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Trellis- Coded Mu1 tidimensional 
Phase Modulation 

STEVEN s. PIETROBON, STUDENT MEMBER, IEEE, ROBERT H. DENG, MEMBER, IEEE, 
ALAIN LAFANECHERE, GOTTFRIED UNGERBOECK, FELLOW, IEEE, A N D  

DANIEL J. COSTELLO, JR., FELLOW, IEEE 

Ahstruct -A 21. -dimensional multiple phase-shift keyed MPSK ( L X 

MPSK) signal set is obtained by forming the Cartesian product of L 
two-dimensional MPSK signal sets. A systematic approach to partitioning 
L X MPSK signal sets is used that is based on block coding. An encoder 
system approach is developed which incorporates the design of a differen- 
tial precoder, a systematic convolutional encoder, and a signal set mapper. 
Trellis-coded I .  X 4PSK, I .  X XPSK, and L X 16PSK modulation schemes 
are found for 1 i 1. i 4 and a variety of code rates and decoder complexi- 
ties, many of which are fully transparent to discrete phase rotations of the 
signal set. The new codes achieve asymptotic coding gains up to 5.85 dB. 

I. INTRODUCTION 

INCE the publication of the paper by Ungerboeck [l], S trellis-coded modulation (TCM) has become a very 
active research area [2]-[13]. The basic idea of TCM is that 
by trellis coding onto an expanded signal set (relative to 
that needed for uncoded transmission), both power and 
bandwidth efficient communication can be achieved. 

TCM can be classified into two basic types, the lattice 
type (e.g., M-pulse-amplitude modulation (PAM) and 
M-quadrature amplitude shift keying (QASK)) and the 
constant amplitude type (e.g., multiple phase-shft keying 
(MPSK)). Constant amplitude modulation schemes have a 
lower power efficiency compared with lattice type modula- 
tion schemes but are more suitable for certain channels, 
e.g., satellite channels containing nonlinear amplifiers such 
as traveling wave tubes (TWT). Taylor and Chan [ 5 ]  and 
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Wilson et al. [6] have studied the performance of trellis- 
coded MPSK (TC-MPSK) modulation, in particular rate 
2 / 3  TC-8PSK and rate 3/4 TC-l6PSK, respectively, for 
various channel bandwidths and TWT operating points. 
Their results showed that TC-MPSK modulation schemes 
are quite robust under typical channel conditions. 

In any TCM design, partitioning of the signal set into 
subsets with increasing minimum intrasubset distances 
plays a central role. I t  defines the signal mapping used by 
the modulator and provides a tight bound on the minimum 
free Euclidean distance ( dfree) between code sequences. 
For lattice-type TCM, Calderbank and Sloane [lo] have 
made the important observation that partitioning the sig- 
nal set into subsets corresponds to partitioning a lattice 
into a sublattice and its cosets. Forney [13] has developed 
a method, called the squaring construction, of constructing 
higher dimensional lattices from partitioned lower dimen- 
sional lattices. 

We shall investigate a class of trellis-coded multidimen- 
sional (multi-D) MPSK modulation schemes. Signals from 
a 2 L-dimensional ( 2  L-D) MPSK signal set (which we shall 
denote as L x MPSK) are transmitted over a two-dimen- 
sional (2-D) modulation channel by sending L consecutive 
signals of an MPSK signal set. Therefore, the L X MPSK 
signal set is the Cartesian product of L 2-D MPSK signal 
sets. Trellis-coded mutli-D phase modulation (TC-L x 
MPSK) provides us with a number of advantages that 
usually cannot be found with TC-MPSK: 1) flexibility in 
achieving a variety of fractional information rates, 2) codes 
which are partially or totally transparent to discrete phase 
rotations of the signal set, 3 )  suitability for use as inner 
codes in a concatenated coding system [14], due to their 
byte oriented nature, and 4) higher decoder speeds result- 
ing from the high rate codes used (rate k / (  k + 1) with k 
up to 15 for some codes). 

In Section 11, we introduce a block coding technique for 
partitioning L X MPSK signal sets. Section I11 contains a 
description of how the encoder system-comprising a dif- 
ferential precoder, a systematic convolutional encoder, and 
a multi-D signal set mapper-is obtained for the best 
codes found in a systematic code search. The signal sets 
are designed such that the codes can become transparent 
to integer multiples of 360"/M rotations of the MPSK 
signal set. Also, due to the way in which they are mathe- 
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matically constructed, a signal set mapper can be easily 
implemented by using basic logic gates and L-bit binary 
adders. The systematic code search is based on maximizing 
dfree (and thus the asymptotic coding gain) as well as 
minimizing the number of nearest neighbors (N,,,) for 
various degrees of phase transparency. TC-L X 4PSK, TC- 
L X 8PSK, and TC-L X 16PSK codes .for L = 1 to 4 are 
found. For TC-L X 8PSK and TC-L X 16PSK, asymptotic 
coding gains up to 5.85 dB compared to an uncoded 
system are obtained. The TC-L x4PSK codes exhibit 
asymptotic coding gains up to 7.8 dB, Among the L = 1  
codes listed are some new codes that have improvements 
in N,,, and phase transparency compared to codes found 
previously [l], [4], [6], [15]. Viterbi decoding of TC-L X 
MPSK is also discussed, concentrating dn maximum-likeli- 
hood decoding of the parallel transitions within a code 
trellis. 

’ 

11. MULTI-D SIGNAL SET PARTITIUNING 

To describe set partitioning, we will start with the famil- 
iar partitioning of the 8PSK signal set. This is followed 
with an example of multi-D signal set partitioning using 
the 2 X 8PSK signal set. Generalizations will be introduced 
gradually, so that by the end of this section the reader 
should become thoroughly familiar with the concepts in- 
volved. 

A.  Partitioning the 8PSK Signal Set 

In partitioning the 8PSK signal set, or 1X8PSK, we 
form a minimum squared subset distance (MSSD) chain of 

is maximized. Partitioning continues in this manner until 
we have eight subsets, each containing a single point, 
hence 8: = 00. 

B. Partitioning 2 X 8PSK 

A 2 X 8PSK signal set ( L  = 2) is illustrated in Fig. 2. We 
use integers y ,  to indicate the first 8PSK point and y2 for 
the second 8PSK point, where y,, y2 E (0,l; a ,  7). Natu- 
ral mapping is used to map the integer y, into each 
complex-valued 8PSK signal, i.e., y, - exp [\/-ly,~/4], 
for j = 1,2. We can also represent y1 and y ,  in binary 
form as the vector y, = [ y t ,  y:, yp], with yf E {O,l},  and 
where y, = 4y: + 2yj + yp, for j = 1,2. That is, the least 
significant bit (LSB) of y, corresponds to the rightmost bit 
and the most significant bit (MSB) to the leftmost bit. We 
will use this convention throughout the paper. 

3. 3. 

4. 4. 

5 .  5 .  

Fig. 2 .  2 X 8PSK signal set 

To represent a 2X8PSK signal point, we form the 2 x 3  
binary matrix 

y = [ ; ; ] = [ ; ;  Y: 1 YP . I .  
Y2 Y2 

8; = 0.586, 8: = 2, -8,’ = 4, and 8: = 60 (assuming that the 
average signal energy is one). Fig. 1 illustrates this parti- 
tioning, in which each subset is equally divided into two 
smaller subsets such that the MSSD in each smaller subset 

Since a total of 6 bits is used to describe a signal point, 
the unpartitioned signal set (indicated by Go) has a total of 
26 = 64 points. We also say that !Jo is at partition level 
p = 0. It can easily be seen that the MSSD at partition 

e 
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level p = 0 is A:, = S i  = 0.586 (we use capital A to indicate 
the MSSD's for L > 1 and lower case S for L =1). The 
next partition (at partition level p =1) divides 3' into two 
subsets of 32 points each. We call Q' the subset that 
contains the all-zero element (i.e., y1 = y2 = 0). The other 
subset of 32 points is its coset, labeled Ql(1). In forming 
these two subsets, we would like their MSSD, A:, to be 
larger than A i .  If this were not possible, then we should 
find a partitioning that leads to a maximum reduction in 
the number of nearest neighbors within the smaller subsets 
(i.e., the average number of signal points that are distance 
A: away from any point). In principle, the partitioning 
could be carried out in this heuristic manner. 

A more efficient way of partitioning Qo is to require the 
column vectors of y, i.e., y'  = [ y ; ,  y;lT, for 0 I i I 2, to be 
codewords in a block code. This representation using block 
codes is also known as multilevel coding (first described by 
Imai and Hirakawa [16] and later applied to quadrature 
amplitude modulation (QAM) by Cusack [17]). To express 
this mathematically, we need to introduce some further 
notation. We define C,,'< as that block code which contains 
the column vectors y', for 0 I i I 2. Thus C,,(, contains the 
least significant bits of yl and y,, C,,, contains the middle 
bits of y1 and yr .  and so on. The actual value of m ,  
indicates which block code is being used. For L = 2 only 
three block codes are of interest to us: CO, whch is the 
(2 ,2 )  block code with Hamming distance do = 1 (and code- 
words [0 OlT, [0 llT, [l 1IT, and [l O l T ;  C,, whch is the 
(2 , l )  block code with Hamming distance d,  = 2 (and code- 
words [0 01' and [I 1IT; and C,, which is the (2,O) block 
code having only one codeword, [0 0IT and Hamming 
distance d, = CO. 

Also, since C,,,,. denotes a block code with 2Lp"11 code- 
words, we can write that the partition level p is the sum of 
all the rn ,  that produce the subset Q P ,  i.e., p = C?=,m,. 
Since there are I =  log,M bits needed for each MPSK 
point, p can range from 0 to I L  (0 to 6 in this case). A 
shorthand way of writing which column vectors y' belong 
to which block codes is Q(C,,,, Cm,, Cwl0). Thus we can 
write Qo  = Q(  CO, CO, CO). Since CO contains all possible 
length 2 binary vectors, then Qo is generated. 

To obtain the next partition (at level p =1), we let 
Q1 = Q(Co, CO, Cl). This partition satisfies our previous 
comments on partitioning. That is, C, has only two code- 
words (reducing the number of points to 32), and C, 
contains the all-zero codeword. In partitioning, we also 
require the property that all the points in 3' belong to Go 
(written as Q1 c a'). For this example, since C, c CO, this 
property is satisfied. This can be stated more generally as 
QP" c Q P ,  for 0 I p 5 I L  -1. Thus, if we have two parti- 
tion levels p and p'. and p '= p + 1, then C,,,: L Cm, for 
0 <is I - 1 .  

The partition Q' is equivalent to forcing the LSB's of 
both y ,  and y, to be either zero or one. By inspection of 
Fig. 2 we can thus see that A: = 2s; =1.172. In fact, we 
can use a more general expression that gives a lower bound 
on the MSSD. From [18], [19] we have 

A;> min(~:_,d,,,, , . . . . , ~ : d , , , l , ~ ~ d , , , o )  (1) 

where del,  is the Hamming distance of the code C,,,, for 
0 I I I I - 1. From (I), we obtain for 2 x 8PSK, 

A; 2 min(4d,,2,2d,,1,0.586d,,o). (2) 

For p = 0 and 1, we can see that (2) is satisfied with 
equality. In fact, due to the symmetry of the 8PSK signal 
set, (2) is an equality for all values of p .  It can be seen that 
in partitioning Qo  into Q1 and its coset Q1(l), we could 
have formed Q (  CO, C,, CO) or Q( C,, CO, CO) instead of 
Q(C,, CO, C, ) .  However, both these other partitions have 
A; = 0.586 and are therefore not good partitions, since we 
want A: to be as large as possible. This is because d:,, can 
be lower-bounded by 2A: for many trellis codes [l]. 

Ignoring for the moment how the cosets are formed, we 
can partition Q1 into Q 2  and its coset Q2(2) ,  and so on. 
(The value within the brackets of the coset will be ex- 
plained in Section 11-C.) Every time we partition, we want 
to make A$, as large as possible. To do this we use the 
following rule. The C,,,, that we partition (into C,l,+l) from 
level p to level p + 1 should be the i corresponding to the 
smallest S,,dnl, at partition level p .  If there are two or more 
S:d,,, that have the smallest value, we choose the one with 
the smallest i. 

Note that once C,,,, has been partitioned to C, (or CIp, 
in general), then that particular block code cannot be 
further partitioned (since it contains only one codeword). 
Table I illustrates the partitioning of the 2 X 8PSK signal 
set. The arrows show which C,,, are being partitioned as p 
is increased. The values of A i  are also shown. Note that at 
p = 3, we have Sfd,,,, = 4 for both i =1 and 2. As indicated 
by the above rule, i =1 is chosen to be partitioned to form 
Q4. Even though A: = A: = 4, partition level 4 is still 
useful for coding since the number of nearest neighbors for 
Q4 is less than for Q3. This will become more apparent 
when the actual codes are found. 

TABLE I 
2 x XPSK SIGNAL SET PARTITION 

Minimum Squared Generator Parti tion 
Level ( p )  CL" Subset Distance (A:) ( r P ) I  

0 O(q,.C,,.f7,,) min(4.2,0.586) = O S 8 6  [0 11 
1 CL(ql,q13$) min(4,2.1.172) =1.172 [l 11 
2 CL(q,,$,,C2) min(4.2.m) = 2.0 10 21 
3 a(c , .F , ,C , )  min(4,4.m)=4.0 [ 2 2 ]  
4 n($,.C2.C2) min(4,m,m)=4.0 [04] 
5 CL(f-,.C,.C,) min(8,cc.cc)=8.0 [44] 
6 Q(C,.C, .C,)  m i n ( m , m . m ) = m  - 

The previous rule usually works quite well. For L = 3, 
though, some of the best partitions do not follow this rule. 
Instead, we can allow a A i  to be smaller than the rule 
proposes, to obtain a larger A i ,  for some p ' >  p than is 
possible by following the rule. 

C. Formation of Cosets 

Now consider partition level p =l.  We have shown that 
there are two subsets, namely Q' and its coset Q'(1). To 
obtain Q'(l), we must look at how coset codes are derived 



66 IEEE TRANSACTIONS ON INFORMATION THEORY. VOL. 36, NO. 1, JANUARY 1990 

from block codes. Recall that C, is the (2,l) block code 
with Hamming distance d ,  = 2. The coset C,(1) of this 
code is formed by adding modulo-2 a nonzero codeword 
that belongs to CO but does not belong to C, (called the 
generator 7') to all the codewords in C,. We illustrate this 
with an example. CO has codewords [0 O]', [0 l]', [l O]', 
and [l Z I T  (remember that these codewords correspond to 
column vectors of y ) ,  and C, has codewords [0 0IT and 
[l 11'. Therefore, the generator 7' could equal [0 11'or 
[l 01'. We arbitrarily choose .TO = [0 11'. Thus C,(1) = Cl@ 
T O =  ([0 1IT,[1 01'). (In this paper thG symbol @ will be 
used to denote modulo-2 (EXCLUSIVE-OR) ar$hmetic and 
+ to denote integer or modulo-M arithmetic, M >  2.) 
Note that if T O  = [l OlT, the same coset vectors would have 
been found, except that they would have been in a differ- 
ent order. Also note that the Hamming distance between 
codewords in C,(1) is equal to d,. 

