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by

Hoang Tuan Anh

Abstract

This dissertation addresses the modeling of factors concerning microblogging

users’ content and behavior. We focus on two sets of factors. The first set

includes behavioral factors of users and content items driving content propaga-

tion in microblogging. The second set consists of latent topics and communities

of users as the users are engaged in content generation and behavior adoptions.

These two sets of factors are extremely important in many applications, e.g.,

network monitoring and recommender systems.

In the first part of this dissertation, we identify user virality, user sus-

ceptibility, and content virality as three behavioral factors that affect users’

behaviors in content propagation. User virality refers to the ability of a user

in getting her content propagated by many other users, while user suscepti-

bility refers to the tendency of a user to propagate other users’ content. Con-

tent virality refers to the tendency of a content item to attract propagation

by users. Instead of modeling these factors independently as done in previ-

ous research, we propose to jointly model all these factors considering their

inter-relationships. We develop static, temporal, and incremental models for

measuring the factors based on propagation data. We also develop a static

model for modeling the factors specific to topics.

In the second part of this dissertation, we develop topic models for learning

users’ topical interest and communities from both their content and behavior.

We first propose a model to derive community affiliations of users using topics

and sentiments expressed in their content as well as their behavior. We then

extend the model to learn both users’ personal interest and that of their com-



munities, distinguishing the two types of interests. Our model also learns the

bias of users toward their communities when generating content and adopting

behavior.
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Chapter 1

Introduction

1.1 Motivation

Microblogging sites such as Twitter1 and Weibo2 have become extremely popu-

lar due to the ease of posting short messages (called tweets) using both desktop

and mobile devices. By the end of 2014, Twitter and Weibo have more than

300 millions3 and 170 millions4 monthly active users respectively. Users on

microblogging sites interact with one another for various purposes, including

information sharing [123], product broadcasting [101], political campaigning

[69, 80, 262], and social mobilization [217, 211], etc..

Other than posting tweets, microblogging users may also adopt different

types of behaviors. Table 1.1 shows the most common types of user behaviors

in microblogging which also make microblogging unique compared with other

social media. The behaviors are:

• Relationship behavior: These are the behaviors of users with regards

to their relationships with other users. Examples of these behaviors are

users follow other users, or unfollow some other users, etc..

• Communication behavior: These are behaviors of users when they

1https://twitter.com/
2http://www.weibo.com/
3https://about.twitter.com/company
4https://www.techinasia.com/weibo-2014-176-million-monthly-active-users/
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Table 1.1: Common types of user behaviors in microblogging

Behavior type Examples

Relationship follow, unfollow other users
Communication mention, reply other users
Propagation retweet other users’ tweets, share URL links
Linguistic mention terms and hashtags

communicate with other users, including mentioning other users so as

to direct tweets to the mentioned users, or replying other users’ tweets,

etc..

• Propagation behavior: These are behaviors of users as they adopt

content items introduced to them by friends. Examples of this behavior

include re-sharing a URL link from other users, reusing a hashtag that

friend(s) have used before, and retweeting (forwarding) tweets posted by

friend(s), etc..

• Linguistic behavior: This refers to behaviors of users in the choice of

linguistic elements. For example, users may mention some terms in their

biographies, or insert hashtags in their tweets, etc..

Due to the richness in content and user behavior data as well as many

users sharing these data publicly, microblogging has also become a valuable

data source to study user behavior and preference. In this dissertation, we

focus on two research tasks. The first is to model the users’ content propagation

behavior, which is probably the most dominant behavior in microblogging. The

second is to model user communities which have different behavior interests.

We refer the first task asmodeling user behavior in content propagation,

and the second task as modeling community behavior respectively.

These two research tasks are extremely important in many applications.

For example, content propagation is a key mechanism that supports advertise-

ment and marketing [101], event detection [197, 217, 56, 55], rumors detection

[153, 99, 181], and information credibility evaluation [32], etc.. Community
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behaviors are useful in election result prediction [213], user profiling [168, 29],

and personalized recommendation [53, 77, 177], etc.. Both the tasks have been

studied in a number of research projects. In our literature survey, we however

found that the prior works suffer from two following major shortcomings.

Lack of latent factors in behavior modeling. Empirical works have

shown that there are three behavioral factors that drive content propagation

in microblogging [204, 33, 228, 188, 149, 18, 25, 259]. They are user viral-

ity, (b) user susceptibility, and (c) content virality. User virality refers to the

ability of a user in getting propagation for her content items, while user sus-

ceptibility refers to the tendency of a user to adopt a propagation behavior on

others’ content. Content virality refers to the infectiousness of a content item

in attracting propagation by users. Past studies have also shown that there

are inter-relationships among these factors [228, 105, 47, 10, 203, 83]. Exist-

ing methods for measuring these factors however do not consider their inter-

relationships (e.g., [74, 98, 33, 51, 10, 206, 25, 226, 166, 68, 39]), thus leading

to inaccurate modeling results. These factors evolve over time [33, 132, 137],

and are topic dependent [262, 258, 202, 188, 212, 204, 228, 105, 203, 83]. Nev-

ertheless, there are no existing models that consider these dynamic changes.

Lack of integrated community behavior modeling. Similarly, re-

cent analyses have shown that users’ personal interest and communities’

interest determine both user content and user behavior of multiple types

[99, 60, 203, 83, 228, 221, 172]. The previous research works on modeling

community behavior however only consider user behavior of a single type

[92, 179, 194, 248, 195]. They fail to consider community effect on content and

multiple types of behaviors in their models. Moreover, these works assume that

a users’ personal interest is determined solely by their communities’ interest.

Such a modeling approach is not practical in the microblogging context where

a user is likely to have multiple topical interests not always determined by her

communities.
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1.2 Research Objectives

In this dissertation, we aim to address the above major shortcomings. Our

goal in modeling user behavior in content propagation is to develop models for

measuring the three behavioral factors (i.e., user virality, user susceptibility,

and content virality). We want to consider inter-relationships of the factors

and their dynamics over time and topics. In modeling community behavior,

we would like to develop topic models for learning both users’ personal interest

and user communities’ interest from their content and adoption of behaviors

of multiple types.

1.2.1 Modeling User Behavior in Content Propagation

Since user virality, user susceptibility and content virality interact with one

another as content is propagated, they cannot be measured separately. We

therefore propose to simultaneously model them within a common framework.

This differentiates our work from existing works that analyze and model these

factors independently. The scenario is analogous to the computation of hubs

and authorities from a set of links between web pages [117], and users’ influence

and passivity in social networks [187], except that we now have to consider

three instead of two factors.

To deal with the temporal dynamics of the behavioral factors, we propose

to incorporate their inter-relationships with a time decay function to develop

temporal models for measuring the factors. Moreover, like many other publicly

available social media data, users’ adoptions and propagations of content items

are observable but not their exposure to the items. This poses some challenges

in determining the exact propagation path of these items when constructing

the models. We therefore design models that do not require knowledge about

user - item exposure, nor restrict the number of item adoptions/ propagations

by users. Our proposed models allow incremental computation of the factors

4



CHAPTER 1. INTRODUCTION

so as to cope with large data streams at microblogging sites.

Lastly, to address the dependency of the behavioral factors on topics of

content, we propose to jointly model the factors specific to topics. Based upon

existing methods for discovering topics of microblogging content, we develop

models for factorizing observed propagation data to topic virality, and topic-

specific user virality and topic-specific user susceptibility. Defined at the topic

level, these factors can be used to predict content propagation more effectively.

1.2.2 Modeling Community Behavior

We first address the joint modeling of user content and user behaviors of dif-

ferent types. To work with this multimodal data, we propose to represent both

the content and the behaviors as different “bags-of-words”. This representation

allows user content and user behaviors to be treated differently but modeled

in a unified way. We then develop a topic model that is able to simultaneously

derive users’ topical interests, communities, and the common behaviors of each

community.

Finally, we address the joint modeling of users’ personal interest and com-

munities’ interests. We propose to jointly model the two interests in the same

framework where both user content and behaviors are generated by a common

set of topics. We would also like to learn users’ bias toward her communities

in generating content or adopting behaviors. By doing so, we are then able to

distinguish the two interests.

1.3 Contributions

Our works in modeling user behavior in content propagation make the following

contributions:

• We propose a model, called Mutual Dependency model (md model), for

joint modeling behavioral factors underlying content propagation in mi-

5



CHAPTER 1. INTRODUCTION

croblogging: content virality, user virality, and user susceptibility. We

also propose an effective iterative algorithm for learning the model’s pa-

rameters from data. The model is novel in that it measures the factors

simultaneously, exploiting their inter-relationships.

• We adapt the abovemd model to deal with more practical settings where

user-content item exposure is not known, and the assumption of single

adoption/propagation per item for each user does not hold. We propose

new static and new temporal models (mdu and t −mdu models) for

measuring the behavioral factors. Our models incorporate an efficient

temporal weighting scheme, considering both the factors’ temporal dy-

namics and their inter-relationships. We also propose an incremental

model (inc) for efficiently computing the factors in large data streams.

• Lastly, we propose a tensor factorization framework, called V2S frame-

work, for attributing the content propagation behavior to topic virality

and topic-specific user virality and susceptibility. Based on the frame-

work, we develop two factorization methods: Numerical Factorization

Method and Probabilistic Factorization Method to simultaneously derive

topic virality vector, user-topic virality matrix, and user-topic suscepti-

bility matrix. With the learnt vector and matrices, we are able to ef-

fectively predict the propagation of future content. This framework and

its two factorization methods are novel as the previous state-of-the-art

content propagation prediction methods require more user activity data

(some even not observed) and are only applicable to the propagation of

the current content.

In modeling community behavior, our contributions are:

• We propose the Community Behavior and Sentiment (CBS) topic model,

a probabilistic graphical model, to derive the user communities in mi-

croblogging networks based on the sentiments they express on their gen-
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erated content and behaviors they adopt. As a topic model, CBS can

uncover hidden topics and derive user topic distribution. In addition,

our model associates topic-specific sentiments and behaviors with each

user community. Notably, CBS has a general framework incorporating

multiple types of behaviors simultaneously. This makes CBS novel com-

pared with the existing works on mining user behavior that only consider

a single type of behavior.

• Finally, to derive and differentiate between personal and community in-

terests, we propose the Generalized Behavior-Topic (GBT) model for

simultaneously modeling community topics and users’ topical interest in

microblogging data. GBT considers multiple topical communities with

different topical interests while learning the personal topics of each user

and her dependence on communities to generate both content and behav-

iors. This differentiates GBT from other previous works that consider

either one community only or user content data only. GBT also dis-

tinguishes itself from other earlier ones by modeling multiple types of

behaviors together.

1.4 Dissertation Structure

The remaining part of this dissertation is as follows. We first review related

works in Chapter 2. We then present our works on modeling user behavior

in content propagation in Part I. This part includes Chapters 3, 4, and 5.

Chapter 3 presents the md model for static modeling of content virality, user

virality, and user susceptibility. Chapter 4 presents our mdu and t-mdu

models for temporal and online modeling of these virality and susceptibility

factors. The V2S framework and its derived factorization models for model-

ing topic-specific virality and susceptibility factors are presented in Chapter 5.

Next, Part II describes our works on modeling community behavior. This part

7
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includes Chapters 6 and 7. Chapter 6 describes the CBS model for simulta-

neously deriving the community of each user, and the common behaviors and

common topic-specific sentiment of each community. In Chapter 7, we present

the GBT model for deriving and distinguishing personal and community in-

terests using both user content and user behavior. Finally, we conclude this

dissertation and discuss some directions for the future work in Chapter 8.

8



Chapter 2

Related Works

In this chapter, we survey previous literature that are closely related to this

dissertation and highlight the differences between our works and the existing

ones. We first review studies on user content and community analysis in social

networks. Next, we focus on reviewing prior works on mining microblogging

user behavior. These include (i) empirical studies on finding patterns of mi-

croblogging users in adopting behavior(s), and (ii) methods for identifying and

measuring factors underlying users’ behavior adoptions.

It is important to note that the study of user behavior and user preference

has a long history in social sciences, economics, epidemiology, and computer

science. For example, research in social sciences identifies several psychological

and social factors affecting how people behave in different social settings, e.g.,

[121, 142, 183, 184, 182]. Economists study the effects of social, cognitive,

and emotional factors on people’s economic decisions such as buying a new

product or selecting a service, e.g., [24, 186, 170, 43]. Similar research were

conducted in epidemiological studies for modeling disease and virus propa-

gation, e.g., [15, 8]. In computer science, user behavior was first studied by

human computer interaction researcher to enhance the user experience when

working with computers as well as other computing devices [72, 106]. These

works were however mostly conducted at small scale. Only in recent years,
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user behavior and user preference was are studied at large scale using data

mining approach.

2.1 User Content Analysis and Community

Analysis

2.1.1 User Content Analysis

The analysis of user content is often conducted using topic models. Deerwester

et al. [54] first proposed LSI model to discover topics of a document corpus by

performing spectral analysis on its document-term matrix. Hofmann [88] then

developed PLSA model, which is the probabilistic interpretation of LSI. Later,

Blei et al. [27] proposed LDA model, the bayesian version of PLSA which is

hugely popular. In LDA, each document is modeled as a bag-of-words with

a multinomial distribution over topics, and each topic has a multinomial dis-

tribution over words. Both the documents’ topic distributions and the topics’

word distributions are assumed to have Dirichlet priors.

Blei et al.’s work has triggered a number of works on LDA-like models for

mining user interest in social networks based on user content. For example,

Tang et al. [210] developed a model for discovering researchers’ interest from

their published papers. Krestel et al. [120] applied LDA to a tag recommender

system that suggests tags for documents to be tagged. Yano et al. [246]

developed a topic model for predicting bloggers’ comments.

In microblogging, Michelson et al. [154] empirically analyzed users’ topical

interest by examining named entities mentioned in their tweets. Hong et al.

[92] conducted an empirical study on different ways of performing topic mod-

eling on tweets using the original LDA model [27] and Author-Topic model

[190]. They found that the topics learnt from documents formed by aggre-

gating tweets by user could help in user profiling. Similarly, Mehrotra et al.
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investigated ways of forming documents from tweets in order to improve the

performance of LDA model [152]. They found that grouping tweets by hash-

tag could lead to an improvement in quality of the learnt topics. Ramage et

al. [179] further proposed to use Labeled LDA model [180] to model topics

of tweets where each tweet is labeled based on its linguistic elements (e.g.,

hashtags, emoticons, and question marks, etc.). Zhao et al. proposed Twit-

terLDA model, a variant of LDA designed specially for tweets, in which: (i)

documents are formed by aggregating tweets of the same users; (ii) a single

background topic is assumed; (iii) each tweet has only one topic shared by all

words of the tweet; and (iv), each word in a tweet is generated from either the

background topic or the tweet’s topic. Based on the same assumptions, Qiu et

al. [177] proposed to model topics of tweets using both the tweets’ content and

the types of their associated behavior types (i.e., either a tweet is a (original)

tweet or retweet, etc.)

There are other works extending topic models beyond content analysis in

Twitter. Nallapati et al. [158] proposed to jointly model Twitter users’ tweets

and their follow links. Lim et al. [131] and Tan et al. [209] incorporated

sentiment of tweets into LDA. Wang et al. [224] proposed to regularize LDA

by user network information. Vosecky et al. proposed to jointly model multiple

types of named entities embedded in tweets [218, 219]. Yan et al. [234] and

Cheng et al. [41] proposed to model the generation of co-occurrence of word

pairs instead of modeling the occurrence individual words. Lin et al. proposed

to exploit the sparsity in both topic distributions and topic-word distributions

[133] for modeling topics of tweets. Yang et al. proposed a classification

approach to assign tweets to pre-defined topics [242].

Our proposed models for modeling user content and behavior are also de-

signed based on LDA and TwitterLDA. Our research in this dissertation is

however different in several ways. Firstly, users’ topical interests determine

both their content and behaviors. Existing works however model topics of

11
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either user content or user behavior. Hence, user interests are modeled in a

less-than-optimal manner. We overcome this by considering both user content

and user behavior in a common framework, learning user interest from both

data sources. Secondly, these works do not consider user community in learn-

ing user interest. On the other hand, we propose to simultaneously model both

user communities and user interests.

2.1.2 Community Analysis

In social networks, communities are formed by users developing social ties with

other users, or users sharing common interest with others, or by both. This

results in two main types of communities, i.e., social and topical, and their

hybrid [174, 71]. A social community has more dense social links and interac-

tions among the community users, even when the topical interests of users in

each community may vary significantly. On the other hand, a topical commu-

nity may not have many social links and interactions among its members, but

these members share common topical interests. Ding et al. [57] conducted an

empirical study showing that social communities can be significantly different

from topical communities from the same network.

Most of the early works on community analysis focus on finding social com-

munities. Social communities are detected solely based on user links. Lately,

researchers have proposed to detect user communities using both social net-

work and user attributes, user content, and user interactions (including links

and exchanged messages), which result in topical and hybrid communities.

We summarize all these works in Table 2.1 in two dimensions. The first di-

mension is community type which is: either “social” or “topical and hybrid”.

The second dimension is the overlapping constraint among the communities.

Overlapping communities are ones that share common members.

Non-overlapping social community detection. Newman et al. pro-

posed to discover social communities by finding a network partition that max-
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Table 2.1: Related works on community analysis

Social Topical and Hybrid

N
on

-o
ve
rl
ap

p
in
g

Newman et al. [160] Zhou et al. [261]
Newman et al. [163] Akoglu et al. [4]
Newman et al. [161] Ruan et al. [193]
Clauset et al. [44]
White et al. [227]

Newman et al. [162]
Ruan et al. [192]
Andersen et al. [6]
Andersen et al. [7]

Kloumann et al. [118]
Raghavan et al. [178]
Ugan et al. [215]
Holland et al. [89]
Karrer et al. [110]

O
ve
rl
ap

p
in
g

Palla et al. [164] McCallum et al. [151]
Lee et. al [126] Zhou et al. [260]
Wang et. al [223] Ramnath et al. [19]

Psorakis et. al [175] Sachan et al. [194]
Yang et. al [237] Liu et al. [141]
Yang et. al [239] Yin et al. [248]
Airoldi et al. [3] Sachan et al. [195]
Gyenge et al. [76] Xu et al. [232]
Ahn et al. [2] Kim et al. [113]

Fortunato et al. [64] Yang et al. [238]

imizes a measure of “compactness” in community structure called modularity

[160, 163, 161, 44]. White et al. [227], Newman et al. [162], and Ruan et al.

[192]then proposed different graph spectral-based methods for the modularity

optimization. However, Fortunato et al.[65] showed that modularity fails to

detect social communities when the number of network links is relatively much

larger than the communities’ size. Based on the classification approach, An-

dersen et al. [6, 7] and Kloumann et al. [118] proposed random walk-based

methods for detecting social communities by expanding from the sets of com-

munity seed users. Similarly, Raghavan et al. [178] and Ugander et al. [215]

proposed label propagation methods for assigning community label for users.

Lastly, adopting the Bayesian probabilistic approach, Holland et al. [89] and

Karrer et al. [110] proposed block-based generative models which assume that
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each user belongs to a block (i.e., social community), and the links among

users are the result of the blocks’ interactions. The users’ communities are

then determined by fitting the models’ parameters using the observed links.

Overlapping social community detection. Palla et al. [164] showed

that overlaps among social communities can be significant. Shen et al. [200]

and Lee et. al [126] then proposed methods for detecting clique-like over-

lapping communities. Wang et al. [223], Psorakis et al. [175], and Yang et

al. [237, 239] investigated the application of matrix factorization methods for

general overlapping community detection. Based on the Bayesian probabilistic

approach, Airoldi et al. proposed a statistical mixed membership model [3] for

generating network links from user blocks’ interactions, wherein each user has

a multinomial distribution over the blocks. Gyenge et al. [76] later proposed

a LDA-like model which is more suitable for sparse networks. Lastly, Ahn et

al. [2] and Fortunato et al. [64] proposed to discover social communities by

performing clustering on network links instead of nodes.

In our works, we also use social network and user interaction for uncovering

both non-overlapping and overlapping communities. We however do not ex-

plicitly model the social links and pairwise interactions among users. Instead,

we model both the links and interactions as user behaviors, such as following

other users, or mentioning other users in tweets, etc..

Non-overlapping topical and hybrid community detection. Zhou

et al. [261] developed an unified random walk from users’ network and their

attributes to measure pairwise user similarity for user clustering by K-Medoids

algorithm. Similarly, Ruan et al. [193] used the user similarity measure com-

puted from their content and links. Akoglu et al. [4] proposed a heuristic

algorithm for rearranging and assigning users to non-overlapping communities

such that the cost for a lossless compression of the network and user attribute

matrices is minimized.

Overlapping topical and hybrid community detection. Bayesian
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learning researchers have developed LDA-like and mixed membership-based

methods for joint modeling user community and topics based on different data

sources. For example, McCallum et al. [151], Zhou et al. [260], Ramnath et

al. [19], and Sachan et al. [194] used messages exchanged among the users;

Liu et al. [141], Yin et al. [248], and Sachan et al. [195] used network and user

content; Xu et al. [232], Kimet al. [113] and Yang et al. [238] used network

and attributes. In these works, each user has a multinomial distributions over

the communities, and each of the communities has its own preferences in gen-

erating content, user attributes, or interactions with other communities. User

communities and their preferences are then learnt simultaneously by fitting the

models’ parameters using observed data.

Our works also focus on mining topical communities, but differentiating

between users’ personal and communities’ interests. In all the aforementioned

works, the topical interest of each community refers to the most common top-

ics shared by users within a social community, and hence may not uniquely

characterize the community (e.g., two communities may have some common

topical interest). Moreover, these works fail to differentiate users’ personal

interest from that of their communities. They assume that a user’s topical

interest is determined purely based on her communities’ interests. This as-

sumption is not practical in the microblogging context since microblogging

users cover a vast range of interest topics, which are not always determined by

their topical communities. Without distinguishing the two kind of interests,

the previous models would not be able to describe the users’ personal interest

very accurately. We address this shortcoming by jointly model user and com-

munity interests, as well as the bias of each user toward her communities in

generating content and adopting behavior.
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Table 2.2: Related works on microblogging user behavior analysis and mining
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Bernado et al. [96] Java et al. [103] Lerman et al.[129], Nagarajan et al. [157] Yang et al. [236]
Cha et al. [33] Honeycutt et al. [90] Suh et al. [204] Cunha et al. [49]

Romero et al. [189] Sousa et al. [201] Wu et al. [228], Romero et. a. [188] Zanzotto et al. [251]
Golder et al. [70] Conover et al. [47] Macskassy et al. [149] Zappavigna et al. [252]

Kwak et al. [123, 122] Cheng et al. [40] Conover et al. [47] Lehmann et al. [128]
Wu et al. [228] Bak et al. [16] Petrovi et al. [171] Yang et al. [241]
Feller et al. [60] Macskassy et al. [148] Hansen et al. [78] Kooti et al. [119]

Kivran-Swaine et al. [116] Kim et al. [114] Starbird et al. [202], Xu et al. [231] Lin et al. [135]
Kwak et. al [124] Comarela et al. [46] Stieglitz et al. [203] Dong et al. [59]
Xu et al. [230] Schantl et al. [198] Wang et al. [221] Cunha et al. [50]
Hutto et al. [97] Purohit et al. [176] Zhiming et al. [259]

Antoniades et al. [9] Bak et al. [17] Sun et al. [205], Hoang et al. [83]
Myers et al. [155] Garcia-Gavilanes et al. [67] Tan et al. [208]

M
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h

Hannon et al. [77] Ritter et al. [185] Weng et al. [225] Yang et al. [245] Zangerle et al. [250]
Kim et al. [115] Chen et al.[35] Liu et al. [140], Dabeer et al. [51] Tsur et al. [212]
Yin et al. [247] Chelmis et al. [34] Hong et al. [91], Peng et al. [167] Ma et al. [146]

Hopcroft et al. [95] Artzi et al. [12] Uysal et al. [216], Romero et al. [187] Khabiri et al. [112]
Lou et al. [143] Yan et al. [233], Diego et al. [196] Ding et al. [58]

Barbieri et al. [23] Chen et al. [36], Artzi et al. [12] Kywe et al. [125]
Achananuparp et al. [1] Kamath et al. [109]

Jenders et al. [104], Zhang et al. [254] Feng et al. [62]
Hong et al. [94], Feng et al. [61] Ma et al. [147]
Luo et al. [144], Pan et al. [165]
Can et al. [31], Yang et al. [244]
Bian et al. [26], Liu et al. [138]
Gao et al. [66], Zhang [256]

Zhang et al. [255], Lee et al. [127]
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2.2 Empirical Research on Microblogging

User Behavior

In this section, we review related empirical research on microblogging user

behavior that motivates our research. We summarize these works in the third

row of Table 2.2 which are grouped by behavior type. In each cell, we sort the

works in chronological order.

2.2.1 Relationship Behavior

Bernado et al. [96] examined the follow network among Twitter users and the

interaction among them. They found that the follow relationship is weak in

the sense that users have interactions with only a very small proportion of

their followers and followees. Similar findings were then replicated by Cha et

al. [33]. These works suggest that only few declared friends are actual friends.

Kwak et al. [123] studied the topological features of the Twitter follower

graph. They found that the distribution of followers is highly skewed while

the rate of reciprocated ties is much lower, and hence concluded that Twitter

is more an information sharing network than a social network. Wu et al. [228]

and Feller et al. [60] showed the existence of homophily in following behavior,

i.e., Twitter users are more likely to follow other like-minded users.

Romero et al. [189] examined the link formation process in Twitter. They

showed that the process behaves like the transitivity process in preferential

attachment networks. This was then confirmed by a human study by Golder

et al. [70], which shows that transitivity and mutuality are more important

than other network structural characteristics for users to form links.

Similarly, Hutto et al. [97] observed the formation of Twitter following links

to a number of active and highly followed users. They found that, in a long

run, a user’s content, her interactions with other users, and her ego network’s

structure have similar effect in getting new follow links. Later, Antoniades et
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al. [9] showed that there are retweet behaviors that lead to new follow link

formed. In contrast, Kwak et al. [122], Kivran-Swaine et al. [116], and Xu et al.

[230] studied the unfollow behaviors. They found that Twitter users frequently

unfollow other users, and the major factors for the unfollowing include the non-

reciprocity of the relationships and the followees’ non-informativeness.

Lastly, Myers et al. [155] examined the dynamics of Twitter follow network

as a function of the information propagation processes in the network. They

found that information diffusion may lead to bursts in both new follow and

unfollow behaviors.

2.2.2 Communication Behavior

Java et al. [103] first showed that Twitter is often used for personal communi-

cation. Honeycutt et al. [90] investigated how users used Twitter as a tool for

conversation and collaboration. Later, Sousa et al. [201] studied the motiva-

tion for users to communicate in Twitter. By examining conversations about

politics, sports, and religion topics, they found that: (1) in general, Twitter

users are socially motivated to communicate with each others; however, (2),

users with large ego networks are more topically motivated. Macskassy et

al. [148] found that Twitter users are not active in communicating with each

others, and most of the conversations involve only two users.

Conover et al. [47] compared the networks induced from communication

(i.e., mention) and propagation (i.e., retweet) behaviors among politics ori-

ented Twitter users. They found that while the retweet network is highly

polarized, the mention network is not. They further found that users who

use more neutral hashtags are more likely to engage in communication with

opposing political communities. Cheng et al. [40] showed that users having

similar ego network structures are more likely to have reciprocal communica-

tion. Recently, Garcia-Gavilanes et al. [67] showed that the inter-countries

mention network preserves economic, social, and cultural boundaries among
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the countries.

Schantl et al. [198] investigated the factors influencing Twitter users to re-

ply to a message. Their findings suggest that social factors, which describe the

strength of relations between users, are more influential than topical factors.

This indicates that Twitter users’ communication behavior is largely affected

by social relations than by topics.

Purohit et al. [176] examined the differences between conversational and

non-conversational tweets. They showed that there are domain-independent

linguistic features that can help to distinguish between the two kinds of tweets.

Kim et al. [114] examined emotional transitions, emotional influences

among the Twitter conversation partners. They found that conversational

partners are more likely either express the same emotion, or tends to respond

with a positive emotion. Comarela et al. [46] showed that Twitter users

are more likely to reply to other moderately active users who had some prior

communication with them and recently post some tweets. Lastly, Bak et al.

[17] showed statistical evidences that frequent conversation leads to high self-

disclosure in Twitter users, which in turn leads to longer conversations among

them.

2.2.3 Propagation Behavior

Existing empirical studies on propagation behavior of microblogging users con-

sist of (a) works on examining the information flow through propagation behav-

iors of users, and (b) works on identifying factors that affect the propagation

behaviors.

In the first sub-category, Lerman et al.[129] first examined the differences

between microblogging users’ propagation behaviors and those of other social

networks, and suggested that information can spread better in microblogging

networks. Wu et al. [228] then found that the information originating from

the media propagates in Twitter in a two-step process: (1) the information
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passes from media to a intermediate layer of “opinion leaders”, and then (2)

the information passes from the users in intermediate layer to their followers

who are less connected and exposed to the media.

In the second sub-category, researchers have examined effects of user, con-

tent, linguistic, and sentiment factors on tweets’ retweetability in Twitter.

Nagarajan et al. [157] first presented case studies suggesting that tweets’

retweetability depends on topics. Suh et al. [204] showed that the existence of

URLs and hashtags in a tweet have strong correlation with its retweetability,

while the number of past tweets of a user does not affect the user’s likelihood

of retweeting. Petrovi et al. [171] repeated these findings and also found

that authors’ authoritativeness has positive effects on a tweet’s retweetability.

Later, Zhiming et al. [259] also showed the positive effects of authority features

such as trustworthiness, expertise, and attractiveness.

Using a Wikipedia-based approach, Macskassy et al. [149] examined the

similarity between Twitter users’ retweets and their own (original) tweets.

They found a very low similarity between the two kinds of tweets though this

similarity plays a significant role in users’ retweeting behavior. Similarly, Xu

et al. [231] found that content factors are less important in making users to

retweet than user and interaction factors.

Romero et. a. [188] later found that Twitter users exhibit different be-

haviors when propagating hashtags of different types and topics. They char-

acterized the behavior differences between users by the probability that a user

adopts a hashtag after repeated exposure to the hashtag. In particular, they

found that the adoption of politically controversial hashtags is especially af-

fected by multiple repeated exposures. On the other hand, such repeated

exposures have a much less effect on the adoption of conversational hashtags.

Similarly, Hansen et al. [78] examined the effects of sentiment factors.

They showed that negative news and positive non-news tweets are more likely

be retweeted. Wang et al. [221] then examined both sentiment and linguistic
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factors. They found that simple and concise tweets are more likely to be

retweeted. Lastly, Tan et al. [208] conducted an author-controlled experiments

to investigate the effect of wording. They showed that one may get her tweets

retweeted better by adding more information, using language that is similar

to both the community norms and her prior messages, and mimicking news

headlines.

In the politics domain, Starbird et al. [202] first observed highly retweeted

users in a mass political event and showcased the differences in getting retweets

between users attending the event and those who report the event remotely.

Conover et. al [47] examined the retweet network among Twitter users (i.e.,

edges are drawn from a user to other users she retweets). They found that the

network is highly politically polarized, i.e., users tend to retweet more from

other users sharing the same political affiliation. Stieglitz et al. [203] examined

a set of political tweets and found that there is a positive correlation between

the number of sentiment words in a tweet and the tweet’s retweetability. Hoang

et al. [83] further investigated the effect of sentiment and community factors

across different topics.

The above works suggest that the propagation of content in microblogging

is jointly determined by user factors and content factors. Next, the factors

are topic specific and dynamic. We are therefore motivated to investigate the

inter-relationships among the factors to design static and temporal models for

better modeling of the propagation of content in microblogging.

2.2.4 Linguistic Behavior

Yang et al. [236] first studied the temporal patterns of Twitter crowd in adopt-

ing hashtags. They found 6 typical adoption patterns of the most adopted

hashtags. Cunha et al. [49] later found that the adoption of hashtags behaves

like a preferential attachment process: more frequently adopted hashtags will

more likely to be adopted. Kooti et al. [119] studied the evolution of conven-
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tional words for communication objective in Twitter. Lehmann et al. [128]

and Lin et al. [135] then conducted similar research for hashtags.

Zappavigna et al. [252] showed that instead of using hashtags to capture

topics in tweets, microblogging users use hashtags for many other purposes in-

cluding personalized bookmarking and named entity markup. Similarly, Yang

et al. [241] showed the evidences that hashtags have dual role: as content

bookmarking, and as community membership indicator.

Dong et al. [59] examined the differences in biography of United States (US)

and Singapore (SG) Twitter users. They found that US Twitter users were far

more likely to self-disclose than SG users. Lastly, Cunha et al. [50] examined

the gender differences of Twitter users in adopting hashtags. They found that,

when expressing attitude toward politicians, male users use more imperative

verbal forms in hashtags, while female users tend to use more declarative forms.

To summarize, the empirical studies showed that there are both individual

factors and community factors affecting the behavior adoptions of microblog-

ging users. The effects of the two factors are consistent across different types

of user behavior. However they are not separately observed. This motivates

us to also jointly model the two factor in a common framework that considers

multiple types of user behavior.

2.3 Modeling Research on Microblogging

User Behavior

We now review related works on modeling microblogging user behavior. Again,

we list them in the bottom row of Table 2.2.

2.3.1 Relationship Behavior

Most works on modeling relationship behavior in microblogging is formulated

as a recommendation problem. Hannon et al. [77] proposed a collaborative
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filtering based model for recommending users to follow in Twitter. Their model

recommends a user to follow other users who (1) have similar (past) tweets,

and (2) have similar followees and followers. Based on the same approach, Kim

et al. [115] later proposed a topic model for recommending followee for a given

user based on the user’s interest and her current followees’ interest. On the

other hand, Yin et al. [247] proposed a personalized followee recommendation

model that is purely based the on the target user’s ego network structure.

Using social theories of structural balance and homophily, Hopcroft et al. [95,

143] proposed a factor graph model for predicting reciprocal link and triadic

closure formation in Twitter. Recently, Barbieri et al. [23] proposed a topic

model that investigating both user susceptibility and authoritativeness for link

prediction.

2.3.2 Communication behavior

Ritter et al. [185] first proposed unsupervised model for detecting dialogue

structure in Twitter based on clustering of raw utterances. Chen et al.[35]

later proposed to exploit more thread length, topic, and social tie strength

for finding interesting conversations in Twitter. Similarly, Chelmis et al. [34]

proposed a classification-based method for predicting communication links in

Twitter. Lastly, Artzi et al. [12] created a set of features for predicting if a

given tweet will receive responses, including replies and retweets.

2.3.3 Propagation Behavior

Prior works on modeling propagation behavior in microblogging can be classi-

fied into two sub-categories: (1) works on finding influential and/or susceptible

users; and (2) works on predicting future propagation.

In the first sub-category, Weng et al. [225] first proposed a topical page-

rank based measure for finding influential users in Twitter. Liu et al. [140]

then proposed a generative graphical model which utilizes the heterogeneous

23



CHAPTER 2. RELATED WORKS

link information and the textual content associated with each node in the net-

work to mine pairwise influence among Twitter users at topic level. Romero

et al. [187] proposed an inverse reinforcement model for simultaneously find-

ing influential and passive users in Twitter based on the users’ propagating

behaviors. Similarly, Achananuparp et al. [1] proposed a mutual dependency

model for identifying originating and promoting users. Diego et al. [196] went

beyond finding influential users by proposing a page-rank based algorithm for

finding trendsetters who propagated content items to influential users. Lastly,

Yang et al. [244] proposed topic model for identifying users’ social roles in

adopting propagation behaviors.

The second sub-category includes works on: (a) retweet prediction - to if a

user retweets a tweet; and (b) viral tweet prediction - to predict if a tweet will

be highly retweeted.

Yang et al. [245] first proposed a factor graph model for retweet predic-

tion based on the given tweet’s retweet trace. Dabeer et al. [51] proposed a

framework to measure probability that a tweet is retweeted purely based on

the followers of the user posting the tweet. Peng et al. [167] proposed a condi-

tional random field model to predict retweet using content, network, temporal

features. Zhang et al. [254, 255] developed a temporal model for measuring

how a user influenced by other users in her ego-network, and made use of the

measure to predict if the user retweets a tweet before a given time.

Other researchers considered retweet prediction as a recommendation task.

Uysal et al. [216] first proposed a filtering model that both recommends tweets

for a target user to retweet, and recommend users who more likely to retweet

a given tweet. Yan et al. [233] random walk based for tweet recommendation.

Chen et al. [36] proposed a personalized collaborative ranking method that

investigates content and social features for recommending tweets for a user.

