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Abstract

On Refined and Robust Inferences for Spatial Econometric Models

Shew Fan Liu

Asymptotically refined and heteroskedasticity robust inferences are consid-
ered for spatial linear and panel regression models, based on the quasi mazimum
likelihood (QML) or the adjusted concentrated quasi score (ACQS) approaches.
Refined inferences are achieved through bias correcting the QML estimators, bias
correcting the t-ratios for covariate effects, and improving tests for spatial effects;
heteroskedasticity-robust inferences are achieved through adjusting the quasi score
functions. Several popular spatial linear and panel regression models are consid-
ered including the linear regression models with either spatial error dependence
(SED), or spatial lag dependence (SLD), or both SED and SLD (SARAR), the
linear regression models with higher-order spatial effects, SARAR(p, ¢), and the
fixed-effects panel data models with SED or SLD or both. Asymptotic properties
of the new estimators and the new inferential statistics are examined. Exten-
sive Monte Carlo experiments are run, and the results show that the proposed

methodologies work really well.
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CHAPTER 1

Introduction

Spatial dependence is increasingly becoming an integral part of empirical works
in economics as a means of modelling the effects of neighboursﬂ As in time se-
ries where the concern is to alleviate the estimation problems caused by the lag
in time, the analogous case in cross sectional data gives rise to a lag in space.
Spatial interaction in general can occur in many forms. For instance peer in-
teraction can cause stratified behaviour in the sample such as herd behaviour
in stock markets, innovation spillover effects, localised purchase decisions, etc.,
while spatial relationships can also occur more naturally due to structural dif-
ferences in space/cross-section such as geographic proximity, trade agreements,
demographic characteristics, etcE| Modelling cross relationships over the fabric

of space have been prevalent mostly in the empirical literature. Some theoretical

see, e.g., Cliff and Ord (1972, 1973, 1981), Ord (1975), Anselin (1988, 2003), Anselin and
Bera (1998), Le Sage and Pace (2009) for some early and comprehensive works

2See Case (1991), Pinkse and Slade (1998), Pinkse et al. (2002), Hanushek et al. (2003),
Baltagi et al. (2007) to name a few.



results appeared as early as mid 1970’s, however, much of the theoretical gaps
remained unfilled until the turn of the century. The objective of my dissertation
is to contribute in terms of this theoretical effort.

Linear regression models of spatial dependence take the following general func-
tional form:

f(YnyX’rqun)"'aan;ea )\) = €n, (11)

with a dependent variable Y,, conditional on a set of independent variables X,
and spatial weight matrices Wi, ..., W), that capture the relationships among
the n spatial units. Parameter vector 6 denotes the parameters of the model
and A = (Aq,..., )\p), denotes the spatial parameters. ¢, is an n x 1 vector of
model errors. Popular spatial regression models can be written in this form.
For example, the spatial autoregressive lagged dependent variable (SLD) model,
Y, = M\W,Y, + X,,0 + €, can be written in the form, Cy, (\)Y, — X, = ¢,
where Cy,, (A\) = I, — A\W,, and I, is an n x n identity matrix. The spatial error
dependent (SED) model, Y, = X,,8 + u,, u, = pWyu, + €, can be written in
the form, Cy, (p) [V, — X,0] = €, where Cs, (p) = I, — pW,,. These two models
are the building blocks for spatial econometric modelling, and many more general
spatial econometric models have been developed based on them.

Of the methods available for spatial model estimation, the maximum likeli-
hood (ML) or quasi-ML (QML) method remains attractive due to its efficiency.
As a result of the fast increase in computing power allowing for easier manipu-
lation of large matrices, the initial reluctance for the use of QML estimation as
opposed to other easily implementable estimation methods alleviated. As such
there had been a growing interest in developing the theoretical aspects behind
QML estimation. The present studyE| focuses on the following aspects of QML

estimation: (7) asymptotic distribution of the QML estimators of popular spatial

3Liu and Yang (2015a,b,c), Yang et al. (2016)



regression models (i7) finite-sample bias of the QML estimators (7i7) refined tests
for spatial dependence and covariate effects based on QML estimates, and (iv)
heteroskedasticity robust QML estimation. Although, some of these aspects are
already considered in the litera‘cureﬂ7 it is far from complete in the sense most of
these works concentrate on particular types of spatial models and hence the issues
need to be analysed in relation to other important spatial models that have been
ignored so far.

A unique feature of spatial models is that the spatial parameters A\ enter the
reduced form model and hence the log-likelihood function, in a highly non-linear
manner and the spatial dependence maybe strong. As a result, the bias problem
in estimating spatial parameters may be quite severeﬂ As such bias correction is
particularly important to the applications of this model as it leads potentially to
much improved inferences for the regression coefficients.

In studying the finite sample properties of a parameter estimator, say 17,
U, = arg {4, () = 0} for a joint estimating function (JEF) 1,(¥), Rilstone et
al. (1996) developed a stochastic expansion from which a bias correction on 9,
can be made. In the general spatial econometric model given in the vector of
parameters contain a set of linear and scale parameters, 6, and a non-linear spatial
parameter, \. Given A, the constrained estimator é(A) of 0 possesses an explicit
expression but the estimation of A has to be done through numerical optimisation.
In such situations, Yang (2015b) argued that it is more effective to work with the
concentrated estimating function (CEF): ,()), and to perform a stochastic ex-
pansion based on this CEF and hence bias corrections on A, = arg{t,(\) = O}E

In the literature, the SLD model has been extensively studied in terms of the

4See Baltagi and Yang (2013), Lee (2004), Lee and Yu (2010), Lin and Lee (2010), Yang
(2015b) among others.

°Lee (2004) shows the consistency of the QML estimator.

5Doing so reduces the dimensionality of the bias correction problem, and also takes into
account the additional variability from the estimation of the ‘nuisance’ parameters, 6.



asymptotic distributions of the QML estimators (Lee, 2004); finite-sample bias
corrections on QML estimators (Bao and Ullah, 2007; Yang, 2015b). An inter-
esting phenomenon revealed by Lee (2004) for the SLD model is that the spatial
dependence may slow down the rate of convergence of QML estimators of cer-
tain model parameters, including the spatial parameter. Subsequent studies also
revealed that spatial dependence may cause QML estimators to be biased, and
more so with heavier spatial dependence (Baltagi and Yang, 2013; Yang, 2015b).
These aspects have not been studied in the context of the SED model. Built upon
the works of Lee (2004) and Yang (2015b), this dissertation fills in these gaps.
Contrary to the common perceptions, both large and small sample behaviours
of the QML estimators for the SED model can be different from those for the
SLD (Lee, 2004) model in terms of the rate of convergence and the magnitude
of bias. We also derive the second- and third-order biases of the QML estima-
tors of the spatial parameter in the SED model. The key quantities involved in
the terms related to the bias of a non-linear estimator are the derivatives of the
concentrated log-likelihood function and their expectations. While deriving the
analytical solutions of the higher order derivatives may only be a matter of tedious
algebraic manipulations, evaluation of their expectations can be very difficult if
not impossible. We follow the general method introduced in Yang (2015b) and
propose a bootstrap procedure for implementing these bias corrections for the
SED model. The method is simple to implement, since no re-estimation of the
model parameters is required in every bootstrap iteration. The validity of this
procedure when applied to the SED model is established. We argue that once the
spatial estimator is bias corrected, the estimators of the other models parameters
become nearly unbiased. Monte Carlo results show an excellent performance of
the proposed bias correction procedure.

Much effort has been devoted recently to the development of improved infer-



ence methods for the spatial econometric models. However, most of the research
has been focused on improving inferences for spatial effects in the form of point
estimation and testing. Little or no attention has been paid to the development
of improved inferences for the covariate effects in the spatial regression models.
In practical applications of spatial econometric models, it is central to have a set
of reliable inference methods for the covariate effects. As QML estimator of the
spatial parameters can be quite biased and hence the standard inferences for spa-
tial effects and covariate effects, based on LM-statistics or t—statistics referring to
the asymptotic standard normal distribution, can be seriously affected. We adopt
the bias correction method of Yang (2015b) to propose methods that ‘correct’ the
standard t—statistics for the regression coefficients. Once the biases of non-linear
estimators are corrected, the biases of covariate effects and error standard devi-
ations become negligible. We consider in detail three popular spatial regression
models: SED model, SLD model, and that with both SLD and SED, also referred
to as the SARAR model[]

The QML estimators of the spatial panel data models (SPD) are subjected
to the same issues on the finite sample bias and finite sample performance of
subsequent inferences, but these important issues have not been addressed so
far. We focus on the SPD models with fixed effects to provide methods for bias
and variance corrections (up to third-order), and then to show how the bias and
variance corrections lead to improved t—ratios for spatial and covariate effects.ﬂ
While the general stochastic expansions of Yang (2015b) for non-linear estimators
are applicable to different models including the SPD models considered in this
chapter, the detailed developments of bias corrections, variance corrections and

corrections on t—ratio vary from one model to another. Furthermore, the trans-

"The chapter also extends Yang (2015b) and Liu and Yang (2015a) to linear SARAR model
to introduce simple methods for finite-sample bias corrections.
8See Lee and Yu (2010) for the asymptotic properties of the fixed effects SPD model.



formation approach to remove the fixed effects (in order to avoid the incidental
parameter problem), induces errors that may no longer be independent and iden-
tically distributed (iid) even if the original errors are. Thus, the bootstrap method
proposed by Yang (2015b) under iid errors, may not be directly applicable. We
demonstrate that when the original error distribution is not far from normality,
the standard iid bootstrap method can still provide an excellent approximation,
due to the fact that the transformed errors are homoskedastic and uncorrelated.
When the original errors are extremely non-normal, we show that the wild boot-
strap method can improve the approximation. Monte Carlo results reveal that
the QML estimators of the spatial parameters can be quite biased, and that a
second-order bias correction effectively removes the bias. Furthermore, it shows
that inferences for spatial and covariate effects based on the regular t—ratios can
be misleading, but those based on the proposed t—ratios are very reliable.
Although pioneers of spatial econometric literature identified and explored the
problem of heteroskedasticity in spatial econometric models, comprehensive treat-
ments of estimation related issues were not considered until recent yearsﬂ While
heteroskedasticity is common in regular cross-section studies, it may be more so
for a spatial econometric model due to aggregation, clustering, etc. Hence the
assumption of homoskedastic disturbances is likely to be invalid in a spatial con-
text in general. However, much of the present spatial econometrics literature has
focused on estimators developed under the assumption that the errors are ho-
moskedastic. Of the available methods, the main focus is on GMM estimation
combined with 2SLS. However this estimator may not be the most efficient. As
such we explore a QML based robust estimation method which is as easily imple-
mentable as a GMM estimator but have the added advantage of being efficient.

In the presence of heteroskedasticity, Lin and Lee (2010) show that the QML

9See Lin and Lee (2010), and Baltagi and Yang (2013) among others.



estimator of the spatial autoregressive model with a lagged dependent variable
can be inconsistent as a ‘necessary’ condition for consistency can be violated,
and thus propose robust GMM estimators for the model. Inspired by Lin and
Lee (2010), we introduce a robust estimator for the SLD model by adjusting the
concentrated score function for the spatial parameter to make it robust against
unknown heteroskedasticity. For the QML estimator to be consistent under un-
known heteroskedasticity, it is necessary that the expected value of the concen-
trated quasi score function, E(1, ()\)) equals to or tends to zero. However, this
condition is not necessarily satisfied if the errors are heteroskedastic. Hence we
suggest an adjustment to the score function that allows it to reach a probability
limit of zero by brute forcem Once a heteroskedasticity robust estimator of A
is obtained, the heteroskedasticity robust estimators of the model parameters
are, 6, = én(S\n) The method is very simple and more importantly, it can be
easily generalised. We provide formal theories for the consistency and asymptotic
normality of the proposed estimator, and the consistency of the robust standard
error estimate. We also study the cases under which the regular QML estimator
is robust against unknown heteroskedasticity and provide a set of robust inference
methods. It is interesting to note that the proposed estimator is computationally
as simple as the regular QML estimator, and it also outperforms the latter when
it is heteroskedasticity robust.

In order to conduct robust inference on the parameter estimates, an estimate
of the standard errors are required which usually involve the estimation of the
variance of the adjusted score function. However, the first order variance of score
contains the second, third and fourth order moments of €,; which vary across

7. As such a simple White type estimator is not suitable which makes it infea-

10Making the expectation of an estimating function to be zero leads potentially to a finite
sample bias corrected estimation. This is in line with Baltagi and Yang (2013) in constructing
standardised or heteroskedasticity-robust LM tests with finite sample improvements.



sible to estimate the variance of the score. In this case, we recommend the use
of the outer product of the gradients (OPG) of the decomposed numerator of
the adjusted score (Baltagi and Yang, 2013). Monte Carlo results show that the
proposed ACQS estimator performs superbly. To demonstrate their flexibility
and generality, the proposed methods are extended to popular spatial autoregres-
sive models with heteroskedastic innovations including the SARAR(1,1) model,
SARAR(p, ¢) model and the fixed effects spatial panel data model.

The line-up for the rest of the chapters are as follows. Part I consists the chap-
ters that focus on refined inferences for spatial econometric models: Chapter 2 fo-
cuses on the asymptotic distribution and finite-sample bias correction of the QML
Estimators for the linear SED model. An extension of the methods to a spatial
moving average model is also included. Chapter 3 extends Chapter 2 to the linear
SARAR model to introduce simple methods for finite-sample bias corrections and
for improved t-ratios for covariate and spatial effects. Chapter 4 presents a set of
refined inference methods for the fixed-effects spatial panel data models. Part II
of this dissertation collects the chapters that focus on robust inferences for spatial
models: Chapter 5 moves onto inference methods robust against unknown cross-
sectional heteroskedasticity, with a focus on the linear SLD model. The chapter
also includes an extension to the SARAR(1,1) model. Chapter 6 introduces a
general methodology for heteroskedasticity-robust estimation and inference for all
the popular spatial econometric models, with detailed demonstrations given using
the linear SARAR(p, ¢) model, and the fixed-effects spatial panel data models.
Chapter 7 concludes the thesis. All proofs and additional details are contained in

the Appendices.
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CHAPTER 2

Asymptotic Distribution and Finite-Sample Bias Correction

of QML Estimators for Spatial Error Dependence Model

2.1 Introduction

The conventional way to incorporate spatial autocorrelation in a regression
model is to add a spatial lag of the dependent variable or a spatial lag of the
error variable into the model, giving rise to a regression model with spatial lag
dependence (SLD), or a regression model with spatial error dependence (SED)[]
These two models have over the years become the building blocks for spatial
econometric modelling, and many more general spatial econometric models have

been developed based on them. [

1See, among the others, Cliff and Ord (1972, 1973), Ord (1975), Burridge (1980), Cliff and
Ord (1981), Anselin (1980, 1988), Anselin and Bera (1998), Anselin (2001).

2See, e.g., Anselin (2003), Das et al. (2003), Kelejian and Prucha (1998), and Lee and Liu
(2010) for more general spatial regression models; Pinkse (1998) and Fleming (2004) for spatial
discrete choices models; and Lee and Yu (2010b) for a survey on spatial panel data models.

10



Of the methods available for spatial model estimation, the maximum likelihood
(ML) or quasi-ML (QML) method remains attractive due to its efficiency. As a
result of the fast increase in computing power allowing for easier manipulation of
large matrices, the initial reluctance for the use of QML estimation as opposed
to other easily implementable estimation methods alleviated.ﬂ As such there had
been a growing interest in developing the theoretical aspects behind QML esti-
mation in recent times which mainly identifies two intriguing issues related the
QML estimation of spatial models: asymptotic distribution and finite-sample bias
of the ML or QML estimators. Of the two models, the SLD model has been ex-
tensively studied in terms of the asymptotic distributions of the ML estimators or
QML estimators (Lee, 2004); finite-sample bias corrections on ML estimators or
QML estimators (Bao and Ullah, 2007; Bao, 2013; Yang, 2015b). A particularly
interesting phenomenon revealed by Lee (2004) for the SLD model is that the
spatial dependence may slow down the rate of convergence of QML estimators of
certain model parameters, including the spatial parameter. An equally interest-
ing phenomenon revealed by subsequent studies is that spatial dependence may
cause QML estimators to be biased, and more so with heavier spatial dependence
(Baltagi and Yang, 2013a,b; Yang, 2015b; Liu and Yang, 2015a).

Surprisingly, these issues have not been addressed in terms of the SED model.
In particular, the effect of the degree of spatial dependence on the convergence rate
of the QML estimators has not been formally studied, and methods for correcting

finite-sample bias of the QML estimators for the SED model have not been givenﬁ

30ther estimation methods include GMM (Kelejian and Robinson, 1993; Kelejian and
Prucha, 1999; Lee, 2001, 2007; Fingleton, 2008), 2SLS (Kelejian and Prucha, 1998; Lee, 2003),
IV estimation (Kelejian and Prucha, 2004), and OLS estimation (Lee, 2002).

4Here the degree of spatial dependence refers to, e.g., the number of neighbours each spatial
unit has, or the connectivity in general. Jin and Lee (2013) studied asymptotic properties of
models with both SLD and SED for the purpose of constructing Cox-type tests, but did not
study these issues. Further, it is important to know the differences between the SLD model
and the SED model in terms of asymptotic and finite sample behaviours, as they may provide
a valuable guidance in the specification choice. See also Martellosio (2010) for a related work.

11



Built upon the works of Lee (2004) and Yang (2015b), this chapter fills in these
gaps. Of the two, bias correction is particularly important to the applications of
this model as it leads potentially to much improved inferences for the regression
coefficients. Contrary to the common perceptions, both large and small sample
behaviours of the QML estimators for the SED model can be different from those
for the SLD model in terms of the rate of convergence and the magnitude of bias.
In summary, the QML estimator of the spatial parameter for the SED model
always has a convergence rate slower than /n whenever the degree of spatial
dependence grows with the increase in sample size n, whereas the QML estimators
of regression coefficient and error variance always have y/n-rate of convergence
whether or not the degree of spatial dependence increases with n. In contrast,
the QML estimators of all the parameters in the SLD model have \/n-rate of
convergence when the spatially generated regressor is not asymptotically multi-
collinear with the original regressors (Lee, 2004, Assumption 8), and a slower
than /n-rate of convergence occurs in some parameters for non-regular cases
where the spatially generated regressor is asymptotically multi-collinear with the
original regressors and the degree of spatial dependence grows with the increase
of n. Monte Carlo results show that the proposed bias correction procedure works
very well for the SED model without compromising on the efficiency of the original
QML estimators.

This chapter is organised as follows. Section 2.2 presents results for consistency
and asymptotic normality of the QML estimators for the SED model. Section
2.3 presents methods for finite sample bias correction. Section 2.4 extends the
study to an alternative SED model where the spatial autoregressive (SAR) error
is replaced by a spatial moving average (SMA) error; an undesirable feature of
this alternative model specification is revealed. Section 2.5 presents Monte Carlo

results and Section 2.6 concludes the chapter.

12



2.2 Asymptotic Properties of QML Estimators

for SED Model

In this section, we examine the asymptotic properties of the QML estimators
of the linear regression model with spatial error dependence, giving particular at-
tention to the effect of spatial dependence on the rate of convergence of the QML
estimators. We show that the QML estimators of the regression coefficients and
the error variance always have the conventional y/n-rate of convergence, whereas,
the QML estimator of the spatial parameter has the conventional y/n-rate of con-
vergence if the degree of spatial dependence does not grow with the increase in
sample size, otherwise it has a slower rate. With an adjustment on the normali-
sation factor for the score component of the spatial parameter, we establish the
joint asymptotic normality for the QML estimators of the model parameters. All

proofs are given in Appendix D.

2.2.1 The model and the QML estimation

Consider the following linear regression model with spatial error dependence

(SED), where the SED is specified as a spatial autoregressive (SAR) process:
Y, = Xnﬁ + Up, Up = anun + €n, (21)

where Y, is an n x 1 vector of observations on the dependent variable corresponding
to n spatial units, X,, is an n x k£ matrix containing the values of k exogenous
regressors, W, is an n X n spatial weights matrix that summarises the interactions
among the spatial units, €, is an n X 1 vector of independent and identically
distributed (iid) disturbances with mean zero and variance o2, p is the spatial

parameter, and 8 denotes the k x 1 vector of regression coefficients.

13



Let 0 = (8,02, p)’ be the vector of model parameters and 6y be its true value.
Denote A, (p) = I, — pW,, and A,, = A, (po) where I,, is an n X n identity matrix.
If A,! exists, then Model (2.1)) can be written as,

Y, = X5 + A, te,, (2.2)

leading to Var(u,) = Var(4,'e,) = o2(A,A,) " .

The linear regression with spatial lag dependence (SLD) model has the form:
Y, = poW,Yn+X,80+€, which can be rewritten as Y,, = X,,80+p0Grn X0 Bo+A;, ten,
where G,, = W,,A'. While in both SED and SLD models, the spatial effects
generate a non-spherical structure in the disturbance term, the SLD model has
an extra spatially generated regressor, G, X,y which plays an important role in
the identification and estimation of the spatial parameter in the SLD model in a
ML estimation framework (Lee, 2004). [

While the SLD and SED models have been fundamental to the development
of spatial econometric models and methods, an important issue, which is perhaps
unique to spatial econometrics models, the effect of the degree of spatial depen-
dence on the asymptotic properties of the QML estimators, in particular, the rate
of convergence, was not addressed until Lee (2004) who identified the situations
where the rate of convergence can be affected when the spatial dependence increase
with the number of observations. However, this issue has not been addressed in
the context of SED models. Furthermore, the degree of spatial dependence also

has a profound impact on the finite sample performance of parameter estimates.

5The first comprehensive treatment of maximum likelihood estimation for the SLD and SED
models was given by Ord (1975). More formal results can be found in Anselin (1980). In
particular, Anselin (1980) pointed out that the ML estimator of the SED model can be carried
out as an application of the general framework of Magnus (1978) for non-spherical errors. See
Anselin (1988); and Anselin and Bera (1998) for a detailed survey on the SLD and SED models.
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The quasi Gaussian log-likelihood function for the SED model is given by,

0a(0) = —5 log(2m0?) +log | An(p)| — 5,2€,(8, p)en(B, p), (2.3)

where €,(3, p) = An(p)(Y, — X,3). Maximizing ¢, (6) gives the ML estimator, 6,
of 0 if the errors are indeed Gaussian, otherwise the QML estimator. Given p, the

log-likelihood function ¢, (f) is partially maximised at,

Bulp) = [X,A,(0)An(p) X)X A (p) An(p) Yy, and (2.4)

Ga(p) = YA (p)M,(p)An(p)Yn, (2.5)

where, M, (p) = I, — A, (p) X [X, Al (p)An(p) X, P X/ Al (p). The concentrated
log-likelihood function for p upon substituting the constrained QML estimators

Bn(p) and 62(p) into (2.3):

0r(p) = —3[log(2m) + 1] +log [ A (p)| — 5 log (67 (p))- (2.6)

Maximising /¢ (p) gives the unconstrained QML estimator p,, of p, which in turn

gives the unconstrained QML estimators of 3 and o2 as, Bn = Bn(,én) and 62 =

2.2.2 Consistency and asymptotic normality

The asymptotic properties of the QML estimators of the SED model are built
upon the following basic regularity conditions:

Assumption 2.1: The true pgy is in the interior of the compact parameter set
P.

Assumption 2.2: {e,;} are iid with mean 0, variance o2, and Ele, ;|*° <

00, Vo > 0.
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Assumption 2.3: X,, has full column rank k, its elements are uniformly
bounded constants, and limy, o + X1 Al (p)An(p) X, exists and is non-singular for
any p in a neighbourhood of py.

Assumption 2.4: The elements {w;;} of W,, are at most of order h,' uni-
formly for all i and j, where h, can be bounded or divergent but subject to
lim,, o %" = 0, W, is uniformly bounded in both row and column sums and its
diagonal elements are zero.

Assumption 2.5: A, is non-singular and A" is uniformly bounded in both
row and column sums. Further, A 1(p) is uniformly bounded in either row or
column sums, uniformly in p € P.

We allow for the possibility that the degree of spatial dependence, h,,, grows
with the sample size n, and the possibility that the error distribution is not nor-
mal. These conditions are similar to those in Lee (2004) to ascertain the \/W—
consistency of the QML estimators of the SLD model. All conditions are very
general regularity conditions considered widely in the literature. Assumption 2.1
states that the spatial parameter p can only take values in a compact space such
that the Jacobian term of the likelihood function, log|A,(p)l, is well defined[f]
The full rank condition of Assumption 2.3 is needed to guarantee that the model
does not suffer from multicollinearity. Assumption 2.4 is based on Lee (2004).
Assumption 2.5 allows us to write the model in the reduced form . Uniform
boundedness conditions given in Assumptions 2.4 and 2.5 are needed to limit the

spatial correlation to a manageable degree. Boundedness on the regressors is not

OFor this it is necessary that |I,, — pW,| = [\, (1 — pA;) > 0, where {)\;} are the eigenvalues
of W,. If the eigenvalues of W, are all real, the parameter space P can be a closed interval
contained in ()\;iln, k), where A\pin and Amax are, respectively, the minimum and maximum
eigenvalues. If W, is row-normalised, then A\p.x = 1 and —1 < Apin < 0 and P can be a closed
interval contained in (Al ,1), where the lower bound can be below —1 (Anselin, 1988). In
general, the eigenvalues of W,, may not be all real and in this case Kelejian and Prucha (2010)
suggested the interval (—7,, 1, 7,7 1), where, 7,, = max;|\;| is the spectral radius of the weights

matrix, and Le Sage and Pace (2009, p. 88-89) suggested interval (A;!,1) where A is the most
negative real eigenvalue of W,, as only the real eigenvalues can affect the singularity of I,, — AW,,.
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restrictive when analysing cross-sectional units, and in case of with stochastic
regressors it can be replaced by certain finite moment conditions.

Identification of the model parameters requires that the expected log-likelihood
function, £, () = E[£,(6)], has identifiably unique maximisers that converge to 6,
as n — o0o. (White, 1994, Theorem 3.4; Lee, 2004). The expected log-likelihood

function is,

0a(0) = =3 log(2m0?) +log [ An(p)| — 52 E[€,(8, p)en(B, p)] (2.7)

which, for a given p, is partially maximised at,

Balp) = (X AL () An(p)Xn) T X AL (0) An(p)E(Yn) = fo, and  (2.8)
an(p) = FE{[Ya = XuBu(p)l' A7 (0) An(p)[Yn — XnBu(p)] }
= %E{tr[enegA;l_lA;l(p)An(p)A_l]}

n

= roptr[A AL (p) An(p) AL (2.9)

n

The resulting concentrated expected log-likelihood function, £¢(p) is,

6(p) = max £,(8) = —5(log(2m) + 1) +log|Au(p)] — 5 log(on (). (2.10)

From Assumption 2.3, it is clear that 3 and o2 are identified once pis. The latter is
guaranteed if £°(p) has an identifiably unique maximiser in P which converges to
po asn — 00, or lim,,_. 2205 (p) — €5 (py)] < 0, Vp # po. The global identification
condition for the SED model thus simplifies to a condition on p alone.
Assumption 2.6: lim, ., 2= [log |03 A A7 — log [02(p) At (p) A (p)|] #
0,Vp # po.
This differentiates the SED model from the SLD in the asymptotic behaviours

of the QML estimators. The spatially generated regressor G, X, 3 of the SLD
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model Y,, = X,,80 + poGn X080 + A, e, can help identifying p if it is not asymp-
totically multi-collinear with the original regressors, giving the conventional +/n-
rate of convergence of p,, irrespective of whether h, is bounded or unbounded.
When G, X, [y is asymptotically collinear with X,,, the convergence rate of p,
becomes \/W In contrast, p, for the SED model always has a \/W—rate of
convergence. Note that the variance of Y, of is 02A-1A'~1 and hence the
global identification condition given above ensures the uniqueness of the variance
matrix. With this global identification condition and the uniform convergence of

ha g2 (p) — £5(p)] to zero in P, the consistency of p, follows.

Theorem 2.1 Under Assumptions 2.1-2.6, the QML estimator p, is a con-

sistent estimator of py.

Theorem and Assumption 2.3 lead immediately to the consistency of Ba
and 62. However, Theorem reveals nothing about the rate of convergence of
pn, and hence the rates of convergence of Bn and 62 remain unknown as well. To
reveal the exact convergence rates, and at the same time to derive the asymptotic

distributions of the QML estimators, consider the score function,

72X AL () An(p)ua(B),
Sul0) = = = 8 S (B) AL () An(p)un(B) — 2, (211)
Ll (B) AL (p)Wrun(B) — tr[Ga(p)],

where, u, (3) = Y,—X,8 and G, (p) = W, A, (p). For likelihood-based inferences,
the normalised score \/LﬁSn(QO) at the true parameter value would be asymptot-
ically normal. Indeed, under Assumptions 2.1-2.5 one can easily show that this
is true for 8 and o2 components of \/LﬁSn(HO). However, the normalised score for
p is Op(\/%), see Lemmas A.2 and A.3 in Appendix A. This means that when

h,, is divergent, the likelihood function with respect to p is too flat so that its
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normalised score converges to a degenerate distribution. As a result p, converges
to pg at a slower rate than the conventional y/n-rate. A similar phenomenon is
observed by Lee (2004) for the spatial parameter as well as the regression coeffi-
cients in the SLD model, in the ‘non-regular cases’ where the spatially generated
regressor G, X, 0y, is asymptotically collinear with the regressors.

To account for the effect of spatial dependence on the asymptotic behaviour
of the QML estimator p,, of p, and to jointly study the asymptotic distribution of

the QML estimator 0,, of 0, we consider the following adjusted score vector:
S:L(‘g) = KnSn(e)a

where, K, = diag(ly, 1, vh,). Hence, \/%75;';(9) would have a proper asymptotic
behaviour whether h,, is divergent or bounded. Under Assumptions 2.1-2.5, the
central limit theorem (CLT) for linear-quadratic forms of Kelejian and Prucha
(2001) can be applied to prove the result,

* D *
\/LESn(HQ) — N(O,F ),

where, T = lim,,_o, =T, T = Var[S;(6p)] = K,I, K}, T, = Var[S,(6)], and

XA, 5 XA, 51X A0
L, = %’ya%Aan ﬁ(ﬁ; +2) ﬁ(/@ + 2)tr(Gr) |

19 AK, 5K+ 2)t(Gh)  KgLgn + t1(G5Gy)

3 ) is the measure of skewness,

where, ¢, is an n x 1 vector of ones, v = o, E(e ,

K= 00_4E(eiﬂ-) — 3 is the measure of excess kurtosis, g, = diag(Gy), G, = Gn(po),

and G = G, + G,. The information matrix ¥, = —E (ag—;g,fn(é’o)), takes the
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form:

LXIALAX, 0 0
0
Zn = 0 % Uigtr(Gn) >
0 Le(G,) tr(G3Gy)
0

which leads to the adjusted version of the information matrix, ¥} = K, %, K,,.
One can show that I'* exists and its diagonal elements are non-zero and ¥* =
lim,, 00 %E; exists and is positive definite irrespective of whether h,, is bounded

or unbounded. In contrast, if h, is unbounded,

=W szVe 0 =i 0 0
1 lor 203 1 lors
1 — — 1 1 _ — 1
nll—{go nrn - %Vg m(:‘i + 2) 0 and nh—{{olo nzn - 0 2—0_61' 01,
0 0 0 0 0 0

where, Vi = lim,,_,o %XQA;ARX,L and V5 = lim,,_, %X;A;Ln. Hence, without
the adjustment K, we cannot derive the asymptotic normality results due to the
singularity of the matrices in the asymptotic variance-covariance matrix.

To see that >* is non-singular under a general h,,, consider the determinant of
YR |XE] = ﬁ%]X;A;Aan]%"[tr(G;Gn) — 2tr?(Gy)]. If hy, is bounded then by
Assumptions 2.3, 2.4 and 2.5, |X¥| = O(1). Now suppose h,, is unbounded where
lim,,_yo0 hy, = 00 such that %" — 0, then gy, %tr(G;Gn), %tr(GZ), and %tr(Gn)
are all O(h,;') and hence by Assumption 2.3, |2*| = O(1). We have the following

theorem for asymptotic normality of QML estimator 0, of 6.

Theorem 2.2 Under Assumptions 2.1-2.6, we have,

VK (6, — 6p) -2 N(0, T e,

n

where, T* = lim,,_,~ %F;‘L and ¥* = lim,,_, %E;‘L. If errors {e,;} are normally

distributed, then /nkK; (6, — 6,) EN N(0, 271,
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Remark 2.1 For practical applications of Theorem|2.2, note that h,, the de-
gree of spatial dependence and affecting the rate of convergence, is not known in
general. However, inference concerning the parameters does not depend on it,
since XX = (K2, K,) WK, DKy (Kp X Ky) ™t = KIS0, S LKL
Hence, AVar(0, —0) = n 'S 10,21,

It is also useful to have the marginal asymptotic distributions of the QML

estimators, in particular, the marginal asymptotic distribution of p,.

Corollary 2.1 Under the assumptions of Theorem 2.4, we have,
D

VB, = o) — N(0, a3ViY),
V(62 —o2) 25 N[0, 204T) + rol(Ty — 2T2T3)],

1/}Z‘—n(ﬁn—po) N N(O, T4—|—/£T5); where,
Vi = XIA AKX, Th = limitr(G.G,)/tr(C;C), Ty = lim tr(G,)/tr(C;C,),
n—o0 n—oo
~ i L Sy 9 — i el (s — Jipy . 9agn—n " 1 (G)
T = o el GaGo) = 20hgnd, T = fi 5 (GG, T = i i ™o
Cp=Gp— MG and C3 = C1, + C,.

Corollary [2.1] clearly reveals that only the QML estimator of the spatial param-
eter has a slower rate of convergence of \/W when h,, is unbounded, which says
that the effect of a growing spatial dependence is that the effective sample size for
estimating p is reduced to n/h,; Bn and 62 have the traditional \/n-convergence
rate whether h,, is bounded or unbounded. Intuitively this is correct since un-
like in the SLD model where there is a lagged dependent variable W,,Y,,, in the
SED model, the spatial structure affects only the errors and hypothetically if p is
known, the model in can be simplified to a linear regression model.

We note that due to the block-diagonal structure of ¥,, and the fact that the
skewness measure y appears only in the off-diagonal blocks of I'),, the marginal
asymptotic distributions do not depend upon 7. For general asymptotic infer-

ences, v and k can be consistently estimated by 4, = ﬁ Yoy é?m- and k, =
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é Yoy €fm- — 3, respectively, where €,; are the QML residuals. Thus, the esti-
mates of 3, and I'), are obtained by plugging in én, Y and K, into X, and [',,.
These discussions show that the asymptotic inferences for the SED model based on
QML estimation are extremely simple. However, an important question remains:
how do they perform in finite samples? Take a simple, and a very important spe-
cial case where the inference concerns the regression coefficients 5. While the bias
of p,, does not have much impact on the bias of Bn and 62, it does translate into the
bias of the variance estimator of Bn through the term v, = %X;A;(,ﬁn)An(ﬁn)Xn
(see the end of Section 2.4). This shows the importance of bias correction for the

SED model, or perhaps for the more general models with non-spherical errors.

2.3 Finite Sample Bias Correction for the QML
Estimators

The problem of estimation bias, arising from the estimation of non-linear pa-
rameters has been widely recognised by econometriciansﬂ Spatial econometricians
too have recognised this issue in estimating spatial econometric models and have
successfully tackled this problem for the SLD model (Bao and Ullah, 2007; Bao,
2013; Yang, 2015b). However, no work has been done for the SED model and
other spatial models. In a spatial regression context, spatial parameter(s) enter
the regression model in a highly non-linear manner and spatial dependence maybe
quite strong. As a result, the bias problem in estimating spatial parameter(s) may
be quite severe, and hence it is very important to perform bias corrections on spa-
tial estimator(s). Among the various methods for bias corrections, the stochastic

expansion method of Rilstone et al. (1996) has recently gained more attention.

"see, among others, Kiviet, 1995; Hahn and Kuersteiner, 2002; Hahn and Newey, 2004; Bun
and Carree, 2005
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With the introduction of the bootstrap method by Yang (2015b), its applicability
has been greatly expanded (See Efron, 1979, for a general introduction to the
bootstrap method).

In this section, we derive the second- and third-order biases of the QML es-
timator of the spatial parameter in the SED model, based on the technique of
stochastic expansion (Rilstone et al., 1996) and bootstrap (Yang, 2015b). As in
Yang (2015b), the key quantities involved in the terms related to the bias of a
non-linear estimator are the derivatives of the concentrated log-likelihood function
and their expectations. While deriving the analytical solutions of the higher-order
derivatives may only be a matter of tedious algebraic manipulations, evaluation
of their expectations can be very difficult if not impossible. We follow the general
method introduced in Yang (2015b) and propose a bootstrap procedure for imple-
menting these bias corrections for the SED model. The validity of this procedure
when applied to the SED model is established. Monte Carlo results show an ex-
cellent performance of the proposed bias correction procedure. We argue that
once the spatial estimator is bias corrected, the estimators of the other models

parameters become nearly unbiased. All proofs are given in Appendix D.

2.3.1 The general method for bias correction

~

In studying the finite sample properties of a parameter estimator, say 6,,
defined as 0, = arg{¢,(0) = 0} for an estimating function 1, (), based on a
sample of size n, Rilstone et al. (1996) and Bao and Ullah (2007) developed
a stochastic expansion from which a bias correction on 0, can be made. The
vector of parameters # may contain a set of linear and scale parameters, say 9,
and a non-linear parameter, say p, in the sense that given p, the constrained
estimator 5n(p) of the vector § possesses an explicit expression and the estimation

of p has to be done through numerical optimization. In this case, Yang (2015b)
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argued that it is more effective to work with the concentrated estimating function
(CEF): U (p) = tn(0n(p), p), and to perform a stochastic expansion on this CEF
and hence do the bias correction only on the non-linear estimator defined by,
pn = arg{n(p) = 0}. In doing so, a multi-dimensional problem is reduced to a
single-dimensional problem, and the additional variability from the estimation of
the ‘nuisance’ parameters ¢ is taken into account in bias correcting the estimate
of the non-linear parameter p.

Let H,.,(p) = j—l;&n(p), r = 1,2,3. Under some general smoothness conditions
on U, (p), Yang (2015b) presented a third-order, CEF-based, stochastic expansion

for p, at the true parameter value p as,
Pn— Po=0a_1/2 +a_1 +a_z; + Op(n72)7 (2.12)

where, a_,/; represents terms of order O,(n=*/%) for s = 1,2,3, and they are,
a_y/2 = Qnﬁgn; a1 = Q,Hy,a 12 + %QnE(H%L)(a%l/Q); and a_z/» = Q,Hy,a 1 +
33, (0% ) + QuE(Han ) (a-1/20-1) + §QE(Hz,)(a?, ), where, Un = Yn(po),
H,, = H.n(po),r =1,2,3, H., = H,, — E(H,,,) and Q,, = —[E(Hy,)] "

The above stochastic expansion leads to a second-order bias, E(a_1/2 + a_1),
and a third-order bias, E(a_4 2 ta_1+ a_3/2), which may be used for performing
bias corrections on p,, provided that analytical expressions of the various ex-
pected quantities can be derived so that they can be estimated through a plug-in
method. Several applications of this plug-in method have appeared in the litera-
ture including Bao and Ullah (2007) for the pure spatial autoregressive process,
and Bao (2013) for the SLD model. The plug-in method may run into difficulty
when the analytical expectations are not available or are difficult/impossible to
derive as in the SED model we consider. To overcome this obstacle, Yang (2015b)

proposed a simple and yet a very effective bootstrap method to estimate the rel-
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evant expected values.

2.3.2 Bias of the QML estimator of the spatial parameter
of the SED model

Recall the concentrated log-likelihood function, defined in (2.6). Define the

concentrated score function or the CEF for p as, 1, (p) = %hﬁﬁfb(p), then,

&n(p) = _hnTOH(p) + hann(p)v (2'13)

where, Ty, (p) = ~tr(G,(p)) and

_ Yo AL ()M (p)G(p) Mu(p) An(p) Y

Ry, (p) = : 2.14
1n(p) YA (0) Mo () An 9V, (2.14)
leading to p, = arg{n(p) = 0}. Let H,,(p) = %Jm(ﬂ), r=1,2,3, then,
hy ' Hin(p) = —Tin(p) + Ran(p) + 2R3, (p), (2.15)
hy ' Hon(p) = —2Tn(p) 4+ Rsn(p) + 6R1n(p)Ron(p) + 8R3,(p),  (2.16)
hy ' Hsn(p) = —6T3,(p) + Ran(p) + 8R1n(p) Ran(p) + 6R3,(p)
where, T,,(p) = 2tr(G5 ™ (p)),r = 1,2,3, and
YA (p) My (p) Djn(p) My (p) An(p) Y
Ri,(p) = —2n ,j=2,3,4. 2.18
() Y AL (p) M, (p) An(p)Yn (2.18)

The full expressions for D;,(p),j = 2,3,4 are given in Appendix C. Clearly,
Din(p) = Gu(p) in Rin(p).

The above expressions show that the key quantities in the third-order stochas-
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tic expansion for p,,, are those ratios of quadratic forms R;,(p),j =1..., 4ﬁ Now,
some specific conditions on Rj, are needed to regulate the limiting behaviour of
H,,, so that the required quantities have finite limits in expectation.
Assumption 2.7: E(%e;MnGnMnen(é—gié)(62—08)) = O((12)3), where,
o2 lies between o2 and &2.
Assumption 2.8:
(1) hyE[(Rin — ERy,)° =0
(17) hiE[(Ron — ERy,)*] = O
(i) haE(Rp = ERm) = O((52)2),r = 3,4;
(iv) hs“E[(Rln ER1,)*(Ran — ERy,)] = O((2)3), s = 1,2, and
(v )2).

The following Lemma shows the bounded behaviour of the expectations of the

) h2E[(Ri, — ER1,)(Rs, — ER3,)] = O((22

quantities in the stochastic expansion.

Lemma 2.1 Under Assumptions 2.1-2.7, (i) hyRin = O,(1), (i) E(h,Riyn) =

1

O(1), and (iii) hnRin = B(hnRin) + Op((12)3),i =1, 4.

Given Lemma and the regularity conditions, we can prove the following

propositions:

Proposition 2.1 Suppose the SED model specified by (2.1)) satisfies Assump-
tions 2.1-2.8. Then, the third-order stochastic expansion given in (2.12)) holds for
the QML estimator p, of the spatial parameter in the model with n replaced by

n/h, for the stochastic order:

Pn — Po = ClnCn + c2nCn + CBnCn + O ((7”) ), (2.19)

where, c., ¢, are of stochastic order O((")3),s = 1,2, 3, with,

8N~ote that, a function of p evaluated at po is denoted by dropping the function argument,
e.g., Yy = d’n(ﬂo),An = An(p0)7 G, = Gn(ﬂo), Rjn = Rjn(PO)a H,, = m(ﬂo), Ty = rn(po)-
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Cn - {@Znu Hln@zrm ~72m H%nzz’m H2n77[)7%a Hln&?ﬂ 77/}?1}/; Cin = {QN70/6><1}I7
Qn = _E<Hln)_1; Cop = {Qn, QQ lQiE(Hml), ilxl}/7 and

nr 3

C3p — {Qn, 29721, QiE(HQn), Q3 193 §QiE(H2n), %QiE(HQn)Z + éQiE(Hgn)}/

ny 2°%n1 9

Remark 2.2 By letting Cs,, = c1p+Con and Cs, = c1p+Cop+C3p, the stochastic
expansions can be further simplified to c),,C, (asymptotic), CY, (., (second-order),

and C%,C, (third order), which are helpful in the bootstrap work introduced later.

Proposition 2.2 Under Assumptions 2.1-2.8 and further assuming that a
quantity bounded in probability has a finite expectation, a third-order expansion

for the bias of p, is:
Bias(pn) = C3,E(Ca) + 5, E(Ga) + O((%2)?), (2.20)
and the 2nd and 3rd order bias corrected QML estimators are:

2 = pu— CLB(G)  and I = po— Oy B(G), (2.21)

n

where, a quantity with a ~ is the corresponding estimate of that quantity.

Practical implementation of the bias corrections given in depends on
the availability of the estimates E(Cn), and é% or @m. Note that (, is defined in
terms of 1&,1 and H,,, and Cy, and Cs, are defined in terms of E(H,.,),r = 1,2, 3.
Given the complicated expressions for ¢, and H,, defined in —, the
conventional method of estimation by deriving the analytical expectations for
E(¢), and Cy, or Cs, would be extremely difficult if not impossible. The method
of using the sample analogue would not work either due to the fact that ﬁ(ﬁn) =0.
These iterate the point raised in Yang (2015b), and hence, the bootstrap method

given in same is adopted for the estimation of the quantities in question.
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2.3.3 Bootstrap method for implementing the bias correc-
tion

From (2.13), and ([@2.15)-(2.17), we see that v, and H,, are functions of only

Rj,,j=1,...,4, ie., we need to individually estimate the following terms:
E( lln)al =1,...,5 E(R%n)vj =1,2; E<R37Z); E<R4n)§

E<R11nR2n)’Z = 17 2’ 37 E(RlnRgn)7 E( ZinR3n)7i = 17 2.
It is easy to see that,

Rjn = Rjn(en, po) = ~ : (2.22)

where e, = 0, '¢e,, Ajn(po) = M, (po)DjnM,(po) with Dy, = G, and Dj,,j = 2,3
being defined at the beginning of Appendix C. It follows that all the necessary
quantities whose expectations are required can be expressed in terms of e, and py.
In particular, we can write, H,., = H,,(en, po), and (, = (u(en, po). Thus, H,,
and (,,, and their distributions are invariant of 8y and o2. The bootstrap procedure

for estimating the expectations of the above quantities can be described as follows:

(1) Compute the QML estimators 6, = (£, 62, p,)’ using the original data,

(2) Compute standardised QML residuals, é, = &, lAn(ﬁn)(Yn—Xan)H Denote

the empirical distribution function (EDF) of centred é, by F,,

(3) Draw a random sample of size n from F,,, and denote it by e} ,,

(4) Compute Rin(€y;pn), @ = 1,...,4, and hence Hy,(€} 4, pn), i = 1,2,3 and

Cn(e;i,ba Pn)s

(5) Repeat (3) and (4) B times, and the bootstrap estimates of E(H;,),i =

9Whether to bootstrap the standardised QML residuals é, or the original QML residuals
€n = O0pnéy does not make a difference as R, are invariant of o¢. However, use of é,, makes the
theoretical discussion easier.
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1,2,3, and E((,) are given by:

~

B(Hin) = 550 Hin(€hy pa)y and B(Gn) = & S0 Gn(el s ). (2.23)

The proposed bootstrap procedure overcomes the difficulty of analytically eval-
uating the expectations of very complicated quantities, and is very straightforward
since in every bootstrap iteration, no re-estimation of the model parameters is re-
quired. The question that remains is its validity, particularly the validity of using
5271]@(5”) in the third-order bias corrections agnﬁ(fn) = @nﬁ(fn) —{—E;;nﬁ(é’n). We
now elaborate using the quantities Rj,.

Let Fy be the CDF of e,;. The EDF F, is thus an estimate of Fy. If
po and Fy were known, then E[Rj,(e,, po)] i% 2%21 Rjn(€nm, po), where e, ,
is a random sample of size n drawn from F, and M is an arbitrarily large
number. If p is unknown but Fy is known, E[R;,(e,, po)] can be estimated by
ﬁZ%zl Rjn(€nm, pn), giving the Monte Carlo (or parametric bootstrap) esti-
mates of an expectation. In reality, however, both pg and Fy are unknown making
this Monte Carlo method infeasible. The bootstrap analogue of Model takes
the form, Y = Xan—f—&nA,_Ll(ﬁn)e;’b, where (83,62, pn) are now treated as boot-

strap parameters. Based on the generated bootstrap data (Y,

W, X,) and the

bootstrap parameter p,, one computes R;, defined by (2.14) and (2.18)), to give

bootstrap analogues of Rj,, which are Rj,(e}, p,),7 = 1,...,4. The bootstrap

estimates of E[R;,(en, po)] are thus,
E*[Rjn(€p, pn)] i% 25:1 Rjn(e;;,ba pn), for alarge B,

which takes the same form as the Monte Carlo estimate with a known JFy. This
gives a heuristic justification on the validity of the bootstrap method.

Formally, denote the second- and third-order bias terms by b2(po, o) = C5,E((,)
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and bs(po,70) = ¢4, E((,), respectively, where o = v(Fy) denotes the higher (than
2nd) order moments of Fy that by and b3 may depend upon. In our QML estima-
tion framework, 7y is unknown as Fj is specified up to only the first two moments.
Following the arguments above, the bootstrap estimates of b, and b3 must take
the form: by = by(pn,9n) and by = b3(pn, 5n) where 4, = v(F,). The validity of

the bootstrap estimates of bias corrections is thus established.

Proposition 2.3 Under Assumptions of Proposition|2.1] and further, assum-

ing a quantity bounded in probability has a finite expectation, then,

E[b2(pn; Fn)] = b2(p0,70) + O((%2)?),  and E[bs(pn, ¥n)] = bs(po, %) + 0p((5)%).

It follows that E(p2?) = po + O((12)3) and E(pE) = po + O((12)?).

2.4 An Alternative Model Specification

As mentioned in Section 2.2, an alternative to the SED model with an SAR

error process is the SED model with a spatial moving average (SMA) error process,
Y, =X.0+up, U, =€, — pWyepn, (2.24)

where, all the quantities are defined in a similar manner as (2.1). The model
at the true parameters can be written as Y,, = X80 + A,€,, giving, Var(u,) =
o2 A, Al suggesting a similar non-spherical error structure. The quasi Gaussian

n

log-likelihood function for this model is,

0n(0) = —5log(2m0%) —log | An(p)| — 522 (Ya — XuB) A (0) AL (0) (Ve — X )
(2.25)
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Given p, the constrained QML estimators are,

Bulp) = (XLALN(P)A, (0)Xa) " XLAL ()A, ()Y, and

n

on(p) = Y AT (p)Ma(p) ALt (p)Yn,

where, M, (p) = I, — A (p) X[ X A7 H(p) A (p) X ] 1 X! A7 (p). This results in

n

the following concentrated log-likelihood function by substituting 5, (p) and 62 (p)

into ,
0n(p) = —5[log(2m) + 1] — log | An(p)| — 5 log(67(p))- (2.26)

The unconstrained QML estimator p,, of p maximises /¢ (p), and the unconstrained
QML estimators of 3 and o2 are given as ,@n = ﬁn(ﬁn) and 62 = 62(py,), respec-
tively as in Section 2.2.

The QML estimator p, of the SMA error model is likely to perform poorer
than that of the SAR error model, because the parameter space P for p stays
the same, but p, now becomes upward biased by comparing with .
Thus, when p is positive, 0.5 say, p, may hit the upper bound of P when n is
small, causing difficulty in estimating p.ﬂ Monte Carlo results given in Section
2.5 confirm this point. See also Martellosio (2010) for related discussions.

Asymptotic Distribution: Consistency and asymptotic normality of 6, can
be proved in a similar manner as in the SED model with SAR errors, under a
similar set of regularity conditions. In particular, the Assumption 2.3 has to be
adjusted as: lim,_o 2X, A" (p) A (p)X,, exists and is non-singular uniformly

n p in a neighbourhood of py; and replace Assumption 2.6, the identification

10A more natural parametrisation for the SMA error model may be u,, = €, + pWy€,, under
which P becomes a closed interval contained in (—1, —A_! ), but the QML estimator j,, is now
downward biased, and hence when pg is negative and n is small j,, may hit the lower bound of
P, causing the numerical instability of (I,, + p, W,) L.
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condition by: For any p # po, lim,_ 22 [log |03 AL, A, |—log |02(p) AL (p) An(p)|] #
0, where, 02(p) = Ztr[A}, A7 (p) A7 (p) A

Theorem 2.3 Under the adjusted Assumptions 2.1-2.6, we have,

VK (0, — 6,) 25 N(0, ST ),

where, T* = lim,, o 1T7%, 50 = lim,, o 13%, T2 = K,T, K., 3% = K,%, K],

LXAVATK, XA L XA,

—1
L, = ﬁ’yb%A;an ﬁ(/@ +2) ﬁ(ﬁ; + 2)tr(G,) |-

VAT X g (k4 2)tr(Gh)  Kgugn + tr(GLG)

LXIAVAX, 0 0
0
— n — A1
¥, = 0 201 ULgtr(Gn) , and G, = A" W,.
0 Str(Gn) tr(GEGy)
0

Note that if the errors {e,;} are normally distributed, then /7K, (6,—0) EN
N(0, X*71). A similar set of results as in Corollary can be obtained as well.
The proof Theorem [2.3]is omitted as it is very similar to that of Theorem [2.2]

Finite-Sample Bias Correction: To simplify the exposition, we only present
the necessary expressions for a second-order bias correction. The derivatives of

the averaged concentrated log-likelihood function %2¢¢(p), are:

$n<p) = hnTOn(ﬂ) _hann(p);
hy ' Hin(p) = Tin(p) — Ron(p) + 2R3, (p),

ho ' Hon(p) = 2T2u(p) — Ran(p) + 6R1n(p) Ron(p) — 8RY, (p),
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where, T,,(p) = 2tr(G5(p)),r = 0,1, 2,

Rln(p) =

Rjn(p) = nl

where, Da,(p) and Ds,(p) are given in Appendix C.

Finally, with the clear definitions of the quantities ¢, (p), h;'Hi,(p) and
h'Hs,(p), the second-order bias correction of the QML estimator p, can be
carried out using an identical bootstrap procedure as described in Section 2.3.
The validity of the bootstrap procedure applied to this model can be proved in a
similar manner. While the third-order bias correction can be carried out in the
same manner, we found from the Monte Carlo experiments that the second-order

bias corrections are more than satisfactory in all the cases considered.

Impact of bias correction: We now offer some details on the impact of bias
correcting p,, on the subsequent inference for /5 in the form of testing Hy : ¢,8 = 0.
The test statistic based on Corollary is t, = chBn/\/62¢hVi e /n, where
Vo = LX) AP Xo = Vi = (= po) X(Wi A + AL W)X /1 + (-
po)2 X! W' W, X, /n. As p, is downward biased, V, tends to over estimate Vj,,
and hence V"' tends to under estimate V!, causing t, to be more variable and
hence size distortions (over rejections). Our Monte Carlo results (unreported for
brevity) show that simply replacing p,, in ¢, by pb? defined in significantly
reduces the size distortion. This shows that bias correction has a great potential

for improving inferences for the regression coefficients. A formal study on this is

interesting, but beyond the scope of this chapter.
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2.5 Monte Carlo Experiments

The objective of the Monte Carlo simulations is to investigate the finite sample
behaviour of p, and the bias corrected p,, under various spatial layouts, error
distributions and the model parameters. The simulations are carried out based

on the following data generation processes (DGP):
Y, = Lnﬁo + Xlnﬂl + X2n62 T Up, Uy = anun + €n,

where, ¢, is an n x 1 vector of ones for the intercept term and X, and X,, are
the n x 1 vectors containing the values of two fixed regressors. The parameters
of the simulation are initially set to be as: 3 = (5,1,1), 6 = 1, p takes values
form {—0.5,—-0.25,0,0.25,0.5} and n take values from {50, 100,200,500}. Each
set of results is based on M = 10,000 Monte Carlo samples, and B = 999+ |n%"|
bootstrap samples within each Monte Carlo sample. The methods for generating

X,, W,, and the errors are described in Appendix B.
Partial Monte Carlo results are summarised in Tables 2.1-2.4, where in each
table, the Monte Carlo means, root mean square errors (rmse) and the standard
Abc2 ~bc3 ~bc2

errors (se) of p, and p.* are reported. The results for g, are omitted as p)

provides satisfactory bias corrections for all the cases and the additional gain

be3

n

of using p although apparent, is quite marginal. Further, the case of queen
contiguity (Table 2.2) is replicated by changing the /5 value to (0.5,0.1,0.1)" (Table
2.5), and by changing the o value to 3 (Table 2.6). We also give some partial results
(Tables 2.7 and 2.8) for the SMA error model under the same set of parameters

values set out at beginning of this section. It is useful to the note the following

general characteristics of the results:

(i) pn suffers from severe downward bias for almost all of the p values considered.

The severity of the bias varies according to variations in (a) the sample size,
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(b) the spatial layout, and (c) the distribution of the errors considered.

(i) pb2 is almost unbiased in all the cases, even at considerably small sam-
ple sizes, which ascertains the effectiveness of the proposed bias correction
procedure. These corrections can be attained without compromising the

efficiency of the original QML estimators.

(iii) The spatial layout has a considerable impact on the finite sample perfor-
mance of p, in terms of the bias, rmse and se. A relatively sparse W,,, as
in contiguity schemes, results in lower bias, rmse and se while a relatively
dense W,,, as in group interaction scheme, results in the opposite.

(iv) The bias of the original QML estimator seems to worsen as the error distri-

~bc2

bution deviates from normality. In contrast, p,* attains a similar level of

accuracy in all the cases.

(v) The performance of p,, is not so sensitive to changes in the values of ¢ and
[ in terms of bias and the bias correction works well regardless of the true

values set for the parameters.

(vi) The impact of the degree of spatial dependence on the rate of convergence
is clearly revealed when comparing the results in Table 2.3 with those in
Table 2.4 under the group interaction scheme. When the degree of spatial
dependence is stronger as in the case where k = n%?, the rate of convergence

is slower than in the case where k = n%6%.

As expected, the magnitude of the bias, rmse and se are larger for small sample
sizes. When considering the efficiency variations in terms of standard errors it can
be seen that the efficiency of the estimators are sensitive to the sample size and the
spatial layout. However, the different error distributions does not seem to have a
significant effect on standard errors, reiterating the applicability of the proposed

bias correction method in terms of robustness.
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When the errors follow the SMA process, u,, = (I, — W,,)€,, the Monte Carlo
results given in Tables 2.7 and 2.8 show that (i) the bias becomes positive, (i)
the QML estimator p, again can be severely biased, and (7i7) the bias corrected
pn is almost unbiased. As discussed in Section 2.4, the Monte Carlo results indeed
show that when p is positive (e.g., 0.5) and n is small (e.g., 50), p, can be close to
or can hit its upper bound, say 0.9999, causing numerical instability in calculating
A (pn) = (I, — poW,) 7L, thus resulting in a poor performance of p,, and causing
difficulty in bootstrapping the bias. This stands in contrast to the SED model with
SAR errors where p, is downward biased. However, with a larger n(> 100), this
problem disappears as seen from the results in Tables 2.7 and 2.8. Nevertheless,
this does signal to a possible poor performance of the QML estimator for an SMA
error model when the sample size is not so large and the true spatial parameter
value is positive and big.

Finally, compared to the Monte Carlo results presented in Yang (2015b) for
the SLD model, we see that the bias of p, is more severe for the SED model, but

does not spill over to Bn and 62 that much.
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Empirical Mean|[rmse|(sd) of Estimators of p for SED Model with SAR Errors -

Normal Errors

Table 2.1

Mixed Normal Errors

Rook Contiguity, REG-1

Log-Normal Errors

~bc2

~bc2

~bc2

p_n Pn Pn Pn Pr Pn Pn

50 50 | .440[.175](.164) | .495[.169](.169) || .445[.166](.157) | .499[.161](.161) || .452[152](.144) | .503[.147](.147)
100 | .472[.116](.112) | .501[.114](.114) || .471[.112](.108) | .499[.110](.110) || .473[.104](.101) | .500[.102](.102)
200 | .487[.079)(.077) | .501[.078](.078) | .486[.077](.075) | .500[.076)(.076) | .487[.072](.071) | .500[.071](.071)
500 || .495[.049)(.049) | .501[.049](.049) | .495[.049](.048) | .500[.049)(.049) | .495[.046](.046) | .500[.046](.046)

25 50 | .202[.192](.186) | .248[.195](.195) | .203[.182](.176) | .248[.184](.184) || .207[.169](.163) | .250[.170](.170)
100 | .228[.130](.128) | .252[.131](.131) | .225[.127](.124) | .248[.127)(.127) || .228[.119](.117) | .251[.120](.120)
200 | .239[.091)(.090) | .251[.091](.091) | .239[.090](.090) | .250[.090](.090) | .240[.085](.084) | .251[.085](.085)
500 || .246.057)(.057) | .250[.057)(.057) | .246[.057](.057) | .251[.058](.058) | .246[.055](.055) | .251[.055](.055)

00 50 | -.032[.192](.189) | .002[.201](.201) | -.035[.184](.181) | -.002[.191](.191) || -.033[.178](.175) | -.002[.184](.184)
100 || -.021[.135](.133) | -.004[.137](.137) | -.018[.131](.130) | .000[.133](.133) || -.019[.124](.123) | -.003[.126](.126)
200 || -.010[.097)(.096) | -.001[.098](.098) | -.008[.093](.093) | .001[.094](.094) | -.010[.089](.088) | -.002[.089](.089)
500 || -.005[.060](.060) | -.001[.060](.060) | -.005[.059](.059) | -.001[.059)(.059) | -.004[.058](.058) | .001[.058](.058)

-25 50 || -.270[.180](.179) | -.252[.191](.191) | -.273[.171](.170) | -.255[.181](.181) | -.274[.169](.168) | -.257[.178](.178)
100 || -.262[.127](.126) | -.252[.130](.130) | -.261[.124](.123) | -.251[.127)(.127) || -.262[.120](.119) | -.252[.123](.123)
200 || -.255[.090](.090) | -.250[.091](.091) | -.255[.088](.088) | -.250[.089](.089) | -.255[.087](.087) | -.250[.088](.088)
500 || -.253[.057)(.057) | -.250[.058](.058) | -.252[.057](.057) | -.250[.058](.058) | -.253[.056](.056) | -.250[.057](.057)

-50 50 | -.503[.152](.152) | -.502[.163](.163) | -.503[.144](.144) | -.500[.153](.153) || -.509[.144](.143) | -.507[.153](.153)
100 || -.504[.107](.107) | -.502[.111](.111) | -.503[.104](.104) | -.501[.108](.108) || -.504[.103](.103) | -.502[.106](.106)
200 || -.502[.076)(.076) | -.501[.077)(.077) | -.502[.074](.074) | -.501[.076)(.076) | -.503[.074](.074) | -.502[.075](.075)
500 || -.501[.048](.048) | -.500[.049](.049) | -.501[.047](.047) | -.500[.048](.048) | -.501[.046](.046) | -.501[.047](.047)
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Empirical Mean|[rmse|(sd) of Estimators of p for SED Model with SAR Errors -

Normal Errors

Table 2.2

Mixed Normal Errors

Queen Contiguity, REG-1

Log-Normal Errors

~bc2

~bc2

~bc2

p_n Pn fn Pn fn Pn Pn

50 50 || .390[.244](.218) | 492[215](.215) || .395[.232](.206) | .493[204](.204) | .406].207](.184) | .501[.181](.181)
100 | .445[.153](.143) | .499[.140](.140) || .449[.145](.135) | .501[.133](.133) || .451[.133](.124) | .501[.122](.122)
200 | .474[.099)(.095) | .500[.095](.095) | .474[.098](.095) | .500[.094)(.094) | .476[.091](.087) | .500[.087](.087)
500 || .491[.059)(.058) | .501[.058](.058) | .490[.059](.058) | .500[.058](.058) | .490[.056](.055) | .500[.055](.055)

25 50 | .144[.270](.248) | .248[.250](.250) | .153[.255)(.236) | .254[.238](.238) || .153[.239](.218) | .250[.219](.219)
100 | .196[.179](.171) | .253[.169](.169) || .194[.177](.168) | .249[.166](.166) || .197[.165](.156) | .250[.154](.154)
200 || .221[.121](.117) | .248[.117](.117) | .222[.118](.115) | .249[.114](.114) | .225[.110](.107) | .250[.107](.107)
500 || .240[.073)(.073) | .250[.073](.073) | .240[.075](.074) | .250[.074)(.074) | .241[.069](.068) | .251[.068](.068)

00 50 || -.101[.294](.276) | -.002[.285](.285) || -.095[.277)(.260) | .003[.268](.268) | -.095[.259](.241) | -.001[.247](.247)
100 | -.059[.200](.192) | -.002[.192](.192) | -.059[.197](.188) | -.002[.189](.189) || -.055[.181](.172) | .001[.172](.172)
200 || -.027[.135](.132) | .001[.133](.133) || -.026[.132](.130) | .002[.130](.130) | -.027[.124](.121) | -.002[.121](.121)
500 || -.011[.083](.082) | -.001[.082](.082) | -.011[.082](.081) | .000[.081](.081) | -.010[.079)(.079) | .001[.079](.079)

-25 50 | -.339[.299](.285) | -.248[.300](.300) | -.338[.284](.270) | -.249].283](.283) || -.337[.265](.250) | -.251[.261](.261)
100 | -.308[.211](.203) | -.252[.206](.206) | -.303[.202](.195) | -.248[.198](.198) || -.307[.194](.185) | -.254[.188](.188)
200 || -.277[.142](.140) | -.251[.141](.141) || -.274[.140](.138) | -.249[.139](.139) | -.275[.132](.129) | -.250[.130](.130)
500 || -.262[.089](.089) | -.252[.089](.089) | -.260[.088](.088) | -.250[.088](.088) | -.261[.084](.083) | -.251[.084](.084)

-50 50 | -.576[.291](.281) | -.499[.301](.301) | -.577[.283](.272) | -.502[.290](.290) || -.584[.268](.255) | -.511[.271](.270)
100 | -.548[.208](.203) | -.498[.209](.209) | -.550[.201](.195) | -.501[.201](.201) || -.547[.193](.188) | -.499[.193](.193)
200 || -.524[.144](.142) | -.501[.144](.144) | -.524[.141](.139) | -.501[.141](.141) | -.521[.136](.134) | -.498].136](.136)
500 || -.511[.090](.089) | -.502[.090](.089) | -.510[.089](.089) | -.501[.089](.089) | -.509[.086](.086) | -.500[.086](.086)
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Table 2.3

Empirical Mean[rmse](sd) of Estimators of p for SED Model with SAR Errors - Group Interaction, k& = n%° REG-2

Normal Errors

Mixed Normal Errors

Log-Normal Errors

~bc2

~bc2

~bc2

P n Pn Pn Pn pn Pn pn
50 50| .277[403](.335) | .523[223](:222) || .287[.395](.332) | .524[.223](.222) | .303[.354](:294) | .532[.194](.192)
100 | .375[.233](.197) | .512[.148](.148) | .377[.233](.198) | .511[.149](.149) | .384[.214](.180) | .515[.136](.136)
200 | .424[.160](.141) | .502[.116](.116) | .430[.152](.134) | .506[.111](.111) | .432[.143](.126) | .507[.104](.104)
500 | .454[.106](.096) | .502[.085](.085) | .455[.105](.095) | .502[.085](.085) || .456[.100](.090) | .502[.080](.080)
25 50| -.082[.548](.437) | .291[.325](.322) || -.078[.541](.431) | .288[.318](.315) | -.061[.507](.401) | .296[.296](.293)
100 || .051[.345](.281) | .268[.220](.219) | .052[.342](.278) | .265[.218](.218) | .068[.309](.249) | .275[.196](.194)
200 | .129[.239](.206) | .259[.171](.171) | .127[.236](.201) | .256[.168](.168) || .131[.220](.184) | .257[.154](.153)
500 | .176[.160](.141) | .254[.126](.126) | .175[.161](.142) | .253[.127](.127) | .179[.153](.135) | .255[.120](.120)
00 50 | -.433[.679](.523) | .040[.419])(.417) | -.432[.672](.514) | .034[.412](.411) | -.400[.620](.474) | .055[.378](.375)
100 || -.270[.448](.357) | .018[.288](.288) | -.260[.435](.347) | .020[.280](.280) | -.251[.409](.324) | .025[.263](.261)
200 | -.172[.315](.264) | .009[.223](.223) || -.171[.312](.261) | .008[.221](.221) || -.162[.295](.246) | .012[.209](.209)
500 | -.107[.215](.186) | .002[.167](.167) | -.106[.213](.185) | .002[.166](.166) || -.100[.199](.173) | .006[.156](.155)
25 50 || -.758[.767)(.575) | -.210[.487](.485) | -.746[.753](.567) | -.209[.483])(.481) || -.723[.708](.527) | -.195[.448](.445)
100 | -.573[.534](.425) | -.227[.354](.353) || -.574[.530](.420) | -.233[.350](.350) || -.563[.490](.377) | -.228[.314](.313)
200 | -.467[.394](.329) | -.242[.282](.282) || -.466[.382](.315) | -.242[.271](.271) || -.455[.356](.291) | -.236[.250](.250)
500 || -.383[.263](.227) | -.240[.205](.204) || -.381[.263](.228) | -.246[.206](.206) || -.379[.250](.215) | -.245[.194](.194)
50 50 || -1.057[.828](.614) | -.456[.553](.551) || -1.059[.828](.611) | -.467[.550](.549) | -1.040[.782](.566) | -.454[.505](.503)
100 | -.880[.612](.480) | -.481[.409](.409) || -.875[.598](.465) | -.482[.397](.396) || -.857[.562](.434) | -.472[.369](.368)
200 | -.753[.451](.374) | -.487[.325](.325) | -.751[.445](.369) | -.487[.320](.320) || -.746[.422](.344) | -.487[.299](.299)
500 || -.655[.308](.267) | -.493[.242](.242) || -.659[.311](.267) | -.497[.243](.243) || -.652[.294](.251) | -.492[.228](.228)
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Table 2.4

Empirical Mean[rmse](sd) of Estimators of p for SED Model with SAR Errors - Group Interaction, k = n%% REG-2

Normal Errors

Mixed Normal Errors

Log-Normal Errors

~bc2

~bc2

~bc2

p_n P Pn Pn Pr Pr Pn

50 50 || .435[.155](.140) | .504[119](.119) || .440[.147](.134) | .507[.114](.114) | .441[.133](.119) | .506].101](.101)
100 | .458[.110](.101) | .502[.091](.091) | .460[.105)(.097) | .502[.087)(.087) || .462[.094](.086) | .503[.077](.077)
200 | .477[.077)(.073) | .503[.069](.068) | .475[.077](.073) | .501[.068](.068) | .478[.069](.065) | .503[.061](.061)
500 || .486[.053)(.051) | .501[.050](.050) | .485[.053](.051) | .500[.049)(.049) | .487[.050](.048) | .502[.046](.046)

25 50 || .148[.213](.186) | .257[.166](.166) || .151[.205)(.179) | .257[.160](.160) | .154[.189](.162) | .257[.144](.144)
100 | .182[.156](.140) | .252[.129](.129) | .183[.151](.135) | .252[.124](.124) || .185[.139](.123) | .252[.112](.112)
200 || .209[.113](.105) | .252[.099](.099) | .211[.109](.102) | .253[.096](.096) | .209[.104](.095) | .250[.090](.090)
500 || .228[.076)(.073) | .252[.070](.070) | .227[.077](.073) | .251[.070](.070) | .227[.072](.068) | .251[.066](.066)

00 50 || -.129[.253](.218) | .006[.205](.205) || -.127[.244](.208) | .006[.195](.195) | -.119].222](.187) | .011[.175)(.174)
100 | -.087[.191](.170) | .005[.159](.159) | -.088[.187](.165) | .003[.155](.154) || -.081[.169](.148) | .007[.138](.138)
200 || -.056[.144])(.133) | .003[.126](.126) | -.056[.140](.128) | .002[.122](.122) | -.052[.131](.120) | .005[.114](.114)
500 || -.033[.101)(.096) | -.001[.093](.093) | -.034[.100](.094) | -.001[.091](.091) | -.030[.093](.088) | .002[.086](.086)

-25 50 | -.395[.273](.231) | -.248[.227](.227) | -.389[.260](.220) | -.244[.216](.216) || -.384[.241](.201) | -.242[.196](.196)
100 | -.351[.218](.193) | -.244[.184](.184) | -.353[.215](.189) | -.247[.180](.180) || -.349[.197)(.170) | -.246[.162](.162)
200 || -.319[.170])(.156) | -.248[.149](.149) | -.321[.169](.154) | -.251[.147)(.147) | -.317[.155](.140) | -.249].134](.134)
500 || -.290[.122](.115) | -.249[.112](.112) || -.201[.122](.115) | -.251[.112](.112) | -.289[.114](.107) | -.250[.104](.104)

-50 50 | -.647[.276](.234) | -.499[.241](.241) | -.644[.269](.228) | -.499].236](.236) || -.639[.252](.210) | -.497[.215](.215)
100 | -.616[.241](.212) | -.497[.205](.205) | -.609[.234](.207) | -.492[.200](.200) || -.610[.219](.189) | -.495[.183](.183)
200 || -.580[.193)(.176) | -.499[.170](.170) | -.579[.191](.174) | -.499[.168](.168) | -.579[.179](.161) | -.500[.156](.156)
500 || -.547[.141)(.133) | -.500[.129](.129) | -.545[.139](.131) | -.498[.128](.128) | -.544[.131](.124) | -.497[.121](.121)
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Replication of Table 2.2 for § =

Normal Errors

Table 2.5

(5,.1,.1)

Mixed Normal Errors

Log-Normal Errors

~bc2

~bc2

~bc2

p_n Pn Pn Pn Pr Pn Pn

50 50 || .395[.242](:218) | .499[213](.213) || .396[.230](.205) | .497[.200](.200) | .404[.210](.187) | .501[.182](.182)
100 | .446[.150](.140) | .500[.138](.138) | .447[.149](.139) | .499[.137](.137) || .451[.135](.125) | .501[.123](.123)
200 | .474[.100)(.096) | .500[.096](.096) | .475[.096](.093) | .500[.092)(.092) | .476[.091](.087) | .500[.087](.087)
500 || .490[.059)(.058) | .500[.058](.058) | .490[.059](.058) | .500[.058](.058) | .491[.056](.055) | .501[.055](.055)

25 50 || .137[.282](.258) | .246[.258](.258) || .145[.263](.241) | .251[.240](.240) | .152[.246](.225) | .253[.224](.224)
100 | .195[.182](.173) | .252[.172](.172) | .196[.173](.165) | .252[.163](.163) || .195[.162](.152) | .249[.151](.151)
200 | .224[.121)(.118) | .250[.118](.118) | .224[.118](.115) | .251[.115)(.115) | .226[.111](.108) | .251[.108](.108)
500 || .241[.072)(.071) | .251[.071](.071) | .240[.072](.071) | .251[.071)(.071) | .241[.070](.070) | .251[.070](.070)

00 50 || -.104[.297)(.279) | .004[.286](.286) || -.106[.285)(.264) | -.002[.270](.270) | -.098[.269](.250) | .004[.255](.255)
100 | -.059[.201](.192) | -.002[.193](.193) | -.058[.196](.187) | -.001[.188](.188) || -.054[.181](.173) | .002[.173](.173)
200 || -.027[.134)(.131) | .001[.132](.132) | -.028[.133](.131) | -.002[.131](.131) | -.027[.124](.121) | -.001[.121](.121)
500 || -.010[.082](.081) | .002[.082](.082) | -.012[.083](.082) | -.001[.082](.082) | -.011[.079](.078) | -.001[.078](.078)

-25 50 | -.352[.305](.288) | -.253[.302](.302) | -.351[.294](.276) | -.254[.289](.289) || -.346[.279](.262) | -.252[.273](.273)
100 | -.302[.208](.202) | -.247[.205](.205) | -.304[.203](.196) | -.249[.199](.199) || -.304[.192](.185) | -.251[.187)(.187)
200 || -.275[.142](.140) | -.250[.141](.141) || -.280[.139](.136) | -.255[.137](.137) | -.277[.134](.131) | -.252[.132](.132)
500 || -.261[.090](.089) | -.251[.089](.089) | -.261[.088](.087) | -.251[.088](.088) | -.259[.085](.085) | -.249].085](.085)

-50 50 | -.591[.300](.286) | -.506[.307](.307) | -.592[.290](.276) | -.508].294](.294) || -.588[.280](.265) | -.506[.282](.282)
100 | -.549[.207](.201) | -.500[.208](.208) | -.554[.203](.195) | -.506[.201](.201) || -.548[.193](.187) | -.500[.192](.192)
200 || -.524[.144])(.142) | -.501[.144](.144) | -.522[.141](.140) | -.499[.142](.142) | -.523[.136](.134) | -.501[.136](.136)
500 || -.509[.091)(.090) | -.500[.091](.091) | -.508[.090](.089) | -.499[.090](.090) | -.510[.087](.086) | -.500[.087](.087)
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Table 2.6

Replication of Table 2.2 for ¢ = 3

Normal Errors

Mixed Normal Errors

Log-Normal Errors

~bc2

~bc2

~bc2

p_n Pn Pn Pn Pr Pn Pn

50 50 || .392[243](:217) | 499[210](.210) || .396[.234](.209) | .499[.202](.202) | .404[212](.189) | .505[.182](.182)
100 | .449[.150](.141) | .501[.139](.139) || .449[.147](.137) | .499[.135](.135) || .452[.134](.125) | .501[.123](.123)
200 || .474[.098](.095) | .500[.094](.094) | .475[.097](.094) | .500[.093](.093) | .474[.091](.087) | .499[.087](.087)
500 || .489[.060](.059) | .499[.059](.059) | .490[.060](.059) | .500[.058](.058) | .490[.056](.055) | .500[.055](.055)

25 50 | .139[.282](.259) | .253[.257](.257) | .136[.271](.246) | .247[.243)(.243) || .147[.249](.227) | .255[.224](.223)
100 | .196[.180](.172) | .250[.171](.171) | .195[.174](.165) | .249[.165](.165) || .202[.159](.152) | .253[.151](.151)
200 || .220[.120](.116) | .247[.116](.116) | .225[.119](.116) | .251[.116](.116) | .226[.110](.107) | .251[.107](.107)
500 || .240[.074)(.073) | .250[.073](.073) | .240[.072](.071) | .251[.071)(.071) | .240[.070](.070) | .250[.070](.070)

00 50 || -.114[.307)(.285) | .001[.291](.291) || -.111[.297)(.275) | .001[.280](.280) | -.109].279](.256) | -.001[.259](.259)
100 | -.053[.195](.188) | .003[.189](.189) | -.053[.192](.184) | .001[.185](.185) || -.051[.177)(.170) | .002[.171](.171)
200 || -.027[.134](.131) | -.001[.132](.132) || -.028[.132](.129) | -.002[.129](.129) | -.027[.123](.120) | -.002[.121](.121)
500 || -.010[.083](.083) | .001[.083](.083) | -.011[.082](.082) | -.001[.082](.082) | -.011[.079](.078) | -.001[.078](.078)

-25 50 | -.364[.312](.291) | -.258[.306](.305) | -.356[.298](.278) | -.250[.291](.291) || -.355[.286](.266) | -.252[.276](.276)
100 | -.300[.209](.203) | -.248[.207](.207) | -.302[.202](.195) | -.252[.199](.199) || -.297[.187](.181) | -.248[.183](.183)
200 || -.277[.143](.141) | -.252[.142](.142) | -.275[.139](.137) | -.249[.138](.138) | -.274[.134](.132) | -.249[.132](.132)
500 || -.259[.088](.087) | -.249[.087)(.087) | -.262[.088](.087) | -.252[.087)(.087) | -.260[.085](.085) | -.250[.085](.085)

-50 50 | -.593[.305](.290) | -.501[.312](.312) | -.596[.292](.276) | -.504[.296](.296) || -.599[.281](.263) | -.509[.280](.280)
100 | -.548[.207](.201) | -.503[.208](.208) | -.547[.198](.193) | -.502[.199](.199) || -.543[.192](.187) | -.499[.192](.192)
200 || -.522[.145](.143) | -.499[.145](.145) | -.525[.142](.140) | -.503[.142](.142) | -.522[.136](.134) | -.500[.136](.136)
500 || -.509[.091)(.091) | -.500[.091](.091) | -.511[.089](.088) | -.502[.089](.089) | -.510[.086](.086) | -.501[.086](.086)
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Empirical Mean[rmse|(sd) of Estimators of p for SED Model with SMA Errors -

Normal Errors

Table 2.7

Mixed Normal Errors

Queen Contiguity, REG-1

Log-Normal Errors

Pn

~bc2
Pn

Prn

~bc2
Pn

Pn

~bc2
Pn

25

.00

-.25

-.50

100
200
200

100
200
200

100
200
500

100
200
200

100
200
200

554[.154](.145)
527[.101](.097)
510[.059](.058)

:302[.184](.176)
275[.121](.119)
259[.074](.073)

.041[.204](.200)
.019[.136](.134)
.009[.083](.083)

-.214[.217](.214)
-.234[.145)(.144)
-.245[.089](.089)

-.472[.218](.216)
-489[.149](.149)
-.495[.092](.092)

500[.418](.418)
501[.096](.096)
:500[.058](.058)

256[.178](.178)
251[.117)(.117)
250[.073](.073)

-.001[.196](.196)
-.002[.132](.132)
.001[.083](.083)

-.249].208](.208)
-.250[.142](.142)
-.251[.089](.089)

-.498[.209](.209)
-.501[.146](.146)
-.500[.091](.091)

552[.151](.142)
528[.099](.095)
510[.059](.058)

:301[.180](.173)
273[.120](.118)
261[.073](.072)

.040[.197](.193)
022[.133](.131)
.009[.082](.082)

-.217[.210](.208)
-.233[.143](.142)
-.245[.089](.089)

~A75[.214](.212)
-.492[.146](.146)
-.495[.089](.089)

'509[.318](.318)
502[.095](.095)
:500[.058](.058)

255[.171](.171)
250[.116](.116)
252[.072](.072)

-.002[.188](.188)
.002[.129](.129)
.001[.081](.081)

-.251[.202](.202)
-.249[.140](.140)
-.251[.089](.089)

~.500[.205](.205)
-.503[.143](.143)
-.500[.089](.089)

553[.149](.139)
527[.096](.093)
510[.059](.058)

292[.171](.166)
274[.115](.112)
260[.071](.071)

.039[.187](.183)
021[.129](.127)
.008[.081](.080)

-.222[.197](.195)
-.235[.138](.137)
-.245[.086](.086)

~.479[.201](.200)
-.490[.139](.138)
-.496[.087](.087)

-506[.140](-140)
501[.092](.092)
:500[.058](.058)

247[.163](.163)
251[.111](.111)
251[.070](.070)

~.001[.179](.179)
.001[.125](.125)
.000[.080](.080)

-.254[.189](.189)
-.251[.134](.134)
-.251[.086](.086)

~.502[.193](.193)
-.500[.136](.136)
-.500[.086](.086)
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Table 2.8

Empirical Mean[rmse|(sd) of Estimators of p for SED Model with SMA Errors - Group Interaction, k = n®?, REG-1

Normal Errors

Mixed Normal Errors

Log-Normal Errors

Pn

~bc2
Pn

Prn

~bc2
Pn

Pn

~bc2
Pn

25

.00

-.25

-.50

100
200
200

100
200
200

100
200
500

100
200
200

100
200
200

549[.129](-120)
534[.106](.100)
519[.078](.076)

:309[.184] (.174)
.292[.148](.142)
277[.116](.113)

071[.234](.223)
051[.197](.190)
032[.152](.149)

-.168[.281](.269)
-.194[.234](.227)
-.210[.188](.184)

-411[.321](.308)
-.427[.276](.266)
-.456[.219](.215)

508[.128](.127)
503[.104](.104)
501[.078](.078)

254[.183](.183)
252[.147)(.147)
252[.116](.116)

005[.234](.234)
001[.198](.198)
-.001[.154](.154)

-.246[.282](.282)
-.253[.236](.236)
-.248].189](.189)

-.500[.324](.324)
-.496[.276)(.276)
-501[.221](.221)

548[126](.117)
534[.104] (.098)
520[.079](.077)

:310[.179](.169)
.292[.147)(.141)
276[.116](.113)

.069[.228](.217)
053[.192](.185)
.032[.150](.146)

-.174[.269](.258)
-.187[.233](.225)
-211[.188](.184)

-.408[.315](.302)
-.427[.272](.262)
-.453[.223](.218)

507[.124](.124)
502[.102](.102)
502[.079](.079)

256[.177](.177)
252[.146](.146)
252[.116](.116)

.004[.227](.227)
.004[.192](.192)
.001[.150](.150)

-.251[.270](.270)
-.245[.233](.233)
-.249[.189](.189)

~.495[.316](.316)
-495[.273](.273)
-.498[.224](.224)

548[121](.111)
533[.099](.094)
519.077)(.074)

:306[.167](.158)
:204[.140](.133)
275[.111)(.108)

065[.211](.200)
052[.180](.172)
034[.145](.141)

-172[.254](.242)
-.192[.221](.214)
-213[.178](.174)

-417[.294](.282)
- 436[.256] (.247)
-.456[.213](.208)

507[.118](.118)
502[.097](.097)
502[.076](.076)

253[.165](.165)
254[.138](.138)
251[.111](.111)

.002[.209](.209)
.004[.178](.178)
.003[.145](.145)

-.246[.253](.253)
-.249][.222](.222)
-.251[.179](.179)

-.503[.296](.296)
-.502[.257](.257)
-.501[.214](.214)




2.6 Conclusions

This chapter provide formal results for the asymptotic distribution as well
as finite sample bias correction of the QML estimators for the SED model with
autoregressive errors of order 1. Comparable results for moving average errors of
order 1 has been illustrated as well.