We can also write a general expression for the cosets at 
partition level p = 1 as 

c,(gO) = c1es07o (3) 
where lo E (0 ,  l}. Thus when So = 0, we obtain C,(O) = C,, 
and when lo = 1, we obtain the coset of C,, C,(l). In a 
similar way we can divide C, into C2 and its coset C2(2) 
and Cl(l) into cosets C2(1) and C2(3). Fig. 3 gives an 
illustration of this partition. For the second generator, we 
have only one choice, i.e., 7' = [l 11'. The general expres- 

rn-0 r n = l  m - 2  

do= 1 d, = 2  d, = - 
Fig. 3. Partitioning of L = 2 binary vector space. 

sion for the cosets at partition level p = 2 becomes 

(4) 

where C, is the all-zero vector and 5" E (0, l} for 0 s m I 
1. We also note that C, C C, c CO and that E C,, but 
that 7" 4 Cnl+,, for 0 I m 11. 

Since we have shown how the cosets of C, are formed, 
we can now show how the cosets of Q* are formed. We 
start with the simplest case, the single coset of Q', namely, 
Q'(1). In the same way as the block codes are partitioned, 
we must find a 2 x 3  matrix that belongs to Qo but does 
not belong to Q'. This is called the generator of Q' and is 
labeled to. Since C,, is partitioned in going from Qo to Q', 
this implies that to  = [O,O, 7'1, where 0 is the all-zero 

vector [O O]', i.e.. 

0 0 0  
? O = [ o  0 11. 

An alternate notation for t o  (using the symbol to),  is to 
treat t o  as if it represented two integer values y1 and y,. 
Thus t o  in integer form is to  = [0 11'. 

To form the coset Q'(l), all that is required is to add t o  
modulo-2 to all the signal points in Q'. We write this as 

P'( Z O )  = Q'@zOtO, ( 5 )  
where Z'E {0,1} indicates which of the two subsets is 
being selected. We can see that in coset Q1(l), the LSBs of 
y ,  and y2 are either 0 and 1 or 1 and 0, respectively. Thus 
this coset has the same MSSD as Q', i.e., A:=1.172. 
Alternately, t o  can be added modulo-M (modulo-8 in this 
case) to the signal points in Q'. With modulo-8 arithmetic, 
the LSB's of y ,  and y,  are still added modulo-2, but the 
LSBs now produce carries which affect the middle and 
most significant bits. This is denoted as 

Q1(zo) = Q1 + zoto (mods). 

For example, a signal y = [l 31' (where y = [ y ,  y,]') in Q' 
becomes [l 21' with modulo-2 addition of t o  to y or [l 41' 
with modulo-8 addition of t o  to y .  Using either type of 
arithmetic, we still obtain the required partition, although 
the ordering of signal points within each coset is different. 
In constructing rotationally invariant trellis codes, we will 
find that there is a distinct advantage to using modulo-A4 
arithmetic over modulo-2 arithmetic. 

Continuing with the set partitioning, it should be obvi- 
ous that the next generator is t' = [l 1IT. From Table I, we 
see that t' corresponds to the generator of C,. The expres- 
sion for the cosets of Q 2  is 

Q2(2z1 + zo) = Q 2  + z l [  :] + zo[  (1)] (mods), (7) 

where z' E (0,  l}, for 0 I i I 1. For partition level p = 3, 
we choose t 2  = [0 2]', with z 2  E (0,l) used to select t 2 .  
Continuing in the same way, we can partition the signal set 
until we obtain only a single (4-D) signal point. Thus we 
can form the equation (using the generators from Table I) 

( 6 )  

c 

= z5[  :] + 2 4 [  t ]  + z3[ ;] + .Z[;] 

+ zl[ :] + zo[ y ]  (mod8) 

where z = X:=02'z', with z '  E {O,l}, for 0 I i I 5, and y(z)  
gives the integer representations of the two 8PSK signal 
points. The signal set mapping given by z can now be 
directly used by a convolutional encoder. Since y ,  and y,  
can be described in terms of z ,  the signal set mapper can 
be implemented using simple logic circuits (EXCLUSIVE-OR 
circuits for modulo-2 addition and binary adders for mod- 
ulo-M addition). Alternatively, since z can be represented 
with only six bits, one can use a small ROM. Fig. 4 
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20 

mod-8 addei 

2 1 0  2 1  
y1 y1 y1 y2 y2 y; 

(b) 
Fig. 4. 2 X XPSK signal set mappers. (a) With modulo-2 addition. 

(b) with modulo-8 addition. 

illustrates two possible signal set mappers for 2 X 8PSK. 
Fig. 4(a) shows a mapper using modulo-2 arithmetic, and 
Fig. 4(b) shows a mapper using modulo-8 arithmetic. 

In general, we can write (8) as 

LYL. 1 r = O  

where ~ = E f ~ ~ ~ 2 ' z ' .  with Z ' E  {O, l} ,  for O < z < Z L - l .  

The addition in (9) is not specified but may be modulo-2 
(using the binary matrix generators), modulo-M (using the 
integer generators), or a combination of modulo-2 and 
modulo-M. Fig. 5 illustrates the partitioning of Qo into Q 3  

and its cosets Q3(4z2 + 2z' + zo) for the 2 x 8PSK signal 
set using modulo-8 addition. 

n"0, = 

D. Partitioning 3 x M P S K  und 4 X MPSK Signal Sets 

In a similar fashion to 2 X 8PSK, to partition L X 8PSK 
(for L > 2) requires the partitioning of length L > 2 block 
codes. We again look for partitions that have an increasing 
Hamming distance. For L = 3, there are two partitions 
that are interesting. 

The first partition has Hamming distances do  = 1, d: = 2, 
d: = 2, and d, = ca. These Hamming distances correspond 
to the (3,3), (3,2), (3, l), and (3,O) block codes CO, C:, Cj, 
and C,, respectively, where C, C Ci c Ci c Co. Table 11-a) 

TABLE I1 
B I N A R Y  GENERATORS FOR L = 3 AND 4 

0 1 4 [ O O O l ]  

1 2 2 [0101]  
3 4 1 [l 1 1  11 

1 2 6 [0011]  

p = o  p =  1 p = 2  p = 3  

RO= R(C,. CO, CO) n' = R(C,, CO, C,)  R2= R(Co. CO, C,) R3= R(Co, c,, C,) 

A i  = 0.586 A:=1.172 A: = 2.0 A i  = 4.0 

Fig. 5. Three-level 2 x RPSK signal set partition. 
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gives the three generators, 710, rt ,  and r:, that were chosen, 
along with the Hamming distances (d,) and the number 
of nearest neighbors ( N n Z )  at each partition level m .  The 
choice was not completely arbitrary, since one of the 
generators must be the all-ones vector (which in this case is 
rp). The reason for this will be explained in Section 111. 

It is interesting to note that the generator matrix for 
these block codes can be formed from the generators. In 
general, a generator matrix C, for an ( L ,  L - m )  block 
code C,,,, for 0 I m I L - 1, can be formed from the gener- 
ators 7''' to 7 I . - l ,  i.e., C,,, = [ r m ,  rm+'; . * ,  rL-'IT. For 
example, for the L = 3 block codes given in Table 11-a), 

6 

1 1 0  1 1 1  

0 1 1  
Cd=[I 1 01  G:=[o 

c:=[o 1 11. 

For the other L = 3 partition, we have do =1, d: =1, 
df = 3, and d, = 00. These distances correspond to block 
codes CO, C:, C:, and C,, where C, c C; C C: c Co. Table 
11-b) shows the generators for these codes. Note that r; is 
the all-ones vector in this case. The advantage of this 
partition is that d f = 3  is larger than d : =  2. However, 
d: =1 is less than d: = 2. 

The partitions of 3 X 8PSK that will be useful for trellis 
coding are given in Tables 111-V. Table I11 corresponds to 

I 

I TABLE I11 
3 x XPSK SIGNAL SET PARTITION (I) 

Partition Minimum Squared Generator 
Level(p) Q/'  Subset Distance (A2") ( t P ) T  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

min(4,2,0.586) = 0.586 
min(4,2,1.172) =1.172 
min (4,2,1.172) = 1.1 72 

min(4,2, w) = 2.0 
min(4,4, w)  = 4.0 
min(4,4,w) = 4.0 

min(4.00, C O )  = 4.0 
min(8,w.w) =8.0 
min(8, w ,  03) = 8.0 

min(w, w,  00) = w 

TABLE IV 
3 x RPSK SIGNAL SET PARTITION (11) 

Parti tion Minimum Squared Generator 
Level(p)  Q/' Subset Distance (A;) ( t P ) r  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

TABLE V 
3 x XPSK SIGNAL SET PARTITION (111) 

Partition Minimum Squared Generator 
Level(p) Q'' Subset Distance (A:) (tp)' 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

min{4,2,0.586) = 0.586 
min(4,2,0.586) = 0.586 
min(4,2,1.757) =1.757 

min4,2, W )  = 2.0 
min(4,2, w)  = 2.0 
min(4,6, w )  = 4.0 

min(8.6, w)  = 6.0 
min(8, w ,  w)  = 8.0 
min(R.60, w)  = 8.0 

m i n ( w , w , w ) = w  

the first partition where we try to maximize A$ at each 
partition level. In Tables IV and V, the second set of block 
codes are used to increase A; to 1.757 while A: decreases 
to 0.586. In Table V, A; increases to 6.0 and A: decreases 
to 2.0. Note how A i  = 6.0 is obtained in Table V. At p = 4 
we have A: = min(4.0,2.0,00) and at the next partition 
level, A: = min(4.0,6.0,00) = 4.0. Now C,, is partitioned 
to give A i  = min(8.0,6.0, 00) = 6.0. In the next level we 
partition Cell to obtain A;?, = 8.0. In Section 111 the reasons 
why these latter two partitions are used will be seen more 
clearly. 

For L = 4 there is only one good way to partition length 
4 block codes. Table 11-c) gives a summary of the basic 
parameters. Using Table 11-c), we can partition the 4X 
8PSK signal set as shown in Table VI. 

For L x 4PSK and L X 16PSK we obtain from (1) that 
e 

A i  2 min(4d,,l,2d,o) (104  

A; 2 min ( 4dn13, 2 dm2, 0 .586dm1, 0.1 52dm0), (lob) 

respectively, where p = C!:,lrni (I  = 2 for (loa) and Z = 4 
for (lob)). In a similar fashion to L X 8PSK, the signal set 

TABLE VI 
4 x 8PSK SIGNAL SET PARTITION 

Partition Minimum Squared Generator 
Level(p) Qr' Subset Distance (A',) ( tP) '  

0 
1 
2 

3 
4 
5 
6 
7 
8 
9 

10 
11 
12 

min(4,2,0.586) = 0.586 
min (4,2,1.172) = 1.1 72 
min (4,2,1.172) = 1,172 
min(4,2,2.343) = 2.0 
min(4,4,2.343) = 2.343 

min(4.4, w) = 4.0 
min(4,4, w)  = 4.0 
min(4.8, a)) = 4.0 
min(8,8,w) = 8.0 

min(8,w.w) =8.0 
min(8, w ,  w) = 8.0 

min(l6,w, w)  =16.0 
min( M , W .  w ) = cc 

[O 0 0 11 

[O 1 0  11 
[O 0 0 21 
[ l  1 1 11 
[O 0 2 21 
[O 2 0 21 

[2 2 2 21 

[O 4 0 41 

[do 1 11 

[0 0 0 41 

[0 0 4 41 

[4 4 4 41 
- 
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TABLE VI1 
SUMMARY OF L X 4PSK PARTITIONS 

I.  = 2 L = 3 (I) L = 3 (11) L = 3 (111) L = 4  
Partition MSSD Gen MSSD Gen MSSD Gen MSSD Gen MSSD Gen 
Level (p)  ( A i , )  ( r p ) '  (A;) ( r p ) '  (A;) ( r p ) '  (A;,) (t")' (A;) (r{')'  

0 2 01 2 111 2 001 2 00 1 2 0001 
1 4 11 4 110 2 01 1 2 011 4 0011 
2 4 02 4 011 4 222 4 002 4 0101 
3 8 22 4 222 6 111 4 022 4 0002 
4 - - 8 220 8 220 6 111 8 1111 
5 - - 8 022 8 022 12 222 8 0022 

- 8 0202 6 
- - 16 2222 7 

POPI 

- - - - - - - 

- - - - - - 

1 3 0 3 3 2 4 5 4 7 

TABLE VI11 
SUMMARY OF L X 8PSK PARTITIONS 

I' = 2 L = 3 (I) L = 3 (11) L = 3 (111) L = 4  
Partition MSSD Gen. MSSD Gen. MSSD Gen. MSSD Gen. MSSD Gcn 
Level(p) (A'") (P)' (A',) (t")' (A',) ( tp) '  ( A t )  ( r p ) '  (A2") (t")'  

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 

POP1 P? 

0.586 
1.172 
2 
4 
4 
8 
- 
- 

- 
- 

- 
- 

1 3  

01 
11 
02 
22 
04 
44 
- 
- 

- 
- 

- 
- 

5 

0.586 
1.172 
1.172 
2 
4 
4 
4 
8 
8 
- 

- 
- 

0 3  

111 
110 
011 
222 
220 
022 
444 
440 
044 
- 

- 
- 

6 

0.586 
0.586 
1.757 
2 
4 
4 
4 
8 
8 
- 

- 
- 

2 3  

001 
01 1 
111 
222 
220 
022 
444 
440 
044 
- 

- 
- 

6 

0.586 001 
0.586 011 
1.757 111 
2 002 
2 022 
4 444 
6 222 
8 440 
8 044 
- - 

- - 

- - 

2 6 5  

0.586 
1.172 
1.172 
2 
2.343 
4 
4 
4 
8 
8 
8 

16 
4 8  

0001 
001 1 
0101 
0002 
1111 
0022 
0202 
0004 
2222 
0044 
0404 
4444 

11 

TABLE IX 
SUMMARY OF L X 16PSK PARTITIONS 

L = 2  L = 3 (I) L = 3 (11) L = 3 (111) L = 4  
Partition MSSD Gen. MSSD Gen. MSSD Gen. MSSD Gen. MSSD Gen. 
Level (p)  (A;,) ( r p ) T  (A;) ( rp) '  (A;) ( rp) '  (A;) ( t p ) '  (A;,) ( r") '  

0 0.152 01 0.152 111 0.152 001 0.152 001 0.152 0001 
1 0.304 11 0.304 110 0.152 011 0.152 011 0.304 0011 
2 0.586 02 0.304 011 0.457 111 0.457 111 0.304 0101 
3 1.172 22 0.586 222 0.586 222 0.586 002 0.586 0002 
4 2 04 1.172 220 1.172 220 0.586 022 0.609 1111 
5 4 44 1.172 022 1.172 022 1.757 222 1.172 0022 
6 4 08 2 444 2 444 2 444 1.172 0202 
7 8 88 4 440 4 440 4 440 2 0004 
8 - - 4 044 4 044 4 044 2.343 2222 
9 - - 4 888 4 888 4 888 4 0044 

10 - - 8 880 8 880 8 880 4 0404 
11 - - 8 088 8 088 8 088 4 0008 

partitions can be obtained for L = 2 to 4. Tables VII, VIII, 
IX give a summary of the partitions for L x4PSK, L X 
8PSK, and L X 16PSK, respectively. 

