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Fair Cost Sharing Auction Mechanisms in Last Mile Ridesharing

by Nguyen Duc Thien

Abstract

With rapid growth of transportation demands in urban cities, one major challenge is to pro-

vide efficient and effective door-to-door service to passengers using the public transportation

system. This is commonly known as the Last Mile problem. In this thesis, we consider a dy-

namic and demand responsive mechanism for Ridesharing on a non-dedicated commercial fleet

(such as taxis). This problem is addressed as two sub-problems, the first of which is a special

type of vehicle routing problems (VRP). The second sub-problem, which is more challenging,

is to allocate the cost (i.e. total fare) fairly among passengers. We propose auction mechanisms

where we allow passengers to submit their willing payments. We show that our bidding model

is budget-balanced, fairness-preserving, and most importantly, incentive-compatible. We also

show how the winner determination problem can be solved efficiently. A series of experimental

studies are designed to demonstrate the feasibility and efficiency of our proposed mechanisms.
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Chapter 1

Introduction

1.1 Transportation problems

In recent modern decades, along with explosion of population and rapid motorization, traffic

congestion is rising as an urgent problem in many countries. Direct negative consequences

are cost on wasted energy, travel delay and air pollution. In a statistic provided by Texas

Transportation Institute [36], the cost of wasted fuel and extra time caused by congestion in

urban America increases about 3 times from 21 billion $ in 1982 to 79 billion $ in 2000 and

101 billion $ in 2010. Among causes of congestion, Passenger Vehicle accounts for 74%

of the cost by the statistic in 2010 [36]. In the same report [36], it was shown that without

public transportation, the wasted fuel and time delay could have increased by 17% and 24%

respectively. Consistent with the increasing level of congestion, transport grew fast by the

increase 23.4% from 1990 to 2004 period [21] with 76.2 Mt CO2-e (megatons of carbon dioxide

equivalent) in 2004. Contribution of transportation to global greenhouse gas emissions was just

behind the stationary energy sector’s [21]. Private cars again contributed majority of this figure

with 41.7 Mt CO2-e.

Public transportation infrastructure is constructed and developed in many countries as a so-

lution for handling congestion. To persuade more passengers to take public transport, it is nec-
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essary to provide more comfort and incentives. However, there are many inconveniences that

discourage people from using public transportation. The main source of inconvenience comes

from insufficiency of the service quality. Taking Singapore as an example, the government

is trying to expand and improve current public transport with increasing additional number of

buses from 16,309 in 2010 to 17,241 in 2012 [31]. It was shown in a recent survey of Singapore

passengers on public transportation [30] that the satisfaction index has significantly dropped to

-8.7% for Mass Rapid Transit (MRT, or subway) and -7.2% for public buses from 2011 to 2012.

In another report [31], it reveals that private cars population keeps increasing by 13 thousands

from 2011 to 2012 in comparison to 8 thousands from 2010 to 2011. It seems that the effort at

improving public transport has yet to meet passenger expectations.

1.2 Ridesharing

The high ownership and use private cars for commuting are the main cause of congestion and

air pollution. By The International Energy Agency’s (IEA) forecast [20], from 2000 to 2050,

car ownership in Asian developing countries could grow about twenty-fold. Beside causing

traffic problems, it raises issues of land for parking, energy and natural resource for car man-

ufacturing. Policy makers and transportation planners can encourage people to limit the use

of private cars by devising good trip sharing plans and providing strong public transportation

benefits.

Ridesharing is considered as an efficient measure to limit use of single-occupancy vehicles.

Ridesharing entails the formation of trips by at least 2 passengers in a vehicle. It takes many

forms: taxi sharing, carpooling, van pooling, private shuttle, etc. It could be recurring trips with

long term commitment between passengers or one time shared trip between strangers. Beside

the feature of small size vehicle (vs mass transport in public transportation individual routing

and cost splitting makes ridesharing more passenger-oriented and distinguished from public

transportation. In ridesharing, the group trip planning and execution is based on passenger

demands. As the trip is designed to pick up and deliver passengers at (or close to) passen-
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gers’ beginning and ending points, ridesharing provides a door-to-door service which is more

convenient than public transportation.

Ridesharing is not a new idea. In the US, its first success story dates back to the 19th cen-

tury with Jitney Craze and World War II. Ridesharing was restored by the US government

during the energy crisis in the 1970’s [6]. Recently with economic recession and more con-

cern about the environmental and congestion issues, ridesharing has been promoted by the

US and European governments with many trial systems, for example German Flexible Op-

erations Command and Control System (FOCCS), San Francisco Bay-area Ride Now, Euro-

pean Commission OPTI-TRANS, Smart Traveler in the U.S, etc [6]. Some companies even

tried to encourage employees to travel more with ridesharing to receive monthly incentive

gifts [35]. To facilitate matching of individual travellers for ridesharing, many web-based

and mobile applications have emerged. Interested readers may refer to some popular web-

sites http://www.carpoolworld.com/, http://www.myridebuddy.com/, or recently launched apps

in Singapore http://www.gomywayapp.com/, http://www.split-it.sg/.

Beside positive social effects on road congestion, air pollution and energy resources,

ridesharing incentivizes passengers by monetary benefit, especially in the economics reces-

sion and fuel crisis [6],[35]. Besides being a door-to-door service, it is much cheaper than

private cars because the fuel cost of hired vehicles is fairly split among passengers. However,

ridesharing might be less attractive than private cars because of additional travel distance and

discomfort of sharing cars with strangers. The additional travel distance is inevitable in some

cases in which the detour is necessary to serve different locations in the same trip.

1.3 First Mile and Last Mile problems and solutions

The segment incurred by public transport passengers from their homes to the nearest public

transport (bus/train) station and vice versa is known as ”First Mile” and ”Last Mile” (LM) re-

spectively. This inconvenience is often a major deterrence in utilizing public transport services.
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A transportation solution to fill this First (Last) Mile gap is not easy. Expanding the bus and

train network is long term and complicated problem. It is economically inefficient to design

frequent routes to cover every residence, especially for underpopulated regions or to handle

dynamic demands.

A straightforward idea to satisfy the LM demands is to establish a service fleet for each

major transport hub. However, due to the fact that the demands for the LM transportation are

irregular and distributed (both spatially and temporally), having a fixed-size service fleet is

infeasible, for the following intuitive reasons:

1. Demands are highly irregular and uncertain. Therefore, to ensure that the fleet can cope

with peaks in demands, the fleet has to run with spare capacity that would be underuti-

lized most of times.

2. To ensure reasonable quality of service, the routes of the fleet have to sufficiently cover

most of the service area (the travel time from any point in the area to the closest

stop should be within certain minutes) with reasonable service intervals (this constrains

longest waiting time). The fleet can operate statically with fixed routes, or it can operate

dynamically with routes depending on passengers onboard; however, in either case, sig-

nificant slacks have to be introduced in the fleet so as to handle the spatial and temporal

demand uncertainties.

Due to the above issues, operating fixed-size fleets is cost-ineffective for most occasions

except for the very limited cases where demands are consistently high.

A powerful idea in addressing unpredictable travel demands is sharing, or resource pool-

ing. For example, in many European countries, the bike sharing [38] and car sharing [44],

[37] schemes have been suggested as a way to bridge the gaps of public transport. In these

instances, resources (bikes and cars) are pooled at fixed locations, and travelers will grab re-

sources, if needed, to complete their travels. Resources are pooled and resource utilizations are

independent. Ridesharing (car-pooling or taxi-pooling) is a such typical case.
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Ridesharing provides an effective solution to solve this problem, typically with taxi-pooling

for urban Asian cities like Singapore where the number of taxis is significantly large [31] in

comparison with the size of public transportation. Statistically, over 50% of the time, a taxi is

spent on idling (i.e. empty cruising or waiting in queues). The availability of taxis can be a

potential support for a ridesharing solution to solve the Last (First) Mile problem. Especially a

non-dedicated taxi system is efficient to cope with the dynamic demand nature of the problem,

where drivers are called only by demanded and do not have to commit any recurring trip plan.

1.4 Mechanisms for Last Mile Ridesharing

In this thesis, we study the problem of ridesharing with a non-dedicated taxi fleet to solve

the Last Mile problem. Given a batch of arriving passengers and a set of available taxis near

the station, we need to design ridesharing trips and specify the fares of riders. For the sake

of simplicity henceforth, we will refer this problem as the Taxi Sharing Last Mile problem (or

simply Last Mile Problem).

The Last Mile problem contains 2 sub-problems: routing and cost allocation (or cost shar-

ing). Complete solutions for the Last Mile problem need to provide the routes for the taxi fleet

as well as the fare payment for passengers. In this thesis, we design market mechanisms to

produce those solutions. More precisely, we consider two aspects in mechanisms design:

• From the routing standpoint, our problem is a special case of the Dial-a-Ride vehicle

routing problems (DARPs). We derive an exact model from existing DARP models.

We solve the routing problem with a specific objective function. The efficiency of our

modified model is improved in comparison to the original one by leveraging the special

structure of small capacity and other taxi-related constraints. To handle large scale prob-

lem instances, we propose heuristic algorithms, i.e. Tabu search and randomized search.

Their solutions yield a small gap in comparison with exact method’s solutions, and is

capable of returning solutions in real-time, which is an important characteristic to make
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this approach operationally viable.

• To incentivize passengers to join ridesharing services, the fares should be fair and com-

petitive. Acknowledging the heterogeneity of passengers joining the ridesharing service,

we design protocol that allow passengers to specify their willing payments. In particular,

we design an auction protocol where Last Mile passengers submit not only their desti-

nations but also the willing payment to use the sharing service. The allocation of cost

(payment) need not only to be operational optimum but also sustainable under passen-

gers’ rationality. Specifically, mechanisms are designed to be incentive compatible, i.e.

there would be no incentive for passengers to be dishonest in disclosing their bid infor-

mation. The general principle of our incentive compatible mechanisms is that passengers

with high willing payment will have more chance to be served than low willing payment

passengers.

In summary, the main purpose of this research is to study and propose mechanisms for

the Last Mile problem. We need to compute solutions efficiently, and the mechanism must

be fair and incentive compatible. In this thesis, we show theoretical properties of proposed

mechanisms. Feasibility and efficiency of mechanisms are measured by a series of experiments.

For the sake of simplicity, in this thesis we assume the vehicle’s velocity to be equal to 1, the

meter rate of running the service to be 1. Hence, the travel distance is also equal to the travel

time and driver’s revenue. For real world implementations, it is straightforward to incorporate

constant parameters and compute these values by linear transformation.

1.5 Thesis Structure

The structure of my thesis is as follows:

• The literature review on vehicle routing and cost sharing is given in chapter 2. We present

vehicle routing models which are applicable to the routing problem in taxi sharing. For
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the cost sharing problem, we consider existing cost sharing approaches in vehicle routing

as well as in other game settings. For each approach, we discuss the feasibility and

drawback of applying to our Last Mile Ridesharing problem.

• In chapter 3, we propose and develop a Mixed Integer Program (MIP) and Local Search

models to solve routing problem. An MIP model is considered to provide exact solution

for Last Mile problem. However, MIP model is infeasible to handle large scale problems.

Therefore, an heuristic search algorithm is developed to provide routing solutions in real

time.

• A bidding protocol and cost sharing models with discount part are proposed in chapter 4.

