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Trellis-Coded Multidimensional
Phase Modulation

STEVEN 8. PIETROBON, STUDENT MEMBER, IEEE, ROBERT H. DENG, MEMBER, IEEE,
ALAIN LAFANECHERE, GOTTFRIED UNGERBOECK, FELLOW, IEEE, AND
DANIEL J. COSTELLO, JR., FELLOW, IEEE

Abstract — A 21 -dimensional multiple phase-shift keyed MPSK (L X
MPSK) signal set is obtained by forming the Cartesian product of L
two-dimensional MPSK signal sets. A systematic approach to partitioning
L x MPSK signal sets is used that is based on block coding. An encoder
system approach is developed which incorporates the design of a differen-
tial precoder, a systematic convolutional encoder, and a signal set mapper.
Trellis-coded 1. X 4PSK, 1. X8PSK, and L X 16PSK modulation schemes
are found for 1 < 1. < 4 and a variety of code rates and decoder complexi-
ties, many of which are fully transparent to discrete phase rotations of the
signal set. The new codes achieve asymptotic coding gains up to 5.85 dB.

[. INTRODUCTION

INCE the publication of the paper by Ungerboeck [1],
Strellis-coded modulation (TCM) has become a very
active research area [2]-[13]. The basic idea of TCM is that
by trellis coding onto an expanded signal set (relative to
that needed for uncoded transmission), both power and
bandwidth efficient communication can be achieved.

TCM can be classified into two basic types, the lattice
type (e.g.. M-pulse-amplitude modulation (PAM) and
M-quadrature amplitude shift keying (QASK)) and the
constant amplitude type (e.g., multiple phase-shift keying
(MPSK)). Constant amplitude modulation schemes have a
lower power efficiency compared with lattice type modula-
tion schemes but are more suitable for certain channels,
e.g., satellite channels containing nonlinear amplifiers such
as traveling wave tubes (TWT). Taylor and Chan [5] and
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Wilson et al. [6] have studied the performance of trellis-
coded MPSK (TC-MPSK) modulation, in particular rate
2/3 TC-8PSK and rate 3/4 TC-16PSK, respectively, for
various channel bandwidths and TWT operating points.
Their results showed that TC-MPSK modulation schemes
are quite robust under typical channel conditions.

In any TCM design, partitioning of the signal set into
subsets with increasing minimum intrasubset distances
plays a central role. It defines the signal mapping used by
the modulator and provides a tight bound on the minimum
free Euclidean distance (d,.) between code sequences.
For lattice-type TCM, Calderbank and Sloane [10] have
made the important observation that partitioning the sig-
nal set into subsets corresponds to partitioning a lattice
into a sublattice and its cosets. Forney [13] has developed
a method, called the squaring construction, of constructing
higher dimensional lattices from partitioned lower dimen-
sional lattices.

We shall investigate a class of trellis-coded multidimen-
sional (multi-D) MPSK modulation schemes. Signals from
a 2 L-dimensional (2 L-D) MPSK signal set (which we shall
denote as L X MPSK) are transmitted over a two-dimen-
sional (2-D) modulation channel by sending L consecutive
signals of an MPSK signal set. Therefore, the L X MPSK
signal set is the Cartesian product of L 2-D MPSK signal
sets. Trellis-coded mutli-D phase modulation (TC-L X
MPSK) provides us with a number of advantages that
usually cannot be found with TC-MPSK: 1) flexibility in
achieving a variety of fractional information rates, 2) codes
which are partially or totally transparent to discrete phase
rotations of the signal set, 3) suitability for use as inner
codes in a concatenated coding system [14], due to their
byte oriented nature, and 4) higher decoder speeds result-
ing from the high rate codes used (rate k /(k +1) with k
up to 15 for some codes).

In Section I, we introduce a block coding technique for
partitioning L X MPSK signal sets. Section III contains a
description of how the encoder system—comprising a dif-
ferential precoder, a systematic convolutional encoder, and
a multi-D signal set mapper—is obtained for the best
codes found in a systematic code search. The signal sets
are designed such that the codes can become transparent
to integer multiples of 360°/M rotations of the MPSK
signal set. Also, due to the way in which they are mathe-
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matically constructed, a signal set mapper can be easily
implemented by using basic logic gates and L-bit binary
adders. The systematic code search is based on maximizing
di.. (and thus the asymptotic coding gain) as well as
minimizing the number of nearest neighbors (Ng..) for
various degrees of phase transparency. TC-L X 4PSK, TC-
L x8PSK, and TC-L x16PSK codes for L =1 to 4 are
found. For TC-L X8PSK and TC-L X 16PSK, asymptotic
coding gains up to 5.85 dB compared to an uncoded
system are obtained. The TC-L X4PSK codes exhibit
asymptotic coding gains up to 7.8 dB. Among the L =1
codes listed are some new codes that have improvements
in M. and phase transparency compared to codes found
previously [1], [4], [6], [15]. Viterbi decoding of TC-L X
MPSK is also discussed, concentrating on maximum-likeli-
hood decoding of the parallel transitions within a code
trellis.

II. MULTI-D SIGNAL SET PARTITIONING

To describe set partitioning, we will start with the famil-
iar partitioning of the 8PSK signal set. This is followed
with an example of multi-D signal set partitioning using
the 2 X 8PSK signal set. Generalizations will be introduced
gradually, so that by the end of this section the reader
should become thoroughly familiar with the concepts in-
volved.

A. Partitioning the 8PSK Signal Set

In partitioning the 8PSK signal set, or 1X8PSK, we
form a minimum squared subset distance (MSSD) chain of
82 =0.586, 82 =2, 82=4, and 82 =co (assuming that the
average signal energy is one). Fig. 1 illustrates this parti-
tioning, in which each subset is equally divided into two
smaller subsets such that the MSSD in each smaller subset
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is maximized. Partitioning continues in this manner until
we have eight subsets, each containing a single point,
hence 8} = co.

B. Partitioning 2 X 8PSK

A 2X8PSK signal set (L =2) is illustrated in Fig. 2. We
use integers y; to indicate the first 8PSK point and y, for
the second 8PSK point, where y,, y, € {0,1,- - -,7}. Natu-
ral mapping is used to map the integer y; into each
complex-valued 8PSK signal, ie., y,— exp[V—1 /4],
for j=1,2. We can also represent y, and y, in binary
form as the vector y;=[y/, v/, 7], with y/ € {0,1), and
where y,=4y?+2y!+ )P, for j=1,2. That is, the least
significant bit (LSB) of y; corresponds to the rightmost bit
and the most significant bit (MSB) to the leftmost bit. We
will use this convention throughout the paper.

Fig. 2. 2X8PSK signal set.

To represent a 2 X 8PSK signal point, we form the 2 X 3

binary matrix
y= [y1:| _ [)’12 "
n| b3

Since a total of 6 bits is used to describe a signal point,
the unpartitioned signal set (indicated by £°) has a total of
26 =64 points. We also say that Q° is at partition level
p=0. It can easily be seen that the MSSD at partition

»
»
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(010 (110

Fig. 1.
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(101)

o

Signal set partitioning of 8PSK with natural mapping.
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level p=0is A2 =§; =0.586 (we use capital A to indicate
the MSSD’s for L >1 and lower case § for L =1). The
next partition (at partition level p =1) divides ° into two
subsets of 32 points each. We call ' the subset that
contains the all-zero element (i.e., y; = y, =0). The other
subset of 32 points is its coset, labeled Q(1). In forming
these two subsets, we would like their MSSD, A, to be
larger than A2, If this were not possible, then we should
find a partitioning that leads to a maximum reduction in
the number of nearest neighbors within the smaller subsets
(i.e., the average number of signal points that are distance
A} away from any point). In principle, the partitioning
could be carried out in this heuristic manner.

A more efficient way of partitioning Q° is to require the
column vectors of y, i.e., y'=[yi, yi]7, for 0 <i <2, to be
codewords in a block code. This representation using block
codes is also known as multilevel coding (first described by
Imai and Hirakawa [16] and later applied to quadrature
amplitude modulation (QAM) by Cusack [17]). To express
this mathematically, we need to introduce some further
notation. We define C, as that block code which contains
the column vectors y’, for 0 <i < 2. Thus C,,, contains the
least significant bits of y, and y,, C,, contams the middle
bits of y, and »,, and so on. The actual value of m;
indicates which block code is being used. For L =2 only
three block codes are of interest to us: C,, which is the
(2.2) block code with Hamming distance ¢, =1 (and code-
words [0 0]7, [0 1]7, [1 1]7, and {1 0]"; C,, which is the
(2,1) block code with Hamming distance 4, = 2 (and code-
words [0 0]7 and [1 1}7; and C,, which is the (2,0) block
code having only one codeword, [0 0]7 and Hamming
distance d, = co.

Also, since C,, denotes a block code with 257 code-
words, we can write that the partition level p is the sum of
all the m, that produce the subset Q7, ie., p=Y2_ m,.
Since there are I=log, M bits needed for each MPSK
point, p can range from 0 to IL (0 to 6 in this case). A
shorthand way of writing which column vectors y' belong
to which block codes is &(C, ,C,,.C,, ). Thus we can
write Q°=Q(C,,C,,C,). Since C, contams all possible
length 2 binary vectors, then Q° is generated.

To obtain the next partition (at level p=1), we let
Q'=Q(C,,C,,C,). This partition satisfies our previous
comments on partitioning. That is, C; has only two code-
words (reducing the number of points to 32), and C,;
contains the all-zero codeword. In partitioning, we also
require the property that all the points in Q! belong to £°
(written as ©' € Q°). For this example, since C; C G, this
property is satisfied. This can be stated more generally as
Qr*1cQr, for 0 < p < IL —1. Thus, if we have two parti-
tion levels p and p’. and p'=p+1, then C,, CC, for
0<i<I-1. o

The partition Q' is equivalent to forcing the LSB’s of
both y, and y, to be either zero or one. By inspection of
Fig. 2 we can thus see that A} =282=1.172. In fact, we
can use a more general expression that gives a lower bound
on the MSSD. From [18], [19] we have

A2 > min(87_d,, .--.8d, 6%, ) (1)

my
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where d,, is the Hamming distance of the code C,, , for
O<ix< 1 " 1. From (1), we obtain for 2 x 8PSK,

&’ > min(4d,, .2d,,,0.586d,, ). (2)

For p=0 and 1, we can see that (2) is satisfied with
equality. In fact, due to the symmetry of the 8PSK signal
set, (2) is an equality for all values of p. It can be seen that
in partitioning 2° into Q' and its coset Q!(1), we could
have formed Q(C,.C,,C)) or Q(C,, Gy, C,) instead of
Q(C,, G,, Cy). However, both these other partitions have
A% =0.586 and are therefore not good partitions, since we
want A2 to be as large as possible. This is because dZ,. can
be lower-bounded by 242 for many trellis codes {1].

Ignoring for the moment how the cosets are formed, we
can partition Q! into ©? and its coset 22(2), and so on.
(The value within the brackets of the coset will be ex-
plained in Section II-C.) Every time we partition, we want
to make A% as large as possible. To do this we use the
following rule The C,, that we partition (into C,, ;) from
level p to level p +1 should be the i correspondmg to the
smallest 8¢, at partition level p. If there are two or more
82d,, that have the smallest value, we choose the one with
the smallest i.

Note that once C,, has been partitioned to C, (or C;_,;
in general), then that particular block code cannot be
further partitioned (since it contains only one codeword).
Table I illustrates the partitioning of the 2X8PSK signal
set. The arrows show which C,, are being partitioned as p
is increased. The values of Azp are also shown. Note that at

=3, we have 82d,, =4 for both i =1 and 2. As indicated
by the above rule, i —1 is chosen to be partitioned to form
Q% Even though A% =A% =4, partition level 4 is still
useful for coding since the number of nearest neighbors for
% is less than for ©° This will become more apparent
when the actual codes are found.

TABLE 1
2 X 8PSK SIGNAL SET PARTITION
Partition Minimum Squared Generator
Level (p) Qr Subset Distance (Azp) ("7
0 Q(C“.Cﬁ.g)) min(4,2,0.586) = 0.586 [01]
1 2G.G.C) min(@2.117) <1172 {11]
2 &'2((},.9,,(}) min(4,2,00) = 2.0 [02]
3 Q(q,‘§l,Cl) min(4,4,00) = 4.0 [22]
4 2CLG.G)  min(do0.%0) =40 [0 4]
5 Q(g.Cl.Cz) min(8,oc.oc) =8.0 [44]
6 UG, G C)  min(o0,00,00) = —

The previous rule usually works quite well. For L =3,
though, some of the best partitions do not follow this rule.
Instead, we can allow a A2 to be smaller than the rule
proposes, to obtain a larger Az for some p’> p than is
possible by following the rule.

C. Formation of Cosets

Now consider partition level p =1. We have shown that
there are two subsets, namely Q! and its coset @'(1). To
obtain Q(1), we must look at how coset codes are derived
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from block codes. Recall that C, is the (2,1) block code
with Hamming distance d;=2. The coset C;(1) of this
code is formed by adding modulo-2 a nonzero codeword
that belongs to C, but does not belong to C; (called the
generator 7°) to all the codewords in C;. We illustrate this
with an example. C, has codewords [0 0]7, [0 1]7, [1 0]7,
and [1 1]7 (remember that these codewords correspond to
column vectors of y), and C, has codewords [0 0]” and
[1 117. Therefore, the generator 7° could equal [0 1]7 or
[1 0]7. We arbitrarily choose 7°=[0 1]”. Thus C\(1) = C,®
7%= {[0 11,1 0] }. (In this paper the symbol & will be
used to denote modulo-2 (EXCLUSIVE-OR) arithmetic and
+ to denote integer or modulo-M arithmetic, M >2.)
Note that if %=1 0]7, the same coset vectors would have
been found, except that they would have been in a differ-
ent order. Also note that the Hamming distance between
codewords in C,(1) is equal to d;.