Consistency and the asymptotic normality of the QML estimators has been
addressed with a specific attention given to the effect of the degree of spatial
dependence on the rate of convergence of the QML estimators of the model pa-
rameters. Specifically when the degree spatial dependence, h,,, grows with the
sample size n, the QML estimator of the spatial parameter will have a lower rate
of convergence (of \/n/h,) while the other QML estimators will have a /n-rate of
convergence irrespective of the behaviour of h,,. Of the finite sample properties of
spatial models, a specific attention has been given to the finite sample bias of the
QML estimator of the spatial parameter as it enters the model in a highly non-
linear manner and thus the estimation of it constitutes the main source of bias.
Simulation studies indicate a prominent single direction bias in the estimation of
the spatial parameter which in turn affects the subsequent inferences for the other
model parameters. The severity of the bias increases as the spatial weights matrix
becomes less sparse.

The finite sample results of this chapter demonstrate again that stochastic
expansions (Rilstone et al., 1996) coupled with bootstrap (Yang, 2015b) provide
a general and effective method for finite sample bias corrections of a non-linear
estimator. The suggested theories and methodologies are likely to be appealing to
both theorists as well as practitioners alike who are dealing with the SED model
or any other regression model that considers a spatial dependence structure in the
error process (like SARAR, panel SARAR, spatial dynamic panel data models,

etc.).
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CHAPTER 3

Improved Inferences for Spatial Regression Models

3.1 Introduction

The maximum likelihood (ML) or quasi-ML (QML) method is popular in
the estimation and inference for spatial regression modelsﬂ However, the ML
estimators or quasi-ML (QML) estimators of the spatial parameters can be quite
biased E| and hence the standard inferences for spatial effects and covariate effects,
based on LM-statistics or t-statistics referring to the asymptotic standard normal
distribution, can be seriously affected. Much effort has been devoted recently
to the development of improved inference methods for the spatial econometrics
models. However, most of the research has been focused on improving inferences

for spatial effects in the form of point estimation | and testing [] Little or no

! Anselin, 1988; Anselin and Bera, 1998; Lee, 2004

2Bao and Ullah, 2007; Yang, 2015b; Liu and Yang, 2015a

3Bao and Ullah, 2007; Bao, 2013; Liu and Yang, 2015a; Yang, 2015b

4Baltagi and Yang, 2013a,b; Robinson and Rossi, 2014a,b; Yang, 2010; Yang, 2015a,b
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attention has been paid to the development of improved inferences for the covariate
effects in the spatial regression models.

Yang (2015a) proposed a general method for constructing 2nd-order accurate
bootstrap LM tests for spatial effects, but the issue of improved inferences for
covariate effects was not studied. Yang (2015b) proposed a general method for
3rd-order bias and variance corrections on non-linear estimators which are prone
to finite sample bias, and argued that once the biases of non-linear estimators
are corrected, the biases of covariate effects and error standard deviations become
negligible. He demonstrated the effectiveness of the methods using the linear
regression model with spatial lag dependence with results showing that a 2nd-
order bias correction is largely sufficient. He further demonstrated that the 2nd-
order or 3rd-order corrected t-statistics for spatial effect indeed improve upon
the standard t-statistics greatly, but again, no study was carried out to test the
performance of the t-statistics for covariate effects, and its improvements.

Evidently, in practical applications of spatial econometrics models, it is central
to have a set of reliable inference methods for the covariate effects. In this chapter,
we adopt the bias correction method of Yang (2015b) to propose methods that
‘correct’ the standard t-statistics for the regression coefficients. We demonstrate
that by simply replacing the QML estimators of the spatial parameters by their
bias corrected versions, the usual t-ratios for the regression coefficients can be
greatly improved. We propose further corrections on the standard errors of the
‘bias corrected” QML estimators of the regression coefficients, and the resulted
t-ratios perform superbly, leading to much more reliable inferences. The proposed
methods are simple and can be easily adopted by practitioners. We consider
in detail three popular spatial regression models: the linear regression model
with spatial error dependence (SED), that with a spatial lag dependence (SLD),
and that with both SLD and SED, also referred to as the SARAR model in the
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literature’] Bias-correction on a single spatial estimator has been considered in
detail in Yang (2015b) for the SLD model, and in Liu and Yang (2015a) for
the SED model. Bias-corrections for the SARAR model have not been formally
considered, although briefly discussed in Yang (2015b) under a general outline for
bias corrections for a model with a vector of non-linear parameters.

The line-up for the chapter is as follows. Section 3.2 outlines the general
method of bias correction on non-linear estimators, and the methods for con-
structing improved t-statistics for the linear parameters in the model. Sections
3-5 study in detail the improved inference methods for the regression coefficients
for, respectively, the SED model, the SLD model, and the SARAR model. Each
of Sections 3.3-3.5 is accompanied with a set of Monte Carlo simulation results.
Section 3.6 concludes the chapter, and discuss further extensions of the proposed

methodology.

3.2 Method of Bias Correction for Non-linear
Estimation

From the discussions in the introduction, it is clear that the key for an improved
inference for the regression coefficients is to bias correct the QML estimators of
the spatial parameters in a spatial regression model. We now outline the method
of bias correction on non-linear estimators, not necessarily the QML estimators
of the spatial parameters. In studying the finite sample properties of a parameter
estimator, say 6,, defined as 6, = arg{t,(#) = 0} for a joint estimating function
(JEF) ,(6), based on a sample of size n, Rilstone et al. (1996) developed a
stochastic expansion from which a bias correction on 6,, can be made. The vector

of parameters # may contain a set of linear and scale parameters, say «a, and

°See Anselin and Bera (1998) and Anselin (2001) for excellent reviews on these models.
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a few mon-linear parameters, say §, in the sense that given §, the constrained
estimator &, (d) of the vector v possesses an explicit expression but the estimation
of 0 has to be done through numerical optimization. In this case, Yang (2015b)
argued that it is more effective to work with the concentrated estimating function
(CEF): ,,(8) = thn (1, (6), 6), and to perform a stochastic expansion based on this
CEF and hence bias corrections on the non-linear estimators defined by, op =
arg{t,(9) = 0}, which not only reduces the dimensionality of the bias correction
problem (a multi-dimensional problem is reduced to a single-dimensional problem
if ¢ is a scalar parameter), but also takes into account the additional variability
from the estimation of the ‘nuisance’ parameters a.

Let H,,,(6) = V7, (8),r = 1,2,3, be the partial derivatives of 1, (8), carried
out sequentially and element-wise with respect to ¢’, QZn = 1/~zn(60), H,., = H,,(d0),
H° = H,, —E(H,,),r =1,2,3, and Q, = —[E(Hy,)]"". Yang (2015b) presents
a set of sufficient conditions under which 4, possesses the following third-order

stochastic expansion at dg, the true value of §:
8n — 50 = a_1/2 +a_q+ a_3/2 + Op<n72), (31)

where, a_,/; represents terms of order O,(n=%/?) for s = 1,2, 3:

a_y1/2 = Qnﬁzm

ay = Q. H{a_12+ %QTLE(HQn)<G_1/2 ® a_1/2),

a_zpp = Q.Ha 1+ 3Q.Hs (a_1/2 @ a_1)2)
—i—%QnE(Hgn)(a_l/z ® a1+ a1 ®a_i)

+%QnE(H3n)(a_1/2 ® a_1/2 ® a_12),

with ® denoting the Kronecker product.

The key difference between the CEF-based and JEF-based expansions is that
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E[¢,(00)] # 0 in general, but E[,(6y)] = 0, which allows a CEF-based bias
correction to be derived under a more relaxed condition. Thus, a third-order

expansion for the bias of 5, takes the form:
Bias(d,) = b_1 + b_g/s + O(n72), (3.2)

where b_y = E(a_1/2 + a—1) and b_3/, = E(a_3/2), being respectively the second-
and third-order biases of 5n

If an estimator b_; of b_y is available such that Bias(b_;) = O(n~3/2), then a
second-order bias corrected estimator of § is, 622 = 00— b_y.

If estimators Z)_l and 13_3/2 of both 0_; and b_3/; are available such that
Bias(b_1) = O(n~2) and Bias(b_3/2) = O(n~2), we have a third-order bias cor-
rected estimator of § as, J°° = 5n —b - 13_3/2.

An obvious approach for finding the feasible corrections by and b_s /2 is to first
find the analytical expressions for b_; and b_3/, and then plugging in 6,, for 6.
This approach is generally not feasible for two reasons: first, it is often difficult to
find these analytical expressions even for known error distributions, and second,
even if these expressions are available, it may involve higher-order moments of the
errors if they are non-normal, for which estimation may be unstable numerically.
To overcome this difficulty, Yang (2015b) proposed a simple and yet very effective
bootstrap method to estimate the relevant expected values.

Suppose that the model under consideration takes the form ¢(Z,,6y) = e,,
and that the key quantities @Zn and H,, can be expressed as zﬁn = @Zn(enﬁo)
and H,, = H.,(en,00),r = 1,2,3. Let &, = g(Zn,én) be the vector of estimated
residuals based on the original data, and F,, be the empirical distribution function

(EDF) of é,, (centred). When ¢ is a scalar parameter, the bootstrap estimates of
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the quantities in the bias terms are:
B H! ) = B[l (e,0,)H (¢,0,)], 4,j=0,1,2,..., r=1,2,3, (3.3)

where E* denotes the expectation with respect to F,, and é; is a vector of n
random draws from F,,. To make (3.3)) practically feasible, the following procedure

can be followed.
Bootstrap Algorithm 1 (BA-1):
1. Compute 0, defined by JEF, é, = g(Z,, én), and EDF F, of the centred é,,;

2. Draw a random sample of size n from F,. Denote the re-sampled vector by

Sk

€n7b7

3. Compute (& En b 0,) and H,p (e ,,0,), 7 =1,2,3;

nb’

4. Repeat steps 2.-3. for B times, to give approximate bootstrap estimates as,
B[00, (€5, 0n) HE (65, 00)) = 55 22000 U0 (E s 0n) HIL (654, 00),

fori,j=0,1,2,..., r=1,2,3.

The approximations in the last step can be made arbitrarily accurate by choosing

an arbitrarily large B. Yang (2015b) shows that under certain conditions:

Bias(0°?) = Bias(0,) — E(b_;) = —Bias(b_y) + O(n"%?) = O(n~*/?), and

Bias(02%) = Bias(d,) — E(b_1) — E(b_s2)

= —Bias(b_,) — Bias(b_3)2) + O(n"?) = O(n?).

When 6 becomes a vector, the non-stochastic and stochastic quantities are

mixed in b_; and b_3/,. In this case, Yang (2015b) proposed that instead of going
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through the algebraic procedure to separate the two types of quantities so that the
expectations of various quantities can be bootstrapped in one round, the above

bootstrap procedure can be revised as follows.

Bootstrap Algorithm 2 (BA-2):

1. Draw B independent random samples, {é5,, b=1,2,... B}, from F,

n,b?

2. Calculate the bootstrap estimates of E(Hy,) and E(Hay,),
E(Hin) = Yoy Hin(é4:0n) and B(Hoy) = 4 325, Han(€,4,0n)

3. Based on the bootstrap estimates Q, = —E_I(Hln) and E(Hgn), calculate the

bootstrap estimate of, e.g., E[H3, (a_1/2 ® a_12)], as

~ ~ A

LS A [Hon(€ry, 00) — E(Han)[Qthn (€5, 0n) © Quthn (54, 0,)] -

The other quantities can be handled in a similar manner. This is essentially a
two-round bootstrap procedure as it runs the iterations b = 1,2, ..., B two times,
based on the same sequence of bootstrap samples. Computationally it is slightly
more demanding, but algebraically it is much simpler and thus easier to code. As
noted by Yang (2015b), these procedures are time-efficient as the re-estimation of
the parameters in the bootstrap process is avoided.

Inferences following bias correction: There are mainly two types of in-
ferences that could benefit from the bias corrections on the non-linear estimators:
one is the inference for the non-linear parameters, and the other for the linear
parameters. In the framework of linear regressions with spatial dependence, the
spatial parameters are the non-linear parameters, and the regression coefficients
are the linear parameters. Improved tests for spatial effects have been consid-

ered by Baltagi and Yang (2013a,b), Robinson and Rossi (2014a,b), Yang (2010),
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and Yang (2015a). However, the issue of improved inferences for the regression
coefficients has not been considered.

To fix the idea, we focus on the 2nd-order bias corrected 4, the 6>, Let
b = G (0,) and G2 = @, (62), and 6, = (&, 0") and °° = (4>, 6><2')'. Yang
(2015b) argued that estimation of the non-linear parameter is the main source
of bias and once the non-linear estimator is bias corrected the resulting linear
estimators would be nearly unbiased. Let ,(6y) be the asymptotic variance-

covariance (VC) matrix of &,. Then, an asymptotic ¢-statistic for inference for

ch, a linear contrast of ap, has the familiar form:
tn = (cham — cha) /A o (0,)co.
Simply replacing 0, by égc, a possibly improved t-statistic results:

£ = (chan” — chan)/\/ o2 (6% co.

The statistic t2¢ is not fully 2nd-order corrected as it uses the asymptotic variance

bc

2¢ is also not fully 2nd-order

of &, evaluated at °°. Further, the estimator &
bias corrected, although it can easily be made so. Let a°? be the 2nd-order bias
corrected d, or ab¢. Let QP%(6y) be the 2nd-order variance of &2, and QECQ be

its consistent estimate. A fully 2nd-order corrected t-statistic, using a 2nd-order

bias corrected estimator and its 2nd-order variance, is thus:

be2 _ (1 ~bc2 / / Obc2
1% = (chan — chn) /A ch€ b2y,

Typically, Q2%(0y) does not have an explicit expression, but the bootstrap meth-
ods described above can be extended to give a consistent estimate of it. See the

subsequent sections for details.
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3.3 Improved Inferences for the SED Model

In this section, we study the inference methods for the regression coefficients
of the SED model. First, in Section 3.3.1, we outline the inferences based on the
asymptotic distribution of the QML estimators of the model parameters, then in
Section 3.3.2 we outline the method of bias correcting the QML estimator of the
spatial parameter, and then in Section 3.3.3 we present the improved inference
methods. To assess the finite sample performance of the asymptotic and improved

inferences, Monte Carlo results are presented in Section 3.3.4.

3.3.1 Asymptotic inference

Consider the following linear regression model with spatial error dependence

(SED), where the SED is specified as a spatial autoregressive (SAR) process:
Y, = X0+ u,, u,=pWyu, + €, (3.4)

where Y,, is an nx 1 vector of observations on the dependent variable corresponding
to n spatial units, X,, is an n x k£ matrix containing the values of k£ exogenous
regressors, W, is an n X n spatial weight matrix that summarises the interactions
among the spatial units, €, is an n x 1 vector of independent and identically
distributed (iid) disturbances with mean zero and variance o2, p is the spatial
parameter, and [ denotes the k x 1 vector of regression coefficients. The SED
model specific terminology follows that of Chapter 2.

Using the asymptotic Var-Cov given in Corollary inference for ¢,y is

carried out based on the following t-ratio:

C{)ﬁn - 0650

tSED = — )
Ve (X1 AL A, X,) e
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where ¢y represents a linear contrast of the regression coefficients and An =1, —
PnWp. The t-ratio, tggp, is asymptotically N (0, 1), and hence inferences concerning
Bo are carried out by referring to the standard normal critical values.

Monte Carlo experiments in Chapter 2 show that p,, can be seriously downward
biased but the bias of p, does not spillover much to Bn This means that the
existence of spatial dependence in the regression errors does not affect much the
point estimation of the regression coefficients in terms of consistency and finite
sample bias. However, it does spill over to the estimate of Var(@n). First, the
downward bias of p, causes 62 to be downward biased when n is not large (e.g.,

50). Second, from the expression:

X'B B, X, = X'A AuX, — (pn— po)X.(W' Ap + AL W) X,

+<ﬁn - pO)er/zW/ngXm

we see that the severe bias of p, may cause X;E;LBHX” to be severely biased
for the estimation of X/ Al A, X,. For example when X/ (W'A, + A W,)X,, >0
(in matrix sense)ﬁ X' B! B, X, tends to overestimate X’ A’ A,X,, and hence,
62¢)(X! B! B, X,,) co tends to underestimate Var(c)f,), which makes tggp much
more variable than N(0,1) and inferences for 5y based on tsgp defined in ((3.5)

unreliable. Our Monte Carlo results confirm this point.

3.3.2 Improved inferences for regression coefficients

Following the bias correction results of Chapter 2, by simply replacing p in tsgp

defined in (3.5) by p>2, the second-order bias corrected p, we obtain the following

When W follows the Group Interaction scheme, this occurs as long as (¢, X;r)? >
n,—1+4pg
(nr—=1)(1—po)+po
of the jth regressor.

X]’vajr7 where n, is the size of the rth group and X}, contains rth group values
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potentially improved statistic:

SED
\/A%bc /(X/BbCZ’BbCQX ) Leo

: (3.6)

where 8¢ = B,(pb2), 62P¢ = 52(pP2) and B> = I, — pP2I¥,. Obviously, this
statistic is not fully second-order bias corrected. However, Monte Carlo results
presented in the next subsection show that it offers a huge improvement over tggp.
This confirms the point made at the end of Section 3.3.1. However, results also
show that when n is not so large, there is still room for further improvement on

bc
tSED

Let Fo(p) = [X}A(0)An(p)Xa] " X, AL (p) An(p) such that B,(p) = Fo(p)Ys
defined in and denoting 3, = Bu(po), and B = 4

T

j—pSFn(po) for r = 1,2, we have the following second-order stochastic expansion

for Bn - Bn(ﬁn)

(po) and F\” =

Bn — By = Bn — B + 57(11)(,571 — po) + % ~q(12)(ﬁn —po)>+ 0 (n_3/2)
= bOn + E(B’r(zl))(a—l/2 + a,l) + bln(l_l/Q —|— (571 ) 21/ (37)
+0,(n=%/?),

where by, = FyA-le,, b, = F\V A e, B(BY) = FV X, By, E(BY) = F2 X, B,
and F") are given in Appendix C. This leads immediately to, as a by-product of
the bootstrap bias correction for p,,, a fully 2nd-order bias corrected estimator 3};02
of 8. Similarly, an expansion as can easily be carried out for 62 = 52%(p,),
giving a fully 2nd-order bias corrected estimator 2% of o[/ Finally, denoting

g(en,00) = bon + E(Bél))(a_l/g +a_1) + bipa_ijs + %E(B(Q))a 172> the expansion

TAs 3b¢ and 2°? do not differ much, and 62:*¢ and 62:"°2 also do not differ much, one can

simply use ﬂbc and 62°¢ in practical applications.
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(3.7) leads to a second-order variance expansion:
Var((3,) = Var[g(en, 6)] + O(n~?).

Further it is easy to see Var(3°?) = Var(f,) + O(n~2), and Var(32°) = Var(3,) +
O(n~?). Obviously, an explicit expression of the above is difficult to obtain, but is
not needed as it can be easily estimated by the two-stage bootstrap procedure de-
scribed below. Recall a_;/; = Qptn, and a_y = Qanna_l/gnL%QnE(HQn)(a2_1/2) =
Qi + Q2 Hypthy, + %QiE(H%)@?z

Stage 1: Compute 0, and the QML residuals ¢, = &;1§n(Yn — anfn) Re-
sample ¢, to give p22, and hence 422 and 622 using the algorithm BA-1 given
in Section 3.2.

Stage 2: Update the QML residuals as &b = P21 BP2(Y, — X, 3>?)
and compute g, = g(eb2",05?) for b = 1,..., B, where é5%" is the bth boot-

strap sample drawn from the EDF of €2, and 6°2 = (<2 5P pbe2) The

n 'Y n
bootstrap estimate of Var(422), unbiased up to O(n=*/2), is thus, @(5302) —
1 B * * 1 B * 1 B *
B Eb:l gn,bgn/,b ~ B Zb:l gn,bE Zb:l gn/,b'

We have a second-order ‘bias corrected’ t-statistic as follows:

! obc2 !
toms = Oﬂi\ - o (3.8)
cp Var(By°%)co

3.3.3 Monte Carlo experiments

Finite sample performance of tggp, 155, and t5 is investigated and compared

under the following data generating process (DGP):

Yn = LnﬁO + Xlnﬁl + X2n52 + Up, Up = IOWnun + €n,
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where Xy, and X,, are the n x 1 vectors containing the values of two fixed
regressors. The parameters of the simulation are initially set to be as: [ =
(5,1,1), 0% = 1, p takes values form {—0.5, —0.25,0,0.25,0.5} and n take values
from {50, 100, 200, 500}. Each set of Monte Carlo results is based on M = 10, 000
Monte Carlo samples, and B = 999+ [n%" | bootstrap samples within each Monte
Carlo sample. The methods for generating X,,, W,,, and the errors are described
in Appendix B.

Table 3.3.1 summarizes some results for tsgp and t‘ggg used for testing Hy : 51 =
Bs. From the results we see that (i) as n increases, all tests converge in terms of
rejection rates, (ii) it is indeed the case that the asymptotic test t,, can be very
unreliable in the sense it rejects the true Hy much too often than it supposes to.
The test 55, offers a huge reduction in size distortions, and when n = 200 and 500,
its rejection rates become very close to their nominal levels. Nevertheless, when
n = 50 or 100, we see from the tables that there is room for further improvement
on tb¢. The t-statistic t352 based on the second order corrected variance provides
a further improvement on ¢35 with the rejection rates quite close to the nominal
levels even when n is not so large. The results show that the error distribution
does not significantly affect the performance of the three tests. The true value
of the spatial parameter has little effect on the performance of the two improved
tests (except when n = 50), but has a significant effect on the asymptotic test:
the size distortion gets larger when p changes from .5 to —.5. Furthermore, the
size distortion for the asymptotic test is seen to be quite persistent, which remains
to be at least 20% even when n = 500. The results (unreported for brevity) show
that the tests under a more sparse spatial weight matrix generally have smaller

size distortions.
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Table 3.3.1 Empirical Sizes: Two-Sided Tests of Hy : 51 = B2 in SED Model

Group Interaction, REG2, o =1; Test:

1 = tgep, 2 = 35,3 = t35p

p Test [ 10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1%
Normal Errors Normal Mixture Log-normal Normal Errors Normal Mixture Log normal

n = 50 n = 200
.50 11].232 .169 .088 | .239 .173 .092 | .237 .167 .086 | .128 .073 .020 | .139 .076 .024 | .125 .068 .018
2| .132 .07v8 .029 | .136 .083 .032 | .132 .079 .029 | .107 .057 .014 | .117 .060 .016 | .109 .059 .014
3| .113 .066 .024 | .116 .072 .028 | .112 .068 .024 | .100 .053 .012 | .108 .057 .014 | .102 .052 .012
.25 1] .252 .185 .102 | .254 .188 .104 | .2565 .18 .100 | .153 .092 .030 | .138 .080 .026 | .141 .084 .028
2| .133 .083 .038 | .132 .083 .037 | .136 .082 .035 | .114 .060 .018 | .116 .063 .017 | .109 .058 .015
3| .117 076 .034 | .120 .075 .033 | .121 .073 .031 | .108 .056 .016 | .109 .057 .014 | .101 .053 .013
.00 11.259 .195 .105 | .259 .193 .105 | .265 .194 .104 | .152 .093 .035 | .157 .094 .034 | .153 .098 .034
2| .134 .084 .036 | .136 .08 .040 | .138 .085 .035 | .110 .060 .018 | .114 .062 .017 | .116 .066 .019
3| .125 077 .034 | .125 .079 .037 | .126 .077 .033 | .104 .056 .017 | .108 .058 .016 | .108 .060 .017
-.25 1].270 .195 .110| .263 .193 .105 | .267 .196 .108 | .161 .101 .039 | .166 .102 .037 | .160 .099 .039
2| .141 093 .047 | .140 .091 .042 | .146 .092 .040 | .114 .063 .020 | .114 .064 .018 | .111 .065 .020
3| .135 .088 .044 | .132 .08 .040 | .137 .085 .037 | .109 .060 .018 | .109 .060 .018 | .108 .062 .019
-.50 11].260 .191 .102 | .258 .189 .098 | .262 .193 .103 | .166 .102 .037 | .167 .107 .038 | .168 .106 .039
2| .142 096 .043 | .145 .094 .044 | .147 .096 .043 | .112 .062 .017 | .119 .064 .020 | .118 .066 .020
3| .136 .099 .033 | .139 .099 .031 | .141 .099 .031 | .109 .060 .010 | .104 .060 .011 | .102 .061 .011

n = 100 n = 500
.50 1] .164 .103 .042 | .170 .107 .042 | .172 .106 .041 | .123 .065 .018 | .124 .067 .017 | .120 .066 .017
2|.124 070 .023 | .128 .074 .021 | .129 .0v72 .018 | .105 .054 .014 | .109 .055 .013 | .108 .055 .013
3| .113 .062 .019 | .115 .064 .017 | .115 .062 .015 | .101 .053 .012 | .104 .051 .012 | .103 .052 .010
.25 1] .190 .126 .054 | .192 .127 .053 | .192 .126 .055 | .132 .074 .022 | .126 .070 .019 | .130 .072 .021
2| .128 .076 .023 | .127 .075 .021 | .130 .074 .025 | .107 .056 .015 | .104 .053 .014 | .107 .054 .015
3| .117 .068 .020 | .117 .067 .019 | .119 .067 .020 | .104 .053 .010 | .101 .051 .010 | .102 .052 .011
.00 1].200 .133 .058 | .197 .128 .056 | .204 .133 .058 | .132 .077 .024 | .136 .077 .024 | .134 .075 .024
2| .124 070 .024 | .123 .072 .023 | .126 .073 .025 | .105 .057 .015 | .107 .056 .014 | .107 .056 .01H
3| .116 .064 .021 | .114 .066 .021 | .119 .0v0 .023 | .103 .050 .011 | .105 .051 .010 | .103 .051 .010
-.25 1] .2010 .132 .060 | .204 .137 .059 | .199 .129 .057 | .135 .077 .023 | .135 .076 .021 | .133 .076 .021
2| .124 072 .027 | .123 .071 .024 | .117 .068 .023 | .104 .056 .014 | .104 .053 .013 | .105 .056 .013
3| .116 .067 .026 | .115 .066 .022 | .109 .063 .022 | .102 .051 .011 | .102 .050 .012 | .102 .054 .013
-.50 11.198 .137 .058 | .195 .130 .057 | .203 .133 .058 | .137 .077 .023 | .134 .077 .024 | .133 .077 .024
2| .118 .068 .024 | .117 .069 .026 | .120 .0v1 .025 | .105 .058 .014 | .100 .054 .015 | .101 .055 .013
3| .110 .065 .021 | .111 .060 .020 | .115 .068 .021 | .104 .051 .010 | .100 .051 .011 | .101 .051 .010




3.4 Improved Inferences for the SLD Model

This section concerns the improved inference methods for the regression co-
efficients of the SLD model. Section 3.4.1 outlines the asymptotic results, and
Section 3.4.2 the finite sample bias correction results. Section 3.4.3 presents the

improved inference methods, and Section 3.4.4 presents Monte Carlo results.

3.4.1 QML estimation and asymptotic inference

The regression model with spatial lag dependence (SLD) takes the form:
Y, = \W,Y, + X,,B + €, (3.9)

Letting A,,(\) = I,, — A\W,,, the log-likelihood function of § = (', 02, \)" is ¢,,(0) =
2 log(2r0?) + log |4, (V)] — gt [, (V)Y; — X, 8] (4,0, — X,.8].

Given A, ,(6) is maximised at (,(\) = (X' X,) ' X’ A,(\)Y, and 52(\) =
Ly AL (N M, A, (N)Y,, where M, = I, — X,,(X, X,,) " X]. These lead to the con-

centrated log-likelihood of A as,

l5(N) = —%[log(2m) + 1] — Zlog 62 (A) 4 log | A, (V)] (3.10)
Maximizing £¢(\) gives the unconstrained QML estimator M\, of \. The un-
constrained QML estimators of B and o2 are thus, Bn = Bn(j\n) and 62 =
52(A\,). Write 6, = (8,62, \,). Lee (2004) shows that 0, is asymptotically

N(6y,3,'T,, 1), where

2 XX, 0 55 X
En = 0 % Uigtr(Gn) ;

ULOU;X” U_lgtr(Gn) 77;17771 + tI‘(GfLGn)
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0 5071 X0t 77X 9n
Do = | gk X, e S+ geitr(G) |+ S,
50X 53V + 3z Rtr(Gn)  KgLgn + 27907

tn, 7 and K are measures of skewness and excess kurtosis of €,;, respectively,
gn = diag(G,), G, = Gn(po) = WA (M), G5 = G, + G and 1, = 05 G X, 0.

Letting V},; be the sub-matrix of ¥'T", 3! corresponding to 3 and an be its
estimate, an asymptotic ¢-statistic for inferences for ¢y is thus,

CBBn — oo

tSLD - (311)

A

/
Co an Co

which is asymptotically N (0, 1). Finite sample properties of tgp is of interest.
As B,(\) = ﬁo+()\—5\)(X;Xn)*lX;Ganﬁo+op(1), any estimation bias of A is
quickly passed down to the QML estimator of Syand thus the ¢-statistic computed

using 3,(\) and the variance estimate V,,; can be unreliable.

3.4.2 Bias corrections

As an illustration to his general bias correction method, Yang (2015b) studied

the SLD model in detail. Letting ,(\) = B¢ (X), where (5()) is given in (3.10),

we have, U, (\) = =R, Ton(A) 4 hnRin()), and

Hln()‘> - _T1n<)‘) - R2n(/\) + 2R%n(/\)7 (312)
Hs,(\) = —6T3,(\) +6R2 (N\) —48R2 (M) Ry, (M) +48R1 (N), (3.14)

where T,,(\) = n~tr(GITH(N)),r =0,1,2,3, G,(\) = W, A1 (N,

_ Y ALN)MW,Y,
Y AL (WML AL (V)Y

YW MWLY,
Y AL WM A (VY

Rin(M) and  Ron()) (3.15)
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Bootstrap estimates of biases: The two key ratios can be written as:

e M,Gre, + e, My,
el Mye, ’
el G' M,Gpe, + 2¢e G M, n, + n., Mun,
el Myey, ’

Rln(en7 90) =

RQn(€n7 90) =

where e, = o, 'e,. Hence, by = @n(en, 0p) and H,, = H.p(en,0p) 7 = 1,2,3 are
expressed in terms of e, and fy. So, the bias corrections are carried out using an
estimate of Ryp(€n, 0o) and Ray,(en,0). See Yang (2015b) for details. Let A2 be

the second-order bias corrected \,, and let 3¢ = B(AP?) and §2P¢ = 52(Abe2),

3.4.3 Improved inferences for regression coefficients

Replacing Mo by 5\2& in the definition of tgp, we obtain:

e _ P — &b

SLD — = , (3.16)
\/ Ve,
where ‘A/nbf is V1 evaluated at 5\2‘32, A};C, g2be Abe and AP
Let X,, = X,,(X/ X,,)~. Now, to further improve 5, note that
Bn - 60 = Bn - BO - (S\H - )\O)X;LGTLXTLﬁO - (S‘n - )\O)X/nGnen (3 17)

X, |:€n —(a_12 +a1)Gn X, 50 — a’—l/QGnen} + Op(n*3/2),

This leads immediately to a 2nd-order bias corrected estimator BSCQ of £, and a

A

second-order expansion for Var(f,) as,
Var(Bn) = X/, Var [en — (a—1y2 + a-1)Gr X B0 — a_l/anen]Xn +0(n?).

We have, Var(42?) = Var(8,) + O(n2). An expansion can be carried out for
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62 in terms of A, leading to a 2nd-order bias corrected estimator o2be2 of 02.
A two-stage bootstrap procedure can be followed to give a consistent estimate of
V = X/ Var [en — (a2 +a_1)G X508 — a,l/anen} X,,: first, run the algorithm
BA-1 to give 2nd-order bias corrected estimators A2, 32 and ¢2P<2; then update
the residuals and run the algorithm BA-1 again using the updated residuals to give
a sequence of bootstrap values for V', and hence the bootstrap estimate \//EE(BECQ)

of Var(8,). The resulted 2nd-order bias corrected t-statistic is:

. C/ BECQ - C/ 50
tory = —P——. (3.18)
chVar(B2e2)cq

3.4.4 Monte Carlo experiments

Finite sample performance of tgpp, t5, and t552 is investigated under the DGP:

Yn - /\WnYn + Lnﬁo + X1n61 + X2n52 + €p,

where all the quantities are generated as in those for the SED model. Parameters
for the Monte Carlo simulation are also set to be the same before.

Table 3.4.1 summarises some empirical sizes of the tests tgp, 155, and 1552 when
used for testing Hy : f1 = 2 under the Group Interaction scheme. From the
results we see that (i) as n increases, all tests converge in terms of sizes, (ii) it is
indeed the case that the asymptotic test tgp can be very unreliable in the sense
that it rejects the true Hy much too often than it supposes to. The test t52 offers
a huge reduction in size distortions, with the empirical sizes getting close to their
nominal levels faster than in the SED case. Nevertheless, when n = 50, the results

show that ¢ needs further improvements, and indeed the test t552 based on the

second-order corrected variance offers the desired improvements.

8 Again, P and 322, and 62>¢ and 52*? do not differ much. Hence in practical applications,

one can use the simpler versions 82¢ and 62:"¢.
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Table 3.4.1 Empirical Sizes: Two-Sided Tests of Hy : f1 = B2 in SLD Model

Group Interaction, REG2, o =1; Test:

1 = tg, 2 = 355, 3 = 35

p Test [ 10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1%
Normal Errors Normal Mixture Log-normal Normal Errors Normal Mixture Log normal

n = 50 n = 200
.50 1] .161 .095 .028 | .162 .095 .029 | .174 .120 .058 | .109 .057 .013 | .113 .059 .014 | .125 .068 .019
2| .113 .062 .016 | .117 .068 .017 | .142 .098 .049 | .102 .051 .012 | .104 .052 .011 | .114 .061 .016
3] .09 .045 .010 | .100 .045 .010 | .100 .054 .014 | .093 .048 .011 | .098 .048 .011 | .100 .050 .010
.25 1] .156 .095 .028 | .160 .095 .026 | .171 .107 .041 | .115 .060 .013 | .111 .056 .012 | .123 .063 .014
2| .113 .062 .014 | .117 .065 .015 | .139 .08 .033 | .106 .055 .012 | .103 .050 .011 | .112 .054 .012
3] .095 .044 .009 | .093 .045 .010 | .098 .050 .012 | .100 .049 .010 | .097 .046 .010 | .100 .047 .010
.00 1] .158 .097 .030 | .157 .090 .028 | .139 .073 .021 | .115 .056 .012 | .115 .061 .014 | .114 .061 .015
2| .115 .065 .018 | .116 .062 .017 | .110 .060 .015 | .106 .051 .010 | .104 .053 .011 | .105 .054 .012
3| .100 .048 .012 | .093 .049 .012 | .099 .053 .015 | .099 .046 .009 | .099 .048 .010 | .098 .049 .010
-.25 11].163 .096 .033 | .161 .099 .032 | .122 .067 .019 | .112 .057 .015 | .112 .058 .012 | .111 .058 .01l1
2| .117 .068 .020 | .124 .069 .020 | .100 .049 .012 | .105 .054 .013 | .105 .053 .010 | .108 .055 .011
3] .095 .052 .014 | .102 .053 .015 | .100 .050 .010 | .100 .049 .012 | .100 .050 .010 | .103 .052 .009
-.50 1| .167 .100 .033 | .161 .099 .034 | .113 .062 .017 | .119 .065 .016 | .108 .056 .012 | .105 .057 .014
2| .124 .069 .020 | .126 .074 .022 | .094 .046 .012 | .108 .058 .013 | .107 .056 .013 | .099 .052 .011
31 .099 .0565 .016 | .106 .051 .015 | .103 .050 .011 | .099 .051 .011 | .099 .049 .011 | .100 .051 .011

n = 100 n = 500
.50 1] .131 .0v0 .018 | .127 .067 .017 | .133 .077 .027 | .106 .053 .011 | .111 .057 .014 | .107 .056 .012
2| .105 .055 .013 | .103 .051 .011 | .117 .066 .023 | .101 .048 .009 | .104 .051 .012 | .102 .052 .011
3] .098 .054 .010 | .099 .049 .018 | .093 .048 .010 | .099 .050 .010 | .098 .048 .011 | .097 .048 .010
.25 1] .127 .068 .019 | .130 .0v3 .019 | .145 .087 .024 | .110 .060 .012 | .109 .057 .013 | .109 .054 .011
2| .103 .052 .014 | .109 .056 .014 | .120 .069 .018 | .103 .055 .011 | .100 .051 .010 | .104 .050 .010
3] .096 .049 .010 | .093 .050 .010 | .095 .046 .009 | .098 .050 .010 | .099 .050 .009 | .099 .049 .010
.00 11.133 .070 .019 | .130 .0v1 .017 | .128 .073 .018 | .107 .055 .012 | .109 .058 .012 | .108 .055 .013
2| .105 .054 .013 | .109 .057 .012 | .111 .059 .013 | .101 .051 .011 | .102 .053 .010 | .101 .051 .012
3| .100 .050 .010 | .099 .050 .009 | .099 .052 .011 | .099 .050 .010 | .097 .049 .009 | .100 .049 .011
-.25 1] .133 .0r1 .020 | .134 .0v7 .021 | .130 .065 .013 | .103 .052 .014 | .107 .054 .012 | .105 .054 .012
2| .109 .054 .014 | .112 .060 .015 | .110 .051 .009 | .097 .048 .012 | .100 .049 .011 | .099 .050 .010
3| .100 .046 .011 | .099 .047 .010 | .103 .049 .010 | .099 .050 .011 | .099 .049 .010 | .099 .050 .010
-.50 1] .128 .0r1 .017 | .132 .0v4 .018 | .113 .057 .012 | .105 .056 .013 | .108 .056 .011 | .107 .054 .011
2| .106 .057 .013 | .112 .060 .012 | .094 .044 .008 | .098 .052 .011 | .102 .050 .009 | .100 .050 .009
3] .099 .060 .010 | .099 .052 .011 | .100 .049 .010 | .099 .050 .010 | .099 .049 .010 | .100 .049 .009




3.5 Improved Inferences for the SARAR Model

In this section, finite sample bias of the SARAR model and improved inference
methods for the regression coefficients is given. Neither issue has been formally
considered due to its complexity, and hence the results in this section constitute
important contributions, in particular considering the fact that the SARAR model
is more versatile and practically more useful than either the SLD or SED models.
Section 3.5.1 outlines the QML estimation and the asymptotic inference method.
Section 3.5.2 presents detailed results for bias correcting the QML estimators of
the spatial parameters. Section 3.5.3 presents improved inference methods for

regression coefficients. Section 3.5.4 presents Monte Carlo results.

3.5.1 QML estimation and asymptotic inference

Combining the SED and SLD models considered above, we have the spatial

autoregressive model with autoregressive errors, also known as the SARAR model:
Y, = \W.. Y, + X0+ u,, u, = pWanu, + €,. (3.19)

Let 6 = ()\,p). Gaussian log-likelihood function of 8 = (8,02, \, p)’ is £,(0) =
—% log(2m0?) + log | A1 (N)] + log |Aan(p)] — 55z€,,(8, 6)en(B,9), where €,(8,0) =
Yi(0) = Xa(p)B, Ain(A) = L = AW, Agn(p) = In — pWan, Xn(p) = Asn(p)Xn
and Y,(8) = As,(p)A1n(N)Y,. The constrained QML estimators of 3 and o2,
are §,(0) = [X,,(p)Xau(p)] ' X;,(p)Ya(0) and 6;(8) = JY;(8)My(p)Y(0), where
M, (p) = I, — Asn(p) X[ X AL, (p) Aon(p) X ] 1 X AL (p). Then, the concentrated

Gaussian log-likelihood function for 9§ is,

(2(8) = —2[In(27) + 1] — 2In(62(8)) + In [ Ay (N)] + In [An (). (3.20)
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Maximizing (3.20]) gives the QML estimator bn Of § , and thus the QML estimators

of B and 0? as 3, = B,(5,) and 62 = 52(6,). Write 6, = (3.,62,6"). The
concentrated score function upon dividing by n is,

1 Y!(8) M, (p)Bn(8) Y, (6

LG + DM B (01,06

¢n(5) = 8

9)

—%tr(ng(P)) + Yal

(3.21)

Jin and Lee (2013) shows that under some regularity conditions, 6,, is asymp-

totically normal with mean 6 and asymptotic VC matrix X!, 21 where

XAy A X 0 oo X0 At 0
5 _ 0 207 Ulgtr(Bn) U—lgtr(ng) |
o tin Ao X, Ulgtr(Bn) wopin +tr(B2B,)  tr(GS, By)
0 Ulgtr(ng) tr(G3,, By) tr(G3,,Gan)
0 %X@A’Qn% %X@Agnlfyn XAy, 92
N o) %tr(Bn) + ezt 5p2t1(Gan) iy
~ ~ Kby + 290 Kghubn + Y Ghuttn
~ ~ ~ KGonY2n
tn, 7 and k are defined in the earlier sections, u, = oy Y490, G1n X0 B0, by =

diag(B,), gon = diag(Gay,), B = B, + B! and G5, = G, + G,

Letting V},; be the sub-matrix of ¥ 'T", 3! corresponding to 3 and Vi be its
estimate, an asymptotic ¢-statistic for inferences for ¢y is thus,
cé)ﬁn - CE)BO

~

/
Co an Co

~ N(0,1). (3.22)

tsarar =

66



3.5.2 Bias corrections

Given that QML estimators of the spatial parameters in the SED and SLD
models can both be seriously biased, there is a good reason to believe that
they will remain so when the spatial effects are combined. Hence bias cor-
rections for the QML estimators of the SARAR model would be useful. To
conduct bias correction, we need the higher-order partial derivatives of z[fn(é),
H..(0) = Vrzﬁn(é),r = 1,2,3, where the partial derivatives are obtained se-
quentially and element-wise with respect to ¢’. Define, T,, = tr(G},(\)) and
K., =tr(G5,(p)), m=0,1,2,3. Also define the following quantities,

Ry (6) = YO M) Ba(0)Yn(0)
T YOM(p)Ya(0)
Ron (6) = Y0 Bu(0) M (0) Bu(9)¥n (9)
M O
(O Mn\P) D) Mn(P) Y
Sml0) = Y!(6) M, (p)Yn(5) i ,r=1,23,4,
ot (5) Ya(0) M (p) Den(0) Mn(p) Ba(0)Yn(0) ) 4 5

i __n
@) V2(0) 2, (p)Va0
where D1,(p) = Gan(p), and D,,(p), r = 2,3,4, are given in Appendix C. These

quantities have the following properties,

& Ri(6) = 2R3,(8) — Ran(9), Ron(8) = 2R1,(8) Ran(6),

5 Smn(8) = 2R1,(8) S (8) — 2Q1,,(6), dA@ 2(6) = 2R1,(8)Q1,(8) — @, (6),
£QE(0) = 2R1,(5)QE,(6), Rip(8) = 2R1n(8)S1n(8) — 2Q1,,(6),
A Ron(6) = 2R0n(0)S1n(6) = 2Q1,(9),  ££:Sm(8) = 2514(8) Sy (6) + Sr1.n(9),
£QL(0) = 291,(8) Q1. (0) +Ql11,(8), A£Q1,(8) = 2512(8) Q% (6) + QF41,(6).

Write 1,(6) = (¥14(0), P2n(5))’, where 1/)1n(5) = —Tou(A)+R1,(6) and 1o, (6) =

—Kon(p) + S1,(6). Denote the partial derivatives of t),,(5) by adding superscripts

A and/or p sequentially, e.g., 1%‘7;\((5) = a)\ﬂ;m( ), and w/\p)‘( ) = axapa,\%n( ).
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Thus, Hy,(6) has 1st row {4 (8),4? (6)} and 2nd row {13 (5), 7% (8)}:

,,(5) = —Tin(A) = R2a(9) + 2R3,(0), _QQLL((S) +2R1,(0)S1,(0)
: <2Q1,(8) + 2R1(0)S1a(8),  —K1(p) + 520 (8) + 25%,(6) |

Hy,(8) has rows {3)(8), 1 (6), ¥1,(8), U77(8)} and {¥3(6), ¥a1/(8), U5, (6), 57 (9)},

where

() = —2Tzn< ) = 6R1,,(5) Ron(8) + 83, (9),

1(0) = 2Q1,(8) = 8R1n(6)Q1,(6) — 2R2n(8)S1(8) + 8K, (5)S1a(9),
W0(6) = —2Q1,(8) — 8514(0)Q1,,(0) + 2R1,(8) S2n(8) + 8R1a(8) 53, (9),
5P (0) = —2K2n(p) + S3,(0) +6Sln(5)52n(5) + 853 (9)

(8) = U02(8) = P (8) and PR (6) = P50 (8) = 95, (0)

Hs, () is obtained by taking partial derivatives w.r.t. ¢ for every element of
Hj,(5). It has elements:
JIN(§) = —6T3, () + 6R2, (6) — 48R2, (8) Ry (6) + 48R, (0),
D17 (8) = 12R (6)Q1,(6) + 12R1,(8) Q1. (8) — 24R1,(8) Ron(8) S1n (6)
—48R3,(6)Q1,(6) + 48R3, (8)S1(9),
JEP(8) = 2Q5,(8) + 16Q12(8) + 851(0) Q1 (6) — 8R1 (5)Q1,(6)
—64R11,(6)S1(6)Q1,,(8) — 2R, (8)S2n(8) — 8R20(8)S2,(6)
+8R2 (8)S2,(0) + 48R3, (§)S%.(5),
JP(8) = —2Q4,(8) — 1255,(8)Q1,,(6) — 1251,(8)Q3,,(8) — 485%,(8)Q1,,(6)
+24R1,,(6)S10(8)S20(8) 4+ 2R1,,(8)S3,(8) + 48 R1,,(8)S3 . (8),
[0 (8) = —6K3,(p) + Sun(8) + 653,(8) + 851(6) 53, (0)
+48852 (6)S5,(8) + 4857 (9),
Pl (8) = () = DEN0) = Y (6), P (6) = Wan”(6) = U5 () = P5n(6)

and U17"(8) = 01,7 (6) = ¥5,"(8) = i () = ¥ (8) = ¥, (0).

Bootstrap estimates of biases: The R-, S- and ()-ratios at § = ¢ defined

above can all be written as functions of 6 and e,, = o, Le,, given X,, and W,n,r =
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1,2 and using the relations M, As,X,, = 0 and W4, Y, = Gy, (Xnﬁo + Az_nlen):

M (fin + Bnen)

(o, en) = el Mye, ’

Ron(f, ) = (bt + BneZi/A]\j:éfn + Bnen)7

Son(Bo, €)= egﬂiz%:é\jnen, r=1,2,3,4,

Qe = D) 0

O (o) = ot Bnen)/]\?%neann + Bnen)’ 1o

where B, = B,,(6y). As a result, we have Un = 1/~}n(00, en) and H,.,, = H,, (0o, €,),
r =1,2,3. The bias terms, b_; and b_3/2, can be estimated using the Bootstrap
Algorithm 2 (BA-2), described in Section 3.2.

Let 0P = (Ab2 P2} be the 2nd-order bias corrected version of d,. Let
Bhe = 3(6°<%) and 62P¢ = 52(6>?). As expected, which can also be inferred from
the results given in Section 3.5.4, the QML estimators can be severely biased and
a 2nd-order bias correction effectively eliminates the bias. To conserve space, we
do not report the Monte Carlo results for the finite sample biases of the QML

estimators and the bias corrected QML estimators of the SARAR model.

3.5.3 Improved inferences for regression coefficients

Replacing Sn by 52‘32 in the definition of tgypar, We obtain a statistic which is

expected to have a better finite sample performance:

/ bc /
p cBn" — oo
SARAR — T
/ 1 Y/bc

where VP is V,,; evaluated at 022, 8P, 52Pc. Abe and &P°. The last two are the

n Y

(3.23)

estimates of 7 and &, the skewness and excess kurtosis of €, ; involved in I',.
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Given 8, = Bn(éo), let Bff) be the rth derivative with respect to §), r =
1,2. Also define F,(p) = [X/ AL, (p)Azn(p) X, X! AL (p)Asn(p) where we have
Ba(8) = Fo(p)Ain(N)Y, and F\"” = F{”(py) is the rth derivative with respect to
8, 7 =1,2. Assuming that E(Bg)) exists and that 3% —E( 30 = O,(n=1?), r =

1,2, by a Taylor expansion, we have,

Ba(0n) = Bo = Bu—Bo+ BY (60— 60) + 18215, — 80) @ (8, — 60)]

+Op(n_3/2)7

= bon + E(ﬁg))(aqm +a_1) + bina_y2

+%E(B,(?))(a71/2 ® (171/2) =+ Op(n_?’/?),

where by, = F A5 en, bip = (—F,G1n Ay en, VA en),

E(3) = (~FuGraXobo, FiXufo) and

B(B) = (Okx1, —FiVGraXofo, —FVG1oXofo, FiD X, 50).

The expressions for FY and F? are given in Appendix C. This leads to a second
order expansion for Var(3,) or Var('<): Var(32?) = Var[bo, + BE(B5") (a2 +
a_1) + bipa_1o + %E(B,(f))(a_l/g ® a_1/2)] + Op(n=?), where a_,5 = 0,0, and
a1 = Qutn + Qu (Y, @ Hyp)vee(Q,) + S0E(Ha,) (), ® Q) (Y @1y, (see Yang,
2015b). One can easily obtain the 2nd-order bias corrected estimators 322 and
62be2 but again Monte Carlo results (not reported for brevity) show that they do
not differ much from the corresponding ‘plug-in’ estimators. A similar two stage
bootstrap procedure as given in Section 3.3, but based on the algorithm BA-2
presented in Section 3.2, can be applied to obtain an estimate of this variance

term, \//a\r(ﬁ}zcz). We have a second order bias corrected t-statistic as follows:

b0 — o

¢y Var( BSCQ)CO

tbCQ _
SARAR

(3.24)
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3.5.4 Monte Carlo experiments

The methods for bias correction and for improved inferences introduced above

for the SARAR model are investigated for their finite sample performance under

the following DGP:

Yn = )\WlnYn + Lnﬁ() + Xlnﬂl + XQnBQ + Upy Uy = pWQnun + €n,

where all the quantities are generated in a similar manner to those for the SED
model. The two spatial weight matrices are taken to be the same. The param-
eters are set to be the same as before, where A\ and p both take values from
{-0.5,-0.25,0,0.25,0.5}.

We focus on the finite sample performance of the three tests tgyran, tospr and
t22 .. The results for the finite sample bias of the QML estimators are avail-
able from the authors upon request. Tables 5.1-5.3 report empirical sizes of tgppar,
2% and 1252, when used for testing Hy : 81 = (32, under the Group Interaction
spatial layouts described in Appendix B. Similar conclusions are drawn from the
Monte Carlo results for the SARAR model as those for the two sub models consid-
ered in the earlier sections: (i) as n increases, all tests converge in terms of sizes,
(ii) the asymptotic test tgypar remains unreliable in the sense it rejects the true Hy
much too often than it supposes to, (iii) the test t2¢ . offers immediate reduction
in size distortions, and (iv) 152, generally offers further improvements. Further-
more, like the asymptotic test for the SED model, tgyrar can have a size distortion
that is very persistent, having values that are at least 24% even when n = 500.
The results (unreported to conserve space) under Rook and Queen Contiguity

show similar patterns, but the differences are of a lesser degree due to the weaker

spatial dependence (less number of neighbours) under these two spatial layouts.
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Table 3.5.1 Empirical Sizes: Two-Sided Tests of Hy : f1 = B2 in SARAR Model
Group Interaction, REG2, o =1,\=0.5; Test:

— _ ¢bc __ 4bc2
1= tSARAR» 2= tSARARa 3= tSARAR

p Test [ 10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1%
Normal Errors Normal Mixture Log-normal Normal Errors Normal Mixture Log normal

n = 50 n = 200
.50 1] .197 .115 .040 | .201 .122 .044 | .197 .122 .040 | .141 .078 .022 | .140 .082 .028 | .131 .078 .021
2|.120 .068 .020 | .123 .073 .023 | .146 .084 .028 | .113 .056 .014 | .117v .061 .017 | .116 .061 .015
3| .115 .062 .017 | .119 .068 .023 | .128 .074 .024 | .105 .050 .011 | .107v .056 .016 | .106 .052 .013
.25 1].191 .109 .031 ] .180 .110 .031 | .183 .109 .035 | .147 .085 .025 | .152 .089 .028 | .150 .083 .025
2| .118 .067 .020 | .116 .069 .022 | .120 .066 .021 | .108 .056 .012 | .112 .061 .012 | .111 .058 .012
3| .109 .061 .016 | .103 .058 .019 | .103 .055 .017 | .100 .050 .009 | .102 .054 .011 | .101 .051 .010
.00 1].191 .110 .031 | .177 .099 .028 | .191 .114 .037 | .150 .089 .026 | .137 .075 .016 | .138 .084 .020
2| .111 .054 .015 | .100 .054 .016 | .117 .065 .021 | .104 .055 .012 | .116 .061 .014 | .124 .066 .017
31 .098 .047 .012 | .095 .046 .013 | .100 .055 .018 | .097 .050 .010 | .102 .051 .010 | .105 .052 .012
-.25 1] .173 .100 .025 | .170 .096 .027 | .184 .108 .033 | .158 .093 .030 | .131 .074 .018 | .120 .062 .014
2| .094 .048 .011 | .098 .049 .016 | .111 .059 .020 | .108 .054 .013 | .123 .068 .019 | .118 .066 .017
3| .108 .048 .009 | .108 .051 .013 | .090 .047 .016 | .099 .049 .012 | .102 .055 .010 | .095 .054 .010
-.50 1] .182 .104 .030 | .162 .08 .023 | .177 .100 .034 | .127 .072 .020 | .120 .061 .013 | .119 .063 .013
2] .097 .049 .013 | .08 .043 .010 | .102 .059 .019 | .115 .066 .017 | .122 .063 .015 | .135 .074 .019
3| .100 .048 .011 | .091 .052 .009 | .092 .046 .014 | .105 .060 .013 | .095 .046 .009 | .091 .052 .009

n =100 n = 500
.50 11].169 .099 .027 | .163 .097 .029 | .171 .103 .031 | .124 .068 .018 | .126 .070 .017 | .124 .073 .018
2| .115 .058 .014 | .122 .064 .017 | .115 .059 .016 | .102 .053 .013 | .107 .053 .011 | .106 .056 .011
3| .101 .049 .013 | .107 .057 .015 | .105 .055 .013 | .098 .049 .012 | .100 .049 .010 | .100 .050 .010
.25 11].165 .094 .029 | .172 .101 .028 | .163 .095 .030 | .130 .073 .023 | .134 .0v3 .020 | .130 .074 .018
2| .106 .054 .012 | .116 .056 .011 | .111 .056 .013 | .105 .056 .015 | .106 .057 .014 | .101 .053 .012
31.095 .045 .010 | .101 .047 .009 | .098 .049 .011 | .099 .052 .014 | .100 .053 .013 | .099 .049 .010
.00 1) .77 103 .031| .176 .098 .032 | .165 .100 .035 | .138 .075 .021 | .135 .0v2 .019 | .133 .076 .020
2| .105 .054 .012 | .102 .052 .013 | .105 .056 .014 | .106 .055 .013 | .099 .052 .009 | .106 .054 .012
31 .093 .046 .011 | .099 .048 .011 | .095 .051 .013 | .103 .053 .011 | .099 .049 .009 | .101 .053 .010
-.25 1] .170 .100 .027 | .164 .095 .029 | .170 .098 .029 | .131 .074 .020 | .135 .077 .022 | .132 .075 .022
2| .096 .047 .010 | .097 .048 .010 | .102 .048 .011 | .101 .055 .013 | .102 .053 .012 | .098 .053 .011
3] .095 .054 .011 | .099 .050 .009 | .099 .052 .010 | .096 .051 .012 | .099 .051 .011 | .100 .051 .010
-.50 1] .158 .091 .026 | .151 .086 .022 | .145 .087 .024 | .128 .071 .018 | .144 .076 .022 | .129 .072 .019
2|.090 .046 .010 | .091 .044 .010 | .091 .048 .011 | .094 .046 .011 | .107 .054 .014 | .093 .050 .011
3] .090 .054 .009 | .099 .047 .009 | .098 .052 .009 | .092 .045 .011 | .103 .051 .013 | .099 .050 .010
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Table 3.5.2 Empirical Sizes: Two-Sided Tests of Hy : 51 = B2 in SARAR Model
Group Interaction, REG2, o =1,\A=0.0; Test:

— _ ¢bc __ 4bc2
1= tSARAR» 2= tSARARa 3= tSARAR

p Test [ 10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1%
Normal Errors Normal Mixture Log-normal Normal Errors Normal Mixture Log-normal

n = 50 n = 200
.50 1] .18 .107v .027 | .196 .127 .050 | .188 .114 .037 | .134 .079 .020 | .132 .066 .019 | .135 .074 .018
2|.130 .073 .020 | .123 .076 .027 | .132 .07v9 .027 | .111 .058 .014 | .107v .055 .013 | .116 .061 .013
3| .128 .068 .017 | .113 .071 .025 | .118 .069 .023 | .101 .052 .012 | .098 .049 .010 | .104 .053 .010
.25 1].199 .125 .047 | .187 .113 .039 | .204 .130 .048 | .140 .083 .023 | .143 .086 .029 | .153 .087 .025
2| .115 .064 .021 | .126 .071 .018 | .111 .065 .020 | .117 .066 .017 | .107 .060 .016 | .108 .058 .015
3| .110 .061 .020 | .112 .061 .015 | .108 .062 .019 | .107 .060 .014 | .098 .053 .014 | .096 .050 .013
.00 1] .184 .110 .034 | .184 .107 .033 | .203 .126 .043 | .157 .093 .029 | .155 .094 .027 | .153 .089 .027
2|.110 .061 .017 | .114 .062 .020 | .127 .074 .022 | .106 .058 .015 | .112 .060 .014 | .110 .056 .014
31.097 .054 .015 | .095 .054 .017 | .106 .059 .017 | .099 .053 .013 | .103 .054 .013 | .100 .052 .012
-.25 1].192 .114 .039 | .189 .109 .036 | .194 .122 .039 | .127 .072 .016 | .136 .072 .019 | .127 .068 .016
2| .110 .059 .018 | .112 .063 .017 | .117 .067 .021 | .107 .061 .014 | .129 .069 .019 | .128 .072 .019
31.095 .050 .015 | .095 .0561 .013 | .099 .055 .017 | .099 .053 .012 | .111 .054 .015 | .092 .049 .012
-.50 11].194 .114 .038 | .177 .100 .030 | .183 .115 .033 | .156 .095 .028 | .123 .067 .014 | .150 .090 .030
2| .105 .058 .018 | .102 .052 .014 | .112 .062 .016 | .106 .053 .012 | .127v .071 .020 | .105 .056 .014
3] .098 .049 .014 | .098 .052 .011 | .099 .047 .012 | .098 .049 .011 | .105 .054 .012 | .096 .050 .013

n =100 n = 500
.50 1] .172 105 .030 | .168 .096 .032 | .173 .099 .030 | .129 .074 .021 | .129 .068 .016 | .125 .072 .017
2| .122 .067 .017 | .122 .065 .017 | .110 .054 .014 | .109 .055 .013 | .107 .053 .011 | .107 .057 .010
3| .107 .060 .014 | .109 .056 .014 | .100 .049 .012 | .102 .051 .012 | .099 .050 .009 | .100 .052 .010
.25 1| .175 .102 .030 | .171 .101 .031 | .171 .110 .036 | .136 .077 .018 | .136 .077 .022 | .128 .075 .019
2| .113 .057 .013 | .108 .055 .013 | .115 .064 .016 | .106 .053 .011 | .103 .057 .014 | .102 .053 .012
31.098 .049 .011 | .096 .049 .010 | .105 .056 .014 | .100 .047 .010 | .099 .052 .012 | .097 .050 .011
.00 1] .173 .103 .030 | .175 .103 .034 | .180 .107 .031 | .137 .079 .021 | .134 .081 .022 | .126 .0v7 .021
2|.098 .051 .014 | .105 .056 .013 | .110 .054 .013 | .111 .053 .012 | .105 .055 .015 | .103 .057 .012
3] .097 .052 .013 | .094 .050 .011 | .098 .047 .011 | .105 .050 .012 | .099 .051 .014 | .100 .053 .012
-.25 1] .180 .109 .032 | .159 .094 .028 | .165 .099 .030 | .136 .077 .023 | .142 .082 .021 | .136 .071 .019
2| .104 .052 .011 | .094 .046 .012 | .101 .049 .011 | .101 .053 .011 | .109 .055 .011 | .099 .049 .010
3] .093 .046 .010 | .091 .054 .010 | .099 .055 .011 | .098 .050 .010 | .105 .053 .010 | .100 .050 .010
-.50 1] .172 106 .029 | .159 .093 .026 | .158 .096 .025 | .146 .076 .020 | .134 .0v8 .017 | .138 .076 .021
2|.101 .048 .011 | .090 .045 .009 | .093 .048 .009 | .103 .050 .010 | .103 .053 .009 | .101 .051 .011
3] .096 .054 .010 | .098 .049 .009 | .096 .054 .010 | .100 .047 .010 | .100 .050 .009 | .100 .049 .011




2

Table 3.5.3 Empirical Sizes: Two-Sided Tests of Hy : f1 = B2 in SARAR Model

Group Interaction, REG2, o =1,A = —.25; Test: 1 = fsmrar,2 = tospars3 = losann
p Test [ 10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1% [10% 5% 1%
Normal Errors Normal Mixture Log-normal Normal Errors Normal Mixture Log-normal
n = 50 n = 200
.50 1].196 .119 .045 | .203 .126 .047 | .188 .115 .045 | .129 .073 .020 | .144 .083 .022 | .133 .072 .016
2|.121 .070 .020 | .122 .076 .022 | .138 .08 .030 | .112 .063 .014 | .116 .060 .012 | .111 .059 .013
3| .114 .066 .017 | .117 .072 .020 | .122 .074 .022 | .104 .055 .013 | .106 .054 .012 | .093 .046 .009
.25 1] .198 .123 .042 | .205 .128 .043 | .205 .130 .054 | .143 .081 .025 | .150 .085 .022 | .151 .084 .025
2| .108 .059 .018 | .109 .057 .020 | .112 .066 .025 | .122 .062 .018 | .122 .065 .015 | .112 .055 .014
3| .103 .056 .015 | .104 .055 .017 | .109 .064 .022 | .110 .056 .016 | .106 .057 .011 | .100 .051 .013
.00 1].192 .115 .037 | .180 .109 .038 | .199 .127 .051 | .144 .086 .023 | .129 .075 .016 | .156 .091 .028
2| .115 .065 .017 | .118 .065 .017 | .106 .062 .020 | .123 .066 .017 | .114 .065 .015 | .113 .056 .013
3| .103 .058 .014 | .101 .056 .015 | .104 .059 .020 | .110 .059 .014 | .100 .053 .011 | .103 .050 .012
-.25 1].196 .114 .032 | .18 .108 .038 | .194 .115 .042 | .136 .075 .023 | .125 .065 .018 | .153 .090 .026
2| .107 .052 .016 | .109 .060 .019 | .114 .069 .022 | .123 .068 .018 | .120 .062 .017 | .106 .056 .011
31.099 .050 .013 | .098 .051 .015 | .098 .057 .017 | .112 .060 .015 | .101 .048 .012 | .097 .052 .011
-.50 1] .18 .113 .040 | .188 .111 .037 | .186 .116 .040 | .120 .064 .016 | .114 .055 .011 | .150 .091 .025
2| .111 .061 .018 | .089 .049 .014 | .098 .055 .015 | .117 .063 .015 | .126 .063 .015 | .105 .051 .012
31.095 .051 .015 | .093 .055 .013 | .099 .051 .015 | .106 .055 .012 | .099 .045 .009 | .097 .049 .011
n = 100 n = 500
.50 1] .175 .100 .029 | .171 .099 .030 | .167 .098 .033 | .132 .069 .016 | .131 .070 .017 | .133 .072 .021
2| .116 .059 .016 | .126 .067 .018 | .113 .061 .014 | .110 .058 .012 | .108 .055 .010 | .109 .056 .012
3| .100 .051 .013 | .111 .057 .015 | .104 .055 .014 | .104 .053 .011 | .100 .048 .010 | .102 .052 .011
.25 1].179 .102 .032 | .172 .103 .034 | .170 .099 .031 | .132 .079 .023 | .125 .074 .019 | .138 .076 .020
2| .114 .059 .014 | .111 .063 .015 | .108 .057 .014 | .109 .060 .014 | .106 .055 .012 | .107 .052 .012
3| .102 .052 .012 | .099 .053 .013 | .098 .052 .011 | .104 .056 .013 | .100 .051 .009 | .103 .051 .011
.00 1].176 .106 .030 | .178 .103 .032 | .158 .093 .029 | .135 .077 .025 | .129 .0v7 .020 | .128 .071 .019
21.099 .054 .012 | .108 .055 .012 | .096 .044 .011 | .105 .056 .015 | .099 .049 .012 | .100 .050 .011
31 .099 .055 .010 | .096 .048 .010 | .099 .045 .011 | .101 .053 .013 | .100 .049 .011 | .099 .050 .011
-.25 1| .177 .102 .031 | .165 .098 .031 | .162 .097 .029 | .139 .082 .026 | .139 .079 .022 | .130 .077 .020
2|.096 .048 .009 | .101 .050 .013 | .101 .053 .013 | .106 .059 .014 | .104 .053 .011 | .099 .050 .012
31.099 .052 .010 | .099 .050 .013 | .100 .050 .011 | .101 .056 .014 | .099 .050 .010 | .100 .050 .012
-.50 11].169 .102 .029 | .160 .100 .032 | .159 .100 .035 | .143 .085 .023 | .140 .084 .024 | .126 .074 .023
2| .098 .047 .010 | .095 .049 .012 | .099 .053 .012 | .107 .054 .012 | .111 .059 .014 | .098 .053 .013
31.096 .051 .009 | .096 .049 .011 | .099 .052 .012 | .105 .053 .011 | .108 .055 .012 | .099 .052 .012




3.6 Conclusions

This chapter considers inference problems for the regression coefficients 3 in
linear regression models with spatial dependence, where the estimation of the
spatial parameters may incur severe bias. It is shown that while the existence
of spatial dependence does not have a big impact on the point estimation of the
regression coefficients in terms of consistency and bias, it can have a huge impact
on the usual t-statistics for 8. We propose simple ways to correct the ¢-statistics,
and the resulted 2nd-order corrected t-statistics perform superbly. Considering the
effectiveness and the simplicity of the proposed methods, they are recommended
for practical applications.

Central to the proposed inference methods for regression coefficients in this
chapter is the general bias correction methods for non-linear estimators proposed
in Yang (2015b). The proposed methods have a great potential to be extended to
more advanced models such as higher-order SARAR models, spatial panel data
models, dynamic panel data models, non-linear spatial regression models and
non-linear spatial panel data models. They are equally applicable to non-spatial
models as well. Among these, the extension to a higher-order SARAR incurs only
some extra algebra.

The classical approach to the problem considered in this chapter is to directly
bootstrap the original t-statistic to give asymptotically refined approximations to
the finite sample critical values, taking advantage of the underlining statistic being
asymptotically pivotal. However, bootstrapping a Wald-type or a likelihood ratio
statistic requires the re-estimation of all parameters in every bootstrap iteration,
and thus is computationally much more demanding compared to our approach, in
particular when the model contains more non-linear parameters. Nevertheless, it

would be interesting as a future research to compare the two approachesﬂ

9We thank a referee for raising this issue.

75



CHAPTER 4

Bias Correction and Refined Inferences for Fixed Effects

Spatial Panel Data Models

4.1 Introduction

Panel data models with spatial and social interactions have received a be-
lated but recently increasing attention by econometricians, since Anselin (1988).[1-]
Spatial panel data (SPD) models are differentiated by whether they are static or
dynamic and whether they contain random effects or fixed effects. Popular meth-
ods of model estimation and inferences are quasi maximum likelihood (QML) and
generalised method of moments (GMM) P

It has been recognised through the studies of spatial regression models that

1See, among others, Baltagi et al. (2003, 2013), Kapoor et al. (2007), Yu et al. (2008,
2012), Yu and Lee (2010), Lee and Yu (2010a,b), Baltagi and Yang (2013a,b), and Su and Yang
(2015b).

2See Lee and Yu (2010a, 2015) and Anselin et al. (2008) for general accounts on issues related
to SPD model specifications, parameter estimation, etc.
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QML estimators of the spatial parameter(s), though efficient, can be quite biased
E|, and more so with a denser spatial weight matrix (Chapters 2 and 3). As a result
the subsequent model inferences (based on t-ratios) can be seriously affectedﬁ
Evidently, the QML estimators of the SPD models are subjected to the same
issues on the finite sample bias and finite sample performance of subsequent infer-
ences, but these important issues have not been addressedﬂ Given the popularity
of the SPD models among the applied researchers, it is highly desirable to have a
set of simple and reliable methods for parameter estimation and model inference.
In this chapter, we focus on the SPD models with fixed effects to provide methods
for bias and variance corrections (up to third-order) by extending the methods
of Yang (2015b)E| and then to show how the bias and variance corrections lead
to improved t-ratios for spatial and covariate effects. Lee and Yu (2010b) inves-
tigate the asymptotic properties for the QML estimation of this model based on
direct and transformation approaches. The latter approach is more attractive as
it provides consistent estimators for all the common parameters, which is crucial
in the developments of the methods for finite sample bias-corrections and refined

inferences/[]

3Lee, 2004; Bao and Ullah, 2007; Bao, 2013; Yang, 2015b

4Methods of bias-correcting the QML estimators of the spatial parameter(s) have been given
for the spatial lag (SL) model (Bao and Ullah, 2007; Bao, 2013; Yang, 2015b), the spatial error
(SE) model (Chapter 2), and the spatial lag and error (SLE) model (Chapter 3). The improved
t-ratios for the SL effect is given in Yang (2015b), and improved ¢-ratios for the covariate effects
are given in Chapter 3 for the SL, SE and SLE models, respectively.

5The importance of bias correction for models with non-linear parameters is seen from the
large literature on the regular dynamic panels (see, e.g., Nickell (1981), Kiviet (1995), Hahn and
Kuersteiner (2002), Hahn and Newey (2004), Bun and Carree (2005), Hahn and Moon (2006),
and Arellano and Hahn (2005).

6The fixed effects model has the advantage of robustness because fixed effects are allowed to
depend on included regressors. It also provides a unified model framework for different random
effects models considered in, e.g., Anselin (1988), Kapoor et al. (2007) and Baltagi et al. (2013).
However, fixed effects model encounters incidental parameter problem (Neyman and Scott, 1948;
Lancaster, 2000).

"Lee and Yu (2010b) observe that when conducting a direct estimation using the likelihood
function where all the common parameters and the fixed effects are estimated together, the
estimate of the variance parameter is inconsistent when T is finite while n is large. With data
transformations to eliminate the fixed effects, the incidental parameter problem is avoided, and
the ratio of n and T does not affect the asymptotic properties of estimates as the data are
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We note that while the general stochastic expansions of Yang (2015b) for non-
linear estimators are applicable to different models including the SPD models
considered in this chapter, the detailed developments of bias corrections, variance
corrections and corrections on t-ratio vary from one model to another. Further-
more, the transformation approach induces errors that may no longer be inde-
pendent and identically distributed (iid) even if the original errors are. Thus,
the bootstrap method proposed by Yang (2015b) under iid errors, may not be
directly applicable. We demonstrate in this chapter that when the original error
distribution is not far from normality, the standard iid bootstrap method can still
provide an excellent approximation, due to the fact that the transformed errors
are homoskedastic and uncorrelated. When the original errors are extremely non-
normal, we show that the wild bootstrap method can improve the approximation.
Monte Carlo results reveal that the QML estimators of the spatial parameters
can be quite biased, in particular for the models with spatial error dependence,
and that a second-order bias correction effectively removes the bias. Furthermore,
Monte Carlo results show that inferences for spatial and covariate effects based on
the regular t-ratios can be misleading, but these based on the proposed t-ratios
are very reliable. We emphasize that while corrections on bias and variance of a
point estimator are important, it is more important to correct the t-ratios so that
practical applications of the models and methods are more reliable. The methods
presented in this chapter show a plausible way to do so. They are simple and yet
quite general as the spatial regression models are embedded as special cases.

The rest of the chapter is organised as follows. Section 4.2 introduces the
spatial panel data model allowing both spatial lag and spatial error, and both
time-specific effects and individual-specific effects, and its QML estimation based

on the transformed likelihood function. Section 4.3 presents a third-order stochas-

pooled. The QML estimators so derived are shown to be consistent, and, except for the variance
estimate, are identical to those from the direct approach.
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tic expansion for the QML estimators of the spatial parameters, a third-order
expansion for the bias, and a third-order expansion for the variance of the QML
estimators of the spatial parameters. Section 4.3 also addresses issues on the bias
of QML estimators of other model parameters, and on the inferences following
bias and variance corrections. Section 4.4 introduces the bootstrap methods for
estimating various quantities in the expansions, and presents theories for the va-
lidity of these methods. Section 4.5 presents Monte Carlo results. Section 4.6

discusses and concludes the chapter.

4.2 The Model and QML Estimation

For the spatial panel data (SPD) model with fixed effects (FE), we can investi-
gate the case with both spatial lag and spatial error, where n is large and T could
be finite or large. We include both individual effects and time effects to have a

robust specification. The FE-SPD model under consideration is
Ynt = >\0W1nYnt + Xntﬁo + Cno + atﬂln + Unt7 Unt = pOWQnUnt + Vnt> (41)

for t = 1,2,...,T, where, for a given t, Yy = (Y1t,Y2t5---5Yne) 18 an n x 1
vector of observations on the response variable, X,,; is an n x k matrix containing
the values of k non-stochastic, individually and time varying regressors, V,; =
(V1g, Vaty - .., Unt) 18 an n x 1 vector of errors where {v;} are independent and
identically distributed (iid) for all ¢ and ¢ with mean 0 and variance o3, C,o is
an n X 1 vector of fixed individual effects, and ayy is the fixed time effect with
l, being an n x 1 vector of ones. Wy, and Wy, are given n X n spatial weights
matrices where Wy, generates the ‘direct’” spatial effects among the spatial units
in their response values Y,,;, and W5, generates cross-sectional dependence among

the disturbances U,;. In practice, Wy, and W5, may be the same.
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In Lee and Yu (2010b), QML estimation of is considered by using either a
direct approach or a transformation approach. The direct approach is to estimate
the regression parameters jointly with the individual and time effects, which yields
a bias of order O(T~') due to the estimation of individual effects and a bias of
order O(n~1) due to the estimation of time effects. The transformation approach
eliminates the individual and time effects and then implements the estimation,
which yields consistent estimates of the common parameters when either n or 7" is
large. In the current chapter, we will follow the transformation approach so that
it is free from the incidental parameter problem.

To eliminate individual effects, define Jr = (17 — %ZTZ’T) and let [Frrr_q, \/LTZT]
be the orthonormal eigenvector matrix of Jr, where Frp_q is the T x (T — 1)
sub-matrix corresponding to the eigenvalues of one, I is a T' x T' identity matrix
and [y is a T x 1 vector of ones.|§| To eliminate the time effects, let J,, and F,, ,,_4

be similarly defined, and let Wy, and W5, be row normalisedﬂ For any n x T

matrix [Zpn1,- -+ , Znr), define the (n — 1) x (7" — 1) transformed matrix as
Znys - 2y i) = FypalZu, - Zor) Fro-a. (4.2)

This leads to, for t = 1,..., 7 =1, Y%, U, V*

nt’ nt»’

and X*

nt,j

sor. As in Lee and Yu (2010), let X, = [X7 |, Xpo, .., Xy ], and Wi =

for the jth regres-

FAn_lWhnan_l, h = 1,2. The transformed model we will work on thus takes the

form:

Yo = MWh Yo + X060+ Uy Upy = poW3, U+ Vi, t=1,...,T—1. (43)

In" nt

8As discussed in Lee and Yu (2010b, Footnote 12), the first difference and Helmert
transformation have often been used to eliminate the individual effects. A special selec-
tion of Fpp_i gives rise to the Helmert transformation where {V,,} are transformed to
(7)Y 2 [Vir — 755 (Vog1 + -+ + Vr)], which is of particular interest for dynamic panel
data models.

9When Wj,, are not row normalised, the linear SARAR presentation of for the spatial

panel model will no longer hold. In that case, a likelihood formulation would not be feasible.
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After the transformations, the effective sample size becomes N = (n — 1)(T — 1).
Stacking the vectors and matrices, i.e., letting Yy = (Y51,...,Y,; %)), Uy =
Ut Udp ) s Vv = Vol V) Xy = (X, -, XoYpy)'s and denot-

ing Wyny = Ir_1 @ Wy ,h = 1,2, we have the following compact expression for

the transformed model:
Yy =XMWinYy +Xpn6o+ Uy, Un=pWonUy + Vy, (4.4)

which is in form identical to the spatial autoregressive model with autoregressive
errors (SARAR), showing that the QML estimation of the two-way fixed effects
panel SARAR model is similar to that of the linear SARAR model. The key
difference is that the elements of Vy may not be iid though they are uncorrelated
and homoskedastic as shown below. This may have a certain impact on the
bootstrap method (see next section for details).

It is easy to show that the transformed errors {v},} are uncorrelated for all

and ¢ by using the identity (V,1,..., V" ) = (Frp 1 @ F) o ) (Vigs -5 Vir)'s

EVy, Vi ) (Vi Vi) = 03 (Frp 1 @F, o ) (Frr-1®F, 1) = ogly.

Hence, {v},} are iid N (0, 03) if the original errors {v;} are iid N(0,02). It follows

that the (quasi) Gaussian log likelihood function for (4.3)) is,

(n(0) = =5 In(270?) + I [Ax(N)] +In By (p)] — 52V (OVN(C),  (4.5)

where < = (5,7 >\7 Io)lv 0= (5,7 0-27 )‘7 p>,7 AN()‘) = IN_/\WlNa BN(p) = IN_IOWQNu
and Vi (¢) = By (p)[An(A) YNy — Xnp].
Now, letting Yx(A\) = Axy(A) Yy and Xy (p) = By(p)Xy, the constrained

QML estimators of 3 and o2, given A\ and p, can be expressed in the following
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simple form:

Bnhp) = Xy(0)Xn(p) 'Xiy(0)By(p)Yn(N), (4.6)

v\ p) = NTYG(AMn(p)Yn(N), (4.7)

where My (p) = By (p){In — X (p)[ Xy (0)Xn(p)] ' Xiy(p)}Bn(p). Substituting
Bn (X, p) and 62 (), p) back into (5] gives the concentrated log likelihood function

of (A, p):
(N p) = —%(hl(Zﬂ') + 1) +In|Ay(N)|+1In|By(p)| — %ln&]z\,()\,p). (4.8)

Maximizing (5, (), p) in gives the unconstrained QML estimators Ay and jy
of A and p, and substituting (;\N,[’)N) back into and gives the uncon-
strained QML estimators of 8 and 02 as By = By (An, pn) and 6% = 62 (A, ﬁN)
Write Oy = (B, Av, pn, 6%)'. Lee and Yu (2010b) show that 6y is v/ N-consistent
and asymptotically normal under some mild conditions. These conditions and the
asymptotic variance of O are given in Appendix E to facilitate the subsequent
developments for the higher-order results. It follows that the QML estimators for
any of the sub-models discussed below will be v/N-consistent and asymptotically
normal as well, where N can be (n — 1)(T"— 1), n(T'— 1), (n — 1)T', or nT.