After analyzing pros and cons of each model, we choose the bidding protocol of meter

rate and set the discount rate capped by meter rate. In this chapter, we also propose

an optimal mechanism to produce the optimistic solution as a benchmark for incentive

compatible mechanisms.

• We propose incorporated mechanisms for our cost sharing problem in chapter 5

– Top-down mechanism solution is a baseline of incentive compatible mechanisms.

– Bottom-up mechanism is an advanced version of Top-down mechanism.

– Raising cost mechanism provides solution by differentiating meter rate of passen-

gers.

Routing models of these mechanisms have nonlinear objective function, which make

problem unsolvable by normal MIP model. We propose a hill climbing search method to

efficiently compute solutions of mechanisms.

• Chapter 6 contains experimental results of proposed mechanisms. We measure efficiency

of mechanisms using synthetic and real data sets. With focus on maximizing the number

of served passengers and total direct distance of served demands for large scale prob-

lems, we experiment on our Bottom-up mechanism with Local Search algorithm. The

7



experimental results in real data show this approach is promising to serve almost all Last

Mile demands.

• Chapter 7 is a summary of our contribution in this thesis and discussion of future work

in implementing Ridesharing service for the Last Mile problem, including user interface

and usability.

8



Chapter 2

Literature review

In this chapter, we review existing works in three aspects of Ridesharing:

• In the first section, we review some existing ridesharing systems, including mobile or

e-ticket platforms for riders. We also report some contemporary results from different

implementations of Ridesharing systems.

• In operations research, Ridesharing is considered as a special class of vehicle routing or

traveling salesman problem. The challenge is to design routes for vehicles (in real time).

We review mixed integer programming and heuristic methods to solve the problem.

• In cost sharing aspect, Ridesharing is associated with several popular game-theoretical

concepts, e.g. coalition, Vickrey-Clarke-Groves (VCG) and auction mechanisms. In this

thesis, we develop auction based mechanisms for Last Mile Ridesharing problem, so the

review on cost sharing in this aspect will be presented.

2.1 Ridesharing Systems

In a recent survey on ridesharing [4], the authors defined several special characteristics,

which are applied into our Last Mile taxi sharing service.

9



Dynamic Ridesharing planning is triggered by real-time demands of passengers. In our Last

Mile taxi sharing problem, passengers send their requests a short period before arrivals.

Future demands are not known apriori.

Cost-sharing A taxi sharing mechanism needs to provide a complete solution for each batch

of passengers, which contains both the routes and the cost allocation.

Non-recurring trips Trips are non-recurring, which is different from standard vehicle routing

problem where vehicles return to the depot after each round.

Automated matching The center system automatically provides solutions that assign each

passenger to a taxi. The computation needs to be fast and reliable.

Combining trains with taxi sharing to serve the last mile is not a new idea. In fact, the

concept of a demand adaptive system was first studied in [13] in which the authors suggested

the combination of flexible line and conventional swift lines (train and express bus) to increase

the coverage of the transportation system. They proposed an operational planning model to

seamlessly connect the long distance transportation with flexible vehicles. Our taxi sharing

solution is a variant of this demand adaptive concept, in which non-dedicated taxis play the

role of a flexible line.

There are many studies on the technology side of ridesharing platforms. In [19], authors

reported their work on construction of an efficient database structure to handle cab-sharing

demand queries. Amey in [7] studied different problems and solutions of utilizing mobile phone

technology in real time ridesharing. The paper [34] introduced an incorporated mobile context-

based ridesharing platform named WEtransport which facilitated passengers to find ride-mates

and share the train ticket or taxi fare. Authors in [43] showed a social media framework to

support dynamic ridesharing scheme. The paper [41] introduced an agent-based ridesharing

architecture via lightweight devices like mobile phones. As a special ridesharing service, Last

Mile taxi sharing can inherit most of these existing technologies with some light modification

or extension.
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To prove the feasibility and effectiveness of ridesharing, researchers study implementation

of ridesharing by different methods. Some researches verify ridesharing services under a sim-

ulation environment [5],[9]. Simulation data from matching personal drivers and riders shown

in [5] demonstrated a potential and sustainable success of dynamic ridesharing. Focusing on

taxi sharing, [9] reported his work on collective taxi system implementation at large scale in

different models, including Last Mile transportation.

Success and failure factors of ridesharing raise an interesting research topic in ridesharing.

Based on a survey about an implemented Carsharing service in Lisbon, [12] used a discrete

choice model to recognize factors affecting ridesharing the most. To address the problem from

the policy maker perspective, [6] showed the current trend of ridesharing by analyzing different

implemented ridesharing schemes in Europe and the US. This work provided a detailed analysis

of economics and social effects of ridesharing. In addition, it also suggested some solutions to

improve and establish ridesharing services in the future.

2.2 Vehicle Routing Problems

Given a set of passengers and taxis, the goal of vehicle routing is to assign each passenger

to a specific taxi and design a route for each taxi that optimizes a particular objective function.

Common objectives in ridesharing routing are to minimize the total travel time/distance T =∑
i,j xijtij and maximize the number of served customers

∑
i,j xij [4].

The routing sub-problem of our Last Mile problem is a specific instance of vehicle routing in

Dial-a-Ride settings [27]. Dial-a-Ride is a demand-responsive system to provide door-to-door

service with specific requirements on passenger’s pickup and delivery locations and times. It

comprises personal cars, vans or small buses in response to calls from passengers [29]. Dial-

a-Ride problems (DARPs) belong to a class of vehicle routing problems with capacity and

time window constraints. A detailed summary of characters and classification of Dial-a-Ride

problem can be found in the review [10].
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Similar to other NP-hard problems in vehicle routing, there is no efficient method to

solve Dial-a-Ride routing problem. [17] modelled a generic Dial-a-Ride routing problem by

mixed integer program (MIP) model and applied different subtour elimination constraints to

strengthen the LP-relaxation of MIP. For the identical vehicle case where vehicle capacities are

the same, [33] proposed a simplified version of [17]. However, [33] requires to enumerate a

large number of subset constraints, which is not necessary in our model.

For complicated and large scale instances in which exact methods like MIP fail to obtain

a solution in real time, heuristic and meta-heuristic methods are utilized. Studying DARPs,

[11] proposed a Tabu search procedure to find locally optimal solutions, in which routing so-

lutions were represented by ordered route vectors. In each local search iteration, the algorithm

removed a pickup and delivery pair in one link and simply inserted into another link, with or-

ders for other passengers were reserved. To gain diversity, they relaxed the time and capacity

constraint by adding a penalty element into objective function. It is different from our local

search procedure presented later. In our method, we do not represent routing solution in form

of ordered routes but we consider cluster assignment (passenger-taxi) vectors. As a suitable

local search operator is defined, the feasibility of solution is preserved over local moves. A

genetic method for solving Dial-a-Ride problem is proposed in [23]. To solve DARPs by ge-

netic algorithm, [23] proposed genetic operators in cluster vectors, where each element was

index of passenger assigned to that cluster. Based on the same cluster structure, [46] proposed

a simulated annealing algorithm and they reported that their algorithm produced better results

than Tabu search [11].

Recently, [27] provided a summary of recent Dial-a-Ride algorithms to apply in ridesharing

taxi. From this summary, we notice special structural characteristics of specific systems like

taxi system was not addressed. We show in this thesis that adaptation and modification from

generic models are essential to reduce the complexity for our sub problems, i.e. taxi routing.

One example is reduction of redundant vehicle index variables. In addition, we can simplify

pickup constraints into single pickup point because in our cases passengers arrive the same hub

at the same time. In the next chapter, the detail of modification will be presented and integrated
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into our Last Mile taxi sharing problem.

2.3 Cost sharing in vehicle routing problem

Although the vehicle routing problem has a long history in operations research, the study

of cost sharing has just drawn attraction very recently as an application of game theory. This

section is aimed to briefly introduce some techniques on recent works related to our cost sharing

problem.

2.3.1 Coalition mechanisms

The coalition value is a fundamental notion in cooperative game theory. It is the optimal

cost or utility created by cooperation of a group of players. The core of a game is ideal solution

for all players such that value of any group of players is not less than coalition value of it [40].

Formally, the coalition value is represented by a characteristic function as the cost or utility

to serve each set (or coalition) of players v : 2N → R. The core is the cost allocation
∑

i∈N pi =

v(N) for all players such that there is not any of its subset value dominated by corresponding

coalition value, in other words

∀S ∈ N, v(S) ≥
∑
i∈S

pi. (2.1)

Core solution

The core value is suggested to be directly used to charge passengers in vehicle routing

[15],[42]. To find core solution in vehicle routing game, a popular method is to use constraint

generation procedure to iteratively solve the problem [15], [18]. Although core solution is ideal

for cost allocating problem, there is no guarantee for existence of such solution in general ve-

hicle routing game [42]. In some cases, we can only find an approximation core [16] instead,
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which is solution only recovering part of the service cost. In non-dedicated taxi service, trading

off budget balance to get approximation solution is infeasible because taxi driver needs to get

a sufficient amount from passengers to run the service.

Shapley solution

Another popular cost allocation method in cooperative game is Shapley value which is av-

erage marginal cost over all coalition [39]

pi =
∑

S∈N\i

|S|!(n− |S| − 1)!

n!
(v(S ∪ i)− v(S)), (2.2)

in which v(S) is the coalition value of coalition S.

The Shapley value is well known as a solution satisfying 4 Shapley axioms: budget balance,

symmetry, linearity, zero player. In contrast to non-existence of core value in some cases,

Shapley value always exists in any cooperative game. Shapley value is suggested to be used in

vehicle routing game to allocate the service cost to passengers[15], [45].

2.3.2 Auction based mechanism

One of the shortcomings of conventional cost allocation mechanisms is the disregard for

heterogeneous utility of passengers. In our taxi sharing problem, different routing solutions

make passengers ”suffer” various extra travel distances. Moreover, passengers also have differ-

ent utlity functions: some of them could require high compensation for extra travel distances;

some of them could have low willing payment with the sharing service.

Given a set of available resources and willing payment of each passenger to use the service,

auction based cost sharing studies how to distribute service and allocate the cost between served

passengers. It requires a bidding protocol, where each passenger (or player) needs to submit not

only her/his demand but also the willing payment. The common desirable property of auction

based mechanisms is strategyproofness, which ensure a passenger to not have benefit to be
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dishonest about the bid information.

VCG mechanism

The VCG price scheme charges player by the marginal benefit he/she contributes into the

service. This value is calculated for each player in game by formula pi = (V−i)
∗ − V ∗i where

V ∗−i is total social benefit of all passenger minus social benefit of i in optimal solution for grand

set N , and (V−i)
∗ is the total social benefit of optimal solution of subset N \ i. This value can

be simply characterized as coalition value.

Studying cost allocation in ridesharing, [24] proposed a VCG based mechanism to provide

cost allocation for ridesharing participants. Although VCG is a truthful and budget balance

scheme, it is not budget balancing. [24] tried to recover budget balance by trading off truthful-

ness and claimed that it was reasonable under bounded rationality. ”Semi” truthful and approx-

imated budget balance can make non-dedicated taxi sharing service unstable for our Last Mile

problem.