We can also write a general expression for the cosets at
partition level p =1 as :

Cl(fo) =C ¢’ (3)
where {® € {0,1}. Thus when ¢%=0, we obtain C,(0) = C,,
and when {®=1, we obtain the coset of C,, C;(1). In a
similar way we can divide C, into C, and its coset C,(2)
and C,(1) into cosets C,(1) and C,(3). Fig. 3 gives an
illustration of this partition. For the second generator, we
have only one choice, i.e., 7' =[1 1]7. The general expres-

coo- ]

cea-[}
Cy0) =C,
can-[3]
Cy1)=Cy+ m<
coo-i
m=0 m=1 m=2
do=1 d,=2 dp=c
Fig. 3. Partitioning of L = 2 binary vector space.

sion for the cosets at partition level p =2 becomes
G281 +5%) =C@iire{%°

aferlt)

where C, is the all-zero vector and {” € {0,1} for0<m <
1. We also note that C, € C; C C, and that 7" € C,, but
that " & C,, ., for 0 <m<1.

Since we have shown how the cosets of C,, are formed,
we can now show how the cosets of Q7 are formed. We
start with the simplest case, the single coset of @, namely,
Q!(1). In the same way as the block codes are partitioned,
we must find a 2X3 matrix that belongs to 2° but does
not belong to Q. This is called the generator of @' and is
labeled ¢°. Since C,, is partitioned in going from £° to £,
this implies that t°=[0,0,7°), where 0 is the all-zero

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 1, JANUARY 1990

vector [0 017, i.e.,
©o_[0 0 0]‘
0 0 1
An alternate notation for ¢° (using the symbol ¢°), is to
treat ¢° as if it represented two integer values y; and y,.
Thus ¢° in integer form is t*=1[0 1].
To form the coset 2(1), all that is required is to add °
modulo-2 to all the signal points in ©!. We write this as
Q2% =Q'e2%", (5)
where z%€ {0,1) indicates which of the two subsets is
being selected. We can see that in coset ©!(1), the LSB’s of
y, and y, are either 0 and 1 or 1 and 0, respectively. Thus
this coset has the same MSSD as @, ie, AZ=1.172.
Alternately, ¢° can be added modulo-M (modulo-8 in this
case) to the signal points in ©!. With modulo-8 arithmetic,
the LSB’s of y, and y, are still added modulo-2, but the
LSB’s now produce carries which affect the middle and
most significant bits. This is denoted as

Q'(2%) = @' + 2%° (mod8). (6)

For example, a signal y =[1 3]7 (where y =[y, »,]")in @
becomes [1 2]7 with modulo-2 addition of ¢° to y or [1 4]
with modulo-8 addition of % to y. Using either type of
arithmetic, we still obtain the required partition, although
the ordering of signal points within each coset is different.
In constructing rotationally invariant trellis codes, we will
find that there is a distinct advantage to using modulo-M
arithmetic over modulo-2 arithmetic.

Continuing with the set partitioning, it should be obvi-
ous that the next generator is #* ={1 1]7. From Table 1, we
see that ! corresponds to the generator of C,. The expres-
sion for the cosets of 27 is

s =g {1 {8 o, 0

where z' € {0,1}, for 0 <i <1. For partition level p =3,
we choose 12=1[0 2]7, with z2€ {0,1} used to select 2.
Continuing in the same way, we can partition the signal set
until we obtain only a single (4-D) signal point. Thus we
can form the equation (using the generators from Table I)

y@) =[] =94

oo
+z‘“]+z°[(l)](m0d8) (8)

where z=Y?_ 2z, with z' € (0,1}, for 0 <i < 5, and y(z)
gives the integer representations of the two 8PSK signal
points. The signal set mapping given by z can now be
directly used by a convolutional encoder. Since y; and y,
can be described in terms of z, the signal set mapper can
be implemented using simple logic circuits (EXCLUSIVE-OR
circuits for modulo-2 addition and binary adders for mod-
ulo-M addition). Alternatively, since z can be represented
with only six bits, one can use a small ROM. Fig. 4
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25
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23
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mod-8 adder

2 1 .0
Yo Y2 Y2

(b)

2X8PSK signal set mappers. (a) With modulo-2 addition.
(b) with modulo-8 addition.

Fig. 4.

illustrates two possible signal set mappers for 2 x 8PSK.
Fig. 4(a) shows a mapper using modulo-2 arithmetic, and
Fig. 4(b) shows a mapper using modulo-8 arithmetic.

In general, we can write (8) as

g1 IL -1
=91L(z) _ Z Zip
yr i=0

‘z', with z'€ (0,1}, for 0<i<IL-1.

(9)

where z=X/t012

Q0 =

Q=+

°]

p=0
"= Q(C,, Cy, Cy)

p=1
Q'=Q(C, Cy Cy)

A% =0.586 a2-1.172
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The addition in (9) is not specified but may be modulo-2
(using the binary matrix generators), modulo-M (using the
integer generators), or a combination of modulo-2 and
modulo-M. Fig. 5 illustrates the partitioning of Q° into Q3
and its cosets Q3(4z>+2z1+ %) for the 2xX8PSK signal
set using modulo-8 addition.

D. Partitioning 3X MPSK and 4X MPSK Signal Sets

In a similar fashion to 2 X8PSK, to partition L X 8PSK
(for L > 2) requires the partitioning of length L > 2 block
codes. We again look for partitions that have an increasing
Hamming distance. For L =3, there are two partitions
that are interesting.

The first partition has Hamming distances d, =1, d} =2,
d} =2, and d,= . These Hamming distances correspond
to the (3,3), (3,2), (3.1), and (3,0) block codes C,, C}, C;,
and C,, respectively, where C; C C} C C} c C,. Table II-a)

TABLE II
BINARY GENERATORS FOR L =3 AND 4
a) L=3() -
m d, N, ("’
0 1 3 niy
1 2 3 110
2 2 1 [011]
b) L=3(I) -
m d, N, (")’
0 1 3 001}
1 1 1 [011]
2 3 1 [111]
c)lL=4
m d, N, el
0 1 4 [0001]
1 2 6 [oo11
2 2 2 [0101)
3 4 1 1111]
93(0) = 93
Y4 = o'+ g ‘

ﬂ(2)—Q+

donite [
n<s>—n+{ |
Q) = Q%+ l?l
2+lol<
1
3 =Q:1+ 0
3

(1) = @
Q(5)

3, [1
2

Qa(g)= Q
3]
2 3
Q3(7) =Q+

@) = @

1
4

p=3
Q*=0(C, C,. Cy

A =40

p=2
- =Q(C,, Cp, Cp)

A2=20

Fig. 5. Three-level 2 x 8PSK signal set partition.
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gives the three generators, 7, 7, and 72, that were chosen,
along with the Hamming distances (d,,) and the number
of nearest neighbors (N,) at each partition level m. The
choice was not completely arbitrary, since one of the
generators must be the all-ones vector (which in this case is
7). The reason for this will be explained in Section III.

It is interesting to note that the generator matrix for
these block codes can be formed from the generators. In
general, a generator matrix G,, for an (L, L —m) block
code C,, for 0 <m < L —1, can be formed from the gener-
ators 7 to -1, ie, G,=[r",r"* .- L7 For
example, for the L =3 block codes given in Table 11-a),

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 1, JANUARY 1990

111
Gi={1 1 0 G}=[(1) DY
011
Gi=[o 1 11

TABLE V
3 X &8PSK SIGNAL SET PArTITION (III)
Partition Minimum Squared Generator
Level ( p) Qr Subset Distance (47,) @)’
0 GG G) min{4,2,0.586) =0.586  [001]
1 UG . G).CF) min(4,2,0.586) =0586  [011]
2 2G.G.C)) min@,21757)=1757  [111]
3 UGG C) mind,2, c0) = 2.0 [002]
4 sz(q,,(;ﬁ, C) min(4,2,0) = 2.0 [022]
5 9(9,.@1.0}) min (4,6, 00) = 4.0 [444]
6 QC.GLG)  min(8,6,00) = 6.0 222]
7 Q(g‘,q.q) min(8,0,00) = 8.0 {44 0]
8 Q(Q.C;.Q) min(8, 0, 00) = 8.0 (044
9 G, G,CG) min(c0,00,0) =00 —

the first partition where we try to maximize A% at each

For the other L =3 partition, we have d,=1, df =1,
d?=3, and d,= 0. These distances correspond to block
codes C,, C2, C2, and G, where C,C C? € C? C C,. Table
II-b) shows the generators for these codes. Note that 7} is
the all-ones vector in this case. The advantage of this
partition is that d3 =3 is larger than d}=2. However,
d?=11is less than d] =2.

The partitions of 3 X8PSK that will be useful for trellis
coding are given in Tables III-V. Table III corresponds to

TABLE III
3 X 8PSK SIGNAL SET PARTITION (I)

partition level. In Tables IV and V, the second set of block
codes are used to increase A3 to 1.757 while A3 decreases
to 0.586. In Table V, A% increases to 6.0 and A% decreases
to 2.0. Note how A% = 6.0 is obtained in Table V. At p =4
we have A% =min(4.0,2.0,00) and at the next partition
level, A% =min(4.0,6.0,0) =4.0. Now C,, is partitioned
to give A2 =min(8.0,6.0,00) =6.0. In the next level we
partition C,, to obtain A% =8.0. In Section III the reasons
why these latter two partitions are used will be seen more
clearly.

For L = 4 there is only one good way to partition length
4 block codes. Table II-c) gives a summary of the basic
parameters. Using Table II-c), we can partition the 4X

Partition Minimum Squared  Generator 8PSK signal set as shown in Table VI.
Level (p) e Subset Distance (4,) (1) For L X4PSK and L X16PSK we obtain from (1) that
0 GG G) min(4,2,0.586) =058  [111]
I 2G.G.CH min@42117)=1172  [110] A > min(4d,, ,2d,, ) (10a)
2 Q(q,.q,,g) min(4,2,1.172)=1.172 [011]
I UGG.G)y min@2.0) =20 [222) A? > min(4d,,.2d,, 0.586d,,,0.152d,, ), (10b)
4 Q(Q,,?},C,) min (4,4, 00) = 4.0 [220] ’
3 in(4,4,00) = 4. 22 . _ ;
3 g(c‘"lc- ?) [T""f 4 00) :g [344] respectively, where p=%/Z}'m, (I =2 for (10a) and I =4
6 (€0.G.G) - min(d,00,00) = 4. (444 for (10b)). In a similar fashion to L X 8PSK, the signal set
7 Q(lq'.c_z.cg) min(8, 00,00) = 8.0 [440]
8 UG.G.G) rr.\in(8,oo,oo)=8.0 [044) TABLE VI
9 G, G.G) min(eo,00,00) =00 — 4 X 8PSK SIGNAL SET PARTITION
Partition Minimum Squared  Generator
Level ( p) Qr Subset Distance (A%) @)
TABLE IV -
3 X 8PSK SIGNAL SET PARTITION (If) 0 UG G 6y) min(4,2,0.586) =0.586  [0001]
Partition Minimum Squared  Generator 1 UG, Q.‘g) min(4,2,1172) =1.172 [0011)
Level (p) Qr Subset Distance (A%) )T 2 GG, G) min@4,2,1.172)=1172  [0101]
0 G.G.G) min(4,2,058) =058 [001] 3 UG.G.G) min(4,2,2343)=20  [0002]
1 26, GC}) min(@,2,0.586) =058  [011] 4 2G).C.G) min(4,4,2343)=2343 [1111]
2 AGG.EH min@2175)=1757  (111] S UGGLG)  min(4hde0) =40 [0022]
3 26,.6.C)  min3,2,%) =20 (222] 6 AG.G.C)  min@,4,0)=40  [0202]
4 9(G>-9‘~Q> min(4,4,00) = 4.0 220] 7 Q(g),CJ,C‘,) min(4,8,00) =4.0 [0004)]
5 Q(q)'?zl.c'}) min(4,4,ao)=4.() [022] 8 Q(Cl,?:;‘c‘,) m1n(8,8,oo)=8.0 [2222]
6 26 C.C)  min(d.co,00) =40 (444 9 2C.G.C)  min(8,00,00) =80 [0044]
7 CLG.C)  min(8,,%) =80 440 10 G.CG.C) min@Boo,0)=80 (0404
3 Q(?},C},Q) min(8, o0, 00) = 8.0 [044] 11 Q(g.C‘,.C“) min(16,00,00) =16.0 [4444)
9 Q€. C.G)  min(oo, 00,00) = oo o 12 QC,.C,,C,) min(oo,00,00) =00 —
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TABLE VIL
SUMMARY OF L X 4PSK PARTITIONS
L=2 L=3() L=3(ID) L =3 (Il L=4
Partition MSSD Gen. MSSD Gen, MSSD Gen. MSSD Gen. MSSD Gen.
Level (p) (&) (M7 (@A) @ @)y @ @) e @)y
0 2 01 2 111 2 001 2 001 2 0001
1 4 11 4 110 2 011 2 011 4 0011
2 4 02 4 011 4 222 4 002 4 0101
3 8 22 4 222 6 111 4 022 4 0002
4 — — 8 220 8 220 6 111 8 1111
5 — — 8 022 8 022 12 222 8 0022
6 — — — — — — — — 8 0202
7 — — — — — — — 16 2222
PoPL 1 3 0 3 3 2 4 5 4 7
TABLE VIII
SUMMARY OF L X 8PSK PARTITIONS
L=2 L=3() L=3(I) L =3 (1) L=4
Partition MSSD Gen. MSSD Gen. MSSD Gen. MSSD Gen. MSSD Gen.
Level(p) (&) (T (&) ()T (&)  wnT @)y &y any
0 0.586 01 0.586 111 0.586 001 0.586 001 0.586 0001
1 1.172 11 1.172 110 0.586 011 0.586 011 1.172 0011
2 2 02 1172 011 1.757 111 1.757 111 1172 0101
3 4 22 2 222 2 222 2 002 2 0002
4 4 04 4 220 4 220 2 022 2.343 1111
5 8 44 4 022 4 022 4 444 4 0022
6 — — 4 444 4 444 6 222 4 0202
7 — — 8 440 8 440 8 440 4 0004
8 — — 8 044 8 044 8 044 8 2222
9 — — - — — — — — 8 0044
10 — - — — — — — 8 0404
11 — - — — — — — — 16 4444
PoPLPa 135 0 3 6 23 6 2.6 5 4 8 11
TABLE IX
SUMMARY OF L X 16PSK PARTITIONS
L= L=3() L=3) L =3I L=4
Partition MSSD Gen. MSSD Gen. MSSD Gen. MSSD Gen, MSSD Gen.
Level (p) (&) ()T (&) @) (&) @' @) o @y 1)
0 0.152 01 0.152 111 0.152 001 0.152 001 0.152 0001
1 0.304 11 0.304 110 0.152 011 0.152 011 0.304 0011
2 0.586 02 0.304 011 0.457 111 0.457 111 0.304 0101
3 1172 22 0.586 222 0.586 222 0.586 002 0.586 0002
4 2 04 1172 220 1172 220 0.586 022 0.609 1111
5 4 44 1172 022 1172 022 1.757 222 1.172 0022
6 4 08 2 444 2 444 2 444 1.172 0202
7 8 88 4 440 4 440 4 440 2 0004
8 — — 4 044 4 044 4 044 2.343 2222
9 — — 4 888 4 888 4 888 4 0044
10 — — 8 880 8 880 8 880 4 0404
11 — — 8 088 8 088 8 088 4 0008
12 — — — — — — — 8 4444
13 — — — — — — — 8 0088
14 — — — — — — — 8 0308
15 — — — — — — — — 16 8888
PoPy P2 Pa 1357 03 6 9 236 9 256 9 4 8 12 15

partitions can be obtained for L = 2 to 4. Tables VII, VIII,
IX give a summary of the partitions for L X4PSK, L X
8PSK, and L X 16PSK, respectively.