The linear SARAR representation has greatly facilitated the QML esti-
mation of the general FE-SPD model. It is also very helpful for the subsequent
developments in bias and variance corrections. Obviously, it contains as special

cases the spatial regression models. Based on this representation, the results de-

19Numerical maximization of ¢5;()\,p) can be computationally demanding if N is large
due to the need of repeated calculations of the two determinants. Following simplifications

help alleviate such a burden: [An(\)| = [Lio1 = AW5, " = (25 1. —)xI/Vln|)T_1
(ﬁ H?zl(l — )\wh—))Tfl, where wy; are the eigenvalues of W7y, the middle equation from

Lee and Yu (2010), and the last equation is from Griffith (1988). Similarly the determinant of
|IBn(p)]| is calculated.
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veloped for this general model can easily be reduced to suit simpler models. For
example, setting p or A to zero in (4.4]) gives an FE-SPD model with only the SL
effect or an FE-SPD model with only the SE effect; dropping either ayy or ¢, in
(4.1) (or dropping either F,, ,,_1 or Frr_; in (4.2))) leads to a sub-model with only
the individual-specific effects or a sub-model with only the time-specific effects;
and finally, dropping both ¢, and a4y in leads to the SARAR regression
model. On the other hand, the spatial panel model considered in this chapter can
also be extended to include more spatial lag terms in both the response and the
disturbance, in particular the formerE-] Software can be developed to facilitate

the end users of the methodologies developed in this chapter.

4.3 Third-Order Bias and MSE for FE-SPD Model

4.3.1 Third-order stochastic expansions for non-linear es-

timators

Yang (2015b) presents a general method for up to third-order bias and variance
corrections on a set of non-linear estimators based on stochastic expansions and
bootstrap. The stochastic expansions provide tractable approximations to the bias
and variance of the non-linear estimators and the bootstrap make these expansions
practically implementable. The method is demonstrated, through a linear SAR
model, to be very effective in correcting the bias and improving inferences. It was
emphasised in Yang (2015b) that, in estimating a model with both linear and non-
linear parameters, the main source of bias and the main difficulty in correcting
the bias are associated with the estimation of the non-linear parameters, and

hence one should focus on the concentrated estimation equations. By doing so,

HSee Lee and Yu (2015, 2016) for more discussions and for the related issue on parameter
identification.
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the dimensionality of the problem can be greatly reduced, and more importantly,
the additional variations from the estimation of the linear and scale parameters
are captured in correcting the non-linear estimators, thus making the bias and
variance corrections more effective. The method is summarised as follows.

Let 0 be the vector of non-linear parameters of a model, and o defined as
oy = arg{in(8) = 0}, be its v/ N-consistent estimator, with ¢ (8) is the con-
centrated estimating function (CEF) and ¢y (8) = 0 the concentrated estimating
equation (CEE). Let H,n(6) = V"n(8), = 1,2, 3, where the partial derivatives
are carried out sequentially and element-wise, with respect to &'. Let oy = 9 ~ (o),
H,ny = H.n(09) and H2y = H.y — E(H,y),r = 1,2,3. Note that hereafter the
expectation operator ‘E’ corresponds to the true model parameters 6y. Define
Qn = —[E(Hin)]™!. Yang (2015b), extending Rilstone et al. (1996) and Bao
and Ullah (2007), gives a set of sufficient conditions for a third-order stochastic
expansion of dy = arg{¢y(6) = 0}, based on a general CEF 1y (8), which are
restated here to facilitate the development of higher-order results for the FE-SPD
model:

Assumption G1. dy solves ¥n(8) = 0 and dy — 6y = O,(N~1/2),

Assumption G2. @N(é) is differentiable up to the rth order for ¢ in a neigh-
bourhood of 8y, E(H,x) = O(1), and H2y = O,(N~V?), r =1,2,3.

Assumption G3. [E(H,x)]™' = O(1), and Hyy = O,(1).

Assumption G4. ||H,.n(0) — H.n(00)| < ||0 — 6o|| Un for 6 in a neighbour-
hood of 6o, r=1,2,3, and E|Uy| < ¢ < oo for some constant c.

Under these conditions, a third-order stochastic expansion for dy is:
5]\/ —(50 = CL_1/2—|—CL,1 +CL_3/2+OP(N72), (49)

where a_,/, represents a term of order O,(N~%/2) for s = 1,2,3, having the ex-
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pressions

a-1/2 = QN@/;M

a_1 = QnHiya_12+ 3QNE(Hon)(a-12 @ a_yy2),

a_zpp = QnHjya_i+ QOvHsy(a_1/2 ® a_yy0)
+3QONVE(Hon)(a—1/s ® a_y + a1 @ a_y)s)

+OE(Hsn)(a_1)2 @ a_1j2 ® a_y)2),

where ® denotes the Kronecker product. In moving from the stochastic expansion
given in to third-order expansions for the bias, MSE and variance of dn, it
is assumed that E(¢y) = O(N™') and that a quantity bounded in probability has
a finite expectation. The latter is a simplifying assumption to ensure that the

remainders are of the stated order. A third-order expansion for the bias of Oy is
Bias(On) = b_1 +b_3/9 + O(N7?), (4.10)

where b_y = E(a_1/2 + a—1) and b_3/» = E(a_3/2), being the second- and third-
order biases. Similarly, a third-order expansion for the mean squared error (MSE)
of & N 1s

MSE(dx) = m_y +m_gs +m_y + O(N?), (4.11)

where m_; = E(a,l/gall/Q), m_zjo = E(a_1/2a’ | + a_lall/Q), m_o = E(a_ja’ | +

a_1)20" 4 jo T a3 20”4 /2), and the third-order expansion for the variance of Sy is
Var(dn) = v_1 +v_g5 +v_g + O(N7/?), (4.12)

where v_; = Var(a_i/2), v_3/2 = Cov(a_12,a_1) + Cov(a_1,a_1/2), and v_y =
Cov(a_1/2, a_3/2) + Cov(a_z/2,a_1/2) + Var(a_1 + a_g2); or simply v_; = m_q,

_ _ 2
V_3/9 =M_3/3, and v_y = m_p — b .
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Therefore, we can improve the statistical inference in finite samples by cor-

recting the bias and standard deviation of estimates. From (4.10]), we can use
5%2 = 5]\/ — b,1 or 5%03 = SN — b,1 — b_3/2,

to yield an estimator unbiased up to order O(N~1) or O(N~%/2). With estimated
b_y and b_z/, feasible o532 and 0% can be constructed.

Similar procedures can be applied to increase the precision of variance estimate.

By (E12),if by — b1 = Op(N73/2) and b_g/y — b_3/5 = O,(N~2), we have
Var(68%) = v_1 +v_33 +v_g — 2ACov(dy, b 1) + O(N~/?), (4.13)
and Var(08?) = Var(6%%)+O(N~/2), where ACov denotes asymptotic covariance.

4.3.2 Third-order bias and variance for spatial estimators

The general expansions summarised in Section 4.3.1 are applicable to different
models including the FE-SPD model we consider,, but the detailed developments
for the corrections on bias, variance, and t-ratio vary from one model to another.
Furthermore, the transformation approach induces errors that are no longer iid,
rendering the bootstrap method of Yang (2015b) for estimating the correction
terms not directly applicable. In this subsection, we first derive all the quantities
required for the third-order expansions for the FE-SPD model, and then discuss
conditions under which the results — hold under the FE-SPD model
instead of going through the detailed proofs of them. As seen from Section [£.2]
the set of non-linear parameters in the FE-SPD model are 6 = (A, p)’. The CEF

leading to the QML estimator oy = (Ay, pn) is Un(6) = %%Eﬁ\,@), which is
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shown to have the form:

B Y?v(A)MN(P)WlNYN
I YMA)M ”( >YN<A> |
N Y My () Y N (V)

where Ton(A) = £tr(WivAR V), Kon(p) = Str(WanBy(p)), and MY (p) =
dipMN(p) To derive the rth order derivative, H,n(8), of n(8) w.rt. &, r =
1,2, 3, for up to third-order bias correction, define T, 5 (A) = +tr[(WiyAR (X)),
and K,y (p) = Ltr[(WaonBy' (p))],r = 0,1,2,3. Let M (p) be the kth deriva-
tive of My (p) w.r.t. p, k =1,2,3,4. Define

R <5>_va()\)MN(P)W1NYN R (5)_vaW,1NMN(P)W1NYN_
T YL OOMN () YNy T T Y <A>MN<p>YN<A> ’
Ol () = YNOMP WYy e o Y] AWM W)WYy
YN )M ()Y () Y Y (WMy()Yn(h)
Sun(5) = YROMY ()Y ()
T Y )M (0) Y (V)

which have the following properties:

@) = 9R2\(6) — Ran(9), 28 0) — 9 Ry 5 (8) Ron (6),

a0t (s a0t (s
Un® — R N (6)Qiy(8) — Qin(0),  2E = 2R ()L N (9),
95N — 9 Ry () (8) — 2QL 5 (6);

PN — Q1 (0) — Ban(8)Sin(8), 22 =} (8) — Ran(8)S1n(6),
I

T
YD — Qhy ()~ Q@S (@), 2 = QL1 (6) ~ Qn(D)Sin(0),
aSka];VJ(é) = Sit1,8(0) — Skn(6) S (6).

12T ee and Yu (2010b) provide a useful identity: (I,—1 — AWy )"' = F), (In-1 —
AWihp) ™1 Fnn—1. Based on this, the inverses of Ayx()\) and By(X) can easﬂy be calculated

as they are block-diagonal. The conditions for the v/N-consistency of Sy are given in Lee and
Yu (2010b), and in Appendix E.
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Write IZJN((S) = (77[;1]\[((5),7722]\[(5))/ with 77[;1]\[(5) = —TON(A) + RlN(é) and ’QEQN(é) =
—Kon(p)—Sin(6). Denote the partial derivatives of ¢, (8) by adding superscripts

A and/or p sequentially, e.g., 3% (8) = 5305 aA@ZNJgN( ). Thus, Hiy(0) has 1st row

{¢1N( ) ¢1N( )} and 2nd row {1/’21\1( )7¢2N( )}, which gives

_ _ ) .
HIN@( Tin(\) — Ron(0) + 2R3 (0), Q15 (0) — Rin(8)Sin(6) )

QI (0) — Rin(6)S1n(0), —Kin(p) — 352n(8) + 3538 (0)

Hyn(0) has rows:
{dw (6), V3% (8), PEN (8), 4%, (8)} and {WN(8), V34 (), P5n (6), 55 (6)}, where

M (5) = —2T2N()\) — Ry (8) Ron (5) + 8R3y,(8),

W(8) = —Qin(0) + 4R (8)Q]n(6) + Ron (8)S1n(6) — 4Ry (8)S1n(6),
7 (8) = Qly(8) = 2Q1 5 (8)Sin(8) + 2R1v(8) Sy (8) — Rin(6)San(6),
o0 (5) = —2K2N(p) — 353n(0) + 5S1v(0)San (8) — SPy (9),

S (6) = DN (8) = U (6), and 5% (8) = UEN(6) = IR (6).

Han(8) is obtained by differentiating elements of Hay(8) w.r.t. "
PIN(6) = —6T3n (N) + 6R25(6) — 48R2(8) Ran(6) + 481y (5),
N (8) = =6Q1y (6)Ran (8) + 121 (8) Ron (8) Sin (8) — 6R1n (8) Q%5 (9),
+24 Ry (9)[Q1x(8) — R (8)Siv (0)],
JRN(0) = 2Q3 v (6)Rin (8) + 12 Ry n(8) Ran (6)S1n (5) — 6R1n (6)Q1 5 (6)
+8R2y (0)Q1x (6) — 20Rx (6)S1n(9),
W (8) = =Qin(p) + 2@ (p)Sin(6) — 2Ran (8) STy (8) — 16R1n (8)S1n (6)Q]  (6)
+Ron (8)Son (8)+4R1n (8) Qb (6)+12R3 y (8) Sy (6)—4 R (6) San (8)+4Q11(6),
UIRN0) = —Qin(8) + 4QLy (6) Ran (8) + 2Q1 4 (8) Sin (6) — 16R1n (8) Q] (8)S1n ()
—Ron (0 ) N(6)+12R%N( )Stn(8)—2Rn (8) Sy (6) =457y (8)San (8) +4Q1 % (6),
DPRE(6) = Qi (0) = 3QLN(6)S1n () + 6Q) 5 (8)SFn () — 3Q]  (8)San ()
_6R1N(6)S§N(5> + 6R1n(0)S1n5(6)S2n(6) — Rin(6) Sz (9),
JRN(6) = QLn(8) — Run(8)Ssn(6) — 3Q1 5 (8)San (6) + 6R1n(8)S1n (8)San (6)
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—35)1n (8)QI 5 (8) + 6535 (0) Q1 (8) — 6 Ry (6) STy (6),
MR (6) = —6Ksn(p) — 35un(8) + 291n(8) S3n (8) + §.55x(8) — 655n(8) 57 ()
+354,(5).

PN (8) = U1 (8) = U (8), YIN'(8) = dnR(8) = o (8), ¥R (0) = ¥ (0) =
Pox(8), and IR (8) = Ui (8) = U5 (9).

Expressions of MEI\;)(,O), p, k=1,2,3,4, are lengthy and are given in Appendix E.

For general results (4.9)-(4.13)) for the CEF Un(8) of the FE-SPD model, it is
sufficient that ¢ () satisfies Assumptions G1-G4. First the v/N-consistency of
dy in Assumption G1 is given in Theorem E.1 in Appendix E. The differentiability
of ¥n(6) in Assumption G2 is obvious. From Section 4.4.1 we see that the R—,
S- and (Q-quantities at g are all ratios of quadratic forms in Vy, having the same
denominator ViyM&%Vy where M3, = Iy — Xy (po)[ X'y (00)Xn(p0)] 1 X (po). Tt
can be shown that + VyM3Vy = 03 +0,(1). Hence, with Assumptions E1-E8 in
Appendix E, for the H-quantities to have proper stochastic behaviour, it would
require the existence of the 6th moment of v;; for a second-order bias correction,
and the existence of the 10th moment of v; for a third-order bias correction.
Variance corrections have stronger moment requirements. However, these mo-
ment requirements are no more than those under a joint estimating equation with
analytical approach. The condition E(¢y) = O(N™!) is required so that b_,
is O(N~1). This condition is not restrictive given v/N(dy — &) converges to a
centred bivariate normal distribution as N — oo, (Lee and Yu, 2010b), implies
that E(¢Yy) = o(N~"?). The other conditions are likely to hold. With these
and Assumptions E1-E8 in Appendix E, the results — are likely to hold.
Hence, we do not present detailed proofs of the results - for the FE-SPD
model, but rather focus on the validity of the bootstrap methods for the practical

implementation of the bias and variance corrections.
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4.3.3 Reduced models

Letting either p = 0 or A = 0 leads to two sub-models, the FE-SPD model with
SL dependence and the FE-SPD model with SE dependence. Bias and variance
corrections become much simpler in these cases, in particular the former.

FE-SPD model with SL dependence. The necessary terms for up to a

third-order bias and variance correction for the FE-SPD model with SL depen-

dence are:
Riv(d) = Sy, Rav() = Yriiaiai
dn(A) = =Ton(A) + Rin(N),
Hin(A) = —Tin(A) — Ran(A) + 2REN(N),
Hon(N) = —2Ton(A) — 6Rin(A) Ran(A) + 8RN (M),
Hyn(A) = —6T3n(N) + 6R3y(A) — 48Ry (A Ran(A) + 48Riy (M),

where MY, = My (0) = Iy—X (XX y) !X/ These results contain, as a special
case, the results for linear SAR model considered in Yang (2015b), showing the
usefulness of the linear SARAR representation for the FE-SPD model.
FE-SPD model with SE dependence. The necessary terms for up to
third-order bias and variances correction for the FE-SPD model with only SE

dependence are:

Sen(p) = % k=1,2,3,4,

Un(p) = —Konlp) = $Swv(p),

Hin(p) = —Kin(p) = 55n(p) + 35n(p),

Hon(p) = —2Kon(p) — 3Ssv(p) + 551 (p)San(p) — Sin(p),
Hsn(p) = —6Ksn(p) — 5Sun(0) +2515(0)Ssn(8) + 555x5(0)

—6S2n3(0) Sy (0) 4 351N (9).-
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These results contain, as a special case, the results for the linear SED model
considered in Chapter 2. Again, these results show the usefulness of the linear
SARAR representation for the fixed effects spatial panel data model given in (4.4)).

Simplifications to a one-way fixed effects model are easily done. If the model
contains only individual-specific effects, t = 1,...,7 — 1 and N = n(T — 1), and

when model contains only the time-specific effects, t = 1,..., T and N = (n—1)T.

4.3.4 Bias correction for non-spatial estimators

Note that Sy = By (dn) and 6% = 5% (dx), where By(8) and 6% (0) are the
constrained QML estimators of 3 and o2 defined in (4.6]) and . As By (0p) is an
unbiased estimator of 3, and $2-5% (do) is an unbiased estimator of 2, it is natural
to expect that, with a bias-corrected QML estimator 5bc of 6, Bbc = BN(gbC) and
53¢ = %JN(ébC) would be much less biased than the original QML estimators.
Thus, with a bias-corrected non-linear estimator, the QML estimators of the linear
and scale parameters may be automatically bias-corrected, making the overall
bias correction much easier. This is another point stressed by Yang (2015b) in
supporting the arguments that one should use CEE to perform bias correction on
non-linear parameters. We now present some results to support this point. First,
By = Bv(dn) = Fx(pn)Yn(An), where Fy(p) = [Xiy(p)Xn(p)] ' Xy (0)Bn(p),
by (4.6). Let BN](\’f)((S) be the kth derivative of By (0) w.r.t. ¢, and Fg\?)(p) the
kth derivative of Fy(p) w.r.t. p. Assume E(BNJ(\I,?)) exists and BJ(\];) - E(Nj(\lf)) =

O,(N~Y2)k =1,2. By a Taylor series expansion, we obtain

An(On) = By+ BV (0n — ) + %B](\?)KSN —80) ® (O — 00)] + Op(N~2), (4.15)

= An+E@BY) 6y — ) + bya_ L+ BB (a_ 1 ®@a_1)+O0,(N~ 3),

13 A notational convention is followed: Sy = B (o), (k) = (k)(éo), Fny =Fn(po), Any =
AN(>\0), BN = BN([)()), etc.
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Where E<5N> [ FNGNXNﬂouF XNBO] bN —[ FNGNB VN7 F B 1\/v]\[]
Gy = W yA}L!, and E(ﬁN ) = [Okx1, _F]\lf)GNXNB()a —FN Gy Xy B, FN XnBo-
Recall a_;/3 = NI;N. It is easy to see that the expansion (4.15]) holds when on

is replaced by 0%¢2. Thus,

Bias(By) = E(6y)Bias(dy) + E(bya_1) + 1E(BY)E(a_y @ a_1) + O(N~3),

Bias(3}?) = E(bya )+ 3E(BY)E(a ) @a_1) + O(N73). (4.16)

The key term E(B](\}))Bias(&v) of order O(N~') in the bias of fy(dy) is ab-
sorbed into the error term when dy is replaced by 5%2 in defining the estimator
for By. Thus, it can be expected that the resulting bias reduction can be big,
and the estimator BAR,C2 = BN(SR,CQ) is essentially second-order bias-corrected, if
E(bya_1/2) + %E(@ﬁ))E(a_l/géi)a_l/g) is ‘small’. In general, using (4.16), b2 can
easily be further bias-corrected to be ‘truly’ second-order unbiased. However, our
Monte Carlo results given in Section 4.5 suggest that this may not be necessary.
Finally, F%) (p), k = 1,2, can be easily derived.

Now, from (7)), 6% = 6%(00n) = = YNOn)My(pn)Yn(Ay) = 2Qn(0n).
Let QN (6) be the kth partial derivative of Qn(0) w.r.t. ¢, and similarly le\;) =
QW (%). Assume LEQW) = O(1) and L[QW — E(QW)] = O,(N~V/?) for k =

1,2. A Taylor series expansion gives,

F20n) = 5%+ 2QWEOn — 60) + 5 QP [(5x — 60) ® (S — 80)] + Op(N~3),

= 0%+ ¥EQV)On — do) +ana_y + 3 EQV) (@ ®a_y)

2

+O,(N"?) (4.17)

where the expressions for ¢y and E(Q ) k = 1,2, are given in Appendix E.
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The expansion (4.17) holds when O is replaced by 5}0\,&. It follows that
Bias[ 6% (0n)] = wE(QV)Bias(On) + 25 E(qna_s)
2 3
+ 3 BQW)E(a_s ®a_1) + O(N3),
Bias|276% (08%)] = #5E(ava 1) + 5pBQY)E(e L ®a_y) (4.18)

+O(N™2).

Again, the key bias term ﬁE(Q%))BiaS(S ~) is removed when dy is replaced by
%2 in defining the estimator for 02, and our Monte Carlo results in Section 4.5
show that 253 (05°2) is nearly unbiased for o3. In any case, one can always use

[18) to carry out further bias correction on 2% (052).

4.3.5 Inferences following bias and variance corrections

It would be interesting to further investigate the impacts of bias and variance
corrections for spatial estimators on the statistical inferences concerning the model
parameters. The latter issue is of a great practical relevance, as being able to assess
the covariate effects in a reliable manner may be the most desirable feature in any
econometric modelling activity. Unfortunately, this issue has not been addressed
for the spatial panel data regression models.

One of the most interesting type of inferences for a spatial model would be the
testing for the existence of spatial effects. With the availability of QML estimators
dx and its asymptotic variance NE(QZJN@ZJEV)Q ~, one can easily carry out a Wald
test. However, given the fact that oy can be quite biased, it is questionable
that this asymptotic test would be reliable when N is not large. With the bias
and variance correction results presented in Section 4.3, one can easily construct

various ‘bias-corrected’ Wald tests. For testing Hy : A = p = 0, i.e., the joint
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non-existence of both types of spatial effects, we have,
WSARAR 5bcg Var Sbcj Sbcj 4.19
N ik (037 Vary (07 ox”, (4.19)

where 057 is the jth-order bias-corrected dy and Vark(SR,Cj ) is the kth-order cor-
rected variance of 057, When j = k = 1, 0% = dy, Vary (65) = QnE(dn )y )Qn,
and the test is an asymptotic Wald test. The details on estimating Vark((gk,cj ), in
particular, Varg(&b\}ﬁ), are given at the end of Section 4.4.

Similarly, for testing the non-existence of one type of spatial effects, allowing
the existence of the other type of spatial effects, i.e., Hy : A = 0, allowing p, or

Hy : p =0 allowing A, we have, respectively,

]SVA]% = /\bc]/ \/ Varu k or ]SVEJ% = A?ch/ \/ Var227k((§}'fj), (420)

where Vary; ;(657) denotes the i-th diagonal element of Varg(dx/). We can con-
struct improved tests for testing the non-existence of spatial effect in the two

reduced models, i.e., testing Hy: A =0, given p =0, or Hy : p =0, given A = 0:

THoR = A2 /A Varg(A2)  or Thop = P2 [\ Varg (3, (4.21)

where Vary(A\2¥) and Vary(px”) are the k-order corrected variances of the jth-
order bias-corrected estimators based on the corresponding reduced models de-
scribed in Section 4.3.3.

Another important type of inference concerns the covariate effects, i.e., the
testing or confidence interval construction for ¢y, a linear combination of the
regression parameters. For an improved inference, we need the bias-corrected

variance estimator for BR,CQ. By (4.15) with O being replaced by 5bC2, we have,

Var( AR[CQ) = Var [BN + E(ng)(a_l/g + CLfl) + bNa/_l/Q -+ %E(B](\?))(Cl_l/g X a_l/g)} +
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O,(N~?). This variance can be easily estimated based on the bootstrap method
described at the end of Section 4.4. For testing Hy : ¢y = 0, the following two

statistics may be used:

T = C’BN/ c’A/V\m"(BN)c, and Tyoo = C’BAR,CQ/ c’\//a\r(ﬁ}ifz)c, (4.22)

where m(ﬁ ) is the estimate of the asymptotic variance of By and \//'a\r( AR,CQ) is

the bootstrap estimate of Var(4%2) (see end of Section 4.4). These results can be
simplified to suit the simpler models. Monte Carlo results show that inferences

based on Ty 22 are much more reliable than inferences based on Ty 1.

4.4 Bootstrap for Feasible Bias and Variance Cor-
rections

For practical purpose, we need to evaluate the expectations of a_,/, for s =
1,2, 3, and the expectations of their cross products. Thus, we need to compute
expectations of all the R-, S-, and Q-ratios of quadratic forms defined below ,
expectations of their powers, and expectations of cross products of powers, which
seem impossible analytically. The use of a joint estimating equation (JEE) as in
Bao and Ullah (2007) and Bao (2013) may offer a possibility. However, even for
a second-order bias correction of a simple SAR model (Bao, 2013), the formulae
are seen to be very complicated already. Further, the analytical approach runs
into another problem with variance corrections and higher-order bias corrections
— it may involve higher than fourth moments of the errors of which estimation
may not be stable numerically. In the current chapter, we follow Yang (2015b)
to use the CEE, 77Z~)N((5) = 0, which not only reduces the dimensionality but also

captures additional bias a nd variability from the estimation of linear and scale
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parameters, making the bias correction more effective. We then use bootstrap to
estimate these expectations involved in the bias and variance corrections, which
overcomes the difficulty in analytically evaluating the expectations and avoids the

direct estimation of higher-order moments of the errors.

4.4.1 The bootstrap method

We follow Yang (2015b) and propose a bootstrap procedure for the FE-SPD
model with SARAR effects. Note Yy(Ao) = Xnfo + By (p0)Vy, WinYy =
Gn[XnBo+By (o) V], where Gy = Gy (Ng) = WinA~H()\g), and My (p) Xy =
0. The R-ratios, S-ratios and @-ratios at § = dy defined below can all be

written as functions of (y, = (5, ;)" and Vy, given Xy and W,n,j = 1,2:

V?VB/JGIMNGN(XNBO -+ BJ_VlVN)

RlN(C(J)VN) = VgVM?VVN 5 (423)
X B Vy)G MyGn(X BV
RQN(CO, VN) = ( NBO i - N> V/NMiVV;:( Nﬁo ha S N)a (424>
~NMy
— (k) -1
t  (XyB+B 'Va)My Gy (XnBo + By' V)
Qin(C0, VN) = N Vﬁvl\]jI})VVN = ; (4.25)
— (k) -1
t (Xnfo +By' Vi) GyMY' Gy (Xnfo + By' V) 4
— 2
X B Vy)M®(x BV
Skn (o, V) = (Xnfo + By N,> N Ko+ By N)> (4.27)

where M3, = Iy — Xy (po) X (p0) X (p0)] ' Xly(po) and MY = MY (po). It
follows that ¥ = ¥n(Co, Viv) and H,y = H,n(Co, Vi), = 1,2,3. Now, define
the QML estimate of the error vector V in the FE-SPD model (4.4):

Vi =By(pn)[AAN) Yy — Xy fOn]. (4.28)

Let Vjv be a bootstrap sample based on V. The bootstrap analogues of various

quantities are ¥} = ¢y (Cy, Vi) and HYy = H,n(Cyv, VA), 7 = 1,2,3. Thus, the
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bootstrap estimates of the quantities in bias and variance corrections are,

E(%EN X QZJN X @ZJN)

E*

E*

[@ZN(évaJ*v) ® HrN(éN,v;(V)}, and

[@ZJN(ENa vj*v) &® T/NJN(éNa va) X IZN@M v?v)},

where E* denotes the expectation with respect to the bootstrap distribution. The

bootstrap estimates of other quantities are defined in the same mannerE To make

these bootstrap expectations practically feasible, we first follow Yang (2015b) and

propose the following #id bootstrap procedure:

Algorithm 4.1 (iid Bootstrap)

1. Compute éN and VN, and centre VN.

2. Draw a bootstrap sample \Afjvyb, i.e., make N random draws from the elements

of centred V.

3. Compute @N(CAN,\A/]*VJ)) and HTN(CAN,\A/'&b),r =1,2,3.

4. Repeat steps 2-3 for B times to give approximate bootstrap estimates as

E(1/11\7 ® H,N)

E@N X IEN & 1/~)N)

B

1

; Zl?:l [iN(éNa v?\f,b) ® HTN(CAJ\U V?V,b)] ) and

LS [On (v, Vi) @ U (G, Vi) @ Un (S, Vi)

The approximation in the last step of Algorithm (4.1]) can be made arbitrarily

accurate by choosing an arbitrarily large B, and that the scale parameter o2

and its QML estimator 6% do not play a role in the bootstrap process as they

14Ty facilitate the bootstrapping, the a_, /2 in can be re-expressed so that the random
quantities are put together, using the well-known properties of Kronecker product: (A® B)(C'®
D) = AC ® BD and vec(ACB) = (B’ @ A)vec(C'), where ‘vec’ vectorizes a matrix by stacking
its columns. For example, HinQntn = (Yy ® Hin)vec(Qn), and a_1/2 ® a_1/2 @ a_1/2 =
QAN QAN ® QN)(UN)N ® 1/;N ® @N) Alternatively, one can follow the ‘two-step’ procedure given

in Yang (2015b, Sec. 4).
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are hidden in either Vy or V. The iid bootstrap procedure requires that the
underlining error vector V contains iid elements, which may not be true if the
original errors are not normal. However, the fact that the elements of Vy are
uncorrelated and homoskedastic suggests that applying the iid bootstrap may give
a good approximation although it may not be strictly valid. Nevertheless, when
the original errors are non-normal, the following wild bootstrap or perturbation

procedure can be used.

Algorithm 4.2 (Wild Bootstrap)

1. Compute QCN and VN, and centre VN.

2. Compute Vij = VyO gy, where ® denotes the Hadamard product, and €,
15 an N-vector of id draws from a distribution of mean zero and all higher
moments 1, and is independent of VN.

3. Compute ﬂN(CAN,\A/']*V’b) and HTN(QA‘N,\A/7V7b),T =1,2,3.

4. Repeat steps 2-3 for B times to give approximate bootstrap estimates as

E(&N ® Hy.y) = % Zszl WN(CANa vz*w;) ® HrN(éN7 V?vz))]v and

EO;N ® @N oY I;N> = % Zszl [1;1\7<6N7 v}(\f,b) ® QZJN(CANv v?\/,b) ® &N(é]\ﬁ v}(\f,b)] :

Note that the common applications of the wild bootstrap method are to handle
the problem of unknown heteroskedasticity, which clearly is not the main purpose
of this chapter. In our model, the (transformed) errors are homoskedastic in the
usual sense, i.e., variances are constant. Also, the errors are uncorrelated. How-

ever, the transformed errors are, strictly speaking, heteroskedastic in the sense

15We are unaware of the existence of such a distribution. However, the two-point distribution
suggested by Mammen (1993): &,; = —(v/5 — 1)/2 or (v/5 + 1)/2 with probability (v/5 +
1)/(2v/5) or (/5 —1)/(2v/5), has mean zero, and second and third moments 1. Another two-
point distribution: &5; = —1 or 1 with equal probability, has all the odd moments zero and
even moments 1. See Liu (1988) and Davidson and Flachaire (2008) for more details on wild
bootstrap.
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that their third and higher order moments may not be constant. The wild boot-
strap here aims to capture these non-constant higher-order moments. Also, there
may be higher-order dependence, which the wild bootstrap is not able to capture.

We see in the next section that this can be ignored.

4.4.2 Validity of the bootstrap method

In discussing the validity of the bootstrap method, we concentrate on bias
corrections. The fact that the elements of the transformed errors Vy = {v}}
are uncorrelated and homoskedastic (up to second moment) across 7 and ¢, and
its observed counterpart Vy is consistent provide the theoretical base for the
proposed iid bootstrap method. However, these may not be sufficient for the iid
bootstrap method to be strictly valid, as our estimation requires matching of the
higher-order bootstrap moments with those of v},. There are important special
cases under which the classical iid bootstrap method is strictly valid.

First, we note that the original errors {v;;} are iid normal, the transformed
errors {v},} are again iid normal. Further, Lemma shows that if the original
errors {v; } are iid with mean zero, variance o2, and cuamulants k, = 0,7 = 3,4, .. .,
then the transformed errors {v};} will also have mean zero, variance o3, and rth
cumulant being zero for r = 3,4, .... Furthermore, the rth order joint cumulants
of the transformed errors are also zero. The iid bootstrap procedure essentially
falls into the general framework of Yang (2015b) and hence its validity is fully

established. We have the following proposition.

Proposition 4.1 Suppose the conditions leading to the third-order bias ex-
pansion (4.10) are satisfied by the FE-SPD model. Assume further that the rth
cumulant k. of {vy} is 0, r = 3,...,10. Then the iid bootstrap method stated in

Algorithm |4.1] is valid, i.e., Bias(0%2) = O(N~32) and Bias(6%3) = O(N~2).
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Second, for the important sub-model with individual effects only and small 7',
the transformed errors, [Vy,..., V. "y 1| = [V, ..., Vo] Frroy are iid across i,

i.e., the rows of the matrix [V*

-+ Vop ] are iild whether the original errors are

normal or non-normal, where N = n(T —1). As T is small and fixed, the asymp-
totics depend only on n. The bootstrap thus proceeds by randomly drawing the

rows of the QML estimate of [V, ... 7Vn*7T—1]' We have the following proposition.

nl

Proposition 4.2 Suppose the conditions leading to the third-order bias ex-
pansion are satisfied by the FE-SPD model with only individual effects. As-
sume further that the rth cumulant k, of {vy} exists, r =3,...,10, and T is fized.
Then the bootstrap method making 1id draws from the rows of the QML estimates
of (Vi ..., Viip_y] ds valid, i.e., Bias(6%%) = O(N~/%) and Bias(3%*) = O(N~2).

For the general FE-SPD model with two-way fixed effects, T" being small or
large, and the original errors being iid but not necessarily normal, the classical iid
bootstrap may not be strictly valid, because the transformed errors (on which the
iid bootstrap depend) are not guaranteed to be iid, although they are uncorrelated
with mean zero and constant variance 2. In particular, the transformed errors
may not be independent, and their higher-order moments (3rd-order and higher)
may not be constant. On the other hand, making random draws from the empirical
distribution function (EDF) of the centred Vi gives bootstrap samples that are of
iid elements. Thus, the classical iid bootstrap does not fully mimic or recreate the

random structure of V y, rendering its strict validity questionable. The following

proposition says that the wild bootstrap described in Algorithm is valid.

Proposition 4.3 Suppose the conditions leading to the third-order bias ex-
pansion (4.10) are satisfied by the FE-SPD model. Assume further that the rth
cumulant k. of {vy} exists for r = 3,...,10. Then the wild bootstrap method
stated in Algorithm [{.3 is valid for the general FE-SPD model, provided that the
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joint cumulants of the transformed errors {v}} up to rth order, r = 3,...,10, are

negligible.

Proof: We now present a collective discussion/proof of the Propositions 4.1-
4.3. Very importantly, we want to ‘show’ that the classical iid bootstrap method
can give a very good approximation in cases it is not strictly valid, i.e., the ‘missing

parts’ can be ignored numerically.

Let Vo, = (V4. ..., V) be the vector of original errors in Model (4.1)), which

contains iid elements of mean zero, variance o7, cumulative distribution function
(CDF) F, and cumulants k,,r = 3,4,...,10. Let F,p n = Frr_1 ® F,, ,_1 be the

nT x N transformation matrix. We have

For convenience, denote the elements of Vy by v;, and the ith column of F,r y
by fi,i =1,...,N. Let k() denote the rth cumulant of a random variable, and
K(+,...,-) the joint cumulants of random variables. Let ® denote the Hadamard
product. A vector raised to rth power is operated element-wise. From the defini-
tion of the bias terms b_g/2, 5 = 2,3, we see that b_,/» = b_;/2((o, Kn) Where Ky
contains the cumulants or joint cumulants of {v;}. From (4.23)-(4.28), it is clear
that the bootstrap estimates of b_,/5 are such that 8_5/2 = b_s/g(é]\[, K ) where
K} contains the cumulants of {v}} w.r.t. the bootstrap distribution. With the
v/N-consistency of éN, how the set £ match the set Ky, becomes central to the

validity of the bootstrap method. Following lemmas reveal their relationship.

Lemma 4.1 If the elements of V,r are iid with mean zero, variance o2, CDF
F, and higher-order cumulants k,,r = 3,4, ..., then,
(a) k1(vi) =0, Kko(vy) =02, and k. (vi) =k, a,;, 7>3,i=1,...,N,

(0) k(vi,vj) =0 fori# 34, and k(vi,,...,vi.) =k i i, 17 >3, where
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i = Ul aiy o =V ©---0OF), and {iy, ..., i} are not all the same.

Lemma 4.1 shows clearly that the higher-order cumulants or joint cumulants
of {v;} are proportional to the higher-order cumulants k, of the original errors
{vit}. This suggests that when k., = 0,r = 3,...,10, {v;} are essentially iid
and hence the conclusion of Proposition 4.1 holds in light of the results of Yang
(2015b) for the iid bootstrap. Similarly, the conclusion of Proposition 4.2 also
holds. When k, # 0 for some or all r = 3,...,10, {v}} are no longer iid. First,
ar; are constant across ¢ only when r = 1 and 2, ie., a1, = 0 and ag; = 1.
Thus, x,(v;),r > 3, are not constant across 7 unless k, = 0. Second, v.s are not
independent as a;, . ;. # 0 for » > 3. The latter may cause more problem as it is
known that the iid bootstrap is unable to capture dependence. However, noting

that the proportionality constants a;, ;. are all pure numbers, being the sum

of element-wise products of the orthonormal vectors {f;}, intuitively they should
be small, and the larger the r, the smaller the aih...,irm These suggest that the

higher-order dependence among {v;} can largely be ignored. The question left is

how well the two sets of cumulants match.

Lemma 4.2 Let v* be a random draw from {v;;i = 1,...,N}. Then, under
the conditions of Lemma[4.1, we have #%(v*) = 0, k5(v*) = 02 + O,(N~/?) and
kE(V*) = k@, + Op(N7Y2),r > 3, where @, = + ZZN:1 ar;, and K7(-) denotes rth

T

cumulant w.r.t. the EDF Gy of {v;;i=1,...,N}.

Lemma[£.2) shows that the iid bootstrap is able to capture, to a certain degree,

the higher-order moments of v; (a, versus a,;), but is unable to capture the

16We are unable to further characterise these quantities. However, as they are pure numbers
depending on n and T through Frr_; and F;, ,—1, it should be indicative to present some of
their values. With the eigenvector-based transformations defined above and calculated
using Matlab eig function, we have, for n =100 and T = 3, a1 23 = —5.6e>, a1,234 = 3.4e>,
and a12345 = —3.7¢~7: and for n = 200, the same set of numbers become 2.3e~°, —3.8¢~% and

1.3e~8. With Helmert transformations (see Footnote 5), these numbers become much smaller
(< 1.0e719).
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higher-order dependence. As argued below Lemma [£.1] the latter does not have
a significant effect as such dependence is weak and negligible since both {a,;}
and their variability are not big and get smaller as r increasesm the results of
Lemmas {4.1H4.3] strongly suggest that the simple iid bootstrap method may be
able to give a good approximation in situations where the original errors are not

far from normal.

Lemma 4.3 Suppose Assumptions A1-A8 and the conditions of Lemma
hold. Let ¥* be a random draw from the EDF Gy of {v1,...,Vn}, and v* a

random draw from the EDF Gy of {v1...,vn}. Then,

KA = KEV) + O(N ), or 5 (G) = Ky (Gn) + O, (N V%), 1 > 3,

<k

where kX(V*) is the rth cumulant of V* w.r.t. Gy, and £*(v*) is the rth cumulant

of v¥ w.r.t. Gy.

In case of severe non-normality of the original errors so that the transformed
errors are far from being iid, it may be more important to be able to match the
even moments, in particular the kurtosis, than the odd moments as a,; is typically
small on average with moderate variability when r is odd, see Footnote 16. This
point is also reflected by the fact that the variance of the joint score function
(given in Theorem A.1) is free from the third cumulant of the original error. In
this spirit, the simple two-point distribution with equal probability described in

Footnote 10 may provide satisfactory results.

Lemma 4.4 Suppose Assumptions A1-A8 and the conditions of Lemma

hold. Let vi = v;e*, where €* is independent of v;, having a distribution with

17 Again, we are unable to further characterise these pure constants. To have some concrete
idea, we have calculated the mean and standard deviation of {a,;} for n = 100, = 3 and
r =3,4,5,6: (—.0020,.0827), (.1245,.0679), (—.0010,.0425), (.0308,.0299). When n = 500, the
same set of values becomes: (.0008,.0751), (.1141,.0714), (.0010,.0360), (.0263,.0281). With
Helmert transformations, these numbers become slightly bigger.
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mean 0 and rth moment 1, r > 2. Then,
E*(v7) =0, and EX[(v])"] = V], r > 2,

where E* corresponds to the distribution of £*.

Lemma4.3|shows that moving from the model errors to their observed counter-
parts introduces errors of smaller order and hence can be ignored asymptotically.
With the results of Lemma [£.4] the validity of the wild bootstrap follows. The
proofs of Lemmas [4.1H4.4] are given in Appendix E.

Variance corrections. A final note is given to the variance correction. The
bootstrap estimate of a bias term or a variance term typically has a bias of
order O(N~!) multiplied by the order of that term, i.e., Bias(lA),l) = O(N7?),
Bias(9_1) = O(N~2), Bias(0_3/5) = O(N~%/2), etc. This is sufficient for achieving
a third-order bias correction, but not for a third-order variance correction. Thus,
to achieve a third-order variance correction (up to O(N~2)), a further correction
on the bootstrap estimate 0_; of v_; is desirable. Yang (2015b) proposed a method
based on the first-order variance term obtained from the joint estimating func-
tion. To avoid algebraic complications, we adopt a simple approximation method:
replacing v_; evaluated at the original QML estimator éN, by 9 evaluated at
the second-order bias-corrected QML estimator é'f\,cz. Monte Carlo results show
that this approximation works well.

To have a third-order variance correction for 0%, we also need to estimate

ACov(dy,b_1) in ([@13). We write ACov(dy,b 1) = ACov(dy, QA“N)E(b’,LCO), where
b_1¢, is the partial derivative of b_; w.r.t. ¢, and ACOV(&V, éN) is the sub-matrix
of E (53 tn(80)) ™ Var (4 (60) ) E (54w (6)) " where 1o (6) = 25¢x(8). The de-
tailed expressions of ¢y (0) = %EN(H), Var(¢n(6o)), and E(a%,)v,bN(Qo)) are given

in Theorem E.1 in Appendix E. We estimate E(b_;¢,) by IA)_LCAN, the numeri-
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cal derivatives. E(ai%@Z)N(QO)) can simply be estimated by the plug-in method as
it involves only the parameter-vector 6. Var(a%oﬁ ~(6p)) involves k4, the fourth
cumulant of the original errors, besides the parameter-vector 6,. The results of
Lemmas 4.1-4.3 suggest that ks can be consistently estimated by ky = a; 'ka(Vy),
where k4 (VN) is the fourth sample cumulant of the QML residuals VN, and ay is
given in Lemma 4.2.

Finally, to estimate Var(852) in ([(£.22)): we need to (4) calculate the estimates
of all non-stochastic quantities with analytical expressions by plugging in 5%2
and %2 for &, and S, (ii) calculate new QML residuals based on 652 and 522,
and (ii7) bootstrap the new residuals to give bootstrap estimates of the other
quantities in Var(4%?), including Qy and E(H,y), and hence the final estimate

Var(3%2) of Var(882). The estimates of Qy and E(Hay) from the early stage

bootstrap based on the original QML estimators on and BN can be used.

4.5 Monte Carlo Study

We present Monte Carlo results to show (i) the finite sample performance
of the QML estimator dy and the bias-corrected QML estimators 652 and 8,
(ii) the impact of bias corrections for dx on the estimations for 8 and o2, and
(ili) the impact of bias and variance correction on the inferences for spatial or
regression coefficients. The simulations are carried out based on the following

data generation process (DGP): fort =1,...,T
Ynt = )\OWInYnt + Xlntﬁlo + X2nt520 + Cno + atoln + Untu Unt = pOWQnUnt + Vnt-

For all the Monte Carlo experiments, 8y = (B9, 820)" is set to (1,1), 02 = 1,
Ao and pg take values from {—0.5,—0.25,0,0.25,0.5}, n = {25, 50, 100, 200, 500},
and 7' = {3,10}. Each set of Monte Carlo results is based on M = 5000 Monte
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Carlo samples, and B = 999 bootstrap samples within each Monte Carlo sample.
The Fpp_y and F,,,_; defined above are used and calculated using Matlab
eig function. The weight matrices, the regressors, and the idiosyncratic errors
are generated as follows. The manner in which weight matrices, regressors, and
error distribution are generated are presented in Appendix E.

The estimators of spatial parameters. The finite sample performance of
the QML estimators and bias-corrected QML estimators of the spatial parameters
is investigated. Monte Carlo results are summarised in Tables 4.1a, 4.1b, 4.2, 4.3a
and 3b, where Tables 4.1a-4.1b correspond to the model with p = 0, i.e., the
spatial lag dependence model; Table 4.2 the model with A = 0, i.e., the spatial
error dependence model; and Tables 4.3a-4.3b the general model. All the reported
results correspond to the iid bootstrap method given in Algorithm [4.1] The results
(unreported for brevity) using the wild bootstrap method described in Algorithm
show that the wild bootstrap gives almost identical results as the iid bootstrap,
consistent with remarks below Lemma 4.2.

From Tables 4.1a and 4.1b, we see that regular QML estimators of the spatial
parameters can be very biased, depending on the spatial layouts, the true values
of the parameters, and the way that the regressors are generated. First, when the
number of cross sectional units increases from 50 to 500, the magnitude of the bias
becomes small. The bias is apparent for n = 50 and negligible for n = 500, which
implies that bias correction is especially needed for the data with a small sample
size. Also, when the spatial weights matrix becomes denser (from the queen matrix
to the group interaction matrix), the bias of regular QML estimators becomes
larger. When the true value of spatial effect parameter becomes larger in absolute
value, the bias becomes larger. Either reducing the magnitude of the regression
parameters [ or increasing the value of the error standard deviation increases the

bias of the QML estimator of the spatial parameter. The magnitude of the bias
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is also influenced by the way that the regressors are generated. The DGPs with
normal errors and log-normal errors give a smaller bias than the DGP with normal
mixture errors. For the bias correction, we see that our bias correction procedure
works very well, independent of the spatial layouts, model parameters, and the
way the regressors being generated. We see that even for the small sample case
of n = 50, the bias correction procedure produces nearly unbiased estimates. By
comparing S\ELCQ and S\EC?’, we see that in most of the situations considered, a second-
order bias correction has essentially removed the bias of the QML estimators and
the third-order bias correction might not be needed.

The results in Table 4.2 show that the patterns observed from the spatial lag
model for the regular QML estimators and bias corrections generally hold for the
spatial error model. A noticeable difference is that the regular QML estimator of
the spatial error parameter can be much more biased and the bias can be much
more persistent than the QML estimator of the spatial lag parameter in the spatial
lag model. Therefore, the bias correction procedures developed in the current
chapter works even more effectively for the spatial error model. Furthermore,
unlike the case of spatial lag model, the magnitude of 5 and o does not affect the
performance of py much.

From Tables 4.3a and 4.3b where the third-order bias correction results are
omitted for brevity, we see that the general patterns we observed for the two
special models hold for the general model as well. However, we observe that the
QML estimator of the spatial error parameter can be much more biased than the
QML estimator of the spatial lag parameter, in particular when the regressors
are generated in a non-iid manner. The bias of the QML estimator of the spatial
error parameter can be very persistent and even when n = 500, there can still
exist very noticeable bias.

The results show that in general the QML estimators of the spatial panel data
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models need to be bias-corrected even when sample size is not small, and that the
proposed bias correction method is very effective in removing the bias. As far as
the bias correction is concerned, a simple iid bootstrap may well serve the purpose.
The method can easily be applied and thus is recommended to the practitioners.

The estimators of non-spatial parameters. The finite sample properties
of By and 6%, and their bias-corrected versions B¢ and 5% defined in Section
4.3.4 are investigated. Monte Carlo results reveal some interesting phenomena.
The biases of the non-spatial estimators B ~ and 6% depend very much on whether
A ~ is biased, not much on whether py is biased. In general the biases of BN and 6%
are not problems of serious concern (at most 6-7% for the experiments considered).
Consistent with the discussions in Section 4.3.4, BR}C is nearly unbiased in general.
When the error distribution is skewed, 6% may still encounter a bias of less than
5% when n = 50 and T' = 3, and in this case the method given in Section 4.3.4
can be applied for further bias correction. Partial results are summarised in Table
4.4.

Inferences following bias and variance corrections. To demonstrate the
potential gains from bias and variance corrections, we present Monte Carlo results
concerning the finite sample performance of various tests for spatial effects, and
the tests concerning the regression coefficients, presented in Section 4.3.5. Partial
results are summarised in Tables 4.5a-4.5¢, and 4.6. More comprehensive results
are available from the authors upon request.

Table 4.5a presents the empirical sizes of, respectively, the joint tests for the
lack of both SLD and SED effects given in ({.19)), and the one-directional tests
for the lack of SLD effect allowing the presence of SED effect or the lack of SED
effect allowing the presence of SLD effect, given in (4.20). The results show that
the third-order bias and variance corrections on the spatial estimators lead to

tests that can have a much better finite sample performance over the tests based
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on the original estimates and asymptotic variances. The tests based on second-
order corrections offer improvements over the asymptotic ones but may not be
satisfactory. All the reported results are based on the wild bootstrap with the
perturbation distribution being the simple two-point (1 and —1) distribution with
equal probability. Consistent with the results of Section 4.2, in case of severe
non-normality such as the log-normal errors, the wild bootstrap perform better
than the iid bootstrap; in case of normal errors, the iid bootstrap performs slightly
better than the wild bootstrap and both show excellent performance of the third-
order corrected Wald tests. Due to its robustness, the wild bootstrap may be a
better choice in the case of testing for spatial effects. Tables 4.5b and 4.5¢ present
the empirical sizes of the tests given in for the two simpler models, from
which the same conclusions are drawn.

Table 4.6 presents partial results for the empirical sizes of the tests for the
equality of the two regression slopes given in , based on iid bootstrap. The
results show that the tests with merely second-order bias and variance corrections
significantly outperforms the standard tests with the original estimate and asymp-
totic variance. With smaller values of the slope parameters, the size distortion for
the standard tests becomes more persistent. The results (unreported for brevity)
shows that when the spatial dependence becomes weaker the performance of the
asymptotic test improves, but is still outperformed by the proposed bias-corrected

test.
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Table 4.1a. Empirical Mean|[rmse](sd) of Estimators of A\, 2FE-SPD Model with SLD, T'=3,8=(1,1),0 =1

A AN ARe? ARe3 [ AN ARe2 ARe3

50 | .484[.120](.119
25 | .234[.142](.141
.00 | -.010[.158](.158
25 | -.258[.161](.161
50 | -.504[.163](.163)  -.503[.166](.166

50 | .493[.079](.078
25 | .243[.095](.095
.00 | -.007[.110](.109

50 | -.503[.117](.117)  -.501[.118](.118
50 | .490[.078](.078)  .499[.078](.078
.00 | -.006[.106
25 | -.255[.112
50 | -.502[.117](.117)  -.499[.119](.119

50 | .492[.075](.075)  .501[.075](.075)  .501[.075](.075) | .482[.065](.062)  .500[.062](.062
25 | .242[.091

25 | -.255[.110
50 | -.503[.112](.112

50 | .498[.033](.033
25 | .249][.040](.040
.00 | -.001[.047

.50 | -.501[.050](.050) -.501[.050](.050

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2
Normal Error, n=50
.502[.120](.120) .502[.120](.120) .469[.095](.089) .497[.088](.088) .499[.088](.088)
.248[.143](.143) .250[.143](.143) .210[.130](.124) .250[.123](.123) .251[.123](.123)
.001[.161](.161) .002[.161](.161) | -.049[.167](.159) -.001[.160](.160) .001[.160](.160)
-.251[.164](.164)  -.250[.165](.165) | -.303[.189](.182) -.250[.184](.184) -.248[.184](.184)
(.166)  -.502[.167](.167) | -.565[.214](.204) -.509[.208](.208)  -.507[.208](.208)

NN

Normal Mixture, n=50

50 | .483[.119)(.117)  .500[.118](.118)  .501[.118](.118) | .470[.091](.086)  .498[.084](.084)  .499[.084](.084)
25 | .238[.139](.139)  .253[.141](.141)  .254[.141](.141) | .209[.128](.121)  .248[.120](.120)  .249[.120](.120)
.00 | -.013[.155](.154)  -.002[.157](.157) -.001[.157](.157) | -.048[.160](.152) -.001[.153](.153)  .001[.153](.153)
25 | -.257[.158](.158) -.251[.161](.161) -.250[.162](.162) | -.301[.188](.181) -.248[.182](.182) -.247[.183](.183)
50 | -.504[.163](.163)  -.503[.166](.166)  -.503[.167](.167) | -.556[.206](.199) -.500[.203](.203)  -.498[.203](.203)

Log-normal Error, n=50

50 | .485[.111](.110)  .501[.111](.111)  .502[.111](.111) | .470[.090](.085)  .497[.083](.083)  .498[.083](.083)
25 | .239[.133](.133)  .253[.134](.134)  .254[.134](.134) | .212[.122](.116)  .249[.115](.115)  .251[.115](.115)
.00 | -.010[.146](.146)  .001[.149](.149)  .002[.149](.149) | -.045[.154](.147)  .000[.147](.147)  .002[.147](.147)
25 | -.255[.151](.151)  -.249[.154](.154)  -.248[.154](.154) | -.302[.178](.171) -.251[.173](.173) -.250[.173](.173)
50 | -.498[.152](.152)  -.499[.155](.155)  -.499[.156](.156) | -.556[.204](.196)  -.503[.200](.200)  -.501[.200](.200)

Normal Error, n=100
.502[.078](.078) .502[.078](.078) .482[.067](.065) .500[.064](.064) .501[.064](.064)
.251[.095](.095) .252[.095](.095) .222[.096](.092) .248[.092](.092) .248[.092](.092)
.000[.110](.110) .000[.110](.110) | -.031[.123](.119) .000[.120](.120) .001[.120](.120)

o o | L

NN

]

]
.25 | -.255[.114](.114 -.250[.115](.115 -.250[.115](.115 -.289[.146](.141)  -.254[.143](.143 -.253[.143](.143
] -.501[.118](.118) | -.538[.162](.158) -.503[.162](.162 -.503[.162](.162
Normal Mixture, n=100
@ ) .500[.078](.078) .482[.067](.065) .500[.065](.065) .500[.065](.065)
(.095) .249[.095](.095) .250[.095](.095) .224[.095](.091) .250[.091](.091) .250[.091](.091)
(.106) .001[.107](.107) .002[.107](.107) | -.034[.122](.117) -.002[.118](.118) -.002[.118](.118)
(.112)  -.250[.113](.113)  -.250[.113](.113) | -.286[.144](.140) -.251[.142](.142) -.250[.142](.142)
(- ) -.499[.119](.119) | -.535[.160](.156) -.500[.159](.159) -.500[.159](.159)

25 .241[.095%
]
]

Log-normal Error, n=100
5 (- [- [ (- ) .500[.062](.062)

}(.091) .250[.091](.091) .250[.091](.091) .225[.093](.090) .250[.090](.090) .250[.090}(.090)

.00 | -.006[.102](.102) .001[.103](.103) .001[.103](.103) | -.029[.116](.113) .001[.113](.113) .002[.113](.113)
}(.110) —.250[.111](.111) —.250[.111](.111) —.283[.138](.134) —.249[.136](.136) —.248[.136}(.136)

) -.500[.113](.113) -.500[.113](.113) | -.526[.157](.154) -.492[.159](.159) -.495[.159](.159)

Normal Error, n=500
.500[.033](.033) .500[.033](.033) .495[.034](.033) .500[.033](.033) .500[.033](.033)

] .251[.041](.041) .251[.041](.041) .242[.050](.049) .249[.049](.049) .249[.049](.049)

}(.047 .000[.047](.047) .000[.047](.047) —.009[.065](.064) .000[.065](.065) .000[.065}(.065)

25 -.252[.050}(.050 E g % % E g %E ;

NN NN

-.251[.050](.050 -.251[.050](.050) | -.260[.080](.079) -.249[.079](.079 -.249[.079](.079
-.501[.050](.050) | -.514[.096](.095) -.501[.095](.095 -.501[.095](.095
Normal Mixture, n=500

50 | .498[.033](.033)  .500[.033](.033)  .500[.033](.033) | .495[.034](.033)  .500[.033](.033)  .500[.033](.033)
25 | .249[.040](.040)  .250[.040](.040)  .250[.040](.040) | .242[.050](.049)  .249[.049](.049)  .249[.049](.049)
.00 | -.002[.045](.045) -.001[.045](.045) -.001[.045](.045) | -.007[.066](.066)  .002[.066](.066)  .002[.066](.066)
25 | -.251[.048](.048)  -.250[.048](.048)  -.250[.048](.048) | -.261[.081](.081) -.250[.081](.081) -.250[.081](.081)
50 | -.501[.050](.050)  -.500[.050](.050)  -.500[.050](.050) | -.514[.095](.094) -.501[.094](.094) -.501[.094](.094)

Log-normal Error, n=500

50 | .498[.032)(.032)  .500[.032](.032)  .500[.032](.032) | .496[.034](.034)  .501[.034](.034)  .501[034](.034)
25 | .248[.040](.040)  .250[.040](.040)  .250[.040](.040) | .243[.050](.049)  .250[.049](.049)  .250[.049](.049)
.00 | -.003[.046](.046)  -.001[.046](.046)  -.001[.046](.046) | -.009[.065](.064)  .000[.064](.064)  .000[.064](.064)
.25 | -.250[.048](.048) -.249[.048](.048) -.249[.048](.048) | -.259[.080](.080)  -.248[.080](.080)  -.248[.080](.080)
-50 | -.501[.049](.049)  -.501[.049](.049) -.501[.049](.049) | -.514[.095](.094) -.501[.095](.095) -.501[.095](.095)
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Table 4.1b. Empirical Mean|rmse](sd) of Estimators of A\, 2FE-SPD Model with SLD, T'=3,8 = (.5,.5)',0 = 1

A AN ARe? ARe3 [ AN ARe2 ARe3

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2

Normal Error, n=50

.50 477[.133](.132 .500[.133](.133) .500[.132](.132) .449[.122](.111) .498[.105](.105) .500[.105](.105)
.25 .231[.157](.156 .251[.159](.159) .252[.158](.158) .179[.171](.156) .248].150](.150) .250[.150](.150)
.00 | -.015[.176](.175 .000[.180](.180) .002[.180](.180) | -.086[.214](.196) -.002[.191](.191) .001[.191](.191)
.25 | -.261[.180](.180 -.252[.185](.185)  -.251[.185](.185) | -.348[.247](.227) -.252[.224](.224) -.249[.224](.224)
.50 | -.505[.185](.184)  -.502[.190](.190)  -.501[.190](.190) | -.609[.283](.262) -.504[.261](.261) -.502[.262](.262)
Normal Mixture, n=50

NN NN

50 | .478[.133)(.132)  .501[.133](.133)  .500[.132](.132) | .449[.120](.109)  .498[.103](.103)  .500[.103](.103)
25 | .229[.158](.157)  .248[.159](.159)  .249[.159](.159) | .180[.168](.153)  .248[.147](.147)  .250[.147](.147)
.00 | -.017[.174)(.173)  -.002[.177](.177)  .000[.177](.177) | -.088[.212](.193) -.003[.188](.188)  .000[.188](.188)
25 | -.260[.176](.176)  -.251[.181](.181)  -.250[.181](.181) | -.346[.247](.227) -.250[.224](.224)  -.247[.225](.225)
50 | -.502[.181](.181)  -.499[.186](.186)  -.499[.186](.186) | -.608[.281](.260)  -.503[.260](.260)  -.500[.260](.260)

Log-normal Error, n=50

50 | .480[.123](.122)  .502[.123](.123)  .502[.122](.122) | .454[.112](.102)  .502[.097](.097)  .504[.097](.097)
25 | .229[.148](.147)  .249[.150](.149)  .250[.149](.149) | .184[.157](.143)  .251[.138](.138)  .254[.138](.138)
.00 | -.013[.162](.161)  .002[.165](.165)  .003[.165](.165) | -.079[.193](.176)  .003[.172](.172)  .006[.172](.172)
25 | -.258[.168](.167)  -.248[.172](.172)  -.247[.172](.172) | -.341[.225](.206)  -.247[.203](.203)  -.244[.203](.203)
50 | -.504[.173](.172)  -.501[.177](.177)  -.501[.178](.178) | -.598[.258](.239)  -.495[.239](.239)  -.493[.240](.240)

Normal Error, n=100
.50 .490[.090](.090 .502[.090](.090) .502[.089](.089) .469[.087](.081) .499[.079](.079) .500[.079](.079)
.25 .242[.108](.108 .253[.109](.109) .253[.109](.109) .205[.127](.119) .248[.117](.117) .248[.117](.117)
.00 | -.003[.122](.122 .006[.123](.123) .006[.123](.123) | -.058[.166](.155) -.004[.153](.153) -.003[.153](.153)
.25 | -.256[.130](.129 -.250[.131](.131)  -.249[.131](.131) | -.313[.192](.181) -.249[.179](.179) -.249[.179](.179)
.50 —.505[.131}(.131) —.503[.133](.133) —.503[.133](.133) —.578[.223](.209) —.506[.209](.208) —.506[.209}(.209)
Normal Mixture, n=100

.50 .491[.088 (.088) .502[.088] 088

o=

.502[.088](.088) | .470[.087](.082)  .500[.080](.080)  .500[.079](.079

] (.088) [ [ (.080) 1(.079)
25 | .241[.105](.105)  .252[.106](.106)  .252[.106](.106) | .207[.124](.116)  .249[.113](.113)  .250[.113](.113)
.00 | -.010[.120](.120)  -.002[.121](.121)  -.001[.121](.121) | -.056[.160](.150) -.001[.148](.148) -.001[.148](.148)
25 | -.254[.120](.129)  -.248[.131](.131)  -.247[.131](.131) | -.314[.195](.184) -.251[.182](.182) -.250[.182](.182)
50 | -.503[.130](.130)  -.500[.131](.131)  -.500[.132](.132) | -.567[.217](.207)  -.496[.206](.206)  -.495[.206](.206)

Log-normal Error, n=100
.50 .490[.084](.084) .502[.084](.084) .502[.084](.084) .470[.084](.079) .500[.077](.077) .500[.077](.077)
.25 .235[.102](.101) .246[.102](.102) .246[.102](.102) .208[.120](.113) .250[.110](.110) .251[.110](.110)
.00 | -.005[.116](.116) .004[.117](.117) .004[.117](.117) | -.050[.151](.143) .003[.141](.141) .004[.141](.141)
.25 —.258[.121}(.121) —.252[.123](.123) —.252[.123](.123) —.316[.185](.172) —.253[.171](.171) —.253[.171}(.171)
50 | -.502[.125](.125)  -.499[.126](.126) -.499[.126](.126) | -.565[.208](.197) -.495[.197](.197)  -.495[.197](.197)
Normal Error, n=500
.50 .498[.039](.039 .500[.039](.039) .500[.039](.039) .490[.050](.049) .501[.048](.048) .501[.048](.048)
.25 .247[.048](.048 .250[.048](.048) .250[.048](.048) .234[.073](.071) .250[.071](.071) .250[.071](.071)
.00 —.001[.055}(.055 .001[.055](.055) .001[.055](.055) —.021[.097](.094) .000[.094](.094) .OOO[.094](.094)
.25 | -.251[.058](.058 -.250[.058](.058)  -.250[.058](.058) | -.275[.117](.114) -.249[.113](.113) -.249[.113](.113)
.50 —.500[.060}(.060) —.499[.061](.061) —.499[.061](.061) —.530[.139](.136) —.500[.135](.135) —.500[.135}(.135)
Normal Mixture, n=500

D=

50 | .499[.039)(.039)  .501[.039](.039)  .501[.039](.039) | .490[.048](.047)  .501[.047](.047)  .501[.047](.047)
25 | .247[.048](.048)  .249[.048](.048)  .249[.048](.048) | .233[.074](.072)  .249[.071](.071)  .249[.071](.071)
.00 | .000[.054](.054)  .002[.055](.055)  .002[.055](.055) | -.020[.095](.093)  .002[.092](.092)  .002[.092](.092)
25 | -.250[.059](.059)  -.249[.059](.059)  -.249[.059](.059) | -.279[.119](.116) -.253[.115](.115) -.253[.115](.115)
50 | -.501[.059](.059)  -.500[.060](.060)  -.500[.060](.060) | -.529[.137](.134) -.499[.133](.133)  -.499[.133](.133)

Log-normal Error, n=500

50 | .497[.037)(.037)  .500[.037](.037)  .500[.037](.037) | .491[.047](.046)  .502[.046](.046)  .502[.046](.046)
25 | .248[.048](.048)  .250[.048](.048)  .250[.048](.048) | .234[.072](.070)  .251[.069](.069)  .251[.069](.069)
.00 | -.002[.053](.053)  .000[.053](.053)  .000[.053](.053) | -.020[.094](.092)  .001[.091](.091)  .001[.091](.091)
.25 | -.252[.057](.057) -.251[.058](.058) -.251[.058](.058) | -.277[.116](.112) -.250[.112](.112) -.251[.112](.112)
50 | -.499[.059](.059)  -.499[.059](.059)  -.499[.059](.059) | -.530[.139](.136) -.498[.135](.135)  -.499[.135](.135)
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Table 4.2. Empirical Mean[rmse](sd) of Estimators of A - 2FE-SPD Model with SED, T'=3,8 = (1,1),0 =1

AN ARe? ARe3 [ AN ARe2 ARe3

(a) Queen Contiguity, REG1 (b) Group Interaction, REG2

Normal Error, n=50

481[.144](.142 .500[.143](.143) .500[.142](.142) .457[.139](.132) .503[.116](.116) .503[.115](.115)
.233[.171](.170 .252[.171](.171) .254[.171](.171) .177[.202](.188) .258[.167](.167) .260[.167](.166)
-.018[.190](.189 -.001[.190](.190) .001[.191](.190) | -.115[.266](.240)  -.004[.221](.221)  -.001[.220](.220)
-.271[.202](.201 -.255[.203](.203)  -.254[.204](.204) | -.382[.299](.268)  -.250[.256](.256)  -.249[.256](.256)
-.516[.203](.202)  -.503[.205](.205)  -.502[.206](.206) | -.637[.321](.290) -.496[.287](.287)  -.497[.288](.288)
Normal Mixture, n=50

—_ T

480[.139](.138)  .500[.138](.138)  .500[.137](.137) | .458[.137](.130)  .504[.114](.114)  .504[.113](.113)
.233[.166](.165)  .252[.166](.166)  .251[.166](.166) | .168[.210](.194)  .251[.172](.172)  .250[.171](.171)
-.016[.186](.185)  .002[.186](.186)  .003[.186](.186) | -.108[.258](.234)  .004[.214](.214)  .003[.214](.214)
-.267[.195](.194)  -.252[.196](.196)  -.250[.197](.197) | -.381[.293](.262)  -.248[.251](.251)  -.249[.251](.251)
-511[.198](.197)  -.498[.200](.200)  -.498[.201](.201) | -.636[.313](.282)  -.493[.280](.280)  -.495[.281](.281)

Log-normal Error, n=50

483[.135)(.133)  .504[.134](.134)  .503[.133](.133) | .454[.136](.128)  .502[.112](.112)  .502[.111](.111)
237(.160](.159)  .256[.161](.160)  .255[.160](.160) | .174[.196](.181)  .257[.160](.160)  .256[.160](.160)
-.012[.179](.179)  .006[.180](.180)  .005[.180](.180) | -.105[.242](.218)  .009[.199](.199)  .002[.199](.199)
-.264[.186](.186)  -.248[.188](.188)  -.249[.188](.188) | -.368[.273](.247)  -.233[.235](.235)  -.239[.236](.235)
-512[.191](.191)  -.499[.194](.194)  -.499[.194](.194) | -.632[.305](.275)  -.489[.272](.272)  -.489[.274](.273)

Normal Error, n=100
.490[.096](.095 .500[.095](.095) .500[.095](.095) .467[.107](.102) .501[.093](.093) .501[.093](.093)
.241[.119](.119 .251[.119](.119) .251[.118](.118) .196[.152](.142) .252[.132](.132) .251[.132](.132)
-.011[.132](.132 -.001[.132](.132) .000[.132](.132) | -.074[.192](.177) -.002[.171](.171) -.002[.171](.171)
-.259[.141](.140 -.249[.141](.141)  -.249[.141](.141) | -.333[.215](.199) -.255[.199](.199) -.255[.199](.199)
—.510[.142}(.142) —.501[.143](.143) —.501[.143](.143) —.574[.220](.207) —.500[.215](.215) —.500[.215}(.215)
Normal Mixture, n=100

.489[.095 (.094) .500[.094] 094

o=

.500[.094](.094) | .465[.104](.098)  .500[.090](.090)  .500[.090](.090

] (:094) [ [ (.090) 1(.090)
240[118](.117)  .250[.117](.117)  .250[.117](.117) | .196[.149](.139)  .253[.130](.130)  .253[.130](.130)
-.010[.130](.130)  .001[.130](.130)  .001[.130](.130) | -.073[.189](.174)  .000[.168](.168)  .000[.168](.168)
-.260[.138](.138)  -.250[.138](.138)  -.249[.138](.138) | -.327[.211](.196)  -.249[.197](.197)  -.249[.197](.197)
-.510[.138](.138)  -.501[.139](.139)  -.501[.139](.139) | -.569[.220](.209)  -.495[.219](.219)  -.495[.219](.219)

Log-normal Error, n=100
.494[.088](.088) .505[.088](.088) .505[.088](.088) .465[.107](.101) .501[.092](.092) .500[.092](.092)
.240[.110](.110) .251[.110](.110) .251[.110](.110) .198[.145](.135) .256[.126](.126) .256[.126](.125)
-.006[.126](.126) .004[.127](.126) .003[.127](.126) | -.064[.174](.162) .010[.156](.156) .010[.156](.156)
—.259[.136}(.136) —.250[.136](.136) —.249[.136](.136) —.320[.200](.188) —.239[.189](.188) —.239[.189}(.189)
-.508[.135](.135)  -.500[.136](.136)  -.500[.136](.136) | -.561[.214](.205) -.485[.215](.215) -.486[.215](.215)
Normal Error, n=500
.497[.041](.041 .499[.041](.041) .499[.041](.041) .487[.060](.059) .500[.057](.057) .500[.057](.057)
.249[.051](.051 .251[.051](.051) .251[.051](.051) .226[.090](.087) .249[.083](.083) .249[.083](.083)
—.003[.058}(.058 —.001[.058](.058) —.001[.058](.058) —.033[.121](.116) .000[.112](.112) .OOO[.llZ](.llQ)
-.252[.062](.061 -.250[.062](.062)  -.250[.062](.062) | -.292[.148](.142) -.249[.137](.137) -.249[.137](.137)
—.500[.063}(.063) —.499[.063](.063) —.499[.063](.063) —.549[.170](.162) —.499[.158](.158) —.499[.158}(.158)
Normal Mixture, n=500

NN AN

1498[.040](.040)  .500[.040](.040)  .500[.040](.040) | .485[.060](.058)  .499[.056](.056)  .499[.056](.056)
247[.051](.051)  .250[.051](.051)  .250[.051](.051) | .226[.091](.088)  .250[.084](.084)  .249[.084](.084)
-.001[.058](.058)  .001[.058](.058)  .001[.058](.058) | -.035[.120](.114) -.001[.110](.110) -.002[.110](.110)
-.252[.062](.062)  -.250[.062](.062) -.250[.062](.062) | -.291[.146](.140) -.249[.136](.136)  -.249[.136](.136)
-.504[.063](.063)  -.502[.063](.063)  -.502[.063](.063) | -.551[.173](.165) -.500[.161](.161) -.500[.161](.161)

Log-normal Error, n=500

498[.040](.040)  .500[.040](.040)  .500[.040](.040) | .485[.062](.060)  .500[.058](.058)  .499[.058](.058)
.249[.050](.050)  .251[.050](.050)  .251[.050](.050) | .227[.088](.085)  .252[.081](.081)  .252[.081](.081)
-.003[.057](.056)  -.001[.056](.056)  -.001[.056](.056) | -.030[.112](.108)  .006[.104](.104)  .005[.104](.104)
-.251[.060](.060)  -.249[.060](.060)  -.249[.060](.060) | -.290[.141](.135)  -.245[.131](.130)  -.246[.130](.130)
-.503[.062](.062)  -.501[.062](.062) -.501[.062](.062) | -.545[.168](.162) -.492[.158](.157) -.493[.158](.157)
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erl

Table 4.3a. Empirical Mean[rmse](sd) of Estimators of A and p, 2FE-SPD Model with SARAR, T'=3,8 = (1,1),0 = 1, Queen Contiguity, REG-1

X An ARe2 { N oRe? | An ARe? { AN R?
(a) Normal Error, m = 50 (b) Log-normal Error, n = 50
50 .50 | .484[.116](.115)  .500[.116](.116) | .483[.143](.142)  .500[.143](.143) || .486[.105](.104)  .502[.105](.105) | .484[.131](.130)  .502[.131](.131)
25 | .484[119](.117)  .501[.118](.118) | .226[.176](.174)  .242[.175](.175) || .485[.114](.113)  .501[.113](.113) | .233[.162](.161)  .250[.161](.161)
00 | .483[.118](.116)  .500[.117](.117) | -.019[.192](.191) -.002[.192](.192) || .486[.110)(.109)  .503[.110](.110) | -.015[.177](.176)  .002[.177](.177)
-.25 .482[.124](.122) .500[.123](.123) | -.267[.202](.202) -.251[.203](.203) .487[.112](.111) .503[.112](.112) | -.265[.193](.193)  -.249[.193](.193)
50 | .484[.125](.123)  .500[.124](.124) | -.513[.208](.208) -.498[.209](.209) || .489[.111)(.110)  .505[.111](.111) | -.514[.195](.194) -.499[.196](.196)
-50 .50 | -.502[.158](.158) -.500[.161](.161) | .486[.144](.143)  .504[.144](.144) || -.502[.145](.145) -.500[.148](.148) | .486[.132](.131)  .504[.132](.131)
.25 | -.506[.165](.165)  -.504[.168](.168) .232[.174](.173) .249[.174)(.174) -.505[.152](.151)  -.503[.155](.154) .233[.161](.160) .250[.160](.160)
.00 | -.501[.163](.163) -.499[.167](.167) | -.006[.187](.187) .010[.187](.187) -.499[.159](.159)  -.497[.162](.162) | -.018[.180](.179) -.001[.180](.180)
.25 | -.500[.164](.164) -.498[.168](.168) | -.262[.209](.209) -.246[.210](.210) -.501[.152](.152)  -.499[.155](.155) | -.263[.197](.197) -.246[.197](.197)
50 | -.506[.169](.169)  -.505[.172](.172) | -.518[.207](.206)  -.503[.208](.208) | -.498[.157](.157) -.497[.160](.160) | -.513[.194](.194)  -.498[.195](.195)
(c) Normal Error, m = 100 (d) Log-normal Error, n = 100
.50 .50 .494[.078](.077) .502[.078](.078) .490[.096](.096) .499[.096](.096) .490[.078](.078) .499(.078](.078) .493[.090](.090) .502[.090](.090)
25 | .490[.080](.080)  .499[.080](.080) | .244[.117](.116)  .253[.117](.117) || .491[.081](.080)  .500[.080](.080) | .243[.111](.111)  .252[.111](.111)
.00 .493[.083](.083) .502[.083](.083) | -.011[.132](.131) -.002[.131](.131) .494[.079](.079) .503[.079](.079) | -.009[.126](.126) .001[.126](.126)
-.25 .491[.084](.083) .500[.083](.083) | -.258[.142](.142) -.249[.142](.142) .490[.077](.077) .499[.077](.077) | -.264[.138](.137)  -.254[.138](.137)
-.50 .490[.079](.078) .499[.078](.078) | -.509[.142](.141) -.499[.142](.142) .493[.077](.077) .501[.077](.077) | -.509[.137](.137)  -.499[.137](.137)
-.50 .50 | -.494[.118](.118)  -.493[.119](.119) .492[.094](.094) .501[.094](.094) -.503[.106](.106)  -.503[.107](.107) .491[.089](.088) .500[.088](.088)
.25 | -.501[.119](.119)  -.500[.121](.121) .242[.117](.117) .251[.117](.117) -.502[.112](.112)  -.501[.113](.113) .240[.111](.111) .249[.111](.111)
00 | -.496[.115](.115)  -.495[.117](.117) | -.008[.133](.133)  .001[.133](.133) || -.498[.114](.114) -.498[.115](.115) | -.007[.129](.129)  .003[.128](.128)
25 | -.505[.118](.118)  -.504[.120](.120) | -.258[.143](.143)  -.248[.143](.143) || -.497[.112](.112) -.496[.113](.113) | -.257[.136](.136) -.248[.136](.136)
50 | -.501[.118](.118)  -.500[.120](.120) | -.504[.148](.148) -.495[.149](.149) || -.505[.109](.109) -.504[.110](.110) | -.507[.137](.137) -.498[.138](.137)
(e) Normal Error, m = 500 (f) Log-normal Error, m = 500
.50 .50 .497[.033](.033) .499[.033](.033) .499[.041](.041) .501[.041](.041) .499[.030](.030) .501[.030](.030) .497[.040](.040) .499[.040](.040)
25 | .4970.033](.033)  .499[.033](.033) | .247[.052](.052)  .249[.052](.052) | .499[.032](.032)  .501[.032](.032) | .249[.050](.050)  .250[.050](.050)
.00 .499[.033](.033) .501[.033](.033) .001[.057](.057) .003[.058](.057) .498].033](.033) .500[.033](.033) | -.001[.057](.057) .001[.057](.057)
-.25 .498[.033](.032) .499[.033](.033) | -.254[.062](.062) -.252[.062](.062) .498[.033](.033) .500[.033](.033) | -.250[.061](.061) -.248[.061](.061)
-.50 .498[.032](.032) .500[.032](.032) | -.503[.062](.062) -.501[.062](.062) .497[.032](.032) .499[.032](.032) | -.501[.062](.062) -.499[.062](.062)
-.50 .50 | -.502[.049](.049)  -.501[.049](.049) .498[.041](.041) .500[.041](.041) -.499[.049](.049)  -.499[.049](.049) .498[.040](.040) .500[.040](.040)
.25 | -.503[.051](.051)  -.502[.051](.051) .249[.051](.051) .250[.051](.051) -.500[.051](.051)  -.499[.051](.051) .248[.050](.050) .250[.050](.050)
.00 | -.501[.050](.050)  -.501[.050](.050) | -.001[.060](.060) .001[.060](.060) -.501[.051](.051)  -.500[.052](.052) | -.002[.058](.058) .000[.058](.058)
.25 | -.502[.051](.050)  -.502[.051](.051) | -.253[.061](.061) -.251[.061](.061) -.499[.051](.051)  -.498[.051](.051) | -.252[.062](.062) -.250[.062](.062)
.50 | -.500[.049](.049) -.499[.049](.049) | -.501[.063](.063) -.499[.064](.064) -.500[.048](.048)  -.500[.049](.049) | -.503[.062](.062) -.502[.062](.062)
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Table 4.3b. Empirical Mean[rmse](sd) of Estimators of A and p, 2FE-SPD Model with SARAR, T'= 3,8 = (1,1)’,0 = 1, Group Interaction, REG-2

X An ARe2 { N oRe? | An ARe? { AN R?
(a) Normal Error, m = 50 (b) Log-normal Error, n = 50
.50 .50 .484[.095](.094) .499[.092](.092) .453[.156](.149) .500[.129](.129) .484[.089](.088) .500(.087](.087) .456[.146](.140) .505[.121](.121)
25 | .480[.103](.101)  .497[.099](.099) | .162[.238](.221)  .248[.194](.194) | .484[.096](.095)  .501[.093](.093) | .161[.237](.220)  .251[.193](.193)
00 | .481[.104](.102)  .498[.100](.100) | -.120[.208](.272)  .001[.243](.243) || .486[.097)(.096)  .501[.093](.093) | -.120[.301](.276)  .005[.247](.247)
-.25 .481[.104](.102) .496[.100](.100) | -.408[.362](.326) -.257[.299](.299) .488[.097](.096) .502[.094](.094) | -.407[.365](.330) -.252[.306](.306)
.50 .484[.099](.098) .498[.096](.096) | -.685[.400](.354) -.512[.335](.334) .491[.095](.095) .504[.093](.093) | -.682[.413](.370) -.506[.354](.354)
-50 .50 | -.527[.218)(.216) -.499[.218](.218) | .453[.158](.150)  .501[.130](.130) || -.522[.214](.213) -.494[.215](.215) | .458[.147](.141)  .507[.123](.122)
25 | -.534[.237)(.235)  -.505[.237](.236) | .164[.235](.219)  .251[.191](.191) || -.524[.226](.225) -.495[.227)(.227) | .171[.220](.205)  .259[.179](.179)
00 | -.532[.239](.237)  -.504[.239](.239) | -.117[.301](.277)  .004[.249](.249) || -.528[.239](.237) -.501[.239](.239) | -.114[.293](.270)  .010[.242](.242)
.25 | -.530[.237](.235)  -.504[.237](.237) | -.407[.357](.320)  -.257[.295](.295) -.519[.240](.240)  -.494[.241](.241) | -.396[.349](.317)  -.243[.293](.293)
50 | -.524[.233](.232)  -.500[.233](.233) | -.689[.403](.355) -.518[.337](.336) | -.528[.251](.250) -.505[.252](.252) | -.661[.399](.364)  -.489[.345](.345)
(c) Normal Error, n = 250 (d) Log-normal Error, n = 250
.50 .50 .497[.044](.044) .501[.044](.044) .477[.082](.079) .500[.074](.074) .497[.043](.043) .500[.042](.042) .477[.081](.078) .500[.073](.073)
25 | .4970.043](.043)  .500[.043](.043) | .209[.124](.117)  .250[.110](.110) || .497[.042](.042)  .500[.042](.042) | .209[.119](.112)  .250[.105](.105)
.00 .497[.041](.040) .499[.040](.040) | -.056[.161](.151) .001[.142](.142) .498[.040](.040) .500[.039](.039) | -.056[.158](.148) .002[.138](.138)
-.25 .498[.038](.038) .500[.038](.038) | -.327[.204](.189) -.253[.178](.178) .498[.038](.038) .500[.038](.038) | -.322[.194](.180) -.247[.169](.169)
-.50 .499[.035](.035) .500[.035](.035) | -.590[.232](.214) -.501[.203](.203) .500[.035](.035) .501[.035](.035) | -.588[.229](.211)  -.497[.200](.200)
-50 .50 | -.508[.123](.122) -.498[.122](.122) | .476[.082](.078)  .499[.073](.073) || -.509[.122](.121) -.498[.121](.121) | .476[.081](.078)  .500[.073](.073)
.25 | -.510[.118](.118)  -.502[.118](.118) .213[.121](.115) .253[.108](.108) -.504[.118](.118)  -.496[.118](.118) .210[.120](.113) .251[.106](.106)
.00 | -.507[.116](.116)  -.500[.116](.116) | -.063[.167](.155) -.005[.146](.146) || -.509[.113](.113) -.502[.113](.113) | -.058[.161](.150)  .000[.140](.140)
.25 | -.502[.105](.105)  -.497[.105](.105) | -.326[.201](.186)  -.252[.175](.175) -.507[.105](.105)  -.502[.105](.105) | -.320[.192](.179) -.245[.169](.169)
.50 | -.506[.099](.099)  -.502[.099](.099) | -.592[.235](.216) -.503[.204](.204) -.503[.100](.100)  -.499[.100](.100) | -.589[.234](.217) -.498[.205](.205)
(e) Normal Error, m = 500 (f) Log-normal Error, m = 500
.50 .50 .498[.030](.030) .500[.030](.030) .484[.065](.063) .500[.060](.060) .498].030](.030) .500[.030](.030) .484[.065](.063) .501[.060](.060)
25 | .499[.029](.029)  .500[.029](.029) | .220[.098](.093)  .248[.089](.089) | .498[.029](.029)  .500[.029](.029) | .223[.096](.092)  .252[.087](.087)
.00 | .500[.027)(.027)  .501[.027](.027) | -.040[.128](.122)  .001[.116](.116) | .500[.027](.027)  .501[.027](.027) | -.044[.128](.120) -.001[.114](.114)
-.25 .500[.025](.025) .501[.025](.025) | -.303[.160](.151) -.249[.144](.144) .500[.025](.025) .501[.025](.025) | -.305[.158](.148) -.249[.141](.141)
-.50 .499[.023](.023) .500[.023](.023) | -.562[.187](.176) -.496[.168](.168) .499[.022](.022) .500[.022](.022) | -.565[.192](.180) -.497[.172](.172)
-.50 .50 | -.505[.087](.087)  -.500[.087](.087) .485[.065](.063) .500[.060](.060) -.505[.085](.085)  -.499[.085](.085) .484[.064](.062) .501[.059](.059)
.25 | -.507[.082](.082)  -.503[.082](.082) .220[.098](.094) .248[.089](.089) -.504[.081](.081)  -.500[.081](.081) .223[.096](.092) .252[.088](.088)
.00 | -.503[.075](.075)  -.500[.075](.075) | -.041[.131](.124) .000[.118](.118) -.502[.075](.075)  -.499[.075](.075) | -.044[.127](.119) -.001[.113](.113)
.25 | -.504[.070](.070)  -.502[.070](.070) | -.303[.161](.152)  -.249[.145](.145) -.501[.071](.071)  -.499[.071](.071) | -.303[.159](.150)  -.248[.143](.143)
.50 | -.501[.065](.065) -.499[.065](.065) | -.569[.192](.179) -.503[.171](.171) -.502[.065](.065)  -.500[.065](.065) | -.562[.187](.176) -.494[.168](.168)