Hong et al. [94] and Feng et al. [61] developed factorization models for learn-

ing users’ preference in making retweets. Luo et al. [144] proposed a learning
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to rank based method for recommending users to a tweet. Pan et al. [165]

proposed to integrate the advantages of collaborative filtering and the charac-

teristics of propagation processes in personalized tweet recommendation. Liu

et al. [138] and Zhang [256] proposed both topic models for learning users’

temporal preference in retweeting. Lastly, Lee et al. [127] proposed models for

recommending out-ego-network users for a tweet.

Hong et al. [91], Jenders et al. [104], and Can et al. [31] created different

sets of features for viral tweet prediction. Bian et al. [26] later proposed a

multi-task transfer learning model for predicting both viral tweets and users

will likely to retweet the tweets. Recently, Gao et al. [66] developed a reinforced

Poisson process for predicting the number of retweets for a given tweet.

Although propagation behavior in microblogging is widely studied, prior

works mentioned above model the underlying user and item factors indepen-

dently from others, ignoring inter-dependencies among the factors, which are

shown in empirical research. Moreover, empirical studies have also shown that

the user and item factors change rapidly. Nevertheless, there is no existing

model that considers these temporal dynamics. We address these issues by in-

vestigating the inter-dependencies to develop both static and temporal models

for simultaneously measuring user and item factors. Lastly, existing models

measure users’ virality and susceptibility independent of topics. Such topic-

independent approach can lead to inaccurate modeling results. We address this

problem by developing a framework that allows us to simultaneously measure

the factors at topic level.

2.3.4 Linguistic Behavior

Most of previous works on modeling linguistic behavior in microblogging focus

on: (1) linguistic elements (e.g., hashtags) recommendation - to recommend

linguistic elements for a user to adopt in her tweets, and (2) viral hashtag

prediction - to predict if a hashtag will be frequently used.
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In the first sub-category, Zangerle et al. [250] proposed to recommend

hashtags to users purely based on the content of the tweet being posted as they

assumes that the primary purpose of the hashtags is to categorize the tweets

and facilitate the search. Khabiri et al. [112] approached the problem as a link

prediction task on the graph among hashtags and tweets. Kywe et al. [125]

proposed a simple neighbourhood-based model for hashtag recommendation

where the neighbours are either similar users or similar tweets. Ding et al. [58]

proposed a topical translation model for simultaneously modeling tweet content

and hashtags, assuming that the content and hashtag(s) of a tweet are talking

about the same theme but written in different languages. Feng et al. [62]

developed a learning to rank model for personalized hashtag recommendation.

Lastly, Ma et al. [147] proposed a topic model joint modeling of both the

hashtags and the tweets’ content.

In the second sub-category, Tsur et al. [212] proposed a regression model

for predicting hashtag popularity based on a rich set of content, social, and

temporal features. Similarly, Ma et al. [146] made use of content and social

features to predict if a hashtag will be viral the next day.

In summary, despite a number of research on analysis and mining of user

behavior in microblogging, the existing works consider only a single type of user

behavior, and/or do not use content while modeling user behavior. Taking a

unified approach, we propose to model both user content and user behavior

of different types, sharing a common set of latent topics. This approach al-

lows us to better learn users’ interest keeping the topics consistent across user

content and user behavior. It also allows one to make inference of user behav-

ior using the content, and vice versa. Lastly, previous works fail to capture

the community effects on behavior adoptions of users, as shown in empirical

research. We therefore propose to learn topical communities, in addition to

users’ personal topical interest and their dependence on the communities when

generating content and adopting behavior.
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Modeling User Behavior in

Content Propagation
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Chapter 3

Virality and Susceptibility in

Content Propagation

In this chapter, we study the problem of modeling both content and user

factors underlying content propagation behaviors of microblogging users. We

identify user virality, user susceptibility and content virality the three behav-

ioral factors driving content propagation. Instead of modeling these factors

independently as done in previous research, we propose a model that measures

them simultaneously considering their mutual dependencies. This chapter is

organized as follows. We first introduce the behavioral factors and discuss

their inter-dependencies in Section 3.1. We then state our research objectives

and highlight our contributions in Section 3.2. Next, we describe some exist-

ing models as well as our proposed one in Sections 3.3. Our experiments to

evaluate the proposed model on synthetic and real datasets are presented in

Section 3.4 and Section 3.5 respectively. Finally, we summarize the chapter in

Section 3.6.

3.1 Introduction

Content propagates among microblogging users through their follow links, from

followees to followers. In content propagation, a user may decide to adopt
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a content item when she observes the item adopted by her followees. The

propagated content item can be a message, URL, hashtag, or some other unit

of information which can be disseminated among users. Consider a Twitter

user network shown in Figure 3.1. In this example, users v1 to v5 follow users

u1, u2, and u3, and the propagated content are t1,⋯, t14, and t15. When v1

adopts t1 which is previously adopted by u1, we say that t1 is propagated from

u1 to v1. At the same time, the hashtag #edu is also propagated from u1 to

v1. In this example, u1 is the propagating user, and the v1 is known as the

infected user.

Existing empirical works have shown that there are three important behav-

ioral factors that affect content propagation behaviors of microblogging users,

namely: (a) virality of the user propagating the content item, (b) suscepti-

bility of the user infected with the item, and (c) virality of the content item

[204, 33, 188, 149, 18, 25, 203, 259]. We call them the user virality , user

susceptibility and content virality respectively. User virality refers to the

ability of a user in propagating content items to other users while user sus-

ceptibility refers to the tendency of a user to be infected by items propagated

from others. Content virality refers to the tendency of a content item to attract

adoptions by many users through propagation. These three behavioral factors

are vital to many applications. For example, viral content can be exploited

for advertisement and marketing [101]. Viral users can be engaged to dispel

rumors or to conduct product campaigning [69]. Finally, non-susceptible users’

mentions of events can be regarded to be important [1].

Empirical research in the past have suggested there are inter-dependencies

among the three behavioral factors [228, 105, 47, 10, 203, 83]. Most previous

works however measure each factor independently from the others, e.g.,[74,

98, 33, 51, 10, 206, 25, 226, 166, 68, 39], thus leading to inaccurate modeling

results.

Consider the example in Figure 3.1. Without considering the followers’
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u1

u2

u3

(t1) … #edu ...

(t11) … #sports ...

(t10) … #edu ...

(t12)… #politics ...

v1

v2

(t2)…#sciences...

(t6) … #sports ...

(t1)…#edu...

(t4) … #cars ...

(t3) … #edu ...

Adoption Follow link PropagationFollowee Follower

v3

(t1) … #edu ...

(t5) … #health ...

v4 (t11) … #sports...

(t3) … #cars ...

(t2)…#sciences...

(t12)…#politics ...

(t4) … #health ...

(t6) … #sports ...

(t6) … #sports ...

(t12)…#politics ...

(t2)…#sciences...

(t1)…#edu...

(t1) … #edu ...

(t13)… #movies ...

(t13)… #movies ...

(t14) … #games ...

(t14) … #games ...

(t15) … #tech ...

(t15) … #tech ...

(t7) … #movies ...

(t8) … #games ...

(t9) … #tech ...

(t7) … #movies ...

(t8) … #games ...

(t9) … #tech ...

v5 (t11) … #sports...

(t3) … #cars ...

(t2)…#sciences...

(t12)…#politics ...

(t4) … #health ...

(t1) … #edu ...

(t13)… #movies ...

(t14) … #games ...

(t15) … #tech ...

(t2)…#sciences...

Figure 3.1: Illustrative example of content propagation in microblogging.

susceptibility one may conclude that u3 is more viral than u1 since the former

gets more propagation (i.e., 11 times) than the latter (i.e., 9 times). However,

v4 and v5 are observed to be much more susceptible than other followers since

v4 and v5 adopt all the hashtags propagated by the followees. The same is

not observed on other followers. Moreover, u3 receives propagation mostly by

v4 and v5 while all u1’s hashtags are propagated to all the followers. Hence,

knowing that v4 is susceptible user lead us to conclude that u1 is more viral

than u3.

Similarly, without considering the users’ virality and susceptibility, one may
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conclude that #edu and #sports are equally viral since the former attracts

more propagation than the latter (5 and 4 times respectively). However, most

of #edu’s propagation is due to u1, a viral user. #sports in contrast attracts

propagations from all the users adopting it. Hence, it is more reasonable to

conclude that #sports is more viral than #edu.

3.2 Research Objectives and Contributions

In this chapter, we propose to simultaneously measure content virality, user

virality, and user susceptibility within a common framework. Once a user

adopts a content item that is propagated to her by her friends, we conjecture

that this adoption may be due to two sets of factors. The first set includes the

factors external to the user network, e.g., advertising. The second set consists

of internal factors due to virality of the user propagating the item, susceptibility

of the infected user, and the virality of the item. Here, for simplicity, our

proposed framework has left out the external factors and assumes that the

social relationships are identical. Despite this assumption, we still have to

address a few challenges as follows.

• The effect of each of the three factors is not explicitly differentiated.

They therefore cannot be measured separately.

• There is no ground-truth information for the virality and susceptibility

factors. The modeling results are therefore cannot be evaluated using

the conventional ground-truth-based evaluation metrics.

To deal with above challenges, we first identify content item adoptions due

to the propagation process. We then simultaneously measure the three factors

using a model that is built based on the mutual dependencies among the

factors. Lastly, we evaluate the model’s ability in recovering the pre-defined

ground-truth from synthesized propagation data. We also examine the model’s
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performance in predicting hashtags’ viral order, compared with other existing

models.

It is important to note that the modeling of virality and susceptibility

factors is related but not the same as modeling and maximizing informa-

tion propagation. The latter focuses on (a) deriving the propagation rate

[24, 235, 156], (b) predicting the number of users adopting content item(s) in

the future [240, 75, 226, 39], and (c) maximizing the number of users adopting

item subject to some constraint(s) [111, 38, 37, 28]. In contrast, our work

focuses on deriving user and item behavioral factors from the observed propa-

gations. Also, our work is related to but not the same with works on mining

more fine-grained factors underlying user virality/ susceptibility and content

virality. Empirical studies have shown that there are such factors, for example

users’ profile characteristics [173, 11, 83, 259] and their networks [78, 100, 18],

emotional and linguistic characteristics of items [188, 25, 203, 83, 208]. Cali-

brating these fine-grained factors is however beyond the scope of this work.

This work improves the state-of-the-art of content propagation. To the

best of our knowledge, there has not been any work modeling virality and

susceptibility together. Our main contributions in this work are as follows.

• We introduce virality at both the content item and user levels, and in-

troduce user susceptibility as a factor affecting content propagation.

• We propose a novel quantitative modeling framework, called md model,

which utilizes the mutual dependency between content virality, user vi-

rality, and user susceptibility as we measure them from observed data.

• We develop an iterative computation algorithm to compute the scores of

content virality, user virality, and user susceptibility.

• We compare and contrast our model with existing models in our ex-

periments and case studies. The experiments are conducted on both
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synthetic and real datasets for different purposes of evaluating the mod-

els.

• We propose a task to predict retweet order for hashtags in Twitter. The

results show that the virality scores assigned to the hashtags using our

proposed model can be used to predict the order more accurately than

other models.

3.3 Virality and Susceptibility Modeling

3.3.1 Definitions and Assumptions

We first introduce concepts and definitions of content propagation, and state

our assumptions. The main notations used in this chapter are shown in Ta-

ble 3.1.

We represent a set of users U and their follow relationships E by a directed

graph G = (U ,E). A directed edge (v →
f
u) ∈ E represents v follows u. The

time when v starts following u is denoted by t(v →
f

u). For simplicity, we

assume that each follower v follows a followee u once only. We use X to

denote the set of content items, which can be URLs, hashtags, person names,

or any other identifiable information entities. We use (u,x) to denote user u

adopting content item x, and use X (u) to denote the set of all items u adopts.

In this chapter, we assume that each user u also adopts an item x once only,

and denote the time when u adopts x by t(u,x).
Item x is said be exposed to user v if there is at least one followee of v, say

u, exposing x to v. The ways in which a user exposes (or introduces) items

she adopted to her friends are different in different online social networks. For

example, in Twitter, u may introduce a hashtag to her followers every time

she posts a tweet containing the hashtag. Note that an item can be exposed

to the same user for multiple times. We denote the set of items exposed to v

by X exp(v), the set of users exposing x to v by F exp(v, v), and the set of users
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whom x is exposed to by U exp(x).
We say that u propagates item x to v (or item x is propagated from u to

v) and denote this by u
x→ v if the following conditions hold:

• u adopts x before v adopts, i.e., t(u,x) < t(v, x), and v adopts x after v

follows u, i.e., t(v, x) > t(v →
f
u); and

• u exposes x to v before v adopts x by at most some time threshold τ

The time threshold τ is introduced to determine if v is infected with x

from u. Using time threshold to determine the propagation from one user to

another has been used in several previous works [5, 52]. When v adopts x at

some time point, v may have several of her followee(s) who already adopted x

within τ time units ago. In this case, we say that v is propagated by multiple

followees. Our model allows a user to be propagated by multiple followees and

to propagate to multiple followers.

We denote the set of items u propagates to her followers by X pro(u), and
the set of items propagated to v (by her followees) by X inf(v). That is,

X pro(u) = {x ∈ X (u) ∶ u x→ v for some v ∈ U}, and X inf(v) = {x ∈ X (v) ∶ u x→
v for some u ∈ U}. Lastly, we denote the set of users whom u propagates x to

by Fpro(u,x), and the set of followees of v who propagate x to v by F inf(x, v).
Since not all users have chances to propagate items to their friends, or to

have items introduced to them from the friends, we may not be able to measure

virality and susceptibility for every users due to the lack of historical obser-

vations. Instead, we identify the subset U int ⊆ U including users introducing

(exposing) items to their friends, and the subset U exp ⊆ U including users hav-

ing items exposed to them. We then measure virality and susceptibility for

users in U int and in U exp respectively.

For simplicity, we assume that all users in the network are not aware of

the models to be used for measuring their properties related to virality and

susceptibility. Hence, users are not expected behave in a way to trick our
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Table 3.1: Notations used to describe md model.

U Set of all users
X Set of all items
U(x) Set of users adopting item x

X (u) Set of items adopted by user u
U int Set of users introducing (exposing) item(s) to their friends
U exp Set of users exposed to items
U exp(x) Set of users exposed to item x

u
x→ v User u propagates item x to user v

Upro Set of users propagating item(s) to their friends
U inf Set of users infected with items, i.e., infected users
Upro(x) Set of users who propagate x to > 0 users
X pro(u) Set of items propagated by u

X inf(v) Set of items v infected with
X exp(v) Set of items exposed to v

Fpro(u,x) Set of followers whom u propagates x to
F inf(x, v) Set of followees who propagate x to v

F exp(x, v) Set of followees who expose x to v

Imm(x) Virality of content item x as measured by model mm

Vmm(u) Virality of user u as measured by model mm

Smm(v) Susceptibility of user v as measured by model mm

proposed models and the network is spam free. This assumption does not

always hold and we shall address it in our future research.

3.3.2 Existing Models for Virality and Susceptibility

In the following, we review some existing virality models that have been in-

troduced in previous works. Most of them cover only one of the virality/

susceptibility factors.

Content virality. Two widely used content virality definitions are popularity

[87, 28, 226, 30, 199, 75] and viral coefficient [108].

• Popularity is defined as the number of users adopting the item.

Ip(x) = ∣U(x)∣/∣U ∣ for ∀x ∈X (3.1)

• Viral coefficient is the average number of friends that a user propagates
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the item to once she has adopted the item.

Ic(x) = ∣U exp(x) ∩U(x)∣
∣Upro(x)∣ for ∀x ∈X (3.2)

Popularity captures how widely the item is adopted but it does not tell

if the adoptions are due to propagation or external influence such as media

advertisement. Viral coefficient is defined purely based on the item adoptions

due to word-of-mouth. When viral coefficient exceeds 1.0, every user adopting

the item is able to get more than one other users adopts the item, making

the item propagation viral. Viral coefficient however does not consider user

factors.

User virality. The conventional approach to measure user virality is Fan-

out, i.e., the average number of friends she propagates items to [74, 98]. That

is,

Vf(u) = ∑x∈X pro(u) ∣Fpro(u,x)∣
∣X pro(u)∣ for ∀u ∈ U int (3.3)

User susceptibility. Prior works have measured a user’s susceptibility by

FanIn, i.e., the fraction of items the user adopts once she is exposed to them

[73, 111, 11].

Sf(v) = ∣X inf(v)∣
∣X exp(v)∣ for ∀v ∈ U exp (3.4)

3.3.3 Mutual Dependency Model

Content propagation in a network is caused by interactions among users as

well as interactions between users and content items being propagated. Given

that these interactions occur in a network, one has to consider the mutual

dependency relationships among the factors when they are measured. We

thus propose Mutual Dependency Model (md model) to measure content

virality, user virality, and user susceptibility simultaneously based on a set of

principles that help to distinguish each property from others in propagation.

The three principles are:

36



CHAPTER 3. VIRALITY AND SUSCEPTIBILITY IN CONTENT PROPAGATION

• Viral content items (with high content virality) can be propagated from

less viral users (with low user virality) to less susceptible users (with low

user susceptibility).

• Viral users (with high user virality) can propagate less viral content items

(with low content virality) to less susceptible users (with low user sus-

ceptibility).

• Susceptible users (with high user susceptibility) adopts less viral items

(with low content virality) introduced to her from less viral users (with

low user virality).

We operationalize the above three principles into the following content

virality, user virality, and user susceptibility definitions.

Imd(x) = 1

∣U(x)∣ ⋅ ∑
u∈Upro(x)

[(1 − Vmd(u)) ⋅ ∑
v∈Fpro(u,x)

1 − Smd(v)∣F inf(v, x)∣]
for ∀x ∈X (3.5)

Vmd(u) = 1

∣X (u)∣ ⋅ ∑
x∈X pro(u)

[(1 − Imd(x)) ⋅ ∑
v∈Fpro(u,x)

1 − Smd(v)∣F inf(x, v)∣]
for ∀u ∈ Upro (3.6)

Smd(v) = 1

∣X exp(v)∣ ⋅ ∑
x∈X inf(v)

[(1−Imd(x))⋅ 1

∣F exp(x, v)∣ ⋅ ∑
u∈F inf (x,v)

(1−Vmd(u))]
for ∀v ∈ U inf (3.7)

In Equations (3.5 - 3.7), the terms (1 − Imd(x)), (1 − Vmd(u)), and

(1−Smd(u)) are inverses of content virality of x, user virality of u, and user sus-

ceptibility of v respectively. In Equation 3.5, the virality of an item x is derived
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from the number of adoptions of x by (a) its propagating users (Upro(x)) and
(b) its infected users (Fpro(u,x)) after (1) weighting the former by the inverse

of their user virality, and (2) weighting the latter by the inverse of their user

susceptibility prorated by the number of other users who propagate x to them

(∣F inf(x, v)∣). Given that Imd(x) considers adoption count per propagating

user, it is an extension of viral coefficient Ic(x).
In Equation 3.6, the virality of a user u is derived from the number of

adoptions of items she propagates (X pro(u)) to a set of users (Fpro(u,x))
after weighting the items by their inverse content virality and the propagated

users by their inverse susceptibility prorated by the number of other users who

propagate the same item to them (∣F inf(x, v)∣). Vmd(u) is an extension of user

virality based on fanout Vf(u) as both consider the number of users whom u

propagates item(s) to, i.e., Fpro(u,x).
In Equation 3.7, the susceptibility of a user v is measured by the number of

adoptions of items she is exposed (X exp(v)) by a set of users (F exp(x,x)) after
weighting the items by their inverse content virality and the average inverse

user virality of the exposing users who succeeded in propagation. Smd(v) also
shares some similarity with Sf(v) in using X inf(v).

3.3.4 Model Computation

Computing scores in the md model is a fixed point problem [253]. We em-

ploy the iterative computation method in Algorithm 1 to compute Imd(x)’s,
Vmd(u)’s and Smd(v)’s. The main idea is to initialize Vmd(u)’s and Smd(u)’s
with some values in [0,1] so as to compute Imd(x)’s. The computed Imd(x)’s
and Smd(u)’s are then used to compute a new set of values for Vmd(u)’s. Next,
the new Smd(u) values are computed from Imd(x)’s and Vmd(u)’s. This process
repeats until we reach a predefined maximum number of iterations or when the

values converge.

We empirically found that the iterative computation method works well
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for all the synthetic and real datasets (more than 50 of them) in our project.

The method always converges to a unique users’ virality/ susceptibility scores

and items’ virality scores, regardless of their initializations. We also found

that initializing the scores by the normalized uniform vectors (like in lines 1

- 3 of Algorithm 1) causes the method to converge much faster (less than 20

iterations). Proving the convergence of the method is however elusive and is

part of our ongoing research.

Algorithm 1 Iterative computation method for computing content virality,
user virality, and user susceptibility

1: (Imd(⋅), Vmd(⋅), Vmd(⋅))← (1⃗, 1⃗, 1⃗) ▷ Initialization

2: C ← (Imd(⋅), Vmd(⋅), Smd(⋅)) ▷ Normalization

3: (Imd(⋅), Vmd(⋅), Smd(⋅))← (Imd(⋅), Vmd(⋅), Smd(⋅))/∣∣C ∣∣
4: for k ← 1 to MaxIteration do ▷ Update Imd(⋅), Vmd(⋅), and Smd(⋅)
5: for each x ∈X do
6: Compute I

′(x) using Equation 3.5
7: end for
8: for each u ∈ U do
9: Compute V

′(u) using Equation 3.6
10: end for
11: for each v ∈ S do
12: Compute S

′(v) using Equation 3.7
13: end for
14: C ← (I ′(⋅), V ′(⋅), S ′(⋅)) ▷ Normalization

15: (Imd(⋅), Vmd(⋅), Smd(⋅))← (I ′(⋅), V ′(⋅), S ′(⋅))/∣∣C ∣∣
16: end for
17: Normalize Imd(⋅), Vmd(⋅), and Smd(⋅) to unit length

3.4 Experiments on Synthetic Datasets

The first set of experiments is designed to evaluate and compare the differ-

ent virality models including our proposed md model. While some of them

have been used in the commercial world, a systematic evaluation has not been

conducted due to a lack of an existing dataset containing the ground truth

labels of viral content items, viral and susceptible users. We therefore create

synthetic datasets with different parameter settings and corresponding ground

truths and compare the models’ accuracies.
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3.4.1 Synthetic Data Generation

We use the following steps to generate a synthetic dataset.

Generating the user network. Given the number of users N , power

law degree exponent α, minimum degree dmin, and maximum degree dmax, we

generate a undirected network of users whose degree distribution follows the

power law with exponent α as follows.

• Generate the degree distribution of N nodes in the [dmin, dmax] range
following the power law distribution using the inverse transformation

method [191].

• Generate the links for the N nodes to follow the generated degree distri-

bution using the Expected Degree Model [42]. The resultant network has

each connected pair of users follow each other.

Generating the ground truth. We designate a small number of users,

let say ku of N , who are randomly chosen from users among the top 10 degree

percentile, as viral users. This is to ensure that viral users have sufficient

followers to propagate item(s) to. The susceptible users are selected the same

way. These users are assigned higher virality/ susceptibility scores that are

uniformly drawn from [1−β,1) (with 0 < β ≤ 0.5), while the remaining users are

assigned virality/ susceptibility scores uniformly in the range [0, β). We label

ki of M items to be viral. Similarly, these items have virality scores randomly

drawn from [1 − β,1), while the remaining items have scores randomly drawn

from [0, β).
Generating the items adoptions. We generate item adoptions for each

item x over 10 time steps. At each time step, as suggested in [24], the prob-

ability that each non-adopter v adopts x is p + q where p is the probability

attributed to external influence, and q is the probability attributed to internal
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influence or propagation.

q = 1
3
⋅ [1 − ∏

u∈F(v,t)

(1 − gV (u)) + gI(x) + gS(v)] (3.8)

where F(v, t) is the set of followees of v who adopt x within τ time steps ago,

while gV (u), gI(x), and gS(v) are ground-truth user viraliy score of u, content

virality score of x, and user susceptibility score of v. In our experiments, we

set τ = 1.
We generated networks with different number of users (N is varied from

500 to 5K), number of items (M is varied from 100 to 500), and virality/

susceptibility score width (β is varied from 0.1 to 0.5) while keeping α = 2.5,
dmin = 1, dmax = 100, ku = 1% of N , and ki = 10% of M . For each parameter

setting, we generate 10 instances of item adoptions with p is randomly chosen

from [0.01,0.05] for each item. This range of p is also suggested by experiments

on a various type of items reported in Bass [24] and Turk et. al [214]. We

then compute the virality and susceptibility scores of each dataset instance

using different models. For the md model, the MaxIterations constant in

Algorithm 1 is set to 20.

3.4.2 Results

For each dataset instance, we rank users by their virality (susceptibility) scores

produced by a virality model and select the top scored 1% users as the predicted

viral (susceptible ) users and denote the set by Up
v (Up

s ). The precision@1%

of user virality (susceptibility) is then defined by
∣Up

v ∩Uv ∣∣Uv ∣ (
∣Up

s ∩Us∣∣Us∣ ) where

Uv and Us denote the viral users and susceptible users in the ground truth

respectively. The precision@10% of content virality is similarly defined.

Figures 3.2 (a) and 3.2 (b) show the precision@10% of content virality and

precision@1% of user virality and susceptibility for the different models as we

set N = 1000, 10K, 20K and 50K keeping M = 500 and βu = βi = 0.3. The
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Figure 3.2: (a), (c), (e): Precision@10% of content virality by varying N , M
and score width respectively; (b), (d), and (f): Precision@1% of user virality
and susceptibility by varying N , M and score width respectively

figures show that the md model outperforms other models, particularly for

content virality and user susceptibility. The performance of md model in user

virality is only slightly better than that of fan-out. All models demonstrate

decreasing precision as N increases. They however still outperform the random

selection significantly.
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Figures 3.2 (c) and 3.2 (d) show the precision@10% of content virality and

precision@1% of user virality and susceptibility respectively for the different

models as we set M = 100, 200 and 500 keeping N = 50K and βu = βi = 0.3.
The figures show that the md model outperforms all other models. All models

demonstrate unchanged precision as M increases.

Figures 3.2 (e) and 3.2 (f) show the precision@10% of content virality and

precision@1% of user virality and susceptibility respectively for the different

models as we set the score width βu = βi = 0.1 to 0.5 keeping N = 50K and

M = 500. Again, themd model outperforms the other. The precision generally

falls as we increase the score width. This is expected as larger score width

creates ground truth data harder for the models.

3.5 Experiments on a Real Dataset

In this section, we compare the different models using a real Twitter dataset

containing tweets published by Singapore-based users during the Singapore’s

2011 general election and presidential election. Since the elections are socially

interesting events, we expect viral diffusion to exist in the data.

3.5.1 Data Collection and Preprocessing

We first selected a set of of 58 Singapore-based seed users which includes

user accounts of the political parties, politicians, political commentators, and

bloggers. We then derived the followers and followees of the seed users creating

a larger set of 32,138 users who declared themselves to be located in Singapore.

We crawled tweets published by the set of users on a daily basis. We collected

a set of 30,652,126 tweets published between March and September 2011 for

this study. Among those tweets, we have 610,109 retweets.

User network construction. As Twitter does not provide the creation

time of follow links, we had to infer the links with timestamp using tweets as
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suggested in [188]. That is, we created a follow link from user u to user v when

u mentions “@v” at least k time in u’s tweets. The timestamp of the follow

link is thus assigned the timestamp of the k-th tweet of u mentioning “@v”.

In our experiments, we set k = 3.
Item adoption. We use hashtags as items. There have been works suggesting

hashtags as the topics of information diffusion in Twitter (e.g., [188, 196]). In

this experiment, we consider a user adopts a hashtag when she publishes a

tweet containing the hashtag.

Hashtag and user selection. To ensure that we have sufficient observa-

tions for each hashtag and each user, we applied the following steps to select

hashtags, target users for virality V , and target users for susceptibility S.

• We selected the set of 1000 most popular hashtags

• We selected into V all users adopting at least mina hashtags in 1000

selected hashtags.

• We selected into S all users having at least mini selected hashtags intro-

duced to them from users in V .

In our experiment, we set mina = mini = 3. This gives us ∣V ∣ = 12,978 and

∣S∣ = 11,069.
Setting the threshold τ . The threshold τ is determined based on the time

lag between retweets and their original tweets. We found that the time lag

follows a long tail distribution with more than 95% of retweets having timelag

within 1 day, and the maximum time lag is 205 days. We therefore set τ = 1
day.

3.5.2 Results

Correlation between different measures. We now examine how the mod-

els rank users/ items differently. Table 3.2 shows that the rank correlation
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coefficient between the Ip and Ic is not high indicating that the popular hash-

tags are not always well propagated among the hashtag adopters. Imd on the

other hand is more correlated with both Ip and Ic. Imd produces rankings much

more similar to Ic than Ip, which is expected as our proposed model tends to

give higher ranks to well propagated items.

Table 3.2: Pearson rank correlation of different content virality measures.

Ip Ic Imd

Ip - 0.087 0.145
Ic - - 0.733

Similarly, we computed the Pearson rank correlations between Vf and Vmd,

and between Sf and Smd. However, since whenever Vf(u) (Sf(u)) equals to 0,

Vmd(u) (Smd(u)) equals to 0, we exclude all such users u from the correlation

computation. The correlation coefficient between Vf and Vmd (respectively

between Sf and Smd) is 0.87 (respectively 0.97), which indicates that Vmd and

Smd are similar but not identical to Vf and Sf .

Comparison of the top-10 viral hashtags. As shown in Table 3.3, the

top-10 viral hashtags by different models are quite different. The top-10 by

Ip include hashtags related to some big events (e.g., #sgelections and #sg-

presidents for the two elections in Singapore in 2011), or people daily life

(e.g., #nowplaying for what music people listen to). The top-10 by Ic include

mainly hashtags about funny stories and emotion (e.g., #daveq and #over-

heard), and those popularized by a single user (e.g., fakemoe or davelimkopi).

As we expected, the top-10 by Imd includes more socially and politically related

hashtags (e.g., #crappymediacorptitles for social problems that are described

by phrases similar to the names of some famous song, movie, novels, etc), and

for the Singapore’s 2011 Presidential Election held on August 27th, 2011 (e.g.,

#asksgpresident).

We further examine #sgelections, #daveq, and #crappymediacorptitles, the

three hashtags top ranked for content virality by Ip, Ic, and Imd respectively.
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Table 3.3: Top 10 viral hashtags rank by different measures.

Rank Ip Ic Imd

1 #sgelections #daveq #crappymediacorptitles
2 #nowplaying #everysingaporeandream #studyinginsingaporeislike
3 #sosingaporean #ccquotes #asksgpresident
4 #sgpresident #overheard #jobsforgeorgeyeo

5 #fb #teammilo
#improvefilmtitlesby

addinginmypants
6 #damnitstrue #mooncakefestival #replacesongnameswithcurry
7 #1 #thinkaboutit #wordspeoplebutcher
8 #justsaying #sgreans #chinavssgp
9 #prayforjapan #kiasu #yosgpresident
10 #fail #whyifollowsosingaporean #notsosingaporean

Table 3.4: Comparison among #sgelections, #daveq, and #crappymediacorp-
titles

Hashtag #sgelections #daveq #crappymediacorptitles

Ip 6354 223 426
#Infected users 2939 110 333

#Propagating users 1391 5 90
Ic 2.11 22 3.7
Imd 0.060 0.062 0.095

As shown in Table 3.4, #sgelections has many more adopters than #daveq

and #crappymediacorptitles. However, less than 50% of them adopted the

hashtag due to propagation; and less than 25% of them could propagate the

hashtag to a small number of followers. This indicates that #sgelections is

mostly adopted due to some external factors. #daveq also has about 50%

of the adopters adopting the hashtag due to propagation. However, only a

few of them could propagate the hashtag. Furthermore, we found that the

propagation of #daveq was mostly contributed by a viral user (fakemoe). In

contrast, more than 75% users adopting #crappymediacorptitles adopted the

hashtag due to propagation, and about 25% of them could propagate the hash-

tag. Moreover, we also found that the propagation of #crappymediacorptitles

was evenly contributed by users diffusing the hashtag. It is thus reasonable to

conclude that #crappymediacorptitles should be more viral than #sgelections

and #daveq.

Comparison of the top-10 viral users. The top 10 viral users by Vf

and Vmd are identical but not their ranks. They are mainly the social media
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accounts, portals, bloggers, and fake users.

The two users, leticiabongnino and todayonline, have significantly different

ranks assigned by the two models. leticiabongnino is ranked 9th and 7th by

Vf and Vmd respectively, while todayonline is ranked 5th and 9th respectively.

Although todayonline propagated all hashtags it had adopted and has a higher

fan-out than leticiabongnino, the former could propagate only a few hashtags

to many followers. These are viral hashtag related to big social events. On

the other hand, leticiabongnino could propagate almost all hashtags she had

adopted to a large number of followers. Many hashtags that leticiabongnino

propagated were her own gossip and funny stories that are less likely to be

adopted by others. The fact that she could propagate them shows that she

has high virality. Therefore, it is reasonable to assign leticiabongnino a virality

score higher than todayonline.

Comparison of the top-10 susceptible users. The top 10 susceptible

users by Sf and Smd have 6 common users, and their ranks are different. Most

of users in the two top-10 are teenages and young adults. Among them are

andyheas79 and b2utyfulmiley1, the two users who have significantly different

ranks by the two models. andyheas79 is ranked 3th and 15th by Sf and

Smd respectively, while b2utyfulmiley is ranked 10th and 8th respectively. We

found that the hashtags that andyheas79 adopted due to diffusion are viral,

and were propagated to him by viral users. On the other hand, the hashtags

propagated to b2utyfulmiley are not very viral, and they came from non-viral

users. Therefore, although andyheas79 has a higher fan-in than b2utyfulmiley,

it is reasonable to assign b2utyfulmiley a higher susceptibility rank.

Summary of Results. Based on the above empirical results on the real

dataset, we conclude that the different models produce results that follow our

expectation. The md model is shown to be more robust as it considers the

inter-relationships of all three user and item factors.

1This user changed her username to nanaphew
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3.5.3 Retweet Order Prediction for Hashtags

In this section, we examine the effectiveness of our proposed model when ap-

plied in a prediction task. We hypothesize that tweets containing the higher

virality hashtags are more likely to be retweeted. We therefore use the viral-

ity scores to predict, between a pair of hashtags, which one will have higher

retweet likelihood in the near future. To evaluate our prediction model, we

conducted the following experiment using the same Singapore-based Twitter

dataset, and the same user network constructed from the dataset as described

in the previous section.

We divided all tweets into weekly sets based on their published dates. For

each week between May and September 2011, we used all tweets published

within two weeks before the week as the training set, and used all the tweets

published within the week as the test set. We did not examine the first 8

weeks (March and April 2011) as the tweets during this period is mainly used

for user network construction. We selected 1000 most popular hashtags in

the training set. Virality scores of these hashtags were computed based on

diffusion information extracted from the training set. Then, we identified

every tuple (u, v, h1, h2) of two users, u and v, and two hashtags, h1 and h2,

that satisfies the following conditions: (a) v follows u; (b) h1 and h2 are in

the set of 1000 most popular hashtags in the training set (and therefore they

had be assigned virality scores); and (c) u posts original tweets using both

h1 and h2 after v follows u. For each such tuple, we computed the likelihood

l(u, v, h1) (respectively l(u, v, h2)) that v retweets a tweet containing only h1

(respectively h2) that appears in the test set, and is originally posted by u

after v follows u. If h1 is more viral than h2 (as measured by a certain model)

and l(u, v, h1) > l(u, v, h2), we say that the tuple (u, v, h1, h2) supports the

prediction model. Obviously, the virality model that gives higher fraction of

supporting tuples is better.

Figure 3.3 shows the fraction of tuples of users and hashtags that support
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Figure 3.3: Fraction of tuples of users and hashtags supporting the prediction
model for every week from May to September 2011

the prediction model for every week from May to September 2011. The aver-

age fraction of tuples supporting the prediction model of Ip, Ic, and Imd is 0.6,

0.61, and 0.67 respectively. The fractions of all the virality models have three

common peaks at week 1, 9, and 17. This is expected as tweets are mainly

about big events during these weeks (the general election, the most potential

presidential candidates announced their candidacy, and the presidential elec-

tion respectively). The prediction model based on Imd achieves the highest

fraction, and also has more stable performance with the faction exceeding 0.6

for almost all the weeks. This shows that our proposed model outperforms

other models based on popularity and viral coefficient in this prediction task.

3.6 Chapter Summary

In this chapter, we propose a novel framework to model propagation related

user and content behavioral factors. Considering the network effect of users

and content items interacting with one another in content propagation, we de-

velop a mutual dependency based model to measure user virality, user suscep-

tibility, and content virality simultaneously. We also develop an algorithm for

learning the model’s parameters. To evaluate our proposed and other models,
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we have conducted extensive experiments on both synthetic and real datasets.