E. Larger Dimensional MPSK Signal Sets and the
Squaring Construction

One way to obtain larger dimensional MPSK signal sets
is to take an L XMPSK signal set partition (with its
corresponding MSSD’s relabeled as 82, for 0 <i < IL) and

form a 2 LL’ dimensional MPSK signal set which we label
as L’ X L X MPSK. Thus, if we have a 2 X 8PSK signal set,
the MSSD’s Azp. 0< p<6L’, for L' x2x8PSK are given
by

Ap?>min(8d,, .4d,,.4d

my

2d,,,1172d,,,0.586d,, )
(11)

where the d,, are the Hamming distances of (L', L'— m,)
block codes. If L'= 2 we can form the 2 X2 X 8PSK signal

mi’ ny* sy
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TABLE X
2X2 X 8PSK SIGNAL SET PARTITION

Minimum Squared Gen.
P Qr Subset Distance (A2%) )’
0 2G.6.G.6.G.G) min(8.4,4,2,1.172,0586) = 0586 [01]
1 266666 6) min(8,4,4,21172,1172)=1172 [11]
2 G666 GG min(8,4,4,2,1172,0)=1172  [02]
3 RGGh GG GiG)  min(8,4,4,2,2383,0)=20  [04]
4 SZ(CO‘C‘).C},,C‘.?“Q) min(8,4,4,4,2.343,00) = 2343 [22]
5 2G.G.GrGLGLG) min(8,4,4,4,00,00) =40  [44]
6 Q(G,."C},.%,CDCZ,CZ) ’ min(8,4,4,00,00,00) = 4.0 [08]
7 Q(C},,?},.C,.(:‘Z.CZ.CZ) min(8,4,8,00,00,00) = 4.0 [0 16]
8 2G.CGL.GC.G.G.G) min(8,8,8,00,00,00) =80  [88]
9 Q(C(,,?l.CZ.CZ.CZ.Cz) min(8,8,00,00,00,00) = 8.0 [16 16]
10 Q(?{)‘CZ,CI.CZ,CZ,Q) min(8,c0,00,00,00,00) =8.0 [032]
11 SZ(?I.CE.C:‘CZ.CZ,CE) min (16, 00, 00,00,00,00) =16.0  [32 32}
12 9(G.G.G.G,G,.G) min(oo,00,0,00,00,00) =00 —

set, which is equivalent to the 4 X 8PSK signal set. Table X
illustrates this partitioning. Note that the MSSD’s ob-
tained are exactly the same as those found with the 4 X
8PSK partitioning given in Table VI. Fig. 6 shows a block
diagram of a signal set mapper for the partition of 2 X2 X
8PSK. The function T; corresponds to the mapping given
by the generators in Table X and T, to the generators in
Table I.

@ N

2 Y
Ya
\

2 —— T

N

A

(-]
H
@ e

Fig. 6. Block diagram of 2 X2 x 8PSK signal set mapper.

For L’ =2, the above method of obtaining larger dimen-
sional MPSK is essentially equivalent to the squaring or
two-construction described by Forney [13]. The cubing or
three-construction corresponds to L’=3. One can con-
tinue squaring or cubing various multi-D signal sets in an
iterative fashion to obtain many larger dimensional signal
sets. If we desire an L XMPSK signal set, all that is

required is to factor L to determine which constructions
are needed. For example, if L =24, we could factor this
into a 2X2X2X3X8PSK signal set. If L is a prime
number, then the appropriate length L block codes and
their corresponding generators must be found.

Table XI gives the generators for L=15 and 7. Also
given are the Hamming. distances and the number of
nearest neighbors for each length L block code. Note that
there are three different partitions for L=35 and four
different partitions for L = 7. This suggests that the num-
ber of useful partitions increases by one for each succes-
sive prime number. Thus L =11 is expected to have five
useful partitions, and so on. These partitions were con-
structed by hand and probably represent the practical limit
of hand constructions. For L =11 and above, an algorith-
mic or mathematical method is required. In forming each
partition, we have tried to maximize the Hamming dis-
tance and minimize the number of nearest neighbors. For
example, the type IV partition maximizes the Hamming
distance and minimizes the number of nearest neighbors
for the (7,4) block code while the type III partition maxi-
mizes the Hamming distance and minimizes the number of
nearest neighbors for the (7,3) and (7,2) block codes.

TABLE XI
BINARY GENERATORS FOR L =5 AND 7

L=5( L=5(I) L=51 N
m d, N, () d, N, () d, N, () d, No ()
0 1 5 {11111} 1 5 [11111} 1 5 [00001]
1 2 10 [00011) 1 2 [00001)] 1 1 [00010]
2 2 4  [00101] 22 [00110] 2 3 [00101]
3 2 1 [11000] 3 2 [10101) 2 1 {01001}
4 4 1 [o1111] 4 1 [01111] 5 1 [11111]

L=T7() L=7(1I) L=7I L=7(1V)
0o 1 7 (11111} 17 [1t11111] 1 7 [0000001] 1 7  [0O0O0O0O1)
1 2 21 [0000011] 1 2 {0000001] 1 1 [0001000] 1 3 [0001000]
2 2 9 [0001001) 2 5 {0000101] 2 6 [1111111] 1 1 {1000000]
3 2 3 [0010010} 2 1 [0100010) 2 2 [0000101] 3 7 [0110100]
4 2 1 [0001100} 3 3 [0011100] 3 2 [0101010] 3 3 [0011010]
5 4 2 [1111000) 4 2 [00O1111] 4 1 [1100011] 3 1 [0001101]
6 6 1 [o0111111} 6 - 1 [1110111} S5 1 [0011111] 7 1 [1111111]
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For larger dimensions, these methods may produce block
codes which do not have the largest possible minimum
distance. For example, the largest Hamming distance that
can be obtained for the (24,12) coset code is six. However,
the (24,12) Golay code has a Hamming distance of eight.
For L =2, 3, and 4, the block codes are relatively simple.
Thus we are fairly certain that the best partitions for these
L X MPSK signal sets have been found.

[II. TreLLIS CODED MULTI-D MPSK DESIGN

This section describes how convolutional codes are con-
structed for the L XMPSK signal sets described previ-
ously. We first show how to construct signal sets that have
good phase rotation properties. Following this, a method
used to find good convolutional codes based on the parity
check equations is presented.

A. Construction of Signal Sets

Equation (9) can be used to describe a signal point in an
L xMPSK signal set. The number of bits z/ needed to
describe each signal point is IL. If the LSB is used for
coding, we can form a rate (/L —1)/IL code. A more
convenient measure of rate is to use the average number of
information bits transmitted during each 2-D signal period
T. This is called the effective rate of the code, R =
(IL -1)/L (bit/T). The unit bit/s/Hz can also be used
(for the actual bandwidth efficiency), but this assumes that
perfect Nyquist filtering is used in the receive and transmit
filters. Since this is not the case in many practical systems,
we make a distinction between the units bit/T and
bit/s/Hz.

Other rates can be achieved by setting the ¢ LSB’s of
the mapping to zero. We do this to ensure that the MSSD’s
are as large as possible, so that the best codes can be
found. In this case (9) can be rewritten as

N
OEIEE
YL

IL-1
Z z/ 74,

1=4

(12)

for 0<z<2797'—1, 0<g<L—-1, and where y9(z)
represents a point z in an L X MPSK signal set such that
the first g bits of (9) are zero. As before, we do not restrict
the type of addition that is used. We now let z=
[z77a71 .. 21, 2°], where 7 is the binary representation
of z, and the LSB of z is always the coding bit. This
notation ensures that the parity check equations of a
convolutional code can always be expressed in terms of the
LSB’s of z without depending on the type of signal set
used or its partitioning. From (12), codes with effective
rates R ;= (IL — g —1)/L can be formed. An upper limit
of g=1L—1 is set because for g > L the signal set is
partitioned such that d,, =oo, ie., an M/2/-PSK, for
J =1, signal set is being used (one exception is the 4 X 8PSK
signal set (Table VI) where d,, =4 for g = L). The MSSD’s
range from A% to A7, and the uncoded minimum squared
Euclidean distance (MSED) is A% . |, since uncoded trans-
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mission uses only half as many signals as coded transmis-
sion.

Example 3.1: We can form a rate 4/5 code with an
effective rate of 2.0 bit/T from a 2X8PSK (L =2, I=3)
signal set with ¢ =1. Then

I N e

The uncoded MSED is A% =20, which is the same as
uncoded 4PSK.

B. Effect of a 360° /M Phase Rotation on a Multi-D MPSK
Signal Set

Using modulo-M arithmetic in (12), multi-D signal sets
can be constructed such that there are at most I bits in z
affected by a signal set rotation of ¥ =360°/M. For
4PSK, 8PSK, and 16PSK, this corresponds to rotations of
90°, 45°, and 22.5°, respectively. Initially, we consider all
possible mapped bits, i.e., g =0.

Consider that a 1 X MPSK signal set has been rotated by
¥. Since we are using natural mapping, the integer repre-
sentation of the rotated signal point is y,= y +1 (mod
M), where y is the integer representation of the signal
point before rotation. If y is in binary notation, then

y=yle1=)° (13a)
yi=y'ey’ (13b)
(13¢)

yi=yleyty!

If there are 7 =1log, M bits in a signal set, then we see
from (13) that all I bits are affected by a phase rotation
of .

Consider the 2x8PSK signal set, with the mapping
given by (8). The phase rotation equations of this mapping
can be determined as follows. From (8), the signal outputs
can be written in terms of z as

[m=(425+2z3+z‘)[”

+(4z4+222 + zO)[(l)] (mod8). (14)

After a 45° phase rotation, we have y; , =y, +1 (mod8),
for j=1,2. From (14), we can form the following phase
rotation equations,

Y| _ 5 3,1 [1]
[yz,r] (4z°+2z°+ 21 +1) 1

+(4z4+222+z())“ (mod8).

Note that a 1 is added to the term whose coset is [1 1]”.
Hence this term “absorbs” the effect of the phase rotation,
leaving the remaining term unaffected. As can be seen, bits
25, 23, and 2! are affected in a manner similar to y2, ',

and »Y in (13), and bits z*, z?% and z° are unaffected by
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the phase rotation. Thus we can form the phase rotation
equations

20=° z2=z2 zh=2z*
sortg, ()
zt=z'e1 =270 i=z@z' 2.

If the signal set had been constructed using modulo-2
addition (instead of modulo-8), only z° would have re-
mained unchanged by a 45° phase rotation.

Using general notation, we can express (14) as

N 1
: =(2"12P1—1+...+22P1+ZP0) :
yr 1 v

+2" gy p+ - +2{& ) +{g) (mod M), (16)
where p;, for 0 < j < I—1, corresponds to those partition
levels where t? equals the vector [2/,2/,- - -,2/]7. The term
g;» for 0 < j < I -1, corresponds to those remammg terms
that have at least one (but not all) component in ¢? with
value 2/. For (14) we would have p,=1, p;=3, and
p,=>5. These values of p, are given for all the signal set

partitions shown in Tables VII-IX. We can now write the
phase rotation equations as

z:’o:zlfo@]’ zrl'1=zl'1@zpo’ ZfZ:ZPZ@zPO.Zp17...

(17)
and for all other partition levels z? = z7.

For L =2, there is only one term in each g o However,
for L >3, there are two or more terms in each g;. Since
the terms in g; do not contribute to the phase rotational
properties of the signal mapping, these terms can be added
modulo-2 before being added modulo-M to the other
terms. This is best illustrated with an example. For the
3x8PSK (I) signal set in Table III, we have the following
mapping equation:

RS
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required in a signal set mapper. For small /L, it may be
simpler to use ROM’s for signal set mapping, but for large
IL this dual addition becomes preferable. Fig. 7 gives a
block diagram of the three 3 X8PSK signal set mappers,
and Fig. 8 illustrates the mapper for 4 X 8PSK. This com-
bination of modulo-2 and modulo-M addition has no
effect on the MSSD’s (at least for L <4). In a similar
manner, we can also obtain the signal set mappers for
L x4PSK and L x16PSK.