4.6 Conclusion

We have introduced a general method for finite sample bias and variance cor-
rections of the QML estimators of the two-way fixed effects spatial panel data
models where the spatial interactions can be in the form of either spatial lag
or spatial error, or both, and the panels can be either short or long. We have
demonstrated that bias and variance corrections lead to refined inferences for the
spatial effects as well as covariate effects. The proposed methods are seen to be
very easy to implement, and very effective. If only bias-correction is of concern, a
second-order correction using iid bootstrap suffices. For improved inferences for
the spatial parameters, a third-order variance correction seems necessary and a
wild bootstrap method seems to perform better. However, for improved inferences
concerning the regression coefficients (the covariate effects), the second-order bias
and variance corrections seem sufficient, and the resulting inferences can be much
more reliable than those based on the standard asymptotic methods. The latter
observation is perhaps the most important one in this study as being able to assess
the covariate effects in a reliable manner may be the most desirable feature of the
econometric modelling activities. All the methods proposed in the current chapter
can easily be built into the standard statistical software to facilitate the practical
applications. Further extensions of the proposed methods are desirable and possi-
ble such as the FE-SPD models of higher-order spatial effects, but are beyond the
scope of the chapter. Nevertheless, the results presented in this chapter reinforce
that the general methodology of bias and variance corrections of Yang (2015b),
based on stochastic expansion and bootstrap, is indeed a promising approach in

handling the bias issues, and in providing refined inference methods.
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Table 4.4. Empirical Means of the Non-Spatial Estimators, 2FE-SPD Model with SLD
Group Interaction, REG2, T'=3

A Binv Bon 6% B BY % By Ben 6% B BY  an™
(2) B=(,1),0=1 ) 8=(5,5),0=1
Normal Error, n=50
.50 | 1.041 1.035 0.984 0996 0.998 0.992 | 0.533 0.530 0.985 0.496 0.499 0.991
.25 1.039 1.030 0.982 0.997 0.995 0.992 | 0.532 0.524 0.981 0.498 0.496 0.991
.00 | 1.035 1.023 0.980 0.997 0.992 0.992 | 0.529 0.519 0978 0.498 0.494 0.991
-.25 1.032 1.023 0978 0997 0.995 0.992 | 0.524 0.519 0.975 0.496 0.496 0.992
-.50 | 1.030 1.019 0.974 0.999 0.994 0.989 | 0.527 0.514 0.970 0.501 0.494 0.990
Normal Mixture, n=50
.50 | 1.040 1.031 0.975 0.996 0.994 0.982 | 0.532 0.520 0.981 0.495 0.490 0.988
.25 1.041 1.030 0973 1.000 0.996 0.982 | 0.531 0.523 0.973 0.497 0.495 0.983
.00 | 1.038 1.030 0.973 1.001 0.998 0.984 | 0.526 0.518 0.973 0.495 0.493 0.986
-.25 1.035 1.025 0.966 1.001 0.997 0.980 | 0.524 0.515 0.963 0.496 0.492 0.979
-.50 | 1.028 1.023 0.969 0.997 0.997 0.985 | 0.521 0.520 0.962 0.496 0.500 0.981
Log-normal Error, n=50
.50 | 1.036 1.031 0.944 0994 0.995 0.951 | 0.529 0.523 0.946 0.493 0.493 0.952
.25 1.036 1.032 0.947 0.996 0.999 0.957 | 0.529 0.521 0.946 0.496 0.494 0.956
.00 | 1.028 1.020 0.936 0.992 0.990 0.947 | 0.525 0.519 0.944 0.495 0.494 0.957
-.25 1.029 1.019 0942 0996 0.992 0.955 | 0.522 0.517 0.943 0.494 0.494 0.959
-.50 | 1.026 1.017 0.940 0.996 0.993 0.956 | 0.518 0.514 0.926 0.494 0.494 0.945
Normal Error, n=100
.50 | 1.028  1.023 0.993 1.000 0.999 0.996 | 0.526 0.521 0.993 0.501 0.499 0.996
.25 1.027 1.019 0.991 1.000 0.996 0.995 | 0.524 0.517 0.990 0.500 0.496 0.995
.00 | 1.023 1.020 0.990 0.998 0.999 0.996 | 0.524 0.516 0.991 0.501 0.496 0.997
-.25 1.020 1.020 0.989 0.996 1.000 0.995 | 0.521 0.514 0.988 0.499 0.496 0.995
-.50 | 1.024 1.018 0.988 1.002 0.999 0.995 | 0.520 0.514 0.986 0.500 0.497 0.994
Normal Mixture, n=100
.50 | 1.026  1.022 0.990 0.998 0.998 0.993 | 0.523 0.518 0.988 0.497 0.497 0.991
.25 1.024 1.019 0.987 0.998 0.996 0.992 | 0.525 0.519 0.986 0.501 0.498 0.990
.00 | 1.022 1.018 0.985 0997 0.996 0.990 | 0.522 0.515 0.985 0.499 0.496 0.991
-.25 1.023 1.018 0.987 1.000 0.998 0.994 | 0.523 0.517 0.983 0.501 0.499 0.991
-.50 | 1.022 1.019 0.982 1.000 1.001 0.989 | 0.518 0.515 0.983 0.498 0.498 0.992
Log-normal Error, n=100
.50 | 1.024  1.021  0.973 0.997 0.998 0.977 | 0.524 0.518 0.969 0.499 0.497 0.972
.25 1.025 1.023 0.964 1.000 1.002 0.968 | 0.522 0.516 0.966 0.498 0.496 0.971
.00 | 1.023 1.015 0.963 0.999 0.995 0.969 | 0.520 0.514 0.962 0.497 0.495 0.968
-.25 1.022 1.016 0970 0.999 0.997 0.977 | 0.520 0.516 0.964 0.499 0.498 0.972
-.50 | 1.021 1.012 0.960 1.000 0.995 0.966 | 0.516 0.514 0.958 0.497 0.498 0.967
Normal Error, n=250
.50 | 1.011 1.010 0.997 0.999 0.998 0.999 | 0.512 0.512 0.997 0.499 0.499 0.998
.25 1.010 1.009 0.996 0.998 0.997 0.998 | 0.512 0.512 0.996 0.500 0.500 0.998
.00 | 1.009 1.009 0.996 0.998 0.997 0.998 | 0.509 0.509 0.996 0.497 0.497 0.998
-.25 1.009 1.010 0.996 0.997 0.998 0.999 | 0.508 0.511 0.995 0.497 0.500 0.998
-.50 | 1.009 1.010 0.995 0.998 0.999 0.998 | 0.511 0.510 0.994 0.500 0.499 0.997
Normal Mixture, n=250
.50 | 1.014 1.013 0.997 1.002 1.000 0.998 | 0.513 0.509 0.996 0.500 0.497 0.997
.25 1.012 1.010 0.993 1.000 0.998 0.995 | 0.512 0.511 0.995 0.500 0.498 0.996
.00 | 1.010 1.011 0.995 0.998 0.999 0.997 | 0.510 0.512 0.993 0.498 0.500 0.996
-.25 1.012 1.011  0.996 1.001 1.000 0.998 | 0.510 0.510 0.997 0.498 0.498 1.000
-.50 | 1.009 1.008 0.994 0.998 0.997 0.996 | 0.510 0.509 0.993 0.499 0.498 0.996
Log-normal Error, n=250
.50 | 1.011 1.010 0.986 0.999 0.998 0.987 | 0.511 0.511 0.982 0.498 0.498 0.983
.25 1.012 1.013 0.985 1.000 1.001 0.987 | 0.513 0.513 0.986 0.501 0.501 0.988
.00 | 1.010 1.009 0.983 0.998 0.998 0.985 | 0.511 0.511 0.984 0.499 0.499 0.987
-.25 1.010 1.009 0.982 0.999 0.997 0.985 | 0.512 0.510 0.984 0.500 0.498 0.987
-.50 | 1.007 1.007 0.985 0.996 0.997 0.987 | 0.509 0.508 0.983 0.498 0.497 0.986
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Table 4.5a. Empirical Sizes: Two-Sided Tests of Spatial Dependence in SARAR Model
Group Interaction, REG2, T'=3,8=(1,1),0 =1

n_ Test [ 10% 5% 1% [ 10% 5% 1% [ 10% 5% 1%
Normal Errors Normal Mixture Log-normal Errors
Ho:A=p=0
50 Wi | 1974 1288  .0546 | .1918 .1232 .0450 | .1616  .1062 .0456
Wao | 1896  .1196 .0516 | .1846  .1222 .0470 | .1584  .1008 .0408
Ws3 | .1520 .0906 .0388 | .1428 .0874 .0302 | .1318 .0778 .0300
100 Whp | 1732 1048  .0348 | .1652 .0964 .0384 | .1416  .0860 .0286
Whoo | 1754 1116 .0366 | .1684 .1070 .0388 | .1416  .0858 .0284
Ws3 | .1290 .0764 .0224 | .1228 .0734 .0266 | .1192 .0676 .0208
250 Wi | 1406 .0808  .0208 | .1364 .0736 .0198 | .1104 .0620 .0162
Whoo | .1390 .0788 .0234 | .1350 .0758 .0206 | .1170 .0712 .0196
Wissz | .1148 .0618 .0174 | .1102 .0576 .0154 | .1026  .0564 .0170
500 W11 | 1334 0740 .0176 | .1168 .0682 .0142 | .1128 .0630 .0136
Wha | 1358 .0752 .0178 | .1270 .0674 .0176 | .1338 .0730 .0196
Ws3z | .1088  .0548 .0128 | .1000 .0528 .0118 | .1096 .0552 .0118
Hp:A=0, (truep=0)
50 Wi | 1660 .1024 .0392 | .1436 .0920 .0320 | .1450 .0920 .0360
Wha | 1622 1044 .0382 | .1578 .0968 .0378 | .1590 .0970 .0410
Wis3z | .1354 .0842 .0294 | .1260 .0758 .0246 | .1284 .0798 .0286
100 Wh1 | 1362 .0798 .0256 | .1352 .0812 .0268 | .1302 .0734 .0230
Who | 1532  .0908 .0282 | .1494 .0906 .0294 | .1332 .0758 .0230
Ws3z | 1174 .0668 .0212 | .1162 .0686 .0202 | .1186 .0670 .0178
250 Wi | 1232 0732 .0174 | .1228 .0690 .0158 | .1134 .0576 .0154
Wao | 1266 .0726 .0170 | .1238 .0682 .0160 | .1174 .0616 .0154
Ws3z | .1126  .0630 .0132 | .1100 .0594 .0118 | .1052 .0542 .0126
500 Wi | .1108 .0578 .0142 | .1094 .0556 .0116 | .1116 .0616 .0138
Wao | .1198  .0588 .0148 | .1120 .0576 .0128 | .1198 .0662 .0160
Ws3z | .1050 .0530 .0122 | .1030 .0524 .0098 | .1070 .0572 .0130
Ho:p=0 (true A=0)

50 Wiy | 1730 1054 .0392 | .1714 .1070 .0382 | .1498  .0902 .0328
Who | 1366  .0850 .0326 | .1418 .0822 .0312 | .1202 .0692 .0192
Ws3z | 1268 .0794 .0280 | .1214 .0710 .0262 | .1056  .0598 .0170
100 Whq1 | 1604 .0980 .0268 | .1478 .0856  .0250 | .1292 .0710 .0198
Wso | 1302 .0758 .0252 | .1274 .0732 .0260 | .1142 .0672 .0220
Ws3 | .1124 .0630 .0198 | .1056 .0612 .0196 | .0952  .0568 .0164
250 Wi | (1358 .0742 .0192 | .1304 .0724 .0192 | .1030 .0506 .0122
Wao | 1216  .0694 .0166 | .1226 .0670 .0176 | .1036  .0552 .0168
Ws3z | .1074  .0570 .0132 | .1054 .0556 .0126 | .0880 .0456 .0132
500 Wi | .1306 .0704 .0158 | .1126 .0600 .0140 | .0976 .0514 .0124
Wao | 1208 .0682 .0170 | .1110 .0590 .0150 | .1154 .0616 .0146
Ws3 | .1030 .0528 .0114 | .0928 .0466 .0106 | .0966 .0478 .0116

Note: W;; are defined in for joint tests and for one-directional tests.

Group Interaction, REG2, T'=3,8 = (1,1),0 = 1.

Table 4.5b. Empirical Sizes: Two-Sided Tests of Hp : A = 0 in SLD Model

T;; are defined in (4.21))

n_ Test [ 10% 5% 1% [ 10% 5% 1% | 10% 5% 1%

Normal Errors Normal Mixture Log-normal Errors

50 Ti1 | 1422 .0850 .0232 | .1254 .0676 .0190 | .1068 .0552 .0140
T22 | 1348 .0808 .0212 | .1154 .0586 .0162 | .1042 .0586 .0134

T33 | 1120 .0616 .0146 | .0992 .0472 .0126 | .0918 .0484 .0102

100 T11 | 1224 0622 .0174 | .1186 .0660 .0136 | .1070 .0590 .0116
Ta2 | 1142  .0604 .0128 | .1214 .0654 .0158 | .1108 .0600 .0130

T33 | 1004 .0478 .0102 | .1046 .0518 .0118 | .0958 .0502 .0084

250 711 | 1148 .0584 .0176 | .1042 .0540 .0112 | .1006 .0512 .0142
T22 | 1130 .0622 .0172 | .1128 .0604 .0128 | .1140 .0572 .0150

733 | .1006  .0526 .0130 | .0946 .0506 .0086 | .0996 .0466 .0124

500 711 | 1126 .0560 .0106 | .1082 .0528 .0122 | .0970 .0472  .0082
Ta2 | 1154 .0646 .0140 | .1066 .0564 .0118 | .1064 .0554 .0106

733 | .1010 .0554 .0110 | .0972 .0484 .0104 | .0960 .0474 .0080
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Table 4.5c. Empirical Sizes: Two-Sided Tests of Hp : p = 0 in SED Model

Group Interaction, REG2, T'=3,8=(1,1),0 =1.

7;; are defined in (4.21)

n_ Test | 10% 5% 1% [ 10% 5% 1% [ 10% 5% 1%
Normal Errors Normal Mixture Log-normal Errors

50 Ti1 | 1572 .0920 .0282 | .1492 .0846 .0236 | .1282 .0666 .0164
T22 | 1386 .0758 .0234 | .1242 .0734 .0220 | .1030 .0572 .0152

T33 | 1146 .0620 .0172 | .1152 .0640 .0176 | .0928 .0518 .0142

100 Ti1 | 1420 0798  .0224 | .1324 .0738 .0142 | .1170 .0598 .0126
Ta2 | 1274 0736  .0202 | .1248 .0700 .0160 | .1010 .0550 .0140

T33 | 1116  .0594 .0154 | .1054 .0540 .0112 | .0840 .0444 .0116

250 Ti1 | 1224 .0630 .0140 | .1128 .0568 .0114 | .1028 .0544 .0124
T22 | 1190 .0656 .0172 | .1096 .0560 .0142 | .1056 .0566 .0166

T33 | .1006 .0518 .0124 | .0882 .0450 .0114 | .0880 .0466 .0114

500 Ti1 | 1124 0578  .0120 | .1126 .0526  .0098 | .1004 .0518 .0116
T22 | 1136 .0624 .0142 | .1202 .0604 .0148 | .1164 .0610 .0178

T33 | .0952 .0492 .0098 | .1004 .0482 .0108 | .0982 .0476 .0126

Table 4.6. Empirical Sizes: Two-Sided Tests of Hp : 81 = B2 in SARAR Model
Group Interaction, REG2, T'=3,0=1,A=p=0

n  Test | 10% 5% 1% [ 10% 5% 1% | 10% 5% 1%
Normal Errors Normal Mixture Log-normal Errors

50 Ti1 .1608  .1020 .0386 | .1630 .1046 .0386 | .1604 .0978 .0344
T22 | 1154 .0650 .0214 | .1190 .0678 .0206 | .1138 .0614 .0204

100 Ti1 1334 .0744  .0228 | .1344 .0794 .0218 | .1334 .0782 .0218
T22 | .1012 .0546 .0138 | .1042 .0536 .0126 | .1032 .0534 .0120

250 Ti1 1240  .0642 .0166 | .1210 .0680 .0204 | .1196 .0670 .0184
T22 | .1066 .0524 .0120 | .1060 .0564 .0152 | .1018 .0580 .0114

500 Ti1 1092 .0548 .0116 | .1100 .0564 .0140 | .1154 .0616 .0200
Ta2 | .0958 .0472 .0092 | .0978 .0472 .0100 | .1022  .0536 .0146

50 Ti1 1624  .1004 .0376 | .1624 .1024 .0390 | .1610 .0992 .0376
Ta2 | 1136 .0654 .0196 | .1204 .0666 .0208 | .1136 .0640 .0216

100 Ti1 1282 .0742  .0196 | .1394 .0810 .0208 | .1420 .0808 .0250
Ta2 | .0968 .0496 .0114 | .1068 .0540 .0090 | .1060 .0564 .0118

250 Tt 1254 .0688  .0190 | .1224 .0642 .0140 | .1146 .0622 .0180
T22 | .1050 .0568 .0142 | .1024 .0480 .0094 | .0990 .0526 .0132

500 Ti1 1240  .0626  .0152 | .1130 .0594 .0130 | .1220 .0650 .0160
T22 | .1102 .0502 .0124 | .0978 .0482 .0096 | .1084 .0552 .0122

Note: 8 = (1,1) for upper panel, and (.5,.5)" for lower panel. Tj; are defined in ([4.22).
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CHAPTER b

Adjusted QML Estimation of Spatial Autoregressive Models

with Unknown Heteroskedasticity and Non-normality

5.1 Introduction

While heteroskedasticity is common in regular cross-section studies, it may
be more so for a spatial econometrics model due to aggregation, clustering, etc.
Anselin (1988) identifies that heteroskedasticity can broadly occur due to “idiosyn-
crasies in model specification and affect the statistical validity of the estimated
model”. This may be due to the misspecification of the model that feeds to the
disturbance term or may occur more naturally in the presence of peer interactions.
Heteroskedasticity may also occur if the model deals with a mix of aggregate and
non aggregate data, the aggregation may cause errors to be heteroskedastic[l] As

such, the assumption of homoskedastic disturbances is likely to be invalid in a

1See, e.g., Glaeser et al. (1996), Le Sage and Pace (2009), Lin and Lee (2010), Kelejian and
Prucha (2010), for more discussions.
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spatial context in general. However, much of the present spatial econometrics lit-
erature has focused on estimators developed under the assumption that the errors
are homoskedastic.

Although Anselin raised the issue of heteroskedasticity in spatial models as
early as in 1988, and made an attempt to provide tests of spatial effects robust
to unknown heteroskedasticity, comprehensive treatments of estimation related
issues were not considered until recent years’] We introduce a robust estimator for
the SAR model by adjusting the concentrated quasi score function for the spatial
parameter. It turns out that the method is simple and can be easily generalised to
suit more general modelsﬂ For heteroskedasticity robust inferences, we propose an
outer-product-of-gradient (OPG) method for estimating the asymptotic variance
of estimators. We provide formal theories for the consistency and asymptotic
normality of the proposed estimator, and the consistency of the robust standard
error estimate. Extensive Monte Carlo results show that the proposed estimator
generally outperforms its GMM counterparts in terms of efficiency and sensitivity
to the magnitude of model parameters in particular the regression coefficients. The
Monte Carlo results also show that the proposed robust standard error estimate
performs well. We also study the cases under which the regular QML estimator is
robust against unknown heteroskedasticity and provide a set of robust inference
methods. It is interesting to note that the prosed estimator is computationally as
simple as the regular QML estimator, and it also outperforms the regular QML

estimator when the latter is heteroskedasticity robust.

2e.g., Kelejian and Prucha (2007, 2010), Le Sage (1997), Lin and Lee (2010), Arraiz et al.
(2010), Badinger and Egger (2011), Jin and Lee (2012), Baltagi and Yang (2013b), and Dogan
and Tagpinar (2014). Lin and Lee (2010) formally illustrate that the traditional quasi maximum
likelihood (QML) and generalised method of moments (GMM) estimators are inconsistent in
general when the SAR model suffers from heteroskedasticity, and provide heteroskedasticity
robust GMM estimators by adjusting the usual quadratic moment conditions.

3The efficiency of an ML estimator may be the driving force for exploiting a likelihood-based
estimator for achieving robustness against various model misspecifications such as heteroskedas-
ticity and non-normality.
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To demonstrate their flexibility and generality, the proposed methods are then
extended to the popular spatial autoregressive model with spatial autoregres-
sive disturbances (SARAR(1,1)) with heteroskedastic innovations. Kelejian and
Prucha (2010) formally treat this model with a three-step estimation procedure.
Monte Carlo results show that the ACQS estimator performs better in finite sam-
ple than the three-step estimator.

The rest of the chapter is organised as follows. Section 5.2 examines the cases
where the regular QML estimator of the SAR model is consistent under unknown
heteroskedasticity, and provides methods for robust inferences. Section 5.3 intro-
duces the ACQS estimator that is generally robust against unknown heteroskedas-
ticity, and presents methods for robust inferences. Section 5.4 presents the Monte
Carlo results for the SAR model. Section 5.5 extends the proposed methods to
the popular SARAR(1,1) model and discusses further possible extensions. Section

5.6 concludes the chapter. All technical details are given in Appendix F.

5.2 QML Estimation of SAR Models

In this sectionf] we first outline the QML estimation of the SAR model un-
der the assumptions that the errors are independent and identically distributed
(iid). Then, we examine the properties of the QML estimator of the SAR model
when the errors are independent but not identically distributed (inid). We pro-
vide conditions under which the regular QML estimator is robust against het-
eroskedasticity of unknown form, derive its asymptotic distribution, and provide

heteroskedasticity robust estimator of its asymptotic variance.

4Some general notation will be followed in this chapter: |- | and tr(-) denote, respectively,
the determinant and trace of a square matrix; A’ denotes the transpose of a matrix A; diag(-)
denotes the diagonal matrix formed by a vector or the diagonal elements of a square matrix;
diagv(-) denotes the column vector formed by the diagonal elements of a square matrix; and a
vector raised to a certain power is operated element-wise.
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5.2.1 The model and the QML estimation

Consider the spatial autoregressive or SAR model of the form:
Yn - AOWnYn + Xnﬁ() + €n, (51)

where X, is an n X k matrix of regressors, W,, is a known n x n spatial weights
matrix, €, is an n X 1 vector of disturbances of independent and identically dis-
tributed (iid) elements with mean zero and variance o2, 3 is a k x 1 vector of

regression coefficients and A is the spatial parameter. The Gaussian log-likelihood

of 0 = (8,02, \) is,
(,(0) = —2In(27) — ZIn(0?) + In|A,(A)] — 525€,(8, Nen(5,A), (5.2)

where A,,(\) = I, — AW, I, is an n x n identity matrix, and €,(8, ) = A,(\)Y, —
X,.8. Given X, £,(6) is maximised at 3,(\) = (X! X,) "X/ A,(\)Y, and 62(\) =
LY AL (A M, A, (N)Y,, where M, = I, — X, (X, X,,) "' X, Substituting Ba(X) and
52

o, (\) in £,(0), we get the concentrated Gaussian log-likelihood function for A as,

(e(\) = —2[In(27) + 1] — 2In(62(A)) + In |4, (\)]. (5.3)

Maximizing ¢¢(\) gives the unconstrained QML estimator A, of A, and thus the

~

QML estimators of 4 and o2 as 3, = S(\,) and 62 = 62(\,). Denote 6, =

(3.,62,\,), the QML estimator of 0.

Under regularity conditions, Lee (2004) establishes the consistency and asymp-
totic normality of the QML estimator én In particular, ;\n and Bn may have a
slower than \/n-rate of convergence if the degree of spatial dependence (or the

number of neighbours each spatial unit has) grows with the sample size. The QML

estimator and its asymptotic distribution developed by Lee are robust for non-
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normality of the errors. However, some important issues remain: (i) conditions
under which the regular QML estimator 6, remains consistent when errors are
heteroskedastic, (i7) methods to adjust the QML estimator 0, so that it becomes
consistent under unknown heteroskedasticity, and (ii7) methods of estimating the

variance of the (adjusted) QML estimator robust for unknown heteroskedasticity.

5.2.2 Robustness of QML estimator under unknown het-

eroskedasticity

It is accepted that the regular QML estimator of the usual linear regression
model without spatial dependence, developed under homoskedastic errors, is still
consistent when the errors are in fact heteroskedastic. However, for correct in-
ferences the standard error of the estimator has to be adjusted to account for
this unknown heteroskedasticity (White, 1980). Suppose now we have a linear re-
gression model with spatial dependence as given in ((6.21]) with disturbances that

are inid with means zero and variances 0?h,;, i = 1,...,n, where h,; > 0 and

LS hng = 1 Consider the score function derived from ([5.2)),

2 Xnen(B,0),
o0, (0
50 = 57 = B el ) — ) 2
%YéWéen(ﬁ7 )‘) - tI‘[Gn(A)],
\
where G,,(\) = W,A*(\). Tt is well known that for an extremum estimator,

such as the QML estimator #,, we consider, to be consistent, a necessary condition

is that plim,, %O%wn(eo) = 0 at the true parameter 6, (Amemiya, 1985). This is

®Note that o2 is the average of Var(e, ;). Under homoskedasticity, hy,, ; = 1, Vi. For generality,
we allow h,; to depend on n, for each i. This parametrisation, a non-parametric version of
Breusch and Pagan (1979), is useful as it allows the estimation of the average scale parameter.
See Section 5.3 for more details.

124



always the case for the 8 and o components of ,,(6y) whether or not the errors are
homoskedastic. However, it may not be the case for the A component of v, (6).
Let hy, = (hnas- s hnn)s Gn = (Gnas-- - gnn) = diagv(Gr), §n = %Z?:l Gnis
H, = diag(h,). Let Cov(gy,h,) denote the sample covariance between the two

vectors g, and h,. We have, similarly to Lin and Lee (2010),

L00,(00) = Ltr(H,G, — Gn)+0,(1)
= % Z?:l (hn,i - 1)(971,1 - gn) + 0}?(1) (5'5)
= Cov(gn, hyn) + 0,(1).

Therefore, for 0, to be consistent, it is necessary that as n — 0o, Cov(gy, hy,) — 0;
in other words, when lim,,_, o, Cov(gy, hy,) # 0, 0, cannot be consistent.

Lin and Lee (2010) noted that this condition is satisfied if almost all the diag-
onal elements of the matrix G,, are equal. In fact, by Cauchy-Schwartz inequality,
this condition is satisfied if Var(g,) — 0, which boils down to Var(k,) — 0,
where k, is the vector of number of neighbours for each unitf| Furthermore, if
heteroskedasticity occurs due to reasons unrelated to the number of neighbours,
for example, due to the nature of the exogenous regressors X,,, then the required
condition will still be satisfied. These discussions suggest that the regular QML
estimator of the SAR model derived under homoskedasticity can still be consistent
when in fact the errors are heteroskedastic. following regularity conditions.ﬂ

Assumption 5.1: The true parameter \g is in the interior of a compact

parameter set A

6This is because (i) G, = Wy, + AW2 + N2W2 + ... if [A] < 1 and w,,;; < 1, and (i) the
diagonal elements of W, r > 2 inversely relate to k,, see Anselin (2003). In fact, when W, is
row-normalised and symmetric, diag(W?) = {k;}} Var(k,) = o(1) can be seen to be true for
many popular spatial layouts such as Rook, Queen, group interactions such that variation in
groups sizes becomes small when n gets large, etc., see Yang (2010).

"A quantity defined at the true parameter is represented with a suppressed variable notation,
e.g., A, = A,(N) and G,, = G, (o).

8For QML-type estimation, the parameter space A must be such that A,,()\) is non-singular
VA € A. If the eigenvalues of W,, are all real, then A = (w_1 wL ) where Wy and Wipax

min’ “max
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Assumption 5.2: €, ~ (0,05 H,,), where H, = diag(hy, 1,-..,hnn), such that
%Z?:l hni =1 and h,; > 0,Vi and Ele,;|**° < ¢ for some § > 0 and constant c
for alln and 1.

Assumption 5.3: The elements of the nxk regressor matriz X,, are uniformly
bounded for all n, X,, has the full rank k, and lim,,_, %X;Xn exists and is non-

singular.

Assumption 5.4: The spatial weights matriz W, is uniformly bounded in

absolute value in both row and column sums and its diagonal elements are zero.

Assumption 5.5: The matriz A, is non-singular and A;’' is uniformly bounded
in absolute value in both row and column sums. Further, A1 (\) is uniformly
bounded in either row or column sums, uniformly in A € A.

Assumption 5.6: The limat 1imn_>oo%(Ganﬁo)’Mn(Ganﬁo) = k, where
either k >0, or k = 0 but lim,, o0 2 In |03 A A7 — 21n |02 (M)A (V)AL ()] #
0, whenever A # Ao, where o2(\) = Lodtr(H, A, A, (N) A (V) AY).

Assumptions 5.2 and 5.3 are similar to those from Lin and Lee (2010). As-
sumption 5.2 implies that {h,;} as well as the third and fourth moments of ¢, ;
are uniformly bounded for all n and i. Assumptions 5.2 and 5.3 imply that
lim,, o0 %X;LH,LX” exists and is non-singular. Assumptions 5.4 and 5.5 are stan-
dard for the SAR model. The uniform boundedness conditions limit the spatial
dependence to a manageable level (Kelejian and Prucha, 1999). Assumption 5.6
is the heteroskedastic version of the identification condition introduced by Lee

(2004) for the homoskedastic SAR model.
For the log-likelihood and score functions given in (6.23)) and (5.4)), let I, =

are, respectively, the smallest and the largest eigenvalues of W,,; if, W,, is row normalised, then
Wmax = 1 and w i < —1, and A = (w1, 1) (Anselin, 1988). In general, the eigenvalues of W,
may not be all real as W, can be asymmetric. Le Sage and Pace (2009, p. 88-89) argue that
only the purely real eigenvalues can affect the singularity of A, (\). Consequently, for W, with
complex eigenvalues, the interval of \ that guarantees non-singular A,,(\) is (w; !, 1) where wy is
the most negative real eigenvalue of W,,. Kelejian and Prucha (2010) suggest A be (-7, 1, 7,7%)

where 7, is the spectral radius of W,,, or (—1,1) after normalization.
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—%E[ag)—se,én(@o)] and X, = %E[%én(ﬁo)%ﬁn(ﬁo)}, with their exact expressions

deferred to the next subsection. We have the following results (recall g, =

diagv(Gy,) and let g, = diagv(GLG,)).

Theorem 5.1 Given Cov(gn, h,) = o(1) and Cov(gy, h,) = o(1), and under
Assumptions 5.1-5.6, we have as n — oo, én L5 0y; under Assumptions 5.1-5.6

and Cov(g,, h,) = o(n™Y?), we have as n — oo,
Vi, — 6y) = N(0,T'S T, (5.6)

where I = lim,, .o I,, and ¥ = lim,,_, 2, both assumed to exist and I is non-

singular.

5.2.3 Robust standard errors of the QML estimators

Asymptotically valid inference for  based on the QML estimators 0, requires
a consistent estimator of the asymptotic variance given in Theorem [5.1P| Under

unknown heteroskedasticity designated by H,,, we have:

2 XX 0 2 X
0 0
]In - ~ 2—;_6{ ﬁ%tr(H"G") )

where 7, = G, X,0p. Thus a consistent estimator of I,, can still be obtained by
‘plugging’ 6, for 6y, Gn(én) for G,, and H, = %diag(éi’l, . ,éi’n) for H,,, in line
with the idea of White (1980), where {¢,;} are the QML residuals. However, this

approach fails in estimating the variance of the score, 3, as its o2-clement:

Zn,JQUz = m Z?:l (Kvn,i + th,z%

9This is simple under homoskedasticity as the sample analogues of I,, and ¥,, can be used as
consistent estimators.
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cannot be consistently estimated unless the excess kurtosis measures {k,;} are
all zero or {e,;} are normally distributed. This means that robust inference
methods for o2 is not available. Obviously, 2 is typically not the main parameter
that inferences concern, although the consistency of its QML estimator (shown
in Theorem is crucial. Thus, to circumvent this problem, we focus on A and
[ as those are the main parameters that inferences concern. First, based on the
concentrated score function for A, we obtain the robust variance of S\n, and then
based on the relationship between Bn and \, we obtain the robust variance of Bn

Detailed developments in this regard are presented in next section.

5.3 Robust Estimation

As argued in Lin and Lee (2010) and further discussed in Section 5.2, the neces-
sary condition for the consistency of the QML estimator, lim,, o, Cov(gy,, h,) = 0,
can be violated when h,, is proportional to the number of neighbours k,, for each
spatial unit and lim,_, Var(k,) # 0[] To solve this problem, Lin and Lee (2010)
propose robust GMM and optimal robust GMM estimators for the SAR model. In
this chapter, we introduce an adjusted concentrated quasi score (ACQS) estimator
for the SAR model by adjusting the concentrated score function for the spatial
parameter to make it robust against unknown heteroskedasticity. The method
is very simple and more importantly it can be easily generalised to suit more
general models (see Section 5.5). Furthermore, the method of adjustment takes
into account the estimation of the 8 and o2 parameters, thus can be expected to
have a good finite sample performance. Indeed, the Monte Carlo results presented

in Section 5.4 show an excellent finite sample performance of the proposed esti-

0For example, when W,, corresponds to group interactions (circular world spatial layout can
be a special case), and the group sizes are generated from a fixed discrete distribution, we
have lim,_,~ Var(k,) # 0. In fact, in many empirical situations, the spatial weight matrix is
constructed from economic or geographic distance, and hence does not satisfy the condition
Cov(gn, hn) = o(1).
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mator. For robust inferences concerning the spatial or regression parameters, we

introduce OPG estimators of the variances of the ACQS estimators.

5.3.1 The method

Given the problems associated with the A-element of 1,(6y) in (6.27)), in
asymptotically attaining the limit desired to ensure consistency of the related
extremum estimator under heteroskedasticity, one can look at an adjustment to
the score function that allows it to reach a probability limit of zero. This method
is in line with Lin and Lee (2010)’s treatment to the quadratic moments of the
form E(e,P,e,) = 0, where tr(P,) = 0 is replaced with diag(P,) = 0 to give a
consistent GMM estimator under unknown heteroskedasticity. Following this, if
we adjust the last component of 1, (6y) as, oy [Y/W'e, — € diag(G,)e,], we see
plimF;[YéWéen — e, diag(Gy)en) = 0, in light of (5.5). This adjustment is asymp-
totically valid in the sense that it give estimators consistent under unknown het-
eroskedasticity. However, the finite sample performance of the estimators is not
guaranteed as the variations from the estimation of 3 and o2 are unaccounted for.

Now consider the average concentrated score function derived by concentrating
out 8 and o2, i.e., replacing 8 and o2 by £,(\) and 62()) in the last component
of , or taking the derivative of , and then dividing the resulting concen-
trated score function by n,

5o = YA MIGL() = 2tr(Ga(N) Tl An (V)Y
vald) = YA, (N My A (V)Y

(5.7)

’(Z)n()\) captures the variability coming from estimating 3 and 2. Under QML
estimation framework, the QML estimator of A is equivalently defined as Ay =
arg{t,(A\) = 0}. Solving ¥,(\) = 0 is equivalent to solving YA’ (A\)M,[G,(\) —

Ltr(G, (M) 1] A (N)Y, = 0, and for A, to remain consistent under unknown het-
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eroskedasticity, it is necessary that LE[YA! M,(G,, — Ltr(G,)1,)A,Y,] equals or
tends to zero, see van der Vaart (1998, ch. 5). This is not true if there exists un-
known heteroskedasticity and the conditions stated in Theorem are violated.

Our idea is to adjust the numerator of so that its expectation at A
is zero even under unknown heteroskedasticity.ﬂ Since E(YA! M,G,A,Y,) =
ottr(H,M,G,) = oitr(H,diag(M,G,)), this suggests that one should replace
Ltr(G,)1, by diag(M,,G,,). However, this leads to E(Y,) A/, M, diag(M,,G,,)A,Y,) =
oitr(H, M,diag(M,G,)) # E(Y A, M,G,A,Y,). Thus, to cancel the effect of the
additional M, one should instead replace 1tr(G,)I, by diag(M,) 'diag(M,G,).
Hence, ¢,,(\) is adjusted by replacing G, (\) — Ltr(Gn (M), by, Gy (N) = Gp(X) —

diag(M,,)diag(M,G,()\)). This gives an adjusted concentrated score function,

YA ) MG ALY,

=T A LAY, o9
and hence a ACQS estimator of A\ as,
Ao = arg{¢;(A) = 0}. (5.9)

Once a heteroskedasticity robust estimator of A is obtained, the heteroskedasticity
robust estimators (or the ACQS estimators) of 5 and ¢? are, respectively, B, =

Bn(Ay) and 62 = 62(X,) as the estimating functions (first two components of

U (0)) leading to B,(A) and 62(\) defined below (5.2) are robust to unknown
heteroskedasticity. More discussions on this will follow.

Jin and Lee (2012) proposed a heteroskedasticity robust root estimator of A by

solving the quadratic equation: Y, Al (A M, P, A,,(\)Y,, =0, where P, is an n xn

1 Making the expectation of an estimating function to be zero leads potentially to a finite
sample bias corrected estimation. This is in line with Baltagi and Yang (2013a,b) in constructing
standardised or heteroskedasticity-robust LM tests with finite sample improvements. See also
Kelejian and Prucha (2001, 2010) and Lin and Lee (2010) for some useful methods in handling
the linear-quadratic forms of heteroskedastic random vectors.

130



matrix such that M, P, has a zero diagonal. As there are two roots and only one
is consistent, they gave criteria to choose the consistent root. When P, matrix
is parameter dependent, they suggested using some initial consistent estimates to
come up with an estimate, say P,, of P,, and then solve YA’ (\)M, P, A,(\)Y,, =
0. Clearly, Gg(\) defined above is a choice for P, although an initial estimate
of A, say 5\2, is needed to obtain P, = G°(A\%). Jin and Lee also suggest this.
This approach is attractive as the root estimator has a closed-form expression
and thus can handle a super large data. However, it can be ambiguous in practice
in choosing a consistent root as the selection criterion is parameter dependent.
Furthermore, our Monte Carlo simulation shows that YA’ (\)M, P, A,(\)Y, =0
tends to give non-real roots when |A| is not small, say > 0.5, in particular when
A is negative, and when n is not very large. In contrast, this problem does not
occur to the ACQS estimator \,. Thus, the ACQS estimator \, complements Jin

and Lee’s (2012) root estimator. More discussions follow.

Remark 5.1 [t turns out that the ACQS estimators of the SAR model are
computationally as simple as the original QML estimators, but the former are
generally consistent under unknown heteroskedasticity while preserving the nature

of being robust against non-normality.

Remark 5.2 The proposed methods can be easily extended to more advanced
models (spatial or non-spatial) as demonstrated in Section 5.5 and Chapter 6.
However, it is not clear to us how to extend the GMM estimators of Lin and Lee
(2010) to a more general model, and the root estimator of Jin and Lee (2012)
may run into difficulty for a more general model as when there are two (or more)
quadratic functions of two (or more) unknowns, it is difficult to choose the con-

sistent roots.

Remark 5.3 The correction G2 () as opposed to the intuitively appealing cor-

131



rection Gp(\) — diag(Gn(\)) has better finite sample performance since the ad-
justment is made directly on the concentrated score function which contains the

variability accruing from the estimation of B and o>.

5.3.2 Asymptotic distribution of the ACQS estimators

To ensure that the adjusted estimation function given in uniquely iden-
tifies Ao, the Assumption 5.6 needs to be adjusted as follows. Let Q,(\) =
AL (N)[Gn(A) — diag(Gn(A))]An(N).

Assumption 5.6": JLIEO%[ﬁ[’)X;lA;;IQn()\)Angn50+0§tr(HnA;an()\)Agl)] #
0, YA # Xo.

The central limit theorem (CLT) for linear quadratic forms of Kelejian and
Prucha (2001) allows for heteroskedasticity and can be used to prove the asymp-
totic normality of the ACQS estimator. First, the normalised and adjusted con-

centrated score function has the following representation at A,

Vi, = Vi (Xo) =

(e Byen + dyen) + 0p(1), (5.10)

where B, = M,,G2 and ¢, = M,,G° X, 5. As 62(\g) = —e M., = E(e;Mnen) +
0p(1) = %gtr(HnMn) + 0,(1) = 02 + 0,(1), it follows that 6,2(\g) = 05> + 0,(1).

Let 7,(-) denote the first-order standard deviation and 72(-) the first-order
variance of a normalised quantity, e.g., 73(@2;;) is the first-order term of Var( \/ﬁi};),
and 72(\,) is the first-order term of Var(y/n),). By Lemma A.3, we have,

~ 2
* 2 2
77Z)n = - § bn i hn z’in i 0_4 bnaiicn:isnvi)
0

+;tr[Han(Han + H,BL)] + o, Hycy, (5.11)
0

3 ), and k,,; is the excess

where b, ;; are the diagonal elements of B,, s,; = E(e,
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kurtosis of €, ; which together with H,, are defined in Section 5.2.3. Now by the

CLT for linear-quadratic forms of Kelejian and Prucha (2001), we have,

25 N(0,1). (5.12)

(V7

n

This result leads to the following theorem.

Theorem 5.2 Under Assumptions 5.1-5.5 and 5.6*, the ACQS estimator \,

18 consistent and asymptotically normal, i.e., as n — o0, A —2 Ao, and

Vi = Ag) =2 N(0, Tim,, o 72(A0)),

where T2(A\) = @ 272(07), By = J0[Ha(GGu + Gy G — G + 1z, and

n n

Go = LGo = G2 — diag(M,,) 'diag(M,G?)

. Now consider the ACQS estimators 3, and &2 of 3, and o2 defined below (5.9).

Using the relation An(;\n) =A, — (5\n — X)W, we can write,

!

3

= Bao) — (A — M)(X! X)X G, ALY, and (5.13)

NI )

= 6-721(/\0) - 2(5‘71 - AO)%YAWAMnAnYn + (S‘n - )\O)Q%YAWJLManYGﬁM)

Qr

The asymptotic properties of 3, and 52 are summarised in the following theorem.

Theorem 5.3 Under Assumptions 5.1-5.5 and 5.6, the ACQS estimators B3,

2

~ . . ~ p ~ p ~
and 62 are consistent, i.e., asn — 00, 3, — By and 62 — o, and further 3,

1s asymptotically normal, i.e.,
V(B = Bo) =2 N[0, limy, o0 (X, X,,) 7 X0 A, X, (X1 X,) 7,

where A, = no2Hy, + 12\ )ant, — 20 (05 2diag(Bn ) $p + Hncn)11l » e = G X0,
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and s, = E(3)[7]

Clearly, the applicability of the results of Theorems [5.2] and [5.3] for making infer-

ences for A or 3 depends on the availability of a consistent estimator of 72(1%).
The plug-in method based on (5.11)) does not work due to the involvement of

higher-order moments s, ; and &, ;.

5.3.3 Robust standard errors of the ACQS estimators

Following the discussions in Section 5.2.3, we focus on A and S for robust in-
ferences. In order to carry out inference for model parameters using the ACQS
procedure, we need a consistent estimate of 72 (S\n) Given this, consistent esti-
mates of 72(5,) = (X! X,,) ' X! A, X, (X' X,)"" immediately follow. The first-
order variance of the adjusted score as given in contains second, third and
fourth moments of €; which vary across i, and hence a simple White-type estimator
(White, 1980) may not be suitable, which in turn makes 72(),) infeasible. Hence,
we follow the idea of Baltagi and Yang (2013b) to decompose the numerator of the
adjusted score into a sum of uncorrelated terms, and then use the outer product

of gradients (OPG) method to estimate the variance of the score function which

in turn leads to a consistent estimate of 72(),). Let the numerator of (5.10) be,
Qn(€n) = €,Bné, + ¢ én. (5.15)

Clearly, ), is not a sum of uncorrelated components, but can be made to be so by

the technique of Baltagi and Yang (2013b). Decompose the non-stochastic matrix

12Gimilarly, \/n(62 — 03) 2, N (0,limy, 00 72(62)), where the first-order variance of \/ng?2,

Trzz(&gn) = 7112?:1 Var(ei,i)"'%aéﬂf(;‘n)trz(HHGH)+%COV(EQL@ C;LBnen+C/n€n)tr(HnGn)(I>:Ll =
O(1), suggesting that G2 is root-n consistent. However, similar to the regular QML estimator,

this result cannot be used for inference for o2 as the key element in the variance formula

4
Ly Var(e2 ;) = 22 327" (ki + 2h2 ;) cannot be consistently estimated.
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B, = B"+ B! + B?, (5.16)

where BY, B! and B¢ are, respectively, the upper triangular, lower triangular and

diagonal matrices of B,. Let ¢, = (BY + B!)e,. Then, Q,(¢,) can be written as,

Qn(€n> = Z?:l En,i(Cn,i + bn,iien,i + Cn,i); (517>

where €,;, (,; and ¢, ; are, respectively, the elements of ¢,, ¢, and ¢,. Equation
(5.17)) expresses @, (€,) as a sum of n uncorrelated terms {€, ; (Gyi +bnii€ni+Cni) s
and hence its OPG gives a consistent estimate of the variance of @, (¢,), which in

turn leads to a consistent estimate of 72(¢*), the first-order variance of \/n1)*, as:
o7 R, 5 L2
7-73 (¢;) = é Z?:l (En,i(Cn,z' + bn,ii€n,i + Cn,i)) ) (518>

where ¢, ; are the residuals computed from the ACQS estimators 8,, = (3., 52, \,)".

n“nr’'\n

Let H, = —diag(él,,...,e2,). Let ®, be ®, evaluated at 6, and H,, i, =

nn

Gn X0 By, and G, = G, (\,). Define the estimators of 72(),) and 72(3,) as,

P2(A) = O272(4), and (5.19)
P2(B,) = (X' X)) ' X! A X, (X! X)) (5.20)
where A, = ng2H, + 72(\) i, — 201(6,2B4%, + H,é,)7.

s _ 3
' and s, = €,. Note

®,, can be estimated by —d;:\lolﬁﬁh():;\n as ®,, is the 1st-order term of —E(d;;\lozZ;;).

Theorem 5.4 If Assumptions 5.1-5.5 and 5.6 hold, then we have asn — oo,

72(An) — 72(\n) =25 0; and 72(3,) — 72(5n) == 0.

Finally, when the conditions of Theorem are satisfied so the QML estimators

are consistent, the robust variances of j\n and Bn can be obtained from the results
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of Theorems . Starting with the concentrated score 1, given in , one
obtains 72(\,) by simply replacing G by G, — Ltr(Gp) 1, in and (5.11]),
and in ®,, defined in Theorem . Similarly, replacing G by G,, — %tr(Gn)[n in
72(B,) given in Theorem [5.3|leads to 72(3,). The estimates of 72(\,) and 72(3,)
are obtained in the same way as those of 72(),) and 72(/3,), and their consistency

can be proved similarly to the results of Theorem

5.4 Monte Carlo Study

Extensive Monte Carlo experiments were conducted to (i) investigate the finite
sample behaviour of the original QML estimator A and the ACQS estimator An
proposed in this chapter, and their impacts on the estimators of 3 and o2, with
respect to the changes in the sample size, spatial layouts, error distributions and
the model parameters when the models are heteroskedastic; and (ii) compare
the QML estimator and the ACQS estimator with the non-robust generalised
method of moments (GMM) estimator of Lee (2001), the robust GMM (RGMM)
estimator and the optimal RGMM (ORGMM) estimator of Lin and Lee (2010),
two stage least squares (2SLS) estimator of Kelejian and Prucha (1998), and the
root estimator (RE) of Jin and Lee (2012). We consider cases where the original
QML estimator are robust against heteroskedasticity and the cases it is not.

The simulations are carried out based on the following data generation process
(DGP):

Yn = )\WnYn + LnﬁO + Xlnﬂl + X2n/82 + €n,

where ¢, is an n x 1 vector of ones corresponding to the intercept term, X,
and Xs, are the n x 1 vectors containing the values of two fixed regressors, and
€, = 0 H,e,. The regression coefficients § is set to either (3,1,1)" or (.3,.1,.1), o

is set to 1, A takes values form {—0.5,—0.25,0,0.25,0.5} and n take values from
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{100, 250, 500, 1000}. The ways of generating the values for (X, Xo,), the spa-
tial weights matrix W,,, the heteroskedasticity measure H,,, and the idiosyncratic
errors e, are described below. Each set of Monte Carlo results is based on 1,000
Monte Carlo samples. The way regressors, weights matrices, error distribution
and heteroskedasticity is generated are explained in Appendix B.

The GMM-type estimators are implemented by closely following Lin & Lee
(2010). A GMM estimator is in general defined as a solution to the minimisation
problem: mingeg ¢, (0)a,a,g,(0) where g,,(0) = (Qn, Pien(0), ..., Pmnen(G))/en((?)
represents the linear and quadratic moment conditions, @, = (X,, W,,X,,) is the
matrix of instrumental variables (IVs), and a/,a,, is the weighting matrix related to
the distance function of the minimisation problem. The GMM estimator (Kelejian
& Prucha, 1999; Lee, 2001) under homoskedastic disturbances can be defined us-
ing the usual moment condition, P, = (Gn — @In) and the IVs, (G, X,.0, X,).
For the RGMM estimator, the P, matrix in the moment conditions changes to
G, —diag(G,). A first step GMM estimator with P, = W, is used to evaluate G,,.
The weighting matrices of the distance functions are computed using the variance
formula of the iid case using residual estimates given by the first step GMM es-
timate. The ORGMM estimator is a variant of the RGMM estimator in which
the weighting matrix is robust to unknown heteroskedasticity. The ORGMM es-
timator results given in the tables are computed using the RGMM estimator as
the initial estimate to compute the standard error estimates and the instruments.
Finally, the 2SLS estimator uses the same IV matrix @,. Lin and Lee (2010)
gives a detailed comparison of the finite sample performance of ML estimator,
GMM estimator, RGMM estimator, ORGMM estimator and 2SLS estimator for
models with both homoskedastic and heteroskedastic errors. Our Monte Carlo
experiments expand theirs by giving a detailed investigation on the effects of non-

normality, spatial layouts as well as negative values for the spatial parameter. The
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RE of Jin and Lee (2012) is also included.

To conserve space, only the partial results of QML estimator, ACQS estimator,
RGMM estimator and ORGMM estimator are reported. The full set of results
are available from the authors upon request. The GMM estimator and 2SLS
estimator can perform very poorly. The root estimator performs equally well
as the ACQS estimator when |A| is not large and n is not small but tends to
give non-real roots otherwise. Tables 5.1-5.3 summarise the estimation results
for A and Tables 5.4-5.6 for (3, where in each table, the Monte Carlo means,
root mean square errors (rmse) and the standard errors (se) of the estimators are
reported. To analyse the finite sample performance of the proposed OPG based
robust standard error estimators, we also report the averaged se of the regular
QML estimator when it is heteroskedasticity robust and the averaged se of the
ACQS estimator based on Theorem . The experiments with 8 = (0.3,0.1,0.1)
represent cases where the stochastic component is relatively more dominant than
the deterministic component of the model. This allows a comparison between
the QML-type estimators and the GMM-type estimators when the model suffers
from relatively more severe heteroskedasticity and the IVs are weaker. The main

observations made from the Monte Carlo results are summarised as follows:

(i) ACQS estimator of A performs well in all cases considered, and it generally
outperforms all other estimators in terms of bias and rmseﬁ Further, in
cases where QML estimator is consistent, ACQS estimator can be signifi-

cantly less biased than QML estimator, and is as efficient as QML estimator.

(i) RGMM estimator and ORGMM estimator of A perform reasonably well

13 A referee points out that under homoskedasticity, the GMM estimator can be as efficient as
the ML estimator when errors are normal, and can be more efficient than the QML estimator
when the errors are non-normal. See also Lee and Liu (2010). However, under heteroskedasticity,
the latter is not observed from our extensive Monte Carlo Experiments. It would be interesting
to carry out a theoretical comparison on the efficiency of the heteroskedasticity robust GMM-
type and QML-type estimators, but such a study is clearly beyond the scope of this chapter.

138



(iii)

when 5 = (3,1,1), but deteriorates significantly when 5 = (.3,.1,.1)" and
in this case GMM estimator and 2SLS estimator can be very erratic. In
contrast, ACQS estimator is much less affected by the magnitude of [,
and is less biased and more efficient than RGMM estimator and ORGMM

estimator more significantly when 5 = (.3,.1,.1)".

RE of A performs equally well as ACQS estimator when || is not big and n
is not small, but otherwise tends to give imaginary roots. Thus, when one
encounters a super large dataset and the QML estimator or ACQS estimator
run into computational difficulty, one may turn to RE and use its closed-form

expression.

The GMM-type estimators can perform quite differently when the errors are
normal as opposed to non-normal errors, especially when 5 = (.3,.1,.1)". It
is interesting to note that RGMM estimator often outperforms the ORGMM

estimator.

The OPG-based estimate of the robust standard errors of ACQS estimator
of X performs well in general with their values very close to their Monte

Carlo counter parts.

Finally, the relative performance of various estimators of g is much less
contrasting than that of various estimators of A, although it can be seen
that ACQS estimator of [ is slightly more efficient than the competing
RGMM estimator and ORGMM estimator.
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5.5 Extension to More General Models

As discussed in the introduction and Remark 5.2 of Section 5.3.1, the ACQS es-
timation method can be extended to more general models (spatial or non-spatial)
where there are two or more concentrated score elements that need to be ad-
justed to account for the unknown heteroskedasticity. One popular example is
the SARAR(1,1) model, which extends the SAR model to include disturbances €,
that follow a heteroskedastic SAR process. In this section, we first present a full

set of ‘feasible’ results for the SARAR(1,1) model which takes the form,

Y, = AW, Y, + Xnﬁ +€n, €= pW2n€n + Un, (521>

where v,,; ~ inid(0,02h, ;) such that %Z?:l hni = 1. Let A,(N) = I, — \Wy,
and B,(p) = I, — AW, then the concentrated Gaussian log-likelihood function
for § = (A, p)’ is,

£(6) = —2[In(2m) + 1] - 2(62(0)) + In |4, (V)] + In [Bu(p)].  (5.22)

where 62(8) = LY1(0)Ma(p)Ya(6), Yald) = Bulp) ANy and Mo(p) = T, -
B (p) X[ X! B! (p)B,(p)X,)] ' X! B! (p). Maximizing gives the QML esti-
mator o, of §, and thus the QML estimator of 8 as 3, = Bn(gn) where Bn(é) =
(X! B (p)Bu(p) X, ] 1 X" B.(p)Y,(6), and the QML estimator of o2 as 62 = 62(5,,).

The concentrated score function upon dividing by n is,

—%tf(Gln()\)) + era)Mn(p)((;ln((s

(5.23)
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Table 5.1: Empirical Mean(rmse)[sd]{sd} of Estimators of A for SAR Model
Cases when Regular QML estimator is Consistent

Ao n | QML [ ACQS [ RGMM [ ORGMM
DGP 1: Constant Circular Neighbours (REG-1), (o = (3,1,1)
50 100 | .464 (.105)[.098]{.092} | .473(.117)[.114]{.099} | .469(.121)[.117] | .479(.132)[.130]
250 | .488(.061)[.060]{.064} | .492(.063)[.063]{.059} | .489(.064)[.063] | .494(.071)[.071]
500 | .494(.043)[.043]{.046} | .497(.043)[.043]{.042} | .495(.043)[.043] | .498(.048)[.048]
1000 | .497(.030)[.030]{.032} | .498(.030)[.030]{.029} | .498(.030)[.030] | .498(.033)[.033]
25 100 | 212(.133)[127){.115} | .230(.128)[.127){.123} | .221(.132)[.120] | .232(.146)[.145]
250 | .233(.080)[.078]{.078} | .246(.081)[.081]{.079} | .242(.082)[.081] | .247(.090)[.090]
500 | .245(.052)[.052]{.054} | .245(.054)[.054]{.054} | .243(.054)[.054] | .244(.060)[.059]
1000 | .246(.041)[.041]{.040} | .247(.039)[.039]{.038} | .246(.039)[.039] | .247(.043)[.043]
00 100 | -—.033(.153)[149]{.142} | -.014(.150)[.149]{.142} | -.024(.156)[.154] | -.009(.172)[.172]
250 | -.017 (.090)[.089]{.089} | -.007(.091)[.091]{.089} | -.011(.092)[.092] | -.005(.102)[.102]
500 | -.006 (.063)[.063]{.062} | -.002(.061)[.061]{.064} | -.004(.061)[.061] | -.002(.069).069]
1000 | -.006(.046)[.046]{.046} | -.003(.043)[.043]{.045} | -.005(.043)[.043] | -.003(.047)[.047]
~25 100 | -.285(.155)[.151){.149} | -.272(.171)[.169]{.167} | -.286(.176)[.173] | -.275(.200)[.198]
250 | -.266(.101)[.100]{.100} | -.258(.100)[.100]{.099} | -.264(.101)[.100] | -.260(.112)[.112]
500 | -.259(.070)[.070]{.072} | -.255(.070)[.070]{.070} | -.258(.070)[.070] | -.256(.077)[.076]
1000 | -.253(.050)[.050]{.050} | -.250(.050)[.050]{.049} | -.252(.050)[.050] | -.250(.055)[.055]
~50 100 | -.524(.172)[170]{.179} | -.506(.172)[.172]{.162} | -.521(.175)[.174] | -.513(.195)[.194]
250 | -.515(.108)[.107]{.112} | -.505(.104)[.104]{.101} | -.511(.104)[.104] | -.507(.117)[.116]
500 | -.501(.075)[.075]{.080} | -.497(.075)[.075]{.073} | -.501(.075)[.075] | -.497(.084)[.084]
1000 | -.500(.054)[.054]{.058} | -.499(.051)[.051]{.051} | -.500(.051)[.051] | -.500(.057)[.057]
DGP 2: Constant Circular Neighbours (REG-1), (3o = (3,1,1)
50 100 | .465(.098)[.091]{.093} | .481(.107)[.105]{.099} | .475(.118)[.115] | .488(.142)[.141]
250 | .487(.062)[.061]{.063} | .494(.061)[.060]{.059} | .491(.061)[.061] | .495(.084)[.084]
500 | .494(.041)[.041]{.042} | .499(.042)[.042]{.040} | .497(.042)[.042] | .500(.059)[.059]
1000 | .498(.028)[.028]{.028} | .500(.028)[.028]{.029} | .499(.029)[.029] | .499(.041)[.041]
25 100 | .219(.129)[.126]{.124} | .238(.125)[.125{.124} | .230(.128)[.127] | .251(.168)[.168]
250 | .236(.081)[.080]{.080} | .243(.080)[.079]{.079} | .239(.081)[.080] | .245(.108)[.108]
500 | .246(.056)[.056]{.059} | .250(.056)[.056]{.053} | .248(.056)[.056] | .251(.080)[.080]
1000 | .249(.039)[.039]{.041} | .251(.039)[.039]{.037} | .250(.039)[.039] | .250(.052)[.052]
00 100 | -.029(.146)[.143]{.139] | -.010(.143)[143]{.139} | -.020(.150)[.148] | -.005(.209)[.209]
250 | -.011(.088)[.088]{.087} | -.003(.088)[.088]{.085} | -.008(.089)[.088] | .003(.122)[.122]
500 | -.005(.063)[.063]{.061} | -.008(.064)[.064]{.062} | -.010(.064)[.064] | -.004(.092)[.092]
1000 | -.003(.045)[.045]{.045} | -.001(.043)[.043]{.044} | -.003(.043)[.043] | .000(.060).060]
~25 100 | -.276(.158)[-155){.145} | -.257(.156)[.156]{.153} | -.271(.160)[.159] | -.249(223)[-223]
250 | -.268(.100)[.099]{.106} | -.261(.099)[.099]{.093} | -.266(.100)[.099] | -.260(.136)[.136]
500 | -.256(.073)[.073]{.077} | -.252(.073)[.073]{.069} | -.255(.074)[.073] | -.254(.102)[.102]
1000 | -.254(.050)[.050]{.050} | -.252(.049)[.049]{.048} | -.253(.050)[.049] | -.252(.068)[.068]
T50 100 | -.527(.155)[.153]{.163} | -.505(.154)[.154]{.154} | -510(.158)[.157] | —511(.221)[.221]
250 | -.505(.101)[.101]{.103} | -.500(.099)[.099]{.097} | -.506(.100)[.100] | -.502(.138)[.138]
500 | -.507(.075)[.075]{.077} | -.502(.072)[.072]{.072} | -.505(.072)[.072] | -.501(.103)[.103]
1000 | -.505(.050)[.049]{.049} | -.503(.050)[.049]{.050} | -.504(.050)[.050] | -.505(.071)[.071]
DGP 3: Constant Circular Neighbours (REG-1), Bp = (3,1,1)
50 100 | .474(.086)[.082]{.004] | .484(.096)[.095]{.080] | .476(.100)[.098] | .480(.149)[.148]
250 | .491(.057)[.056]{.054} | .497(.056)[.056]{.052} | .495(.076)[.076] | .499(.088)[.088]
500 | .493(.040)[.039]{.038} | .496(.040)[.039]{.038} | .494(.040)[.039] | .494(.067)[.067]
1000 | .496(.030)[.030]{.029} | .497(.029)[.028]{.027} | .497(.029)[.029] | .498(.045)[.045]
25 100 | .213(.124)[119]{.110} | .231(.119)[.117]{.115} | .221(.125)[.122] | .233(.185)[.184]
250 | .240(.072)[.071]{.079} | .247(.071)[.070]{.067} | .242(.072)[.072] | .244(.116)[.116]
500 | .245(.050)[.050]{.052} | .247(.054)[.054]{.050} | .245(.055)[.054] | .245(.087)[.087]
1000 | .248(.037)[.037]{.038} | .250(.037)[.037]{.035} | .249(.037)[.037] | .250(.057)[.057]
00 100 | -.024(.124)[.122][{.116} | -.015(.140)[.140]{.143} | -.027(.148)[.145] | -.018(.221)[.220]
250 | -.010(.085)[.085]{.082} | -.002(.084)[.084]{.088} | -.007(.086)[.086] | -.002(.133)[.133]
500 | -.006(.059)[.058]{.060} | -.002(.058)[.058]{.058} | -.005(.059)[.059] | -.007(.101)[.101]
1000 | -.004(.045)[.044]{.044} | -.002(.042)[.042]{.041} | -.003(.043)[.043] | .000(.069)[.069]
~25 100 | -.276(.148)[.146]{.156} | -.258(.146)[.146]{.142} | -.272(.152)[.150] | -.261(.236)[.236]
250 | -.260(.093)[.092]{.101} | -.252(.093)[.093]{.096} | -.259(.094)[.093] | -.253(.153)[.153]
500 | -.256(.063)[.063]{.065} | -.254(.065)[.065]{.064} | -.256(.066)[.066] | -.251(.111)[.111]
1000 | -.254(.049)[.049]{.047} | -.250(.049)[.049){.046} | -.252(.050)[.050] | -.251(.076)[.076]
T50 100 | -.514(.141)[.140]{.153} | -.508(.161)[.161]{.167} | -.526(.165)[.163] | -.513(.246)[.245]
250 | -.511(.092)[.091]{.098} | -.506(.097)[.097]{.091} | -.512(.099)[.098] | -.514(.155)[.154]
500 | -.503(.069)[.069]{.069} | -.499(.069)[.069]{.067} | -.503(.069)[.069] | -.498(.111)[.111]
1000 | -.503(.051)[.051]{.051} | -.501(.051)[.051]{.049} | -.503(.051)[.051] | -.505(.081)[.081]
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Table 5.1: Cont’d

n | QML [ ACQS [ RGMM | ORGMM

DGP 1: Queen Contiguity (REG-1), Bo = (.3,.1,.1)’
100 | .447(.156)[.146]{.136} | .471(.147)[.144]{.148} | .463(.158)[.154] | .501(.207)[.207]
250 | .482(.081)[.079]{.088} | .495(.079)[.079]{.079} | .488(.081)[.080] | .499(.085)[.085]
500 | .489(.061)[.059]{.063} | .494(.056)[.056]{.056} | .491(.070)[.069] | .497(.071)[.071]
1000 | .496(.041)[.041]{.045} | .497(.042)[042]{.040} | .495(.042)[.042] | .498(.043)[.043]
100 | .207(.170)[.165]{.155} | .231(.167)[.166]{.155} | .219(.172)[.169] | .240(.186)[.186]
250 | .232(.103)[.101]{.101} | .241(.102)[.102]{.099} | .234(.104)[.102] | .242(.106)[.106]
500 | .242(.072)[.072]{.072} | .249(.072)[.072]{.070} | .245(.072)[.072] | .250(.074)[.074]
1000 | .244(.050)[.050]{.052} | .247(.050)[.050]{.050} | .245(.050)[.050] | .247(.051)[.051]
100 | -.046(.192)[186]{.173} | -.021(.188)[.187]{.174} | -.036(.195)[.192] | -.021(.205)[.204]
250 | -.019(.117)[.115]{.112} | -.008(.115)[.115]{.112} | -.017(.117)[.116] | -.010(.120)[.120]
500 | -.008(.080)[.080]{.079} | -.001(.080)[.080]{.080} | -.005(.080)[.080] | -.001(.082)[.082]
1000 | -.005(.058)[.058]{.057} | -.002(.058)[.058]{.057} | -.004(.058)[.058] | -.002(.059)[.059]
100 | -.286(.199)[.195]{.102} | -.258(.198)[.198]{.193} | -.277(.205)[.204] | -.264(.218)[.217]
250 | -.272(.122)[.120]{.125} | -.258(.121)[.120]{.120} | -.268(.122)[.121] | -.265(.126)[.125]
500 | -.260(.089)[.088]{.089} | -.253(.089)[.089]{.086} | -.258(.089)[.089] | -.256(.090)[.090]
1000 | -.256(.063)[.063]{.064} | -.252(.063)[.063]{.061} | -.255(.063)[.063] | -.254(.064)[.064]
100 | -.526(.194)[.192]{.201} | -.502(.194)[.194]{.187} | -.521(.107)[.196] | -.521(.214)[.213]
250 | -.513(.122)[.121]{.128} | -.501(.122)[.122]{.122} | -.513(.124)[.123] | -.514(.128)[.127]
500 | -.504(.087)[.087]{.088} | -.498(.088)[.088]{.087} | -.503(.088)[.088] | -.503(.089)[.089]
1000 | -.503(.063)[.063]{.061} | -.500(.063)[.063]{.063} | -.502(.063)[.063] | -.502(.064)[.064]

DGP 2: Queen Contiguity (REG-1), Bp = (.3,.1,.1)
100 | .455(.136)[.129]{.137} | .481(.129)[.128]{.123} | .470(.135)[.132] | .581(.354)[.345]
250 | .480(.087)[.083]{.100} | .493(.078)[.078]{.076} | .487(.080)[.079] | .533(.160)[.157]
500 | .490(.057)[.056]{.057} | .497(.056)[.056]{.054} | .495(.068)[.068] | .518(.088)[.086]
1000 | .496(.042)[.042]{.047} | .499(.042)[.042]{.039} | .498(.042)[.042] | .510(.053)[.052]
100 | .206(.171)[.166]{.155} | .233(.166)[.165]{.161} | .224(.180)[.178] | .303(.366)[.361]
250 | .222(.108)[.104]{.105} | .240(.097)[.096]{.094} | .232(.099)[.098] | .272(.139)[.137]
500 | .239(.072)[.071]{.076} | .246(.071)[.071]{.068} | .242(.072)[.071] | .259(.089)[.089)]
1000 | .246(.050)[.050]{.050} | .245(.052)[.052]{.050} | .244(.053)[.052] | .257(.070)[.070]
100 | -.035(.177)[.174]{.165} | -.023(.184)[.182]{.188} | -.039(.101)[.187] | .002(.243)[243]
250 | -.019(.116)[.115]{.109} | -.005(.115)[.114]{.106} | -.014(.117)[.116] | .016(.153)[.152]
500 | -.009(.081)[.080]{.078} | -.004(.081)[.081]{.077} | -.008(.082)[.081] | .012(.105)[.105]
1000 | -.004(.057)[.057){.057} | -.002(.057)[.057]{.056} | -.005(.057)[.057] | .007(.069)[.069]
100 | -.283(.185)[.182]{.190} | -.263(.186)[.185]{.186} | -.285(.192)[.189] | -.254(.251)[.251]
250 | -.270(.122)[.120]{.125} | -.256(.121)[.120]{.114} | -.267(.123)[.122] | -.253(.161)[.161]
500 | -.256(.085)[.084]{.085} | -.250(.085)[.085]{.082} | -.254(.085)[.085] | -.242(.106)[.106]
1000 | -.252(.063)[.063]{.060} | -.249(.063)[.063]{.060} | -.251(.063)[.063] | -.245(.078)[.078]
100 | -.518(.195)[.194]{.204} | -.506(.188)[.187]{.180} | -520(.103)[.190] | --523(.255)[.254]
250 | -.513(.127)[.126]{.128} | -.501(.127)[.127]{.125} | -.512(.128)[.128] | -.513(.168)[.167]
500 | -.505(.088)[.088]{.084} | -.500(.089)[.089]{.085} | -.505(.089)[.088] | -.500(.110)[.110]
1000 | -.503(.063)[.063]{.060} | -.500(.063)[.063]{.061} | -.503(.063)[.063] | -.501(.077)[.077]

DGP 3: Queen Contiguity (REG-1), Bp = (.3,.1,.1)’
100 | .453(.128)[.110]{.126} | .479(.120)[.118]{.109} | .470(.144)[.141] | .631(.463)[.444]
250 | .479(.079)[.076]{.072} | .492(.076)[.075]{.069} | .487(.079)[.077] | .583(.287)[.275]
500 | .486(.056)[.054]{.057} | .492(.054)[.054]{.049} | .489(.055)[.054] | .554(.206)[.198]
1000 | .494(.039)[.038]{.031} | .497(.039)[.038]{.037} | .496(.039)[.039] | .530(.107)[.103]
100 | .205(.151)[.144]{.146} | .232(.145)[.144]{.148} | .220(.154)[.151] | .354(.469)[.458]
250 | .231(.100)[.098]{.100} | .245(.098)[.098]{.095} | .237(.100)[.099] | .307(.277)[.271]
500 | .237(.071)[.070]{.072} | .244(.070)[.070]{.069} | .240(.071)[.070] | .306(.250)[.244]
1000 | .246(.049)[.049]{.055} | .248(.050)[.050]{.049} | .246(.051)[.050] | .271(.126)[.124]
100 | -.048(.164)[.157]{.159] | -.015(.169)[.168]{.164] | -.029(.175)[.172] | .057(.327)[.321]
250 | -.018(.106)[.104]{.104} | -.004(.104)[.104]{.099} | -.013(.107)[.106] | .038(.214)[.210]
500 | -.011(.077)[.076]{.075} | -.003(.077)[.076]{.071} | -.008(.077)[.077] | .032(.169)[.166]
1000 | -.004(.055)[.055]{.055} | -.001(.055)[.055]{.053} | -.003(.055)[.055] | .028(.132)[.129]
100 | -.284(.170)[.167]{.179} | -.263(.169)[.168]{.163} | -.284(.175)[.172] | -.245(.283)[.283]
250 | -.268(.119)[.117){.110} | -.254(.118)[.117]{.115} | -.265(.120)[.119] | -.220(.214)[.211]
500 | -.258(.081)[.081]{.083} | -.252(.081)[.081]{.079} | -.257(.081)[.081] | -.221(.176)[.174]
1000 | -.252(.059)[.059]{.054} | -.254(.059)[.059]{.056} | -.256(.059)[.059] | -.224(.151)[.148]
100 | -523(.176)[.175){.189} | -.516(.182)[.182]{.187} | -.539(.192)[.188] | -.528(.312)[.311]
250 | -.514(.120)[.119]{.113} | -.501(.119)[.119]{.118} | -.513(.120)[.119] | -.501(.215)[.215]
500 | -.503(.085)[.085]{.084} | -.500(.085)[.085]{.088} | -.505(.085)[.085] | -.491(.172)[.172]
1000 | -.503(.063)[.063]{.061} | -.500(.063)[.063]{.059} | -.502(.063)[.063] | -.496(.150)[.150]
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Table 5.2: Empirical Mean(rmse)[sd]{sd} of Estimators of A for SAR Model
Case I of Inconsistent QML estimator: Circular Neighbours (REG-1)

n | QML [ ACQS [ RGMM | ORGMM

DGP 1: fBo = (3,1,1)

100 | .434(.119)[.100] | .481(.103)[101]{.093} | .477(.107)[.104] | .483(.113)[.112]
250 | .458(.071)[.057] | .491(.059)[.059]{.057} | .489(.058)[.057] | .492(.061)[.060]
500 | .463(.056)[.043] | .496(.044)[.044]{.043} | .495(.043)[.043] | .496(.046)[.046]
1000 | .472(.040)[.028] | .500(.029)[.029]{.028} | .499(.028)[.028] | .500(.030)[.030]
100 | .197(.120)[.107] | .233(.116)[.115]{.115} | .226(.117)[.115] | .232(.127)[.125]
250 | .218(.077)[.070] | .242(.075)[.074]{.070} | .239(.073)[.072] | .242(.075)[.075]
500 | .222(.060)[.053] | .246(.057)[.057]{.054} | .245(.057)[.057] | .247(.061)[.060]
1000 | .225(.042)[.034] | .246(.037)[.036]{.035} | .245(.036)[.036] | .246(.038)[.038]
100 | -.023(.114)[111] | -.009(.127)[126]{.127} | -.015(.127)[.127] | -.006(.136)[136]
250 | -.012(.073)[.072] | -.007(.081)[.080]{.078} | -.009(.080)[.079] | -.005(.084)[.084]
500 | -.005(.054)[.053] | -.002(.060)[.060]{.060} | -.003(.060)[.060] | -.001(.064)[.064]
1000 | -.002(.036)[.036] | -.001(.040)[.040]{.039} | -.002(.039)[.039] | -.001(.042)[.042]
100 | -.249(.110)[.110] | -271(.137)[.135]{.139} | -.271(.132)[.131] | -.270(.155)[-154]
250 | -.226(.072)[.068] | -.250(.082)[.081]{.080} | -.251(.076)[.076] | -.250(.081)[.081]
500 | -.224(.058)[.052] | -.252(.063)[.063]{.062} | -.252(.060)[.060] | -.251(.064)[.064]
1000 | -.225(.043)[.034] | -.252(.040)[.040]{.040} | -.252(.039)[.039] | -.252(.042)[.042]
100 | -.449(.105)[.092] | -.494(.114)[.114]{.119} | -.492(.105)[.104] | -.498(.112)[.112]
250 | -.448(.079)[.059] | -.503(.076)[.076]{.076} | -.498(.065)[.065] | -.500(.070)[.070]
500 | -.444(.073)[.046] | -.506(.061)[.061]{.059} | -.505(.054)[.054] | -.506(.057)[.056]
1000 | -.444(.064)[.030] | -.501(.037)[.037]{.037} | -.500(.034)[.034] | -.501(.035)[.035]
DGP 2: fBo = (3,1,1)
100 | .438(.114)[096] | .483(.098)[.097]{.089} | .477(.105)[.102] | .485(.130)[.129]
250 | .462(.066)[.054] | .495(.055)[.055]{.055} | .492(.053)[.053] | .496(.067)[.067]
500 | .467(.054)[.043] | .500(.044)[.044]{.042} | .498(.043)[.043] | .499(.057)[.057]
1000 | .473(.039)[.027] | .501(.028)[.028]{.028} | .500(.027)[.027] | .501(.034)[.034]
100 | .201(.123)[.113] | .236(.120)[.119]{.109} | .228(.122)[.120] | .235(.147)[.146]
250 | .219(.072)[.066] | .244(.070)[.070]{.069} | .242(.070)[.069] | .245(.087)[.087]
500 | .220(.059)[.051] | .244(.055)[.054]{.053} | .243(.054)[.054] | .247(.071)[.071]
1000 | .228(.040)[.033] | .248(.035)[.035]{.035} | .248(.035)[.034] | .249(.043)[.043]
100 | -.022(.116)[.114] | -.010(.131)[.131]{.129} | -.016(.129)[.128] | -.005(.159)[158]
250 | -.010(.073)[.072] | -.005(.081)[.081]{.079} | -.008(.080)[.079] | -.004(.097)[.096]
500 | -.004(.051)[.051] | -.001(.058)[.058]{.058} | -.002(.057)[.057] | .001(.075)[.075]
1000 | -.003(.036)[.036] | -.002(.040)[.040]{.039} | -.002(.039)[.039] | -.001(.048)[.048]
100 | -.239(.109)[.108] | -.257(.131)[.131]{.129} | -.256(.122)[.122] | -.248(.150)[.150]
250 | -.232(.071)[.069] | -.257(.083)[.082]{.079} | -.257(.077)[.077] | -.253(.093)[.093]
500 | -.223(.059)[.052] | -.251(.062)[.062]{.060} | -.251(.060)[.060] | -.247(.078)[.078]
1000 | -.222(.045)[.036] | -.249(.041)[.041]{.040} | -.249(.040)[.040] | -.249(.048)[.048]
100 | -.452(.105)[.093] | -.499(.114)[.114]{.116} | -.495(.110)[.110] | -.496(.123)[-123]
250 | -.448(.080)[.061] | -.501(.073)[.073]{.073} | -.499(.066)[.066] | -.499(.079)[.079]
500 | -.438(.077)[.046] | -.500(.059)[.059]{.058} | -.498(.052)[.052] | -.497(.065)[.065]
1000 | -.444(.064)[.031] | -.501(.037)[.037]{.037} | -.502(.034)[.034] | -.502(.041)[.041]
DGP 3: (o = (3,1,1)
100 | .445(.107)[.092] | .486(.087)[.086]{.079} | .482(.092)[.090] | .493(.144)[.144]
250 | .464(.066)[.055] | .495(.054)[.054]{.049} | .493(.054)[.053] | .497(.073)[.073]
500 | .467(.055)[.044] | .497(.041)[.041]{.039} | .496(.042)[.041] | .497(.060)[.060]
1000 | .473(.040)[.030] | .499(.027)[.027]{.026} | .499(.027)[.027] | .500(.037)[.037]
100 | .199(.116)[.105] | .230(.110)[.108]{.099} | .241(.068)[.067] | .245(.090)[.089)]
250 | .219(.071)[.064] | .243(.069)[.068]{.063} | .241(.068)[.067] | .245(.090)[.089]
500 | .222(.058)[.050] | .244(.054)[.053]{.049} | .243(.053)[.053] | .242(.078)[.078]
1000 | .228(.040)[.033] | .248(.035)[.034]{.033} | .248(.034)[.034] | .250(.045)[.045]
100 | -.019(.107)[.105] | -.008(.120)[.120]{.119} | -.013(.119)[.119] | -.005(.164)[164]
250 | -.008(.065)[.065] | -.003(.072)[.072]{.069} | -.006(.072)[.072] | -.003(.101)[.101]
500 | -.006(.051)[.050] | -.004(.057)[.057]{.054} | -.006(.058)[.058] | -.007(.089)[.089)]
1000 | -.003(.035)[.034] | -.002(.038)[.038]{.037} | -.003(.038)[.038] | -.003(.053)[.053]
100 | -.243(.102)[.102] | -.260(.123)[.123]{.120} | -.262(.118)[.117] | -.257(.157)[.156]
250 | -.230(.072)[.069] | -.250(.077)[.077]{.072} | -.251(.074)[.074] | -.248(.098)[.098]
500 | -.228(.055)[.050] | -.255(.058)[.058]{.056} | -.256(.058)[.057] | -.255(.083)[.083]
1000 | -.223(.044)[.035] | -.250(.039)[.039]{.038} | -.250(.039)[.039] | -.249(.052)[.052]
100 | -.450(.107)[.095] | -.486(.110)[.109]{.112} | -.485(.105)[.104] | -.484(.125)[.123]
250 | -.450(.081)[.063] | -.502(.074)[.074]{.070} | -.498(.064)[.064] | -.496(.085)[.085]
500 | -.439(.081)[.053] | -.499(.061)[.061]{.059} | -.497(.051)[.051] | -.499(.069)[.069]
1000 | -.445(.066)[.037] | -.500(.038)[.038]{.036} | -.500(.034)[.034] | -.501(.044)[.044]
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Table 5.2: Cont’d

