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Exploiting Human Factors in User Authentication

Payas Gupta

Abstract

Our overarching issue in security is the human factor – and dealing with it is per-

haps one of the biggest challenges we face today. Human factor is often described

as the weakest part of a security system and users are often described as the weak-

est link in the security chain. In this thesis, we focus on two problems which are

caused by human factors in user authentication and propose respective solutions. a)

Secrecy information inference attack – publicly available information can be used

to infer some secrecy information about the user. b) Coercion attack – where an

attacker forces a user to handover his/her secret information such as account details

and password.

In the secrecy information inference attack, an attacker can use publicly avail-

able data to infer secrecy information about a victim. We should be prudent in

choosing any information as secrecy information in user authentication. In this

work, we exploit public data extracted from Facebook to infer users’ interests. Such

interests can also found on their profile pages but such pages are often private. Our

experiments conducted on over more than 34, 000 public pages collected from Face-

book show that our inference technique can infer interests which are often hidden

by users with moderate accuracy. Using the inferred interests, we also demonstrate

a secrecy information inference attack to break a preference based backup authenti-

cation system Blue MoonTM. To mitigate the effect of secrecy information inference

attack, we propose a new authentication mechanism based on user’s cellphone us-

age data which is often private. The system generates memorable and dynamic

fingerprints which can be used to create authentication challenges. In particular,

in this work, we explore if the generated behavioral fingerprints are memorable



enough to be remembered by end users to be used for authentication credentials.

We demonstrate the application of memorable fingerprints by designing an authen-

tication application on top of it. We conducted an extensive user study that involved

collecting about one month of continuous usage data from 58 Symbian and Android

smartphone users. Results show that the fingerprints generated are remembered by

the user to some extent and that they were moderately secure against attacks even

by family members and close friends.

The second problem which we focus in this thesis is human vulnerability to co-

ercion attacks. In such attacks, the user is forcefully asked by an attacker to reveal

the secret/key to gain access to the system. Most authentication mechanisms to-

day are vulnerable to coercion attacks. We present a novel approach in generating

cryptographic keys to fight against coercion attacks. Our technique incorporates a

measure of user’s emotional status using skin conductance (which changes when the

user is under coercion) into the key generation process. A preliminary user study

with 39 subjects was conducted which shows that our approach has moderate false

acceptance and false rejection rates. Furthermore, to meet the demand of scalabil-

ity and usability, many real-world authentication systems have adopted the idea of

responsibility shifting, where a user’s responsibility of authentication is shifted to

another entity, usually in case of failure of the primary authentication method. In

a responsibility shifting authentication scenario, a human helper who is involved in

regaining access, is vulnerable to coercion attacks. In this work, we report our user

study on 29 participants which investigates the helper’s emotional status when be-

ing coerced to assist in an attack. Results show that the coercion causes involuntary

skin conductance fluctuation on the helper, which indicates that he/she is nervous

and stressed. The results from the two studies show that the skin conductance is a

viable approach to fight against coercion attacks in user authentication.



Contents

1 Introduction 1

1.1 Fighting against secrecy information inference attack in user au-

thentication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Fighting against coercion attack in user authentication . . . . . . . . 5

2 Literature review 8

3 Secrecy information leakage from public data 13

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.2.1 Abusing OSN data . . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Interests mining from OSN data . . . . . . . . . . . . . . . 19

3.3 Interests inference . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Facebook page layout . . . . . . . . . . . . . . . . . . . . 20

3.3.2 Data collection . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.3 Automated profiling with attributes . . . . . . . . . . . . . 22

3.4 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.4.1 Dataset description . . . . . . . . . . . . . . . . . . . . . . 27

3.4.2 Inferred interests using SPM . . . . . . . . . . . . . . . . . 29

3.4.3 Inferred interests using SOM . . . . . . . . . . . . . . . . . 30

3.4.4 Comparing SPM and SOM . . . . . . . . . . . . . . . . . . 31

3.4.5 Errors in sentiment analysis . . . . . . . . . . . . . . . . . 32

i



3.4.6 Concentrated group with ground truth . . . . . . . . . . . . 34

3.5 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . 35

4 Memorable fingerprints for authentication 38

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3 Architecture of HuMan . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.1 Data collection . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3.2 Fingerprint generation . . . . . . . . . . . . . . . . . . . . 48

4.4 Evaluation methodology . . . . . . . . . . . . . . . . . . . . . . . 54

4.5 Symbian study . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.5.1 Participant selection . . . . . . . . . . . . . . . . . . . . . 56

4.5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . 56

4.5.3 Symbian study phase A . . . . . . . . . . . . . . . . . . . . 58

4.5.4 Symbian study phase B . . . . . . . . . . . . . . . . . . . . 61

4.6 Android study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.6.1 Participant selection . . . . . . . . . . . . . . . . . . . . . 64

4.6.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . 64

4.6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.7.1 Characteristics of memorable fingerprints . . . . . . . . . . 68

4.7.2 Strength of fingerprints . . . . . . . . . . . . . . . . . . . . 68

4.7.3 Security and privacy issues . . . . . . . . . . . . . . . . . . 69

4.7.4 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 70

4.7.5 Further comments . . . . . . . . . . . . . . . . . . . . . . 71

5 Coercion attack in biometric key generation 72

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

5.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.3 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

ii



5.3.1 Why skin conductance? . . . . . . . . . . . . . . . . . . . 77

5.3.2 Why voice? . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3.3 Why fingerprint? . . . . . . . . . . . . . . . . . . . . . . . 79

5.4 Key generation from voice and skin conductance . . . . . . . . . . 79

5.4.1 An overview . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.4.2 Phase I: Feature descriptors derivation . . . . . . . . . . . . 81

5.4.3 Phase II: Lookup table and cryptographic key generation . . 86

5.4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.5.1 Demographics . . . . . . . . . . . . . . . . . . . . . . . . 91

5.5.2 Experimental settings . . . . . . . . . . . . . . . . . . . . . 91

5.5.3 Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.6 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.6.1 Training and testing datasets . . . . . . . . . . . . . . . . . 95

5.6.2 Accuracy of our model . . . . . . . . . . . . . . . . . . . . 97

5.7 Discussion and limitations . . . . . . . . . . . . . . . . . . . . . . 100

5.7.1 Change in the password space . . . . . . . . . . . . . . . . 102

5.7.2 Limitations and summary . . . . . . . . . . . . . . . . . . 105

6 Coercion attack in authentication responsibility shifting 107

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Related work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.3 Fourth-factor authentication and coercion attacks . . . . . . . . . . 111

6.3.1 Fourth-factor authentication protocol . . . . . . . . . . . . 111

6.3.2 Potential coercion attacks . . . . . . . . . . . . . . . . . . 113

6.4 User study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

6.4.1 Difficulties and complexity . . . . . . . . . . . . . . . . . . 115

6.4.2 Participants and initial setup . . . . . . . . . . . . . . . . . 116

iii



6.4.3 Experimental procedure . . . . . . . . . . . . . . . . . . . 117

6.4.4 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.5 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.5.1 Did Harry feel nervous and stressed? . . . . . . . . . . . . 121

6.5.2 Was Harry really nervous and stressed? . . . . . . . . . . . 122

6.5.3 Perception v/s reality . . . . . . . . . . . . . . . . . . . . . 124

6.5.4 Personal v/s someone else’s secret . . . . . . . . . . . . . . 125

6.5.5 Deceptions and observations . . . . . . . . . . . . . . . . . 126

6.5.6 Design of our user study . . . . . . . . . . . . . . . . . . . 128

6.5.7 Limitations of our user study . . . . . . . . . . . . . . . . . 130

6.6 Coercion resistant fourth-factor authentication . . . . . . . . . . . . 130

6.7 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7 Conclusions and perspectives 133

7.1 Summary of contribution and future work . . . . . . . . . . . . . . 133

7.2 Future perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . 135

Appendices 150

A Cellphone usage patterns 150

B Guessing entropy for skin conductance 152

iv



List of Figures

3.1 A public Facebook Page . . . . . . . . . . . . . . . . . . . . . . . 20

3.2 Structure of a Facebook page . . . . . . . . . . . . . . . . . . . . . 21

3.4 Inferred interests of the users using SPM . . . . . . . . . . . . . . 30

3.5 No. of negative comments posted by users . . . . . . . . . . . . . . 31

3.6 Users Interest from VolProf . . . . . . . . . . . . . . . . . . . . 35

4.1 Architecture of HuMan . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2 Symbian data logger . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Android data logger . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.4 Fingerprint generation from raw events . . . . . . . . . . . . . . . . 48

4.5 Example showing fingerprint generation from raw data . . . . . . . 50

4.6 Multiple choice questions based user interface . . . . . . . . . . . . 54

4.7 User studies design phase model . . . . . . . . . . . . . . . . . . . 55

4.8 Symbian phase A- false acceptance & false rejection rates . . . . . . 59

4.9 Effect of different types of questions (Symbian) . . . . . . . . . . . 59

4.10 Effect of different incorrect choice picking method (Symbian phase A) 61

4.11 Symbian phase B - false acceptance & false rejection rates . . . . . 62

4.12 Symbian - Comparing the breakdown of type of questions asked

between Symbian phase A and Symbian phase B . . . . . . . . . . 63

4.13 User interface variants used in Android user study . . . . . . . . . . 66

4.14 Android - false acceptance & false rejection rates . . . . . . . . . . 67

5.1 Coercion attacks in key generation . . . . . . . . . . . . . . . . . . 74

v



5.2 Input devices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Design overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

5.4 Block diagram of extracting MFCC . . . . . . . . . . . . . . . . . 83

5.5 Definition of partial descriptor . . . . . . . . . . . . . . . . . . . . 88

5.6 Change of skin conductance in e2 . . . . . . . . . . . . . . . . . . 93

5.7 Splitting and combining datasets . . . . . . . . . . . . . . . . . . . 96

5.8 False acceptance and false rejection rates for spoken passwords . . . 98

5.9 False acceptance and false rejection rates for skin conductance . . . 99

5.10 False acceptance and false rejection rates for voice combined with SC101

5.11 Password space reduction . . . . . . . . . . . . . . . . . . . . . . . 104

6.1 Coercion attack in different scenarios . . . . . . . . . . . . . . . . 108

6.2 Fourth-factor authentication protocol . . . . . . . . . . . . . . . . . 113

6.3 Four phases and their component steps/conversation during the user

study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.4 Skin conductance response of one participant . . . . . . . . . . . . 120

6.5 False acceptance and false rejection rates . . . . . . . . . . . . . . . 123

6.6 Coercion Resistant Fourth-factor authentication . . . . . . . . . . . 131

vi



List of Tables

3.1 Comparison with the related work . . . . . . . . . . . . . . . . . . 18

3.2 User interests domain . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Number of attributes found . . . . . . . . . . . . . . . . . . . . . . 29

3.4 Inclination of users’ sentiment orientation towards the sentiment

orientation of the page across all interests categories. . . . . . . . . 32

3.5 Likes and dislikes . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

3.6 Confusion matrix for sentiment . . . . . . . . . . . . . . . . . . . . 33

3.7 Users category settings in VolProf . . . . . . . . . . . . . . . . 34

3.8 Percentage of advertisement posts . . . . . . . . . . . . . . . . . . 36

4.1 Events logged by HuMan on Symbian and Android . . . . . . . . . 45

5.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Number of samples collected for each participant . . . . . . . . . . 96

5.3 A sample database . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.1 Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

6.2 Perception v/s reality during coercion . . . . . . . . . . . . . . . . 124

6.3 Nervous when being coerced to reveal secret information? . . . . . 125

6.4 Participants’ perception towards various deceptions used . . . . . . 127

A.1 Participants’ data usage . . . . . . . . . . . . . . . . . . . . . . . . 150

A.2 Applications usage breakdown for Android . . . . . . . . . . . . . 151

B.1 Generating candidate set and large itemset . . . . . . . . . . . . . . 155

vii



Publications arising from this thesis

1. Payas Gupta, Swapna Gotipatti, Jing Jiang, and Debin Gao. Your love

is public now: Questioning the use of personal information in authentica-

tion. In Proceedings of the 8th ACM Symposium on Information, Computer

and Communications Security, ASIACCS ’13, New York, NY, USA, 2013.

ACM (Chapter 3)

2. Payas Gupta, Tan Kiat Wee, Narayan Ramasubbu, David Lo, Debin Gao, and

Rajesh Krishna Balan. Human: Creating memorable fingerprints of mobile

users. In Tenth Annual IEEE International Conference on Pervasive Comput-

ing and Communications, PerCom. IEEE, 2012 (part of Chapter 4)

3. Payas Gupta, Kiat Wee Tan, Narayan Ramasubbu, David Lo, Debin Gao, and

Rajesh Krishna Balan. Design and implementation of human memorable fin-

gerprints. Technical Report SMU-SIS-13-100, Singapore Management Uni-

versity, Mar 2013 (part of Chapter 4)

4. Payas Gupta and Debin Gao. Fighting coercion attacks in key generation

using skin conductance. In Proceedings of the 19th USENIX conference on

Security, USENIX Security’10, Berkeley, CA, USA, 2010. USENIX Associ-

ation (Chapter 5)

5. Payas Gupta, Xuhua Ding, and Debin Gao. Coercion resistance in authenti-

cation responsibility shifting. In Proceedings of the 7th ACM Symposium on

Information, Computer and Communications Security, ASIACCS ’12, New

York, NY, USA, 2012. ACM (Chapter 6)

viii



Acknowledgements

To the casual observer, a doctoral dissertation may appear to be solitary work. How-

ever, to complete a project of this magnitude requires a network of support, and I

am indebted to many people.

This thesis would not have been possible without the support of many people.

Many thanks to my adviser, Debin Gao. I am very grateful for the opportunity to

work with him and could not have imagined having a better mentor for my Ph.D

study. Working with him has definitely sharpened my research ability and helped

me grow as an individual and a professional. Perhaps the most important lesson

I learned from him was how to effectively convey my thoughts and ideas in both

written and spoken mediums. I admire his ability to balance research interests and

personal pursuits.

Furthermore, I am very grateful to my committee members, Robert Deng,

Xuhua Ding, and Zhenkai Liang, for their guidance, support, insightful comments

and hard questions.

In addition, I would like to express my deepest appreciation to Steve Miller,

Dean of School of Information Systems, Singapore Management University, whose

enthusiasm for “quality research” and “big ideas” have significantly improved my

work and inspired many new research directions.

Besides my advisor and committee members, I am very privileged to work with

Rajesh Krishna Balan, Narayan Ramasubbu and David Lo. Their technical excel-

lence and tremendous grasp of experimental issues had a great impact on me. With-

out them I could not have excelled in conducting user studies effectively.

ix



I would like to express my sincere thanks to Living Analytics Research Cen-

ter at Singapore Management University for giving me the opportunity to spend a

year in Carnegie Mellon University as a research scholar. Furthermore, I am very

grateful to Adrian Perrig, for his insightful comments in my studies, for many mo-

tivating discussions and guidance throughout my stay at CMU. The work done in

collaboration with him has helped me to explore other areas.

Very special thanks to Ong Chew Hong. She helped me in all my user studies,

answering to all sorts of questions and going out of her way to help me out in re-

cruiting participants. None of the work in this thesis and my other research projects

could have been possible without her support. She is a gem of a person. Above all,

she made me feel a friend, which I appreciate from my heart. Besides her I would

also like to thank Seow Pei Huan for her help.

During my stay at Singapore Management University and at Carnegie Mel-

lon University, I have made many friends and they have been vital in making the

Ph.D. process a fun and enriching experience. I want to thank Pawan Gupta, Varun

Khanna, Salman Hamid, Aditya Maru, Vivek Desai, Roger Cherian, Yash Divad-

kar, Ankit Birla, Prem Prasoon, Darshan Santani, Husain Kagalwala, Manu Nahar,

Sudhanshu Nahata, Meryl Gotlieb and Nancy Beatty for taking an extra mile to

help me out in day to day life. In addition, I have been very privileged to get to

know and to collaborate with many other great people who became friends over the

last several years. I appreciate Swapna Gottipati, Yan Qiang, Kartik Muralidharan,

Sougata Sen, Jun Han, Han Jin, Noi Sian and Tey Chee Meng for their friendship,

collaboration and encouragement.

I would like to specially thank Varunika Goyal for her love and encouragement.

And, thank you for your support when I have needed it the most. Thank you with

all my heart!

Above all, I am thankful to my parents and my sister Kopal Gupta for their

support and love who endured this long process with me.

x



To my loving parents, Kusum Gupta and Vijendra Gupta.

xi



Chapter 1

Introduction

An integral part of computer security is user authentication, which seeks to confirm

the identity of a user for the purpose of granting individual users access to their

respective accounts. All security access methods are based on four fundamental

pieces of information: something the user is, something the user has, something

the user knows, and recently proposed someone the user knows [23]. If the user

of the system can provide proof in some or all of these areas, he/she is admitted to

the system. To protect the user and the communication between the user and the

system, there are many security software solutions available. However, even using

the very best software, which implements the most advanced technology and the

most secure algorithms, cannot guarantee 100% security because the end users are

humans and humans are gullible in understanding security concepts.

The human factor is the underlying reason why many attacks on computers and

systems are successful. The human factor is often described as the weakest part of

a security system and users are often described as the weakest link in the security

chain. It has been noticed that attackers always try to exploit the weakest link. For

example, researchers have shown how attackers can exploit human activity on pub-

lic forums and online social networking websites to mine personal attributes (e.g.

age, sex, sexual orientation) and sensitive information (e.g. answers to challenge

questions such as mother’s maiden name). Another human naiveness in understand-

1



ing security concepts is in dealing with passwords for different accounts. Having so

many accounts, humans can no longer remember all the passwords resulting in du-

plication of passwords. Sometimes they either use simpler passwords which are not

good enough to reliably defend against dictionary attacks or use stronger passwords

which are too complicated to be remembered and write them down on a piece of

paper. Though not the focus of the thesis, but to demonstrate a few more human

factor exploitation in user authentication; attackers do not target on-line banking di-

rectly. Instead, they attack the bank’s customers, using phishing techniques to trick

them into giving away their credentials. Although widespread deployment of the

Secure Sockets Layer (SSL) helps protect password authentication against passive

eavesdropping attacks, it does little to help users resist more devious threats, such as

phishing. Alternatively, an attacker can call the IT help desk, pretend to be a senior

manager and gain access to confidential information. This is social engineering -

exploiting human vulnerabilities rather than technical ones.

From this dissertation we would like to highlight that any information or an

entity which can be used to exploit the vulnerability of a system is a valuable re-

source to the attacker. This information can be used to harm the user; being it side

channel information, inferred information or the user himself/herself. Specifically,

in this dissertation we formulate and propose solutions to two authentication prob-

lems relating to human factors. a) Secrecy information inference attack – where

publicly available information can be used to infer secrecy information about the

user. b) Coercion attack – where an attacker forces a user to handover his/her secret

information such as account details and password.

Using personal and private information in generating challenges for authentica-

tion systems has been there for a long time e.g. in backup authentication (mother’s

maiden name) when the user forgets the login details of the primary account. In a

backup authentication, a user’s responsibility of authentication is shifted to another

entity, usually in case of failure of the primary authentication method. In recent

years, online social networking activity has increased a lot and because of the avail-
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able platforms like Facebook more and more people are sharing private information

online. People show their support to a number of things in public e.g. by clicking on

the Facebook ‘like’ button. In this work, we first show how an attacker can exploit

the public data extracted from Facebook to infer users’ undisclosed interests on their

personal profiles. We also show how this inferred information can be used to break

a preference based backup authentication system and demonstrate why we should

not use weak personal information e.g. “interests” in the generation of challenges.

To resist the secret information inference attack, we design a system called HuMan

(History based User Centric Memorable ApplicatioN). HuMan generates memo-

rable and dynamic fingerprints from the user’s cellphone usage data which can be

remembered by the user and can be posed as a challenge during authentication.

However, all security mechanisms fails when the user is succumb to coercion

attacks i.e. putting a gun on the user’s head and coercing him/her e.g. to enter

his/her bank account details. The user has no choice but to comply and reveal his/her

secret. This is an extreme form of human factor exploitation. For that we propose to

build a coercion resistant system. For a system to be coercion attack resistant, it is

required that when the user is under coercion, he/she will have no way of generating

the secret, or the secret generated will never be the same as the one generated when

he/she is not being coerced. If this requirement is met, then an adversary would not

apply any threat to him/her because the adversary understands that the user would

not be able to generate the secret when he is threatened to do so. We demonstrate

this attack under two scenarios (when the user is forced to reveal his own secret and

when the user is forced to reveal someone else’s secret) by conducting two separate

user studies and hence propose to use emotional response (skin conductance in our

case) as a parameter to fight against such attacks.

In the following sections, we individually highlight the attacks and demonstrate

through various user studies which evince how different resources can be obtained

to exploit human factors in user authentication. We also demonstrate the human

factors which should not be used in creating authentication challenges.
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1.1 Fighting against secrecy information inference

attack in user authentication

In a secrecy information inference attack, user’s secret information can be leaked

from the publicly available data. Prior research shows that the information shared on

the web with a limited set of users can still leak undisclosed privacy attributes, e.g.,

users’ interests and even sexual orientation [149, 115]. Authors of [29] crawled

Facebook users’ personal profiles (which are often private) to infer users’ undis-

closed interests. Private data can only be obtained by either crawling user’s personal

profile on social networking sites or taking explicit permission from the user. How-

ever, getting access to the private data is not as easy as compared to the public data.

Facebook, for example, has made all the fan pages public by default [44]. Access

to the data of these pages can be conveniently obtained through Graph APIs [45].

Mining private information from public data is not easy mainly due to the large

amount of noise contained in the heterogeneous pages, and the huge amount of un-

structured data involved. In this work, we first demonstrate that this belief might

not be true in certain aspect. In particular, we show how we can obtain data from

Facebook and use it to infer users’ interests that can usually be obtained only from

their personal and often private profile pages. This information can be used in many

ways including targeted spamming, showing ads without the consent of users, or

even breaking into specific authentication systems. To demonstrate the security and

privacy implication of this, we base our experiments on mining personal interests

to break into Blue MoonTM [81] introduced by RavenWhite as a backup authentica-

tion system to provide better security and usability. Our experiments conducted on

over more than 34K public pages collected from Facebook and data from volunteers

show that our inference technique can infer interests that are often hidden by users

on their personal profile with moderate accuracy. We are able to disclose 22 inter-

ests of a user and find more than 80,097 users with at least 2 interests. From our

findings, it is clear that we should be prudent in choosing the information to create
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authentication challenges because attackers can use the publicly available interests

data from Facebook to break into authentication systems like Blue MoonTM.

Considering this, we propose to use an authentication system based on personal

data which is resistant to secrecy information inference attack. The authentica-

tion challenges are generated dynamically and the user can still remember without

requiring any extra effort. We built a system, called HuMan, which generates fin-

gerprints from user’s cellphone usage data. We explore if the generated behavioral

fingerprints are memorable enough to be remembered by end users. The dynamicity

and memorability of these fingerprints can also eradicate human factors like human

memory interference, sharing of secrets etc. We evaluated the memorable finger-

prints generated from this rich multi-context data by asking each user to answer

various authentication questions generated from the fingerprints. We conducted an

extensive user study that involved collecting about one month of continuous usage

data from 58 Symbian and Android smartphone users. Results show that the fin-

gerprints generated by HuMan are remembered by the user to some extent and that

they were moderately secure against attacks even by the people who knows a lot of

information about the user i.e. intimates and acquaintances.

1.2 Fighting against coercion attack in user authenti-

cation

Many techniques have been proposed for secure communication and authentication.

Some of these techniques, e.g., those using biometrics [58, 116, 119, 120, 53], offer

desirable security properties including ease of use, unforgettability, unforgeability

(to some extent), high entropy and etc. However, most of these schemes are not re-

sistant to coercion attacks in which the adversary uses physical force, e.g., wielding

a gun, to coerce the trustee to comply [130]. When the user’s life is threatened by

an attacker, one would have to surrender the secret, and the system will be com-
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promised despite all the security properties described above. This is an extreme

form of exploitation of human factor in user authentication to gain access to the

system. Specifically, we present a novel approach to protection against rubber hose

cryptanalysis i.e. coercion attacks in generating cryptographic keys. For a crypto-

graphic key generation technique to be coercion attack resistant, it is required that

when the user is under coercion, he/she will have no way of generating the key, or

the key generated will never be the same as the one generated when he/she is not

being coerced. If this requirement is met, then an adversary would not apply any

threat to him/her because the adversary understands that the user would not be able

to generate the key when he is threatened to do so. We explore the incorporation of

user’s emotional status (through the measure of skin conductance) into the process

of key generation to achieve coercion resistance. With 39 participants in our user

study, we find that our technique enjoys moderate false acceptance rate of 3.2% and

false rejection rate of 2.2% in key generation.