(4

a? a' & Vb2 b' b° 2a'a® Vb2 o' 0%/ \a%a'a®Vb?b'n?
):2 z1 20 22 2| 20 z»z 21
BRI T
0 2
3

2 1.0 1
Y2 Y2 Y2 3 Y,
(a)

N
s
B

™M,
=)

<
~<
W o=

23

D @

a2a'®Vp2 b b a%a' & Vb2b' b0

52 5! £0 52 5! x0

0 2 1 .0 2 1 0
1 Y2 Y2 Y2 Y3 Y3 Y3

(b)

a?a' a° th b bo

o? a' & Vi?

2 0 1 [1
+z23 2|+ 21|+ 21|+ 201
2 1 0 {1
1 0] (1
=(42°4223+7°) l +4{z8 1 oz’|1
K
. 0 Fl 1
+2( %1 |@z* eaz‘ 1|} (mod8)
1 LO 10
-
=(4Z6+223+ZO) z ®Z7 +2 25@24
ZS
Zl
+ ZZ®ZI (modg).
22

The reason for this combination of modulo-2 and modulo-
M arithmetic is that it reduces the number of logic circuits

2 5! £°

2 1.0 2 1 0
BWhn Y2 V2 Y2

(c)
Fig. 7. 3 X8PSK signal set mappers. (a) Mapper (I). (b) Mapper (II).
(c) Mapper (IID).

2 1 ]
Y3 Y3 Ya

Due to the phase rotational properties and simplified
hardware that the combined modulo-2 and modulo-M
mapping allows, these are the signal sets that are used to
find all the trellis codes in this paper.
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Faal
z10
29
28
27
2
5
Fal
2
22
2!
20
| D G &
t ! i1 1
\aZa' @Vb2b'n/ \a?a' a‘ﬂ/;z b'b° aZa'a® Vo2 b b
22 2‘ 2:0 22 Z‘ 20 22 ):1 20
2 1 0 2 1 0 2 1 0 12 2 Jl.)
v, Y, Y, Y, ¥, Yy Vs Y3 Vs Yo Yo Y4
Fig. 8. 4 x8PSK signal set mapper.

We have shown that for ¢ = 0, the bits that are affected
by a phase rotation of ¥ are z%, for 0< j<I—1. For
q > 0 the bits that are affected are z7 7% for0< j < I -1.
However, depending on the signal set, p;— g for some j
may be less than zero. If this is true, the minimum phase
transparency is 2¢¥, where d’ is the number of terms
p; — q that are less than zero, and the number of bits that
are affected by a 2¢¥ phase rotation is s'=1 —d’. For
example, the 3 X 8PSK signal set in Table III has p, =0,
p,=3,and p,=6. Thusif g=1, then p,— g = —1, which
is less than zero, implying that d’=1, and thus only
s"=1—d’=2 bits are affected by a 2¥ = 90° phase rota-
tion. (A phase rotation of ¥ =45° of this signal set
produces its coset.)

Fortunately, for the codes and signal sets considered in
this paper, the above complication does not occur. This is
partly due to the fact that for many signal sets with ¢ =0,
the first L ~1 LSB’s are not affected by a phase rotation
of . Since we consider only signal sets with0 < g < L —1,
d’ =0 in these cases. For those signal sets where this is not
true (e.g., in some 3 X MPSK signal sets), it has been found
that the convolutional codes produced are inferior (in
either d .. or number of nearest neighbors) to an alterna-
tive signal set with d’= 0.

When a signal set is combined with a convolutional
encoder we must consider the effect of rotating coded
sequences. A similar result to the previously mentioned is
obtained so that, depending on the code and the signal set,
the signal set can be rotated in multiples of 2¢¥ and still
produce valid code sequences (where d defines the degree
of transparency). The actual determination of d is de-
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scribed in Section III-D. The number of bits that are
affected by a 2¢¥ phase rotation is s = — d.

For 0 < g < L —1, the actual bits that are affected by a
phase rotation of ¥ are z%, where b= p, — ¢, for 0 < j <
I —1. More generally, the bits that are affected by a phase
rotation of 29¥ are z¢, where ¢=pa—qfor0<j<
s —1. These two separate notations (b; and c;) are used
because the determination of d depends on b;, as will be
shown in Section III-D.

C. The General Encoder System

From the information given thus far, we can now con-
struct a suitable encoder system, as illustrated in Fig. 9.
The general encoder system consists of five sections. These
sections are the differential precoder, the binary convolu-
tional encoder, the multi-D signal set mapper, the parallel-
to-serial converter, and the 2-D signal set mapper. The
convolutional encoder is assumed to be in feedback sys-
tematic form, as in [1]. That is, z/(D) = x/(D)for 1< j <
k, where D is the delay operator and polynomial notation
is used. The parity sequence, z%( D), will be some function
of itself and the x/(D), for 1< j<k. The parity check
equation of an encoder describes the relationship in time
of the encoded bit streams. It is a useful and efficient
means of describing high rate convolutional codes, since it
represents the input/output encoder relationships in a
single equation. For an R=k/(k +1) code. the parity
check equation is
H*(D)z*(D)® --- @HY (D) (D)®H®(D):z°(D)

=0(D) (18)
where k., 1<k <k, is the number of input sequences
checked by the encoder, H/(D) for 0 < j < k is the parity
check polynomial of z/(D), and 0(D) is the all zero
sequence.

Since the encoder is systematic, the differential precoder
codes only those bits which are affected by a phase rota-
tion. The input bits into the encoder which are precoded
are denoted w, w,--- we1 If ¢;=0, we replace w°
(which does not exist) by z° as shown in Fig. 9 by the
dashed line (a different precoder must then be used). For
example, an encoder for a rate 8/9 code which uses the
3 X 8PSK (I) signal set given in Table III-a) may (depend-
ing on the phase transparency) need this modification.
This is because this signal set has b, =0, and thus if the
code has d =0, then z° will need to be precoded. Fig. 10

Multi-D
Signal Set 2-D Signal
Mapper Set Mapper :ja,

w - X Binary z
: Differential | > Convolutional |_,
w2——=1  Precoder S Encoder z
Wl ——————= X z‘l
T R =k/(k+1) |20
! !
Fig. 9.

General encoder system.
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Precoder

BB\

—_

b)

Fig. 10. Differential encoders for general encoder. (a) G, > 0. (b) G, =0.

illustrates the two types of precoders. Note that the storage
elements have a delay of LT. Fig. 10(a) illustrates the
precoder with ¢, > 0, where there are s inputs that are
precoded. The basic component of the precoder is the
modulo-2* adder. For most codes this is the precoder to be
used. For the bits that are not precoded, x’=w', for i # ¢;.

Fig. 10(b) shows the other case, where ¢, =0 and s —1
input bits are precoded (the other precoded bit is z%). The
adder circuit for this case is different from Fig. 10(a), i.e.,
it is not a modulo-2* adder. The Appendix gives the
equations for the differential encoder and decoder (for
both cases) and an explanation of how these circuits work.

We now summarize the notation and indicate the limits
on the parameters used in the search for good codes. For a
rate (IL — g —1)/(IL — q) code,

I number of bits in each 2-D signal (2 <
1<4),
M number of signal points in each 2-D sig-
nal set,
L number of 2-D signal sets (1< L <4),

p partition level of signal set (0 < p < IL),
q partition level p where mapping begins
(0<g<L-1),
z signal set mapping parameter (0 <z <
2774 -1),
k=1IL—-q—1 number of input bits to encoder,
k number of bits checked by encoder (1<
k <k,
V¥ =360°/M minimum phase transparency with ¢ =0,
p; bits z# affected by a ¥ phase rotation
with ¢ =0,
d degree of phase transparency (29¥, for
0<d<l),
s=1—d number of bits in z affected by a 29¥

phase rotation,
the bits z% affected by a 29¥ phase
rotation.

C;=DPiva— 4

There are two types of systematic convolutional en-
coders that can be constructed. Before proceeding with the
description of these encoders, we return to the parity check
equation given in (18). As in [1}, we define the constraint

length v to be the maximum degree of all the parity check
polynomials H/(D), for 0< j<k. For k< j<k,
H/(D) =0, since the bits corresponding to these polyno-
mials are not checked by the encoder. The parity check
polynomials are of the form

H/(D)=0@h/_ D" '® --- ®h{D®hK}, 1<j<k
(19a)
H°(D)=D"®h?_ D" '® --- ©h’Do1. (19b)

If k <v, we let b} =0, for 1 < j <k. This insures that the
squared Euclidean distance (SED) between paths in a
trellis leaving or entering a state is at least Azq +1- Thus all
codes in this class have an MSED between all possible
nonparallel coded sequences of at least 2A? 4+1- The parallel
transitions provide an upper bound on the 4, of a code.
A theoretical justification for constructing codes in this
manner can be found in [20] where it is shown, using
random coding arguments, that these codes have a large
free MSED on the average

A minimal systematic encoder can be implemented from
(19), since h3 =1 [1]. The encoding equations are

z/(D)y=x/(D), 1<j<k (20a)
2%(D) = HY(D)x*(D)® --- @ H'(D)x'(D)
e(H°(D)®1)°(D). (20b)

An encoder implementation using (20) is shown in Fig. 11.

For all codes with v =1 and for some codes.with v >1,
k = v. For these codes we cannot restrict 4}, for 1< j < k.
This is because k checked bits require at least k terms in
HY(D), for 1< j<k, that are variable. If there are not
enough vanables then there will be some nonzero x* =
[x¥,- -+, x% x'] such that TX_ H/(D)xf— 0 (mod 2). That
1s, there will be more than 2" parallel transitions be-
tween states in the trellis. To avoid this problem, when
k = v, we use (19) without any restrictions. In this case, the
MSED between all possible nonparallel coded sequences is
at least A2 + Azq 41, since the MSED between paths leaving
a state is A2 (since A} € {0 1}, forl<j< k) and between
paths entermg a state is AqJrl (since h/=0,for 1< j < k)
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Fig. 11.

The multi-D signal set mapper can be implemented as
described in Section II-D. We must insure that the correct
labels are used to map the signal set if ¢ is greater than
zero. All the labels in Figs. 4, 7, and 8 assume that ¢ =0.

The second to last section of the encoder is the parallel
to serial converter, which takes the L groups of I bits and
forms a stream with / bits in each group. That is, we
assume that the channel is limited to transmitting one 2-D
signal point at a time. Finally, the 2-D signal set mapper
takes the I bits for each 2-D signal point and produces the
required real and imaginary (or amplitude and phase)
components for a modulator.

Example 3.2: In this example, we describe how to im-
plement a particular code. The code is used with a 3 X 8PSK
signal set. Thus L =3 and I = 3. We also choose g =1, so
that a 2.33-bit /T (rate 7,/8) code is formed. The partition
that is used is given in Table IV, from which we obtain
Po=2, p,=3,and p,=6. The code is 90° transparent, so
that d =1 and s = 2. Therefore, c,= p;—¢g=2, and ¢, =
p»—q=2>5. Thus bits w? and w> are precoded using a
modulo-4 adder. Since ¢, > 0, the precoder given in Fig.
10(a) is used. For this code, & =2 and the parity check
polynomials are H°(D)= D*@D?’e®D®1, H(D)=D,
and H*(D)=D3®D? Excluding the parallel-to-serial
converter and the 2D signal mapper, the encoder is shown
in Fig. 12. This code has 16 states (v = 4). Note that the

Systematic convolutional encoder with & checked bits.

multi-D signal set mapper does not correspond exactly to
Fig. 7(b), since ¢ =1.

D. Convolutional Encoder Effects on Transparency

The convolutional encoder can affect the total trans-
parency of the system. The method used to determine
transparency is to examine the parity check equation and
the bits affected by a phase rotation. A code is transparent
if its parity check equation, after substituting z/( D) with
z(D) for 0 < j <k (the rotated sequences), remains the
same. Normally, at most I bits are affected by a phase

rotation ie. z".--- z%1, b =p ~q, for 0<j<I-1
We have
zho=zPa1 (21a)
= zh@zt (21b)
b=zt 2h (21c)

Assume that the largest value of b, <k is b,. This implies
that only one term in the parity check equation is affected
by a phase rotation. The other bits have no effect since
they are not checked by the encoder, i.e., b;>k for 1<
J <1 —1. The parity check equation after a phase rotation

w7 X7 27
X6 26
x5 25
x4 Pl
x3 7
x2 2
x1 21
20
a' 2% V! p° 2ala® W2 b0 2 al Q0 \[bz b b0
g x? 2 5t 50 32 5 50
)
R A S A A RN

Differential
recoder

Multi-D Signal Set Mapper

Fig. 12.  Encoder system for rate 7/8 (2.33 bit/T), 3 x 8PSK (I) signal set and 90° transparent code with 16 states and & = 2.
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of ¥ then becomes
H*(D)z*(D)® --- ®H"(D)[z"(D)®1(D)]® ---
®H%(D):°(D)=0(D)
HY(D):X(D)® --- @H™(D)z%(D)® - --
®H(D)z°(D) = E[H*(D)](D) (22)
where E[H"(D)] is the modulo-2 number of nonzero
terms in H%(D) and 1(D)=X%_ __D/ is the all-ones
sequence (i.e., E[H"(D)(D)= H%(D)Y(D)). Thus, if
H*(D) has an even number of terms,-(22) is the same as
(18). That is, the code is transparent to integer. multiples of
¥ phase rotations of the signal set. However, if Hb (D)
has an odd number of terms, then E[H%(D)] =1 and the
coset of the convolutional code is produced. Even though
the two equations are closely related, the codes are quite
different, and a decoder is not able to produce correctly
decoded data from a ¥ phase rotation of the signal set.
Now assume that the first two terms are" affected by a
phase rotation, i.e., the largest value of b, <k is b). The
terms in the parity check polynomial H%(D)zb(D)e®
H"(D)z"(D) now become
[H»(D)®H"(D)|z*(D)®H"(D):z(D)
®E[H*(D)](D).
In this case the parity check equation is different after a
phase rotation (even if E[H"(D)]=0). This means that
the code is not transparent to a ¥ phase rotation, but it
could be transparent to 2¥ or 4¥ phase rotations. This is
because the phase rotation equations reduce to

z:’o = Zho’. - z:’d»l = zba1

zr”u = Zb”@l, z:’d+l = zbd+l®zbd’ ..
for a 2¢¥ phase rotation, where d =1 or 2. If H*(D) has
an even number of terms, then 4 =1. This is because an
even number of terms in H®(D) cancels the effect on
zh(D) when the signal set is rotated by 2¥. That is, the

code is transparent to integer multiples of 2¥ phase rota-

tions ‘but not to multiples of ¥. If H*(D) has an odd
number of terms, this cancellation effect does not occur,
implying that d =2 and the phase transparency is 4.

