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Proactive Sequential Resource (Re)distribution for

Improving Efficiency in Urban Environments

Supriyo Ghosh

Abstract

Due to the increasing population and lack of coordination, there is a mismatch in

supply and demand of common resources (e.g., shared bikes, ambulances, taxis) in

urban environments, which has deteriorated a wide variety of quality of life metrics

such as success rate in issuing shared bikes, response times for emergency needs,

waiting times in queues etc. Thus, in my thesis, I propose efficient algorithms

that optimise the quality of life metrics by proactively redistributing the resources

using intelligent operational (day-to-day) and strategic (long-term) decisions in the

context of urban transportation and health & safety.

For urban transportation, Bike Sharing System (BSS) is adopted as the motivat-

ing domain. Operational decisions are crucial for BSS, because the stations of BSS

are often not balanced due to uncoordinated movements of resources (i.e., bikes) by

customers. The imbalanced stations lead to significant loss in demand and increase

the usage of private transportation and therefore, defeat the primary objective of

BSS which is to reduce carbon footprint. In order to reduce the carbon footprint,

I contribute three operational decision making approaches for sequential redistri-

bution of bikes: (i) Optimising lost demand through dynamic redistribution; (ii)

Optimising lost demand through robust redistribution; and (iii) Optimising lost de-

mand through incentives. In the first approach, I consider the expected demand for

multiple time steps to find a redistribution solution and provide novel decomposi-

tion and abstraction mechanisms to speed up the solution process. This approach

is useful for BSS with consistent demand patterns. Therefore, the second approach

proposes a robust redistribution solution using the notion of two-player adversar-

ial game to address the scenarios where the demand has high variance. For the



third approach, within the central budget constraints of the operators, a mechanism

is designed to incentivise the customers for executing the bike redistribution tasks

by themselves. The experimental results on two real-world data sets of Capital

Bikeshare (Washington, DC) and Hubway (Boston, MA) BSS demonstrate that our

approaches significantly reduce the average and worse case lost demand over the

current practices.

For health & safety, Emergency Medical System (EMS) is adopted as the moti-

vating domain. EMS is an extremely sensitive and critical domain for public health-

care services, because reducing the response times for emergency incidents by a

few seconds can save a human life. In order to reduce the response times, I pro-

pose strategic decision making approach for EMS so as to place base stations at

“right” location and allocate “right” number of ambulances on those bases. An ac-

celerated version of greedy algorithm on top of an existing data-driven optimisation

formulation is proposed to jointly consider the placement of bases and allocation

of ambulances. Subsequently, I provide insights to improve the operational deci-

sions of EMS for dynamic redistribution of ambulances by incorporating the exact

real-world dynamics of EMS into the existing data-driven optimisation formulation.

Experimental results on real-world data sets demonstrate that both our strategic and

operational decisions improve the efficacy of EMS over the existing approaches.
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Chapter 1

Introduction

1.1 Motivation and Background

Due to the fast urbanisation, the populations in today’s cities are growing rapidly.

According to the Department of Economic and Social Affairs of United Nations,

around 54% of the world’s population lives in urban areas and the growth is ex-

pected to reach 66% by 20501. More importantly, the populations in urban areas are

projected to experience substantial growth to approximately 86% and 80% by 2050

for high-income and upper-middle-income countries, respectively. While people

migrates to cities for a better quality of life in terms of education, job opportunities

and pleasant future, the lack of coordination leads to great challenge of mismatch

between the demand for resources and the supply of resources, which has a detri-

mental effect on a wide range of quality of life metrics.

In particular, the increasing demand and the involuntary movements of people

according to their needs lead to an inherent mismatch between the demand and

supply of public resources (e.g., shared bikes, taxis) in urban transportation. This

mismatch between the demand and supply of common resources has deteriorated a

wide range of quality of life metrics such as success rate in issuing shared bikes,

1The data is collected from https://esa.un.org/unpd/wup/publications/files/wup2014-
highlights.Pdf
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waiting times in queues etc. These problems lead to an extensive usage of private

vehicles in the mega cities as the city residents eventually purchase motor vehi-

cles as soon as they can afford them, which is an expected phenomenon studied by

Sperling and Salon (2002). For instance, the number of car owners per thousand

population in China in 2002 was 16 (Dargay, Gately, & Sommer, 2007), which has

increased by 300 percent from 2002 to 2008 (Fan, 2008).

Unfortunately, the extensive usage of private vehicles significantly contributes

to the major growing concerns such as global warming, air pollution, usage of non-

renewable resources, traffic congestion, climate change and emission of greenhouse

gases (Wright & Fulton, 2005). Therefore, there is a practical need to develop

intelligent decisions for proactive repositioning2 of resources in public transporta-

tion (Cervero, 2013), which can reduce the usage of private transportation and con-

tribute significantly in building sustainable and smart cities.

In addition, the rapid and unplanned urbanisation can have a major negative im-

pact in health & safety of people3. The influx of migrants can lead to overcrowded

cities and can be a catalyst for rapid transmission of infectious diseases (Neiderud,

2015). Furthermore, the overpopulation significantly increases the number of emer-

gency incidents such as road accidents. For instance, the road traffic injuries con-

stitute the ninth leading cause for death and illness and it is expected to rise to third

source by 2030 (Peden, Scurfield, Sleet, Mohan, Hyder, Jarawan, Mathers, et al.,

2004). For these reasons, the increasing demand has deteriorated the quality of life

metrics (i.e., response times for emergency needs) for emergency medical systems

(EMSs). Therefore, it is extremely important to manage and redistribute the com-

mon resources (i.e., locations of base stations, ambulances, fire bikes) of EMS in a

fashion that can serve the emergency incidents within minimal response time.

To address the aforementioned issues in both the transportation and health &

safety domain, the city planners need to determine intelligent decisions for the

2Note that, we use “redistribution”, “repositioning”, “rebalancing”, “relocation” and “dynamic
matching” synonymously throughout the document.

3http://www.who.int/world-health-day/2010/media/whd2010background.pdf
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placement and management of public resources. Therefore, in my thesis, I pro-

pose intelligent decision making approaches that optimise the quality of life metrics

(e.g., success rate in issuing shared bikes, response times for emergency needs)

by proactively redistributing the public resources. There are two level of decision

making that has the potential to improve efficiency of urban environments:

• Operational level: day-to-day decisions associated with repositioning of re-

sources, i.e., how many resources to reposition, from where and how?

• Strategic level: capital and labor decisions, i.e., how many resources (e.g.,

bikes, ambulances, taxis) to buy, where to place them and how many perma-

nent employees to hire?

In this thesis, I explore operational and strategic decision making problems in

the context of urban transportation and health & safety. The objective is to proac-

tively redistribute the resources to better meet the future demand, which in turn

improves the efficiency of the system through better utilisation of public resources.

Figure (1.1) provides a quick view of different types of decision making problems

and briefly explains the contributions in each category.

1.1.1 Resource Redistribution for Urban Transportation

To alleviate the problem of traffic congestion and high carbon emission by the pri-

vate vehicles, Bike Sharing Systems (BSSs) are widely adopted in major cities (e.g.,

Capital Bikeshare in Washington DC, Hubway in Boston, Bixi in Montreal, Vélib’

in Paris, etc.) of the world (Meddin & DeMaio, 2016). BSSs provide an attrac-

tive alternative to the private transportation, specifically for the last-mile delivery

and short distance travels. Therefore, I employ BSS as the motivating domain. In

a BSS, base stations are strategically placed throughout a city and each station is

stocked with a pre-determined number of bikes at the beginning of the day. Cus-

tomers hire the bikes from one station and return them at another station.
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Figure 1.1: Characterisation of resource redistribution problems and contributions
in each category.

Strategic decision making problems in BSS such as the placement of stations,

discovering the optimal docking capacity and other issues pertinent to it, are heavily

studied in recent past. There has been a wide range of papers (Shu, Chou, Liu,

Teo, & Wang, 2013; Lin & Yang, 2011; Lin, Yang, & Chang, 2013; Martinez,

Caetano, Eiró, & Cruz, 2012; Angelopoulos, Gavalas, Konstantopoulos, Kypriadis,

& Pantziou, 2016) for efficiently solving the strategic decision making problems in

BSS.

However, due to the involuntary movements of customers hiring bikes, there is

either congestion (more than required) or starvation (fewer than required) of bikes

at base stations. The congestion/starvation is a common phenomenon that leads to

a large number of unsatisfied customers resulting in a significant loss in customer

demand. While the primary objective of BSS is to reduce carbon footprint, due to

the issue of lost demand, people resort back to their private transportation which

contribute towards carbon emissions. Therefore, operational decision making for

redistributing the idle bikes on a daily basis to reduce the lost demand during the

day is a practically important and challenging problem for BSS.
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To reduce the lost demand in BSS, the operators currently employ myopic heuris-

tics to rebalance the system based on the assessment of the recently observed de-

mand. Given the practical benefits of BSSs, there has been a wide variety of litera-

ture that studied the problems related to lost demand and other issues pertinent to it.

The first thread of research focuses on static rebalancing (Benchimol, Benchimol,

Chappert, De La Taille, Laroche, Meunier, & Robinet, 2011; Chemla, Meunier, &

Wolfler Calvo, 2013; Schuijbroek, Hampshire, & Van Hoeve, 2017) at the end of

the day or when the movements of bikes by customers are insignificant to achieve

the desired configuration of bikes across the base stations. To solve the dynamic

redistribution (i.e., the movements of bikes by the customers during the planning

period is significant and not negligible) problem during the day, most of the pa-

pers (Pfrommer, Warrington, Schildbach, & Morari, 2014; Contardo, Morency, &

Rousseau, 2012) provide myopic solution based on the assessment of near future

demand. Recent research (Singla, Santoni, Bartók, Mukerji, Meenen, & Krause,

2015; Pfrommer et al., 2014) proposes the idea of incentivizing customers for as-

sisting in dynamic redistribution.

However, these myopic solutions fail to properly capture the demand surges as

they do not consider the long-term future demand and the underlying uncertainties

associated with the demand. Therefore, in order to reduce the demand surges, I

focus on three operational decision making problems for sequential redistribution

of bikes: (i) Optimising lost demand through dynamic redistribution; (ii) Optimising

lost demand through robust redistribution; and (iii) Optimising lost demand through

incentives.

1.1.1.1 Optimising Lost Demand through Dynamic Redistribution

The existing real-world data sets demonstrate that the demand follows a consistent

pattern (particularly in the weekdays) for several BSSs. So, it is important to con-

sider multi-step expected demand (computed from past data) while computing the

redistribution strategies for the idle bikes using carrier vehicles. While existing re-
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search (Shu, Chou, Liu, Teo, & Wang, 2010; Shu et al., 2013) considered the future

expected demand to compute the redistribution strategy, they assume that reposi-

tioning of bikes from one station to another is always possible without considering

the routing of vehicles. In contrast, our goal is to find a dynamic repositioning

strategy for the bikes using carrier vehicles, while considering the routes of the ve-

hicles and the future demand for multiple time steps. This problem is referred to as

Dynamic Repositioning and Routing Problem (DRRP).

1.1.1.2 Optimising Lost Demand through Robust Redistribution

Although the demand follows a consistent pattern for several BSSs, in many cities

the future demand is unpredictable and changes dynamically. While the offline

multi-step algorithms based on expected future demand are suitable for situations

with stable demand patterns, they perform poorly when demand varies through-

out the day. The unpredictable movements of bikes by the customers can make the

planned offline redistribution solution irrelevant when customers return the required

number of bikes to a station or counterproductive when vehicles pick up bikes from

a station where customers need bikes. Therefore, it is important to consider the

variance in the demand along with the expected demand during the planning pe-

riod. The solution should also be robust to adapt the changes in customer demand

and provide a reasonable outcome even in the worse case scenarios. This prob-

lem is referred to as Dynamic Repositioning and Routing Problem under demand

Uncertainty (DRRPU).

1.1.1.3 Optimising Lost Demand through Incentives

While BSS is employed extensively primarily because of its nature friendly be-

haviour, the operators typically utilise a fleet of carrier vehicles to counter the loss

in customer demand which contributes towards the carbon emissions and other is-

sues pertinent to it. Moreover, this fuel burning mode of redistribution suffers with

limited resource constraints (i.e., a fixed set of vehicles owned by the operators) and
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incurs a significant amount of routing, labor costs. As an alternative, some opera-

tors (e.g., Citibike in New York City) have introduced the notion of bike trailers for

repositioning the bikes. A bike trailer is an add-on to a bike that can help with car-

rying 3-5 bikes at once. While existing research by O’Mahony and Shmoys (2015)

used trailers for the repositioning, they assume that all the tasks for the trailers can

be achieved with dedicated staff which is not an economically viable option. In con-

trast, our goal is to introduce a potentially self-sustaining and environment friendly

system of dynamic repositioning with the help of bike trailers and use incentivisa-

tion method for crowdsourcing the tasks of the trailers to users while ensuring a

given budget constraint. This problem is referred to as Dynamic Repositioning and

Routing Problem with Trailers (DRRPT).

1.1.2 Resource Redistribution for Health & Safety

For health & safety, Emergency Medical System (EMS) is employed as the motivat-

ing domain. In a typical EMS, the supply of resources corresponds to ambulances

at base stations and demand corresponds to emergency requests. In EMS, a set of

base stations are strategically placed in a city and each station is stocked with a few

ambulances. Once an emergency request arrived, the operator dispatch the nearest

available ambulance to serve the request. The assigned ambulance reaches the in-

cident location, provides initial treatment, transfers the patient to a nearby hospital

and then returns back to the same base from where it has been dispatched. Note

that, EMS is an extremely sensitive and important domain for public health-care

services, because arriving at the incident location a few seconds early can save a

human life. Therefore, real-world EMS operators use sensitive performance met-

rics such as bounded time response (e.g., percentage of requests served within 15

minutes) and bounded risk response (e.g., least response time within which 80% of

the requests are assisted).

On the contrary to BSS where the movements of resources (i.e., bikes) by the
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customers lead to an imbalance system on a daily basis, the locations of the re-

sources (e.g., base stations and ambulances) in EMS are strategically controlled by

the operators. Therefore, I focus on two decision making problems for improv-

ing the efficiency of EMS: (a) Strategic decision making for placement of bases

and ambulances; and (b) Operational decision making for dynamic redistribution of

ambulances to bases.

1.1.2.1 Strategic Decision Making Problem in EMS

While strategic solutions for facility location problems in large-scale disaster re-

sponse systems enjoy a rich history (Toregas, Swain, ReVelle, & Bergman, 1971;

Jia, Ordóñez, & Dessouky, 2007; Huang, Kim, & Menezes, 2010), they are not ap-

plicable in EMS where incidents happen everyday and the patterns of how incidents

occur change over time. Therefore, our goal is to improve the infrastructure for

EMS and specifically the construction of base stations at the “right” locations and

to allocate “right” number of ambulances in each of the bases so that the response

times for emergency requests are minimised. I take the advantage of past incident

data to learn the patterns of demand which generates insights for the strategic deci-

sions. Apart from the complex dynamics of demand in real-world data, the strategic

decision making in EMS is a computationally challenging task because of the: (i)

exponentially large action space arising from having to consider combinations of

potential base locations, which themselves can be significant; and (ii) direct im-

pact on the performance of the ambulance allocation problem, which decides the

allocation of ambulances to bases.

1.1.2.2 Operational Decision Making Problem in EMS

The recent research papers (Yue, Marla, & Krishnan, 2012; Saisubramanian, Varakan-

tham, & Chuin, 2015) have introduced the notion of data-driven models for improv-

ing operational decisions of EMSs. Although these solution approaches have proven

to be fruitful for optimising key performance metrics of EMS, the solutions are gen-
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erated either greedily or using approximate dynamics of EMS. Specifically, the ex-

isting approaches do not consider the ambulance dispatch policy while achieving the

optimal distribution of ambulances. Therefore, there is a significant gap between the

objective of the optimisation model and the actual objective when simulating in the

real-world environment. So, our goal is to improve solution for dynamic redistribu-

tion (on a daily basis) of ambulances to bases by considering the exact dynamics of

real-world EMS.

1.2 Contributions

This section describes my contributions in order to tackle the aforementioned issues

in the real-world decision making problems. My key contributions towards solving

the operational decision making problems in BSS are summarised below:

• I propose a multi-step dynamic redistribution solution for solving the DRRP

which primarily aims to jointly minimise the lost demand in BSS and the

routing cost for vehicles. I introduce a mixed integer linear program (MILP)

formulation to generate a multi-step repositioning solution for bikes using

vehicles while also considering the routes for vehicles and future expected

demand. The objective of the MILP is to maximise profit for the BSS that

considers the trade-off between: (i) maximising served demand, and (ii) min-

imising cost incurred by vehicles.

• Unfortunately, the complexity of the MILP for solving the DRRP grows expo-

nentially with the number of base stations and hence, cannot solve problems

associated with the large-scale real-world BSSs. Therefore, I contribute two

approaches that rely on decomposition (that exploits the weak dependency

between the bike repositioning and vehicle routing) and abstraction (aggrega-

tion of base stations to reduce the size of the problem) mechanisms to reduce

the computation time significantly. It is further shown that these approxima-
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tion approaches guarantee to provide a near-optimal solution.

• To counter the uncertainty in future demand or alternatively for solving DR-

RPU, I propose a robust redistribution approach that minimises the loss in

customer demand while considering the possible uncertainties in future de-

mand. I develop a scenario generation approach based on an iterative two

player adversarial game to compute a strategy of redistribution by assuming

that the environment can generate a worse demand scenario (out of the fea-

sible demand scenarios) against the current redistribution solution. These ro-

bust redistribution strategies are generated in an online fashion and executed

on a simulation built on real-world data set of BSS using a rolling horizon

framework.

• To develop a sustainable mode of redistribution for solving DRRPT, I provide

an optimisation formulation that generates redistribution tasks for bike trail-

ers by considering a set of training demand scenarios so as to minimise the

expected lost demand over those training scenarios. In addition, within the

budget constraints of the operator, a mechanism is designed to incentivise the

potential customers who intend to execute the redistribution tasks.

• The experimental results on a simulation built on two real-world data sets of

Capital Bikeshare (Washington, DC) and Hubway (Boston, MA) BSS demon-

strate that our approaches reduce the average and worse case lost demand by

22% and 10% over the current practice. Furthermore, extensive results are

provided to demonstrate that the approach for utilising bike trailers for the

redistribution is highly competitive to the existing fuel burning mode of re-

distribution while being green.

My key contributions towards solving the decision making problems in EMS

are summarised below:

• For solving the strategic decision making problem in EMS, I present an incre-
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mental greedy approach to discover the placement of bases on top of a data-

driven optimisation approach (adopted from recent literature) for allocation

of ambulances to the bases so as to minimise the response times for the emer-

gency requests. Furthermore, an accelerated version of the greedy approach,

referred to as lazy greedy is employed, to speed up the solution process. We

show that our approach can be utilised to optimise widely used performance

metrics such as bounded time response (e.g., percentage of requests served

within 15 minutes) and bounded risk response (e.g., least response time within

which 80% of the requests are assisted). Using the properties of submodular

optimisation, it is shown that our greedy algorithm provides quality guaran-

teed solutions for one of the objectives employed in real EMSs.

• For improving the operational decisions of EMS, I propose to dynamically

redistribute the ambulances to bases using an optimisation model that exactly

imitates the behaviour of real-world EMS. Specifically, I introduce an effi-

cient way to incorporate the ambulance dispatch constraints within the exist-

ing optimisation model. However, as the extended optimisation model suffers

with scalability issue for large-scale EMSs, I provide two approaches to ap-

proximately solve the optimisation problem and show that these heuristics

perform well for real-world EMSs.

• The solution approach for strategic decision making is further validated by

employing a real-life event driven simulator built on a real-world data set. In

case of optimising the bounded time response objective, our approach is able

to serve at least 3% extra requests within 15 minutes in comparison to all the

existing approaches. On the other hand, in case of optimising the bounded

risk response, by utilising less than 70% of existing bases, our approach is

proven to be highly competitive to other benchmark approaches.

• Using two real-world EMS data sets, I empirically show that the proposed

enhancements for operational decisions in EMS have the potential to serve up
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to 2.5% extra requests within threshold time bound over existing approaches.

1.3 Organization of the Dissertation

The rest of this document is organised as follows: Chapter 2 describes the formal

models, related literature and existing solution approaches for decision making in

BSSs. Chapter 3 presents the approaches for optimising lost demand through dy-

namic redistribution in BSS. Chapter 4 explains how to counter the uncertainties

in future demand through robust redistribution while optimising the lost demand.

Chapter 5 elaborates the self-sustainable mode of redistribution through incentives.

Chapter 6 describes the formal models, related literature and existing solution ap-

proaches for decision making in EMS. Chapter 7 elucidates the solution for the

strategic decision making problem in EMS. Chapter 8 delineates the insights for

improving the operational decisions of EMS. Finally, the conclusion is presented in

Chapter 9.
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Chapter 2

Models and Background for Decision

Making in Bike Sharing Systems

This chapter explains the models, related research and existing solution approaches

for decision making in Bike Sharing System (BSS).

2.1 Models

As indicated in Chapter 1, I categorised the operational decision making problems

in BSS into three threads according to the characteristics of the demand patterns and

the primary objective of reducing carbon footprint: (i) Dynamic Repositioning and

Routing Problem (DRRP); (ii) Dynamic Repositioning and Routing Problem under

demand Uncertainty (DRRPU); and (iii) Dynamic Repositioning and Routing Prob-

lem using bike Trailers (DRRPT). In this section, I briefly introduce the notations

and models for these three categories of operational decision making problems. For

the ease of understanding, the key notations and their definitions are compactly rep-

resented in Table (2.1).
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Element Definition
s The indicator used to represent a station.
v The indicator used to represent a carrier vehicle.
t The indicator used to represent a time period or decision epoch.
S The set of base stations.
V The set of carrier vehicles.
C#

s The capacity (i.e., the number of docks) of station s.
C∗v The capacity (i.e., the number of slots for bikes) of vehicle v.
d#,0
s Initial distribution of bikes at base station s.
d∗,0v Initial distribution of bikes at vehicle v.
σ0
v,s Set to 1 if vehicle v is stationed at station s initially.

F t,k
s,s′

The expected number of customers at time step t going out
from station s and wanting to reach station s′ at time step t+k.

Rt,k
s,s′

The revenue obtained if a bike is hired at time step t from sta-
tion s and is returned at station s′ after k time steps.

Ps,s′ The routing cost for any vehicle to travel from station s to s′.
Hs,s′ The distance between station s and s′.

B
The amount of budget allocated for the repositioning tasks for
a given planning period.

Table 2.1: BSS notations and their definition.

2.1.1 Model: DRRP

I now formally describe the generic model for DRRP, that can be used to find a

reposition strategy for the bikes using carrier vehicles, while considering the routes

of the vehicles and the future demand for multiple time steps. We employ the fol-

lowing tuple: 〈
S,V ,C#,C∗,d#,0,d∗,0, {σ0

v},F,R,P
〉

A brief description of these elements are shown in Table (2.1). Each station s ∈ S

has a fixed capacity denoted by C#
s and each vehicle v ∈ V has a fixed capacity de-

noted by C∗v . Initial distributions of bikes at station s and vehicle v are given by d#,0
s

and d∗,0v , respectively. σ0
v denotes the initial distribution of vehicle v at base stations.

For ease of notation, we use the generic σt
v,s and set it to 0, if t > 0. F represents

the expected customer demand which is computed from the historical trip data. In

a general case, the revenue depends only on the duration k, but we use the notation,
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Rt,k
s,s′ to represent a generic model1. We further note that this revenue parameter can

also be used to represent the monetary value of the social and environmental bene-

fits associated with the usage of bike. Finally, Ps,s′ denotes the routing cost for any

vehicle to travel from station s to s′ which depends on the distance between the two

stations and the fuel cost. This cost parameter is then multiplied by a predefined

factor to incorporate other relevant operating costs.

The goal is to maximise the overall profit which provides a trade-off between min-

imising lost demand and reducing routing cost of vehicles. It should be noted that

we do not directly minimise the lost demand because that can result in a significant

cost of the routing of vehicles.

2.1.2 Model: DRRPU

The generic model for the DRRPU is represented as an extension of DRRP. DRRPU

is formally defined using the following tuple:

〈
S,V ,C#,C∗,d#,0,d∗,0, {σ0

v},H,F
〉

Definitions of all the terms related to vehicles and stations (i.e, S,V ,C#,C∗,d#,0,d∗,0,

{σ0
v}) for DRRPU remain the same as DRRP. For DRRPU, we employ the distance

between station s and s′ as Hs,s′ , rather than indirectly considering it through rout-

ing cost, Ps,s′ . In contrast to representing the expected future demand, we now

consider the underlying uncertainties in the demand as this model is useful when

there is a significant variance in the demand. F represents the set of demand bounds

that is computed from the historical trip data. We compute three types of bounds

on the arrival customer demand: (a) F̌ t, F̂ t denote the lower and upper bound on

the system wide demand across all the stations at time step t; (b) F̌ t
s , F̂

t
s denote the

bounds on the demand in station s at time step t; (c) F̌ t
s,s′ , F̂

t
s,s′ denote the bounds

1Such a generic model can for instance be used to capture higher price of hiring bikes in central
business districts.
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on the demand that arises in station s at time step t and reach station s′ at time

step t + 1. These demand bounds are used in the solution approach to generate the

strategy. On the other hand, the strategies are evaluated on a wide range of testing

demand scenarios that are created using Poisson distribution and these scenarios are

not forced to follow the bounds used in the decision making process.

2.1.3 Model: DRRPT

In this section, I formally describe the generic model of DRRPT as an extension of

the DRRP model. DRRPT is compactly represented using the following tuple:

< S,V ,C#,C∗, d#,0, {σ0
v},H ,F , B >

All the terms related to stations (i.e., S,C#, d#,0) remain the same as DRRP. On the

contrary to employing carrier vehicles, we now introduce a set of bike trailers for the

repositioning task to minimise the carbon footprint. We have a set of bike trailers

V where C∗v denotes the number of bike slots in the trailer v ∈ V . σ0
v symbolises

the initial locations of the trailers, i.e., σ0
v(s) is fixed to 1 if trailer v is stationed

at s initially and 0 otherwise. H denotes a two-dimensional matrix that stores the

relative distance between each pair of stations. F represents a set of K discrete

training demand scenarios. Specifically, F k
s,s′ denotes the demand for the planning

period for scenario k that arises at station s and reaches station s′ in the next time

step. Finally, B denotes the amount of budget allocated for the repositioning tasks

for a given planning period.

For a better understanding of the differences among DRRP, DRRPU and DR-

RPT, we summarise the key features of these three BSS models in Table (2.2).
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DRRP DRRPU DRRPT

Characteris-
tic

Dynamic reposition-
ing of bikes to reduce
lost demand for con-
sistent demand pat-
terns

Robust repositioning
of bikes to reduce
lost demand for
highly uncertain
demand scenarios

Repositioning of
bikes using trailers to
reduce lost demand
and carbon emission.

Objective

Maximise profit by
trading off between
reducing lost demand
and minimising rout-
ing cost of vehicles

Minimise worse case
lost demand by con-
sidering the possible
uncertainties in un-
derlying demand

Generate reposition-
ing tasks for trail-
ers and crowdsource
them to users within
a central budget

Mode of
repositioning Carrier Vehicles Carrier Vehicles Bike Trailers

Input
demand
scenarios

Expected demand for
multiple time steps

Set of demand
bounds

Set of demand sce-
narios

Online/
Offline Offline Online Online

Crowdsourc-
ing 7 7 3

Table 2.2: Features of different BSS models.

2.2 Related Work on Decision Making in BSS

Given the practical benefits of bike sharing systems, they have been studied exten-

sively in the literature. In a recent survey, Laporte, Meunier, and Wolfler Calvo

(2015) summarise the leading contributions in shared transportation systems in

terms of strategic decision making (e.g., location of stations and sizes of fleet) and

operational decision making (e.g., vehicle repositioning). To situate these contri-

butions in the context of this thesis, we summarise along five threads. These five

threads are described in the first five subsections. Furthermore, the broad problem

we considered in Chapter 3 is one of sequential decision making in the presence

of uncertainty. This problem is considered extensively in the Artificial Intelligence

(AI) literature through Markov decision processes (MDPs) and its variants, stochas-

tic network design in sustainability applications, and others. Thus, in Section 2.2.6,

we summarise other research relevant to our methodological contributions, i.e., de-

composition and abstraction in sequential decision making under uncertainty.
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2.2.1 Designing a BSS

The first thread of research focuses on how to design a BSS. Kumar and Bierlaire

(2012) provide a linear regression model to learn the correlation between station

locations and customer’s locations. They use customer demographics and personal

information to identify the best locations for the placement of base stations. Mar-

tinez et al. (2012) provide an MILP formulation to optimally locate the stations, and

solve it using a branch and bound algorithm. Lin and Yang (2011) and Lin et al.

(2013) propose a decision support model to design a BSS. In addition, they pro-

vide a model that incorporates the service level requirements of BSS by employing

constraints from the inventory management literature.

The focus in this thread of research is on strategic decision making and hence is

complementary to the focus of our work, which is on operational decision making

(day-to-day operations).

2.2.2 Static Redistribution

The second thread of research focuses on the rebalancing problem in static case

where the movements of bikes during the repositioning period are negligible. Specif-

ically, it focuses on the problem of finding routes for a fixed set of vehicles to repo-

sition bikes at the end of the day or when the movements of bikes by customers are

insignificant to achieve the desired configuration of bikes across the base stations.

This problem is also known as the Static Bicycle Repositioning Problem (SBRP).

Benchimol et al. (2011) present an approximate solution which is inspired by

the solution of C-delivery TSP (Chalasani & Motwani, 1999) to solve the static re-

balancing and routing problem with a single vehicle. In a similar direction, Chemla

et al. (2013) solve the static rebalancing problem for a single vehicle by employing

a branch and cut algorithm that can solve a large-scale problem with more than a

hundred stations. However, in the presence of multiple vehicles, these solution ap-

proaches are not very effective as the routing solution of the first vehicle controls the
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routing solution of other vehicles and it affects the overall solution quality. Raviv

and Kolka (2013), Raviv, Tzur, and Forma (2013), and Rainer-Harbach, Papazek,

Hu, and Raidl (2013) address this concern and provide scalable exact and approx-

imate solution approaches by introducing a set of MILP formulations to solve the

SBRP with multiple vehicles. By employing an objective function that penalises

unavailability of bikes or empty docks, they find solutions for the vehicles to repo-

sition the bikes in a static manner. Raidl, Hu, Rainer-Harbach, and Papazek (2013),

Di Gaspero, Rendl, and Urli (2013), and Di Gaspero, Rendl, and Urli (2016) pro-

pose approximate solutions for solving the SBRP using variable neighbourhood

search based heuristics. Erdoğan, Laporte, and Wolfler Calvo (2014) present an in-

teger programming formulation to solve the SBRP with demand intervals for a sin-

gle vehicle. This is an empirically harder problem than the SBRP and they provide a

Benders decomposition scheme for solving the problem efficiently. Unfortunately,

these solutions are not suitable for solving the dynamic repositioning problems, as

the movements of bikes during the planning period make the static solutions irrele-

vant.

Schuijbroek et al. (2017) propose a scalable approximate solution for the SBRP.

They cluster base stations using a maximum spanning star (MAXSPS) approxi-

mation and allocate one vehicle to each of the clusters so that the service level

requirements are satisfied. In addition, they represent this problem as a clustered

vehicle routing problem (Battarra, Erdoğan, & Vigo, 2014). They assume that the

movements of bikes by customers during the repositioning period are negligible.

However, an online version of their approach can easily be employed to solve the

dynamic repositioning problem using a rolling horizon framework that generates a

routing and repositioning solution for each time step. In fact, in Chapter 3 and 4,

we provide a comparison of our approaches against their approach, which can be

considered as a representative of the ad-hoc and myopic heuristic. As demonstrated

in our experimental results, such a myopic repositioning solution can significantly

falter as it does not consider the future demand surges.
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Our approach differs from approaches mentioned in this section, as we consider

the repositioning of bikes in the presence of bike movements by customers during

the rebalancing period. Such bike movements can make planned static repositioning

irrelevant when customers return the required number of bikes to a station or coun-

terproductive when vehicles pick up bikes from a station where customers need

bikes. In addition, a static solution typically cannot adequately capture the surges

in customer demand even if they are predictable.

2.2.3 Dynamic Redistribution

Since service level requirements in a BSS change over time due to involuntary

movements of customers, static solutions can significantly falter when employed

for performing operational planning in BSS. Thus, the third thread of research fo-

cuses on dynamical redistribution of bikes based on the assessment of demand.

