x)d(∆x). (4.2)

55

More specifically, for a Gaussian kernel κ(x1,x2) = exp(−‖x1−x2‖22
2σ2), we have

the corresponding random Fourier component u with the distribution p(u) =

N (0, σ−2I). And for a Laplacian kernel κ(x1,x2) = exp(− ||x1−x2||1
σ

), we have

p(u) = σΠd
1

π(1+σ2u2d)
. Given a kernel function that is continuous and positive-

definite, according to the Bochner’s theorem [52], the kernel function can be ex-

pressed as an expectation of function with a random variable u:

∫
p(u)eiu

>(x1−x2)du = Eu[eiu
>x1 · e−iu>x2] (4.3)

= Eu[cos(u>x1) cos(u>x2) + sin(u>x1) sin(u>x2)]

= Eu[[sin(u>x1), cos(u>x1)] · [sin(u>x2), cos(u>x2)]].

The equality (4.1) can be obtained by only keeping the real part of the complex func-

tion. From (4.3), we can see any shift-invariant kernel function can be expressed by

the expectation of the inner product of the new representation of original data, where

the new data representation is z(x) = [sin(u>x), cos(u>x)]>. As a consequence,

we can sample D number of random Fourier components u1, ...uD independently

for constructing the new representation as follows:

z(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx))>.

The online kernel learning task in the original input space can thus be approx-

imated by solving a linear online learning task in the new feature space. For data

arriving sequentially, we can construct the new representation of a data instance

on-the-fly, and then perform online learning in the new feature space using the on-

line gradient descent algorithm. We refer to the proposed algorithm as the Fourier

Online Gradient Descent (FOGD), as summarized in Algorithm 8.

56

Algorithm 8 FOGD — Fourier Online Gradient Descent for Binary Classification
Input: the number of Fourier components D, step size η, kernel function k;
Initialize w1 = 0.
Calculate p(u) for kernel k as (4.2).
Generate random Fourier components: u1, ...,uD sampled from distribution p(u)

for t = 1, 2, . . . , T do
Receive xt;
Construct new representation:
zt(xt) = (sin(u>1 xt), cos(u

>
1 xt), ..., sin(u

>
Dxt), cos(u

>
Dxt))

>

Predict ŷt = sgn(w>t z(xt));
Receive yt and suffer loss `

(
w>t z(xt); yt

)
;

if `
(
w>t z(xt); yt

)
> 0 then

wt+1 = wt − η∇`
(
w>t z(xt); yt

)
.

end if
end for

Algorithm 9 NOGD — Nyström Online Gradient Descent for Binary Classification
Input: the budget B, step size η, rank approximation k.
Initialize support vector set S1 = ∅, and model f1 = 0.
while |St| < B do

Receive new instance xt;
Predict ŷt = sgn(ft(xt));
Update ft by regular Online Gradient Descent (OGD);
Update St+1 = St ∪ {t} whenever loss is nonzero;
t = t+ 1;

end while
Construct the kernel matrix K̂t from St.
[Vk,Dk] = eigs(K̂t, k), where Vk and Dk are Eigenvectors and Eigenvalues of
K̂t.
Initialize w>t = [α1, ..., αB](D−0.5

k V>k)−1.
Initialize the instance index T0 = t;
for t = T0, . . . , T do

Receive new instance xt;
Construct the new representation of xt:
z(xt) = D−0.5

k V>k (κ(xt, x̂1), ..., κ(xt, x̂B))>.
Predict ŷt = sgn(w>t z(xt));
Update wt+1 = wt − η∇`

(
w>t z(xt); yt

)
.

end for

57

4.3.3 Nyström Online Gradient Descent

The above random Fourier feature based approach attempts to approximate the ker-

nel function explicitly, which is in general data independent for the given dataset and

thus may not fully exploit the potential of data distribution for kernel approximation.

To address this, we propose to explore the Nyström method [72] to approximate a

large kernel matrix by a data-dependent approach.

Before presenting the method, we first introduce some notations. We denote

a kernel matrix by K ∈ RT×T with rank r, the Singular Value Decomposition

(SVD) of K as K = VDV>, where the columns of V are orthogonal and D =

diag(σ1, . . . , σr,) is diagonal. For k < r, Kk =
∑k

i=1 σiViV
>
i = VkDkV

>
k is the

best rank-k approximation of K, where Vi is the i-th column of matrix V.

Given a large kernel matrix K ∈ RT×T , the Nyström method randomly samples

B � T columns to form a matrix C ∈ RT×B, and then derive a much smaller kernel

matrix W ∈ RB×B based on the sampled B instances. We can in turn approximate

the original large kernel matrix by

K̂ = CW+
kC

> ≈ K, (4.4)

where Wk is the best rank-k approximation of W, W+ denotes the pseudo inverse

of matrix W.

We now apply the above Nyström based kernel approximation to tackle large-

scale online kernel classification task. Similar to the previous approach, the key idea

is to construct the new representation for every newly arrived data instance based on

the kernel approximation principle. In particular, we propose the following scheme:

(i) at the very early stage of the online classification task, we simply run any existing

online kernel learning methods (e.g., kernel-based online gradient descent in our

approach) whenever the number of SV’s is smaller than the predefined budget B;

(ii) once the budget is reached, we then use the stored B SV’s to approximate the

kernel value of any new instances (which is equivalent to using the first B columns

58

to approximate the whole kernel matrix). From the approximated kernel matrix in

(4.4), we could see the kernel value between i-th instance xi and j-th instance xj is

approximated by the following

κ̂(xi,xj) = (CiVkD
− 1

2
k)(CjVkD

− 1
2

k)>

= ([κ(x̂1,xi), ..., κ(x̂B,xi)]VkD
− 1

2
k)(κ(x̂1,xj), ..., κ(x̂B,xj)VkD

− 1
2

k)>,

where x̂a, a ∈ {1, ..., B} is the a-th support vector.

For a new instance, we construct the new representation as follows:

z(x) = ([κ(x̂1,x), ..., κ(x̂B,x)]VkD
− 1

2
k)>.

Similarly, we can then apply the existing online gradient descent algorithm to learn

the linear predictive model on the new feature space induced from the kernel. We

denote the proposed algorithm the Nyström Online Gradient Descent (NOGD), as

summarized in Algorithm 9. Different from the FOGD algorithm, the algorithm

follows the kernelized online gradient descent until the number of SV’s reaches B.

To initialize the linear classifier w, we aim to achieve

w>z(x) = [α1, ..., αB][κ(x̂1,x), ..., κ(x̂B,x)]>,

thus

w>D
− 1

2
k V>k [κ(x̂1,x), ..., κ(x̂B,x)]> = [α1, ..., αB][κ(x̂1,x), ..., κ(x̂B,x)]>.

The solution is

w>D
− 1

2
k V>k = [α1, ..., αB]; w> = [α1, ..., αB](D

− 1
2

k V>k)−1.

4.3.4 Theoretical Analysis

In this section, we analyze the theoretical properties of the two proposed algorithms.

59

Theorem 1. Assume we have a shift-invariant kernel κ(x1,x2) = k(x1−x2), where

k is some function and the original data is contained by a ball Rd of diameter R.

Let `(f(x); y) : R2 → R be a convex loss function that is Lipschitz continuous

with Lipschitz constant L. Let wt, t ∈ [T] be the sequence of classifiers generated

by FOGD in Algorithm 8. Then, for any f ∗(x) =
∑T

t=1 α
∗
tκ(x,xt), we have the

following with probability at least 1− 28(σpR
ε

)2 exp(−Dε
2

4(d+2)
),

T∑
t=1

`t(wt)−
T∑
t=1

`t(f
∗) ≤ (1 + ε)‖f ∗‖2

1

2η
+
η

2
L2T + εLT‖f ∗‖1,

where ‖f ∗‖1 =
∑T

t=1 |α∗t |, σ2
p = Ep[u

>u] is the second moment of the Fourier

transform of the kernel function k given that p(u) is the probability density function

calculated by the Fourier transform of function k.

Proof. Given f ∗(x) =
∑T

t=1 α
∗
tκ(x,xt), according to the representer theorem [54],

we have a corresponding linear model: w∗ =
∑T

t=1 α
∗
tz(xt), where

z(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx))>.

The first step to prove our theorem is to bound the regret of our sequence of linear

model wt learned by our online learner with respect to the linear model w∗ in the

new feature space. First of all, we have the following:

‖wt+1 −w∗‖2 = ‖wt − η∇`t(wt)−w∗‖2

=‖wt −w∗‖2 + η2‖∇`t(wt)‖2 − 2η∇`t(wt)(wt −w∗).

Combining the above and the convexity of the loss function, i.e.,

`t(wt)− `t(w∗) ≤ ∇`t(wt)(wt −w∗),

we then have the following

`t(wt)− `t(w∗) ≤
‖wt −w∗‖2 − ‖wt+1 −w∗‖2

2η
+
η

2
‖∇`t(wt)‖2.

60

Summing the above over t = 1, ..., T leads to:

T∑
t=1

(`t(wt)− `t(w∗))

≤‖w1 −w∗‖2 − ‖wT+1 −w∗‖2

2η
+
η

2

T∑
t=1

‖∇`t(wt)‖2

≤‖w
∗‖2

2η
+
η

2
L2T.

Next we further examine the relationship between
∑T

t=1 `t(w
∗) and

∑T
t=1 `t(f

∗).

According to the uniform convergence of Fourier features (Claim 1 in [47]), we have

the high probability bound for the difference between the approximated kernel val-

ue and the true kernel value, i.e., with probability at least 1− 28(σpR
ε

)2 exp(−Dε
2

4(d+2)
),

where σ2
p = Ep[u

>u] is the second moment of the Fourier transform of the ker-

nel function k given that p(u) is the probability density function calculated by the

Fourier transform of function k. We have ∀i, j

|z(xi)
>z(xj)− κ(xi,xj)| < ε.

Since we assume κ(xi,xj) ≤ 1, we can assume z(xi)
>z(xj) ≤ 1 + ε, which lead

to:

‖w∗‖2 ≤ (1 + ε)‖f ∗‖2
1. (4.5)

When |z(xi)
>z(xj)− κ(xi,xj)| < ε, we have

|
T∑
t=1

`t(w
∗)−

T∑
t=1

`t(f
∗)| ≤

T∑
t=1

|`t(w∗)− `t(f ∗)|

≤
T∑
t=1

L
T∑
i=1

|α∗i ||z(xi)
>z(xt)− κ(xi,xt)|

≤
T∑
t=1

Lε
T∑
i=1

|α∗i | = εLT‖f ∗‖1. (4.6)

Combining (4.5), (4.5) and (4.6) leads to complete the proof.

Remark 1. In general, the larger the dimensionality D, the higher the probability

of the bound to be achieved. This means that by sampling more random Fourier

61

components, one can approximate the kernel function more accurately and effec-

tively. From the above theorem, it is not difficult to show that, by setting η = 1√
T

and ε = 1√
T

, we have

T∑
t=1

`t(wt)−
T∑
t=1

`t(f
∗) ≤ (

2‖f ∗‖1 + L2

2
+ L‖f ∗‖1)

√
T ,

which leads to a sub-linear regretO(
√
T). However, setting ε = 1√

T
requires to sam-

ple D = O(T) random components in order to achieve a high probability, which

seems unsatisfactory since we will have to solve a very high-dimensional linear on-

line learning problem. However, even in this case, for our FOGD algorithm, the

learning time cost for each instance is O(c1T), while the time cost for classifying

an instance by regular online kernel classification is O(c2T), here c1 is the time

for a scalar product by FOGD, while c2 is the time for computing the kernel func-

tion. Since c2 � c1, our method is still much faster than the regular online kernel

classification methods.

Remark 2. This theorem bounds the regret for any shift-invariant kernel. Specially,

we can get the bound for a Gaussian kernel k(x1 − x2) = exp(−γ||x1 − x2||2), by

setting σ2
p = 2dγ [47].

The theoretical analysis for the NOGD algorithm follows the similar procedure

as used by the FOGD algorithm. We first introduce a lemma to facilitate our regret

bound analysis.

Lemma 1. P (f) = λ
2
‖f‖2

H + 1
T

∑T
t=1 `t(f) is the objective function of an SVM

problem, where `t(f) is the hinge loss function of the t-th iteration. Define f ∗ to be

the optimal solution when using the exact kernel matrix K and fN as the optimal

when adopting the Nyström approximated kernel matrix K̂. We have

P (fN)− P (f ∗) ≤ 1

2Tλ
||K− K̂||2,

where ‖K− K̂‖2 is the spectral norm of the kernel approximation gap.

62

This lemma mainly follows the Lemma 1 in [75], we omit the proof for concise-

ness.

Theorem 2. Assume we learn with kernel κ(xi,xj) ≤ 1, ∀i, j ∈ [T]. Let

`(f(x); y) : R2 → R be the hinge loss function. Let the sequence of T instances

x1, ...,xT form a kernel matrix K ∈ RT×T , and K̂ is the approximation of K using

Nyström method. Let ft(x) = w>t z(x), t ∈ [T] be the sequence of classifiers gener-

ated by NOGD in Algorithm 9. We assume the norm of the gradients in all iterations

are always bounded by a constant L, which is easy to achieve by a few projection

steps when necessary. In addition, define fN(x) = w>Nz(x) be the optimal classifi-

er when using Nyström kernel approximation and assuming we had foresight for all

instances. By defining f ∗ as the optimal classifier in the original kernel space with

the assumption of the foresight for all the instances, we have the following:

T∑
t=1

Lt(wt)−
T∑
t=1

Lt(f ∗) ≤
‖wN‖2

2η
+
η

2
L2T +

1

2λ
||K− K̂||2.

Proof. Following the similar analysis as in Theorem 1, the regularized loss function

in the t-th iteration, Lt(w) = λ
2
||w||22 + `t(w) satisfies the following bound,

T∑
t=1

(Lt(wt)− Lt(wN)) ≤ ‖wN‖2

2η
+
η

2
L2T.

As proven in [75], the linear optimization problem in z(x) space, i.e., P (w) =

λ
2
||w||22 + 1

T

∑T
t=1 `t(w) is equivalent to the approximated SVM P (f) = λ

2
||f ||2H +

1
T

∑T
t=1 `t(f) when f ∈ HN is the functional space of Nyström method. From

Lemma 1, we have,

T∑
t=1

Lt(wN) =
T∑
t=1

Lt(fN) = TP (fN)

≤TP (f ∗) +
1

2λ
||K− K̂||2 =

T∑
t=1

L(f ∗) +
1

2λ
||K− K̂||2.

We complete the proof by combining the above two formulas.

63

Remark. As shown in Theorem 5 of [75], the kernel approximation gap ||K −

K̂||2 ≤ O(T
B

). Consequently when setting B =
√
T and η = 1√

T
, we have

T∑
t=1

Lt(wt)−
T∑
t=1

L(f ∗) ≤ O(
√
T).

This theorem bounds the regret of the NOGD algorithm when using all singular

values of matrix W but only O(
√
T) support vectors. However, when the rank of

the Nyström approximated matrix K̂ is only k, the bound should be slightly worse.

As [9](Theorem 1) shows, the following holds with probability at least 1− ε,

‖K̂−K‖2 ≤ ‖K−Kk‖2 +
T√
B
Kmax(2 + log

1

ε
),

where ‖K − Kk‖2 is the spectral norm of the best rank-k approximated gap and

Kmax is the maximum diagonal entry of K. This indicates that to get the O(
√
T)

regret bound, we should set the budget size B = T/c, where c is some constant.

This seems suboptimal, but we will demonstrate that only a small budget size is

needed for satisfactory performance in our experimental results. In addition, the

time cost of using k-rank approximation is only k/B times of that when using all

singular values, which makes the algorithm extremely efficient.

4.4 Multi-class Classification

In this section, we extend the proposed Fourier Online Gradient Descent and Nys-

tröm Online Gradient Descent methods, which are originally designed for binary

classification, to online multi-class classification task. We also give theoretical anal-

ysis of the two approaches.

4.4.1 Problem Settings

Similar to online binary classification tasks, online multi-class classification is per-

formed over a sequence of training examples (xt, yt), t = 1, . . . , T , where xt ∈ Rd

64

is the observed features of the t-th training instance. Unlike binary classification

where class label yt ∈ Y = {+1,−1}, in a multi-class classification task, each

label belongs to a finite set Y of size m > 2, i.e., yt ∈ Y = {1, . . . ,m}. The true

class label yt is only revealed after the prediction ŷt ∈ Y is made.

We follow the protocol of multi-prototype classification for deriving multi-class

online learning algorithm [10]. Specifically, it learns a function f r : Rd → R

for each of the classes r ∈ Y . During the t-th iteration, the algorithm predicts a

sequence of scores for the classes:

(
f 1
t (xt), . . . , f

m
t (xt)

)
.

The predicted class is set to be the class with the highest prediction score:

ŷt = arg max
r∈Y

f rt (xt). (4.7)

We then define st as the irrelevant class with the highest prediction score:

st = arg max
r∈Y,r 6=yt

f rt (xt).

The margin with respect to the hypothesis in the t-th iteration is defined to be the

gap between the prediction score of class yt and st:

γt = f ytt (xt)− f stt (xt).

Obviously, in a correct prediction, the margin γt > 0. However, as stated in [10], we

are not satisfied by a positive margin value and thus we define a hinge-loss function:

`
(
ft,xt, yt

)
= max(0, 1− γt),

where f t denotes the set of all m functions for all classes.

65

4.4.2 Multi-class Fourier Online Gradient Descent

As introduced in the previous section for binary classification task, the online multi-

class kernel classification task in the original input space can also be approximated

by solving a linear online learning task in the new feature space. First, we use the

same Fourier feature mapping approach as in the binary case to map each input

instance xt to z(xt). Then Online Gradient Descent method is applied to learn a

linear classifier.

Following the multi-class problem setting, we learn a weight vector wr ∈ Rd

for each of the classes r ∈ Y . And use the linear classifier f r(xt) = wr · z(xt)

to approximate to kernel prediction score. During the t-th iteration, the algorithm

predicts a sequence of scores for the m classes:

(
w1
t · z(xt), . . . ,w

m
t · z(xt)

)
.

We define the hinge-loss function as following:

`
(
wt,xt, yt

)
= max(0, 1− γt) = max(0, 1−wyt

t · z(xt) + wst
t · z(xt)),(4.8)

where wt denotes the set of all m weight vectors.

Following the Online Gradient Descent approach, the update strategy of wt

when ` > 0 is:

wr
t+1 = wr

t − η∇`
(
wt,xt, yt

)
,

where η is a positive learning rate parameter and the gradient is taken with regards

to wr
t . By rewriting the loss function explicitly, we can rewrite the above as follows:

wyt
t+1 = wyt

t + ηz(xt); (4.9)

wst
t+1 = wst

t − ηz(xt). (4.10)

Only two of the weight vectors are updated during each iteration. Thus, we can

66

derive the FOGD algorithm for multi-class versions, as summarized in Algorithm

10.

4.4.3 Multi-class Nyström Online Gradient Descent

Similar to the binary task, in the first a few iterations of multi-class online Nys-

tröm algorithm (before the size of SV set reaches the predetermined budget size B),

the algorithm performs a regular Online Gradient Descent update to the m kernel

classifiers when ` > 0:

f rt+1 = f rt − η∇`
(
f t,xt, yt

)
,

where η > 0 is the gradient descent step size and the gradient is taken with regard

to f rt . By rewriting the loss function explicitly, we have

f ytt+1 = f ytt + ηκ(xt, ·); (4.11)

f stt+1 = f stt − ηκ(xt, ·). (4.12)

Therefore, we need to store a SV set S and update it when necessary: St+1 = St ∪

{t}. Note that all the m classifiers share the same SV set, which is the same setting

as that of binary case. However, the storage strategy for αi, i.e., the coefficient of the

i-th SV, is different from that of binary case. In multi-class task, a vector αi ∈ Rm

is used to represent the coefficients of the i-th SV. Each of its element αri is the

coefficient of the i-th SV for the kernel classifier f r. Obviously, αri = 0 if r 6= yt

and r 6= st.