Furthermore, to meet the demand of scalability and usability, many real-world

authentication systems have adopted the idea of responsibility shifting, explicitly or

implicitly, where a user’s responsibility of authentication is shifted to another en-

tity, usually in case of failure of the primary authentication method. One example of

explicit responsibility shifting is in the fourth-factor authentication whereby a user

gets the crucial authentication assistance from a helper who takes over the respon-

sibility [23]. Facebook also uses a similar authentication protocol which allows the

user to recover his account’s password by collecting vouch codes from his trusted

friends [46]. There is also implicit responsibility shifting which might not seem as

obvious. For instance, whenever suspicious activity is detected in a user account,

the system administrator takes over the responsibility of revoking the attempted au-

thentication. In the fourth-factor authentication system [23], subverting the helper

allows the adversary to log in without capturing the password of the user. When the

trustee to whom the responsibility has shifted is another computer system, we can

use any standard security mechanism to protect it. However, when such a trustee
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is a human being, protection becomes non-trivial because of the potential coercion

attacks. We remark that it is unclear whether the same technique could help in pro-

tecting the trustee in our study. The difference between the trustee and a victim in

general coercion attacks is subtle, yet critical in terms of security. No prior study has

shown the effect on emotional status of trustee in this case and his skin conductance.

Therefore, the crux of our work is to investigate whether the trustee’s skin conduc-

tance also changes under coercion, and if any, whether the magnitude of change is

large enough to be captured by the coercion resistance technique. We design and

conduct a user study involving 29 university students to evaluate the trustee’s emo-

tional status in a simulated coercion attack. The results of our user study are positive

with false acceptance rate of 3.1% and false rejection rate of 1.7%. This shows that

the victim’s skin conductance still changes under physical threats. The principles of

our findings in this study are applicable to other authentication mechanisms as well.

The rest of this dissertation is organized as follows: Chapter 2 reviews the ex-

isting studies on authentication and human factors which can be exploited to gain

illegitimate access to the system. In Chapter 3, we demonstrate a secrecy informa-

tion inference attack on a preference based authentication system using the public

data extracted from Facebook. In Chapter 4, we argue how we can use the pri-

vate data from the user’s cellphone to create authentication challenges which are

memorable and resistant to secrecy information inference attack. We then present

an extreme case of human factor exploitation i.e. coercion attack in Chapter 5 and

propose a solution to fight against this attack in generating cryptographic key. In

Chapter 6, we extend our work to verify if the solution presented in the previous

chapter can be used to fight against coercion attack in authentication responsibil-

ity shifting. Finally, we conclude with future direction of the current research in

Chapter 7.
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Chapter 2

Literature review

Authentication has been studied by cryptographers, security engineers, human-

computer interface designers, linguists, ethnographers, and others. This chapter

will survey the diverse academic literature with particular focus on the security re-

search motivating this dissertation. As every authentication mechanism requires

some involvement of humans and humans are considered to be the weakest link in

the security chain, therefore, in this chapter we discuss some of the prior works

done in the area of human factors in authentication. Related work specifically to

this dissertation has been described in individual chapters.

Memory interference and limits Passwords are by far the most used and most

easily subverted method of personal authentication. The use of secret words to au-

thenticate humans has ancient origins. It also appears in folklore, famously in the

tale of Ali Baba and the forty thieves (first translated into English in 1785 [148]),

with the protagonist using the phrase “open sesame” to unseal a magical cave. Omi-

nously, Ali Baba’s greedy older brother Qasim forgets this password during the

course of the story with disastrous consequences.

If an organization institutes policies to ensure secure passwords (such as fre-

quently changed alphanumeric upper/lower case combination of at least 10 charac-

ters) the inconvenience is so great that such a policy will be violated in an over-

whelming number of cases. The use of alphanumeric usernames and passwords
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is the most often used (and also the cheapest) method of computer authentica-

tion [102]. However, unfortunately human beings are limited in their information

processing capabilities [33, 114]. People either use simple passwords that are easy

to remember but easy to crack or use difficult passwords which are difficult to re-

member. According to [168], there are very few people who do not deviate from the

best practices for password use. Users either use the same password all the time, or

use relatively simple passwords; re-use their old password; write passwords down

either on paper or store it in an electronic file without protecting it; share passwords

with others, etc.

Many recommendation and techniques including using pictures instead of pass-

words [38, 35, 89], passface [25], pass-phrase [143] etc have been suggested in the

past by taking into consideration of user’s knowledge [2, 138, 173]. These schemes

suffer from the same problem of memory interference; scalability is a major issue.

For schemes like passphrases, usability studies of passphrases [97] have found them

to be just as memorable as passwords, subject to an increased rate of typographical

errors. Users may find it difficult to remember so many different pass-phrases for

different accounts. Moreover, systems need to manage a database of a huge number

of images, so that they can prevent guessing and DDOS attacks.

Sharing of secrets The argument — “if you don’t have anything to hide you won’t

mind sharing passwords” is the chief weapon in the arsenal of the password sharers.

We are always told not to share our passwords or bank account PINs with others, but

the rule is harder to apply when it’s your significant other who wants to check those

party pictures in your Facebook account [37]. In a recent study [107], authors found

that roughly one in three online teens (30%) reports sharing one of their passwords

with a friend, boyfriend, or girlfriend. While passwords may be guarded closely

by some youth, password sharing among peers can be a sign of trust and intimacy.

Online girls are much more likely than online boys to share passwords with friends

and significant others (38% vs. 23%), and older teens ages 14-17 are more likely to
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do so than younger ones (36% vs. 17%). Looking more closely at older girls aged

14-17, nearly half (47%) admit to sharing passwords with friends or significant

others. It has been found that spouses check their partners accounts without their

permission which can lead to divorces later on [9]. This is not a technical problem.

Its a social problem, however, the implications are huge.

Insider Attacks Insider attacks go beyond the hacking. Hackers, especially “ter-

rorist hackers” or “cyberwar hackers” get lots of press. They do indeed pose a

serious problem. However, the threat they pose pales before that posed by those

closest to us: the insiders. It is no secret that companies spend a majority of their

security budget on protecting from external attacks but, “one of the toughest and

most insidious problems in information security, and indeed in security in general,

is that of protecting against attacks from an insider.” [17]. An insider can be an em-

ployee, or a student or other members of the organization. He/she can be someone

duped or coerced by an outsider to perform actions on the other’s behalf.

Shoulder surfing or Peeping tom In computer security, shoulder surfing refers

to using direct observation techniques, such as looking over someone’s shoulder,

to get information. It is commonly used to obtain passwords, PINs, security codes,

and similar data [103]. Current approaches in the effort of reducing shoulder surfing

attacks typically also reduce the usability of the system; often requiring users to use

security tokens like RSA security token, interacting with systems that do not provide

direct feedback [135, 160] or requiring additional steps to prevent an observer from

easily disambiguating the input to determine the password/PIN [25, 64, 135, 157,

160]. Previous gaze-based authentication methods [103, 75, 111] do not support

traditional password schemes.

Some of the techniques [135] assume that the adversary is not able to capture

the complete interaction between a user and the server. Such an assumption actually

forms a secure channel between the user and the server, which transforms the secret
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leakage problem to the protection of the secure channel. However, in many cases

this may not hold where an adversary can deploy a hidden camera, key logger to

capture the whole password entry process. To address such realistic concerns, recent

efforts [7, 108, 157, 160, 170, 11, 137] have focused on the adversary model, where

the adversary is allowed to record the complete interaction between the user and the

server.

Phishing Phishing is a form of social engineering which attempts to acquire in-

formation (and sometimes, indirectly, money) such as usernames, passwords, and

credit card details by masquerading as a trustworthy entity in an electronic commu-

nication. It was for a long time commonly held among security practitioners that

the widespread deployment of SSL would eliminate phishing once consumers be-

come aware of the risks and nature of phishing attacks. This, very clearly, has not

been the case, as supported both by real life observations and by experiments [165].

It is crucial for the security practitioners and service providers to understant what

consumers think and want. The lack of security knowledge [159] and education

is typical among users. A recent study shows how computer users fall victims to

phishing attacks based on a lack of understanding of how computer systems work,

due to a lack of attention, and because of visual deception practiced by the phish-

ers [39]. There has been numerous studies to know what a typical user reacts to

when they browse to see their emails [87, 161, 77]. Previous studies have examined

the extent to which users fall for phishing scams and whether users benefit from the

information provided by anti-phishing tools. These studies have shown that most

users are likely to fall for phishing scams, and that many users ignore warnings

provided by anti-phishing tools [39, 41, 84, 165].

Physical security A recent attack by a tech journalist exposes vital security flaws

in several customer service systems, most notably Apple and Amazon [76]. A se-

curity guard on a door may not increase the security of the whole system. It may
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decrease the security of the system. A person can fool the security guard by pro-

ducing a false official letter stating that he/she is a legitimate user of the system

and he/she has an authority to enter the building. An attacker can put a gun on the

security guard’s head to force him/her to gain access to the doors [69]. There has

been solutions to circumvent coercion attacks by using panic passwords [31]. In this

thesis, we demonstrate the use of skin conductance to fight against coercion attacks.

Online social networking With the rise of online social networking in the last

decade, there is more and more private information being shared with friends and

other people. Prior research shows that the information shared with a limited set of

users can leak undisclosed privacy attributes, e.g., users’ interests and even sexual

orientation [149, 115]. Authors of [29] crawled Facebook users’ personal profiles

to infer users’ undisclosed interests. There are high security implications of this as

we demonstrate in Chapter 3.
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Chapter 3

Secrecy information leakage from

public data

3.1 Introduction

With the rise of online social networks (OSNs), more and more private information

of users is available on the web. It also forms a fertile ground for a variety of

research efforts. The information shared on OSNs can be classified into two broad

categories, private (shared with a limited set of users) and public (shared with the

whole world). Prior research shows that the information shared with a limited set of

users can leak undisclosed privacy attributes, e.g., users’ interests and even sexual

orientation [149, 115]. Authors of [29] crawled Facebook users’ personal profiles to

infer users’ undisclosed interests. However, getting access to such information that

is shared with a limited set of users is non-trivial as it is not available to public via

any APIs. Moreover, OSNs are adopting ways to restrict crawling unless explicit

permission is granted [134, 166].

In comparison to the private information available only to a limited set of users,

public information is readily available. In many cases APIs are provided by OSNs

for anyone to efficiently download such public data. Facebook, for example, has

made all the fan pages public by default. Access to the data of these pages can be
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conveniently obtained through Graph APIs [45]. It is generally believed that these

public pages hardly contain users’ private information, and mining private infor-

mation from them is not easy mainly due to the large amount of noise contained

in the heterogeneous pages, and the huge amount of unstructured data involved.

For example, Facebook has little control on the titles and descriptions of fan pages;

posts from users may contain text and multimedia content; users use a lot of short

sentences and slang (e.g., “LOL”, “LMAO”, etc); off-topic discussions go on fre-

quently (e.g., on a “Jazz” page, we found users discussing the latest soccer game).

All this adds to the noise in public data on OSNs. Moreover, almost 15 percent

of user-submitted content on large Facebook fan pages is spam [55]. Such noise

and the huge amount of unstructured data to be processed usually makes mining

interesting private information not practical.

In this work, we show that this belief might not be true in certain aspect. In

particular, we show how we use publicly available data from Facebook to infer

users’ interests that are usually only on their personal profile pages. We make use

of the graph APIs provided by Facebook to obtain public fan pages [44]. As these

pages are public irrespective of the users’ privacy settings, an attacker can grab the

unique profile IDs of those who have interacted with the page. We show that by

aggregating different interests of the users found across different pages, one could

build users’ interests profiles from the public data without gaining access to the

personal profile pages of any of the users. This collective information can be used

in many ways including targeted spamming, showing ads without the consent of

users, or even breaking into specific authentication systems.

To demonstrate the security and privacy implication of this, we base our exper-

iments on mining personal interests to break into Blue MoonTM [81] introduced by

RavenWhite as a backup authentication system to provide better security and us-

ability. From the dataset in our experiments involving 1.1 million different user IDs

from 34,000 Facebook public pages, we detected 80,097 (6.89%) users with two or

more interests. Out of these 80,097 users, there are 66 who have been found with
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more than 8 interests, which is enough to break their corresponding Blue Moon ac-

counts (if they have) with reasonable accuracy under certain assumptions. In one

case, we were able to build a user profile with as many as 22 interests by mining the

data we collected. We also present valuable lessons we learned in our experiments,

among which the most notable one being that users’ sentiment orientation might not

be inclined towards the sentiment orientation of the page i.e. simply liking a page

does not corroborate enough that the user is really interested in the page. Therefore

we performed sentiment mining to find out the actual sentiment orientation of the

user.

In summary, this work makes the following contributions.

• We use publicly available data on Facebook to infer users’ privacy attributes

(i.e., interests) and aggregate this information across different pages. This

differs from prior research as we do not use user’s personal data posted on

their profile page (e.g., gender, current location, activities, interests, etc.).

• We find that liking a page does not corroborate a user’s inclination towards

a page or interest category. We performed an in-depth analysis (sentiment)

using text mining to find the real sentiment orientation or polarity (like or

dislike) of the user towards a page and an interest.

• We use Facebook’s public Graph API [45] to obtain the public pages. Unlike

crawling which is usually restricted in its usage by OSNs to a small number

of partners, our method could be easily used by anyone with little restriction.

• We demonstrate the severe implication of this private information mining by

showing that interests inferred from the public data can be used to exploit a

previously proposed preference based authentication system. This suggests

that one should be mindful in designing the challenges for the authentication

system, in this case, information such as interests should not be used in cre-

ating authentication challenges as this information can easily be obtained in

the era of Facebook.
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The rest of the Chapter is structured as follows. We provide background and

related work in Section 3.2 where we show some of the important prior work to

abuse OSNs. We explain our technique to mine user interests from Facebook public

pages in Section 3.3, and report experimental results in Section 3.4. We then discuss

the limitations of our technique in Section 3.5.

3.2 Related work

In this section, we first discuss related work in obtaining a user’s private information

by abusing OSNs in general. After that, we discuss the more specific interests

inference techniques in social networks.

3.2.1 Abusing OSN data

With the increasing popularity of OSNs, people start to find ways of abusing it, e.g.,

illegitimate use by spammers with ad deals. In this Chapter, we focus on the abuse

in which a user’s privacy attributes are inferred from information hosted on OSNs.

In general, attackers could base their attacks on two types of data obtained in two

ways.

One is to use restricted pages by crawling. Prior research shows that informa-

tion on restricted pages (shared with a limited set of users) can leak undisclosed pri-

vacy attributes about the users [149, 115]. Existing techniques have demonstrated

that private information can be crawled to obtain attributes like mother’s maiden

name, date of birth, hometown, first school attended to break into backup authenti-

cation mechanisms that are based on such privacy attributes [83]. Attackers can also

correlate information from different OSNs to retrieve undisclosed attributes of the

users [115]. Authors of [29] crawled users’ personal profiles of Facebook to infer

their undisclosed interests. [14] describes how an attacker could query popular so-

cial networks for registered e-mail addresses on a large scale and information from

different social networks can be aggregated to launch sophisticated and targeted
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attacks.

An important limitation to using restricted pages by crawling is that most OSNs

restrict crawling to a small number of partners only. That is, crawling restricted

pages is not a technique available to general attackers.

The other type of data to use is public pages. As compared to crawling restricted

pages on OSNs, anyone can use a legitimate channel (usually by using public APIs

provided by OSNs) to gather public pages. Although these public pages are more

readily available for anyone to analyze, as pointed out in Section 3.1, it is gener-

ally believed that mining interesting private information from these public pages is

difficult due to the noise in it and the huge amount of unstructured data to be an-

alyzed. In this work, we show that mining users’ otherwise undisclosed interests

from public pages on OSNs is, in fact, practical.

There are strong security and privacy implications to such abuse of OSN data

because the private information mined could potentially be used to break existing

personal authentication systems, typically those that use challenge questions as a

backup to the main authentication mechanism. In Table 3.1, we highlight notice-

able differences between this work and prior research. Previous work has shown

that OSN data and public databases can be used to infer or guess sensitive informa-

tion about users [149, 115]. A number of incidents, e.g., in 2008 the Republican

vice presidential nominee Sarah Palin’s email account was compromised by an at-

tacker who guessed her personal authentication question (where did you meet your

spouse?) [24], in 2009 a vandal successfully guessed a Twitter executive’s password

and leaked the company’s internal documents [34], have shown the severe damage

such attacks could have. Personal authentication questions are usually a weaker link

in authentication systems [131]. [131] shows that answers to predefined questions

can be easily guessed or obtained from OSNs. Instead of specific attack incidents

where one or two particular accounts are compromised, our work presented in this

work shows an attack to the authentication system and evaluates the extent to which

thousands of users of such a system could be attacked.
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3.2.2 Interests mining from OSN data

This work focuses on personal interests mining because personal interest is one of

the most popular choices used in challenge questions. Authors of [125] leverage on

the friendship network to mine users’ interests. [60] employs feature engineering

to generate hand-crafted meta-descriptors as fingerprints for a user. However, such

models alone may not derive the complete interest list of any user [169]. [101, 30]

resort to collaborative filtering techniques to profile user interests by collaboratively

uncovering user behaviors.

The “Like” function on OSN provides a more intuitive way of estimating user in-

terests as compared to non-direct indicators such as user-service interactions. Click-

ing on the “Like”/“Dislike” button associated with an object usually indicates that

(s)he is highly interested/disinterested in the object [169]. Recent approaches like

LinkMiner [90] assumes that clicking the “like” button demonstrates the user’s lik-

ing towards the object. In this Chapter, we show complications in using such an

assumption on large datasets and propose solutions to it.

3.3 Interests inference

Although users understand that public pages are for everyone to view and should

not contain sensitive or private information, these pages nevertheless reveal what

users do and what users think. Therefore, it is probably not difficult to be convinced

that such pages still contain private information, probably indirectly and to a limited

degree, e.g., by reflecting what users like and dislike. This wok is not to argue this,

but rather to investigate how practical it is to mine interesting personal interests from

the large amount of unstructured data on public pages that contain a lot of noise.

To do this, we first introduce the data source on which our analysis is performed,

i.e., the public pages on Facebook (see Section 3.3.1). Section 3.3.2 presents our

methodology to fetch information from these public pages. Finally, we present our

methodology to infer users’ interests (i.e. likes and dislikes) for different categories
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(e.g., music, cars, sports) in Section 3.3.3.

3.3.1 Facebook page layout

A Facebook Page is a public profile where users can talk (and comment/like) about

a particular topic. As shown in Figure 3.1, it usually contains many attributes in-

cluding title, page description, profile picture, wall posts, likes, etc. Any registered

user can create a page and by default all Facebook pages are public. Please note that

anyone can view the page, however, to interact with a page, a registered Facebook

user must “like” it first by pressing the like button on the page. After liking the

page, the user can post a message/link/photo/video which will appear on the wall

of that page. Other users who have already liked that page can post comments on a

post, like the post, etc.

Figure 3.1: A public Facebook Page

As an illustration, Figure 3.1 shows a Facebook page “LSU Football” with one

post “LSU Tigers in the NFL – Week 10” from the user “LSU Football”. 244 users
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have liked that post; a user has commented on it and 4 users have liked it.

As shown in Figure 3.2, in general, a public page P is a collection of many

attributes. First, there is a title and description t. Each page P may contain a

number of posts p1, p2, etc. Each post pi may have a few likes Li
1, L

i
2, etc. and a

few comments ci1, ci2, etc. Each comment cij might have a few likes lij,1, l
i
j,2, etc.

Figure 3.2: Structure of a Facebook page

3.3.2 Data collection

As discussed in Section 3.2, since we make use of public pages only, we can use

Facebook’s public Graph API to fetch data of any Facebook public page. Informa-

tion that we manage to fetch for each page include its title and description t, all

posts pi, comments cij and likes Li
m of each post, as well as likes of each comment

lij,k.

A small difficulty we faced was the authentication needed to use the Graph API.

To fetch pages from Facebook using Graph API, one requires an authentication

code. This authentication code is generally provided to Facebook applications for
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a limited amount of time. However, we did not build any Facebook application to

obtain this authentication code. Instead, we created a php script to automatically

login to Facebook and then parse the webpage returned at the following URL and

look for the authentication code https://developers.facebook.com/docs/

reference/api/.

There are limitations in using the public APIs only. For example, we were not

able to obtain the IDs of those people who only liked the page and did not comment

or posted anything on the page. We were also limited by the number of API calls we

can make in a certain duration. At the time when the experiments were conducted,

Facebook used to provide the list of users who liked a page, this feature is not

supported anymore.

3.3.3 Automated profiling with attributes

In this subsection, we first present how we analyze an individual attribute on a

Facebook page to figure out if a user has personal interests in the topic covered in

that page. This might sound simple, as the user’s interaction with the attributes of

a page reveals some inclination towards that page. For example, if a user posts a

positive message on the wall of a soccer page, it can be inferred that the user may be

interested in soccer. For this we propose a technique SPM (SimPle Mining) to mine

the information of users’ interest (see Section 3.3.3). However, we also observed

during our analysis that many users may “like” a page even though they are not

interested in the corresponding topic, or if they have strong negative opinions on

the topic. To solve this problem, in Section 3.3.3 we propose a more advanced

technique called SOM (Sentiment Oriented Mining) to use sentiment analysis of

the attributes to find the actual sentiment orientation of the users.
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SPM: SimPle Mining

In SPM, we simply assume that a user’s involvement in any of the attributes of P in

whichever way indicates that the user has a same interest on the topic of the page,

which can be inferred from t. For example, if a user likes a comment or adds a

comment on a post on P , then we believe that the user is interested in P . If multiple

users have interacted with P , we add all these users into the set u=q which denotes

the set of users who are interested in P about the interest q.

SPM is simple, but can easily introduce errors to u=q because there could be a

group of users of P (denoted u 6=q ) who hold an opinion opposite to the focus of P .

For example, a user who liked the cats page posted the following posts “I hate cats”,

“Lewis is a mad cat”, “go doggies cats are crap”. They “liked” the page not because

they really like it, but simply because Facebook does not allow them to add a post

until they “like” it. To minimize this noise, we perform sentiment mining to find out

the inclination of all users towards that page. See the following section for details.

SOM: Sentiment Oriented Mining

Sentiment analysis is the task of identifying positive and negative opinions, emo-

tions, and evaluations [162]. Sentiment analysis has been used in many fields where

users have subjective agenda such as movie reviews [126]. Intuitively, the content

of the posts/comments should be accounted in deriving the users’ interest. Hence,

the polarity of the sentiment information of the text aids in conforming the users’

interest.

We first define two sets of attributes on a Facebook page P . AI = {t, p, c } is

the set of independent attributes which consists of text, while AD = {L, l } is the

set of dependent attributes which does not contain text. We separate these attributes

into two groups because those that consist of text can go through a more thorough

sentiment analysis on the text, while attributes of the other set are more dependent

on the post or comment upon which the “like” was applied.
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Sentiment analysis on AI We propose to use lexicon approach [80], which is

one of the most popular methods used in sentiment analysis to detect the opinion

bearing words. Lexicon approach concerns the use of lexical resources such as a

dictionary of opinionated terms or opinion words. Collectively, they are called the

opinion lexicon and are instrumental for sentiment analysis. Opinion words are the

words that are commonly used to express positive (G#) or negative (H#) sentiments.

For example: ‘beautiful’, ‘wonderful’, ‘good’, and ‘amazing’ are positive opinion

words, and ‘bad’, ‘poor’, and ‘terrible’ are negative opinion words. Many opinion

words are adjectives and adverbs. Sometimes, nouns such as ‘rubbish’, ‘junk’, and

‘crap’ and verbs such as ‘hate’ and ‘like’ also indicate opinions. Words which are

neither positive nor negative are marked as neutral (⊖).

Several opinion lexicons are available and SentiWordNet [10] is one such

resource containing opinion information on terms extracted from the WordNet

database and made publicly available for research purposes. SentiWordNet is a

lexical resource built on top of WordNet. WordNet [48] is a thesaurus containing

descriptions of terms, and relationships between terms and part-of-speech (POS)

types. For example “car” is a subtype of vehicle and car has same concept as au-

tomobile. Hence, a synset (a synonym set) in WordNet comprises of all the terms

with the same concept, e.g., the synset is car, automobile.

