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Abstract

The majority of authentication systems used today involves passwords, where a

user is required to remember and key in the correct password to login. Keystroke

biometrics is an alternative approach whereby users are identified by one or more

features such as (a) the timing between keystrokes, (b) how long users hold each key

and (c) how hard users press each key. It is being assumed in prior research that the

way one user types a password/word is different from the way another user types the

same password and this characteristic remains stable over time. Existing literature

however left open three questions that are material to the security and usability of

keystroke biometrics.

The first concerns the uniqueness property. Keystroke biometrics is a form of

behaviour biometrics. Behaviour can be conditioned by training. An important

question is whether one person’s typing pattern can be changed, through appropriate

training to resemble that of another if the typing pattern of the latter is known. If the

answer is positive, the false acceptance rate of keystroke biometrics would increase

to unacceptable levels.

A natural second question which follows from the first, questions the extent

to which typing patterns can be kept secret. Attackers who are able to log the

keystrokes can create a model of the victim’s typing pattern. We ask whether there

exists more convenient and less intrusive ways to collect typing patterns. The avail-

ability of typing pattern raise both security and privacy concerns because it is a

prerequisite for (a) achieving the best outcome in timing side channel attacks and

(b) imitation attacks on keystroke biometrics. It can also be used to identify users.

The last question concerns the stability of typing patterns. Given that the envi-

ronment, as well as the physical and mental conditions of users changes throughout

the day, we ask whether collected typing patterns remain stable under different con-

ditions. For example, to what extent do the typing patterns change with the mood,



muscle strain such as after exercise, posture, type of keyboard and even lighting? If

typing patterns are not resistant to these conditions, it may result in a higher false

rejection rate (FRR). High FRR leads to usability problems. Usability issues are an

important aspect of security, because poor usability motivates users to find short-

cuts that bypass the system. It also creates a pressure to tune the system in ways

that lower security.

In this thesis, we answer all three questions. We found that by providing a

novel feedback and training interface, it is possible for one person to imitate another

through incremental adjustment of typing pattern. We show that even for targets

whose typing patterns are only partially known, imitation training allows attackers

to defeat one of the best anomaly detection engines using keystroke biometrics.

For a group of 84 participants playing the role of attackers and 2 eight-character

passwords of different difficulty, the false acceptance rate (FAR) of the easy and

difficult password increases from 0.24 and 0.20 respectively before training, to 0.63

and 0.42 respectively after training. With full information, the FAR increases to

0.99 for both passwords for the 14 best attackers.

To explore the feasibility of collecting typing patterns, we focus on interactiv-

ity rich JavaScript applications. The Google Suggestions service used in Google

Search is one example of an interactivity rich JavaScript application. We analysed

the timing side channel of Google Suggestions by reverse engineering the commu-

nication model from obfuscated JavaScript code. The goal is to determine the extent

to which an attacker can infer the typing pattern of a victim. From our experiments

involving 11 participants, we found that for each keypair with at least 20 samples,

the mean of the inter-keystroke timing can be determined with an error of less than

20%.

For the usability problem, we show that the FRR of keystroke biometrics

changes for the worse under a range of common conditions such as background

music, exercise and even game playing. In a user study involving 111 participants,

the average penalties (increases) in FRR are 0.0360 and 0.0498, respectively, for



two different classifiers. We also show that not everyone is suitable for keystroke

biometrics deployment, which is exacerbated by the susceptibility to external influ-

ences. For example, using a Monte Carlo simulation, we found that 30% of users

would encounter an account lockout before their 50th authentication session (for a

lockout policy of 3 attempts) if they are affected by external influences 50% of the

time when authenticating.
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Chapter 1

Introduction

Biometrics is the oldest form of authentication; people verify each other on tele-

phone based on voice, humans recognise each other by face when they meet. There

is a wide variety of candidate characteristics, including facial features, speech pat-

terns, hand geometry [28], fingerprints, iris scans, DNA, typing patterns, signature

geometry1 and mouse dynamics. Biometrics can be classified into two major cat-

egories: 1) physiological biometric – a biometric that is based on a physical trait

of an individual, e.g., facial features, hand geometry, fingerprints, iris scans, and

DNA; and 2) behavioural biometric – a biometric that is based on the behavioural

trait of an individual, e.g., speech patterns, typing patterns, signatures, and mouse

dynamics.

A central issue of biometrics security concerns the uniqueness of the biometrics

feature. In the context of fingerprint biometrics for example, there had been cases

where suspects were wrongly identified through fingerprints [31]. For keystroke

biometrics, prior literature had shown that although typing patterns between indi-

viduals do overlap, and misidentification is possible as in fingerprinting, the error

rates are low enough such that typing patterns can be considered unique to each

individual [25, 39, 50, 43, 42].

Another important issue of biometrics security is verifying if the authentication

1Signature geometry encompasses not just the look of the signature, but also possibly the pen

pressure, signature speed, etc.

1



data came directly from the owner. For example, in the case of fingerprint biomet-

rics, if such verification is absent, arbitrary fingerprints may be forged. Geller et al.

demonstrated how fingerprints can be forged in a forensic context [33]. Boatwright

et al. cited an instance where gelatine created fingerprints were used to gain unau-

thorized access [28]. Likewise, for keystroke biometrics, if such verification is ab-

sent, an automated system may be used to deliver the desired typing pattern to the

detection engine.

1.1 Uniqueness of typing patterns

In this thesis, we study and question the uniqueness property of keystroke biometrics

in static mode (see Chapter 3). Keystroke biometrics deployment can be divided

into static and continuous mode. For the former, the typing pattern is checked once

typically during login. For the latter, the typing pattern is checked continuously, as

the user is working on their documents.

We consider the scenario where attackers are shown the typing pattern of their

victims and make a conscious attempt to imitate. Scenarios where the typing pattern

may be known include

1. An attacker captures samples of the victim’s password typing.

2. Information in the biometrics database was leaked.

If imitation is possible, the error rates of detection engines would become un-

acceptably high. This means keystroke dynamics would be unsuitable for use as

a biometrics feature. The existing commercial security solutions using keystroke

biometrics [14, 2, 19, 16, 13, 12, 7, 21, 3, 6, 9, 20, 8, 5] can therefore be attacked.

The majority of literature in this area focused on finding a detection algorithm

that best separates the legitimate users from imposters. The work by Rundhaug

et al. [45] is the most similar to our work (see Section 2.7). Based on 21 partic-

ipants, they showed that the provision of feedback shortens the distance between
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the attacker and victim’s typing pattern by 9.7%. While differences can be reduced,

Rundhaug et al. suggested that an attack remains difficult and proposed larger scale

experiments to verify the feasibility of such attacks. In this thesis, we investigate

whether it is possible to imitate someone else’s keystroke typing if appropriate feed-

back is provided.

We propose a novel feedback interface Mimesis with the following design goals:

1. The information must be easy to understand with minimal cognitive load re-

quired. The latter is for the attackers to focus on their imitation task.

2. The interface should provide specific tips on particular aspects to improve on.

3. Both positive and negative feedback should be provided to the attacker so that

she can repeatedly make minor adjustments to her typing pattern to imitate

better.

The proposed experiments involve a group of 84 participants playing the role of

attackers against one of the best keystroke biometrics based authentication systems

by Araujo et al. [25] (based on the evaluation by Killourhy and Maxion [40]). We

evaluate the effectiveness of Mimesis and investigate whether there exists individu-

als who can adjust their typing pattern to imitate someone else. We investigate this

attack using two scenarios:

1. When the attacker only has an incomplete model of the victim’s typing pat-

tern, such as when only a limited number of victim typing samples are avail-

able to infer the model

2. When the attacker has complete information.

We found that by providing a novel feedback and training interface, it is possible

for one person to imitate another through incremental adjustment of typing pattern.

We show that even for targets whose typing patterns are only partially known, imi-

tation training allows attackers to defeat one of the best anomaly detection engines
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using keystroke biometrics. For a group of 84 participants playing the role of attack-

ers and 2 eight-character passwords of different difficulty, the false acceptance rate

(FAR) of the easy and difficult password increases from 0.24 and 0.20 respectively

before training, to 0.63 and 0.42 respectively after training. With full information,

the FAR increases to 0.99 for both passwords for the 14 best attackers. The details

of this work is shown in Chapter 3.

1.2 Secrecy of typing patterns

In Chapter 4, we investigate the leakage of information about typing patterns from

JavaScript applications. In particular, we explore whether it is possible to derive the

continuous mode typing pattern of a victim from their web traffic. Rich and complex

JavaScript applications provide sophisticated GUI updates and fast client- server

communications that approach the capabilities of traditional desktop applications.

Examples include Google Instant [1] and Google Suggestion [4] (see Figure 1.1)

which allows the user to view the results/suggestions on–the–fly while typing search

queries. To achieve such interactivity, the frontend JavaScript communicates using

HTTP with the backend server very frequently in response to various events such as

keypress. Table 1.1 shows the typical series of HTTP requests in Google Sugges-

tions, when a user types in the search term ‘secure’. If certain characteristics of the

traffic is correlated with the content, then the improved user experience comes with

a price in the form of side channel information leakages. Prior research by Chen et

al. on encrypted packet sizes has demonstrated that such leakages exists [29].

Figure 1.1: Suggestions for ‘secure’

Chapter 4 studies the timing side channel of Google Suggestions. We hope a
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(a)

GET /s?. . .&q=s&

GET /s?. . .&q=se&

GET /s?. . .&q=sec&

GET /s?. . .&q=secu&

GET /s?. . .&q=secur&

GET /s?. . .&q=secure&

(b)

GET /s?. . .&q=s&

GET /s?. . .&q=se&

GET /s?. . .&q=sev&

GET /s?. . .&q=se&

GET /s?. . .&q=sec&

GET /s?. . .&q=secu&

GET /s?. . .&q=secur&

GET /s?. . .&q=secure&

(c)

GET /s?. . .&q=s&

GET /s?. . .&q=se&

GET /s?. . .&q=sec&

long pause

GET /s?. . .&q=secure&

(d)

GET /s?. . .&q=sec&

GET /s?. . .&q=secur&

GET /s?. . .&q=secure&

Table 1.1: Query scenarios: (a) Slow typing. (b) Correcting a typing error. (c)

Typing only s, e, c, followed by choosing secure from the suggestions.

(d) Fast typing. In this thesis, we do not handle case (d).

detailed study of one application yields insights on the threats that may apply to the

class of such applications as a whole. We want to know whether traditional threats

apply and if new ones arise. Our work differs from prior work in 3 ways:

1. It is the first to analyze JavaScript timing side channels,

2. Our attack model includes inference of typing pattern, and

3. The correlation between keystroke and traffic timing is weaker compared to

similar analysis on SSH binaries [47].

✵ ✷✵ ✹✵ ✻✵ ✽✵ ✶✵✵
✵
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P
r
♦
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Figure 1.2: Initial investigation of tpkt − tks. tks refers to the time the keystroke

is typed, while tpkt refers to the time the corresponding query appears

on the network.

Correlation is weaker because JavaScript applications are far slower than na-

tive binary applications. The interaction with the browser via the Document Object
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Model is more complex. The IO intensive tasks of JavaScript applications (such

as UI updates) take longer than the computation intensive task of SSH. Lastly,

JavaScript applications typically run in a single threaded co-operative multitask-

ing execution model. Task execution is deferred when the scripting engine is busy

with another task. Evidence of weak correlation can be seen in Figure 1.2, where

there is a variable delay between keypress and Google Suggestions traffic. Also, in

Figure 1.3, there is an obvious difference between the bell shaped inter-keystroke

timing distribution compared to the exponential shaped inter-packet timing distri-

bution.
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Figure 1.3: The difference between the probability distribution of the inter-

keystroke timing and the corresponding inter-packet timing for the

keypair ‘in’ of 1 participant.

Inference of typing pattern raises privacy concerns. Prior research showed that

natural typing patterns are unique enough for user identification [25, 39, 43, 42].

Natural typing occurs when no attempts are made to consciously alter the typing.

There are also security concerns because firstly, knowledge of typing patterns fa-

cilitates attacks on other timing side channels. This was demonstrated by Song et

al. where personalized typing patterns gave the best outcome [47]. Secondly, once

a victim’s typing pattern is known, imitation attacks may become possible. Chap-

ter 3 showed that imitation attacks on static mode keystroke biometrics systems are

feasible. If the same is true of continuous mode, then leakage of the typing pattern

results in a serious security problem.

In the following discussion, keypair timing model is the set of probability distri-

butions (of timing differences) for all pairs of keystrokes; packet-pair timing model
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is the set of probability distributions of the corresponding packets. We studied the

communication model of Google Suggestions and derive a set of techniques to con-

struct:

1. The keypair timing model from packets of unencrypted Google Suggestions

traffic picked up by network sniffers or proxy logs;

2. The packet-pair timing model from the keypair timing model. The latter is

useful when we need to reconstruct packets for Monte Carlo simulations.

To verify the effectiveness of these methods, we conducted a user study on 11

participants to collect their keystrokes and their timings. We found that for each

keypair with at least 20 samples, the mean of the inter-keystroke timing can be

determined with an error of less than 20%.

1.3 Stability of typing patterns

In Chapter 5, we investigate the extent to which static mode typing patterns remain

stable under different environments as well as under different physical and emo-

tional conditions. For example, computer gaming and exercising are 2 common

activities. Gaming involves both muscle strain and emotional changes (due to win-

ning and losing). Exercise also involves muscle strain and emotional change, but

the emotional change is positive due to the release of mood enhancing endorphins.

People’s mood changes according to the type of video they watch. Muscle strain

has a direct effect on the muscle control involved in typing, while prior studies [32]

have also shown that people type faster when their mood is positive. However, what

is not known is the quantitative extent to which the FRR (false rejection rate) of

keystroke biometrics is affected. As computer gaming and exercise are common

activities, a significant change in FRR may result in repeated logon failure.

More specifically, we want to evaluate:
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1. What is the change in the FRR (false rejection rate) of 2 different classifiers

before and after each of the above activities?

2. How long does it take for the FRR to go back to normal?

3. If during the recovery, there are some typing activities, does it delay the re-

covery?

4. Are there any difference on the FRR change between hardcore gamers and

light gamers?

5. Is there any difference in the FRR when the success/failure of the logon at-

tempt is made known to the user as compared to the case where it is not

known? Existing evaluations of keystroke biometrics collected typing pat-

terns without feedback. If the FRR is affected by the feedback, then existing

methodologies need to be revised to take into account this factor.

We are also interested in whether environmental factors affect typing patterns.

The identification of environments where typing patterns are affected allow the com-

pilation of a black list where keystroke biometrics deployment is not advisable or

may provide insights into mitigation measures. We are also interested in whether

the provision of logon success/failure feedback provides any mitigation, and if yes,

the extent of the mitigation. We are interested in the following factors:

1. Background rhythm/noise.

2. Low lighting (e.g. during blackout)

3. Time pressure: user needs to unlock keyboard under urgent circumstances

4. Minor injury: simulated by putting a plaster on the index finger

5. Standing

6. Change of keyboard (notebook keyboard to standard external keyboard, note-

book keyboard to ergonomic external keyboard)
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The collection methods in the existing literature differ in their attempts to ac-

count for the abovementioned factors. For example, Killourhy and Maxion collected

400 typing samples over 8 sessions, with a minimum interval of 1 day between each

session so as to ‘capture the day to day variation’ [40], while Revett collected all

samples in a single sitting [44]. However, even for the former case, it is not known

how much of the variation is due to which external factor. In this thesis, we fill in the

missing gap by providing a quantitative measure of the effects of various conditions

on the typing pattern.