After the size of SV set reaches the budget B, we do a Nyström feature map-

ping as the approach discussed in the binary section to map each input instance xt

to z(xt). The following linear update steps follow that in the multi-class Fourier

Gradient Descent algorithm, as equation (4.9) and (4.10).

We derive the NOGD algorithm for multi-class version, as summarized in Al-

67

Algorithm 10 MFOGD — Multi-class Fourier Online Gradient Descent
Input: the number of Fourier components D, step size η, kernel function k;
Initialize wr

1 = 0, r = 1, ...,m.
Calculate p(u) for kernel k as (4.2).
Generate random Fourier components: u1, ...,uD sampled from distribution
p(u).
for t = 1, 2, . . . , T do

Receive xt;
Construct new representation:
z(xt) = (sin(u>1 xt), cos(u

>
1 xt), ..., sin(u

>
Dxt), cos(u

>
Dxt))

>

Predict as in (4.7);
Receive yt and suffer loss `

(
wt,xt, yt

)
(4.8);

if `
(
wt,xt, yt

)
> 0 then

update wt as (4.9) and (4.10)
end if

end for

Algorithm 11 MNOGD — Multi-class Nyström Online Gradient Descent
Input: the budget B, step size η, rank approximation k.
Initialize support vector set S1 = ∅, and model f r1 = 0, r = 1, ...,m.
while |St| < B do

Receive xt;
Predict as in (4.7);
Update ft by regular Online Gradient Descent (OGD), as (4.11) and (4.12);
Update St+1 = St ∪ {t} whenever loss is nonzero;
t = t+ 1;

end while
Construct the kernel matrix K̂t from St.
[Vk,Dk] = eigs(K̂t, k), where Vk and Dk are Eigenvectors and Eigenvalues of
K̂t.
Initialize wr

t
> = [αr1, ..., α

r
B](D−0.5

k V>k)−1, r = 1, ...,m.
Initialize the instance index T0 = t;
for t = T0, . . . , T do

Receive xt;
Construct the new representation of xt:
z(xt) = D−0.5

k V>k (κ(xt, x̂1), ..., κ(xt, x̂B))>.
Predict as in (4.7);
Update wt as (4.9) and (4.10)

end for

68

gorithm 11.

4.4.4 Theoretical Analysis

In this section, we analyze the theoretical properties of the two proposed multi-class

algorithms. We may use `t(f) instead of `(f,xt, yt) for simplicity.

Theorem 3. Assume we have a shift-invariant kernel κ(x1,x2) = k(x1−x2), where

k is some function and the original data is contained by a ball Rd of diameterR. Let

`
(
f,x, y

)
be the hinge-loss we talked above, where f denotes the set ofm classifiers

for the m classes and its output is a sequence of prediction scores. Let wt, t ∈ [T]

be the sequence of classifiers generated by MFOGD in Algorithm 10. Then, for any

f r∗ (x) =
∑T

t=1 α
r∗
t κ(x,xt), r ∈ {1, ...,m}, we have the following with probability

at least 1− 28(σpR
ε

)2 exp(−Dε
2

4(d+2)
)

T∑
t=1

`t(wt)−
T∑
t=1

`t(f∗) ≤
m(1 + ε)‖f∗‖2

1

2η
+ ηTD + 2Tε‖f∗‖1,

where ‖f∗‖1 =
∑T

t=1 maxr∈Y |αr∗t |, and σ2
p = Ep[u

>u] is the second moment of the

Fourier transform of the kernel function k given that p(u) is the probability density

function calculated by the Fourier transform of function k.

Proof. Given f r∗ (x) =
∑T

t=1 α
r∗
t κ(x,xt), r = 1, ...m, according to the Representer

Theorem [54], we have a corresponding linear model: wr
∗ =

∑T
t=1 α

r∗
t z(xt), where

z(x) = (sin(u>1 x), cos(u>1 x), ..., sin(u>Dx), cos(u>Dx))>.

The first step to prove our theorem is to bound the regret of the sequence of linear

models wt learned by online learner with respect to the linear model w∗ in the new

feature space. We first have

‖wr
t+1 −wr

∗‖2 − ‖wr
t −wr

∗‖2 = ‖wr
t −wr

∗ + βrt z(xt)‖2 − ‖wr
t −wr

∗‖2

=(βrt)
2‖z(xt)‖2 + 2βrt (w

r
t · z(xt)−wr

∗ · z(xt)),

where βrt is the parameter used to update wr
t as (4.9) and (4.10). Thus, it may be η,

69

−η, or 0. Obviously, ‖z(xt)‖2 = D. We first assume that `t(wt) > 0 and there are

updates in the t-th iteration. Summing the above over r = 1, ...,m, we have

m∑
r=1

(
‖wr

t+1 −wr
∗‖2 − ‖wr

t −wr
∗‖2
)

=2η2D + 2η(wyt
t · z(xt)−wst

t · z(xt))− 2η(wyt
∗ · z(xt)−wst

∗ · z(xt)),

where yt is the true label in the t-th iteration and st is the label of the largest scored

irrelevant label classified by the classifier set wt, not by the classifier set w∗. Thus

we have:

wyt
t · z(xt)−wst

t · z(xt) = γw,t wyt
∗ · z(xt)−wst

∗ · z(xt) ≥ γw∗,t.

As we have assumed `t(wt) > 0, we have `t(wt) = 1−γw,t. And from the fact that

`t(w∗) ≥ 1− γw∗,t, we have:

γw,t − γw∗,t ≤ 1− `t(wt)− (1− `t(w∗)) = `t(w∗)− `t(wt).

Combining the three formula above, we get

`t(wt)− `t(w∗) ≤ ηD +

∑m
r=1 ‖wr

t −wr
∗‖2 −

∑m
r=1 ‖wr

t+1 −wr
∗‖2

2η
.

Note that in some iterations, `t(wt) = 0 and there is no update in the t-th iteration,

i.e., wr
t = wr

t+1. The above formula still holds. Summing it over t = 1, ...T and

assuming wr
1 = 0 for all r = 1, ...,m leads to:

T∑
t=1

`t(wt)−
T∑
t=1

`t(w∗) ≤ ηTD +

∑m
r=1 ‖wr

∗‖2

2η
. (4.13)

Next we further examine the relationship between
∑T

t=1 `t(w∗) and
∑T

t=1 `t(f∗).

According to the uniform convergence of Fourier features (Claim 1 in [47]), we have

the high probability bound for the difference between the approximated kernel val-

ue and the true kernel value, i.e., with probability at least 1− 28(σpR
ε

)2 exp(−Dε
2

4(d+2)
),

where σ2
p = Ep[u

>u] is the second moment of the Fourier transform of the ker-

nel function k given that p(u) is the probability density function calculated by the

70

Fourier transform of function k. We have ∀i, j

|z(xi)
>z(xj)− κ(xi,xj)| < ε.

Similar to the binary case:

m∑
r=1

‖wr
∗‖2 ≤ m‖f∗‖2

1(1 + ε). (4.14)

When |z(xi)
>z(xj)− κ(xi,xj)| < ε, we have

|
T∑
t=1

`t(w∗)−
T∑
t=1

`t(f∗)| ≤
T∑
t=1

|`t(w∗)− `t(f∗)| ≤
T∑
t=1

L|γw∗,t − γf∗,t|

=
T∑
t=1

|
T∑
i=1

(αyt∗i z(xi)
>z(xt)− αst∗i z(xi)

>z(xt))

−
T∑
i=1

(αyt∗i κ(xi,xt)− α
s′t∗
i κ(xi,xt))|

≤
T∑
t=1

(T∑
i=1

|αyt∗i z(xi)
>z(xt)− αyt∗i κ(xi,xt)|

+
T∑
i=1

|αst∗i z(xi)
>z(xt)− α

s′t∗
i κ(xi,xt)|

)
,

where L in the first line is the Lipschitz constant and can be set to 1 in hinge

loss case, and st is the largest scored irrelevant label with regards to w∗ and

s′t with regard to f∗. Thus the bound of the first term is easy to find and

we will focus on the second term. Without loss of generality, we assume

αst∗i z(xi)
>z(xt) ≥ α

s′t∗
i κ(xi,xt). According to the definition of st and s′t,

α
s′t∗
i κ(xi,xt) > αst∗i κ(xi,xt), leading to:

|αst∗i z(xi)
>z(xt)− α

s′t∗
i κ(xi,xt)| ≤ |αst∗i

(
z(xi)

>z(xt)− κ(xi,xt)
)
| ≤ |αst∗i |ε.

Consequently, we have

|
T∑
t=1

`t(w∗)−
T∑
t=1

`t(f∗)| ≤ 2Tε‖f∗‖1. (4.15)

Combining (4.13), (4.14) and (4.15) leads to complete the proof.

71

Similar to the analysis of the binary classification case, it is not difficult to ob-

serve that the proposed MFOGD algorithm also achieves sub-linear regret O(
√
T).

We will continue the analysis of MNOGD method in the following. As in the binary

analysis, we first propose a lemma that bounds the gap of averaged loss between the

exact kernel SVM and approximated kernel SVM. Unlike the binary classification

problem, there are many different problem settings for the multi-class SVM prob-

lem, as surveyed by [31]. For consistency, in the following analysis, we adopt the

common slack variables for all classes setting [13, 14].

Lemma 2. P (f) = λ
2

∑m
r=1 ‖f r‖2

H + 1
T

∑T
t=1 `t(f) is the objective function of an

multi-class SVM problem, where `t(f) is the multi-class hinge loss function of the t-

th iteration. Define f ∗ as the optimal solution of P (f) when using the exact kernel

matrix K and fN as the optimal solution of SVM algorithm when adopting the

Nyström approximated kernel matrix K̂. We have

P (fN)− P (f ∗) ≤ m

2Tλ
||K− K̂||2,

where ‖K− K̂‖2 is the spectral norm of the kernel approximation gap.

Proof. The dual problem of multi-class SVM is

maxP (α) = − 1

2λ

m∑
r=1

α>r Kαr −
m∑
r=1

α>r er,

s.t.

m∑
r=1

αt,r = 0, ∀t ∈ {1, 2, ..., T};

αt,r ≤ 0, if yt 6= r, αt,r ≤
1

T
, if yt = r, ∀t ∈ {1, 2, ..., T}, ∀r ∈ {1, 2, ...m}

where αr = [α1,r, α2,r, ..., αT,r]
>, er = [e1,r, e2,r, ..., eT,r]

> and et,r = 0 if yt = r,

otherwise et,r = 1.

We can get the dual problem of the Nyström approximated multi-class SVM by

72

replacing the kernel matrix K with K̂.

P (fN) = max

[
− 1

2λ

m∑
r=1

α>r K̂αr −
m∑
r=1

α>r er

]

= max

[
− 1

2λ

m∑
r=1

α>r (K̂−K + K)αr −
m∑
r=1

α>r er

]

= max

[
1

2λ

m∑
r=1

α>r (K− K̂)αr

]
+ max

[
− 1

2λ

m∑
r=1

α>r Kαr −
m∑
r=1

α>r er

]
.

Consequently,

P (fN)− P (f ∗) ≤ max
1

2λ

m∑
r=1

α>r (K− K̂)αr ≤ max
m∑
r=1

1

2λ
||αr||22||K− K̂||2.

We complete the proof by considering |αt,r| ≤ 1
T

.

Theorem 4. Assume we learn with kernel κ(xi,xj) ≤ 1, ∀i, j ∈ [T]. Let

`(f(x); y) : R2 → R be the multi-class hinge loss function. Let the sequence of

T instances x1, ...,xT form a kernel matrix K ∈ RT×T , and K̂ is the approximation

of K using Nyström method . Let f rt (x) = w>t,rz(x), t ∈ [T], r ∈ {1, 2, ...,m} be

the sequence of classifiers generated by NOGD in Algorithm 11. We assume the

norm of the gradients in all iterations are always bounded by a constant L, which

is easy to achieve by a few projection steps when necessary. In addition, define

f rN(x) = w>N,rz(x), r ∈ {1, 2, ...,m} be the optimal classifier when using Nyström

kernel approximation and assuming we had foresight for all instances. By defining

f
∗

as the optimal classifier in the original kernel space with the assumption of the

foresight for all the instances, we have the following:

T∑
t=1

Lt(wt)−
T∑
t=1

Lt(f ∗) ≤
m∑
r=1

‖wN,r‖2

2η
+
η

2
L2T +

m

2λ
||K− K̂||2.

This theorem is a combination of standard online gradient descent analysis and

Lemma 2. The proof is omitted since it is similar to the binary analysis and straight-

forward. It’s easy to find that the multi-class NOGD algorithm enjoys the similar

73

regret bound as the binary algorithm.

4.5 Regression

In this section, we extend the proposed FOGD and NOGD algorithms to tackle

online regression tasks. Consider a typical online regression task with a sequence

of instances (xt, yt), t = 1, ..., T , where xt ∈ Rd is the feature vector of the t-

th instance and yt ∈ R is the real target value, which is only revealed after the

prediction is made at each iteration. The goal of online kernel regression task is to

learn a model f(x) that maps a new input instance x ∈ Rd to a real value prediction:

f(x) =
B∑
i=1

αiκ(xi,x).

We apply the squared loss as the evaluation metric of regression accuracy:

`(f(xt); yt) = (f(xt)− yt)2.

As the same approximation strategy with the previous task, with a feature mapping

function z(x), the kernel regression task can be tackled by solving its approximated

problem: to find a linear model f(x) = w>z(x) that minimizes the accumulated

squared loss of all the training instances. We use online gradient descent algorithm

in this new feature space. In order to reduce the frequency of update, we define ε

as the threshold. Update is only performed when the loss exceeds threshold ε. We

denote the proposed algorithms the FOGD for Regression (FOGD-R) and NOGD

(NOGD-R) for regression tasks, as summarized in Algorithm 12 and Algorithm 13.

We omit the theoretical analysis of regression since it is similar to the binary

case.

74

Algorithm 12 FOGD-R — Fourier Online Gradient Descent for Regression
Input: the number of Fourier components D, step size η, threshold ε;
Initialize w1 = 0.
Calculate p(u) as (4.2). Generate random Fourier components:u1, ...,uD sam-
pled from distribution p(u).
for t = 1, 2, . . . , T do

Receive xt;
Construct new representation:
z(xt) = (sin(u>1 xt), cos(u

>
1 xt), ..., sin(u

>
Dxt), cos(u

>
Dxt))

>

Predict ŷt = w>t z(xt);
Receive yt and suffer loss `

(
w>t z(xt); yt

)
;

if `
(
w>t z(xt); yt

)
> ε then

wt+1 = wt − η∇`
(
w>t z(xt); yt

)
.

end if
end for

Algorithm 13 NOGD-R — Nyström Online Gradient Descent for Regression
Input: the budget B, step size η, rank approximation k, threshold ε.
Initialize support vector set S1 = ∅, and model f1 = 0.
while |St| < B do

Receive new instance xt;
Predict ŷt = ft(xt);
Update ft by regular Online Gradient Descent (OGD);
Update St+1 = St ∪ {t} whenever loss exceeds threshold;
t = t+ 1;

end while
Construct the kernel matrix K̂t from St.
[Vk,Dk] = eigs(K̂t, k), where Vk and Dk are Eigenvectors and Eigenvalues of
K̂t, respectively.
Initialize w>t = [α1, ..., αB](D−0.5

k V>k)−1.
Initialize the instance index T0 = t;
for t = T0, . . . , T do

Receive new instance xt;
Construct the new representation of xt:
z(xt) = D−0.5

k V>k (κ(xt, x̂1), ..., κ(xt, x̂B))>.
Predict ŷt = w>t z(xt);
Update when loss exceeds ε: wt+1 = wt − η∇`

(
w>t z(xt); yt

)
.

end for

75

4.6 Experimental Results

In this section, we conduct an extensive set of experiments to examine the efficacy

of the proposed algorithms for several kinds of learning tasks in varied settings.

Specifically, our first experiment is to evaluate the empirical performance of the

proposed FOGD and NOGD algorithms for regular binary classification tasks by

following a standard batch learning setting where each dataset is divided into two

parts: training set and test set. This experiment aims to make a direct comparison

of the proposed algorithms with some state-of-the-art approaches for solving batch

classification tasks.

Our second major set of experiments is to evaluate the effectiveness and ef-

ficiency of the proposed FOGD and NOGD algorithms for online learning tasks

by following a purely online learning setting, where the performance measures are

based on average mistake rate and time cost accumulated in the online learning

process on the entire dataset (there is no split of training and test sets). In partic-

ular, we conduct such experiments for three different online learning tasks: binary

classification, multi-class classification, and regression, by comparing the proposed

algorithms with a variety of state-of-the-art budget online kernel learning algorithm-

s.

All the source code and datasets for our experiments in this work can be down-

loaded from our project web page:http://LSOKL.stevenhoi.org/. We are

planning to release our algorithms in the future release of the LIBOL library [28].

4.6.1 Experiment for Binary Classification Task in Batch Setting

In this section, we compare our proposed algorithms with many state-of-the-art

batch classification algorithms. Different from online learning, the aim of a batch

learning task is to train a classifier on the training dataset so that it achieves the best

generalized accuracy on the test dataset.

76

http://LSOKL.stevenhoi.org/

Experimental Test bed and Setups

Table 4.1 summarizes the details of the datasets used in this experiment. All of them

can be downloaded from LIBSVM website 1 or KDDCUP competition site 2. We

follow the original splits of training and test sets in LIBSVM. For KDD datasets, a

random split of 4/1 is used.

Dataset # training instances # testing instances # features
codrna 59,535 271,617 8
w7a 24,692 25,057 300
w8a 49,749 14,951 300
a9a 32,561 16,281 123
KDDCUP08 81,835 20,459 117
KDDCUP99 905,257 226,314 127

Table 4.1: Details of Binary Classification Datasets in Experiments of Large Scale
Online Kernel Learning by Functional Approximation.

We compare the proposed algorithms with the following widely used algorithms

for training kernel SVM for batch classification tasks:

• “LIBSVM”: one of state-of-the-art implementation for batch kernel SVM

available at the LIBSVM website [5];

• “LLSVM”: Low-rank Linearization SVM algorithm that transfers kernel clas-

sification to a linear problem using low-rank decomposition of the kernel ma-

trix [78];

• “BSGD-M”: The Budgeted Stochastic Gradient Descent algorithm which ex-

tends the Pegasos algorithm [55] by exploring the SV Merging strategy for

budget maintenance [69];

• “BSGD-R”: The Budgeted Stochastic Gradient Descent algorithm which ex-

tends the Pegasos algorithm [55] by exploring the SV Random Removal s-

trategy for budget maintenance [69].

1http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
2http://www.sigkdd.org/kddcup/

77

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://www.sigkdd.org/kddcup/

To make a fair comparison of algorithms with different parameters, all the pa-

rameters, including regularization parameter (C in LIBSVM, λ in pegasos), the

learning rate (η in FOGD and NOGD) and the RBF kernel width (σ) are optimized

by following a standard 5-fold cross validation on the training datasets. The budget

size B in NOGD and pegasos algorithms and the feature dimension D in FOGD

are set individually for different datasets, as indicated in the tables of experimental

results. In general, these parameters are chosen such that they are roughly propor-

tional to the size of support vectors output by the batch SVM algorithm in LIBSVM,

since we would expect a relatively larger budget size for tackling more challenging

classification tasks in order to achieve competitive accuracy. The rank k in NOGD is

set to 0.2B for all datasets. For the online learning algorithms, all models are trained

by a single pass through the training sets and the reported accuracy and time cost are

averaged over the five experiments conducted on different random permutations of

the training instances. All the algorithms were implemented in C++, and conducted

on a Windows machine with CPU of 3.0GHz. For the existing algorithms, all the

codes can be downloaded from LIBSVM website and BudgetedSVM website 3.