SentiWordNet assigns three sentiment scores to each synset of WordNet: posi-

tivity, negativity, objectivity/neutral. The sentiscores are in the range of [0, 1] and

sum up to 1 for each triplet. For example, in SentiWordNet, the sentiscore of the

term “good” is (pos, neg, obj) = (0.875, 0.0, 0.125). For our experiments, the scores

are approximated with labels/part-of-speech of term in the text or sentence. First,

the text is tagged using a standard POS tagger. A standard POS Tagger [147] is a

piece of software that reads text in some language and assigns parts of speech to

each word, such as noun, verb, adjective, etc. Then the SentiWordNet is used to

get the scores for each term in the text. As our sentiment analysis is domain inde-

pendent, we choose the general lexicon method as compared to the corpus-based
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method which is a domain dependent approach.

We now explain in detail how the sentiment is derived for the attributes in AI .

We call them independent attributes because their sentiment orientation is indepen-

dent of the other attributes. For a particular attribute a ∈ AI , we count the total

number of words/phrases with positive sentiment (ps) and that of words/phrases

with negative sentiment (ns) for all posts and comments he/she has, and use the

term-counting method proposed by [151] to determine the sentiment orientation of

a to be

Ψ (a)=































G#, if ps > ns

H#, if ps < ns

⊖, otherwise

Sentiment analysis of AD Attributes in AD does not contain text, but they also

contribute to a user’s sentiment orientation. We call them dependent attributes be-

cause their sentiment orientation is dependent on other attributes. For example, if

a user u1 has a post pi with negative opinion, and user u2 likes that post Li
m, then

both u1 and u2 share negative sentiment orientation on the topic. Similarly, if a user

u1 has a comment cij with positive opinion, and user u2 likes that comment lij,k, then

both u1 and u2 share positive sentiment orientation on the topic. That is,

Ψ
(

Li
m

)

= Ψ
(

pi
)

and

Ψ
(

lij,k
)

= Ψ
(

cij
)

Aggregating interests profiling from multiple attributes on multiple pages A

user might have multiple posts, comments, and likes on a single Facebook page, and

multiple Facebook pages might be about the same interest. Therefore, we have to

aggregate the sentiment analysis results on multiple attributes from multiple pages
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in order to figure out the sentiment orientation of the user on that interest.

Let A = {a1, a2, ..., ak} be the set of posts, comments, and likes of a user u on a

page P about a particular interest q. For each a ∈ A, we compute the sentiment ori-

entation. Then, the sentiment orientation of u towards P , Su
P is G#/H# if the number

of attributes with positive sentiment is greater/lesser than the number of attributes

with negative sentiment respectively, otherwise⊖. Aggregating all Facebook pages

about q, sentiment orientation of u towards q, Su
q is G#/H# if the number of pages

with positive sentiment orientation is greater/lesser than the number of pages with

the negative sentiment orientation respectively; otherwise ⊖. If the sentiment ori-

entation of q and Su
q is same, then, u is added to the set u=q otherwise to u 6=q . That

is,

u=q =

{

u ∈ U
∣

∣

∣

(

(

Ψ (q) = G#&&Su
q ∈ {G#,⊖}

)

‖
(

Ψ (q) = H#&&Su
q = H#

)

)

}

u 6=q =

{

u ∈ U
∣

∣

∣

(

(

Ψ (q) = G#&&Su
q = H#

)

‖
(

Ψ (q) = H#&&Su
q ∈ {G#,⊖}

)

)

}

3.4 Experimental results

To base our analysis on a concrete example, we focus on breaking Blue

MoonTM [81], a backup authentication system which can be used by a user to reset

his lost or forgotten credentials. For example, if a user forgets his password of an

email account, he or she can use Blue Moon to reset the password. The idea is to use

personal preferences as challenge questions for authentication. Figure 3.3 shows a

screenshot of Blue Moon1.

During enrollment, the user is asked to select 8 items which he likes and 8 items

1This image is taken from http://www.ravenwhite.com/

iforgotmypassword.html.
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Figure 3.3: Blue MoonTM

which he dislikes from a list of 76 common interests. During authentication, the user

is presented with a set containing the chosen items in a randomized fashion. The

user categorizes the items to like and dislike. A user is not required to pick all the

interests correctly. Instead, the user just need to correctly categorize 8 items2 to reset

his password [86]. To make our analysis consistent and the evaluation comparable,

in the rest of the chapter we assume that a user has to correctly categorize 8 items

from the entire list of 76 interests which are shown in Table 3.2.

3.4.1 Dataset description

In order to attack the Blue Moon system, we assume a strategy taken by an attacker

as follows. He first construct a set of interests Q from Table 3.2, and another set

Q
′

containing the corresponding negated items like “I hate golf” and “I hate jazz”.

He then leverages the Facebook’s public Graph API to 1) find all public Facebook

pages related to q ∈ {Q ∪Q
′

}; 2) fetch all attribute data of these pages; and 3) use

the technique described in Section 3.3 to find u=q and u 6=q for all q ∈ {Q ∪Q
′

}.

Note that this methodology does not cover all those pages which are semanti-

2The threshold where false acceptance rate and false rejection rate meets.
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cally related with the query term. For example, query term “cars” does not fetch

pages of Mercedes, Hyundai or Porche which are indeed the pages of cars. [29]

provides a solution to fetch these pages using semantic search with the help of an

ontology build upon Wikipedia. We are sure that this could significantly increase

accuracy of the attack, although that comes with a price of longer processing of a

large set of pages. We leave this as a future work to increase the size of the corpus.

Table 3.3 summarizes the availability of the attributes with their counts. From

34K pages fetched for 152 categories we found 2.5 million posts, 7.5 million likes

and 4.3 million comments on these posts, and 1.3 million likes on those comments.

Attribute Count

Categories 152
Pages 34,738
Posts 2,538,987
Post likes 7,574,965
Comments 4,381,967
Comment Likes 1,361,361

Table 3.3: Number of attributes found

We apply both SPM and SOM mining techniques as discussed in Section 3.3.3

and 3.3.3 respectively to the dataset PubProf, and discuss the results in the next

subsections.

3.4.2 Inferred interests using SPM

We found a total of 1, 162, 575 unique users whose interests can be inferred from

the pages analyzed. These users are the users who have either posted something

on the pages, commented on the posts, or liked the posts/comments. Applying the

SPM approach to our dataset, we detected 80, 097 users with 2 or more interests.

This amounts to 6.89% of all the user IDs collected in our dataset. Figure 3.4 shows

breakdown of users with different number of interests found. We were able to build

a user profile with as many as 22 interests.

Note that although SPM might not be accurate in finding the true sentiment

orientation of the user over an interest, the numbers presented here is not affected
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Figure 3.4: Inferred interests of the users using SPM

by this inaccuracy. That is, results presented in Figure 3.4 actually applies to SOM

as well.

Results show that the number of users whose interests could be inferred from

the public pages is significant, and this would have an important impact on the

possibility of breaking into such users’ Blue Moon account. For example, for those

users found to have two interests, the search space for breaking into their Blue Moon

account is reduced by about a factor of 3,000 ( C76
2 ). Please also note the dataset

we use represents a tiny subset of the Facebook pages.

3.4.3 Inferred interests using SOM

In this section, we first investigate the inaccuracies when applying SPM on our

data. As discussed in Section 3.3.3, these inaccuracies happen when users like a

page but oppose to the topic in it. For example, if the page’s title is “I hate Cats”,

we want to find those users who clicked on the like button on this page, however,

actually like cats. Figure 3.5 shows the result of our sentiment analysis on all the

comments, in particular, the number of negative comments different user posts. We

can observe that about 10% of the comments posted are negative, meaning that the

comment itself does not have the same sentiment orientation as that of the page.

This suggests that more careful analysis and handling of the sentiments of posts and

comments are important in order to find out the users’ interests.
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Figure 3.5: No. of negative comments posted by users

One interesting finding we also observe from Figure 3.5 is that users who com-

ment a lot (more than 70 comments) tend to have a smaller percentage of negative

comments. It is our future work to investigate whether the same is observed on a

larger dataset.

To further investigate the result of our sentiment analysis, Table 3.4 shows 15

interests with the largest percentage of users who disagree with the corresponding

topic of the page. |u=q | is the total number of users whose sentiment orientation is

same as that of the category, and |u 6=q | is the total number of users whose sentiment

orientation is opposite to that of the category. We see that although the inaccuracies

from the SPM technique exist, most pages, especially those with a large number of

users discussing, tend to have less than 10% of the users with negative sentiment

orientation.

Another interesting observation is that most of the entries in Table 3.4 are of

pages with a negative sentiment, i.e., q is “Hate xxx”. We believe that it is because

there are more people who want to voice out their disagreement with such pages

than people who disagree with pages with a positive sentiment.

3.4.4 Comparing SPM and SOM

Table 3.5 shows the number of users found liking/disliking selected categories for

both the SPM and SOM techniques. We only show a few categories with the largest
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Category (q) |u 6=q | (%) |u=q | (%) Total

Hate motocross 25.00 75.00 8
Hate skating 25.00 75.00 4
Hate heavy Metal 14.28 85.72 14
Hate poetry 12.50 87.50 8
Hate hockey 11.53 88.47 26
Watching baseball 11.12 88.88 9
Hate baseball 8.33 91.67 48
Hate basketball 5.52 94.48 181
Hate cats 5.39 94.61 260
Hate religion 5.36 94.64 56
Hate football 3.35 96.65 359
Raves 3.22 96.78 280
Gamble 3.08 96.92 195
Hate cars 3.08 96.92 130
Game shows 2.95 97.05 34

Table 3.4: The percentage of users whose sentiment orientation is inclined / not
inclined towards the sentiment orientation of the page across all inter-
ests categories.

discrepancies due to space constraint. Note that these are accumulated categories,

e.g., we combined all 12 musical categories like jazz, classical, etc.

Results show that although there are users who like the page while having a

different sentiment orientation as shown in the previous subsection, these users are

minorities, and that is why we do not see a large discrepancy between results from

SPM and SOM. In this respect results here seem to be consistent with those pre-

sented in Table 3.4

Also, we observe that sports is the most popular category where 12.62% of users

are inclined to the sports. These numbers could potentially be used to obtain the a

priori probability for an unknown user having different interests, and subsequently

used in attacking the Blue Moon system. We leave more detailed analysis on this

our future work.

3.4.5 Errors in sentiment analysis

As text mining is prone to errors, in this section we evaluate the correctness of our

SOM approach in detecting the correct sentiment orientation. We manually label
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Main Category #Users using SPM #Users using SOM

Like Sports 146756 145141
Like Music 29597 29255
Like General 65354 64571
Like Entertainment 163 158
Like Food 4031 3990

Do not like Sports 1120 1079
Do not like Music 30 28
Do not like General 825 800

Table 3.5: Likes and dislikes

300 sentences randomly chosen from various categories including sports, music, re-

ligion, politics, cats, and food. An independent human annotator then labels each

sentence to either G#, ⊖ or H# depending on his/her understanding of the sentence.

We then evaluate SentiWordNet’s accuracy using precision metrics (automated la-

beling against manually annotated labels). This measure have been commonly used

to evaluate the accuracy of various retrieval, classification, and mining algorithms.

Precision refers to the proportion of true positives over the sum of the true positives

and false positives. The sentiment mining technique provided an overall accuracy

of 69.33%, see Table 3.6 where the diagonal figures represent the accurate labeling,

while off diagonal figures represent false positives.

Estimated/Sentiwordnet
G# ⊖ H#

Actual/Human
G# 66.33 17.35 16.33
⊖ 23.68 63.16 13.16
H# 18.25 06.35 73.02

Table 3.6: Confusion matrix for sentiment (%)

Sentiment analysis failed for conjugate and multi sentences. For example, “As

far as intelligence goes cats have a different kind of intelligence than that of dogs.

They can MANIPULATE their environment to SURVIVE can hunt on their own

and...” is labeled negative and “really no 1 can say our governance in 9ja is un-

derstood... we are just driven here and there no prosperous direction... we really

don’t know... Im shot of words 4 my dear country” is labeled as positive. Senti-

ment approach also failed for sarcastic statements like “GREAT.. now I can not get
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ONLINE...” which has been labeled positive.

The inaccurate estimation of positive to negative or negative to positive labels

has more impact on building the user profile. The neutral messages are overwritten

by the page polarity and hence no impact on user profile.

3.4.6 Concentrated group with ground truth

We tried to get some ground truth to be compared with the results obtained. We

chose 450 users from u= obtained using the SPM approach with the largest number

of interests inferred (more than 4 in particular). Out of the 450 user profiles, 47 have

either been deactivated or deleted. We manually sent Facebook friend requests and

messages to the remaining 403 Facebook users to know more about their interests

in certain categories. Due to privacy settings imposed by many users, we were only

able to send 334 friend request (70 accepted) and 299 messages (15 replied back).

We expected those who accepted our friend request would reply to our messages

sent; however, there were only 12 (out of 70) who replied to our message. 56 did

not reply and we were not able to send message to 2 users because of the privacy

settings imposed by them.

Majority users (212) neither accepted our friend request nor responded to our

message sent. There were 2 participants who did not accepted our friend request

but still replied to the message. Please refer to Table 3.7 for a summary of the

responses we got.

Disallow Message
Allow Message

No reply Replied
Friend req. not allowed 52 16 1

Friend req. allowed
Not added 50 212 2
Added 2 56 12

Table 3.7: Users category settings in VolProf

We take the responses of those 15 users who replied to our messages and com-

pared them with the corresponding interests inferred using SPM. Figure 3.6 shows

the percentage of the correctly inferred interests of these users. It shows that we
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Figure 3.6: Users Interest from VolProf

were able to infer approximately half of the users’ interests with 100% accuracy.

Also, we can see from the figure that at least two-third of the interests are inferred

correctly. Although we did not manage to get a larger pool of people with ground

truth due to the manual work involved, available data seems to suggest that our tech-

nique provides reasonable accuracy in inferring users’ interests from public pages

on Facebook.

3.5 Discussion and limitations

There are many factors that could have contributed to inaccuracies in our analysis.

In this section, we discuss some of them and also point out limitations in our results.

One of the most important contribution to inaccuracies in our analysis is noise in the

public pages on Facebook. This noise could come from advertisements, spamming

in general, conversations in comments, and others.

Facebook is popular marketing media and some users are actually advertisers.

For example, a person selling Nike shoes may post his ad in all the categories corre-

sponding to sports. Our system might therefore believe that this user has an interest

in sports. To have a sense on the noise level, we search for advertisements in se-

lected categories by randomly choosing some posts and manually labeling them as

advertisements. Table 3.8 shows the number of advertisements found in a number

of posts for selected categories.
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Category No of posts scanned % of Ads found

Sports 1,348 0.445
Food 2,312 0.346
Cats 2,312 0.216
Music 7,000 0.171
Politics 9,928 0.060

Table 3.8: Percentage of advertisement posts

It appears that the noise level in our dataset is very low, however, our manual

process in finding advertisements might be error prone, too. Another step we took

to minimize this error was to manually check whether the users inferred with more

than eight interests are real users. Our simple manual checking revealed that except

a few users whose accounts had been deactivated or deleted, all of them seem to be

legitimate. We also filtered off users who posted same message in more than four

pages.

We have seen many people get into their personal conversations on public pages

that are not related to the topic of the page. Unfortunately we do not find a scalable

way of filtering out such noise, and therefore it might have contributed to errors

made.

There are also limitations in the techniques that we use. First, we use a context

independent text mining algorithm. This limits our capability in analyzing the sen-

timent of certain pages, e.g., “Lets help the dogs in the streets and kick the cats.”

The sentiment scoring without context will fail to identify the user interest in this

example. To solve this problem, we need additional scoring models that can handle

the sentiment with the context.

Second, we only managed to obtain ground truth for a small set of users. We

wish we could find a better approach to obtain the ground truth, but sending out

message to a large number of users had one of our Facebook account suspended,

and that was why we did not go further to target a larger group.

Last but not the least, manual work was involved in a number of steps in our

experiments, including evaluation of the accuracy of sentiment analysis, spam de-
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tection, etc. This manual work could potentially introduce errors into the evaluation.

To summarize, in this work we demonstrate the technique to mine secrecy in-

formation from the public data for Facebook and how it can be used to attack Blue

MoonTM authentication system. We present two mining based approaches to pre-

dict private undisclosed users’ interests. Using only simple mining approach we

extracted unobservable Interest topics by analyzing the corpus of Interests obtained

via legitimate use of Graph API provided by Facebook. From our experiments, we

were able to disclose 22 interests of a user and found more than 80,097 users with

at least more than 2 interests. We also showed how this inferred information can

be used to break preference based backup authentication system. We also demon-

strated that simply liking a Facebook page does not imply the users’ inclination

towards that page. There exists many users who liked a Facebook page, however

they have posted negative comments/posts on the page. We also found that cate-

gories like sports, music, food can be easily found on the social networking sites

and should not be used in creating authentication challenges.
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Chapter 4

Memorable fingerprints for

authentication

4.1 Introduction

Profiling or fingerprinting human behavior has been widely used as a technique in

providing context awareness [13], intrusion detection [167], etc. The uniqueness of

such fingerprints for their collision resistance for authentication [133] and identifi-

cation purposes [85] are important properties. Such fingerprints are usually stored

on devices and are not memorable by the end users themselves. For example, users

do not typically remember their DNA sequences or cryptographic keys generated

from behavioral biometric [116] (which are forms of fingerprints). Since we are us-

ing users’ private information which is not publicly available, it can resist to secrecy

information inference attack demonstrated in Chapter 3.

However, there are many scenarios in which memorable fingerprints are desir-

able in profiling human behavior. One obvious application is in authenticating users

who are not technically proficient. Memorable fingerprints are highly useful in these

situations as they can be used to generate authentication questions that anyone can

answer without memorizing or needing any physical device. Note that memorable

is usually more than memorizable, i.e., a memorable fingerprint is one that can be
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recalled and recognized by human users, but is not necessarily one that needs to be

memorized. This helps in eliminating human factor issues like memory interference

because of too many passwords. People tend to note down their passwords on the

paper. If this kind of system exists then people do not need to remember their pass-

words and still are able to login and authenticate to the system. Another interesting

way these memorable fingerprints could be used (when transformed to questions)

is to determine how close two people are to each other. The better someone else (a

friend/acquaintance) can answer these questions, probably the closer friend he/she

is.

In addition, memorable fingerprints achieve their desired properties by capturing

information and behaviors that are more noteworthy and significant from the user’s

perspective. Memorable behavioral fingerprints are especially useful for context-

aware applications as it is usually difficult to understand which aspect of a context

a particular user deems most important, especially when the context is derived from

multiple data sources or the various aspects are conflicting from one another. For

example, a user might have two sets of nighttime behaviors. One is to call a friend

at 10 pm while the other is to play a mobile game while calling. Which of these be-

havioral fingerprints is more important to the user? A memorable fingerprint would

be more significant to the user and should be given higher weight when providing

context awareness.

Generating memorable fingerprints from behavioral data is nontrivial. Users

typically do not remember details of regular past events especially when they are

not asked to memorize them. There is no predefined criteria detailing the exact

types of events or information that are more memorable. In this work, we present

HuMan: History-based User Centric Memorable ApplicatioN for generating mem-

orable fingerprints of cellphone users. In this work, we chose cellphones as the

platform for generating memorable fingerprints because of the following reasons.

First, cellphones are almost a human necessity nowadays [59]. Second, cellphones

are primarily used by a single person, and are almost always with that person or
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close by. Third, the huge amount of information such as phone calls, messaging,

Internet browsing, instant messaging, game playing, and location data that can be

collected from cellphones makes the memorable fingerprints attractive in various

applications mentioned above.

HuMan consists of two modules: a data collection module that runs on the user’s

cellphone that monitors and records the events, e.g., SMSes sent and received, in-

coming/outgoing/missed calls, location, etc. The data mining module processes

the collected records and generates the memorable fingerprint e.g. “When a call is

made, the callee is Bill”. To evaluate the memorability of fingerprints, we developed

a simple mobile authentication application. In particular, we translated the finger-

prints into questions with reasonable candidate answers (e.g., a question involving

names would pick the other name choices from the participant’s cellphone’s contact

list) used them as a challenge. Thus, this helps us to test the viability and usefulness

of our fingerprints. The key features and contributions of this work are:

• Memorable fingerprints: HuMan is the first attempt to generate memorable

fingerprints from the users’ cellphone usage behavior. HuMan does not re-

quire a technically proficient user.

• Multi-context data from cellphone usage: HuMan generates fingerprints

that are derived from data sources including call, SMS, email, calendar, ap-

plication usage and browsing. We do this because 1) fingerprints of different

users are usually different, and 2) adversaries can not memorize static rules to

break the system.

• Useful and effective in real-world applications: We designed an authenti-

cation application based on HuMan to authenticate users and aims to achieve

security properties (entropy) close to a 6-digit numeric PIN while providing

desirable security features such as memorability. Please see section 4.6 for

results.
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• Security protection: We subject HuMan to a difficult security threat model

where intimates (family members, close friends particularly those living with

the participant) and acquaintance (casual friends, colleagues particularly

those not spending a lot of time interacting with the participant) try to guess

the fingerprints, and show that it provides moderate resistance to these threats.

This is difficult as we expect family members and friends to be involved in

a significant number of common activities such as calls and SMSes and are

probably aware of a lot of user activities. In addition, family members might

be able to infer events that they constantly observe, e.g., a fingerprint like “On

Sunday mornings, you are likely to call Bill”. We leave the scenario where

an attacker has a complete log of the data communication from and to the

cellphone as a future work.

These features and contributions were validated via a user study involving 58

participants on two phases on two different phone operating systems (Symbian S60

3rd Edition and Android v2.1 and above). By analyzing results from the user stud-

ies, we shed light on the characteristics of memorable fingerprints and how they

can be generated. We also show what kind of fingerprints should be used and what

should not be used in creating authentication challenges.

4.2 Related work

There has been previous work that tries to understand the behavior of cellphone

users [36, 98, 78, 79, 18]. Unlike those studies, HuMan is the first system which uses

cellphone usage data from multiple data sources to generate memorable profiles for

the users. We now describe the differences from past studies in more detail.

Hong et al. studied the behavior of mobile data service users [78]. In our user

study, we are also concerned with user behavior; however rather than investigating

factors that affect their behavior, we would like to find memorable signatures that

characterize their behavior. In another study, Hong et al. investigated models that
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determined mobile Internet usage [79]. Our fingerprints could also be viewed as a

collective model of user behavior. In addition, we are concerned with the behav-

ior of individual cellphone users and the construction of memorable fingerprints.

Belwal et al. [18] studied cellphone usage among university students in Oman via

surveys, while we focus on actual usage measurements.

Using historical data to fingerprint user profiles and network profiles have been

used extensively to detect illegal authorization, intrusion, etc, [22, 123, 127, 62].

For example, “Black-box” (or “gray-box”) host-based intrusion detectors are trained

with system-call traces of the program when processing intended inputs [49, 51, 56,

57, 141, 145]. Our system is different from these intrusion detectors in that HuMan

tries to learn the usage patterns and generate memorable fingerprints, but does not

try to detect deviations to these patterns. Our fingerprints also need to be memorable

and dynamic; these characteristics are often ignored by intrusion detections systems.

Emerging human-centric authentication systems proposed by Nosseir et

al. [124] make use of context data to pose questions to end users. Unlike these

systems, HuMan does not restrict itself to one source of information and our finger-

print approach can be used for more than just authentication. In addition, HuMan’s

question generation is derived from the fingerprints and not from the raw data and

finally, HuMan’s evaluation uses a much harder attacker model involving intimates

and acquaintances instead of strangers.

Traditional biometric authentication schemes such as face [66], fingerprint (Mo-

torola Atrix) and voice also include low-level features extraction, data processing

and detection phase. These schemes have become technically feasible on the mobile

platforms [156], though suffers from well-known issues e.g. low-light, different fa-

cial orientation, image quality of the camera, surrounding noise, oily fingers, stained

sensors etc [3]. The above mentioned schemes are also subjected to spoofing attacks

e.g. using a picture, pre-recorded voice and fake fingerprint of the user which can

result to high false acceptance rates [112]. HuMan uses a combination of features to

generate fingerprints rather than relying on one source of information which can be
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used for authentication purpose. Recently, there has been similar work in designing

context-aware applications on the cellphones [40, 172, 12]. The focus is to under-

stand users’ context and explore any design implications on the device. In addition,

substantial work has been done in measuring, quantifying and predicting user activ-

ities (walking, standing, etc.) using sensors such as accelerometers [20, 73, 67].

4.3 Architecture of HuMan

We propose and implement HuMan to generate memorable fingerprints from cell-

phone usage. HuMan comprises of two modules; a data collection module and a

fingerprint generation module (see Figure 4.1). The data collection module runs in

the background on cellphones and unobtrusively logs all interesting user events. To

produce fingerprints with rich entropy, HuMan collects a wide range of informa-

tion on call, SMS, application, browsing, etc. This forms the base of HuMan with

hundreds of thousands of data entries.