The experiment results on synthetic datasets have shown that our proposed

model generally outperforms the other existing ones. The results on a Twitter

dataset have also shown that the proposed model can better approportion-

ate the contributions to content propagation by the different user and content

factors properly. The work described in this chapter has appeared in [84].
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Chapter 4

Efficient Online Modeling of

Virality and Susceptibility in

Content Propagation

This chapter presents our work on temporal and online modeling of user vi-

rality, user susceptibility, and content virality. We also consider the problem

in more realistic problem settings in which user-content item exposure is not

observed and each user may have multiple adoptions/ infections with the same

content item. This chapter is organized as follows. We first discuss tempo-

ral dynamics of the virality and susceptibility factors, and the new problem

settings in Section 4.1. We then state our research objectives and summarize

our contributions in Section 4.2. Next, we extend existing baseline models

for the new problem settings in Section 4.3. We describe our proposed static

and temporal models in Section 4.4. Our proposed incremental model is de-

fined in Section 4.5. Our experiments to evaluate the models are presented in

Section 4.6. Finally, we conclude the chapter in Section 4.7.
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4.1 Motivation

In Chapter 3, we developed the static model md for measuring users’ vi-

rality and susceptibility, and content items’ virality, addressing the inter-

relationships among the factors. Empirical studies however have shown that

the factors are temporally dynamic. For example, Lin et al. [132] suggested

that the set of top viral items change significantly after every hour. Lin et al.

[134] showed that users’ virality and susceptibility change significantly during

media events. Nevertheless, to the best of our knowledge, there is no existing

works that consider these dynamics. A simple way to address this issue is to

apply md model to recompute the factors once we get new propagation obser-

vations. But md model is computationally expensive to be applied in realtime

applications with very large data streams.

Moreover, due to the fast evolving of microblogging content, a user can

be infected with the same content item multiple times, even from the same

propagating user. Consider the propagation scenario shown in Figure 4.1 for

example: v1, v2, and v3 follow and receive tweets from u1, u2, and u3. When v1

retweets (forwards) the tweet t1 from u1, we say that t1 and the hashtag #edu

is propagated from u1 to v1. In this example case, v1 is infected with #edu two

times: once from u1, and another from u2. Similarly, v3 is infected with #sports

five times: once from u1, once from u2, and thrice from u3. Existing models,

including themd model, however dismiss the second and subsequent adoptions

of the same item [187, 28, 119, 196, 98, 51], thus reducing the accuracy of the

modeling results.

Lastly, prior works are based on an important assumption that user-content

item exposure is observable. Exposure to an item is the pre-condition of one

adopting the item through propagation. In many propagation scenarios, such

knowledge is not available. All existing models unfortunately make this as-

sumption to simplify the measurement of the virality and susceptibility factors.

They therefore could not be used when only user adoptions can be observed.
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Figure 4.1: Illustrative example of multiple adoptions and infections to with
the same content item of microblogging users.

4.2 Research Objective and Contributions

In this chapter, we address the issues mentioned above. Our goal is to develop

models for measuring users’ virality/ susceptibility and items’ virality that (1)

consider multiple adoptions and infection of users with the same content item,

(2) address the dynamics of the factors, and (3) allow incremental computation

of the factors so as to cope with large streams of adoption and propagation

data from social media.

The main idea of our approach is to first model the factors using their

inter-dependencies without requiring knowledge about what users read nor

restricting a user to infect with the same item only once. We then model the

dynamics of factors by assigning temporal weights to adoption and propagation

instances so that the recent instances are weighted higher than the old ones.

This makes the models less bias to the cumulative effects on user and item

factors in the whole propagation process. We then consider each propagation
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instance carrying some amount of work proportional to its temporal weight,

and measure the user and item factors by their contributions to the total

amount of propagation work aggregated from all the propagation instances.

We finally create an incremental method for measuring the user and item

factors.

We make the following contributions in this chapter.

• We give a definition of item propagation that can be applied to any

general user adoption data as it does not make any assumption of user

readership (which is often unobserved), nor the assumption of single

infection per item for each user.

• We propose a temporal weighting scheme to assign weight to item adop-

tion and propagation instances. This weighting scheme allows us to give

more importance to the recent adoption and propagation instances, as

well as to update the weights incrementally.

• We propose both new static and new temporal models for modeling user

and item factors in propagation. Our models are built upon the above

temporal weighting scheme, considering the temporal dynamics of the

factors and their inter-dependencies.

• We also propose an incremental model for efficiently computing the fac-

tors from data streams.

• We evaluate our proposed models and other baselines in a large dataset

spanning one month. The results show that our proposed models are

more intuitive. Our models also outperform the baselines in predicting

retweet counts. We also show that our incremental model is more than

10 times faster than the static temporal models, yet obtaining results

that are very similar.
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4.3 Extension of Existing Models

In this section, we describe static and temporal baselines for user virality/

susceptibility and content virality when user-exposure-to-content item is not

observed and users may have multiple adoptions and infections with the same

item. We first introduce the main notations used to describe the models. Next,

we present the baseline models found in existing works. We then present our

extensions of these baselines to consider temporal models. Lastly, we describe

our proposed static model and its extension to a temporal model.

4.3.1 Notations

The main notations used in this chapter are shown in Table 4.1. We denote

the set of all users and the set of all content items by U and X respectively.

We use (u,x) to denote an adoption instance wherein u adopts item x, and

use (u,x, v) to denote an propagation instance wherein u propagates x to v

(implying that v is infected with x). We call u a propagating user if u has

propagated item(s) to other user(s). Similarly, v is called an infected user if v

has infected with item(s).

For each user u, there may be more than one (u,x) instances since u may

adopt x multiple times. Similarly, for each user v, there may be more than

one (u,x, v) instances sharing the same u and x as u may propagate x to v

multiple times. The bag of all (u,x) adoption instances is denoted by A(u,x).
The bag of all (u,x, v) propagation instances is denoted by P(u,x, v). We

denote the number of times u adopts x by a(u,x), and denote the number of

times u propagates x to v by p(u,x, v). That means, a(u,x) = ∣A(u,x)∣, and
p(u,x, v) = ∣P(u,x, v)∣. In a(u,x) and p(u,x, v), a substitution u, x, or v by

a dot (⋅) means that we are taking the summation of a(u,x) and p(u,x, v)
over all possible values of u, v, and x respectively. For example, p(u,x, ⋅) is
∑
v

p(u,x, v), and p(⋅, x, ⋅) is ∑
u

∑
v

p(u,x, v).
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We use t to denote the time step, and use t(o) to denote the time label

of the adoption/ propagation instance o. When a set or bag notation has the

time subscript t, it denotes the set or the bag whose the elements are observed

up to time t. For example, Upro
t is the set of propagating users up to time t,

and At(u,x) is the bag of all (u,x) instances up to time t.

Like in Chapter 3 (see Section 3.3), not all users have propagated or been

infected with items, we therefore only measure virality for propagating users,

and measure susceptibility for infected users. We denote the set of propagating

users by Upro, and denote the set of infected users by U inf . Note that a user

may belong to both Upro and U inf , and Upro,U inf ⊆ U .

The virality of a propagating user u as derived by a model mm is denoted

by Vmm(u). Similarly, we use Smm(v) and Imm(x) to denote the susceptibility

of infected user v and virality of item x respectively as measured by model

mm. Like above, when these notations have time subscript t, it denotes the

score as measured at time t. For example, Vmm,t(u) is virality of u derived by

model mm at time t. Smm,t(v) and Imm,t(x) are defined in the same way.

4.3.2 Static Baseline Models

We now present the baseline models that have been proposed in previous works,

and extend them to apply in the new problem settings used in this chapter.

Baselines for user virality. These include Fan-out [74, 98] and Prop-

agation Count [33] that are often coined with user virality. Different from

its definition in Chapter 3 where users only single infection with the a item,

fan-out of user u, denoted by Vfo(u), is now defined by the average number of

times u propagates an item each time u adopts the item. Formally,

Vfo(u) = ∑v∑xp(u,x, v)
∑x a(u,x) = p(u, ⋅, ⋅)

a(u, ⋅) (4.1)
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Table 4.1: Notations used to describe temporal and incremental models.

Ut/ Xt Set of users/ content items up to time t

U
pro
t / U

inf
t Sets of propagating/ infected users up to time t(u,x) An adoption instance wherein user u adopts item x(u,x, v) A propagation instance wherein user u propagates

item x to user v
At(u,x) Bag of all (u,x) adoption instances up to time t

Pt(u,x, v) Bag of all (u,x, v) propagation instances up to time t

t(o) Time label of adoption/ propagation instance o

a(u,x) Number of times user u adopts item x

at(u,x) Temporally weighted variant of a(u,x) at time t

p(u,x, v) Number of times user u propagates item x to user v
pt(u,x, v) Temporally weighted variant of p(u,x, v) at time tÐ→
Dpro

item(u) Distribution of user u’s propagation instances over
all items that u propagatesÐ→

Dpro
item,t(u) Temporally weighted variant of

Ð→
Dpro

item(u) at time tÐ→
Dpro

inf(u) Distribution of user u’s propagation instances over

all users that u propagates item(s) toÐ→
Dpro

inf,t(u) Temporally weighted variant of
Ð→
Dpro

inf(u) at time tÐ→
Ditem

pro (x) Distribution of item x’s propagation instances
over all x’ propagating usersÐ→

Ditem
pro,t(x) Temporally weighted variant of

Ð→
Ditem

pro (x) at time tÐ→
Ditem

inf (x) Distribution of item x’s propagation instances over
all users infected with xÐ→

Ditem
inf,t(x) Temporally weighted variant of

Ð→
Ditem

inf (x) at time tÐ→
Dinf

item(v) Distribution of user v’s propagation instances over
all items that v is infected withÐ→

Dinf
item,t(v) Temporally weighted variant of

Ð→
Dinf

item(v) at time tÐ→
Dinf

pro(v) Distribution of user v’s propagation instances over
all users propagating item(s) to vÐ→

Dinf
pro,t(v) Temporally weighted variant of

Ð→
Dinf

pro(v) at time t

E(Ð→D) Entropy of distribution
Ð→
D

H(Ð→D) normalized entropy of distribution
Ð→
D

Vmm,t(u) Virality of user u at time t as measured by model mm

Smm,t(v) Susceptibility of user v at time t

as measured by model mm

Imm,t(x) Virality of item x at time t as measured by model mm

Propagation count of user u, denoted by Vpc(u), is defined by the number of

times u propagates item(s). That is,

Vpc(u) = p(u, ⋅, ⋅) (4.2)
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Baseline for user susceptibility. In Chapter 3, we used Fan-In as baseline

for user susceptibility, which is defined as the likelihood the user is infected with

items when he is exposed to items. As mentioned in Section 4.1, the number

of times a user is exposed to an item is usually not available. We therefore

use Infection Count as baseline for user susceptibility. The infection count

of user v, denoted by Sic(v), is the number of times v is infected with items.

That is,

Sic(v) =∑
u

∑
x

p(u,x, v) = p(⋅, ⋅, v) (4.3)

Baselines for content virality. Similar to Chapter 3, we again use

Popularity and Viral Coefficient as baselines for content virality. In the

settings that users may have multiple adoptions and infections with the same

item, these measures are defined as follows.

Popularity of an item x, denoted by Ip(x), can be measured by the number

of times x is adopted, or the number of times x is propagated. However, highly

adopted items are not always well propagated. Users may adopt them due to

some external factors beyond what can be observed. Therefore, it is more

reasonable to use the number of times an item is propagated to measure the

item’s popularity. That is,

Ip(x) =∑
u

∑
v

p(u,x, v) = p(⋅, x, ⋅) (4.4)

Viral coefficient of item x, denoted by Ivc(x), is defined by the average

numbers of propagation instances x gets per its adoption. That is,

Ivc(x) = ∑u∑v p(u,x, v)
∑u a(u,x) = p(⋅, x, ⋅)

a(⋅, x) (4.5)

4.3.3 Temporal Variants of Baseline Models

Given all the adoption and propagation instances up to time t, the static

baseline models above only measure the cumulative user and item factors up
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to time t, but not the recent factors at time t. We now extend the baselines

so that we can obtain the recent factors at t. In the following, we derive the

counts or the measurements at time t by assigning temporal weights to the

adoption and propagation instances giving us temporally weighted variants of

a(u,x) and p(u,x, v) denoted by at(u,x) and pt(u,x, v) respectively.
Temporal weighting scheme. A simple temporal weighting scheme is

to let the adoption and propagation instances decay over time. That is, in

counting the instances up to time t, each instance o with timestamp t(o) is
weighted by ǫt−t(o) where ǫ ∈ (0,1). However, this requires us to update at(u,x)
and pt(u,x, v) after each time step for, respectively, all pairs of u and x where

u ever adopts x, and for all tuples of u, v, and x where u ever propagates x

to v. This is computationally expensive. Furthermore, in each time step t, all

the adoption (propagation) instances in t only belong to a small proportion of

u and x pairs (u, v and x tuples). Therefore, instead of decaying weight of the

old instances, we exponentially amplify weight of the new instances at each

time step by
1

ǫ
. For each time step, we thus only need to update at(u,x) if

u adopts x at time t, and to update pt(u,x, v) if u propagates x to v at time

t. To increase the weight of the new instances, we assign to each instance o

the weight (1/ǫ)t(o). Obviously, this is relatively the same with time decaying

weighting scheme. Now, at(u,x) and pt(u,x, v) can incrementally updated:

at(u,x) = ∑
o∈At(u,x)

(1/ǫ)t(o)
= at−1(u,x) + ∣At(u,x) −At−1(u,x)∣(1/ǫ)t

(4.6)

pt(u,x, v) = ∑
o∈Pt(u,x,v)

(1/ǫ)t(o)
= pt−1(u,x, v) + ∣Pt(u,x, v) −Pt−1(u,x, v)∣(1/ǫ)t

(4.7)

where ∣At(u,x)−At−1(u,x)∣ is simply the number of times u adopts x in time t.

Similarly, ∣Pt(u,x, v)−Pt−1(u,x, v)∣ is simply the number of times u propagates

x to v in time t.
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Temporal baseline models. With the temporally weighted adoption

and propagation counts, the baseline models can now be extended to handle

temporal propagation data by substituting the non-weighted counts by their

temporally weighted ones. For example, the Temporal Fan-out of user u at

time t, denoted by Vfo,t(u), is defined as follows.

Vfo,t(u) = pt(u, ⋅, ⋅)
∑x at(u,x) (4.8)

In the similar spirit, we extend Propagation Count, Infection Count,

Popularity, and Viral Coefficient to Temporal Propagation Count,

Temporal Infection Count, Temporal Popularity, and Temporal Vi-

ral Coefficient respectively.

4.4 Mutual Dependency & Unbiased Models

We now develop new models that consider two principles: the inter-

dependencies (or mutual dependency) between user and item factors (like in

Chapter 3), and the unbiasness of each factor. There are also the static and

temporal variants of the models as described below.

4.4.1 Model Principles

Our models are designed based on following principles.

Mutual dependencies among user virality, user susceptibility, and

content virality, which we presented in Chapter 3, and are reminded below.

• A viral content item is one that can be propagated by non-viral users to

non-susceptible users.

• A viral user is one who can propagate non-viral items to non-susceptible

users.
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• A susceptible user is one who can be infected with non-viral items that

are propagated by non-viral users.

Unbiasness of user virality, user susceptibility, and content viral-

ity. This principle addresses the bias that may be introduced in measuring

the user and content factors as we do not use user-item exposure. To do this,

the principle requires the evidence supporting the factors would not be biased

by a single user or item. That is,

• A viral item x should attract propagation instances across propagating

users and across infected users. This prevents x from being biased by a

single (or very few) user propagating or adopting x.

• A viral user should get propagation instances across items she propagates

and across users she propagates items to. In other words, it not be the

case that an (or very few) item or a (very few) user adopting u’s items

multiple times making u appears to be viral.

• A susceptible user should be easily infected across items and across users

propagating items. This again prevents the susceptible user v from being

biased by a single (or very few) item or a single (or very few) user infecting

v with the item multiple times.

4.4.2 Static Mutual Dependency & Unbiased Model

We now present the static Mutual Dependency & Unbiased Model (mdu

model), for measuring virality and susceptibility as follows.

• We let each propagation instance (u,x, v) represents a unit of propaga-

tion work.

• We assume that a user’s virality is evenly distributed over all his prop-

agation instances. A user’s virality is then proportional to the number

of propagation instances where the user plays the role of propagating
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user. Similarly, a user’s susceptibility is proportional to the number of

propagation instances where the user plays the role of infected user; and

an item’s virality is proportional to the number of propagation instances

involving the item.

• To capture the mutual dependencies between user and item factors, we

measure a factor by weighting each propagation instance with the inverse

of other factors.

• A user’s virality is proportional to the uniformity of distributions of her

propagation instances over items she propagates, and over people she

propagates the items to. Similarly, an items’ virality is proportional

to the uniformity of distributions of its propagation instances over users

propagating the item, and over the users infected with the item. A user’s

susceptibility is proportional to the uniformity of distributions of her

propagation instances over items she is infected with, and over the users

propagating items to her. The above model feature is to be compliant

with the unbiasness principle.

Inmdumodel, we use Vmdu(u), Smdu(v), and Imdu(x) to denote the virality
of user u, susceptibility of user v, and virality of item x respectively. We

formalize the above assumptions into the following model equations:

Vmdu(u) = [∑
v

∑
x

p(u, v, x)(1 − Imdu(x)
2p(⋅, ⋅, x) −

Smdu(v)
2p(⋅, v, ⋅))]⋅

⋅ [H(Ð→Dpro
item(u)) ⋅H(Ð→Dpro

inf(u))]
β

(4.9)

Imdu(x) = [∑
u

∑
v

p(u,x, v)(1 − Vmdu(u)
2p(u, ⋅, ⋅) −

Smdu(v)
2p(⋅, v, ⋅))]⋅

⋅ [H(Ð→Ditem
pro (x)) ⋅H(Ð→Ditem

inf (x))]
β

(4.10)
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Smdu(v) = [∑
x

∑
u

p(u, v, x)(1 − Imdu(x)
2p(⋅, ⋅, x) −

Vmdu(u)
2p(u, ⋅, ⋅))]⋅

⋅ [H(Ð→Dinf
pro(v)) ⋅H(Ð→Dinf

item(v))]
β

(4.11)

In the right hand side of Equations 4.9, 4.10, and 4.11, the first part

captures the mutual dependency among the user and item factors, and second

part captures the unbiasness of the three factors. β ≥ 0 is predefined parameter.

We use β to moderate the weight of the unbiasness of the factors relative to

their mutual dependency.

In Equation 4.9,
Ð→
Dpro

item(u) is the distribution of user u’s propagation in-

stances over all items that u propagated. For example, if u only propagated

x1 and x2, then we have
Ð→
Dpro

item(u) = (p(u,x1, ⋅)
p(u, ⋅, ⋅) ,

p(u,x2, ⋅)
p(u, ⋅, ⋅) ).

Ð→
Dpro

inf(u) is the

distribution of user u’s propagation instances over all users that u propagated

item(s) to. For example, if u only propagated item(s) to v1, v2, and v3, then

Ð→
Dpro

inf(u) = (p(u, ⋅, v1)p(u, ⋅, ⋅) ,
p(u, ⋅, v2)
p(u, ⋅, ⋅) ,

p(u, ⋅, v3)
p(u, ⋅, ⋅) ). The unbiasness of virality of u

then measured by entropies, E(Ð→Dpro
item(u)) and E(Ð→Dpro

inf(u)).
Similarly, we have

Ð→
Ditem

pro (x) and Ð→Ditem
inf (x) are the distributions of item x’s

propagation instances over all x’ propagating users and over all users infected

with x respectively. These distributions’ entropies are used to measure the un-

biasness of virality of item x in Equation 4.10. In Equation 4.11,
Ð→
Dinf

item(v) and
Ð→
Dinf

pro(v) are the distributions of user v’s propagation instances over all items

that v is infected with and over all users propagating item(s) to v respec-

tively, and these distributions’ entropies are used to measure the unbiasness of

susceptibility of user v.

Since the entropies of different distributions generally have different scales.

We use the normalized entropies in the right hand sides of Equations 4.9, 4.10,

and 4.11. For a distribution
Ð→
D, H(Ð→D) is normalized entropy of

Ð→
D which
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measures the uniformity of
Ð→
D is. H(Ð→D) is defined as follows.

H(Ð→D) = δ + (1 − δ) E(Ð→D)
lndim(Ð→D) (4.12)

where δ ∈ (0,1); dim(Ð→D) is the dimension of
Ð→
D; and E(Ð→D) is the entropy of

Ð→
D. Obviously we have, E(Ð→D) ∈ [0, lndim(Ð→D)], making H(Ð→D) ∈ [δ,1].

H(Ð→Dpro
item(u)) and H(Ð→Dpro

inf(u)) equals to δ when u propagated only one

item and when u propagated item(s) to only one user respectively. Similarly

H(Ð→Ditem
pro (x)) and H(Ð→Ditem

inf (x)) equals to δ when x is propagated by only one

user and when x is infected with by only one user respectively. H(Ð→Dinf
item(v))

and H(Ð→Dinf
pro(v)) equals to δ when v is infected with only one item and when

there is only one user propagates item(s) to v. Moreover, it is expected that a

user (an item) ever propagated (be propagated) has some degree of virality, and

that a user ever be infected with item(s) to have some degree of susceptibility.

We therefore set δ to a positive value.

Special cases. In the case β = 0, the unique solution for users’ virality

and susceptibility and items’s virality is
p(u, ⋅, ⋅)

2
,
p(⋅, v, ⋅)

2
and

p(⋅, ⋅, x)
2

for all

users u, v and all items x respectively. In other words, when β = 0, the mdu

model degenerates to Propagation Count, Infection Count, and Popular-

ity baselines for user virality and susceptibility and item virality respectively.

Similarly, when β >> 1, the mdu model shares some similarity with Fan-out

and Viral Coefficient baselines for user and item virality.

4.4.3 Temporal Mutual Dependency & Unbiased Model

We now extend the mdu model further to a temporal model, called the Tem-

poral Mutual Dependency & Unbiased Model (t-mdu model). Simi-

lar to extending the static baselines, the main idea here is to use temporally

weighted variants of number of propagation instances, and those of distribu-

tions of propagation instances over users and items. That is, at time t, the
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temporal susceptibility Smdu,t(v) of user v is computed from users’ temporal

virality Vmdu,t(u) and items’ temporal virality Imdu,t(x) as follows.

Smdu,t(v) = [∑
x

∑
u

pt(u, v, x)(1 − Imdu,t(x)
2pt(⋅, ⋅, x) −

Vmdu,t(u)
2pt(u, ⋅, ⋅))]⋅

⋅ [H(Ð→Dinf
pro,t(v)) ⋅H(Ð→Dinf

item,t(v))]
β

(4.13)

where
Ð→
Dinf

pro,t(v) and Ð→Dinf
item,t(v) is the temporally weighted versions of

Ð→
Dinf

pro(v)
and
Ð→
Dinf

item(v) at time t respectively. For example, if up to time t, only u1 and

u2 propagated item(s) to v then we have
Ð→
Dinf

pro,t(v) = (pt(u1, v, ⋅)
p(⋅, v, ⋅) ,

pt(u2, v, ⋅)
p(⋅, v, ⋅) ).

If up to time t, v is only infected with items x1, x2, and x3 then we have

Ð→
Dinf

item,t(v) = (pt(⋅, v, x1)
pt(⋅, v, ⋅) ,

pt(⋅, v, x2)
pt(⋅, v, ⋅) ,

pt(⋅, v, x3)
pt(⋅, v, ⋅) ).

Similarly, user virality and susceptibility of u are defined as follows.

Vmdu,t(u) = [∑
v

∑
x

pt(u, v, x)(1 − Imdu,t(x)
2pt(⋅, ⋅, x) −

Smdu,t(v)
2pt(⋅, v, ⋅))]⋅

⋅ [H(Ð→Dpro
item,t(u)) ⋅H(Ð→Dpro

inf,t(u))]
β

(4.14)

Smdu,t(v) = [∑
x

∑
u

pt(u, v, x)(1 − Imdu,t(x)
2pt(⋅, ⋅, x) −

Vmdu,t(u)
2pt(u, ⋅, ⋅))]⋅

⋅ [H(Ð→Dinf
pro,t(v)) ⋅H(Ð→Dinf

item,t(v))]
β

(4.15)

where
Ð→
Dpro

item,t(v), Ð→Dprof

inf,t(v), Ð→Dinf
item,t(v), and

Ð→
Dinf

pro,t(v) is the temporally

weighted versions of
Ð→
Dpro

item(v), Ð→Dpro

inf(v), Ð→Dinf
item(v) and Ð→Dinf

pro(v) at time t re-

spectively.

4.4.4 Model Learning

We employ the following iterative computation method for computing

users’ and items’ factors in the mdu and t-mdu models.
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For the mdu model, starting from a random initialization of these factors,

we iteratively update each of these factors using the others based on their

inter-relationship as defined in Equations 4.9, 4.10, and 4.11. This process

repeats until we reach a predefined maximum number of iterations or when

the values converge. Similarly, we can compute the scores in t-mdu model

using the same iterative method and the corresponding updating equations of

the model.

It can be shown that the right hand sides of Equation 4.9, 4.10, and 4.11

form a contraction map [253] in the following subspace

X = ∏
x∈X

[0,p(⋅, x, ⋅)] × ∏
u∈Upro

[0,p(u, ⋅, ⋅)] × ∏
v∈Uinf

[0,p(⋅, ⋅, v)]

where∏ is the Cartesian product of sets. This means if we initialize Imdu(x),
Vmdu(u), and Smdu(v) by any random value in [0,p(⋅, x, ⋅)], [0,p(u, ⋅, ⋅)], and
[0,p(⋅, ⋅, v)] respectively, the above iterative computation method for the mdu

model always converges to a unique solution, independent of the initialized

values. Similarly, we can prove that the iterative computation method for

t-mdu model converges to a unique solution.

Implementation notes. We empirically found that the following initial-

ization of the factors results in the iterative computation method converges

much faster.

• Initializing user u’s virality by the Propagation Count or Temporal

Propagation Count models, i.e., Vpc(u) or Vpc,t(u)
• Initializing user v’s susceptibility by the Infection Count or Temporal

Infection Count models, i.e., Sic(v) or Sic,t(v)
• Initializing item x’s virality by the Popularity or Temporal Popular-

ity models, i.e., Ip(x) or Ip,t(x)
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4.5 Incremental Model

In both mdu and t-mdu models, the iterative computation method used for

learning the factors may require many iterations incurring significant compu-

tation overheads. We therefore introduce in this section an incremental model

for working with data streams.

4.5.1 Overview of the Incremental Approach

The main idea of incremental method is to first find an assignment of the whole

amount propagation work to users (without involving the items). We are inter-

ested in the assignment that can be incrementally updated. We then correct

this biased assignment by using only one iteration of the iterative computation

method. At each time step t, our incremental method includes the following

steps.

Step 1: Incremental updating propagation rank of users. In this

step, we assign the whole amount of propagation work carried by all propa-

gation instances to the users only. We assign to each user u ∈ Upro
t a Propa-

gation Rank score π
pro
t (u) based on propagation instances wherein the user

propagated item(s) to other users. Similarly, we assign to each user v ∈ U inf
t

a Propagation Rank score π
inf
t (v) based on propagation instances wherein

the user is infected with item(s). We use π
pro
t (u) to denote propagation rank

of u when u plays the role of propagating user, and use π
inf
t (v) to denote

propagation rank of v when v plays the role of infected user. We aim to find

the ranks that are unit normalized, i.e., ∑
u∈Upro

t

π
pro
t (u) + ∑

v∈Uinf
t

π
inf
t (v) = 1, and

can be updated incrementally. For a clear presentation, we will describe the

rank’s definition and its incremental update in Section 4.5.3.

Step 2: Computing users’ virality and susceptibility and items’

virality using the Propagation Rank. In this step, our approach to com-

pute user and item factors using propagation rank is motivated by the following
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principles, which are adaptations of the mutual dependency principle (see Sec-

tion 4.4).

• A viral content item is an item that can be propagated from low propa-

gation rank propagating users to low propagation rank infected users.

• A viral user is a user who propagates less viral items to low propagation

rank infected users.

• A susceptible user is a user who can be infected with less viral items that

are propagated to her by less viral users.

Once we have obtained the Propagation Rank of the users, we compute

item virality similar to the mdu and t-mdu models. That is,

Iinc,t(x) = [∑
u

∑
v

pt(u,x, v)(1 − πpro
t (u) − πinf

t (v))]⋅
⋅ [H(Ð→Ditem

pro,t(x)) ⋅H(Ð→Ditem
inf,t(x))]

β

(4.16)

This is followed by user virality as follows.

Vinc,t(u) = [∑
x

∑
x

pt(u, v, x)(1 − Iinc,t(x)
2p(⋅, ⋅, x) − πinf

t (v))]⋅
⋅ [H(Ð→Dpro

item,t(u)) ⋅H(Ð→Dpro

inf,t(u))]
β

(4.17)

Finally, we can compute user susceptibility scores using the following equation,

which is similar to Equation 4.15.

Sinc,t(v) = [∑
x

∑
u

pt(u, v, x)(1 − Iinc,t(x)
2pt(⋅, ⋅, x) −

Vinc,t(u)
2pt(u, ⋅, ⋅))]⋅

⋅ [H(Ð→Dinf
pro,t(v)) ⋅H(Ð→Dinf

item,t(v))]
β

(4.18)
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4.5.2 Propagation Rank

We now define the propagation rank of a user. The propagation rank is es-

sentially the Pagerank of users in a specially constructed propagation graph as

follows.

Propagation graph. At a time t, the propagation graph Gd
t is a weighted

bipartite multigraph where the nodes are U
pro
t ∪U

inf
t . As there may be users

belonging to both U
pro
t and U

inf
t , a user may have two corresponding nodes

in Gd
t , one for propagating user role and another for infected user role. For

each user pair (u, v), u ∈ Upro
t and v ∈ U inf

t , if u propagated item x to v, then

we have in Gd
t an edge eu,x,v that joins u and v. The weight of this edge is

pt(u,x, v). Note that there may more than one edge between a pair of users u

and v as u may propagate many items to v.

Figure 4.2 shows an example of a propagation graph constructed from the

provided propagation logs. In this example, u1 propagated both x1 and x2 to

v1. Hence, in the constructed propagation graph, there are two edges joining u1

and v1. These edges have weight pt(u1, x1, v1) and pt(u1, x2, v1) respectively.
The remaining edges are weighted similarly.

Ranking on propagation graph. The propagation graph Gd
t represents

the relationship between the users propagating items and the users infected

with items, regardless of the items. We therefore associate each edge from u

to v (or vice versa) with an amount of propagation work that u assigns to v

(or v assigns to u) to complete. The PageRank vector of Gd
t hence can be

considered as the distribution of total amount of propagation work (measured

by the propagation instances that are used to construct Gd
t ) over all the nodes

in Gd
t . In other words, the pagerank score of every node in Gd

t is its propagation

rank as defined below.
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u x v pt(u,x, v)
u1 x1 v1 5.2
u1 x2 v1 3.3
u1 x2 v2 4
u2 x1 v1 2.7
u2 x1 v2 3
u2 x2 v2 1.5

(a)

u1

u2

v1

v2

5.2
3.3

2.7

3

4

1.5

(b)

Figure 4.2: Illustrative example of (a) propagation logs, and (b) the propaga-
tion graph constructed from the logs.

π
pro
t (u) = c

∣Upro
t ∣ + ∣Upro

t ∣ + (1 − c) ∑v∈Uinf
t

pt(u,x, v)
pt(u, ⋅, ⋅) π

inf
t (v)

π
inf
t (v) = c

∣Upro
t ∣ + ∣Upro

t ∣ + (1 − c) ∑u∈Upro
t

pt(u,x, v)
pt(⋅, ⋅, v) π

pro
t (u)

where c ∈ (0,1) is the “damping factor”, which is typically set to 0.15.

4.5.3 Incremental Computation of Propagation Rank

Approximating propagation rank by random walks. To compute the

propagation rank scores incrementally, we employ the Monte Carlo methods

[13] by conducting random walks on Gd
t as follows. Each random walk starts

from a node of Gd
t for a maximum length of L for a small L (e.g., 20). We

therefore have ∣Upro
t ∣ + ∣U inf

t ∣ random walks. At each step of the random walk,

we stop the walk with probability c, and otherwise traverse an edge randomly

selected from all the edges of the current node. The probability that an edge is

chosen is proportional to the weight of the edge. For each node n in Gd
t , we use
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Vt(n) to denote the number of times n is visited by all the random walks, and

let Vt(⋅) = ∑
n′∈Upro∪Uinf

Vt(n′). Then, it is proven in [13, 14] that
Vt(n)
Vt(⋅) heavily

concentrates around its expectation which is the pagerank score of node n. In

other words, for each u ∈ Upro
t , πpro

t (u) is very well approximated by
Vt(u)
Vt(⋅) .

Similarly, for each v ∈ U inf
t , πinf

t (v) is very well approximated by
Vt(v)
Vt(⋅) .

Sampling random walks in amortized linear time. In unweighted

graphs as studied in the previous works [63, 13, 14], the time complexity for

sampling an edge in each step of the random walks is constant. However, in

our case, since Gd
t is weighted graph, a naive method for sampling the edge

will have the complexity of O(m) where m is the number of edges of the

current node of the step. This complexity is very high as we have to perform

the sampling at each node of Gd
t for a large number of times. Furthermore,

the larger m is, the more times we will have to perform the sampling at the

node as it is visited by many more walks. We therefore make use of the alias

sampling method [220] which allows to sample edges in amortized constant

time. In this method, we first build for each node in Gd
t an “alias” of the

node’s edges. Then, based on this alias, an edge can be sampled in constant

time, yet satisfying the probability that an edge is sampled is proportional to

the edge’s weight. The cost for building an alias is O(m), making the cost for

sampling (many) edges of the current node is amortized constant. This leads

to the over all cost for sampling the random walks is amortized linear.

Incremental estimation of propagation rank. In our temporal weight-

ing scheme (see Section 4.3.3), when given a new propagation instance (u,x, v),
only the weights of edges of u and v may change, while other edges in Gd

t re-

main unchanged. Hence, only random walks that visit u or v are affected by

the new propagation instance. We first remove all the random walks that visit

u or v. We then re-conduct those walks from their start nodes, and update

the visit counts and the approximation of propagation rank accordingly.
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4.5.4 Cost Analysis

We now examine the cost of updating the approximation for the propagation

rank vector presented above. We use Wt(u), Wt(v), and Wt(u∣∣v) to denote

the number of random walks on Gd
t that visit u, v, and visit u or v respectively.

We then have to re-conduct Wt(u∣∣v) walks that visits u or v to update the

approximation. Obviously, we have

Wt(u∣∣v) ≤Wt(u) +Wt(v) ≤ Vt(u) +Vt(v) = (πpro
t (u) + πinf

t (v))Vt(⋅) (4.19)

Due to the monotonicity of expectation, we have

E[W (u∣∣v)] ≤ E[(πpro
t (u) + πinf

t (v))V(.)] =
= E[πpro

t (u) + πinf
t (v)] ⋅E[V(⋅)]

(4.20)

As shown in [136, 14], in a power law graph, pagerank score and degree of

nodes follow the power law distributions with the same exponent θ ∈ (0,1).
That is, if πj

t is the jth largest entry of propagation rank vector πt, then we

have

π
j
t ∼ Cj−θ (4.21)

where C is the normalization constant such that
N

∑
j=1

π
j
t = 1 where N is the

number of nodes in graph, N = ∣Upro
t +U

inf
t ∣. Therefore,

1 = N

∑
j=1

Cj−θ = CN1−θ
N

∑
j=1

[ 1
N
( j
N
)−θ] ≈ CN1−θ ∫

1

0
x−θdx =CN1−θ

1 − θ

Hence, C ≈ 1 − θ

N1−θ
, and therefore

E[πt(u) + πt(v)] ≤ E[πt(u)] +E[πt(v)] ≤ 2 ⋅ π1
t ≈ 2 1 − θN1−θ

(4.22)

Also, since at each random step, we stop the walk with probability c, the length

l of each random walk has expectation E[l] = 1/c. Then, we have
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E[V(⋅)] = NE[l] = N
ǫ

(4.23)

From Equations 4.20, 4.22, and 4.23, we have

E[W (u∣∣v)] ≈ 2 1 − θ
N1−θ

⋅
N

c
= 2 1 − θ

cN−θ
(4.24)

This means that in each incremental update, we only have to re-conduct a

small proportion of existing random walks.

Implementation notes. In practice, each instance propagation does not

significantly change the user and item factors. Moreover, the propagation

instances of viral or susceptible user or of viral items often occur within a

short time window, leading to a large overlap between the sets of walks to be

re-conducted. It is therefore more practical not to perform the updating for

every new propagation instance, but after accumulating them for some short

time window.