Performance Evaluation Results

Table 4.2 shows the experimental results of batch binary classification tasks. We

can drawn several observations from the results.

First of all, by comparing the four online algorithms against the two batch algo-

rithms, we found that the online algorithms in general enjoy significant advantage

in terms of computational efficiency especially for large scale datasets. By further

examining the learning accuracy, we found that some online algorithms, especially

the proposed FOGD and NGOD algorithms, are able to achieve slightly lower but

fairly competitive learning accuracy compared to the state-of-the-art batch SVM

algorithm. This demonstrates that the proposed online kernel learning algorithms

could be potentially a good alternative solution of the existing SVM solvers when

3http://www.dabi.temple.edu/budgetedsvm/algorithms.html

78

http://www.dabi.temple.edu/budgetedsvm/algorithms.html

Algori
codrna, B=400, D=1600 w7a, B=400, D=1600

Train (s) Test (s) Accuracy Train (s) Test (s) Accuracy
LIBSVM 80.20 126.02 96.67 54.91 20.21 98.33
LLSVM 19.04 37.34 95.93 25.96 4.20 97.92
BSGD-M 132.50 12.77 94.89± 0.41 37.41 3.91 97.50± 0.02
BSGD-R 3.32 12.77 67.16± 0.68 1.79 1.71 97.50± 0.01
FOGD 5.47 24.49 94.24± 0.22 1.58 1.46 97.59± 0.28
NOGD 2.55 9.90 95.92± 0.18 1.57 1.44 97.71± 0.09

Algori
w8a, B=1000, D=4000 a9a, B=1000, D=4000

Train (s) Test (s) Accuracy Train (s) Test (s) Accuracy
LIBSVM 254.03 40.42 99.40 97.81 24.80 85.04
LLSVM 146.97 13.02 98.51 70.85 14.43 84.89
BSGD-M 230.51 2.42 97.52± 0.02 150.16 3.32 84.21± 0.18
BSGD-R 8.72 2.34 97.06± 0.04 7.03 3.28 81.96± 0.27
FOGD 13.04 3.85 97.93± 0.08 9.35 4.57 84.93± 0.03
NOGD 14.10 2.94 98.36± 0.10 16.94 3.37 84.99± 0.07

Algori
KDD08, B=200, D=800 KDD99, B=200, D=400

Train (s) Test (s) Accuracy Train (s) Test (s) Accuracy
LIBSVM 1052.12 124.22 99.43 20772.10 48.91 99.996
LLSVM 24.31 3.53 99.38 86.71 17.49 99.995
BSGD-M 197.78 3.07 99.37± 0.01 948.21 12.11 99.994± 0.001
BSGD-R 12.34 3.03 99.12± 0.23 52.82 12.20 99.980± 0.031
FOGD 17.22 4.33 98.95± 3.34 26.81 6.80 99.996± 0.001
NOGD 7.60 2.14 99.43± 0.04 20.71 9.03 99.993± 0.001

Table 4.2: Performance Evaluation Results on Batch Binary Classification Tasks in
Experiments of Large Scale Online Kernel Learning by Functional Approximation,
Accuracy in Percentage.

solving large scale batch kernel classification tasks in real-world applications due to

their significant advantage of much lower learning time and memory costs.

Further, by comparing the four different online algorithms, we found that,

in terms of learning accuracy, despite running faster, the BSGD-R (“pega-

sos+remove”) algorithm suffers from very high mistake rate in most of the datasets.

This is due to its naive budget maintenance strategy that simply discards the oldest

support vector that may contain important information. While for BSGD-M (“pe-

gasos+merging”) algorithm, the main drawback is its relatively high computational

cost. This can be easily observed in some datasets (e.g., a9a, w7a and codrna),

in which the difference between the number of support vectors of LIBSVM and the

79

budget size is relatively larger than that of the other datasets. Thus, we can conclude

that the high time cost of the BSGD-M(“pegasos+merging”) is due to the complex

computation in the merging steps. Compared with the other online learning algo-

rithms, the proposed NOGD algorithm achieves the highest accuracy for most cases

while spending almost the lowest learning time cost. Similarly, FOGD algorithm

also obtains more accurate result than the two budget Pegasos algorithms on most

of the datasets with comparable or sometimes ever lower learning time cost. These

facts indicate that the two proposed budget online kernel learning algorithms are

both efficient and effective in solving large scale kernel classification problems.

Finally, by comparing the two proposed algorithms, we found that the perfor-

mance of NOGD is better than that of FOGD. This reflects that the Nyström kernel

approximation tends to have a better approximation of the original RBF kernel than

the Fourier feature based approximation.

4.6.2 Experiments for Online Binary Classification Tasks

In this section, we test the performance of our proposed algorithms on the online

binary classification task.

Experimental Test beds and Setup

Table 4.3 shows the details of 9 publicly available datasets of diverse sizes for online

binary classification tasks. All of them can be downloaded from LIBSVM website,

UCI machine learning repository 4 and KDDCUP competition site.

As a yardstick for evaluation, we include the following two popular algorithms

for regular online kernel classification without concerning budget:

• “Percept”: the kernelized Perceptron [22] without budget;

• “OGD”: the kernelized online gradient descent [33] without budget.

4http://www.ics.uci.edu/˜mlearn/

80

http://www.ics.uci.edu/~mlearn/

Dataset # instances # features
german 1,000 24
spambase 4,601 57
w7a 24,692 300
w8a 64,700 300
a9a 48,842 123
KDDCUP08 102,294 117
ijcnn1 141,691 22
codrna 271,617 8
KDDCUP99 1,131,571 127

Table 4.3: Details of Online Binary Classification Datasets in Experiments of Large
Scale Online Kernel Learning by Functional Approximation.

Further, we compare the proposed budget online kernel learning algorithms with

the following state-of-the-art budget online kernel learning algorithms:

• “RBP”: the random budget perceptron by random removal strategy [3];

• “Forgetron”: the Forgetron by discarding oldest support vectors [16];

• “Project”: the Projectron algorithm using the projection strategy [46];

• “Project++”: the aggressive version of Projectron algorithm [45, 46];

• “BPA-S”: the Budget Passive-Aggressive algorithm with simple SV removal

strategy in [71];

• “BOGD”: the Budget Online Gradient Descent algorithm by SV removal s-

trategy [82];

To make fair comparisons, all the algorithms follow the same setups. We adopt

the hinge loss as the loss function `. Note that hinge loss is not a smooth func-

tion, whose gradient is undefined at the point that the classification confidence

yf(x) = 1. Following the sub-gradient definition, in our experiment, gradient is

only computed under the condition that yf(x) < 1, and set to 0 otherwise. The

Gaussian kernel bandwidth is set to 8. For all gradient descent based algorithms,

we search for the best η in range {2, 0.2, ..., 0.0002} that achieves the highest ac-

curacy in a random permutation of certain datasets. We adopt the same budget size

81

B = 100 for NOGD and other budget algorithms. In the setting of FOGD algorithm,

D = ρfB, where 0 < ρf <∞ is a predefined parameter that controls the number of

random Fourier components. For NOGD algorithm, k = ρnB, where 0 < ρn < 1 is

a predefined parameter that controls the accuracy of matrix approximation. We set

ρf = 4 and ρn = 0.2 and will evaluate their influence on the algorithm performance

in the following discussion. For each data set, all the experiments were repeated 20

times using different random permutation of instances in the dataset. All the results

were obtained by averaging over these 20 runs. For performance metrics, we e-

valuate the online classification performance by standard mistake rates and running

time (seconds). All algorithms are implemented in Matlab R2013b, on a Windows

machine with 3.0 GHZ CPU,6 cores.

Performance Evaluation Results

Table 5.2 summarizes the empirical evaluation results on the nine diverse data sets.

From the results, we can draw the following observations.

First of all, in terms of time efficiency, we found that the budget online classifi-

cation algorithms in general run much faster than the regular online kernel classifi-

cation algorithms (Perceptron and OGD) especially on the large datasets, validating

the importance of studying scalable online kernel methods. By further examining

their results of mistake rates, we found that the budget online classification algo-

rithms are generally worse than the two non-budget algorithms, validating the mo-

tivation of exploring effective techniques for budget online kernel classification.

Second, by comparing the proposed algorithms (FOGD and NOGD) with the

budget online classification algorithms, we found that they generally achieve the

best classification performance for most cases using fairly comparable or even low-

er time cost. While other algorithms, are either too slow because of their extremely

complex updating methods or of low accuracy because of their simply SV removal

steps. Similarly to the batch setting, this demonstrates the effectiveness and effi-

ciency of the proposed algorithms.

82

Algori
german spambase w7a

Mistake Time(s) Mistake Time(s) Mistake Time(s)
Percept 35.2 ± 0.9 0.112 24.5 ± 0.1 1.606 4.01 ± 0.10 74.0
OGD 29.5 ± 0.5 0.130 22.0 ± 0.1 4.444 2.96 ± 0.10 119.9
RBP 37.5 ± 1.1 0.086 33.3 ± 0.4 0.613 5.07 ± 0.13 11.20
Forgetron 38.1 ± 0.9 0.105 34.6 ± 0.5 0.743 5.28 ± 0.06 11.77
Project 35.6 ± 1.5 0.101 30.8 ± 1.2 0.644 5.38 ± 1.15 11.22
Project++ 35.1 ± 1.1 0.299 30.4 ± 1.0 1.865 4.79 ± 1.87 13.43
BPA-S 33.9 ± 0.9 0.092 30.8 ± 0.8 0.604 2.99 ± 0.06 11.60
BOGD 31.6 ± 1.5 0.114 32.2 ± 0.6 0.720 3.49 ± 0.16 11.56
FOGD 29.9 ± 0.7 0.045 26.9 ± 1.0 0.263 2.75 ± 0.03 1.474
NOGD 30.4 ± 0.8 0.109 29.1 ± 0.4 0.633 2.98 ± 0.01 11.58

Algori
w8a a9a ijcnn1

Mistake Time(s) Mistake Time(s) Mistake Time(s)
Percept 3.47 ± 0.01 642.8 20.9 ± 0.1 948.7 12.27 ± 0.01 812.6
OGD 2.81 ± 0.01 1008.5 16.3 ± 0.1 1549.5 9.52 ± 0.01 1269.0
RBP 5.10 ± 0.08 37.8 27.1 ± 0.2 15.4 16.40 ± 0.10 18.5
Forgetron 5.28 ± 0.07 40.0 27.8 ± 0.4 19.3 16.99 ± 0.32 21.2
Project 5.42 ± 1.10 38.1 21.6 ± 1.9 15.3 12.38 ± 0.09 19.2
Project++ 5.41 ± 3.30 38.7 18.6 ± 0.5 23.4 9.52 ± 0.03 30.3
BPA-S 2.84 ± 0.03 39.2 21.1 ± 0.2 15.4 11.33 ± 0.04 18.3
BOGD 3.43 ± 0.08 38.9 27.9 ± 0.2 15.9 11.67 ± 0.13 19.2
FOGD 2.43 ± 0.03 3.0 17.4 ± 0.1 1.8 9.06 ± 0.05 3.3
NOGD 2.92 ± 0.03 38.9 17.4 ± 0.2 15.6 9.55 ± 0.01 19.1

Algori
codrna KDDCUP08 KDDCUP99

Mistake Time(s) Mistake Time(s) Mistake Time(s)
Percept 14.0 ± 0.1 1015.7 0.90 ± 0.01 72.6 0.02 ± 0.00 1136
OGD 9.7 ± 0.1 1676.7 0.52 ± 0.01 421.7 0.01 ± 0.00 8281
RBP 20.3 ± 0.1 24.9 1.06 ± 0.03 34.3 0.02 ± 0.00 682
Forgetron 19.9 ± 0.1 28.9 1.07 ± 0.03 34.8 0.03 ± 0.00 684
Project 15.8 ± 0.5 26.0 0.94 ± 0.02 34.1 0.02 ± 0.00 642
Project++ 13.6 ± 1.2 83.0 0.84 ± 0.03 77.2 0.01 ± 0.00 520
BPA-S 15.4 ± 0.3 26.5 0.62 ± 0.01 37.8 0.01 ± 0.00 796
BOGD 15.2 ± 0.1 32.5 0.61 ± 0.01 38.2 0.81 ± 0.06 805
FOGD 10.3 ± 0.1 10.3 0.71 ± 0.01 4.1 0.01 ± 0.00 45
NOGD 13.8 ± 2.1 27.2 0.59 ± 0.01 38.9 0.01 ± 0.00 511

Table 4.4: Evaluation of Binary Classification Task in Experiments of Large Scale
Online Kernel Learning by Functional Approximation. Mistake Rate in Percentage

83

Third, it might seem surprising to find that the FOGD algorithm achieves ex-

tremely low mistake rate and even outperforms the OGD algorithm in some datasets

(w7a, w8a, ijcnn1). Ideally, FOGD should perform nearly the same as the kernel-

based OGD approach if the number of Fourier components D is extremely large.

However, choosing a too large value of D will result in underfitting for a relatively

small data set, meanwhile choosing a too small value of D will result in overfit-

ting. In our experiments, we choose an appropriate value of D (D = 4B) , which

not only could save computational cost, but also may prevent both underfitting and

overfitting. In contrast, the kernel OGD always add a new support vector whenever

the loss is nonzero. Thus, the predicted model learned by the kernel OGD will be-

come more and more complicated as time goes, and thus would likely suffer from

overfitting for noisy examples.

Finally, we note that there are several differences in this result compared with the

previous section in batch setting. To begin with, FOGD achieves extremely low time

cost in all datasets. While in batch setting using C++ implementation, its time cost

is comparable with that of NOGD. This can be explained by the different settings of

the two implementation methods. In C++ setting, the most time consuming step in

FOGD is to compute the large number of random features, while in Matlab setting,

it is automatic transformed to a matrix calculation and parallelized on all cores

of CPU. In addition, FOGD tends to performance better than NOGD in terms of

accuracy. This is the result of different budget size. For NOGD, it is difficult to

approximate the whole kernel matrix with small number of support vectors (such

as the setting in this section B = 100). But with larger budget size, as in the batch

case, the approximation accuracy is better than that of FOGD.

4.6.3 Experiments for Multi-class Classification Tasks

This section tests the performance of our proposed algorithms on online multi-class

classification task.

84

Experimental Test beds and Setup

In this section, we evaluate the multi-class versions of FOGD and NOGD algorithms

on 9 real-world datasets for multi-class classification tasks from the LIBSVM web-

site. Table 4.5 summarizes the details of these datasets.

Dataset # instances # features # classes
dna 2,000 180 3
satimage 4,435 36 6
usps 7,291 256 10
mnist 10,000 780 10
letter 15,000 16 26
shuttle 43,500 9 7
acoustic 78,823 50 3
covtype 581,012 54 7
poker 1,000,000 10 10

Table 4.5: Details of Multi-class Classification Datasets in Experiments of Large
Scale Online Kernel Learning by Functional Approximation.

We adopt the same set of compared algorithms and similar parameter settings in

multiclass task as that of binary case. Larger the budget size parameter B is used

for multiclass classification than binary case since we should ensure enough support

vectors for each class label. We set B = 200 for the first 3 datasets and B = 100

for the last 6 large scale datasets. For time efficiency, we omit the experiments of

non-budget algorithms on extremely large datasets.

Performance Evaluation Results

Table 5.3 summarizes the average performance evaluation results for the compared

algorithms on multi-class classification task. To further inspect more details of on-

line multi-class classification performance, Figure 4.1 and Figure 4.2 also show the

online performance convergence of all the compared algorithms in the entire online

learning process. From these results, we can draw some observations as follows.

First of all, similar to the binary case, budget online kernel learning algorithms

are much more efficient than the regular online kernel learning algorithms without

budget, which is more obvious for larger scale datasets. For the three largest dataset-

85

Algori
dna mnist satimage

Mistake Time(s) Mistake Time(s) Mistake Time(s)
Percept 20.4 ±0.7 4.891 15.4 ±0.1 456.76 29.6 ±0.5 4.675
OGD 16.1 ±0.4 25.068 10.7 ±0.2 1004.65 23.6 ±0.3 6.917
RBP 31.1 ±1.4 2.707 43.4 ±0.5 59.98 49.3 ±0.8 2.409
Forgetron 30.9 ±2.1 2.949 43.9 ±0.6 64.32 48.2 ±1.4 2.503
Project 22.7 ±4.4 4.254 17.7 ±0.1 434.53 29.6 ±0.5 3.685
Project++ 23.1 ±6.1 4.330 17.7 ±0.3 430.38 25.9 ±0.4 3.771
BPA-S 25.3 ±1.2 11.055 32.4 ±1.2 91.25 27.9 ±0.3 17.337
BOGD 36.3 ±0.9 3.103 42.5 ±0.4 62.51 48.2 ±0.6 2.670
FOGD 20.8 ±0.7 0.887 11.8 ±0.2 1.792 29.5 ±0.4 0.915
NOGD 20.7 ±0.9 2.292 15.6 ±0.6 46.90 23.7 ±0.3 1.869

Algori
usps letter shuttle

Mistake Time(s) Mistake Time(s) Mistake Time(s)
Percept 10.0 ±0.2 89.790 71.5 ±0.5 80.901 15.2 ±0.3 137.886
OGD 6.7 ±0.2 310.072 71.2 ±0.3 94.222 12.3 ±0.1 377.328
RBP 24.0 ±0.4 30.180 91.7 ±0.2 18.783 29.3 ±0.5 12.989
Forgetron 22.7 ±0.5 30.478 96.1 ±0.1 19.034 34.1 ±0.4 12.776
Project 10.6 ±0.1 192.347 71.5 ±0.5 26.921 15.3 ±0.3 20.034
Project++ 9.9 ±0.2 194.366 71.4 ±0.3 27.584 16.8 ±0.5 20.879
BPA-S 15.4 ±0.6 54.457 84.6 ±0.5 47.459 14.1 ±0.2 58.856
BOGD 23.2 ±0.4 30.966 92.7 ±0.2 18.510 27.9 ±0.2 14.399
FOGD 10.1 ±0.2 9.589 71.5 ±0.6 2.322 15.6 ±0.5 4.039
NOGD 9.0 ±0.2 24.332 71.5 ±0.2 3.380 12.3 ±0.1 8.484

Algori
acoustic covtype poker

Mistake Time(s) Mistake Time(s) Mistake Time(s)
RBP 57.4 ±0.2 40.469 60.1 ±0.1 445.238 56.6 ±0.0 398.423
Forgetron 61.2 ±0.4 46.865 60.4 ±0.4 491.403 56.5 ±0.0 413.807
Project 43.0 ±0.1 46.469 41.1 ±0.2 930.646 54.5 ±0.1 810.421
Project++ 40.3 ±0.1 47.400 38.3 ±0.2 937.860 53.2 ±0.1 825.526
BPA-S 46.2 ±0.3 210.916 45.2 ±0.2 1569.255 54.7 ±0.4 2566.812
BOGD 58.0 ±0.1 40.266 57.4 ±0.0 456.692 53.2 ±0.0 465.020
FOGD 43.0 ±0.2 12.637 40.4 ±0.1 80.774 52.6 ±0.1 190.102
NOGD 37.8 ±0.1 25.883 41.0 ±0.6 211.354 50.3 ±0.2 216.717

Table 4.6: Evaluation of Multi-class Classification Task in Experiments of Large
Scale Online Kernel Learning by Functional Approximation. Mistake in Percentage

86

200 400 600 800 1000 1200 1400 1600 1800 2000

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 500 1000 1500 2000 2500 3000 3500 4000
0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

Perceptron
OGD
RBP
forgetron
projectron
projectron++
BPAS
BOGD
FOGD
NOGD

(a) dna (b) mnist (c) satimage

0 1000 2000 3000 4000 5000 6000 7000 8000
0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

0.26

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 5000 10000 15000
0.7

0.75

0.8

0.85

0.9

0.95

1

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

(d) usps (e) letter (f) shuttle

0 1 2 3 4 5 6 7 8

x 10
4

0.35

0.4

0.45

0.5

0.55

0.6

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 1 2 3 4 5 6

x 10
5

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

Number of samples

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

1 2 3 4 5 6 7 8 9 10

x 10
5

0.44

0.46

0.48

0.5

0.52

0.54

0.56

0.58

0.6

Number of samples

m
is

ta
ke

 r
at

e

(g) acoustic (h) covtype (i) poker

Figure 4.1: Convergence Evaluation of Multi-class Datasets: Mistake Rate, in Ex-
periments of Large Scale Online Kernel Learning by Functional Approximation

s (acoustic, covtype and poker), some of which consists of nearly one million in-

stances, we have to exclude the non-budget online learning algorithms due to their

extremely expensive costs in both time and memory. This again demonstrates the

importance of exploring budget online kernel learning algorithms. Among the two

non-budget online kernel learning algorithms, we found that OGD often achieves

the highest accuracy, which is much better than Perceptron. However, its high-

accuracy performance is paid by spending significantly higher computational time

cost in comparison to the Perceptron algorithm. This is because OGD perform-

s much more aggressive updates than Perceptron in the online learning process,

which thus results in a significantly larger number of support vectors.