The fingerprint generation module resides above the data collection module (see

Figure 4.1) and consists of three sub-modules. The rule mining sub-module uses

data mining techniques to process the raw data and generates thousands of rules

which are machine-recognizable with high confidence and support. These rules

are further processed by the template fitting sub-module to combine and transform

machine recognizable rules into hundreds of human-memorable rules using certain

template instances. The last sub-module performs further filtering to obtain tens of

memorable fingerprints that are user specific.

In the rest of this section, we provide details of the data collection and fingerprint

generation modules of HuMan.

4.3.1 Data collection

The data collection module (logger) runs unobtrusively in the background of the

cellphone and captures a wide range of high level application events that result from
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Figure 4.1: Architecture of HuMan

user-phone interactions directly and indirectly. Table 4.1 summarizes the different

types of events logged in our implementation on Symbian (v3.0, 3.1 and 3.2) and

Android (v2.1 and above) OSes. An additional watchdog program was installed to

monitor the execution of the logger and to restart it in case of unintended shutdown.

Implementation and Challenges on Symbian

The Symbian based logger (5506 lines of Carbide C++ code) was developed for

phones running the 3rd Generation Symbian S60 OS. As shown in Figure 4.2, the

logger operates on the Symbian stack, drawing on the lower level API from the

generic OS, communication and connectivity services.

The development of the logger on the Symbian platform encountered some chal-

lenges. For example, we were limited by the available APIs and are therefore unable

to obtain touch events or keystrokes from touch screen phones. We were also lim-

ited to using cell tower IDs to capture user location. In addition, due to lack of

a geocoding translation service, we translated the positioning information to just

three possibilities that could be easily identify from the cell tower ID information;

namely, home, university and rest.
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Figure 4.2: Symbian data logger

Implementation and Challenges on Android

The Android platform offers a much richer set of applications and APIs that allowed

us to log many additional types of events. The Android logger (a system application)

was built in Java (11,935 lines of code) for Android OS 2.1 and above.

The data collection module on Android makes use of the supported API and

the root access. The supported API enables data collection from the user-phone

interaction while the root access extracts data beyond the API limitations. As shown

in Figure 4.3, the data logger operates on top of the Android stack and pulls the

required data described in Table 4.1 using the application framework APIs. It also

obtains root privileges in order to obtain additional information, e.g. Emails, Gtalk,

Dolphin Browser history, etc.

Root access is needed to overcome three main difficulties encountered during

the logging of the data. First, the APIs were limited in the type of data being ex-

posed. Second, the APIs were not designed for building applications that actively

log user activities. Lastly, callbacks of many events were not available. Root access

is done with the “hotplug” method that exploited an Android vulnerability to install

an accessible modified root shell, with the user’s consent [19].
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Figure 4.3: Android data logger
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Memory and Battery Usage

The Symbian logger has an installed base of 66KB on Nokia N79. In idle peri-

ods (with logger running), the power consumption is approximately 0.6% per hour.

Memory consumption is about 280KB. When there are a few calls and SMS the

power consumption is about 1.6% per hour. There is little change in memory con-

sumption though. Typical size of the log over a six-week collection period is around

6 MB.

For the Android platform, the logger has an installed base of 85KB on Nexus

one. In the idle periods (with logger running), the power consumption is about

1% per hour with memory consumption of about 160MB. With a constant usage of

browser, application installation, social network activity, Gmail, camera and Google

maps, power consumption is on average 12.5% drop per hour, with an average mem-

ory consumption of 162MB. Typical size of the log over a four-week collection

period is around 25MB.

We notice that the battery consumption on Android is higher. This is likely due

to the large amount of information logged including all types of events. We plan

on reducing the logging activity when users are not using their phones to reduce the

power consumption.

4.3.2 Fingerprint generation

Figure 4.4: Fingerprint generation from raw events
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Figure 4.4 shows the sub-modules used by HuMan to generate memorable fin-

gerprints. The raw events are first preprocessed into the right formats for the data

mining sub-module, which consists of standard association rule mining [5], sequen-

tial pattern mining [110, 144] and a special rule detector module (see Section 4.3.2).

A template-fitting sub-module then transforms the rules learned from data mining

into a form that is more likely to be memorable (see Section 4.3.2). Finally, a sub-

module filters them based on our design criteria to obtain memorable fingerprints

(Section 4.3.2). Currently, in our design this submodule is semi-automatic, however

we provide some insights of how the full automation on this module is possible. We

walk-through the fingerprint generation procedure using an example shown in Fig-

ure 4.5.

Pre-processing Directive

The data logged by our data collection module is in the form of raw events, e.g.,

• [Event:Call] [CallType:Outgoing] [To:Bill] [StartTime: 8-12pm] [EndTime:8-15pm]

• [Event:Set Alarm] [SetTime:09-45am] [AlarmTime:7am]

i.e. “call made to Bill at 8:12 pm and ended at 8:15 pm”, or, “set an alarm at

9:45am for 7am” which are hardly memorable by human beings. To overcome this

we process the raw data to transform the fields like exact times (e.g. 8:12pm) to

more generic values (e.g. night), exact coordinates (e.g. 32.008076,23.48877) to an

area (e.g. downtown), day of the week to weekdays/weekends etc. Figure 4.5 (step

1) shows the transformation of a set of 5 such events.

Machine-recognizable rules

In this section, we describe the rules generation process using user’s raw cellphone

usage data. One approach could be to enumerate all instances of events and find

those that are discriminative. However, this would be slow e.g. even for a simple

pattern “< event − 1 > is before < event − 2 >” has many possible instances

with concrete events replacing “< event − 1 >” and “< event − 2 >”. We use
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Figure 4.5: Example showing fingerprint generation from raw data
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data mining technique to generate machine recognizable rules. This helps us to find

which of the instances of the rules are discriminative for a particular user efficiently.

An association rule describes a set of events that happen as the consequence of

another set of events. HuMan treats cellphone related events, e.g., a user makes a

phone call, as a transaction, and considers various features of this event, e.g., the

phone number called, the duration of the call, the location from where the call is

made, the time/day when the call is made, etc., as items in the transaction. The

preprocessed data is then analyzed to form rules, e.g., the first three events from

preprocessed data in step 2 of Figure 4.5 form the rules R1 and R2

• [Event:Call] [CallType:Outgoing] [Time:Night]→ [To:Bill]

• [Event:Call] [CallType:Outgoing]→ [To:Bill]

respectively i.e. “Whenever there is an outgoing call at night, the callee is always

Bill”, or, “Whenever there is an outgoing call, the callee is always Bill”.

A sequential rule describes two sets of events that happen one after another in

a sequence. We split the history of cellphone events into a set of sequences by em-

ploying a windowing approach. Events separated by not more than 180 seconds are

grouped into the same window. We put an event into a new window if the current

window already contains more than 30 events. Each window corresponds to a se-

quence of events. We can consider longer events too. However, the computational

requirement would be higher for longer events. Thus it is a trade-off of accuracy

versus efficiency. Some existing studies also limit a window to be of a particular

size [113, 28, 105, 54]. This database of sequences is then analyzed to form rules

like “Whenever Jack calls Bill on Sunday, he calls David right after it”.

In the data-mining algorithms, support captures the number of times a rule is

observed in a dataset. We use low relative support thresholds (.05% to 4% of the

size of the dataset) as the dataset is diverse. Confidence captures the likelihood of

the rule’s pre-condition to be followed by its post-condition. We use a confidence

threshold >50% to remove many spurious rules.
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Human-memorable rules

The data mining techniques help us learn tens of thousands of machine-recognizable

rules with high confidence and support. However, not all these rules are necessarily

memorable by human. Hence, we fit the machine-recognizable rules to hundreds of

templates and filter out the ones that are less likely to be memorable.

Thus, to build our templates to transform machine rules into a human memorable

format, we first developed heuristics to rank the memorability of various types of

information. We surveyed people to learn these memorability heuristics.

1. We noticed that people could remember communication (e.g., SMSes, calls

etc.) and application-based events (e.g., Apps, the action performed etc.) bet-

ter.

2. We also observed from our survey data that information corresponding to

events that directly resulted from human-phone interactions were more easily

memorable.

3. An interesting survey finding was that many people tend to remember nega-

tive rules and rules about recent activities well. Negative rules correspond to

events that had never occurred. For example, “you have never called X” and

“you never sent a message to Y”.

4. Recent activity rules ignore the rule’s support in favor of the time when the

rule last occurred. For example, “application-X was the last one installed”,

“The last change of the alarm clock setting was on day-Y”.

We used these heuristics to create our set of templates, which are in the form

of rules with placeholders indicating information that can be easily memorable.

Following are some examples of templates as shown in Figure 4.5,

• [Event:Call] [CallType:Outgoing]→ [To:X]⇒ [Whom do you usually call?] [X]

• [Event:Call] [CallType:Incoming]→ [From:X]⇒ [Who usually calls you?] [X]
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The above two templates can be derived as “Whenever there is an outgoing call, the

callee is always X”, or, “Whenever there is an incoming call, the caller is always

X”, whereX is the placeholder indicating information that can be easily memorable

(e.g. Bill). Each template has two parts separated by ‘⇒’, where the antecedent

denotes the rules and consequent denotes the English translation of the rule. Please

note, consequent can differ depending on the use case and the application of the

fingerprints. In our case we used authentication as an application therefore, we used

the questions as English translation.

The entire template generation is a one time process and is not user specific.

These templates can be continuously updated when necessary to improve the memo-

rability. Currently, we have 202 templates in HuMan. Note that the templates gener-

ated are human-memorable, but not user-specific. Fitting the machine-recognizable

rules with the templates (an automatic process) is as easy as matching the place-

holders (i.e. [X]) in the templates with corresponding information in the rules. For

example (see Figure 4.5), template T1 and rule R2 are matched to form the human-

memorable rule [T1, R2], similarly, template T3 and rule R3 are matched to form

[T3, R3]. The structure of T1 matches with R2, thus X is replaced by Bill in both

antecedent and consequent. Please note, there are a large number of non-template

matching machine-recognizable rules that are filtered out automatically as they are

not likely to be memorable.

User-specific fingerprints

The generated template fitted rules which are human-memorable may not be user-

specific e.g. (as shown in Figure 4.5) rule [T3, R3],

[Event:SetAlarm] → [AlarmTime:morning] ⇒ [What time do you usually set the alarm

for?] [morning]

says “the alarm is set for morning” could apply equally to multiple users. We thus

manually filter these rules to pick the most user-specific rules. In future, this can be

automated by filtering out the common fingerprints generated across majority of the
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users.

We also filter out conflicting and redundant rules at this stage as they reduce

the entropy. For example, “On Sunday, when a call is made, the callee is Bill” and

“When a call is made, the callee is Bill” overlap and should not appear together in

the same fingerprint. If one fingerprint is a subset of the other, then only the one

which has higher support is included in the final set of fingerprint. Finally, the small

set of the most memorable template rules that do not overlap are combined to form

the final fingerprint. We are still learning the best way to pick good rules when

forming the final fingerprint. We describe some of the lessons, regarding fingerprint

selection, we learned from our user studies in the next few sections.

4.4 Evaluation methodology

To evaluate HuMan, we installed our logger on the cellphones of participants for

a period of 6 and 4 weeks for the Symbian and Android studies, respectively, to

collect the raw data. To evaluate the memorability of fingerprints, we used them as

an authentication mechanism. In particular, we translated the fingerprints into ques-

tions with reasonable candidate answers (e.g., a question involving names would

pick the other name choices from the participant’s cellphone’s contact list). Fig-

ure 4.6 shows the authentication program’s User Interface.

Figure 4.6: Multiple choice questions based user interface
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Immediately after the data collection period, the participants were asked to come

in for a series of tasks conducted in a lab environment. They were also asked to bring

along two persons, an intimate (a close friend or family member that knows them

very well) and an acquaintance (a casual friend that they socialize with on a regular

basis). We paid USD $32 and $8 to each participant and persons (the participant

brought in), respectively, for participating in the study. The ability of participants

to answer these questions correctly gave us insights into the memorability of the

fingerprints. The intimate and the acquaintance separately and independently an-

swered the same set of questions. Intimate’s and acquaintance’s answers gave us

insights whether fingerprints are actually resistant to attacks by people who know

users the best. We conducted two user studies on two different platforms, i.e. Sym-

bian and Android. Figure 4.7 shows these two studies (with two phases on Symbian

and one phase on Android) and the improvements made to HuMan after each phase

in chronological order.

Figure 4.7: User studies design phase model

The first study was conducted on Symbian. We found that most of our Symbian

users limited their cellphone usage to phone calls and SMSes, which might not

provide enough entropy to generate good memorable fingerprints. This was a key

reason why we performed the next study on Android, as we believed that Android

users would exhibit much richer sets of activities, including applications like IM,

Emails.

The feedback from the iterative design also helped HuMan to improve the ability

to extract the human-memorable and user-specific rules. In particular, after Phase A

of the Symbian study (see Figure 4.7), we improved HuMan’s template generation

engine. Similarly, the Android study was conducted with a version of HuMan that

incorporated all the lessons learned from the entire Symbian study. We discuss the
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lessons we learned regarding fingerprint generation from these studies at the end of

the chapter.

4.5 Symbian study

In the Symbian study, two phases were conducted, Symbian phase A and Symbian

phase B. We first discuss the study setup and results of phase A, then present the

lessons we learned as well as improvements made to HuMan as a result, and finally

discuss the results of phase B.

4.5.1 Participant selection

We solicited for participants from the undergraduate population at our university.

The only requirement we had was that each participant be able to bring himself

or herself, an intimate, and an acquaintance to the lab study after 6 weeks of data

collection.

4.5.2 Experimental settings

We divided the experiments into two task sets: the base case experiments done

by everyone (the participant, the intimate and acquaintance) and a set of specific

experiments designed to investigate and validate specific parts of HuMan. Each

task was performed on the phone and had the same question structure.

Task set 1 — Baseline Tests. As we adopted the authentication mechanism as

the form of fingerprint verification, we decided to design the question-answering

mechanism to have a similar entropy of a standard 6-digit pin (a password space of

106). Please note that, question/answers are not completely random, meaning that

some answers have higher a-priori probabilities. For example, generally speaking

a person is more likely to call someone with the same last name (likely a family

member) in the evening time. Therefore, the corresponding answer has a higher
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chance to be the correct answer. HuMan is designed to be comparable but the true

entropy depends on the particular answers, (please see Section 4.5.2 Task set 2, for

the details on how the answers are chosen). We designed three variants (6, 7, and

8 questions each with 10, 8, and 6 choices, respectively) of HuMan to test user

preference on fewer questions with more choices versus more questions with fewer

choices. The tradeoff is that with questions with fewer choices, answering each

individual question might be easier, but the overall process takes longer. Conversely,

having less questions with more choices might take less time overall, but answering

each question is harder. We could not use less than 6 question with 10 choices as

that would provide lower security guarantees than a 6-digit PIN. We cannot use free

form question because it is harder for the machine to infer and verify (if the answer

is correct or not). The participant’s intimate and acquaintance were both asked to

do the same baseline tests.

Task set 2 — Detailed Tests. In this set of experiments, the participants and the

intimate/acquaintance were asked to do two different tasks that investigated specific

portions of HuMan in greater details. We fixed the number of choices to 8 for each

question to allow us to compare results across all participants.

1 Incorrect Choices: We varied the way that we picked the incorrect choices

presented to the user for each question to understand the impact of the answer

selection process on HuMan. We selected the incorrect choices using three

algorithms:

i 100% related — incorrect choices with support and/or confidence close

to that of the correct answer. For example, if the question asked is “Who

do you call the most?”, then the incorrect choices are from the pool of

contacts whom the user has frequently called.

ii 100% unrelated — incorrect choices with support and/or confidence

not close to that of the correct answer. For example, if the question

asked is “Who do you call the most?”, then the incorrect choices are

from the pool of contacts whom the user has never called.
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iii 50% unrelated - 50% related — a 50-50 mix of the above two.

2 Support/Confidence: We changed the confidence and support thresholds

of the fingerprints to understand if there is a threshold value below which

participants were unable to reliably answer the questions. In addition, we

also wanted to understand if participants were better in low-support— high-

confidence questions (rare unique events).

The total number of questions in the different set of experiment were 18 (6 for

each option) for “Choices” and 6 for “Support/Confidence”. We randomly separated

the participants into 3 equal, non-overlapping groups and assigned a different set of

experiments to each.

4.5.3 Symbian study phase A

Our participants were a mix of students from technical and non-technical majors. In

total we had 31 participants (10 male, 21 female) and their corresponding intimates

and acquaintance from the undergraduate population at our university. 21 of the in-

timates spent between 4-8 hours per day with the participant while the remaining 10

intimates lived with the participant. Among the 31 acquaintances, 19 spent around

1-4 hours per day with the participant, while the rest saw the participant almost

daily but did not really interact with him/her.

Results of the baseline tests We found no statistical difference (using t-test anal-

ysis for gender, technical qualification, etc.) in the accuracy of answers in all the

10-, 8-, and 6-choices variants. Therefore, we aggregated results from all three vari-

ants together in subsequent analysis. We evaluated the accuracy in terms of false

rejection rate (FRR, when the participant was not able to login) and false acceptance

rate (FAR, when intimates/acquaintances were able to login) for different threshold

values (see Figure 4.8). The threshold is the percentage of questions a user/attacker

needs to correctly answer to authenticate to the system e.g. if the threshold is 50%

then the user only needs to answer 3 out of 6 questions correctly to authenticate
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to the system. If the threshold is reduced, there will be less false non-matches but

more false accepts. Correspondingly, a higher threshold will reduce the FAR but

increase the FRR. Unfortunately, we found that the threshold where FAR and FRR

meet (approximately 42%) is quite low (approximately 33%).

Figure 4.8: Symbian phase A- false acceptance & false rejection rates

To understand the reasons, we performed an in-depth analysis on the types of

questions asked and categorized them into 4 categories depending on the focus of

the question — who (questions about a person), what (about an activity), when

(about time), and where (about a location).

We first calculate the accuracy of the participants, intimates, and acquaintances

for all four categories. Figure 4.9 shows the results of this per-question analysis for

the baseline tests.

Figure 4.9: Effect of different types of questions (Symbian)
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Who: For example, “who do you call the most?” This appeared to be the most

reliable type of question that demonstrated an accuracy advantage of the participant

over potential attackers. This could be caused by people being more sensitive and

more capable of answering who-type questions. We therefore believe that adding

more who-type of questions would improve the overall accuracy of our system.

What: For example, “what action do you usually perform with Bob?” There

appears to be a relatively small difference between accuracy of the participants and

the potential attackers. By investigating deeper, we found that some of the choices

were misleading. For example, our questions differentiated deleting “sent SMS”

events from deleting “received SMS” events, whereas the participants could only

remember that they deleted an SMS. We therefore modified some templates used

for what-type questions to make the choices clearer in phase B.

When: For example, “at what time of the day you would most likely use WiFi?”

This type of questions has a negative overall impact as family intimates were able

to answer them with even higher accuracy than the participant. Intuitively, this is

possible when intimates spend a lot of time with the participant. We thus decided to

use fewer when-questions in phase B.

Where: For example, “Where do you usually charge your phone?” The where-

type questions did not perform well and we discovered that the accuracy for this

type of questions was high for the intimates. Due to this unreliable variation, we

decided to use fewer where-type questions in phase B.

Results of the detailed tests By carefully analyzing the two detailed question sets

(different ways of picking incorrect choices and different support/confidence thresh-

olds), we found that the threshold settings of confidence and support did not have

strong impact on the accuracy of answering the generated questions. We therefore

turned our attention to the various ways of picking choices for each question.

Intuitively, different ways of picking the possible choices for each question

should have an impact on the accuracy. For example, it should be easier to an-
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swer a question “who did you call last night” if all, but one, of the choices were

people you do not know. Surprisingly, the results from this test showed very small

accuracy differences for the participant when different methods for choosing the

incorrect options were used. However, there was a slightly larger gap between the

accuracy of the participant and the intimate when using the 100%-unrelated setting

(see Figure 4.10). This result suggests that some (although relatively small) secu-

rity advantage can be obtained if we favor the 100%-unrelated setting when picking

choices for each question.

Figure 4.10: Effect of different incorrect choice picking method (Symbian
phase A)

4.5.4 Symbian study phase B

Based on the result and analysis of Phase A, we made a few modifications to the

template and fingerprint generation subsystem, namely to 1) favor more who- and

what- type questions; 2) modify templates of what-type questions to improve clar-

ity; 3) favor 100%-unrelated choices for each question. With these changes, we

performed a second user study with 14 new participants (9 male and 5 female) and

their corresponding intimates and acquaintances. There were 10 out of 14 partici-

pants from non-technical background. 5 of the intimates spent between 4-8 hours

per day with the participant while the remaining 9 intimates lived with the partic-

ipant. Among the 14 acquaintances, 4 spent around 1-4 hours per day with the
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participant, while the rest saw the participant almost daily but did not really interact

with him/her.

Figure 4.11 shows the FAR and FRR of our improved system. The results are

promising, as the threshold is now increased to approximately 57% where FAR and

FRR meet (approximately 38% for intimates and approximately 17% for acquain-

tances). The improved system thus has a clear security advantage over the previous

one (Symbian Phase A, see Figure 4.8). However, still the system is not usable

with high FAR and FRR.

Figure 4.11: Symbian phase B - false acceptance & false rejection rates

We believe that the boost in the accuracy is largely due to the changes we made

regarding the preferential choosing of certain types of question over others (as de-

scribed above). We confirmed this by comparing the question-type distribution be-

tween the improved and the original system. Figure 4.12 shows this comparison.

The larger percentage of who-type questions in the improved system is a significant

cause of the overall accuracy improvement.

4.6 Android study

We found that our participants’ Symbian usage behavior was limited to calls and

SMSes. Unlike Symbian, Android provides a richer set of multi-context data. In

this study, we investigated if better fingerprints could be generated from the richer
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Figure 4.12: Symbian - Comparing the breakdown of type of questions asked be-
tween Symbian phase A and Symbian phase B

data-set. This study was similar to the Symbian study with the following notable

differences:

1. Data Mining Thresholds. Similar to the Symbian study, we used low mini-

mum support thresholds (1% and 0.5% for sequential rule mining and asso-

ciation rule mining, respectively) as the dataset was diverse. However, we

used higher minimum confidence thresholds (80% and 70% for sequential

rule mining and association rule mining, respectively) to further remove spu-

rious rules.

2. Choice of Fingerprints. Based on the lessons learned from the Symbian study,

we only incorporated who and what questions in our fingerprints. In the Sym-

bian study, participants performed better for these types of questions (see Fig-

ure 4.9).

3. User Interface Experiments. We also introduced two new user interfaces and

evaluated their effectiveness. For each question, the incorrect choices were

100% unrelated to the correct answer. This was again due to the lessons

learned from our Symbian study.
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4.6.1 Participant selection

In addition to undergraduates from our university, we also included working adults.

In total, we had 13 participants (9 male and 4 female) out of which 9 were under-

graduates (age between 19 and 25) and 4 (age between 24 and 33) were working

professionals. We installed a data collector for one month. After one month, the par-

ticipant, along with an intimate and acquaintance, conducted our in-lab study. 11

of the intimates spent between 4-8 hours per day with the participant while the re-

maining 2 intimates lived with the participant Among the 13 acquaintances, 4 spent

around 1-4 hours per day with the participant, while the rest saw the participant

almost daily but did not really interact with him/her.

4.6.2 Experimental settings

In the Android study, the participants, intimates, and acquaintances did the same

experiments, which consisted of two tasks. All task were conducted on a Google

Nexus One provided by us.

Task set 1 — Baseline Tests. We asked users to answer multiple-choice questions

with the following characteristics: We asked 6 questions with 10 choices each, to

achieve the same security strength as a 6-digit pin. We did not consider other options

as our Symbian study showed that there were no significant differences when 6, 8,

or 10 choices were used.

Task set 2 — Additional Tests. As android provides a much richer and nicer touch

screen based interface, therefore in this task set, we investigated the use of spatial

fingerprints on two interactive User Interfaces, as an alternative to multiple choice

questions. This was not possible in Symbian.

Launcher User Interface Users keep shortcuts that they use frequently on their

cellphone’s home screen panel. We generated fingerprints pertaining to the location

of these shortcuts by identifying applications which were launched from the home
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screen panel and whose position had not changed during the data collection period.

We then formed fingerprints such as “application x is located at position y in the

home screen” for frequently used applications.