Pfrommer et al. (2014) provide a myopic repositioning and routing solution for

individual vehicles based on the assessment of demand for the next 30 minutes.

In case of multiple vehicles, they employ a greedy approach, where the solutions

for the vehicles are determined sequentially one at a time. Contardo et al. (2012)

propose a dynamic repositioning model to deal with the loss in customer demand

in rush hours. They provide a myopic repositioning solution by considering the

current demand that was recently observed before the repositioning decisions are

made. Furthermore, they employ Dantzig-Wolfe and Benders decomposition tech-

niques to speed up the solving process. However, due to the complex structure of

the problem, there was a significant gap between their solution and its lower bound.

Recently, Lowalekar, Varakantham, Ghosh, Jena, and Jaillet (2017) propose a scal-

able online repositioning solution using multi-stage stochastic optimisation and on-

line anticipatory algorithms. However, due to the fact that these myopic solutions

do not capture the future expected demand for multiple time steps in the planning

phase, they usually provide poor quality solutions when the demand is dynamic (as
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observed in both our data sets).

Shu et al. (2010) and Shu et al. (2013) overcome this issue by considering the

future expected demand for the entire planning horizon. They predict the stochastic

demand from user trip data of Singapore metro system using a Poisson distribution.

They provide an optimisation model that suggests a set of locations for the stations

and propose a dynamic repositioning model to minimise the number of unsatisfied

customers. However, they assume that repositioning of bikes from one station to

another is always possible without considering the routing of vehicles.

Our approach (presented in Chapter 3) for solving the DRRPs differs from this

thread of research as we consider the dynamic repositioning of bikes in conjunction

with the routing of all the vehicles. In addition, we also consider multi-step expected

demand that can account for demand surges at later time steps.

2.2.4 Incentivising Customers and Utilising Trailers for Bike Re-

distribution

The fourth thread of research focuses on incentivizing customers and utilising trail-

ers for rebalancing the system. There has been existing research (Singla et al.,

2015; Pfrommer et al., 2014) that present pricing mechanisms to provide incentives

to users for assisting with repositioning. Pfrommer et al. (2014) propose the notion

of delivering additional incentives to the customers if they return their bikes to the

neighbouring starving station rather than submitting it to their original destination

station. Singla et al. (2015) propose a pricing mechanism that dynamically calcu-

lates the incentive values for each neighbouring station and offers the corresponding

incentive amounts to the users through a mobile application. There has been a wide

spectrum of papers on car sharing (Chow & Yu, 2015; Mareček, Shorten, & Yu,

2016) that present pricing mechanisms to provide incentives to users for assisting

with rebalancing the system. However, this line of work has primarily focused on

individual bikes (without trailers) and has taken a myopic (individual station) view
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on whether a bike is required at a station. Furthermore, unlike car sharing (Chow &

Yu, 2015), the BSS operators cannot order users based on their utility and operate

within tight budget constraints. In our approach presented in Chapter 5, we provide

an end to end system that takes the global view (all stations) of the repositioning

requirements and incentives their execution within the budget constraints.

On the other hand, O’Mahony and Shmoys (2015) predict the service level re-

quirements for base stations in rush hours and introduce the notion of repositioning

with bike trailers, by matching each trailer to its suitable producer and consumer

stations, based on the assessment of inventory state of the base stations. However,

they assume that all the tasks for the trailers can be achieved with dedicated staff

which is not an economically viable option. In contrast, we propose an optimisation

model in Chapter 5 to generate the repositioning tasks for trailers by considering

the near future demand over a set of training demand scenarios. Furthermore, we

design a mechanism to crowdsource the tasks to the users while ensuring the given

budget constraints.

2.2.5 Demand Prediction and Analysis in BSS

The fifth thread of research which is complementary to the research presented in this

thesis is on demand prediction and analysis. Borgnat, Abry, Flandrin, and Rouquier

(2009) and Borgnat, Abry, Flandrin, Robardet, Rouquier, and Fleury (2011) propose

the idea of predicting temporal user demand from the past data and providing fore-

casted information to users. Froehlich, Neumann, and Oliver (2008) and Lathia,

Ahmed, and Capra (2012) predict the user demand in terms of available bikes or

normalised available bikes in a station at a certain time period. Rudloff and Lack-

ner (2013) provide demand forecasting model based on the weather and the state

of the neighbouring stations. O’Mahony and Shmoys (2015) predict the service

level requirements for each station in rush hours by analysing the data of Citibike

in New York City. Furthermore, they provide an optimisation model to minimise
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the maximum imbalance such that users are not too far from bikes or available

docks. Specifically, all the above mentioned papers provide data-driven analysis of

the system-wide demand in BSSs.

In contrast to the data-driven analysis of the demand, Nair and Miller-Hooks

(2011) and Nair, Miller-Hooks, Hampshire, and Bušić (2013) provide a theoretical

analysis of the service level of a BSS using dual-bounded joint-chance constraints.

They predict the near future demand for a short period and ensure that the system-

wide demand is served with a certain probability. While these insights are practical

and useful in demand prediction, they are not applicable for large systems. Leurent

(2012) represents the bike sharing system as a dual Markovian waiting system to

predict the actual demand. In contrast, we assume that the users are impatient

and leave the system if they encounter an empty station. Raviv et al. (2013) and

Schuijbroek et al. (2017) represent a BSS as a queueing network with Markov as-

sumptions. The pickup or drop-off of bikes by the users are represented as random

variables with a known probability distribution. While these assumptions hold for

one step or short term planning, it becomes intractable for multi-step or long-term

planning due to the time-varying nature of the demand and the inter-dependency

between the pickup and drop-off rates between stations at consecutive time steps.

Given its wide ranging applicability and accuracy, Poisson distributions have

been extensively used in the literature to represent random arrival processes. It has

also been used regularly to represent customer arrivals at base stations in BSSs (George

& Xia, 2011; Shu et al., 2010, 2013; Kabra, Belavina, & Girotra, 2015). Due to its

simplicity and accuracy in representing customer arrival processes, we also repre-

sent the demand arrival process at each of the stations at each time step as a Poisson

distribution.
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2.2.6 Abstraction and Decomposition in Sequential Decision Mak-

ing Problems under Uncertainty

This thread of research is relevant to our two main methodological contributions in

Chapter 3, namely, abstraction and dual decomposition. Both these general methods

have been applied in various types of sequential decision making problems in the

literature. Our work is focused on multi-step matching of demand and supply, which

has similarities with well-studied models in sequential decision making. Since we

consider optimising a reward, the relevant sequential decision making model would

be Markov decision process (MDP). In fact, by considering every possible match of

supply and demand as a potential state and modifications to each state as actions,

we can represent a DRRP as an MDP. The corresponding MDP can be represented

using following tuple 〈S,A, P,R〉 :

• The state space, S of the MDP needs to incorporate all the possible combina-

tions of inventory levels of the stations. Furthermore, to capture the physical

limitations of vehicle routes and the number of bikes they can pick up or drop

off from their origin station, the possible inventory levels and locations of the

vehicles need to be incorporated through the state representation.

• Any changes in the inventory state of the stations by the vehicles can be rep-

resented through the action space, A of the MDP.

• The transition probabilities, P can be represented as the prior probabilities

of moving bikes by the customers at a given state, according to the expected

customer demand.

• The reward, R can be represented as a function of a given state at a time step

and the expected customer demand at that time step.

However, since the number of possible matches grows exponentially with the num-

ber of stations, bikes and vehicles, the number of possible matches is extremely
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large2. Thus, it would be difficult to even specify the problem. Even if we are able

to specify the problem, abstraction of state space for the MDP of a corresponding

DRRP will automatically abstract the action space. As outlined in the next two para-

graphs, existing abstraction techniques only consider state abstraction where action

space remains the same, so they cannot be employed to solve the large-scale MDP

representations of DRRPs.

State abstraction has been widely adopted in Artificial Intelligence (Giunchiglia

& Walsh, 1992) and Operations Research (Rogers, Plante, Wong, & Evans, 1991).

Spatio-temporal abstraction (Sutton, Precup, & Singh, 1999; Mahadevan, 2002) is

studied heavily in reinforcement learning (RL) literature, which is also a sequential

decision making problem under uncertainty. Furthermore, abstracting time periods

is widely used in the inventory routing problem (IRP) literature in order to simul-

taneously take into account the inventory planning and vehicle routing constraints

(e.g., see Coelho, Cordeau, & Laporte, 2013; Papageorgiou, Nemhauser, Sokol,

Cheon, & Keha, 2014).

Li, Walsh, and Littman (2006) propose five methods to perform state aggrega-

tion in MDPs while preserving the useful information that is critical for solving the

complete problem. However, they assume that the action set does not change after

abstraction, so the actions and policies of the original MDP and the abstract MDP

are comparable. On the contrary, both the actions and states (when the DRRP is

represented as an MDP) would change in our case, as the actions correspond to

moving vehicles to a base station and the number of base stations changes with ab-

straction. Therefore, the insights of lossless abstraction are not applicable in our

case. Given the extremely large-scale, we have to abstract at the level of state fea-

tures and not at the level of individual states, so that is another differentiating factor

from the work by Li et al. (2006). Abstracting a relevant set of features for state

abstraction has been employed in both the offline (Sturtevant & White, 2006) and

2For Capital Bikeshare, we have 300 stations, each with a capacity of 20 and 5 vehicles, each
with a capacity of 20, so there would be approximately 20300 × 205 × 3005 states and (300× 20)5

actions.
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online (Geramifard, Doshi, Redding, Roy, & How, 2011) settings for solving MDP

and RL problems. These approaches focus on function approximation based on

abstract state features and assume that the action space remains the same after ab-

straction. However, in our case, the abstraction of state features will also alter the

action space. Due to this reason, these existing approaches cannot be directly ap-

plied for solving the DRRP. Furthermore, these existing approaches are suitable for

problems with either low dimensional state space or with binary features. However,

an MDP corresponding to a DRRP will have a large feature set and each feature can

have a large number of values. As a consequence, the existing approaches will not

be scalable for solving the DRRP.

Abstraction employed in Chapter 3 is similar to the work of Knoblock (1993).

Specifically, their method (Knoblock, 1991) consists of three steps: (1) identify the

abstract problem from the original problem, (2) solve the abstract problem, and (3)

use the solution from the abstract problem to determine the solution for the original

problem. The abstraction mechanism we employ in Chapter 3 to group the base

stations is inspired by the recent work of Lu and Boutilier (2015). They use an

abstraction technique to solve the multi-campaign, multi-channel marketing opti-

misation problem (MMMOP) by dynamically segmenting the customer population

into a number of groups and use the solution of the abstract problem to guide the

global solution. In a similar way, we group the nearby base stations into an abstract

station because the customers using those stations have similar movement dynamics

in aggregation and nearby stations have similar patterns of imbalance as shown in

Section 3.4.

Dual decomposition has been employed in the literature to speed up the solution

of sequential decision making problems. Dean and Lin (1995) use a decomposition

technique to solve large-scale MDPs. They decompose the original problem into

a number of subproblems which are solved independently and finally combine the

solutions to determine the solution of the original problem. Furmston and Barber

(2011) employ Lagrangian dual decomposition to decompose a stationary policy
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finite-horizon MDP into a series of unconstrained MDPs that can be solved easily

and use these solutions to guide the solution of the master problem in an iterative

fashion. Recently, dual decomposition techniques have been employed successfully

for solving sequential decision making problems such as factored MDPs (Guestrin

& Gordon, 2002), spatial conservation planning (Kumar, Wu, & Zilberstein, 2012)

and contact center planning (Kumar, Singh, Gupta, & Parija, 2014) problems. In

Chapter 3, we adopt a dual decomposition framework to exploit the weak depen-

dency between two critical components of the problem, namely, repositioning of

bikes and routing of vehicles.

2.3 Details of Referred Solution Approaches

In this section, we present some of the existing approaches for solving the opera-

tional decision making problems in BSSs. We have compared our approaches with

these existing benchmarks in the later parts of this document.

2.3.1 Static Redistribution in BSS

Static Repositioning implies the practice of no repositioning during the day. The sta-

tions are rebalanced at the end of the day to achieve a predefined inventory level. We

use this as a baseline approach where no repositioning is done during the decision

making period. For this static approach, we simulate the flows of bikes according

to customer demand using the below mentioned simulation model to evaluate the

performance of the approach.

2.3.1.1 Simulation Model

Similar to the work of Shu et al. (2013), we also evaluate the performance of rel-

evant approaches by using a simulation that is based on the past data. Once the

repositioning and routing solutions are determined for a time step, we execute them

on the simulator for evaluating their performance on the realized demand scenario
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for that particular time step. The customer demand computed in the data, F t,k
s,s′ , de-

notes the number of customers who want to hire bikes from station s at time step t

and return at station s′ after k time steps3. Let d#,t
s represents the number of bikes

present in station s at time step t after the repositioning tasks are completed. The

flow of bikes between the stations is determined based on the following two cases:

(a) If the arrival demand at a station is less than the number of bikes present in that

station, then all the customers are able to hire bikes; (b) If the arrival demand at

a station is higher than the number of bikes present in that station, then the actual

flow of bikes between station s and s′ (denoted as xt,ks,s′) is computed using the ag-

gregated transition probability (i.e.,
F t,k

s,s′∑
k,s′ F

t,k

s,s′
) that is observed in the data (courtesy:

Shu et al., 2013).

xt,ks,s′ =


F t,k
s,s′ if

∑
k,s̃ F

t,k
s,s̃ ≤ d#,t

s

F t,k

s,s′∑
k,s̃ F

t,k
s,s̃

· d#,t
s Otherwise

 (2.1)

Let, Y +,t
s and Y −,ts denote the number of bikes picked up and dropped off at station

s by the vehicles or trailers at time step t. Once the actual flow of bikes by the cus-

tomers at time step t is determined from equation (2.1), we calculate the distribution

of bikes in station s at time step t+ 1 as the sum of un-hired bikes at time step t, net

incoming bikes in station s at the beginning of time step t + 1 and the net drop-off

bikes by vehicles or trailers at time step t+ 1.

d#,t+1
s =d#,t

s +
[∑

k,s̃

xt−k,ks̃,s −
∑
k,s′

xt,ks,s′︸ ︷︷ ︸
Net incoming bikes

]
+
[
Y −,t+1
s −Y +,t+1

s︸ ︷︷ ︸
Net drop-off bikes

]
(2.2)

For the static reposition approach, we set the repositioning numbers (i.e., Y+,Y−)

to 0. The number of bikes in station s at time step t + 1, d#,t+1
s (computed using

3We use the notation F t,k
s,s′ for a generic representation of the customer demand. However, in

the context of online decision making (e.g., DRRPU and DRRPT), a valid assumption is that the
customers complete their trips within one time step and therefore, we can either remove the index k
or fix the value of k to 0.
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equation 2.2) does not take into account the station capacity constraints. To handle

such boundary conditions and to ensure the capacity constraints are considered for

the stations, we transfer extra bikes (i.e., d#,t+1
s −C#

s ) to the nearest available station

if d#,t+1
s exceeds the station capacity, C#

s . These extra numbers are considered as

the lost demand at the time of return. Once the distribution of bikes across the

stations for time step t + 1 is obtained, we utilise this information to compute the

repositioning strategy for trailers for time step t+1. This iterative process continues

until we reach the last decision epoch.

2.3.2 Myopic Redistribution in BSS

Myopic Repositioning entails that bikes are repositioned at each time step to reach

a certain inventory level. Through the personal communication with bike sharing

operators, we infer that 50% of the station capacity is the ideal inventory level and

some operators rebalance the stations in a myopic fashion (without considering the

demand patterns) to reach that specific inventory level. Table (2.3) provides the

MILP formulation for the myopic approach that is used in each time step to generate

a repositioning solution. As a vehicle can visit multiple stations within one time

step, the time indicators are used in SOLVEMYOPIC() to represent the sequence of

moves of all the vehicles.

The objective function (2.3) is to minimise total routing cost for all the vehicles.

As a vehicle cannot visit all the stations within the rebalancing period, additional

slack variables δ are added in the objective to ensure that maximum number of

stations are balanced. w represents the unit penalty for deviating from the desired

inventory level of the station and we set it to 1 in our experiments. s0i is the initial

distribution of bikes at station i in that time step. Our goal is to rebalance the system

to reach a pre-configured inventory level αC#
i for station i. We set the value of α to

50% in the experiments. Let zti,j,v denote the binary decision variable that is set to 1

if a vehicle v travels from station i to j at time step t. y+,t
i,v , y

−,t
i,v denote the number of
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min
∑
i,j,v,t

Pi,jz
t
i,j,v + w

∑
i

δi (2.3)

s.t. s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≥ αC#

i − δi, ∀i (2.4)

s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≤ αC#

i + δi, ∀i (2.5)

∑
j

zti,j,v −
∑
j

zt−1j,i,v = σtv,i, ∀i, t, v (2.6)

y+,t
i,v + y−,ti,v ≤ C∗v ·

∑
j

zti,j,v, ∀i, t, v (2.7)

d∗,tv +
∑
i

(y+,t
i,v − y

−,t
i,v ) = d∗,t+1

v , ∀t, v (2.8)

s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≥ 0, ∀i (2.9)

s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≤ C#

i , ∀i

(2.10)

0 ≤ y+,t
i,v , y

−,t
i,v ≤ C∗v , 0 ≤ d∗,tv ≤ C∗v , δi ≥ 0, zti,j,v ∈ {0, 1} (2.11)

Table 2.3: SOLVEMYOPIC(s0, drrp)

bikes picked up and drop off at station i by the vehicle v at time step t, respectively.

d∗,tv denotes the number of bikes present at vehicle v at time step t.

As all the stations cannot be balanced within one time step, constraints (2.4)-

(2.5) ensure that a station i is maximum δi number of bikes away from the desired

configuration of αC#
i and in the objective we ensure that the value of δ is min-

imised. Constraints (2.6) enforce that the flows of vehicles in and out of stations are

preserved. Constraints (2.7) ensure that the flows of bikes in and out of vehicles are

preserved at the time of repositioning. Constraints (2.8) enforce that a vehicle can

only pick up or drop off bikes at a station if it is present at that station. Lastly, Con-

straints (2.9)-(2.10) ensure that the station and vehicle capacity are not exceeded

while repositioning the bikes.

In each time step, given the distribution of bikes, we find the repositioning so-

lution by solving the MILP provided in Table (2.3). After the repositioning, we

update the number of bikes in each station and simulate the flows of bikes accord-
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ing to customer demand. Once we determine the flows of bikes, we can compute

the distribution of bikes in each station for the next time step and this information is

used to execute the MILP of Table (2.3) for the next time step. The process iterates

until we reach the last time step.

2.3.3 Online Redistribution of Bikes Based on the Model of Schui-

jbroek et al. (2017)

To the best of our knowledge, we are not aware of any research paper that formally

presents heuristics to solve the operational decision making problem in BSS online.

The method that can be employed online to reposition bikes can be adapted from

the algorithm provided by Schuijbroek et al. (2017). This approach can be executed

online with the assumption of negligible movements of bikes by customers. There-

fore, in this section, we provide the details of the model used by Schuijbroek et al.

(2017) and also how we have adapted the model to solve the problem in our study.

The primary goal of Schuijbroek et al. (2017) is to minimise the operational cost for

the routing of vehicles such that the whole system can be balanced. The key aspects

of their approach are as follows:

• Customer movements at the time of rebalancing operation are negligible.

• Vehicles can visit all the stations to rebalance the whole system within the

rebalancing period.

• Each vehicle is assigned to a group of base stations. The entire system is

divided into a set of cluster (the number of clusters is equal to the number of

vehicles), each of which is allocated with a vehicle. Thus, a vehicle is only

responsible for the repositioning of bikes within a particular cluster and it can

visit all the base stations of that cluster within the rebalancing period.

With minor changes we are able to adapt their approach to the dynamic reposi-

tioning context. Intuitively, we make changes corresponding to the first two points
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above and leave the rest of the approach as it is:

• Because of the dynamism and significant customer movements during the

rebalancing period, the demand model assumed by Schuijbroek et al. (2017) is

not valid in our context. Because of the different demand model assumptions,

their approach to compute the inventory level is not applicable for solving

the problems like DRRP. However, we figure out the best inventory levels

(number of required bikes at stations) through experimentation. More specific

details will be mentioned later.

• Since the assumption of visiting all stations to rebalance in one time step is

not reasonable, we set a maximum number of stations that can be rebalanced

in one time step. Specifically, we set it to 5 stations (any 5 stations can be

visited in one time step) and this corresponds to an average distance travelled

by a vehicle in one time step to be approximately 3.4 kilometers (which is

slightly above the distance travelled with our approach which is around 2.6

kilometers).

min Ĥ (2.12)

s.t.
∑
v∈V

zi,v = 1, ∀i ∈ {S \ S+}

(2.13)∑
v∈V

zi,v ≤ 1, ∀i ∈ S+ (2.14)

q0v +
∑
i∈S

s0i zi,v ≥
∑
i∈S

smin
i zi,v, ∀v ∈ V (2.15)

− (C∗v − q0v) +
∑
i∈S

s0i zi,v ≤
∑
i∈S

smax
i zi,v, ∀v ∈ V (2.16)

ĥv ≥
∑
j∈S

di,j(zi,v + zj,v − 1), ∀s ∈ S, v ∈ V (2.17)

ĥv ≥ Ĥ, ∀v ∈ V (2.18)

zi,v ∈ {0, 1}, ĥv ≥ 0, Ĥ ≥ 0 (2.19)

Table 2.4: MAXSPS-BASED-CLUSTERING(s0, drrp)
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We now describe the details of the online heuristic approach. To generate the

cluster of stations for each vehicle, a maximum spanning star (MAXSPS) based

approximation technique is employed. The idea is to minimise the maximum ex-

pected routing cost Ĥ (delineated in Expression 2.12) such that the service level

requirement for each station can be satisfied. An optimisation problem (described

in Table 2.4) is solved to discover the cluster of stations for each vehicle. Let, zi,v

be a binary decision variable that is set to 1 if station i ∈ S is assigned to the

cluster of vehicle v ∈ V . Let, S+ denotes the set of self-sufficient stations and ĥv

denotes the routing cost for vehicle v. Constraints (2.13)-(2.14) ensure that insuf-

ficient stations (S \ S+) must be visited by vehicles while sufficient stations can

be visited if required. Constraints (2.15)-(2.16) ensure that each cluster contains

enough bikes such that service level requirement can be satisfied for each station.

Constraints (2.17) estimate the lower bound on the routing cost for the resulting

assignment and constraints (2.18) enforce that the objective value of makespan is

equivalent to maxv ĥv.

Table (2.5) provides the MILP formulation for the online heuristic approach that

is used in each time step to generate a repositioning solution. As a vehicle can visit

multiple stations within one time step, the time indicators are used in SOLVEON-

LINE() to represent the sequence of moves of all the vehicles. The objective func-

tion (2.20) is to minimise the maximum routing cost for all the vehicles. As a vehicle

cannot visit all the stations within the rebalancing period, we add additional slack

variables δ+, δ− in the objective to ensure that maximum number of stations are bal-

anced. w represents the unit penalty for deviating from the minimum and maximum

number of bikes required at each station and we set it to 1 in our experiments. s0i

is the initial distribution of bikes at station i in that time step. smin
i , smax

i represent

the lower and upper bounds, respectively, on the number of bikes required at station

i. Let, F t
i is the expected demand at station i in the time step t, then smin

i , smax
i are

determined as (1− ε)F t
i and (1 + ε)F t

i , respectively, where ε is the tolerance level4.

4We take the value of ε as 10% in the experiment.
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minH + w
(∑

i

δ+i +
∑
i

δ−i
)

(2.20)

s.t. s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≥ smin

i − δ+i , ∀i (2.21)

s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≤ smax

i + δ−i , ∀i (2.22)

∑
j

zti,j,v −
∑
j

zt−1j,i,v = σtv,i, ∀i, t, v (2.23)

∑
t,j /∈Gv

zti,j,v = 0, ∀i, v (2.24)

y+,t
i,v + y−,ti,v ≤ C∗v ·

∑
j

zti,j,v, ∀i, t, v

(2.25)

d∗,tv +
∑
i

(y+,t
i,v − y

−,t
i,v ) = d∗,t+1

v , ∀t, v

(2.26)

H ≥
∑
i,j,t

Pi,j · zti,j,v, ∀v (2.27)

s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≥ 0, ∀i (2.28)

s0i +
∑
t,v

(y−,ti,v − y
+,t
i,v ) ≤ C#

i , ∀i

(2.29)

0 ≤ y+,t
i,v , y

−,t
i,v ≤ C∗v , 0 ≤ d∗,tv ≤ C∗v , H, δ+i , δ−i ≥ 0, zti,j,v ∈ {0, 1}

(2.30)

Table 2.5: SOLVEONLINE(s0, drrp)

A vehicle v is allocated to the cluster Gv.

Constraints (2.21) ensure that each station has at least the minimum required

bikes after the repositioning. As all the stations cannot be balanced within one time

step, the slack variable δ+ is added in these constraints to avoid the infeasibility of

the MILP. Constraints (2.22) ensure that the number of bikes at each station does

not exceed the maximum required number of bikes after the repositioning and the

slack variable δ− is added to these constraints to avoid the above mentioned difficul-

ties. Constraints (2.23) enforce that the flows of vehicles in and out of stations are

preserved. Constraints (2.24) ensure that vehicle v can only visit stations within the

cluster Gv. Constraints (2.25) ensure that the flows of bikes in and out of vehicles
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are preserved at the time of repositioning. Constraints (2.26) enforce that a vehicle

can only pick up or drop off bikes at a station if it is present at that station. Con-

straints (2.27) ensure that the variable H in the objective is greater than the routing

cost for each vehicle or alternatively assure that we minimise the maximum routing

cost of the vehicles. Lastly, Constraints (2.28)-(2.30) ensure that the station and

vehicle capacity are not exceeded while repositioning the bikes.

Similar to the myopic approach, given the distribution of bikes, we find the repo-

sitioning solution in each time step by solving the MILP provided in Table (2.5). Af-

ter the repositioning, we simulate the flows of bikes according to customer demand

and compute the distribution of bikes in each station for the next time step.
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Chapter 3

Optimising Lost Demand in BSS

through Dynamic Redistribution

Bike Sharing Systems (BSSs) offer attractive alternatives to private transportation

particularly in alleviating concerns associated with increased carbon emissions, traf-

fic congestion and usage of non-renewable resources. BSSs have the ability to pro-

vide healthier living and greener environments while delivering fast movements for

customers. A few examples of BSSs are Capital Bikeshare in Washington DC,

Hubway in Boston, Bixi in Montreal, Vélib’ in Paris, Wuhan and Hangzhou Public

Bicycle in China, etc.

Bike sharing systems are currently adopted in 1,139 cities with a fleet of over

1,445,000 bicycles. In addition, there are 357 cities where BSSs are either in the

planning stage or under construction (Meddin & DeMaio, 2016). Figure (3.1) pro-

vides a quick view of the bike sharing systems around the world. In a typical bike

sharing system, a set of base stations is strategically placed throughout the city. At

the beginning of the day, each station is stocked with a pre-determined number of

bikes. Users can hire and return bikes from any designated station, each of which

has a finite number of docks. Many bike sharing operators use vehicles (e.g., trucks)

to reposition bikes at the end of the work day so as to return to a pre-determined

configuration. In addition, several bike sharing operators (e.g., Capital Bikeshare
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Figure 3.1: Visualisation of the BSSs worldwide (Meddin & DeMaio, 2016).

in Washington DC, Hubway in Boston) reposition the bikes during the day using

myopic and adhoc methods.

Due to the individualistic movements of customers according to their personal

needs, there is often congestion (more than required) or starvation (fewer than re-

quired) of bikes at base stations. Figure (3.2) provides the number of instances1

when stations were empty or full throughout various months in 2013-2014 for Cap-

ital Bikeshare. A full station can be considered as being indicative of congestion and

an empty station can be considered as being indicative of starvation. At a minimum,

there were approximately 100 cases of empty stations and 100 cases of full stations

per day. At a maximum, there were approximately 750 cases of empty stations and

330 cases of full stations per day. Moreover, in around 40% of instances, the stations

were empty or full for more than 30 minutes. In order to tackle this problem, we

employ dynamic repositioning of bikes during the day to better match demand with

supply. Dynamic repositioning refers to considering movements of bikes by cus-

tomers (which are usually significant and not negligible) during the repositioning

period (Shu et al., 2013). On the other hand, static repositioning refers to ignoring

movements of bikes by customers during the rebalancing process (Chemla et al.,

2013).

As demonstrated by Fricker and Gast (2016) and our experimental results, star-

1The data is taken from Capital Bikeshare [http://cabidashboard.ddot.dc.gov/cabidashboard/#Home].
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Figure 3.2: Number of empty and full instances of stations in Capital Bikeshare.

vation/congestion can result in a significant loss in customer demand. Such loss in

demand can have two undesirable outcomes: (1) loss in revenue, and (2) increase

in carbon emissions, as people can resort to fuel burning modes of transport. More-

over, some operators (e.g., Vélib’ in Paris) are even penalised by the local govern-

ment for loss in customer demand (Schuijbroek et al., 2017). So, there is a practical

need to minimise the lost demand and our approach is to dynamically reposition

bikes with the help of vehicles while considering future expected demand extracted

from past data (Ghosh, Varakantham, Adulyasak, & Jaillet, 2015, 2017). Further-

more, to ensure that the minimisation in demand loss is commercially viable, we

consider an objective that is a trade-off between minimising lost demand (alterna-

tively maximising profit) and minimising cost incurred by vehicles.

We refer to the joint problem of bike repositioning and vehicle routing as the Dy-

namic Repositioning and Routing Problem (DRRP). The DRRP with minor mod-

ifications can be used to represent the problem of repositioning empty cars in car

sharing systems (e.g., Car2go, Zipcar) (Kek, Cheu, Meng, & Fung, 2009; Barth,

Todd, & Xue, 2004), empty vehicles in Personal Rapid Transit (Lees-Miller, Ham-

mersley, & Wilson, 2010) and idle ambulances in emergency response (Yue et al.,

2012; Saisubramanian et al., 2015). For example, in the case of car sharing, there is

a need to continuously reposition cars to different parking spaces during the day to

match with the pattern of demand.
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Given the benefits of BSSs and the challenges of setting up such systems to

operate efficiently, there have been a wide spectrum of research papers addressing

the problem of lost demand and other issues pertinent to it. Some of the major

differences between this work and existing research are as follows: (1) we generate

routing and repositioning decisions for multiple time steps (e.g., multiple periods

during an entire day) using expected demand for bikes at each base station and at

each time step, and (2) we employ novel approaches based on decomposition and

abstraction to provide scalable solutions to DRRPs for large-scale BSSs.

The DRRP can be considered as a generalisation of the static bicycle reposition-

ing problem (SBRP) (Schuijbroek et al., 2017). The SBRP in turn can be reduced

from the 1-PDTSP problem, which is a known NP-Hard problem (Hernández-Pérez

& Salazar-González, 2004). Due to this relation, it can be shown that the DRRP

is at least NP-Hard. Therefore, we focus on developing principled approximation

methods. Our key contributions are as follows:

1. A mixed integer linear program (MILP) formulation to maximise profit for

the BSS that considers the trade-off between:

• maximising served demand, and

• minimising cost incurred by vehicles.

2. A dual decomposition mechanism to decompose the MILP into two compo-

nents – one which computes a repositioning solution for bikes and one which

computes a routing solution for vehicles.

3. An abstraction mechanism that clusters the base stations in proximity to re-

duce the size of the problem and further speed up the solution process.

4. Extensive computational results using a simulation based on the real-world

data sets of two bike sharing systems, namely, Capital Bikeshare (Washing-

ton, DC) and Hubway (Boston, MA), which demonstrate that our techniques
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can significantly reduce lost demand and improve operational efficiency of

BSSs.

3.1 Populating DRRP from Data of BSSs

Data
Item Definition

D1 The identification numbers, locations, capacities of base stations and
the number of bikes present at each station at the beginning of the day.

D2 Total number of vehicles available for repositioning and capacities of
those vehicles.

D3 Customer trip history records.
D4 Revenues associated with successful customer bookings.

Table 3.1: Definition of the data items provided in real-world data sets.

The details of the data items provided by the bike sharing data sets (of two real

BSSs), which we use in this work are mentioned in Table (3.1). From these data

items, we populate the DRRP tuple 〈S,V ,C#,C∗,d#,0,d∗,0, {σ0
v},F, R,P〉 from

Section 2.1.1 as follows:

• Set of base stations, S and their capacities, C# are obtained from data item

D1.

• Set of vehicles, V and their capacities, C∗ are obtained from data item D2.

• d#,0 is obtained from data item D1 and d∗,0 is set to 0 for all vehicles (i.e.,

vehicles start out empty at the beginning of the day).