We show that the FRR of keystroke biometrics changes for the worse under

a range of common conditions such as background music, exercise and even game

playing. In a user study involving 111 participants, the average penalties (increases)

in FRR are 0.0360 and 0.0498, respectively, for two different classifiers. We also

show that not everyone is suitable for keystroke biometrics deployment, which is

exacerbated by the susceptibility to external influences. For example, using a Monte

Carlo simulation, we found that 30% of users would encounter an account lockout

before their 50th authentication session (for a lockout policy of 3 attempts) if they

are affected by external influences 50% of the time when authenticating.

1.4 Contributions

In this thesis, we argue that the use of keystroke dynamics as a form of biometrics

is questionable because it is not unique, typing patterns can be easily leaked and are

unstable over a range of external conditions.

More specifically, we found deficiencies in these 3 areas:

1. Uniqueness. It is possible for one person to imitate another through incremen-

tal adjustment of typing pattern. We show that even for targets whose typing

patterns are only partially known, imitation training allows attackers to defeat

one of the best anomaly detection engines using keystroke biometrics.
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2. Secrecy. It is possible for a person’s typing pattern to leak via the timing side

channel of interactivity rich JavaScript application.

3. Stability. The FRR of keystroke biometrics changes for the worse under a

range of common conditions such as background music, exercise and even

game playing.

1.5 Structure of thesis

The rest of this thesis is organised as follows: Chapter 2 provides general back-

ground information on keystroke biometrics authentication systems as well as re-

lated works. Chapter 3 investigates the uniqueness property of keystroke biomet-

rics. In Chapter 4, we investigate the leakage of information about typing patterns

from JavaScript applications. In Chapter 5, we investigate the extent to which static

mode typing patterns remain stable under different environments as well as under

different physical and emotional conditions. We conclude the findings of this thesis

in Chapter 6.

1.6 Source of publication

The material in Chapter 3 was originally published as a conference paper in the

Network and Distributed System Security Symposium 2013 (NDSS Symposium

2013) [48]. The material in Chapter 4 was originally published as a conference

paper in the 11th International Conference on Applied Cryptography and Network

Security (ACNS 2013) [49]. The material in Chapter 5 was drawn from a project

conducted at the School of Information Systems, Singapore Management Univer-

sity. The members of the project include Payas Gupta, Kartik Muralidharan, Debin

Gao and the author.
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Chapter 2

Background and related works

In this chapter, we describe the commonly followed procedures in the evaluation of

a keystroke biometrics authentication system followed by the related works that are

closely related to our investigations.

We first describe the collection of timing information in Section 2.1. This is

followed by a description of how the timing information are organized into vectors

for subsequent processing (see Section 2.2). Finally, in Section 2.3, we describe

how classifiers used in keystroke biometrics compute anomaly scores and thresholds

from the timing vectors.

2.1 Choice of timing information

Keystroke dynamics refer to information about the typing pattern. For example,

pressing and releasing of a keystroke pair (ka, kb) results in 4 timings which are of

interest to keystroke biometrics systems: (a) key-down time of ka: t↓ka , (b) key-up

time of ka: t↑ka , (c) key-down time of kb: t
↓

kb
and (d) key-up time of kb: t

↑

kb

From these absolute time measurements, four relative timings can be derived:

• an inter-keystroke timing between ka and kb:

Ika,kb = t↓kb - t↓ka .

• hold timing of ka: Hka = t↑ka - t↓ka
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• hold timing of kb: Hkb = t↑kb - t↓kb

• a key up-down timing between ka and kb:

Uka,kb = t↓kb - t↑ka

Certain papers also include trigraphs [44]. Given 3 consecutive keys ka, kb and kc,

the trigraph Tka,kc is equal to t↓kc - t↓ka .

Different anomaly detectors differ in the way timing information were collected

and used. These differences can be categorized as follows:

1. Strings to collect. Certain papers collect timing information only for pass-

words or password-like strings [25, 40]. Others collect for both userids and

passwords [44]. Yet others collect timing information for userids, passwords,

first name and last name [35].

2. I, H, U and T. Different papers use different combinations. For example,

(a) I, H and U [25]

(b) only I [35, 25],

(c) only H [25],

(d) only U [25],

(e) I and H [25],

(f) H and U [30, 25],

(g) I and U [25].

(h) I, H and T [44],

3. Terminating carriage return. Some papers include the timing information of

the terminating carriage return at the end of the password [40] while others

ignore it [44].

In this thesis, due to differences in experimental design, Chapter 3 collects the

timing information only for passwords and only uses I and H. On the other hand,
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Chapter 5 collects timing information for both userids and passwords and uses I, H

and T. Terminating carriage returns are ignored in this thesis.

2.2 Data vectorization

In the literature, timing information is typically stored as vectors. However, there

are differences in the construction of these vectors. E.g. given n authentication

samples, each of which yields l timing components, Haider et al. stored in each

vector, the information for each timing component, resulting in l vectors of length

n [34]. Araujo et al. on the other hand, stored in each vector the timing components

of each sample, resulting in n vectors of length l. In this thesis, we follow the latter

convention. Table 2.1 shows an example of the vectors collected when the string(s)

collected in each sample yielded α inter-keystroke timings and β hold timings (such

that l = α+β). Each row corresponds to one vector. ti,j denotes the jth component

of the ith vector.

Sample Inter-Keystroke Time Hold Time

# 1 t1,1 . . . t1,α t1,α+1 . . . t1,α+β

# 2 t2,1 . . . t2,α t2,α+1 . . . t2,α+β

...
...

# n tn,1 . . . tn,α tn,α+1 . . . tn,α+β

Table 2.1: Example of data vectorization

The collected vectors are typically divided into 4 sets when evaluating a

keystroke biometrics system. For each user of the system, one set of normal timing

vectors from that user and one set of anomalous timing vectors are used for training.

One additional set each of normal and anomalous timing vectors are used for test-

ing. In an experimental setting, the set of anomalous timing vectors for each user is

typically constructed from the normal timing vectors of all other users in the same

authentication system.
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2.3 Anomaly detector training and scoring

Once the training data set is collected, the next step is to train the anomaly detector.

The purpose of training is to find parameters for the detector corresponding to the

particular set of training data. Detectors differ in the choice of parameters. For

example, in the papers of Joyce et al. and Cho et al. [35, 30] only the mean vector is

needed, whereas Araujo et al. requires both a mean vector and an absolute deviation

vector [25]. In comparison, Revett [44] proposed a bioinformatics based classifier

which requires a set of bioinformatics related parameters. Once the parameters are

determined, a detector can compute an anomaly score for each test vector. In this

section, we describe the computation of parameters needed for:

1. A Euclidean distance based classifier.

2. A Manhattan (scaled) distance based classifier.

3. A bioinformatics based classifier.

2.3.1 Euclidean distance based classifier

The Euclidean classifier requires a mean vector x̄. Each element in x̄ is computed

using the formula:

x̄j =

n
∑

i=1

ti,j

n

Given a test vector y, the anomaly score s is computed using:

s =

√

√

√

√

l
∑

j=1

(yj − x̄j)
2
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2.3.2 Manhattan (scaled) distance based classifier

The Manhattan (scaled) distance classifier requires the mean vector as well as an

absolute deviation vector d̄. Each element in d̄ is computed using the formula:

dj =

n
∑

i=1

|ti,j − x̄j |

n− 1

Given a test vector y, the anomaly score s is computed using:

s =

l
∑

j=1

|yj − x̄j |
dj

2.4 Bioinformatics-based classifier

The bioinformatics-based classifier [44] computes a motif vector using the follow-

ing steps:

1. Computing a max vector m

mj = max
i

ti,j

2. Mapping each vector in the training set t to a normalized vector u such that:

ui,j =
ti,j
mi,j

3. Mapping each normalized vector u to a bin vector b such that: bi,j:

bi,j =















































0 if 0 < ui,j ≤ 0.05

1 if 0.05 < ui,j ≤ 0.10

. . .

19 if 0.95 < ui,j ≤ 1.00
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4. Computing a position specific scoring matrix P with 20 rows and l columns

from the set of bin vectors such that each element pkj of P is given by:

pkj =
counti(bi,j = k − 1)

n

where 1 ≤ k ≤ 20 and counti(bi,j = k − 1) counts for all i the number of

times bi,j equals to k − 1.

5. Computing a motif vector f such that:

fj =















k if ∃k : pkj > 0.8

−1 otherwise

6. Counting the number of positive elements in f . If it is less than 22, a new

max vector m∗ is computed such that:

m∗
j =















mj × 1.1 if fj < 0

mj otherwise

Steps 2 to 6 are then repeated, substituting m∗ for m, until the number of

positive elements in f is at least 22. The last computed value of m is saved.

The values 19 (step 3), 20 (step 4), 0.8 (step 5) and 22 (step 6) are tuneable

parameters chosen for our experiment in Chapter 5 because they gave reasonable

classifier performance. After obtaining the motif vector, to compute the anomaly

score s for a test vector y, a bin vector y∗ is obtained following steps 2 and 3. The

score s is computed by comparing the differences between y∗ and f element by
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element as follows:

s =
l

∑

j=1

D(y∗j , fj) where D(α, β) =































0 if β = −1

1 if β ≥ 0, α = β

−1 if β ≥ 0, α 6= β

2.5 Computation of threshold

Once an anomaly score is computed, a decision needs to be made to accept or reject

the test sample. This requires a threshold parameter. For both the Euclidean and

Manhattan (scaled) distance based classifiers, scores less than the threshold (close

to the mean vector) are accepted. For the bioinformatics classifier, scores greater

than the threshold (better match with motif vector) are accepted. In either case,

the threshold defines a multidimensional boundary separating the acceptance space

from the rejection space.

Setting a strict threshold means that less anomalous vectors are wrongly clas-

sified as normal. The percentage of such vectors is known as the false acceptance

rate (FAR). A strict threshold, however, also means that more normal vectors are

wrongly classified as anomalous. The percentage of such vectors is known as the

false rejection rate (FRR). A lenient threshold on the other hand has the opposite

effect: FAR increases (worse) but FRR decreases (better).

In the context of keystroke biometric based authentication, submission of a test

vector that is classified as anomalous means that the authentication attempt is re-

jected. Conversely, if the test vector is classified as normal, the authentication

attempt is accepted. The selection of the threshold therefore involves a trade-off

between FAR and FRR. A common way to set the threshold is to chose it such that

the FAR and FRR are equal. The value of the FAR (or FRR) at such a threshold is

known as the equal error rate (EER). Once the threshold is computed, an anomaly

detector becomes ready for the classification task. Typically, a set of test vectors
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containing both normal and anomalous vector are used to evaluate the effectiveness

of the detector.

2.6 Visualising classifier shapes

In Chapter 5, there is a need to explain changes in the FRR due to changes in typing

pattern. Visualising classifier shapes provides an intuitive way to understand those

changes. In this section, we describe the 2-d shapes of the classifiers used in that

chapter, namely Manhattan (scaled) distance classifier and the bioinformatics based

classifier.

A 2-d classical Manhattan distance boundary would have the shape of a (45◦

rotated) square and centred at the mean vector. That is because at the boundary, the

sum of the absolute x and y distance from the mean equals to the threshold. The 2-d

Manhattan (scaled) distance classifier is a rhombus centred at the mean but scaled in

each dimension by the corresponding component of the absolute deviation vector.

Figure 2.1 shows the shape of the Manhattan (scaled) boundary for a 2-dimensional

problem.

Figure 2.1: Graphical view of Manhattan (scaled) classifier

For the 2-d bioinformatics based classifier, the basic shape consists of 2 overlap-

ping rectangles that form a thick cross (see Figure 2.2). Each rectangle corresponds

to a bin encoded in the motif vector. Each bin is defined by an upper and a lower

limit. If an element of the test vector is within the limits, it would be mapped to the
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same bin as the motif vector, thereby adding 1 to the anomaly score. Otherwise, 1

would be subtracted from the anomaly score. The shape of the 2-d bioinformatics-

based classifier boundary depends on the threshold. If the threshold is less than 0,

the shape is the union of both rectangles.

Figure 2.2: Graphical view of bioinformatics based classifier

On the other hand, if the threshold is between 0 and 2, then both elements of the

test vector need to be mapped to the correct bin before the test vector is accepted.

The shape is thereby the intersection of both rectangles, resulting in another rect-

angle. Figure 2.2 shows the shape of the bioinformatics-based classifier boundary.

Note that the bin sizes for each dimension can be different due to the tuning process.

Also, unlike the Manhattan (scaled) classifier, the mean of the training vectors need

not necessarily be located in the middle of the intersection.

Figure 2.3: Comparison of classifier shapes

Figure 2.3 shows a possible arrangement of 2 classifiers that are trained on the

same training set. Note that the centres of both shapes are not necessarily aligned.
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Any changes in typing pattern can be visualized as a shift on the diagram. De-

pending on the direction and magnitude of the shift, the resulting sample may be

accepted by one classifier and rejected by the other. The Manhattan (scaled) classi-

fier is comparatively more vulnerable to shifts along the direction of the axes, while

the bioinformatics based classifier is more vulnerable to shifts at 45◦ to the axes.

2.7 Related Work

In this section, we review some specific works in the literature which are closely

related to the investigations in this thesis.

The work by Rundhaug et al. [45] involves imitation and is similar to ours in

terms of intent and general approach. They provided imitation feedback to a team of

attackers in three ways: a simple accept/reject feedback, a distance score feedback

and full feedback, where the attackers are able to examine each component of their

timing vectors. For each attacker, three different passwords were used, each paired

with a feedback mechanism. Each attacker goes through 3 imitation sessions, one

for each password. For the full feedback, a graph with 3 lines was plotted. The

first line plots the victim’s mean vector plus 1 standard deviation, serving as an

upper boundary. The second line plots the victim’s mean vector minus 1 standard

deviation, serving as the lower boundary. The third line plots the attacker’s timing

vector. Each attacker tries to modify their typing pattern to fit their timing line

within the upper and lower boundaries of the victims. The author concluded that

the change in anomaly scores, before and after training, is statistically significant

and imitation is therefore possible. However, they also concluded that imitation is

difficult and ‘can indicate that keystroke dynamics is a very secure authentication

method when combined with a password’.

Cho et al. [30] and Hwang et al. [46] explored the use of artificial rhythms and

cues to improve the quality of typing samples. These include:

1. Breaking up a password into multiple segments and inserting pauses in be-
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tween the segments when typing.

2. The use of tune, chant or rooting to guide the password typing.

3. Minimizing the hold time in a “staccato” style [52].

4. Maximizing the hold time in a “legato” style [51].

5. Maximizing the inter-keystroke time in a “slow tempo” style.

With such cues, users produced timing vectors that are more consistent and unique.