4.6 Experimental Evaluation

In this section, we evaluate the proposed models in three experiments. Firstly,

we compare the user and item factors obtained by the different models. We

examine some case examples to better illustrate the differences between the

models. Secondly, we evaluate the accuracy of the models. Finally, we evaluate

the incremental model by speedup and accuracy.

4.6.1 Dataset

Data collection. The dataset used in this work was collected from Twitter

by a snowball sampling based crawler. We first manually selected a set of

highly followed Twitter users in Singapore. They include the accounts of local

sport and entertainment celebrities, political parties, politicians, mass media
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and bloggers, etc.. We expanded this set of users by adding more Singapore-

based users1 that are at most two hops away from some user in the original set.

Using Twitter Stream APIs2, we then obtained all tweets and retweets by the

users in the set. In this work, we use all tweets in October 2014 to simulate a

live tweet stream. This set includes 35,491,260 tweets and retweets posted by

525,632 users.

Item adoption and propagation. Like in Chapter 3, we again use

hashtag as an item. We consider a user u adopts a hashtag when u posts an

original tweet containing the hashtag. Also, if user v retweets an original tweets

from u that contains a hashtag h, u is said to propagate h to v. We filtered

away hashtags shorter than 2 characters excluding the # symbol. These short

hashtags do not have clear semantics and are often the prefix of other truncated

hashtags due to 140 characters length constraint. We also excluded hashtags

longer than 20 characters as such hashtags are unpopular.

Figure 4.3 (a) shows that the dataset is very large with more than 140K

users propagating at least one item, more than 400K users infected with some

item, and 120K items being propagated. Figure 4.3 (b) shows the distribu-

tions of number of distribution instances over users and items in log-log scale.

The figure shows that the dataset has power law-like distributions with most

users propagated (or infected with) only a few items, and most of items are

propagated (infected) by only a few users.

4.6.2 Experiment Settings

In our experiments, we set each time step to one hour, or 743 time steps

in the month of October 2014. For temporal models, the temporal weight

1

ǫ
is set to 21/24, implying that each adoption/ propagation instance decays

by a half after one day, or almost completely decayed after 5 days (or 120

hours) as suggested in [236]. For both static and temporal mutual dependency

1A Twitter user is considered Singapore-based user if her profile location is Singapore
2https://dev.twitter.com/streaming/overview

74



CHAPTER 4. EFFICIENT ONLINE MODELING OF VIRALITY AND SUSCEPTIBILITY IN

CONTENT PROPAGATION

#propagating users 143,169
#infected users 419,428
#items 123,542
#propagation instances 2,824,494
#time steps 743
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Figure 4.3: (a) Statistics of the experimental dataset, and (b) Distributions of
propagation instances over users and items

& unbiased models, the weight β is empirically set to 2. In approximating

propagation rank vector by random walks, we use parameters that are used

in previous works [63, 13, 14]. That is, to set “damping factor” c to 0.15, the

maximum length of each random walk L to 20. Lastly, we set the time window

for updating the approximation to 15 seconds.

For convenience, we use summary in Table 4.2 the acronyms used to denote

different models for user virality and susceptibility and item virality.

4.6.3 Score Analysis

Similarity between models. We now compare the models in measuring user

and item factors. For each model and at each time step, we compute Pearson

Correlation coefficient between the score ranks of a pair of models. Tables 4.3

(a), (b), and (c) show the average the Pearson Correlation Coefficients (PCC)

between different models across all time steps of the dataset. We arrive at the

following findings. First, as expected, the models of the same type, i.e., static
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Table 4.2: Acronyms for different models for user virality and susceptibility
and item virality

Acronym Model Target factor
pc Static Propagation Count User virality
t-pc Temporal Propagation Count User virality
fo Static Fan-Out User virality
t-fo Temporal Fan-Out User virality
ic Static Infection Count User susceptibility
t-ic Temporal Infection Count User susceptibility
p Static Popularity Item virality
t-p Temporal Popularity Item virality
vc Static Viral Coefficient Item virality
t-vc Temporal Viral Coefficient Item virality
mdu Static Mutual Dependency & Unbiased Model All three factors
t-mdu Temporal Mutual Dependency & Unbiased Model All three factors
inc Incremental Model All three factors

or temporal, are quite correlated one with each other (with PCC ≤ 0.50) but not
always correlated with models of other types. Second, count based baselines

(pc, t-pc, p and t-p) and proportion based baselines (fo, t-fo, vc and t-vc)

are not highly correlated as the correlation coefficients between them are not

high. Thirdly, the mdu and t-mdu are similar to but not the same with

count based baselines pc and t-pc. This is expected as count based models

are special cases of the mutual dependency & consistency models. Lastly, the

t-mdu model and incremental model are very similar in ranking users and

items by their virality (susceptibility).

Temporal-MDU vs Incremental Model: top users and items. We

further evaluate the similarity between t-mdu and inc models by comparing

their top K viral users, susceptible users, and viral items. Figure 4.4 shows the

average Jaccard coefficient of top K users/items over all the time steps with

K varied from 5 to 100. The figure clearly shows that the tops K’s of the two

models are consistently highly similar (≥ 0.9) across different K’s. This means

t-mdu and inc models produce almost the same top viral (susceptible) users

and items.

Dynamics of user and item factors. We first study the dynamics of

user/item factors by examining the changes to the top 10 users/items returned

by different models. We use Jaccard coefficients to measure the difference of
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Table 4.3: Average Pearson rank correlation coefficients between scores for
(a) users’ virality and (b) susceptibility, and (c) items’ virality obtained by
different methods.

(a)

pc t-pc fo t-fo mdu t-mdu inc

pc 1 0.50 0.55 0.43 0.91 0.60 0.60
t-pc - 1 0.18 0.19 0.50 0.97 0.97

fo - - 1 0.82 0.46 0.24 0.24
t-fo - - - 1 0.40 0.25 0.25
mdu - - - - 1 0.63 0.62
t-mdu - - - - - 1 0.99

(b)

ic t-ic mdu t-mdu inc

ic 1 0.49 0.82 0.56 0.56
t-ic - 1 0.46 0.97 0.97

mdu - - 1 0.58 0.58
t-mdu - - - 1 0.99

(c)

p t-p vc t-vc mdu t-mdu inc

p 1 0.83 0.26 0.20 0.91 0.86 0.87

t-p - 1 0.41 0.41 0.80 0.93 0.95

vc - - 1 0.93 0.14 0.30 0.32
t-vc - - - 1 0.13 0.30 0.31
mdu - - - - 1 0.90 0.87

t-mdu - - - - - 1 0.88
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Figure 4.4: Average Jaccard coefficient between top K users and items re-
turned by the t-mdu and inc models across time steps.

top 10 users/items between the initial ranks and ranks obtained after one hour

and after one day. Figures 4.5 (a), (b), and (c) show that small changes to top

10 users/items occur after one hour, but the changes are more drastic after

one day. This suggests that it is important to create temporal models to track
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Figure 4.5: Dynamicity of different models as measured by the average Jaccard
coefficients between (a) top viral users, (b) top susceptible users, and (c) tops
viral items after one hour and one day.

the recent factor values.

4.6.4 Case Examples

We now show the differences among the models using some examples of their

ranking results.

Viral user example. Figure 4.4 (a) shows the profiles of two users having

very different number of propagation instances. User-a is a entertainment

celebrity, and user-b is a sport fan club. user-b has the number of propagation

instances (pc) and fan-out (fo) 5 and 10 times respectively higher than those

of user-a. However, users-a propagated items more diversely (as measured

by H(Ð→Dpro
item)). Hence, in the mdu model, user-b’s virality score is only 4

times higher than user-a. Moreover, in the current time step (t = 360), user-a
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Table 4.4: Case examples of (a) viral users, (b) susceptible users, and (c) viral
items. #ni is the number of new propagation instance in the time step.

(a) Profile of example viral users at time t = 360

dc t-dc fo t-fo H(
Ð→
D

pro
item

)H(
Ð→

D
pro
item,t

)H(
Ð→

D
pro

inf
)H(

Ð→

D
pro

inf,t
)#ni mdu inc t-mdu

user-a 31,120 2,786.0 42.9 34.6 0.87 0.86 0.96 0.92 227 18,772.2 1,568.6 1,585.4
user-b 157,320 5,043.9 561.9 403.7 0.77 0.59 0.96 0.89 124 73,175.0 1,228.7 1,256.8

(b) Profile of example susceptible users at time t = 360

ic t-ic H(
Ð→

D
pro
item

)H(
Ð→

D
pro
item,t

)H(
Ð→

D
pro

inf
)H(

Ð→

D
pro

inf,t
)#ni mdu inc t-mdu

user-c 398 6,224,299.4 0.7 0.7 0.9 0.9 11 119.5 52.3 61.9
user-d 878 4,006,310.0 0.8 0.8 0.9 0.8 1 308.1 36.3 41.3

(c) Profile of example viral items at time t = 360

dc t-dc fo t-foH(
Ð→

Ditem
pro )H(

Ð→

Ditem
pro,t)H(

Ð→

Ditem
inf )H(

Ð→

Ditem
inf,t)#ni mdu inc t-mdu

item-x 870 837.7 1.5 1.5 0.9 0.9 1.0 1.0 600 389.2 593.6 435.0
item-y 53,059 447.2 2.1 1.4 0.9 0.9 0.8 0.8 36 20,886.5 208.2 172.5

generates many more propagation instances than user-b and also propagates

more diversely (as measured by H(Ð→Dpro
item,t)). This suggests that user-a is

recently more viral than user-b. The t-mdu model therefore reasonably assigns

higher virality score to user-a.

Susceptible user example. Similarly, in Figure 4.4 (b), user-c is a news

aggregator-like account that actively retweets from Korean music celebrities,

and user-d is a sport player account. Historically, user-d has been often infected

with items more diversely. Hence, it is reasonable that user-d is assigns a higher

susceptibility score by the static models. However, in the current time step

(t = 360), user-c is infected with many more items propagated by different

users. The t-mdu model therefore reasonably assigns higher susceptibility

score to user-c.

Viral item example. Lastly, in Figure 4.4 (c), item-x is a hashtag people

use to tweet about an entertainment event, and item-y is a hashtag indicating

that a Twitter user is willing to follow other users. The figure shows that

item-y was highly propagated in the past, while item-x is much more diversely

propagated by more users in the recent time step (t = 360). It is therefore

reasonable that item-y is assigned much higher virality scores by other models,

while item-x is assigned higher virality score by the t-mdu model.
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Figure 4.6: Average proportion of random walks need to be re-conducted in
updating the propagation rank vector.

4.6.5 Accuracy Evaluation

We now evaluate the accuracy of different models. Since there is no ground

truth for viral (or susceptible) users, and viral items, at every time step in the

dataset, we use retweets observed in the next time step for accuracy evaluation.

Evaluating Methodology. Prediction of high likelihood of retweet

and high retweet count are two possible tasks to evaluate the models. As

the likelihood of retweet requires knowledge about users reading tweets which

is usually not available, we employ retweet count prediction in this experiment.

Since we defined propagation based on retweets, we expect that, at each

time step, top viral and susceptible users and top viral items are the ones gen-

erating most retweets in the next time step. Moreover, since each retweet is

jointly contributed by the user and item factors, we evaluate the joint contri-

bution of future retweets by the top viral and susceptible users and top viral

items. As baseline models measure only a single user/item factor, we combine

them so as to perform the prediction task using three factors together.

At any time step t, for each model or combination of baselines, we count the

number of retweets in time step t + 1 by top K viral users, top K viral items,

and/or top K susceptible users (K ∈ {10,20,⋯,100}). We then normalize

the count by the total number of retweets in the time step t + 1 to get the
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proportion of retweets generated by the tops K users/items. The model with

higher proportions across the time steps is therefore more accurate in this

prediction task.

Results. Figure 4.7 shows the average proportion of retweets in the next

time step returned by different models and combinations of baseline models

over all time steps, and with different values of K. In the figure, pc & ic &

p denotes the combination of baseline models where user virality is measured

by pc model, user susceptibility is measured by ic model, and item virality is

measured by p model. Other combinations of baseline models are named in a

similar manner.

The results yield the following consistent observations. Firstly, the combi-

nations of count based baselines (pc, t-pc, p and t-p) only outperform the

combinations with the proportion based baselines (fo, t-fo, vc and t-vc). This

suggests that actual numbers of propagation instances are better indicators of

user virality and susceptibility and item virality. Secondly, most of temporal

models and combinations of temporal baselines outperform the corresponding

static models and combinations of static baselines. This shows the effective-

ness of the temporal weighting scheme used in the temporal models. Third,

our proposed mutual dependency & unbiased models significantly outperform

combinations of the baselines in both variants: static and temporal variants.

Lastly, as we expected, the incremental model (inc) shares similar performance

as t-mdu, and significantly outperforms all other models and combinations of

baselines.

4.6.6 Incremental Model Evaluation

Previous experiments presented above show that the inc model is as effective

as the t-mdu model. We now evaluate the speedup of inc compared with

the t-mdu model, and the amount of work in each incremental update in inc

model.
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Figure 4.7: Average proportion of retweets in next time step that are generated
by either top K viral users, top K susceptible users, or top K viral items
returned by different models.

Speedup ratio. We found that on average that the iterative computation

method used in t-mdu model needs more than 10 iterations to reach conver-

gence. This means that, the computation of the inc model is more than 10

times faster than that of the t-mdu model as incmodel uses only 1 iteration.

Incremental updating cost. We examine actual computational cost

for each time we update the Pagerank approximation. Recall that we do

not update the approximation after each single propagation instance comes,

but after a short time window of 15 seconds. Figure 4.6 shows the average

proportion of the random walks we need to re-conduct in different bins of

total number of the walks. The figure clearly shows that, as we expected, the

proportion is quite high when the total number of walks is small, and is much

lower when the number of walks increases. The fact that the proportion in

the first bin (when the total number of walks is less than 10K) is smaller than

in the second bin (when the total number of walks is from 10K to 20K) is

also reasonable. We found that, in most of the cases in the second bin, the

propagation graph is more dense, and hence each user is generally visited by

more random walks. Therefore, each new propagate instance requires us to re-

conduct more walks. However, in other bins, the propagation graph is larger

but less dense, making the proportion of walks we have to re-conduct drops
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drastically. On average, there is less than 5% of walks need to be re-conducted.

4.7 Chapter Summary

In this chapter, we proposed static, temporal, and incremental user and item

factor models for joint modeling of user virality, user susceptibility, and item

virality from large propagation data stream. Our models work in more practi-

cal settings than many other existing models wherein user-exposure-to-content

item is not observed and users may have multiple adoptions and infections with

the same item. Our proposed models consider mutual dependencies between

factors as well as the unbiasness of the factor scores. We conducted a series of

experiments to show that our models are more intuitive and outperforms the

baselines. We also showed that the incremental model is much more computa-

tionally efficient than the temporal models while still returns similar results.
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Chapter 5

Topic-specific Virality and

Susceptibility in Content

Propagation

In this chapter, we study the problem of modeling user virality, user suscepti-

bility, and content virality specific to topics. We discuss the motivation for this

work in Section 5.1. In Section 5.2, we state our research objectives and high-

light our contributions. Section 5.3 provides the justifications that the virality

and susceptibility factors should be modeled at the topic level. We describe

our proposed modeling framework and its associated models in Section 5.4.

We present the experiments for evaluating the proposed models on real and

synthetic datasets in in Sections 5.5 and 5.6 respectively. Finally, we conclude

the chapter in Section 5.7.

5.1 Motivation

Past studies have shown that some topics are viral, e.g., political and enter-

tainment events [202], and disasters [217], etc., while there are also many

other non-viral topics [258, 212, 83]. Previous works have also suggested

that both user virality and user susceptibility are topic specific: users are
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Figure 5.1: Example scenario of topic-specific virality and susceptibility in
microblogging

viral/ susceptible on some topics but not viral/ susceptible on other topics

[204, 228, 149, 105, 48, 203, 83]. Existing models however ignore content top-

ics (e.g., [74, 33, 206, 187, 48, 87, 22, 84, 1, 11, 226]). Such topic-independent

approach may also lead to inaccurate modeling results.

Consider the example scenario of propagation in Twitter shown in Fig-

ure 5.1. Here, content are tweets, and they are propagated through retweets.

A topic-independent model would conclude that (a) u1 is more viral than u3

since the former gets more retweets (i.e., 7) than the latter (i.e., 6), and (b) v3

is more susceptible than v1 since the former retweets more than the latter (7

and 5 respectively). However, on politics topic, (i) u3 receives retweets from

all the followers, and v1 retweets all the followees’ tweets; while (ii) u1’s tweets

are only retweeted by v1, and v3 retweets only u3’s tweets. Hence, we may con-

clude that, for politics topic u3 is more viral than u1 and v1 is more susceptible

than v3.
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5.2 Research Objective and Contributions

In this work, we aim to jointly model user virality, user susceptibility, and

content virality specific to topics. Defined at the topic level, these factors can

be used to perform prediction of content propagation more effectively.

To meet the objectives, we have to address a few challenges. Firstly, both

content propagation and user-content exposure instances are required for mod-

eling factors specific to topics. However, as mentioned in Chapter 4, we could

only observe the adoption and propagation of content by microblogging users,

but not their exposure to content. Secondly, microblogging content are known

to be very noisy and their topics are not clear. For example, [21, 243] report

that as many as 75% of tweets do not carry meaningful topics. Thirdly, the

inter-dependencies among the factors remains a challenge since we want to

consider the factors at topic level which is not addressed in Chapters 3 and 4.

Lastly, the lack of ground-truth information is also still a challenge for the

same reason.

We address the first challenge by inferring user-content exposure based on

the chronological order in microblogging users’ timeline and their following

network. To address the second challenge, we devise a multi-steps heuristic

method for removing noise and identifying topics of the content, coupling with

the state-of-the-art topic model for microblogging content. For the third chal-

lenge, we construct a propagation tensor representing exposing users - content

- exposed users relationship (i.e., who exposed what item(s) to whom), and

propose a factorization framework on this tensor to simultaneously derive the

three topic-specific behavioral factors. We develop two factorization models

base on the framework so as to learn the behavioral factors effectively. Lastly,

to evaluate the proposed models, we examine the performance of our models in

propagation prediction tasks, comparing them with the state-of-the-art base-

lines. We also use synthetically generated datasets with known ground-truth

to evaluate the models and the learning algorithm.
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Our main contributions in this chapter consist of the following.

• We propose a tensor factorization framework, called V2S framework, to

model an observed content propagation dataset using three behavioral

factors, i.e., topic virality, topic-specific user virality, and topic-specific

user susceptibility. Within this framework, we develop two factorization

methods: Numerical Factorization Method and Probabilistic Factoriza-

tion Method to simultaneously measure topics’ virality as well as topic-

specific users’ virality and susceptibility.

• We convert the above constrained factorization problem into a uncon-

strained optimization which can be solved effectively using gradient de-

scent methods.

• We apply the V2S - based factorization models to predict retweets in a

large Twitter dataset and show that the models outperform state-of-the-

art baseline methods.

• We also conduct extensive experiments on synthetic datasets to verify

the effectiveness of our approach in learning the three behavioral factors.

5.3 Empirical Studies

In this section, we conduct an empirical analysis of content propagation on a

large dataset collected from Twitter. The methodology used to derive content

propagation behavior and topics will be presented. The study will we show

that virality and susceptibility should be modeled at topic level.

In microblogging, retweet is the most common form of content propagation.

We therefore use retweet to define propagation in the remaining part of this

section. That is, each original tweet m is considered as a content item, and

we say user v is exposed to m if (a) v follows m’s author, and (b) v receives
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and reads m. Lastly, m is said to be propagated from its author u to v if (i) v

follows u and (ii) v retweets m.

5.3.1 Dataset

Our dataset is a large corpus of tweets collected just before the 2012 US pres-

idential election. To construct this corpus, we first manually selected a set

of 56 seed users. These are highly-followed and politically-oriented Twitter

users, including major US politicians, e.g., Barack Obama, Mitt Romney, and

Newt Gingrich; well known political bloggers, e.g., America Blog, Red State,

and Daily Kos; and political sections of US news media, e.g., CNN Politics,

and Huffington Post Politics. The set of users was then expanded by adding

all users following at least three seed users so as to get more politics savvy

users. Lastly, we crawled the following network among those users and all

their tweets posted during the first two weeks of October 2012. This period

includes many events related to the 2012 US presidential election, e.g., the na-

tional conventions of both democratic and republican parties, and the debates

between presidential candidates, etc.. This dataset thus contains both network

and content propagation for a large set of Twitter users actively participating

US politics during a politically active period. We therefore expect tweets in

this dataset to be well read, and highly retweeted.

In Twitter, topics of tweet content change rapidly and so do the user be-

haviors [123, 132]. We therefore conduct our analysis in a series of sliding time

windows derived from the crawled dataset, each within a short duration of

time, to examine topics and user behaviors in each window. More precisely, as

the crawled dataset spans over 14 days, we divide it into 10 sliding windows:

each window spans 5 days, and the sliding step is 1 day. This choice of window

size is based on the findings of Yang et. al. [236] that most of Twitter content

have lifespan of around 5 days. Table 5.1 shows the statistics about the data

in each time window. Roughly, in each time window, about 4% of tweets are
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Table 5.1: Statistics of the dataset

Time
#Users #Tweets

#Retweeted
#Retweets

window tweets

0 268,676 9,612,207 396,010 1,312,037

1 269,163 9,555,811 391,980 1,309,824

2 268,386 9,362,051 377,298 1,274,902

3 267,898 9,247,465 371,962 1,257,921

4 251,940 7,646,186 284,368 791,901

5 250,559 7,651,155 289,344 802,166

6 252,139 7,941,359 312,342 873,631

7 266,093 9,561,264 414,620 1,419,549

8 265,698 9,363,371 406,117 1,401,437

9 263,262 9,169,674 393,072 1,379,512

retweeted and each of such tweets generates around 3.5 retweets, leading to

around 14% of all the tweets are retweets. These numbers are significantly

higher than those reported in previous works (e.g., [204, 123]). This confirms

that our dataset actually contains tweets that are highly retweeted.

5.3.2 Methodology

Both content propagation and content topics are usually not observable when

the microblogging data are crawled. We have therefore devise the methodolog-

ical steps to infer them as described below.

Determining user-tweet exposure. In Twitter, the latest tweets posted

by a user’s followees always appear at the top of her timeline. Hence, many

tweets may have been missed by the user who does not monitor the timeline

closely, and such tweets would never be retweeted. As Twitter API does not

reveals the tweets seen by users, we define a time window in which the received

tweets will be read. We know that every retweet by a user v comes with a

corresponding tweet m that v must have read. We first count the number

of other tweets v receives within the duration from the time v receives m to

the time v retweets m. Based on this count we estimate Nr the number of

tweets a user may read on her timeline whenever she performs a retweet. We

found that Nr follows a long tail distribution. For more than 90% of the times,
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Nr is not larger than 200. We therefore determine that a user v receives and

actually reads through the tweet m, i.e., v is exposed to m, if and only if m

is among last 200 tweets posted by v’s followees up to the time v makes a

retweet. Otherwise, v is considered not exposed to the tweet m.

Topic discovery. We applied TwitterLDA model [258] to automatically

identify the topics of every original tweet. This step is conducted for every

time window, independently from each others.

We first remove all retweets and non-informative tweets, e.g., tweets gener-

ated by third party applications like Foursqure1 or Instagram2, etc.. We then

remove from remaining tweets all stop words, slang words3, and non-English

phrases. Next, we iteratively filter away words, tweets, and users such that:

each word must appear in at least 3 remaining tweets, each tweet contains

at least 3 remaining words, and each user has at least 20 remaining tweets.

These minimum thresholds are designed to ensure that for each user, tweet,

and word, we have enough observations to learn the latent topics accurately.

Figure 5.2 (a) shows the likelihood of the TwitterLDA model in the first

time window with respect to the number of topics K varying from 10 to 100.

As expected, larger K gives larger likelihood. The quantum of improvement

decreases as K increases. Considering both time and space overheads, we set

K = 80 for the first time window. The number of topics in each of the remaining

windows is determined similarly.

Based on the learnt topics and topic distributions of users, we compute the

topic distribution of every remaining tweet m with author u as follows.

D(m,k) ∝ θ(u, k) ⋅ ∏
w∈m

φ(k,w) (5.1)

where D(m,k) is the probability of topic k in tweet m; θk(u) is the probability
of topic k of the author u; and φ(k,w) is probability of word w given topic k.

1https://foursquare.com/
2http://instagram.com/
3http://en.wikipedia.org/wiki/Slang
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Figure 5.2: Likelihood of the TwitterLDA model in the first time window

Due to the filtering steps above, many tweets are filtered away, and there

is only 15% of tweets that are topically modeled by the TwitterLDA model.

We therefore expanded the set of modeled tweets as follows. First, we include

in the set all the tweets of filtered away users that contain at least 3 remaining

words. Then, we compute the topic distribution of each of these tweets using

their (remaining) words and the learnt topics, assuming the tweet’s author u

(who is filtered away) has a uniform distribution over topics (i.e., θk(u) = 1/K).

Moreover, as each tweet is a short document, we are not interested in

tweets that cover many topics. Instead, we only consider tweets having some

dominating topics. To do this, we filter away tweets whose sum of top Kdom

topic probabilities is less than 0.95. Then, for each of the remaining tweets,

we normalize topic distribution of the tweet such that sum of Kdom highest

topic probabilities equals to 1, and all other topics have probability 0. In this

study, we set Kdom = 3. This number is reasonable given that there are some

suggestions of assigning only one topic per tweet [258, 243].

Finally, for each time window, we obtained 25% tweets with topic distri-

butions. This is similar to the findings of Balasubramanyan et. al. [21] that

only about 25% of all tweets are topical tweets.
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Table 5.2: Notations used in topic-specific behavioral factors models

M Set of all content items
Mg(u) Set of all content items user u generated

Me(v)/ Mp(v) Set of all content items of user v exposed to/ adopted
due to propagation

p(m) Number of time content m is propagated successfully
D(m,k) Probability of topic k in content m’s topic distribution

T (k)/ Tp(k) Global popularity/ propagation popularity of topic k

T s(u, k) Exposing user-specific popularity of user u for topic k

T s
p (u, k) Exposing user-specific propagation popularity of user u for topic k

T r(v, k) Exposed user-specific popularity of user v for topic k

T r
p (v, k) Exposed user-specific propagation popularity of user v for topic k

(u, v,m) A propagation observations
δuvm Indicator of (u,v,m) observation: = 1 if v adopts m, 0 otherwise
O Set of all propagation observations

I(k) Virality of topic k

I Topic virality vector
V (u, k)/ S(v, k) Virality/ susceptibility of user u/ v for topic k

V (u)/ S(v) Topic-specific virality/ susceptibility vector of user u/ v

Vk/ Sk Set of targeting users for virality/ susceptibility for topic k

V/ S ⋃
k

Vk/ ⋃
k

Sk

5.3.3 Empirical Findings

We now present a set of findings about how different topics get propagated

(retweeted). In particular, we aim to answer the following questions: (a) Do

all topics get equally retweeted? (b) Does a user get relatively same amount of

retweets for every topic? and (c) Does a user performs relatively same amount

of retweets for every topic?

The main notations used in this chapter are shown in Table 5.2. Like

in topic modeling, we conducted the following analysis for every time window

independently from the others. Therefore, we exclude the index of time window

in the notations for the simplicity in presentation.

5.3.3.1 Topics of tweets and retweets at network level

To compare the likelihood of getting retweeted across topics, in each time

window and for each topic k, we derive the relative popularities of topic k

among the set of all original tweets and the bag of retweets in the time window.

The former is called global popularity of the topic k, denoted by T (k), and the

later is called propagation popularity, denoted by Tp(k). The two popularities
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Figure 5.3: Correlation between topics’ popularities at network level

are defined based as follows.

T (k) = 1

∣M∣ ∑m∈MD(m,k) (5.2)

Tp(k) = 1

∑
m∈M

p(m) ∑m∈Mp(m) ⋅D(m,k) (5.3)

where, in each time window, M is the set of all content items, and p(m) is
number of time m is propagated successfully. Since we use tweets and retweets

to define content and propagation respectively, M is the set of original tweets

while p(m) is number of m’s retweets.

Figure 5.3 shows the Pearson rank correlation coefficient between the two

popularities across the time windows. The figure clearly shows that (a) the

relative popularity of a topic in the bag of retweets is similar but not the same

with the topic’s popularity in the set of original tweets; and (b) this observation

is consistent across the time windows. This implies that different topics have

different likelihood of being retweeted.

5.3.3.2 Topics of tweets and retweets at individual level

On the exposing user side. In each time window, to compare the likeli-

hood of user u getting retweeted for different topics, we compare the relative

popularities of each topic k in the set of tweets posted by u, and in the bag-of-
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Figure 5.4: Correlation between topics’ popularities at individual level: (a, b)
on the author side; and (c, d) on the receiver side

retweets that u got. The former is called exposing user-specific popularity of

u for topic k, while the latter one is called exposing user-specific propagation

popularity of u for topic k. The two popularities are denoted by T s(u, k) and
T s
p (u, k) respectively, and are defined below.

T s(u, k) = 1

∣Mg(u)∣ ∑
m∈Mg(u)

D(m,k) (5.4)

T s
p (u) = 1

∑
m∈M→

p (u)

p(m) ∑
m∈Mg(u)

[p(m) ⋅D(m,k)] (5.5)

where Mg(u) is the set of content items generated by of u. In this section,

Mg(u) is consist of all u’s original tweets.
We compute Pearson rank correlation coefficients between T s(u, k) and

T s
p (u, k) for each user u, and between T s

p (u1, k) and T s
p (u2) for each pair of
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different users u1 and u2. Figures 5.4 (a) and (b) show the means and standard

deviations of the coefficients across the time windows. The figures clearly show

that, for each user, the relative popularities of topics in her bag-of-retweets are

different from that popularities in her tweets, and are also different from the

popularities in the bag-of-retweets of other users. This implies that (1) the

same user has different likelihoods of getting retweeted for different topics,

and (2) the same topic has different likelihoods of being retweeted when the

topic is mentioned in the tweets generated by different users.

On the exposed user side. Similarly, in each time window, to compare

the likelihood of retweeting by user v for different topics, we compute the

relative popularities of each topic k in the set of tweets v received and read,

and in the set of tweets v retweeted. The former popularity is called exposed

user-specific popularity of user v for the topic k, and the latter is called exposed

user-specific propagation popularity of user v for topic k. The two popularities

are denoted by T r(v, k) and T r
p (v, k) respectively, and are defined below.

T r(v, k) = 1

∣Me(v)∣ ∑
m∈Me(v)

D(m,k) (5.6)

T r
p (v, k) = 1

∣Mp(v)∣ ∑
m∈Mp(v)

D(m,k) (5.7)

where Me(v) and Mp(v) are the set of content items v has exposed to and

the set of all content items v has adopted due to propagation, respectively. In

this section, Me(v) is consist of original tweets v has received and read, while

Mp(v) is the set of retweets by v.

We compute Pearson rank coefficients between T r(v, k) and T r
p (v, k) for

each user v, and between T r
p (v1) and T r

p (v2) for each pair of different users v1

and v2. Figures 5.4 (c) and (d) show the means and standard deviations of the

coefficients across the time windows. Again, the figure clearly shows that, for

each user, the relative popularities of topics in the set of tweets she retweeted

are different from that popularities in the set of tweets she received and read,
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and are also different from the popularities in the set of tweets that other users

retweeted. This implies that (1) the same user shows different likelihoods of

performing retweet for different topics, and (2) the same topic has different

likelihoods of being retweeted when the topic is mentioned in tweets received

by different users.

5.4 Content Propagation Modeling Using

Topic-specific Behavioral Factors

In this section, we define the topic-specific behavioral factors and present our

proposed framework that incorporates all the factors to generate microblogging

content propagation data. We also present two models that implement the

proposed framework, and describe an algorithm for the models’ parameters

learning.

5.4.1 Topic-specific Diffusion Behavioral Factors

We now define the following three users’ virality/ susceptibility and content’s

virality specific to topics.

• Topic virality: This refers to the ability of a topic to attract propaga-

tion. Every topic k is associated to a virality score I(k) ∈ [0,1] indicating
how viral the topic is, i.e. how likely a content about the topic will get

propagated.

• Topic-specific user virality: This refers to the ability of a user to get

her content propagated for a specific topic. We assign to every user u

a topic-specific user virality vector V (u) = (V (u,1),⋯, V (u,K)) where
V (u, k) ∈ [0,1] for ∀k = 1,⋯,K. For topic k, V (u, k) denotes how viral

user u is for the topic, i.e., how likely u gets propagated for her content

with topic k.
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• Topic-specific user susceptibility: This refers to the tendency of a

user to adopt content propagated to her for a specific topic. Each user

v is associated with a topic-specific user susceptibility vector S(v) =
(S(v,1),⋯, S(v,K)) where S(v, k) ∈ [0,1] for ∀k = 1,⋯,K, and S(v, k)
indicates how susceptible user v is to topic k, i.e., how likely v adopts a

content about the topic k after being exposed to the content.

Note that not all users generate content with a given topic, or have the

chances to be exposed to content with the topic from their followees. We

therefore may not be able to measure virality and susceptibility for every user-

topic pair due to the lack of observation data. Instead, we identify, for each

topic k, the subset of users Vk generating content about the topic, and the sub-

set of users Sk being exposed to the topic’s content. We then measure virality

and susceptibility specific to topic k for users in Vk and in Sk respectively. We

use V to denote the set of all V (u) vectors with u ∈ V = K

⋃
k=1

Vk, and use S to

denote the set of all S(u) vectors with v ∈ S = ∪Kk=1Sk. Similarly, we use I to

denote the vector (I(1),⋯, I(K)) of virality scores of all K topics.

5.4.2 The V2S Framework

Our V2S framework represents each content propagation observation by a

tuple (u, v,m) where m is a content item generated by user u, and exposed to

user v. We use a binary variable δuvm to denote whether v adopts m (δuvm = 1)
or otherwise (δuvm = 0). We call a propagation observation positive or negative

when δuvm = 1 and 0 respectively. In V2S framework, δuvm depends on topic-

specific virality of u, topic-specific susceptibility of v, and the topics’ virality

as follows.

Consider a propagation observation (u, v,m), we assume that the likeli-

hood that v adopts m is determined by: (a) m’s topic distribution D(m) =
(D(m,1),⋯,D(m,K)); (b) u’s topic-specific user virality V (u); (c) topic

virality I; and (d) v’s topic-specific user susceptibility S(v). Under this as-
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sumption, we estimate δuvm using the dot product ofD(m), V (u), I, and S(v).
That is,

l(δuvm)∝ f( K

∑
k=1

[D(m,k) ⋅ V (u, k) ⋅ I(k) ⋅ S(v, k)]) (5.8)

where f ∶ [0,1] Ð→ R+ is a non-negative monotonic function; and l(δuvm) is
either (i) an approximation of δuvm, or (ii) the likelihood of δuvm, depending

on the context. Different forms of the l and f functions give rise to different

implementations of the V2S framework.

In V2S framework, the topics’ virality and the users’ topic-specific virality

and susceptibility can be learnt through solving the following minimization

problem.

(I∗, V ∗, S∗) = arg.min
I,V,S

L(I, V,S) (5.9)

subject to

I(k), V (u, k), S(v, k) ∈ [0,1] (5.10)

where and L is the regularized sum-of-loss:

L(I, V,S) = ∑
(u,v,m)∈O

lossl,f(u, v,m) + α ⋅ r1(I, V,S) + β ⋅ r2(I, V,S) (5.11)

where O is the set of all content propagation observations, and lossl,f(u, v,m)
is the loss in estimating δuvm with respect to the actual form of l and f . The

two regularization terms r1 and r2 are defined as follows.

r1(I, V,S) = K

∑
k=1

∑
u∈Vk

∣∣V (u) − T s
p (u) ⋅ K∑

k=1

V (u, k)∣∣2+
+

K

∑
k=1

∑
v∈Sk

∣∣S(v) − T r
p (v) ⋅ K∑

k=1

S(v, k)∣∣2 + ∣∣I − Tp ⋅

K

∑
k=1

I(k)∣∣2 (5.12)

r2(I, V,S) = ∣∣I ∣∣2 + ∑
u∈V

∣∣V (u)∣∣2 + ∑
v∈S

∣∣S(v)∣∣2 (5.13)

In Equations 5.12 and 5.13, Tp = (Tp(1),⋯, Tp(K)) in which Tp(k) is defined
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in Equation 5.3. T s
p (u) and T r

p (v) are similarly formed from T s
p (u, k)s and

T r
p (v, k)s which are defined in Equations 5.5 and 5.7 respectively. In Equa-

tion 5.12, the term ∣∣V (u) − T s
p (u) ⋅ K∑

k=1

V (u, k)∣∣2 is the distance between V (u)
and T s

p (u) after weighting the latter by sum of all components of the former.