Second price based mechanism

In [26], Kleiner et al. proposed strategyproof auction based mechanism for ridesharing,

where passengers submit their bids on willing payment to share the car with the driver. They

provided a modified second-price auction mechanism which picked up the highest rank pas-

senger that maximized benefit for driver then it charged the passenger a cost of the second

highest bid. This modified second price auction mechanism is incentive compatible. Despite

having this good property, this mechanism cannot apply to our problem because it is limited in

bilateral scenario with matching algorithm to output solutions for pairwise driver-passenger. In

our taxi sharing problem, we are challenged by clustering passengers in respect to their willing

payment and spatial relation. In our Top-down and Bottom-up mechanisms described later,

we modify the idea of second-price auction schema by setting a lower bound of first unserved
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passenger, corresponding to the second highest cost in the second price auction, to the cost of

served passengers.

Raising cost mechanisms

Auction based mechanisms are studied in many game settings before vehicle routing appli-

cation. Among them, set cover game [14] is considered as a general combinatorial game setting

for different problems, where it requires different costs for different subsets of passengers. In

fact, vehicle routing can be modeled as a set covering problem [25], in which each cluster with

optimal routing is corresponding to a subset in set covering.

A popular technique used to solve these cost sharing problems is the cost raising procedure

([14],[32]) which often guarantees strategyproofness. In addition, the raising cost procedure

could be combined with other techniques like primal-dual [28] or ”ghost processing” [32] to

obtain the core solution or cross monotonic property but it usually needs to replace the budget

balance by some approximations, which recover only a fraction of the service cost, for example

in set covering it is only 1/Hn, Hn is harmony number [14], in facility location it is one third of

the cost [14]. Although approximation budget balance could help to gain interesting properties,

it would be unrealistic in implementing of non-dedicated taxis because taxi driver will not agree

to run the service unless money from passenger is sufficient. Therefore in non-dedicated taxi

context, we focus on designing a strategyproof and budget balance solution, which recovers

full service cost, rather than property of approximation budget balance solution.
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Chapter 3

Taxi Sharing Routing Problem

Given a set of passenger demand and available taxi, routing is the problem of finding effi-

cient trip to optimize an objective function. In this chapter, we study different routing solutions

for taxis routing problem in Last Mile ridesharing service. A Mixed Integer Program (MIP)

is adapted from DARPs model to provide exact solution for the problem. We show modifica-

tion from original model to fit into specific domain and improve the scalability of the model.

Although the new MIP is more scalable in comparison with its origin, it is still infeasible to

handle large scale problem, i.e. instances with number of passengers above 32. Observe this

limit of MIP, we propose a heuristic local search algorithm to provide solution in real time.

3.1 Mixed Integer Programming (MIP) Formulation

3.1.1 Last Mile routing problem and DARP

Given a set of pickup and delivery locations and their time windows, and a set of vehicle and

their capacities, DARP is the problem of designing routes for the vehicle fleet to serve as many

transport demands as possible. Routing in our Last Mile problem is a sub-problem of DARP,

which could be optimized by eliminating redundant variables:
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– Since the capacity of each taxi is assumed to be homogeneous, which is 4 (seats) in a

normal taxi, it is possible to not enumerate the taxi index. Consequently, a large number

of variables related to the taxi index can be simplified. Under this simplification to keep

track of the sequence of serving order we could use an additional variable ai .

– There is no time window constraint in our Last Mile problem. However to control the

inconvenience caused by addition travel distance we need a variable to measure individ-

ual travel distance in the trip. For the sake of simplicity, we assume that travel time is

equivalent to travel distance, i.e. velocity of taxi equal to 1.

– In a non-dedicated taxi system, after finishing the trip, taxi drivers could have flexible

options of roaming or trip pick up instead of the obligation to return to depot. Hence we

plan one way trip instead of round trip.

3.1.2 Clustering Constraints

Let N denote the set of passenger demands and K be available vehicles, each with capacity

Q. The Last Mile routing problem is defined as a graph with depot and destinations as vertices

{0, 1, . . . , |N|}. An edge in the graph between 2 nodes i and j is weighted by the travel distance

tij between 2 locations.

To express the connection of 2 nodes in planned trips we use binary indicator

xij =


0 if there is no trip traveling directly to j from i

1 if there is trip traveling directly to j from i.

(3.1)

Let Bi, si denote individual trip travel distance and direct travel distance from depot (vertex 0)

to passenger destination i.

To produce a valid ridesharing trip, the following constraints have to be satisfied [8]:

∑
i∈N

xij ≤ 1,∀j ∈ N, (3.2)
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∑
j∈N

xij ≤ 1,∀we ∈ N, (3.3)

∑
j∈N

xij ≤
∑
h∈N

xhi,∀i ∈ N, (3.4)

∑
i∈N

∑
j∈N

xij ≤ min{|N |, K ×Q}, (3.5)

∑
j∈N

x0j ≤ |K|, (3.6)

Bj ≥ Bi + tij −M (1− xij) ,∀i, j ∈ N, (3.7)

Bj ≤ Bi + tij +M (1− xij) , ∀i, j ∈ N, (3.8)

Bj ≥ 0,∀j ∈ N, (3.9)

a0 = 0, (3.10)

aj ≥ ai + 1−M(1− xij),∀i, j ∈ N, (3.11)

aj ≤ ai + 1 +M(1− xij),∀i, j ∈ N, (3.12)

ai ≤ Q, ∀we ∈ N, (3.13)

xij ∈ {0, 1},∀i, j ∈ N (3.14)

(3.15)

•
∑

i∈N
∑

j∈N xij in (3.5) quantifies total number of served passengers.
∑

j∈N x0j in (3.6)

is number of vehicles departing from Depot.

• Constraints (3.2) and (3.3) limits at most 1 arrival and 1 departure at each passenger

vertex in the graph, consequently each passenger is served by at most 1 time by 1 vehicle.

The in-out constraint (3.4) ensures vehicle departs from i only if it arrived i.

Passenger j is served if there is trip traveling to her/him, or ∃i, xij = 1.

• Inequalities (3.7) and (3.8) are linearization from the sequencing constraint

Bj = xij(Bi + tij), (3.16)
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which implies that the trip travel distance of passenger j is the sum of her/his direct

predecessor’s travel distance and the travel distance from that predecessor. This relation

is expressed by inequality (3.7) and (3.8) with big constant M to relax the bound for Bj

if i is not a predecessor of j or tighten the bound otherwise.Particularly, when there is

a trip traveling from i to j, M (1− xij) is zero, combination of (3.7) and (3.8) directly

leads to (3.16).

• Variable aj is introduced to specify service order of passenger, e.g. if j is the first passen-

ger arriving the final destination then aj = 1, if he/she is the second one then aj = 2 and

so on. Similarly to Bj variable, (3.11) and (3.12) are linearization of service sequence

constraint

aj = xij(ai + 1) (3.17)

meaning that service order of j is greater than service order of its predecessor by 1.

The original model in DARPs uses the vehicle index k in xkij to decide which vehicle will

serve the trip directly traveling from i to j. Vehicle capacity constraint can be modeled

by
∑

i,j∈N x
k
ij ≤ Qk,∀k, in which Qk is capacity of vehicle k. With assumption of

homogeneous taxi vehicle, we discard vehicle index to reduce the complexity of the

problem. Under this simplification, we express the capacity constraint in another way

by the length of service sequence or maxj∈N aj in inequality (3.13). It implies that the

service order of any passenger cannot exceed the capacity of taxi. By removing vehicle

index and using service order variable, we reduce number variable from (|N|2 × K) of

xkij variables to (|N|2 + N) of xij and aj variables. This reduction results in improvement

of runtime in comparison with original formula.

Quality of routing solutions

There are some common criteria to measure the quality of a routing solution:

• In term of social welfare, we consider the objective function to maximize the total number
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of served demand. If there is more than one routing solution to serve the same number of

passengers, the mathematics model would give priority to serve passengers with further

destinations. This objective can be quantified by

max
∑
i,j∈N

xij +
1

M

∑
i,j∈N

xijsj, (3.18)

in which
∑

i,j∈N xij is the total number of served passengers,
∑

i,j∈N xijsj is total direct

distance of corresponding served demand. M is a big value to calibrate second term to

set priority to first term.

• Minimizing travel cost is preferred by both passengers and transportation planner. It is

usually related to minimize total travel distance
∑

i,j∈N xijtij and minimize extra travel

distance
∑

j∈N(Bj − sj).

• Sometimes, worst case criteria are considered. This quality of transport service can be

measured by ratio between real travel distance and direct travel distance α = maxi∈N
Bi

si
.

To improve quality of transportation, one can think of minimizing this α ration.

Modified MIP model experimental result

To verify improvement of our MIP model over original DARP model, we carry on exper-

iment to find solution minimizing travel cost
∑

i,j∈N xijtij +
∑

j∈N(Bj − sj) under different

problem sizes, i.e. 8, 20, 24, 32 passengers and the number of taxis is 4, 5, 6, 8 respectively.

Riders Drivers Time / Time using
DARP Model

8 4 0.37s / 43s
20 5 24.06s / 3m14s
24 6 1m24s /

no result after 3h
32 8 17m22 /

no result after 1d

Table 3.1: Summary of the LM planning results for different problem sizes (all ∆i are set to 1).

21



Table 3.1 summarizes the performance statistics we obtain under different problem sizes.

The first thing to note is the significantly improved solution speed. For the largest instance, our

simplified model returns solution within 17.5 minutes, while the classical DARP MIP model

runs over one day without terminating. For all instances, our formulation is at least two orders

of magnitude faster than the classical DARP MIP model.

3.2 Local search algorithm

MIP is a popular model to produce exact solution for linear problem. However, for problems

with large number of variables and constraints, MIP is inefficient and unrealistic in real time

computing system because it may take runtime of hours or days period to output final solutions.

Alternative solutions from heuristic algorithms are useful in these cases. In this section, we

propose a heuristic local search algorithm with random initial start point.

Our local search algorithm contains 2 phases: clustering and routing. The first phase is to

specify the cluster of passengers, i.e. each passenger is assigned to a taxi. In second phase,

from each cluster the detailed trip for each taxi is computed by exhaustively searching over

all possible permutations. Since the capacity of taxis is small (typically 4), the number of

permutations is scalable, e.g. 4! = 24, which makes exhaustive search become an efficient

method to produce solution in short runtime. To avoid recalculating the best permutation for

the same cluster many times, in our implementation we use a hash data structure to store the

best permutation for the corresponding cluster after each calculation.

Our local search algorithm is developed to solve 2 types of routing problems in our proposed

mechanisms in Chapter 5

• to serve a given number of passengers. These solutions are meant for the ideal optimality

and Bottom-Up mechanism.

• to serve some additional passengers and a fixed set of passengers. These solutions are

meant for the Raising Cost mechanism.
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3.2.1 Solution Structure

A local search solution is defined by k clusters corresponding to the k available taxis, each

cluster contains a maximum of 4 elements corresponding to the taxi capacity. This cluster

structure is dynamic in that elements can be added or removed from the cluster with constraint

on capacity. An example of a local search solution is shown in Figure 3.1. From the cluster

solution, we will compute the optimal route by exhaustive search over all permutations of

elements within the cluster.

6 3 1 

2 7 8 5 

4 9 

Vehicle 1 

Vehicle 2 

Vehicle 3 

1 ----- 6 ----- 3 

7 ----- 2 ----- 5 ----- 8 

4 ----- 9 

2 permutations 

4! permutations 

3! permutations 

Cluster Phase Routing Phase 

Figure 3.1: An example of Local Search.

3.2.2 Local Search algorithm

We propose a local search shown in Algorithm 1.