E. Larger Dimensional MPSK Signal Sets and the 
Squaring Construction 

One way to obtain larger dimensional MPSK signal sets 
is to take an L XMPSK signal set partition (with its 
corresponding MSSD's relabeled as a:, for 0 5 i I I L )  and 

- - - - 8 4444 
- - - - 8 0088 
- - - - 8 0x08 

- - - 16 8888 
2 3 6 9  2 5 6 9  4 8 12 15 
~ 

form a 2LL' dimensional MPSK signal set which we label 
as L' X L X MPSK. Thus, if  we have a 2 X 8PSK signal set, 
the MSSD's A;, 0 5 p 5 6L', for L'X 2 X 8PSK are given 

A p 2  2 min (8d,,i,4d,,4.4d,,,l,2d,2, 1.172d,,1,0.586d,,,o) 

by 

(11) 

where the dmZ, are the Hamming distances of (L', L'- m,) 
block codes. If L' = 2 we can form the 2 X 2 X 8PSK signal 
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TABLE X 
2 x 2 x 8PSK SIGNAL SET PARTITION 

Minimum Squared Gen. 

0 a ( ~ , , ~ , , C , , . C , , . C , , $ )  min(8,4,4.2,1.172,0.586) =OS86 [O 11 
1 ~ ( C , , . C , , , C , , , C , , . ~ l , ~ l )  min(8,4,4,2,1.172,1.172) =1.172 [l 11 
2 S2(~, :C, , ,C , , .C , , .~ , ,C , )  min(8,4,4,2,1.172, CO) = U 7 2  [O 21 
3 O ( ~ ) , ~ , . ~ , . ~ , . C , . C )  min(8,4,4.2,2.343,~) = 2.0 [04] 

4 ~ ( ~ , , C , , . C , , , C , , ~ , . C , )  min(8,4,4,4,2.343,~) = 2.343 [2 21 
5 14 41 
6 a ( ~ , . ~ , . $ , , C , , C , , C , )  min(8,4,4,w,w,w)=4.0 1081 
7 s2(~ , .$ , .C , .C2,C, .C, )  min(8,4,8,w,w,w)=4.0 [016] 
8 O(C,,.C,, I,, C,. C,, C,) min(8,8,8, w ,  CO, 00) = 8.0 [8 81 
9 Q(C,, .~, ,C~.Cz,C,.C,) min(8,8.w. w.w,  w)  = 8.0 [16 161 

10 a($). C2, C,. C,, C,, C?) [O 321 
11 s2(f7,,C,,C,,C2.C2.C,) min(l6.m. w,  CO, CO, CO)  =16.0 [32 321 

12 Q(C,.C,.C,. C,,C,. C,) min(w. CO, w,  w ,  CO, C O )  = 03 - 

P cl/' Subset Distance (A;) (W 

Q ( c;, 1 c;, 1 c;, 1 $ 1  c, 1 c, ) min(8,4,4,4, CO, w) = 4.0 

min(8, w. CO, CO, CO, CO) = 8.0 

4 
set, which is equivalent to the 4 X 8PSK signal set. Table X 
illustrates this partitioning. Note that the MSSD's ob- 
tained are exactly the same as those found with the 4X 
8PSK partitioning given in Table VI. Fig. 6 shows a block 
diagram of a signal set mapper for the partition of 2 X 2 X 
8PSK. The function TI corresponds to the mapping given 
by the generators in Table X and T2 to the generators in 
Table I. 

I 

Fig. 6. Block diagram of 2 X 2 X 8PSK signal set mapper. 

For L' = 2, the above method of obtaining larger dimen- 
sional MPSK is essentially equivalent to the squaring or 
two-construction described by Forney [13]. The cubing or 
three-construction corresponds to L' = 3. One can con- 
tinue squaring or cubing various multi-D signal sets in an 
iterative fashion to obtain many larger dimensional signal 
sets. If we desire an L XMPSK signal set, all that is 

required is to factor L to determine which constructions 
are needed. For example, if L = 24, we could factor this 
into a 2 X 2 x 2 x 3 ~ 8 P S K  signal set. If L is a prime 
number, then the appropriate length L block codes and 
their corresponding generators must be found. 

Table XI gives the generators for L = 5  and 7. Also 
given are the Hamming distances and the number of 
nearest neighbors for each length L block code. Note that 
there are three different partitions for L =  5 and four 
different partitions for L = 7. This suggests that the num- 
ber of useful partitions increases by one for each succes- 
sive prime number. Thus L = 11 is expected to have five 
useful partitions, and so on. These partitions were con- 
structed by hand and probably represent the practical limit 
of hand constructions. For L =11 and above, an algorith- 
mic or mathematical method is required. In forming each 
partition, we have tried to maximize the Hamming dis- 
tance and minimize the number of nearest neighbors. For 
example, the type IV partition maximizes the Hamming 
distance and minimizes the number of nearest neighbors 
for the (7,4) block code while the type I11 partition maxi- 
mizes the Hamming distance and minimizes the number of 
nearest neighbors for the (7,3) and (7,2) block codes. 

TABLE XI 
BINARY GENERATORS FOR L 5 AND 7 

~ 

L = 5 ( I )  L = 5 (11) L = 5 (I11 \ 

d,,, N,,, ( T , " ' ) ~  d,,, N,, (6")' d,, N,, (TIT d,, N,, ( ~ 4 " ' ) ~  
0 1 5 [11111] 1 5 [11111] 1 5 [ooool] 
1 2 10 [Oooll] 1 2 [ooool] 1 1 [OOolO] 
2 2 4 [00101] 2 2 [OOllO] 2 3 [OOlOl] 
3 2 1 [11000] 3 2 [10101] 2 1 [Olool] 
4 4 1 [ O l l l l l  4 1 [Olll l]  5 1 [11111] 

L = 7 (I) L = 7 (11) L = 7 (111) L=7( IV)  

0 1 7 [ l l l l l l l ]  1 7 [1111111] 1 7 [ooooool] 1 7 [ooooool] 
1 2 21 [oo00011] 1 2 [ooooool] 1 1 [0001000] 1 3 [0001000] 

3 2 3 [oo10010] 2 1 [0100010] 2 2 [oooo101] 3 7 [OllOloo] 
4 2 1 [0001100] 3 3 [OOllloo] 3 2 [0101010] 3 3 [0011010] 
5 4 2 [1111000] 4 2 [0001111] 4 1 [1100011] 3 1 [0001101] 

2 2 9 [0001001] 2 5 [ ~ 1 0 1 ]  2 6 [1111111] 1 1 [lOOOOO0] 

6 6 1 [ O l l l l l l ]  6 1 [1110111] 5 1 [0011111] 7 1 [1111111] 
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For larger dimensions, these methods may produce block 
codes which do not have the largest possible minimum 
distance. For example, the largest Hamming distance that 
can be obtained for the (24,12) coset code is six. However, 
the (24,12) Golay code has a Hamming distance of eight. 
For L = 2, 3, and 4, the block codes are relatively simple. 
Thus we are fairly certain that the best partitions for these 
L X MPSK signal sets have been found. 

mission uses only half as many signals as coded transmis- 
sion. 

Example 3.1: We can form a rate 4/5 code with an 
effective rate of 2.0 bit/T from a 2 x 8PSK ( L  = 2, I = 3) 
signal set with 4 =l.  Then 

y l ( z ) = z 4 [ ~ ] + z 3 [ ~ ] + z 2 [ ~ ] + z 1 [ ~ ] + z o [ ~ ]  (mod8). 

The uncoded MSED is A;=2.0, which is the same as 
uncoded 4PSK. 

111. TRELLIS CODED MULTI-D MPSK DESIGN 

This section describes how convolutional codes are con- 
structed for the L XMPSK signal sets described previ- 
ously. We first show how to construct signal sets that have 
good phase rotation properties. Following this, a method 
used to find good convolutional codes based on the parity 
check equations is presented. 

A .  Construction of Signal Sets 

Equation (9) can be used to describe a signal point in an 
L X MPSK signal set. The number of bits z /  needed to 
describe each signal point is IL. If the LSB is used for 
coding, we can form a rate (ZL - 1)/ZL code. A more 
convenient measure of rate is to use the average number of 
information bits transmitted during each 2-D signal period 
T. This is called the effective rate of the code, R c f f  = 

(ZL - 1 ) / L  (bit/T). The unit bit/s/Hz can also be used 
(for the actual bandwidth efficiency), but this assumes that 
perfect Nyquist filtering is used in the receive and transmit 
filters. Since this is not the case in many practical systems, 
we make a distinction between the units bit/T and 
bit/s/Hz. 

Other rates can be achieved by setting the 4 LSB's of 
the mapping to zero. We do this to ensure that the MSSD's 
are as large as possible, so that the best codes can be 
found. In this case (9) can be rewritten as 

y " ( z )  = [:I= 'l&/, (12) 
y, 1 = 4  

for 0 1 ~ 1 2 / , - 4 - ~ - 1  , O <  - 4  - < L -1, and where y4 (z )  
represents a point z in an L X MPSK signal set such that 
the first 4 bits of (9) are zero. As before, we do not restrict 
the type of addition that is used. We now let z = 

[ z  - 4 -  ; . ., z', z"], where z is the binary representation 
of z ,  and the LSB of z is always the coding bit. This 
notation ensures that the parity check equations of a 
convolutional code can always be expressed in terms of the 
LSB's of z without depending on the type of signal set 
used or its partitioning. From (12), codes with effective 
rates R e f f  = ( I L  - 4 - 1) /L  can be formed. An upper limit 
of 4 = L -1 is set because for 4 2 L the signal set is 
partitioned such that d,,o= CO, i.e., an M/2J-PSK, for 
J 2 1, signal set is being used (one exception is the 4 X 8PSK 
signal set (Table VI) where dmo = 4 for 4 = L) .  The MSSD's 
range from A: to Ai,, and the uncoded minimum squared 
Euclidean distance (MSED) is A$+', since uncoded trans- 

B. Effect of a 360" /M Phase Rotation on a Multi-D MPSK 
Signal Set 

Using modulo-M arithmetic in (12), multi-D signal sets 
can be constructed such that there are at most I bits in z 
affected by a signal set rotation of q = 360"/M. For 
4PSK, 8PSK, and 16PSK, this corresponds to rotations of 
90", 45", and 22.5", respectively. Initially, we consider all 
possible mapped bits, i.e., 4 = 0. 

Consider that a 1 X MPSK signal set has been rotated by 
q. Since we are using natural mapping, the integer repre- 
sentation of the rotated signal point is y, = y + 1 (mod 
M ) ,  where .I: is the integer representation of the signal 
point before rotation. If y is in binary notation, then 

- 

y," = yo@ 1 =yo (134  

y,' = y ' @ p  (13b) 

y: = y%y".y' (134 
. .  

If there are I = log, M bits in a signal set, then we see 
from (13) that all Z bits are affected by a phase rotation 
of q. 

Consider the 2 X 8PSK signal set, with the mapping 
given by (8). The phase rotation equations of this mapping 
can be determined as follows. From (8), the signal outputs 
can be written in terms of z as 

+ ( 4z4 + 2 2  + z o  ) (mod 8). (14) 

After a 45" phase rotation, we have y]., = yJ + 1 (mod8), 
for j = 1,2. From (14), we can form the following phase 
rotation equations, 

[:I 

+ ( 4 z 4 + 2 z 2 + z 0 ) [  :] (mod8). 

Note that a 1 is added to the term whose coset is [I I]? 
Hence this term "absorbs" the effect of the phase rotation, 
leaving the remaining term unaffected. As can be seen, bits 
z 5 ,  z3, and z1 are affected in a manner similar to y 2 .  y ' ,  
and y o  in (13), and bits z4, z 2 ,  and z" are unaffected by 
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the phase rotation. Thus we can form the phase rotation 
equations 

If the signal set had been constructed using modulo-2 
addition (instead of modulo-8), only'zO would have re- 
mained unchanged by a 45" phase rotation. 

k 

Using general notation, we can express (14) as ["I = (2'-'zPI-l + . . . +2zP1 + z P o )  [;] * 

Y L  

+2 ' - '{g , - ,}+  +2{g,}+{g,j} (modM) ,  (16) 
where p , ,  for 0 I j I I - 1, corresponds to those partition 
levels where t P  equals the vector [2J,2J; * .,2JIT. The term 
g,, for 0 I j I Z - 1, corresponds to those remaining terms 

value 2'. For (14) we would have po=l,  p l = 3 ,  and 
p 2  = 5. These values of p, are given for all the signal set 
partitions shown in Tables VII-IX. We can now write the 
phase rotation equations as 

4 that have at least one (but not all) component in t P  with 

z,po = z P 0 @  1, z,p' = & 7 P I @ z P o  z,P2 = zP2@ZPo.ZPI . . . 
(17) 

and for all other partition levels z,P = z P .  

For L = 2, there is only one term in each g,. However, 
for L 2 3, there are two or more terms in each g,. Since 
the terms in g, do not contribute to the phase rotational 
properties of the signal mapping, these terms can be added 
modulo-2 before being added modulo-M to the other 
terms. This is best illustrated with an example. For the 
3 X 8PSK (I) signal set in Table 111, we have the following 
mapping equation: 

I 

The reason for this combination of modulo-2 and modulo- 
M arithmetic is that it reduces the number of logic circuits 

required in a signal set mapper. For small IL,  it may be 
simpler to use ROM's for signal set mapping, but for large 
ZL this dual addition becomes preferable. Fig. 7 gives a 
block diagram of the three 3X8PSK signal set mappers, 
and Fig. 8 illustrates the mapper for 4 X 8PSK. This com- 
bination of modulo-2 and modulo-M addition has no 
effect on the MSSD's (at least for L I 4). In a similar 
manner, we can also obtain the signal set mappers for 
L x4PSK and L X 16PSK. 

26 

25 
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23 

22 

2' 

20 

2 1  2 1 0  
Y; Y: Y p  y2 y2 y2 y3 y3 y," 

28 

27 

26 

25 

24 

23 

22 

21 

20 

(d 

(c) Mapper (111). 
Fig. 7. 3 X RPSK signal set mappers. (a) Mapper (I). (b) Mapper (11). 

Due to the phase rotational properties and simplified 
hardware that the combined modulo-2 and modulo-M 
mapping allows, these are the signal sets that are used to 
find all the trellis codes in this paper. 
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-Xk Binary Zk . - + -  
: Differential x2 : Convolutional 

W2 - Precoder x, - Encoder 22 ' -  
W' 2 1  - - 

1 R = k/(k+l)  z0 - 
T *  

I _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ 1  

73 

(I: 
y;-l j 

2-D Signal 
Multi-D 

Signal Set 
Mapper f Set Mapper *at 

Y t - '  

Y; f 
-0 

2'1 , 1 1 

Fig. X. 4 X XPSK signal set mapper 

We have shown that for q = 0, the bits that are affected 
by a phase rotation of \k are ZPJ ,  for 0 I j I I - 1. For 
q > 0 the bits that are affected are Z P I - ~ ,  for 0 I j I I - 1. 
However, depending on the signal set, p, - q for some j 
may be less than zero. If this is true, the minimum phase 
transparency is 2"%, where d' is the number of terms 
p, - q that are less than zero, and the number of bits that 
are affected by a 2"% phase rotation is s ' = I - d ' .  For 
example, the 3 X 8PSK signal set in Table I11 has p,, = 0, 
p1 = 3, and p 2  = 6. Thus if q = 1, then p,, - q = - 1, which 
is less than zero, implying that d'=1, and thus only 
s' = I - d' = 2 bits are affected by a 2\k = 90" phase rota- 
tion. (A phase rotation of 9 = 4 5 "  of this signal set 
produces its coset.) 