• We set the starting positions of vehicles, {σ0
v} randomly. Note that we have

experimented with different starting configurations, but they do not have a

major impact on the results. This is primarily because the positions of vehicles

were changed based on the decisions to accommodate the flows of demands

after the first time step.
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• The demand and transition model, F is constructed by aggregating the cus-

tomer trips for each time step over the data in D3. We aggregate the demand

for each day of the week, i.e., there is a separate demand model for Mondays,

Tuesdays, etc.

• Revenue model, R is constructed from the data item D42.

• Cost model, P is computed based on fuel costs in the location of the bike

sharing system in conjunction with distances between base stations that are

obtained from the data item D1.

In Figure (3.3), we provide an example to better explain the DRRP.

Example 3.1.1. For ease of explanation, we take 3 base stations and the movements

of bikes between stations are shown over 3 time steps. An oval represents a base

station at a time step. The leftmost oval at the top is base station 1 at time step 1, the

oval in the middle column at the top is base station 1 at time step 2 and so on. The

number inside the oval represents the number of bikes present in the station at that

time step. The number in the square box on top of each oval represents the actual

demand in that station at that time step. The number on each arc shows the actual

flow of bikes on that arc. The blue ellipse on the top of an oval represents the lost

demand at that station due to unavailability of bikes. For this specific example, the

total loss in demand is 4 as shown in Figure (3.3a). However, if we reposition the

idle bikes efficiently with the help of a vehicle (in Figure (3.3b), the routes for the

vehicle are shown using a dotted line and the reposition numbers are shown within

the circle associated with each dotted line), then there is no lost demand.

2Typically, the first 30 minutes for subscription rides is free and after that an additional charge
is applied. In our model, to ensure consistency, we can represent revenue for first 30 minutes as the
subscription fee divided by the average number of rides.
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Figure 3.3: An example to explain the need for dynamic repositioning: (a) without
repositioning (lost demand = 4), (b) with repositioning (dotted line represents the
repositioning solution, lost demand = 0).

3.2 Optimisation Model for Solving DRRP

In this section, we provide an optimisation model for a given DRRP. Specifically, we

provide a mixed integer linear program (MILP) that computes a profit maximising

repositioning and routing solution. For ease of understanding, the decision and

intermediate variables employed in the formulation are described in Table (3.2).

Category Variable Definition

Decision
y+,t
s,v

The number of bikes picked from station s by vehicle v at
time step t.

y−,ts,v

The number of bikes dropped at station s by vehicle v at time
step t.

zts,s′,v Set to 1 if vehicle v moves from station s to s′ at time step t.

Intermediate xt,ks,s′
The number of bikes moving from station s at time step t to
s′ at t+ k by the customers.

d#,t
s The number of bikes present in station s at time step t.
d∗,tv The number of bikes present in vehicle v at time step t.

Table 3.2: Decision and intermediate variables.

The MILP for solving the DRRP is presented compactly in Table (3.3). Intu-

itively, the constraints in the optimisation model ensure that: the flows of bikes

in and out of the base stations and vehicles are preserved (constraints (3.2) and

(3.4)), the flows of vehicles in and out of the base stations are preserved (con-

straints (3.5) and (3.6)), and capacities of base stations and vehicles are not vio-
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max
y+,y−,z

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ −

∑
t,v,s,s′

Ps,s′ · zts,s′,v (3.1)

s.t. d#,t
s +

∑
k,ŝ

xt−k,kŝ,s −
∑
k,s′

xt,ks,s′ +
∑
v

(
y−,ts,v − y+,t

s,v

)
= d#,t+1

s , ∀t, s (3.2)

xt,ks,s′ ≤ d#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′

(3.3)

d∗,tv +
∑
s∈S

(
y+,t
s,v − y−,ts,v

)
= d∗,t+1

v , ∀t, v

(3.4)∑
s′∈S

zts,s′,v −
∑
s′∈S

zt−1s′,s,v = σtv,s, ∀t, s, v

(3.5)∑
s′∈S,v∈V

zts,s′,v ≤ 1, ∀t, s (3.6)

y+,t
s,v + y−,ts,v ≤ C∗v ·

∑
i∈S

zts,i,v, ∀t, s, v

(3.7)

0≤ xt,ks,s′≤ F
t,k
s,s′ , 0≤ d#,t

s ≤ C#
s , 0≤ y+,t

s,v , y
−,t
s,v ≤ C∗v , 0≤ d∗,tv ≤ C∗v (3.8)

zts,s′,v ∈ {0, 1} (3.9)

Table 3.3: SOLVEDRRP()

lated (constraints (3.7) and (3.8)). More importantly, these constraints ensure that

the flows of bikes between stations follow the flows of bikes observed in the de-

mand and transition model, F. More specific details of the constraints employed in

SOLVEDRRP() of Table (3.3) are as follows:

Objective: To represent the trade-off between lost demand (or alternatively the rev-

enue from customer trips) and the cost of using vehicles, we employ the dollar value

of both quantities and combine them into the overall profit. This objective is repre-

sented in Expression (3.1) of the MILP in SOLVEDRRP().

Flows of bikes in and out of stations are preserved: Constraints (3.2) enforce this

flow preservation. Intuitively, in these constraints, we ensure that the number of
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bikes at a base station at a time step (d#,t+1
s ) is equivalent to the sum of the number

of bikes at the same base station in the previous time step (d#,t
s ) and the net number

of bikes coming into the station during that time step
(∑

k,ŝ x
t−k,k
ŝ,s −∑k,s′ x

t,k
s,s′ +∑

v

(
y−,ts,v − y+,t

s,v

))
.

Flows of bikes between any two stations follow the transition dynamics observed

in the data: As a subset of arrival demand can be served if the number of bikes

present in a station is less than the arrival demand, constraints (3.3) ensure that the

flows of bikes between station s and s′ should be less than the product of the num-

ber of bikes present in the source station s (i.e., d#,t
s ) and the transition probability

that a bike will move from s to s′ according to expected customer demand (i.e.,

F t,k
s,s′/

∑
k,ŝ F

t,k
s,ŝ ).

Flows of bikes in and out of vehicles are preserved: Constraints (3.4) enforce this

flow preservation. Intuitively, in these constraints, we ensure that the number of

bikes in a vehicle at a time step (d∗,t+1
v ) is equivalent to the sum of the number of

bikes in the vehicle at the previous time step (d∗,tv ) and the net number of bikes com-

ing into the vehicle during that time step
(∑

s∈S
(
y+,t
s,v − y−,ts,v

))
.

Flows of vehicles in and out of stations are preserved: Constraints (3.5) enforce

this flow preservation. Intuitively, in these constraints, we ensure that the number of

vehicles going out of a station (
∑

s′∈S z
t
s,s′,v) is equivalent to the sum of the number

of vehicles coming into the station (
∑

s′∈S z
t−1
s′,s,v) and the number of vehicles that

were present at that station3 (σt
v,s).

A maximum of one vehicle can be present in one station at any time step: Due

to limited space availability near base stations and to avoid a synchronisation issue

3This second term is greater than zero for the first time step only and for rest of the time steps it
is set to zero.
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in pickup or drop-off events by multiple vehicles from the same station at the same

time step, constraints (3.6) ensure that at any time step, the maximum number of

vehicles at a station (
∑

s′∈S z
t
s,s′,v) is 1.

Vehicles can only pick up or drop off bikes at a station if they are present at that

station: Constraints (3.7) enforce that the number of bikes picked up or dropped off

from a station at each time step by each vehicle is bounded by whether the station

is visited by the vehicle at that time step or not.

Station and vehicle capacities are not exceeded when repositioning bikes: Con-

straints (3.8) ensure that the number of bikes at a station s does not exceed the

number of available docks at that station (C#
s ). Similarly, these constraints also en-

force that the number of bikes picked up or dropped off by a vehicle v in aggregate

does not exceed the capacity of the vehicle (C∗v ).

The size of the above described model grows exponentially as the number of

stations increases. To tackle this problem, we describe two mechanisms, namely,

dual decomposition and abstraction to improve the scalability of the optimisation

model delineated in Table (3.3).

3.3 Dual Decomposition Approach for Solving the DRRP

We now provide a decomposition approach to exploit the minimal dependency that

exists in the MILP of SOLVEDRRP() between the routing problem (how to move

vehicles between base stations to pick up or drop off bikes) and the repositioning

problem (how many bikes to pick up and drop off from each station). The following

observation highlights this minimal dependency:

Observation 1. In the MILP of Table (3.3):
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• y+ and y− variables capture the solution for the repositioning problem.

• z variables capture the solution for the routing problem.

These sets of variables only interact due to constraints (3.7). In all other constraints

of the original model, the routing and repositioning variables are completely inde-

pendent.

In order to exploit observation (1), we use the well-known Lagrangian dual de-

composition (LDD) (Fisher, 1985; Gordon, Varakantham, Yeoh, Lau, Aravamud-

han, & Cheng, 2012) technique. While this is a general purpose approach, its scal-

ability, usability and utility depend significantly on the following characteristics of

the model:

1. Identifying the right constraints to be dualized: This step is crucial to en-

sure that the resulting subproblems are easy to solve and the resulting bound

derived from the dual solution is tight during the LDD process. If the right

constraints are not dualized, then the underlying Lagrangian based optimisa-

tion may not be decomposable or it may take significantly more time than the

original MILP to find the desired solution.

2. Extraction of a primal solution from an infeasible dual solution: The primal

extraction process is important to derive a valid bound (heuristic solution)

during the LDD process. In many cases, the solution obtained by solving the

decomposed dual slaves can be infeasible with respect to the original formu-

lation and hence, the overall approach can potentially lead to slower conver-

gence and poor solutions.

The pseudo code for the LDD is provided in Algorithm (1). We first decompose

the original problem into a master problem and two slaves (SOLVEREDEPLOY() and

SOLVEROUTING()). As highlighted in observation (1), only constraints (3.7) con-

tain a dependency between routing and repositioning variables. Thus, we dualize
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Algorithm 1: : SolveLDD(drrp)

Initialize: α0, it← 0;
repeat

o1, x, y−, y+ ← SOLVEREDEPLOY(αit, drrp);

αit+1
s,t,v ←

[
αit
s,t,v + γ · (y+,t

s,v + y−,ts,v − C∗v ·
∑

i z
t
s,i,v)

]
+

;

p, xp, y
−
p , y

+
p ← EXTRACTPRIMAL (z, drrp);

it← it+ 1;

until
[
p− (o1 + o2)

]
≤ δ;

return p, xp, y+p , y−p , z;

constraints (3.7) using the dual variables, αs,t,v and obtain the Lagrangian function

(expressed as a minimisation problem as shown by Fisher, 1985) as follows:

L(α) = min
z,y+,y−

[
−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
t,v,s,s′

Ps,s′ · zts,s′,v

+
∑
s,t,v

αs,t,v · (y+,t
s,v + y−,ts,v − C∗v ·

∑
i

zts,i,v)
]

(3.10)

= min
y+,y−

[
−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
s,t,v

αs,t,v ·
(
y+,t
s,v + y−,ts,v

)]
+min

z

[ ∑
t,v,s,s′

zts,s′,v · (Ps,s′ − C∗v · αs,t,v)
]

(3.11)

In Equation (3.11), the first two terms correspond to the repositioning problem

and the last term corresponds to the routing problem. The two subproblems cor-

responding to the repositioning and routing problems are given in Table (3.4) and

Table (3.5), respectively.

min
y+,y−

−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
s,t,v

αs,t,v · (y+,t
s,v + y−,ts,v )

s.t. Constraints (3.2), (3.3), (3.4) & (3.8) hold

Table 3.4: SOLVEREDEPLOY()

From Equation (3.11), given an α, the dual value corresponding to the original

problem is obtained by adding up the objective function values from the two slaves,
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min
z

∑
t,v,s,s′

zts,s′,v · (Ps,s′ − C∗v · αs,t,v)

s.t. Constraints (3.5), (3.6) & (3.9) hold

Table 3.5: SOLVEROUTING()

which yields a valid lower bound with respect to the original problem. It should be

noted that the decomposition is only for L(α). Next, we have to solve the following

optimisation problem at the master in order to reduce violations of the dualized

constraints:

max
α≥0
L(α) (3.12)

This master optimisation problem is solved iteratively using a sub-gradient descent

method applied on the dual variables α:

αk+1
s,t,v =

[
αk
s,t,v + γ · (y+,t

s,v + y−,ts,v − C∗v ·
∑
i

zts,i,v)
]
+

(3.13)

where the []+ notation indicates that the value must be equal or greater than zero.

This is because we have dualized a “less than or equal to” constraint and a value

of less than zero indicates that there is no violation of the constraint. γ is a step-

size parameter that is set using the standard strategy presented by Bertsekas (1999)

(refer to section 6.3.1). The value within parenthesis () in Equation (3.13) is the

sub-gradient and is computed from the solutions of the two slaves.

The algorithm terminates when the difference between the primal objective (de-

fined as p in Algorithm 1) and the dual objective (the sum of the slave’s objectives

o1, o2) is less than a pre-determined threshold value δ. In order to compute the opti-

mality gap4, we need the best primal solution in conjunction with the dual solution.

Therefore, it is important to obtain a primal solution after each iteration from the
4The gap between dual and primal solution which is known as duality gap, is the measurement

of solution quality derived from the LDD. We reach an optimal solution if the duality gap becomes
zero.

48



solutions of the slaves. In our case, however, the aggregate solution obtained from

slaves may not always be feasible with respect to the original problem in Table (3.3).

Observation 2. The infeasibility in the dual solution arises because the routes of

the vehicles (obtained by solving the routing slave) may not be consistent with the

repositioning plan of bikes (obtained by solving the repositioning slave). However,

the solution for the routing slave is always feasible and can be fixed to obtain a

feasible primal solution with respect to the original problem.

Let, Zt
s,v =

∑
s′ z

t
s,s′,v. We extract the primal solution by solving the optimi-

sation formulation provided in Table (3.6). Essentially, we solve the repositioning

slave with an additional set of constraints (3.14), which ensure that repositioning in

a station is possible if a vehicle is present there. More specifically, constraints (3.14)

are equivalent to constraints (3.7) where we use the solution values of the routing

slave (z) as the input. Thus, ExtractPrimal() satisfies all the constraints of Table (3.3)

and produces a feasible solution to the original problem. Finally, we subtract the

routing cost from the objective value to get the correct primal value.

max
y+,y−

∑
t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′

s.t. Constraints (3.2), (3.3), (3.4), (3.8) hold and

y+,t
s,v + y−,ts,v ≤ C∗v · Zt

s,v, ∀t, s, v (3.14)

Table 3.6: EXTRACTPRIMAL()

Proposition 1. (Fisher, 1985) : The error in the solution quality obtained by the La-

grangian dual decomposition method in Algorithm (1) is bounded by the difference

between the primal objective, p and the dual objective, (o1 + o2).
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3.4 Abstraction Approach for Solving DRRP

Even after applying the LDD, we can only solve problems with at most 60 base

stations, 38 time steps and 5 vehicles within a threshold time of 12 hours. However,

in most of the cities, the number of base stations is higher. In this section, we

provide an abstraction mechanism to further speed up the solution process. We first

provide two observations from the real data that assist with deciding on the method

to abstract base stations:

• Figure (3.4) provides heat maps of empty stations5 during various times of

the day for Capital Bikeshare. Figure (3.4a) and (3.4b) show the heat maps

of empty stations in the morning peak hours. Similarly, Figure (3.4c) and

(3.4d) show the heat maps of empty stations during the evening peak hours.

All the heat maps indicate that the stations near to each other exhibit similar

behaviour.

• Base stations are relatively close to each other. For instance, in case of the

Capital Bikeshare, there are 5-6 base stations within 2 blocks (up to 0.4 miles

or 0.64 kilometers) in the center of the city.

From the above observations, since nearby stations exhibit similar behaviour

and are also close enough to be covered by a carrier vehicle with minimal travel, we

exploit the geographical proximity based clustering method to obtain abstract sta-

tions. Specifically, we employ relative distances between stations while clustering

stations into abstract stations. We follow the following three steps typically em-

ployed in abstraction and introduced by Knoblock (1991): (1) create an instance of

the DRRP with abstract stations, each of which is a group (obtained from cluster-

ing) of the original base stations, (2) solve the abstract DRRP using the LDD and

5A station is considered empty if there are no bikes in the station for more than 2 minutes. For
a specific time of a specific day (Monday, Tuesday, etc.), we use the trip history data and count
the number of times each station became empty over a reasonably long duration (a year). Red
corresponds to stations that became empty frequently, green corresponds to stations that became
empty moderately and purple is for stations that rarely became empty.
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(a) (b)

(c) (d)

Figure 3.4: Heat maps for empty stations (data set: Capital Bikeshare): (a) morning
peak (7AM - 9AM), (b) morning peak (9AM - 11AM), (c) evening peak (4PM -
6PM), (d) evening peak (6PM - 8PM).

obtain the routing and repositioning solution over abstract stations, and (3) derive

the routing and repositioning solution for the original DRRP from the routing and

repositioning solution of the abstract DRRP.

3.4.1 Create Abstract DRRP

The first step in this approach is to generate the abstract DRRP, 〈S̃,V , C̃#
,C∗, d̃#,0

,d∗,0,

{σ̃0
v}, F̃, R̃, P̃〉 from the original DRRP. Everything related to vehicles in the abstract

DRRP remains the same as in the original DRRP. In practice, revenue,Rt,k
s,s′ depends

on the time step, t and the number of time steps, k for which the bike is hired and

does not rely on the source or destination station. Hence, we can assume that the

revenue model remains the same for the original and abstract DRRPs. We outline
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below how the other elements of the abstract DRRP tuple are computed from the

original DRRP:

• Stations in the abstract DRRP, S̃: Grouping of stations S into abstract stations

can either be done by an expert or computed by a clustering approach6 (e.g.,

k-means clustering). Thus, each abstract station s̃ ∈ S̃ is a set of original base

stations.

• Capacity of an abstract station: C#
s̃ =

∑
s∈s̃C

#
s . The capacity of an abstract

station s̃ is the sum of capacities of all the stations s ∈ s̃.

• Initial distribution of bikes at the abstract station: d#,0
s̃ =

∑
s∈s̃ d

#,0
s . The

initial distribution of bikes of an abstract station s̃ is the sum of the initial

distributions of all the stations s ∈ s̃.

• Initial distribution of vehicle: σ0
v,s̃ = 1, if ∃s ∈ s̃, σ0

v,s = 1. The vehicle v

is initially located in abstract station s̃ if its original location (i.e., station s)

belongs to the abstract station s̃.

• Flows of bikes in the abstract DRRP: F t,k
s̃,s̃′ =

∑
{s∈s̃,s′∈s̃′} F

t,k
s,s′ . The flows of

bikes from an abstract station s̃ to s̃′ are calculated as the sum of the flows of

all the bikes taken by the customers from any station s ∈ s̃ to a station s′ ∈ s̃′

in the original DRRP.

• Routing cost for the vehicles in the abstract DRRP: Ps̃,s̃′ = max{s∈s̃,s′∈s̃′} Ps,s′ .

We consider a conservative option of taking the worst case penalty. Specif-

ically, we take the maximum routing cost for traveling between any pair of

stations s ∈ s̃ and s′ ∈ s̃′.
6The grouping of base stations can be done in various ways and the results may vary for different

problem instances. Clustering base stations according to geographical proximity is one option and
the experimental results show that it provides a reasonable improvement over the two benchmark
approaches.
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3.4.2 Solve the Abstract DRRP

In the second step, we use the LDD approach from Section 3.3 to solve the abstract

DRRP. There are two possible assumptions we can make about the movements of

vehicles in an abstract station: (1) a vehicle can visit all stations of an abstract

station in a single time step, and (2) a vehicle can visit one station within an abstract

station in a single time step.

3.4.2.1 Vehicle Can Visit All Stations of an Abstract Station in a Single Time

Step

As a vehicle can visit all the stations of an abstract station within one time step, we

need to ensure that at most one vehicle is present in an abstract station in each time

step to avoid the inconsistency in pickup or drop-off events by different vehicles.

Therefore, the optimisation model for solving the abstract DRRP is equivalent to the

one shown in Table (3.3) and we directly use the LDD approach from Section 3.3

to efficiently solve the abstract DRRP.

min
z̃

∑
t,v,s̃,s̃′

Ps̃,s̃′ · z̃ts̃,s̃′,v −
∑
s̃,t,v

αs̃,t,v · C∗v ·
∑
i

z̃ts̃,i,v

s.t. Constraints (3.5) & (3.9) hold∑
j∈S̃,v∈V

z̃ts̃,j,v ≤ |s̃|, ∀t, s̃ (3.15)

Table 3.7: SOLVEABSTRACTROUTING()

3.4.2.2 Vehicle Can Visit One Station within an Abstract Station in a Single

Time Step

As the abstract stations contain multiple base stations, we need to modify con-

straints (3.6) to allow multiple vehicles in an abstract station. Table (3.7) provides

the modified version of the routing slave to solve the abstract DRRP, where con-

straints (3.5) & (3.9) are defined over z̃. The modified set of constraints (3.15)
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ensure that at any time step maximum |s̃| vehicles can visit an abstract station s̃.

However, the repositioning slave and master function remain unchanged. There are

two key outputs from the LDD algorithm: (1) repositioning solution, ỹ for mov-

ing bikes between abstract stations, and (2) routing solution, z̃ for moving vehicles

between abstract stations at different time steps.

3.4.3 Deriving Solutions for the Original DRRP

In the third step, we retrieve the solution for the original DRRP from the abstract

DRRP solution.

3.4.3.1 Vehicle Can Visit All Stations of an Abstract Station in a Single Time

Step

As we are abstracting the base stations based on their relative distance, all the base

stations within an abstract station are located nearby (less than a few kilometers in

our data sets). So, in reality it is possible for a vehicle to visit all the base stations of

an abstract station within one time step. The mechanisms to retrieve the reposition-

ing and routing solutions for the original DRRP from the abstract DRRP solution

are outlined below.

Repositioning solution for the original DRRP: Based on a fixed routing solu-

tion, z̃ for the abstract DRRP, we retrieve the repositioning solution for the original

DRRP. Specifically, we fix the locations where vehicles will be present at different

time steps and remove all constraints which are only related to vehicle routing (since

the routing solution is fixed) in the optimisation model of Table (3.3). Solving this

optimisation model yields a repositioning solution for the original DRRP. Formally,

from the abstract DRRP solution z̃, we obtain constants Z as follows:

Zt
s =


1, if s ∈ s̃ ∧ ∑v,s̃′ z̃

t
s̃,s̃′,v = 1

0, otherwise
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The final optimisation model to obtain the repositioning solution for the original

DRRP is shown in Table (3.8). The key differentiating constraints that have not been

used earlier are constraints (3.20). These constraints ensure that the total number of

bikes picked up or dropped off from all base stations in an abstract station is equal

to the number of bikes picked up or dropped off from the abstract station according

to the repositioning solution of the abstract DRRP.

max
y+,y−

∑
t,s,s,s′

Rt,k
s,s′ · x

t,k
s,s′ (3.16)

s.t. d#,t
s +

∑
k,ŝ

xt−k,kŝ,s −
∑
k,s′

xt,ks,s′ + y−,ts − y+,t
s = d#,t+1

s , ∀t, s (3.17)

xt,ks,s′ ≤ d#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′ (3.18)

y+,t
s + y−,ts ≤ C∗v · Zt

s, ∀t, s (3.19)∑
s∈s̃|

∑
s̃′ z̃

t
s̃,s̃′,v=1

[y+,t
s − y−,ts ] = d∗,t+1

v − d∗,tv , ∀t, s̃ (3.20)

0 ≤ xt,ks,s′ ≤ F
t,k
s,s′ , y

+,t
s , y−,ts ≤ C∗v , d#,t

s ≤ C#
s (3.21)

Table 3.8: GETSTATIONREDEPLOY(Z,d∗)

Routing solution for the original DRRP: Given the routing solution for the ab-

stract DRRP (also referred to as the abstract routing solution), the vehicle assigned

to each abstract station at a time step is fixed. From this abstract routing solution,

our goal is to find the routing solution for all the stations within each abstract station

at each time step. This routing solution must be consistent with the repositioning

solution computed for the original DRRP. We use Y (instead of y) to represent the

final repositioning solution.

For each vehicle, we compute the routing solution for the original DRRP in-

crementally by starting at the first time step and from the starting abstract station.

We identify the route to be taken between all the base stations within this start-

ing abstract station. Then, we move to the abstract station for the next time step
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recommended by the abstract routing solution and so on.

For each vehicle, the first step in computing the routing solution for stations

within an abstract station is to identify the starting station7. We consider the starting

station for non-starting abstract stations as the one that is nearest to the station from

where the vehicle has exited in the previous time step. An advantage of this incre-

mental method is that it minimises the routing cost for transition between abstract

stations.

Once the starting station is obtained and the repositioning solution Y is known,

we employ the optimisation model in Table (3.9) to find an intra-abstract station

routing solution. We compute the best route within the stations of an abstract station

s̃, while visiting each base station once and satisfying the repositioning numbers

from each station, Y.

min
z

∑
t,s,s′

Ps,s′ · zts,s′,v (3.22)

s.t. d̂∗,t +
∑
s

(Y +
s − Y −s ) ·

∑
s′

zts,s′,v = d̂∗,t+1, ∀t ∈ T̂ (3.23)∑
t,s′

zts,s′,v = 1, ∀s ∈ s̃|(Y +
s + Y −s ) > 0 (3.24)

∑
s′

zts,s′,v −
∑
ŝ

zt−1ŝ,s,v = σtv,s, ∀t ∈ T̂ , s ∈ s̃ (3.25)

0 ≤ d̂∗,t ≤ C∗v , zts,s′,v ∈ {0, 1} (3.26)

Table 3.9: GETINTRAROUTING(s̃, v,Y)

The objective delineated in Expression (3.22) is to minimise the routing cost of

the vehicle and the constraints are defined as follows:

• Flows of bikes in and out of a vehicle are preserved: Constraints (3.23) en-

force this by ensuring that the number of bikes in the vehicle at time step t+1

is equal to the sum of the number of bikes present in the vehicle at time step t

plus the net number of bikes picked up from a station s at that time step. Note
7Since the position of every vehicle is known at first time step in the original DRRP tuple, we

have the starting station for the starting abstract station.
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that, the time index t here is used to represent the sequence of moves for the

vehicle between the base stations within an abstract station.

• Each station is visited only once: Constraints (3.24) restrict that each base

station where a repositioning is required (i.e., Y +
s /Y

−
s > 0) is visited only

once.

• Flow conservation of each vehicle at a station: Constraints (3.25) ensure that

the flow in to a station s (i.e.,
∑

s′ z
t−1
s′,s,v) is equal to the flow out from that

station at time step t (i.e.,
∑

s′ z
t
s,s′,v). σ0 represents the initial location of the

vehicle and it is used to ensure that the vehicle moves appropriately out of the

initial location.

• Capacity of the vehicle is not exceeded during repositioning: Constraints (3.26)

ensure that the number of bikes picked up or dropped off by a vehicle in ag-

gregate does not exceed the capacity of the vehicle (C∗v ).

Example 3.4.1. Figure (3.5) provides a handcrafted toy example to illustrate the

abstraction method where a vehicle can cover all stations within an abstract station

in one time step. Solid dots represent the base stations and big circles represent

the abstract stations. We considered a problem with 13 base stations and grouped

them into three abstract stations (with 5 stations in abstract station 1 and 4 stations

each in abstract stations 2 and 3). Initial location of a vehicle is indicated with

a circle over the solid dot. Figure (3.5a) depicts the optimal abstract station level

routing solution (by solving the LDD based global MILP on the abstract DRRP) for

the vehicle. Figure (3.5b) depicts the base station level routing solution within the

abstract station 1 at the initial time step. It also shows the route from the exit station

of abstract station 1 to its nearest station in abstract station 2. By this incremental

process, we find the base station level routing solution for the vehicle. Figure (3.5c),

(3.5d) depict the base station level routing solution within abstract station 2 and 3

respectively.
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Abstract Station 1 Abstract Station 2 Abstract Station 3
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(c)

T=1 T=3T=2

Abstract Station 1 Abstract Station 2 Abstract Station 3

(d)

Figure 3.5: Routing solution in the abstract DRRP: (a) abstract station level routing
solution, (b) routing solution within abstract station 1, (c) routing solution within
abstract station 2, and (d) routing solution within abstract station 3.

3.4.3.2 Vehicle Can Visit One Station within an Abstract Station in a Single

Time Step

Table (3.10) provides the optimisation model to compute a feasible solution for the

original DRRP with the assumption that a vehicle can only travel to one station in

each time step. We solve the global MILP SolveDRRP() for the original DRRP

provided in Table (3.3) with an additional set of constraints (3.27) to ensure that a

vehicle can only be present in a base station at any time step if the station belongs

to the abstract station where the vehicle is located in the abstract DRRP solution.

Specifically, the decision variable zts,s′,v can only be 1 if s ∈ s̃, s′ ∈ s̃′ and z̃ts̃,s̃′,v =

1. In the MILP of RetrieveDRRP(), we set the decision variables zts,s′,v to 0 if

s ∈ s̃, s′ ∈ s̃′ and z̃ts̃,s̃′,v = 0. Thus, RetrieveDRRP() becomes easier to solve than

SolveDRRP().

3.4.4 Reasons for Improvement in Scalability

The scale of the optimisation models used for solving the abstract DRRP and de-

riving an original DRRP solution from the abstract DRRP solution are reduced in

comparison to the original optimisation model. Hence, this abstraction method is
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max
y+,y−,z

∑
t,k,s,s′

Rt,k
s,s′ · xt,ks,s′ −

∑
t,v,s,s′

Ps,s′ · zts,s′,v

s.t. Constraints (3.2)- (3.9) hold and∑
s∈s̃,s′∈s̃′

zts,s′,v = z̃ts̃,s̃′,v, ∀s̃, s̃′, t, v (3.27)

Table 3.10: RETRIEVEDRRP()

able to substantially speed up the solution process. Specifically, here are the reasons

for reduction in runtime of the optimisation models:

• Reduction in the number of variables and constraints: The number of

variables and constraints in the optimisation model are significantly reduced.

For instance, for a 300 station problem in the original optimisation model of

Table (3.3), there would be 90000 binary decision variables, z for each time

step. On the other hand, for an abstract DRRP with 50 abstract stations, there

would only be 2500 z variables for each time step.

• Relaxation: Another important reason for significant improvement in scala-

bility is that the optimisation models for computing routing and repositioning

solution for the abstract DRRP are the relaxations of the optimisation model

for the original DRRP. This is because constraints in the optimisation mod-

els for the abstract DRRP are obtained by aggregating the constraints that are

present in the optimisation model for the original DRRP.

3.5 Experimental Setup

In this section, we describe the real and synthetic data sets that are used in the com-

putational experiments, the benchmark approaches that are implemented for the

computational comparisons, and the simulation model used to compute the compar-

ison metrics.

Since our goal is to avoid people from going back to using private vehicles
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due to unavailability of bikes, the key comparison metric is the total amount of

lost demand. To ensure that the amount of lost demand is reduced at no extra fuel

cost to the operators, we also consider the total profit as a metric. The runtime is

primarily employed to measure scalability and whether we are able to get a high

quality solution within a reasonable amount of time.

3.5.1 Real and Synthetic Data Sets

We employ data sets of two leading bike sharing systems in US8, namely, Capi-

tal Bikeshare (Washington, DC) and Hubway (Boston, MA), and the synthetic data

sets are derived from these real-world data sets. The data items contained in the

bike sharing data sets are previously mentioned in Table (3.1). In addition to the

data items provided in the data sets, we collect data about the cost of fuel for ve-

hicles9 from authentic sources. It should be noted that we consider a significant

overestimation of the costs to ensure our results are not too sensitive to these values.

These elements of real-world data sets and the data collected from the authentic

sources are used to populate the DRRP model.

As for the synthetic data sets, they are generated from the two real-world data

sets as follows: (1) we take a subset of the stations from the real-world data sets,

(2) customer demand, station capacity, geographical location of stations and initial

distribution are drawn from the real-world data for the selected stations, and (3) we

take the same revenue and cost model discussed earlier from the real-world data

sets.
8The data is taken from Capital Bikeshare [http://capitalbikeshare.com/system-data] and Hubway

BSS [http://hubwaydatachallenge.org/trip-history-data].
9The mileage results in Table 2 of Fishman, Washington, and Haworth (2014) show that

carrier vehicles in BSS consume 1 litre of diesel for traveling approximately 12 kilometers.
http://www.globalpetrolprices.com/diesel prices/#USA shows that the price of diesel in January,
2017 is 0.67 USD per litre, but we overestimate it as 1.5 USD to include other operational costs.
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3.5.2 Approaches

We employ the commercial linear optimisation solver CPLEX to solve linear pro-

grams and mixed integer linear programs. We refer to the optimisation model of

Table (3.3) as MILP. The dual decomposition method for solving the MILP that is

described in Section 3.3 is referred as LDD (Lagrangian dual decomposition). Fi-

nally, we refer to the abstraction approach described in Section 3.4 as Abstraction.