This term ensures that V (u) follows a distribution that is close to T s
p (u) as

we do expect that users should be more viral for topics which they are more

likely to get propagated. Similarly, the terms ∑
v∈S

∣∣S(v) − T r
p (v) ⋅ K

∑
k=1

S(v, v)∣∣2
and ∣∣I − Tp ⋅

K

∑
k=1

I(k)∣∣2 ensure that S(v) and I follow distributions that are

respectively close to T r
p (v) and Tp. Lastly, in Equation 5.13, the regularization

terms ∣∣I ∣∣2 and ∑
u∈V

∣∣V (u)∣∣2, and ∑
v∈S

∣∣S(v)∣∣2 are to avoid overfitting.

5.4.3 Factorization Models

We now describe two factorization models built based on the V2S framework.

5.4.3.1 Numerical Factorization Model

In this model, we consider l(δuvm) as an approximation of δuvm, and f is the

identity function. That is,

δuvm ≈
K

∑
k=1

[D(m,k) ⋅ V (u, k) ⋅ I(k) ⋅ S(v, k)] (5.14)

Given the approximation in Equation 5.14, the loss function lossl,f(u, v,m) is
then the squared loss, defined as follows.

lossl,f(u, v,m) = (δuvm − K

∑
k=1

[D(m,k) ⋅ V (u, k) ⋅ I(k) ⋅ S(v, k)])
2

for ∀(u, v,m) ∈O. (5.15)

5.4.3.2 Probabilistic Factorization Model

In this model, we consider l(δuvm) as the likelihood of δuvm, and f is a prob-

ability distribution. Since δuvm ∈ {0,1}, we choose f to be the Bernoulli dis-
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tribution with mean µ(u, v,m) = K

∑
k=1

[D(m,k) ⋅ V (u, k) ⋅ I(k) ⋅ S(v, k)]. That

is,

log-likelihood(δuvm) = δuvm ⋅ ln(µ(u, v,m))+
+ (1 − δuvm) ⋅ ln(1 − µ(u, v,m)) (5.16)

The loss function lossl,f(u, v,m) is now the negative log-likelihood of δuvm,

defined as follows.

lossl,f(u, v,m) = −δuvm ⋅ ln(µ(u, v,m))−
− (1 − δuvm) ⋅ ln(1 − µ(u, v,m)) for ∀(u, v,m) ∈O. (5.17)

5.4.4 Model Learning

Learning algorithm. With respect to the loss defined in Equations 5.15

or 5.17, minimizing L(I, V,S) as in Equation 5.9 is a constrained alternating

convex problem which could only be solved locally, e.g., by gradient based

methods. However, due to the conditions in Equation 5.10, we cannot directly

apply the gradient descent methods as they are used for unconstrained prob-

lems. To deal with the conditions, we employ the following transformation to

transform Problem 5.9 into a unconstrained problem.

x = h(z) or z = h−1(x) for ∀x ∈ [0,1] (5.18)

where h is a S-shape continuous monotone map from R to [0,1], defined as

below.

h(z) = 1
2
×
ez − e−z

ez + e−z
+
1

2
(5.19)

Now, denote Z t = (h−1(I(k)),⋯, h−1(I(K))), Zs(u) = (h−1(V (u,1)),⋯,
h−1(V (u,K))), and Zr(v) = (h−1(S(v, k)),⋯, h−1(S(v,K))), then Problem 5.9
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becomes a unconstrained optimization problem with respect to Z t, Zs(u),
Zr(v) which now can be solved using gradient descent based methods. To do

this, we employ the alternating gradient descent method. The main idea is to

(1) perform gradient descent steps by Zs directions while keeping Zr and Z t

unchanged, followed by (2) performing gradient descent steps by Zr directions

while keeping Zs and Z t unchanged, and lastly (3) perform gradient descent

steps by Z t directions while keeping Zs and Zr unchanged. This process

repeats until we reach a predefined maximum number of iterations or when

the values converge.

Complexity. The main computational cost in above learning procedure is

in evaluation of the regularized sum-of-loss L(I, V,S). From Equations 5.11,

5.15, and 5.17, we know that the cost includes (1) cost of computing the

loss in estimating all propagation observations, and (2) cost of computing the

regularization terms. The former is O(Kdom ⋅ ∣O∣) since we normalized topic

distribution of tweets so that each tweet has at mostKdom topics, and the latter

is O(K ⋅ (2 + ∣V ∣ + ∣S ∣)). Hence, the cost of evaluating L(I, V,S) is linear to

the number of propagation observations ∣O∣, the number of topics K, and the

number of users ∣V ∣ + ∣S ∣. Our method is therefore scalable to large datasets.

Parallel implementation. We present here an implementation of the above

learning algorithm that allows us to quickly evaluate the regularized sum-of-

loss L(I, V,S) and its gradients by parallel computing. We first rewrite the

loss function as follows.

L(I, V,S) = α ⋅ r1(I, V,S) + β ⋅ r2(I, V,S) + ∑
u∈V

( ∑
(u,v,m)∈Ou

lossl,f(u, v,m))

where Ou is the set of all propagation observations wherein u is the sender,

i.e., Ou = {(u, v,m) ∶ (u, v,m) ∈ O}. As suggested by the equation above, to

evaluate L(I, V,S), we can use multiple child processes, each corresponding to

a sender u, to compute ∑
(u,v,m)∈Ou

lossl,f(u, v,m) simultaneously. We then use
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a master process to compute α ⋅r1(I, V,S)+β ⋅r2(I, V,S) and aggregate results

returned by the child processes.

Similarly, the computation of gradient of L(I, V,S) by a direction is inde-

pendent from those of all other directions (regardless of the variable trans-

formation as in Equation 5.19). Hence, the gradient of L(I, V,S) by Z t,

Zs(u), and Zr(v) directions can also be computed simultaneously using multi-

ple child processes, each corresponding to a direction h−1(I(k)), h−1(V (u, k)),
or h−1(S(v, k)).

In our implementation, in evaluating L(I, V,S), we build a process pool,

and submit a process for computing ∑
(u,v,m)∈Ou

lossl,f(u, v,m) to the pool for

each sender u. At any time, a fixed number P of the pool’s processes are

running. In the ideal case, we can reduce the running time of L(I, V,S) to P

times. Similarly, we use process pool to reduce the running time in computing

the gradients and updating the variables.

5.5 Experiments on a Real Dataset

In this section, we evaluate and compare our proposed methods with some

baseline methods in future propagation prediction task. Again, we use the

Twitter dataset described in Section 5.3.1.

To deal with the dynamic of topics and the propagation factors, our dataset

is divided into 10 consecutive sliding time windows, each spans 5 days. Since

we want to examine different models in predicting propagation for the future

content, we conduct the same experiments for the time windows independently.

This also allows us to examine the consistency of the predictive power of models

across time. Like in Section 5.3, we use original tweets as content, and retweets

as content propagation. That is, for each time window, we train the models

using data from first 4 days of the window, and use the models to predict

retweets for tweets posted in the last day of the window.
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5.5.1 Data Preprocessing

Topic discovery. For each time window, we first apply TwitterLDA model

on the set of all tweets posted in the first 4 days of the window. We use the

same pre- and post-processing steps as in Section 5.3.2 for learning topics of

the tweets. We then use the learnt topic model to infer topics of the tweets

posted in the last day of the window.

For clarity, for each time window, we call the tweet m a training tweet if (i)

m is posted in the first 4 days of the window, and (ii) m is topically modeled.

Similarly, we call the tweet m′ a test tweet if (i) m′ is posted in the last day of

the window, and (ii) m′ is topically modeled.

Training and test sets. We first apply the same steps presented in Sec-

tion 5.3.2 to determine user-tweet exposure and identify all propagation ob-

servations. We then construct the training and test sets of every time window

as follows.

As mentioned in Section 5.4.1, for each time window and each topic k,

we only can measure user virality specific to topic k for a subset of users Vk

tweeting about the topic, and measure user susceptibility specific to topic k for

a subset of users Sk who are exposed to tweets about the topic. We therefore

have to determine Vk and Sk for every topic k. To do this, we first set Vk

and Sk to be the set of all users in our dataset. Then, to ensure that we have

sufficient observations for each user and each topic, we iteratively: (a) remove

from Vk users who have less than 5 training tweets about the topic k that are

read by users in Sk; and (b), remove from Sk users who either have no retweet

on the training tweets posted by users in Vk, or read less than 5 training tweets

about the topic k that are posted by users in Vk. The training set of the time

window then includes all retweet observations (u, v,m) wherein u ∈ V, v ∈ S,

and m is a training tweet posted by u. Lastly, the test set of the time window

includes all retweet observations (u, v,m′) wherein u ∈ V, v ∈ S, and m′ is a

test tweet posted by u.
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Table 5.3: Statistics of the experimental dataset (ExpDB).

Time
∣V ∣

Avg.
∣S ∣

Avg. #observation #observation
window ∣Vk ∣ ∣Sk ∣ in training set in test set

all positive all positive
1 6,795 664.95 26,295 8,475.65 8,647,038 75,161 1,643,727 11,382
2 6,786 677.85 26,280 9,188.06 8,985,206 76,127 1,044,329 7,050
3 6,063 607.79 24,391 8,001.73 7,717,675 67,261 921,216 6,525
4 5,823 557.54 23,072 7,010.48 7,022,667 62,576 1,215,506 8,617
5 4,107 397.25 10,701 3,624.50 3,300,547 25,143 1,022,287 6,961
6 3,596 361.89 8,990 3,361.96 2,687,635 20,722 880,724 6,004
7 4,372 444.04 11,396 4,342.80 3,719,318 28,099 1,152,191 8,129
8 4,579 487.23 12,763 5,357.58 4,631,836 33,262 2,406,220 17,618
9 6,752 703.26 28,625 9,522.31 10,208,491 90,075 1,086,309 7,806
10 6,540 648.53 27,029 8,786.13 8,980,865 80,957 1,130,862 8,751

Table 5.3 shows the statistics of the final dataset, called ExpDB dataset,

which has much fewer users than the original dataset due to the different filter-

ing criteria. Nevertheless we still have a large number of retweet observations.

The table also shows that (i) the training and test sets have similar positive

observation rates across the time windows, and (ii) in all the time windows,

ExpDB is highly imbalanced with less than 1% positive observations. This

makes the prediction task much more difficult.

5.5.2 V2S-based Models & Parameter Settings

We evaluate both two models presented in Section 5.4.3, i.e., V2S-based nu-

merical factorization model and V2S-based probabilistic factorization model.

We denote the former by V2SF , and the latter by V2SB.

In learning the models by alternating gradient descent, we found that the

converged measure values could be obtained within 50 alternating iterations,

each iteration includes 20 gradient descent steps. The control parameters α,

and β are also set through empirical evaluation on a large set of tuples of

values. We found that parameter set α = 10−4 and β = 1 gives the best perfor-

mance. This parameter setting is reasonable as V (u, k) and S(v, k) affect only
a subset of retweet observations where u and v are involved respectively; but

in contrast, we have much fewer variables I(k) that affect a much larger set

of retweet observations (where the tweets are about topic k). Hence, I should

be regularized with larger a weight than that of V and S.
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5.5.3 Prediction Tasks & Evaluation Metrics

We examine the performance of different methods in the following retweet

prediction tasks.

Global retweet prediction. In this task, we aim to predict positive

retweet observations among all the observations in the test set, regardless of

the users in the observations.

For this task, for each retweet prediction method, we generate a ranking

of observations in the test set based on the likelihood of retweet returned by

the method. We then construct a Precision-Recall (PR) curve from the test

set and the ranking, and measure the area under the PR curve (AUPRC).

Methods with the higher AUPRC are the better.

Personalized retweet prediction. In this task, given a receiver v, we

aim to predict tweets that v retweets among all the tweets in the test set that

v receives.

In this task, for each retweet prediction method and for each receiver v, we

generate a ranking of v’s observations in the test set based on the likelihood of

retweet returned by the method. We then construct a PR curve from the v’s

test observations and the ranking. Lastly, we compute the average area under

all the receivers’ PR curves (Avg. AUCPR). Methods with the higher Avg.

AUPRC are the better.

5.5.4 Comparison with Baselines

We first compare our proposed V2S-based methods with the following base-

lines for diffusion behavioral factors.

5.5.4.1 Baselines

We choose FanOut and FanIn as baseline for user virality and susceptibility

respectively. In our context, the topic-specific FanOut fo(u, k) of sender u for

topic k is defined as the ratio between propagation popularity T s
p (u, k) of u for
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topic k (defined in Equation 5.5), and tweet popularity T s(u, k) of u for topic

k (defined in Equation 5.4)

fo(u, k) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T s
p (u, k)

T s(u, k) if T s(u) > 0
0 otherwise

Similarly, the topic-specific FanIn fi(v, k) of receiver v for topic k is defined

as the ratio between propagation popularity T r
p (v, k) of v for topic k (defined

in Equation 5.7), and tweet popularity T r(v, k) of v for topic k (defined in

Equation 5.6)

fi(v, k) =
⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

T r
p (v, k)

T r(v, k) if T r(v, k) > 0
0 otherwise

Lastly, we use the following baselines for virality of topic k.

• Global popularity T (k) as defined in Equation 5.2

• Propagation popularity Tp(k) as defined in Equation 5.3

• Viral coefficient vc(k) defined as the average number of times an orig-

inal tweet about topic k is propagated (retweeted). That is,

vc(k) = 1

∣{m ∈M ∶D(m,k) > 0}∣ ∑m∈MD(m,k) ⋅ p(m)

As above baselines measure only a single user/topic factor, we combine

them to the following retweet prediction methods using three factors together.

• FanOut & Global popularity & FanIn: The likelihood lgp(u, v,m)
that δuvm = 1 is defined as follows.

lgp(u, v,m) = K

∑
k=1

[D(m,k) ⋅ fo(u, k) ⋅ T (k) ⋅ fi(v, k)]
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• FanOut & Propagation popularity & FanIn: The likelihood

lpp(u, v,m) that δuvm = 1 is defined as follows.

lpp(u, v,m) = K

∑
k=1

[D(m,k) ⋅ fo(u, k) ⋅ Tp(k) ⋅ fi(v, k)]

• FanOut & Viral coefficient & FanIn: The likelihood lvc(u, v,m) that
δuvm = 1 is defined as follows.

lvc(u, v,m) = K

∑
k=1

[D(m,k) ⋅ fo(u, k) ⋅ vc(k) ⋅ fi(v, k)]

5.5.4.2 Performance Comparison

Figure 5.5 (a) shows the performance of V2S-based models and other baseline

models in global retweet prediction task, while Figure 5.5 (b) shows the models’

performance in personalized retweet prediction task. The figures clearly show

that (i) the twoV2S-based models have similar results while the three baselines

models have similar results, and (b), across time windows, the V2S-based

models consistently outperform the baseline models significantly.

5.5.5 Comparison with Content-based Baselines for

Retweet Prediction

5.5.5.1 Baseline Models

In this section, we compare V2S-based methods with methods specially de-

signed for retweet prediction which can be viewed as a kind of recommendation

task.

Since we want to predict retweets on new tweets, which are not used in

training the models, the prediction tasks are out-matrix recommendation.

However, existing retweet prediction methods (e.g.,[245, 36, 233, 61]) and other

simple item- and user-based methods (e.g., matrix factorization, or top similar
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Figure 5.5: Performance of different models for diffusion behavioral factors
in (a) global retweet prediction task, and (b) personalized retweet prediction
task.

users and items, etc.) are only for in-matrix recommendation, and hence are

not applicable. We therefore compare our proposed V2S-based methods with

the following content-based baseline models for the retweet prediction tasks.

TBr model: The likelihood that δuvm = 1 depends on topic of m, and topics

where v is more likely to adopt due to propagation (retweet).

TBr(u, v,m) = K

∑
k=1

[D(m,k) ⋅ T r
p (v, k)]

TBsr model: The likelihood that δuvm = 1 depends on topics of m, topics

where u is more likely to get propagated (retweeted), and topics where v is
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more likely to retweet.

TBsr(u, v,m) = K

∑
k=1

[D(m,k) ⋅ T s
p (u, k) ⋅ T r

p (v, k)]

TBtr model: The likelihood of δuvm = 1 depends topics of m, topics that

are more likely to be retweeted by all users, and topics where v is more likely

to retweet.

TBtr(u, v,m) = K

∑
k=1

[D(m,k) ⋅ Tp(k) ⋅ T r
p (v, k)]

TBstr model: The likelihood that δuvm = 1 depends topics of m, topics

where u is more likely to get retweeted, topics that are more likely to be

retweeted by all users, and topics where v is more likely to retweet.

TBstr(u, v,m) = K

∑
k=1

[D(m,k) ⋅ T s
p (u, k) ⋅ Tp(k) ⋅ T r

p (v, k)]

Collaborative Topic Regression (CTR) model [222]: This model com-

bines collaborative filtering data with content-based features to perform rec-

ommendation tasks. Similar to our proposed methods, CTR is solely based

on hidden user and content characteristics, and therefore is a suitable base-

line. In applying CTR, we set the number of topics to the same with that of

TwitterLDA model (see Section 5.3.2).

5.5.5.2 Performance Comparison

Figure 5.6 (a) shows the performance of V2S-based methods and other

content-based baseline methods in global retweet prediction task, while Fig-

ure 5.5 (b) shows the models’ performance in personalized retweet prediction

task. Among the baseline methods, TBr and TBsr outperform the others in

both tasks. This suggests that user specific retweetable topics give a stronger

retweet prediction than globally retweetable topics. The fact CTR performs

worse can be explained by CTR suffering from noise as the model infers tweet
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Figure 5.6: Performance of different retweet recommendation models in (a)
global retweet prediction task, and (b) personalized retweet prediction task.

topics and user preference simultaneously, while other methods does not since

we employ the topic normalization step (see Section 5.3.2). Again, the figures

clearly show that, across time windows, the V2S-based methods consistently

outperform the content-based baseline models significantly.

5.5.6 Case Studies

We present here case studies to illustrate how the V2S-based methods work

differently than the baselines.

Viral topic example. Table 5.4 (a) shows the profiles of topics having

significantly different scores by different topic virality models. For each topic,

4https://en.wikipedia.org/wiki/United States
presidential election debates, 2012
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Table 5.4: Case examples of(a) viral topics , (b) viral users, and (c) susceptible
users.

(a) Profile of example viral topics at time window 4

#On-topic #On-topic Proportion of retweets Virality
Topic Topic #On-topic retweet positive of top 1% by top 1% Global Propagation Viral by by
Id Label tweets observations observations retweeted retweeting popularity popularity coefficientV2SF V2SB

(rate) senders receivers

2
Romney at

15,769 244,604
2,144

19.4% 5.2% 0.08 0.10 0.05 0.18 0.10
the 1st (0.9%)

presidential

debate
4

12
Obama at

14,061 223,985
2,086

17.4% 5.0% 0.07 0.10 0.04 0.86 0.27
the 1st (0.9%)

presidential

debate
4

71
Unemploy-

6,427 183,004
2,211

23.4% 4.9% 0.03 0.09 0.14 0.79 0.26
-ment (1.2%)
rate

41
“Big bird”

4,428 55,725 573 14.3% 2.6% 0.01 0.03 0.07 0.99 0.87icon in 2012
presidential (1.0%)

election
campaigns

(b) Profile of example viral users at topic 2 (Romney at the 1st presidential debate4)

user
#On-topic #On-topic #On-topic positive Proportion of retweets

FanOut
Virality

tweets retweet observations observations (rate) by top 10% retweeting receivers by V2SF by V2SB

rolandsmartin 50 5,618 57 (1.0%) 26.3% 1.3 0.24 0.34
mmfa 9 2,198 47 (2.1%) 14.9% 1.1 0.65 0.96

(c) Profile of example susceptible users at topic 2 (Romney at the 1st presidential debate4)

user
#On-topic #On-topic #On-topic positive Proportion of retweets

FanIn
Susceptibility

received tweets retweet observations retweet observations of the top retweeted sender by V2SF by V2SB

susieq68old 22 179 10 (3.57%) 50.0% 2.13 0.54 0.76
treecia73 16 104 8 (7.69%) 25.0% 1.23 0.68 0.99

the topic’s label is manually assigned based on its representative words, and

further insights from its top tweets. A topic’s top words are the words having

the highest probabilities given the topic, and the topic’s top tweets are the

tweets having the lowest perplexities given the topic. Also, for each topic

k, we select a set of tweets with the normalized probability of topic k (see

Section 5.3.2) is at least θ = 0.5, and call them the on-topic tweets of topic k.

The table shows that topic 2 (Romney at the 1st presidential debate4), topic

12 (Obama at the 1st presidential debate4), and topic 71 (Unemployment rate)

are more popular and have more retweets than topic 41 (“Big bird” icon in

2012 election campaigns). However, the three formers have significantly higher

proportions of retweets by their top 1% retweeted senders/retweeting receivers

than those of the latter. This suggests that topics 2, 12, and 71’s retweets are

mostly due to their top viral senders and/or top susceptible receivers. Hence,

it is reasonable that topic 41 is assigned much higher virality scores by V2SF

and V2SB models.

111



CHAPTER 5. TOPIC-SPECIFIC VIRALITY AND SUSCEPTIBILITY IN CONTENT PROPAGATION

Viral user example. Similarly, Table 5.4 (b) shows the profiles of two

users having most number of retweets for topic 2 (Romney at the 1st presi-

dential debate4). The user rolandsmartin has more retweets for topic 2 than

the user mmfa. However, on the topic, rolandsmartin has lower retweeting

rate. Also, the table shows that rolandsmartin’s proportion of retweets by top

10% of her retweeting receivers is significantly higher than that of mmfa. This

suggests that rolandsmartin’s retweeting users are more susceptible at topic

2 than those of mmfa. It is therefore reasonable that mmfa is assigned much

higher virality scores by V2SF and V2SB models.

Susceptible user example. Lastly, Table 5.4 (c) shows the profiles of two

users retweet the most for topic 2 (Romney at the 1st presidential debate4). The

user susie68old retweets more for the topic than the user treecia73. However,

susie68old has lower retweeting rate for the topic. Also, on topic 2, the table

shows that susie68old ’s proportion of retweets by her top retweeted senders

is significantly higher than that of treecia73. This suggests that susie68old ’s

retweets are mostly due to a viral sender. V2SF and V2SB models therefore

reasonably assign higher susceptibility scores to treecia73.

5.6 Experiments on Synthetic Datasets

Since real datasets do not have ground-truth information on the virality and

susceptibility factors, it is impossible to evaluate the accuracy and effectiveness

of the models in recovering the factors using the datasets. We address this by

conducting experiments on synthetically generated datasets.

5.6.1 Synthetic Data Generation

Generating the user network. We generate a follow network of N users

whose in- and out-degrees are at least dmin and have power law distributions

with exponent α as follows. We first sample a degree sequence of N nodes
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from the power law distribution. We then sample links for the nodes using the

expected degree model [42] with the generated degree sequence. Lastly, for each

node having less than dmin incoming links, we sample more incoming links for

the node using the same probabilities as in the previous step until it gets dmin

incoming links. Similarly, we sample more outgoing links for the nodes until

each has at least dmin outgoing links.

Generating the tweets. Given the number of topics K and the number

of topics dominating each tweet Kdom < K, we generate the set of tweets for

each user as follows. First, we sample a topic distribution for each user so that

the distribution is totally skewed to 10% of the K topics. This skewness is to

make each user’s tweets focus on only some topics and hence, for each topic

the user tweets about, we have enough number of retweet observations to learn

her virality for the topic. Then, the number of tweets of each user is uniformly

drawn from the range [ntweet
min , ntweet

max ]. To generate topic distribution for a tweet

of user u, we sample the tweet’s main topic from u’ topic distribution. We then

assign a probability of 0.9 for this main topic. Lastly, we also randomly choose

other Kdom − 1 other (dominating) topics of the tweet, and randomly assign

probabilities for these chosen topics so that the probabilities sum up to 0.1.

Generating the ground-truth scores. We randomly choose a small

number of topics, let say Kviral = 10% of K, to be viral topics. These topics

have virality scores randomly uniformly drawn from [1− ǫ,1) for a small value

of the so called score width ǫ, while the remaining topics have scores uniformly

drawn from [0, ǫ). For each topic, we randomly choose a small number of

users having at least one tweet about the topic, let say Nviral = 2% of N , to

be viral users at the topic. For each user u and each topic k, if u is viral at k,

the virality score of u at k is uniformly drawn from [1 − ǫ,1). Otherwise, the

score is uniformly drawn from [0, ǫ). Similarly, for each topic, we also choose

a small number of users receiving at least one tweet about the topic, let say

Nsusceptible = 10% of N , to be susceptible users at the topic. For each user v
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and each topic k, if v is susceptible at k, the susceptibility score of v at k is

uniformly drawn from [1− ǫ,1). Otherwise, the score is uniformly drawn from

[0, ǫ).
Generating the retweet observations. Now that we have generated

the following network, the set of tweets by each users, it is straight forward to

determine which users receive which tweets of other users: v receives tweets

from u if v follows u. For simplicity, we assume that v reads all the tweets she

receives. Hence, we define as retweet observations all the tuples of (u,m, v)
where: (i) user v follows user u, and (ii) m is a tweet of user u. A retweet

observation (u,m, v), is assigned to be a positive observation (i.e., v retweets

m) with the probability prob(u,m, v) computed as follows.

prob(u,m, v) = K

∑
k=1

gD(m,k)gV (u, k) + gI(k) + gS(v, k)
3

wherein, gD(m,k) is the probability of topic k in tweet m that is generated

in the previous step. Similarly, gV (u, k), gI(k), and gS(v, k) are ground-truth

virality of user u for topic k, virality of topic k, and susceptibility of user v for

topic k as generated previously.

5.6.2 Performance Comparison

We now evaluate our proposed V2S-based methods and other baselines in

recovering ground-truth topic-specific virality and susceptibility using the syn-

thetic datasets. Similar to experiments in Section 5.5.4, we use FanOut and

FanIn as baselines for user virality and susceptibility respectively, and use

Tweet popularity, Retweet popularity, and Viral coefficient as base-

lines for topic virality.

We generated synthetic datasets with different number of users N , number

of topics K, and score width ǫ parameter settings, while fixing α = 2.5, dimin =
domin = 3, ntweet

min = 10, ntweet
min = 100, Kdom = 3, Kviral = 10% of K, Nviral = 2%
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Figure 5.7: Performance of different models in experiments with synthetic
datasets

of N , and Nsusceptible = 10% of N . For each dataset instance and each model,

we rank topics by their virality scores produced by the model and select the

top scored 10% topics as the predicted viral topics and denote the set by Tp.

The precision@10% of the model for topic virality is then defined by
∣Tp ∩ Tg∣∣Tg∣

where Tg is the set of viral topics in the ground truth. For each topic k, and

for each user virality model, the model’s precision@2% of topic-specific user

virality for topic k is similarly defined, and its precision@2% across topics is

computed by averaging the precision from all topics. Lastly, for each user

susceptibility model, we compute the model’s precision@10% across topics in

the similar way.

Figures 5.7 (a), (d) and (g) show the precision@10% of topic virality models,
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precision@2% of user virality models, and precision@10% of user susceptibility

models as we varies K from 10 to 100, keeping N = 10,000 and ǫ = 0.1. The

figures show that theV2S-based models significantly outperform other models.

All models demonstrate decreasing precision asK increases. They however still

outperform the random selection significantly.

Similarly, Figures 5.7 (b), (e) and (h) show the precision@10% of topic

virality models, precision@2% of user virality models, and precision@10% of

user susceptibility models as we varies N from 1000 to 10,000, keeping K = 100
and ǫ = 0.1. Figures 5.7 (c), (f) and (i) show the precisions as we varies ǫ

from 0.1 to 0.5, keeping K = 100 and N = 10,000. Again, all the models

demonstrate decreasing precision as N and ǫ increases though still outperform

the random selection significantly; and the V2S-based models significantly

outperform other models.

5.6.3 Scalability

We theoretically analyse the complexity of our learning algorithm for V2S-

based models and describe a parallel implementation in Sections 5.4.4. We

now empirically examine the running time of the algorithm and the efficacy of

the implementation.

Running time. Figure 5.8 (a) shows the running time of V2S-based

models in one alternating iteration as we varies N from 1000 to 10,000, keeping

K = 100. Similarly, Figure 5.8 (b) shows the running time as we varies K from

20 to 100, keeping N = 10,000, and Figure 5.8 (c) shows the running time

as we varies number of retweet observations ∣O∣ from 1 million to 10 millions,

keeping K = 100 and N = 10,000. In all these three cases, we keep ǫ = 0.1.

The figures clearly show that the running time of V2S-based models are linear

to the number of users, the number of topics, and the number of retweet

observations. This verifies the learning algorithm’s theoretical complexity, and

shows its scalability.
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Figure 5.8: Running time of the V2S-based models in different settings of
the number of (a) users, (b) topics, (c)retweet observation, and (d) parallel
threads.

Efficacy of the parallel implementation. Figure 5.8 (d) shows the

running time of V2S-based models in one alternating iteration as we varies

the number of parallel processes from 1 to 8, keeping number of retweet obser-

vations ∣O∣ = 10 millions, K = 100, and N = 10,000. The figure shows that the

larger the number of parallel processes used P results in less running time, and

the amount of improvement decreases as P increases. This shows the efficacy

of our parallel implementation. The fact that the running time even increases

slightly when P is increased to 8 is expected due to the additional time for

managing the process pool.
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5.7 Chapter Summary

In this chapter, we present an empirical analysis showing that different topics

have different likelihood of getting propagated at both network and individual

levels. We then propose to model the virality and susceptibility factors at

topic level. We develop V2S, a tensor factorization based framework, and its

associated models to learn topic-specific user virality, topic-specific user sus-

ceptibility, and topic virality from content propagation data. Our experiments

on a large Twitter dataset have shown that the proposed V2S-based models

outperform baseline models significantly in propagation prediction. Our ex-

periments on synthetic databases have also shown that our proposed models

outperform all the other baseline methods in learning the topic-specific factors.

Part of the work in this chapter has been published in [85].
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Chapter 6

Modeling of Community

Behaviors and Sentiments

In this chapter, we propose a model for determining the community affiliation

of microblogging users based on their content, the sentiments they express

on their content, and the behaviors they adopt. This chapter is organized as

follows. We first discuss the research task in Section 6.1. We also state our ob-

jectives and summarize our contributions in this section. We then present our

proposed model in Sections 6.2. Next, we describe two experimental datasets

in Section 6.3. The experimental evaluation of the proposed model on the two

datasets is reported in Sections 6.4 and 6.5 respectively. Finally, we conclude

the chapter in Section 6.6.

6.1 Introduction

Recent empirical works have shown some strong correlations between a mi-

croblogging user’s community affiliation and the topic and sentiment expressed

in her tweets, as well as her behaviors [99, 60, 203, 83, 228]. Previous studies

have attempted to model user communities based on one or some of the con-

tent, sentiment, and behaviors factors [169, 29, 248]. However, to the best of

our knowledge, there are no works that considers all these factors in modeling
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user communities.

In this chapter, we postulate that, other than user content, sentiments ex-

pressed on the content’s topics and other microblogging behaviors of a user

can be shaped by her community affiliations. For example, users belonging

to a political community may be more interested in retweeting each other, or

express positive sentiment on issues they support but negative sentiment on

those they oppose. We therefore aim to develop a new model that simulta-

neously derives the community of each user, and the common behaviors and

common topic-specific sentiment of each community. This research task is

however challenging due to the following reasons:

• Multiple types of user behaviors have to be treated differently, but mod-

eled in a unified way.

• Topic and sentiment of tweets are not known before hand. One either

has to first determine the topics and sentiments before using them in

modeling user behaviors and communities, or to learn them as part of

the model.

This chapter addresses the first challenge by developing a general framework

that allows user content as well as user behaviors of different types to be mod-

eled as different “bag-of-words”. We address the second challenge by coupling

with an existing sentiment analysis tool for microblogging. Lastly, we develop

a probabilistic graphical model that simultaneously infers latent topics, users’

topic interests, latent communities and their associated behaviors and topic-

specific sentiments.

Our main contributions in this chapter consist of the following.

• We propose a probabilistic graphical model, called CBS, for mining top-

ics and user communities, as well as mining behaviors and topic-specific

sentiments associated with the communities.

• We develop a sampling method to infer the model’s parameters.
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• We apply CBS model on two real politics related Twitter datasets and

show that it outperforms other baseline topic models.

• An empirical analysis of behaviors and topic-specific sentiments for the

two datasets has been conducted to demonstrate the efficacy of the CBS

model.

6.2 The CBS Model

In this section, we present our proposed model in detail. We first introduce

notations and assumptions used in this chapter. Next, we describe the model

and the sampling method for learning the model’s parameters.

6.2.1 Notations

We summarize the notations used to describe the CBS model in Table 6.1.

Consider a dataset of Twitter users together with their posted tweets and

behavior traces, we use U and L to denote the number of users and the number

of behavior types in the dataset respectively. For each user u, we denote the

set of Mu tweets she posts by Tu = {t1u,⋯, tMu
u }; and denote the set of all the

tweets in the dataset by T , i.e., T = ⋃
u

Tu. Each tweet tju is a bag-of-words

with length N j
u, i.e., t

j
u = {wj1

u ,⋯,wjN
j
u

u }, where each word wjn
u is drawn from

a common vocabulary of Wt words Vt = {w1,⋯,wW }. Also, for each tweet tju,

we denote its topic and sentiment by zju and sju respectively. The bag-of-topics

and the bag-of-sentiments of all the tweets is denoted by Z and S respectively.

Similarly, for each user u, and each behavior type l, we use Bl
u to denote

the length-Bl
u bag-of-behaviors of type l that u adopts, i.e., Bl

u = {bl1u ,⋯, blBl
u

u }.
Each behavior blju is drawn from a common behavior type-l vocabulary V l

b.

We denote the number of behaviors in the vocabulary by W l
b , i.e., W

l
b = ∣V l

b∣.
Lastly, we use B to denote the bag-of-all-behaviors (of all types) of all the

users.
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Table 6.1: Notations used to describe CBS model

U/ L Number of users/ Number of user behavior types
Vt Tweet vocabulary
Wt Number of words in tweet vocabulary, W = ∣V ∣
T Set of all tweets
Tu Set of tweets posted by user u
tju j-th tweet of user u
T−tju

Set of all tweets except tju
Mu Number of tweets posted by user u, Mu = ∣Tu∣
wjn

u n-th word in tweet tju
N j

u Number of words in tweet tju
V l

b Behavior type-l vocabulary
W l

b Number of behaviors of type-l, W l
b = ∣V l

b∣
B Bag-of-all-behaviors of all types
Bl

u Bag-of-behaviors of type l of user u
blju j-th behavior of type-l of user u
Bl

u Number of behaviors of type-l of user u, Bl
u = ∣Bl

u∣
C Number of communities
π Community distribution
cu Community of user u
C Bag-of-communities of all users
C−u Bag-of-communities of all users except u
δck Topic-specific sentiment distribution of community c for topic k

λcl Behavior distribution of community c for type-l behaviors
K Number of topics
θu Topic distribution of user u
φk Word distribution of topic k

zju/ sju Topic/ sentiment of tweet tju
Z/ S Bag-of-topics/ bag-of-sentiments of all tweets

Z−tju
/ S−tju

Bag-of-topics/ bag-of-sentiments of all tweets except tju
τ/ α/ η/ γl Dirichlet prior of π/ θu/ σck/ λcl

nc(c,C) Number of times community c is observed
in bag-of-communities C

ns(s, z, c,S,Z) Number of times sentiment s is observed
in topic z in the set of tweets posted by users of community c

for bag-of-sentiments S and bag-of-topics Z
nb(b, c,B,C) Number of times behavior b is adopted

by users of community c for the bag-of-behaviors B
and the bag-of-communities C

nw(w,z,T ,Z) Number of times word w is observed
in the topic z for the set of tweets T and the bag-of-topics Z

nz(z, u,Z) Number of times topic z is observed
in the set of tweets posted by user u for the bag-of-topics Z .
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6.2.2 Assumptions

The basic assumption of our model is that while users within a community may

have different topical interest in tweeting, they should adopt similar behaviors.

We therefore assume that, for each type of behaviors, each community has a

certain interest in some behaviors of the type, and all the users within the com-

munity adopt the behaviors following this interest. For example, a Christian

often mentions religion in her biography, or a football fan often follows and

retweets from her supporting team’s pages. Moreover, different communities

may express different sentiments on the same topic, e.g., Democrats are more

positive about healthcare issues while Republicans are more negative. Hence,

behaviors a user adopted and sentiment she expressed in her tweets are useful

in identifying the community that she belongs to.