To explore the search space, we define the ”Shuffle” operator as shown in Procedure 21 and

illustrated in Figure 3.2. The Shuffle({v(i)v(j)}) operator returns the best clusters formed

by elements of 2 clusters i and j. First, it forms a list of passengers {p1, . . . , pk} from these 2

clusters. Then it computes all bi-partitions from this list to find the best bi-partition. In example

3.2, apply Shuffle() to vehicle 2 and 3, a list of passengers {2, 4, 5, 7, 8, 9} of vehicle 2 and 3
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Algorithm 1: Local Search algorithm

1 Initialize: v(1, . . . , k) = ranInit(N);
2 while (stop condition != false) do
3 for i← 1 to k do
4 for j ← i+ 1 to k do
5 v

′
= Shuffle({v(i)v(j)});

6 if computeCost(v′) < computeCost(v) then
7 v = v

′;
8 break;
9 end

10 end
11 end
12 end

is formed. A pool of
(
7
4

)
combinations is enumerated. The best partition is chosen.

The local search algorithm begins with a randomly initialized solution then improves its so-

lution by finding first improvement by the Shuffle operator in each step. We iteratively explore

all pairs of 2 clusters to check if there is any improvement by applying Shuffle(). The local

search terminates when the maximum time elapses or when it reaches a local optimum. To

enhance the chance to reach an optimal solution, we diversify local search solutions by parallel

runs with independently random initial solutions.

6 3 1 

2 7 8 5 

4 9 

4 8 2 

5 7 9 

{2, 4, 5, 7, 8, 9} 

O(𝐶7
4) bi-partitions 

Shuffle 

Figure 3.2: Shuffle Operator.
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Procedure Shuffle({p1, . . . , pk})
13 mbest =∞;
14 vbest = v;
15 forall the [c1, c2] = partition({p1, . . . , pk}) do
16 m = computeCost(c1, c2);
17 if m < mbest then
18 Update vbest with [c1, c2];
19 end
20 end
21 return vbest;

By exploiting structure of small capacity taxi to use the exhaustive search for each cluster,

our local search algorithm can produce a solution almost the same as optimal solution produced

by an exact method within a short time. The experimental results for local search algorithm

can be found in chapter 6.
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Chapter 4

Cost Allocation Model

Cost allocation is a critical part to ensure participation in ridesharing. By participating in

ridesharing, passengers expect to get incentivized by a fairly distributed service cost. The

payment of passengers should be aligned with their service utility. More challenging is the

heterogeneity of passengers, in other words, passengers may have different utilities or willing

payments on the travel service. In this chapter, we consider 2 problems: how to quantify cost di-

vision in regard to passengers’ inconvenience and how to serve passengers with heterogeneous

willing payment. For the cost division problem, we propose a linear cost allocating formula

for ridesharing passengers which combines cost for direct travel and discount for additional

distance. To address heterogeneity of passengers’ willing payments, we propose and study

several auction based protocols to elicit passenger willing payment. Among auction based pro-

tocol schemes, the meter rate bidding protocol is shown as a suitable scheme for our Last Mile

problem.

4.1 Budget balance constraint

The Cost allocation problem needs to take into consideration the perspective of the taxi

driver and the passengers. In this thesis, we consider solutions in which taxi drivers will get
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at least the amount as usual taxi service to run assigned route and this amount of money is

directly paid by passengers. In the other words, the routing problem is constrained by the

following budget balance condition:

∑
i∈S

pi ≥
∑
i∈N

∑
j∈N

xijtij, (4.1)

in which
∑

i∈S pi is the sum of payment of served passenger. This total payment is at least total

travel distance of taxi fleet T =
∑

i∈N
∑

j∈N xijtij in the RHS. For the sake of simplicity, in

this paper we consider simple linear cost function to interpret distance traveled T into revenue

with 1$ for 1 travel distance. Other fare formula in real implementation can be scaled by linear

transforms.

In our routing model, since we simplify the taxi index k, there is no direct translation from

total payment to single taxi payment. Instead, we need a separate phase to derive the single taxi

portion ck directly allocated based on travel distance of taxi k.

Notice that this assumption of budget balance is flexible to be adapted to other settings with

monetary subsidy from the policy maker.

4.2 Cost sharing formula

A ride-sharing trip (or simply trip) is made up of a set of passengers assigned to a particular

vehicle. The direct distance of a passenger refers to the distance the passenger will incur if he

travels alone on the vehicle. Given a fixed trip comprising a number of passengers, the cost

sharing problem is the problem of allocating cost (payment) to the passengers on this trip.

A usual method in some situations is to minimize total travel distance T and charge passen-

ger proportionally to their direct distances [5]: pi = T × si∑
h sh

, where pi and si are the payment

and direct travel distance of passenger we respectively, and the denominator is the sum over all

served passengers’ direct travel distances. A flaw in this proportional cost formula is disregard

27



of discount for extra travel distance, as a result of sharing the trip with other passengers. It is

unfair (except for the first passenger arriving home) that some passengers travel longer than

their direct distance due to the detour to serve the precedent passengers, but they do not receive

any additional discount for this detour. Indeed, this extra travel distance makes ridesharing less

attractive than normal taxi mode [22].

In order to compensate for this extra travel distance, we propose a new fare structure which

gives passengers discounts that are proportional to their extra travel distance. Let m denote

meter rate i.e. fare per unit of direct travel distance; Bi denotes trip travel distance of passenger

i. The revised formula is given by:

pi = msi −∆(Bi − si). (4.2)

In the first term on the RHS msi is the direct cost, which is proportional to direct distance si to

passenger i’s destination. In the second term ∆ is the discount rate for each unit of additional

travel distance which is (Bi − si), and Bi is the actual travel distance in the trip.

By this payment formula (4.2), the budget balance constraint (4.1) can be rewritten as

∑
i∈S

msi −∆(Bi − si) ≥
∑
i∈N

∑
j∈N

xijtij, (4.3)

4.3 Auction protocol

Auction protocols in ridesharing were recently introduced in [26]. In the request for a shared

ride, besides the demand information on arrival time and destination, the auction protocol al-

lows riders to specify their willing payment. The planned trip is not only dependent on the

demand information but also passengers’ willing payments. For example, in [26], a driver will

go with the highest ranked passengers computed based on a weighted sum of willing payment

and detour distance.

The cost sharing formula given in (4.2) can be directly applied to homogeneous passengers.
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However, given the fact of heterogeneous passengers who could have different individual utility

functions, we need to take account for their utility into our planning. A centralized solution

would fail to serve these heterogeneous passengers when it charged them the fare greater than

their willing payments. Moreover, it is difficult to provide passengers a “promised” fixed low

meter rate in taxi sharing service a priori as the payment would be dynamically dependent on

destinations of sharing passengers and availability of taxis case by case. What is needed is a

real time protocol for passengers to submit their willing payment to participate in the Last Mile

sharing service.

Contextualizing this on the cost sharing formula (4.2), the willing payment of passenger i

is hence computed by their willing meter rate mi and the discount rate ∆i. However, asking

a passenger to specify these two values is quite impractical in an auction setting as the cost

could be minimized either by decreasing meter rate m or by increasing the discount rate ∆. To

avoid ambiguity, we consider the auction protocols in which passenger only bid on 1 value. In

this section, we propose and discuss on 2 possibilities: passengers could submit either required

discount rate ∆ or meter ratem. We show that although ∆ bidding is feasible but it is inefficient

to allocate the cost. It motivates to use meter ratem to charge passenger and decide the discount

rate for passenger later.

Given this willing payment, passenger i’s actual fare payment should then satisfy the fol-

lowing constraint (called the Individual Payment constraint):

pi ≤ misi −∆i(Bi − si). (4.4)

4.3.1 Discount rate bidding model

Consider a discount rate model in which meter rate is fixed to normal taxi meter rate, pas-

sengers will specify their required discount rate. A bid for passenger i is simply defined as

(si,∆i), (4.5)
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in which si,∆i are respectively destination and required discount for each extra travel distance

of passenger i.

Passenger i’s fare pi follows the individual and budget balance constraints

pi ≤ si −∆i(Bi − si), (4.6)

∑
i∈S

pi = T, (4.7)

We consider 2 models to calculate the cost via discount rate

1. Charge passenger directly by pi = si − ∆i(Bi − si). A single discount rate value is

determined for all passengers. To maximize compensation for additional travel distance

inconvenience, the discount rate ∆ can be raised whenever the money is still enough to

run the service ∑
i∈S

p1i =
∑
i∈S

si −∆(Bi − si) ≥ T. (4.8)

2. We adapt proportional cost formula for discount rate model. Given a priori discount rate

∆, the cost is first calculated by proportional formula then discounted by additional travel

distance.

Recall the proportional cost without discount part for passenger i is

pi =
si∑
j∈S

T. (4.9)

However, with respect to discount for additional travel distance, we need to adjust pas-

sengers fares by increasing fare of non-suffered passengers to compensate suffered pas-

sengers. Specifically we maintain a discount budget to spend on compensation aside

from trip budget T . The before-discount portion of passenger i now is

p
′

i =
si∑
j∈S

(T +
∑
j∈S

∆(Bj − sj)). (4.10)
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T +
∑

j∈S ∆(Bj − sj) is the combination of trip budget and discount budget. The final

payment of passenger i is subtracted by his/her discount part

p2i = p
′

i −∆(Bi − si) =
si∑
j∈S

(T +
∑
j∈S

∆(Bj − sj))−∆(Bi − si). (4.11)

It can be shown that this formula satisfies budget balance requirement

∑
i∈S

p2i =
∑
i∈S

[
si∑
j∈S

(T +
∑
j∈S

∆(Bj − sj))−∆(Bi − si)] (4.12)

=
∑
i∈S

[
si∑
j∈S

(T +
∑
j∈S

∆(Bj − sj))−
∑
i∈S

∆(Bi − si) (4.13)

= (T +
∑
j∈S

∆(Bj − sj))−
∑
i∈S

∆(Bi − si) (4.14)

= T. (4.15)

Drawback of discount rate

The main drawback of discount rate model is that it only takes account for inconvenience of

suffered riders but not specify a fair division for sharers. As a result, it could end up in extremis

by which a suffered passenger can get incentivized by most of cost savings in ridesharing and

leave nothing to non-suffered passenger.

Let us look at an example illustrating the weakness of the 2 methods suggested above. This

example is shown in Figure 4.1. In this example, there are only 2 passengers A and B with the

distance Depot-A:5, A-B:1, Depot-B:5.5. The solid line represents the planned trip, in which

passenger A is the first served passenger and passenger B is the second one with 0.5 extra travel

distance.

For the first formula (4.8) we need to increase ∆ = 9

p1A = 5− 9× 0 = 5 (4.16)

p1B = 5.5− 9× 0.5 = 1. (4.17)
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Although it does not violate any individual constraints with any ∆i ≤ 8, it is unfair as first

passenger A has to pay most of the trip, passenger B gets most of the monetary saving and only

needs to pay an amount.

For the second formula (4.11), there are several ∆ values which can satisfy individual con-

straints

∆ = 1 satisfies any ∆i ≤ 6

p2A = (6 + 1× 0.5)
5

5 + 5.5
− 8× 0 = 3.0952 < 5− 6× 0 (4.18)

p2B = (6 + 1× 0.5)
5.5

5 + 5.5
− 1× 0.5 = 2.9048 < 5.5− 6× 0.5 (4.19)

. . .