The overall approach (LDD+Abstraction) is referred to as dynamic.

The first approach that is used as a benchmark for performance comparison is the

static repositioning approach (referred to as static in the graphs) from Section 2.3.1.

We also compared our approach with the online heuristic approach which is adapted

from Schuijbroek et al. (2017) as mentioned in Section 2.3.2. This approach is re-

ferred to as online. Finally, we evaluate the performance of all the above mentioned

approaches by using a simulation model from Section 2.3.1.1 that is based on the

past data.

3.5.3 Estimating Actual Demand

We only know the satisfied demand from existing data sets. Specifically, when a

base station becomes empty, the unobserved lost demand is not captured in the data

sets.

Previous works in inventory management have represented and verified the ran-

dom arrival of customer demand following a Poisson process. More importantly,

earlier works in bike sharing (Kabra et al., 2015; Shu et al., 2013; George & Xia,

2011) have also represented the random arrival of customers at each station and at

each time step using a Poisson distribution and assumed that customers choose their

destination station with a certain probability. In a similar vein, we also represent

the arrival of customers at a base station in a time step using a Poisson distribution.

Since we can only know about the satisfied demand from the data sets, the mean of

the Poisson distribution is the average served demand (outgoing flow) in that time
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step. If f t,k
s,s′ denotes the average number of bikes booked from station s at time step

t and reached station s′ at time step t+ k, then the total outgoing flow from station

s at time step t is given by Ot
s =

∑
s′,k f

t,k
s,s′ .

Formally, a demand scenario at station s at time step t (denoted by Dt
s) is gen-

erated from a Poisson distribution with a mean of Ot
s (i.e., Dt

s = Poisson(Ot
s)).

Finally, the flow from station s to s′ at time step t is calculated as the product be-

tween outgoing flow from station s and the probability of moving from s to s′ at

time step t ( i.e., F t,k
s,s = Dt

s ·
f t,k

s,s′∑
k,s′ f

t,k

s,s′
).

3.5.4 Evaluation Methodology

We employ the following two general steps to evaluate our approach:

1. We compute repositioning and routing solution based on the DRRP tuple that

is populated from the training data set.

2. The computed solutions are then evaluated on a simulation using the test data

set. That is to say, transitions in the simulation follow the aggregate transition

dynamics observed in testing data set where the demand scenarios are gener-

ated from Poisson distribution. The evaluation is then aggregated over these

generated demand scenarios.

In cases where we do not have sufficient data, we calculate a solution based on the

entire data set and we evaluate our solution on various samples from the Poisson

distribution with the mean computed from that data set.

For the online benchmark approach of Schuijbroek et al. (2017), the next time

step solution for moving vehicles and bikes (recommended by the repositioning

strategy) is executed using the current positions of bikes and vehicles in the simula-

tion based on the test data set.

For the static method, we employ the simulation to compute the flows of bikes

in each time step when no repositioning is done and use that flow information to
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calculate the expected profit and lost demand. Given the aggregated flow F and the

actual flow x, the revenue is computed as
∑

t,k,s,s′

[
Rt,k

s,s′ · xt,ks,s′
]
, while the lost demand

is computed as
∑

t,k,s,s′

[
F t,k
s,s′ − xt,ks,s′

]
.

3.6 Experimental Results

In this section, we verify the following claims10:

1. In terms of scalability, the LDD improves over the MILP and the use of Ab-

straction on top of the LDD further improves the performance. In terms of

solution quality, both the LDD and Abstraction obtain near optimal solutions.

2. Our dynamic approach (LDD + Abstraction of MILP) improves upon the two

benchmark approaches (static and online) in terms of lost demand and profit.

3. Our approach remains robust with respect to changes in other input parame-

ters such as the number of vehicles and the unit cost for routing.

3.6.1 Utility of LDD and Abstraction

To validate the claim that the LDD and Abstraction both improve the original MILP,

we provide three sets of results. As the MILP with and without the LDD can only

solve small problem instances, we provide these results on the synthetic data sets

generated from the Capital Bikeshare data set.

Runtime performance: First, we compare the runtime performance of the LDD

with the global MILP (SOLVEDRRP()) in Figure (3.6a). The X-axis denotes the

scale of the problem where we varied the number of stations from 5 to 50. The

Y-axis denotes the total time taken to solve the problem in seconds on a logarith-

mic scale. Except on small instances (e.g., 5-10 stations), the LDD outperforms

10All the linear optimisation models were solved using IBM ILOG CPLEX Optimisation Studio
V12.5 incorporated within python code on a 3.2 GHz Intel Core i5 machine.
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Figure 3.6: (a) Runtime comparison between the global MILP and LDD, (b) duality
gap in the synthetic data set with 20 stations, (c) duality gap in the Hubway data set,
(d) duality gap in the Capital Bikeshare data set.

the global MILP with respect to runtime. More specifically, the global MILP was

unable to finish within a cut-off time of 6 hours for any problem with more than 20

stations, while the LDD was able to obtain near optimal solutions on problems with

50 stations in less than an hour.

Duality gap: In the second set of results, we demonstrate the convergence of the

LDD to near optimal solutions. The LDD achieves an optimal solution if the duality

gap, i.e., the gap between primal and dual solutions, becomes zero. Figure (3.6b)

shows that the duality gap for the instance with 20 stations is only 1%. Figure (3.6c)

and (3.6d) depict the duality gap for the real-world data set of Hubway (with 95 base

stations and grouped into 25 abstract stations) and of Capital Bikeshare (with 305

base stations and grouped into 50 abstract stations), respectively. For these larger

problems we are able to obtain a solution with the duality gap of less than 0.5%.
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Effect of abstraction: Finally, we demonstrate the performance of the abstrac-

tion method in comparison with the optimal solution of an instance with 30 base

stations. We grouped these 30 base stations into 8 abstract stations. Then we run

the LDD based optimisation on both the base station and abstraction station prob-

lems. Table (3.11) shows the effect of the abstraction approach on the generated

profit and runtime based on five random scenarios of customer demand. With ab-

straction, while there is only a reduction of less than 0.3% in profit on average from

the optimal solution, it gives a significant computational gain.

With abstraction Without abstraction

Instance Profit Runtime
(sec) Profit Runtime

(sec)
Profit loss for
abstraction

1 23580 51 23640 3840 0.25%
2 23627 106 23678 3540 0.21%
3 23610 57 23727 3120 0.5%
4 23613 49 23645 3150 0.13%
5 23519 45 23590 3119 0.30%

Average 23590 62 23656 3354 0.27%

Table 3.11: Effect of abstraction.

The key reason behind this negligible loss of demand when using the abstraction

technique is the specific demand patterns observed in the real-world data sets. As

shown in the heat maps of Figure (3.4), the stations that become empty in a particu-

lar time period are typically close to each other and hence can be rebalanced within

a time step. Since our abstraction is based on geographical proximity, it is ideally

suited to handle such situations.

However, the solution quality of our geographical proximity based abstraction

mechanism deteriorates if most of the abstract stations become empty at the same

time. To demonstrate this situation, we generate artificial demand scenarios where

we readjust demand and have high demand for one random station in each abstract

station. Table (3.12) demonstrates the performance of our abstraction approach in

comparison with the optimal solution. Even in this small example scenario (with 30

stations) for these artificially crafted demand instances, we observe a higher reduc-
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tion (more than 3.2% on average) in the profit due to the abstraction in comparison

with the case where we consider the real-world demand (Table 3.11).

With abstraction Without abstraction

Instance Profit Runtime
(sec) Profit Runtime

(sec)
Profit loss for
abstraction

1 11730 21 12092 2918 2.99%
2 11958 46 12314 3201 2.89%
3 11759 24 12114 3050 2.93%
4 11530 36 12060 1641 4.39%
5 11658 31 11997 1467 2.83%

Average 11727 32 12115 2455 3.21%

Table 3.12: Effect of abstraction on artificially crafted demand.

In this work, we show that our geographical proximity based abstraction mech-

anism significantly outperforms the existing benchmark approaches due to the spe-

cific demand patterns observed in both the real-world data sets of our study. How-

ever, our solution approaches are complementary to any abstraction mechanism that

can be used to group base stations to reduce the size of the DRRP.

3.6.2 Comparison against Benchmarks

In this section, we provide the following key comparison results of our approach

(dynamic) with the two benchmarks (static and online):

1. Results with respect to profit and lost demand

2. Sensitivity results over different demand scenarios generated from a Poisson

distribution

3. Sensitivity results with respect to additional unknown demand

4. Sensitivity results with respect to additional known demand
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3.6.2.1 Results with respect to Profit and Lost Demand

We first provide the average results on the Hubway and Capital Bikeshare data sets

for the static, online and our dynamic approach. As indicated earlier, our key perfor-

mance evaluation metric is the lost demand. However, we also provide the perfor-

mance comparison with respect to the overall profit to show that we can reduce the

lost demand without incurring extra cost to the operators. Hubway system consists

of 95 active stations and Capital Bikeshare system consists of 305 active stations. In

our approach, we employ k-means clustering to generate 25 and 50 abstract stations,

respectively. Stations within an abstract station are typically within a kilometer of

each other for both data sets. For fairness in comparison, we allow a vehicle to visit

multiple stations in one time step for the online approach. This is because vehicles

are allowed to visit all the stations within an abstract station in one time step in our

approach. In fact, we provide a reasonable advantage for the online approach by

allowing it to visit 5 stations (anywhere in the city) within one time step11. Based

on the information obtained from Schuijbroek et al. (2017), we employ 5 vehicles

for the experiments on Capital Bikeshare data set and 3 vehicles for the experiments

on Hubway data set. We show the results during the peak period and also for the

entire day12.

Table (3.13) shows the average percentage gain in profit and reduction in lost

demand with our approach in comparison to the benchmark approaches on the two

real-world data sets. The performance gain of our dynamic approach in comparison

with static repositioning is computed as follows:

Profit gain =
Profit with dynamic repositioning− Profit with static repositioning

Profit with static repositioning

11This allows for an average distance travelled in one time step with the online heuristic as 17.8
kilometers as opposed to 13.8 kilometers with our approach. Even with this advantage, we demon-
strate that our approach performs better.

12The planning horizon for our approach is 38 time steps (30 minute intervals during the working
hours from 5AM-12AM) for the entire day and 14 time steps for the peak period (30 minute intervals
during the morning working hours from 5AM-12PM).
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Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over

online heuristic
Gain over static

repositioning
Gain over

online heuristic

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Hubway 3.47% 45.80% 3.02% 41.17% 9.16% 46.21% 7.15% 44.75%
Capital

Bikeshare 2.14% 22.33% 1.4% 9.9% 4.52% 26.38% 0.96% 5.11%

Table 3.13: Profit and lost demand comparison (Hubway and Capital Bikeshare data
sets).

LD gain =
LD with static repositioning− LD with dynamic repositioning

LD with static repositioning

Based on the aggregate results, our approach (LDD + Abstraction) is always able

to outperform both the static and online repositioning solutions with respect to both

the profit gain and lost demand. Over the entire day, our approach reduces the lost

demand in the Hubway data set by at least 45.80% and 41.17% in comparison to

the static and online approaches, respectively. For the Capital Bikeshare data set,

we improve by 22.33% and 9.9% in comparison to the static and online approaches,

respectively. Similar results (slightly inferior) were obtained when we considered

only the peak hour as the planning period.

Comparison results on Hubway Data set: We begin with the results on the

real-world data set of Hubway. Hubway BSS comprises with 95 base stations and

we group them into 25 abstract stations. We employ 3 vehicles (courtesy: Schui-

jbroek et al., 2017) for this experiment. We only have the proper trip history data for

third quarter of 2012, from which we compute the average demand for individual

weekdays.

Table (3.14) provides the comparison results (on profit and lost demand) be-

tween our approach and the two benchmark approaches. Our approach is able to

gain 3.5% in profit on average while the lost demand is reduced by an average of

45% over the practice of no repositioning during the day. In comparison with on-
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Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over

online heuristic
Gain over static

repositioning
Gain over

online heuristic

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Mon 2.47% 24.53% 2.41% 22.86% 8.08% 43.56% 7.15% 37.41%
Tue 3.62% 35.15% 4.32% 36.87% 13.01% 55.79% 11.17% 52.27%
Wed 3.17% 30.13% 3.20% 29.22% 12.30% 53.76% 9.43% 48.05%
Thu 4.03% 36.93% 3.92% 35.89% 13.32% 52.56% 9.26% 45.16%
Fri 5.63% 50.00% 5.08% 47.06% 16.15% 67.78% 12.22% 61.33%
Sat 2.20% 69.89% 1.18% 58.21% 0.70% 25.00% 0.63% 35.71%
Sun 3.15% 74.00% 1.00% 58.06% 0.53% 25.00% 0.21% 33.33%

Mean 3.47% 45.80% 3.02% 41.17% 9.16% 46.21% 7.15% 44.75%

Table 3.14: Profit and lost demand comparison (data set: Hubway, 3rd quarter of
2012).

line heuristic, our approach is able to reduce the lost demand by an average of 41%,

while the profit is increased by 3% on average. In the peak hours, our approach re-

duces the lost demand by an average of 46% and 44% over the static repositioning

and online heuristic approach respectively.

Comparison results on Capital Bikeshare Data set: We consider the trip

history data of four quarters of 2013 for Capital Bikeshare and for each quarter we

have done the same set of experiments. Table (3.15) shows that for the first quarter

of data, our dynamic approach is able to outperform static repositioning during the

peak time as well as during the day, with respect to both the profit gain and the

reduction in lost demand. We reduce the lost demand by an average of 20%, a

significant improvement over the static repositioning. As expected, for all of these

instances, the percentage gain in profit in the peak hours is much higher because

most of the lost demand occur in the peak hours. Although the online heuristic

performs well in the peak hours, it fails to provide a good quality solution when we

consider a long planning horizon (38 time step). In case of long planning horizon,

our approach outperforms the online heuristic for all the weekdays both in terms of

profit gain and lost demand reduction.
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Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over

online heuristic
Gain over static

repositioning
Gain over

online heuristic

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Mon 1.92% 20.61% 0.51% 5.43% 5.01% 29.07% -0.74% -2.81%
Tue 2.14% 19.82% -0.18% -0.46% 4.58% 23.08% -4.31% -20.19%
Wed 3.11% 24.59% -0.11% 2.97% 8.89% 34.75% 0.39% 5.38%
Thu 3.55% 28.62% 5.28% 22.92% 7.17% 31.03% 2.18% 12.16%
Fri 3.34% 28.31% 3.39% 15.26% 7.56% 31.69% 2.51% 9.42%
Sat 0.04% 12.06% -1.74% -19.86% -0.34% 12.15% -2.5% -10.59%
Sun 0.18% 9.44% 0.07% -0.39% -1.46% 3.33% 0.61% 13.86%

Mean 2.04% 20.49% 1.03% 3.70% 4.49% 23.59% -0.27% 1.03%

Table 3.15: Profit and lost demand comparison (data set: Capital Bikeshare, 1st
quarter of 2013).

Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over

online heuristic
Gain over static

repositioning
Gain over

online heuristic

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Mon 2.51% 27.1% 1.83% 18.76% 5.13% 32.84% 1.3% 9.57%
Tue 3.02% 26.44% 1.48% 15.33% 6.79% 28.72% 1.89% 8.84%
Wed 2.67% 22.09% 1.88% 14.31% 5.19% 21.83% 0.93% 3.46%
Thu 3.98% 32.45% 2.98% 24.02% 9.4% 38.19% 5.72% 24.51%
Fri 2.62% 30.76% 2.24% 22.75% 4.25% 27.41% 0.02% 0%
Sat 1.09% 16.52% -0.23% -3.72% 1.95% 28.08% -0.93% -8.96%
Sun 1.88% 25.65% 1.11% 10.96% 3.72% 40.2% 3.1% 20.78%

Mean 2.54% 25.86% 1.61% 14.63% 5.20% 31.04% 1.72% 8.31%

Table 3.16: Profit and lost demand comparison (data set: Capital Bikeshare, 2nd
quarter of 2013).

Table (3.16) shows the percentage gain in profit and the percentage reduction in

lost demand in comparison with the two benchmarks for the second quarter. Our

approach is able to reduce the lost demand in all the cases by at least 16%, while the

profit is improved by an average of 2.5% over the static repositioning. Our approach

always almost outperforms the online heuristic also. We are able to reduce the lost
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demand by an average of 10%, while the profit is improved by an average of 1.5%

in comparison with the online heuristic.

Table (3.17) shows the comparison with the two benchmarks for the third quar-

ter. It is the busiest quarter in the year. For this quarter, our approach is able to

reduce the lost demand by an average of 20%, while the profit is improved by an

average of 3% over the static repositioning. Our approach also always performs

better than the online heuristic for this quarter. Our approach is able to reduce the

lost demand by an average of 13%, while the profit is improved by an average of 2%

over the online heuristic. Moreover, these results show the strength of our approach

in the presence of high customer demand.

Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over

online heuristic
Gain over static

repositioning
Gain over

online heuristic

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Mon 2.22% 20.81% 1.17% 9.62% 5.72% 27.11% 2.66% 10.2%
Tue 3.29% 25.79% 2.49% 18.01% 7.13% 29.45% 0.91% 5.79%
Wed 3.62% 28.06% 2.86% 21.29% 8.37% 34.59% 4.6% 21.43%
Thu 3.09% 30.58% 2.46% 23.05% 7.31% 35.89% 4% 21.1%
Fri 1.98% 26.69% 1.18% 13.45% 3.85% 26.43% 1.02% 2.97%
Sat 2.52% 31.18% 1.87% 17.25% 4.5% 49% 2.27% 21.12%
Sun 1.58% 26.95% 0.7% 8.54% 4.07% 40.38% 1.82% 14.59%

Mean 2.61% 27.15% 1.82% 15.89% 5.85% 34.69% 2.47% 13.89%

Table 3.17: Profit and lost demand comparison (data set: Capital Bikeshare, 3rd
quarter of 2013).

Table (3.18) shows the percentage gain in profit and the percentage reduction

in lost demand in comparison with the two benchmarks for the last quarter. For

this data set, our approach reduces the lost demand by at least 12% over the static

repositioning, while in comparison with the online heuristic our approach reduces

the lost demand by an average of 5%. For all of these quarters, the percentage gain

in profit in the peak hours is almost double because most of the lost demand occur

during this period.
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Whole day (5AM-12AM) Peak period (5AM-12PM)
Gain over static

repositioning
Gain over

online heuristic
Gain over static

repositioning
Gain over

online heuristic

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Profit
gain

Lost
demand
reduced

Mon 1.58% 15.82% 1.46% 12.86% 3.11% 19.32% 1.52% 9.09%
Tue 0.75% 12.96% 1.09% 3.75% 2.73% 19.4% 0.3% 2.14%
Wed 3.3% 25.53% 3.53% 23.38% 6.82% 29.37% 3.96% 17.12%
Thu 1.67% 16.48% 0.58% 3.99% 4.36% 22.49% -1.27% -5.97%
Fri 0.88% 15.98% 0.73% 1.85% 2.18% 19.28% -1.92% -6.08%
Sat 1.19% 12.48% 0.31% -8.07% 0.26% 6.71% -0.93% -18.8%
Sun 0.29% 11.51% -0.4% -0.62% -1.62% -3.15% -2.12% -16.96%

Mean 1.38% 15.82% 1.04% 5.31% 2.55% 16.20% -0.07% -2.78%

Table 3.18: Profit and lost demand comparison (data set: Capital Bikeshare, 4th
quarter of 2013).

Correlation between supply and demand: Lastly, to visualise the effect of

repositioning, we draw the correlation between the actual demand and the served

demand over the entire planning horizon. Figure (3.7) shows the correlation be-

tween the actual demand and the demand served by following the three approaches.

Each point in the graphs corresponds to the values of an actual demand and its cor-

responding served demand for all time steps and in all stations in the Hubway data

set. Therefore, it is better if more points are closer to the identity line (x = y). As

can be noted, our approach has significantly more points closer to the identity line

than the two benchmarks and therefore, is able to better match the supply of bikes

with the demand for bikes.
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Figure 3.7: Correlation of demand and supply: (a) static repositioning, (b) reposi-
tioning using online heuristic, and (c) dynamic repositioning.
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3.6.2.2 Sensitivity Results over Different Demand Scenarios Generated from

Poisson Distribution

We now demonstrate the sensitivity of our approach with respect to different de-

mand scenarios. We created ten demand scenarios for each of the weekdays from

the underlying Poisson distribution with satisfied demand as the mean (refer to Sec-

tion 3.5 for details). For each demand scenario, we calculate the profit and lost

demand for the benchmark approaches and our approach. Figures (3.8)-(3.9) show

the mean along with error bars for profit and lost demand for the four quarters of

2013 of the Capital Bikeshare data set. The key observations are as follows:

• Our approach (dynamic) is able to provide significantly better results with

respect to reduction in lost demand than the two benchmarks on almost all

the cases.

• The only cases where the online approach performs better than our approach

with respect to lost demand is in quarters 1 and 4 (where the demand was

significantly lower than in quarters 2 and 3) and specifically on weekends.

On weekends, there is higher variance and inconsistency in demand, so our

solution computed using the average demand is unable to adapt as well as the

online approach.

• In terms of profit, while the difference is small, our approach is always better

than the two benchmarks.

Therefore, even considering the variance, our approach provides a significant

reduction in lost demand compared to the two benchmarks.

3.6.2.3 Sensitivity Results with respect to Additional Unknown Demand

For each day of the week, we evaluate our solution when demand scenarios are

modified to include artificial demand. We generate our solution by considering

the mean of the historical trip data that does not consider the additional artificial
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Figure 3.8: Sensitivity analysis (data set: Capital Bikeshare, 1st and 2nd quarters of
2013): (a) profit comparison, and (b) lost demand comparison.

demand. This artificial demand is added to a station in a time step, if that station

was observed to be empty at that time interval in the data. Specifically, if a station

s is observed to be empty at time step t on one day, then α% of the mean served

demand, F t
s is added to that station. The destination station and booking period for

the newly generated demand are chosen based on the distribution observed in the

historical data.

In Table (3.19), we provide the comparison results between our approach, static

repositioning and online heuristic for one of the weekdays where we vary α from

10% to 100%. The most important result is that even at 100% increase in demand at

the empty stations, our dynamic approach performs better by at least 5% in terms of

reducing lost demand. Furthermore, the drop in performance as unknown demand

increases is gradual.
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Figure 3.9: Sensitivity analysis (data set: Capital Bikeshare, 3rd and 4th quarters of
2013): (a) profit comparison, and (b) lost demand comparison.

Gain over static repositioning Gain over online heuristic

α% Profit gain Lost demand
reduction Profit gain Lost demand

reduction
10 1.54% 23.86% 0.95% 15.73%
20 1.55% 23.78% 0.95% 15.06%
30 1.54% 23.45% 0.82% 13.97%
40 1.54% 22.78% 0.75% 12.77%
50 1.53% 22.34% 0.73% 11.89%
60 1.42% 20.81% 0.55% 9.83%
70 1.32% 19.97% 0.46% 8.73%
80 1.27% 18.76% 0.42% 7.78%
90 1.3% 18.37% 0.37% 6.75%

100 1.26% 16.54% 0.28% 4.8%

Table 3.19: Sensitivity analysis with respect to unknown increase in mean demand
(data set: Capital Bikeshare).

3.6.2.4 Sensitivity Results with respect to Additional Known Demand

Predicting unobserved lost demand is a challenging issue in many real-world plan-

ning problems including retail planning. Many heuristic methods are mentioned

in the literature (Kök & Fisher, 2007; Musalem, Olivares, Bradlow, Terwiesch, &
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Corsten, 2010; Vulcano, Van Ryzin, & Ratliff, 2012) to predict the unobserved lost

demand. Our repositioning approach is not dependent on the method employed to

predict mean demand. So, we can always complement our approach with the best

approach from the literature for predicting the mean demand.

We could also apply simple heuristics to learn demand values over time. We

can consider small increments in mean demand for those stations and time steps

when they become empty. For example, if station X typically becomes empty (say

observed over a month) at a time step, we then consider the mean demand for sta-

tion X as 102% of the realised demand at that time step. Over time, if we still

observe that the station becomes empty at that time step, then we consider a mean

demand that is further 2% over the realised demand. Such an approach over time

will converge to the actual demand.

Furthermore, some bike sharing systems (e.g., Bixi in Montreal) are considering

an operational enhancement that will further alleviate the problem of identifying the

actual demand. In this enhancement, if customers encounter an empty or congested

station, there is a provision for them to enter this information in the system that is

installed at each of the base stations (assuming there is an incentive for riders to

provide their information). With this minor operational enhancement, the accuracy

of actual demand will increase significantly and our approach will benefit from

higher accuracy on predicting the exact demand values.

In order to demonstrate generality, we now provide a detailed comparison be-

tween our solution, static repositioning and online heuristic by assuming that the

extra demand is known a priori using one of the methods provided in the previous

paragraphs. We employ the same mechanism to introduce extra artificial demand

using α parameter as described in Section 3.6.2.3. However, since the demand is

known beforehand, it is taken into consideration in our approach as well as in the

online heuristic to compute repositioning and routing strategies. In Table (3.20),

we provide the comparison results with respect to profit and lost demand while α is

varied from 10% to 100%. As clearly shown in Table (3.20), our approach provides
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Gain over static repositioning Gain over online heuristic

α% Profit gain Lost demand
reduction Profit gain Lost demand

reduction
10 1.66% 29.69% 1.74% 27.44%
20 1.63% 30.09% 1.78% 28.94%
30 1.67% 28.24% 1.48% 22.75%
40 2.20% 34.26% 1.40% 23.33%
50 1.56% 24.57% 0.96% 16.38%
60 2.03% 32.32% 1.15% 22.03%
70 2.28% 32.61% 1.64% 25.41%
80 1.63% 25.61% 0.82% 16.64%
90 1.92% 27.64% 0.26% 11.52%

100 2.02% 22.78% 0.28% 7.30%

Table 3.20: Sensitivity analysis with respect to known increase in mean demand
(data set: Capital Bikeshare).

better results for all values of α in comparison to the static and online approaches.

3.6.3 Performance Comparisons with Changes in Parameters

The performance of the repositioning solution is reliant upon input parameters such

as the number of vehicles, unit cost for routing and duration of each time step. In

this section, we describe the effect of those input parameters on key performance

metrics such as profit earned by the operator and the lost demand.

Effect of the number of vehicles: To understand the effect of the number of ve-

hicles we compare the performance of the three approaches (static, online and dy-

namic) with different numbers of carrier vehicles. Figure (3.10) shows the analysis

of profit and lost demand on a synthetic data set with 20 stations. Figure (3.10a)

shows that the profit obtained by using our approach increases monotonically as

we increase the number of vehicles. Although the profit gain of our approach in

comparison to the online approach fluctuates due to the myopic nature of the online

heuristic, the gain is always positive. Figure (3.10b) shows a similar pattern in the

performance with respect to lost demand. Lost demand reduces monotonically for

our approach as the number of vehicles is increased and the gain in reducing lost

77



 3000

 3100

 3200

 3300

 3400

 0  1  2  3  4  5  6  7  8  9

Pr
ofi

t

#Vehicles

static online dynamic

(a)

 650

 700

 750

 800

 850

 900

 950

 0  1  2  3  4  5  6  7  8  9

Lo
st

 d
em

an
d

#Vehicles

static online dynamic

(b)

Figure 3.10: Effect of the number of vehicles on (a) profit, and (b) lost demand.
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Figure 3.11: Effect of routing cost on (a) profit, and (b) lost demand.

demand for our approach over both the static and the online approach is always

positive.

Effect of routing cost: Routing cost, P is an important parameter in our optimisa-

tion model. While some bike sharing operators outsource the repositioning tasks to

other agencies that charge a certain amount for moving individual bikes, most BSS

operators use their own vehicles and the cost of repositioning is equivalent to the

routing cost for the vehicles. In this section, we provide a sensitivity analysis with

respect to the fuel price (i.e., dollar cost per 12 kilometers of routing which is the

average mileage of vehicles as shown by Fishman et al., 2014) on a synthetic data

set with 20 stations. Figure (3.11) plots the profit and lost demand when we vary the

unit fuel cost from 1 dollar to 4 dollars on the X-axis. As expected, Figure (3.11a)

shows that the profit earned by the operator decreases as we increase the unit cost

of routing. Furthermore, Figure (3.11b) depicts that the lost demand increases by a

small amount if the unit cost for routing is increased.

Effect of duration of time step: We now provide an analysis on the profit and

78



 2300

 2350

 2400

 2450

 2500

 2550

 2600

 2650

15 20 30 40 45 60

Pr
ofi

t

Duration of time step (in minute)

static online dynamic

(a)

 20
 40
 60
 80

 100
 120
 140
 160

15 20 30 40 45 60

Lo
st

 d
em

an
d

Duration of time step (in minute)

static online dynamic

(b)

Figure 3.12: Effect of the duration of time step on (a) profit, and (b) lost demand.

lost demand, when the duration of time step is varied. Figure (3.12) plots the per-

formance metrics when we vary the duration of time step from 15 minutes to one

hour on the X-axis. Figure (3.12a) shows that the profit for the operator reduces

monotonically as we increase the duration of time step. Increasing the duration of

time step entails vehicles can visit and rebalance a fewer number of base stations

and therefore, produces lower profit for the operator. Figure (3.12b) shows that the

lost demand increases significantly if we increase the duration of time step. Most

importantly, performance gain of our approach over the static repositioning and on-

line heuristic increases monotonically as we reduce the duration of time step. This

can be attributed to our dynamic approach making better use of the extra reposi-

tioning opportunities (due to shorter duration) and promptly react to future demand

changes.

On the other hand, reducing the duration of time step notably increases the run-

time. For example, the runtime of the problems with 15 minutes of time step is

approximately 2 hours while the problems with 30 minutes of time step are solved

within 30 minutes. So, there is a clear trade-off between utility and runtime in de-

ciding the right duration of time step. Although the performance in terms of profit

and lost demand decreases by a small amount for 30 minutes of time step (over 15

minutes of time step), it provides a significant computational gain and is particu-

larly helpful when solving large problems. Therefore, we choose 30 minute as the

default setting for the duration of time step.
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3.7 Model Extensions and Supplementary Analysis

In this section, we discuss ways of relaxing some of the assumptions made in the

generic formulation of Table (3.3). We further provide a discussion on potential

extensions.

3.7.1 Accounting for Physical Limitations in Vehicle Movement

In the MILP of Table (3.3) we assume that a vehicle can travel between any pair

of stations within one time step without considering their relative distance. For

the two data sets we considered, the average distance between any two stations

is approximately 2 miles for Hubway and 5 miles for Capital Bikeshare13, so our

assumption of being able to travel within 30 minutes is reasonable and conservative

(that accounts for the time to load and unload bikes). However, in other settings, it

may not be the case and there might be multiple time steps needed to cover certain

stations.

In this segment, we provide a minor update to the previous formulation which is

able to account for physical limitations in vehicle movement. We introduce a new

set, Bt̂
s to capture the physical reachability of stations in a certain number of time

steps. Specifically, Bt̂
s denotes the set of stations which can be reached within t̂ time

steps from station s. The modified optimisation model is provided in Table (3.21).

Amongst the constraints that consider vehicle movements in the original formula-

tion of Table (3.3), the ones that must be modified due to physical limitations of

vehicle movements are the vehicle flow conservation constraints (3.5). Essentially,

the change in updated constraints (3.28) reflects the fact that we only need to con-

sider vehicle transitions from stations that are reachable in a given number of time

steps (and not others).

13The maximum distance between any two stations was 18 miles and 90th percentile of the dis-
tances between any two stations are within 10 miles for both the data sets. So, even in the worst case
any two stations could be covered within 30 minutes. Furthermore, our solutions (rather any good
solution) would not recommend a carrier vehicle to travel the maximum distance to shift the bikes.
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max
y+,y−,z

∑
t,k,s,s′

Rt,k
s,s′ · xt,ks,s′ −

∑
t,v,s,s′

Ps,s′ · zts,s′,v

s.t. Constraints (3.2)- (3.4) hold∑
k∈S

zts,k,v −
∑
t̂

∑
k∈Bt̂s

zt−t̂k,s,v = σt
v,s, ∀s, t, v (3.28)

Constraints (3.6)- (3.9) hold

Table 3.21: RESTRICTEDDRRP()

Accounting for physical limitations potentially entails finer division of time

steps and hence the number of time steps increases. However, the number of transi-

tions between stations at any one time step is reduced. Therefore, as we show below,

accounting for physical limitations does not have a significant effect on the scalabil-

ity of our approach. Since the inherent assumption of reachability is different, we

primarily compare the runtimes in Table (3.22) to verify the claim on scalability.