2o n | QML [ ACQS [ RGMM [ ORGMM
DGP 1: fp = (.3,.1,.1)
.50 100 | .407(.154)[.123] .474(.129)[.127]{.119} | .467(.148)[.144] .499(.189)[.189]
250 | .437(.100)[.078] | .489(.080)[.079]{.075} | .485(.082)[.080] | .494(.083)[.083]
500 | .445(.076)[.053] | .494(.054)[.054]{.053} | .493(.069)[.069] | .497(.066)[.066]
1000 | .453(.060)[.037] | .499(.037)[.037]{.038} | .498(.037)[.037] | .500(.038)[.038]
.25 100 | .174(.156)[.136] .226(.155)[.153]{.149} .213(.165)[.161] .235(.195)[.194]
250 | .199(.101)[.087] | .238(.097)[.097]{.096} | .233(.100)[.098] | .241(.102)[.102]
500 | .208(.076)[.063] | .243(.069)[.069]{.068} | .240(.070)[.069] | .243(.070)[.070]
1000 | .213(.058)[.045] .246(.049)[.049]{.048} | .245(.050)[.049] .246(.050)[.050]
.00 100 | -.041(.146)[.140] | -.023(.170)[.168]{.165} | -.040(.179)[.174] | -.026(.184)[.182]
250 | -.016(.096)[.095] | -.009(.114)[.113]{.117} | -.015(.115)[.114] | -.009(.116)[.116]
500 | -.008(.066)[.066] | -.004(.078)[.078]{.077} | -.008(.079)[.079] | -.005(.080)[.080]
1000 | -.004(.044)[.044] | -.002(.052)[.052]{.054} | -.003(.052)[.052] | -.002(.053)[.053]
-25 100 | -.240(.136)[.136] | -.270(.176)[.175]{.172} | -.292(.185)[.180] | -.291(.201)[.197]
250 | -.213(.095)[.087] | -.251(.110)[.110]{.111} | -.259(.111)[.111] | -.256(.114)[.114]
500 | -.210(.074)[.062] | -.252(.079)[.079]{.079} | -.256(.079)[.079] | -.255(.080)[080]
1000 | -.209(.060)[.044] | -.252(.055)[.055]{.056} | -.254(.055)[.055] | -.254(.056)[.056]
=50 100 | -.417(.149)[.124] | -.496(.164)[.164]{.159} | -.531(.202)[.199] | -.535(.213)[.210]
250 | -.413(.117)[.078] | -.504(.103)[.103]{.102} | -.512(.103)[.102] | -.516(.107)[.106]
500 | -.409(.107)[.056] | -.501(.073)[.073]{.073} | -.506(.073)[.073] | -.507(.074)[.074]
1000 | -.405(.103)[.039] | -.498(.051)[.051]{.052} | -.501(.051)[.051] | -.501(.051)[.051]
DGP 2: fp = (.3,.1,.1)
.50 100 | .416(.147)[.121] .482(.123)[.121]{.119} | .475(.138)[.136] .592(.342)[.329]
250 | .438(.101)[.080] | .490(.081)[.080]{.079} | .487(.090)[.089] | .528(.157)[.154]
500 | .448(.074)[.053] | .496(.053)[.053]{.052} | .494(.054)[.053] | .511(.068)[.067]
1000 | .452(.061)[.038] | .499(.038)[.038]{.037} | .498(.038)[.038] | .508(.047)[.047]
25 100 | .184(.152)[137] | .236(.154)[.154]{.157} | .224(.165)[.163] | .304(.305)[.301]
250 | .203(.100)[.088] | .242(.097)[.097]{.091} | .236(.099)[.098] | .271(.149)[.147]
500 | .211(.073)[.062] | .246(.067)[.067]{.066} | .243(.068)[.068] | .264(.109)[.109]
1000 | .217(.055)[.044] .250(.048)[.048]{.047} | .249(.048)[.048] .258(.058)[.058]
.00 100 | -.040(.144)[.139] | -.021(.171)[.169]{.164} | -.039(.180)[.176] | .014(.262)[.262]
250 | -.016(.091)[.089] | -.010(.107)[.107]{.104} | -.016(.109)[.108] | .008(.134)[.134]
500 | -.007(.063)[.063] | -.003(.075)[.075]{.074} | -.006(.075)[.075] | .008(.090)[.090]
1000 | -.003(.046)[.046] | -.001(.054)[.054]{.053} | -.003(.054)[.054] | .006(.066)[.066]
-25 100 | -.232(.133)[.131] | -.259(.169)[.169]{.159} | -.281(.180)[.177] | -.254(.266)[.266]
250 | -.216(.090)[.083] | -.254(.106)[.106]{.107} | -.262(.108)[.107] | -.249(.138)[.138]
500 | -.210(.073)[.061] | -.251(.077)[.077]{.077} | -.255(.077)[.077] | -.246(.088)[.088]
1000 | -.207(.063)[.046] | -.249(.057)[.057]{.055} | -.251(.057)[.057] | -.247(.067)[.067]
-.50 100 | -.424(.148)[.127] | -.503(.163)[.163]{.160} | -.535(.191)[.187] | -.549(.246)[.241]
250 | -.410(.123)[.084] | -.499(.105)[.105]{.099} | -.507(.106)[.105] | -.513(.151)[.151]
500 | -.409(.108)[.058] | -.500(.071)[.071]{.072} | -.504(.071)[.071] | -.507(.086)[.086]
1000 | -.409(.100)[.041] | -.503(.050)[.050]{.051} | -.506(.051)[.050] | -.509(.063)[.062]
DGP 3: fo = (.3,.1,.1)
.50 100 | .416(.147)[.120] .480(.118)[.116]{.099} .473(.130)[.128] .652(.453)[.426]
250 | .439(.096)[.074] | .490(.071)[.070]{.065} | .486(.073)[.071] | .572(.247)[.236]
500 | .449(.074)[.054] | .497(.050)[.050]{.048} | .495(.051)[.051] | .547(.189)[.184]
1000 | .453(.060)[.037] | .498(.034)[.034]{.035} | .497(.035)[.034] | .523(.104)[.101]
25 100 | .174(153)[133] | .224(.147)[.144]{.137} | .212(.156)[.152] | .335(.387)[.378]
250 | .210(.089)[.080] | .249(.087)[.087]{.083} | .243(.087)[.087] | .310(.245)[.237]
500 | .211(.072)[.061] | .244(.065)[.065]{.061} | .242(.066)[.065] | .283(.198)[.195]
1000 | .214(.057)[.044] .247(.046)[.046]{.044} | .246(.047)[.046] .266(.116)[.115]
.00 100 | -.027(.135)[.133] | -.008(.161)[.160]{.153} | -.026(.172)[.170] | .077(.422)[.414]
250 | -.014(.087)[.086] | -.006(.103)[.103]{.099} | -.013(.105)[.104] | .052(.263)[.258]
500 | -.008(.059)[.058] | -.004(.070)[.070]{.069} | -.008(.071)[.070] | .026(.151)[.149]
1000 | -.003(.042)[.042] | -.001(.050)[.050]{.050} | -.003(.050)[.050] | .025(.116)[.114]
-.25 100 | -.234(.131)[.130] | -.262(.172)[.172]{.179} | -.288(.184)[.180] | -.238(.295)[.295]
250 | -.218(.090)[.084] | -.254(.105)[.105]{.099} | -.262(.107)[.106] | -.223(.239)[.238]
500 | -.213(.073)[.063] | -.252(.076)[.076]{.071} | -.256(.077)[.076] | -.233(.161)[.160]
1000 | -.208(.062)[.046] | -.250(.055)[.055]{.053} | -.252(.055)[.055] | -.238(.128)[.127]
-.50 100 | -.418(.151)[.127] | -.495(.158)[.158]{.151} | -.526(.178)[.176] | -.544(.304)[.301]
250 | -.411(.126)[.089] | -.503(.105)[.105]{.099} | -.511(.105)[.104] | -.508(.199)[.198]
500 | -.408(.113)[.066] | -.500(.073)[.073]{.069} | -.504(.072)[.072] | -.501(.156)[.156]
1000 | -.403(.109)[.049] | -.496(.051)[.051]{.049} | -.498(.051)[.051] | -.502(.129)[.129]
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Table 5.3: Empirical Mean(rmse)[sd]{sd} of Estimators of A for SAR Model
Case II of Inconsistent QML estimator: Group Interaction (REG-2)

n | QML [ ACQS [ RGMM | ORGMM

DGP 1: fBo = (3,1,1)

100 | .422(124)[096] | .478(.102)[.099]{.093} | .469(.109)[.105] | .470(.112)[.108]
250 | .461(.069)[.057] | .493(.059)[.059]{.056} | .488(.061)[.060] | .491(.065)[.064]
500 | .472(.047)[.037] | .497(.039)[.038]{.038} | .494(.039)[.039] | .496(.041)[.041]
1000 | .476(.037)[.028] | .499(.029)[.029]{.028} | .497(.029)[.029] | .498(.031)[.030]
100 | .159(.161)[.132] | .224(.142)[.140]{.139} | .210(.156)[.150] | .215(.162)[.158]
250 | .210(.087)[.078] | .244(.082)[.081]{.080} | .237(.085)[.084] | .242(.090)[.090]
500 | .223(.060)[.053] | .247(.056)[.056]{.055} | .243(.057)[.057] | .246(.061)[.061]
1000 | .232(.042)[.037] | .251(.039)[.039]{.040} | .249(.040)[.040] | .251(.043)[.043]
100 | -.079(.179)[.160] | -.023(.183)[.181]{.183} | -.035(.194)[.191] | -.026(.203)[201]
250 | -.034(.100)[.094] | -.011(.103)[.103]{.102} | -.020(.107)[.105] | -.014(.112)[.111]
500 | -.018(.067)[.065] | -.006(.071)[.070]{.070} | -.013(.072)[.071] | -.009(.075)[.075]
1000 | -.011(.049)[.048] | -.005(.052)[.052]{.051} | -.009(.054)[.053] | -.007(.057)[.057]
100 | -.317(.184)[.171] | -.285(.210)[.207]{.213} | -.300(.222)[.216] | -.291(.234)[-231]
250 | -.264(.109)[.108] | -.266(.126)[.124]{.123} | -.276(.128)[.125] | -.271(.134)[.132]
500 | -.247(.074)[.074] | -.258(.085)[.085]{.084} | -.265(.086)[.085] | -.262(.091)[.090]
1000 | -.235(.056)[.054] | -.254(.061)[.060]{.060} | -.257(.062)[.061] | -.255(.065)[.065]
100 | -.532(.181)[.178] | -.534(.226)[.224]{.219} | -.546(.231)[.226] | -.543(.245)[.241]
250 | -.468(.120)[.116] | -.505(.146)[.146]{.144} | -.515(.143)[.142] | -.511(.151)[.150]
500 | -.460(.090)[.080] | -.507(.101)[.100]{.097} | -.511(.096)[.095] | -.509(.101)[.101]
1000 | -.448(.078)[.057] | -.501(.070)[.070]{.069} | -.505(.069)[.069] | -.503(.073)[.073]
DGP 2: fBo = (3,1,1)
100 | 437(.117)[.098] | .492(.099)[.098]{.089} | .487(.110)[.110] | .497(.126)[.126]
250 | .465(.066)[.056] | .499(.057)[.057]{.054} | .494(.060)[.059] | .504(.074)[.074]
500 | .471(.047)[.037] | .497(.038)[.038]{.038} | .494(.039)[.038] | .499(.050)[.050]
1000 | .477(.035)[.027] | .500(.028)[.028]{.028} | .498(.028)[.028] | .500(.036)[.036]
100 | .167(.155)[.130] | .230(.137)[-135]{.129} | .220(.151)[.148] | .235(.172)[.171]
250 | .211(.085)[.076] | .245(.079)[.079]{.077} | .236(.082)[.081] | .245(.100)[.100]
500 | .219(.060)[.051] | .243(.054)[.053]{.054} | .238(.055)[.054] | .245(.067)[.067]
1000 | .231(.042)[.038] | .251(.040)[.040]{.039} | .248(.040)[.040] | .250(.052)[.052]
100 | -.084(.181)[.160] | -.028(.179)[.176]{.169} | -.044(.195)[.190] | -.019(.228)[227]
250 | -.031(.098)[.093] | -.008(.101)[.101]{.098} | -.018(.107)[.105] | -.005(.134)[.134]
500 | -.015(.068)[.067] | -.003(.073)[.073]{.069} | -.009(.074)[.074] | .001(.095)[.095]
1000 | -.008(.050)[.049] | -.002(.053)[.053]{.050} | -.005(.054)[.054] | .000(.069)[.069]
100 | -.313(.178)[.167] | -.283(.206)[.203]{.211} | -.296(.215)[.210] | -.268(.259)[.258]
250 | -.262(.109)[.108] | -.263(.126)[.126]{.119} | -.272(.128)[.126] | -.256(.159)[.159]
500 | -.243(.072)[.072] | -.254(.082)[.082]{.082} | -.260(.081)[.081] | -.252(.101)[.101]
1000 | -.235(.055)[.053] | -.253(.060)[.060]{.060} | -.256(.061)[.061] | -.252(.080)[.080]
100 | -.523(.182)[.181] | -.531(.241)[.239]{.230} | -.541(.237)[.233] | -.510(.284)[.283]
250 | -.471(.118)[.114] | -.510(.142)[.142]{.140} | -.517(.138)[.137] | -.497(.174)[.174]
500 | -.458(.092)[.082] | -.503(.101)[.101]{.095} | -.509(.098)[.097] | -.498(.121)[.121]
1000 | -.445(.079)[.057] | -.497(.068)[.068]{.069} | -.500(.068)[.068] | -.493(.090)[.089]
DGP 3: (o = (3,1,1)
100 | 433(.115)[.094] | .484(.090)[.089]{.081} | .476(.110)[.107] | .485(.138)[.138]
250 | .469(.062)[.054] | .500(.053)[.053]{.050} | .495(.055)[.055] | .503(.076)[.076]
500 | .473(.046)[.037] | .497(.036)[.036]{.035} | .494(.037)[.037] | .496(.051)[.051]
1000 | .478(.035)[.027] | .500(.026)[.026]{.026} | .498(.027)[.027] | .502(.038)[.038]
100 | .173(.145)[.123] | .232(.125)[.124]{.114} | .221(.150)[.147] | .236(.187)[.186]
250 | .211(.086)[.077] | .243(.079)[.079]{.071} | .236(.084)[.083] | .247(.115)[.115]
500 | .225(.056)[.051] | .248(.052)[.052]{.051} | .244(.054)[.053] | .250(.078)[.078]
1000 | .228(.044)[.038] | .246(.039)[.039]{.038} | .244(.040)[.039] | .248(.056)[.056]
100 | -.078(.169)[.150] | -.026(.174)[.172]{.164} | -.044(.188)[.183] | -.019(.229)[228]
250 | -.030(.098)[.093] | -.008(.102)[.102]{.099} | -.018(.107)[.106] | -.002(.145)[.145]
500 | -.017(.066)[.063] | -.005(.069)[.069]{.066} | -.012(.071)[.070] | -.005(.097)[.097]
1000 | -.007(.047)[.046] | -.001(.050)[.050]{.048} | -.005(.051)[.051] | -.003(.073)[.073]
100 | -.305(.178)[.170] | -.270(.197)[.196]{.199} | -.291(.218)[.214] | -.262(.280)[.280]
250 | -.262(.104)[.103] | -.264(.123)[.122]{.119} | -.272(.124)[.122] | -.256(.173)[.173]
500 | -.248(.071)[.071] | -.259(.081)[.080]{.078} | -.265(.082)[.081] | -.256(.115)[.115]
1000 | -.234(.055)[.053] | -.251(.059)[.059]{.057} | -.255(.060)[.060] | -.249(.090)[.090]
100 | -.535(.181)[.177] | -.530(.218)[.216]{.223} | -.555(.236)[.229] | -.528(.304)[-303]
250 | -.474(.118)[.115] | -.515(.148)[.147]{.139} | -.523(.142)[.141] | -.505(.195)[.195]
500 | -.457(.091)[.080] | -.504(.094)[.093]{.092} | -.509(.091)[.090] | -.500(.125)[.125]
1000 | -.449(.081)[.063] | -.502(.069)[.069]{.067} | -.505(.069)[.069] | -.498(.101)[.101]
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Table 5.4: Empirical Mean(rmse)[sd]{sd} of Estimators of 3 for SAR Model
Cases of Consistent QML estimators

Ao n_ Bo | QML [ ACQsS [ RGMM [ ORGMM
DGP 1: Constant Circular Neighbours (REG-1), SBp = (3,1,1)
5 100 3 | 3.220(.644)[.606]{.592} | 3.166(.708)[.688]{.601} | 3.192(.733)[.707] | 3.129(.797)[.756]
1| 1.006(.131)[.131]{.123} | 0.992(.153)[.152]{.143} | 0.989(.152)[.152] | 0.988(.152)[.152]
1 | 1.003(.201)[.201]{.203} | 0.990(.229)[.228]{.222} | 0.983(.228)[.228] | 0.981(.229)[.229]
250 3 | 3.089(.396)[.3%6]{.392} | 3.051(.388)[.385]{.360} | 3.069(.395)[.380] | 3.040(.437)[.435]
1 | 0.999(.096)[.096]{.093} | 0.999(.096)[.096]{.093} | 0.996(.096)[.096] | 0.996(.096)[.096]
1| 1.003(.138)[.138]{.134} | 1.004(.149)[.149]{.144} | 1.002(.149)[.149] | 1.002(.149)[.149
500 3 | 3.039(.264)[.261]{.276} | 3.019(.261)[.260]{.253} | 3.030(.264)[.263] | 3.013(.200)[.200
1 | 1.000(.068)[.068]{.068} | 0.996(.070)[.070]{.070} | 0.995(.070)[.070] | 0.995(.070)[.070]
1 | 0.999(.106)[.106]{.104} | 0.998(.106)[.106]{.104} | 0.997(.106)[.106 0.997(.106)[.106
5 100 3 | 3.047(.357)[-353]{.360} | 3.011(.356)[.355]{.330} | 3.041(.362)[.360] | 3.024(.400)[.309
1| 0.994(.130)[.130]{.123} | 0.994(.157)[.157]{.149} | 0.988(.157)[.157] | 0.988(.158)[.158]
1 | 0.995(.226)[.226]{.222} | 0.996(.227)[.227]{.222} | 0.988(.226)[.226 0.987(.227)[.227
250 3 | 3.026(.221)[.220]{.230} | 3.011(.220)[.220]{.214} | 3.024(.221)[.220] | 3.016(.246)[.245
1 | 0.999(.098)[.098]{.100} | 0.995(.093)[.093]{.094} | 0.992(.094)[.093] | 0.992(.094)[.093]
1| 1.002(.130)[.130){.135} | 0.992(.143)[.143]{.144} | 0.989(.143)[.143] | 0.990(.144)[.143
500 3 | 3.001(.157)[.157]{.166} | 2.993(.158)[.157]{.152} | 3.000(.158)[.158] | 2.003(.174)[.174
1 | 0.998(.067)[.067]{.068} | 0.998(.067)[.067]{.070} | 0.997(.067)[.067] | 0.997(.067)[.067]
1| 0.999(.104)[.104]{.103} | 0.999(.104)[.104]{.103} | 0.997(.104)[.104] | 0.998(.104)[.104]
DGP 2: Constant Circular Neighbours (REG-1), (o = (3,1,1)
5 100 3 | 3.207(.597)[.560]{.570} | 3.117(.641)[.631]{.645} | 3.150(.706)[.600] | 3.071(.843)[.840]
1| 1.007(.154)[.154]{.148} | 1.007(.154)[.154]{.148} | 1.003(.154)[.154] | 1.003(.151)[.151]
1 | 1.000(.207)[.207]{.198} | 0.999(.220)[.220]{.211} | 0.993(.220)[.220] | 0.991(.217)[.217
250 3 | 3.078(.380)[.372]{.345} | 3.041(.372)[.370]{.345} | 3.057(.377)[.372] | 3.029(512)[512
1 | 1.004(.096)[.096]{.092} | 1.004(.096)[.096]{.092} | 1.001(.095)[.095] | 1.001(.095)[.095]
1 | 0.993(.141)[.141]{.132} 1.010(.146)[.146]{.141} 1.007(.146)[.146 1.007(.145)[.145
500 3 | 3.028(.254)[.253]{.229} | 3.000(.252)[.252]{.245} | 3.020(.254)[.253] | 2.008(.357)[.357
1 | 1.001(.067)[.067]{.068} | 0.996(.071)[.070]{.069} | 0.995(.071)[.070] | 0.995(.070)[.070]
1 | 0.999(.100)[.100]{.097} | 1.002(.108)[.108]{.103} | 1.001(.108)[.108 1.000(.108)[.108
-.5 100 3 | 3.044(.326)[.323]{.310} | 3.010(.324)[.324]{.316} | 3.039(.331)[.329 3.021(.450)[.449
1| 0.997(.154)[.154]{.141} | 0.999(.154)[.154]{.140} | 0.992(.154)[.153] | 0.993(.153)[.153]
1| 0.999(.235)[.235]{.217} | 1.000(.235)[.235]{.218} | 0.992(.234)[.234] | 0.990(.231)[.231
250 3 | 3.012(.205)[.205]{.201} | 2.997(.205)[.205]{.206} | 3.010(.206)[.206 3.002(.281)[.281
1 | 1.000(.097)[.097]{.093} | 1.001(.097)[.097]{.093} | 0.998(.097)[.097] | 0.999(.097)[.097]
1| 0.997(.147)[.147){.141} | 0.998(.147)[.147]{.142} | 0.994(.147)[.147] | 0.995(.146)[.145
500 3 | 3.010(.148)[.148]{.101} | 3.002(.148)[.148]{.150} | 3.000(.148)[.148] | 3.002(.207)[.207
1 | 1.001(.070)[.070]{.067} | 0.995(.069)[.069]{.069} | 0.994(.069)[.069] | 0.994(.069)[.069]
1 | 1.000(.104)[.104]{.103} | 1.000(.104)[.104]{.103} | 0.998(.104)[.104] | 0.999(.103)[.103]
DGP 3: Constant Circular Neighbours (REG-1), (8o = (3,1,1)
05 100 3 | 3.203(.624)[.591]{.664] | 3.106(.589)[.579]{.407] | 3.149(.617)[.599] | 3.120(.003)[.895]
1 | 0.998(.156)[.156]{.130} | 0.997(.155)[.155]{.130} | 0.994(.155)[.155] | 0.993(.150)[.150]
1 | 0.995(.240)[.240]{.207} | 0.994(.240)[.239]{.207} | 0.989(.240)[.240 0.989(.228)[.227
250 3 | 3.057(.348)[.343]{.478} | 3.020(.341)[.340]{.323} | 3.028(.468)[.467] | 3.001(.534)[.534
1 | 1.000(.094)[.094]{.088} | 1.000(.094)[.094]{.087} | 0.998(.094)[.094] | 0.998(.094)[.094]
1 | 0.999(.137)[.137]{.133} | 0.998(.137)[.137]{.133} | 0.995(.137)[.137 0.995(.135)[.135
500 3 | 3.042(.243)[.240]{.382} | 3.023(.240)[.239]{.231} | 3.032(.242)[.240] | 3.031(.406)[.405
1| 1.001(.072)[.072]{.067} | 1.000(.072)[.072]{.067} | 0.999(.072)[.072] | 0.999(.072)[.072]
1 | 1.002(.106)[.106]{.099} | 1.002(.106)[.106]{.099} | 1.000(.106)[.106 1.000(.105)[.105
05 100 3 | 3.048(.335)[-331]{.492} | 3.013(.330)[.330]{.288} | 3.043(.340)[.336] | 3.016(.407)[.497
1| 0.996(.154)[.154]{.131} | 0.998(.154)[.154]{.131} | 0.992(.153)[.153] | 0.993(.151)[.151]
1| 0.997(.223)[.223]{.194} | 0.999(.223)[.223]{.196} | 0.992(.223)[.223] | 0.991(.221)[.221
250 3 | 3.027(.207)[.205]{.355} | 3.013(.205)[.205){.194} | 3.025(.209)[.207] | 3.028(.322)[.321
1| 1.001(.093)[.093]{.088} | 1.002(.093)[.093]{.088} | 0.999(.093)[.093] | 1.000(.093)[.093]
1 | 0.986(.146)[.145]{.134} | 0.986(.146)[.145]{.134} | 0.983(.146)[.145 0.983(.144)[.143
500 3 | 3.007(.145)[.144){.286} | 3.000(.144)[.144]{.141} | 3.006(.145)[.145] | 2.997(.227)[.227
1| 1.000(.072)[.072]{.068} | 1.000(.072)[.072]{.068} | 0.999(.072)[.072] | 0.999(.072)[.072]
1| 1.001(.104)[.104]{.099} | 1.001(.104)[.104]{.099} | 0.999(.104)[.104] | 1.000(.103)[.103]
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Table 5.4: Cont’d

Ao n  Bo QML [ ACQS [ RGMM [ ORGMM
DGP 1: Queen Contiguity (REG-1), Bo = (.3,.1,.1)’
5 100 .3 | .338(.154)[.149]{.139} | .323(.146)[.145]{.137} | .328(.154)[.151] | .306(.167)[.167]
1| .094(.163)[.163]{.159} | .094(.163)[.163]{.169} | .093(.162)[.162] | .092(.165)[.165]
1| .100(.204)[.204]{.195} | .100(.204)[.204]{.195} | .099(.202)[.202] | .100(.202)[.202]
250 .3 | .310(.082)[.081]{.082} | .303(.080)[.080]{.079} | .307(.081)[.081] | .300(.081)[.081]
1| .109(.096)[.096]{.096} | .109(.096)[.096]{.096} | .109(.096)[.095] | .108(.096)[.096]
1| .101(.139)[.139]{.134} | .096(.141)[.141]{.139} | .096(.141)[.141] | .096(.140)[.140]
500 .3 | .308(.060)[.059]{.059} | .304(.059)[.058]{.056} | .306(.064)[.064] | .302(.064)[.064]
1| .101(.067)[.067]{.068} | .101(.067)[.067]{.068} | .101(.067)[.067] | .100(.067)[.067]
1| .102(.100)[.100]{.098} | .102(.100)[.100]{.098} | .102(.100)[.100] | .101(.100)[.100]
-5 100 .3 | .306(.109)[.109]{.106} | .301(.108)[.108]{.104} | .305(.110)[.109] | .304(.110)[.110]
1| .100(.167)[.167]{.157} | .100(.168)[.168]{.159} | .099(.166)[.166] | .097(.168)[.168]
1| .087(.195)[.194]{.185} | .084(.199)[.198]{.189} | .082(.196)[.195] | .082(.196)[.195]
250 .3 | .303(.069)[.069]{.069} | .303(.069)[.069]{.068} | .305(.069)[.069] | .306(.069)[.069]
1| .097(.099)[.098]{.095} | .107(.100)[.100]{.095} | .106(.100)[.100] | .106(.100)[.099]
1| .096(.138)[.138]{.134} | .106(.138)[.138]{.133} | .105(.138)[.138] | .105(.138)[.138]
500 .3 | .301(.048)[.048]{.048} | .297(.049)[.049]{.048} | .298(.049)[.049] | .298(.049)[.049]
1| .100(.069)[.069]{.067} | .101(.069)[.069]{.067} | .101(.069)[.069] | .101(.069)[.069]
1| .100(.097)[.097]{.098} | .100(.097)[.097]{.098} | .100(.097)[.097] | .100(.097)[.097]
DGP 2: Queen Contiguity (REG-1), Bp = (.3,.1,.1)
5 100 .3 | .327(.136)[.133[{.128} | .311(.129)[.129]{.120} | .318(.134)[.133] | .251(.234)[.229]
1| .103(.161)[.161]{.153} | .103(.161)[.161]{.152} | .103(.161)[.161] | .102(.161)[.161]
1| .103(.194)[.194]{.189} | .094(.194)[.194]{.180} | .092(.193)[.193] | .093(.192)[.192]
250 .3 | .311(.080)[.079]{.087} | .304(.078)[.078]{.078} | .308(.079)[.079] | .280(.111)[.110]
1| .104(.095)[.095]{.093} | .108(.097)[.097]{.093} | .107(.097)[.097] | .106(.095)[.095]
1| .096(.130)[.130]{.132} | .096(.130)[.130]{.132} | .096(.129)[.129] | .096(.129)[.129]
500 .3 | .307(.057)[.057]{.064} | .305(.058)[.058]{.056} | .306(.064)[.063] | .292(.070)[.069]
1| .101(.069)[.069]{.067} | .101(.069)[.069]{.067} | .101(.069)[.069] | .100(.068)[.068]
1| .104(.102)[.102]{.098} | .094(.101)[.101]{.098} | .094(.101)[.101] | .092(.100)[.099]
-5 100 .3 | .306(.109)[.109]{.110} | .301(.108)[.108]{.103} | .306(.109)[.109] | .304(.111)[.111]
1| .104(.171)[171]{.162} | .104(.172)[.172]{.164} | .103(.170)[.170] | .103(.159)[.159]
1| .101(.194)[.194]{.181} | .089(.194)[.194]{.181} | .088(.192)[.191] | .084(.181)[.180
250 .3 | .300(.069)[.069]{.072} | .302(.067)[.067]{.066} | .304(.067)[.067] | .303(.070)[.070
1| .103(.095)[.095]{.093} | .103(.095)[.095]{.093} | .102(.095)[.094] | .101(.092)[.092]
1| .101(.133)[.133]{.132} | .095(.138)[.138]{.130} | .094(.138)[.138] | .093(.133)[.133
500 .3 | .299(.048)[.048]{.051} | .298(.048)[.048]{.048} | .299(.048)[.048] | .299(.049)[.049
1| .102(.067)[.067]{.068} | .102(.067)[.067]{.068} | .101(.067)[.067] | .100(.066)[.066]
1| .099(.099)[.099]{.096} | .103(.103)[.103]{.098} | .103(.102)[.102] | .103(.101)[.101]
DGP 3: Queen Contiguity (REG-1), Bo = (.3,.1,.1)
5 100 .3 | .334(.136)[.131]{.089} | .318(.128)[.127]{.115} | .325(.138)[.136] | .211(.315)[.302]
1| .102(.164)[.164]{.146} | .102(.164)[.164]{.145} | .101(.164)[.164] | .103(.166)[.166]
1| .105(.214)[.214]{.178} | .105(.213)[.213]{.178} | .104(.212)[.212] | .104(.209)[.209
250 .3 | .311(.079)[.078]{.060} | .304(.077)[.076]{.073} | .307(.078)[.078] | .239(.189)[.179
.1 | .104(.100)[.100]{.088} | .104(.100)[.100]{.089} | .103(.100)[.100] | .101(.095)[.095]
1| .103(.140)[.140]{.127} | .103(.140)[.140]{.127} | .103(.140)[.140] | .105(.137)[.136
500 .3 | .306(.056)[.055]{.046} | .302(.055)[.055]{.053} | .304(.055)[.055] | .258(.136)[.130
1| .102(.068)[.068]{.064} | .102(.068)[.068]{.064} | .102(.068)[.068] | .101(.067)[.067]
1| .097(.099)[.099]{.093} | .097(.099)[.099]{.094} | .096(.099)[.099] | .094(.096)[.096
-5 100 .3 | .308(.112)[.111]{.137} | .303(.110)[.110]{.098} | .307(.111)[.111] | .282(.118)[.117
1| .101(.163)[.163]{.142} | .102(.163)[.163]{.144} | .101(.162)[.162] | .096(.144)[.144]
1| .096(.204)[.204]{.170} | .096(.205)[.204]{.173} | .094(.203)[.202] | .089(.179)[.178
250 .3 | .305(.069)[.068]{.094} | .303(.068)[.068]{.065} | .305(.068)[.068] | .291(.078)[.078
1| .094(.097)[.097]{.089} | .094(.097)[.097]{.090} | .094(.096)[.096] | .093(.090)[.089]
1| .102(.136)[.136]{.124} | .102(.136)[.136]{.124} | .102(.136)[.136] | .102(.128)[.128
500 .3 | .302(.049)[.049]{.071} | .301(.049)[.049]{.047} | .302(.049)[.049] | .293(.057)[.057
1| .102(.068)[.068]{.065} | .102(.068)[.068]{.065} | .102(.067)[.067] | .102(.065)[.065]
1| .096(.093)[.093]{.094} | .096(.093)[.093]{.094} | .096(.093)[.093] | .093(.089)[.089]
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Table 5.5: Empirical Mean(rmse)[sd]{sd} of Estimators of 8 for SAR Model
Case I of Inconsistent QML estimators: Circular Neighbours (REG-1)

Ao n_ Bo | QML [ ACQS [ RGMM [ ORGMM
DGP 1: fo=(3,1,1)
5 100 3] 3.398(.598)[[719] | 3.116(.596)[.607]{.594} | 3.145(.641)[.624] | 3.104(.679)[.671]
1 | 1.001(.125)[.125] | 0.997(.125)[.125]{.118} | 0.993(.125)[.125] | 0.993(.126)[.126]
1 | 0.999(.190)[.190] | 0.992(.189)[.189]{.188} | 0.986(.188)[.187] | 0.987(.187)[.187]
250 3| 3.254(.346)[429] | 3.055(.350)[.355]{.349} | 3.067(.351)[.345] | 3.048(.370)[.367]
1 | 1.001(.076)[.076] | 0.998(.076)[.076]{.073} | 0.997(.076)[.076] | 0.997(.076)[.076]
1 | 1.011(.125)[.125] | 1.004(.124)[.124]{.119} | 1.002(.124)[.124] | 1.002(.124)[.124
500 3| 3.219(.263)[.342] | 3.024(.265)[.266]{.262} | 3.030(.266)[.264] | 3.021(.281)[.280
1 | 1.006(.054)[.055] | 1.000(.054)[.054]{.056} | 0.999(.054)[.054] | 0.999(.055)[.055]
1 | 1.008(.090)[.090] | 1.002(.089)[.089]{.089} | 1.001(.089)[.089] | 1.001(.089)[.089
-5 100 3| 2.897(.206)[.231] | 2.986(.259)[.259]{.270} | 2.981(.232)[.231] | 2.993(.245)[.245
1 | 1.003(.127)[.127] | 0.999(.127)[.127]{.120} | 0.996(.127)[.127] | 0.995(.127)[.127]
1 | 1.014(.191)[.191] | 1.003(.192)[.192]{.194} | 0.996(.192)[.192] | 0.993(.192)[.192
250 3| 2.898(.134)[.169] | 3.010(.177)[.177]{.166} | 3.000(.146)[.146] | 3.003(.154)[.154
1 | 1.005(.072)[.073] | 0.996(.072)[.072]{.074} | 0.995(.073)[.073] | 0.995(.073)[.073]
1 | 1.001(.122)[.122] | 0.996(.121)[.121]{.119} | 0.995(.121)[.121] | 0.995(.121)[.121
500 3 | 2.887(.101)[.152] | 3.011(.136)[.137]{.135} | 3.009(.115)[.115] | 3.011(.121)[.120
1 | 1.003(.055)[.055] | 1.000(.055)[.055]{.055} | 0.999(.055)[.055] | 0.999(.055)[.055]
1 | 1.002(.089)[.089] | 0.995(.089)[.089]{.088} | 0.994(.089)[.089] | 0.993(.089)[.089]
DGP 2: fp = (3,1,1)
5 100 3] 3.374(.572)[.683] | 3.104(.568)[.578]{.563} | 3.136(.623)[.607] | 3.092(.767)[.762]
1 | 1.009(.122)[.122] | 1.005(.122)[.122]{.115} | 1.001(.122)[.122] | 1.001(.121)[.121]
1 | 0.995(.193)[.193] | 0.988(.192)[.193]{.182} | 0.982(.192)[.191] | 0.983(.192)[.191
250 3| 3.229(.325)[.397] | 3.030(.327)[.328]{.330} | 3.045(.321)[.318] | 3.021(.399)[.399
1 | 1.000(.073)[.073] | 0.997(.073)[.073]{.072} | 0.995(.074)[.073] | 0.995(.074)[.074]
1 | 1.013(.118)[.118] | 1.006(.117)[.118]{.117} | 1.004(.118)[.118] | 1.005(.118)[.118
500 3 | 3.200(.261)[.329] | 3.003(.262)[.262]{.259} | 3.013(.265)[.264] | 3.005(.343)[.343
1 | 1.007(.054)[.055] | 1.001(.054)[.054]{.055} | 1.000(.054)[.054] | 1.000(.054)[.054]
1 | 1.006(.089)[.089] | 1.001(.088)[.088]{.087} | 1.000(.088)[.088] | 1.000(.088)[.088
-5 100 3 | 2.907(.209)[.229] | 3.002(.260)[.260]{.273} | 2.992(.239)[.239] | 2.994(.265)[.265
1| 0.997(.125)[.125] | 0.993(.124)[.124]{.119} | 0.990(.125)[.124] | 0.991(.124)[.124]
1 | 1.016(.198)[.199] | 1.003(.199)[.199]{.195} | 0.997(.200)[.200] | 0.998(.199)[.199
250 3 | 2.892(.135)[.173] | 3.000(.168)[.168]{.161} | 2.995(.145)[.145] | 2.996(.169)[.168
1 | 1.010(.075)[.076] | 1.001(.075)[.075]{.072} | 1.000(.076)[.076] | 1.000(.076)[.076]
1 | 0.996(.122)[.122] | 0.991(.121)[.121]{.116} | 0.989(.121)[.121] | 0.990(.121)[.121
500 3 | 2.875(.101)[.161] | 2.997(.133)[.133]{.129} | 2.994(.113)[.113] | 2.991(.137)[.137
1 | 1.007(.056)[.057] | 1.004(.056)[.056]{.055} | 1.003(.056)[.056] | 1.003(.056)[.056]
1 | 1.010(.090)[.090] | 1.002(. 090)[ 090]{.088} | 1.001(.090)[.090] | 1.001(.090)[.090]
DGP 3: [ =(3,1,1)
5 100 3 [ 3.330(.573)[.661] | 3.087(.509)]. 516]{.475} 3.110(.558)[.547] | 3.035(.882)[.881]
1 | 1.002(.123)[.123] | 0.998(.123)[.123]{.109} | 0.994(.122)[.122] | 0.994(.119)[.118]
1 | 1.011(.193)[.193] | 1.005(.191)[.191]{.173} | 1.001(.190)[.190] | 1.003(.189)[.189
250 3 | 3.215(.347)[.408] | 3.032(.321)[.323]{.305} | 3.040(.329)[.326] | 3.018(.440)[.439
1 | 1.003(.071)[.071] | 1.001(.071)[.071]{.068} | 0.999(.072)[.072] | 0.999(.071)[.071]
1 | 1.010(.121)[.121] | 1.003(.120)[.120]{.111} | 1.002(.120)[.120] | 1.002(.120)[.120
500 3 | 3.194(.274)[.336] | 3.016(.246)[.246]{.236} | 3.019(.254)[.253] | 3.015(.362)[.362
1 | 1.006(.055)[.055] | 1.001(.055)[.055]{.052} | 1.000(.055)[.055] | 1.000(.055)[.055]
1 | 1.004(.086)[.086] | 0.999(.086)[.086]{.084} | 0.998(.086)[.086] | 0.998(.086)[.086
-5 100 3 | 2.898(.193)[.219] | 2.971(.241)[.243]{.263} | 2.969(.226)[.223] | 2.964(.264)[.262
1 | 1.008(.122)[.122] | 1.005(.121)[.121]{.110} | 1.003(.121)[.121] | 1.003(.120)[.120]
1 | 1.013(.192)[.192] | 1.004(.192)[.192]{.174} | 0.998(.193)[.193] | 1.000(.193)[.193
250 3 | 2.900(.131)[.165] | 3.006(.174)[.174]{. 156} | 2.998(.146)[.146] | 2.993(.184)[.184
1 | 1.003(.077)[.077] | 0.995(.076)[.077]{.071} | 0.994(.077)[.077] | 0.995(.078)[.078]
1 | 1.009(.123)[.124] | 1.004(.123)[.123]{.114} | 1.003(.123)[.123] | 1.004(.122)[.122
500 3 | 2.879(.105)[.161] | 2.999(.136)[.136]{.121} | 2.996(.112)[.112] | 2.998(.146)[.146
1 | 1.001(.058)[.058] | 0.998(.058)[.058]{.053} | 0.997(.059)[.059] | 0.997(.059)[.058]
1 | 1.006(.095)[.096] | 0.998(.095)[.095]{.086} | 0.997(.095)[.095] | 0.997(.095)[.095]
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Table 5.6: Empirical Mean(rmse)[sd]{sd} of Estimators of 8 for SAR Model
Case II of Inconsistent QML estimators: Group Interaction (REG-2)

Ao n_ Bo | QML [ ACQS [ RGMM [ ORGMM
DGP 1: fo=(3,1,1)
5 100 3] 3.493(.795)[.623] | 3.146(.645)[.628]{.599} | 3.207(.698)[.667] | 3.196(.714)[.687]
1| 1.131(.253)[.217] | 1.036(.221)[.218]{.205} | 1.043(.237)[.233] | 1.043(.239)[.235]
1 | 1.096(.272)[.254] | 1.015(.245)[.244]{.247} | 1.019(.260)[.260] | 1.019(.262)[.261]
250 3| 3.239(423)[.348] | 3.041(.358)[.355]{.349} | 3.074(.375)[.367] | 3.054(.397)[.394]
1 | 1.059(.160)[.149] | 1.008(.149)[.149]{.142} | 1.012(.151)[.151] | 1.008(.155)[.155]
1 | 1.058(.160)[.149] | 1.007(.149)[.149]{.139} | 1.011(.152)[.151] | 1.008(.155)[.155
500 3| 3.173(291)[.234] | 3.017(.237)[.236]{.239} | 3.038(.245)[.242] | 3.027(.258)[.256
1 | 1.045(.101)[.090] | 1.002(.090)[.090]{.091} | 1.006(.091)[.091] | 1.003(.093)[.093]
1 | 1.045(.106)[.096] | 1.004(.096)[.096]{.099} | 1.008(.097)[.096] | 1.005(.099)[.099
-5 100 3| 3.070(.388)[.382] | 3.075(.489)[.483]{.480} | 3.104(.493)[482] | 3.097(.521)[.512
1 | 1.011(.168)[.168] | 1.011(.183)[.182]{.202} | 1.009(.190)[.190] | 1.009(.194)[.194]
1 | 1.019(.230)[.229] | 1.020(.247)[.246]{.245} | 1.016(.243)[.242] | 1.015(.245)[.245
250 3| 2.938(.251)[.243] | 3.015(.308)[.307]{.301} | 3.033(.296)[.294] | 3.025(.312)[.310
1 | 0.980(.129)[.127] | 0.997(.135)[.135]{.134} | 0.998(.136)[.136] | 0.997(.139)[.139]
1 | 0.982(.127)[.125] | 1.000(.134)[.134]{.131} | 1.001(.134)[.134] | 1.001(.136)[.136
500 3 | 2.918(.189)[.170] | 3.013(.216)[.215]{.204} | 3.023(.202)[.200] | 3.017(.212)[.212
1 | 0.976(.082)[.078] | 1.001(.087)[.087]{.083} | 1.002(.083)[.083] | 1.001(.085)[.085]
1 | 0.976(.086)[.083] | 1.000(.088)[.088]{.092} | 1.001(.087)[.087] | 0.999(.089)[.089]
DGP 2: fp = (3,1,1)
5 100 3] 3.397(.746)[.631] | 3.057(.622)[.620]{.654} | 3.088(.693)[.688] | 3.027(.786)[.786]
1 | 1.106(.239)[.214] | 1.012(.213)[.213]{.198} | 1.009(.234)[.234] | 0.998(.255)[.255]
1 | 1.084(.277)[.264] | 1.003(.252)[.252]{.239} | 0.999(.275)[.275] | 0.989(.285)[.285
250 3| 3.211(.408)[.349] | 3.006(.349)[.349]{.333} | 3.036(.366)[.364] | 2.979(.450)[.449
1 | 1.045(.152)[.146] | 0.993(.145)[.144]{.141} | 0.996(.148)[.148] | 0.984(.165)[.165]
1 | 1.046(.153)[.145] | 0.993(.144)[.144]{.138} | 0.997(.148)[.148] | 0.984(.163)[.162
500 3 | 3.172(.287)[.229] | 3.016(.230)[.230]{.235} | 3.036(.238)[.235] | 3.005(.303)[.303
1 | 1.049(.102)[.090] | 1.005(.090)[.090]{.091} | 1.009(.091)[.091] | 1.001(.105)[.105]
1 | 1.046(.110)[.100] | 1.005(.101)[.101]{.099} | 1.008(.101)[.101] | 1.001(.112)[.112
-5 100 3 | 3.055(.397)[.394] | 3.073(.520)[.515]{.508} | 3.096(.508)[.499] | 3.031(.598)[.597
1 | 1.016(.174)[.173] | 1.020(.197)[.196]{.218} | 1.019(.197)[.196] | 1.004(.214)[.214]
1 | 1.004(.225)[.225] | 1.009(.246)[.246]{.260} | 1.001(.241)[.241] | 0.991(.248)[.248
250 3 | 2.939(.247)[.239] | 3.018(.301)[.300]{.392} | 3.031(.286)[.284] | 2.992(.357)[.357
1 | 0.986(.128)[.127] | 1.006(.136)[.136]{.133} | 1.005(.137)[.137] | 0.997(.149)[.148]
1 | 0.986(.123)[.122] | 1.005(.132)[.131]{.130} | 1.006(.130)[.130] | 0.997(.140)[.140
500 3 | 2.912(.195)[.174] | 3.003(.216)[.216]{.200} | 3.015(.206)[.205] | 2.993(.253)[.253
1 | 0.976(.081)[.078] | 1.000(.085)[.085]{.083} | 1.002(.083)[.083] | 0.996(.091)[.091]
1 | 0.982(.090)[.088] | 1.005(.093)[.093]{.092} | 1.007(.094)[.093] | 1.002(.100)[.100]
DGP 3: [ =(3,1,1)
5 100 3 | 3.430(.770)[.638] | 3.111(.586)[.575]{.516} | 3.166(.723)[.704] | 3.101(.899)[.893]
1| 1.111(.242)[.215] | 1.024(.206)[.205]{.188} | 1.028(.245)[.244] | 1.015(.277)[.277]
1 | 1.081(.281)[.269] | 1.009(.256)[.256]{.234} | 1.010(.276)[.276] | 0.998(.289)[.289
250 3 | 3.188(.390)[.342] | 3.002(.321)[.321]{.309} | 3.030(.343)[.342] | 2.980(.468)[.467
1 | 1.044(.157)[.151] | 0.997(.149)[.149]{.135} | 0.999(.153)[.153] | 0.988(.174)[.174]
1 | 1.042(.148)[.143] | 0.994(.139)[.139]{.132} | 0.997(.143)[.143] | 0.986(.163)[.162
500 3 | 3.164(.287)[.235] | 3.016(.220)[.219]{.220} | 3.038(.231)[.228] | 3.023(.314)[.313
1 | 1.042(.101)[.092] | 1.002(.087)[.087]{.087} | 1.006(.090)[.090] | 1.003(.108)[.108]
1 | 1.045(.111)[.101] | 1.007(.099)[.098]{.094} | 1.010(.099)[.098] | 1.007(.112)[.111
-5 100 3 | 3.076(.397)[.390] | 3.066(.477)[.473]{.564} | 3.122(.516)[.501] | 3.061(.656)[.653
1 | 1.016(.172)[.171] | 1.014(.187)[.186]{.194} | 1.020(.194)[.193] | 1.007(.214)[.214]
1 | 0.996(.224)[.224] | 0.994(.238)[.238]{.233} | 0.993(.235)[.235] | 0.982(.245)[.245
250 3 | 2.952(.245)[.240] | 3.036(.319)[.317]{.285} | 3.053(.304)[.299] | 3.015(.407)[.407
1 | 0.986(.136)[.135] | 1.005(.143)[.142]{.130} | 1.006(.142)[.142] | 0.998(.155)[.155]
1 | 0.987(.122)[.121] | 1.007(.133)[.132]{.127} | 1.008(.132)[.131] | 1.000(.147)[.147
500 3 | 2.916(.186)[.166] | 3.011(.203)[.202]{.195} | 3.022(.194)[.192] | 3.002(.262)[.262
1 | 0.975(.083)[.079] | 1.000(.084)[.084]{.082} | 1.002(.083)[.083] | 0.997(.095)[.095]
1 | 0.976(.091)[.088] | 1.000(.093)[.093]{.090} | 1.001(.093)[.093] | 0.997(.099)[.099]
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where G1,,(6) = B, (p)G1,(N) B, 1 (p), Gan(p) = Gon(p) My (p), Gin(A) = Wi, AL (),
and Ga,(p) = Wa, B, '(p). Using similar arguments as given in Section 5.3, we
have, after some algebraic manipulations, the following adjusted concentrated

score function,

Yo () Ma(p) G5, (9)Ya(6)
7 Y, (0)My(p ) Ya()
)
(

Un(6) = (5.24)
Y (6) My (p) G5, (p) Y0 (9)

Yi(6)Mn(p)Ya(0)
where G°, (8) = G,(8) — diag(M,,(p)) ~*diag[M,(p) G ()], 7 = 1,2.

The ACQS estimator of § is defined as §, = arg{t*(8) = 0}, and the ACQS
estimators of 8 and o are 8, = £,(6,) and 62 = 62(5,). To the best of our
knowledge, the three-step estimator of Kelejian and Prucha (2010) may be the
only heteroskedasticity robust estimator for the SARAR(1,1) model available in
the literatureE Thus, it would be of a great interest to investigate and compare
the finite sample properties of the three-step estimator and the proposed ACQS
estimator estimator for the SARAR(1,1) model. For brevity, Table 5.7 presents
a small set of Monte Carlo results that serve such purposes, and more results
are available from the authors. Both the reported and unreported Monte Carlo
results show that the proposed ACQS estimator has an excellent finite sample
performance, and it outperforms the three-step estimator of Kelejian and Prucha
(2010) from a combined consideration in terms of bias, consistency and efﬁciencyﬂ

For heteroskedasticity robust inferences based on the SARAR(1,1) model, one
needs the feasible heteroskedasticity robust estimators of the asymptotic variances

of 6 and f3,. Under an extended set of regularity conditions and using the mul-

14 Arraiz, et al. (2010) provide some additional details for this estimator including some Monte
Carlo results.

15 A more rigorous comparison may be interesting but beyond the scope of this chapter. The
robust GMM approach of Lin and Lee (2010) may lead to a more efficient estimator than does the
three-step approach of Kelejian and Prucha (2010), but from Lin and Lee (2010) it is not clear
how to extend their robust GMM estimation approach for the SAR to the general SARAR(1,1)
model.
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tivariate CLT for linear-quadratic forms of Kelejian and Prucha (2010, Appendix

A), we can show that as n — oo,

V6, —6) =5 N(0, lim 72(5,)), and 72(5,) = @, 72(¢) ;"

n n
n—oo

(5.25)

where ®,, equals to —E[;2- w (80)] or its first-order term, and 72(¢%) is the first-
order terms of Var[y/n*(6)]. Both ®, and 72(¢)*) possess analytical expressions
but are not needed for practical applications as the former can be estimated consis-

tently by @, = U (8o)| s0—3,» and the latter by the following OPG estimator:

86’
) =3 &Y (5.26)

where Tm = (51n,i+ﬁ1n,ii€n,i+éln,i; §2n,i+ﬁ2n,ii€n,i+62n,i)la 57% = (Pﬂ;"i_qun)gna r=
1,2, €, = Y(Sn) — Bn(ﬁ)Xan, and P,, and ¢, are defined in the following asymp-

totic representation:

~ \/5102 (ElnplnEn + C,1n€n> + OP(1)7

Vil = (5.27)

\/%Jg (E/npgnﬁn + cgnen) + 0,(1),

where P,, = Mn@,‘jn and ¢, = MnéﬁanXnﬁo, r = 1,2, with py,, P% and
P! denoting, respectively, the diagonal elements, the upper and lower triangular
matrices of P.,.
With the asymptotic results for Sn, one can easily derive the asymptotic results
for 3,. Under a similar set of regularity conditions, we can show that as n — oo,
Vi, — o) 2> N0, lim (X,B,B,X,)" X\ B, A, B, X, (X, B,B,X,) ™),

(5.28)

where,
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Ay = nog Hy 1 11 (00) 0, +2v/n(0g  Pysut-Hucin, 05 Py spt-HiCon) @3 (10, 0,)',
sn = BE(e3), P4 = diag(Pr), M = BuG1aXnBo, 7211(9,) is the top-right corner
element of Tﬁ(gn), and 0, is an n x 1 vector of 0’s. With the estimates ®,, and
72(1*) defined above, the estimates 3, = € and H, = 6, 2diag(¢2) of s, and H,,,

and the plug-in estimates for the remaining quantities, a consistent estimate for
72(B%) follows.

The proposed methods can be further extended. For example, the SARAR(p, q),
which contains spatial lags of order p and spatial autoregressive errors of order ¢,
can be dealt with in a similar manner as for the SARAR(1,1) model. To have an
idea on how our methods can be extended to the SARAR(p, ¢) model, note that the
Gaussian likelihood takes an identical form as for SARAR(1,1), except that
now A,(\) =1, — Z?Zl AWy jn and By, (p) = I, — 23:1 PiWain, A ={A1,..., \p}
and p = {p1,...,pg}, see Lee and Liu (2010). Thus, the concentrated scores and
their adjustment can be found in a similar manner, resulting ACQS estimators
for the SARAR(p, ¢) model that are robust against unknown heteroskedasticitym
Moving further, our methods can be applied to give heteroskedasticity robust
estimator for the fixed effects spatial panel data model. As argued in the intro-
duction, heteroskedasticity is common particularly in spatial models. This makes
it more desirable to develop heteroskedasticity robust inference methods for these
models. The methods proposed in this chapter shed much light on these intriguing
research problems. However, formal studies on these models, including detailed
proofs of the results — and the proofs of consistency of the variance
estimates therein, are beyond the scope of this chapter, and will be pursued in

future research.

16T ee and Liu (2010) proposed efficient GMM estimation of this model under homoskedasticity
assumption. Badinger and Egger (2011) extend the estimation strategy of Kelejian and Prucha
(2010) to give a heteroskedasticity robust three-step estimator of the SARAR(p, ¢) model, where
some Monte Carlo results are presented under a SARAR(3,3) model and some special spatial
weight matrices.
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Table 5.7: Empirical Mean(rmse)[sd] of Estimators of A and p for SARAR(1,1) Model
Case I of Inconsistent QML estimators: Circular Neighbours (REG-1)

Par [ QML-A [ ACQS-A [ KP-\ [ QML-p [ ACQS-p [ KP-p
DGP 1: fo = (3,1,1)

1-1 | 470(141)[.138] | .472(.197)[.195] | .578(.219)[.204] | .409(.195)[.172] | .446(.237)[.231] | .335(.341)[.299]
.484(.080)[.078] .482(.118)[.117] .528(.109)[.105] .445(.116)[.102] .488(.140)[.139] .479(.180)[.179]
.487(.065)[.064] .489(.097)[.097] .515(.093)[.092] .454(.088)[.075] .491(.110)[.109] .512(.156)[.156]
.490(.043)[.042] .495(.060)[.059] .505(.057)[.057] .458(.066)[.051] .497(.070)[.070] .533(.103)[.097]

1-2 | .372(.173)[.116] .418(.233)[.218] .494(.143)[.143] | -.307(.249)[.158] | -.505(.252)[.239] | -.507(.244)[.244]
.411(.109)[.063] .488(.095)[.094] .501(.072)[.072] | -.324(.202)[.100] | -.502(.153)[.153] | -.492(.150)[.150]
.400(.112)[.050] .498(.071)[.071] .498(.060)[.060] | -.305(.208)[.072] | -.504(.126)[.125] | -.476(.121)[.119]
.421(.084)[.030] .502(.047)[.047] .499(.035)[.035] | -.321(.186)[.051] | -.506(.109)[.108] | -.470(.083)[.078]

2-1 | .280(.144)[.141] | .250(.200)[-200] | .333(.239)[.224] | .374(.208)[.165] | .441(.225)[.217] | .358(.307)[.272]
.292(.095)[.086] .253(.128)[.127] .297(.133)[.124] .399(.140)[.097] .470(.135)[.131] .464(.176)[.172]
.293(.080)[.067] .252(.106)[.106] .276(.105)[.101] .408(.119)[.075] .491(.109)[.107] .499(.146)[.146]
.287(.057)[.043] .250(.064)[.064] .259(.064)[.064] .421(.093)[.049] .494(.065)[.065] .524(.092)[.089]

2-2 | .113(.189)[.130] .233(.188)[.163] .235(.186)[.186] | -.330(.231)[.156] | -.582(.269)[.249] | -.507(.259)[.259]
.156(.120)[.074] | .239(.131)[.131] | .248(.092)[.092] | -.337(.188)[.095] | -.503(.209)[.209] | -.484(.151)[.150]
.140(.125)[.059] .248(.099)[.099] .247(.079)[.079] | -.319(.193)[.069] | -.510(.115)[.114] | -.484(.117)[.116]
.164(.093)[.036] | .250(.052)[.052] | .250(.045)[.045] | -.332(.175)[.047] | -.501(.102)[.101] | -.475(.080)[.076]

3-1 | .082(.168)[.147] | .015(.210)[.209] | .080(.236)[.222] | .335(.239)[.172] | .428(.241)[.230] | .367(.292)[.260]
.090(.124)[.086] | .012(.126)[.125] | .047(.131)[.123] | .373(.160)[.097] | .472(.127)[.124] | .467(.165)[.161]
.094(.116)[.067] .006(.099)[.099] .025(.103)[.100] .380(.140)[.072] .495(.093)[.091] .502(.131)[.131]
.082(.093)[.043] .001(.062)[.062] .009(.064)[.063] .397(.114)[.048] .496(.059)[.059] .526(.088)[.083]

32 | -.104(.163)[.125] | -.027(.171)[.148] | -.027(.196)[.194] | -.353(.208)[.147] | -.488(.208)[.187] | -.485(.250)[.250]
-.078(.109)[.076] | -.023(.152)[.150] | -.006(.108)[.108] | -.356(.170)[.091] | -.489(.117)[.116] | -.481(.148)[.147]
-.086(.106)[.062] | .000(.123)[.123] | -.001(.096)[.096] | -.343(.170)[.065] | -.501(.102)[.102] | -.478(.120)[.117]
-.071(.081)[.040] | .001(.060)[.059] | -.001(.055)[.055] | -.350(.156)[.045] | -.502(.106)[.104] | -.473(.081)[.077]

4-1 | -.126(.183)[.135] | -.219(.194)[.192] | -.189(.210)[.201] | .323(.246)[.170] .430(.239)].228] .395(.258)[.235]
-.132(.144)[.082] | -.240(.106)[.105] | -.224(.117)[.114] | .363(.169)[.099] | .478(.112)[.109] | .485(.150)[.149]
-.119(.148)[.068] | -.247(.090)[.090] | -.236(.095)[.093] | .365(.155)[.075] .490(.085)[.085] .510(.118)[.118]
-.131(.127)[.043] | -.247(.057)[.057] | -.242(.055)[.055] | .376(.134)[.049] .492(.056)[.055] .520(.079)[.076]

42 | -.303(.130)[.119] | -.300(.217)[.215] | -.279(.208)[.206] | -.395(.168)[.131] | -.484(.224)[228] | -.488(.221)[.221]
-.288(.084)[.075] | -.272(.155)[.154] | -.260(.122)[.121] | -.384(.145)[.086] | -.487(.200)[.199] | -.475(.152)[.150]
-.289(.069)[.057] | -.249(.106)[.106] | -.255(.098)[.098] | -.378(.137)[.061] | -.508(.101)[.100] | -.472(.115)[.112]
-.284(.050)[.037] | -.244(.056)[.056] | -.253(.058)[.058] | -.381(.126)[.043] | -.506(.104)[.103] | -.471(.081)[.076]

5-1 | -.357(.192)[.128] | -.458(.165)[.160] | -.449(.169)[.161] | .320(.244)[.164] | .438(.201)[.191] | .413(.215)[.197]
-.373(.146)[.071] | -.491(.082)[.082] | -.481(.088)[.086] | .362(.169)[.097] | .483(.101)[.100] | .488(.126)[.126]
-.352(.159)[.057] | -.496(.068)[.068] | -.493(.073)[.073] | .357(.160)[.072] .491(.074)[.074] .509(.097)[.097]
-.374(.131)[.037] | -.499(.041)[.041] | -.498(.045)[.045] | .377(.132)[.047] | .497(.047)[.047] | .526(.069)[.064]

52 | -.478(.104)[.101] | -.523(.180)[.179] | -.518(.189)[.188] | -.437(.140)[.125] | -.490(.215)[.214] | -.491(.217)[.217]
-.480(.069)[.066] | -.513(.128)[.126] | -.511(.111)[.111] | -.424(.113)[.084] | -.491(.146)[.145] | -.474(.142)[.140]
-.472(.057)[.050] | -.498(.109)[.109] | -.501(.093)[.093] | -.429(.092)[.059] | -.507(.107)[.106] | -.474(.113)[.110]
-.478(.040)[.033] | -.499(.054)[.053] | -.502(.056)[.056] | -.424(.086)[.042] | -.500(.077)[.076] | -.470(.078)[.073]

Note: (i) The DGP used: Y, = AW,oYy + tnfBo + X1nfB1 + XonfB2 + €n, €n = pWhren + vn.
(ii) Par = i-j, where ‘¢ = 1,2,3,4,5’ represents ‘A = .5,.25,0, —.25, —.5"; ‘j = 1,2’ represents ‘p = .5, —.5".
Under each Par setting, n = 100, 250, 500, 1000, corresponding to the four rows.

(iii) KP denotes Kelejian and Prucha’s (2010) three-step estimator.
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Table 5.7: Cont’d
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280(.092)[.087] | .244(.126)[.126] | .282(.127)[.123] | .407(.136)[.099] | .478(.134)[.132] | .478(.177)[.176]
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081] | -.318(.197)[.076] | -.502(.129)[.127] | -.479(.121)[.119]
046] | -.334(.174)[.053] | -.507(.101)[.109] | -.474(.083)[.079]
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218] | .339(.231)[.166] | .419(.235)[.221] | .371(.282)[.250]
125] | .376(.161)[.103] | .472(.128)[.125] | .476(.166)[.164]
100] | .382(.138)[.071] | .490(.088)[.087] | .502
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—.087(.156)[.129] | -.026(.205)[.201] | -.012(.199)[.199] | -.367(.196)[.144] | -.479(.211)[.197] | -.492(.238)[.23]
-.078(.109)[.077] | -.021(.138)[.137] | -.007(.109)[.109] | -.356(.173)[.096] | -.487(.195)[.195] | -.479(.152)[.150]
-.088(.108)[.062] | -.005(.106)[.106] | -.009(.092)[.091] | -.344(.171)[.071] | -.508(.115)[.115] | -.474(.120)[.117]
-.070(.080)[.039] | .008(.057)[.057] | .000(.054)[.054] | -.352(.156)[.049] | -.508(.107)[.105] | -.472(.080)[.075]
~132(.186)[.144] | -.214(.201)[198] | -.185(.215)[.205] | .329(.238)[.165] | .428(.227)[.215] | .393(.245)[.221]
-.132(.148)[.090] | -.237(.119)[.118] | -.219(.120)[.116] | .366(.170)[.105] | .477(.128)[.126] | .481(.150)[.149]
- 119(.149)[.072] | -.246(.088)[.088] | -.236(.096)[.095] | .368(.153)[.076] | .491(.082)[.082] | .508(.114)[.114]
-.133(.125)[.045] | -.248(.055)[.055] | -.244(.057)[.056] | .382(.129)[.051] | .497(.054)[.054] | .527(.079)[.074]
~297(.132)[.123] | -.287(.206)[.205] | -.280(.207)[.205] | -.401(.175)[.144] | -.462(.232)[.235] | -.492(.233)[.233]
-.288(.083)[.074] | -.278(.107)[.104] | -.261(.115)[.115] | -.387(.146)[.092] | -.479(.157)[.156] | -.480(.151)[.150]
-.289( 100)[.100] | -.253(.102)[.102] | -.381(.135)[.064] | -.508(.117)[.117] | -.480(.118)[.116]
-.283(.050)[.038] | -.252(.053)[.053] | -.254(.058)[.058] | -.381(.127)[.045] | -.509(.107)[.106] | -.470(.082)[.076]

-.380(.144)[.080] | -.492(.082
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5.6 Conclusion

This chapter looks at heteroskedasticity robust QML-type estimation for spa-
tial autoregressive (SAR) models. We provide clear conditions for the regular
QML estimator to be consistent even when the disturbances suffer from het-
eroskedasticity of unknown form. When these conditions are violated, the regular
QML estimator becomes inconsistent and in this case we suggest a ACQS esti-
mator by making a simple adjustment to the score function so that it becomes
robust to unknown heteroskedasticity. This method is proven to work well in
the simulation studies and was shown to be robust to many situations including,
deteriorated signal strength as well as non-normal errors (besides the unknown
heteroskedasticity). To provide inference methods robust to heteroskedasticity
and non-normality, OPG-based estimators of the variances of QML estimator and
ACQS estimator are introduced. Monte Carlo results show that the proposed
ACQS estimator for the SAR model and the associated robust variance estimator
work very well in finite samples.

The proposed methodology (adjusting score for achieving heteroskedasticity
robustness for parameter estimation and finding a suitable OPG for achieving
heteroskedasticity robustness for variance estimation) has a great potential to be
extended to more general models, not necessarily the spatial models, thus paving a
simple way for developing heteroskedasticity robust inference methods for applied

researchers.
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CHAPTER 6

A General Method for Heteroskedasticity Robust Inferences

of Spatial Econometric Models

6.1 Introduction

The spatial econometric literature has come a long way in filling many theoret-
ical gaps in handling estimation and inference related issues of spatial models[T] Of
the many challenges, estimation and inference in the presence heteroskedasticity
is important since heteroskedasticity may occur more naturally in spatial models
due to peer interaction as a result of unobservable heterogeneous characteristics of
spatial units that does not interact with each other (Glaeser, 1996). Heteroskedas-
ticity will be a conspicuous problem if this peer interaction is misspecified (Anselin,
1988b). The effect of heteroskedasticity in spatial models appeared as early as

in Anselin (1988b) which provides tests for spatial dependence in the presence

1See Cliff and Ord (1972,1973, 1981), Ord (1975), Anselin (1988b, 2003), Anselin and Bera
(1998), Le Sage and Pace (2009) for some pioneering theoretical work on spatial models.
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of heteroskedasticity. However, estimation in the presence of heteroskedasticity
was not considered until recent timesP] Most of these available methodologies
concentrate on specific spatial models and provide heteroskedasticity robust esti-
mators for that particular spatial model. Of the existing heteroskedasticity robust
estimators, the robust generalised method of moments (GMM) estimator based
on quadratic moments given in Lin and Lee (2010) is popular due to its effi-
ciency and ease of implementation. However, this estimator is given for a spatial
autoregressive model with one lagged dependent variable (SLD model), may not
readily carry over its desirable properties when more complex spatial dependencies
are present. The robust three step estimator combining two stage least squares
(2SLS) and GMM given in Kelejian and Prucha (2010) is also popular due to its
simplicity and versatility as it has been widely extended to many complex spatial
econometric models. However, this estimator, especially the 2SLS estimator may
lack efficiency as its estimation does not consider the reduced form of the model
but rather only the deterministic part.

In the previous chapter we introduce an adjusted concentrated quasi score
(ACQS) estimator which has the advantage of ease of implementation and enjoys
the efficiency aspect as it is based on the quasi maximum likelihood function.
However, Chapter 5 treatment focuses on a SLD model. Since spatial interaction
can enter a model in many forms, a unified method that is robust to heteroskedas-
ticity, but is also simple to implement and efficient will be useful. This chapter
looks at a general methodology that can handle heteroskedasticity of unknown
form in a wide class of spatial models and still perform well in both finite and
large samples. The proposed ACQS estimator is arrived at by adjusting the con-

centrated quasi score function for the spatial parameters to make it robust against

2See Kelejian and Prucha (2007, 2010), Le Sage (1997), Lin and Lee (2010), Arraiz et al.
(2010), Badinger and Egger (2011, 2015), Jin and Lee (2012), Baltagi and Yang (2013), Dogan
and Tagpinar (2014) for related work.
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unknown heteroskedasticity in a general spatial econometric model. In order to
conduct heteroskedasticity robust inferences, we also propose an outer-product-
of-gradient (OPG) method for estimating the variance of the ACQS estimator.
We establish the consistency and asymptotic normality of the proposed estima-
tor. The general method that we propose is discussed in detail two interesting
applications: (a) higher order spatial autoregressive model with SLD and spatial
autoregressive error dependent (SED) variables, also known as the SARAR(p, q)
model, and (b) fixed effects spatial panel data (SPD) model with SARAR(1,1).

For the SPD model, a key feature is the effect of the transformation of vari-
ables in order to eliminate the incidental parameters driven by the fixed effects.
The resulting transformed spatial model has the added complication of the dis-
turbances being dependent in addition to heteroskedastic. This fact in particular
causes a problem in applying the OPG method to estimate the standard errors.
The problem is tackled by making use of the special properties of the transformed
model.

Monte Carlo results show that the ACQS estimator is easy to implement, com-
putationally as simple as the regular QML estimator and is effective in attaining
consistency under unknown heteroskedasticity while limiting the compromise on
the efficiency aspect of the usual QML estimator. As the ACQS estimator cap-
tures the extra variability coming from the estimation of the regression coefficients
and the average of error variance, the ACQS estimator generally outperforms the
regular QML estimator when the latter is indeed consistent. As discussed in de-
tail later, heteroskedasticity does not affect the consistency of the QML estimator
of the covariate effects in general. However, since the estimate of the standard
errors depends on the estimate of the spatial parameters, direct inferences based
on standard t—statistics are likely to be affected by heteroskedasticity. In this

case we propose refined t—statistics for covariate effects which are robust.
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The rest of the chapter is organised as follows. In the next section we illus-
trate the general derivation of the robust ACQS estimator and the method of
robust estimation of the standard errors. Section 6.3 gives the application of the
methods in a SARAR(p, ¢) model and Section 6.4 gives a detailed application of
the methods in a fixed effects spatial panel data model. Section 6.5 gives Monte
Carlo results and Section 6.6 concludes the chapter. All accompanying lemmas

and proofs of theorems are given in the Appendices.

6.2 General Method for Heteroskedasticity Ro-
bust Estimation

Consider the general model,
f(Ynanywlna--kan;ﬁa )‘) = €p, (61)

with a dependent variable Y,, conditional on a set of independent variables X,
and spatial weight matrices Wy, ..., Wy,. Parameter vector ¥ denotes the pa-
rameters of the model and A denotes the spatial parameters. ¢, is an n x 1
vector of model errors, uncorrelated with mean 0 and variances o?h; where h; >
0,vi =1,...,nand Y.  h; = n. Clearly in the case of identically distributed
errors, h; = 1,Vi. Popular spatial regression models can be written in this
form. For example, the pth order spatial autoregressive lagged dependent model
Y, =3P  ANW,Y, + X0 + €, can be written in the form, C,, (A1,...,\,) Y, —
X0 = €, where Cy, (A1,...,Ay) = I, — > P_ AW, and I, is an n x n iden-
tity matrix. The gth order spatial error dependent model, Y, = X, + u,, with
Up = Y 0 A Wity +€, can be written as C, (A, ..., A) (Y, — X,,0) = €,. Com-

bining these two models gives a SARAR(p, ¢) model that can be written in the
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form, Coy, (p1,. .., pg) [Cin (M1, ..., Ap) Yo, — X, 5] = €,. Fixed effects spatial panel
data models can also be written in the form given in (6.1]) after eliminating the

fixed effects using a suitable transformation.

6.2.1 Robust estimation of model parameters

When the errors are homoskedastic, the quasi maximum likelihood estimators
of (¥, A) of the model given in (6.1)) are consistent as illustrated time and again
in the literatureﬂ When the errors are heteroskedastic, the QML estimator of ¢
remains consistent while that of A\ becomes inconsistent in general (See Lin and
Lee (2010), Liu and Yang (2015b)). As such it makes sense to use the concen-
trated quasi log-likelihood function for estimation by concentrating out ¢ from the
Gaussian log-likelihood function derived under homoskedasticity. This makes it
easier to make an adjustment to the concentrated quasi log-likelihood based esti-
mating equation to make it robust against unknown heteroskedasticity when using
it to estimate the spatial parameters A\. There are other advantages of using a
concentrated quasi log-likelihood function as opposed to a full quasi log-likelihood
function: (7) the dimensionality of the optimisation problem is greatly reduced
when applying a numerical optimisation method to find the estimate, and (i7) the
additional variability coming from the estimation of ¥ is captured by the concen-
trated quasi log-likelihood function. Once an estimate for the spatial parameters
A is derived from the concentrated quasi log-likelihood function, the estimator for
¥ can be defined as 9, = 0,()\)

The usual first order condition from the concentrated quasi log-likelihood func-

tion gives the following concentrated quasi score function,

3See among others, Lee (2004), Liu and Yang (2015a), Jin and Lee (2013), Lee and Yu
(2010a).
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Yo () A (A) Yi (V)

£)
| 707 \)

where 62 (\) is the QML estimator for 62, A, (A\),r = 1,...k is an n X n non-
stochastic matrix that involve X,,, and W,, and the spatial parameters A, and
Y, (A) is an n x 1 vector that involve Y,, W,, and A. For the pth order spa-
tial autoregressive model, A, (A) = M, [Gr (A1, ..., Ap) = 241 (Grn (M1, ..., Ap))]
where M, = I, — X,, (X, X0) X5, Grn M1y, Np) = WGl (Mg, .00, A, and
Y,(A) = Ch(M,...,\) Y, for r = 1,...,p. The QML estimator for the spa-

~

tial parameter is derived as the solution to the estimating equation as, A\, =
arg {1, (A) = 0} and the QML estimator for ¢ is defined as ¥, = 9(A,,).

For )\, to be consistent under unknown heteroskedasticity, it is necessary that
E(¢n (Ao)) equals to or tends to zero (See van der Vaart, 1998, ch. 5). However,
this condition is not necessarily satisfied if the errors are heteroskedastic. To
observe this consider the score function, given in (|6.2)), which can be written as a

linear quadratic form in €,, evaluated at the true parametersﬂ as follows:

(E;Alnen + €,b1n)

!
€, Mnen

Qn(€n) =9 (6.3)

1 (E;Aknen + e;lb;m)

’
\ EnMneén

where M, is the orthogonal projection matrix of the model given in (6.1)) that
involves the regressors X,, and the spatial parameters A\. The following basic set of

regularity conditions are required in the set up of the general asymptotic theory.

4Quantities evaluated at the true parameters are denoted with a suppressed function argu-
ment.
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In general we have, 1E(e,M,e,) = 02 + o(1). Hence, in order to attain
consistency, we consider the numerator of . Note E(e,, Arn€n) = o2tr (HpA,m)
where H,, = diag (hp1,...,hnn). A potentially robust estimator can be attained
by adjusting the concentrated quasi score function by replacing A,, with A9 =
A, — tr(Apn) L, where I, is the n X n identity matrix. However, when the errors
are heteroskedastic, E(e, A% €,) will not be necessarily zero (Lin and Lee, 2010)
since the 7th component of A? e, is correlated with the corresponding component
of €, unless the ith diagonal element of A% is zero. Thus to attain a robust

estimator we need to adjust the concentrated quasi score function as follows:

Y, (V) A (N Yo (V)

né2(A\) " n 1in
Un (A) = (6.6)
L né2(\) YT; (/\) in ()\> Yn (A)

where A5, (A) = Ag, (A) — diag (Ag, (A)). The adjusted concentrated quasi score
(ACQS) estimator is defined as, \, = arg{y* (\) = O}lﬂ and the adjusted score

®Using the moment expansion for the ratio of the quadratic terms (Lieberman, 1994) of

E(Q (en)) is,

€ Arnén E(e/ Arnén)
E|-=Z = n T T: . 4
<E;Mnen> E (e, Mnen) T (64)
forr=1,...,k, where
E(e, Arnen 1
- (GH,A € )/@2 B //-611 -0 () ’ (65)
[E (e, M p€n)] [E (e, M €n)] n

Kp is the pth cumulant of e;L/\/lnen and kpq is the generalised cumulant of the product of
(e;AT,nen)p and (e;l/\/lnen)q. (One can show that the higher order terms of the expansion are
increasingly of smaller order.)

6Maximum likelihood based estimators such as this broadly fall into the umbrella of es-
timators known as M-estimators in the literature, which stand for maximum likelihood type
estimators. Such an estimator can be either a solution to a maximisation function or a root of
an estimating equation. The proposed robust estimator falls into the latter which is also known
as the Z(ero)-estimator in van der Vaart (1998). For detailed discussions, see Huber (1964,
1981), van der Vaart (1998). Yang (2016) gives a more recent treatment of the M-estimator in
a spatial dynamic panel data setting.
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estimator for 9 is defined as 5‘” = @n (5\”>

Adjusting the score function as in (6.6)) is similar in spirit, to the adjustment
made to the moment conditions given in Lin and Lee (2010) in order to arrive at a
robust GMM estimator for the spatial parameter of the spatial lagged dependent
variable model. Adjusting the score function can also be viewed as adjusting a
moment condition, however, in a quasi maximum likelihood environment the usual
GMM considerations such as the availability of valid instruments, over/under
identification (and the associated implications) and optimal feasible weighting
matrix is not present. More importantly in a spatial model set up, when using
a GMM estimator, one also need to pay special attention to the fact that the
GMM estimator may give a spatial parameter estimate outside of the parameter
set A which ensures that C1()\) is well defined. Lin and Lee shows that their
robust GMM estimator using the adjusted moment conditions can lead to an
estimate as efficient as the QML estimator, however, it is not clear how similar
robust moment conditions can be constructed for more advanced spatial models
such as the SARAR(1,1) model. For such models, the robust 3-step 2SLS/GMM
estimator pioneered by Kelejian and Prucha (2010), can be used, however, the
liaison with the 2SLS method comes at a cost of reduced efficiency. In contrast
the adjusted quasi score estimator that we suggest has the versatility of being
able to extend itself to a wide array of spatial models and estimate all the spatial
parameters together while leaning on the efficiency of QML method and optimal
robust method of moments (Lin and Lee, 2010).

The idea of adjusting the score function in order to attain a robust consistent
estimator has been appreciated in the past, (Alvarez, and Arellano, 2004), however

had been dormant until recent times. We believe that the ideas presented in this

"Further, in order to improve finite sample performance of the adjustment, one may also
need to consider the impact of the matrix M,, on the limiting behaviour of the adjusted score.
More on this will be discussed in the following two sections
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chapter has wider applications beyond spatial models. For example, non-linear
models such as limited dependent variable models and even SPD models with

dynamic parameters are interesting future avenues for research.

6.2.2 Robust Estimation for VC Matrix

In order to conduct robust inference on the parameter estimates, an estimate of
the standard errors are required which usually involve the estimation of the vari-
ance of the adjusted score function (6.2)). However, the first order variance of
contains the second, third and fourth order moments of ¢, ; which vary across 1.
As such a simple White type estimator (White, 1980) is not suitable which makes
it infeasible to estimate the variance of the score. In this case, we recommend the
use of the outer product of the gradients (OPG) of the decomposed numerator
of the adjusted score (Baltagi and Yang, 2013). The idea is to decompose the
numerator of into a sum of uncorrelated terms by writing A, as the sum of

o ou

an upper, lower and a diagonal matrices as, A%, = A% + A% + A°¢ where A,

Aol

TN

and A%¢ are respectively, an upper triangular, a lower triangular, and the
diagonal matrices of A7, . Let, T; = {(ni + Ay ii€nyi + by T=1,..., k:}/, where
Crni = (A% + A% e, and a,, ;; are the diagonal elements of A7, fori=1,...,n.
In order to apply the OPG method to estimate the variance of the score, must
be written as the sum of n uncorrelated terms as follows, @, (€,) = Z?Zl €ni L.
While independence of €, is sufficient to guarantee that ¢, ;T; are uncorrelated
for each 7, it may not be the case for some types of spatial models. For example,
when we consider a spatial panel model with fixed effects, it is more suitable
to transform the variables to eliminate the fixed effects to avoid the incidental
parameter problem. In this case f(-) denotes a spatial model of transformed

variables and the resulting €, ; will no longer be independent although uncorrelated

and as a result ¢, ;Y; will fail to be uncorrelated. However, the OPG method will
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still be applicable if €,;Y; are asymptotically uncorrelated. Consequently we
consider two cases in the applications: (i)e€,; are independent, and (ii) €, ; are

not independent but uncorrelated.

6.3 Higher Order SARAR Model

In this section we apply the general ideas presented in Section 6.2 to give a de-
tailed treatment of the SARAR(p, q) modelﬁ We first present asymptotic results
for the quasi maximum likelihood (QML) estimators with iid errors, and then we
study the robustness of the QML estimators when homoskedasticity assumption
is violated. The latter in part motivates the new estimator, the adjusted concen-
trated quasi score (ACQS) estimators, which is robust to unknown heteroskedas-
ticity. The consistency and asymptotic normality of the ACQS estimators are
established. We introduce heteroskedasticity robust standard errors for the pa-
rameter estimates to give a set of robust inference methods. Extensive Monte
Carlo experiments are conducted, and the results show excellent performance of
the proposed estimators. The proposed methods are simple and can be easily
adopted by the applied researchers. The results presented in this chapter contain,
as special cases, the results of Jin and Lee (2013) for the QML estimations and
the results of Chapter 5 for the ACQS estimators. Extensive Monte Carlo experi-
ments are conducted, and the results show excellent performance of the proposed
estimators. Compared to the QML estimator, the proposed estimator has a better

finite sample performance and is robust against heteroskedasticity.

8For related works see Badinger and Egger (2011) which extends the robust three step
2SLS/GMM estimator given in Kelejian and Prucha (2010) to the SARAR(p, ¢) model, and
Lee and Liu (2010) which consider the efficient GMM estimation of SARAR(p,¢) under ho-
moskedasticity. Liu and Yang (2015b) present heteroskedasticity robust adjusted concentrated
quasi score estimators for SARAR(1,0) and SARAR(1,1), but the asymptotic properties of the
ACQS estimators for the SARAR(1,1) model are not given.
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The SARAR(p, ¢) model we consider is,

Yo =320 AWin Yo + X0 + u, where u, = 30| ppMintn + €5, (6.7)

where Y,, is an n x 1 vector of observations on the dependent variable, X, is an
n X k matrix of observations on the exogenous regressors with the k& x 1 regression
parameter vector 3, u, is the n x 1 vector of disturbances, Wj, and My, are
the n x n spatial weights matrices which summarises the higher order spatial
dependence of the dependent variable and the disturbances with the associated
spatial parameters A = (Ay,..., ;) and p = (p1, ..., p,)". The W s are different
and so are the M} s to account for different levels of spatial dependence, but some

(or all) of the W;,,’s can be the same as some (or all) of the My’s.