87

200 400 600 800 1000 1200 1400 1600 1800 2000
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

Perceptron
OGD
RBP
forgetron
projectron
projectron++
BPAS
BOGD
FOGD
NOGD

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
−1

−0.5

0

0.5

1

1.5

2

2.5

3

3.5

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 500 1000 1500 2000 2500 3000 3500 4000
−1.5

−1

−0.5

0

0.5

1

1.5

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(a) dna (b) mnist (c) satimage

0 1000 2000 3000 4000 5000 6000 7000 8000
−1.5

−1

−0.5

0

0.5

1

1.5

2

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 5000 10000 15000
−1

−0.5

0

0.5

1

1.5

2

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1

−0.5

0

0.5

1

1.5

2

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(d) usps (e) letter (f) shuttle

0 1 2 3 4 5 6 7 8

x 10
4

−0.5

0

0.5

1

1.5

2

2.5

3

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 1 2 3 4 5 6

x 10
5

0.5

1

1.5

2

2.5

3

3.5

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

1 2 3 4 5 6 7 8 9 10

x 10
5

0.5

1

1.5

2

2.5

3

3.5

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(g) acoustic (h) covtype (i) poker

Figure 4.2: Convergence Evaluation of Multi-class Datasets: Time Cost in Experi-
ments of Large Scale Online Kernel Learning by Functional Approximation

Second, when comparing the performance of different existing budget online

kernel learning algorithms, it is clear to observe that the algorithms based on sup-

port vector projection strategy (projectron and projectron++) achieve significantly

higher accuracy than the algorithms using simple support vector removal strategy.

However, the gain of accuracy is paid by the sacrifice of efficiency, as shown by the

time cost results in the table. Furthermore, one might be surprised to observe that

BPA-S, which is relatively efficient in binary case, is extremely slow in multi-class

case. This is due to the different updating approach of BPA-S for multi-class classi-

fication. In particular, for other budget multi-class algorithms, their time complexity

of each prediction is O(2B), i.e., only 2 out of the m classes (y and s) are updat-

88

ed when adding a new support vector. By contrast, during the update of BPA-S at

each iteration, every class has to be updated, leading to the overall time complex-

ity of O(mB). Consequently, the BPA-S is much more expensive than the other

algorithms.

Furthermore, by comparing the two proposed algorithms, FOGD and NOGD,

with the existing budget online kernel learning algorithms, we observe that the pro-

posed algorithms achieve the highest accuracy for most cases, and meanwhile run

significantly faster than the other algorithms, which again validates the effective-

ness and efficiency of our proposed technique. Thus, we can conclude that the

proposed functional approximation approach for budget online kernel learning is

a promising technique for building scalable online kernel learning algorithms for

large scale learning tasks. Finally, by comparing FOGD and NOGD, we found that

their accuracy performance is nearly comparable while FOGD is relatively faster.

As mentioned in the binary section, this indicates that FOGD is easier for paral-

lelization.

Evaluation for the ρf and ρn on Multi-class Tasks

As mentioned in the previous experiments, we set the parameter for the number of

Fourier components D = ρf × B and the rank of Nyström matrix approximation

k = ρnB, where different choices of parameters ρf and ρn could affect the resulting

performance of FOGD and NOGD, respectively. In this section, we evaluate the

sensitivity of these two parameters and examine their influence to both learning

accuracy and time cost of multi-class classification tasks.

Specifically, we fix the budget size B to 200 for all datasets, and set the other

parameters (except B, ρf , and ρn) by following the same settings as the previous

multi-class classification tasks. Figure 4.3 summarizes the performance evaluation

results, including average mistake rates and average time costs. From the results,

we can draw some observations as follows.

First of all, we observe that increasing the value of ρf or ρn leads to better clas-

89

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

ρ
f

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 2 4 6 8 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

ρ
f

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

dna
satimage
usps
letter
shuttle

(a) The effect of ρf on the mistake rate of FOGD (b) The effect of ρf on the time cost of FOGD

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

ρ
n

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−0.5

0

0.5

1

1.5

ρ
n

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

dna
satimage
usps
letter
shuttle

(c) The effect of ρn on the mistake rate of NOGD (d) The effect of ρn on the time cost of NOGD

Figure 4.3: Performance Evaluation on Different Values of ρf and ρn in Experi-
ments of Large Scale Online Kernel Learning by Functional Approximation

sification accuracy but higher running time cost. This is not difficult to understand

since increasing the value ρf is essential to increasing the number of Fourier com-

ponents, leading to a better approximation of lower variance and thus higher classi-

fication accuracy. Meanwhile the computational time cost of FOGD is proportional

to the number of Fourier components, and thus is proportional to the value of ρf .

Similarly, for NOGD, the large the value of ρn, the more accurate approximation

achieved by the Nystrom kernel matrix approximation, and meanwhile the more

computational cost required. Thus, the choice of parameter ρf or ρn for FOGD or

NOGD is essentially a trade off between learning effectiveness and computational

efficiency.

Second, we found there is some common tendency of the impact on the learn-

ing accuracy by the two parameters, although different datasets may have slightly

90

100 150 200 250 300 350 400 450 500
5

6

7

8

9

10

11

12
x 10

−3

Budget (B)

m
is

ta
ke

 r
at

e

50 100 150 200 250 300 350 400 450 500
0

0.5

1

1.5

2

2.5

3

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

Budget (B)
(a) KDDCUP08 (binary) mistake rate (b) KDDCUP08 (binary) time cost

0 100 200 300 400 500
0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Budget (B)

m
is

ta
ke

 r
at

e

Perceptron
OGD
RBP
forgetron
projectron
projectron++
BOGD
BOGDpp
BPAs
FOGD
NOGD

0 100 200 300 400 500
0.5

1

1.5

2

2.5

3

3.5

Budget (B)

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(c) codrna (binary) mistake rate (d) codrna (binary) time cost

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Budget (B)

O
nl

in
e

av
er

ag
e

ra
te

 o
f m

is
ta

ke
s

0 50 100 150 200
−0.5

0

0.5

1

1.5

2

Budget (B)

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(e) usps (multi-class) mistake rate (f) usps (multi-class) time cost

0 100 200 300 400 500

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Budget (B)

m
is

ta
ke

 r
at

e

0 100 200 300 400 500
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

Budget (B)

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(g) acoustic (multi-class) mistake rate (h) acoustic (multi-class) time cost

Figure 4.4: The Effect of Different Budget Sizes B in Experiments of Large Scale
Online Kernel Learning by Functional Approximation.

91

different results. In particular, we observe that when the value of ρf or ρn is large

enough (e.g., ρf > 5 or ρn > 0.1), increasing their value has limited impact on the

improvement of the learning accuracy while the time cost keeps growing linearly.

This gives an important guideline for one to choose the two parameters properly in

order to gain computational efficiency without sacrificing learning accuracy. Specif-

ically, as shown in the figure, by choosing the two parameters roughly in the ranges

of ρf ∈ (4, 6) and ρn ∈ (0.2, 0.4), we are able to achieve satisfactory tradeoff for

most cases.

Evaluation for the Selection of Budget Size on Multi-class Classification Task

For all the budget online kernel learning algorithms, the choice of budget size pa-

rameter B can have a considerable impact on the resulting performance. In our

previous experiments, we simply fix the budget size parameter B to some constants

for the compared budget online kernel learning algorithms to enable a fair and sim-

plified comparison. In this section, we aim to evaluate the sensitivity of the budget

size parameter B and examine if the proposed algorithms are consistently better

than the other budget online kernel learning algorithms under varied settings of the

budget size parameter. Specifically, in this experiment, we follow the same experi-

mental setups as the previous experiments, except that we evaluate the influence of

varied values of budget size parameter B.

Figure 4.4 shows the experimental results of both average mistake rates and av-

erage time costs of different algorithms during the online learning processes under

different values of the budget size parameter B on four randomly chosen dataset-

s, including two binary classification datasets and two multi-class classification

datasets. From the experimental results, we can draw several observations on the

impact of the budget size parameter to the performances as follows.

First of all, we observe that increasing the budget size generally results in bet-

ter classification accuracy and higher learning time cost for all the budget online

kernel learning algorithms. This is not difficult to understand since a larger budget

92

size potentially leads to a more precise approximation to their non-budget original

algorithm, and thus a better prediction accuracy. Second, similar to the previous

experiments, we notice that when the budget size is large enough, further increasing

the budget size has limited gain on the improvement of classification accuracy. This

observation indicates that selecting a proper budget size parameter B is a tradeoff

between classification accuracy and learning time cost. Moreover, by comparing

different budget learning algorithms under varied values of B, we found that the

projectron algorithms and the proposed two algorithms (FOGD and NOGD) tend to

achieve the best classification accuracy results for most cases, particularly when the

value of budget size B is small. By further examining the time costs, we found that

the proposed algorithms (especially FOGD) are significantly more efficient than the

Projectron for varied values of B. These encouraging results again validate that the

proposed algorithms not only achieve consistently better accuracy results than the

existing budget online kernel learning methods for most cases, but also have a sig-

nificant advantage in computational efficiency for large-scale online kernel learning

tasks.

4.6.4 Experiments for Online Regression Tasks

This section tests the performance of our proposed algorithms on online regression

tasks.

Experimental Test beds and Setup

Table 4.7 summarizes the details of the 9 datasets of diverse sizes in our online

regression experiments. All of them are publicly available at the LIBSVM and UCI

websites.

For comparison schemes, we compare the proposed FOGD-R and NOGD-R al-

gorithms with three non-budget online regression algorithms including OGD, Per-

ceptron, and Norma [33], and four other existing budget online kernel learning al-

93

Dataset # instances # features
housing 506 13
mg 1,385 6
abalone 4,177 8
parkinsons 5,875 20
cpusmall 8,192 12
cadata 20,640 8
casp 45,730 9
slice 53,500 385
year 463,715 90

Table 4.7: Details of Regression Datasets in Experiments of Large Scale Online
Kernel Learning by Functional Approximation.

gorithms including RBP, Forgetron, Projectron, and BOGD.

For parameter setting, we follow the same setup as the previous experiments

for most of the parameters. For the Norma algorithm, the adaptable threshold pa-

rameter ε is learned and updated at each iteration. For all the other algorithms, this

parameter ε is simply fixed to 0.1. We set ρf = 15 and B = 30 for all the regres-

sion datasets. According to our empirical experience on online regression tasks, the

regular perceptron based algorithms that simply use the default step size 1 would

perform extremely poor because of the inappropriate learning rate. In order to have

a stronger baseline for comparison, we conduct a validation experiment by search-

ing for the best learning rate parameter (about 0.1) for all the perceptron-based

algorithms.

Performance Evaluation Results

Table 4.8 shows the summary of empirical evaluation results on the nine datasets,

and Figures 4.6 and 4.6 show the detailed regression results in terms of both regres-

sion errors and time cost in the online learning processes. From these results, we

can draw several observations as follows.

First of all, by examining the running time costs of different algorithms, it is

clear to see that the budget online kernel learning algorithms are more efficient

94

Algori
housing mg abalone

Squared Loss Time Squared Loss Time Squared Loss Time
OGD 0.04017±0.00043 0.028 0.05341±0.00071 0.103 0.01137±0.00007 0.388
Percept 0.04018±0.00080 0.029 0.05682±0.00084 0.103 0.01280±0.00010 0.388
Norma 0.04329±0.00065 0.028 0.06446±0.00073 0.086 0.01224±0.00006 0.448
RBP 0.05837±0.00140 0.028 0.09652±0.00253 0.075 0.02498±0.00034 0.200
Forgetron 0.05848±0.00216 0.037 0.09742±0.00334 0.106 0.02483±0.00042 0.269
Project 0.04023±0.00080 0.027 0.05683±0.00084 0.070 0.01280±0.00010 0.183
BOGD 0.05270±0.00134 0.024 0.08936±0.00198 0.064 0.01558±0.00017 0.175
FOGD 0.04009±0.00071 0.016 0.05590±0.00073 0.037 0.01169±0.00005 0.104
NOGD 0.04063±0.00043 0.031 0.05356±0.00076 0.073 0.01138±0.00007 0.202

Algori
parkinsons cpusmall cadata

Squared Loss Time Squared Loss Time Squared Loss Time
OGD 0.04835±0.00018 2.025 0.02508±0.00009 1.905 0.03976 ±0.00018 11.63
Percept 0.05306±0.00045 2.116 0.02660±0.00015 1.257 0.04155±0.00019 11.50
Norma 0.05084±0.00018 1.385 0.03403±0.00014 2.060 0.05739±0.00008 8.45
RBP 0.07540±0.00102 0.349 0.04895±0.00058 0.449 0.08115±0.00029 1.09
Forgetron 0.07488±0.00114 0.496 0.04905±0.00062 0.581 0.08128±0.00061 1.54
Project 0.05306±0.00046 0.320 0.02660±0.00015 0.375 0.04155±0.00020 1.00
BOGD 0.06159±0.00037 0.295 0.04972±0.00048 0.406 0.07259±0.00031 0.94
FOGD 0.04909±0.00020 0.187 0.02577±0.00050 0.217 0.04097±0.00015 0.55
NOGD 0.04896±0.00068 0.336 0.02559±0.00024 0.427 0.03983±0.00018 1.05

Algori
casp slice year

Squared Loss Time Squared Loss Time Squared Loss Time
RBP 0.12425±0.00048 2.56 0.04799±0.00025 22.13 0.03151±0.00007 89.7
Forgetron 0.12455±0.00046 3.76 0.04843±0.00024 35.43 0.03148±0.00005 139.7
Project 0.08709±0.00021 2.40 0.01493±0.00142 21.84 0.01627±0.00013 87.1
BOGD 0.09683±0.00012 2.23 0.04730±0.00011 21.61 0.05430±0.00002 88.3
FOGD 0.08021±0.00031 1.37 0.00726±0.00019 4.65 0.01427±0.00004 19.3
NOGD 0.07844±0.00008 2.51 0.02636±0.00460 22.05 0.01519±0.00021 89.1

Table 4.8: Evaluation of Regression Task in Experiments of Large Scale Online
Kernel Learning by Functional Approximation,Time in Seconds.

than the non-budget algorithms, particularly on larger scale datasets. This obser-

vation is consistent to the previous classification experiments, again validating the

importance of studying budget online kernel learning methods. By examining the

non-budget algorithms, we found that NORMA runs faster than the other two algo-

rithms (OGD and Perceptron) which is primarily because of it the adaptive threshold

which reduces the frequency of update and thus obtains a relatively smaller support

vector set size. Among all the budget algorithms, the proposed FOGD algorithm is

able to achieve the smallest time cost for all cases.

95

0 100 200 300 400 500
0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0.09

Number of samples

A
ve

ra
ge

 lo
ss

OGD
Perceptron
Norma
RBP
forgetron
projectron
BOGD
FOGD
NOGD

0 200 400 600 800 1000 1200 1400
0.05

0.06

0.07

0.08

0.09

0.1

0.11

Number of samples

A
ve

ra
ge

 lo
ss

0 500 1000 1500 2000 2500 3000 3500 4000
0.01

0.012

0.014

0.016

0.018

0.02

0.022

0.024

0.026

Number of samples

A
ve

ra
ge

 lo
ss

(a) housing (b) mg (c) abalone

0 1000 2000 3000 4000 5000 6000
0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

Number of samples

A
ve

ra
ge

 lo
ss

0 1000 2000 3000 4000 5000 6000 7000 8000
0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

Number of samples

A
ve

ra
ge

 lo
ss

0 0.5 1 1.5 2 2.5

x 10
4

0.04

0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

Number of samples

A
ve

ra
ge

 lo
ss

(d) parkinsons (e) cpusmall (f) cadata

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

0.08

0.09

0.1

0.11

0.12

0.13

Number of samples

A
ve

ra
ge

 lo
ss

0 1 2 3 4 5 6

x 10
4

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

Number of samples

A
ve

ra
ge

 lo
ss

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

Number of samples

A
ve

ra
ge

 lo
ss

(g) casp (h) slice (i) year

Figure 4.5: Evaluation of Online Average Squared Loss on the Regression Tasks in
Experiments of Large Scale Online Kernel Learning by Functional Approximation.

Second, in terms of regression accuracy, among the existing budget algorithm-

s, the projectron algorithm outperforms the other existing budget online learning

algorithms due to its sophisticated projection strategy. By further comparing the

proposed FOGD and NOGD algorithms with the existing ones, we found that our

algorithms achieve the lowest squared loss for most cases while spending compara-

ble or even lower time cost. This encouraging results again validate the advantages

of the proposed technique for online kernel regression tasks.

Finally, by examining the two proposed algorithms, FOGD and NOGD, we

found that they in general achieve fairly comparable regression accuracy, while

96

0 100 200 300 400 500
−3.2

−3

−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

OGD
Perceptron
Norma
RBP
forgetron
projectron
BOGD
FOGD
NOGD

0 200 400 600 800 1000 1200 1400
−2.8

−2.6

−2.4

−2.2

−2

−1.8

−1.6

−1.4

−1.2

−1

−0.8

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 500 1000 1500 2000 2500 3000 3500 4000
−2.5

−2

−1.5

−1

−0.5

0

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(a) housing (b) mg (c) abalone

0 1000 2000 3000 4000 5000 6000
−2

−1.5

−1

−0.5

0

0.5

1

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 1000 2000 3000 4000 5000 6000 7000 8000
−2

−1.5

−1

−0.5

0

0.5

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 0.5 1 1.5 2 2.5

x 10
4

−2

−1.5

−1

−0.5

0

0.5

1

1.5

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(d) parkinsons (e) cpusmall (f) cadata

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 1 2 3 4 5 6

x 10
4

−1

−0.5

0

0.5

1

1.5

2

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5

x 10
5

0

0.5

1

1.5

2

2.5

Number of samples

av
er

ag
e

tim
e

co
st

 (
lo

g 10
 t)

(g) casp (h) slice (i) year

Figure 4.6: Evaluation of Online Average Time Cost on Online Regression Tasks in
Experiments of Large Scale Online Kernel Learning by Functional Approximation.

FOGD tends to perform more efficiently than NOGD in terms of running time cost.