In general, if the largest value of b, < k is b, then
d=f+ E[H"(D)]. We can then determine those bits z%
which are affected by a 24¥ phase rotation, i.e., c;=
bioy=pisq—q for0<j<s—1, where s=I-d. _

Example 3.3: For the code given in Example 3.2, k =2,
I=3,and g =1. Thus b,=1, b;=2, and b, =5. Since the
largest value of b; <2 is b,, then f=1. Therefore, d=1+
E[H®(D) =1+ E[D’®D?*|=1. Thus the code is 90°
transparent, and ¢, =2 and ¢, = 5.

E. Systematic Search for Good Small Constraint
Length Codes

An approximate lower bound for the symbol error prob-
ability [1] of a multi-D code is given by

P (e) > NfreeQ dfzreeReffEb
‘ 2N,

3 (23)
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where E, /N, is the energy per information bit to single-
sided noise density ratio and Q(-) is the complementary
error function. In (23), the division by L normalizes the
average number of errors per multi-D signal to that of a
2D signal set.

For each mulii-D signal set considered, a number of
code rates can be achieved. As v is increased, a compre-
hensive code search becomes time-consuming due to the
greater complexity of each code. We have thus limited our
search to v+ k <10. (The number of checked bits k also
affects the complexity of the code search.) As indicated by
(23), the criteria used to find the best codes are the free
MSED (d2..) and the number of nearest neighbors (Np,).
We have also included the code transparency 4 as a
criteria in the code search. The code search algorithm that
was implemented is similar to that in [1] but with a
number of differences, including the extra criteria men-
tioned above. o

The actual code search involves using a rate k /(k +1)
code. Thus two separate notations are used to distinguish
the rate k /(k +1) encoder and the simplified rate k /(I; +
1) encoder. For the rate k/(k+1) encoder, we have
x, =[xk---, x!] (the input to the encoder) and

z,=[zk---, 2}, z%] (the mapped bits or encoder output)

n* n
at time n. Also, e, =[e¥,- - -, el, ] is the modulo-2 differ-
ence between two encoder outputs z, and z,, at time n, i.e.,
e,=17,®z,. Note that there are 2**' combinations
of z, and z/ that give the same e,. For the rate k /(k +1)
code, we denote reduced versions of x,, z, and e,
as &, =[xy ) £, = [z
[ek,--, el e?], respectively.

To find d. for a particular code, the squared Eu-
clidean weights (SEW) w(e,) are used. As defined in {1},
w?(e,) is the MSED between all combinations of a(z,)
and a(z]) such that e,=z,®z, and a(z,) is the actual
L XMPSK signal point. This can be defined as

wi(e,) = mind[a(z,). a(z,®¢,)]

allg,

1.0
2z, 2,), and &

n

(24)

where d?[a(z,), a(z!)] is the SED between a(z,) and
a(z}). One can then use the all-zero path as a reference to
find d?,. in a code search, ie.,

=min Y w(e,)

n

d2

free (25)
where the minimization is over all allowable code se-
quences with the exception of the all-zero sequence. We
can use (25) to find d2,, provided that the minimization of
(24) does not depend on z°, as shown by Ungerboeck [1].

Although the minimization of (24) does not depend on
29 for 1 X MPSK signal sets, it cannot be assumed that this
also applies to L XMPSK for L >2. By expressing
d?la(z,), a(z,®e,)] directly in terms of z, and e,, it can
be shown that 3X4PSK (I), 3X8PSK (I and II), and
3x16PSK (], II, and III) ail depend on z% This implies
that (25) becomes a lower bound in these cases. However,
due to the large number of parallel transitions for these
codes, we can still determine d2,, (and N.) using a
slightly modified version of (25).
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Since there are 2**! values of e,, a total of 222
computations are required to find all the values of w?(e,).
For example, a rate 11,/12 code with 4 X 8PSK modulation
requires nearly 17 million computations. This can be re-
duced by letting z%=0 (or 1) and minimizing (24) over all
z,=[z~- -, 2.0 Thls reduces the number of computa-
tions to 22X+ 1 In fact, it is possible to decrease the number
of computations even further. Using some difficult alge-
braic manipulations, it can be shown that the L output
bits z/ corresponding to cosets t# with some components
equal to 2/7! can all be set to zero. For example, the
4x8PSK signal set with g =0 can have bits z/, zJ, z!°
and z!! all set to zero when minimizing (24). This is due in
part to the MPSK signals being antipodal for these values.
th}(us the total number of computations can be reduced to
22k— L +1

To reduce the time needed to find dhee, we note that the
trellis is equivalent to a rate k/(k+1) code with 2¢*
parallel transitions. Also, there are 2%+ 1 different sets of
parallel transitions. 1f the minimum SEW is found for each
of these sets of parallel transitions, the code search is
greatly simplified, since the search for a rate k /(k +1)
code is all that is needed and k is usually small. Thus the
SEW’s required for a rate 1;/(12 +1) code search are

w?(é,) =minw?(e,) (26)

where the minimization is over all [ef, ekt We de-
fine the free MSED of this rate k /(k + 1) code as

d}..=min }_w(é,)
n

where the minimization is over all allowable code se-
quences (€( D)) defined by

@7

é(D)=¢éDoé,D*e - ®&,DV

for é,, éy,+ 0, and N> 2. The code sequences of length
N =1 are the parallel transitions, where the MSED is the
MSSD of the parallel transitions. A code might have d2,,
larger than the MSSD of the parallel transitions, implying
that d},. occurs along the parallel transitions. With k
checked bits and a rate k /(k +1) code, the MSSD of the
parallel transitions is A% , ;.. Thus we can express df,.. as

d}o=min(dZe, A (28)

eint)
g+k+1}-

The best value of k can be determined from the free
MSED of the best code for the previous value of v. The
search starts with v =1 and k =1, and we find the code
with the best dfm and N;.. We then increase v by one
and determine k as follows. If d2_ for the previous best
code was di,., then k remains the same. This is because
the limit of the parallel transitions A%.;., has not yet
been reached and the trellis connectivity needs to be
reduced to increase dfrcc or reduce n.. If the previous
best code had dj, = Aq+k+1‘ then k is increased by one
from the previous value; otherwise, dZ,, and N, would
remain the same. If dfree Azﬁ,‘H for the previous best
code, then & can remain the same or increase by one. Both
values of & should be tried to find the best code. The best
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code is then found for this value of v and &, and the above
process is repeated for each increasing value of v.

As can be seen from (24), there may be some values of
e, and z, for which w?(e,) <d’[a(z,), a(z,®e,)]. The
“number of nearest neighbors” for e, (denoted m(e,)) is
defined as the average number of times that w?(e,) equals

d’[a(z,). a(z,®e,)]. If w'(e,) equals d?[a(z,), a(z,De,)]
for all values of z,, then mf(e,)=1. For example, in
naturally mapped 8PSK, it is found that for e, =[0 1 1]
and [1 1 1], d*[a(z,). a(z,®e,)] = 0.586 for four values of
z,, and 3.414 for the other four values of z,,. Thus m(e, ) =
0.5 for e, =[01 1] and [1 1 1}. For all other values of e, it
can be shown that m(e,) =1. Zehavi and Wolf [21] give a
general approach to determining the full code distance
spectrum, whereas we are only interested in the number of
nearest neighbors.

We can state this generally as follows. Let the number of
bits in z,, that are varied to find w(e,) be b. Then

)= 2u(wi(e,)—d*[a(z,). a(z,®e,)])27" (29)

where u(-) is the unit step function and the summation is
over all the bits in g, that are varied to find w(e,).
Normally, b=k +1, but this can be reduced to b=k — L
for the reasons mentioned previously.

For the simplified rate k /(k +1) code, m(é,) is the sum

of all the m(e,) for which w(&,) = w(e,), i.e.,

=Zu(wz(e",,)—wz(e,,))m(e,,) (30)

where the summation is over all [eX,- - ef*!]. We can
think of m(é,) as the total average number of nearest
neighbors along each set of parallel transitions.

The number of nearest neighbors for the MSSD AqM i1

m(e,

m(é,)

Ny=Yu(&, ;0 —wie,))m(e,) (31)

where the summation is over all e, =[e},- - ’f“,O,- -+,0].
The number of nearest ne1ghbors for paths wnh SED d3,.
can be calculated using m(é,) as follows:

Y [Im(z)

a=1n=1

Nfrccz (32)

where N, is the length of a path « that has a SED of dfree
and A is the number of paths that have a SED of d2,.. If
d?.. occurs along the parallel transitions, N = N,, and
we define the next nearest free SED and number of nearest
neighbors as d2, =di. and N, = Ny.. respectively.
(Note that d2,,, and N,.,, may not be the true next nearest
paths, since there may be some closer paths occurring
along the parallel transitions.) When there are several
codes that have the same free MSED and number of
nearest neighbors, the “next nearest” values are used in
code selection. When d}.. occurs along paths with SED
dZeer Nipee = Nipoor The next nearest values in this case are
not given in the code tables. If d,, =A% ;.. then Ny, =
NA + Nfrce

Example 3.4: In Example 3.2 we have a k=2, q=1,
rate 7/8 (2.33 bit/T) code with a 3 X 8PSK (II) signal set.

After determining the mapping of the signal set, (24) was
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used to find the SEW’s for each signal point. Equation (26)
determines the w2(é,) used to find the best rate 2/3 codes.
For these codes df.. =A% ;. =A%=40. Using (31) we
determined that N, is 15 (after normalizing, there are
only five paths per 2-D symbol). In the-code search for the
best rate 2/3 codes, there were many codes that had
d2, =d?2. =4.343. Thus (32) was used to determine N,
for each best code. Table XII gives the values of w?(é,)
and m(é,) for each é, used in the code search. The best
code with a transparency of 90° was found to have N, =
24.

TABLE XII
SQUARED EUCLIDEAN WEIGHTS USED IN THE CODE
SEARCH FOR RATE 7/8 (2.33 B11/T) CODES
wITH 3 X 8PSK (II) AND k =2

é, w?(é,) m(é,)
000 0.0 1
001 1.172 2
010 1.757 4
011 0.586 1
100 2.0 6
101 1172 2
110 1.757 4
111 0.586 1

To reduce the number of codes that must be tested in
our code search algorithm, rejection rules were used. As in
[1, rule 1], time reversal of the parity check polynomials
was used to reject codes. Even though w?(é,) and m(é,)
are used to find the best codes, [1, rule 2] can still be
exploited, provided that w*(é,) = A2; ). ., where r(&,) is
the number of trailing zeros in &,. When this is not true, it
may still be possible to find some combinations of the
parity check polynomials that can be rejected (this was
also implemented in our code search). Finally, [1, rule 3]
was also used to eliminate codes.

In the code search a rate k /(k +1) code is searched for
a particular v. Before finding dZ.., the code search pro-
gram. checks to make sure that the code only produces
sequences with length N > 2. If for some input £, + 0, the
inputs to the systematic encoder are all zero, the state of
the encoder goes from one state to the next as if a zero
input had occurred. Thus parallel transitions will occur in
the rate k /(k +1) code, which should not have parallel
transitions. Therefore, codes at level i, 1<i<k, were
rejected in the code search if for some [x',---,x']#0,
T _x’H/(D) (modulo 2) = 0(D).

Two programs were used in the code search, one for
codes with v >k and the other for codes with v = k. For
specific values of 1, L, and ¢, y9(z), for 0 < z < 2/£79-1,
was generated using the coset representative ¢7, for 0 <
p < IL —1, that are given in Tables VII-I1X. The squared
Euclidean weights w?(e, ) were then calculated using (24)
for all e,. Since the value of k can change with each v,
w2(é,) and m(é,) were computed, if necessary, as the
program went from the smallest to the largest v.

The code search used the various rejection rules before
the time consuming tasks of finding d2,. (using the bidi-
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rectional search algorithm [22]) and N, (using a tech-
nique based on the Viterbi algorithm). The rejection rules
were organized so that the best codes for each of the two
possible phase transparencies were found. The code search
found those codes that had the largest free distance (for a
particular transparency). If a code was found to have its
free MSED equal to or greater than the previous best code,
1\7&ee was determined, and this code was listed if either its
d:.. or N, had improved over the previous best code.

The octal code generators were then listed along with
their d; 2 s ﬁfme, and phase transparency d. A small list of
codes was produced (for each code search) from which the
best codes could be chosen. Every time that k is increased
by one in the code search (which is done automatically),
the program determines and lists A2q +i+1 and N, for use
in the code tables.

The asymptotic coding gain y of each code compared to
the uncoded case, as shown in the code tables, is

Y 21010g10(df2ree/d3) dB (33)

where d? is the smallest MSSD of an equivalent uncoded
2-D or multi-D scheme. In nearly all cases, d2 =A%, ;. For
codes with a noninteger R, no equivalent 1xMPSK
scheme exists which has the same Ry, and so the equiva-
lent uncoded multi-D signal set is used instead. For the
4x8PSK signal set with ¢=3, R =2 bit/T. Thus a
natural comparison would be against uncoded 4PSK, which
has d? =2. (In this case, A, =2.343, which is inconsis-
_tent with other codes that also have R =2 bit/T.) The
asymptotic coding gains compared to uncoded (M /2)-PSK
are found by adding to y the appropriate correction factor

Reﬂ d3
m 8_12 dB (34)

as shown in the code tables. The transparency (in degrees)
is also given for each code. The parity check polynomials
are expressed in octal notation in the code tables, e.g.,
HY%D)=D®+ D*+ D>+ D+1=(001 010 111),=
(127),.