Runtime with physical limitations Runtime without physical limitations
Mon 5120 4880
Tue 5183 3951
Wed 4136 4966
Thu 5245 4980
Fri 5127 3992

Average 4962 4554

Table 3.22: Effect of physical limitations in vehicle movements on runtime (in sec-
onds).

We consider the Hubway data set to run the scalability experiments. When con-

sidering physical limitations, we assume that all the stations can be reached within

3 time steps at the maximum and the number of stations reachable in one time step

from any given station is decided based on their relative distance. When consider-

ing no physical limitations, we assume that all stations are reachable from any other

station in one time step. We observe that the approach considering physical limita-

tions usually takes longer, however, the difference is not significant and consistent.

On average the approach considering physical limitations takes 10% more time to
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find a solution.

Another simple mechanism that can be adopted to deal with physical limitations

without making changes to our approach is based on clustering of stations. We can

cluster stations that can all be reached in one time step into one zone and assign a

set of vehicles to that zone. This way, we can apply our method directly to each

zone.

A minor modification to the MILP of Table (3.21) can be used to represent

vehicles taking different times to move between stations at different times of the

day. For instance, during peak hours, a vehicle might take longer to move between

stations in the city. To model such scenario, we need to replace the set B t̂
s with

set B t̂
t,s which contains all the stations that can be reached within t̂ time steps if

a vehicle starts from station s at time step t. The only modification required in

the optimisation model is in the constraints (3.28). This is to compute the inflow

of vehicles at station s at time step t by considering all the stations from where a

vehicle should take t̂ time steps to reach station s if it has started its journey at time

step t− t̂ (i.e., all the elements of the set B t̂
t−t̂,s).

3.7.2 Different Time Scales for Vehicle and Bike Movements

Our original formulation in Table (3.3) assumes that the time scale for customer

movements of bikes and vehicle movements is the same. In practice, a vehicle can

reposition bikes from multiple stations in each time step. Therefore, we now provide

a general formulation in Table (3.23), where the bikes and vehicles are operating on

different time scales. Except for the two different time scales where a vehicle is

assumed to travel m stations at each time step (i.e., t = m · t̂), the structure of

the formulation is similar to the one in Table (3.3). Therefore, the enhancements

provided with respect to decomposition and abstraction are applicable in similar

ways. We further note that the opposite case where the time scale of the movements

of bikes is smaller than the one for the vehicles can basically be solved by our
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min
y+,y−,z

−
∑

t,k,s,s′

Rt,k
s,s′ · x

t,k
s,s′ +

∑
t̂,v,s,s′

Ps,s′ · z t̂s,s′,v (3.29)

s.t. d#,t
s +

∑
k,ŝ

xt−k,kŝ,s −
∑
k,s′

xt,ks,s′ +

m.(t+1)∑
t̂=m.(t)

∑
v

(y−,t̂s,v − y+,t̂
s,v ) = d#,t+1

s , ∀t, s

(3.30)

xt,ks,s′ ≤ d#,t
s ·

F t,k
s,s′∑

k,ŝ F
t,k
s,ŝ

, ∀t, k, s, s′ (3.31)

d∗,t̂v +
∑
s∈S

[(y+,t̂
s,v − y−,t̂s,v )] = d∗,t̂+1

v , ∀t̂, v (3.32)∑
k∈S

z t̂s,k,v −
∑
k∈S

z t̂−1k,s,v = σt̂v,s, ∀t̂, s, v (3.33)∑
j∈S,v∈V

z t̂s,j,v ≤ 1, ∀t̂, s (3.34)

y+,t̂
s,v + y−,t̂s,v ≤ C∗v ·

∑
i

z t̂s,i,v, ∀t̂, s, v (3.35)

0 ≤ xt,ks,s′ ≤ F
t,k
s,s′ , 0 ≤ d#,t

s ≤ C#
s , 0 ≤ y+,t̂

s,v , y
−,t̂
s,v ≤ C∗v , 0 ≤ d∗,t̂v ≤ C∗v (3.36)

z t̂i,j,v ∈ {0, 1} (3.37)

Table 3.23: SOLVEDRRPDIFFTIMESCALES()

original formulation by aggregating the customer incoming and outgoing flows of

bikes over the vehicle time scale. This is due to the fact that no rebalancing can be

made during that interval.

3.7.3 Approximate Customer Flow Dynamics in Solution Com-

putation

Since we maximise profit, we can identify boundary cases where bikes are not

rented at certain time steps even though demand is present. Such cases can arise

in our solution to save bikes for a later time step when it is possible to get higher

profit. However, they do not appear in our evaluation because we have a data-driven

approach where we evaluate on a test data set (that is different from training data

set). Therefore, accounting for real dynamics in training data set is not always nec-

essary. Additionally, accounting for exact dynamics increases the computational
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complexity of the solution approach significantly. In our experimental results, we

show that even with approximate dynamics, we are able to provide significant im-

provements over current practice.

To capture real dynamics, we would have to introduce new set of constraints

(refer to constraints (3.38)) that ensure total outflow of bikes from station s at time

step t should be equal to the minimum of total arrival demand and the number of

bikes present at source station. But constraints (3.38) are quadratic in nature and

our MILP becomes a higher order conic program.

∑
k,s′

xt,ks,s′ = min(d#,t
s ,
∑
k,s′

F t,k
s,s′), ∀t, s (3.38)

Apart from being quadratic, as mentioned by Shu et al. (2013), constraints (3.38)

can only be the sufficient condition to handle the real dynamic of BSSs if stations

have unlimited bike docking capacity. Because of these difficulties, we focus on

representing bike flow dynamics approximately in our optimisation model.

3.7.4 Offline Solution, Online Execution

Note that when executing the repositioning solution computed offline, the operator

may find that the state of the system is different from what it was assumed to be, so

the plan may not be feasible. Furthermore, this infeasibility reflects on other stations

as well. For instance, the number of bikes left in the vehicle is smaller or larger than

planned. We employ online modifications to deal with such situations at execution

time: (1) the number of bike pickup at any time step is set as the minimum value

between the number of empty slots in vehicle, the number of bikes present in the

station and the number of planned pickup, and (2) the number of drop-offs at any

time step is set as the minimum value between the number of bikes in the vehicle,

the number of empty docks in the station and the number of planned drop-off at that

time step.

As demonstrated in the sensitivity analysis results, even with such modifica-
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tions to solution at execution time, our solutions are still able to provide non-trivial

improvements in terms of lost demand and profit over the benchmark approaches.

This is because the pattern of demand is consistent when compared over similar

days (i.e., Monday pattern with another Mondays) and does not have a huge vari-

ance except on weekends. Due to this reason, there is no cascade effect when we

make local changes to our solution.

3.7.5 Objective

The objective employed in SOLVEDRRP() represents a trade-off between two ob-

jectives, namely, maximising serviced demand and minimising routing cost. We

combine these two objectives based on their dollar value. Specifically, we use a

revenue model derived from the model employed by the real system to calculate

the dollar value of serviced demand and a cost model derived from prevailing fuel

costs to calculate the dollar value of routing cost. It should be noted that this is just

one way of combining the two components and there can be other ways of com-

bining the two components. In this work, we focus on this one combination of the

two objectives. As shown in the experimental results, this way of combining the

two components significantly improves the serviced demand and also the combined

profit of the two components.

3.7.6 Labor Cost

There are two levels of decision making involved in long-term and large facility in-

vestments such as bike sharing systems: (i) strategic planning, and (ii) operational

planning. Strategic level decisions consider long-term profits and typically do not

change on a daily basis. Operational level decisions change on a daily basis and are

our key focus. We provide a quick example to demonstrate that long-term reasoning

(and not day-to-day reasoning) with respect to labor costs is a better option. The
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US Department of Labor14 provides hourly and yearly salaries for drivers operating

light trucks or other delivery services in US. If we consider that a driver is hired

for 6 hours (the time required to reposition bikes at the end of the day), the me-

dian cost would be 84. However, if the operator hired a driver for a year, the median

salary for one day is just 80 (=29170/365). A similar result based on real statistics is

available for capital costs (e.g., vehicles). This example entails that dynamic repo-

sitioning throughout the day or repositioning at the end of day would have similar

labor costs. Also, since labor/capital costs would be constant in the optimisation

model of Table (3.3), they would not alter the results corresponding to lost demand.

We also have a buffer on the fuel cost to account for any other costs pertaining to

day-to-day operations.

3.7.7 Operational Enhancement to Our Abstraction Approach

Recent bike sharing systems (e.g., Citibike in New York City) have introduced the

concept of bike-trailers (O’Mahony & Shmoys, 2015) that can reposition a small

number of bikes to nearby stations. This operational enhancement can significantly

improve the performance of our geographical proximity based abstraction scheme.

As the bike-trailers are only used to match the need of nearby producer and con-

sumer stations, they can be used effectively to balance all the base stations within

an abstract station. Essentially, larger vehicles are used to rebalance the system at

the level of abstract stations while bike-trailers can be used to rebalance within each

abstract station.

3.8 Summary

We consider the problem of dynamically repositioning bikes to improve their avail-

ability and to reduce the usage of private vehicles. The general insight that we

introduce in this chapter is that, while performing repositioning, it is useful to con-

14http://www.bls.gov/oes/current/oes533033.htm provides the information of labor cost in US.
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sider demand surges and dips during the day. To that end, we use a mixed integer

linear programming approach that employs Lagrangian dual decomposition and ab-

straction mechanisms to provide: (1) a near optimal solution for the dynamic reposi-

tioning of idle bikes in conjunction with the routing solution for vehicles during the

day, and (2) a scalable solution for the real-world large-scale bike sharing systems.

The empirical results on multiple real and synthetic data sets show that our dynamic

repositioning approach is not only able to achieve the original goal of reducing lost

demand, but is also able to improve profit for the bike sharing system.
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Chapter 4

Optimising Lost Demand in BSS

through Robust Redistribution

To counter the loss in customer demand in BSSs (which causes due to the starva-

tion or congestion of bikes at certain base stations), several bike sharing operators

employ carrier vehicles to reposition bikes during the day using myopic reasoning

(e.g., start filling when number of bikes falls below 20% of the capacity) to better

match the demand. However, due to uncertainty in future demand, it is difficult to

predict the ideal inventory level and therefore, myopic solutions often fail to provide

a good quality solution. While the offline multi-step algorithms based on expected

future demand that are presented in Chapter 3, are suitable for situations with stable

demand patterns, they perform poorly when demand varies throughout the day. So,

it is important to learn the uncertainties in demand from the data and generate robust

solution that can account for all the realisation of demand scenarios.

While data driven solution approaches that consider demand uncertainty have

been proposed in several application domains such as emergency medical services (Yue

et al., 2012; Saisubramanian et al., 2015) and taxi fleet optimisation (Lowalekar,

Varakantham, & Jaillet, 2016), progress remains slow in handling the unpredictable

demand in a robust manner, particularly in case of BSSs. This serves as a motiva-

tion for us and therefore, we focus on data-driven robust optimisation techniques to
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counter the uncertainties in future demand in BSSs (Ghosh, Trick, & Varakantham,

2016).

To address such scenarios where demand has high variance, we propose an on-

line and robust redistribution approach to better match the demand and supply of

bikes and consequently to reduce the expected lost demand. We refer to this prob-

lem as Dynamic Repositioning and Routing Problem under demand Uncertainty

(DRRPU). We treat the problem of computing a robust solution as an iterative game

between the decision maker of the BSS and the environment acting as an adversary.

In each iteration, the adversary identifies a feasible demand scenario that maximises

the lost demand relative to the rebalancing strategy proposed by the decision maker.

From the decision maker’s perspective, we solve this game using a scenario gener-

ation approach. That is to say, the decision maker takes into account all the demand

scenarios generated by the adversary in previous iterations and computes a rout-

ing and repositioning solution for the vehicles that minimises the worse case lost

demand over all the scenarios. The process continues until the objectives of the

adversary and the decision maker converge.

We develop an online approach where the robust strategy is generated at each

time step by considering the current distribution of bikes across the stations and the

strategy is executed on a real-world simulator to identify the distribution of bikes for

the next time step. Experimental results on multiple synthetic data sets and a real-

world data set demonstrate that our approach significantly reduces the expected lost

demand over the existing benchmark approaches and is robust to the uncertainty in

demand.

Given the DRRPU model, our goal is to provide a repositioning and routing

strategy for the vehicles at each time step that minimises the worse case lost de-

mand. We are primarily interested in minimising lost demand that arises because

of the starvation of bikes at stations. As we compute the strategy for one time step,

we have no control over the lost demand that arises due to the congestion of bikes

at the destination station (which depends on the unknown demand) in the next time
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step. However, experimental results on the real-world data set demonstrate that

repositioning bikes to reduce the lost demand at the time of hiring, determine the

inventory level efficiently and furthermore, reduce the number of unsatisfied cus-

tomers at the return time.

4.1 Solving DRRPU

As mentioned in Section 2.1.2, the generic model of DRRPU can be represented

using the following tuple:

〈
S,V ,C#,C∗,d#,0,d∗,0, {σ0

v},H,F
〉

The subset of these elements which are also part of the DRRP (i.e. 〈S,V ,C#,C∗,d#,0,

d∗,0, {σ0
v},H〉) are learnt from the BSS data sets using the same methodology as

mentioned in Section 3.1. We learn the various demand bounds F from the historical

trip data. More specific details about learning these demand bounds are mentioned

later in Section 4.3.

We compute a robust repositioning and routing strategy using rolling horizon

framework. In each decision epoch, for a given distribution of bikes at stations, we

compute a robust strategy by assuming that the arrival demand in each station and in

aggregate follows the input bounds. Once we obtain the repositioning strategy for a

decision epoch, we simulate the customer flows for the given demand scenario along

with the repositioning numbers to achieve the distribution of bikes across stations

for the next decision epoch. This iterative process continues until we reach the last

decision epoch.

For the ease of representation, we made three key assumptions: (a) Customers

complete their trips in one decision epoch. That is to say, customers who hire bikes

at decision epoch t should return their bikes to the destination station at the begin-

ning of the decision epoch t+1; (b) Customers are impatient in nature and leave the
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system if they encounter an empty station. On the other hand, they return their bikes

to the nearest available station if the destination station is full; (c) The events at each

time step follow a particular sequence. First, the customers return their bikes which

was hired in the previous time step, then the repositioning events by the vehicles are

done and lastly, the arrival customers hire bikes.

Variable Definition
y+,t
s,v Number of bikes picked up from station s by vehicle v at time index t
y−,ts,v Number of bikes dropped off at station s by vehicle v at time index t
zts,s′,v Set to 1 if vehicle v has to move from station s to s′ at time index t
d∗,tv Number of bikes in vehicle v at time index t
F k
s,s′ Arrival customer demand from station s to s′ for kth demand scenario

Table 4.1: Definition of the variables.

To compute a robust strategy in each decision epoch, we propose an iterative

two player game approach between the redistribution planner and an adversary. We

provide two novel Mixed Integer Linear Programming (MILP) formulations to rep-

resent the planning problem for the adversary and the redistribution planner. For

ease of understanding, the decision variables employed in the MILP are provided in

Table (4.1).

4.1.1 The Adversarial Planner

Once the intentions of the redistribution planner are revealed, the adversary aims

at providing the worst possible demand scenario that results in lowest bike usage

during the planning period. More specifically, the goal is to find a demand scenario

that maximises the amount of lost demand, while ensuring constraints related to de-

mand feasibility. In the first iteration the adversary finds a worse demand scenario

with the assumption of no repositioning in the system. In the subsequent iterations,

the adversary plans against a particular repositioning strategy that is proposed by

the redistribution planner. The MILP for the demand selection process by the ad-

versary is shown compactly in Table (4.2). The inputs for the MILP are the current

repositioning strategy, i.e., the number of bikes to pickup, Y +
s and drop-off, Y −s at
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station s. The distribution of bikes, d#,t
s at station s and in the decision epoch t

is also provided as input. Let Ls denotes the number of lost demand occurred at

station s during the planning period. Fs,s′ denotes the number of customers arrived

in station s at the current decision epoch and reach station s′ at the beginning of the

next decision epoch.

max
F

∑
s

Ls (4.1)

s.t. Ls = max(0,
∑
s′

Fs,s′ − (d#,t
s + Y −s − Y +

s )), ∀s (4.2)

F̌ t ≤
∑
s,s′

Fs,s′ ≤ F̂ t (4.3)

F̌ t
s ≤

∑
s′

Fs,s′ ≤ F̂ t
s , ∀s

(4.4)

F̌ t
s,s′ ≤ Fs,s′ ≤ F̂ t

s,s′ , ∀s, s′
(4.5)

Table 4.2: ADVERSARY(Y +,Y −, t,d#,drrpu)

The objective delineated in expression (4.1) is to generate a demand scenario,

F that maximises the total amount of lost demand over all the stations. The num-

ber of bikes present at station s after the repositioning event can be computed as

(d#s +Y −s −Y +
s ). Therefore, constraints (4.2) compute the lost demand at station s

as the deficiency between the demand for bikes (i.e.,
∑

s′ Fs,s′) and the supply of

bikes. These constraints are non-linear in nature and we linearise them with a set of

inequality constraints using the well known Big-M method. Constraints (4.3-4.5)

ensure that the generated demand follows the given input bounds. Specifically, con-

straints (4.3) ensure that the aggregated system wide demand at the decision epoch

t is bounded by F̌ t and F̂ t. Constraints (4.4) enforce that the arrival demand in

station s at decision epoch t is bounded by F̌ t
s and F̂ t

s . Constraints (4.5) enforce that

the demand arises in station s at decision epoch t and reach station s′ in the next

decision epoch is bounded by F̌ t
s,s′ and F̂ t

s,s′ .
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4.1.2 The Redistribution Planner

Given a set of K demand scenarios (computed by the adversary in K iterations),

the goal of the redistribution planner is to find the best routing and repositioning

strategy for the vehicles that maximises the bike usage or alternatively, minimises

the worse case lost demand. Let F k
s,s′ denotes the arrival demand from station s to s′

for scenario k. Lk
s denotes the lost demand at station s for scenario k. The outcome

of the redistribution planner is two-fold: (a) A set of decisions z for the vehicle

routes; (b) The repositioning strategy y+ and y−.

The MILP for solving the joint problem of routing and repositioning is rep-

resented compactly in Table (4.3). The objective function delineated in expres-

sion (4.8) is to minimise the maximum lost demand over all the scenarios. We

further simplify the objective function by introducing an additional set of con-

straints (4.7) to ensure that the total lost demand for scenario k is bounded by the

variable λ and we minimise λ in objective function (4.6).

min
y,z

λ (4.6)

s.t. λ ≥
∑
s

Lk
s , ∀k (4.7)

Note that a vehicle can visit multiple stations in one decision epoch. Let a

vehicle visit a maximum of T̂ number of stations within one decision epoch. To

represent the sequence of moves, we use a time index t̂ ∈ [0, T̂ ]. After repositioning,

the number of bikes present at station s in the decision epoch t can be computed as

(d#,t
s +

∑
t̂,v(y

−,t̂
s,v−y+,t̂

s,v )). Therefore, constraints (4.9) ensure that the lost demand at

station s for scenario k is equal to the difference between the total arrival demand

(i.e.,
∑

s′ F
k
s,s′) and the supply of bikes. Constraints (4.10) ensure that the total

number of bikes picked up from a station s during the planning period is less than

the available bikes, d#,t
s . Constraints (4.11) enforce that the total number of bikes

dropped off at station s is less than the number of available docks, C#
s − d#,t

s .
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min
y,z

max
k

∑
s

Lk
s (4.8)

s.t. Lk
s ≥

∑
s′

F k
s,s′ −(d#,t

s +
∑
t̂,v

(y−,t̂s,v − y+,t̂
s,v )), ∀s, k (4.9)

∑
t̂,v

y+,t̂
s,v ≤ d#,t

s , ∀s (4.10)

∑
t̂,v

y−,t̂s,v ≤ C#
s − d#,t

s , ∀s (4.11)

d∗,t̂v +
∑
s∈S

[(y+,t̂
s,v − y−,t̂s,v )] = d∗,t̂+1

v , ∀t̂, v (4.12)∑
k∈S

z t̂s,k,v −
∑
k∈S

z t̂−1k,s,v = σt̂v(s), ∀t̂, s, v (4.13)

y+,t̂
s,v + y−,t̂s,v ≤ C∗v ·

∑
i∈S

z t̂s,i,v, ∀t̂, s, v (4.14)

α
∑
t̂,s,s′

Hs,s′z
t̂
s,s′,v +M

∑
t̂,s

(y+,t̂
s,v + y−,t̂s,v ) ≤Q, ∀v (4.15)

Lk
s ≥ 0, y+,t̂

s,v , y
−,t̂
s,v ≤ C∗v , d∗,t̂v ≤ C∗v , z t̂i,j,v ∈{0, 1} (4.16)

Table 4.3: REDEPLOYMENT(F,k,t,d#,drrpu)

The initial distribution of bikes in vehicles, d∗,0 and the initial distribution of

vehicles at stations, σ0 are computed from the state of the system at the end of

previous decision epoch. Constraints (4.12) ensure the flow conservation of bikes

in the vehicle. The number of bikes present in vehicle v at time index t̂ + 1 (i.e.,

d∗,t̂+1
v ) is equivalent to the number of bikes present in the vehicle at time index t̂

(i.e., d∗,t̂v ) plus the net incoming bikes at time index t̂. Constraints (4.13) enforce the

flow conservation of vehicles at stations by ensuring the equivalence between the

inflow and outflow of vehicles in each station. For t̂ = 0, depending on the initial

location of vehicles, σ0
v these constraints ensure that vehicles move appropriately out

of the initial locations. Constraints (4.14) enforce that the number of bikes picked

up or dropped off is conditional to the station being visited at that time index. Let

α denotes the unit for converting distance to time, M denotes the time required

to pickup/drop-off one bike and Q denotes the duration of planning period. Then,

constraints (4.15) enforce the physical limitation of the carrier routes. That is to

94



say, total time spent by the vehicles for traveling between the stations plus the time

spend on picking up or dropping off the bikes, is bounded by the duration of the

planning period. Finally, constraints (4.16) enforce that the number of bikes picked

up or dropped off is bounded by the capacity of vehicles.

Algorithm 2: solveDRRPU(drrpu, t,d#)

Initialize: F← {},Y+
0 ,Y

−
0 ← 0, i← 0 ;

repeat
i← i+ 1;
Oa,Fi ← ADVERSARY(Y+

i−1,Y
−
i−1, t,d

#, drrpu)
F← F ∪ Fi

Or, zi,Y−i ,Y
+
i←REDEPLOYMENT(F, i, t,d#, drrpu)

until Converge;
return y+

i , y
−
i , zi

To better understand the robust optimisation approach, we provide the key it-

erative steps in Algorithm (2). The repositioning strategies are initialised as 0,

therefore, in the first iteration adversary computes a demand scenario against the

no repositioning strategy. From the subsequent iteration, the adversary generates a

worse demand scenario against the repositioning strategy revealed by the redistri-

bution planner. At iteration k, the redistribution planner has k demand scenarios

(communicated by the adversary) and it computes a repositioning strategy that min-

imises the worse case lost demand over all the scenarios. The process stops when the

objectives of the redistribution planner, Or and the adversary, Oa converge. There-

fore, at the convergence, the solution guarantees to provide an upper bound on the

lost demand for any possible demand scenario that follows the given bounds.

4.2 Experimental Setup

We evaluate our approach with respect to key performance metric of loss in demand,

on real-world1 and synthetic data sets. The data items provided by the real-world

1Data is taken from Hubway bike sharing company of Boston
[http://hubwaydatachallenge.org/trip-history-data]
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data sets are delineated in Table (3.1). The learning of the different elements of our

model for the real-world and synthetic data sets are also provided in Section 3.5.

We estimate the demand bounds from the customer trip records for the real-world

data sets. For synthetic data sets, we generate those bounds manually which are

mentioned in details in Section 4.3..

We compare the utility of our approaches with three existing benchmark ap-

proaches; (1) Static Repositioning implies the practice of no repositioning during

the day which is mentioned in Section 2.3.1. We use this as a baseline approach

where no repositioning is done during the planning period; (2) Myopic Reposition-

ing entails that bikes are repositioned at each time step to reach the inventory level

to 50% of the station capacity. The details of this myopic approach is mentioned in

details in Section 2.3.2; and (3) Online Heuristic is adapted from Schuijbroek et al.

(2017). We provide the details of this approach and also how we have adapted the

approach to solve the problem in our study in Section 2.3.3.

To ensure a fair comparison, all the three benchmark approaches and our ro-

bust strategy are evaluated by employing a simulation model as described in Sec-

tion 2.3.1.1. Furthermore, we compute an upper bound on the optimal solution for

the synthetic data sets where exact future demand for the entire horizon is assumed

to be known. We employ an MILP formulation presented in Table (3.3) of Chapter 3

to compute the optimal solution.

4.3 Empirical Results

We report2 results on two synthetic data sets. Both the data sets consist of 20 stations

and 1 vehicle. We generate demand for 14 time steps. Figure 4.1(a) shows the

demand patterns for both the synthetic data sets. We generate the aggregated mean

demand at each time step for first data set randomly, while the aggregated mean

2All the linear optimisation models were solved using IBM ILOG CPLEX Optimisation Studio
V12.5 on a 3.2 GHz Intel Core i5 machine with 8GB DDR3 RAM
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demand for second data set follows a realistic pattern with two peak hours. For

both the data sets, we compute the lower bound on the arrival demand as (1-ε) of

the mean demand and upper bound as (1+ε) of the mean demand. To compute the

bounds on arrival demand for each station and for each origin destination pair we

set ε as 100%, while for the bounds on the system wide demand at each time step, ε

is set as 10%.
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Figure 4.1: (a) Demand patterns for synthetic data sets; (b) Convergence of scenario gen-
eration approach on synthetic data set

Figure 4.1(b) shows the convergence of our scenario generation approach on

synthetic data. As expected, the gap between the objectives of the adversary and the

redistribution planner reduces monotonically and converges after 40 iterations. As

both the objectives converge to 112, we can claim that the worse case lost demand

is bounded by 112 if the robust strategy is adopted.

To compare the utility of our policy with the existing benchmark approaches, we

generate 100 testing demand scenarios, where demand from station s to s′ at time

step t, f t
s,s′ is generated using Poisson distribution with known mean parameters. We

report average performance statistics in terms of mean, standard deviation and the

worse case lost demand over 100 demand scenarios. The performance statistics for

the synthetic data set with uniform patterns are demonstrated in Table 4.4(a). Our

approach reduces the average lost demand by 22% over the static approach and by
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Static Myopic Online Robust Offline
MEAN 822 758 641 638 451
STDEV 37 47 38 38 38
MAX 938 908 713 730 521

(a) Scenarios for Uniform Data (data set: 1)
MEAN 956 769 734 704 491
STDEV 48 62 45 48 39
MAX 1069 974 825 826 568
(b) Scenarios for Two-Peaked Data (data set: 2)

Table 4.4: Lost demand statistics on synthetic data sets

15% over the myopic approach and is highly competitive with the online approach.

Similar performance statistics for the synthetic data set with 2 peak hours are shown

in Table 4.4(b). The average performance of our approach is significantly better than

all the three benchmark approaches, which verify the fact that our approach is able

to better handle the lost demand at rush hours. More interestingly, the competitive

ratio for our solution is approximately 70% of the optimal solution for both the data

sets.

Results on the Hubway data set: The next thread of results demonstrate the

performance statistics on the Hubway data set. The Hubway BSS consists of 95

base stations and 3 vehicles. We consider a planning horizon of 6 hours in the

morning peak (6AM-12PM) and the duration of each decision epoch is 30 minutes.

We compute the bounds on demand from three months of historical trip data. As the

historical trip data only contains successful bookings and does not capture the un-

observed lost demand, we employ a micro-simulation model with 1 minute of time

step to identify the duration when a station got empty and introduce artificial de-

mand at the empty station based on the observed demand at that station in previous

time step.

We produce three threads of demand scenarios (1) We took the real demand data

for 60 weekdays. We estimate the actual demand by introducing artificial demand

at empty stations using a similar heuristic mechanism discussed earlier; (2) We gen-
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Lost demand at Issue Time Lost demand at Return Time
Static Myopic Online Robust Static Myopic Online Robust

MEAN 267 269 257 197 61 138 46 50
STDEV 79 77 82 68 19 32 18 15
MAX 460 471 453 393 103 196 91 96

(a) Demand scenarios from real-world data
MEAN 145 155 146 100 53 126 37 33
STDEV 18 19 19 18 9 21 14 10
MAX 193 202 192 137 83 165 68 74

(b) Demand scenarios follow Poisson distribution at each station
MEAN 163 171 154 113 69 143 50 54
STDEV 24 22 17 19 13 28 16 14
MAX 206 220 204 158 103 208 86 85

(c) Demand scenarios follow Poisson distribution for each OD pair

Table 4.5: Lost demand statistics on the Hubway data set

erate 100 demand scenarios, where the arrival demand at each station is generated

using Poisson distribution with the mean computed from historical data. Similar

to (Shu et al., 2013), we assume that customers reach their destination station with

a fixed probability; (3) We generate 100 demand scenarios, where the demand for

each origin destination pair at each time step is computed using Poisson distribution.

For all the three settings of demand scenarios, we summarise the key perfor-

mance statistics for all the approaches in Table (4.5). As the planning period for

one decision epoch is 30 minutes, we set a time threshold of 3 minutes as a conver-

gence criterion for our scenario generation approach. We provide statistics for two

types of lost demand: (a) Lost demand occurred at the time of hiring the bikes due

to starvation of bikes at stations; (b) Lost demand occurred at the time of returning

the bikes due to the congestion of bikes at stations.

The performance statistics for real demand scenarios are demonstrated in Ta-

ble 4.5(a). On an average our approach reduces the overall lost demand by at least

18% over all the benchmark approaches. Moreover, our approach reduces the worse

case lost demand by at least 10%, hence, is robust to the uncertainty in demand.

Similar performance statistics for other two settings of demand scenarios are shown
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in Table 4.5(b) and 4.5(c). For both the settings, the average and worse case perfor-

mance of our approach is noticeably better than all the three benchmark approaches.

The average lost demand is reduced by at least 27% and 18%, while the worse case

lost demand is decreased by at least 19% and 16%, over all the three benchmark

approaches.

4.4 Summary

We develop a robust optimisation approach to solve the dynamic redistribution prob-

lem in bike sharing systems. We propose an iterative scenario generation approach

where an adversary identifies the worse demand scenario for a given repositioning

strategy and the decision maker computes a repositioning strategy by considering a

set of demand scenarios proposed by the adversary. The empirical results on a real-

world and multiple synthetic data sets shown that our approach outperforms the

existing benchmark approaches in terms of reducing the expected and worse case

lost demand and therefore, improves the operational efficiency of the bike sharing

company.
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Chapter 5

Optimising Lost Demand in BSS

through Incentives

Bike Sharing Systems (BSSs) have been widely adopted in major cities due to its po-

tential to mitigate the carbon emissions and traffic congestion. However, to address

the problem lost demand and other issues pertinent to it, a wide variety of research

papers and current systems employ the idea of repositioning idle bikes with the help

of vehicles during the day (including our approaches that are presented in Chapter 3

and Chapter 4), by taking into account the movements of bikes by customers. While

such a method of repositioning can help reduce imbalance, there are multiple draw-

backs: (a) Vehicles incur substantial routing and labor costs; (b) More importantly,

the fuel burning model of repositioning is at odds with the environment friendly

nature of BSSs; and (c) Finally, due to a limited number of these vehicles, they are

typically not sufficient to account for all the lost demand.

As an alternative, some BSS operators (e.g., CitiBike in NYC) have recently in-

troduced the notion of bike trailers (O’Mahony & Shmoys, 2015). A bike trailer is

an add-on to a bike that can carry a small number of bikes (e.g., each bike trailer can

hold 3-5 bikes) and is useful to relocate bikes to nearby stations. Trailers are an envi-

ronment friendly mode of repositioning the bikes. Existing research by O’Mahony

and Shmoys (2015) has focussed on computing the repositioning tasks for trailers
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with the assumption that dedicated staff can execute the repositioning tasks. How-

ever, given the limited budget availability, it is not economically viable to employ

dedicated staff for each of the trailers.

In this chapter, we introduce a potentially self-sustaining repositioning system

that addresses this Dynamic Repositioning and Routing Problem with Trailers (DR-

RPT). We employ a unique combination of optimisation and mechanism design that

crowdsources the repositioning tasks to the potential users while working within the

budget constraints of the operator (Ghosh & Varakantham, 2017). Specifically, we

provide a rolling horizon framework, where at each time step we have two compo-

nents executed one after another:

1. We first employ mixed integer linear minimisation to generate potential repo-

sitioning tasks along with their valuations at the next time step.