6.3.1 Robustness of QML estimator against unknown het-

eroskedasticity

We now examine the properties of the QML estimator of the SARAR(p, q)
model when the errors are iid, and their robustness when they are inid. We derive
the asymptotic distribution of the QML estimator when the errors are iid and give
its asymptotic variance. When the errors are inid we provide conditions under
which the regular QML estimator is consistent. The reduced form equation of

model is,
Yo = A NV[XaB + By (p)enl, (6.8)

where, A,(\) = I, — ?:1 AW, and B, (p) = I, — > ¢_, puMgn. Let X =
Ay s N p=(p1y--oypg)s 6= (N, p), and 0 = (8',0%, N, p'). Let 6y denote
the true parameter vector. The Gaussian log-likelihood function for 6 is,

£,(0) = ~31n(2m) — 21n(0?) + In |4, ()| +1n B (p)] — gl (8. 8)ea(5.6), (6.9)
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where €,(5,9) = B,(p)[A.(N)Y, — X,,5]. Maximizing gives the maximum
likelihood estimates of 6, if the disturbances are indeed Gaussian, otherwise QML
estimators. Let X,,(p) = B,(p)X, and Y, () = B,(p)A.(\)Y,. Given §, we have

the constrained QML estimators for 3y and o2 as follows,

A

B(6) = [X5(p)Xn(p)] ' X, (p)Yn(0) and 6%(8) = Y, /(6) My (p)Y,(6),  (6.10)

n

where M,,(p) = I, — X,.(p)[ X’ (p)Xn(p)] "X/ (p). Concentrating out 3(8) and
62(0) from the quasi log-likelihood function we get the concentrated quasi log-

likelihood function for ¢ as,

n

(2(5) = —=2In(2r) — 21n[62(8)] + In [ A, (A)] + In | B, (p)], (6.11)

Maximizing ¢¢(8) gives the unconstrained QML estimator 8, of &, and thus the

A

QML estimators of 8 and o2 as (3, = 3(6,) and 62 = 62(6,). Denote 6, =

n
A~

(B, 62 Sn)’, the QML estimator of the parameter vector 6.

n»-n?

Consider the score function derived from evaluated at the true parameter

807
)
=X B,
0
1 / 2
P 557 (€,6n — n07)
%&L(QO) = 0 (612)
a_lg (e;Bjnen — o?tr(Fj,) + eﬁlnjn) , J=1,...,p
% (€] Grn€n — 0%t1(Gra)) k=1,...,q
0

where I}, = W;, ALY, Gry = My, By, Bjn = By Fjn Byt and 0, = By Fjn X fo.
Some additional regularity conditions are required to establish the asymptotic
properties of the QML estimators.

Assumption 6.1: The true spatial parameter vector Xy is in the interior of a
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compact parameter set A.ﬂ

Assumption 6.2: The errors {e,;} are independent such that E(e,;) = 0,
Var(en;) = 05hni, where hy; >0 and Y ) by = nm Further, E|e,;|*™ < ¢ for
some n > 0 and constant ¢ for all n and 1.

Assumption 6.3:The elements of the n X k regressor matrix X,, are uniformly
bounded for all n, X, has the full rank k, and nh—>I£lo %X;LXH exists and is non-
singular.

Assumption 6.4: The spatial weights matrices Wy, are uniformly bounded

i both row and column sums and their diagonal elements are zero.

Assumption 6.5: The matriz A,, and B, are non-singular and A;;* and B;*
are uniformly bounded in absolute value in both row and column sums. Further,

AY(N) and B, '(p) are uniformly bounded in either row or column sums, uni-

formly in § € A.
Assumption 6.6: Fither (a) : HILIEO Hn(p) is non-singularVp and nlgrolo Qun(p) #
0 for p # po; or (b) : nh_}IIolo Qo,(0) # 0 for 6 # &y, where
Ha(p) = + (X, FinXoBo, - - s Fpn X0 0) Bry(0) Bu(p) (X, F1n X0, - - - s FpnXnf0),
Qun(p) = 5 (In|og B VB —In o7 (p) B, (p) B, (p)]) -
Qon(0) = 5 (In[og BV ATV AL B = Infog(9) By Y (p) AL (N A (N B (0)])

02(p) = Ztr[B, Bl (p) Bu(p) By ], 92(6)

n

9The parameter space A must be such that the reduced form of (6.1)) is well defined and
the Jacobian terms of the quasi log-likelihood function is non—singular VYA € A. For a general
Win, Lee and Liu (2010) shows that since, || Ele AWl < Oy [A]) - maxe—1,p [[Winl],

where || - || denote the matrix norm, a viable parameter space for A, is s.t. Zle A <
(max,—1,. % ||[Wynl])~'. When W,, are row normalised, we have max,—1__j||[Wn|| = 1 s.t.
Zle I\+] < 1. When W,,, are not row-normalised, we can use the relation ||W,,|| = [T, wji,

where wj; are the eigenvalues of W,,, to avoid the need to compute the determinants of W,,,.
However, Elhorst et al. (2012) argues that this parametrisation is too restrictive and gives an
alternative procedure to determine the exact boundaries which depends on the specification of
Win. Also see Kelejian and Prucha (2010) and Le Sage (2009) for related discussions of the
parameter space of the spatial parameters.

OFor generality, we allow h,,; to depend on n for each i. This parametrisation, is a non-
parametric version of Breusch and Pagan (1979), allows the estimation of the average scale
parameter.
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= Zx[ BV AT ALV By (p) Balp) An(V AL By

Assumption 6.2 is the heteroskedasticity condition of the errors. Clearly
hn; = 1,Vi when the errors are homoskedastic. The parameter of is the aver-
age scale parameter of €, ; and h,,; denote the heteroskedasticity parameters. The
uniform boundedness conditions in Assumption 6.4 limit the spatial dependence
to a manageable level. Assumption 6.5 is a standard assumption in spatial econo-
metric literature introduced by Kelejian and Prucha (1999) and allows a uniform
boundedness property in the asymptotic formulation. Assumption 6.6 is the iden-
tification condition introduced by Lee (2004) adjusted to suit the SARAR(p, q)
model.

Jin and Lee (2013) presents asymptotic results for the QML estimators of
the SARAR(1,1) model under homoskedasticity. However, the asymptotic distri-
bution for the SARAR(p, ¢) model is not given in the literature. The following

Theorem fills in this gap.

Theorem 6.1 Under Assumptions 6.1-6.6 and further assuming that h,; =

1 Vi, the QML estimator én 15 consistent and asymptotically normal with
Vb, — 6) = N(0, 'as),

where ¥ = lim _%E<i€n(90)> and Q = lim %E(%En(%) 9 0,(00)), where

00 0006’ oo 90’

the elements of these matrices are:

S8 = 72 XnBpBuXn, Snota? = 501,

Sy = %n}nnj/n + tr(B3, Bjim), Snoroy = (G Grn),
Yo o2 = Ok, Vg = %X;B;Ujm
Yn8or = Okxt, Yino2r, = gigtr(éjn);
Yno2p, = %tr(Gkn) and Yo, = tr( ZnBjn)f

forj,i'=1,...,p and k,k' = 1,...,q, where, Gy, = My, B}, Bj, = B,F;,B;*,
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an = VanAgl; Njn = BnanXnB(b GZn = G’m + G;m’ Bjsn - _j" + B;’ﬂ
Let T',, = Q,, — X, then the following elements representing block matrices

make up nl'y,,

nKk
nl'y11 = Okxk, nl'y 00 = 101
Doy = 18, By + 225 A

nlp3zz =~k in%j'n + U_o in'li'n; Nl n44 = KGr,9k'n,

o ;\/ / / o py / 13
nlp 12 = EXanLn; nl'y 13 = g_oXanbjm

’ / K — ’

nFn,M = aloXangk”’ nFn,23 = Rtr(Bjn) + %Lnnﬁw

_ K — wq B o
nl'y o0 = mtT(Gkn) and nl'y 34 = KG1,0in + 2= Gpnin,

for 4,7" = 1,...,p and kK" = 1,...,q, where, 1, is an n X 1 vector of ones,

Grn = diagv(Giy), bjn = diagu(B,), and v and k are respectively, the measures of

skewness and kurtosis of €,.

Now suppose we relax the condition that h,; = 1 Vi. Does én continue to be
consistent? Let H, = diag(hn1,...,hn,). For any extremum estimator such as
én to be consistent, it is necessary that plimn_m)%wn(ﬁo) = 0. This is satisfied for
the derivatives w.r.t. 3 and o2, however it may not be the case for the derivatives
w.r.t. Aj and p;. Note that,

%%€n<00> = %tr(HnBjn - an) + Op(l)v J=1...p

= Ltr(H,Bjn — Bjn) + 0p(1)

= L5 (hni — 1)(bjn — E(bjn)) + 0,(1)

= Cov(hni,bjn) + 0,(1), and (6.13)
124 (0) = 2tr(H,Grp— Gra) +0,(1), k=1,...,¢q

= I3 (B = D) (gkn — E(grn)) + 0p(1)

= Cov(hni, grn) + 0p(1), (6.14)
where l_jjn = diagv(B,,) and g, = diagv(G},). As such, for 0, to be consistent, it
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is necessary that as n — oo, Cov(h,, l_)jn) = 0 and Cov(hy, grn) = 0. However,
to establish consistency more conditions are necessary. In practice it is more likely
that it is impossible to check whether these necessary conditions are satisfied or
now given that heteroskedasticity is of unknown form. Hence we move to an

alternative robust estimator directlym

6.3.2 Adjusted Concentrated Quasi Score Estimation

We illustrate adjusted concentrated quasi score (ACQS) method for estimating
the parameters in the SARAR(p, ¢) described in a previous section. The Monte
Carlo results confirms the excellent performance of the new estimator for both
finite and large samples. For robust inferences concerning the spatial or regression
parameters, we introduce estimators of the variances of the ACQS estimators

based on the OPG of the score function.

The method

Consider the concentrated quasi score function of §, when 3 and o2 are con-

centrated out from ,

where B;, = B, F;,B;' and for Gy,(p) = Grn(p) M, (p).
Following the ideas given before, we can adjust the numerator of the concen-
trated quasi score function to attain the desired probability limit of zero at the

true parameters under heteroskedasticity. In order to ensure zﬁn(é) tend to zero in

1 The exact form of these additional necessary conditions and the consistency of the QML
estimator is established in the FE-SPD model given in the next section. A milder form of this
results are also given in Chapter 5 for the SLD model.
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expectation so that 8, = arg{1,(8) = 0} is consistent we adjust the concentrated

quasi score function as follows,

Y1 (0) M (p) B5,,(0) Y (0)

n

(6.16)

where for j = 1,...,p, BS,(0) = Bju(0) — diag(M,(p))~'diag[M,,(p) Bjn(0)] and
k=1,....q, G},(p) = Gra(p) — diag(M,(p))~'diag[M,,(p)Grn(p)]-

The ACQS estimator of & is defined to be 6, = arg{t¢*(5) = 0} and we can
show that this estimator is consistent and asymptotically normal in the presence

of unknown heteroskedasticity.

Remark 6.1 As explained in the general section, the adjustment suggested
here is in line with the ideas of Lin and Lee (2010)’s adjustment to the moment
conditions of the SARAR(1,0) model so that the resulting GMM estimator is ro-
bust. They suggest to restrict a broader class of quadratic moments of the form
e, Pne, where tr(P,) =0 to diag(P,) = 0. Thus although the condition tr(P,) =0
is sufficient to ensure that the moment condition satisfies E(e,, Pyen) = 0 the lat-
ter condition also makes it robust. However, it is not clear how we can extend
these ideas to construct a GMM estimator for the SARAR(p, q) model. To attain
the ACQS estimator, if we apply a similar adjustment on the full score function
, where we replace o*tr(F},) with €,diag(F;,)e, and replace o*tr(Gy,,) with
e, diag(Grn)e, we still get an asymptotically valid adjustment that satisfies the
conditions given in and . Howewver, this adjustment has poor small
sample performance since it does not take into account the variation stemming

from the estimation of the other parameters in the score function.

Remark 6.2 For the component of (6.15) w.r.t. X, we replace ~tr(Fj,(N))1,
with diag(M,,(p)) " diaglM,,(p)Bj.(9)], instead of diag(B;,(5)) (in the spirit of
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Lin and Lee, 2010). Although the placement diag(B;,(0)) is asymptotically valid,
finite sample performance, once again, maybe poor. Given E(Y/M,B;,Y,) =
o2tr(H, M, Bj,) = oltr(H,diag(M,B},)), if we were to replace +tr(Fj,(N))I,
with diag(M,, B;,) it ignores the effect of M,, since E(Y, M, diag(M,,B;,)Y,) =
aitr(HnMndiag(MnBjn) =+ E(YAMnBann). A similar argument can be given to

the adjustment applied to the component of the score with respect to p.

Remark 6.3 The adjustment applied to (6.16)) is in line with the heteroskedas-

ticity robust LM test of Baltagi and Yang (2013) with finite sample corrections.

Remark 6.4 Due to the non-linear manner in which the spatial parameters
enter the quasi log-likelihood function, the resulting QML estimators are biased in
finite samples. However, an estimator derived from an estimating function with
an expected value of zero leads to a potentially bias corrected estimator. Thus the
proposed estimator is not only robust for heteroskedasticity and non-normality,
but also performs well in finite samples. Thus combined with a robust estimator

for the standard errors we have an improved basis for inference related matters

for the SARAR(p, q) model.

Asymptotic properties of the ACQS estimator

In order to establish the asymptotic distribution of the ACQS estimators of
the SARAR(p, ¢) model we need to adjust the identification condition given in
Assumption 6.6 to suit the new model as follows,

Assumption 6.6%: nhjEO Rin(0) # 0 and nlggo Ron(0) # 0, Vo # 6o, where

Rin(0) = 3 BX0 By AT 5 (6) AL B X By

+ % tr (H, BT AT, () A7 BY),

Ron(6) = Dtr (H, B A1y, (6) A7 BIY

Ujn(6) = A5, (M) B, (p)[Bjn(6) — diag(Bjn(9))] Bu(p) An(A),
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Ui (0) = AL(N) B (p)[Grn(p) — diag(Grn(p))] Bu(p) An(N), for j =1,....p and
k=1,...,q.
The normalised and adjusted concentrated quasi score function evaluated at

0o takes the form,

3 Tz (€ Pjnen + Chen) +0p(1),  j=1,....p

N (6.17)

\/7%0(2) (E/TLQk”En + Cfrmﬁn) + Op<1), k= 1, ...,q

where Pjn = MnB;na an = Mnéanm Cin = MnB;anXTLBO and cg, =
M, G By XnB0. Let 72(¥%) = Var(y/ni?). Using the central limit theorem
for linear-quadratic forms of Kelejian and Prucha (2001), we give the following

theorem:

Theorem 6.2 Under Assumptions 6.1-6.5 and R6*, the ACQS estimator b,

15 consistent and asymptotically normal, i.e., as n — 0o, On —2 0o, and

Vb, — 8) 2 N (o, lim 72(5, ))

n—o0

where 72(0,) = O 121D, where &, = —F (%&;(5@) or it’s first order

term given by,

D, 11 = %tr H ( i+ B; nB]on BN n)] + n%'gc;nnj/n,
D10 = Ltr Hn ( °Gin + G, B, — B, — GBS, + GknB;n>] +n}73c;.nnkn,

(I)n,Ql - %tr |:H k;n ]?’L + B/nGZ‘n)] + %gdmn]n and

®,,00 = Ltr |H,, (G}, Grm + G, Gy — sz,m — GunG5,, + @kfnéinﬂ;
—i—n%'gcknnk/n where
Cin = MBS, By X0, Cim = MnG3Br X, o,
= B Fj, X80, i = GrnBn X050,
Jj'n

o _ J o
By =B £5.0)],_y,)
— B, Fy,Fjn By — diag(M.,) diaglM,, B, F}, Fjr, B7!],
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B, = E {%Bfn((S)L:JJ
= —GnBjn — BjnGrn — diag(/\/l;l/\}lkn/\/lgl)dz’ag[/\/lnBjn]
—diag(M,) "' diagl M, Bjn],

G2 = GnGin + Cion M — diag( M)~ diag( My Gin)
—dmg(Mn)_ldmg(MnGankn) - dmg(Mn)_ldmg(MnGknGkn)
+diag(M My MY diag(M, G,

My = MG P + PGl My, and P, = I, — M,,.

Given 6, the ACQS estimator for /3, is
Bn(6n) = Bn = (X! B! B,X,) ' X! B! B, A,Y,.

A Taylor expansion of 3,(8) around § = & gives 5,(0) = Bn(do) + Bu(d0) (6 —
do) + Op(+), where B(8) = %Bn . This can be used to derive the asymptotic

distribution of ,,.

Theorem 6.3 Under Assumptions 6.1-6.5 and 6.6%, the ACQS estimator f3,,
is consistent and asymptotically normal, i.e., as n — 00, By —= Bo, 72 NN od

and
(B — Bo) 25 N (o, lim (X;LB;LBan)*1X7’1B7’1AanXn(X;LB;Ban)*1> :
n—oo

where
An = nO—(Q)Hn—i_TU"Tg,j(S‘H)ngn—i_Q\/ﬁ(Uaszdnsn—i_anjn? 062an5n+ankn)q)_1(njm OTL)/?
72 .(0n) is the VC matriz block corresponding to \;, s, = E(e3), P4, = diag(P;,),

d = diag(Qun) for j=1,....,pand k = 1,...,q and 0, is an n x 1 vector of

267"08.@

12The limiting distribution of 62 can be easily derived. However, it is of limited use as any
inference on &2 requires the consistent estimation of L 3" | Var(e? ;) = o iy (Kngi + 2 )

n
which cannot be done.

176



Robust estimation of VC matrix

In order to apply the OPG method to estimate 72(¢)*), write the numerator

of (6.17) as,

€ Pinén + Cipen,  J=1,...,p
Ro(e,) = (6.18)

/ /
€ Qkn€n + Cpnen, k=1,...,¢

where both Pj, and Q, can be decomposed as a sum of upper triangular, lower
triangular and diagonal matrices. Then we can estimate the variance of the score
as,

o) = e D G T T (6.19)

- E‘n,i—i_ﬁ'n,iign,i—i_é'n,iv ] = 17"'7p ~ ~ ~ ~
Where, Tnﬂ' = NJ ~J B ~] ) gjn = (F)ﬁ;—i_‘PJZn)gn? gjn =
Eknyi + Qknjii€ni + Crnig, K =1,...,¢

(Q¥ +Q'.)en, and P i and Gpy i are respectively the diagonal elements of P, and

Qpn. The estimator of 72(8,,) is defined as 72(,,) = ®'72(¢* )1, where ®,, is the

n

plug-in estimator of ®,. Now using estimates ®,,, 72(¢%), 72(5,), 8, = &, H,, =

5-2diag(e2), A, and plug-in estimates for other quantities, we have a consistent
estimator for 72(8,), 72(8,) = (X! B/, B, X,) "' X! B! A, B, X,,(X! B, B, X,)~". We

give the following Theorem.

Theorem 6.4 If Assumptions 6.1-6.5 and 6.6* hold, then we have as n — oo,

72(6n) — 72(00) 2 0 and 72(B,) — 72(B) — 0.

For the plug-in estimator of ®,,, one could use —%1/;*(50) |5,—5 or its first order
0

T8 T . . .
term of —E( %Sw (09)) using the expressions given at the end of Theorem .
Given the results of Theorem [6.2] we have that this estimator is a consistent

estimator of ®,,.
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6.3.3 Monte Carlo Results

We consider a SARAR(3,3) specification with W; = M; for j = 1,2,3. As

such we have the following DGP:

Yo =30 MWin Yo o+ Botn + BiXan + BoXon + thn,  wn =351 piWintln + €n,

(6.20)
where ¢, is an n x 1 vector of ones corresponding to the intercept, X, and X, are
the n x 1 vectors containing the values of two fixed regressors generated as ran-
dom draws from a standard normal distribution and €, = 0 H,e,. The regression
coefficients 3 is set to (3,1,1)’, o is set to 1 and n take values from {100, 250, 500}.
The ways of generating the values for the spatial weights matrix W;,, the het-
eroskedasticity measure H,,, and the idiosyncratic errors e, are described below.
Each set of Monte Carlo results is based on 1,000 Monte Carlo samples.

We use two different spatial layouts: (i) Circular Neighbours and (i) Queen
Contiguity. In (i), neighbours occur in the positions immediately ahead and be-
hind a particular spatial unit. In (7) the initial weights matrix we consider Wy,
has 2, 4, 6, 8 and 10 neighbours with equal proportion. Then we decompose Wy,
into three distinct matrices s.t. Wy, + Wy, + W3, = W,,,, where W3, contains
2 and 4 band of neighbours of Wy,, Ws, contains 6 and 8 band of neighbours
of Wy,, and Wjs,, contains 10 band of neighbours of W;,. Details on how weight
matrices are generated and how other stochastic and non-stochastic quantities are
generated are given in Appendix B.

Given row normalised weights matrices, the parameter space for A and p must
satisfy, 0 < Z?:l |IAjl < 1 and 0 < Z?:l lpj| < 1. We follow the following

parameter constellations:
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Constellation | Ay | Ao | A3 | p1 | p2 | p3
1 51311421
2 412111531
3 212121222
4 0/0]0]0]0|0
5 50311101010
6 0] 0]0].5].3].1

In case 1, the spatial dependence in the dependent variable Y is at least as
strong as the spatial dependence in the disturbance u, while the opposite holds
in case 2. In case 3 the spatial dependence is equal. Cases 4-6 are sub-models
developed in SARAR(p, ¢) beginning with no spatial dependence in case 4 which
is the general linear regression model, SARAR(3,0) in case 5 and SARAR(0,3) in
case 6. Partial results of these experiments are summarised in Tables 6.1 and 6.2
with additional results available upon request.

From the Monte Carlo results, we observe that the ACQS estimator of § per-
forms well in all cases, and it generally outperforms QML estimator in terms of
bias and rmse. Further, in the case where QML estimator is consistent, ACQS
estimator can be less biased than QML estimator, and is as efficient as QML
estimator. The relative performance of various estimators of [ is much less con-
trasting than that of various estimators of 9, although it can be seen that ACQS

estimator of [ is slightly less biased and more efficient than the QML estimator.
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Table la. Empirical Mean(rmse)[sd] of Estimators of 6 of SARAR(3,3). Case when the regular QML estimator is inconsistent under
heteroskedasticity. n = 100, g = (3,1,1)’, o0 =1, Circular Neighbours, REG-1

do H QML \ ACQS H QML \ ACQS H QML \ ACQS
H Normal Errors Mixed Normal Errors Log-Normal Errors

5| .322[.142](.131) | .420[.181)(.178){.179} || .334[.153](.142) | .453[.171](.169){.159} || .339[.204](.196) | .441[.169](.165){.167}
B3| .172[.183](.170) | .275[.156](.146){.151} || .187[.195](.183) | .280[.161](.154){.158} || .174[.191](.181) | .290[.139](.135){.137}
1| -.069[.132](.126) | .043[.191)(.187){.189} || -.052[.132](.125) | .061[.193](.192){.193} || -.055[.127](.118) | .052[.184](.177){.180}
A || .366[.120](.111) | .372[.148](.146){.131} || .258[.179](.163) | .391[.182](.181){.176} | .275[.180](.168) | .362[.183](.181){.178}
2 || .063[.125](.122) | .189[.180](.180){.180} || .059[.154](.140) | .169[.117](.116){.116} || .058[.122](.118) | .179[.162](.161){.162}
1 || .058[.171](.165) | .096[.110](.101){.106} || -.046[.180](.168) | .045[.173](.171){.173} | -.063[.174](.167) | .090[.158](.156){.164}
A || .289[.143](.139) | .387[.196](.184){.190} || .296].145](.132) | .321[.182](.178){.180} | .215[.127](.111) | .396[.154](.153){.153}
2 || .142[.176](.167) | .144[.159](.153){.164} || .042[.189](.180) | .187[.156](.154){.155} || .053[.186](.170) | .183[.148](.139){.144}
1| .020[.119](.104) | .084[.184](.177){.181} || -.022[.112](.108) | .055[.177](.174){.175} | -.038[.203](.193) | .074[.157](.157){.157}
5 || .354[.189](.172) | .479[.143](.136){.139} || .348[.132](.127) | .462[.149](.146){.139} || .378[.116](.102) | .459[.140](.137){.124}
3| .190[.134](.129) | .254[.178](.169){.153} || .184[.133](.125) | .283[.173](.168){.170} | .173[.143](.130) | .294[.148](.143){.141}
1| .019[.126](.115) | .085[.194](.194){.194} || -.020[.134](.123) | .078[.193](.193){.193} || -.097[.117](.107) | .093[.175](.175){.175}
2 || .023[.138](.125) | .165[.166](.162){.164} || .100[.186](.178) | .175[.167](.164){.174} || .088[.141](.136) | .143[.169](.163){.152}
2 || .061[.177](.163) | .180[.126](.125){.125} || .050[.190](.173) | .183[.116](.115){.115} || .035[.180](.179) | .162[.129](.126){.128}
2 || .062[.176](.161) | .177[.122](.121){.121} || .048[.185](.177) | .179[.112](.111){.112} || .032[.189](.176) | .161[.121](.118){.119}
2 || .035[.199](.182) | .168[.166](.164){.177} || .003[.149](.132) | .178[.117](.114){.128} || .068[.151](.144) | .167[.152](.146){.148}
2 || .001[.208](.194) | .192[.153](.146){.149} || .005[.190](.187) | .183[.130](.130){.130} || .009[.209](.199) | .150[.139](.136){.138}
2 || .005[.183](.177) | .197[.182)(.179){.180} || .009[.168](.153) | .185[.163](.155){.160} || .020[.185](.174) | .171[.173](.173){.176}
.0 || -.170[.145](.135) | -.016[.176](.171){.173} || -.177[.159](.147) | -.050[.181](.176){.166} | -.175[.148](.137) | -.058[.152](.146){.149}
.0 || -.126[.164](.152) | -.035[.133](.131){.145} || -.125[.179](.167) | -.029[.131](.130){.130} || -.125[.171](.169) | -.045[.120](.115){.117}
.0 || -.129[.166](.153) | -.036[.126](.124){.125} || -.127[.183](.171) | -.027[.128](.127){.127} || -.126[.181](.179) | -.040[.117](.113){.115}
.0 || -.105[.205](.195) | -.029[.170](.168){.169} || -.162[.151](.146) | -.029[.104](.104){.104} || -.184[.189](.175) | -.056[.166](.157){.161}
.0 || -.151[.181](.173) | -.060[.116](.110){.113} || -.138[.187](.173) | -.053[.121](.116){.118} || -.138].182](.178) | -.028[.198](.197){.189}
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Table 6.1b. Empirical Mean(rmse)[sd] of Estimators of § of SARAR(3,3). Case when the regular QML estimator is inconsistent under
heteroskedasticity. n =250, 8= (3,1,1), 0 =1, Circular Neighbours, REG-1

do || QML | ACQS | QML | ACQS | QML | ACQS
H Normal Errors Mixed Normal Errors Log-Normal Errors

5| .343[.098](.087) | .505[.121](.119){.120} || .346[.109](.091) | .503[.106](.105){.107} || .360[.142](.130) .503[.100](.100){.105}
B3| J113[114](.107) | .273[.110)(.095){.102} || .114[.159](.113) | .289[.084](.081){.083} || .116[.127](.114) .284[.073](.072){.087}
1 || -.056[.092](.082) | .105[.118](.116){.117} || -.052[.097](.080) | .104[.130](.125){.127} || -.033].085](.077) .081[.123](.116){.119}
A || .271[.081](.076) | .395[.105)(.099){.102} || .274[.136](.109) | .385[.123](.114){.118} || .255[.110](.107) 387[.121)(.114){.117}
2 || .084[.088](.077) | .206[.111](.111){.114} || .075[.091](.089) | .209[.075](.075){.074} || .076].085](.073) .202[.103](.103){.102}
1 || -.087[.118](.107) | .086[.067](.067){.067} || -.073[.131](.105) | .104[.105](.101){.103} || -.036].121](.108) .091[.098](.097){.098}
A |l .226[.094](.082) | .384[.123](.117){.120} | .221[.096](.082) | .388[.128](.124){.126} || .237[.098](.088) .393[.105](.099){.102}
2 || .086[.119](.108) | .196[.087](.083){.085} || .075[.136](.124) | .193[.095](.089){.092} || .078[.139](.128) .206[.085](.080){.082}
.1 || -.010[.071](.062) | .103[.125](.116){.121} || -.010[.074](.065) | .102[.121](.118){.119} || -.004[.139](.121) .075[.104](.098){.101}
5| .320[.118](.101) | .471[.077](.076){.088} | .352[.097](.084) | .479[.101](.094){.097} || .322[.077](.069) .508[.098](.098){.087}
3] .194[.098](.085) | .265[.107](.105){.106} || .101[.088](.078) | .280[.105](.104){.105} || .197[.102](.090) .307[.076](.075){.076}
.1 || -.090[.083](.072) | .084[.140](.132){.136} | -.085[.081](.070) | .106[.150](.145){.148} || -.016[.076](.069) 091[.110](.110){.111}
2 || .045[.091](.073) | .185[.107](.107){.104} || .030[.124](.111) | .172[.105](.103){.104} || .035[.090](.079) .197[.106](.106){.105}
.2 || .080[.118](.105) | .202[.074](.074){.079} || .069[.111](.102) | .190[.073](.072){.073} || .073[.119](.106) .201[.082](.082){.081}
2| .079[.111](.106) | .201[.077)(.077){.077} || .064[.123](.117) | .186[.074](.073){.074} || .072[.121](.118) .202[.070](.070){.075}
2 || .043[.120](.115) | .193[.102](.101){.104} || .060[.091](.082) | .204[.074](.072){.073} || .080[.107](.092) .204[.102](.099){.100}
2 || .025[.138](.116) | .193[.098](.098){.094} || .038[.134](.119) | .186[.088](.084){.086} || .023[.141](.117) .183[.089](.081){.085}
2 || .056[.129](.113) | .176[.120](.114){.117} || .065[.107](.098) | .207[.101](.097){.099} || .049[.124](.116) .204[.110](.100){.105}
.0 || -.151[.109](.093) | -.014[.108](.108){.110} || -.145[.121](.096) | -.012[.111](.110){.111} || -.149].099](.084) -.019[.098](.097){.098}
.0 || -.108[.106](.096) | .000[.081](.081){.083} || -.105[.110](.096) | -.001[.087](.087){.083} || -.106[.124](.113) -.009[.083](.076){.079}
.0 || -.109][.115](.105) | -.001[.071](.071){.079} || -.105[.117](.107) | .000[.085](.085){.081} || -.108].136](.116) -.012[.072](.072){.073}
.0 || -.102[.134](.101) | -.018[.112](.106){.109} || -.112[.095](.088) | -.018[.076](.068){.072} || -.182[.129](.119) -.017[.093](.091){.092}
0 || -.121[.122](.116) | -.025[.076](.071){.073} || -.116[.122](.111) | -.033[.073](.072){.075} || -.124[.130](.118) -.029[.126](.124){.125}
.0 || -.145[.128](.112) | -.058[.103](.102){.108} || -.141[.134](.120) | -.025[.105](.098){.101} || -.142[.109](.095) -.037[.105](.102){.103}
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Table 6.1c. Empirical Mean(rmse)[sd] of Estimators of § of SARAR(3,3). Case when the regular QML estimator is inconsistent under
heteroskedasticity. n = 500, 8 = (3,1,1)’, 0 =1, Circular Neighbours, REG-1

8o | QML | ACQS | QML | ACQS | QML | ACQS
H Normal Errors Mixed Normal Errors Log-Normal Errors

5| .304[.068](.054) | .496[.089](.088){.080} || .333[.088](.070) | .497[.064](.063){.076} || .322[.098](.089) .498[.061](.060){.075}
3 || .110[.090](.077) | .292[.063](.063){.067} || .124[.130](.106) | .294[.064](.064){.070} || .120[.094](.086) .299[.064](.064){.061}
1 || -.015[.065](.054) | .098[.097](.097){.084} || -.096].063](.054) | .099[.096](.096){.086} || -.088].059](.046) .094[.099](.094){.096 }
4 || .225[.087](.055) | .410[.069](.063){.066} || .296[.088](.073) | .398[.085](.083){.084} || .287[.088](.076) .405[.089](.082){.086}
.2 || .000[.061](.051) | .208[.082](.081){.080} || .083[.081](.070) | .197[.076](.074){.075} || .085[.063](.058) .291[.079](.077){.078}
1 || -.053[.103](.090) | .198[.048](.048){.047} || -.096[.097](.080) | .103[.078](.078){.077} || -.075[.084](.077) .104[.046](.041){.043}
A || .256[.072](.066) | .392[.087](.085){.086} || .248[.064](.056) | .394[.082](.082){.080} || .260[.052](.047) .393[.035](.035){.035}
2 || .006[.098](.087) | .198[.058](.058){.058} || .100[.099](.088) | .193[.070](.067){.069} || .100[.103](.093) .197[.065](.063){.064 }
.1 || -.070[.052](.044) | .100[.098](.096){.097} || -.054[.077](.066) | .100[.079](.075){.077} || -.047[.110](.090) .091[.072](.071){.071}
5 || .384[.081](.076) | .509[.076](.070){.073} || .390[.066](.055) | .505[.089](.087){.088} || .386[.080](.050) .507[.092](.090){.091}
3| .182[.073](.057) | .303[.095](.092){.093} || .183[.072](.059) | .303[.071](.070){.071} || .183[.069](.053) .303[.051](.050){.065}
1 || -.099].065](.055) | .101[.088](.088){.087} || -.076[.081](.071) | .199[.069](.065){.067} || -.078].052](.042) .094[.074](.074){.078}
2 || .046].056](.047) | .198[.075](.074){.075} || .047[.092](.083) | .192[.099](.099){.099} || .047[.076](.067) .192[.075](.071){.073}
2 || .084[.075](.063) | .196[.060](.060){.056} || .083[.075](.063) | .199[.075](.075){.075} || .080[.083](.070) .200[.080](.080){.080}
2 || .083[.075](.063) | .195[.058](.057){.054} || .083[.076](.064) | .197[.075](.075){.075} || .080[.071](.068) .198].082](.082){.082}
2 || .084[.098](.087) | .196[.076](.073){.075} || .088[.057](.047) | .198[.059](.059){.052} || .099[.077](.067) .195[.042](.040){.041}
2 || .042[.101](.083) | .191[.063](.063){.067} || .043[.101](.083) | .198[.049](.047){.048} || .036[.097](.086) .192[.046](.043){.045}
2 || .077[.101](.079) | .196[.082](.081){.081} || .070[.079](.064) | .197[.065](.063){.064} || .073[.081](.078) .190[.043](.041){.042}
.0 || -.115[.073](.061) | .000[.098](.098){.098} || -.120[.078](.066) | -.007[.092](.091){.080} || -.117[.074](.064) -.003[.061](.061){.067}
.0 || -.101[.080](.060) | .002[.060](.060){.059} || -.104[.071](.061) | -.003[.079](.078){.078} || -.102[.076](.066) .003[.083](.083){.083}
.0 || -.100[.069](.059) | .002[.056](.056){.056} | -.105[.072](.062) | -.004[.077](.076){.077} || -.101[.077](.067) .001[.079](.079){.079}
.0 || -.134[.100](.077) | -.009[.063](.063){.063} || -.122[.089](.070) | .000[.057](.057){.046} || -.113[.087](.079) -.003[.050](.047){.048}
.0 || -.112[.098](.082) | -.005[.056](.054){.055} || -.113[.090](.079) | -.005[.049](.047){.048} || -.119[.092](.079) -.002[.048](.044){.046}
.0 || -.118[.102](.081) | -.001[.079](.078){.076} || -.117[.094](.083) | -.009[.074](.074){.070} || -.125[.062](.049) -.005[.033](.030){.031}
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Table 6.2a. Empirical Mean(rmse)[sd] of Estimators of § of SARAR(3,3). Case when the regular QML estimator is consistent under
heteroskedasticity. n = 100, 8 = (3,1,1)’, 0 = 1, Queen Contiguity, REG-1

8o | QML | ACQS | QML | ACQS | QML | ACQS
H Normal Errors Mixed Normal Errors Log-Normal Errors

5 || .411[.120](.110) | .463[.110](.108){.112} || .494[.110](.109) | .484[.110](.101){.105} || .451[.117](.107) | .490[.111](.104){.107}
3| .271[.120](.112) | .250[.128](.126){.127} || .303[.114](.113) | .272[.123](.120){.121} || .262[.204](.200) | .232[.105](.104){.105}
1 || .096].148](.145) | .085[.140](.140){.142} || .065[.147](.143) | .076[.137](.135){.139} || .084[.143](.137) | .075[.134](.133){.135}
A | .394[.138](.138) | .392[.126](.126){.132} || .397[.138](.138) | .382[.124](.123){.130} || .405[.130](.130) | .380[.110](.109){.109}
2 || .200[.192](.192) | .204[.195](.194){.193} || .201[.182](.181) | .203[.174](.172){.173} || .199[.183](.183) | .204[.171](.170){.176}
|| .043[.146](.140) | .044[.129])(.125){.127} || .094[.142](.137) | .071[.120](.119){.119} || .064[.132](.130) | .073[.119](.118){.119}
4 || .361[.116](.113) | .381[.110)(.109){.111} || .395[.107](.100) | .387[.112](.109){.111} || .386].106](.103) | .378[.104](.103){.104}
2 || .182[.122](.121) | .173[.124](.123){.122} || .176[.109](.106) | .175[.110](.109){.108} || .187[.107](.107) | .182[.109](.108){.109}
1| .089[.142](.141) | .088[.143](.142){.143} || .082[.143](.142) | .076[.140](.139){.141} || .083[.135](.134) | .097[.133](.131){.133}
b5l .469[.141](.133) | .464[.122](.112){.117} || .487[.135](.129) | .452[.107](.101){.104} || .475[.119](.113) | .495[.201](.196){.198}
B3| .291[.183](.181) | .264[.168](.166){.173} || .293[.172](.164) | .276[.158](.156){.160} || .264[.183](.171) | .284[.163](.160){.165}
1 || .066].130](.127) | .065[.109](.107){.117} || .081[.128](.126) | .061[.117](.115){.120} || .061[.124](.123) | .087[.103](.102){.103}
2 || .166].106](.104) | .178[.108](.107){.106} || .195[.111](.107) | .172[.109](.107){.109} || .163[.113](.109) | .182[.102](.101){.105}
2 || .193[.133](.125) | .185[.141](.135){.138} || .193[.123](.122) | .152[.124](.119){.122} || .184[.124](.117) | .152[.125](.120){.121}
2 || .165[.168](.163) | .164[.175)(.170){.172} || .152[.165](.161) | .161[.166](.163){.164} || .185[.144](.138) | .164[.139](.136){.137}
2 || .195[.150](.146) | .164[.149](.147){.146} || .162[.144](.141) | .176[.139](.137){.139} || .161[.141](.138) | .195[.129](.126){.127}
2| 174[171)(.170) | .194[178)(.178){.174} || .188[.177](.176) | .185[.167](.167){.171} || .166].164](.161) | .180[.160](.159){.161}
2 || .185[.118](.114) | .179[.114](.113){.115} || .194[.118](.114) | .167[.112](.110){.112} || .187[.187](.185) | .171[.178](.176){.180}
.0 || -.005[.105](.105) | .001[.103](.103){.104} || -.019[.105](.104) | -.016[.105](.105){.104} || -.011[.103](.103) | -.012[.110](.110){.110}
.0 || -.049[.129](.124) | -.055[.147](.141){.144} || -.040[.119](.116) | -.039[.135](.132){.133} || -.047[.120](.115) | -.048[.138](.133){.135}
.0 || -.032[.174](.173) | -.035[.182](.180){.181} || -.036[.178](.176) | -.033[.180](.178){.179} || -.027[.144](.143) | -.027[.154](.153){.154}
.0 || -.070[.170](.161) | -.048[.161](.156){.159} || -.050[.155](.150) | -.027[.147](.146){.148} || -.047[.136](.131) | -.017[.120](.119){.125}
.0 || -.031[.108](.107) | .004[.107](.107){.107} || -.032[.171](.169) | -.004[.173](.173){.171} | -.027[.172](.170) | -.003[.179](.179){.179}
.0 || -.026[.139](.135) | -.018[.134](.134){.136} || -.029[.129](.128) | .000[.129](.129){.128} || -.053[.204](.199) | -.021[.194](.193){.196}
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Table 6.2b. Empirical Mean(rmse)[sd] of Estimators of § of SARAR(3,3). Case when the regular QML estimator is consistent under
heteroskedasticity. n = 250, = (3,1,1), 0 =1, Queen Contiguity, REG-1

do H QML \ ACQS H QML \ ACQS H QML \ ACQS
H Normal Errors Mixed Normal Errors Log-Normal Errors

5| .493[.068](.068) | .493[.070](.070){.071} || .494[.065](.065) | .496[.064](.064){.065} || .496].068](.068) .493[.068](.061){.064}
3 || .306[.074](.074) | .275[.086](.086){.080} || .290[.079](.079) | .276[.076](.076){.078} || .290[.127](.127) .296[.077](.070){.066}
1| .087[.099](.096) | .090[.084](.083){.090} || .075[.095](.090) | .094[.087](.087){.089} || .092[.082](.082) .090[.082](.082){.085}
A4 || .403[.081](.081) | .404[.083](.083){.082} | .400[.087](.087) | .408[.071](.071){.079} || .482[.084](.082) .406[.063](.063){.069}
2 || .165[.123](.121) | .209[.121](.121){.122} || .204[.115](.115) | .205[.108](.108){.109} || .203[.114](.114) .206[.105](.100){.111}
1 || .088[.084](.083) | .077[.081](.080){.081} || .106[.081](.081) | .084[.080](.080){.075} || .094[.090](.090) .081[.072](.072){.075}
A || .375[.072](.070) | .381[.063](.062){.066} | .387[.067](.065) | .376[.064](.062){.064} || .396].068](.068) .393[.064](.064){.066 }
2 || .189[.072](.071) | .184[.079](.070){.071} || .197[.068](.068) | .188[.068](.068){.069} || .189[.061](.060) .171[.060](.068){.069}
1 || .082[.086](.085) | .086[.096](.090){.088} | .098[.098](.098) | .084[.087](.087){.089} || .087[.088](.088) .073[.083](.081){.084}
5| .472[.091](.088) | .473[.075)(.072){.074} || .473[.083](.080) | .480[.069](.068){.066} || .460[.082](.077) 466[.126](.122){.125}
3 || .288[.125](.123) | .280[.106](.105){.110} || .276[.105](.105) | .288[.095](.095){.100} || .264[.109](.107) .300[.102](.102){.104}
1 || .087[.088](.086) | .086[.066](.065){.074} || .096[.076](.076) | .091[.072](.072){.074} || .065[.079](.077) .107[.068](.063){.065}
2 || .197[.070](.070) | .186[.069](.069){.067} || .177[.072](.069) | .187[.063](.060){.065} || .172[.072](.069) 177[.069](.067){.068}
2 || .196[.074](.074) | .181[.088](.088){.087} | .194[.071](.071) | .177[.072](.072){.071} || .187[.077](.077) .188[.074](.073){.075}
2 || .171[.106](.103) | .187[.108](.107){.109} || .197[.107](.107) | .197[.106](.106){.104} || .162[.094](.090) .177[.083](.082){.086}
2 || .186[.097](.097) | .197[.094](.093){.095} | .202[.087](.087) | .198[.088](.088){.087} || .196].086](.086) .195[.078](.078){.081}
2 || .187[.102](.102) | .186[.116](.116){.110} || .192[.113](.113) | .186[.110](.110){.111} || .193[.104](.104) .190[.106](.105){.102}
2 || .187[.080](.072) | .176[.077])(.075){.074} || .188[.078](.077) | .183[.062](.061){.069} || .203[.112](.112) A91[.119](.111){.114}
.0 || -.005[.065](.065) | -.007[.069](.069){.067} | -.009[.068](.068) | -.010[.062](.062){.065} | -.011[.073](.064) | -.012[.069](.068){.070}
.0 || -.014[.079](.078) | -.014[.086](.085){.082} | -.017[.072](.071) | -.019[.090](.089){.084} || -.016].074](.074) | -.017[.082](.081){.077}
.0 || -.008[.107](.107) | -.006[.115](.115){.111} || -.011[.113](.112) | -.009[.113](.112){.113} || -.014[.100](.099) | -.012[.096](.096){.097}
.0 || -.023[.102](.101) | -.011[.093](.092){.097} || -.018[.100](.099) | -.005[.107](.100){.094} | -.020[.087](.086) | -.009[.079](.079){.082}
.0 || -.013[.070](.070) | -.008[.071](.065){.067} | -.021[.118](.110) | -.005[.105](.105){.107} || -.017[.106](.105) | -.002[.114](.114){.113}
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Table 6.2c. Empirical Mean(rmse)[sd] of Estimators of § of SARAR(3,3)
Case when the regular QML estimator is consistent under heteroskedasticity
n =500, 5 =(3,1,1)’, 0 =1, Queen Contiguity, REG-1

5 | QML | ACQS | QML | ACQS | QML | ACQS
H Normal Errors Mixed Normal Errors Log-Normal Errors

5|l .494[.041](.041) | .496][.050](.050){.050} || .493[.042](.042) | .499[.040](.040){.041} || .490[.048](.048) | .493[.045](.045){.046}
3 || .298[.058](.058) | .295[.053](.053){.055} 1(.054) | .291[.059](.059){.056} || .295[.081](.081) | .292[.044](.044){.047}
1] .091[.068](.068) | .090[.061](.061){.064} 1(.064) | .099[.064](.064){.064} || .090[.067](.067) | .092[.055](.055){.060}
A4 || .408[.062](.062) | .401[.056](.056){.059} 1(.066) | .392[.058](.058){.058} || .403[.054](.054) | .399[.050](.050){.049}
.2 || .201[.082](.082) | .208].085](.085){.086} ](.081) | .199[.078](.078){.079} || .205[.083](.083) | .204[.078](.078){.079}
1 || .108[.062](.062) | .096[.054](.054){.057} 1(.068) | .098[.053](.053){.053} || .108[.052](.052) | .105[.059](.059){.055}
A || .391[.057](.057) | .399[.047](.047){.050} 1(.044) | .398[.044](.044){.044} || .392[.042](.042) | .396].048](.048){.046}
2 || .197[.058](.058) | .195[.058](.058){.058} 1(.049) | .195[.045](.045){.047} || .193[.047](.047) | .198].046](.046){.047}
1 || .096].066](.066) | .092[.062](.062){.064} 1(.068) | .095[.063](.063){.063} || .094[.064](.064) | .094[.056](.056){.059}
5| .497[.058](.058) | .499].052](.052){.052} 1(.057) | .500[.046](.046){.047} || .496[.053](.053) | .494[.081](.081){.089}
3| .297[.085](.085) | .304[.071](.071){.078} 1(.080) | .305[.073](.073){.071} || .309[.071](.071) | .307[.079](.079){.075}
1] .099[.052](.052) | .103[.041](.041){.047} 1(.060) | .102[.053](.053){.054} || .099[.057](.057) | .100[.041](.041){.046}
2 045](.045) | .196[.042](.042){.044} ](.050) | .190[.048](.048){.049} || .197[.044](.044) | .191[.040](.040){.042}
2 || .198[.059](.059) | .199].062](.062){.062} 1(.057) | .195[.051](.051){.054} || .191[.053](.053) | .195[.055](.055){.054}
2 || .199[.078](.078) | .193[.072](.072){.075} 1(.074) | .199[.070](.070){.072} || .199[.069](.069) | .196].060](.060){.061}
2 || .198[.061](.061) | .198].063](.063){.062} 1(.070) | .196[.069](.069){.069} || .195[.061](.061) | .194[.056](.056){.057}
2 || .190[.074](.074) | .193[.086](.086){.078} 1(.077) | .199[.078](.078){.078} || .191[.077](.077) | .191[.075](.075){.076}
2 || .194[.052](.052) | .196].054](.054){.053} 1(.058) | .193[.047](.047){.050} || .196[.083](.083) | .194[.074](.074){.079}
.0 || .000[.044](.044) | .000[.045](.045){.045} 1(.043) | -.005[.045](.045){.044} || -.007[.044](.044) | -.006].042](.042){.043}
.0 || -.013[.054](.054) | -.013[.064](.064){.065} 1(.055) | -.005[.055](.055){.055} || -.019[.053](.053) | -.019[.055](.055){.054}
.0 || -.009[.073](.073) | -.010[.085](.085){.081} 1(.071) | -.016[.082](.082){.080} || -.009[.062](.062) | -.008].061](.061){.062}
.0 || -.012[.070](.070) | -.006[.071](.071){.071} 1(.068) | -.007[.068](.068){.068} || -.011[.052](.052) | -.006].050](.050){.051}
.0 || -.005[.042](.042) | .001[.045](.045){.043} 1(.074) | -.005[.074](.074){.074} || -.004[.074](.074) | -.003].084](.084){.080}
.0 || -.008[.067](.067) | .000[.069](.069){.068} 1(.055) | .001[.055](.055){.055} || -.009[.085](.085) | -.003[.084](.084){.084}




6.4 Fixed Effects Spatial Panel Data Model

Spatial panel data (SPD) models are popular since these models allow a loca-
tion related dependence structure to be attached to the conventional panel model
in terms of spatial dependence or spatial heterogeneity (Anselin et al., QOOS)B
with a wide practical applicability{lf] It allows robustness as fixed effects are al-
lowed to depend on included regressors and forms a platform for different random
effects models to be enveloped inlE] In particular short spatial panels (large num-
ber of spatial units over a short time span) seems to be the prevalent setting. In
this chapter, we consider the spatial panel model (SPD) with fixed effects when
the model suffers from heteroskedasticity of unknown form with a special focus on
the short panel case. In the model we consider, spatial correlation appear both in
the dependent variable and the disturbance term.

The same array of heteroskedasticity robust estimation techniques for param-
eters of cross sectional models are unavailable for heteroskedastic SPD models
with fixed effects['f] In terms of heteroskedasticity robust estimation, Moscone
and Tosetti (2011), extends the robust GMM estimation methods for the pure
cross sectional spatial model, given in Kelejian and Prucha (2010) and Lin and
Lee (2010), to the spatial panel framework where they consider unknown het-
eroskedasticity in a panel model with only spatial error dependence. Badinger
and Egger (2015) considers a higher order spatial panel model with heteroskedas-

tic error components and gives a three step 2SLS/GMM robust estimator extend-

13See Anselin (2001), Baltagi et al. (2003, 2013), Elhorst (2003), Kapoor et al. (2007), and
Lee and Yu (2010b, 2012, 2015) for some related works. Lee and Yu (2010b, 2015) provide
surveys of the evolution of SPD models in general.

14See Baltagi et al. (2016), Hsiech and Lee (2014), Kelejian and Piras (2014) among others for
some recent empirical studies.

15See Lee and Yu (2012) for a survey of the fixed effects SPD model vs. the random effects
SPD model and Mutl and Pfaffermayr (2011) for another comparison.

6General estimation and inference related issues for SPD models with homoskedastic distur-
bances have been considered in, among others, Baltagi et al. (2003, 2013), Fingleton (2008),
Kapoor et al. (2007), Lee and Yu (2010a), and Robinson and Rossi (2015a,b).
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ing the methods in Kapoor et al. (2007). However, like in the cross sectional
case, this estimator may lack efficiency compared to a pure GMM estimator or
a ML based estimator. Since ML based methods provides the most efficient es-
timate, a ML based method that is simple to implement and robust to unknown
heteroskedasticity for this model is usefulE]

The line-up for this chapter is as follows. First we introduce the spatial panel
data model allowing both spatial lag and spatial error and individual-specific ef-
fects. QML estimation based on the transformed likelihood function is considered
along with conditions under which the usual QML estimator can be consistent
even under unknown heteroskedasticity. Next we introduce the ACQS estimator
that is generally robust against unknown heteroskedasticity and non-normality,
and provide methods for robust inferences. We also provide details of the Monte

Carlo experiment conducted for this model.

6.4.1 Robustness of QML estimator against unknown het-

eroskedasticity

In this section we outline briefly the QML estimation of the one-way fixed
effects panel data model with a spatial autoregressive lagged dependent variable
and a spatial autoregressive error structure (SARAR) where the truly idiosyncratic
component is first set to be independent and identically distributed (iid) as given
in Lee and Yu (2010a). Then, we examine the properties of this QML estimator

when the errors are independent but not identically distributed (inid). We provide

1"When the disturbances are homoskedastic in a spatial panel model with fixed effects, Lee and
Yu (2010a) show that direct estimation of all the parameters in the model (including the fixed
effects parameters), yields consistent QML estimators (QML estimators) for all the parameters
when the number of spatial units (n) becomes large, except the QML estimator for the variance
parameter when the time dimension (T) is small. However, upon transformation of the model,
QML estimators for all the parameters become consistent irrespective of the size of T and the
estimates other than the variance estimate are identical to those from the direct approach.
However, Lee and Yu (2010a) does not consider heteroskedasticity.
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conditions under which the QML estimator is robust against heteroskedasticity of
unknown form, and derive asymptotic distribution of this robust QML estimator.

Consider the SARAR panel data model with individual fixed effects,
Ynt = )\OwlnYnt—{'XntﬁO—i_Cn_"Unt; Unt = pOWZnUnt+Vnt7 t= 17 s 7T7 (621)

for t = 1,2,...,T, where, Y: = (Y1t, Yot, ---» Yne)" 18 the vector of dependent vari-
ables, X,; represents the n x k matrix containing the values of k£ non-stochastic
time varying regressors, V,,; = (v, Uay, ..., Upe)' i the vector of disturbances where,
v ~ 19d(0,0%). Bis a k x 1 vector of regression coefficients, X and p are the spatial
parameters with W7y, and W5, being the respective n X n non-stochastic spatial
weights matrices which may or may not be the same in practice. c, is the an
n X 1, time invariant vector of individual fixed effects.

The individual fixed effects in this model cause the incidental parameter prob-
lem (Neyman and Scott, 1948) which can be avoided by transformation of vari-
ables. Lee and Yu (2010a) suggests a transformation using the orthonormal matrix
of the deviation from the time mean operator, Jp = Iy — %LTL/T The orthonor-
mal matrix is given as [Frr_, ﬁLT], where Frrp_; is the T' x T'— 1 eigenvector
matrix corresponding to the eigenvalues 1 and \/LTLT corresponds to the eigenvalue
OH Let a typical transformed variable be, Z*, ..., Z% 1 | = (Zu1, ..; Zn1) Frira
then the original model can be written as, Y, = A\W4,. Y, + X,8 + U;,, where
Uy = pWo,Ur, +Vy for t =1,..., T — 1. The effective sample size after the trans-

formations is N = n(T' —1). Upon stacking the vectors and matrices, we have the

18Lee and Yu (2010a) illustrates a QML estimator using either a direct approach or a transfor-
mation approach. In the direct approach parameters are jointly estimated along with the indi-
vidual effects. The transformation approach eliminates the individual effects and thus removes
the problem of incidental parameters when n becomes large, and yields consistent estimates
when either n or T is large.

Y Transformation using orthonormal matrix of Jr, allows the resulting transformed distur-
bances to be independent over t. However if the variables are transformed using a time mean
operator, then the transformed disturbances fail to be independent over ¢.
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following compact form of the model,

Yy =AWinYy+XnBo+ Uy, Upy=pWonyUx+Vy, t=1...,T—1,
(6.22)
where, Yy = (Y,1,..., Y0 ), Un = (U, U ) s Vv = (VoL Vi)
Xy = (X5 Xpp )y and Woy = Ip y @ Wy, 7= 1,2. The transformed er-
rors, {V;} are uncorrelated for all n and . Using the identity (V1],..., V7 ) =
(Frp 1 ®@1) (Vo -, Vip)', we have that, B[(VY, ... Vi)' (Vi - Vi )] =
03(Frp_y ® L) (Frr—1 ® I,) = 04 In. Hence, {v};} are iid N(0,03) if the original
errors {vy } are iid N (0, 02). However, if {v;;} is non-normal, then the transformed

errors may fail to be independent even though they are uncorrelated.

Let 6 = (\, p), ¢ = (8,0"), 0 = ({’,0%)". Then the Gaussian log-likelihood is,
(n(0) = =5 In(270?) + I [A1n ()| + In[Aan (p)| — 52 V(O VN(C),  (6.23)

where VN(C) = AQN(p)[AlN(A)YN—XNﬂ], AlN(A) = IN_)\WlNa and A2N<,0) =
IN — pW2N~ Let YN((S) = AQN(p)AlN()\)YN and XN(P) = A2N(P)XN- The

constrained QML estimators of 5 and o2, given § is:

Bn() = [Xiv(0)Xn(p)] " Xi(p)Yn(9), (6.24)

on(0) = FYN(O)My(p)Yn(9), (6.25)

where My (p) = In — Xn(p)[ X (0)Xn(p)] X/ (p). Substituting Sy(5) and
6%:(8) into (6.23)) gives the concentrated quasi log likelihood function of (§):

(5(8) = =Z(In(2m) + 1) + In |[A; v (A)] + In [Aon(p)| — T In6%,(6). (6.26)
Maximizing (6.26)) gives the unconstrained QML estimator dx of & and thus the

189



unconstrained QML estimators of 3, and o2 as fy(dy) and 6]2\,(51\;) Lee and
Yu (2010a) show that 6y is v/N-consistent when the errors are iid. Next we
turn to some further issues that can be considered. First we examine conditions
under which the regular QML estimator fn remains consistent when errors are
heteroskedastic. From a practical point of view, it may not be possible to validate
these conditions for a given dataset, especially considering that heteroskedastic-
ity is of unknown form. Hence, secondly we give methods to adjust the regular
QML estimator fn so that it becomes generally consistent under unknown het-
eroskedasticity. However, inferences based on these estimates are not possible
without having a consistent estimate of the standard errors. As such, thirdly we
give methods for estimating standard errors required for inference based on an
outer product of the gradient method.

Lin and Lee (2010) shows that QML estimator of the usual cross sectional
SAR model without a time varying index, is inconsistent when the errors are
heteroskedastic when a certain necessary condition is violated. In this section we
show that the violation of a similar condition will render the QML estimates for
the for the parameters of the model given in inconsistent in general. As
such, it is at least theoretically possible to find situations where the original QML
estimates are consistent even when the disturbances are heteroskedastic. Suppose
now we have disturbances that are independent but not identically distributed
(inid), ie., vy ~ inid(0,0%h;), i = 1,...,n, t = 1,...,T, where £ 3" h; =1

and h; > OE Consider the score function derived from ((6.23]),

20The computation of the two determinant terms can be simplified using, |Aijn(\)| =
|I,—1 — /\Wl*n|T_1 = (735 1o — AW, )T_l = (I, - )\wli))T_l, where wy; are the
eigenvalues of Wy,,. A similar expression can be derived for |By(p)|. Refer Lee and Yu (2010a)
and Griffith (1988).

2INote that o2 is the average of Var(v;). Under homoskedasticity, h; = 1, Vi.
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LV (OXn(p),
P b [VM(OVN() = No?, (6.27)
V(OB (p)Win Yy — tr(Gin(V)),

LV OWan[Ain(N)Y N — Xnf8] — tr(Gan(p)),

where G,y = WTNA;Al,, r = 1,2. The necessary condition for consistency is
satisfied for the components with respect to 8 and o2, however, it is not always
true for the components with respect to the spatial parameters A and p when the

disturbances are heteroskedastic. Consider@

4 Lin(bo) = NLU%V}VGWVN — ytr(Guiy) + 0,(1)
— N%gV;v (Ginv — tr(Gin)In) Vv + 0,(1)
= L (tr(HyGiy) — Ltr(Gin)tr(Hy)) + 0,(1)
= Cov(gin,ii, hi) + 0,(1) and

ipnin(0) = oz VaGanVy — ytr(Gay) +0,(1)
— N%UOV;V ((Gan) — £t1(Gan)In) Vv + 0,(1)
= L (tr(HyGan) — £tr(Goy)tr(Hy)) + 0,(1)

= Cov(gan,ii, hi) + 0p(1),

where Gy = Aon Gy NAS, ]\1, and Ggy are block diagonal matrices, Giy,;; and gay i
are the diagonal elements of the block matrices of Gy,, and G, respectively, and

Hy = Iy ® H,, where H, = diag(hy,...,h,). Hence, plimN%m%%fN(Ho) =

22Note that all the quantities defined at the true parameter is represented with a suppressed
variable notation, e.g., A1y = Ai1n(Ao) and Giy = Gin(Ag) and so on. In addition diag(.)
denotes the symmetric matrix formed by the diagonal elements of a matrix, diagv(.) denotes
the vector formed by the diagonal elements of a matrix and tr(.) denotes the trace of a matrix.
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0 if Cov(Gin,ii, hi) and Cov(gan,ii, hi) goes to 0 in the limit. Several cases can
be identified as cases where this condition is satisfied: (i) Lin and Lee (2010)
shows that this condition is satisfied when almost all the diagonal elements of
the matrix G,, are equal] (ii) the condition is also related to the variability of
the number of neighbours, i.e., Var(gy;,) — 0 and Var(gs,) — 0, boils down to
Var(k,,) — 0, where k,, is the vector of number of neighbours for each spatial
unit@ and (7i7) when heteroskedasticity arises due to reasons unrelated to the
number of neighbourﬁ. Hence it seems necessary to investigate the asymptotic
results when the QML estimators are robust. We refresh the regularity conditions
as follows:

Assumption 6.7: The true spatial parameters oy is in the interior of a com-
pact set A.

Assumption 6.8: V,; ~ (0,02H,), where H, = diag(hy,...,h,), such that
%Z?:l h; =1 and h; > 0,Vi and Elvy|*™ < ¢ for some n > 0 and constant ¢ for
allm and t.

Assumption 6.9: The elements of the regressor matrix X are non-stochastic
and uniformly bounded and limy_, %XQVXN exists and is non-singular.

Assumption 6.10: The spatial weights matrices W,.,,, r= 1,2 are uniformly
bounded in absolute value in both row and column sums and the diagonal elements
are zero.

Assumption 6.11: The matrices A,y are non-singular and Ay, is uniformly
bounded in absolute value in both row and column sums. Further, A{y()\) and

A5y (p) are uniformly bounded in either row or column sums, uniformly in § € A.

Zsuch as the case where, (a) the group sizes are the same in a Group Interaction weights
matrix, (b) where there are equal number of neighbours before and after in a Circular world or
(¢) when the spatial weights matrix is sparse

24This is because the diagonal elements of the higher order powers of W,,, inversely relate to
Eyn, see Anselin (2003). For example, when W,., is row-normalised and symmetric, diag(W2,) =

{k;ll?} Var(k,) = o(1) can be seen to be true for many popular spatial layouts such as Rook,
Queen, group interactions, etc., see Yang (2010).

2such as when heteroskedasticity is a function of the exogenous regressors Xy, .
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Assumption 6.12:
Fither (a): lim,_,o. Hx(p) is non-singular Vp and lim,,_,, Q1,(p) # 0 for p # po;
or (b) limy, oo Q2,(8) # 0 for § # 0y, where

Hu(p) = (X, GinXnfo) Apy Aoy (X, GivXn /o),

Qv (p) = ([ AR AL — In o3 () A (0) A7 ()

O (6) = L (In |02 AL AL AT AL - In 03, (9) A () AR (VAT (AT (o))

02(8) = LoRtr(Hy ALl ALy () Asy (9) Aav(p) A1y (VATLAZL) and

o (p) = 0% () r=ro-

Assumption 6.13: n is large and T is finite or large["

Let, Qiv = G1yGin, Qon = GonGan, Qsy = GonGan.

Assumption 6.14: The covariance between the vector of diagonal elements

of Hy and the vectors of diagonal elements of, Gin, Gan, Qin, Qan, Qsw,
QsnQsn, QoenGin, GoyGin, GiyQan is zero.

Theorem 6.5 Under Assumptions 6.7-6.14, as N — oo, Oy — Bo.

6.4.2 Adjusted Concentrated Quasi Score Estimation

In this section we look at an alternative robust estimator when the necessary
conditions for consistency of the QML estimator, lim,, o Cov(gin i, hi) = 0 and
lim,, o Cov(gan i, hi) = 0, are violated. This can happen when h; is proportional
to the number of neighbours k; for each spatial unit and lim,,_,. Var(k,) # 0.
However, even when these conditions hold for a given dataset, it is impossible
to check as the form of heteroskedasticity is unknown. Inspired by Lin and Lee
(2010), and Kelejian and Prucha (2010), Moscone and Tosetti (2010) proposed

a heteroskedasticity robust GMM estimator for a spatial panel data model with

26The case of finite n and large T is of less interest for two reasons: (a) the incidental pa-
rameter problem does not arise and (b) the problem of heteroskedasticity is not as severe as the
varying measures of h;, skewness and kurtosis can be consistently estimated. When T' > n, the
spatial structure is less influential as the weight matrix can be estimated explicitly using the T°
observations for each n.
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one way fixed effects and spatial autoregressive errors (with no extension to in-
clude a spatial lagged dependent variable). Also building on the works of Kelejian
and Prucha (2010), Badinger and Egger (2015), proposed a robust GMM based
estimator for a higher order spatial autoregressive panel data model with het-
eroskedasticity and error components. In this chapter, a robust quasi maximum
likelihood estimator (QML estimator) is proposed, to estimate the parameters of
the model given in which includes a spatial lagged dependent variable as
well as a spatial error dependent variable. The proposed estimator is defined by
adjusting the concentrated quasi score function for 9. The method can be easily
extended to a two way fixed effects model or a higher order spatial panel data

model. We further introduce a method for estimating its robust standard errors.

The method

As evident from the analysis given after , the inconsistency of the QML
estimator of the model parameters of is caused by elements of the score
function derived with respect to the spatial parameters, failing to reach a proba-
bility limit of zero. As such we look at an adjustment to the score function that
allows it to reach the required probability limit. Although it is possible to adjust
the full score function to attain a robust estimator, with a decent asymp-
totic performance, the finite sample performance is diluted by the fact that the
full score function does not take into account the variability caused by estimating
the other model parameters 3y and o2. As such adjusting the concentrated quasi
score function is desirable in attaining both finite sample as well as asymptotic
performance in the robust estimator, since the concentrated quasi score function
captures the variability coming from estimating (3, and .

The averaged concentrated quasi score function derived by taking the deriva-
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tives of the concentrated quasi log-likelihood function ([6.26]) with respect to o:

Y}V(é)MN<p)[GlN(5) %t (Ginv(N)In]Y N (6)

S Y\ (6)Mp(p)Y n(6) 7
Yn(0) =4 _, _ .

Y 5 (0)My(p)[Gan(p) — 2tr(Gan(p)) IN]Y 5 (0)

Yy (MMp(p)Yn(0) ’

(6.28)

where Gy (6) = Aan(p)Gin (M)A (p) and Gan(p) = Gan (p)Mn(p).

Using ¢ (d), the regular QML estimator is defined as, oy = arg{@[NJN((S) = 0}.
For dy to be consistent under unknown heteroskedasticity, it is necessary that
E(QZN) equals or tends to zero, see van der Vaart (1998, ch. 5). However, this
does not hold if there exists unknown heteroskedasticity and the conditions of
Theorem are violated. In other words, a condition required to attain consis-
tency is, E[Y yMy(G,n — %tr(GrN)[N)YN] equals or tends to zero for r = 1,2.
Thus, we can adjust to ensure that it is zero in expectation. To that ef-
fect, note, E(YAyMyG,nyYy) = o2tr(HyMyG,y) = o2tr(Hydiag(MyG,y)).
Hence, a possible way to go is to replace %tr(GTN) of with diag(MyG,y).
However, this introduces an additional My to E(YyMuyG,xYy) and hence the
final adjustment made is of the form diag(My)~!diag(MyG, ).

Thus, we have the adjusted concentrated quasi score function,

Yy (0)My ()G (6)Y 5 (0)

NOE ,Y;V(é)MNEp)YN(é) | (6.29)
Yy (0)Mn(p)Gon(p) YN (9)

Y;v(fs)MN(/))YN@) 7

where G2y (8) = G,n(0) — diag(My) 1 (p)diag[Mp(p)G,n(5)], r = 1,2 and we

define the adjusted concentrated quasi score (ACQS) estimator as,

oy = arg{-L(5(5) = 0}. (6.30)
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Once a heteroskedasticity robust estimator for dy is obtained, heteroskedastic-
ity robust estimators for 8y and o2 follows from Sy = By (dy) and 5% = 62 (0y).
Hence the ACQS estimators of the model are computationally as simple
as the QML estimators while being generally consistent under unknown het-

eroskedasticity and preserving the nature of being robust against non-normality.

Asymptotic properties of the ACQS estimator

In this section we derive the asymptotic properties of the ACQS estimator.
To do so, first, in order to ensure that the adjusted estimating equation given in
(6.29)) uniquely identifies 0y, the Assumption 6.12 needs to be adjusted as follows:

Assumption 6.12%: V§ £ ),

(1) Hmy—oo y [BpX ALY ATy Qv () ATy A X By
+odtr(Hy ALy ATy Qv (0) ATy AL)] # 0 and
(1) Hmy—eo = [o2tr(Hy ALy ATy Qon () ATNALN)] # 0, where

Quv(0) = AL, (VAL (0)[Gin(0) — diag(Gin ()] Aan (p) Ain () and

Qon(9) = AL (V)AL (0)[Gan(p) — diag(Gan (p))] Ao (p) Arv (V).

Asymptotic normality of the ACQS estimators can be established using CLT
for linear quadratic forms given in Kelejian and Prucha (2001). Consider the

normalised and adjusted concentrated quasi score function at dg,

_ L _(ViyBinVy +c,x V) +o0 (1),
VNG, = 7 (Vi V) oy (6.31)

\/ﬁlo—% (ViBanViy + chy Vi) + 0p(1);

where B,y = MyGSy, ¢,y = MyG2\ Xy (p0)fo and diag(B,y) = Onxn by con-
struction for r = 1,2. As 63, (Xo) = ¥ ViMyVy = SE(ViMyVy) +0,(1) =
%tr(HNMN) +0,(1) = 02 + 0,(1), and it follows that 65°(A\g) = 052 + 0,(1).

Let ¥ n() denote the first-order variance-covariance of a normalised quantity,
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for example, X (1% ) is the first-order term of Var(v/Ni%). By (6.31)) and Lemma

A.3, we derive Xy (¢/%) which has the following components,

Evan(Ux) = & X SOyt + Zbivacinas) + pmcivHyewy
++tr[HyBiy(HyB v + HyBiy )],
Svey) = SnvaWy)
= % Z?zl 23:1(51N,z’tb21v,ith%/€i + U%b2N,itclN,itSi + %blN,it@N,itSi)
+n%‘8c’1NHNCQN + %tr[HNBuv(HNBQN + HyBjy)] and
EN,QQ(@Z)?V) = % dict Zle(b%N,ithgni + g%b2N7itc2Nait3i) + n%.gCIQNHNCWV

—{—%tr[HNBQN(HNBQN + HyBjy)],

where b,y are the diagonal elements of (Frr1 ® I,)B,n(Frp_ ® I,), ¢,n are
the elements of the vector ¢y (Frr_y ® In), s; = E(v};) and k; is the measure
of excess kurtosis of v;. The score function v N @Z}"V can be rewritten as a linear
quadratic form of the original disturbances, {V;;} and by Assumptions 6.9-6.11,
we also have that (Frr_1 ® I,)B,n(F7p_ ® ) is uniformly bounded in row and
column sums. Then by the multivariate CLT for linear-quadratic forms given in

Lemma A.3, we have,
VNG 2 N (0, lim ZN(JJ}*\,)) (6.32)

This leads to the following theorem regarding the asymptotic properties of the

ACQS estimator dy of the spatial parameter 6.

Theorem 6.6 Under Assumptions 6.7-6.11 and 6.12°, the ACQS estimator

dn is consistent and asymptotically normal, i.e., as N — oo, on -2 6o and

V(3w —d0) =5 N (0, lim Sy (3)).

1
N—o0
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where Y (0n) = O SN (04PN and Oy = ~E[ UV*(80)] or its first-order term,
0

has the following components:

Dxn = +tr[Hn(GiyGin + Gy Giy — Gyl + shzchvm,

CI’N,12 - %tr[HN<G(fNG2N + GIQNG({N - G;N - G2NGC1)N + GQNG?N)]
+N+,(2)C'1N772N

Dy = yir[Hy(GyGiv + Gy Goy)] + N+,3C'2N771N and

P2 = %tr[HN«_;SNGQN + GyyGsy — G;N — GonGsy + Gan G y)]
+N+T§C’QN772N, where

my = AonGinX NS, nan = GanAan Xy,

LEe}

Gy = Giy — diag(My)~'diag(MnG?y),

Goy = GanGan + GoyMy — diag(My) " diag(My Gay Gan)
—diag(Mx!)diag(MyGonMy) — diag(My) ™ 'diag(MyGay)
+diag(My' MyMy' )diag(MyGay),

Py =1y — My and MN = MpyGonyPy + PNGIZNMN'

As in the previous section, we consider dy and 3y to be the main parameters
of interest. A Taylor expansion of BN(SO) around 0 = dy gives BN(SN) = /@N((Sg) +
B (60)(0n — 0o) + O,(%), where B(8y) = %BN g This is used to derive the

asymptotic distribution of BN.

Theorem 6.7 Under Assumptions 6.7-6.11 and 6.12°, the ACQS estimator

BN 15 consistent and asymptotically normal, i.e., as n — o0, BN L5 By, and

Va(Bx — Bo) N(0, limy—,0 Sn(Bn)),
where, Sn(Bx) = [Xiy(p0) X (p0)] ™ Xy (p0) AKX (0) [ Xy (p0)Xv(po)] 7, Ax =

2\/N(O‘0_2B(11NSN+HN01N, O(;QBSNSN—f—HNCQN)q)]_Vl (77]\], ON)/+EN,11<SN)77N77§V+

No2Hy, where Bly = diag(B,n), Sy = E(V%,), Sn11(0n) is the top-right corner
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element of EN(SN), and Oy is an N x 1 vector of 0’3.

For asymptotically valid inferences using Theorems and we need a
consistent estimator of Yy (1%) and a consistent estimate of Yy(By). As be-
fore a plug-in estimator will work for ®y, but not for N(Qﬁ}k\,) as it requires the

estimation of higher-order moments. Hence we look at an alternative method.

Robust estimation of VC matrix

The first-order variance of the adjusted score, 3 N(@}*\,), contains second, third
and fourth moments of V;; which vary across i, and hence a simple White-type
estimator (White, 1980) may not be suitable, which in turn makes ¥y (0 ) infeasi-
ble@ To overcome this difficulty, we follow the idea of Baltagi and Yang (2013) to
decompose the numerator of the adjusted score into a sum of uncorrelated terms,
and then use the outer product of gradients (OPG) to estimate the variance of this

score function which in turn leads to a consistent estimate of X(0y). To illustrate

the method, denote the numerator of (6.31)) by,

ViyBinVy + ¢y Vi,
Qn(VN) = (6.33)
V?VBQNVN + CIQNVN.

27 As before, the limiting distribution of 6%, can be easily derived. However, it is of little use as
any inference on 63, requires the consistent estimation of 3 Y1 | Var(V3 ;) = %4 SN (ki +
h% ;) which cannot be done.

28Stock and Watson (2008) illustrated, that the White estimator used to estimate the variance-
covariance matrix of the disturbances of a fixed effects panel data model when T is fixed, is
inconsistent. Further, they gave a consistent heteroskedasticity robust estimate for the variance-
covariance matrix. Their method was later extended to the spatial panel data model by Badinger
and Egger (2015) under a GMM estimation setting. However, compared to their approach, the
technique we recommend is much easier to implement and does not rely on the estimation of
higher order moments of the disturbances. Kelejian and Prucha (2007) gives a non-parametric
HAC estimation in a spatial framework concentrating on the cross sectional model. However,
this method was never extended to the present framework.
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Q is not a sum of uncorrelated components, but can be made to be so (Baltagi

and Yang, 2013). First decompose the non-stochastic matrices B,y as,

where By, Bl and B?, are respectively, an upper triangular, a lower triangular
and the diagonal matrices of B,y. Let Ty = (Cing + bingVy + cinvg, Cong +
ban 4oV, + cang)'s where Gy = (BY + BLy )V, bengg are the diagonal elements
of B¢, and V) are the transformed errors, for r = 1,2 and g = 1,...,N. To
apply the OPG method to estimate the variance of the score function, Qn(Vy)
has to be written as a sum of NV uncorrelated terms. The usual method is to write
Qn(Vn) as,

Qv (VN) =20 Vi Yy (6.35)

However, since the transformed errors are not necessarily independent, {V;*Y,}
may fail to be uncorrelated if the higher order moments (specifically third and
fourth order) of the original errors are non-zero.

We first look at the case where the original errors are inid Gaussian so that
the transformed errors will also have the same properties. In that case {V; Y}
will be uncorrelated for g =1,..., N. Then the OPG of gives a consistent

estimator of the variance of the score as follows,
Sy (%) = rﬁN S VT (6.36)

where V,,; are the residuals computed from the ACQS estimators 0y = (va, 53, ) N)

and Tg - (EIN,g + BlN,gg%* + 61N,g7 §2N,g + 62N,gg‘~/g* + 52N,g>/' USiIlg " define

the estimator of ¥y (dy) as,

Sn(on) = O S (h) N, (6.37)
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where @5 can be estimated by the plug-in estimator of —%@L}H so—sy OT the
Ist-order term —E(d;:%z/?j‘v) using the terms given in Theorem and Hy =

&Ldiag(f/l*f, ., Vi), We give the following theorem.
N

Theorem 6.8 If Assumptions 6.7-6.11 and 6.12° and 6.13 hold, and in addi-
tion if Voy ~ N(0,02H,,) then we have as N — oo, Yn(0n) — Xn(0n) - 0.

Now suppose the disturbances are not Gaussian. In this case we no longer
have {V T} to be uncorrelated for g = 1,..., N so that the OPG of (6.35) is not
a valid estimator of the variance of the score. However, as shown in the Appendix

G, when T is finite, we have,
Var[Qn (V)] = 300 E(V;2T,T,) + 0,(1). (6.38)

where the covariance term, 22;\;2 St E(V; Y1V Y1) becomes asymptoti-
cally negligible, so that the estimator given in (6.36]) is an asymptotically valid

estimator.

Theorem 6.9 If Assumptions 6.7-6.11 and 6.12° hold, and in addition if T
is finite, then we have, as N — oo, f]N(SN) — EN(gN) 5 0.

Given the consistent estimator for ¥y (dy), a consistent estimator for Xy (8y)

can be given as,
Sn(By) = (X Ahy Aoy Xy) P X N ALy Ay Aoy Xy (X Ay Aoy Xy) L, (6.39)

where AN = 2\/N(5’62B?NSN + I:INélN, 562B3NSN -+ I:IN(EQN)CT);VI(T?N,ON), +

i?\,’ll((g N)AnTy + N62Hy and Sy = V3. We give the following corollary.

Corollary 6.2 Under the conditions in Theorem Sn(By) — En(By) 2
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6.4.3 Monte Carlo Results

Extensive Monte Carlo experiments were run to investigate the finite sample
performance of the QML estimator Sn and the ACQS estimator dy proposed
in this chapter, and their impacts on the estimators of 8, and o3, with respect
to changes in the sample size, spatial layouts, error distributions and the model
parameters when the disturbances are heteroskedastic. We consider cases where
the QML estimator are robust against heteroskedasticity and the cases it is not.

The simulations are carried out based on the following data generation process:

Ynt = )\OWnYnt +X1,ntﬁl + X2,ntﬁ2 +c,+ Unt7 Unt = pOWnUnt + Vnt; t= 17 27 37

where X ,,; and Xy, are fixed regressors and V,,, = oH,e,;. Regression coeffi-
cients fisset to (3,1,1), o is set to 1, d takes values from {—0.5, —0.25,0,0.25, 0.5},
n take values from {50, 100,250,500} and T is initially set to be 3. The ways of
generating the regressors, the spatial weights matrix W,,, the heteroskedasticity
measure H,,, and the idiosyncratic errors e,; are described in Appendix B. Each
set of Monte Carlo results is based on 5,000 Monte Carlo samples.

Tables 6.3-6.5 summarise partial estimation results for §, where in each table,
the Monte Carlo means, root mean square errors (rmse) and the standard errors
(se) of the estimators are reported. To analyse the finite sample performance of
the proposed OPG based robust standard error estimators, we also report the
averaged se of the regular QML estimator when it is heteroskedasticity robust
and the averaged se of the ACQS estimator based on Theorem [6.9 The main

observations made from the Monte Carlo results are summarised as follows:

(i) For the case where QML estimator is consistent such as in Queen contiguity
given in Table 6.1, both estimators show less bias. In addition ACQS esti-

mator can be significantly less biased than QML estimator and is as efficient
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as QML estimator.

(ii) For the cases where the original QML estimator is inconsistent as given in
Tables 6.2-6.3, ACQS estimator provides a useful consistent alternative with

significantly less bias with little or no impact on the efficiency.

(iii) The OPG-based estimates of the robust standard errors of \g and py per-

forms well with their values very close to their Monte Carlo counterparts.

(iv) As the theory suggest, the QML estimate for the covariate effects remains
consistent under heteroskedasticity. The ACQS estimator for the covariate

effects (unreported for brevity) performs well as well.

(v) A second set of results with large T relative to n was carried out by setting
T = 15 and n = 20. The results (unreported for brevity) show that the
ACQS estimator for §; and the OPG based estimate for the standard errors

continue to perform well.

The case of large T relative to n is of particular interest especially due to the
effect it may have on the performance of the OPG estimate of the standard errors.
The validity of the OPG estimator of the variance of the score function depends
on the condition that the terms {V Y.} for ¢ = 1,..., N are asymptotically
uncorrelated. For the cases of Gaussian errors or finite T', we show that the OPG
estimator is valid. However, when T' gets large the viability of the OPG method
is questionable. However, our Monte Carlo results suggest that even for large T’
the estimator works well. The case where T' > n was not considered as in this

case alternative models than the one given in (6.21)) is more suitable.
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6.5 Conclusion

In this chapter we consider robust estimation and inference for spatial re-
gression models where the disturbances are heteroskedastic of unknown form. In
contrast to the available methods in the literature that focuses only on specific
spatial regression model, in this chapter we provide a likelihood based method of
robust estimation that can be widely applied to a wide class of spatial regression
models. In addition, the likelihood based method has the advantage of being ef-
ficient. The method proposed works by making a deliberate adjustment to the
concentrated quasi score function and hence, is named the adjusted concentrated
quasi score (ACQS) estimator.