This is primarily because NOGD has to involve the Nystrom matrix approximation

which could be computationally intensive.

4.6.5 Comparison with SPA algorithm

Although the methodologies used in this section is quite different from that used by

SPA, all of the three can be used to deal with the online kernel learning problems.

It is nature to ask, which of the them is more accurate and which is more efficient.

We will answer these questions in the following experiment.

97

0 1 2 3 4 5 6
0.155

0.16

0.165

0.17

0.175

0.18

0.185

0.19

0.195

log(time(s))

O
nl

in
e

E
rr

or
 R

at
e

B=2000

B=50

B=100

B=200
B=500

B=1000
B=1500

β=3

β=5

β=10

β=20

β=50

D=1600
D=800

D=400

D=40

D=80

D=200
D=600

D=3200 D=6400

NOGD
FOGD
SPA
SPA
PA−I
OGD

Figure 4.7: Comparison between SPA, FOGD, NOGD with various parameter set-
tings of B, D and β on a9a Dataset.

For fair comparison, the learning rate parameters η of all the three algorithms

will be chosen by cross-validation. The Gaussian kernel width parameter is set to

δ = 8 for all. The k in NOGD and α are set as the optimal values as stated in the

earlier sections.

The only question left is, how to set the FOGD dimension parameter D, the

budget size parametersB for NOGD and β SPA, which control the trade off between

efficiency and accuracy. As we noticed during our experiments, because of the

obvious difference in the methodology, each algorithm has its own optimal trade-

off point of parameter settings. First, NOGD is not able to work efficiently when

B is large, which is due to the difficult calculation of the SVD for large kernel

matrix. Second, the SPA is not accurate when budget size is small (i.e. large β)

because of its simple SV selection strategy. Consequently, it is unfair to compare

them under the same budget setting. Instead, we find a fair way for comparison.

We run the three algorithms with various parameter settings of B, β and D and plot

their accuracy on the same time axis, as shown in Figure 4.7.

From the comparison results in the figure, we can draw several observations.

First, there is no such an algorithm that can beat all the others in all aspects. D-

ifferent algorithms have their own optimal trade-off points between efficiency and

98

effectiveness. Second, when given longer running time (i.e. large B large D, smal-

l β), the accuracy of SPA keeps decreasing since it approaches to the non-budget

kernel learning algorithm, while the performance of NOGD and FOGD would not

improve too much. This indicates that SPA is better in getting high accuracy when

time cost is not the main concern. Finally, when running for large scale datasets

and the time cost is a major concern, FOGD is preferred, followed by NOGD. This

indicates that our proposed functional approximation based algorithms are more

suitable for large scale kernel learning compared to SPA.

We also would like to make a discussion about the best accuracy that SPA,

FOGD and NOGD could achieve given infinite Fourier components and infinite

budget size. First, note that when the D value increases, the mistake rate decreases

and approaches to the mistake rate of that in non-budget OGD algorithm while this

decrease speed slows down. This is due to the fact that FOGD is an approximation

of OGD and the approximation error decreases with the increase ofD. This consists

with the theoretically analysis in Theorem 1. We infer that if D were set to infinite,

the accuracy of FOGD would be identical to that of OGD.

Second, when the B is set to 2000 in NOGD, there is still a gap between the

accuracy NOGD and OGD. This due to the error in matrix approximation. As dis-

cussed in the remark of Theorem 2, this matrix approximation error is bounded by

‖K−K0.2B‖2 + T√
B
Kmax(2 + log 1

ε
) in high probability.

Third, we find that SPA with small β even achieves higher accuracy than that of

the non-budget PAI algorithm. This again validates the claim that averaged classifier

works better than the last classifier. In addition, in the SPA algorithm if `t(x) is only

marginally larger than 0, there will be only a small probability of adding it to the SV

set. We infer that this is another reason that SPA extends the performance of PA-I.

In conclusion, the two proposed algorithms in this section, FOGD and NOGD

achieve a large improvement from SPA, especially for large datasets in limited time

cost.

99

4.7 Comparison between FOGD and NOGD

In the previous experiments, we have made some comparisons of different budget

online kernel learning algorithms for different learning tasks, in which the proposed

algorithms show promising performance. In this section, we conduct both quanti-

tative comparison and in-depth qualitative analysis of the two proposed algorithms

in order to better understand their strengths and weaknesses in different scenarios.

Specifically, we summarize the comparison of the two algorithms as follows.

First of all, as observed in the previous experiments, the two proposed algo-

rithms in general tends to achieve comparable learning accuracy for most cases.

However, NOGD outperforms FOGD in batch setting while FOGD is more accurate

in online setting. In terms of running time costs, the result seems relatively imple-

mentation dependent. Specifically, when comparing the Matlab implementations of

both algorithms, FOGD is faster, while NOGD is faster when comparing their C++

implementations. We conjecture that the reason is primarily because the FOGD al-

gorithm is naturally easier for parallelization than NOGD. When running the Matlab

implementations, FOGD may take advantages of Matlab-embedded speedup with

implicit multi-core parallelization. While running the C++ implementations, we do

not explicitly engage any parallelization, and thus NOGD is faster than FOGD when

no parallelization is exploited.

Second, the efficiency performance of the two proposed algorithms also depend-

s on the dataset size. For small-sized datasets, FOGD tends to be more efficient,

while NOGD tends to be more efficient on larger-sized datasets. The main rea-

son is that a key step of NOGD is the Nystrom approximation that involves the

eigen-decomposition. The eigen-decomposition computation could be potentially

very computationally intensive a small-scale dataset, but relatively small or even

negligible for a large-scale dataset. By contrast, FOGD does not involve eigen-

decomposition and thus does not suffer from such issue for small-scale datasets.

Third, the memory cost of the two algorithm is different. In the FOGD algo-

100

rithm, we need to store the Fourier components vectors ui ∈ Rd, i ∈ {1, ..., D},

weight vector wt ∈ R2D and the feature vector z(xt) ∈ R2D in memory. Conse-

quently, the total memory cost of FOGD is D(d + 4). In the NOGD algorithm, we

need to store the B SV’s (RB×d), the mapping matrix VkD
− 1

2
k ∈ RB×k, the weight

vector wt ∈ Rk and the feature vector z(xt) ∈ Rk. The total memory of NOGD is

B(d + k) + 2k. As we found in the early experiments (Figure 4.3 etc), for compa-

rable accuracy, the k is usually set to 0.2B and the D is 4B. By comparing the time

complexity, we find that for high-dimensional datasets, FOGD will clearly suffer a

much higher memory cost than NOGD.

Forth, FOGD has some restrictions in terms of applicable kernels, e.g., shift-

invariant kernels as mentioned before. It may be difficult to be generalized for other

shift-variant kernels. By contrast, NOGD is based on the the Nyström approxi-

mation which only requires the computation of kernel matrix and does not have a

restriction on the applicable kernel type as long as it is a valid kernel.

Finally, FOGD may suffer from some practical limitations and implementation

challenges for novel feature extension in some real-world applications. For exam-

ple, consider learning tasks with stream data where novel features may arrive at

different time periods in the online learning process. At the beginning of the online

learning task, it is impossible to know the full set of features. During the online

learning process, whenever a novel feature appears, FOGD has to update the list

of D random Fourier components by expanding their dimensionality. Such kind

of updating process usually involves a series of memory operations, such as new

memory space allocation, copying existing vectors, and freeing memory space of

obsolete data, which could be quite expensive if novel feature appears frequently.

By contrast, NOGD suffers less for the novel feature extension issue in that we

can simply treat the value of a novel feature as zero when computing kernel value

between an existing support vector and a new example with the novel feature.

101

4.8 Discussion

This section presented a novel framework of large-scale online kernel learning via

functional approximation, going beyond conventional online kernel methods that

often adopt the budget maintenance strategy for ensuring the size of support vector

is bounded. The basic idea of our framework is to approximate a kernel function or

kernel matrix by exploring functional approximation techniques, which transforms

the online kernel learning task into an approximate linear online learning problem in

a new kernel-inducing feature space that can be further resolved by applying exist-

ing efficient and scalable online algorithms. We presented two new algorithms for

large-scale online kernel learning tasks: Fourier Online Gradient Descent (FOGD)

and Nyström Online Gradient Descent (NOGD), and applied them to tackle differ-

ent tasks, including binary classification, multi-class classification, and regression

tasks. Our promising results on large-scale datasets show the proposed new algo-

rithms are able to achieve the state-of-the-art performance in both learning efficacy

and efficiency in comparison to a variety of existing techniques. By comparing the

two proposed algorithms, we found that they in general achieve quite comparable

learning performance for most cases, while have different advantages and disad-

vantages under different scenarios. As the first comprehensive work of exploring

functional approximation for large-scale online kernel learning, our framework is

generic and can be extended to tackle different learning tasks in other settings (e.g.,

structured prediction). To facilitate other researchers to re-produce our results, we

have released the source code of our implementations. In our future work, we plan

to extend our work by exploring parallel computing techniques to make kernel meth-

ods practical for massive-scale data analytics tasks.

102

Chapter 5

Scalable Online Multiple Kernel

Learning

Multiple Kernel Learning (MKL) [35, 2] aims to find the optimal (linear) combi-

nation of a pool of predefined kernel functions in learning kernel-based predictive

models. In comparison to single kernel learning, MKL not only is able to avoid

heuristic manual selection of best kernels, but also is able to achieve better perfor-

mance whenever there are multiple kernels who are complementry for training a

better predictive model by combining them, particularly for learning from data with

heterogeneous representations. MKL has achieved great successes in many applica-

tions, ranging from multimedia [73], signal processing [60], biomedical data fusion

[76], mobile app mining [6], and beyond.

Although batch MKL methods have been extensively studied recently [59, 24,

65, 1, 48], unfortunately, the generalization from batch MKL to its online counter-

part is far from straightforward. First of all, different from batch MKL that can in

principle be solved via cross-validation, online learning with multiple kernels has

no foresight on the best kernel function before data arrival but needs to learn ker-

nel classifiers and their combination weights simultaneously from sequential data.

Second, online learning with multiple kernels suffers more from the curse of ker-

nelization since more kernel classifiers getting updated would result in even greater

103

complexity and higher computation cost.

Recent years have witnessed a variety of emerging studies that successfully ad-

dressed the first challenge of Online Multiple Kernel Learning (OMKL) and learnt

effective multiple kernel classifiers from data stream [32, 40, 43, 44, 26, 53, 73].

Despite the active explorations, it remains an open challenge of making these algo-

rithms scalable for large-scale applications.

In this work, we aim to extend our proposed SPA, FOGD and NOGD algorithms

to the OMKL problem. As we demonstrated in the previous chapters, they are effec-

tive, efficient and scalable algorithms for online kernel learning in that they solve

the problem of unbounded number of SV’s. When adopting them to the OMKL

setting, the remaining questions are, 1) how to learn the combination weights of

different kernels effectively in an online fashion? 2) how to conduct effective kernel

selection so that the algorithm is efficient enough when the number of kernels is

large.

We address the first problem by adopting the Hedge algorithm. Specially, the

weight of each component classifier is reduced by a constant factor whenever this

component classifier makes a mistake. For the second question, we adopt a stochas-

tic strategy to select the kernel classifiers according to its historical accuracy. We

theoretically prove that the proposed algorithm not only bounds the number of sup-

port vectors but also achieves an optimal mistake bound in expectation and conduct

an extensive set of empirical studies which show that the proposed algorithm out-

performs a variety of budget online kernel learning algorithms.

5.1 Related Work

Our proposed algorithm is closely related to multiple kernel learning, especially

online multiple kernel learning. In literature, although MKL has been extensively

studied, most of them focus on the batch setting [35, 2] while a few of them studies

the OMKL problem.

104

Existing OMKL algorithms usually adopt one of the two following strategies.

The first method is to learn the weights using the Hedge algorithm. Specially, the

weight of each kernel is reduced by some factor whenever this single kernel compo-

nent classifier makes a mistake [32, 26, 53, 73]. Consequently, kernels with higher

historical accuracy are assigned with higher weight values. The second method is

to add a group sparsity regularizer to the loss function [40, 42, 43, 44]. This then

results in a group sparse kernel classifier, where a subset of kernels are assigned

with zero weight.

Despite extensive studied, all of these algorithm still suffer from the curse of

kernelization due to the lack of effective strategies to bound the number of SV’s.

And this challenge is even more challenging compared with that in single kernel

learning. To the best of our knowledge, no existing work has attempted to scale up

the OMKL algorithms with functional approximation methods.

5.2 The Proposed OMKL Algorithms

In this section, we first introduce the problem setting of the online multiple ker-

nel learning algorithm and then propose the three OMKL algorithms. Finally, we

theoretically prove the mistake bound of the proposed algorithms.

5.2.1 Problem Setting and Preliminaries

Without loss of generality, we still consider the problem of online learning for

binary classification. Following the problem setting introduced in the previous

chapters, our goal is to learn a function f : Rd → R from a sequence of train-

ing examples {(x1, y1), . . . , (xT , yT)}, where instance xt ∈ Rd and class label

yt ∈ Y = {+1,−1}. We refer to the output f of the learning algorithm as a

hypothesis and denote the set of all possible hypotheses by H = {f |f : Rd → R}.

We will use `(f(x); y) : R2 → R as the loss function that penalizes the devia-

tion of estimating f(x) from observed labels y. We denote `t(f) as `(f(xt), yt) for

105

conciseness.

Consider a collection of m kernel functions K = {κi : Rd × Rd → R, i =

1, . . . ,m}. Each kernel can be a predefined parametric or nonparametric function.

Multiple Kernel Learning (MKL) aims to learn a kernel-based prediction model by

identifying the best linear combination of the m kernels whose weights are denoted

by θ = (θ1, . . . , θm). The learning task can be cast into the following optimization:

min
θ∈∆

min
f∈HK(θ)

1

2
‖f‖2

HK(θ)
+ C

T∑
t=1

`(f(xt), yt)

where ∆ = {θ ∈ Rm
+ |θT1m = 1}, K(θ)(·, ·) =

∑m
i=1 θiκi(·, ·), and `(f(xt), yt)

is a convex loss function that penalizes the deviation of estimating f(xt) from ob-

served labels yt. For simplicity, we denote `t(f) = `(f(xt), yt).

The above convex optimization of regular batch MKL has been resolved using

various optimization schemes [24]. Despite the extensive studies in literature, they

suffer some common drawbacks of batch learning methods, i.e., poor scalability

for large-scale applications, expensive retraining cost for increasing data, and being

unable to adapt to fast-changing patterns.

To address the challenges faced by batch MKL methods, Online Multiple Ker-

nel Learning (OMKL) techniques have been proposed to resolve the multiple kernel

classification tasks in an online learning manner [26]. In particular, the Online Mul-

tiple Kernel Classification (OMKC) method in [26] consists of two major steps.

First, it learns a set of single kernel classifiers f it ∈ Hκi , i = 1, ...,m using some

existing online kernel learning algorithms (such as kernel Perceptron or kernel Pas-

sive Aggressive). Second, it learns to find the optimal linear combination of these

single kernel classifiers in order to yield an effective final classifier ft(x):

ft(x) =
m∑
i=1

θitf
i
t (x), (5.1)

where θit ∈ [0, 1] is the combination weight of the classifier with respect to κi at

time t. The combination weights can be updated during the online learning process

106

Algorithm 14 Bounded OMKC Algorithm using SPA
INPUT:
Kernels: ki(·, ·) : X × X → R, i = 1, . . . ,m; Aggressiveness parameter η > 0,
and parameters β ≥ α > 0; Discount parameter γ ∈ (0, 1) and smoothing
parameters δ ∈ (0, 1).
Initialization: f i1 = 0, θi1 = 1

m
, i = 1, ...m

for t = 1, 2, . . . , T do
Receive an instance xt;
Predict ŷt = sign

(∑m
i=1 θ

i
t · sign[f it (xt)]

)
;

Receive the true class label yt;
for i = 1, 2, . . . ,m do

Compute pit = (1− δ) θit
maxj θ

j
t

+ δ, ρit =
min(α,`t(f it))

β
;

Sample a Bernoulli random variable Zi
t ∈ {0, 1} by Pr(Zi

t = 1) = ρit ∗ pit
if Zi

t = 1 then
Update the i-th kernel classifier using Proposition 1

end if
Update weight θit+1 = θitγ

M i
t , where M i

t = I(ytf it (xt) < 0)
end for
Scale the weights θit+1 =

θit+1∑m
j=1 θ

j
t+1

, i = 1, ...,m

end for

by adopting the Hedge algorithm [21].

Compared with batch learning methods, these Online Multiple Kernel Classifi-

cation (OMKC) algorithms are more scalable for large-scale applications and more

natural for learning from sequential data. Despite these merits, one major deficiency

of the existing OMKC algorithms is their unbounded support vector size. In par-

ticular, whenever a new instance is misclassified, it will be always added into the

SV set. The unbounded support vector size will eventually lead to increasing cost

for both computational time and memory space when dealing with very large-scale

applications.

5.2.2 SPA for Online Multiple Kernel Learning

Similar to budget online kernel learning, the goal of bounded online multiple kernel

learning is to ensure the total number of support vectors in the final multi-kernel

classifier is bounded by a given budget. In order to achieve this, the basic idea is

to apply an existing bounded online kernel learning algorithm to bound the support

107

vector size of each individual single-kernel classifier, which in turn can bound the

total SV size given the fixed number of kernels. However, given the number of

kernels can be potentially large, the challenge of bounded online multiple kernel

learning is not only to bound the number of SV’s for each kernel classifier, but also

to minimize the overall computational cost and maximize the learning accuracy.

In the following, we propose a novel OMKL approach by extending the pro-

posed SPA algorithm for multiple kernel settings, which not only ensures the SV

sizes are always bounded during the online learning process, but also attempts to

minimize the unnecessary updates for the poor quality kernels, which thus can im-

prove both the overall efficiency and learning effectiveness.

Specifically, similar to the single-kernel SPA algorithm, we adopt a stochastic

sampling strategy to decide if an incoming training instance should be added to the

SV set. In particular, the sampling probability has two concerns:

(i) The probability of updating the i-th kernel classifier in the t-th iteration should

be related to the loss suffered by the current instance, as discussed in the single

kernel case (Section 3),

ρit =
min(α, `t(f

i
t))

β

(ii) To make the algorithm efficient and avoid wasting time in learning with poor

quality kernels, a kernel classifier with higher accumulated learning accuracy

will be assigned with a higher sampling probability,

pit = (1− δ) θit
maxj θ

j
t

+ δ

where θit is the importance weight variable for kernel combination which re-

flects the historical classification performance of the i-th kernel classifier, and

δ ∈ (0, 1) is a small constant for smoothing purpose (which ensures every

kernel has a certain small probability to be sampled). This sampling strategy

108

was originally proposed in the SD algorithm of OMKC using the stochastic

updating strategy in [26]

By combining the above strategies, we can now form the final updating strategy

for BOMKC by performing a Bernoulli trial (for each kernel i at each step t) as

follows:

Pr(Zi
t = 1) = ρit ∗ pit,

where Zi
t ∈ {0, 1} is a random variable such that Zi

t = 1 indicates if the incoming

instance should be added as a new support vector to update the i-th kernel classifier

at the t-th step. After a specific kernel classifier is selected, we then apply the pro-

posed SPA algorithm for bounded online kernel learning with the individual kernel

by Algorithm 1.

The remaining problem is how to learn the appropriate kernel combination

weights θit for the set of single kernel classifiers according to their classification

accuracy at each online learning iteration. Specifically, we initialize their weights

by a uniform distribution θi1 = 1
m

. Then, the Hedge algorithm [21] is adopted to

update the combination weights of the kernel classifiers, during the online learning

process, i.e.