Side channels attacks on Web applications had been studied by Chen et al. [29].

They analysed the work flow of several Web applications and modelled the flow

using state machines. They showed that there is low entropy in the input to the

Web applications that were investigated. Therefore, given the state machine models

and packet sizes of Web traffic, it is possible for attackers to infer the content of

submitted input.

Song et al [47] studied the packet size and timing side channel of SSH [53].

They found that SSH packets reveals the size of the plaintext data and the inter-

keystroke timing. For the latter, Song et al. found that inter-keystroke timings can

be modelled individually as normal distributions. The SSH side channel was found

to leak approximately 1 bit of information per keypair. In their experiments, this

translated to a reduction in search space by a factor of 50. They also found that

using a personalised model of the victim’s typing pattern gave better results.

Khanna et al. investigated the inference of emotion from the typing pattern [37].

They conducted a study where participants were asked to record their emotional

state. Various typing features were also recorded and correlated with the emotional

state. They showed that typing speed decreases under negative emotions and vice

versa for positive emotions.

We are not aware of any large scale formal study that investigates the effect

of environmental factors and external conditions on typing pattern. There were
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however suggestions of a correlation. For example, a survey by Banerjee et al.

suggested that changes in posture may influence the typing pattern [26].
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Chapter 3

Can typing pattern be imitated?

3.1 Introduction

In this chapter, we question the uniqueness property of keystroke biometrics. We

consider the scenario where attackers are shown the typing pattern of their victims

and make a conscious attempt to imitate. If imitation is possible, the error rates of

detection engines would become unacceptably high. This means keystroke dynam-

ics would be unsuitable for use as a biometrics feature.

The rest of this chapter is organized as follows. In Section 3.2, we state the

design considerations for our experiments. We provide the details of the experi-

mental setup in Section 3.3. We describe the details of Mimesis, the interface used

to provide feedback in Section 3.4, followed by an evaluation in Section 3.5. We

discuss the characteristics of the attacker and the limitations of our methodology in

Section 3.6. Finally, we summarise this chapter in Section 3.7.

3.2 Experimental design considerations

This chapter questions whether it is possible for one person to imitate another’s

typing pattern. Our approach is to provide feedback, such that the imitator can

incrementally adjust her typing pattern to be closer to her target’s. We also want

to investigate the factors affecting the effectiveness of imitation. In this section, we
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explain our experimental design considerations.

3.2.1 Choice of detector and its features

We chose the Manhattan (scaled) anomaly detector by Araujo et al. [25] (the best

out of 14 anomaly detectors evaluated by Killourhy and Maxion [40]). In Chapter 2,

we provided a brief description of its computation of anomaly score. Araujo et al.

conducted 7 experiments based on different combinations of inter-keystroke timing

(I), hold timing (H) and key up-down timing (U). U refers to the time between

releasing the previous key and pressing the next key. I and H are always positive.

U can sometimes be negative, because it is possible that the next key is pressed

before the previous key is released. Although only 2 timings are independent1, the

best performing combination used all three timings (choice VII [25]). In our study

however, we chose to use a combination of only I and H (choice V [25]), which had

a FAR and FRR of 5.59% and 1.27% respectively, compared to 1.89% and 1.45%

for choice VII [25].

Our reasons for excluding U are: firstly, including U increases the amount of

feedback information to show in the feedback interface by about 50%. Our con-

cern is that this may overwhelm the participants. Secondly, I and H timings are

rather intuitive and participants should have little issue understanding it. U on the

other hand is less intuitive and can even be negative. By excluding it, we avoid the

possibility of under-performance due to poor understanding of this parameter.

3.2.2 Attack scenarios

As a prerequisite for imitation, an attacker must know the typing pattern of her vic-

tim. When designing the experiments, we considered 2 possible scenarios whereby

the typing pattern may be obtained. In the first scenario, the attacker is able to

extract the victim pattern from a compromised biometrics database. From the at-

1The inter-keystroke timing, hold timing and key up-down timing are related: I = H+U. Hence,

any one of the three can be calculated if the other 2 are known.
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tacker’s point of view, this is the optimum scenario, because it allows her to build

an exact replica of the detector with the victim’s parameters for her training needs.

In the second scenario, the attacker may be able to capture samples of the victim’s

keystrokes as she is authenticating (e.g. by installing a key-logger). If the attacker

is able to capture a large number of samples, she would be able to get a good ap-

proximation of the victim parameters.

A question however arises when the attacker is only able to capture a relatively

small number of samples. For our chosen detector, there are 2 parameters which

are important to the attacker: the mean vector and the absolute deviation vector. It

is possible that only one such parameter can be estimated with a small number of

samples. An investigation into imitation effectiveness should therefore include an

analysis of the extent to which both vectors can be approximated. If only one vector

can be approximated, it is useful to measure the imitation effectiveness under such

a scenario. We refer to this as the partial information scenario.

3.2.3 Motivating the participants

We consider motivation as a key factor that decides the outcome of our experiments.

For that, we gave special considerations in three aspects. Firstly, the feedback in-

terface must be designed to sustain the participant’s interest. Secondly, good imita-

tors should be rewarded for their extra efforts in the form of a performance bonus.

Lastly, the duration of the experiments must strike a balance between (1) pushing

the participants to try hard enough and (2) not setting it so long that it bores the

participants.

Given that there will be multiple experiments, we decided that the first imitation

experiment should have a fixed duration of about 30-45 minutes. For subsequent

experiments, we assumed that we can identify and select those with high motivation.

For these participants, the experiment is designed to be target based. That is, they

will be given targets and associated rewards. There is no duration constraint: they
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can leave anytime or ask for more time.

3.2.4 Basis for comparison of results

In each experiment, we need to determine how much each attacker has improved and

more importantly, their chance of success for the next try if they are sent to attack a

system in an actual scenario. If we used all the data in each experiment to determine

the improvement, there will be a problem of underestimation in 2 aspects. Firstly,

each attacker is likely to spend a good part of her time exploring and fine tuning

her keystrokes. The data during this period reflects the trials and errors of each

attacker’s learning process, but not the outcome of the learning. Secondly, for the

fixed duration experiments, boredom may set in after some point. The participant

may be just “clocking” their time without trying hard.

We therefore decide that for all experiments, feedback shall include a history

of their last 20 tries. Comparison of results across different experiments is also

be based on the same set of data. We name the best 20 consecutive tries of each

experiment the b20 data set. Our justification for the choice of 20 is that if an

attacker achieves a certain target for 20 tries, even if she has only a 50% chance of

repeating the feat for the next 20 tries, the probability of success for the next try is

given by 20
√
0.5 = 0.97. It means that an attacker who has been trained before based

on the b20 targets has a significant chance of success in a real life scenario.

3.2.5 Choice of password

One common problem with password based authentication systems is the prevalence

of weak passwords. For example, ‘password’ is the top password choice. Peacock

et al. considered keystroke dynamics as an effective low cost countermeasure [43].

The argument is that even if attackers guess the weak password, they cannot imitate

the typing pattern. However, weak passwords tend to be easy to type. If attack-

ers can imitate better as the password weakens, then the effectiveness of keystroke
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biometrics in mitigating weak passwords is lesser than previously assumed.

For this reason, we decide to have 2 groups of participants. One group practises

based on an easy password chosen to minimise finger movements on a standard US

keyboard. The other group practices based on a relatively harder password chosen

to maximise finger movements and therefore difficulty of typing. We also added a

criterion that it must contain mixed case alphabets, at least 1 number and at least

1 punctuation to ensure compliance with the requirements of a strong password.

We chose the weak and strong password as ‘serndele’ and ‘ths.ouR2’ respectively.

Having two groups allows us to evaluate the effect of password typing difficulty on

imitation.

3.3 Experimental setup

In this section, we describe our experimental setup2 given the considerations in Sec-

tion 3.2. We divide our investigation into 4 experiments, e1, e2, e3a and e3b. In e1,

we collect the keystroke dynamics for each participant; e2 and e3a involves imita-

tion training with only the mean vector given (the latter is a repeat of the former,

but with one week interval in between); and e3b studies the effectiveness of using

Manhattan (scaled) distance as the feedback. Figure 3.1 shows the experimental

structure and demographics.

Timing information was collected using JavaScript, by monitoring key-down

and key-up events. Although JavaScript timing measurements have a granularity of

millisecond (via the Date object), the actual timing granularity is affected by the op-

erating system. For example, Windows XP based machines have a scheduling tick

quantum of approximately 16 ms. This implies that the JavaScript events which we

are monitoring occur at the timing of the quantum. The timings collected on such

machines therefore are in multiples of approximately 16 ms. In comparison, the tim-

2The experiments conducted were approved by the Institutional Review Board of the Singapore

Management University (IRB approval reference IRB-12-0031-A0039). Data collected from the par-

ticipants were anonymised and protected according to the procedures described in the corresponding

IRB submission documents.
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Figure 3.1: Experimental structure and demographics

ing granularity of keystroke events in the literature varies from 0.2ms [40], 1ms [25]

and 10ms [47, 34]. In all the experiments, mistyped samples were discarded. All

participants were paid $8 for each experiment they completed.

3.3.1 Exp e1: Training Data Collection

e1 is designed based on the enrolment phase of existing keystroke dynamics based

authentication systems, where each user is required to submit a certain number of

samples to train the anomaly detector. Figure 3.2 shows the interface used. 88

participants took part in this experiment. This part of the study was conducted

online and the participants were asked to type in the password (provided by us) in

an input box via our web interface3. Each participant is required to type the same

password 200 times without taking any break.

Figure 3.2: User interface for e1

3Normal network latency does not affect the accuracy of the data. This is because the keystroke

timestamps were measured by the JavaScript running on the client browser. These timestamps were

stored in memory. They were consolidated after the typing of each password and uploaded to the

collecting server.
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3.3.2 Exp e2: Imitation using Euclidean distance

In Section 3.2.2, we mentioned the need to analyst the extent to which the mean

and absolute deviations vectors can be approximated by relatively few samples as

well as measuring the imitation effectiveness in such a case. Based on a preliminary

analysis, we found that the mean can be estimated more accurately than the absolute

deviation (see Section 3.5.1 for the justification). We designed e2 to investigate

the imitation effectiveness when only the mean vector is known to the attacker.

Without the absolute deviation vector, the actual anomaly score for each vector

cannot be calculated. The feedback therefore can only provide an approximation.

We chose the Euclidean distance based anomaly score (described in Chapter 2) for

this purpose.

e2 was conducted 1 week after e1. The choice of 1 week was made so that

(a) participants have enough time to rest after e1 and (b) we have enough time to

compute the parameters of the anomaly detectors needed for the experiment. 84

participants played the role of attackers. Ten victims were chosen randomly from

among the participants of e1. Each attacker in e2 is randomly assigned a victim

from the set of 10 to imitate his/her typing.

Two constraints apply to the assignment: (a) the attacker and the victim cannot

be the same person, (b) the attacker and victim were assigned the same password

in e1. Each attacker was given an approximate anomaly score feedback based on

the Euclidean distance and required to spend at least 30 minutes. An additional 15

minutes were provided if requested. No performance bonus was offered, but the

attackers were told that only the best few will be chosen for e3a and e3b (for which

they will be paid up to $28). The feedback interface is more elaborated compared

to e1 and is described in Section 3.4. At the end of e2, participants answered a

questionnaire on the imitation experience.

Computation of the threshold for each victim requires a set of anomalous data

in addition to the normal data. Following the same procedure as Killourhy and
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Maxion [40], we build the anomalous data for each victim using the first 5 samples

of the passwords typed from all other participants in the same category.

To help evaluate the effects of different input devices on the imitation outcome,

some participants were asked to type directly on their own notebook keyboard. Oth-

ers were asked to use an external keyboard provided by us.

3.3.3 Exp e3a: Additional imitation session with Euclidean dis-

tance

e3a is the second imitation experiment conducted and is very similar to e2. It was

conducted 1 week after e2 to allow time for the attackers to rest and reflect, as well

as for the researchers to process the data and pick the best attackers. 14 participants

were chosen from the attackers of e2 using a subjective gauge of the interest level

and aptitude based on (a) the enthusiasm observed during e2, (b) the number of

samples submitted, (c) their response to our queries if they would like a second

session with more time and (d) the improvement profile (see Figure 3.5).

The set of attacker-victim assignment, the anomaly score calculation (Euclidean

distance) and the feedback interface remain unchanged. Each attacker is required

to spend 20 minutes. As in e2, no performance bonus was offered. The purpose

of this session is to investigate the effect an additional session has on the imitation

outcome.

3.3.4 Exp e3b: Imitation using Manhattan distance

The goal of this part of the experiment is to analyze the effectiveness of keystroke

imitation if an attacker is highly motivated and can obtain the full set of victim’s typ-

ing pattern parameters. e3b is the final imitation experiment. It was conducted after

a break of 15 minutes from e3a, so as to allow the attackers rest and refreshments.

In e3b, the interface was changed to (a) compute the anomaly score based on

the Manhattan (scaled) distance, and (b) include information about the absolute
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deviation vector (see Section 3.4). Two performance bonuses of equal to and double

the base payment rate were offered. The first bonus is given if they can produce a

consecutive run of 20 vectors all of which are scored better than their best average

score in e2. The second bonus increases this difficulty by 10%. The attackers are

also offered additional time up to 2 hours. All other experimental settings including

the set of attackers and their demographics remain unchanged from e3a.

3.4 Mimesis

Mimesis is the feedback interface for our imitation experiments. We provide the

design goals of Mimesis in Section 3.1. The design of the feedback is important

because the quality of the feedback directly affects the outcome of our imitation

experiments. Inadequate or inappropriate feedback may hamper the performance of

the attacker. Figure 3.3 shows the Mimesis interface for the scenario where only

partial information of the victim is available. We denote this interface as Mpart.

The interface for the full information scenario (denoted Mfull) is similar. Mimesis

consists of 5 components.

Top-left section This contains the password which the attacker a is trying to imi-

tate and an input box to type in. a can also break up the password into segments and

practice on each segment separately. Two buttons here provide participants with

the option to hide both the tables in the central section and/or the graphical form of

feedback in the bottom section.

Top-central section This contains the attack score (computed from the anomaly

score using negative linear scaling and then translated to fit within 0 and 100) for

a’s last submitted password. It also shows the average of the recent 20 scores. For

Mpart, the scores are derived from the Euclidean distance. For Mfull, the scores are

calculated from the Manhattan (scaled) distance. The scores are only updated when
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Figure 3.3: Mimesis interface with Euclidean distance

the attacker presses the enter key and only after typing the correct password. For

practice sessions with password segments, no score is computed.

Top-right section This contains a graphical plot of the attack scores for the re-

cent 20 correctly typed passwords. Our basis of comparison considers the best 20

consecutive vectors (see Section 3.2.4). This section therefore allows each attacker

to easily grasp her past performance.