We presented these fingerprints as questions through a launcher User Interface

(see Figure 4.13(a)) that asked users to drag the provided application icon to the

right spot on a 4x4 sample home panel grid.

Map User Interface This interface investigated the use of a graphical user in-

terface to answer where-type fingerprints (see Figure 4.13(b)). The user interface

presented the participant with a question together with a map of our city divided

into 20 segmented zones. The user had to select the correct zone to answer the

question. Users could rotate the phone in landscape mode to view the full map, and

use gestures like pinching to zoom in and out and flicking to move around the map

to choose the correct zone.

4.6.3 Results

Figure 4.14 shows the FAR and FRR of the test. This is a big improvement over

the Symbian results. We were able to increase the threshold to 61.8% (entropy

similar to a 4 digit pin) while decreasing both the FAR and FRR to approximately

15.3%. The improved accuracy was due to the changes in the user study design as

well as the richness of the android multi-context data-set. One possible reason why

intimates and acquaintances are still able to answer many questions correctly could

be because they can observe a person and thus know a lot of details about the person

peculiar habits and characteristics.

We found that the improved accuracy is because of the changes made to the user

study and the multi-context data-set. More information on multi-context dataset can

be found in the appendix A. However, additional experiments need to be done to

explore this area of generating memorable fingerprints and this work is one such

step towards achieving this goal.
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(a) Launcher

(b) Map

Figure 4.13: User interface variants used in Android user study
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Figure 4.14: Android - false acceptance & false rejection rates

The accuracy of the launcher UI was 57% for participants, compared to 7%

and 0% for intimates and acquaintances respectively. This large gap between the

participant’s and their intimate and acquaintance’s results suggests that launcher

data could be considered to generate good fingerprints and left as a future work.

The accuracy of the map UI was 38% for participants, 38% for intimates, and

41% for acquaintances. Hence, even with richer location data, the where-type fin-

gerprints do not perform well — indicating, perhaps, that where-type rules are not

ideal for generating fingerprints.

4.7 Discussion

In this section, we discuss some lessons that we have learned in the generation of

memorable fingerprints (see Section 4.7.1). HuMan uses users’ personal and private

information in generating fingerprints from the cellphone usage thereby leading to

privacy concerns. We discuss some of the key issues and how HuMan can mitigate

this to a certain extent (see Section 4.7.3). We discuss some of the limitations of the

user study in Section 4.7.4.
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4.7.1 Characteristics of memorable fingerprints

Our user studies were a great learning process to allow us to understand the charac-

teristics of memorable fingerprint.

Broad Range of Events Necessary Symbian users hardly used their phones for

anything but SMSes and calls, from which very few memorable signatures could

be constructed. On the other hand, Android provided more event types including

applications, emails, which allowed us to recover more memorable fingerprints.

Find the Most Confident Events Behavioral fingerprints are attached with sta-

tistical notions of support and confidence (or likelihood of the rule’s pre-condition

being followed by its post-condition). The Symbian study used rules with more

than 50% confidence whereas the Android study used rules with more than 70%

confidence. As the participants in the Android study performed better than those in

the Symbian study, it suggests that good fingerprints have higher confidence.

Use the Most Memorable Templates We quickly realized that certain events are

more memorable than others. We categorize our templates based on the type of

information they contained, i.e., “who”, “what”, etc. In our experiments, we con-

sistently found that the templates containing “what” and “who” types were more

memorable. We also found that certain special types of fingerprints performed well,

e.g., those representing negative rules. We also found that “when” and “who” types

were the least memorable and should not be used in generating authentication chal-

lenges.

4.7.2 Strength of fingerprints

In this section, we discuss the secrecy information inference attack on the finger-

prints generated from the user’s cellphone usage data and describe how HuMan is

resistant to such attacks.
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Not all secrecy information i.e. fingerprints have the same measure of strength.

Some information may leave the smartphone while either uploading geo-tagged

photos to Facebook or public check-ins on Foursquare. Such activities will reveal

user’s location to the public. Moreover, it could be possible that a human observer

might be continuously keeping a note of the information entered by the user e.g. to

whom the SMS has been sent, where the call has been made from, the duration of

the call etc. Such information used in the generation of fingerprints/authentication

challenges become susceptible to secrecy information inference attack and should

be avoided. We believe, if the information which can be inferred from the public

sources should not be used in generating challenges and should be flagged as weak

fingerprints.

HuMan generates fingerprints based on multiple attributes unlike Blue MoonTM

which only uses the likes/dislikes of the user to create authentication challenges. For

example a challenge generated from HuMan is in the form of “Whom do you usually

call from your home?” and response could be “David”. As we can notice that

there are multiple attributes attached with this challenge like the activity ‘call’, the

callee ‘David’ and the location ‘home’. A single location information leak during

the activity period may not tell much about the actual activity performed. This

implies that the fingerprints generated from HuMan are more resistant to secrecy

information inference attack. Moreover, we have not observed during our user study

any source of information which is being posted in public and also found in our

fingerprints generated from HuMan. However, we leave this as a future work to

explore more.

4.7.3 Security and privacy issues

HuMan collects a lot of personal information, therefore, there exists some security

and privacy issues in generating memorable fingerprints from cellphone usage data.

1. To minimize the privacy risk as much as we can, HuMan masks out as much
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critical information as possible. For example, the content of SMS and email

messages are not logged.

2. During authentication, each question is followed by some choices. Even with-

out knowing anything about the user an attacker can learn something about

her while looking at the question and different choices. To mitigate this attack,

we always provide a choice “None” as one of the available possible choice.

This can provide some protection against not so sophisticated attackers.

3. HuMan collects a lot of personal and private information to generate memo-

rable fingerprints, however, the current model is not designed to provide any

protection against attackers who has the access to the raw data stored on the

physical device or provider-level attacks where service provider has access to

most of the information.

4.7.4 Limitations

Through our exploration with the fingerprints, we believe that our user study pro-

vides a good test on the memorability of fingerprints generated by HuMan and we

also note the limitations discovered through this exploration.

• Trade-off between Power/Performance. There was an inevitable minor issue

on Android with regard to the tradeoff between the slight lag in performance

and power drain due to the increase logging of more data. Some participants

expressed unhappiness and we plan on modifying the logger to be more adap-

tive to user behavior minimizing this trade-off.

• Number of templates. We manually crafted the templates and thus the number

of templates are currently limited. We plan on adding more in the future.

• Small number of placeholders. (typically 1-3) in the templates. With more

complex templates, we could generate more context sensitive fingerprints.
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• Authentication. In authentication scenarios where a system requires frequent

authentication, the current version of HuMan may not be the best fit because

of moderate accuracy and the time to answer one question (9 seconds on av-

erage) as compared to 8.46 seconds on average to enter a 6 digit PIN (based

on our tests). However, some authentication scenarios where HuMan is suit-

able which requires less frequent authentication are 1) when the phone is lost

and needs to be locked remotely. 2) to access private and sensitive data. 3)

to unlock or change the SIM card and 4) to access the systems folder of the

phone.

• Universality to all users. Although HuMan was designed to be useful for

all types of users regardless of their technical proficiency and literacy levels,

our user studies showed that the extent to which this is true depended on

the user’s cellphone usage pattern (more diverse data usage generated better

fingerprints).

4.7.5 Further comments

• Size of the participant population. Scholars suggest how one can choose an

appropriate participants’ sample size [122, 92]. According to the prior re-

search and the studies in HCI field, we believe our participant pool is enough

for some preliminary analysis.

• Adaption to changing lifestyles. Our system could adapt to changing lifestyles

of users as the training could be performed periodically, e.g., once a week.

Though only the frequent patterns will constitute the fingerprints.

• Shoulder surfing attacks. HuMan is not designed to be resilient against shoul-

der surfing attacks.
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Chapter 5

Coercion attack in biometric key

generation

5.1 Introduction

Many techniques have been proposed to generate strong cryptographic keys for se-

cure communication and authentication. Some of these techniques, e.g., those using

biometrics [58, 116, 119, 120, 53], offer desirable security properties including ease

of use, unforgettability, unforgeability (to some extent), high entropy and etc. How-

ever, most of these schemes are not resistant to coercion attacks in which the user

is forcefully asked by an attacker to reveal the key [130]. When the user’s life is

threatened by an attacker, one would have to surrender the key, and the system will

be compromised despite all the security properties described above. This is an ex-

ample of an extreme form of human factor exploitation to gain access to system. In

this Chapter, we present a novel approach to protection against coercion attacks in

generating keys.

For a cryptographic key generation technique to be coercion attack resistant, it is

required that when the user is under coercion, he/she will have no way of generating

the key, or the key generated will never be the same as the one generated when

he/she is not being coerced. If this requirement is met, then an adversary would not
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apply any threat to him/her because the adversary understands that the user would

not be able to generate the key when he is threatened to do so. Here we assume

that the coercion resistance property is publicly known to everyone, including the

attackers; otherwise it might lead to a dangerous situation for the user, a problem

we do not address in this work.

To show how desirable it is to have a coercion-resistant cryptographic key gen-

eration technique, here we list a few scenarios in which such a technique could be

useful:

• Bank’s vault and safe: According to statistics released by the FBI [82], there

were 1, 094 reported robberies (out of which 58 cases were of vault/safe rob-

beries) of commercial banks between July 1, 2009 and September 30, 2009

totaling more than $9.4 million. If such systems are used to fight against these

attacks, then managers will never be forced to open the vault.

• Cockpit doors on airliners: The hijackers of the September 11, 2001 use the

fueled aircraft as a missile to destroy ground targets. If the cockpit doors on

airliners are well equipped with coercion resisted techniques, then hijackers

can never force a flight attendant to open the door.

• Secret/capability holders in a war: secret and capability holders would not be

forced to reveal the secret or use the capability.

In this work, we explore the incorporation of user’s emotional status (through

the measure of skin conductance) into the process of key generation to achieve coer-

cion resistance. We demonstrate this possibility by incorporating skin conductance

into a previously proposed key generation technique using biometrics [116] (see

Figure 5.1).

Incorporating skin conductance information into key generation is nontrivial.

First, the fact that a change in a user’s emotional status leads to changes in a user’s

skin conductance does not necessarily mean that our proposed technique is coercion

resistant. If known patterns exist in such changes, an attacker might be able to guess
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Figure 5.1: Coercion attacks in key generation

the skin conductance of the user when he is not nervous by, e.g., flipping a few bits

of the feature key (see Section 5.4) generated from the skin conductance of the user

when he is nervous. We analyze this attack and its consequences, and show that the

reduction in password space is small.

Second, we hope that the key generation algorithm will take in the least amount

of user specific information except the live data collected when it is used. This is

because the key generation algorithm might be executed from the client’s machine,

and the inputs to the algorithm could potentially be retrieved by the attacker during

a coercion attack. However, when dealing with biometrics data, removing such user

specific information from the inputs of the algorithm is not plausible, as different

people have different sets of consistent and inconsistent biometric features. The

algorithm would have too high false rejection rates without this additional user spe-

cific information. We propose using only user-specific feature lookup tables which

contain valid key shares or garbage. We also analyze conceivable attacks that result

from our proposal.

Third, it is nontrivial how a user study can be performed to evaluate our tech-

nique. We need to collect biometric data corresponding to different emotional states
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of real human beings. Efforts in this area are more demanding than traditional ef-

forts to get pattern recognition data [129]. To analyze the effectiveness of our pro-

posal, we perform a user study to see how one’s skin conductance changes when

he/she is being coerced. This is used to evaluate the false acceptance and false

rejection rates of our model, and to analyze the attacker’s strategy in guessing the

cryptographic key. With 39 participants in our user study, we find that our technique

enjoys moderate false acceptance and false rejection rates in key generation. Fur-

thermore, we find that the reduction in the password space for an informed attacker

is small.

The rest of the Chapter is organized as follows. We discuss the related work

in Section 5.2. Background knowledge about the chosen biometrics and fingerprint

are discussed in Section 5.3. In Section 5.4, we present the details of our approach

in key generation using skin conductance and voice. The user study and results

are presented in Sections 5.5 and Section 5.6 respectively. We discuss some of the

advanced attacks and limitations in Section 5.7.

5.2 Related work

In this section, we review some of the techniques and methodologies used to gen-

erate cryptographic keys from biometrics and some previous work on the emotion

recognition schemes using physiological signals.

Many key generation techniques from biometrics, e.g., voice, iris, face, finger-

prints, keystroke dynamics, and etc., have been proposed in the last decade [58, 116,

119, 120, 53]. The pioneer work in cryptographic key generation from behavioral

biometrics uses keystroke dynamics of a user while typing the password [117]. The

features of interest are the duration of keystrokes and the latency between each pair

of keystrokes. The generated cryptographic key is called the hardened password.

However the password generated is not very long and is susceptible to brute-force

attacks [117]. Another method using secret sharing was proposed to generate the
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biometric key from voice [116]. The distinguishing biometric features are selected

based on the separation between the authentic and the imposter data, and then bina-

rized by some thresholds. However, this method is not resistant to coercion attacks

(which our proposed model trying to target), as the attacker can force the user to

speak out the password in a normal way. We will discuss key generation approach

from voice in more detail in the formal framework of our model (see Section 5.3).

Another work on key generation from voice uses phonemes instead of words,

as it is possible to generate larger keys with shorter sequences [58]. Using the

information of the voice model and the phoneme information of the segments, a

set of features are created to train an SVM (Support Vector Machine) that could

generate a cryptographic key. False-positives and entropy of the system were not

demonstrated, which does not give a clear picture of the security of the scheme.

There are many risk and security concerns over biometric systems [130, 132,

153]. Some of the threat models include fake biometrics at the sensor, tampering

with the stored templates, coercion attacks. Biometrics liveness detection is pro-

posed to thwart fake biometrics attacks, e.g., by using perspiration in the skin [1] or

blood flow [104]. However, no previous work has been proposed to resist coercion

attacks in generating cryptographic keys using biometrics. There have been sug-

gestions like panic alarm or duress code to fight against coercion attacks, but they

are different from what we are proposing here because in previous schemes users

choose not to generate the key but to send a signal to authorities without catching

the adversary’s attention, whereas in our scheme we require that users simply will

not be able to generate the key. It is clear that our scheme offers much stronger

security properties.

Previous work also shows that emotion recognition using physiological signals,

affects from speech, and facial expressions have various success rates between 60%

and 98% [129]. Although many techniques have been proposed for emotion recog-

nition [129, 99, 121, 100], none has looked into the incorporation of emotional

status into key generation as what we propose in this work.
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5.3 Background

In this section, we present some background knowledge of voice and skin conduc-

tance, and discuss why in future an addition of fingerprint in our model would be

better as an authentication measure for the protection against coercion attack. We

also discuss the reasons for the selection of these features and the advantages over

others in terms of acceptability, feasibility and usability.

5.3.1 Why skin conductance?

An emotion is a mental and physiological state associated with a wide variety of

feelings, thoughts, and behavior. Emotions are subjective experiences, often asso-

ciated with mood, temperament, personality, and disposition [42]. This emotional

behavioral change is the key component in our model in fighting against coercion

attack. Several physiological peripheral activities have been found to be related to

emotional processing of situations. Many physiological parameters were studied

for emotion recognition, e.g., heart beat rate [6] (HR), skin conductance [106] (SC),

EMG (Electromyography) signals, ECG (Electrocardiography) signals, body tem-

perature, BVP (Blood Volume Pulse) signals, and etc., among which HR and SC

are especially attractive due to their strong association with behavioral activation

system (BAS) and behavioral inhibition system (BIS) respectively [52].

SC is the change in the electrical properties of an individual person’s skin caused

by an interaction between environmental events and the individual psychological

state. Human skin is a good conductor of electricity and when subject to a weak

electrical current, a change in the skin conductance level occurs [158]. We chose

SC over HR for the following reasons.

1. The skin conductance is one of the fastest responding measures of stress re-

sponse [74]. It is one of the most robust and non-invasive physiological mea-

sures of autonomic nervous system activity [26]. Researchers have linked skin

conductance response to stress and autonomic nervous system arousal [142].
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2. The change in HR not only accounts for stress but for many other reasons,

including jogging or doing some heavy work load. SC, on the other hand, has

been shown to be a promising measure in experimental studies [140] for its

reliability.

3. According to [154], HR is also impacted when stress levels rise but the shifts

take a bit of time to happen and by the time the changes are noticeable the

triggering stimulus is long past, whereas SC responses are rapid and easy to

measure.

4. HR is not suitable to our model due to prevailing feasibility issues. HR can

be measured using an Electrocardiogram (ECG) machine or a stethoscope.

Using an ECG machine is impractical because it is very cumbersome due to

many (at least three) electrodes required and installation costs [21]. Stetho-

scope is not good either because different placements of the stethoscope could

lead to high FTC rate (failure to capture rate) [128].

5. Using SC has an extra advantage as it can be measured simultaneously while

fingerprints are being scanned. This ensures that SC is measured from the au-

thentic person (more on this in the coming subsection). The wide acceptance

of finger scanning [85, 152] also suggest that SC measurement would have

the potential to gain user acceptance.

There are some limitations of using skin conductance as with any other biometric.

Some skin lotions can be used to manipulate the skin conductance level. In a test

done by [136], the usage of specific solutions produced significant increase in skin

water content, and was indicated by increase in skin conductance level. According

to the product after the application of the cream by EncoSkin, skin moisture level

can be significantly increased which can be monitored by skin conductance [43].
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5.3.2 Why voice?

Voice has been used previously to generate cryptographic keys [58, 116]. Voice as a

biometric is desirable for generating keys for two important reasons. First, it is the

most familiar way of communication, which makes it ideal for many applications.

Second, voice is a dynamic biometric and is not static like iris or fingerprint. A user

can have different keys for different accounts by just changing the password (what to

pronounce) or the vocalization of the same password (how to pronounce) to generate

different cryptographic keys. In an event of key compromise a new cryptographic

key can be easily generated. Note that voice has a potential disadvantage when

used in fighting against coercion, namely that the attacker may blame the user for

intentionally pronouncing the wrong password. We demonstrated our technique

with voice; however, our scheme is not limited to using voice, other biometric can

be used as well.

5.3.3 Why fingerprint?

A potential threat to our biometric system is to use spoken password from the gen-

uine user (under stress) and SC responses from another person (normal emotional

state). To ensure that SC is not unforgeable, one can make use of a device to collect

fingerprint and skin conductance of the user at the same time so that the fingerprint

of the user can be checked and mapped to his/her skin conductance signal. How-

ever, we did not demonstrate how to use this as a measure in our proposed model as

this is not the contribution of this work and is left for the future work.

5.4 Key generation from voice and skin conductance

In order to show how skin conductance can be used to fight against coercion at-

tacks in cryptographic key generation, in this section, we present the details of a

cryptographic key generation technique using voice and skin conductance. Note
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the criteria behind choosing skin conductance and voice in Section 5.3. Other bio-

metrics in lieu of voice could be used as well. Our way of using voice is similar

(with some differences) to an earlier proposal of generating cryptographic keys us-

ing voice [116]. Table 5.1 shows some notations used in the rest of this Chapter.

General Notations Notations related to Spoken Password

K cryptographic key V Voice
C a set of centroids NV # samples in V during training
c a centroid in C fV frame vector
m m = mV +mSC φV feature descriptor

n number of frames
TV lookup table generated using V
mV total bits in a feature descriptor of V
bV feature key using V
s number of segments
R segment vector

Notations related to Skin Conductance

SC Skin Conductance
NSC # samples in SC during training
φSC feature descriptor
fSC vector containing sampled values of SC
ℓ number of frames
TSC lookup table generated using SC
mSC total bits in a feature descriptor of SC
bSC feature key using SC

Table 5.1: Notations

5.4.1 An overview

Figure 5.2: Input devices
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Inputs to our model include the voice captured when the user utters the password

into the microphone and the skin conductance measured. Figure 5.2 shows the input

devices used in our experimental setup. Output of our model is a cryptographic key

generated.

In the first phase (Figure 5.3 (a)–(h)), features extracted from the spoken pass-

word are used to generate a sequence of frames fV (1), . . . , fV (n) (5.3 (c)), from

which an optimal segmentation of s segments (component sounds) (5.3 (f)). The

segmentation obtained are then mapped to the feature descriptor using a random αV

plane (5.3 (g)). Furthermore, features are also extracted from the SC sample and the

corresponding feature descriptors are computed (5.3 (h)). These feature descriptors

should be “sufficiently similar” for the same user and “sufficiently different” for

different users. By the end of the first phase, we have feature descriptors for both

voice and SC signal.

In the second phase (Figure 5.3 (i)–(l)), we perform lookup table generation

and cryptographic key reconstruction. A total of NV samples from voice and NSC

samples from SC are used to generate lookup tables TV and TSC . In cryptographic

key reconstruction, feature keys are generated from the spoken password (mV bits)

and SC (mSC bits). The two lookup tables generated and the features keys are then

used to generate the cryptographic key.

In the next two subsections, we will present these two phases in more detail.

5.4.2 Phase I: Feature descriptors derivation

Feature descriptors from voice

In the last six decades, speech recognition and speaker recognition have advanced

a lot [27]. A speaker recognition system usually has three modules: feature ex-

traction, pattern matching and decision making, among which feature extraction is

especially important to our research as it estimates a set of features from the speech

signal that represent the speaker-specific information. These features should be
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Figure 5.3: Design overview, refer to Section 5.4.2 for detailed description
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consistent for each speaker and should not change over time. The way we extract

these features and derive the feature descriptors is very similar to the previous ap-

proach [116], except that we use the Mel-frequency Cepstral Coefficients (MFCCs)

instead of linear cepstrum [116]. MFCC has advantages over linear cepstrum that

the frequency bands are equally spaced on the mel scale, which approximates the

human auditory system’s response more closely than the linearly-spaced frequency

bands used in the linear cepstrum [47].

Associating centroids to the acoustic model We convert the raw speech signal

into a sequence of acoustic feature vectors in terms of the Mel-frequency Cepstral

Coefficients (MFCCs) [155]. In the next paragraph we provide a short description

on the extraction of MFCC (see Figure 5.4).

Figure 5.4: Block diagram of extracting MFCC

The voice signal is first divided into blocks of 20 to 30 msec (see Figure 5.3(a)),

and Discrete Fourier Transform (DFT) is performed to obtain the frequency rep-

resentation of each block. The neighboring frequencies in each block are grouped

into bins of overlapping triangular bands of equal bandwidth. These bins are equally

spaced on a Mel-scale instead of a normal scale as the lower frequencies are per-

ceptually more important than the higher frequencies. The content of each band is

now summed and the logarithmic of each sum is computed. To see this effect in

time domain, Discrete Cosine Transform is applied to yield a “spectrum like” rep-

resentation ψ(t) that collectively make up an MFC, and ψ(1), . . . ψ(12) are called

MFCC, where higher order coefficients are discarded. This vector is called a frame

(fV ).

We run a sliding window of 30 msec over an utterance to obtain blocks 10 msec

apart from one another, and extract the MFCC, 〈ψ(1), . . . ψ(12)〉, for each block
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(see Figure 5.3(b)). n frames are obtained from utterance of the password (see

Figure 5.3(c)). An acoustic model of vectors from a speaker-independent and text-

independent database of voice signals is obtained, from which vector quantization is

used to partition the acoustic model into clusters (see Figure 5.3(d)). A multivariate

normal distribution for each cluster is generated, where each cluster is parameter-

ized by the vector c of a component-wise means (called a centroid) and the covari-

ance matrix Σ for the vectors in the cluster. The density function for this distribution

is

P (c | x) =
1

(2π)δ/2
√

det(Σ)
e−(x−c)TΣ−1(x−c)/2

where δ is the dimension of the vectors. We denote the set of centroids as C.

Segmentation of frames After getting the centroids from a database of speaker-

independent voice signals, we try to obtain the transcription, i.e., the starts and ends,

of the phonemes of an individual user’s utterance.

To do this, we perform segmentation on the spoken password. Let

fV (1), . . . fV (n) be the sequence of frames from the utterance, and

F (R1), . . . F (Rs) be the sequence of s segments (s is a constant and same

for all users), where F (Ri) is the ith segment containing the sequence of frames

fV (j), . . . fV (j
′) such that, 1 ≤ j ≤ j′ ≤ n. Intuitively, each F (Ri) corresponds to

one “component sound” of the user’s utterance.

We did this with an iterative approach (see algorithm 1). Ranges R1, . . . , Rs are

first initialized to be equally long. We then calculate the matching centroid c for a

segment F(R), i.e., the one for which the likelihood of F(R) w.r.t. c is maximum.

Dynamic programming is then used to determine a new segmentation for that frame

sequence. This process is repeated until an optimal segmentation is obtained, which

is mapped to the feature descriptor (see Figure 5.3(e,f)).