Fortunately, for the codes and signal sets considered in 
this paper, the above complication does not occur. This is 
partly due to the fact that for many signal sets with q = 0, 
the first L - 1 LSB's are not affected by a phase rotation 
of 9. Since we consider only signal sets with 0 i q I L - 1, 
d' = 0 in these cases. For those signal sets where this is not 
true (e.g., in some 3 X MPSK signal sets), it has been found 
that the convolutional codes produced are inferior (in 
either dfree or number of nearest neighbors) to an alterna- 
tive signal set with d ' =  0. 

When a signal set is combined with a convolutional 
encoder we must consider the effect of rotating coded 
sequences. A similar result to the previously mentioned is 
obtained so that, depending on the code and the signal set, 
the signal set can be rotated in multiples of 2d\k and still 
produce valid code sequences (where d defines the degree 
of transparency). The actual determination of d is de- 

scribed in Section 111-D. The number of bits that are 
affected by a 2"\I/ phase rotation is s = I - d.  

For 0 i q I L - 1, the actual bits that are affected by a 
phase rotation of 9 are z"1, where b, = p, - q, for 0 i J I 
1 - 1. More generally, the bits that are affected by a phase 
rotation of 2 " q  are z ' ) ,  where c, = p I t d  - q for 0 I J i 

s - 1. These two separate notations (b, and c,) are used 
because the determination of d depends on b,, as will be 
shown in Section 111-D. 

C. The General Encoder System 

From the information given thus far, we can now con- 
struct a suitable encoder system, as illustrated in Fig. 9. 
The general encoder system consists of five sections. These 
sections are the differential precoder, the binary convolu- 
tional encoder, the multi-D signal set mapper, the parallel- 
to-serial converter, and the 2-D signal set mapper. The 
convolutional encoder is assumed to be in feedback sys- 
tematic form, as in [l]. That is, z ' ( D )  = x J ( D )  for 1 I 1 I 
k ,  where D is the delay operator and polynomial notation 
is used. The parity sequence, zo( D), will be some function 
of itself and the XI( D), for 1 I j I k .  The parity check 
equation of an encoder describes the relationship in time 
of the encoded bit streams. It is a useful and efficient 
means of describing high rate convolutional codes, since it 
represents the input/output encoder relationships in a 
single equation. For an R = k / ( k  + 1) code. the parity 
check equation is 

H I ' ( D ) z I ' ( D ) @  . . . @ H l ( o ) z ' ( D ) ~ H o ( D ) . " D )  

= O ( D )  (18) 

where I ; ,  1 I /? i k ,  is the number of inp_ut sequences 
checked by the encoder, HJ( 0) for 0 I j I k is the parity 
check polynomial of z ' ( D ) ,  and O(D) is the all zero 
sequence. 

Since the encoder is systematic, the differential precoder 
codes only those bits which are affected by a phase rota- 
tion. The input bits into the encoder which are precoded 
are denoted w"], ~ ' 1 , .  . ., w'>- l .  If c,, = 0, we replace w o  
(which does not exist) by z o ,  as shown in Fig. 9 by the 
dashed line (a different precoder must then be used). For 
example, an encoder for a rate 8/9 code which uses the 
3 x 8PSK ( I )  signal set given in Table 111-a) may (depend- 
ing on the phase transparency) need this modification. 
This is because this signal set has b,, = 0. and thus if the 
code has d = 0, then z o  will need to be precoded. Fig. 10 
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I I  I 1  

(a) 

Fig. 10. Differential encoders for general 

illustrates the two types of precoders. Note that the storage 
elements have a delay of LT. Fig. 10(a) illustrates the 
precoder with co > 0, where there are s iiiputs that are 
precoded. The basic component of the precoder is the 
modulo-2" adder. For most codes this is the precoder to be 
used. For the bits that are not precoded, x' = w', for i # cJ. 

Fig. 10(b) shows the other case, where co = 0 and s - 1 
input bits are precoded (the other precoded bit is zO) .  The 
adder circuit for this case is different from Fig. 10(a), i.e., 
it is not a modulo-2$ adder. The Appendix gives the 
equations for the differential encoder and decoder (for 
both cases) and an explanation of how these circuits work. 

We now summarize the notation and indicate the limits 
on the parameters used in the search for good codes. For a 
rate ( I L  - q - 1)/( I L  - q )  code, 

1 

M 

L 
P 
4 

Z 

k =  I L - 9 - 1  
K 

\k = 360°/M 
p/ 

d 

number of bits in each 2-D signal (2 I 
I I 4), 
number of signal points in each 2-D sig- 
nal set, 
number of 2-D signal sets (1 I L I 4), 
partition level of signal set (0 I p I IL) ,  
partition level p where mapping begins 
(0 I q I L - l), 
signal set mapping parameter (0 I z I 
2p-4 - I), 
number of input bits to encoder, 
number of bits checked by encoder (1 I 

minimum phase transparency with q = 0, 
bits z P /  affected by a 9 phase rotation 
with q = 0, 
degree of phase transparency (2d9, for 
O s d s I ) ,  
number of bits in z affected by a 2 d 9  
phase rotation, 
the bits zci affected by a 2 d 9  phase 
rotation. 

I k), 

There are two types of systematic convolutional en- 
coders that can be constructed. Before proceeding with the 
description of these encoders, we return to the parity check 
equation given in (18). As in [l], we define the constraint 

Precoder pa 
I 

(b) 

encoder. (a) CO > 0. (b) C, = 0. 

length U to be the maximum degree of all the parity check 
polynomials H ' ( D ) ,  for 0 I j I k .  For L < j I k,  
H J (  D) = 0, since the bits corresponding to these polyno- 
mials are not checked by the encoder. The parity check 
polynomials are of the form 

H J (  0 )  = o@h;-lDt'-l@ . . . @ h { D @ h &  

H o p )  = D"@hjl_,D"-'@ * f f @ h ? D @ l .  

1 I j I K 
(194  

(19b) 
If A < U ,  we let hh = 0, for 1 I j I i .  This insures that the 
squared Euclidean distance (SED) between paths in a 
trellis leaving or entering a state is at least A$+1. Thus all 
codes in this class have an MSED between all possible 
nonparallel coded sequences of at least 2A24+1. The parallel 
transitions provide an upper bound on the d,, of a code. 
A theoretical justification for constructing codes in this 
manner can be found in [20] where it is shown, using 
random coding arguments, that these codes have a large 
free MSED on the average 

A minimal systematic encoder can be implemented from 
(19), since h! = 1 [l]. The encoding equations are 

z'(D)=x/(D), l I j I k  (204  
zy 0 )  = H i (  D ) x i (  D) @ * .  @HI(  D)x'( D) 

@ (HO( D) @ l ) Z O ( D ) .  (20b) 

An encoder implementation using (20) is shown in Fig. 11. 
For all codes with U = 1 and for some codes.with U > 1, 

K = U .  For these _codes we cannot restrict h i ,  for? I j I k. 
This is because k ch_ecked bits require at least k terms in 
H J ( D ) ,  for 1 I j I k, that are variable. If there are not 
enough variables, then there will be some nonzero x k  = 
[xk,.. -, x2, x'] such that Z;=lHJ_(D)x'= 0 (mod 2). That 
is, there will be more than 2k-k parallel transitions be- 
tween states in the trellis. To avoid this problem, when 
k = U ,  we use (19) without any restrictions. In this case, the 
MSED between all possible nonparallel coded sequences is 
at least A: + A$+ since the MSED betweep paths leaving 
a state is A: (since h i  E {O,l} ,  for 1 I j I k )  and betwe_en 
paths entering a state is A:+, (since h/ ,  = 0, for 1 I j I k).  
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k 
X c Z k  _ _ _  

k + l  - - _  k+l  

x k  ----- T Z k  

I I 1 1 _ _ _  I 

Fig. 11. Systematic convolutional encoder with checked bits. 

The multi-D signal set mapper can be implemented as 
described in Section 11-D. We must insure that the correct 
labels are used to map the signal set if q is greater than 
zero. All the labels in Figs. 4, 7, and 8 assume that q = 0. 

The second to last section of the encoder is the parallel 
to serial converter, which takes the L groups of I bits and 
forms a stream with I bits in each group. That is, we 
assume that the channel is limited to transmitting one 2-D 
signal point at a time. Finally, the 2-D signal set mapper 
takes the I bits for each 2-D signal point and produces the 
required real and imaginary (or amplitude and phase) 
components for a modulator. 

Example 3.2: In this example, we describe how to im- 
plement a particular code. The code is used with a 3 X 8PSK 
signal set. Thus L = 3 and I = 3. We also choose q = 1, so 
that a 2.33-bit/T (rate 7/8) code is formed. The partition 
that is used is given in Table IV, from whch we obtain 
po = 2, p 1  = 3, and p 2  = 6. The code is 90" transparent, so 
that d = 1 and s = 2. Therefore, co = p 1  - q = 2, and c1 = 

p 2 -  q = 5 .  Thus bits w 2  and w 5  are precoded using a 
modulo-4 adder. Since co > 0, _the precoder given in Fig. 
10(a) is used. For this code, k = 2 and the parity check 
polynomials are H o ( D )  = D 4 @ D 2 @ D @ 1 ,  H 1 ( D )  = D ,  
and H 2 (  D )  = D 3 @ D 2 .  Excluding the parallel-to-serial 
converter and the 2D signal mapper, the encoder is shown 
in Fig. 12. This code has 16 states ( U  = 4). Note that the 

multi-D signal set mapper does not correspond exactly to 
Fig. 7(b), since q = 1. 

D. Convolutional Encoder Effects on Transparency 

The convolutional encoder can affect the total trans- 
parency of the system. The method used to determine 
transparency is to examine the parity check equation and 
the bits affected by a phase rotation. A code is transparent 
if its parity check equation, after substituting z J ( D )  with 
z!( 0) for 0 I j I i (the rotated sequences), remains the 
same. Normally, at most I bits are affected by a phase 
rotation i.e., zh[) ;  . ., z"J-~, b, = p, - q, for 0 I j I I - 1. 
We have 

. .  

Assume that the largest value of b, I i is bo. This implies 
that only one term in the parity check equation is affected 
by a phase rotation. The other bits have no effect since 
they are not checked by the encoder, i.e., b, > k for 1 I 
j I I - 1. The parity check equation after a phase rotation 

w7 

4 
4 
d 
w3 
W2 

W' 

Systematic Convolutwnal Encoder 

Diilerential Multi-D Signal Set Mapper 
Premdel 

Fig. 12. Encoder system for rate 7/8 (2.33 bit/T), 3 x 8PSK (I) signal set and 90" transparent code with 16 states and I; = 2. 
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of \k then becomes 
H L ( D ) z R ( D ) @  . . . @ H h O ( D ) [ Z h O ( D ) @ l ( D ) ]  63 * - * 

H L ( D ) z R ( D ) @  * .  . @HhO(D)zbO(D)@ * .  . 
@HO( D ) Z O (  D) = o( 0 )  

@ H O (  D ) Z 0 (  D) = E [ g b o (  D)] ( 0 )  (22) 
where E [ H h " ( D ) ]  is the modulo-2 number of nonzero 
terms in Hh"( D) and 1( 0) = Xy= - ooDJ is the all-ones 
sequence (i.e., EIHbo( D ) ] ( D )  = Hbo(D)l (D)) .  Thus, if 
Hh(l(D) has an even number of terms, (22) is the same as 
(18). That is, the code is transparent to integer,multiples of 
9 phase rotations of the signal set. However, if Hbo(D)  
has an odd number of terms, then E [  Hbo( D ) ]  = 1 and the 
coset of the convolutional code is produced. Even though 
the two equations are closely related, the codes are quite 
different, and a decoder is not able to produce correctly 
decoded data from a 9 phase rotation of the signal set. 

phase rotation, i.e., the largest value of bJ I k is b,. The 
terms in the parity check polynomial Hbo(D)zho(D)@ 
Hh1(D)zhl (D)  now become 

4 Now assume that the first two terms are' affected by a 

[fly D ) @ H h l ( D ) ]  z h o ( D ) @ H y D ) Z q D )  

@ E  [ HbO( D)]( D). 
In this case the parity check equation is different after a 
phase rotation (even if E[Hho(D)] = 0). This means that 
the code is not transparent to a \k phase rotation, but it 
could be transparent to 2 P  or 4 9  phase rotations. This is 
because the phase rotation equations reduce to 

z2 = zho . . . $ - I  = zb-1 

z,". = Z h d @  1, zyhd+l = Z b + l @ Z b d  . . . 
3 ,  

for a 2d\k phase rotation, where d = 1 or 2. If Hbl( D) has 
an even number of terms, then d =1. T h s  is because an 
even number of terms in H b l ( D )  cancels the effect on 
z " , ( D )  when the signal set is rotated by 2". That is, the 
code is transparent to integer multiples of 2\I/ phase rota- 
tions but not to multiples of ". If H b l ( D )  has an odd 
number of terms, this cancellation effect does not occur, 
implying that d = 2 and the phase transparency is 4\k. 

In general, if the largest value of bJ I k is bf, then 
d = f + E [  Hbf( D)]. We can then determine those bits zC1 
which are affected by a 2d\k phase rotation, i.e., cJ = 
b J s d = p J + d - q ,  f o r 0 2  j I s - l , w h e r e s = I - d .  

Example 3.3: For the code given in Example 3.2, k = 2, 
I = 3 , a n d  q = l . T h u s  b o = l ,  b ,=2 ,and  b2=5.Sincethe 
largest value of bJ < 2 is b,, then f =l. Therefore, d = 1 +  
EIHhl(D)]  =1+ E [ D 3 @ D 2 ]  = l .  Thus the code is 90" 
transparent, and co = 2 and c1 = 5. 

E. Systematic Search for Good Small Constraint 
Length Codes 

ability [l] of a multi-D code is given by 

I 

I 
An approximate lower bound for the symbol error prob- 

where Eh/No is the energy per information bit to single- 
sided noise density ratio and e( . )  is the complementary 
error function. In (23), the division by L normalizes the 
average number of errors per multi-D signal to that of a 
2D signal set. 

For each multi-D signal set considered, a number of 
code rates can be achieved. As U is increased, a compre- 
hensive code search becomes time-consuming due to the 
greater complexity of each code. We have thus limited our 
search to U + k 110. (The number of checked bits k also 
affects the complexity of the code search.) As indicated by 
(23), the criteria used to find the best codes are the free 
MSED (dice) and the number of nearest neighbors ( Nfree). 
We have also included the code transparency d as a 
criteria in the code search. The code search algorithm that 
was implemented is similar to that in [l]  but with a 
number of differences, including the extra criteria men- 
tioned above. 

The actual code search involves using a rate k/( k + 1) 
code. Thus two separate notations are used to dis$ng;ish 
the rate k / (  k + 1) encoder and the simplified rate k/( k + 
1) encoder. For the rate k / ( k  +1) encoder, we have 
x,, = [x:,..., x!,] (the input to the encoder) and 
z,, = [zt; . ., z:,, z f ]  (the mapped bits or encoder output) 
at time n .  Also, e,, = [e t , .  . . , e!,, e:] is the modulo-2 differ- 
ence between two encoder outputs z, and z; at time n, i.e., 
e ,  = z,,@z;. Note that there are 2k+1 combinations 
of z,, and z ;  that give the same e,. For the rate k / ( k  +1) 
code, we denote reduced versions of x,, z,, and e,  

[e , , , .  . . , e:,, e:], respectively. 
To find dfree for a particular code, the squared Eu- 

clidean weights (SEW) w 2 ( e , )  are used. As defined in 111, 
w2(e , , )  is the MSED between all combinations of a(z,) 
and a ( z ; )  such that e,, =z,@z; and a(z,) is the actual 
L x MPSK signal point. This can be defined as 

w 2 ( e , , )  = min d 2 [ a ( z , ) ,  a ( z , @ e , ) ]  (24) 
all :,, 

where d 2 [ a ( z , , ) , a ( z i ) ]  is the SED between a(z,) and 
a ( z i ) .  One can then use the all-zero path as a reference to 
find d i e ,  in a code search, i.e., 

asL I,, = [x,,;.., K xf,], Z;, = [ z n ; - . ,  i z t ,  z,"], and Z, = 

a 

d i e ,  = rnin x w 2 ( e , )  (25) 
11 

where the minimization is over all allowabk code se- 
quences with the exception of the all-zero sequence. We 
can use (25) to find df,, provided that the minimization of 
(24) does not depend on zf, as shown by Ungerboeck [l]. 