In Tables XIII, XXIII, and XXXIII codes for TC-1X
4PSK (rate 1/2 4PSK), TC-1x8PSK (rate 2/3 8PSK),

Ymp = 10log, (

TABLE XIII
TRELLIS-CODED 1 X 4PSK?

v l: hl ’7(] Inv. dl'zrce Nfrcc d!%cxl Nnexx Y (dB)
11 1 330° 6 1 — — 17
21 2 5 360° 10 1 — — 3.98
31 06 13 180° 12 2 — — 4.77

1 04 13 360° 12 1 — — 4.77
4 1 06 21 180° 12 1 — — 4.77

1 10 23 360° 14 2 — — 544
51 36 45 180° 16 2 — — 6.02

1 26 53 360° 16 1 — — 6.02
6 1 042 117 180° 20 11 — — 6.99
7 1 126 235 180° 20 2 — — 6.99

1 144 223 360° 20 1 _— = 6.99
8 1 262 435 180° 24 11 — — 7.78

1 362 515 360° 24 9 - — 7.78
9 1 0644 1123 180° 24 2 — — 7.78

1 0712 1047 360° 24 1 — — 7.78

y, =0 dB; R, =1.0bit/T, d2 =40, N,=1 (1 X2PSK).
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TABLE XIV
TRELLIS-CODED 2 X 4PSK*
‘ i A L n n° Inv. dE e Niveo di Novat ¥ (dB)
1 1 — — 1 3 180° 4 2 6 8 0.00
2 2 — 1 3 5 90° 6 6 — — 1.76
3 2 — 04 06 11 90° 8 5 — — 3.01
4 2 — 10 06 23 90° 8 1 10 16 3.01
5 3 14 30 02 4 180° 10 8 — — 3.98
3 16 24 06 53 360° 10 7 — — 3.98
6 3 030 042 014 103 180° 12 40.25 — — 4.77
3 076 024 010 157 360° 12 30.75 — — 4.77
7 3 044 022 114 211 180° 12 8 — . 477
“y2=1.76 dB: R =15bit/T, g=0, d2=4, N, =6 (2x4PSK).
and TC-1Xx16PSK (rate 3/4 16PSK), respectively, are TABLE XV
. - a
presented. These tables give the best code for each phase TreLLIS CODED 2 X 4PSK
transparency, which (to the best of our knowledge) have e kR H R Inve dEe Npe diad Naexe Y (dB)
not been previously published. The b_esrt codes,.without 11 1 3 90° 8 s _ 301
regard for phase transparency, were original published by 21 — 2 5 9° 8§ 1 12 8 301
Odenwalder [15] for 4PSK (with the codes in non-sys- i ; (1): 85 ; fggz ﬁ f - - 3';;
tematic form), by Ungerboeck [1], [4] for 8PSK, and S 2 30 16 41 180° 16 8 —  — 60
Wilson ez al. [6] for 16PSK. 6 2 036 052 115 180° 16 1 —  — 602
Tables X1V, XV, XXIV, XXV, XXXIV, and XXXV list 72 044 136 203 180° 20 6 —  — 699
8 2 110 226 433 180° 24 33 — — 778

the TC-2X4PSK codes (rates of 1.5 and 1.0 bit/T), the :
TC-2x8PSK codes (2.5 and 2.0 bit/T), and the TC-2 X "1 =0dB: Ry =10bit/T. g=1.4
16PSK codes (3.5 and 3.0 bit/T). Tables XVI-XVIII,

=40, N,=1 (1 x2PSK).

TABLE XVI
TRELLIS-CODED 3 X 4PSK*
Signal

o kK n A n° Inv.  d2.  Nuee d2q Npew Y (dB) Set
1 1 — — 1 3 90° 4 7 6 32 0.00 I
2 2 — 2 1 5 90° 4 3 6 24 0.00 I
2 — 2 1 S 360° 4 2 — — 0.00 II
3 2 — 04 02 11 90° 4 1 6 6 0.00 [1I
2 — 04 02 11 360° 6 11 — — 1.76 11
3 05 04 02 11 90° 4 0.25 — — 0.00 11
4 2 — 14 02 21 180° 6 6 — — 1.76 1
3 3 01 02 06 11 360° 6 4 — — 1.76 I
4 3 10 04 02 21 90° 6 5.5 — — 1.76 11
3 12 04 02 21 180° 8 19 — — 3.01 I
5 3 24 14 02 41 180° 8 7 — — 3.01 I
6 3 024 042 010 105 180° 8 3 10 16 3.01 I

“y, =222 dB; R =1.67 bit/T, g=0, d2=4.0, N, =15 (3 x4PSK I).

TABLE XVII
TRELLIS-CODED 3 X 4PSK*
Signal

O S h At I Inv.  dfe. Ny d2q Noww Y (dB) Set
1 1 — — 1 3 90° 4 1 g 4 0.00 111
1 — — 1 3 360° 6 7 — — 1.76 11
2 1 — - 2 5 360° 6 4 10 9 1.76 11
2 — 2 1 S 90° 6 2 8 4 1.76 111
2 — 3 1 5 180° 8 21 — — 3.01 1
2 — 2 1 S 360° 8 16 — — 3.01 II
3 2 — 04 02 11 90° 6 2 8 1 1.76 11
2 — 02 06 11 180° 8 3 12 160 3.0 11
3 06 04 03 11 90° 8 1 — — 3.01 111
4 3 14 04 12 23 90° 10 5 — — 3.98 I
5 3 30 04 22 43 90° 12 13 — — 4.77 111
6 3 036 060 026 103 90° 12 2 — — 4.77 111
7 3 140 160 062 213 90° 12 1 14 S 4.77 m
3 004 154 056 207 180° 12 1 16 128 4.77 111

“yy =125 dB: Ry =133 bit/T, g=1, 4> =40, N, =3 (3X4PSK II).



80

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 1, JANUARY 1990

TABLE XVIII
TrELLIS-CODED 3 X 4PSK?

Signal
v kR R R R TV diee Npee  diei N Y(dB) Set
0o 0 — — — — 90° 6 4 — — 1.76 1I
1 1 = — 1 3 90° 6 2 8 1 1.76 {41
| — 1 3 180° 8 3 12 16 3.01 i
2 2 — 3 2 5 90° 10 4 — — 3.98 111
32 — 06 02 11 90° 10 2 — — 3.98 I
2 — 02 06 13 180° 12 5 — — 4.77 111
4 2 — 12 16 21 90° 12 1 14 2 477 111
2 — 04 12 27 180° 12 1 16 22 4.77 111
3 10 04 .02 21 180° 14 3 — — 5.44 11
5 3 2 16 04 53 180° 16 2 — — 6.02 1
3 24 14 02 43 360° 16 1 — — 6.02 Il
6 3 070 004 022 101  180° 18 3 — — 6.53 11
7 3 156 024 046 213 180° 20 3 — — 6.99 1
3 044 014 02 217 360° 20 2 — — 6.99 11
Yy, =0.0 dB: R =1.00 bit/T, g=2, d2 =40, N,=1 (1x2PSK).
XXVI-XXVIII, and XXXVI-XXXVIII kst the TC-3X TABLE XIX
4PSK codes (1.67, 1.33, and 1.0 bit/T), the TC-3X8PSK TRELLIS-CODED 4 X 4PSK*
codes (2.67, 2.33, and 2.0 bit/T), and the TC-3x16PSK v ok B RY R B Inv. dEe Ny di N Y (dB)
codes (3.67, 3.33, and 3.0 bit/T), respectively. Tables 11— 1 3 90° 4 12 6 64 000
XIX-XXIH, XXIX-XXXIII, and XXXIX-XLII list the 2 2 — 2 1 5 90° 4 4 6 48  0.00
TC-4x4PSK codes (1.75, 1.5, 1.25, and 1.0 bit/T), the 33 04 02 01 11 9° 6 28 — — 176
. 4 3 10 04 02 21 %° 8 78 — — 30
TC-4 X 8PSK codes (2.75, 2.5, 2.25, and 2.0 bit/T), and the S 3 24 14 02 4 %° 8§ 30 — — 301
TC-4x16PSK codes (3.75, 3.5, 3.25, and 3.0 bit/T), re- 6 3 050 032 004 103 90° 8 14 10 160 3.01

spectively.

Equivalent R =5/6, TC-2 X 8PSK (2.5 bit/T) codes with
up to 16 states have been found independently by
Lafanechére and Costello [8] and by Wilson [9], although
with reduced phase transparency. The two-state TC-L X
8PSK and TC-L X16PSK codes were also found by
Divsalar and Simon [23].

Yy, =243 dB: R =175 bit/T, =0, d2=4.0, N, =28 (4x4PSK).

In the code tables it can be seen that, for the same
complexity, two codes (and in some cases three codes) are
usually given. Note that the code with the worst phase
transparency has a better free distance or a lesser number
of nearest or next nearest neighbors. Thus, if phase trans-

TABLE XX
TRELLIS-CODED 4 X 4PSK*
R S A L K Inv. di. Ny din New  Y(AB)
1 1 — — — 1 3 90° 4 4 8 64 0.00
22 — — 2 1 5 90° 8 78 — — 3.01
3002 — — 04 02 11 90° 8 30 — — 3.01
4 2 — — 12 04 23 90° 8 16 12 320 3.01
5 3 — 14 34 06 41 90° 8 6 12 176 3.01
3 — 04 14 22 43 180° 8 6 12 160 3.01
6 4 014 006 056 022 103 90° 8 2 12 62 3.01
“y, =176 dB: R =1.50 bit/T, g=1, d2 =40, N, =6 (2xX4PSK).
A Y
TABLE XXI
TRELLIS-CODED 4 X 4PSK*
ek n I W i " Invv.  diee  Npee die Noew Y (dB)
11 — — — 1 3 90° 8 30 — — 3.01
21 — — — 2 5 90° 8 14 12 64 3.01
3002 — — 06 02 11 90° 8 6 12 64 3.01
2 — — 02 06 11 180° 8 6 12 32 3.01
3 — 01 03 06 11 90° 8 2 12 56 3.01
4 3 — 10 14 06 21 90° 8 2 12 8 3.01
5 4 10 04 06 22 41 90° 12 8 — — 4.77
6 4 024 014 006 042 103 90° 16 109 — — 6.02
‘v, =097 dB: R =125bit/T, =2, d2 =40, N, =4 (4x4PSK).
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TABLE XXII
TreLLIS-CODED 4 X 4PSK*
vk R R R R Inve dRe Npee diy Npwy 7 (dB)
00 — — — — 9° 8§ 14 — — 30
11 — — 1 3 18° 8 6 16 64 301
22 — 2 3 5 9° 8§ 2 16 64 301
33 02 04 03 11 90° 16 45 — — 602
4 3 02 10 06 21 9° 16 17 — — 6®
53 22 10 06 4 90° 1,6 5 — — 602
6 3 010 060 036 105 90° 16 1 20 4 602
Y4, =0 dB: R =100 bit/T, g=3, d2 =40, N, =1 (1 X2PSK).
TABLE XXIII
TreLLIS-CODED 1 X 8PSK*

e kR R R v di. Npe dig New v (dB)
11— 13 180° 2586 2 - — 1R
21 — 25 180° 40 1 458 4 301
32 04 02 11 360° 458 2 - — 360
4 2 14 06 23 180° 5172 4 - — 413

2 16 04 23 360° 5172 225 —  — 413
S 2 14 2 53 180° 5172 025 —  — 413

220 10 45 360° 5.757 2 —  — 459
6 2 074 012 147 180° 6343 325 —  — 501
7 2 146 052 225 180° 6343 0125 —  — 501

2 122 054 277 360° 6.586 05 — — 518
8 2 146 210 573 180° 7515 3375 —  — 575

2 130 072 435 360° 7515 15 - — 575

“vs=0dB: R =20bit/T, d2 =20, N, =2 (1 x4PSK).

parency is not required, one should choose the less phase
transparent code to obtain the maximum performance for
a given complexity.

F. Decoder Implementation

When the Viterbi algorithm is used as the decoder, a
measure of decoding complexity is given by 2°**/L. This
is the number of distinct transitions in the trellis diagram
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for any TCM scheme normalized to a 2-D signal set. The
maximum bit rate of the decoder is kf,, where f, is the
symbol speed of the decoder. Since k is quite large for
multi-D signal sets (at least (7 —1) L), high bit rates can be
achieved. For example, a Viterbi decoder has been con-
structed for a rate 7/9 periodically time-varying trellis
code (PTVTC) with v=4, k=2, and 8PSK modulation
[24]. This decoder has f, = 60 MHz and a bit rate of 140
Mbit/s. However, with the equivalent rate 7/8 code with
3% 8PSK modulation, the bit rate will be L =3 times as
fast, i.e., 420 Mbit /s. The branch metric calculator, though,
will be more complicated due to the larger number of
parallel transitions between states. Alternatively, one could
build a decoder operating at a 20 MHz speed and achieve
the same bit rate of 140 Mbit/s. In addition to providing
decreased decoder complexity, this multi-D code has an
asymptotic coding gain which is 0.56 dB greater and is 90°
transparent, compared with a 180° transparency for the
PTVTC [25].

Although the decoding complexity of the Viterbi algo-
rithm is measured in terms of 2°**/L, for multi-D schemes
the complexity of subset (parallel transition) decoding
must also be taken into account due to the large number of
parallel transitions. i

The Viterbi decoder must find which of the 2¥~* paral-
lel transitions is closest, in a maximum likelihood sense, to
the received signal. A brute-force method would be to
determine the metric for each of the 2% paths and then
find the minimum. This would involve at least 2% —1
comparisons. Since there are 2°*! sets of parallel transi-
tions, a total of 2K*'—2K*' comparisons would be re-
quired. For large & and small &, this is an unacceptably
large number of computations.