Feature descriptor Having derived a segmentation for a spoken password, we

next define the feature descriptor (φV ) of this segmentation that is typically the
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Algorithm 1 Spoken password segmentation
Segmentation (fV (1), . . . , fV (n), s)

1: Score
′

←− 0
2: for i = 1 to s do

3: Ri ←−

(

⌊(i− 1)× n

s

⌋

,
⌊ i× n

s

⌋

)

4: end for

5: repeat

6: Score←− Score
′

7: for i = 1 to s do

8: while ∀c ∈ C do

9: L(F (Ri)|c)←−
∏

j ∈ Ri

(fV (j)|c)

10: end while

11: c(Ri)←− arg max
c ∈ C

{L(F (R)|c)}

12: end for

13: let
⋃s

i=1
R

′

i ←− [1, n]

14: Score
′

←−

s
∏

i = 1

L(F (R
′

i|c(Ri)))

15: Ri ←− R
′

i

16: until Score
′

- Score < ∆

same when the same user speaks out the same utterance. To do this, we use a fixed

vector αV , and define the ith bit of the feature descriptor as (see Figure 5.3(g))

φV (i) = αV .(µV (Ri)− c(Ri)), ∀ 1 ≤ i ≤ s

That is, we normalize µV (Ri) with c(Ri) and let φV (i) be the linear combination

of components in it as specified by αV . This process results in a feature descriptor

(φV ), where NV feature descriptors are then generated from NV voice samples and

used to generate a lookup table TV (in Phase II).

Feature descriptor from skin conductance

When some external or internal stimuli occur that makes a person stressed, the skin

becomes a better conductor of electricity. This conductance can be measured be-

tween two points on the body (e.g., two fingers) and the level of electrical conduc-

tance is called skin conductance. Since we want to detect changes in the emotional
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status of a person, we record skin conductance over a time period.

SC signal was measured with our device and sampled at a frequency of 30 sam-

ples per second. Let fSC(1), . . . , fSC(ℓ) denote the sampled values obtained from

the SC signal. We model the feature values into a feature descriptor (φSC) in a sim-

ilar way as we did in the processing of voice. We choose a random vector αSC=

[αSC(1), αSC(2), . . . , αSC(mSC)] (mSC is a constant), and use the Euclidean dis-

tance between all the points of the αSC vector and fSC to compute the distance

measure M and henceforth the feature descriptor (φSC).

M(i, j) = αSC(i)× fSC(j) ∀ 1 ≤ i ≤ mSC , 1 ≤ j ≤ ℓ

φSC is the mean of all the distance measures for each αSC(i) values (see Fig-

ure 5.3(h)), i.e.,

φSC(i) =
1

ℓ

ℓ
∑

j=1

M(i, j) ∀ 1 ≤ i ≤ mSC

Note that the upper bound of αSC(i) needs to be carefully chosen to maintain a

good entropy on the feature descriptor of different people. Also note that we do

not store skin conductance information directly but rather the feature descriptor

generated from the distance measure is stored (same as in the case of voice). NSC

feature descriptors are derived from NSC SC samples and then are used to generate

a lookup table TSC (in Phase II).

5.4.3 Phase II: Lookup table and cryptographic key generation

We explain how we obtained the feature descriptors from voice and skin conduc-

tance in the previous subsection. Here, we will explain how we constructed lookup

tables (training of the model) and obtained the cryptographic keys from the tables

(usage of the model). The basic idea is that each entry of the lookup tables contains

a share of the correct key or some garbage value, and the feature descriptor is used
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to determine the corresponding entry from the lookup table. In the end, the shares

from the lookup tables are used to reconstruct the key.

Lookup table generation

Intuitively, if a feature descriptor is the same as the one recorded previously (i.e.,

in training), then the system should choose the correct key share from the lookup

table, or the garbage otherwise. In order to tolerate some small deviation of a user’s

utterance and skin conductance, we calculate the mean (µφV
(i), µφSC

(i)) and stan-

dard deviation (σφV
(i), σφSC

(i)) of each feature descriptor over NV , NSC training

samples, and define the partial feature descriptors BV , BSC as

BV (i)=































0, if µφV
(i) + kσφV

(i) < tV

1, if µφV
(i) - kσφV

(i) > tV

⊥, otherwise

∀ 1 ≤ i ≤ mV

BSC(i)=































0, if µφSC
(i) + kσφSC

(i) < tSC

1, if µφSC
(i) - kσφSC

(i) > tSC

⊥, otherwise

∀ 1 ≤ i ≤ mSC

for some threshold tV and tSC respectively (see Figure 5.3(j)). This phase is the

training phase in our model. Here k is a parameter to acquire a tradeoff between

security and usability. With the increase in value of k, the user has better chance

to generate the key successfully, but will hamper the security of the scheme. More

precisely, the increase in the value of k will increase the false acceptance rate and de-

crease the false rejection rate (as shown in our results in the evaluation Section 5.6).

The idea of defining the partial feature descriptor in this way is illustrated in

Figure 5.5 (where the set {B, µ, σ, t} is replaced by {BV , µφV
, σφV

, tV } for voice

and {BSC , µφSC
, σφSC

, tSC} for skin conductance). If the ith feature descriptor is
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consistently same i.e. µ(i) + kσ(i) < t (the first case in Figure 5.5), then there

is a high probability that the value of the ith feature descriptor will be less than t

during key reconstruction. Therefore, we can let the cell T (i, 0) of the lookup table

contain a valid share of the key (and let T (i, 1) contain random bits). If the ith

feature descriptor is consistently different, i.e. the value of the feature descriptor is

unreliable (when compared to the threshold t as in the third case in Figure 5.5), we

let both T (i, 0) and T (i, 1) contain valid shares (typically different). Unlike [116],

lookup tables are not encrypted (for discussion on this, see section 5.4.4).

Figure 5.5: Definition of partial descriptor

Having valid shares in both T (i, 0) and T (i, 1) leads to different key shares used

and consequently different keys being generated, which might not be desirable in

systems that require a unique key. To solve this problem, a random cryptographic

key K (unique for each user) is first generated, which is then encrypted with all

possible valid keys (KHi
) that can be derived from <TV ‖TSC>. The key generation

template therefore comprises of key K encrypted with Z = |KHi
| derived keys and

the lookup tables <TV ‖TSC>. Thus, the template =

〈

〈TV | TSC〉 ,
〈

EKH1
(K‖r̂), EKH2

(K‖r̂), . . . , EKHZ
(K‖r̂)

〉〉

,

where EKHi
(msg) is a publicly known encryption algorithm and r̂ is a unique string

associated to each user which helps us to determine whether the decryption is cor-

rect or not in section 5.4.3.
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Cryptographic key reconstruction

When a user tries to reconstruct the cryptographic key, he/she first presents his/her

spoken password and the skin conductance. The model collect this information,

extracts the features and generates the feature descriptors for both voice and the

SC. Corresponding shares from the lookup tables are chosen based on the feature

descriptors.

bV (i) =















0 if φV (i) < tV

1 otherwise

∀ 1 ≤ i ≤ mV

bSC(i) =















0 if φSC(i) < tSC

1 otherwise

∀ 1 ≤ i ≤ mSC

For example, if the feature descriptor φSC(i) is less than the threshold tSC , then

bSC(i) = 0 and TSC(i, 0) is chosen from TSC as a key share; otherwise bSC(i) = 1

and TSC(i, 1) is chosen (see Figure 5.3(i)). bV and bSC are the feature keys and are

obtained from voice and SC respectively.

A key K ′ is derived by concatenating the key shares (see Figure 5.3(k)). This

derived key is then used to decrypt the |KHi
| encrypted keys stored in the template.

If the decryption succeeds (by matching the released r̂ and the stored r̂), then the

key K is released.

KD =















DK ′(EKHi
(K‖r̂)), if K ′ = KHi

Random, if K ′ 6= KHi

where, DK ′(msg) is a publicly known decryption algorithm.
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5.4.4 Discussions

While we try to use the consistency of voice and skin conductance to generate the

correct key only when it is the genuine user in the normal emotional state, the incon-

sistency of voice and skin conductance poses challenges too. Voice produced and

skin conductance measured of the genuine user in a non-stressed emotional status

might change due to tiredness, illness, noise, and etc.

We used an error correction technique, in particular, hamming distance, to im-

prove the usability of the scheme. mCd different keys are derived from any freshly

generated key K ′ obtained from the feature descriptors and T (similar to the one

derived in section 5.4.3), which are d distance away from the derived key K ′. All of

these mCd keys are then used to decrypt the encrypted keys before giving any neg-

ative answer to the user. If the decryption succeeds then the key K is released. For

example, if d = 2 and length of the key is m, then mC2 different keys are derived.

Thus, |KHi
| ×m C2 decryptions are performed in attempting to recover K.

Another issue concerns the privacy of the biometric data used. Ballard et al. pro-

pose using randomized biometric templates protected with low-entropy passwords

to provide strong biometric privacy [15]. One can use this in conjunction with our

model to provide both coercion resistance and biometric privacy. However, it is

unclear whether the use of low-entropy passwords may have a negative impact on

coercion resistance since, intuitively, an attacker may blame the user for providing

the wrong low-entropy password in a coercion (similar problem discussed in sec-

tion 5.3.2). We leave this as future work to develop a solution that satisfies both

requirements.

5.5 Experimental Setup

We presented our design in generating a cryptographic key using voice and skin

conductance in Section 5.4. It is important to test it out with real human beings to

evaluate its performance. However, this is difficult as we need to find a way to make
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the participants feel stressed or nervous. It is clear that we cannot actually coerce

them to do something by, e.g., putting a gun over their heads. Nevertheless, we

performed case studies to induce stress on the participants and measure their voice

and skin conductance. (IRB approval was obtained from our university before the

user study.) We present the experimental setup in this section and the evaluation

results and discussion in the next section.

5.5.1 Demographics

Since we were going to induce stress on the participants, we decided to concentrate

on the younger generation (undergraduate and graduate students in the age from 18

to 30). We had altogether 43 participants, from which 4 participants detached the

sensors from their fingers when they were nervous during the experiment. There-

fore, we successfully performed our experiments on 39 participants, out of which

22 were male and 17 were female.

5.5.2 Experimental settings

Participants were asked to sit in a small office where the overhead fluorescent lights

were turned off and a dim red incandescent lamp was turned on to reduce the pos-

sible electrical interference with the monitoring equipments. The room was air

conditioned to approximately 72◦F and humidity level was generally dry. This is

done in accordance to the variation of skin conductance in different environmental

conditions [140].

Skin conductance sensors1 were attached to the three middle fingers of the par-

ticipant to record SC (shown in Figure 5.2). The participant was also asked to keep

her left hand (with sensors attached) as still as possible to avoid interference from

the sensors. Fake heart rate tags were tied to the wrist, which gave an illusion of

monitoring the heart rate.

1We use a physiological data acquisition device called Lightstone from WildDivine [146].
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Initially, there was an incomplete disclosure regarding the purpose and the steps

of the study in order to ensure that the participant’s responses will not be affected

by her knowledge of the research.

5.5.3 Procedure

We ran two experiments (e1 and e2). Each experiment consisted of two parts, where

the first parts (e1n and e2n) were conducted when the participants were in a normal

(calm) condition, and the second parts (e1s and e2s) were conducted when the par-

ticipants were stressed.

We ran experiment e1n by

• showing nice (geographical) pictures one after another and short phrases (the

spoken password embedded) which are related to the pictures, and asking the

participant to read them out;

• showing fake visual heartbeats at a normal rate at the bottom of the screen

and correspondingly playing heartbeats sound.

In order to capture the emotional responses in the stress scenario in e1s,

• a frightening horror movie was played, replacing the nice pictures;

• the rate of the heartbeats were gradually increased to induce more stress on

the participant;

• the participant was asked to read out some short phrases at the end of each

horror scene (rather than along with the video) to avoid distraction.

Similar studies [118, 91] have been performed previously to measure the stress

level in users.

In e2, we went a bit further to induce more stress on the participant. Figure 5.6

shows the change in skin conductance in response to different events in e2. During

e2, the participant was asked to type a few sentences (e.g., “Work is much more
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fun than fun”) shown to her in a fixed period of time. She was also warned (prior

to the experiment) not to press the “ALT” key on the keyboard, as it would cause

the computer program to crash and all data would be lost (event A). We then left

the participant alone in the room to continue typing (event B). We configured the

computer to restart after 3 minutes irrespective of whether the participant actually

touched the “ALT” key or not. The computer would then boot from a USB drive

into MS-DOS and display some error messages (event C). This completes the first

part of e2, i.e., e2n.
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Figure 5.6: Change of skin conductance in e2

Stress started to develop at this point in time as the participant believed that

she had pressed the “ALT” key which caused data loss on the computer (event D).

We purposely left the participant alone so that stress could develop further and she

could not get immediate help to resolve the “problem”. After that, the researcher

entered the room and examined the keyboard and the computer (event E) and then

accused the participant of her negligent act of pressing the “ALT” key (event F).

This turned out to be successful in making the participant stressed as we observed

that many participants were nervous at this point in time. Some kept saying “sorry”;

some tried very hard to fix the “problem”, and some started calling for help. There

were also voluntary confession statements from the participants, e.g., “I hit the ALT

key by mistake in place of typing the ‘X’ key”, “It was a mistake from my side.”.
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5.5.4 Discussion

In this section, we discuss the difference of the emotional state of a user in real life

and in our user study, and limitations of our experiment.

1. Training of the system

• Real life: the user is in a (controlled) environment specified by our sys-

tem, in which the stress level is low. This allows us to generate the

lookup table for that particular user with the normal skin conductance

level.

• User study: the user is in exactly the (controlled) environment specified

by our system, i.e., when watching a relaxation movie.

2. Trying to generate the cryptographic key; no coercion

• Real life: a user could be in various emotional states, including being

happy, sad, angry, etc.

• User study: same as in training when the user is watching a relaxation

movie. In this work, we only try to analyze how our system performs

when users are calm and relaxed. It remains future work to analyze how

it works when the user is in other emotional states. We do expect the

false rejection rate to rise when the user is in other emotional states.

3. Trying to generate the cryptographic key; in coercion

• Real life: a user can be forced/coerced in many different ways, e.g., a

gun to the head, or a knife under the throat, etc.

• User study: watching a horror movie and being forced to plead guilty

(having damaged a notebook computer). We tried our best to approxi-

mate the real-life scenarios, but there is a limit we could go when doing

this to real human beings (e.g., IRB restriction). However, we believe
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that what we did is a clever way of studying human behavior when being

coerced.

Discussions above highlight some limitations of our scheme, e.g., we have not

tested how it reacts to other emotional status (happy, sad, angry, etc.) and how

skin conductance may change naturally (due to oily fingers, etc.). There are two

other important limitations in the present study. First, our study does not test the

repeatability of using our scheme, i.e., we did not ask the participants to come back

and try again. The second limitation comes with the over-controlled environment,

e.g., quiet office (because of the use of voice), controlled temperature and humid-

ity [32](because of the use of skin conductance), and etc. It remains further work to

test our scheme in different settings.

5.6 Evaluation

In this section, we analyze the data collected in our user study. We first describe

how we partition the data into different groups (e.g., for training and test purposes),

see Section 5.6.1. We then present a series of analysis on the false acceptance and

false rejection rates (Section 5.6.2). Finally we show the change in the password

space where an attacker has perfect knowledge of our design and the content stored.

5.6.1 Training and testing datasets

We have collected voice and skin conductance signals for 39 participants. For each

participant, we have collected many samples of the signals when the participant

is either calm or stressed. Table 5.2 shows the number of samples we collected in

each experiment for each participant. Voice signals are typically 2 to 3 seconds long,

while skin conductance signals are about 10 seconds long to avoid fluctuations.

Figure 5.7 shows how we obtain dataset to

• split original sample sets {νfull
e1n, ωfull

e1n, ωfull

e2n} into two equal halves {νtrain
e1n ,
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Feature e1n e1s e2n e2s

Voice
# of samples 26 5 0 0

Notation νfull
e1n νfull

e1s - -

SC
# of samples 26 60 18 60-80

Notation ωfull

e1n ωfull

e1s ωfull

e2n ωfull

e2s

Table 5.2: Number of samples collected for each participant

ωtrain

e1n , ωtrain

e2n } and {νtest
e1n , ωtest

e1n, ωtest

e2n} to obtain datasets for training and testing

(see the half circles);

• combine different voice samples and skin conductance samples to create new

datasets to test our system (see circles in the middle column). {νtrain
e1n &

ωtrain

e1n }, {νtest
e1n & ωtest

e1n}, {νtrain
e1n & ωtrain

e2n }, {νtest
e1n & ωtest

e2n} are combined to create

{ξtrain
e1n }, {ξtest

e1n}, {ξtrain
e2n }, {ξtest

e2n} respectively.

• to obtain the stress dataset {νfull
e1s & ωfull

e1s}, {νfull
e1s & ωfull

e2s} are combined to create

{ξfull
e1s}, {ξfull

e2s} respectively.

Figure 5.7: Splitting and combining datasets

Note that the voice and skin conductance samples that are combined together

might not have been captured at exactly the same time. We allow a time gap because
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an attacker might record the voice of the victim to be used in conjunction with

the skin conductance of the victim at a slightly different time. Both samples were

captured in the same part of the experiment, though, i.e., both from e1s or both from

e2s.

5.6.2 Accuracy of our model

The false rejection rate of our system is defined as the percentage of failed login

attempts by a legitimate user with her cryptographic key generated, averaged over

all users in a population A. Similarly, the false acceptance rate is defined as the

percentage of failed detection of attempts by illegitimate users or legitimate users

in a stressful situation, averaged over all users in a population A.

Voice samples only We first evaluate the voice samples we collected in our exper-

iments. The purpose is to check out the false acceptance and false rejection rates, in

an event if only voice samples are used to generate cryptographic keys. The system

is trained with νtrain
e1n

of user ui, and is tested against νfull
e1n

of user uj where i 6= j, ∀

j ∈ A to calculate the false acceptance rates; and against νtest
e1n

of user ui to calculate

the false rejection rates. Results are averaged on all users in A. We try different

random αV vectors and choose the one that yields the smallest sum of the false ac-

ceptance and false rejection rates. We try different settings of the hamming distance

parameter d, and find that 2 gives a reasonable tradeoff between false acceptance

and false rejection rates. The false acceptance and false rejection rates for different

values of k are plotted in Figure 5.8.

Figure 5.8 shows that we manage to get a comparable accuracy with the previ-

ous work [116] in terms of the false rejection rate. False acceptance rate was not

reported in [116].

Skin conductance only Next, we evaluate the skin conductance samples to see

how well they reflect the change in the participants’ emotional status. We show the
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Figure 5.8: False acceptance and false rejection rates for spoken passwords

results in Figure 5.9(a) and Figure 5.9(b) for experiment e1 and e2, respectively.

The different color lines denotes different ‘k’ values in Figure 5.9 and Figure 5.10.

The system is trained with ωtrain

e1n
(and ωtrain

e2n
, respectively) of user ui, and is tested

against the stressed full data set, ωfull

e1s
(and ωfull

e2s
, respectively) of the same user ui

to calculate the false acceptance rates; or against the normal test data set, ωtest

e1n
(and

ωtest

e2n
, respectively) of the same user ui to calculate the false rejection rates. Results

are averaged over all users in A.

Note that the false acceptance and false rejection rates are higher for e1 in Fig-

ure 5.9(a). We believe, this is because of the reason that the intensity of some of the

horror videos was not very high, which did not result in a noticeable change in the

skin conductance for many users.

We can observe the tradeoff of various settings of k and the threshold from

these figures. In general, this shows that whenever a user is under stress, her skin

conductance can be used to differentiate between the two emotional state with good

accuracy. For example in e2, when k = 1.25 and tSC = 2.1, we obtained a false

acceptance rate of 3.2% and a false rejection rate of 2.2% (see Figure 5.9(b)). If

we increase the value of k from 1.25 to 1.75 in both Figures 5.9(a) and 5.9(b), we

could see a decrease in the false rejection rates (increasing usability) and increase in

the false acceptance rates (compromising with the security). We used the hamming
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Figure 5.9: False acceptance and false rejection rates for skin conductance
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distance parameter d = 2 in our setting.

Voice combined with skin conductance Voice and skin conductance samples are

combined as shown in Figure 5.7 to obtain the samples needed in this evaluation. We

first train the system with ξtrain
e2n

, and then evaluate the system against three different

datasets to evaluate the false acceptance and false rejection rates.

a ξfull
e2n

of user uj where i 6= j, ∀ j ∈ A: when a different person tries to generate

the key (Figure 5.10(a));

b ξfull
e2s

of user ui: when the same user tries to generate the key when she is being

coerced (Figure 5.10(b));

c ξtest
e2n

of user ui: when the same user tries to generate the key when she is not

being coerced (Figure 5.10(c)).

We evaluate the false acceptance rates in the first two cases and the false re-

jection rates in the third case. Results are averaged over all users in A. We use a

hamming distance parameter d = 4, and show the results in Figure 5.10.

These results show that generating cryptographic keys from voice and skin con-

ductance is effective in fighting coercion attacks, as we observe false acceptance

rates between 6% to 15% for 1 ≤ tSC ≤ 4, which can also rise up to 22% for

tSC ≥ 5. False rejection rates are between 0% and 4.5% for all values of tSC . Fur-

ther efforts are needed to reduce the false acceptance and false rejection rates. Same

as in the previous subsection, if we increase the value of k from 1.25 to 1.75, we

could see a decrease in the false rejection rates and increase in the false acceptance

rates.

5.7 Discussion and limitations

In this section we discuss some of the advanced attack on the model (see Sec-

tion 5.7.1 and the limitations of our work (see Section 5.7.2).
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5.7.1 Change in the password space

In this section, we discuss more advanced attacks on our system (if implemented)

beside forcing the victim to obtain her spoken password and skin conductance. If

such system is implemented, then we need to approximate the entropy in the worst

case of these advanced attacks, in which the attacker makes use of the group in-

formation about the skin conductance and information stored in the key generation

module.

The group information about skin conductance refers to the patterns observed

in the change in the users’ feature key generated from the skin conductance (bSC)

when they are coerced. An attacker could use this information to selectively modify

the victims skin conductance feature key in order to improve the probability of

generating the correct key. To know how we obtained the feature key (bSC) for SC,

see section 5.4.

Although we do not store any biometric information of the user directly on the

device (see discussions in Section 5.4), we still need to store the lookup tables (TV

and TSC) which are derived from the user specific data (e.g., feature descriptors).

Although this table can be encrypted with a user password as discussed in previous

work [116], however we try not to rely the security of our model on the secrecy of

this table because we are dealing with coercion attacks. In the rest of this subsection,

we assume that an attacker has perfect knowledge in both the group information

about skin conductance and the lookup tables. We want to approximate the guessing

entropy, i.e., the reduction in the password space for this more powerful attacker.

More precisely, we assume in the worst case that an attacker has access to

• the lookup tables TV and TSC ;

• the recorded spoken password of the user and the corresponding feature key

{bV (i)};

• the recorded skin conductance when the user is stressed and the corresponding

feature key {bSSC(i)};
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• the databaseD which contains the mapping of the SC feature keys when users

are normal ({bNSC(i)}) to the scenario when they are stressed ({bSSC(i)}) for

all users in a population A.

A sample database D for such mapping of SC is shown in Table 5.3 for |A|

users. Each row in the table is a record of the feature key of a user when she is

normal and stressed, and the last column shows the index of the feature keys that

had changed from bNSC to bSSC .

# bNSC bSSC Flipped bits’ position

1 011011011011 001101110011 2,4,5,7,9

2 010010010111 010100110110 4,5,7,12
...

...
...

...

|A| 010101001100 111111100110 1,3,5,7,9,11

Table 5.3: A sample database D

The attacker’s strategy would be to analyzeD to learn patterns in which people’s

feature keys {bNSC} changes to {bSSC}, e.g., whenever the i-th index of the feature

key changes, the j-th one will change too.

These patterns can be easily learned by applying a well studied technique called

association rule mining [4]. The attacker can then use these patterns to reduce the

password space. Here, we use a simple example to demonstrate the idea.

We first represent the password space by a sequence of 0’s (the corresponding

index in {bSSC} will definitely not change when a user’s emotional status changes),

1’s (the corresponding index in {bSSC} will definitely change), and ∗’s (don’t know),

e.g., [1, ∗, ∗] represents a password space in which only the first index of {bSSC} will

change, and therefore the password space is 22 = 4. When the attacker makes use

of a pattern learned, e.g., “the change of the first index of {bSSC} implies the change

of the second one”, he can convert the password space from [1, ∗, ∗] to [1, 1, ∗], since

the second index of the {bSSC} will definitely change, too. With this, the password

space reduces to 21 = 2.
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We present the detailed algorithm with an example in estimating this reduction

in the password space in the Appendix B.