∆ = 9 satisfies any ∆i ≤ 9

p2A = (6 + 9× 0.5)
5

5 + 5.5
− 9× 0 = 5 ≤ 5− 9× 0 (4.20)

p2B = (6 + 9× 0.5)
5.5

5 + 5.5
− 9× 0.5 = 1 ≤ 5.5− 9× 0.5. (4.21)

This formula also can produce unfair solution for passenger A.

The reason for iniquity of above 2 discount rate models is that they can not limit discount

rate value in a reasonable range. As a result, they are not fairly distributed the service cost to all

passengers. In the next section, by meter rate bidding model, we will see that meter rate model

does not experience such problem.

4.3.2 Meter rate bidding model

We observe that meter rate is the reasonable upper bound to cap discount rate, by which

passengers will not be discounted for each unit of extra travel distance more than their willing
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Depot 

Customer A 

Customer B 

5.5 

5 

1 

Figure 4.1: An example of routing.

payment on meter rate. With respect to this upper bound, we propose a meter rate bidding

model, where discount rate and meter rate are equal. Intuitively speaking, if passenger i is

willing to pay 1$ for each of his/her direct travel distance, he/she will get discounted by 1$

for each of his/her extra travel distance. In common sense, to use a better quality service,

corresponding to higher discount rate, you need to pay more and vice versa.

As we will show later, this simple model has the property that the minimum fare for a

passenger is easily computed by minimizing meter rate (against all other passengers)

Theorem 1. A passengers fare is directly proportional to its meter rate.

Proof. It follows the algebra transformation fact that

msi −m(Bi − si) < m
′
si −m

′
(Bi − si) (4.22)

is equivalent to

m(2si −Bi) < m
′
(2si −Bi) (4.23)

when m < m
′ . Notice that passenger needs to pay a positive cost to use the service, in other

words 2si −Bi > 0.
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As a corollary of this theorem, the fare is guaranteed to be competitive, and minimizing

meter rate is dominant choice.

In regard to previous example in Figure 4.1, given optimal routing from Depot to A then B,

consider one possibility to charge all passengers with the same meter rate, the meter rate model

solution is

[m× 5.5−m× (6− 5.5)] +m× 5 = 6⇒ m =
6

10
(4.24)

pA = 0.6× 5 = 3 (4.25)

pB = 0.6× 5.5− 0.6× (6− 5.5) = 3. (4.26)

The meter rate solution is related to the minimizing travel distance and proportionally allo-

cated cost solution. We notice that in budget balance situation m = T
S−(B−S) , in which T is

trip travel distance, S is total direct distance demand, B is total individual trip travel distance.

Hence minimizing m is equivalent to minimizing trip travel distance and total individual extra

travel distance.
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Chapter 5

Incentive Compatible Mechanisms

In this chapter, we study and propose incentive compatible mechanisms. We first define

our mechanism as a routing and cost allocating solver. By a specific example, we show that

incentive compatibility and optimality may be mutually exclusive. It also implies that designing

incentive compatible mechanism is not trivial.

Based on auction based protocol, we propose 3 incentive compatible mechanisms:

1. Top-down mechanism is presented as a baseline when we compare incentive mecha-

nisms. It expands feasible set of served passengers by including passengers with the

order from high willing payment to low one. The fares of served passengers are com-

puted by a mathematical program to minimize meter rate. Serving procedure is cut off

at position of the first passenger fails to be added in the set. Meter rate bid value of this

first unserved passenger will be used as lower bound in optimizing model. The notion of

first unserved passenger is corresponding to notion of the second highest price passenger

in classical second price auction.

2. Bottom-up mechanism is similar to Top-down mechanism in principle of giving prece-

dence to serve passengers with high willing payment first. The difference is instead of

checking servability from passengers with higher payment to passenger with lower pay-

ment, we will check the feasibility of solution to serve a maximal number of passengers
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by a minimal charged lowest meter rate. At each iteration, if there is a violation of in-

dividual constraint (4.4) or m∗ > mi for served passenger i, we will dismiss the worst

violated passenger and solve again, otherwise we output the solution. Bottom-up mech-

anism is promising to solve more passengers than Top-down mechanism.

3. A modified version of raising cost procedure in Last Mile problem is proposed. It is

different from the normal Raising-Cost in set covering and facility location games when

instead of raising gross payment, we raise the meter rate. To speed up the algorithm, we

replace the Raising-Cost by an equivalent procedure to repeatedly solve a mathematical

program. The routing and cost allocation are essential in scheduling part of our Raising

cost mechanism.

All of these 3 mechanisms can be decomposed into 2 phases

– In phase 1, we solve a routing problem without individual payment constraints. Only

geography information of passengers’ destination are considered.

– In phase 2, after solving the routing problem, we separately check if there is any violation

of individual constraints of willing payment in outputted solution. If there is, we elim-

inate passengers in violated individual constraints and repeat the procedure from phase

1.

By following this 2 phases principle, our proposed mechanisms are proved to be incentive

compatible.

5.1 Ridesharing mechanism

Our Last Mile ridesharing system is illustrated by diagram in figure 5.1. Before arriving

at the hub, a batch of passengers will send their respective requests containing destination si

and willing payment rate mi. In addition, the number of available taxis needs to be updated.
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Based on passenger demand and taxi supply, the system computes a routing and cost allocating

solution. Each passenger will be informed with their trip Bi and payment pi from the solution.

Each taxi will be informed with assigned riders, routing solution and corresponding payments.

To engage the payments from passengers to taxis, we can develop payment methods directly

linking accounts of passengers and drivers to the center. After the confirmation of shared riders,

the money will be debitted from riders’ accounts and transferred to drivers’ accounts. The

𝑁 calling demands 

𝐾 available taxis 

Decision support 

Travel service  
with cost 

𝐵𝑖 , 𝑝𝑖 𝑖∈𝑆 

Passenger 
destination 
and willing 
payment 

𝑠𝑖 , 𝑚𝑖 𝑖=1:𝑛 

In the queue 
to serve 

Route 𝑇 and 
corresponding 
payment to 
each taxi 

Figure 5.1: Ridesharing mechanism.

problem studied in this thesis is to develop a system to provide the routing and cost allocating

solution. Specifically we want to develop mechanism defined as follows.

Definition 1. A mechanism in Last Mile vehicle sharing is a mapping f from passenger demand

set N = (si,mi) and available vehicle set K to routing solution S and vector or payment

(Bi, pi)

f : (s1,m1)× . . .× (sn,mn)→ (B1, p1)× . . .× (Bn, pn). (5.1)

Because of budget balance constraint, each taxi driver is guaranteed to be paid by at least

the amount charged for a normal (non-shared) taxi service.
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In our bidding protocol, a passenger submits the information of destination si and willing

payment rate mi. We assume passengers will not lie on their destinations. But they can manip-

ulate their willing payment value to gain benefit.

Definition 2. A mechanism is incentive compatible if passengers have no incentive to bid any

willing payment mi dishonestly.

5.2 Optimal number of served passengers mechanism

Given willing payments of participants, we propose an optimal model to provide an opti-

mistic solution, i.e. the maximum number of passengers we can serve. Based on model, we

show an example where optimality and compatibility can not happen at the same time, which

illustrates the challenge of developing incentive compatible mechanism. Furthermore, optimal

solution produced by this model will be used as an optimal benchmark for later experimental

evaluation.

In the optimal model, passengers are charged directly by their willing payment, in other

words the charged rate for passenger i, m̄i is equal to his/her submitted rate mi.

The mathematical model for this is as follows:

max
∑
i,j∈N

xij +
1

M
(
∑
i,j∈N

xijsj) (5.2)

subject to

∑
j∈N

∑
i∈N

xij[mjsj −mj(Bj − sj)] ≥
∑
i∈N

∑
j∈N

xijtij, (5.3)

from constraint (3.2) to constraint (3.14) in routing model

The first term
∑

i,j∈N xij in objective function is number of served passengers. With the big

constant M , second part
∑

i,j∈N xijsj is the bias term for maximizing total direct distance of
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served demand.

Untruthfulness of Optimal Served Number Solution

Although above model gains the maximum efficiency in serving passengers given their will-

ing payments, it does not ensure a truthful protocol as some passenger could lie on their willing

payments to pay less. An example of strategic manipulation is shown in Figure 5.2. The dis-

tance matrix is presented in Table 5.1

Given 1 available vehicle, a solution serving 3 passengers would charge each passenger an

Distance Depot A B C
Depot 5 9 7

A 7 9
B 5

Table 5.1: This table shows some data

meter rate m = 5+7+5
5+(9−3)+(7−10) , which is greater than meter rate m′ = 5+7

5+(9−3) of solution

serving only 2 passengers A and B. To gain more benefit, passenger B could lower his willing

payment on meter rate as he knows that he has advantage by bias term in objective function for

the furthest destination.

5.3 Top-down mechanism

In the Top-down mechanism and its variant Bottom-up mechanism, all served passengers

are charged by the same meter rate m, which is different from Raising-Cost procedure where

the charged meter rate m̄i can be differentiated.

Firstly, we order passengers by their submit values in a preprocessing step. We prioritize

passengers with high willing payments on meter rate to be served first. Wining players should

have higher willing payments than losing players.

Top-down mechanism initializes with the smallest set of feasible solutions of the high will-
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Depot	  

A	  
B	  

C	  

Figure 5.2: An example of Untruthful Bidding.

ing payment passengers. Then at each step, it includes an additional passenger with the highest

willing payment in the remaining set. To find the routing solution for a set of passengers, Top-

down solves a mathematical program minimizing the charged meter rate m. The meter rate

solution is bounded by the bid value of first unserved passenger, i.e. the highest bid value in

the remaining set. This lower bound plays a role to protect the mechanism from overbidding.

The highest bid value of passengers in the unserved set is equivalent to the second highest bid

in second price auction.

The detail of the Top-down mechanism is described by Algorithm 2. In the first phase from

line 23 to line 29, it repeatedly expands the potential set from empty until a feasible solution is

found. In the second phase from line 31 to line 37, it continues to expand the potential set until

there is no feasible solution for expanded set. Notice that an expanding procedure is carried
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out by decreasing order of mi. At each iteration, after adding the next highest willing payment

passenger i into the served passengers set Si = Si−1 and set the lower bound ml = mi+1 by

the first passenger outside of Si, Solve1(Si,ml) will return solution m∗ for Si with constraint

m ≤ mi by solving a mathematical program Solve1 with S = Si:

Solve1(N,ml) : m∗ = minm (5.4)∑
i,j∈S

xijtij ≤
∑
i,j∈S

[msj −m(Bj − sj)] (5.5)

∑
i∈S

xij = 1,∀j ∈ S (5.6)

∑
i,j∈S

xij = |S| (5.7)

ml ≤ m ≤ mi,∀i ∈ S (5.8)

from constraint (3.2) to constraint (3.14) in routing model

In budget balance constraint (5.5), all served passengers are charged with the same meter rate

m. Constraints (5.6) and (5.7) require to serve all passengers in the given set S. Constraint (5.8)

indicates them’s lower bound and individual constraint checking. Note that in Top-down mech-

anism, individual constraint checking can be incorporated into mathematics program, which is

not feasible in other incentive compatible mechanism.

ml is value of the first unserved passenger, which is set in lines 24 and 32.