Although the minimization of (24) does not depend on 
z," for 1 X MPSK signal sets, it cannot be assumed that this 
also applies to L xMPSK for L 2 2. By expressing 
d 2 [ a ( z , , ) ,  a(z , ,@e, , ) ]  directly in terms of z ,  and e,, it can 
be shown that 3X4PSK (I), 3X8PSK (1 and II), and 
3 X 16PSK (I, 11, and 111) all depend on 2,". This implies 
that (25) becomes a lower bound in these cases. However, 
due to the large number of parallel transitions for these 
codes, we can still determine dtee  (and Nfree) using a 
slightly modified version of (25). 
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Since there are 2’+’ values of e, ,  a total of 22k+2 
computations are required to find all the values of w 2 ( e , ) .  
For example, a rate 11/12 code with 4X 8PSK modulation 
requires nearly 17 million computations. This can be re- 
duced by letting z: = 0 (or 1) and minimizing (24) over all 
z ,  = [z ; ;  . ., z~,,O]. This reduces the number of computa- 
tions to 22ht1. In fact, it is possible to decrease the number 
of computations even further. Using some difficult alge- 
braic manipulations, it can be shown that the L output 
bits corresponding to cosets t P  with some components 
equal to 2‘-’ can all be set to zero. For example, the 
4 x  8PSK signal set with q = 0 can have bits z z ,  z:, zko, 
and zf,’ all set to zero when minimizing (24). This is due in 
part to the MPSK signals being antipodal for these values. 
Thus the total number of computations can be reduced to 

To reduce the time needed to _find_dk,,, we note that the 
trellis is equivalent to a rate k / ( k  tl) code with 2 k p k  
parallel transitions. Also, there are 2h+ different sets of 
parallel transitions. If the minimum SEW is found for each 
of these sets of parallel transitions, the code search is 
greatly simplified, since the search for a rate i / ( k  + 1) 
code is all that is needed and is usually small. Thus the 
SEW’S required for a rate i / (  k + 1) code search are 

22k-l . i l  

w2(d,,) = minw2(e,,) (26) 

code is then found for this value of U and &, and the above 
process is repeated for each increasing value of U. 

As can be seen from (24), there may be some values of 
e,, and z,, for which w2(e,,) < d2[a(z,,), a(z ,@e , ) ] .  The 
“number of nearest neighbors” for e,, (denoted m(e , , ) )  is 
defined as the average number of times that w 2 ( e , )  equals 
d *[ a ( z , ,  ), a ( z,,@ e,, >I. ~f w *( e,,) equals d *[ a (z, >, a(7.,,@ e,, )I 
for all values of z,,, then m ( e , )  =l. For example, in 
naturally mapped 8PSK, it is found that for e,, = [0 1 11 
and [l 1 I], d2[a(z,,), a(z,,@e,)] = 0.586 for four values of 
z,, and 3.414 for the other four values of z,,. Thus m(e , , )  = 

0.5 for e,, = [0 1 I] and [I 1 11. For all other values of e,,, it 
can be shown that rn(e,,) =l. Zehavi and Wolf [21] give a 
general approach to determining the full code distance 
spectrum, whereas we are only interested in the number of 
nearest neighbors. 

We can state this generally as follows. Let the number of 
bits in z, ,  that are varied to find w 2 ( e J 7 )  be b. Then 

d e , , )  = c+’Ye , , ) -  d 2 [ 4 z , , ) ,  a(L@e, , ) l )2ph (29) 

where U (  . )  is the unit step function and the summation is 
over all the bits in z,, that are varied to find w2(e,,). 
Normally, h = k + 1, but this can be reduced to b = k - L 
for the reasons mentioned meviously. 

For the simplified rate &/( i  +1) code, rn(d,,) is the sum 
of all the m ( e , , )  for which w2(E,,) = w 2 ( e , , ) ,  i.e., 

m ( a ? 7 >  = xu(  ”’(‘?7)- w 2 ( e t 7 ) ) m ( e t J )  (30) 
where the minimization is over all [e;; . . ,e:+’]. We de- 
fine the free MSED of this rate $/( i + l )  code as 

where the summation is over all [et;..,e;+’]. We can 
think of m(E,,) as the total average number of nearest 
neighbors along each set of parallel transitions. 

The number of nearest neighbors for the MSSD A’,+[ + 

is 

d;2,,, = min CW’(E,) (27) 

where the minimization is over all allowable code se- 
quences ( E (  D )) defined by 

J7 

C ( D )  = d l D @ d 2 D 2 @  . . .  @END’ 

for Zl, d, f 0, and N 2 2. The code sequences of length 
N = 1 are the parallel transitions, where the MSED is the 
MSSD of the parallel transitions. A code might have 
larger than the MSSD of the parallel transitions, implying 
that A,?,,, occurs along _the _parallel transitions. With k 
checked bits and a rate k / ( k  + 1) code, the MSSD of the 
parallel transitions is A;+x+~. Thus we can express as 

The best value of i can be determined from the free 
MSED of the best code for t_he previous value of U .  The 
search starts with U =1 and k =1, and we find the code 
with the best df2r,e and N,,,,. We then increase U by one 
and determine t? as follows. If d:,,, for the previous best 
code was Jkee, then remains the same. This is because 
the limit of the parallel transitions A;+x+’ has not yet 
been reached and the trellis connectivity needs to be 
reduced to increase di,, or reduce n,,,,. If the previous 
best code had d;,,, = A ~ + ~ + l ,  then is increased by one 
from the previous value; otherwise, die, and N,,,, would 
remain the same. If ai,, = A;+xil for the previous best 
code, then i can remain the same or increase by one. Both 
values of 17 should be tried to find the best code. The best 

where the summation is over all e,, = [et; . ., et+’,O; . .,O]. 
The number of nearest neighbors for paths with SED J:,,, 
can be calculated using m(d,,) as follows: 

A lvrn 
’ f r w  E C FI m(dri> ( 3 2 )  

n - 1  JZ=1 

where N ,  is the length of a path a that has a SED of d“,,, 
and A is the number of paths that have a SED of d;2,,,. If 
die, occurs along the parallel transitions, N,,,, = N,, and 
we define the next nearest free SED and :umber of nearest 
neighbors as d&, = and N,,,, = N,,,,, respectively. 
(Note that d:,,, and N,,,, may not be the true next nearest 
paths, since there may be some closer paths occurring 
along the parallel transitions.) When there are several 
codes that have the same free MSED and number of 
nearest neighbors, the “next nearest” values are used in 
code selection, When dk,, occurs along paths with SED 

not given in the code tables. If dk,, = A;+xtl, then N,,,, = 

Example 3.4: In Example 3.2 we have a t? = 2, q = 1, 
rate 7/8 (2.33 bit/T) code with a 3 X 8PSK (11) signal set. 
After determining the mapping of the signal set, (24) was 

dfreer -2 N,,,, = N,,,,. The next neyest values in this case are 

NA + ’free. 
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used to find the SEW'S for each signal point. Equation (26) 
determines the w 2( e",l) used to find the best rate 2/3 codes. 
For these codes d;,, = A ~ + L + ~  = A; = 4.0. Using (31) we 
determined that N,,, is 15 (after normalizing, there are 
only five paths per 2-D symbol). In thecode search for the 
best rate 2/3 codes, there were many codes that had 
d:ext = = 4.343. Thus (32) was used to determine N,,,, 
for each best code. Table XI1 gives the values of w2(e",,) 
and m(e",,) for each e",, used in the code search. The best 
code with a transparency of 90" was found to have Nnext = 

24. 

TABLE XI1 
SQUARED EUCLIDEAN WEIGHTS USED IN THE CODE 

SEARCH FOR RATE 7/8 (2.33 BIT/T) CODES 
WITH 3 x 8PSK (11) AND k = 2 

6 I w (4,) 4 C , , )  

000 
001 
010 
01 1 
100 
101 
110 
111 

0.0 
1.172 
1.757 
0.586 
2.0 
1.172 
1.757 
0.586 

1 
2 ,  
4 
1 
6 
2 
4 
1 

To reduce the number of codes that must be tested in 
our code search algorithm, rejection rules were used. As in 
[ l ,  rule 11, time reversal of the parity check polynomials 
was used to reject codes. Even though w2(Z,,) and m(Z,,) 
are used to find the best codes, [ l ,  rule 21 can still be 
exploited, provided that w2(e",,) = A:2r(6)+q, where r(Z,,) is 
the number of trailing zeros in e",,. When this is not true, it 
may still be possible to find some combinations of the 
parity check polynomials that can be rejected (this was 
also implemented in OUT code search). Finally, [ l ,  rule 31 
was also used to eliminate codes, 

In the code search a rate k / ( k  + 1) code is searched for 
a particular U. Before finding d;2,,, the code search pro- 
gram checks to make sure that the code only produces 
sequences with length N 2 2. If for some input 2, # 0, the 
inputs to the systematic encoder are all zero, the state of 
the encoder goes from one state to the next as if a zero 
input had occurred. Thus parallel transitions will occur in 
the rate k / ( k  + 1) code, which should not have parallel 
transitions. Therefore, codes at level i ,  11 is k ,  were 
rejected in the code search if for some [x' ;- . ,xl]  # 0, 
C,=,x'HJ(D) (modulo 2) = O(D). 

Two programs were used in the code search, oce for 
codes with U > k and the other for codes with U = k .  For 
specific values of I ,  L ,  and q,  yq( z ) ,  for 0 I z I 2IL-q - 1, 
was generated using the coset representative t P ,  for 0 1  
p I ZL - 1, that are given in Tables VII-IX. The squared 
Euclidean weights w 2 (  e,,) were-then calculated using (24) 
for all e,,. Since the value of k can change with each U, 
w2(Z, , )  and m(e",,) were computed, if necessary, as the 
program went from the smallest to the largest U. 

The code search used the various rejection rules before 
the time consuming tasks of finding $ice (using the bidi- 

i 

rectional search algorithm [22]) and N,,,, (using a tech- 
nique based on the Viterbi algorithm). The rejection rules 
were organized so that the best codes for each of the two 
possible phase transparencies were found. The code search 
found those codes that had the largest free distance (for a 
particular transparency). If a code was found to have its 
free MSED equal to or greater than the previous best code, 
<free was determined, and this code was listed if either its 
die ,  or 

The octal code generators were then listed along with 
their d;2,,,, I?,,,, and phase transparency d .  A small list of 
codes was produced (for each code search) from which the 
best codes could be chosen. Every time that is increased 
by one in the code search (which is done automatically), 
the program determines and lists A%+L+~ and N, for use 
in the code tables. 

The asymptotic coding gain y of each code compared to 
the uncoded case, as shown in the code tables, is 

had improved over the previous best code. 

Y =1Olog,, (d iee /d ; )  d~ (33) 
where d: is the smallest MSSD of an equivalent uncoded 
2-D or multi-D scheme. In nearly all cases, d;  = A:+l. For 
codes with a noninteger Reff, no equivalent 1 X MPSK 
scheme exists which has the same Ref,, and so the equiva- 
lent uncoded multi-D signal set is used instead. For the 
4X 8PSK signal set with q = 3, Reff = 2 bit/T. Thus a 
natural comparison would be against uncoded 4PSK, which 
has d: = 2. (In this case, A%+l = 2.343, which is inconsis- 
tent with other codes that also have Ref, = 2 bit/T.) The 
asymptotic coding gains compared to uncoded ( M/2)-PSK 
are found by adding to y the appropriate correction factor 

as shown in the code tables. The transparency (in degrees) 
is also given for each code. The parity check polynomials 
are expressed in octal notation in the code tables, e.g., 
H O ( D )  = D6 + D4 + D 2  + D + 1 (001 010 111), E 

In Tables XIII, XXIII, and XXXIII codes for TC-lX 
4PSK (rate 1/2 4PSK), TC-1 X 8PSK (rate 2/3 8PSK), 

(127),. 

TABLE XI11 
TRELLIS-CODED 1 x 4PSK" 

h' IT'' Inv. 

1 1  
2 1  
3 1  

1 
4 1  

1 
5 1  

1 
6 1  
7 1  

1 
8 1  

1 
.9 1 

1 

1 3  
2 5  

06 13 
04 13 
06 21 
10 23 
36 45 
26 53 

042 117 
126 235 
144 223 
262 435 
362 515 

0644 1123 
0712 1047 

360" 
360" 
180" 
360" 
180" 
360" 
180" 
360" 
180" 
180" 
360" 
180" 
360" 
180" 
360" 

dice 

6 
10 
12 
12 
12 
14 
16 
16 
20 
20 
20 
24 
24 
24 
24 

Nf,,, - 
1 
1 
2 
1 
1 
2 
2 
1 

11 
2 
1 

11 
9 
2 
1 

Y (dB) 
1.76 
3.98 
4.77 
4.77 
4.77 
5.44 
6.02 
6.02 
6.99 
6.99 
6.99 
7.78 
7.78 
7.78 
7.78 

' y 2  = 0 d B ;  Rcrr =1.0 bi t /T ,  d: = 4.0, Nu =1 (1 X2PSK). 
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TABLE XIV 
TRELLIS-CODED 2 x 4PSK" 

1,  i h' h' h' hi' Inv. d,',,, N,,,, d:,,, Nn',,,, Y (dB) 

1 1 - 1 3 180" 4 2 6 8 0.00 
2 2  1 3 5 90 6 6 - 1.76 

04 06 11 90' 8 5 - 3.01 3 2  - 
4 2  - 10 06 23 90" 8 1 10 16 3.01 
5 3  14 30 02 41 180" 10 8 - 3.98 

3 16 24 06 53 360" 10 7 - 3.98 
- 4.77 6 3 030 042 014 103 180" 12 40.25 - 

3 076 024 010 157 360" 12 30.75 - 4.77 
7 3 044 022 114 211 180" 12 8 - 4.77 

- 

- - 

- 

- 
~ 

- 

- 

"y2=1.76dB: R,,,=1.5 bit/T, q = 0 ,  d:=4, NU=6(2x4PSK).  

and TC-1 x 16PSK (rate 3/4 16PSK), respectively, are 
presented. These tables give the best code for each phase 
transparency, which (to the best of our knowledge) have 
not been previously published. The best codes, without 
regard for phase transparency, were original published by 
Odenwalder [15] for 4PSK (with the codes in non-sys- 
tematic form), by Ungerboeck [l], [4] for 8PSK, and 
Wilson et al. [6] for 16PSK. 