In order to facilitate robust inference, we also provide a means of estimating
the standard errors based on the outer product of the gradient of the adjusted
concentrated quasi score function.

These techniques are illustrated using a SARAR(p, ¢) model and a fixed effects
spatial panel data model with a spatial lagged dependent variable and spatial error
dependent variable of order one. The related asymptotic theory is given where
consistency and the asymptotic distribution is given for the ACQS estimators.
The OPG method for estimating the standard errors are also given for these two
models along with the consistency of the estimator.

Extensive Monte Carlo experiments were carried out to evaluate the perfor-
mance of the proposed methods in the context of the spatial models considered.

The results are very promising, some of which are presented here.
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Table 6.3a. Empirical Mean[rmse](sd){sd} of Estimators of A and p, IFE-SPD Model with SARAR
Case when the regular QML estimator is consistent under heteroskedasticity

T=3,8=(1,1),0 =1, Queen Contiguity, REG-1, DGP 1

n X P | QML-A | ACQS-\ I QMLp | ACQS-p
50 .50 .50 | .474[.202](.200) | .490[.209](.207){.190} || .452[.239](.234) | .449[.244](.238){.234}
25 | .462[.190](.186) | .470[.195](.191){.180} || .225[.266](.265) | .221[.268](.267){.266}
.00 | .468[.166](.163) | .470[.168](.165){.158} || -.017[.275](.274) | -.021[.273](.272){.279}
-.25 | .469[.150](.147) | .472[.151](.148){.149} || -.257[.271](.271) | -.258[.267](.267){.271}
-50 | .472[.138](.135) | .476[.138](.136){.129} || -.501[.271](.271) | -.500[.267](.267){.270}
00 .50 | .007[.234](-234) | -.001[.239](.239){.239} || .443[.232](.225) | .443[.234](.227){.226}
25 | -.002[.218](.218) | -.004[.222](.222){.220} || .204[.260](.256) | .202[.261](.257){.250}
.00 | -.008[.213](.213) | -.007[.216](.216){.210} || -.036[.281](.279) | -.038[.279](.277){.273}
-.25 | -.010[.199](.198) | -.008[.200](.200){.200} || -.278[.286](.284) | -.277[.283](.282){.280}
50 | -.018[.190](.190) | -.013[.192](.191){.200} || -.508[.281](.281) | -.503[.278](.278){.280}
-50 .50 | -.469[.225](.223) | -.480[.226](.225){.215} || .450[.211](.205) | .450[.211)(.205){.192}
25 | -.475[.222](.221) | -.480[.224](.223){.220} || .196[.252](.246) | .194[.252](.245){.239}
.00 | -.484[.222](.221) | -.485[.223](.223){.219} || -.049[.277](.273) | -.001[.275](.271){.268}
.25 | -.487[.218](.218) | -.486[.220](.220){.217} || -.288[.286](.284) | -.274[.284](.281){.281}
.50 | -.489[.219](.219) | -.490[.221](.221){.221} || -.532[.288](.287) | -.521[.285](.284){.280}
100 .50 .50 | .472[.169](.167) | .470[.169](.166){.151} || .485[.179](.178) | .490[.177](.177){.172}
25 | .474[.144](.142) | .474[.143](.140){.150} || .244[.194](.194) | .250[.191](.191){.200}
.00 | .481[119](.118) | .481[.118](.117){.118} || -.005[.196](.196) | -.003[.192](.192){.195}
-.25 | .486[.099](.097) | .490[.098](.097){.093} || -.253[.193](.193) | -.249[.190](.190){.192}
-.50 | .487[.087](.086) | .490[.087](.086){.083} || -.504[.186](.185) | -.498[.183](.183){.185}
00 .50 | -.003[.189](.189) | -.002[.188](.188){.190} || .474[.168](.166) | .479[.167](.164){.162}
25 | -.008[.177)(.177) | -.008[.176](.176){.169} || .231[.194](.193) | .229[.191](.190){.189}
.00 | -.009[.165](.165) | -.008[.164](.164){.154} || -.018[.209](.208) | -.014[.205](.204){.199}
.25 | -.011[.152](.152) | -.011[.151](.150){.143} || -.256[.210](.210) | -.252[.206](.206){.200}
.50 | -.011[.143](.143) | -.011[.143](.142){.135} || -.499[.207](.207) | -.494[.204](.204){.199}
=50 .50 | -.486[.181](.181) | -.485[.180](.179){.174} || .474[.151](.149) | .469[.151](.148){.148}
25 | -.495[.174](.174) | -.500[.172](.172){.169} || .228[.181](.180) | .230[.179](.177){.177}
.00 | -.494[173](.173) | -.493[.171](.171){.170} || -.022[.202](.201) | -.023[.199](.197){.196}
-.25 | -.501[.169](.169) | -.500[.167](.167){.162} || -.263[.212](.212) | -.261[.208](.208){.208}
-50 | -.501[.169](.169) | -.500[.167](.167){.160} || -.510[.216](.216) | -.504[.211](.211){.214}
250 50 .50 | .A86[.118](.118) | .490[.121](.120){.119} || .489[.128](.127) | .490[.130](.130){.128}
25 | .486[.098](.097) | .488[.099](.098){.096} || .248[.134](.134) | .250[.135](.135){.133}
.00 | .487[.081](.080) | .490[.081](.080){.078} || .001[.135](.135) | .000[.134](.134){.132}
-.25 | .490[.068](.068) | .500[.068](.068){.066} || -.247[.128](.128) | -.250[.128](.128){.127}
-50 | .493[.059](.059) | .500[.059](.059){.058} || -.500[.122](.122) | -.500[.121](.121){.121}
00 .50 | .005[.139](-139) | .000[.141](.141){.140} || .482[-116](.115) | .485[.117](.116){.113}
25 | .001[.127](.127) | .000[.129](.129){.128} || .234[.135](.134) | .240[.136](.135){.132}
.00 | -.007[.115](.114) | -.007[.115](.115){.115} || -.006[.141](.141) | -.004[.141](.141){.140}
-.25 | -.006[.105](.104) | -.005[.105](.105){.105} || -.255[.141](.141) | -.254[.141](.141){.140}
-.50 | -.005[.098](.098) | -.004[.098](.098){.097} || -.502[.136](.136) | -.500[.136](.136){.136}
-50 .50 | -.486[.127](.127) | -.491[.128](.127){.127} || .481[.100](.098) | .484[.099](.098){.096}
25 | -.490[.126](.126) | -.493[.126](.126){.126} || .233[.122](.121) | .240[.122](.121){.121}
.00 | -.493[.125](.125) | -.500[.126](.125){.124} || -.014[.141](.140) | -.013[.141](.140){.140}
-25 | -.497[.123](.123) | -.497[.123](.123){.121} || -.260[.149](.148) | -.258[.148](.148){.146}
-.50 | -.500[.118](.118) | -.500[.118](.118){.118} || -.505[.148](.148) | -.502[.147](.147){.146}
500 .50 .50 | .492[.082](.082) | .500[.083](.083){.083} || .497[.089](.089) | .497[.089](.089){.088}
25 | .494[.066](.066) | .495[.066](.066){.064} || .250[.095](.095) | .250[.095](.095){.092}
.00 | .496[.052](.052) | .500[.052](.052){.052} || -.001[.093](.093) | .000[.093](.093){.092}
.25 | .497[.045](.045) | .500[.045](.045){.045} | -.251[.088](.088) | -.250[.088](.088){.088}
-.50 | .497[.041](.041) | .500[.041](.041){.040} || -.501[.086](.086) | -.500[.086](.086){.085}
00 .50 | .002[.095](.095) | .001[.095](.095){.095} || .492[.078](.078) | .492[.078](.077){.076}
25 | -.003[.088](.088) | -.003[.088](.087){.087} || .246[.092](.092) | .246[.092](.092){.091}
.00 | -.002[.079](.079) | -.002[.078](.078){.078} || -.004[.098](.098) | -.003[.097](.097){.097}
-.25 | -.002[.071](.071) | -.002[.071](.071){.071} || -.253[.098](.098) | -.251[.097](.097){.097}
-.50 | -.001[.067](.067) | -.001[.067](.067){.067} || -.503[.096](.096) | -.500[.095](.095){.095}
=50 .50 | -.497[.086](.086) | -.500[.086](.086){.086} || .494[.065](.065) | .500[.065](.065){.065}
25 | -.498[.087](.087) | -.500[.087](.087){.086} || .244[.085](.085) | .243[.085](.085){.083}
.00 | -.499[.085](.085) | -.499[.084](.084){.084} || -.004[.096](.096) | -.001[.096](.096){.094}
-.25 | -.502[.082](.082) | -.500[.082](.082){.082} || -.252[.102](.102) | -.252[.101](.101){.101}
-.50 | -.502[.081](.081) | -.501[.080](.080){.080} || -.502[.101](.101) | -.500[.100](.100){.101}
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Table 6.3b. Empirical Mean[rmse](sd){sd} of Estimators of A and p, 1IFE-SPD Model with SARAR

Case when the regular QML estimator is consistent under heteroskedasticity

T=3,8=(1,1),0 =1, Queen Contiguity, REG-1, DGP 2

n X P | QML-A | ACQS-\ I QMLp | ACQS-p
50 .50 .50 | .475[.201](.200) | .472[.208](.206){.220} || .451[.239](.234) | .450[.243](.237){.237}
25 | .467[.183](.180) | .467[.187](.184){.173} || .227[.255](.254) | .230[.256](.255){.258}
.00 | .469[.165](.162) | .470[.167](.164){.160} || -.016[.268](.267) | -.012[.266](.265){.265}
-.25 | .469[.152](.148) | .480[.152](.149){.140} || -.255[.268](.268) | -.255[.264](.264){.260}
-50 | .471[.143](.140) | .480[.143](.140){.145} || -.503[.269](.269) | -.500[.264](.264){.259}
00 .50 | .008[.229](-229) | .001[.233](.233){.217} || .446[.223](.217) | .445[.225](.218){.199}
25 | -.003[.213](.213) | -.004[.216](.216){.215} || .208[.250](.246) | .206[.250](.246){.244}
.00 | -.010[.206](.205) | -.009[.207](.207){.205} || -.034[.269](.267) | -.032[.267](.264){.266}
-.25 | -.012[.193](.193) | -.010[.195](.195){.192} || -.271[.275](.274) | -.270[.271](.270){.267}
.50 | -.019[.193](.193) | -.012[.193](.193){.196} || -.510[.281](.281) | -.505[.275](.275){.276}
-50 .50 | -.469[.225](.223) | -.480[.226](.224){.217} || .448[.211](.205) | .447[.211)(.204){.196}
25 | -.481[.223](.222) | -.484[.224](.223){.210} || .201[.251](.246) | .200[.249](.244){.246}
00 | -.487[.217)(.216) | -.487[.218](.217){.210} || -.041[.274](.271) | -.042[.271](.268){.265}
.25 | -.494[.216](.216) | -.492[.218](.217){.200} || -.279[.282](.281) | -.272[.279](.277){.277}
-.50 | -.499[.216](.216) | -.495[.216](.216){.210} || -.516[.283](.283) | -.512[.278](.278){.274}
100 .50 .50 | .473[.167)(.165) | .473[.165](.163){.148} || .483[.177](.176) | .482[.174](-173){.169}
25 | .473[.144](.141) | .480[.140](.138){.133} || .246[.193](.193) | .250[.189](.189){.189}
.00 | .479[.123](.121) | .480[.121](.119){.110} || -.001[.199](.199) | .000[.194](.194){.191}
.25 | .487[.101](.100) | .487[.100](.099){.092} || -.252[.192](.192) | -.248[.188](.188){.187}
-.50 | .487[.091](.090) | .487[.091](.090){.090} || -.501[.185](.185) | -.495[.182](.182){.182}
00 .50 | .000[.191](.191) | .000[.188](.188){.188} || .472[.169](.166) | .470[.167](.163){.162}
25 | -.006[.173](.173) | -.005[.170](.170){.164} | .229[.191](.190) | .227[.188](.186){.184}
.00 | -.010[.163](.162) | -.009[.161](.160){.152} || -.011[.200](.200) | -.011[.196](.196){.197}
.25 | -.012[.151](.151) | -.011[.148](.148){.141} || -.255[.205](.205) | -.252[.199])(.199){.199}
-.50 | -.010[.143](.143) | -.010[.142](.141){.140} || -.504[.205](.205) | -.500[.199](.199){.199}
=50 .50 | -.488[.181](.181) | -.486[.179](.179){.169} || .476[.151](.149) | .480[.150](.147){.143}
25 | -.494[.177)(.177) | -.500[.174](.174){.165} || .226[.183](.181) | .223[.180](.178){.173}
.00 | -.499[.174)(.174) | -.497[.171](.171){.160} || -.015[.201](.201) | -.012[.197](.196){.192}
.25 | -.498[.173](.173) | -.497[.171](.170){.159} || -.264[.213](.213) | -.262[.208](.208){.199}
-.50 | -.503[.169](.169) | -.500[.167](.167){.157} || -.506[.214](.214) | -.501[.209](.209){.200}
250 50 .50 | .485[.110](.118) | .484[.122](.121){.119} || .493[.128](.128) | .500[.130](.130){.127}
25 | .485[.099](.098) | .486[.100](.099){.095} | .251[.132](.132) | .250[.133](.133){.132}
.00 | .489[.080](.079) | .499[.080](.079){.076} || .001[.132](.132) | .000[.132](.132){.130}
.25 | .491[.066](.065) | .493[.066](.065){.065} || -.248[.126](.126) | -.250[.125](.125){.125}
-50 | .492[.060](.059) | .500[.060](.059){.058} || -.498[.124](.124) | -.499[.124](.124){.120}
00 50 | .005[.143](.142) | .000[.144](.144){.140} || .481[.119)(.117) | .484[119](.118){.112}
25 | .000[.129](.129) | -.001[.130](.130){.127} || .235[.136](.135) | .237[.136](.136){.130}
.00 | -.007[.117)(.117) | -.006[.118](.117){.115} || -.006[.143](.143) | -.005[.143](.142){.140}
-.25 | -.008[.106](.106) | -.007[.106](.106){.105} || -.249[.141](.141) | -.250[.141](.141){.140}
-.50 | -.008[.100](.100) | -.007[.100](.100){.100} || -.496[.140](.140) | -.500[.139](.139){.135}
~50 50 | -.490[.127](.126) | -.500[.127](.127){.125} || .485[.097](.096) | .490[.097](-096){.094}
25 | -.491[.130](.130) | -.500[.130](.130){.126} || .233[.125](.124) | .240[.125](.124){.120}
.00 | -.498[.126](.126) | -.499[.126](.126){.123} || -.011[.140](.139) | -.010[.139](.139){.136}
-.25 | -.498[.123](.123) | -.498[.123](.123){.120} || -.261[.149](.149) | -.254[.149](.148){.143}
-.50 | -.502[.118](.118) | -.500[.118](.118){.117} || -.507[.147](.147) | -.504[.146](.146){.144}
500 .50 .50 | .493[.082](.082) | .500[.083](.082){.080} || .496[.089](.089) | .496[.089](.089){.088}
25 | .494[.066](.065) | .495[.066](.065){.064} || .251[.093](.093) | .250[.093](.093){.092}
.00 | .497[.053](.053) | .500[.053](.053){.052} || -.003[.093](.093) | -.002[.092](.092){.091}
.25 | .496[.046](.046) | .500[.046](.046){.045} || -.251[.090](.090) | -.250[.090](.090){.089}
-.50 | .498[.040](.040) | .500[.040](.040){.040} || -.503[.085](.085) | -.500[.084](.084){.084}
00 .50 | .003[.094](.094) | .003[.094](.094){.094} || .492[.078](.077) | .500[.077](.077){.077}
25 | -.002[.087](.087) | -.001[.087](.087){.086} || .244[.093](.092) | .244[.092](.092){.090}
.00 | -.003[.080](.080) | -.003[.079](.079){.078} || -.002[.098](.098) | -.002[.097](.097){.096}
-.25 | .000[.072](.072) | .000[.072](.072){.071} || -.255[.100](.100) | -.254[.099](.099){.097}
-.50 | -.002[.066](.066) | -.002[.066](.066){.066} | -.501[.094](.094) | -.500 [.094](.094){.094}
=50 .50 | -.497[.087](.087) | -.497[.087](.086){.086} || .494[.065](.065) | .493[.066](.065){.065}
25 | -.500[.087](.087) | -.499[.087](.087){.086} || .246[.084](.084) | .250[.083](.083){.083}
.00 | -.500[.084](.084) | -.499[.084](.084){.084} || -.004[.094](.094) | -.005[.093](.093){.093}
.25 | -.499[.085](.084) | -.498[.084](.084){.082} || -.255[.103](.103) | -.252[.102](.102){.100}
-.50 | -.502[.082](.082) | -.501[.081](.081){.080} || -.502[.104](.104) | -.500[.103](.103){.101}
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Table 6.3c. Empirical Mean|rmse](sd){sd} of Estimators of A and p, 1IFE-SPD Model with SARAR
Case when the regular QML estimator is consistent under heteroskedasticity
T=3,8=(1,1),0 =1, Queen Contiguity, REG-1, DGP 3

n X P | QML-A | ACQS-\ I QMLp | ACQS-p
50 .50 .50 | .475[.194](.193) | .480[.200](.198){.195} || .456[.228](.223) | .453[231](.226){.221}
25 | .466[.182](.179) | .470[.187](.184){.188} || .228[.250](.249) | .230[.251](.249){.252}
.00 | .466[.172](.168) | .468[.173](.169){.153} || -.009[.265](.264) | -.011[.261](.261){.263}
-.25 | .471[.149](.146) | .473[.149](.146){.140} || -.256[.265](.265) | -.255[.260](.260){.263}
-50 | .475[.140](.138) | .477[.140](.138){.130} || -.500[.258](.258) | -.495[.253](.253){.252}
00 50 | .014[.225](.225) | .008[.228](.228){.210} || .442[.228](.220) | .449[.229](.221){.199}
25 | -.005[.215](.215) | -.005[.216](.216){.196} || .207[.250](.246) | .204[.249](.245){.246}
.00 | -.015[.203](.203) | -.013[.203](.202){.188} || -.026[.262](.261) | -.029[.258](.256){.255}
-.25 | -.015[.195](.194) | -.012[.194](.193){.184} || -.270[.275](.274) | -.269[.269](.268){.267}
50 | -.018[.188](.187) | -.015[.187](.186){.180} || -.508[.268](.268) | -.503[.262](.262){.264}
-50 .50 | -.467[.222](.220) | -.480[.221](.219){.200} || .448[.209](.203) | .450[.208](.201){.190}
25 | -.477[.222](.221) | -.480[.223](.221){.199} || .201[.242](.237) | .199[.241](.236){.234}
.00 | -.487[.214](.214) | -.490[.214](.213){.199} || -.036[.268](.265) | -.038[.264](.261){.259}
-.25 | -.491[.209](.209) | -.490[.209](.208){.198} || -.285[.273](.270) | -.250[.268](.266){.269}
-.50 | -.498[.214](.214) | -.500[.213](.213){.197} || -.519[.280](.280) | -.515[.274](.274){.270}
100 .50 .50 | .478[.162](.160) | .480[.158](.156){.144} || .484[.170](.170) | .482[.168](.167){.164}
25 | .475[.145)(.143) | .480[.140](.138){.137} | .244[.189](.189) | .250[.184](.184){.184}
.00 | .480[.124](.123) | .480[.122](.120){.107} || .001[.189](.189) | .002[.184](.184){.185}
.25 | .486[.104](.103) | .490[.103](.101){.090} || -.254[.187](.187) | -.249[.182](.182){.179}
-.50 | .487[.090](.089) | .486[.091](.089){.084} || -.499[.180](.180) | -.491[.176](.176){.177}
00 .50 | -.001[.188](.188) | .001[.184](.184){.170} || .475[.166](.164) | .471[.163](.160){.163}
25 | -.013[.173](.172) | -.010[.167](.166){.160} || .235[.183](.182) | .240[.177](.177){.173}
.00 | -.011[.162](.162) | -.010[.156](.155){.150} || -.009[.195](.195) | -.009[.188](.188){.187}
.25 | -.007[.153](.153) | -.007[.147](.147){.140} || -.263[.204](.204) | -.258[.196](.196){.191}
-.50 | -.010[.143](.143) | -.010[.139](.139){.130} || -.506[.203](.203) | -.500[.195](.195){.191}
=50 .50 | -.491[.180](.179) | -.490[.174](.173){.160} || .476[.150](.148) | .480[.146](.143){.145}
25 | -.493[.176](.176) | -.490[.171)(.171){.155} || .226[.180](.178) | .230[.175](.173){.174}
.00 | -.496[.173](.173) | -.500[.167](.167){.155} || -.019[.198](.197) | -.021[.191](.190){.187}
.25 | -.500[.171](.171) | -.498[.164](.164){.150} || -.260[.214](.213) | -.259[.203](.203){.194}
-.50 | -.501[.170](.170) | -.500[.164](.164){.150} | -.509[.215](.215) | -.500[.205](.205){.199}
250 50 .50 | .A89[.118](.118) | .490[.119](.119){.120} || .489[.127)(.126) | .490[.128](.127){.129}
25 | .485[.102](.100) | .486[.102](.101){.100} || .248[.137](.137) | .250[.137](.137){.137}
.00 | .487[.082](.081) | .489[.082](.082){.080} || .003[.133](.133) | .001[.133](.133){.130}
.25 | .493[.064](.064) | .495[.064](.063){.063} || -.250[.125](.125) | -.250[.123](.123){.120}
-.50 | .493[.058](.058) | .496[.058](.057){.056} || -.500[.120](.120) | -.500[.118](.118){.114}
00 50 | .008[.142](.142) | .004[.142](.142){.140} || .479[.121](.119) | .490[.120](.118){.113}
25 | -.004[.131](.131) | -.004[.130](.130){.130} || .240[.135](.135) | .240[.135](.134){.130}
.00 | -.006[.117](.117) | -.006[.117)(.117){.113} || -.007[.143](.142) | -.006[.142](.142){.139}
-.25 | -.005[.107](.107) | -.004[.106](.106){.101} || -.257[.143](.143) | -.255[.141](.141){.143}
-.50 | -.010[.099](.098) | -.008[.097](.097){.094} || -.495[.136](.136) | -.495[.133](.133){.130}
~50 50 | -.488[.130](.130) | -.491[.128](.127){.128} || .483[101](.099) | .485[.099](.098){.098}
25 | -.491[.131](.131) | -.500[.129](.129){.124} || .233[.127](.126) | .235[.125](.124){.120}
.00 | -.501[.128](.128) | -.500[.126](.126){.120} || -.010[.142](.141) | -.010[.140](.140){.140}
.25 | -.495[.123](.123) | -.500[.122](.122){.117} || -.262[.147](.147) | -.261[.146](.145){.140}
50 | -.502[.123](.123) | -.501[.121](.121){.120} || -.504[.153](.153) | -.501[.150](.150){.149}
500 .50 .50 | .496[.082](.082) | .500[.081](.081){.078} || .494[.089](.089) | .494[.088](.088){.086}
25 | .493[.065](.064) | .494[.064](.064){.063} || .251[.092](.092) | .251[.091](.091){.090}
.00 | .496[.053](.053) | .500[.053](.053){.051} || -.003[.092](.092) | -.002[.092](.092){.089}
-.25 | .497[.045](.045) | .497[.044](.044){.044} | -.251[.088](.088) | -.250[.087](.087){.086}
-.50 | .498[.041](.040) | .498[.040](.040){.040} || -.501[.086](.086) | -.499[.085](.085){.082}
00 .50 | .002[.096](.096) | .001[.094](.094){.093} || .492[.077](.077) | .500[.076](.076){.075}
25 | -.004[.092](.092) | -.002[.090](.090){.090} || .246[.094](.094) | .250[.093](.093){.089}
.00 | -.003[.081](.081) | -.002[.080](.080){.080} || -.001[.101](.101) | -.001[.099](.099){.100}
-.25 | -.001[.072](.072) | -.001[.072](.072){.070} || -.253[.098](.098) | -.250[.097](.097){.095}
-.50 | -.001[.067](.067) | -.001[.066](.066){.065} || -.502[.095](.095) | -.500[.093](.093){.092}
=50 .50 | -.498[.088](.088) | -.500[.087](.087){.084} || .495[.067](.067) | .494[.066](.065){.063}
25 | -.498[.087](.087) | -.500[.086](.086){.084} || .243[.085](.084) | .242[.084](.083){.080}
.00 | -.500[.087](.087) | -.499[.085](.085){.082} || -.004[.096](.096) | -.006[.095](.095){.092}
-.25 | -.503[.084](.084) | -.500[.082](.082){.080} || -.250[.102](.102) | -.250[.100](.100){.098}
-.50 | -.499[.084](.084) | -.500[.081](.081){.080} || -.503[.104](.104) | -.500[.101](.101){.100}
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Table 6.4a. Empirical Mean[rmse](sd){sd} of Estimators of A and p, IFE-SPD Model with SARAR
Case when the regular QML estimator is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Circular Neighbours, REG-1, DGP 1

n X P | QML-A | ACQS-\ I QMLp | ACQS-p
50 50 50 | .486[.124](.123) | .485[.165](.164){.208} || .422[.181](.164) | .444[.220](.213){.218}
25 | .451[123](.112) | .476[.144](.142){.144} || .229[.172](.171) | .213[.236](.233){.239}
00 | .435[.123](.104) | .480[.126](.124){.127} || .043[.179](.174) | -.026[.241](.240){.229}
-.25 | .418[.129](.100) | .480[.116](.114){.115} || -.142[.198](.166) | -.267[.233](.232){.232}
-50 | .405[.137](.099) | .479[.112](.110){.115} || -.321[.241](.161) | -.493[.219](.219){.226}
00 .50 | .075[.150](.130) | .014[.172](.172){.177} || .375[.201](.157) | .445[.200](.193){.189}
25 | .033[.123](.119) | .006[.161](.160){.164} || .162[.183](.161) | .195[.226](.220){.219}
.00 | -.007[.114](.113) | -.004[.157)(.157){.154} || -.020[.162](.160) | -.037[.240](.237){.237}
-.25 | -.036[.119](.114) | -.001[.156](.156){.150} || -.193[.165](.155) | -.277[.241](.240){.232}
-50 | -.072[.136](.116) | -.010[.158](.157){.151} || -.359[.201](.143) | -.504[.223](.223){.206}
-50 .50 | -.390[.152](.104) | -.481[.117](.115){.117} || .368[.199](.149) | .457[.163](.157){.167}
25 | -.401[.143](.103) | -.480[.126](.124){.121} || .127[.208](.167) | .202[.207](.201){.201}
.00 | -.421[.128](.100) | -.480[.137](.136){.134} || -.078[.182](.165) | -.047[.233](.228){.207}
-.25 | -.443[.117](.102) | -.478[.151](.149){.171} || -.258[.152](.152) | -.288[.237](.234){.379}
-.50 | -.478[.106](.104) | -.485[.161](.160){.155} || -.426[.156](.137) | -.523[.226](.225){.282}
100 .50 .50 | .485[.096](.095) | .490[.133](.132){.136} || .447[.129](.117) | .481[.154](.153){.153}
25 | .459.093](.083) | .483[.106](.105){.109} | .245[.123](.123) | .237[.163](.163){.162}
.00 | .443[.095](.076) | .486[.088](.087){.086} || .053[.134](.123) | -.005[.165](.165){.165}
25 | .435[.095](.069) | .490[.075](.074){.073} || -.142[.161](.120) | -.258[.161](.161){.161}
-.50 | .428[.097](.065) | .491[.068](.067){.072} || -.332[.202](.112) | -.495[.148](.148){.101}
00 .50 | .082[.129](.099) | .006[.140](.140){.142} || .382[.161)(.110) | .467[.142](.138){.140}
25 | .036[.099](.092) | .000[.129](.129){.131} || .174[.137](.114) | .221[.161](.158){.159}
.00 | -.002[.088](.088) | -.003[.122](.122){.119} || -.011[.116](.115) | -.019[.173](.172){.170}
-.25 | -.039[.092](.083) | -.011[.114](.113){.113} || -.183[.129](.110) | -.256[.171](.170){.170}
-.50 | -.068[.107](.083) | -.010[.110](.109){.113} || -.356[.176](.102) | -.498[.155](.155){.160}
=50 .50 | -.359[.166](.088) | -.487[.101](.100){.100} || .364[.174](.108) | .477[.114](.112){.112}
25 | -.381[.144](.082) | -.487[.105](.105){.105} || .121[.175](.118) | .220[.149](.146){.146}
.00 | -.409[.120)(.079) | -.489[.110](.110){.107} || -.081[.144](.118) | -.029[.171](.168){.168}
-.25 | -.441[.095](.075) | -.493[.113](.113){.114} || -.257[.108](.108) | -.269[.175](.174){.174}
50 | -.479[.077](.074) | -.498[.119](.119){.120} || -.421[.125](.097) | -.504[.168](.168){.162}
250 .50 .50 | .490[.059](.058) | .491[.086](.086){.083} || .458[.082](.071) | .494[.099](.099){.100}
25 | .461[.065](.052) | .495[.067](.066){.066} || .255[.078](.077) | .242[.108](.108){.108}
.00 | .441[.076](.048) | .495[.055](.055){.055} || .066[.102](.077) | -.003[.107](.107){.107}
.25 | .427[.086](.045) | .495[.050](.049){.050} || -.124[.148](.076) | -.251[.105](.105){.105}
-50 | .418[.093](.043) | .496[.046](.046){.047} || -.318[.195](.070) | -.497[.093](.093){.093}
00 .50 | .086[.107](.063) | .003[.090](-090){.090} || .393[.127](.069) | .489[.085](.084){.084}
25 | .040[.070](.058) | -.001[.085](.085){.085} || .183[.098](.072) | .241[.103](.103){.103}
.00 | .000[.055](.055) | .001[.080](.080){.080} || -.006[.073](.073) | -.011[.114](.113){.113}
-.25 | -.037[.066](.054) | .000[.078](.078){.078} || -.177[.100](.069) | -.256[.113](.113){.113}
50 | -.075[.092](.054) | -.003[.076](.076){.080} || -.347[.166](.064) | -.500[.102](.102){.102}
~50 50 | -.370[.141](.053) | -.495[.057](.057){.060} || .374[.143](.068) | .491[.067](.066){.066}
25 | -.384[.127](.051) | -.497[.061](.061){.061} || .129[.143](.075) | .239[.088](.088){.088}
.00 | -.407[.105](.048) | -.497[.066](.065){.065} || -.078[.107](.073) | -.009[.103](.103){.103}
-.25 | -.436[.080](.047) | -.495[.073](.073){.073} || -.259[.067](.066) | -.258[.111](.110){.111}
50 | -.476[.053](.048) | -.497[.084](.084){.084} || -.422[.099](.060) | -.502[.113](.113){.113}
500 50 .50 | .492[.039](.038) | .497[.054](.054){.054} || .460[.063](.048) | .497[.066](-066){.066}
25 | .464[.050](.034) | .498[.043](.043){.043} | .257[.053](.053) | .246[.072](.072){.072}
.00 | .445[.064](.033) | .498[.038](.038){.038} || .064[.084](.054) | -.003[.076](.076){.076}
25 | .430[.076](.031) | .498[.034](.034){.034} || -.125[.136](.053) | -.252[.074](.074){.074}
-.50 | .419[.086](.029) | .497[.032](.032){.032} || -.319[.187](.049) | -.499[.066](.066){.070}
00 .50 | .078[.089](.042) | .000[.059](.059){.060} || .401[.110](.048) | .495[.057](.056){.056}
25 | .037[.053](.038) | .000[.054](.054){.054} || .188[.079](.048) | .246[.067](.067){.067}
.00 | -.001[.037](.037) | -.001[.053](.053){.053} || .000[.051](.051) | -.002[.076](.076){.076}
-.25 | -.036[.052](.037) | -.001[.052](.052){.053} || -.176[.088](.048) | -.252[.078](.078){.078}
-.50 | -.073[.082](.038) | -.002[.053](.053){.053} || -.348[.158](.044) | -.499[.072](.072){.072}
=50 .50 | -.377[.129](.036) | -.497[.039](.039){.040} || .380[.129](.048) | .494[.047](.046){.046}
25 | -.389[.116](.035) | -.498[.041)(.041){.041} || .136[.126](.052) | .245[.060](.060){.060}
.00 | -.409[.096](.033) | -.497[.043](.043){.043} || -.074[.090](.051) | -.005[.070](.070){.070}
-.25 | -.438[.070](.033) | -.496[.049](.049){.049} || -.258.049](.048) | -.257[.079](.078){.078}
-.50 | -.477[.040](.033) | -.498[.057](.057){.060} | -.422[.088](.042) | -.502[.078](.078){.080}
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Table 6.4b. Empirical Mean[rmse](sd){sd} of Estimators of A and p, 1IFE-SPD Model with SARAR
Case when the regular QML estimator is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Circular Neighbours, REG-1, DGP 2

n X P | QML-A | ACQS-\ I QMLp | ACQS-p
50 50 50 | .483[.125](.124) | .482[163](.162){.163} || .432[.177](.163) | .454[.215](.210){.211}
25 | .456[.119](.111) | .479[.142](.140){.174} || .230[.171](.169) | .216[.231](.229){.228}
00 | .438[.122](.105) | .482[.126](.124){.123} || .038[.177](.173) | -.029[.241](.240){.240}
.25 | .420[.132](.105) | .479[.119](.117){.122} || -.143[.202](.172) | -.264[.237](.237){.232}
-50 | .406[.139](.102) | .479[.111](.109){.107} || -.328[.238](.165) | -.500[.218](.218){.276}
00 .50 | .054[.135](.123) | .010[.148](.148){.150} || .388[.194](.158) | .450[.192](.185){.185}
25 | .030[.119](.115) | .013[.145](.144){.144} || .168[.185](.166) | .196[.225](.218){.219}
.00 | -.004[.113](.113) | .002[.146](.146){.142} || -.024[.166](.164) | -.044[.240](.236){.236}
-.25 | -.030[.116](.112) | .001[.147](.147){.131} || -.206[.162](.156) | -.287[.238](.235){.238}
-50 | -.065[.134](.117) | -.014[.153](.152){.153} || -.366[.202](.151) | -.503[.230](.230){.241}
-50 .50 | -.396[.151](.110) | -.484[.117](.116){.116} || .376[.196](.162) | .461[.163](.158){.168}
25 | -.406[.144](.109) | -.481[.127](.126){.121} || .135[.203](.167) | .207[.202](.198){.204}
.00 | -.420[.130](.103) | -.476[.135](.133){.131} || -.076[.180](.164) | -.048[.230](.224){.227}
.25 | -.445[.118](.104) | -.480[.151](.150){.183} || -.257[.151](.151) | -.290[.236](.233){.262}
.50 | -.475[.110](.107) | -.483[.164](.164){.103} || -.425[.161](.143) | -.523[.230](.229){.297}
100 50 .50 | .486[.005](.094) | .484[.130](.129){.122} || .445[.128](.116) | .477[.151](.149){.115}
25 | .461[.092](.083) | .485[.105](.104){.102} || .240[.125](.125) | .232[.165](.164){.201}
.00 | .446[.094](.077) | .488[.088](.087){.087} || .048[.133](.125) | -.011[.167](.167){.167}
25 | .434[.098](.072) | .487[.076](.075){.075} || -.139[.165](.122) | -.249[.160](.160){.159}
-.50 | .430[.097](.067) | .492[.067](.067){.067} || -.338[.200](.117) | -.502[.144](.144){.144}
00 50 | .079[.131](.105) | .005[.143](.143){.146} || .389[.158](.112) | .472[.139](.136){.137}
25 | .036.099](.092) | .000[.128](.128){.130} || .177[.135](.114) | .225[.159](.156){.156}
.00 | .000[.086](.086) | -.001[.118](.118){.118} || -.012[.114](.114) | -.021[.169](.168){.168}
-.25 | -.037[.091](.083) | -.009[.111](.111){.111} || -.184[.126](.108) | -.258[.166](.166){.166}
-.50 | -.064[.107](.085) | -.007[.110](.110){.111} || -.360[.177](.108) | -.501[.158](.158){.153}
=50 .50 | -.363[.167](.096) | -.488[.103](.102){.102} || .365[.177](.114) | .476[.117)(.115){.115}
25 | -.384[.144](.086) | -.487[.105](.104){.104} || .126[.173](.120) | .220[.147](.144){.144}
.00 | -.411[.120](.081) | -.490[.108](.108){.108} || -.075[.139](.117) | -.024[.166](.164){.160}
-.25 | -.441[.098](.078) | -.491[.117](.117){.117} || -.257[.109](.108) | -.271[.177](.176){.176}
-50 | -.479[.078](.075) | -.497[.120](.120){.124} || -.420[.126](.098) | -.504[.166](.166){.160}
250 .50 .50 | .490[.059](.058) | .491[.086](.085){.103} || .456[.084](.072) | .491[.100](.100){.104}
25 | .460[.067](.054) | .493[.068](.068){.068} || .256[.078](.078) | .244[.108](.108){.108}
.00 | .441[.077](.049) | .495[.056](.056){.056} || .064[.102](.079) | -.005[.109](.109){.109}
.25 | .427[.087](.048) | .495[.050](.050){.050} || -.124[.148](.078) | -.252[.104](.104){.104}
-50 | .419[.093](.046) | .496[.046](.046){.046} || -.320[.195](.075) | -.499[.093](.093){.093}
00 .50 | .085[.107](.065) | .003[.091](-:091){.091} || .393[.128](.070) | .488[.085](.084){.084}
25 | .038[.070](.059) | -.002[.086](.086){.086} || .183[.099](.073) | .241[.103](.103){.103}
.00 | -.001[.055](.055) | -.001[.079](.079){.079} || -.005[.071](.071) | -.009[.110](.110){.110}
-.25 | -.039[.067](.054) | -.004[.077](.077){.077} || -.177[.101](.069) | -.253[.111](.111){.111}
50 | -.074[.092](.055) | -.002[.077](.076){.080} || -.349[.165](.067) | -.501[.103](.103){.103}
-50 50 | -.371[.142](.059) | -.496[.058](.058){.060} || .375[.144](.070) | .490[.067](.066){.066}
25 | -.383[.129](.055) | -.494[.063](.063){.063} || .129[.144](.078) | .238[.089](.088){.088}
.00 | -.405[.107](.050) | -.494[.066](.065){.065} || -.080[.108](.073) | -.013[.103](.102){.102}
-.25 | -.435[.081](.048) | -.493[.073](.073){.074} || -.258[.068](.067) | -.259[.112](.112){.112}
50 | -.477[.053](.048) | -.499[.083](.083){.083} || -.422[.099](.060) | -.501[.109](.109){.107}
500 .50 .50 | .491[.040](.039) | .496[.055](.055){.055} || .460[.063](.050) | .497[.067](.067){.067}
25 | .464[.051)(.036) | .498[.044](.044){.044} | .256[.053](.053) | .246[.073](.073){.073}
.00 | .445[.064](.033) | .499[.038](.037){.037} || .064[.084](.055) | -.004[.075](.075){.075}
-.25 | .431[.077](.033) | .498[.035](.035){.035} | -.124[.137](.055) | -.250[.074](.074){.074}
-.50 | .420[.086](.031) | .498[.032](.032){.032} || -.320[.188](.054) | -.500[.066](.066){.070}
00 .50 | .080[.091](.044) | .002[.060](.060){.060} || .400[.111)(.048) | .494[.057](.057){.057}
25 | .037[.053](.038) | -.001[.054](.054){.055} || .188[.080](.050) | .247[.068](.068){.068}
.00 | -.001[.037](.037) | -.001[.052](.052){.052} || -.002[.050](.050) | -.003[.075](.075){.075}
-.25 | -.036[.051](.037) | -.001[.052](.052){.052} || -.176[.088](.049) | -.252[.077](.077){.077}
-.50 | -.072[.082](.038) | -.002[.053](.053){.053} || -.349[.158](.047) | -.499[.071](.071){.071}
=50 .50 | -.378[.129](.039) | -.498[.039](.039){.040} || .382[.128](.050) | .496[.047](.046){.046}
25 | -.390[.116](.037) | -.498[.041)(.041){.041} || .136[.126](.054) | .245[.061](.061){.061}
.00 | -.411[.095](.035) | -.499[.044](.044){.044} || -.072[.088](.051) | -.003[.070](.070){.070}
-.25 | -.438[.070](.034) | -.497[.050](.050){.050} || -.256[.048](.048) | -.254[.078](.078){.078}
-.50 | -.477[.040](.033) | -.498.057](.057){.060} | -.423[.088](.043) | -.502[.077](.077){.080}
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Table 6.4c. Empirical Mean|rmse](sd){sd} of Estimators of A and p, 1IFE-SPD Model with SARAR
Case when the regular QML estimator is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Circular Neighbours, REG-1, DGP 3

n X P | QML-A | ACQS-\ I QMLp | ACQS-p
50 .50 .50 | .480[.129](.128) | .480[.160](.158){.154} || .435[.175](.163) | .459[.204](.200){.208}
25 | .461[.126](.120) | .483[.139](.138){.139} || .224[.177](.175) | .212[.227](.224){.224}
.00 | .439[.131)(.116) | .476[.132](.130){.130} | .035[.181](.178) | -.020[.238](.237){.237}
-.25 | .429[.132](.111) | .478[.124](.122){.125} || -.155[.203](.180) | -.261[.237](.237){.231}
-50 | .416[.138](.109) | .478[.124](.122){.183} || -.334[.245](.180) | -.496[.234](.234){.266}
00 .50 | .052[.138](.128) | .016[.148](.147){.146} || .392[.192](.159) | .449[.188](.181){.201}
25 | .022[.123](.121) | .007[.140](.140){.140} || .171[.186](.168) | .199[.211](.205){.205}
.00 | -.001[.113](.113) | .006[.141](.141){.141} || -.029[.165](.163) | -.048[.231](.226){.229}
-.25 | -.028[.120](.116) | -.003[.145](.145){.142} || -.207[.167](.161) | -.281[.234](.232){.280}
50 | -.055[.132](.120) | -.009[.148](.148){.157} || -.377[.200](.158) | -.511[.224](.224){.300}
-50 .50 | -.401[.159](.124) | -.480[.128](.126){.124} || .382[.197](.158) | .460[.168](.163){.169}
25 | -.413[.145](.116) | -.481[.126](.125){.125} || .140[.201](.168) | .202[.201](.195){.192}
.00 | -.428[.135](.114) | -.479[.137](.135){.135} || -.064[.181](.169) | -.042[.223](.219){.219}
.25 | -.448[.121](.110) | -.481[.146](.145){.147} || -.252[.162](.162) | -.287[.235](.232){.221}
.50 | -.478[.112](.110) | -.489[.159](.158){.195} || -.419[.171](.151) | -.520[.230](.229){.210}
100 50 .50 | .486[.007)(.096) | .486[.124](.123){.121} || .446[.129](.117) | .476[.146](.144){.140}
25 | .461[.096](.087) | .482[.107](.105){.106} | .243[.125](.125) | .239[.162](.162){.162}
.00 | .451[.093](.079) | .488[.089](.089){.106} || .041[.132](.126) | -.012[.165](.164){.201}
-25 | .436[.103](.081) | .485[.082](.081){.085} || -.145[.168](.131) | -.249[.161](.161){.160}
-.50 | .433[.102](.077) | .489[.082](.081){.080} || -.341[.208](.134) | -.497[.157](.157){.120}
00 50 | .070[.130](.110) | .006[.138](.138){.139} || .394[.158](.117) | .469[.135](.132){.138}
25 | .029[.103](.099) | .000[.125](.125){.125} || .180[.139](.121) | .222[157](.154){.154}
.00 | -.002[.096](.006) | -.002[.121](.121){.124} || -.011[.122](.122) | -.021[.169](.168){.170}
-.25 | -.031[.095](.089) | -.005[.111](.111){.109} || -.192[.130](.117) | -.264[.168](.167){.167}
-.50 | -.060[.108](.090) | -.010[.111](.110){.131} || -.363[.181](.118) | -.498[.159](.159){.148}
=50 .50 | -.369[.172](.111) | -.483[.110](.109){.110} || .369[.178](.121) | .472[.120](.117){.114}
25 | -.393[.147](.100) | -.487[.106](.105){.105} || .136[.170](.126) | .223[.145](.143){.146}
.00 | -.417[.124)(.092) | -.490[.111](.110){.109} || -.069[.138](.120) | -.025[.163](.161){.165}
.25 | -.446[.102](.087) | -.494[.112](.111){.110} || -.249[.117](.117) | -.265[.170](.169){.169}
-.50 | -.476[.088](.085) | -.493[.123](.123){.121} || -.422[.133](.108) | -.512[.169](.169){.170}
250 .50 .50 | .488[.063](.062) | .490[.086](.086){.083} || .457[.086](.074) | .492[.099](.098){.100}
25 | .462[.067](.055) | .494[.067](.067){.067} || .255[.077](.076) | .245[.103](.103){.103}
.00 | .444[.078](.054) | .495[.056](.056){.056} | .060[.102](.082) | -.005[.106](.106){.106}
-.25 | .431[.088](.055) | .496[.053](.053){.050} || -.132[.148](.089) | -.254[.107](.107){.107}
-50 | .420[.097](.055) | .495[.050](.050){.049} || -.324[.201](.096) | -.499[.097](.097){.097}
00 .50 | .080[.107](.071) | .004[.091](.091){.091} || .398[.127](.076) | .488[.083](.082){.082}
25 | .036[.071](.061) | -.001[.085](.085){.085} || .186[.099](.075) | .241[.102](.101){.100}
.00 | .000[.058](.058) | .000[.079](.079){.079} || -.004[.073](.073) | -.007[.108](.108){.108}
-.25 | -.035[.068](.058) | -.002[.077](.077){.077} || -.182[.101](.074) | -.257[.111](.111){.110}
.50 | -.070[.092](.059) | -.005[.074](.074){.074} || -.353[.167](.080) | -.498[.102](.102){.102}
~50 50 | -.374[.147](.076) | -.494[.063](.063){.060} || .380[145](.082) | .491[.070](.069){.069}
25 | -.391[.128](.067) | -.495[.060](.060){.060} || .138[.140](.083) | .240[.086](.086){.086}
.00 | -.410[.109](.062) | -.495[.066](.065){.065} || -.073[.107](.079) | -.011[.101](.100){.099}
-.25 | -.440[.084](.059) | -.496[.075](.075){.075} || -.256[.072](.072) | -.260[.110](.110){.110}
50 | -.476[.059](.053) | -.497[.082](.082){.085} || -.424[.103](.068) | -.505[.111](.111){.116}
500 50 .50 | .492[.040](.039) | .498[.054](.054){.054} || .458.065](.049) | .494[.065](.065){.061}
25 | .464[.052)(.037) | .497[.044](.044){.044} | .256[.054](.054) | .246[.072](.072){.072}
.00 | .446[.066](.037) | .498[.038](.038){.038} || .062[.085](.058) | -.002[.075](.075){.075}
-.25 | .432[.078](.039) | .498[.036](.036){.036} | -.128[.138](.064) | -.252[.075](.075){.075}
-.50 | .423[.087](.041) | .498[.032](.032){.032} || -.323[.191](.074) | -.499[.067](.067){.067}
00 .50 | .076[.090](.048) | .002[.059](.059){.060} || .404[.110](.053) | .494[.055](.055){.055}
25 | .036[.055](.042) | .001[.056](.056){.056} || .189[.081](.053) | .245[.069](.068){.068}
.00 | -.002[.038](.038) | -.001[.053](.053){.053} || -.002[.050](.050) | -.003[.075](.075){.075}
-.25 | -.034[.052](.039) | .000[.052](.052){.052} || -.180[.087](.052) | -.254[.077](.077){.077}
-.50 | -.069[.081](.042) | -.002[.052](.052){.052} || -.353[.159](.059) | -.500[.072](.072){.072}
=50 .50 | -.380[.132](.055) | -.498[.040](.040){.040} || .385[.129](.058) | .496[.046](.046){.046}
25 | -.393[.117](.049) | -.498[.041)(.041){.041} || .139[.127](.062) | .244[.061](.061){.060}
.00 | -.413[.098](.045) | -.498[.044](.044){.044} || -.070[.090](.056) | -.005[.070](.070){.070}
.25 | -.439[.072](.039) | -.497[.049](.049){.049} || -.254[.049](.048) | -.253[.075](.075){.075}
-.50 | -.477[.045](.038) | -.498[.058](.058){.059} || -.423[.091](.049) | -.503[.077](.077){.080}
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Table 6.5a. Empirical Mean[rmse](sd){sd} of Estimators of A and p, IFE-SPD Model with SARAR
Case when the regular QML estimator is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Group Interaction, REG-2, DGP 1

n X P | QML-A | ACQS-\ I QML-p | ACQS-p
50 .50 .50 | .473[.161](.158) | .482[.184](.165){.173} || .416[.214](.197) | .474[278](.172){.170}
25 | .431[.169](.154) | .433[.295](.284){.271} || .218[.229](.227) | .253[.239](.237){.250}
.00 | .416[.162](.139) | .456[.210](.206){.205} || .030[.243](.241) | -.012[.257](.241){.240}
.25 | .409[.156](.126) | .473[.163](.161){.152} || -.150[.272](.253) | -.239[.245](.243){.236}
-50 | .404[.150](.115) | .479[.139](.137){.138} || -.316[.310](.249) | -.462[.144](.142){.130}
00 .50 | .130[.228](.188) | -.073[.260](.197){.193} || .324[.259](.190) | .540[.232](.200){.205}
25 | .042[.186](.181) | -.059[.157](.152){.151} || .123[.250](.215) | .243[.269](.254){.253}
.00 | -.022[.178](.177) | -.052[.131](.130){.138} || -.057[.228](.221) | -.011[.241](.239){.228}
-.25 | -.056[.180](.171) | -.033[.165](.163){.151} || -.234[.233](.232) | -.238[.237](.218){.217}
-.50 | -.085[.182](.161) | -.026[.176](.161){.155} || -.393[.254](.230) | -.522[.236](.218){.215}
-50 .50 | -.186[.380](-213) | -.492[.334](.334){.344} || .263[.308](.196) | .484[.231](.228){.236}
25 | -.305[.277](.197) | -.519[.286](.285){.208} || .048[.294](.214) | .220[.236](.234){.239}
.00 | -.389[.222](.192) | -.522[.235](.234){.245} || -.144[.266](.224) | -.013[.240](.238){.230}
-.25 | -.447[.190](.182) | -.515[.211](.211){.228} || -.319[.235](.225) | -.239[.243](.241){.253}
-.50 | -.498[.178](.178) | -.519[.185](.184){.199} || -.477[.223](.222) | -.503[.230](.209){.205}
100 .50 .50 | .483[114](.112) | .490[.126](.125){.127} || .445[.144](.133) | .489[121](.121){.126}
25 | .446[.120](.107) | .464[.170](.167){.163} || .248[.157](.157) | .258[.143](.140){.142}
00 | .431[119](.097) | .477[.126](.124){.118} || .057[.180](.171) | -.049[.127](.225){.124}
-25 | .425[.114](.085) | .487[.101](.100){.110} || -.127[.216](.177) | -.231[.127](.127){.124}
-.50 | .420[.111](.077) | .500[.089](.089){.090} || -.307[.265](.181) | -.576[.135](.133){.125}
00 50 | .131[.188](.135) | -.062[.233](.233){.247} || .360[.188](.126) | .546[.120](.119){.125}
25 | .045[.141)(.134) | -.036[.155](.152){.157} || .154[.175](.146) | .220[.139](.123){.122}
.00 | -.010[.128](.128) | -.023[.120](.120){.148} || -.035[.161](.158) | -.061[.170](.163){.162}
-.25 | -.045[.128](.120) | -.018[.166](.157){.178} || -.206[.169](.163) | -.231[.198](.192){.176}
-.50 | -.071[.135](.115) | -.013[.157](.157){.162} || -.373[.210](.167) | -.557[.132](.132){.133}
=50 .50 | -.181[.354](.152) | -.503[.235](.235){.247} || .293[.244](.128) | .544[.198](.189){.190}
25 | -.309[.237](.141) | -.503[.266](.254){.253} || .086[.216](.141) | .260[.121](.122){.122}
.00 | -.387[.177](.136) | -.502[.248](.247){.251} || -.111[.192](.156) | -.062[.164](.157){.166}
.25 | -.446[.142](.132) | -.513[.221](.221){.228} || -.289[.161](.157) | -.232[.190](.181){.170}
-50 | -.489[.128](.128) | -.504[.120](.120){.126} || -.454[.168](.162) | -.521[.132](.131){.140}
250 .50 .50 | .489[.068](.067) | .499[.114](.112){.123} || .464[.087](.080) | .492[.115](.115){.121}
25 | .462[.071](.060) | .495[.076](.076){.073} || .259[.093](.093) | .258[.127](.126){.124}
.00 | .453[.069](.051) | .496[.058](.057){.057} || .058[.117](.101) | -.017[.112](.102){.102}
.25 | .447[.070](.045) | .497[.049](.049){.049} || -.132[.159](.107) | -.256[.157](.156){.155}
-.50 | .442[.071](.041) | .498[.045](.045){.046} || -.313[.217](.109) | -.502[.108](.106){.102}
00 .50 | .115[.141](.082) | -.015[.169](.167){.160} || .391[.132](.074) | .486[.109](.108){.114}
25 | .039[.086](.077) | -.011[.124](.124){.125} || .184[.107](.085) | .250[.102](.102){.102}
.00 | -.004[.074](.074) | -.008[.103](.103){.099} || -.012[.098](.097) | -.011[.102](.101){.104}
-.25 | -.031[.074](.067) | -.005[.087](.087){.087} || -.196[.113](.099) | -.257[.139](.126){.122}
-.50 | -.051[.082](.064) | -.004[.080](.080){.081} || -.369[.167](.103) | -.502[.117](.103){.106}
-50 .50 | -.240[.276](.091) | -.501[.178](.178){.180} || .348[.168](.071) | .494[.095](.094){.101}
25 | -.340[.181](.085) | -.500[.146](.146){.151} || .126[.150](.084) | .253[.107](.106){.108}
.00 | -.405[.124](.080) | -.502[.127](.127){.124} || -.076[.121](.095) | -.023[.104](.104){.103}
-.25 | -.453[.091](.078) | -.503[.114](.114){.111} || -.261[.098](.098) | -.239[.105](.105){.105}
-.50 | -.488[.073](.072) | -.502[.102](.102){.104} || -.431[.122](.100) | -.524[.170](.168){.167}
500 .50 .50 | .492[.049](.048) | .499[.077](.077){.078} || .468[.064](.056) | .495[.081](.081){.082}
25 | .466[.054](.042) | .496[.051](.051){.051} || .261[.066](.065) | .249[.087](.087){.088}
.00 | .457[.057](.036) | .498[.039](.039){.039} || .059[.093](.072) | -.012[.100](.099){.098}
-.25 | .450[.059](.032) | .498[.033](.033){.033} | -.130[.141](.074) | -.251[.106](.106){.109}
-.50 | .447[.060](.028) | .500[.030](.030){.031} || -.313[.202](.077) | -.501[.102](.101){.102}
00 50 | .115[.130](.059) | -.007[.120](.120){.123} || .396[.116](.052) | .499[.076](.076){.078}
25 | .041[.069](.056) | -.005[.088](.088){.088} || .188[.086](.060) | .250[.086](.086){.086}
.00 | -.001[.052](.052) | -.003[.071](.071){.071} || -.006[.068](.067) | -.009[.097](.096){.096}
-.25 | -.029[.056](.048) | -.004[.060](.060){.061} || -.190[.092](.070) | -.251[.106](.105){.107}
-.50 | -.046[.064](.044) | -.001[.054](.054){.056} || -.366[.152](.071) | -.501[.107](.107){.107}
=50 .50 | -.239[.269](.066) | -.500[.132](.132){.135} || .351[.157](.051) | .498[.068](.068){.068}
25 | -.342[.170](.061) | -.502[.107](.107){.109} || .133[.132](.060) | .250[.083](.082){.083}
.00 | -.408[.109](.058) | -.504[.091](.091){.090} || -.067[.095](.067) | -.010[.096](.096){.094}
-.25 | -.452[.072](.054) | -.500[.078](.078){.078} || -.255[.069](.069) | -.256[.106](.105){.105}
-.50 | -.488[.054](.053) | -.500[.073](.073){.073} || -.424[.103](.070) | -.501[.117](.117){.118}
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Table 6.5b. Empirical Mean|rmse](sd){sd} of Estimators of A and p, 1IFE-SPD Model with SARAR

Case when the regular QML estimator is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Group Interaction, REG-2, DGP 2

n_ A p] QML | ACQSA [ QMip | ACQS-p
50 50 50 | .467.182](.179) | .538[.180](.162){.172] || .410[.221](.206) | .542[.233](.232){.241}
25 | 433[.177)(.164) | .443[.185)(.175){.155} | .220[.238](.237) | .257[.233](.231){.244}
00 | .417[.170](.148) | .454[.213](.208){.204} || .029[.251](.250) | -.011[.214](.200){.205}
~25 | .408[.160](.131) | .472[.159](.156){.144} || -.153[.274](.256) | -.242[.238](.220){.224}
250 | .404[.154](.121) | .477[.139](.137){.148} || -.316[.324](.266) | -.460[.236](.223){.211}
00 50 | .114[.241)(.213) | -.075[.229](.263){.270} || .333[.260](.199) | .540[.231](.220){.234}
25 | .029[.202](.200) | -.063[.135](.135){.142} | .131[.252)(.222) | .248[.237](.232){.238}
00 | -.021[.193](.192) | -.046[.131](.131){.136} || -.062[.242](.233) | -.012[.241](.236){.227}
25 | -.058[.186](.177) | -.033[.161](.159){.154} | -.238[.242](.242) | -.238[.240](.220){.225}
50 | -.082 [185](.166) | -.027[.228](.226){.228} || -.400[.261](.241) | -.519[.243](.241){.247}
50 .50 | -.208[.380](.242) | -.494[.272](-271){.270} || .278[.301](.203) | .539[.304](.283){.374}
25 | -.324[.278](:215) | -.521[.279)(.278){.286} | .061[.200](.220) | .137[.235](.233){.255}
00 | -.402[.227](.205) | -.525[.239](.238){.228} || -.137[.269](.231) | -.013[.239](.237){.267}
25 | -.454[198](.192) | -.520[.213](.212){.230} | -.311[.242](.234) | -.239[.242](.241){.233}
50 | -.495[.186](.186) | -.518[.187](.186){.182} || -.475[.234](.232) | -.463[.243](.240){.244}
100 50 .50 | .480[.118](.116) | .465[.127](.126){.119} || .449[.143](.134) | .473[.121](.120){.145}
25 | .445[.122](.109) | .466[.171](.167){.158} || .248[.157](.157) | .251[.141](.138){.123}
00 | .433[.119](.098) | .482[.127](.126){.119} || .055[.178](.169) | -.051[.166](.162){.160}
25 | .428[.114](.088) | .495[.101](.101){.105} | -.133[.215](.180) | -.232[.206](.198){.193}
S50 | .422[.112](.080) | .494[.089](.088){.009} || -.305[.271](.187) | -.514[.232](.131){.133}
00 50 | .127[.194](.146) | -.052].229](.225){.240} || .362[.191](.131) | .460[.155](.150){.160}
25 | .041[.144](.138) | -.037[.153](.150){.166} || .160[.174](.148) | .223[.135](.131){.121}
.00 | -.012[.130](.130) | -.026[.121](.120){.120} || -.034[.163](.159) | -.008[.168](.161){.171}
~25 | -.045[.130](.122) | -.018[.136](.127){.143} || -.210[.172)(.167) | -.234[.194](.187){.197}
50 | -.065[.132](.115) | -.008[.151](.149){.147} | -.382[.207](.170) | -.530[.132](.131){.159}
50 .50 | -.196[.349](.171) | -.514[.235)(.234){.249} || .306[.234](.131) | .451[.187](.181){.190}
25 | -.312[.244](.156) | -.516[.225](.219){.219} || .088[.221](.151) | .248[.130](.123){.121}
00 | -.390[.181](.143) | -.513[.247](.247){.250} | -.108[.191](.158) | -.063[.161](.154){.157}
25 | -.447[.148](.138) | -.510[.223](.223){.247} || -.289[.167)(.162) | -.224[.195](.186){.176}
-.50 -.489[.131](.131) | -.504[.201](.201){.227} -.454[.170](.163) | -.517[.171](.164){.168}
250 50 .50 | .489[.060](.068) | 497[.117](.113){.111} || .464[.088](.080) | .493[.116](.116){.120}
25 | .462[.071](.060) | .497[.075)(.074){.073} || .257[.094](.094) | .254[.127](.126){.124}
00 | .453[070](.052) | .499[.057)(.057){.057} || .058[.117](.102) | -.017[.141](.140){.138}
~25 | .448[.070](.047) | .498[.049](.049){.049} || -.136[.159](.110) | -.257[.109](.108){.105}
-.50 .443[.071](.042) .498[.044](.044){.046} -.316[.217](.114) | -.502[.107](.107){.108}
.00 .50 .112[.140](.084) | -.016[.107](.106){.108} .391[.132](.074) .498[.106](.105){.108}
25 | .038[.088](.079) | -.011[.103](.103){.102} | .185[.109])(.088) | .255[.125(.124){.125}
.00 | -.004[.073](.073) | -.008[.101](.100){.099} || -.011[.097](.096) | -.016[.110](.109){.106}
25 | -.032[.075](.068) | -.006[.087](.087){.087} | -.196[.113](.100) | -.257[.105](.105){.105}
50 | -.051[.081](.063) | -.004[.076](.075){.081} || -.369[.168](.105) | -.502[.107](.107){.107}
50 .50 | -.244[.275](.100) | -.501[.101)(.101){.009} || .348[.170](.075) | .489[.097)(.095){.101}
25 | -.345[.177](.086) | -.501[.146](.145){.140} | .130[.148](.086) | .253[.118](.117){.116}
00 | -.406[.124](.081) | -.503[.124](.124){.124} || -.073[.118](.093) | -.019[.134](.132){.131}
25 | -.453[.089](.076) | -.503[.105](.105){.102} | -.260[.100](.100) | -.257[.105](.105){.105}
50 | -.489[.075](.074) | -.504[.103](.103){.104} || -.432[.122](.101) | -.506[.107](.107){.107}
500 .50 .50 | .493[.048](.048) | .499[.076](.076){.077} || .468[.066](.057) | .499[.082](.082){.083}
25 | .467[.054](.042) | .497[.051)(.051){.051} || .261[.066](.065) | .254[.088](.088){.088}
.00 | .457[.056](.036) | .499[.039](.039){.039} || .060[.094](.072) | -.011[.099](.098){.098}
25 | .451[.059](.033) | .500[.034](.034){.034} | -.133[.140](.077) | -.256[.108](.107){.107}
250 | .447[.061](.029) | .499[.030](.030){.031} || -.313[.203](.079) | -.500[.118](.118){.121}
00 50 | .114[.129](.060) | -.008[117](.114){.113} || .397[.115](.053) | .496[.076](.075){.080}
25 | .041[.070](.056) | -.004[.089](.088){.088} || .190[.086](.062) | .249[.087](.087){.087}
.00 | -.002[.052](.052) | -.003[.070](.070){.070} || -.007[.069](.068) | -.008[.098](.097){.097}
25 | -.028[.056](.048) | -.003[.061](.061){.061} | -.192[.091](.070) | -.256[.106](.106){.107}
50 | -.047[.065](.045) | -.002[.054](.054){.056} | -.366[.152](.073) | -.501[.114](.114){.113}
50 .50 | -.241[.269](.072) | -.500[.134](.134){.130} || .352[.158](.054) | .497[.069](.068){.065}
25 | -.342[.170](.062) | -.501[.105](.105){.100} | .133[.132](.062) | .254[.084](.083){.083}
00 | -.407[.109](.058) | -.500[.089](.089){.089} || -.066[.093](.066) | -.001[.094](.094){.094}
25 | -.453[.072](.054) | -.500[.078](.078){.078} | -.251[.069](.069) | -.251[.104](.104){.104}
50 | -.4870.053](.052) | -.500[.071](.071){.073} | -.426[.103](.071) | -.501[.117](.116){.117}
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Table 6.5¢c. Empirical Mean|rmse](sd){sd} of Estimators of A and p, 1IFE-SPD Model with SARAR
Case when the regular QML estimator is inconsistent under heteroskedasticity

T=3,8=(1,1),0 =1, Group Interaction, REG-2, DGP 3

n X P | QML-A | ACQS-\ I QMLp | ACQS-p
50 .50 .50 | .444[.253](.247) | .538[.264](.246){.248} || .428[.225](.214) | .543[.231](.230){.236}
25 | .421[.239](.225) | .460[.233](.234){.231} || .218[.257](.255) | .266[.237](.230){.234}
00 | .413[211](.192) | .452[.224](.219){.234} || .028[.269](.267) | -.088[.240](.239){.258}
-.25 | .409[.195](.172) | .467[.192](.188){.156} || -.162[.298](.285) | -.258[.244](.243){.245}
-50 | .413[.168](.144) | .480[.164](.162){.149} || -.349[.333](.297) | -.462[.233](.219){.210}
00 .50 | .084[.285](.273) | -.072[.241](.241){.199} || .347[.265](.217) | .441[.230](.228){.259}
25 | .014[.244](.244) | -.051[.239](.235){.234} || .132[.266](.238) | .244[.235](.234){.233}
.00 | -.033[.235](.232) | -.043[.255](.223){.233} || -.058[.261](.255) | -.012[.240](.239){.236}
-.25 | -.055[.205](.198) | -.034[.254](.252){.246} || -.245[.265](.265) | -.237[.242](.240){.244}
-50 | -.076[.199](.184) | -.024[.223](.222){.210} || -.411[.276](.261) | -.462[.242](.239){.261}
~50 50 | -.235[.384](.278) | -.498[.341](.341){.360} || .293[:301](.218) | .540[.228](.225){.230}
25 | -.346[.302](.260) | -.514[.336](.336){.322} || .075[.299](.243) | .244[.233](.232){.248}
.00 | -.411[.250](.234) | -.513[.262](.259){.242} || -.127[.275](.244) | -.013[.236](.236){.234}
-.25 | -.464[.219](.216) | -.516[.296](.299){.292} || -.307[.252](.245) | -.282[.240](.237){.231}
-.50 | -.500[.204](.204) | -.511[.270](.269){.268} || -.473[.257](.255) | -.528[.242](.237){.227}
100 .50 .50 | .462[.204](.200) | .463[.227](.226){.254} || .452[.163](.156) | .472[121](.121){.125}
25 | .441[.161](.150) | .462[.176](.172){.176} || .247[.172](.172) | .243[.190](.163){.150}
.00 | .433[.145](.129) | .476[.136](.133){.136} || .044[.199](.194) | -.041[.173](.168){.177}
-25 | .432[.123](.103) | .487[.106](.105){.104} || -.147[.227](.202) | -.233[.204](.198){.196}
-50 | .429[.117](.093) | .492[.099](.099){.116} || -.329[.275](.216) | -.508[.225](.217){.231}
00 50 | .099[.235](.213) | -.051[.232](.231){.236} || .373[.194](.147) | .546[.199](.194){.196}
25 | .028[.190](.188) | -.033[.251](.248){.249} || .163[.192](.171) | .230[.139](.134){.123}
.00 | -.016[.163](.162) | -.023[.203](.201){.200} || -.030[.179](.176) | -.005[.163](.157){.170}
.25 | -.042[.144](.137) | -.016[.175](.175){.194} || -.214[.183](.179) | -.253[.196](.188){.198}
.50 | -.064[.142](.127) | -.013[.157](.157){.180} || -.385[.224](.193) | -.540[.232](.231){.230}
~50 .50 | -.223[.353](.218) | -.506[.234](.234){.232} || .315[.237](.148) | .463[.192](.184){.187}
25 | -.337[.263](.206) | -.511[.286](.286){.275} || .100[.227](.170) | .287[.133](.125){.120}
.00 | -.406[.202](.179) | -.510[.227](.225){.224} || -.099[.199](.173) | -.068[.162](.154){.168}
-.25 | -.454[.171](.165) | -.506[.176](.174){.161} || -.282[.183](.180) | -.232[.191](.182){.196}
-.50 | -.492[.155](.155) | -.501[.135](.134){.147} || -.453[.192](.186) | -.458[.216](.206){.192}
250 50 .50 | .A85[.104](.103) | .487[.115|(.114){.124} || .464[.094](.087) | .490[.114](.114){.113}
25 | .464[.080](.071) | .500[.078](.078){.072} || .256[.097](.097) | .257[.108](.107){.103}
.00 | .456[.073](.058) | .496[.057](.057){.056} || .052[.129](.118) | -.016[.104](.104){.104}
.25 | .449[.073](.052) | .498[.049](.049){.048} || -.140[.162](.120) | -.258[.106](.105){.110}
-50 | .445[.075](.051) | .500[.044](.044){.044} || -.326[.224](.141) | -.506[.107](.107){.107}
00 .50 | .100[.156](.119) | -.018[.169](.168){.168} || .398[.136](.091) | .499[.108](.107){.110}
25 | .032[.106](.101) | -.013[.126](.126){.123} || .189[.115](.097) | .254[.124](.123){.118}
.00 | -.006[.082](.082) | -.008[.099](.099){.098} || -.012[.101](.100) | -.017[.108](.107){.104}
-.25 | -.029[.083](.078) | -.004[.088](.087){.087} || -.200[.119](.108) | -.257[.105](.105){.105}
-.50 | -.047[.087](.073) | -.003[.081](.081){.080} || -.379[.172](.123) | -.507[.108](.107){.107}
Z50 50 | -.263[.274](.137) | -.502[174](.173){.180} || .357[.168](.089) | .489[.095](.094){.102}
25 | -.356[.186](.118) | -.504[.145](.145){.146} || .135[.151](.097) | .253[.115](.113){.113}
.00 | -.416[.134](.104) | -.505[.126](.126){.126} || -.067[.125](.106) | -.020[.109](.105){.107}
-.25 | -.455[.102](.091) | -.502[.106](.105){.107} || -.256[.108](.108) | -.258[.105](.105){.104}
.50 | -.487[.084](.083) | -.502[.103](.103){.106} || -.432[.131](.112) | -.508[.107](.106){.107}
500 .50 .50 | .490[.075](.074) | .498[.077](.077){.078} || .470[.067](.060) | .500[.080](.080){.080}
25 | .467[.057](.046) | .500[.054](.054){.050} || .261[.068](.067) | .254[.088](.088){.087}
.00 | .457[.060](.043) | .500[.043](.043){.040} || .057[.096](.078) | -.010[.098](.097){.096}
.25 | .451[.061](.038) | .500[.034](.034){.034} || -.134[.145](.087) | -.251[.108](.108){.108}
-.50 | .448[.064](.037) | .500[.030](.030){.031} || -.317[.210](.103) | -.501[.117](.116){.120}
00 50 | .105[.139](.092) | -.000[.122](.121){.122} || .402[.117](.063) | .500[.075](.075){.079}
25 | .039[.076](.065) | -.003[.081](.081){.084} || .191[.088](.065) | .250[.086](.085){.085}
.00 | -.002[.061](.061) | -.003[.070](.070){.070} || -.006[.072](.071) | -.006[.097](.095){.094}
-.25 | -.026[.058](.052) | -.001[.060](.060){.060} || -.196[.094](.077) | -.253[.106](.105){.105}
-.50 | -.046[.066](.047) | -.002[.054](.054){.054} || -.370[.155](.084) | -.501[.116](.115){.113}
=50 .50 | -.255[.267](.106) | -.500[.131](.131){.135} || .359[.156](.066) | .500[.067](.065){.064}
25 | -.350[.172](.086) | -.500[.106](.106){.108} || .139[.132](.070) | .254[.082](.082){.082}
.00 | -.411[.114](.071) | -.500[.090](.090){.089} || -.063[.095](.071) | -.001[.094](.093){.092}
-.25 | -.454[.080](.065) | -.500[.078](.077){.077} || -.251[.074](.074) | -.252[.106](.105){.106}
-.50 | -.486[.060](.058) | -.500[.071](.071){.071} || -.426[.106](.076) | -.501[.116](.115){.115}
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CHAPTER [/

Conclusions

In this study, we provide asymptotically refined and heteroskedasticity robust
inferences for spatial linear and panel regression models, based on the QML or
the ACQS approaches. We recommend refinements through bias correcting the
QML estimators, bias correcting the t-ratios for covariates effects, and improving
tests for spatial effects. We also provide heteroskedasticity-robust inferences by
adjusting the quasi score functions so that it goes to zero in expectation at the
true parameter by design. Thus the resulting estimator is consistent even when
the model suffers from heteroskedasticity.

These methods are illustrated using several popular spatial linear and panel
regression models including the linear regression models with spatial error depen-
dence (SED), spatial lag dependence (SLD), or both SED and SLD (SARAR),
the linear regression models with higher-order spatial effects, SARAR(p, q), and
the fixed effects panel data models with SED or SLD or both. Asymptotic prop-

erties of the new estimators and the new inferential statistics are examined. The
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methods are also implemented in extensive Monte Carlo experiments which show
excellent performance.

Implementation of the methodologies discussed in this thesis to dynamic spa-
tial panel data models will be an interesting avenue of research. Especially when
the time dimension is short, how the initial observation affect asymptotic refine-
ments and the ACQS estimator need to be explored. We wish to pursue this issue

in future.
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APPENDIX A

Some Useful Lemmas

The following lemmas are extended versions of selected lemmas from Kelejian and
Prucha (2010), Lee (2004), and Lin and Lee (2010), which are required in the proofs of
the main results. Note that the following results are give in the most general form as
required by this dissertation, however, for certain simpler models special cases of these
results are applicable.

Lemma A.1: Under Assumptions 6.7, 6.9 and 6.10, the projection matrices, My (p) =
Iy = Pn(p) and Py(p) = Aan(p)Xn[XyAby(p)Azn (p)XN] " Xy ALy (p) are uni-
formly bounded in both row and column sums, where Aon(p) and Xy are as defined in
Section 6.2.

Lemma A.2: Let Ay be an N x N matriz, uniformly bounded in both row and
column sums. Then for My defined in Lemma A.1,

(i) tr(AR) =O(N) form > 1,

(ii) tr(AyAn) = O(N),

(t3i) tr(MnAN)™) = tr(AR) + O(1) for m > 1 and

(iv) tr((AyMyAN)™) = tr((ANAN)T) +O(1) for m > 1.
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Let By be another N x N matriz, uniformly bounded in both row and column sums.
Then,

(iv) ANBy is uniformly bounded in both row and column sums,

(v) tr(ANBy) =tr(ByAyn) = O(N) uniformly.

Lemma A.3 (Moments and Limiting Distribution for Linear Quadratic
forms): For a given process of innovations {vy}, let vy ~ inid(0, aghi), where h; >0
fori =1,....,n such that 13"  h; = 1. Let H, = diag(h1,...,hy), N = n x T,
Hy =17y ® Hy,, By be an N x N matriz with diagonal elements by and cy an N x 1
vector with elements ¢y fori=1,...,n andt =1,...,T. For Q,n = V\B,nVN +
c VN, r=1,2, where VN = (V,),,...
(i) E(Qqn) = ogtr(HyB,n),

(i3) Var(Q,n) = oatr[HyB,n(HyB,n + B.yHy)] + o3¢/ yHye,n
+20 Z?zl(aébz,ith?/’ii + ZUSbmtcmthf/%i) and
(iii) Cov(Q1n, Qon) = 203tr(BiyHyBayHy) + U%CllNHNCQN

3/2
+30 23;1 [o6b1,itba,ith?k; + o (brircaie + bQ,itcl,it)hi/ sil,

,Vir), then,

where s; and k; are, respectively, the measures of skewness and excess kurtosis of v;.
Now, if B,y is uniformly bounded in either row or column sums then,

(i) B(Quy) = O(N),

(v) Var(Quy) = O(N),

(vi) Qrnv = Op(NV),

(vii) +Qn — LE(Q.n) = Op(N"2) and

(viid) Var(4 Qry) = O(N™).
Further, if B,y is uniformly bounded in both row and column sums and Assumption 6.8
holds. Let Qn = (Qun, Qan)' and £y = £’V = [Cov(Qrn, Qun)lrs1,2. then,

(iz) Q2EQw) £>./\/'(0, 1) and

v/ Var(Q,n)
(z) S52(Qn — E(Qn)) -2 N (0,1,).
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APPENDIX B

Settings of Monte Carlo Experiments

Spatial Weight Matrix: Spatial weight matrices are generated according to: (i)
Rook contiguity, (i7) Queen contiguity, (¢ii) Circular neighbours and (iv) Group
interaction, (details given in Yang, 2015b). In (%), neighbours could occur in the eight
cardinal and ordinal positions of each unit while in (i) neighbours could occur only in
the ordinal positions. In (7i7), neighbours occur in the positions immediately ahead and
behind a particular spatial unit. For example, for the ith spatial unit with 6 neighbours,
the ith row of W,, matrix has non-zero elements in the positions: 1—3,i—2,i—1,1+1,i+2,
and i + 3. We consider has 2, 4, 6, 8 and 10 neighbours with equal proportion. In (iv),
neighbours occur in groups where each group member is spatially related to one another
resulting in a symmetric W,, matrix. The degree of spatial dependence specified by
layouts (i), (i7) and (ii7) are fixed while in (iv) it grows with the increase in sample size.
This is attained by allowing for the number of groups, k, to be related to n. Specifically
n (iv), W, is block-diagonal, with k blocks (groups) of sizes n1, ..., ng. The rth block is
an n, X n, matrix with off-diagonal elements ﬁ and diagonal elements zero. We have

considered k = n%® and k = n%% where k is the number of groups for each n and hence
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the degree of spatial dependence indicated by the average group size is m = n/k. The
actual sizes of the groups are generated from a discrete uniform distribution from .5m
to 1.5m. Clearly in this case the degree of spatial dependence, indicated by the average
group size m, increases with n, and it is stronger when § = .5 than when § = .65. In the
case of experiments using heteroskedastic disturbances, to ensure the heteroskedasticity
effect does not fade as n increases (so that the regular QML estimator is inconsistent),
the degree of spatial dependence is fixed with respect to n. This is attained by fixing the
group sizes in the Group Interaction scheme, and fixing the number of neighbours the
Circular Neighbours scheme. The degree of spatial dependence is naturally bounded in
the Queen Contiguity weight matrix. To analyse the performance of the original QML
estimator when it is robust against heteroskedasticity, we use Queen Contiguity scheme
and the balanced Circular Neighbours scheme where all spatial units have 6 peers
each. All weights matrices are row normalised.

Regressors: Fixed regressors are generated by REG1: {xy;, 29} i“ifl N(0,1)/v/2
when Rook contiguity, Queen contiguity or Circular neighbours is followed; and accord-
ing to either REG1 or REG2: {z1 i, T2} d (22,4 zi) /10, where, (2, zir) d N(0,1)
when group interaction scheme is followed. The REG2 scheme gives non-iid regressors
where the group means of the regressors’ values are different, see Lee (2004). Note that
both schemes give a signal-to-noise ratio of 1 when 81 = o =0 =1

Error Distribution: To generate disturbances, three DGPs are considered: DGP1:
{en,i} are iid standard normal, DGP2: {e,;} are iid standardised normal mixture with
10% of values from N(0,4) and the remaining from N (0, 1), and DGP3: {e, ;} iid stan-
dardised log-normal with parameters 0 and 1. Thus, the error distribution from DGP2
is leptokurtic, and that of DGP3 is both skewed and leptokurtic.

Heteroskedasticity: For the unbalanced Circular Neighbour scheme, h,; is
generated as the ratio of the total number of neighbours to the average number of
neighbours for each ¢ while for the Group Interaction scheme h,, ; is generated as the
ratio of the group size to mean group size. For the balanced Circular Neighbour and the

Queen Contiguity schemes, we use h,; = n[Z?:1(|X1n,i| + |X2n7i|)]_1(|X1n7i| + | Xonil)-
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APPENDIX C

Additional Quantities for Bias Corrections

The expressions for F,&” = c(li;;g F,(po),” = 1,2 needed in Chapter 3 are:
FY = F,B;1G3 Bo(X,F, — I,,), where G5 = G, + G/,
FY = BV B1GS By (X Fp — In) + FoB7HGS2 — 2G!, G) B (XnFy — I)
+F,B;1GS B X, FY

For the SED model, the full expressions for Dj,(p),j = 2, 3,4, required in the

expressions of Rj,(p) in (2.18]), for up to third-order bias corrections are:

Don(p) = 2Gn(p)Pu(p)Gn(p) + Gn(p)Pu(p)Gr(p) — Gi(p) Mn(p)Gnl(p),

D3n(p) = Dan(p) + Gn(p)Pu(p)D2n(p) + Dan(p) Pu(p)Gi(p)
—G,(p) My (p) D2n(p) — Dan(p) Mn(p)Gn(p),

Din(p) = Dan(p) + Gn(p)Pu(p)Dan(p) + Din(p) Pu(p)Gh(p)

—G1(p) M (p) D3n(p) — D3n(p)Mn(p)Grn(p),

where P, (p) = I, — My(p) and Dj,(p) = d%Djn(p),j = 2,3. Note that a predictable

pattern emerges from D3, (p) onwards. Using the fact that d#‘lpGil =Gitlfori=1,2,...,
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we have,

D2n(P)

D?m(p)

M,(p)

M,(p)

QG%(p)Pn(p)Gn(p) - QGn(p)Mn(p)Gn(p) + 2Gn(p)Pn(p)G$L(p)
+G2(p)Pa(p)GL(p) — Gn(p) M (p)Gla(p) + Grlp) Pu(p) G2 (p)
~G2(p) My (p)Gr(p) — Go(p) Mn(p)Gr(p) — G (p) Mn(p) G2 (p),

G2 () My (p)Gn(p) + 2G,2(p) M (p)Gr(p) + 2G 2 (p) Ma(p) G2 (p)
+G1,(0) My (p) G (p) + 2G1, (p) Mo (p) G2 (p) + Gr(p) M (p) G (p)
=265 (0) Pu(p)Gn(p) + 4G5 (0) My (p)Gn(p) — 4G () Pa(p) G (p)
+2G(p) M (p) G (p) + 4G (p) M (p) G2 (p) — 2Gn(p) Pu(p)Gi (p)
—G3(P)Pu(p)Gr(p) + 2G2(p) M (p) Gy (p) — 2G5 (p) Pu(p) G2 (p)
+Go(p) M (p)Gr(p) + 2Gn(p) My (p) G2 (p) — Gu(p) Pu(p) G, (p),

Pu(p)Gr(p)Mn(p) + Mn(p)Gn(p) Palp),

2P, ()G, (p) Pa(p) G (p) Mn(p) + 2Pn(p)Gr,(p) M (p) G (p) Pa(p)
+2M;(p)Gr(p) Pa(p)Gr(p) Pu(p) — 2Mn(p)Gn(p) Pr(p)Gr (p) M (p).-

For the SED model with SMA errors, the additional quantities required by

E28) are,

DQn(p) =

Dsn(p) =

DZn(P) =

Mn(p)

G (p) M (p)Gr(p) + 2Gn(p) Mn(p)Gn(p) — Gn(p) Pru(p) G, (p),
Don(p) = Gu(p) Pu(p) D2n(p) — Dan(p) Pa(p)Gr(p)

+G3,(p) Mn(p) D2n(p) + Dan(p) Mn(p)Gn(p),

G2 () Mu(p)Gn(p) + Gr(p) M (p)Gr(p) + Gy (p) Mi(p) G2 (p)
+2G3 () M (p)Gr(p) + 2Gn(p) M (p) G (p) + 2Gn(p) Mn(p) G2 (p)
—G(P)Pa(p)Gr(p) + Gulp) Ma(p)Gr(p) = Gulp)Pa(p)G2 (),
—Pu(p)G(p)Mn(p) — Mn(p)Gn(p) Pr(p), and Py = I, — M.