If there is no feasible solution, which is m∗ =∞ in line 35, i will be considered as cutoff point

and we output solution of Si−1.

Figure 5.3 shows an example how Top-down mechanism works. Served passengers are

1, 2, 3, 4, 5 as they are the 5 highest willing payment passengers that service can serve, there is

no solution to serve 6 passengers from 1 to 6. We cut off at passenger 6 value because he is the

first unserved passenger. m6 will be used as the lower bound in the mathematics program to

minimize m: m5 ≥ m∗ ≥ mbound = m6. In this case, the charged meter rate is minimized to
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be equal to lower bound mbound = m6. We do not charge served passengers by meter rate less

than m6 otherwise it does not guarantee the incentive compatibility.
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Figure 5.3: An example of Top-down mechanism.

Algorithm 2: Top-down algorithm
input : Set n passengers N = {(si,∆i)}i
output: Set S of served passengers and their costs

22 Initialize: S0 ← ∅;
23 for i← 1 to n do
24 ml = mi+1;
25 Si = Si−1 ∪ i;
26 m∗ = Solve1(Si,ml);
27 if m∗ 6=∞ then
28 break;
29 end
30 end
31 for j = i+ 1 to n do
32 ml = mj+1;
33 Sj = Sj−1 ∪ j;
34 m∗ = Solve1(Sj,ml);
35 if m∗ =∞ then
36 output S = Sj−1;
37 end
38 end

Theorem 2. The Top-down mechanism is incentive compatible.
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Figure 5.4: Manipulating bidding values

Proof. For unserved passengers, underbidding munderbidding < mpassenger ≤ mbound would not

help as they are not served because of too low willing payment. Overbidding of unserved pas-

sengersmbound ≤ moverbidding could let passenger into the served passengers set but at the same

time it would run a risk of overpayment: mpassenger ≤ mbound < m∗ ≤ moverbidding.

For served passengers, overbidding obviously does not change the solution m∗ as they are still

above cutoff position. Similarly, underbidding of served passengers does not change the solu-

tion if m∗ ≤ munderbidding < mpassenger. In additional, underbidding could dismiss passenger

from service when their bidding is lower than the threshold of feasibility.

5.4 Bottom-up mechanism

This mechanism is similar to Top-down in that it seeks to serve high willing payment pas-

sengers. But instead of expanding the served passengers by high willing payment order from

an empty set, we gradually eliminate low willing payment passenger who is the worst violated

passenger in individual constraint, which has the lowest bidding willing payment, and solve

problem again.

The Bottom-up mechanism is based on a simple principle: include all demands initially,

compute the assignment considering the destinations but not the meter rates. If a feasible cost

allocation cannot be found from the particular assignment, the lowest paying passenger (in
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terms of submitted meter rate) will be eliminated from consideration and the assignment is

recomputed. The process continues until we identify a feasible combination of assignment and

cost allocation. For this reason, we call it the Bottom-up mechanism.

Algorithm 3: The Bottom-up algorithm.
Input: (N, {(si,mi)}i∈N)
Output: (S,m∗)

39 S ← ∅, ml = 0
40 while N 6= ∅ do
41 (m∗, S) = Solve2(N,ml)
42 if mini∈S mi < m∗ then
43 ml = mini∈S mi

44 N ← N \ {arg mini∈S mi}
45 else
46 N ← ∅
47 end
48 end
49 return (S,m∗)

Assuming that the auctioneer has collected the set of all bids {(si,mi)}i∈N from all passen-

gers in set N . The Bottom-up clearing process is illustrated in Algorithm 3. The mechanism

first calls the mathematical program Solve2 to obtain a candidate assignment. For each ob-

tained assignment, we check whether individual payment constraint is violated for the lowest

paying passenger (line 42). If a violation is detected, the lowest paying passenger is removed

from set N , and the lower bound on the meter rate (ml) is also updated (line 43). The above

process repeats until an assignment that satisfies all individual payment constraints is found. At

termination, the mechanism reports the set of passengers to be served (including their cluster

and service orders) and the universal meter rate (m∗) to be paid by all served passengers.

Solve2(N,ml) : m∗ = minm (5.9)

subject to∑
i,j∈N

xij tij ≤
∑
i,j∈N

xij (msj −m(Bj − sj)) , (5.10)
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Figure 5.5: An example of Bottom-Up Mechanism

∑
i,j∈N

xij = min{|N |, |K| ×Q}, (5.11)

m ≥ ml, (5.12)

together with constraints (3.2) – (3.14) in routing model.

An example of Bottom-up algorithm is shown in Figure 5.5. The mechanism begin with

trying to serve min{N,K × K} = 9 passengers. There is no feasible solution, therefore we

eliminate lowest willing payment passenger 9 and resolve again. In second iteration, a solution

to solve 8 passengers is found but it violates individual constraint of passenger 8, therefore we

need to dismiss passenger 8 from the potential set. Finally, there is no violation in solution to

served 7 passengers, therefore we terminate and output the solution.

Note that the mechanism terminates when we eliminated all passengers in N or we find a non-

violated solution.

Theorem 3. The Bottom-up mechanism is incentive compatible.

Proof. A passenger’s bid contains two parts: the destination and the desired meter rate. Since

this is a shared door-to-door service, a passenger should not cheat on the destination, and thus
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our analysis will focus only on the meter rate.

In the first phase of the mechanism, mathematics program Solve2 is solved and selected

destinations are assigned to clusters with service orders. If a passenger is not chosen in the

first phase, truth telling is not an issue as this passenger’s bid will not change the outcome.

Suppose the passenger is selected in phase one, but eliminated in phase two because mi < m∗,

he will not want to raise his bid, since if he manages to stay on by raising bid, the new m∗,

which originally is mi, will be higher than mi . The lower bound guarantees that he cannot be

served if any bid higher than his value is eliminated. Lowering his bid in this case makes no

difference.

Finally, if a passenger stays on in both phases one and two, raising the bid makes no dif-

ference, since he is already chosen, and he will be asked to pay m∗ regardless of his own bid.

Lowering the bid is also not desirable, since the charged rate, m∗, is the minimized meter rate,

and if the passenger wants to benefit from the lower cost, he has to bid less thanm∗, but this will

result in him being eliminated instead. Therefore, in all cases, bid the true meter rate will not

cause harm, and in two out of four cases, the bidder will perform strictly better than lying.

5.5 Raising cost procedure in Last Mile vehicle routing prob-

lem

The raising-cost mechanism is assumed to receive identical inputs as the Bottom-up mech-

anism. The main idea of the mechanism is to select subsets of confirmed passengers iterative

by gradually raising the clearing meter cost. Served passengers can thus have different me-

ter rates. Similar clearing techniques have been utilized in constructing incentive-compatible

mechanisms in other settings such as set covering and facility location game [14].

Algorithm 4 is a straightforward implementation of the raising-cost mechanism. In each

iteration, the standing meter rate (that can be applied to unserved passengers) is increased by

a small amount ε, and passengers having meter rates lower than m∗ are then removed from

46



Algorithm 4: The raising-cost mechanism.
Input: (N, {(si,mi)}i∈N , ε)
Output: (S, {m̄i}i∈S)

50 t = 0, St ← ∅, Nt ← N,mt = 0
51 while N 6= ∅ do
52 mt = mt + ε
53 for i ∈ N do
54 if mt > mi then
55 Nt ← Nt \ i
56 end
57 end
58 St+1 = Solve3(St, Nt,m

t)
59 if St+1 6= ∅ then
60 for i ∈ St+1 ∩Nt do
61 Nt ← Nt \ i
62 m̄i = mt

63 end
64 Nt+1 ← Nt

65 t = t+ 1

66 end
67 end
68 return (St, {m̄i}i∈S)

consideration. Given the sets of served and unserved passengers and the current meter rate m∗,

Solve3 is then invoked to find the set of served passengers. For new passengers served in this

iteration, their meter rates (m̄i) are fixed at m∗. Note that we only need a feasible solution from

Solve3, thus it is a constraint satisfaction problem.

Solve3(S,N,m
∗) :∑

i,j∈N∪S

xijtij ≤
∑

i∈N∪S

[∑
j∈N

xij (m∗sj −m∗(Bj − sj))

+
∑
k∈S

xik (m̄ksk − m̄k(Bk − sk))

]
, (5.13)

∑
i∈N∪S

xij = 1,∀j ∈ S, (5.14)

∑
i∈N∪S

∑
j∈N

xij ≥ 1, (5.15)

together with constraints (3.2) – (3.14) in routing model.
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In Raising-Cost algorithm 4, we have to continuously raise and check the meter rate by indi-

vidual payment constraints until we find a new solution or any violation. If there is a violation in

line 54, it will be removed from the remaining potential setNt in line 55. Solve3(St, Nt,m∗) in

line 58 will find and return a solution of constraint satisfaction problem with constraints (5.17)

to (5.22) to find an additional passenger in set Nt of remaining unserved passengers, if there is

a solution found, charged meter rate of new served passengers will be fixed by current m∗. A

passenger is removed from remain passengers set Nt+1 if his/her bidding value is violated (line

55) or he/she is the new served passenger (line 61). If there is no solution found, we increase

the meter rate m∗ and solve again.

Instead of gradually raising the cost by small increment ε, due to special structure of vehicle

routing problem, we can ”jump” through a bigger increment from current solution to the next

solution by a mathematical program to find the minimum m to serve at least 1 passenger in

remaining set N. The number of iterations therefore reduced from O(1/ε) to N .

The modified algorithm for Last Mile problem is described by Algorithm 5.

The main difference is instead of gradually Raising-Cost by many intermediate steps, in line

74, Solve4(St, Nt,ml) solves a mathematical model to find the minimum m∗ for remaining

passengers Nt who are still unserved. If a new routing solution is found, we need to check

whether there is any violation for the new served passengers in line 77. A passenger is removed

from remain passengers set Nt+1 if his/her bidding value is violated (line 78) or he/she is the

new served passenger (line 81).

Solve4(S,N,ml) : m∗ = minm (5.16)

subject to

∑
i,j∈N∪S

xijtij ≤
∑
j∈N

∑
i∈N∪S

xij[msj −m(Bj − sj)] (5.17)

+
∑
j∈S

∑
i∈N∪S

xij[m̄jsj − m̄j(Bj − sj)] (5.18)
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Algorithm 5: Modified Raising Cost Mechanism in taxi sharing
Input: Set n passengers N = {(si,mi)}i
Output: Set S of served passengers and their costs

69 t = 0;
70 St ← ∅;
71 Nt ← N;
72 ml = 0;
73 while Nt 6= ∅ do
74 (m∗, St+1) = Solve4(St, Nt,ml);
75 if St+1 6= ∅ then
76 for i ∈ St+1 ∩Nt do
77 if mi < m∗ then
78 Nt = Nt \ i;
79 go to 73;
80 else
81 Nt = Nt \ i;
82 end
83 end
84 Nt+1 = Nt;
85 ml = m∗;
86 t = t+ 1;
87 go to 73;
88 else
89 output S;
90 end
91 end

∑
i∈N∪S

xij = 1,∀j ∈ S (5.19)

m ≥ ml (5.20)∑
i∈N∪S,j∈N

xij ≥ 1 (5.21)

from constraint (3.2) to constraint (3.14) in routing model (5.22)

The equivalence of 2 mechanisms is proven by

Theorem 4. Algorithm 5 returns the same solution with Algorithm 4.