θit+1 = θitγ
M i
t

where M i
t = I(ytf it (xt) < 0) indicates if there is a mistake, and γ ∈ (0, 1) is a

discount weight parameter. Finally, we summarize the proposed algorithm using

the SPA algorithm in Algorithm 14.

In previous chapters, we have demonstrated that the number of mistakes made

by a single kernel online classifier is bounded by some constant factor of its batch

counterpart in Theorem 1. While in the multiple kernel classification task, the per-

formance of single kernel classifiers varies significantly and we have no foresight

to the winner. In the following, we will show that the final multiple kernel clas-

sifier in our proposed algorithm achieves almost the same performance as that of

109

the best online single kernel classifier. We denote f i∗ = arg minf∈Hiκ
∑T

t=1 `t(f)

as the optimal classifier in Hi
κ space with the assumption of the foresight to all the

instances.

Theorem 3. Let (x1, y1), . . . , (xT , yT) be a sequence of examples where xt ∈ Rd,

yt ∈ Y = {−1,+1} for all t. If we assume κi(x,x) = 1 and `t(·) is the hinge

loss function, then for any β ≥ α > 0, α ≤ 1, and η > 0, γ ∈ (0, 1), δ ∈ (0, 1),

the expected number of mistakes made by the multiple kernel classifier generated by

our proposed SPA algorithm satisfies the following inequality

E[
T∑
t=1

Mt] ≤ min
i∈[m]

2 lnm− 2 ln γmax(1
ηδ
, β
αδ

)

1− γ

[
2η

T∑
t=1

`t(f
i
∗) + ||f i∗||2Hiκ

]
.

where Mt = I(yt 6= ŷt).

Proof. Using the analysis in Theorem 2 [21] and the initialization wi1 with 1/m, we

have,

T∑
t=1

m∑
i=1

θitM
i
t ≤

lnm− ln γ
∑T

t=1 M
i
t

1− γ
, (5.2)

where M i
t = 1 indicates that classifier f i makes a mistake in time t. Since,

T∑
t=1

Mt =
T∑
t=1

I(
m∑
i=1

θitM
i
t > 0.5) ≤ 2

T∑
t=1

m∑
i=1

θitM
i
t ,

we have,

T∑
t=1

Mt ≤
2 lnm− 2 ln γ

∑T
t=1M

i
t

1− γ
. (5.3)

Now we need to bound the number of mistakes of a single classifier,
∑T

t=1M
i
t .

In the theorem for single kernel SPA algorithm, we give the mistake bound of

one single kernel classifier learnt by SPA assuming E[Zt] = ρt. Similarly, we have

the following inequality for each single classifier in multi-kernel SPA algorithm:

T∑
t=1

min(
ηZi

t

ρit
, 1)M i

t ≤
T∑
t=1

2
ηZi

t

ρit
`t(f

i
∗) + ||f i∗||2Hiκ . (5.4)

110

Here, according to Algorithm (14), E[Zi
t] = ρit ∗ pit, where δ < pit < 1. Now,

we can take conditional expectation with respect to Zi
t (given all random variables

Zi
1, . . . , Z

i
t−1) to get,

E[min(
ηZi

t

ρit
, 1)M i

t |Zi
1, ...Z

i
t−1] ≥ δmin(η, ρit)M

i
t = δmin(η,

α

β
)M i

t ,

E[
Zi
t

ρit
|Zi

1, ..., Z
i
t−1] ≤ 1,

where the fact α ≤ 1 is used for the first equality. Plugging the above two equalities

into the inequality (5.4), gives

E[
T∑
t=1

M i
t] ≤ max(

1

ηδ
,
β

αδ
)

[
2η

T∑
t=1

`t(f
i
∗) + ||f i∗||2Hiκ

]
.

Combining the above inequality with inequality (5.3) concludes this proof.

Remark. This theorem implies that even without any foresight of which kernel

would achieve the best accuracy, the performance of our proposed bounded online

multiple kernel classifier is still comparable to the best single kernel classifier.

5.2.3 FOGD for Online Multiple Kernel Learning

Here we introduce the detailed steps of our extended FOGD algorithm in OMKL

setting. Assuming that all the m kernels are shift-invariant kernels, we calculate

their Fourier transform pi(u), i ∈ {1, ...,m}. For each kernel κi, we sample D

random Fourier components ui,j, j ∈ 1, ..., D according to the probability pi(u)

independently. Following we construct the new feature representation

zi(x) = (sin(u>i,1x), cos(u>i,1x), ..., sin(u>i,Dx), cos(u>i,Dx))>.

whose inner product approximates the corresponding kernel function i.e.

zi(x1)>zi(x2) ≈ κi(x1,x2), i ∈ {1, ...,m}

111

Algorithm 15 Fourier Online Gradient Descent for Online Multiple Kernel Learn-
ing “OMKL(FOGD)”

Input: the number of Fourier components D, step size η, kernel function k;
Initialize w1 = 0.
for i = 1, ...,m do

Calculate pi(u) for kernel κi as (4.2).
Sample random Fourier components: ui,1, ...,ui,D from distribution pi(u)

end for
for t = 1, 2, . . . , T do

Receive xt;
Construct new representation: z(xt) as Equ. (5.5).
Predict ŷt = sign

(∑m
i=1 θ

i
t · sign[w>t,izi(xt)]

)
;

Receive the true class label yt;
for i = 1, 2, . . . ,m do

Update the i-th classifier using gradient descent
wt+1,i = wt,i − η∇`

(
w>t,izi(xt); yt

)
.

Update weight θit+1 = θitγ
M i
t , where M i

t = I(ytw>t,izi(xt) < 0)
end for
Scale the weights θit+1 =

θit+1∑m
j=1 θ

j
t+1

, i = 1, ...,m

end for

These m 2D-dimensional feature vectors are then used as the input to the group

sparsity optimization problem. The goal is to train a linear classifier

wt = (wt,1, ...,wt,i, ...,wt,m) ∈ Rm∗2D

from the sequence of instances. During time t, the algorithm receives the feature

vector

z(xt) = (z1(xt)
>, ..., zi(xt)

>, ..., zm(xt)
>)> ∈ Rm×2D (5.5)

And we have all them classifiers f it (xt) = w>t,izi(xt). The Hedge weight update

strategy is identical to that introduced in the SPA setting. The classifier update

strategy, however, is different from that in the SPA algorithm. In SPA the stochastic

classifier update was adopted to reduce the number of support vectors. But in the

linear case, we adopt deterministic update since the number of SV’s does not grow

with the update. We summarize the proposed FOGD for OMKL in Algorithm 15.

112

We now analysis the mistake bound of the proposed FOGD-OMKL algorithm

theoretically. As analyzed in the previous sections,

T∑
t=1

Mt ≤
2 lnm− 2 ln γ

∑T
t=1M

i
t

1− γ
(5.6)

and for hinge loss,
∑T

t=1M
i
t ≤

∑T
t=1 `t, which was bounded by O(

√
T) term. We

now conclude that the mistake bound for FOGD for OMKL is comparable to that of

the best single kernel classifier, even when we have no foresight for which kernel is

the best kernel and it’s bounded by a sublinear term.

5.2.4 NOGD for Online Multiple Kernel Learning

We continue to introduce the steps of our extended NOGD algorithm in the

OMKL setting. Different from the single kernel setting, we now have m kernel

matrixes Ki ∈ RT×T , i ∈ {1, ...,m}. For each of the kernel matrixes, we can do

the Nyström kernel approximation and get K̂i and obtain the new feature represen-

tation zi(x) as described in Section 4.3.3. We then learn a linear classifier w ∈

Rm×2D from the new representation z(xt) = (z1(xt)
>, ..., zi(xt)

>, ..., zm(xt)
>)> ∈

Rm×2D. We summarizes the proposed NOGD algorithm in Algorithm 16. We get

similar mistake bound as previous.

5.3 Experiments

In this section, we conduct extensive experiments to evaluate the empirical perfor-

mance of the proposed algorithms for online binary classification tasks.

5.3.1 Experiments for SPA OMKL

We now evaluate the empirical performance of the proposed SPA technique for

bounded online multiple kernel classification tasks.

113

Algorithm 16 OMKL-NOGD
Input: the budget B, step size η, rank approximation k.
Initialize support vector set S1 = ∅, and model f1 = 0.
while |St| < B do

Receive new instance xt;
Predict ŷt = sign

(∑m
i=1 θ

i
t · sign[f it (xt)]

)
;

for i = 1, . . . ,m do
f it+1 = f it − η∇`t

(
f it);

Update S it+1 = S it ∪ {t} whenever loss is nonzero;
end for
t = t+ 1;

end while
for i = 1, . . . ,m do

Construct the kernel matrix K̂i,t from S it .
[Vi,Di] = eigs(K̂i,t, k).
Initialize w>t,i = [αi,1, ..., αi,B](D−0.5

i V>i)−1.
end for
Initialize the instance index T0 = t;
for t = T0, . . . , T do

Receive new instance xt;
Construct the new representation of xt:
zi(xt) = D−0.5

i V>i (κi(xt, x̂1), ..., κi(xt, x̂B))>,
Predict ŷt = sign

(∑m
i=1 θ

i
t · sign[w>t,izi(xt)]

)
;

for i = 1, 2, . . . ,m do
Update the i-th classifier using gradient descent
wt+1,i = wt,i − η∇`

(
w>t,izi(xt); yt

)
.

Update weight θit+1 = θitγ
M i
t , where M i

t = I(ytwt,izi(xt) < 0)
end for
Scale the weights θit+1 =

θit+1∑m
j=1 θ

j
t+1

, i = 1, ...,m

end for

114

Experimental Testbed

All datasets used in our experiments are commonly used benchmark datasets and

are publicly available from LIBSVM, UCI 1 and KDDCUP competition site. These

datasets are chosen fairly randomly to cover a variety of different dataset scales. We

summarize the details of the datasets in Table 5.1.

Table 5.1: Summary of binary classification datasets in the OMKC experiments.

Data sets # instances #features
German 1000 24
Svmguide3 1,243 21
Madelon 2,000 500
Magic04 19,020 10
A9a 48,842 123
Ijcnn1 49,990 22
Kdd08 102,294 117
Codrna 271,617 8
Susy 1,000,000 18

Kernels

In our experiments, we examine BOMKC by exploring a set of 16 predefined ker-

nels, including 3 polynomial kernels κ(xi,xj) = (x>i xj)
p with the degree parame-

ter p = 1, 2, 3; 13 Gaussian kernels κ(xi,xj) = exp(− ||xi−xj ||
2
Hκ

2σ2) with the kernel

width parameter σ = [2−6, 2−5, ..., 26].

Compared Algorithms

First of all, we include an “ideal” baseline algorithm which assumes the best kernel

among the pool of kernels can be disclosed prior to the arrival of training data at

the beginning of online learning. Specifically, we search for the best single ker-

nel classifier from the set of 16 predefined kernels using one random permutation

of all the training examples. Using this best kernel, we then construct an “ideal”

kernel classifier using the Perceptron algorithm [50], denoted as “Per(*)” in later

discussion.
1http://archive.ics.uci.edu/ml/

115

The second group of compared algorithms are the existing OMKC algorithms

in [26], including three variants of OMKC:

• “U”: the OMKC algorithm with a naive Uniform combination;

• “DD”: OMKC with Deterministic combination and Deterministic update;

• “SD”: OMKC with Stochastic update and Deterministic combination;

Since all single-kernel component classifiers in the above OMKC algorithms are

updated by Perceptron, we amend the two existing OMKC algorithms by adopting

the Passive Aggressive [10] update strategy in order to obtain two stronger baselines

for comparison, including:

• “DDPA”: we replace Perceptron with the PA algorithm in OMKC-DD;

• “SDPA”: we replace Perceptron with the PA algorithm in OMKC-SD;

Finally, to test the efficiency and effectiveness of our budget strategy, we should

also compare with budget OMKC algorithms. Since very few existing work has

attempted to address this issue, we then construct a few baselines by turning the

above OMKC algorithms (“DD” and “SD”) into budget OMKC by replacing its

unbounded single kernel classifiers with some existing budget online (single) kernel

learning algorithms. These result in the following algorithms for comparisons:

• “RBP”: the Random Budget Perceptron algorithm [3];

• “Forgetron”: budget Perceptron by discarding the oldest SV [17];

• “BOGD”: the Budget OGD algorithm [82];

• “BPAS”: the Budget PA algorithm [71].

Due to the highly intensive computational costs, we exclude the comparisons with

other insufficient budget online kernel learning algorithms such as Projectron and

its variants. Although the procedure of both DD and SD algorithms was clearly

116

Algorithm 17 The Bounded OMKC-DD using the Deterministic update
for t = 1, 2, . . . , T do

Receive an instance xt;
Predict ŷt = sign

(∑m
i=1 θ

i
t · sign[f it (xt)]

)
Receive the true class label yt
for i = 1, 2, . . . ,m do

Update weight θit+1 = θitγ
M i
t , where M i

t = I(ytf it (xt) < 0)
if #SVi <

B
m

then
Normal update;

else
Budget maintenance;

end if
Scale the weights θit+1 =

θit+1∑m
j=1 θ

j
t+1

, i = 1, ...,m

end for
end for

presented in [26], we still describe its budget variants used in our comparison in

Algorithm 17 and 18 for easier understanding, where B is the total budget size of

all component classifiers and the “budget maintenance” step denotes any of the four

budget algorithms.

Parameter Settings

To make a fair comparison, we adopt the same experimental setup for all the al-

gorithms. The weight discount parameter γ is fixed to 0.99 for all multiple kernel

algorithms on all datasets. The smoothing parameter δ for all stochastic update algo-

rithms is fixed to 0.001. The learning rate parameters in PA-based algorithms (SPA,

BPAS, DDPA, SDPA) are all fixed to 0.1. The regularization parameter λ and learn-

ing rate parameter η in BOGD is searched in the range of {1, 0.1, ..., 0.0001}. For

the proposed SPA algorithm, we set α = 1 for all the datasets. In addition, as dis-

cussed in the theoretical analysis, the number of SV’s is bounded by αT/β, which

indicates that β should vary according to the number of instances T in a dataset.

We thus set β = 3 for smaller datasets (T < 105) and β = 10 for other datasets.

For fair comparison, we choose the budget size B for all the other compared bud-

get algorithms the same as the total number of SV’s yielded by our proposed SPA

117

Algorithm 18 The Bounded OMKC-SD using the Stochastic update
for t = 1, 2, . . . , T do

Receive an instance xt,
Predict ŷt = sign

(∑m
i=1 θ

i
t · sign[f it (xt)]

)
Receive the true class label yt
for i = 1, 2, . . . ,m do

Compute pit = (1− δ) θit
maxj θ

j
t

+ δ;

Sample a Bernoulli random variable Zi
t ∈ {0, 1} by Pr(Zi

t = 1) = pit
if Zi

t = 1 then
Update weight θit+1 = θitγ

M i
t , where M i

t = I(ytf it (xt) < 0)
if
∑m

i=1 #SVi < B then
Normal update;

else
Budget maintenance;

end if
end if
Scale the weights θit+1 =

θit+1∑m
j=1 θ

j
t+1

, i = 1, ...,m

end for
end for

algorithms.

All experiments were repeated 10 times on different random permutations of in-

stances and all the results were obtained by averaging over 10 runs. The algorithms

were implemented in C++ on a PC with 3.2 GHz CPU. We report the online mistake

rates along the online learning process, the total number of SV’s used by all single

kernel classifiers and the running time.

Evaluation by Comparing SPA with Unbounded OMKC

The first experiment is to evaluate the performance of SPA for binary classification

tasks by comparing it with the existing unbounded OMKC algorithms. Note that

we did not report the results on three large-scale datasets in this experiment since

it is simply computationally prohibited to run the non-budget algorithms on such

large datasets due time and memory limits. Table 5.2 summarizes the results. We

can draw some observations below.

First of all, we compare the three unbounded OMKC algorithms using deter-

ministic updates (Perceptron(*), OMKC(U), OMKC(DD)). Obviously, the mistake

118

Table 5.2: Evaluation of Online Classification on Small-scale and Medium-scale Datasets
by comparing SPA with Unbounded OMKC algorithms (time in seconds).

Algo-
rithm

german madelon
Error(%) #SV’s Time Error(%) #SV’s Time

Per(*) 31.87±1.61 318.8±16.1 0.04 48.65±1.57 973.0±31.4 0.81
U 35.75±1.52 6904.1±101.3 0.38 50.00±0.00 26498.2±92.6 35.27
DD 30.71±1.25 6904.1±101.3 0.38 41.15±0.50 26498.2±92.6 35.46
SD 34.83±1.54 5723.3±95.1 0.34 50.00±0.00 13872.3±150.6 20.67
DDPA 28.92±0.90 12481.5±60.9 0.70 37.55±1.00 28918.0±95.7 39.39
SDPA 28.88±0.63 6794.6±93.5 0.45 50.00±0.00 23837.2±29.7 33.93
SPA 28.57±0.51 2388.2±95.2 0.16 39.39±1.12 2285.2±68.8 3.58
Algo-
rithm

a9a magic04
Error(%) #SV’s Time Error(%) #SV’s Time

Per(*) 20.43±0.13 9980.1±67.4 22.5 24.29±0.13 4620.9±25.9 1.94
U 20.60±0.10 234008.7±373.8 1178.5 28.70±0.12 157922.7±164.4 199.5
DD 19.20±0.12 234008.7±373.8 1178.6 22.58±0.46 157922.7±164.4 199.0
SD 18.93±0.10 155393.9±560.9 778.9 22.39±0.11 73433.4±320.1 69.4
DDPA 15.82±0.07 491137.2±237.2 3061.3 18.91±0.10 243950.0±106.9 352.8
SDPA 20.70±0.48 214751.2±474.8 1051.6 34.57±0.01 92635.9±560.1 94.6
SPA 16.31±0.11 14540±1779.4 58.0 19.62±0.23 7452.3±869.2 5.10
Algo-
rithm

KDD08 svmguide3
Error(%) #SV’s Time Error(%) #SV’s Time

Per(*) 0.94±0.01 963.5±11.0 14.7 25.98±0.51 323.0±6.3 0.03
U 0.66±0.01 32665.1±199.7 829.7 28.25±0.80 6166.9±100.1 0.36
DD 0.72±0.01 32665.1±199.7 829.0 25.41±0.95 6166.9±100.1 0.37
SD 0.63±0.01 17218.5±95.3 450.8 24.65±0.46 5550.8±95.8 0.36
DDPA 0.60±0.01 473444.2±124.6 12371 21.81±0.21 13734.9±61.6 0.87
SDPA 0.59±0.01 409441.0±7293.0 10834 21.64±0.11 12596.2±217.9 0.80
SPA 0.59±0.01 13749.1±858.2 331.5 22.21±0.24 2777.1±92.50 0.20

rate of OMKC(DD) is much lower than that of OMKC(U), which indicates that

OMKC(DD) can build more effective multiple kernel classifiers through learning

the best combination. It is a bit surprised that, even with the unrealistic assump-

tion of choosing the best kernel prior to online learning, the Perceptron algorith-

m using the best kernel did not achieve the lowest error rate. We conjecture that

there might be two reasons. First, the optimal kernel is searched only on one ran-

dom permutation, which might not be the best kernel for other permutations, while

OMKC(DD) always learns the best combination of the kernel functions. Second, on

some datasets, no single kernel function has a significant advantage over the others,

while an optimal weighted combination might outperform any single kernel classi-

119

fier. This further validates the significance of exploring multiple kernel learning.

Second, we found that despite generating fewer SV’s, the OMKC(SD) algo-

rithms using stochastic updates achieve even lower mistake rates compared with

OMKC(DD) using deterministic updates, which is consistent with the previous ob-

servations in [26]. This indicates that not all SV’s are essentially useful for con-

structing an accurate final classifier. This supports our main claim that when the

added SV’s are wisely selected, the accuracy may not be degraded much while the

efficiency can be significantly improved.