Central section This section contains two tables corresponding to the hold tim-

ing H and inter-keystroke timing I respectively. The tables provide numerical feed-

back on the victim’s mean vector and the last submitted attacker vector. For Mfull,

a weight w computed from the corresponding victim’s absolute deviation is also

shown so that attackers know the relative importance of each key in calculating the

attack score. To help the attackers make their adjustments, we also provide positive

and negative feedback in the form of a penalty (the last row of each table) to the

score. Penalty is computed based on the victim’s and the attacker’s typing. The
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timing components accounting for the largest differences are highlighted in red as

negative feedback. Components that are similar between attacker and victim are

highlighted in a different colour as a positive feedback.

Bottom section This contains a graphical form of the information shown in the

two tables. Circles represent the set of hold timings (H). Vertical bars between the

circles represent the inter-keystroke timing (I). The larger/smaller the circle is, the

longer/shorter H is, respectively. (Circles are chosen for the similarity with finger

marks left on glass surfaces; the harder one presses, the bigger the mark.) Simi-

larly, the taller/shorter the vertical bar is, the longer/shorter I is, respectively. As is

the case for numerical feedback, both positive and negative feedback are provided,

using different colour code. Red colour is used as negative feedback when the dif-

ferences in component timings are large. An additional alert is placed above the

component with the most critical difference. Green is used as positive feedback to

indicate similarity between attacker and victim’s timing components. In the case of

Mfull, a weight w (computed from the victim’s absolute deviation vector) is added

to the feedback as shown in Figure 3.4. w shows the relative importance of each

component in calculating the attack score.

Figure 3.4: Mimesis interface (bottom section) based on Manhattan (scaled) dis-

tance

3.5 Evaluation

In this section, we present the results from our experiments. We start with the typing

profile of a participant playing the role of an attacker as she progressed through

each of the 4 experiments. Figure 3.5 shows the anomaly scores for both Euclidean

33



and Manhattan (scaled) distances against a running index of her submitted timing

vectors. Vertical lines separate the vectors in each experiment; gaps in the running

indices are added around each separator line for clarity; horizontal line is the equal

error rate threshold of the victim; anomaly scores below the horizontal line are

(falsely) accepted by the authentication system.
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Figure 3.5: The anomaly scores of an attacker across all four experiments.

In e1, the attacker is required to type the assigned password 200 times. The

Euclidean distance between each timing vector collected during this experiment and

the victim’s mean vector is plotted in the first section of Figure 3.5(a). Similarly,

the Manhattan (scaled) distance is plotted in the first section of Figure 3.5(b). The

data collected in e1 serves as a baseline because it is what an attacker can achieve

without any imitation effort. Although we collected 200 vectors for each participant

in this experiment, some vectors were discarded4 and are not shown.

4Only e1 was conducted online. After it was concluded, we found that certain submitted vectors

has near zero hold timing and inter-keystroke timing between the first and second characters because

of network error. We filtered all such vectors from e1. The remaining experiments were all conducted

in our lab and did not have the same issue.
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In e2, the attacker is provided with Euclidean distance based feedback using

the Mpart interface. We can observe that the attacker took only less than 100 tries

to achieve her best results for this experiment. Note that the improvement is more

obvious in the Euclidean distance as compared to the Manhattan (scaled) distance.

In e3a, the attacker was given 20 minutes to repeat e2. After a one week of

time along with the prior experience of e2 (learning effect), we can observe that

the attacker produced a noticeable improvement in her Euclidean distance based

anomaly scores. The corresponding improvement in Manhattan (scaled) distance is

less pronounced. This is due to the weak correlation between Euclidean distance

and Manhattan (scaled) distance. The coefficient of correlation between Euclidean

and Manhattan (scaled) distance for all vectors collected in e1, e2 and e3a is 0.543.

In e3b, the attacker was given (a) feedback based on the Manhattan (scaled) dis-

tance, (b) a performance bonus to improve on her previous results and (c) additional

time of up to 2 hours. These conditions simulate a motivated attacker operating un-

der optimum conditions. We can see from Figure 3.5(b) a noticeable improvement

towards the end of the experiment.

In the remainder of this section, we present the rest of our experimental findings.

In Section 3.5.1 we investigate the possibility of collision attacks in e1 where the

attackers are not provided with any form of feedback. We also evaluate the quality

of detector parameter estimation with few samples. In Sections 3.5.2, 3.5.3 and

3.5.4 we present the outcome of e2, e3a and e3b experiments respectively.

3.5.1 Interesting results from e1

In this experiment, we obtained the timing vectors from 84 attackers who were

asked to type their corresponding victim’s password 200 times without any feed-

back. The victim assignment was random. 37 attackers typed the simpler password

‘serndele’, while the remainder typed the harder password ‘ths.ouR2’. From the

submitted timing vectors, we evaluate (a) the likelihood of collision attacks and
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(b) the extent to which anomaly detector parameters can be estimated when few

samples are available. The latter results provide the justification for the partial in-

formation scenario described in Section 3.2.2.

Collision attack

In Killourhy and Maxion’s evaluation [40], the anomalous timing vectors of each

user was constructed from the first 5 vectors submitted by all other users. This

simulated attackers who are unfamiliar with typing their victim’s password. They

raised but did not answer the question of whether the FAR would change if attackers

are allowed to practise typing the password. In e1 we attempt to answer this ques-

tion. We compute the overall FAR based on all vectors submitted by each attacker

(instead of just the first 5).

Figure 3.6 shows the overall FAR in e1. Most attackers have an overall FAR of

0.2 or less. However, there exists 1 attacker (the last bar) with an overall FAR of

more than 0.8. This implies that even without any imitation training, she has at least

an 80% chance of pretending to be the victim successfully. This is an example of a

collision attack. In practice, given a target organization with 10 high value targets,

if a team of 84 attackers were to be assembled, we expect to find on average, one

attacker with the same typing pattern as one of the high value targets.
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Estimation of anomaly detector parameters from few samples

We conducted a Monte Carlo simulation based on the timing vectors collected in

e1. For each participant in e1, 10 samples were randomly picked from the collected

data and the mean and absolute deviation were estimated based on these 10 samples.

This is compared against the actual mean and absolute deviation computed using all

available samples. We repeat this process 10,000 times for each participant. It was

found that on average, the estimated mean is within ±10% of the actual mean 74%

of the time. On the other hand, the estimated absolute deviation is only close to

the actual absolute deviation 21% of the time. This shows that the scenario where

an attacker can infer only the mean vector but not the absolute deviation vector is

plausible. This provides the justification for the partial information scenario of e2

and e3a.

3.5.2 Imitation outcome of e2

In e2, each attacker is provided feedback based on the Euclidean distance assuming

the partial information scenario of Section 3.2.2. 84 participants participated in this

experiment. We present the change in FAR (see Section 3.5.2), followed by an anal-

ysis of how this change was affected by (a) choice of keyboard (see Section 3.5.2),

(b) password difficulty (see Section 3.5.2), (c) attacker typing consistency (see Sec-

tion 3.5.2). We also analyzed the optimum duration per training session in Sec-

tion 3.5.2.

Improvement in FAR after imitation training

Figure 3.7 shows the FAR improvement in e2 as compared to e1. More than two-

third of the attackers (56) improved their FAR from e1. However, there were some

attackers (12) with no improvement in the FAR, while a small proportion (16) de-

graded. The last point demonstrates the shortcoming of using the Euclidean distance

to approximate the Manhattan (scaled) distance in the partial information scenario.
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Intuitively, if the attacker decreases her differences in one component of her vector,

but increases in another, whether the corresponding Manhattan (scaled) distance in-

creases or decreases depends on the scaling ratio of the two components, which is

not known to the attacker. The partial information scenario is plausible, but not

ideal.
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Figure 3.7: Improvement in FAR in e2 b20 from e1

Effect of keyboards

Prior to the experiments, we speculated that external keyboards, compared to note-

book keyboards, facilitate the imitation. Feedback from attackers also supports this

conjecture. To investigate this, in e2, 40 participants out of 84 participants used

an external keyboard provided by us. The remainder used their own notebook key-

board. To verify our conjecture, we used a 2-sample Student’s t test assuming un-

equal variance. The null hypothesis states that there are no differences between the

mean of the b20 FAR for attackers using external keyboards, compared to those not

using one. We use a two-tailed test as there is no conclusive evidence to support the

use of a one-tailed test.

Groups Mean Variance t Stat P(T≤t) t Critical

Own 0.564 0.146
1.217 0.227 1.989

External 0.462 0.148

Table 3.1: Effect of keyboards

The results are shown in Table 3.1. While there are differences, the p value

of 0.227 is not significant enough to conclude that an external keyboard made any
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difference.

Effect of password difficulty

Figures 3.8(a) and 3.8(b) shows the change in overall FAR in e2 for different pass-

words. In e1, only 1 attacker practising on the easier password had a similar typing

pattern as her victim (0.8 ≤ FAR ≤ 1). The training in e2 increased the number of

such attackers to 6. For the harder password, no attacker is similar to her victim in

e1. After e2, there were 2 such attackers. Statistical analysis using a 2-sample t-test

with unequal variance showed that for the harder password, the change is not statis-

tically significant (see Table 3.1(b)). In contrast, the change is highly significant for

the easier password (see Table 3.1(a)).

(a) ‘serndele’

Groups Mean Variance t Stat P(T≤t) t Critical

e1 overall 0.241 0.065
-3.586 < 0.001 1.993

e2 overall 0.471 0.085

(b) ‘ths.ouR2’

Groups Mean Variance t Stat P(T≤t) t Critical

e1 overall 0.196 0.050
-1.769 0.081 1.987

e2 overall 0.288 0.075

Table 3.2: t-test on overall FAR in e1 and overall FAR in e2

In Section 3.2.4, we explained why using the overall FAR underestimates the

effects of imitation. Therefore, we also evaluate the change in b20 FAR. These

are plotted in Figure 3.8(c) and 3.8(d) respectively. As expected, the number of

attackers similar to their victims show a marked increase to 22 and 11 (as opposed

to 1 and 0) for the easier and harder passwords respectively. This suggests that even

imitation with partial information (based on Mpart interface) helps the attacker in

her performance significantly.

Statistical analysis using a 2-sample t-test with unequal variance showed that

for both passwords, the change is highly significant (see Tables 3.2(a)and 3.2(b)).

The differences in mean between the easier and the harder password suggest that
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Figure 3.8: Improvement in FAR in e2 from e1
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passwords that are easier to type are also easier to imitate. The question raised by

Section 3.2.5 is therefore answered: the effectiveness of keystroke biometrics in

mitigating weak passwords is lesser than previously assumed.

(a) ‘serndele’

Groups Mean Variance t Stat P(T≤t) t Critical

e1 overall 0.241 0.065
-5.126 < 0.001 1.998

e2 b20 0.633 0.150

(b) ‘ths.ouR2’

Groups Mean Variance t Stat P(T≤t) t Critical

e1 overall 0.196 0.050
-3.678 < 0.001 1.991

e2 b20 0.425 0.131

Table 3.3: t-test on overall FAR in e1 and b20 FAR in e2

Effect of attacker consistency

Intuitively, if an attacker is more consistent she should be able to exercise better

control over her keystrokes, which should lead to better imitation outcome. To

investigate the validity of this conjecture, we define a measure of consistency c.

Referring to the vector notation of table 2.1, the standard deviation vector5 (s) can

be computed using the following

sj =

√

√

√

√

√

√

n
∑

i=1

(ti,j − x̄j)
2

n− 1

For each component of s, the larger its value, the larger the variability and there-

fore the lesser the consistency score. The consistency score c for each participant is

5Note the difference between the standard deviation vector s vs. the absolute deviation vector d

of the Manhattan (scaled) detector.
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defined as the inverse of the average deviation in s:

c =
l

l
∑

j=1

sj

The relation between imitation outcome and consistency is shown in Figure 3.9

which plots the b20 FAR against attacker consistency. Each point in the plot cor-

responds to one attacker. We can observe that there is no correlation between the

imitation outcome (b20) of e2 against attacker’s consistency score for both the easy

password and the harder password. The coefficient of correlation for the easy pass-

word is 0.11 and for the harder password is -0.09. Therefore, there is no evidence

to support our intuition that consistent attackers imitate better.
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Figure 3.9: Imitation performance based on consistency in e1

A related and perhaps more interesting question is whether imitation training

also improves attacker consistency. Figure 3.10 compares the consistency score

of each attacker in e1 and e2. The attackers who are on the left of the vertical line

were assigned the harder password ‘ths.ouR2’. Those on the right were assigned the

easier password ‘serndele’. The attackers are sorted in a descending order according

to their consistency score in e1.

Visual inspection of Figure 3.10 showed (a) there is no correlation between the

c in e1 and e2, and (b) imitation training also improves the attacker’s typing consis-

tency regardless of the password complexity. (a) is confirmed by the coefficient of

correlation, which has a near-zero value of 0.088. To verify (b), we used a 2-sample

t-test with unequal variance. The results are shown in Table 3.4. The p value is less
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than 0.001 and confirms that the difference in consistency score c between e1 and

e2 is highly significant.
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Figure 3.10: Consistency scores (c) in e1 and e2

Groups Mean Variance t Stat P(T≤t) t Critical

e1 0.016 2.880E-05
-9.158 < 0.001 1.975

e2 0.025 5.005E-05

Table 3.4: t-test on c in e1 and e2

Optimum duration per training session

In Figure 3.11, we show the time required for the attackers to reach their b20 per-

formance in e2. 47 out of 84 (56%) attackers took less than 20 minutes. However,

we also saw in Figure 3.5 that there is further room for improvement when given a

second session. This suggests that instead of a single long session, imitation may

be more effective when conducted in multiple sessions of shorter duration. A full

investigation into the outcome for various combinations of session duration and

number of sessions is however out of the scope of this chapter and we leave it for

future work.

3.5.3 Imitation outcome of e3a

After e2, the 14 best attackers (based on their imitation performance and consistency

score) were selected and given a week’s rest. They were then recalled for a repeat

of e2. Based on the findings in e2 we limit the duration of e3a to 20 minutes. The

question we want to investigate in this section is that under the partial information
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Figure 3.11: Time required in e2

scenario, do attackers reach their peak performance within the first 30 minutes or

they are capable of further improvements when given more time to rest, reflect and

repeat their earlier efforts.
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Figure 3.12: b20 FAR in e2 and e3a

Figure 3.12 shows the improvement in the b20 FAR between e2 and e3a. We

found that there is no significant difference between b20 FAR obtained in e2 and

e3a (see Table 3.5). Out of the 14 attackers, 6 improved their b20 FAR, 4 were

unchanged while 4 actually worsened.

Groups Mean Variance t Stat P(T≤t) t Critical

e2 0.771 0.073
-0.770 0.448 2.059

e3a 0.842 0.046

Table 3.5: t-test on b20 FAR in e2 and e3a

To explain the anomaly where the performance of some participants actually

degraded, we examine the profile of one such attacker with the worst e3a FAR

(participant no. 3 in Figure 3.12). Figure 3.13 shows the typing profile of this

participant where the anomaly scores are plotted against a running index of each

timing vector. We can observe that the Euclidean score of this attacker actually
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Figure 3.13: The anomaly scores of the worst performing attacker of e3a

improves in e3a. However, the improvement in Euclidean score did not translate

into a marked improvement in Manhattan (scaled) score for this attacker. The reason

is due to the weak correlation between these two distances.