Tables XIV, XV, XXIV, XXV, XXXIV, and XXXV list 
the TC-2X4PSK codes (rates of 1.5 and 1.0 bit/T), the 
TC-2xSPSK codes (2.5 and 2.0 bit/T), and the TC-2x 
16PSK codes (3.5 and 3.0 bit/T). Tables XVI-XVIII, 

TABLE XV 
TULLECODED 2 x4PSK" 

I' 11' h' h" Inv. d,',,, Nf,,, d,?,,, NnCxr y (dB) 

'1 1 ~~ 1 3 9 0 "  8 5 - - 3.01 
2 1 ~- 2 5 90" 8 1 12 8 3.01 
3 2 04 02 11 360" 12 5 - - 4.77 
4 2 14 06 23 180" 12 1 - - 4.77 
5 2 30 16 41 180" 16 8 - - 6.02 
6 2 036 052 115 180" 16 1 - - 6.02 
7 2 044 136 203 180" 20 6 - - 6.99 
8 2 110 226 433 180" 24 33 - - 7.78 

"y,=OdB: R,,,=1.0bit/T. q = l .  d t = 4 . 0 ,  N,,=l (1X2PSK) 

TABLE XVI 
TRELLIS-CODED 3 x 4PSK" 

1' i h3 h' h' h' Inv. di,, N,,,, die,, N,,,, y (dB) Set 

1 1 - -  1 3 90" 4 7 6 32 0.00 1 
2 2 -  2 1 5 9 0 " 4  3 6 24 0.00 1 

2 -  2 1 5 360" 4 2 - - 0.00 11 
3 2 -  04 02 11 90" 4 1 6 6 0.00 111 

2 -  04 02 11 360' 6 11 - 1.76 11 
3 05 04 02 11 90" 4 0.25 - 0.00 111 

- 1.76 11 4 2 -  14 02 21 180" 6 6 - 

3 3 01 02 06 11 360" 6 4 - - 1.76 11 
4 3 10 04 02 21 90" 6 5.5 - - 1.76 111 

3 12 04 02 21 180" 8 19 - - 3.01 1 
5 3 24 14 02 41 180' 8 7 - - 3.01 1 
6 3 024 042 010 105 180" 8 3 10 16 3.01 1 

Signal 

- 

- 

"y2 = 2.22 dB: R, , ,  = 1.67 bit/T, q = 0, d t  = 4.0, Nu = 15 (3 x4PSK I) 

TABLE XVII 
TRELLIS-CODED 3 x4PSK" 

r' x h' h' h' h" Inv. d,?,,, N,,,, 

1 1 - -  1 3 90" 4 1 
1 - -  1 3 360" 6 7 

2 1 - -  2 5 360" 6 4 
2 -  2 1 5 90" 6 2 
2 -  3 1 5 180" 8 21 
2 -  2 1 5 360" 8 16 

3 2 -  04 02 11 90" 6 2 
2 -  02 06 11 180" 8 3 
3 06 04 03 11 90" 8 1 

4 3 14 04 12 23 90" 10 5 
5 3 30 04 22 43 90" 12 13 
6 3 036 060 026 103 90" 12 2 
7 3 140 160 062 213 90" 12 1 

3 004 154 056 207 180" 12 1 

- 

10 
8 
- 

- 

8 
12 

- 

14 
16 

Y (dB) 

4 0.00 
- 1.76 

9 1.76 
4 1.76 
- 3.01 

3.01 
1 1.76 

100 3.01 
- 3.01 
- 3.98 
- 4.77 

4.77 
5 4.77 

128 4.77 

- 

- 

Signal 
Set 

111 
11 
11 

111 
1 

11 
111 
11 

111 
111 
111 
111 
111 
111 

" y ,  = 1.25 dB: R,,, ~ 1 . 3 3  bit/T, 4 =1, d t  =4.0, Nu = 3 (3 X4PSK 11) 



80 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36. NO. 1. JANUARY 1990 

TABLE XVIII 
TRELLIS-CODED 3 x 4PSK" 

I '  i h3 h2 

0 0  
1 1  

1 
2 2  
3 2  

2 
4 2  

2 
3 

5 3  
3 

6 3  
7 3  

3 

- 

- 

- 
- 

- 

- 

- 

- 

10 
22 
24 

070 
156 
044 

- 

- 

- 

3 
06 
02 
12 
04 
04 
16 
14 

004 
024 
014 

~ 

hi 

- 

1 
1 

- 2  
02 
06 
16 
12 

.. 02 
04 
02 

022 
046 
1-02 

h' 
- 

3 
3 
5 

11 
13 
21 
27 
21 

"43 
101 
213 
21 7 

, 53 

Inv. 

90" 
90" 

180" 
90" 
90" 

180" 
90" 

180" 
180" 
180" 
360" 
180" 
180" 
360" 

- d L  

6 
6 
8 

10 
10 
12 
12 
12 
14 
16 
16 
18 
20 
20 

4 
2 
3 
4 
2 
5 
1 
1 
3 
2 
1 
3 
3 
2 

Signal  
Y (dB) S e t  

~ ~~ 

1.76 i1 
1.76 111 
3.01 11 
3.98 111 
3.98 111 
4.77 111 
4.71 111 
4.77 111 
5.44 11 
6.02 11 
6.02 11 
6.53 11 
6.99 11 
6.99 11 

"y2 = 0.0 dB; R,,, = 1.00 bit /T,  q = 2, d: = 4.0, Nu = 1 (1 X 2PSK). 

XXVI-XXVIII, and XXXVI-XXXVIII h t  the TC-3 X 
4PSK codes (1.67, 1.33, and 1.0 bit/T), the TC-3 X 8PSK 
codes (2.67, 2.33, and 2.0 bit/T), and the TC-3x16PSK 
codes (3.67, 3.33, and 3.0 bit/T), respectively. Tables 
XIX-XXIII, XXIX-XXXIII, and XXXIX-XLII list the 
TC-4X4PSK codes (1.75, 1.5, 1.25, and 1.0 bit/T), the 
TC-4 X 8PSK codes (2.75,2.5, 2.25, and 2.0 bit/T), and the 
TC-4x16PSK codes (3.75, 3.5, 3.25, and 3.0 bit/T), re- 
spectively. 

Equivalent R = 5/6, TC-2 X 8PSK (2.5 bit/T) codes with 
up to 16 states have been found independently by 
Lafanechkre and Costello [8] and by Wilson [9], although 
with reduced phase transparency. The two-state TC-L X 
8PSK and TC-Lx16PSK codes were also found by 
Divsalar and Simon [23]. 

I 

I 

TABLE XIX 
TRELLIS-CODED 4x4PSKa 

11 h' h' h0 

1 1 -  - 1 3 90" 4 12 6 64 0.00 
2 2  - 2 1 5 90" 4 4 6 48 0.00 
3 3 04 02 01 11 90" 6 28 - - 1.76 
4 3 10 04 02 21 90" 8 78 - - 3.01 
5 3 24 14 02 41 90" 8 30 - - 3.01 
6 3 050 032 004 103 90" 8 14 10 160 3.01 

'y2 = 2.43 dB: R,,, = 1.75 bit /T,  q = 0, d: = 4.0, Nu = 28 (4 x4PSK). 

In the code tables it can be seen that, for the same 
complexity, two codes (and in some cases three codes) are 
usually given. Note that the code with the worst phase 
transparency has a better free distance or a lesser number 
of nearest or next nearest neighbors. Thus, if phase trans- * 

TABLE XX 
TRELLIS-CODED 4 x 4PSK" 

1 1  h4 h' h2 hi ho I n v .  d;rce N,,, d$xl Nner, y (dB) 

1 1 - - -  1 3 9 0 " 4  4 8 64 0.00 
2 2 - -  2 1 5 90" 8 78 - - 3.01 
3 2 -  - 04 02 11 90" 8 30 - - 3.01 
4 2 - -  12 04 23 90" 8 16 12 320 3.01 
5 3 -  14 34 06 41 90" 8 6 12 176 3.01 

3 -  04 14 22 43 180" 8 6 12 160 3.01 
6 4 014 006 056 022 103 90" 8 2 12 62 3.01 

~ 

" y 2 = l  76dB: R C , , = 1 . 5 0 b i t / T ,  q = l ,  d:=4.0, NU=6(2X4PSK) 

TABLE XXI 
TRELLIS-CODED 4 x 4PSK" 

I' 1 h4 h3 h2 hi ho I n v .  d:,,, N,,, dLXl N,,,,, y (dB) 

1 1 - -  - 1 3 90" 8 30 - - 3.01 
2 1 -  - - 2 5 90" 8 14 12 64 3.01 
3 2 - -  06 02 11 90" 8 6 12 64 3.01 

2 - -  02 06 11 180' 8 6 12 32 3.01 
3 -  01 03 06 11 90" 8 2 12 56 3.01 

8 3.01 4 3 -  10 14 06 21 90" 8 2 12 
8 -  ~ 4.77 5 4 10 04 06 22 41 90" 12 

6 4 024 014 006 042 103 90" 16 109 - - 6.02 

" y ?  = 0.97 dB: R,,, =1.25 b i t / T ,  q = 2, d: = 4.0, N,, = 4 (4X4PSK). 
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TABLE XXII 
TMLIJS-CODED 4 x 4PSK" 

r '  /I' /I' h' / io Inv. dfr,, N,,,, dit,, N,,,, y (dB) 

90" 8 14 ~ - 3.01 0 0 - - - -  
1 1  - - 1 3 180" 8 6 16 64 3.01 
2 2  - 2 3 5 90" 8 2 16 64 3.01 
3 3 02 04 03 11 90" 16 45 ~ - 6.02 
4 3 02 10 06 21 90" 16 17 ~ - 6.02 
5 3 12 10 06 41 90' 16 5 - - 6.02 
6 3 010 060 036 105 90" 16 1 20 4 6.02 

~ 

' y 2 = 0 d B ;  RC,,=L.00bit/T. y = 3 ,  d,?=4.0,  N,,=l(lXZPSK). 

TABLE XXIII 
TREI LIS-CODED 1 x 8PSK" 

1 1  i /I' / I '  11" Inv. d,?,,, N,,,, d:,,, N,,,,, y (dBj 

1 1  - 
2 1  ~ 

3 2 04 
4 2 14 

2 16 
5 2 14 

2 20 
6 2 074 
7 2 146 

2 121 
8 2 146 

2 130 

1 
2 

02 
06 
04 
26 
10 

012 
052 
054 
210 
072 

3 180" 
5 180" 

I1 360" 
23 180" 
23 360" 
53 180O 
45 360" 

147 1x0' 
225 180" 
277 360" 
573 180" 
435 360" 

2.586 
4.0 
4.586 
5.172 
5.172 
5.112 
5.757 
6.343 
6.343 
6.586 
7.515 
7.515 

2 
1 
2 
4 
2.25 
0.25 
2 
3.25 
0.125 
0.5 
3.375 
1.5 

1.12 
3.01 
3.60 
4.13 
4.13 
4.13 
4.59 
5.01 
5.01 
5.18 
5.75 
5.75 

'y4 = 0 dB; R,,, = 2.0 hit/T. d,: = 2.0. N,, = 2 (1 x4PSK). 

parency is not required, one should choose the less phase 
transparent code to obtain the maximum performance for 
a given complexity. 

F. Decoder Implementation 

When the Viterbi algorithm is used as the decoder, a 
measure of decoding complexity is given by 2"+k/L .  This 
is the number of distinct transitions in the trellis diagram 

for any TCM scheme 
maximum bit rate of 

81 

normalized to a 2-D signal set. The 
the decoder is kfd, where f d  is the 

symbol speed of the decoder. Since k is quite large for 
multi-D signal sets (at least ( I  - 1)L), high bit rates can be 
achieved. For example, a Viterbi decoder has been con- 
structed for a rate 7/9 per_iodically time-varying trellis 
code (PTVTC) with U = 4, k = 2, and SPSK modulation 
[24]. This decoder has fd = 60 MHz and a bit rate of 140 
Mbit/s. However, with the equivalent rate 7/8 code with 
3 x 8PSK modulation, the bit rate will be L = 3 times as 
fast, i.e., 420 Mbit/s. The branch metric calculator, though, 
will be more complicated due to the larger number of 
parallel transitions between states. Alternatively, one could 
build a decoder operating at a 20 MHz speed and achieve 
the same bit rate of 140 Mbit/s. In addition to providing 
decreased decoder complexity, this multi-D code has an 
asymptotic coding gain which is 0.56 dB greater and is 90' 
transparent, compared with a 180" transparency for the 
PTVTC [25].  

Although the decoding comple>ity of the Viterbi algo- 
rithm is measured in terms of 2 " + k / L ,  for multi-D schemes 
the complexity of subset (parallel transition) decoding 
must also be taken into account due to the large number of 
parallel transitions. 

The Viterbi decoder must find which of the 2k-' paral- 
lel transitions is closest, in a maximum likelihood sense, to 
the received signal. A brute-force method would be to 
determine the metric for each of the 2 x p h  paths and then 
find the minimum. This would- involve at least 2 k p h  - 1 
comparisons. Since there are 2'+l sets of parallel transi- 
tions, a total of 2 k + 1 - 2 h + 1  comparisons would be re- 
quired. For large k and small i ,  this is an unacceptably 
large number of computations. 

Fortunately, as shown in [13] for binary lattices, it is 
possible to reduce greatly the number of computations 

TABLE XXIV 
TKIILIS-CODED 2 x XPSK" 

L' R /I' /I' 17' h" Inv. d;rcc N,,,, d,$,, Nnerl y (dB) 

1 1 -  ~ 1 3 90" 1.757 8 2.0 4 1.76 
2 1  - -~ 2 5 90' 2.0 4 2.929 32 2.32 
3 2  - 04 06 I 1  45' 2.929 16 ~ ~ 3.98 
4 2  - 16 12 23 45" 3.515 56 ~ ~ 4.77 
5 2  - 10 06 41 45" 3.515 16 ~ - 4.77 
6 2 - 004 030 113 45" 4.0 6 4.101 80 5.33 

2 - 044 016 107 90" 4.0 6 4.101 4X 5.33 
7 3 110 044 016 317 90" 4.0 2 4.101 25 5.33 

'y4 = ~ 1.35 dB: R,,, = 2.5 bit/T. y = 0. d,: = 1.172, N,, = 4 (2X XPSK). 

TABLE XXV 
TRELLIS-CODED 2 x XPSK" 

1 1  i /I' 11' 17' /I" Inv. d:r,, N,,,, dicxl N,,,, y (dB) 

1 1 -  ~ 1 3 45" 3.172 8 4.0 6 2.00 
2 1 -  - 2 5 45" 4.0 6 5.172 32 3.01 
3 2  - 04 02 I I  180" 4.0 2 5.172 16 3.01 
4 3 04 14 02 21 90" 5.172 8 - - 4.13 

6 3 012 050 004 125 90" 6.343 5.5 ~ ~ 5.01 
5 3 24 14 06 43 90" 6.0 6 - - 4.77 

7 3 110 044 016 317 90" 7.515 25 - ~ 5.75 

"y4 = 0 dB: R , , ,  = 2.0 bit/T. 4 = 1 ,  d: = 2.0, N,, = 2 (1 x4PSKj 
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TABLE XXVI 
TRELLIS-CODED 3 x 8PSK" 

hi h0 
Signal 

Set 

I1 
I1 

I 
1 
1 
I 
I 
1 
I 

Inv. 