6.2.3 Generative Process

The CBS model has K latent topics, where each topic k has a multinomial

distribution φk over the vocabulary Vt. As tweets are short with no more

than 140 characters, we assume that each tweet has only one topic. Each

user u belongs to one of C communities, following the (global) community

distribution π. Each user u has a topic distribution θu, while each community

c has a topic-specific sentiment distribution σck for each topic k. Moreover,

for each behavior type l, each community c has a multinomial distribution λcl

over the set of all type-l behaviors. Lastly, we assume that π, θu, σck, and λcl

have Dirichlet priors τ , α, η, and γl respectively.

In summary, the CBS model has the plate notation as shown in Figure 6.1

and the generative process as follows.

• Sample the community distribution vector π ∼ Dirichlet(τ)
• For each k = 1,⋯,K, sample the k-th topic φk ∼Dirichlet(βk)
• For each community c and each topic k, sample the topic-specific senti-
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Figure 6.1: Plate notation for CBS model

ment distribution σck ∼Dirichlet(ηck)
• For each community c, and each type of behavior l, sample type-l behav-

ior distribution λcl ∼ Dirichlet(γcl)
• For each user u, sample community indicator cu ∼Multinomial(π)
• For user u, generate tweets for the user:

1. Sample topic distribution θu ∼Dirichlet(α)
2. For each tweet t:

(a) Sample topic for the tweet zt ∼Multinomial(θu)
(b) Sample tweet’s words: for each word slot n, sample the word

wt,n ∼Multinomial(φzt)
(c) Sample sentiment for the tweet st ∼Multinomial(σczt)

• Generate behaviors for each user u:

For each behavior of type l = 1,⋯,L, and for each n = 1,⋯,Bul, sample

the behavior b ∼Multinomial(λcl)
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Note that in CBS model, we currently determine the sentiments of tweets

using Stanford’s sentiment scoring API1,2. The widely used Stanford’s senti-

ment scoring API implements a machine learning method to detect sentiment

expressed in a tweet purely based on content of the tweet. For each tweet, the

API returns a score of 4, 0, or 2 to indicate the tweet is positive, negative, or

neutral respectively.

6.2.4 Model Learning

Due to the intractability of LDA-based model [27], we make use of sampling

method in learning and estimating the parameters in the model. More exactly,

we use a collapsed Gibbs sampler to iteratively sample the latent community

of every user, and latent topic of every tweet.

Assume that the current user we have to sample the community for is u.

We use C−u to denote the bag-of-communities of all other users in the dataset

except u. Similarly, for each tweet tuj , we use Z−tju and S−tju
to denote the bag-

of-topics and bag-of-sentiments, respectively, of all other tweets in the dataset

except tju. Finally, for each behavior blju , we use B−blju
to denote the bag-of-

behaviors excluding blju . Then, the community of u is sampled according to

Equation 6.1.

p(cu = c∣T ,S,B,C−u,Z , α, β, τ, η, λ) ∝ Mu

∏
j=1

ns(sju, zju, c,S−sju ,Z−zju) + ηczjusju
C

∑
q=1

(ns(sju, zju, q,S−sju ,Z−zju) + ηqzjusju)
⋅

⋅

L

∏
l=1

Bl
u

∏
j=1

nb(blju , c,B−blju ,C−u) + λl

cb
lj
u

W l
b

∑
b=1

nb(b, c,B−blju ,C−u) + λl
cb

⋅
nc(c,C−u) + τc

C

∑
q=1

(nc(q,C−u) + τq)
(6.1)

Now, we have to sample the topic for the current tweet denoted by tju. Let

T−tju
denotes the set of all tweets in the dataset excluding tju. Then topic of tju

1http://help.sentiment140.com/api
2This also reduces the complexity of CBS model as sentiment mining itself is already

well studied research problem.
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is sampled according to Equation 6.2.

p(zju = z∣T ,S,B,C,Z−tju , α, β, τ, ηλ, η) ∝
N

j
u

∏
n=1

nw(wjn
u , z,T−tju ,Z−tju) + βzw

jn
u

Wt

∑
v=1

(nw(v, z,T−tju ,Z−tju) + βzv)
⋅

⋅
ns(sju, z, cu,S−tju ,Z−tju ,C) + ηcuzsju
P

∑
p=1

(ns(p, z, cu,S−ju ,Z−tju ,C) + ηcuzp)
⋅

nz(z, u,Z−tju) + αz

K

∑
k=1

(nz(k,u,Z−tju) + αk)
(6.2)

In Equations 6.1 and 6.2, nc(c,C) records the number of times the commu-

nity c observed in the bag-of-communities C. Similarly, ns(s, z, c,S,Z) records
the number of times the sentiment s observed in the topic z in the set of tweets

posted by users of community c for bag-of-sentiments S and bag-of-topics Z .

Next, nb(b, c,B,C) records the number of times the behavior b is adopted by

users of community c for the bag-of-behaviors B and the bag-of-communities

C; and nw(w,z,T ,Z) records the number of times the word w is observed in

the topic z for the set of tweets T and the bag-of-topics Z . Lastly nz(z, u,Z)
records the number of times the topic z is observed in the set of tweets posted

by user u for the bag-of-topics Z .

In our experiments, we used symmetric Dirichlet hyperparameters with

α = 50/K, β = 0.01, τ = 5, η = 5, and γl = 0.01 for all l = 1,⋯,L. Each time,

we run the model for 300 iterations of Gibbs sampling. We take 20 samples

with a gap of 5 iterations in the last 100 iterations to assign values to all the

hidden variables.

6.3 Datasets

In order to get clear notions of communities and topics, the following two

politically oriented datasets were used for evaluating the CBS model.

MoC dataset. The first dataset consists of tweets posted by members of the

112th U.S congress. We manually identified the official Twitter accounts of 93

senators (47 Democrats and 46 Republicans) and collected their tweets in the
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duration of May 2012 - Feb 2013. In other words, we have the ground truth

political affiliations of all users in this dataset.

One-Week dataset. The second dataset is large set of tweets generated just

before the 2012 US presidential election. We first manually selected 56 seed

users who are popular political related figures with many followers on Twitter.

These include major American politicians, such as 2012 US presidential can-

didates, e.g., Barack Obama, Mitt Romney, and Newt Gingrich; well known

political bloggers in U.S., e.g., America Blog, Red State, and Daily Kos; and

political sections of US news media, e.g., CNN Politics, and Huffington Post

Politics. The set of users were then expanded by adding all users following

at least three seed users. This resulted in 23,992 users whose biographies are

collected. Based on their biographies, we were able to manually label the po-

litical affiliations of 2,319 of them, including 202 Democrats, 228 Neutrals and

1709 Republicans. The following links of these users were then collected. Since

users in this dataset have different degree of political involvement, their tweets

cover not only politics but also a variety of other topics. To focus on political

topics, we extracted only the political tweets from all tweets posted in the first

week of October 2012 using a keyword-based filter. The keywords are political

hashtags and political topics’ representative words/phrases identified by the

semi-automatic method presented in [83].

Data preprocessing. We employed the following preprocessing steps to clean

both the datasets. We first removed all stopwords from the tweets. Then, for

MoC dataset, we removed all tweets containing stopwords only and users

with less than 5 (remaining) tweets. For One-Week dataset, we removed all

tweets with less than 3 non-stopwords and and users with less than 10 tweets.

In MoC dataset, we consider the following behavior types for each user: (1)

user mention, and (2) hashtag ; while in One-Week dataset, behavior types a

user may perform are: (1) user mention, and (2) hashtag, (3) retweet, (4) fol-

lowee, and (5) profile word (i.e., non-stopwords in the user’s biography). The
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Table 6.2: Statistics of the experimental datasets used for evaluating CBS
model

MoC dataset One-Week dataset

#user

Total 93 23,992
With All labels 93 2,193

political Democrat 47 202
label Neutral 0 228

Republican 46 1,709
#tweets 87,182 839,687

#behaviors

mention 14,609 68,804
hashtag 26,152 561,098
retweet - 181,661
followee - 24,044,367

profile word - 64,107

hashtag, retweet, and user mention behaviors are further divided into positive,

neutral, or negative depending on whether the behavior is contained in a pos-

itive, neutral, or negative tweet. For each of those behavior, we assign a (+),

(0), or (-)) suffix to indicate that if the behavior is positive, neutral, or nega-

tive respectively. For example, if user u mentions BarrackObama in a positive

tweet (respectively neutral and negative), then we have BarakObama (+) (re-

spectively BarakObama (0) and BarakObama (-)) in the bag-of-user-mentions

of the user. Lastly, for each behavior, for MoC we filtered out all the be-

haviors with less than 5 users performing the behavior, while for One-Week

dataset we filtered out all the behaviors with less than 50 users performing the

behavior.

The reasons that, in the preprocessing steps, we used higher thresholds

for One-Week dataset than for MoC dataset are: (1) we expected that the

former contains much more noise than the latter, and (2) the former has a

much larger number of users than the latter, and we wanted to focus on global

behaviors rather than local behaviors. Table 6.2 shows the statistics of the two

datasets after the preprocessing steps.
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6.4 Experiments on MoC dataset

In this experiment, we evaluate the performance ofCBSmodel and other base-

line methods in topic modeling and user clustering tasks using MoC dataset.

Topic modeling task. Proposed by Zhao et. al. [258], TwitterLDA is a

variant of LDA [27], a commonly used method for topic modeling. TwitterLDA

constrains each tweet to have only one topic. This constraint is appropriate

for short documents as well as tweets. We will therefore compare CBS and

TwitterLDA based on their abilities to model topics as the number of topics is

varied from 10 to 100. We expect that the two models have similar performance

in this task as they share the same way to model the topics of the tweets.

User clustering task. To evaluate the performance of CBS in user cluster-

ing, we compare it with K-means clustering. To implement K-means clustering,

we represent each user as a vector of features, where the features include (1)

topic distribution of tweets posted by the user, and (2) bags-of-behaviors of

the users. The topic distribution of tweets posted by a user is discovered using

TwitterLDA model with the number of topics is set to 70 as will be explained

below. In this task we expect that CBS outperforms K-mean as the former

uses more information to cluster the users than the latter. K-mean uses users’

topics and behaviors only, while CBS also use the sentiments users express on

different topics.

6.4.1 Evaluation Metrics

We adopt likelihood and perplexity for evaluating the topic modeling task. For

each user, we randomly selected 90% of tweets of the user to form a training

tweet set, and use the remaining 10% of the tweets as the test tweet set.

Then for each method, we compute the likelihood of the training tweet set and

perplexity of the test tweet set. The method with a higher likelihood, or lower

perplexity is considered better for the task.
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Figure 6.2: MoC dataset: performance of different models in topic modeling

For user clustering task, we adopt weighted entropy as the performance

metric. As we have two different political affiliations in the dataset, we run

the methods with the number of communities set to 2. We finally computed

the weighted entropy of the resultant communities as follows.

E = − 1

∑
c=0

nc

U
∗ [nD

c

nc

∗ log
nD
c

nc

+
nR
c

nc

∗ log
nR
c

nc

] (6.3)

where nc is the number of users assigned to community c, and nD
c and nR

c are the

numbers of Democrats and Republicans assigned to community c respectively.

Recall that U = 93 is the number of users in the dataset. The method with a

lower entropy is the winner in the task.

6.4.2 Performance Results

Figure 6.2 shows the performance of TwitterLDA and CBS model in topic

modeling. As expected, (1) the two models yield very similar likelihood and

perplexity; and (2) larger number of topicsK gives larger likelihood and smaller

perplexity, and the amount of improvement diminishes as K increases. Con-

sidering both time and space complexities, we set the number of topics to be

70 for the user clustering task.

Figure 6.3 shows the performance of K-mean and CBS models in user
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Figure 6.3: MoC dataset: performance of different models in user clustering

clustering. Again, as expected, the figure clearly shows that CBS outper-

forms K-means in user clustering. CBS therefore is a better solution for user

clustering than the combination of TwitterLDA and K-means.

6.4.3 Topic Sentiment Analysis

We now analyze the topic sentiment results of CBS model on MoC dataset.

For the two learnt communities, we assign each community to be Democrat

or Republican if most users in the community are democrat or republican

respectively.

Table 6.3 shows the top positive topics and top negative topics of each com-

munity as obtained by CBS. Note that the topic labels are manually assigned

based on examining the topics’ top words and top tweets. For each topic, the

topic’s top words are the words having the highest likelihoods given the topic,

and the topic’s top tweets are the tweets having the lowest perplexities given

the topic. Table 6.3 shows that those extreme topics are reasonable. On one

hand, the two communities share the common sentiment on topic about broad-

casting the talks/shows by senators of the same party (Topic 16, Topic 23),

or nationwide common topics like greetings for vacation and holidays (Topic

16), victories of U.S. team in Olympic 2012 (Topic 29), shooting and terrorism

(Topic 34). On the other hand, the two communities are negative on different

topics: the Democrat community is negative on topics on legislative issues and
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Table 6.3: MoC dataset: top positive and negative topics per community

Topic ID Topic Label

Democrat

Positive
Topic 16 Greetings
Topic 29 U.S. teams in Olympic 2012
Topic 44 Live talks

Negative
Topic 34 Shooting & terroism
Topic 32 Legislative issues
Topic 26 Economics issues

Republican

Positive
Topic 23 Live shows
Topic 16 Greetings
Topic 29 US teams in Olympic 2012

Negative
Topic 34 Shooting & terroism
Topic 25 Financial issues
Topic 43 Recovering from Sandy hurrican

economics issues, which mostly under control of Republicans, while the Repub-

lican community is negative on the process of recovering from Sandy hurricane

(Topic 43) and financial issues, which are mostly raised by Democrats.

6.4.4 Behavior Analysis

Next, we look into the community representative behaviors uncovered by CBS

from the MoC dataset. Table 6.4 shows the top hashtags and top user men-

tions by users in each community. The table clearly shows that those extreme

behaviors are also reasonable. For hashtag, all the top hashtags are neutral,

and the top ones of each community are most popular hashtags among Twit-

ter users of the community. For user mention, the top mentioned users in

the Democrat community are democrat users (e.g., BarackObama), goverment

officers (e.g., speakerboehner), or pro-democrat media (e.g., msnbc), while the

top mentioned user in the Republican community are republican senators (e.g.,

johncornyn), and pro-republican media (e.g., foxnews).

6.5 Experiments on One-Week dataset

In this section, we report our experiments on One-Week dataset. Given the

large number of users and tweets, and a partial ground truth of users’ political

affiliations in the dataset, we evaluate CBS and other comparative methods
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Table 6.4: MoC dataset: top behaviors per community

Hashtag User mention

Democrat Repulican Democrat Repulican
#jobs (0) #tco (0) @speakerboehner (0) @wsj (0)
#nj (0) #tcot (0) @barackobama (0) @foxnews (+)

#vawa (0) #obamacare (0) @whitehouse (0) @foxnews (0)
#senate (0) #sayfie (0) @fema (0) @johncornyn (+)
#sandy (0) #fiscalcliff (0) @msnbc (+) @grahamblog (0)

#veterans (0) #jobs (0) @markudall (0) @johncornyn (0)
#budget (0) #libya (0) @senatorcollins (0) @mittromney (+)
#gop (0) #gop (0) @nytimes (0) @senate (0)
#job (0) #syria (0) @senatormenendez (0) @senatorayotte (0)

#socialsecurity (0) #debt (0) @barackobama (+) @joelieberman (0)

in topic modeling and user classification tasks.

Topic modeling task. Similar to the experiments presented in Section 6.4,

we compare CBS with TwitterLDA based on their abilities to model topics as

the number of topics is varied from 10 to 100.

User classification task. We formulate the user classification task as a

semi-supervised learning problem since: (1) we have ground truth of political

affiliations for only 10% of the users in the dataset, and (2), as shown in [45],

the supervised learning approach for users’ political affiliation classification in

microblogging is not practical given the users having different degree of polit-

ical involvement like in One-Week dataset. To evaluate the performance of

CBS in this task, we therefore compare it with semi-supervided learning (SSL)

methods provided in Junto toolbox3, which are shown to be among state-of-

the-art semi-supervised learning methods[207]. The Junto toolbox implements

label propagation methods which iteratively update label for each (unknown

label) user u based on labels of the other users who are most similar to u.

Here, we choose to use the cosine similarity between pairs of users. To do

this, we represent each user as a vector of features, where the features are: (a)

tweet-based features, and (b) bags-of-behaviors of the users. We employ two

ways to compute tweet-based features for each user: (1) Tf-Idf based: the fea-

tures of each user are TF-IDF scores [150] of the terms contained in the user’s

3https://github.com/parthatalukdar/junto
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tweets; and (2) TwitterLDA based: the features of each user are the com-

ponents in topic distribution of the user’s tweets discovered by TwitterLDA

model. For computing the TwitterLDA based features, we set the number of

topics in TwittterLDA model to 80 as will be explained below. Again, we

expect that CBS outperforms the SSL methods in this task as the former uses

more information to classify the users than the latter.

6.5.1 Evaluation Metrics

Again, we adopt likelihood and perplexity for evaluating the topic modeling

task. Similarly to the experiment in Section6.4, for each user, we randomly

selected 90% of tweets of the user to form training tweets set, and use the

remaining 10% of the tweets as the test tweets set. Then for each method, we

computed the likelihood of the training tweets set and perplexity of the test

tweets set. Method with a higher likelihood, or lower perplexity is considered

better for the task.

For user classification task, we adopt average F1 score as the performance

metric. To do this, we first evenly distributed the set of known political af-

filiation users in 10 folds such that the folds have the same fraction of Demo-

crat/Neutral/Republican users. Then, for each method, we run 10-fold cross

validation with number of communities set to 3 (corresponding to three differ-

ent political affiliations in the dataset). More precisely, for each method and

each time, we use 9 folds of known political affiliation users and all unknown

political affiliation users as (semi-)training set, and use the remaining fold of

known political affiliation users as test set. For CBS model, in the training

phase, we set Democrat, Neutral, and Republican to be community 0, 1, and 2

respectively. We also fix the community indicators of the users in the 9 folds of

the (semi-)training set according to their ground truth political affiliation (i.e.,

we do not sample community for those users). We then compute the average

F1 score obtained by each method in all three classes (i.e., Democrat, Neutral,

135



CHAPTER 6. MODELING OF COMMUNITY BEHAVIORS AND SENTIMENTS

0 20 40 60 80 100
−1.86

−1.84

−1.82

−1.8

−1.78

−1.76

−1.74

−1.72

−1.7

−1.68
x 10

7 Likelihood of training tweets

#Topics

Lo
g(

Li
ke

lih
oo

d)

 

 

CBS
TwitterLDA

(a)

0 20 40 60 80 100
23.4

23.6

23.8

24

24.2

24.4

24.6

24.8
Perplexity of test tweets

#Topics

Lo
g(

P
er

pl
ex

ity
)

 

 

CBS
TwitterLDA

(b)

Figure 6.4: One-Week dataset: performance of different models in topic mod-
eling
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Figure 6.5: One-Week dataset: performance of different models in user clas-
sification

and Republican). The method with a higher score is the winner in the task.

6.5.2 Performance Results

Figure 6.4 shows the performance of TwitterLDA and CBS model in topic

modeling. The likelihood and perplexity values in the figure are averaged over

10 runs. Again, as we expected, more topics K gives larger likelihood and

smaller perplexity, and the amount of improvement diminishes as K increases.

Similar to what reported in Section 6.4, the figure shows that the topic mod-

eling performance of CBS and TwitterLDA are very similar. This suggests

that CBS model is robust against the changes in the bag-of-behaviors used.

Based on Figure 6.4 results, and in consideration of both time and space

complexities, we set the number of topics to 80 for the user classification task.
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The performance of CBS and the SSL methods in user classification task is

shown in Figure 6.5. The SSL(TwitterLDA) (respectively SSL(Tf-Idf)) is the

best performance obtained by methods provided in the Junto toolbox where the

users’ tweet-based features are TwitterLDA-based features (respectively Tf-Idf

based features). The fact that SSL(Tf-Idf) outperforms SSL(TwitterLDA) can

be explained that TwitterLDA suffers from noise as, within only one week,

many users do not have many tweets for their topic distribution to be inferred

correctly by TwitterLDA model. Finally, as we expected, the figure clearly

shows that our CBS model is the best among all the methods.

6.5.3 Topic Sentiment Analysis

We now analyze the results obtained from applying CBS model on One-

Week dataset. Table 6.5 shows the top positive topics and top negative topics

of each community as obtained by CBS. Again, we have manually assigned

labels for those topics by examining the topics’ top words and top tweets. The

table shows that those extreme topics are reasonable. In one end, while the

two wings, i.e., the Democrat and the Republican communities, are positive

on the election related topics, e.g., calling for vote for the one building the

nation (Topic 58), or tweeting about politics using sport terms (Topic 3),

the Neutral is more positive in tweeting about protecting the country (Topic

60), and changes in economics (Topic 62). Also, it is expected that both

the Democrat and the Neutral community are positive on Mr&Mrs Obama’s

anniversary (Topic 57). On the other end, while all three communities are

negative on financial issues (Topic 20) and military issues (Topic 66), the

Democrat community is more negative on issues raised by the conservatives

(Topic 26), but the Neutral and the Republican communities are more negative

on the tax policy (Topic 21).
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Table 6.5: One-Week dataset: top positive and most negative topics per
community

Topic Topic Label

D
e
m
o
c
r
a
t

Positive
Topic 57 Mr&Mrs Obama’s anniversary
Topic 58 Voting for national building
Topic 3 Politics as a sport game

Negative
Topic 26 Conservative issues
Topic 66 Military issues
Topic 20 Financial issues

N
e
u
tr
a
l Positive

Topic 57 Mr&Mrs Obama’s anniversary
Topic 60 Protecting the country
Topic 62 Economics changes

Negative
Topic 20 Financial issues
Topic 66 Military Policy
Topic 21 Tax policy

R
e
p
u
b
li
c
a
n

Positive
Topic 3 Politics as a sport game
Topic 47 Campaining
Topic 58 Voting for national building

Negative
Topic 20 Financial issues
Topic 21 Tax policy
Topic 66 Military Policy

6.5.4 Behavior Analysis

Table 6.6 shows the top behaviors performed by users in each community of all

five behavior types. The table clearly shows that those extreme behaviors are

also reasonable. The top profile words of each community are representative

ones for the community: liberal, progressive, democrats, etc. for the Democrat

community; conservative, christian, #tcot, etc. for the Republican commu-

nity; and media, sport, music, editor, etc. for the Neutral community, which

including most of accounts of professional persons/associations. For followee

behavior, it is expected that the top followed users of the Democrat and the Re-

publican communities are most popular ones in each community respectively,

while the top ones of the Neutral community are mostly goverment office (e.g.

WhiteHouse) and media (e.g., nytimes, BreakingNews, and AP). Similarly,

for retweet, the top retweeted users of Democrat and Republican communities

are most popular ones in each community respectively, while the top ones of

Neutral community are mostly media. The top hashtags suggest that the two

wings (i.e., the Democrat and the Republican communities) tweet most about

topics within their own community (e.g.,#p2 for the Democrat community,
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Table 6.6: One-Week dataset: top behaviors per community

Profile Followee

Democrat Neutral Repulican Democrat Neutral Repulican
liberal politics conservative BarackObama BarackObama michellemalkin
love media love maddow WhiteHouse PAC43

politics love christian thinkprogress politico KatyinIndy
progressive sports god WhiteHouse nytimes BraveLad

lover music american MotherJones mittromney Heritage
obama world country TheDailyEdge BreakingNews Miller51550

democrat editor #tcot DavidCornDC WSJ SarahPalinUSA
mom student wife billmaher cnnbrk AndyWendt
music tweets family dccc AP seanhannity

Retweet

Democrat Neutral Repulican
thedailyedge (0) thinkprogress (0) patdollard (0)
barackobama (0) reuters (0) jjauthor (0)
thinkprogress (0) barackobama (0) newsninja2012 (0)

lolgop (0) ap (0) mittromney (0)
thenewdeal (0) drudge report (0) slone (0)

truthteam2012 (0) thedailyedge (0) katyinindy (0)
jeffersonobama (0) truthteam2012 (0) connewsnow (0)
chrisrockoz (0) huffpostpol (0) iowahawkblog (0)
bluedupage (0) patdollard (0) keder (0)

Hashtag User mention

Democrat Neutral Repulican Democrat Neutral Repulican
#p2 (0) #tcot (0) #tcot (0) @mittromney (0) @barackobama (0) @barackobama (0)

#romney (0) #obama (0) #obama (0) @cspanwj (0) @mittromney (0) @mittromney (0)
#gop (0) #syria (0) #teaparty (0) @mittromney (+) @mittromney (+) @mittromney (+)
#tcot (0) #p2 (0) #p2 (0) @barackobama (0) @barackobama (+) @barackobama (+)

#obama (0) #iran (0) #tlot (0) @barackobama (+) @cnn (0) @youtub (0)
#tco (0) #romney (0) #gop (0) @cspanwj (+) @barackobama (-) @breitbartnew (0)

#obama2012 (0) #gop (0) #tco (0) @thinkprogres (0) @mittromney (-) @sharethi (0)
#p (0) #news (0) #romney (0) @edshow (0) @abc (0) @cnn (0)

#p2b (0) #tco (0) #lnyhbt (0) @maddow (0) @paulryanvp (0) @seanhannity (0)

and #tcot for the Republican community) and then about the opposite one,

while the Neutral community tweets more about topics related to international

issues (e.g., #syria, #iran). For user mention behavior, it is interesting that

while the Neutral community mentions the two candidate equally, users of the

two wings mention the opposite candidate more. This due to the fact that,

during the campaign period, the wing users often mention the opposite can-

didate in their tweets for questioning about facts or issues that they do not

support.

6.5.5 Usefulness of Behavior Types

Lastly, we examine the usefulness of the different behavior types in user clas-

sification task. To do this, we perform the same experiments on One-Week

dataset using the following variants of CBS model
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Figure 6.6: One-Week dataset: Performance of variants of CBS in user
classification

• OnlyTweet: the variant in which we do not take any behavior (of any

type) into account, i.e., only tweets and sentiments are modeled.

• Tweet+Followee: the variant in which we only consider tweets,

sentiments, and behaviors of Followee type. Similarly we

have Tweet+Hashtag, Tweet+Mention, Tweet+Retweet, and

Tweet+Profile variants.

• Full: the CBS model presented as above where all (5) types of behaviors

are taken into account.

Figure 6.6 shows the performance of the different variants of CBS in user

classification task. The figure suggests that adding behaviors improves the per-

formance, and Followee is more useful than other behaviors. We further con-

ducted McNemar’s statistical test [102] to compare the variants’ performance.

The test showed that: (1) the behaviors are helpful in user classification as all

the variants with behaviors added have performance that is statistically sig-

nificantly higher than performance of OnlyTweet variant, and (2) among

the behaviors, following behavior is the most useful as Tweet+Followee

and Full have statistically significant higher performance than the other vari-

ants’ performance. The test also showed that the difference between the

Tweet+Followee and Full variants is not statistically significant.
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6.6 Chapter Summary

In this chapter, we propose CBS model for learning microblogging users’ topi-

cal interest as well as deriving their community affiliation based on users’ con-

tent, the sentiments associated with the content, and their behaviors. CBS

has a novel framework that allows user content and user behavior of different

types can be modeled simultaneously. Our experiments on two real Twitter

datasets show that the proposed model outperforms baseline methods. The

work presented in this chapter was previously published in [82].
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Chapter 7

Modeling of Community

Behaviors and Content

This chapter presents our work on joint modeling of user and community inter-

ests in microblogging using both user content and user behavior. This chapter

is organized as follows. In Section 7.1, we first discuss some issues of exist-

ing works on modeling the interests that motivated our research. We then

state our research objectives and highlight our contributions in Section 7.2.

Our proposed model is described in Section 7.3. We describe two experimen-

tal datasets and report the results of applying the proposed model on the two

datasets in Section 7.4. We report the results of evaluating the proposed model

and other topic models in some user profiling tasks in Section 7.5. Finally, we

summarize the chapter in Section 7.6.

7.1 Motivation

Microblogging users’ topical interest and that of their communities have been

widely studied. The existing works however suffer from the following two major

shortcomings: (i) they do not consider topical communities when modeling

users’ personal interest, and (ii) they learn users’ interest from either their

content only or and their behaviors only but not both.
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Personal interest and topical communities. Empirical and user stud-

ies on microblogging usage have shown that the purpose of tweeting can

be broadly attributed to the users’ personal topics or background topics

[103, 257, 119]. The former cover interests of the users themselves. The latter

are the interests shared by users in the same topical communities [71]. Instead

of using the term community or social community which usually refers to a so-

cial group of densely connected users [174], we use the term “realm” to describe

a topical user community. Users within a realm may not have many social ties

among them, but they share some common background interest. In general,

a user can belong to multiple realms. Hence, when modeling microblogging

user content and behavior, we have to consider both the users’ personal inter-

ests and their realms. Previous works however do not consider realms. Some

of them do not model background topics at all (e.g.,[92, 179, 242]). Others

assume that there is only a single background topic (e.g.,[93, 258, 177, 229]).

Without considering realms and background topics, the previous models would

not be able to describe the users’ personal interest very accurately.

Consider an example in Figure 7.1. There are two realms: Food and Pol-

itics. Both user-A and user-B belong to the two realms, and therefore they

sometime tweet about the realms’ topics. For example, user-A and user-B

mention about food in tweet-3 and tweet-7 respectively, and they also men-

tion about politics in tweet-4 and tweet-8 respectively. They also adopts the

realms’ representative behaviors. Being part of the Food realm, they use hash-

tag #foods, follow and retweet from HealthyLiving1. Similarly, they use hash-

tags#p2,#tcot,#elections,#MittRomney, and follow and retweet from Barack-

Obama2, MittRomney3 due to their association with the Politics realm. The

existing models, in the absence of realms, would treat the two realms’ topics

as users’ personal interests, leading to incorrect personalization decisions.

1https://twitter.com/healthyliving
2https://twitter.com/barackobama
3https://twitter.com/mittromney
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Food

Politics

tweet-5: YouTube switches off its mobile 

app for second-gen @Apple TVs and 

older #iOS devices 

http://tnw.me/dPANHNP 

tweet-6: Improve Your Backgrounds -

Improve Your #Photography 

http://bit.ly/1nIjkMW 

Tweet-7: 12 #foods to eat when you're 

totally stressed out http://ow.ly/LgW8h 

via @HealthyLiving

tweet-8: Run up to Democratic National 

Convention reveals obstacles 

http://exm.nr/NMhWFG #MittRommey

#tcot

Etc.

Follows: Apple, NBA, MiamiHEAT, 

MittRomney, etc.

Retweets from: Apple, MiamiHEAT, 

MittRomney, etc.

Mentions users: @Apple, 

@HealthyLiving, @MittRomney, etc.

Adopts hashtags: #iOS, # Photography, 

#foods, # MittRommey, #tcot, etc.

Etc.

IOS Apps, Photography, Basketball

Content Behaviors

Self-description

user-B

tweet-1: Been using @Microsoft 

#Windows8 on desktop & tablet. It’s very 

promising.

tweet-2: New #HTML5 #Javascript book 

@Amazon HTML5 Game Development 

Insights 24 chapters 20 authors 

http://www.apress.com/9781430266976

tweet-3: avoid canned #foods, especially 

for your #kids

tweet-4: Good piece on @BarackObama, 

#OFA, and the midterm #elections: 

http://bit.ly/aZoeSb #p2.

Etc.

Follows: Microsoft, ForbesTech, 

TechCrunch, BarrackObama, etc.

Retweets from: ForbesTech, TechCrunch, 

BarrackObama, etc.

Mentions users: @Microsoft, 

@Amazon, @BarrackObama, etc.

Adopts hashtags: #windows8, 

#JavaScripts, #kids, #foods, #elections, 

#p2, etc.

Etc.

.Net Dev, HTML5, JavaScript, entrepreneur

Content Behaviors

Self-description

user-A

Figure 7.1: Illustrative example of personal and community interests in mi-
croblogging

User content and user behavior. Topical interests determine both con-

tent and behaviors of users. For example, in Figure 7.1, user-A is interested in

Microsoft’s .NET framework, HTML5, and entrepreneurship (as stated in her

self-description), hence she mentions and retweets from Microsoft and Ama-

zon; and adopts hashtags like #windows8, and #JavaScripts. Also, due to

topics of her realms, she follows, mentions, and retweets from BarackObama,

and adopts hashtags like #kids, #food, #p2, and #elections. Similarly, user-B

is interested in IOS applications, and hence mentions and retweets from Apple;

and adopts the hashtag #ios. Also, due to her association with the Politics

realm, she follows, mentions, and retweets from MittRomney, and adopts hash-

tags like #food, #tcot, and #MittRomney.
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To the best of our knowledge, there is no previous work learning users’

topical interests using both their content and their behaviors. Most of the ex-

isting works either model topics of user content only [92, 258] or user behaviors

only [145, 144]. These works neglect the relationship between the two compo-

nents of microblogging users (i.e., user content and user behaviors) and thus

learning the users’ interests in a less-than-optimal manner. A user’s topical

interest may show up in one but not both the components. For example, in

Figure 7.1, user-A is interested in entrepreneurship motivating him to follow

and retweet from ForbesTech4 and TechCrunch5 even though he hardly tweets

on entrepreneurship. Similarly, user-B is interested in basketball and he fol-

lows and retweets from NBA6 and MiamiHEAT 7 even though he may not have

tweeted about basketball.

Few other works consider both user content and user behaviors together.

Sachan et al. [194] and Qiu et al. [177] model the types of user behavior

associated with the content. For example, a message may be associated with

behavior types like tweet (post), retweet (forward), etc.. These works there-

fore can only model a subset of user behavior types, and do not model the

user behavior instances (e.g., who is retweeted, which hashtag is used, etc.).

Aggregating users behaviors by their types is an oversimplification that leads

to less accurate models.

7.2 Research Objectives and Contributions

We aim to introduce realms as well as users’ topical interest in modeling the

content and behavior of microblogging users. We seek to learn realms repre-

senting collective topical interests, in addition to users’ personal topical inter-

est. We also want to model the user’s dependence on the realms to generate

4https://twitter.com/ForbesTech
5https://twitter.com/TechCrunch
6https://twitter.com/NBA
7https://twitter.com/MiamiHEAT
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both content and behavior.

We first address the modeling of both user content and behavior. A naive

approach is to first perform topic modeling on user content and user behavior

separately. Each user’s content can be modeled as a document and we can

apply an existing topic model, e.g., LDA [27], to learn the user content topics.

For user behavior, we also construct user-behavior documents by considering

each user as a document and each behavior she adopted as a word in the

document. We then learn the latent topic associating with each of the word

using LDA. The drawback of this modeling approach is that we could not

establish a natural mapping between the learnt behavior topics and tweet

content topics. Moreover, as mentioned above, user topical interest determined

purely based on tweets only may not be ideal as a user’s topical interest may

also show up in his behavior.

Another simple approach for modeling topics of tweets and those of their

associated behaviors (e.g., user-mention, hashtag adoption, and retweeting,

etc.) is to first perform topic modeling on the tweets, and then assign each

user behavior with the topic(s) of its associated tweet(s). For example, for

each adopted hashtag h, assign to h the topic(s) of the tweet containing h.

This approach however does not work well in the cases where: (1) topic(s) of

the tweet cannot be accurately identified due to very short and noisy content;

or (2) the topic of the tweet does not fully explain the behavior. For example,

Zappavigna et al. found that instead of using hashtags to capture topics in

tweets, microblogging users have been used hashtags for many other purposes

including personalized bookmarking and named entity markup [252].

We therefore propose to jointly model user content and user behavior shar-

ing a common set of latent topics. This approach has several advantages as

follows. First, we can learn users’ interest using both their content and be-

haviors. Secondly, it keeps the topics consistent across user content and user

behavior, so as to allow user behavior to be semantically interpreted. Thirdly,
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by integrating user content and behavior through the shared topics, it allows

one to make inference of user behavior using the content, and vice versa.

In this chapter, we also want to model realms that capture topical user

communities. A simple way to identify the realms is to first perform topic

modeling on tweets and user behaviors to find out topical interest of the users,

followed by assigning the most common topics among all the users to be the

realms’ topics. Such an approach however only results in either a single realm

including all the popular topics, or a single popular topic for each realm. The

approach also does not allow us to quantify, for each user, the degree in which

the user depends on realms in tweeting and adopting behaviors. We therefore

propose to jointly model user topical interest and realms’ topic distributions

in the same framework where each user is assigned a parameter to control her

bias towards behaving based on her own interest or topical interests of her

associated realms.

There are several advantages of modeling realms’ topics and user topical

interests in a single model. For example, to recommend content to a user,

we can directly select content that match user topical interests if the user has

little dependence on his realms. For another user who has strong dependence

on his realms, we should select content that match the topics of the realms

instead. In this way, content recommendation will be more personalized and

the messages for the two types of recommendations can also be customized

accordingly.

In this chapter, we adopt the “bag-of-words” representation for both user

content and user behavior like in Chapter 6. We further develop a new proba-

bilistic graphical model that simultaneously infers latent topics, users’ topical

interest, and latent realms. Our main contributions in this work consist of the

following.