Fortunately, as shown in [13] for binary lattices, it is
possible to reduce greatly the number of computations

TABLE XXIV
TRELLIS-CODED 2 X 8PSK*

e kont R R v dle Npe diad Naew Y (dB)
11 - — 13 9° 1757 8§ 20 4 176
21 — - 25 90° 20 4 299 32 232
32 — 04 06 11 45° 2929 16 — 398
4 2 — 16 12 23 45° 3515 56 — 47
5 2 — 10 06 41 45° 3515 16 — 47
6 2 — 004 030 113 45° 40 6 41001 8 533

2 — 044 016 107 90° 4.0 6 4101 48 533
7 3 110 044 016 317 90° 4.0 24100 25 533
“vs=—135dB: R, =2.5bit/T. ¢=0, d>=1.172, N, =4 (2X8PSK).

TABLE XXV
TRELLIS-CODED 2 X §PSK*

v kom R W R Inv. die. Nyw dig N v (dB)
11 — — 13 45 3172 8 40 6 200
21 — - 25 45° 40 6 5172 32 301
32 — 04 02 11 180° 40 2 5172 16 301
4 3 04 14 02 21 90° 5172 8 — — 413
53 24 14 06 43 90° 6.0 6 — — a7
6 3 012 050 004 125 90° 6343 55 — — 501
7 3 110 044 016 317 90° 7.515 25 - — 575
"y, =0dB: R, =20bit/T. ¢=1, d2=20, N, =2 (1 x4PSK).
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TABLE XXVI
TRELLIS-CODED 3 X 8PSK*
Signal

v kB o B R Inv. dl. Nie 42 Noew Y (dB)  Set
11 — - 1 3 45° 1172 4 — — 0.00 11
2 1 — 2 5 45° 1757 16 — — 1.76 1II
32 — 04 02 11 45 20 6 2343 16 232 1
4 3 14 04 02 21 90° 2343 12 — — 3.01 1

3 10 04 02 21 180° 2343 8 — — 3.01 I
5 3 30 14 02 53 90° 2929 48 — — 3.98 1
6 3 050 022 006 103 90° 3172 12 — — 4.33 I
7 3 056 112 004 225 90° 3.515 84 — — 477 1

3 100 050 022 255 180° 3.515 76 — — 4.77 i

4y, = —1.07 dB; R =2.67 bit/T, g=0, d2=1.172, N, =12 (3x8PSK I).

TABLE XXVII

TreLLIS-CODED 3 X PSK?

Signal
v ko R n B R Inv. die Nyee dia Naei Y (dB)  Set
11 — — — 1 3 90° 20 6 2343 16 0.56 11
2 2 — — 3v 1 7 90° 258 6 — — 1.68 1I
32 — — 06 02 11 90° 3515 16 — 3.01 11
2 — — 04 02 11 180° 3757 24 — 330 1T
4 3 — 10 04 06 21 45° 3757 12 - — 3.30 111
2 — — 14 02 27 9° 40 15 4343 24 3.57 11
5 3 — 22 16 06 41 45° 40 7 — — 3.57 11
6 3 — 010 046 060 105 45° 4.0 3 4.686 8 3.57 111
4 060 024 014 002 101 180° 4.0 2 — — 3.57 Ir
2y, =011 dB: R =233 bit/T, g=1, d2=1.757, N, =8 (3x 8PSK II).
TABLE XXVIII
TRELLIS-CODED 3 X 8PSK*?
. Signal
v ko om R R R Inv. dl. Npee dia Noew Y (dB) . Set
11 - — — 1 3 180° 3.757 24 — 2.74 11
21 - — — 2 5 180° 40 15 5757 144 301 11
32 — — 04 02 11 45 40 7 — — 3.01 Jitt
4 2 — — 12 04 27 45° 40 3 5.757 32 3.01 III
5 3 — 14 24 02 41 180° S5.757 175 — — 4.59 III
. 3 — 16 22 06 53 360° 5757 17 — — 4.59 I
6 3 — 030 042 014 103 180° 6.0 11 — — 4.77 I
4 014 044 024 006 103 180° 6.0 4 — — 4.7 11
“Ya=0dB: R =2.00bit/T, g=2, d2 =20, N, =2 (1 X4PSK).
TABLE XXIX
TrRELLIS-CODED 4 X 8PSK*
v k ok Rk n K R Inv. d. Npee dEq Noew Y (dB)
11 - — — 1 3 45° 1172 8 1757 64 0.00
22 - — 2 1 5 45° 1757 48 — — 1.76
32 — — 04 02 11 45 20 8 2343 64 232
4 3 — 10 04 02 21 45° 2343 40 — — 3.01
5 3 — 30 14 02 41 45° 2343 8 2929 288 3.01
6 4 030 020 052 014 101 45° 2929 136 — — 3.98
%y, =—094 dB: R =275bit/T, g=0, d2=1.172, N, =24 (4 X 8PSK).
TABLE XXX
TRELLIS-CODED 4 X 8PSK*?
v E hj h hl ho Inv. dfzrce Nfrcc dr%ex( Nncxl Y (dB)
11 — — 1 3 45° 20 8 2343 64 232
2 2 — 2 1 5 45° 2343 40 — — 3.01
3 2 — 04 02 11 45° 2343 8 3172 32 301
4 3 14 04 02 21 45° 3172 16 — — 433
5 3 24 14 02 41 45° 3515 64 — — 4.77
6 3 014 024 042 103 45° 40 28 4.686 1088 5.33
“vs=—135dB: R =250bit/T, g=1, d?=1172, N, =4 (2X8PSK).
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TABLE XXXI
TRELLIS-CODED 4 X 8PSK*

v kot r R R R Inv. die Npee dia Nyt Y (dB)
11 — — — 1 3 45 2343 8 3172 32 069
22 — — 3 1 5 45° 3172 16 — — 200
32 — — 06 02 11 45° 40 28 4343 64 3.01
2 — — 02 06 11 90° 40 28 468 64 301
4 3 — 04 06 12 21 45° 40 12 468 32 3.01
S 4 10 04 06 22 41 45° 40 4 468 16 301
“ys=0.51 dB: R, =225 bit/T, g=2, d} =20, N, =8 (4X8PSK).
TABLE XXXII
TrELLIS-CODED 4 X §PSK*
oo koot R Y Ive dly N dia Npew ¥ (dB)
11 - - - 13 90° 40 28 4686 64 301
22— — 2 3 5 45° 490 12 468 32 301
33 — 02 04 03 11 45° 40 4 468 16 301
4 4 10 04 02 03 21 45° 468 & — — 370
5 4 02 10 04 22 41 45° 6343 16 — — 501
6 4 034 044 Ol6 036 107 45° 668 6 —  — 524
4 044 024 014 016 103 90° 7029 24 —  — 546
“vs=0dB: R =2.00bit/T, ¢g=3, d2 =20, N, =2 (1 x4PSK).
TABLE XXXIII
TrELLIS-CODED 1 X 16PSK*
e koot 0 v di. N Al Newo ¥ (dB)
[ 1 3 90° 0738 2 — — 100
21 — 25 90° 1324 4 — — 354
31 — 06 13 45° 1476 8 — —  4am
I — 04 13 90° 1476 4 — = a0
4 1 — 06 21 45° 1476 4 - — 40
1 — 10 23 90° 1628 4 — — 444
5 1 — 24 43 45° 1781 8 — — 483
1 — 10 45 90° 1910 8 — — 513
6 1 — 05 135 45° 20 2 2085 16 533
1 — 032 107 90° 20 2 2085 8 533
71 — 126 235 45° 20 2 2366 16 5.33
& 2 344 162 T17  90° 2085 2938 — 5.51
20224 112 527 180° 2085 1219 —  — 551
“y,=0dB: R =3.0bit/T, d?=0.586. N, =2 (1 x8PSK).
TABLE XXXIV
TRrELLIS-CODED 2 X 16PSK*
e kBB R v dle Npee di New ¥ (dB)
11 — 13 45 0457 8 — — 176
201 — 25 45° 058 4 0761 32 284
32 04 06 11 225° 0761 16 —  — 398
4 2 16 12 23 225° 0913 56 00—  — 477
S 2 10 06 41 225° 0913 16 — — 477
6 2 004 030 113 225° 1066 8 — — 544
2 044 0l6 107 45° 1066 48 — — 544
72 074 132 217 225° 1172 4 1218 228 585
“yg=-—217 dB: R, =35 bit/T, ¢=0. d2=0304, N,
4 (2X 16PSK).
TABLE XXXV
TRELLIS-CODED 2 X 16PSK*
e Ko W R v die Npee dii Ny Y (dB)
11— — 13 225° 080 & — — 182
21 - — 2005 225° 1172 4 1476 32 301
32 — 04 02 11 90° 1476 16 — — 401
4 2 — 14 06 23 45° 1757 8 —  — 477
5 2 — 30 16 41 45° 1781 16 — — 483
6 2 — 044 016 107 45° 20 4 2085 48 533
7 3 110 044 Ol6 317 45° 2085 25 —  — 551
“ve=0dB: R, =3.0bit/T. g=1, d?=0.586, N, =2 (1 X8PSK).

83



84

IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 36, NO. 1, JANUARY 1990

TABLE XXXVI
TRELLIS-CODED 3 X 16PSK*

. Signal
vk h3 hz hl h“ Inv. dfzree Nfrce dﬁcxt Nnex( Y (dB) Set
11 - — 1 3 225° 0304 4 @ — — 000 I
21 — — 25 225° 0457 16 — — L76 11
32 — 04 02 11 225° 058 6 0609 16 2.84 I
4 3 14 064 02 21 45° 0609 12 — . 3.01 1

3 10 04 02 21 90° 0.609 8 — — 3.01 I
5 3 30 14 02 53 45° 0761 48 — — 3.98 I
6 3 050 022 006 103 45° 0.890 12 — — 4.66 I
7 3 056 112 004 225 45° 0913 84 — — 477 I

3 100 050 022 255 90° 0913 76 — — 4.77 I

“v«=0dB; R, =3.67bit/T, ¢=0, d2=0.304, N, =12 (3X16PSK I).
TABLE XXXVII
TRELLIS-CODED 3 X 16PSK?

R Signal
v ok B K K IV di. Niee doe Noew Y(dB)  Set
11 — — 1 3 45°  0.586 6 0609 16 1.08 II
22 — 3 01 7 45°  0.738 6 — — 2.08 11
3 2 — 06 02 11 45° 0913 16 — — 3.01 I1

2 — 04 02 11 90° 1.043 24 — — 3.58 I
4 3 10 04 06 21 225° 1043 12 — — 3.58 111

2 — 14 02 27 45° 1.172 12 1195 24 4.09 II
5 3 34 16 06 41 225° 1172 4 — — 4.09 I
6 3 032 046 006 103 22.5° 1218 8 — — 426 111
7 3 014 102 044 203 225° 1370 32 — — 4.77 111

3 006 072 062 223 45° 1476 8 — — 509 III

e =—1.97 dB; R =333 bit/T, g=1, d? =0.457, N, =8 (3 X 16PSK II).
TABLE XXXVIII
TRELLIS-CODED 3 X 16PSK*®
Signal
v kB R R R Tav. di. Ny diq Naea Y(B)  Set
11 - — 1 3 90° 1.043 24 — — 2.50 I
21 — — 2 5 90° 1172 12 1.628 144 3.01 I
32 04 02 11 225° 1172 4 — — 30 11
4 2 — 12 04 27 225° 1.628 32 — — 44 111
5 2 — 14 02 41 225° 1628 16 — -— 4.44 III
. 2 — 22 14 43 45° 1757 16 — — 47 III
6 2 — 054 020 115 22.5° 1757 8 2085 48 477 I
3 020 004 012 101 45° 20 6 208 72 533 )i
3 050 030 026 101 90° 20 6 208 60 533 I
7 3 060 106 050 213 45° 20 6 2214 56 533 1
3 016 110 052 203 90° 20 6 2343 64 533 I
?y,=0dB: R =3.00 bit/T, g=2, d2 =0.586, N, =2 (1 X8PSK).
TABLE XXXIX
TRELLIS-CODED 4 X 16PSK*®
v k omt R KR R Inv. dEe Npe dix Noex ¥ (dB)
11 - — — 1 3 225° 0304 8 0457 64 0.00
22 - — 2 1 5 22.5° 0457 48 — — 176
32 — — 04 02 11 225° 0.586 8 0609 64 284
4 3 — 10 04 02 21 225° 0609 40 — — 301
53 — 30 14 02 41 225° 0.609 8 0761 288 301
6 4 030 020 052 014 101 22.5° 0761 136 . — 3.98
“yo = —1.87 dB: R, =3.75 bit/T, g=0, d2=0.304, N, = 24 (4X16PSK).
TABLE XL
TRELLIS-CODED 4 X 16PSK*®

v kB w2 B K Inv. diee Npee diext Naew Y (dB)

11 — — 1 3 225° 058 8 0609 64 284

2 2 — 2 1 S 22.5° 0609 40 — - 3.01

32 — 04 02 11 225° 0.609 8 0.890 32 3.01

4 3 14 04 02 21 225° 0890 16 — — 466

53 24 14 02 41 225° 0913 64 — — 477

6 3 014 024 042 103 225° 1172 24 1218 1088 5.85

dyy = —217dB: R =3.50bit/T, g=1, d> = 0304, N, =4 (2 X 16PSK).
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TABLE XLI
TRELLIS-CODED 4 X 16PSK*

v koRt R R R R Inv. dle Nawe dEeq Naew Y (dB)
11 — - — 1 3 22.5° 0.609 8 08950 32 0.17
22 — 3 1 5 225° 0890 16 — — 1.82
32 — - 06 02 11 225° 1172 24 1195 64 3.01

2 - - 02 06 11 450° 1172 24 1218 64 3.01
4 3 — 04 06 12 21 225° 1172 8 1218 32 3.01
5 4 10 04 06 22 41 225° 1218 16 — — 3.18
6 4 050 030 024 016 101 22.5° 1499 72 — — 4.08

Yy, =035 dB: R =3.25bit/T, =2, d?=0.586, N, =8 (4X16PSK).