For the SARAR model, the full expressions for Dj,(p),j = 2,3,4 and F,gr),r =

1,2 follow a similar pattern as in the quantities for the SED model with the exception

that G, (p) in the SED must now be replaced with Ga,(p).
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APPENDIX D

Proofs of Results in Chapter 2

Proofs of Asymptotic Results

Proof of Theorem [2.1; Following Theorem 3.4 of White (1994), it is sufficient

to show, (i) the identification uniqueness condition: lim sup,,_,, max,e (s hn—" (¢ (p) —

6 (po)] < 0 for any € > 0, where N¢(pp) is the compliment of an open neighbourhood of
po on P of radius €, and (i7) the uniform convergence in probability: % [0¢ (p)—£5 (p)] =2
0 uniformly in p € P.

To show (i), first observing from (2.9) that o2 (pg) = o3, we have,

limy, 00 h?” [Z% (p) = Z161(90)]
= limy o0 [ (log |4, (p)| — log |Ay|) — 22 (log 02(p) — log 02)]
= limy o0 [52 (l0g |47, (p) An(p)| — log| A An|) + B2 (log |0, (p)In| — log oG * 1))

% 0 for p # pg, by Assumption 2.6.

Next, let p,(0) = exp[l,(0)] be the quasi joint pdf of u, (= Y, — X,,80), and p! (0) the
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true joint pdf of u,. Let E? denote the expectation with respect to p,, to differentiate

from the usual notation E that corresponds to pQ. By Jensen’s inequality (see Rao, 1973,

p. 58), we have, 0 = log EY (%) > B4 {log (571"((9‘9())))] = E[log (5:((990))”, where, the
last equation follows from the fact that logp,(6y) and logp,(0) are either a quadratic
form or a linear-quadratic form of w,, and hence their expectations w.r.t p,(6y) are

the same as those w.r.t. p2(6p). It follows that E[logp,(0)] < E[logp, ()], and that,

ln(p) = maxg 52 E[log pn(6)] < E[log pn(60)] = £n(po) for p # po.

To show (if), note that La[5(p) — (p)] = —[log(62(s)) — log(02(p))]. By
the mean value theorem, h,[log(62(p)) — log(o2(p))] = &Q—?p)[&%(p) — 02(p)] where

5% (p) lies between 62(p) and o2(p). Note that, 62(p) = 2V, AL (p)My(p)An(p)Yn

n n

€A AL () M (p) An(p) Ay ten = Ser, A AL (p) An(p) Ayt en — An(p) where, Ay(p)

n n°-n

1
L, AVAL (p) Pa(p) An(p) Ay . By Assumption 2.3, Vin(p) = LX, A7, (p)An(p) X =

n nTn

O(1). By Lemma A.2, tr(Gy) = O(;%) and using An(p) = An + (po — p)Wp, we have,
A5(p) = L XA (D) An(9) Ay e = 5 [X0 Al + (po — P)XL(WS + ALGren + (0 —
)2 X Wi Gren] = Op(3). Hence, An(p) = A (p)Vy,' (0) A7 (p) = 0p(1), uniformly in

p € P. Then by Lemma A.3(vi), hn[62(p) — 02(p)] = (el AT AL (p) An(p) Ay ten —

odtr[A LA (p)An(p) Ay Y] 4 0p(1) = 0,(1), uniformly in p € P.

2

To show o7

(p) is uniformly bounded away from zero, we usea counter argument.

2

Suppose o,

(p) is not uniformly bounded away from zero in P. Then there exists a
sequence p, € P s.t. o2(p,) — 0 as n — oo. Consider the truncated model by
setting 3 = 0. The Gaussian log-likelihood is 4, (0) = —% log(2mo?) + log|A,(p)| —
7z Yy AL (p) An(p)Yn. Then by (p) = max,2 B[l ,(6)] = — % [log(27)+1] — % log(a2 (p)) +
log |An(p)|. By Jensen’s inequality, ¢;,(0) < E[l;.(00)] = fr.n(po),Vp. This implies
117,(8) — i (60)] < 0 and — log(02(p)) < —3 log(03)+ 1 (log |4 (p0)] —log | A (p)]) =
O(1) by Lemma A.2, i.e., —log(c2(p)) is bounded from above which is a contradiction.
Hence, log(c2(p)) is well defined Vp € P. Since 02(p) is bounded away from zero and
hnl62(p) — 02(p)] = 0p(1), 52(p) is bounded away from zero uniformly in P. Collecting

all these results together along with the mean value theorem, we have hy,|log(62(p)) —

log(a2(p))| = 0p(1) uniformly in p € P. Hence suppep%uﬁfl(p) — 16 (p)]| = 0p(1).
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Proof of Theorem By applying the mean value theorem on the adjusted first

order condition, we have,

= L5%(00) — LK, H,(00) Ky /nK; (0, — 0)) (D-1)

where 6,, lies between the line segment joining 6y and én, thus 6 -2 6. Here H,(0) is
the negative Hessian matrix and K, is as defined in section 2.2.

Under Assumptions 2.1-2.5, the central limit theorem for linear-quadratic forms

of Kelejian and Prucha (2001) is applicable, which gives ﬁSZ(QO) = 5%%6(90) N
N(0,T*), where, I'* = lim, =T and T}, = Var[S};(6p)]. The asymptotic normal-
ity of 6, thus follows from: (1) %Kan(én)Kn — %Kan(éo)Kn = op(1) and (i7)
LK Hn(00)Kn — 2K, 50Ky, = 0p(1), where, 3, = E[H,(6))] is the information ma-

trix given in section 2.2. To show (i), note that H,(0) =

LXLAL(D)An(p) X L XLAL(p)en(d) 2 X0, AL (p) Gl (p)en(5)
L) An(p)Xn 5k (2€,(0)en(8) — no?) L ()G (p)en(d)
2 (5)Cu(PAn(p) X L (@)Cu(p)en(8) L[ (0)Ch(0)Cnlp)en(d) + 2tr(G2(p))]

where § = (8, p). Let A, = Ap(pn). Under Assumption 2.3 and using 6, — 6y,

(55557 tn(0n) — 5255Ln(00)) = T (G XA, AL X, H XA A0 X,)

C (L B XA 5 op(]) = o)
noticing that A’ A, — A! A, = (pn — po) (Wi + W) — (p2 — p2) W/ W,,. Similarly, it can
be shown that, letting €, = €,(pn),

+ (agayetn (n) — gGayztn(60)) = isenen — dwénén — (3 — 71)

= Lr(ehen — &) +0y(1) = 0p(1),

since &,én— €60 = 2(p0 — fn) €5, Gnén + 26, An X (Bo — Bo) + (po — o) *€1, Gy Gnen +2(po —
Pr)enWnXon(Bo = Ba) + 2(po — o), GrAnXn(Bo = Bn) + (Bo — n)' X1, A0, An X (B0 —
Bn) +2(p0 = pn) €, G, Wi X0 (B0 = Bn) +2(p0 — pn) (B — Bn)' X}, AL Wi X (Bo — Bn) + (po —

ﬁn)Z(/BO - Bn)/X;LW;LWan(ﬂO - Bn) = Op(l)-
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By the mean value theorem, tr(G2(5,)) = tr(G?2) + 2tr[G2(p,)](Pn — po), where
pn lies between pg and p,. By Lemma A.2, Assumptions 2.4 and 2.5, tr[G3(p,)] =
O(%) Hence, %"[tr(G%(ﬁn)) — tr(G2)] = 0,(1) since p, - po. Further, ¢/, G Gpe, =
YW, WYy, = 2Y, Wy W X0 Bo + B X, W W Xnfo = Op(=) by Lemmas A.2(i) and
A3(v). Hence, "[2,GlCrnn — €hGGnen] = %[(80 — B XoWWaXn(Bo — Ba) —
2¢/ G W X, (Bo — Bn)] = 0p(1), hence,

hﬁ(%en(én) B %gn(ao)) = h#(gige;lGﬁanfn - ~2 6 G, Gnén + tI‘(G%) o tr(éi))
e il — )

Using similar arguments on the rest of the quantities, we have,

(a3 n(0n) = 55 (00)) = 20 (XL Wien — X When) + 0p(1) = 0p(1),

n

* (oo tn(0n) = giaata(80)) = Ll(X)ALen) = (X7 ALE)] + 0p(1) = 0p(1),
Lo (505 (On) — 525500 (00) = L2 (€h,Ghen — &,Ghén) + 0p(1) = 0p(1).

Proof of (i7) is more straightforward, as the differences of the corresponding elements
of LK, Hy(60)Ky, and L K,5, Ky are, 0, —L1(X] Al en) = 0p(1), 55(2¢)en — no?) —
f ¢! Glpen — @tr(Gn) = 0p(1), and

no

% - nclr66 €n = Op( ) QMX,A, G/ = (1)7
L (61,Gr, G + 02tr(GE)) — Lotr(G5Gy) = %E;G;Gnen = 0p(1).
0
The results (7) and (i) give 0 = ﬁs* — iy /nK, Y6, — 60) + 0,(1).

Proof of Corollary By using the block diagonal nature of %,

o3(X) AL A, X)) 0 0
Spt = 0 20, —207T,
0 200 Ton, ﬁTlln

where, T, = t1(G;Gn) /tr(C;Cn), Ton = tr(Gn) /tr(CrCn), Tan = 7= " tr=1(C5Cy,). Then

deriving X3 1T ¥~ = K13 1T, LK s just a matter of matrix multiplication.
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Proofs of Higher Order Results

Proof of Lemma Note, 62(po) = 62, = % TALM,AY, = %G%Mnen- By

the moments for quadratic forms, Var(62,) = %O(n) = O(+). Now by the generalised

Chebyshev’s inequality, P(y/n|62, — o3| > ) < %nVar(&,%O) = O(1). Hence, by the
definition of order of magnitudeﬂ for stochastic components, 62, = o8 + Op(\%).

n

In order to prove that 6;02 is y/n-consistent, by the Mean Value Theorem, we have,

-

1 152 _ 52 i i Ao L Lls2 52y
N A= (67, — 03), which can be written as, 57 = E4](ano a3)
11

~2
n

Q

—

)(62y — 0}), where 52 lies between 62 and of. Hence, 62, = 0§ + O (7)

3

a0 %
Tpo = (05 + O (f)) =05+ 0, (ﬁ): and o, = (03"‘017(%))71 =0, +0 (7)

Therefore, we conclude that .2 = 052 + Op(ﬁ)‘

Consider, h,Ri, = n}fg el M, Gy Mpe,. By Lemma A.3(v), %e;MnGnMnen =
Tn0
Op(1). Hence,
hann = %
0

! MG Myen + Op( 0,(1). (D-2)

1) =

n
n

Using the expression for & 02

E(h,R1p,) = fraclolE (h " M, G M, en) - %E(h" €, MG Myen (62, — 0(2)))
hn 1 1\ (A

The 1st term is, :T"E(G;ﬁn)tf(MnGnMn) = O(1). The 3rd term is, O((h") 2) by As-

sumption 2.7. For the 2nd term note that, E(62,) = o3 +O(2) and E(e,, M,,G,, My €p,) =

odtr(M,G,M,) = O(7=). Then by Cauchy-Schwartz inequality,

|E (€, MnGnMyen (679 — 07))]
= |E([e, MG Mpen — E(er, My GrMpen) + E(e, MG Myen)(679 — 03))|
< |E([€,MnGnMyen — ogtr(M,Gn M) (620 — 05))| + 0§ [tr(M, G M,)E (62 — 03|
= |Cov([e,MyGnMpen — o3tr(M,GpMy,)], (6% — 0d))| + O(ﬁ)

(Var(e, My, G Myey ) Var(e, Mye)) ? + O(i)

IN

1
n

(0(2)0(m))? + O(-) = O(-1),

n

3=

N

f Ve > 0,3¢ > 0,n9 > 0 s.t. P(|zn| > cfn) < €,V¥n > ng then z,, = O,(fn)
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where we have used the results for quadratic forms. Then, ﬁE[hﬁe%MnGnMnen (&%0 —
0

a3)] = O( TIZ”), which implies,

E(h,Rin) = Max{O(1),0(¥=) O((22)2)} = 0(1 (D-3)

n

By (D-2) and (D-3), hnRin—E(hnRin) = 28=€), MypGnMyen— L-E(e), € ) tr (M, G M) +
0 0
Op( ) — O(¥2) = O((%)2) = O((")3).

n

By Lemma A.2 the remaining parts can be proved in a similar fashion noting that,

Dj, = O(%), of the sandwich forms of Rj, for j = 2,3,4..

Proof of Proposition We go on to prove the proposition using Lemma

To that effect consider the Taylor series expansion of &n(p) around po,

0=1vn(pn) = @n + Hin(pn — po) + %H%(lsn - 00)2 + %Hfin(:én - ,00)3

+5Hsn(p) — Hsnl(pn — po)?,

where the last two terms sums up the mean value form of the remainder term with p lying
between pg and p,. We have shown that p, — po —p ( o ) Next, note that h, T, =
O(1) for r = 0,1,2,3 by Assumptions 2.4 and 2.5. Now, in order to prove the result
of the proposition, we need to establish the following conditions: (i) ¥, = Op((%")%)
and E(¢,) = O(k2), (ii) E(H,y) = O(1) and Hy, — E(H,y) = O,((22)7) for r = 1,2,3,
(iii) Hy! = Opu(1) and E(Hy,) ™t = O(1) and (iv) Han(p) — Hap = Op((22)2).

For (i), note €, M,GpMpe, — odtr(M,GyM,) = Op((%)%) and tr(M,G,M,) =

tr(Gp) + O(1) = nTy, + O(1). by Lemma A.2 Therefore, 1;” = —h,Ton + hpRin =

—hyTon -+ 2, My G Maen + Op( ) = ~haTon+ 22 [o7t0(Gn) + Op((72)2)] + Op( )
and E(¢p) = —hnTon + %"(tr(Gn) +0(1)) + O((?)Q) = O(%)

For (ii), Lemma implies, (hnRin)® = E(hnRin)® + Op((h") 2) for s = 2,3,4,
(hnBon)? = B Ron)2+O0p((22)2), (hn Ran)*hn Ron = Bl R1n) B Ron) +Op((22)7)
for s = 1,2, and h,RinhnRsy, = E(h,Rin)E(hnRsy) + ( )%) Hence, Assump-
tion 2.8 implies, E[(hnRi,)*] = E(hnRin)® + O((22)2) for s = 2,3,4, E[(hyRan)?] =
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E(hyRon)? + O((22)2), E[(hnRin)*hnRan] = E(hyRip) E(hyRoy) + O((12)7) for s =
1,2, and E[h,, RinhnR3n] = E(hpR1n)E(hnRan) + O((T")E) Combining these with @
)2) and E(H,,) = O(1) for r = 1,2, 3.

);

and Lemma we have, H., —E(H,,,) = Op((h

mn
n

For (iii), by Lemma and E[(hyRi1n)?] = E(hnRin)? + O((12)

N[

E(Hln) - %E[(hann)2] - hnTln - E(hnRZn)

N|=

= 2 (atr(M,GrM,) +O((12)2))? — hyThy,

)

= (L tr(MyGnMy))?) = b Tin — Ltx(My, Don My) + O((22)2)

=

— (L tr(M, Dop M,) + O( (L)

\ o

 (Batr(G))? — Brir(G2) — Brta(GGa) + O(())

_h

n
n

— —hn ( - TOn n) + tI‘(Gn - TOnIn)/(Gn - TOnIn)) + O((h#)%)

n

|
&

(tr(G2) + tr(GGr) — 2T, tr(L,)) + O((h2)2)

That is, E(H1,) is negative for sufficiently large n and it is finite. Therefore, E(Hy,) ™! =

O(1). Also by, Hy, = E(Hi,) + Op((22)2), we have, H;,' = O,(1).

For (iv), consider evaluated at p,. By the mean value theorem, h,T5,(p) =
huty(GA(p)) = %”tr(GfL) + 4};—"tr(G2(ﬁ))(ﬁ — po), where, p lies between p and py. By
repeatedly applying the mean value theorem we can find a p which is much closer to the
true pg. For such p, hﬁtr(GfL(ﬁ)) = O(1) by Assumptions 2.4 and 2.5. Combining with
the (7= )1/2-Convergence of p to the true value we have, h,T3,(p) = O(1). Now consider
62(p) = 2V AL(P)My(p)An(p)Y, and 62, = LY A! M, A,Y,. Similarly, by the mean
value theorem we have, 62(5) = 620 — 2(5 — po) Y3 AL (5) Ma(7)G(7) Ma(5) An(7) Y =
620 —2(p—p0)Op(hiyt) = 25+ Op((nhy,)~1/?). By continuity of

nO , it can be deduced
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that, 6;,2(7) = (62) + Op((nhn)~2)) ™ = 6,3 + Op((nhn)~1/?). Now,

haRin(p) = 6,2(p)22Y; AL () Mn(P)Gn(p) Mn(P)An(p) Yn

= 672(p) = [V} AL M, G, M, A, Y,

n

(5 — P0)Y, Al (5) My (7) Dan (7)Mo (5) Au(5) Yo

= (BB + 0p(()1)) — Ou((5)H) = By + Oy(12)} - (D-t)

nhn

Using a similar set of arguments it can be shown that, hy, Rip(p) = by Rin + Op((%”)%)

for k = 2,3,4. Then it follows that, Hs,(p) — Hs, = Op((%”)%)
Proof of Proposition Arguments are similar to that of Proposition [2.1

Proof of Proposition Note that ba(po,v0) = O((%)*l) and that it is dif-
ferentiable. It follows that mbg(po,%) = O((%)_l). As pp, the QML estimator
of p defined at the beginning of Section 5.2, is m—consistent, it can be shown that
A = y(Fpn) is also \/1/hy-consistent. We have, under the additional assumptions in
Proposition 2.3 b2(fn,4n) = b2(p0:70) + 52562(P0:70) (Pn — p0) + 525b2(P0, 70) (n — 70) +
Op((7)72). Thus, E[ba(pn, )] = b2(p0, 10)+ 520200, 70)E(pn—p0)+52b2(p0, 70)E(n—
Y0) + O((%)_Q)] As E(pp — po) = O(E2), it can be shown that E(4, — v0) =
O(%). These lead to E[b2(pn, n)] = b2(po.70) + O((%)*Q). Similarly, we show that
B[by (n, 3n)] = bs(p0, 70) +0( (£ )~2), noting that ba(pn, 70) = O(()~3/2). Clearly, our
bootstrap estimate has two step approximations, one is that described above, and the
other is the bootstrap approximations to the various expectations in (2.23) given py,

e.g.,E(Hln@Zn) = % 25:1 Hln(e;’b,ﬁn)&n(e;b,ﬁn). However, these approximations can

be made arbitrarily accurate, for a given p, and F,,, by choosing an arbitrarily large B.

239



APPENDIX E

Proofs of Results in Chapter 4

Some First-Order Results

The following list summarises some frequently used notations in the paper:
e 0= (A p), and dg is its true value.

o J, =1, — %lml;n where [, is an m x 1 vector of ones. [Fp, m—1, ﬁlm] is the

eigenvector matrix of J,,, where F}, ,,,—1 corresponds to eigenvalue of ones.
o Wy = Frlz,n—lwhnFn,n*17 h=1,2.
e A,(\) =1, — A\Wh, and By (p) = I, — pWay.

° [Zy,.. ‘7Z;;,T—1] =F;

nvnfl[an, wo s Znr|Frr—q for any nxT matrix [Zp1, - -+, Zn1).

° YN — (Y*/

nls: .-

Yo ) Xy = (X3

nls:-

G Xpp )y and Wiy = Ir 1 @Wyy  h =

1,2.

[ ] AN()\) = IN — )\WlNy and BN(p) = IN — pWQN.
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e My (p) = By (p){In — Xn(p)[ Xy (0)Xn(p)] Xy ()} By (p).

The following set of regularity conditions from Lee and Yu (2010b) are sufficient for
the v/ N-consistency of the QML estimator Snr defined by maximizing , and hence
the v/N-consistency of the QML estimators B N and &]2\, of B and o2, which are clearly
essential for the development of the higher-order results for the QML estimators.

Assumption E1. Wy, and Wy, are row-normalised non-stochastic spatial weights
matrices with zero diagonals.

Assumption E2. The disturbances {vy}, i =1,2,...,n andt =1,2,...,T, are iid
across i and t with zero mean, variance o§ and E\vit|4+77 < oo for some n > 0.

Assumption E3. A, (\) and B, (p) are invertible for all A € A and p € P, where
A and P are compact intervals. Furthermore, g is in the interior of A, and pg is in the
interior of IPE

Assumption E4. The elements of X, are non-stochastic, and are bounded uni-
formly in n and t. Under the setting in Assumption FE6, the limit of %X’NXN exists
and is non-singular.

Assumption E5. Wy, and Wy, are uniformly bounded in both row and column
sums in absolute value (for short, UB)E| Also A1 () and B, Y (p) are UB, uniformly in
A€ A and p eP.

Assumption E6. n is large, where T can be finite or largeﬁ

Assumption E7. Fither

(a): limy, o0 HN(p) is non-singular ¥p € P and lim, o Qin(p) # 0 for p # po or

'Due to the non-linearity of A and p in the model, compactness of A and P is needed. However,
the compactness of the space of 8 and o2 is not necessary because the 8 and o2 estimates given
A and p are least squares type estimates.

2A (sequence of n x n) matrix P, is said to be uniformly bounded in row and column
sums in absolute value if sup,>; [Pyl < oo and sup,> ||P.|l; < oo, where |[P,|, =
SUD1 <j<p Dy [Pijin| and [|Ppll; = supi<jcp, > iy [Pijn| are, respectively, the row sum and
column sum norms.

3The consistency and asymptotic normality of QML estimators still hold under a finite n and
a large T, but this case is of less interest as the incidental parameter problem does not occur in
this model.
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(b): limy, 00 Q2,(0) # 0 for § # dg, where

Hy(p) = %Xy, WivAyXn50)By(0)By(p)(Xn, WinAN Xn o),

Quulp) = i3 (In[ogBy Y JnBL | —n|on(p) By (p) Jn By (p)]) 4

Q2 (0) = i3 (In|ogB AV T AL B = T fog () By (p) At (V) Jn AL (V) B (0)])
2(6) = Zrl(Bu(p)An(N) A7 By Y 1 (Ba(p) An(N) A7 By Y], and

aa(p) = a(0)r=x

Assumption E8. The limit of 2y [tr(CrCy)tr(D5 D) — (G Dy)] is strictly
positive, where Cy, = Jnén — %Jn and D,, = J,H, — %Jn, with H, = Wgntl
and G, = B,(Wi, A B L

Theorem E.1: (Lee and Yu, 2010) Under Assumptions A1-A8, we have Oy 2 o,

and

VN(Ox — 00) 2 N0, limy oo 231 (60)T 5 (60) 25 (60)], (E-1)

where Y (0y) = %E[ﬁ;%&v(ﬁo)] assumed to be positive definite for large enough N,
and T n(6p) = %E[(%KN(GO))(%EN(OO))’] assumed to exist.

Theorem E.1 serve two purposes: (i) the v/N-consistency of 6 ~, which is crucial for
the higher-order results, and (ii) the asymptotic VC matrix of 0, which is needed in

the third-order variance correction. The VC matrix takes the following form:

Nog XNBVBN XN, 0, Noz XN BN, 0
1 1 -1 1 1
EN(G()) = ™~ ﬁ’ No-g tr(B/]V GNBN), Wtr(ngBN )
~, ~, Tl]\]—i-Tl*N—{—]\[Lagfrn\/n]v7 TZ*N
N) N, N? KlN _"_ KikN

where 1y = Gn XS,
Tiy = 2 tr(Biy |Gy ByByGNByY),
Kiy = htr(By ' Wi W, By, and
Tsn = #tr(BY Gy Way + By "Gy By WanBy').

To obtain the other component I'x(6p) of the VC matrix, it is helpful to express the
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score vector in terms of the original errors using (4.29):

1 /
No2 AlnTV"T

1 06x(00) z + 3o 4V 2o Var
N 06y

~Ton + 2v V. NLUSb;LTVnT

L _KON + 2 V AimTvnT

where b,r = Fpr NByny, Atnr = Frr NBNX N, Aopr = For NF vy Asnr = For nBy
-G NBR,IIF;TT? N> and Ay = Fop v Wo NB]_VlF’nﬂ ~- Letting a;,r be the diagonal vec-
tor of Aj,r, and denoting II;; = %tr[AinT(AjnT + A;RT)] + %kqa;nTajnT, we obtain,

referring to Lemma A.4 of Lee and Yu (2010b) and its proof,

L X\ ByByXy, 0, e Noz Alprbnr, 0
~ I II IT
FN(GO) _ 9 4 225 (2) 23, 2 2 24
~, ~, II33 + Nl %b%Tbn% T34

9 9 I

Some Higher-Order Results

Derivatives of My(p) defined below (7). Let, Cn(p) = By (p)Bn(p) and
Dn(p) = [XyCn(p)Xn]~, then write My (p) = Cn(p) — Cn(p)XnDn(p)XCOn(p)-
Let C\(p) and D' (p) be, respectively, the kth order partial derivatives of Ciy(p) and
Dn(p) w.r.t. p. The derivatives of My(p) are:

M (p) = C§ () — CF (0)Xn D (9)XyCiv (p) — Cx(0) X DY (0) Xy Cv ()

~Cn(p)XnDx(p)XNCY (p),

M (p) = CF(p) — CF (0)Xn Dy (9)XiyCiv (p) — 205 (9)Xn DY (9)XyCiv (p)
~20{) ()X D ()X CY (p) — 20x(0) X DY (9) X CY ()
~Cn(p)Xn DY (p)XyCr(p) — Cx(p) X D (p) X C P (p)

MY (p) = —3CK) () Xy DY XN Cn (p) = 30 (0) XD ()X CY ()

—30\) (0)Xn D (0)XlyC(p) — 6CY (0) Xy DY (0) X C (0)
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=30 ()X Dy (p)XyCY (p) — 30N (0)Xn DY (9) X CY ()
=30 (p)XnDY (XN CY (p) — O (p)Xn DY (9)Xly 0N<p>

M (p) = —6CF) (XN D X9V0N<p>—12c '(0)Xn DY ()X OV ()
—6C (0)XnDn ()X CY (p) — 40 ()X DY (9) X O (p)
~4Cn(p)Xn DY (p >X'Nc p) — 1207 (0)XNDY (p >X9vc V(p)
~120\ (9)Xn DY (0) XN CP () — 6Cw (9) Xy DY (0) X C ()
—Cn(p)XNDY (0) X Cn(p).

For the derivatives of Ciy(p), we have C\'(p) = —W,yBn(p) — By (p)Wan,

C?(p) = QW Wy, and CW(p) = 0,k > 3. For the derivatives of Dy (p), denoting
Py (p) = X\ Cn(p)Xy and its kth derivative P\ (p), we have,
DY (p) = ~Dn(p) P (9) D (p),
DY (p) = —DY (0)PY (9) D (p) — D (p) P (9)Dv(p) — Dx(p) P (0) DS (p),
D (p) = ~DR(0) Y (9) D (p) — Dn(p)PY (9) DR (p) — 2D ()P (0) Div (p)
2D (0) P () DS (p) — 2Dn (p) PS () DY (p),

DY (p) = ~DP(0) Y (p) D (p) — Dn(p)PY (9) DY (p) — 3D ()P (0) Div (p)
=30 (p) Py (p) DY () 3D (0) P () DY (p) 3D () PR (9) DY ()
—6DY (0P (p) DY (9.
Clearly, P\ (p) can be obtained from C"(p), and both are zero when k > 3.

Additional quantities required in (£.17): Letting E( 5\1,)) = (s1,82), qn =
(s3,84) and E[QN (60) = (s5, 6, 87, 8g), we have
51 = =28, Xy G yMnyXy o — 205tr[Gy My (ByBy) '],
52 = 2B\ XNMY Xy o + o3t MY (BB y) ],
s3 = —4B)XN G yMyBy' Vy — 2V By GyMNyB' Vi + 203tr[GyMy (ByBy) 1],
s1= 260Xy MY B Viy + VB ' MY BY Vi — o3trMY (ByBy) 1],
s5 = 28, Xy Gy My G N X fo + 203tr[G) yMy G (ByBy) 7',
s6 = qr = —20y Xy Gy MY X o — 202tr[Gy M (ByBy) 7,
= BeXNMP X 8o + o3t M (ByBy) 1],
where My = My (po) and M = M (py).
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Proofs for Section 4.4

Proof of Lemma The results of (a) follows from the following properties of
cumulants: for two independent random variables X and Y and a constant ¢, (i) 1 (X +
¢) =k1(X)+e, (i) k(X +¢) = ke (X), r > 2, (ii7) kr(cX) = "k (X), and (iv) k(X +
Y) =k (X)+ k- (Y). See, e.g., Kendall and Stuart (1969, Sec. 3.12). The results of (b)

follows from the definition of the joint cumulants, and some tedious derivations.

Proof of Lemma Note that the rth cumulant w.r.t. the EDF Gy of {v;,i =
1,..., N} is just the rth sample cumulant of {v;,s = 1,..., N}. This immediately gives
Ky(v*) = %Zfil v; = 0. To show r%(v*) = 0 + O,(N~Y/2), note that E(k3(v*)) =
+E(VyVy) = ¢3. From Lemma we have Var(v?) = kqay; + 203, Cov(vZ, v?)

17 V]
— 2
k4ai,i,j,j = k‘4 Z -1 fmz mj> and thus

Var(%VEVVN) = ﬁ Zi\;l Var(v) + N2 Zz 1 Zﬁéz Cov(vi 7VJ2)
= (ks + 200) + ks > Zj;éi Yoo F2if2 mj
= %(k4a4+2‘70)+1\/2k421 123 DIy 2 — wkada
= R kst +208) + Zha X0 (8, 200K, f2,) — Fhads
= O(N7Y,

due to the fact that Zf\i 1 f2. is bounded, uniformly in m = 1,2,...,nT. It follows by
the generalised Chebyshev’s inequality that x%(v*) = 02 + O,(N~1/2).

For the general results with r» > 3, it is easy to verify that E(xX(v*)) = kra, +
O(N~Y2). By the results of Lemma 4.1 and the fact that Zfil | fmi|” is bounded,

uniformly in m = 1,2,...,nT, it is straightforward, though tedious, to show that

Var(kX(v*)) = O(N~1). The result thus follows.

Proof of Lemma As Vy is defined by replacing 6y in Vy by 6y, the result

follows directly from the v/N-consistency of 6.

Proof of Lemma [4.4} The proof is trivial.
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APPENDIX F

Proofs of Results in Chapter 5

Proof of Theorem We only prove the consistency of An as the consistency
of B, and 62 immediately follows from identities similar to and . Define
¢ (N) = maxg ,2 E[(,,(6)]. By Theorem 5.7 of van der Vaart (1998), it amounts to show,
(a) identification uniqueness condition: sup).qx x)>e L128(X) =5 (Xo)] < 0 for any e > 0
and a distance measure d(\, Ao) and (b) uniform convergence: [£5(\) — €5 (N)] 250
uniformly in A € A.

Now £¢(A) = —Z(In(27) + 1) — ZIn(62(\)) + In|A,(A)|, where 62(A) = [(Ao —
M) 21l My, + o3tr[Hn Ay AL (V) An (V) AR Y]] Recall £6()) defined in (5.3).

Condition (a): Observe that 52(\g) = o3, then,

n

limy, 00 % [0 (X) — £5(No)]
= limp 00 [%(log |AL(A)An(A)] — log | A5, An]) + %(103 |07 2(M) | — log ‘U()_zfnm

% 0 for X\ # X\g, by Assumption 5.6.
Next, note that p,(fg) = exp[l,(6o)] is the quasi joint pdf of €,, which is N(0,021,).
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Let pY (6o) be the true joint pdf of €, ~ (0,02H,,). Let E? denote the expectation with
respect to p,(0o), to differentiate from the usual notation E that corresponds to pQ(6y).

Now consider €,(8,\) = A,(N)Y, — X;,8 = Bn(Nen + bp(B,\), where B,(\) =
Ap(N)ALT and b,(8,N) = Ay (M\) A, X80 — XnB. Then, with £,(6) given in (5.2)), we

have

Elt,(00)] = —-% In(2702) +In |A,| — 5,

E[t,(00)] = —-% In(2702) +In |A,| — 5, as %Z?:l hpi=1

BI6,(0)] = —2n(270%) + I |Au(N)] — sLrlo3tr(BL () Ba(N) + by (6 \)ba(8, V)],
E[(,(0)] = —%In(270?) +1n|A, ()| — 55z [03tr(Hu By, (\) Ba(X)) + b, (8, A)bn (8, V)],

where we have used the identities, B,(\g) = I, and b,(8p, A\o) = 0. Now using the

identities A, (A) = A, + (Ao — \)W,, and By (A\) = I, + (Ao — A\) Gy, we have,

E[(5(0)] — E1[£n(0)]
= 2o — N[tr(HoG) — tr(G)] + (Mo — N2[tr(Hn G Gy) — tr(GL G)] = o(1),

where the last equality holds by assumptions Cov(gy, hy,) = o(1) and Cov(gn, hy) = o(1).

By Jensen’s inequality, 0 = log Eq(%) > k4 [log ( 1?:((990)))]’ and above results, we
conclude E[log (;:(7(9?))] < 0 or Ellog p,,(0)] < E[log pn ()], for large enough n. Thus,

7a(A) = maxs 2 Ellog pa(6)] < max 2 Bllog pn(00)] = Ellogpa(0o)] = Za(Ao), for A
Ao and n large enough.

Condition (b): Note 1[£5(\) — £5(\)] = —3[log(62 (X)) —log(62(A))]. By the mean
value theorem, log(62(\)) —log(a2()\)) = %[6’%()\) —&2()\)], where ¢2()\) lies between
62(A\) and 62()\). Using M, An(\)Yy = (Ao — A)Myn, + M, A, (N A Ye, we have,

&2 ()‘) = (AO - /\)2%77;1Mn77n + 2()‘0 - )‘)Tln(A) + TQ’rL()‘)a (F'l)

where Ti,(X) = L M, A, (N Ay Le and To,(N) = 2e) AT AL (N M, A, (V) Ay e, Using

n n"n

Ap(N) = Ap + (Ao — AW, we have, T1,(A\) = o,(1) uniformly. Further, T5,(\) =
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Ler ATAL (VAN A Yen + 0p(1), since, 1el ATTAL (NP An(NA e = L€, Pre +
2¢,,G Pyen, + €,G), PyGreyn] = 0p(1) uniformly, using Cov(hy, gn) = o(1). Lemmas A.1
- A3 imply, 5 Var(e, A, A, (M) An(N) A, 6n) = o(1). Then, together with Chebyshev
inequality, T, () — o Ltr[H, A AL (AN AL(N ALY = 0,(1), uniformly for A € A.

It left to show o2 () is uniformly bounded away from zero. Suppose o2 () is not uni-
formly bounded away from zero. Then 3{\,} C A such that ¢2(\,) — 0. Consider the
model with 8y = 0. The Gaussian log-likelihood is ¢ ,,(6) = — % log(2mo?)+log | An(A)| —

()
7z Yy AL (M) Ar(A)Y, and n(N) = max,2 E[f;,(6)]. By Jensen’s inequality, £, (\) <
max,z E[¢; ,(6p)] = Zt,n()\O)- Then together with Lemma A.2, we have ;[Et,n()\)
Fin(M)] < 0, and —2log(02(\)) < —21og(08) + 1 (log | Aa(Ao)| — log | 4x(V)]) = O(1).
That is, —% log(c2(\)) is bounded from above which is a contradiction. Hence, o2())
is bounded away from zero uniformly, and % log(o2())) is well defined VA € A.

Collecting all these results we have, supycp|[€S(A) — €5(N)]| = 0p(1), completing
the proof of consistency part.

To prove the asymptotic normality, first note that tr(H,) = n. By the mean value
theorem, /n(0, — 6y) = —[%896—;9,6 (6)] 1\}8‘996 (60), where 6, lies elementwise be-
tween 0, and . By Assumptions 5.1-5.6, the condition Cov(gy,h,) = o(n"1/2), and
the CLT for vector linear-quadratic forms of Kelejian and Prucha (2010, p. 63), we have
\}596 (6o) N N(0,X), where X is defined in the theorem.

Let Hp(0) = oo ln(8). Tt left to show (i) L1H,,(8,) —Hy, = 0,(1) and (ii) H, —1,, =
op(1).

Condition (7): By Assumptions 5.3-5.5 and the assumption that Cov(hy,, g,) = o(1)

stated in the theorem, Lemma A.2-A.3, 6,, — 6y = op(l), en(Bn, /N\n) = X,(Bo — ﬁn) +

(Ao — S\H)WnYn + €, and le’n(ﬁm )en(ﬁn, n) = ¢l €n + 0p(1), we have,
M p5(On) = Hupp = (52 = 52) w X0 Xn = 0p(1),
Hn,azﬁ(én) - Hn,az,é’ ol nEnX - 7( (60 ﬁn) + (AO - 5\n)VVnYn + En)/Xn = Op(l),

Hn,0202(9~n) - Hn,o2o2 =1 ( 16 € n€n — i6 (S ) (S )) - %(ﬁ - &%) = Op(l)a
0 n
Hans(0n) = Hans = (32 = 52) s YaWiXn = 0p(1),
Hn,)\UQ (én)_,Hn,)\O'Q = ﬁYéWéen_ﬂYAWé(Xn(ﬁo Bn) ( )W Y, +€n) - Op(l)
0 0
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Hon(0) — Han = (& — 2 LYWW, + 1x(G2) — (G2 (M) = o, (1)
where the last equality holds since tr(G2) — tr(G2(\,)) = 2tr(G2(A\,)) (Ao — An) by the
mean value theorem for some \,, between )y and S\n

Condition (ii): Using the results E(e,¢,) = oatr(H,), E(¢,Gnen) = obtr(H,Gy)
and E(e,G,Gnen) = ogtr(H,G),Gyp) with Lemmas A.1-A.3, Var(+e,e,) = -z (B(ep ;) —
ogtr(HZ)) = o(1), Var(Le,Gnen) = 530 g%“ [E(eﬁﬂ-)—30§hg]+#aétr[HnGn(G%Hn+
H,G,)] = o(1) and similarly Var(te, G/, Gnren) = 0p(1). Then by Chebyshev inequality,

Hn,pp —Inps =0,

Hio2s —Tnozs = Op(J5) = 0p(1),

!
Hio202 = Iy 252 = %(% — 08) = 0,(1),

o

Mg —Inag = 3 X5,Gnen = Op(J) = 0p(1),

Hiro2 = Ipro2 = L Gren — a—tr(H,Gp) + Op( L) — op(1) and

n

S

Hopr = I = 5€,GrGnen — 3 tr(HnG,Gn) + Op( =) = 0p(1).

Proof of Theorem Let E(¢%(\)) = ¢*(\). By Theorem 5.9 of van der Vaart
(1998), the proof of consistency of A, requires (a) Convergence: supy ¢y |1 () —9*(\)| =
op(1) and (b) Identification uniqueness: for € > 0, ian:d(A7A0)2€|LZ*(A)\ > 0= [¢*(No)l.

The proof of Theorem implies that 62()\) is uniformly bounded away from 0.
Thus, the ACQS estimator \, = arg{d;;';()\) = 0} is equivalently defined as A, =
arg{Y, Al (\) M, G5 (N\)A,(N)Y, = 0}, suggesting that we can work purely with the
numerator T,,(\) = YAl (\) M, G2 (N) An(N)Y,, of 9% ()) to establish consistency. Note
T (A) = V! A" (A)MnGr(N) An(\) Yo Y/ A" (N) My diag(M,)~ diag (M, Gn(N) An(V)Y;, =
Tin(A) — Ton(A).

Condition (a): By M, X, =0, A,(\) = A4, + (A — N)W,, and G, A, = W,, =

Tin(\) = YIA,(\)M,Gr(N)An(N)Y,,
= YA M,GpAn Y, + (Ao — MY AL Gl M, G Y

= G%MnGn(Xnﬁo + En) + ()\0 - )\)(Xnﬁ(] + 6n)/G;1MnGn(Xn50 + En)a and
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E(T1n(N) = (Ao —A) By X0 Gy My Gn Xy B0+ 03 tr(Hp MpGr) +03 (Ao — A tr(Hn G, M G).
By Lemma A.3 and Assumptions 5.5 and 5.6, we have 1[T1,(A) — E(Ti,(N))] = o,(1).
Now, as M, appeared in T, is a projection matrix, by Lemma A.2, similar arguments
as for Ti,,(A) lead to 2[Th, (A) —E(T4(N))] = 0p(1). Thus, 1{T,,(A\) —E[T,(A)]} = 0,(1).

Condition (b): First, we have E[T},(\o)] = 0, as tr[H, M, diag(M )~ diag(M,G,)] =
tr[diag( H, M,diag(M)~")diag(M,G,)] = tr(H,M,G,). Now,

EITa(\)] = B3, Al AL () MG () An(A) A7 X o

+odtr(Hy A7 AL (N MG (N An (V) ALY,

By Assumption 5.6* and Lemma A.2, E[T,(\)] # 0, for any A # X\g. Then the

conditions of Theorem 5.9 of van der Vaart (1998) hold, and thus the consistency of \,,.

To prove asymptotic normality, we have, by the mean value theorem,

0= \/ﬁi};(j‘n) = \/ﬁ@?@o) + %J};(S‘n)\/ﬁ(j‘n - >\0)7 (F'2)

where \, lies between ), and Ag. We have to show, () %@Z;(Xn) - %zﬂfl()\o) = 0p(1),

(i) 45 05(h) — E(&0200)) = 0p(1), and (iid) E(5(A)) # 0 for large enough n.
Note, L% (\) = 55 oy Y AL NGy (A My Ay (\)Yy, - YWy My Ay (A)Yy

YW G (N) My Ap(\) Y,

Y AL (NG (N M, W, Y,

n02 \) 02 \)

Fgro Y AL (N Gy (A Ma A () Yy,
where G5 (\) = £GS(\) = G2()\) — diag(M,)~'diag(M,G2(\)).

Condition (7): 1Y’VV’M An ()Y, = %YT{WAMnAnYn+%(Ao—;\n)YAW{LManYn
= %Y,{W;LMnAnYn + 0,(1). By Assumptions 5.4, 5.5 and continuous mapping theorem,
G2 (M) = G +0p(1) and GS(A\,) = G +o0p(1). Thus 2V AL (X,)GS (M) My An(N) Yy =
Ly Al GO M, A, Yy +0,(1) and LY AL (M) G2 (M) M A (M) Yn = 1Y) AL GO M, ALY+
0p(1). In a similar manner, 1Y/ W/ GS (\,) My An(M) Yy = LYW/ GS M, A, Yy + 0p(1),
and %YéA;L(Xn)G;’L/(Xn)ManYn = %YT’LA;,JG%’ManYn—Fop(l). Collecting these results

and observing 62(\,) = 62(A\o) + 0,(1), we have %&;(5\”) - %1;;';()\0) = 0p(1).
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Condition (i7): Note that,

Ljr(N) = n%‘gYT{A;IG%’MnAnYn - n%‘gYnW,’LG;;'MnAnYn - n%‘gYnA;lG;'ManYn

_l’_

(Yo AL Gy My AnYn) - (Yo Wy My AnYn) + 0p(1) = Z?:l Tin + 0p(1).

2
2,4
noo

Using M,A,Y, = Mye, and %%Gn = 0p(1) for a vector a, of uniformly bounded
elements, we can readily verify that T},, = n%‘gegd;’;en +0p(1), Top = —ﬁeﬁlG%Gnen +
op(1), Ty, = —n%'g(c;mn—l—egG%/Gnen)—i—op(l), and Ty, = 0p(1), by Lemma A.2. It follows
that —E[44%(\)] = Ltr[H, (GG + G2 Gy — G2)] + n%‘gcﬁlnn +o(1) = @, +0(1), and
that 47(%) — B[ (%0)] = 0p(1).

Condition (éii): By Assumptions 5.3-5.6 and Lemmas A.2 and A.3, it is easy to

see that @, # 0 for large enough n, and thus E(%&;’;(Ao)) = 0 for large enough n.

Proof of Theorem Recall 3, = (X! X,,)) "' X! A, (An)Y,. We have,
Vit = Bo) = (AX0 X)Xt e — Vi~ A) (A X0 X)L X0+ Op (). (F-3)

The proof of the asymptotic normality of A, in Theorem and the asymptotic repre-

sentation for y/nt given in (5.10)) imply that
Vi, = Xo) = .0k 4 0,(1) = (Vnod®,) " (€, Bnen + chen) +op(1).  (F-4)

This shows that each component of \/n(83, — ) is a linear-quadratic form in e,. Thus,
Cramer-Wold device and the CLT for linear-quadratic form of Kelejian and Prucha
(2001) lead to the asymptotic normality of \/H(Bn — fp). Clearly, the asymptotic mean
of v/n(Bn — Bo) is zero and the first-order variance of it can be easily found using

and :

7_2([3”) = (X%Xn)_lX;mvar(fn)Xn(X;zXn)_l + 7'2(5%)(Xr/zXn)_lX;mnn;zXn(X;zXn)_l
—2(03®,) "1 (X X,,) LX) Cov(en, €, Bpen + chen)ny Xn (X! X)) ™
= (X%Xn)_erlean(XrlzXn)_la
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where A, = nod Hy, + 72(An)nnitl, — 20, (05 2diag(By)sn + Hnen)nl,, and s, = E(e3).

The limiting distribution of v/n(62 — 03) can be found in a similar manner from

Vien —og) = VilRYa AL () MaAn(An) Y, — o]
= T(e €n — nog) + 2/n( A, — Xo)Lodtr(HnGr) + op(1),

which has a limiting mean zero and first-order variance: 72(52) = 2 37 | Var(e2 i)t
%aéTﬁ(An)trQ(HnGn) + 5 Cov(epe, €, Buen + Chen)tr(HnGn)®, ', Cov(e) e, €, Bren +

¢l en) can be easily derived but not needed in light of the discussions provided.

Proof of Theorem To prove the consistency of 72(),) as an estimator of
72(An), we need to prove (a) @, — @, = 0,(1), and (b) 72(¥%) — 72(1b%) = 0,(1). First,

n

) follows from the proof of Theorem [5.2 - (the asymptotic normality part). To prove

(a
(b), as 62 = 08 + 0p(1) by Theorem it suffices to show that, by the consistency of

0,, and referring to (5.17) and (5.18),

% > i (672” 1%1 - Var(en,ifn,i)) = op(1),

where &,; = (ni + bnii€ni + cni. This follows immediately by Theorem A.1 and the
poof of Theorem of Baltagi and Yang (2013b).

The consistency of 72(5,,) follows that of 72(),) and the consistency of 0.

Finally, the same procedure proves the same set of the results for the regular QML

. A ~9
estimators 3, and ;.
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APPENDIX G

Proofs of Results in Chapter 6

G.1 Proofs of Results for SARAR(p, q) Model

Proof of Theorem Details of the proof of Theorem that shows the con-
sistency and the asymptotic normality of the QML estimators of # under homoskedastic
assumption is similar to the proofs of Theorem 3.1 and 3.2 of Lee (2004) after making
adjustments for the autoregressive disturbances. As such we omit the proof of Theorem

[6.1] and focus on the case where the errors are heteroskedastic.

Proof of Theorem Let E(¥%(8)) = 1*(8). By Theorem 5.9 of van der Vaart
(1998), the proof of consistency of 8, requires, (a) Uniform convergence: SUPscA | |4 (8)—
¥*(8)|| = 0p(1) and (b) Identification uniqueness: for € > 0, inf5:d(5750)25’|1/_)*(5)| >0=
9% (0)-

The proof of Theorem implies that 2(3, \) is bounded away from 0 with prob-

ability one for large enough n. Thus, the ACQS estimator &, = arg{¢(5) = 0} is
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equivalently defined as,

- Y (6) M (p)BS,(6)Yn(6) =0, j=1,...,p
0n = arg ~ )
Yo (0)Man(p)GR,, (p)Yn(6) =0, k=1,....q

suggesting that we can work purely with the numerators of 1;;;(5) in order to establish
consistency of 8. Let Rjn(8) = Tjn(8) —S;jn(8) where Tj, () = Y, (6) M (p) Bjn(8)Yr(6)
and Sj,(8) = Y, () My (p)diag(M,,(p))~tdiag[M,,(p) Bjn(8)]Yn(8) for j =1,...,p.

Condition (a): By a Taylor expansion around dy we have,

Tjn(8) = Y(00)MuBjnYn(00) + (6 — 0)' G5 Tjn(8) + 0p(1)

= G%MnB]n[Xn(pO)ﬁO + en] + (6 - 50)/%Tjn(6)‘6:60+0p(1)7 (G_l)

xTjn(0 Tijr (6
where 2Tj,(8) = | 0) ) _ ' (%) |
T (0) )
Tjjrn(8) = =Y, (8) B, (0) M (p) Bjn(6)Yn(0) and

Tjkn(0) = —Yi(0)Mn(p)Grn(p)Bjn(8)Yn(8) — Y ()Gl () Ma(p) Bjn(6)Ya(8) for
4,7 =1,....,pand k=1,...,q. Then,

E[T,,,(8)] = ogtr(H, M, Bj,) + (6 — 50)'E(%Tjn(5)), where

E[Tjj0n(0)] = —ogte(HnBjy, MuBjn) — 1, Muijn,

E[Tj1,n(0)) = ~0gtr(HnMuGin(p) Bjn) = 0tx(Hu Gl (p) M Bjn) = 1, Matljn,

Nin = BnFjn X, B0 and ngy, = GrnBnXnPo.

By Lemma A.3 and Assumptions 6.3-6.6, we have [T}, (6) — E(Tjn(6))] = 0,(1).
Now, as M,, in S}, is a projection matrix, by Lemma A.2 and similar arguments as for
T30(8) lead t0 L[S;1(6) — E(Sju(6))] = 0p(1). Thus, 1{R;n(6) — E[Ryu(6)]} = 0,(1). We
can reach a similar conclusion by following the same line of arguments for the second
set of equations of the system of estimating equations.

Condition (b): Once again we prove the condition for the component of the ad-

justed score with respect to A noting that the proof for the component with respect to
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p follows in a similar manner. First, by design, we have E[R},(dp)] = 0 and

E[Rjn(0)] = BXpA, " AL(N)BL(p)Mn(p)Bo(8)Br(p) An(N) A, X, B0

+odtr(H, B, AT AL (N B (0) M (0) B2 (8) Bu(p) An (N Ay ' B ).

By Assumption 6.6* and Lemma A.2, E[R;,(\)] # 0, for any A # Ag. Hence, the
conditions of Theorem 5.9 of van der Vaart (1998) hold, and thus the consistency of A,,.

To prove asymptotic normality, we have, by the mean value theorem,

0 = vy (8n) = V/ndhyy(80) + 3507 (8n) /(b5 — b0), (G-2)

where §, lies in the segment formed by 4, and &y. It suffices to show that (7) %1/;;‘;(5,1) -
a5 Un(d0) = 0p(1), (i) 5597 (%) — B(z55(d0)) = 0p(1), and (i) B(g597(%)) # 0

for large enough n. Let,

- b (8) (6
85,7/111( ) _ w}] ,n( ) ~]k,n( ) ’ (G—g)
¢Zj,n(5) wltk’,n((s)

where j,7' =1,...,pand k, k' =1,...,q. Then,
V@) Mnu(p)BS,  (0)Yu(8)  Yi()Mu(p)BS,(8)B,1,,(5)Yn(8) Yi(8)Bl, (5)Mu(p) B, (8)Yn(6)

Vi) = TG T IOMa@ ) O
o Yl Ma () By (6)75 ()Y, 6) M (0) B3, 5V (0
70 Ma o)V O] ’
YA M) B 0 (0)V(8)  Ya(O)Ma(0) B0 (0)Gin ()Y (0)  Y(5)Cir ()Mo () B, (0)Yn(9)

- B (
jk,n(é) o Y (@OMn(p)Yn(8) Y6 )Mn(P)Yn( ) N Y71 (6)Mn(p)Yn(0)

Y (8)Mn(p)Gin(p) B3, (0)Yn(8) Y7 (5)M

i P)Gn (p)B5,, (6)Yn (9)
Y72 (8)Man(p)Yn(9)

(

Y2 () Mn(p)Y, (6)

)M (p)Grn (8)Yn(6)-Y;: (8) Mn(p) BS,, (8)Yn(9)

[Y'(é)M (p)Yn(8)]? ’ ) )

1;* (6) = _ Ya(0)BS, () Mn ()G, (P)Yn(8)  Yi(O)Mn(p)GS, (p)Bjn(8)Yn ()
kjn\®) = V7)Mo ()Y (3) Y7 (8) M (p) Y (0)

peC

Yo (DM (0) B3 0V (0) VD) Ma(p)GE, (Y20
+2 [V 0)Ma(p) Y O)F and
e (5) = Yo (O)Mn(p)GYrr  (O)Yn(0) Y/ (8)Mn(p)GS, (6)G s (0)Yn(8)  YA(8)G,, (0)Mn(p)Gy,, (8)Yn ()
Vi n0) = =oM% OMaa ) T VIO Malp)Va(0)
4 HOM (0Cu )T, 000 _ ViMoo, (G5, (050
VIO Ma ()Y (3) VL) M (p) V(9]
Y DMA) Gy (YO VLO M DCELOVaE)

[V (6) M (p) Ya (6))?

B;j 'n,((s) = aéz\/BO (6)
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= Bu(p) Fjn(N) Ejrn(N) By (p) —diag[ M (p)] ~ diag[ M (p) Bn(p) Ejn(N) Fyra(N) B, (p)],
B3 1(0) = 12 B2,,(0) = Bju(6)Gin(p) — Gin(p) Bjn(0)

+diagl M, ! () M (p) M, (p)]diag[ My (p) Bjn (8)] —diag[ M, (p)] " diag[Mpn (p) Bjn (0)]

—diag[Mo(p)] ' diag[Mu(p) Bjn () Grn(p)]+diag[ M, (p)] " diag[ M (p) Grn(p) Bjn(9)],
G n(P) = 825G (P) = Crn(p)Crrn(p) + G () Mirn ()

+diag[ M, ! () Murn () My ()] diag[ M (p) G (p)] —diag[ Mo (p)] = diag[Marn () Gin (p)]

—diag[My(p)] " diag[M, () Gn () Girn(p)] —diag[ M (p)] ' diag[ My (p) Gin () M (p)]
and Mpn(p) = M (9)Grn(p)Pr(p) + Pu(p) Gl (p) Ma(p).-

Condition (i): First note that the common term in the denominator of the com-
ponents in ;%1% (d,) can be written as Y;.(6) My (p)Yn(8) = n62(6,), where 62(3,) =
62(80) + 0p(1). By Assumptions 6.4 and 6.5 and continuous mapping theorem, we have,

BS,(8,) = BS,(80) + 0p(1), BS(8ju) = B2, (80) + 0p(1), G,.(8n) = G, (J0) + 0p(1) and

Gzn(én) = ézn(do) + 0,(1). Then, using a Taylor expansion, terms of the sort T,(0) =
%Y,{(g)B;,n(S)Mn(ﬁ)B;’n(S)Yn(g) can be written as, T1,(80) + (6 — 80)’ %115 (60), where
together with the continuous mapping theorem, Lemma A.2 and Assumptions 6.3-6.6
and some tedious algebra, we have T1,,(8) = Ti,,(00) + 0p(1).

Condition (i7): The result follows from a direct application of Lemmas A.2 and
A.3 using Assumptions 6.3-6.6. See proof of Theorem for further details.

Condition (7ii): By Assumptions 6.3-6.6 and Lemmas A.2 and A.3, it is easy to
see that ®,, is non-singular for large enough n, and thus E(%@Z;(do)) is non-singular
for large enough n.

Proof of Theorem Recall 3, = (X! B! B,X,)"'X! B! B,A,Y,. Then by a

Taylor expansion, we have,

\/E(Bn_ﬁw = (%XéBéBan)ilﬁX’r/lB;lﬁn_ %Bn 5 \/ﬁ(gn_d())—i_op(%)v (G'4)

=50

A QnMjn + Op(l)a
where %,Bn A
=do

0nG5, Bn(In — X, QnBr) Xn B0 + 0p(1),
for Qn = (X;B;Ban)_lX;LB;LJ njn = BnF]anﬁ(), and Gzn = G;gn + Gkn By AS—
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sumptions 6.3-6.5, the asymptotic order of the second component of %Bn s is 0p(1).
This shows that each component of v/n(8, — ) is a linear-quadratic form in €,. Thus,
Cramer-Wold device and the CLT for linear-quadratic form of Kelejian and Prucha

(2001) lead to the asymptotic normality of v/n(B, — Bo). The asymptotic mean of
V1(Bn — Bo) is zero and the first-order variance of it can be found using (G-4)):

2 (Bn) = QnVar(en)Q), + QnﬁjnTQ(gn)ng‘nQ;z - QUO_QQHCOV(GM Ry(€n)) @y n]nQ’

where A, = 1,7, (6 )njn—|—2f(ao 2Pmsn+anjn, UJZansn+ankn)<I>_l(77jn, 0,) +

nodHy, sn = E(e3) and R, (e,) is as defined in (6.18)).

The limiting distribution of v/n(62 — 03) can be found in a similar manner from

\/ﬁ(&% - 08) = \/ﬁ[%yé(gn)Mn(ﬁn)Yn(gn) - Ug]
= L(ee,—nod)
NN 0

+ 2\/ﬁ(gn - 50)/711385 (S JMa( n)Yn(Sn) 5—5o +0p(1)a

which has a limiting mean of zero and first-order variance that can be easily derived
but not needed in light of Footnote 4. Thus by the consistency of d,, from Theorem

we have the consistency of 52, in particular, it is \/n-consistent.

Proof of Theorem This follows immediately by the Central Limit Theorem
for quadratic forms by Kelejian and Prucha (2001) and the poof of Theorem 1 of Baltagi
and Yang (2013b). The details of the proof are similar to the proof of Theorem [6.8 given
below but extended to include higher order spatial dependence.

The consistency of 72(5,,) follows that of 72(),) and the consistency of ,,.

G.2 Proofs of Results for Fixed Effects SPD Model

Proof of Theorem |[6.5 The concentrated expected quasi log-likelihood function is,

75,(8) = maxg 2 E[Lx(6)] = —% In(2r + 1) + In [Auy (3)] + In[Aaw (p)] — & In(a%(5)),
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where the 53,(6) = & (Xn80) AT ALy (V) Al (9)Mn (0) Az () Aty N ATE X fio +
%t [HyAg L ATy A7y (A Ay (p)Asn (p) A v (V)AL AL To apply Theorem 5.9 of
van der Vaart (1998) for consistency, we need (a) the identification uniqueness condition:
inf5.q(5,50)>e ()] > 0 = |1€5(80)|| for any € > 0 and a distance measure d(6, &),
and (b) the uniform convergence: sup +|[¢4 (6) — £5,(8)|| 2 0 uniformly in § € A.

Condition (a): Using the fact that 53,(dp) = o3, we have,

lm — [0n(8) — In(60)]

N—o0

= Jim [~ [(log |A1n(A)] — log [A1n]) + (log |A2n (A)] — log [Aan])]

1 _9 9
+opy (log o™ In| —log |og " |In)

# 0 for 0 # 60y, by Assumption 6.12.

Next, note py(d) = exp[fn(dp)] is the quasi joint pdf of V, which is N'(0,021y).
Let p%(8o) be the true joint pdf of Vy ~ (0,0?Hy) and E? denote the expectation
w.r.t. pn(dp), to differentiate from the usual notation E that corresponds to p%(do)-

Now consider VN (¢) = Aan(p)[AIn(A) YN — Xn8] = BN(0)V Ny + by (), where
By (8) = Aan(p)Ain(M)ANALy and by () = Aan(p)[Ain(N)AZX NS0 — Xnf]-
Then, for £y (6) given in (6.23), we have

Elln(0))] = —5In(2r0?)+In|An|+In|Asy|— 5,
Elln(60)] = —FIn(2r0?) +1In|Ain|+1In|Aoy| — &, as tr(Hy) =1
Ben(®) = ¥ In(2r0?) +In|Aix ()] +In[Aan (o)

— 52z [03tr(By (6)Bn (6)) + by ()b ()],
Elln(®)] = —Yn(2ro?) +n|Ain(N)| +In]Azn(p)|

— sk [o3tr(HN By ()Bn(8)) + by (Obn(C)],

where we have used the identities, Bn(dp) = In and by ({p) = 0. Then, E[¢{n(0)] —

E?[¢n(0)] = o(1), where the last equality holds by assumptions Cov(grn,hn) = o(1)

PN (9) ) >

and Cov(grn, hn) = o(1) for r = 1,2. By Jensen’s inequality, 0 = logEq(pN(eo)
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E4[log ( pN(Sgeo)) )], and combining with the above results, we have E|log ( pN(%e)) )] <0or

Ellog pn (8)] < E[log pn ()], for large enough N. Thus, {5 (8) = maxg 2 E[log pn(6)] <
maxg 2 E[log pn (60)] = n(d0), for 6 # 6y, and N large enough.

Condition (b): Note, % [¢5,(8)—%/(8)] = —3[log(6%(6))—log(5%(0))]. By the mean
value theorem, log(63(5))—log(a%(8)) = (}_JQV((;)[ 63:(0)—a%(5)], where 6%, (8) lies between

5]2\[((5) and 5]2\/(6) By AQN(p)AlN()\)YN = AQN( )AIN( )AINAQN(AQNXNB—FVN),
62(5) = 62.(5) + 2T1n (8) + Ton (5) — Tyn (), where (G-5)

Tin(0) = £ VALY ALY AL (VAL (0) My (p) Aay () Ay (VAN X N Ao,

Ton(8) = % Vi Asy ATy ALy (V)AL ()M (p) Agn (p)Arn (N AN AR Vi and

Ty (6) = StrlHNAZY ALY ALy () Aby () A () Ay (VATL AL

Using Ain(A) = Ain + (Ao — AN Wi and Aan(p) = Aan + (po — p)Wan, we have,
Aoy () AN (M)A VAN = In+ (po — p)Gan + (Ao — A)Gin + (Ao — M) (po — p)Gan Gin.
Combined with Assumptions 6.9-6.12, we have, Ty (0) = 0p(1) uniformly. Further, by
Assumption 6.14, Tyn (8) = £V Ay ATY ALy (VAL (0)Aan (p)Ain (V)AL AL Vit
op(1). Now, Lemmas A.1 - A.3 imply, - Var(Thn(6)) = o(1). Then, together with
Chebyshev inequality, Ton (0) — T35 (d) = 0,(1), uniformly for § € A.

It left to show that, 0% () (defined in Assumption 6.12 and the main part of
53;(0)) is uniformly bounded away from zero. Suppose % (8) is not uniformly bounded
away from zero. Then 3{d,} C A such that 0% (§) — 0. Consider the model with
Bo = 0, which has the quasi log-likelihood, ¢4 (0) = —% log(2mc?) + log |A1n(N)] +
log |Aan(p)| — #Y}v(é)YN(é) and £%(8) = max,2 E[¢3(0)]. By Jensen’s inequal-
ity, we have 3 (8) < max,2 E[l%(60)] = 4(d0). Then together with Lemma A.2, we
have +[04(8) — 05(d0)] < 0, and —& log(0%,(0)) < —F log(0d) + (log |A1n(Ao)| —
log | A1v(N)]) + 2 (log | Ao (0)] — log [Aax()]) = O(1). That is, — ¥ log(o%(6)) is
bounded from above which is a contradiction. Since o%(8) is bounded away from zero
uniformly, we have that 5%() is also bounded away from zero since it is the sum of a

quadratic term and o%;(6). Further by (G-5)), 62(0) is also bounded away from zero.
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Collecting these we have, supsea+|[05 (8) — €5 (8)]] = op(1), completing the proof.

Proof of Theorem Let E(4%(5)) = ¢*(5). By Theorem 5.9 of van der
Vaart (1998), the proof of consistency of éx requires (a) Convergence: supsea ||tk (6) —
Y*(8)|| = 0p(1) and (b) Identification uniqueness: for € > 0, infs.q(550)>el[V*(8)]| > 0 =
[/*(60)||. The proof of Theorem implies that 63,(5) is bounded away from 0 with
probability one for large enough N. Thus, the ACQS estimator dy = arg{zﬂ}‘v(é) =0} is
equivalently defined as oy = arg{ Y (6)Mn(p)G2y(8)Y N () = 0, 7 = 1,2}, suggesting
that we can work purely with the numerator of LZNJ}‘V((S) to establish consistency. For

r = 1,2, write the numerators of the components of the adjusted score as,

Rn(d) = YnN(O)Mn(p)Grn(6)Y N ()
—Y'y(6)My (p)diag[My (p)] ' diag[My (p) G5 (8)] Y 5 ()

= T,»N(é)—sr ((5)

Condition (a): Using the relations Yy (8) = AQN(p)AlN(A)Al_]%fAQ_]\II(AQNXNﬁ+
V), Bin(8) = Aon(p)Ain(NATNALy = In + (po — p)Gan + (o = MGin + (Ao —
A (po—p)GanGin, Ban(p) = In + (po — p)Gan and the fact that the projection matrix

My (p) is uniformly bounded, we have,

Tin(d) = Yn(OMn(p)Gin(6)Yn(9)
= (AanvXnfBo+ V) By (O)MyBoy (p)GinGin (AanXnfo + Vi) + 0p(1)
Ton(8) = YnN(O)Mn(p)Gan ()Y n(9)

= (AQNXNB + VN),E;N((s)MNGQNMNBlN((S)(AQNXNB + VN) + 0p<1).

Then by Lemma A.3 and Assumptions 6.11 and 6.12, % [Z,.n(6) —E(Tn(6))] = 0,(1) for
r =1,2. Now, as My(p) in Syn(9) is a projection matrix, by Lemma A.2 and similar
arguments as for T,n () lead to %[Syn(8) — E(S,n(6))] = op(1). Thus, +[R-n(5) —
E[Rnv ()] = op(1).

Condition (b): First, we have E[R,n(d0)] = 0. By Assumption 6.12* and Lemma
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A2, E[R,n(6)] # 0, for any 6 # dp. It follows that the conditions of Theorem 5.9 of van
der Vaart (1998) hold, and thus the consistency of dx follows.

To prove asymptotic normality, we have, by the mean value theorem,
0 = VNIK(On) = VNUR(G0) + 45903 (On) VN (On — bo), (G-6)

where 0y lies between &y and dy. It suffices to show that (i) %1&7\,(&\/) - %@Z)}‘V((SO) =

op(1), (i) %1&7\,(50) —E(%?L}kv((so)) = 0p(1), and (i) E(%@}"V(&))) is non-singular for

large enough N. Let,

§) b, (8
@%\/( ) wn N( ) 1/512,N( ) . where (G—?)
31 N (8) U3y n ()

Ui (8) = 525 Yy (6) My ()3 y(6) = Biv(9)Gin(6) — G (8)Bin (0)
+245 ()M (p)Gin (6)] Y v (8)

Uian(0) = 525 Y (O)IMn ()G v (6) + M (p)Gan (p) G5y (8) — B1w(8)Gan(p)
—My (p)Gan (p)GS n(6) — Ghy (p)Bin(6) + 207y (5)Mn (p)Gan (8)] Y n(6)

15 YN (0)[20% 5 ()M (p) Gin (8) — G (6)Ban ()

<
N %
-
=
—
(=%
SN—
— o~

b3y n(6) = Azl((;)Y§v(5) [MN(p)é§2,N(5) + My (p)Gan(p) Gy (6) — Ban(8)Gan(p)
—My (p)Gan (p)G3n(0) — Ghy(p)Ban(8) + 205 5 (5)Mny(p)Gan (5)] Y n(8) where

G$y v (0) = Gy (8) = G2y (6) — diag[My (p)] " diag[My (p)G3y (8)],

' (8)Gan(p) = Gan(p)Gin (9)

(P)GQN(P)GlN(5) —Mn (p)G1n(6)Gan(p)—Mny(p)G1n(0)]
+diag[MN(P)]*2diag[ Iy (p)]diag|

G35, (6) = £G3x(8) = Gan(p)Gan(
—diag[My (p)]~'diag[Mn (p G2N(p)G2N(p)+MN(p)G2N(p)MN(p)+MN(p)G2N(p)]
+diag[My (p)] ~2diag[My [Mn (p)Gan(p)] and

My (p) = My (p)Gan (p)Pn(p) + Pn(p) Gy (p) M (p).
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Condition (i): First note that the common term in the denominator of the compo-
nents in %@j‘v(&v) can be written as Y/ (§)Mpy (p) Y n (0) = N63,(0n), where 63, (0y) =
63:(00) + 0p(1). By Assumptions 6.10 and 6.11 and continuous mapping theorem,
Gy (On) = G2y (80) + 0p(1) and Gy (6x) = G2y (80) + 0p(1) for r = 1,2. Then, using
a Taylor expansion, terms of the sort Tyn(6) = %Y1 (6)Ghy(0)Mn(p)Gin(6)Y N ()
can be written as, Tin(dg) + (0 — 50)’%T1N(50), where together with the continuous
mapping theorem, Lemma A.2 and Assumptions 6.9-6.12 and some tedious algebra, we
have T1n(8) = Tin(do) + 0p(1). These results give, 494 (dn) — L% (60) = 0p(1).

Condition (ii): The result follows from a direct application of Lemmas A.2 and
A.3 using Assumptions 6.9-6.12. See proof of Theorem [5.2] for further details.

Condition (iii): By Assumptions 6.9-6.12 Lemmas A.2 and A.3, ® is non-singular
for large enough N, and thus E(%@}*\,(éo)) is non-singular for large enough N.

Proof of Theorem By a Taylor expansion, we have,

VN@By = Bo) = (3 XyAhyAanXy) ' XN ALV (G-8)
~ Bhx| VR — b0+ 0,(L),

9 4 RanN + Op(1)7
where 558N 5o =

RNGSyAanv(In — XNRyAoN)X NPy + 0p(1),
for Ry = (X ALy Aoy X)XV ALy, mn = AanGinvX v Bo, and G = Ghy+Gan.
By Assumptions 6.9-6.11, the asymptotic order of the second component of % ﬁ N .
is 0,(1). This shows that each component of v/N(By — o) is a linear-quadratic form
in Vy. Thus, Cramér-Wold device and the CLT for linear quadratic forms given in

Lemma A.3 lead to the asymptotic normality of v N (B N — Bo). The asymptotic mean
of VN(Bx — fBo) is zero and the first-order variance of it can be found using (G-8):

S(By) = RyVar(Vy)Rjy + RymnS(0n)nyRy
—205 "Ry Cov(Vy, Qn (V) 57, Ry
= RNANRIN, where
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Ay = 2\/N(%B?NSN+HN01N7 UingNSN‘FHNCZN)q)_l(UlN, ON )+ NEN 11 (ON)7, y+
NogHy, sy = E(V3) and Qn (V) is as defined in (6.33).

The limiting distribution of /N (5% — 02) can be found in a similar manner from

VNG —0d) = VN[xYn(On)Mn(pn)YN(bN) — o]
= x(eyen — Nog)

+ 2V (@ — 80)' 45 Yy (Bw) M (o) Y v (0) |+ 0,(1),

which has a limiting mean of zero and first-order variance that can be easily derived but
not needed. Thus by the consistency of én from Theorem we have the consistency

of &12\,, in particular, it is v/ IN-consistent.

Proof of Theorem To prove the consistency of Xy (dx) as an estimator of
Yn(0n), we need to prove (a) dy — ®x = 0,(1), and (b) En (Vi) — En (k) = 0p(1).

For, (a) note E(VyVy) = 0?Hy. By Theorem [6.6, Hy = Ldiag(V?,...,V}) =
Hy + 0,(1). Then following the proof of Theorem (the asymptotic normality part)
we have @y = ®x + 0,(1). To prove (b), as 5%, = 0§ + 0,(1) by Theorem it suffices

to show that, by the consistency of 8y and referring to (6.36)),
N * *
% Zg:l (Vg 2T9T; - Var(V;] Tg)) = (AT,S)T,S=1,2 = Op(l)a

where Ty = (Civyg + bingVy + cing, Canyg + banggVy + cang)'. To do so we use
Theorem 19.7 in Davidson (1994) and the weak law for large numbers (WLLN) for
martingale difference sequences. First note that when the errors are independent and
normal, {V;Y,}s=1 .~ form a martingale difference sequence since (i) E[V;"Yy| < oo
and (i) E(VYg|Fg-1) = 0, a.s. where Fy_ is the increasing o-field generated by the
transformed errors {V*,..., V;* ;}. For the second condition note, b,n,gE(V;?|Fy—1) =
0 since by gy = 0 by design and E(V, (N 4[Fg—1) = 0 since (;n 4 is a triangular array
measurable up to F,_1.

Forr,s =1,2let, A, s = + Zf]\;l brN.ggbsN gg [Vg*4 —E(Vg*4)] + % Z;V:l(bTN,ggcsN,g +

bsN,ggCrN.g) [‘/;1*3 - E(Vg*3)] + % 25:1 CrN,gCsN,g [Vg*2 - E(Vg*z)] + % 25:1 [CTN,ngN,ng*z -
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drsn gE(V;2)]+ %Zf,vzl(brN,gngN,g+bsN,ggCrN,g)Vg*3+% Zévzl(CrN,ngN,ngCsN,gCrN,g)Vg*2
=58 Ty, where, drsnj = 4301 bon gebsn gk B(V).

For Ty, under Assumption 6.8 and the fact that the original disturbances are in-
dependently and Normally distributed, we have, {Vg*4 - E(Vg*4)} are independent with
mean zero and it is also a martingale difference sequence. Further, max,—1 . n E|Vg’"4 —
E(Vg*4)]1+’7 < oo for n > 0. Thus, {Vg*4 - E(Vg*4)} is a uniformly integrable se-
quence. Under Assumptions 6.9-6.11, we have, lim supy_, % Zévzl brN,ggbsN,gg < 0O
and limsupy_, N2 Zg B2y ggng gg — 0. Then using the WLLN for martingale dif-
ference arrays, Ty L.0. By similar arguments 75y 250 and Tsn L.

For Ty, write Tyy = Ty + T2y where Ty, = % Zf]\[:l CTN,QC3N79[VQ*2 —E(Vg*Q)] and
Thy = & S0 B(V;D) (G glsn,g — drsiv,g). For Ty, note that & 37001 Gy, gCang[Vy2 —
E(V;?)] is Fg-measurable and E[(V;? — E(V,;?))|Fy_1] = 0. Hence, (rngCong[Vy? —
E(Vg*Q)] is a martingale difference array, thus using the WLLN for martingale difference

arrays we have, Tyn 2, 0. For TfN, note that, (;ngy = 22%: byn,gkVy, hence,

E(ng,ngN,g) =4 Zi;i brN,gkbsN,ng(Vk*Q) = drsN,g and

TAfN = NZN E(V*2)[<TN,ngN,g*drsN,g]
SN BV S0 bevgrbsn i [Vi2 — B(V2)]
NZN E(V*2)Zg 1brN,ngk z ) bsN,gle

N z ¢rsN,g[Vk*2 - ( )] N Zg 1 ‘PrsNgV*

For the last equality we use the re-arrangement, ¢,sn 4 = % fo:gH brN,kgbsngE(Vk*z),
-1 N .

PrsN,g = Ez:l grsN,ngk* and grsN,gk: = 8Zl:g+1 brN,lgbsN,lkE(V;*2)~ Thus T4bN is the

sum of two martingale difference arrays and the WLLN applies so that Tyy 25 0.

Similar arguments can be given to show T5x 250 and Tyy 2 0.

Proof of Theorem To prove the consistency of Xy (dx) as an estimator of
Y n(0n), we need to prove (a) dy — ®x = 0,(1), and (b) En (Vi) — En (k) = 0p(1).

First, (a) follows an argument similar to that of the proof of Theorem For

264



(b), as % = 08 + 0p(1) by Theorem it suffices to show that, by the consistency
of Ay and referring to (6.36), + Zg];V:l (VF2Yy Y, — Var(V;Yy)) = 0,(1), where Ty =
(Cing +binggVy + cing, Gang + banggVy + canyg)’ = (Tg1,Tg2)'. To do so consider

the score function,

VyBinVy + ¢y Vi N
Qn(Vy) = = Z VT
VyBan Vi + ey Vi =1

Define index, {¢g} = {1,...,N}, {h} ={1,....N} <= {(i,t)} ={i=1,...,n, for each
t=1,...,T}. Hence, V;* = v}, for some 7 and t. As T is fixed, without loss of generality
let T'= 3. Then we have, (i) v}, are independent across i, V¢; (v}, v};) uncorrelated Vt;
(ii) diag(B,n) = Onxn for r = 1,2 by construction.

) Byn11 Brnj2 Vi
Write B,y = forr=1,2, V3 = . Then,

B,n21 Brn22 iy

/ . Cn1 (B a1+ Bina)Vin
(v = (Bin+BLN) VG = " = " e

Cn2 (Binaa + Bln o) Vi + (Biygs + Blngo) Vi

We have, E(VyYy) =0, g = 1,...,N. Thus, Var[Qn(Vn)] = Y02, B(V;2T,T,) +
22;\[:2 S E(VyTgViiY),). We need to show,

N g1 N g1 VAT A ViEThe VEY 1V,
Z E(V, T VY L) = ZE g olTh T Ty Tl Th T2 = o(n) or o(N).
g=2 h=1 g=2 h=1 ‘/g*TgQV’;kTh’l Vg*Tg’QV]:Th72

(G-9)

Using (i,t) index, (Note: t = 1,2), consider the (1,1) component of the covariance
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matrix given in (G-9)),

N g—1 n i—1 n n
YOS BV Y Vitan) = D) BT viiTina) + > Bwhp i - v T
=2 h=1 i=1 j=1 i=1 j=1
(t=1) (t=2)
n i—1
+D > BwhTizn - v Ti20)
i=1 j=1
(t=2)
= Q1 +Q2+Q3
To keep the notation simple for the moment the » = 1 index is suppressed. Note

{Ti} = Cu1 + cinsen = (Cin, c2n) = {Yi1} is Fp,i—1— measurable.
Let {Yio} = { Y%} + {12} where {T¢} = (le\tf/ 1271 B§V,21)Vn*1 +Con = b/21,iv7:<1 +con
and {Y%,} = (3%22 + va,Qz)V 9t Con = b22 Vo + Con.

From these we can see that ()1 = 0. Now,

i—1
Q3 - ZZ 1 Z E 12 12 UJ2T]2>
_ i—1 b a b b
- Zz 1 Z E z2 12 UJ2T]2 + v12T12 U]2T32 + vz2T12 vj2T]2 + vz2T12 U]QTJZ)
TfQ is Fji—1 — measurable and the last term vanishes
_ i—1 / * * (7 * * (7! *
= Zz 12 E( 12(b21,iVn1) 'Uj2(521,jvn1) +U12(521,1Vn1) ]2(b22]V ))
i—1 x (7 *
+ i > E ( 5 (b Vi) - 3o (byy nl))
_ n i—1 * ok * Lok * Lok 0% ok
= D Zj:l E (%’2521,11”1’1 : Uj2b21w“j1 + ”i2b21,zﬂj1 Uj2b21mvil)
i—1 * * * * * * * *
+ i Z 1 B (%252171‘%‘%1 ) Uj2b227jjvj2 + ”i25217ij“j1 ) szb227jivi2)
n i—1 * * * * * * * *
+ i Zj:l E (%‘2522,1‘1’”1‘2 ) Uj2b217jjvj1 + Ui2b227ijvj2 ) Uﬂb?l,jivz‘l)

= 0 since (4, ) are independent and (¢, s) are uncorrelated and baa j; = 0.

Now Q2 =371, 25;1 E(UfQTz‘?‘v;lle) i BujopYa Tio)+3000 ZZ g 1E(v)
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*
vlejl), where,

n i—1

Dimo 21 B Tz - v Tj1)
_ n i—1 * ra * . * b * .
= Dlicad.i1 (E(Uz‘QTz‘Q 07 L) + E(uiy Y5, - Ujlryl))
_ n i—1 * 7/ * * 7/ * * 7/ * * 7/ *
= Y Zj:l (E(”ﬂbm,ivm '”jlbn,jvnl) + E(vi2b22,ivn2 ) ”jlbll,jvn1)>
_ n i—1 * 7/ * * ok * 7/ * * gk
= >ia Zj:l E(Ui2b21,iivi1 : UjlbUJJUﬂ + Ui2b21,ijvj1 : Ujlbllmvil)

n i—1 * ! * * gk xp/ * * g%
+2 i Zj:l E(vi2b22,iivi2 ) ”j1bll,JJ”j1 + vi2b22,z‘jvj2 ) Ujlbll,ﬂUﬂ)

= 0 since (i, ) are independent and (¢, s) are uncorrelated and byy ;; = bag i = 0.
Finally for T;1 = Cﬂ +ec1; and Yo = Ci2 + ¢c24,

i E(iivh Y Yi2) = D70 E(vijvh(GinGie + e + Gizei))
= Y E(vivhlca(ch + &)+ (heri]) since by i = bagii =0
= Y E(wivibaraivihen) = Yoimy E (vjv5 o1 icri)

= O(1),

as off diagonal elements of By are O(%) by Assumptions 6.9-6.11. Similar workings on
other components of (G-9)), lead to 22\722 Z‘;’L;i E(V;]*Tth*T/h) = o(1).
This implies that Var[Qn(Vn)] = Z:;VZI E(Vg*QTgT;) +o(1).

Proof of Corollary The consistency of Xy (fy) follows that of Xy (Ay) and

the consistency of Oy .
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