2. We then employ an incentive compatible mechanism to crowdsource (using

payment/trip based incentives) the repositioning tasks to the users who are in-

terested in executing those tasks within the budget constraints of the operator.

There has been existing research (Singla et al., 2015; Pfrommer et al., 2014)

that has focussed on providing incentives to users for assisting with repositioning.

However, this line of work has primarily focussed on individual bikes and has taken

a myopic (individual station) view on whether a bike is required at a station. In

this work, we provide an end to end system that takes the global view (all stations)

of the repositioning requirements and incentives their execution within the budget

constraints.

We evaluate our system using a simulation model from Section 2.3.1.1, which is

build on the realized demand scenarios from a real-world data set. At each time step

the two components of the rolling horizon framework are executed on this simulator

to identify the distribution of bikes for the next time step. This iterative process

continues until we reach the last time step. Experimental results on a real-world

data set of Hubway (Boston) BSS and multiple synthetic data sets demonstrate that
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our approach is highly competitive in terms of reducing the expected lost demand,

over the fuel burning model of repositioning.

We make the following assumptions for the ease of explanation and representa-

tion. However, these assumptions can easily be relaxed with minor modifications

to our methods; (a) Users who carry bikes and trailers at decision epoch t always

return their bikes at the beginning of the decision epoch t + 1; (b) Customers are

impatient in nature and leave the system if they encounter an empty station. On the

other hand, they return their bikes to the nearest available station if the destination

station is full.

5.1 Solving DRRPT

As mentioned in Section 2.1.3, the generic model of DRRPT can be represented

using the following tuple:

< S,V ,C#,C∗, d#,0, {σ0
v},H ,F , B >

The elements which are also part of the DRRP are learnt directly from the BSS

data sets using the same methodology as mentioned in Section 3.1. The number

of the bike trailers and their capacities are also estimated from the real-world BSS

data. The initial distribution of the trailers are set randomly. We take the various

demand scenarios, F directly from the historical trip data. Lastly, the budget for the

repositioning is used as a tunable parameter in the experiments.

We propose a rolling horizon framework for solving DRRPT, where the follow-

ing two components are run continuously at each time step:

• Generate repositioning tasks for the next time step;

• Mechanism to incentivize execution of tasks (within the central budget con-

straints) by interested users.
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5.1.1 Generating Redistribution Tasks

In this section, we describe the method for computing repositioning tasks for the

trailers and also estimate the valuations of those tasks from center’s perspective. As

a trailer can travel at most to one station in each time step (equivalent to bikes),

the repositioning task for a trailer is to pickup a certain number of bikes from the

neighbourhood of its origin station and drop them to another station. To formally

represent the repositioning tasks, we introduce the following decision variables:

• y+s,v denotes the number of picked up bikes by trailer v from station s;

• y−s,v denotes the number of bikes dropped off by trailer v at station s;

• b+s,v is a binary decision variable which is set to 1 if trailer v picks up bikes

from station s and 0 otherwise;

• b−s,v represents a binary decision variable which is set to 1 if trailer v returns

bikes at station s and 0 otherwise.

In addition, we use the symbol Gv to denote the set of neighbouring stations

from where vehicle v is allowed to pick up bikes. A station is included in Gv if it is

situated within a threshold distance from the origin station of trailer v. Our goal is

to compute the best routing and repositioning strategy for each of the bike trailers

so as to minimise the total number of expected lost demand overK training demand

scenarios. Let Lk
s denotes the lost demand at station s for demand scenario k, after

the repositioning tasks are achieved. We represent the problem of minimising ex-

pected lost demand as a Mixed Integer Linear Programme (MILP). The MILP for

the task generation is compactly represented in Table (5.1). Our objective (delin-

eated in expression 5.1) is to minimise the expected lost demand (equivalent to total

lost demand, as each demand scenario has equal probability) over all the K train-

ing scenarios. The constraints associated with this repositioning task generation are

described as follows:
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min
y

∑
s,k

Lk
s (5.1)

s.t. Lk
s ≥

∑
s′

F k
s,s′ −

(
d#,t
s +

∑
v

(y−s,v − y+s,v)
)

∀k, s (5.2)

y+s,v ≤ b+s,v ·min(d#,t
s , C∗v ), ∀s, v (5.3)∑

v

y+s,v ≤ d#,t
s , ∀s (5.4)∑

v

y−s,v ≤ C#
s − d#,t

s , ∀s (5.5)

y−s,v = b−s,v ·
∑
s

y+s,v, ∀s, v (5.6)

(b+s,v + b−s′,v − 1) ·Hs,s′ ≤ Hmax ∀s, s′, v (5.7)∑
s

b+s,v = 1, ∀v (5.8)∑
s/∈Gv

b+s,v = 0, ∀v (5.9)∑
s

b−s,v = 1, ∀v (5.10)

b+s,v, b
−
s,v∈{0, 1}, 0 ≤ y+s,v, y

−
s,v ≤ C∗v , L

k
s ≥ 0 (5.11)

Table 5.1: TASKGENERATION(F,t,d#,drrpt)

1. Compute the lost demand as the deficiency in supply of bikes: The num-

ber of bikes present in a station s after accomplishing the repositioning task

is estimated as d#,t
s +

∑
v(y
−
s,v − y+s,v). Therefore, constraints (5.2) ensure that

the number of lost demand at station s for scenario k is lower bounded by the

difference between demand and supply of bikes at that station. Note that, as

we are minimising the sum of lost demand over all the scenarios, these con-

straints are sufficient alone to compute the exact number of loss in customer

demand.

2. Trailer capacity is not exceeded while picking up bikes: Constraints (5.3)

ensure that the number of bikes picked up by trailer v from station s is bounded

by the minimum value between the number of bikes present in the station and

the capacity of the trailer.
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3. Total number of bikes picked up from a station is less than the avail-

able bikes: As multiple trailers can pick up bikes from the same station,

constraints (5.4) enforce that the total number of picked up bikes by all the

trailers from station s during the planning period t is bounded by the number

of bikes present in the station, d#,t
s .

4. Station capacity is not exceeded while dropping off bikes: Constraints (5.5)

ensure that the total number of dropped off bikes at station s is bounded by

the number of available slots for bikes at that station.

5. A trailer should return the exact number of bikes it has picked up: Note

that b−s,v is the binary decision variable that controls the drop-off location for

the trailer v. Therefore, constraints (5.6) enforce that the number of bikes

dropped off by a trailer in a station is exactly equal to the number of picked

up bikes if the station is visited.

6. Total traveling distance for a trailer is bounded by a threshold value: To

represent the physical limitation of the route, we need to ensure that the to-

tal distance travelled by a trailer in a given planning period is within a few

kilometers. Constraints (5.7) enforce this condition by ensuring that the dis-

tance between the pick up and the drop-off station for a trailer is bounded by

a threshold value, Hmax.

7. A trailer should pick up bikes from one station only: Constraints (5.8)

enforce this condition by allowing only one pick up decision variable to be

set to 1 for each trailer.

8. The pick up location for a trailer should be within the geographical prox-

imity of its origin station: Constraints (5.9) assure this requirement by fixing

all the pick up decision variables for trailer v to 0 for the stations which does

not belong to its nearby station set, Gv.
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9. A trailer should return bikes to one station only: Constraints (5.10) ensure

this condition by allowing only one drop-off decision variable to be set to 1

for each trailer.

Note that, constraints (5.6) are non-linear in nature. However, one component

in the right hand side is a binary variable. Therefore, we can easily linearize them

using the following constraints (5.12)-(5.14).

y−s,v ≤ C∗v · b−s,v ∀s, v (5.12)

y−s,v ≤
∑
s

y+s,v ∀s, v (5.13)

y−s,v ≥
∑
s

y+s,v − (1− b−s,v) · C∗v ∀s, v (5.14)

Although we are using big-M method for the linearization, the upper bound for the

pickup or drop-off variable (or alternatively the value of M) is the capacity of the

trailer which is relatively small and therefore, these constraints are computationally

inexpensive.

5.1.2 Mechanism to Incentivize Task Execution within Budget

Constraints

Once we determine the tasks, our goal is to design a mechanism which allocates

the tasks among the users who are interested in executing these tasks and generate a

payment method to ensure that the users bid for the tasks truthfully. If the payment

method does not ensure truthful behaviour, then either the bike sharing company is

unhappy (as it pays more money to users than required) or users are unhappy (as

they get paid less) while repositioning bikes through trailers.

To design a mechanism for crowdsourcing the repositioning tasks, the first step

is to compute the value of the tasks from center’s perspective. As our goal is to

minimise the expected lost demand, the valuation of the task is proportional to the
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expected lost demand reduced by the trailer job over all the training demand sce-

narios. Specifically, the value of task for trailer v is defined as follows (ξ represents

unit value of lost demand to compute overall value):

U(v) =
ξ

K

∑
k,s

[
min

(
max(F k

s − d#,t
s , 0), y+s,v

)
−

min
(

max
(
y−s,v − (d#,t

s − F k
s ), 0

)
, y−s,v

)]
(5.15)

Intuitively this value is the weighted difference in reduced lost demand using the

trailer minus increase in lost demand due to moving bikes using trailer. The first

term in expression (5.15) computes the expected lost demand reduced by the trailer

v in its destination station over all the K scenarios. The second term computes the

expected lost demand arising because of the pickup decision by the trailer v at its

origin station.

We assume that the set of interested users for each pair of tasks are disjoint. One

user can execute a single task in any given decision epoch, so this assumption can

be easily enforced. To ensure this assumption is satisfied, we can either associate a

huge penalty for bidding on multiple tasks or discard all bids of a user except the

first one. Once all the bids arrive, the goal of the center is two-fold: (a) Design an

incentive compatible mechanism to ensure that users bid truthfully on every task;

(b) Allocate the tasks in a fashion that minimises the efficiency of the entire system

while satisfying the budget feasibility.

Observation 3. As the set of bidders for different tasks are pairwise disjoint and the

mechanism initiates once all the bid information is available, the tasks are primarily

independent but coupled by the central budget constraint. Therefore, the mechanism

or payment method can be designed for each of the tasks separately. However, the

final allocation of tasks should be accomplished in a fashion so that the budget

feasibility is ensured.

By exploiting observation (3), we design a mechanism for each of the tasks
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separately. Let the set of repositioning tasks be T = {1, ..., |V|}. We begin the

discussion with the mechanism design for a single task for trailer v. Let, Nv =

{1, ..., nv} represents the set of rational users who are bidding privately to the center

for the task of trailer v. Each user i ∈ Nv privately reveals their type θi =< Ci(v) >,

whereCi(v) denotes their private cost for executing the task of trailer v. The center’s

profit for the bid of user i is defined as Wi(v) = U(v)−Ci(v). We reject a bid from

a user i if Ci(v) > U(v), which ensures that Wi(v) is always positive. Our goal

is to assign the task to a bidder so that the center’s profit is minimised and design

a payment method to ensure that users always bid truthfully. We use the standard

Vickrey-Clarke-Groves [VCG] mechanism (Vickrey, 1961; Clarke, 1971; Groves,

1973) to solve this problem.

According to this mechanism, the task is always allocated to the lowest bidder,

but the lowest bidder gets paid the bid of the second lowest bidder. For instance, if

there are 3 bids of 10$, 12$ and 14$ to perform a repositioning task, then the task

is allocated to bid 1 and the person putting in bid 1 gets paid 12$. More formally,

let λ∗ = {0, 1}Nv denotes the allocation of the task so that the center’s profit is

minimised.

λ∗i (v) =

 1 if i = argmaxj∈Nv Wj(v)

0 Otherwise


Then the payment to the user i for task v is computed using the following expres-

sion:

Pi(v) =λ∗i (v)
[
U(v)−max

j 6=i
Wj(v)

]
= λ∗i (v)

[
min
j 6=i

Cj(v)
]

(5.16)

Expression (5.16) indicates that the payment for user i is the second lowest cost

revealed in the bid process if the task is allocated to him, otherwise the payment is

set to 0.

Since, we directly adapt the standard VCG mechanism, the mechanism for sin-
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gle task is truthful or incentive compatible. However, this does not ensure incentive

compatibility over all tasks, as there is a budget constraint. We now provide a

method that will ensure incentive compatibility over all tasks without violating the

budget feasibility.

Ensuring the Budget Feasibility: As mentioned previously, the BSS operators

work within a fix budget B. We have a set of tasks T = {1, ..., |V|}, where each

task i ∈ T has a valuation, U(i) (computed using equation 5.15) and the payment

for the task is denoted by P (i) (computed using equation 5.16). Our goal is to

allocate the tasks that minimises the overall valuation of the center while the total

payment is bounded by the given budget,B. Let x(i) denotes a binary decision vari-

able which is set to 1 if task i is allocated and 0 otherwise. We compactly represent

the problem as an Integer Program (IP) in table (5.2).

max
x

∑
v∈T

x(v) · U(v) (5.17)

s.t.
∑
v∈T

x(v) · P (v) ≤ B (5.18)

x(v) ∈ {0, 1} ∀v ∈ T
(5.19)

Table 5.2: TASKALLOCATIONIP(U ,P , T , B)

Our objective in expression (5.17) aims to find an allocation of the tasks so

that the cumulative valuation from the center’s perspective is minimised. Con-

strains (5.18) enforce that the total payment made to the users due to the resulting

allocation should respect the given budget B. The IP in Table (5.2) is exactly equiv-

alent to the 0/1 knapsack problem which is a known NP-Hard problem. However,

we can employ the well-known dynamic programming approach (refer to chapter 6

of Dasgupta, Papadimitriou, and Vazirani, (2006)) to speed up the solution process.

The complexity of such a DP approach is O(|T | · B) in comparison to the brute

force method that has the complexity of O(2|T |).

Proposition 2. The mechanism for task allocation for the trailers in bike sharing
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system is incentive compatible (IC), individually rational (IR) and economically

efficient (EE).

Proof: The mechanism for single task satisfies the IC and IR property as it

follows the standard VCG mechanism. As all the tasks are independent and the

payments are made for a subset of tasks to ensure the budget feasibility, all the allo-

cated tasks satisfies the IC and IR property. Hence, the budget feasible mechanism

for the entire BSS meets the requirements to satisfy the IC and IR property. Finally,

the mechanism minimises the difference between center’s valuation and the cost

for executing the task which is equivalent to the expected total welfare, hence, our

mechanism satisfies the EE property. �

5.1.3 Overall Flow of Our Approach

To better understand the overall flow of our approach, we provide Algorithm (3).

We begin by solving the MILP of Table (5.1) to generate the repositioning tasks for

each of the trailer to better satisfy customer demand over a set of training demand

scenarios. Then the values of the tasks from center’s perspective are computed

using equation (5.15). Next, a set of rational users bid for the tasks privately. Once

all the bids are submitted, we employ the standard VCG mechanism to generate

the payment (refer to equation 5.16) for each task. Finally, we allocate budget to

tasks (and make payments only if the task can be allocated money) by solving a 0/1

knapsack problem that minimises the global welfare of the system without violating

the budget constraints of the operator.

5.2 Experimental Setup

We conducted our experiments on a real-world data set1 of Hubway BSS. The data

items provided by the Hubway data sets are delineated in Table (3.1). The learning

1Data is taken from Hubway bike sharing company of Boston
[http://hubwaydatachallenge.org/trip-history-data].
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Algorithm 3: solveRepositioning(drrpt, t,d#,F t, B)

Initialize: Y +,Y − ← 0 ;
Y +,Y − ← TASKGENERATION(F t, t,d#, drrpt);
for each v ∈ V do

U(v)← COMPUTETASKVALUE(Y +
v , Y

−
v );

for each v ∈ V do
C(v)← COLLECTBIDS(Y +

v , Y
−
v , U(v));

for each v ∈ V do
P (v)← GENERATEPAYMENT(U(v),C(v));

X ← TASKALLOCATION(U ,P ,V , B);
for each v ∈ V do
Y +

v ← Y +
v ·X(v);

Y −v ← Y −v ·X(v);

return Y +,Y −;

of the different elements of our model for the real-world data sets are provided

in Section 3.5. Furthermore, we generate two sets of synthetic demand scenarios

using Poisson distribution with the mean computed from real-world data set. More

specific details about these synthetic data sets are mentioned in Section 5.3. We

evaluate our approach with respect to the key performance metric of loss in customer

demand.

We compare the utility of our approach with two existing benchmark approaches:

(1) Static Repositioning implies the practice of no repositioning during the day and

the details are mentioned in Section 2.3.1; and (2) Dynamic Repositioning implies

the practice of repositioning idle bikes using vehicles during the day to meet the

expected future demand. We adapted a modified version of the scenario based ap-

proach from Chapter 4. In the approach we presented in Chapter 4, a worse demand

scenario is generated in each iteration to counter the repositioning strategy of the

current iteration and then they produce a robust repositioning solution by consid-

ering all the previously generated scenarios. However, for a fair comparison with

our approach (as shown in Table 5.1), we make the following modifications in their

minimisation model: (1) We take the exact set of training demand scenarios used

in our approach rather than generating the worse scenarios; (2) We minimise the
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total number of lost demand over all the demand scenarios (equivalent to our ob-

jective function of Table 5.1) in contrast to minimising for the worst case. For a

fair comparison of our approach against the existing benchmark approaches, all the

benchmark approaches and our approach are evaluated on the simulation model de-

scribed in Section 2.3.1.1.

5.3 Empirical Results

We now show the performance2 of our approach on Hubway data set. The Hubway

BSS consists of 95 base stations and 3 vehicles. We study with 10 trailers and their

capacity is assumed to be three in our default settings of experiments. We take

6 hours of planning horizon in the morning peak (6AM-12PM) and the duration

of each decision epoch is considered as 30 minutes. The demand scenarios are

generated from three months of historical trip data. As the trip data only contains

successful bookings and does not capture the unobserved lost demand, we employ a

micro-simulation model with 1 minute of time step to determine the time slots when

a station was empty and introduce artificial demand at the empty station based on

the observed demand at that station in previous time step. We demonstrate three

sets of results on the Hubway data set:

• The performance comparison between our approach and the benchmark ap-

proaches in terms of reducing the lost demand;

• The effect of key tuneable input parameters on the mechanism design over a

wide range of demand scenarios;

• Runtime performance of our approach.

Performance comparison: To evaluate the performance of our approach, we

produce three types of demand scenarios: (1) We took the real demand data for
2All the linear minimisation models were solved using IBM ILOG CPLEX minimisation Studio

V12.5 incorporated within python code.
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60 weekdays. The actual demand is estimated by introducing artificial demand at

empty stations using a similar heuristic as discussed earlier. We use 20 days of

demand scenarios for training purpose and tested the strategy on other 40 days of

demand; (2) We generate 100 demand scenarios, where the arrival demand at each

station is generated using Poisson distribution with the mean computed from his-

torical data. Similar to (Shu et al., 2013), we assume that customers reach their

destination station with a fixed probability; (3) We generate 100 demand scenarios,

where demand for each origin destination [OD] pair at each time step is computed

using Poisson distribution. In demand scenario types 2 and 3, we utilise 30 demand

scenarios for training and 70 demand scenarios for testing.
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Figure 5.1: Lost demand statistics for (a) Demand scenarios from real-world data; (b)
Demand scenarios follow Poisson distribution at origin station; (c) Demand scenarios follow
Poisson distribution for each OD pair.

For all the three types of demand scenarios, we compute the cumulative lost de-

mand at the time of bike pickup and return for the following four approaches: (a)

Static repositioning where no rebalancing is done during the planning period; (b)
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Dynamic repositioning using 3 existing vehicles; (c) Dynamic repositioning using

10 trailers, each having a capacity of 3; (d) Dynamic repositioning using 10 trailers,

each having a capacity of 5. For this set of experiments, we directly took the reposi-

tioning solution from Table (5.1) for evaluation. Specifically, we assume that there

is sufficient budget available to allocate all the tasks. Figure (5.1) depicts the aver-

age number of lost demand along with standard deviation for all the three types of

demand scenarios. Figure 5.1(a) shows the lost demand statistics on the real-world

demand scenarios. By utilising trailers with capacity 3, the average lost demand

over 40 testing scenarios reduces by 41% over the no repositioning approach. The

repositioning solutions for the trailers with capacity 3 are also proven to be highly

competitive to the solutions achieved by vehicles. As expected, the repositioning

solutions for the trailers with capacity 5 produce better results and outperform the

lost demand obtained by 3 carrier vehicles. Similar performance statistics are shown

in Figure 5.1(b) and 5.1(c) for the demand scenarios generated using Poisson dis-

tribution at origin station and for each OD pair respectively. In both the settings,

we observe a consistent pattern that the repositioning solution using trailers with

capacity 3 reduces the average lost demand over 70 test scenarios by 69% and 63%

in comparison to the baseline approach. Moreover, both the figures clearly demon-

strate that the solutions for trailers with capacity 5 are better than the fuel burning

mode of repositioning by the vehicles.

Effect of tuneable parameters: In the next set of results we demonstrate the

performance of our approach by varying the different input parameters of the mech-

anism. We employ the real-world demand scenarios (demand scenario type 1) for

this experiments, where 20 demand scenarios are used for training and the evalua-

tion is done on other 40 scenarios. The outcome of the mechanism depends on the

following three input parameters:

• Hourly budget allocated by the operators (β) - Ideally the BSS operators al-

locate a fixed amount beforehand for the repositioning tasks. In our default
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settings of experiments we have fixed the hourly budget to 50 dollars3;

• Percentage of users interested in trailer tasks (γ) - To execute a mechanism,

it is important to compute the number of users bidding for each trailer task.

Typically, a certain percentage of users whose origin and destination location

is within ∆ kilometer of the pickup and drop-off location of the trailer, are

the potential users interested in executing the task and bid for it. In our exper-

iments we set the value of ∆ to 1 kilometer4. We use the default value of γ as

30%;

• Ratio of lower and upper bound of bids (α) - The third and most important

parameter for the mechanism is the bid values submitted privately by the

users. We generate the bid values using Normal distribution from the range

[Cmin, Cmax]. As the upper limit of the bid value for task v is bounded by its

valuation U(v), we set the Cmax for the task of trailer v to U(v). The value of

Cmin is set to αCmax. As the bids are generated from a distribution, we run the

mechanism 100 times for every task and use the expectation over 100 runs as

the payment. The default value of α is set to 30%.

Figure (5.2) depicts the effect of the tuneable parameters on the performance

of our approach. Figure 5.2(a) plots the average lost demand over 40 days of test-

ing demand scenarios, where we vary the hourly budget (β) in the X-axis from

10 dollars to 80 dollars. As expected, the average number of lost demand reduces

monotonically as we increase the hourly budget. Due to the randomness in bid val-

ues in different runs, the lost demand might increase for some scenarios, even after

increasing the hourly budget. We observe that for more than 78% of the cases, lost

demand decreases if we increase the hourly budget by 10 dollars.

3The link: http://www.bls.gov/oes/current/oes533033.htm from the US Department of Labor pro-
vides hourly salaries for drivers operating light trucks that are used for repositioning the bikes. It
shows that the median hourly cost for a hired driver is 14 dollars. Therefore, the hourly budget for 3
existing vehicles including the fuel cost for routing would be around 50 dollars.

4We experimented with ∆ as 0.5 kilometer and observe similar results as shown in Figure 5.2.
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Figure 5.2: (Average) Lost demand statistics for varying (a) Allocated budget (β) [α =
0.3, γ = 0.3]; (b) Percentage of users interested in trailer tasks (γ) [α = 0.3, β = 50];
and (c) Ratio of lower and upper bound of bids (α) [β = 50, γ = 0.3]. (d) (Cumulative)
Runtime comparison between the repositioning solutions of vehicles and trailers.

Figure 5.2(b) plots the average lost demand over 40 testing demand scenarios,

when we vary the interest rate of the users (γ) in the X-axis from 10% to 70%.

The average number of lost demand reduces monotonically as we increase the in-

terest rate of users, because increasing the interest rate implies that additional bids

are submitted to the center and therefore, the likelihood of the payment value re-

duces which in turn enable us to execute extra trailer tasks within the given budget

and hence, the number of expected lost demand reduces. We observe that the lost

demand decreases for around 60% of the cases, if we increase γ by 10%.

Figure 5.2(c) plots the average lost demand over 40 testing demand scenarios,

where we vary the ratio of the lower and upper bound of the bids (α) in the X-axis

from 20% to 90%. Increasing the value of α indicates that the lower bound of the

bids increases and so the expected bid value also increases. Now, increasing the bid

values implies that the expected payment for the tasks also increases and the number
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of tasks that can be executed within a fixed budget decreases, hence the number of

expected lost demand also increases. As expected, figure 5.2(c) clearly depicts that

the average number of lost demand increases monotonically as we increase the value

of α. For around 74% of the cases, the lost demand increases if we increase α by

10%.

Runtime performance: In the last set of results, we show the runtime performance

of our approach in comparison to the repositioning solution of the vehicles on the

real-world demand scenarios. The time to find a repositioning solution is a crucial

factor in our settings, as we are generating the strategy after every 30 minutes of

interval. Figure 5.2(d) depicts the runtime performance where in the X-axis we

vary the number of decision epochs and the Y-axis denotes the cumulative runtime

in logarithmic scale. For every value of decision epoch, our approach was able to

solve the problem within a couple of seconds with 20 training scenarios. On the

other hand, it took more than 15 minutes for each decision epoch to generate the

repositioning solutions for the vehicles with the same number of training scenarios.

5.4 Summary

In this chapter, we explore the dynamic repositioning problem in bike sharing sys-

tems with the help of bike trailers. We propose a novel optimisation model to

generate the repositioning tasks for trailers to better meet the customer demand.

Additionally, we design a budget feasible incentive compatible (incentivizes truth

telling) mechanism to crowdsource the tasks among the users who are interested in

executing those tasks. The empirical results on a real-world data set show that our

green mode of repositioning is economically viable and highly efficient in terms of

reducing the lost demand.
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Chapter 6

Models and Background for Decision

Making in EMS

In this chapter, we explain the models and existing research related to the decision

making in Emergency Medical Systems (EMSs). The operational decisions in EMS

correspond to allocation of an entire fleet of ambulances to a given set of base sta-

tions. To the best of our knowledge, there is no existing research paper that formally

solve the strategic decision making problem in EMS. However, the existing mod-

els for solving the operational decision making problem are equivalent to strategic

decisions if we allow to set the bases in all the possible base locations. Therefore,

we introduce the existing approaches for solving the ambulance allocation problem

for a given set of bases to better match the emergency requests to the supply of

ambulances in EMS.

6.1 Models

For the strategic decisions in EMS, we consider two widely adopted objectives by

the real-world EMS operators: (a) Maximise number of requests that are satisfied

within a given threshold response time (ex: 15 minutes), referred to as Bounded

Time Response; and (b) Minimise the response time for a fixed percentage (ex:
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Element Definition
r The indicator used to represent an emergency request.
l The indicator used to represent a base station.
R The set of emergency incidents.
B The set of possible base stations.
A A fleet of ambulances.
Tl,l′ Ambulance travel time between location l and l′.
Cl The capacity of base station l.
Lrl The utility value for assisting request r from base l.
∆ The pre-defined threshold response time.

α
The percentage of requests whose response times can exceed
the threshold response time.

P r
l The set of parent requests of request r for base l.

Table 6.1: EMS notations and their definition.

80%) of requests, referred to as Bounded Risk Response. In this section, I briefly

introduce the notations and models for these two categories of objectives for the

strategic decision making in EMS. For the ease of understanding, the key notations

and their definitions are compactly represented in Table (6.1).

6.1.1 Model: Bounded Time Response

We now formally describe the generic model for the strategic decision making prob-

lem in EMS, where our goal is to optimise the bounded time response. We employ

the following tuple:

< R,B,A,T ,C, L >

A brief description of these elements are shown in Table (6.1). R denotes a set of

emergency requests, where each request r ∈ R is tagged with a tuple < t, s, h >. t

is the arrival time, s is origin location and h is destination hospital of the request r. B

denotes the set of possible base stations andA represents a fleet of ambulances. T is

a two-dimensional matrix that provides travel time between any two base locations.

More specifically, Tl1,l2 is the time required to move from source location l1 to

destination l2. C denotes the capacities of the bases, whereCl denotes the maximum

number of ambulances that can be allocated to base l. L is the utility function which
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will be explained in detail in Section 6.3.1. Given these input elements, our goal

is to find a subset of B and to optimally allocate an entire fleet of ambulances to

these bases that maximises the percentage of requests which can be served within a

threshold time bound.

6.1.2 Model: Bounded Risk Response

In this section, we formally describe the generic model for strategic decision making

problem in EMS, where our goal is to optimise the bounded risk response. We

employ the following tuple:

< R,B,A,T ,C, α >

The details of all the elements except α are mentioned in Section 6.1.1. α denotes

the tunable input parameter, that controls the amount of risk the EMS operators are

ready to tolerate. Our goal is to find a subset of B and to optimally allocate an

entire fleet of ambulances to these bases that minimises the α-response time, i.e.,

the threshold time within which α percent of the total requests should be served.

6.2 Related Work on Decision Making in EMS

Given the practical importance of EMSs, a wide range of disciplines have also stud-

ied problems associated with EMSs. The research papers in Section 6.2.1 focus on

improving operational strategies for EMS. Section 6.2.2 elaborates the research in

the direction of strategic decision making for large-scale and catastrophic disaster

response. Finally, in Section 6.2.3 we present the relevant literatures for the opti-

misation of monotone submodular functions, which is complementary to the work

presented in Chapter 7.
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6.2.1 Operational decision making in EMS

This thread of research focuses on generating efficient ambulance allocation and dis-

patch policy for day-to-day operations. Andersson and Värbrand (2007) and Schmid

(2012) develop techniques to optimally generate dispatching policy for ambulances

and also provide a relocation model that dynamically suggests a destination base for

ambulances after job completion. However due to inherent complexity of the pro-

cess (such as congestion of ambulances at certain bases or problem with conceiving

the critically of request by the operator), many EMSs prefer a fixed allocation of

ambulances and follow the nearest ambulance dispatch policy.

Brotcorne, Laporte, and Semet (2003) and Gendreau, Laporte, and Semet (2006)

exploit mathematical models by incorporating performance metrics as a parameter

of the model and provide optimisation or local search based heuristics to solve the

ambulance allocation problem. But optimisation models often fail to capture the

dynamics of EMS such as congestion pattern in road or response time from base

to scene that varies over time. Recent works (Saisubramanian et al., 2015; Yue

et al., 2012; Restrepo, Henderson, & Topaloglu, 2009) overcome these caveats by

employing a real-life event-driven simulator to evaluate the resulting policy. All the

papers in this thread presume a fixed set of bases, while our approach presented in

Chapter 7 solves the ambulance allocation problem in conjunction with discovering

optimal placement for bases.

Operational decision making in EMS using MDP: Markov Decision Process

(MDP) is a fundamental choice for sequential decision making under uncertainty.

However, if a decision making problem of EMS is represented as an MDP, the

state and action space of the corresponding MDP would be exponentially large1

(similar to BSS as indicated in Section 2.2.6). Due to this challenge, only a few re-

1For our real-world data set, a problem instance contains 58 ambulances, 58 bases and around
3000 requests, so there would be approximately 300058 × 5858 (all the possible combination of
assignment and allocation scenarios) states and 5858 (all the possible allocation of ambulances to
bases) actions for representing ambulance allocation problem as an MDP.
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search papers have represented the ambulance allocation and dispatching problem

using MDP. Maxwell, Henderson, and Topaloglu (2009); and Maxwell, Hender-

son, Topaloglu, et al. (2013) employ MDP based approximate dynamic program-

ming for dynamic relocation of ambulances. To address the inherent complexity,

they solved the problem for individual ambulances separately and therefore, these

models do not capture the exact dependencies and dynamics of EMS properly. Re-

cently, Jagtenberg, Bhulai, and van der Mei (2017) employ MDP for computing the

optimal dispatch strategy for ambulances for a given set of requests. All these pa-

pers propose solutions for the response phase by considering a fixed set of waiting

emergency requests. However, as the EMS operators follow critical response time

metrics, we need to dispatch ambulances on a first-come first-serve basis as soon as

a request is arrived in the system and therefore, keeping requests in a waiting queue

is often not feasible. So, our solution approaches consider a large number of histori-

cal emergency requests and generate ambulance allocation for preparedness so as to

ensure the critical performance metrics of EMS for future scenarios. Furthermore,

as the state and action space of MDP grow exponentially with the number of emer-

gency requests, ambulances and bases, we directly employ optimisation models for

solving the large-scale real-world EMS problems.