3.5.4 Imitation outcome of e3b

Experiment e3b was conducted following e3a after a break of 15 minutes. This

experiment simulates highly motivated attackers operating under optimum condi-

tions (full victim information, performance bonus and more time). The attackers

were told to try to achieve the 2 targets (see Section 3.3.4 for details). Out of the

14 attackers, 2 managed to achieve the lesser bonus and another 3 achieved the

full bonus. (Note that qualifying for the bonus is more difficult than crossing their

victim’s acceptance threshold.) We can observe from Figure 3.14 that almost all

attackers were able to achieve near perfect imitation of their victims. The results of

a 2-sample t-test with unequal variance is shown in Table 3.6. The p value of 0.022

confirms that the difference in the FAR for e3a and e3b is statistically significant.
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Groups Mean Variance t Stat P(T≤t) t Critical

e3a 0.842 0.046
-2.594 0.022 2.160

e3b 0.992 3.29E-04

Table 3.6: t-test on b20 FAR in e3a and e3b
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Figure 3.14: b20 FAR in e3a and e3b for participants of all four experiments

Figure 3.15 shows for one victim, her original FRR from e1, original FAR from

e1 and the FAR of her 2 assigned attackers (a1 and a2) from e3b. During the training

phase, the threshold is set at a Manhattan (scaled) distance of 1.2, resulting in an

EER of 0.2 for the detector. Imitation training markedly increases the FAR curve

for both attackers. If the threshold remains unchanged, FAR increases to 1. This

means the detector is unable to differentiate between the attackers and this victim.

If the threshold is recalibrated to a distance of 0.75, it results in an unacceptable

EER of 0.7.
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Figure 3.15: Effect of imitation training on FRR and FAR

The amount of time taken by each attacker in e3b to reach their b20 performance

is shown in Figure 3.16. For 9 out of 14 (64%) attackers, their performance peaked

in 20 minutes or less. This is consistent with our observations in Section 3.5.2.

Two highly motivated participants took nearly 2 hours. One of them achieved both
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performance bonuses at the end.
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Figure 3.16: Time required in e3b

3.6 Discussion

In this section, we discuss the various factors affecting the outcome of the imita-

tion, such as gender (see Section 3.6.1), typing speed (see Section 3.6.1), imitation

strategy (see Section 3.6.1) and similarities in typing patterns (see Section 3.6.1).

In Section 3.6.2, we discuss the attackers’ interface preferences. Their perception

towards the difficulty of hold timings or inter-keystroke timings is discussed in Sec-

tion 3.6.3. Finally, we state the limitations in Section 3.6.4.

3.6.1 Factors affecting imitation outcome

Various hypotheses were put forward by both researchers and participants in the

course of our experiments to account for the differences in imitation outcome. We

evaluate each of them in the following discussions.

Gender

In the experiment e2, our pool of participants consists of 39 males and 45 females.

In Figure 3.17, we show the average e2 b20 FAR for both genders across the two

passwords used. We can observe that male attackers achieved an average FAR of

0.51 and 0.81 for the harder and easier password respectively, compared to 0.33

and 0.51 for the female attackers. Male participants therefore perform significantly
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better than females in the imitation experiments. Furthermore, for both genders, the

easier password to type is also the easier password to imitate, although the differ-

ence is more pronounced in males.
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Figure 3.17: FAR based on gender

Groups Mean Variance t Stat P(T≤t) t Critical

Female 0.420 0.133
-2.548 0.006 1.664

Male 0.629 0.149

Table 3.7: t-test on b20 FAR in e2 on gender

We confirm the differences using a 2-sample t-test assuming unequal variance.

The null hypothesis states that there are no differences between the mean of the b20

FAR between male and female attackers. The results are summarized in Table 3.7,

which shows that the null hypothesis can be rejected. Since the p value is less than

1%, the test is highly significant.

Typing speed

During the experiment, feedback from certain attackers indicated that they believed

slower victims are easier to imitate. To evaluate this, a measure of their typing

latency is required. For each attacker and victim, we compute the average timing of

all components in each participant’s mean vector x̄ as a measure of their latency:

v =

l
∑

j=1

x̄j

l
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Figure 3.18: Typing latency of each victim and their attackers

Figure 3.18 shows the latency profile of all 10 chosen victims using the typ-

ing keystrokes from e1. Each victim was assigned 8 to 9 attackers. The attackers’

latencies are shown on the same plot as vertical lines. The midpoint of each line in-

dicates the mean attacker latency. The top and bottom of each line are one standard

deviation away from the mean. The first 5 victims and their corresponding attackers

were assigned the harder password ‘ths.ouR2’ and the last 5 practised on the easier

password ‘serndele’. The assigned attackers are generally spread out, with a mix of

faster, equal and slower attackers in typing relative to the victims.
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Figure 3.19: Relative latency v/s b20 FAR in e2

To investigate whether it is easier for a faster attacker to imitate a slow victim,

the relative latency of each attacker w.r.t. her victim is computed. The coefficient of

correlation between the b20 FAR in e2 and the relative latency is 0.02 and -0.12 for

the harder and easier passwords respectively. Therefore, contrary to participant’s

feedback, there exists no correlation between the typing speed and the imitation

outcome. This is shown in Figure 3.19.
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Number of trials per minute

During our experiments, we notice that participants vary greatly in the number of

samples submitted. Different attackers adopt different strategy to get to their best

high score. Certain participants would submit samples after samples, while others

spend more time studying and reflecting on the feedback mechanism. For example

some would pause and tap on their palm to grasp the rhythm. We want to know

which approach is better and whether there is any effect on the FAR.
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Figure 3.20: Tries per minute in e2

Figure 3.20 shows the b20 FAR in e2 against the number of tries per minute.

The coefficient of correlation is 0.069. We found no correlation between how each

attacker goes about improving their imitation and the acceptance rate. This also

suggests that there is no standard way to perform better in imitating someone else.

Initial typing similarity with the victim

If an attacker’s typing pattern is already similar to the victim’s before imitation

training, intuitively, one would expect that even a slight improvement would result

in a noticeable change in the FAR. In Figures 3.21(a), we show the b20 FAR in e2 of

each attacker against the Euclidean distance between her mean vector and that of the

victim’s. In Figure 3.21(b), we show the b20 FAR in e2 of each attacker against the

Manhattan (scaled) distance of the attacker’s mean vector from the victim’s mean

vector (with the scaling based on the victim’s deviation vector).

The coefficients of correlation are -0.26 and -0.38 for Figures 3.21(a) and

3.21(b) respectively. Therefore there exists a weak correlation between the e2 imi-
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Figure 3.21: Correlation between b20 FAR in e2 and the typing similarity between

attacker and victim

tation outcome and the similarity between the attacker and victim’s typing pattern.

From Figure 3.7, we can observe that the correlation is weak because the extent of

improvement varies for different attackers.

3.6.2 Mimesis interface

In Section 3.4, Mimesis provided feedback in both a table of numerical timings

as well as a graph. Figure 3.22 shows the preference among attackers for these 2

feedback options. There are 51 participants who relied predominantly on the graph,

while 23 relied on the raw data shown in the tables. 6 used both and another 4 used

neither. For the latter, this implies that they relied only on the attack score and the

colouring scheme adopted. Among participants who used the table and/or graph,

feedback indicated that the reliance is only during the initial part of the experiment

to get the rhythm correct. Thereafter, participants usually rely on their gut feeling

to imitate.
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Figure 3.22: Preferences based on the feedback

3.6.3 Imitating hold v/s inter-keystroke timing

In this section we compare whether it is easier to imitate hold timing or inter-

keystroke timing. From Figure 3.23, there are 42 attackers who find hold timing

easy to imitate and inter-keystroke timing difficult. On the other hand, 30 attackers

found hold timing difficult and inter-keystroke timing easy. 3 attackers found both

are easy to imitate, while 9 think that both are equally difficult.
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Figure 3.23: Easier to imitate

Notebook keyboard External keyboard

H easy, I difficult 19 23

H difficult, I easy 20 10

Table 3.8: Effect of the keyboard in hold timing and inter-keystroke timing.

It turned out that the type of keyboard made a difference. Refer to Table 3.8.

Of the 72 attackers who found one timing easy and the other difficult, 39 used their

notebook’s keyboard while 33 used an external keyboard. We found that among

those using an external keyboard, the number of people who find hold timing easy

to imitate is significantly more than those who do not. The reason could be be-

cause pressing and releasing of a key is more apparent in an external keyboard as
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compared to the notebook’s keyboard.

3.6.4 Limitations

In Section 3.2, it was stated that we deliberately exclude the key up-down timing as

a precaution that it may be difficult to understand and therefore affects the experi-

mental results. A question therefore arises on whether it is really difficult to imitate

key up-down timing. If true, it implies that a simple countermeasure against imi-

tation would be to include and give a greater weight to key up-down timing in the

anomaly score calculations. We did not address this issue in this thesis and leave it

as future work.

3.7 Summary

This chapter shows that contrary to the beliefs of prior studies, when a victim’s typ-

ing pattern is known, imitation is possible. If the attacker has an incomplete model

of the victim’s typing pattern, her success rate is around 0.52 after imitation training.

For the best attackers, imitation training increases the FAR to nearly 1, rendering

keystroke biometrics based authentication systems unusable. Furthermore, when

the number of attackers and victims are sizeable, the chance of a natural collision in

typing pattern (without any imitation training) is significant.

Among the key factors affecting the imitation, we found that the easier the pass-

word, the easier the imitation. Males were also found to be better at imitation com-

pared to females. On the other hand, various factors such as use of external key-

board, typing consistency, typing speed, imitation strategy and similarities in typing

patterns were found to have much less influence on the imitation outcome.
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Chapter 4

Can typing patterns be collected

from JavaScript applications?

4.1 Introduction

Rich and complex JavaScript applications provide sophisticated GUI updates and

fast client-server communications that approaches the capabilities of traditional

desktop applications. The front-end JavaScript communicates using HTTP(s) with

the back-end server in response to various events such as keypress. In this chapter

we explore whether the improved GUI creates a timing side channel. We hope a

detailed study of one application yields insights on the threats that may apply to the

entire class of such applications.

Similar side channels attack had been demonstrated by Chen et al. [29] (in-

ferring encrypted JavaScript traffic from packet size) and Song et al [47] (reducing

search space of SSH passwords from packet timing). This chapter differs from prior

work in the following ways. It is the first to analyse JavaScript timing side channels

and use it to derive typing patterns. Inference of typing pattern raises privacy con-

cerns. Prior research showed that natural typing patterns are unique enough for user

identification [25, 39, 43, 42]. Natural typing occurs when no attempts are made to

consciously alter the typing.
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Personalized typing patterns also improves the SSH attacks by Song et al. [47]

and allows imitation attacks (see Chapter 3) on keystroke biometrics systems [35,

43, 25, 34, 38]. JavaScript timing side channels are challenging to analyse because

keystroke and network traffic timing are only loosely correlated. This is because

JavaScript applications (a) are far slower as compared to native binary applications

and (b) typically run in a single threaded co-operative multitasking execution model.

In the following sections, we first study Google Suggestions’ communication

model in Section 4.2. We derive a set of techniques to construct a keypair timing

model (probability distribution of keypair intervals) for each pair of keystroke from

unencrypted Google Suggestions traffic in Section 4.3. We conducted a user study

on 11 participants to collect their keystrokes and timings. The user study and results

are shown in Section 4.4. We discuss the limitations and summarise this chapter in

Sections 4.5 and 4.6 respectively.

4.2 Communication model

Our approach to study the Google Suggestions communication model is based on

both black-box testing and white-box analysis. We used the setup of Figure 4.1.

The client under testing connects to the Google servers in the back-end through

a proxy server. For blackbox testing, we captured Google query packets using a

packet sniffer [23] installed on the client. For white-box testing, we hosted a copy1

of the Google HTML and JavaScript files on another web server and selectively

redirect the proxy server [22] to fetch our copy rather than from the actual Google

server. This allows us to make arbitrary changes to the scripts for our testing.

4.2.1 Approach

Black-box analysis allowed the quick identification of traffic patterns and content.

For example, we quickly found that different network traffic patterns are possible

1Retrieved Apr 2012
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Figure 4.1: Setup for black-box and white-box testing

even for the same query (see Table 1.1). On the other hand, when we analysed

the timings of the keypress and the packets, we encountered significant difficulty

correlating them. For example, after the user pressed a key, the corresponding HTTP

request can be observed on the network from between approximately 3 ms to over

100 ms later with 2 distinctive frequency peaks at around 7 ms and 45 ms. White-

box analysis is therefore necessary.

Our approach is to first manipulate the obfuscated source code using the tool JS-

Beautifier [15]. The decision to host a separate copy of the script files in Figure 4.1

allowed us to make arbitrary changes to the JavaScript source code independently of

the Google servers. Next, we use the console logging feature of Firebug to pinpoint

the code that initiated the HTTP requests. This formed the starting point for sub-

sequent investigations, where we incrementally assign meaningful symbols to the

variables and functions through (a) monitored calls to standard functions, and (b)

selectively breaking execution and examining the call stack and variables. Please

note that our investigation focuses specifically on the timing aspects. Hence we did

not deobfuscate all the script code involved in Google Suggestions. The rest of this

section documents our findings.
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4.2.2 Communication model obtained

JavaScript uses an event driven execution model [10]. For Google Suggestions,

there are 3 classes of event handlers of interest. Hpoll is a handler for polling

events. The polling is setup and removed when the query input box receives and

loses focus respectively. Although the specified polling interval is 10 ms, the actual

firing interval fluctuates. The reason is likely to be due to other events firing and

executing, thereby delaying the execution of this handler. Hui handles UI events,

e.g., keydown, keypress, keyup, etc. The same handler code fires for different

events but with different closure scope. The handler function for the keydown event,

named Hkdui, is installed during GS code initialization. The Google Suggestions code

includes a mechanism to defer execution of a function. Hdefer handles the events

which are deferred. The 2 key parts to this are the postMessage JavaScript func-

tion and an array of deferred functions (Arrdefer ). At load time, Google Sugges-

tions setups a message event handler. This handler fires when a message is posted

to it using postMessage. When fired, it removes the first function from Arrdefer

and executes it. If Arrdefer is not empty, it posts a message to itself and exits.

Any JavaScript code deferring execution calls a wrapper function defer which first

pushes the function to defer onto the bottom of Arrdefer and then post a message

to Hdefer.

When a user presses and releases a key, JavaScript fires four events in this or-

der: keydown, keypress, input, keyup. Under normal circumstances, Hkdui uses

the deferred execution mechanism to invoke a function named Hx to send out the

network traffic. However, it is also possible for Hpoll to run before Hkdui. In such a

case, Hpoll invokes Hx directly (without deferring execution) to send out the query.