45" 
45" 
45" 
90" 

180" 
90" 
90" 
90" 

1 80° 

- v i  

1 1  
2 1  
3 2  
4 3  

3 
5 3  
6 3  
7 3  

3 

d:ree Nfree 
1.172 4 
1.757 16 
2.0 6 
2.343 12 
2.343 8 
2.929 48 
3.172 12 
3.515 84 
3.515 76 

Y (dB) 

0.00 
1.76 
2.32 
3.01 
3.01 
3.98 
4.33 
4.77 
4.77 

~ 

1 3  
2 5  

02 11 
02 21 
02 21 
02 53 

006 103 
004 225 
022 255 

- -  

04 
14 '04 
10 04 
30 14 

050 022 
056 112 
100 050 

- 

'y4 = - 1.07 dB: R,ff = 2.67 bit/T, q = 0, d i  = 1.172, Nu = 12 (3 X 8PSK I). 

TABLE XXVII 
TRELLIS-CODED 3 x PSKa 

i i  i h4 h' 
Signal 

y (dB) Set %e, - 
6 
6 

16 
24 
12 
15 

7 
3 
2 

d;rm 

2.0 
2.586 
3.515 
3.757 
3.757 
4.0 
4.0 
4.0 
4.0 

1 1 -  - 
2 2 -  - 
3 2 -  - 

2 - -  
4 3  - 10 

2 - -  
5 3  - 22 
6 3 - 010 

4 060 024 

- 1 3 90" 
1 7 90" 

06 02 11 90" 
04 02 11 180" 
04 06 21 45" 
14 02 27 90" 
16 06 41 45" 

046 060 105 45" 
014 002 101 180" 

3.. 
0.56 I1 
1.68 I1 
3.01 I1 
3.30 I1 
3.30 I11 
3.57 I1 
3.57 111 
3.57 111 
3.57 I11 

2.343 
- 

- 
4.343 

4.686 
- 

- 

24 

8 
- 

"y4=0.11 dB: R,,,=2.33 bit/T, q = l ,  di=1.757, Nu=8(3X8PSKII) .  

TABLE XXVIII 
TRELLIS-CODED 3 x 8PSK" 

Signal 
u b h4 h' h' hi h" Inv. di, ,  N,,, d$, Nnexl y (dB) Set 

1 3 180" 3.757 24 - - 2.74 I1 1 1 - - -  
2 1 -  - - 2 5 180' 4.0 15 5.757 144 3.01 I1 

3.01 111 3 2 -  - 04 02 11 45" 4.0 7 - - 
4 2 -  - 12 04 27 45" 4.0 3 5.757 32 3.01 I11 
5 3  - 14 24 02 41 180" 5.757 17.5 - - 4.59 111 

3 -  16 22 06 53 360" 5.757 17 - - 4.59 111 
6 3  - 030 042 014 103 180" 6.0 11 - - 4.77 111 

4 014 044 024 006 103 180" 6.0 4 - - 4.77 I1 

'y4 = 0 dB: R,, ,  = 2.00 bit/T, q = 2. d i  = 2.0, Nu = 2 (1 x4PSK). 

TABLE XXIX 
TRELLIS-CODED 4 x 8PSK" 

U h4 h3  h2 hi h" Inv. d:, Nr,,, d:ex, N,,,, y (dB) 

1 1 - - -  1 3 45" 1.172 8 1.757 64 0.00 
2 2 -  - 2 1 5 45" 1.757 48 - - 1.76 
3 2 -  - 04 02 11 45" 2.0 8 2.343 64 2.32 
4 3  - 10 04 02 21 45" 2.343 40 - - 3.01 
5 3  - 30 14 02 41 45" 2.343 8 2.929 288 3.01 
6 4 030 020 052 014 101 45" 2.929 136 - - 3.98 

'y4 = -0.94 dB: R,,, = 2.75 bit/T. q = 0, d: =1.172, N,, = 24 (4X IPSK). 

TABLE XXX 
TRELLIS-CODED 4 x 8PSK" 

v i h' it' h' h" Inv. die ,  N,,, diex1 N,,,, y (dB) 

1 1 -  - 1 3 45" 2.0 8 2.343 64 2.32 
2 2 - 2 1 5 45" 2.343 40 - - 3.01 
3 2 - 04 02 11 45" 2.343 8 3.172 32 3.01 
4 3 14 04 02 21 45" 3.172 16 - - 4.33 
5 3 24 14 02 41 45" 3.515 64 - - 4.77 
6 3 014 024 042 103 45" 4.0 28 4.686 1088 5.33 

' y4= -1.35dB: R,,, =2.50bit/T.q=1, d:=1.172, Nu=4(2X8PSK). 
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TABLE XXXI 
TKELLIS-CODED 4 x 8PSK" 

I' x h 4  17' It' It' it" Inv. d,',,., N,,,, d:,,, Nnerl y (dB) 

1 1 - - - 1 3 45" 2.343 8 3.172 32 0.69 
2 2 - - 3 1 5 45" 3.172 16 - - 2.00 
3 2 - - 06 02 11 45" 4.0 28 4.343 64 3.01 

2 - - 02 06 11 90" 4.0 28 4.686 64 3.01 
4 3 - 04 06 12 21 45' 4.0 12 4.686 32 3.01 
5 4 10 04 06 22 41 45" 4.0 4 4.686 16 3.01 

'y4 = 0.51 dR: R,,, = 2.25 hit/T, 4 = 2, d,: = 2.0, 4, = 8 (4xRPSK). 

TABLE XXXII 
TRFLLIS-CODED 4 x RPSK' 

r i  I T 4  It' It' 11' h" Inv. d,',,, N,,,, d:<%, N,,,,, y (dB) 

1 1 -  - - 1 3 90" 4.0 28 4.686 64 3.01 
2 2 -  - 2 3 5 45" 4.0 12 4.686 32 3.01 
3 3  - 02  04 03 11 45" 4.0 4 4.686 16 3.01 
4 4 10 04 02 03 21 45" 4.686 8 - - 3.70 
5 4 02 10 04 22 41 45" 6.343 16 - - 5.01 
6 4 034 044 016 036 107 45" 6.686 6 - - 5.24 

4 044 024 014 016 103 90" 7.029 24 - - 5.46 

'y4 = 0 dB: R,,, = 2.00 bit/T. 4 = 3. d,: = 2.0, N,, = 2 (1 x4PSK). 

TABLE XXXIII 
TKLLLIS-CODED 1 x 16PSK" 

c' It' I7' I7" Inv. d,',,, N,,,, d:,,, N,,,, y (dB) 

1 1  
2 1  
3 1  

1 
4 1  

1 
5 1  

1 
6 1  

1 
7 1  
8 2  

7 

- 

3 44 
224 

I 

2 
06 
04 
06 
10 
24 
1 0 

056 
032 
126 
162 
112 

3 
5 

13 
13 
21 
23 
43 
45 

135 
107 
235 
717 
527 

90" 
YO" 
45" 
90" 
45" 
90" 
45" 
90" 
45" 
YO" 
45 
90" 

180" 

0.738 2 
1.324 4 
1.476 8 
1.476 4 
1.476 4 
1.628 4 
1.781 8 
1.910 8 
2.0 2 
2.0 2 
2.0 2 
2.085 2.938 
2.085 1.219 

- 

2.085 
2.085 
2.366 

- 1.00 
- 3.54 
- 4.01 
- 4.01 
- 4.01 
- 4.44 
- 4.83 
- 5.13 
16 5.33 

8 5.33 
16 5.33 
- 5.51 
- 5.51 

~ ~~ 

"yy = 0 dB: R, , ,  = 3.0 bit/T, d: = 0.586. N,, = 2 (1 X8PSK) 

TABLE XXXIV 
TKI:I.LIS-CODED 2 x 16PSK" 

P i It' 17' h" Inv. d,?,,, N,,,, d:,,, N,,,, y (dB) 

1 1  - 1 3 45" 0.457 8 - - 1.76 
2 1 - 2 5 45" 0.586 4 0.761 32 2.84 
3 2 04 06 11 22.5" 0.761 16 - - 3.98 
4 2 16 I2 23 22.5" 0.913 56 - - 4.71 
5 2 10 Oh 41 22.5" 0.913 16 - - 4.77 
6 2 004 030 113 22.5" 1.066 80 - - 5.44 

2 044 016 107 45" 1.066 48 - - 5.44 
7 2 074 132 217 22.5" 1.172 4 1.218 228 5.85 

' y h =  -2.17 dB: R,,, =3.5  bit/T, 4 = 0 ,  d,: =0.304, N,,= 
4 (2 X I6PSK). 

TABLE XXXV 
TKI I.LIS-CODED 2 x 16PSK" 

P 1 h' 11' h' 11" Inv. d;r,.e NfrCc d,',,, Nncrl Y (dR) 

1 1 -  - 1 3 22.5" 0.890 8 - - 1.82 
2 1 - - 2 5 22.5" 1.172 4 1.476 32 3.01 
3 2 -  04 02 11 YOo 1.476 16 - - 4.01 
4 2  - 14 06 23 45' 1.757 8 - - 4.77 
5 2 -  30 16 41 45" 1.781 16 - - 4.83 
6 2  - 044 016 107 45" 2.0 4 2.085 48 5.33 
7 3 110 044 016 317 45" 2.085 25 - - 5.51 