Finally, we found that most PA based algorithms significantly outperform the

Perceptron based ones in terms of accuracy, but paid by requiring much higher

time and space costs due to more aggressive updates. We then make a comparison

among the three PA based algorithms. Although only a small fraction of SV’s are

adopted, the proposed SPA algorithm still achieves comparable or sometimes even

better accuracy compared with its unbounded counterparts. Moreover, the time cost

reduction by the proposed SV sampling strategy is especially more significant on the

large datasets (e.g., KDD08 and a9a). In fact, when the data sets are very large (such

as “Codrna” and “Susy”, as shown in later experiments), it is even impossible for

non-budget algorithms to complete the whole online learning process due extremely

huge time cost and memory space needed for storing the unbounded SV’s which

grows continuously in the online learning process for large-scale datasets.

Evaluation of Different Bounded OMKC Algorithms

The last experiment is to test the accuracy and efficiency of our proposed SPA al-

gorithm in comparison to the other variants of OMKC algorithms using traditional

budget maintenance strategies. Table 5.3 summarizes the experimental results on

several large-scale datasets.

First, we compare the accuracy of the two groups of traditional budget algo-

rithms, bounded OMKC(DD) using the Deterministic updating strategy (denoted

as “DD” for short) and bounded OMKC(SD) using Stochastic updating strategy

120

Table 5.3: Evaluation of OMKC using different budget learning algorithms (time in sec.).
Algo-
rithm

KDD08 ijcnn1
Error(%) #SV’s Time Error(%) #SV’s Time

DD
RBP 0.72±0.01 13744.0±0.0 520.6 9.23±0.54 4384.0±0.0 14.5
Forgetron 0.74±0.01 13744.0±0.0 537.0 9.27±0.49 4384.0±0.0 17.1
BOGD 0.61±0.00 13744.0±0.0 792.4 9.71±0.01 4384.0±0.0 17.0
BPAS 0.61±0.00 13744.0±0.0 718.0 9.70±0.01 4384.0±0.0 16.3
SD
RBP 0.64±0.01 13744.0±0.0 385.2 7.82±0.18 4384.0±0.0 14.6
Forgetron 0.64±0.01 13744.0±0.0 380.2 8.21±0.05 4384.0±0.0 16.4
BOGD 0.61±0.00 13744.0±0.0 773.9 9.24±0.04 4384.0±0.0 16.7
BPAS 0.61±0.00 13744.0±0.0 758.8 9.71±0.01 4384.0±0.0 16.6
SPA 0.59±0.01 13749.1±858.2 331.5 7.06±0.32 4391.1±1164.7 8.8
Algo-
rithm

codrna a9a
Error(%) #SV’s Time Error(%) #SV’s Time

DD
RBP 12.44±0.27 5744.0±0.0 85.5 19.90±0.49 14544.0±0.0 81.5
Forgetron 13.39±0.28 5744.0±0.0 109.1 20.03±0.22 14544.0±0.0 118.4
BOGD 12.59±0.04 5744.0±0.0 98.9 17.12±0.08 14544.0±0.0 99.4
BPAS 7.06±0.15 5744.0±0.0 100.2 16.66±0.07 14544.0±0.0 95.1
SD
RBP 9.06±0.29 5744.0±0.0 84.8 18.15±0.13 14544.0±0.0 78.2
Forgetron 10.24±0.26 5744.0±0.0 97.2 18.83±0.14 14544.0±0.0 96.5
BOGD 13.38±0.17 5744.0±0.0 98.0 17.46±0.11 14544.0±0.0 89.7
BPAS 10.59±0.20 5744.0±0.0 93.2 17.01±0.11 14544.0±0.0 93.4
SPA 5.94±0.17 5745.1±647.2 46.2 16.31±0.11 14540.0±1779.4 58.0

(denoted as “SD” for short). For the two Perceptron based algorithms (RBP and

Forgetron), the SD updating strategy demonstrates significant advantage in terms

of accuracy over the DD strategy. This is due to the fact that SD focuses on the

best kernels and spends only a small fraction of budget on poor kernels. While for

the two aggressive algorithms (BOGD and BPAS), SD achieves comparable or even

worse performance compared with DD. We conjecture that this may be because too

aggressive update strategy results in sub-optimal budget allocation.

Second, it is clear that SPA not only achieves the best accuracy among all bound-

ed OMKC algorithms, but also the lowest time cost. There are two major reasons

for explaining the promising results: (i) Different from the budget DD that treat-

s each kernel equally, SPA concentrates more effort on updating the classifiers of

121

50 100 150 200 250 300

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.22

0.24

Time (s)

O
nl

in
e

M
is

ta
ke

 R
at

e

RBP
Forgetron
BPAS
BOGD
SPA

2000 3000 4000 5000 6000 7000 8000 9000 10000

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Time (s)

O
nl

in
e

M
is

ta
ke

 R
at

e

RBP
Forgetron
BPAS
BOGD
SPA

(a) codrna (b) susy

Figure 5.1: Evaluation of different Bounded OMKC algorithms on two large-scale
data sets. The curves of online mistake rates vs time costs were obtained by choos-
ing varied budget values. As bounded SD algorithms have no significant advantages
over Bounded DD (see Table 5.3), we thus only include Bounded DD algorithms in
these 2 figures to simplify the presentation.

good kernels and thus the poor kernels will yield fewer SV’s, which can greatly re-

duce the prediction time cost; (ii) Different from the budget SD where the classifier

weights θ are also updated in a stochastic manner, the weights in the proposed S-

PA algorithm are updated always whenever a classification mistake appears, which

leads to better SV allocation and more precise prediction combination.

To further examine the trade-off between classification accuracy and compu-

tational efficiency, Figure 5.2 shows the evaluation of different Bounded OMKC

algorithms on two large-scale data sets, where the curves of online mistake rates vs

time costs were obtained by choosing varied budget values (via proper parameter

settings). As observed from the results, for the largest dataset “SUSY” with one

million instances, we found that when following the previous setting where all the

algorithms adopt the same number of SV’s, the compared budget algorithms cannot

finish processing the dataset in the fixed amount of time. Thus, for a fair compar-

ison, we plot the online mistake rate of different algorithms on the same time axis

according to different SV sparsity setting (β = 2, ..., 10). Obviously, the proposed

SPA algorithm always achieves the lowest mistake rate with the given same amount

of time cost, which validates the effectiveness and robustness of SPA.

122

5.3.2 Experiments of Functional Approximation Algorithms for

OMKL

In this subsection, we evaluate the performance of the two proposed functional ap-

proximation algorithms in terms of accuracy and time cost.

Experiment Setup

The experiment setup is mostly the same as that for the SPA section. We test the

FOGD and NOGD algorithm using C++. The η, ρn for NOGD and FOGD are set

according to the setting of Chapter 4. Since FOGD is only suitable for RBF kernels,

in the FOGD we only test on the 13 gaussian kernels.

10
0

10
1

10
2

0

0.05

0.1

0.15

0.2

0.25

Time (s)

O
nl

in
e

M
is

ta
ke

 R
at

e

RBP
Forgetron
BPAS
BOGD
SPA
FOGD
NOGD

10
2

10
3

10
4

0.22

0.24

0.26

0.28

0.3

0.32

0.34

0.36

Time (s)

O
nl

in
e

M
is

ta
ke

 R
at

e

RBP
Forgetron
BPAS
SPA
BOGD
FOGD
NOGD

(a) codrna (b) susy

Figure 5.2: Evaluation of different OMKL algorithms on two large-scale data sets.
The curves of online mistake rates vs time costs were obtained by choosing var-
ied budget values. We only include Bounded DD algorithms in these 2 figures to
simplify the presentation.

Comparison Under Fixed Budget Size

The first experiment is to evaluate the performance of the two functional approx-

imation algorithms under fixed budget size. We set B = D = 100 for all single

kernel component classifiers in all algorithms. So in total, each budget algorithm

have 1600 SV’s and the FOGD has 1300 random fourier vectors for the 13 gaussian

kernels. The experiment results are reported in Table 5.4 and 5.5. Note that for

the largest scale datasets, we did not report the results of the non-budget algorithms

because of the time and memory limits. We can draw some observations as below.

123

Table 5.4: Evaluation of Online Classification on Small-scale and Medium-scale Datasets
(time in seconds). We report the number of SV’s for all budget algorithms and the number
of Fourier components for FOGD algorithms.

Algorithm german w7a
Error(%) #SV’s Time Error(%) #SV’s Time

Perceptron* 31.87±1.61 318.8±16.1 0.04 2.73±0.03 674.5±8.8 0.83
U 35.75±1.52 6904.1±101.3 0.38 2.46±0.03 67111.3±140.1 138.31
DD 30.71±1.25 6904.1±101.3 0.38 2.28±0.06 67111.3±140.1 138.31
SD 34.83±1.54 5723.3±95.1 0.34 2.18±0.04 13285.6±98.8 24.02
RBP-DD 31.53±0.71 1600 0.15 2.99±0.11 1600 3.93
Forget-DD 33.00±1.13 1600 0.21 3.39±0.15 1600 5.24
BOGD-DD 30.00±0.49 1600 0.18 3.00±0.00 1600 4.91
BPAS-DD 30.08±0.40 1600 0.18 3.00±0.00 1600 4.93
RBP-SD 32.02±1.01 1600 0.15 3.08±0.15 1600 4.31
Forget-SD 33.48±1.79 1600 0.19 3.39±0.10 1600 4.66
BOGD-SD 29.34±0.69 1600 0.17 3.00±0.00 1600 5.04
BPAS-SD 30.07±0.56 1600 0.18 3.00±0.00 1600 4.70
FOGD 30.22±0.11 1300 0.08 3.00±0.00 1300 1.52
NOGD 30.24±0.32 1600 0.24 3.00±0.00 1600 4.89
Algorithm a9a KDD08

Error(%) #SV’s Time Error(%) #SV’s Time

Perceptron* 20.43±0.13 9980.1±67.4 22.5 0.94±0.01 963.5±11.0 14.7
U 20.60±0.10 234008.7±373.8 1178.5 0.66±0.01 32665.1±199.7 829.7
DD 19.20±0.12 234008.7±373.8 1178.6 0.72±0.01 32665.1±199.7 829.0
SD 18.93±0.10 155393.9±560.9 778.9 0.63±0.01 17218.5±95.3 450.8
RBP-DD 22.39±0.57 1600 8.80 0.68±0.00 1600 50.10
Forget-DD 22.48±0.37 1600 13.19 0.86±0.00 1600 50.60
BOGD-DD 20.46±0.07 1600 9.37 0.61±0.00 1600 51.51
BPAS-DD 18.73±0.30 1600 10.14 0.61±0.00 1600 51.60
RBP-SD 20.62±0.39 1600 9.28 0.70±0.00 1600 50.10
Forget-SD 21.64±0.19 1600 11.63 0.77±0.00 1600 50.07
BOGD-SD 21.52±0.076 1600 9.54 0.61±0.00 1600 54.20
BPAS-SD 18.72±0.21 1600 9.96 0.61±0.00 1600 54.48
FOGD 16.52±0.17 1300 3.35 0.61±0.00 1300 20.27
NOGD 17.24±0.26 1600 9.66 0.61±0.00 1600 51.57

124

Table 5.5: Evaluation of Online Classification on large-scale Datasets time in seconds).We
report the number of SV’s for all budget algorithms and the number of Fourier components
for FOGD algorithms.

Algorithm codrna ijcnn1
Error(%) #SV’s Time Error(%) #SV’s Time

RBP-DD 20.71±0.61 1600 23.41 12.54±0.33 1600 5.22
Forgetron-DD 21.95±0.08 1600 30.14 13.26±0.39 1600 6.26
BOGD-DD 24.29±0.05 1600 28.48 9.71±0.00 1600 6.33
BPAS-DD 15.45±1.09 1600 28.86 9.71±0.00 1600 6.15
RBP-SD 17.48±0.51 1600 22.70 9.47±0.18 1600 5.25
Forgetron-SD 19.45±0.37 1600 27.59 10.28±0.12 1600 6.10
BOGD-SD 32.75±0.03 1600 27.36 9.71±0.00 1600 6.33
BPAS-SD 21.88±0.62 1600 25.83 9.71±0.00 1600 5.98
FOGD 4.33±0.15 1300 15.85 6.36±0.27 1300 3.21
NOGD 4.57±0.04 1600 30.27 9.35±0.45 1600 6.89
Algorithm susy covtype

Error(%) #SV’s Time Error(%) #SV’s Time

RBP-DD 42.10±0.31 1600 141.59 39.02±0.32 1600 68.21
Forgetron-DD 42.29±0.03 1600 198.58 39.48±0.05 1600 95.40
BOGD-DD 42.18±0.01 1600 151.71 37.61±0.04 1600 77.86
BPAS-DD 35.90±0.43 1600 154.08 30.51±0.19 1600 79.56
RBP-SD 42.47±0.71 1600 134.10 36.43±0.39 1600 67.79
Forgetron-SD 43.30±0.53 1600 180.55 38.13±0.23 1600 90.27
BOGD-SD 44.01±0.04 1600 149.05 39.31±0.06 1600 75.39
BPAS-SD 37.21±0.35 1600 142.89 30.68±0.21 1600 76.31
FOGD 21.95±0.14 1300 74.37 23.95±0.31 1300 37.28
NOGD 24.95±0.49 1600 152.99 32.14±0.46 1600 77.05

125

First of all, we compare the the 4 existing non-budget OMKL algorithms and

draw similar observations as that in the previous section. The accuracy of “DD” sig-

nificantly outperforms that of uniform combination (“U”) and the best single kernel

classifier, which validates the significance of exploring multiple kernel learning.

Second, we find that the proposed NOGD and FOGD usually achieve higher ac-

curacy than most of the budget learning algorithms, which is more obvious in larger

datasets. This validates our claim that the two functional approximation algorithms

are more powerful than traditional budget maintenance strategies. This conclusion

consists with that in the single kernel experiments. Specially, the FOGD algorithm

is extremely fast.

Comparison Under Variant Budget Size

In the first experiment we compare the accuracy and time cost of different OMKL

algorithms under fixed budget size. This is sometimes not comprehensive since

slower algorithms might achieve higher accuracy. Note that the B and D parameter

control the trade-off between efficiency and effectiveness. It is thus more straight

forward to compare the algorithms under variant B and D values. We plot their

accuracy on the same time axis, in Figure 5.2.

We can draw several observations. First, the three proposed algorithms all out-

perform the existing budget algorithms in most of the cases. Second, FOGD is able

to achieve higher accuracy when the time cost is very limited, which is better than

NOGD and SPA. But when we allow higher time cost (larger B and D or smaller

β), SPA can achieve higher accuracy compared to these two since it approaches to

the original non-budget PA algorithms.

5.4 Single Kernel vs Multiple Kernel

In the previous sections, we have demonstrated that the proposed online multiple

kernel learning algorithms, SPA, FOGD and NOGD outperformed the other budget

126

Table 5.6: Evaluation of Online Classification on large-scale Datasets (time in seconds).
All algorithms adopt the same number of SVs. B=1600, decreasing factor γ = 0.999

Algorithm codrna a9a susy
Error(%) Time Error(%) Time Error(%) Time

RBP-single 7.58±0.07 14.63 21.03±0.05 6.05 34.26±0.24 82.16
BOGD-single 8.19±0.06 16.66 17.01±0.17 6.88 30.35±0.35 90.51
SPA-multiple 10.92±1.03 13.01 18.71±1.35 5.72 35.53±1.08 68.90
FOGD-multiple 4.33±0.15 15.85 16.52±0.17 3.35 21.95±0.14 74.37
NOGD-multiple 4.57±0.04 30.27 17.24±0.26 9.66 24.95±0.49 152.99

OMKL algorithms under same budget size (Table 5.3, 5.4, 5.5) and under the same

time cost (Figure 5.1, 5.2). While there is still an open question: given same number

of SV’s, is their performance better than a single kernel classifier?

Obviously, the performance online multiple kernel classifiers should be better

than lots of single kernel classifiers since OMKC is designed to filter out bad kernel-

s. Consequently, in this section, we only compare our proposed OMKC algorithms

with the best single kernel classifier, assuming that the single kernel classifier had

foresight for the best kernel. The results are demonstrated in Figure 5.6.

We find that FOGD and NOGD can even outperform the single kernel classifier

although the single kernel classifier is with the unrealistic assumption that it knows

the best classifier. The SPA algorithm is not accurate when using so few SV’s, this

consists with that in Figure 4.7. But note that this weaker performance when com-

pared with single kernel classifiers does not indicate the ineffective of the proposed

algorithms, since OMKL algorithms is designed to avoid manual kernel selection.

5.5 Discussion

To make large-scale kernel methods practical, we proposed a novel framework for

bounded online multiple kernel learning. We extended the proposed SPA, FOGD

and NOGD algorithms to Bounded Online Multiple Kernel Learning tasks. Our

promising experimental results shows that our algorithms outperform a variety of

state-of-the-art budget online learning algorithms.

127

Chapter 6

Conclusion and Future Work

6.1 Conclusion

Kernel learning plays an important role in the machine learning field due to its abil-

ity to learn complicated nonlinear patterns. Online Kernel Learning, which learns

a kernel based model from sequentially arriving data, is a powerful tool in many

real-world, real-time applications, such as classification, regression and ranking. In

this paper, we address the key challenge in Online Kernel Learning, the curse of

kernelization and make OKL scalable to large scale applications.

In our survey of online kernel learning algorithms, we find that there are stil-

l some open challenges. First, most of the existing budget online kernel learn-

ing algorithms can not bound the number of SV’s for the averaged classifier over

the learning process, which makes them not suitable for online-to-batch conver-

sion. Second, existing budget maintenance strategies are usually either too simple

to achieve satisfactory accuracy or too complicated and time consuming, making

them not scalable to large scale applications. Third, for the online multiple kernel

problem, an extension of the traditional single kernel learning problem by learning a

linear combination of multiple kernel functions, there is no effective and efficient al-

gorithm for large scale applications. Our research aims to address these challenges.

For the first challenge, we propose the Sparse Passive Aggressive Online Learn-

128

ing algorithm (SPA). The main idea is to adopt a stochastic updating strategy and

add SV’s wisely. Since no SV is removed during the learning process, we not only

bound the number of SV’s for classifiers in all iterations, but also bound the number

of SV’s in the averaged classifier, making it applicable to batch testing.

For the second challenge, we propose two functional approximation algorithm-

s, (i) Fourier Online Gradient Descent (FOGD) algorithm which adopts the ran-

dom Fourier features for approximating shift-invariant kernels and learns the subse-

quent model by online gradient descent; and (ii) Nyström Online Gradient Descent

(NOGD) algorithm which employs the Nyström method for large kernel matrix ap-

proximation followed by online gradient descent learning. These two algorithms

achieve high efficiency by approximating the kernel learning problem with a linear

learning problem.

For the third challenge, we propose a group of online multiple kernel learning

algorithms. We extend the three proposed online kernel learning algorithms to s-

cale up each of the component classifiers and learn the combination weights by the

Hedge algorithm.

For all the proposed algorithms, we conduct theoretical analysis and empirical

experiments in comparison with many existing algorithms. The encouraging results

valid the advantages of these proposed algorithms.

6.2 Future Work

In this section, we try to list some potential problems for future research.

First, the existing Nyström kernel matrix approximation are built on the first B

support vectors and will be fixed along the whole learning process. This is somehow

sub-optimal since the first a few support vectors might not be the optimal choice of

the most representative support vectors. A promising future direction is to develop

an online algorithm that can update the Nyström SV set when possible. This should

improve the accuracy in the case when the first a few SV’s are not very representa-

129

tive. Currently, only a few works tried to address this problem [51, 37]

Second, in the OMKL section, we currently pay equal attention to all the kernels

since it is impossible to determine which kernel is the optimal one before training.