6.2.2 Strategic decision making in Disaster Response

This thread of research focuses on strategic decision making for rare and large-scale

disaster response (ex: fire, vehicle accident or natural disaster). The traditional

model for facility location in large-scale disaster response is based on the covering

problem such as location set covering problem [LSCP] (Toregas et al., 1971), that

aims to provide coverage to all the demand points; and maximal covering location

problem [MCLP] (Church & Velle, 1974), that maximises the coverage for a given

a budget. P -median (Hakimi, 1964) (minimises average distance between demand

point and nearest facility) and P -center (Sylvester, 1857) (minimises the worse case

123



response time) models are also widely adopted in literature. Recently, Jia et al.

(2007) and Huang et al. (2010) propose mathematical model for large-scale disaster

response and solve it using optimisation method or dynamic programming. Due to

the rare occurrence of the catastrophic events, these papers are focused on robust

objectives that plan for the absolute worst case. In contrast, incidents in EMSs

happen every day and objectives consider softer notions of robust decision making

(e.g., maximise number of requests served within 15 minutes, minimise time taken

to serve 80% of requests). Therefore, we take a data-driven approach to find the

minimal set of bases in EMS and evaluate the performance of solution on a diverse

set of demand scenarios.

6.2.3 Application of Greedy Algorithm in Optimising Submod-

ular Functions

The last thread of research which is complimentary to the work presented in Chap-

ter 7 is on optimisation of monotone submodular functions (Leskovec, Krause,

Guestrin, Faloutsos, VanBriesen, & Glance, 2007; Nemhauser, Wolsey, & Fisher,

1978). Some popular application domains where greedy algorithms are successfully

applied for optimising submodular functions are: dynamic conservation planning

(Golovin, Krause, Gardner, Converse, & Morey, 2011), maximising information

gain in sensor placement (Krause, Singh, & Guestrin, 2008), and content recom-

mendation (Yue & Guestrin, 2011). The key reason behind this extensive adoption

is that a greedy approach provides (1− 1
e
) approximation guarantee in case of mono-

tone submodular functions.

6.3 Details of Referred Solution Approaches

In this section, we present some of the existing approaches for solving the ambu-

lance allocation problem for a given set of bases in EMS. We have compared our
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approaches with these existing benchmarks (for which we give the advantage to set

the bases in all the possible locations) in Chapter 7.

6.3.1 Optimising Bounded Time Response

Given a sample of training requests, our goal with this objective is to find an allo-

cation policy for ambulances A into given set of bases such that maximum number

of requests can be served within a threshold time bound. For this objective, the

optimisation model for finding an optimal allocation of ambulances to a given set

of bases B is compactly represented using a Mixed Integer Linear Program [MILP]

in Table (6.2); a simple extension of the MILP provided in (Yue et al., 2012). A

request r ∈ R can be served from a feasible set of nearby bases {Br ∪ ⊥}, where

⊥ denotes the null assignment or lost request. xrl is a binary decision variable and

is set to 1 if request r is served from base l ∈ {Br ∪ ⊥}. al denotes the number of

ambulances allocated to base l ∈ B.

Intuitively, one unit of reward is provided if a request is served within 15 min-

utes. Let L be a function that facilitates this reward and is defined as follows:

Lrl =


1 if Tl,r.s ≤ 15 minutes

0 Otherwise

Our objective (delineated in equation (6.1)) is to maximise the number of re-

quests that are assisted within 15 minutes. Constraints (6.2) ensure that a request

can be served from one base station only. P l
r denotes the set of parents of request r

for base l. A request j ∈ P r
l is considered as the parent of request r if it arrives be-

fore r, completes after r has arrived and base l belongs to both the feasible base set

Br and Bj . Therefore, constraints (6.3) enforce the condition that a request can only

be served from a base station if there is an available ambulance. Constraints (6.4)

ensure the equivalence between total number of allocated and available ambulances.

Finally, constraints (6.5) enforce that the number of allocated ambulances in a base
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max
a,x

∑
r∈R

∑
l∈Br

xrlLrl (6.1)

s.t.
∑

l∈{Br∪⊥}

xrl = 1, ∀r ∈ R (6.2)

xrl +
∑
j∈P l

r

xjl ≤ al, ∀r ∈ R, l ∈ Br (6.3)

∑
l∈B

al = |A| (6.4)

0 ≤ al ≤ Cl, xrl ∈ {0, 1} (6.5)

Table 6.2: FINDALLOCATION(R,B,A)

station is bounded by the capacity of that base.

6.3.2 Optimising Bounded Risk Response

The notion of bounded risk, which was introduced by Saisubramanian et al. (2015),

is an important and alternative performance metric which is employed by many

real-world EMSs. The optimisation model for calculating the utility for a given

set of bases is compactly represented using the MILP in Table (6.3) and is a more

efficient variant of the one provided in Saisubramanian et al. (2015). δr denotes the

response time for request r ∈ R. δ denotes the α-response time or alternatively the

percentage of requests whose response time is greater than δ should be less than the

input parameter α. zr is a binary variable that is set to 1 if response time for request

r is greater than δ.

Our goal is to find an allocation of ambulances to a given set of bases, B such

that α-response time is minimised. M represents a sufficiently large number such

that objective value is always positive. We set the objective function (delineated

in equation (6.6)) positive such that it is consistent with the objective of MILP of

Table (6.2). Constraints (6.7) ensure that zr is set to 1 if response time for request r

exceeds δ. Constraints (6.8) enforce that the percentage of requests whose response

time exceeding δ is less than the input parameter α. Another key differentiating
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max
a,x

M − δ (6.6)

s.t.
δr − δ
M

≤ zr, ∀r ∈ R (6.7)∑
r∈R z

r

|R| ≤ α (6.8)∑
l∈{Br∪⊥}

xrl = 1, ∀r ∈ R (6.9)

xrl +
∑
j∈P l

r

xjl ≤ al, ∀r ∈ R, l ∈ Br (6.10)

∑
l∈B

al = |A| (6.11)

δr ≥
∑
l∈Br

xrl · Tl,r.s + xr⊥ · M̂, ∀r ∈ R (6.12)

0 ≤ al ≤ Cl, xrl ∈ {0, 1}, zr ∈ {0, 1}, δ, δr ≥ 0 (6.13)

Table 6.3: RISKALLOCATION(R,B,A, α)

constraints that have not been used in Section 6.3.1 are constrains (6.12). These

constraints ensure that the response time for request r is equal to the travel time

from base (dispatched ambulance location) to scene or a relatively high number M̂

for null assignment.

127



Chapter 7

Strategic Decision Making in EMS

Emergency Medical Systems (EMSs) are an integral part of public health-care ser-

vices. A typical EMS employs a set of Emergency Response Vehicles, ERVs (ex:

ambulances, fire rescue vehicles) that provide timely care to patients (with injuries

or illnesses) who seek immediate attention. In an EMS, a set of base stations are

strategically placed throughout the city and a fixed number of ERVs are allocated to

each base. On arrival of an emergency request, an ambulance from the nearest base

is dispatched to assist the victim. The ambulance returns back to the same base after

transferring the patient to a nearby hospital.

As the spatial distribution of resources in EMS (e.g., location of base stations

and ambulances) is controlled strategically by the operators, strategic decisions in

EMS is crucial and has major impact in EMS. Although facility location problems

in large-scale disaster response systems for rare and catastrophic events (ex: earth-

quake and hurricane) enjoy a rich history (Toregas et al., 1971; Church & Velle,

1974; Jia et al., 2007; Huang et al., 2010), progress remains slow for strategic de-

cision making in EMSs. Unlike decision making in large-scale disaster response

systems for rare and catastrophic events, the incidents in EMS happen everyday and

the patterns of how incidents happen change over time. Therefore, in this chapter,

we are focussed on strategic decision making for EMSs (Ghosh & Varakantham,

2016).

128



Specifically, we are interested in the problem of setting up new bases (how many

and where?). It is an extension of k-center facility location problem which is a well

known NP-Hard problem (Hochbaum & Shmoys, 1985). Given the exponentially

large space of possibilities (subsets of potential base stations that can be built in a

given budget) and the direct dependence of the selected base set on optimal allo-

cation of ambulances to bases, this is a computationally challenging problem. Fur-

thermore, the budget for resources (ex: expense for setting up new bases or funds

for new ambulances) is dynamic and arrives over time in different chunks and thus

makes it difficult to plan all base locations well in advance.

Towards addressing the above mentioned challenges, our key contributions are

as follows:

• We provide an incremental greedy algorithm where bases are added as long

as the marginal gain is significant. We also show that for one of the objectives

typically employed in EMS, the optimisation function is monotone submod-

ular, there by guaranteeing at least 63% of optimal performance.

• We present an accelerated version of the greedy algorithm, referred to as lazy

greedy and show that it can be utilised to optimise widely used performance

objectives, namely bounded time response and bounded risk response.

• We employ a real-life event driven simulator to evaluate the performance of

our approaches in comparison with existing benchmark approaches.

• Extensive empirical results on real-world data set from a large asian city

demonstrate that our techniques (that utilise a significantly smaller number

of bases) either outperform or provide highly competitive results in compari-

son with the best known approaches from literature.
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7.1 Theoretical Analysis of Objectives

We consider two main objectives that are widely adopted by the EMS operators:

(a) Maximise number of requests that are satisfied within a given threshold response

time (ex: 15 minutes), referred to as Bounded Time Response;

(b) Minimise the response time for a fixed percentage (ex: 80%) of requests, referred

to as Bounded Risk Response.

In this section, we show that bounded time response objective is monotone sub-

modular and bounded risk response objective is not submodular. Let B denotes a

set of bases and F (A) denotes the objective function for a given subset of bases

A ∈ 2B, where objective function, F : 2B → R is defined for a given set of requests

R, a fleet of ambulances A and a set of bases A.

Let A and B be two set of bases where A ⊂ B ⊆ B. Let ∆(A|b) denotes the

marginal gain in function F for adding a new base b ∈ B \ B to the current set of

basesA. So, ∆(A|b) = F (A∪{b})−F (A). The objective function F is submodular

if the marginal gain for adding a new base b in subset A is always higher than the

gain for adding b in superset B, i.e.,

∆(A|b)−∆(B|b) ≥ 0

.

Proposition 3. F function is monotone submodular for bounded time response ob-

jective.

Proof Sketch. Let Si ⊆ R denotes the set of requests that can be served within

15 minutes from base i, then bounded time response function F (A) for a given set

of basesA and for optimal allocation of ambulances toA (analogous to the objective

of MILP of Table (6.2)) is equivalent to | ∪i∈A Si|.

Let us have two sets of bases A and B, where B is the superset of A and rep-

resented as {A ∪ a}, then Figure (7.1) shows the graphical proof of submodularity
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of bounded time response function F by employing simple properties of set union.

Formally,

∆(A|b)−∆(B|b) = F (A ∪ {b})− F (A)− F (A ∪ a ∪ {b}) + F (A ∪ a)

= F (a ∩ {b})− F (A ∩ a ∩ {b}) ≥ 0

Hence, the bounded time response function F for a given set of requests R is sub-

modular. �

∆(A|b)−∆(A ∪ a|b)

F(A)

F(b)

F(A)

F(a)

F(b)∆(A ∪ a|b)

∆(A|b)

Figure 7.1: Bounded time response objective is Submodular

We now show that the bounded risk response objective is monotone but non-

submodular. In Figure (7.2), we provide a simple counter example to show the non-

submodularity of risk-based objective. For the ease of understanding we consider

5 requests each of which is represented by a circle. We have 3 bases represented

as square. We consider a fleet of 5 ambulances. Numbers associated with each

line denote the response time from the base to scene location. Let A denotes the

subset and A ∪ {a} represents the superset. We are interested to find the marginal

gain in α-response time for adding a new base b in both the cases. Let the tuneable

parameter α is given as 0.2, therefore 80% (or 4) requests have to be served within

δ. We assume the value of M as 100.

Using only base A, we can serve 4 requests within 15 minutes, so, the value of δ

is 15 and our objective, F (A) is 85. If we add the new base b to A, then we observe

the following optimal assignment; request 1, 2 and 5 are served from base b and

request 3, 4 are served from base A. The above assignments indicate that 4 requests

are served within 7 minutes, so, F (A ∪ {b}) is 93. The marginal gain denoted by
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Figure 7.2: Non-submodularity of risk-based objective

∆(A|b) is (93-85)=8. In case of superset (A ∪ {a}), request 1, 2 and 5 are served

from base A and request 3, 4 are served from base a. So, 4 requests are assisted

within 15 minutes and F (A ∪ {a}) is 85. If we add the base b in superset, then

request 1, 2 and 5 are served from base b while request 3, 4 are served from base a.

In this case, 4 requests are served within 5 minutes, thus, F (A ∪ {a} ∪ {b}) is 95.

The marginal gain ∆(A ∪ {a}|b) is 10. Therefore, ∆(A|b) < ∆(A ∪ {a}|b), which

proves that the bounded risk response objective is not submodular.

7.2 Strategic Decision Making using Greedy Approach

In this section, we outline our approach for strategic decision making to decide on

the number and the exact set of bases to be used. The generic model for this problem

is described in Section 6.1. We provide a generic incremental approach that can

be applied to both the objectives. We employ the well known greedy algorithm

that guarantees to provide 63% of optimal objective (Nemhauser et al., 1978) for

monotone submodular functions. Algorithm (4) provides the details of the greedy

algorithm. We start with a null base set E. In each iteration we calculate the utility

µs and optimal allocation of ambulances, A for adding each of the possible bases

s ∈ B to active base set E. Based on the objective function we need to optimise, we

employ the optimisation formulation of Table (6.2) or Table (6.3) from Section 6.3,
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to optimally allocate the ambulances to the active base set E. Then we add the

base s∗ (that provides maximum marginal gain) into E and remove it from possible

base set B. The process continues until the marginal gain for adding a new base is

significantly higher.

Algorithm 4: SolveGreedy(R,B,A)

Initialize: E ← {⊥}, it← 0;
repeat

µs,A←FindAllocation(R, E ∪ {s},A),∀s∈B;
s∗ ← argmax

s∈B
µs;

E ← E ∪ {s∗};
B ← B − {s∗};

until (max
s∈B

µs ≤ ε);

return E,A

Minor modification to the greedy approach can easily tackle the real-life de-

ployment issues such as political influences that are bound to occur in the decision

making of EMS. Because of the political influences, a subset of bases might al-

ready be determined before the decision making process. In that scenario, we need

to initialise the active base set E with the pre-determined set of bases rather than

an empty set and incrementally add the best possible bases until the given budget

constraint is satisfied.

7.2.1 Lazy Greedy Algorithm

We begin the discussion with the lazy greedy approach for optimising the bounded

time response. Evaluating F function or FindAllocation() (which requires solving

MILP of Table (6.2) from Section 6.3.1) is typically expensive even with a subset of

bases and thus applying greedy algorithm (which requires evaluation of F function

for every bases) can be computationally very expensive. Therefore, we employ a

variant of greedy algorithm called lazy greedy (Minoux, 1978) to accelerate the

convergence.
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The details of lazy greedy process is shown in Algorithm (5). Let B be the set

of available base stations and E be the current set of active bases. We initialise

E with a default base {⊥} where assignment of a request to ⊥ indicates a null

assignment. In the first iteration we calculate the gain µs for every possible bases

s ∈ B (analogous to the greedy approach). We insert the base s∗ with maximum

marginal gain into E and remove s∗ from available base set B. In the subsequent

iterations instead of computing gain ∆(E|s) for every base s ∈ B (which requires

O(|B|) computations of function F ), the lazy greedy keeps an upper bound µs for

every available base. In each iteration it extracts the base (s ∈ argmax
s′∈B

µs′) with

highest upper bound. Then it computes the marginal gain, ∆(E|s) for adding base

s to existing base set E (i.e., the difference between the utilities F (E ∪ {s}) = git

and F (E) = git−1 ) and update the upper bound µs as ∆(E|s). After this update

if µs ≥ µs′ for all s′ ∈ B, then greedy finds the best element with maximum gain

(without computing gain for a large number of elements s′) and insert base s into

resulting base set E. This process iterates until there are no available bases whose

marginal gain is higher than a predefined threshold value ε.

Proposition 4. (Leskovec et al., 2007) For a placement of bases E ∈ B with a

given fleet of ambulances A, request log R, and for each base s ∈ {B \ E} let

∆s = F (E ∪ s)− F (E). Then

max
B,A,R

F (B) ≤ F (E) +
∑

s∈{B\E}

∆s

By using Proposition (4) we can compute how far any given solution F (E) is

from the optimal solution, which can also be utilised for determining convergence.

We apply a similar lazy greedy approach to solve the bounded risk response

objective, except that we calculate the F function using MILP of table (6.3) from

Section 6.3.2. Even without the submodularity property of bounded risk response

objective, we empirically show that lazy greedy is highly competitive with existing

benchmark approaches and provide a good quality solution by utilising a signifi-

134



Algorithm 5: SolveLazyGreedy(R,B,A)

Initialize: E ← {⊥}, it← 0;
µs,A← FindAllocation(R, E ∪ {s},A), ∀s ∈ B;
g0 ← max

s∈B
µs ;

s∗ ← argmax
s∈B

µs;

E ← E ∪ {s∗};
B ← B − {s∗};
repeat

it← it+ 1;
repeat

s∗ ← argmax
s∈B

µs;

git,A← FindAllocation(R, E ∪ {s∗},A);
µs∗ ← git − git−1;
if {µs∗ ≥ µs,∀s ∈ B} then

E ← E ∪ {s∗};
B ← B − {s∗};
Break;

until True;

until (max
s∈B

µs ≤ ε);

return E,A

cantly less number of bases.

7.3 Experimental Settings

We conduct experiments on a real-world data set1 from a large asian city (adopted

from Yue et al., 2012). The data set contains a fleet of 58 ambulances and 58 base

stations. We have 1500 weeks of request logs which are generated using Poisson

distribution (Ross, 1983) with the parameters estimated from real usage data over a

period of one month. Each request log contains the following information (a) Origin

location; (b) Arrival time; (c) A set of feasible nearby bases from where the request

can be assisted; (d) Response time from each of the feasible base to scene location;

and (e) Total time required for an ambulance to return back to the origin base after

1http://projects.yisongyue.com/ambulance allocation/
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serving the request. In case of real deployment, the above mentioned details may

not be readily available for new base locations, however, it is possible to estimate

them using a straightforward method. We know the geographical locations of the

requests and hospitals from the historical data. The geographical locations of the

set of possible bases are also provided by the respective authority. Therefore, we

can find the set of feasible nearby bases for each request and estimate the expected

response and round off time for each of the possible nearby bases.

We evaluate the performance of our policy by employing a real-life event-driven

simulation model (Yue et al., 2012) based on the nearest ambulance dispatch pol-

icy. We use Sample Average Approximation [SAA] (Verweij, Ahmed, Kleywegt,

Nemhauser, & Shapiro, 2003) for validation and performance estimation. Specif-

ically, we generate 10 policies using a training data set consisting of request logs

for 10 weeks. Then we identify the policy with best validation performance over

500 weeks of request logs. Finally, we evaluate the performance of the validated

policy on 3 test data sets each of which contains 300 weeks of request logs. We

compare our approach with three existing benchmark approaches from literature (a)

Greedy approach provided by (Yue et al., 2012); (b) Risk-based optimisation ap-

proach [RBO] (Saisubramanian et al., 2015); and (c) A baseline approach where 1

ambulance is allocated to every base.

7.3.1 Simulation Model

We evaluate the performance of ambulance allocation policy on the resulting base

set using a real-life event-driven simulation model (courtesy: (Yue et al., 2012))

based on the nearest ambulance dispatch policy. The pseudo code for the event-

driven simulator is shown in Algorithm (6). We start with an event set ξ where each

element e ∈ ξ represents a request and the list is sorted based on arrival order of

requests. I denotes the set of available ambulances that are allocated according to

given policy A. ar denotes the ambulance id that is assigned for request r ∈ R.
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Initially each request is tagged as null assignment. In each iteration we pop the first

element e from the event list ξ. If the event e is a new request then we dispatch

the nearest available ambulance ar for the request and remove the ambulance from

available ambulance set I . We also insert a job-completion event in the event list

at time tr(ar), where tr(ar) denotes the time when ambulance ar will return back

to base after completing the job r . On the other hand, if the popped element e is

a job completion event for request r, then we add the ambulance ar to the set I

such that it can be used to serve a new request. This process continues until the

event list becomes empty. Once the process is finished, we can use the assignment

results to measure the responsiveness of the system such as bounded time response

or bounded risk response time for the given sample requests. We use this simulation

model to compute the performance metrics for all the benchmark algorithms.

Algorithm 6: EDSimulator(R,B,A)

Initialize: it← 0 ;
I ← A // Initialise set of available ambulance;
ξ ← R sorted in arrival order;
a = {ar|ar←⊥} //Initialise as null assignment ;
repeat

Pop next arriving event e from ξ;
if e =New Request r then

ar ← Dispatch(r, I) // Dispatch nearest free ambulance;
I ← I − {ar} // Update available ambulance;
Push job completion event at time tr(ar) into ξ;

else if e=job completion event for r then
I←I ∪{ar} // Update available ambulance;

until (|ξ| > 0);
return {ar}

7.3.2 Sample Average Approximation (SAA)

We employ Sample Average Approximation (Verweij et al., 2003) for policy vali-

dation and performance estimation. We generate M minimal base sets B1, ..., BM

and allocation policies A1, ..., AM for M sample of request logs. Then we validate

137



those policies on Nvalid samples and select the best allocation policy A∗ and base

placementB∗, which has maximum validation performance. Finally we test the per-

formance of policy (A∗, B∗) on a separate collection of Ntest samples and report the

performance statistics. We measure the performance metrics by taking average over

all the samples. For e.g., if we have N sample of request logs R = {R1, ..., RN},

then the expectation is computed using Equation (7.1) by taking average over all the

N samples.

FR(A∗, B∗) =
1

N

N∑
i=1

∑
r∈Ri

Fr(A
∗, B∗) (7.1)

Benchmark 1: (Yue et al., 2012) The primary goal of this paper is to efficiently

allocate an entire fleet of ambulances to a predetermined set of bases such that the

percentage of requests served within a certain threshold time bound is maximised.

They used a greedy approach to find the optimal allocation for ambulances in each

iteration using a real-life event driven simulator and incrementally added the ambu-

lances until the entire fleet is allocated efficiently.

Benchmark 2: (Saisubramanian et al., 2015) This paper proposes to minimise

the bounded risk (i.e., the time bound within which α% requests are served), a met-

ric employed by many EMSs, by efficiently allocating a fleet of ambulances to a

given set of bases. We provide the details of their approach in Section 6.3.2 and an

equivalent optimisation formulation given in Table (6.3).

7.4 Experimental Results

We compare our approach with respect to performance metrics such as (a) Runtime;

(b) Bounded time response: percentage of requests served within 15 minutes; and

(c) Bounded risk response: α-response time (unless otherwise stated we use α value

as 0.2). We provide five thread of results on real-world data set (a) Gain in runtime

for lazy greedy over general greedy approach; (b) Experimental validation of the
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Figure 7.3: Runtime: Greedy vs. Lazy greedy (a) Iterations wise for Bounded time
response; (b) Iterations wise for Bounded risk response; (c) With varying request
for Bounded time response; (d) With varying request for Bounded risk response

submodularity of bounded time response and non-submodularity of bounded risk

response; (c) Effect of external parameter such as risk tolerance level [α] on strate-

gic decision making; (d) Effect of external budget such as size of ambulance fleet

on two objective functions as well as on the strategic decision making (number of

required bases); and (e) Performance comparison with the benchmark approaches

on three test data sets, each contains 300 weeks of requests.

Runtime Results : Figure (7.3) plots the runtime comparison between lazy

greedy and general greedy approach. Figure 7.3(a) depicts the runtime for bounded

time response objective on a sample of around 3000 requests. X-axis denotes the it-

eration number and Y-axis represents the runtime in seconds in a logarithmic scale.

Greedy approach is unable to finish more than 20 iterations within the cut-off time

of 2 hours, while lazy greedy approach provides a significant gain over greedy

and completes the process within 10 minutes. Figure 7.3(b) shows the runtime for

bounded risk response objective. While greedy approach is unable to complete 18
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iterations within the threshold time of 2 hours, lazy greedy significantly accelerates

it and finish the process within the cut-off time. Note that the runtime for both the

greedy and lazy greedy for initial 12 iterations was equal. This is so because we

cannot serve 80% of the requests (i.e., α = 0.2) using less than 13 base stations

(because a request can only be assisted from a subset of nearby bases), and there-

fore in the initial iterations upper bound was equal for every possible bases (i.e.,

µs = M, ∀s ∈ B). So, the lazy greedy essentially search over all the possible bases,

which is equivalent to general greedy approach.

Figure 7.3(c) demonstrates the gain in runtime for lazy greedy approach where

we vary the number of requests in the X-axis. The complexity of greedy approach

grows exponentially as the number of requests increases. This is so because the

dependency between requests increases for densely populated request logs. Greedy

cannot solve problems with more than 1000 requests within the cut-off time, while

lazy greedy solves the problem with 1500 requests within 2 minutes. In the same

direction, Figure 7.3(d) demonstrates that lazy greedy significantly outperforms

greedy approach in case of bounded risk response objective.

Submodularity Results : Figure 7.4(a),7.4(b) depict the marginal gain for

adding a base in each iteration for both the objective functions. Figure 7.4(a) clearly

shows that marginal gain decreases monotonically in each iteration which validates

the submodularity property of the bounded time response objective. Figure 7.4(b)

delineates the iteration wise gain of α-response time in a logarithmic scale. As

expected, due to the non-submodularity, in few cases the marginal gain in later iter-

ation is slightly higher.

Effect of external parameter α: Figure 7.4(c) depicts the effect of parameter

α in strategic decision making for the bounded risk response objective on a fixed

sample of requests. Note that increasing α value indicates that less number of re-

quests need to be served within α-response time. Therefore, the size of resulting

base set reduces as we increase the α value.

Results on varying budget : Our model can be employed to find the right loca-
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Figure 7.4: (a) Iteration-wise gain for bounded time response; (b) Iteration-wise
gain for bounded risk response; (c) Effect of α on strategic decision making.
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Figure 7.5: Effect of fleet size for optimising (a) Bounded time response; (b)
Bounded risk response.

tion for a small set of new ambulances in addition to an existing fleet of ambulances.

For e.g., if a new budget arises for p ambulances at certain point of time, and q

number of ambulances already exists in system, then we can use our algorithm with

(p+ q) ambulances to find the minimal subset of bases such that the entire fleet can
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Figure 7.6: Quality : (a) Bounded time response; (b) Bounded risk response.

be allocated efficiently. Figure (7.5) show the performance with respect to varying

fleet size on a sample of around 3000 requests. We show the effect of varying fleet

size in the strategic decision making (ex: number of required bases) as well as in

objective value (ex: bounded time response or α-response time). We vary the ambu-

lance fleet size in X-axis, while Y-axis shows the size of active base set and Z-axis

denotes the utility. We observe the pattern is consistent, i.e., bounded time response

increases with number of ambulances (Figure 7.5(a)) and bounded risk response is

inversely proportional to fleet size (Figure 7.5(b)). For both the objectives, as we

increase the number of ambulances, we need additional bases to effectively allocate

the entire fleet of ambulances.

Results on test cases : The last and most important thread of results demon-

strate the performance comparison between all the benchmark approaches on the

test instances. We provide performance for two of our allocation policies. LG-49

represents an allocation policy (generated using lazy greedy) where the process con-

tinues until the marginal gain is positive and it produces a resulting base set of size

49. LG-43 symbolises an allocation policy with 43 bases where we stop the process

if the marginal gain is less than or equal to 2. It indicates a crucial advantage of our

approach in strategic decision making as we have the flexibility to generate strategy

based on the expectation of EMS operators and the availability of budget to con-

struct the base stations. Figure 7.6(a) plots the normalised bounded time response

value for all the test cases. Y-axis represents the percentage of requests served
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within 15 minutes. As each of the test cases involves 300 weeks of request logs, we

report the average utility using SAA. In all the test cases our allocation policy (even

with lesser number of bases) outperforms the existing benchmark approaches and

provide almost 2% gain in bounded time response.

Figure 7.6(b) illustrates the performance comparison on α-response time. LG-

39 symbolises an allocation policy with 39 bases that is generated using lazy greedy.

Interestingly by utilising less than 70% of total bases, our approach significantly

outperforms the baseline approach and is highly competitive with other two bench-

mark approaches.

7.5 Summary

In this chapter, we present a promising approach for placement of bases and ambu-

lances in EMS. We employ an incremental greedy approach that identifies the base

with maximum marginal gain in each iteration and add it to the resulting base set.

A lazy greedy approach is further utilised to accelerate the convergence and the de-

rived policy is evaluated using a real-world event driven simulator. We show that our

approach can be utilised to optimise crucial performance metrics such as bounded

time response and bounded risk response. The empirical results on real-world data

set demonstrate that our approach significantly improves the service level of EMS

over existing benchmark approaches.
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Chapter 8

Improving Operational Decisions of

EMS

In order to sustain and maintain the efficiency of an EMS, it is important to improve

the operational decisions either by optimising allocations of ambulances to base sta-

tions or by improving strategies to dispatch ambulances to incidents. Furthermore,

we need to dynamically redistribute the ambulances on a regular basis to tune with

the changes in the patterns of spatio-temporal distribution of emergency incidents.

Therefore, in this chapter, we focus on improving the operational decisions of EMS.

Specifically, our goal is to find the dynamic allocation (e.g., allocation changes on

every weekdays) of an entire fleet of ambulances to a given set of bases (Ghosh &

Varakantham, 2018).

As explained in Chapter 6, the recent papers (Yue et al., 2012; Saisubramanian

et al., 2015) in improving the operational decisions of EMSs have utilised the data-

driven models to optimise performance metrics such as bounded time response (per-

centage of requests served within a threshold time bound) or bounded risk response

(response time within which a fixed percentage of requests are served). However,

both the optimisation models of Table (6.2) and (6.3) present the real-world dynam-

ics of EMS approximately. Specifically, the ambulance dispatch rules are avoided

while generating ambulance allocation. Therefore, the optimiser has the flexibil-
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ity to follow an omniscient dispatch rule to optimise the objective function, which

“overfits” the solution according to training incidents. However, the use of omni-

scient dispatch is not realistic since the optimisation occurs over a different evo-

lution of emergency response dynamics than the one that happens on the ground.

Therefore, the real-world EMS operators generally dispatch the nearest available

ambulance to efficiently respond to an emergency request.

The existing papers tackle this issue using the following two approaches: (a) Yue

et al. (2012) proposed a greedy approach to incrementally allocate one ambulance at

a time using an event-driven simulator that follows the nearest available ambulance

dispatch strategy. They employ the bounded time objective where the goal is to

maximise the number of incidents served within a fixed time. However, the solution

of this greedy approach can be far away from the optimal due to its myopic nature

(one request at a time) and as the bounded time response metric is not sub-modular;

(b) On the other hand, Saisubramanian et al. (2015) generated an allocation that

minimises response time with a bounded risk (i.e., percentage of incidents that can

have response times higher than the objective) using a linear optimisation model

that follows an omniscient dispatch policy. They then evaluate the obtained solution

using a simulator with the nearest available ambulance dispatch strategy to get the

actual objective value. We observe that there might be a significant gap between

the objectives of the optimisation model and the simulation model, as they follow

different dispatch strategies. Therefore, the solution of the optimisation model does

not provide any quality guarantee.

In order to reduce the response times for emergency requests, we need to con-

sider both these operational (day-to-day) inefficiencies simultaneously: (a) alloca-

tion of all ambulances (and not one by one) to base stations; and (b) dispatch of the

”right” ambulances to the emergency requests. To tackle the above mentioned issues

and to bridge the gap between the optimisation model and the real-world scenarios

(i.e., the event-driven simulation provided in Algorithm 6), we provide a dispatch

guided optimisation approach for allocating all ambulances to base stations. We
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specifically consider the widely used bounded time objective employed by Yue et

al. (Yue et al., 2012). To that end, our key contributions are as follows:

• We provide a novel Integer Linear Programming (ILP) model for dynamic

allocation of ambulances that incorporates the real-world ambulance dispatch

strategies as linear constraints. This allows for exactly imitating the real dy-

namics of EMS when optimising the allocation.

• As the proposed ILP and its equivalent constraint programming (CP) mod-

els suffer with scalability issues when the number of emergency requests are

increased, we provide two novel heuristic approaches to solve the problems

with large number of incidents.

• By employing an event-driven simulation model based on two real-world

EMS data sets, we empirically show that our proposed heuristic approaches

can consistently and in some cases significantly improve the efficacy of EMS

over the existing benchmark approaches.