Regardless of the path taken, Hx is executed at most once for each keystroke. The

end result is a race (to execute Hx) between the synchronous mechanism of Hpoll

and the asynchronous mechanism of Hkdui, resulting in the introduction of a variable

delay. The race is won mostly by Hkdui.
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Another factor affecting the execution delay is the number of task on each ex-

ecution path. For example, the first keypress for Google Suggestions also updates

the UI in preparation for not just the suggestions of Google Suggestions, but also

the results of Google Instant. This additional code increases the execution delay by

approximately 6 times (∼45 ms).

A third factor affecting the delay is submission throttling [41]. Most search

engines used this technology to limit the amount of search traffic to their website

while the user is typing the query. In the case of Google Suggestions, regardless

of whether Hpoll or Hkdui won the race, Hx is always invoked. The role of Hx is to

send queries and receive results from the Google servers. Listing 1 shows how

submission throttling is implemented in Google Suggestions when Hx is invoked.

Listing 1

trace Hx
if xhrtimer not pending then

xhrm enter

· · ·
exit

end if

end trace

trace TimerEvent

Call xhrm
end trace

procedure xhrm
if unsent_query then

xhri enter

· · ·
send query to Google

· · ·
exit

timeout← compute_timeout

create TimerEvent

end if

end procedure

The sending mechanism of Google Suggestions uses a timer named xhrtimer.

This timer is initially cleared. When Hx is invoked it checks this timer. If xhrtimer is
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cleared, Hx calls a sub function xhrm to send out the query immediately. Otherwise,

it exits without sending any HTTP traffic. When xhrm runs, it sets up the timer

xhrtimer to call itself (xhrm) again after a timeout value. The detailed computation

of the timeout is out of the scope of this chapter, but on a fast network, this value

is 100 ms. After this timer is set, xhrm will not run again until the timer expires.

Any keystrokes typed during this time accumulate and are sent together in the same

HTTP request when the timer expires.

If xhrm runs but does not find any unsent query (that is, between the previous

and current invocation of xhrm, the user did not press any key), it does not set any

new timer. xhrtimer therefore becomes cleared again. If a new key is now pressed,

xhrm will again send it out without delay. The described process then repeats itself.

The implication is that correlation between keystroke and packet timing is poor

whenever xhrm is in timer mode.

4.3 Recovery of keypair timing model

Section 4.2 identifies the timeout mechanism and atypical execution path as major

noise contributors. Packet timings thus affected are considered unreliable. Fig-

ure 4.2 shows that if we discard the unreliable timing, the delay between pressing

of keystroke and sending of packet becomes significantly more consistent. (tks and

tpkt refer to the keystroke and packet timing respectively.) This allows the recovery

of the derived keypair timing model.

For each keypair, the recovery process involves:

1. Identifying the corresponding packet-pairs

2. Determining if each packet timing is reliable

3. Choosing packet-pairs where the earlier timing is reliable

4. Further dividing the chosen packet-pairs into a set where the latter packet tim-

ing is reliable and another set where it is not. The size of the first set (reliable
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Figure 4.2: Noise model

latter packet timing) is denoted by No. The size of the complementary set is

denoted by Nu.

5. Computing the mean and variance of the packet-pair timing model

6. Applying a correction to the variance to obtain the derived keypair timing

model.

This process requires an assumption of normally distributed timing models

which are independent. Prior work [47] investigating keypair timing model found

the normal distribution to be a reasonable approximation.
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Figure 4.3: Different scenarios for the building of DTMkey from TMpkt

In step 5, depending on the values of No and Nu, there can be 4 different sce-

narios, 3 of which are shown in figure 4.3. TMkey denotes the keypair timing model,

TMpkt denotes the packet-pair timing model, and DTMkey denotes the derived keypair
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timing model, which is an approximation of TMkey obtained by applying a variance

correction to TMpkt. In type 1 scenarios, Nu = 0. The mean and variance are calcu-

lated directly from the observed intervals.

For type 2, Nu < No. The timeout translates to a cutoff time beyond which

certain intervals are not observed. The peak though is still visible. We first estimate

the median from Nu and the observable parts of the distribution. We next obtain

the mean which is equal to the median. We estimated the missing part of the dis-

tribution by reflecting the observable part about the mean. From the reconstructed

distribution, we can calculate the variance.

For type 3, Nu ≥ No. The peak is not visible. Our aim is to fit a normal distribu-

tion (with unknown mean x̄ and std. deviation s) based on the interval observations

on the right tail. Let l denote the cutoff time (timeout + a small allowance). x̄, s,

l, α are related by l = x̄ + αs, where α is a multiplier s.t. for a standard normal

distributed random variable X , Pr(X > α) = No/(No + Nu). The curve fitting

iterates over a possible list of values for x̄, and computes the corresponding s. The

values providing the best fit (least squares) are chosen.

In type 4 scenarios, No = 0. The mean of the keypair timing is far less than the

timeout, resulting in no interval observations. Hence it is not plotted in Figure 4.3.

To recover the timing for a keypair such as c1 − c2 where ci denotes a key pressed,

we need to have the parameters of another 2 distributions: the keypair c2 − c3 and

the triplet c1− c2− c3. The latter 2 distributions would be observable if there exists

c3 such that c2 − c3 is much longer than the timeout.

Given two independent normally distributed random variables X and Y , the

random variable Z = X + Y is also normal [17] with mean z̄ = x̄+ ȳ and standard

deviation sz =
√

s2x + s2y. The relation between c1 − c2, c2 − c3 and c1 − c2 − c3

is analogous to that of X , Y and Z. Therefore, if we let Z and Y represent the

distribution for c1 − c2 − c3 and c2 − c3 respectively, we can obtain the mean and

standard deviation of the unobservable c1 − c2 from X .

In step (f) we need to apply a correction to the variance but not the mean. This
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Figure 4.4: Difference in the p.d.f. of TMkey compared to the corresponding p.d.f.

of TMpkt.

is because there is residual noise even after accounting for the timeout and atypical

execution path. This noise affects both timing observations of a packet-pair. It

cancels out for the interval mean, but adds to the variance. Figure 4.4 shows this

effect for a keypair. To compute the required variance correction, we use a simple

heuristic. A Monte Carlo simulation based on the model of Section 4.2 computes

the observed variance for a set of variances. The differences are stored in a table

and looked up whenever a correction is needed.

4.4 User study

To verify the theory of Section 4.3, we conducted a user study. 11 participants

are asked to install a plugin on their browser which captures the keystroke timings

of Google Suggestions queries. The duration of the study ranges from 32 to 49

days. Users are allowed to inspect and delete any sensitive entries in the capture log

before submission. Towards the end of the study, users with too few queries were

given a chance to go through a Q&A worksheet using Google to find the answers.

This is so that they get more opportunities in using Google search. The collected

keystrokes are anonymised and post processed to retain only English alphabets and

the SPACE char. Queries with BACKSPACE are broken up. The resulting logs

are consolidated on a single machine running Ubuntu 11.10 (AMD Athlon(tm) 64
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S/N Q KS KP TP KPobs TPobs Nsig

1 502 3114 2612 2110 642 487 6

2 421 2666 2245 1824 682 506 7

3 1206 6607 5401 4195 2447 1715 93

4 688 4243 3555 2867 601 403 6

5 593 3604 3011 2418 1368 993 34

6 774 4592 3818 3044 1752 1284 58

7 405 2517 2112 1707 733 561 8

8 696 4610 3914 3218 1181 893 29

9 327 2163 1836 1509 270 185 1

10 1041 6042 5001 3960 2359 1697 96

11 700 3964 3264 2564 1233 853 29

Table 4.1: Statistics of user study. Q: total number of queries by user. KS: total

keystrokes typed. KP: total keypairs typed. TP: total 3 char sequence.

KPobs: sum of No for all keypairs. TPobs: sum of No for all triplets.

Nsig: total number of keypair/triplets for which No ≥ 10. This is also

the number of recovered p.d.f.

X2 Dual Core Processor 4000+ 2110 MHz with 3 GB RAM). The keystrokes in

each query are injected programmatically using the uinput [11] interface and the

corresponding query packets are collected.

The outcome of the user study is shown in Table 4.1. There is a positive cor-

relation between the number of queries submitted and the number of p.d.f. (last

column) recovered in DTMkey for each participant. This suggests that long term col-

lection of queries would recover far more p.d.f. than our user study. The outcome of

the methods for type 1 to type 4 are shown in Figure 4.5. Relatively fewer samples

were collected for type 3 and type 4 due to the low probability of finding observa-

tions at the tail and finding both triplet and keypair accounts. Generally, the mean

can be recovered accurately although larger observations tend to result in more ac-

curacy. The variance, on the other hand, is less accurate, particularly for fewer

observations. Like the mean, however, the accuracy improves as the observations

increase.
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(b) Type 2 recovery
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(c) Type 3 recovery
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Figure 4.5: Recovery of p.d.f. from various types of packet observations.

4.4.1 The optimal timeout

Given that the current timeout value of 100ms allows the derivation of DTMkey

(from TMpkt), we also investigated the possible countermeasures. These counter-

measures are equally applicable to any JavaScript application with rich interactivity

that wishes to deny potential adversary the opportunity for UI events harvesting. We

conducted a Monte Carlo simulation using the set of keystroke data collected from

the user study. We varied the GS timeout and computed the simulated packet timing

based on the noise model and the findings of Section 4.2.

Figure 4.6 shows the variation of the count of recovered keypairs and triplets

vs. the timeout. Choosing a timeout figure of 200-250 ms eliminates most obser-

vations, but the responsiveness is more than halved. Given that in Listing 1, xhrm

exits timeout mode whenever there is no keystroke activity in the previous timeout

cycle, an alternative is to increase the number of timeout cycles to 3 while keeping

the timeout unchanged at 100 ms. This eliminates all observable intervals without
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Figure 4.6: Variation of the total recovered keypair or triplets for all users given a

particular timeout setting.

affecting the responsiveness.

4.5 Limitations

In our study, the keypair timing model is based on keydown-keydown intervals.

Many biometric authentication techniques use such intervals [35, 34, 25]. Our work

therefore affects such systems. However, biometric authentication is not limited to

just keydown-keydown metrics. Keydown-keyup, keyup-keydown and even key-

press pressure are examples of alternatives. For the first 2, active attacks inject-

ing malicious JavaScript code can capture both keydown and keyup, but this is not

investigated in this thesis. Keypress pressure, however, cannot be measured by

JavaScript applications and is therefore unaffected.

The keystroke injection part of the user study was done on a dedicated machine.

We therefore did not model the additional execution delay that may result if the

machine is also running multiple compute intensive processes concurrently.

The description of Google Suggestions [4] indicated that it may behave differ-

ently in different geographical locations. We did not manage to isolate any geo-

graphically specific code during our investigations. This is either due to our limi-

tations or different source code was delivered to different locations. Our findings

therefore apply only to geographical locations with similar settings as our evaluation

environment.
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4.6 Summary

In this chapter, we investigated the recovery of personalized keystroke timing infor-

mation using Google Suggestions. We found that it is possible to construct a user’s

typing pattern from the timing of the queries sent over the network. This is of con-

cern because the availability of typing pattern is a prerequisite for (a) achieving the

best outcome in timing side channel attacks and (b) imitation attacks on keystroke

biometrics. It can also be used to identify users. This suggests that logs recording

network traffic of interactive JavaScript applications should be considered confi-

dential and handled accordingly. Otherwise, the operators of search engines as well

as proxy server administrators can mine the typing pattern of their users from the

traffic logs. We suggest that designers consider alternative options such as multiple

timeout cycles to shut down the leak effectively.
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Chapter 5

Do typing patterns change under

different environment, as well as

physical and emotional conditions?

5.1 Introduction

As a form of behavioural biometrics, keystroke biometrics has lower accuracy when

compared to physical biometrics, due to the inherent variation in human behaviour.

Such accuracy is usually evaluated using the false acceptance rate (FAR), the pro-

portion of anomalous attempts which are wrongly classified as legitimate, and false

rejection rate (FRR), the proportion of legitimate attempts which are wrongly clas-

sified as anomalous. For the latter, prior research had suggested that typing pat-

terns are not resistant against external influence such as rhythms [30, 46], emotional

changes [37] and posture [26].

In this chapter, we investigate the usability of keystroke biometrics under var-

ious external influencing factors and conditions. We identified a list of common

conditions that could affect user typing patterns and investigate the extent to which

the FRR is affected. We evaluate keystroke biometrics under factors which may

have short-term effects (listening to fast music, application of a plaster on fingers,
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using ergonomic keyboard, using standard external keyboard, typing under time

pressure, typing under low light, and typing while standing) and long-term effects

(typing after a one-hour-long session of gym or playing computer games). We mea-

sure the change in FRR using two of the best classifiers [25, 44] (as evaluated or

recommended by various surveys [40, 26]).

The organization of this chapter is as follows. Design considerations and ap-

proach to our investigation are described in Section 5.2. Following that, we de-

scribed the experimental setup in Section 5.3. We present our results in Section 5.4.

Section 5.5 discusses some of our findings from our study. Finally, we discuss the

limitations and summarise this chapter in Sections 5.6 and 5.7 respectively.

5.2 Design considerations and

approach

As discussed in Section 5.1, we are particularly interested in an investigation of the

usability and change of FRR in keystroke biometrics. High FRR results in usability

problems because legitimate users would not be able to access the system or find

it very frustrating to do so. This results in security problems, because it tempts

users to bypass the system and results in pressure to tune the system in ways that

compromise security. For example, users may simply leave their screens unlocked

if the authentication process is too inconvenient. For this reason, it is important to

identify usability issues. This section documents the considerations that affect our

measurement of usability and our experimental approach.

5.2.1 Participant fatigue

Chief among our concern is participant fatigue. In order to make statistical compar-

ison, we need to collect a sufficient number of samples. However, a large number

of samples may result in participant fatigue and skew the results, making analysis

68



difficult. A field trial collecting keystrokes would be the most ideal alternative in

terms of eliminating such issues, but it has its own downside: (a) Different users

are likely to use different passwords. So the difficulty of password typing and its

length introduces complications into in comparing the results. (b) Capturing user

keystrokes as they type their password raises major concerns on confidentiality. (c)

A much longer experimental duration is needed. (d) A large amount of effort is

required from participants to report their usage conditions consistently and timely.

In a laboratory environment, using a random userid and password will not raise

these concerns. We mitigate the fatigue concern in the following manner: (a) The

collection periods were short and we limit the number of samples in each collection

to 55. Based on a preliminary analysis, this takes no longer than 8 minutes while

providing an FRR granularity of 0.018. (b) We have multiple collection periods in

each session by introducing breaks of around 10 minutes in between consecutive

collection periods.

We plan for post experimental analysis to determine the validity of our experi-

mental structure. The outcome is presented in Section 5.4.

5.2.2 Feedback vs. without feedback

In practical authentication scenarios, the user knows if the last login attempt suc-

ceeded or failed. On the other hand, during keystroke biometrics enrolment, the

data can only be collected without feedback.

The focus of this chapter is to investigate the success of keystroke biometrics

user authentication after various user activities and under various conditions. To

provide a more realistic evaluation, we decided to collect the data in our experiments

with feedback. Existing literature [25, 44] had not explicitly stated whether data

was collected with or without feedback, although it seems likely that collection

occurred under similar conditions as the enrolment, i.e., without feedback.