• We propose a probabilistic graphical model, called Generalized Behavior-

Topic model (abbreviated as GBT), for modeling topical interests of
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users and their realms, as well as for modeling both user content and

user behavior using a common set of topics. In GBT, the dependency

of the users on realms in generating content and adopting behaviors are

parameters to be learnt. This is a unique contribution of this work since

each user’s dependence on realms is not observable in the data.

• We develop a simple sampling method to infer the model’s parameters.

We further develop an efficient regularization technique to bias the model

to learn more semantically clear realms. Our learning method is easy to

implement and scales with the number of latent topics and realms, and

number of observed content words and behaviors.

• We apply GBT model on two Twitter datasets and show that it signifi-

cantly outperforms state-of-the-art topic models for Twitter content.

• An empirical analysis of topics and realms for the two datasets has been

conducted to demonstrate the efficacy of the GBT model.

• Lastly, we further demonstrate the application of GBT model in some

user profiling tasks showing that it also outperforms other topic models

in these tasks.

7.3 Generalized Behavior-Topic Model

In this section, we present our proposed Generalized Behavior-Topic (GBT)

model in detail. We first summarize the notations used in this chapter in

Table 7.1.

7.3.1 Assumptions

Our model relies on the assumptions that: (i) users generate content and

adopt behaviors topically; and (ii) users generate content and adopt behaviors

according to either their personal interest or some realms. The first assumption
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Table 7.1: Main notations used to describe GBT model

U/ T Set of all users/ all tweets
W/ B Bag-of-words/ bag-of-behaviors of all types
Vt Tweet vocabulary
U/L Number of users/ Number of behavior types
W Number of words in tweeting vocabulary
Bl Number of behaviors of type l

tij/b
il
j j-th tweet/ behavior of type l of user ui

Nij #words of tweet tij
wij
n n-th word of tweet tij

cij/z
i
j coin/topic of tweet tij

c
i,l
j /zi,lj coin/topic of behavior bi,lj
K Number of topics

φk/ λlk word/ type-l behavior distribution of k-th topic
σr topic distribution of r-th realm
θu topic distribution of user u

µu/ πu dependence/ realm distribution of user u
α/β/ρ/τ/γl Dirichlet conjugate priors of θu/φk/µu/πu/γl

C/ R/ Z
bag-of-coins/ realms/topics
of all the tweets and behaviors

C−ti
j
/ R−ti

j
/ Z−ti

j

bag-of-coins/ realms/ topics

of all behaviors and tweets except tij

C
−bi,l

j

/ R
−bi,l

j

/ Z
−bi,l

j

bag-of-coins/ realms/ topics

of all behaviors and tweets except bi,lj

nc(c, u,C)
#times coin c is observed in set of tweets and
behaviors of user u for bag-of-coins C

nzu(z,u,Z)
#tweets + #behaviors of user u that have coin 0 and
have topic z for bag-of-topics Z

nzr(z, r,Z,R) #tweets + #behaviors that have coin 1 and
have topic z and realm r for bag-of-topics Z,
and bag-of-realms R

nw(w,z,T ,Z)
#times word w is observed in topic z

for set of tweets T and bag-of-topics Z

nl
b(b, z,B,Z)

#times type-l behavior b is observed in topic z

for bag-of-behaviors B and bag-of-topics Z

suggests that, for each user, there is always an underlying topic explaining

content of every tweet the user posts as well as every behavior she adopts. The

second assumption suggests that, while different users generally have different

personal interest, their content and adopted behaviors also share some common

topics of the realms. Hence, to model users’ content and behaviors accurately,

it is important to determine realms as well as their own personal interest.
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7.3.2 Generative Process

Based on the above assumptions, we proposeGBTmodel with a plate diagram

shown in Figure 7.2. GBT selects tweet words from a vocabulary Vt; and

model behaviors of one of L types where each type-l behavior is drawn from a

set of values denoted by Vbl. The GBT model has K latent topics, where each

topic k has (i) a multinomial distribution φk over the vocabulary Vt, and (ii)

a multinomial distribution λlk over Vbl for each type-l of behaviors. To model

realms, GBT assumes that there are R realms, where each realm r has a

multinomial distribution σr over the K topics. Each user u also has a personal

topic distribution θu over the K topics and a realm distribution πu over the

R realms. Moreover, each user has a dependence distribution µu which is a

Bernoulli distribution indicating how likely the user behaves based on her own

personal interest (µ0
u) or the realms (µ1

u = 1 − µ0
u). Lastly, we assume that θu,

πu, σ, λl, and φ have Dirichlet priors α, τ , η, γl, and β respectively, while µu

has Beta prior ρ.

In GBT model, we assume the following generative process for all the

posted tweets. To generate a tweet t for user u, we first flip a biased coin cu

(whose bias is µu) to decide if the tweet will be based on u’s personal interest,

or one of the realms. If the coin is head up, (i.e., cu = 0), we then choose

the topic zt for the tweet according to u’s topic distribution θu. Otherwise,

(i.e., cu = 1), we first choose a realm r according to u’s realm distribution πu,

then we choose zt according to the chosen realm’s topic distribution σr. As

tweets are short with no more than 140 characters, we assume that each tweet

has only one topic. Once the topic zt is chosen, words in t are then chosen

according to the topic’s word distribution φzt . Similarly, we assume the same

process for all adopted behaviors, except that, for a behavior b of type l, once

the topic zb is chosen, the behavior is then chosen according to the topic’s

behavior distribution λlzb. The full generative process is as follows.

• For each topic k (k = 1,⋯,K),
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Figure 7.2: Plate notation for GBT model

– Sample the topic’s word distribution φk ∼Dirichlet(βk)
– For each type of behavior l (l = 1,⋯,L), sample the topic’s distri-

bution over type-l behaviors λlk ∼Dirichlet(γl)
• For each realm r (r = 1,⋯,R), sample the realm’s topic distribution

σr ∼ Dirichlet(ηr)
• For each user u

1. Sample u’s topic distribution θu ∼Dirichlet(α)
2. Sample u’s realm distribution πu ∼Dirichlet(τ)
3. Sample u’s dependence distribution µu ∼ Beta(ρ)

• Generate tweets for the user u: For each tweet t that u posts:

1. Sample the coin cu ∼ Bernoulli(µu)
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2. Sample topic for the tweet:

– if cu = 0, Sample the topic from u’s topic distribution: zt ∼
Multinomial(θu)

– If cu = 1, sample the topic from one of the realms:

∗ Sample the realm rt ∼Multinomial(πu)
∗ Sample the topic zt ∼Multinomial(σrt)

3. Sample the tweet’s words: For n-th word of the tweet, sample the

word wt,n ∼Multinomial(φzt)
• Generate behaviors for the user u: For each behavior of type-l that u

adopts:

1. Sample the coin cu ∼ Bernoulli(µu)
2. Sample topic for the behavior:

– If cu = 0, sample the topic from u’s topic distribution zb ∼
Multinomial(θu)

– If cu = 1, sample the topic from one of the realms

∗ Sample the realm rb ∼Multinomial(πu)
∗ Sample the topic zb ∼Multinomial(σrb)

3. Sample behavior instance b ∼Multinomial(φzb)

7.3.3 Model Learning

Consider a set of microblogging users together with their posted tweets and

adopted behaviors, we now present the algorithm for performing inference in

the GBT model. We use U to denote the number of users, and recall that

L denotes the number of behavior types in the dataset. We use W to denote

the number of words in the tweet vocabulary Vt (i.e., W = ∣Vt∣), and use Bl to

denote the number of behaviors of type l (i.e., Bl = ∣Vbl∣). We denote the set

of all posted tweets and the bag of all adopted behaviors of all types in the

152



CHAPTER 7. MODELING OF COMMUNITY BEHAVIORS AND CONTENT

dataset by T and B respectively. For each user ui, we denote her j-th tweet

by tij , and denote her j-th behavior of type l by b
i,l
j . For each posted tweet tij ,

we denote Nij words in the tweet by w
ij
1 ,⋯,w

ij
Nij

respectively, and we denote

the tweet’s topic, coin, and realm (if exists) by zij , cij, and rij respectively.

Similarly, for each adopted behavior bi,lj , we denote its topic, coin, and realm

(if exists) by z
i,l
j , ci,lj , and r

i,l
j respectively. Lastly, we denote the bag-of-topics,

bag-of-coins, and bag-of-realms of all the posted tweets and adopted behaviors

in the dataset by Z , C, and R respectively.

Due to the intractability of LDA-based models [27], we make use of sam-

pling method in learning and estimating the parameters in the GBT model.

More exactly, we use a collapsed Gibbs sampler ([139]) to iteratively and jointly

sample the latent coin and latent realm, and sample latent topic of every posted

tweet and adopted behavior.

Sampling for a tweet. For each posted tweet tij, we use C−ti
j
, R−ti

j
, Z−ti

j

to denote the bag-of-coins, bag-of-realms and bag-of-topics, respectively, of all

the adopted behaviors and all other posted tweets in the dataset except the

tweet tji . Then the coin cij and the realm rij of t
i
j are jointly sampled according

to equations in Figure 7.3, while the topic zij of tij is sampled according to

equations in Figure 7.4. Note that when cij = 0, we do not have to sample rij ,

and the current rij (if exists) will be discarded. In these equations, nc(c, u,C)
records the number of times the coin c is observed in the set of tweets and

behaviors of user u for the bag-of-coins C. Similarly, nzu(z, u,Z) records the
number of times the topic z is observed in the set of tweets and the bag of

behaviors of user u for the bag of topics Z ; nzr(z, r,Z ,R) records the number

of times the topic z is observed in the set of tweets and the bag-of-behaviors

that are tweeted/adopted based on the realm r by any user for the bag-of-

topics Z and the bag-of-realms R; nru(r, u,R) records the number of times

the realm r is observed in the set of tweets and the bag-of-behaviors of user

u; and nw(w,z,T ,Z) records the number of times the word w is observed in
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the topic z for the set of tweets T and the bag-of-topics Z .

Figure 7.3: Probabilities used in jointly sampling coin and realm for
tweet tij without regularization

p(cij = 0∣T ,B,C−ti
j
,R−ti

j
,Z, α, β, τ, η, γ, ρ) ∝

∝
nc(0, ui,C−ti

j
) + ρ0

1

∑
c=0
(nc(c, ui,C−ti

j
) + ρc)

⋅
nzu(zij , ui,Z−tij ) + αzi

j

K

∑
k=1
(nzu(k,ui,Z−ti

j
) + αk)

(7.1)

p(cij = 1, r
i
j = r∣T ,B,C−ti

j
,R−ti

j
,Z, α, β, τ, η, γ, ρ) ∝

nc(1, ui,C−ti
j
) + ρ1

1

∑
c=0
(nc(c, ui,C−ti

j
) + ρc)

⋅
nru(r, ui,R−ti

j
) + τr

G

∑
r′=1
(nru(r′, ui,R−ti

j
) + τr′)

⋅
nzr(zij , r,Z−ti

j
,R−ti

j
) + ηrzi

j

K

∑
k=1
(nzr(k, r,Z−ti

j
,R−ti

j
) + ηrk)

(7.2)

Figure 7.4: Probabilities used in sampling topic for tweet tij without regu-
larization

p(zij = z∣c
i
j = 0,T ,B,C−ti

j
,R,Z−ti

j
, α, β, τ, η, γ, ρ) ∝

∝
nzu(z,ui,Z−ti

j
) + αz

K

∑
k=1
(nzu(k,ui,Z−ti

j
) +αk)

⋅
Nij

∏
n=1

nw(w
ij
n , z,Z−ti

j
) + β

zw
ij
n

W

∑
v=1
(nw(v, z,Z−ti

j
) + βzv)

(7.3)

p(zij = z∣c
i
j = 1,T ,B,C−ti

j
,R,Z−ti

j
, α, β, τ, η, γ, ρ) ∝

nzr(z, rij ,Z−ti
j
,R−ti

j
) + ηri

j
z

K

∑
k=1
(nzr(k, rij ,Z−tij ,R−tij ) + ηrijk)

⋅

⋅
Nij

∏
n=1

nw(w
ij
n , z,T−ti

j
,Z−ti

j
) + β

zw
ij
n

W

∑
v=1
(nw(v, z,T−ti

j
,Z−ti

j
) + βzv)

(7.4)

In the right hand side of Equation 7.1: (i) the first term is proportional

to the probability that the coin 0 is generated given the priors and (current)

values of all other latent variables (i.e., the coins, realms (if exist), and topics of

all other tweets and behaviors); and (ii) the second term is proportional to the

probability that the (current) topic zij is generated given the priors, (current)
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values of all other latent variables, and the chosen coin. Similarly, in the right

hand side of Equation 7.2: (i) the first term is proportional to the probability

that the coin 1 is generated given the priors and (current) values of all other

latent variables; (ii) the second term is proportional to the probability that

the realm r is generated given the priors, (current) values of all other latent

variables, and the chosen coin; and (iii) the third term is proportional to the

probability that the (current) topic zij is generated given the priors, (current)

values of all other latent variables, and the chosen coin as well as the chosen

realm.

In the right hand side of Equation 7.3: (i) the first term is proportional

to the probability that the topic z is generated given the priors and (current)

values of all other latent variables, and the corresponding coin is 0; and (ii)

the second term is proportional to the probability that the tweet content is

generated given the priors, (current) values of all other latent variables, and

the chosen topic. Similarly, in the right hand side of Equation 7.4: (i) the

first term is proportional to the probability that the topic z is generated given

the priors and (current) values of all other latent variables, and the and the

corresponding coin is 1; (ii) the second term is proportional to the probability

that the tweet content is generated given the priors, (current) values of all

other latent variables, and the chosen topic.

Sampling for a behavior. Similarly, for each adopted behavior b
i,l
j , we

use C
−bi,l

j

, R
−bi,l

j

, Z
−bi,l

j

to denote the bag-of-coins, bag-of-realms, and bag-of-

topics, respectively, of all the posted tweets and all other adopted behaviors in

the dataset except the behavior bi,lj . Then the coin c
i,l
j and the realm r

i,l
j of bi,lj

are jointly sampled according to equations in Figure 7.5, while the topic z
i,l
j

of bi,lj is sampled according to equations in Figure 7.6. Again, note that when

c
i,l
j = 0, we do not have to sample r

i,l
j , and the current r

i,l
j (if exists) will be

discarded. In these equations, nl
b(b, z,B,Z) records the number of times the

type-l behavior b is observed in the topic z for the bag-of-behaviors B and the
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bag-of-topics Z .

Figure 7.5: Probabilities used in jointly sampling coin and realm for
behavior b

l,i
j without regularization

p(ci,lj = 0∣T ,B,C
−bi,l

j

,R
−bi,l

j

,Z, α, β, τ, η, γ, ρ) ∝

∝
nc(0, ui,C−bi,l

j

) + ρ0
1

∑
c=0
(nc(c, ui,C−bi,l

j

) + ρc)
⋅
nzu(z

i,l
j , ui,Z−bi,l

j

) +α
z
i,l
j

K

∑
k=1
(nzu(k,ui,Z−bi,l

j

) + αk)
(7.5)

p(ci,lj = 1, r
i,l
j = r∣T ,B,C

−bi,l
j

,R
−bi,l

j

,Z, α, β, τ, η, γ, ρ) ∝

∝
nc(1, ui,C−bi,l

j

) + ρ1
1

∑
c=0
(nc(c, ui,C−bi,l

j

) + ρc)
⋅

nru(r, ui,R−ti
j
) + τg

R

∑
r′=1
(nru(r′, ui,R−ti

j
) + τr′)

⋅

⋅
nzr(z

i,l
j , r,Z

−bi,l
j

,R
−bi,l

j

) + ηrzi
j

K

∑
k=1
(nzr(k, r,Z−bi,l

j

,R
−bi,l

j

) + ηrk)
(7.6)

Figure 7.6: Probabilities used in sampling topic for behavior b
i,l
j without

regularization

p(zi,lj = z∣c
i,l
j = 0,T ,B,C

−bi,l
j

,R,Z
−bi,l

j

,B, α, β, τ, η, γ, ρ) ∝

∝
nzu(z,ui,Z−bi,l

j

) + αz

K

∑
k=1
(nzu(k,ui,Z−bi,l

j

) +αk)
⋅
nl
b(b

i,l
j , z,B

−bi,l
j

,Z
−bi,l

j

) + γ
lzb

i,l
j

Bl

∑
b=1
(nl

b
(b, z,B,Z

−bi,l
j

) + γlzb)
(7.7)

p(zi,lj = z∣c
i,l
j = 1,T ,B,C

−bi,l
j

,R,Z
−bi,l

j

, α, β, τ, η, γ, ρ) ∝

∝
nzr(z, r

i,l
j ,Z

−bi,l
j

,R
−bi,l

j

) + η
r
i,l
j

z

K

∑
k=1
(nzr(k, r

i,l
j ,Z

−bi,l
j

,R
−bi,l

j

) + ηri
j
k)
⋅
nl
b(b

i,l
j , z,B

−bi,l
j

,Z
−bi,l

j

) + γ
lzb

i,l
j

Bl

∑
b=1
(nl

b
(b, z,B,Z

−bi,l
j

) + γlzb)
(7.8)

The terms in the right hand side of Equations 7.5, 7.6, 7.7, and 7.8 re-

spectively have the same meaning with those of Equations 7.1, 7.2, 7.3, and

7.4.

156



CHAPTER 7. MODELING OF COMMUNITY BEHAVIORS AND CONTENT

7.3.4 Sparsity Regularization

As we want to differentiate users’ tweets and behavior adoptions based on per-

sonal interest from those based on realms while distinguishing one realm from

the others, we prefer (a) realms’ topic distributions and users’ topic distribu-

tions to skew on different topics, and (b) different realms’ topic distributions to

skew on different topics. More exactly, in estimating parameters in the GBT

model, we need to obtain sparsity in the following distributions.

• Topic specific coin distribution pcoin(⋅∣z) where z is a topic: the sparsity

in this distribution is to ensure that each topic z is mostly covered by

either users’ personal interest or realms.

• Topic specific realm distribution prealm(⋅∣z) where z is a topic: the spar-

sity in this distribution is to ensure that each topic z is mostly covered

by one or only a few realms.

To obtain the sparsity mentioned above, we use the pseudo-observed variable

based regularization technique proposed by Balasubramanyan et al. [20] as

follows.

7.3.4.1 Topic Specific Coin Distribution Regularization

Since the topic specific coin distributions are determined by both coin and

realm joint sampling and topic sampling steps, we regularize both these two

steps to bias the distributions to some target sparsity.

In coin and realm joint sampling steps. In each coin & realm sampling

step for the tweet tij , we multiply the right hand side of equations in Figure 7.3

with a corresponding regularization term RtopicCoin-Coin&Realm(c∣zij) which is

computed based on empirical entropy of p(c∣zij) as in Equation 7.9. Similarly,

in each coin & realm sampling step for the behavior bi,jj , we multiply the right

hand side of equations in Figure 7.5 with a corresponding regularization term

157



CHAPTER 7. MODELING OF COMMUNITY BEHAVIORS AND CONTENT

RtopicCoin-Coin&Realm(c∣zi,lj ) which is computed based on empirical entropy of

p(c∣zi,lj ) as in Equation 7.10.

Figure 7.7: Topic specific coin distribution regularization terms used
in sampling coin and/or realm for tweet tij and behavior bi,lj

RtopicCoin-Coin&Realm(c∣zij) = exp( −
(Hcoin

ci
j
=c
(zij) − µtopicCoin)2
2σ2

topicCoin

) (7.9)

RtopicCoin-Coin&Realm(c∣zi,lj ) = exp( −
(Hcoin

c
i,l
j
=c
(zi,lj ) − µtopicCoin)2
2σ2

topicCoin

) (7.10)

In topic sampling steps. In each topic sampling step for the tweet tij , we

multiply the right hand side of equations in Figure 7.4 with a corresponding

regularization term RtopicCoin-Topic(z∣tij) which is computed based on empirical

entropy of p(c∣z) as in Equation 7.11. Similarly, in each topic sampling step for

the behavior bi,jj , we multiply the right hand side of equations in Figure 7.6 with

a corresponding regularization term RtopicCoin-Topic(z∣bi,lj ) which is computed

based on empirical entropy of p(c∣z) as in equations in Figure 7.12.

Figure 7.8: Topic specific coin distribution regularization terms used
in sampling topic for tweet tij and behavior bi,lj

RtopicCoin-Topic(z∣tij) = exp( − K

∑
z′=1

[(H
coin
zi
j
=z
(z′) − µtopicCoin)2
2σ2

topicCoin

]) (7.11)

RtopicCoin-Topic(z∣bi,lj ) = exp( −
K

∑
z′=1

[(H
coin

z
i,l
j
=z
(z′) − µtopicCoin)2
2σ2

topicCoin

]) (7.12)

In Equation 7.9, Hcoin
ci
j
=c
(zij) is the empirical entropy of pcoin(⋅∣zij) when cij = c;

and in Equation 7.10, Hcoin

c
i,l
j
=c
(zi,lj ) is the empirical entropy of pcoin(⋅∣zi,lj ) when

ci,lj = c. Similarly, for each topic z′, in Equation 7.11, Hcoin
zi
j
=z
(z′) is the empir-

ical entropy of pcoin(⋅∣z′) when zij = z, and in Equation7.12, Hcoin

z
i,l
j
=z
(z′) is the

empirical entropy of pcoin(⋅∣z′) when z
i,l
j = z. The two parameters µtopicCoin

and σtopicCoin are the target mean and target variance of the entropy of p(c∣z)
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respectively. These target mean and target variances are pre-defined parame-

ters. Obviously, these regularization terms (1) increase weight for values of c,

r, and z that give lower empirical entropy of p(c∣z), and hence increasing the

sparsity of these distributions; but (2) decrease weight for values of c, r, and z

that give higher empirical entropy of p(c∣z), and hence decreasing the sparsity

of these distributions.

7.3.4.2 Topic Specific Realm Distribution Regularization

Similarly, since the topic specific realm distributions are determined by both

coin & realm joint sampling and topic sampling steps, we regularize both these

two steps to bias the distributions to some target sparsity.

In coin & realm joint sampling steps. In each coin & realm sampling

step for the tweet tij, we also multiply the right hand side of equations in Fig-

ure 7.3 with a corresponding regularization term RtopicRealm-Coin&Realm(c, r∣zij)
which is computed based on empirical entropy of p(r′∣zij) as in Equation 7.13.

Similarly, in each coin & realm sampling step for the behavior b
i,j
j , we also

multiply the right hand side of equations in Figure 7.5 with a corresponding

regularization term RtopicRealm-Coin&Realm(c, r∣zi,lj ) which is computed based on

empirical entropy of p(r′∣zi,lj ) as in Equation 7.14.

Figure 7.9: Topic specific realm distribution regularization terms used
in sampling coin and/or realm for tweet tij and behavior bi,lj

RtopicRealm-Coin&Realm(c, r∣zij) = exp( −
(Hrealm

ci
j
=c,ri

j
=r
(zij) − µtopicRealm)2

2σ2
topicRealm

) (7.13)

RtopicRealm-Coin&Realm(c, r∣zi,lj ) = exp(−
(Hrealm

c
i,l
j
=c,ri,l

j
=r
(zi,lj ) − µtopicRealm)2

2σ2
topicRealm

) (7.14)

In topic sampling steps. In each topic sampling step for the tweet tij ,

we also multiply the right hand side of equations in Figure 7.4 with a corre-

sponding regularization termRtopicRealm-Topic(z∣tij) which is computed based on
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empirical entropy of p(r∣z) as in Equation 7.15. Similarly, in each topic sam-

pling step for the behavior b
i,j
j , we multiply the right hand side of equations

in Figure 7.6 with a corresponding regularization term RtopicReaml-Topic(z∣bi,lj )
which is computed based on empirical entropy of p(c∣z) as in equations in

Figure 7.16.

Figure 7.10: Topic specific realm distribution regularization terms used
in sampling topic for tweet tij and behavior bi,lj

RtopicRealm-Topic(z∣tij) = exp( − K

∑
z′=1

[(H
realm
zi
j
=z
(z′) − µtopicRealm)2
2σ2

topicRealm

]) (7.15)

RtopicRealm-Topic(z∣bi,jj ) = exp( −
K

∑
z′=1

[(H
realm

z
i,l
j
=z
(z′) − µtopicRealm)2
2σ2

topicRealm

]) (7.16)

In Equation 7.13, Hrealm
ci
j
=c,ri

j
=r
(zij) is the empirical entropy of prealm(⋅∣zij) when

cij = c & rij = r, and in Equation 7.14, Hrealm

c
i,l
j
=c,ri,l

j
=r
(zi,lj ) is the empirical en-

tropy of prealm(⋅∣zi,lj ) when c
i,l
j = c & r

i,l
j = r. Similarly, for each topic z′, in

Equation 7.15, Hrealm
zi
j
=z
(z′) is the empirical entropy of prealm(⋅∣z′) when zij = z,

and in Equation 7.16, Hrealm

z
i,l
j
=z
(z′) is the empirical entropy of prealm(⋅∣z′) when

z
i,l
j = z. The two parameters µtopicRealm and σtopicRealm are the target mean and

target variance of the entropy of p(r∣z) respectively. These target mean and

target variances are pre-defined parameters. Obviously, these regularization

terms (1) increase weight for values of c, r, and z that give lower empirical

entropy of p(r∣z), and hence increasing the sparsity of these distributions; but

(2) decrease weight for values of c, r, and z that give higher empirical entropy

of p(r∣z), and hence decreasing the sparsity of these distributions.

7.3.5 Implementation and Complexity

We use two-dimensional tables for keeping the counts nc(c, u,C), nzu(z, u,Z),
nzr(z, r,Z ,R), nw(w,z,T ,Z) and nl

b(b, z,B,Z) and call them counting
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tables. We also use one-dimensional tables for keeping row and column sums

of the counting tables and call them sum tables; and use one-dimensional

tables for keeping the empirical entropies of p(c∣z) and p(r∣z) and call them

entropy tables. In each sampling step, only constant time updates on some

counting table(s) and sum table(s) are made. For each topic z, the empirical

entropies of p(c∣z) and p(r∣z) are computed based on the row/column z of

one of the counting tables. Hence, in each sampling step, the entropy tables

can also be updated in constant time as follows. Let Ecurrent be the current

empirical entropy of p(r∣z). Ecurrent and is computed from the array n1,⋯, nR

which is the row/column z of one of the counting tables, i.e.,

Ecurrent = − R

∑
r=1

nr

∑R
r=1 nr

log( nr

∑R
r=1 nr

)

Now, assume that nr1 is changed to nr1 +∆, then the new empirical entropy

Enew of p(r∣z) can be computed from Ecurrent as follows.

Enew = 1

∆ +∑R
r=1 nr

⎡⎢⎢⎢⎢⎣
Ecurrent

R

∑
r=1

nr + (nr1 log(nr1) − (nr1 +∆) log(nr1 +∆))+
+ log(∆ + R

∑
r=1

nr)(∆ + R

∑
r=1

nr) − ( R

∑
r=1

nr) log ( R

∑
r=1

nr)
⎤⎥⎥⎥⎥⎦

Given the sum
R

∑
r=1

nr is kept in a cell of one of the sum tables, the cost

of updating the empirical entropy p(r∣z) is therefore constant. Similarly, in

each sampling step, we can update any entropy table in constant time. Hence,

in total, a single iteration of the sampler performs O((∣W ∣ + ∣B∣)(K + R))
computations where ∣W ∣ is the number of observed words and ∣B∣ is the number

of observed behaviors in the dataset [79].

In our experiments, we used sampling method with the above sparsity

regularization, setting µtopicCoin = µtopicRealm = 0, σtopicCoin = 0.3, σtopicRealm =
0.5. This corresponds to the case where every topic is assigned to either realms

or users’ personal interests, and every topic is also assigned to at most one
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realm. σtopicCoin is set smaller than σtopicRealm so that, for each topic, the topic’s

coin distribution is more strictly regularized than its realm distribution. We

also used conventional symmetric Dirichlet hyperparameters, which are used

in previous works (e.g.,[27, 258, 177]). That is, α = 50/K, β = 0.01, ρ = 2,

τ = 1/C, η = 50/K, and γl = 0.01 for all l = 1,⋯,L. Given the input dataset, we

train the model with 600 iterations of Gibbs sampling. We took 25 samples

with a gap of 20 iterations in the last 500 iterations to estimate all the hidden

variables.

7.4 Experimental Evaluation

7.4.1 Datasets

Using snowball sampling, we collected the following two datasets for evaluating

the GBT model.

SE dataset. This dataset is collected from a set of Twitter users who are

interested in software engineering. To construct this dataset, we first utilized

100 most influential software developers in Twitter provided in [107] as the

seed users. These are highly-followed users who actively tweet about software

engineering topics, and they include Jeff Atwood8, Jason Fried9, and John

Resig10. We further expanded the user set by adding all users following at

least five seed users so as to get more technology savvy users. Lastly, we took

all tweets posted by these users from August 1st to October 31st, 2011 to form

the first dataset, called SE dataset.

Two-Week dataset. The second dataset is a large corpus of tweets collected

just before the 2012 US presidential election. To construct this corpus, we

first manually selected a set of 56 seed users. These are highly-followed and

politically-oriented Twitter users, including major US politicians, e.g., Barack

8
http://en.wikipedia.org/wiki/Jeff Atwood

9
http://www.hanselman.com/blog/AboutMe.aspx

10
http://en.wikipedia.org/wiki/John Resig

162



CHAPTER 7. MODELING OF COMMUNITY BEHAVIORS AND CONTENT

Table 7.2: Statistics of the experimental datasets used for evaluating GBT
model

SE dataset Two-Week dataset
#user 14,595 24,046
#tweets 3,030,734 3,181,583

#mention adoptions 354,463 (with 2,337 adopters) 653,758 (with 4,628 adopters)
#hashtag adoptions 894,619 (with 3,992 adopters) 1,820,824 (with 9,288 adopters)
#retweet adoptions 909,272 (with 5,324 adopters) 2,396,100 (with 10,576 adopters)

Obama, Mitt Romney, and Newt Gingrich; well known political bloggers, e.g.,

America Blog, Red State, and Daily Kos; and political sections of US news

media, e.g., CNN Politics, and Huffington Post Politics. The set of users was

then expanded by adding all users following at least three seed users so as to

get more politics savvy users. Lastly, we used all the tweets posted by these

users during the two week duration from August 25th to September 7th, 2012

to form the second dataset, known as the Two-Week dataset.

We employed the following preprocessing steps to clean both datasets. We

first removed stopwords from the tweets. Then, we filtered out tweets with less

than 3 non-stopwords. Next, we excluded users with less than 50 (remaining)

tweets so as to focus on users with sufficient data. In both the datasets, we

consider the following behavior types (1) mention, and (2) hashtag, and (3)

retweet. These are messaging behaviors beyond content generation that users

may adopt multiple times. Lastly, for each behavior instance, we filtered away

those with less than 10 adopting users; and for each user and each type of

behaviors, we filtered out all the behaviors if the user adopted less than 50

behaviors of the type. These minimum thresholds are necessary so that, for

each behavior and each user, we have enough number of adoption observations

for learning both influence of the user’s personal interest and that of the realms

on behavior adoption.

Table 7.2 shows the statistics of the two datasets after the preprocessing

steps. As shown in the table, the two datasets after the filtering are still large.

In SE dataset, there are about 200 tweets, 150 mention adoptions, 225 hashtag

adoptions, and 170 retweet adoptions per user. In Two-Week dataset, there
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are about 120 tweets, 140 mention adoptions, 195 hashtag adoptions, and 225

retweet adoptions per user. This large size allows us to learn the latent factors

accurately.

7.4.2 Content Modeling

We first evaluate the ability of GBT model in modeling topics of content. To

do this, we compare GBT with two state-of-the-art topic models for Twitter

data: TwitterLDA model [258], and QBLDA model [177].

We adopt likelihood and perplexity for evaluating the resultant topics mod-

eling task. For each user, we randomly selected 90% of tweets of the user to

form a training set, and the remaining 10% of the tweets as the test set. Then

for each model, we compute the likelihood of the training set and perplexity

of the test set. The model with a higher likelihood, or lower perplexity is

considered better for the task.

Figures 7.11 (a) and (b) show the performance of TwitterLDA, QBLDA

GBT models in content modeling on SE dataset by varying the number of

topics K and the number of realms R. Figures 7.11 (c) and (d) show the

similar results on Two-Week dataset. As expected, larger number of topicsK

gives larger likelihood and smaller perplexity, and the amount of improvement

diminishes as K increases. The figures show that: (1) GBT significantly

outperforms both TwitterLDA andQBLDA models in the content modeling

task; and (2) GBT is robust against the number of realms as its quantitative

performance does not significantly change as we increase the number of the

realms from 1 to 5.

We further look into the realms returned by the GBT model with different

number of realms and found that there is a semantically hierarchical structure

among the realms. That is, when the number of realms is increased, the

realms are divided into more semantically distinctive realms. For example,

Figure 7.12 shows the top topics of the realm(s) found in the SE dataset when
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Figure 7.11: Loglikelihood and Perplexity of GBT and TwitterLDA models
in: ((a) and (b)) SE, and ((c) and (d)) Two-Week datasets

the number of realms varied from 1 to 3. Here, the labels of the topics are

manually assigned after examining the topics’ top words and top tweets. For

each topic, the topic’s top words are the words having the highest likelihoods

given the topic, and the topic’s top tweets are the tweets having the lowest

perplexities given the topic. The figure clearly shows that the unique realm

in the case R = 1 is divided into two semantically clearer realms when R = 2.
These two realms divided into three realms with even clearer semantics when

R = 3. We also have similar qualitative findings from the Two-Week dataset.

This suggests that the GBT model can recover the more detail realms by

increasing the number of realms, even though the quantitative performance

does not significantly improve.

Considering both time and space complexities, and it is not practical to
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Figure 7.12: Top topics of realm(s) found in SE dataset when the number of
realms varies from 1 to 3

1 Realm

Unique realm

Topic Id 41 67 52

Topic label
Daily Program- Smart

stuffs ming devices

Probability 0.510 0.085 0.068

2 Realms

Realm 0 Realm 1

Topic Id 4 7 28 67 14 34

Topic label
Daily Children Networking Program- Operating Project

works services ming systems management

Probability 0.297 0.291 0.126 0.216 0.213 0.191

3 Realms

Realm 0 Realm 1 Realm 2

Topic Id 44 66 26 38 22 66 76 43 26

Topic label

Scripting Email & Readings iOS iPhone Email & Daily Foods Readings

programming social & iPad social stuffs &

languages networking networking drinks

services services

Probability 0.760 0.044 0.043 0.369 0.231 0.102 0.536 0.098 0.089

expect a large number of topics falling in realm(s), we set the number of topics

to 80 and set the number of the realms to 3 for the experiments presented the

following sections.

7.4.3 Background Topics & Realms Analysis

We now examine the background topics found by the TwitterLDA and

QBLDA models, and realms found by the GBT model.

Tables 7.3 and 7.4 respectively show the top words of the background

topics found by TwitterLDA model and QBLDA model in SE dataset,

while Table 7.5 shows the top topics for each realm found in the same dataset.

Remind that, other than the background topics in TwitterLDA and

QBLDA models, the labels of other topics are also manually assigned af-

ter examining the topics’ top words (shown in Tables 7.13) and top tweets.

The label of each realm is also manually assigned after examining the realm’s

top topics. The tables show that: (i) the background topics found by Twit-

terLDA and QBLDA models are not semantically clear; while (ii) the realms

and their extreme topics found by GBT model are both semantically clear and

reasonable. In SE dataset, other than Daily Life realm as reported in [103], it
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is expected that professional realms Software Development and Apple’s prod-

uct exist in the dataset as most of its users are working in IT industry. This

agrees with the findings by Zhao et al. [257] that people also use Twitter for

gathering and sharing useful information for their profession.

Table 7.3: Top words of background topic found in SE dataset by Twit-
terLDA model

life,making,video,blog,change,reading,job,home,thought,line
team,power,game,business,money,friends,talking,starting,month,company

Table 7.4: Top words of background topic found in SE dataset by QBLDA
model

video,life,blog,change,job,game,reading,business,power,making
thought,line,home,#fb,giving,friends,team,money,talking,running

Table 7.5: Top topics of realms found in SE dataset

Realm Realm Top topics
Id Label Topic Id Topic Label Probability

0
Software 44 Scripting programming languages 0.760

development 66 Email & social networking services 0.044
26 Readings 0.043

1
Apple’s 38 iOS 0.369
products 22 iPhone & iPad 0.231

66 Email & social networking services 0.102

2
Daily 76 Daily stuffs 0.536
life 43 Foods & drinks 0.098

26 Readings 0.089

Similarly, Tables 7.6 and 7.7 respectively show the top words of the back-

ground topics found by TwitterLDA and QBLDA models in Two-Week

dataset, while Table 7.8 shows the top topics for each realm found in the

same dataset. Again, the topics’ labels are manually assigned based on ex-

amining the topics’ top words (shown in Tables 7.19) and top tweets; and

the realms’ labels are also manually assigned based on examining the realm’s

top topics. Also, the tables show that: (i) the background topics found

by TwitterLDA and QBLDA models are not semantically clear; while (ii)

the realms and their extreme topics found by GBT model are both semanti-

cally clear and reasonable. In Two-Week dataset, it is expected that political
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realms Responses to DNC & RNC 2012, Republicans Opposing, and DNC and

RNC 2012 exist in the dataset as it was collected during the 2012 US pres-

idential election including the national conventions of both democratic11 and

republican12 parties.