"yx=OdH. R c , ,  =30bi t /T .  4 = l ,  di=0.586, NS,=2(1x8PSK) 

~~~ ~. 
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TABLE XXXVI 
TRELLIS-CODED 3 x 16PSK" 

v k  /I' h" Inv. 

1 1  
2 1  
3 2  
4 3  

3 
5 3  
6 3  
7 3  

3 

- _  
- _  

04 
14 04 
10 04 
30 14 

050 022 
056 112 
100 050 

- 

1 3 22.5" 
2 5 22.5" 

02 11 22.5" 
02 21 45" 
02 21 90" 
02 53 45" 
006 103 45" 
004 225 45" 
022 255 90" 

die, 

0.304 
0.457 
0.586 
0.609 
0.609 
0.761 
0.890 
0.913 
0.913 

Nfree - 
4 

16 
6 

12 
8 

48 
12 
84 
76 

Nnext - Y (dB) 

0.00 
1.76 
2.84 
3.01 
3.01 
3.98 
4.66 
4.77 
4.77 

Signal 
Set 

I1 
I1 
I 
I 
I 
I 
I 
I 
I 

'yX = 0 dB: R,,, = 3.67 bit/T, q = 0, d: = 0.304, Nu = 12 (3 X 16PSK I). 

TABLE XXXVII 
TRELLIS-CODED 3 x 16PSK" 

Signal 
v L h' h' / I '  h0 Inv. d:, N,,,, diexl Nnexl y (dB) Set 

1 1 -  - 1 3 45" 0.586 6 0.609 16 1.08 I1 
2 2 - 3 1 7 45" 0.738 6 - - 2.08 I1 
3 2 - 06 62 11 45" 0.913 16 - - 3.01 I1 

2 - 04 02 11 90" 1.043 24 - - 3.58 I1 
4 3 10 04 06 21 22.5" 1.043 12 - - 3.58 111 

2 - 14 02 27 45" 1.172 12 1.195 24 4.09 I1 
5 3 34 16 06 41 22.5" 1.172 4 - - 4.09 111 
6 3 032 046 006 103 22.5" 1.218 8 - - 4.26 111 
7 3 014 102 044 203 22.5" 1.370 32 - - 4.77 111 

3 006 072 062 223 45" 1.476 8 - - 5.09 111 

'yX = - 1.97 dB; Re, ,  = 3.33 bit/T, 4 =1, d i  = 0.457, Nu = 8 (3 X 16PSK 11). 

TABLE XXXVIII 
TRELLIS-CODED 3 x 16PSK" 

Signal 
- 0  

v L h' h' / I '  h" Inv. d:rec N,,, d:ex, N,,,, y (dB) Set 

1 1  
2 1  
3 2  
4 2  
5 2  

2 
6 2  

3 
3 

7 3  
3 

- 

020 
050 
060 
01 6 

1 
2 

04 02 
12 04 
14 02 
22 14 

054 020 
004 012 
030 026 
106 050 
110 052 

- 

- 
3 90" 
5 YO" 

11 22.5" 
27 22.5' 
41 22.5" 
43 45" 

115 22.5" 
101 45" 
101 90" 
213 45" 
203 90" 

1.043 
1.172 
1.172 
1.628 
1.628 
1.757 
1.757 
2.0 
2.0 
2.0 
2.0 

24 
12 
4 

32 
16 
16 
8 
6 
6 
6 
6 

- 
1.628 

- 
- 

2.085 
2.085 
2.085 
2.214 
2.343 

- 2.50 
144 3.01 
- 3.01 
- 4.44 
- 4.44 
- 4.77 
48 4.77 
72 5.33 
60 5.33 
56 5.33 
64 5.33 

I1 
I1 

111 
111 
111 
111 
I11 
I1 
I1 

111 
111 

'yX = 0 dB: R,,, = 3.00 bit/T, q = 2, d: = 0.586, Nu = 2 (1 X 8PSK). 

TABLE XXXIX 
TRELLIS-CODED 4 x 16PSKa 

v L h4 11' 11' h' h0 Inv. d:ree N,,, dk,, N,,,, y (dB) 

1 1 - - -  1 3 22.5" 0.304 8 0.457 64 0.00 
2 2 -  - 2 1 5 22.5" 0.457 48 - - 1.76 
3 2 -  - 04 02 11 22.5" 0.586 8 0.609 64 2.84 
4 3  - 10 04 02 21 22.5" 0.609 40 - - 3.01 
5 3  - 30 14 02 41 22.5" 0.609 8 0.761 288 3.01 
6 4 030 020 052 014 101 22.5" 0.761 136 - - 3.98 

"yx = - 1.87 dB: R,,, = 3.75 bit/T, q = 0, d i  = 0.304, Nu = 24 (4X16PSK). 

TABLE XL 
TRELLIS-CODED 4 x 16PSK" 

U L h' h' hl 11" Inv. d;ree N,,, d&xl N,,,, y (dB) 

1 1 -  - 1 3 22.5" 0.586 8 0.609 64 2.84 
2 2 - 2 1 5 22.5" 0.609 40 - - 3.01 
3 2 -  04 02 11 22.5" 0.609 8 0.890 32 3.01 
4 3 14 04 02 21 22.5" 0.890 16 - - 4.66 
5 3 24 14 02 41 22.5" 0.913 64 - - 4.77 
6 3 014 024 042 103 22.5" 1.172 24 1.218 1088 5.85 

c 

ayx=  -2.17dB: RC,,=3.50bit/T,4=1, d:=0.304, Nu=4(2X16PSK) 
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TABLE XLI 
TRELLIS-CODED 4 x 16PSK" 

1 1 - - -  1 3 22.5" 0.609 8 0.890 32 0.17 
2 2 -  - 3 1 5 22.5" 0.890 16 - - 1.82 
3 2 -  - 06 02 11 22.5" 1.172 24 1.195 64 3.01 

2 - -  02 06 11 45.0" 1.172 24 1.218 64 3.01 
4 3  - 04 06 12 21 22.5" 1.172 8 1.218 32 3.01 
5 4 10 04 06 22 41 22.5" 1.218 16 - - 3.18 
6 4 050 030 024 016 101 22.5" 1.499 72 - - 4.08 

yx = 0.35 dR; R,,, = 3.25 bit/T. q = 2, d t  = 0.586, Nu = 8 (4X 16PSK). 

TABLE XLII 
TKELLIS-CODED 4 x  16PSK" 

1' I? 11' h 2  11' h" Inv. d:,,, N,,, diex, Nnexl y (dB) 

1 1 -  - 1 3 45" 1.172 24 1.218 64 3.01 
2 2  - 2 3 5 22.5" 1.172 8 1.218 32 3.01 
3 3 02 04 03 11 22.5" 1.218 16 - - 3.18 
4 3 04 10 06 21 22.5" 1.781 48 - - 4.83 
5 3 22 16 06 41 22.5' 1.804 24 - - 4.88 

3 24 14 02 43 45" 1.827 64 - - 4.94 
6 3 050 024 006 103 22.5" 2.0 8 2.343 64 5.33 

a yx = 0 dR: R,,, = 3.00 bit/T. q = 3, d,: = 0.586, Nu = 2 (1 x XPSK). 

required. In fact, the decoding scheme becomes very simi- 
lar to Viterbi decoding except that finite length sequences 
are used. 

To illustrate this we will present the decoding scheme 
for TC-2 x 8PSK parallel transitions with = 2 and an 
efficiency of 2.5 bit/T (a rate 5/6 code). There are eight 
sets of parallel transitions, with eight paths in each set. 
Fig. 13  shows the parallel transition decoding trellis for 
f =  [0 0 01 (i.e., the LSB's are set to zero). In Fig. 1 we use 
the notation A0 to indicate the whole 8PSK signal set, 
which divides into BO and B1 (4PSK signal sets rotated 
45" from each other). BO divides into CO and C2 (2PSK 
signal sets rotated 90" from each other), and B1 divides 
into C1 and C3. This notation is also used in [l] for 
partitioning an 8PSK signal set. Each segment in Fig. 13 
thus represents two parallel lines. The length of this trellis 
equals the dimensionality L = 2 of the signal set. 

n n 

Fig. 13. Parallel transition decoding trellis for f= [0 0 01 and 2X XPSK 
signal set. 

The path COXCO corresponds to those four paths that 
have z 3  = 0 and C2 x C2 corresponds to those four paths 
that have z 3  =1, giving a total of eight paths. To decode, 
hard decisions can be made for CO and C2 for each time 
period, from which the values of z 4  and z 5  can be deter- 
mined. For example, say that CO X CO decodes into the 
points 04, with a metric of m,, and C2 X C2 decodes into 
the points 66, with a metric of m,, where the metrics are 
the sum of the Euclidean distances (or log-likelihood met- 

rics for a quantized channel) from the first and second 
received points. After comparing the two metrics, if mo < 
m,, then z 3  = 0 and the point 04 would give z 4  =1 and 
z 5  = 0 (see Table I). If rn, > m,, then z 3  =1, and the point 
66 would give z 4  = 0 and z 5  = 1. This is equivalent to the 
add-compare-select (ACS) operation within a Viterbi de- 
coder. 

To  decode the other sets of parallel transitions, the 
cosets formed by z" ,  zl, and z 2  can be added to the trellis 
paths COXCO and C2xC2 to form the required trellis. 
This is illustrated in Fig. 14, where the ending state in the 
trellis indicates which set of parallel transitions is being 
decoded. This example involves a total of eight hard com- 
parisons and eight ACS-type comparisons. These 16 com- 
parisons compare with the 56 comparisons required in a 
brute force approach, a 3.5 times reduction. 

-::I 0 1  1 

1 1 1  

%::I 0 1  1 - 1 1 1  

Fig. 14. Full parallel transition decoding trellis for 2 X XPSK signal set. 

The above maximum likelihood method can be applied 
to other codes where a Viterbi-like decoder can be used to 
decode the parallel transitions. With this method the com- 
plexity of decoding the parallel transitions can approach 
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the complexity of the rate i / ( i  +1) Viterbi decoder. A 
simpler approach may be with large lookup tables using 
ROM's. The ROM itself would output the k - k bits of 
the chosen path, along with the branch metric for that 
path. For the TC-2XPSK example given previously, we 
could use one ROM for each of parallel transitions. If the 
ROM's had 8-bit words, then three bits could be used for 
the decision, and the remaining five bits for the branch 
metric. A total of eight ROM's would then be required, 
one for each set of the parallel transitions. 

When using ROM's, it is desirable to reduce the number 
of bits b required to represent each received 2-D signal 
point, since there are a total of bL bits required to address 

. 

;he ROM. One way to reduce b is to convert the "checker- 
board" (rectangular) type decision boundaries that result 
from separate quantization of the in-phase I and quadra- 
ture Q components to "dartboard" (radial) type decision 
boundaries. For example, if four bits are used in I and Q 
for an 8PSK signal with checkerboard decisibn boundaries, 
a dartboard pattern as shown in Fig. 15 may be used 
instead with a total of five bits to represent each point (a 
reduction of three bits). A ROM may be used to do the 
conversion, or the dartboard pattern already may be avail- 
able as polar coordinates from a digital demodulator. 

Q 
k 

Fig. 15.  Dartboard decision boundaries for 8PSK (32 regions). 

A problem with TC-L X MPSK is the need to synchro- 
nize the decoder with the L 2-D symbols on each trellis 
branch. For q = 0, most codes are fully transparent. The 
decoder performance can then be used to find the correct 
synchronization with the received sequence. For q > 0, 
many codes are not fully transparent, and the decoder will 
need to synchronize to one of the 2dL possibilities (which 
can be quite large for some codes). However, one can take 
advantage of the fact that not all signal points are used for 
q > 0. For example, the 2 X 8PSK signal set with q =1 
consists of the signal sets BOX BO or B1 X B1. The synchro- 
nizer would find the smallest distance between a received 
pair of points and the expected signal set. These distances 
would then be accumulated over a sufficient length of time 
to make a reliable decision on the symbol timing. 

If we let each signal point be represented by its phase 
(since the amplitude is constant for 8PSK), we can write 
BO = {0", 90°, 180°, 270"}, and B1 = {45", 135", 225", 
315"). Let +: and +: represent the phase of the first and 
second received symbols, respectively. The synchronizer 
distance metric is then given by 

In the synchronized noiseless case, an will equal zero. In 
the nonsynchronized noiseless case, there are two possible 
outcomes for an, i.e., complete matchup (an=O0) and 
only one signal is matched ( an = 45"). If each possibility is 
equally likely, then the average value of an is 22.5". With 
noise, an can be accumulated over a sufficient length of 
symbols to take advantage of this average phase distance 
between the nonsynchronized and synchronized cases to 
determine symbol synchronization reliably. This symbol 
synchronization is independent of the Viterbi decoder, so 
the decoder must only determine phase synchronization. 

G. Discussion 

To make a comparison of all the codes listed, a plot of 
nominal coding gain y* =_1Olog,, dgee versus complexity 
( p  = log, ( 2 " + k / L )  = U + k -log, L )  for each code found 
is made. These plots are given in Fig. 16 for effective rates 
of 1.0 (with 4PSK modulation), 2.0 (8PSK), and 3.0 bit/T 
(16PSK), Fig. 17 for effective rates of 1.5 (4PSK), 2.5 
(8PSK), and 3.5 bit/T (16PSK), and Fig. 18 (for the 
remaining rates). (Note that these graphs do not take into 
account the additional complexity due to parallel transi- 
tions.) Some one-state (" uncoded") codes are included as 
well. These one-state codes correspond to block-coded (or 
multilevel) schemes that have recently become an active 
research area [26]-[34]. Although the multi-D one-state 
codes have negative complexity (compared to trellis codes), 
they can achieve coding gains above 0 dB. 

' 0  ~og,od;~, 
t 

10 

/ 
/" /.;lr;.0.2) 
d '' _. ." (2.0,l)  

- 2 - 1 0 1 2 3 4 5 6 7 8 9 1 0  t 
p=u+ii-  kapL 

Fig. 16. Plot of 10log, ,~d~rcc versus complexity fi for Relf =1.0, 2.0, 
and 3.0 bit/T. 
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P 
Fig. 17. Plot of 10log,,ld~rcc versus complexity p for R,,, =1.5, 2.5, 

and 3.5 bit/T. 

1 0 log 1,' :me 

P 

(3.67.3) 

Note from Fig. 16 for TC-L X 8PSK, Reff = 2.0 bit/T, 
and U =1, that as L increases the complexity decreases 
and y*  increases, eventually reaching 6.0 dB for L = 4 .  
Thus, for the 8D signal set, the complexity factor can be 
reduced by a factor of four, while maintaining y * ,  com- 
pared to the TC-1 X 8PSK code with U = 2. Beyond b = 4 
(and y*  = 6.0 dB), increases in asymptotic coding gain are 
achieved with the new codes that have been found. With 
L = 4, a ceiling of y*  = 9.0 dB will be reached due to the 
nature of the set partitioning. It would seem that very 
complex codes are required ( p  2 15) if this 9.0 dB limit is 
to be exceeded. 

Fig. 16 also shows the L X 16PSK codes with effective 
rates of 3.0 bit/T. For small b, the same effect observed 
for TC-L x 8PSK and 2.0 bit/T occurs. That is, b de- 
creases and y*  increases as L increases. Between b = 3 
and b = 9, the L = 1 and L = 2 codes are very close. 

Fig. 18 illustrates the wide range of performance that 
can be achieved with the codes found. One can choose 
from a high-rate code with 3.75 bit/T (but requiring a 
large amount of power) to a low-rate code with 1.25 bit/T. 
In choosing a code, a designer may start with a required 
Reff to obtain a certain bit rate through a bandwidth 
constrained channel. A trade-off can then be made be- 
tween decoder complexity and the reduction in SNR that 
can be achieved with the codes found. Simulations or 
theoretical calculations of a few selected codes may also be 
made to obtain a more realistic assessment of the perfor- 
mance available. 

Note that many codes have the same asymptotic coding 
gain for increasing complexity. In reality, these codes do 
increase in performance with increasing complexity due to 
a decrease in number of nearest neighbors. This is espe- 
cially noticeable for low SNR where the effect of nearest 
neighbors becomes more important. 

IV. CONCLUSION 

An efficient method of partitioning multidimensional 
MPSK signal sets has been presented that leads to easily 
implemented multi-D signal set mappers. When these sig- 
nal sets are combined with trellis codes to form a rate 
k / ( k  + I )  code, significant asymptotic coding gains in 
comparison to an uncoded system are achieved. These 
codes provide a number of advantages compared to trellis 
codes with 2-D signal sets. Most importantly, Reff can 
vary from 1-1 to I - ( l / L )  bit/T, allowing the coding 
system designer a greater choice of data rates without 
sacrificing data quality. As RCff approaches I ,  though, 
increased coding effort (in terms of decoder complexity) or 
higher SNR is required to achieve the same data perfor- 
mance. 

The analytical description of multi-D signal sets in 
/' terms of block code cosets, and the use of systematic 

I I I I I I I I I I -  
- 2 - 1 0 1  2 3 4 5 6 7 8 9 1 0  convolutional encoding, has resulted in an encoder design 

(from the differential encoder to the 2-D signal set map- I3 
per) that allows many good codes to be found. This 
approach has also led to the Construction of signal sets 

Fig. 18. Plot of lOlog,,, d&, versus complexity B for R F l ,  = 1.25. 1.33, 
1.67. 1.75. 2.25. 2.33, 2.67. 2.75. 3.25, 3.33, 3.67, and 3.75 bit/T. 
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that allow codes to be transparent to multiples of 360”/M 
phase rotations. In general, increasing phase transparency 
usually results in lower code performance, due to more 
nearest or next nearest neighbors or smaller free distance. 

Another advantage is decoder complexity. As a Viterbi 
decoder decodes k bits in each recursion of the algorithm, 
the large values of k of codes using multi-D signal sets 
allows very high bit rates to be achieved (compared to 
convolutional codes that map only into a 2-D signal set). 
The large number of branch metric computations can be 
reduced either through the use of a modified Viterbi algo- 
rithm or large lookup tables. A method has been presented 
that uses the redundancy in some signal sets to achieve 
symbol synchronization at the decoder for codes that are 
not fully transparent. 

Rate k/( k + 1) TC-L x MPSK codes also have the ad- 
vantage of being useful as inner codes in a high rate 
concatenated coding system with Reed-Solomon (RS) 

errors, one trellis branch error will exactly match one 
symbol in the outer RS codeword. It is shown in [14] that 
the symbol oriented nature of TC-L X MPSK inner codes 
can provide an improvement of up to 1 dB in the overall 
performance of a concatenated coding system when these 
codes replace bit oriented TC-1 X MPSK inner codes of the 
same rate. 

, 

4 outer codes over GF(2k). If the inner ‘decoder makes 

I APPENDIX 
DIFFERENTIAL ENCODING AND DECODING 

Let the bit streams that are differentially encoded be 
w ( o ( D ) ,  w [ i ( D ) , .  . -, w ‘ . - l ( D ) .  We first assume that c, > 0 (i.e., 

Substituting (A.3) into (A.4), we obtain 

w, ( D) = (( s - 1) D + 1)( x( D) + 1( D)) (mod s) 
= (( s - 1) D +l)x(  0) 

+ (( s - 1) D + 1)1( D) (mods) 

= w( D) + ( S  - 1)1( D) + I( D) (mod S )  

= w ( D ) + ( S ) l ( D )  (mod S )  

= w ( D ) ,  
as required. Notice that since 1( D) is defined to be 1 for all time, 
then Drl( D) =1(D) for all i. In practical situations, the se- 
quence added to x ( D )  to from x , ( D )  is not constant and will 
change with time (e.g., random phase slips within a demodulator). 
This will introduce short error bursts in wr( D) whenever a phase 
slip occurs due to the combined effect of decoding and postcod- 
ing. The precoder equation can be derived from (A.4) as 

x (  0) = Dx( D)+ w( D) (mods). (A.5) 
We shall now consider the case when c, = 0, i.e., zo( 0) is 

affected by a 2‘/\k phase rotation. In this case we redefine w( 0) 
to be 

s-1 

w( D) = 2’-1w”( D )  ( A 4  
1 = 1  

and x ( D )  to be 
s-1 

x (  D) = T - l x ‘ , (  D). (A.7) 
r = l  

For this case, we have 2x, (D) + z,“( 0) = 2x(  D )  + to( D) + 
1( D), where x, (D) and z:)( D) are the inputs to the postcoder for 
a noiseless channel. Thus similar to (A.4), the postcoder equation 
is defined to be 

the convolutional encoder output z o ( D )  is not affected by a 
phase rotation of 2‘9, where d = I - s). Let 

2w,( D )  = (( S - l )D  +1)(2x,.( D) + zP( D)) (mods). (A.8) 

Rearranging (A.8), we obtain the precoder equation 
s-1 

w( 0) = 2 / W L l (  D ) .  
r = O  

The differential encoder (or precoder) outputs are the bit 
streams x‘o( D), x ‘ l ( D ) ;  . ., x ‘ * - l ( D )  which go into the convolu- 
tional encoder. In a manner similar to (A.l), we let 

s - 1  

x( D) = 21XL.l( D). ( A 4  
i = O  

For the noiseless channel we let the Viterbi decoder output 
which goes into the differential decoder (or postcoder) be x r (  D) 
and the output from the postcoder be w,( D ) .  After a 2d\k phase 
rotation, we have from Section 111-B that 

xr(  D) = x( D) + 1( D) (mod S )  (A.3) 

where S = 2‘ and 1( 0) is the all-ones sequence. For the post- 
coder, we desire that w,( 0) = w( 0) for all multiples of 2d\k 
phase rotations. This is achieved by defining the postcoder equa- 
tion as 

w, . (D)  =((S- l )D+l)x , (D)  (mods). (A.4) 

[31 

[41 
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