We are interested to know the effects on FRR when feedback is provided. An
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additional collection period after enrolment is added to collect typing patterns with-

out feedback. This allows us to evaluate whether existing evaluation methods that

do not provide feedback are sound. The outcome is presented in Section 5.4.

5.2.3 Choice of conditions

There are a large number of possible activities and conditions that could potentially

induce changes of FRR in authentication. In this section, we describe those that

were chosen and the rationale.

Background music and noise

Background music occurs fairly commonly in certain workplaces or during cele-

bratory period. Certain users may prefer to work while listening to music. Certain

environments may also be noisier under various circumstances. Prior research by

Cho et al. and Hwang et al. shows that if a rhythmic music is played and users

are instructed to actively follow the rhythm when typing, there is a change in their

typing pattern [30, 46].

In the scenarios under consideration, users are under passive influence. It is pos-

sible that a similar though reduced effect exists. Although it would be interesting to

determine if background noise level can be measured through user typing pattern,

we decided that for an initial investigation, background music would be more suit-

able as it is in our opinion a more common scenario. Complicating this decision is

the abundant choice of musical tracks. We chose for this experiment, the fast paced

‘The Dark Knight Rises’ soundtrack by Hans Zimmer.

Low lighting and time pressure

Low lighting conditions arise in meeting rooms darkened for presentation or vol-

untary blackout events such as Earth Hour. For users who need to orientate their

fingers by looking at the keyboard but who are not using a backlit keyboard, it may
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slowdown their typing.

Time pressure is a very common emotional condition of modern life that may

affect the typing pattern. Prior research by Khanna et al. [37] showed that it is

possible to infer changes in the emotion from the typing pattern. We ask in this

chapter whether the FRR change is significant when there is a change in emotion

due to time pressure. However, the inducement of time pressure needs to be done

without causing the participants distress or causing them to type haphazardly. Our

mechanism is to display a ticking timer and to inform the participants to complete

their typing before the timer runs down while offering a reward for the participant

with the lowest FRR.

Another motive in including these conditions is to answer the question – during

an emergency in a critical infrastructure environment can an operator working under

emergency backup lights and time pressure unlock his control station?

Plaster

A plaster applied around a finger is a common remedy for minor ailments. Although

its occurrence may be rare, once the plaster is applied, any effect on the typing

pattern persists until the removal of plaster or the recovery of the underlying ailment.

It is therefore interesting to evaluate its effect because existing evaluation methods

are likely to exclude it.

Standing

We included standing because of past experience where it was observed. Such a

scenario may also arise in field work where standard office amenities are not ex-

pected to be replicated. It is known that posture affects typing pattern [26]. Our

focus in this chapter is the quantitative change.
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Change of keyboard

Our emphasis on measuring change in FRR when there is a change of keyboard is

quantitative. This scenario is interesting because the outcome determines whether

the keystroke biometrics database needs to be trained for different input devices.

BYOD (Bring Your Own Device) developments, shared workstations, and even

helpdesk technicians who may need login access to user devices are examples where

a quantitative analysis is useful.

We include in our experiments only participants who are laptop users. Our ex-

periments measure the change in FRR when they switch from the laptop keyboard

to a standard external keyboard or an ergonomic keyboard.

Computer gaming and physical exercise

Both computer gaming and physical exercise are very common activities. Both in-

duce emotional changes and possibly physical muscle strain. For our experiments,

we look for participants who already have existing gaming or exercise habits. Ex-

perimental structure is designed to fit in with their routine rather than having the

researchers dictate to them what they should do. For exercise in particular, we need

to emphasize this point to the participants to avoid increasing the chance of injury.

For the gaming and exercise conditions, there is a possibility that the effect

is long lasting and persists well beyond the end of the activity. We included an

experiment to measure the FRR change after different rest periods.

5.2.4 Choice of userid and password

In Chapter 3, we had shown that keystroke biometrics is susceptible to imitation.

An investigation of usability (FRR) is orthogonal to the investigation of imitation

(FAR). That is, keystroke biometrics is practical only if further research can identify

solutions to both usability and imitation problems. We chose as password the string

ths.ouR2 which had been shown to be more difficult to imitate (see Chapter 3).
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This password also fits the complexity criteria in user environments and is in our

opinion not atypical of actual user passwords.

We chose user1024 containing lower case alphabets and some numbers as

the userid. We acknowledge the great diversity of userids in use. However, we have

the constraint of choosing only one userid for all participants to avoid introducing

the effect of typing difficulty into the sample data. We also need to avoid choosing

a userid (e.g., based on a common name) that may be more familiar to some par-

ticipants than others. The string user1024 represents a good compromise in our

opinion.

5.2.5 Choice of classifier

We compute the results using two classifiers. We chose the Manhattan (scaled) clas-

sifier by Araujo [25] because it was identified as the best classifier in a survey by

Killourhy and Maxion [40]. We chose for the second classifier the bioinformatics

based classifier by Revett [44] which was identified in another survey by Baner-

jee [26] as a good classifier.

For the experiments involving feedback, it would be unrealistic to provide feed-

back from two classifiers at the same time. We chose arbitrarily to provide feedback

for only the Manhattan (scaled) classifier.

5.3 Experiment

In this section, we describe our experimental study setup given the considerations

discussed in Section 5.2. The basic idea of the experiments is to engage the partic-

ipants in certain activities and conditions, and to measure the FRR of their authen-

tication attempts. The whole study is divided into three sessions: s1, s2, and s3. s1

was conducted to build an anomaly dataset as a requirement for training the classi-

fier. s2 and s3 were conducted in a lab environment. s2 involved experiments that

did not have any long-term effects on typing patterns while s3 involved experiments
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that may have long-term effects. Figure 5.1 shows the various stages and flow of

each session. Note that s2 and s3 were not performed on the same day.

(a) s1

(b) s2

(c) s3

Figure 5.1: Experimental structure — PCn: Type userid and password n times, 7:

No feedback to user on the acceptance of their typing pattern (by the

classifiers), �: First users perception was asked and then provided the

feedback, �: Feedback is provided to user

5.3.1 Participants and Setup

We recruited a total of 111 students in our tests. We received IRB approval from

our university, and compensated the participants for completion of the entire set of

tasks. Table 5.1 summarizes the participant demographics of our study.
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Experiment Male Female

Background Noise 11 7

Low Light 16 7

Time Pressure 10 8

Plaster 9 8

Standing 14 4

Ergonomic KB 4 4

Standard External KB 6 3

Exercise with 45 min rest 14 4

Exercise with 15 min rest 11 5

Heavy Gamer with 45 min rest 16 4

Heavy Gamer with 15 min rest 11 7

Light Gamer with 45 min rest 9 9

Light Gamer with 15 min rest 9 12

Table 5.1: Demographics

5.3.2 s1: Anomaly dataset collection

The purpose of s1 was to build an anomaly dataset to train the classifiers. Figure 5.2

shows the interface used. This part of the study was conducted online and required

the participants to type in a userid and password (provided by us) via our web inter-

face. As some participants were unable to access the web interface due to technical

glitches (e.g., browser compatibility), they completed this task in a lab environment

prior to the start of s2. However, the data collected in the lab was not included in

the building of the anomaly dataset (too late to be included for use in subsequent

sessions). Samples were collected without providing any feedback to the user on

their typing consistency.

5.3.3 s2: Experiments with short-term effects

s2 was designed to collect training data for each participant as input to the classifier,

and to investigate the effectiveness of keystroke biometrics under certain scenarios

that we consider to have short-term effects. s2 was conducted in a lab environment

post s1.

Participants were first required to answer a questionnaire capturing their emo-
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���������	
Please type the dummy userid (shown underlined) into the text box. 

Press "ENTER". 

Then type the dummy password (also underlined) into the text box. 

Then press "ENTER" again. 

You may be prompted to retype if there are spelling errors. 

After pressing ENTER, the input box will be disabled temporarily 

(greyed out) while your data is uploaded. 

Number of correctly typed samples submitted: 8 

Maximum number to type: 55 

Last submitted sample: login success 

�������������	
���

������������������

Figure 5.2: User Interface for data collection

tional and physical state. This was followed by a creation of the training set which

had participants type 50 samples of the userid and password pair thrice with a gap of

10 minutes between each set. As discussed in Section 5.2, we designed the session

to ensure that each sample collection interval is short. We used the first 100 samples

to train the classifier and the next 50 to calculate the FRR under no-feedback condi-

tions. Note that participants were not provided any feedback on the consistency of

these samples.

Next, after a rest of 15 minutes, participants were again asked to type 55 samples

but with feedback. Thus the participants were aware of their typing consistency.

We use the submitted samples to calculate the FRR, with feedback, for that user.

This FRR is compared with the FRR (under no-feedback conditions) to observe

the impact of feedback (if any) on a participant’s FRR. We show the result of this

evaluation in Section 5.4.

Finally, after another 15 minutes of rest, participants were asked to submit 55

samples this time while performing one of the activities (listening to fast music,

putting a plaster on the right index finger, using an ergonomic keyboard, using a

standard external keyboard, typing under time pressure, typing under low light, typ-
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ing while standing) (see Section 5.2.3).

Participants were encouraged to type the samples consistently and were further

incentivised by giving the participant with the most accurate typing in each exper-

iment an additional $4. We hope that this step minimised any intentional incon-

sistencies in a participant’s typing pattern. At the end of s2, participants answered

a questionnaire on the task experience. Note that samples with any typographical

errors were not collected, but the count and order of such samples were recorded.

Participants are required to retype whenever they make a typographical error.

5.3.4 s3: Experiments with long-term effects

The aim of s3 was to investigate the effectiveness of keystroke biometrics under

scenarios that we consider to have relatively long-term effects. Similar to s2, par-

ticipants first answered a questionnaire stating their emotional and physical states.

We then collected the baseline typing pattern (55 samples) of each participant.

After the collection of baseline samples, participants were asked to perform the

assigned activity (either playing a computer game or going to the gym). The activity

lasted 60 minutes following which participants returned to the lab to type 55 more

samples as in s2.

After this sample collection, participants were divided into two groups. The

first group was allowed to rest for 45 minutes following which 55 more typing-

samples were collected. This was done to observe the effect of a long rest duration

on the accuracy of their typing. Users were not allowed to use their smartphones or

laptops during this rest period. They were, however, allowed to read magazines and

other periodicals (provided by us) to pass time. This was to ensure that no typing

was performed during the rest period and thereby minimise any inconsistencies in

subsequent sample collection.

The second group was allowed to rest only for 15 minutes after which they were

asked to type 55 samples. This cycle of a 15 minute rest followed by typing 55
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samples was repeated again. Here, we hope to observe the effect of intermittent rest

on the accuracy of their typing. As in the first group, the participants did not per-

form any other typing besides the samples collected. At the end of s3, participants

answered a questionnaire on the task experience.

5.4 Results

In this section, we present the results of our experiments. In our analysis, the signif-

icance level is computed using a paired student’s t-test. Unless stated otherwise, a

single-tail t-test is used. The significance level follows a standard text book classi-

fication [36], where the descriptions ‘highly significant’, ‘significant’ and ‘weakly

significant’ are used to describe p-values in the ranges of [0, 0.01), [0.01, 0.05), and

[0.05, 0.10), respectively. The criterion for pairing is based on the user.

5.4.1 Participant fatigue and feedback

In Section 5.2, we raised two concerns relating to participant fatigue and the provi-

sion of feedback that may affect the validity of our results. We now evaluate each

of these concerns based on the results collected from the experiments.

Number of samples collected

First, we want to know whether the number of samples typed (55) is overwhelming

and causes those typed later to be significantly different from those typed earlier.

Figure 5.3 shows the relation between the average FRR for all participants and the

sample index for the s2 baseline experiment.

The coefficient of correlation between FRR and sample index are 0.4339 and

0.3994 for the Manhattan (scaled) and bioinformatics classifier, respectively. This

means that there is statistical support for the intuition that latter samples tend to have

higher FRR than earlier samples. The slope of the regression lines through the two

sets of data are, however, just 0.0007885 and 0.0007228, respectively. Therefore,
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Figure 5.3: Effect of number of samples collected on the FRR

the effect is not overwhelming. The time taken to collect 55 typing samples range

from 3.5 min to 12.2 min, with an average of 5.3 min. The typing time is therefore

short relative to the rest period.

Feedback vs. no feedback

We compare for all participants the FRR of the samples collect without feedback

with their session baseline which was collected with feedback. For the Manhattan

(scaled) classifier, the mean FRR of samples collected with feedback is 0.01106

higher than that without feedback. However, the difference is not statistically sig-

nificant. On the other hand, the difference for the bioinformatics-based classifier is

0.01427 and is highly significant.

If participants ignored the feedback, there should not be any significant dif-

ferences. The results therefore suggest that users are not ignoring feedback and,

surprisingly, are affected by it in a negative way. A possible explanation is that

when users are trying hard to make sure they are typing “correctly”, their typing

pattern actually becomes slightly different from their enrolment pattern. This factor

is not accounted for in existing literature and justifies our decision to collect typing

samples with feedback.
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5.4.2 Change of input devices

Table 5.2 shows the change in FRR when the input device is changed from the laptop

keyboard to an external keyboard or an ergonomic keyboard. For both cases, the

changes are large and highly significant. The Manhattan (scaled) classifier is more

adversely affected compared to the bioinformatics based classifier. Most people are

unfamiliar with ergonomic keyboards and that has resulted in an extremely high

FRR.

Exp N SM-B SM-D BIO-B BIO-D

Ext. KB 9 0.1010 0.1697 0.0747 0.0889

Ergo. KB 8 0.0818 0.7500 0.0841 0.6182

Table 5.2: Effect of device factors on typing pattern. N: number of participants.

SM-B: Baseline FRR (Manhattan (scaled)). SM-D: Increase in FRR

(Manhattan (scaled)). BIO-B: Baseline FRR (Bioinformatics). BIO-D:

Increase in FRR (Bioinformatics). All changes are highly significant.

It is clear from our results that patterns obtained using one keyboard should not

be used to authenticate users when typing on a different type of keyboard. Given

that in both home and corporate environments, owning multiple devices such as

both a PC and a laptop is a common scenario, the results raise the question of how

keystroke biometrics deployment should handle multiple input devices. A straight-

forward solution is to enrol the user multiple times, once for each device. However,

it remains unclear whether a user can maintain a consistent typing pattern for each

device when one is used only occasionally. We do not explore this issue in this

thesis and leave it as future work.

5.4.3 Effect of various conditions on FRR

Figure 5.4 summarizes the effect of the conditions discussed in Section 5.2. We can

see that other than the fast music experiment under the Manhattan (scaled) classifier,

all other conditions exhibit varying degrees of statistical significance. Different clas-

sifiers and groups of participants are affected differently by these conditions. The
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standing condition, plaster, and exercise are among the factors making the larger

differences, although such changes in FRR are not as big as those observed with the

change in input devices.
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The result for fast music was interesting. The change in FRR for the Manhattan

(scaled) classifier is minor and statistically insignificant. This contrasts with that

observed for the bioinformatics classifier. An explanation can be made based on a

shape based interpretation of these two classifiers (see Section 2). Any changes in

typing pattern corresponds to a multi-dimensional movement. It is therefore pos-

sible to move beyond the enclosure of one classifier region while remaining in the

other classifier region.