Proof. We show the proof by induction. Assume that until iteration k, solution of Algorithm

5 is still the same with solution of Algorithm 4. It is necessary that the next feasible solutions
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of these 2 algorithms are also identical. Denote mk, m′k, mk+1 and m′k+1 as solutions of 4, 5

at step k, 4, 5 at step k+1 respectively. By induction hypothesis, mk = m
′

k. By Algorithm 4,

mk+1 will be raised therefore greater than mk. By Algorithm 5, m′k is the lower bound in next

iteration solving, so m′k < m
′

k+1. If mk+1 < m
′

k+1, solution corresponding to m′k+1 is not the

optimal one; if mk+1 > m
′

k+1 the normal Raising-Cost will found the solution of m′k+1 before

mk+1, both are contradiction. So mk+1 = m
′

k+1.

In Raising-Cost procedure, we maintain 2 sets of passengers at each iteration, set of served

passengers S with their fixed meter rate m̄i and set of the remaining unserved passengers N

from which we need to find a solution minimizing m to serve at least one additional passenger.

Notice that we do not maximum number of served passengers but minimize meter rate m,

therefore there could be the case that only 1 additional passenger is added into served set S in

each iteration.

An example of Raising cost mechanism is shown in Figure 5.6. The charged meter rate is

raised over iterations. Solution for passengers 1, 5 are found in the first iteration with meter

rate 0.52. Then the in second iteration passengers 2, 7, 9 are served with the higher meter rate

0.55. Finally passengers 3, 4 are served in the third iteration with the highest meter rate 0.56.

−6 −4 −2 0 2 4 6
−6

−4

−2

0

2

4

6

Depot

1

2

3 4

5

6

7

8

9

Customer Willing meter rate Served Iteration Charged meter rate

1.00 0.98 1 0.52

2.00 0.97 2 0.55

3.00 0.95 3 0.56

4.00 0.88 3 0.56

5.00 0.77 1 0.52

6.00 0.75 - -

7.00 0.75 2 0.55

8.00 0.70 - -

9.00 0.69 2 0.55

Figure 5.6: An example of Raising Cost Mechanism.

Again, notice that we do not include individual constraint in our mathematical program so
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we need to check after solving if there is any individual constraint violation for the new served

passengers in set N. In post processing, if any individual constraint violation is found, we will

dismiss all violated passengers and solve again.

Theorem 5. The raising meter rate cost mechanism is incentive compatible.

Proof. The incentive compatibility property of the raising-cost mechanism is inherent in its

procedure. The meter rate is initialized at 0, and gradually increases at the interval of ε. If

a passenger is not selected in the final served set, lowering his bid will not change his status.

Raising his bid could delay his elimination to later iteration, and this passenger might be chosen

in these additional iterations, however, it is not desirable as he will be paying meter rate higher

than his tolerance.

If a passenger is selected in the final served set, raising his bid makes no difference. Let

this passenger’s bid be mj , mt = mj , and let m̄j be the meter rate that is actually charged. If

m̄j = mj , it is not desirable to lower the bid, since the passenger will be eliminated in iteration

(t − 1). If m̄j < mj , lowering the bid to the range of [m̄j,mj) makes no difference, since

this passenger will still be charged m̄j . If the new bid is lower than m̄j , the passenger will be

eliminated and this will not be desirable as well.

Therefore, in all cases, bidding trustfully does no harm, while deviating from the true meter

rate will cause undesirable outcomes in three out of six cases.

5.6 Optimal meter rate m∗ search

The mathematical model in (5.4), (5.9) and (5.16) in fact is not linear because constraints

(5.5), (5.10) and (5.18) contain the term m × Bj , which is product of 2 continuous variables.

The decomposition is difficult in this case. To the best of our knowledge, there is no available

method to decompose product of 2 real variables in linear programming. Hence in this work,

we propose an efficient hill climbing algorithm to optimizem, in which we repeatedly decrease
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mt+1 = m∗t − ε with m∗t denoting solution in previous iteration. ε is the increment to move so-

lution out of a local optimum, however it does not mean that the next solution will be improved

only by ε.

In the Top-down mechanism, we can choose the start point for hill climbing process by the

lowest bid For Bottom-up and Raising cost mechanism. Then we find the first feasible point by

incremental search in bidding passenger values.

The quality of our hill climbing algorithm is determined by decrement ε

Theorem 6. Solution m∗ of hill climbing with decrement ε is a ε-approximation of optimal

solution mopt, in other words

|m∗ −mopt| ≤ ε. (5.23)

Proof. We prove the theorem by contradiction. We have m∗ is the final solution of our hill

climbing search. Assume |mopt −m∗| > ε, there is a solution for upper bound m = m∗ − ε, it

means that the solution with meter rate m∗ is not the final solution of our hill climbing search,

which is a contradiction.

To choose a heuristic replacement for nonlinear mathematical programming, firstly we ob-

serve that

Theorem 7. Solution of the objective function m∗ = minm = min T
S−(B−S) is one Pareto

solution of bi-objective functions minT and minB

Proof. This observation can be proved by contradiction. With a little abuse of notation, we

use S as total direct distance demands of served passengers and T (S), B(S) as total trip travel

distance and total individual trip travel distance corresponding to that solution. If there was a

solution S ′ dominating S∗ of objective function minm, we would have T (S
′
) ≤ T (S∗) and

B(S
′
) ≤ B(S∗ with at least one of them is strict inequality, then m(S

′
) = T (S

′
)

S′−(B(S′ )−S′ ) <

T (S∗)
S∗−(B(S∗)−S∗) = m∗, which is contradict to assumption that S∗ is the optimal solution for

minm.
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As the decomposition of m = T
S−(B−S) is hard, we try to find optimal m by repeatedly

solving alternative mathematical programming with decreasing m. Notice solution of m∗ is a

Pareto set of minT and minB, we heuristically use objective function minT + B which also

returns a Pareto solution of minT , minB.

In each iteration in Meter Rate Search Algorithm 6, given a m value as the upper bound

parameter from search procedure, we solve the MIP

A : min
∑
i,j∈N

xijtij +
∑
i∈N

Bi (5.24)

s.t.

constraints of normal model

Notice that if passenger i is not served, to minimize (5.24) Bi will be forced into 0.

The m∗ = T
S−(B−S) < m value found by solution of (5.24) will be used as the upper bound

parameter for next iteration. If m∗ = m, we need to decrease search bound by the decrement

ε for the next iteration. The algorithm terminates and the best solution found is output when

there is no more available solution for current upper bound meter rate m.

Algorithm 6: Meter Rate Search Algorithm
92 while m > mlowerbound do
93 Solve A to find m∗;
94 if no solution then
95 output current solution found in previous iteration;
96 else
97 if m∗ < m then
98 m = m∗;
99 else

100 m = m− ε;
101 end
102 end
103 end
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5.6.1 Hill climbing search experimental results

We carry out some test cases to verify efficiency of our algorithm. We find optimal meter

rate m∗ solutions for 10 instances of 20 passengers and 1 taxi with capacity 4, so the size

of search space is
(
20
4

)
= 20!

4!16!
= 4845 with start point m = 1. We measure number of

iterations, runtime and quality of solution with different decrement value ε, represented in

Figure 5.7, 5.8, 5.9 respectively. We see that the average number of iterations is only 5.7 even

with the small decrement value ε = 0.0001, while to find the optimal solution m∗ = 0.41

there are 1−0.41
0.0001

= 5900 intervals of ε = 0.0001. When ε increases, number of iteration and

runtime decrease, which is predictable. We observe after ε = 0.01, quality of solutions reflected

by meter rate value m∗ are quickly reduced. Solution of ε = 0.01 is similar to solution of

ε = 0.0001 but the runtime is better, hence in our experiments in next section, we choose the

ε = 0.01.
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Chapter 6

Experimental Results

In this chapter, we study the effectiveness and efficiency of our proposed mechanisms by a

series of experiments. Our experiments are established by 2 sets of data

• Synthetic data in which destinations are randomly generated in a square with depot as

the center.

• Real data of Last Mile travel demand of passengers collected from Ang Mo Kio MRT

Station in Singapore. We consider a peak hour from 6pm to 7pm and batches of passen-

gers in time intervals of 3 minutes.

6.1 Synthetic data

In the synthetic set of data, passengers’ destinations are generated in the square with edge

length of 14 and depot in the center, willing payment on meter rate of each passenger query

is generated uniformly in range [0.5,1]. We carry out experiment for 3 set of parameters:

varying passenger numbers, varying taxi numbers and varying willing payment range. Each

plotted result point is an average over solutions of 10 instances. We consider 3 metrics: number

of served passengers
∑

i,j∈N xij , total direct distance demand
∑

i,j xijsj and total surplus,
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i.e. the difference between willing payment and real charged payment of served passengers∑
i,j∈N xij(mj − m̄j)× (2× sj −Bj).

6.1.1 Varying number of passengers

In the first experiment set shown in Figures 6.1, 6.2, we observe results of mechanisms when

the the number of passengers varies from 8 to 25. Figure 6.1 shows the number of the served

passengers in solutions of different mechanisms. Figure 6.2 is the result in the total direct

distance demand of served passengers. We see that results in these 2 metrics are consistent

with each other in comparison of qualities of different mechanisms. The total direct distance

increases along with the increment of number of served passengers. We observe when the

number of passengers increases, Raising cost and Bottom-up Mechanism solutions qualities

are closer to Optimal solution.

In all instances, the Top-Down mechanism runs as a baseline with the worst quality solution.

When number of passengers is small, the quality of Raising cost mechanism dominates Bottom-

up. When the number is large above 17 passengers, Bottom-up mechanism shows better result

than Raising cost mechanism.

Figure 6.7 shows the result for total surplus of served passengers. By the result, we can see

that Raising Cost by differentiating passengers’ payments is the most beneficial mechanism

for served passengers. Raising Cost produces the largest surplus, following is Bottom-Up and

lowest is Top-down mechanism.

6.1.2 Varying number of vehicles

For second experiment, given 20 passengers we vary number of available vehicles in depot

from 1 to 10 vehicles. Result for number of served passenger is shown in Figures 6.4 and result

for total direct distance of served passenger is shown in Figure 6.5.

Similar to previous experiment on varying number of passengers, Top-down solution works

57



0

5

10

15

20

25

30

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Nu
m

be
r o

f S
er

ve
d 

Pa
ss

en
ge

rs
 

Varying Number of Passengers Demands 

TopDown

BottomUp

Raising Cost

OptimalNumber
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Figure 6.2: Total direct distance of served passengers: with increasing demand

as a lower bound in all cases.

The gap between incentive compatible mechanisms and optimal numbers of served passen-

gers is widening when the number of vehicles increases. It is due to the fact that with more

vehicles, the feasible solution set size, which is equal to
(N

S

)
, decreases with more compulsive-

ness in serving passengers.
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In respect to surplus values, when the number of vehicles is greater than 7, Bottom-Up and

Top-down solution are closer to the top solution produced by RaisingCost mechanism.
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Figure 6.5: Total direct distance of served passengers: with increasing fleet size
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Figure 6.6: Total surplus of served passengers: with increasing fleet size

6.1.3 Varying range of bid values

In this experiment, we observe solution quality with varying bidding behaviour with mea-

surement of number of served passengers and corresponding total direct distance. The experi-

ment is set up by 20 passengers 5 taxis, bidding values of passengers are generated from 4 range

[0.5− 1.0], [0.6− 1.0], [0.7− 1.0], [0.8− 1.0], [0.9− 1.0]. When the lower bound of bid values
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increases, meaning bidders are willing to pay more money, solution qualities of our incen-

tive compatible mechanisms Bottom-Up and Raising Cost are improved. These improvements

are shown in both number of served passengers and total direct distance metrics. Among 2

mechanisms, Bottom-Up mechanism shows better improvement by increasing bid values with

narrower gap converging to Optimal Number mechanisms. After first improvement at range

[0.6− 1.0], Raising Cost solutions cannot improve further.
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Figure 6.7: Number of served passengers: with increasing bid values

6.1.4 Local Search and Exact Solution

To verify the efficiency of applying local search algorithm into mechanisms, we compare

performance of local search and exact methods in synthetic data in which we vary number of

passengers.