We constructed the database D with the skin conductance samples collected in

our user study, mine all association rules, and then use the above algorithm to find

out the change in the password space. Figure 5.11 shows the results for different

settings of the threshold and minimum confidence in the association rule mining.
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Figure 5.11: Password space reduction

k is set to 1.25 in this experiment, and the minimum support is set to 30%. Note

that the original password space is 2mSC = 250. Although in the worst case the

effective number of bits to represent the password space reduces by roughly 20%,

many settings of the threshold value result in only 10% reduction.

Another way to attack our system is to make the user take a sedative to relieve

his/her anxiety before capturing SC. The attacker can then use this skin conduc-

tance to generate the key. We are trying to collaborate with medical practitioners

and researchers to see the correlation between the two skin conductances, one un-

der normal condition without taking any sedative and the other under coercion and

having taken the sedative. For now this remains as a future work.

104



5.7.2 Limitations and summary

Note that guessing entropy and guessing distance [16] might provide deeper insight

in the security of our model. We leave it as our future work. In terms of feasibility,

in future we will also like to see in some possibilities of building the system (may be

a mobile device) with all three: voice, skin conductance and fingerprint extraction

mechanism to authenticate to the system. Furthermore, we would like to look into

other emotional responses like happy, joy, anger, sad etc., to make the claim of using

SC in fighting coercion attacks stronger. This work does not study the repeatability

of the key using the proposed scheme and is left as a future work.

To summarize in this work, we demonstrated how an attacker can exploit hu-

man factor by succumbing him to coercion attack. To circumvent this attack we

presented a novel approach for fighting against coercion attacks in generating cryp-

tographic keys using skin conductance (SC) of a person. In coercion attack, the

attacker forces a user to grant him access to the system. SC was used to deter-

mine the person’s overall arousal state i.e. (emotional status). The change in the

emotional status of a person results in different keys. We discussed the reasons of

adopting SC as an emotional response parameter and why it was preferred over other

physiological signals like Electrocardiography, Electromyography, Heart Rate, res-

piration, skin temperature etc. In this work, we have chosen skin conductance along

with voice in generating cryptographic keys; however, one can choose any other

biometric for e.g. iris, fingerprint, face etc. in lieu of voice. Cryptographic key is

generated using lookup table method as discussed in [116].

We conducted two experiments in our user study and have shown some interest-

ing results. The proposed model was tested with 39 user’s voice and skin conduc-

tance data to compute the false acceptance and false rejection rate. Furthermore our

results showed that the cryptographic key generated in two different scenarios are

different for the same person. This bolsters our heuristic to use skin conductance

for fighting against coercion attacks. As both skin conductance and voice are not
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static biometrics, in some cases we obtained high false rejections. We evaluated the

security of the proposed model in terms of entropy and several threat models and

discussed how difficult it is for an attacker, in an event when she has full information

about the key generation module; the skin conductance of the victim in the stressful

scenario; and the group information about the skin conductance.
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Chapter 6

Coercion attack in authentication

responsibility shifting

6.1 Introduction

In Chapter 5, we proposed a solution on how to use skin conductance to fight against

coercion attacks when the user is forced to reveal his own secret. However, to meet

the demand of scalability and usability, many real-world authentication systems

have adopted the idea of responsibility shifting, explicitly or implicitly, where a

user’s responsibility of authentication is shifted to another entity, usually in case of

failure of the primary authentication method. One example of explicit responsibility

shifting is in the fourth-factor authentication [23] whereby a user gets the crucial au-

thentication assistance from a helper1 who takes over the responsibility. Facebook

also uses a similar authentication protocol which allows the user to recover his ac-

count’s password by collecting vouch codes from his trusted friends [46]. There is

also implicit responsibility shifting which might not seem as obvious. For instance,

whenever suspicious activity is detected in an user account, the system administrator

takes over the responsibility of revoking the attempted authentication.

Responsibility shifting does not enhance the security of the authentication. In-

1The helper is said to be the fourth factor as someone the user knows.
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stead, it entangles with the authentication scenario and may weaken its security.

A system that relies on alternate email addresses for password recovery is only as

secure as whoever managing those alternate email accounts. The provider of the

alternate email account could become the victim of an attack in an attempt to break

the authentication in the primary system. In the fourth-factor authentication sys-

tem [23], subverting the helper allows the adversary to log in without capturing the

password of the user.

When the trustee to whom the responsibility has shifted is another computer

system, we can use any standard security mechanism to protect it. However, when

such a trustee is a human being, protection becomes non-trivial because of the po-

tential coercion attacks. To the best of our knowledge, this is the first work to study

the security of human trustees under coercion attacks in a responsibility shifting in

authentication.

(a) When forced to reveal his own password

(b) When forced to reveal someone else’s password

Figure 6.1: Coercion attack in different scenarios

Our previous work in Chapter 5, rely on the fact that the victim’s skin-

conductance (an emotional response parameter [100]) changes involuntarily upon
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coercion, resulting in incorrect authentication credentials. We remark that it is un-

clear whether the same techniques could help in protecting the trustee in our study.

The difference between the trustee and a victim in general coercion attacks is subtle,

yet critical in terms of security, see Figure 6.1.

The victim shown in Figure 6.1(a) (and studied in Chapter 5) is coerced to reveal

her own credential. The consequences include the victim’s account being broken

into, and her valuable being stolen. It is therefore naturally believed (and experi-

mentally verified) that the victim becomes nervous under such an attack. In contrast,

Harry, the trustee considered in this Chapter (see Figure 6.1(b)), is coerced to pro-

vide Alice’s credential, direct consequence of which does not inflict any harm on

himself. No prior study has shown the effect on emotional status of Harry in this

case and his skin conductance. Therefore, the crux of our work is to investigate

whether the trustee’s skin conductance also changes under coercion, and if any,

whether the magnitude of change is large enough to be captured by the coercion

resistance technique.

To put our study into a concrete example, we focus on the fourth-factor authen-

tication [23], a recent proposal on shifting responsibility to help backup authentica-

tion. We first provide an overview of the fourth-factor authentication protocol and

discuss in detail the potential coercion attack on it. As the main contribution, we

then design and conduct a user study involving 29 university students to evaluate

the trustee’s emotional status in a simulated coercion attack. The results of our user

study are positive in the sense that the victim’s skin conductance still changes un-

der physical threats. Although there exist several forms of responsibility shifting,

our focus is on the fourth-factor authentication scheme because it facilitates rigor-

ous analysis. The principles of our findings in this study are applicable to other

authentication mechanisms. Having shown that skin conductance could be used to

detect coercion attacks on the helper in the fourth-factor authentication scenario,

we further propose a modified protocol that is coercion resistant in protecting the

helper.
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The rest of the Chapter is structured as follows. Section 6.2 discusses the related

work on different responsibility shift schemes. We provide an overview of the fourth

factor authentication protocol and its vulnerability to coercion attacks in Section 6.3.

We describe our user study in Section 6.4, and report the results in Section 6.5.

6.2 Related work

In this section we review some of the techniques which involve implicit/explicit

responsibility shifting and some previous work on emotion recognition. To the best

of our knowledge, this work is the first work on stress detection under the context of

responsibility shifting. As explained in Section 6.1, an explicit responsibility shift

occurs when a user fails to reproduce her credential where an implicit shift occurs

in case when there is some suspicious activity in the account etc. In both cases the

entity to which the responsibility is shifted can be either “human” or a “computer

system”.

Role based access control [50] is one such example where the responsibility is

implicitly shifted to the system admin (human) to suspend the account suspicious

activities are detected. Recently Twitter revoked automatic access to those third

party apps abusing its APIs for users tweet collection [150]. This is also an example

of implicit responsibility shift whereby the responsibility is shifted to a computer

system checking whether the number of API calls are exceeding the limit or not.

There have been many proposals on explicit shift of responsibility when the

user fails to generate her credentials. A lot of work has been done in securely

shifting the responsibility to another entity(computer systems) while maintaining

usability. Alternate email addresses can be used to reset the password of the primary

email-id in the case of password loss [164]. Personal knowledge based questions

are another backup authentication mechanism and the most commonly used [8, 94,

93]. Another alternative is the preference based backup authentication mechanism

proposed in [86, 88]. Google already has added a 2-step verification layer on top
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of Google Apps where a mobile phone can be used to receive a verification code

via text message or phone call to reset/recover the password [65]. As shown earlier

in the Chapter, the fourth factor authentication [23] is one example of explicitly

shifting the responsibility to a human being. Another work in this line of research is

[139]. Facebook has added a security feature similar to fourth-factor authentication

where a user can recover his account by collecting the codes from 3 of his trusted

friends [46]. Authentication schemes involving responsibility shifting are always

vulnerable to coercion attacks as long as the trustee is a human being.

6.3 Fourth-factor authentication and coercion at-

tacks

As discussed in Section 6.1, fourth-factor authentication [23] is a typical example of

responsibility shifting. In this section, we first provide an overview of the protocol

used in the fourth-factor authentication (see Section 6.3.1), and then discuss a po-

tential coercion attack when responsibility shifting takes place (see Section 6.3.2).

Table 6.1 shows some notations used in the rest of this Chapter.

6.3.1 Fourth-factor authentication protocol

In fourth-factor authentication, a trustee (Harry) to an account holder (Alice) is

another registered user of the system who can authenticate himself successfully and

is usually a person who knows Alice, e.g., a work colleague. He can verify Alice’s

identity via any social means, e.g., by recognizing Alice’s face or voice over the

phone, when the responsibility to authenticate Alice is shifted to him. Here we

provide an overview of the fourth-factor authentication system which consists of

the authentication server (AS), Alice (u) who needs help in her authentication, and

Harry (H) to whom the responsibility to authenticate is shifted.

Enrollment: u provides AS with a list of members Lu to whom a responsibility to

111



PARTIES INVOLVED

u User or Asker (Alice)
H Helper (Harry)
AS Authentication Server
CRP Coercion Resistance Provider

FOURTH-FACTOR AUTHENTICATION

H + u H wants to vouch for u
P Password
TK Token
C code sent from u to H

Lu list of u’s helpers
VC vouch code
Ku secret key shared between u and AS

KH secret key shared between H and AS

COERCION RESISTANT FOURTH-FACTOR AUTHENTICATION (ADDITIONAL)

SID session ID
LT lifetime
KH−CRP session key for H and CRP provided by AS

KSC key generated using SC
K key used to decrypt the encrypted VC

TCRP A ticket provided by AS for CRP
Table 6.1: Notations

authenticate can be shifted in case of emergency authentication.

Responsibility shifting: In case u loses her hardware token TK (but has pass-

word P), she shifts the responsibility to H to authenticate herself. Figure 6.2 details

each individual step indicated by the numbers and each step’s corresponding mes-

sage exchange indicated by letters.

1. Partial authentication: u initiates the authentication process by contacting

AS (a), and then encrypts the challengeNS1 she receives from AS (b) with her

secret keyKu = hash(P) and sends it back together with a new challenge Nu

(c). This step ends with AS verifying NS1 and providing u a temporary code

C which can be used by H (to be chosen in the next step) (d).

2. Shifting responsibility: u chooses a helper H from Lu, contacts him and

passes the code C to him. H verifies the identity of u (by recognizing her face

or voice).
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Figure 6.2: Fourth-factor authentication protocol

3. Authentication of H to AS: H presents C and the information H + u (a),

authenticates himself to AS by encrypting a challengeNS2 from AS (b,c), and

obtains a vouch code VC for u (d).

4. H provides VC to u: H passes VC to u using the same means (over the phone

or face-to-face).

5. u presents VC to AS: u encrypts VC with Ku and sends it to AS. AS verifies

VC and authenticates u.

This completes the fourth-factor authentication involving a responsibility shifting.

6.3.2 Potential coercion attacks

Note that the responsibility shifting extends the trust base to authenticate Alice from

one person (the owner of the account, i.e., Alice) to two persons (Alice and Harry).

In Section 6.3.1, Harry together with “half of Alice” (who only has P and loses

her hardware token) manage to authenticate Alice to the system. The attacker who

has stolen the other half of Alice (the hardware token) could potentially use the

same protocol to impersonate Alice if he gets the help from Harry (e.g., by coercing
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Harry). This responsibility shifting enables the attacker to extend his coercion target

from Alice (who could be an important person heavily armed) to any registered

helper (who could be much easier to coerce). Therefore, from Alice’s perspective,

assigning a helper could potentially make her account less secure. From Harry’s

perspective, by agreeing to be the helper of Alice, he might run into the risk of

attracting coercion attacks on himself due to the new capability he has on Alice’s

account.

We reiterate that such a coercion attack exists in any responsibility shifting to

authenticate in general, e.g., Facebook trust based authentication [46], although in

this Chapter we use fourth-factor authentication as a concrete example for better

explanation.

6.4 User study

In a coercion attack, the adversary uses physical force, e.g., wielding a gun, to force

the victim to comply. When the victim’s life is threatened, she would have no choice

but to follow what she is ordered to do. Therefore, a critical element to fight against

coercion attacks is victim’s involuntariness, i.e., defenses must disable the victim to

perform what the adversary orders her to do.

As discussed in Section 6.1, the previous scenario is substantially different from

responsibility shifting discussed in this chapter, where the coercion victim (Harry)

is forced to reveal someone else’s credential (VC for Alice) instead of his own. This

raises an important question as whether the requirement of victim’s involuntariness

still holds here, i.e., whether Harry will be nervous or stressed (which leads to in-

voluntary change of his skin conductance and a different cryptographic key) under

such a coercion.

We answer this question by designing and conducting a user study. Obviously,

we cannot “really” coerce the participants in our study, but have to mimic a sce-

nario that is close enough while passing our Institutional Review Board (IRB)’s
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evaluation. In this section, we first discuss the difficulties and complexity involved

in designing this user study. We then explain the participant demographics and the

experimental procedure. Results of the user study are shown in Section 6.5.

6.4.1 Difficulties and complexity

The challenge of this user study is to mimic the context of responsibility shifting.

For Harry to take over the responsibility from Alice in an authentication, he needs to

know her well so that he is able to verify her identity by recognizing her face or her

voice. Therefore, one approach of the user study would be to ask two participants

(probably friends) to come together. However, this poses a concern as we need to

coerce Harry to reveal some personal/privacy information of Alice. Such coercion

might lead to a negative impact on the participants’ friendship, and is therefore not

desirable (would not pass IRB evaluation).

We propose another strategy whereby one participant plays the role of Harry

with two conductors (researchers) playing the role of Alice and the adversary (M)

respectively. Such a setting eliminates the concern of breaking the friendship of the

participants, but would need to satisfy the following criteria.

1. Harry (the participant) should hold some secret of Alice (a researcher) which

M (another researcher) doesn’t know (or Harry believes that M doesn’t

know).

2. Harry should know this secret before M tries to coerce him to reveal the

secret.

3. Harry should believe that if this secret is leaked toM, then there will be some

severe consequences on Alice or on Alice’s personal/private data.

Moreover, another difficulty to overcome is to find the right balance between

the research requirement of applying sufficient pressure on the participant so as to
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mimic a coercion attack, and the human rights requirement of no physical or mental

harm to the participants.

6.4.2 Participants and initial setup

Considering the stress on the participants, we decided to concentrate on the younger

generation (undergraduate and graduate students in the age from 18 to 30). We have

altogether 30 participants, from which one participant was not able to understand

the story presented during the user study. Therefore, we have only successfully

performed our experiments on 29 participants, out of which 14 were male and 15

were female. Participants were compensated with $20 (equivalent currency) for

their participation in the study.

We used the skin conductance device (similar to the one used in Chapter 5) to

monitor the skin conductance response SC of the participant.

Initially, there was an incomplete disclosure regarding the purpose and the steps

of the study in order to ensure that the participants’ responses are not affected by

the knowledge of the research.

The user study was carried out in a relatively small room with two laptop com-

puters for Alice and Harry to use. Although Harry was informed that both are Al-

ice’s personal and work computers (see Phase-I in Section 6.4.3), we denote these

two computers as Alice’s computer and Harry’s computer in the rest of this Chapter

for the sake of clarity. Alice’s computer was used to capture the skin conductance of

Harry, and Harry’s computer was the vehicle for the responsibility shifting as well

as coercion attacks (see the detailed procedures below). We developed a small pro-

gram running on Alice’s smartphone which can lock Harry’s computer remotely.

Alice carried the smartphone in her pocket and used it to lock Harry’s computer

without being noticed by Harry.
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6.4.3 Experimental procedure

The user study is divided in four phases.

Figure 6.3: Four phases and their component steps/conversation during the user
study

Phase I. Passing the secret to Harry

Aim — This is to satisfy criteria 1 and 2 discussed in Section 6.4.1. A secret of

Alice is passed to Harry while making Harry believe thatM knows nothing about

the secret.

Procedure — At the start of the experiment(see Figure 6.3-I), Harry is greeted

by Alice in the room. Alice informs Harry that both computers are hers (personal

and work use), and nicely asks Harry not to delete or modify any existing data.

After Harry settles down in front of one computer, Alice remotely locks it with

her smartphone, and tells him to use password “keepMeSecret” to unlock it. This

password becomes the secret Harry knows about Alice andM will later coerce him

to reveal it.
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Note that the secret in our study is passed from Alice to Harry directly. This

is different from the real world responsibility shifting where the secret is usually

passed from an authentication server or another entity. We remark that this would

not have changed the results of the user study, as long as the third criterion stated in

Section 6.4.1 is satisfied.

Phase II. Gathering normal skin conductance data

Aim — We need to capture the skin conductance response level when Harry is calm

to set a baseline (normal emotional state) before coercing him

Procedure — We play a video by showing pleasant (geographical) pictures with

soothing music when capturing Harry’s skin conductance (see Figure 6.3-II).

Phase III. PortrayingM as a bad guy

Aim — Since we cannot really coerce Harry with, e.g., a gun pointing to his head, we

mimic the coercion in a way that is acceptable to the IRB. The simulated coercion

has two steps. First, we make Harry believe thatM is a bad guy, and secondly,M

will “coerce” Harry to do something inappropriate (i.e., revealing Alice’s secret in

Phase IV of the user study).

To make the attack scenario appear real for Harry, we also make an impression

in front of Harry thatM is aware of the fact that Harry knows Alice’s secret (the

password that unlocks Harry’s computer in Phase I). This mimics the context of

coercion attack in responsibility shifting thatM knows that Harry has taken over

the responsibility of Alice’s account.

Procedure — as shown in Figure 6.3-III.

1. M walks into the room and asks Alice (in a slightly rude manner) to leave

the room. Alice then walks out.

2. M walks to Harry’s laptop, opens the password manager of the web browser

and starts writing down the passwords on a piece of paper. M makes sure

118



that Harry observes what he is doing on the laptop.

3. In a short while, Alice returns and M acts like he is in the situation of em-

barrassment (idiom: “caught with pants down”). M immediately closes the

password manager.

4. Alice presses the button on her smartphone to lock Harry’s laptop (without

being noticed by Harry), and then asks Harry to enter the password to unlock

it (without speaking out the password). All these take place whenM is in the

room.

5. M behaves rudely while talking to Alice and subsequently leaves the room.

6. Alice explains to Harry that M is her classmate, and inquires what M has

done during her absence. No matter whether Harry mentions the details or

not, Alice badmouthsM, which further convinces Harry thatM is really a

bad guy.

Phase IV. Coercing Harry

Aim — This is to capture Harry’s skin conductance response whenM coerces him

to reveal Alice’s secret.

Procedure — as shown in Figure 6.3-IV.

1. M enters the room again and rudely demands that Alice leave the room.

2. This time, Alice walks to Harry’s computer and manually locks the screen

before leaving the room.

3. After Alice leaves,M walks over to Harry’s computer and starts guessing the

password. After a few trials,M verbally “coerces” Harry to reveal or enter

the password. Sentences used byM include “I will complain to my professor

and he will take strict actions against you”, “Don’t act smart, I know that you

know the password”.
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Toward the end of the user study, we explain to the participants the real motiva-

tion of the study and provide a questionnaire to find out their experience during the

whole study. Note that Harry’s skin conductance is continuously measured through-

out the study.

Figure 6.4 shows one of our participants’ skin conductance recorded in Phase

II, III, and IV.

Figure 6.4: Skin conductance response of one participant

6.4.4 Discussions

The user study seems complicated, but every single step is indispensable to achieve

the aims as explained above. The design of the user study has gone through many

revisions, thanks to the repeated rejections from our IRB and their detailed feedback

and recommendations.

Similar studies have been performed previously to measure the stress level in

users [118, 91, 69] and to induce people to internalize blame for outcomes they

did not produce [96]. Many false confessions are mentioned in [95, 163] that were

elicited through the use of torture, threats, and promises.
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6.5 Evaluation

We present the results of the user study and our interpretation of the results in this

section. As discussed in Section 6.1, there is a subtle yet important difference be-

tween the coercion received by someone in a non-responsibility-shifting scenario

as shown in Chapter 5 and Harry in our user study. The difference is whether the

victim is coerced to reveal her own secret (or the secret that protects her own valu-

ables) or someone else’s secret. Therefore, we first analyze what participants felt

when they were being coerced to reveal Harry’s laptop’s password. Building upon

that, we then state our hypotheses and based on approach proposed in Chapter 5

we analyze how many participants were actually nervous and stressed. Here, we

assume that Harry might be using such a system to protect Alice’s secret he has,

and evaluate the false acceptance rate and false rejection rate of the system. After

that, we analyze the participants’ responses to the questionnaire to have a better

understanding of the collected skin conductance data. The participants’ responses

to the questionnaire are noted on a 1–5 Likert scale: strongly agree ( ), somewhat

agree (G#), neutral (⊖), somewhat disagree (H#) and strongly disagree (#). Finally

we discuss the design and some of the limitations of our user study.

6.5.1 Did Harry feel nervous and stressed?

We first review the participants’ questionnaire responses to check whether they felt

nervous and stressed during the coercion. According to the results obtained for

our 29 participants, 86% of the participants felt nervous and stressed, and the rest

feeling neutral. This has two important implications. First, our user study design is

largely a success, in the sense that we have achieved the goal of mimicking coercion

on the participants. Second, it seems that most people do feel nervous and stressed

even when coerced to reveal someone else’s secret, which is the main question our

user study seeks to answer. Four out of the 29 participants did reveal the password

of Harry’s computer, whose comments include the following when inquired.
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• “I was intimidated and gave in the password”;

• “I was not comfortable when the bad guy was forcing me to enter the pass-

word”;

• “It was not my password and data”;

• “Alice can always change her passwords later on”.

Comments from those who did not reveal the password include “it is not ethical

to give away someone else’s secret information to other”, “it is not a good idea to

get involved in someone else’s personal conflicts”, “I was not sure of the kind of

personal data residing in the researcher’s (Alice) laptop”.

6.5.2 Was Harry really nervous and stressed?

Skin conductance has been shown in many previous studies to be a reliable in-

dication of one’s emotional status [142]. If participants actually feel nervous in

a responsibility-shifting scenario, we envision that one could build a coercion-

resistant system using skin conductance. To better understand the extent to which

such a system could be successful, we evaluate its accuracy in detecting coercions.

We first state our two hypotheses that

• Hypothesis 1: The trustee whom the authentication responsibility shifts to

becomes nervous and stressed upon a coercion attack;

• Hypothesis 2: What the participants have experienced in the user study pre-

sented in Section 6.4 and what the trustee would experience in a coercion

attack in the fourth-factor authentication follow the same distribution.

We simulate the execution of the system built upon a previous proposed

coercion-resistant system (see Chapter 5 for details) and evaluate our two hypothe-

ses stated with the skin conductance data captured during our user study. We then

evaluate its accuracy in terms of false acceptance rate (a correct cryptographic key
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generated when Harry is coerced) and false rejection rate (an incorrect key gener-

ated when Harry is calm). We define a user as calm/nervous if the key generated

during authentication does/does not match against the key generated during enroll-

ment.

The system is trained with 10 out of 26 SC samples (randomly chosen with a

duration of 10 seconds) captured during Phase II (when Harry is calm, see Sec-

tion 6.4.3), and is tested with the remaining 16 SC samples in Phase II (to calculate

the false rejection rate) as well as all SC samples in Phase IV (to calculate the false

acceptance rate). Figure 6.5 shows the results with three different settings of k (k is

used to tolerate some errors in the skin conductance response) and several different

settings of tSC (tSC is a threshold value); see Chapter 5 for details.
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Figure 6.5: False acceptance and false rejection rates

We observe relatively low false acceptance and false rejection rates of our sys-

tem built under our hypotheses. For example, when k = 1.25 and tSC = 3.1, we

obtained a false acceptance rate of 3.1% and a false rejection rate of 1.7%, which

are comparable to those originally obtained in a non-responsibility-shifting scenario

(see Chapter 5) (false acceptance rate of 3.2% to 3.1% and false rejection rate of

2.2% to 1.7%). This, in general, shows that Harry was nervous and stressed when

coerced to reveal Alice’s secret, and the combination of our two hypotheses are

good explanations to the data observed during the user study. We also found from
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the skin conductance of those 4 participants who revealed the password of Alice’s

laptop during coercion were all nervous and stressed.