Participants in the fast music experiment reported that they typed faster. Refer-

ring to Figure 2.3, this corresponds to a diagonal movement towards the approx-

imate direction of the origin in a 2-d setting. The exact direction depends on the

relative extent of movement in each dimension. This means that for the fast mu-

sic experiments, the participants’ typing pattern moved out of the bioinformatics

region, but remained in the Manhattan (scaled) region.
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5.4.4 User and classifier dependency

We now investigate whether the penalty due to the experimental conditions depends

on the classifier or participant. There are two questions of interest. Firstly, for

each user, if the baseline performance of 1 classifier is better, does it imply a lower

penalty when the user is influenced by an experimental condition. Secondly, for

each classifier, if a user has low FRR for his baseline, does it imply a lower penalty

when the user is influenced by an experimental condition?

Table 5.3 tabulates the answers. The first row answers the first question, while

the second and third rows answer the second question for each classifier. In all three

cases, there is little correlation (very small coefficient of correlation), suggesting

that each condition has varied effects on the users.

Relation Coeff. Correlation

SM vs BIO -0.0891

Baseline vs penalty (SM) -0.0519

Baseline vs penalty (BIO) -0.0633

Table 5.3: Are different classifiers or users more resistant to the experimental ef-

fects? SM: Manhattan (scaled) classifier. BIO: Bioinformatics classi-

fier.

5.4.5 Effect of rest and recovery

Figure 5.5 shows the effect of a 45-minute rest on the FRR of participants in the

heavy gaming, light gaming, and exercise scenarios under different classifiers. With

the exception of heaving gaming under Manhattan (scaled), the remaining scenarios

are not statistically significant.

Light gaming showed a decrease in FRR after the rest period. However, both

heavy gaming and exercise participants showed a surprising increase in the FRR.

One hypothesis is that the long rest period, in which the participants were requested

not to use their phones or computers, resulted in boredom and affected the exper-

imental data. We ruled out this possibility because such an increase was not seen
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for light gaming. A more likely hypothesis is that certain effects of heavy gaming

and exercise persisted after the rest. Another experiment designed to specifically

answer this question would be needed to clarify these findings.

The results also suggest that the effect of heavy gaming and exercise on typing

patterns is relatively long lasting. Referring to Figure 5.5, FRR for both cases did

not recover to the baseline level within the 45-minute rest period.

In our experimental design, we also catered for 2 short rest periods of 15 minutes

each. However, as none of the results obtained are statistically significant and there

are no obvious trends seen for the short rest, we exclude them from our reporting.

5.4.6 Reality versus Perception

Unlike fingerprint readers and retina scanners that have gained widespread accep-

tance as a result of motion pictures, keystroke biometrics is still in its infancy. In

fact, from our participant recruitment survey, out of 343 undergraduate students that

responded only 6% had heard of keystroke biometrics as an authentication mech-

anism. We therefore believe that it was pertinent to also capture user perception

(through an easy 5-point Likert scale) of keystroke biometrics across the different

83



1 

2 

3 

4 

5 

Low Light Fast Music Time 

Pressure 

Ergonomic 

KB 

External 

KB 

Standing 

Li
k

e
rt

 S
ca

le
 

Experiment 

Figure 5.6: (Perception) Effect of various activities on typing pattern.

stages of the experiment. This allows us to gauge whether users are able to detect

changes in their own typing pattern. If this is possible, it allows mitigation measures

against the usability issues (such as activating a backup authentication mechanism).

Figure 5.6 shows the perception participants have on the impact of the different

s2 activities on their typing pattern. On average, most participants perceived that the

various activities would indeed have an impact on their typing pattern. This matches

the observed increase in FRR across the different activities (with the exception of

fast music).

Figure 5.7 shows the perception participants have on the impact of the different

s3 activities on their typing pattern. Contrary to the FRR measurement results,

most participants were very confident that they could type normally after having

rested for 45 minutes. While this was indeed the case with light gaming, the other

two scenarios did not observe a decrease in FRR. As suggested before, participants

were perhaps unaware that effects of heavy gaming and exercise persisted even after

resting. We also observe that heavy gaming and exercise participants suggested that

their typing pattern would be impacted post gaming or exercise while light gaming

participants did not feel there would be any change.
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5.5 Discussion

In this section, we discuss some of the other interesting findings that were observed

in our experiments.

5.5.1 Lockout and annoyance

Even without keystroke biometrics, there is an FRR due to typing when users re-

member their passwords correctly, but typed them wrongly. It is not a serious prob-

lem in practice because if a user made 2 typing errors on the first 2 tries, he can

slow down and ensure the 3rd attempt is correct. With keystroke biometrics, such a

strategy is no longer workable. If a user slows down, he increases the FRR due to

keystroke biometrics. If he does not slow down, he increases the typing FRR. Im-

plementing keystroke biometrics therefore increases the overall FRR of the system

by more than just the keystroke biometrics FRR.

In this subsection, we investigate what the impact of this increase would be,

in terms of both the likelihood of account lockout and the user reaction. To esti-

mate the effect of the overall FRR on the user experience, we conducted a Monte

Carlo simulation. We divide the users into groups based on the conditions shown in
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Figure 5.4. The simulation first picks a group, then a user within that group, both

randomly. The overall FRR is computed for 2 cases: (a) baseline only, without any

influence of the selected condition and (b) baseline + condition. The FRR takes into

account both typing errors and keystroke biometrics error. The simulation computes

for each login session the number of tries required to login.

Figure 5.8 shows the cumulative percentage of users who will encounter a lock-

out after a certain number of login sessions. For example, approximately 30% of

users will encounter a lockout before their 50th authentication session if the lockout

policy is 3 attempts and if half of the time, they are under the influence of one of the

conditions of Figure 5.4.
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Figure 5.8: Number of authentication sessions before user gets lockout. LO:

Lockout policy. BL: Baseline (no environmental factors). EV: En-

vironmental factors in effect 50% of the time.

Figure 5.8 shows that keystroke biometrics is not for everyone. Even with a

lockout policy of 5, approximately 10% of users will find keystroke biometrics very

frustrating to use. This suggests that a change of research direction is necessary,

from finding classifiers that work well for all users, to finding classifiers that work

well for the majority. The unsuitable minority requires an alternative login mecha-

nism.

Figure 5.8 also shows that deployment of keystroke biometrics must come with

an adjustment in lockout policy, but at a cost in security. Keystroke biometrics was

considered as a security mechanism to enhance the security of weak password [43].
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However, if the password is weak, the lockout is adjusted to 5 and given the typical

range of FAR obtained from surveys [40], the added security is modest. Table 5.4

shows the chance that an attacker can break into a system if he already knows the

password. For an FAR value of 0.05, the overall FAR is 0.23 if the attacker is

allowed to make 5 attempts. In other words, approximately 1 in 4 such attempts

will succeed.

FAR

Lockout Policy 0.001 0.01 0.02 0.05

1 0.00100 0.01000 0.02000 0.05000

2 0.00200 0.01990 0.03960 0.09750

3 0.00300 0.02970 0.05881 0.14263

4 0.00399 0.03940 0.07763 0.18549

5 0.00499 0.04901 0.09608 0.22622

Table 5.4: Chance of attacker success before lockout (detection).

Other than lockout, we are interested in possible user annoyance. We asked the

participants for their reactions if, on average, they need to type their credentials

multiple times before they can login. Table 5.5 summarizes the responses.

2 tries 3 tries 4 tries 5 tries

Okay 37.62 5.94 0.99 0.00

Mildly annoying 51.49 51.49 16.83 3.96

Very annoying 10.89 42.57 82.18 96.04

Table 5.5: User response (%) to the number of tries require for authentication.

E.g. 10.89% of users are very annoyed if they need 2 tries to login.

Figure 5.9 shows the cumulative percentage of users who will encounter a login

session in which they succeed but find very annoying. For example, more than

40% of users will encounter an annoying session before their 50th authentication

session if the lockout policy is 5 attempts and if they are under the influence of the

conditions in Figure 5.4 half of the time. The occurrence of annoyance is lower

when the lockout policy is 3 because users get locked out before they have a chance

to succeed but feel annoyed. This shows that even after solving the lockout problem,

keystroke biometrics still has to contend with user frustration over the multiple login
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attempts required.

5.5.2 Best time to collect samples

Inspection of Figure 5.3 shows that the 3rd to the 10th samples of each collection

period have the lowest (best) FRR. In other words, user typing patterns are initially

inconsistent, stabilize rapidly, then become less consistent for the rest of the collec-

tion period. This suggests that enrolment samples can be kept to 10. For classifiers

that require larger number of training samples (e.g., [27, 30, 54], it may be fruitful

to explore whether generating additional samples using a Monte Carlo simulation

based on a few high quality samples would give better results than collecting the

samples from the participants directly in a lengthy enrolment.

5.5.3 Change in fingers used for typing

At the end of each experiment, we asked the participants which fingers they used

to type the assigned credentials. This information was consolidated and analyzed

to determine if the participants changed the way they typed. Note that this infor-

mation is just an estimate, because the participants were asked at the end of each

experiment, not at the end of each sample. Table A.1 (Appendix) shows a sum-

mary of the number of participants who switched the fingers used when typing each
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keystroke and the fingers involved. Generally, for keys on the left side of the key-

board, switching is between the left ring and left middle, or left middle and left

index fingers. A similar pattern is observed for the right side of the keyboard for

the corresponding right fingers. For keys near the middle, the switching is between

the left and right index fingers. Any switching can only increase the inconsistency

of the typing. An interesting research question is whether there exists a sufficiently

large set of passwords for which finger switching is minimised. If such a set can

be found, the password space is likely to be much smaller. However, it offers the

possibility of trading password space for typing consistency. For keystroke bio-

metrics deployed in a continuously monitoring mode, words that are more likely to

be consistently typed would result in better FRR. Investigating the answer to these

questions is however out of the scope of this thesis.

5.6 Limitations

We discuss some limitations of our experiments in this section. In both sessions

s2 and s3, we asked participants to abstain from exercise and gaming for the prior

24 hours, to avoid introducing any possible influence from these activities. We are

dependent on the participants to observe these restrictions in good faith. Similarly,

for responses such as those reported in Table 5.5, A.1 and Figures 5.6,5.7 we depend

on the participants to answer accurately and submit correctly.

In our experiments, we collected the typing samples via a web based interface

using participant’s own laptop. The latter is because we want to ensure they are

using a familiar keyboard layout. However, this also implies that the input devices

comes in a variety of OS and hardware. In particular, the timing granularity varies.

For Windows XP systems, this can be up to 16 ms. In the literature, the timing

granularity varies from 0.2 ms [40], 1 ms [25] and 10 ms [47, 34].

A related issue is a selection bias on the hardware. Before each experiment, we

run a small computationally intensive test on the participant’s laptop. The aim is to
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detect participants who are submitting their keystrokes through a browser in a virtual

machine [24, 18], or whose laptop is heavily loaded with background processes.

The timing granularity is affected under such cases. For laptops which fail this test,

we asked the participants to stop unnecessary background processes and remove

unneeded hardware, such as wireless mouse. If they fail the test again, they are

not allowed to participate. Netbooks with relatively low computational power are

the most affected. The selection bias allows us to eliminate these influences on our

results. However, in practice, it would be naive to make such assumptions on the

hardware and background computational load.

In all our experiments, a single password is used. That password was chosen to

be difficult to type, which unfortunately increases the chance of typing it wrongly,

and in turn increases the FRR. An easier password would have fewer issues, but we

believe our chosen password is more representative of those mandated by corporate

security policies.

5.7 Summary

We found that various environmental factors such as playing computer games, ex-

ercise, lighting conditions, fast music, emotional pressure, and even the application

of a plaster on the fingers result in various increase of FRR. Different users are

also affected differently. Certain users are shown to be unsuitable for keystroke

biometrics. This suggests that instead of a research direction that attempts to find

classifiers that work for all users, a more practical approach may be to find users

who have low baseline FRR and are tolerant towards environmental changes. This

implies a hybrid approach where keystroke biometrics is implemented for only a

subset of users, and is complemented by an alternative authentication mechanism.
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Chapter 6

Conclusions

We showed in the preceding chapters that:

1. Contrary to the beliefs of prior studies, when a victim’s typing pattern is

known, imitation is possible in static mode. This affects the FAR of keystroke

biometrics systems. Furthermore, when the number of attackers and victims

are sizeable, the chance of a natural collision in typing pattern (without any

imitation training) is significant.

2. The inter-keystroke timing of typing patterns can be recovered from the tim-

ing of the unencrypted query packets sent over the network. This compro-

mises the secrecy of typing patterns in continuous mode.

3. Various environmental factors such as playing computer games, exercise,

lighting conditions, fast music, emotional pressure, and even the application

of a plaster on the fingers result in various increase of FRR in static mode.

Different users are also affected differently. Certain users are shown to be

unsuitable for keystroke biometrics.

Therefore the deployment of keystroke biometrics systems faces a security and

usability problem in static mode, while continuous mode typing patterns may be

leaked by interactive JavaScript applications. This suggests that care should be

exercised when deploying such systems. In our opinion, the limitations of keystroke
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dynamics make it more suitable for use in an intrusion detection system (whose FAR

and FRR requirements are less stringent), rather than in an authentication system.
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Appendix A

Table summarising changes in typing

finger

Finger Used u s e r 1 0 2 4 t h s dot o u R 2

LI,LM 1 15 16 4 11 13 10 7 13 13

LI,LM,LR 2 3 3 2 1 3 1 1 3

LI,LM,RI 1 3 1 1

LI,LM,RM 1 3 1 2 2 1 4

LI,LR 5 1 2 2 2 1 3

LI,RI 10 2 1 3 14 18 1 9 11

LI,RI,RM 3 2 1 2 2 1 2 2

LL,LR 10

LM,LR 14 4 19 19 18 28

LM,LR,RM 1 1 1 3 2

LM,RI,RM 4 1 1 2 1 1

LM,RM 2 3 1 2 4 3 1 2 1 4 3 5 1 1

LR,RI 1 1 3 1 1

LR,RR 1 4 2 2

RI,RM 26 16 2 10 13 10 23 3 1

RI,RM,RR 1 5 3 1

RI,RR 1 5 3 5 2

RL,RR 5 5

RM,RR 12 12 20

Table A.1: Summary of changes in finger used. Key for left/right: L: Left,

R:Right. Key for finger: L: Little. R: Ring. M: Middle. I: In-

dex. T: Thumb. For example the number ‘26’ appears for the row

labelled ‘RI,RM’ and first column labelled ‘u’. This means 26 partici-

pants reported that when they typed ‘u’ for the userid ‘user1024’, they

switched between RI (right index finger) and RM (right middle finger).

There are 111 participants. Rows with all cells less than 3 are removed

for brevity.
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