A possible direction is to update the number of fourier vectors D and the Nyström

budget B according to the performance of certain component classifier along the

learning process. So we can allocate more resources to more powerful kernels.

Third, in this work, we mainly focus on binary classification, though multi-class

classification and regression are also considered. While the proposed algorithms are

not limited to these applications. In the future, we wish to address more real world

applications such as ranking and recommendation system.

130

Appendix: The Open Source

Tool-box

To facilitate other researchers in the online kernel learning field. We provide an open source
C++ tool-box for all the proposed algorithms and all the compared OKL algorithms in this
dissertation, including:

• Online Kernel Learning algorithms: Perceptron, OGD, PA, PA-I and PA-II

• Budget Online Kernel Learning algorithms: RBP, Forgetron, Projectron, Projec-
tron++, BOGD, BPA-S, SPA, FOGD and NOGD

• Online Multiple Kernel Learning algorithms: U, DD, SD,

• Budget Online Multiple Kernel Learning algorithms: RBP, Forgetron, BOGD, BPA-
S, SPA, FOGD and NOGD.

See https://github.com/LIBOL/KOL and http://lsokl.stevenhoi.
org/ for details.

131

https://github.com/LIBOL/KOL
http://lsokl.stevenhoi.org/
http://lsokl.stevenhoi.org/

Bibliography

[1] F. R. Bach. Consistency of the group lasso and multiple kernel learning. The Journal
of Machine Learning Research, 9:1179–1225, 2008.

[2] F. R. Bach, G. R. Lanckriet, and M. I. Jordan. Multiple kernel learning, conic duality,
and the smo algorithm. In Proceedings of the twenty-first international conference on
Machine learning, page 6. ACM, 2004.

[3] G. Cavallanti, N. Cesa-Bianchi, and C. Gentile. Tracking the best hyperplane with a
simple budget perceptron. Machine Learning, 69(2-3):143–167, 2007.

[4] N. Cesa-Bianchi, A. Conconi, and C. Gentile. A second-order perceptron algorithm.
SIAM Journal on Computing, 34(3):640–668, 2005.

[5] C.-C. Chang and C.-J. Lin. Libsvm: a library for support vector machines. ACM
Transactions on Intelligent Systems and Technology, 2(3):27, 2011.

[6] N. Chen, S. C. Hoi, S. Li, and X. Xiao. Mobile app tagging. In Proceedings of the
Ninth ACM International Conference on Web Search and Data Mining, pages 63–72.
ACM, 2016.

[7] R. Chitta, R. Jin, T. C. Havens, and A. K. Jain. Approximate kernel k-means: Solution
to large scale kernel clustering. In Proceedings of the ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pages 895–903. ACM, 2011.

[8] R. Chitta, R. Jin, and A. Jain. Efficient kernel clustering using random fourier features.
In IEEE International Conference on Data Mining, 2012.

[9] C. Cortes, M. Mohri, and A. Talwalkar. On the impact of kernel approximation on
learning accuracy. In International Conference on Artificial Intelligence and Statistics,
2010.

[10] K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-
aggressive algorithms. Journal of Machine Learning Research, 7:551–585, 2006.

[11] K. Crammer, J. S. Kandola, and Y. Singer. Online classification on a budget. In Neural
Information Processing Systems, volume 2, page 5, 2003.

[12] K. Crammer, A. Kulesza, and M. Dredze. Adaptive regularization of weight vectors.
In Advances in neural information processing systems, pages 414–422, 2009.

[13] K. Crammer and Y. Singer. On the algorithmic implementation of multiclass kernel-
based vector machines. Journal of Machine Learning Research, 2:265–292, 2001.

[14] K. Crammer and Y. Singer. On the learnability and design of output codes for multi-
class problems. Machine Learning, 47(2-3):201–233, 2002.

132

[15] O. Dekel. From online to batch learning with cutoff-averaging. In Advances in Neural
Information Processing Systems, pages 377–384, 2009.

[16] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron: A kernel-based perceptron
on a fixed budget. In Neural Information Processing Systems, 2005.

[17] O. Dekel, S. Shalev-Shwartz, and Y. Singer. The forgetron: A kernel-based perceptron
on a budget. SIAM J. Comput., 37(5):1342–1372, 2008.

[18] O. Dekel and Y. Singer. Data-driven online to batch conversions. In Advances in
Neural Information Processing Systems, pages 267–274, 2005.

[19] M. Dredze, K. Crammer, and F. Pereira. Confidence-weighted linear classification. In
Proceedings of the International Conference on Machine Learning, pages 264–271,
2008.

[20] J. Duchi, E. Hazan, and Y. Singer. Adaptive subgradient methods for online learning
and stochastic optimization. Journal of Machine Learning Research, 12(Jul):2121–
2159, 2011.

[21] Y. Freund and R. E. Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. J. Comput. Syst. Sci., 55(1):119–139, 1997.

[22] Y. Freund and R. E. Schapire. Large margin classification using the perceptron algo-
rithm. Maching Learning., 37(3):277–296, 1999.

[23] C. Gentile. A new approximate maximal margin classification algorithm. Journal of
Machine Learning Research, 2(Dec):213–242, 2001.

[24] M. Gönen and E. Alpaydın. Multiple kernel learning algorithms. The Journal of
Machine Learning Research, 12:2211–2268, 2011.

[25] E. Hazan, A. Agarwal, and S. Kale. Logarithmic regret algorithms for online convex
optimization. Machine Learning, 69(2-3):169–192, 2007.

[26] S. C. Hoi, R. Jin, P. Zhao, and T. Yang. Online multiple kernel classification. Machine
Learning, 90(2):289–316, 2013.

[27] S. C. Hoi, M. R. Lyu, and E. Y. Chang. Learning the unified kernel machines for classi-
fication. In Proceedings of the ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pages 187–196. ACM, 2006.

[28] S. C. Hoi, J. Wang, and P. Zhao. Libol: A library for online learning algorithms.
Journal of Machine Learning Research, 15:495–499, 2014.

[29] S. C. H. Hoi, R. Jin, and M. R. Lyu. Learning nonparametric kernel matrices from pair-
wise constraints. In Proceedings of the International Conference on Machine Learn-
ing, pages 361–368, Corvalis, Oregon, 2007.

[30] S. C. H. Hoi, R. Jin, P. Zhao, and T. Yang. Online multiple kernel classification.
Machine Learning, 90(2):289–316, 2013.

[31] C.-W. Hsu and C.-J. Lin. A comparison of methods for multiclass support vector
machines. Neural Networks, IEEE Transactions on, 13(2):415–425, 2002.

[32] R. Jin, S. C. Hoi, and T. Yang. Online multiple kernel learning: Algorithms and
mistake bounds. In Algorithmic Learning Theory, pages 390–404. Springer, 2010.

133

[33] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. In Neural
Information Processing Systems, pages 785–792, 2001.

[34] J. Kivinen, A. J. Smola, and R. C. Williamson. Online learning with kernels. Signal
Processing, IEEE Transactions on, 52(8):2165–2176, 2004.

[35] G. R. Lanckriet, N. Cristianini, P. Bartlett, L. E. Ghaoui, and M. I. Jordan. Learning
the kernel matrix with semidefinite programming. The Journal of Machine Learning
Research, 5:27–72, 2004.

[36] B. Li, P. Zhao, S. C. Hoi, and V. Gopalkrishnan. Pamr: Passive aggressive mean
reversion strategy for portfolio selection. Machine learning, 87(2):221–258, 2012.

[37] H. Li and L. Zhang. Dynamic subspace update with incremental nyström approxima-
tion. In Asian Conference on Computer Vision, pages 384–393. Springer, 2010.

[38] M. Li, W. Bi, J. T. Kwok, and B.-L. Lu. Large-scale nyström kernel matrix approx-
imation using randomized svd. IEEE transactions on neural networks and learning
systems, 26(1):152–164, 2015.

[39] Y. Li and P. M. Long. The relaxed online maximum margin algorithm. Machine
Learning, 46(1-3):361–387, 2002.

[40] J. Luo, F. Orabona, M. Fornoni, B. Caputo, and N. Cesa-Bianchi. Om-2: An online
multi-class multi-kernel learning algorithm. In In Proceeding of CVPR 2010, Online
Learning for Computer Vision Workshop, number EPFL-CONF-192505, 2010.

[41] J. Ma, L. K. Saul, S. Savage, and G. M. Voelker. Identifying suspicious urls: an appli-
cation of large-scale online learning. In Proceedings of the International Conference
on Machine Learning, pages 681–688. ACM, 2009.

[42] A. F. Martins, M. A. Figueiredo, P. M. Aguiar, N. A. Smith, and E. P. Xing. Online
multiple kernel learning for structured prediction. arXiv preprint arXiv:1010.2770,
2010.

[43] F. Orabona, L. Jie, and B. Caputo. Online-batch strongly convex multi kernel learn-
ing. In Computer Vision and Pattern Recognition (CVPR), 2010 IEEE Conference on,
pages 787–794. IEEE, 2010.

[44] F. Orabona, L. Jie, and B. Caputo. Multi kernel learning with online-batch optimiza-
tion. The Journal of Machine Learning Research, 13(1):227–253, 2012.

[45] F. Orabona, J. Keshet, and B. Caputo. The projectron: a bounded kernel-based per-
ceptron. In Proceedings of the International Conference on Machine Learning, pages
720–727, 2008.

[46] F. Orabona, J. Keshet, and B. Caputo. Bounded kernel-based online learning. Journal
of Machine Learning Research, 10:2643–2666, 2009.

[47] A. Rahimi and B. Recht. Random features for large-scale kernel machines. In Neural
Information Processing Systems, 2007.

[48] A. Rakotomamonjy, F. Bach, S. Canu, and Y. Grandvalet. More efficiency in multi-
ple kernel learning. In Proceedings of the 24th international conference on Machine
learning, pages 775–782. ACM, 2007.

134

[49] F. Rosenblatt. The perceptron: a probabilistic model for information storage and or-
ganization in the brain. Psychological review, 65(6):386, 1958.

[50] F. Rosenblatt. The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review, 65:386–407, 1958.

[51] A. Rudi, R. Camoriano, and L. Rosasco. Less is more: Nyström computational regu-
larization. In Advances in Neural Information Processing Systems, pages 1657–1665,
2015.

[52] W. Rudin. Fourier Analysis on Groups. Wiley-Interscience, 1990.

[53] D. Sahoo, S. C. Hoi, and B. Li. Online multiple kernel regression. In Proceedings
of the 20th ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 293–302. ACM, 2014.

[54] B. Schölkopf, R. Herbrich, and A. J. Smola. A generalized representer theorem. In
Conference on Learning Theory, pages 416–426, 2001.

[55] B. Scholkopf and A. J. Smola. Learning with kernels: support vector machines, regu-
larization, optimization, and beyond. MIT press, 2001.

[56] S. Shalev-Shwartz, Y. Singer, N. Srebro, and A. Cotter. Pegasos: Primal estimated
sub-gradient solver for svm. Mathematical Programming, 127(1):3–30, 2011.

[57] O. Shamir and T. Zhang. Stochastic gradient descent for non-smooth optimization:
Convergence results and optimal averaging schemes. arXiv preprint arXiv:1212.1824,
2012.

[58] A. J. Smola and B. Schölkopf. Learning with kernels. Citeseer, 1998.

[59] S. Sonnenburg, G. Rätsch, C. Schäfer, and B. Schölkopf. Large scale multiple kernel
learning. Journal of Machine Learning Research, 7(Jul):1531–1565, 2006.

[60] N. Subrahmanya and Y. C. Shin. Sparse multiple kernel learning for signal process-
ing applications. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
32(5):788–798, 2010.

[61] A. Talwalkar, S. Kumar, and H. A. Rowley. Large-scale manifold learning. In Com-
puter Vision and Pattern Recognition, 2008.

[62] I. W. Tsang, J. T. Kwok, and P.-M. Cheung. Core vector machines: Fast svm training
on very large data sets. Journal of Machine Learning Research, 6(Apr):363–392,
2005.

[63] T. van Erven and W. M. Koolen. Metagrad: Multiple learning rates in online learning.
In Advances in Neural Information Processing Systems, pages 3666–3674, 2016.

[64] V. N. Vapnik and V. Vapnik. Statistical learning theory, volume 1. Wiley New York,
1998.

[65] M. Varma and B. R. Babu. More generality in efficient multiple kernel learning. In
Proceedings of the 26th Annual International Conference on Machine Learning, pages
1065–1072. ACM, 2009.

135

[66] J. Wang, S. C. Hoi, P. Zhao, J. Zhuang, and Z.-y. Liu. Large scale online kernel clas-
sification. In Proceedings of International Joint Conference on Artificial Intelligence,
pages 1750–1756. AAAI Press, 2013.

[67] J. Wang, P. Zhao, and S. C. Hoi. Exact soft confidence-weighted learning. arXiv
preprint arXiv:1206.4612, 2012.

[68] J. Wang, P. Zhao, and S. C. H. Hoi. Cost-sensitive online classification. In IEEE
International Conference on Data Mining, pages 1140–1145, 2012.

[69] Z. Wang, K. Crammer, and S. Vucetic. Breaking the curse of kernelization: Budgeted
stochastic gradient descent for large-scale svm training. Journal of Machine Learning
Research, 13:3103–3131, 2012.

[70] Z. Wang and S. Vucetic. Twin vector machines for online learning on a budget. In
International Conference on Data Mining, pages 906–917. SIAM, 2009.

[71] Z. Wang and S. Vucetic. Online passive-aggressive algorithms on a budget. In Inter-
national Conference on Artificial Intelligence and Statistics, pages 908–915, 2010.

[72] C. K. I. Williams and M. Seeger. Using the nyström method to speed up kernel ma-
chines. In Neural Information Processing Systems, pages 682–688, 2000.

[73] H. Xia, S. C. Hoi, R. Jin, and P. Zhao. Online multiple kernel similarity learning
for visual search. Pattern Analysis and Machine Intelligence, IEEE Transactions on,
36(3):536–549, 2014.

[74] H. Xia, P. Wu, and S. C. H. Hoi. Online multi-modal distance learning for scalable
multimedia retrieval. In ACM International Conference on Web Search and Data Min-
ing, pages 455–464, 2013.

[75] T. Yang, Y. Li, M. Mahdavi, R. Jin, and Z. hua Zhou. Nystrom method vs random
fourier features: A theoretical and empirical comparison. In Neural Information Pro-
cessing Systems, 2012.

[76] S. Yu, T. Falck, A. Daemen, L.-C. Tranchevent, J. A. Suykens, B. De Moor, and
Y. Moreau. L 2-norm multiple kernel learning and its application to biomedical data
fusion. BMC bioinformatics, 11(1):1, 2010.

[77] K. Zhang and J. T. Kwok. Density-weighted nyström method for computing large
kernel eigensystems. Neural Computation, 21(1):121–146, 2009.

[78] K. Zhang, L. Lan, Z. Wang, and F. Moerchen. Scaling up kernel svm on limited
resources: A low-rank linearization approach. In AISTATS, volume 22, pages 1425–
1434, 2012.

[79] L. Zhang, R. Jin, C. Chen, J. Bu, and X. He. Efficient online learning for large-scale
sparse kernel logistic regression. In AAAI, 2012.

[80] L. Zhang, J. Yi, R. Jin, M. Lin, and X. He. Online kernel learning with a near opti-
mal sparsity bound. In Proceedings of the 30th International Conference on Machine
Learning (ICML-13), pages 621–629, 2013.

[81] P. Zhao, S. C. H. Hoi, and R. Jin. Double updating online learning. Journal of Machine
Learning Research, 12:1587–1615, 2011.

136

[82] P. Zhao, J. Wang, P. Wu, R. Jin, and S. C. Hoi. Fast bounded online gradient descent
algorithms for scalable kernel-based online learning. In ICML, 2012.

[83] M. Zinkevich. Online convex programming and generalized infinitesimal gradient
ascent. In Proceedings of the Twentieth International Conference on Machine Learn-
ing(ICML 2003), pages 928–936, 2003.

137

	Scalable online kernel learning
	Citation

	1 Introduction
	1.1 Background and Motivation
	1.1.1 Batch Learning Vs Online Learning
	1.1.2 Online Kernel Learning
	1.1.3 Budget Online Learning
	1.1.4 Online Multiple Kernel Learning

	1.2 Methodology
	1.2.1 Online Sparse Passive Aggressive Learning with Kernels
	1.2.2 Functional Approximation Based Online Kernel Learning
	1.2.3 Online Multiple Kernel Learning

	1.3 Summary of Contributions
	1.4 Organization

	2 Literature Review
	2.1 Online Learning
	2.1.1 Problem Formulation
	2.1.2 Online Learning Algorithms

	2.2 Kernel Learning
	2.3 Online Kernel Learning
	2.3.1 Problem Formulation
	2.3.2 Online Kernel Learning Algorithm
	2.3.3 The Curse of Kernelization

	2.4 Budget Online Learning
	2.4.1 SV Removal
	2.4.2 SV Projection
	2.4.3 SV Merging
	2.4.4 Comparison of Budget Online Learning Algorithms

	2.5 Online Multiple Kernel Learning
	2.5.1 Problem Formulation
	2.5.2 OMKL Algorithms

	2.6 Summary

	3 Online Sparse Passive Aggressive Learning with Kernels
	3.1 Introduction
	3.2 Related Work
	3.3 Sparse PA Learning with Kernels
	3.3.1 Problem Setting and Preliminaries
	3.3.2 Sparse Passive Aggressive Algorithm
	3.3.3 Application to Binary Classification

	3.4 Theoretical Analysis
	3.5 Experiments
	3.5.1 Experimental Testbed
	3.5.2 Compared Algorithms and Setup
	3.5.3 Evaluation of Online Learning Performance
	3.5.4 Parameter Sensitivity of and in SPA Evaluation
	3.5.5 Evaluation of Output Classifiers on Test Data
	3.5.6 Experiments on Various Budget Sizes

	3.6 Discussion

	4 Online Kernel Learning by Functional Approximation Methods
	4.1 Introduction
	4.2 Related Work
	4.3 Binary Classification
	4.3.1 Problem Formulation
	4.3.2 Fourier Online Gradient Descent
	4.3.3 Nyström Online Gradient Descent
	4.3.4 Theoretical Analysis

	4.4 Multi-class Classification
	4.4.1 Problem Settings
	4.4.2 Multi-class Fourier Online Gradient Descent
	4.4.3 Multi-class Nyström Online Gradient Descent
	4.4.4 Theoretical Analysis

	4.5 Regression
	4.6 Experimental Results
	4.6.1 Experiment for Binary Classification Task in Batch Setting
	4.6.2 Experiments for Online Binary Classification Tasks
	4.6.3 Experiments for Multi-class Classification Tasks
	4.6.4 Experiments for Online Regression Tasks
	4.6.5 Comparison with SPA algorithm

	4.7 Comparison between FOGD and NOGD
	4.8 Discussion

	5 Scalable Online Multiple Kernel Learning
	5.1 Related Work
	5.2 The Proposed OMKL Algorithms
	5.2.1 Problem Setting and Preliminaries
	5.2.2 SPA for Online Multiple Kernel Learning
	5.2.3 FOGD for Online Multiple Kernel Learning
	5.2.4 NOGD for Online Multiple Kernel Learning

	5.3 Experiments
	5.3.1 Experiments for SPA OMKL
	5.3.2 Experiments of Functional Approximation Algorithms for OMKL

	5.4 Single Kernel vs Multiple Kernel
	5.5 Discussion

	6 Conclusion and Future Work
	6.1 Conclusion
	6.2 Future Work

	 Appendix: The Open Source Tool-box