TABLE XLII
TrerLis-CODED 4 X 16PSK*

vk R R R Tnv. dZy N dig New v (dB)
11 — — 1 345 1172 24 1218 64 301
22 — 2 3 5 225° 1172 8 1218 32 301
33 02 04 03 11 225° 1218 16 —  — 318
4 3 04 10 06 21 225° 1781 48 —  — 483
53 22 16 06 41 225° 1804 24 — 488

324 14 02 43 45° 1827 64 — — 494
6 3 050 024 006 103 225° 20 8 2343 64 533

“Ye=0dB: R, =3.00bit/T. g=3, d> =0.586, N, =2 (1 x 8PSK).

required. In fact, the decoding scheme becomes very simi-
lar to Viterbi decoding except that finite length sequences
are used.

To illustrate this we will present the decoding scheme
for TC-2X 8PSK parallel transitions with k=2 and an
efficiency of 2.5 bit/T (a rate 5/6 code). There are eight
sets of parallel transitions, with eight paths in each set.
Fig. 13 shows the parallel transition decoding trellis for
Z=1[00 0] (i.e., the LSB’s are set to zero). In Fig. 1 we use
the notation A0 to indicate the whole 8PSK signal set,
which divides into B0 and Bl (4PSK signal sets rotated
45° from each other). BO divides into CO and C2 (2PSK
signal sets rotated 90° from each other), and B1 divides
into C1 and C3. This notation is also used in [1] for
partitioning an 8PSK signal set. Each segment in Fig. 13
thus represents two parallel lines. The length of this trellis
equals the dimensionality L = 2 of the signal set.

0 0

<>

co Cco

I9)
N
Il

Cc2

Fig. 13. Parallel transition decoding trellis for £=[0 0 0] and 2 X 8PSK

signal set.

The path COX CO corresponds to those four paths that
have z>=0 and C2XC2 corresponds to those four paths
that have z*=1, giving a total of eight paths. To decode,
hard decisions can be made for CO and C2 for each time
period, from which the values of z4 and z° can be deter-
mined. For example, say that COXCO decodes into the
points 04, with a metric of m,, and C2X C2 decodes into
the points 66, with a metric of m,, where the metrics are
the sum of the Euclidean distances (or log-likelihood met-

rics for a quantized channel) from the first and second
received points. After comparing the two metrics, if m, <
m,, then z?=0 and the point 04 would give z*=1 and
2% =0 (see Table I). If m, > m,, then z*> =1, and the point
66 would give z4 =0 and z° =1. This is equivalent to the
add—compare-select (ACS) operation within a Viterbi de-
coder.

To decode the other sets of parallel transitions, the
cosets formed by z°, z!, and z? can be added to the trellis
paths COXC0O and C2XC2 to form the required trellis.
This is illustrated in Fig. 14, where the ending state in the
trellis indicates which set of parallel transitions is being
decoded. This example involves a total of eight hard com-
parisons and eight ACS-type comparisons. These 16 com-
parisons compare with the 56 comparisons required in a
brute force approach, a 3.5 times reduction.

222'2°

000

100

001

Fig. 14. Full parallel transition decoding trellis for 2 X 8PSK signal set.

The above maximum likelihood method can be applied
to other codes where a Viterbi-like decoder can be used to
decode the parallel transitions. With this method the com-
plexity of decoding the parallel transitions can approach
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the complexity of the rate k /(k +1) Viterbi decoder. A
simpler approach may be with large lookup tables using
ROM'’s. The ROM itself would output the k — k bits of
the chosen path, along with the branch metric for that
path. For the TC-2XPSK example given previously, we
could use one ROM for each of parallel transitions. If the
ROM’s had 8-bit words, then three bits could be used for
the decision, and the remaining five bits for the branch
metric. A total of eight ROM’s would then be required,
one for each set of the parallel transitions.

When using ROM’s, it is desirable to reduce the number
of bits b required to represent each received 2-D signal
point, since there are a total of bL bits required to address
the ROM. One way to reduce b is to convert the “checker-
board” (rectangular) type decision boundaries that result
from separate quantization of the in-phase / and quadra-
ture Q components to “dartboard” (radial) type decision
boundaries. For example, if four bits are used in I and Q
for an 8PSK signal with checkerboard decision boundaries,
a dartboard pattern as shown in Fig. 15 may be used
instead with a total of five bits to represent each point (a
reduction of three bits). A ROM may be used to do the
conversion, or the dartboard pattern already may be avail-
able as polar coordinates from a digital demodulator.

Fig. 15. Dartboard decision boundaries for 8PSK (32 regions).

A problem with TC-L X MPSK is the need to synchro-
nize the decoder with the L 2-D symbols on each trellis
branch. For ¢ =0, most codes are fully transparent. The
decoder performance can then be used to find the correct
synchronization with the received sequence. For ¢ >0,
many codes are not fully transparent, and the decoder will
need to synchronize to one of the 2?L possibilities (which
can be quite large for some codes). However, one can take
advantage of the fact that not all signal points are used for
g > 0. For example, the 2X8PSK signal set with g=1
consists of the signal sets B0 X BO or B1 X B1. The synchro-
nizer would find the smallest distance between a received
pair of points and the expected signal set. These distances
would then be accumulated over a sufficient length of time
to make a reliable decision on the symbol timing.

If we let each signal point be represented by its phase
(since the amplitude is constant for 8PSK), we can write
BO = {0°,90°,180°,270°}, and Bl = {45°,135°,225°,
315°). Let ¢} and ¢? represent the phase of the first and
second received symbols, respectively. The synchronizer
distance metric is then given by

® = min (min |4, — &+ min |¢3—/3|)-
ie{0,1}\ae Bi B € Bi
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In the synchronized noiseless case, ®, will equal zero. In
the nonsynchronized noiseless case, there are two possible
outcomes for @, ie., complete matchup (®,=0°) and
only one signal is matched (®, = 45°). If each possibility is
equally likely, then the average value of ®, is 22.5°. With
noise, ®, can be accumulated over a sufficient length of
symbols to take advantage of this average phase distance
between the nonsynchronized and synchronized cases to
determine symbol synchronization reliably. This symbol
synchronization is independent of the Viterbi decoder, so
the decoder must only determine phase synchronization.

G. Discussion

To make a comparison of all the codes listed, a plot of
nominal coding gain y*=10log,,d?.. versus complexity
(B=1log,(2""%/L)y=v+ k —log, L) for each code found
is made. These plots are given in Fig. 16 for effective rates
of 1.0 (with 4PSK modulation), 2.0 (8PSK), and 3.0 bit/T
(16PSK), Fig. 17 for effective rates of 1.5 (4PSK), 2.5
(8PSK), and 3.5 bit/T (16PSK), and Fig. 18 (for the
remaining rates). (Note that these graphs do not take into
account the additional complexity due to parallel transi-
tions.) Some one-state (“uncoded”) codes are included as
well. These one-state codes correspond to block-coded (or
multilevel) schemes that have recently become an active
research area [26]-[34]. Although the multi-D one-state
codes have negative complexity (compared to trellis codes),
they can achieve coding gains above 0 dB.
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Fig. 16. Plot of 10log,,d7,.. versus complexity B for R =1.0, 2.0,
and 3.0 bit/T.
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Fig. 17. Plot of 10log,df.. versus complexity 8 for R, =15, 2.5,
and 3.5 bit/T.
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Note from Fig. 16 for TC-L X 8PSK, R ;= 2.0 bit/T,
and v =1, that as L increases the complexity decreases
and y* increases, eventually reaching 6.0 dB for L =4.
Thus, for the 8D signal set, the complexity factor can be
reduced by a factor of four, while maintaining y*, com-
pared to the TC-1X8PSK code with v =2. Beyond B =4
(and y*=6.0 dB), increases in asymptotic coding gain are
achieved with the new codes that have been found. With
L =4, a ceiling of y*=9.0 dB will be reached due to the
nature of the set partitioning. It would seem that very
complex codes are required (B >15) if this 9.0 dB limit is
to be exceeded.

Fig. 16 also shows the L X16PSK codes with effective
rates of 3.0 bit/T. For small B, the same effect observed
for TC-L X8PSK and 2.0 bit/T occurs. That is, B de-
creases and y* increases as L increases. Between 8 =3
and =9, the L =1 and L =2 codes are very close.

Fig. 18 illustrates the wide range of performance that
can be achieved with the codes found. One can choose
from a high-rate code with 3.75 bit/T (but requiring a
large amount of power) to a low-rate code with 1.25 bit/T.
In choosing a code, a designer may start with a required
R to obtain a certain bit rate through a bandwidth
constrained channel. A trade-off can then be made be-
tween decoder complexity and the reduction in SNR that
can be achieved with the codes found. Simulations or
theoretical calculations of a few selected codes may also be
made to obtain a more realistic assessment of the perfor-
mance available.

Note that many codes have the same asymptotic coding
gain for increasing complexity. In reality, these codes do
increase in performance with increasing complexity due to
a decrease in number of nearest neighbors. This is espe-
cially noticeable for low SNR where the effect of nearest
neighbors becomes more important.

1V. CoNcCLUSION

An efficient method of partitioning multidimensional
MPSK signal sets has been presented that leads to easily
implemented multi-D signal set mappers. When these sig-
nal sets are combined with trellis codes to form a rate
k/(k +1) code, significant asymptotic coding gains in
comparison to an uncoded system are achieved. These
codes provide a number of advantages compared to trellis
codes with 2-D signal sets. Most importantly, R.; can
vary from I—1 to I —(1/L) bit/T, allowing the coding
system designer a greater choice of data rates without
sacrificing data quality. As R, approaches I, though,
increased coding effort (in terms of decoder complexity) or
higher SNR is required to achieve the same data perfor-
mance.

The analytical description of multi-D signal sets in
terms of block code cosets, and the use of systematic
convolutional encoding, has resulted in an encoder design
(from the differential encoder to the 2-D signal set map-
per) that allows many good codes to be found. This
approach has also led to the construction of signal sets
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that allow codes to be transparent to multiples of 360° /M
phase rotations. In general, increasing phase transparency
usually results in lower code performance, due to more
nearest or next nearest neighbors or smaller free distance.

Another advantage is decoder complexity. As a Viterbi
decoder decodes k bits in each recursion of the algorithm,
the large values of k of codes using multi-D signal sets
allows very high bit rates to be achieved (compared to
convolutional codes that map only into a 2-D signal set).
The large number of branch metric computations can be
reduced either through the use of a modified Viterbi algo-
rithm or large lookup tables. A method has been presented
that uses the redundancy in some signal sets to achieve
symbol synchronization at the decoder for codes that are
not fully transparent. ’ '

Rate k/(k +1) TC-L xXMPSK codes also have the ad-
vantage of being useful as inner codes in a high rate
concatenated coding system with Reed-Solomon (RS)
outer codes over GF(2). If the inner ‘decoder makes
errors, one trellis branch error will exactly match one
symbol in the outer RS codeword. It is shown in [14] that
the symbol oriented nature of TC-L X MPSK inner codes
can provide an improvement of up to 1 dB in the overall
performance of a concatenated coding system when these
codes replace bit oriented TC-1 X MPSK inner codes of the
same rate.

APPENDIX
DIFFERENTIAL ENCODING AND DECODING

Let the bit streams that are differentially encoded be
w(D), wi(D),---,ws-1(D). We first assume that ¢, >0 (ie,
the convolutional encoder output z°(D) is not affected by a
phase rotation of 2¢¥, where d = I — s5). Let

s—-1

w(D) = ¥ 2w(D).

i=0

(A1)

The differential encoder (or precoder) outputs are the bit
streams x‘°( D), x(D),- - -, x-'(D) which go into the convolu-
tional encoder. In a manner similar to (A.1), we let

s—1

x(D) =Y 2x%(D).

i=0

(A2)

For the noiseless channel we let the Viterbi decoder output
which goes into the differential decoder (or postcoder) be x,( D)
and the output from the postcoder be w,(D). After a 2% phase
rotation, we have from Section III-B that

x,(D) =x(D)+1(D) (mod S) (A3)
where §=2° and 1(D) is the all-ones sequence. For the post-
coder, we desire that w.(D)=w(D) for all multiples of 2¢¥
phase rotations. This is achieved by defining the postcoder equa-
tion as

w,(D) =((S—1)D+1)x,(D) (modS).  (A4)
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Substituting (A.3) into (A.4), we obtain

w(D) = ((S=)D+1)(x(D)+1(D))  (mods)
=((S-1)D+1)x(D)
+((S-1)D+1)1(D) (mod S)
=w(D)+(5-1)1(D)+1(D) (mod §)
=w(D)+(S)1(D) (mod S)
=w(D),

as required. Notice that since 1(D) is defined to be 1 for all time,
then D'1(D)=1(D) for all i. In practical situations, the se-
quence added to x(D) to from x,(D) is not constant and will
change with time (e.g., random phase slips within a demodulator).
This will introduce short error bursts in w, (D) whenever a phase
slip occurs due to the combined effect of decoding and postcod-
ing. The precoder equation can be derived from (A.4) as

x( D) =Dx(D)+w(D) (modS). (A5)

We shall now consider the case when ¢, =0, ie., z%(D) is
affected by a 2¢¥ phase rotation. In this case we redefine w(D)
to be

s—1

w(D) = .gl 27w (D) (A6)
and x(D) to be
(D) = g 2 1x4( D). (A7)

For this case, we have 2x,(D)+ zX(D)=2x(D)+ z°(D)+
1(D), where x,(D) and z°( D) are the inputs to the postcoder for
a noiseless channel. Thus similar to (A.4), the postcoder equation
is defined to be

2w, (D) = ((S~1) D +1)(2x,( D)+ z°(D)) (mod S). (A.8)
Rearranging (A.8), we obtain the precoder equation
2x(D) =2Dx(D)+2w(D)+(D+S-1)z°(D) (mod §).
(A9)
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