A closer look at Figure 6.5 shows that the false acceptance rates are higher than

the false rejection rates. One possible explanation to this is that some participants

were not nervous for the whole period of Phase IV of the user study. The “coercion”

applied to Harry in our user study is not as severe as a real-world coercion attack,

which leads to inaccuracy in our hypothesis 2 and an increase to the false acceptance

rate.

6.5.3 Perception v/s reality

We have reported how the participants felt in the Section 6.5.1. It is possible that

participants’ perception may differ from reality. Table 6.2 shows the comparison

between the participants’ perceptions (from questionnaire see Section 6.5.1) with

the reality (from skin conductance in phase IV see Section 6.5.2). Note that we use

the setting of k = 1.25, tSC = 3.1 where both false alarm and miss rates converge.

Questionnaire (perceived)
Skin conductance (reality)
Nervous Calm

Nervous
when being
coerced to
reveal the
password

 8 8 0
G# 17 16 1
⊖ 4 4 0
H# 0 0 0
# 0 0 0

Table 6.2: Perception v/s reality during coercion

We notice that among the eight participants who strongly felt that they were

nervous, all had their perception matched with the reality. Among the 17 partici-

pants who somewhat agreed that they were nervous, however, there was one whose

skin conductance did not indicate a change in emotional status. This participant’s

final comments showed that he was angry rather than nervous. This subtle differ-

ence in one’s emotion is interesting in that it reveals some limitations in using skin

conductance in such a security setting.
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Even more interestingly, four participants mentioned that they were neither ner-

vous nor calm; however, their SC data showed that all four of them were actually

nervous. Although we do not have other evidence to further analyze these four cases

(e.g., we do not have other objective ways of evaluating their emotional status), it

does appear that skin conductance could potentially help detect one’s emotional

changes even before they start feeling the change themselves, an interesting prop-

erty that deserves further study.

6.5.4 Personal v/s someone else’s secret

In this subsection, we focus specifically on Hypothesis 1 to see how the difference

between being coerced to reveal one’s personal secret and being coerced to reveal

someone else’s secret could have affected its validity. Note that this is also part of

the main question we aim to answer.

We have presented to every participant the following two statements and asked

for their responses. Results are shown in Table 6.3.

S-1. In the real world, you feel nervous when being coerced to reveal someone

else’s secret information (e.g., email account password).

S-2. In the real world, you feel nervous when being coerced to reveal your own

secret information (e.g. email account password).

Revealing someone else’s secret
 G# ⊖ H# #

Revealing
your own
secret

 6 12 2 0 0
G# 1 4 0 1 0
⊖ 0 1 1 0 0
H# 0 0 0 1 0
# 0 0 0 0 0

Table 6.3: Nervous when being coerced to reveal secret information?

From Table 6.3, we notice that the number of participants above the diagonal

(highlighted) are higher (those feeling more nervous when revealing their own se-

cret) as compared to that below the diagonal (those who feel more nervous when
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revealing someone else’s secret). The result seems to follow common sense, how-

ever, note that

• they are based on the perception from the participants, and might not be ex-

actly the same as the reality (see discussions in Section 6.5.3);

• even if these results match with the actual emotional status of the participants

it can still be protected by a coercion-resistant system using skin conduc-

tance (see Section 6.5.2), as long as the extent to which users feel nervous

when being coerced to reveal someone else’s secret does not fall below cer-

tain threshold.

To get an idea of this point, we perform some simple analysis on the skin con-

ductance captured in this study and that captured as shown in Chapter 5. We found

that in our user study the change in the SC data is actually higher (µ=5.18, σ=2.58)

as compared to (µ=1.86, σ=1.28).

We warn readers from drawing more than what it deserves from such a simple

analysis. First, the two studies are quite different, and a direct comparison of the

skin conductance captured does not have a strong basis. Second, although changes

in skin conductance have been shown to be a reliable indicator of emotional sta-

tus [142], it has not been shown that the value of skin conductance reflects the

extent to which the user feels nervous. That said, we believe that our simple anal-

ysis could be viewed as an evidence that skin conductance does change when they

are coerced to perform involuntarily, regardless the ownership of the secret.

6.5.5 Deceptions and observations

In this subsection, we further evaluate Hypothesis 2 in view of the many deceptions

used in our user study. A detailed analysis of these deceptions may enable us to

explain the non-zero false alarm rate of our system.

Table 6.4 summarizes the six important deceptive events we have in the user

study. We specifically query all participants about their reactions to these events,
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results of which are shown in Table 6.4 as well. We realize that four out of are

convincing enough.

However, the other two events appear suspicious to some participants. One is

when the computer was locked for the second time (the third row in Table 6.4).

There were 6 participants who question its genuineness and another 6 participants

were neutral in their responses. Most of the participants felt that Alice could have

simply used another computer for the study rather than using the faulty one. How-

ever, the SC data of these 12 (6+6) participants indicate that all were nervous during

coercion. So, although this event seems suspicious to a portion of the participants,

it does not contribute to the false alarm rate of the system.

The other event is when the attacker coerces the participant (last row in Ta-

ble 6.4). Some participants felt that the attacker will not complain to the professor

as they have not done anything wrong. Even if attacker complains, they could easily

defend themselves. Some felt that the coercion/reason was not strong enough for

them to reveal Alice’s password. However, all of them were actually nervous during

coercion according to their SC data.

In summary, part of the deceptions are not fully satisfactory. However, there is

no evidence showing that they render the user study unsuccessful or have signifi-

cantly contributed to the false alarm rates.

6.5.6 Design of our user study

We continue to evaluate the validity of Hypothesis 2, now from the perspective

of the design of our user study. Specifically, we evaluate the differences between

coercion in our study and that in a real-world fourth-factor authentication.

Relationship between Alice and Harry In the fourth-factor authentication pro-

tocol, Alice and Harry are close friends or colleagues (strong bonding), while in

our user study Alice and Harry did not know each other (weak bonding) until the

study begins. Such a relatively weak bonding between Alice and Harry in our study
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might make Harry feel not nervous when being coerced to reveal Alice’s password.

In other words, measuring skin conductance might lead to better protection against

coercion in a real-world fourth-factor authentication, when compared to that ob-

served in our user study.

Consequences of revealing the secret One may argue that in fourth-factor au-

thentication, the secret (vouchcode) alone cannot be used to get access to Alice’s

account and therefore has less severe consequences. This could make Harry in our

study feel relatively more stressed because of the severe consequences as the pass-

word alone allowsM to invade Alice’s account. However, if one assumes that the

attacker in fourth-factor authentication has obtained Alice’s second-factor authenti-

cation token before the coercion attack, such a difference would not exist.

How secret was given to Harry In the fourth-factor authentication protocol, the

secret (vouchcode) is passed to Harry by the server. However, the secret (the pass-

word) is passed to Harry by Alice in our study. The participant might believe that

Alice’s password sharing with him implies that it could be shared with others, too.

Although this remaining a possibility, we do not see any evidence from our study

that supports it. All participants understand the consequence of revealing Alice’s

password, including the four who did reveal it under coercion.

Degree of coerciveness Threatening to complain to a professor is definitely not

as coercive as putting a gun over one’s head. This could make Harry in our study

feel less nervous or stressful. This implies that our results about skin conductance

could be conservative in the sense that a real life coercion is more likely to cause

the victim more nervous.
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6.5.7 Limitations of our user study

There are two main limitations of our user study. First, Alice is played by a fe-

male member of our research team in our user study. Since people in general show

compassion towards female gender, our results could be biased. Second, as the user

study is an act, many unforeseen events did take place. The actual scenarios were

not always consistent throughout the user study across different participants.

6.6 Coercion resistant fourth-factor authentication

Our user study shows that a trustee to whom responsibility has shifted would be-

come nervous and stressed when being coerced, which would be reflected on a

change in his/her skin conductance. This leads us to believe that skin conductance

could be used to provide coercion resistance to authentication protocols with a shift

of responsibility. Having formalized the fourth-factor authentication protocol in

Section 6.3.1, we design a modified version of the protocol with coercion resistance

using skin conductance in this section.

We introduce a trusted third-party Coercion Resistance Provider (CRP) to pro-

vide coercion resistance property to fourth-factor authentication. Following the

well-known separation of duty principle, we consider CRP and AS as two sepa-

rate entities. Note that combining them into one entity requires minimal changes to

the following protocol. The details of the protocol are described below, resembling

the Kerberos protocol. Note that the notations are defined in Table 6.1.

Enrollment It is the same as the Enrollment procedure in Section 6.3.1, except

that Harry (H) needs to register himself to the CRP. We use the approach proposed

in previous chapter to generate a cryptographic key from H’s skin conductance and

use it to encrypt a secret stored with CRP. If at the time of authentication H is

able to re-generate the original key and decrypt the stored secret correctly, then H

is not under coercion. CRP maintains a skin-conductance template for each user as
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explained previously.

Authentication When H tries to vouch for u, H needs to prove to CRP that he is

not being coerced, besides authenticating himself to AS. To do that, we modify step

3 (see Figure 6.2) of the fourth-factor authentication protocol. Figure 6.6 shows

these modified/additional steps (3-d to 3-f).

Figure 6.6: Coercion Resistant Fourth-factor authentication

3(d) Server sends Ticket to Helper: Rather than encrypting VC with KH (see

Section 6.3.1), AS encrypts VC with a key K. This key K is encrypted with

CRP’s key (KCRP) to generate a ticket (TCRP). This ensures that H cannot

obtain VC without proving to CRP that he is not being coerced to do so. TCRP

contains a session key (KH−CRP) shared between H and CRP provided by

AS, a key (K) to decrypt the encrypted VC, lifetime of this message (LT),

session-id (SID) and the information (H + u) which states that H vouches for

u. Formally,

131



AS −→ H : E(KH, NH ‖ CRP ‖ KH−CRP ‖ E(K, VC) ‖ TCRP)

where, TCRP = E(KCRP, KH−CRP ‖ H + u ‖ SID ‖ K ‖ LT)

3(e) Helper contacts Coercion Resistance Provider: H decrypts the obtained

message with his secret key (KH), and retrieves TCRP andKH−CRP. In order to

prove to CRP that he is not under coercion, he generates a key KSC using his

skin conductance response. The generated KSC , the freshly generated nonce

(N2) and the information (H + u) are all encrypted with KH−CRP and sent to

CRP. TCRP is also forwarded to prove that he has already been authenticated

by AS. Formally,

H −→ CRP : TCRP, E(KH−CRP, KSC ‖ N2 ‖ H + u ‖ CRP)

3(f) Helper Obtains Key to Decrypt Vouchcode: CRP decrypts the message

from H by usingKH−CRP and obtainsKSC . KSC is then used to decrypt all the

stored encrypted values. If the decryption succeeds (by matching the released

B and the stored B), then CRP is ensured that H is not under coercion. It

then encrypts key K with KH−CRP and sends the result to H. H obtains K and

decrypts the encrypted VC earlier provided by AS. Formally,

CRP −→ H : E(KH−CRP, N2 ‖ K ‖ CRP ‖ H + u)

6.7 Discussion

To summarize, in this work, we demonstrate another evidence of exploiting human

factor to gain access though the system and proposed a solution to circumvent those

attacks. We study the security of human-trustee based authentication responsibility

shifting, in particular, under coercion attacks. Our intensive user study shows that

most trustees demonstrate nervousness when being forced to reveal others’ secret,

which can be captured by their involuntary skin conductance changes. We retrofit

the fourth factor authentication system to develop a coercion-resistant systems for

responsibility shifting in authentication.
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Chapter 7

Conclusions and perspectives

7.1 Summary of contribution and future work

User authentication is vulnerable to attacks exploiting human factors, e.g. secrecy

information inference and coercion attacks; and information from user’s mobile

device and skin conductance can help to fight against those attacks. In this thesis,

we demonstrated aforementioned attacks and proposed respective solutions.

We demonstrated severe implications of secrecy information mining by showing

that interests inferred from public data (obtained using Graph API from Facebook)

can be used to exploit a previously proposed preference based authentication system

(Blue MoonTM). This differs from prior research as we do not use users’ personal

data posted on their profile pages (e.g., gender, current location, activities, interests,

etc.). From our experiments, we were able to disclose 22 interests of a user and

found more than 80,097 users with at least 2 interests. We showed that there exists

many users who liked a Facebook page, however they post negative comments on

the page. In future, we would like to improve our mining approach to infer more

secrecy attributes apart from interests.

Human memory interference is a major problem with today’s authentication

mechanisms. We designed HuMan, that uses cellphone usage patterns to gener-

ate memorable fingerprints which can be used as authentication challenges and are
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resistant to secret information inference attacks as well. We subjected HuMan to a

difficult security threat model where users’ intimates and acquaintances try to guess

the fingerprints. This was validated via a user study involving 58 participants on two

phases on two different phone operating systems (Symbian and Android). We found

that HuMan is moderately secure against the threat model proposed. Moving for-

ward, we plan to continue our research into human-centric approaches in generating

quality fingerprints in a number of ways: 1) developing a better fingerprint genera-

tion module using both better data mining algorithms as well as improved template

generation engines; and 2) testing HuMan with a broader and more diverse set of

users. As a future work, we would like to work on a recommendation system for

backup authentication systems where all the public/private profiles of a user can

be used to determine his/her weak and strong fingerprints. Organizations like call

centers or staff at help desks can use these fingerprints to decide what challenges

should (not) be used in determining the identity of users in backup authentication

systems.

The second problem which we focused in this thesis is human vulnerability to

coercion attacks. We proposed a novel approach for fighting against coercion at-

tacks in generating cryptographic keys using skin conductance of a person. We

conducted two experiments in our user study and have shown some interesting re-

sults. The proposed model was tested with 39 user’s voice and skin conductance

data to compute the false acceptance rate and false rejection rate. Furthermore, our

results showed that the cryptographic key generated in two different scenarios are

different for the same person. This bolsters our heuristic to use skin conductance

for fighting against coercion attacks. We also study the security aspects of human-

trustee based authentication responsibility shifting, in particular, under coercion at-

tacks. Our intensive user study showed that most trustees demonstrate nervousness

when being forced to reveal others’ secret, which can be captured by their invol-

untary skin conductance changes. We then design and develop a coercion-resistant

system for responsibility shifting in authentication. It remains unclear how to com-
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pare one person’s skin conductance fluctuation under different coercion scenarios.

Since the victim of coercion attacks may not be the same as the adversary’s ultimate

target, we conjecture that the victim may produce involuntary responses in different

ways for different scenarios. In terms of feasibility, in future we will also like to

see in some possibilities of building the system (may be a mobile device) with all

three: voice, skin conductance and fingerprint extraction mechanism to authenticate

to the system. Furthermore, we would like to look into other emotional responses

like happiness, anger, sadness etc., to make the claim of using skin conductance

in fighting coercion attacks stronger. We did not study the repeatability of the key

using the proposed scheme and is left as a future work.

7.2 Future perspective

In future, most devices will posses the capability of connecting to the Internet and

communicating with each other. Everything will be connected and communicating

to everything else, uninterruptedly. Today, we humans leave our behavioral finger-

prints in day to day life while using these devices/instruments e.g. smartphones,

biometric devices like fingerprint reader, digital media like TV or music players,

computers, household items like microwaves or washing machines, air condition-

ers, motor vehicles or cars, electrical equipments like lamps etc. Microsoft’s surface

touch table has already started to replace our old and traditional concept of table.

People interact with these devices in day to day life knowingly or unknowingly.

“What”, “when”, “where” and “how” these devices are used by a particular human

being constitute the behavioral fingerprint of that person. I envision that authenti-

cation based on users’ behavior can play a big role in the design of a secure system.

If a user knows his/her own behavior then he/she does not need to remember extra

stuff to login in to her email account or unlocking the phone using pin numbers.

Behavioral fingerprinting can add a dimension to authentication challenges.
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Appendix A

Cellphone usage patterns

Understanding cellphone usage is not a main contribution of this work. Nonetheless,

we present the usage statistics obtained by our month long data collection process

in the hope that they will be useful to other researchers and projects.

Categories Android Symbian

µ σ µ σ

Total, Per User, for the entire Data Collection Period

Total days of data logged 30.2 3.9 49.3 2.6
Contacts in phonebook 501.2 342.0 322.4 182.2
Total installed applications 161.3 51.6 34.0 13.3
Total Images files in the media folder 157.5 115.5 – –
Total Audio files in the media folder 358.7 382.3 – –

Per Day, Per User

SMSes (sent/received) 16.93 14.31 42.08 31.51
Calls (incoming/outgoing/missed) 6.28 3.13 10.11 5.13
Emails (sent/received) 9.1 9.1 – –
Chats (individual chat messages) 7.4 13.2 – –
New applications installed 0.9 0.6 – –
New image files added to media folder 1.6 2.5 – –
New audio files added to media folder 4.7 7.2 – –
Connection attempts to WiFi network 1.5 1.1 2.3 7.6
Power on (restarting the phone) 2.0 1.1 1.6 1.1
Switch on Bluetooth 0.0 0.1 0.1 0.1
Websites visited using the browser 9.2 8.6 – –
Searches performed 1.5 0.6 – –

Table A.1: Participants’ data usage

Table A.1 shows the usage patterns of all the participants in our user study,
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divided into Symbian and Android columns. For each column, the mean (µ) and

standard deviation (σ) values are provided.

First, we observe that, on average, data was collected for 30 days from Android

participants, and 49 days for Symbian participants. We then notice that even though

Android participants had more contacts (501 to 322 on average) than Symbian par-

ticipants, they sent far less SMSes (16.93 versus 42.08 daily) and calls (6.28 versus

10.11 daily) than Symbian participants. This disparity is because Android users

have access to other communication channels on their phones, such as instant mes-

saging, emails, Skype. Moreover the total number of applications installed was

higher on Android (161.3 to 34 on average) than Symbian.

Application

Category

Average No. of Apps installed on phone

(per user)

Tools 14.69
Games 13.23
Lifestyle 10.38
Utilities 4.00
Social 4.00
News 3.85
Reference 3.31
Productivity 2.85
Widget 2.54
Map 2.46
Internet 1.31
Video 1.15
Comms 0.69
Finance 0.31

Table A.2: Applications usage breakdown for Android

Table A.2 shows the types of applications installed on the Android phones. It

provides the average number of applications, of each category type, installed on

the phones of the 13 Android participants. The categories were obtained from the

Android Marketplace. The two tables reiterate the common wisdom that modern

smartphones are used heavily for consuming media content. For example, Android

users have more media content on their phones along with numerous game and

lifestyle applications.
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Appendix B

Guessing entropy for skin

conductance

Let R be the set of rules the attacker can use to reduce the password space from S

to S′. So, for a rule Ri

antecedent(A)⇒ consequent(C)

such that, A=[y1, . . . , yEa
] and C=[z1, . . . , zEc

], where Ea are the elements in the

antecedent and Ec in consequent. The process of calculating the new password

space from a given one is shown in algorithm 2. S′ indicates a lower bound for

the password space which shows the minimum number of combinations an attacker

needs to guess if he has a full knowledge of the mappings in the database.

Let Ψ denote the candidate set and Φ be the large itemset, ΨI and ΦI are the two

dimensional vectors derived from the rules R1, . . . , RI . Each item (ΨI
J ) in a ΨI is a

vector of the form [x1, x2, . . . , xmSC
], ∀ 0 ≤ J ≤ L, where xi ∈ (0, 1, ∗) and L =

|ΨI |. Similarly, each item (ΦI
J ) in a ΦI is also vector of the form [x1, x2, . . . , xmSC

],

∀ 0 ≤ J ≤ L, where xi ∈ (0, 1, ∗) and L = |ΦI |.

∗ denotes don’t care and can be assigned 0 or 1. The set of rules R obtained are

passed to the algorithm 2 to generate S′. Φ0
1 is initialized to [∗ ∗ ∗ ∗ ∗ ∗ ∗ . . . ∗] and

S = 2mSC . Below is the short description of the functions used in the algorithm.
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Algorithm 2 Reduced Password Space for SC
PasswdSpace (R)

1: Φ0
1←− [∗, ∗, ∗, ∗, ∗, ∗, ∗, . . . , ∗]

2: S←− 2mSC

3: for I = 1 to |R| do

4: L←− length(ΦI−1)
5: ΨI ←− NULL
6: for J = 1 to L do

7: if any
(

(ΦI−1
J,y1

,ΦI−1
J,y2

, . . . ,ΦI−1
J,yEa

) == ∗
)

then

8: ΨI ←− ΨI
⋃

split(ΦI−1
J )

9: else

10: ΨI ←− ΨI
⋃

ΦI−1

11: end if

12: end for

13: ΨI ←− unique
(

ΨI
)

14: cnt←− 1
15: L←− length(ΨI)
16: for J = 1 to L do

17: if





Ea
∏

p = 1

ΨI
J,yp == 1&

Ec
∏

q = 1

ΨI
J,zq == 0



 then

18: delete
(

ΨI
J

)

19: else

20: ΦI
cnt←− ΨI

J

21: cnt++
22: end if

23: end for

24: end for

25: S′←− Φ|R|
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• length(ΨI) - gives the total vectors in the candidate set ΨI i.e. |ΨI |.

• any(ΦJ
I (y1, y2, . . . , yEa

) == ∗) - a boolean function

=















1, (ΦI
J,y1

== ∗) ∨ . . . ∨ (ΦI
J,yEa

) == ∗)

0, else

• split(ΦI
J ) - this function generates a new candidate set ΨI from a large item-

set ΦI−1 based on a rule RI . It generates the vectors for ΨI s.t.

– Mark yi, if (ΦI−1
J,yi

== ∗), ∀ yi ∈ [y1, . . . , yEa
].

– Generate all possible combination of the marked bits; which implies if

total number of marked bits are mb then total possible combinations are

2mb. For e.g. if ΦI
J = [***1*1] and the rule RI is 1⇒ 2, then the result

is ([11 ∗ 1 ∗ 1] [10 ∗ 1 ∗ 1] [01 ∗ 1 ∗ 1] [00 ∗ 1 ∗ 1])

• unique(ΨI) - gives the unique vectors from ΨI .

• delete(ΨI
J ) - delete ΨI

J from the candidate set ΨI .

During the Candidate Itemset Generation, a ∗ in the large itemset triggers a

split; 1 and 0 indicates do nothing. However during the Large Itemset Generation

a 1 in a candidate itemset triggers add 1; 0 indicates do nothing. During the whole

procedure, each time one rule is used and the sets which does not comply with that

rule are omitted to create the new set. The final password space is calculated by

computing the total number of vectors which can be generated using Φ|R|, where

Φ|R| is the final large itemset generated from the rules R1, . . . , R|R|.

An example shown in Table B.1 with 5 elements, to how to generate the candi-

date itemset and the large itemset from 3 rules. The total number of guesses which

an attacker needs to make is 14 which implies the effective number of bits in the

new password space are 4; original was 5.
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R Candidate Large
Itemset Itemset

Initialization Φ0
1 ∗ ∗ ∗ ∗ ∗

R1 1⇒ 3
Ψ1

1 1 ∗ ∗ ∗ ∗ Φ1
1 1 ∗ 1 ∗ ∗

Ψ1
2 0 ∗ ∗ ∗ ∗ Φ1

2 0 ∗ ∗ ∗ ∗

R2 (1, 2)⇒ 5

Ψ2
1 101 ∗ ∗ Φ2

1 101 ∗ ∗
Ψ2

1 111 ∗ ∗ Φ2
1 111 ∗ 1

Ψ2
2 01 ∗ ∗∗ Φ2

2 01 ∗ ∗∗
Ψ2

3 00 ∗ ∗∗ Φ2
3 00 ∗ ∗∗

R3 5⇒ 1

Ψ3
1 101 ∗ 0 Φ3

1 101 ∗ 0
Ψ3

2 101 ∗ 1 Φ3
2 101 ∗ 1

Ψ3
3 111 ∗ 1 Φ3

3 111 ∗ 1
Ψ3

4 01 ∗ ∗1 Φ3
4 01 ∗ ∗0

Ψ3
5 01 ∗ ∗0 Φ3

5 00 ∗ ∗0
Ψ3

6 00 ∗ ∗1
Ψ3

7 00 ∗ ∗0

Table B.1: Generating candidate set and large itemset
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