Table 7.6: Top words of background topic found in Two-Week dataset by
TwitterLDA model

life,making,home,america,called,house,change,thought,video,talking
line,american,money,country,job,obama,friends,fact,lost,hell

Table 7.7: Top words of background topic found in Two-Week dataset by
QBLDA model

video,making,american,called,obama,america,talking,thought,house,country
president,job,line,giving,home,life,lost,fact,#dnc2012,change

Table 7.8: Top topics of realms found in Two-Week dataset

Realm Realm Top topics
Id Label Topic Id Topic Label Probability

0
Responses to 5 Responses to speeches at DNC 2012 0.624
DNC & RNC 17 Clint Eastwood’s empty chair13 0.105

2012 28 Economics issues 0.072

1

Republicans 8 Criticizing Obama 0.347
opposing 65 Goverment & people’s rights 0.138

3
Criticizing Chris Mathews’ comments

0.098
on Republicans

2
DNC & RNC 31 Speeches at RNC 2012 0.353

2012 54 Media reports on DNC & RNC 2012 0.174
77 Speeches at DNC 2012 0.152

In summary, the empirical content analysis results look reasonable when

our proposed GBT model is applied on the two datasets. We now turn our

focus to behavior modeling results.

7.4.4 User Behavior Analysis

Lastly, we examine the user behaviors associated with the result topics. Ta-

bles 7.13 and 7.19 show some of representative topics found in SE and Two-

Week datasets respectively, together with the topics’ top behaviors. For each

11
http://en.wikipedia.org/wiki/2012 Democratic National Convention

12
http://en.wikipedia.org/wiki/2012 Republican National Convention

13
http://en.wikipedia.org/wiki/Clint Eastwood at the 2012 Republican National Convention
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topic, similar to the topic’s top words, the topic’s top behaviors are the behav-

iors having the highest likelihoods given the topic. The tables show that the key

behaviors for each of the topics are reasonable. For example, in SE dataset,

we observe for topic Scripting programming languages (topic 44) people use

scripting languages related hashtags (#javascript, #ruby, #nodejs, #php,

etc.), mention and retweet from software project hosting services and script-

ing language builder & developers (github, @heroku, @rubyrogues, @steveklab-

nik, garybernhardt, tenderlove, dhh, etc.). We also observe for topic iPhone

& iPad (topic 22) people use iPhone and iPad related hashtags (#iphone,

#iphone5, #apple, etc.), mention big IT companies and phone and tablet pro-

ducers (branch, @twitter, @google, @amazon, @att, etc.), and retweet from iOS

developers and IT blogers(marcoarment, John Gruber, dcurtis).

Similarly, in Two-Week dataset, we observe for topic Reponses to DNC &

RNC 2012 (topic 5) people use DNC & RNC 2012 related hashtags (#dnc2012,

#rnc2012, #literally, etc.), mention key persons in the two conventions (e.g.,

dwstweets, stefcutter, reince, etc.), and retweet from political bloggers and

commentators (guypbenson, jimgeraghty, iowahawkblog, jonahnro, etc.). We

also observe for topic Criticizing Obama (topic 8)people use negative hash-

tags related to Obama and DNC 2012 (#dncin4words, #howtopissoffademo-

crat, #overheardatdnc2012, #obamatvshows, etc.), mention and retweet from

republican politicians and media (e.g., @jjauthor, @klsouth, slone, polarcoug,

etc.). A qualitatively similar result holds for the remaining topics as well as

topics that are not shown in the two tables.

On the whole, the user behavior analysis results are pretty consistent with

that of content analysis. Now that the topics learnt by GBT are reasonable,

they can be used in the user profiling experiments.
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7.5 Utility of User Topics in User Profiling

Tasks

In this section, we compare and contrast topics and users’ personal topical

interests uncovered by GBT model with those uncovered by TwitterLDA

and LDA in some user profiling tasks for Twitter. Our aim here is not to

propose any new user profiling models. Instead, we want to evaluate the utility

of different topic models in the user profiling tasks that differentiate users with

different user labels. Here the user labels are the professional and political

preferences of the users.

7.5.1 Profiling Tasks

We consider the following tasks.

• User clustering. In this task, we use K-mean method with euclidean

similarity to cluster a set of users.

• User classification. In this task, we use SVM method with linear kernel

to classify a set of users into classes corresponding to different user labels.

7.5.2 User Representation

We represent each user by her topic distribution(s) learnt from her content

and behaviors using a topic model. More precisely, for each model, each topic

is a feature to represent users, and the feature vector of a user is her topic

distribution(s) learnt by the model. We examine the following topics models.

• TwitterLDA: In this model, each user u is represented by θTwitterLDA
u

where θTwitterLDA
u is the topic distribution of u learnt by TwitterLDA

model. That means, each user is represented by personal interest learnt

from her content only.
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• QBLDA: In this model, each user u is represented by θQBLDA
u where

θQBLDA
u is the topic distribution of u learnt by QBLDA model. Each

user is represented by personal interest learnt from her content and user

behavior types associated with the content.

• TwitterLDA+behaviorLDA: In this model, we consider both (i) the

user’s personal interest learnt from her content; and (ii) the user’s per-

sonal interest that are independently learnt from her behaviors. That

means, each user u is represented by a vector feature u⃗ where u⃗ is formed

by concatenating θTwitterLDA
u and θ1u,⋯, θ

L
u where θlu is the topic distribu-

tion of u learnt by applying LDA [27] on the bags-of-behaviors of type l

of all the adopting users if u has type-l behaviors, or a zeros vector oth-

erwise (l = 1,⋯,L). We suppose that adding latent factors learnt from

behavior to the TwitterLDA model will improve the performance in

user profiling tasks.

• GBT-noBehavior: For this model, we represent each user u by

θGBT−noBehavior
u where θGBT−noBehavior

u is the topic distribution of u learnt

by running GBT only on the dataset excluding all user behaviors. With

this model, we want to evaluate the effectiveness of user behaviors in

profiling a user.

• GBT-noRegularization: For this model, we represent each user u by

θGBT−noRegularization
u where θGBT−noRegularization

u is the topic distribution of

u learnt by running GBT on the full dataset (both user content and user

behaviors) but without any sparsity regularization. With this model, we

want to evaluate the effectiveness of the proposed sparsity regularization

technique in learning clearer user interests.

• GBT: For this model, we represent each user u by θGBT
u where θGBT

u is

topic distribution of u learnt by running GBT model on the full dataset

and with the regularization technique used. We expect GBT to outper-

171



CHAPTER 7. MODELING OF COMMUNITY BEHAVIORS AND CONTENT

form all the previous models. This improvement attributes to: (a) joint

modeling of user interest from both user content and user behaviors; and

(b) more accurate measuring of users’ personal interest after filter out

their dependency on realms.

Similarly to the previous experiments, in all the above models, we set the

number of topics to 80; and in GBT-noBehavior,GBT-noRegularization

and GBT models, we set the number of realms to 3.

7.5.3 Experimental Datasets

To evaluate the performance of the above topic models in user profiling tasks,

we need some datasets with ground truth labels for all users. Since we do

not have ground truth labels for all users in SE and Two-Week datasets, we

derived following (sub) datasets.

• Developer dataset: From the users’ self-descriptions, we were able to

manually label 691 users in SE dataset as developers. Among these users,

328 users declare .NET-based programming languages (e.g., C#, Visual

Basic, etc.) as their preferential languages, and 363 users declare other

languages (e.g., Java, PhP, Python, etc.). We respectively denote the la-

bel for the former and latter set of these users by .NET and non-.NET.

Then, for clustering task, we cluster the developers into two clusters. For

the classification task, we performed a binary classification.

• Political affiliation dataset: Similarly, from users’ self-descriptions, we

were able to manually label 186 users in Two-Week dataset as Demo-

crat and 1288 users as Republican. Again, for clustering task, we

cluster these manually labeled users into two clusters; and for the classi-

fication task, we also performed a binary classification.
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7.5.4 Evaluation Metrics

For convenient, inDeveloper dataset, we call .NET user label 1 and call non-

.NET user label 2. Also, in Political affiliation dataset, we call Democrats

user label 1 and call Republicans user label 2.

For user clustering task, we adopt weighted entropy as the performance

metric. After running K-means method with the number of clusters set to 2,

we computed the weighted entropy of the resultant clusters as follows.

E = − 2

∑
c=1

nc

Nu

∗ [nG1
c

nc

∗ log
nG1
c

nc

+
nG2
c

nc

∗ log
nG2
c

nc

] (7.17)

where nc is the number of users assigned to cluster c, nG1
c and nG2

c is respectively

the number of users having user label 1 and user label 2 that are assigned to

clustering c; and Nu is total number of users of both the labels. The model

with a lower entropy is the winner in the task.

For user classification task, we adopt average F1 score as the performance

metric. To do this on a dataset, we first evenly distributed the set of all users

in the dataset into 10 folds such that, for each user label, the folds have the

same fraction of users having the label. Then, for each model, we use 9 folds

to train a SVM classifier using SVMlight toolbox14, and use the remaining fold

to test the learnt classifier. We then compute the average F1 score obtained

by each model with respect to both the two user labels. The model with a

higher score is the winner in the task.

7.5.5 Performance Comparison

Figure 7.13 shows the weighted entropy of the various models in the user

clustering task for the Developer and Political affiliation datasets. Fig-

ure 7.14 shows the average F1 scores for the user classification task. The

figures show that adding the behavior topic distributions improves the per-

14
http://svmlight.joachims.org/
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(a) (b)

Figure 7.13: Performance of different models in user clustering task in: (a)
Developer, and (b) Political affiliation dataset

(a) (b)

Figure 7.14: Performance of different models in user classification task in: (a)
Developer, and (b) Political affiliation dataset

formance in user profiling. The TwitterLDA+behaviorLDA model has

lower weighted entropies and higher average F1 scores than the TwitterLDA

model in both the cases. Similarly, the GBT-noRegularization and GBT

models also have lower weighted entropies and higher average F1 scores than

GBT-noBehavior model in both the cases. However, the QBLDA model

does not always outperform the TwitterLDA and GBT-noBehavior mod-

els. This suggests that, by aggregating user behaviors to their types like in

the QBLDA model, we may loss useful information for deriving user interest.

Lastly, the figures clearly show that GBT significantly significantly improves

the performance over the GBT-noRegularization model, and also signif-
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icantly outperforms all other models. This implies the effectiveness of the

proposed sparsity regularization technique, and the GBT model provides a

better way for representing users so as to more accurately differentiate users

having different preference.

7.5.6 Feature Analysis

Finally, we examine the most representative topic features for each user label

learnt by the SVM-based classifiers in the user classification tasks. For each

model, we first normalize the topic features’ weight returned by the classifiers

(in the training phase) by the maximum weight of all the topic features asso-

ciated with the same model. Hence, for each model, the normalized weight of

each topic feature in the model represents the topic’s relative importance in

the model. As we run 10-fold cross validation, for each model, we compute the

average normalized weight of every topic across the 10 folds. The topics with

highest and lowest average normalized weights are then the most representative

for the two user labels respectively.

Table 7.9: Top representative topics for user label in Developer dataset learnt
by comparative models

User label
TwitterLDA QBLDA TwitterLDA+behaviorLDA GBT

Topic Topic Label Topic Topic Label Topic Topic Label Topic Topic Label

.NET

66

Microsoft

5

Microsoft tweet Microsoft

69

Microsoft

Visual Visual topic Visual Visual

Studio Studio 66 Studio Studio

7

Windows

47

Windows tweet Windows

35 Windows 8Tablets Tablets topic Tablets

& Phones & Phones 7 & Phones

40

Lance

58

Happenings retweet Windows

65

Windows

Armstrong in topic developers Tablets

London 27 & Phones

non-.NET

75

Data

79

HTML tweet Data
44

Scripting

management & Web topic management programming

75 languages

47
iOS

52
Internet tweet iOS

71

Java

& iPhone & Media topic & iPhone software

47 development

64 Entertainment 62

tweet

Readings 48

Open-source

Web topic data

Browsers 9 management

systems

Table 7.9 shows the most representative topics for the two user labels

in Developer dataset learnt by the comparative models. Again, we man-

ually labeled the topics by examining their top words (as shown in Ta-

bles 7.10, 7.11, 7.12, and 7.13) and top tweets. The table clearly shows that
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the most representative topics learnt by GBT model are more reasonable than

the ones learnt by the other models. All the most representative topics learnt

by GBT model are related to the two programming frameworks (Microsoft

Visual Studio Windows 8, and Windows Tablets & Phones for .NET label;

and Scripting programming languages, Java software development and Open-

source data management systems for non-.NET label). On the other hand,

the most representative topics for the two user labels learnt by the other models

are not always related to the two programming frameworks (e.g., Entertain-

ment (TwitterLDA model), Happenings in London (QBLDA model), and

Readings (TwitterLDA+behaviorLDA model)), or semantically discrimi-

native for the frameworks (e.g., Data management (TwitterLDA and Twit-

terLDA+behaviorLDA models) and HTML & Web (QBLDA model)).

Table 7.10: Top words of topics discovered by TwitterLDA model from SE
dataset

Topic Top words
7 windows,microsoft,surface,#windows8,#win8,metro,nokia,xbox,#bldwin,tablet
9 reading,life,internet,book,language,person,english,thought,article,code
40 armstrong,lance,bbc,riot,pussy,police,tour,jones,david,cameron
47 ios,google,iphone,apple,maps,mac,android,ipad,facebook,chrome
64 star,wars,disney,trek,graphics,episode,angry,birds,blog,lucasfilm
66 windows,studio,visual,sharepoint,server,dotnet,sql,#sharepoint,microsoft,azure
75 data,java,node,api,cloud,blog,database,server,code,performance

Table 7.11: Top words of topics discovered byQBLDA from model SE dataset

Topic Top words
5 windows,studio,visual,microsoft,azure,sharepoint,#windows8,server,#win8,blog
47 windows,microsoft,surface,nokia,lumia,tablet,xbox,#windows8,tablets,#surface
52 media,science,internet,human,article,reading,data,journalism,change,book
58 bbc,london,police,train,david,british,olympics,boris,olympic,cameron
62 google,maps,ios,apple,chrome,internet,firefox,explorer,microsoft,safari
79 mobile,responsive,content,html5,css,#rwd,device,images,presentation,media

Table 7.12: Top retweeted users of topics discovered by LDA model from SE
dataset

Topic Top words

27
hmemcpy,hhariri,markrendle,jbogard,adymitruk,gregyoung,troyhunt
kellabyte,demisbellot,jeremydmiller
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Table 7.13: Top words and top behaviors of topics discovered by GBT model from SE dataset

Topic Top words Top hashtags Top mentions Top retweeted

22
iphone,apple,ipad #iphone,#fail,#iphone5 @branch,@google,@twitter marcoarment,gruber,dcurtis
internet,data,wifi #apple,#win,#appleevent @kickstarter,@amazon,@att siracusa,wilshipley,danielpunkass
home,battery,macbook #uxaustralia,#iphon,#keynote @apple,@dropbox,@turf mrgan,rands,jsnell

26
life,internet,human #a11y,#a11,#fai @prismati,@hnycombinator,@prismatic davewiner,umairh,timoreilly
problem,media,money #heweb12,#heweb1,#audio @leolaporte,@danbenjamin,@doctorow anildash,pinboard,0xabad1dea
article,reading,thought #fail,#accessibility,#facepal @kevinmarks,@jeffjarvis,@t cstross,mralancooper,rands

35
windows,microsoft,#windows8 #windows8,#win8,#windows @microsoft,@surface,@windowsphone maryjofoley,shanselman,windowsphone
#win8,hosting,metro #surface,#bldwi,#wp8 @ch9,@maryjofoley,@windows thurrott,benthepcguy,gcaughey
surface,win8,#bldwin #win,#windowsphone,#wp @winobs,@windowsazure,@nokia everythingms,windows,visualstudio

38
ios,mac,iphone #ios,#android,#ios6 @pocket,@appdotnet,@tweetbot flyosity,stevestreza,mattgemmell
apple,google,chrome #tb,#in,#apple @marcoarment,@gruber,@tapbots stroughtonsmith,mantia,panzer
windows,lion,mountain #androi,#chrome,#fb @hotdogsladies,@instagram,@jdalrymple viticci,sdw,joshhelfferich

43
coffee,beer,eating #yelp,#sf,#getgluehd @google,@starbucks,@jason mike ftw,paulryangosling,anildash
dinner,lunch,ice #opportunity,#sanfrancisco,#chicago @instagram,@foursquare,@jezebel pres bartlet,beep,fakegrimlock
wine,cream,bacon #austin,#career,#designer @gawker,@mike,@kickstarter joelhousman,pourmecoffee,kissane

44
code,ruby,javascript #javascript,#ruby,#strangeloo @github,@heroku,@rubyrogues steveklabnik,garybernhardt,tenderlove
git,rails,github #nodejs,#php,#python @steveklabnik,@travisci,@madisonruby dhh,github,roidrage
python,data,php #github,#git,#rails @ashedryden,@simplify,@tenderlove shit hn says,zedshaw,mfeathers

48
data,#bigdata,analytics #bigdata,#bigdat,#data @siliconbea,@timoreilly,@harvardbiz moonpolysoft,shanley,alex gaynor
business,google,hadoop #ibm,#analytics,#hadoop @whitehouse,@nytimes,@radar argv0,joedamato,pharkmillups
information,database,analysis #ibmiod,#bi,#strataconf @digiphile,@wired,@slideshare rickasaurus,jrecursive,cscotta

65
windows,microsoft,nokia #tech,#technology,#windowsphon @engadge,@verg,@cne edbott,verge,tomwarren
surface,android,tablet #switchtolumi,#smallbiz,#wincha @sharethi,@io,@mashabl drpizza,joshuatopolsky,theromit
samsung,nexus,lumia #technews,#microsof,#htc @youtub,@verge,@rw ckindel,stroughtonsmith,bdsams

66
email,facebook,google #facebook,#youtube,#blog @twitter,@commun,@dropbox codinghorror,shanselman,rickygervais
service,spam,emails #howto,#twitte,#vide @facebook,@bufferapp,@nealschaffer levie,codepo8,mattcutts
password,page,gmail #google,#lol,#fai @linkedin,@customerthink,@hootsuite marscuroisity,morgonfreeman,troyhunt

69
windows,studio,server #windowsazure,#vs2012,#azure @pluralsight,@shanselman,@john shanselman,pluralsight,kellabyte
visual,sql,dotnet #sqlserver,#microsoft,#powershell @shanselma,@codemash,@telerik jongalloway,haacked,migueldeicaza
azure,microsoft,blog #sqlserve,#sql,#mvpbuz @julielerman,@ch,@oreillymedia elijahmanor,windowsazure,chrislove

71
sharepoint,java,programming #sharepoint,#java,#fe @thefanc,@skillsmatter,@jenkinsci debasishg,wfaler,dzone
#sharepoint,code,blog #javaone,#sp2013,#sharepoin @dzone,@newsycombinator,@java fogus,java,psnively
language,#java,scala #scala,#sharepoint2013,#javaon @infoq,@gregyoung,@kevlinhenney jboner,jamesiry,typesafe

76
home,kids,house #runkeepe,#wtf,#debat @klout,@twitter,@runkeeper neiltyson,sarcasticrover,theonion
#fb,life,car #debate,#justsayin,#awesome @pinteres,@marscuriosity,@kickstarter robdelaney,wilw,honesttoddler
dog,room,playing #awesom,#wt,#winnin @jack,@theonion,@oatmeal hotdogsladies,marscuriosity,chrisrockoz
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Table 7.14: Top representative topics for user labels in Political affiliation
dataset learnt by comparative models

User label
TwitterLDA QBLDA TwitterLDA+behaviorLDA GBT

Topic Topic Label Topic Topic Label Topic Topic Label Topic Topic Label

Democrats

35
Romney’s

5
Romney’s policies retweet Left-leaning

7
Romney’s

taxes on same topic 37 political blogers tax policy

and religion sex marriage topic 37 political blogers

2
Democrats on

79
Romney’s retweet Democrat

76
Romney’s

RNC 2012 tax policy topic 34 politicians & policies on

topic 34 pro-democrat same sex

topic 34 organizations marriage

30 DNC 2012 36 Voting issues
tweet

DNC 2012 67
Speeches at

topic 30 DNC 2012

Republicans

10

Republicans on

16

Republicans on retweet Republican
57

Republicans on

Obama’s speech Sandra Fluke’s topic 31 politicians & Sandra Fluke’s

at DNC 2012 speech at pro-republican speech at

at DNC 2012 DNC 2012 organizations DNC 2012

21
Obama’s

26 Public debt
tweet Republicans

39 Religion issues
private life topic 10 on Obama’s speech

at DNC 2012

67
Religion issues

15 Ron Paul
hashtag

Living status 40 Ron Paul
speech at topic

DNC 2012 22

Similarly, Table 7.14 shows the most representative topics for the two user

labels in Political affiliation dataset learnt by the comparative models. Also,

we manually labeled the topics by examining their top words (as shown in Ta-

bles 7.15, 7.16, 7.17, 7.18, and 7.19) and top tweets. Again, the table clearly

shows that the most representative topics learnt by GBT model are more

reasonable than the ones learnt by the two other models. All the represen-

tative topics learnt by GBT model are related to the two political affiliation

labels (Romneys tax policy and Romney’s policies on same sex marriage -

where Democrats criticize Romney for his proposed tax policy and his oppos-

ing to same sex marriage, and Speeches at DNC 2012 for the Democrats

label; Republicans on Sandra Flukes speech at DNC 2012 - where Republicans

angrily react to Sandra Flukes speech at DNC 201215, Religion issues, and

Ron Paul for the Republicans label). On the other hand, the most repre-

sentative topics for the two user labels learnt by the two other models are not

always representative, e.g., Romneys taxes and religion and Obama’s private

life (TwitterLDAmodel) - where people talk about Romney and Obama both

positively and negatively; Voting issues and Public debt (QBLDA model) - a

topic that was actively talked to by users of both the two parties16; and Living

15http://www.slate.com/blogs/xx factor/2012/09/06/sandra fluke at the dnc angry reaction from the
right wing is good for obama .html

16http://www.huffingtonpost.com/2012/08/27/womens-vote-2012-
election n 1832825.html?
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status - a controversial topic which was first raised by Republicans followed by

many opposing responses even from the Republicans17.

Table 7.15: Top words of topics discovered by TwitterLDAmodel fromTwo-
Week dataset

Topic Top words

2
#p2,#gop,#tcot,#rnc,#dnc2012,romney,#gop2012,#romney
#rnc2012,#obama2012

10 obama,speech,dnc,#dnc2012,stadium,convention,charlotte,#tcot,debt,dems
21 obama,michelle,college,#dnc2012,barack,money,#tcot,president,kids,romney

30
#dnc2012,obama,charlotte,convention,dnc,president,tampa,#dnc
delegates,speech

35 romney,mitt,tax,bain,capital,#romney,taxes,money,mormon,#p2
67 god,platform,jerusalem,dnc,party,democrats,#dnc2012,israel,obama,dems

Table 7.16: Top words of topics discovered by QBLDA model from Two-
Week dataset

Topic Top words
5 gay,marriage,labor,romney,rights,#p2,union,workers,#lgbt
15 paul,ron,romney,gop,#ronpaul,convention,supporters,delegates,rnc
16 fluke,sandra,#dnc2012,bill,jason,clinton,biggs,birth,dnc

26
debt,obama,trillion,#tcot,#dnc2012,#obama,unemployment
budget,#romneyryan2012

36 voter,voting,law,federal,ohio,election,texas,gop,voters
79 romney,tax,mitt,bain,taxes,money,rich,cuts,capital

Table 7.17: Top retweeted users of topics discovered by LDA model from
Two-Week dataset

Topic Top words

34
obama2012,barackobama,truthteam2012,thedemocrats,demconvention
michelleobama,donnabrazile,edshow,ofa nc,jameshaning

37
angryblacklady,otoolefan,gottalaff,shoq,karoli,jeffersonobama,steveweinstein
owillis,eclecticbrotha,bobcesca go

Table 7.18: Top hashtags of topics discovered by LDAmodel fromTwo-Week
dataset

Topic Top words

22
#areyoubetteroff,#failingagenda,#16trillionfail,#areyoubetterof
#failingagend,#forward2012,#wirigh,#wiright,#arithmetic,#16trillionfai

17http://thecaucus.blogs.nytimes.com/2012/09/04/republicans-ask-are-you-better-off-
and-many-reply-yes/
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Table 7.19: Top words and top behaviors of topics discovered by GBT from Two-Week dataset

Topic Top words Top hashtags Top mentions Top retweeted

3
#tcot,chris,obama #tco,#tcot,#twisters @msnbc,@jasonbiggs,@barackobama kesgardner,keder,noltenc
msnbc,racist,matthews #p2,#twister,#caring @nickelodeontv,@hardball,@sandrafluke rbpundit,twitchyteam,iowahawkblog

5
obama,romney,speech #dnc201,#dnc2012,#rnc201 @dwstweets,@chucktodd,@stefcutter guypbenson,jimgeraghty,iowahawkblog
#dnc2012,clinton,convention #dnc101,#literally,#factcheck @reince,@davidaxelrod,@msnbc jonahnro,noltenc,melissatweets

7
romney,mitt,tax #p2,#topprog,#ctl @thinkprogres,@dailyko,@dailykos mattison,bluedupage,thenewdeal
bain,#p2,capital #p2b,#p21,#toppro @tp,@thinkprogress,@politicusus gottalaff,rcooley123,factsaboutmitt

8
obama,america,president #dncin4words,#howtopissoffademocrat @jjauthor,@klsouth,@slone jjauthor,klsouth,nathanhale1775
#tcot,romney,barack #overheardatdnc2012,#obamatvshows @katyinindy,@irritatedwoman,@chucknellis slone,polarcoug,chucknellis

17
obama,#dnc2012,biden #dnc2012,#rnc2012,#insertchai @dloesch,@chrisloesch,@dloesc dloesch,soopermexican,gaypatriot
joe,chair,romney #insertchair,#overheardatdnc201,#fai @clayaiken,@michellemalkin,@katiepavlich cnservativepunk,kurtschlichter,melissatweets

28
obama,debt,jobs #dnc2012,#gop2012,#areyoubetteroff @mittromney,@barackobama,@paulryanvp mittromney,paulryanvp,romneyresponse
#dnc2012,tax,trillion #forward2012,#obamaisntworking @mittromne,@gop,@thedemocrats keder,gop,romneycentral

31
#gop2012,romney,#rnc2012 #gop201,#gop2012,#condi @mittromney,@paulryanvp,@anndromney buzzfeedandrew,thefix,zekejmiller
speech,mitt,#rnc #tampa201,#webuiltit,#g0p201 @gopconvention,@govchristie,@marcorubio chucktodd,daveweigel,ezraklein

39
god,platform,jerusalem #tcot,#mitt2012,#mitt201 @sharethi,@times247,@michellemalki dickmorristweet,davidlimbaugh,ingrahamangle
dnc,democrats,party #liblies,#catco,#jcot @townhallco,@politic,@hotairblo michellemalkin,monicacrowley,dennisdmz

40
paul,ron,romney #ronpaul,#tlot,#rnc @youtub,@govgaryjohnson,@youtube 1marchella,govgaryjohnson,tweetamiracle
rnc,gop,#ronpaul #romney,#gogaryjohnson,#ronpau @ronpaul,@dailypau,@cbsradionews i am change usa,iworkiron,cblacktx

54
convention,#dnc2012,tampa #rnc201,#rnc2012,#tampa @politico,@nytimes,@ron antderosa,buzzfeedben,nytjim
#gop2012,charlotte,rnc #clt,#tampabay,#tampaba @washingtonpost,@newtgingrich buzzfeedandrew,gov,daveweigel

57
fluke,clinton,sandra #dnc2012,#waronwomen,#tiot @shareaholi,@newsninja2012 newsninja2012,tmims50,shaughn a
bill,#dnc2012,#tcot #gop2012,#istandwithann,#breitbartnet @2016themovie,@sharethis conservative vw,thesavvy,becca51178

65
government,america,obama #obama,#mittromney,#democrats @barackobama,@foxnews,@jjauthor jjauthor,newsninja2012,conservative vw
party,god,freedom #gop,#romney,#barackobama @blackrepublican,@dineshdsouza,@obama prfekrdumbrella,2016themovie,pac43

67
clinton,#dnc2012,bill #dnc2012,#billclinton,#clinton @barackobama,@mittromney obama2012,barackobama,truthteam2012
obama,speech,president #dnc,#flotus,#michelleobama @michelleobama,@barackobam thedemocrats,edshow,demconvention

76
rape,gop,gay #gop,#lgbt,#republican @mittromney,@cspanw,@paulryanvp thedailyedge,thenewdeal,barackobama
marriage,platform,akin #republicans,#romney,#mitt @cspanwj,@anndromney,@reppaulryan chrisrockoz,rcdewinter,sheshego

77
#dnc2012,#dnc,speech #rn,#rnc,#dn @thefix,@ezraklein,@daveweigel mattyglesias,ezraklein,drgrist
obama,biden,convention #dnc,#dnc1,#rnc12 @realdonaldtrump,@buzzfeedandrew daveweigel,brianbeutler,pourmecoffee
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7.6 Chapter Summary

In this chapter, we propose GBT topic model for simultaneously modeling

realms and users’ topical interest in microblogging data. Our model associates

user behaviors with the latent topics and accommodates multiple types of be-

haviors in a common framework. To learn the model’s parameters, we develop

an efficient Gibbs sampling method. We further develop a regularization tech-

nique incorporating with the sampling method so that the proposed model is

biased to learn more semantically clear realms. We also report experiments on

two Twitter datasets showing the effectiveness of the proposed model in topic

modeling, as well as its improvement over other state-of-the-art topic models

in some user profiling tasks. This chapter is a major extension of our work

previously published in [86].
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Chapter 8

Conclusion and Future Works

8.1 Conclusion

Rich datasets from microblogging sites offer both new research opportunities

and challenges. Motivated by many important applications, our research devel-

ops models to learn factors that affect content and behavior of microblogging

users. Our work consists of two parts: (i) modeling of user behavior in content

propagation, and (ii) modeling of individual and community factors in gener-

ating content and adopting behavior of multiple types. We summarize the two

parts as follows.

The first part includes Chapters 3, 4,and 5. In this part, we define three

user and content behavioral factors that drive content propagation behaviors of

users, namely, user virality, user susceptibility, and content virality. We develop

models for measuring these behavioral factors. The modeling issues here are:

(a) inter-relationships among the behavioral factors; (b) missing information

about user-content exposure; (c) temporal dynamics of behavioral factors in

large microblogging data streams; (d) topic specific behavioral factors; (e)

noisy topics in microblogging content; and (f) lack of ground-truth data for

evaluation.

In Chapter 3, we address the inter-relationships among users’ virality and
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susceptibility and content virality. We develop a static model that allows

us to compute these factors based on their inter-relationships. This model

measures the factors using an iterative computation method. To overcome the

absence of ground truth, we evaluate the proposed model using synthetically

generated datasets. We also evaluate the model results in a hashtag retweet

order prediction task using a real dataset.

Next, in Chapter 4, we further extend the model proposed in Chapter 3

to also address the temporal dynamics of the user virality, user susceptibility,

and content virality in large data streams, and the missing user-item exposure

observations. Moreover, we consider the problem in a more general setting in

which users may have multiple adoptions/ propagations on the same content

item. To do this, we first develop a static model that utilizes these behavioral

factors’ inter-dependencies and the item adoption/ propagation counts of users,

but does not require knowledge about user-item exposure. We then propose

an efficient method for assigning temporal weight to data observations so that

less weights are given to older observations. Lastly, to deal with the high

computational cost of the temporal model, we incorporate users’ propagation

rank with the factors’ inter-dependencies to develop an incremental model

for working with large data streams. We evaluate the proposed models by

examining their performance in a future propagation count prediction task.

We further evaluate the efficacy of the incremental model by examining its

computational cost, both theoretically and empirically.

In Chapter 5, we address the issues in modeling the virality and susceptibil-

ity factors specific to topics. We first propose a heuristic method for inferring

user-content item exposure. Then, based on the state-of-the-art topic model

designed specially for microblogging content, we propose a factorization frame-

work for deriving virality of content topics as well as topic-specific virality of

users propagating the content, and topic-specific susceptibility of the users who

the content is propagated to. We then develop two factorization models that
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implement the framework. We conduct a series of experiments to evaluate the

framework and its associated models using both real and synthetic datasets.

We further examine the performance of the proposed models in a propagation

prediction task.

The second part includes Chapters 6, and 7. In this part, we aim to learn

users’ personal interest and communities from both their behaviors and their

content. To do this, we have to address the following issues: (a) multiple types

of user behaviors users, and (b) distinguishing users’ personal interest from

that of their communities.

In Chapter 6, we address the issue in simultaneous modeling of user con-

tent and user behavior of different types. We propose to represent both users’

content and their behaviors using as “bag-of-words”. Coupling with an ex-

isting sentiment analysis tool for microblogging content, we then develop a

topic model for deriving users’ community from their behaviors, content, and

the sentiment expressed in their content. For simplicity, we consider the case

when user communities are non-overlapping. This allows us to leverage par-

tially labeled users for supervising the model’s learning process. Our proposed

model therefore can be used as both unsupervised and semi-supervised learn-

ing models. We evaluate the model’s performance in learning topics in users’

content, comparing with the state-of-the-art topic model for microblogging

content. We also examine the model’s ability in user profiling (i.e., learning of

users’ community labels) as both a unsupervised and a semi-supervised learner.

Lastly, in Chapter 7, we extend the model proposed in Chapter 6 to also

address the issues in simultaneous modeling of users’ personal interest and

communities’ interests. We also consider the general case when user commu-

nities are overlapping. We develop a new topic model to learn users’ personal

interest and that of there communities, as well as users’ biased toward the com-

munities when generating content and adopting behavior. In this new model,

user content and user behavior are jointly modeled using a set of common la-
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tent topics, hence allows us to learn the interests from both the content and

behavior. We further develop an effective regularization technique for biasing

the model to learn more semantically clear topics and communities. With this

regularization, the proposed model significantly outperforms state-of-the-art

topic models in both learning topics of user content and some user profiling

tasks.

To summarize, our main contribution in this dissertation is in joint mod-

eling of factors concerning microblogging users’ behaviors and content. While

there is a number of research on these factors, the prior works measure them

independently despite they have some inter-relationships. We seek to overcome

this shortcoming by developing new methods for measuring the factors that

consider their inter-relationships, thus obtain more accurate modeling results.

8.2 Future Works

To conclude this dissertation, we outline below several potential directions for

future research that can further improve the current work.

First, the iterative computation method we used in Chapter 3 does not

come with a theoretical analysis. It remains to prove that the method always

converges to a unique scores for the virality and susceptibility factors regard-

less of the initialization. Also, it would be worth to investigate the temporal

dynamics of the factors specific to topics. This allows us to combine the advan-

tages of both the temporal models (developed in Chapter 4) and topic-specific

models (developed in Chapter 5) to design even more effective models.

In modeling content propagation behavior of users, we have been assuming

that users’ links are casual and identical in strength. Hence, a natural extension

is to relax this assumption by incorporating heterogeneous pair-wise social

influence among users. It would also important to calibrate more fine-grained

factors affecting the propagation. These factors include psychological factors
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of users and linguistic and sentiment features of content.

Next, we would like to consider the scalability of our proposed models for

modeling community behavior. We have been using Gibbs sampling method

in learning our models’ parameters, which may be computationally expensive

when the data is sparse. Possible solutions for scaling up the models are

approximated and distributed implementations sampling procedures [159, 130,

249], and stale synchronous parallel implementation of variational inference

procedures [81].

A user may adopt a behavior because she is socially or topically motivated

[174]. Distinguishing between these two types of motivation is important to

many applications but still a challenging problem. We therefore would like to

extend the proposed models to also incorporate social factors in modeling user

behavior. Examples of these factors are social communities and ego networks

of users.

Finally, for a long term goal, modeling user behavior in their socio-phyical

contexts is a promising research direction we wish to pursue. We envisage

that this research can be greatly extended considering multiple data sources

beyond user content and user behavior. Examples of the these sources are

geo-information associated with user content, user mobility traces provided

by their handheld devices, and other information channels like mass media or

blogs.
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