8.1 Dynamic Redistribution of Ambulances

Dynamic ambulance redistribution problem is an extension of the static version of

the ambulance allocation problem in a given set of bases, which was previously ex-

plained in Section 6.1. The only difference is that we now need to generate separate

allocation of ambulances for different weekdays or the allocation might change at

different time of the day. For this problem, we consider the widely used perfor-

mance metric of EMS called bounded time response (i.e., maximise the number of

requests served within a given threshold time bound). This problem is referred to as

Dynamic Ambulance Allocation Problem (DAAP). We employ the following tuple

to represent the DAAP: < B,A,R,T ,C, L >

B denotes the set of base locations and A represents a fleet of ambulances. R

denotes a set of emergency requests for a particular weekday (e.g., incident logs of
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consecutive ten Mondays). Each request r ∈ R is a tuple 〈t, s, h,Br, µr, λr〉. t, s, h

denote the arrival time, source location and destination hospital for the particular

request r. Br represents a set of nearby base stations from which the request r

can be served. µr provides the response times for each of the nearby bases in Br.

Specifically, if Br = {l1, l2, ...}, then µi
r denotes the response time from base li. For

the ease of representation, we assume that the nearby base set Br is sorted according

to the response times. That is to say, µi
r ≤ µi+1

r . λr provides the round-about times

(i.e., the total time required for an ambulance to return back to the origin base after

serving the request) for the nearby bases, where λir denotes the round-about time for

base li. T provides travel time between any two base locations and C denotes the

capacities of the bases. Finally, L represent the utility function, which is defined as

follows:

Lrl =


1 if Tl,r.s ≤ ∆

0 Otherwise

Where, ∆ denotes the threshold response time bound provided by the EMS oper-

ators. Intuitively, a reward of 1 unit is provided if a request is served within the

threshold time. With the given DAAP input tuple, our objective is to find an effi-

cient dynamic1 allocation of an entire fleet of ambulances, A to a given set of base

stations, B that maximises the percentage of requests which can be served within

the given threshold time bound, ∆. This is also referred to as the bounded time

objective provided by Yue et al. (Yue et al., 2012).

We first propose an exact Integer Linear Programming (ILP) formulation for

efficiently solving the DAAP. This exact formulation can also with minor modi-

fications be converted to a Constraint Program (CP). However, as the two exact

models do not scale to problems with large number of requests, we provide two

novel heuristic approaches to improve scalability of our solution.

1For dynamic allocation, the allocation strategy changes on every weekday. For instance, to
generate the allocation strategy for a Monday, we considerR as the set of requests of past Mondays.
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8.1.1 Integer Linear Programming Formulation

We first provide a compact ILP formulation to find an optimal allocation for a fleet

of ambulances, A to the given set of bases, B by extending the optimisation model

of Table (6.2). A request r ∈ R can be served from a feasible set of nearby bases,

{Br ∪ ⊥}, where ⊥ denotes a null assignment (i.e., the request cannot be served).

Let, xrli denotes a binary assignment variable, which is set to 1 if the request r is

served from base li ∈ {Br ∪ ⊥}. Let, al is an integer variable which denotes the

number of ambulances allocated to base l ∈ B. al can be set to any value between

0 and the base capacity Cl. Our objective in the ILP is to find an efficient allocation

that maximises the utility function, L.

max
a,x

∑
r∈R

∑
li∈Br

xrliLrli

To represent the evolution dynamics of EMS exactly, we now describe the con-

straints. Please note that the description of dispatch constraints is novel and the title

of dispatch constraint description is highlighted in bold below:

A request can only be assigned to one base station: This set of constraints ensure

that only one ambulance from one of the feasible nearby bases is dispatched to assist

an emergency incident. If all the nearby bases are empty when the request arrived

into the system, the request is assigned to a dummy base ⊥ and we label it as a null

assignment. ∑
li∈{Br∪⊥}

xrli = 1, ∀r ∈ R

A request can be served from a base if it has at least one ambulance available:

Let P li
r denotes the set of parent requests for r that are served from base li. More

specifically, a requests r′ belongs to the parent set P li
r , if it has arrived in the system

before request r and if an ambulance is assigned from base li for request r′, then

the assigned ambulance is still busy in serving r′ when the request r has arrived.

Therefore, these set of constraints enforce that if all the ambulances of a base li are
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busy in serving the parent requests of r (i.e.,
∑

j∈P li
r
xjli = ali), then the request r

cannot be served from base li.

xrli +
∑
j∈P li

r

xjli ≤ ali , ∀r ∈ R, li ∈ Br

The entire fleet of ambulances has to be allocated: This constraint assures that each

ambulance is allocated to one of the base stations.

∑
l∈B

al = |A|

The nearest available ambulance needs to be dispatched for assisting an emer-

gency request: As mentioned previously, we assume that the set of nearby bases,

Br from which a request r can be served is sorted according their response times.

So, the logical constraints (8.1) ensure that a request is always served from the near-

est base with more than one idle ambulance. Precisely, constraints (8.1) enforce that

a request r must be assisted from a base li ∈ Br where more than one ambulance is

present and all the other bases from which request r can be served faster are empty

when the request has arrived.

∑
k≤i

xrlk ≥ 1 if ali −
∑
j∈P li

r

xjli︸ ︷︷ ︸
#ambulance available at base li

≥ 1 (8.1)

To linearise these constraints we introduce a binary variable brli which is set to 1 if

more than one ambulance is available in base li ∈ Br when the request r has arrived.

brli =


1 if

∑
j∈P li

r
xjli ≤ ali − 1

0 Otherwise
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The logical definition of these binary variables, b can easily be linearised using the

following set of linear constraints, where Cli denotes the capacity of base li.

ali −
∑
j∈P li

r

xjli ≤ Cli · brli ∀r ∈ R, li ∈ Br

ali −
∑
j∈P li

r

xjli ≥ Cli · (brli − 1) + 1∀r ∈ R, li ∈ Br

We can now replace the logical and non-linear dispatch constraints (8.1) by using

the following linear constraints.

∑
k≤i

xrlk ≥ brli ∀r ∈ R, li ∈ Br

An efficient alternative for the dispatch constraints: Let, |B̄| denotes the average

number of nearby bases for each of the incidents. To represent the dispatch policy

according to the above mentioned approach, we need to introduce |R| × |B̄| binary

variables and 3× |R| × |B̄| linear constraints. Due to these large number of newly

introduced binary variables and constraints, the prior approach for incorporating

the dispatch constraints performs poorly. Therefore, in this section we provide a

simplified and compact representation of the dispatch constraints (8.1). According

to constraints (8.1), we just need to ensure that a request is served from a base with

an idle ambulance if other adjacent bases (from which the request can be served

faster) are empty. As the assignment variables, x are binary, it would be adequate if

we can ensure that the value of
∑

k≤i xrlk (i.e., sum of all the assignment variables

for bases whose response times are less than or equal to the one for base li) is greater

than zero and less than or equal to one. These conditions can be imposed using

constraints (8.2), where Cli denotes the capacity of the base li (i.e., the maximum

number of ambulances the base li can hold at a time). Specifically, we normalise

the right-hand side value of constraints (8.2) to ensure that it is always bounded

between 0 and 1. Note that, as Cli is a given input, the constraints (8.2) are linear in
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nature.

∑
k≤i

xrlk ≥
1

Cli

[
ali −

∑
j∈P li

r

xjli︸ ︷︷ ︸
#ambulance available at base li

]
∀r ∈ R, li ∈ Br (8.2)

We show the entire ILP model for the ambulance allocation problem compactly

in Table (8.1). We refer to this approach as ILP in the later sections.

max
a,x

∑
r∈R

∑
li∈Br

xrliLrli (8.3)

s.t.
∑

li∈{Br∪⊥}

xrli = 1, ∀r ∈ R (8.4)

xrli +
∑
j∈P li

r

xjli ≤ ali , ∀r ∈ R, li ∈ Br (8.5)

∑
l∈B

al = |A| (8.6)

∑
k≤i

xrlk ≥
1

Cli

[
ali−

∑
j∈P li

r

xjli
]
∀r ∈ R, li ∈ Br (8.7)

al ∈ {0, 1, ..., Cl}, xrli ∈ {0, 1} (8.8)

Table 8.1: FINDALLOCATIONWDISPATCH(R,B,A)

8.1.2 Constraint Programming

As the optimisation model of Table (8.1) cannot be solved optimally with more

than few hundred emergency requests using state-of-the-art black-box optimisation

solvers such as CPLEX, we now provide an alternative constraint programming (CP)

model of Table (8.1). For every allocation variable, al we have created variable

allocation[l] whose domain range is defined as {0, 1, ..., Cl}. Similarly, for the

assignment variables, xrl we created variable assignment[r][l] whose domain

range is defined as {0, 1}. With these definition of variables, the equations (8.3)-

(8.7) of Table (8.1) can be translated to CP. We refer to this approach as CP.

151



8.1.3 Continuous Assignment

Unfortunately, neither the ILP nor the CP model can be solved optimally within our

threshold time-limit of 12 hours. Therefore, we now provide an heuristic approach

which can be solved within a minute with large number of emergency incidents. We

essentially modified the MILP of Table (8.1) by relaxing the 0/1 assignment vari-

ables to a probabilistic or continuous assignment. The revised optimisation model

is shown in Table (8.2), where we modified the assignments, x from discrete or

binary to continuous variables. However, as the allocation variables, a remain inte-

ger, we are still allocating each ambulance to exactly one base station. Therefore,

the solution of the optimisation problem will provide a valid ambulance allocation,

which can be executed on the event-driven simulator delineated in Algorithm (6) to

obtain a valid and integral assignment for each request and to compute the actual

utility of the allocation strategy. Although the objectives of the optimisation prob-

lem and the simulation model might not be synchronised, we experimentally show

that this approach provides reasonably better solution than the above mentioned ex-

act approaches. This approach is referred to as Relaxation in the later sections.

max
a,x

∑
r∈R

∑
li∈Br

xrliLrli

s.t. Constraints (8.4), (8.5), (8.6) and (8.7) holds

al ∈ {0, 1, ..., Cl}, 0 ≤ xrli ≤ 1 (8.9)

Table 8.2: FINDRELAXEDALLOCATION(R,B,A)

Observation 4. If all the base stations have single capacity (i.e., al ∈ {0, 1}), then

the optimisation model of Table (8.2) provides an optimal and integral solution.

Proof: In case of single capacity base stations, the allocations a become binary

variables. Therefore, when the first request r arrives in the system, constraints (8.7)

enforce that the assignment variable xrl is set to 1 if base l is the nearest base for
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request r and al = 1. If the nearest base is empty, then this logic is applicable for

the second nearest base and so on. Henceforth, no request can be served from base

l, until the ambulance returns back to the base after serving the request. Due to this

reasoning, the value of the right-hand side of constraints (8.7) can only be either 0

or 1. Hence, the assignment variables, x for all the requests can take either 0 or

1. Therefore, even with continuous assignment variables, x the optimisation model

of Table (8.2) provides an integral solution and is equivalent to our ILP model of

Table (8.1). �

8.1.4 Two-stage Optimisation

In this section, we provide another heuristic approach to find an efficient ambulance

allocation. We propose a two-stage hierarchical approach2, where a preliminary

allocation is generated for a subset of ambulances in the first stage and then we

utilise that to guide the solution of the second stage for achieving allocation of the

entire fleet of ambulances. In the first stage, we solve the MILP of Table (8.1) as a

linear program (LP). That is to say, we relax both the allocation, a and assignment,

x variables from integer to continuous one. The LP formulation for the first stage

optimisation problem is shown in Table (8.3).

max
a,x

∑
r∈R

∑
li∈Br

xrliLrli

s.t. Constraints (8.4), (8.5), (8.6) and (8.7) holds

0 ≤ al ≤ Cl, 0 ≤ xrli ≤ 1 (8.10)

Table 8.3: FINDLPALLOCATION(R,B,A)

The LP solution provides a sense of best possible fractional allocation and there-

fore, we utilise this solution to compute the final integral and feasible solution in the

second stage. Let â denotes the allocation that we obtained from the LP solution

2Note that, our two-stage optimisation is a single-shot (i.e., non- iterative) hierarchical approach.
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of Table (8.3). We use the following rounding approach to obtain an initial integral

allocation, ā from â.

āl =


dâle if âl − bâlc ≥ ρ

bâlc Otherwise

Precisely, the integral allocation for base l (i.e., āl) is set to the next integer value

of âl (i.e., bâlc+ 1) if the fractional part of âl (i.e., the difference between âl and its

integral part, bâlc) is greater than ρ (0.5 < ρ < 1) and otherwise we fix the value

of āl as the integral part of âl. ā provides a valid allocation for a subset of ambu-

lances. As all the ambulances are homogeneous, it does not matter which specific

subset of ambulances are allocated a priori. However, ā does not allocate the entire

fleet of ambulances. We then utilise the values of ā to guide the original MILP

of Table (8.1). In the second stage, we essentially solve the MILP of Table (8.1)

with additional set of constraints (8.11), which enforce that at least āl ambulances

need to be allocated in base l ∈ B. The second stage optimisation model is shown

compactly in Table (8.4). Note that the optimisation problem of Table (8.4) is less

computationally challenging than the one of Table (8.1). This is so, because we

manually fix the allocation for a subset of ambulances and therefore, the optimiser

need to search for an allocation of only |A| − |ā| ambulances. However, the com-

plexity of the second stage optimisation model depends on the value of the given

parameter ρ. If the value of ρ is high (i.e., close to 1), then the number of allocated

ambulances from the first stage solution (i.e., ā) would be low and therefore, the

second stage problem would be harder to solve. On the other hand, the overall solu-

tion quality will deteriorate if the value of ρ is low. We experimentally observe that

the right trade-off between the runtime and the solution quality can be found if ρ is

equal to 0.95 and therefore, we set the value of ρ to 0.95 in our default settings of

experiments. This approach is referred to as TwoStage.
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max
a,x

∑
r∈R

∑
li∈Br

xrliLrli

s.t. Constraints (8.4), (8.5), (8.6), (8.7) and (8.8) holds

al ≥ āl ∀l ∈ B (8.11)

Table 8.4: FINDTWOSTAGEALLOCATION(R,B,A)

8.2 Experimental Results

We conduct experiments on two real-world data sets. We obtain the dataset-1 from

a real-world EMS in the form of anonymous and modified sample of request logs.

The dataset-2 3 is adopted from Yue et al. (2012). Both the data sets provide de-

tails of emergency requests over a certain period. Each request log contains the

following information (a) Incident location; (b) Arrival time; (c) A set of feasible

nearby bases from where the request can be assisted; (d) Response time from each

of the feasible base to incident location; and (e) Round-about time for each of the

feasible base. While these specific details might not always be readily available for

real deployment, as indicated in Ghosh and Varakantham (2016), we can estimate

them using a straightforward method. As the geographical locations of the requests,

hospitals and bases are available in the historical data sets, we can compute the set

of feasible nearby bases and predict the response and round-about times for each of

these bases.

Results on dataset-1: The dataset-1 contains a fleet of 35 ambulances and 35

base stations. We have an anonymous request sample over a period of six months.

We divide our 6 months of data set into two parts - first 3 months is used for training

purpose to generate the allocation policies and the performance of these policies

are tested on other 3 months of data. We evaluate the performance of our approach

by employing a real-life event-driven simulation model (refer to Algorithm 6 for

the details of simulator) which follows the nearest available ambulance dispatch

3An anonymous sample is available here: http://projects.yisongyue.com/ambulance allocation/
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rule. We compare our approach against the existing greedy approach provided by

Yue et al. (2012), which incrementally add one ambulance in each iteration using

a real-life event driven simulator until the entire fleet is allocated. We refer to this

approach as Greedy. We do not provide comparison results against the approach

proposed by Saisubramanian et al. (2015), as their objective is to miminize response

time for a fixed percentile of requests, which is different from the metric of interest

in our paper (i.e., maximising the number of requests served within a threshold time

bound). Due to different objective functions, we experimentally observe that the

approach from Saisubramanian et al. (2015) produced worse quality solutions than

the greedy approach proposed by Yue et al. (2012).

Solution quality of the heuristic approaches: The ILP or CP cannot solve the

large-scale problems optimally within our imposed time-limit of two hours. How-

ever, these exact approaches can be solved optimally for very small problems with

only a few hundred requests. We experimentally observe that our heuristic ap-

proaches provide good quality solutions in comparison to the optimal for these

small instances. For instance, our two-stage optimisation approach is only 1.5%

away from the optimal. However, in our problem instances, we have a few thou-

sands training incident requests. So, we can only get a sense of ILP optimum from

the optimality gap provided by black-box solvers such as CPLEX. Unfortunately,

these gaps are loose and are far away from the optimal solution (specifically for the

ILP) and hence are unreliable.

Greedy ILP CP Relaxation TwoStage
Mon 58.97 % 57.96 % 57.56 % 60.10 % 60.46 %
Tue 59.15 % 44.95 % 56.12 % 60.76 % 60.16 %
Wed 59.27 % 47.51 % 57.43 % 61.76 % 62.52 %
Thu 60.27 % 59.32 % 57.96 % 62.86 % 62.42 %
Fri 59.87 % 59.81 % 52.83 % 61.68 % 61.92 %
Sat 63.65 % 63.16 % 63.47 % 66.69 % 66.80 %
Sun 65.76 % 67.44 % 67.05 % 70.06 % 69.46 %

Table 8.5: Performance comparison on testing data of dataset-1
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Performance comparison: We now demonstrate the performance comparison

between our approaches and the greedy approach on testing data of dataset-1. Ta-

ble (8.5) shows the comparison results for all the weekdays. Our key performance

metric is the percentage of requests that are served within 8 minutes. We observe

that the solution quality of CP and ILP is worse than the existing greedy approach.

This is so because we impose a time-limit of two hours for both the approaches and

none of these approaches can be solved optimally within our time-limit. On an av-

erage, the optimality gap for ILP was more than 20%. However, both our heuristic

approaches (i.e., two-stage optimisation and relaxation approach) outperform the

greedy approach. On an average, both these heuristics can serve around 63.4%

requests within 8 minutes. Most importantly, for all the weekdays, our heuristic

approaches serve around 2.4% additional requests within the threshold time bound

(i.e., 8 minutes) over the existing greedy approach.
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Figure 8.1: Performance comparison by varying ambulance fleet size: (a) Training
results on weekday; (b) Testing result on weekday; (c) Training result on weekend;
and (d) Testing result on weekend.
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Effect of ambulance fleet size: In this thread of results, we demonstrate the per-

formance comparison between different approaches on dataset-1 by varying the

ambulance fleet size. We use the same training and testing data set for these ex-

periments. Figure 8.1(a)-(b) depict the performance comparison on training and

testing data set for one of the weekdays. In the X-axis we vary the number of am-

bulances and Y-axis shows the percentage of requests served within 8 minutes. Due

to the scalability issue, ILP and CP yield poor quality solution than our heuristic

approaches for all the settings of ambulance fleet size. Both the two-stage opti-

misation and relaxation approach always outperforms the greedy approach. More

interestingly, the gain over the greedy approach increases if we decrease the number

of ambulances. This insight clearly indicates that the performance of the existing

greedy approach degrades for EMS with limited resources and our approaches are

suitable to tackle such scenarios.

Figure 8.1(c)-(d) demonstrate the performance comparison on training and test-

ing data set for one of the weekends. We observe a similar pattern for these results.

Our heuristic approaches always produce better solution than the greedy approach,

specially when we have fewer ambulances. For instance, the performance gain of

our two-stage optimisation approach over the greedy approach on testing data set

increases from 0.6% to 4.2% when the ambulance fleet size is reduced from 50 to

30.

Results on dataset-2: The dataset-2 contains a fleet of 58 ambulances and 58 base

stations. We have 1500 weeks of request logs. We use Sample Average Approxi-

mation [SAA] (Verweij et al., 2003) for validation and performance estimation. We

generate 10 policies for each of the weekdays, where each policy is generated using

request logs of that particular weekday for 10 consecutive weeks (e.g., the second

policy for Monday is generated using requests of all the Mondays from week 11 to

week 20). Then we identify the policy with best validation performance for each of

the weekdays separately over 500 weeks of request logs. Finally, we evaluate the
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performance of the validated policies on 3 test data sets each of which contains 300

weeks of request logs.
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Figure 8.2: Performance comparison on dataset-2: (a) First testing set; (b) Second
testing set; and (c) Third testing set.

We now present the performance comparison results on the testing data of dataset-

2. Figure 8.2 depicts the comparison on three testing data sets. The X-axis denotes

the weekdays and the Y-axis represents the percentage of requests served within 15

minutes. As each of the test cases involves 300 weeks of request logs, we report the

average utility using SAA. Figure 8.2(a) plots the bounded time response value for

the first testing data set. As shown clearly, our two-stage optimisation almost always

provides the best performance over other approaches, while our relaxation approach

is proven to be highly competitive with two-stage optimisation approach. Although,

none of the CP and ILP can be solved optimally, CP provides a reasonably better

quality solution than ILP within the time-limit of two hours. For all the weekdays,

our two-stage optimisation approach provides at least 1.5% gain in bounded time

response value over the greedy approach.
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Figure 8.2(b) and 8.2(c) depict the performance comparison results on second

and third testing data sets. We observe a consistent pattern on the performance

over all the three testing data sets. As shown in Figure 8.2(b), both the two-stage

and relaxation heuristics are able to serve 1.6% extra requests within the threshold

response time over the greedy approach for second testing data set. Figure 8.2(c)

demonstrates that, for third testing data set, both the two-stage and relaxation heuris-

tics provide at least 1.45% performance gain on all the weekdays and improve the

average bounded time response value by 1.6% over the greedy approach.

8.3 Discussion

We now discuss about directions that we explored in addition to the approaches de-

scribed above. We believe that these approaches have potential and can be improved

in the future.

Benders decomposition: By exploiting observation (4), we can ensure that con-

tinuous assignment guarantees to provide an optimal and integral solution for our

original problem if all the bases have single capacity. A straightforward method

to translate our problem into single capacity base station problem is to create Cl

single capacity bases at the location of base l. The response and round-about times

for a request r from all the Cl bases will be same as the response and round-about

time for base l. The number of feasible nearby bases for a request r will now in-

crease from |Br| to
∑

l∈Br Cl. Once we have a continuous assignment problem with

single capacity bases, it will be an ideal ground for applying Benders decomposi-

tion (Benders, 1962), where master solves the allocation problem and slave takes

the assignment decisions. Our initial experiments show that due to significant in-

creases in the number of variables and constraints, this particular translation results

in a large optimality gap even with Benders decomposition. However, these insights

lead to a promising direction for improving our solutions in the future.

SAT representation: The reformulated single capacity base problem is a 0/1 inte-
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ger program and can be translated to a satisfiability problem. As we have an optimi-

sation problem, we can translate it to a partial max-SAT (Argelich & Manya, 2007;

Koshimura, Zhang, Fujita, & Hasegawa, 2012) representation, where our objective

function can be converted to following soft clauses: xrl, ∀r ∈ R,∃l, Tr.s,l ≤ ∆

Constraints (8.4) can be translated to a set of hard clauses (8.12). The clauses (8.13)-

(8.14) are equivalent to constraints (8.5). The clauses (8.15) exactly represent the

constraints (8.7).

¬xrli ∨ ¬xrlj ∀r ∈ R, li, lj 6= li ∈ Br (8.12)

ali ∨ ¬xrli ∀r ∈ R, li ∈ Br (8.13)

¬xrli ∨ ¬xjli ∀r ∈ R, li ∈ Br, j ∈ P li
r (8.14)

¬ali ∨k≤i xrlk ∨j∈P li
r
xjli ∀r ∈ R, li ∈ Br (8.15)

However, to the best of our knowledge, there is no explicit way to represent the

constraints (8.6) as SAT clauses. A brute-force approach would be employing the

following set of hard clauses (8.16)-(8.18), where dcl variable is set to 1 if the am-

bulance c is allocated to base l. However, this brute-force approach increases the

number of variables and clauses significantly and therefore, state-of-the-art partial

max-SAT solvers fail to solve it efficiently. So, discovering an efficient and compact

SAT representation would be a potential future direction.

¬dcli ∨ ¬dclj ∀c ∈ A, li, lj 6= li ∈ B (8.16)

¬dcil ∨ ¬dcj l ∀ci, cj 6= ci ∈ A, l ∈ B (8.17)

¬al ∨c dcl ∀l ∈ B (8.18)

8.4 Summary

In this chapter, we provide dispatch guided optimisation approaches for effective

and dynamic allocation of ambulances to base locations. We propose a novel op-
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timisation model by incorporating the real-world ambulance dispatch strategy and

show that the optimisation model follows the real evolution dynamics of EMS. As

the proposed optimisation model suffers scalability issues, we provide two novel

heuristic approaches to increase scalability to large number of emergency incidents.

The empirical results on two real-world EMS data sets demonstrate that our heuris-

tic approaches always outperform the existing best known approach.
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Chapter 9

Conclusion

The rapid urbanisation and uncoordinated usage of resources result in a natural mis-

match of supply and demand of public resources, which has considerably impacted

the efficacy of urban transportation and health & safety. Moreover, due to these rea-

sons, today’s cities are experiencing major concerns such as global warming, traffic

congestion, high carbon emission, delay in emergency response, etc. To alleviate

these growing concerns, this thesis presents novel techniques to improve the effi-

ciency of urban environments using intelligent strategic and operational decisions.

To reduce the usage of private vehicles and increase the utilisation of green mode

of transportation such as bike sharing systems, three operational decision making

approaches have been proposed so as to proactively redistribute the idle bikes to

better meet the future demand: (a) In case of consistent demand pattern, a dynamic

redistribution model is proposed by considering future demand for multiple time

periods. In addition, decomposition and abstraction mechanisms are presented to

speed up the solution process; (b) In case of demand with high variance, an online

and robust redistribution solution is proposed by exploiting the possible uncertain-

ties in demand; and (c) On the contrary to using fuel burning mode of vehicles for

redistribution, bike trailers are utilised for redistribution tasks and a budget feasible

mechanism is designed to incentivise the customers for executing those redistribu-

tion tasks. To reduce the response times for emergency needs, the following key
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ideas have been proposed: (a) A greedy approach is presented for the placement

of base stations on top of an optimisation model for the allocation of ambulances

to bases; and (b) A complete data-driven optimisation model is demonstrated by

incorporating all the real-world dynamics of EMS for dynamic redistribution of

ambulances. The above mentioned techniques are validated on real-world data sets

and proven to be effective than the current practices.

Future Research: This thesis explores new directions in urban transportation

and health & safety, that need further examination and analysis. For the future

research, we highlight the following open questions and directions:

Demand estimation: The efficacy of demand estimation techniques is an important

pillar for designing intelligent dynamic matching solutions for BSSs. The demand

estimation in a BSS has two critical components: (a) identifying the unobserved lost

demand due to unavailability of bikes or open docks; and (b) estimating the future

demand for bikes and open docks. Identifying unobserved lost demand is criti-

cal and challenging in many real-world problems including retail planning. While

we propose a few heuristic approaches in Chapter 3 for estimating unobserved lost

demand, the accuracy of these techniques cannot be verified due to unavailability

of realised demand information. Therefore, a detailed investigation is required in

future to address this issue. A thought-provoking insight is that this unobserved

lost demand prediction problem at an empty station is equivalent to predicting cus-

tomer demand at a location where no bike station is situated for a particular period

(i.e., when the station is empty). Recently, Singhvi, Singhvi, Frazier, Henderson,

O’Mahony, Shmoys, and Woodard (2015) propose insights for predicting spatio-

temporal bike usage demand at locations, where bike stations are not placed, using

exogenous and relevant features such as spatio-temporal taxi demand and meteo-

rology information. Hence, leveraging these insights and techniques would be a

potential future direction for estimating unobserved lost demand in BSSs.

For representing the future customer demand, we employ Poisson distribution
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where the mean of the distribution is learnt from historical data. While Poisson dis-

tribution has been widely adopted to represent the random demand arrival process,

it may not be the best approach if the demand follows consistent patterns. Recently,

Li, Zheng, Zhang, and Chen (2015) generated a set of clusters by grouping nearby

bike stations based on their geographical proximity and historical transition patterns

of bikes among stations and proposed machine learning technique (based on Gra-

dient Boosting Regression Tree method) along with efficient inference methods for

predicting future demand for these clusters. However, for improving efficacy of dy-

namic repositioning, we need the understanding of station-wise temporal demand.

Therefore, there is a practical need to further examine these sophisticated machine

learning techniques for an accurate prediction of future demand for individual sta-

tions.

Amalgamation of proactive and reactive decision making: This thesis focuses

on data-driven proactive decision making, which is effective for regular and con-

sistent scenarios. However, if there is a sudden and adverse change in the demand

pattern (e.g., a major concert or festival in the city, outburst of infectious diseases)

which was never observed in the past, then the proactive solutions fail to adapt

such evolution. Therefore, another promising direction is to develop solutions that

simultaneously exploit the proactive decisions learnt from the historical data and ex-

plore the current scenarios to generate reactive decisions so as to adapt the adverse

changes in demand pattern.

Generalisation of spatio-temporal abstraction: Large-scale urban decision mak-

ing problems generally observe an inherent trade-off between the solution qual-

ity and runtime complexity. To tackle this challenge, we employ spatio-temporal

abstraction techniques. In this thesis, we empirically show that our proposed ge-

ographical proximity based abstraction technique and temporal abstraction in the

form of decision period produce reasonably good quality solutions. However, as

grouping of stations with similar behaviour can potentially improve the quality of

dynamic repositioning solutions, an open and promising direction is to develop a
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spatio-temporal abstraction technique that can simultaneously take into account the

historical demand patterns, the resource transition patterns and the spatial informa-

tion of stations and furthermore, can be generalised to other similar urban settings.

In addition to the previously mentioned open questions, our proposed solutions

can be extended in the following directions to address more complex dynamics,

scenarios and boundary conditions:

Enhancing solutions for station-less BSS: Our proposed techniques for opera-

tional decision making in BSS assume that there is a fixed set of base stations with

finite docking capacity. However, several real-world BSS operators adopt the no-

tion of mobile docking (i.e., station-less BSS), where bikes (embedded with GPS

tracker) can be dropped anywhere in the city. Therefore, extending our solutions for

the BSS with mobile docking would be a promising future direction. A straightfor-

ward direction to employ our solutions for these systems is to split the city into a set

of clusters or zones and consider each zone as a base station with infinite capacity.

However, there is a trade-off between scalability and usefulness of repositioning so-

lutions while choosing the size or number of zones and therefore, a critical issue is to

efficiently divide the city into various zones so that the dynamic repositioning prob-

lems can be solved without compromising the solution quality. Furthermore, our

mechanism from Chapter 5 can be extended for incentivising customers to change

their destination location in order to rebalance these station-less BSSs.

In addition, our solutions can be extended for the following incremental problems:

• Online policy with multi-step demand: We show that the offline policies are

efficient if the demand patterns are consistent, while we need a robust and

online solution approach if the future demand is unpredictable and has higher

variance. Therefore, generating online policies by considering the future ex-

pected demand for multiple time steps would be an interesting direction to

better account for the future demand surges.

• Couple the redistribution problem of vehicles and bike trailers: There is a
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practical need to jointly model the dynamic redistribution problem for vehi-

cles and trailers and discover an efficient solution while ensuring the central

budget constraint. Furthermore, a budget feasible mechanism needs to be de-

signed by considering the uncertainties in completion time of the trailer tasks.

Enhancing EMS solutions for multi-tiered incidents: Our proposed techniques

for strategic and operational decision making in EMS assume that all the incidents

are identical in terms of criticality. However, some real-world EMS operators have

introduced the notion of multi-tiered incidents, i.e., the incoming emergency re-

quests are categorised into various priority level and are treated with difference risk

factor. For instance, the higher priority requests are generally critical in nature and

the pre-defined threshold response time for these requests is lower than other types

of requests. Therefore, extending our proposed models with tiered incidents and

tiered ambulances would be a promising future direction.

Exploring multi-agent aspect of resource redistribution problems: In this the-

sis, we explore problems from a single agent’s perspective that optimise a global

objective function. However, many real-world resource redistribution problems in-

volve self-interested rational agents who are competitive in nature (e.g., taxi drivers,

private EMS operators). To perform efficiently in these scenarios, the solution ap-

proaches must be able to tackle the uncertainties online and reason with human

behavioural models.

To summarise, this thesis has explored several novel and efficient data-driven

algorithms and techniques for proactive redistribution of urban resources. Due to

the growing interests for Internet-of-things and recent advancements in machine

learning techniques, a huge amount of “meaningful” urban data is available from

a large number of smart computing devices that are embedded in various systems

from transportation to buildings. Therefore, I believe that proactive redistribution

of urban resources by utilising these large-scale data sets would be a fertile ground

for building sustainable and smart cities.
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