Results for this experimental comparison of local search and exact solutions are shown in

Figure 6.9 for the number of served passengers measure, Figure 6.10 for the total direct distance

of served passengers measure and Figure 6.11 for total surplus of served passengers measure.

In all metrics, local search solutions are almost identical to the exact solution for Bottom-up

mechanism. On the other hand, local search and exact solutions in Raising cost mechanism are
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Figure 6.8: Total direct distance of served passengers: with increasing bid value

different from each other. In respect to total number and direct distance of served passengers,

when the number of demands is small (from 8 to 16), some local search solutions are better

than exact solutions. The reason is that exact solution provides better surplus for passengers,

so other quantities might be traded-off. The surplus result is shown in Figure 6.11. While exact

solutions provide more surplus than local search solution, local search algorithm shows better

result in total direct distance and number of served passengers.

Even exact solutions promise better quality in different solution metrics, they are not scal-

able with large instances. Size of MIP model in exact method is, in fact, exponential with

number of passengers. When the number of calling demands is greater than 29, the exact meth-

ods run for 1000 to 6000 seconds on average to output solutions. Meanwhile, runtime of local

search algorithms is limited within 1 minute for these instances.

6.2 Ang Mo Kio data analysis

The purpose of this analysis is to choose a suitable mechanism and algorithm to implement

in a real public transport hub with real Last Mile demand. In this part, we will begin with

62



0

5

10

15

20

25

30

35

8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

To
ta

l N
um

be
r o

f S
er

ve
d 

Pa
ss

en
ge

rs
 

Number of Passenger Demands 

BottomServed

LocalBottomServed

RaisingCostServed

LocalRaisingCostServed
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Figure 6.10: Total direct distance of served passengers: with increasing demand

experiments to compare local search and exact method in Bottom-up and Raising cost mech-

anisms. In all cases, Bottom-up mechanism with local search algorithm is shown to produce

optimal solutions in short runtime. We choose this Bottom-up local search method to analyze

large scale instances. We observe that these Bottom-up solutions can serve almost all calling

demands in the data set.
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Figure 6.11: Total surplus of served passengers: with increasing demand
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Figure 6.12: Runtime of algorithms: with increasing demand

6.2.1 Local and exact solution with varying number of passengers

Varying number of passengers instances are extracted from Ang Mo Kio data. Each solution

result is the average of 10 Last Mile demands from 10 consecutive time intervals of 3 minutes.

In this experiment, willing payment of passengers in this data is fixed by value of 0.7.

Solution quality is measured by number of served passenger, their total direct distance, sur-
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plus and cost saving. In all instances local search solution and exact solution is almost identical

in Bottom-up mechanism. On the other hand, in Raising cost mechanism, local search solu-

tions are different from exact solutions, specifically it sometimes may serve more passengers

and direct distance demands in small scale problem (less than 14 passengers).

In respect to total surplus of served passengers, Raising cost mechanism with exact solutions

provides the most surplus to passengers among all methods, followed by Raising cost mecha-

nism with local search solutions. Bottom-up mechanism cannot optimize value of this surplus

metric.

In addition, we measure the cost saving which is the difference between normal travel cost if

all served passengers travel alone by single taxis and the ridesharing travel cost:
∑

i,j∈N xijsj−∑
i,j∈N xijtij . Bottom-up solution shows better result in this cost saving metric in comparison

with Raising cost solution. Notice that this value is different from surplus. It is proportional to

total saving in travel distance while surplus is total saving in utility.

The threshold for scalability of exact method in Ang Mo Kio data is 19 passengers. For

instances with passenger number equal or above 19 need, the average runtime is above 1000

seconds, which make the solution computation infeasible in real time system.

By this experimental comparison, with purpose to maximize number of served passengers

and the direct distance demands, we decide to focus on Bottom-up mechanism to implement in

Ang Mo Kio transportation station. To solve the scale problem, we use local search algorithm

whose solution quality is shown close to exact solution. The next 2 follow-up experiments are

designed for Bottom-up mechanism with local search algorithm.

6.2.2 Varying bid values

To prove the effectiveness of ridesharing in real data, the following experiments are designed

such that the willing payment of passengers increases from 0.5 to 0.9 and ratio of Last Mile

demand calling the service increases from 1 to 19 percents.
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Figure 6.13: Number of served passengers: with increasing demand of Ang Mo Kio data
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Figure 6.14: Total direct distance of served passengers: with increasing demand of Ang Mo
Kio data

Results are shown in Figure 6.18 for the number of served passengers measure and Figure

6.19 for the total direct distance of served passengers measure with the diagonal blue line is

number of calling demands. From these results, we observe that when the number of calling

demands increases, it is more likely to serve all passengers. When the ratio of participating

passengers is above 13 percent, almost all passengers are served.
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Figure 6.15: Total surplus of served passengers: with increasing demand of Ang Mo Kio data
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Figure 6.16: Total cost saving of served passengers: with increasing demand of Ang Mo Kio
data

The number of served passengers is increased if passengers are willing to pay more. When

the willing payment of passengers is 0.9, almost all passengers are served.
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Figure 6.17: Runtime of algorithms: with increasing demand of Ang Mo Kio data
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Figure 6.18: Number of served passengers: with increasing participation ratio and varying
willing payment

6.2.3 Large number of participating passengers

The purpose of this final experiment is to verify the quality of solution of Bottom-up mech-

anism with local search algorithm in large scale instance of Ang Mo Kio demands.

The results are plotted in Figure 6.20 for the number of served passengers measure and
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varying willing payment

Figure 6.21 for the total direct distance of served passengers measure. It is inferred from this

result that when the ratio of participation increases, the average number of missed passengers

decreases. When only 10 percent Last Mile demands call for the service, average number of

missed passengers is greater than 2. From 20 percent ratio value, number of missed passengers

is smaller than 0.5. The reason for this is when more passengers join the service, it is more

possible for more passengers to have close proximity in geographic locations.
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10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of calling Demands 19.65 39.95 60.00 80.25 100.50 120.60 140.55 160.70 180.90 200.55

Number of Served Passengers 17.45 39.70 59.75 79.90 100.05 120.10 139.95 160.00 180.10 200.45
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Figure 6.20: Number of served passengers: with increasing participation ratio

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Number of calling Demands 30.91 62.52 93.50 124.67 157.19 189.15 220.20 251.53 282.67 313.39

Number of Served Passengers 27.95 62.17 93.13 124.14 156.52 188.42 219.35 250.52 281.46 313.27
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Figure 6.21: Total direct distance of served passengers: with increasing participation ratio
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Chapter 7

Conclusion and Future Work

7.1 Mechanism study in Last Mile Risharing problem

In this thesis, we study mechanisms that enable Last Mile non-dedicated taxi ridesharing.

Our main contribution is to provide a framework for route planning and fair cost sharing. In

the operational aspect, we develop a MIP and local search model to solve the specific case

of the problem. In the game-theoretic and microeconomics aspect, we propose a cost sharing

formula and different incentive compatible mechanisms, namely Top-down, Bottom-up and

Raising cost. The efficiency and effectiveness of our proposed mechanisms and algorithms are

carefully investigated by a series of experiments on synthetic and real (Ang Mo Kio) data set

in different metrics. Based on experimental results that compare different methods, with the

focus on fast response solution to maximize number of served demands, we decide to choose

Bottom-up mechanism with local search algorithm to analyze the set of real (Ang Mo Kio)

data. It can be concluded from these experiments that a ridesharing service can be effectively

and efficiently solve Last Mile demands.

Although our work is on mechanisms for a Last Mile non-dedicated taxi sharing system, it

can be extended to other systems. The simplest extension can be implemented by using other

mode of transport different from non-dedicated taxis with fixed capacity to solve Last Mile
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demands, e.g. minibuses or vans. However, the extension to heterogeneous capacity of vehicle

can trade-off the efficiency in runtime of our MIP model for routing problem. Further extension

can be drawn out of ridesharing application, in other game-theoretic problems such as facility

location game or set cover game, our framework can be applied to recover the complete budget

balance.

7.2 Future work on user interface and usability

In this thesis, we do not consider problems of user interface and feedback in implement-

ing a ridesharing service. However, they are important factors for success for any real-time

passenger-centric service such as ours. The first user interface question is how we may im-

plement a software application interface to facilitate interaction between passengers and the

bidding system. It is not easy for first time user to specify their willing payment on an unfa-

miliar notion of the meter rate. In second problem, we need to adapt the model based on real

psychological utility evaluation on the service of passengers. Wrong estimation of utility func-

tion can undermine effectiveness of the service. Hence what is needed is an indepth behaviorial

study to understand the behavior of passengers.

The linear cost sharing formula proposed in this thesis is a simple baseline for implemen-

tation which allows problem to be solved by MIP methods. The framework can be adapted to

other more complex cost sharing formulas.

To implement a Last Mile taxi sharing service, we can utilize existing mobile and web

communication interface and database platforms such as [2], [1],[3]. An additional information

element for willing payment can be simply embedded in request tube in current mobile or

web based software applications. However, auction based protocols can be difficult for first

time passengers in trying to determine their bid values. Tips of supportive information and

suggestion for passengers are necessary. It is infeasible to explain detailed theoretical principles

underlying operating mechanism. so the information presented should be brief but useful.
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I suggest that the following information should be displayed:

• Passengers will be served with priority based on their willing payment on meter rate. This

is the simple and intuitive rule for passengers participating in an auction based protocol.

• As in many route planning app, an approximate comparison among different modes of

transport with Last Mile taxi sharing should be provided. It provides a bounded esti-

mation for opportunity cost to use the taxi sharing service. For example, if the public

transportation cost cp, travel time of public transportation Bp, normal taxi cost 1, direct

travel time of normal taxi s, the bounded taxi meter rate would follow

cp ≤ m(2s−Bp) (7.1)

or

m ≥ cp
2s−Bp

, (7.2)

in which the RHS is lower bound for meter rate willing payment to use taxi sharing

service.

Furthermore, the willing payment rate can be represented as a discrete value instead of

continuous value. Thereby, passengers can choose an option in a set of possible suggested

rate.

• History of past meter rate charge. It can give passengers an intuition of how system is

operated and help them to decide which willing payment should be bid to get served.

• An explicit information of routing and cost allocation solution from the system. For

credibility, passengers should be informed of their trips before they confirm/accept.

• Although information in theoretical principles can be redundant for regular passengers,

we should provide an access to detailed version of explanation. It would make the service

more credible if passengers are content with the information presented.
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• Feedback is prevalent in current ridesharing software applications. We could solicit com-

ments about the fairness of cost sharing from the user of the system.
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